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Abstract

Elliptic modular forms of weight 2 and elliptic modular curves are strongly
related. In the rank-2 Drinfeld module situation, we have still modular curves
that can be described analytically through Drinfeld modular forms. In [GRO6]
Gekeler and Reversat prove how the results of [Dri74] can be used to construct
the analytic uniformization of the elliptic curve attached to a given automorphic
form. In [Lon02] Longhi, building on ideas of Darmon, defines a multiplicative
integral that theoretically allows to find the corresponding Tate parameter. In
this thesis we develop and present a polynomial time algorithm to compute
the integral proposed by Longhi. Also we devised a method to find a rational

equation of the corresponding representative for the isogeny class.

Zusammenfassung

Elliptische Modulformen von Gewicht 2 und elliptische Modulkurven stehen in
enger Verbindung. Im Fall eines Drinfeld-Moduls von Rang 2 haben wir noch
Modulkurven, die durch Drifeldsche Modulformen analytisch beschrieben wer-
den konnen. Gekeler und Reversat [GR96] beweisen, wie die Ergebnisse von
[Dri74] genutzt werden kénnen, um die analytische Uniformisierung der, einer
gegeben automorphen Form eingeordneten elliptischen Kurve, zu konstruieren.
Auf Darmons Ideen aufbauen definiert Lonhi [Lon02] ein multiplikatives Inte-
gral, das es erlaubt, den entsprechenden Tate-Parameter zu finden. In der vor-
liegenden Arbeit wird ein Polynomialzeitalgorithmus entwickelt und vorgestellt,
um das von Longhi vogeschlagene Integral zu berechnen. Ausserdem wird
eine Methode entwickelt, mit der eine rationale Gleichumg der entsprechen-

den Vertreter der Isogenieklasse gefunden werden kann.
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1. Introduction

The theory of modular forms and their relation to the arithmetic of elliptic curves is
a central subject in modern mathematics, where most diverse branches of mathematics
come together: complex analysis, algebraic geometry, representation theory, algebra and
number theory. One of the most exciting and widely mathematical discoveries is the proof,
by Andrew Wiles, of “Fermat last’s theorem”, its solution draws an incredible range of
modern mathematics, which is precisely the relation between modular forms and elliptic

curves.

There are a number of analogies between on the one hand, the integers Z and the rational
numbers Q and on the other hand, F,[T] and its field of fractions F,(7"). Frequently a
problem posed in number fields or, in other words, in finite extensions of QQ, admits an
analogous problem in function fields, and the other way around. For example, since the
appearance of Drinfeld’s work [Dri74], we know that all elliptic curves which are semistable
at the place oo are modular, that is, they appear as a factor of the Jacobian of a Drinfeld
modular curve. We are interested in number theory over function fields, particularly in

elliptic curves over F, (7).

In order to get a better idea of the function field case, it is worth to start with a short
description of the classical case, that is, over the rational numbers Q. Let f : H — C be
a cuspidal modular form of weight two for the Hecke congruence subgroup I'o(N) which
is also a new eigenform with rational Hecke eigenvalues, we call it for short “a QQ-rational
newform” of level N. From the Eichler-Shimura theory, with f one can associate an elliptic
curve E with conductor N and a morphism defined over Q form the modular curve X, (V)

to the elliptic curve E. Such an elliptic curve E is called a Weil curve.

On the other hand, since the 60’s (after the work of Shimura, Taniyama, and Weil) emerged
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the conjecture that all elliptic curves over Q (up to isogeny) should be obtainable from
the Eichler-Shimura construction. The conjecture known as the Shimura- Taniyama- Weil
conjecture, is now a theorem called the modularity theorem [BCDT]. Basically it states

that there are canonical bijections between the sets of

1) Normalized Q-rational newforms f of level N with rational Hecke eigenvalues;

2) One dimensional isogeny factors of the new part of the Jacobian of the modular curve
Xo(N);

3) Isogeny classes of elliptic curves F over Q with conductor N.

The previous correspondence yields an effective method to determine all elliptic curves £/Q
with a given conductor N, since the modular parametrization is explicitly and effectively
computable (c.f. [Cre97]). For tables and numerical results see ([Ibid., Ch. 4]).

For some applications it is convenient to consider other kind of parametrizations instead
of the modular one, for example the Shimura parametrization, introdued in [BC91] and
[BD9§|. Let E be an elliptic curve of conductor N and suppose that N is square free and
factorizes as N = N~ NT where N~ has a even number of factors. Then there exits a
parametrization of E by the Shimura curve Xy-y+ (cf. §3.4), that is a non constant mor-
phism from the Jacobian of the Shimura curve to E. However the lack of ¢g-expansions for
modular forms on non-split quaternion algebras, forces one to consider p-adic uniformiza-
tions of E by certain discrete arithmetic subgroups of SL(Q,) at the primes p dividing
N~.

The modular forms considered here may be regarded as functions on oriented edges of
certain Bruhat-Tits tree T (cf. §3.4), called harmonic cocycles, which can be identified
with measures on P!(Q,). Using these measures Bertolini and Darmon are able to define
a multiplicative p-adic integral defined over P'(Q,), which theoretically gives rise to the

modular parametrization of the Tate curve attached to a given harmonic cocycle.

In [Gre06], Greenberg gives an algorithm, running in polynomial time, for evaluating this
p-adic integral up to a given precision. The key of his algorithm is a method devised by
Pollack and Stevens [PS11] for explicitly lifting standard modular symbols to overconver-
gent ones. Although Greenberg is able to compute with good accuracy the Tate parameter,

he does not give an explicit method to find an equation defided over Q for the elliptic curve
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as Cremona does. However in a recent preprint |[GMS| Guitart et al, get p-adic approx-
imations to the algebraic invariants of the elliptic curve, allowing for the recovery of the

Weierstrass equation.

In the function field case, we want to describe a similar relationship between elliptic curves
and automorphic forms. Although this result was proved for more general global fields
(cf. [GR96]), we consider here the case where Q is replaced by the rational function field
K =F,/(T).

The automorphic forms considered, may be regarded also as functions on the oriented
edges of the Bruhat-Tits tree for G Ly (K ), where K, is the completion of K at the place
oo = 1/T. In analogy with the classical case, in [GRO6] Gekeler and Reversat prove that
every elliptic curve E over F,(T) with conductor noo, where n is an ideal of F,[T7], is
isogenous to a factor of the Jacobian of the Drinfeld modular curve My(n) or equivalently

E is a Weil curve. One can also establish a canonical bijection between the sets of:

1) Q rational new eigencocycles of level n with rational eigenvalues;
2) Isogeny factors of dimension one of the Jacobian of the Drinfeld modular curve My(n);

3) K-isogeny classes of elliptic curves F/K with conductor noo.

This modular parametrization is explicitly constructed using a Theta function, however,
this construction requires to calculate certain infinite product (cf. (2.6)), which makes
it computationally hard to find the Tate parameter. On the other hand, Longhi [Lon02]
working on function field analogues of Bertolini-Darmon [BD98]|, defines a multiplicative
integral over P!(K,,) and constructs a theta function in a different way as the one of
Gekeler and Reversat. This approach does not give either an explicit method to calculate

such integral.

In this thesis we develop an effective method to compute the multiplier of Gekeler’s theta
function using the integral proposed by Longhi. We are able to calculate the Tate parameter
q up to an accuracy of 7 in running time O(M7) operations; this is the main result of
this thesis (c.f. Thm. [B.2.1]). In contrast to Greenberg's work, we go even further and find
the corresponding elliptic curve defined over F (T) in the isogeny class of the Tate curve

corresponding to q. The importance of the these results, is that we now have a method to
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construct, at least for small primes and polynomials NV of small degree, tables as Cremona

does in the classical case.

We start with a harmonic cocycle ¢ as above, that is, a new eigencocycle of level n with
rational Hecke eigenvalues. From §3.1.0] we know that there is a measure pu, on P*(K.)
associated to ¢. We use it, following Longhi, to define a multiplicative integral (3.9) which

is very similar to the one used by Greenberg in the p-adic uniformization.

Motivated by the work of Greenberg, Darmon and pollack, we develop an algorithm to
calculate our integral up to a given fixed precision of M digits. A crucial tool in Greenberg’s
calculation is the logarithm, which allows him to pass from a multiplicative integral to an
additive one. In the function field case we had to replace the use of logarithm by a different
method which lead us to calculate several integrals of functions in the ring 1 + #F,[x, ]
defined on O (cf. (£3)), instead of P(K ) (cf. (41)). This idea and the concepts involved
were sketched to me by Prof. Bockle.

In order to calculate the integral we define a Hecke operator over certain set 8 (cf. (A1)
of functions which are J-equivariant. We show that the integral over any edge of the
tree T can be regarded as an element of 8§ and they are eigen-functions with eigenvalue 1.
The last property allows us to calculate the integral over all edges in T and functions on
1+ 7F [, ¢] modulo 7.

The calculation of the Hecke operator U,, requires to work with the edges of the quotient
graph I'g(N) \ GLy(K«)/Js, where N is a polynomial in F,[T] that generates the ideal
n, which is a covering of double the quotient GLs(A) \ GLy(K)/Jo. Since most of the
algorithms available in the literature are made to work with the vertices of the quotient
graph, we need to describe sets of representatives for the edges of the quotient graphs above
and implement algorithms that allow us to work with such as sets (c.f Appendix [Al). The
algorithms and the proofs that appear in the Appendices A and B, were made with the
help of Dr. Cervino.

Once we have the Tate parameter q we proceed to find a representative of the elliptic
curve in the isogeny class defined over F (7). Unfortunately the coefficients a4(q) and
ag(q) of the Tate curve ([LI2]) are not rational (cf. Example [.74]). So we need to find an

appropriate change of variables to transform the Tate curve into a rational model.

In the case of characteristic 2 and 3 a simple change of variables to transform the Tate
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curve was enough to find the rational model. In characteristic greater than 3 we need to
consider the Eisenstein form y? = 423 — gz — g3 of the curve. Following a suggestion of
Prof. Bockle, we prove that there are powers of g, and g3 that are rational functions (cf.
Proposition [5.7.9). Hence after an appropriate change of variables we get a model defined
over the field F,(7"). A direct consequence of this is that the Eisenstein series are algebraic
over F (7).

This thesis is organized as follows:

In chapter 2] we give all the preliminaries from the article of Gekeler-Reversat [GR96],
which include a short introduction to graphs in §2.21 We give the basic definitions of the
Drinfeld upper half plane, Bruhat-Tits trees, ends, the reduction map, the quotient graph
and harmonic cocycles in sections §§2.3H2.9l In Section 2.5, where the ends of the tree T
are defined, we explain how they are identified with P'(K,) (cf. Lemma 25.4) and how
each edge induces a partition of P!(K,) into two disjoint open sets. Besides the definion
of the harmonic cocycles in §2.9 we show how they can be constructed using the homology
of the quotient graph (cf. Lemma [2.9.7]).

The construction of Gekeler and Reversat of theta series is given in §2.10l Theorem
gives their main properties. There it is stated that the multiplier of the theta series induces
a symmetric bilinear pairing, this is used latter to find the integral with the minimal
valuation, which is precisely the Tate parameter. Theorem 2.10.4l mostly due to Van der
Put, gives the relation between theta functions and the harmonic cocycles. This relation
allows us latter to construct the theta series by means of a multiplicative integral. We
finish this chapter with the definition of the Hecke operator in §2.171] and the applications
to the Shimura-Taniyama-Weil uniformisation §2.12 which is the main result of |[GR96].

In Chapter [ the definition of Longhi’s multiplicative integral (cf. Def. Bl over any
compact X is given. In §3.1.0] we state the relation between harmonic cocycles and mea-
sures, which is a direct consequence of Lemma 254 In §3.1.21 we give the definition of
the multiplicative integral when X is P!(K,) and the measure is the one induced from the
harmonic cocycle. The theta function as a multiplicative integral is the content of Theorem
B.2.1l which allows us to show that the multiplier of the theta function can be given as a
multiplicative integral (cf. (B.3])). This is the integral that we are interested in, since it

allows us to determine the Tate parameter. This chapter also includes two sections with
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the classical complex uniformisation in §3.3] and the p-adic uniformisation in §3.4] with a

short explanation of Greenberg’s algorithm.

In Chapter @ we explain our algorithm to calculate the integral. This is the main theoretical
contribution of this thesis. In §4.21we define F;, the set of fundamental functions. We show
in Lemma [L.2.1] that F; is a group and we define the action of the Iwahori subgroup on
it (cf. (46). We introduce in §4.3] the Hecke operator Uy, and the set 8§ (A1) on which
the operator Uy, acts. The main results of this section are Lemma [4.3.7] and Proposition
in which we prove that the integrals regarded as elements of 8§ are J.,,-equivariant
and eigenfunctions of the operator U,,, respectively. At end of section §4.3] we explain how
to calculate the Table by applying the Hecke operator U,,. This section finishes with the
example [£.3.13] of how to apply the operator U,,.

As we already explained we need to transform our integral (3.9) into one of the form
(A1) defined over O.,. In §4.4 we explain how to carry out this change of variables and we
perform carefully all the computations over all possible open sets arising from the partition
of the border P*(K ).

Chapter [ deals with the applications of our algorithm to calculate the integral (3.9). We
start this chapter with some definitions and results on elliptic curves, modular forms and
the Tate curve (cf. §§5.TH5.H). We explain in §5.6] how to calculate the Tate parameter.
This includes a calculation of the valuation of q and Theorem [(.6.1] which states that we

can compute the Tate parameter q up to accuracy 7 in time O(M 9).

In §5.7.1l we explain how to find the rational model for the Tate curve in characteristic 2
and 3 and write the corresponding algorithm and give some examples. Section §5.7.2 deals
with characteristic p > 3. We show first the rationality or certain powers of the Eisenstein
series g and g5 (cf. Proposition B.7.9) over the field F,(q). We also give the algorithm to

find curves in characteristic p > 3 and we give examples for p = 5,7,11 and 13.

In the appendices [Al and [Bl we explain the implementations for algorithms to deal with
the quotient graph and the table respectively, as well as the running time for the main
algorithms and the proof of Theorem [(.6.1l Appendix C includes tables for some primes

and small degree of n.

Implementations of the algorithms described in this thesis, were done on the algebra system

Magma [BCP97] and are available upon request.



2. Background

2.1 Notation

We recall some facts on the Drinfeld upper half plane, the Bruhat-Tits tree, harmonic co-

cycles and theta function. We fix throughout this work the following notation, assuming
the reader to be familiar with [GR96].

8

O=E 8 A=

8

ot
|

the finite field of characteristic p with ¢ elements

F,[7]

F,(T)

the fixed place of K of degree one corresponding to v, ,,

the valuation v,

F,((m), 7T

F,[[7]], the co-adic integers

the completion of an algebraic closure of K,

the multiplicative norm on C,, that extents ¢"*¢) : K — Ry.

2.2 Notions from graph theory

Definition 2.2.1. Let S be a non empty countable set.

(a) A (directed multi-)graph G is a pair (X(G), Y(G)) where X(§) is a (possibly infinite)
non-empty set and Y(G) is a subset of X(G) x X(9) x S such that

1. if e = (v,?/, s) lies in Y(9), then so does its opposite e = (v, v, s),

!The theta functions considered here are the rigid analytic functions defined in [GR96, §5]
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2. for any (v,v’) € X(9) x X(G), the set {s € S| (v,7',s) € Y(9)} is a finite set
whose cardinality is denoted by n,./,

3. for any v € X(9), the set Nbs(v) := {v' € X(9) | (v,?',s) € Y(9) for some s €
S} is finite.

(b) A subgraph §’' C G is a graph §’ such that X(9') € X(9) and Y(9') C Y(9).

(c) Suppose X(§) = {v1,v2, ..., v} is finite. Then (1., ., )1<ij<m is called the adjacency

matriz of G.

Notation 2.2.2. An element v € X(§) is called a vertez and an element e € Y(9) is called

an oriented edge. If the cardinality of S is one, we simply write (v, ) instead of (v, ', s).

Definition 2.2.3. (a) For each edge e = (v,v',s) € Y(G) we call o(e) := v the origin of
e and t(e) := v’ the target of e.

(b) Two vertices v,v" are called adjacent, if {v,v'} = {o(e),t(e)} for some edge e.

Definition 2.2.4. An edge e with o(e) = t(e) is called a loop. A vertex v with # Nbs(v) = 1
is called terminal.

Definition 2.2.5. Assume G to be a graph.
(a) Let v,v" € X(9). A path w from v to ¢’ is a finite subset {ey,...,ex} of Y(G) such
that t(e;) = o(e;1) foralli=1,...,k—1 and o(ey) = v, t(ex) = v'.
(b) The length of a path w is the number of edges contained in it.

(¢) The distance from v to v', denoted d(v,v’), is the minimal length among all paths

from v to v (or oo if no such path exists).
(d) A path {eq,..., e} from v to v' without backtracking, i.e., such that for no i we have
e; = €;_1, is called a geodesic.
Note that the length of a geodesic need not be d(v,v’) but that d(v,v’) is attained for a

geodesic.

Example 2.2.6. Consider the set S = {x} and the set of vertices

X(9) = {1,2, ..., 16}.
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If the graph G is represented by

)
®/ \@

N\

®
S
®
©

/

()
N
©
®

@

(19— .

then the set of edges is

{(1,6),(1,4),(2,4),(2,7),(2,5),(3,5), (3,8), (6,10), (4,9),
(7,11), (5,9), (8,12), (10, 14), (11, 15), (9, 13), (12,16) };

here due to Definition 22211 only one of (v,v’) (or (v/,v)) is written since either both are

elements of Y(9) or none.

A graph G is connected if for any two vertices v, v’ € X(9) there is a path from v to v’. A
cycle of G is a geodesic from some vertex v to itself. Therefore a loop is a cycle of length

one. A graph G is cycle-free if it contains no cycles.
Definition 2.2.7. A graph § is called a tree if it is connected and cycle-free.
If G is a tree, then any two vertices of G are connected by a unique geodesic. Any subgraph

T C G which is a tree is called subtree. A mazimal subtree in a graph G is a subtree which

is maximal under inclusion among all subtrees of G.
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Definition 2.2.8. The degree of v € X(9) is
deg(v) := #{e € Y(9) | o(e) = v}.

Thus v is terminal precisely if deg(v) = 1. A graph § is called k-regular if for all vertices
v € X(9) we have deg(v) = k.

A graph G is finite if #X(9) < oco. Then also # Y () < oo, since deg(v) is finite for all
v € X(9). The diameter of a (finite) graph § is

diam(§) := max d(v,?v).

v, €X(9)

2.3 The Drinfeld upper half plane

The Drinfeld upper half plane is the set
Q:=PYC,) \ P (K)

on which GLy(K ) acts through fractional linear transformations by
az+b
vz = cz+d’
where v = (¢%) € GLy(K) and z € Q. This action is well defined since GLa(K )
preserves K,,. We define the boundary of Q, denoted by 99, to be P}(K,,).

In order to define the algebra of rigid analytic functions on €2, we consider the following sets
that form an admissible cover of Q (cf. [FvdP81l Ch. II] for details). Define the imaginary
absolute value on €2 as the distance from K:
|z|; :=inf{|z —z| |z € K.} .
Definition 2.3.1. Let z € 2 and n € N, a basic affinoid is a set of the form
Ani={z€ Q¢ < |25 ]2] < ¢"}.
A function f : A, — C is holomorphic if it is the uniform limit of rational functions

without poles in A,. The collection of such functions is denoted by Oq(A,). With the

norm

[fllan :=sup {|f(2)] | z € An},

the space Oq(A,) is a Banach algebra and O () := Jm Oq(Ay) is a Fréchet space [FvdP81],
Ch. III].

10



2.4. The Bruhat-Tits tree

2.4 The Bruhat-Tits tree

In this section we recall the definition of a graph T called the Bruhat-Tits tree of PG Lo(K ),
which is a basic combinatorial object for the arithmetic of K. For more details see [Ser03],

Ch. II].

A lattice in K go is a free O, .-submodule of rank 2. We say that two lattices L; and Ly are
homothetic if L; is a K2 -multiple of L. Homothety is an equivalence relation. The set
of vertices X (7T) of T consists of the homothety classes of O.-lattices. Two vertices are
joined by an edge if and only if they can be represented by lattices L, Ly such that there
are strict inclusions mLy & Ly & L. The set of oriented edges of T is denoted by Y (7).

Thus the vertices and edges of T may be described as follows:

X(T) ={ Vertices of T } = { Classes [L1] of Ox-lattices Ly } ’

2
in K,

Ordered pairs ([L1], [L2]) with representatives
Y (T) = { Oriented edges of T } =< Ly, Ly such that L; C Ly and
with 7TL2 g L1 g L2

It is well known that the graph T is a connected regular tree of degree ¢ + 1, where ¢ is

the cardinality of the residue field of K [Ser03, Ch. II. Thm. 1 |].

The group G Ly (K ) acts naturally on lattice classes by left multiplication (g, [L]) — [gL].
This induces a transitive action on the vertices of T which preserves the incidence relations
mLy & L1 & Ly. In this way one obtain an action of G Ly(Ky) on T.

For i € Z let v; be the vertex [0 @ Ou] of T. Since the vertex vy = [Oy @ Os) has
stabilizer KX GLy(0Os) in GLy(K ), we have the following

Proposition 2.4.1. There is a canonical bijection

GLy(Ko)/ K3 GLo(Ox) — X(7)
v - K GLy(Ox) — 7[Os @ Oxl,

equivariant for the left action of GLy(K ).

11



2. Background

Definition 2.4.2. We define the Iwahori subgroup of GLy(K,) as

J:= {( ¢ Z ) € GLy(Oy) such that ¢ = 0(mod W)} . (2.1)

C

Similarly, we label the edges e; (i € Z) such that t(e;) = o(e;11) = v;. Each edge is taken
by GLy(Kx) to eg = (v_1,vp), so it follows that Y (T) = GLy(K)/Stabar,k.)(€0). A

simple computation shows Stabgr,(k..)(e0) = KZXJ.
Proposition 2.4.3. There is a canonical bijection

GLy(K.0)/K2T — Y(T)
v KZJ — (Y77 O ® Ou], 7[O ® Os)),
equivariant for the left action of GLy(K ).
From now on given a v € GLy(K) we denote its class in GLy(Ky)/KXGLy(Oy) as
(7], and its class in GLy(K)/KZXT as [7];.  We may implicitly use by abuse of nota-
tion the bijections above and understand [v], and [y], as vertex and edge respectively.

The vertex vg = [Ox @ O] is called the standard vertex, analogously the edge ey =
([T7'0x @® O, [Os ® Ox)) is called the standard edge.

The next two lemmas will help us to identify the vertices of the tree with explicitly given
matrices. Furthermore, they will show which matrices correspond to adjacent vertices in

the tree.

Lemma 2.4.4. Every class of GLy(Ks)/KZGLy(Os) has a unique representative of the
form

™ u

0 1

One can find a constructive proof in [Butl12, Lemma 2.7]. We call this representative the

withn € Z and u € Ko /7" Oue.

vertex normal form. In what follows we will denote the vertex represented by the matrix

in normal form (7 ) as [k, u).

12



2.5. Ends of the tree

Lemma 2.4.5. Consider the two matrices in vertex normal form

4. ™ B w4 an”
0 1 0 1

withn € Z, a € Fy, u € Koo /7" O and let Ly and Loy be the two lattices
Ly:=AO2, Ly:= BO2.
Then Ly D Ly and Ly/Ly = F,,.

Recall that T is a regular tree of degree ¢+ 1. The previous lemma only displays ¢ vertices

adjacent to [L;]. The remaining one is the class of (™~ “med ™" 0= ) 02

The subgroup J is not normal in GLy(K.). Denoting by N the normalizer of J in
GLy(Ky), we have that N/JK, = Z/2. As one can easily see, § := (2}) is a repre-
sentative of the non-trivial quotient class of N/J. Let v € GLy(K) such that [y]; = e,

then multiplication from the right with ¢ corresponds to the map

Y(T) — Y(7)

e— €
that is [yd]; = e.

There are two canonical projection maps from X (T) x X (T) x S to X(7), which induce
two maps from Y (7) to X (7). We choose the first projection map that associates to each

e its origin o(e), i.e.,

pry : Y(T) — X(T) (2.2)

e=(v,0)—o(e) =v. (2.3)

This map is also compatible with multiplication by d that is, pr,(de) = o(de) = t(e).

2.5 Ends of the tree

Before relating the Bruhat-Tits tree to the Drinfeld upper half plane, we need to define
the ends of the tree.

Let {e, o} the standard basis of K% as a column vector.

13



2. Background

Definition 2.5.1. Let ([Lo], [L1],...) and ([Ly], [L}],...) be two non-backtracking infinite

sequences of adjacent vertices. We say that they are equivalent if [L,] = [L!

rm) for some

m € Z and all n large enough. An end of T is an equivalence class of such sequences. The
collection of ends of T is denoted by Ends(7T).

From the elementary divisor theorem we obtain the following. (cf. [Bos09, Ch. 6] for
details).

Proposition 2.5.2. Let L and L' be two lattices in K%. Then there exists a Ou-basis
{e1,es} of L and integers a,b such that {r%;, ey} is a Ou-basis of L. The numbers a
and b are independent of the choice of the basis of L and L.

Remark 2.5.3. i) If L' C L then the numbers a and b from the previous proposition
are positive. Furthermore, we can find in the class [L'] a lattice L”, namely L" =
L'r=mimabl such that if {f1, f2} is a basis of L then L is generated by one of the f;

and the other one multiplied by a positive power of .

ii) Given an end s there is a unique representative sequence starting with the lattice

Lo = Oxe1 @ Oxea, were e; is the standard basis of K2, .
Lemma 2.5.4. There is a canonical G Lo(K,)-equivariant bijection

¢+ Ends(T) — P (Ka).

Proof. Given s € Ends(7T) represented by the sequence ([Lol, [L1],...) we can construct a

representing sequence of lattices
LoD Ly DLy D...

such that L, /L,11 = O /70O« for all n and mLy does not contain any of the L,’s, since
there is no backtracking. Therefore N, L, is a O-submodule of K2 spanning a K-line.
For any n, by the Remark 2.5.3] there exists a basis {x,,y,} of Ly such that {z,, 7"y, }
is a basis of L,, analogously for L, ;. Since L,,; C L, we can write x, 1 in terms of
the basis of L,, that is x,.1 = z,a, + ©"b,y, for some a,,b, € Oy and a, ¢ 70.
Then z,.1 — xna, = 7"b,y, and since a,, € 70, we may replace x, 1 by a,r,.1 to get
Tpy1 = 7, (mod ). Continuing in this way, we can construct a Cauchy sequence (z,,),,,
which converges to a nonzero element = = (3) of N, L, C K%.

14



2.5. Ends of the tree

The bijection

¢ :Ends(T) —» P(K2) =PYK,)
(6171 + eqwa) > (a1 1 9)

is established by associating to the end s = ([L,]) the line in K2 generated by N,L,, that

is ¢(s) = Ox(e171 + €272), where {e1, eo} is the standard basis of K2 as column vectors.

The map ¢ is surjective. Let [ be a line in K2 generated by x = (7.), that is [ =
Ox (7161 + T26€3). Define the sequence of lattices L, = Oy x ® 7"y O with y a vector in
K2, linearly independent of . Let s be ([Ly)),s,, clearly L,41 C L, and ¢(s) = I,

The map ¢ is injective. Let s and s’ be two ends and let {L,} and {L/ } be two sequences
of lattices representing s and s, respectively, whose intersection generate the same line.
Then up to multiplication by an scalar NL, = NL! = O,z for some z € K2 . Eliminating,
if necessary, the first terms of the sequences, one can assume that Ly = O,z ® Oy and
Ly = Oxx® Oy’ . Since xz € L, for all n and [Lg : L,] = ¢" we have that L,, is generated
by {z, 7y} and similarly L’ is generated by {z,7"y'}. Since 7%y’ = az + by for a,b € O
for k large enough one finds that L; . is generated by x and 7bw and therefore coincides

with L;,, for some j, that is the ends ([L,]) and ([L}]) are equal, hence ¢ is injective.

Finally, the map ¢ is equivariant. If N, L, is generated by the vector (71 ), foray = (29) €
GLy(K ) the generator of NyL, is v (75 ) = (“Wrbm) :

cx1+dzo

On the other hand GLy(K,,) acts on P'(K,,) by Mobius transformations, that is

Y(z1 @ x9) = (azy + bxg : cxy + dxo) and the equivariance follows.
U

Remark 2.5.5. In [GRI0] the elements of K2 are taken as row vectors and the action
of GLy(Ky) on the lattices is given by right multiplication Ly~t. So if NL, is gener-
ated by the row vector (x1,22) and v = (28%) € GLy(Kw) then NyL, is generated by
(x1d — xoc, —1b + x9a). Which does not correspond to y(x1 : x3) = (ax; +bxs : cxy+dxs).
In order to make the map ¢ compatible with the action of GLy(Ky,), it needs to be com-
posed with the canonical map (xq : x9) — (—x9 : x1), that is the Mébius transformation

2 —z 1 on PYKL) (cf [GRI6, §1.3.2)).
From the bijection in Lemma 2.5.4] we have in particular that

e the image of the semi-line whose vertices are represented by {[k,0]},_, is
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2. Background

o0 = (1:0) € P!(K). To see this note that the line represented by {[k,0]},_, is

in the class of the sequence of lattices L whose basis are the columns of the matrix
(<o)
7k 0/

e the semi-line whose vertices are represented by {[k, 0]}, ., goes to

0=(0:1) € PH(KL).

We will denote by A(0, c0) the “line” whose vertices are represented by {[k, 0]}, ;.

From the normalization the edge ey may be identified with the compact open set U,, =
O, C PY{(K,) by considering the ends passing through ey. These are represented by
sequences of lattices whose basis are the columns of the matrix (7% %) with n > 1 and
u € Ko /m" Oy with positive valuation. This extends by equivariance to an assignment of

a compact open subset of P1(K,) to each oriented edge of the tree by
Useo = 7(0x) CPHKy) Vv € GLy(Ky). (2.4)
Since the action of G Ly(K) on the disks of P(K,,) is transitive, every disk of P!(K,) is

the image of an edge on Y (7). We observe some essential properties of the assignment:

i) Given any oriented edge e, then for the opposite edge €, the associated open set

satisfies U, = PY(K ) — UL.

ii) For any vertex v the set {U.}, where e runs over all edges e with initial vertex v,

form a disjoint covering of P!(K ).

iii) The sets {U.} form a basis of compact open subsets of P!(K,).

Given two vertices v and v" on the tree, there is a unique oriented path w from v to v’ joining
them. The open set associated to these two vertices is the union of all ends containing w.
Given an edge e and a vertex v, we say that e points away from v if the unique path with

origin v and containing o(e) and t(e) contains e (and not €).

Remark 2.5.6. The end oo defines an “orientation” of the tree T, that is a decomposition
of Y(T) =Y (T)UY(T), where an edge e = (v1,vs) belongs to Y(T) if it points to oo

and it is called positive and negative (e € Y (7)) otherwise. From this we get a section
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2.6. The reduction map

X(T) = YH(T) = Y(T)

VH—— e

such that o(e) = v and e is positive.

Note that multiplication by ¢ allows us to change from Y (T) to Y~ (T) and the other way
around. In terms of matrices, we have that the map e — € is given by [g]1 — [gd]1 for a
g € GLy(Ky). Then each edge e of Y (T) is uniquely represented by either (7 v) (if e is

positive) or (7 v) (28) (if e is negative).

2.6 The reduction map

As constructed so far, the Bruhat-Tits tree T is a combinatorial object. Next we will
associate to it a geometrical object. For this, we identify each edge with a copy of the
real unit interval endowed with the usual topology. Then we glue edges according to the
relations on T using the quotient topology and we denote by T(R) this new tree and it is
called the geometrical realization of T . Let e be an edge of T(R) joining the vertices [Lo]
and [L4], any point on e is determined by its barycentric coordinates, i.e., for t € [0, 1] we
write x = (1 — t)[Lo] + t[L1] to indicate that x is the point “at distance ¢ from the vertex
[Lo] in the direction of [L;]”. Denote by T(Q) the Q-points of the geometrical realization
of T defined as t € [0,1] N Q and also T(Z) to be the vertices of T.

The geometric realization of the tree T parametrizes norms on the two dimensional vector
space K2 as is stated by Goldman and Iwahori [GI63], which allows us to define the

reduction map.

Definition 2.6.1. A real non-archimedean norm on K2 is a map v : K2 — R which

satisfies

l.v(z) 20and v(z) =0 x =0,
2. v(ax) = |a|v(x) for a € K,

3. v(x+y) <max{v(z),v(y)}.

17



2. Background

Given a lattice L on K2, one can associate the norm
vi(v) :==1inf {|a| | a € KX, € aL}.

We say that two norms v and v/ are similar if there is a constant ¢ € R such that v = ¢v/.
Moreover, the group GLy(Ky) acts on the space of norms by (yv)(z) := v(yz) for all
v € GLy(K ) (cf. [GRIG, §1.4.2]).

Theorem 2.6.2 (Goldman-Iwahori). There is a canonical bijection compatible with the
right action of GLo(K )

{ Similarity classes of real non-archimedean norms v on Kgo} «— T(R).
In particular,

{Classes of norms whose unit ball is an O -lattice} <— T(Z).

For z € Q we define the norm v, on K2 as follows:

v, . Kgo —>RZO

(u,v) — v,((u,v)) = |uz + v|
and the reduction map is defined by

A:Q— T(R)

z— [1,].
Since |CX| = ¢2, it is not difficult to prove the following (cf. [Gek99]):
Proposition 2.6.3. One has a surjection A : Q — T(Q).

The previous proposition yields the following well known properties of the reduction map:

o M\ (verter) = PH(CX) — (¢ + 1) disjoint balls, in particular,

e N lw)={2€Cl||z|<1, |z—c|>1 VceF,}.

We will refer to last set as the standard affinoid.

Remark 2.6.4. From the GLy(K)-equivariance of the reduction map we can in principle

find the fiber of any vertex and any edge on the tree from X' (vy) and X7(ep).
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2.7. Drinfeld modular curves

2.7 Drinfeld modular curves

An arithmetic subgroup I" of GLy(K ) is a subgroup commensurable with I'(1) := GLy(A)
(cf. [Gek97, §3.1]), i.e., such that I' N T'(1) has finite index in both I" and I'(1). The main

examples are the principal congruence subgroups defined as follows.

Definition 2.7.1. Let N be any monic polynomial in A = IF,[T] and consider the set

['(N) = {VEGLQ(A)IVE ((1) 2>(mod N)}

A subgroup of GLy(A) that contains I'(N) is called a congruence subgroup. Special cases

To(N) = {7 € GLy(A) ‘ v = ( ; : ) (mod N)}

I'(N) = {7 € GLy(A) ) v = < (1] j ) (mod N)}

are

and

Most of the properties stated in this chapter for arithmetic subgroups I' are proved for
I' =T(1) in [Ser03] or in [Non01], and they can be proved for general arithmetic subgroups

as defined above.

Let T" be a congruence subgroup, it acts on ) by fractional linear transformations with
finite stabilizers. The quotient I" \ Q2 is a rigid analytic space over K.,. Moreover, it is

smooth of dimension one. In fact, the analytic curve I' \ © can be shown to arise from an
algebraic curve (cf. [Gek86, Ch. V]).

Theorem 2.7.2 (Drinfeld). There exists a smooth irreducible affine algebraic curve Yr
defined over Cy, such that T\ and the underlying analytic space are canonically isomorphic

as analytic spaces over Cy,.

The curve Yr can be compactified by adding the finite set of cusps T'\ P!(K). We denote
this compactification by Xr, that is

Xr=T\Q UT\PY(K).

The curves Xt will be referred to as Drinfeld modular curves. If T' = T'o(N) we write
Xo(N) instead of Xr.
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2. Background

2.8 The quotient graph

As already mentioned, the group GLs(K ) acts on the tree. Since GLo(A) is discrete in
GLsy(K ), the stabilizers in GLy(A) of edges and vertices are finite. As is proved in [Ser(3],
the quotient GLo(A) \ T is a “half line”. In particular, it is isomorphic to the subtree of T

whose vertices are represented by {[k,0]}, ..

As proved in [NonOl] for I'" a congruence subgroup, the quotient I' \ T is a connected
graph which is the union of a finite graph with a finite number of “half lines” attached to
it. These are in one-to-one correspondence with the cusps of the corresponding Drinfeld

modular curve and will be henceforth called cusps.
For a congruence subgroup I' the quotient graph I' \ T is a “ramified covering”
7: T\ T — GLy(A)\ T.

Given any edge e € T, we will denote by é its class on the quotient graph, analogously for
any vertex v its class in the quotient is denoted by ©. Also we say that a vertex in I' \ T

has level 7 if its projection under the map 7 is A;.

Observe that the figure below shows the quotient graph for T'o(N) with N = T? over F.
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2.9. Harmonic cocycles

is a covering of

Ay Ay Ay As

where A, = [1" O @ Oy

Denote by (I'\ 7)° the subgraph of I' \ T obtained by removing all the edges starting at
level deg(NN) and the vertices starting at level deg(N) + 1, (we know (cf. [NonO1]) that at

level deg(N) there is no more identifications between edges).

2.9 Harmonic cocycles

In this section I' will be a congruence subgroup.

Definition 2.9.1. Let G be an abelian group. A G-valued harmonic cocycle on the tree
T is a map ¢ : X(T) — G that satisfies

i) p(e) = —p(e) for all e € Y(7),

i) > 4e)=0 p(e) = 0 for all v e X(T).

The group of harmonic cocycles on T with values in G is denoted by H(T,G). We denote
by H,(T,G)" the subspace of H(T,G) that also satisfies the following conditions

iii) @(ve) = ¢(e) for all y € T,

iv) ¢ has compact support modulo I', i.e. modulo I', the set of edges were ¢ takes

non-zero values is finite.

We are interested in Z-valued harmonic cocycles. From the property iii) the elements of
H,(T,Z)" may be regarded as invariant functions on the oriented edges of the quotient
graph T'\ 7. Let us denote by I :=T'/(I' N Z(K)) and ft(é) := Stabg(t(e)) for some lift e
to T of &, similarly we define I'; and the quantity m(é) := [T : I'e]. The condition ii) is
equivalent to the following sum condition (with multiplicities that count how many edges
of T are identified modulo T'):

> m(@)pE) =0 forallde X(I'\7). (2.5)

t(8)=p
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2. Background

Before constructing explicitly the space of harmonic cocycles, we need to recall definitions
of some further groups. First the maximal torsion-free abelian quotient of I', namely
[ := T2 /tor(I'*"). Also It will denote the normal subgroup generated by elements of finite
order. This two groups are related by the following lemma, which holds for any congruence

subgroup [Non01].

Lemma 2.9.2. The groups I' and (T'/T¢)* are isomorphic.

In [Ser03, Ch. I, Thm. 13] is proved that the group I'/I'; is canonically identified with
the fundamental group of the graph I' \ T, so I'/I'; is free (cf. [Ser03, p. 43]). The group
[ is isomorphic to the homotopy group of the quotient graph, indeed we have the following:

Lemma 2.9.3. Let v be a vertex of T, there exists an isomorphism

i:T = H(T'\7,2)

> Ya
where Y, 15 given by
Yon(€) =#{e € (v,av)le=¢é(mod I} — #{e € (v,av)] —e=¢é (mod I')}

and this map is independent of the vertex v, where (v, av) denotes the path without back-

tracking from v to av.

For a proof of this lemma see [Non01l Thm. 2.34]. Here we give a short explanation of the
meaning of the map v,,. Given any a € I', the path on the tree T that goes from v to
av is non back-tracking. However, its projection to the quotient graph is a cycle which in
general is not reduced. Given any € in the cycle determined by v and aw, there are many
edges e € T mapping to €. So the map v,, counts how many edges of the path v,av in T

have the image in the cycle.

Lemma 2.9.4. There exists an injective homomorphism
L Hy(T\T,Z2) — H\(T.Z)
LR
defined by p(€) = n(e)w(€), where n(e) := #Z(T) " #Stabr(e).
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2.9. Harmonic cocycles

Finally, the following lemma connects the groups I' and H,(T,Z)".
Lemma 2.9.5. There is a canonical homomorphism

jf — E!CI,Z)F

o Qo

where pq(€) = pa(e) = m > ver 0(e, a,v,7) with v any fived vertex and the function
d(e, a,v,7) given by:

1 if ~(e) € (v,aw),
d(e,a,v,v) =< —1 if ~v(e) € (aw,v),

0 otherwise.

This homomorphism is independent of the choice of the vertexr v.

The map 7 defined above is actually the composition of ¢ and ¢, so it is injective. We show
here the surjectivity of j (cf. [NonOIl Cor. 2.37]) which will give us a way to construct
the space of harmonic cocycles. Here we will use the homology of the graph to construct

a basis of H,(T,Z)" and then we get the surjectivity.

Let T be the maximal tre in (['\ 7)° and {€1, €2, ..., €,} be a set of representatives of the
edges of the tree (I'\ T)° —T'. It is proved in [NonO1l, Cor. 2.38] that the set {€1, €2, ..., €,}
consist of edges attached to vertices of level 0 of degree ¢+ 1 (cf. §2.8 for the definition of

level).

Let v; = o(é;), w; = t(é;) the origin and target of é;, respectively. Then there exists a
unique geodesic &, in the tree T joining 1; and @;. In this way ¢ gives rise to a closed path
¢; in '\ T by composing é&; and ¢

Consider

i Y(T\T) — T

defined as follows

1Tt exists since (I' \ 7)° is finite and connected.
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2. Background

n(e) if
i(€) = ¢ —n(e) if
0 otherwise.

appears in ¢,

Y D™

appears in ¢,

From (2.3]), we see that actually ; lifts to a function on H,(T,Z)' and form a basis of
H\(T,Z)". Finally let ¢; = (e, €;1,...€;;) be a lift of ¢, then there is a o; € T such that

a;o(eio) = t(e;;) so we can find a « € T such that j(a) € H\(T,Z)".

In summary, to construct the space of harmonic cocycles for the graph I' \ T, we need to
find the maximal subtree 7" of (I \ 7)°, also called mazimal spanning tree. For this we
use the algorithm given in [Non0O1l §3] to find a set of representatives {€3, €2, ..., €,} of the

edges of the tree (I'\ T7)° — T'. Finally we define for each i the p; as above.

2.10 Theta functions for arithmetic groups

Let I' be an arithmetic subgroup of GLy(K).

Definition 2.10.1. A holomorphic theta function for I' C GLy(K) is an invertible rigid
analytic function (u : @ — CX) € 0qg(2)* such that for each v € I', u satisfies the

functional equation
u(yz) = cu(y)u(z)
for some constant ¢,(y) € CX independently of z.
The map ¢, : v — ¢,(7) is a homomorphism from I' to C% called the multiplier of wu.

We denote by Oy(I") the space of holomorphic theta functions for I

In [GR96, §5], the authors give a way to construct a holomorphic theta function for I" as

follows. Let w be fixed element of €2 and o € T', put

bulw, 2) == [ —— (2.6)

o z — ayw
Theorem 2.10.2 ([GR96, Thm. 5.4.1]). The product 0,(w, z) converges to a holomorphic
theta function for T' on Q. The value of co(7y) :== 05;(&12)) induces a group homomorphism

¢: T — Hom(T,C%) by a — c,. Moreover, the map T x T' — C% defined by («, 3)

co(B) is a symmetric bilinear pairing.
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2.10. Theta functions for arithmetic groups

Corollary 2.10.3 ([GR96, Cor. 5.4.12]). The constant c,(B) lies in KX C CX.

In the next chapter we will see another way to construct theta functions by means of

certain multiplicative integrals.

2.10.1 Theta functions and harmonic cocycles

In this subsection we relate the theta function for an arithmetic group I' and the Z-valued

harmonic cocycles by means of the following result due (mostly) to Van der Put [VdP82].
Theorem 2.10.4. The map

1/ llee)
I HfHO(e)

is a continuous surjective group homomorphism with kernel CZ where ||-||, is the spectral

norm on Oq(A~1(v)) defined by

1£llo = sup {[f(2)| | = € A" (v) }

r:O0o() — H(T,Z), givenby  r(f)(e) :=log

forve X (7).
The next result is a refinement of the previous one, since it relates theta functions to
[-invariant harmonic cocycles (cf. [GR96, Thm. 5.6.1]).

Theorem 2.10.5. Let o € I" be given then r(0,) = @q.

The map r yields a map
F:0,()/CY — H(T,Z)".

Let further
a:T — onl)/Cx

be the map induced from a + 6,, then we have the following:

Theorem 2.10.6 ([GR96, §6]). For a € T with class & in T we have that 7(0,) = j(a).

In other words, the following diagram is commutative

\j (2.7)

E
O,()/C% H\(T,Z)".
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2. Background

From the theorem we see that we have two different constructions of I'-invariant Z-valued

harmonic cocycles from a € I':

i) using the function ¢, given in Lemma [2.9.5] and

ii) by evaluating the map 7 in 0,,.

From now by abuse on notation, we will write r instead of 7.

2.11 Hecke operators

There exist Hecke operators acting on each of the groups that appear in (27). For the
definition of the operators on I' and ©(T")/CX see [GRI6, §9.3], we will give an explicit
description of the operator on H,(T,Z)" for the case T' = ['y(N).

Let m be a non zero ideal of F,[T]. We recall from the definition of the Bruhat-Tits tree
that the edges are given by classes of GLy(K)/KZXJ. Hence functions on Y (7T) can be

seen as functions on G'Ly(K ) right invariant under J. For ¢ on GLy(K,) we put

Tup(a) == > p(ya)

YERmM

where
a b
R = ¢ d € GLy(A)

The following properties of Ty, are standard:

a,d monic (ad) =m, ged(a, N) = 1,degb < deg d} :
(2.8)

i) T — Tne maps H,(T,Z)" into itself,
ii) all T;, commute,
iii) if m and n are coprime, then Ty, = Ty, o Ty,

iv) if ged(p, N) = 1 then Tyns1 = Ty o Ty — q9°8PT-1 for p a prime ideal of A,
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2.12. Application to the Shimura-Taniyama-Weil uniformization

v) if ged(m, N) = 1 then T, is hermitian with respect to the Peterson inner product

defined as follows:

(pr.02)(e) = D wrle)pale).

eel’\T

Hecke operators Ty, with ged(m, N) = 1 are called unramified. As in the classical case we
can also construct the space of new and old forms. Indeed suppose that M divides N. For
each monic divisor a of N/M we have an embedding i, s : H,(T,Z)"°M) — H\(T,Z) ™)
given by

lam(p)(9) = w((ﬁ (1)) 9)-

We set then (H,(T,Z)"°™) @ Q)" to be the orthogonal complement in H,(T, 7)™ @ Q

with respect to the Perterson inner product to the images of all the i, ® Q, where M

runs through the proper divisors of N and through the divisors of N/M. We further put

ﬂ?ew(r‘]" Z)FO(N) — ﬂ; (‘T, Z)FO(N) N (H.(‘I, Z)FO(N) ® Q)new-

2.12 Application to the Shimura-Taniyama-Weil uniformization

In order to establish the analog of the classical Shimura-Taniyama-Weil, we need to explain
how Q-harmonic cocycles may be regarded as automorphic forms of a certain type. For a

deeper discussion of automorphic forms we refer the reader to [Gel75].

In what follows, A will be the adele ring of K with ring of integers O and I the idele group.

Having fixed the place oo of K, these rings decompose into a “finite” and an “infinite”

part
A = AfX Koo
0 = Of X Ooo
I = If X Kgo

We define an automorphic cusp form for an open subgroup X of GL3(0O) to be a C-valued
function ¢ on Y(X) := GLo(K) \ GL2(A)/K - Z(K ).

Let S be a set of representatives for GLy(K) \ GLo(Ag) /K and define for € S
[, = GLy(K)NaKezt.
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2. Background

In [GRO6| §4] the following isomorphism is shown:

o

GLy(K)\ GLy(A) /K X Z(Koo) T — |UpesTa \ GLa(K)/Z(Koo) -]

€S

= |_|:BES X(F:v \ ‘I)-

We have the following theorem.

Theorem 2.12.1 (Drinfeld). Let X be an open subgroup of GLo(O) of the form K =
(K¢) x T and let F be a field of characteristic zero. Under the previous bijection the module

of harmonic cochains

@ ﬂ!<77 F>Fx

z€eS

corresponds to the space Wy, (X, F) of F-valued cuspidal automorphic forms ¢ on
G(K)\ GLy(A)/XKs x Z(K) - I that transform like s, under GLa(K).

Here 7, is the so-called special representation of GL(K ), i.e., the irreducible represen-
tation of GLy(K ) on the space of locally constant F-valued functions on P'(Ky,). For
more details see [GRI6, §4.7].

So the space of harmonic cocycles has a natural interpretation as a space of automorphic

functions in the sense of Jacquet-Langlands [JL70].

Let E be an elliptic curve defined over K = F (T") with conductor Noo, where N is an
ideal of A and assume E to have split multiplicative reduction at co. By combining results
of Jacquet-Langlands [JL70], E corresponds to an automorphic eigenform ¢g in the new
part of H,(T,Z) ™) with rational integral eigenvalues. The elliptic curve E is an isogeny
factor of the new part of the Jacobian of the Drinfeld modular curve X(V). This is the
content of |[GRI6, §8.3].

Applying well known facts from the theory of automorphic forms there are canonical bi-

jections between the following three sets

i) K-isogeny classes of elliptic curves with conductor Noo,

ii) one-dimensional isogeny factors of JJ**(N),

To(N

iii) normalized Hecke eigenforms ¢ in H"** (T, Z) W) with rational eigenvalues.
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2.12. Application to the Shimura-Taniyama-Weil uniformization

Thus one would like to have a procedure to construct an elliptic curve within the isogeny

class that corresponds to the newform .

Let ¢ € H""(T,G) W) be a Hecke eigenform with rational eigenvalues. We will construct
the elliptic curve E,, associated to it. By means of [2.7) we identify H,(T,G)"™) with T.

Proposition 2.12.2 ([Gek95, Thm. 3.2]). Let ¢ € j(I') be an harmonic cocycle, regarded
as the class of some element, also denoted by ¢, of I'. Put A C KX for the subgroup
{co()|a € T} of KX, where c,(v) is the multiplier associated to the theta function of I
Then there exists q € KX such that |q] < 1 and q* = A.

For general A, the conclusion of Proposition 2.12.2]is that there exists q € KX with |q| < 1
such that A D g% and the incluision is of finite index (cf. [GR96, Prop 9.5.1]).

Then the elliptic curve E, associated with an automorphic Hecke eigenform, can be ana-
lytically recovered as a Tate curve (cf. Ch. [ §5.3 for a definition) as EZ*(C) = C%/q”.
It is shown in [Roq70} §3] that E, may be described by means of an analytic equation
defined over a finite extension of K. However, this is not enough to recognize the isogeny

class of the elliptic curve E,.

The aim of this thesis is calculate by means of a certain multiplicative integral the Tate
period q and then using the analytic equation of the Tate curve and an appropriate model
of an elliptic curve that by means of change of variables allows us to find the algebraic

equation of the elliptic curve E, over K.
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3. Integration, Theta function and

uniformizations

3.1 Integration

As described in the previous chapter, Gekeler and Reversat develop in [GR96| the theory
of theta functions to construct an explicit analytic parametrization of an elliptic curve with
semi-stable reduction at the place co. However, their construction of the theta function
requires to compute the infinite product (2.6]), which makes it computationally hard to
find the Tate parameter. In [Lon02], Longhi defines a multiplicative integral over P'(K,)
which is a multiplicative version of Teiltebaum’s Poisson formula [Tei91], and uses this to
construct a theta function in a different way as the one of Gekeler-Reversat. Around the
same time Pal gives a similar construction in [PAl06]. In this section we briefly recall the

main facts of the machinery of integration along the lines of Longhi [Lon02].

Let X be a topological space such that its compact open subsets form a basis for the

topology.

Definition 3.1.1. A Z-valued function p on compact-open subsets of X is a distribution
on X if u(X) = 0 and if it is finitely additive, i.e., if, whenever A and B are disjoint
compact open sets of X, one has pu(A U B) = p(A) + u(B). We denote the space of
Z-valued distributions by M(X, Z).

Definition 3.1.2. A measure on X is a bounded distribution, i.e., a distribution p for

which there is a constant C' satisfying |u(U)| < C for all compact open U C X. We denote
the space of Z-valued measures on X by My (X, Z).
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3. Integration, Theta function and uniformizations

From now on, we assume that X is compact, so in particular Z-valued distributions on X

are measures.

Definition 3.1.3. Given a continuous function f : X — CZ, its multiplicative integral

with respect to the measure p € Mo(X,Z) is

f 1O dutt) =ty T (3.1)

@ UeCq

where {C,}, is the direct system of finite covers of X by compact open subsets U and u

is an arbitrary point in U.

Under the crucial assumption that X is compact, we have

Proposition 3.1.4 ([Lon02, Prop. 5]). The limit in (31)) exists and is independent of the

choice of the u’s. Furthermore
][ du C(X,CX) = O (3.2)
X

is a continuous homomorphism, where C(X,CX) is the set of continuous functions from

CX to X.

3.1.1 Measures and harmonic cocycles

We know from Lemma 2.5.4] that the set of ends of the tree T is in 1-1 correspondence with
PYK).

Proposition 3.1.5. The map

Mo(X,Z) —s H(T,Z)
p— (e = pu(Ue))

s an isomorphism of Z-modules.
Proof. Let e be an oriented edge of the tree T and let the open subset U, of P!(K,,) be

defined as in Section For every open compact subset U of P*(K,,) there is a finite set
Yy of oriented edges such that U = UeeYU Ue. So, a ¢ in H(T,Z) defines a finite additive

measure i, € Mo(X,Z) by putting p,(U) = > oy w(e).
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3.1. Integration

Conversely given a Z-valued measure u € My(X,Z) one defines the harmonic cocycle
ou(e) = u(U,). From U, | Us = P'(K) and (P (K..)) = 0 it follows that ¢(e) = —p().
Let now v be a vertex in T, then P!(K,) is the disjoint union of U.’s, where the union is
taken over the oriented edges starting at v. Again from the fact that u(P'(K,)) = 0 and
p(UUV) = pw(U)+p(V)ifUNV =0 we get Y, u(e) = 0. We conclude that ¢, is indeed

a harmonic cocycle. 0

3.1.2 The integral over 0f)

We are interested in the particular case where X = 0f). In this case the computation of a
multiplicative integral can be accomplished as follows. Choose a vertex v € X (7). Usually
the vertex v is taken to be vy as we will do, and for each e € Y (7T) pointing away from vy,
define I(e) to be the distance between the origin o(e) of e and vy. Then according to the
definition of the integral (3.1]) and the discussion in Subsection B.I.T] we have that

F#)dpg(t) = lim [T £ty (3.3)
oQ nﬂool(e):n

is independent of the choice of vy.

3.1.3 Change of variables
Note that the group GLy(K,) acts naturally on the space Mo(P'(K ), Z) by v * u(U) :=
pu(y~1U) for any u € My(P(K,),Z) and U an open in P}(K,). In the same way G Ly(K )

acts on the space of harmonic cocycles H(T,Z) by (vx¢)(e) := @(y 'e). As in the classical

case, we have the formula of change of variables formula given by

]{de(v*n)zj[lj(fov)du

or equivalently

]{ (Y x fd(y xp) = ][Uf dp (3.4)

33



3. Integration, Theta function and uniformizations

3.2 Theta function

As already observed in [Sch84], the machinery of integration on 92 can be used to construct
an inverse of the Van der Put’s map r defined in the equation (2.10.4]). In [Lon02], Longhi
uses the multiplicative integral to give a multiplicative version of Teitelbaums’s Poisson
formula [Tei91, Thm. 11] and then such an inverse of r. In the following paragraphs we will
describe the Poison formula stated by Longhi and then the integral that we are interested

in.

Theorem 3.2.1 ([Lon02, Thm. 6]). Let u € Oq(R2), ¢ = r(u) and fix zy € Q. Then for

z €
z—1

u(z) =) =L dtt) (35

We are now ready to prove

Proposition 3.2.2. The map r induces an isomorphism H,(T,Z)' = 0,(')/Cw.

Proof. Given a u € O,(I")/Cy then by Theorem 2I0.4] we have that r(u) is a harmonic

cocycle, '-invariant and cuspidal.

Conversely given a harmonic cocycle ¢ € H,(T,Z)" we denote by p, its corresponding

measure. Fix a zg in €). Consider now the function

ue) = = o) (3.6)

QZQ—t

By Theorem B2 we know that u € Oq(Q2)* . It remains to check that wu(z) satisfies the

functional equation
u(yz) = cu(7)u(z) (3.7)
for all v € I'y(N) and some constant ¢, (y) € CX.

It is a straightforward calculation to see that for v = (2%), the ratio

t—vyz

P—— cz+d
= 3.8
vltE ezg+d (3.8)
Y~ t—20
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3.3. Complex uniformization

does not depend on t. So we have

w2 = f = ()

ot—2

t— vz ][ t—nz
= dp,(t dp,(t
][BQ t—2 polt) st — 7% palf)
t — 2o cz+d vt — 2
= dp,(t dp,(t).
]{m t—2 pol )]éﬂ (Czo+d> (”Ylt—zo pol?)
Using the fact that the integral is multiplicative and p,(92) = 0 we get that

czp+d
du,(t) =1
\faﬂ CZ‘I—d MSD() )

since it is constant on ¢t. The functional equation follows taking

cul) = f LT () (3.9)

o t— 2

which does not depends on z.

We recall the diagram (Z.7) from Chapter 2

|
onl)/C H\(T,Z)".

So given a harmonic cocycle ¢ € H,(T,Z)" and o € T so that j(a) = ¢, we have that the
multiplier ¢,(7) is actually ¢, (7y) defined in Theorem 2.10.21

3.3 Complex uniformization

In this section we consider an elliptic curve £/Q with conductor N. We will briefly describe

how to parametrize the curve E over the complex field C. The main reference here is [Sil09]

Ch. VI].

Let T'o(/V) be the group of matrices in SLy(Z) which are upper triangular modulo N. It

acts as a discrete group by Mobius transformations on the Poincare upper half-plane

H:={z€C|Im(z) >0}.
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3. Integration, Theta function and uniformizations

A cusp form of weight 2 for I'y(V) is an analytic function f on H satisfying the relation

f(v(2)) = (cz +d)*f(2) for all v = <Z Z) € Iy(V), (3.10)

together with suitable growth conditions on the boundary of H. The invariance equation

(BI0) implies in particular that the function f is periodic of period 1 and thus f can be

written as a power series in ¢ = *™ with no constant term:
o
f(z) =) and"
n=1
The associated L-series is defined as L(f,s) == >~ a,n"".

From the Eichler-Shimura theory given a cuspidal eigenform whose Fourier coefficients are

integers, there exists an elliptic curve E; such that the two L-series coincide

L(f,s) = L(Ey,s).

Here L(Ey, s) is the L-series defined as the infinite Euler product

L(E;,s) = H (1 —app™ +p1—25)71 H(l —ap )t i= Z a,n~*

PN p|N

with a, = #E(F,) ([Dar04] §1.4]).

On the other hand, let E be an elliptic curve defined over Q of conductor N. Then there

exists a cuspidal Hecke eigenform of weight 2 for I'y(N) such that the L functions coincide
L(f,s) = L(E, s)
and F is isogenous to the elliptic curve E; obtained form Eichler-Shimura theory.

In summary, given an integer N > 1 and a cuspidal Hecke eigenform of weight 2, one
would like to have a procedure to construct an elliptic curve within the isogeny class that
correspond to the form f. Actually such as procedure exists and we will briefly give some

things related to it (a good reference here is [Cre97]).

Let Xo(NN) be the modular elliptic curve for cyclic N-isogenies. By the work of Wiles et.al.,
E' is equipped with a non constant dominant morphism defined over Q, commonly referred

as the Weil parametrization attached to E:

(I)NIXQ(N) — K
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3.3. Complex uniformization

mapping the cusp oo to the identity element of E. The complex uniformization of E(C)
provides a method for calculating the Weil parametrization. Namely, the compact Riemann
surface E(C) is isomorphic to C/A, where A is a lattice generated by the periods of a Néron

differential w on E. Then we have the following commutative diagram

zm—)fjoo fE(2)dz

I\ H* C/A (3.11)
Xo(N)(C) ———~ E(C)

where 7 : C/A — E(C) is the complex analytic isomorphism described by the formula
n=(p,: @) 1) where p, is the Weierstrass @-function attached to A. Explicit formulas
for A and g, can be found in [Sil09)].

In this case a good approximation of the integral f; fr(2)dz reduces to calculate a finite
sum which depends on the calculation of the a,’s in the Fourier expansion of fr where fg

is the modular form attached to E.

Obtaining equations for the curves

The integrals f;? fr(2)dz allow to compute periods w; and wy which generate the period
lattice Ay of the modular curve Ey = C/A;. Letting 7 = w;/wy, we may assume that

Im(7) > 0 interchanging w; and ws if necessary. Set ¢ = ¢*™ and define

Then the following theorem is crucial in the calculation of the equation of the curve E (cf.

[Cre97, §2.14)).

Theorem 3.3.1 (Edixhoven). The quantities c4 and cg defined above are in 7, so the
elliptic curve

vt =42® — cur — ¢

18 defined over Z.
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3. Integration, Theta function and uniformizations

This theorem allows Cremona to find equations for all elliptic curves of conductor up to
130.000 [Cre97]. The series ¢y and cg converge extremely rapidly. Thus, assuming that
wy and wq are known to sufficient precision, Cremona can compute ¢4 and cg also with

sufficient precision and thus he is able to recognize the corresponding exact integer values.

3.4 p-adic Uniformization

From the previous section, we have that any elliptic curve E/Q with conductor N is

equipped with a non constant parametrization

However for some applications, like the calculation of Heegner points, (cf. [Dar04) Ch. 3-4])
it is convenient to enlarge the repertoire of modular parametrizations to include Shimura
curve parametrizations. For more details on the results stated here, the reader is referred

to [Dar04],[BC91],[Voi] and [Vig80].

Assume that the positive integer N is square free and N = N~ N7 is a factorization of N
such that N~ has an even number of prime factors. Let C be the indefinite quaternion
Q-algebra ramified precisely at the primes dividing N~ and let S be an Fichler Z-order in

C of level N*. Fix an identification

loo : C ®g R = My(R).

Denote by I'y- y+ the image under it of the group of umits in S of reduced norm 1.
Then I'y- v+ acts properly discontinuously on H with compact quotient Xy- y+(C). By
Shimura theory, the compact Riemann surface Xy-n+(C) has a canonical model Xy n+
over Q as in the classical case. This is done by interpreting Xy- y+ as a moduli space
for abelian surfaces over Q with endomorphism rings containing S, together with some
auxiliary level N*t-structure (cf. [AB04]).

Let Jy- n- denote the Jacobian of Xy n+. By the modularity theorem for elliptic curves
defined over Q and the Jacquet-Langlands correspondence, there exists a surjective mor-
phism

(I)Nf,]\w : JN77N+ — K (3.13)

defined over Q (cf. [Dar04, Ch. 4]).
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3.4. p-adic Uniformization

However, we do not dispose here of Fourier coefficients, since modular forms on non-split
quaternion algebras do not admit g-expansions, there is no known explicit formula for the
map ®xn- y+. In order to handle with this issue, it is necessary to turn to the p-adic
uniformization. In this section we will succinctly explain how to use the uniformization

® - y+ to construct an explicit p-adic uniformization of E at the primes p dividing N ™.

Let us assume N~ > 1 and p be a prime dividing N~. Consider now the definite quaternion
algebra B ramified precisely at the infinity place together with the primes dividing N~ /p
and let R be an Eichler Z-order in B of level pNT. Choose an identification

Ly B®gQ, — My(Q,).

Let Fg\’;), v+ € GLy(Qy) be the image under ¢, of the group of units in R of reduced norm

1. In the remaining part of this section we will write I instead of Fg\’;), Nt

Let p be a fixed prime and let N be a square-free integer that factorizes as pN~ N such
that N~ has an odd number of prime factors. Such a factorization is called an admissible

factorization.

We recall here some objects already defined in the function fields case, like the upper half
plane, the Bruhat Tits tree, distributions, measures, etc. These concepts are necessary to

define our p-adic integral.

Let C, be a p-adic completion of an algebraic closure of Q,. As in Chapter [2, we define
the p-adic upper half plane to be

Hy = P! (Cp) — P! (Qyp)

with the action of GLy(Q,) by linear fractional transformations. Similarly as in Chapter
2l one has definitions of admissible covering by sets A, and the space of rigid analytic

functions on 3.

The group I' acts on H, with compact quotient I'\ J(,, which is equipped with the structure
of a rigid analytic curve over Q,. It can be identified with an algebraic curve Xﬁp ) over

Q, (cf. [GvdPS0)]). NN+

The Bruhat Tits tree T, of PGL2(Q,) is a connected p + 1-regular tree with set of vertices
X(T,) defined as classes of homothety Z,-lattices in Q2. The set of edges Y'(T,,) consists
of pair of vertices (vg, v1) represented by lattices A\; and Ay such that pAs & Ay & As.
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3. Integration, Theta function and uniformizations

The corresponding identifications given by Propositions 2.4.1] and 2.4.3] are still valid for

vertices and edges, respectively.

Let ' be as above. A T'-invariant harmonic cocycle with values in an abelian group B is

amap ¢ : X(J,) — B such that

1) p(e) = —p(e) for all e € Y(T,,),
2) For all v € X(T,) we have >, ,_, ¢(e) =0,

3) v(ve) = p(e) for all v € T

Definition 3.4.1. Let f be a rigid analytic function of 3, with values in C,, we say that
[ is a rigid analytic modular form of weigh k on I'\ 3(, if

F(y(r)) = (er +d)* f(7)

forally = (2%) €T and 7 € H,.

The C,-vector space of rigid analytic modular forms of weight k& with respect to I' is denoted

Definition 3.4.2. (Distribution and measure) A p-adic distribution on P*(Q,) is a finitely
addictive C,-valued function p on the compact open sets of P!(Q,) satisfying pu(P(Q,)) =

0. If p is p-adically bounded then it is called a p-adic measure. The space of all measures
on PY(@Q,) is denoted by Meas(P'(Q,), C,).

As in the case of function fields, we have an action of GL2(Q,) on the space of measures
and on the space of harmonic cocycles (cf. §31.3 for the definition) and the corresponding

identification between the space of measures on P'(Q,) and the space of harmonic cocycles.

Let f be any continuous function on P*(Q,) then we define the integral of f with respect

to a measure p on P*(Q,) as

Lo, 70 ) = 3 s

@ Uelq

where the limit is taken over increasing fine covers {C,}, of P*(Q,) by disjoint open

compact subsets U.

40



3.4. p-adic Uniformization

Denote by Meas(P*(Q,), C,)" the space of all I-invariant measures on P*(Q,). There is a
well known theorem due to Schneider and Teitelbaum that gives the following isomorphism

(cf. [Dar04, Thm.5.9])
Meas(P*(Q,), C,)" =2 Sy(T).

We have that Meas(P'(Q,),Z)" C Meas(P'(Q,),C,)" given by the Z-valued harmonic
cocycles. It thus, gives rise via the Scheneider-Teitelbaum isomorphism to an integral
structure Sy(T")% C Sy(T), it plays a role somewhat similar to that of modular forms with

integral Fourier coefficients in the theory of classical modular forms.

Fix an extensio log, : C; — C of the p-adic logarithm to all C*.

Definition 3.4.3. Let f be a rigid analytic modular form of weight two for I' and s be
the measure attached to it by the Scheneider-Teitelbaum isomorphism. Fix 7,7 € 3.
The p-adic line integral attached to f(z)dz is defined to be

m L t— T2
/7—1 f(z)dz:= /Pl(Qp) log, (—t — 7_1) dpg(t). (3.14)

If we formally exponentiate the expression (3.14]) we get the multiplicative line integral

forae = (3.15)

This multiplicative integral is more canonical than its additive counterpart since it does

not depend on a choice of a branch of the p-adic logarithm. In fact one should define the

right hand side of (B.13)) as in (B.1]).

Let E be an elliptic curve over Q of conductor /N, which admits an admissible factorization
as N™NT with p dividing N~ and let I' C SLy(Q,) be the discrete subgroup arising from

this factorization as explained above. The rigid variety Xl(f’ )

and the curve Xt
N—,N+

N—,N+
are connected by the following theorem due to Cerednik and Drinfeld.

Theorem 3.4.4. There is a canonical rigid analytic isomorphism

CD: xP

N—,N

+(Cp) — Xr Cp)-

N*,N‘F(

'By imposing log,(wz) = log,(w) + log,(z) and setting log,(p) = 0.
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3. Integration, Theta function and uniformizations

The Cerednik-Drinfeld theorem together with the following isomorphisms (|[GvdP80), Ch.
VI and VIII))

Div)(Dy- v+ \ H) = Ty n+
DivA (DL o \96) = T o

gives rise to a map DiVO(FE\I;), v+ \ J) — Jn- n+(Cp) also denoted C'D by abuse of

notation.

On the other hand, we can use the multiplicative integral (8I4]) to define a p-adic Abel-

Jacobi map
@1y DIVO(TEL o\ H,) — Hom(Sy(T)%,C) ~ C)
T =1 ([ = k7 f(2) dz)).

Let @rue : Cf — E,(C,) be the Tate parametrization of E (cf. [Sil94]). Assume that the
curve F is a strong Weil curve, if not replace it by an isogenous curve. Then we have the

following result

Proposition 3.4.5. The following diagram commutes

DT .\ 3¢,) T T
l/CD lchate
In- i+ (Cp) —2 E(C,).

For a discussion of this result, see [BD98|. Compare with the diagram (BIT]).

Following the ideas of Pollack and Stevens [PS11], Greenberg [Gre(6] is able to give an
algorithm, running in polynomial time, for evaluating the p-adic integral (BI5). In the
remaining of this chapter, we will briefly describe the method devised by Greenberg.

Let

Ayig 1= {v(az) = Zanx"

n=0

an, € Qq, an—>0asn—>oo}. (3.16)

Elements of A, are rigid analytic functions on the closed unit disk in C, which are defined

over Q.

Definition 3.4.6. A rigid analytic distribution u is an element of the continuous dual of
A,ig. The space of rigid analytic distributions is denoted by D;g.
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3.4. p-adic Uniformization

There is no problem in defining the distribution in this way since it “restricts” to a distri-

bution as one of Definition B.4.2 (cf. [Kob84l, Ch. II, §3]).

Let pt € Dyig, v € A,y and consider the integral pr v(x) du(z). According to [PS11] the

problem to compute it reduces to the calculation of the moments

pu(x") = /Z 2" du(xz) n > 0.

Then we say that p is known to precision M > 1 if pr v(z) dp(x) is known modulo pM*1-—n

forn=20,..., M.
Definition 3.4.7. A map ® : I' \ GL3(Q,) — D, that is J,-equivariant (for Iwahori J,

subgroup) under the right action is called a overconvergent modular form for I'. The space

of overconvergent modular forms for I' is denoted by MQ(F).

In [PS11] Pollack and Stevens define a Hecke operator U, on the space ]\72(1"). It is
also proved there that its Ug-invariant subspace is Hecke-isomorphic to the space of rigid
analytic modular forms for I'. Then, given a rigid analytic modular form f with rational
Hecke eigenvalues, one can find its corresponding Z-valued harmonic cocycle ¢ and the
measure py with U,f = £f (cf. [Gre06, §5]). In order to calculate the moments attached
to the distribution py it is enough to calculate the values of the corresponding element
IS ]T/fg(F) which can be computed up to precision M from ¢, (mod p) by iterating the

operator U, in time O(M).

We come back now to the calculation of the p-adic line integral. Denote by

t—TQ

J(12,11) = ][ dps.
P t—m

Under some technical hypothesis, it is enough to compute log J(7o, 71). Write

t—7'2

log J(79, 1) = Z log J, (72, 71) where J,(m2,71) = ][ dpiy (3.17)

t—T
a€P(F) ba 1

and b, is the standard residue disk around a (cf. [Gre06, §8]) defined as

by ={2x€Q, | |v—al <1/p}.

Note that b, = U, after identifying P'(F,) with the edges with target vy.

These p+ 1 integrals can be calculated in polynomial time by evaluating certain moments

coming from the expansion of the function logarithm as a series (cf. [Gre06, Prop. 14]).
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3. Integration, Theta function and uniformizations

Remark 3.4.8. The use of the logarithm to calculate the p-adic multiplicative line integral
is crucial. We do not dispose of this function in the function field case and this is one of

the main difficulties we have to overcome.

Let N be an integer which admits a factorization N~ Nt with a prime p dividing N~ and

let f be a rigid analytic modular form for Tgf;), v+ With rational Hecke eigenvalues. Define

the set Ay = fﬂn(@p) ATy | v € T 3, which is discrete in C, . Set gy as the generator

t—71

of Ay. Then ¢y is the Tate parameter attached to the form f.

As in the complex case one would like to have a procedure to find the elliptic curve Ey
with coefficients in Q. Even though Greenberg managed to calculate with good accuracy
gy, it is not clear whether one can compute from it an equation for the elliptic curve Ey

with coefficients in Q as Cremona does.
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4.1 Motivation

Let ¢ be an automorphic (eigen) newform for the congruence subgroup I'g(N) with rational
Hecke eigenvalues. We saw in Chapter [2] that there exists an elliptic curve E, semistable
at oo defined over K = F (7)) with conductor Noo. As in the cases of complex and p-adic
uniformization (§§ B.3land B.4]), one would like to have a procedure that allows to calculate

the elliptic curve E, by giving explicit equations over K.

Over the complex numbers (cf. §3.3) we saw that there exists an efficient algorithm that
allows to calculate the Tate parameter and the periods with high accuracy and therefore
the calculation of the equations of the corresponding elliptic curve over Q (cf. [Cre97]). In
the p-adic case, although Greenberg ([Gre06]) devised an algorithm to calculated the Tate
parameter from the corresponding automorphic form by means of certain multiplicative
integral, it seems not known if one can compute from the Tate parameter an equation for

the corresponding elliptic curve.

In the function field case, to find the Tate parameter we need to calculate the multiplicative
integral ([B.9). The problem of computing such integral up to an accuracy of M digits of
exact precision is a priori of exponential complexity. In this work we follow the ideas of
Darmon and Pollack ([DP06]) and Greenberg ([Gre06]) to develop an algorithm that allows
us to calculate the Tate parameter up to a given accuracy in polynomial time. In their
algorithm we have to replace the use of the logarithm by a different method, which leads

us to compute several integrals of the form

][ (1+ at) dp,(t) (4.1)
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4. The Algorithm

for a € nFe[[t]]. We calculate this integral by iterating a certain Hecke operator as in

Greenberg’s work.

In this chapter we will define the functions to be integrated, the above mentioned Hecke
operator, its properties and the algorithm that allows us to calculate the integral (3.9]) up

to a priori given accuracy M.

In the function field case the coefficients of the Tate curve are not rational in general, as in
the complex case, however using some tools from the reduction of modular forms modulo
p and appropriate models for the elliptic curves, we manage to find equations for E, over

K — this is done in the next chapter.

4.2 Elementary functions

Let I be the subset of N x Ny given by I := {(i,j) € N x Ng|j < i}. Graphically, the

elements of I are the points with integral coordinates in the encircled area in

line i=)] f--—---L--+

This set I has the properties:

e [ is closed under coordinate-wise addition; we denote this by I + 1 C I.
e For any (ig, jo) € I, the set I contains the set

Loy = {0, 5§ =0, < jo+1i —io}. (4.2)
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4.2. Elementary functions

Figure 4.1: The set I”

One associates to I the set

35[ = 1+ Z CLijﬂ'itj | Qg5 € ]qu . (43)

(i,9)el

Elements of F; are called elementary functions in t. We may consider its elements as those
of the group (1 + 7F2[[m, t]], x) for which each term has the m-power bigger or equal than
the t-power.

Lemma 4.2.1. The subset F; of (1 + nF.[[m, t]], x) is a subgroup.
Proof. We need to check that if f,g € F;, fg € F; and g~! € F;.

For the first statement, consider f =1+ Z(m)el aijﬂitj and g =1+ Z(k,l)e[ b it with

a;; and by € Fp2. From the multiplication of series

fg=1+ Z Z a;jby | ™7+ Z aijﬂitj+ Z byt

(r,s)eENxNg (i,5)€l, (k)€ (3,9)el (keI
i+k=r, j+l=s

and since I + I C I we have that (r,s) € I and then fg € J; follows.
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4. The Algorithm

For the second statement, we have that g is invertible in 14 7F ([, t]]. We need to check
that g=' € F7. Let 7' = 1+ 37, ;) cnsn, G, then gg~! = 1 implies

Z bklﬂ'ktl + Z Cijﬂ'itj + Z Cijbklﬂ'rts =0. (44)
(

(keI 1,j)ENxNg (4,7)ENxNo, (k,l)el,
i+k=r, jHl=s

Consider the set € := {(i,j) e Nx Ny \ I | ¢;; #0}.
We claim € to be empty. If it were not empty, as € C N x Ny has a lexicographic total

order, then there exists a (i, jo) € € minimal. From the equation (4] the coefficient of

w¢io is 0 and from the left hand side this is

Cigjo + Z bklcmn = 0. (45)

(m,n)eNxNo, (k,l)el,
m+k=ig, n+l=jo

If some ¢, # 0, then since k > 1, m < iy which implies that (m,n) € &£, and contra-
dicts the minimality of (g, jo). Hence (5] becomes c¢;;, and so (ig,jo) ¢ € which is a

contradiction.

0

Now define

To(00) = {7 _ (Z Z) € My(0x)| c=0(mod 7),d € 0% and det(y) € 000\{0}}.

Note that I'g(00) is not the Iwahori subgroup, it was defined to contain at least the Iwahori
subgroup and matrices of the form (§ {). However, I'y(c0) is a semigroup since it is closed

under the usual multiplication. Namely, let

_f(a b far by € Ty (o0) q _ (aa; +cc; aby + bd;
7= c d)’ M= C1 d1 00 an = cay + dCl Cb1 + dd1
then ca; + de; = 0 (mod 7) since ¢ = 0, ¢; = 0 (mod 7). Also det(yy1) € O \ {0}.

It remains to prove that cby + dd; € O, which is equivalent to val(cb; + dd;) = 0 where

val = v,,, . From the properties of the valuation one sees that

val(cby + ddy) > inf{val(cb,), val(dd,)}
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4.2. Elementary functions

but val(dd,) = 0 and val(cb;) > 1, therefore val(chy + dd;) = 0 which implies vy, € T'g(00)

as desired.

The group F; is equipped with a left action of I'g(c0) defined by

(k% f)(t) := f(k~1(t)) for k € [y(c0) and f € F; (4.6)
where (-) is the usual Moebious trasnformation.

Lemma 4.2.2. The action defined in (4.6]) is well defined.

Proof. We need to check that for f € F; and k € 'g(00) we have (k x f) € F.

Set f =143 ;e @™t and k=1 = (25). Then from the definition of the action we
have (kx f)(t) = 1+ 32 j)er a;m (“Hb)j. So (k* f)(t) € I if and only if for each term

ct+d
P (442’ the exponents (i, j) € I. Hence it is enough to check it for #'t7, (i, j) € 1.

First it is convenient to write

at+b 1
= (at + b)) ———MM—
ard O TE T =
1
— /t b/
(at + )1 — 't
where o’ = §, 0/ = % and ¢ = 5.
Therefore

- Z () <a';>’“<b'>ﬂ‘-k g—aw( e
= ;(—c/)" (i) pinn (kzj; <‘;) (a/)ktk(b’)jk>
S () (S
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4. The Algorithm

-y (k;wf(b/)f’f<—a>"(i)) pinghen

n=0

finally if we take ¢/ =i+ n and j' = k + n we get the conditions given for the set I” and
the lemma holds. O

Remark 4.2.3. One can define Fy for arbitrary subsets I C NxNy. It is a group whenever
I+ I C I and is stable under the action of I'g(oco) if I C I".

4.3 A Hecke operator

Fix a positive integer M. We want to compute the integral (1)) to a precision 7.

For a fixed £ < M we define the multiplicative group

UkM::< 1+ 7*Fge([n]] )

’ 1 4 mMHF o |[7]]

Note that if &' < k then Uy p D U, ur-

An important and crucial property of F; is the following, which will be proved in the
Appendix [7|

Lemma 4.3.1. Given any function f € F; and any integer M > 1, then there exists a
finite set of indices J C I and m;js € {1,2,...,p — 1} such that

f= H (1 + &r'th)mias (mod mMH1)

(3,9)eJ

where £ € F 2 is a primitive element for the extension over F,, 6 € {0,...,d — 1} with d
the degree of the extension Fp over Fy,. The representation is unique modulo p powers of
fij =1+ 7, so the set

B = {14+ 7 |(i,5) € Fr,i <M, 6§=0,...,d — 1}.
18 a multiplicative pseudo basis.
Lemma [L.3.T] says that the representation is unique modulo p powers of f;; = 1+ 7't/, this

means that if f;; is a factor of a function f with p|ged(i, 7), then the p-th roots of f;; are

in B, and they give “other” representation of f.
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4.3. A Hecke operator

Remark 4.3.2. Let now f;; = 1+ &'tV € By, From the definition of the integral

][ (1 +€57Titj)d,u (mod 7TM+1 lﬂ H (1 +€57th9 w(Ur) (mod 7TM+1)’
Ooo

t1€U;C Oxo

we can interchange modulo with the integral since the powers in the product do not decrease,
in particular the integral is continuous with respect to the m-adic topology. We obtain that
fo. 1+ Emit) dp (mod 7M+1) € U .

This leads us to define the following sets. For an integer £ > 1 we consider
Iy :=={(i,7) € Nx Ny|i > k}.
Note that by Remark [4.2.3] the set Fjn;, is a group, moreover it is a subgroup of J7.

Remark 4.3.3. As in Lemma[{.2.9 one proves that k * Finr, C Fing, for all k € Tp(o0).

Let us define also the set

F:Fr — U m | Fis a group homomorphism
Hom'(ﬂ'}, ULM) =
s.t. F(Frnr,) C Ugr, forallk > 1

It is worth pointing out that the condition on F' only makes sense for £ < M and
F(F1n1,) C Ug v means that we evaluate in elements f € F; such that val(f —1) > k and
its image under F' has the property val(F(f) — 1) > k. Since the group J acts on F; by
Moebius transformations and on Uy s trivially, we may also define a left action of J on
Hom'(J;, Uy m) by

(k*x F)(f):=F(k % f)forx € Jand f € ;.

Lemma 4.3.4. The previous action is well defined.

Proof. Let k1 and ko € J then we have that

((Rim2) % F)(f) = F((r3'57") % f)
= F((ry" * (k7' % f))
= (ko * F) (k7" % f)
= K1 * (ke x F)(f).

Also, using Remark [£.3.3] x maps Hom'(J;, Uy ar) to itself. And so the lemma holds. O
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4. The Algorithm

Let I" be a congruence subgroup of PGLy(K ). Unless otherwise stated we will take I' to
be I'g(V) for some non zero ideal N C F,[T| and define the set

S(T, Hom' (F7, Uy np)) == {gb T\ PGLy(Ky) — Hom (F1,Ury) | ¢is J—equivariant} .
(4.7)
For simplicity of notation we will denote this set by 8. The J-equivariance means that for

any 7 € PGLy(Ky) and k € J, we have

P(Tyr) (1) = o(Ty) (K * [)(2).

Writing (k * ¢)(I'y) := ¢(I'yk), we can also see J-equivariance as

(k@) (TY)(f) = d(Ty) (K * f).

Remark 4.3.5. a) From Chapter[3 we have that the group GL2:(K) acts on the space
Mo(X,Z) so the integral X, f d(y~" * j1) makes sense for any v € GLy(Ky) and
fegr.

b) The integral ¥, f d(y™"p) (mod x™*1) lies in Hom' (F1,Urn) (cf. [{-32) then

the map v +— *Ooo _d(y Y *p) (mod 7MHL) s in 8, so 8 is not empty.

c) From the J-equivariance we have that any F € 8 is uniquely determined by its
values on any set of representatives (a “fundamental domain”) of the double class
'\ PGLy(K)/J, which is in canonical bijection with the edges of the quotient tree
r'\7.
From now on we write ¢(7) instead of ¢(I'y) .

The set 8 is endowed with an action of the Hecke operator

w0 = TLo (2 (5 §)) fmt+a)

aclky

for feFrand y € '\ PGLy(K).

Lemma 4.3.6. The Hecke operator Uy, is well defined.
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4.3. A Hecke operator

Proof. We define 7, = (7 §) with a € F,. Then for all « € F, we have J7,J = Ha,qu TarJ, SO
that for each a € F, and x € J we can find unique o’ € F, and «" € J such that k7, = 7%’

Moreover for x fixed and a variable, the map a’ — a is a bijection of IF,.

Let ¢ € §, we need to check that Uy¢ is in 8, i.e., Uy is J-equivariant. Let v €
'\ PGLy(Ky), [ € Fr and k € J. Then applying the U,, operator and using that ¢ is

J-equivariant we get

(k% Used) ()(F) = (Und)(1)( )
=TI oCvma) Fmait))

a€lFy

=[] otyrwr) f(7a(t)

a€lfy

= [ otyra) f(ars= (1))

a€clFy

= [T oOrma) f (s (t)

a€lfy

= 11 oOrma)(w ) (7 ()

= (Ue®) () (% ).
O

We recall that any I-invariant harmonic cocycle ¢ gives rise to a measure i, on Mo(P*(Ox), Z)"
and conversely ¢ can be recovered from such a measure p. From now on we will denote by

p, the measure associated to p € H,(T,Z)".

We have the following map

o€ H(T,2)' — 8(T,Hom (F1,Urn))
® — o

defined by @, (7) :== f,_ _d(y ' *p).

Lemma 4.3.7. The map ®,, defined above is J-equivariant.

He

Proof. The map @, is well defined since it defines an homomorphism F; — U s (cf.
Remark L3H b)), then @, lies in Hom' .

Let y € I'\ PGLy(Ky), f € Fr and k € J. We need to check the equality

O, (VR)(f) = Pp, (7) (K % f). (4.8)
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By the definition of the map and the change of variables formula we have
Dy, (vE)(f) = : F(t) d((yr) ™"+ p)(t)
—f e DO A 6 ) )
£~k Ooso)
—f menw A )
—f (oo e

oo

=, (V) (R x ).

In the fourth equality we use the fact that KO, = O, it can be seen from the identification
of the open O, with the ends passing trough the edge eq and the Iwahori subgroup stabilizes

the lattice class corresponding to eg. O

A crucial property of the function @, is that it is an eigenfunction of the Hecke operator.

Proposition 4.3.8. The functions ®,, are eigenfunctions of Uy, with eigenvalues 1, i.e.
UOO(I)M: = (I)Hso'

Proof. Let f be a function on Fr and ®,,, as defined above. Then by definition of U, we

have

(Uss®y,)(f) = ] @0 (ra) (2 5 1)

_ ’ F(7a(t)) d((y1a) ™" * p)(t)
- ][ (720 )(Ta‘l*f)(t) (7, "y p)(t)

_ ][ F(t) v+ p)(t)
Uaerg (047 Oco)

_ ][ £ (v = ) (8)
= (I);w (f)
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4.3. A Hecke operator

O

The important thing to note here is that the set 1 + 7F2[[7]] can be seeing as the subset
Fi, of Fr for Iy := N x {0}. The set Fj, is preserved under the action of J since the action
is trivial. Given any f € H om,(ﬂf 1, Uar) we may restrict it to Fy, and therefore induce a
restriction map

res

Homl(fﬂ, Ul,M) — Homl(i}}o, ULM)

f — f‘ﬁtzo'

This map induces naturally another restriction map res’, which by abuse of notation will

be also denoted by res, between the following spaces
8T, Hom' (Fr,Uru)) ~—> 8(T, Hom' (F 1y, Urua))-
Finally consider the map @, defined as follows

o€ H(T,2)" — 8(I,Hom' (F1,, Urar))
%) —> (I)QW ,

where @, (7)(f) := FOT ) (0)  mod aMHL for f e F,.

The map is well defined since f € Jj, is constant, and then its integral is actually

1 Hme(0x) — fe(re0) wwhere e is the standard edge.
These considerations lead us to

Lemma 4.3.9. The following diagram is commutative.

H,(T,7)"

<I>07[»L*
Cbu* \L \

S(F,HOTI’LI(?},ULM)) = S(F,Homl(i}}o,ULM)).

Proof. The proof is straightforward. We need to check that reso ®, = ®q,_ holds for all
S ﬂ! (77 Z>F

In order to calculate reso ®,_, we need to evaluate 3@000 fd(y ™t xp)t) for f € Fp, and

since f is constant
f oy s p)(t) = foO0),
Oco

Taking modulo 7! this is precisely @, (f). O
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4. The Algorithm

Now, we are ready to describe the algorithm that allows us to calculate the integral
*Ooo fdu(t) for f € Fy.

Suppose that we have ¢ € 8(I', Hom'(F;, Uy p)) such that it is an eigenfunction for the
Hecke operator U, with eigenvalue 1 and also that res o ¢ = ¢, (one candidate for ¢ is ®,,,
for some I'-invariant harmonic cocycle ) and we want to evaluate ¢ at 1+ &7Mt7 € By,.

Then for any v € I' we have

(Uset) (N (1+ M) = [ o(vma) (1 + 7™ (a+ 7))
=[] ¢o(vma) (L + 707, (4.9)

In particular, when ¢ is @, the last product equals

H (1 + 7TM£5aj>§0('YTa€O)).

aclky

We compute now

U (@) (1) (1 + 7Y 1) = [T o(vma) (1 + 7Y (a + wt))

a€lq
- H ¢(’}/Ta) (1 + 667TM_1 Z <7‘1) (ﬂt)"aj_">
a€lfy n—0
= I ¢0vm) (1 + &Y o + jmta ™! + ..+ 27t))
a€lq
=TI 60rm) (1 + €7 ad) (1 + Ejad ' x ) (1 + OV 1))
a€lfq

6 M—1

From the previous calculation we see that the value of ¢(y7,)(1+ &7 ~1a?) is easy to cal-

culate since it does not depend on t. The calculation of the value of ¢(y7,)(1+&7Mai 1 jt)

reduces hence to the previous case (4.9). The above method can be continued inductively.

Summarizing, given any function f € F;, M > 1 and ¢ € H,(T,Z)", to calculate the

integral % o | dpp up to accuracy of M digits of exact precision, we decompose f as

f= H f”” (mod 7rM+1)

fz] EBAI

where fi; = 1+ 7't
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4.3. A Hecke operator

So it is enough to know the value of the integral at the functions f;;, that is the value of
D, (v)(fij) for all fi; € By and all v € I'\ PGLy(K ). By Remark 3.5 we only need to
calculate this value for each f;; € By, and finitely many. Hence as a first step, we produce
tables with all the values for ®,_(v)(fi;). In the following lines we describe the algorithm

which computes such table.

Let us define an order relation on B;. We say that 14 &7t/ > 1 + &7t if and only if

their exponents satisfy one of the following two conditions:

1) If j>0and 5/ >0

1.1) i <7 or
1.2) (i=14and j<j') or

1.3) (i=1and j = j and & < ).

2) If j' = 0

2.1) j>0or
22) (j=0andi<i)or

23) (j=0andi=1 and § < ).

Note that we can induce a partition of the set B, in the following way. For a fixed § we

define the following subset of By,

Bus ={f€Bu | f=1+E7} (4.10)

.....
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the points with integer coordinates of the graph

We will see later how to use this representation to explain the algorithm.

From the definition of the operator U, given a representative v of a class in I'\ PG Ly (K ) /9,
if e is the edge in T corresponding to [y];, we have that v7, represents all the edges in T

with terminal o(e).

Remark 4.3.10. For v and e as above we have that the classes of y1, for a € F, in the

quotient graph are identified, so we do not need to calculate the integral q times.

If we apply the operator M times, then we move in the tree T distance M from the starting
edge. So we need representatives for the quotient tree up to level M. Let us denote by R

such a set of representatives.

For each v € R we need to calculate the integral ®, (v)(fi;) for all f € By, To each
we attach d “triangular matrices” T, 5 whose entries are the values of the integral at all
functions f of By, that is T, (i, j] = D, () (1 + En't7) .

Observe that the constants corresponds to the points located over the i-axis of the graphic
representation of By s . We start by filling the tables T, s with the value ®, (v)(f) for
f € Bus constant for all 6 € {0,1,...,d — 1}.

First for v € R we calculate the value ¢(yeg) and then @, (7)(f) = f0). We store this

value at the corresponding place of T, 5. That is at first stage all the values for functions
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4.3. A Hecke operator

over the axis i of By, s are known for all v € R and 6 € {0,1,...,d — 1}, this corresponds to
the last file of the tables T, s, since we can identify the entries of the table with the points
of BM75.

Remark 4.3.11. When we apply the Uy, to @, evaluated at a representative v we move
with 7, to other representatives, so we need to fill the tables T, s simultaneously for a fized

f € Byr and running over v € R.

We start with the smallest f € By, and calculate ®,,_(v)(f), that is we start by filling the
table T, 5 by the upper right corner. Since the power of 7 and ¢ is M, when we apply the

operator, it reduces immediately to constants. Whose values were already calculated.

Let suppose that f;;, = 1+ &7t € By, and we know the value of ®,_(v)(g;;) in all
Gi; € By with gi; > figjo- We can interpret this situation with a graphic in the following

way

line i=j

were the shaded areaﬂ represents the functions f € By s for which we know the value of
®,,(7)(f) and the dashed blue line represents the functions in B,ss with exponent 7o in 7

to be integrated.

Applying the Uy, operator to ®,_(v)(fij,) we have

Use(®p, (1) (fivia) = T @ (v70) (S (t + @)

a€lfy

! Although is a discrete set we use solid color to understand better the method.
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Writing for every a € F, 77, = 0,%4kq With 0, € T', 7, € R and &, € J and using the

Iwahori equivariance of @, and the I'-invariance we have

1, (V70) (figjo (Tt + @) = @, (0aTaka) (fiojo (L + @)
@y, (Fa) (fioso) (Tatia (1))
Py, (Fa) (1 + €71 (rary (1))

Now we need to decompose the function 1 + 7% (7,5, 1(t))% as a product of elements in

the pseudo-basis B,

L+ &7 (rar )Y = [ £77  (mod =M.

fi; €Bm
This decomposition has the property that each f;; in it satisfies f;; > fi;,, moreover the
exponents of fi; are in the set I (see figure ILT]), then we know its integral which is stored

in one of the tables corresponding to 7,.
Remark 4.3.12. At (ig, jo) need only values in the blue shaded area.

Example 4.3.13. Let N = T° over Fs, in Chapter 2 §2.8 we showed the corresponding
graph. Let ¢ be the unique harmonic cocycle with rational Hecke eigenvalues (observe that
there is only one cycle in the quotient graph) and let v = ((1) TzlJrT) € R be the representing
matrix of the edge e = (2,5). Working with M = 7 and f = 1 + 73t? € By, to calculate
®,,(v)(f) we apply the operator Us.

Use( @y, (1) (14 7)) = [] @, (y7) (1 + 7 (t + a)).

a€lfgy

We need to decompose the matrices y79 and y7; as V,V4Kaq, SO we have

_ (0 1
YTo = (1/T T2+T)
_ [ T*+T+1 1 T2 T34T T o
- T  T+1 TA4T34T2 41 T +T44+T2 /72 1T

T2 T34T
TA4T34T241 TS+T4+T2

_ (YT 0\ _ 10 1/T 0
“0_(1/T2 1/T)_(1/T1>( 0 1/T>'

and the matrix 79 = < ) is a representative for the edge (7,2) and
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We can take kg to be (1/1T (1)) then
1+ 7 (mokg ")) = 14+ 7% + o't + 790 + ..
=1+ (1+7"t")  (mod 7®).

Both functions (1 + 75¢?) and (1 + 77¢*) belong to By and are smaller than f = 1+ 7312,
so its integral is stored in the table T, o, moreover they are Ts, [5,2] and Tx,o[7,4],

respectively.

Analogously the matrix v7; may be decomposed as above, in this case we have that the

representative corresponds to the edge (4,2) and k; = (1/1T ?), we have

L+ (met ) =1+ 7 + o2t + o't + 720
=14+ 7)1+ 7)1 +7t") (mod 7).

Again the values of (1+7%),(1+7°t%) and (1+7t*) are T5, o[3, 0], Tx, 0[5, 2] and T, o[7, 4],

respectively.

4.4 The change of variables and calculation of the integral

In this section we will see that the calculation of the multiplier ¢,(v) defined in Chapter Bl
reduces to integrate functions on F;. Recall that ¢, (7) is defined by the following integral

t_
][ P20 Qg (t) for z € Q. (4.11)
oo t— 20

Using the partition induced from the ends, we will break up the domain of integration
in a finite union of disjoint open compacts and then by the change of variables formula,
transform each integral resulting from the partition, in one of the form
fd(p)(t)
O

for some f € J.

Before describing the change of variables (since the integral (£I1]) does not depend on
the choice of zy) we will describe briefly in Subsection 4.1l a way to construct a suitable

zo using the reduction map. After this, in Subsection [£.4.2] we construct explicitly the
partition of 02 induced from a fixed edge e of the tree.
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4. The Algorithm

4.4.1 Choosing the z,

Let £ be a generator of a normal basis of F,2 over F,,, then ¢ is in the standard affinoid
{z€C||z|<1 |z—¢|>1 VeelF,}, e itis a lifting of the standard vertex under the
reduction map, that is A(§) = vy. So we may take zy = £. Moreover, given any vertex v
on the tree T, we know that there is a v € GLy(K) such that yvy = v, where v, is the
standard edge. From the G Ly (K )-invariance of the reduction map, we have that z = vz

is a lifting of the vertex v under the reduction map .

It is straightforward to prove that given any vertex v and v = (7[)'“ 111) the normal form
representing v, lifting to €2 is just giving by applying v to & as a Moebius transformation,

namely, z = £7F 4+ u, and so val(z) < k.

Let z and w be two different points in €2 such that A(z) # A\(w) then we say that they are

consecutive if A(z) and A\(w) are consecutive vertices in the tree.

4.4.2 The partition of the border

Let e be any edge of the tree, we know from (2.4]) that it induces a partition of 0. In order
to construct explicitly such partition, it is convenient to write the vertices that determine
e in normal form. So without loss of generality we may assume that the vertices v and
v’ are represented by v = [k,u] and v' = [k + 1,u + an*] for a € F,, respectively. Also
suppose that v is closer than v; to the “line” A(0,00) in other words, the edge (v, v)
points to infinity. We know from Lemma that all the neighbors of v different from
v’ are given by [k + 1,u + ar®] for a € F, \ ap and the neighbors of v’ are of the form
[k +2,u+ agr® + br* '] with b € F,. Graphically we have the following

[k +1,u+ ark [k +2,u + agm® + brh 1]

q— 1<

edges [k +1,u+ agr”]
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4.4. The change of variables and calculation of the integral

From the Lemma 2.5.4] we have that to a vertex v of the form [k, u] we attach the open
set u + 7F O, which corresponds to the ends associated to edges e having v as terminal.

Therefore
u+ Oy = U (u+ ar® + 7" 0

aclky

and one can easily observe

Lemma 4.4.1. Given two neighbor vertices [k,u] and [k + 1,u + agm™ ] with
u € Ox(mod %) and k > 0 and ag € F,, then

{u + ar® 4 7Ft? Ooo} U {u + agr® 4 bkt 4 pht2 OOO}bEFq UPY(K) \ u+ 7" Ou

a€lFq,a#ag

is the partition of 02 induced from the identification given by then ends.

Finally, in this partition we can identify three kinds of open sets:

i) ¢ — 1 of the form u + ar* + 71O, a € F,, a # ag, which we denote by W,,.
ii) g of the form u + aor® + br* ™1 + 7520, b € F,,, which we denote by W, .

iii) One of the form P'(K ) \ (u+ 7% O ) denoted by Wy,

4.4.3 The change of variables

Let o € H/(T,G)'oWN) et tt, be the corresponding measure associated to it and let v € T’
be a lifting of ¢, that is, j(a) = ¢. Consider also vy, vy, ..., v, to be a path in the tree which
is the lifting of a cycle ¢ of the quotient tree I' \ T. Then there exists a 7 € T" such that
yvo = v, and let 2, z1, ..., 2 = Y(29) be consecutive points on 2 above vy, vy, ..., v,. Since

the integral is multiplicative, we have

li) = 2 ()

oY% —t

r—1

z: — 1
= - du,(t
Jéﬂ Zl_[ Zit1 — 1 pell)

lljég zz%l — dpiy(t).
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4. The Algorithm

Therefore, we will concentrate in how to calculate an integral of the form

zi — 1t
’ du(t).
]{m%_t u(t)

Using the partition of the border from Lemma 4.1l we can break up the integral in 2¢

integrals:

= ] f 7ty dut) [T f ntt) f 10 dutt)

a€lq,a#ao beF,

where f(t) = (z; —t)/(zi11 — 1).

Integrating over W,

Consider the map

71 O — Wy = u+ ar”® + 781 O

t— () = u+ ar® + trFt

It is given by the invertible Moebius transformation (Wok utar e ), and hence a bijection.

By abuse of notation we also write v for this matrix. Note that the matrix  represents

one of the neighbors of the vertex v.

By the previous lines, the inverse of the map ~ is given by the inverse of the matrix

acting on W, by Moebius transformations i.e.,

W, — O,

t— a—+ un " + a1,

64



4.4. The change of variables and calculation of the integral

We make now the change of variables,

f2law-f L’V“gdwwxw

L Zig1 —t Zip1 — (1

B ][ 2 — (u + am® + toktl)
~ Joo zis1 — (u+ amh + trktl)

d(y™" * p)()

- —u—an* k+1
Zi—u—an” —tmw .

—y — d * t
][Ooo Zip1 — u — amh — tktl (v ) (t)

d(y™" * p)(t)

0w (Zig1 —u —am®)(1 —t7h 1 /(241 — u — an®))

B ( 2 —u — an® )“(vow) Eﬁoml—%d(’fl*ﬂ)@)

Ziy1 —u — amk *Ooo 1- waikﬁ d(y=t* M)(t).

The quantity ( Gl ] has positive valuation since val(z;) < k hence the function

. (zif1—u—ark) %)
+ . +
1- 7(zi—7ru—a7rk)t is an element of F;. Analogously, 1 — mt e 7.

Integrating over W,

We will write the corresponding change of variables as a composition of two maps. In order

to construct the first one, note that the following open sets are canonically isomorphic

™0 — u+ 7" 0

t— u—+t,
u+ 10, — 704
t—ur—t

where u is thesame as in the case W,. These two maps are preserved under complement
with respect to P!(K,),

PY K\ 0% — PYEL) \ (u+ 77 0)

t— u—+t,
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4. The Algorithm

PY(Ko) \ (u+ 7" 0y) — PH(K) \ 77O

' —ur—t.

For the second one, let us now consider a map from P!(K ) \ 7% O as follows

PYEK,) \ 7 0% — Os

t—s L,

This map is a bijection and is well defined since if ¢ € P1(K,) \ 7* O, then val(t) < k —1

k—1

k_l . . . . . T
and val(7*~1/t) > 0. As a Moebius transformation the map is given by the matrix (9 =

1

0 ) So the inverse of the map above is

whose inverse is (ﬂk71

Oso — PHE )\ 7" O

t— 1/tz~ 7D,

Then we get the change of variables that we are interested in by composing the maps in

the diagram

Weo — PHE L)\ ™00 — O

ﬂ.k—l

t— t—u — .
t—u

In summary we have that the change of variables is given by the following map
71 Wae — O

k1
t—

t—u
and its inverse given by
v Og — Woo

/ k-1
t— + u.
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4.4. The change of variables and calculation of the integral

k—
0

fo - o R (O R

o Zitl — 1 L Zivr — (1)

Finally applying the formula of change of variables with v = (if L ) , we have

,n_kfl(]_ _ t(zzi?)) B
-f A )

N ﬂ-k—l(]_ _ t(ziﬁq ))

 fo (1380 Aot e ()
fo. (125" d(y™' = p)(t)

Zi—

Again Z=7 and Z;*,jj“ have both positive valuation since val(z; — u) > k and

val(z41 —u) > k. Hence the functions 1 — 2=%¢ and 1 — 245"t are in J7.

ok

Integrating over W, ,,

Consider the map

v Ooo — Wao,b

t— () = u+ agr® + b 4 trk 2,

This map is a change of variables, the proof is similar as the one for the open W,. So

making the change of variable we have
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4. The Algorithm

foo - f 20

Zip1 — (1)

B ][ zi — (u+ apr® + b+t 4 ¢k t2)
~ Joo zis1 — (u+ agmk + bkl 4 trkt2)

Ay 1) (1)

k k+1 k+2

Zi —Uu— aom” — b —tw B

= 7[ d(y™h* ) (1)
Oco

Zitl — U — aoﬂ'k — bkt — grkt2

k k+1 trk+2
][ (ZZ —u — agm” — bw ) <1 T Gisu—aorF bR
Oco

L kE _ prk+1 _ tmkt2
(zix1 — u — agmh — b )(1 Py

Ayt p)(1)
)

B < 2 —u — agmh — bkt )“(WOOO) 3(000 1- zi—u—zgfr:ibnkﬂ Ay p)(1)

S — U — agr — b S p— T A )

k+2

i—u—agmk—brkt1
t is an element of F;. Analogously for 1 —

The quantity -
1 7rk+2
T Zi—u—agmF—brkTT

has positive valuation since val(z;) < k hence the function
7|—k+2 t
zit1—u—agmk—brk+1 " -

Remark 4.4.2. Note that the integral over the open sets W, and Wy, have positive
valuation.

68



5. Applications and examples

In Chapter d] we described an algorithm to compute the integrals needed to find the Tate
period. Here we describe how to obtain the Tate period explicitly from the integral and we
use it to obtain elliptic curves defined over [F,(7") with the desired conductor. The chapter
is organized as follows, in §§1-5 we make a short review of the theory of elliptic curves,
supersingular curves, Eisenstein series, reduction modulo p of modular forms and the Tate
curve. In §6 we describe how to calculate the Tate parameter and in §7 we give algorithms

to obtain from the Tate parameter, the equations for elliptic curves over F (7).

5.1 Elliptic curves

We recall some basic facts from the theory of elliptic curves. Proofs for most of the theorems
can be found in [Sil09].

Let K be a field, and let us consider projective curves in P% defined by
ZY? + a1 ZXY +a3Z*Y = X? + a0y ZX? + ay 72X + a2 (5.1)

with coefficients a; € K. We may usually consider the corresponding affine curve for

(Z #0,0:=X/Z,y:=Y/Z)
Y2+ ary + asy = 2 + asx® + agx + ag. (5.2)
The only missing point (0 : 1 :0) is always smooth.

Definition 5.1.1. An elliptic curve over a field K is a smooth projective curve E given

by the equation (5.1]).
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5. Applications and examples

The equation (5.2)) is called a (long) Weierstrass equation for E.
Let us define the quantities

by = a% + 4ay,
by = 2a4 + ayas,
be = a§ + 4ag,
bs = afa6 + daqag — ajazay + agag — ai,
cy = b3 — 24by,
ce = —bj + 36baby — 216by,
A = —bbg — 8b% — 27b3 + 9bob,b,
j=ci/A.
Definition 5.1.2. Given a projective curve E over a field K as above, the quantity A is

called the discriminant and in case A # 0 the quantity j is called the j-invariant of E.

Observe that a projective curve defined by the equation (5.1]) is not singular if and only if
its discriminant A # 0. That is, a curve given by the equation (5.1]) is an elliptic curve if
and only if A # 0.

If the characteristic of K is not 2, then the change of variables y — y — %2 — % transforms

a Weierstrass equation in one of the form

b b b
2 3 2 9 4 6
Y ==z +—4:1: +—4:c+—4.

If in addition the characteristic of K is not 3 then a further change of variables = — x + %

gives the equation

Finally with the change of variables y — /2 the equation becomes
y* = 42" — gox — g3 (5.3)
with go = 108¢4 and g3 = 216¢.

Remark 5.1.3. The last equation is not a Weierstrass equation since the coefficient of o3
is not 1. Howewver, it is a convenient expression (e.g. when one studies elliptic curves over
C). This form will be used later in this chapter.
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5.1. Elliptic curves

In summary, if the characteristic of K is not 2 or 3, we may and will assume that our

elliptic curve has Weierstrass equation of the form

E:y*=2"+Az+ B (5.4)

by considering the change of variables y ~— 2y with A = —% and B = —%. This form is

called the (short) Weierstrass form. In the following we may simply say Weierstrass form,

for short or long equation.

In characteristic 2 the discriminant and the j-invariant of an elliptic curve in Weierstrass

form are given explicitly by
6 5 4 92 42 4 3 3
A = ajag + ajagay + ajaza; + ajay + as + a; + a;

and
j=ai’/A.

Note that the discriminant and the j-invariant of an elliptic curve given by a short Weier-

strass equation are given by the formulas
A = —16(4A% + 27B?)

and

6443
(F) = —172 .
J(E) 78A

Two elliptic curves E and E’ defined by the Weierstrass equations with variables x and y
and with variables z’ and 3/, respectively, are isomorphic over K if and only if there exists

r, s, t,u € K with u # 0 such that the change of variables
r=u’r 4,

y = uy + su’x’ +t. (5.5)

The transformation in (5.5]) is referred to as an admissible change of variables. Clearly, this
transformation is invertible and its inverse also defines an admissible change of variables

that transforms E’ into E.
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5. Applications and examples

Theorem 5.1.4. Let E and E' be two elliptic curves defined over an algebraically closed
field K. Then E is K-isomorpic to E' if and only if they have the same j-invariant.

If we apply to a Weierstrass equation the change of variables given by (5.5]) the coefficients
of the new curve and its associated quantities (denoted with primes) are compiled in the

following list:

I 2
uay; = ay; + 7,
ual, = ay — say + 3r — s%,
Saly = 2t
u“az = ag +ray + 2t,

u'd) = as — saz + 2ras — (t +rs)ag + 3r® — 2st,

ubaly = ag + ras + riag +r° — taz — rtay,
u?bly = by + 12r,
utty = by + 7by + 612,

u®by = bg + 3rbg + 3r°by + r°by + 31,

4 1
U ¢y = Cy4,
6/ __
U Cg = Cg,
ulPA = A,
A
J =7

The group law
The set of points E(K) on an elliptic curve has a natural structure of an abelian group.

The group law can be characterized in a number of equivalent ways. We characterize it by

the following two rules:

1) The point O = (0:1:0) is the identity of the group.

2) If a line L intersects F in three K-points P, Q, R € E(K) (taking multiplicities into
account), then P + @ + R = O in the group law.

From these one can deduce
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5.1. Elliptic curves

a) The point — P is the third intersection point of the line through O and P.

b) Given P, € E(K) not equal to O, the line through P and @ (if P = @ then take
the tangent line at P) intersects £ at P, @ and a third point R € E(K). If R = O,
then P 4+ @ = O; otherwise P + (Q = —R where —R can be constructed as in a).

It is easy to see that, at least generically, the coordinates of P 4+ () can be expressed as
rational functions in the coordinates of P and ). For example, if P = (z,y) and Q = (2/,y’)

are in the curve given by a Weierstrass form y? = 2® + Az + B, then

(P +Q) = (y/_y)z—x—x’

r —x

and
xt — 2Ax% — 8Bz + A?

43 + 4Ax + 4B

z(2P) =

Singular curves

Let F be a cubic curve given by the equation (5.2)) with discriminant A = 0, then E has a
singular point (cf. [Sil09, Prop. 1.4 a)]). Actually one can easily show, that there is only
one singular point, let say P. Let ¢4 be the quantity associated to the Weierstrass equation

of E, there are two possibilities for the singularity at P:
1) If ¢4 # 0 then P has two distinct tangent directions. In this case P is called a node.

2) If ¢4 = 0 then P has only a single tangent direction. In this case P is called a cusp.

Definition 5.1.5. Let E be a (possibly singular) cubic curve given by a Weierstrass equa-
tion (5.2). The non-singular part of E, denoted by E,, is the curve with its singular point
removed. Similarly, if F is defined over K, then E, ¢ (K) is the set of non-singular points
of E(K).

The set E,s(K) has a particularly simple structure described in the following proposition.

Proposition 5.1.6. Let E be a cubic curve given by a Weierstrass equation with discrim-

inant A = 0 with E singular point P. Then the group law makes E,s(K) into an abelian
group.
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a) Suppose E has a node, and let
y=ox+ P and y= asx+ By

be the two distinct tangent lines to E at P. Then the map

En(K) — K*
y—ox— b
x,y) — —————
( y) Y — o — [y

is an isomorphism (of abelian groups).

b) Suppose E has a cusp, and let
y=azr+f
be the tangent line to E at P. Then the map
B, (K) — K*

x — x(P)

(z,y) — m

s an isomorphism.

Isogenies

We turn now to the definition of morphisms between elliptic curves.

Definition 5.1.7. Let E; and Es be two elliptic curves over K. Let L/K be a field
extension, an isogeny (over L) between F; and FEj is a non-constant morphism ¢ : F; —
E, defined over L that satisfies ¢(O) = O. We say that two curves E; and Fy are isogenous

if there exists an isogeny from F; to Es.

Remark 5.1.8. If the extension L of K is not specified then we are assuming that the

isogeny is defined over the algebraic closure K of K.

From the definition one can see that the relation of isogeny is an equivalence relation on

elliptic curves. We have also

Proposition 5.1.9. Every isogeny ¢ : Ey — E5 is a group homomorphism.
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5.1. Elliptic curves

The set of isogenies from F; to Es together with the zero map is denoted by Hom(FE1, Es).
It is a group under addition. The group Hom(F, F) is a ring which we denote by End(F).
It is called the endomorphism ring of E. The operations in End(E) are given by

(@ +9) (P) = o(P)+¢(P) and (¢9)(P) = o((P)).

The invertible elements of End(E) form the automorphism group of E which is denoted
by Aut(E).

Theorem 5.1.10. ) Let Ey and Es5 two elliptic curves over K, then the group of iso-

genies, defined over K, Hom(Ey, Ey) is a torsion free Z-module.

b) Let E be an elliptic curve over K, then the endomorphism ring End(E) is a (not

necessarily commutative) ring of characteristic O with non zero divisors.

c) Let E be an elliptic curve defined over a field K. Then the endomorphism ring of E

s one of the following

Z,
End(E) = ¢ an order in a imaginary quadratic field,

a mazximal order in a quaternion algebra.

The last case only happens if char(K) =p > 0.

Elliptic curves over finite fields

Let E be an elliptic curve defined over a finite field F, with ¢ = p”, p a prime. The
first important result dealing with elliptic curves over finite fields is the following fact
established by Lang and Weil [LW54].

Theorem 5.1.11. Any smooth cubic curve E defined over a finite field IF, has a IF,-rational

point.

The set of F-rational points of an elliptic curve defined over a finite field I, is finite. Hasse’s
theorem on elliptic curves, also referred to as the Hasse bound, provides an estimate of the

number of points on an elliptic curve over a finite field.
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5. Applications and examples

Theorem 5.1.12 (Hasse). Let E/F, be an elliptic curve. Then

[#EF,) —(¢+ 1] < 2Vq.

Definition 5.1.13. Let £ be an elliptic curve defied over a finite field F,. The Frobenious

endomorphism is given by

dp: E(F,) — E(F,)

(z,y) — (29, y7).

The Frobenious endomorphism is strongly related with #E(F,) by the following

Theorem 5.1.14. Let E be an elliptic defined over a finite field F, and let #E(F,) =
q+1—a. Then the Frobenious endomorphism satisfies the equality

(I)JQE—CL(I)E—FQ:O.

Definition 5.1.15. The quantity a from the theorem is called the Frobenious trace.

Elliptic curves over local fields

Let K be a complete local field with normalized valuation v : K* — Z. Let R be the
ring of integers of K with maximal ideal p and residue field £k = R/p. Let also w be a

uniformizer for R, that is p = wR.

For a given elliptic curve over K with equation y? + a12y + asy = ® + asx® + asx + ag,

2

the substitution (z,y) — (u %z, u 3y) leads to a new equation in which each coefficient a;

is replaced by u‘a;. If we choose u to be divisible by a sufficiently large power of w, we

obtain a Weierstrass equation with coefficients in R.

Definition 5.1.16. Let F/K be an elliptic curve defined by the affine Weierstrass equation
E:y? + arwy + asy = 2° + ap2” + ax + ag (5.6)

with a; € R. We say that (5.0]) is a minimal Weierstrass equation for E if v(A) is minimal

among all Weierstrass equations defining E with coefficients in R.

The minimal Weierstrass equation always exists, since v is discrete and we can choose

among all Weierstrass equations with coefficients in R, one that minimalizes v(A). If the
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5.1. Elliptic curves

equation for an elliptic curve is not minimal, there is a coordinate change giving a new
equation with discriminant A’ = u=2A € R. Thus v(A) can only be changed by adding
or subtracting multiples of 12. Similarly we have ¢, = u*c4 and ¢ = u%¢s and by the
same argument v(cy4) and v(cg) can only be changed by adding or subtracting a multiple

of 4 and 6, respectively. So we conclude:

1) If a; € R and v(A) < 12, then the equation is minimal.

2) If a; € R and v(cy) < 4 (or v(cg) < 6), then the equation is minimal.

Now we look at the “reduction modulo w”. Let us consider the natural reduction map
R — k = R/p. Let us denote by a; € k the reduction of a; modulo w and by E the

equation obtained from E by reducing its coefficients modulo w, that is
E: Y2+ dvy + Ay = o3 + G + aur + ae.

The curve E is called the reduction modulo @. Note that F /k is an elliptic curve if A #0,

this occurs when v(A) = 0.

Definition 5.1.17. Let £/K be an elliptic curve and E its reduction modulo . We say
that

a) E has good (or stable) reduction if E is non-singular (in which case E is an elliptic

curve).

b) E has multiplicative (or semi stable) reduction if E has a node. The reduction is

called split if the tangent directions are defined over k, otherwise is non-split.

¢) E has additive (or unstable) reduction if E has a cusp.

Twists

Definition 5.1.18. Let E and F; be two elliptic curves defined over a field K. We say

that F; is a twist of E if E and E; are isomorphic over an algebraic closure of K.

Remark 5.1.19. Two twists have the same j-invariant (cf. Theorem[5.1.4)).
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Example 5.1.20. Let £ be an elliptic curve defined over a finite field IF, given by the
Weierstrass equation
y* = 12"+ Az + B.

Let 8 € Fy, then the elliptic curve
By :y? =2+ %Az + 3°B

is a F-twist of E. Indeed, taking ¢ € F2 such that ¢ = /3 then (z,y) — (c*z, ®y) is an

isomorphism from £ to E; defined over .. This twist is called a quadratic twist.

5.2 Supersingular elliptic curves

Let K be a field of characteristic p > 0 and E/K an elliptic curve. As mentioned in
Section 5.1l the endomorphism ring of E is a torsion free Z-module of rank 1,2 or 4.
Namely, Z, an order in an imaginary quadratic field or a maximal order in a quaternion

algebra, respectively.

Definition 5.2.1. Let E/K be an elliptic curve, we say that E is supersingular if its

endomorphism ring has rank 4.

There are further characterizations and interesting properties of supersingular elliptic

curves (cf. [Sil09, Ch. IIIJ).

Examples

1) If K is a field of characteristic 2 then every elliptic curve with a Weierstrass equation
y? + asr = 2° + aux + ag
is supersingular ([Was08| p. 122]).
2) If K is a field of characteristic 3 then every elliptic curve of the form
y2 :x3+a4x+a6

is supersingular ([Was08| p. 122]).
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5.3. Elliptic curves over C and Eisenstein series

Supersingular elliptic curves will play an important role in our algorithm. We will need a

test to know whether or not a given elliptic curve is supersingular.

Proposition 5.2.2. Let E' be an elliptic curve over Fy, where q is a power of the prime
number p and let a = ¢+ 1 — #E(F,). Then E is supersingular if and only if a = 0
(mod p).

For a proof of the proposition see for example [Was08, Prop. 4.31]. An important invariant
in the theory of supersingular elliptic curves is the Hasse invariant which is defined as

follows.

Definition 5.2.3. Let E be an elliptic curve over F, defined by the equation y? = f(z),

where f is a polynomial in F,[z] of degree 3. The Hasse invariant of E is defined to be
the coefficient of zF~! in the expansion of f(x) e

Remark 5.2.4. In the literature it is common to define the Hasse invariant in terms of
the differential associated to the elliptic curve (cf. [Kat77]).

Lemma 5.2.5. An elliptic curve E is supersingular if and only if its Hasse invariant is

ZEero.

5.3 Elliptic curves over C and Eisenstein series

In this section we follow very closely the book of Silverman [Sil09, Ch. VI].

Definition 5.3.1. Let A C C be a lattice, that is a discrete subgroup of C which contains
a R-basis for C. An elliptic function (relative to the lattice A) is a meromorphic function
f(z) on C which satisfies

f(z4+w)= f(z) forall z€ Cand w € A.

The set of all elliptic functions for A forms a field, denoted by C(A).

Definition 5.3.2. Let A C C be a lattice. We define the Weierstrass px-function (relative
to A) as
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and also the Eisenstein series (for A) of weight 2k as

ng(A) = Z w_2k.

w#0EA

It is customary to let go(A) = 60G4(A) and g3(A) = 140Gg(A).

The Eisenstein series are absolutely convergent for all integers k > 2 and the series defining
the Weierstrass pa-function converges absolutely and uniformly on every compact subset
of C — A (cf. [Sil09, Ch. VI, Thm. 3.1}).

The field C(A) is generated by the Weierstrass pj-function and its derivative. These
functions can be used to parametrize certain elliptic curve as we see in the following

theorem (cf. [Sil09, Ch. VI, Prop. 3.6]).

Theorem 5.3.3. Let A € C be a lattice.

a) The functions px(2) and @)\ (2) generate C(A), that is, C(A) = C(pa, )))-
b) The Weierstrass pa-function and its derivative satisfy the identity
pr(2)* = 4pa(2)* = g2(M)pa(2) — gs(A).

Further, the polynomial f(x) = 4x® — go(A) — g3(A) has distinct roots, so its discrim-
wmnant
A = gy(A)? — 27g3(A)?

is non-zero and therefore the equation
By y? =42 — go(N)x — g3(A)
defines an elliptic curve over C.

c) The map
¢ i C/A — EA(C) 2= (pa(2), 9 (2))

1s a complex analytic 1somorphism of complex Lie groups.

d) Conversely, given an elliptic curve E/C, there ezists a lattice A, unique up to homo-
thety, such that Ey = F.
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5.3. Elliptic curves over C and Eisenstein series

Let E; and FEs, be elliptic curves over C corresponding to lattices A; and As, respectively.

Then one can show that
HOI’Il(El,EQ) = {Oé € C | OéAl C Ag},
where the isogeny associated to « is given analytically by

C/Ay — C/Ay, 2+ az.

We recall that two lattices A; and Ay are homothetic if there exists a € C such that
A1 = al,. Homothetic lattices correspond to isomorphic elliptic curves, so it is common
in practice to replace the lattice A := w1Z + weZ by A, := 7Z + Z with 7 = wy /wy €
$H:={r € C | Im(r) > 0}, which is homothetic to A. Then for the lattice A, the
definition of the Eisenstein series becomes

ng(T) = ng(AT) = Z ( 1

2k °
mT n
mne” + )
(m,n)=1

On the other hand, the fact that the lattice A := w1Z + wsZ does not change when we
replace its basis {wy, w2} by {aw; + bws, cwy + dws} where a,b,¢,d € Z and ad — be = 1
allows us to consider the modular group I' = SLs(Z) and its action on ) in order to study

isomorphism classes of elliptic curves.

Definition 5.3.4. Let k£ be an integer. A holomorphic function f : $§ — C is called a
modular form of weight k with respect to the modular group I' = SLo(Z) if it satisfies the

following conditions:

1) f(Z) = (et +d)*f(r) for all (¢}) €T,

ct+d

2) f has a Fourier expansion of the form
f(r) =2 ang" (57)
n=0

2miT

where ¢ = e

A modular form with respect to I' = SLy(Z) is a cusp form if it satisfies in (B.7]) the further

condition that ag = 0.
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Remark 5.3.5. For (¢4) = (7' °)) we deduce

So k must be even, otherwise f(7) = 0. In other words, there is no non-zero modular forms
with respect to I' = SLy(Z) of odd weight.

A typical example of modular forms is given by the Eisenstein series G (7) defined above.
The coefficients of G (7) can be explicitly calculated as arithmetic functions on n. Namely,
setting ox—1(n) = 3 4, d*=1, we have the following proposition [Kob84, Ch. III, p. 110].

Proposition 5.3.6. Let k be an even integer greater than 2 and let 7 € H. Then the

modular form Gy (7) has q-expansion

where ¢ = e*™™ and the Bernoulli numbers By, are defined by

Bi(r) = == —=Gi(r) = 1= ==Y oy (n)q". (5.8)

The series Ej(7) is defined in this way in order to have rational coefficients. We have for

example

Ey(r) =1+240)  oy(n)q",

n=1

Eg(1) =1—504 Z os5(n)q",
n=1

Eg(r) =1+ 480%@(71)(]".

n=1
Let My (") be the C-vector space of modular forms with respect to I' = SLy(Z) of weight
k. We may use the standard notation M} if the group I' is clear from the context. It is

clear that
MM, C My,
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5.3. Elliptic curves over C and Eisenstein series

and so the direct sum .
SR
k=0
can be viewed as a graded algebra, whose structure is given by the next theorem.

Theorem 5.3.7. Put Q) = E, and R = Eg. The functions () and R are algebraically

independent and

@B M, = C[Q, R).
k=0
One has for example
441Q3 + 250 R?
E8 = Q27 ElO = QRu E12 == Q )
691
Q3 _ R2

— ()2 —
E14—QR and A = 1798

Corollary 5.3.8. The dimension of My, is given as follows:

(], if k=2 (mod 12)

[£]+1, if k=0,4,6,8,10 (mod 12).

Sl= Sl

The dimension of Mj, is then 1 for k = 0,4, 6,8, 10, with the basis 1, Q, R, Q*, QR, respec-
tively.

From Theorem (3.7 follows that for k even there exists a unique polynomial ¢ (X,Y) €
C[X, Y] (actually in Q[X,Y]) such that

or(P, Q) = E. (5.9)
One has for example

w(X,Y) = X,
ws(X,Y) =Y,
908(X7 Y) = X27
010(X,Y) = XY,

441X3 + 25072
4,012(X7 Y) = 691 )
014(X,Y) = X?Y,
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X (1617X3 + 2000Y%)

Pr16(X,Y) = 3617

5.4 Reduction modulo p of modular forms

In this section we closely closely the ideas introduced in [Ser73b]. Let p be a prime number
greater than 3 and let v, be the corresponding valuation of the field Q. We can now define
modular forms modulo p. Let us denote by o the local ring of Q at p, that is, the ring of

rational numbers with denominator prime to p, and let m its maximal ideal.

Definition 5.4.1. Let
f=3 aug" € Qllg]

n=0
be a formal power series with coefficients in Q. We say that f is p-integral if v,(a,) > 0

(equivalently if a,, € o) for all n .

Let a,, denote the image of a,, in F, = o/m. Let f be a p-integral power series, then

f=) " € Flld]
is called the reduction of f modulo p.

For a fixed integer k, consider the following set

Mk = { f | fis a modular form of weight & whose Fourier expansion is p-integral } .

Denote by M the union of the Mj, which is a sub-algebra of F,[[¢]] and call it the algebra

of modular forms modulo p.

Definition 5.4.2. A polynomial is called isobaric if all monomials appearing in the polyno-

mial have the same weight according to some given weight function on the indeterminates.

Let f be a modular form of weight k, we know from Theorem [£.3.7] that f may be written

as an isobaric polynomial in () and R, that is
f = Z Ca,anRb

for some finite set (a,b) such that 4a + 6b = k, i.e., ) has weight 4 and R has weight 6.
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Note that by equation (5.8]) the denominators of the Eisenstein series are bounded, so we
can normalize them to get integral coefficients and therefore p-integral for any prime p.
By Theorem (£.3.7] it follows that M,, admits a [F,-basis of monomials @“éb, that is, @ and
R generate the algebra M. To describe the structure of M we only need to determine the
ideal a C FF,[[X, Y]] of relations between Q and R, i.c., those polynomials F for which
F(Q,R) = 0. This is the content of the following (cf. [SD75, Thm. 2])

Theorem 5.4.3. Suppose that p > 3 is a prime. The ideal a is a principal ideal generated
by A—1 where A € F,[X,Y] is the isobaric polynomial of wezghtp 1 such that A(Q, R) =
Ep 1. The polynomial A(X,Y) has no repeated factor and M is naturally isomorphic to

Fp[X, Y]/ (A=1)

which has a natural Z/(p — 1)-grading.

Examples

e Forp=>5onehas £, | = B, =@, so A(X,Y) = X. The ideal of relations among Q
and R is generated by the relation @ = 1. The algebra M is isomorphic to Fj [ﬁ]

e For p =7 one has E, ; = Eg = R. Analogous to the previous case A(X,Y) =Y and
M =TF-[Q)].

e Forp = 11 one has Fjp = QR, the fundamental relation is Qvﬁ = 1,sothat A(X,Y) =
XY.

e For p = 13 one has Fj; = 6Q* — 5R? (mod 12), the fundamental relation is

6% — 5R2 = 1.

It is clear from Theorem [.43] that A is a homogeneous polynomial of weight (p — 1)/2, if
X and Y have weight 2 and 3, respectively.

Proposition 5.4.4. Let A be the polynomial of Theorem[5.4.3.

1. There exists a homogeneous polynomial F such that A(X,Y) = F(X3, Y3 XY7 with
i,j € {0,1}.

2. The exponents i and j depend on the congruence of p — 1 modulo 12, namely
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a) i=7=0if and only if p=1 (mod 12).

b) i=1and j =0 if and only if p =5 (mod 12).

c)i=0andj=11if and only if p="7 (mod 12).

d) i=1andj=1 if and only if p =11 (mod 12).

Proof. Let A be the polynomial in F,[X, Y] that generates the algebra M then the fact
that A(@, E) = Ep and the graduation modulo p force A to be a pseudo-homogeneous

polynomial of degree (p — 1)/2 for X of weight 2 and Y of weight 3. Hence we can write
A as

AX,)Y) = F(X3 YH XYY (5.10)

for 7,7 € N and F' a homogeneous polynomial of degree d. Then pseudo-degree (ps-deg) of
A is 6d + 2i + 35 where ¢ € {0,1,2} and j € {0,1}. We have six cases to consider.

1) If i = j = 0 then A(X,Y) = F(X3,Y?) and ps-deg(A4) = 6d, but ps-deg(A) =
(p — 1)/2 therefore 6d = (p — 1)/2. That is p=1 (mod 12) and 2. a) follows.

2) Ifi =1 and j =0 we have A(X,Y) = F(X3 Y?)X then ps-deg(A) = 6d + 2. From
ps-deg(A) = (p—1)/2 it follows that 6d +2 = (p—1)/2 and d = (p — 5)/12, since d
is an integer, p =5 (mod 12) and we have the assertion of 2. b).

3) If i = 0 and j = 1 we have A(X,Y) = F(X3 Y?)Y then ps-deg(A) = 6d + 3. In
view of ps-deg(A) = (p — 1)/2 we get d = (p — 7)/12 and thus p = 7 (mod 12). So
we have the claim of 2. ¢).

4) Ifi =1and j = 1 we get A(X,Y) = F(X? Y?)XY then ps-deg(A) = 6d + 5 as
above, this implies that p = 11 (mod 12) and 2. d) follows.

5) Ifi = 2 and j = 0 we have A(X,Y) = F(X3,Y?)X?. Therefore ps-deg(A) = 6d+4 =
(p—1)/2 implies that d = (p —9)/12 that is 3|p which is impossible since p is prime.

6) If i =2 and j = 1 we have A(X,Y) = F(X? Y?)X?Y and then ps-deg(A) = 6d + 7

which implies 3|p and since p is prime, this case is impossible.
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Elliptic interpretation

Let p > 5 be a prime and E be an elliptic curve defined over K := F,(Q), R) with equation

=42 — Zo— — (5.11)

with @ and R regarded as indeterminates (compare the equation with (B.3])). As a result
from the discussion in [SD75, pp. 21-24], the curve E has Hasse invariant H(E) = A(Q, R).
Upon specializing (@, R) the Hasse invariant H vanishes if and only if the corresponding

elliptic curve is supersingular. In [Gor02] the author proves even more.

Proposition 5.4.5. [Gor02, Prop. 5.3] The Hasse invariant is a modular form over F,
(of level) 1 and weight p — 1. Its g-ezpansion at the cusp is 1, hence H is equal to the

reduction of E,_1 modulo p.

Corollary 5.4.6. The Hasse invariant does not have multiple factors.

5.5 The Tate Curve

General references for the theory of Tate’s analytic uniformization of elliptic curves are
[Lan87, Ch. 15] and [Sil94, Ch. V]. We refer to them for more details and for proofs of

cited results.

In the classical case, for the field of complex numbers, it is possible to represent the group
of points on an elliptic curve over C as the quotient of the additive group of C by a discrete
subgroup generated by two R-linearly independent periods w; and w,. One can absorb one
of these periods passing from the additive group to the multiplicative group, by means of
the exponential function and obtain a representation of the group of points of the elliptic
curve as the quotient of the multiplicative group C* by a discrete subgroup generated

2miT

by one multiplicative period namely, t = e*™7, where 7 = ws/w;. In C, the explicit
formulas giving this multiplicative representation are the well known Fourier expansions

of the Weierstrass functions @, the Eisenstein series, etc.

Let K denote a field which is complete with respect to a discrete valuation v, and whose
residue field is perfect of characteristic p > 0. Tate proved that the Fourier expansions of

the Weierstrass functions @, suitable normalized, yield universal identities among power
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series that can be used to obtain a multiplicative representation for the group of rational

points of certain elliptic curves over K (similar as in the classical case for the complex

field).

The following statements can be found in [Roq70, Ch. III, pp. 23-33].

Theorem 5.5.1 (Tate). Let K be a local field of arbitrary characteristic and let q € K*
with 0 < |q| < 1. Then the field of meromorphic q-periodic functions on G, x is an

elliptic function field F(q), which means, finitely generated of transcendence degree 1 over
K. More precisely F(q) = K(p, ') with

n 2n,,2
qu , q“"u
o(u) = ————— — 251 and @'(u) = ————= + s
é(l—qu)2 é(l—qu)?’
where
mkqm
Sp = Z T fork e N
m>=1

The elliptic curve E(q) associated to the elliptic function field F'(q) is given by the equation

%+ pp' = 0" + as(a)p + as(a),
where ay(q) = —5s3 and ag(q) = +5(5s3 + Tss). Its j-invariant is

L (1—48ay(q))* 1
jla) = A =7 R(q)

where

R(q) = 744 + 196884q + ... € Z[[q]] and
A(q) = as(q)® — ag(q) — 64as(q)® + 72a4(q)as(q) — 432a6(q)’.

To every j € K with |j| > 1 there is one and only one q € K with 0 < |q| < 1 such that
j=jla)
The classical well known product representation

Al@)=qJ(1—aH*

n>1

holds also in the non-archimedean case for every characteristic.
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The Tate elliptic curve (relative to q) is the curve with the Weierstrass equation
Ey:v*+ 2y = 2° + as(q)x + ag(q). (5.12)

Observe that since ag(q) = 3_,,-, 7m51+25m3 1(_lzn and 7m° = 5m3(mod 12) ¥Ym € Z, the

series ag(q) is also defined for p =2 and p = 3.

Using the formulas above for the Weierstrass function and its derivative we obtain as in

the classical case the v-adic analytic uniformization

¢: K*/{q) — E4K)

(5.13)
u = (pu), ¢ (u).

If char(K) # 2,3, we can use the function p + - and its derivative g’ as the generators

of F(q) over K. It is immediately verified that their defining relation is in Weierstrass

p_ (o L\ L (o 1) L
o=\ 12 492 £ 12 493

where the coefficients g, and g3 are given by the classical g-expansions

normal form

L1 a d o= L o1
g2 = g TAUSs ARG G3 = Toge T 3o

We call the corresponding elliptic curve
Epis : y* = 42° — gox — g3,

the curve in Fisenstein form. It is clear that it is isomorphic to the Tate curve (5I12)). It
is a straightforward calculation to get the following relation between the coefficients of the

Tate curve and the curve in Eisenstein form

g2 g3 | 92 1
= == - — d = == 4= - —.
Consider the Eisenstein form 3% = 23 — L — 2, then the Hasse invariant H gives a relation
between the coefficients g; and g3. Taking ](“ (x)) = 2% — 23 — % we can calculate H as the
p—1

coefficient of zP~! in the expansion of f(z) 2
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One has for example

p= 5= H;= g,

p= 7= H;= g,

p =11 = Hy = 1lgag3,

p=13 = Hi3 =8¢2 + 693,
p=17T= Hy; = 8g§l + 1Og2g§,
p=19= Hiy = Tg5 + 11g3¢2,

p =23 = Has = 13g593 + 9925,

p =29 = Hy = 4g; + 18¢593 + 892,
p =31 = Hz = 29593 + 9393 + 2745.

5.6 Obtaining the Tate parameter

Let N € F,[T] be a polynomial of degree greater than 2 and ¢ € H{“(T,Z)°™) be a
harmonic cocycle with rational Hecke eigenvalues. From Section we know that there
exists an elliptic curve E, defined over F,(T") with conductor Noo associated with ¢.
This curve E, can be constructed as a Tate curve, that is there exists q € F,((7)) with

0 < |q| < 1 such that E, is in the isogeny class of

Eq:y*+ay =2’ + as(q)r + ag(q).
From Proposition 2.12.2] we know that q is a generator of the multiplicative subgroup
{co(a)oa e To(N)}
where ¢, (o) is the multiplicative integral
]éﬂ tt—_;‘;io dpg(t)
defined in (39).

Now the first question is how to find « € I such that c,(a) = q. Let {c1,...c,} be a basis
for the homology of the quotient graph I' \ T. Let w; be a path in the tree T without
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backtracking such that w; is a lifting of the cycle ¢;. Since the origin vy ; and the terminal
v1,; of w; are I'-equivalent, there exists a o; € I' such that a;vp; = v;;. Consider the set
C={w,...,a,} with a; as above, then from |Gek95 Cor. 3.19] we have that

val(q) = min{val(c,(o)) | a; € C}. (5.14)

Therefore, to obtain the Tate parameter we choose an integral with minimal valuation. In
the appendix we will describe a procedure to find the minimal valuation without explicitly
computing any integral. The algorithm to calculate the Tate parameter will be discussed

in the Appendix B (cf. Algorithm [I0), which can be calculated in polynomial time.

Theorem 5.6.1. The Tate parameter q can be calculated up to accuracy ™ in time

O(MT).

We will probe this result in the appendix Bl (cf. Theorem [B.2.1). This running time is
strongly dominated by the running time for the algorithm to calculate the table. So after
explain how calculate our table, we explain how to find the Tate parameter and we give

the proof of this theorem.

5.7 Obtaining equations for the curves

Let N € F,[T] be a polynomial with deg(/N) > 3 and such that the space of new harmonic
cocycles with rational Hecke-eigenvalues has dimension h. There exits h different isogeny

classes of elliptic curves defined over IF,(7") with conductor Noo.

For each one-dimensional rational eigenspace of H*(T, 7)) we need to find the Tate

parameter associated to the corresponding rational eigencocycle . For this we use our

t— az
dp,(t
£ o)

for a suitable o obtained from (5.14)).

algorithm to calculate the integral

Once we know the Tate parameter q up to accuracy 7 for some fixed integer M > 1, we

need to compute the quantities s3 and s; using the formula
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Sk = Z Inj(::; = Z mkquqml for k € N. (5.15)

m2=1 m=1 =0

Then we find the coefficients of the Tate curve given by as(q) = —s3 and as(q) = 15 (5s3 +

+1

7s5). We carry out these calculations modulo 7% since we only know q up to accuracy

7M. Then the Tate equation is given by

Eq:y* +ay = 2° + as(q)z + ag(q). (5.16)

However, in general, the quantities a4(q) and ag(q) are not rational and this analytic model
does not allow us directly to find the isogeny class of the elliptic curve that we are looking
for. In this section, we explain how to get equations defined over F,(T") by choosing suitable

models for the elliptic curves.

5.7.1 Elliptic curves in characteristic 2 and 3

We need to transform the Tate curve in one model defined over the rationals. For this we
carry out in each characteristic an admissible change of variables to transform the Tate

curve into a rational model depending only on one parameter.

In Characteristic 2

In this case we use the admissible change of variables

T — T,

y——>y +x + Gy,
then the Tate curve (5.16]) is transformed into
E:y*+ay =2+ Ag

where the coefficients satisfy the relation Ag = ag + a3. A direct calculation shows that E

has discriminant A = Ag and j-invariant j = 1/As.
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In Characteristic 3

An admissible change of variables in characteristic 3 is given by

T —— T+ Gy,

Yy — Y+ ay.

Then the Tate curve (5.16]) is isomorphic to
E:y+aoy=2°+ A

where Ag = ag + a3 — a2, which has discriminant A = —Ag and j -invariant j = 1/As.
In both cases, since the j-invariant of such elliptic curve is a rational function, it follows

that Ag is rational. So the elliptic curve is defined over F (7).

The next proposition plays an important role in our algorithm (cf. [SchO1, Prop. 1.3]) in
the cases p = 2, 3.

Proposition 5.7.1. Suppose F, is a finite field of characteristic 2 or 3. Let E be an

elliptic curve over K = F(T') with non-constant j-invariant j(E). Write j(E) = LT; with

9(T
relatively prime f(T) and g(T) in F,[T]. Then
a) the divisors of f(T') are places of supersingular reduction, and
b) the divisors of g(T) are places of bad reduction.
Proof. For a) we know that in characteristic 2 and 3, an elliptic curve is supersingular if
and only if the j-invariant is zero. So let p be a place that divides f(7'). Let E and 7 the

reduction of £ and j modulo p, respectively. As p divides f(T') we have that j = 0 so E

is a supersingular curve, that is p is a supersingular place.

Since j # 0 we can take the usual normal forms for characteristic 2 and 3 (cf. [Sil09)
Appendix A]) which have the advantage of describing an elliptic curve with an expression

for the j-invariant relatively easy to manage.

An elliptic curve in characteristic 2 can be given by the Weierstrass model

By +ay = 2% + ap2® + ag (5.17)
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which has discriminant A = ag and j-invariant j = 1/ag.

On the other hand in characteristic 3 an elliptic curve can be given by the normal model

By =2+ a2® + ag (5.18)
with discriminant A = —a3ag and j-invariant j = —a3 /ag. Since the j-invariant of F is of
the form % we can write the equations of (B.17) and (5.I8)) as

T
E:y*+ oy =12°+ap® + —?ET;
and )
E . y2 +{L”g = 1’3 _I_(IZ,I’Z _‘_2@%?,(71),
respectively. The model in characteristic 2 has discriminant % and the one in character-
.o . . . aGQ(T)
istic 3 has discriminant ;(T) :

Then for the proof of b), we can suppose without loss of generality that our elliptic curve
has in each characteristic one of these models. From Tate’s algorithm [Tat75] we know
that £ has a model defined over F,[T'] which is minimal at all finite places. This model is
also isomorphic to F and its discriminant is divisible by ¢(T"). Let p be a divisor of ¢(7T),
then p divides the discriminant, that is val,(A) > 0. Hence p is a bad place of E. O

A prime p is a place of supersingular reduction if and only if the curve E is supersin-
gular. By Proposition [(£.2.2] E is supersingular if the corresponding Frobenious trace
t=q+1-— #E(Fq) is 0 modulo p. But t is also an eigenvalue for the Hecke operator
T,. Then if we are able to calculate from the harmonic cocycle a list of eigenvalues for
primes of small degree, it is possible to have some candidates that divide the polynomial
f(T) of the proposition. On the other hand, what that polynomial g(7") from last propo-
sition concerns, places of bad reduction can be taken from the conductor which is also
known. So we can use Proposition £.7.1] to improve our approximation of Ag to a rational

function.

On the other hand, we know that val(j) = —val(q), therefore we have that deg(g) —
deg(f) = —val(q). Let us suppose that we have all the factors of f and g, so we can write

them as

F(T) = H fir and g(T) = Hg;f (5.19)
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for t; and r; integers. Then we have

n

Z r;degg; — Z t; deg f; = val(Ag).

j=1 i=1

So we can try some m-tuples and n-tuples of ¢;’s and r;’s, respectively and take series
of Ag to get representation of Ag as a rational function. Although in our examples we
do not need to do this and in practice this is difficult to carry out since to calculate the

supersingular places using the Hecke operator takes time.

At this point we have completed the first phase of the computation with the approximation

of Ag to a rational function. Next we need to see whether the elliptic curve
y ay =2’ + Ag

has conductor Noo. The computation of the conductor is performed using any Computer

algebra system with this function available, in our case we use MAGMA.

If the conductor of E is not Noo then we need to carry out an appropriated change of

variables to transform our elliptic curve into a form that allows us to find the right curve.

Remark 5.7.2. So far, in characteristic 2 this has not happened in any of the examples
known. That is, the model E : y*+xy = x®+ Ag seems to give always the right conductor,so

the algorithm assumes this.

In the following lines we describe the algorithm that allows us to find a rational repre-

sentative in the isogeny class of the Tate curve in characteristic 2 and 3 with conductor

Noo.

Given a rational Hecke eigen function ¢ € H{**(T,Z) W) where N is a polynomial with
deg(N) > 3, we want to find the elliptic curve associated with ¢. The Algorithm [I explains
the procedure to get E from the Tate period q.

ALGORITHM 1: Curve2or3

Input: The Tate parameter q up to accuracy of 7 and the Hecke eigen-cocycle .
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Output: An elliptic curve in the isogeny class of the Tate curve associated to q or a

message “Accuracy too small, please increase M ”.

1: Calculate the quantities s3 and s5 using the formula (515 and use them to calculate
the coefficients of the Tate curve a4 and ag up to accuracy 7.

2: calculate the quantity Ag:

e if characteristic of K is 2 then Ag = ag + a3,

e if characteristic of K is 3 then Ag = ag + a3 — a?.

3: use the algorithm of continued fractions to find the representation of Ag as a rational
function.

4: for all place f divisor of N do

5 if f does not divide numerator of Ag then

6: Return “Accuracy too small, please increase M”

7 end if

8: end for

9: define the elliptic curve E : y? + xy = 2 + Ag

10: calculate the conductor of E let say ¢

11: if ¢ = Noo then

12: Return F

13: end if

14: if characteristic K = 3 then

15 for all places f; | c and fi{ N, set u™> = ([, fi)

16: make the change of variables
T — u’x,
Yy — u3y + vl

to transform F into E, : y? = 2® + asx? + ag where as = v~ 2 and ag = Agu ™"
17: end if
18: Return £

Remark 5.7.3. The Algorithm [ finishes in step [0 if the accuracy M is too small and

the series Ag does not converge to a rational function. In the other case it continues and
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5.7. Obtaining equations for the curves

returns the curve E in step [I2 if it is no necessary to carry out the change of variables or

in step [18 after the change of variables.

If char K = 3 and j(F) # 0 we use the change of variables x — u?z and y — w3y + v’z to

get the curve
Ey =y’ =2+ ax® +ag A(E,) = —ajag, j(E.) = —a3/a

for u € K> such that u~? is divisible by all extra places appearing in the conductor of E. We
claim that E}, has conductor Noo. We cannot prove this, although we can give a heuristic
argument as follows. From the change of variables we have that A(E,) = v ?A(E), and
as = u~? (cf. [Si09] Table 1.2]). Since j(E) = 1/As, by Proposition 5.7.1], the denominator
of Ag is divisible only by supersingular places and since we can not eliminate places of bad
reduction, we need u =12 to be the denominator of Ag. We have observed in many examples

that the powers of the places that divide the denominator of Ag is 6.

Let Cond(FE,) be the conductor of E, and p a place that divides u~1?, we have that
val,(Cond(E,)) = 0 since p does not divide A(E,,). Then val,(Cond(E,)) = val,(Cond(Erate)),

where Er.. is the Tate curve.

Example 5.7.4. Let N = T3 € Fy[T], from the quotient graph (see Figure B.]), we can
see that the dimension of the space of harmonic cocycles is 1. Therefore, the dimension
of the space H"“(T, 7)™ is 1 and consequently there exists one F,(T)-isogeny class of

elliptic curves with conductor T3co.

With a partition, as the one described in the previous chapter, using the Algorithm [6] we
calculate with accuracy up to M = 85 to find that

q =7+ 7% 4 7%,
Then using the formulas for a4(q) and ag(q) we get
as(q) = ag(q) = 74 + 78 + 716 4 716 4 732 | 16
From the change of variables we have the relation Ag = ag + a2, so

A6 — (7_(_8 + 7_(_16 + 7_(_16 + 7_(_32 + 7T64) + (71_4 + 7-(8 + 7_(_16 + 7_(_16 + 7_(_32 —|—7T64)
4
=T

=1/T*

97



5. Applications and examples

)
@/ \@

N\

()
S
o
®

/

o
©
©

N

O—(2—(0)---

Figure 5.1: Quotient graph for N = T? over Fs.

The desired elliptic curve is given by the equation F : y?+xy = 2®+ % which has conductor

T300, and split multiplicative reduction at oo, as a routine application of Tate’s algorithm
[Tat75] shows.

Remark 5.7.5. In [Pap0l] Papikian finds the elliptic curve y? + Txy = x3 + T?x which

1s isomorphic to E after the change of variables

z — T?z,

yr— TPy +T.

If ¢ = 2, we can show using divisibility arguments and the definition of a4 and ag that

a4y = g — Z q

1—q"
nodd n<1 q

Also from the change of variables, we have the relation a2 + ag = Ag where Ag € Fy(T).
In other words, ay is a root of the polynomial FI(X) = X2 + X + Ag € Fy(T)[X]. Tt is
straightforward to check that if « is a root of F' then 1 + « is the other root.
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5.7. Obtaining equations for the curves

Let us consider the rational function Ag = 1/7* = 7* and the polynomial F/(X) = X? +
X + A € Fo(T)[X]. A direct calculation shows that o = > _, 7% is a root of F(X),
hence, it is equal to a4 since the other root of F/(X) has valuation 0. On the other hand

the continued fraction expansion of « is the infinite periodic sequence
[1+7 474 n™4

Then by the Lagrange theorem for continued fractions o ¢ Fo(T') and is quadratic over

Fo(T'). In particular a4 and ag are quadratic.

Once we know the rational function Ag, we can use the formula for a4 and the polynomial

F(X) = X? + X + Ag € Fy(T)[X] to arbitrarily increase the accuracy of q. To do

M

this, suppose that one knows q up to accuracy M, then make q = q + by 7™ ! where

byri1 € Fy is an indeterminate. Plug in q in the formula for a4 and use the polynomial
F(X) to find the value of by, ;. With this procedure we can easily to compute q to an

arbitrary high precision. For example:
q =7t 0 g0 32 196 4 28 g 56y 420 | pd52 | (51T,

Example 5.7.6. Consider N = T% over F5. In this case dim Hy(I'\T) = dim H,(T, Z) o) =
2 which is the number of new forms. In terms of the standard basis they are ¢ = (1,1)
and ¢y = (1,—2). For each of them we obtain, using the Algorithm [@ (see Appendix B),

the following Tate parameters (working with an accuracy of M = 40)

qi = 27 + 272 + 2t 4 2739,
Qe = 7T3 4 27T12 4 27T21 _'_71_39.

Then applying the formulas for a, and ag we have for q; up to accuracy M = 40

as(qq) = 27° + 27 + 2777,
a(qu) = 7 + 70+ 70 + 2712 4 718 4 72 4 o730 | 9p36

and by the change of variables described above, we have Ag = ag + a3 — a3 = 73, so the

corresponding rational elliptic curve is
By iy vay =223 +1/T°

It has conductor 700 and split multiplicative reduction at oo.
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Analogously, for q; we have

a4(q2) — 7T3 + 7_{_9 + 7_(.27’

ag(qz) = 21 + 7% + 27° + 2712 + 718 4 2777 4 270 4 2%,
Performing the same calculations as above, we obtain the elliptic curve
By +ay=a°+2/T°

Remark 5.7.7. In [Sch01, Prop. 4.3/, Schweizer found exactly the same elliptic curves,

using other tools.

Example 5.7.8. Consider now the polynomial N = (T'+2)(T?+7T +2). This example has
a different flavor than the previous ones, since we do not get the curve immediately from
the change of variables as above (in this case we have to apply step [I6lb) of Algorithm [I).

We need to make a further change of variables to find the curve with the right conductor.

In this case we have only one harmonic cocycle with rational eigenvalues, so it is also a
new form. Working with accuracy of M = 40 and using our algorithm of integration, we
find the Tate parameter

q=7"+7"+217 4+ 27° 4270 271t 4 27t 4 25 42717 118 4
19 1 2l 922 | 9198 4 95 | 19T | 9 98 | 9 20 | o 82

7T33—|—27T34—|—7T35—|—7T36—|—7T37—|—27T38—|—27T39—|—7T40.

Plugging in this value in the formulas for a4, and ag we have that

AG:27T4—|—27T5—|—7T7—|—7T9—|—7T10—|—7T11—|—7T14—|—27T15—|—27T16—|—27T18—|—
o 4 27?0 1 2r B 4 7 L 7B 4 ¥ 4 1 4 1?0 4 132 o

+273 4 2736 4 2737 4 2738,

Applying continuous fractions it converges to

2T+ 2T7 + 2T° + T+ T° + 2177 + 2
T2 4+ 279 4 T6
2(T +2)MT?* + T + 2)*
TS(T +1)6 '

Ag ~

Then the elliptic curve

2(T +2)4(T? + T + 2)?

C2 _ .3
E:y +xy=2’+ T6(T + 19
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5.7. Obtaining equations for the curves

has conductor T(T + 1)(T + 2)(T? + T + 2)oo, which is not Noo. We need to “get rid of”
the places T and T'+ 1. To do this, we change our model of the curve to the standard one

in characteristic 3,

.02 3 ~ 2 ~
Enorm-y = T + ax” + ag.

So the admissible change of variables from E to Fyom is given by

r — ulz,

y — uly + v’z

With this change of variables we have that u?a; = 1 and ag = Agas. Also, from the

table given in [Sil09], we have that the discriminants of E and E,q., satisfy the relation
1

\/T(T+1)’

u?Ap = Ap.__. So to get rid of the places T and T + 1 we may take u =

2(T+2)H(T?+T+2)?
T3(T+1)3

therefore ao = T(T' + 1) and ag = . The new elliptic curve

2T +2)Y(T* + T + 2)?

Foom i v2 =22+ T(T + 1)2?
y =a"+T(T+ 1)z" + T3 T 1)

has the conductor (T'+ 2)(T? + T + 2) and split multiplicative reduction at oco.

The following table gives some examples with the Tate parameter, the conductor N and
the rational function Ag in which we can see that the denominator has factors which are

powers of 6.
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Tate Parameter Conductor Ag

7T22 + 27T23 + 7T24 + 7T25 + 27T29 + 7T30+
T4 2 428 ot g% on¥ pon¥ Ty | T(T 4 2)(T + 2T +2) | DA
7T38 + 27T39 + 27T40 _I_ 0(7.(.41)

w0 4217 4+ 78 4 219 4 !t 4 2 !E 4 1 4 2O
720 4 o3l 4 232 4 o384 o3t 4 236 4 13T | (T 4 2)(T% + 2T + 2) ”*f}if;jjfg“)
7T38 +7T39 +7T40 _I_ 0(7.(.41)

7+ 2 + 7 4 278 + 2! 4+ 1t 4 16 o174

Or22 4 23 4 125 4 9n26 4 9728 | 120 4 0(7.‘.36) T2(T +2) :(FT(?{)%)

a4+ 2% + 17 + 7% + 2710 4 w1t 4 2y
27" 4 7 4 w18 4 211 4 21 4 277 4 P4
272 4 2727 4 2728 4 7% 4 2752 4 27834 (T +1)X(T2 + 2T +2) | THLOCEEer
27‘(‘34 + 271’35 + 0(7.(.36)

7T5 _I_ 27T7 + 7T8 + 27T9 + ﬂ.ll _I_ 27T13 + 7T14 + 27T15+
729 4+ 23l 4 2732 4 o733 4 o34 4 2364 (T + 2)(T? + 2T + 2) (TJF(?ZT;JJ:;;H)
7T37 +7T38 +7T39 _I_ 7T40 _I_ 0(7.(.41)

5.7.2 Elliptic curves over characteristic p > 3

In case char(K) # 2,3 it is more complicated to make a change of variables from the Tate
curve to a model depending only on one parameter as the curve y? + zy = 23 + Ag, used in
characteristic 2 and 3. So we need to look for other model isomorphic to the Tate curve,

in which we can claim rationality.

Let p be a prime greater than 3. Recall the definition of the Eisenstein series E; =

14 240s5(q) and Eg = 1 — 504s5(q) and define also their normalization as g, = 15 E4 and
1

93 = — 515 Fe-
We consider now the following model for our elliptic curve

Epis - y? = 423 — gz — g3 (5.20)
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5.7. Obtaining equations for the curves

with the admissible change of variables

1
r=r— —,
12
11
=y—-r+ —.
A Y

We can transform the Tate curve into the Eisenstein curve where the coefficients satisfy

the known relations

1
—g2 = a4 + s
1 1
—g3 = Qg — 1—2a4 + 364"
From Theorem .43 we now deduce that there exists integers n, and m,, such that go* and
g5 are rational and these integers depend on the class of p modulo 12 as follows.

Proposition 5.7.9. Let p > 3 be a prime number and g, and g3 the normalized Fisenstein

series defined as above. Then gy”, g3 are in F,(T) where

(T’T) if p=1 (mod 12)
() ) = (L2 if p=5 (mod 12)
(5512 if p=7 (mod 12)
(5,20 if p=11 (mod 12).

Proof. From Theorem [£.4.3] we have that there exists a polynomial A(X,Y) € F,[X,Y]
such that A(@, ﬁ) = Ep,l — 1 where Q and R are the reduction of the series E, and Eg
modulo p, respectively. Since g, and g3 are the normalized series of E, and FEj it is enough

to prove the claims for @ and R.

From Proposition (.44 we have that A is a modular form of weight (p — 1)/2 and we can
write it as

AX,)Y) = F(X? YHX'YI
where F'is a homogeneous polynomial of degree d and A has pseudo degree 6d + 2i +3j =
(p — 1)/2. The exponents i and j depend on the congruence of p — 1 modulo 12.

The elliptic curve (5.11) considered over F,(Q, R) has discriminant A = 171—2&(@3 — JA%E) and

j-invariant j = %. Since j is a rational function it is easy to see that < is a rational

- R2
function, that is, there exists a f € F,(T") such that %—2 = f.
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Let us write
d

AX,Y) =) XUXDXY g (5.21)
=0

for suitable a; € F,. In view of A( Q R =1 and Q3 fR2 we have that

_ ( Q3l§2<d”al> 5 (5.22)
=

On the other hand, we have also that
d

AG.T) - (Z @“R’?(d—”al) G 5.2

=0
d ~ o~ o~ o~
_ Z Q3lQ3d+lff(dfl)Q73leal
=0
d

_ Z f—(d—z)@?,dﬂﬁjal

1=0
d
_ (Z f_(d_l)Oél) @3d+i§j
1=0
=1.

Then from (522) and (5.23) we have that B2 Qi and Q** R/ are rational functions for
i,j € {0,1}.

1. If p = 1 (mod 12) then from Proposition 544 A(X,Y) = F(X3,Y?) that is, i =
j = 0 then A has pseudo degree 6d = (p — 1)/2 and we have that R* and @3d are

rational functions, hence R®~Y/6 and Q®~1/4 are in F,(T).
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2. If p =5 (mod 12) we have in this case that A(X,Y) = F(X? Y?)X with pseudo-
degree 6d +2 = (p — 1)/2. Since R Q" and Q3 RJ are rational functions then
for i = 1 and j = 0 we get R2Q, Q3! e F,(T). Since 3d +1 = (p — 1)/4,
Qv(p’l)/‘l € F,(T). On the other hand, EWEZE is also rational, replacing @3 by f]§2
we get that R6H2f ¢ F,(T) then RS2 — R=D/2 i rational.

3. If p=7 (mod 12) then A(X,Y) = F(X3 Y?)Y. In this case A has pseudo-degree
6d+3 = (p—1)/2. We can proceed as above replacing i and j by 0 and 1, respectively.
We have that B2+ = Re=D/6 and Q3R are rationals. Also Q%4R? = <@3d§>2 is
rational. Then since R2 = Q3 f~! we have that Q%3 f=! € F,(T") which implies that
©6d+3 _ @’(p—l)/2 e FP(T).

4. If p=11 (mod 12) then the polynomial A is A(X,Y) = F(X3,Y?) XY with pseudo-
degree 6d+5 = (p—1)/2 and therefore R24+1Q and Q3! R are in F,(T). In view of
and @3 = f]§2 we have that }§6d+3]§2f is rational. Then RS5 = RP-1/2 ¢ F,(T).
Analogously, @66”2@3 f~1 is rational, which implies that Qv(pfl)/ 2eF,(T).

r(T)
s(T)
s(T') € F,[T] (no necessarily monic cf. Example 5.7.15]). Then we have that the curve Ep;s

G.20) is

Let us suppose that we have g,* = I and = for some polynomials f(7T°), g(T),r(T),
2 9(T) 3

v () ()

where x,, and &, are n,-th and m,-th roots of the unity in I, respectively, note that
n,, my|p— 1, so that Xn, and x,, indeed lie in IF,. So the curve Ep;, is defined over a finite

extension of F,(T).

Let E be an elliptic curve over a field K of the form Y2 = X3 + AX + C and u € K then
the elliptic curve E, : Y? = X3+ u?AX 4+ u®B is a twist of E. Taking u = 1/v/A the curve
E,isY?=X34+ X+ 2

VA3”
When E is Eg;, : y? = 423 — gox — g3 we can carry out the twist as follows, let us suppose
1/n
that go” and g3” are as above, then taking u? = (%) " we get
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y? =423 — u?¢, (@)1;%_ ux (T(T)> v >
P g mp

e () OB

Remark 5.7.10. This twisted elliptic curve may or not be defined over F,(T), because the

L (e \ e gy )PP : -
quantity (@) (W) 15 mot always rational. However, by reviewing examples,

heuristically we can say that after simplifications this expression becomes F(T)G(T)'? for
some rational functions F(T) and G(T). If G(T) is not one, then we need to make another
twist by taking u = (G(T))~Y2. The resulting elliptic curve has always the right conductor.
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ALGORITHM 2: Tateforp > 3

Input: The Tate parameter q up to accuracy of 7.

Output: An elliptic curve in the isogeny class of the Tate curve associated to q or a

10:

11:
12:
13:
14:
15:
16:
17:
18:

message “Accuracy too small, please increase M”.

. Calculate the quantities s3 and s5 using the formula (5I5]) and use them to calculate

the coefficients of the Eisenstein curve g, and g3 up to accuracy 7.

set the quantities n, and m, as the exponents of g, and g3, respectively. According to

Proposition [5.7.9

use the algorithm of continued fractions to find the representation of g5 and g5 as a
_ [ r(T)

rational functions. Let say gy = o) and g3 " = s(T)"

. define two list L,, and L,,, which contain the n,-th and m,-th roots of the unity in

[F,, respectively.
for &,, € L,, do
for x,,, € Ly,, do

define the elliptic curve

oo () ()

1/mp 3/2nyp
write (T(T)> (@> as F(T)G(T)Y2. > cf. Remark[5.7.10

E:y? =4a® — fan(T)_lx — meF(T)G(T)_l

end if

end for
end for
calculate the conductor of E let say ¢
if ¢ = Noo then

Return £
else

Return “Accuracy too small, please increase M 7 > This message is printed if

after considering all possible elliptic curves we do not get the right conductor.
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19: end if

Remark 5.7.11. If the prime p is a large prime then the numbers n, and m, are also big
then one needs high accuracy to get convergence, in this cases it is better to consider other

twist. Let u = % then the twisted curve is

g3 g3
y? = 423 — ulgor — ulgy ~» y? = 423 — _gx _ _3
93 93

since §—§ is a rational function, the curve is defined over K. The j-invariant of y* =

43 — /Slx —Aisj = 1728%27. Solving for A shows that j € K if and only if A € K.

However the cost of this twist is that a lot of extra places may appear in the conductor,
which one has later to get rid of. One can see, for instance Example[5.7.19 that the present
form is not isogenous over K to the searched Weierstrass equation. It is only correct up

to some unspecified quadratic twist.

Example 5.7.12. In characteristic 5.

With p = 5 consider the polynomial N = T*(T — 1). The dimension of the space of
harmonic cocycles is 4, then we have 4 isogeny classes. Let ¢ one of these harmonic
cocycles with rational Hecke eigenvalues. In characteristic 5, we have that £, = 1 and

go = 3 and the Eisenstein form is

FEgis - y2 = 42 + 20 — g3.

Since p — 1 is divisible by 4 and not by 6 then we have that gép_l)ﬂ € F5(T). With an

accuracy of M = 70 we get the Tate parameter

q=m>+2r* +7° +47° + 37% + 7% + 2710+ 4nt 4 4x? 4 271 4
4t 4 3715 4 710 42717 4 371 4 4n®0 4 B 4 27?2 4 2% 4 3 4
47T26 + 37’(‘27 + 27’(‘28 + 27T29 + 27’(‘30 + 27’(‘31 + 471'33 + 371'34 + 7T35 + 27’(‘36 +
4737 4 730 4 310 4 2rtt 2™ e 2™ 4 4n®® 4 3010 4t
478 4 2750 4 781 1 3752 4 153 4 37%° 4 4™ 4 3057 4 27°8 2790 1
280 4+ 278 4702 4 7% 4 3705 4 2700 4 3757 4 47 %8 1 478 4 470 L O( ™).

Plugging in this value in the equation of g3 and applying the continuous fraction method

we have that the series g2 converges to the rational function T((TT;;f Using Algorithm
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with F(T) = ;—i?’ and G(T') = TL+3’ the equation for the elliptic curve Eg;s is

T+2 [ T
2 3 2 3

=42 421 — g3~ 2 = 2P + 20 — e
Y =Ar 20— gg eyt =2 4 2 = G [ 73

9 3 3T +4 4T + 3
YT =at A+ T+

T T

which has conductor T?(T —1)oc. To get the last equation we make a quadratic twist with

u = %amdggzél.

Remark 5.7.13. In [Schil| is given the elliptic curve E : y? = 3 + 4T%x* + 4Tz as a
representative of the isogeny class of Egis. They are isomorphic, namely the isomorphism
15 given by

Epis — Iy
(z,y) = (T +2T%T%).

Example 5.7.14. In characteristic 7.

Let us consider the polynomial N = T2 —2 over F;. In this case we have that the dimension
of the space of harmonic cocycles is 1 so there is only isogeny class. With an accuracy of

M = 60 we find the value of the Tate parameter is

q =57 + 470 + p° + 67'% 4 27'% 4 p'® 4 p?! 4 2%
+p?7 + 3730 4 5% 4 2730 4 5% 4 5t 4 510 4
47 + 5750 4 67°* + 47 + 5790 4 O(7%).

When p = 7 we have that g3 = 6 and also from the considerations of the modular forms
modulo 7, we have that g5 is a rational function. With the value of q and the formula for

g2 we have that

g2 =1+37 +37% + 7% + 27" + 571° + 3718 + 4x? + 5t +
471'27 4 77_30 4 271'33 4 57T36 4 377'39 4 471'42 4 571'45 4
471'48 —|—7T51 —|—27T54 —|—57T57—|—37T60 —I—O(T{'Gl)

and g3 converges to
(T3 + 2)3T3
(T6 4273 +2)%
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Then our model for the elliptic curve in the isogeny class is

(T3 + 2)3T3
T6 4273 + 2)2

syt =28+ T(T? + 2)a + 5(T° + 2T° + 3).

r+5

?/2:4$3—92I+1Wyz:$3+€3§/(

3/ T64+2T342

We get the last equation by twisting with u = RSy

and using &3 = 1.

Example 5.7.15. In characteristic 11.

Consider the polynomial N = (T + 8)(T + 9)? defined over Fy;, in this case there are 4
different isogeny classes, taking one the harmonic cocycles with rational Hecke eigenvalues

and with accuracy M = 40 we have the following Tate parameter

q = 47 + 672 + 47° + 27 + 475 + 107 4+ 97® + 9% + 10710 4 87l +
7?4+t + 7t 4+ 107" 4+ 1070 4 2717 + 97 + 6710 4 9770 + 67" +
6722 4 Tt 4 872 + 31?0 4 2777 + 4n® + 1% 4 4n®0 4 7 par® 4
47 + 973 4+ 977 4 87% + 6737 + 37%% + 1070 4 47 + O (7).

Using the relations of Serre and Swinnerton-Dyer, we have that g5 and g3 are rationals.

Plugging in the value of q in the formulas for g, and g3 we have that

g5 =1+ 4m +97% + 87 + 87 + 27° + 9n® + 77" + 9% + 6710 +
3t 4 5712 4+ 371 4 107 + 107" 4 8716 + 3717 + 6718 +
3r%0 4+ 272 + 2 4 9n® 4 1M 4 7?4 % 10777 + 1% 4
2% 4+ 3 4 87132 4 4n® 4 3% 4 4x® 4 670 4- 6% + T +
471'39 —|—87T40 +O(7T41)

and

g5 = 10 + 47 + 47 + 67 + 27° + 67° + 577 + Tn® + 87 + 4n0 +
6! + 87 + 87" + 1 +4x'0 + 17+ 107" + 37" + 57 +
8t + 722 + 51 + 5t + 2720 + 87?7 + 27%® + 9% + 670 +
10730 4+ 5732 + 2733 + 1073 4- 107%° + 4737 4 5738 4 47% 4+ 7704 + O(7),

T247T+4 _ (T+9)? d 107248746 _ 10(T+7)?

. . 2 o
T2 = @z M e = reye» respectively. Taking w® =

which converge to
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5.7. Obtaining equations for the curves

¥ (%)2, & =9 and v/10 = 2, the elliptic curve we are looking for is

(T +9)? 10(T + 7)?
y2:4x3—g2x—g3:>y2:x3—§5§/7( ) _i/i( )

(T +72" (T +9)2
/T +7N\2. [ /T+7\°
:> 2: 3_ _2o - - ° 5 - - °
yi= =G \/<T+9) \/<T+9)
T+7
— 2: 3 6 - v
y=rabrt g

which has conductor (T + 8)(T + 9)?cc.

The other three isogeny classes are given by

By :y® =12+ 6(T" + 6T° + 6T + 8)x + 10(T% + 2T + 6)(T"* + 1277 + 6T +9),
By y? =2+ 9(T? + 11T + 9)a? 4+ (T + 12)%(T? + 4T + 2),
Ey:y® =2+ (T +4)%* + (T +2)(T + 6)(T + 10).

Example 5.7.16. In characteristic 13.

Consider the polynomial N = T3 + 11 over 3. For this case there is only one harmonic
cocycle with rational Hecke eigenvalues and with accuracy of M = 40 we have the following

Tate parameter

q =21+ 87% + 97% + 712 + 67 + 1278 + 972! 47 4+ 377 4
220 4+ 773 4 7730 4 7%+ O(2th).

In this case we have that g3 and g3 are in Fy3(7'), then using the value of q and the formulas

for go and g3 we have that

gs = 1+107% + 27° + 677 + 672 + 7° + 7n'® 4+ 1172 4+ 377 +
7% 4 730 4 12730 + O(x*)

and

g5 =1+ 127 + 57° + 27° + 2712 + 975 + 117'® 4 872! 4+ 72 + 11777 +
97T30 +47T36+O(7T41).
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5. Applications and examples

Using continuous fractions we see that

3 T3(T° + 3)°
AN
9277 (76 1275 1 9)(T° + 107 + 6)

and

) (T3 + 2)%(T3 + 10)?
9877 (76 4 273 + 9)(T® + 10T + 6)°

Using these values for g3 and g%, proceeding as in the examples above with

y2 — @ (L5+2T3+9)(T6+107+6)
- T3(T343)3

we have that

1

2 = 4o — gz — 2= —Gr — (TP +2)(T° +10) ) =

= y® = 2° + 3T(T + 3)x + 3(T* + 2)(T? + 10).

We get the equation using the twist described in Algorithm Rlwith F/(T) = (T®+2)(T®+10)
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A. Algorithms for the Quotient graph

In this appendix we shall provide the reader with some of the algorithms used in the thesis
to deal with quotient graphs. In §2 we give a set of representatives for the edges of the
quotient tree I'g \ T where I'g = GLy(A), and also give a routine, which we call decom, to
calculate classes in 'y \ GL2(K)/Js. In §3 we use the algorithm decom to lift a cycle in
the quotient graph I'o(N) \ T to a path in T. The algorithm decom gives a routine to solve
the following problem: given two matrices ¢i, g2 € GLy(Ky) which are in the same class
in Do(V) \ GLa(K ) /I, there exist v € I'o(IV) and k € J such that g3 = vgok. The

algorithm that allows us to write such as decomposition is given in §4.

Also, we include a section that sets out the key definitions and results of computer arith-
metic, which we need to give the running time of the main algorithms that allows us to

calculate the Tate parameter.

A.1 Computational complexity of mathematical operations

The aim of this section is to give a brief summary of some fundamental definitions and
results concerning computer arithmetic, algorithms for arithmetic in finite fields and poly-
nomial rings. The intention is not to provide an implementation guide, instead, we state
some complexity results that will be used later in the appendices of this thesis. More
details of these subjects can be found in [vzGG13].

Since computers do not work on numbers but with data, so the very first issue is how to
feed numbers as a data into a computer. Data are stored in pieces called words. Current
machines use either 32 or 64-bit words; in this thesis we assume that we have a 64-bit

processor. Integers are represented as a sequence of binary words. We think of an algorithm
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A. Algorithms for the Quotient graph

as a sequence of word operations. The analysis of running time of an algorithm (or just
running time) quantifies the amount of time taken by the algorithm to run as a function
of the length of the string representing the input. We can think of the running time as the
number of statements executed by the program or as the length of time taken to run the
program on some standard computer. It is common to estimate their complexity in the
asymptotic sense, i.e., estimating the complexity function for arbitrarily large input, so we

introduce the following definition.

Definition A.1.1. Let f and g be two functions defined on some subset of the real num-
bers. One writes

f(2) = O(g(x)) as x — o0

if and only if there exists a positive real number C' and a real number z, such that

|f(x)| < Clg(x)| for all x > xy.

Let R be a commutative ring with 1. Operations like add or multiply may correspond to
many bit or word operations. As a general rule, we will consider the number of arithmetic
operations (additions and multiplications) in the ring R, (divisions, if R is a field) used
by an algorithm. The other operations such as index calculations or memory accesses,
tend to be of the same order of magnitude. These are usually performed with machine
instructions on single words (for example move a pointer in an array, etc), and their cost
becomes negligible when the arithmetic quantities are large. The next result can be found

in [vzGG13| Cor. 4.7].

Lemma A.1.2. Let ¢ = p™ with p a prime number and n > 1. One arithmetic opera-
tion, that is, addition, multiplication, or division, over F, can be done using O(n?) word

operations, where n = [log,(q)/64] + 1.

Let R[z| be the polynomial ring with coefficients in R. The basic algorithms for addition,
subtraction, multiplication, and division of polynomials are quite straightforward adapta-
tions of the corresponding algorithms for integers. In fact, because of the lack of “carry
overs” these algorithms are actually much simpler in the polynomial case. We have the

following easy result.

Lemma A.1.3. Let f and g be arbitrary polynomials in R|x| of degree n and m, respec-

tively.
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A.2. Representatives for the edges of I'g \ T

1. We can compute f + g with O(n + m) operations in R.
2. We can compute fg with O(nm) operations in R.

3. If g # 0 and the leading coefficient of g is a unit in R, we can compute q,r € R[z]
such that f = gq+r and deg(r) < deg(g) with O(deg(g) deg(q)) operations in R.

Remark A.1.4. Throughout the book JuzGG13], the authors discuss four algorithms to
do fast multiplication of polynomials, the classical one, Karatsuba ([Ibid., §8.1]), Fast
Fourier Transform (FFT) ([Ibid., §8.2/) and Shinhage & Strassen ([Ibid., §8.8]. Due to

the variety of multiplication algorithms, we introduce the following definition.

Definition A.1.5. Let R be a commutative ring with 1. We call a function M : N — R
a multiplication time for R[z| if polynomials in R[z] of degree lest than n can be multiplied

using at most M (n) operations in R.

The following table summarizes the multiplication times for the algorithms mentioned

above.
Algorithm M(n)
Classical 2n?
Karatsuba O(n!9)
FFT O(nlog(n))
Shonhage & Strassen | O(nlog(n)log(log(n)))

A.2 Representatives for the edges of I'j \ T

In the first part of this section, we recall some definitions, in order to fix the notation. We

define the Twahori subgroup of GLa(K ) as

J::{(Z 2) € GLy(0x)

We denote by Jo, = JKZX. Analogously, X and K, denote the groups GLy(0Os) and
GLy(Ox) K[, respectively.

c=0 (mod w)}. (A1)
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A. Algorithms for the Quotient graph

In the rest of this appendix, we denote by I'y the group GLs(A) and by I'y(V) the subgroup
of I'y consisting of matrices which are upper triangular modulo NV, where N is a polynomial

in A="F,[T].

The Bruhat-Tits tree for GLy(K) is denoted by T (cf. §2.4)), while the quotients I'g \ T
and ['g(N) \ T are denoted by G; and Gy, respectively. We use also the notation Gy »s for
the quotient graph Gy with the cusps up to level M.

The classes in GLy(K)/Js will be denoted by [-]; and the classes in GLy(K)/Koo by
[-]o- Also the classes of edges and vertices in the double quotient I'y \ T are denoted by [-];
and [-]o, respectively. In the case of the quotient graph by the subgroup I'¢(N) we add
the subindex N.

The edges and vertices of a graph G will be denoted by Y (9) and X(9), respectively.

Notation: Let H be a subgroup of a group G. We say that 8§ = {s1, s9,...} C G is a set
of representatives for the quotient H \ G if for all g € G, there exist h € H and a unique
s; € 8 such that g = hs;. Analogously for H; and H, subgroups of G, we say that 8 is a set
of representatives for the double quotient Hy \ G/H, if for all g € G, there exist h; € Hy,
hs € Hy and a unique s; € 8§ such that g = hys;hs.

We know that G; is isomorphic to the subgraph in T whose vertices are {[k,0]}rs0 (cf.
Lemma [Z4.4] for the definition). The following theorem (cf. [Ser03, p. 87]) gives a set of

representatives for the vertices of Gj.

Proposition A.2.1. A set of representatives for I'o \ GLs(K) /K is given by

{Anz((l):n> for n}O}.

That is, given g € GLy(K ) there exist a unique n >0, v € [y and o € Ko, such that
g ="\,

Notation: Let g € GLy(K), we say that the vertex represented by ¢ has “level” n if

In [But07, Lemma 18] one can find a constructive proof of Proposition There, the
author explains how to decompose any g € GLs(K) as g = yA,«. So in this appendix

we assume that we already have an algorithm that allows us to write such decomposition.
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A.2. Representatives for the edges of I'g \ T

Before giving a set of representatives for the edges of §; we need to define some functions

and sets that will be useful in this section. Let us define first the function origin as follows

lgl: — or(lg]1) = glo

That is, given g € GLy(Ky) we define the origin of the class I'jgJs to be the vertex
represented by ['ggX ... The function o0y is surjective and is not injective. So it is important
to describe the fibers of classes in I'g \ GL2(Kw)/Koo.

Let g € GLy(K ) then

07" (TogKso) = {TohJse | TohKoo = To9K oo} -

Let g1,90 € GLy(K) such that [og1Ko = [pgaKo and [gg1Je # [ogade. That is, g;
and g, represent different edges with the same origin, then g; € T'992K and g1 ¢ T'yg2ds-
Hence in order to understand how many classes there are in o' (I'0gKs) we need to
study the number of orbits of I'y in ¢2K /T, Where Iy acts §2Ko /oo via left matrix

multiplication.

A straightforward calculation shows that there is a 1-1 correspondence between K, /o, =
K /J and P*(F,) given by

X/I — PY(F,).

(¢3)JI+— (a (mod 7) : ¢ (mod )).

Hence a set of representatives for K/J is

{(10)

Proposition A.2.2. Let g € GLy(K).

1. If g =1y then #19 \ Ko/Ioo = 1. That is, Ty acts transitively on Koo /I -

2. If g ¢ [Ia]l1 then #19 \ 9Koo/Jso = 2 and Ty \ Koo /I = {T09900, L0g51900} where

51:((1)(1))-
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A. Algorithms for the Quotient graph

Proof. 1. Let (§}) be an element of R, for a (3 ?) € I'y we have

(a B)(s 1>:<as+ﬁ a)i (A3)
v o 10 s+ vy

From ([A.3) we see that I, = (}¢) is an element of this orbit since (§ %) € Ty and
(Y1) (58) = (§9). Then the orbit of Iy intersect all orbits of (§3) for all s € F,,.
Hence there exists only one orbit and #I'y \ Koo /T = 1.

2. If g ¢ [I,], without loss of generality (Prop. we may consider g = (7" 9) for

some n > 1, that is,

!

First note that for s,s' € F, with s # s’ the orbits of ({ ) and of (9 }) intersect

each other, indeed, let v = ((1] Tn(j/’s)) € 'y, then ~ verifies

1 T™(s' —s) st T\ [ ST T
0 1 1 o0 ) \ 1 o)
On the other hand, for all s € F, the orbit of Iy does not intersect the orbit of (§}).

It is enough to prove that Fogé")i]oo + Tog(()n) (98) 9. Suppose to the contrary that

they are equal, then we have

n n n)~1 n
Fogé )Joo = Fog(() )Sljoo — 851 € 98 ) Fog(() )joo

n)~1 n
<:>g((] ) Fogé "N Tt # 0.

Let (ﬁ g) in I'g then we have

(00, a)
Y op T p

On the other hand, for (¢%) in Jo, we have
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A.2. Representatives for the edges of I'g \ T

()= () (0
:(ZZ). (A5)

Then from equations and ([A.5]) we have d = 4T". But d € O and val(yT™) >

n > 1 since n > 0, and we get a contradiction. The claim follows.

Remark A.2.3. From Proposition we have

a) The fiber oy *([Iz]o) has only one element. That is, there is only one edge with origin

[L2]o-

b) If g # 1y there are exactly two edges with origin [gllo, namely, the class [g]1 and

lgsi]: where s = (94).

The following is a portion of the graph I'y \ 7.

géO) gél) géQ) géS)
~— =

00 1]0 20 3]0 ct
\7{ e P e

o )
Corollary A.2.4. The set

{57

is a set of representatives for the edges of T'o \ T.

n < 0} (A.6)

Let us denote the elements of Ry, by gé"), ie., gé") = (”6" ?) forn >0 and g(()n) =97

forn < 0. Then given g € GLy(Ko) there exist n € Z, v € Ty and k € I such that

g =9"%.

Proof. From Proposition [A.2.1] we have that the matrix A, = (§.%) for n > 0, is a
representative for the vertices of X (G;).

If n =0 then Ag = géo) is the unique element in o} *([I]o).
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A. Algorithms for the Quotient graph

If n > 1 we have

:Ansl<” y ) (A7)
0O =«

Then, by Proposition [A.2.2] 90 ) and 90 ) are representatives for the two edges with origin
[[An]]o Ol

Remark A.2.5. Given a g in GLy(K) we can use the algorithm from [But07] to decom-
pose g as g = YA« for somen >0, v € Ty and o € K. From Proposition[A.2.23 we see
that g € [g¢]1 if and only if a € I

We explain now how to decompose an element g € GLy(K ) as g = 79(()”)/6 for some n € 7Z,

v €Tgand k € Iy

Let us consider the class of g in 'y \ GL2(Ky)/Ks then
9 ="7Ana

where v € Iy, a € K, A, —(Oﬂo)andmZO. Write o = 7t/ for t € Joo and r € R
as above (cf. [A.2.2) and A,, = g0 )(”6n 0.). Then g = ’Yg(()m)m for a unique m > 0 and

b= (" )
Case 1 If r = (} V) then we are done.

Case 2 If m =0, then gom) = ({9) and yr € T'yand we are done.
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A.2. Representatives for the edges of I'g \ T

Case 3 If m > 1 we may assume that r = (§ ) for some s € F,. Then we have

(70 1) (o) (0 1)
E D))

The previous discussion is easily transformed into an algorithm which allows us to find the

corresponding decomposition of g in the quotient I'g \ GLy(Ky)/Jso-

ALGORITHM 3: decom
Input: A matrix g € GLy(K).
Output: A list D = [n,, k] such that g = 79(()”)/-6 with v € I’y and k € J.

1: Write g as g = yA,a for v € Ty and a € K > ¢f.[But07, Lemma 18]
2: if a € J then
3: define D = [n,~, a]

4: else

5 if n =0 then

6: search ¢ € F, such that (§{})a € I

7 define D = [n,y(} L), (74)ql

8 if n =1 then

9: search ¢ € F, such that (§{})a €

10 define D = [ ,7(1_0),5(%)&5 )
11: end if

12: if n > 1 then

13: write g as gé = YA, 1«

14: define D = [—n,v, 606t (™ 17T,9,1)]
15: end if

16: end if

17: end if
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A. Algorithms for the Quotient graph

18: Return D

The function origin ([A.2)) allows us to define another function called terminus, as follows

[9]: — t1([9]1) = or([96]1)

where the matrix ¢ is the non trivial element in the quotient class of N/J, with N is the
normalizer of J in GLy(K ).

We conclude this section by giving some diagrams that are very useful to describe some of

the algorithms that are consequence of Algorithm [Bl Let us consider first

GLo(Kuo) I = Y (T) ——— GLy(Kuo) [ Koo = X(T)

| |

Lo\ GLy(Kw)/Joo = Y (G1) —5=To \ GL2(Kw) /Koo = X(G1).

Where the maps pry and pryx are the projections in the quotient graph of edges and

vertices, respectively. They are defined as follows
pry : GLQ(KOO)/jOO — F(] \ GLQ(KOO)/:]OO
91 — 9]
and
prx - GLQ(KOO)/:KOO — F(] \ GLQ(KOO)/:KOO .
[9)o — [glo

It is straightforward to verify that

prx(o(lgh)) = or(pry ([gh))- (A-8)

From §2.8 we have that the quotient graph by the congruence subgroup I'o(N) for N €
F,[T], is a covering of the tree G;. The functions origin and terminus are also well defined

here

on 1 To(N)\ GLy(Kw)/Joo — To(N) \ GLa(K) /Koo
lgli,~ — [glon
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A.2. Representatives for the edges of I'g \ T

and
tn([glin) = on([gd]1n).

We also have well defined projection maps from T to I'o(N) \ T as follows

GLa(Koo)/Joo = Y (T) . GLy(Koo) /Koo = X(T)

prle lmN

Lo(N)\ GLy(Kso) /T = Y (Lo(N)\ T) =2 To(N) \ GLa(Koo) /Koo = X(Lo(N) \ T),

01,N

with the maps pry, and prx, defined as

Pryy GLZ(KOO)/:]OO — Fo(N) \ GL2(K00)/:]00
[g]1 — 9]~

and

prxy P GLo(Ko) /Koo — To(N) \ GL2(Kw) /Koo

[9lo — [g]o.n-

A set of representatives for I'g(N) \ GLy(Kw)/I00

We can not define a canonical set of representatives for the double quotient
Fo(N) \ GLy(K)/Is. However, after fixing a set Sy of representatives for I'o(NV) \ Ty,
we may use the fact that I'o(N) \ T is a covering of G; to give a non-canonical set of

representatives for the edges of I'o(NV) \ 7.

Since I'y is discrete in GLs(K ), the stabilizers in 'y of edges or vertices are finite. More
specifically, define
By = GLy(F,)

and forn > 1

=100 4

Then for n > 0, B, is the stabilizer in 'y of the vertex represented by A,, in 7. Analogously
B,NB,+1 is the stabilizer in I'y of the edge with origin [A,], and terminal [A,41], (cf. [Ser03|

a,c € F, b € Fo[T] with deg(f) < n} . (A.9)
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A. Algorithms for the Quotient graph

Prop. 3, p. 87]). Note that B, N B,,.; = B, for n > 1 and By N By is the set of upper

triangular matrices with entries in F,.

Let 8y = {s1,..., 8.} be a set of representatives for I'o(NN) \ I'y. Then given v € I'y there
exits a § € I'o(IV) and a unique s; € Sy such that v = fs;.

In [But07] there is a method to calculate Sy (cf. [Ibid., Lemma 1.22]), actually we also
have the following correspondence (cf. [Ibid., Cor. 1.23]).

Proposition A.2.6. Let N € F [T]. Then To(N)\ Ty = PY(F,[T]/N).

Once the set Sy is fixed, every g € GLy(K ) can be written as

g :fygé")m v€Tyand k € I

= 6sz~g(()")/{.

Therefore, given s;,s; € 8y two matrices such that [[sig(()n)]]l,N = [[sjg(()n)]]l,N then there
exists b € B, such that s;bs;' € To(N). So, for each class in [o(N) \ GLy(Ku)/To0
representing an edge e, we choose one representative s, of 8y and consider the subset
gN C 8y consisting of a representative for each e € Gy /. This set gN allows us to define
a set of representatives for I'o(N) \ GLy(K )/ as

Ry = {5.95" | s. € Sy and g§"” € Rp, }. (A.10)

A.3 Lifting cycles to T

The Algorithm Blmay be used to lift a cycle in I'g(N)\T to a path in T without backtracking.
Let € = {éy,...,€n—1} be a cycle in Gy such that ¢y y(én—1) = 01n(60) and ty n(6;) =
01,n(€i41). Then there exists a sequence of consecutive edges {eo, €;..., e,—1} in T such that

o(eg) is T'o(N)-equivalent with t(e,_1) and pry, (e;) = &; for all 7 in {0,1,...,h — 1}.

It is enough to see how to lift two consecutive edges in the cycle € to two consecutive edges
on the tree T. Let us suppose that g; € GLy(K ) with [¢g;]1.nv = € and e; € T is a lifting
of €;. We want to find a matrix ¢g;+1 € GLs(K) such that it lifts é;,; to an edge e;;1 € T
with t(e;) = o(ei41).

Claim: The matrix g;41 = ;07,0 for some a € F, were 6 = (9}) and 7, = (7 1).
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A.3. Lifting cycles to T

We have that t([g;]1) = 0o([¢:0]1) and multiplication by 7,, gives on the tree T all the edges
whose terminal is the vertex o([g;d]1) (see figure, the blue edges corresponds to the wanted
path)

~Ta
~

[gi(STa]l

that is o([g;0]1) = t([g:07a]1), by definition of the function origin and terminal we have

t([gi]1) = o([gi07a0]1).

Hence the ¢ edges with origin t(e;) are given by [g;07,6]; for all a € F,. So one of these

edges project to €;41 or equivalently pry, ([¢;07,9]1) = €;+1, which proves the claim.

We can summarize the previous discussion with the following algorithm.

ALGORITHM 4: FindPath
Input: A list € = [go, 91, ..., 9r—1] of length r of matrices in GLy(K,) representing a
cycle in I'g(N) \ T, that is, tn([g:]in) = on([gi+1]1n) for all i € {0,...r — 2} and

tn(lgr-1l1,v) = on([go]1,n)-
Output: A list P = [ho, hy, ..., hy—1] of length r of matrices in G Ly(K ) representing a

path in T and such that o([ho]1) is T'o(IV)-equivalent to t([h,_1]1)-

1: Make a list L with the elements of the finite field [F,

2: set P = [go]

3: for ¢ from 1 tor — 1 do

4: let n = #P and set gaux = P[n] D Gaus 1S the last element of P
5 bool«false

6 k+1

7 while bool=false do

8 a < L[k]

9 set Naux = Gaux0Tad
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10: if pr1 N ([Paux]1) = gi41 then
11: bool <+ true

12: end if

13: k<« k+1

14: end while

15: append h,u to P
16: end for

17: Return P

A.4 Finding the representative

In many algorithms, it is necessary to work with elements in G Ly(K ) which belong to the
same class in I'g(N)\ GLs(K)/Js- So given two different matrices g; and ¢o in GLy(K )
such that [¢1]1.xv = [g2]1,n, we want to find v € ['((N) and k € I such that g; = ygak.
Using Algorithm [3]we can give an efficient method to write such decomposition. We present
first the following result as a trivial corollary of Proposition Nevertheless we give a
constructive proof which gives Algorithm FindTheRep.

Corollary A.4.1. Let g1, 92 € GLy(K). Suppose that [g1]i.n = [g2]in. Then there is
an algorithm to find v € T'o(N) and k € I such that g1 = ygok.

Proof. Let g1, g2 € GLy(K o) be two matrices I'g(N)-equivalent. Then ¢; and g, are in the
same class in GLy(A)\ G Ly (K )/, therefore there exist sq, s9 € GLy(A) and Ky, kg € I
such that

g1 = 5105k,

g2 = 829(()n)/<62

where g((]n) is the representative for the quotient GLy(A)\ GL(K)/Js described in Propo-
sition [A.2.4]

126



A 4. Finding the representative

Since g; and g9 are I'y(V)-equivalent we have

FO(N)SIQ(()n)joo = FO(N)Szg(()n)joo > 519(()”) = FO(N)529((Jn)Joo
=1 € 57 To(N)s295" Toc (95 !
= 57 To(NV)so N g9 (g8”) L # 0

= 57 To(N)sz 1 (To 1 g (o)1) # 0.
An easy calculation shows that
1—‘0 N g(()n)joo(g(()n))_l = Bna

where B, is the set defined in ([A.9). Then there exists a b € B,, and v € I'y(N) such that
s71ysy = b. A direct calculation shows that setting

k= ry (g5 0 gy

satisfy g1 = ygok. We only need to verify that » is an element of J.,. Indeed x;* and &,
are in Joo, and since b € g9 (i)~ we have (¢0) b 1g{" € I...

ALGORITHM b: FindTheRep

Input: Two matrices g; and gy in GLy(K ) that are I'g(N)-equivalent.
Output: Two Matrices v € I'o(IV) and k € I, such that g; = vgak.

1: Use Algorithm [3] to write

g1 = Slgén)fﬁ

g2 = 529(()”)%2
calculate the stabilizer B,
. bool + false
141
while bool=false do
b < B,li]
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T
8:
9:
10:
11:
12:

A. Algorithms for the Quotient graph

if s1bs;' € To(N) then
bool «+ true
end if
141+1
end while

Return

v = s1bsy ' and

K=y (g") b

g(()n)/ﬁ-
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B. Algorithms for the table

In this appendix we describe the main algorithms that we use in the calculation of the table
and the integral. The first section deals with the implementation of the Hecke operator U,
the algorithm that allows us to build up the table and the one that we use to decompose

functions in F; as a product of elements in the pseudo-basis B ;.

In the second section we give the algorithm to calculate the valuation of the integral and
the one to lift a path in the tree 7 to a path in 2. Finally we explain how to calculate the
Tate parameter and give a proof of Theorem [5.6.1]

B.1 Algorithms for the calculation of the table

The Hecke Operator U,

We recall the definition of the Hecke operator

(Uset) (MU (1) = [ ¢ (vm) f(t + )

aclky
forpe8, feTFrandy €'\ PGLy(Ky).

A crucial fact that helps us to calculate Uy, quickly is the J-equivariance. As we already
explained in Chapter Ml it is enough to calculate the values of U, in a set of representatives
Ry of the edges of the quotient I'oy(N) \ GL2(K)/Js up to some level M.

Therefore for each yep € Ry

(Use®) (rep) (1 + E78) i= [ & (uepra) (1 + €7 (wt + a)?). (B.1)

aclky
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B. Algorithms for the table

From the definition of the operator Uy, we have that for each a € F,;, we need to find the
edge of Gy ar corresponding to Yyep7,. However, we only know the values of ¢ in elements of
Rn. Via Algorithm Bl we find the corresponding representative of ,ep7, in Ry as follows:
we consider vyep7, as an element of GLy (K )/Io and use the projection function pry, to
find g, € GLy(K) such that

[9a]1 = [YrepTal
= [Hrep]]l

for some Ayep € Ry. Then using Algorithm [l we can find v € I'y(N) and k € I such that

YrepTa = YV Vreplt-

Plugging in this in equation (B.4]) we get

(Use®) (ep) (L + €)= [] ¢ (rep7a) (1 + €270 (mt + a))

a€lfyg

= H ¢ (Vrepte) (1 + 557Ti(77t + a)j>

a€ly
=TT ¢ Gieo) (5 5 (1 + €07 (st + a)?)).
a€lfyg
In the last equality we use the T'o(NN)-invariance of the function ¢, Lemma 37 and the
action defined in (4.6]). From the preceding discussion we see that for a fixed y,ep € Ry in

order to evaluate ¢(Vrep)(fi;) for fij € By we need to calculate y,ep7, in many instances.

Remark B.1.1. We save time by precalculating the decomposition YyepTa = YYrepks for all
a €, and vp € Ry. So for each .., we store in the data structure of the quotient graph
Snar the list [Yrep, @y Yreps K] (called “signature” ) to indicate that VeepTa = YYrepk for all
a € IF,.

Therefore the computation of the operator U, breaks up in two parts. The first one is
carried out with the quotient graph Gx s and consists in the elaboration of the list with
the signatures [Yrep, @, Yrep, £| and the second one takes place during the calculation of the

table and reduces to read the signatures from a list.

Observe that the calculation of the operator U,, does not depend on the harmonic cocycle

explicitly.
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B.1. Algorithms for the calculation of the table

The table

Let ¢ € H"(T,Z)"™) as we have seen in §3.1.1] the harmonic cocycle ¢ gives rise
to a measure g, on Mo(P'(Ox),Z)". The objective of this subsection is explain how to

calculate the table that allows us to evaluate any integral of the form

7[000 f duy

for f € F; with accuracy up to 7, where M is an integer > 1.

In §4.3] we explained already how to fill out this table, however, the construction given
there is slightly different from the actual implementation. Since this is the main algorithm

of the whole work, we think it is worthy to explain the actual implementation.

Let us recall some facts and definitions from §4.3] Let M > 1 be an integer, the associated
pseudo-basis is (cf. Lemma [3.71))

By = {14+ 7% |(i,7) € Fr,i <M, §=0,....,d— 1}
with d the degree of the extension F2 over F,,.

A straightforward calculation shows that the cardinality of B, is

d <(M+ 1)2(M+2) _ 1) - %l(MZ +3M).

For each v,ep € Ry we want to calculate

B () (L4 €70) = f (L4800 dlrid v ) (B.2)
As we discussed in 3] for each v,ep € Ry and a fixed dy we have to calculate 5 (M?+3M)
integrals, hence to each 7,ep, we attach d “triangular matrices” T, s for varying §) whose
entries are the integrals of the form (B.2)) (for functions f of Bys (cf. (@I0)). For the

implementation we condense all these matrices in one matrix T of size #Ry X #By.

First order the pseudo-basis B, increasingly, according to the order relation defined in
§4.3. Observe that the constants correspond to the functions of B, with j = 0. There are

exactly Md constants and their integrals are located in the first Md columns of the matrix
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B. Algorithms for the table

T. The algorithm consists of two stages. In the first stage we calculate the values of the

function @, (7rep) at the constants, this can be made very quickly using the formula
i i\ @(yrepeo)
iy (rep) (1 +E07) = (14 €0") 70 (B.3)

In the second stage, we calculate the value of the integral at the non-constant functions,
starting from the smallest one in B,;. Note that we start with functions of the form
1+ &aMp for 6 € {0,...,d — 1} an j from 0 to M. In each case the resulting functions
after applying the U,, operator factorize as a product of constants, and the value of the
integral is already known. After this is done for all representatives in Ry, we proceed to
apply U, to functions of the form 1+ &7 ~=1¢7 then the exponents of 7 increase in 1. So
the new factors appearing are either constants or of the form 1 + &7™#/. In each case we

know the integral.

Continuing in this fashion, we apply the U, operator to each element of B,; as many times

as necessary, until we get the integral to the wanted precision (cf. §4.3)).

Let us suppose that we want to calculate Uy (@) (Yeep)(1 + £97%t7) and suppose that Yiep

represents an edge of level [ over a cusp of Gy . Then by definition of the U, we have

(Uso®) (rep) (1 + gsﬂitj) = H ¢ (YrepTa) (1 + géﬂi(ﬂt +a)). (B.4)

acFy
So after applying the operator U, we need to calculate over the edges given by vyep7, of
level [ — 1 at a function f with val,(¢) =i+ 1. Observe that each time that we apply the
operator U, we move over the cusp in direction the compact part of Gy . The integral is
1 if after applying successively the operator U, we are still over the cusp and the valuation

in 7 of the function is M, this happens if and only if

i+1>deg(N)+ M.

Remark B.1.2. We use the previous inequality to rule out in the calculation of the table

the functions and edges for which we know a priori that the integral is 1.
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B.1. Algorithms for the calculation of the table

ALGORITHM 6: TheTable

Input: The data structure Gy, s corresponding to the quotient graph I'g(IV)\ T up to level

M. A harmonic cocycle ¢ with rational Hecke eigenvalues. This is actually a list with

all the values of ¢ at the edges of Gy .

Output: A matrix T with entries in 1 + 7F2[n]] with all the values of the integrals of

functions in Bj;. (The entries of T are elements in 1 4 7F2[7] modulo 7).

. Set Ry to be the list of representatives of the edges of the graph T'o(N)\ T up to depth

M
initialize a matrix T of ones of size n x m, where n = #Ry and m = #By,

for s from 1 to n do

for k from 1 to Md do > the constants are the last Md entries
T[s][k] + By [k]#Enlsleo) > Here we fill the entries corresponding to the
constants.
end for
end for

for s from 1 to n do
for k from Md+ 1 to m do
[ Bulk]
set Yeep < R [s]

set level(7yep) the level of the edge given by Yiep > apply Algorithm
set it = val (f — 1)
if i1 + level(yyep) — deg(N) < M then > cf. Remark[B.1.2
set [ <1
for a € F, do > we start to apply the Uy, operator

read from Gn s the signature [Yeep, @, Yrep, 4]
s — Position (Ry, Yrep)
[ flras™)
set a list £; with the factors of f > apply Algorithm[7
for [ in £; do
ko < Position (B, [[1])
I+ I x T[s][ko)"? > the value T[so][ko] is known

end for
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B. Algorithms for the table

25: end for

26: T[s|[k] < I
27: end if

28: end for

29: end for

30: Return T

Remark B.1.3. 1. Note that after filling the columns that correspond to the constants,
we continue filling the table T from the “left to the right”. In the step we apply
the Hecke operator Uy,. So if we are in the column j-th we only need values of the

integral already stored in other columns on the left.

2. We do not need to give in the input the integer M since the basis B,y is stored in the

data structure of Gn .

Let us suppose that there are h elements in H;“* (T, Z)'*) with rational Hecke eigenvalues.
In this case there are h isogeny classes of the given conductor Noo. To find these classes
we need to calculate h integrals and therefore h tables. We save time if we make all the

tables simultaneously as follows.

Let us assume that H,(T,Z)"®) has dimension g > h. Let B := {ty,...,1,} be its
standard basis as defined in §2.91 Let also {1, ..., ¢n} be the set of harmonic cocycles with

rational Hecke eigenvalues, then

g
Y = Z Cijwj for Cij € 7.

J=1

Since the integral is multiplicative, we have

e (1) = ]é 2L ()

QY% —1

H <]ég fyzgo__tt djty, (t)) 7

So we can make tables for all the ’s instead of calculate many tables for each harmonic

cocycle with rational Hecke eigenvalues. The reason is that for each entry of the table
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B.1. Algorithms for the calculation of the table

we need to calculate the operator U, and it does not depend on the harmonic cocycle

explicitly.

For the implementation we take Algorithm [6] we need to initialize g matrices of 1’s instead
of only one and modify the steps [BH7] to calculate the values for the integral at the constant

at all the elements in the standard basis instead of doing it only for .

Analysis for the algorithm TheTable

For the cost analysis of the algorithm to calculate the table, we need to consider separately
two loops. The first one is the loop to calculate the integral at the constants and the second

one is the part in which we apply the operator U,,.

Before starting with the analysis for the running time of Algorithm [6] we need a bound for
the number of edges of the quotient graph Gy a. We know that #Gy v = #Cn + #8Py,

where Cy and 8Py are the compact part and the cusps of Gy as, respectively.

Unfortunately there is no easy formula for the compact part. However we can use the fact
that the quotient graph Gy s is a covering of §; to estimate the number of edges in the
compact part as #8y deg(V), where 8y is a set of representatives for I'o(N) \ T'y. From
[NonOT, p. 68] we have that if N = [[;_, f;* with f;, a prime polynomial of degree I; then

#8y = [[¢"" V(@ +1)
i=1

and
K(N) —2°

H#8Py =2° +
qg—1

where k(N) = ], (qli Lri=1)/2)] 1 qlil”/m). Then #8y is a polynomial in ¢ of degree

deg(N). A bound for #Cy is 2°¢3™) deg(N) and for #8Py is q8N)/2235. Therefore the
number of edges in §(N, M) is bounded by

98 gdes(V) deg(N) + 925 Mgles(N)/2, (B.5)

For the first loop (steps BHT), note that we are exponentiating polynomials in 7 of the

form 1+ &7 for 1 < i < M and this can be done via binomial expansion (1 + £7)k =

M+1

Zf:o (';) (€%)!7% and using the fact that we are working modulo 7 , so that is suffices to
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B. Algorithms for the table

compute for [ in the range 0, ..., TM is bounded by M/i. Summing over the two loops the

number of operations is bounded by

U

-1 M
n ZM/’L ndM (1 + log M)

0 =1

>
I

using that ZZ 1 1/i < 1+log M and where n = #SGy y. Hence the cost for all iterations
of the loop is

2°Md (1 + log M) (q**5™) deg(N) + 2°Mg?sN)/2) . (B.6)

Examining the second loop shows that the number of operations inside it, depends on the
condition “if” (step [[4]) and the “for” loop in step [[6l So we need to count the number of
edges in Gy »r and functions in B, that satisty the inequality i+ level(yyep) —deg(N) < M.
Let us first to consider some particular cases. If ¢+ = M then the inequality becomes
level(Yyep) < deg(NV), then there are #CyMd edges and functions that verify the condition
in step 4

If i = M —1 then we have level(vep) —1 < deg(V), in this case there are (#Cn+#8Pn) (M —
1)d edges and functions that satisfy the inequality. We can see here that for i = M — k
the inequality becomes level(yyep) — k < deg(N) then there are (#Cy + k#8Py)(M — k)d.
Therefore we can have that the number of edges and functions that verify the condition in
step [14] is

HCNMd + ... + (#Cx + k#8Py) (M — k)d + ... + (#Cx + (M — 1)#8Py)d.

A straightforward calculation shows that the last expression simplifies to

#Cn #SPn
2 6

T2 (M? + M) + (M3 — M)) : (B.7)
The loop that starts in step [16is executed ¢ times and it includes the function to factorize
which has a cost of 5M* (see the analysis for Algorithm [7]). Hence the cost for all iterations
of the second loop is (5dgM* (#—SN(M2 + M) + @(M?’ — M))). Which is also a bound
for the cost of the algorithm, since the total of operations in the algorithm is the sum of
the costs in the two loops but the dominant cost of the algorithm is the second loop. We

may summarize the previous discussion in the following proposition.
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B.1. Algorithms for the calculation of the table

Proposition B.1.4. The Algorithm [0 can be performed using no more that

b} n o 1 S s n
ng72sq§+1 4 §2de6qn+1n 4 5d (Sqn+12sn o §2sq2+1) M5

operations, where n is the degree of N.

Factorization

We now consider the problem of factorizing functions in F;. In Chapter [l we stated the
following lemma, here we give a constructive straightforward proof that will lead us to the

algorithm of factorization.

Lemma B.1.5. Given any function f € F; and any integer M > 1, then there exists a
finite set of indices J C I and myjs € {1,2,...,p — 1} such that

f= H (14 E7't7)ymiss (mod 7 +1)

(3,9)eJ

where £ € F 2 is a primitive element for the extension over F,, 6 € {0,...,d — 1} with d
the degree of the extension Fp over F),. The representation is unique modulo p powers of
fiis = 1+ 79, so the set

B = {1+ &7 |(i,5) € Fr,i <M, §=0,...,d — 1}.

18 what we call a multiplicative pseudo-basis.

Proof. For f =37, aijmt! € Fe[t][r] we set

val,(f) = min{i > 0| 35 > 0 such that a;; # 0}

(with min@ = oo) and for i > 0 we define f[r’] := >, a;;t?, furthermore for g € F[t],

val; denotes the usual valuation in ¢.

Let f =143, aym't/ in Fy, let ig = val(f — 1) and jo = val,(f[r"]). Then we can
write f as
f =14 a7t + Z ai Tt
(,9)#(i0,jo) €1
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B. Algorithms for the table

Note that since {1,5,52, ...,gdfl} is a basis of 2 over IF,, we have a;,;, = Z?;é bs&® for
bs € IF,. Using this, a straightforward calculation shows that

d—1 d—1 bs
(14 goiopio)bs = HZ( ) *)F (miotio)k (B.8)
s=0 s=0 k=0

d—1

— H(l + £yt + O (o))

s=0

d—1
=1+ (Z b855> w0 4 O(mioth)
s=0

=1+ ayj,7°t" (mod 7ot1).

Set fijo = L1Za(1 + &5mi0t70)bs € F;. Dividing f by fiyj, and reducing modulo 7"+ we
get

fo=1/Ffiojo
= (fiojo (f - fiojo)/fiojo)
= 1 + (f fm]o) 20]0

=1+ Z bioj’ﬂ'mt] + Z Clijﬂ'itj

J>Jo Z>20
i>jo
Le., val,(fo — 1) > 4o and val,(fo[r"]) > jo. Note that the factors 1 + &mwt® of f; ,, are

elements of the pseudo-basis B,.

Continuing in this fashion, since the function fy € F;, we can construct a sequence f;, € Fy
with (1 + M)val,(f, — 1) + val,(fi,[7"¥=(k=1)]) strictly increasing and then the procedure
finishes after a finitely number of divisions since we are working modulo 7+, Defining J
to be the set consisting of indices (i, j.) such that i, = val,(fx — 1) and j = valy(fi[r%])
coming from the step k, we have that

E H H (1 _I_géﬂ_itj)mijs (mod 7TM+1)

(i,5)eJ 6€{0,...,d—1}

which follows by construction and equality (B.8]). O

Remark B.1.6. Note that the factorization of a function f € Bys is not unique. Let
fi; = 1+ &7 € By be a factor of a function f with ¢?| ged(i, j) then it admit other

representation as a product of elements of By, namely the ¢*-th roots of fi;.
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B.1. Algorithms for the calculation of the table

We conclude with Algorithm [7] which is basically a transcription of the proof of Lemma
B.1.50

ALGORITHM 7: factorize

Input: A function f in F; and an integer M.
Output: A list £ consisting of pairs [f;;, e;;] with f;; € By, e;; > 0 and (4,5) € J C [
such that f =[], ff;” (mod 7M+1).

1: Initialize £ = [ ]

2: define foux = f (mod 7"+

3: while f,.x # 1 do

ip < valz(faux — 1)

Jo  valy(coefficient (ig, faux — 1))

i

5

6 write faux = 14 im0 + D)o o)l it

7: write a;,j, = Z?;é bs&° with b, € F,,

8 set z = qrio¢io > we change the variable since ig and jo are fived
9 set fiojo = L1z (1 + £52)b > use the binomial expansion
10: compute g = flgjlo
1: faux & faxd

12: append to £ all the pairs [1 + &7°¢7°, b,] from the factorization of f;;, (step [)
13: end while

14: Return £

> We make the change of variables again z by mti°

Analysis for the algorithm factorize

A closer look to the algorithm shows that in order to find the running time, it is enough
to find a bound for the number of iterations of the while-loop (step Bhstep [[3)) in the worst
case, which occurs when the function f is divisible by all the elements of the pseudo-basis
By A straightforward calculation shows that #By, = (M? + 3M).

Step [ can be done in O(d) and its cost is negligible since d is constant and M is larger

than d. In step [0 we calculate the product f; ;, = Hf;é(l + E3miotio)bs with 1 < by < p,
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B. Algorithms for the table

therefore since 70t% is fixed, we can make the substitution 7%t/ by z, before to carry out

the exponentiation, then we get (1 +£2)% so we can use the binomial expansion to obtain

o (

most p operations, we need to express (£°)! in the basis 1,...,£%°! over F,. On the other

)(gs)lzl . Since b, < p we have that this exponentiation can be performed in at

hand, after exponentiating we get d polynomials of degree at most p in the new variable z
and multiplying them cost at most (d — 1)pM because any partial product has at most M
terms. Hence the cost for the step [@is pdM.

In step [0 we invert f;j,, again using the auxiliary variable z = 7/, Let e = | M /i]
then

d-1
9= fup=J[Q+&2)"
6=0
d—1 e —b
i ®):

Il
=l
-/ Nl
||Mm

|

722"

(=2}

~
VRN

bot 1= 1) zl> (mod z°).

The cost to set up each factor is e, we then carry out d — 1 multiplications modulo 2¢, i.e.,
the cost here is (d — 1)(e + 1)?. In total the cost is atmost d(e? + 3e + 1).

0=0 \[=0

To compute f,u.9, observe that f,.. has at most M? terms and g has e + 1 terms. So the
cost for the steps [[HI3]is at most

dpM +d(e* +3e + 1) + (e + 1) M>. (B.9)
We need to sum this over all (i, 7) € I to obtain the bound C for the number of operations.

C:i(idpM+d<%2+%+l)d+<¥+l)M2>

i=1 7=0

M i
M*d  3Md  M?
Z(deM+d+M2)+< -+ — +7)>

i=1

M

M?d  3Md M3
deM+d+M2)(z+1)+< = — +T)(i+1)
i=1

M24+3M X M2d 3Md M3
+ +Z< —.)(i—Fl)

= (dpM +d + M*)———— -

=1
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B.2. Algorithms for the calculation of the integral

We know from calculus that the harmonic series diverges and Zf\il % < 1+logN. Also
the series Y .7, %2 = %2, then Zf\il %2 < 2. Let us suppose also that dp < M and M > 6
then 4 +log M < M. Therefore we have

1 1
C <3 + dp <—M3 + §M2) + S + ;dMQ + (1 + log M)(dM? + 3dM + M?)

2 2 2 2

3 4 1 3 3 2 3 3 13 2 2 3

1
= 2M* + (4 + log M)(M? + dM? + 3dM) + ngZ - ng
1
< 2M* + M(M? + dM? + 3dM) + ngz — ng
11 1
=3M*+d <M3 - ?dM2 — ;M)
11 1

< 4M* + 7M?’ — ;MQ (since d < M)

< 5M*

Proposition B.1.7. Suppose that M > 6 and dp < M then a bound for the running time
of the Algorithm [7 is 5M*.

B.2 Algorithms for the calculation of the integral

Valuation of the integral

To obtain the Tate parameter associated to an harmonic cocycle ¢ we need to calculate

the integral

Zo—t

o) = 2yt

where 7 is an element of ['o(/V) associated to a cycle ¢ of the quotient graph I'o(N) \ T
(see §4.43)). As we mentioned in §5.6if C = {cy,...c,} is a basis for the homology of the
quotient graph I"\ T then to each ¢; € € there is associated a matrix ; € T, let us call by

abuse of notation € the set of all v;’s. Then

val(q) = min{val(c, (7)) | 7 € €}.
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B. Algorithms for the table

Let us consider a cycle ¢ in the quotient tree and vy, vy, ...,v,. be a path in T that lifts c.

This sequence of the vertices induces a sequence zj, ..., z, in € such that A\(z;) = v;, then

o) = 2 (e (B.10)

oY% —t
r—1
Zi t
- (1)
o0 35 Zi4l —
r—1 2 —
= H][ 7—t dpp(t).
i J 09 Fitl

We can use this decomposition to know the valuation of the integral, namely,
20—t - zi —t
val (]ég po— du¢(t)) = val (]{m H Pop— du@(t)>
val (H ][ e (t))
(f ! d%(t)) | (B.11)
90 Zi+1 —

MH

Therefore we need to calculate the valuation of

Zi
d
]égzm—t (1),

val (]{m Zil — dg(t )) = val <hﬂ 11 (zil_—tt)ww))

@ Uelqy

2 —t e (U)
:mval H (zi+1 _t)
(€3 UeCq

=lim Y 1, (U) val (; - tt) (B.12)

@ Uelqy 1

— 1l 3 4, (U) (B.13)

We have
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B.2. Algorithms for the calculation of the integral

where e; is the edge with origin v;. The equality from (B.12)) to (B.13)) follows from the
fact that z; and z;,, are the liftings of consecutive vertices and the point ¢ belongs to one
of the open sets in the partition determined by e;, which implies val (zi—:ft) = 1. Using
the last equality and the equation (B.1I)) we have that

val ( [ dm(ﬂ) =Tt

oY% —1

where e; runs over the cycle c.

Summarizing we have that the valuation of the Tate parameter is given by

val(q) = min {Z ple) | ¢ e 6’} :

eec;

So to calculate the Tate parameter, we choose the v that lifts the cycle with the minimal

valuation. One can obtain this result applying the equation (1.3) from [GEK97].

Lifting vertices to (2

Let ¢ be the cycle that gives the minimal valuation of the integral for a given harmonic
cocycle ¢ and let P = {wp, w1, ..., w,} be the lifting of the vertices of ¢ to the tree T to
consecutive vertices and such that vy and v, are I'o(N)-equivalent. That is, there exists

v € Ty(N) and o € K, such that wg = yw,« (they represent vertices not edges).

From the discussion above, we need an algorithm to find the sequence zy, ..., z. € . This
can be done using the G Ly(K )-equivariance of the reduction map A : Q — T (cf. §2.6)

as follows.

Let vg be standard vertex in 7, we know that the standard affinoid is defined to be
A Hw) ={2€Cl ||z <1, |z=¢>1 VeeF,}.

Let £ € Fe \ F, then & € A (vp).

Since the translates of the affinoid A\™!(vy) by GLy(K ) cover Q and two translates are
either identical, disjoint or intersect each other, we can get any affinoid by translating the
standard one. Equivalently, given a vertex v € T with v # vg, to get a element in A\™!(v) it
is enough to find a g € GLy(K,.) such that [v]g = [guglo- Then we have that g(¢) € A7 (v).
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There is no loss of generality in assuming that the matrices w; are in normal form. Let say

that wy = (7[)'“ 7;) for some k£ > 0. Then we have that

20 = T+ u € X7 (wo). (B.14)

Since we can go from w; to the next vertex w;,; by multiplying by an appropriate ele-
ment ¢g; € GLy(Ky), we may define z;.; = ¢;(2;), i.e., the action of g; in z; by Mé&bious

transformations.

On the other hand, to calculate our integral we use the equality z, = vz, however, on the
tree we have [v.]o = [Yv0]o, so the elements g; are required so, that its product is 7. The

following algorithm allows us to find the sequence of the g;’s with such property.

ALGORITHM &: TransitionGammas

Input: A list P = [wg, wy, ..., w,] of matrices in G Ly (K ) representing consecutive vertices
in T and such that wy and w, are I'y(V)-equivalent.

Output: A list £ consisting of matrices g; € GLy(Ky) such that [g;w;]o = [wiy1]o and
the product of the g;’s is in ['o(V).

1: Write w, = ywpa with v € I'o(N) and a € K. (Use Algorithm M)
2: make a loop to define the list

-1 —1 —1 -1 -1
L = [wiw, 7y, Wow] ~, WaWy "~ .oy Wy 1W, o, Wy, ]

3: Return £

A direct calculation shows that the product of the elements in £ is actually 7. Also the
condition

[giwilo = [wiy1o
is verified. Using Algorithm [§ we can now lift the vertices of a given path to a sequence of

z;'s in €.

ALGORITHM 9: LiftToOmega
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Input: A list P = [wo, wy, ..., w,] of matrices in G Ly (K ) representing consecutive vertices
and such that wy and w, are I'g(N)-equivalent.

Output: A list Z consisting of different elements in 2 lifting the vertices of P.

Use Algorithm [§ to produce the list 8 = [go, g1, -+, Gr—1]
initialize Z = [z = wo(§)] > We lift wy as in (B.1])

for ¢ from 2 to r do

append to Z the element g;_1(Z[i — 1]) > (-) is the action by Mdbius
transformation.
5: end for
6: Return Z

The integral

In Chapter dl we saw how to carry out the change of variables, and we explained how we can
integrate over an edge e determined by the adjacent vertices v and v'. Using the partition

induced by Lemma [4.4.1] we can break up the integral

t— =z
——du,(t
]{mt—z’ (1)

where z and 2’ are liftings to 2 of v and v/, respectively. For the change of variables we
also supposed that v = [k, u] and v' = [k+1, u+agn*] for some ag € F,, respectively. From
Lemma 245 we have that all the neighbors of v different from v’ are given by [k+1, u+ar"]
for a € F, \ ap and [k,u mod 7*~10,], which is the only one that can not be obtained
form v multiplying by 7,. The neighbors of v are of the form [k + 2, u + aor® + br* 1] with
bel,.

Notation: All the neighbors of the vertices v and o' different from [k,u mod 7*~10.)]

are called the neighbors of zero, while [k,u mod 7%~ 0] is called the neighbor of infinity.

ALGORITHM 10: IntegrateOverEdge
Input: An edge e in Gy given by the vertices v = [k,u] and v/ = [k + 1,u + agm*]. A

pair [z, 2'] of elements in §2 over o(e) and t(e), respectively. A harmonic cocycle ¢. The
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data structure Gy s of the quotient graph I'o(/N) \ 7. The table T with the values of

the integral at the functions of B,.

Output: The integral

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

25:
26:

t—=z
—— du,(t
]éﬂt_z, (1)

over the edge e. That is, using the partition of 99 induced by e, up to precision 7.
Set a list £ =[]
set a list N with all neighbors of zero > we have an auxiliary routine to do that
set ho = [k,u mod 10, > the neighbor of infinity
for all h € N do
v <« h > for the change of variable (cf. equation (37)))
w < h[1][2]
set fu=1-— (%) tand fq=1-— (%) t o f, and fy are the numerator and
the denominator, respectively cf. §4.4.3
Co=z—wand Cqg=7 —w > these are the constants
append to £ the list [fy, fa, Ca, Cq, 7]
end for
set u = ho[1][2]
if k£ # 0 then

set fo=1—(Z%)tand fq=1— (Z=4)t
set v=("1"%)
append to £ the list [f,, fa, 1,1, 7]
end if
if £ =0 then
set fu=1—mzt and fq=1— w2t
set 7= (07)
append to £ the list [f,, fa, 1,1, 7]
end if
I=1land C =1
for [ in £ do
v = [[5] and find 7;ep, the representative of the edge given by v and write v = Syyepk
> use Algorithm [J
set hy, = [1](k7) and hq = [[2](x71)
define I, to be the integral over O, of A, > use Algorithm [11]
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27: define I4 to be the integral over O, of hq

) 1[3} QO('YYCPeO) I,
28 [ I x (m) b
29: end for
30: Return /

In the previous algorithm, we use an auxiliary routine to calculate the integral of a function
f € F;. The implementation is an easy routine and we only give the algorithm without

further explanation.

ALGORITHM 11: Integrate over 0O
Input: A function f € Bjy;. A matrix 7., a representative for the edges of Gy . The
data structure Gy s of the quotient graph. The table T with the values of the integral
at the functions of B,.

Output: The integral of f over O, up to accuracy © that is,

][ [ dpg. (B.15)
Oso

1: Set By the pseudo basis for F;

2: Int=1

3: set k to be the position in Ry of yep > The set Ry is a list which is already stored in
the data structure of Gy m

4: run Algorithm [7] to set a list £ of factors of f with multiplicities

5. for [ in £ do

6: set s to be the position in B, of [[2]

7: Int + Int x T[k][s]"?

8: end for

9: Return Int
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Analysis for the algorithm Integrate over 0O,

A similar analysis as in Algorithm [7] shows that the worst case occurs when the function f
factorizes as a product of all elements in B, then the list £ has g(M 2+3M) elements. So
we only need to calculate the cost of the step [[l Each entry of the table T is an element of
the ring 1+ 7F 2 [7] and the exponent {[2] satisfies 1 < [[2] < p—1 then using the powering
algorithm (cf. [Coh93, Algorithm 1.2.1]) and one of the algorithms for fast multiplication
allows to calculate the step [7in O(log(p+ 1)M?) operations, therefore the running time of
the algorithm is O(M*).

Analysis for the algorithm IntegrateOverEdge

We ignore the cost for the steps [[H21] since most of them are assignments or operations
whose cost is O(1). Therefore we only consider the cost of the operations in the last loop.
In steps and 27] we calculate the integral of the functions h, and hg, respectively, we
know that the running time for Algorithm M1 is O(M?). In step B8 we calculate three
products so we need to consider the analysis separately. Note that the constants {[3] and

[[4] do not depend on the size of M but on the path where we are integrating, so the cost

©(Yrepen)
of calculating ( % ) €0

values of M. The product [ x % can be carried out using fast multiplication in time O (M),
since they are polynomials of degree at most M (cf. Remark[A.1.4]). Therefore, adding up

the costs for the steps 26] 27 and 28] we get that the algorithm takes time O(M*).

may be considered small (or even constant) compared with big

Theorem B.2.1. The Tate parameter q can be calculated up to accuracy ™ in time

O(MT).

Proof. In order to find the Tate parameter we need to calculate the table an after the
integral using Algorithms [0 and [I0], respectively. The dominant cost of Algorithm [@] gives
the running time for the calculation of q, which is O(M7). O

Remark B.2.2. Most of the computer algebra systems use a combination of the fast al-
gorithms for multiplications or quotients of polynomials mentioned in Remark and
they take M(n) € 63.43nlognloglogn + O(nlogn). However in most of the cases we can
not compute with M bigger than this constant, this is the reason we use for the analysis of

the complexity the classical algorithm for multiplication.
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C. Tables

C.1 Preliminaries

In this appendix we give some tables for the isogeny classes in characteristic 3 and 5 and
conductor of degrees three and four in each case. In characteristic 2 there are already
(using other methods) tables for conductor of small degree (cf. [Gek97],[Sch01],[Sch99]
and [Sch00]). Since applying the transformation 7'+ T + a for a in F) we can transform
any curve with bad reduction at the place 7" — a to have bad reduction at the place T,
we only consider in the tables conductors which are divisible by 7" and the those that are

primes.

Each table have three columns, the first one is for the conductor, which is given by the
factors of a polynomial N in F [T, we omit the oo place, since we know that it appears
in the conductor with exponent 1. The second column is for the corresponding elliptic
curve and the last one for the traces. All the traces have length 8, which correspond to
the first 8 prime polynomials relatively prime to N. We consider the list of primes ordered

lexicographically.

Remark C.1.1. 1. As we already mentioned there are no elliptic curves with split mul-

tiplicative reduction at oo with conducto Noo and degree of N less than 2.

2. Quer IF5 and F5 there are not elliptic curves with prime conductor of degree 3.
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C.2 Table for degree 3 over [

Table C.1: Isogeny classes for degree 3 over [

Conductor | Curve Trace
T,7%+42 (T242) X2+ (2T8+T5+2T%) /(T5+2) [0,0,2,2,—8,—8,8,—4]
T,T+1,T+2 =X3H(T242T+2) X2+ (2T +2T34+T2+T) /(T8 +2T°%+2) | [2,2,—6,—4,—4,4,4,—4]
=X3H(T24+T+2) X 2+ (2T*+T3+T242T) /(T +T3+2) [2,—6,2,—4,—4,4,—4,4]
(T?+1) X2+ (2T44+T2)/(T6+1) [—6,2,2,—4,—4,—4,4,4]
T2,T+1 Y24 XY=X34-(273+2)/T° [-2,-2,—2,4,4,—8,4,—2]
Y2=X34+(T?+2T) X2+ (2T5+2T4) /(T3 +2) [0,2,2,—2,4,4,—4,—8]
2,742 Y24+ XY=X34+(2T3+1)/T° [~2,—2,4,—2,—8,4,4,4]
Y2=X34+(T?4+T)X2+(2T°+T*) /(T3+1) [0,2,—2,2,4,4,4,—4]
T2+27+2,T Y2=X34+(T?+1) X2 +(T742T5+4-2T5) /(T6+1) [-1,-1,0,5,8,—7,8,—2]
T24T+2,T Y2=X34+(T?4+1) X2+ 2T +T0+15) /(TC+1) [-1,—-1,0,5,—7,8,—7,—2]

C.3 Table for degree 4 over [

Table C.2: Isogeny classes for degree 3 over s

Conductor | Curve Trace

T 134272 +T+1 | Y2=X3+(T?24+27+2) X2 +(T°+2T*+T3+T2) /(T¢+2T3+2) [-2,-1,—-1,—-1,0,—1,—4,—8]

T,T34+2T2%+1 Y24 XY =X34H(T742T54T4) /(T2 +T°+T53+1) [-3,—2,—2,—5,1,—5,—8,7]

| 22 | y24xy=x34(2r241)/1 [—2,-2,—2,4,4,—8 4,4]

T2 7241 Y24 XY=X34(2T2+2)/T6 [-2,-2,—2,—2,—2,—2,—2,4]
Y2=X34+(T?+T)X2+(2T742T5) /(T3 +1) [0,2,4,—4,4,—2,—2,8]
Y2=X34(T2+2T) X2+ (2T74+2T5) /(T3 +2) [2,0,—4,4,—2,4,—4,4]

T4 Y24+ XY=X3+1/T6 [-2,-2,—5,1,1,4,4,—2]
Y24+ XY=X3+2/T" [1,1,—2,1,1,7,7,4]

T2,T24+T+2 Y2=X34+(T?+2T) X2+ (272 +2T7+1) /(T3 +2) [-1,-3,2,—5,1,—-2,—1,—2]
Y24+ XY=X34+(2T%+273+1)/T° [1,, 2,1,7,—2,—5,10]
Y2=X34+(T2+T) X2+ (2T +2T°+T4) /(T3 +1) -3 ,—1,—-5,—8,1,2]
Y2=X34+(T242T) X 24+ (2T54+2T4+T13) /(T3 +2) [202 —2,—-2,-2,8,—2]

T2, (T+2)? Y2=X34+1)X242T/(T3+2) [~2,4,—2,—2,4,—8,—8,4]
Y2=X341)X24+(2T+1) /T3 [—2,-2,4,—2,—8,4,4,4]

T3, T+1 Y2=X34(T242T) X2+ (2T4+T3+2T2) /(T3 +2) [-3,—1,—4,—-2,—2,1,—1,7]
Y24+ XY=X34+(2T%+T34-2)/T° 1,-5,4,—2,—2,1,7,—5]
Y24 XY=X34H(T3+1)/T° [1,4,—5,—2,—2,10,—2,4]
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C.3. Table for degree 4 over Fj

Conductor | Curve Trace
Y 2=X34(T242T) X 24(T7 42T+ T5+T44-2T34+T2) /(T3 +2) [3,—4,—1,—2,10,—2,2,4]

T2, 7242742 Y2=X34+(T?4+T) X2+ 2T +T4+T13) /(T3 +1) [02,2 —2,—-2,-2.4.8]
Y2=X3+4+(T242T) X2+ (TC+2T5+21T4) /(T3 +2) [-1,-3,—4,—1,—-8,—5,—4,—2]
Y24+ XY=X3+(T%42T3+2)/T° [1,1,-2,1,-2,7,4,—8]
Y2=X34+(T2+T) X2 +(T%+2T+2) /(T3 +1) [-3,-1,2,—5,—2,1,—8,—4]
Y2=X3+4+(T?4+T) X2 +(T8+2177+27°) /(T3+1) [3,—1,—4,1,4,1,—8,2]

T2,(T+1)? Y2=X34+1)X242T/(T3+1) [—2,4,—2,—2,—8,4,4,—2]
Y2=X3+1)X2+(2T+2)/T3 [—2,—2,—2,4,4,—8,4,—2]

T,T3+2T+2 Y2=X34(T2+2T+2) X2+ (T4+2T%4+2T) /(T +2T3+2) [—2 ,—1,—3,—7,1,1]
Y24 XY =X34+(T8+2T6+2T5) /(T2 +2T°+2T3+1) [2 —3,-2,—5,1,7,—5,—5]

T3,T+2 Y2=X34(T2+T) X2 +(T*+T3+T2) /(T3 +1) 3,—1,-2,—4,1,—-2,—2,—10]

Y24+ XY=X3H(TO+T3+1)/T°
Y24+ XY=X34+(T3+2)/T°
Y2=X3 4 (T2 4+-T) X2 (T +TO+T5+2T4+2T3+2T2) /(T3 +1)

1,-5-2,4,1,—-2,—-2,—2]
1,4,—2,—5,10,—2,7,—2]
3,— ~1,-2,10,1,2]

T,T+1,T%++2T+2

Y2=X34(T2+T+2) X2+ (2T 4275 +-2T44+T2) /(TO+T34-2)
Y24 XY =X34(2T8 2T +2T3+T2) /(T 2 +2T° +2T3+1)
Y2=X34+(T2+1)X24+2T2(T+1)8 (T2 +27+2) /(T8 +1)

2,—4,0,—10,8,4,—4,—8]
0,—2,—2, 84444]
,0,—4,2,8,—4,4,—8]

T,(T+2)3

Y2=X34(T24+T)X 24275 /(T*++2T3+T+2)
Y24 XY =X342T%/(T942)
Y24+ XY=X34+(T3/(T°+2)

2

3,2,1,—4,—-2,1,—2,—1]
,—2,—5,4,—2,1,10,7]

1

—2,4,—5,—2,10,1,—2]

T,(T+1)2,T+2 Y24+ XY=X34+(2T%+T)/(T6+2T3+1) 2,—2,—2,4,4,4,4, 8]
T,T3+T2+T+2 Y2=X34+(T?+T+2) X2+ (2T°+2T4+2T73+T2) /(T6 +T3+-2) 1,-2,-1,0,—1,—4,-1,7]
T,T34+2T2+4+2T+2 | Y2=X3H(T242T+2) X2 +(T1042T°+2784-2T7) /(TS +2T3+2) 1,2,—1,—1,0,8,—7,1]
T,T4+2,T%+1 Y2=X34(T242T+2) X2+ (2T0 4215+ T4 4213 4+2T2) /(T 4-2T3+4-2) 2,—4,0,—10,8,—8,4,—4]

Y24 XY =X34(2T8 2T +TO+2T5 274 /(T2 +T2+T3+1)
Y2=X34+(T2+T+2) X2+ (27102794 T8 +2T74+-27%) /(T6+T3+2)

2,0,—4,2,8,—8,—4,4]

T,T4+1,T%4+T+2

Y24 XY =X342T44+T3+T) /(T2 +2T°42T3+1)
Y2=X34+(T2+1) X2+ (2T8+T7+ T +T5+T34+2T2+2T) /(T®+1)
Y2=X34(T242T+2) X2+ (2T8+2T6+T4+273) /(T®+2T3+2)

0,—2,—2,4,4,4,4,—8]
2,0,—4,—4,—4,8,4,10]
2,-4,0,—4,—4, 842}

T,73+2T+1

Y2=X3 (T2 +T+2) X2+ (T*+2T2+T) /(TS +T3+2)
Y24+ XY =X3H(T8+2TC+T5) /(T2 +T+T3+1)

1,-2,2,—3,—1,—7,—8,—7]
3,-2,—2,1,—5,7,—8,7]

T T+2,T%4+T+2

Y2=X34+(T2+2T+2) X2+ (2T +T2+2T4+T2) /(T +2T3+2)
Y24+ XY =X34+(21842T04+T3+T12) /(T124+T0+T3+1)
Y2=X34(T?+1) X 24272 (T+2)8 (T2 +T+2)/(T6+1)

2,-4,0,8,—10,4,—2,—4]
0,—2,—2,4,—8,4,—8 4]
2,0,—4,8,2,—4,10,4]

[-
[
[
[
[-
[
[
[
[1
[
[-
[-
[
[-
0,~2,—2,-8,4,4,4,4]
[
[
[
[
[-
[-
[-
[
[
[
[
[
(-3
[2,1

T,(T+1)3 Y2=X34+(T2+2T) X 24+T% /(T*+T3+2T+2) 3,2,—4,1,1,—2,—10,4]
Y24+ XY =X34(T3/(T°+1) 1,-2,—5,4,10,—2,—2,—5]
Y24 XY=X34(T6/(T?+1) 1,—2,4,—5,1,—2,—2,4]
Y2=X34+(T?+2T)X2+T8/(T*+T3+2T+2) —1,4,-2,10,2,7]

T, T3+T%42T+1 Y2=X34+(T2+T+2) X2 +(TO+T2+2T8+T7) /(T +T3+2) ,1,—1,0,—1,—7,8,4]

TT+1,T%+1 Y2=X34(T2+T+2) X2+ (2T + T4+ T4+ T3 +272) /(TS +T3+42) [72,0,74,8,710,72,74,4}

Continued on next page
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Conductor

Curve

Trace

Y24 XY =X34 T8 +T7+TO+T54-2T4) /(T2 4+2T°+2T3+1)
Y2=X3 4 (T2 42T42) X2+ (2T O+ T+ T8+ T7 +2T6) /(TO +2T3 +2)

0,—2,—2,4,—8,—8,4,4]
2,-4,0,8,2,10,4,—4]

T, T42,T%+2T+2

Y24 XY =X34(2T44+2T342T) /(T 2 +T°+T341)
Y2=X34+(T2+1) X2+ (2T8+ 2T+ T8+ 275 +2T3+2T2+T) /(T6 +1)
Y2=X34+(T2+T+2) X2+ (2T8+2T+T4+T3) /(TS +T3+2)

0,—2,—2,4,4,—8,4,4]
2707_47_47_4727_874}
2,-4,0,—4,—4,10,8 4]

T,T+1,(T+2)?

Y24+ XY=X34+(2T%+27T)/(TC+T3+1)

_27_27_27474747_874}

C.4 Table for degree 3 over Fj5

Table C.3: Isogeny classes for degree 3 over Fj

Conductor | Curve Trace
T, 742,743 Y2=X34(3T*4+3T%2+3) X +T0+2T5+ T4 +2T3+4T% +2T+4 [-2,-2,—6,—6,10,2,2,—6]
Y2=X34(3T4+2T3+3T+2) X +T0+4T°5+ 274+ T3 +3T2+3T+3 [0,0,2,2,2,—4,8,2]
Y2=X34(3T443T3 42T 42) X + T4 T54+2T4 4T3 43T 4-2T+3 [0,0,2,2,—10,8,—4,2]
T,(T+1)2 Y2=X34+(3T44+T3+4AT+2) X + TS+ T+ 274 +3T34+2T2+4T+3 [3,—3,0,—4,—4,—7,2,8]
Y2=X34+(3T44T34+4T+2) X +TC+2T°+T+2 [-2,2,0,6,6,—2,2,—2]
Y2=X34+(3T44+2T3+3T%+2T7+3) X +T6+4T5+T+4 (1,1,—4,—4,—4,1,6,—4]
Y2=X34+(3T44+4T3 42T +4T+3) X+ T+ T3 +4T*+ T2 +4T+4 [-2,-2,2,2,2,10,—6,2]
T,(T+4)2 Y2=X34(3T*4+T3 42T+ T+3) X + T84 2T° +2T4 4T3 4+-3T+1 [2,—2,—-2,2,2,6,2,—6]
Y2=X34(3T*4+3T3+3T24-3T+3) X +TO+T5+4T+4 [—4,1,1,—4,—4,6,—4,6]
Y2=X34(3T*4+4T3 +T+2) X +TO+3T5+4T+2 [0,2,—2,6,6,—8,—2,2]
Y2=X34(3T4 4T3 +T+2) X +T0+4T5 274 4273 42T 4+-T+3 [0,—3,3,—4,—4,2,8,2]
T,T2+2 Y2=X34+(3T44+T242) X +T5+T2%+3 [2,—2,—2,2,—6,2,—6,10]
T,T?+T+2 Y2=X3+ (3T +4T342T%+3T+2) X+ T +T5+3T4+T3+3T+3 [0,0,-3,3,—-10,8,—1,—1]
T,7+3,T+4 Y2=X34 (3T442T3 + T2 +4T+2) X +T6 +2T5 +3T*+T3+2T2 +T+2 [0,0,—4,2,8,—10,2,8]
Y2=X34+(3T44+-3T34+4T+3) X +T64+-4T44-3T3+T24-3T+4 [~2,-2,2,10,2,10,—6,2]
Y2=X34(3T*+4T3+2T+3) X +TO+T5+3T*+T+1 [0,0,8,—10,—4,2,2,—4]
T, 741,742 Y2=X34+(3T*+T3+3T+3) X +T0 +4T5+3T4+4T+1 [0,0,8,—10,2,8,2,2]
Y2=X3 4+ (3T 42734+ T+3) X +T0+4T4 4273+ T2 42T +4 [-2,—2,2,10,—6,2,—6,—6]
Y2=X34+(3T*+3T3+T2+T+2) X +TO+3T5+3T4+4T3 +2T2+4T+2 [0,0,—4,2,2,—4,2,2]
T, T?4+4T+2 Y2=X3+(3T4+T342T2+2T+2) X + T +4T5+3T4+4T3+2T+3 (3,—3,0,0,—10,8,8,—1]
T,7%+3 Y2=X34(3T*4+4T%+2) X + TS+ T2 42 [—2,2,2,—2,—6,2,10,—6]
T,T42,T+4 Y2=X34(3T44+T34+4T?+3T+2) X +TO4+T° 42744273 +2T2 43743 [0,0,2,—4,8,2,—4,2]
Y2=X34(3T*4+2T3 +4T+3) X +T6+3T°+2T44+-3T+4 [0,0,—10,8,—4,2,8,2]
Y2=X34(3T*+4T3+3T+3) X +TO+ T4+ T3+ T2 +4T+1 [~2,-2,10,2,2,—6,2,—6]
T,T2+4+2T+3 Y2=X34+(3T*+3T3+3T24+4T+2) X +T6+2T5+2T4+3T3+T+2 [-3,0,3,0,8,—10,8,—1]
T,T243T+3 Y2=X34(3T44+2T3+3T2+T42) X +T6+3T°+2T* +-2T3 +4T+2 [0,3,0,—-3,8,—10,—1,—1]
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C.5. Table for non-primes of degree 4 over F5

Conductor | Curve Trace

T,7+1,T+3 Y2=X34(3T44+T342T43) X + T4+ T44-4T3 4+ T2+ T+1 [~2,—2,10,2,—6,—6,10,2]
Y2=X34(3T*4+3T3+T+3) X +T0+2T54-2T*+2T+4 [0,0,—10,8,2,2,2,—4]
Y2=X3+(3T4+4T34+4T2+2T+2) X+ TO+4T5+2T*+3T3+2724+2T+3 | [0,0,2,—4,2,2,—10,8]

T T+1,T+4 Y2=X34+(3T44+2T2+3) X +TO+TO+4T* +4T3 +4T%+T+1 [~2,-2,-6,—6,—6,2,2,10]
Y2=X34+(3T44+T34+T+2) X +T6+2T5+3T4+2T34+-3T2 +4T+2 [0,0,2,2,2,8,8,—10]

T,(T+3)2 Y2=X34+(3T4+T34+2T2 +4T+3) X +T6+2T5+3T+1 (1,—4,1,—4,—4,1,—4,—4]
Y2=X34+(3T4+2T3+3T24+3T+3) X + TS +3T5+T4+T2+2T+1 [—2,2,-2,2,2,—2,2.2]
Y2=X34(3T*+3T3+3T+2) X +T6+T°+3T+3 [—2,0,2,6,6,4,—2,—2]
Y2=X34(3T4+3T3+3T+2) X +T9+3T5 4374+ T3 +2T%+27+2 (3,0,—3,—4,—4,—1,8,8]

T,(T+2)2 Y2=X34+(3T44+2T3 +2T+2) X +TO+4T%+2T+3 [2,0,—2,6,6,4,2,2]
Y2=X34 (3744273 42T +2) X +T04-2T54-3T44+-4T3 427243742 [-3,0,3,—4,—4,—1,2,2]
Y2=X34+(3T*+3T3+3T24+2T+3) X + TS +T3+3T44+-2T3+4T+4 [~2,2,—2,2,2,—2,—6,—6]
Y2=X34(3T44+4T3+2T2 +T+3) X +T6+3T°>+2T+1 [1,-4,1,—4,—4,1,6,6]

T2, T+1 Y2=X3+(3T4) X +T6+42T5 [—4,1,1,—4,1,1,6,—4]
Y2=X34+(3T4+T3) X +T6 4274 [0,—3,3,8,—1,—7,2,—4]
Y2=X34+(3T44+-T3) X+ T +4T° [0,2,-2,—2,4,—2,2,6]
Y2=X34(3T*+3T3+3T2) X +T6+4T*+T3 (2,—2,—2,2,—2,10,—6,2]

T2, T+2 Y2=X34(3T*) X +T64+4T" [1,1,—4,1,—4,—4,6,6]
Y2=X34(3T4+T34+2T2) X +T6+T4+3T3 [~2,-2,2,~2,2,2,6,—6]
Y2=X34(3T44+2T3) X +T643T4 [-3,3,0,—1,8,8,2,2]
Y2=X34(3T44+2T3) X +T643T> [2,-2,0,4,—2,—2,—8,2]

T2 T+3 Y2=X34(3THX+T64+T° [—4,1,1,1,—4,—4,—4,1]
Y2=X34+(3T4+3T3) X +T6+317% [0,3,—3,—1,8,—4,—4,—1]
Y2=X34+(3T*+3T°3) X +T6+2T5 [0,—2,2,4,—2,6,6,4]
Y2=X34+(3T4+4T3+2T?) X +T6+T4+273 (2,—2,—2,-2,2,2,2,—2]

T2 T+4 Y2=X34+(3T4)X+T643T5 (1,1,—4,—4,1,6,1,6]
Y2=X34(3T44+2T3+3T2) X +T64-4T44-4T3 [~2,-2,2,2,—2,—6,—2,6]
Y2=X34(3T4+4T3) X +T6 4274 [3,-3,0,8,—1,2,—1,2]
Y2=X34+(3T44+4T3) X +T6+1° [—2,2,0,—2,4,2,4,—8]

C.5 Table for non-primes of degree 4 over I

Table C.4: Isogeny classes for non-primes of degree 4 over

Fs

Conductor

Curve

Trace

T, T+1,T?4+4T+2

Y2=X34+(3T44+3T2+T+2) X +T0+2T°5+2T4+ T3 +4T+2
Y2=X34+(3T44+2T34+2) X +TO+T5+T44+-T3+2T2+3T+2
Y2=X34+(3T4 4273+ T2 42T+ 2) X+ TS+ T2 +4T* 4 2T3 +4T% +27+3

[073737_17272727_7]
[_27_37_1777_47_8727_3]
[727727078767277874}
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C. Tables

Conductor | Curve Trace
Y2=X34 (3T 4T3+ T2 +3) X +TO+2T5+2T4 43734272 +4 [—4,-1,—-3,—7,—6,2,—2.7]
T, T+4,T%24+2T+3 | Y2=X34BT*+T3+T2+T+2) X +TO+T4+T3 4272 +4T+2 [~2,—2,—2,—6,2,—-2,2,—6]

Y2=X34+(3T44+T3+ T2 +4T+3) X +T6+3T5+2T4+2T3+2T2 +2T+1
Y2=X34+(3T44+2T3+4T?+ T+ 2) X +TO+ T2 +4T% +4T+2

[717727737727727727171]
[2717371717_57_27_2}

T,(T+2)2,T+3

Y2=X34+(3T444T%4+3T+2) X +T+2T44+4T3+T+3

Y2=X3+ (3T +4T2+3T+2) X+ TS +4T5+4T3+2T2+2T+2
Y2=X34+(3T44+T34+4T+3) X +TO+4T4+2T3+T%+4
Y2=X34(3T4+T3+4T+3) X +TO+2T5+3T4+4+2T3+2T2+2T+4
Y2=X34+(3T44+ T34+ T2 +3T4+2) X +TO+T54-2T44-4T3 4 T2 4+2T+3
Y2=X34+(3T4+3T3+T2+2) X +T6+3T3+2T3+4T2+2
Y2=X34(3T4+3T3+T2+2) X +TO4+4T5+T4+3T3+3T+3
Y2=X3+ (3T +3T34+4T%+T+2) X +TO+T5+274 4273 +4T2 43742
Y2=X3 4+ (3T 4T3 4212+ T+3) X +TO+T5 2744+ T3 4372+ T+4

[-3,-1,6,—6,3,—8,—4,3]
[2,4,6,—6,—2,2,—4,—2]
[2,2,2,2,—2,—2,—2,—6]
[-3,-3,2,2,—7,8,8,—1]
[4,0,—6,—6,6,—4,4,—6]
[1,3,-6,6,3,—4,—8,3]
[—4,-2,-6,6,—2,—4,2,—2]
[0,—4,—6,—6,—6,4,—4,—6]
[1,1,6,6,1,—4,—4,—9]

T T34+4T24+T+2

Y2=X34+(3T44+T3+T2+T+3) X +T6+3T54+2T2+3T+4

[07070737_17_17_47_7]

T,T+2,(T+4)?

Y2=X3+ 3744372427 42) X+ T 4275 +4T*+4T3+4T2+37+2
Y2=X34(3T443T2+2T+2) X +T0+4T5+ 3744+ T3+ T2 +2T+3
Y2=X34(3T4+4T2+3) X +T0+3T5+2T4+3T2+1
Y2=X3+(3T4 42734+ T2+ T+3) X +T0+2T3+T2+2T+4
Y2=X3+(3T442T34 T2+ T+3) X+ T+ TP+ T4+ T3+2T%+3T+1
Y2=X34(3T4+2T3+4T2+4T+2) X+ T043T54 2744 3T34+4T2+4T+3
Y2=X34(3T4+3T3+3T24+3T7+3) X+ 754317542744+ 273+ 2T2+T+4
Y2=X34+(3T44+AT3 4+ T2 42) X+ TO4+T5+4T3+T2%+3
Y2=X34+(3T44+4T3 4+ T2 4-2) X +T64-2T54+-2T4 +272 +3

[2,2,—2,—2,—2,—6,6,—10]
[-3,-3,-7,8,8,—1,—4,—10]
[0,4,6,—4,4,—6,4,6]
[3,1,3,—4,—8,3,—8,—6]
[—2,—4,—2,—4,2,—2,—8 4]
[—4,0,—6,4,—4,—6,—4,6]
[1,1,1,—4,—4,—9,—4,6]
[4,2,—2,2,—4,—2,—2/4]
[—1,-3,3,—8,—4,3,8,—6]

T,T+1,T%2+2 Y2=X34(3T44+2T3 +3T24+4T+2) X +TO+2T5+T4+T3+4T+3 (1,2,3,—7,—8,9,—4,7]
Y2=X34+(3T4 4273 +4T% +3) X+ TO+ T2 +3T4 +1 [-3,—4,-1,3,2,—3,—6,—7]
Y2=X34(3T44+3T3+3T2+4T+3) X +TO+3T5+3T4 43T +4 [-3,0,-3,—-1,2,—1,2,—1]
Y2=X34(3T44+4T3+3T24+-3T+3) X + TS+ 2T+ T4+ T2 +4T+1 [0,2,2,6,2,—6,6,8]

T, T342T2 42742 | Y2=X3+(3T44-4T3 4T +4T+3) X +T64+3T54+-3T44-3T+4 [3,0,0,0,—1,—1,—1,2]

T, T34+3T2+2T+2 | Y2=X3+4+(3T444T2 44T +3) X +T6 43754274 4-3T+4 [-3,3,0,3,—1,8,2,—4]

Y2=X34+(3T4+T343T242T+3) X +T5+3T5+3T44+2T3+T+1
Y2=X3+ (3T +T3+3T2+3T7+3) X +T6+3T°5+3T4+3T2+4T+1
Y2=X34+(3T44+4T34+3T24+2) X +TO+3T°+T4+4T3+372+3
Y2=X34+(3T44+-4T3 4372 +4T4-3) X +TO+AT? +-3T4 +4T3 4272 + 37 +4
Y2=X34(3T4+4T3+4T% 43T +2) X + TS +2T5+ T4+ T2 42T +2

[—3,-3,0,—1,9,—4,2,—8]
[0,—2,—1,—4,—3,4,3,2]
[-2,0,3,4,3,—2,—9,—8]
[-3,1,—4,—1,—3,—8,—6,8]
[-1,1,-2,-3,—-1,—2,6,—4]

T,T+43,7%+3T+4

Y2=X34+(3T44+T24-2T+2) X+ TS+ 275+ T4+ T2 4+-3T+2

Y2=X3+4+ (3T +T3+3T2+3T+3) X +TO+T5+T4+2T34+4T+1
Y2=X3+(3T4+2T343T43) X+T543T5+T4+4T3+4T2+3T+4
Y2=X3+(3T4+2T3 4372 +4T+3) X+ T+ T3 +3T3+T2 +4T+1
Y2=X34+(3T442T3+4T2+2) X +TO+ T2 +4T4+4T2% +2
Y2=X34(3T4+3T3+4T24+T+3) X+ TO+4T° +2T4+2T3+4T2+2T+4
Y2=X34+(3T44+-4T3 4272 44T +2) X +T64-2T54-2T34+-4T2 +-4T+3

[—2,0,—4,—2,—8,—8,4,—2]
[0,—2,—4,—8,4,—2,—8,4]
2,—2,2,-2,—2,—6,6,6]
[—4,-2,0,4,—8,—2,4,—8]
[4,0,2,—8,—2,4,—2 4]
[2,2,—2,6,—6,6,—6,—2]
[—2,—4,0,—2,4,4,—8,-2]
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C.5. Table for non-primes of degree 4 over F5

Conductor

Curve

Trace

Y2=X34(3T4+4T3 +3T2+4T+2) X +TO+2T5+4T*+3T3+4T+3
Y2=X3+ (3T +4T344T24+2T+3) X+ T+ T4+ 3T3+2T2+4T+4

[07472747727787727781
[72727277676772772776}

T,T4+1,T%4+T+2

Y2=X34+(3T4+T3+T%+2T+2) X +T6+3T5+274+2T+3
Y2=X34(3T4+T3+T2+4T+3) X +T0+3T5+2T4 43134272 +2T+1
Y2=X34+(3T44+T34+4T?+T+2) X +TO+3T°+3T4+ T34+ T2 +T+3

[71773772717173772772}
[_27_37_17_27_2737171}
[27272727_67_6727_6}

T T+2,T%+T+1

Y2=X3+(3T4+2T2+3T+2) X+ TS+ T4+273+2T2+4T+3
Y2=X34(3T4+3T24+3T43) X +T0+4T44+4T34+T+4
Y2=X3+(3T4+T3+3T2+T+3) X +T0+3T5+3T4+3T+1
Y2=X34+(3T44+AT3 44T+ T+2) X+ T +3T°5 4+ 3T 4T3 +4T% +4T+2

[-2,—2,0,—8,4,—6,—8,2]
[-3,—2,-1,—-4,-3,1,2,—8§]
[-1,—4,-3,-8,7,3,—2,2]
[3,0,3,—4,—7,—1,2,2]

T,T4+4,T%+3 Y2=X34+(3T*+4T2+3T+3) X +T+3T2+4T+1 [-1,-3,-4,3,—2,—6,—3,—7]
Y2=X34(3T*4+T3 43T 4+2T43) X +T64+-3T5+2T2+3T+4 [-3,-3,0,—1,2,2,—1,—1]
Y2=X34+(3T44+2T3 4372+ T+3) X+ TS +T4+3T3+272%+2T+4 (2,0,2,6,—8,6,—6,8]
Y2=X34+(3T44+4T3+2T24+-2T+2) X +T6+2T5+3T3 +2T2+T+2 [-3,—-1,-2,—7,2,—4,9,7]

T,T3+4T+2 Y2=X34(3T44+3T3+3) X +TO+4T 5+ T4 +4T3 +1 [~4,—1,0,—-2,8,2,—2,-2]

T, T42,T%+4T+1

Y2=X34+(3T44+T3+T%+4T+2) X +T6+3T5+27%+T+2
Y2=X34+(3T4+2T3+3T2+3) X+ T+ T3 +4T3+T2 +4
Y2=X3+(3T4+3T3+3T2+2) X +T0+2T5+4T*+ 134272 +2
Y2=X34+(3T44+4T3 4372 +4T+3) X +T64+2T°+3T2+2T+1

[-3,0,—3,—7,—4,2,2,—1]
[-1,-2,—-3,-3,—4,—4,2,1]
[0,2,2,4,—8,6,—8,—6]
[-3,—4,—-1,7,—8,—6,—2,3]

T, T+1,T+3,T+4

Y2=X34(3T4+4T%+3T43) X+ TS+ T5+4T 4 +T34+4T2+-4T+4
Y2=X34(3T4+T3+3T2+4T+2) X+TC+T44+4T+3

Y2=X34+(3T4 4273 +4T2 +-3) X +TO+3T° +4T4+ T3 272 +1
Y2=X34(3T44+3T3+2T24-2T+3) X + TS+ T4+ T34+4T2 +4
Y2=X34+(3T4+4T3+2T2+T+2) X + T +2T5+2T4+ T3 +2T2+2T+3

[2,—2,-6,—2,—6,2,—2,2]
[2,—2,2,-6,—2,2,2,—6]
[2,—6,—2,2,2,—6,—2,—2]
[2,2,2,2,—2,—2,-6,—2]
[—2,2,-2,—-2,2,-2,2,2]

T, T34+4T% 44T +2

Y2=X34+(3T44+2T2 +4T+2) X +TO+T44+2T3+ 272 +4T+2
Y2=X34+(3T44+T34+3T2+T+3) X +T6+3T5+3T4+4T3+2T% +4T+4
Y2=X34+(3T44+T34+4T2+3) X +T643T54+3T2+3T+4
Y2=X3+(3T4+2T343T2+4T+3) X +T0+T°+3T4+3T2+2T+1
Y2=X34+(3T4 4373+ T2 4-4T+2) X + T +4T54-3T44-3T24+-4T+3
Y2=X34+(3T443T3 4372 +4T+3) X +T6+4T5+3T3+3T2+2T+1

[—4,0,—-3,2,—2,3,5,—4]
[-1,1,-4,—-3,—8,—3,—1,—2]
[3,3,0,—3,8,—1,—1,—4]
[—4,-2,-1,0,4,—3,—7,4]
[3,—-1,2,1,—2,—1,7,2]
[-1,-3,0,—3,—4,9,7,—6]

T,T+2,T%+3T+4

Y2=X34+(3T44+T34-3T24+-3T+2) X+ TS +3T°+3T44+2T+2
Y2=X34+(3T44+T3+3T2+4T+3) X+ TS +2T5 +4T*4+- T2 +2T+4
Y2=X34+(3T4+3T3+2T24+T+2) X +T+4T5+4T%+T+3

[727737717477571772775]
[72772772767672772772}
[1737277574772775772]

T,T+3,(T+4)?

Y2=X34 3T4 44T +3) X+ TO+4T5+2T34+4T2 +4
Y2=X34(3T4+4T%+T+2) X+ T +2T4+4T3+4T%+T+3
Y2=X3+ (3T +4T?+T+2) X +TC+4T*4+-4T% +4T+2
Y2=X3+(3T4+T3+T24+2T+3) X +T0+3T5+2T*+ T2 +4T+4
Y2=X3+(3T4+T3+T24+2T+3) X +T0+3T°+4T*+3T3 +4
Y2=X34+(3T4+T34+T2+3T+2) X +T0+4T5+3T3+T24-3T+3
Y2=X34+(3T4+3T3+2T242) X+ T+ T3 +4T4+ T2 +T+-2
Y2=X3+(3T4+3T342T%+2) X +T6+4T5+272+3

[0,4,—4,6,4,—6,—6,—4]
[—4,-2,2,-2,—4,—2,—6,—8]
[1,3,—8,3,—4,3,—6,—8]
[—2,—4,—4,-2,2,—2,6,—2]
[3,1,—4,3,—8,3,6,8]
[4,0,4,—6,—4,6,—6,4]
[—2,-2,-2,—2,—2,-2,2.6]
[3,3,8,—7,8,—7,2,—4]
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C. Tables

Conductor | Curve Trace
Y2=X34+(3T4+3T3+3T24+3T+3) X + TS +4T5+3T*+3T3+3T2+2T7+4 | [1,1,-4,1,—4,1,6,—4]
T, 73427243 Y2=X34+(3T44-3T+3) X +T0+-4T3 4+ T2 +4T+1 [—4,0,—1,-2,2,8,—2,—1]

T,T4+1,T%+2T+3

Y2=X34(3T4+3T42) X +T04+4T5+T4+3T3+3T2+37+3
Y2=X34+(3T44+ T2 44T +3) X +T0+3T744-2T34-3T24-3T+4
Y2=X34+(3T4+3T3+4T?+3T+2) X + TS +4T5+T4+4T3+2T2% +3T+3
Y2=X3+ (3T +4T3 4272 +2) X +T0+3T5+3T4+2T3+3T2 42

[3,2,1,—4,7,—8,9,—7]
[-1,-4,—-3,-6,—7,2,—-3,3]
[2,2,0,6,8,2,—6,6]
[-3,0,-3,2,—-1,2,—1,—1]

T, T+4,T%4+T+2 Y2=X34(3T44+3T2+4T+2) X +T6+3T5+2T* +4T3 +T4-2 [3,3,0,-1,2,—1,—1,—1]
Y2=X34+(3T4+T34+T2+3) X +TO+3T5+2T4 4273 +2T2+4 [-3,—-1,—4,—-7,—6,3,—3,3]
Y2=X34+(3T*+3T3+2) X +TO+4T5+ T4 +4T34+2T2+2T+2 [~1,-3,-2,7,—4,1,9,—7]
Y2=X34(3T443T34+T243T+2) X +TO+4T5+4T443T34+4T24+3T+3 | [0,—2,—2,8,6,—6,—6,6]

T,T3+T24+T+3 Y2=X3+(3T4+4T3+T2+4T+3) X +T6+2T°+2T2+2T+4 [3,0,0,0,—1,—1,—1,2]

T,T+2,(T+3)?

Y2=X3+4 374 4+4T24+-2T+2) X+ T+ 2T+ T3 +4T+3

Y2=X3 4+ (3T +4T2 42T +2) X +TO+T5+T3+2724+3T+2
Y2=X34+(3T4 4T3 42T 44T+ 3) X +T O +4T5 4274 4-4T34-3T2 44T +4
Y2=X34(3T442T3 +T2+2) X +TO+T5+T*+2T3 42743
Y2=X34+(3T4+2T3+T2+2) X +T6+2T3+3T3+4T2+2

Y2=X34 (3744273 +4T2+4T+2) X+ TO4+4T5 42744373 4+4T2 42T +2
Y2=X3+(3T4+4T3+T+3) X +T0+4T44-3T3+T2 +4
Y2=X3+(3T4+4T34+T+3) X +T6+3T5 4374 +3T3+272+3T+4
Y2=X34+(3T44+AT3 4+ T2 42T+ 2) X+ T +4T5 4+ 2T 4T3+ T2 +-37+-3

[-1,-3,6,—6,3,—8,8,—6]
[4,2,6,—6,—2,—8,—2,4]
[1,1,6,6,1,—4,—4,6]
[—2,—4,—6,6,—2,—2,—8,4]
[3,1,-6,6,3,8,—8,—6]
[—4,0,—6,—6,6,4,—4,6]
[2,2,2,2,—-2,6,6,—10]
[—3,-3,2,2,—7,—4,—4,-10]
[0,4,—6,—6,—6,—4,4,6]

T,74+1,7%+43T+3

Y2=X34(3T4 4373 +4T2 44T +2) X +TO+4T5 +4T% 4 T+2
Y2=X34+(3T44+4T3+T?+T+3) X +T6+2T°+274+3T3+2T2+3T+1
Y2=X34+(3T44+4T3+T2+4T+2) X+ TS+ T4 +4T3+2T%+T+2

[3717271717377274}
[7377277177277273775775}
[727727727767277677276]

T,(T+1)2,T+3

Y2=X3+(3T*+3T2+3T+2) X +T8+2T%+3T4+2T2%+2T+3
Y2=X3+(3T*+3T243T42) X+ TS+ T5+3T4+4T3+T2+3T+3
Y2=X34(3T4+4T%+3) X +T0+2T5+2T4+3T2%+1
Y2=X34+(3T44+T34+T2+2) X +T6+3T°+2T4+2T2+3
Y2=X34+(3T44+ T34 T2 4+2) X+ T +4T5 4T3 +T%+3
Y2=X34+(3T4+2T3+3T24+2T+3) X +T0+2T5 4274+ 373 +2T2 +4T+4
Y2=X34+(3T*+3T3+T2+4T+3) X +T6+3T3+T2+3T+4
Y2=X3+ (3T +3T34+T?+4T+3) X+ TS +4T5+ T4 +4T3+272% +2T+1
Y2=X3+(3T4+3T34+4T2+T+2) X +TO+2T°+2T4+2T34+4T2 +T+3

[2,2,—2,-2,2,2/—2/6]
[—3,-3,—7,8,2,2,—7,—4]
[4,0,6,—4,—6,—6,—6,—4]
[-3,-1,3,-8,6,—6,3,—8]
[2,4,—2,2,6,—6,—2,—8]
[1,1,1,-4,6,6,1,—4]
[1,3,3,—4,—6,6,3,8]
[—4,-2,-2,—-4,—6,6,—2,—2]
[0,—4,—6,4,—6,—6,6,4]

T 134272 +4+2T+3 | Y2=X3+(3T4+4T2+T+3) X +T0+2T5+2T4+2T+4 [3,0,3,—-3,—-1,8,—1,—7]
Y2=X3+(3T4+T3+3T2+2) X +T6+2T5+T44+T3+372%+3 [4,3,0,—2,3,—2,5,9]
Y2=X34(3T*4+T34+3T2+T+3) X +TO+T54-3T*+ T3 4272 +2T+4 [-1,-4,1,-3,—3,—8,—1,3]
Y2=X34+(3T44+T34+4T2+2T+2) X+ TS +3T5+T*+T2+3T+2 [-3,-2,1,-1,—1,—2,7,1]
Y2=X3+(3T*+4T343T242T+3) X +T6+2T5+3T4+3T2+T+1 [—4,-1,-2,0,—3,4,—7,—9]
Y2=X34(3T44+4T3+3T24+3T+3) X +T8+2T54+3T4+3T3+4T+1 [~1,0,—3,-3,9,—4,7,—1]

T, T34+3T2+2T+3 | Y2=X3+BT44+T3+T2+T+3) X +T64+2T5+3T*+2T+4 [0,0,0,3,—1,—1,—4,8]

T, T+4,T%+2 Y2=X34(3T4+T34+3T24+2T43) X +T6+-3T°+T44+-T2+T+1 [2,2,0,6,—8,—8,—6,4]

Y2=X3+(3T4+2T3 4372 +T+3) X +T6+2T°5+3T4+2T+4

[_3707_37_1727_47_17_7]
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C.5. Table for non-primes of degree 4 over F5

Conductor | Curve Trace
Y2=X34(3T44+3T3+3T2+T42) X +T6+3T5 +T*+4T3+T+3 [3,2,1,-7,2,—4,1,-3]
Y2=X34 (3T44+3T3+4T?+3) X +T644T54+-3T4 41 [~1,—4,-3,3,-2,—8,3,7]

T.T+1,T%+3 Y2=X34(3T*4+4T%+2T+3) X + TS +3T2+T+1 [~4,-3,—1,3,2,3,—8,7]

Y2=X3+(3T4+T3+4+2T24+3T7+2) X +T6+3T5+2T3+2T2+4T+2
Y2=X3+(3T4+3T343T2+4T+3) X +T0+T4+2T3+272+3T+4
Y2=X3+(3T4+4T343T2+3T+3) X +T0+2T°+2T2+2T+4

[_27_17_37_77_8717_47_3}
[2707276727_67_874]
[07_37_37_1727_17_47_7]

T,T+3,T2+4T+1

Y2=X3 4+ (3T 4272 4+2T+2) X +TO+T4+3T3+2T2+T+3
Y2=X3+(3T4+3T24+2T+3) X +TO+4T*+T3+4T+4
Y2=X3 4+ (3T44+T34-4AT? 44T+ 2) X+ T 4275+ 3T44-4T3 44T +-T+2
Y2=X34+(3T4+4T3+3T24+4T+3) X +T6+2T54+3T*+2T+1

[0,—2,—2,—8,4,6,8,6]
[-1,-2,-3,—-4,—3,—4,7,—7]
[3,0,3,—4,—7,2,—1,—1]
[-3,—4,—1,-8,7,—6,—7,3]

T,T+4,T%+4T+2

Y2=X3+4+(3T4+4T3 4+ T2+ T+3) X +T0+2T5 4274 +2T3 4272 +3T+1
Y2=X34+(3T4+4T3+T?+3T+2) X +T64+2T5+2T4+3T+3
Y2=X34(3T4+4T3+4T%+4T+2) X + T4+ 2T5 43744+ 4T3+ T2 +4T+3

[71773772772772772775775]
[72773771717177574772}
[27272727_67_2767_2}

T,T42,T%+2T+4

Y2=X34+(3T4+T24+3T+2) X+ T8 +3T5+T*+T2+2T+2
Y2=X3+(3T4+T34+2T2+T+2) X +T6+3T5+3T3+4T%+T+3
Y2=X3+(3T4+T3+3T2+T+2) X +T0+3T5+4T*+2T3+T+3
Y2=X34(3T4+T3+4T?+3T+3) X+ T +T4+2T3+2T2 +T+4
Y2=X34+(3T4 4273 +4T? AT +-3) X +TO+T5 4274 4-3T34-4T24-3T+4
Y2=X34+(3T443T34+2T+3) X +T6+T5+T3+T+4
Y2=X34(3T4+3T3+3T24+T+3) X +T6+4T5 +2T3+T24+T+1
Y2=X3+(3T4+3T34+4T2+2) X +TO+4T5+4T4+4T%+2
Y2=X3+(3T4+4T3 4372 42T +3) X +TO+4T°+ T4+ 3T3+T+1

[—4,0,—2,—2,—8,4,—2,—2]
[0,—4,—2,—2,4,—8,—2,6]
[2,4,0,4,—2,4,6,—2]
[2,2,—2,-6,6,6,—6,2]
[—2,2,2,6,—6,—2,2,—6]
[2,—2,2,-2,-2,-6,2,2]
[0,—2,—4,4,—8,—2,—2,6]
[2,0,4,—8,—2,—8,—2,—2]
[—4,-2,0,—8,4,—2,6,—2]

T, T34+4T+3

Y2=X34(3T44+2T3+3) X +T0+T5+T4+T3+1

[_2707_17_478727_974]

T T34+T2+4T+3

Y2=X3+(3T4+2T24+T+2) X +T6+T4+3T3+2T%+T+2
Y2=X3+(3T4+2T34+T2+T+2) X +TO+T5+3T4+3T2+T+3
Y2=X3+(3T4+2T343T2+T+3) X +TO+T5+273+3T2+3T+1
Y2=X3+(3T4+3T343T2+T+3) X +TO+4T°+3T4+3T724+3T+1
Y2=X34+(3T4+4T3+3T2+4AT+3) X +TO+2T5+3T*+T34+2T2 +T+4
Y2=X34(3T4+4T3+4T%4+3) X +T0+2T5+3T2+2T+4

[2,—3,0,—4,—2,3,—9,—2]
[1,2,-1,3,—2,—1,6,—8]
[—3,0,—3,—1,—4,9,2,6]
[0,—1,—2,—4,4,—3,3,—2]
[-3,—-4,1,—1,—8,—3,—6,—2]
[-3,0,3,3,8,—1,2,—4]

T.T+1,T+2,T+4

Y2=X34+(3T44+4T%+2T+3) X +TO6+T5+T4+3T2+T+1

Y2=X3+ (3T +T34+2T2+4T+2) X +T6+3T°5+2T4+4T3 4272 +3T+3
Y2=X34+(3T44+2T3 4272 +3T+3) X +TO+T4+4T344T2 +4
Y2=X34+(3T4 4373 +4T? +3) X+ T+ TP+ T4 4-4AT3 4 T2 +4T+4
Y2=X34+(3T44+AT3 4372+ T+ 2) X+ TS+ T4 +T+3

[2,—2,—6,2,—2,2,22]
[-2,2,—2,—-6,—6,2,—2,—2]
[2,2,2,2,-2,—2,—6,—2]
[2,—6,—2,—2,2,—22 —6]
[2,—2,2,-2,2,—6,—2,2]

T,7+3,7%+T+1

Y2=X3+(3T4+T3+3T2+T+3) X +T0+3T5+372+3T+1
Y2=X34+(3T4+2T3+3T242) X +T6+3T5+4T4+4T3+2T2 +2
Y2=X34+(3T4+3T3+3T2+3) X +T6+4T5+T3+T2 +4
Y2=X3+ (3T +4T3+T2+T+2) X +T0+2T5+2T2+4T+2

[-1,—4,-3,7,—8,3,—7,—3]
[2,2,0,4,—8,6,8,—6]
[-3,—2,-1,-3,—4,—7,7,9]
[-3,0,—3,-7,—4,—1,—1,—1]

T,T4+4,T%4+T+1

Y2=X34+(3T4+T3+3T2+3T7T+2) X +T6+3T5+4T2+2T+2
Y2=X34+(3T442T3 4272 +2T7+3) X +T64+3T54+-2T4+T3+2T2+3T+1

[3717274775772775772]
[_27_27_276767_67_272}
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C. Tables

Conductor

Curve

Trace

Y2=X34(3T442T3 +2T24-4T+2) X + TS+ T5+2T4+4T+3

[73772771775747177271}

T,T+2,T%+4T+2

Y2=X3+(3T4+4T+2) X +TO+3T5+4T4+4T3+3T2+T+2
Y2=X34+(3T4+4T2+2T+3) X+ T8+ 2T4+T3+3T%+T+1
Y2=X34+(3T44+ T34+ T2 +4T+2) X +TO+3T5 +4T4+2T3 +2T% +T+2
Y2=X34+(3T44+3T34+3T2+2) X +T6+T542T4+T3+3T2+3

[2,1,3,7,—4,—4,2,9]
[—4,-3,-1,—-7,—6,—8,—2,—3]
[2,0,2,8,6,—8,—8,—6]
[0,—3,-3,—-1,2,—4,2,—1]

T,T+1,(T+3)?

Y2=X34 3T44+T24+3) X +T6+3T5+T3+4T2+1
Y2=X3+(3T4+T2+3T+2) X +TO+T4+4T2+37+3
Y2=X34(3T4+T2+3T+2) X+T6+3T4+4+2T3 +4T2 42742
Y2=X3 4+ (3T44-T34-2T2 44T +3) X+ T+ 3T+ 274 4+-4T3 43T +-4T+1
Y2=X34(3T44+T343T2+2) X + T4+ 215 +T*4+T2 42743
Y2=X3+(3T4+T3+3T2+2) X +T6+3T5+2T%+2
Y2=X34(3T*42T3+4T? 4+ T+3) X + T+ T°+T*4+4T3+1
Y2=X34(3T44+2T3+4T24T+3) X+ T +T54+3T44+T2+3T+1
Y2=X34(3T4+2T3 +4T24+-4T+2) X + TS +3T5+4T3+ T2+ T+2

[0,4,6,—4,6,—6,—6,4]
[1,3,3,—8,—6,3,3,—4]
[—4,-2,-2,2,4,—2,—2,—4]
[1,1,1,-4,6,—9,1,—4]
[—2,-2,—2,—2,—10,—6,—2,—2]
[3,3,—7,8,—10,—1,—7,8]
[3,1,3,—4,—6,3,3,—8]
[—2,—4,—-2,—-4,4,—2,—2,2]
[4,0,—6,4,6,—6,6,—4]

T, T344T2%+4 Y2=X34(3T*4+4T+3) X +T6+2T3+T2+3T+4 [~1,-4,-2,0,8,2,—7,—2]
T T34+T+4 Y2=X34(3T*+4T3+3) X +T0+2T5+4T*+3T3 +4 [~1,-2,-4,0,2,8,—7,1]
T, 134272 +T+4 Y2=X34+(3T*+3T2+3T+2) X +TO+4T4+4T3+2T2% +2T+3 [0,2,—4,—3,3,—2,2,—8]

Y2=X34+(3T44+T34+2T24+3T+3) X +T0+3T°+2T44+-3T2+T+4
Y2=X3+(3T4+3T34+T243) X +TO+4T5+3T2+4T+1

Y2=X34+(3T4 43734272427 4-3) X + T 4+-4T54+-2T44+-3T3 4272 + 2741
Y2=X3+ (3T +4T342T%+3T+3) X +T6+2T5+T3+3T2+T+4
Y2=X34+(3T44AT3 44T % +3T+2) X +T6 427542744372 +2T+2

[-2,0,—4,—1,—3,4,8,2]
[3,—3,3,0,—1,8,—4,—4]
1,-3,—1,—4,—3,—-8,2,8]
[-3,-3,—-1,0,9,—4,—6,—8]
[-1,1,3,2,—1,—2,—4,—4]

T, T4+1,T%+2T+4

Y2=X3+(3T4+T342T2+3) X +T8+3T3+3T3+T2%+1
Y2=X34+(3T44+2T3 4272 +3T+3) X +TO+T5+3T2+T+4
Y2=X34+(3T44+3T34+4T%+3T7+2) X +T0+4T°+2T2% +37+3
Y2=X34+(3T44+4T3 4272 +2) X+ T+ T4+ T4 4273427243

[-3,-1,—2,—4,-3,-8,1,—7]
[-1,-3,—4,—8,7,2,3,3]
[-3,-3,0,—4,—7,2,—1,—1]
[2,0,2,—-8,4,2,—6,6]

T.T+2,T+3,T+4

Y2=X34(3T4+T2+T43) X +T04+2T54+4T*4+3124-2T+4
Y2=X34(3T4+T3+T2+3) X +TO+2T°+4T*+2T3+T2+37+1
Y2=X34 (3744273 +3T24-2T42) X + TS+ T5+2T44+-3T3+T2 42743
Y2=X3+(3T4+3T342T%+3T+2) X +T0+4T4+2T+2

Y2=X3+4+ (3T +4T3 4372 +4T+3) X +T6+4T4 4273 +4T2+1

[2,—6,—2,—-2,2,—2,2,—6]
[2,—2,—6,—2,—-6,2,—2,2]
[—2,-2,2,2)—2,—-6,—6,2]
[2,2,—-2,2,2,2)—2 2]
[2,2,2,—6,—2,—2,2,—-2]

T,T+43,T%+3T+3

Y2=X34+(3T4+3T3+T2+2T+2) X +TO+AT5+ T4+ T3 +4T2+4T+3
Y2=X3+ (3T +3T344T%+3T+3) X +T0+4T5+3T*+ 134272 +T+4
Y2=X3 4+ (3T +3T34+4T2+4T+2) X +TO+4T5+3T4+T+2

[27272776727767276]
[_27_17_37_27_271717_5]
[_17_27_371717_27_274}

T,T42,T%+2 Y2=X34+(3T*+T2+T+3) X +T6+3T2+2T+4 [-3,—1,-4,3,—7,—3,3,2]
Y2=X34+(3T4+T34+2T2+2T+3) X +TO+4AT*+T34+2T2 +T+1 [0,2,2,6,8,—6,—6,2]
Y2=X34+(3T4 4273 4372 4T+ 2) X +TO+ T+ T3 4272 +37+3 [-1,-3,-2,—7,7,9,1,—§]
Y2=X34(3T44+3T3+2T2 +4T+3) X + TS +4T5 +2T2 +4T+1 [-3,-3,0,-1,—-1,—-1,-1,2]

T T4+4,T244T+1 | Y2=X34(3T4+4T244T+2) X +TO+T5+4T4+ T2 +4T+3 [0,—4,—2,—8,—2,6,—2,—2]

Y2=X34+(3T44+T3+T+3) X +T6+2T°+3T3+2T+1
Y2=X34+(3T44+T34+T2+2) X+T0+3T5+T4+4T%+3

[7272727727727767672]
[072747_27_876747_2}

158

Continued on next page




C.5. Table for non-primes of degree 4 over F5

Conductor

Curve

Trace

Y2=X3+(3T4+T342T24+3T+3) X+ T +3T°+ T3+ T2 +2T+4
Y2=X34+(3T44+2T3+T24+4T+3) X + T +4T*+T3+2T2+2T+1
Y2=X3+(3T4 42734272 +3T+2) X + T+ T3+ T4+ T3+2T+2
Y2=X3+(3T4+2T343T2+3T+2) X +TO+T°+4T3+4T2 42T +2
Y2=X3+(3T4+3T3 4272+ T+3) X+ T +3T° +4T4+4T3+2T+4
Y2=X34+(3T44+4T3+T?4+2T+3) X +T5+2T5+T4+3T3+3T+4

[—2,0,—4,—8,4,—2,—8,—2]
2,2,—2,6,—6,2,—6,—6]
[4,2,0,—2,4,—2,—8,6]
[—4,0,—2,4,—2,—2,—2,—2]
[—2,—4,0,4,—8,—2,4,6]
[2,—2,2,-6,6,2,—2,2]

T,T+1,T%+3T+4

Y2=X3+(3T4+2T2+T+3) X +T0+T4+3T3+37T+1
Y2=X34+(3T443T2+T+2) X +T0+4T*+4T3+2T2+2T+2
Y2=X34(3T442T3+T24+2T+2) X+ T +4T5+2T44-2T34+4T24-2T+3
Y2=X34+(3T44+3T3 4272 +2T+3) X +TO+4T5 +2T4 +4T+4

[—1,-3,—2,—3,—4,—-8,2,7]
[0,—2,—2,4,—8,2,—-8,8]
[3,3,0,—7,—4,2,2,—1]
[—3,—1,—4,7,—8,2,—2,—7]

T,T+1,(T+2)?

Y2=X34 3T44+T24+3) X +T6+4T54+-3T*+3T2+4
Y2=X34(3T442T2 +4T+2) X +T0+2T5+2T4 4273+ T2 +T+2
Y2=X34(3T442T2 +4T+2) X +TO+ T3+ T4 +3T34+4T% +4T+3
Y2=X3+(3T4+T3+T2+3T+2) X +TO+4T° +3T44+T3+4T2 +2T+2
Y2=X34(3T*4+T34+4T2+2T+3) X +T64+4T3 + T2+ T+1
Y2=X34+(3T4+T34+4T2+2T+3) X +T6+3T5+4T4+2T3+2T2 +4T+4
Y2=X34(3T4+2T3+4T%42) X +TC+3T5+3T3+T2+2
Y2=X34(3T4+2T3+4T242) X +TO+T5+3T4+2T2+2

Y2=X3 4+ (3T44-4T3 42T 2+ T+3) X+ TS +4T5+ 37444734272 4-3T+1

[0,4,—4,6,6,4,—6,—6]
[-3,-3,8,—7,—10,—4,2,2]
[2,2,—2,—2,-10,6,2,2]
[—4,0,4,—6,6,—4,—6,—6]
[3,1,—4,3,—6,—8,6,—6]
[—2,—4,—4,—-2,4,—8,6,—6]
[4,2,2,—2,4,—2,—6,6]
[-1,-3,-8,3,—6,8,—6,6]
[1,1,—4,1,6,—4,6,6]

T, T34T243T+4 | Y2=X34-(3T*+2T3+4T%4+3T+3) X +T0+4T5 4274 +4T+1 [0,0,3,0,—1,—1,2,—7]

T,7+43,T%+3 Y2=X34+(3T*+T3+T%+3) X +T0+3T5+2T*+4 [-3,—1,-4,3,—7,—6,—8,—2]
Y2=X34(3T44+T34+2T2+3T+2) X +TO+ T3 +4T*4+-2T3+2T+2 (1,3,2,—7,7,—4,—4,2]
Y2=X3+4 (3744273 +2T 24+ T+3) X+ T+ 15 +4T*+ T2 +2T+4 [0,2,2,6,8,6,—8,—8]
Y2=X34(3T44+4T3+2T2 +3T+3) X +TO +4T5 +2T4 +4T+1 [-3,-3,0,—1,—1,2,—4,2]

T T3+4T2+3T+4 | Y2=X34(3T*+T2+3T+3) X +T6+4T5+3T4+4T+1 (3,3,—3,0,8,—1,—4,—4]

Y2=X34+(3T44+2T3+ T2+ T+2) X+ T+ T5+4T4+T%+T+3
Y2=X3+(3T4 42734272 +2) X + T +4T5+4T*+3T3+3T2 42
Y2=X34(3T4+2T3+2T243T7+3) X +T6 427542744373+ 2T2+4T+1
Y2=X3+(3T4+3T342T2+T+3) X+ T +4T°+2T4+3T2+2T+4
Y2=X3+(3T4+3T3 4272 +4T+3) X +T0+4T° +2T4+-4T3+3T+4

[1,-3,-1,-2,-2,—1,—4,2]
[0,4,—2,3,—-2,3,2,—4]
[1,—-1,-3,—4,—8,—3,2,—2]
[—2,—4,0,—1,4,—3,8,4]
[-3,—1,—-3,0,—4,9,—6,—6]

T,T+3,T%+2T+3

Y2=X34+(3T44+2T2 42T +2) X +T6+T5+3T4+2T34+2T+3
Y2=X3+(3T4+T3+2) X +T0+3T5+4T*+2T3+2T24+4T+3
Y2=X34+(3T4+T34+4T2 +4T+2) X +T6+3T5+T44+-4T3+4T2 +T+2
Y2=X34(3T44+2T3 +4T24+3) X + T+ T3 +3T4+T3+2T2+1

[0,3,3,2,—1,—4,—7,—1]
[—2,—1,—-3,—4,7,—4,—-3,1]
[—2,0,—2,6,8,—8,4,—6]
[—4,-3,-1,—-6,—7,—8,7,3]

T(T+1)%,T+4

Y2=X34+(3T44+T?+T+2) X +T6+2T°+3T3+2T%+T+3
Y2=X3+(3T+T2+T+2) X +T6+3T4+3T3+37+2
Y2=X34(3T4+2T3+3T242T7+3) X +T043T543744+273+3T2+3T+1
Y2=X34+(3T443T3+3T+3) X +TC+T4+4T3+T2 41
Y2=X34(3T4+3T3+3T+3) X+ T+ T5+2T4+4T3+2T2 +T+1
Y2=X34+(3T4+3T3+4T?+T+2) X +T6+3T5+3T4+3T3+T2+T+2
Y2=X34(3T4+4T3+T24+2T+2) X+ TO+3T5+3T4+4T3+4T2+4T+3

[4,2,—6,6,—2,—4,—8,—2]
[-1,-3,-6,6,3,—4,—8,3]
[1,1,6,6,—9,—4,—4,1]

[2,2,2,2,-6,—2,6,—2]

[—3,-3,2,2,—-1,8,—4,—7]
[0,4,—6,—6,—6,4,—4,—6]
[—4,0,—6,—6,—6,—4,4,6]
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C. Tables

Conductor | Curve Trace
Y2=X34(3T44+4T3 +4T24-2) X +T64+-2T5 +4T4+ T3 +4T+2 [~2,—4,6,—6,—2,2,—2,—2]
Y2=X34(3T4+4T3 +4T?4+2) X +T6+4T5+4T3 +4T2+3 (3,1,6,—6,3,—8,8,3]

T, T342T%+4T+4 | Y2=X34+(3T44+3T344T24-2T+3) X +T64+-4T54-2T% +-4T+1 [0,3,0,0,—1,—1,2,2]

T T+2,T%24+T+2

Y2=X3+(3T4+T3+T24+2T+2) X +T0+3T°+4T24+2T+3
Y2=X34(3T4+3T3 +4T24+2T+2) X +TO+4T44+-2T3 +2T724+2T+3

Y2=X34(3T4+3T3+4T24+3T+3) X+ TO4+4T5 43744+ 4T34+2T2+T+4

[17273717177277273]
[7277277272776776772776}
[_27_17_37_27_2717_573]

T2,7+2,T+3 Y2=X34(3T*) X +T64274 [1,1,6,—9,1,—4,—4,6]
Y2=X34+(3T4+T?) X +T+2T2 (3,3,-10,—1,—7,8,—4,2]
Y2=X34+(3T*+T?) X +TO+T5+T*+273 [~2,-2,-10,—6,—2,—2,6,2]
Y2=X34(3T44+T3+3T2) X +T64+4T3 [0,4,6,—6,6,—4,—4,—6]
Y2=X34+(3T44+T34-3T24-2T) X +TO+3T° +T44-2T3 4372 12T (1,3,—6,3,3,—8,—8,—6]
Y2=X34(3T44+T343T2+2T) X +T64-3T5+3T4+4T3 4312 [—4,-2,4,—2,—2,2,—8,—6]
Y2=X34(3T4+4T3+3T2) X +T54T3 [4,0,6,—6,—6,4,4,—6]
Y2=X34(3T*+4T3+3T24+3T) X +T0+2T5+T4+3T3+3T%+3T (3,1,—6,3,3,—4,8,6]
Y2=X34+(3T44+4T34+3T2+37) X +T6+2T5+3T4+T3+37T2 [—2,—4,4,—2,—2,—4,—2,6]
T2 T24T+1 Y2=X34+(3T*+3T2) X +TO+4T5+4T*+T3 [2,0,0,2,4,—4,—2,—8]
Y2=X34+(3T*+T34+3T) X +TC+3T5+4T*+T3+2T [~2,—-2,—1,—1,4,—4,7,2]
Y2=X34(3T*4+2T3 +3T2) X +T6+4T5+T44+4T3 [-2,-2,2,—4,—8,8,—2,—4]
Y2=X34(3T4+4+3T3) X +T644T54-4T* [0,-2,—1,-3,4,—2,1,4]
Y2=X34+(3T44+3T3+4T%) X +T6+4T5+T3 [—2,0,—4,0,2,2,—6,2]
T2,(T+1)2 Y2=X534,3T442T2) X +T5+37543T3 [-3,-3,0,—4,4,—7,2,8]
Y2=X3+(3T4+2T2) X +T6+4T5+273 [2,2,0,6,—6,—2,2,—2]
Y2=X34+(3T44+T34+3T2) X +T6+4T4 42734272 [4,1,—1,—4,—1,1,6,—4]
Y2=X34+(3T4+T34+3T2) X +TO0+T5+4T4+4T3 [~1,1,4,—4,4,1,6,—4]
Y2=X34(3T*42T3+T) X +TO+3T54-2T3 + T2 42T [0,—3,—3,8,1,—7,2,—4]
Y2=X34(3T442T3+T) X +TO+2T5 373 +4T2 [0,2,2,-2,—4,—2,2.6]
Y2=X3+(3T4+3T3) X +T6+T1° [3,—1,2,4,8,1,—4,—6]
Y2=X34(3T4+3T3) X +T8+275+T* [~2,-1,-3,—6,3,1,—4,4]
Y2=X34+(3T44+3T3) X +T64+4T°+3T4 (—2,4,2,—-1,—7,1,—9,—1]
Y2=X34(3T*4+4T3 +4T?4+-3T) X +TS+T [2,—1,3,—6,—3,1,—4,4]
Y2=X34 (3T +AT3 +4AT2 +3T) X +TO 4TS5+ T4 4T3+ T2 [-3,—1,—2,4,—8,1,—4,—6]
Y2=X34(3T4+4T3+4T?+3T) X +T8+2T5+3T*+2T73+3T2+3T (2,4,—2,—1,7,1,—9,—1]
T2, (T+4)2 Y2=X534,3T442T2) X + T 2754273 [0,—3,—3,—4,4,—2,—8,—2]

Y2=X34+(3T44+2T%) X +T6+T543T3
Y2=X3+(3T4+T3+4T2+2T) X +T0+4T
Y2=X34+(3T44+T34+4T?+2T) X+ T+ T+ T4+ T3 +T72
Y2=X3+ (3T +T3+4T24+27) X +T0+3T°+3T44+-3T3+3T2 42T
Y2=X34+(3T4+2T3) X +T%+375+T*
Y2=X34+(3T4+2T3) X +T%+T5+3T*
Y2=X34+(3T44+2T3) X +T6+4T5
Y2=X34+(3T44+3T34+4T) X+ T +2T°+3T3+T2+3T

[0,2,2,6,—6,8,2,—2]
[3,—1,2,-6,-3,2,—7,—2]
[-2,—1,-3,4,—8,2,—2,—2]
[—2,4,2,—-1,7,—3,—-2,3]
[-3,-1,-2,-6,3,—2,7,2]
2,4,—2,—-1,-7,3,2,-3]
[2,—1,3,4,8,—2,2,2]
[-3,-3,0,8,1,—2,1,—2]
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C.5. Table for non-primes of degree 4 over F5

Conductor | Curve Trace
Y2=X34(3T44+3T3+4T) X +TO+3T54-2T3 4472 [2,2,0,-2,—4,—2,—4,8]
Y2=X34(3T44+4T3+3T?) X +T6 447443734272 [~1,1,4,—4,—1,—6,—1,—6]
Y2=X34(3T44+4T3+3T2) X +T6+4T5+4T4+T3 [4,1,—1,—4,4,—6,4,—6]

T2 T244T+1 Y2=X34+(3T*+3T2) X +TO+T5+4T*+4T3 [2,0,0,2,4,—4,6,8]
Y2=X3+(3T4+2T3) X +T0+T5+4T4 [-3,—-1,—2,0,4,—2,3,—8]
Y2=X34+(3T442T3+4T%) X +T6+T5+4T3 [0,—4,0,—2,2,2,2,—6]
Y2=X34+(3T44-3T3 43T X+ T+ T+ T4 +73 [—4,2,—2,—2,—8,8,—10,4]
Y2=X34(3T4+4T3 +2T) X +TO+2T5+4T4 4T3 43T [~1,—1,—2,—2,4,—4,—1,4]

T2,7%242 Y2=X34+(3T4) X +T64-4T74 [—4,1,1,—4,—9,—4,6,1]
Y2=X3+(3T*+2T7%) X +T%+3T2 [0,—3,—3,0,—1,8,2,—7]
Y2=X34+(3T44+2T2) X +T5+3T4 [0,2,2,0,—6,—2,2,—2]
Y2=X3+(3T4+2T3) X +T0+T5+2T4 [2,~1,3,0,3,—2,—8,—3]
Y2=X34+(3T44+3T3) X +T64+4T° 274 [0,3,—1,2,3,—4,6,9]

T2 T24T+2 Y2=X34+(3T*+T3+T) X +T0+3T5+4T*+4T2 [-3,1,—4,0,9,4,—3,—1]
Y2=X34(3T4+T34+2T2) X +T6+4T*+2T3 (3,1,-2,2,3,—8,—3,9]
Y2=X34(3T44+T343T2) X +T0 421542744473 [0,4,1,—1,6,4,—9,—9]
Y2=X34(3T4+2T3 +2T?) X +T64+-T5 42744273 [~4,0,-1,—-1,—6,—4,—1,1]
Y2=X34+(3T4+3T3) X +T° [0,—2,—1,—-3,—6,—2,—9,—1]
Y2=X34(3T4+3T3) X +T0+4T54+4T44313 [0,—2,4,2,—6,—2,6,—6]
Y2=X34+(3T*+3T3+3T2) X +T6+4T5+4T3 [1,-3,—2,—2,—3,8,5,7]
Y2=X34+(3T44+-4T3) X +T64-4T5 (3,—3,0,4,3,4,—3,—3]

T2, 7+3,T+4 Y2=X34+(3T4) X +T64+2T5+3T* [1,1,—4,1,—4,1,6,—4]
Y2=X34+(3T44+T34-3T2) X +T5 42754374413 [0,4,—4,—6,—4,6,6,4]
Y2=X34(3T44+T34+4T?) X +T6 4274+ T3 4272 [-3,-3,—4,—7,8,—7,—10,—4]
Y2=X34(3T44+T34+4T?) X +T64-2T5 274 4+4T3 (2,2,6,—2,—2,—2,—10,6]
Y2=X34+(3T442T3 42T ) X+ TO+T5+4T4+T2 [—2,—4,-2,—2,—4,—2,4,—8§]
Y2=X34+(3T*4+2T3+2T) X +TO+3T%+4T3+2T2%+3T (3,1,8,3,—4,3,—6,—8]
Y2=X34 (3744273 4+2T2) X +T6+21° 4374 27 [—4,0,4,6,4,—6,6,—4]
Y2=X34+(3T4+3T3+4T?+2T) X +TS+T5+3T3+3T2 [4,2,—8,—2,2,—2,4,—2]
Y2=X34+(3T4+3T3+4T24+2T) X + TS +4T5+-3T*+T3+4T2% +4T [-1,-3,-8,3,—8,3,—6,8]

T2,T+1,T+2 Y2=X34(3T*) X +T6437543T4 [1,1,—4,1,—9,—4,6,6]
Y2=X3+ (3T 4+2T344T%+3T) X +T6+4T5+2T3+31? (2,4,—-8,—2,—2,—4,—6,6]
Y2=X34+(3T44+2T3 +4T?+3T) X +TO+TO5+3T4+4T3+4T% +T [-3,-1,-8,3,3,—4,—6,6]
Y2=X34+(3T*+3T3+3T) X +TO0+2T5+T3+2T2+2T (1,3,8,3,3,—8,6,—6]
Y2=X34+(3T4 4373 4+-3T) X+ T +4T5+-4T4 412 [—4,-2,—2,—2,—2,2,6,—6]
Y2=X34 (3744373 +2T2) X +T643T5+374 4373 [0,—4,4,6,—6,—4,—6,—6]
Y2=X34+(3T4+4T3+3T2) X +T6+3T5+3T4+4T3 [4,0,—4,—6,—6,4,—6,—6]
Y2=X34+(3T44+4T3+4T2) X +T6+274 +4T3 2772 [-3,—3,—4,—7,—1,8,2,2]
Y2=X34+(3T44+4T34+4T2) X+ T+ T5+ T4 (2,2,6,—2,—6,—2,2,2]

T2 T244T+2 Y2=X34+(3T44+T3) X +T54+1° [4,0,—3,3,3,4,—2,2]

Y2=X34+(3T*+27T°) X +T°

[_37_17_2707_67_27_277]
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C. Tables

Conductor | Curve Trace
Y2=X34(3T4+2T3) X + T4 T54+4T4 4273 [2,4,—2,0,—6,—2,—2,2]
Y2=X34+(3T4+2T3+3T2) X +T6+T5+T3 [~2,—2,—-3,1,-3,8,4,—2]
Y2=X34+(3T4+3T3+2T2) X +T6+4T5+274+3T3 [~1,-1,0,—4,—6,—4,4,1]
Y2=X34(3T44+4AT3 +4T) X + T+ 2T 5 +4T4+-4T? [0,—4,1,—3,9,4,—2,—2]
Y2=X34(3T*4+4T3+2T?) X +T6+4T*4-37° [2,-2,1,3,3,—8,—8,2]
Y2=X34(3T44+4T3+3T?) X +T64-3T7° 4274 4T3 [~1,1,4,0,6,4,4,—1]

72,7243 Y2=X343TH)X+T64+T* [1,—4,—4,1,—9,—4,1,6]
Y2=X3+(3T*+3T%) X +T%+3T2 [-3,0,0,—3,—1,—4,—7,2]
Y2=X34(3T*+3T2) X +T64274 [2,0,0,2,—6,6,—2,2]
Y2=X34+(3T4+T3) X +T%+3754-37* [~1,0,2,3,3,—2,—3,6]
Y2=X34(3T44+4T3) X +T6 42754374 3,2,0,—1,3,2,9,—8]

T2, 74+2,T+4 Y2=X34+(3T*) X +T+T>+2T4 [1,1,1,—4,—4,6,—4,—9]
Y2=X3+(3T4+T3+4T) X+ TS +3T°+T4+ 12 [—4,—2,—2,—2,-8,4,2,—2]
Y2=X3+(3T4+T3+4T) X +TO+4T5+3T3+2T2 44T [1,3,3,8,—8,—6,—8,3]
Y2=X34(3T4+T34+3T2) X+ T4+ T542T4 4413 [0,—4,6,4,—4,6,—4,—6]
Y2=X34+(3T4+3T3+T2) X +T6+3T*+273+2T2 [-3,-3,—7,—4,—4,—10,8,—1]
Y2=X34+(3T*+3T3+T2) X +T8+T5+3T4+373 [2,2,—2,6,6,—10,—2,—6]
Y2=X34(3T44+3T34+2T2) X+ 16+ 1542744273 (4,0,—6,—4,4,6,4,—6]
Y2=X34(3T* 4T3 + T2 +4T) X +T6 42T+ 274 +2T3 +4T% 2T [-3,-1,3,—8,8,—6,—4,3]
Y2=X34+(3T44-AT3 4T 4-4AT) X +TO+3T° +T34-372 [2,4,—2,—8,—2,4,—4,—2]

T2,T24+2T+3 Y2=X34(3T*+T3) X416 [~1,0,—3,—2,—2,—6,—2,7]
Y2=X3 4 (3T44+T3) X +T6 43754+ T444T3 [4,0,2,-2,—-2,—6,—2,2]
Y2=X34(3T4+T34+2T2) X +T6 43754273 [~2,1,-2,-3,8,—3,—8,—9]
Y2=X34+(3T442T34+3T) X +TO+T5+T44+4T2 [—4,-3,0,1,4,9,—8,—5]
Y2=X34(3T44+2T3+2T2) X +T6+4T5+3T4+2T3 (1,0,—1,4,4,6,4,—1]
Y2=X34+ (3744273 43T X+ T+ T4 413 [-2,3,2,1,—8,3,4,—7]
Y2=X34(3T*4+37%) X +T6+3T5 [0,3,4,—3,4,3,—4,1]
Y2=X34(3T44+4T3+3T?) X +T6 42754374413 [~1,—4,—1,0,—4,—6,4,9]

T2,T243T+3 Y2=X34(3T44+T343T2) X +T64-3T5+3T44+4T3 [0,-1,—4,—1,—4,—6,—9,1]
Y2=X34(3T44+2T3) X +T642T5 [—3,4,3,0,4,3,—7,—3]
Y2=X34+(3T4+3T3+2T) X +TO+4T>+T*+4T2 [1,0,—3,—4,4,9,1,—1]
Y2=X34(3T*+3T3+2T2) X +T6+T5+374+3T3 [4,-1,0,1,4,6,—1,—9]
Y2=X3+(3T4+3T343T2) X+ T+ T4+473 [1,2,3,—2,—8,3,5,9]
Y2=X34(3T*4+4T3) X +T° [-2,-3,0,—1,—2,—6,7,—1]
Y2=X3 4 (3T44+4T3) X +T6 42754+ T4 4T3 [~2,2,0,4,—2,—6,2,—6]
Y2=X34+(3T44+4T3+2T?) X +T6+275+37T3 [-3,—2,1,—2,8,—3,—3,7]

T2,7+1,T+3 Y2=X34(3T*) X +T6 44754274 [1,1,1,-4,6,6,1,—4]

Y2=X34+(3T44+T3+T2+T) X +T8+2T5+4T3 4372
Y2=X34+(3T44+T3+T2+T) X +T6+3T54+2T4+3T34+4T2+3T
Y2=X34+ (3744273 +T2) X +T64-3T744-3T734-272

Y2=X3 43744273 +T2) X +T5 43754474

[4,2,—2,—8,6,—6,—2,2]
[-1,-3,3,-8,6,—6,3,—8]
[-3,-3,-7,—4,2,2,—7,8]
[2,2,—-2,6,2,2,—2,—2]
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C.5. Table for non-primes of degree 4 over F5

Conductor | Curve Trace
Y2=X34 (3744273 +2T2) X +T64+4T5 42744373 [0,4,—6,—4,—6,—6,6,—4]
Y2=X34 (3T 4T3 +T) X +TO+T5+2T3 +2T2+T [3,1,3,8,—6,6,3,—4]
Y2=X34+(3T4+4T3+T) X +TS+2T5+T4+T72 [~2,—-4,-2,—2,—6,6,—2,—4]
Y2=X34(3T*+4T3+3T2) X +TO+4T5+2T*+T3 [—4,0,6,4,—6,—6,—6,4]

T2, T+1,T+4 Y2=X34+(3T*)X+T5+43T* [1,1,-9,6,6,—4,—4,1]
Y2=X34+(3T*+4T%) X +T6+2T2 (3,3,-1,—10,2,—4,8,—7]
Y2=X34(3T*4+4T?) X + TS +2T54+-4T*+T3 [-2,—-2,-6,—10,2,6,—2,—2]
Y2=X34(3T44+2T3+2T2) X +T6 4273 [0,4,—6,6,—6,4,—4,6]
Y2=X34(3T44+2T3 +2T2+T) X + TS+ T3 +2T*+2T3+3T2 [—4,—2,—2,4,6,—2,2,—2]
Y2=X34(3T44+2T3 +2T2+T) X+ T+ T3 +AT4+ T3 +3T2+4T [1,3,3,—6,6,8,—8,3]
Y2=X34(3T*+3T3+272) X +T6+3T3 [4,0,—6,6,—6,—4,4,—6]
Y2=X34(3T*4+3T3 +2T24-4T) X + T +4T5 42T+ +373 4372 [—2,—-4,—2,4,—6,—8,—4,—2]
Y2=X34(3T44+3T3+2T2+4T) X +TO 4TS5 +4T4 4T3 4372 4T [3,1,3,—6,—6,—8,—4,3]

T2,(T+3)2 Y2=X343T44+3T2) X +T0+27°+4T3 [2,0,2,—6,6,—4,—2,2]
Y2=X34(3T44+3T2) X +T644T54T3 [-3,0,—-3,4,—4,1,8,—8]
Y2=X34 (3T4+T34+2T) X +TO+T5+T3+4T2 [0,2,2,—4,—2,—6,6,—4]
Y2=X34+(3T4+T34+2T) X + TS +4T>+4AT3+T24+T [0,—3,—3,1,8,4,—4,1]
Y2=X34(3T4+2T3+T2+T) X +T%43T [2,3,—1,—3,—6,8,4,—7]
Y2=X34(3T*42T3 + T2+ T) X +TO+T54-2T4 4T3 +-3T2 44T [2,—-2,4,7,—1,—7,—1,-2]
Y2=X34(3T*42T3 +T2+T) X + T+ 2175 +4T*4-3T3 + T2 [-3,-2,—1,—-8,4,3,—6,—2]
Y2=X34(3T44+3T3 42T X +T64+-T4 441734272 [4,-1,1,—1,—4,4,—4,—1]
Y2=X34+(3T4+3T3+2T2) X +T6+3T5+T4+3T3 [~1,4,1,4,—4,—1,—4,4]
Y2=X34(3T44+4T3) X +TO+T54+4T* [~2,-3,—1,3,—6,—8,4,7]
Y2=X34(3T44+4T3) X +T6 42754274 [-2,2,4,—7,—1,7,—1,2]
Y2=X34(3T*4+4T%) X +T%+3T5 (3,2,—1,8,4,—3,—6,2]

T2,T242T+4 Y2=X34(3T*4+2T2) X +T0+3T5+T4+3T3 [0,2,2,0,—4,4,—2,2]
Y2=X34(3T*+T3) X +T6+3T54+ T4 [~1,0,—3,-2,—2,4,—2,7]
Y2=X3 4 (3T4+T3+T2) X +TO+3754-373 [—4,-2,0,0,2,2,6,—2]
Y2=X34+(3T*42T3+4T) X +TO+T5+T4+3T3+4T [-1,-2,—1,—2,—4,4,—4,—7]
Y2=X34(3T44+4T342T2) X +T6+37° 4474273 [2,—2,—4,-2,8,—8,2,2]

T2,T24+3T+4 Y2=X34+(3T44+2T2) X +T8+2T5+T4+2T3 [0,2,2,0,—4,4,—2,—8]
Y2=X34(3T44+T34-2T2) X + T 427544744373 [~2,—4,-2,2,8,—8,2,—4]
Y2=X34(3T*4+3T3+T) X+ TS +4T>+T*+2T3 4T [—2,—-1,—2,—1,—4,4,2,2]
Y2=X34(3T44+4T3) X + T8 +275+ T4 [-2,-3,0,—1,—2,4,—8,4]
Y2=X34+(3T4+4T3+T2) X +T6+2T3+2T3 [0,0,—2,—4,2,2,—2.2]

T2,(T+2)? Y2=X34 3T44+3T2) X +T643754T3 [2,0,2,—6,6,—4,—2,2]

Y2=X34+(3T4+3T2) X +T0+T54+4T3
Y2=X34+(3T44+T3) X +T5%+2T5
Y2=X34+(3T4+T3) X +T6+3T5+2T4
Y2=X3+4+(3T4+T3) X +T6+4T5+4T*
Y2=X34(3T44+2T3+4+2T2) X +TO+T4+T3+2T2

[-3,0,—3,4,—4,1,-2,2]
[-1,2,3,8,4,—7,2,—4]
[4,2,—2,-7,—1,—2,—3,—9]
[-1,-3,—-2,3,—6,—2,2,—4]
[1,-1,4,—1,—4,4,—6,6]
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C. Tables

Conductor

Curve

Trace

Y2=X34(3T4+2T3+2T2) X +T6+2T5+T4 4273
Y2=X34+(3T44+3T3+T2+4T) X +T6+2T
Y2=X34(3T44+3T3+T2+4T) X +T6+3T5+4T4+2T3+T2
Y2=X3+(3T4+3T3+T2+4T) X +TO+4T°+2T44+T3+3T%+T
Y2=X34(3T44-4T343T) X+ TS+ T5+T34+T2 44T
Y2=X34(3T4+4T3+3T) X +TO+4T>+4T3+4T?

[1.4,-1,4,—4,—1,-6,6]
[—1,3,2,-3,—6,2,—2,—4]
[-1,-2,-3,-8,4,7,—2,—4]
[4,—2,2,7,—-1,2,3,—9]
[—3,-3,0,1,8,—8,—2,2]
[2,2,0,—4,—2,2,8,2]

T,T+1,T?+4T+1

Y2=X34+(3T44+3T3 4212+ T+2) X + T8 +4T542T44-T+3
Y2=X34+(3T4+3T3+2T24+3T+3) X + TS+ TS+ T4+ T2 +T+1
Y2=X34+(3T4+4T3+3T24+2T+2) X +T6+2T5+4T2 +3T+2

[717727737757473775772]
[727727727676776772776]
[27173747757377271]

TT34+T24+1

Y2=X34+(3T*+T+3)X+T+3T3+T2+2T+4

[077277477178727274}

T,(T+2)2,T+4

Y2=X34+(3T44+T24-3) X +T64+-2T° +4T3 +4T% +1
Y2=X34+(3T4+T24+2T+2) X + T8 +T*+4T2% +2T+3
Y2=X3+(3T4+T2+2T+2) X +T6+3T4+3T3+4T%+3T+2
Y2=X3+(3T4+3T34+4T2+T+2) X +TO+2T°+ T3+ T2 +4T+2
Y2=X34+(3T443T3 44T 2 +4T+3) X +TO+4T+ T4+ T3 +1
Y2=X34(3T4+3T3+4T24+-4T+3) X + TS +4T5+3T4+T2+2T+1
Y2=X34+(3T4+4T3 +2T2+T+3) X +T64+2T5+2T4+T3+3T2+T+1
Y2=X34(3T4+4T3+3T24+2) X+ T +T5+T4+T34+2T2+2
Y2=X3+ (3T +4T3+3T%+2) X +T0+2T5+2T2+2

[4,0,6,—4,—4,—6,4,—6]
[3,1,3,—8,—8,—6,8,6]
[—2,—4,—2,2,—8,—6,—2,6]
[0,4,—6,4,4,—6,—4,—6]
[1,3,3,—4,8,6,—8,—6]
[—4,-2,—2,—4,—2,6,—8,—6]
[1,1,1,—4,—4,6,—4,6]
[—2,-2,—2,—2,6,2,6,2]
[3,3,—7,8,—4,2,—4,2]

T T+3,T%4+T+2

Y2=X34(3T4+T+2) X+T6+2T5+4T4+T343T24+4T+2
Y2=X3+(3T4+4T?+3T+3) X +T0+2T4 +4T3 43172 +4T+1
Y2=X3+(3T4+2T343T2+2) X +T0+4T°+2T4+4T3+3T2+3
Y2=X3+4+ (3T +4T34+ T2+ T+2) X +T0+2T5 +4T*4+3T3 +2T2+4T+2

[3,1,2,7,—4,—7,—3,1]
[-1,-3,—4,-7,—6,3,7,3]
[-3,-3,0,—1,2,—1,—7,—1]
[2,0,2,8,6,6,4,—6]

T, T34+T+1

Y2=X34+(3T44+T34+3) X +T64-3T54+4T4 4273 +4

[07_47_27_17278727_1]

T,7+1,T+2,T+3

Y2=X34(3T4+T2+4T+3) X+ TO+2T5+T4+3T3+4T2+3T+1
Y2=X34(3T4+T3+3T2+T+3) X +T0+4T44313+4T2+1
Y2=X34(3T4+2T3+2T2+27+2) X + T +4T4+37+2
Y2=X34+(3T4+3T3+3T2+3T+2) X + TS +4T54+2T*+2T3+T2 +3T+3
Y2=X34+(3T44+4T3+T24+3) X +TO+T5+T4+3T3+2T2+4

[2,—6,—2,2,2,—6,—2,—2]
[2,2,2,-6,—2,—2,2,—2]
[2,2,-2,-2,-6,—2,-6,2]
[—2,-2,2,-2,2,2 —2 —6]
[2,—2,-6,2,—2,2,2,2]

T, T4+4,T%24+3T+4 | Y2=X34+(3T44+T342T24+2) X +T64-4T54+T44-373 427243 [2,0,2,—8,4,—6,8,—8]
Y2=X34(3T4 4213 +4T2 4 2T42) X +TO+T542T24-2T+3 [0,—3,—3,—4,—7,—1,—1,2]
Y2=X34+(3T*+3T3+2T24+2T+3) X +T6+4T5+3T2 +4T+4 [~4,-3,—-1,—-8,7,—3,—7,—2]
Y2=X34(3T4+4T3+2T2+3) X +T0+2T°+2T3+T2+1 [-2,—1,-3,—4,—3,9,7,2]

T, T343T%24+T+1 | V2=X34(3T4+3T2+2T+2) X +T0+4T*+T3 4272 +37+3 [—3,—4,2,0,3,—2,—2,9]
Y2=X3+(3T4+T34+2T2 42T +3) X+ T +3T° +4T3+3T2 +4T +4 [0,—1,—3,-3,9,—4,—2,—1]
Y2=X34 (3T +T34+4T2 42T 42) X +T6+3T°5+2T*+3T2+3T+-2 [2,3,1,-1,—-1,-2,2,1]
Y2=X3+(3T44+2T34+T2+3) X +T6+T5+3T2+T+1 [0,3,-3,3,—1,8,8,—7]
Y2=X34(3T44+2T3 +2T24+3T+3) X + TS+ T5+2T4+2T34+2T2 +3T+1 [—4,-1,-3,1,—3,—8,2,3]
Y2=X34(3T4+4T3 +2T242T+3) X +T 6 +2T54+-2T4+3T2+4T+4 [~1,-4,0,—2,—3,4,—4,—9]

T, T+4,T?4+2T+4 | Y2=X34+(3T4 4272 +4T+3) X +TO6+T44+2T34+2T+1 [-2,—3,—-1,-3,—4,9,—7,1]

Y2=X3+(3T4+3T2+4T+2) X+ TS +4T4+T3+2T2+3T+2

[_27_270747_87_6767_6}
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C.5. Table for non-primes of degree 4 over F5

Conductor

Curve

Trace

Y2=X34(3T44+2T34+2T%+37+3) X +T6+T5+2T44+T+4
Y2=X3+(3T4+3T3+T2+3T+2) X +TO+T°+2T*+3T3+4T2+3T+3

[74771773777787737373}
[07373777774771771771}

T,T4+1,T%4+T+1

Y2=X34+(3T4+4T2 +T+2) X +TO+4T5+4T*+T2+T+3
Y2=X3+ (3T +T3+T2+3T+3) X +T6+3T5+T4+2T3+2T+4
Y2=X3+(3T4+2T342T2+4T+3) X +T0+2T5+4T4 + T3 +3T+4
Y2=X3+(3T4+3T34+T2+T+3) X +T0+4T4+4T3+2T2+3T+1
Y2=X3+(3T4+3T342T24+2T+2) X +TO+4T5+T4+4T34+3T+2
Y2=X34(3T443T3+3T%+2T7+2) X +T6+4T5+T344T2 43T +2
Y2=X3+ (3T +4T344T+3) X+ TS+ T5+4T4+2T3+4T?+T+1
Y2=X34+(3T44+4T34+T24+2) X +T64-2T5+T4+4T2+3
Y2=X3+(3T4+4T3 4272 +2T+3) X +T0+2T5+4T3+ T2 +3T+4

[—2,—4,0,—8,—2,—2,4,—8§]
[2,—2,2,—-6,6,—6,—6,6]
[0,—4,—2,4,—8,—2,—8,—2]
[—2,2,2,6,—6,2,—2,—2]
[0,2,4,—2,4,—2,—2,—8]
[—2,0,—4,4,—2,6,—8,4]
2,2,—2,—2,—2,2,6,—6]
[4,2,0,—2,—8,—2,—2,4]
[—4,0,—2,—8,4,6,4,—2]

T, T+3,T%+2

Y2=X3+(3T4+T2+4T+3) X +T6+3T2+3T+4
Y2=X3+(3T4+2T3 4272+ T+3) X+ T +T5+2T2+T+1
Y2=X34+(3T4 43734372+ T+2) X+ T +4T5 4T3 4-2T24-2T+3
Y2=X34+(3T444T3 4272 +3T+3) X + T +4T4+4T3 4272 +4T+1

[—4,-1,-3,3,7,—8,—6,—2]
[0,—3,—3,—1,—7,—4,2,2]
[—2,-3,-1,—-7,—3,—4,—4,2]
[2,2,0,6,4,—8,6,—8]

T,T+2,T%+2T+3

Y2=X34 (3744273 4+ T24-3T+2) X+ T+ T5 +T444T3 44T+ T+3
Y2=X34+(3T4+2T3 +4T?+T+2) X + T+ T>+3T*+4T+-2
Y2=X34+(3T4+2T3 +4T?4+2T+3) X +TO+T5+3T4+4T3+2T2 +4T+4

[272727767276772776}
[73772771717177577273}
[737717727727727477573]

T,(T+3)2,T+4

Y2=X34+(3T*+T243) X +T6+T5+3T4+3T2+4
Y2=X34(3T44+2T%+T+2) X+ T6+3T5+2T4+3T3+T24+4T+2
Y2=X3+(3T4+2T24+T+2) X +TO+T°+2T4+-2T2+T+2
Y2=X3+(3T4+T3+2T2+4T+3) X +TO+T5+3T4+T3+2T2+2T+1
Y2=X3+(3T4+3T344T24+2) X +T0+2T5 4273+ T2 42
Y2=X34(3T4+3T3+4T?+2) X +T6+4T5+3T4+2T2+-2
Y2=X34+(3T4+4T3+T2+2T+2) X + T+ T2 +3T*+4T3 +4T2+3T+2
Y2=X34(3T44-4T3 44T +3T4+3) X + TS+ T3+ T2 +4T41
Y2=X34(3T4+4T3+4T24+3T+3) X +T04+2T5+4T443T3+2T2+T+4

[4,0,—4,6,—4,—6,—6,4]
[-3,-3,8,—7,—4,—7,—1,8]
[2,2,—2,—-2,6,—2,—6,—2]
[1,1,—4,1,—4,1,—9,—4]
[2,4,2,—2,—-8,—2,—2,—4]
[—3,—1,-8,3,—8,3,3,—4]
[0,—4,4,—6,4,6,—6,—4]
[1,3,—4,3,8,3,3,—8]
[—4,-2,—4,—-2,—2,-2,-2,2]

T, T34+T24+3T+1 | Y2=X3+BT4+T2+2T+3) X +TO+T5+3T*+T+1 [0,—3,3,3,8,—1,8,—4]
Y2=X3+(3T4 42734272+ T+3) X +TO+T5+2T*+T3+2T+4 [0,—3,—1,—3,—4,9,—2,6]
Y2=X34+(3T4 4273 4212 +4T+-3) X +TO+T542T44-3T24-3T+4 [~1,0,—4,-2,4,—3,—4,—2]
Y2=X34(3T44+3T3+T2+4AT+2) X +TO+4AT5 +4T*+ T2 +4T+3 [-2,—1,-3,1,-2,—1,2,—8]
Y2=X34(3T44+3T34+2T2+2) X+ TO+TO+4T*+2T3 +3T2+2 [3,-2,4,0,—2,3,—2,—2]
Y2=X34+(3T4+3T3+2T24+2T+3) X + T8 +3T5 4274+ 273 +2T2+T+1 [~4,-3,—1,1,—8,—3,2,—2]

T,T+2,T%+3 Y2=X34(3T44+T34-2T24-2T+3) X +TO+T° + 274 +T+1 [0,—3,—3,-1,—7,—1,—1,2]
Y2=X34+(3T44+3T3 4272 +4T+3) X +TO+AT® +4T* +T?4+3T+4 (2,2,0,6,4,—6,—6,2]
Y2=X34+(3T44+4T3+T24+3) X +T6 42754274 +4 [—4,—-1,-3,3,7,3,—3,2]
Y2=X34+(3T44-4T3 4272 42T 4-2) X + T 4-4T5+-4T44+-3T3 43742 (2,3,1,—7,—3,1,9,—8]

T, T344T2 43741 | Y2=X34(3T*+3T3+4T242T+3) X +TO+T5 4274 +T+1 [0,3,0,0,—1,—1,2,2]

T,T+2,T%+3T+3

Y2=X3+(3T4+2T243T42) X+ T +4T°+3T4+3T3+3T+3
Y2=X34+(3T44+3T34+4T2+3) X +T0+4T°+3T*+4T3+2T2+1
Y2=X34+(3T44+-4T34-2) X+ TO+2T° +4T* +3T3 + 2724+ T3

[37370727_17_17_172}
[_17_37_47_67_7737_37_2}
[73771772774777777972}
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C. Tables

Conductor

Curve

Trace

Y2=X34+(3T4+4T3 +4AT?+T+2) X+ T +2T5 + T4+ T3 +4T2+4T+-2

[72707727678767767781

T,T+43,T%+4T+2

Y2=X3 4+ (3744273 +4T2 42T 4-3) X +TO 4+ T+ 3T 4T3 4272 +4T+4
Y2=X34(3T4+2T3 +4T2+3T+2) X +T0+4T4+3T3+2T2+3T+3
Y2=X34(3T4+4T3+T2+3T+2) X+ T6+2T5+4T%+3T+3

[737717727727727477571]
[7277277272776767672]
[3727171717_5747_2]

T, 134372 4+4T+1

Y2=X34+(3T442T34+4T%+3T+3) X +T6+T5+2T2+T+1

[07073707717717278]

T,T+1,(T+4)?

Y2=X34 3744 T2 +4T+2) X +TO +3T54+-2T3 4272 +-4T+3
Y2=X34+(3T4+T24+4AT+2) X +T0+3T44+2T3+2T+2
Y2=X34(3T4+T3+T243T42) X +T04+ 21543744+ T3 +4T2+T+3
Y2=X34+(3T44+T34+4T2+2) X +TO+T5+T3+4T%+3
Y2=X34+(3T44+T34+4T?+2) X +TO+3T5+4T4+4T3+T+2

Y2=X34+ (3744273 42T+ 3) X +TO 4+ T4+ T3+ T2 41
Y2=X3+(3T44+2T342T43) X+ TS +4T5+2T4+ T3+ 2T24+4T+1
Y2=X34+(3T442T3+4T 2 +4T+2) X +TO+2T5 +3T4+2T3 + T2 +-4T+2
Y2=X34+(3T44+3T34+3T2+3T+3) X +T64+-2T5+3T44+3T3+3T2 +27T+1

(2,4,—6,6,4,—2,2,—2]
[-3,—1,—6,6,—6,8,—8,3]
[0,—4,—6,—6,6,—4,4,—6]
[1,3,6,—6,—6,—8,—4,3]
[—4,—2,6,—6,4,—8,—4,—2]
2,2,2,2,—10,6,—2,—2)
[—3,—3,2,2,—10,—4,8,—7]
[4,0,—6,—6,6,4,—4,6]
[1,1,6,6,6,—4,—4,1]

T,T+3,T%2+2T+4

Y2=X3 4+ (3T 42734272 +4T+2) X + TS+ T2 +4T? +4T+3
Y2=X34+(3T44+AT3 4372+ T+3) X +TO+T°+3T4+3T3+2T2+T+4
Y2=X3+(3T4+4T3+3T2+2T+2) X +T0+2T°+3T*+3T+2

[273717_57471717_2]
[_27_27_27676727_67_6}
[_17_37_2747_57_27_271]

T, T+4,T?+3T+3 | Y2=X34+(3T*+2T+2) X +TO+T5+T4+2T3+3T2+2T+3 (1,2,3,—4,7,1,—3,2]
Y2=X3+ (3T +T2+T+3) X +T6+3T*+3T3+372+2T+4 [-3,—4,—-1,—6,—7,3,7,—2]
Y2=X3+(3T4+T3+2T24+2) X +TO+2T5+3T4+3T3 4372 +2 [-3,0,—3,2,—1,—1,-7,2]
Y2=X34+(3T4+2T3 +4T2 42T +2) X + TS+ TS+ T4+ T3 +2T2+2T+3 [0,2,2,6,8,—6,4,—8]

T, T34+3T%+2 Y2=X34+(3T44+2T+3) X +T6+T3+T%+T+1 [-2,-1,0,—4,2,8,—9,1]

T,(T+1)2,T42

Y2=X34+(3T44+4T24+3) X +TO+T54+-3T34+4T% +4
Y2=X34+(3T4+4T2 +4T+2) X +TO+2T4+ T3 +4T%+4T+3
Y2=X34+(3T44+4T? 44T +2) X +TO+4T44+-4T2+T+2
Y2=X34+(3T44+2T3 4272 +2) X +T0+T5+2T2+3
Y2=X34+(3T442T3 4272 +2) X +TO+3T°+4T*+2T3+2T2+3
Y2=X3 4+ (37442734312 42T 4-3) X + T+ T°4+-3T744-2T34-3T724-3T+4
Y2=X34+(3T44+4T3+T2+2T+2) X +TO+T5+2T3+T242T+3
Y2=X3+ (3T +4T34T2+3T+3) X+ T +2T°+2T4+ T2 +T+4
Y2=X34(3T4+4T3+T2+3T+3) X +T6+2T° +4T4+2T3+4

[4,0,—4,6,—6,4,—6,6]
[—2,—4,2,-2,6,—2,—2/4]
[3,1,—-8,3,6,8,3,—6]
[3,3,8,—7,2,—4,—1,—10]
[-2,—2,—-2,—2,2,6,—6,—10]
[1,1,-4,1,6,—4,—9,6]
[0,4,4,—6,—6,—4,—6,6]
[—4,-2,—4,—-2,—6,—8,—2,4]
[1,3,—4,3,—6,—8,3,—6]

C.6 Table for primes of degree 4 over [

Table C.5: Isogeny classes for primes of degree 4 over F5

Conductor Curve Trace
TA42T3+4T2 43T +3 | Y2=X34+(3T44+-T342T244T) X +T64+3T>+3T% +T+1 [0,0,0,4,0,—2,6,—6]
T4 4T3+ T2 +4T+3 Y2=X34(3T44-2T3+3T24+2T) X + TS+ T5+3T% +2T+4 [0,4,0,0,0,6,—2,—2]
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C.6. Table for primes of degree 4 over F5

Conductor Curve Trace
T44-2 34(3T*42) X +T64-3T2 [4,0,0,0,0,—6,—6,—2]
T4+T2+2 3+ (3T443T72) X +T0+4T4+4T2+3 [0,2,0,0,2,—6,6,6]
B (BTA42T3 44T 24 2T) X + TS +T54+-3T*+T3 4317242 [0,1,—2,—2,—3,6,—3,3]
=X3 4 (3T 4373 +4T% 4 3T) X +TO+4T5 437444734372 +2 [0,—3,—2,—2,1,6,—3,3]
T44-2T3+T2+2 34+ (3T*+T3+43T2+2) X +T6+3T°+3T4+T3+3T2+3T [4,4,—2,0,—2,—2,—2,—10]
TA4+3T34+T242 34 (3T4HAT3+3T24+2) X+ T8 4275 4-3T44-4T34-3T7% 42T [4,—2,0,—2,4,—2,—2,6]
T444T242 34 (3T4+2T2) X +TO+T4+4T2 42 [0,0,2,2,0,6,—6,—2]
3+ (3TA+T34+T2+4T) X +TO+3T5+2T4+2T73+3T2+3 [0,—2,—3,1,—2,—3,6,4]
=X34+ (3T HAT34+T?+T) X +T542T5+2T4+3T3+3T2+3 [0,—2,1,—3,—2,—3,6,—4]
TA4T3+4T?+2 +(3T443T34+2T2+2) X +T0+4T5+2T*+2T3+3T2+4T [4,—2,—2,4,0,—2,—2,—2]
TAHAT34+4T2 42 34 (3T4+2T3+2T2+2) X +TO+ T2 +2T44-3T34+3T2+T [4,0,4,—2,—2,—2,—2,2]
T*4+3T3++T+-2 34+ (3T4+T34-3T2+3T+4) X +TO4+3T5+3T4+T2+2T+1 [—2,—-3,0,1,—2,3,—4,—7]
34 (B3TA4+2T3+4T?+T+4) X +TO+T°+3T4+3T34+4T2+3T+1 [—2,1,0,—3,-2,3,4,1]
34 (BTA44AT34-3T) X +T64-2T5 +4T* +-2T3 +T+2 [0,2,0,2,0,6,—2,2]
T44-4T3+2T+2 =X34+(BTA+T3+T2 42T +4) X +TO+3T5 42T+ T3 +4T2 +4T+4 [-2,0,—2,1,—3,4,3,4]
B H(BTA42T34+T) X +TO 4T+ T44-4T34-3T+3 [0,0,0,2,2,—2,6,—2]
S4BT 4313212+ TH+4) X +TO44T5 424+ T2 4T +4 [—2,0,—2,—3,1,—4,3,—4]
T4 4T3 43742 B (BTA42T3 42T 24 AT H4) X +TO 4+ TS+ 2T4 4+ T2 4T +4 [~2,1,—3,—2,0,—4,3,4]
S3+(3T4+3T3+4T) X +TO+4T5+ T4+ T3 +27+3 [0,2,2,0,0,—2,6,—2]
=X3 4 (3T +4T3+T24+3T+4) X +TO+2T54+-2T*+4T3+4T? +T+4 [-2,-3,1,—2,0,4,3,—4]
T442T34+4T+2 34+ (3TH+T342T) X +TO+3T5+4T*+3T3+4T+2 [0,0,2,0,2,6,—2,—6]
34+ (3T*4+3T3 +4T?+4T+4) X +TO+4T5+3T*+2T3+4T2+2T+1 | [—-2,—2,—3,0,1,3,4,6]
34 (3T4 4T3 +3T24-2T44) X +T0 42754374+ T2 +3T+1 [-2,-2,1,0,—3,3,—4,6]
T4+ T34+T24T+4 34 (3T4+3T3+3T24+3T+1) X +TC+4T5 272 +3 2,2,2,2,—4,—2,6,—2]
TA4H4T3+2T2+T+4 =X34+(3T4+T2+2T+3) X +TO+3T4+T3+3T2+T+2 [1,0,—-3,—2,—2,—7,4,3]
S4BT 213 +T2+3T+1) X +TO4TO 4T+ T3 437242 [2,0,2,0,0,2,—2,6]
34 (3T4 4T3 +3T24-3T+1) X +T6 42754374 +3T34+4T2 +2T+1 | [-3,0,1,—-2,—2,1,—4,3]
T442T3 42T+ T+1 34 (BTAH+T3+T24-3T+4) X +TO+3T°+2T44-4T3 44T 41 [-2,-2,4,0,4,2,6,—6]
T442T3+3T2 42T +4 34+ (3T*+H4AT? +AT+3) X +TO0 4274 +2T34+3T2+3T+3 [1,—3,—-2,0,—2,4,—7,—3]
=X3 43T+ T3 4T+ T+1) X +T64+-3T5+T44-2T3 +3T724-3 [2,2,0,0,0,—2,2,6]
+(BTA42T3 42T+ TH1) X+ TO+TO 42T+ T3 +4AT% +T+4 [-3,1,—-2,0,—2,—4,1,—3]
T443T34+4T242T+4 34 (3TAHAT3 2T %+ TH1) X +T64-2T5 4272 42 [2,2,-4,2,2,6,—2,—2]
TA4+T343T242T+1 34+ (3T44+3T3 +4T?+T+4) X +TO+4T5+3T44+-3T3+4T% +4 [~2,4,4,—2,0,6,2,6]
T443T34+3T243T+4 34+ (3T4H4AT? +T+3) X +T6+2T44-3T3+3T24+2T+3 [1,—2,0,—2,—3,4,—7,4]
34+ (3T44+3T3+2T2+4T+1) X +TO+4T5+2T* +4AT3+4T% +4T+4 | [-3,-2,0,—2,1,—4,1,—4]
=X3 (3T 4T3 +4T% 44T +1) X +T6 42754+ T4 4373437243 [2,0,0,0,2,—2,2,—2]
T442T344T2 43T +4 3 (3T44+T3+2T2+4T+1) X +T6+3T°+2T2 +2 (2,2,2,—4,2,6,—2,—10]
T4 4AT3 T2 44T +4 3+ (3T4 4273 +3T2 42T+ 1) X +TS+T5+272 43 [2,—4,2,2,2,—2,6,6]
TA4+T342T2+4T+4 34+ (3T4+T243T+3) X +T 0 +3T44+-4T3+3T2+4T+2 [1,—2,—-2,-3,0,—7,4,1]
(

3+(3T4+T3+3T2+2T+1) X + T 437543744273 +4T2 +3T+1

[_37_27_27170717_47_7]
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C. Tables

Conductor Curve Trace
Y2=X34(3T443T3+T2 42T+ 1) X + TS +4T5 +4T* 4T3 +3T2+2 [2,0,0,2,0,2,—2,2]
TA4AT3 437243741 | Y2=X34(3T442T°3 +4T? 44T +4) X + T+ T3 +3T44-2T3 +4T% +4 [-2,0,—2,4,4,6,2,—2]
T4+3 Y2=X34(3744-3) X +T64-272 [—4,2,2,2,2,—10,—10,6]
T442T243 Y2=X34(3T*+T?) X +T6+3T4+T2+4 [0,—2,4,4,—2,—10,—6,—2]
T443724+3 Y2=X34(3T*+4T%) X +T0+2T4+T2% +1 [0,4,—2,—2,4,—6,—10,2]
TA43T342T2+4T+1 | Y2=X34+(3T4+H4T3+T2 42T +4) X +TO+2T3 +2T4 4+ T3 +4T2 +1 [~2,4,0,4,—2,2,6,—2]
T4+T34T2+T+3 Y2=X34(3T44+3T3+3T2++3T) X +T64+4T54+3T2 43T +4 [0,0,0,0,4,6,—2,6]
T44+3T3+4T2 42743 | Y2=X3+(3T*+4T3+2T2+T) X +T64+2T5+3T2+4T+1 [0,0,4,0,0,—2,6,6]

C.7 Table for primes of degree 5 over [

Table C.6: Isogeny classes for primes of degree 5 over Fx

Conductor Curve Trace

T542T*4+3T2 43T Y2=X34(3T44+2T3 +4T?+T+3X)+TO+ T3 +3T4+3T3+T2+3T+1 [-1,-2,0,1,—2,—4,—1,—2]
T54+T* 42742 Y2=X34(3T*+4AT3 +4T+3X)+TO+ 2T +4T* 4+ 2T3 +4T?+T+2 [1,—3,2,—2,—2,—2,—4,7]
T543T442T+2 Y2=X34+(3T44+2T% X)+TO+T5+3T44+-2T3+ T2 +4T+4 [0,0,—3,—3,0,—4,—1,8]
T544T4+2T+2 Y2=X534(3T44+T34-3T24+3T+1X)+T64-3T5+3T4+3T3+T2 44T [2,—4,0,2,—6,—6,—8,2]

TS 42T4+T3 4272 +1 Y2=X34-(3T4+4T3+3T2 +4AT+1 X))+ TO+2T5 +3T4+ T3+ T2 4+-2T+4 [-3,—2,—3,—-3,0,—6,2,—2]
TO5+T44-T3+2T+2 Y2=X34(3T*4+T342T2+T+3X)+TO+3T° +T3+T2 42T [—4,-3,—2,—2,0,2,2,1]
T542T3 42T +2 Y2=X34(3T44+4T3 +3T2+3T+1X)+T O +2T5+3T*+T3+2T%+T [2,0,—2,—2,6,—4,—2,—6]
T4+ T*4+2T3 42742 Y2=X34(3T44+2T3 +2T2+4T+3X )+ T +T5+2T4+3T2+T+2 [1,—1,0,—2,—1,7,—4,—2]
T54+3T4+3T34+3T2+3T | Y2=X3+(3T*+3T34+3T2+4T+3X)+TO+4T3+4T44+-3T3+3T24+2T+1 | [4,2,0,2,—4,—6,2,2]
TB44T*42T3 42T +2 Y2=X34(3T44+4T3 X))+ T 4275 +4T* 4373 + T2+ T+2 [0,3,—3,0,—1,8,—6,—3]
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