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Zusammenfassung

Die Forschung über emotionale Körpersprache wird seit über 200 Jahren von mehreren
Disziplinen wie Psychologie, Neurologie und Biologie betrieben. Ein Großteil der Arbeiten
basiert auf Untersuchungen der Kinematik der Bewegung, während die darunterliegende Dy-
namik weitgehend unbeachtet ist. In dieser Arbeit modellieren wir den menschlichen Gang als
nichtlineares mehrphasiges Optimalsteuerungsproblem, um die Dynamik von emotionalen men-
schlichen Gehbewegungen zu untersuchen. Unser Ansatz basiert auf der effizienten Simulation
der Dynamik von Mehrkörpermodellen, einem hochparametrisiertem mathematischen Model
des menschlichen Gangapparates und einer direkten Mehrzielmethode, um die Dynamik von
kinematischen markerbasierten Gangaufnahmen zu analysieren.

Modellierung des menschlichen Körpers mit Hilfe von dynamischen Mehrkörpersystemen
führt zu komplizierten differentiell-algebraischen Gleichungen deren Herleitung computerge-
stützter Methoden bedarf. Wir haben ein neues Softwarepaket erstellt, das die Modellierung
und numerische Berechnung von kinematischen und dynamischen Größen von Mehrkörper-
systemen in generalisierten Koordinaten, inklusive Modellierung von externen Kontakten und
Unstetigkeiten bei Kontaktereignissen, ermöglicht. Die auftretenden Größen werden mit Hilfe
von rekursiven Algorithmen berechnet, die auf Featherstone’s 6-D räumlichen Algebra basiert.
Unsere Softwarepaket ist speziell für die Verwendung in numerischen Optimalsteuerungsprob-
lemen zugeschnitten und es wurde großes Augenmerk auf Ausnutzung von Strukturen und
Wiederverwendung bereits berechneter Werte gelegt, um eine effiziente Auswertung der Größen
zu ermöglichen. Dadurch erreichen wir eine Performanz, die optimierten computergenerierten
Code erreicht und teilweise übertrifft.

Wir haben ein neues hochparametrisiertes 3-D Metamodell für den menschlichen Bewe-
gungsapparat erstellt. Es ist ein dynamisches Starrkörpermodell, das auf kinematischen und
dynamischen Parametern aus der Biomechanik basiert, und es erlaubt ein Anpassen der Seg-
mentmaße, Positionen der Gelenke und Trägheitseigenschaften einzelner Segmente, so dass
Modelle spezifisch für die aufgenommenen Probanden erstellt werden können. Für den Kon-
takt des Menschmodells mit dem Boden haben wir speziell für den menschlichen Gang ein
nichtholonomes Kontaktmodell entwickelt, das die Ferse mit einer Kugel und den Vorderfuß mit
einem Liniensegment beschreibt.

Bei der Abbildung von aufgenommenen Gehbewegungen auf Starrkörperbewegungen treten
folgende Schwierigkeiten auf: unbekannte Gelenkzentren, redundante Markerbewegungen und
sekundäre Bewegungsartefakte der Markerbewegungen durch Haut- und anderen Gewebever-
schiebungen. In dieser Arbeit haben wir einen halbautomatischen Ansatz entwickelt, bei dem
Gelenkzentren und virtuelle Modellmarker manuell angepasst und danach die Markerbewegungen
mit Hilfe einer nichtlinearen Optimierung auf Starrkörperbewegungen abgebildet werden. Unser
Ansatz ist unabhängig von dem verwendeten Motion-Capture-Markerset und bildet direkt auf
den Koordinatenraum der Freiheitsgrade des Starrkörpermodells ab.

Wir haben zwei Arten vom mehrphasigen Optimalsteuerungsproblemen formuliert, um den
menschlichen Gang zu modellieren: ein inverses Rekonstruktionsproblem und ein Gangsynthe-
seproblem. Beide enthalten die Differentialgleichungen des menschlichen Starrkörpermodells als
Nebenbedingungen und ermöglichen Untersuchungen unterschiedlicher Fragestellungen.

Das Rekonstruktionsproblem berechnet die unbekannten Gelenkkräfte von rein kinematischen
Bewegungsaufnahmen, in unserem Fall die von emotionalen Gehbewegungen. Die so berechneten
Gelenkkräfte in Ober- und Unterkörper weisen emotionsspezifische Muster auf, die auch in den
aufgenommenen Muskelaktivitäten zu finden sind. Dies bestätigt unser Modell und unseren
Ansatz, Optimalsteuerungsprobleme als Werkzeug zur Analyse menschlicher Körpersprache zu
verwenden, wie es bisher noch nicht möglich war.

Unsere Gangsyntheseformulierung erlaubt das Generieren von Gehbewegungen, basierend auf
rein mathematischen und physikalischen Prinzipien und kann in Computeranimation und in der
prädiktiven Ganganalyse verwendet werden. Wir haben verschiedene Gehbewegungen erzeugt,
indem wir Zielfunktion und Gangparameter variiert haben. Langfristiges Ziel dieser Formulierung
ist insbesondere die Identifizierung der Optimalitätskriterien für emotionale Gehbewegungen.
Dies soll durch Lösen eines hierarchisches Optimalsteuerungsproblems in zukünftigen Arbeiten
untersucht werden.





Abstract

The study of emotional body language has been the effort of many scientists for more than
200 years, from areas such as psychology, neuroscience, biology, and others. A lot of work
has focused on the analysis of the kinematics, while the study of the underlying dynamics is
still largely unexplored. In this thesis we model human walking as a nonlinear multi-phase
optimal control problem to investigate the dynamics of full-body emotional expressions in
human locomotion. Our approach is based on rigid multibody dynamics, a highly parameterized
mathematical model of the human locomotion system, and the direct multiple-shooting method
to analyze the dynamics of recorded kinematic motion capture data.

Modeling the dynamics of a human rigid multibody model results in a set of highly complex
differential algebraic equations that require automated methods to derive and evaluate. We
created a new rigid multibody dynamics software package to model and numerically evaluate
kinematic and dynamic quantities of rigid multibody systems expressed in generalized coordinates,
including modeling of external contacts and discontinuities arising from contact events. Our
package evaluates components of the equation of motion for multibody systems using recursive
algorithms that are based on Featherstone’s 6-D spatial algebra notation. Our package is
specifically tailored for the use in numerical optimal control and carefully designed to exploit
sparsities and reduction of redundant computations by selectively reusing computed values. By
doing so we are able to achieve and partially exceed performance that is otherwise only available
with source code generation modeling approaches.

We created a highly parameterized 3-D meta model for the human locomotion system. This
rigid multibody model is based on biomechanical data for kinematic and inertial parameters
and enables us to create subject-specific dynamic models by adjusting segment dimensions, joint
locations, and inertial parameters. To describe the contact between the human model and the
ground, we created a non-holonomic rigid body contact model specifically for human walking
movements that approximates the foot geometry using a sphere for the heel and a line segment
at the ball of the foot during forefoot contact.

Transforming motion capture marker data to rigid multibody motion is a difficult problem
due to unknown joint centers, redundant marker movements, and non-rigid movement of markers
as a result of skin and tissue movement. In this thesis, we developed and implemented a
semi-automatic method in which we manually adjust the model to approximate the recorded
subject and then compute joint angles by solving a non-linear least-squares optimization problem.
Our approach is independent of the used motion capture marker set and directly maps onto the
joint space of the model.

We formulate two types of multi-phase optimal control problems for human walking: an
inverse reconstruction problem and a gait synthesis problem that both have the differential
equations of the rigid multibody dynamics as a constraint and can be used for different purposes.

The reconstruction problem computes the unknown joint actuations from purely kinematic
motion capture data. Applied to the recorded motion capture data, the reconstructed joint
actuations show emotion specific features that are also found in the recorded muscle activity.
This validates our model and approach to use optimal control problems as a tool to study
emotional body language in a new way.

Our gait synthesis formulation allows the generation of walking motions solely based on
mathematical and physical principles. It can be applied in computer animation, robotics, and
predictive gait analysis. We have generated a wide range of motions by adjusting objective
function and gait parameters. A long-term goal of this formulation is to investigate optimality
criteria of emotional walking motions. For this, we aim to use hierarchical optimal control
problems in our future works.
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Introduction

In our everyday life, we experience and are exposed to emotions. Be it through advertisements
that suggest that we may buy Happiness or interactions with other humans. The question
"What is an emotion?" is both simple to pose and difficult to answer. Are emotions distinct
mental states? Bodily expressions? A result of our environment? A result of our perception of
our environment? Are emotions necessary to live? Wouldn’t it be better if we just used clear
rational decisions to structure our lives?

Emotions are not simple states of mind that are distinct from rational thinking. Rather the
contrary: emotions play an important role in resolving complex decisions for which no rational
answer is available (Damasio, 1994; Berthoz, 2003).

A link between emotion and body was already suggested by scientists in the 19th century
(Darwin, 1872; James, 1884). Indeed, there is scientific evidence that the Facial Feedback
Hypothesis, which states that an emotional facial expression influences how we perceive situations,
is true (Strack et al., 1988). Various studies furthermore suggest that facial expressions of
Happiness, Anger, Disgust, Fear, Sadness, and Surprise are universal (Ekman and Friesen,
1971). An important utility in the study of facial expressions is the Facial Action Coding System
(FACS) (Hjortsjö, 1969; Ekman and Friesen, 1978), which is a standardized method to describe
facial expressions based on movement of individual facial muscles.

However, emotions are also expressed using the body and facial expressions alone may not be
sufficient to recognize emotions correctly. The study reported in Aviezer et al. (2012) showed that
the bodily expressions governed the emotional rating of pictures of athletes at peak expressions
in winning or loosing events. Neuroscientific experiments show that the perception of emotional
body postures activate brain areas that are associated with action and movement de Gelder
et al. (2004). This suggests that for understanding of emotions a holistic approach is required
that considers not only the brain and the face, but the whole body.

Psychophysical experiments have consistently shown that emotional affect can be recognized
from recorded walking motions, even for abstract visualizations such as dynamic point light
displays (Atkinson et al., 2004). These indicate emotion specific patterns in these movements,
which were explored, e.g. using machine learning (Omlor and Giese, 2007; Roether et al., 2009)
and systematic analysis (Hicheur et al., 2013a) by only using kinematic motion capture data.
The findings were also verified by modulating a previously neutral movement by modulating it,
e.g. in terms of walk velocity and posture parameters such as head and trunk angles.

Most research efforts so far have been focused on kinematic data, such as marker movements
or joint angles. A common method for the study of facial expressions is the study of muscle
activity in the form of electromyographic data (EMG). For bodily expressions this is much less
explored. Recently, new studies were performed on EMG data to find emotion specific muscle
activity patterns in upper-body muscles (Huis in ‘t Veld et al., 2014) and also including back
and leg muscles (Huis in ’t Veld et al., 2014a). To date no study of the dynamics of emotional
movement has been published.

Analysis of dynamics of human movement is an important method in biomechanics in general
and specifically in gait analysis. There is a wide range of models that are used to analyse
and describe human gait: from simple mechanical systems (Blickhan, 1989; Seyfarth et al.,
2002; Kuo, 2007) to complex multibody models, which model hundreds of individual bodies
and muscles (Delp et al., 1990; Nakamura et al., 2005; Hamner et al., 2010). The basic models
already describe certain effects found in human walking and running (Geyer et al., 2006) while
the musculoskeletal models can be used to reconstruct individual muscle contributions. To
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analyze a walking motion with a musculoskeletal models one has to provide not only the motion
itself but also the ground reaction force, which requires additional measurement devices and
imposes restrictions as to where the feet are placed during the experiment.

Scope of this Thesis

In this thesis we are modeling the dynamics of human gait as a nonlinear multi-phase optimal
control problem of a underactuated hybrid differential-algebraic system. The optimal control
approach we develop here allows us to reconstruct all dynamic quantities from kinematic motion
capture recordings without the need of additional data such as ground reaction forces. We
achieve this by modeling the human body as a dynamic 3-D rigid multibody system and minimize
the deviation of the human model from recorded motion capture data while the equation of
motion for rigid multibody systems is fulfilled for the human model. We solve the resulting
highly non-linear multi-phase optimal control using the direct multiple-shooting method (Bock
and Plitt, 1984). A schematic of our approach is shown in Figure 1.

An important aspect that we consider here is that we incorporate subject-specific differences
in the model. A common approach to this is to use data from biomechanical literature (de Leva,
1996; Dumas et al., 2007) and create models based on the total weight and height of the subject.
All other parameters such as segment lengths are then scaled uniformly based on the given
weight and height. However, this approach leads to models that only coarseley represent the
recorded subject as the segment lengths relative to body height is highly individual. To address
this we formulate a highly parameterized rigid multibody model that can be adjusted specifically
for each subject to closely match their kinematic properties.

Figure 1: Schematic of our gait reconstruction approach.

We apply our dynamic reconstruction optimal control problem to a set of full-body motion
capture sequences of human walking motions that express specific emotions. Additionally
to the movement data the recordings also contain information of muscle activity in form of
electromygraphic (EMG) data. The reconstructed joint torques of the different emotional
expressions show emotion specific features that are also found in the EMG data, which validates
our model as a new approach for analyzing human movement.

We further demonstrate how our human gait model can be used for full-body 3-D gait
synthesis for which a schematic is shown in Figure 2. Based on the assumption that human
movements are optimal in some sense (Alexander, 1984, 1997) we can generate walking motions
for a wide range of optimization criteria that could be used for virtual characters or humanoid
robots. Similar approaches have been used to compute optimal platform diving (Koschorreck
and Mombaur, 2009), and human running (Mombaur, 2008; Schultz and Mombaur, 2010). As
the dynamics of the full 3-D human model is considered, one can also apply our formulation to
investigate how the movement changes when parameters of the model, the objective function,
or the postural constraints such as movement range of individual limbs change. Also unknown
model parameters (e.g. joint stiffness and damping) may be identified using our formulation.
It furthermore allows testing hypotheses as to why movements are performed using our highly
detailed human model, which is not possible with the existing simplistic biomechanical models.

Our gait synthesis formulation is a crucial component when trying to identify optimality
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Figure 2: Schematic of our full-body 3-D open-loop gait synthesis approach.

criteria for a given motion. Such inverse optimal control methods (or hierarchic dynamic
optimization methods) have lately been used to identify the objective criteria of movement
trajectories when walking from one target to another (Mombaur et al., 2010) or articulated
movement of cerebral palsy patients (Hatz, 2014).

Contributions of this Thesis

A Highly Efficient Rigid-Body Dynamics Implementation During this thesis we cre-
ated RBDL - the Rigid Body Dynamics Library. It is a self-contained model-based package
for modeling and simulating dynamics of constrained rigid multibody systems specifically tai-
lored for use in an optimal control context. It contains implementations of state-of-the-art
algorithms of reduced-coordinate rigid multibody dynamics computations and further allows to
model collisions and contact handling with the environment. It is based on Roy Featherstone’s
6-D Spatial Algebra and allows us to efficiently evaluate quantities such as Jacobians, point
accelerations, system angular momentum and others that are essential for the simulation and
analysis of articulated motion. It uses recursive methods to perform these computations with
an efficiency that is otherwise only achieved with source code generation tools. The library can
be used in a variety of contexts such as simulation and real-time control of robotic systems and
virtual characters.

A Method to Create Subject-Specific Models from Recorded Motion-Capture Data
We discuss the transformation of spatial marker motions (i.e. motion capture marker data) onto
rigid multibody models and the inherent problems. We solve the problem by a semi-automatic
approach. The biomechanics literature provides tables to create dynamic models of humans for
a given height and weight. Based on this we created HeiMan, a highly-parameterized model.
For individual joints the relative locations of joint centers can be modified and are taken into
account for inertial parameters of the segments. We created Puppeteer a motion capture
visualization and rigid multibody modelling tool that allows us to visually adjust the model
and then to transfer 3-D motion capture marker movements onto the joint movements of a
rigid multibody model with high precision. The advantage of using subject-specific models is
demonstrated.

Analysis of the Dynamics of Emotional Walking Motions using Numerical Optimal
Control Methods We have formulated an optimal control problem that approximates motion
capture data of human walking motions using dynamic subject specific models. The original
motions are very closely reproduced using the model while being physically valid. We use this
to compare the effects of different emotions on the level of joint torques of both lower and upper
body of the model.
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Open-Loop Synthesis of Full-Body 3-D Walking Movements We formulated and im-
plemented a multi-phase optimal control problem that allows synthesis of open-loop full-body
walking movements of a highly articulated model with 34 degrees of freedom. Without using
motion capture data our approach allows generation of realistic movements that can for example
be used to animate virtual characters and furthermore serve as a powerful method to study
fundamentals of human walking.

A Validated Set of Emotional Motion Capture Data We have performed a motion
capture experiment of five subjects that walked while expressing a set of emotions. We created
an online survey in which the recorded data was transformed into dynamics point-light displays
evaluated by more than one hundred participants. For each motion we have ratings concerning
the expressiveness on a continuous scale. The results show that there is a high variance in the
perceived expressiveness of the emotions. For two subjects however the emotions were very
clearly recognized, which are thus suitable for the research of emotional body language.

Thesis Overview

Chapter 1 is dedicated to the fundamental descriptions of the biomechanics of the human gait
and emotional body language. It introduces to the anatomical terms that are used throughout
this thesis and gives an overview on existing research on emotional body language.

In the following Chapter 2 we describe the experiment that we conducted for this research.
We performed simultaneous full-body motion capture and EMG recording of muscles on both
upper and lower body. We also describe the online survey that we performed to verify the
expressiveness and recognizability of the motions. The recorded EMG signals are presented and
analyzed for emotion specific characteristics.

Chapter 3 describes the rigid multibody dynamics formulation and implementation that we
created for this thesis to model the dynamics of the human body. The formulation is based
on Featherstone’s 6-D spatial algebra, which is a concise notation for rigid body movements
and dynamics. The computations themselves are based on recursive algorithms that allow for a
much greater ease of use compared to symbolic code generation. As the dynamics computations
take up most of the computation time during the optimizations we have taken great care to
efficiently implement the dynamics computations by exploiting sparsities in the 6-D operators
and Jacobians. We discuss how we model contacts and collisions of the model with the ground
and present a performance analysis of our implementation with symbolically generated code.

In the following Chapter 4 we describe how we transform the motion capture 3-D marker
movement onto rigid multibody models and the mathematical model of the human body that
we use in the optimization. We describe the inherent difficulties of transforming motion capture
3-D marker data onto articulated rigid body movements and how we solve this problem using a
semi-automatic approach. We present HeiMan, a highly parameterized rigid multibody model
we created based on biomechanical data that we adjust to obtain subject-specific models. We
describe the robust nonlinear inverse kinematics method we use to compute joint angles from
the motion capture data. We furthermore present the foot model that we use to describe the
interaction of the model with the ground and also show how we embed the model dynamics as
an ordinary differential equation.

In Chapter 5 we present the nonlinear multi-phase optimal control formulations that we
developed to model the dynamics of human walking. We describe the direct multiple-shooting
method that we use to solve this problem. We present two variations of the problem: the
reconstruction problem to analyse a given motion and the synthesis problem that allows
generation of open-loop human like 3-D walking motions. For both formulations we describe
constraints and the individual phase descriptions. We also discuss how we construct start values
for the optimizations.

Chapter 6 then presents the numerical results of the thesis. We show how our approach using
subject specific modelling is advantageous both in terms of accuracy and required step count of
the inverse kinematics when computing rigid multibody motions. We show the reconstructed
joint actuations and compare it with the recorded EMG data. We show that emotion specific
characteristics that are found in the EMG data are also found in the reconstructed joint
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actuations, which validates our approach. Further we present the numerical results for different
walking gaits that we obtained using the gait synthesis formulation. We present and discuss
gaits that we obtained for different objective functions and prescribed gait parameters. We
present a similarity measure for human movement data and compare the synthesized gaits with
the recorded emotional motion capture motions, by means of similarity, ground reaction forces,
and elevation angles.
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Chapter 1

Human Walking and Emotional

Body Language

The study on emotional body language is an active research area that is being studied by many
different disciplines such as biology, psychology, neuroscience, robotics, biomechanics, and others.
As this thesis is concerned with emotional expressions during walking we describe in this chapter
the fundamental concepts of biomechanical gait analysis and existing research on the study of
emotional body language. We introduce anatomical terms and concepts that are commonly
used in biomechanical movement descriptions and gait analysis. Individual phases of gait are
described along with kinematic coordination patterns that are found in human locomotion. We
present models that classify emotions in a set of basic emotions that are found across cultures
and compare research of emotions using facial and bodily expressions. We conclude the chapter
with recent results in the study of full-body emotional expressions.

1.1 Biomechanics of the Human Gait

1.1.1 Anatomic Planes and Terms

Anatomical terms and conventions make a clear description of general human movements possible.
In Figure 1.1 we show the main anatomical planes and the names of the principal axes. When
discussing the right or left side of the human body we follow the convention used in medical
descriptions where the right (or left) side of a person is always the right (or left) side as seen
from the person’s point of view.

Anatomic Planes

The Sagittal plane splits the human body in left and right half and is parallel to the forward
axis, which is also called the Sagittal axis. The Coronal or Frontal plane splits the human body
in front (anterior) and back (posterior) part. The Transverse or Axial plane is parallel to the
ground and the transversal axis.

Anatomic Axes

The Sagittal axis is the intersection of the Sagittal and Transverse plane, the Transverse axis
the intersection of the Transverse and Coronal plane, and the Longitudinal axis the intersection
of the Sagittal and Coronal plane.

One should note here that we use the term longitudinal axis also for the principal length of
a segment, e.g. in Neutral pose, the longitudinal axis of the foot is parallel to the Sagittal axis
of the human body, whereas the longitudinal axis of the elbow is parallel to the longitudinal
axis of the human body. From the context it should be clear whether we mean the local axis of
the segment or that of the human body.
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Figure 1.1: Anatomical planes and -axes of the human body. The shown posture is also called
the Neutral pose.

Rotations

Rotations of limbs have specific names depending on the limb, the axis of rotation and rotation
direction.

Extension/Flexion: Rotations around the Transversal axis are called Flexions if the rotation
causes the angle to decrease, e.g. for a human that stands in the neutral pose when the thigh is
lifted, or the knee is bent. Extension is the rotation opposite to a flexing motion, e.g. rotating
the head backwards. Rotating the feet downwards is also called Plantar Flexion and the rotation
upwards Dorsi Flexion.

Abduction/Adduction: The rotation around the Sagittal axis that causes a limb to move
away from the Sagittal plane is called an Abduction, e.g. lifting an arm sideways. Rotating a
joint such that the connected limb comes closer to the Sagittal plane is called an Adduction.

Internal/Medial Rotation: A rotation of a joint around the longitudinal axis towards the
body center is called a Internal rotation, whereas the opposite rotation is called a Medial
rotation.

Pronation/Supination: Rotation of the arms outwards, i.e. such that the thumbs point
away from the body is called Supination. The same term is used when the feet are rotated
inwards with toes pointing toward the other foot. The opposite movement is called Pronation.

Directions

Additionally to rotations there are anatomical terms for directions that we use in this thesis.
These are:
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Anterior/Posterior: An atomical point is said to be Anterior if it is located towards the
front side of the coronal plane, e.g. the eyes are located at the Anterior of the head. The
opposite direction of Anterior is Posterior.

Proximal/Distal: To refer to the ends of a limb one can use the terms proximal and distal.
The Proxmial end of a limb is the one that is closer to the center of the body. E.g. the Proximal
end of the shank is at the knee, whereas its Distal end is the ankle.

Medial/Lateral: Directions in the coronal plane are denoted by Medial and Lateral. Medial
is used to refer to something that is towards the center along the transverse axis, whereas Lateral
is used to refer to something that is at the side of the body away from the center.

1.1.2 Gait Analysis

Human walking is a form of locomotion in which the entire body is displaced forward by shifting
the weight repeatedly from one foot to the other. Unlike running there is always at least one
foot in contact with the ground. Another difference to running is that for a short duration
during the gait cycle both feet are in contact with the ground.

Figure 1.2: Overview of the gait phases and the constraint sets RF Right Flat, RT Right Toes,
RT LH Right Toes Left Heel, RT LF Right Toes Left Flat. Ground collisions occur at TD LH
(touchdown Left Heel) and TD LT (touchdown Left Toes).

Gait analysis is concerned with the description and analysis of walking motions. The analysis
includes the determination of various gait parameters, such as as step length, step duration,
walking velocity, contact forces, but also qualitative assessment of motions using recordings such
as video recordings or motion capture methods. The latter allow recording of 3-D motion data
e.g. by reconstructing the 3-D movement of markers that are attached to the human body using
multiple cameras.

In the following we describe aspects of gait analysis that are relevant to this thesis. For a
detailed description of the gait cycle we refer to Perry and Burnfield (2010).
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Phases of Gait

A leg is said to be in the so-called support phase when the foot is in contact with the ground,
otherwise it is in the swing phase. If both feet are in contact with the ground it is called
double-support phase whereas if only one foot is in contact it is called single-support phase. A
schematic is shown in Figure 1.2.

The human gait cycle can be described in different ways. One way is to look at the alternation
of support- and swing-phase and to define the start of the cycle as the contact gain e.g. the
contact gain of the right foot, which is followed by the right support-phase, the lift-off of the
right foot and the following swing-phase. The cycle ends just before the next contact gain of
the left foot. A single gait cycle would then be described as right support phase followed by the
right swing phase. One should note that the gait cycles of the left and right leg do overlap.

An alternate view on the gait cycle is to consider the transitions between single- and double-
support phases. I.e. the gait cycle starts with the right single-support phase right after the
lift-off of the left foot. It transitions into the double-support phase with the contact gain of the
left foot and continues until the right foot lifts off the ground. After that the cycle for the left
foot begins with the same order of events.

Gait Parameters

Two distance parameters are often used in gait analysis: step length and stride length. The
stride length is often defined as the distance of two consecutive heel strikes of the same foot,
whereas the step length is the distance of two heel strikes of two distinct feet. In this thesis we
often use an equivalent definition that uses the positions of the toes instead of the heels (see
Figure 1.3). This latter view has the advantage that at moderate walking speeds time instances
exist that allow a direct measurement of the step length. That both heels are in contact with
the ground usually only occurs while standing or at very low walking speeds.

The step duration is the time interval between the start and the end of the step. Again, the
duration between two consecutive heel strikes are commonly used to define this duration but it
can also be defined as two consecutive lifts of the forefoot. Similarly, the stride duration is the
time duration between two heel strikes of the same foot.

Walking velocity or walking speed is defined as the distance traveled, divided by duration,
e.g. the step length divided by step duration or stride length divided by stride duration.

Figure 1.3: Gait parameters step length and stride length.

1.1.3 Coordination Patterns in Human Gait

Human walking is highly coordinated on multiple levels. First, human gait is cyclic, i.e. after a
complete double-step the posture of the human is very close to that of the beginning. Furthermore,
there is an anti-cyclic swinging of arms with respect to the movement of the legs. Experiments
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performed in robotics (Collins et al., 2009) suggest that the arm swinging reduces the ground
reaction moment.

Another important form of coordination takes place in the balance of the head. Pozzo et al.
(1990) investigated the linear and angular movement of the head in the sagittal plane during
movements such as walking, walking in place, running in place and hopping. They show that
during all tasks there is very little angular movement, e.g. during the walking tasks the angular
movement was within 10◦. Furthermore, the rotation of the head is anticyclic to the vertical
translation of the head, i.e. if the head translates up, then the head flexes (rotates downward).
This last phenomenon was found in all tasks. One interpretation of this is that these movements
counteract disturbances in the vestibular system.

There is also a linear relationship of the angles of thigh, knee, and foot as shown in Borghese
et al. (1996). The relationship however only seems to occur in the so-called elevation angles,
i.e. the angles of the limbs in the global reference frame. The relative angles do not show the
relationship. This phenomenon is sometimes also called the "law of intersegmental coordination",
or "planar covariation", and occurs independently of the walking velocity. This was further
investigated e.g. in Hicheur et al. (2006) and Ivanenko et al. (2008) for a different set of motions
such as climbing stairs, air-stepping, walking with a bent back, or jumping. For all these motions
the law of intersegmental coordination was found to hold.

1.2 Emotions and Emotional Body Language

Charles Darwin devoted extensive research efforts on emotions which he published 1872 in
his book The Expression of the Emotions in Man and Animals Darwin (1872). He describes
emotional expressions that can be found both in man and animal, which indicate that these are
innate and that animals and humans have shared predecessors. A lot of research efforts have
been undertaken over the last century. However, the answer to the question of William James
"What is an Emotion" (James, 1884) still has no uncontested answer.

1.2.1 Classification of Emotions

More recently, attempts were made to classify emotions into a finite set of universal or basic
emotions which are then combined for a wide range of emotions. Basic emotions are usually
assumed to be innate and are triggered by events or objects and result in similar expressions or
actions across cultures and species.

A well known example for a set of basic emotions was proposed by Ekman and Friesen
(1978) who found that facial expressions of the emotions Happiness, Sadness, Surprise, Fear,
Disgust, and Anger were recognized universally even for cultures that had not been exposed to
television or other type of electrical media. Ekman and colleagues also found out that the facial
expressions performed for these emotions used similar facial muscles across cultures (?).

Another model for basic emotions was proposed by Robert Plutchik using the wheel of
emotions (Plutchik, 1980). It uses eight basic emotions, of which always two are paired in basic
and basic opposite emotion: Joy-Sadness, Trust-Disgust, Fear-Anger, and Surprise-Anticipation.
A wide range of emotions is then constructed by combining the basic emotions using different
intensities.

One should note here that the concept of basic emotions is not universally accepted. A
different approach is the so-called appraisal approach, which assumes that emotions are a result
of an interpretation. I.e. an event or object is interpreted, which then causes an emotion.
A bear that crosses my path in the wilderness is not automatically causing fear, instead the
interpretation of the situation causes the emotion fear.

An overview on the history of emotion research and different views on emotions is for example
given in Gendron and Feldman Barrett (2009).

Emotional Body Language

A large body of research on emotions is focused on the facial expressions of emotions. The Facial
Action Coding System (FACS) (Ekman, 1992) e.g. provides a systematic standard to describe
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facial expressions using so-called Action Units. It allows describing a facial expression in a very
detailed manner and can be used both in psychological experiments and in computer animation.

Other ways of expressing emotions are posture, gesticulation, positioning, and orientation
relative to others, but also gaze. Walking velocity and the path chosen by a person that
approaches another can vary in a myriad of ways and convey different types of information such
as social status, previous and intended action, and many others. One can envision the slow and
maybe fearful walk of a child that just destroyed a window with a soccer ball. Similarly, the
excited running (and even jumping) of another that just won the most important basketball
match of its life in the courtyard of a neighbour next door.

Research presented in Aviezer et al. (2012) showed that facial expressions alone are not
sufficient to distinguish between strong positive or negative emotions. They used the expressions
of world-class athletes during peak intensities such as winning and loosing and separated
expression of body and face. Bodily expressions were successfully recognized but not facial
expressions only. Furthermore, they superimposed facial and body images such that incongruent
combinations such as "body expression win" and "facial expression loose" were created. For these
images the body expressions seemed to govern the judgment of the participants.

One should note that the ability to read both facial and bodily expressions of emotion comes
natural for most people, however there are various neural conditions such as autism spectrum
disorders (ASD) which negatively affects this ability.

1.2.2 Perception of Bodily Expression of Emotion

Research on bodily expressions is generally performed differently than research on facial ex-
pressions. Studies on the latter often use static photos that include all the details of the face.
Studies on the perception of bodily expressions often use videos of drastically reduced models
such as point-light displays that only show points at certain anatomical landmarks e.g. points at
head, shoulders, elbows, pelvis, knees, and ankles. One of the main reasons for using point-lights
is the reduction of possible distractions, e.g. clothing, race, or gender, that would be included in
full-light displays.

A study conducted by Gunnar Johansson in 1973 showed that walking motions shown as
point-light displays were immediately recognized by all subjects of a study, even for short
presentation times of only a second (Johansson, 1973). He also coined the term Biological
Motion which refers to "biologically meaningful motion" such as the point-light display videos.
The term is used to differentiate it from random motions of points.

Many characteristics of the recorded subject can be recognized from point-light displays of
walking motions, such as gender (Mather and Murdoch, 1994). Also familiar persons can be
identified (Cutting and Kozlowski, 1977). In Brownlow et al. (1997), emotions were successfully
recognized in dynamic point-light displays of dancing movements.

Atkinson et al. (2004) compared the perception of emotions of full-light and point-light
displays of either static stimuli (i.e. images) or dynamic stimuli (videos). Participants had to
classify four sets of stimuli (full-light static, full-light dynamic, point-light static, point-light
dynamic) of the emotions Disgust, Fear, Anger, Happiness, and Sadness that were performed
by ten actors. Each set contained 150 stimuli and was classified using forced-choice by 36
participants. All emotions were recognized with a higher mean correct rate than chance. Overall
the videos of full-light displays were recognized best (average score of 85.1, where 100 would be
a perfect recognition), followed by videos of point-light displays (average score 76.2). The stills
had an average score of 54.8 for full-light displays and 39.0 for point-light displays.

There also seem to be gender-specific differences in the perceptions of emotions. The study
described in Krüger et al. (2013) used dynamic point-light displays of walking motions that
expressed the emotions Anger and Happiness. The durations of these displays were 1.68s and
participants had to classify the motions using a forced choice approach with the discrete options
Neutral, Happy, and Anger. They show that males better recognized happy motions of female
actors and that angry motions of male actors were better recognized by women.
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1.2.3 Emotion Specific Motion Patterns

An extensive study on emotion specific motion patterns was conducted in Wallbott (1998). In
this study 14 emotions (including emotions expressed in different intensities) were expressed by
actors and recorded using full-light video cameras. The actors were free to gesticulate and no
specific type of motion was described. The videos were then used to derive a set of codes such
as "upper body collapsed", "head backward", "arms crossed in front of chest" and to analyze how
significant these codes were for each emotion by manually annotating all videos. They suggest
that expressions of emotions are not necessarily distinguished by a certain combination of codes
but also, more importantly, by their intensities.

Omlor and Giese (2006) describe a blind source separation method that takes time shifts
in the source signals into account, which is usually not considered in separation methods like
principal component analysis (PCA) or independent component analysis (ICA). For given data
xi(t) ∈ R

m they compute source signals sj(t) ∈ R
n with n < m, mixing weights (αi,j)i,j ∈ R

n×m

and time delays (τi,j)i,j ∈ R
n×m such that the original data is reconstructed by

xi(t) =

n
∑

j=1

αi,jsj(t − τi,j). (1.1)

In Omlor and Giese (2007) they applied their method on joint angles of recorded emotional
full-body motion capture data of the emotions Happiness, Fear, Sadness, and Anger. They used
the angle trajectories of flexions of hip, knee, ankle, spine, clavicle, shoulder, elbow, wrist, neck
and head joints.

In the related work Roether et al. (2009) they used their machine learning methods to extract
emotion specific features from motion capture data and validated them in experiments with
human observers.

The research presented in Barliya et al. (2013) investigates the effects of emotions on the law
of intersegmental coordination. They studied the elevation angles of thigh, shank, and ankle
and the resulting plane for emotional gaits and gaits of different speeds. Walking velocity still
was the largest factor in the change of the orientation of the plane, however changes in the
amplitudes of the angles also play an important role when discriminating emotions.

The study presented in Hicheur et al. (2013a) examined how emotions affect postural changes
and whether these changes are related to walking velocity. They used two sets of motion capture
data. The first was a recording of eight professional actors that expressed Fear, Sadness, Neutral,
Joy, and Anger during walking. The second experiment used five naïve subjects that were asked
to walk without expressing emotions but at different speeds (normal, slow, and fast) which
the subjects could choose themselves. They compared the two sets of experiments in terms of
different parameters, such as walking speed, relative timings of the switch from stance to swing
phase, timing of peak amplitudes, and global angles of trunk, head, arm, and forearm. They
found that especially the global angles of trunk and head are good indicators for emotion and
are much less indicators for different speeds.

The previous findings were used in Hicheur et al. (2013b) to see if and how emotions can
be superimposed to animated figures. They first showed that emotions in videos of animated
full-light avatars are very well recognized with a recognition rating of > 85%. They then used
a neutral motion and modified its speed, the angle of the trunk, the angle of the head, and
combinations of all modifications. The changes in speed were ±30%,±60% and for the angles
±8◦,±16◦. Combinations of these changes were used to generate 140 motions which were
classified by 32 human observers into emotions Fear, Sadness, Neutral, Joy, Anger or Unknown.
The combinations of of motion parameters with the highest recognition rates are shown in Table
1.1.

In Venture et al. (2014) they investigated whether emotions from recorded emotional walking
motions could be automatically recognized with a model with only six or twelve degrees of
freedom. They first used inverse kinematics to map motion capture data on a fully articulated
34 degree of freedom model and then used only subsets of the degrees of freedom (DOF). They
created two reduced models: the 6DOF model that only used the DOFs of the lower torso and
the 12DOF model that adds six additional DOFs for the waist and neck joint (three DOFs each).
From the motion capture data they built a database for the two models that allows identifying
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Emotion Speed Angle Changes Recognition Rate

Trunk Head

Fear 50% 0◦ 0◦ 50%

Sadness 40% −16◦

−16◦ 95%

Joy 130% 16◦ 0◦ 70%

Anger 160% −16◦ 0◦ 90%

Table 1.1: Recognition rates of artificially superimposed emotion by changing motion parameters
as reported in Hicheur et al. (2013b).

emotions by only considering data of these reduced models, however the 12DOF model had in
general better recognition rates.

The research of Huis in ‘t Veld et al. (2014) and Huis in ’t Veld et al. (2014a) presents BACS
- the Body Action Coding System that uses surface electromyograhpic (EMG) data to encode
emotion specific patterns in muscular activity. Participants actively expressed or passively viewed
bodily expressions of fear while activity of muscles on upper and lower body were recorded. For
active expressions they found that bicep, deltoids, forearm, and triceps showed high activity
during expression of anger, whereas biceps and deltoids showed high activity during fear. Passive
viewing on the other hand showed effects with similar tendencies however on a much smaller
scale. Nevertheless it indicates that emotions may already be detected from muscular activity
alone.



Chapter 2

Motion Capture Experiments

In this chapter we describe the motion capture experiments that we performed to obtain record-
ings of full-body emotional expressions. We recorded full-body walking sequences of multiple
subjects that express specific emotions. The motion capture experiments were performed at the
Laboratoire de la Physiologie et de la Perception de l’Action at the Collège de France in Paris.
Additionally to the 3-D marker movement we recorded muscle activity using electromyographic
sensors for muscles of upper and lower body to obtain information of muscular activity during
the emotional expressions. We evaluated expressiveness of the recordings, i.e. how well the
emotions are recognized, by performing an online survey with dynamic point light displays of
the recorded motions. Further, we analyze the recorded EMG data for emotion specific patterns.

2.1 Selection of Emotions

As described in Section 1.2.1 there are different approaches to classify emotions by using distinct
sets of basic emotions that are used to construct complex emotions. Instead of analyzing a
complete set of basic emotions we focus our efforts on two types of emotions, namely Anger
and Joy and compare them to neutral movements. In the following we will refer to neutral
movements as expressions of the emotion Neutral and use it as a type of emotion in its own.

Focusing on Anger and Joy is motivated by similar descriptions of the two emotions. Angry
or joyful movements are often displayed in film, theater, and animation by increased walking
speeds and stronger upper body articulation compared to neutral or sad movements. Various
studies show similarities for expressions of Anger and Joy. For example in Wallbott (1998)
both are characterized by the same movement quality terms "expansive" and "high movement
dynamic". The analysis performed in Roether et al. (2009) show similar emotion-specific dynamic
features for shoulder and elbow flexion.

As with any emotional expression, there is no unique way of expressing an emotion. Rather
the contrary holds and there are a wide range of variations for a single emotion. In our work we
decided to focus on two specific variants for each Anger and Joy: one expression that is shown
openly and one which is held back or directed inwards. For Anger we have AngerExpressive and
AngerSupressive and for Joy we have JoyExpressive and JoySelfsufficient.

2.2 Experiment Overview

Five subjects (one female, four males) participated in this experiment. None of them had any
professional acting experience. The motion capture was performed using a Vicon motion capture
system with 16 cameras at the Laboratoire de la Physiologie et de la Perception de l’Action at
the Collège de France in Paris.

We followed the emotion induction procedure described in Roether et al. (2009). The actual
recording was preceded with an induction phase, during which the subjects could freely express
the emotion using vocalization, gestures, and facial expressions. There was no time limit for
this induction phase, instead the subjects were instructed to go to a specific point in the motion
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capture lab to indicate to the experimenter that they were ready. The experimenter then started
the recording without any interaction with the subject.

The different types of emotion expression were described to the subjects using examples.
Subjects were encouraged to alter them or replace them with personal experiences so that they
could easier evoke the intended mood. The subjects were instructed to not use any gestures
during the recording such as raising and shaking an arm during an Anger expression.

AngerExpressive: the motion should be affected by anger and can be expressed openly.
Example: someone rode with his bike over ones foot, one learned about an affair of ones partner,
etc.

AngerSupressive: the motion should be affected by anger, but cannot be expressed openly.
Example: one was treated injustly in an examination or interview, but an open expression of
the anger would make things even worse (failing the exam, lose existing job).

JoyExpressive: the motion should be affected by joy that is directed outwards.
Example: one won the lottery and goes to see a friend / partner to tell him / her about it
(possibly also that one can finally quit the job / buy a house / etc.)

JoySelfsufficient: the motion should be affected by joy that is directed inwards.
Example: one fully realizes that one has already achieved some of the biggest dreams of ones
childhood.

2.2.1 Marker Placement

We recorded the movement using a passive marker-based motion capture system manufactured
by Vicon (Vicon, Oxford Metrics Limited, Oxford UK). Reflective markers are attached to the
subjects and are then recorded using multiple cameras to reconstruct their spatial positions over
time. Markers are usually placed to specific anatomical landmarks (so-called marker sets) to
infer the movement of the skeletal system of the recorded subject.

We used the full-body Vicon Plug-In-Gait marker set shown in Figure 2.1. Markers were
attached to the subject using adhesive tape directly on the skin to avoid movement artifacts
from clothing. Recording, marker labelling, and export to the C3D file format Motion Lab
Systems (2008) was done using the Vicon NexusTMsoftware version 1.3.109.33342. Recording of
the marker movement was performed with a frequency of 100 Hz.

2.2.2 Recorded EMG Channels

We recorded muscle activity using surface electromyography (EMG) of muscles on upper and
lower body. Surface EMG records electrical signals by measuring electrical signals using electrodes
that are placed onto the skin near the muscles.

We used the wireless EMG system Wave Wireless EMG (Cometa, Barregio MI, Italy). Each
wireless EMG sensor communicates with a receiver using proprietary wireless protocol. The skin
under the electrodes was cleaned with alcohol to minimize impedance before attaching them
to the subject. After this we tested the signal of each sensors before proceeding with the next
muscle.

In total we recorded 16 muscles that are listed in Table 2.1 along with their associated
function. A schematic of the muscles and sensor location is shown in Figure 2.2. The EMG signal
was recorded with a frequency of 1000Hz using the same software as the marker movement.

2.2.3 Protocol

The experiments were performed in order of the following steps:

1. Brief introduction of the subjects to the research and the recording methods

2. Setup of a new subject model in Vicon NexusTM
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Source: http://www.idmil.org/mocap/Plug-in-Gait+Marker+Placement.pdf

Figure 2.1: Overview of the Plug-In-Gait (PIG) marker placement and labeling.

Figure 2.2: Overview of the recorded muscles. The area of the muscle indicated using red lines
and the placement of the surface EMG sensors is shown as red dots. All sensors were placed on
the right hemisphere of the subject.
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Name Associated Function

Soleus Plantar flexion of the ankle

Gastrocnemius Lateralis Plantar flexion of the ankle and flexion of the knee

Tibialis Anterior Dorsi flexion of the ankle

Peroneus Longus Plantar flexion and abduction of the ankle

Biceps Femoris Flexion of the knee

Vastus Lateralis Extension of the knee

Vastus Medialis Extension of the knee

Tensor Fascie Latae Extension of the hip, Abduction of the hip

Gluteus Maximus Extension of the hip

Erector Spinae Extension of the back

Trapezius Abduction of the upper arm and movement of the scapula

Deltoideus Anterior Flexion and Abduction of the shoulder

Deltoideus Posterior Extension of the shoulder

Biceps Brachii Flexion of the elbow

Triceps Brachii Extension of the elbow

Extensor Digitorum Extension of the wrist

Table 2.1: Listing of the recorded muscles and their associated main functionality.

3. Attachment of the EMG sensors to the subject

(a) Record maximum values for each muscle / maximum cocontraction

4. Attachment of the reflective markers to the subject

5. Recording of five Neutral motions

6. Recording of five AngerExpressive motions

7. Recording of five AngerSupressive motions

8. Recording of five JoyExpressive motions

9. Recording of five JoySelfsufficient motions

10. Take photos of subject with markers

(a) T-Pose: from front, back, side left, side right

(b) Neutral Pose (arms hanging): from front, back, side left, side right

A subject with all motion capture markers and EMG sensors is shown in Figure 2.3.

2.3 Evaluation of the Expressiveness

Once the data was obtained we created short video sequences for each recorded trial. Each video
contained a double step sequence. We always used the first double step sequence in a motion
capture trial. Unfortunately, some of the trials did not contain all markers for a double step
sequence as the motions were very fast. Instead of having 5 trials for each expressed emotion we
therefore had 3 trials. This resulted in a total of 75 videos (75 = 5 subjects×5 emotions×3 trials).

For each double step sequence we created video clips that show the markers from an angle
of about 45◦ and height that is approximate to the subject’s head. The camera did not move
with the markers and instead is at a fixed position during the whole motion. All markers used
the same white color and additionally the ground level was indicated with a grey and black
checkerboard pattern with square size 1m. A sequence of images for one of the used videos is
shown in Figure 2.4.
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(a) Frontal View (b) Posterior View

Figure 2.3: Frontal and posterior view of a subject on which all motion capture markers and
EMG sensors were attached. The markers CLAV and STRN were already removed when the
pictures were taken but are present in the motion capture data.

Figure 2.4: Image sequence for one of the double step sequences that were used in the expres-
siveness evaluation.

2.3.1 Survey Overview

We created an online survey to perform the evaluation. Figure 2.5 shows a screenshot of the
webpage which participants used to rate the videos.

In the center it shows the video player with the play button on the top right. The videos did
not start automatically and for each click on the play button the video would show just once.

Participants could rate the individual videos on a continuous scale using a slider shown
horizontally centered and below the video player. The scale had labels from Anger (left) to
Neutral (center) to Joy (right). The participants were instructed to use given extreme values
when the motion was perceived as clearly angry (slider to the left) or clearly joyful (slider to the
right). Intermediate values should be chosen when there was only a partial agreement with the
statements. Furthermore participants could also choose to select "Can’t Decide" on a check box
right to the scale if the depicted motions did not fit any of the emotions.

On the bottom right the participant could move to the next video by clicking on the button
"Next Video". Participants could watch the video as often as wanted but could not return to a
previous video to change a previous rating.
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Figure 2.5: Screenshot of the online survey.

The 75 videos were split up in 5 sets of 30 videos each. Each set mainly focused on one
subject, i.e. contained all videos of one specific subject and the remaining 15 videos were a mix
of 3 additional subjects. The first 5 videos and the last 5 videos used the same subject and the
same order of recorded emotions.

Participants could rate one set a time and the survey would choose the set which had been
rated the least. The survey furthermore kept track which video was rated last so participants
could take a break whenever they wanted and come back later to finish a set. Once a participant
rated all sets the survey would notify participants that all sets had been rated and not let rate
them further videos.

The survey was completely anonymous and we did not collect any data other than the
ratings and at what time those ratings were performed. To reach a high number of possible
participants we sent a link to the survey to various mailing lists as well as word-of-mouth (e.g.
at conferences) and social media (i.e. Twitter).

2.3.2 Results

There were 109 participants that rated videos in the survey and a total of 4023 ratings were
made. On average each video was rated 54.63 (±3.40) times. The numerical values for mean
rating and standard deviation are shown in Table 2.2, a visual representation is shown in Figure
2.6.

The plots in Figure 2.6 show the mean value and standard deviations of the ratings for all
videos in the survey. Each plot represents the results for one subject. The y-axis represents the
rating where -1 (bottom) represents Anger, 0 is Neutral, and 1 is Joy. The dashed horizontal
lines are located at -0.33 and 0.33 which indicate the boundaries of the three emotions on the
scale. For each subject the ratings are grouped by the expressed emotions from left to right:
AngerExpressive, AngerSupressive, Neutral, JoySelfsufficient, and JoyExpressive. The three
entries in each group are the three trials used in the survey.

For Subject 5 at the bottom center the individual emotions were not recognized by the
participants as all mean ratings are within the (−0.33, +0.33) range. The mean ratings and
their standard deviations for the expressions for Neutral and JoySelfsufficient have a relatively
small spread and are close to a neutral rating of 0. All other expressions do not display a clear
tendency to a specific emotion.

Subject 2 in the top center is similar as for Subject 5: mean ratings are mostly within the
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Figure 2.6: Mean rating and standard deviation of the ratings of the double step sequences for
all subjects. -1 represents Anger, 0 Neutral, and 1 corresponds to Joy.

(−0.33, +0.33) range, which means that the motions were mostly being interpreted as neutral
motions. Two of the 3 motions for JoySelfsufficient were interpreted similarly joyful as the most
joyful motions for JoyExpressive. The ratings for both AngerSupressive and JoySelfsufficient
had clearly lower and higher mean ratings for two videos than all ratings for Neutral.

In the bottom row at the left one can see the ratings for Subject 4. One can see a slight
tendency of the mean ratings going from −0.33 on the left to +0.33 on the right. The second
Neutral video was recognized very well: its mean value is 0.05 and a standard deviation of
±0.12. The motions for AngerExpressive, while having a large standard deviation, have all their
average ratings lower or equal to −0.23. Additionally (taking only the mean values into account)
these expressions can be separated from the other emotions. The videos for JoyExpressive were
similarly well perceived except for the second video, which was perceived as neutral by most.

The results for Subject 1 are shown in the plot on the top left. There is a strong tendency of
the mean ratings from bottom left to top right. The motions with the expression JoyExpressive
have received the highest ratings for all subjects. The second trial has both the highest mean
value of 0.73 and the lowest standard deviation of ±0.29 in this expression for all subjects.

Subject 3 is displayed in the plots at the top right. Of all subjects it shows clear tendency
for all expressed emotions except JoySelfsufficient, for which the videos were perceived as mostly
neutral motions (0.10 ± 0.33, 0.00 ± 0.39, 0.04 ± 0.34). The expressions for JoyExpressive were
recognized worse than those of Subject 1 but better or equal than all other subjects. The average
ratings for the AngerExpressive videos have average ratings of lower or equal to −0.69. The
third video has both the lowest mean rating of −0.81 and a standard deviation of ±0.27 which
is the lowest standard deviation for all AngerExpressive motions across all subjects.

Overall the expressiveness of the five subjects varies greatly. More specifically the expressions
of Subjects 2, 4, and 5 were generally difficult to read whereas the videos for Subjects 1 and 3 were
recognized very well. For Subject 3 the extreme expressions JoyExpressive and AngerExpressive
span a wider range than those of Subject 1. It is also worth noting that for Subject 3 there is
no overlapping of each of the expressions: the closest expressions are Neutral (highest average
−0.02) and JoySelfsufficient (lowest average 0.00).
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Both Subject 1 and 3 would be suitable for further analysis, however we chose to use Subject
3, since its ratings and standard deviations were generally similar or better.

AngerSupressive AngerExpressive

S1 −0.39±0.35 −0.19±0.25 −0.33±0.31 −0.15±0.70 −0.47±0.58 −0.41±0.66

S2 −0.23±0.30 −0.27±0.31 −0.36±0.34 −0.15±0.30 −0.26±0.35 −0.20±0.35

S3 −0.41±0.29 −0.44±0.28 −0.26±0.30 −0.77±0.34 −0.69±0.42 −0.81±0.27

S4 0.02±0.34 −0.03±0.18 −0.00±0.19 −0.23±0.55 −0.35±0.54 −0.34±0.52

S5 −0.13±0.28 −0.33±0.35 0.08±0.22 −0.02±0.47 0.23±0.41 −0.02±0.57

JoySelfsufficient JoyExpressive

S1 0.24±0.34 0.20±0.37 0.56±0.38 0.53±0.54 0.73±0.29 0.66±0.36

S2 −0.04±0.25 0.11±0.33 0.16±0.31 −0.19±0.58 0.13±0.61 −0.03±0.49

S3 0.10±0.33 −0.00±0.39 0.04±0.34 0.48±0.36 0.50±0.38 0.42±0.31

S4 0.18±0.27 0.06±0.25 0.14±0.31 0.34±0.52 0.10±0.49 0.42±0.40

S5 0.02±0.26 −0.07±0.25 −0.03±0.19 −0.04±0.38 0.09±0.42 −0.13±0.32

Neutral

S1 −0.11±0.24 −0.03±0.19 −0.02±0.21

S2 −0.08±0.27 −0.20±0.29 −0.17±0.29

S3 −0.18±0.27 −0.11±0.28 −0.02±0.20

S4 0.16±0.28 0.05±0.12 0.12±0.27

S5 −0.11±0.26 −0.08±0.24 −0.06±0.14

Table 2.2: Numerical values for mean rating and standard deviation for all subjects and all
videos.

2.4 Analysis of the Electromyographic Data

The recorded raw EMG signal contains high frequencies and, to facilitate analysis various
postprocessing methods are commonly employed, as described e.g. in Winter (2009). For our
analysis we rectified the raw EMG data filtered using a first order zero-lag Butterworth filter with
a cutoff frequency of 6Hz. When analyzing the data we observed that the muscles Deltoideus
Posterior and Biceps Brachii did not show any signals, so we omitted these in analysis.

In Figure 2.7 we show the EMG data of Subject3 for a double-step sequence. One should
note that the data is not normalized with respect to maximum voluntary cocontraction as we
here focus on the changes with respect to neutral movements. Each row of plots shows the data
for a single muscle and uses the same scale on the vertical axis. Each of the four columns of
plots shows the data of one emotional expression together with the EMG data of the neutral
motions. All EMG sensors were placed on the right side of the subject and the grey background
indicates phases during which the right foot of the subject is in contact with the ground. We
only show trials for which data of a complete doublestep sequence was recorded, which were two
sequences for AngerExpressive and JoyExpressive and three for the remaining expressions.

We computed average and standard deviation for each signal and expression. The average
signal is shown as a line and the standard deviation as a shaded area.

One can already see that the emotion AngerExpressive has the highest levels activation
overall. Furthermore, there is a shift of the activation pattern for the Peroneus Longus muscle.
One of the associated functions of this muscle is the plantar flexion of the foot that propels
the body forward. The Erector Spinae muscle shows high activity near the end of the of the
stance phase and the beginning of the swing phase of the right leg. Another difference to the
expression of Neutral is that the recording of Deltoideus Anterior, which contributes to the
flexion of the shoulder, shows increased activity that starts before the touch down of the foot
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Soleus

AngerExpressive
Neutral

AngerSupressive
Neutral

JoySelfsufficient
Neutral

JoyExpressive
Neutral

Gastrocnemlat

Tibialisant

Peroneuslongus

Bicepsfemoris

Vastuslat

Vastusmed

Tensorfascielat

Gluteusmax

Erectorspinae

Trapezius

Deltoideusanterior

Tricepsbrachii

Extensordigit

AngerExpressive AngerSupressive Neutral JoySelfsufficient JoyExpressive

Figure 2.7: Electromyographic data of the recorded muscles of Subject3 for emotion expressions.
For each EMG signal and emotional expression we show the average as a line and the standard
deviation as an area. Each emotion AngerExpressive, AngerSupressive, JoySelfsufficient, and
JoyExpressive is shown together with the EMG data of the Neutral recordings as a reference.
For each muscle the same vertical scale is used. Only muscles of the right side of the subject
were recorded and the grey background indicates whether the right foot is in contact with the
ground.

and lasts until its lift-off. The measurements of Triceps Brachii show activity near the end of
the contact phase of the foot. The activity of the Trapezius, Deltoideus Anterior, and Triceps
Brachii are likely for the increased arm swinging during the expression of this emotion. The
activity shown in Extensor Digitorum likely indicates a clenching of the subject’s fist. However
this remains speculation as neither an antagonist nor enough motion capture markers were used
to record this type of movement.

The EMG signals for the expression of AngerSupressive is in general very similar to those of
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Neutral recordings. The activity of the Peroneus Longus is slightly less for this expression than
for the Neutral recording, however the activity of Biceps Femoris shows stronger activity at
the early stance phase. Another difference is in the muscle activity of Extensor Digitorum. As
before, this might be due to clenching of the fist.

For the expression of JoySelfsufficient the EMG signals are also very similar to that of Neutral
expressions and we observe that the Peroneus Longus has a lower EMG signal than the Neutral
trial. For the muscles Vastus Medialis and Gluteus Maximus the activity is similar or even lower
than that of the Neutral recordings. This may be related to the shorter average step length
and walking velocity compared to the Neutral movements. Only for one recorded trial there is
higher activity in the Extensor Digitorum, which shows some signals in the corresponding plot.

When comparing the muscular activity of JoyExpressive with Neutral one can see a small
temporal shift in the signal of the Peroneus Longus and Erector Spinae. Also the activity of
Soleus, Gastrocnemius Lateralis, and Vastus Medialis is slightly higher for the expression of
JoyExpressive. During the swing phase of the right foot one can see an increased activity of
Trapezius. This muscle contributes to the abduction of the upper arm may therefore support
the swinging of the right arm.

It is notable that the activity of Peroneus Longus is higher for the expression of Neutral
compared to those of AngerSupressive, JoySelfsufficient, and JoyExpressive. This muscle
contributes to the plantar flexion and abduction of the foot at the ankle.

Overall one can see clear differences in the EMG data of the different emotional expressions.
Especially AngerExpressive and JoyExpressive show different intensities and timings of peak
signals compared to Neutral expressions. The generally small standard deviations further support
the consistency of our data over multiple trials. Further in-depth analysis and experiments
would be required to investigate how much the effects listed above are due to task parameters,
such as walking velocity, and also whether the effects can be found across subjects with similar
quality of emotional expressiveness.
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Numerical Methods and Models



28



Chapter 3

Efficient Implementation of Rigid

Body Dynamics using Spatial

Algebra

This chapter presents the theoretical background and implementation details of RBDL - the
Rigid-Body Dynamics Library that we created in this thesis to model and compute the dynamics
of the rigid-body motions. It is based on Spatial Algebra, a concise notation for rigid-body
motions that was established by Roy Featherstone and which is described in detail in his book
Featherstone (2008). In large parts we borrow his notation throughout this chapter. Theoretical
foundations and algorithms of rigid multibody dynamics have been the subject of various other
books, such as Khalil and Dombre (2004); Craig (2005); Shabana (2005); Jain (2011), and
others.

3.1 Dynamics of Rigid Multibody Systems

A rigid multibody system is a set of rigid bodies B0, B1, . . . , BnB
that are interconnected by

joints J1, . . . , JnJ
. Bodies are rigid in the sense that two points of a single body will always

have the same distance. Joints always connect two bodies and induce constraints on the relative
motion of the two bodies. There usually is a designated root body from which the whole model
is spanned and that is fixed in a global reference frame. We denote this root body as B0.

(a) Schematic of a rigid multibody system with
tree topology

(b) Schematic of a closed-loop system

Figure 3.1: Topologies of rigid multibody systems
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Kinematic Trees and Closed-Loop System

The connection of joints and bodies allows us to view the multibody system as a graph where
the joints are the edges and the bodies are the nodes (see Figure 3.1). The designated root body
(in our case B0) is then the root node of the graph.

If this graph is a tree then we call the system a kinematic tree (Figure 3.1(a)). Various
very efficient recursive methods only work on kinematic trees. Otherwise the graph contains
loops and the system is called a closed-loop system (Figure 3.1(b)). Closed-loop systems can
be handled by first considering a sub-system that is a spanning tree and impose loop closure
constraints to the system.

Unless stated otherwise the systems in this chapter are assumed to be kinematic trees.

Coordinate Representation

The position and orientation of a single body at a given point in time can be described by 6
variables: 3 translational variables and 3 rotational variables. The state of all bodies in the
system can therefore be specified by 6nB variables. However, as the joints limit the relative
motion of the connected bodies the actual number of degrees of freedom of the system is in
general much smaller. There are two ways of describing the state of a rigid-body system at a
given point in time: redundant coordinates or generalized coordinates.

Redundant Coordinates Redundant coordinates (also referred to as “natural coordinates”
or “maximal coordinates”) use more degrees of freedom than the system actually possesses for
the state description. A possible choice of variables would be the 6nB values described earlier.
This leads to big structured systems. These structures can be exploited, which results in an
increased performance compared to working with the full system. When working with redundant
coordinates one also has to ensure that the state variables are consistent with the joints of the
system.

Generalized Coordinates Generalized coordinates (also sometimes called “minimal coordi-
nates”) describe the state of the system using a vector that has a dimension that is equal to the
number of degrees of freedom. An advantage of this approach is that any vector in R

ndof is a
valid state description.

In this thesis we use the latter approach, yet the concepts described here are not limited
to using generalized coordinates. The generalized state of a rigid-body model is described
by q, q̇, q̈ and τ ∈ R

ndof where ndof ∈ N is the numbers of degrees of freedom of the system.
The generalized positions are denoted by q, the generalized velocities by q̇, the generalized
accelerations q̈, and τ are the generalized forces of the system.

Kinematics and Dynamics

Problem formulations of rigid-body motions can be split up into two areas: kinematics and
dynamics. Kinematics is about geometric aspects such as if and how a distinct point on the
robot (the so-called end effector) can reach a prescribed location in space. Dynamics on the
other hand is about the forces that cause the motion and how the system reacts to applied
forces or which forces have to act to produce a given motion.

To perform dynamics computations of a multibody system one first has to compute its
kinematics. Therefore dynamics problems generally have a higher computational complexity
and involve more variables than pure kinematics computations. The focus of this research is
on dynamics and the forces that act within the system and also how they change for different
inputs. For this we perform a great number of dynamics computations, which require high
performance rigid multibody methods.
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3.1.1 Equation of Motion for Rigid Multibody Systems

The dynamics of rigid multibody systems using generalized coordinates is described by the
following equation:

H (q)q̈ + C(q, q̇) = τ (3.1)

The matrix H (q) is the symmetric and positive definite joint space inertia matrix or generalized
inertia matrix. The term C(q, q̇) is the generalized bias force and τ the generalized force applied
at the joints. The generalized bias force is equal to the amount of generalized force that has
to be applied such that the acceleration q̈ is zero. It contains Coriolis and centrifugal forces,
gravity, and other forces acting on the system, which are not caused by τ .

There are two fundamental dynamics problems related to rigid multibody systems: inverse
dynamics and forward dynamics. Inverse dynamics computes the generalized forces τ required
to produce given q, q̇, q̈:

τ = ID(q, q̇, q̈). (3.2)

Forward dynamics computes the acceleration q̈ of the rigid multibody system for given q, q̇, τ .
It can be formalized by:

q̈ = FD(q, q̇, τ ). (3.3)

Both problems can be directly evaluated using (3.1), yet for sufficiently large ndof much
more efficient recursive methods exist.

3.1.2 External Contacts

Equation (3.1) describes the dynamics of a rigid multibody system that is not subject to an
external constraint. If one or more points of the model are in contact with the environment
then the motion of the model is constrained by these contacts. Additionally the contacts cause
forces acting on the model. In this work we only consider holonomic scleronomic constraints
which can generally be stated as

g(q) = 0 , (3.4)

with g : Rndof → R
m, with m < ndof being the number of constraint equations.

For a point constraint that fixes a body point at a specific location the function g(q) expresses
the difference of the point and its desired position. In this case m = 3 where the first entry
would be the points X-coordinate, the second its Y -coordinate, and the last its Z-coordinate. If
the constraint only acts along one axis for a single point we have m = 1, and for a system with
n bodies for which every body has one point constraint we have m = 3n.

The equation of motion for a rigid multibody model that is subject to an external contact is
described by

H (q)q̈ + C(q, q̇) = τ + G(q)T λ, (3.5a)

g(q) = 0, (3.5b)

where G(q) = ∂
∂q

g(q) is the so-called contact Jacobian matrix of size m × ndof and λ ∈ R
m are

the contact forces. Equation (3.5) is a differential algebraic equation of (differential) index 3.
By differentiating the constraint equation (3.5b) twice we obtain:

H (q)q̈ + C(q, q̇) = τ + G(q)T λ, (3.6a)

G(q)q̈ + Ġ(q)q̇ = 0, (3.6b)

which we can rewrite as a linear system of the unknowns q̈, λ:

[

H (q) G(q)T

G(q) 0

] [

q̈

−λ

]

=

[

−C(q, q̇) + τ

γ(q, q̇)

]

(3.7)

This system is always solvable if G(q) has full rank, which is the case if the constraints in g(q)
are not redundant. The term γ(q, q̇) ∈ R

m is the negative right summand of (3.6b) and is also
called contact Hessian.
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To ensure equivalence of (3.5) and (3.7) we have to ensure that the invariants of the
constraints are fulfilled:

g(q) = 0, (3.8)

G(q)q̇ = 0. (3.9)

It is sufficient to ensure that these conditions are fulfilled only at the beginning of the contact as
due to (3.6b) and therefore (3.7) the constraint conditions are already fulfilled on the acceleration
level.

When using numerical integration equation (3.6b) will not be fulfilled exactly, hence errors
will accumulate eventually. This is especially true for large step sizes and/or long simulation
durations. In this case one can use Baumgarte stabilization (Ascher et al., 1995). In this work
however no stabilization was used as the integration horizons are relatively short and no large
error accumulations have been observed.

We may omit the arguments q, q̇ for the quantities when their requirement should is clear
from the context.

3.1.3 Collision Impacts

The transition from a rigid-body system without contacts to a system that has contacts is called
a contact gain. During a contact gain very high forces act on the body for a very short time. In
the real world these high forces cause the body to first compress and then expand. After the
compression phase, depending on the physical properties of the body, the body remains either
in contact (perfect inelastic collision) or bounces off.

In rigid-body simulations the compression and expansion is usually neglected and the contact
gain is treated as an instantaneous collision. The physical properties of the body are described
by the parameter of restitution e ∈ [0, 1]. For e = 0 the collision is a perfect inelastic collision,
whereas for e = 1 the collision is perfectly elastic.

The contact gain is a discontinuous change in the generalized velocity variables from q̇− to
q̇+, i.e. the velocity before the collision to the velocity after the collision. The change can be
computed using

[

H (q) G(q)T

G(q) 0

] [

q̇+

−Λ

]

=

[

H (q)q̇−

−eG(q)q̇−

]

(3.10)

where Λ is the contact impulse. The upper part of this equation implies

H (q)q̇+ − H (q)q̇− = G(q)T Λ, (3.11)

which is the change of momentum of the system due to the collision. The lower part

G(q)q̇+ = −eG(q)q̇− (3.12)

states the contact velocity after the collision. For e = 0 this is equivalent to a contact velocity
of zero, a perfect inelastic collision.

3.1.4 Modeling Approaches for Reduced Coordinate Rigid Multibody

Systems

Manual analytic derivation of the equation of motion is practical for models with very few
degrees of freedom. While a planar double pendulum can be derived analytically relatively easy
it becomes already arduous to derive a double pendulum with 3-D rotational joints. Adding
more bodies and joints with different types of degrees of freedom further increases complexity,
which require the use of automatic methods.

There are two common approaches to computing the quantities of the equations of motions
(i.e. H (q), C(q, q̇), etc.): symbolic code generation and recursive algorithms. While both
essentially compute the same values there are differences in how they are being evaluated and
how the modeling is performed. Both approaches take some kind of model description that
contains model topology, body and joint specifications as an input to either generate code or to
recursively evaluate the quantities.
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Symbolic Code Generation

Code generation takes the model description to formulate analytical expressions for the individual
quantities in (3.1) and exports the result as computer code. This can be done using any
general purpose computer algebra package that allows exporting expressions as code (e.g.
MapleTM(Maplesoft, 2014).

Using code generation tools allow for optimizations on the symbolic level during the formula-
tion of the expressions and also on the compiler level when the code is transformed into binary
code. The code produced by symbolic code generation is very complex and mainly consists of
long scalar expressions that are evaluated and stored to the memory locations of the resulting
matrices and vectors.

An advantage of this approach is that arbitrary model parameters can easily be treated
and also analytic derivatives can be generated. When implemented properly this approach
automatically removes expressions that are always 0, e.g. a pure planar model will only evaluate
expressions in the plane.

A disadvantage of the code generation approach is that the generation has to be done for
every model at least once and also when fundamental changes in the model (e.g. change of
coordinates, topology). This generation is an additional step at which may introduce errors by
the user and furthermore as the generation process becomes very demanding for the computer
algebra package it can also take up several minutes for models as complex as used in this thesis.

Recursive Algorithms

Recursive approaches use the model description as a parameter for a numerical routine to
evaluate the individual quantities of the equation of motion. Different models use the same code
to compute the quantities. Changes in the model do not require any change in the code and
this allows to implement these routines in a library that can easily be run in a host application.

Another advantage of this approach is that it is possible to reason about what is being
computed. With symbolic code generation one can only use the quantities it generates code
that are used as black box evaluations. Recursive methods on the other hand are described
on a higher level of abstraction. That allows improving existing methods and also deriving of
new algorithms. It also allow the identification of shared computations that are performed by
multiple algorithms. By only evaluating them once one can further enhance the efficiency of
these methods.

Recursive methods rely heavily on efficient algorithms and a careful implementation of these.
The recursive methods furthermore are described in terms of vector and matrix expressions that
can and should be exploited by modern CPU instructions. Therefore efficient linear algebra
packages such as LAPACK (Anderson et al., 1999) or Eigen3 (Guennebaud et al., 2010) are
strongly advisable.

3.2 Spatial Algebra

Traditionally the dynamics of rigid bodies are described by two sets of 3-D equations: one
3-D equation for the linear (translational) motions and forces and one 3-D equation for the
rotational (angular) motions and forces. Spatial Algebra is a notation for rigid body motions
and dynamics that embeds the two types of 3-D equations in a single 6-D equation. A more
complete description can be found in Featherstone (2008, 2010a,b).

3.2.1 Elements of Spatial Algebra

The fundamental elements of Spatial Algebra are spatial motions v̂ ∈ M
6, spatial forces f̂ ∈ F

6

and spatial inertias Î : M
6 → F

6. By using Plücker bases DO, EO (Featherstone, 2006) we have
a mapping DO : R6 → M

6 and EO : R6 → F
6. Also, spatial inertias can then be expressed using

6 × 6 coordinate matrices with entries in R.
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Motion and Force Vectors

A spatial velocity vector describes both the linear and angular velocity of a rigid body and is of
the form

v̂ =

[

ω

vO

]

= [ωx, ωy, ωz, vOx, vOy, vOz]
T

(3.13)

where O is an arbitrary but fixed reference point. The 3-D vector ω ∈ R
3 describes the angular

velocity of the body about an axis that passes through O and vO ∈ R
3 is the linear velocity of

the body point that currently coincides with the reference point O.

A spatial force vector describes both linear and rotational force components that act on a
body and is of the form

f̂ =

[

nO

f

]

= [nOx, nOy, nOz, fx, fy, fz]
T

(3.14)

where nO ∈ R
3 describes the total moment about the point that coincides with O and f ∈ R

3

the linear force along an axis passing through O.

Spatial Inertia and Spatial Momentum

The spatial inertia can be expressed as a 6 × 6 matrix

Î =

[

I C + mc×c×T mc×

mc×T m1

]

(3.15)

where I C is the inertia of the body at the center of mass, c is the 3-D coordinate vector of the
center of mass, and m is the mass of the body. The expression c× is the skew-symmetric 3 × 3
matrix that is associated with c and that allows to write the 3-D cross product as a product of
a matrix with a vector. It is defined as

c× =







cx

cy

cz






× =







0 −cz cy

cz 0 −cx

−cy cx 0






. (3.16)

For a body with spatial velocity v̂ and spatial inertia Î we can compute the spatial momentum
as ĥ = Î v̂. One should note that ĥ is a spatial force vector, i.e. ĥ ∈ F

6.

Transformations

In practice it is useful to use different coordinate frames such as body local coordinate frames
instead of performing computations in one single coordinate frame. Spatial Algebra provides a
convenient way of transforming spatial quantities such as motions, forces, and inertias between
coordinate frames.

If A and B are two coordinate frames where B is translated by r ∈ R
3 and also rotated

as described by the orthonormal matrix E ∈ SO(3), with SO(3) being the special orthogonal
group, we can then define the following spatial transformations

BXA =

[

E 0

−Er× E

]

, BX∗

A =

[

E −Er×

0 E

]

(3.17)

with r× again being the skew-symmetric matrix of the vector r .

Elements of M
6 are transformed using BXA whereas elements of F

6 are transformed using
BX∗

A. Similarly the inverse transformations AXB and AX∗

B can be defined. For given E and r

we may also write the spatial transformation as X(E, r).
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The motion vector Am̂ ∈ M
6 and the force vector Af̂ ∈ F

6 that are described in coordinate
frame A can be transformed to vectors expressed in the coordinate frame B using

Bm̂ = BXA
Am̂ (3.18)

B f̂ = BX∗

A
Af̂ . (3.19)

As spatial inertias are mappings from M
6 to F

6 the transformation of spatial inertia AÎ that
is expressed in frame A can be transformed to a spatial inertia expressed in frame B by

B Î = BXA
AÎ AX∗

B . (3.20)

Cross Products

When looking at rigid motions using 3-D equations the cross product has a special property: an
Euclidean vector r ∈ R

3 that is fixed in a coordinate frame that has an angular velocity of ω,
then the time derivative of r as seen from a non-moving coordinate frame is ṙ = ω × r .

In Spatial Algebra operators with similar properties can be defined. In fact, there are two
operators - one for motion vectors:

m̂O× =

[

ω

vO

]

× =

[

ω× 0

v× ω×

]

, (3.21)

and one for force vectors:

v̂×∗ =

[

ω

vO

]

×∗ =

[

ω× vO×

0 ω×

]

. (3.22)

If the spatial motion vector m̂ ∈ M
6 moves with body i which has a spatial velocity of v̂i,

and m̂ is constant otherwise, the time derivative of m̂ is

˙̂m = v̂i × m̂. (3.23)

Similarly the time derivative of spatial force vectors in moving reference frames is computed
using the ×∗ product.

3.2.2 Spatial Equation of Motion

The equation of motion for a single rigid-body expressed using Spatial Algebra is stated by:

f̂ = Î â + v̂ ×∗ Î v̂ (3.24)

= Î â + p̂. (3.25)

Here f̂ = [nO, f ]
T

is the spatial force acting on a body where nO is the total moment
applied at point O and f the linear force that is acting on a line passing through O. The
spatial acceleration â = [ω̇, v̇O]

T
consists of ω̇ which is the rotational acceleration around an

axis passing through O and the linear acceleration v̇O. The quantity p̂ is sometimes called the
spatial bias force which is equal to the spatial force that has to be applied to the body such
that no acceleration of the body is produced.

3.2.3 Comparison with the Traditional 3-D Notation

The Spatial Algebra equation of motion of a single rigid-body embeds the traditional 3-D
equations of motion by:

[

nC

f

]

=

[

I C 0

0 m1

] [

ω̇

c̈ − ω × vC

]

+

[

ω× vC×

0 ω×

] [

I C 0

0 m1

] [

ω

vC

]

(3.26)

=

[

I Cω̇ + ω × I Cω

mc̈

]

. (3.27)



36 Efficient Implementation of Rigid Body Dynamics using Spatial Algebra

Here the reference point C is assumed to coincide with the center of mass of the body and c̈ is
the linear acceleration of the center of mass.

It is important to emphasize that Spatial Algebra is not simply a matter of notation that
concatenates the two 3-D equations. Instead it performs operations on a different level of
abstraction. Traditional 3-D equations express the motion of rigid bodies using quantities
expressed at points that are moving with the body, e.g. the linear velocity of the center of mass
and the angular velocity. To compute the velocity or acceleration of the end of a chain one has
to transform the quantities from one body to the other, which leads to complicated expressions.

In Spatial Algebra, however, one looks at the flow of the bodies motion at a fixed point in a
given reference frame, i.e. the linear and angular velocity of the point of the body that coincides
with the reference point at the current instant.

Some of the key advantages of Spatial Algebra are:

• Spatial quantities like velocities, accelerations, and forces behave like proper vectors. This
allows one to summing of the velocities of two bodies to compute their combined spatial
velocity. Similarly accelerations, forces and inertias can be summed and subtracted.

• Only one 6-D equation instead of two 3-D equations is needed to describe the dynamics.
This leads to fewer algebra and also fewer lines of code.

• Rotations, translations and also helical movement are captured by 6-D vectors. This allows
one to describe rotational, revolute, and helical joints using the same quantities instead of
separate equations that are dependant on the type of joints.

• Concepts can easily be transferred to code. It is possible and also practicable to implement
it without loss of efficiency compared to 3-D equations.

3.3 Rigid Multibody Models

In this section we present the rigid multibody model formulation that we implemented in our
software RBDL and which we also also use when discussing the algorithms in later sections. It
follows the notation and formulation presented in Featherstone (2008).

A rigid multibody system (MBS) consists of a set of bodies that are interconnected by joints.
A joints always connects two bodies and in general affects the relative motion of the bodies.
The variables that describe a rigid multibody model with nB ∈ N bodies are listed in Table 3.1.
It contains variables that describe the structure of the system, namely λi, κ(i), µ(i), and ν(i),
variables that describe the joints Si, XTi (motion space and joint location), dynamic properties
of the bodies I i, I c

i , and the current state of the system.

3.3.1 Coordinate Frames and Transformations

There are multiple coordinate frames involved when describing a multibody system. First there
is the global reference frame which we name 0. This system is the inertial reference frame that
is fixed in space. The root body B0 is attached to this global reference frame and also defines a
reference frame that is defined for the body B0. We call this frame the body (local) reference
frame. In the case of B0 the global reference frame and the body reference frame of B0 always
coincide.

When we have a system with a single moving body then this body B1 is attached via joint
J1 to the base body B0. Usually joints are not located at the origin of the parent body. Instead
they are translated and/or rotated relative to the coordinate frame of the parent body.

This gives rise to the joint origin frame. The transformation from the parent body frame to
the joint origin frame is denoted as XTi. It is fixed and specified in the parent’s body reference
frame.

When a joint is moving an additional frame is required. I.e. a revolute joint changes the
orientation whereas a prismatic joint results in a translation of the coordinate frame. The joint
motion frame is the frame that changes when the joint moves and its transformation is denoted
as XJi.
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Variable Description

λi Index of the parent body index for joint i that connects body i with body λi.

κ(i) The set of joints that influence (i.e. support) body i.

µ(i) The set of children of joint i.

ν(i) The subtree that starts at joint i.

Si Motion space matrix for joint i.

XTi Spatial transformation from the parent of body i to the frame of joint i.

vi Spatial velocity of body i.

ai Spatial acceleration of body i.

f i Spatial force that body i exerts onto the parent body λi via the connecting joint.
iX0 Spatial transformation from the global frame to the frame of body i.

iXλi
Spatial transformation from the parent of body i to body i.

I i Spatial inertia of body i.

I c
i Composite body inertia of body i.

Table 3.1: Variables of a loop-free rigid multibody model

Figure 3.2: Schematic of various frame transformations related to articulated rigid body motion.
XTi is the joint origin frame transformation, XJi is the joint motion frame transformation.
The combined transformation iXλi

= XJiXTi is called the parent frame transformation.

The transformation from the parent body to the child body is then given by

iXλi
= XJiXTi.

Figure 3.2 shows a schematic of the transformations. It is important to note that all
transformations XTi, XJi, and iXλi

are full spatial transformations, i.e. they can be rotations,
translations, and a combinations of translation and rotation.

3.3.2 Bodies

A single body in a rigid multibody system is described by its mass m, the location of the center
of mass c ∈ R

3 and its inertia tensor I C ∈ R
3×3 at the center of mass. These values are taken

to construct the spatial inertia matrix Î i ∈ R
6×6 for each body i.

3.3.3 Joints

A joint always connects two bodies with each other and in general limits the relative motion
between them. A joint may allow between zero and six degrees of freedom for which zero degrees
of freedom mean that it is a fixed joint (i.e. the two bodies are rigidly connected with each
other) and a joint with 6 degrees of freedom, also called free-flyer joint, does not impose any
restriction on the relative motion.

For each joint a specific subset of the generalized state variables are associated with the joint.
For joint i with ns degrees of freedom the value qi ∈ R

ns are the associated generalized joint
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positions of joint Ji and similarly q̇i, q̈i, τ i ∈ R
ns are the associated generalized joint velocities,

accelerations and forces for that joint. τ i are more specifically the forces that are transmitted
via the joint i. The tuple (qi, q̇i, q̈i, τ i) is referred to as the joint state.

If the generalized joint positions for joint i are nonzero then the transformation caused by
the joint is represented by joint motion frame transformation XJi. It is a spatial transformation
of the form (3.17) where the entries E and r depend on the type of joint.

Joint Models

The motion space of a joint is described by the so-called motion subspace matrix S which defines
a mapping S : Rns → M

6. The subspace matrices for all joints with only one degree of freedom
that are either revolute (SR·) or prismatic (ST ·) around or along the coordinate axes are:

SRx =


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.

It is also possible to define motion subspace matrices for helical motions. In that case there are
nonzero entries in both the upper three and the lower three entries.

Once the motion subspace matrix is defined the joint velocities and accelerations can be
expressed as

vJi = Siq̇i (3.28)

aJi = Ṡiq̇i + Si (3.29)

=

(

dSi

dt
+ vi × Si

)

q̇i + Siq̈i (3.30)

= cJi + vi × vJi + Siq̈i. (3.31)

The first term Ṡi in the acceleration is affected by two factors: i) the change of the motion
subspace matrix over time and ii) a change of the motion subspace matrix due to the movement
of the frame of body i in which S is defined. The first factor is nonzero when entries of Si are
not constant but depend on qi. The second factor is a result of (3.23).

The expression cJi + vi × vJi is called the velocity dependent spatial acceleration term as it
is independent of the joint acceleration q̈i. For the simple single degree of freedom joints above,
the velocity dependent spatial acceleration term is always zero, however for more complex joints
as shown in the following section this is not the case.

Multiple Degrees of Freedom Joints

Models that contain joints with multiple degrees of freedom (DOF) can be treated in two
different ways: the emulation of multiple degrees of freedom using multiple single degree of
freedom joints and bodies with zero inertia and mass or the use of proper multiple degrees of
freedom joints. The former have the advantage that they are very simple to implement however
this is at the cost of performance as the algorithms will need more iterations to perform the
same computations.
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Multiple degrees of freedom joints occur in humanoid robotics mainly in the first movable
body of the system from which the remaining multibody system is spanned. In humanoid
robotics this body is often referred to as the Floating Base and the joint as Floating Base Joint,
or Freeflyer Joint. It has six degrees of freedom and is not actuated, i.e. the generalized forces
corresponding to it are always zero. All other joints are usually modeled as 1 DOF joints as
actuators with multiple degrees of freedom are difficult to manufacture.

In models for human characters, as used in animations, also other joints such as those of
hip, ankle, and shoulder can be modeled using 3 DOF joints. This makes joints with 3 DOF
particularly interesting. Furthermore when using 3 DOF joints the floating base can be emulated
using two joints instead of six.

For joints with multiple degrees of freedom we need to derive the expressions for E(qi), r(qi)
to describe the joint motion transformation and S(qi), and cJi(qi, q̇i) to express the motion
subspace of the joint, and the velocity dependent spatial acceleration term of the joint.

A 3 DOF joint that describes the translation along the X–, Y –, and Z– axis is described by

E(qi) = 1 ∈ R
3×3, (3.32)

r(qi) = (qi,0, qi,1, qi,2)T ∈ R
3, (3.33)

S(qi) =
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, (3.34)

cJi(qi, q̇i) = 0 ∈ M
6. (3.35)

Rotational joints are slightly more involved due to the amount of sine and cosine expressions.
For a spherical joint that uses the Euler–Cardan angle convention YXZ we use the following
notation sj = sin(qi,j) and cj = cos(qi,j) and furthermore q̇j = q̇i,j . This allows us to write
the joint model dependent expressions as

E(qi) =
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
, (3.36)

r(qi) = 0 ∈ R
3, (3.37)

S(qi) =
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, (3.38)

cJi(qi, q̇i) =


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. (3.39)

Joints for other conventions or more degrees of freedom can similarly be derived. To note here
is that the presented EulerYXZ joint suffers from singularities. An alternative is a joint that
e.g. uses Quaternions (Shoemake, 1985), which is described in Featherstone (2008). For such
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joints special care has to be taken as the generalized velocities are not the derivatives of the
generalized positions anymore.

As suggested in Featherstone (2008) RBDL encapsulates the computations of the joint type
and q, q̇ dependent computations in a so-called joint model calculation routine:

[XJ , Si, cji] = jcalc(jtype(i), qi, q̇i). (3.40)

The method jtype(i) returns a type of joint that will then be used in a if . . . elseif block to
choose the actual code depending of the type. This keeps the algorithms independent of joint
specific computations and also allows to easily add new joint types.

Joint Numbering

The connection of bodies via joints in a loop-free system can also be seen as a directed graph
where the joints are the directed edges and the bodies are the nodes. Apart from the root body
there are the same number of bodies Bi as joints Ji with i = 1, . . . , nB .

Every joint always connects exactly two bodies. Joint i connects body Bλi
with body i.

The body with index λi is also called the parent body and λi, i = 1, . . . , nB is called the parent
array1. The bodies and joints are numbered such that

λi < i (3.41)

always holds. If κ(i) is the set of joint indices that influence body i then this numbering has the
property j < i, ∀j ∈ κ(i). The joints with indices in κ(i) are also called the supporting joints of
body i.

This numbering becomes especially useful as various algorithms have a requirement that
certain computations must have been performed for the supporting joints before they can be
performed for the current joint. With the described joint numbering one can store all joints in
an array in the order of their numbering. The mentioned requirement is then already fulfilled
when traversing the array from start to end and performing the computation for each joint.

Another important set of indices is µ(i), which contains the indices of all joints that are
contained in the subtree starting at index i.

3.4 Efficient Methods for the Dynamics Computation

In this section we present algorithms that allow us to compute the quantities required for the
evaluation of the equation of motion presented in Section 3.1.1. Some of the algorithms are the
most efficient algorithms available for their tasks and all algorithms were implemented in the
software package RBDL.

3.4.1 Recursive Newton-Euler Algorithm

The Recursive Newton-Euler Algorithm (RNEA) is a highly efficient algorithm for the computa-
tion of inverse dynamics of a branched rigid-body model. It has an algorithmic complexity of
O(nB) where nB is the number of movable bodies in the multibody system.

It performs the computation in three steps:

1. Compute the position, velocity, and acceleration of all bodies.

2. Use for each body (3.25) to compute the net force, which causes the previously computed
acceleration.

3. Compute the force that is transmitted over each joint.

1One should not confuse the λ of the parent array, i.e. a variable of the rigid body model with the λ that we
also use for the contact force. However it should be clear from the context which one is meant.



Efficient Methods for the Dynamics Computation 41

Pseudo code for the whole algorithm is presented in Algorithm 1. The acceleration of the
root body is initialized with ag = [0, g]

T ∈ M
6, where g ∈ R

3 is the gravity vector in global
coordinates. As the accelerations are propagated from joint to joint this ensures that gravity is
applied to every body.

Algorithm 1: Recursive Newton-Euler Algorithm

v0 = 01

a0 = −ag2

for i = 1, . . . , nB do3

[XJ , Si, cji] = jcalc(jtype(i), qi, q̇i)4

iXλi
= XJXTi5

if λi 6= 0 then6

iX0 = iXλi

λiX07

end8

vJi = Siq̇i9

aJi = Siq̈i + cJi10

vi = iXλi
vλi

+ vJi11

ai = iXλi
aλi

+ aJi12

f i = I iai + vi ×
∗ I ivi −

iX∗

0 f x
i13

end14

for i = nB , . . . , 1 do15

τ i = ST
i f i16

if λi 6= 0 then17

f λi
= f λi

+ λiX∗

i f i18

end19

end20

The presented algorithm can be applied on kinematic trees and for all scleronomic joints
including revolute, prismatic, and helical joints. Furthermore it allows computing the inverse
dynamics in presence of external forces f x

i ∈ F
6.

The RNEA can be used to compute the generalized bias term C(q, q̇) of (3.1) by setting
q̈ = 0. However if it is known beforehand that f x

i = 0, i = 1, . . . nB a slightly faster variant can
be devised by omitting the computation of 0Xi and also the product Siq̈i for i = 1, . . . , nB.
This variant is implemented in RBDL in the function NonlinearEffects (model, q, qdot,

C).

3.4.2 Composite Rigid-Body Algorithm

The Composite Rigid-Body Algorithm (CRBA) computes the joint space inertia matrix H (q).
The algorithm proceeds recursively and only computes the entries of the matrix that are nonzero.
The algorithm can be motivated by looking at the computation for the multibody system’s
kinetic energy which can be stated as

T =
1

2
q̇T Hq̇ =

1

2

ndof
∑

i=1

ndof
∑

j=1

Hij q̇iq̇j . (3.42)

Alternatively the kinetic energy of the system can be seen as the sum of the kinetic energy of
the individual bodies:

T =
1

2

nB
∑

i=1

vT
i I ivi. (3.43)

Without loss of generality we can assume that all motion subspace matrices are expressed in the
global reference frame. This allows us to write (3.43) as

T =
1

2

nB
∑

k=1

∑

i∈κ(k)

∑

j∈κ(k)

q̇T
i ST

i I kSj q̇j . (3.44)
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This equation expresses the kinetic energy as a sum over all combinations where body k is
supported by both the joint i and j. This can be reformulated as

T =
1

2

nB
∑

i=1

nB
∑

j=1

∑

k∈ν(i)∩ν(j)

q̇T
i ST

i I kSj q̇j (3.45)

=
1

2

nB
∑

i=1

nB
∑

j=1

q̇T
i H ij q̇j (3.46)

with

H ij =
∑

k∈ν(i)∩ν(j)

ST
i I kSj . (3.47)

Equation (3.44) can be seen as assembling all the required quantities from index k up to the
root of the graph whereas equation (3.45) performs the same computation by assembling the
quantities down the subtrees starting at the joint that is influenced by both i and j.

The expressions H ij and H ji correspond to the block of the joint space inertia matrix that
are affected by the joint variables of joints i and j. Due to the chosen joint numbering we can
simplify the union of the two sets using:

ν(i) ∩ ν(j) =











ν(i) if i ∈ ν(j)

ν(j) if j ∈ ν(i)

∅ otherwise.

(3.48)

Together with

I c
i =

∑

j∈ν(i)

I j (3.49)

we can further simplify H ij as

H ij =











ST
i I c

i Sj if i ∈ ν(j)

ST
i I c

jSj if j ∈ ν(i)

0 otherwise.

(3.50)

The Composite Rigid-Body Algorithm is presented as pseudo code in Algorithm 2.

Algorithm 2: Composite Rigid-Body Algorithm

H = 01

for i = 1, . . . , nB do2

I c
i = I i3

end4

for i = nB , . . . , 1 do5

if λi 6= 0 then6

I c
λi

= I c
λi

+ λiX∗

i I c
i

iXλi
7

end8

F = I c
i Si9

H ii = ST
i F10

j = i11

while λi 6= 0 do12

F = λiX∗

j F13

j = λi14

H ij = FT Sj15

H ji = H T
ij16

end17

end18



Efficient Methods for the Dynamics Computation 43

The presented algorithm assumes that the spatial transformations from parent to child iXλi

and the joint motion subspace matrices Si have already been computed. If this was not the
case then this could be performed in the first loop. Furthermore the quantities Si and I c

i are
expressed in body local coordinates.

3.4.3 Articulated Body Algorithm

The Articulated Body Algorithm (ABA) computes the forward dynamics of a kinematic tree with
O(nB) operations. It was first described in Featherstone (1983). However different variants have
been derived by others as shown an analyzed in Jain (1991). We only outline the algorithm here.
For a complete derivation including some variation in the formulation we refer to Featherstone
(2008).

One of its key concepts is the articulated-body inertia which captures the dynamic properties
of a body that is connected to other bodies and how it reacts when a force is applied to it while
taking the connecting bodies into account. The equation of motion of an articulated body is
given by:

f = I Aa + pA (3.51)

where I A is the articulated body inertia and pA is the articulated bias force.
The articulated body inertia and articulated bias force can be recursively computed. For

body i the computations are:

I A
i = I i +

∑

j∈µ(i)

I a
j , (3.52)

pA
i = pi +

∑

j∈µ(i)

pa
j (3.53)

with

I a
j = I A

j − I A
j Sj(SjI A

j Sj)−1ST
j I A

j , (3.54)

pa
j = pA

j + I a
j cj + I A

j Sj(ST
j I A

j Sj)−1(τ j − ST
j pA

j ). (3.55)

The term cj is the velocity dependent acceleration term of body i, i.e. cj = cJj + vj × vJj .
The algorithm proceeds in three steps:

1. Compute positions, velocities and rigid-body bias forces from base outwards.

2. Compute the articulated body inertias and articulated bias forces.

3. From base outwards: use I A
i and pA

i computed in the previous step to compute the joint
accelerations using:

q̈i = (ST
i I A

i ST
i )−1(τ i − ST

i (I A
i aλi

+ ci) − ST
i pA

i ) (3.56)

Pseudocode for the algorithm is shown in Algorithm 3. The code presented here avoids redundant
computations of shared terms in Equations (3.54) and (3.55).

The presented algorithm can also efficiently evaluate the forward dynamics for known external
forces λ and where they act on the model. I.e. it can recursively compute the generalized
accelerations q̈ for equations of the form

H (q)q̈ + C(q, q̇) = τ + G(q)T λ. (3.57)

3.4.4 Point Velocities and Accelerations, Contact Jacobians and Hes-

sians

In simulations and analysis of rigid multibody systems it is often required to compute 3-D
coordinates, 3-D linear velocities, and or 3-D linear accelerations of points that are fixed on a
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Algorithm 3: Articulated Body Algorithm

v0 = 01

for i = 1, . . . , nB do2

[XJ , Si, cji] = jcalc(jtype(i), qi, q̇i)3

iXλi
= XJXTi4

if λi 6= 0 then5

iX0 = iXλi

λiX06

end7

vJi = Siq̇i8

vi = iXλi
vλi

+ vJi9

ci = cJi + vi × vJi10

I A
i = I i11

pA
i = vi ×

∗ I ivi −
iX∗

0 f x
i12

end13

for i = nB , . . . , 1 do14

U i = I A
i Si15

Di = ST
i U i16

ui = τ i − ST
i pA

i17

if λi 6= 0 then18

I a = I A
i − U iD

−1
i U T

i19

pa = pA
i + I aci + U iD

−1
i ui20

I A
λi

= I A
λi

+ λiX∗

i I a iXλi
21

pA
λi

= pA
λi

+ λiX∗

i pa22

end23

end24

a0 = 0 for i = 1, . . . , nB do25

a′ = iXλi
aλi

+ ci26

q̈i = D−1
i (ui − U T

i a′)27

ai = a′ + Siq̈i28

end29

body. This requires some clarifications as spatial motion vectors describe the flow of motion at
a specified point.

In this section the point P is rigidly attached to (and therefore moving with) the body i.
The body local coordinates of P are given by irP ∈ R

3. We are interested in computing the
3-D linear velocity, linear acceleration of the point P in the global reference frame. Furthermore
we want to formulate the contact Jacobian and contact Hessian for this point.

There are multiple coordinate frames involved when transforming the spatial quantities to
3-D vectors. These are:

• frame 0: the global coordinate frame,

• frame i: the coordinate frame of body i,

• frame P : the coordinate frame at the point P that is parallel to frame i, and

• frame P ′: the coordinate frame at the point P that is parallel to the global frame 0.

A schematic of these frames is shown in Figure 3.3.

Point Velocities

The velocity of the fixed body point can be computed using:

P ′

v̂i =

[

P ′

ω
P ′

vP ′

]

i

= X(0ET
i , irP )ivi (3.58)
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Figure 3.3: Coordinate frames involved in computing conventional 3-D quantities. Frame 0 is
the global coordinate frame, frame i is the coordinate of body i, frame P is a coordinate frame
at the point P that is parallel to frame i, and frame P ′ is a coordinate frame at point P that is
parallel to the global coordinate frame.

where 0Ei is the orientation of body i with respect to the orientation of the global frame. The
spatial motion vector vi is transformed to the coordinate frame P ′. The lower part of P ′

v̂P is
therefore expressed at the point of body i that currently coincides with P and therefore we have
P ′

vP ′ = 0ṙP .

In RBDL the function CalcPointVelocity (model, q, qdot, body_id,

point_position) performs this computation and returns the 3-D vector P ′

vP ′ .

Point Accelerations

To compute the acceleration r̈P of the point P with fixed body coordinates we can use:

P ′

âi =

[

P ′

ω
P ′

aP ′

]

i

= X(0ET
i , irP )iai +

[

0
P ′

ω × P ′

vP ′

]

. (3.59)

The first term on the right-hand side transforms the spatial acceleration from body i coordinates
to the coordinate frame of P ′ (i.e. the same coordinate frame as above). The second term
compensates for the fact that spatial acceleration is not the acceleration of the reference point
of the coordinate frame but instead it is the rate of change of flow at the reference point of the
coordinate system!

In RBDL the function CalcPointAcceleration (model, q, qdot, qddot, body_id,

point_position) performs this computition and returns the 3-D vector P ′

aP ′ .

Contact Jacobians

For a given joint configuration q the contact Jacobian from (3.5) maps from the generalized
velocities q̇ to the spatial velocity of a body expressed in some coordinate frame A:

Avj = AĜ(q)q̇ =

[

AGω(q)
AGvA

(q)

]

q̇ (3.60)

AĜ(q) is a 6×ndof matrix where the upper three rows AGω(q) map onto the angular velocity of
the body and the bottom three rows AGvA

(q) map onto the linear velocity of Avj . All columns
with index i /∈ κ(j) are zero. The values of the non-zero columns can be obtained by rewriting
(3.60) as

AĜ(q)q̇ =
∑

i∈κ(j)

AXivi =
∑

i∈κ(j)

AXiSiq̇i. (3.61)
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The nonzero columns of the Jacobian can therefore be be obtained by transforming the joint
motion space matrices to the coordinate frame A. By using the coordinate frame P ′ from the
previous paragraphs one can compute the Jacobian for the point P that is fixed in body i.

Contact Hessians

When differentiating the algebraic constraint equation twice we obtain

d2

dt2
g(q) = G(q)q̈ + Ġ(q)q̇ (3.62)

= G(q)q̈ − γ(q, q̇), (3.63)

where γ(q, q̇) is also called the contact Hessian. In RBDL it is computed using the same
equations as the point acceleration equations (3.59) and setting q̈ = 0.

3.4.5 Center of Mass, and Angular Momentum Computation

Using spatial algebra we can also compute the system’s spatial inertia which is the inertia the
system would have if we lumped all bodies to a single body. It is obtained using:

0I =

nB
∑

i=1

0X∗

i I i
iX0. (3.64)

The diagonal elements in lower right 3 × 3 submatrix of 0I all contain the value of the system’s
total mass. The lower left 3 × 3 matrix contains the expression mc×T , where c is the location
of the system’s Center of Mass (CoM) for which the 3-D vector can easily be extracted.

For a single rigid body its spatial momentum is h = I v, which is an element of F
6. Together

with the spatial transformations we can write the system’s spatial momentum expressed at the
origin of the global reference frame as

0h =

nB
∑

i=1

0X∗

i I ivi. (3.65)

The linear part of this vector will contain the linear momentum of the system which allows us
to obtain the linear velocity of the CoM by dividing it by the system’s total mass. The upper
part contains the system’s angular momentum expressed at the origin of the global coordinate
system. Using the CoM’s location we can get the Centroidal momentum Orin and Goswami
(2008) as the upper 3-D vector of

CoM X0
0h. (3.66)

3.4.6 Numerical Solution of the Contact Dynamics

There are different ways of solving the linear system of the equation of motion with external
contacts (3.7). By setting c(q, q̇, τ ) = −C(q, q̇) + τ and omitting the arguments q, q̇, and τ

we can write the system as

[

H GT

G 0

] [

q̈

−λ

]

=

[

c

γ

]

, (3.67)

where H ∈ R
ndof×ndof , G ∈ R

m×ndof , and with 0 < m < ndof being the number of contact
constraints.

The matrix in the linear system is of the same structure as the so-called Karush-Kuhn-Tucker
(KKT) matrix that plays an important role in quadratic optimization problems. The matrix is
regular if G has full rank and is furthermore indefinite (Nocedal and Wright, 2006).
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Direct Solution

The matrix in (3.67) is symmetric but indefinite. An efficient method to solve the system is
the symmetric indefinite LDLT factorization. Nevertheless more efficient methods are available
that exploit the structure of the matrix.

Range-Space Method

The so-called range-space method (or sometimes called Schur-complement method) first solves
for λ and then q̈. The former is computed using

GH−1GT λ = γ − GH−1c (3.68)

and the latter is obtained by solving for q̈ using the system

Hq̈ = c + GT λ. (3.69)

(3.68) can be obtained by multiplying the upper part of (3.67) with GH−1 and then subtracting
the result from the bottom part.

The matrices GH−1GT and H are both symmetric and positive definite which allows
us to use a Cholesky decomposition to solve the equations (3.68) and (3.69). For further
improvements it suffices to factorize H just once and use the resulting factors to compute
the columns of H−1GT and the vector H−1c in (3.68) and furthermore for (3.69) to compute
the accelerations. Decompositions that exploit sparsities in the joint space inertia matrix are
described in Featherstone (2005) and Featherstone (2008).

Another way to compute the linear system (3.68) is described in Kokkevis and Metaxas
(1998). Instead of explicitly computing and factorizing H it recursively computes the matrix
GH−1GT by applying a so-called test-force for each constraint and compute the resulting
accelerations for all constraints. This information is then used to build the matrix column by
column. This method requires the application of a test-force and computation of the constraint
acceleration to be performed efficiently. For the former one can use a modified version of the
Articulated Body Algorithm which only evaluates variables that change due to the test forces.
E.g. one should avoid recomputing quantities like iXλi or vi. Due to the high cost of the
Articulated Body Algorithm (even the modified variant) this approach is only advisable when
very few constraints are posed on the system.

Null-Space Method

The null-space method first computes joint accelerations q̈ and then (if necessary) the contact
forces λ. Let D = [Y | Z ] ∈ R

n×n be a given non-singular matrix with Y ∈ R
n×m and

Z ∈ R
n×(n−m) and GZ = 0. As both D and G are full-rank we can follow that the m × m

matrix GY is also non-singular. Furthermore using Y and Z we can partition q̈ as

q̈ = Y q̈Y + Zq̈Z (3.70)

with q̈Y ∈ R
m and q̈Z ∈ R

n−m.
Inserting (3.70) into the lower part of (3.67) allows us to compute q̈Y by solving

GY q̈Y = γ. (3.71)

To compute q̈Z we insert (3.70) into the upper part of (3.67), which gives us

H (Y q̈Y + Zq̈Z) − GT λ = c. (3.72)

Premultiplying this with ZT allows us to compute q̈Z using

ZT HZq̈Z = ZT (c − HY q̈Y ). (3.73)

The contact forces can then be computed using the upper part of (3.67). By premultiplying
it with Y T and rearranging it we obtain

(GY )T λ = Y T (Hq̈ − c) , (3.74)
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which can be solved for λ.
The matrices Y and Z can be computed using a QR decomposition of GT , i.e.

GT P = [Q1 | Q2 ]

[

R

0

]

, (3.75)

with the permutation matrix P ∈ R
m×m and the matrices Y = Q1 and Z = Q2, which fulfill

the requirements for Y and Z .
One advantage of the null-space method is that one can compute the accelerations separately

and compute the contact forces only when required. E.g. a pure simulator that does not make
use of the contact forces may take advantage of this slight improvement.

However in general it is not clear whether the range-space method or null-space method is
best suited to solve the contact system. For very small m it even may be faster to just solve the
full system directly. The topology of the rigid multibody system, the number of constraints, but
also which bodies of the system are constrained affect sparsity patterns in the matrices H and
G, which may be possible to exploit.

3.5 Implementation Details to RBDL

RBDL was implemented in C++ and is publicly available at http://rbdl.bitbucket.org

along with its documentation. It is published under the permissive zlib license which allows use
of modified versions in commercial closed-source projects. The code is extensively tested using
more than 180 automated tests.

3.5.1 Model Structure and Data Layout

A central component of RBDL is the model structure Model. It contains all the variables from
Table 3.1 plus additional variables such as the total number of degrees of freedom, optional
names for the bodies, the direction of gravity and further variables for bookkeeping.

The individual variables of Table 3.1 are stored contiguously in arrays, i.e. all the spatial
velocities of all bodies are stored in Model.v such that Model.v[i] holds the value of vi, the
spatial velocity of body i.

3.5.2 Programming Interface Considerations

RBDL uses a strict subset of C++ that avoids inheritance and the use of virtual functions as
both have an impact on readability and performance due to virtual method table lookups.

Furthermore by using structs instead of classes (i.e. only public member variables) we
allow direct access to all the model variables. This can be helpful when debugging, but more
importantly it simplifies the creation of automated tests.

One of the aims of the programming interface was to closely follow the notation used here
and in Featherstone (2008). This facilitates understanding of the code and also simplifies
implementing of the algorithms.

Functions and their arguments closely follow mathematical concepts. E.g. to compute the
forward dynamics (i.e. q̈) for a given model and given q, q̇, and τ one has to call:

ForwardDynamicsLagrangian (model, q, qdot, tau, qddot);

where model is the Model structure, q is q, qdot is q̇, tau is τ , and qddot is q̈. The function
builds and solves (3.1) for q̈. All arguments are passed by reference to avoid unnecessary copying
including the last argument which is used to return the computed values.

Similarly inverse dynamics is computed using

InverseDynamics (model, q, qdot, qddot, tau);

which performs the computation of the Recursive Newton-Euler Algorithm listed in Algorithm
1. Again the result is returned using the last argument tau.

http://rbdl.bitbucket.org
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An example for the RBDL programming interface is shown in Algorithm 4. It creates a 3-D
triple pendulum and computes the forward dynamics using the Articulated Body Algorithm
and prints out the generalized acceleration.

Algorithm 4: A complete RBDL example of the modeling and forward dynamics compu-
tation of a triple pendulum with spherical joints that are parameterized with EulerZYX
angles using 3 DOF joints.

#include "rbdl.h"1

#include <iostream>2

3

using namespace RigidBodyDynamics;4

using namespace RigidBodyDynamics::Math;5

6

int main (int argc, char* argv[]) {7

Model model;8

Joint joint_rot_zyx ( JointTypeEulerZYX );9

Body body (0.1, Vector3d (0., 0., -1.), Matrix3d (10

0.1, 0., 0.,11

0., 0.1, 0.,12

0., 0., 0.1)13

);14

15

model.gravity = Vector3d (0., 0., -9.81);16

unsigned int body_1_id = model.AddBody (17

0,18

Xtrans (Vector3d ( 0., 0., 0.)),19

joint_rot_zyx,20

body);21

unsigned int body_2_id = model.AddBody (22

body_1_id,23

Xtrans (Vector3d ( 0., 0., -1.)),24

joint_rot_zyx,25

body);26

unsigned int body_3_id = model.AddBody (27

body_2_id,28

Xtrans (Vector3d ( 0., 0., -1.)),29

joint_rot_zyx,30

body);31

32

VectorNd q = VectorNd::Zero (model.q_size);33

VectorNd qdot = VectorNd::Zero (model.qdot_size);34

VectorNd qddot = VectorNd::Zero (model.qdot_size);35

VectorNd tau = VectorNd::Zero (model.tau_size);36

37

q[0] = 1.2;38

ForwardDynamics (model, q, qdot, tau, qddot);39

40

std::cout « qddot.transpose() « std::endl;41

42

return 0;43

}44

3.5.3 Constraint Sets

Another important data structure of RBDL is ConstraintSet. It contains all the information
needed to compute the dynamics of the model when it is subject to external constraints and
also collisions. Additionally it contains workspace memory for temporary quantities that are
used when performing the computations. It furthermore stores computed values such as contact
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forces and collision impulses.
When creating a ConstraintSet it is empty by default. Constraints are added by calling

ConstraintSet::AddConstraint(...) and specifying the index of the body on which the
constraint should act, the location of the point of the body at which the constraint force acts
(specified in body-local coordinates), and the 3-D normal in base coordinates along which the
constraint acts.

For example a point contact for which the translation of a point is constrained would
be modeled using three calls to ConstraintSet::AddConstraint(...) with three different
normals and otherwise the same parameters for each call.

The workspaces are by default not initialized. Once all constraints have been added one has
to call ConstraintSet::Bind(model) which then allocates the workspaces.

Once the constraint set has been bound one can compute the forward dynamics of a system
that is constrained by the constraint set CS is done using:

ForwardDynamicsContactsDirect (model, q, qdot, tau, CS, qddot);

which will build and solve system (3.7). The computed accelerations will be stored in qddot and
the computed contact forces in CS.lambda which has as many entries as there are constraints.
Similarly RBDL provides methods ForwardDynamicsContactsRangeSpaceSparse(...) and
ForwardDynamicsContactsNullSpace(...).

An example code is shown in Listing 5. Here we add three constraints to a body. The
constraints all act on the same body point and constrain the motion of the point in all cardinal
directions. After this we bind the constraint set to the model. This causes the workspace
to be allocated and must be performed before computing the contact dynamics by calling
ForwardDynamicsContactsDirect (...).

Algorithm 5: Code example for the creation of a constraint set that adds an external
point contact to body with id body_3_id. The point is located at (0, 0,−1)T in the local
coordinates of the body.

ConstraintSet CS;1

2

CS.AddConstraint (body_3_id,3

Vector3d (0., 0., -1.),4

Vector3d (1., 0., 0.)5

);6

CS.AddConstraint (body_3_id,7

Vector3d (0., 0., -1.),8

Vector3d (0., 1., 0.)9

);10

CS.AddConstraint (body_3_id,11

Vector3d (0., 0., -1.),12

Vector3d (0., 0., 1.)13

);14

15

CS.Bind(model);16

17

ForwardDynamicsContactsDirect (model, q, qdot, tau, CS, qddot);18

19

std::cout « qddot.transpose() « std::endl;20

std::cout « CS.force.transpose() « std::endl;21

3.5.4 Structure Exploiting Spatial Algebra

The pseudo code presented in Algorithm 1 and Algorithm 2 operate on 6-D spaces, but faster
formulations can be derived for many spatial operations Featherstone (2008).
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An expression like Xv would cost 36 multiplications and 30 additions using 6-D arithmacy.
However the same operation can be performed by only 24 multiplications and 18 additions which
can be seen by rewriting the multiplication using:

[

E 0

−Er× E

] [

ω

vO

]

=

[

Eω

−Er × ω + EvO

]

=

[

Eω

E(vO − r × ω)

]

. (3.76)

The product Eω costs 9 multiplications and 6 additions, r × ω costs 6 multiplications and 3
additions, vO −v′ with v′ = r ×ω costs 3 additions and the multiplication with E costs another
9 multiplications and 6 additions which totals in 24 multiplications and 18 additions.

At various points in the algorithms it is required to concatenate spatial transformations
(3.17). Featherstone introduces a compact representation of the spatial transform that only
stores the 3 × 3 orientation matrix E and the 3-D vector r of the linear displacement instead
of a full 6 × 6 matrix. This compact representation is denoted as plx(E, r), where "plx" here
stands for "Plücker transformation". The product of two spatial transformations

X iXj =

[

Ei 0

−Eir i× Ei

] [

Ej 0

−Ejrj× Ej

]

(3.77)

can then, by exploiting ET
j r i × Ej = (Ejr i)×, be written as

plx(Ei, r i) plx(Ej , rj) = plx(EiEj , rj + ET
j r i), (3.78)

which only needs 33 multiplications and 24 additions instead of 216 multiplications and 180
additions. The plx(·, ·) data structure can also be used to efficiently evaluate expressions
Xv, X−1v, X∗f , and XT f .

Another expression for which drastic improvements can be achieved is

λiX∗

i I c
i

iXλi
(3.79)

which can be found in the Composite Rigid-Body Algorithm (see Algorithm 2). It transforms
the spatial inertia from reference frame of body i to that of body λi. When using 6-D operations
this results in multiplication of three 6 × 6 matrices which requires 432 multiplications and 360
additions. An alternative operation can be derived that performs the same computation using
52 multiplications and 56 additions. The faster method requires a compact storage the spatial
inertia: the 6 × 6 matrix

I c =

[

I mc×

mc×T m1

]

(3.80)

can be stored using 10 floating point values: 6 for the lower triangular part of the symmetric
inertia matrix I , 3 for mc×, and an additional for m. In Featherstone (2008) this compact
structure is called rbi(m, h, lt(I )) where lt(·) denotes the lower triangular matrix of its argument.
Using the rbi(·, ·, ·) structure furthermore results in fewer operations when rigid body inertias
are being summed (10 additions instead of 36).

These structure exploiting operators and compact spatial data structures yield two benefits:
fewer instructions and also reduced memory consumption. The latter also results in fewer cache
misses on current CPU architectures that further improve performance as fewer values have to
be fetched from slower memories.

RBDL implements all of the mentioned compact structures and operators. Additional
structures and exploiting operators can be found in Featherstone (2008). It also contains many
more practical hints to improve performance.

3.5.5 Reuse of Computed Values

Computing the forward dynamics using (3.1) requires computing H (q) and C(q, q̇). The former
would be computed using the Composite Rigid-Body Algorithm (Algorithm 2) whereas the
latter can be obtained using modified Recursive Newton-Euler Algorithm as described in Section
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3.4.1. Additional computations are required when computing forward dynamics with external
contacts, such as the contact Jacobians and Hessians.

Instead of computing each from scratch one can reuse a considerable amount of values. By
first calling the Recursive Newton-Euler Algorithm the values iXλi

and Si are already computed
and can be reused by the Composite Rigid-Body Algorithm. Also values for vi are already
computed that are required for the contact Jacobians. Similarly all dependent variables for the
contact Hessians are already precomputed.

Both the algorithms, the model structure and the programming interface in RBDL allow the
reduction of redundant computations in multiple ways. E.g. in RBDL the function to compute
the Jacobian for a point is defined using the following declaration:

void CalcPointJacobian (

Model &model,

const VectorNd &q,

unsigned int body_id,

const Vector3d &point_position,

MatrixNd &G,

bool update_kinematics = false

);

The last parameter update_kinematics has a default value of false. If it is not explicitly
provided as true.

3.5.6 Performance Comparisons with Symbolic Code Generation

To evaluate the efficiency of RBDL we compare it with the symbolic code generation package
DYNAMOD (Koch, 2015). The highly advanced code generation package was developed in our
research group by Kai Henning Koch and uses similar methods to formulate the rigid multibody
dynamics quantities. It therefore is an ideal candidate to compare symbolic code generation
with recursive algorithms.

DYNAMOD uses MapleTMas computer algebra system and also uses Spatial Algebra and
the same algorithms as RBDL to formulate the quantities H (q) and C(q, q̇). Both contact
Jacobians G(q) and contact Hessian γ(q, q̇) are formulated as 6-D quantities, i.e. they contain
both linear and angular parts and they use the origin of the constrained body as the reference
point. DYNAMOD generates highly optimized code by aggressively caching intermediate
symbolic expressions to ensure that they are only evaluated once for each quantity.

For the performance comparison we used a human model with 34 degrees of freedom which
uses the same topology and joint types as the one we use for optimization in the later chapters.
We also specified contact constraints on both feet to be able to evaluate performance for systems
with external contacts.

We used DYNAMOD to generated code for the model and created a benchmarking program
that uses the generated code and RBDL to evaluate the quantities M (q), C(q, q̇), G(q), γ(q, q̇).
For the contact quantity evaluation we follow the approach used by DYNAMOD, which evaluates
both the contact Jacobian and contact Hessian as 6-D quantities at the origin of the constrained
body. RBDL uses the CRBA to evaluate H (q) and the modified RNEA to evaluate C(q, q̇).

Additionally to the performance measurement of the individual quantities we also measured
the time it takes to evaluate all quantities required either for the unconstrained equation of
motion (3.1) and the time it takes to evaluate the quantities for the linear system (3.7) of the
constrained dynamics. We refer to the former as "Equation of Motion (EoM) Setup" and the
later as "Equation of Motion Contact Setup".

The benchmark is performed by evaluating each of the quantities 1.000.000 times with random
values in the range of [−1, 1] ⊂ R for the entries of q and q̇. As modern CPUs automatically
adjust their clock speed depending on the current load and CPU temperature one can get varying
results depending on the current condition. To accommodate for this we used three trials with
each 1.000.000 evaluations and selected the fastest trial for each computed quantity. We further
ensured that both RBDL and the generated code compute the same values by verifying that
the relative errors are smaller than 1.0 × 10−15 before we run the benchmarks.
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In Figure 3.4 we show the relative performance of RBDL to DYNAMOD’s symbolic code
generation on different CPUs. At the very top of the figure we list the individual CPUs with
the colors we use in the plots below. The computations performed by RBDL are done in two
ways: compute all values from scratch, or reuse of computed values. The former are shown in
the top plot and the latter in the bottom plot. The computations for "EoM Setup" and "EoM
Contact Setup" were only performed in the "reuse" mode and are therefore only displayed in the
lower plot.

The results show that reusing values is a crucial aspect of gaining high performance and
by doing so RBDL manages to achieve and even exceed the performance of generated code
when simulating systems with external contacts. RBDL further may increase its advantage by
only evaluating the currently required subset of G(q) and γ(q, q̇). This could in theory also be
done with the generated code. However, this would require large changes in the code generation
routines and also require to generate new code.

The clear scope, performance, and ease of use of RBDL makes this library an ideal solution
when wanting to model and simulate dynamics for a rigid multibody system. Due to its very
few dependencies and permissive license it furthermore can easily be integrated into existing
projects.
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Figure 3.4: Relative Performance of RBDL vs. symbolically generated code on different CPUs
without and with reusing of values. Values below 1.0 means that RBDL was faster than the
evaluation using generated code. The top plot shows values when RBDL does not reuse any
precomputed values, whereas the bottom plot it reuses wherever possible. The values for "EoM
Setup" and "EoM Contact Setup" reuse values when computing H , G, and γ.
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Chapter 4

Subject Specific Modeling of the

Dynamics of Human Walking

Modeling the human body using rigid multi-body models is inherently difficult due to the
complexity of the human locomotion system. Already the sheer number of joints and bones make
simplifications necessary for practical uses. This chapter describes how we create models that
we use to analyze human walking movements. One of our aims is to create highly articulated
full-body rigid multi-body models that are capable of closely reproducing the recorded motion-
capture data from our experiments. We created separate models for the recorded subjects due
to significant differences between the subjects.

Creation of these subject-specific rigid multi-body models is very difficult, as crucial infor-
mation such as locations of joint centers are not available. The recorded motion capture data
only consists of spatial movement of markers that we have to relate to segment movement of
the human body. Motion capture markers are attached to the subject at specific anatomical
landmarks. However, the coordinates of the motion capture markers relative to the body part
to which they are attached are unknown and vary from subject to subject. Furthermore the
motion capture data in itself is affected by noise due to the non-rigid attachment of the markers
to the skin.

Our approach of subject specific modeling consists of two components: HeiMan a highly
customizable human meta model based on inertial parameters from biomechanical literature
and Puppeteer a graphical motion capture and model editing tool that facilitates creation of
virtual markers on the model and fitting of motion capture data onto rigid body models. Both
HeiMan and Puppeteer were created in the scope of this thesis.

Furthermore we describe the ground contact model and how the model dynamics are are
formulated as ordinary differential equation (ODE).

4.1 Prerequisites and Definitions

Before we can discuss the problem formulation and methods to create subject specific models
we introduce some definitions and descriptions for relevant quantities.

Definition 1 (Motion Capture Data, Motion Capture Frame). Let nF be the number of motion
capture frames, i.e. time instances for which the 3-D locations of all markers were recorded, and
let nM be the number of recorded markers. Then the motion capture data is defined as:

mD
ij ∈ R

3, i = 1, . . . , nF , j = 1, . . . nM . (4.1)

A motion capture frame consists of all marker locations for a specified frame index i, 1 ≤ i ≤ nF .

Rigid Multi-Body Model, Joints Formulation of rigid multi-body models were described
in detail in Section 3.3. Of relevance here is that a rigid multi-body model is a finite set of
bodies connected by joints that limit the relative movements of the bodies. Each body defines
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its own local coordinate system, which is also called the (local) coordinate system of the body.
Joints and bodies can also be seen as a tree structured graph where the joints are the edges and
the bodies are the nodes. Joints are idealized, which means that they only rotate around or
translate along predefined axes. For our human models we only have three translational joints
for the base body of our model to locate it in a 3D space and all others joints are either 3-DOF
spherical or 1-D hinge joints.

In this chapter the terms "rigid body model" or just "model" will always refer to a "rigid
multibody model".

Posture, Generalized Coordinates The posture of the rigid multi-body model is described
using generalized coordinates q ∈ R

ndof where ndof ∈ N are the number of degrees of freedom.
Generalized coordinates contain translations and rotations of all joints variables. q is also
referred to as the generalized positions.

Segments When dealing with rigid multi-body models of humans the bodies are also referred
to as "segments", i.e. the "pelvis segment" will refer to the rigid body in the model that
corresponds to the pelvis of the human.

Definition 2 (Virtual Marker). A virtual marker is a designated point on a body in a rigid
multi-body model. It is defined as a pair pm = (i, ip), where i refers to the index of the reference
body and ip ∈ R

3 are the coordinates of the point in the coordinate system of body i.

The position of the virtual marker pm
j = (i, ipj) in the global reference frame is defined as:

0pj = mM
j (q, pm

j ) := 0r i(q) + 0Ei(q) ipj (4.2)

where q are the generalized positions of the rigid multi-body model, 0r i(q) ∈ R
3 the location of

the origin of body i in global coordinates and 0Ei(q) ∈ R
3×3 the orientation of body i relative to

the global coordinate frame.

Virtual markers are used to define a mapping from the movement of the motion capture
markers to the corresponding movement of virtual markers.

4.2 Problem Description

For a given model topology, i.e. segments and degrees of freedom for the individual joints, we
would like to determine joint centers pc ∈ R

3 and locations of virtual markers pm such that the
model can closely reproduce the recorded motion capture data mD

ij .

The values of pc and pm have to be obtained for each subject individually due to differences
between the subjects, which we will show in the following section.

4.2.1 Subject Specific Differences

Differences in Subject Dimensions

In Figure 4.1 we show a single motion capture frame for all subjects from the motion capture
experiments. The displayed capture frames are used from the "Standing" calibration motions
and all subjects are displayed in the neutral standing pose. The snapshots all use the same
camera parameters (location, orientation and zoom factor) and the camera used orthographic
projection, which preserves distances between markers along the horizontal and longitudinal
axis.

As can be seen from Figure 4.1 the subjects vary visibly in height but also less visible in
width. Using a single rigid multi-body model for all subjects would therefore be only a coarse
approximation of the model.
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(a) Subject1 (b) Subject2 (c) Subject3 (d) Subject4 (e) Subject5

Figure 4.1: Motion capture data of all subjects while standing in neutral pose shown in frontal
view. The displayed images were rendered in a way such that distances along the horizontal and
longitudinal axes are the same for all images.

Differences in Segment Lengths and Marker Movements

Instead of using a single model for all subjects one could also create models using data from
biomechanical literature such as de Leva (1996) or Dumas et al. (2007). They present tables
that define segment dimensions, joint center locations, segment masses, and inertial parameters
that are influenced by gender, height, and weight of the subject. However joint locations are
only influenced by the total height of the subject as the all segment lengths and therefore joint
locations are scaled uniformly.

However there are differences in segment lengths that are not captured by this uniform
scaling approach and differ from subject to subject. In Figure 4.2 we have highlighted the
markers RSHO and RELB, which are placed near anatomical landmarks of the right shoulder
and elbow joints. Similarly, we have highlighted the markers RKNE and RANK, which are close
to the right knee and ankle joints. These two marker pairs are good approximations for the
segment lengths of the upper arm (RSHO-RELB) and shank (RKNE-RANK ) as the designated
marker locations are well defined and easy to locate.

Table 4.1 shows average distance and standard deviation of the right shoulder and right
elbow markers RSHO and RELB along with the relative average distance normalized by subject
height. Similarly Table 4.2 shows these values for the right knee and right ankle markers RKNE
and RANK. The average distances and standard deviations were obtained from a neutral motion
capture trial for each subject.

When looking at the relative average distances one can see a tendency for a shared factor
for each distance. Nevertheless for each segment there are outliers, e.g. Subject5 for the
RSHO-RELB distance and Subject1 for the RKNE-RANK distance. This suggest that uniform
scaling of segments based on subject height are only of limited use for precise models.

To summarize, creating rigid multi-body models from motion capture marker data is inher-
ently difficult due to multiple reasons. Some of them are:

1. Non-rigid movement of the recorded markers due to movement of the skin caused
by skin deformation caused by muscle contraction or skin movement in general versus
rigid body movement in the rigid multi-body body model.

2. Unknown locations of joint centers (and related: unknown segment dimensions),
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Figure 4.2: Markers used for distance computations listed in Table 4.1 and Table 4.2.

which are required for a rigid body model.

3. Inherently highly complex joints in the human body (especially spine and shoulder)
and idealized and fewer joints in the rigid body model.

Average Distance
RSHO - RELB

Subject
Height

Distance / Height

Subject1 384.10 ± 0.91mm 1820mm 0.2110 ± 0.0005

Subject2 335.80 ± 2.51mm 1690mm 0.1987 ± 0.0015

Subject3 391.91 ± 1.18mm 1860mm 0.2107 ± 0.0006

Subject4 344.51 ± 3.66mm 1790mm 0.1925 ± 0.0020

Subject5 315.60 ± 0.44mm 1800mm 0.1753 ± 0.0002

Table 4.1: Mean and standard deviation of the marker distances RSHO (right shoulder) and
RELB (right elbow), subject heights, and average marker distance normalized by subject height
for each subject.

4.2.2 Subject Specific Modeling as a Parameter Estimation Problem

Formally, an optimal subject specific model can be described by the following optimization
problem:

Definition 3 (Optimal Subject Specific Model). Let nF be the number of recorded motion
capture frames, nM be the number of markers used, nJ be the number of joints in for which the
locations are unknown. Let further pm

k ∈ R
3, k = 1, . . . , nM be the virtual markers of the model,

pc
l ∈ R

3, l = 1, . . . , nJ the joint center locations of the unknown joint centers described in local
coordinates, qi ∈ R

ndof , i = 1, . . . , nF be the generalized positions for the model at frame i. Let
mD

i,j ∈ R
3 be the marker position of marker j at capture frame i and mM

j (qi, pc, pm) ∈ R
3 be

the position of the model marker j for the model posture qi ∈ R
ndof at capture frame i. Let pm

denote all local model markers and pc all joint center coordinates.
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Average Distance
RKNE - RANK

Subject
Height

Distance / Height

Subject1 475.84mm ± 6.21mm 1820mm 0.2615 ± 0.0034

Subject2 401.53mm ± 3.69mm 1690mm 0.2376 ± 0.0022

Subject3 461.92mm ± 2.98mm 1860mm 0.2483 ± 0.0016

Subject4 419.57mm ± 3.76mm 1790mm 0.2344 ± 0.0021

Subject5 433.06mm ± 5.14mm 1800mm 0.2406 ± 0.0029

Table 4.2: Mean and standard deviation of the marker distances RKNE (right knee) and RANK
(right ankle), subject heights, and average marker distance normalized by subject height for
each subject.

The optimal subject specific rigid body model is then described by the optimal solution of

min
q1,...,qnF

,pm,pc

nF
∑

i=1

nM
∑

j=1

1

2
||mD

i,j − mM
j (qi, pm, pc)||22. (4.3)

Solving the parameter estimation problem (4.3) is difficult as the parameters qi, pc, and
pm are redundant. For example, a nonzero displacement of a joint center can be negated by a
displacement of the local marker coordinates in the affected segment and an appropriate change
of joint variables.

The solution of (4.3) may also not be uniquely defined. For joints that rotate around a single
axis such as elbow or knee joints the possible joint centers are all on the axis of rotation.

If some of the variables are known the is problem reduced to problems that are easier to
solve. E.g. if pc and pm are given, the problem is reduced to an inverse kinematics problem.
Similarly, if qi and pc are given, the local marker coordinates can be deduced as the mean
coordinates of the markers from data transformed into the local space of the segments.

Some of the issues can be alleviated by adding regularization terms, however these may add
unwanted biases to the solution. E.g. adding minimization of the local coordinates pm, the
origins of the segments will tend to be in the centroid of the markers. Therefore great care has
to be taken and manual scaling of the additional terms is required.

Furthermore the problem (4.3) quickly becomes very large. The number of free optimization
variables n dependent on the number of frames nF , number of unknown joint locations nJ , and
number of local marker coordinates nM is:

n = nF ndof + 3nJ + 3nM (4.4)

Directly solving this problem is not advisable, since the high number of degrees of freedom for
the model ndof = 35 prevents use of the high numbers of motion capture frames nF that would
be necessary to get a good fit.

4.2.3 Related Problems and Methods

Both in biomechanics and computer graphics literature related problems are discussed. There is
no clear classification of the individual problems, nevertheless we want to name a few: Joint
center estimation tries to find the center of rotation for two connected bodies from two sets of
points (Umeyama, 1991), joint parameter estimation computes joint locations and the axes of
movement from motion capture data (Schwartz and Rozumalski, 2005). The closest related
problem to ours is that of skeleton estimation or sometimes called skeleton fitting. It tries to
identify individual rigid body movements and a skeleton hierarchy from motion capture data.

In clinical gait analysis an often used method is the Plug-in Gait (PiG) model that is used by
VICONTM motion capture system. It uses a specific set of motion capture markers (a so-called
marker set) that are placed on specific points on the body. Subsets of the markers are then
used to define reference frames for individual segments that are computed for each recorded
motion capture frame. A limitation of this approach is that the individual segments are not
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connected with proper spherical or hinge joints, instead they also allow relative translations.
The lower-limb kinematics of PiG is based on Davis et al. (1991), however we were not able to
find any references that describe how the PiG upper-limb kinematics are computed.

The skeleton estimation method in O’Brien et al. (2000) computes the joint parameters of
a hierarchical system automatically using magnetic motion capture data. For two connected
segments it computes the shared point or axes (in case of a 1-DOF joint) of both bodies that
moves the least. It takes advantage of the magnetic motion capture data which provides not
only position but also orientation of the sensor. For best results the recorded human should
exercise all its degrees of freedom.

Kirk et al. (2005) describe a method that uses a conventional marker-based motion capture
system. It first clusters the data into groups of points that undergo similar movements and is
then able to automatically compute a model topology using a spanning tree. The edges of this
tree are the joints and the nodes are the marker groups. It then computes a rigid body model
by traversing the spanning tree from the root to the leafs to compute joint centers. For two
marker groups A and B they use the method proposed in Horn (1987) to compute the joint
center that best describes the movement of the markers in B relative to the coordinate system
defined for A. This is done for every motion capture frame and the average joint center of all
frames is then used to define the joint center of the rigid body model. The method computes
both joint centers and marker coordinates in the local space of the segments and the motions
can be mapped onto the model using inverse kinematics.

4.2.4 Our Approach

The method described in Kirk et al. (2005) is very attractive as it works with standard motion
capture marker data. However, the method assumes that the connecting joints have full spherical
movement. Joints with single degrees of freedom such as knees or elbows are not supported by
this method and would require further adjustments or the mapped motion would have to be
re-targeted onto a model with the actual degrees of freedom.

In our approach we solve the problem by the combination of two separate parts: HeiMan, a
highly parameterized and customizable rigid body model, and Puppeteer, a graphical model
editor and motion capture fitting tool. Starting with a default HeiMan model we adjust the
model and create virtual markers using Puppeteer, for which we implemented a robust inverse
kinematics method to compute the joint angles. Puppeteer directly operates on the reduced
coordinates of the model which alleviates us from any post processing or additional motion
re-targeting. Both HeiMan and Puppeteer were created for this thesis.

4.3 The HeiMan Model - a Highly Customizable Rigid

Body Model for Humans

HeiMan is a highly parameterized rigid multi-body model for human models. It allows creating
a wide variety of models by use of tabular data reported in de Leva (1996) and Dumas et al.
(2007). A schematic overview is given in Figure 4.3, which shows the available segments, joints,
and also the overall model topology that spans from the pelvis.

The HeiMan model is based on the biomechanical data by de Leva (de Leva, 1996) for joint
center locations, segment masses and segment inertias. The data can be used to create models
by specifying gender, model height, and model weight by scaling the individual joint center
locations, masses, and inertias. The data assumes that all joints and center of mass locations
are on the frontal plane (which is in our case the Y − Z plane). For the lateral displacements of
the hip and shoulder joints we used the data reported by Dumas et al. (2007) since the de Leva
data does not report these.

HeiMan not only allows creating a wide range of human rigid multi-body models that can
be used for dynamics simulation, it also automatically creates specifications for the visualization
of the models. A screenshot of a visualization of a HeiMan model using MeshUp is presented
in Figure 4.4.
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4.3.1 Model Creation

To describe a model using HeiMan one first has to specify the model height and weight. As
of this writing only male models are supported, however HeiMan can easily be extended by
adding biomechanical data for female models.

HeiMan initializes the default parameters listed in Table 4.3, Table 4.4, and uses the specified
model height and weight. A parameter vector p, which contains all these parameters is returned.
This vector can then be used to create a model, which yields a model that closely conforms to
the description of de Leva.

Figure 4.3: Schematic overview of HeiMan. Joint names are shown in italic font whereas
segment names are printed bold. Blue lines show the joint center relative to the parent joint.
Segments are shown in light brown.

To create a custom model one can override individual parameters in p. E.g. if the vector
p is created for a model of height 1.79m and mass 76kg the default parameter for the pelvis
height is pPelvisHeight = 0.3752 · ModelHeight = 0.1498m. By setting pPelvisHeight = 0.3m one
would get a model where the pelvis segment is 0.3m high. A visualization of the default model
and the customized model is shown in Figure 4.4.

4.3.2 Joints

The mobility of the model is defined by the degrees of freedom for each joint. By default
HeiMan uses the degrees of freedom described below, however for each joint the actual degrees
of freedom can be specified individually. This allows us to create 3-D, 2-D, and even 1-D human
models.

In the following we describe all joints that are available in HeiMan in terms of joint location,
degrees of freedom and connectivity to neighbouring segments.

Pelvis The pelvis joint by default has six degrees of freedom: translation along x, y, and z,
and rotation around y, x, and z (i.e. Y XZ-Cardan angles). The joint is also the origin of the
Pelvis segment.
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(a) Default model (b) Customized model

Figure 4.4: Visualization of a default HeiMan model for a human of height 1.74m and weight
of 76kg and an adjusted model for which the pelvis height was set to 0.3m.

HipRight, HipLeft The hip joints are located at (0, pHipRightWidth, 0)T and

(0, pHipLeftWidth, 0)T , in the coordinate frame of the Pelvis segment respectively. By de-
fault it has three rotational degrees of freedom around the local y-, x-, and z-axis. The joints
are the origins of the segments ThighRight and ThighLeft.

KneeRight, KneeLeft The knee joints are located at (0, 0,−pThighRightLength)T and

(0, 0,−pThighLeftLength)T in the coordinate frame of ThighRight and ThighLeft, respectively.
Each joint has one degree of freedom around the local y-axis and their locations define the
origins of the ShankLeft and ShankRight segments.

AnkleRight, AnkleLeft The ankle joints are specified in the local coordinate frame of
the ShankRight and ShankLeft segments at the coordinates (0, 0,−pShankRightLength)T and

(0, 0,−pShankLeftLength)T . The ankle joints have the same degrees of freedom as the hip joints,
namely the three successive rotations around the y-, x-, and then z-axis. Again, the joints define
the origin for the connected segments of FootRight and FootLeft.

Lumbar Joint The Lumbar joint is located in the coordinate frame of the segment Pelvis at
the local coordinates (0, 0, pPelvisHeight)

T . It has three revolute degrees of freedom around the y,
x, and z axes. Its location defines the origin of the MiddleTrunk segment

Thorax Joint The Thorax joint is specified in the local coordinate frame of the MiddleTrunk
segment at the coordinates (0, 0, pMiddleTrunkHeight)

T . By default this joint is a fixed joint,
which means that there is no relative movement between the UpperTrunk segment and the
MiddleTrunk segment. Nevertheless, a separate coordinate frame for the UpperTrunk is still
defined at the joint location.

InnerShoulderRight, InnerShoulderLeft The InnerShoulderRight and InnerShoulderLeft
joints are defined in the local coordinate frame of the segment UpperTrunk at the coordinates
(0, 0, pShoulderRightHeight)

T and (0, 0, pShoulderLeftHeight)
T . The joints are fixed by default but

define the coordinate frames for the segments ClaviculaRight and ClaviculaLeft.
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ShoulderRight, ShoulderLeft The joints ShoulderRight and ShoulderLeft are defined
relative to the coordinate frames of ClaviculaRight and ClaviculaLeft at the coordinates
(0,−pClaviculaRightLength, 0)T and (0, pClaviculaLeftLength, 0)T . Each has three rotational degrees
of freedom around the y-, x-, and then z-axis. The joints define the coordinate frames of the
segments UpperArmRight and UpperArmLeft.

ElbowRight, ElbowLeft The elbow joints are located in the coordinate frames of the
segments UpperArmRight and UpperArmLeft at the locations (0, 0,−pUpperArmRightLength)T

and (0, 0,−pUpperArmLeftLength)T , respectively. Each has by default a revolute joint that allows
a rotation around the y-axis. The joint locations coincide with the origins of the segments
LowerArmRight and LowerArmLeft.

WristRight, WristLeft The wrist joints are specified in the coordinate frames of
LowerArmRight and LowerArmLeft at the coordinates (0, 0,−pLowerArmRightLength)T and

(0, 0,−pLowerArmLeftLength)T . By default the joints are fixed joints.

Neck The Neck joint is defined in the coordinate frame of the segment UpperTrunk at
(0, 0, pSuprasternaleHeight)

T , which coarsely corresponds to the point between the left and right
clavicles. It is a fixed joint that does not allow relative movement of the Neck segment relative
to the UpperTrunk segment.

Head The Head joint is located in the coordinate frame of the Neck at (0, 0, pNeckLength)T ,
which is at the height of the lower end of the mandible. It has three degrees of freedom around
the y-, x-, and z- axis.

4.3.3 Segments

The segments define the dynamic properties of the model while joints define the mobility of the
model. Segments are the bodies of the rigid multi-body model and their properties are defined
by mass, location of the center of mass and the inertia matrix of the body.

The HeiMan parameters that are used to describe the masses of each segment are listed in
Table 4.4. Together with the lengths of the segments listed in Table 4.3 and the relative center
of masses and relative radii of gyration listed in Table 4.5 we can compute the absolute center
of masses and inertia matrices for each body.

For the UpperTrunk segment the length is given as l = pUpperTrunkHeight = 0.0980 ·
ModelHeight and its mass as m = pUpperTrunkMass = 0.1596 · ModelMass. For a model of
height 1.79m and mass of 76kg we have l = 0.175m and m = 12.13kg and the relative center of
mass location is given in Table 4.5 as r̄COM

UpperTrunk(0, 0, 0.7001)T . Using this we can compute the
absolute center of mass of the UpperTrunk as:

rCOM
UpperTrunk = r̄COM

UpperTrunk · l (4.5)

=







0

0

0.7001






· 0.175m ≈







0

0

0.123m






(4.6)

in the coordinate frame of the UpperTrunk. Similarly, the center of mass can be expressed and
computed for other segments.

The inertia matrix of the segment is computed using the segment mass m, segment length
l, and the relative radii of gyration r̄gyr of the segment. The relative radii of gyration of the
UpperTrunk listed in Table 4.5 are r̄gyr = (0.716, 0.454, 0.659)T . The inertia matrix of the
segment at the center of mass is then given by

I C
UpperTrunk =







(r̄gyr
x ∗ l)2 ∗ m 0 0

0 (r̄gyr
y ∗ l)2 ∗ m 0

0 0 (r̄gyr
z ∗ l)2 ∗ m






. (4.7)
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Analogously we can express the inertia matrix for all segments of the HeiMan model.

Parameter Name Default Value Source

(relative to the total
height of the subject)

ClaviculaLeftLength 0.1200 Dumas et al. (2007)

ClaviculaRightLength 0.1200 Dumas et al. (2007)

FootLeftHeight 0.0468 guess

FootLeftLength 0.1462 guess

FootLeftPosteriorPoint 0.0400 guess

FootRightHeight 0.0468 guess

FootRightLength 0.1462 guess

FootRightPosteriorPoint 0.0400 guess

HandLeftLength 0.1079 de Leva (1996)

HandRightLength 0.1079 de Leva (1996)

HeadLength 0.1168 de Leva (1996)

HipLeftWidth 0.0461 Dumas et al. (2007)

HipRightWidth 0.0461 Dumas et al. (2007)

LowerArmLeftLength 0.1545 de Leva (1996)

LowerArmRightLength 0.1545 de Leva (1996)

PelvisHeight 0.0837 de Leva (1996)

MiddleTrunkHeight 0.3752 de Leva (1996)

NeckLength 0.0638 de Leva (1996)

ShankLeftLength 0.2529 de Leva (1996)

ShankRightLength 0.2529 de Leva (1996)

ShoulderLeftHeight 0.0980 de Leva (1996)

ShoulderRightHeight 0.0980 de Leva (1996)

SuprasternaleHeight 0.0980 de Leva (1996)

ThighLeftLength 0.2425 de Leva (1996)

ThighRightLength 0.2425 de Leva (1996)

UpperArmLeftLength 0.1618 de Leva (1996)

UpperArmRightLength 0.1618 de Leva (1996)

UpperTrunkHeight 0.0980 de Leva (1996)

Table 4.3: Parameter for segment lengths and joint center locations and their default values. By
default the parameters are uniformly scaled by the total subject height but can be individually
overridden.

4.3.4 Implementation Notes

HeiMan is implemented as a Lua (Ierusalimschy et al., 2006) script. We have created and
formalized a textual file format called LuaModel1 that uses the syntax of the Lua. The
LuaModel file format allows description of rigid multi-body models together with additional
information such as the coordinate system of the global coordinate frame, visualizations of the
bodies and arbitrary custom meta data.

The syntax of Lua is very clear and is easy to read and learned. By using the Lua syntax
we also have all possibilities of the scripting language. This includes the definition of functions
but most importantly it allows defining variables that facilitate the creation of parameterized

1The specification of the LuaModel format can be found at https://bitbucket.org/MartinFelis/meshup/

src/default/doc/FormatDescriptions.md

 https://bitbucket.org/MartinFelis/meshup/src/default/doc/FormatDescriptions.md 
 https://bitbucket.org/MartinFelis/meshup/src/default/doc/FormatDescriptions.md 
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Parameter Name Default Value Source

(relative to the total
mass of the subject)

PelvisMass 0.1117 de Leva (1996)

ThighRightMass 0.1416 de Leva (1996)

ShankRightMass 0.0433 de Leva (1996)

FootRightMass 0.0137 de Leva (1996)

ThighLeftMass 0.1416 de Leva (1996)

ShankLeftMass 0.0433 de Leva (1996)

FootLeftMass 0.0137 de Leva (1996)

MiddleTrunkMass 0.1633 de Leva (1996)

UpperTrunkMass 0.1596 de Leva (1996)

ClaviculaRightMass − -

UpperArmRightMass 0.0271 de Leva (1996)

LowerArmRightMass 0.0162 de Leva (1996)

HandRightMass 0.0061 de Leva (1996)

ClaviculaLeftMass − -

UpperArmLeftMass 0.0271 de Leva (1996)

LowerArmLeftMass 0.0162 de Leva (1996)

HandLeftMass 0.0061 de Leva (1996)

NeckMass − -

HeadMass 0.0694 de Leva (1996)

Table 4.4: Parameters for the individual segment masses of HeiMan. The masses are specified
relative to the model mass but individual values can be overridden manually. For the segments
ClaviculaRight, ClaviculaLeft, and Neck no data was available. By default HeiMan uses a mass
of 0 for these segments.

models. E.g. a variable that describes the length of a segment can be reused when defining the
dimensions of the visualization of the segment.

Models described using LuaModel can be directly loaded by RBDL, the rigid body
visualization tool MeshUp2, and our subject specific modeling tool Puppeteer, which will be
described in the following section.

4.4 Puppeteer - Subject Specific Modeling Tool

To create subject-specific models and virtual markers we created Puppeteer. Puppeteer is a
motion capture visualization and rigid multi-body modeling tool. It allows visually adjusting
the model by simultaneously visualizing rigid body models and motion capture data.

A screenshot of Puppeteer is shown in Figure 4.5. It shows the 3-D view in the center
which displays the model using three dimensional geometric objects and the motion capture
data as coloured points in the front. The displayed motion capture frame can be chosen using
the slider at the bottom of the tool. Furthermore, the motion capture data can be played back
in real-time.

To create a subject-specific model for given motion capture data one first needs to decide
which virtual markers are assigned to which segment. This mapping is only about the association
of a virtual marker to a segment and not about the actual local coordinates of the marker. In
this work we use the virtual marker set mapping listed in Table 4.6, but Puppeteer can be
freely adjusted for other marker names and mappings.

For a given virtual marker set mapping and motion capture data one proceeds as follows to

2https://bitbucket.org/MartinFelis/meshup

https://bitbucket.org/MartinFelis/meshup
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Segment Name Relative COM Relative Radii of Gyration

Location Sagittal Transvers. Longitud.

Pelvis (0, 0, 0.3884)T 1.615 0.551 0.587

Thigh (0, 0,−0.4095)T 0.329 0.329 0.149

Shank (0, 0,−0.4458)T 0.255 0.249 0.103

Foot (0, 0,−0.4415)T 0.257 0.245 0.124

MiddleTrunk (0, 0, 0.5498)T 0.482 0.383 0.468

UpperTrunk (0, 0, 0.7001)T 0.716 0.454 0.659

Clavicula − − − −

UpperArm (0, 0,−0.5772)T 0.285 0.269 0.158

LowerArm (0, 0,−0.4574)T 0.276 0.265 0.121

Hand (0, 0,−0.3624)T 0.288 0.235 0.184

Neck − − − −

Head (0, 0, 0.4024)T 0.362 0.376 0.312

Table 4.5: Relative Center of Mass locations for each segments and the relative radii of gyration
for all segments of HeiMan. All values are taken from de Leva (1996). The relative Center of
Mass locations multiplied with the segment length (see Table 4.3) give the locations in local
coordinates. The relative radii of gyration are scaling factors that, together with the segment
length and segment mass, are used to compute the total segment inertia. No parameters are
available for the segments Clavicula and Neck. By default these segments have their Center of
Mass at (0, 0, 0)T ∈ R

3 and an inertia of 0 ∈ R
3×3.

create a subject-specific model.

1. Create a basic model using HeiMan by specifying the measured total height and total
mass of the subject.

2. Load the model and a motion capture data sequence into Puppeteer.

3. Create virtual markers for the model:

(a) Choose a motion capture frame i that allows the estimation of the posture of a
segment for the subject.

(b) Adjust q to pose the model so that it mimics the posture of the subject in the chosen
motion capture frame.

(c) Adjust joint center locations pc of model so that joint center locations of the model
approximate the estimated joint centers of the subject.

(d) Assign markers mD
ij from the motion capture frame to the model to create the virtual

markers pm
j .

4. Extract length parameters from the adjusted model to create a subject specific HeiMan

model.

It can be difficult to find a single motion capture frame that allows for a good marker
assignment of all segments. Therefore step 3 usually needs to be performed repeatedly for
different motion capture frames.

E.g. to obtain a good estimate for a knee joint center it is easier to locate it for a motion
capture frame where the knee flexion of the subject can be estimated. Usually there is no single
motion capture frame for both left and right knee which is why this step is better done using
multiple motion capture frames.
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Figure 4.5: Screenshot of Puppeteer. We created this tool specifically to adjust rigid multi-
body models to approximate the kinematic structure of the recorded subjects. The model is
shown using coloured polygons whereas the motion capture data is shown using small coloured
points. On the left the values of the generalized positions of the model are shown, on the right
the properties of the selected segment (in this image: UpperArmRight). The slider on the
bottom is used to select the current motion capture frame.

4.4.1 Adjustment of the Model

Modifying the both posture q and joint center locations pc in a way that the model joint centers
align with joint centers estimated from marker data is what we refer to as "model adjustment".
The model adjustment is performed by first adjusting the generalized positions q of the model
such that its pose reflects that of the subject in the motion capture data of the selected frame
and then adjusting the locations of the joints pc. Figure 4.6 shows a screenshot of Puppeteer

while editing the upper right arm.

Posing the Model

The posture of the model can be adjusted using the model state editor which is highlighted
using a red box in Figure 4.6. It allows the direct adjustment of each degree of freedom of the
model. Any change is directly applied to the model in the 3-D view, which allows for a fast
assessment of the similarity of the model pose and the pose of the subject at the current motion
capture frame.

To pose the model one should start using the generalized positions of the pelvis segment and
then proceed outwards along the spanning tree of the model.

Modification of Joint Frames

In Puppeteer the model is adjusted by altering the coordinates of the joint center of a child
body. E.g. the pelvis has three child bodies: the right thigh, the left thigh, and the middle
trunk. Each of these child bodies is connected with a joint to the pelvis and the location of this
joint is specified in coordinates in the pelvis frame. But also the default orientation of the joint
can be adjusted. Location and orientation of the joint therefore define a frame which we refer to
as the joint frame.

E.g. to modify the joint frame of the right shoulder joint one first selects the child body (in
this case the right upper arm). This will load all properties of the right upper arm into the
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Segment Virtual Markers

Pelvis LPSI, LASI, RPSI, RASI

ThighRight RTHI

ShankRight RKNE, RTIB

FootRight RANK, RHEE, RTOE

ThighLeft LTHI

ShankLeft LKNE, LTIB

FootLeft LANK, LHEE, LTOE

MiddleTrunk T10, STRN

UpperTrunk CLAV, C7

UpperArmRight RUPA

LowerArmRight RELB, RWRA, RWRB

UpperArmLeft LUPA

LowerArmLeft LELB, LWRA, LWRB

Head RFHD, RBHD, LFHD, LBHD

Table 4.6: Virtual marker set mapping used in this work.

object editor. This also loads the location and orientation of the joint into the object editor as
the connecting joint is associated with the selected segment.

Modification of joint location and orientation is directly applied to the model in the 3-D
view so that an assessment of the new position is quickly possible.

4.4.2 Virtual Marker Assignment

Once the model is properly posed and the joint centers are adjusted the markers can be assigned.
This is done by selecting the segment and the markers that should be assigned to the segment.
By clicking on the "Assign Markers" button shown on the bottom right in Figure 4.7 one adds
virtual markers pm for the selected motion capture markers.

The virtual markers are created by transforming the global coordinates of the currently
selected motion capture markers into the local coordinate frame of the selected segment. If
segment l and the markers mD

j ∈ R
3, j = 1, . . . , ns, are selected, the local coordinates of the

virtual markers are obtained using

lpj = lE0(mD
j − 0r l), (4.8)

where 0r l ∈ R
3 is the location of segment l in the global coordinate frame and lE0 ∈ R

3×3 the
rotation matrix that rotates a coordinate vector from the global coordinate frame to the local
coordinate frame of segment l. This then yields the virtual markers pm

j = (l, lpj), j = 1, . . . , ns.

4.4.3 Fitting Motion Capture Data to the Subject Model

Once a model is adjusted and virtual markers have been created, the values of pc and pm are
fully defined and (4.3) is reduced to an inverse kinematics problem. It allows fitting of motion
capture data to the model by using a least-squares optimization on the difference of the virtual
markers and the motion capture markers. For this we use the method presented in Sugihara
(2009), which we briefly describe here.

Inverse kinematics computes joint angles q for an articulated model such that designated
points of the model coincide or are close to specific points in space. In our case the model is the
subject-specific model, the designated points are the virtual markers that should be close to the
positions of the motion capture markers for a given motion capture frame.
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Figure 4.6: Adjustment of posture (left highlighted area) and joint center locations (right
highlighted area). The posture of the model can be modified using the model state editor at the
left side of the image. Joint center locations can be modified using the object property editor on
the right side.

Figure 4.7: Marker assignment in Puppeteer. Virtual markers for a model segment are created
by selecting a model segment and markers from the motion capture data in the 3-D view in
the center. Using the "Assign Markers" button on the right the current marker positions are
transformed into local coordinates of the segment and added as virtual markers to the segment.
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The inverse kinematics problem for nM virtual markers can be described as a weighted
least-squares problem:

min
q

R(q) =
1

2
r(q)T W mr(q) (4.9)

with a diagonal weighting matrix W m = diag{wm,j}, wm,j > 0, j = 1, . . . , 3nM and where
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∈ R
3nM (4.10)

are the residuals between the motion capture markers and the virtual markers. The weighting
matrix W can be used to prioritize certain markers.

The Jacobian of (4.10) is defined by

J(q) =

[

∂r i

∂qj

]

=
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(4.11)

this allows us to define the derivatives of the objective function of the least-squares problem
(4.9) as:

∇R(q) = J(q)T W mr(q) (4.12)

∇2R(q) = J(q)T W mJ(q) +

nM
∑

i=1

r i(q)W m,i∇
2r i(q). (4.13)

with W m,i = diag{wm,3(i−1)+1, wm,3(i−1)+2, wm,3(i−1)+3}, which is the submatrix of W m that
contains only the weighting coefficients for the residual of marker i.

A common method to solve nonlinear problems such as (4.10) is to use Newtons method to
obtain a stationary point of the problem. By setting Jk = J(qk) and ∇2Rk = ∇2R(qk) we can
write the corresponding Newton step as:

qk+1 = qk +
(

∇2Rk

)−1
JkW mqk (4.14)

Instead of using the exact value of the Hessian ∇2Rk one can use the Gauss-Newton method,
which uses an approximation of the Hessian by omitting the second term in (4.13). This
approximation only uses the predefined weighting matrix W m and the Jacobian Jk, which can
easily be computed (see Section 3.4.4) and avoids expensive evaluations of second derivatives.
The Gauss-Newton approach then yields an iteration of the form:

qk+1 = qk + ∆qk, (4.15)

with ∆qk being the solution of

(JT
k W mJk)∆qk = JkW mqk. (4.16)

However the linear system (4.16) is only solvable if Jk has full rank. To alleviate this one can
use the Levenberg-Marquardt regularization method. Here the step ∆qk is obtained by solving
the system

(H k + W d)∆qk = JkW mqk (4.17)

with H k = JT
k W mJk and W d = diag{wd,j}, wd,j > 0, j = 1, . . . , 3nM being the regularization

term.
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Various methods have been proposed for the choice of the regularization term W d, such as
Nakamura and Hanafusa (1986); Chan and Lawrence (1988) and others. In Sugihara (2009)
multiple methods are compared and further proposes to use:

W d = r(qk) + λ1 (4.18)

with λ > 0, e.g. λ = 1.0 × 10−3.
Sugihara applied this method on two benchmark problems, a robot arm with three spherical

joints and a humanoid robot with 18 degrees of freedom. The benchmarks included target
positions that were unreachable and also target positions where the optimal solution was in
singularities of the robots. Overall in both problems his method performed better both in terms
of computation time and reduction of the residuals.

4.4.4 Implementation Notes

Puppeteer is implemented using C++ and the cross-platform graphical user interface toolkit
Qt3. The 3-D rendering is done using the Open Graphics Library (OpenGL) (Shreiner and
Group, 2009). Puppeteer extensively uses RBDL, e.g. to transform between global and
segment local space and to efficiently compute Jacobian matrices for the inverse kinematics
method. It is also used to perform forward kinematics, e.g. to compute the transformations of
the visual representations of the segments when the generalized positions are changed.

Models can be loaded from LuaModel files and also written back to LuaModel files. If
additional custom values were stored in the original LuaModel file then these values will be
preserved when Puppeteer writes the model back to a file. To access and modify values in
Lua files we have created the LuaTables++ library.

To fit a complete motion to a model we perform the optimization (4.9) on each motion
capture frame individually. For the first motion capture frame the optimization is started with
q1 = 0 ∈ R

ndof . The subsequent frames are always started with the solution of the previous
motion capture frame. The optimization successfully stops when ||∆qk||2 < 10−8 or is canceled
if no solution was found after 200 steps. In this work we weigh all residuals equally and use
an identity matrix for W m as we do not have any information about the covariances of the
markers.

Motion capture data can be loaded using C3D files (Motion Lab Systems, 2008). C3D is a
highly versatile public domain binary file format that can be exported from all motion capture
systems we are aware of. It allows storing of marker data but also other biomechanical data
such as analog EMG (electromyography) data, forces recorded by force platforms, and contact
events in one compact file. C3D files also contain information about various parameters such as
the recorded frame rate, the recording software etc. Additionally, arbitrary parameters can be
stored in a C3D file. Loading of C3D data is done using a custom C3D reader that we integrated
in Puppeteer.

Selection of objects is performed using so-called color picking. Color picking assigns each
object a unique color and renders the scene to a texture. The coordinates of the pointing device
are then transformed into coordinates of the texture. The object under the pointing device can
then be determined using the color at the texture coordinate of the pointing device.

4.5 Active and Passive Joint Actuation

The HeiMan model can be used in a purely kinematic manner but its main purpose is to use
it for dynamics computations and simulation. In the human body the movement of limbs is
produced by muscles that are connected via ligaments and tendons to the bones.

We distinguish between active and passive actuation forces. The active actuation forces are
the ones that are produced by contraction of muscles or muscle groups. Passive actuation forces
are caused by ligaments and tendons that influence the stiffness and also limit the range of
motion of the joints.

3http://qt.io

http://qt.io
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Modeling the passive parts can be done on many different levels: starting from spring-dampers
in the joints to highly complex musculoskeletal models (Nakamura et al., 2005; Matthew Millard
and Delp, 2013). Here we use spring-damper elements in the legs to account for the passive
forces, since they only have a minor effect on the computational complexity of the model.

For our model the joint forces are specified in terms of generalized forces τ (t) ∈ R
ndof that

act directly at the joints. However only nu = ndof − 6 of the degrees of freedom are actuated as
the position and orientation of the pelvis of the model is indirectly manipulated by the legs due
to the interaction of the feet with the ground. This makes our model a underactuated system.

We denote u(t) ∈ R
nu as the input controls of our model. Given controls u(t) we can write

their resultant generalized forces as

τ u(t) = Tu(t) =

[

06×nu

1nu×nu

]

u(t), (4.19)

with the ndof × nu selection matrix T .
The force produced by the passive spring-damper element acting on the degree of freedom

with index i can be stated as:

τsd,i(t) = ki(q
0
i − qi(t)) − bi(q̇i(t)) ∈ R, (4.20)

where ki > 0 ∈ R is the spring constant, q0
i is the rest position of the spring, qi(t) is the position

of the joint, bi > 0 ∈ R is the damping constant, and q̇i(t) is the joint velocity. For joints that
do not have a spring-damper we set τsd,i(t) = 0. By assembling all spring-damper parameters
into a single parameter vector psd = (k1, q0

1 , b1, k2, q0
2 , b2, . . . , knactuated

, q0
nactuated

, bnactuated
)T allows

us to write the vector of all passive actuation forces as τ sd(q(t), q̇(t), psd) ∈ R
ndof . The complete

actuation can then be written as:

τ (t) = Tu(t) + τ sd(q(t), q̇(t), psd). (4.21)

4.6 Segment Distance Computation

Segments of the HeiMan model do not have any bounds or border that would prevent them
of colliding or overlapping with each other. When wanting to synthesize human-like motions
one therefore has to ensure that segments do not overlap. For a pair segments this can be
prevented by employing a distance measure for the two segments and ensuring that this distance
measure is always positive. By creating a list of segment pairs of the whole model one can
ensure non-overlapping segments of the whole model.

When using time-continuous optimization techniques as done in this thesis one further has to
ensure that this is distance measure is a continuously differentiable function of the state of the
model, which is in our case described by the generalized positions q(t). One way to do this would
be to use spheres attached to each segment and use their distances. I.e. let c1(q), c2 (q) ∈ R

3

be the centers in the global reference frame and r1, r2 ∈ R radii of the two spheres. Then the
distance measure would be

d(q) = ||c1(q) − c2(q)||2 − r1 − r2. (4.22)

However spheres only coarsely describe the shape of segments as the Shank or Thigh and
therefore are unsuitable. Instead we use collision capsules to approximate the shapes of the
segments as used e.g. in robotics (Stasse et al., 2008). A capsule is a cylinder with two
hemispheres on both ends and is parameterized by its length l ∈ R and radius r ∈ R. It can be
seen as the convex hull of line segment of length l with spheres of radius r at each end (Figure
4.6).

For two capsules C1 and C2 the distance between the two capsules d(C1, C2) is defined as the
distance of the two closest points on the line segment minus the radii of each of the capsules. For
d(C1, C2) < 0 we speak of penetration. This function is differentiable as long as the penetration
is greater than the smallest radius of the two capsules. In the latter case the distance is not
defined.
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Figure 4.8: Schematic of collision capsules and the distance between them.

In our model we attach capsules to the frames of the approximating segments. The capsules
are massless and therefore do not affect the physical properties but their position and orientation
is dependent on the posture of the model and therefore the generalized positions q. So for the
segments RightShank and LeftShank we can ensure non-overlapping of these segments by the
following constraint:

d(CRightShank, CLeftShank, q) > 0 (4.23)

4.7 Foot Contact Modeling

Figure 4.9: Schematic of the foot model used in this work. The sole of the foot is approximated
by a triangle parallel to the ground when the model is standing in neutral posture.

During walking the human body is propelled by interaction of the feet with the ground. In a
normal healthy gait the heel touches the ground first and rolls over the heel until the foot is flat
on the ground. After this the heel lifts, so that only the frontal part of the foot and toes are in
contact with the ground. At the end of the contact the foot then rolls over the toes and the foot
is lifted and swings freely until the next heel strike. During contact the foot deforms due to the
change of load of the body.

In our model we approximate the shape of the foot using a sphere and a line segment. The
sphere is used for the heel contact and the line segment for the forefoot contact. The line
segment is described by two points near the ball of the foot: Hallux, which is at the medial side
and Meta5, which is at the lateral side near the distal end of the 5th Metatarsal bone. The heel
sphere and the contact points are visualized in Figure 4.9. This foot model allows us to capture
the essential types of contact during walking:
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• Heel Contact: rolling contact of the heel sphere that starts with the heel strike and lasts
until both the Hallux and 5th Metatarsal point are on the ground

• Flat Contact: both the heel sphere and the two contact points are in contact with the
ground. This phase lasts until the heel lifts off.

• Forefoot Contact: this contact constrains the movement of the foot to the rotation
around the axis that passes through the Hallux and Meta5 point. It ends when the foot is
lifted from the ground.

Non-slipping Rolling Contact

The heel sphere is allowed to roll over the ground but slipping is not allowed. The rolling is
modeled by constraining the tangential movement of the bottom point and the vertical movement
of the sphere’s center to zero. The constraints on the bottom point ensure that there is no
slipping and the third constraint causes the rotation to be about the sphere’s center. One should
note that the bottom point moves on the surface of the sphere and its coordinates have to be
recomputed at every time step.

Figure 4.10: Acceleration constraints posed for non-slipping rolling contact. The bottom point
of the sphere PB is required to have zero acceleration along the tangential directions of the
contact surface, whereas the sphere center PC must not accelerate along the surface’s normal
direction.

The heel sphere is parameterized using the HeiMan parameters listed in Table 4.3. The center
of the right heel is located in the coordinate frame of the right heel at pFootRightPosteriorPoint and
has a radius of pFootRightHeight. The parameters of the left heel sphere are described analogously.

The different types of contact are modeled using constraint sets introduced in Section 3.5.3.
The individual constraint sets are described in the following paragraphs.

Constraint Set: Heel Contact

The constraint set for the contact during heel contact describes a non-slipping rolling contact. It
is described by three translational constraints. Two of them are located at the sphere’s contact
point at the bottom of the sphere and act along two orthogonal tangential directions of the
contact surface. The third constraint is specified at the sphere’s center point and acts along the
surface’s normal direction. The constraint function for the heel contact can thus be written as:

gHeel(q(t)) =







gHeel,Bottom,X(q(t))

gHeel,Bottom,Y(q(t))

gHeel,Center,Z(q(t))






: Rndof → R

3,

where gHeel,Bottom,X(q(t)) ∈ R is the X–coordinate of the bottom point of the heel sphere in
the global reference frame for the pose q(t) ∈ R

ndof at the time instant t. Similarly the Y – and
Z– coordinates for the bottom point and center of the heel sphere are denoted by the remaining
entries of gHeel(q(t)).

Constraint Set: Flat Contact

For the constraint set of the flat contact one has to take care not to over-constrain the foot
segment during flat contact. We use the following constraints: three translational constraints
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Figure 4.11: Contact constraints during heel contact.

for the heel sphere, two translational constraints at the 5th Metatarsal point along the global
Y –axis (i.e. to the side) and the ground normal, and one translational constraint at the Hallux
point along the ground normal. Using the same notation as in the previous constraint set we
express this constraint set by:

gFlat(q(t)) =





















gHeel,Bottom,X(q(t))

gHeel,Bottom,Y(q(t))

gHeel,Center,Z(q(t))

gMeta5,Y(q(t))

gMeta5,Z(q(t))

gHallux,Z(q(t))





















: Rndof → R
6

.

Figure 4.12: Contact constraints during flat contact. The dark grey triangular area represents
the support polygon.

Constraint Set: Forefoot Contact

The constraint set for the forefoot contact consists of three translational constraints on the Hallux
point along the three cordinate axes and two translational constraints on the 5th Metatarsal
along the global X– and Z–axis. This is equivalent to a hinge joint that connects the forefoot
to the ground and only allows a rotation around the axis passing through the Hallux and 5th
Metatarsal points. It allows the model to excert a moment about the global Z–axis and therefore
propel the body forward. This constraint set is expressed by:

gForefoot(q(t)) =

















gHallux,X(q(t))

gHallux,Y(q(t))

gHallux,Z(q(t))

gMeta5,X(q(t))

gMeta5,Z(q(t))

















: Rndof → R
5

.
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Figure 4.13: Contact constraints of the forefoot contact. The foot is only allowed to rotate
around the line passing through PHallux and PMetatarsal.

Double Support

One should note here that these constraint sets are only described for a single foot. However,
there are phases during walking, in which more than one foot is in contact with the ground.
In that case we use constraint sets that include constraints for both feet. E.g. when the right
forefoot and the left heel is in contact with the ground we have a constraint set with eight
constraints: five for the right forefoot and three for the left heel.

4.8 Constrained Whole-Body Dynamics as Ordinary Dif-

ferential Equations

For nC ∈ N distinct constraint sets we can express the dynamics of the actuated model under
the presence of contact constraints as ODEs using:

ẋ = f i(x(t), u(t)), (4.24)

with

x(t) =

[

q(t)

q̇(t)

]

∈ R
2ndof (4.25)

being the differential state consisting of the generalized positions q(t) ∈ R
ndof , generalized

velocities q̇(t) ∈ R
ndof , actuations u(t) ∈ R

nactuated , and i ∈ 1, . . . , nC being the index of the
active constraint set.

The constraints in constraint set i, q(t), q̇, and u(t) are then used to construct and solve the
contact dynamics system (3.7) from Section 3.1.2. The computed accelerations q̈(t) are then
used as the lower part of the right-hand side of f i(x(t), u(t)).



Chapter 5

Optimal Control Problems for

Modeling Human Walking

Motions

In this capter we describe the optimal control problem formulations that we developed to model
human walking motions by means of a multi-phase optimal control problem formulation. We
present two types of optimizations: a least-squares formulation that we use to reconstruct
the dynamics of human movements from kinematic recordings and a second optimal control
formulation with which we can generate a variety of walking movements.

We describe how we numerically solve the resulting infinite-dimensional optimal control
problems using the Direct Multiple-Shooting Method. The resulting highly structured nonlinear
optimization problem is described along with the Sequential Quadratic Programming (SQP)
method that solves it.

5.1 Human Walking as a Multi-Phase Optimal Control

Problem

In Chapter 1 we have described the human gait as a series of discrete phases. At each phase a
different set of external contacts act on the human model. This results in a distinct ordinary
differential equation (ODE) for each phase as described in Section 4.8. Furthermore contact
collisions, such as the touchdown of the heel or forefoot, cause discontinuities in the joint
velocities.

A multi-phase optimal control problem formulation therefore lends itself for the modeling of
human walking as an optimization problem. For a given sequence of phases it can formally be
defined as:

Definition 4. Multi-Phase Optimal Control Problem with Discontinuities

An optimal control problem with N phases over the time horizon T
def
= [t0, tf ] ⊂ R on

subintervals Ti = [ti−1, ti] ⊂ T , i ∈ I
def
= {1, . . . , N}, and tN = tf is a constrained infinite–

dimensional optimization problem that can be stated as:

min
x(t),u(t),p,t1,...,tN

Φ(x(t), u(t), p) (5.1a)

subject to:

ẋ(t) = f i(x(t), u(t), p), t ∈ Ti, (5.1b)

x(t+
i ) = ci(x(t−i )), i ∈ I, (5.1c)

gi(x(t), u(t), p) ≥ 0, t ∈ Ti, (5.1d)

r(x(t̂1), . . . , x(t̂k), u(t̂1), . . . , u(t̂k), p) ≧ 0, t̂1, . . . , t̂k ∈ T , (5.1e)
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in which we determine a piecewise continuous dynamic process x(t) : T → R
nx , controls

u : T → R
nu , the time grid of phase switches t1, . . . , tN , and a finite dimensional parameter

vector p ∈ R
np such that the objective function Φ : X ×U ×R

np → R is minimized and the path
constraints gi : Rnx × R

nu × R
np → R

ng , i ∈ I and the equality and inequality point constraints
r : (Rnx)k × (Rnu)k × R

np → R
nr are fulfilled.

On each interval Ti the dynamics of the process are described by a set of ordinary differential
equations with right hand sides f i : Rnx × R

nu × R
np → R

nx and the discontinuities of x(t) at
ti are described as transitions from the right-side limit t−i of Ti to the left-side limit t+

i of Ti+1

using the phase transitions functions ci : Rnx × R
np → R

nx .
X : T → R

nx is the set of all trajectories of the dynamics and U : T → R
nu the set of all

control trajectories.

The objective function (5.1a) of an optimal control problem is commonly defined as

Φ(x(t), u(t), p) =

N
∑

i=1

∫ ti

ti−1

ΦLi
(t, x(t), u(t), p)dt +

N
∑

i=1

ΦMi
(ti, x(ti), p), (5.2)

which consists of the Lagrange terms ΦLi
: Ti × R

nx × R
nu × R

np → R that are integrated over
the phase subintervals Ti and Mayer terms ΦMi

: {ti}×R
nx ×R

np → R that are each evaluated
at the end of a phase. Objective functions with both Lagrange and Mayer terms are also called
Bolza-type objective functions. Lagrange-type and Mayer-type objective functions are equivalent
in the sense that a Lagrange-type objective function can always be reformulated as a Mayer-type
and vice versa. Nevertheless their explicit use eases the formulation of certain optimization
criteria.

Each of the N right-hand sides (5.1b) describes the dynamics of the human model subject
to a different set of contact constraints as an ODE that may be affected by the controls u(t) at
any time. Furthermore the parameter vector p may affect the dynamic behaviour of the model.
Throughout this chapter we will assume existence and uniqueness of the solution of the ODEs,
i.e. that f : Rnx × R

nu × R
np → R

nx is piecewise Lipschitz continuous.
Equations (5.1c) describe the transitions between phases, i.e. how the differential states

change from the end of one phase to the beginning of the following phase. They are used to
model contact collisions of the foot with the ground as instantaneous discontinuities in the
differential states.

General path constraints are expressed using (5.1d). These include upper and lower bounds
for controls and differential states.

In (5.1e) additional nonlinear point constraints are defined. These are used to formulate
constraints such as foot clearance, proper contact force, periodicity, and others.

5.1.1 Numerical Methods for Solving Optimal Control Problems

In the following section we will describe various methods for the numerical solution of optimal
control problems. We illustrate the essential concepts of these methods by considering a standard
optimal control problem with a single phase and later discuss how the full problem (5.1) can be
treated numerically. The standard optimal control problem is stated as:

Definition 5. Standard Continuous Optimal Control Problem
The simplified continuous optimal control problem is a constrained infinite-dimensional

optimization problem on the time horizon T = [t0, tf ] ⊂ R that can be stated as:

min
x(t),u(t)

ΦM (x(tf )) (5.3a)

subject to:

ẋ(t) = f (x(t), u(t)), t ∈ [t0, tf ], (5.3b)

g(x(t), u(t)) ≥ 0, t ∈ [t0, tf ], (5.3c)

r(x(t̂0), . . . , x(t̂k)) ≧ 0, t̂1, . . . , t̂k ∈ [t0, tf ], (5.3d)
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in which we determine a piecewise continuous process x(t) : T → R
nx and controls u(t) : T →

R
nu such that the objective function Φ : X × U → R is minimized and the path constraints

g : Rnx × R
nu → R

ng and point constraints r : (Rnx)
k → R

nr are fulfilled.

The dynamic process is given as an ordinary differential equation with right-hand-side
f : Rnx × R

nu → R
nx .

This problem is only defined on a single phase on the fixed time interval T = [t0, tf ] ⊂ R

and uses only a Mayer-type objective function (5.1.1). It furthermore does not include the free
optimization parameter p. The solution of the optimal control problem (5.3) are the infinite
dimensional trajectories of the controls u(t) and differential states x(t).

One way to solve this infinite dimensional problem is the so-called indirect method. It uses
Pontryagin’s Maximum principle (Pontryagin, 1987) to transform (5.3) into a boundary value
problem by formulating the so-called costate equations. The resulting boundary value problem
can then be solved e.g. using the multiple-shooting method (Bock, 1981b; Hartl et al., 1995). For
small systems this is a viable approach but quickly becomes complex as optimality conditions
have to be derived by hand. Especially for the complex models used in this thesis this would
not be possible as already the rigid multibody dynamics equations require automatic methods
for the evaluation.

Instead we use a direct method to solve the optimal control problem. Direct methods
approximate the infinite dimensional u(t) using a finite set of parameters, e.g. using piecewise
constant functions. By further discretizing the differential states x(t) one obtains a nonlinear
programming problem (NLP) that can then be solved using SQP. Common methods for state
discretization include collocation, single-shooting, or a multiple-shooting approach.

Collocation methods discretize boundary value problems by first employing a grid on the
time horizon. The resulting points are the so-called collocation points. Controls are then
approximated between these points by a finite dimensional representation (e.g. piecewise
constant functions), and the differential states are approximated by polynomials that are
required to fulfill the differential equation (5.3b) on the collocation points. The resulting sparse
nonlinear programming problem can then for example be solved using a structure exploiting SQP
method. Knowledge or guesses of the optimal solution for the process can easily be integrated at
the collocation points. A challenging aspect of collocation is the inclusion adaptive refinement
of the collocation points to account for the nonlinearity in the ODEs as it is a priori unknown
where a fine discretization is required. Furthermore this would lead to a change in the number
of optimization variables of the NLP which would need further strategies for a proper treatment.
A detailed description of direct collocation can be found in von Stryk and Bulirsch (1992) and
is implemented in the numerical package DIRCOL (von Stryk, 2000).

The adaptivity problem for the process can easily be treated using single-shooting. It
discretizes the process by a single state vector at the beginning of the time horizon to reduce it
to a initial value problem. This initial value problem can then be solved using a standard ODE
integrator with an adaptive stepsize control. The optimal control problem is then discretized
by an NLP on the control parameters and the initial value of the process. A drawback of this
approach is that prior knowledge of the optimal process can only be specified by the choice of
initial value. Furthermore the ODE solver may fail to integrate the differential equation over
the whole time horizon for stiff problems and an unsuitable choice of controls.

Multiple-shooting combines advantages of both collocation and single-shooting. It uses
adaptive solvers for the ODEs and allows the incorporation of guesses for the optimal solution.
Instead of performing a single integration over the whole time horizon it discretizes the time
horizon using a finite grid and performs multiple integrations ("shootings") on each of the
so-called multiple-shooting intervals. Knowledge of the optimal process can be used to initialize
the differential states at the grid points, which are also referred to as multiple-shooting nodes.
Multiple-shooting also lends itself for parallel computations as integrations on the individuals
intervals can be performed independently of each other. Similar to collocation the resulting
NLP is highly structured and should be exploited to achieve high performance. Direct multiple-
shooting, together with descriptions on how to exploit the structures was published in Bock and
Plitt (1984). A detailed description can also be found in Leineweber (1995).
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5.2 The Direct Multiple-Shooting Method

In this work we use direct multiple-shooting as implemented in the software package MUSCOD-

II (Leineweber et al., 2003), which is a C/C++ reimplementation of the original Fortran
implementation of Bock et al. In the following we will describe its principles in more detail.

5.2.1 Discretization of the Optimal Control Problem

The optimal control problem (5.3) is written in terms of continuous functions x(t) and u(t)
and is therefore also referred to as the continuous optimal control problem. Following the "first
discretize, then optimize" approach of direct methods we will now describe how the continuous
problem can be discretized.

Discretization of the Controls

To discretize the controls u(t) we first define a grid on the time horizon I = [t0, tf ] with:

t0 < t1 < . . . < tm−1 < tm = tf , Ij = [tj−1, tj ], for j = 1, . . . , m. (5.4)

On each of these subintervals we replace the controls using a finite dimensional representation
using base functions ϕ and parameters qj . We can then write the controls1 as

u(t) ≈ u(t;qj−1) = ϕ(t,qj−1),qj−1 ∈ R
kunu , t ∈ Ij = [tj−1, tj ], for j = 1, . . . , m (5.5)

When using piecewise constant discretization we have ku = 1 and ϕ(t,qj) = qj (see Figure
5.1). Discretizations using higher order base functions are also possible, e.g. for ku = 2 we can
discretize the controls using piecewise linear controls using the basis function

ϕ(t,qj) = q
1
j +

t − tj−1

tj − tj−1
(q2

j − q
1
j ), qj =

[

q
1
j

q
2
j

]

∈ R
2nu . (5.6)

We can obtain continuous piecewise linear controls by adding a constraint of the form q
2
j −q

1
j+1 =

0 to the discretized optimal control problem. The discretized controls are denoted by u(t;q)
and the vector q = (q0, . . . ,qm−1) is called the vector of control parameters.

Control discretizations with higher order such as splines are also possible, however one has
to keep in mind that this also increases the number of variables in the optimization. In this
thesis we use continuous piecewise linear controls.

Figure 5.1: Piecewise constant control discretization of a scalar control function

1The q used here is not to be confused with the generalized positions of the differential states q. The q in
this section is solely used for the control discretization and has nothing to do with the state parameterization.
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Parametrization of the Differential States using Multiple-Shooting

Multiple shooting parameterizes the states on a grid similarly to the control discretization seen
above. For simplicity we assume the same grid for both control and state discretization, but it
is important to note that the grids can be chosen independently.

The individual intervals are referred to as multiple-shooting intervals and the points
t0, t1, . . . , tm are called multiple-shooting nodes. At each node the differential states are speci-
fied by sj ∈ R

nx , that can be initialized e.g. using knowledge of the optimal process and/or
interpolation.

Together with the control discretizations this allows defining m initial value problems (IVPs),
one for each of these multiple-shooting intervals as

ẋ = f (t, x(t), ϕ(t,qj−1)), j = 1, . . . , m, t ∈ Ij , (5.7a)

x(tj−1) = sj−1. (5.7b)

We denote the solution of the IVP starting at tj−1, initial value sj−1, and discretized controls
ϕ(qj−1) evaluated at t with η(t; tj−1, sj−1,qj−1), or just η(t; tj−1, sj−1,qj−1).

The trajectories obtained by this are in general not continuous as the values obtained at the
end point of the multiple-shooting interval do not coincide with the starting value of the next
interval (see Figure 5.2). To obtain a continuous solution additional continuity conditions are
employed:

η(tj ; tj−1, sj−1,qj−1) − sj = 0, for j = 1, . . . , m, t ∈ Ij (5.8)

By setting s = (s0, . . . , sm) the continuous solution is characterized by the solution of following
nonlinear problem:

h(s,q) =













η(t1; t0, s0,q0) − s1

...

η(tm−1; tm−2, sm−2,qm−2) − sm−1

η(tm; tm−1, sm−1,qm−1) − sm













= 0 (5.9)

(a) Initial guess of the process where the continuity
conditions are violated.

(b) Solution of (5.9) with fulfilled continuity condi-
tions.

Figure 5.2: State discretization using the multiple-shooting method

Discretization of the Path Constraints

A simple approach to discretize the path constraints can be done by only evaluating them on
the multiple-shooting nodes:

g(sj ,qj) ≧ 0, for j = 1, . . . , m − 1 (5.10)

More sophisticated methods to ensure feasibility of the differential states within the multiple-
shooting intervals are described in Potschka et al. (2009). These are not used in this work
however, as small violations of the constraints are acceptable for us.
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Treatment of the Point Constraints

The point constraints (5.3d) can be treated by choosing the multiple-shooting grid such that it
is a superset of the time values of the point constraints. I.e. for the point constraints

r(x(t̂0), . . . , x(t̂k)) ≧ 0, t̂1, . . . t̂k ∈ [t0, tf ], (5.11)

one has to choose t0, . . . , tm such that

{t̂0, . . . , t̂k} ⊆ {t1, . . . , tm} (5.12)

holds. The point constraints can then be evaluated using the state parameters sj , j = 1, . . . , m.

Free Parameters

It may be of use to not only optimize the controls u(t) and states x(t) but also a vector of
free parameters p ∈ R

np . This vector may in our case contain the walk velocity, step length,
unknown spring-damper constants, or other values that are constant over the step cycle. In this
case p is simply added as a vector of free variables to the optimization problem and as argument
to objective and constraint functions.

Free Phase Durations

The time horizon in (5.3) is on the fixed time horizon [t0, tf ] ⊂ R, however it can easily be
extended such that the duration of the phase is a free optimization variable. To do so let
d = tf − t0 ∈ R denote the duration of the time horizon. By employing a time transformation as

t(τ)
def
= t0 + dτ (5.13)

one can write (5.3) with a free duration as:

min
x(t),u(t),d

ΦM (x(t(1))) (5.14a)

subject to:

ẋ(τ) = f (x(t(τ)), u(t(τ))), τ ∈ [0, 1], (5.14b)

g(x(t(τ)), u(t(τ))) ≥ 0, τ ∈ [0, 1], (5.14c)

r(x(t(τ̂0)), . . . , x(t(τ̂k))) ≧ 0, τ̂1, . . . τ̂k ∈ [0, 1]. (5.14d)

Treatment of Multiple Phases and Discontinuities

The multiple-shooting discretization also allows formulating problems with multiple phases, i.e.
different right-hand sides for the process as in (5.1b). For example, for a problem with two
phases one can use the first ml with 0 < ml < m multiple-shooting intervals for the first phase
and the remaining m − ml intervals for the second phase.

If the transition of the two phases is continuous one has the same continuity conditions (5.8)
as at any other multiple-shooting node. To formulate discontinuities between phases that are
described using the phase transition function c1 : Rnx → R

nx one has to replace the continuity
condition with

c1(η(tml
; tml−1, sml−1,qml−1)) − sml

= 0, t ∈ [tml−1, tml
] (5.15)

to properly take the phase transition from phase 1 to phase 2 into account.
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5.2.2 Discretized Optimal Control Problem

By combining the discretized variables q and s, the free parameters p, and durations d1, . . . , dN

of the N phases into a vector

y = (s0,q0, . . . , sm−1,qm−1, sm, p, d1, . . . , dN ) (5.16)

and using the discretized constraints arising from the multiple-shooting discretization (5.9),
discretized path constraints (5.10), and phase discontinuities (5.15) we can write the discretized
optimal control problem as a nonlinear program:

min
y

F (y) = ΦM (sm) (5.17a)

subject to:

h(y) = 0 (5.17b)

g(y) ≥ 0 (5.17c)

The problem size in terms of number of variables and number of constraints depends on the
application and choice of the discretization grid. In our case the number of variables is given by:

ny = nx(m + 1) + nukum + np + N. (5.18)

5.2.3 Solution of the Discretized Optimal Control Problem

In principle one could directly apply a general nonlinear programming code, such as Sequential
Quadratic Programming (SQP) to solve (5.17). SQP methods can be motivated by applying
the Newton method on the first-order necessary conditions (the so-called Karush-Kuhn-Tucker
(KKT) conditions) for optimality of nonlinear constrained optimization problems. For an
in-depth description of SQP methods we refer to Nocedal and Wright (2006) or Gill et al. (1981).

In the following we will focus our discussion on the most important aspects of SQP in
combination with direct multiple-shooting. SQP solves nonlinear programs, such as (5.17)
iteratively, i.e. by generating a sequence

yk+1 = yk + αδyk, (5.19)

where δyk is the step direction and α > 0 ∈ R the step length. The latter is obtained by
employing a line search method as a globalization strategy.

The step direction δyk is obtained by solving a quadratic problem that approximates (5.17)
and can be stated as:

min
δyk

∇F(yk)T δyk +
1

2
δyT

k Bkδyk (5.20a)

subject to:

h(yk) + ∇h(yk)T δyk = 0, (5.20b)

g(yk) + ∇g(yk)T δyk ≥ 0, (5.20c)

where Bk is the Hessian of the Lagrangian. In practice Bk is often approximated, e.g. by using
the BFGS update method. For least-squares objective functionals a good choice would be a
Gauss-Newton approximation.

The Hessians Bk and Jacobians ∇h(yk) and ∇g(yk) are sparse and highly structured. These
sparsities are due to the direct multiple-shooting approach. One example are the continuity
conditions that are part of (5.17b) only: they are only dependent on the discretized controls and
differential state parameters of two consecutive multiple-shooting nodes and the free parameter
vector p. As a result the remaining entries in the rows of the Jacobian are zero.

These structures can be exploited using the so-called condensing method, which was described
in Bock and Plitt (1984). It removes the sparsities that are caused by multiple-shooting and
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results in a much smaller and dense quadratic problem that can be solved with a standard QP
solver, e.g. QPOPT (Gill et al., 1995).

One important aspect is also the evaluation Jacobians which contain sensitivity information
of the process, i.e. the derivatives of the integrated values η(tj ; tj−1, sj−1) with respect to the
initial values sj . A naïve approach would treat the numerical integration of the initial value
problems (5.7a) as a black box function evaluation and perform finite differences around it.
However this approach, which is also called External Numerical Differentiation (END) ignores
the fact that different starting values may result in different step sizes in the adaptive integrator.

Internal Numerical Differentiation (IND) on the other hand uses the same integrator steps
for both nominal and perturbed trajectories to compute the operands of the finite difference
computation. As such it requires special numerical integrators to allow this. IND was originally
proposed in Bock (1981a) and yields higher accuracy in the sensitivities and ensures that
they are consistent with the numerical solutions of the nominal trajectories. This allows
computing accurate sensitivities with fewer function evaluations without having to provide
analytic derivatives. It results in a significant performance increase of the solution of the OCP
as sensitivity generation is the most expensive part for the type of problems used in this thesis.

5.3 Dynamics Reconstruction Using a Least-Squares For-

mulation

We now describe the least-squares optimization problem that reproduces the fitted motion
capture data from Section 4.4.3 using the subject-specific dynamic model. Whereas the fitting
in Chapter 4 was only using a kinematic model, the optimizations performed here consider the
dynamics of a full-body model. The computations here are much more expensive, however, the
use of numerical optimal control allows us to reconstruct joint actuations that are otherwise
unknown.

The aim of these optimizations are twofold: first we are interested in the joint actuations
that produce a given motion and second the result of these optimizations give insight into how
well the dynamic model can actually reproduce the motions of the motion capture data.

The formulation presented here performs a least-squares fit on a single step, i.e. it starts
right after the left foot lifts off the ground and ends when the right foot lifts off the ground.
This is done to reduce the amount of computations and is sufficient as the gaits of interest are
near symmetric. However, the formulation presented here can be extended to double-step or
multi-step sequences to treat asymmetries in the gait.

5.3.1 Problem Formulation

The least-squares optimal control problem approximates a given recorded motion using the
dynamic subject-specific model. Let the recorded motion capture data be given as a set of
time discrete postures in form of generalized positions qD

j ∈ R
ndof , j = 0, . . . , m at time points

t0, . . . tm ∈ R. Then the dynamics reconstruction problem can be described by

min
x(·),u(·)

m
∑

j=0

1

2

(

||qD
j − q(tj)||22 + γu||W u(tj)||22

)

(5.21a)

subject to:

ẋ(t) = f i(x(t), u(t)), t ∈ [ti−1, ti], i ∈ I, (5.21b)

x(t+
i ) = ci(x(t−i )), i ∈ I, (5.21c)

gi(x(t), u(t)) ≧ 0, t ∈ [ti−1, ti], i ∈ I, (5.21d)

r(x(t̂1), . . . , x(t̂k), u(t̂1), . . . , u(t̂k)) ≧ 0, t̂1, . . . t̂k,∈ T , (5.21e)

where x(t) are the differential states with

x(t) =

[

q(t)

q̇(t)

]

∈ R
2ndof , (5.22)
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and where q(t) ∈ R
ndof are the generalized position variables and q̇(t) ∈ R

ndof the generalized
velocity variables of the model. The controls u(t) ∈ R

nu , with nu = nactuated are the actuations
in form of joint torques that are acting directly at the joints of the model.

The dynamics of the model during the different phases are described using the ordinary
differential equations (5.1b). The individual right-hand side functions f i : Rnx × R

nu → R
nx

describe the different dynamics subject to the different constraint sets (see Section 4.8) and are
influenced by the controls u : T → R

nu .
The optimization computes optimal state trajectories x(t) = [q(t), q̇(t)]T and joint actuations

u(t). The duration of the individual phases are prescribed from the motion capture data and
there are no free parameters.

Phase transitions, specifically collisions at touch-down events of the foot with the ground, are
described using the phase transition functions ci(x(t)). The collisions are evaluated as described
in Section 3.1.3 with at restitution parameter e = 0.

The path constraints (5.21d) contain upper and lower bounds for the differential states x(t)
and controls u(t). Upper and lower bounds for the generalized coordinates q(t) are shown in
Table 5.1. The bounds are obtained from the motion capture data by using the upper and lower
bounds across all recorded emotions and an offset by a margin such that the motion is not
constrained by these bounds in the final solution. For the generalized velocities q̇(t) we used
the bounds −15.0 ≤ q̇i(t) ≤ 15.0, i = 1, . . . , ndof. For the controls u(t) we use the bounds listed
in Table 5.2 that were chosen such that they are not reached in the solutions.

Joint Axis Min Max Joint Axis Min Max

Pelvis T X -0.11 1.14 AnkleLeft RY -0.45 0.46

T Y -0.10 0.10 RX -0.25 0.20

T Z 0.80 1.05 RZ -0.43 0.45

RY -0.20 0.20 MiddleTrunk RY -0.20 0.33

RX -0.24 0.28 RX -0.39 0.43

RZ -0.50 0.37 RZ -0.28 0.33

HipRight RY -0.88 0.65 ShoulderRight RY -0.57 1.20

RX -0.38 0.30 RX -0.55 -0.14

RZ -0.39 0.30 RZ -0.35 0.90

KneeRight RY -0.01 0.95 ElbowRight RY -1.75 0.06

AnkleRight RY -0.45 0.35 ShoulderRight RY -0.60 0.79

RX -0.18 0.35 RX 0.03 0.29

RZ -0.54 0.20 RZ -0.90 0.42

HipLeft RY -0.79 0.73 ElbowRight RY -1.65 0.39

RX -0.30 0.35 Neck RY -0.25 0.85

RZ -0.30 0.95 RX 0.02 0.26

KneeLeft RY -0.01 1.67 RZ -0.24 0.33

Table 5.1: Upper and lower bounds of the generalized positions q(t). Axes with a T in the name
denote a translational and with a R a rotational degree of freedom.

The interior point constraints of (5.21e) contain additional constraints such as proper ground
reaction forces and kinematic constraints (e.g. the foot should rest at the beginning of the step).
These constraints will be described in detail in Section 5.3.3.

5.3.2 Objective Function

The first term in the objective function (5.21a) minimizes the sum of squared errors of the joint
angles of the model q(tk) with the joint angles from the motion capture data qD

k .
The second term of the objective function is used to regularize the problem and minimizes

the applied joint forces weighted by the diagonal matrix W = diag {wl} , wl > 0, l = 1, . . . , nu.
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Joint Axis Min Max Joint Axis Min Max

HipRight RY -200 200 MiddleTrunk RY -100 100

RX -100 100 RX -100 100

RZ -100 100 RZ -100 100

KneeRight RY -200 100 ShoulderRight RY -50 50

AnkleRight RY -100 300 RX -50 50

RX -150 100 RZ -50 50

RZ -100 100 ElbowRight RY -50 50

HipLeft RY -100 100 ShoulderRight RY -50 50

RX -100 100 RX -50 50

RZ -100 100 RZ -50 50

KneeLeft RY -200 200 ElbowRight RY -50 50

AnkleLeft RY -100 100 Neck RY -50 50

RX -100 100 RX -50 50

RZ -100 100 RZ -50 50

Table 5.2: Upper and lower bounds of the controls u(t).

This weighting is required to account for the different magnitudes of joint forces. The second
term of the objective function is furthermore scaled by the factor γu = 1.0 × 10−2 to ensure
that the joint residuals are the major contributor in the objective function.

The least-squares objective function gives rise to special structures in its derivatives. We
exploit this using a Gauss-Newton approximation for the Hessian matrix in the discretized
optimal control problem during the numerical solution.

As the motion capture data is recorded at a fixed sampling rate it may be that the time of
one or more recorded frames do not coincide with those of the multiple-shooting nodes. One way
to treat this would be to restrict the choice of multiple-shooting nodes such that they coincide
or are a subset of the recorded motion capture frames.

To circumvent this restriction we interpolate the motion capture data and use the interpolated
values as values of the motion capture joint angles at the multiple-shooting nodes. For this we
used Catmull-Rom splines (Barry and Goldman, 1988). The index k on the data values qD

k

denote the joint angles of the interpolated motion capture data at the time values tk.

5.3.3 Phase Descriptions

In the following we will describe the nonlinear point constraints for each phase. These constraints
are used to formulate proper ground contact of the model with the ground and also to define
the geometric events that describe the switching condition to describe the transition from one
phase to another. We employ the following notation to describe position, velocity, and contact
force acting at a contact point along a certain coordinate axes:

• P S,N
C (x(t)) ∈ R denotes the coordinate C of the position of contact point N on side S of

the model,

• V S,N
C (x(t)) ∈ R denotes the coordinate C of the velocity of contact point N on side S of

the model,

• and F S,N
C (x(t), u(t)) ∈ R denotes the coordinate C of the ground reaction force of contact

point N on side S of the model,

where S ∈ {Right, Left}, denotes the side, i.e. whether the point is specified for the left or right
foot, N ∈ {Heel, Hallux, Meta5} denotes the contact point, and C ∈ {X, Y, Z} the direction in
the global coordinate frame along which the contact constraint is defined. The individual points
Heel, Hallux, Meta5 are described in Section 4.7 and an illustration of their locations is shown
in Figure 4.9.
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Phase 1: Right Flat

The following constraints are posed at the beginning of the Right Flat phase:

P Right,Heel
Z (x(t0)) = 0,

P Right,Hallux
Z (x(t0)) = 0,

P Right,Meta5
Z (x(t0)) = 0,

P Left,Hallux
Z (x(t0)) = 0,

V Right,Heel
X (x(t0)) = 0,

V Right,Heel
Y (x(t0)) = 0,

V Right,Heel
Z (x(t0)) = 0,

V Right,Hallux
Y (x(t0)) = 0,

V Right,Hallux
Z (x(t0)) = 0,

V Right,Meta5
Z (x(t0)) = 0,

F Right,Heel
Z (x(t0), u(t0)) ≥ 0,

F Right,Hallux
Z (x(t0), u(t0)) ≥ 0,

F Right,Meta5
Z (x(t0), u(t0)) ≥ 0.

The first four constraints ensure that the right foot is flat on the ground and the left foot is
touching the ground with the Hallux point. The remaining constraints are used to fulfill the
invariants of the algebraic constraint equation on velocity level.

Within the phase we have:

F Right,Heel
Z (x(t), u(t)) ≥ 0, t ∈ T1

F Right,Hallux
Z (x(t), u(t)) ≥ 0, t ∈ T1

F Right,Meta5
Z (x(t), u(t)) ≥ 0, t ∈ T1

i.e. we have positive ground reaction forces on all three points of our foot model. These are
required to model a unilateral constraint. Without these the model exerts forces that would
pull it towards the ground.

Phase 2: Right Forefoot

At the beginning of the second phase the following constraints have to be fulfilled:

F Right,Heel
Z (x(t1), u(t1)) = 0,

F Right,Hallux
Z (x(t1), u(t1)) ≥ 0,

F Right,Meta5
Z (x(t1), u(t1)) ≥ 0,

P Left,Heel
Z (x(t1)) ≥ 0,

P Left,Hallux
Z (x(t1)) ≥ 0

First, the constraint forces on the right heel must have vanished while the constraint force on
the right Hallux point is still positive. Furthermore the left Heel and Hallux points must not
penetrate the ground.
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During the phase the constraints are:

P Left,Heel
Z (x(t)) ≥ 0, t ∈ T2,

P Left,Hallux
Z (x(t)) ≥ 0, t ∈ T2,

P Right,Heel
Z (x(t)) ≥ 0, t ∈ T2,

F Right,Hallux
Z (x(t), u(t)) ≥ 0, t ∈ T2,

F Right,Meta5
Z (x(t), u(t)) ≥ 0, t ∈ T2.

The first three constraints enforce that the left Heel and Hallux points and the right Heel are
not below the ground. The last two constraints ensure that the ground reaction force on the
fore foot is positive.

Transition 1: Collision Left Heel

The first discontinuity occurs while only the right foot is in contact with the ground and the left
heel touches down. This is described by the constraints

P Left,Heel
Z (x(t2)) = 0,

V Left,Heel
Z (x(t2)) ≤ 0,

P Left,Meta5
Z (x(t2)) ≥ 0,

P Left,Hallux
Z (x(t2)) ≥ 0,

P Right,Heel
Z (x(t2)) ≥ 0,

F Right,Hallux
Z (x(t2), u(t2)) ≥ 0,

F Right,Meta5
Z (x(t2), u(t2)) ≥ 0.

The first equation ensures that the left heel is on ground level while the second confirms the
touch-down. Without the confirmation it could be that the foot touches the ground but only
moves parallel to the ground or even swinging up again. The remaining three equations enforce
that the other foot points are not below the ground.

One should note that in this transition "phase" no integration is performed. Instead only the
discontinuity in the generalized velocities q̇ due to the touch down collision is computed (see
Section 3.1.3).

Phase 3: Right Forefoot Left Heel

After the transition the phase Right Forefoot Left Heel starts. At the beginning and during this
phase we require:

P Left,Hallux
Z (x(t)) ≥ 0, t ∈ T3,

P Right,Heel
Z (x(t)) ≥ 0, t ∈ T3,

F Right,Hallux
Z (x(t), u(t)) ≥ 0, t ∈ T3,

F Right,Meta5
Z (x(t), u(t)) ≥ 0, t ∈ T3,

F Left,Heel
Z (x(t), u(t)) ≥ 0, t ∈ T3.

The left Hallux point and the right Heel point should not be below the ground and the ground
reaction forces on the two contact points right Hallux and left heel should be of proper sign.
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Transition 2: Collision Left Forefoot

The second discontinuity occurs when the left forefoot touches down. We formulate this using:

P Left,Hallux
Z (x(t3)) = 0,

P Left,Meta5
Z (x(t3)) = 0,

V Left,Hallux
Z (x(t3)) ≤ 0,

V Left,Meta5
Z (x(t3)) ≤ 0,

P Right,Heel
Z (x(t3)) ≥ 0,

F Right,Hallux
Z (x(t3), u(t3)) ≥ 0,

F Right,Meta5
Z (x(t3), u(t3)) ≥ 0,

F Left,Heel
Z (x(t3), u(t3)) ≥ 0.

The first four equation describe the touch-down of the forefoot analogously as in the previous
transition phase: the contact points are on ground level and have a negative contact velocity
(i.e. a collision is imminent). The additional fifth constraint ensures that the right heel is not
below the ground.

Again, there is no integration in this phase and the discontinuities in the generalized velocities
is updated such that the contact velocities are set to zero.

Phase 4: Right Forefoot Left Flat

At the beginning of this phase the left foot is flat on the ground and does not move due to the
transition phase. During this final phase the weight is completely transferred onto the left foot.
At the beginning and during this phase we have the constraints

P Right,Heel
Z (x(t)) ≥ 0, t ∈ T4,

F Right,Hallux
Z (x(t), u(t)) ≥ 0, t ∈ T4,

F Right,Meta5
Z (x(t), u(t)) ≥ 0, t ∈ T4,

F Left,Heel
Z (x(t), u(t)) ≥ 0, t ∈ T4,

F Left,Hallux
Z (x(t), u(t)) ≥ 0, t ∈ T4,

F Left,Meta5
Z (x(t), u(t)) ≥ 0, t ∈ T4.

The right heel must not be below the ground and the ground reaction forces for all contact
points must point upwards.

At the end of the phase we have a separate set of constraints that allow the right foot to be
lifted from the ground:

F Right,Hallux
Z (x(t4), u(t4)) = 0,

F Right,Meta5
Z (x(t4), u(t4)) = 0,

P Right,Heel
Z (x(t4)) ≥ 0,

F Left,Heel
Z (x(t4), u(t4)) ≥ 0,

F Left,Hallux
Z (x(t4), u(t4)) ≥ 0,

F Left,Meta5
Z (x(t4), u(t4)) ≥ 0.

The normal contact force of the right Hallux point must vanish (first equation) while the right
heel point is at least on ground level and all other contact points must have a position ground
reaction force along the Z–axis.
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5.3.4 Initialization

As the SQP-method is essentially a Newton-type method we cannot expect the problem to
quickly converge to a solution from an arbitrary initial guess. For the least-squares optimization
a natural choice for the initialization are the reference data of the joint angles that we obtained
using the kinematic fit described in Section 4.4.3. However, this fitting data only contains
positional information on a discrete time grid that may not coincide with the multiple-shooting
grid.

Instead we use the values qD
k obtained from Catmull-Rom spline interpolation that we also

use for the least-squares objective function. Using spline interpolation has the advantage that
we can initialize both joint positions q(t) and joint velocities q̇(t) at all multiple-shooting nodes
and ensure that they are consistent with each other. As initial values for the controls we use
u(t) = 0.

We use fixed durations of the individual phases. The durations of the individual phases were
determined by visually inspecting the original motion capture data for contact gain and lift-off
events.

5.4 Gait Synthesis Formulation

Our Gait Synthesis Formulation generates walking motions and actuations for a dynamic model
that are optimal to a given objective function. This problem is more difficult to formulate as the
least-squares optimization presented in the previous section as the latter automatically avoids
non-physical artefacts such as penetration of limbs as the input motion is already valid in that
respect. Furthermore both objective function and constraints must be carefully formulated when
creating proper walking motions. E.g. simply minimizing the expended energy would lead to no
movement at all if no constraint or an additional term in the objective prevents this.

Specifically the following properties are important aspects of this formulation:

Periodic Symmetry The motion we describe using this formulation is assumed to be periodic
and symmetric. It is periodic in the sense that after a double step the posture of the model is
equal to that of the beginning of the double step and translated along the walking direction.
It is furthermore symmetric such that the posture after the first step mirrored at the sagittal
plane is the same as that of the beginning of the step. This allows us to focus our efforts on
the formulation of a single step which can then be mirrored to produce a full double step. The
formulation can however also be extended to allow for asymmetric or non-periodic gaits. We
use symmetric periodicity for joint positions q(t), joint velocities q̇(t), and controls u(t).

Active and Passive Actuation The previous optimization formulation focused on the
reconstruction of unknown forces u(t) acting on the joints during walking. These forces are
produced by active and passive components of the human locomotion system. Active forces are
produced by the muscles whereas the passive forces come from tendons and ligaments.

In this gait synthesis formulation the passive forces play an important role in the optimized
forces as simply minimizing the cumulative joint forces would minimize the mechanical effort.
Passive elements may also support the efficiency as they can be exploited by the active actuation.
To model this effect we use spring dampers as described in Section 4.5 to model these passive
elements. The parameters for these (i.e. spring constant, damping coefficient, rest position)
can either be prescribed or added as free parameters p to the optimization problem to identify
optimal values for them.

Segment Overlap Prevention In this optimization we further have prevent overlapping of
segments as the optimization otherwise may produce unrealistic movements in which segments
penetrate each other. To do so we use bounding capsules as described in Section 4.6 to model
distances between segments. Instead of enforcing non-overlapping over all segment pairs we
found it sufficient to enforce it between the two shank and the two foot segments.
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In Table 5.3 we list the upper and lower bounds for the generalized positions q(t). They
are greater or equal to the bounds in the previous problem and the additional range allows
for more variations in the motions. For both q̇(t) and u(t) we use the same bounds as in the
reconstruction problem.

Joint Axis Min Max Joint Axis Min Max

Pelvis T X 0.00 1.14 AnkleLeft RY -0.45 0.46

T Y -0.10 0.10 RX -0.25 0.17

T Z 0.87 0.98 RZ -0.22 0.22

RY -0.20 0.20 MiddleTrunk RY -0.20 0.23

RX -0.24 0.23 RX -0.39 0.33

RZ -0.32 0.27 RZ -0.28 0.30

HipRight RY -0.75 0.57 ShoulderRight RY -0.57 0.89

RX -0.30 0.30 RX -0.35 -0.14

RZ -0.39 0.30 RZ -0.35 0.90

KneeRight RY -0.01 0.90 ElbowRight RY -1.40 -0.03

AnkleRight RY -0.45 0.35 ShoulderRight RY -0.51 0.89

RX -0.18 0.25 RX 0.03 0.29

RZ -0.22 0.22 RZ -0.90 0.42

HipLeft RY -0.72 0.63 ElbowRight RY -1.40 -0.03

RX -0.30 0.29 Neck RY -0.25 0.81

RZ -0.30 0.74 RX 0.02 0.16

KneeLeft RY -0.01 1.47 RZ -0.15 0.33

Table 5.3: Upper and lower bounds of the generalized positions q(t) for the gait synthesis
problem. Axes with a T in the name denote a translational and with a R a rotational degree of
freedom.

5.4.1 Problem Formulation

The optimal control problem of the gait synthesis is of the form of equation (5.1). Specifically
this formulation uses the free parameter vector p. It contains a parameters for the step length
pl ∈ R and walk velocity pv ∈ R and also all the spring-damper parameters psd that we described
in Section 4.5.

5.4.2 Objective Function

We have formulated multiple objective criteria that are used to formulate the composite objective
function

Φ(x(t), u(t), p) =

N
∑

i=1

∫ ti

ti−1





3
∑

j=1

γjΦLj
(t, x(t), u(t), p)



 dt + γ4ΦM4(tf , x(tf ), p). (5.23)

The weighting factors γj ∈ R, j = 1, . . . , 4 can be adjusted to obtain different weightings of the
individual objective criteria. The individual objective criteria are:

Minimize Active Actuation over Step Length

As a measure for the required effort to produce a step we use the objective function

ΦL1
(t, x(t), u(t), p) =

1

plnu

||W u(t)||22, (5.24)
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which minimizes the weighted active actuation normalized by the step length pl and the number
of controls nu.

The diagonal matrix W ∈ R
nu×nu contains weightings that normalize the different joint

contributions and is the same matrix that is also used in the dynamics reconstruction problem
Section 5.3. The same weightings are used for the active joint actuations on left and right side
of the body.

Minimize Angular Momentum

Angular momentum describes the rotational momentum that the rigid-body system has about a
certain point. In our case we use the angular momentum expressed at the center of mass. The
objective function can be written as:

ΦL2(t, x(t), u(t), p) = ||mCM(q(t), q̇(t))||22, (5.25)

where mCM(q(t), q̇(t)) is said quantity. Its computation is presented in Section 3.4.5.

Minimize Head Angular Velocities

To formulate some kind of head stabilization criterion we formulated the objective function:

ΦL3
(t, x(t), u(t), p) = ||0Ehead ωhead||

2
2. (5.26)

Here 0Ehead is the orientation of the head segment relative to the global reference frame its
product with the angular velocity of the head ωhead results in the angular velocity of the head
segment in the global reference frame 0.

Minimize Step Time

The objective function that minimizes the duration of the step (not to be confused with the
walk velocity) is stated as a Mayer term:

ΦM4(tf , x(tf ), p) = tf . (5.27)

It minimizes the time it takes to complete a single step. The Lagrange term is ΦL4 = 0.

5.4.3 Phase Descriptions

We use the same notation for the contact point descriptions as in the least-squares optimization
formulation and also use the same phase names and order of phases. Furthermore, as we are
interested in periodic and symmetric gaits one has to take care to prevent redundancies in the
constraints that occur due to the symmetric periodicity.

Phase 1: Right Flat

The following constraints are posed at the beginning of the Right Flat phase:

P Right,Hallux
X (x(t0)) − P Left,Hallux

X (x(t0)) − pl = 0,

F Right,Heel
Z (x(t0), u(t0)) ≥ 0,

F Right,Hallux
Z (x(t0), u(t0)) ≥ 0,

F Right,Meta5
Z (x(t0), u(t0)) ≥ 0,

q1(t0) = 0,

q2(t0) = 0.

The first constraint ensures that the step is of length pl. The next three constraints ensure
that the contact forces are of proper sign, i.e. that the ground does not pull the model to the
ground. The last two constraints ensure that the X− and Y − coordinates of the pelvis are at
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the beginning of the gait cycle. These constraints are crucial for the proper problem formulation.
Without these there are infinitely many solutions for the periodic gait which are all shifted along
these axes.

Additionally to the constraints above and the bounds in Table 5.3 we enforce a small amount
of arm swinging that is anti-cyclic to the legs by setting

0.03 ≤ qShoulderRight,RY(t0) ≤ 0.89,

−0.51 ≤ qShoulderLeft,RY(t0) ≤ 0.03.

Within the phase we have:

F Right,Heel
Z (x(t), u(t)) ≥ 0, t ∈ T1,

F Right,Hallux
Z (x(t), u(t)) ≥ 0, t ∈ T1,

F Right,Meta5
Z (x(t), u(t)) ≥ 0, t ∈ T1,

P Left,Heel
Z (x(t)) ≥ 0, t ∈ T1,

P Left,Hallux
Z (x(t)) ≥ 0, t ∈ T1,

P Left,Meta5
Z (x(t)) ≥ 0, t ∈ T1,

d(CRightShank, CLeftShank, x(t)) ≥ 0, t ∈ T1,

again we have positive ground reaction forces on all contact points along the ground normal.
Furthermore the left fore foot does not touch the ground and the boundary capsules of the left
and right shank do not intersect.

Phase 2: Right Forefoot

At the beginning of the second phase the following constraints have to be fulfilled:

F Right,Heel
Z (x(t2), u(t2)) = 0,

F Right,Hallux
Z (x(t2), u(t2)) ≥ 0,

F Right,Meta5
Z (x(t2), u(t2)) ≥ 0,

P Left,Heel
Z (x(t2)) ≥ 0,

P Left,Hallux
Z (x(t2)) ≥ 0,

P Left,Meta5
Z (x(t2)) ≥ 0,

d(CRightShank, CLeftShank, x(t2)) ≥ 0.

First, the constraint forces on the right heel must have vanished while the constraint force on
the right Hallux point and the right Meta5 point is still positive along the ground normal. All
three contact points of the left foot must not be below the ground.

During this phase the constraints are:

F Right,Hallux
Z (x(t), u(t)) ≥ 0, t ∈ T2

F Right,Meta5
Z (x(t), u(t)) ≥ 0, t ∈ T2,

P Left,Heel
Z (x(t)) ≥ 0, t ∈ T2,

P Left,Hallux
Z (x(t)) ≥ 0, t ∈ T2,

P Left,Meta5
Z (x(t)) ≥ 0, t ∈ T2,

P Right,Heel
Z (x(t)) ≥ 0, t ∈ T2,

d(CRightShank, CLeftShank, x(t)) ≥ 0, t ∈ T2.

The contact force on the right Hallux point must be positive and the contact points for the left
foot and the right heel contact point must be nonnegative along the ground normal. Right and
left shank must not intersect.
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Transition 1: Collision Left Heel

The first discontinuity occurs when only the right foot is in contact with the ground and the left
comes into contact with the ground. This is described by the constraints

P Left,Heel
Z (x(t2)) = 0,

V Left,Heel
Z (x(t2)) ≤ 0,

F Right,Hallux
Z (x(t2), u(t2)) ≥ 0,

F Right,Meta5
Z (x(t2), u(t2)) ≥ 0,

P Left,Hallux
Z (x(t2)) ≥ 0,

P Right,Heel
Z (x(t2)) ≥ 0,

The first two constraints are the same as in the least-squares optimization. Specifically
the first equation ensures that the left heel is on ground level while the second confirms the
touch-down. The next three equations ensure that the ground reaction forces on the forefoot
are proper and the remaining that there is no intersection of the feet with the ground or the
shank segments.

Again in this "phase" there is no integration. Instead the discontinuity in the generalized
velocities q̇ due to the touch down collision is computed (see Section 3.1.3).

Phase 3: Right Forefoot Left Heel

After the transition the phase Right Forefoot Left Heel starts. At the beginning and during this
phase we require:

F Right,Hallux
Z (x(t), u(t)) ≥ 0, t ∈ T3,

F Right,Meta5
Z (x(t), u(t)) ≥ 0, t ∈ T3,

F Left,Heel
Z (x(t), u(t)) ≥ 0, t ∈ T3,

P Left,Hallux
Z (x(t)) ≥ 0, t ∈ T3,

P Right,Heel
Z (x(t)) ≥ 0, t ∈ T3.

The left Hallux point and the right heel point should not be below the ground and the ground
reaction forces on the two contact points right Hallux and left heel should be of proper sign.

Transition 2: Collision Left Forefoot

The second discontinuity occurs when the left forefoot touches down. We formulate this using

P Left,Hallux
Z (x(t3)) = 0,

P Left,Meta5
Z (x(t3)) = 0,

V Left,Hallux
Z (x(t3)) ≤ 0,

V Left,Meta5
Z (x(t3)) ≤ 0

F Right,Hallux
Z (x(t3), u(t3)) ≥ 0,

F Right,Meta5
Z (x(t3), u(t3)) ≥ 0,

F Left,Heel
Z (x(t3), u(t3)) ≥ 0,

P Right,Heel
Z (x(t3)) ≥ 0,

The first four equation describe the touch-down of the forefoot as in the previous transition
phase: the contact points are on ground level and have a negative contact velocity (i.e. a



Gait Synthesis Formulation 95

collision is imminent). The following three constraints ensure that the ground reaction forces of
the current contact points are positive along the ground normal.

The last two constraints ensure that the right heel is not below the ground and the bounding
capsules do not intersect.

Again, there is no integration in this phase and the discontinuities in the generalized velocities
is updated such that the contact velocities are set to zero.

Phase 4: Right Forefoot Left Flat

At the beginning of this phase the left foot is flat on the ground and does not move due to the
transition phase. In this final phase the weight is completely transferred onto the left foot. At
the beginning and during this phase we have the constraints

F Right,Hallux
Z (x(t), u(t)) ≥ 0, t ∈ T4,

F Right,Meta5
Z (x(t), u(t)) ≥ 0, t ∈ T4,

F Left,Heel
Z (x(t), u(t)) ≥ 0, t ∈ T4,

F Left,Hallux
Z (x(t), u(t)) ≥ 0, t ∈ T4,

F Left,Meta5
Z (x(t), u(t)) ≥ 0, t ∈ T4,

P Right,Heel
Z (x(t)) ≥ 0, t ∈ T4.

Again, the contact forces must be of proper sign along the ground normal for the currently
active contact points. Additionally the right heel must not be intersecting with the ground and
the collision capsules must not intersect.

At the end of the phase we have a separate set of constraints that allow the right forefoot to
be lifted from the ground:

F Right,Hallux
Z (x(t4), u(t4)) = 0,

F Right,Meta5
Z (x(t4), u(t4)) = 0,

F Left,Heel
Z (x(t4), u(t4)) ≥ 0,

F Left,Hallux
Z (x(t4), u(t4)) ≥ 0,

F Left,Meta5
Z (x(t4), u(t4)) ≥ 0,

P Right,Heel
Z (x(t4)) ≥ 0.

The normal contact force of the right Hallux point and Meta5 point must vanish (first two
equations), while the contact forces of the left foot are of proper sign along the Z-axis and the
right heel is above the ground.

Periodicity and Symmetry

To formulate periodic symmetry we employ the symmetric state computation function qsym :
Rndof → Rndof . This function maps a given vector of generalized position variables q to a
generalized position vector qs that describes the original posture mirrored at the sagittal plane.

The same function can be used to compute the symmetric state on joint velocity level. We
denote the symmetric generalized position of q by qS and similarly the symmetric generalized
velocity vector of q̇ by q̇S .

The symmetric state computation function is given by:
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(5.28)

In addition to the periodicity of the joint positions and velocities we require periodicity of
the joint actuations u(t). The symmetric control computation function usym : Rnu → Rnu is
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given by

usym :
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We denote the symmetric controls of u(t) by uS(t), similar to the symmetric state computa-
tion function. Periodic symmetry is then formulated as:

rSym(t0, tf , x(t0), x(tf ), u(t0), u(tf ), p) =







rSym
pos (t0, tf , q(t0), q(tf ), p)

r
Sym
vel (q̇(t0), q̇(tf ))

r
Sym
act (u(t0), u(tf ))






= 0 ∈ R

2ndof+nu

(5.30)
The ndof boundary constraints rSym

pos (t0, tf , q(t0), q(tf ), p) describe two characteristics of the
gait: i) periodicity on the joint position level and ii) the average velocity along the walk direction.
The latter is formulated in the first constraint as

q1(t0) − q1(tf ) + (tf − t0)pv = 0, (5.31)

while the remaining ndof − 1 constraints are simply positional symmetric periodicity constraints

qi(t0) − qS
i (tf ) = 0. (5.32)

The following ndof boundary constraints are the periodicity conditions for the joint velocities:

r
Sym
vel (q̇(t0), q̇(tf )) = q̇(t0) − q̇S(tf ) = 0 (5.33)

and the remaining nu constraints are the periodicity conditions for the joint actuations:

r
Sym
act (u(t0), u(tf )) = u(t0) − uS(tf ) = 0. (5.34)
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5.4.4 Initialization

As initial data for states, controls, step length, walk velocity, and phase durations we use results
from the reconstruction problem described in Section 5.3. Since the results are not perfectly
symmetric we empoloyed a manual homotopy method by requiring symmetric periodicity on
only a subset of constraints and only performing a small number of SQP steps to reach sufficient
feasibility. Further periodicity constraints were added until full periodicity was reached.

Once fully periodic initial values were available the SQP method was able to produce iterates
even when setting the initial controls to u(t) = 0 or initializing the differential states using
linear interpolation of values at the phase boundaries. This re-initialization was also helpful to
restart the optimization when the SQP got stuck in a local minimum.
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Numerical Results and Outlook
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Chapter 6

Numerical Results

In this chapter we present the numerical results of this thesis. We first demonstrate the
effectiveness of the subject-specific modelling in terms of the kinematic fitting quality of the
recorded motion data. We analyze the recorded kinematic data in terms of changes due to
different emotional expressions. We show the reconstructed dynamics that we obtained using our
subject-specific model and our multi-phase optimal control problem formulation and describe
effects of changes in emotional expressions in the dynamic quantities. Further we show the
synthesized full-body gaits that we computed solely based on mathematical modeling and
numerical computation and compare them with the recorded emotional motions.

6.1 Subject-Specific Models

We created subject-specific models for Subject1 and Subject3 as their emotional expressions
were best recognized. The model creation and adjustments were performed as described in
Chapter 4.

6.1.1 Subject Parameters

Table 6.1 shows the adjusted parameters for Subject1 and Subject3 along with the deviations
from a uniformly scaled model that linearly scales all lengths based on the subject height. Most
length parameters are adjusted in the range of 3 − 5cm with respect to the uniformly scaled
model. The largest deviation from the uniform model is for the NeckLength parameter at around
8cm. The average difference of the length parameters between the two subjects is around 1.6cm.

6.1.2 Kinematic Fit: Marker Data to Joint Positions

In Figure 6.1 we show how well the recorded motions can be reconstructed using the subject-
specific models. To evaluate the effectiveness of the subject-specific modeling we performed two
kinds of fittings: i) congruent fitting in which both the model and the recording were for the
same subject and ii) incongruent fitting in which we used the model of one subject and the
motion from another.

From the recorded motion capture data we chose trials of the expressions AngerExpression,
which show the strongest articulations among all subjects and is therefore the most challenging
to fit.

In Figure 6.1 we show the fitting analysis of the two congruent fittings and the two incongruent
fittings. Each analysis consists of three plots: the average marker errors, marker errors for each
motion capture frame, and the number of inverse kinematic steps.

The average marker error plot shows the average error between the virtual marker on the
model and the recorded marker over the whole motion sequence. It shows how well individual
markers can reproduce the corresponding recorded marker. For a good model one would expect
average errors of similar magnitude.



102 Numerical Results

LP
SI

LA
SI

R
PS

I
R

AS
I

R
TI

B
R

KN
E

R
H

EE
R

TO
E

R
AN

K
LT

IB
LK

N
E

LA
N

K
LH

EE
LT

O
E

C
7

T1
0

R
U

PA
R

W
R

A
R

W
R

B
R

EL
B

LU
PA

LE
LB

LW
R

A
LW

R
B

LF
H

D
LB

H
D

R
FH

D
R

BH
D0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
(m

)

Average Marker Errors

average

0 10 20 30 40 50 60 70 80 90
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

(m
)

Marker Error per Capture Frame

0 10 20 30 40 50 60 70 80 90
0

50

100

150

200 IK Steps

(a) Congruent fitting of S1MAngerExpressive1.c3d onto Subject1
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(b) Congruent fitting of S3MAngerExpressive2.c3d onto Subject3
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(c) Incongruent fitting of S3MAngerExpressive2.c3d onto Subject1
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(d) Incongruent fitting of S1MAngerExpressive1.c3d onto Subject3

Figure 6.1: Fitting analysis of a AngerExpressive motion onto the subject specific models. For
each subject we show the average residual for each marker. The overall average residual of all
markers is shown on the left, the marker errors at each motion capture frame, and the number
of inverse kinematics (IK) steps. For the congruent cases we use matching movement data and
model for a specific subject. In the incongruent case we fit movement data of one subject onto
the model of another subject.
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Parameter Subject1 Subject3

(deviation from default
value)

(deviation from default
value)

ClaviculaLeftLength 0.1799m (-0.0385m) 0.1749m (-0.0483m)

ClaviculaRightLength 0.1799m (-0.0385m) 0.1749m (-0.0483m)

FootLeftHeight 0.0852m (0.0000m) 0.0870m (0.0000m)

FootLeftLength 0.2661m (0.0000m) 0.2719m (0.0000m)

FootLeftPosteriorPoint 0.0728m (0.0000m) 0.0744m (0.0000m)

FootRightHeight 0.0852m (0.0000m) 0.0870m (0.0000m)

FootRightLength 0.2661m (0.0000m) 0.2719m (0.0000m)

FootRightPosteriorPoint 0.0728m (0.0000m) 0.0744m (-0.0000m)

HandLeftLength 0.1432m (-0.0532m) 0.1432m (-0.0575m)

HandRightLength 0.1432m (-0.0532m) 0.1432m (-0.0575m)

HeadLength 0.2497m (0.0372m) 0.2197m (0.0025m)

HipLeftWidth 0.0832m (-0.0007m) 0.0832m (-0.0025m)

HipRightWidth 0.0832m (-0.0007m) 0.0832m (-0.0025m)

LowerArmLeftLength 0.2764m (-0.0047m) 0.2714m (-0.0159m)

LowerArmRightLength 0.2764m (-0.0047m) 0.2714m (-0.0159m)

LowerTrunkHeight 0.1498m (-0.0025m) 0.1098m (-0.0459m)

MiddleTrunkHeight 0.1716m (-0.0537m) 0.2216m (-0.0087m)

NeckLength 0.0258m (-0.0902m) 0.0358m (-0.0828m)

ShankLeftLength 0.4827m (0.0224m) 0.4627m (-0.0077m)

ShankRightLength 0.4827m (0.0224m) 0.4627m (-0.0077m)

ShoulderLeftHeight 0.2239m (0.0455m) 0.2289m (0.0465m)

ShoulderRightHeight 0.2239m (0.0455m) 0.2289m (0.0465m)

SuprasternaleHeight 0.2239m (0.0455m) 0.2339m (0.0515m)

ThighLeftLength 0.4141m (-0.0273m) 0.4441m (-0.0070m)

ThighRightLength 0.4141m (-0.0273m) 0.4441m (-0.0070m)

UpperArmLeftLength 0.3596m (0.0651m) 0.3796m (0.0786m)

UpperArmRightLength 0.3596m (0.0651m) 0.3796m (0.0786m)

UpperTrunkHeight 0.2389m (0.0605m) 0.2339m (0.0515m)

Table 6.1: HeiMan parameters for segement lengths in meter for Subject1 and Subject3. In
parenthesis we show the deviation from default value that are uniformly scaled by the subject
height.

The second plot shows the error between virtual and recorded marker for each recorded frame.
It gives insight on whether the error between model and recorded marker is dependent on the
articulation of the recorded subject or rather due to noise from skin movement or measurement
noise. If the error is low (e.g. < 2cm) except for a short range of frames (e.g. 20% of the frames)
then this can be an indicator for secondary motion (e.g. skin movement) of the recorded marker.

Figure 6.1(a) and Figure 6.1(b) show the fitting analysis for the congruent cases. One can
see an average error of approximately 1cm for both subjects and the error for individual markers
is always less than 4cm for all markers in both subjects. The number of inverse kinematics steps
is also relatively low with less than 30 steps for both subjects.

For the incongruent fittings shown in Figure 6.1(c) and Figure 6.1(d) one can see a still
relatively low average error of around 2cm, however the distribution of the average errors is
widely spread. Individual markers have average errors of 4cm and more while others are well
below 1cm. Compared to the congruent case the variance of average errors is much higher here
(congruent: ±0.42cm and ±0.38cm, incongruent: ±1.40cm and ±1.39cm).

Another observation is that the congruent fits need much fewer inverse kinematic iterations
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compared to the incongruent fittings, which were on average more than three times the amount
of inverse kinematics steps.

Two conclusions may be drawn from this:

1. Considerably better kinematic fits are obtained using subject-specific models. With these
we are able to reproduce the recorded data with average errors of less than 1cm between
the virtual markers on the model and the recorded markers.

2. The subject-specific models successfully capture the walking kinematics of the recorded
subject as indicated by a lack of systematic errors in the markers.

6.2 Kinematic Gait Analysis of the Recordings

For each recorded trial of Subject3 we computed the gait parameters step length, step duration,
and walk velocity. The results are shown in Figure 6.2. The expressions of AngerSupressive,
Neutral, and JoySelfsufficient show very similar values for all three gait parameters. AngerEx-
pressive consistently has the highest step length and lowest step durations which also leads to
highest walk velocity. The parameters for expressions of JoyExpressive are always between those
of AngerExpressive and the remaining emotions.

0.0 0.2 0.4 0.6 0.8 1.0 1.2

JoyExpressive

JoySelfsufficient

Neutral

AngerSupressive

AngerExpressive

Step Length (m)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Step Duration (s)

0.0 0.5 1.0 1.5 2.0 2.5

Walk Velocity (m/s)

Figure 6.2: Gait parameters for the trials of Subject3. We show step lengths (left), step durations
(middle), and walk velocities (right) for the recorded trials.

6.2.1 Patterns in the Joint Kinematics

In Figure 6.3 we show the trajectories of the generalized positions that we computed by fitting
the motion capture marker data onto the subject-specific model as described in Section 4.4.3.
For each plot we show the average of each emotion as a solid line and the standard deviation as
a lightly shaded area. Plots of the individual trials are shown in Appendix A.2.

In the plot of the pelvis translation along the sagittal axis one can see large differences
of the lines of AngerExpressive in red at the top, followed by the blue line for JoyExpressive.
The remaining expressions Neutral, AngerSupressive, and JoySupressive are close together,
which simply restates the characteristics of the step lengths also shown in Figure 6.2. Ef-
fects of increase in the step lengths can also be seen in the plots Pelvis_RZ, HipRight_RY,
HipLeft_RY, KneeRight_RY, and KneeLeft_RY, where the largest range of angles are observed
for AngerExpressive, followed by JoyExpressive and AngerSupressive.

The expression of AngerExpressive can be discriminated in multiple plots. E.g. in plot
Pelvis_TZ, which shows translation along the longitudonal axis, this expression has the lowest
values throughout the step. This is likely due to the larger step length, which has to be
compensated by a lower pelvis due to the constant leg length. The plot Pelvis_RY shows a
higher value for the rotation of the pelvis around the transverse axis. Compared to the other
expressions this results in a slightly forward bent pelvis. Similar observations can be made for
the plot of Lumbar_RY for which AngerExpressive and AngerSupressive both show the highest
values.
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Figure 6.3: Generalized positions of the emotional expressions AngerExpressive, AngerSupressive,
Neutral, JoySelfsufficient, and JoyExpressive that we computed from the motion capture marker
data for the subject-specific model of Subject3. We show the average as a line and standard
deviation as an area, based on three expressions of Subject3 for each emotion. Plots ending
with _TX,_TY,_TZ show translations in meters along the X–, Y–, and Z–axis and those ending
with _RX,_RY, and _RZ show rotations in radians around the corresponding axes. Plots of the
individual trials are shown in Appendix A.2.
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The expressive motions JoyExpressive and AngerExpressive both feature similar trajectories
and a much larger range of values in the plots ElbowRight_RY and ElbowLeft_RY compared to
the other expressions. This supports the characterizations of Wallbott (1998), where both Joy
and Anger are described as "expansive" and "high movement dynamic". Another interesting
observation can be made for the abduction of the right shoulder shown in plot ShoulderRight_RX:
here JoyExpressive has the largest range of values and also the overall shape of the trajectory is
different compared to the other expressions.

Expressions of AngerSupressive and JoySupressive are difficult to discriminate from other
expressions. Only the plot of Neck_RY, which corresponds to the flexion of the neck, shows a
consistently high value for the expression of AngerSupressive.

6.3 Reconstruction of the Dynamics using Least-Squares

Fitting

We reconstructed the gait dynamics for three expressions each of the emotions AngerExpressive,
AngerSupressive, Neutral, JoySelfsufficient, and JoyExpressive. For this we have used the
recordings of Subject3, as they were well recognized in our expressiveness, whose results we
presented in Section 2.3.2.

For each recording we analyzed the motion capture data to find contact events such as Heel
Touchdown, Heel Liftoff, Forefoot Touchdown, and Forefoot Liftoff. These events were then used
to extract motion sequences and phase timings that correspond to the phases of our dynamics
reconstruction optimal control problem formulation described in Section 5.3. We then used our
subject-specific model of Subject3 to perform a kinematic fit of the joint angles for the motion
sequences. For this we used our modeling tool Puppeteer, which we described in Section 4.4.
We use the resulting joint angles both as an initial guess for the optimal solution and also in the
objective function to minimize the joint residuals, i.e. error between joint angles of the model
and those of from the kinematic fit.

In Table 6.2 we show the multiple-shooting discretization settings used for the different
trials and dimensions of the resulting discretized nonlinear programming problem. One should
note for the nshoot column that the third and fifth phases are pseudo-phases that model the
discontinuities of contact collisions, i.e. no integration is performed for these. As base functions
for the control discretization we use piecewise linear functions.

Table 6.3 lists the weighting coefficients that we used for the regularization term of the
least-squares objective function as described in Section 5.3.2. We computed the w−1

i by solving
the optimal control problem (5.21) for the Neutral motions using γu = 0 and computing the
average generalized joint force for each degree of freedom. We further used the same weighting
coefficients on the left and right side of the model by averaging their values.

For each of the five emotional expressions we reconstructed the dynamics of three motion
capture trials, which gives us a total of 15 optimal control problems that we implemented and
solved.

6.3.1 Fit Analysis

To evaluate how well the dynamic subject-specific model approximates the kinematic joint angles
we compared the trajectories of the generalized positions of the reconstruction with the joint
angles from the kinematic fit.

In Figure 6.4 we show the average and standard deviation of the errors for each degree of
freedom over all trials. Generally the errors are larger for values that are affected by the contact
constraints and very small average errors for joints belonging to the upper body. The absolute
value of the errors is within ±0.01 rad ≈ ±0.57◦ for the rotational degrees of freedom and below
1cm for translational degrees of freedom except for the vertical movement of the pelvis which
has an average error of slightly above 2cm.

In Figure 6.5 we show a visual representation of the difference between the motion from
the dynamic LSQ fit and the reference motion capture data for expressions of AngerExpressive,
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Trial nshoot NDIS NVAR NEQ NINEQ

AngerExpressive2 (6, 12, 1, 3, 1, 1) 25 3072 2376 6258

AngerExpressive3 (8, 10, 1, 3, 1, 1) 25 3072 2376 6254

AngerExpressive4 (8, 12, 1, 3, 1, 1) 27 3320 2568 6760

AngerSupressive1 (7, 11, 1, 4, 1, 4) 29 3568 2760 7271

AngerSupressive2 (9, 8, 1, 3, 1, 3) 26 3196 2472 6507

AngerSupressive3 (6, 10, 1, 4, 1, 3) 25 3196 2472 6513

Neutral1 (6, 13, 1, 3, 1, 5) 30 3692 2856 7527

Neutral2 (6, 12, 1, 3, 1, 3) 27 3320 2568 6766

Neutral3 (7, 10, 1, 5, 1, 2) 27 3320 2568 6763

AngerSelfsufficient1 (9, 10, 1, 3, 1, 5) 30 3692 2856 7521

AngerSelfsufficient2 (5, 13, 1, 4, 1, 4) 29 3568 2760 7275

AngerSelfsufficient3 (6, 12, 1, 4, 1, 5) 30 3692 2856 7527

AngerExpressive1 (7, 13, 1, 4, 1, 2) 29 3568 2760 7269

AngerExpressive2 (5, 13, 1, 3, 1, 2) 26 3196 2472 6514

AngerExpressive3 (6, 12, 1, 3, 1, 2) 26 3196 2472 6512

Table 6.2: Discretization settings and discretized NLP problem dimensions. For each trial the
nshoot column contains the number of multiple- shooting intervals for each phase, NDIS are the
number of discretization points, NVAR the number of variables in the discretized NLP, NEQ
the number of equality constraints, and NINEQ the number of inequalities.
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Figure 6.4: Average errors and standard deviation of the fitted residuals. Red bars represent
the translation of the pelvis in meter, green bars the rotational degrees of freedom for the lower
body, and the blue bars those of the upper body.

Neutral, and JoyExpressive. Similar plots for AngerSupressive and JoySelfsufficient are shown
in Appendix A.1.

The dynamic fit motion is shown in the foreground in green while the reference motion is
shown in the background in red. They are shown using orthographic projection such that the
model in the background has the same size as the model in the front to allow a comparison of
the two.

The difference between the motions is barely visible and only for a few postures one can see
clear differences. One of them is the last image of the lateral view of AngerExpressive where
only about 2/3 of the hand area overlap.

For the AngerExpressive and JoyExpressive motions one can also notice a slight error in
the hip abduction. However one should note that the motion of the dynamic fit not only
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Joint Motion Axis w−1

i

Hip Flexion/Extension Y 15.5

Hip Adduction/Abduction X 18.0

Hip Internal/Medial Rotation Z 3.6

Knee Flexion/Extension Y 14.4

Ankle Flexion/Extension Y 39.4

Ankle Adduction/Abduction X 5.2

Ankle Internal/Medial Rotation Z 2.5

Lumbar Flexion/Extension Y 5.6

Lumbar Adduction/Abduction X 13.9

Lumbar Internal/Medial Rotation Z 2.5

Shoulder Flexion/Extension Y 1.5

Shoulder Adduction/Abduction X 1.8

Shoulder Internal/Medial Rotation Z 0.2

Elbow Flexion/Extension Y 0.8

Neck Flexion/Extension Y 0.8

Neck Adduction/Abduction X 1.0

Neck Internal/Medial Rotation Z 0.1

Table 6.3: Weighting coefficients to account for the different joint strengths.

approximates the reference data but is also subject to kinematic constraints at the feet. Even
with these constraints our dynamic model can very well reproduce the given motions.

6.3.2 Elevation Angles

In Figure 6.7 we visualize the so-called elevation angles for both the kinematic fitting of the
motion capture data (Figure 6.7(a)) and the kinematics of the model after the dynamic fitting
(Figure 6.7(b)). The elevation angles are the orientations of the thigh, shank, and ankle segments
measured in the sagittal plane of the global reference frame. Various studies have shown a linear
relationship between these three angles (Borghese et al., 1996; Hicheur et al., 2006; Ivanenko
et al., 2008) also for different tasks such as running or uphill stepping. The linear relationship of
the elevation angles can be seen by plotting the angles onto each other in a 3-D plot and when
looking from a specific angle one can see that the 3-D trajectories are close to a plane.

The angles we visualize here are converted to degrees. The left plots of Figure 6.7 show
the overall shape from a diagonal perspective whereas the right plot is from a axis aligned
perspective that shows the planarity of the data.

For each emotional expression we visualize the angles of a single step and the angles for the
left and right leg are shown as two separate lines, which results in two open sections of the
curves. The open sections can be seen in near the bottom left and the top right of the diagonal
perspective plots.

When comparing the plots of the elevation angles of the kinematic fitting and the dynamic
reconstruction one can see that the overall structure is very well preserved. However, when
looking closely one can see slight jittering for the angles of the dynamic reconstruction in
the perspective view, especially in the top right. Another difference can be seen in the axis
aligned plots: near the 20◦ foot angle the profiles of the dynamic reconstruction show an almost
horizontal plateau and a sharp corner, whereas the kinematic fitting is much smoother and no
corners are visible. This is due to the rigid contact modeling of the dynamic reconstruction
problem as the foot’s orientation is kept perfectly horizontal when it is flat on the ground, which
is reflected in a horizontal line in the elevation angles plot. In the kinematic fit we do not have a
contact constraint and the foot angle is free to change as the foot undergoes small deformations
due to the body weight.

In terms of changes due to emotions one can observe that the expressive emotions An-
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(a) AngerExpressive

(b) Neutral

(c) JoyExpressive

Figure 6.5: Visualization of the movements and difference between the movement of the dynamic
LSQ fit (shown in green) and reference movement from motion capture (shown in red). Each
movement is shown in lateral and frontal view. Our dynamic model can to closely reproduce
the reference motion even with the additional contact constraints.
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Figure 6.6: Reconstructed normalized joint torques for the emotional expressions AngerExpres-
sive, AngerSupressive, Neutral, JoySelfsufficient, and JoyExpressive. The torques are normalized
by the subject’s body weight and for each subplot and emotional expression. We show the
average as a line and the standard deviation as an area. Plots of the individual trials are shown
in Appendix A.2.
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gerExpressive and JoyExpressive result in larger spatial expansion of the curves compared to
AngerSupressive, Neutral and JoySelfsufficient motions. This is likely due to the different
walking velocities of the expressions as similar observations were made for changes in the walking
velocity.
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(a) Angles of the kinematic fitting of the motion capture data.
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(b) Angles of the dynamic reconstruction.

Figure 6.7: Elevation angles for the different emotional expressions shown from a diagonal
perspective (left) and axis aligned perspective (right).

6.3.3 Patterns in the Joint Torques

The plots of Figure 6.6 show the reconstructed joint torques of the emotional expressions.
Again the movements of AngerExpressive generally show the largest amplitudes followed by
JoyExpressive. Especially for the torqes of joints that perform flexion and extension, i.e.
Lumbar_RY, ShoulderRight_RY, ShoulderLeft_RY, ElbowRight_RY, and ShoulderLeft_RY one
can observe high levels of actuations for AngerExpressive compared to the other emotions.

In the plot ShoulderRight_RX the expression of JoyExpressive shows a different trajectory
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profile compared to AngerExpressive. This suggests that the shoulder abduction is not due
to passive motion and but is instead actively controlled. Also the joint torques of Lumbar_RZ,
which is the torque at the Lumbar joint around the longitudinal axis, shows large amplitudes
for JoyExpressive and temporally shifted maxima and minima compared to AngerExpressive.
Also the actuation of the shoulder flexion and extension shown in ShoulderRight_RY and
ShoulderLeft_RY show the second largest amplitudes for JoyExpressive.

The expression of AngerSupressive clearly shows the largest amplitudes for the forces of the
neck extension shown in the plot Neck_RY. Already the joint angle for this degree of freedom
showed the highest values and could indicate that the control of this movement plays an
important role in concealed anger.

We only found few indicators for patterns that are specific for JoySelfsufficient. In general
the joint torque patterns are very similar to those of Neutral. In the first 25% of the step in
plot of Lumbar_RY one can see slightly higher values for JoySelfsufficient compared to the other
expressions. Also the actuation of in Neck_RY shows higher values of the joint torques for the
joyful motions compared to the neutral and angry expressions.

6.3.4 Shared Patterns in EMG and Joint Torques

Comparing the EMG signals of Figure 2.7 and joint torques in Figure 6.6 can only be made
on a qualitative basis. The relation of EMG signal and actual muscle force is in general very
complex and depends on multiple factors such as muscle length, tension, velocity of shortening or
lengthening of the muscle, fatigue, and others. EMG recordings in general only capture a subset
of muscle fibers of a specific muscle, however the force for a specific movement may be caused
by complex interactions with other muscles and other tissues. Computing the actual force based
on EMG signals is still an active area of research (e.g. Sartori et al. (2012)). Nevertheless high
EMG activity correlates with increased muscle force, which motivates the following comparisons.
One should note that all EMG sensors were placed on the right side of the recorded subject and
therefore we focus our comparison with joints on the right side of the subject-specific model.

The EMG signals for the expressions of AngerExpressive are consistently the highest for
all recordings. A similar observation can be made for the joint torques where AngerExpressive
shows the largest amplitudes for most joints.

One of the associated functions of the muscle Gastrocnemius Lateralis is the flexion of the
knee. When looking at the EMG signal one can see that apart from AngerExpressive the
muscular activity of the expressions AngerSupressive, JoySelfsufficient, and JoyExpressive are
similar or below that of Neutral. In our model the flexion of the knee is described by positive
values of KneeRight_RY. Similarly to the EMG signal the joint torque plots of this movement
show AngerExpressive as largest values near the end of the right contact foot, whereas the
remaining expressions are on a similar magnitude below the AngerExpressive joint torque.

Another characteristic can be seen by comparing the EMG activity of Peroneus Longus and
the joint torques of AnkleRight_RX. The muscle contributes to the plantar flexion of the foot
and the expression of AngerExpressive shows the largest values along with a temporal delay
compared to the other expressions. A similar observation can be made when examining the joint
torques of AnkleRight_RX. Here AngerExpressive has a delayed peak near the 50% mark.

The muscle Vastus Medialis contributes to the extension of the knee, which corresponds to
a negative value of KneeRight_RY. Both AngerExpressive and JoyExpressive show high EMG
activity during the early contact phase, wheras the expressions of AngerSupressive, Neutral, and
JoySupressive are on a similar, albeit lower level of activity. The same observation can be made
in the first quarter of the joint torques of KneeRight_RY where the expressive emotions both
reach −1.0Nm/kg, whereas the remaining are at around −0.5Nm/kg.

6.3.5 Ground Reaction Forces

By reconstructing the dynamics we also obtain ground reaction forces that the model exerts
on the ground. In Figure 6.8 we show the ground reaction forces for the different emotional
expressions. The plots in the top row show the forces for the right foot along the X−, Y −, and
Z− axis, whereas the bottom plots show the forces for the left leg along the same axes.
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Overall the force profiles are similar to that of reported measurements in the biomechanics
literature such as Lee and Hidler (2008), especially those of the X− and Z− axis of the right
leg. The forces of the left leg show the forces starting from heel contact to flat contact. They
start with non-zero values as the initial contact is treated as an instantaneous collision in our
walking model. One would expect that the forces of the left leg at the end of the step are similar
to those of the right leg at the beginning of the step. In our results however this is not the case.
This artefact is caused by our choice of gait modeling: as we only optimize a single step instead
of a double-step sequence the optimization omits parts of the preparation for the second step.

The forces of the right leg show the for human walking characteristic M-shape for the vertical
forces (Z-axis). The different emotions exhibit changes in the profile similar to those observed
for different walking speeds (Masani et al., 2002). Specifically the less pronounced valley of the
M at slower speeds (AngerSupressive, Neutral, JoySelfsufficient and the higher first bump for
higher walking speeds (AngerExpressive, JoyExpressive).
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Figure 6.8: Reconstructed ground reaction forces of the different emotional expressions. The
plots are time and weight normalized. Solid lines show the average for a single emotion and the
standard deviation is shown as a shaded area.

6.4 Gait Synthesis

In this section we describe the computed walking motions that we generated with our gait
synthesis formulation described in Section 5.4. By formulating different objective functions and
gait parameters we are able to generate distinct walking motions based solely on mathematical
principles and modeling.

6.4.1 Description of the Objective Functions

In Section 5.4.2 we presented the composite objective function (5.23), which we reproduce here
for clarity:

Φ(x(t), u(t), p) =
N

∑

i=1

∫ ti

ti−1





3
∑

j=1

γjΦLj
(t, x(t), u(t), p)



 dt + γ4ΦM4
(tf , x(tf ), p),

with the basic objective functions:

• ΦL1(t, x(t), u(t), p), which minimizes the active actuation over step length,
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• ΦL2
(t, x(t), u(t), p), which minimizes the centroidal angular momentum,

• ΦL3
(t, x(t), u(t), p), which minimizes the head angular velocity,

• and ΦM4
(tf , x(tf ), p), which minimizes the step duration.

The weightings γ1, . . . , γ4 can then be chosen freely to formulate different objective functions.
We used the following weightings to construct five different objective functions:

Name γ1 γ2 γ3 γ4

Φ1 Minimize Actuation over Step Length 1.0 0.0 0.0 0.0

Φ2 Minimize Angular Momentum 0.01 1.0 0.0 0.0

Φ3 Minimize Head Angular Velocity 0.01 0.0 10.0 0.0

Φ4 Minimize Step Duration 0.01 0.0 0.0 10.0

Φ5 Multi Objective 1.0 1.0 3.0 0.0

The objective function Φ1 (Minimize Actuation over Step Length) only minimizes the active
actuation over the step length. This objective function can be interpreted as the amount of
effort to perform the step. The objective function Φ2 (Minimize Angular Momentum) primarily
minimizes the angular momentum. It also minimizes the active actuation with a small factor of
γ1 = 0.01 to regularize the problem. Without the regularization the controls may take arbitrary
values without affecting the actual solution. The criterion Φ3 (Minimize Head Angular Velocity)
minimizes the head angular velocity together with the active actuation. The weightings are
chosen to account for the smaller magnitude of the angular velocity of the head (γ3 = 10.0) and to
regularize the problem (γ1 = 0.01). By mainly minimizing the head angular velocity this can be
seen as a head stabilization criteria. The cost function Φ4 (Minimize Step Duration) minimizes
the duration of the step. Again it combines two base functions. The largest contribution is
from the ΦM4 base objective function with a weighting of γ4 = 10.0 and the second term again
to regularize the problem (γ1 = 0.01). Finally the objective function Φ5 (Multi Objective)
minimizes with respect to multiple basic objective criteria, namely the active actuation over
step length (γ1 = 1.0), angular momentum (γ2 = 1.0), and the head angular velocity (γ3 = 3.0).

For the direct multiple-shooting discretization we used (10, 2, 1, 2, 1, 2) multiple-shooting
intervals for each phase. Again the third and fourth phases are pseudo-phases where the contact
collision discontinuities are treated. The controls are discretized using piecewise linear base
functions. After the discretization the problem has 2381 variables and 1887 equality and 4885
inequality constraints.

Visualizations

In Figure 6.9 and Figure 6.10 we show visualizations of the gaits that we synthesized using
the different objective functions from frontal and lateral view, respectively. The trajectories
of the generalized joint positions, the generalized joint forces and the contributions of the
spring-dampers, and plots of the spring-damper parameters can be found in Appendix A.3.

Only the gaits produced by Minimize Actuation over Step Length and Multi Objective extend
the knee during stance such that it is a straight line. By doing so the model can reduce the
torques applied on the knee. The same motions show a significant amount of elbow flexion. The
upper-body posture is almost completely upright throughout the gait cycle compared to the
other motions which appear to be slightly bent forward.

From the frontal view in Figure 6.10 one can see further differences of the gaits. By looking
for each motion at the fourth image one can see different postures for each gait. Minimize
Actuation over Step Length shows a slightly outward rotated left leg and the highest foot lifting,
Minimize Angular Momentum has its left leg closely adducted to the right leg, for Minimize
Head Angular Velocity the overall posture looks like a relaxed standing pose, while Minimize
Step Duration looks similar however with the feet much closer to each other. The motions of
Minimize Actuation over Step Length, Minimize Angular Momentum, and Multi Objective show
an asymmetric posture whereas Minimize Head Angular Velocity and Minimize Step Duration
are nearly symmetric.
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Figure 6.9: Lateral view of the synthesized open-loop gaits for the objective functions Minimize
Actuation over Step Length, Minimize Angular Momentum, Minimize Head Angular Velocity,
Minimize Step Duration, and Multi Objective.
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Figure 6.10: Frontal view of the synthesized open-loop gaits for the objective functions Minimize
Actuation over Step Length, Minimize Angular Momentum, Minimize Head Angular Velocity,
Minimize Step Duration, and Multi Objective.
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6.4.2 Variation of Gait Parameters

In addition to the gaits synthesized by using different objective functions we have also generated
gaits by prescribing the average walk velocity. In the gait synthesis formulation the average
walk velocity is formulated as the parameter pv, which is a free parameter by default. Here we
have fixed its value to 1.5m/s, 2.0m/s, and 2.5m/s to generate gaits for these velocities. We
used the Multi Objective objective function as it resulted in motions that were the most similar
to the Neutral motion capture motions.

We used the same discretization settings as for the variation of objective function formulation
above. As the average walk velocity parameter is fixed the dimensions of the discretized optimal
control problem change to: 2380 free variables, 1887 equality constraints, and 4883 inequality
constraints.

Visualizations

In and Figure 6.11(a) and Figure 6.11(b) we show visualizations of gaits that we generated for the
walk velocity variations. The trajectories of the generalized joint positions, the generalized joint
forces and the contributions of the spring-dampers, and plots of the spring-damper parameters
can be found in Appendix A.4.

We observe a much stronger arm movement for the slowest motion. Conversely, on higher
speeds we observe a strong lateral pelvis tilt that is much stronger than for the 1.5m/s motion
which can be seen in the fourth images of the frontal views in Figure 6.11(b). For the slowest
motion the knee is extended during stance such that thigh and shank form a line. In the higher
speeds the knee is always slightly flexed throughout the step.

6.4.3 Comparison of Synthesized and Reconstructed Emotional Mo-

tions

To compare the synthesized gaits with the reconstructed gaits we formulated the following
similarity measure to compare two motions given as trajectories of generalized joint positions
qS(t) and qM (t) with qS(t) : [0, tS

f ] → R
ndof and qM (t) : [0, tM

f ] → R
ndof :

d(qS(t), qM (t), tS
f , tM

f ) =
1

2

m
∑

i=1

(

1

m · ndof

||qS
i (i∆tS) − qM

i (i∆tM )||22

)

+
1

2
(tS

f − tM
f )2, (6.1)

with ∆tS = tS
f /(m− 1) and ∆tM = tM

f /(m− 1). The similarity measure evaluates the difference
of the two motions in terms of a least-square error of the generalized joint positions on a
equidistant time grid and the difference of the step durations. The error of the generalized
joint positions is normalize both by the number of evaluations m and the number of degrees of
freedom ndof.

To evaluate the similarity of the synthesized gaits with the measured movements we computed
a Neutral reference motion by averaging the time-normalized joint trajectories q(t) of all three
Neutral expressions. Similarly we computed the averaged Neutral step duration that we use as
the reference Neutral duration.

Similarity Emotional Expressions and Neutral

We evaluated the similarity of the recorded emotional motions with the Neutral reference motion.
The results are shown in Table 6.4 where we list for each expression the average similarity value
and its standard deviation. As expected the Neutral motions have the smallest values with
an average value of 0.0010 ± 0.0001 and the largest value is obtained for the AngerExpressive
motions. With an average value of 0.0054 ± 0.0008 the JoySelfsufficient expressions are the
closest to the Neutral reference motions. We note here that the similarity values of these two
expressions also explains the similar ratings for the evaluation of the expressiveness of the
recordings that we described and presented in Section 2.3.2.
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(a) Lateral view synthesized gaits for different walking velocities.

(b) Frontal view synthesized gaits for different walking velocities.

Figure 6.11: Visualization of synthesized gaits for different walking velocities (each from top to
down): 1.5m/s, 2.0m/s, 2.5m/s.
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Solution of d(qS , qM , tS
f , tM

f ) LSQ q LSQ tf

AngerExpressive 0.0463±0.0016 0.0459±0.0016 0.0515±0.0043

AngerSupressive 0.0110±0.0035 0.0106±0.0035 0.0022±0.0020

Neutral 0.0010±0.0001 0.0006±0.0001 0.0013±0.0009

JoySelfsufficient 0.0054±0.0008 0.0050±0.0008 0.0025±0.0017

JoyExpressive 0.0241±0.0020 0.0237±0.0020 0.0140±0.0047

Table 6.4: Evaluation of the similarity of the recorded gaits and the Neutral reference motion.
For each emotional expression we show the average value and standard deviation for each the
similarity value (second column), the contribution of the difference in the postures (LSQ q),
and the contribution of the difference in the end time (LSQ tf ).

Similarity of the Synthesized Motions and Neutral

Here we compare the similarity of the Neutral reference motion with synthesized gaits obtained
by variation of the objective function. The results are shown in Table 6.5 for an evaluation
of m = 100. The table shows both the value of the similarity measures and the individual
contributions of the terms dependent on q and step durations tf .

The objective function Multi Objective has best similarity value, followed by Minimize
Actuation over Step Length and Minimize Angular Momentum. The worst is Minimize Step
Duration, which is however due to the large contribution of the tf term. The solution of Minimize
Head Angular Velocity shows the smallest error in the least-squares term of the joint angles. A
visual comparison of the solution using Multi Objective and a Neutral expression is given Figure
6.12.

Solution of d(qS , qM , tS
f , tM

f ) LSQ q LSQ tf

Minimize Actuation over Step Length 0.1027 0.0718 0.0309

Minimize Angular Momentum 0.1455 0.0723 0.0732

Minimize Head Angular Velocity 0.1935 0.0374 0.1562

Minimize Step Duration 0.2761 0.0645 0.2116

Multi Objective 0.0699 0.0695 0.0244

Table 6.5: Evaluation of the similarity of the synthesized gaits and the Neutral reference
motions. The similarity value is shown in the second column. LSQ q shows the contribution of
the difference in the postures and LSQ tf shows the contribution of the difference in the end
time.

6.4.4 Elevation Angles

To assess the quality of the lower limb kinematics we computed the elevation angles for the gaits
obtained using our synthesis formulation and compared it with the curves of the reconstructed
gaits.

Objective Function Variations

In Figure 6.13(a) we show visualizations of the elevation angles for the synthesized gaits as
colored lines along with the curves of the reconstructed gaits shown using grey lines.

The curves of the synthesized gaits are smoothly closed as the movements are perfectly
symmetric. The overall alignment of the curves of the synthesized gaits is similar to that of the
reconstructed gaits, however a few differences can be observed:

The flat plateau for the foot contact at the 0◦ value of the foot elevation angle is larger than
for the reconstructed gaits. Outside of this plateau the motion of Minimize Actuation over Step
Length shows a almost vertical feature near the −50◦ value of the Shank in the right figure,
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(a) Lateral view of motion capture (top) and synthesized (bottom)

(b) Frontal view of motion capture (top) and synthesized (bottom)

Figure 6.12: Comparison of motion capture data (top) with the synthesized gait using the
objective function Multi Objective.
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while the other objective function evaluations are closer to the lines of the reconstructed gaits.
Further, the elevation angles of the synthesized gaits have values in a smaller range than the
reconstructed gaits.

Walking Velocity Variations

In Figure 6.13(b) we show the elevation angles for the synthesized gaits for the prescribed
average walking velocities.

The shape of the curves are similar to the curves of the different objective functions. Again
the synthesized gaits have elevation angles on smaller range for the thigh and shank elevation
angle. The curves of the synthesized gaits are almost vertical again near the −50◦ shank elevation
angle.

Comparing the elevation angles of both synthesis formulations with those of the reconstructed
gaits shows that the curves of the synthesized gaits are much less planar than those of the
reconstructed gaits. As the planarity is observable for the reconstructed gaits we do not assume
it to be a limitation of the kinematic abilities of the underlying rigid multibody or the foot
contact model. Instead we assume that this is due to our actuation model which does not
contain modeling of intersegmental passive elements that span more than one limb.

During the gait reconstruction the objective function rewards the more natural planarity of
the curves that is already present in the reference motion as shown in Figure 6.7(a). During
the gait synthesis nothing results coupling of the segments, instead all degrees of freedom are
completely independent of each other.

6.4.5 Ground Reaction Forces

We show the ground reaction forces of the synthesized gaits in Figure 6.14 as colored lines
together with the reconstructed ground reaction forces of the emotional gaits shown grey areas
as reference. The forces are normalized with respect to body weight.

Objective Function Variations

The top right plot shows the vertical ground reaction force of the right foot. Except for Minimize
Actuation over Step Length we observe strong peaks at around 60% of the step cycle that exceed
the maximum values of the reconstructed forces by far.

The characteristic M-shape of the vertical ground reaction force is difficult to recognize but
can be seen when looking at the forces of both right and left leg. The first peak at the left foot
at around 80% of the step cycle and then proceeds to the lowest level near 25% of the step cycle
of the right foot and the second peak at 60% of the step cycle of the right foot.

Walking Velocity Variations

In Figure 6.14(b) we show the ground reaction forces for the synthesized gaits of different walking
velocities.

The orders of magnitude of the forces are similar to those of the reconstructed gaits. Also
the overall shape of the forces are similar, except for the forces along the Y -axes. Here the
forces of the right foot do not switch sign and the forces of the left foot are of opposite sign
than the reconstructed forces.

6.4.6 Objective Function Contributions

As shown above a different choice of weightings for the basic objective functions produces
different gaits. As our long-term goal is to investigate the optimality criteria for different
emotions there are two questions that arise from this observation: i) how much do the objective
functions influence each other?, and ii) how much do the different basic objective functions
contribute to emotional expressions?

To shed some light into these questions we use the solutions obtained (both from the gait
reconstruction and gait synthesis) and evaluated the basic objective functions.
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(a) Elevation angles of the synthesized gaits for different objective functions.
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(b) Elevation angles of the synthesized gaits for different walking velocities.

Figure 6.13: Elevation angles of the different gait synthesis formulations.
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(a) Weight normalized ground reaction forces of the synthesized gaits for the different objective functions.
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Figure 6.14: Weight normalized ground reaction forces of the different gait synthesis formulations.
The ground reaction forces of the reconstructed gaits are shown as grey areas in the background.
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Basic Objective Function Contributions of the Synthesized Gaits

To assess the influence of the basic objective functions to each other we cross-evaluated the
objective functions. In Figure 6.15 we compare the evaluations of the five basic objective
functions ΦL1 , ΦL2 , ΦL3 , ΦM4 using the optimal solutions of the synthesized gaits that minimized
w.r.t. Φ1, . . . , Φ4. For each of the objective functions we used the obtained optimal solutions
x(t)∗, u(t)∗, p∗ to cross-evaluate the basic objective functions. Numerical values of these
evaluations are presented in Table 6.6.

As expected for each of the four objective functions always the optimal solution of the
corresponding criteria yields the smallest value, i.e. the solution using Minimize Actuation over
Step Length has the smallest objective value for the basic objective function ΦL1

, using Minimize
Angular Momentum has the smallest objective value for the basic objective functions ΦL2

, etc.
The objective functions ΦL1

(minimize active actuation over step length) and ΦL2
(minimize

angular momentum) appear to be independent of each other as the plots of their evaluations
show a strong reduction of the objective value only when minimizing those criteria specifically.
Using Minimize Angular Momentum results in similar values for the ΦL1 criterion as Minimize
Head Angular Velocity and Minimize Step Duration. Similarly when optimizing for Minimize
Actuation over Step Length one obtains similar values for the ΦL2

criterion as Minimize Head
Angular Velocity and Minimize Step Duration.

One can notice that minimizing the head angular velocity also results in a rather short step
duration. The reason for this is that minimizing the head angular velocity reaches a very small
value already as the model has enough degrees of freedom to to keep it near zero. The only
way to further reduce the objective function is then to shorten the time interval over which the
Lagrange term of Φ3 is evaluated.

Evaluated Objective Function

ΦL1 ΦL2 ΦL3 ΦM4

O
p

ti
m

a
l

S
o
lu

ti
o
n

u
si

n
g

Φ1 8.19 × 10−2 5.62 × 10+0 1.54 × 10−1 4.84 × 10−1

Φ2 8.45 × 10−1 8.28 × 10−4 3.57 × 10−1 3.89 × 10−1

Φ3 8.96 × 10−1 5.03 × 10+0 6.39 × 10−5 2.65 × 10−1

Φ4 1.07 × 10+0 4.22 × 10+0 1.28 × 10−1 2.00 × 10−1

Φ5 1.86 × 10−1 1.16 × 10−2 3.34 × 10−4 5.04 × 10−1

Table 6.6: Numerical values of the objective function cross evaluations.

0.0 0.3 0.6 0.9

min actuation

min angular momentum

min head

min time

min min mult. obj.

ΦL1

0 2 4 6

ΦL2

0.0 0.1 0.2 0.3

ΦL3

0.00 0.15 0.30 0.45

ΦM4

Figure 6.15: Cross-evaluation of the objective functions for the obtained optimal solutions. The
title of each plot shows the name of the evaluated objective function and each bar is the optimal
solution we used to evaluate the objective function.

Basic Objective Function Contributions of the Reconstructed Gaits

We also evaluated the objective functions for the reconstructed gait dynamics. The results
are shown in Figure 6.16. As the model did not use any spring-dampers we used 0 for all
spring-damper parameters when evaluating the objective functions.
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The plots are shown in the same manner as for the cross evaluation of the objective functions
in that the title of a plot is the evaluated objective function and the different bars represent
the reconstructed gaits that were used as inputs for the evaluation. As we have three trials per
emotional expression we show the average value as the bar together with indications for the
standard deviation as blue error bars.

The objective function ΦL1
(minimize active actuation over step length) can be seen as a

measure of effort used to produce a step and an interesting observation can be made by comparing
the its evaluation with the average walk velocities shown in Figure 6.2: the expression of
JoyExpressive has a similar level of effort to perform the step to the expression of AngerSupressive,
however the average walk velocity of JoyExpressive are higher than those of AngerSupressive.

The evaluations of ΦL2 (minimize centroidal angular momentum) show higher values for the
expressions of angry movements and the lowest value is obtained for JoyExpressive. However
JoySelfsufficient has a higher average value than the expression Neutral. Overall the values
are of similar magnitude as the synthesized motions where the angular momentum was not
minimized. This could indicate that the angular momentum in human is kept at moderately
low values due to the intrinsic motion itself.

The third plot from the left shows the evaluations of the basic objective function ΦL3

(minimize head angular velocity). The magnitudes obtained here are relatively small. The
expression of Neutral shows the smallest values and the average value for AngerExpressive is
smaller than that of AngerSupressive. Similarly the head angular velocity of JoyExpressive is
smaller than that of JoySupressive.

The evaluations of Minimize Step Duration simply restate the values shown in Figure 6.16.
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Figure 6.16: Comparison of objective function values for the reconstructed gaits.

6.5 Summary

In this chapter we have presented the numerical results of this thesis. We presented the subject-
specific models and how they allow us to reproduce the motion capture marker data using
proper rigid multibody motions. We listed all parameters that we use as input parameters for
our HeiMan model to create the subject-specific dynamic models.

We analyzed the recorded emotional gaits on a kinematic level using standard gait parameters
and also by looking at the joint kinematics. Especially joints of shoulder and elbows showed
features that we assume to be emotion specific.

We presented the results of our dynamic gait reconstruction and by analyzing the fit error
we can conclude that we can closely reproduce the recorded kinematic motions even with a
dynamic model that is subject to additional kinematic contact constraints. We analyzed the
reconstructed emotional motions using the elevation angles, joint forces, and ground reaction
forces. We further compared the reconstructed joint forces with the recorded EMG signals and
found emotion-specific features that are present in both joint forces and EMG signals.

We described the synthesized gaits that we generated by using different objective functions
or prescribing different walking velocities. We presented a similarity measure and used it to
compare the synthesized motions with the reconstructed motions. We studied the obtained
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optimal synthesized gaits using elevation angles and ground reaction forces. Further we analyzed
the evaluations of the basic objective functions on the synthesized walking motions and the
reconstructed emotional gaits.

Our results show that a wide range of motions with different characteristics can be created
by adjusting weightings in the objective or changing gait parameters. Further our results show
that similarity to recorded motions can be improved when using different combinations of the
basic objective functions.



Chapter 7

Summary and Outlook

Summary

In this thesis we have approached the study of emotional body language from a completely
new direction. Central components of our approach are the use of dynamics of rigid multibody
modeling and numerical optimal control methods, which we combine to create a new mathematical
model for 3-D full-body human walking motions as an optimally controlled process. We
successfully applied our formulation to the analysis of emotional walking data and are able to
create open-loop human-like walking motions without the use of any reference data, solely based
on mathematical principles. To achieve our goals we have made contributions in multiple areas:

A New Method to Transfer Motion Capture Data onto Rigid Multibody Models

The motion capture data consists of marker data that are attached to specific parts of the
subject and are subject to non-rigid movements such as skin and muscle movement. The
markers are further redundant, which makes assessment of the underlying skeletal movement
difficult. To address this we created HeiMan, a detailed 3-D rigid multibody model to describe
the movement of the human body. It is highly parameterized to allow adjustments to closely
represent a recorded subject. We employ a robust inverse kinematics method based on non-linear
programming to transfer the motion capture data onto these subject specific models. In doing
so we are able to reproduce recorded motion capture marker movement using proper rigid
multibody models with high precision and a set of independent coordinates that describe the
movement of the model. We implemented all methods in the motion capture mapping tool
Puppeteer.

A New High Performance Rigid Body Dynamics Implementation

We created a highly efficient rigid multibody dynamics implementation named RBDL that
is specifically tailored for use in the context of numerical optimal control. It uses recursive
algorithms and is based on Featherstone’s 6-D spatial algebra to formulate rigid body movement.
High performance is achieved by exploiting algebraic structures and sparsities in both spatial
algebra and quantities in the equation of motion for rigid multibody system with algebraic
contact constraints expressed in reduced coordinates. It allows to selectively reuse already
computed values to surpass performance that is otherwise only available using symbolically
generated code, while being much more flexible to use. We created more than 180 tests to ensure
correctness of individual parts of the implementation. Its performance and the model-based
programming interface allows reusing of all implemented algorithms also in other areas such as
robotic control or virtual characters.

Modeling of Human Walking as a Nonlinear Multi-Phase Optimal Control Problem

We created a new model for the analysis of human walking by formulating it as a non-linear
multi-phase optimal control problem. It uses the full-body subject specific models to describe the
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dynamics of the human model. Each phase of the optimal control problem describes the dynamics
of the model under different nonlinear contact constraints. We created two formulations: a
dynamic reconstruction formulation and a gait synthesis formulation.

The dynamic reconstruction uses a least-squares type objective function to approximate
a given motion sequence to reconstruct joint torques and ground reaction forces from purely
kinematic reference motions. The gait synthesis formulation on the other hand allows generation
of full-body open-loop 3-D walking movements without the use of any reference data. It enables
a new way to study fundamental principles of 3-D full-body human walking by formulating
them as optimality criteria, constraints, or model parameters.

Reconstruction of Emotional Aspects in the Dynamics of Human Walking

We have applied our dynamic reconstruction formulation on 15 motion capture sequences from
our experiments. The reconstructed joint torques show characteristics that are also found in
the recorded EMG data such as the increased efforts for the expressions of AngerExpressive
compared to the other emotions. But also similarities for individual muscles and joint actuations
could be found. Our reconstruction is performed on a 3-D full-body model and therefore allows
the study of effects of upper body movements that add to quantities of standard gait analysis
procedures.

Our approach allows the study of expressions and motor control of human movement from a
new perspective, without having to integrate additional measurements such as force plates into
the experiment. Especially for studying emotional expressions this is a great benefit as subjects
are given greater freedom in their movement without having to place their feet on specific areas
on the ground.

To our knowledge we are the first to investigate emotional expressions using a dynamic 3-D
full-body model. Our results suggest that actuations and muscular activity in the upper body
play an important role in the expressions of emotions and that also movement in the frontal
plane, especially abduction of the shoulder, should not be neglected.

A New Database of Verified Emotional Motion Data

We have conducted a motion capture experiment with five subjects to obtain data that contains
both the kinematic motion description and muscle activity of both upper and lower body in
form of electromyographic data. We have created an online survey with more than one hundred
participants to evaluate the expressiveness of the recorded motions. The results show large
differences in how well the emotions were recognized. Nevertheless we were able to identify
recordings for which emotions were very well recognized and that we analyzed with the methods
developed for this thesis.

Outlook

The results of this thesis strongly support the use of full-body rigid multibody models in the
study of emotional expressions and gait analysis in general. The created models and methods
can be used in a wide range of new research efforts, such as:

• Investigations of Synergies in Joint Torques
Research in gait analysis has found synergies of the elevation angles in foot, shank, and
ankle, but also in EMG signals during walking. Investigation of synergies in the joint
torques and how they are affected by different emotions could give new insights in the
motor control of emotional expressions. A further application of these synergies could be
used to formulate controllers that only require few input signals but are capable of driving
actuated and emotionally expressive full-body virtual characters.

• Investigation of Principles of Human Walking
Our synthesis model allows the investigation of human walking in a new way: formulating
hypothesises of basic principles as optimality conditions, constraints, or model parameter
can be easily tested using our full-body 3-D gait model. Examples would be the investigation
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of the role of arms by computing gaits with immobilized arms or replacement of limbs
by completely passive elements to model prostheses. Also different principles of stability
could be formulated and tested with our model.

• Integration of Muscle Models
The model we developed in this thesis describes all actuations directly at the joints. These
joint torques can be used to estimate muscular activity. This would help to further validate
our model and further open up new possibilities for analyzing human movements on a
muscular level that however do not need force plates or EMG recordings but compute
these informations solely from kinematic recordings.

• Inverse Optimal Control of Human Walking
Our gait synthesis formulation is ideally suited to perform inverse optimal control to
identify optimality criteria that govern human walking. Our gait synthesis model will play
a crucial component in such a computation. Furthermore the motion capture data from
our experiments can be used to identify criteria of emotional expressions.
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Appendix A

Visualizations and Trajectories

A.1 Visualization of the Dynamic Fit Error

(a) AngerSupressive

(b) JoySelfsufficient

Figure A.1: Visualization of the movements and error between the movement after the dynamic
LSQ fit (shown in green) and reference movement from motion capture (shown in red) for
AngerSupressive and JoySelfsufficient. Other expressions were shown in Figure 6.5.
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A.2 Reconstructed Trajectories

AngerExpressive: Generalized Positions
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Figure A.2: Model generalized joint trajectories and reference data for expressions of Neutral
and AngerExpressive. Vertical markers indicate the phase transitions of the gaits.
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AngerExpressive: Joint Torques
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Figure A.3: Weight normalized joint torques for the reconstructed expressions of Neutral and
AngerExpressive.



134 Visualizations and Trajectories

AngerSupressive: Generalized Positions
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Figure A.4: Model joint trajectories and reference data for expressions of Neutral and AngerSu-
pressive. Vertical markers indicate the phase transitions of the gaits.
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AngerSupressive: Joint Torques
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Figure A.5: Weight normalized joint torques for reconstructed expressions of Neutral and
AngerSupressive.
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JoySelfsufficient: Generalized Positions
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Figure A.6: Model joint trajectories and reference data for expressions of Neutral and JoySelf-
sufficient. Vertical markers indicate the phase transitions of the gaits.
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JoySelfsufficient: Joint Torques
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Figure A.7: Weight normalized joint torques for the reconstructed expressions of Neutral and
JoySelfsufficient.
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JoyExpressive: Generalized Positions
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Figure A.8: Model joint trajectories and reference data for expressions of Neutral and JoyEx-
pressive. Vertical markers indicate the phase transitions of the gaits.
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JoyExpressive: Joint Torques
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Figure A.9: Weight normalized joint torques for the reconstructed expressions of Neutral and
JoyExpressive.
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A.3 Trajectories of the Synthesized Gaits: Objective

Function Variations

Generalized Positions
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Figure A.10: Joint trajectories for gaits that we synthesized using different objective criteria.
Vertical markers indicate the phase transitions of the gaits. Areas shaded in grey show the
generalized joint positions of the Neutral expressions as reference.
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Generalized Joint Torques
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Figure A.11: Weight normalized joint torques for gaits that we synthesized using different
objective criteria. Areas shaded in grey show the generalized joint torques of the reconstructed
Neutral expressions as reference. The joint torques shown here include both the forces of the
active actuation u(t) and the passive actuations of the spring-dampers. Contributions of the
latter are shown in Figure A.12.
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Spring-Damper Contributions
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Figure A.12: Weight normalized joint torque contributions of the spring-damper forces for the
synthesized gaits using different objective criteria. Here we only show the passive forces resulting
from the spring-damper elements at the joints. Plots of the full joint forces that include both
active and passive contributions are shown in Figure A.11.



Trajectories of the Synthesized Gaits: Objective Function Variations 143

Spring-Damper Parameters
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Figure A.13: Spring-damper parameters that we obtained by solving the gait synthesis formula-
tion using the different objective functions. The dashed vertical lines for in the rest pose plots
show upper and lower bounds for the parameters.



144 Visualizations and Trajectories

A.4 Trajectories of the Synthesized Gaits: Walking Veloc-

ity Variations

Generalized Positions
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Figure A.14: Joint trajectories for gaits that we synthesized using the Multi Objective criterion
and different prescribed average walking velocities. Vertical markers indicate the phase transitions
of the gaits. Areas shaded in grey show the generalized joint positions of the Neutral expressions
as reference.
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Generalized Joint Torques
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Figure A.15: Weight normalized joint torques for gaits that we synthesized using the Multi
Objective criterion and different prescribed average walking velocities. Areas shaded in grey
show the torques of the reconstructed Neutral expressions as reference. The joint torques shown
here include both the forces of the active actuation u(t) and the passive actuations of the
spring-dampers. Contributions of the latter are shown in Figure A.16.
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Spring-Damper Contributions
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Figure A.16: Weight normalized joint torque contributions of the spring-damper forces for the
synthesized gaits using the Multi Objective criterion and different prescribed average walking
velocities. Here we only show the passive forces resulting from the spring-damper elements at
the joints. Plots of the full joint forces that include both active and passive contributions are
shown in Figure A.15.
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Spring-Damper Parameters
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Figure A.17: Spring-damper parameters that we obtained by solving the gait synthesis formula-
tion using prescribed average walking velocities. The dashed vertical lines for in the rest pose
plots show upper and lower bounds for the parameters.
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