5 <u>Anhang</u>

5.1 Abkürzungen

(in dieser Arbeit und der verwendeten Literatur)

AEAEAPTMOS	3-(2-[2-Aminoethylamino]-ethylamino)-propyl-trimethoxysilan
AEAPTMOS	3-(2-Aminoethylamino)-propyl-trimethoxysilan
APTMOS	3-Aminopropyl-trimethoxysilan
APTEOS	3-Aminopropyl-triethoxysilan
Arg	Arginin
BODIPY	Dipyrromethenboron-difluoride, z.B. BODIPY 493/503-NHS

BOP	1-Benzotriazolyloxy-tris(dimethylamino)-phosphonium-
	hexafluorophosphat
und	Castro-Reagens
C-terminal	carboxy-terminal
Caro-Säure	Kaliummonopersulfat Tripelsalz
und	Kaliumperoxomonosulfat Tripelsalz 2KHSO ₅ • KHSO ₄ • K ₂ SO ₄
CCD	ladungsgekoppeltes Gerät
CFD	Konstante-Fraktion-Unterscheider
CFLIM	konfokale Fluoreszenz-Lebenszeit-Abbildung
DCC	N,N'-Dicyclohexylcarbodiimid
diI	1,1'-Dioctadecyl-3,3,3',3'-tetramethylindocarbocyanin

1,1'-Didodecyl-3,3,3',3'-tetramethylindocarbocyanin


```
DiI / DiIC<sub>18</sub>
```

DiIC₁₂

1,1'-Dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine-perchlorat

DIPEA		Diisopropyl-ethylamin
DMF		N,N'-Dimethylformamid
DMSO		Dimethylsulfoxid
EDAC		1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimid
EDC		N-Ethyl-N'-(3-dimethylaminopropyl)-carbodiimid (HCl)
	und	1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimid (HCl)
EtOH		Ethanol
FD		Frequenzbereich
FLIM		Fluoreszenz-Lebenszeit-Abbildung
FM		Frequenzmodulation
FRET		Fluoreszenz-Resonanz-Energietransfer
FT		Fourier-Transformation
FTP		"Femtotip-Puffer": Tris-Borat-Puffer (20 mM in H ₂ O; pH 8,4); 30%
		Glycerol; 3% PVP K90; 0,1% Tween 20
H ₂ O (ve	.)	"vollentsalztes" Wasser
HATU		O-(7-Azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium-PF ₆
HBTU		N-Hydroxybenzotriazolharnstoff-Salz
	und	O-(1-Benzotriazolyl)-N,N,N',N'-tetramethyluronium-PF ₆
HF		Fluorwasserstoffsäure
HOAT		N-Hydroxy-7-azabenzotriazol
	und	1-Hydroxy-7-azabenzotriazol
HOBT		N-Hydroxybenzotriazol
	und	1-Hydroxybenzotriazol
HOMO höchstes besetztes Molekü		höchstes besetztes Molekülorbital

HPLC		Hochleistungsflüssigchromatographie
	(bzw.	Hochdruckflüssigchromatographie)
ID		innerer Durchmesser
IRF		Instrument-Antwort-Funktion
ISC		Inter System Crossing
LIF		laserinduzierte Fluoreszenz
LK		Lösemittelkonzentration
LUMO		niedrigstes unbesetztes Molekülorbital
Lys		Lysin
MALDI	-TOF-MS	matrixunterstützte Laserdesorptionsionisations-Flugzeit-Massenspektro-
		metrie
MCA		Viel-Kanal-Analysator
MCS		Viel-Kanal-Skalar
MES		4-Morpholinethansulfonsäure
MS		Massenspektrometrie
NHS		N-Hydroxysuccinimid
MeOH		Methanol
MW		Molekulargewicht
	und	molare Masse
N-termin	nal	amino-terminal
NEM		N-Ethylmorpholin
	oder	N-Ethylmaleimid
NHS		N-Hydroxysuccinimid
NMM		N-Methylmorpholin
NSOM		nahfeld-abtast-optische Mikroskopie
OD		äußerer Durchmesser
	oder	(relative) optische Dichte
	oder	octadecyl-
ODS		Octadecylsilan
PB		Phosphat-Puffer
PBS		polarisierender Strahlteiler
	oder	Phosphat-gepufferte, konzentrierte Kochsalzlösung
pН		negativer, dekadischer Logarithmus der Wasserstoffionen-Konzentration
Phe		Phenylalanin
PMMA		Polymethylmethacrylat
Pro		Prolin

PVP	Polyvinylpyrrolidon
	σ

Ру	Pyridin
RP-HPLC	Umkehrphasen-Hochleistungsflüssigchromatographie
S/N	Signal-zu-Rausch-Verhältnis
SAM	selbstorganisierende Monoschicht
SFLIM	spektral-aufgelöste Fluoreszenz-Lebensdauer-Abbildung
SFM	Scherkraftmikroskopie
SFS	statistische Feinstruktur
SM	Einzelmolekül
SMD	Einzelmolekülerkennung
TAC	Zeit-zu-Amplitude-Konverter
TCSPC	zeitkorreliertes Einzel-Photon-Zählen
TEA	Triethylamin
TFA	Trifluorethansäure
TFAcOH	Trifluorethansäure
TMR	Tetramethylrhodamin
TMR-ITC	Tetramethylrhodamin-Isothiocyanat
TNTU	2-(5-Norbornen-2,3-dicarboximido)-1,1,3',3'-tetramethyl-uronium BF ₄ ⁻
und	O-(5-Norbornen-2,3-dicarboximido)-N,N,N',N'-tetramethyl-uronium
	BF ₄
Trp	Tryptophan
TSTU	N,N,N',N'-Tetramethyl-O-(N-succinimidyl)uronium BF4
TTTR	zeit-markiert, zeit-aufgelöst
UV/Vis	ultravioletter und sichtbarer Bereich

5.2 Chromatogramme und Spektren

5.2.1 <u>HPLC-Chromatogramme</u>

Abbildung 5.2.1-1 Chromatogramm von von Uni370 (50 nmol)

 $t_r(Uni370) = 5,4 \min$

Abbildung 5.2.1-2 Chromatogramm von Uni371 (50 nmol)

 $t_r(Uni371) = 4.9 min$

Abbildung 5.2.1-3 Chromatogramm von Cy5

 $t_r(Cy5) = 9,8 \min$

Abbildung 5.2.1-4 Chromatogramm von Cy5-NHS

 $t_r(Cy5(-NHS)_2) = 7,7 \text{ min}; t_r(Cy5-NHS) = 8,2 \text{ min}, t_r(?) = 8,4 \text{ min}$

Abbildung 5.2.1-5 Chromatogramm von Uni370-Cy5

 $t_r(Cy5(-NHS)_2) = 7,7 \text{ min}, t_r(Cy5-NHS) = 8,2 \text{ min}, t_r(?) = 8,4 \text{ min}, t_r(Uni370-Cy5) = 8,7 \text{ min}$

Abbildung 5.2.1-6 Chromatogramm von Uni371-Cy5

 $t_r(Cy5(-NHS)_2) = 7,7 \text{ min}, t_r(Cy5-NHS) = 8,1 \text{ min}, t_r(?) = 8,4 \text{ min}, t_r(Uni371-Cy5) = 8,5 \text{ min}$

Abbildung 5.2.1-7 Chromatogramm von MR121

 $t_r(MR121-Et) = 10.8 min, t_r(MR121) = 13.6 min$

Abbildung 5.2.1-8 Chromatogramm von MR121-NHS

 $t_r(MR121-NHS) = 9,8 \text{ min}, t_r(MR121-Et) = 10,8 \text{ min}$

Abbildung 5.2.1-9 Vergleich der Chromatogramme von Uni370-Cy5, Uni371-Cy5 und Cy5 zur Produktidentifizierung

 $t_r(Cy5(-NHS)_2) = 7,7 \text{ min}, t_r(Cy5-NHS) = 8,1 \text{ min}, t_r(?) = 8,4 \text{ min}, t_r(Uni371-Cy5) = 8,5 \text{ min}, t_r(Uni370-Cy5) = 8,7 \text{ min}, t_r(Cy5) = 9,3 \text{ min}$

Abbildung 5.2.1-10 Vergleich der Chromatogramme von Uni370-MR121, Uni371-MR121 und MR121 zur Produktidentifizierung

 $t_r(\text{Uni371-MR121}) = 9,5 \text{ min}, \quad t_r(\text{Uni370-MR121}) = 9,7 \text{ min}, \quad t_r(\text{MR121-} \text{NHS}) = 10,8 \text{ min}$

Abbildung 5.2.1-11 Chromatogramm von Uni370-MR121

 $t_r(\text{Uni370-MR121}) = 9,7 \text{ min}, t_r(\text{MR121-NHS}) = 9,8 \text{ min}, t_r(\text{MR121-Et}) = 10,8 \text{ min}$

Abbildung 5.2.1-12 Chromatogramm von Uni371-MR121

 $t_r(\text{Uni371-MR121}) = 9,5 \text{ min}, t_r(\text{MR121-NHS}) = 9,8 \text{ min}, t_r(\text{MR121-Et}) = 10,8 \text{ min}$

Abbildung 5.2.1-13 Chromatogramm von ATTO650-NHS

 $t_r(ATTO650) = 8,5 \text{ min}, t_r(ATTO650\text{-Isomer}) = 10,6 \text{ min},$ Isomer) = 11,3 min, $t_r(ATTO650\text{-NHS}) = 11,4 \text{ min}$ tr(ATTO650-NHS-

Abbildung 5.2.1-14 Chromatogramm von Malachitgrün-ITC

t_r(Malachitgrün-ITC) = 18,9 min

Abbildung 5.2.1-15 Vergleich der Chromatogramme von Uni370-TC-MG, Uni371-TC-MG und MG zur Produktidentifizierung (MG: Malachitgrün ; Herstellung in 50 MeCN, 2,5 NMM, 12,5 H₂O, 35 MeOH)

 $t_r(\text{Uni370-TC-MG}) = 10,9 \text{ min}, t_r(\text{Uni371-TC-MG}) = 10,7 \text{ min}, t_r(\text{MG-?}) = 15,2 \text{ min}, t_r(\text{MG-ITC}) = 18,9 \text{ min}$

Abbildung 5.2.1-16 Vergleich der Chromatogramme von Uni370-TC-MG, Uni371-TC-MG und MG zur Produktidentifizierung (MG: Malachitgrün; Herstellung in Pyridin/H₂O (1 : 1))

 $t_r(\text{Uni370-TC-MG}) = 10,8 \text{ min}, t_r(\text{Uni371-TC-MG}) = 10,7 \text{ min}, t_r(\text{MG-?}) = 15,2 \text{ min}, t_r(\text{MG-ITC}) = 18,9...19,1 \text{ min}$

Abbildung 5.2.1-17 Chromatogramm von TMR-ITC

 $t_r(TMR-ITC) = 11,8 \min$

Abbildung 5.2.1-18 Chromatogramm von TMR-CS (5-/6-Isomerengemisch, eines angereichert, nicht zugeordnet)

 $t_r(TMR-5/6-CS) = 8,0/9,6 min$

Abbildung 5.2.1-19 Vergleich der Chromatogramme von TMR-CS (5-/6-Isomerengemisch, ---) und des Produktgemisches nach der Aktivierungsreaktion (-----)

 $t_r(TMR-5/6-CS) = 6,3/7,9 \text{ min}, t_r(TMR-5/6-CS-NHS, -EDC, u.a.) = 9,2/9,5/10,8/12,2/12,4 \text{ min}$

Abbildung 5.2.1-20 Überlagerung der Chromatogramme vonUni370-TC-TMR, Uni371-TC-TMR und TMR zur Identifizierung der Produkte (2 Reaktions-Sets)

 $t_r(\text{Uni371-TC-TMR}) = 8,8 \text{ min}, \quad t_r(\text{Uni370-TC-TMR}) = 9,0 \text{ min}, \quad t_r(\text{TMR-ITC}) = 11,8 \text{ min}$

Abbildung 5.2.1-21 Chromatogramm von Uni370-TC-TMR

 $t_r(Uni370-TC-TMR) = 9,0 \text{ min}, t_r(TMR-ITC) = 11,8 \text{ min}$

Abbildung 5.2.1-22 Chromatogramm von Uni371-TC-TMR

 $t_r(Uni371-TC-TMR) = 8,8 \text{ min}, t_r(TMR-ITC) = 11,8 \text{ min}$

5.2.2 <u>Massenspektren</u>

Abbildung 5.2.2-1 Massenspektrum(MALDI-TOF, positive Polarisierung) von Cy5-NHS

MALDI-TOF pos.: m/z 755 ($[M+2H]^+$), 777 ($[M+Na,H]^+$), 793 ($[M+K,H]^+$), 799 ($[M+2Na]^+$), 815 ($[M+Na,K]^+$), 831 ($[M+2K]^+$)

 $(M_{berechnet} = 753)$

Abbildung 5.2.2-2 Massenspektrum (MALDI-TOF, negative Polarisierung) von Cy5-NHS

MALDI-TOF neg.: m/z 753 ($[M]^+$), 775 ($[M+Na]^+$), 791 ($[M+K]^+$) ($M_{berechnet} = 753$)

Abbildung 5.2.2-3 Massenspektrum von Cy5 und Cy5-NHS

MALDI-TOF pos.: Cy5: m/z 658 ([M+2H]⁺), 685 ([M+Na,6H]⁺), 707 ([M+2Na, 5H]⁺), 723 ([M+Na,K,5H]⁺); Cy5-NHS: 757 ([M+4H]⁺) (Cy5: M_{berechnet} = 656; Cy5-NHS: M_{berechnet} = 753)

Abbildung 5.2.2-4 Massenspektrum von MR121

MALDI-TOF pos.: $m/z 406 (M^+)$ ($M_{berechnet} = 406$)

Abbildung 5.2.2-5 Massenspektrum von MR121-NHS

MALDI-TOF pos.: $m/z 478 ([M+H]^{+})$ (M_{berechnet} = 477)

Abbildung 5.2.2-6 Massenspektrum von TMR-ITC

MALDI-TOF pos.: m/z 444 ($[M]^+$), 466 ($[M+Na,-H]^+$), 482 ($[M+K, -H]^+$) ($M_{berechnet} = 444$)

Abbildung 5.2.2-7 Massenspektrum von Uni370

MALDI-TOF pos.: m/z 1099 ($[M+2H]^+$), 1121 ($[M+Na,H]^+$), 1137 ($[M+K,H]^+$), 1143 ($[M+2Na]^+$), 1159 ($[M+Na,K]^+$) (M = -1007)

 $(M_{berechnet} = 1097)$

Abbildung 5.2.2-8 Massenspektrum von Uni371

MALDI-TOF pos.: m/z 1059 ($[M+H]^+$), 1081 ($[M+Na]^+$), 1097 ($[M+K]^+$) ($M_{\text{berechnet}} = 1058$)

Abbildung 5.2.2-9 Massenspektrum von Uni370-Cy5

MALDI-TOF pos.: m/z 1739 ($[M+4H]^+$), 1761 ($[M+Na,3H]^+$), 1777 ($[M+K,3H]^+$), 1783 ($[M+2Na]^+$) ($M_{berechnet} = 1735$)

Abbildung 5.2.2-10 Massenspektrum von Uni370-MR121

MALDI-TOF pos.: m/z 1487 ($[M+H]^+$); MR121: 406 (M^+) ($M_{berechnet} = 1086$)

Abbildung 5.2.2-11 Massenspektrum von Uni371-Cy5

MALDI-TOF pos.: m/z 1700 ($[M+4H]^+$), 1722 ($[M+Na,3H]^+$), 1738 ($[M+K,3H]^+$), 1760 ($[M+Na,K,2H]^+$) ($M_{berechnet} = 1696$)

Abbildung 5.2.2-12 Massenspektrum von Uni371-MR121

MALDI-TOF pos.: m/z 1448 ($[M+H]^+$), 1470 ($[M+Na]^+$) ($M_{berechnet} = 1447$)

Abbildung 5.2.2-13 Massenspektrum von Uni370-ATTO650

MALDI-TOF pos.: m/z 1636 ($[M+H]^+$), 1658 ($[M+Na]^+$), 1674 ($[M+K]^+$), 1697 ($[M+Na,K]^+$) ($M_{berechnet} = 1635$)

Abbildung 5.2.2-14 Massenspektrum von Uni371-ATTO650

MALDI-TOF pos.: m/z 1597 ($[M+H]^+$), 1619 ($[M+Na]^+$), 1635 ($[M+K]^+$), 1643 ($[M+2Na,-H]^+$), 1657 ($[M+Na,K,-H]^+$), 1670 ($[M+2K,-4H]^+$) ($M_{berechnet} = 1596$)

Abbildung 5.2.2-15 Massenspektrum von Uni370-Malachitgrün

MALDI-TOF pos.: m/z 1485 ($[M+H]^+$), 1507 ($[M+Na]^+$), 1469 ($[M-16]^+$) ($M_{berechnet} = 1484$)

Abbildung 5.2.2-16 Massenspektrum von Uni371- Malachitgrün

MALDI-TOF pos.: $m/z \ 1443 \ ([M-2H]^+)$ (M_{berechnet} = 1445)

Abbildung 5.2.2-17 Massenspektrum von Uni370-TC-TMR

MALDI-TOF pos.: m/z 1540 ([M-2H]⁺), 1562 ([M+Na,-3H]⁺), 1585 ([M+2Na, -3H]⁺)

 $(M_{berechnet} = 1542)$

Abbildung 5.2.2-18 Massenspektrum von Uni371-TC-TMR

MALDI-TOF pos.: m/z 1501 ($[M-2H]^+$), 1523 ($[M+Na,-3H]^+$), 1539 ($[M+K,-3H]^+$), 1545 ($[M+2Na,-4H]^+$), 1562 ($[M+Na,K,-3H]^+$) ($M_{berechnet} = 1503$)

Abbildung 5.2.2-19 Massenspektrum von ATTO650

MALDI-TOF pos.: m/z 556 ([M]⁺), 578 ([M+Na,-H]⁺), 594 ([M+K,-H]⁺), 627 ([M+3Na,-2H]⁺) ($M_{berechnet} = 556$)

Abbildung 5.2.2-20 Massenspektrum von TMR-CS

MALDI-TOF pos.: $m/z 431 ([M]^+), 453 ([M+Na,-H]^+), 469 ([M+K,-H]^+) (M_{berechnet} = 431)$

Abbildung 5.2.2-21 Massenspektrum von TMR-CS, NHS-Ester und EDC-Konjugat

MALDI-TOF pos.: TMR-CS: m/z 431 ([M]⁺); TMR-CS-NHS: 528 ([M]⁺); TMR-CS-EDC: 586 ([M-H]⁺)

(TMR-CS: $M_{berechnet} = 431$; TMR-CS-NHS: $M_{berechnet} = 528$; TMR-CS-EDC: $M_{berechnet} = 587$)

Abbildung 5.2.2-22 Massenspektrum von TMR-NH₂

MALDI-TOF pos.: $m/z 402 ([M]^+), 442 ([M+K,H]^+) (M_{berechnet} = 402)$

5.2.3 <u>UV/Vis-Spektren</u>

Abbildung 5.2.3-1 UV/Vis-Spektrum von Cy5 in H₂O, MeCN (1 : 1) bzw. MeCN

Abbildung 5.2.3-2 UV/Vis-Spektrum von MR121 in H₂O, MeCN (1 : 1) bzw. MeCN

Abbildung 5.2.3-3 UV/Vis-Spektrum von Uni370-Cy5 in MeCN

Abbildung 5.2.3-4 UV/Vis-Spektrum von Uni370-MR121 in MeCN

Abbildung 5.2.3-5 UV/Vis-Spektrum von Uni371-Cy5 in MeCN; rechts: Dimerenspektrum

Abbildung 5.2.3-6 UV/Vis-Spektrum von Uni371-MR121 in MeCN

Abbildung 5.2.3-7 UV/Vis-Spektrum von ATTO650-NHS in MeCN

Abbildung 5.2.3-8 UV/Vis-Spektrum von Malachitgrün-ITC in MeCN

Abbildung 5.2.3-9 UV/Vis-Spektrum von Uni370-TC-Malachitgrün in MeCN (Farbstoff-Dimerenspektrum)

Abbildung 5.2.3-10 UV/Vis-Spektrum von Uni371-TC-Malachitgrün in MeCN (Farbstoff-Dimerenspektrum)

Abbildung 5.2.3-11 UV/Vis-Spektrum von Uni370-ATTO650 in MeCN (Dimerenspektrum)

Abbildung 5.2.3-12 UV/Vis-Spektrum von Uni371-ATTO650 in MeCN (Dimerenspektrum)

Abbildung 5.2.3-13 UV/Vis-Spektrum von TMR-ITC in H₂O, MeCN (1 : 1) bzw. in MeCN

Abbildung 5.2.3-14 UV/Vis-Spektrum von TMR-CS in MeCN (5- und 6-Isomer, nicht zugeordnet)

0.274

0.272

0.270

9.268 0.266 0.264 200 300 400 500 600 700 800 Wavelength (nm)

Abbildung 5.2.3-15 UV/Vis-Spektrum von Uni370-TC-TMR in MeCN (Farbstoff-Dimerenspektrum)

Abbildung 5.2.3-16 UV/Vis-Spektrum von Uni371-TC-TMR in MeCN (Farbstoff-Dimerenspektrum)