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Untersuchungen von Halogenoxiden in der Grenzschicht mit Multi-Axis-
DOAS und Landpfad-DOAS
Reaktive Halogenverbindungen (insbesondere Halogenoxide) sind wegen ihres großen Ein-
flusses auf Ozon von großer Bedeutung für die Chemie der Troposphäre. Dies wurde zum
ersten Mal während Episoden von völligem Abbau des bodennahen Ozons nach Sonnen-
aufgang im polaren Frühjahr durch Bromoxid (BrO) entdeckt. Halogenoxidvorkommen
wurden zwischenzeitlich auch in mittleren Breiten an Küsten (Jodoxid, IO und Joddioxid,
OIO) und im Toten Meer Becken (BrO) gefunden. Neue Ergebnisse von Feldmessungen,
die im Rahmen dieser Arbeit an Meßorten in der Arktis und in mittleren Breiten durch-
geführt wurden, werden hier vorgestellt. BrO und seine vertikale Verteilung in Boden-
nähe wurden während Ozonverlustereignissen in arktischen Gebieten Kanadas in hohen
und mittleren geographischen Breiten beobachtet. Die ersten gleichzeitigen Messungen
von BrO und IO in der arktischen bodennahen Grenzschicht wurden mit bodengestützter
MAX-DOAS gemacht, die im Rahmen dieser Arbeit entwickelt wurde. Die Messungen
an der Hudson Bay stellen die südlichsten und ersten direkten Messungen von bodenna-
hem Ozonverlust in der Arktis durch BrO dar und erlaubten zum ersten Mal, die Tag-
und Nachtchemie von Bromoxid zeitlich hochaufgelöst zu untersuchen. Molekulares Brom
wurde als eine wichtige nächtliche Reservoirsubstanz identifiziert, die bei Sonnenaufgang
nach ihrem photolytischen Abbau Ozonverluste startet. Die ersten gleichzeitigen, zeitlich
hochaufgelösten Messungen von BrO und elementarem Quecksilber in der Gasphase in der
kanadischen Arktis stützen die vorgeschlagene Schlüsselrolle von BrO als Oxidationsmit-
tel von elementarem Quecksilber in der Gasphase während des polaren Frühjahrs. Weitere
Messungen von Halogenoxiden an Reinluft- und mäßig verschmutzten Meßstationen erga-
ben zusätzliche Konzentrationsdaten und Obergrenzen für Halogenoxide.

Halogen Oxide Studies in the Boundary Layer by Multi Axis Differential
Optical Absorption Spectroscopy and Active Longpath DOAS
The importance of reactive halogen species (particularly halogen oxides) in the troposphere
is due to their strong effect on tropospheric ozone levels, which has been first discovered
during surface ozone depletion episodes in the polar boundary layer after polar sunrise
(bromine oxide, BrO). Halogen oxides have also been reported from mid-latitude coastal
sites (iodine oxide, IO and iodine dioxide, OIO) and from the Dead Sea basin (BrO).
Results from the field studies performed in framework of this thesis at Arctic and mid-
latitude locations are presented here. BrO and its vertical profile near the ground has
been observed during surface ozone destruction in the Canadian high and low Arctic. First
simultaneous measurements of BrO and IO in the Arctic boundary layer were performed
by ground-based MAX-DOAS, which was developed within this work. The measurements
at the Hudson Bay represent the southernmost and first direct observations of Arctic
surface ozone losses due to BrO and allowed for the first time to study the day and
nighttime chemistry of BrO at high time resolution. Molecular bromine was inferred to be
a major reservoir compound during the night, initiating sunrise ozone destruction upon
photolysis. The first simultaneous measurements of BrO and gas phase elemental mercury
at high time resolution in the Canadian Arctic support the proposed key role of BrO as
oxidant for mercury in the gas phase during polar springtime. Further measurements of
halogen oxides at clean and moderately polluted mid-latitude coastal sites yielded new
field data on halogen oxide concentrations and upper limits at different pollution levels.
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Chapter 1

Introduction

Atmospheric ozone has become a major concern since the discovery of the ozone hole

by Farman et al. [1985]. This observation proved, to what extent anthropogenic activ-

ities can influence environmental conditions in the atmosphere. At that time total at-

mospheric ozone above Antarctica during spring was found to have decreased to below

200 Dobson Units1, which was only about 70% of the values observed in the years be-

fore. In the following years springtime ozone columns fell even below 100 DU. This ob-

servation was very important, since the ozone layer protects life on Earth against the

harmful ultraviolet radiation of the sun. A slight decrease in the stratospheric ozone

concentration could be explained by the suggestions of Molina and Rowland [1974] and

Stolarski and Cicerone [1974] that reactive chlorine compounds could be involved in cat-

alytic ozone destruction cycles. The predicted global ozone loss due to anthropogenic emis-

sions of CFCs (chlorofluorocarbons) and halons (brominated organic compounds) into the

atmosphere was estimated to 10-20% over the next 50-100 years. However, they could not

explain the observation of the Antarctic ozone hole reported by Farman et al. [1985]. In

1986, Solomon et al. suggested that chlorine compounds might react on the surfaces of

polar stratospheric clouds (PSCs) which occur at the low temperatures in the Antarctic

stratosphere during polar night. McElroy et al. [1986] proposed additional ozone destruc-

tion cycles involving combined chemistry of reactive chlorine and bromine. These theories

were confirmed by many studies in the following years, which proved the key role of reac-

tive halogen compounds (chlorine and bromine) in stratospheric ozone chemistry.

In the mid 1980s sudden depletion events of ozone in the planetary boundary layer2

were reported during springtime from several Arctic sites [Oltmans and Komhyr 1986;

1One Dobson Unit (DU) corresponds to an O3 column of 0.01mm at standard pressure and
temperature

2The Planetary Boundary Layer (PBL) is the lowermost region of the troposphere which is
directly influenced by friction on the earth’s surface. Vertical mixing of trace gases and momentum
is usually fast, leading to a generally well-mixed boundary layer of about 1 km vertical extent,
depending on the stability conditions.

1
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Bottenheim et al. 1986]. Within hours to days ozone levels at the surface frequently

dropped to unmeasurable values in the weeks and months following polar sunrise. It

turned out that also in the planetary boundary layer reactive halogen compounds

(mainly bromine) are involved in catalytic ozone destruction during Arctic spring

[Barrie et al. 1988; Barrie and Platt 1997]. Most recently, indications and direct measure-

ments of the presence of reactive bromine in the free troposphere have been reported as well

[Harder et al. 1998; Frieß et al. 1999; McElroy et al. 1999; van Roozendael et al. 2000;

Fitzenberger et al. 2000]. Halogen species are therefore assumed to have an influence

on the ozone chemistry of the atmosphere on a global scale. Ground-based mea-

surements have subsequently discovered the reactive halogen species bromine monox-

ide [Hausmann and Platt 1994], iodine monoxide [Alicke et al. 1999] and iodine dioxide

[Hebestreit 2001; Allan et al. 2001] by Longpath-DOAS measurements in the boundary

layer. However, many open questions still remained:

• What is the global distribution of reactive halogen species in the boundary layer?

• What are the release processes for the reactive halogen compounds observed at

different locations?

• What are the levels of reactive halogens in the free troposphere?

• How can reactive halogen species influence the ozone budget in the troposphere on

a global scale?

• What are the consequences for the oxidizing capacity of the atmosphere and the

global radiation budget?

In this PhD thesis field studies on reactive halogen species were carried out at various

coastal sites yielding highly interesting results which have not been reported in the liter-

ature so far.

Outline of the thesis

First an overview of the relevant atmospheric chemistry of ozone and reactive halogen

species is given in the second chapter. Both reactive bromine and iodine chemistry is

described in detail. An additional section is included on atmospheric mercury, which is

supposed to be strongly influenced by reactive bromine in polar regions. The third chapter

introduces the measurement technique and related concepts used in this study. The central

technique applied in this work is the differential optical absorption spectroscopy (DOAS)

method. An overview is given on the principles and details of the DOAS analysis procedure.

Special aspects of active and passive DOAS instruments, which were both applied in this

work are also described. For passive DOAS of scattered sunlight the understanding of the

processes which determine the radiative transfer in the atmosphere is essential. Therefore
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the basic atmospheric processes and the airmass factor concept used for modelling the

radiative transfer is described in this chapter. After a brief overview of the off axis DOAS

method, the MAX-DOAS3 technique is introduced, which was developed in this work based

on off axis DOAS. Since MAX-DOAS represents a significant new development and opens a

wide field of future applications, the method is described in detail and possible applications

are discussed. The fourth chapter presents the employed hardware for the measurements.

The custom built MAX-DOAS system as well as a state of the art Longpath-DOAS system

are described and the main components are characterized. Additionally, the new mini-

DOAS instruments tested during this thesis are briefly shown. The fifth chapter presents

two preparatory and the three main field campaigns carried out as major experimental part

of this work. The respective measurement location and climatology as well as the performed

DOAS and related measurements are characterized in detail. Finally the results of the field

measurements of halogen oxide radicals are presented in the sixth chapter, together with

interpretation of the data and comparison with previous findings and model studies, which

have been performed in this work to simulate the situations encountered during the field

studies. The main results of this work are summarized in the final chapter seven and a

short outlook is given on the future of this research field.

3Multi-Axis-DOAS
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Chapter 2

The Atmospheric Chemistry of
Halogens

In this chapter the atmospheric chemistry of halogens species, their impact on ozone

chemistry, relevant radicals and their role as oxidants in the atmosphere is discussed.

A brief introduction on atmospheric ozone is given in section 2.1. An overview of the

main reaction pathways of halogen species in the atmosphere and in particular in the

troposphere is given in section 2.2. The sources and sinks of bromine compounds in the

troposphere and their impact on tropospheric ozone, particularly in the boundary layer,

is subject of section 2.3. Section 2.4 deals with the sources, recycling and sinks of iodine

compounds in the marine boundary layer. The possible involvement of reactive halogens

in the atmospheric cycling of mercury species is addressed in section 2.5.

2.1 Ozone in the Atmosphere

Ozone was first proposed as an atmospheric constituent by [Schönbein 1840]. Its existence

in the troposphere was then established in 1858 by chemical means [Houzeau 1858]. In the

late 19th century subsequent spectroscopic studies in the visible and ultraviolet regions

showed, that ozone is present at a higher mixing ratio in the upper atmosphere than near

the ground [Hartley 1881]. The presence of ozone in the stratosphere, with a maximum

concentration between 15 and 30 km altitude, the so-called ozone layer, protects life from

harmful UV radiation, which can affect the health of humans, animals and plants. In 1930

the first theory on the photochemical formation of ozone in the stratosphere predicting a

maximum concentration around 20 km was proposed by Chapman [1930] (see Figure 2.2).

The much lower actual ozone levels measured were subsequently explained by numerous

chemical species present in the stratosphere, such as hydrogen and nitrogen compounds

[Bates and Nicolet 1950; Crutzen 1970; Johnston 1971]. A possible role of halogen com-

pounds in stratosphere was already proposed by Crutzen [1973]. In 1985 the discovery of

5
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Figure 2.1: Typical ozone sonde profile from the ground to 35 km measured during the
ALERT2000 field campaign

the Antarctic ozone hole by Farman et al. [1985] lead to a growing interest in stratospheric

ozone chemistry.

Only about 10% of the total ozone column is located in the troposphere. However, also in

the troposphere ozone is a key component being the most important precursor of hydroxyl

radicals (OH). The OH radical is the most important oxidizing species in the daytime

atmosphere (see e.g. review by Crutzen and Zimmermann [1991]) and therefore the key

component in the degradation and removal of pollutants from the atmosphere. It is also

the central compound in the formation of ozone in both, polluted and clean areas and

contributes to the radiative forcing as a greenhouse gas.

Figure 2.1 shows a typical ozone vertical profile with the concentration and mixing ratio of

ozone in the atmosphere as a function of altitude. The ozone sonde profile was measured

during the ALERT2000 field campaign and represents typical background levels. In the

following two sections the sources and sinks of stratospheric and tropospheric ozone will

be explained.
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Figure 2.2: The Chapman cycle

2.1.1 Stratospheric Ozone

Since ozone is a strong absorber in the ultraviolet spectral region (see cross section in

Figure 3.2), it is one of the key species in the earth’s atmosphere. The formation and

destruction of ozone in the stratosphere can be described by the so-called odd-oxygen

chemistry. The production of ozone is initiated by the photolysis of molecular oxygen

[Chapman 1930]:

O2 + hν −→ 2O(3P ) λ ≤ 242nm (2.1a)

O(3P ) +O2 +M −→ O3 +M (2.1b)

Ozone is formed via the reaction (2.1b) of O + O2 with a collision partner M. The

following reactions lead to destruction of ozone:

O3 + hν −→ O2 +O(1D) λ ≤ 320nm (2.2a)

O(1D) +M −→ O(3P ) +M (2.2b)

O3 + hν −→ O2 +O(3P ) λ ≤ 1180nm (2.2c)

2O(3P ) +M −→ O2 +M (2.2d)

O(3P ) +O3 −→ 2O2 (2.2e)

Reactions (2.1b) and the photolysis of ozone ((2.2a) and (2.2c)) rapidly interconvert O

and O3, which provides the rationale for the concept of odd oxygen (O and O3). Even

oxygen is defined as O2. Since reaction (2.2d) is known to be too slow for it to play a part

in stratospheric chemistry, (2.2e) represents the only loss process for odd oxygen in the

chapman cycle. The reaction scheme is shown in Figure 2.2.

Soon it became clear that the observed ozone profiles cannot be explained by the Chapman

cycle alone, but that other ozone destroying mechanisms must exist. Model calculations

including only oxygen chemistry strongly overestimated the stratospheric ozone abundance

by more than a factor of two. Therefore additional sinks for ozone must be important. A
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set of ozone destroying reaction cycles, involving hydrogen oxides, was first proposed by

Bates and Nicolet [1950]:

Cycle a)

O +OH −→ O2 +H (2.3a)

H +O2 +M −→ HO2 +M (2.3b)

O3 +HO2 −→ 2O2 +OH (2.3c)

net: O +O3 −→ O2

Cycle b)

O +OH −→ O2 +H (2.4a)

H +O3 +M −→ OH +O2 +M (2.4b)

net: O +O3 −→ 2O2

Cycle c)

O3 +OH −→ O2 +HO2 (2.5a)

O +HO2 −→ OH +O2 (2.5b)

net: O +O3 −→ 2O2

OH is produced in the stratosphere by the reaction of oxygen atoms with water vapor or

methane (CH4). The stratosphere appears to be very dry since the tropopause acts as a cold

trap and therefore prevents tropospheric water vapor from mixing into the stratosphere.

Instead, water vapor is produced in the stratosphere by the following reactions:

CH4 +O(1D) −→ OH + CH3 (2.6a)

CH4 +OH −→ H2O + CH3 (2.6b)

O(1D) +H2O −→ 2OH (2.6c)

The reaction chains (2.3) to (2.5) were the first of numerous catalytic reaction cycles

proposed for the destruction of ozone: the compound responsible for the conversion of

ozone to molecular oxygen (OH) is not consumed during the reaction cycles but only

acts as a catalyst. It therefore remains available for the destruction of ozone unless it is

removed by other sinks. Catalytic species have a strong impact on the ozone budget even

at very low concentrations. The class of odd hydrogen compounds, i.e. OH and HO2, can

be summarized as HOx.
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Similar catalytic ozone destruction cycles involve nitrogen oxides [Crutzen 1970;

Johnston 1971]:

O3 +NO −→ O2 +NO2 (2.7a)

O +NO2 −→ NO +O2 (2.7b)

net: O +O3 −→ 2O2

O3 +NO −→ O2 +NO2 (2.8a)

NO2 +O3 −→ NO3 +O2 (2.8b)

NO3 + hν −→ NO +O2 (2.8c)

net: 2O3 + hν −→ 3O2

Nitrogen oxides are produced in the stratosphere mainly by oxidation of N2O, which is

a stable, well-mixed constituent of the atmosphere with a mixing ratio of ≈306 ppb. It is

biogenically emitted from soils or the oceans and destroyed in the stratosphere:

N2O +O(1D)→ 2NO (2.9)

As for hydrogen compounds NOx denotes the family of the reactive nitrogen compounds

NO, NO2 and NO3, while all inorganic nitrogen species are summarized as NOy.

Together with the following catalytic cycles involving chlorine and combined chlorine-

bromine chemistry, the consideration of the catalytic cycles described above leads

to an ozone budget in the stratosphere which is consistent with the observations

[Molina and Rowland 1974; Molina and Molina 1987; McElroy et al. 1986].

Cl +O3 −→ ClO +O2 (2.10a)

ClO +O −→ Cl +O2 (2.10b)

net: O +O3 −→ 2O2

Cl +O3 −→ ClO +O2 (2.11a)

Cl +O3 −→ ClO +O2 (2.11b)

ClO + ClO +M −→ Cl2O2 +M (2.11c)

Cl2O2 + hν −→ Cl + ClO2 (2.11d)

ClO2 +M −→ Cl +O2 +M (2.11e)

net: 2O3 −→ 3O2
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Cl +O3 −→ ClO +O2 (2.12a)

Br +O3 −→ BrO +O2 (2.12b)

BrO + ClO −→ Br + ClO2 (2.12c)

ClO2 +M −→ Cl +O2 +M (2.12d)

net: 2O3 −→ 3O2

Under normal conditions most of the chlorine in the stratosphere is usually bound up

in the reservoir species hydrogen chloride (HCl) and chlorine nitrate (ClONO2) formed in

the reactions

Cl + CH4 −→ HCl + CH3 (2.13)

ClO +NO2 +M −→ ClONO2 +M (2.14)

Under the special conditions in the polar winter stratosphere (darkness, cold temperatures,

stable polar vortex), heterogeneous reactions on the surface of Polar Stratospheric Clouds

(PSCs) can transform a huge fraction of chlorine into activated forms, e.g. into Cl2 by the

reaction:

ClONO2 +HCl
het
−→ Cl2 +HNO3 (2.15)

As a result during polar winter molecular chlorine can accumulate inside the polar vortex.

As soon as sunlight is present the photolysis of Cl2

Cl2 + hν −→ Cl + Cl (2.16)

produces chlorine atoms which can efficiently destroy ozone in the catalytic cycles 2.10,

2.11 and - if bromine is present - 2.12. During polar spring these processes lead to the

Stratospheric ozone hole, which was first discovered by Farman et al. [1985] over Antarc-

tica.

2.1.2 Tropospheric Ozone

The production of ozone by the reaction sequence 2.1 is not possible in the troposphere,

since UV light below 240 nm necessary to photolyze O2 cannot penetrate into the tropo-

sphere due to complete absorption by O2 (λ < 242nm) and O3 (240nm < λ < 290nm)

in the stratosphere. Therefore, except for the urban areas during pollution episodes, it was

commonly assumed until the late 1970s that tropospheric ozone has its origin in the strato-

sphere (e.g. [Junge 1963]). It was believed that stratospheric ozone was mixed through the

tropopause region exhibiting a gradient towards the earth’s surface which was thought to
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be the dominant sink. Fishman and Crutzen [1978] compared tropospheric ozone concen-

trations in the two hemispheres with the then known source and sink mechanisms. It turned

out that only about 50% of the tropospheric ozone has its origin in the stratosphere and is

transported through the tropopause. Instead, as proposed by Fishman and Crutzen [1978],

the production of ozone in the troposphere is driven by NOx chemistry and reactions in-

volving methane or higher hydrocarbons. A key sequence for the formation and destruction

of tropospheric ozone are reactions involving NOx:

NO2 + hν −→ NO +O(3P ) λ ≤ 420nm (2.17a)

O(3P ) +O2 +M −→ O3 +M k1 = 1.5 · 10−14 (2.17b)

NO +O3 −→ NO2 +O2 k2 = 1.8 · 10−12 (2.17c)

with the rate constants given in units of cm3 molec−1 s−1. The ozone concentration is

then determined by the photo stationary steady state of reactions (2.17), which can be

expressed as the so-called Leighton ratio L:

L ≡
[NO]

[NO2]
=
J(NO2)

[O3] · k2
(2.18)

Remote regions are, in contrast to areas with anthropogenic influence, generally charac-

terized by low NOx with mixing ratios as low as 5-10 ppt e.g. in the Antarctic boundary

layer [Jones et al. 1999]. Similarly, in the arctic boundary layer NOx mixing ratios typi-

cally range between 10 and 20 ppt ([Beine et al. 2001], see also section 5.4). Under these

conditions, nitrogen and hydrogen oxides are able to produce ozone during the degradation

of methane or higher hydrocarbons in the following reaction sequence:

CH4 +OH −→ CH3 +H2O (2.19a)

CH3 +O2 +M −→ CH3O2 +M (2.19b)

CH3O2 +NO −→ CH3O +NO2 (2.19c)

CH3O +O2 −→ CH2O +HO2 (2.19d)

CH2O + hν
50%
−→ HCO +H (2.19e)

CH2O + hν
50%
−→ H2 + CO (2.19f)

HCO +O2 +M −→ CO +HO2 +M (2.19g)

H +O2 +M −→ HO2 +M (2.19h)

HO2 +NO −→ OH +NO2 (2.19i)

NO2 + hν −→ NO +O (2.19j)

O +O2 +M −→ O3 +M (2.19k)

net: CH4 + xO2 −→ CO + 2H2O + yO3
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The number of ozone molecules produced by the degradation of one methane molecule is

y≈2.5. Ozone producing reaction schemes similar to (2.19) can also involve higher hydro-

carbons. Besides the production of ozone, this reaction mechanism is an important source

of carbon monoxide (CO) in the troposphere.

Carbon monoxide can produce additional ozone according to the following reactions

[Fishman and Crutzen 1978]:

CO +OH −→ CO2 +H (2.20a)

H +O2 +M −→ HO2 +M (2.20b)

HO2 +NO −→ OH +NO2 (2.20c)

NO2 + hν −→ NO +O (2.20d)

O2 +O +M −→ O3 +M (2.20e)

net: CO + 2O2 −→ CO2 +O3

Carbon monoxide, like CH4, however, only produces ozone if the NOx concentrations are

above a threshold value. This is not the case for low NOx conditions of remote areas

with background conditions of typically 10 ppt. Instead, CO and hydrocarbons lead to

destruction of ozone under low NOx conditions:

CO +OH −→ CO2 +H (2.21a)

H +O2 +M −→ HO2 +M (2.21b)

HO2 +O3 −→ OH + 2O2 (2.21c)

net: CO +O3 −→ CO2 +O2

The ozone mixing ratios in the unpolluted marine boundary (e.g. in the southern Indian

ocean) range from ≈ 13 ppb during summer to ≈ 30 ppb during winter [Gros et al. 1998].

This pronounced seasonal variation of ozone is partly due to the seasonal variation of O3

input from the stratosphere and by long range transport of ozone producing pollutants

from biomass burning. The summer minimum of ozone can be explained by photochemical

O3 depletion which is controlled by the availability of OH radicals. The concentration of

OH depends on the solar flux since OH is generated by the photolysis of O3 to O(1D),

followed by its reaction with water vapor:

O3 + hν −→ O2 +O(1D) λ ≤ 320nm (2.22a)

O(1D) +H2O −→ 2OH (2.22b)

The removal of OH occurs via the reaction with CO (reactions (2.20a) and (2.21a)), with

CH4 (reactions (2.19a) and (2.19b)) or reactions with other hydrocarbons.

The classical picture of the O3 chemistry in the troposphere is, however, incomplete and
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far from being completely understood.

In the weeks and months after polar sunrise, the ozone budget in the polar marine bound-

ary layer is strongly affected by halogen chemistry. The mechanisms leading to the some-

times complete depletion of surface ozone during such periods, the polar tropospheric ozone

hole, are described in the next section and the role of bromine is explained in section 2.3.

There are also several field studies at mid-latitudes showing a behavior of ozone mixing

ratios which could not be explained by standard OH and NOx chemistry. Recent measure-

ments by Nagao et al. [1999] and Dickerson et al. [1999] suggest that ozone destruction

by halogen chemistry could play a significant role in the remote marine boundary layer at

mid- and low latitudes. Nagao et al. [1999] proposed that the observed sunrise ozone de-

struction may be due to reactive halogens released from nighttime reservoir species which

are rapidly photolyzed during sunrise.

2.2 Reactive Halogen Species in the Troposphere

Reactive Halogen Species (RHS) comprise the halogen atoms X, their monoxides XO,

higher oxides XnOm, the hypohalous acids HOX, the halogen molecules X2 and interhalo-

gen compounds XY (X,Y = F, Cl, Br, I). In contrast to RHS the reactivity of reservoir

species like halogen-NOx compounds (XNOx) or hydrogen halides (HX) are comparably

slow. As will be described in this section, there are two main catalytic reaction cycles

involving halogens which can destroy ozone in the troposphere, particularly in the marine

boundary layer: Cycle (I) is based on the XO-self- or XO-YO-cross-reaction, cycle (II) on

the reaction of XO with HOx radicals.

Over the past decade significant amounts of XO were found in the marine bound-

ary layer (MBL) of various coastal areas. Strong and sudden increases in the BrO

mixing ratio during spring were found both in the Arctic [Hausmann and Platt 1994;

Tuckermann et al. 1997; Martinez et al. 1999; McElroy et al. 1999] and in the Antarctic

[Kreher et al. 1997; Frieß 1997; Frieß 2001] boundary layer. Recently a study suggesting

a free tropospheric background of 1-3 ppt of BrO based on multi-platform observations

of BrO has been presented by van Roozendael et al. [2000]. Huge clouds of highly el-

evated BrO amounts over the polar sea ice of both hemispheres, with areas spanning

several thousand square kilometers, were observed from satellite [Wagner and Platt 1998;

Richter et al. 1998; Hegels et al. 1998]. It has been proposed that these boundary layer

BrO clouds may also contribute to BrO in the free troposphere [McElroy et al. 1999;

Roscoe et al. 2001]. These events of highly elevated BrO in polar regions, ground-based

measurements showed levels of up to 30 ppt, were always coincident with the destruction

of ozone in the boundary layer, indicating that reactive bromine is responsible for catalytic

ozone destruction. Enhanced BrO in the boundary layer associated with ozone destruction

was also detected over the Caspian Sea [Wagner et al. 2001] and in the Dead Sea basin
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[Hebestreit et al. 1999].

Iodine oxide (IO) was first observed at Mace Head, Ireland by Alicke et al. [1999] at

levels of up to 6 ppt. Recently IO and also OIO were found at various coastal sites

with mixing ratios in the ppt range: on Tenerife, Canary Islands and Cape Grim, Tas-

mania [Allan et al. 2000; Allan et al. 2001], at Mace Head, Ireland [Allan et al. 2000;

Hebestreit 2001], in the European Arctic [Wittrock et al. 2000] and in Antarctica

[Frieß et al. 2001; Frieß 2001]. Figure 2.3 shows the regions where tropospheric reactive

halogen species were measured. Besides DOAS measurements of halogen oxides photolyz-

able bromine species (mostly HOBr, BrO) have been detected by Impey et al. [1999] using

a Photolyzable Halogen Detector (PHD, conversion of reactive halogens to chloroacetone

and bromoacetone and subsequent GC analysis). Hydrocarbon Clock measurements to

derive chlorine and bromine atom concentrations have been reported from various lo-

cations, which are not all shown on the map [Jobson et al. 1994; Ramacher et al. 1997;

Ramacher et al. 1999; Solberg et al. 1996; Ariya et al. 1999]. Additionally, chemical am-

plifier measurements by Perner et al. [1999] suggest that ClO is present in the Arctic

boundary layer during ozone depletion periods.

2.2.1 Reaction Pathways of Reactive Halogen Species in the
Troposphere

The main reaction schemes of the halogens Cl, Br and I are very similar regarding tropo-

spheric chemistry1. As will be discussed later, there are differences in the rate constants

and different quantum yields concerning their photochemical reaction channels (see e.g.

Table 2.1). Therefore, if the reactions given are similar for the different halogens involved,

X and Y will be used instead of the chemical symbols Cl, Br or I. Several rate constants

and photolysis frequencies of RHS, which are important with regard to the two different

ozone destruction cycles involving halogens, are listed in Table 2.1. Halogen atoms (X,

Y) and their monoxides (XO, YO) are the key species in the ozone destruction cycles

[Hausmann and Platt 1994; LeBras and Platt 1995; Platt and Janssen 1995]. Halogen ox-

ides are formed in reaction with ozone (see reactions 2.23a and 2.23b below). Halogen

atoms in the troposphere have a very short lifetime in the troposphere against their reac-

tion with ozone (lifetime τ=0.08 s, 0.8 s, 0.8 s for Cl, Br, I). The typical reaction scheme

for the first catalytic ozone destruction cycle involving reactive halogen species is

1As will be discussed at the end of this section, fluorine atoms mainly react with H2O or
hydrocarbons to HF, which is rapidly removed from the atmosphere.
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Figure 2.3: Overview of Locations, where Measurements of Reactive Halogen Species in the troposphere have been reported:
yellow symbols indicate reactive bromine (mostly BrO), green symbols reactive iodine (dark: IO, light: OIO) compounds. GOME
satellite measurements are indicated as red hashed areas. The red symbols mark the locations, where measurements of halogen
oxides were performed in this work: Alert (BrO, IO), Kuujjuarapik (BrO, upper limits for IO, OIO, OBrO, OClO) and Kerguelen
(IO). The light red symbols represent upper limits derived in this work.
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Reaction rate constant k [ cm3

molec·s
] Reference

photolysis frequency j [ 1
s
]

ClO + ClO −→ Productsa k=1.6 · 10−14 [DeMore et al. 1997]
BrO + ClO −→ Products k=1.4 · 10−11 [DeMore et al. 1997]
IO + ClO −→ Products k=1.3 · 10−11 [DeMore et al. 1997]
BrO + BrO −→ Products k=3.2 · 10−12 [DeMore et al. 1997]
BrO + IO −→ Products k=6.9 · 10−11 [DeMore et al. 1997]
IO + IO −→ Products k=8.0 · 10−11 [DeMore et al. 1997]
Cl + O3 −→ ClO + O2 k=1.2 · 10−11 [DeMore et al. 1997]
Br + O3 −→ BrO + O2 k=1.2 · 10−12 [DeMore et al. 1997]
I + O3 −→ IO + O2 k=1.2 · 10−12 [DeMore et al. 1997]
ClO + HO2 −→ HOCl + O2 k=5.0 · 10−12 [DeMore et al. 1997]
BrO + HO2 −→ HOBr + O2 k=2.1 · 10−11 [DeMore et al. 1997]
IO + HO2 −→ HOI + O2 k=8.4 · 10−11 [DeMore et al. 1997]
Cl2 + hν −→ 2Cl j=0.0021 [Röth et al. 1996]
BrCl+hν −→ Br+Cl j=0.012 [Röth et al. 1996]
Br2 + hν −→ 2Br j=0.044 [Röth et al. 1996]
I2 + hν −→ 2I j=0.26 [Tellinghuisen 1973]
ClO+hν −→ Cl+O j=4.2 · 10−6 [Röth et al. 1996]
BrO+hν −→ Br+O j=0.035 [Röth et al. 1996]
IO+hν −→ I+O j=0.35 [Lazlo et al. 1995]
HOCl+hν −→ Cl + OH j=1.8 · 10−4 [Röth et al. 1996]
HOBr+hν −→ Br + OH j=7.6 · 10−4 [Röth et al. 1996]
HOI+hν −→ I + OH j=5.9 · 10−3 [Bauer et al. 1998]
aSee reactions 2.23c, 2.23d, 2.23e and Table 2.2 for the possible products.
Branching ratios vary strongly for different halogens.

Table 2.1: List of rate constants and photolysis frequencies. Photolysis frequencies are
calculated for 70◦ SZA at 80◦N and surface albedo of 0.9

Cycle I:

X +O3 −→ XO +O2 (2.23a)

Y +O3 −→ Y O +O2 (2.23b)

XO + Y O −→ X + Y +O2 (2.23c)

−→ XY +O2 (2.23d)

−→ OXO + Y (2.23e)

net: 2O3 −→ 3O2

where X and Y denote the halogen atoms (Cl, Br, or I). An overview of the possible

reaction products and the respective branching ratios for the halogen oxide self- and cross

reactions is given in Table 2.2. The halogen or interhalogen molecules XY (e.g. Br2 or
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ClO
kXO+YO

[10−12 cm3

molec·s
]

BrO
kXO+YO

[10−12 cm3

molec·s
]

IO
kXO+YO

[10−12 cm3

molec·s
]

ClO

−→ Cl2O
a
2

29%
−→ Cl2+O2
50%
−→ Cl+ClOO
21%
−→ Cl+OClO

1.6×10−2b

44%
−→ Br+Cl+O2
7%
−→ BrCl+O2
49%
−→ OClO+Br

13.9b

55%
−→ I+OClO
25%
−→ I+Cl+O2
20%
−→ ICl+O2

6.1c

BrO
85%
−→ Br+Br+O2
15%
−→ Br2+O2

3.2b

≤30%
−→ I+Br+O2
≤5%
−→ IBr+O2
65−93%
−→ OIO+Br
≤15%
−→ OBrO+I
∼0%
−→ IBrO2+M

85d

IO

7−15%
−→ 2I+O2
≤5%
−→ I2+O2
30−46%
−→ OIO+I

42−45%
−→ I2O2+M

82e

kXO+YO

kBrO+BrO

kClO+ClO

kBrO+BrO
=5×10−3

kClO+BrO

kBrO+BrO
= 4.3

kBrO+BrO

kBrO+BrO
= 1

kClO+IO

kBrO+BrO
= 1.9

kBrO+IO

kBrO+BrO
= 27

kIO+IO

kBrO+BrO
= 26

a not stable in the troposphere due to thermal decomposition d [Rowley et al. 2001]
b rate constant and branching ratios taken from [DeMore et al. 1997] e [Bloss et al. 2001]
c [Bedjanian et al. 1997]

Table 2.2: Rate constants and branching ratios of halogen oxide self- and cross-reactions
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BrCl) formed in reaction (2.23d) are rapidly photolyzed during daytime:

XY + hν −→ X + Y (2.24)

Reaction (2.23e) does not lead to a net destruction of ozone, since photolysis of OXO leads

to the formation of oxygen atoms which recombine quickly with O2 to form ozone:

OXO + hν −→ XO +O (2.25a)

O +O2 +M −→ O3 +M (2.25b)

In case of X=I, however, the photo-dissociation of OIO possibly yields I and O2, leading

to a net ozone destruction [Plane et al. 2001; Hebestreit 2001]. This will be discussed in

section 2.4.

The reaction of XO with YO ((2.23c) and (2.23d)) is the rate limiting step of the

reaction cycle. The self reactions (X=Y=Br, X=Y=Cl) are usually slower than the cross

reactions (X=Br, Y=Cl). Particularly reactions involving iodine (X=I, Y=Br or Cl) are

very efficient in destroying ozone. The second catalytic cycle involves HOx radicals:

Cycle II:

X +O3 −→ XO +O2 (2.26a)

OH +O3 −→ HO2 +O2 (2.26b)

XO +HO2 −→ HOX +O2 (2.26c)

HOX + hν −→ OH +X (2.26d)

net: 2O3 + hν −→ 3O2

In the troposphere, reactive bromine is most important for catalytic ozone destruction.

For the example of bromine, at 15 ppt BrO the net effect of the HOx cycle (cycle II) is

comparable to that of cycle I (at a typical level of 1 ppt HO2). Note that the efficiency

of cycle II is linearly dependent on the XO concentration, whereas the XO dependence of

cycle I is quadratic. Thus at high XO levels cycle I will dominate, at low XO cycle II. At

30 ppt BrO, which are frequently observed during ozone depletion in the Arctic boundary

layer, 66% of the ozone destruction will take place by cycle I. In addition the efficiency of

cycles I and II can be enhanced by the presence of other halogen oxide species (i.e. IO,

ClO) due to cross reactions (e.g. reaction 2.23c for BrO + IO) when reaction 2.23b occurs

with IO or ClO instead of BrO.

An important loss channel for the halogen oxide formed in reaction (2.23a) is its photolysis

and the reaction with NO:

XO + hν −→ X +O (2.27)

XO +NO −→ X +NO2 (2.28)
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Figure 2.4: Ozone destruction rates of the different catalytic reaction cycles for the case
of iodine, as a function of the NOx concentration. Adapted from Stutz et al. [1999].

The photolysis of halogen oxides 2.27 leads to a null cycle with respect to ozone

destruction since the oxygen atom formed quickly recombines with O2 to yield ozone

(reaction 2.25b).

Stutz et al. [1999] calculated the importance of the different cycles for the ozone de-

struction rate d[O3]
dt as a function of the NOx mixing ratio (see Figure 2.4) for given 6 ppt

iodine oxide. Assuming no loss of reactive halogens and all self and cross reactions leading

to O3 destruction channels, an upper limit of the ozone loss rate as a function of XO

concentration can be expressed as:

−
d[O3]

dt
= 2 ·

∑

i,j

kXiO+YjO[XiO][YjO] +
∑

i

kXiO+HO2 [XiO][HO2] (2.29)

where the combined effects of the cycles I (including all self and cross reactions) and cycle

II are taken into account.

At high NOx concentrations, e.g. in the polluted marine boundary layer the exchange

reactions with the reservoir species XNO3 can significantly alter the partitioning of reactive

halogen species.

XO +NO2 −→ XNO3 (2.30a)

XNO3 + hν −→ XO +NO2 (2.30b)

However, these reactions represent a null cycle with no net chemistry as long as the

photolysis of XNO3 takes place in the XO + NO2 channel. If X + NO3 were formed
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instead, additional O3 loss would result.

Apart from its importance for the destruction of ozone the reaction of halogen oxides with

hydroperoxy radicals (2.26c) followed by the photolysis of the product from this reaction,

the hypohalous acids HOX (2.26d), also have a strong influence on the ratio of OH/HO2

[Stutz et al. 1999; Hebestreit 2001]. In analogy to reaction 2.26c, XO can also react with

organic peroxy radicals (RO2, R = organic group), e.g. the methyl peroxy radical, CH3O2,

instead of HO2. It has been shown in laboratory experiments that this reaction is very

efficient for X = Br [Aranda et al. 1997]. HOBr was formed in about 80 % of the reactions.

The efficiency of the catalytic ozone destruction cycles involving halogen radicals strongly

depends on the number of cycles that the reactive compounds X and XO can pass before

being lost to a reservoir species. Regarding the halogen group from fluorine over chlorine

and bromine to iodine, the reactivity of the halogen atoms decreases strongly. To assess

the role of a halogen species in ozone destruction the branching ratio for the reaction of

X with ozone (2.23a) and the reactions with hydrocarbons RH has to be considered. For

bromine and iodine the reactions with HOx are also important branching reactions:

X +RH −→ HX +R (2.31)

X +HO2 −→ HX +O2 (2.32)

XO +HO2 −→ HOX +O2 (2.33)

• Fluorine atoms released in the troposphere react very quickly with atmospheric

water vapor, which is much more abundant than hydrocarbons (e.g. CH4). HF is

stable against photolysis or reaction with OH. Therefore fluorine will always remain

in this passive form and has no effect on ozone chemistry [Wayne et al. 1995].

• Chlorine atoms react rapidly with CH4 and other hydrocarbons to form HCl. How-

ever, Cl can be in principle be activated by reaction of HCl with OH, and under

certain circumstances it is released as a byproduct of autocatalytic bromine release

(see section 2.3).

• Bromine atoms only react with unsaturated hydrocarbons and already oxidized

compounds like aldehydes.

• Iodine atoms almost exclusively react with ozone or other radicals.

The relative reaction rate
RO3

RO3
+

∑

RRH+RHO2
is a measure of the probability of the reaction

of a halogen atom with ozone. In Table 2.3 the situation for the four halogens is listed.

Table 2.3 shows, that fluorine is of no importance in the atmosphere since conversion to

HF is very fast. Therefore, as reactive halogen species in the troposphere only chlorine,

bromine and iodine are considered. In the case of chlorine about half of it is consumed by

the reaction with hydrocarbons. For bromine, however, the probability for reaction with
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X RH k∗X+RH typ[RH] RRH = kX+RH [RH]

(kX+O3
) (typ[O3]) (RO3

= kX+03
[O3])

RO3
RO3

+
∑

RRH+RHO2

RO3
∑

RRH+RHO2

[cm3s−1] [cm−3] [s−1]
F H2O 1.4 · 10−11 7 · 1016 2.8 · 106 3.5 · 10−6 3.5 · 10−6

CH4 6.4 · 10−11 4.0 · 1013 2.6 · 103
∑

RRH = 2.8 · 106

(O3 1.0 · 10−11 1.0 · 1012 10.0)
Cl CH4 1.0 · 10−13 4.0 · 1013 4.0 0.52 0.92

C2H6 5.7 · 10−11 3.0 · 1010 1.7
C3H8 1.4 · 10−10 1.0 · 1010 1.4
CH2O 7.3 · 10−11 1.0 · 1010 0.73
C2H2 2.1 · 10−10 1.0 · 1010 2.1
C2H4 3.1 · 10−10 5.0 · 109 1.5

∑

RRH = 11
(O3 1.2 · 10−11 1.0 · 1012 12.0)

Br CH2O 1.1 · 10−12 1.0 · 1010 0.01 0.984 60
HO2 2.0 · 10−12 1.0 · 108 2.0 · 10−4

∑

RRH = 2.0 · 10−2

(O3 1.2 · 10−12 1.0 · 1012 1.2)
I HO2 3.8 · 10−13 1.0 · 108 3.8 · 10−5 0.99997 3.1 · 104

(O3 1.2 · 10−12 1.0 · 1012 1.2)
∗rate constants taken from [DeMore et al. 1997]

Table 2.3: Comparison of the branching between reaction 2.31, 2.32 and 2.23a. The 6th

column is a measure of the probability of the reaction with ozone, the last column can be
seen as a zero order approximation for the number of ozone destruction cycles a halogen
atom can pass before being lost to the reservoir.

ozone is 98% and even higher with almost unity for iodine.

Assuming that all XO radicals formed in the reaction of X with O3 are 100% reconverted to

X atoms by self and cross reactions, the fraction of the rates RO3 of reaction 2.23a and the

sum of the rates RRH+RHO2 of reactions 2.31 and 2.32,
RO3

∑

RRH+RHO2
is an approximation

of the mean number of catalytic ozone destruction cycles that a halogen atom can pass.

From the last column in Table 2.3 one can see that Br and especially I are much more

efficient in destroying ozone than Cl.

To describe the partitioning between the main RHS X and XO the ratio of the halogen

oxide concentration [XO] and the corresponding halogen atom [X] is determined by the

relative rates of the reactions which convert X into XO (the halogen reaction with ozone

2.23a and the reaction with hydrocarbons RH and HOx (2.31, 2.32) and the reactions

transforming XO to X (NO reaction, self- or cross-reaction and photolysis (2.28, 2.23c,

2.27)):

[XO]

[X]
=

kX+O3 [O3] + kX+RH [RH]

kXO+NO[NO] + 2 · kXO+XO[XO] + kXO+Y O[Y O] + J(XO)
(2.34)

Due to the fast photolysis of the IO radical the IO/I ratio is between 1 and 10 for typical

NOx and O3 levels (e.g. [Platt and Janssen 1995; Vogt et al. 1996]). This is significantly

lower than that of the other halogens. BrO/Br and ClO/Cl are of the order of 100 and

1000 respectively [Barrie et al. 1988]. Figure 2.5 shows a schematic overview of the halogen
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Figure 2.5: Schematic overview of tropospheric halogen chemistry (X = Cl, Br, I),
adapted from Platt and Janssen [1995]. Heavy lines indicate ozone-destruction se-
quences. Sources of RHS are the release from sea salt and the photolysis of halocarbons.

chemistry in the troposphere adapted from Platt and Janssen [1995].

2.2.2 Sources of Reactive Halogen Species in the Tropo-
sphere

Halogen release mechanisms have been the subject of a number of model, laboratory

and field investigations. Despite some still unresolved details, two main sources can been

identified: Halogen release from sea salt and the photolysis of photolabile organohalogens.

Both processes will be described in this section.

Halogen Release from Sea Salt

The release of halogens from sea salt via heterogeneous reactions was introduced

by Holland [1978] two decades ago. In the early 1990s the first release mechanisms

were described by Fan and Jacob [1992], Mozurkewich [1995], Platt and Lehrer [1996],

Sander and Crutzen [1996] and Vogt et al. [1996]. Evidence from laboratory measure-

ments was reported by Oum et al. [1998], Behnke et al. [1997], Fickert et al. [1999] and

Kirchner et al. [1997] in the past years. By weight sea salt contains 55.7% Cl−, 0.19% Br−

and 2 ·10−5% I− Holland [1978]. As sea ice surfaces, salt deposits on snow and aerosol par-

ticles sea salt is in contact with the atmosphere. It represents a large reservoir of halogens,

is available at almost every coastline and - in form of aerosols - present over the open
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sea. However, the absolute atmospheric halogen input from sea salt remains uncertain

[Platt and Lehrer 1996; Wennberg 1999; Platt and Stutz 1998].

• Autocatalytic or Halogen-catalyzed RHS Liberation From (Sea) Salt

This very important process is based on the uptake of gaseous HOX (e.g. pro-

duced by reactions 2.26c or 2.33) on acidic salt surfaces [Fan and Jacob 1992;

Tang and McConnel 1996; Vogt et al. 1996] followed by the formation of an (inter-)

halogen molecule in the aqueous phase:

X +O3 −→ XO +O2 (2.35a)

XO +HO2 −→ HOX +O2 (2.35b)

(HOX)g −→ (HOX)aq (2.35c)

(HOX)aq + (Y −)aq + (H+)aq −→ (XY )aq +H2O (2.35d)

(XY )aq −→ (XY )g (2.35e)

XY + hν −→ X + Y (2.35f)

net: X +HO2 + (Y −)aq + (H+)aq +O3
hν
−→ X + Y +H2O + 2O2

XY (e.g. Br2 or BrCl) is highly volatile and quickly released to the gas phase. There

it is readily photolyzed during daytime (see e.g. Table 2.1) and reacts with ozone to

XO or YO (2.23a or 2.23b) again. Br2 and BrCl have been measured in the atmo-

sphere for the first time during the ALERT2000 field study by Foster et al. [2001].

Platt and Lehrer [1996] introduced the name ’bromine explosion’ for this mechanism

(cf. section 2.3.1), since it can lead to an exponential growth in the BrO concentra-

tion in the gas phase. The halogen atom X acts as a catalyst promoting the oxidation

of Br− to Br by O3. This reaction sequence has been demonstrated in laboratory

[Fickert et al. 1999] and modelling (see e.g. [Lehrer 1999]) investigations. The cur-

rent understanding is that bromine is mainly released by the autocatalytic process,

while chlorine is a by-product since bromine release is preferred to chlorine, even

though it is much less abundant in a sea salt solution [Fickert et al. 1999]. However,

the simultaneous release of small amounts of BrCl leads to a ’bromine-catalyzed

liberation of chlorine’. A ’chlorine explosion’ is much less probable due to very in-

efficient gas-phase conversion of Cl to HOCl. An ’iodine explosion’ is not expected

to occur since the concentration of iodine in sea salt is too small. However, previous

reactive iodine chemistry (see section 2.4) can lead to strong enrichments in partic-

ulate iodine, which are known to occur [Gäbler and Heumann 1993]. Additionally

reactive iodine can accelerate the release of Br and Cl from the sea salt due to

faster gas phase reactions [Vogt et al. 1999]. The required acidity (reaction 2.35d

only occurs at pH<6.5 [Fickert et al. 1999]) for the autocatalytic release processes

is supplied by HCl or other strong acids, such as HNO3 and H2SO4 (see below).
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• Halogen release via the attack of strong acids on halides

The attack of strong acids such as H2SO4 on sea salt aerosols is known to release

gaseous halogen compounds as e.g. HX:

H2SO4 + 2(NaX)aerosol −→ 2HX +Na2SO4 (2.36)

A recycling of gaseous HX via heterogeneous reactions is possible and is supposed to

be of major importance in polar regions [McFiggans et al. 2000; Sander et al. 1999;

Vogt et al. 1999] and in the remote marine boundary layer [Seisel and Rossi 1997].

On the surface of sea salt aerosols the reaction of HOX with HX is followed by the

release of X2 to the gas phase [Abbatt 1994; Abbatt 1995; Abbatt and Nowak 1997],

as originally suggested by Fan and Jacob [1992]. Afterwards the (inter)halogen

molecule is rapidly photolyzed (Table 2.1):

HOX +HX −→ X2 +H2O (2.37)

Seisel and Rossi [1997] discovered a reaction that requires cold and acidified aerosol

surfaces. Therefore this reaction of nitrous acid (HONO) and HBr

HONO +HBr −→ BrNO +H2O (2.38)

could be of importance in polar regions but not at mid latitudes. During the

ALERT2000 field campaign (see section 5.2) significant HONO production from

the snowpack by photochemical reactions was found by Zhou et al. [2001].

• Halogen release via NOy species

Antropogenically emitted species like NO2 and N2O5 have been found

to release halogens from sea salt [Finlayson-Pitts and Johnson 1988;

Finlayson-Pitts et al. 1989; Mozurkewich 1995]. In the presence of nitrogen

oxides heterogeneous reactions on aerosol surfaces like (2.39) are known to produce

halogenated nitrogen oxides which are photolabile (2.40) or which may also react

directly with sea salt (2.41) [Schweizer et al. 1999]:

(N2O5)g + (NaX)s −→ (XNO2)g + (NaNO3)s (2.39)

XNO2 + hν −→ X +NO2 (2.40)

(XNO2)g + (NaX)s −→ (NaNO2)s + (X2)g (2.41)

Under atmospheric conditions reaction 2.39 is very slow [Mozurkewich 1995]. How-

ever, in contrast to the other halogen release mechanisms described at the beginning

of this section, the formation of XNO2 and X2 can proceed without light, leading to

an accumulation of these photolabile species before sunrise (’dark source’ of RHS).

Nagao et al. [1999] observed O3 depletion events in the sub-tropical marine bound-

ary layer and proposed night-time halogen release followed by photolysis at sunrise
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for these events. Nevertheless, this source is the more effective the higher the NOx

values are, i.e. the more polluted the atmosphere is. Therefore it cannot be expected

to be the dominant process of halogen release in the remote marine boundary layer.

The uptake of NO3 by aqueous solutions of NaX leads to another night-time mech-

anism [Gershenzon et al. 1999]:

(NO3)g+(NaX)s ←→ (NO3−NaX)s; (NO3−NaX)s −→ NaNO3+(X)s (2.42)

The uptake coefficient was found to be near 0.01 for sea water by

Rudich et al. [1996], while Seisel and Rossi [1997] found 0.05 for dry NaCl.

Halogen Release from Degradation of Organohalogens

Organohalogens or halocarbons are emitted by a number of natural and anthropogenic

sources. The most important natural source is the emission from algae in the oceans

[Schall and Heumann 1993]. In total the source strength of methyl halides CH3X is about

(100−400) ·109 g CH3Br and 4 ·109 g CH3I/year. In addition, there are emissions of poly-

halogenated hydrocarbons like bromoform (tribromomethane, CHBr3) or iodoform (tri-

iodomethane, CHI3), dibromo- and diiodomethane (CH2Br2, CH2I2) of a short photolytic

lifetime (order of seconds in the marine boundary layer, see e.g. [Carpenter et al. 1999]).

Also, short-chained organic halogens including different halogen species such as CH2ClI or

CH2IBr [Wayne et al. 1995] have been detected in the atmosphere in significant amounts

(see Table 2.4). Recently the global total source strength of bromoform has been re-

assessed to 2.2 · 1011 g CHBr3/year [Carpenter and Liss 2000]. Especially in the trop-

ics biomass burning is another important anthropogenic source of halogenated hydrocar-

bons. Manø and Andreae [1994] estimate the man-made amount of methyl bromide to be

(10− 50) · 109 g CH3Br/year.

In contrast to CFCs, which are photostable in the troposphere, most brominated and iod-

inated halocarbons can be photolyzed even at low UV intensity in the planetary boundary

layer or the free troposphere. Table 2.4 shows the typical mixing ratios and photolytic

lifetimes in the troposphere for several halogenated hydrocarbons of importance for the

tropospheric halogen budget.

The comparatively short lifetimes of the iodinated hydrocarbons are particularly strik-

ing. Especially as the iodide content of sea salt is only of the order of 10−5 % [Holland 1978],

iodocarbon photolysis deserves more attention as RHS source than the iodine release from

sea salt. As an example the photolytic lifetime of CH3I is about hundred times shorter

than its lifetime with respect to the reaction with OH [DeMore et al. 1997] and photolysis

of the alkyl iodides occurs on a much shorter timescale than for the equivalent bromine or

chlorine compounds [Carpenter et al. 1999].
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Compound typ. mixing ratio [ppt] approx. lifetime
CH3Br 10a 8 monthsa

CH2Br2 < 1.5c 4 monthsb

CH2BrCl < 0.5c 5 monthsd

CHBr2Cl 0.8h 1.2 monthsd

CHBr3 6h 1.2 monthse

CHBrCl2 < 0.5c 1.2 monthsd

CH3I 2.4g 5 daysf

C2H5I 0.1h 40 hoursf

CH2ClI 0.11h 5 hoursf

CH2BrI 0.3h 45 minutesf

CH2I2 0.4h 5 minutesf
a [Yvon and Butler 1996] b [Mellouki et al. 1992]
c [Schall and Heumann 1993] d [Bilde et al. 1998]
e [Moortgat et al. 1993] f [Vogt et al. 1999]
g [Reifenhäuser and Heumann 1992] h [Carpenter et al. 1999]

Table 2.4: Lifetime and typical tropospheric mixing ratio of brominated and iodi-
nated hydrocarbons. Adapted from Schauffler et al. [1999], Carpenter et al. [1999] and
Vogt et al. [1999].

2.2.3 Sinks of Reactive Halogen Species in the Troposphere

The first step in the loss process of RHS in the troposphere is their reaction with hydro-

carbons (RH, e.g. CH4, see reaction 2.31) or peroxy radicals (HO2 and organic peroxy

radicals RO2, see reaction 2.32) to form hydrogen halides HX. The final loss of these

compounds from the atmosphere is due to wet (after uptake on water-droplets of clouds

or fog or on aerosol surfaces) and/or dry deposition (by sedimentation or surface reac-

tion) on the earth’s surface, including snow and ice surfaces, vegetation, buildings etc.

As a result gaseous species are removed, at least temporarily, from the atmosphere. HX

are readily soluble in water, which leads to efficient wet deposition on the ground or

on aerosol surfaces and thus - at least temporarily - to a removal of RHS from the at-

mosphere. The different halogens show different behavior concerning their reaction with

hydrocarbons (cf. Table 2.3. Cl reacts fast with all hydrocarbons, Br only with unsatu-

rated hydrocarbons or oxidized species like aldehydes and carbonyls leading to the for-

mation of HX. Iodine atoms cannot react with saturated or unsaturated hydrocarbons

[Miyake and Tsnogai 1963]. Additionally, Br atoms can add to the C=C double bond of

olefins leading to brominated organic compounds. The lifetime of the respective compound

with respect to photolysis determines the efficiency of Br loss. For a detailed description

cf. the reviews of DeMore et al. [1997] and Atkinson et al. [1997]. For chlorine the most

important sink is the reaction with hydrocarbons by reaction 2.31. For more details con-

cerning loss processes of bromine and iodine species see sections 2.3 and 2.4, respectively.
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In principle, the reactivation of halogen atoms from the reservoir compound HX is possible

by the reaction with OH

HX +OH −→ X +H2O (2.43)

However, as can be seen from Table 2.5 the reaction is endothermic and therefore negligible

for fluorine. For chlorine, bromine and iodine the production rates of X atoms by reaction

2.43 is of the order of 1 atom per second and therefore also negligible under typical

circumstances.

Halogen reaction enthalpy ∆H in [ kcal
mol

]
F 15.0
Cl -18.2
Br -33.7
I -49.9

Table 2.5: Enthalpy of reaction (2.43) DeMore et al. [1994].

2.3 Tropospheric Bromine Chemistry

Since the 1980s sudden ozone depletions - low ozone events - in the polar boundary layer

after sunrise have been reported from various Arctic sites [Oltmans and Komhyr 1986;

Bottenheim et al. 1986; Barrie et al. 1988; Barrie et al. 1994; Sturges et al. 1993;

Solberg et al. 1996; Rasmussen et al. 1997]. Soon theories about an involvement

of bromine compounds were discussed [Barrie et al. 1988; Bottenheim et al. 1990;

Finlayson-Pitts et al. 1990; LeBras and Platt 1995] after Barrie et al. [1988] reported

high filterable bromine concentrations during ozone depletion events (see Figure 2.6).

In the following studies the key role of bromine was confirmed by DOAS measure-

ments of BrO during the Polar Sunrise Experiment PSE92 [Hausmann and Platt 1994]

and ARCTOC95/96 [Tuckermann et al. 1997; Martinez et al. 1999]. Recently, the

same phenomenon was also reported from various Antarctic stations [Wessel 1996;

Kreher et al. 1997; Lehrer 1999; Frieß 2001]. Observed BrO levels near the ground

ranged from 10 to 30 ppt during ozone depletion events leading to a high efficiency

of the ozone destruction cycles 2.23 and 2.26. Observations from the GOME (Global

Ozone Monitoring Experiment) satellite instrument showed that these episodes of

very high BrO in the boundary layer are frequent during polar spring in the Arctic

and around Antarctica [Wagner and Platt 1998; Richter et al. 1998; Hegels et al. 1998;

Wagner 1999]. Besides the polar regions GOME maps also show enhanced BrO ver-

tical column densities (VCDs) in the lower Canadian Arctic (especially Hudson Bay

[Richter et al. 1998; Wagner et al. 2001]) and also at the northern part of the Caspian
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Figure 2.6: Filterable bromine and ozone mixing ratios measured in April 1986 in the
Canadian high arctic at Alert. Taken from Barrie et al. [1988].

Sea [Wagner et al. 2001].

Within the framework of this thesis ground-based measurements of bromine oxide were

performed in the polar boundary layer during the ALERT2000 campaign at Alert, Canada

and for the first time in the Canadian low arctic at Kuujjuarapik on the east coast of

Hudson Bay. Several low ozone events correlated to high values of bromine monoxide

of up to 30 ppt were observed (see sections 5.2 and 5.4). During the ALERT2000 polar

sunrise experiment also the first direct measurements of Br2 (up to 25 ppt) and BrCl (up

to 35 ppt) by atmospheric pressure chemical-ionization mass spectrometry (APCIMS)

were reported by Foster et al. [2001] (see Figure 2.7). Recently the highest BrO mixing

ratios ever detected in the atmosphere (up to 180 ppt) were found at the Dead Sea,

Israel, correlated to ozone depletion in the Dead Sea valley [Hebestreit et al. 1999;

Matveev et al. 2001; Hebestreit 2001].

Airborne measurements performed in April 1997 after polar sunrise showed BrO VCDs

of 1 − 3 · 1014molec · cm−2 in the North American Arctic [McElroy et al. 1999]. Since

there was no correlation with altitude, solar zenith angle (SZA) and latitude the
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Figure 2.7: Br2, BrCl and ozone mixing ratios measured during polar sunrise 2000 at
Alert. Taken from Foster et al. [2001].

interpretation of McElroy and co-workers was that most of the BrO was present below

a height of 8 km and therefore in the troposphere. Assuming that all of the BrO was

located in the boundary layer they calculated a mixing ratio of 50 - 100 ppt, which was

a factor of 2 to 3 higher than the ground-based measurements performed during polar

sunrise in the boundary layer (e.g. [Hausmann and Platt 1994; Tuckermann et al. 1997;

Martinez et al. 1999]). They concluded that a fraction of the bromine monoxide was

present in the free troposphere, leading to mixing ratios of 10 - 30 ppt depending on
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the vertical distribution during the measurements. Reactive bromine compounds being

present at these levels sustained by efficient recycling processes would have a strong

effect on the ozone budget of the free troposphere. McElroy et al. [1999] assumed open

leads (cracks) in the arctic pack-ice and strong convective transport processes to be

responsible for the large input of reactive bromine into the free troposphere (see Figure

2.8). Wennberg [1999] proposed heterogeneous processes on background sulphur aerosols

Figure 2.8: Open leads in the arctic can cause strong convective transport. Photograph
taken on April 12, 2000 on the flight to Alert.

to be responsible for significant reactive bromine release.

Comparison of balloon borne measurements using direct sunlight (sensitive only to the

atmospheric column above the flight altitude) with simultaneous measurements from

the GOME satellite instrument or ground-based zenith scattered sunlight instruments

(sensitive for the total atmospheric column) concurrently show a difference in the

VCD which can only be explained by a contribution from the troposphere. 1 - 2 ppt

BrO background values are found in the free troposphere, as a result of balloon-borne

measurements [Harder et al. 1998; Frieß et al. 1999]. Fitzenberger et al. [2000] reported

the first direct profile measurements of BrO in the free troposphere by balloon borne

differential optical absorption spectroscopy with mixing ratios of 0.6-2.0 ppt.

The abundance of reactive bromine over the oceans is still an open question of importance

since even reactive bromine mixing ratios in the ppt range can have a significant effect

on the tropospheric ozone budget [Sander and Crutzen 1996] and the oxidation capacity

of the remote marine boundary layer [Vogt et al. 1996]. During a cruise of the German

research vessel FS Polarstern in October 2000 the MAX-DOAS approach developed

within this thesis (cf. section 3.5) was applied to measure BrO in the marine boundary

layer in the range between 0 and 2 ppt [Leser 2001].
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This overview shows that a considerable number of measurements of reactive bromine

have been carried out. On the other hand, there are still many open questions concerning

tropospheric bromine chemistry. Especially the source and sink mechanisms and the

influence of reactive Br on a global scale, are still not entirely solved. This section gives

a detailed description of the sources and sinks of reactive Br, recycling processes and

reaction cycles of bromine species in the troposphere.

2.3.1 Sources and Reaction Cycles of Reactive Bromine

Organobromine compounds

As described in general already in section 2.2.2 halocarbons emitted from natural sources

are potential precursors for reactive bromine compounds in the troposphere. Typical mix-

ing ratios and tropospheric lifetimes of brominated hydrocarbons known to be emitted

from the oceans are given in Table 2.4. Macroalgae and phytoplankton are responsible for

a part of the total production of volatile brominated organic substances in the oceans and

therefore for their release to the atmosphere. The surface layer of the ocean is supersat-

urated of these compounds most of the time, so the ocean atmosphere exchange leads to

a source mechanism for bromo-hydrocarbons [Reifenhäuser and Heumann 1992]. Besides

the natural sources methyl bromide (CH3Br) also has anthropogenic sources like fumiga-

tion of soils, burning of leaded gasoline (which contains ethylene dibromide (C2H4Br2),

EDB, as an antiknock compound [Thomas et al. 1997]) and biomass burning. The lifetime

of organobromine compounds is of the order of a month up to one year (see Table 2.4).

Methyl bromide (CH3Br) is by far the most abundant bromocarbon in the troposphere,

but has a relatively long lifetime of approximately 8 months. Apart from the fact that

methyl bromide is one of the most important source gases for reactive bromine in the

lower stratosphere [Butler and Rodriguez 1996], its degradation in the upper troposphere

possibly contributes to a global BrO background in the free troposphere [Frieß et al. 1999;

Fitzenberger et al. 2000]. However, during algae blooms with strongly increased emission,

methyl bromide might be important as a precursor for reactive bromine in the marine

boundary layer. Also, due to its shorter photolytic lifetime bromoform (CHBr3) could be

an important precursor of reactive bromine.

Autocatalytic bromine release - the bromine explosion

The atmospheric abundances and degradation rates of organobromine compounds men-

tioned above can clearly not sustain sudden increases of reactive bromine of up to 10 ppt/h

as observed in the arctic boundary layer during polar spring. Also, the observation of up

to 180 ppt BrO in the Dead Sea valley suggests that a much more efficient process must

exist which releases reactive bromine from salt surfaces, a huge bromine reservoir that is

present both in the Arctic as salt covered sea ice surface as well as in the Dead Sea valley
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as large salt pans.

The mechanism suggested to cause the observed sudden BrO enhancements in the bound-

ary layer is the autocatalytic release of bromine involving heterogeneous reactions on sea

salt surfaces [Fan and Jacob 1992; Tang and McConnel 1996; Vogt et al. 1996]. The re-

lease of reactive halogens from acidic sea salt surfaces occurs via the uptake of gaseous

HOBr:

(HOBr)g −→ (HOBr)aq (2.44a)

(HOBr)aq + (Cl−)aq + (H+)aq −→ (BrCl)aq +H2O (2.44b)

(BrCl)aq + (Br−)aq −→ (Br2Cl
−)aq (2.44c)

(Br2Cl
−)aq −→ (Br2)aq + (Cl−)aq (2.44d)

(Br2)aq −→ (Br2)g (2.44e)

Br2 + hν −→ 2Br (2.44f)

2(Br +O3) −→ 2(BrO +O2) (2.44g)

2(BrO +HO2) −→ 2(HOBr +O2) (2.44h)

net: HOBr + (Br−)aq + (H+)aq + 2HO2 + 2O3
hν
−→ 2HOBr +H2O + 4O2

Here, (aq) denotes the aqueous phase, i.e. reactions on deliquescent sea salt aerosol or the

surface layer of freshly frozen sea ice2. This bromine release mechanism is also illustrated in

Figure 2.9. The oxidation of Br− to Br by O3 leads to the release of two halogen atoms for

each halogen atom taken up by the sea salt surface as HOBr. This leads to an exponential

growth of gaseous reactive bromine, the bromine explosion [Platt and Lehrer 1996]. The

release of Br2 is preferred to BrCl, even if Br is much less abundant in a sea salt solu-

tion [Fickert et al. 1999]. The principal mechanisms involved in the autocatalytic bromine

release could also be reproduced by Lehrer [1999] using a 1D model including the above

described gas phase and heterogeneous reactions (on the sea ice surface as well as on the

aerosol) and turbulent vertical mixing in the boundary layer. The following prerequisites

are necessary for a bromine explosion to take place:

1. The bromine release from sea salt only occurs for pH < 6.5. The necessary acidity

of the salt surface can be supplied by uptake of gaseous HCl or strong acids, such

as HNO3 and H2SO4 [Keene et al. 1998; Lehrer 1999].

2. The heterogeneous processes only lead to an exponential increase in gaseous reactive

bromine if more than one bromine atom is produced for each scavenged HOBr

molecule. This is the case as long as the release of Br2 is preferred to that of BrCl

as e.g. reported by Fickert et al. [1999].

2Sea salt aerosol appears to be (partly) liquid down to T≈230K, therefore heterogeneous reac-
tions are fast [Koop et al. 2000]
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Figure 2.9: Overview of the tropospheric bromine chemistry including the bromine ex-
plosion mechanism.

3. To sustain the high concentrations of the reactive bromine, the meteorological con-

ditions must prevent boundary layer air from mixing with free tropospheric air.

During late winter and early spring, strong inversion layers in the lowermost 1000m

of the polar atmosphere effectively prevent upward mixing of boundary layer air.

4. Since the aerosol usually cannot provide enough surface area to release the observed

amounts of reactive bromine sea ice surfaces strongly enriched in sea salt are needed.

These are present as surface brines (a liquid layer with a high salinity on the frozen

sea ice) and frost flowers on freshly frozen sea ice (see Figure 2.10).

5. The autocatalytic bromine release and the subsequent destruction of ozone requires

light, so bromine explosions only occur after polar sunrise.

6. An initial small amount of reactive bromine is needed to start the heterogeneous

bromine release on these sea salt surfaces.

7. The released bromine causes the destruction of ozone in the marine boundary layer.

When all ozone is consumed, reactive Br is converted to HBr and either taken up

by the aerosol or deposited at the surface as bromide (Br−). It can re-enter the gas

phase during another bromine explosion.
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8. After the inversion layer breaks up ozone is mixed in from higher altitudes.

9. This cycle can be passed several times during polar spring.

Because especially the prerequisites of sunlight and a strong inversion layer are only present

simultaneously during polar spring, episodes of bromine catalyzed ozone destruction are

only observed during springtime.

Figure 2.10: Frost flowers on freshly frozen sea ice. Picture taken close to the Ice Camp
during the Alert2000 field campaign

2.3.2 The Lifetime of Bromine Oxide Radicals in the
Boundary Layer

Since BrO radicals are one of the major atmospheric species investigated in this work, the

lifetime of BrO in the boundary layer with respect to different loss processes has to be

known. Since in this work also the first studies of the day and nighttime chemistry of BrO

were possible at high time resolution (see Section 6.5.2), the important differences for the

BrO reaction pathways during day and night should also be noted.

The photolytic lifetime of BrO at a solar zenith angle of 70◦ ranges between 30 s and 100 s

depending on surface albedo, etc.

BrO + hν −→ Br +O (2.45)

The only other important reaction channel of BrO besides the photolysis reaction 2.45 are

the BrO self reaction and cross reactions with other halogen oxides (see Table 2.2):

BrO +BrO
85%
−→ Br +Br +O2 (2.46)

15%
−→ Br2 +O2 (2.47)
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The BrO lifetime with respect to the self reaction is given by:

τBrO =
1

[BrO] · kBrO+BrO
(2.48)

At 10 ppt (2.6×108molec/cm3) this leads to a lifetime of τBrO of 1200 s. This lifetime of

BrO, however, is inversely proportional to the BrO concentration, therefore at 40 ppt the

BrO lifetime would be only 300 s. During daytime, the Br2 produced with a quantum yield

of ≈0.15 is rapidly photolyzed (τBr2 ≈30 s-1min) to yield Br atoms.

Bromine atoms can react with oxidized or unsaturated hydrocarbons (e.g. formaldehyde

HCHO, olefines), HO2 radicals or ozone in the following pathways:

Br +RH
2%
−→ HBr +R (2.49)

Br +O3
98%
−→ BrO +O2 (2.50)

Here, RH denotes the sum of HO2, HCHO and olefines which react with Br atoms. As

long as ozone is not completely depleted ([O3]>several ppb), almost all Br atoms (>98%)

react with ozone leading to no net BrO loss. For the branching ratio see also column 6

in Table 2.3. Depending on RH levels the effective conversion time of BrO to HBr can be

up to ≈5000 s. Since the BrO self reaction is significantly faster, it leads to efficient ozone

destruction. As it takes about one day to completely destroy e.g. 40 ppb O3 HBr (Br−)

and HOBr have to be recycled to reactive bromine in reactions 2.44 to explain the ozone

losses described at the beginning of this section. In summary, during daytime the BrO

lifetime is determined by the reaction of Br atoms with RH to HBr ranging between 1 and

2 hours.

During nighttime, however, the photolysis frequency of BrO is zero. Therefore the BrO

self reaction (and possible cross reactions with other halogen oxides) is the only important

reaction pathway of BrO radicals. However, at nighttime also the photolysis of Br2 is not

possible, therefore only 85% of the Br atoms can react with O3 back to BrO. The 15%

path to Br2 therefore leads to an accumulation of Br2 at night, which acts as a nighttime

reservoir species and photolyzes to Br atoms rapidly during sunrise. In summary the life-

time of BrO radicals during nighttime is determined by the branching ratio of the reaction

of Br atoms with RH and O3 on the one hand and by the branching ratio of the BrO self

reaction to yield atomic or molecular bromine on the other side. At high BrO levels of

40 ppt the lifetime with respect to Br2 formation is of the order of 2000 s and therefore

significantly shorter than with respect to HBr formation (∼15000 s). At lower BrO levels

(e.g. 10 ppt) the lifetime with respect to Br2 formation is of the order of 8000 s. The loss to

HBr in this case is negligible with a BrO lifetime of >12 hours. The different lifetimes are

discussed in section 6.5.2 in the context of the day and nighttime measurements performed

at the Hudson Bay as one of the major parts presented in this work.

In case of other species present in the boundary layer which can react with BrO, in par-

ticular the halogen oxides ClO and IO, and NO2 but also DMS, Hg0, etc. the BrO lifetime
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can be significantly shorter, especially during nighttime, due to formation of reservoir

compounds like BrCl, IBr, BrONO2, etc.

2.3.3 Sinks of Reactive Bromine

The most important sink for reactive bromine are the reaction with hydrocarbons (es-

pecially HCHO and alkenes, 2.31) and the reaction with HO2 (2.32) which yield HBr

[Bedjanian et al. 1998]. The lifetime of HBr with respect to reaction with OH is about

one day, therefore it can undergo wet and dry deposition at the surface, especially in the

planetary boundary layer where mixing is fast.

The reaction of BrO with dimethyl sulfide (DMS)

BrO +DMS −→ Br +DMSO k = 2.6 · 10−13
cm3

molec · s
(2.51)

might be important in the unpolluted remote marine boundary layer where the only other

sink for DMS is the reaction with OH radicals [Toumi 1994]. No BrO has been reported

from measurements in the marine boundary layer at mid-latitudes, however, the measure-

ments performed by Leser [2001] suggest BrO to be present in the north Atlantic marine

boundary layer at mixing ratios of ≈1 ppt which could make the reaction with BrO a

major loss mechanism for DMS.

2.4 Tropospheric Iodine Chemistry

2.4.1 Sources and Reaction cycles of Reactive Iodine

While the major source for reactive bromine in the MBL is thought to be the autocatalytic

release on sea salt surfaces described in the previous section, the main source for reactive

iodine in coastal regions are iodo-hydrocarbons biogenically produced in the oceans

and released to the atmosphere. Iodocarbons are rapidly destroyed by photolysis or

degradation with OH, with lifetimes between 5 days for methyl iodide (CH3I) and only 5

minutes for diiodomethane (CH2I2) (cf. Table 2.4). Therefore organic iodine compounds

are rapidly destroyed to form reactive iodine (I, IO) which potentially has a strong

impact on the boundary layer ozone chemistry. To a minor extent, catalytic processes

corresponding to reactions (2.35) involving HOI can lead to an additional release of

reactive halogens from aerosols and sea ice surfaces. However, the presence of reactive

iodine in the MBL is expected to have no ’event-like’ character as it is the case for

bromine. Instead, the abundance of inorganic iodine is mainly linked to the biogenic

activity in the ocean and to the distance from coastlines or the open sea as the source

regions for iodocarbons.

The main reaction path for reactive iodine is cycle (2.26) involving HOx radicals which is
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more efficient in destroying ozone at the observed iodine levels than the cycle involving the

IO self reaction (2.23). Model calculations have shown that the IO/HOx cycle accounts

for up to 75% of the ozone destruction if 6 ppt of inorganic iodine are present in the MBL

[Stutz et al. 1999] (see Figure 2.4). The importance of reactive iodine on the tropospheric

ozone budget could thus be comparable to the photolytic ozone loss processes involving

HOx if only a few ppt of reactive iodine are present.

2.4.2 Fate of Reactive Iodine

In contrast to the other halogens I atoms do not react with hydrocarbons to form HI.

However, HI is formed in the reaction of iodine with HO2,

I +HO2 −→ HI +O2 (2.52)

In case of iodine the reactivation of I from the HI reservoir via the reaction

HI +OH −→ I +H2O k = 7 · 10−11cm3molec−1s−1 (2.53)

can take place, because the lifetime of HI due to reaction with OH is only 3 to 4 hours (at

typical OH concentrations of 1×106molec/cm3). Also, the iodine compounds IONO2, I2O2

and INO2 with photolytic lifetimes of less than 1 hour act only as temporary reservoir

species and not as a sink for reactive iodine.

The fate of reactive iodine is presently not completely understood, however, since large

aerosols are usually enriched in iodine (in the form of iodate IO−3 ), irreversible uptake of

inorganic iodine on aerosols seems to be an important loss mechanism for reactive iodine.

Vogt et al. [1999] have suggested the uptake of the IO dimer I2O2 on aqueous aerosol

surfaces or the self- reaction of IO in the aqueous phase, followed by a hydrolysis reaction:

IO + IO −→ I2O2 (2.54a)

I2O2 + (H2O)aq −→ (HOI)aq + (IO2)
−
aq + (H+)aq (2.54b)

IO + IO +H2O −→ (HOI)aq + (IO2)
−
aq + (H+)aq (2.54c)

(IO2)
−
aq + (H2O2)aq −→ (IO3)

−
aq +H2O (2.54d)

The formation of iodate (IO−3 ) is a possible loss process for reactive iodine since reactions

(2.54) lead to an accumulation of this compound in the aerosol. Another possible sink are

OIO radicals as products of the IO self reaction (for rate constants and branching ratios

see Table 2.2):

IO + IO −→ OIO + I (2.55)
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In contrast to the homologous OClO and OBrO, which are rapidly photolyzed during

daytime, model and laboratory studies suggest that OIO may be photostable since the

calculated threshold wavelength for its photo dissociation via

OIO + hν −→ IO +O(3P ) (2.56)

is 418 nm [Misra and Marshall 1998], while the visible absorption spectrum of OIO covers

the wavelength region between 480 and 660 nm [Cox et al. 1999]. Therefore the absorption

cross section of OIO at λ ≤418 nm is very small. The fate of atmospheric OIO is still

uncertain to date. The following reactions with OH and NO possibly lead to a reconversion

of OIO into reactive iodine:

OIO +NO −→ IO +NO2 (2.57a)

OIO +OH −→ IO +HO2 (2.57b)

Measurements of Hebestreit [2001], who observed OIO for the first time in the boundary

layer, suggest that the reaction with NO (2.57a) is the most important loss process for OIO.

The estimated lifetime of OIO with respect to this reaction is approximately 20 minutes.

The NO mixing ratios during the measurements performed at Mace Head, Ireland, were

in the range of 0.25 - 1 ppb. Although OIO photolysis after reaction 2.56 is thought to be

negligible, recent laboratory investigations by Plane et al. [2001] suggest that the photon

induced dissociation reaction

OIO + hν −→ I +O2 (2.58)

is important in the atmosphere. This reaction would lead to a lifetime of OIO dur-

ing daytime of ≈1 s, which is in agreement with observations of OIO only after sunset

[Allan et al. 2001; Hebestreit 2001; Plane et al. 2001]. Moreover, this reaction would also

enhance ozone destruction by reactive iodine since 2 ozone molecules can be destroyed

during each IO self reaction cycle.

Hoffmann et al. [2001] point out that another possible fate of OIO and IO is the poly-

merization of IO and OIO to higher iodine oxides IxOy forming aerosols as reported

from laboratory experiments [Cox and Coker 1983; Harwood et al. 1997; Hönninger 1999].

Hoffmann et al. [2001] argue that this process could be responsible for bursts of new par-

ticles frequently observed in the coastal environment during low tide [O’Dowd 2001]. Fur-

thermore it could explain the enrichment of iodate in marine aerosols, although the detailed

mechanisms are completely unclear to date.

As a result the formation of OIO can possibly be an important sink for reactive iodine,

particularly under low NOx conditions. Figure 2.11 summarizes the current knowledge of

iodine chemistry in the troposphere.
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Figure 2.11: Overview of the tropospheric iodine chemistry: Source gases are shown in
brown, red arrows indicate ozone depleting catalytic reaction cycles, and blue arrows
indicate heterogeneous release processes. Adapted from Platt and Janssen [1995] and
Vogt et al. [1999]

2.5 Mercury in the Atmosphere

In order to understand the atmospheric chemistry of Mercury (Hg), its basic chemical

properties have to be known. Mercury is a transition element (Atomic number Z=80,

atomic mass 200.6 amu). Compared to its neighbors Zinc and Cadmium in the Periodic

Table it has a positive oxidation potential of E0=+0.854V, therefore it is chemically

relatively inert. With noble metals (Au, Ag, Pt) elemental mercury (Hg0) readily forms

alloys (’amalgams’). Amalgamation with gold is also used for pre-concentration of Hg

in ambient air samples prior to quantitative analysis. Hg is also the only liquid metal

at ambient temperatures. Mercury can exist in three oxidation states: 0 (Hg0), +1 (e.g.

HgCl and the dimer Hg2Cl2) and +2 (e.g. HgCl2). The role of mercury in the atmosphere

was recently reviewed by Schroeder and Munthe [1998]. In the atmosphere mercury exists

predominantly in its elemental form (Hg0) and in the +2 oxidation state, the +1 oxidation

state is very rare. Its importance is due to the toxicity of Hg0 and other mercury species
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in the atmosphere like methyl mercury (MeHg) species, which are classified carcinogens.

Table 2.6 lists the main physical/chemical properties of some important mercury species.

Property Hg0 HgCl2 HgO CH3HgCl (CH3)2Hg
Melting Point [◦C] -39 277 decomp. @500 167 (sublim.) -
Boiling Point [◦C] 357 303 - - 96
Vapor Pressure [Pa] 0.180a 8.99×10−3a 9.20×10−12b 1.76b 8.30×103b

Water solubility [g/l] 49.4×10−6a 66a 5.3×10−2b ∼5-6b 2.95b

a @20◦C b @25◦C

Table 2.6: Physical/chemical properties of important mercury species. Adapted from
Schroeder and Munthe [1998]

2.5.1 Sources and Partitioning of Mercury in the Atmo-
sphere

Unlike most other metals in the atmosphere which are usually associated with aerosols

and mineral dust, mercury is predominantly present in the gas phase. Due to its low water

solubility (see Table 2.6) and chemical inertness the atmospheric lifetime of elemental

mercury is of the order of 1 year [Slemr et al. 1985]. Mercury can therefore be considered

a global pollutant. Figure 2.12 gives an overview of the atmospheric mercury budget. A

very important characteristic of mercury is its tendency to be readily re-emitted to the

air once deposited to surfaces, which always has to be considered when describing sources

and sinks of Hg.

Sources and Emissions

Hg is released to the atmosphere from many natural and anthropogenic sources.

• emission from natural sources (volatilization from water and soil surfaces, emissions

from volcanoes)

• re-emissions from top soil and vegetation

• anthropogenic emissions from industrial and residential sources (fossil fuel combus-

tion, waste treatment, gold mining, chlor-alkali plants, etc.)

Pirrone et al. [1996] estimated the global anthropogenic Hg emissions of 1660-2200 t/year

to be responsible for one third of the total Hg emissions. The rest is assumed to be

due to natural emissions and re-emission of previously deposited mercury. Recently for

Europe detailed studies of the anthropogenic and natural emissions have been performed

as part of the ’European Land-Ocean Interaction Study’ (ELOISE) [Pacyna et al. 2001;

Pirrone et al. 2001; G̊ardfeld et al. 2001].
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Figure 2.12: Schematic overview of the atmospheric emissions-to-deposition cycle for
mercury. Emissions here also include re-emission of previously deposited Hg, so called
’recycled’ mercury. Adapted from [Schroeder and Munthe 1998]

Physical and chemical speciation of atmospheric mercury

In the atmosphere, the main three forms of Hg are:

• gaseous elemental mercury (GEM) vapor, Hg0

• reactive gas phase mercury (RGM)

• total particulate phase mercury (TPM)

Of these three species, only Hg0 has been tentatively identified with spectroscopic methods

[Edner et al. 1989]. RGM and TPM are so called sum parameters which are operationally

defined, i.e. their chemical and physical structure have not been exactly identified by ex-

perimental methods but are instead characterized by their properties and capability to

be collected by different sampling equipment. RGM is defined as water-soluble mercury

species with sufficiently high vapor pressure to exist in the gas phase. The reactive term

refers to the capability of stannous chloride (SnCl2) to reduce these species in aqueous
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solutions without pretreatment. The most likely candidate for RGM species is HgCl2

and possibly other divalent mercury (Hg(II)) species. The gas phase mercury species Hg0

(GEM) and RGM are summarized as Total Gaseous Mercury (TGM), which is usually

measured by commercial mercury analyzers. TGM is an operationally defined fraction de-

fined as species passing through a 0.45µm filter or some other simple filtration device such

as quartz wool plugs and which are collected on gold, or other collection material. TGM is

mainly composed of elemental Hg vapor with minor fractions of other volatile species such

as HgCl2, CH3HgCl or (CH3)2Hg. Another species of particular interest is methyl mercury

(MeHg) due to the high capacity of this species to bioaccumulate in aquatic foodchains

and to its high toxicity. The presence of MeHg in the atmosphere and its importance in the

overall loading of aquatic ecosystems has been demonstrated in a number of publications

(e.g. [Brosset and Lord 1995]). Since MeHg is only present at low pg/m3 concentration

levels in ambient air, it is not an important species for the overall atmospheric cycling of

Hg, but mainly due to its toxicity and capacity for bioaccumulation.

Total particulate mercury (TPM) consists of mercury bound or adsorbed to atmospheric

particulate matter. Several different components are possible, e.g. Hg0 or RGM adsorbed

to the particle surface, divalent mercury species chemically bound to the particle or inte-

grated into the particle itself [Brosset 1987].

At remote locations, where TPM concentrations are usually low, TGM makes up the

main part (>99%) of the total mercury concentration in air. However, in the Arctic

boundary layer during spring (see below) TPM can be the major part of atmospheric

mercury. The different mercury species are ubiquitous in the troposphere with ambient

TGM concentrations averaging about 1.5 ng/m3 in the background air throughout the

world [Slemr and Langer 1992]. Higher concentrations are found in industrialized regions

and close to emission sources. RGM and TPM vary substantially in concentration typically

from 1 to 600 pg/m3 depending on location [Keeler et al. 1995]. In the last few years, new

automated and manual methods have been developed to measure TGM, RGM and TPM.

Detailed intercomparisons of sampling and analysis methods for atmospheric mercury

measurements have been reported by Ebinghaus et al. [1999] and Munthe et al. [2001].

• TGM is usually measured by Tekranr Gas Phase Mercury Analyzers. The pre-

filtered sample air stream is passed through gold cartridges where the mercury is

collected. The mercury is then thermally desorbed and detected in an integrated

CVAFS (cold vapor atomic fluorescence spectrometry) detector. These instruments

were also used to measure TGM at Alert and Kuujjuarapik (see section 5.2.6 and

5.4.8).

• RGM is measured using wet chemical techniques. Mist chambers, tubular or annu-

lar denuders are used to quantitatively remove RGM from the gas phase. The so

collected RGM is subsequently reduced using stannous chloride and analyzed after
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amalgamation on gold traps using CVAFS detection.

• For particulate Hg, a variety of different filter methods have been applied such as

Teflon or Quartz Fibre filters. Before analysis, these filters undergo a wet chemical

digestion usually followed by reduction-volatilization of the mercury to Hg0 and

analysis using cold vapor atomic absorbance spectrometry (CVAAS) or CVAFS.

2.5.2 Sinks of Atmospheric Mercury and the Role of Halo-
gens

Reactive gaseous mercury (mainly HgCl2) is water-soluble (see Table 2.6) and has a

high dry deposition rate usually assumed to be comparable to that of nitric acid (e.g.

[Petersen et al. 1995]). Because RGM compounds are water-soluble, they are efficiently

removed from the atmosphere during rain events and have an atmospheric lifetime in the

order of days or a few weeks [Schroeder and Munthe 1998]. Gaseous elemental mercury

(Hg0) is very unreactive and poorly soluble in water (see Table 2.6) so it has a slow re-

moval rate via deposition and transformation to water-soluble species. Estimates of the

atmospheric lifetime of mercury were usually based on the only known atmospheric oxi-

dation process, the very slow reaction with ozone

Hg +O3 −→ HgO +O2 (2.59)

The rate constant for this reaction is k2.59 = 3×10−20cm3 molec−1 s−1[Hall 1995] implying

a lifetime of Hg with respect to oxidation by 30 ppb ozone of 1.4 yr. Very little is known

about gas phase radical reactions as oxidation pathways for Hg0. The reaction of mercury

with chlorine atoms

Hg + Cl +M −→ HgCl +M (2.60)

was studied using time resolved flash photolysis studies of Hg/CF3Cl mixtures. The rate

constant k2.60 was inferred to (0.5 − 1.5) × 10−14cm3 molec−1 s−1[Horne et al. 1968].

Only recently gas phase radical reactions are being investigated in more detail.

Sommar et al. [2001] studied the reaction of mercury atoms with OH radicals

Hg +OH +M −→ HgOH +M (2.61)

HgOH +O2 −→ HgO +HO2 (2.62)

and reported a rate constant of k2.61=(8.7±2.8)×10−14cm3 molec−1 s−1. If this reac-

tion is included in global models a natural lifetime of Hg0 of 4-7 months can be derived

[Sommar et al. 2001]. This indicates that gas phase radical reactions may be important

as atmospheric sinks for Hg0. The role of reactive halogen species as oxidants for Hg0 has

also been discussed since mercury depletion events (MDE) have been found, correlated

with boundary layer ozone depletion during polar sunrise [Schroeder et al. 1998]. Figure
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2.13 shows data of TGM and ozone measured at Alert in 1995. During Arctic springtime

(March to early June) TGM and ozone are well correlated suggesting that similar pro-

cesses might be responsible for the depletion of these species. Since the first observation

Figure 2.13: Springtime depletion of total gaseous mercury was first reported by
Schroeder et al. [1998]. The time series for 1995 show the strong correlation of ozone
and mercury depletion episodes after polar sunrise at Alert, Canada.

by Schroeder et al. the same behavior was found at other Arctic [Lindberg et al. 2001] and

Antarctic sites [Frieß 2001]. Boudries and Bottenheim [2000] argue that their hydrocar-

bon clock measurements indicate that BrO must be responsible for the removal of gaseous
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mercury. From the observation that the removal of Hg (like that of propane) stops when

ozone is completely depleted whereas the removal of e.g. ethyne continues, they argue

that BrO rather than Br is responsible for the oxidation of Hg0 to Hg(II), since BrO,

being produced by reaction of Br with ozone should not be present anymore after ozone

is completely depleted. The proposed reaction

Hg +BrO −→ HgO +Br (2.63)

was also assumed to be the key reaction for the observed Hg depletions at Alert and at the

Hudson Bay (see Sections 5.2.6 and 5.4.8). Using the time dependence of the observed Hg

depletion and the measured BrO mixing ratios, the rate constant for reaction 2.63 can be

calculated (see Section 6.6). From the data of Lindberg et al. [2001] it seems now clear that

the Hg depletion mechanism involves oxidation of Hg0 primarily to some form of RGM

followed by both uptake on aerosol surfaces and direct gaseous dry deposition to the local

snowpack. Lu et al. [2001] reported magnification of atmospheric mercury deposition in

polar regions by greatly enhanced wet and dry deposition flux of this toxic heavy metal

to the biosphere. The conversion of Hg0 vapor into one or more much less-volatile Hg(II)

species which deposit(s) to frozen surfaces more rapidly than the precursor, and is/are

much more water-soluble than Hg0. Furthermore, oxidized inorganic Hg(II) species can

be readily assimilated by polar ecosystems, thus transferring potentially toxic Hg to flora

and fauna just as they commence replenishing energy reserves depleted during the long

dark polar night. Lu et al. [2001] propose that mercury depletions take place whenever the

environmental conditions favor the conversion of Hg0 to Hg(II). Their criteria for mercury

depletion are nearly the same as those listed in section 2.3.1 for the bromine explosion:

• marine/maritime location (source of sea-salt halides)

• calm weather, low wind speeds, non-turbulent air flow

• the existence of a temperature inversion

• the presence of sunlight

• sub-zero temperatures (favoring heterogeneous surface chemistry by which sea-salt

halides are converted to photolyzable halogen species during and after polar sunrise)

In this thesis the first simultaneous measurements of boundary layer BrO, ozone and

mercury species was possible during the ALERT2000 field campaign (see section 5.2) and

the measurement campaign at the Hudson Bay in spring 2001 (see section 5.4). These

measurements provide the first opportunity to study the rapid transformation of mercury

species and the role of reactive bromine compounds during these processes. A detailed

understanding of the involved chemical mechanisms can help to quantify and assess the

importance of the polar environments as major deposition regions of atmospheric mercury.
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Chapter 3

From Differential Optical
Absorption Spectroscopy to
Multi-Axis-DOAS

This chapter describes the principles of Differential Optical Absorption Spectroscopy

(DOAS), the measurement technique used in this thesis. It will also give an overview

of the processes determining the radiative transfer in the atmosphere and concepts for

numerical retrieval algorithms for the trace gas concentrations and SCDs (Slant Column

Densities) from the raw spectra measured with the Longpath- and MAX-DOAS systems,

respectively. The new MAX-DOAS technique, which was developed and first employed for

ground-based measurements within this thesis, will be described. Several suggestions for

possible future applications are also included.

3.1 DOAS Overview

Since the first remote sensing measurements of ozone in the earth’s atmosphere by

Dobson and Harrison [1926] spectroscopic techniques have become an increasingly im-

portant branch in the measurement of atmospheric trace gases. In 1975 and 1979 Noxon

applied absorption spectroscopy of zenith scattered sunlight to measure stratospheric and

tropospheric NO2. In 1979 Platt et al. [1979] introduced Differential Optical Absorption

Spectroscopy (DOAS) to measure atmospheric trace gas concentrations using an artificial

light source. Since then, DOAS has been applied to measure trace-gas concentrations

in the troposphere and stratosphere [Platt 1994; Solomon et al. 1987] as well as under

simulated atmospheric conditions [Etzkorn 1998]. In fact, several important atmospheric

trace gases were measured for the first time using DOAS, e.g. OH [Perner et al. 1976],

HONO [Perner and Platt 1979; Platt and Perner 1980], NO3 [Platt et al. 1980], BrO

[Hausmann and Platt 1994] and IO [Alicke et al. 1999] in the troposphere, and OClO

47
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and BrO [Sanders et al. 1988] in the stratosphere. A large number of other molecules

absorbing light in the UV and the visible wavelength region, e.g. NO2, NO, NH3, ClO,

O3, SO2, CS2, HCHO can also be detected [Platt 1978; Platt 1994].

DOAS is a very sensitive measurement technique for these trace gases since they exhibit

strong and highly structured absorption cross sections in the UV and visible spectral

regions. Because DOAS is capable of measuring ambient air in the open atmosphere it

is especially useful in the detection of highly reactive species, such as the free radicals

OH, NO3, halogen oxides (BrO, IO, etc.) or NO2. The simultaneous determination of

the concentration of several trace gases, by analyzing the sum of their absorptions in one

wavelength interval, reduces measurement time and allows analysis of the average chemical

composition of the observed air mass at high temporal resolution.

3.1.1 The Measurement Principle

In Figure 3.1 the components of a simplified DOAS set-up to measure tropospheric trace

gases are shown. Light, with an initial intensity I0(λ, L), emitted by a suitable light source

passes through the observed air mass and is collected by a telescope. Extinction of light

on the lightpath, due to absorption processes by different trace gases and scattering by air

molecules and aerosol particles, reduces the initial intensity. After the light has travelled a

pathlength L, I0(λ, L) is reduced to I(λ, L) as expressed from Equation 3.1 using Lambert-

Beer’s law:

I(λ,L) = I0(λ,L) · exp
∫ l=L
l=0

−(
∑

j σj(λ,p,T)·cj(l)+εR(λ,l)+εM(λ,l))dl +N(λ) (3.1)

where for each trace gas species j the parameter σj(λ,p,T) is the absorption cross-

section which depends on the wavelength λ, the pressure p and the temperature T, cj(l)

the number density at the position l along the light path of total length L. The Rayleigh-

extinction and Mie-extinction coefficients are described by εR and εM . N(λ) is the photon

noise dependent on I(λ, L). In Figure 3.1a the spectrum of I(λ, L) that results from light

that has passed an atmospheric volume with only one absorber (formaldehyde: HCHO) is

shown. In the employed DOAS instruments, the light is focused directly onto the entrance

slit or into a quartz fiber (bundle) transmitting the light to the entrance slit of a grating

spectrograph, with a detector system recording the spectrum of the dispersed light. Due

to the limited resolution of the spectrograph, the spectral resolution of spectrum I(λ, L) is

degraded. The mathematical description of this process is a convolution of I(λ, L) with the

instrument function H of the spectrograph. Figure 3.1b shows the spectrum I∗(λ,L) after

a convolution with a typical instrument function H as it is projected by the spectrograph

on the detector. By the multi channel detector the wavelength range is mapped into n

discrete pixels, numbered i, each integrating the light in a wavelength interval from λ(i)
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Figure 3.1: The components of a simplified DOAS set-up. Collimated light undergoes
absorption processes on its way through the observed air mass. (a): an example-spectrum
of this light entering the spectrograph is shown, assuming only formaldehyde (HCHO)
to be present in the observed air mass. This absorption spectrum shows the ro-vibronic
structure of HCHO. (b): the same spectrum convoluted by the spectrographs instrumen-
tal function reaches the detector. (c): the spectrum after it was mapped by the detector
to discrete pixels as it is actually stored to the hard-disk of a PC and can be analyzed
numerically.
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to λ(i+1). This interval is given by the wavelength-pixel-mapping ΓI of the instrument. In

the case of a linear dispersion (ΓI : λ(i)=λ(0)+γ· i) the spectral width of a pixel (∆λ(i) =

λ(i+1) - λ(i) = γ0) is constant. The signal I’(i) seen by a pixel i (omitting any instrumental

factors, i.e. the response of individual pixels) is given by:

I′(i) =

∫ λ(i+1)

λ(i)
I∗(λ′,L)dλ′ (3.2)

In general the wavelength-pixel-mapping ΓI of the instrument can be approximated

by a polynomial:

ΓI : λ(i) =

q
∑

k=0

γk · i
k (3.3)

The parameter vector (γk) determines the mapping of pixel i to the wavelength λ(i).

A change in parameter γ0 describes a spectral shift of the spectrum. Changing γ1 squeezes

or stretches the spectrum linearly. Parameters γk with higher k describe a distortion of

the wavelength scale of higher order. Changes in the parameter vector γk can be caused by

different measurement conditions of the spectra, as the employed grating spectrometers

usually show a temperature drift when not thermally stabilized. It is therefore necessary

to correct these effects in the analysis procedure. Figure 3.1c shows the discrete spectrum

I’(i) as it is recorded and stored in a computer.

The DOAS technique was especially designed to match the needs of absorption spec-

troscopy in the atmosphere [Platt 1994]. In contrary to absorption spectroscopy in the

laboratory, the absolute absorption signal of an observed trace gas in the atmosphere can

not be accessed due to the lack of information about the measurement light intensity in

the absence of the atmosphere. The basic concept behind DOAS allows to bypass this lack

of information separating the cross section σj into two parts:

σj = σbj + σ′j (3.4)

where for a given trace gas j the σbj represents broad spectral features and σ′j the

differential cross-section which represents narrow spectral structures. Considering only σ ′j
in the spectra evaluation process avoids interferences from Rayleigh- and Mie-extinction.

The separation of the absorption cross-section is illustrated in Figure 3.2 for ozone.

The logarithm of I′(i) (see Figure 3.1c), J(i)= ln(I′(i)), can be described by:

J(i) = J0(i) +
m
∑

j=1

a′j · S
′
j(i) + B′(i) + R′(i) + A′(i) + N′(i) (3.5)

where for each trace gas species j, S′j(i) denotes the differential absorption struc-

ture. Thus (S′j(λ)=ln(exp(-σ′j(λ))·H) corresponds to the convolution of the differential
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Figure 3.2: The fundamental DOAS principle is the separation of the absorption cross-
section (in this example of ozone, upper part) into ’slowly’ varying (broad band, second
from top), ’rapidly’ varying (narrow band, third from top), and high frequency parts
(bottom graph) by applying a numerical band pass filter in the evaluation procedure.
Note that O3 is an extreme case in that σ′ ¿ σtot.
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cross-section of the trace gas j with the same instrument function H. B′(i) represents

the broad absorption, R′(i) the sum of extinction by Mie- and Rayleigh scattering, A′(i)

summarizes any variations in the spectral sensitivity of detector or spectrograph and

N′(i) = ln(N(λ)) is caused by the detector noise and photon statistics. The scaling fac-

tors a′j = cj
− ·L are then the product of the average number densities over the path-length L.

The overlaying absorption structures of several trace gases are represented by the sum

in Equation 3.5. In practice the number of absorbers m can be limited to those trace gases

with absorption structures sufficiently strong to be detectable with the used DOAS instru-

ment. As the strength of the absorption structures varies with wavelength, the number of

trace gases to be included in Equation 3.5 varies with the observed wavelength interval

and the trace gas composition of the probed airmass. Typically m=2 to 10 trace gas

absorptions can be identified in a single atmospheric DOAS spectrum [Platt 1994]. The

concentrations of these trace gases can therefore be measured simultaneously. To retrieve

the concentrations, the superimposed absorption structures have to be separated numeri-

cally. The task of the evaluation procedure is: (1) to retrieve the parameters a′j (Equation

3.5) and thus the concentration of the trace gases taking into account all the atmospheric

and instrumental effects. (2) to estimate the error ∆a′j of the parameters a′j and therefore of

the measured trace gas concentrations. Both tasks can be solved with linear least-squares

methods if no instrumental effects are encountered [Stutz and Platt 1996].

3.1.2 The Analysis Procedure

The evaluation procedure is based on a model that describes the physical behavior of DOAS

spectra according to Equation 3.5. The logarithm of the discrete measured intensity, J(i),

is modelled by a function F(i):

F(i) = Pr(i) +

m
∑

j=1

aj · Sj(dj,0, dj,1, ...)(i) (3.6)

where the absorption structures of the trace gases Sj , e.g. measured in the laboratory

or calculated by convolution of high resolution literature cross section with the instrument

function H are input data to the procedure. The polynomial Pr(i) describes the broad

spectral structures caused by the characteristics of the lamp I0(i), the scattering processes

R′(i) the spectral sensitivity A′(i) and the broad absorptions by the trace gases B′(i). It

can be expressed as:

Pr(i) =
r
∑

h=0

ch · (i− ic)
h (3.7)

where the parameter ic = int(n/2) represents the center pixel of the spectral region

used for the evaluation. The polynomial refers to ic to maximize the influence of the
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nonlinear terms. The scaling parameters aj (Equation 3.6) and the polynomial coefficients

ch (Equation 3.7) are found by linearly fitting F to J. The scaling factors aj are used in

the following to calculate the average concentration of the respective trace gases:

cj =
aj

σ′j · L
(3.8)

where σ′j denotes the differential absorption cross section of trace gas j and L the absorp-

tion pathlength.

In order to match the wavelength-pixel-mapping of all spectra, the analysis procedure

aligns the reference spectra S′j(i) (wavelength-pixel-mapping Γj) to the spectrum J(i)

(wavelength-pixel-mapping ΓJ). The procedure therefore has to recalculate the reference

spectrum S∗j (i) with the wavelength-pixel-mapping ΓJ . This can be approximated as ’shift-

ing and stretching/squeezing’ the reference spectrum in wavelength. Since Γj (identical to

ΓI in Equation 3.3) is a strongly monotonous function, its inverse also can be described

by a polynomial:

Γ−1j : x(λ) =

q
∑

k=0

βk · λ
k (3.9)

where x(λ) represents the non integer ’pixel number’ that results from this inverse

transformation. Sj(λ) can now be calculated from the continuous spectrum Sj(x). This

spectrum has to be approximated using a (e.g. cubic spline) interpolation on the discrete

spectrum Sj(i).

S∗j (i) with the wavelength-pixel-mapping ΓJ can be calculated by deriving Sj(λ) with

Γ−1j from Sj(x), which is approximated by a interpolation on Sj(i), and then applying ΓJ :

Sj(i) −→interpolation Sj(x) −→
Γ−1

j Sj(λ) −→ΓJ S∗j (i) (3.10)

It is possible to refrain from calculating Sj(λ) and combine Γ−1j and ΓJ to a formula,

which links i to x using a polynomial with parameters δk:

x(i) = x (λ(i)) =

qs·ql
∑

k=0

δk · i
k (3.11)

In the analysis procedure a slightly modified equation equivalent to 3.11 is used, which

has the advantage that their spectral alignment parameters dj,k, determining the trans-

formation, are zero if the wavelength-pixel-mappings of J and Sj are equal:

x = i + fj(i) with fj(i) =

pj
∑

k=0

dj,k · (i− ic)
k (3.12)

The spectrum Sj(dj,0,dj,1,...)(i) = S∗j (i) has now the wavelength-pixel-mapping ΓJ ,

which was calculated with the parameters dj,k following Equations 3.10 and 3.12 and
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a cubic spline interpolation on Sj(i). The parameters dj,k are derived by performing a

nonlinear fit of the model F to the spectrum J with fixed parameters aj and ch. If pj =

0 the spectrum Sj is shifted by dj,0 pixels, if pj = 1 the spectrum is additionally linearly

squeezed or stretched according to parameter dj,1. Higher values of pj represent a squeeze

or stretch of higher order. To achieve the best physical description of the spectra, it is

possible to select the degree of the squeeze process pj for every reference spectrum Sj .

It is advantageous to use one set of parameters dj,k for two or more reference spectra if

the wavelength calibration is identical for these spectra in order to reduce the number of

degrees of freedom. The analysis procedure is a combination of the well-known nonlinear

Levenberg-Marquardt-Method [Levenberg 1944; Marquardt 1963] determining dj,k and a

standard linear least-squares fit [Albritton et al. 1976; Bevington 1969] to derive the aj

and the ck. Both methods minimize χ2 between F and J:

χ2 =
n
∑

i=0

(J(i)− F(i))2 (3.13)

The procedure begins with the calculation of the linear fit with starting values dj,k.

The results of this fit, the parameters aj and ck, are used as input data in the following

call of the nonlinear Levenberg-Marquardt fit. Only one step of this nonlinear iterative

method is then performed. The resulting parameters dj,k are used in the next call of the

linear fit. These results are used in the next call of the nonlinear fit. The procedure invokes

the two methods alternatingly, always using the result of the last call of one method as

values for the other fit method. This procedure is repeated until one of several stopping

conditions for the nonlinear fit is fulfilled. Normally the fit is aborted, when the relative

changes of χ2 in the last step is smaller than a given value (usually 10−6) and thus the

fit has converged. The fit also stops if a number of repetitions of the iteration determined

by the user is exceeded or if the nonlinear method becomes unstable [Gomer et al. 1993;

Stutz and Platt 1996].

3.1.3 Corrections to the Measured Spectra

1. Offset:

The offset was determined by averaging 10000 scans taken at minimum integration

time available (60ms for Hamamatsu PDA, 3ms for SONY ILX CCD) at dark

conditions. This spectrum contains the the averaged signals of 10000 offsets and a

dark current of 600 s (or 30 s in case of the SONY CCD). As can be seen from Table

3.1, the dark current signal in these offset spectra can be neglected. In case of the

SONY CCD detector the offset signal was found to strongly increase with decreasing

temperature, since the complete USB2000 spectrometer (see section 4.3) including

readout electronics is cooled with the detector.
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2. Dark Current:

The dark current (DC) was determined by taking one scan with an integration time

of 1000 s (PDA) and 60 s (CCD) at dark conditions. Then the corresponding offset

signal was subtracted. The dark current is known to slightly decrease with increasing

saturation of the PDA [Stutz 1991], however, this can be neglected in the evaluation

procedure. The dark current signal exponentially decreases with decreasing temper-

ature of the detector. Therefore in Table 3.1 the detector temperature is also given.

Several detector pixels exhibit peak dark current signals of more than 10 times the

average DC signal. In case of the Hamamatsu PDA detector, about 2-5 pixels show

DC peaks, for the SONY ILX detector of the OceanOptics spectrometer, up to 100

pixels are affected. These high DC pixels are probably due to endowment defects of

the silicon semiconductor material.

3. Multichannel Scanning Technique (MCST):

A major problem of the use of array detectors as detectors for LP-DOAS is the

high variability of the sensitivity from pixel to pixel. The pixel sensitivity depends

on the wavelength of the incoming light and can vary up to some percent between

the diodes of one array [Stutz 1996]. Since DOAS is intended to observe optical

densities down to less than 10−3 it is necessary to compensate the different pixel

sensitivities correctly. An easy way is the division of each spectrum by a lamp ref-

erence spectrum scanned just before or after each spectrum. It was found that this

procedure usually leads to additional lamp structures in the spectrum since the Xe

emission lines of the lamps used for LP-DOAS measurements differ in both spec-

tra caused by lamp drift and differences of the illumination of the detector using a

short cut system for lamp spectra. A common method to eliminate pixel sensitivity

structures in multichannel detector spectra, the ’Scanning Multichannel Technique’,

was introduced by Knoll et al. [1990]. The method was adapted for LP-DOAS mea-

surements by Brauers et al. [1995]. The basic idea of the ’Multichannel Scanning

Technique’ (MCST) is the combination of a multi channel detection system (PDA,

CCD) with the scanning technique generally used to cover a larger spectral region

with a single channel detection system. Every spectrum is separated in several sin-

gle spectra with slightly shifted wavelength range. These single spectra are recorded

subsequently one after another. The spectral shift is performed automatically by

the spectrograph system. When adding all single spectra to a sum spectrum the

individual pixel sensitivity structure remains at each channel but the spectral infor-

mation changes depending on the step width of the MCST. The sum spectra can be

compared to the application of a low pass filter to the original spectrum as spectral

structures are broadened by the shift. Note that the step width must be smaller

than any spectral structure like absorption bands otherwise this structure not only
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remains in the sum spectra but could also be duplicated near itself. Then every

single spectrum is divided by the sum spectrum so that diode resident structures

are removed from the single spectra. Finally the single spectra are re-shifted to the

correct wavelength calibration (usually done by taking mercury reference spectra

for each wavelength range) and added.

Detector type Hamamatsu PDA @-20◦C OceanOptics
Zugspitze (-15◦C) Alert Crete Hudson Bay T=10◦C T=0◦C

Offset [counts/scan] 213 235 234 230 300 360
Dark current [counts/s] 3.1 1.6 1.6 1.6 1.5 0.6

DC peaks 14 16 4 16 ∼120 ∼120
Electronic noise [ counts√

scans
] 3.4 3.6 3.5 15 2.8 2.9

Table 3.1: Characterization of the detector units used for the DOAS measurements

3.1.4 Error Estimation

A linear least-squares fit will give the best possible result and the correct errors only if

several assumptions are valid [Albritton et al. 1976]. Some assumptions for the errors of

the input data of the fit, i.e. the reference spectra have to be made:

1. The errors of the pixel intensity must have a finite variance [Albritton et al. 1976].

Since the error of J(i) is normally dominated by photon noise, the errors are Poisson

distributed, therefore this assumption is valid.

2. The normal least-squares fit as discussed in [Albritton et al. 1976; Bevington 1969]

and used in most of the analysis procedures assumes that the intensity errors of the

individual pixels are independent. This is not strictly fulfilled because the instrument

function usually has a width of 6-8 pixels. Thus neighbor pixels cannot be considered

strictly independent.

3. The systematic error of the pixel intensity is zero. This is not always fulfilled, there-

fore the multi channel scanning technique (MCST) was applied [Brauers et al. 1995].

If this is not fulfilled a bias will be introduced in the results. This assumption must

be checked for every instrument.

For a more detailed description of the error calculation see [Stutz and Platt 1996].

3.1.5 The Effects of Residual Structures

A common problem in the analysis of DOAS spectra is due to the occurrence of struc-

tures others than noise in the residuum J-F of the fit. These structures may indicate

an unknown absorber or can be caused by the instrument itself and occur randomly in
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most of the cases. Stable residual structures cause systematic errors in the analysis which

cannot be described by statistical methods. First the question arises how these residuals

can be described. In a pure noise spectrum the width of any structure is usually only

one pixel, thus indicating the independence of the pixel intensities. In residuals, groups of

neighboring pixel intensities appear to change simultaneously in a random way. Therefore

it can be suspected that the errors of these pixel intensities are not independent from

each other. A way of simulating this would be smoothing, e.g. by a running mean, a pure

noise spectrum. In a running mean every pixel intensity is replaced by the average of its

neighboring pixel intensities. Therefore the errors of the individual pixel intensities are

no longer independent from each other. Smoothed noise spectra look similar to residu-

als normally found in the analysis of atmospheric spectra. Therefore the assumption of

independence of the errors appears to be invalid. This is also the case if measured spec-

tra are smoothed in some way prior to the fitting procedure, as it is common to reduce

noise (see [Stutz and Platt 1996]). Another approach to quantify the statistical effects of

residual structures on the DOAS error was introduced by Hausmann et al. based on sim-

ple Monte Carlo methods [Hausmann et al. 1997; Hausmann et al. 1999]. However, in this

thesis the method of Stutz and Platt [1996] was applied by multiplying the fit errors with

the appropriate factor for the respective analysis.

3.1.6 Differential Cross Sections

Here, a brief overview is given over the cross sections used for the spectral retrieval in this

thesis. For the spectral analysis literature cross sections were taken and convoluted with

the respective instrument function. For the best results the most highly resolved cross

sections were used for the spectral retrieval. The cross sections used within this work are

listed in Table 3.2. The differential absorption structures for all absorbers studied in this

work are shown in Figure 3.3.

3.1.7 Example for a DOAS Evaluation

In Figure 3.4 a sample evaluation is shown for the spectral range between 312 nm and

357 nm as it was used to derive the concentrations of bromine oxide and O3 for the long

path DOAS measurements. The spectrum shown in the upper part (indicated as A) was

recorded during the Hudson Bay campaign (see section 5.4). The spectrum was corrected

for offset and background and the MCST algorithm applied. In addition to the reference

spectra of O3 (trace B) and BrO (trace C) spectral features of O4, SO2, OClO, HCHO

and NO2 need to be corrected in this spectral range. This was done by simultaneously

fitting these spectra to the atmospheric spectrum. In the lowermost trace D the residual

structure that remained after subtracting all the fitted reference spectra is shown. Note

that the y-scale for trace D is expanded by a factor of two as compared to traces A-C.
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Figure 3.3: Overview of Differential Absorption Cross Sections. For the calculation of
the detection limits for long path DOAS listed on the right side a minimum detectable
optical density of 10−3 and the indicated lightpath was assumed.
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Figure 3.4: Sample evaluation of a spectrum measured during the Hudson Bay cam-
paign on 16.04.2001 at 18:16 GMT. Trace A: the black line is the measured atmospheric
spectrum after MCST applied. Red dotted line: fit result. Black dashed line: fitted poly-
nomial. Trace B: black line: O3 fit result. Red dotted line: scaled reference spectrum of
O3 (≈ 6.6 · 1011 molec·cm−3 or ≈ 24 ppb). Trace C black line: BrO fit result. Red dotted
line: scaled reference spectrum of BrO (≈ 3.8 · 108 molec ·cm−3 or ≈ 13 ppt). Trace D:
residual (here: 2.0 · 10−3 peak to peak, shown on an expanded scale).
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Species Source Resolution Reference
Ozone FTa 5cm−1 [Voigt et al. 1999]
NO2 FT 0.5 - 1cm−1 [Voigt et al. 1999]
NO3 Grb 1nm [Sander 1986]
HONO Gr 0.1nm [Stutz et al. 1999]
BrOc FT 4cm−1 [Fleischmann et al. 2001]
IO Grd 0.09nm [Hönninger 1999]
OBrO Gre 0.7 [Rattigan et al. 1995]
OIO Gr 1.13nm [Bloss et al. 2001]
OClO FT 1cm−1 [Kromminga et al. 1999]
O4 FT 2cm−1 [Hermans et al. 1999]
H2O HITRAN 0.001nm [Rothman et al. 1998]
H2O FT(for 442 nm region) 0.001nm [Harder and Brault 1997]

aFourier transform spectrometer
bGrating spectrometer
cfor the BrO evaluation of spectra from the Zugspitze and Alert, the cross section by

Wahner et al. [1988] was used after correction
dScaled to the cross section of [Bloss et al. 2001]
eScaled to the cross section of [Knight et al. 2000]

Table 3.2: Trace gas cross sections used in this work

3.2 Active and Passive DOAS

The methods and algorithms described in the previous section are applicable for all vari-

ations of the DOAS technique that have been developed to date. There are, however,

certain problems and solutions that are specific to the respective DOAS measurements.

For example, the MCST technique (see section 3.1.3) was especially adapted for improving

certain long path DOAS measurements, however, it might also be useful for other cases

where the same problem of variable detector pixel sensitivity is encountered.

In the following specific issues and their solutions will be covered for ’active DOAS’, i.e.

DOAS systems using an artificial light source, sending and receiving optics to observe trace

gas absorptions along a well-defined lightpath, and ’passive DOAS’, i.e. the determination

of trace gas absorptions in the atmosphere by spectroscopy of scattered, reflected or direct

sunlight from the ground, airborne platforms or satellite instruments1.

3.2.1 The Quartz Fiber Mode Mixer

In modern long path DOAS systems usually a quartz fiber is used to transmit the light

from the focal point of the telescope to the entrance slit of the spectrograph. During

1Special developments to study the nighttime atmosphere by spectroscopy of direct moonlight
or even starlight will not be covered here.
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field campaigns the usage of fibers is necessary to ensure a stable illumination of the

spectrograph grating and the detector. The quartz fibers used during this work are multi

mode step-index fibers with a numerical aperture of 0.12, which fits best the aperture

ratio of the employed telescopes. However, when a coaxial arrangement of the sending

and receiving telescopes is used (e.g. [Axelson et al. 1990]), a ring-shaped parallel light

beam is focussed onto the quartz fiber. Most fibers therefore transmit a ring-shaped light

cone into the spectrograph. As a result, the grating is not uniformly illuminated. This

can lead to strongly structured residuals in the DOAS evaluation, which degrade the

performance of the DOAS system and make the detection of weak absorbers impossible

[Stutz and Platt 1997]. It was found by Stutz and Platt [1997] that bending and shaking

the quartz fiber in a ’quartz fiber mode mixer’ leads to a more uniform distribution of

the different modes and thus to a more homogeneous illumination of the grating and

the detector. Quartz fiber mode mixers have a much higher light throughput than e.g.

diffuser plates. It should be noted that the mode mixing characteristics varied strongly for

the employed quartz fibers, some even exhibited very efficient mode mixing without any

bending and shaking.

Despite the fact, that quartz fiber mode mixing leads to significant improvement of the

instrument performance, residual noise is generally higher compared to laboratory tests

of DOAS systems without quartz fibers.

3.2.2 Fraunhofer Structures

All passive DOAS instruments share the sun as their principal light source. Scattered sun-

light DOAS measurements from the ground, balloon or satellite as well as direct sunlight

measurements have to consider the particular shape of the solar spectrum. The radiation

emitted by the sun is determined by the physical and chemical composition of the sun’s

surface and especially its atmosphere. The solar radiation can as a first approximation

be described as the emission of a black body with T≈ 5800K. This can be explained as-

suming that most of the solar radiation reaching the planets originates from the so called

photosphere, a relatively thin layer (about 1000 km) at the surface of the sun. The spec-

trum of the photosphere is a continuum (described by the Planck function for T=5800K)

with maximum intensity around 500 nm2. This continuum, however, is overlaid by sev-

eral relatively strong absorption lines called the Fraunhofer lines (first discovered by Josef

Fraunhofer, 1787 - 1826). These lines are due to selective absorption and re-emission of ra-

diation by atoms in the solar photosphere. Compared to the absorptions of most absorbers

of the terrestrial atmosphere the solar Fraunhofer lines are substantially stronger. In par-

2according to Wien’s displacement law λmax ·T = const. ≈ 3 ·10−3K ·m the maximum intensity
of the thermal emission of the earth as seen from space is around 11µm corresponding to T=250K,
which is the temperature of the atmospheric layer where most of the thermal radiation seen from
space is emitted.
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ticular in the UV and visible spectral range (300-600 nm) they are the dominant features

in scattered sunlight DOAS spectra (see also upper part of Figure 3.5). The strength and

shape of Fraunhofer lines varies over time due to changes in sun spot density and solar

cycles (28 day sun rotation, 11 year solar cycle). However, these effects have not been

found to play a significant role for the DOAS evaluation in this thesis. Another aspect of

Fraunhofer lines is their change when different regions of the solar disc are observed. The

so-called center to limb darkening effect and its influence on DOAS was studied in detail

during the Solar Eclipse in 1999 [Bösch 2002; von Friedeburg et al. 2001]. The effects on

scattered sunlight DOAS are not known to date, however, it can be assumed, that the

ensemble of photons received by scattered sunlight spectroscopy largely averages over the

solar disc.

In the DOAS analysis procedure Fraunhofer lines have to be carefully removed in order to

evaluate the absorption structures of the much weaker trace gas absorptions in the earth’s

atmosphere (optical densities of 10−3 and less compared to Fraunhofer lines with up to

30% absorption). For the DOAS evaluation of scattered sunlight spectra in this thesis a

so-called Fraunhofer reference spectrum (FRS) was always included in the fitting process.

This spectrum was carefully chosen from the measured spectra in order to minimize the

residual structures remaining after the fit. For the MAX-DOAS evaluation usually one

fixed FRS taken at small solar zenith angle and zenith observation geometry for minimum

trace gas absorption was used (see upper part of Figure 3.5).

3.2.3 The Ring Effect

The Ring effect - named after Grainger and Ring [1962] - leads to a reduction of the ob-

served optical densities of solar Fraunhofer lines depending on the atmospheric lightpath.

Fraunhofer lines observed at large solar zenith angles (SZA) appear weaker (”filled in”)

than the same lines at small SZA. Precise measurements can only be made if this effect

is compensated, otherwise complete removal of Fraunhofer lines by division of spectra

taken at small and large SZA, respectively, is impossible. There has been much specu-

lation on the origin of the Ring effect, processes like rotational and vibrational Raman

scattering, aerosol fluorescence etc. have been suggested as explanations. Rotational Ra-

man scattering (see section 3.3.2) is thought to be the most probable cause for the Ring

effect [Bussemer 1993; Fish and Jones 1995; Burrows et al. 1996]. Although optical den-

sity changes due to the Ring effect are only of the order of a few per cent, this significantly

affects DOAS measurements of scattered radiation. Thus a very accurate correction is

required, since the atmospheric absorptions which are evaluated are sometimes more than

an order of magnitude smaller than the filling in of the Fraunhofer lines. Therefore a so

called Ring reference spectrum was included in the fitting process when scattered sunlight

spectra were evaluated. The scattered sunlight intensity measured by the DOAS detector
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can be written as:

Imeas = Irayleigh + Imie + Iraman = Ielastic + Iraman (3.14)

For the DOAS evaluation the logarithm of the measured spectrum is taken (see section

3.1.2).

ln(Imeas) = ln(Ielastic + Iraman) = ln(Ielastic) + ln(1 +
Iraman

Ielastic
) ≈ ln(Ielastic) +

Iraman

Ielastic
(3.15)

with

IRing ≡
Iraman

Ielastic
(3.16)

This spectrum is usually referred to as Ring spectrum and it is included in the fitting

routine to correct the Ring effect. Two different approaches exist to determine a Ring

spectrum.

• Measured Ring spectrum:

This method is based on the fact that different scattering processes in the atmo-

sphere exhibit different polarization properties. While Rayleigh scattering by air

molecules is highly polarized for a scattering angle of 90◦ (see section 3.3.1), light

scattered by rotational Raman scattering is only weakly polarized. By taking scat-

tered light spectra from different viewing directions the rotational Raman scattered

intensity and therefore a Ring spectrum can be determined [Solomon et al. 1987].

Since Mie scattering also enhances the fraction of depolarized light in the scattered

solar radiation, the Ring spectrum determined from the polarization measurements

also contains structures caused by Mie scattering, which does not contribute to the

Ring effect. Also, the atmospheric light paths for different polarization are different

and can thus contain different absorptions of atmospheric trace gases. As a result,

the measured Ring spectrum may contain an unknown amount of atmospheric ab-

sorptions which affects the retrieval of the trace gas absorptions in the DOAS fit.

Another problem with measured Ring spectra is that they are valid for specific at-

mospheric conditions and viewing geometry and for one specific instrument (with

specific wavelength calibration). This might therefore be a good approach for some

particular cases, however, this method is not applicable for the measurements per-

formed in this work.

• Calculated Ring spectrum:

From the known energies of the rotational states of the two main constituents of the

atmosphere, O2 and N2, the cross section for rotational Raman scattering can be

calculated. This is done by including Raman scattering into radiative transfer models

[Bussemer 1993; Fish and Jones 1995; Funk 2000] or by calculating the pure ratio of
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the cross sections for Raman and Rayleigh scattering. For the data analysis in this

work the Ring spectra were determined by calculating a rotational Raman spectrum

from the measured Fraunhofer spectrum (Y-command of the analysis software MFC

[Gomer et al. 1993]). This rotational Raman spectrum is divided by the measured

Fraunhofer spectrum (corrected for rotational Raman scattering to represent pure

elastic scattering). An example for the calculation of a Ring spectrum is shown in

Figure 3.5. It was found that the filling in could be properly corrected for by this

method.
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Figure 3.5: Sample Ring spectrum calculated for the evaluation of UV spectra taken
during ALERT2000. Shown is also the logarithm of the Fraunhofer reference spectrum
used for the calculation. The spectrum was taken on April 22, 2000 at 15:41 UT at a
local solar zenith angle of 70◦ and zenith observation geometry.

3.2.4 The Solar I0 Effect

The high number and optical density of solar Fraunhofer lines leads to strong variations of

the intensity of the solar radiation with wavelength. For DOAS, where the resolution of the

spectrometers is usually not high enough to resolve narrow absorption lines, this can lead to

significant evaluation errors. For example when a strong solar Fraunhofer line and a narrow
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absorption line of a trace gas have significant overlap, the atmospheric spectrum measured

by a low resolution instrument cannot be correctly described by the standard convolution

of the high resolution reference spectrum with the instrument function. Errors due to in-

correct calculation of the low resolution absorption band shape result. Because these errors

arise from the spectral structures of the I0 spectrum, it is usually referred to as solar I0

effect [Johnston 1996; Platt et al. 1997; Huppert 2000; Van Roozendael et al. 1999]. While

for most of the atmospheric absorbers this leads only to negligible effects, in some cases

the I0 effect has to be corrected for. The solar I0 effect can be accounted for using so called

’I0 corrected’ reference spectra. These can be calculated in the following manner:

First the absorption spectrum of the chosen trace gas (calculated with a high resolution

cross section and solar spectrum) is convoluted with H. The result is then divided by

the high resolution solar spectrum I0(λ) convoluted with the instrument slit function H.

Applying the logarithm leads to the I0-corrected reference spectrum:

Rcorrected(λ) =
R(λ)

So(λ)
=

∫∞

0 H(λ′, λ)× I0(λ
′)e−σ(λ

′)SCDdλ′
∫∞

0 H(λ′, λ)× I0(λ′)dλ′
(3.17)

Obviously this I0-corrected reference spectrum can only perfectly match the absorptions

in the measured atmospheric spectrum if the same slant column density (SCD, see section

3.4) was assumed for the calculation as was present in the atmosphere. However, it was

found that the calculation for a typical SCD could be used for all measured spectra. For

the scattered sunlight DOAS evaluations in this thesis, all NO2 reference spectra were I0

corrected, for the other trace gases the effect was neglected since they exhibit either no

high resolution spectral features or the absorptions are too weak to change significantly

due to the I0 effect.

3.3 Scattering Processes in the Atmosphere

The main scattering processes in the earth’s atmosphere are Rayleigh and Raman scat-

tering by air molecules and Mie scattering on aerosol particles and cloud droplets or ice

particles. Elastic scattering processes have to be distinguished from inelastic processes.

Scattering by molecules can be elastic (Rayleigh scattering) or inelastic (Raman scatter-

ing). In the case of Mie scattering it depends on the composition of the aerosol particle

and the wavelength, e.g. for liquid water droplets at a wavelength with large liquid water

absorption the scattering is highly inelastic, while for wavelengths without absorption the

scattering is predominantly elastic.

3.3.1 Rayleigh Scattering

Rayleigh scattering occurs when light interacts with matter of smaller size compared to the

wavelength of the incident light. The physical process can be described as electromagnetic
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radiation inducing an oscillating dipole in polarizable particles, i.e. air molecules (see

e.g. [Van de Hulst 1981]). The Rayleigh scattering cross section depends strongly on the

wavelength λ (∝ λ−4) and the polarizability χ (∝ χ2). An accurate empirical formula is

given by Nicolet [1984] for λ in units of µm:

σRS = 4.02× 10−28/λ4+x cm2 (3.18)

x = 0.04 for λ > 550 nm

x = 0.389λ+ 0.09426/λ− 0.3228 for 200 nm < λ < 550 nm

The Rayleigh scattering phase function for the case of unpolarized incident light is given

by

Φ(cos θ) =
3

4

(

1 + cos2 θ
)

. (3.19)

A polar diagram is shown in Figure 3.6.

If the anisotropy of the polarizability is taken into account (see [Penndorf 1957]), Equation

3.19 changes to

Φ(cos θ) = 0.7629 ·
(

1 + 0.9324 · cos2 θ
)

. (3.20)

3.3.2 Raman Scattering

Inelastic scattering which occurs by air molecules is called Raman Scattering. It can be

described as light interacting with an air molecule that changes its excitation state dur-

ing the scattering process. The photon either transfers part of its energy to the molecule

(Stokes lines, ∆J = +2, S-branch) or takes over part of the molecule’s excitation en-

ergy (Anti-Stokes, ∆J = −2, O-branch). The term rotational Raman scattering (RRS) is

used, if only the rotational excitation is affected (∆ν = 0), if also the vibrational state

changes the term rotational-vibrational Raman scattering (RVRS) is used (∆ν = ±1).

Only discrete amounts of energy given by the difference between the discrete excitation

levels can be transferred between the photon and the molecule. For air molecules (oxygen

and nitrogen) RRS frequency shifts of up to ± 200 cm−1 occur, in case of RVRS a vibra-

tional shift of ± 2331 cm−1 for nitrogen and ± 1555 cm−1 for oxygen has to be added.

The RVRS is one order of magnitude weaker then the RRS, hence only RRS is regarded

in the following. Details can be found in the literature [Burrows et al. 1996; Haug 1996;

Sioris and Evans 1999]. Rotational Raman scattering is associated with the Ring effect

(see section 3.2.3). Figure 3.7 shows the transitions for RRS and RVRS on O2 and N2

molecules.
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Figure 3.6: Polar diagram of the Rayleigh scattering phase function Φ(θ) for unpolarized
incident light. The contribution of light polarized parallel to the scattering plane shows
the ∼ sin2 θ′ dependence of a Hertz dipole (dotted line), with θ′ = π/2 − θ being
the angle between dipole axis and the Poynting vector, while the contribution of light
polarized perpendicular to the scattering plane is independent of θ (dash dotted line).

3.3.3 Mie Scattering

Mie scattering can be described as the interaction of light with matter of dimensions

comparable to the wavelength of the incident light. It can be regarded as the radiation

resulting from a large number of coherently excited elementary emitters in a particle. Inter-

ference effects have to be considered if the linear dimension of the particle is not negligible

compared to the wavelength. Therefore the calculation of the differential scattering cross

section can be very complicated, depending on the particle shape. However, the Mie theory

is well developed and a number of numerical models exist to calculate scattering phase

functions and extinction coefficients for given aerosol types and particle size distributions,

[Van de Hulst 1981;Wiscombe 1980]. The most noticeable difference compared to Rayleigh

scattering is the weaker wavelength dependence (∝ λa, a ≈ −1.3) and a strong dominance

of the forward direction in the scattered light. The computational effort is substantially

reduced by the introduction of an analytical expression for the scattering phase function,

depending only on a few observable parameters. Most common is the Henyey-Greenstein
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Figure 3.7: Transitions for rotational and vibrational Raman scattering on O2 and N2

molecules. Adapted from Haug [1996]

parameterization

P (cos θ) =
1− g2

4π(1 + g2 − 2g cos θ)3/2
, (3.21)

depending only on the asymmetry factor g.

g =< cos θ >=
1

2

∫ 1

−1
P (cos θ) cos θ dcos θ (3.22)

which is also used in the AMFTRAN model used for the airmass factor calculations in

this thesis [Marquard 1998].

Tropospheric aerosols are either emitted from the surface (sea salt, mineral dust,

biomass burning) or emerge from the gas phase by condensation of chemically formed

hygroscopic species (primarily sulfate and nitrate). The aerosol load of the atmosphere,

i.e. particle number density and size distribution, depends on the aerosol origin and history.

Parameters for typical aerosol scenarios (urban, rural, maritime, background) are assem-

bled in the data base for the radiative transfer model LOWTRAN, [Isaacs et al. 1987].

The data base includes the extinction coefficients and the asymmetry factors as well as
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their spectral dependence. For the airmass factor calculations performed in this thesis, the

LOWTRAN maritime aerosol properties were used as an approximation.

Another important aspect is Mie scattering on cloud particles, however, clouds are very

difficult to describe and were therefore neglected in this work. A radiative transfer model

including all cloud effects known to date was e.g. developed by Funk [2000].

3.4 Radiative Transfer in the Atmosphere

For the analysis and interpretation of DOAS measurements using scattered sunlight it

is crucial to correctly describe the radiative transfer in the atmosphere. For trace gases

with distinct vertical profiles (O3, NO2, BrO, etc.) the apparent absorption measured

by a ground based spectrometer depends strongly on the distribution of the light paths

taken by the registered photons on their way through the atmosphere. The concept of

air mass factors for the interpretation of DOAS measurements using scattered sunlight is

introduced in this section. First, a brief summary of the radiative transport theory and

the different approaches to model air mass factors and some intrinsic problems concerning

the interpretation of results from radiative transport models is described.

3.4.1 The Airmass Factor Concept

The DOAS analysis procedure explained in section 3.1.2 yields the so called slant column

density (SCD) S, which is defined as the trace gas concentration integrated along the light

path:

S =

∫

c(s) ds (3.23)

It should be noted that for a single SCD measurement the individual photons registered

in the detector may have travelled different paths through the atmosphere before being

scattered into the DOAS telescope. Therefore equation 3.23 can only account for the

most probable path defined by the statistics of the registered photon ensemble. Since the

SCD depends on the observation geometry and the current meteorological conditions, it

is usually converted to the vertical column density (VCD) V , which is defined as the trace

gas concentration c(z) integrated along the vertical path through the atmosphere:

V =

∫

c(z) dz (3.24)

Since V only depends on the trace gas profile, it is independent of the viewing geometry

and the trajectories on which the light travelled through the atmosphere before reaching

the instrument. The air mass factor (AMF) A is defined as the ratio of SCD S and VCD

V :

A(λ, ϑ, α, φ) =
S(λ, ϑ, α, φ)

V
(3.25)
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where ϑ denotes the solar zenith angle (SZA), α the telescope elevation angle and ϕ

the relative azimuth angle between the telescope direction and the sun. The observation

geometry and the respective angles are shown in Figure 3.8. For simplification the relative

azimuth angle ϕ is set to 180◦ here. The AMF depends on the radiative transfer in the

atmosphere and is therefore determined by factors like the trace gas profile, pressure,

temperature, ozone and aerosol profiles as well as clouds, surface albedo etc. To determine

the relationship between SCD S and VCD V , the optical density τ of solar radiation

passing through a concentration field c(~x) under the assumption that the temperature

and pressure dependency of the absorption cross section σ is small:

τ(λ) = − ln

(

I(λ)

I0(λ)

)

= σ(λ) ·

∫ L

0
c(~x) ds = σ(λ) · S(λ) (3.26)

Here, I0(λ) is the intensity observed in absence of the absorber in the atmosphere. Com-

bining equations (3.25) and (3.26), the air mass factor can also be written as:

A(λ) =
τ(λ)

σ(λ) · V
(3.27)

Equation (3.26) is only valid for a well defined light path between the position of the sun

and the observer. This is e.g. the case for the observation of direct sunlight (or moonlight)

in a plane parallel atmosphere with a stratified trace gas layer. It is also a good approx-

imation for the situation sketched in Figure 3.8 as long as the indicated photon path is

representative for the ensemble of photons received in the detector. For the case sketched

in Figure 3.8A (e.g. a stratospheric absorption layer), the path integral in equation (3.26)

is calculated along a straight line between the sun and the position of the scattering pro-

cess (if refraction is neglected). Along the path between the scattering process and the

detector no additional absorption is encountered. Then the line element for a given solar

zenith angle ϑ is ds = dz/ cos(ϑ) with dz being the vertical line element. Therefore, the

slant column density Sstrat can be calculated as follows:

Sstrat(ϑ) =

∫

c(~x)ds =

∫

c(z)
dz

cos(ϑ)
=

V

cos(ϑ)
(3.28)

Hence, when neglecting refraction, the air mass factor for this approximation, can be

written as:

Astrat(ϑ) =
Sstrat(ϑ)

V
=

1

cos(ϑ)
(3.29)

Here Astrat is only a function of the solar zenith angle ϑ.

The situation changes for a trace gas layer close to the ground as sketched in Figure

3.8B (e.g. an absorber confined to the boundary layer). In this case the scattering process

occurs above the absorption layer and therefore the path integral in equation (3.26) is

calculated along a straight line between the detector and the position of the scattering

process. Now along the path between the scattering process and the sun no absorption is
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Figure 3.8: Observation geometry for ground based DOAS using scattered sunlight. Light
enters the atmosphere at the solar zenith angle ϑ. For the single scattering approximation
light received by the observer was scattered exactly once into the telescope viewing
direction defined by the elevation angle α. The observed SCD (integral along ds) is
larger than the VCD (integral along dz), with AMF being the conversion factor. Part A
represents the situation for a high trace gas layer, part B is representative for a trace
gas layer at the surface.
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possible. The line element can now be expressed for a given telescope elevation angle α as

ds = dz/ sin(α). The slant column density Sbl is calculated as follows:

Sbl(α) =

∫

c(~x)ds =

∫

c(z)
dz

sin(α)
=

V

sin(α)
(3.30)

The airmass factor for the surface absorption layer

Abl(α) =
Sbl(α)

V
=

1

sin(α)
(3.31)

is simply a function of the telescope elevation angle. These approximations for Astrat and

Abl are valid for small solar zenith angles (ϑ / 70◦) and telescope elevation angles smaller

than ≈ 20◦. Equation (3.29) is a good approximation for the air mass factor for zenith

scattered sunlight measurements of stratospheric absorbers [Frank 1991]. It will be shown

in this thesis (see section 3.5.3) that equation (3.31) is a reasonable approximation as long

as multiple scattering can be neglected.

For trace gas profiles other than the extreme cases A and B mentioned above, the airmass

factor can as a first approximation be written as a superposition of airmass factors for

the atmospheric layers, where the trace gas is abundant. For an absorber with both a

stratospheric and a boundary layer fraction, the vertical and slant column densities have

both stratospheric (Vstrat, Sstrat) and boundary layer (Vbl, Sbl) contributions. In this case

the airmass factor Atot can be written as:

Atot(ϑ, α) = Astrat(ϑ) +Abl(α) =
Sstrat(ϑ)

Vstrat
+
Sbl(α)

Vbl
(3.32)

Similar relations can be derived for an additional contribution of the free troposphere, etc.

3.4.2 An Improved Airmass Factor Concept

In order to calculate airmass factors more precisely, an improved approach has to be

used. For measurements of scattered sunlight, the observed detector signal represents the

sum of photons travelling through the atmosphere on many different light paths Γ. This

can be described by a parameter a characterizing the probability p(a, λ) that a photon

of wavelength λ travels through the atmosphere on a given light path ~Γa(s) from the

sun to the observer (detector)3. The observed intensity is the integrated intensity over the

photons from all possible light paths reaching the instrument, weighted with the respective

probability p [Marquard et al. 2000] and the observed optical density is:

τ(λ) = − ln

(

I(λ)

I0(λ)

)

= − ln

(
∫

p(a, λ) e−σ(λ)V
∫

ĉ(~Γa(s)) ds da

)

(3.33)

3p(λ) can be regarded as the probability density function of an ensemble of possible light paths.
It is not evident that p can be parameterized by one ore more parameters a. Therefore the path
integrals in the following equations cannot necessarily be solved analytically and should be regarded
as a solution formalism only.
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As before, σ is assumed to be independent of temperature and pressure and can therefore

be regarded as a constant factor for the path integral. The trace gas profile c(~x) is written

as the product of the vertical column density and the ’relative’ profile shape ĉ(~s) = c(~s)/V

which is independent of the trace gas amount. Combining equation (3.27) and (3.33), the

air mass factor A for the observation of scattered light is

A(λ) = −
ln
(

∫

p(a, λ) e−σ(λ)V
∫

ĉ(~Γa(s)) ds da
)

σ(λ) · V
(3.34)

Equations (3.33) and (3.34) have several important implications for the interpretation of

measurements of scattered radiation:

• Equation (3.33) implies that the observed optical density is not a linear superposition

of the optical densities along the individual light paths ~Γa. Therefore the Lambert

Beer law is not strictly fulfilled.

• The Lambert Beer law is strictly fulfilled only if there exists a single, well defined

light path ~Γ0(s), i.e. when observing direct light. Then the probability density func-

tion is a delta distribution, p(λ, a) = δ(a). In this case, equations (3.33) and (3.26)

are equivalent.

• The vertical column density is not only a factor in equation (3.34). Hence, the air

mass factor for scattered radiation is not only a function of the relative profile shape

ĉ but also depends on the vertical column density: A(λ) = A(λ, V ). Therefore, the

determination of the vertical column density is equivalent to the solution of the

implicit relationship (see equation (3.25))

V =
S(λ)

A(λ, V )
(3.35)

This equation can in principle be solved using an iterative approach

[Marquard et al. 2000]. Since the air mass factor needs to be calculated for each

iteration step, this method is very time consuming and therefore not applied within

this work.

• The air mass factor depends not only on wavelength λ, but also on the product of the

absorption cross section σ(λ) with the slant column density S: A(λ) = A(λ, σ(λ)·S).

The air mass factor, and therefore also the slant column density, are modulated

with the wavelength dependency of the trace gas cross section. This implies that the

optical density is not a linear function of the cross section:

τ(λ) = σ(λ) · S(λ) = σ(λ) · V ·A(λ, σ(λ) · S) (3.36)

This has important implications for the spectral retrieval since it is performed over

a finite wavelength interval. For strong absorbers, such as ozone in the Huggins
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bands, the wavelength dependence of the air mass factors leads to a modulation of

the absorption structure which can be compensated for by using σ(λ) ·A(λ) instead

of σ(λ) as the trace gas reference spectrum (’modified DOAS’) [Diebel et al. 1995;

Richter 1997].

• If a single absorber is present in the atmosphere, the probability density function

p(λ, a) depends only on Rayleigh and Mie scattering. In this case, p(λ, a) is expected

to be a broad band function of λ. If more than one species absorbs in the considered

wavelength interval, equation (3.26) implies that the probability density p(λ, a) is

also a function of the cross sections σn(λ) and concentration fields cn(~x) of all other

absorbers:

p(λ, σn(λ), a) = p0(λ, a) · e
−

∑

n σn(λ)Vn

∫

ĉn(~Γa(s)) ds (3.37)

with p0(λ, a) being the probability density function in absence of all absorbers.

Therefore, the air mass factor for a trace gas depends also on the abundance of all

other species absorbing in the given wavelength range.

• Precise air mass factors can be determined by modelling the intensities IM (λ) and

IM0 (λ) in presence and absence of the absorber using a radiative transport model and

by applying a spectral retrieval to these modelled spectra. Then the air mass factor

is the ratio of the slant column density SM (derived by the spectral retrieval) and the

vertical column density V M (which is a known input parameter for the radiative

transport calculation): A = SM/V M . This approach is also very time consuming

if variable atmospheric conditions need to be taken into account during long term

measurements. Therefore this method is not applied within this work.

• Due to photochemistry, the profiles of certain trace gases possibly change with solar

zenith angle (chemical enhancement). This fact can be taken into account in the

radiative transport model by using a two dimensional concentration field c(z, ϑ)

which depends not only on the altitude z but also on the local solar zenith angle

ϑ. The concentration field can be determined by photochemical model calculations.

Unfortunately, the AMFTRAN program does not support the modelling of chemical

enhancement.

• Due to photochemistry and transport in the boundary layer, the trace gas profiles

can also change significantly. In this case reliable modelling of the AMF is only

possible in combination with precise 3D chemistry and transport models.

A possible approach to calculate the radiative transport according to equation (3.34) is the

single scattering approximation [Frank 1991]. In this case, air mass factors are calculated

under the assumption that each photon is scattered only once in the atmosphere. It follows

that the light is scattered along the line of sight of the instrument (see Figure 3.8). The
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individual light paths can be expressed as a well defined function of the scattering position

z along the line of sight, i.e. a ≡ z, ~Γa(s) = ~Γz(s) and p(z, λ) is now the probability that

a photon is scattered into the viewing direction of the instrument in a distance z relative

to the instrument. It follows that:

A(λ) = −

∫

p(z, λ) · e−σ(λ) V ·
∫

ĉ(~Γz(s)) ds dz

σ(λ) V
(3.38)

Single scattering radiative transport models have the advantage to be fast and rel-

atively easy to implement. Reliable air mass factors can be modelled if the probability

of multiple scattering is small, i.e. for stratospheric absorbers, small atmospheric aerosol

loading, small solar zenith angles and relatively long wavelengths.

Multiple scattering in the atmosphere can be taken into account by using Monte Carlo

radiative transport models. In this case, the paths of individual photons are treated as

a random process with given probabilities for scattering and absorption events. Equation

(3.34) is solved by averaging over many light paths. If all physical processes are imple-

mented correctly in the Monte Carlo model, the precision of the air mass factor only

depends on the number of modelled light paths and the accuracy of the atmospheric input

parameters.

The AMFTRAN Monte Carlo radiative transfer model [Marquard 1998] was used here

to calculate air mass factors for the MAX-DOAS measurements. It includes multiple

Rayleigh and Mie scattering, refraction and full spherical geometry.

Differential Slant Column Densities and the Langley plot

The primary result of a DOAS retrieval according to section 3.1.2 is the differential slant

column density (dSCD). The dSCD is the difference between the slant column density in

the spectrum I and in the Fraunhofer Reference Spectrum (FRS) I0 (see section 3.2.2).

dSCD(ϑ, α) = S(ϑ, α)− SFRS (3.39)

For zenith scattered light DOAS measurements of stratospheric absorbers the depen-

dency of the air mass factor on the solar zenith angle ϑ can be used to convert the

differential slant column densities dSCD(ϑ) into absolute slant column densities S(ϑ).

Combining equations (3.39) and (3.25) leads to

dSCD(ϑ) = A(ϑ) · V − SFRS (3.40)

The differential slant column density is a linear function of the air mass factor, if the

vertical column density does not depend on the solar zenith angle. Equation (3.40) implies

that the slant column density of the Fraunhofer reference spectrum, SFRS , is given by the

intercept of the linear fit when plotting dSCD(ϑ) versus A(ϑ) and the slope is the vertical
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column density.

The Langley plot method, however, is only applicable when the following criteria are

fulfilled:

• constant vertical column density over the measurement time

• the airmass factor in equation 3.35 must be independent of V

• airmass factors must be recalculated in case of changes in any of the model in-

put parameters (especially changes in the vertical profile of the absorber itself are

crucial).

For this study none of the mentioned criteria was strictly fulfilled. Especially the high

temporal variability of the evaluated absorbers (see section 5.2.3) and their vertical column

densities rendered the Langley plot method unusable for the studies presented in this

thesis.
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3.5 The Multi-Axis-DOAS Technique

In this section the development of the Multi-Axis-DOAS technique is described. The

method is based on previous DOAS applications which are combined and modified to

result in this new approach. Since it opens a wide field for future applications of the

DOAS technique it can be considered a milestone in the DOAS evolution. As already

discussed in the DOAS overview (see section 3.1), in the first years of DOAS mainly two

different instrumental setups for the measurements of atmospheric trace gases were used:

• Scattered sunlight was used to study stratospheric and tropospheric NO2

by ground-based absorption spectroscopy [Noxon 1975; Noxon et al. 1979;

Solomon et al. 1987; Solomon et al. 1987]. These passive DOAS measurements

yield slant column densities of the respective absorbers. Because the radiative

transfer modelling necessary for the determination of vertical column densities is

best understood for zenith scattered sunlight, most observations were done using

zenith scattered sunlight.

• Artificial light sources were used to study trace gases, especially radical

species in the planetary boundary layer by long path DOAS [Perner et al. 1976;

Perner and Platt 1979; Platt et al. 1979; Platt et al. 1980; Platt and Perner 1980].

These active DOAS measurements yield trace gas concentrations averaged along

the several kilometer long lightpath setup between two ground stations.

In the following years the DOAS technique was subsequently enhanced for various

studies of tropospheric and stratospheric trace gases. Measurements using direct sun-

light or moonlight, especially from balloon borne instruments were very important for

deriving vertical trace gas profiles [Pommereau and Piquard 1994; Harder et al. 1998;

Fitzenberger et al. 2000]. In fact, since the beginning of absorption measurements in the

atmosphere the vertical distribution of absorbers was of particular interest. Shortly af-

ter Dobson and Harrison [1926] made the first measurements of atmospheric ozone ab-

sorption, Götz et al. [1934] developed the so-called ’Umkehr’ method, which allowed the

retrieval of ozone concentrations in 5 to 8 layers, the first vertical profiles of ozone. In

that case the dependance of the atmospheric lightpath on the solar zenith angle ϑ for two

different wavelengths was used to derive the profile. Since then many other methods for

the retrieval of vertical profiles of atmospheric components have been developed, for more

information see e.g. the review by Rodgers [1976].
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3.5.1 Off Axis DOAS

Off Axis DOAS for Stratospheric Studies

Zenith sky observations had already been performed for many years when the off axis geom-

etry for measurements of scattered sunlight was first introduced by Sanders et al. [1993] to

observe OClO over Antarctica during twilight. The strategy of their study was to observe

OClO in the stratosphere using scattered sunlight as far into the ’polar night’ as possible.

As the sun rises or sets, the sky is of course substantially brighter towards the horizon in

the direction of the sun than it is in the zenith. Thus the light intensity and therefore the

signal to noise ratio is improved significantly. Figure 3.9 illustrates the different geome-

tries for zenith and off axis scattered sunlight. The off axis angle in this case is defined

as the angle between zenith and viewing direction. Sanders et al. [1993] also pointed out,

that the off axis geometry increases the sensitivity for lower absorption layers. They found

out that absorption by tropospheric species (e.g. O4) is greatly enhanced in the off axis

viewing mode, whereas for an absorber in the stratosphere (e.g. NO2) the absorptions

for zenith and off axis geometries are comparable. By the time of the measurements of

Sanders et al. the existing radiative transfer models did not yet allow the calculation of

airmass factors for the off axis viewing mode, so the measurements could only be treated

semi-quantitatively.

Scattering

Detector

Zenith mode

80 off axis mode°

80°

Figure 3.9: Schematic diagram of the zenith and off axis observing geometries. Adapted
from Sanders et al. [1993]

Off Axis DOAS for Tropospheric Studies

In spring 1995 Miller et al. [1997] conducted off axis measurements at Kangerlussuaq,

Greenland in order to study tropospheric BrO and OClO related to boundary layer ozone

depletion after polar sunrise. They used off axis angles of 87◦ and 85◦, respectively to use
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the absorption by the tropospheric BrO fraction more efficiently. However, no comparison

was done with zenith sky measurements, so the stratospheric background could not be

separated. Instead, they used the behavior of the BrO slant column change with solar

zenith angle to identify episodes of tropospheric BrO. The main difference between the

slant column change for tropospheric and stratospheric absorbers is that for a stratospheric

absorber the absorption increases strongly towards twilight whereas for a tropospheric ab-

sorber the signal slightly decreases (see Figure 3.10).Miller et al. [1997] reported enhanced

Figure 3.10: Top: behavior of the airmass factor for a stratospheric and tropospheric ab-
sorber. Bottom: observed BrO dSCD during twilight for the case of mainly stratospheric
(+) BrO and for low tropospheric BrO (triangles). Adapted from Miller et al. [1997].

morning and evening twilight BrO slant columns which were correlated with surface ozone

depletion events. From the twilight behavior they derive the information that the BrO

resides low in the troposphere. Mixing ratios of 13 ppt BrO were calculated based on the

assumption that the observed BrO is uniformly distributed in the lowest kilometer. Tro-

pospheric OClO was not reported. Although this study represents the first boundary layer

BrO measurements using scattered sunlight in off axis viewing mode, it suffered from

several problems:

• the stratospheric column could not be separated properly, especially the diurnal
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variation of the stratospheric column masked the changes in tropospheric BrO.

• the use of twilight SCD behavior to identify tropospheric BrO only works when

much more BrO resides in the MBL than in the stratosphere.

• phenomena like advection and fast photochemistry which characterize the Arctic

boundary layer disturb the diurnal BrO SCD behavior.

• when only the twilight BrO SCD are used, no sudden changes requiring high time

resolution can be monitored.

Off Axis DOAS for Profile Retrieval

Off axis DOAS was also used for the measurement of stratospheric profiles and to-

tal tropospheric columns of NO3 by ground based instruments [Weaver et al. 1996].

Smith and Solomon [1990] had already derived an NO3 profile covering the stratosphere

and reaching down to 3 km by observing direct moonlight as well as scattered sunlight dur-

ing sunrise in a very similar geometry as for the off axis scattered sunlight measurements.

Smith et al. [1993] repeated the experiment in the Antarctic region using a Gaussian re-

trieval to cover the entire troposphere. von Friedeburg et al. [2001] further developed the

technique to derive vertical profiles for the entire troposphere in urban environments us-

ing scattered sunlight during sunrise as the light source. The method utilizes the rapid

photolysis of NO3 combined with the special illumination situation during sunrise. Be-

fore local sunrise, only elevated layers of the atmosphere are directly illuminated by sun-

light. When the sun rises, the solar terminator decreases in height, which exposes sub-

sequently lower layers to direct solar light (see Figure 3.11). In the directly illuminated

part of the atmosphere (line A-B and above) the nitrate radical concentration is rapidly

depleted. Information on the vertical distribution is obtained from a series of measure-

ments of the slant column density (SCD) which is the integrated concentration along the

line B-C as derived from recorded spectra using DOAS. The DOAS system employed by

von Friedeburg et al. [2001] was also the first prototype of a MAX-DOAS (see below) in-

strument, the PROTO-MAX-DOAS [von Friedeburg 1999]. However, the application for

the sunrise NO3 profile measurements did not require the Multi-Axis capability, which was

later applied to monitor NO2 emissions and variability next to a highway in spring 2001

[Chr. von Friedeburg, personal communication, 2001].

3.5.2 Multi-Axis-DOAS Observations from the Ground

In the framework of this thesis the first MAX-DOAS measurements were performed from

the ground. The MAX-DOAS setup used for the ground-based observation of boundary

layer BrO during the ALERT2000 field campaign (see section 5.2) is shown in Figure

3.12. The ground-based instrument receives scattered sunlight using a single telescope.
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Figure 3.11: Viewing geometry of off-axis-spectroscopy for NO3 measurements. The
technique utilizes the light scattered into the detector when the sun is still below the
horizon. Shown as dotted line is the instrument’s line of sight, which crosses the solar
terminator (straight line). Top: At SZA 1 the scattered light traverses the distance be-
tween B and C in the dark airmass. Bottom: At the smaller SZA 2, the direct sunlight
zone extends further down, and the light path B’ - C through the dark layers is shorter,
leading to a smaller SCD of NO3 [von Friedeburg et al. 2001].

By changing the telescope pointing light can be received from different directions, thus

allowing to derive spatial information on the absorbers. For observation of zenith scattered

sunlight the photons received in the telescope have travelled a relatively long path in the

stratosphere and a comparatively short path in the troposphere (a more quantitative de-

scription is given in section 3.5.3). The low telescope elevation angles, however, emphasize

the absorption path in the lowermost atmospheric layers. In particular the sensitivity for

absorbers in the boundary layer is strongly enhanced. Figure 3.12 illustrates the situa-

tion for the setup at Alert, where elevation angles of 5◦, 10◦ and 20◦ were combined with

zenith observations. Radiative transfer model (RTM) calculations (see section 3.4 and

3.5.3) show, that for zenith observation the scattering processes at 355 nm are most likely

in the lower stratosphere and upper troposphere, for decreasing elevation angles the most

probable scattering altitude shifts towards the ground. For the employed elevation angles

most of the light received by the telescope was scattered into the telescope above the trace
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low elevation angles (Figure not to scale). Adapted from Hönninger and Platt [2002].
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gas layer at the surface. Hence the effective absorption path can be approximated as the

distances OAi (i=1, 2, 3, 4), which increase according to 1/sin(α) for decreasing telescope

elevation angle α.

The Telescope Elevation Angle

In Figure 3.12 the definition of the important angles in the MAX-DOAS approach is the

following:

• Solar Zenith Angle (SZA) ϑ:=the angle between zenith and the direction of the

sun

• Telescope Elevation Angle or short ’elevation angle’ α:=angle between the horizon-

tal direction and the viewing direction of the telescope

The definition of the solar zenith angle is exactly the standard definition found in the

literature and used for decades now when studies of direct or scattered sunlight are de-

scribed. The definition of the telescope elevation angle, however, is new, so a justification

will be given here why such a definition was chosen. At first, the definition seems to dis-

agree with previously published approaches (see section 3.5.1). Since the first studies using

off axis geometries were done for the purpose of stratospheric measurements the strong

dependence of the sensitivity for low atmospheric layers on the viewing direction was not

further considered. In analogy to the definition of the solar zenith angle the off axis angle

was defined as the observation zenith angle measured between viewing direction and zenith

[Sanders et al. 1993]. Radiative transfer model calculations performed in this thesis (see

section 3.4 and 3.5.3) show that the MAX-DOAS method is especially useful for prob-

ing the atmospheric layer where the instrument is located: for ground-based MAX-DOAS

this refers to the boundary layer, for AMAX-DOAS this corresponds to the layer around

flight altitude. Viewing directions into this layer yield the highest absorption signals, so

most likely viewing directions towards the horizon are used. According to equation 3.31

the airmass factor for an absorption layer below the most probable scattering altitude4 is

approximately given by 1/sin(α). For an absorber in the boundary layer (see also AMF

dependence on the trace gas profile below) the absorption path (described by the slant

column density S) in the boundary layer is inversely proportional to the telescope elevation

angle α, so S can be simply expressed as:

S ∝
1

α
(3.41)

For example, doubling of the elevation angle will lead to approximately half the absorption

signal if an absorber in the boundary layer is observed by ground-based MAX-DOAS. If

4the approximation is also valid for an absorption layer at flight altitude in case of AMAX-
DOAS, see [Wagner et al. 2001]
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observation zenith angles were used (ranging between 80◦ and 90◦ for most cases), the

corresponding relation would not be as simple and plausible. This fact should motivate

the chosen definition since it facilitates the argumentation significantly. Moreover, this

work represents the first application of the MAX-DOAS approach for boundary layer

studies, where the chosen definition proved very useful. Therefore this new definition is

considered legitimate.

3.5.3 MAX-DOAS Airmass Factors

As already introduced in section 3.4.1 from slant column densities S, which depend on the

solar zenith angle and the viewing geometry of the receiving telescope, vertical column

densities V can be calculated using the formula:

S = V ×A (3.42)

where A denotes the air mass factor. As shown in section 3.4.1 for a rough approximation,

the geometric approach using the formula A≈1/cos(ϑ) (for scattering below the trace gas

layer), where ϑ is the solar zenith angle, or A≈1/sin(α) (for scattering above the trace

gas layer) can be used, where α is the telescope elevation angle. Air mass factors for this

study were calculated using the Monte Carlo RTM AMFTRAN [Marquard 1998] which

includes single and multiple Rayleigh and Mie scattering, refraction and full spherical

geometry. It relies on input data like pressure, temperature and ozone profiles of the

atmosphere as well as a priori profiles of the respective absorbers. The numerical limit

of the RTM did not allow the calculation of airmass factors for elevation angles smaller

than 8◦5. The situation for an absorber (here BrO is considered as an example) which

has a stratospheric as well as a tropospheric component is illustrated in Figure 3.13. For

the absorber (BrO) being present only in the stratosphere (Panel A), the AMF depends

strongly on the solar zenith angle ϑ. The highest AMFs are calculated for large solar

zenith angles. The dependence on the telescope elevation angle is relatively weak as can

be seen from the small differences between the symbols. Only for high ϑ a remarkable

difference exists. For BrO being present only in the boundary layer up to 1 km at a mixing

ratio of 20 ppt the situation changes completely (Panel B). The dependence of the AMF

on ϑ is very weak. However, the AMF depends strongly on the telescope elevation angle

α. The AMF increases with approximately a 1/sin(α) dependence as expected from the

geometric approximation. The dependence on the solar azimuth angle is also very small in

this case. Therefore it is obvious that for an absorber in the boundary layer the observed

slant column densities and the corresponding AMFs vary accordingly with α. Because the

differences in the AMF for the used observation geometries are quite large, the method is

5this limit for low viewing angles can in principle be overcome using a very narrow vertical grid,
however, since the number of atmospheric layers is restricted this approach is limited, too.
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Figure 3.13: Max-DOAS airmass factors for a stratospheric absorber (left) and for an
absorber in the boundary layer (right). SZA: solar zenith angle ϑ.

very sensitive for absorbers near the surface. If the successive measurements at the different

elevation angles α are taken within a short period of time (typically 5-15 minutes) there is

essentially no change in ϑ (particularly not in polar regions) and thus in the stratospheric

part of the AMF during a series of measurements. Thus the stratospheric BrO column can

be regarded as an essentially constant offset to the observed S(α, ϑ)≈ Strop(α) + Sstrat.

AMF dependence on the relative azimuth angle

In contrast to zenith sky measurements, all off axis geometries are characterized by two

degrees of freedom. Besides the telescope elevation angle, the relative azimuth angle (i.e.

the angle between the sun and the line of sight of the telescope) has to be known. The

relative azimuth angle ϕ is here defined as

ϕ ≡ 0 for looking in the direction of the sun.

For different ϕ the radiative transfer may vary significantly, therefore radiative transfer

calculations have been performed to quantify the differences. The dependence of the AMF

for an absorber (here BrO is taken as an example) in the stratosphere and the comparison

with an absorber confined to the boundary layer has already been shown in Figure 3.13.

Both, for the stratospheric as well as for the boundary layer case the dependence on the

solar azimuth angle, which is represented in Figure 3.13 as vertically extended dots, is

very small. Only for high solar zenith angles a dependence becomes significant. Figure

3.14 shows the airmass factors for the boundary layer case as a function of ϑ and ϕ for
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Figure 3.14: Max-DOAS airmass factors for an absorber in the boundary layer as a
function of solar zenith angle and relative azimuth angle between the sun and the viewing
direction. Each plane represents airmass factors for the indicated elevation angle. Top:
8◦, 10◦ and 20◦ elevation angle. Bottom: 40◦, 60◦ and 90◦ elevation angle. Note the
different scales on the AMF axis.



3.5. MULTI-AXIS-DOAS 87

the elevation angles used in this work. The range of ϑ is restricted to 65◦-82◦, which is

representative for the conditions during ALERT2000 (see section 5.2). For the elevation

angles smaller than the sun’s elevation (8◦ and 10◦) the airmass factor shows maximum

variations of ∼10% with ϕ, with generally lower AMF for ϕ near zero. In this case the high

fraction of forward scattered light from aerosols near the ground can lead to the shorter

absorption path (smaller AMF). For the high elevation angles (40◦ and 60◦) the pattern

reverses, but the dependence on ϕ is very weak.

In summary it can be assumed that the variation of the relative azimuth angle over its

complete range (0◦ to 360◦) has only a minor effect (maximum 10%) on the airmass factor

of an absorber in the boundary layer.

Dependence on the trace gas profile

It has already been shown above (see Figure 3.13), that the MAX-DOAS airmass factors

strongly depend on the trace gas profile. A purely stratospheric absorber and an absorber

well-mixed in the lowest 1 km are only extreme cases of the various trace gas profiles found

in the atmosphere. Here the sensitivity of the MAX-DOAS airmass factor is studied for

various box profiles of an absorber in the lower troposphere. In order to understand the

results of the airmass factor calculations, the concept of the scattering height (see Figure

3.8) has to be kept in mind. The scattering process most likely occurs at an altitude

given by the elevation angle α and the mean free path l of photons at the respective

wavelength. The scattering height in the wavelength region used in this work (λ ≈355 nm)

is as low as 1.29 km for the lowest elevation angle (α=5◦, l =14.8 km6). Therefore, only

for absorbers in the boundary layer the 1/sin(α) dependence of the airmass factor can

be expected. Figure 3.15 shows the airmass factor dependence on the elevation angle

for different vertical extents of the boundary layer (500m, 1 km and 2 km) and for three

elevated layers (1 km vertical extent, starting at 1 km, 2 km and 3 km). The airmass factors

for the boundary layer cases show a strong dependence on the elevation angle, the AMF

for the elevated layers is nearly independent of α. This can be explained by the concept

of the scattering altitude. For the boundary layer cases the scattering process most likely

occurs above the absorption layer (partly inside already for the 2 km case). This results in

a strong AMF dependence on the elevation angle (see section 3.4.1 and Figure 3.8). For

the elevated absorption layers the largest fraction of the photons is scattered in or even

below the absorption layer, particularly for the low elevation angles. Therefore the AMF

is only weakly dependent on α, and a behavior rather similar to that of a stratospheric

absorber (strong SZA dependence) is expected. In Figure 3.15 (right panel) the bottom

x-axis is scaled linearly in 1/sin(α). This shows that for the 8◦ elevation (indicated on the

top x-axis) the geometric approach (AMF≈1/sinα) is a good approximation only for the

6The increase of l with height due to the pressure decrease was taken into account.
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Figure 3.15: Max-DOAS airmass factors calculated for different vertical profiles in the low
troposphere as a function the elevation angle for a fixed SZA of 75◦. Left: Dependence
of the normalized AMF on the elevation angle for the absorption layers indicated in
different colors. Right: Normalized AMF as a function of 1/sin(α). All airmass factors
are normalized with respect to AMF(α=90◦).

500m and 1 km boundary layer case. For the higher elevation angles and if the absorber is

present at higher levels this approach strongly overestimates the AMF. For the boundary

layer cases the formula

AMF ≈
1

α
(3.43)

is a good approximation because the absorption path in the lowest kilometer is roughly

halved when the elevation angle is doubled.

In summary the AMF is strongly dependent (Equation 3.43) on the elevation angle only

for trace gas profiles where the bulk of the absorber is present below 1 km in the boundary

layer. For trace gas profiles with maxima at higher altitudes, the airmass factor becomes

independent of the elevation angle, similar to a stratospheric absorber.

Influence of multiple scattering

All airmass factor calculations shown above were based upon single Rayleigh and Mie

scattering only. Especially for low elevation angles a significant contribution of multiple

scattering may alter the airmass factors calculated when only single scattering is con-

sidered. Figure 3.16 shows both, airmass factors calculated for single scattering only (left

panel) and taking multiple scattering into account (right panel), for a ground albedo of 0.9.

For the scenario considered here, including multiple scattering into the radiative transfer
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Figure 3.16: Max-DOAS airmass factors calculated for an absorber in the boundary layer
(0-500m) as a function of SZA for single scattering only (left) and including multiple
scattering (right). The relative azimuth angle was fixed to 180◦. All AMFs are normalized
with respect to the AMF for ϑ = 65◦, α = 90◦, calculated for single scattering.

model yields generally higher airmass factors compared to the single scattering approxi-

mation. However, relative changes are much higher for the high elevation angles (40◦, 60◦

and 90◦) than for the low elevation angles. An important finding for the application to

ground-based MAX-DOAS is the fact, that the ratios

AMF (α = 5◦)−AMF (α = 90◦)

AMF (α = 10◦)−AMF (α = 90◦)

remain almost unchanged for both, multiple and single scattering airmass factors. There-

fore, if all differential slant column densities (dSCD) for the different elevation angles are

differential with respect to a zenith (α=90◦) Fraunhofer reference, the results of the MAX-

DOAS evaluation - based on the change of the dSCD with elevation angle - will not change

significantly.

Influence of the ground albedo

The high albedo of snow covered surfaces (up to 0.9 for fresh snow, see section 6.21),

in particular in the polar regions, but also in mid-latitudes during winter, has a strong

influence on the radiative transfer. The influence on MAX-DOAS measurements of an

absorber in the boundary layer is shown in Figure 3.17. The influence of a change in

albedo from 0.5 to 0.9 only leads to a constant offset to the calculated airmass factors of

∼0.2. For the high airmass factors derived for MAX-DOAS measurements of an absorber

in the boundary layer this small change does not significantly affect the large changes of



90 CHAPTER 3. FROM DOAS TO MAX-DOAS

Ex �( �x M( Mx

(

d

1

n

;

x

E

�

M

�

d(

sjA�IB)(��SSSSα>°HSSSSSSsjA�IB)(�x
SSSSSSSSSSSSdMSSSSSSS
SSSSSSSSSSSSd(SSSSSSS
SSSSSSSSSSSS1(SSSSSSS
SSSSSSSSSSSS;(SSSSSSS
SSSSSSSSSSSSE(SSSSSSS S
SSSSSSSSSSSS�(SSSSSSS

V
�

3
\V

�
3

wα
)

�
(°

�ϑ
)

E
x°

�s
jA

�I
B)

(
�x

D

RBjs�S9�t$�YSst�j�SϑS>°H

Figure 3.17: Max-DOAS airmass factors for an absorber in the boundary layer (0-500m),
calculated for a ground albedo of 0.9 (solid lines) and for a ground albedo of 0.5 (dashed
lines) for different elevation angles. All AMFs are normalized with respect to the AMF
for ϑ = 65◦, α = 90◦, calculated for an albedo of 0.5.

the dSCD for different low elevation angles shown above.

3.5.4 Airborne MAX-DOAS (AMAX-DOAS)

For the validation of the SCIAMACHY satellite instrument on ENVISAT (to be launched

in 2002) an airborne MAX-DOAS instrument, the so called AMAX-DOAS will be applied.

Wagner et al. [2001] summarized the capability and main purposes of the instrument. The

principle is illustrated in Figure 3.18. The AMAX-DOAS is a MAX-DOAS system specially

adapted and optimized for airborne measurements. In particular the multi-axis viewing

geometry comprises measurements in several directions above and below the aircraft (see

Figure 3.18). To derive information on the vertical profiles of the measured species trace

gas absorptions will be compared from the different directions below and above the aircraft.

The comprehensive set of (typically 10) different atmospheric absorption paths allows the

vertical column densities above and below the aircraft to be separated, e.g. for a flight

altitude around the tropopause the different absorption signals allow the separation of the

stratospheric and tropospheric columns. Further vertical profile information can be derived

by comparing the slant column densities observed from the low elevation angles combined

with the knowledge of the flight altitude. These vertically resolved trace gas measurements
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Figure 3.18: Left: viewing geometries of the AMAX-DOAS instruments on board the
DLR Falcon aircraft. In addition to zenith and nadir view several telescopes observe
light from smaller elevation angles. Right: The different viewing geometries are sensitive
to different atmospheric regions. The zenith mode (A) is only sensitive to the layers
above the aircraft; the signal from nadir view (C) contains contributions from both
the atmosphere above and below the aircraft. The additional telescopes observing low
elevation angles (B) are very sensitive to the atmospheric layers close to flight altitude.
Adapted from Wagner et al. [2001]

contribute to the validation of the SCIAMACHY instrument because SCIAMACHY will

also yield vertical profile information on trace gases derived from limb observations.

A short observation time is very critical in this application due to the fast motion of the

aircraft leading to a rapid change of several parameters (altitude, ground albedo, clouds,

etc.). Therefore simultaneous MAX-DOAS (using CCD detectors, see below) is much more

preferable for airborne MAX-DOAS.

3.5.5 Multi-Axis-DOAS Instruments

MAX-DOAS using Imaging Spectroscopy for Simultaneous Observations

The recent development of large CCD detectors (chip sizes up to 30mm×15mm) and high

quality imaging spectrographs with a flat field of comparable size now allows the simulta-

neous recording of several spectra from different viewing geometries (multi axis approach).

Hönninger et al. [2000] presented this new technique for various studies of trace gases in

the troposphere. Figure 3.19 shows the basic principle of the spectra acquisition. A set

of telescopes7 receiving light from different directions (e.g. elevation angles) is coupled

to the imaging spectrometer using a quartz fiber bundle which transmits the light from

7telescopes here could be e.g. telescopes for receiving scattered sunlight, direct sunlight or
moonlight or LP-DOAS telescopes aiming at different retro reflectors. However, for simplification
purposes only the application for scattered sunlight is described.
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Figure 3.19: Principle of spectra acquisition using a MAX-DOAS spectrometer: Light is
received from 4 (in practice up to 10) different viewing directions. The light is trans-
mitted into the entrance slit using quartz fibers. An imaging spectrometer disperses the
light and focusses the spectra onto the CCD detector without vertical overlap. See also
[von Friedeburg 1999]

each telescope to a certain vertical position of the spectrometer’s entrance slit. The light

is then dispersed by the diffraction grating and focussed onto the detector. As shown

in Figure 3.19 the imaging spectrograph produces a set of vertically separated spectra,

each corresponding to the respective quartz fiber at the entrance slit (and the respective

telescope coupled to it). Care has to be taken in order to exclude vertical overlap of the

spectra on the detector. Tests in our laboratory have shown that at least 10 individual

spectra can be properly separated using a commercial imaging spectrograph (e.g. Acton

SpectraPror 300i). A problem that has to be addressed is the change of the instrumental

line shape for the individual spectra including a possible change in resolution (instrument

function) and wavelength to pixel mapping. While it is always possible to compare the

individually measured slant columns from the various geometries, for special applications

it is desirable to directly compare e.g. spectra taken from zenith direction with simulta-

neously measured spectra from a low elevation angle. When spectra taken with different

instrument function are to be compared directly they have to be cross convoluted8 and

interpolated onto a common wavelength scale first. Since this is a possible source of error,

especially in the presence of undersampling, it is desirable to optimize the imaging quality

8cross convolution of spectra I1 and I2 means convoluting I1 with the instrument function H2

of the second spectrum and vice versa.
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of the spectrograph. Another approach to account for the changing instrument functions

by fitting difference spectra between the CCD regions was applied by von Friedeburg.

Sequential Scanning MAX-DOAS

Another possibility to apply MAX-DOAS is to scan several different observation geometries

sequentially taking a series of corresponding spectra with a conventional DOAS spectro-

graph and 1D detector. This second approach has several advantages:

• for a stabilized spectrograph the instrument function and wavelength to pixel map-

ping remains constant over time, so a direct comparison of spectra from different

geometries is possible (see e.g. evaluation of IO spectra at Alert, section 5.2.4).

• if the same detector area (and efficiency) is regarded, the integration time per ob-

serving geometry (e.g. elevation angle) is significantly shorter (≈ 1
n , where n is the

number of different geometries.)

• the integration time can be optimized for each spectrum individually which is re-

stricted when a CCD is used.

• usually only one telescope and quartz fiber is required since it can receive light from

different viewing geometries when mounted to a tracking system.

However, there are obviously also drawbacks:

• the measurements are not simultaneous anymore, so unless the series of spectra is

taken within a short time interval compared to the timescale on which trace gas

concentrations or radiative transfer conditions (e.g. cloud conditions) change, the

different geometries cannot be compared directly.

• the active tracking system requires additional mechanical parts and electronics that

reduce the reliability and may need extra power and regular service.

For each application different arguments may be relevant since the individual requirements

differ from measurement to measurement. For the measurements performed during this

study the second approach was applied since an existing scattered sunlight DOAS system

could be easily adapted. The requirement of mechanical and electronic parts (stepper

motor) was no major concern because the instrument was only operated during 3 to 4

week intensive field studies and could be checked several times a day. The time difference

for a set of spectra taken from different geometries was also short enough to trace sudden

changes of the trace gas concentrations due to chemical changes or changing air masses

(see also section 6.3).
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Figure 3.20: Sketch of a MAX-DOAS setup in an alpine environment. Free tropospheric
studies are possible using absorption paths defined by mountain tops. Pollution mea-
surements use light scattered back from the top of an inversion layer, which frequently
isolates valleys from the rest of the atmosphere.

3.5.6 Other Possible MAX-DOAS Applications

Alpine MAX-DOAS

One possible application of the MAX-DOAS approach is to make use of the high albedo

of e.g. snow surfaces (also water glint or salt, see below) to study

• vertical profiles of trace gases on a local scale

• free tropospheric background conditions and pollution episodes in the alpine envi-

ronment

• winter smog episodes in valleys which are isolated from the free troposphere due to

temperature inversions

The setup of the respective MAX-DOAS geometries are sketched in Figure 3.20. Due to

the relatively long mean free path of photons at higher altitudes (>21 km for 360 nm at
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3000m altitude) the assumption of a straight well-defined lightpath between the observed

high albedo snow surface and the MAX-DOAS instrument is valid for most cases. The

background signal from the higher layers and the stratosphere can be eliminated by simul-

taneously observing a snow surface in a very short distance or correction with zenith sky

absorption measurements. Vertical profiles can be measured by pointing the light receiving

telescopes at snow surfaces in different altitudes.

Winter smog episodes can be monitored from mountains above the polluted valley by

observing light scattered back from the usually cloudy top of the inversion layer which iso-

lates the valley. Multiple scattering in the valley leads to large absorption paths and signals

in the observed backscattered light. Besides simple qualitative results, this method can

also be used to calculate approximate concentrations by correction with simultaneously

measured O4 absorption, which gives an indication of the total lightpath.

Salt Lake MAX-DOAS

The property of many salt lakes to be covered with a perfectly white salt surface allows to

use the high albedo of the salt lake for MAX-DOAS measurements. Observing the diffuse

light reflected by the salt surface at different positions and angles from an elevated location

(e.g. nearby hill) allows to characterize local inhomogeneities as well as vertical profiles.

This information can improve the knowledge of reactive halogen release processes, known

to occur on salt surfaces [Hebestreit et al. 1999; Platt 2000]. By MAX-DOAS observations

possible local inhomogeneities including vertical profiles can be studied. A possible MAX-

DOAS experiment to study halogen release processes associated with the surface of a salt

lake is shown in Figure 3.21. In the sketched case background absorption can be easily

determined and corrected for to yield slant columns densities in the layer between the

MAX-DOAS altitude and the salt lake surface. The spherically averaged absorption signal

for the atmosphere above the MAX-DOAS site can be determined by analyzing scattered

and direct sunlight collected by a 2π integrating sphere (e.g. known from measurements

of downwelling actinic fluxes by filter and spectroradiometers). The light collected by

this sphere is representative for the light which is then diffusely reflected by the high

albedo salt surface. Measuring only the direct sunlight is not appropriate since in the

blue and UV spectral ranges a significant fraction of the downwelling solar radiation is

scattered sunlight, even under clear sky conditions (∼80% at 300 nm, ∼40% at 420 nm

[Lefer et al. 2001]). Thus one MAX-DOAS geometry should measure this signal, which

can then be used to correct slant column densities derived from the various geometries

observing different locations of the bright salt surface below the instrument. Depending

on the scale of inhomogeneities spatially resolved trace gas concentrations can be derived

by applying analytical or numerical inversion techniques.
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Figure 3.21: MAX-DOAS setup for measurements of halogen emissions from a salt lake
surface.

Urban Air Pollution Monitoring by MAX-DOAS

Routine monitoring of trace gases involved in urban air pollution is also a possible appli-

cation for the MAX-DOAS technique. While the method does not yield localized concen-

tration data like point measurements from in situ monitors, it is very sensitive to major

pollutants (e.g. NO2, SO2, etc.) and average concentrations in the boundary layer can

be derived. MAX-DOAS measurements of NO2 near a Highway have been reported by

Xie et al. [2001]. To characterize pollution levels in cities and urban areas, average con-

centrations often prove to be much more useful than highly variable in situ measurements

which have to be averaged over time to allow statements on the effects of pollution on

human beings and the environment. Sensitivity studies in section 3.5.2 and actual mea-
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surements performed in this work (see section 6.3) show, that MAX-DOAS measurements

alone provide enough information to derive the approximate height of the mixing layer and

calculate average mixing ratios. Especially in highly polluted environments where variable

visibility is a major problem for other optical monitoring techniques (e.g. long path DOAS)

MAX-DOAS measurements are better suited because the method also works at low visi-

bility and yields qualitatively correct values (see also section 6.5.4). When airmass factor

concepts and in particular simultaneous measurements of photon path distributions by O4

and O2 absorption measurements are further improved (e.g. [Funk 2000]), also quantitative

measurements during cloudy and low visibility periods will be possible. Besides scattered

sunlight, in urban areas also the high albedo of certain points or even guided mirrors to

observe reflected sunlight are possible MAX-DOAS observation geometries. However, this

requires instruments with moving parts which makes the measurements more complicated.

’Modern COSPEC’ MAX-DOAS

The COSPEC instrument (Barringer Research Inc., Canada), developed in the late 1960s

[Millán et al. 1969; Davies 1970] has been applied over more than three decades for mea-

surements of total emissions of SO2 and NO2 from various sources, e.g. industrial emis-

sions [Hoff and Millán 1981] and volcanic plumes [Stoiber and Jepsen 1973; Hoff 1992].

This very successful, but outdated measurement technique could in the near future be re-

placed by MAX-DOAS instruments for studying the emissions of volcanoes, power plants,

industrial regions, etc. The instrumental setup of MAX-DOAS for the study of volcanic or

other emission plumes is sketched in Figure 3.22. The MAX-DOAS systems (A and B in

Figure 3.22) can be applied in static mode by sequentially scanning spectra from different

geometries or simultaneous measurements using an imaging spectrometer with 2D-CCD

detector coupled to several telescopes. The combination of different elevation angles and

two instruments at different locations allows to derive the plume density and height by

triangulation. Another approach is mobile monitoring of the trace gas columns (especially

that of SO2) inside a volcanic plume along different transects by taking a series of mea-

surements from different locations. The height of the plume as well as the 2D distribution

of the trace gas columns in the plume can be obtained by operating the instrument on

a mobile platform (e.g. positions 1, 2 and 3 in Figure 3.22 of a car, ship or airplane).

The advantage of MAX-DOAS over the traditional techniques is the much higher time

resolution and the reduced effect of fluctuations inside the plume on the measurement

results. Recent instrument developments allow the use of rugged, lightweight MAX-DOAS

instruments with relatively low power consumption (see also section 4.3.1).
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Figure 3.22: ’COSPEC’ type MAX-DOAS application for monitoring of volcanic or in-
dustrial plumes. Combination of different geometries yields plume height and density and
allows to calculate emission fluxes and distributions.



Chapter 4

Instrumental Setups

The measurements presented in this thesis were performed using both commercial and

custom built instruments. Commercial systems were also adapted to the special needs re-

quired for atmospheric measurements in the course of this work.

In this chapter the applied DOAS systems (MAX-DOAS, LP-DOAS, Mini-MAX and

Portable LP-DOAS) will be explained and their characteristics will be presented and

compared.

4.1 The MAX-DOAS Instrument

The instrumental setup discussed in this section was first assembled and tested for the

measurements on the Zugspitze mountain from October 1999 until mid-March 2000 (see

section 5.1.1). During this long-term experiment the system was thoroughly characterized

and improved over the period of 6 months. The system was then used for the measurement

campaigns in Alert, Canada (see section 5.2), onboard the German research vessel FS

Polarstern during a transect from Bremerhaven, Germany to Cape Town, South Africa

in October 2000 by Leser [2001] and with a slight modification during the Hudson Bay

campaign in April/May 2001 (see section 5.4).

Figure 4.1 shows how the different components are arranged in the MAX-DOAS setup.

Only the key components are characterized here.

4.1.1 Entrance Optics

The entrance optics were adapted from the system used by Kreher [1991] and Senne [1996].

It consisted of a quartz lens (focal length f= 100mm, diameter d=30mm) and a round

bundle of 25 individual quartz fibers (core diameter 100µm, diameter of the circular ar-

rangement dentrance=0.8mm). This quartz fiber bundle (length l= 8 m) transmits the

light from the focal point of the quartz lens to the entrance slit of the spectrometer for

spectral analysis. At the entrance slit the fiber exits form a column of 2.5mm height.

99
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Figure 4.1: Simplified sketch of the MAX-DOAS setup

The aperture of the telescope can be calculated from f and dentrance to be less than 1◦.

The telescope arrangement was assembled in a dry atmosphere and sealed to prevent con-

tamination and condensation of water on the interior optics. The stainless steel telescope

housing was sealed with a UV-transmitting quartz window mounted at 45◦ angle which

also prevented snow from accumulating in front of the telescope.

The telescope housing was equipped with a joint system to transform the movement of a

linear stepper motor drive into a change in elevation angle of the telescope. By mounting

the stepper motor arrangement perpendicular to the surface telescope elevation angles of

20◦ to 90◦ (Zugspitze) and 5◦ to 90◦ (Alert, Polarstern, Hudson Bay) could be realized.

4.1.2 Spectrograph and Detector Unit

For the measurement of the atmospheric absorption spectra a Czerny-Turner spec-

trograph was used. This device is based on a setup originally developed by

Czerny and Turner [1930]. The quartz fiber which transmits the light from the telescope

to the spectrograph is mounted in the focal point (entrance slit) of the first convex mir-
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ror (collimating mirror). The parallel light from this mirror is then dispersed by a plane

diffraction grating. A second convex spherical mirror unit (focussing mirror) then focusses

the dispersed light onto the detector. The wavelength region observed by the detector can

be changed automatically by a computer controlled stepper motor drive (tolerance 0.5

steps). In order to minimize thermal instability the whole spectrograph unit is insulated

and temperature stabilized to a few K above maximum room temperature (usually 30

±0.2 ◦C). The mainly used ACTON Spectra Pro 500 with a focal length of 500mm was

equipped with a plane diffraction grating (aperture ratio f/6.9, entrance slit (fiber exit)

width 100µm for the MAX-DOAS fiber bundle and 200µm for LP-DOAS, grating 600

grooves/nm, dispersion: 3.08 nm/mm (or 0.077 nm/pixel), spectral resolution: 0.54 nm).

Only for the MAX-DOAS measurements at the Hudson Bay a smaller spectrograph (AC-

TON Spectra Pro 275) with a focal length of 275mm (collimating mirror) and 310mm

(focussing mirror), respectively, was used (aperture ratio f/3.8, grating 1200 grooves/mm,

dispersion: 2.46 nm/mm (or 0.062 nm/pixel) For recording the spectra, a 1024 pixel photo-

diode array detector (PDA) was mounted in the focal plane of the spectrograph. A detailed

discussion of the usage of photo diode arrays as DOAS detectors is given by [Stutz 1991;

Stutz and Platt 1992].The principal component of the unit is a photo diode array from

Hamamatsu (Type S3904-1024) with 1024 Si photo diodes (CMOS) of 25µm width and a

height of 2.5mm. The PDA is placed in a housing that can be evacuated and filled with

1.2 bar Argon 5.0. Every photo diode consists of a n-p semiconductor junction. During op-

eration an inverse voltage of 2.06V is applied to the diode inducing a depletion layer which

is almost as large as the whole diode area. Incoming light excites a number of electrons

proportional to the light intensity into the conducting layer of the semiconductor. The

capacity of a diode is 10 pF, the full well depth corresponds to 1.286 ×108 photo electrons.

These photo electrons reduce the applied inverse voltage. However this is also possible by

thermally excited electrons. This effect is called dark current and must be considered and

corrected for in the evaluation procedure at low light intensities. In order to reduce dark

current the PDA was cooled down to temperatures between -15 and -30 ◦C by a Peltier

cascade. Thereby the dark current decreases exponentially regarding Boltzmann statistics.

After the integration time the PDA is read out by re-charging the photodiodes. The charge

needed is amplified electronically. To prevent negative signals (which cannot be converted

by the used ADC) an offset signal is added to every PDA signal. The offset is proportional

to the number of scans added and must be corrected for during the evaluation process.

The signals are digitized by a 16 bit analog - digital converter (full saturation corresponds

to 216 = 65536 counts) and then transferred to the computer. Due to the cooling of the

detector unit water vapor could freeze on the PDA surface and possibly cause etalon struc-

tures due to interference effects. Therefore the detector is evacuated and filled with dry

argon as inert gas. Another effect of PDAs is the so called memory effect. That means

that structures of a former spectrum can be seen in the following spectra. This effect was
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discussed e.g. in [Stutz 1996; Leser 2001], however its origin is unclear up to date. Usually

the memory effect can be significantly reduced by multiple scans without light or just

waiting for a short time.

4.2 The Active Long Path-DOAS System

The active long path-DOAS systems employed during the field studies on Crete (see section

5.3) and at the Hudson Bay (see section 5.4) during this work have already been described

elsewhere [Ackermann 2000; Geyer 2000; Alicke 2000; Hebestreit 2001]. Therefore only an

overview of the different components will be given here. Figure 4.2 shows the different

components needed for the LP-DOAS setup. Only the telescope and the light source are

described here. The spectrometer and detector system is identical to the one already

characterized in section 4.1.2.
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Figure 4.2: The main components of the LP-DOAS system

4.2.1 The LP-DOAS Telescope

The telescope of the long path system consists of two coaxial Newtonian telescopes with

transmitting and receiving optics combined in one device. In the optical axis of the tele-
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scope two elliptical plane mirrors are mounted to reflect the light of both outgoing and

incoming beams by 90 degrees. The main component is a parabolic mirror of 30 cm diam-

eter and a focal length of 150 cm. The light source is placed in the focal point of the main

mirror. Thus the outgoing light beam is parallel. A retro reflector array in a distance of

several kilometers is used to reflect the parallel light beam exactly back into the telescope,

where it is focussed onto a quartz fiber. The quartz fiber transmits the light into the spec-

trograph. The optical image, however, is not perfect. Since the light source is not a point

the light beam slightly diverges along its path through the atmosphere resulting in a loss

of light depending on the distance to the retro reflectors. Because of the two plane mirrors

in the optical axis of the telescope only a ring can be sent into the atmosphere leading to

a light loss of 50% compared to a fully illuminated mirror without the shade of the plane

mirrors. Altogether five stepper motors control the telescope and its parts:

• Two motors are used to align the telescope on the retro reflector array (and possibly

at others) in horizontal and vertical direction.

• One stepper motor carries a filter wheel equipped with various filters, e.g. UG5 from

Schott, Germany (in order to remove light at wavelengths above 400 nm to reduce

stray light in the spectrograph) and a baffle to record background spectra.

• At one motor a mercury emission lamp is mounted which can be positioned in front

of the quartz fiber to determine spectral resolution and wavelength calibration at

several times during the measurements.

• The fifth motor carries the lamp reference system, which can be moved into the

outgoing light beam. The reference system consists of an elliptical plane mirror,

which reflects a part of the light of the outgoing light beam onto a quartz lens from

which it is focussed onto the quartz fiber.

4.2.2 The Light Source

The light sources of all LP-DOAS measurements in this work were Xenon high pressure

short arc lamps. A light arc of less than 1mm diameter between anode and cathode is

produced from a high voltage ignition discharge producing a dense plasma in the Xenon

gas bulb. The spectrum of a Xenon arc lamp is the superposition of the thermal emission

according to the Planck function and single Xenon emission lines, which are pressure

broadened due to the high operating pressure of Xenon arc lamps. The distance of the

electrodes is generally small resulting in a short arc length (thus reducing the divergence

of the light beam emitted from the telescope) and high local light intensity. The pressure

inside the lamp is very high (up to 107Pa under operating conditions) yielding a high

density plasma. The color temperature of the used Xenon lamps of ∼ 6000K is similar
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lamp PLI HSA-X5002 Hamamatsu SQ 150W
power [W] 500 150
voltage [V] 18 18
current [A] 28 8.5
lifetime [h] 200 3000

size of brightest spot [mm×mm] 0.3×0.3 1.0×2.0

Table 4.1: Comparison of the employed Xenon arc lamps

to that of the sun with maximum spectral intensity around 500 nm. The bulb of a Xenon

lamp consists of quartz glass, which is extremely resistant to the pressure and temperature.

The electrode material is tungsten with endowments depending on the lamp type. The

cathode has an edged peak to enhance the electron emission. In contrast to that the anode

is made out of massive material to absorb the kinetic energy of the incoming electrons. In

this Ph.D. thesis mainly one type of Xenon arc lamps (HSA-X5002 supplied by PLI Inc.,

NJ, lamp design adapted from Hanovia lamps) was used, only for the test of the portable

LP-DOAS system a smaller lamp was used (Hamamatsu SQ 150W). For a comparison

see Table 4.1. The variability of the emission features of Xenon short arc lamps caused by

flaring lamp plasma was studied by Hermes [1999]. Xenon emission lines were found at

several wavelengths including the red spectral region. The emission strength and pressure

broadening of the Xenon lines was found to change over time and therefore the lamp

structures are difficult to remove from a spectrum. It was found that lamp structures are

easier removed from a spectrum in the case of the PLI lamp as its Xenon emission bands

are broader and therefore can be better reduced by high pass filter routines.

4.3 New Miniature DOAS Instruments

This section introduces new DOAS instrument developments that were part of this thesis.

A major drawback of the current DOAS systems is their size and the relatively large

effort in adapting and maintaining the individual parts to fit the needs of the respective

experiments. Since the instruments assembled for particular experiments within this thesis

can be considered as prototypes for future systems, a short description of the major parts

will be given only.

4.3.1 The Mini-MAX-DOAS System

The logistical requirements for the measurement campaign in the Indian Ocean during

December 2000 allowed only the use of a very small setup. This section describes the

instrumental setup that was assembled and tested for these measurements aboard the

French research vessel R/V Marion Dufresne during the cruise from Réunion Island via
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the Crozet islands, Kerguelen island, St. Paul and Amsterdam island back to La Réunion

(see section 5.1.2). During these 3 weeks the first set of measurements using the new

USB2000 spectrometer by OceanOptics were performed.

Figure 4.3 shows how the different components are arranged in the Mini-MAX-DOAS

setup. The components are very similar to the ones of the MAX-DOAS system described

in the previous section 4.1. Therefore only the differences to that system will be discussed

here.

DOASIS

Notebook computer for
telescope control, data
acquisition and storage

USB cable

USB2000
spectrometer

quartz
fiber

ISEL
controller

RS232 cable

stepper
motor

quartz
lens

black shield
against direct sun

Figure 4.3: Simplified sketch of the Mini-MAX-DOAS setup

Mini-MAX Telescope

The light receiving optics were assembled from standard optical bench parts. The 200µm

single quartz fiber was fixed in the focal point of a quartz lens (ø = 20mm, f = 50mm).

The arrangement was wrapped with black cardboard and sealed against rain and weather

using aluminum foil. To prevent direct sunlight from being scattered into the fiber by dust

and sea spray particles on the quartz lens a removable black sun shield was attached to

the telescope. The field of view of the telescope was ≈ 0.3◦. The elevation angle of the

telescope could be adjusted using a computer controlled stepper motor drive.

The USB2000 Spectrograph

For the spectral analysis of the received skylight the USB2000 spectrometer by OceanOp-

tics was used. The main components of the device are sketched in Figure 4.4. The spec-

trograph type is a crossed Czerny-Turner, which reduces the required optical bench size.

The quartz fiber transmits the light received by the telescope to the entrance slit (width
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Figure 4.4: Main components of the OceanOptics USB2000 spectrometer

= 50µm), which guarantees the minimum required spectral resolution. The entrance slit

is mounted in the focal point of the collimating mirror (f = 42mm). The parallel light

from this mirror is then dispersed by a plane diffraction grating (OceanOptics Grating

#11, 1800 l/mm, holographic, efficiency curve see Figure 4.5). With the focussing mirror

Figure 4.5: Grating efficiency curve of the used 1800 l/mm holographic grating

(f = 68mm) the dispersed light is then imaged onto the detector. The wavelength region

observed by the detector was set to 330 nm - 530 nm by adjusting the grating position. The

spectra are recorded by a 2048 pixel CCD detector (SONY ILX511). The wavelength to

pixel mapping was determined by taking a spectrum of a mercury emission lamp (typical

line width is 1 pm). Figure 4.6 shows the wavelength as a function of detector pixel num-



4.3. NEW MINIATURE DOAS INSTRUMENTS 107

ber. Shown is also the linear and 2nd order fit result and the FWHM1 of the individual

mercury lines. Each of the 2048 pixels is 14µm×200µm in size and represents a potential
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Figure 4.6: Wavelength to pixel mapping and optical resolution of the USB2000 spec-
trometer.

well which accumulates the energy dissipated on light exposure as electrical charge which

is proportional to the light intensity. The full well depth corresponds to 160000 photo elec-

trons. However, thermally activated electrons also produce a signal which is called dark

current signal. The typical dark current spectrum of the used OceanOptics spectrometer

is shown in Figure 4.7. It has to be considered and accounted for during the DOAS evalu-

ation procedure. In order to reduce the dark current of the CCD and stabilize the optical

bench the whole USB2000 device was cooled to temperatures around 0◦C using Peltier

elements controlled by a temperature control unit. Thereby the dark current decreases

exponentially regarding Boltzmann statistics.

During the readout process the charges are shifted to a buffer and after addition of an

electronic offset the signal is being transferred to the ADC (12 bit, operating at 1MHz)

and digitally transferred to the computer via a USB cable. The offset signal at 0◦C is

shown in Figure 4.8. It was found that the offset signal depends on temperature, since

also the readout electronics are cooled by the Peltier cooler. In order to prevent moisture

condensation and freezing onto optical and electronic parts the whole unit was dried in a

vacuum exsiccator and then placed in a sealed aluminum box surrounded by silica gel.

1full width at half maximum
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4.3.2 The Portable Active LP-DOAS System

The portable long path-DOAS system was specially built for and employed during the

field measurements on Kerguelen island in the Indian Ocean in December 2000 (see section

5.1.2). Figure 4.9 shows an overview of the arrangement of components in the portable LP-

DOAS system. The OceanOptics USB2000 spectrometer is identical to the one described

in section 4.3.1. Therefore only the portable telescope will be characterized here.

DOASIS Notebook computer for
telescope control, data
acquisition and storage

USB cable

RS232 cable

USB2000
spectrometer

quartz
fiber

150W Xe
lamp

10 spherical
main mirror

”
telescope
positioning motors convex secondary

mirror

Schmidt lens

retro reflector array

light path

elliptical plane
mirror

Figure 4.9: The main components of the portable active LP-DOAS system

The Meade LX200 Telescope

The Meade LX200 is a commercially available astronomers telescope. Its optical setup is

a Schmidt-Cassegrain arrangement, which combines the following main advantages:

• small size because of folded lightpath (Schmidt-Cassegrain System)

• cheapness of optical components (spherical instead of parabolic primary mirror)

• simple alignment because main mirror can be moved along the optical axis

Figure 4.10 explains the optical components of the Meade LX200 telescope. Light enters

from the right, passes through a thin lens (Schmidt correcting lens) with 2-sided aspheric

correction, proceeds to the spherical primary mirror, and then to a convex aspheric sec-

ondary mirror. The convex secondary mirror multiplies the effective focal length of the

primary mirror and results in a focus at the focal plane, with light passing through a

central perforation in the primary mirror. As indicated by rays 1 and 2 in Figure 4.10 the

oversized primary mirror results in a wider field of view. However, this feature is of no use

for the application of the telescope for LP-DOAS measurements. The assembly used for
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Figure 4.10: The Meade Schmidt-Cassegrain optical system

the measurements consisted of a 254mm primary mirror, the overall focal length of the

system was 1600mm (aperture ratio f/6.3).

In order to adapt the telescope for DOAS measurements a Xenon short arc lamp (Hama-

matsu SQ 150W, see section 4.2.2) was placed in the focal point of the telescope. Thus a

parallel light beam of 254mm diameter is emitted. Note that both the convex secondary

mirror and the elliptical plane mirror shade the center part of the light beam, so only a

ring-shaped beam remains. The 4” secondary mirror shades 16% of the total area. The

plane elliptical mirror was mounted so that the inner 7.5” of the primary mirror were

shaded. The telescope tube can be moved both horizontally and vertically by 2 computer

controlled DC servo motor drives with 0.3 arc-sec resolution encoders. This allows a pre-

cise alignment on the retro reflector array in a distance of several kilometers. The retro

reflectors reflect the light beam exactly back with a precision better than 3 arc seconds.

The parallel light is then received by the same telescope. Again about 16% of the light

is lost due to the obstruction by the secondary mirror. A ring-shaped beam of 7.5” outer

and 4” inner diameter is seen by the receiving telescope and reflected onto a 200µm core

diameter quartz fiber by the elliptical plane mirror placed in the optical axis outside the

telescope tube (see Figure 4.9). The main disadvantage of the Schmidt-Cassegrain tele-

scope design for DOAS measurements is the need for the Schmidt correction lens which

is currently not available in UV grade fused silica or any quartz glass version. For DOAS

applications in the UV a Cassegrain-type telescope with an aspheric main mirror has to

be used. These telescopes do not need any correction lens and can therefore be used for a

wide wavelength range.



Chapter 5

Field Measurements

In this chapter the five field studies carried out during this work will be described. The

general objective of the field work was to study the tropospheric chemistry of halogen

oxides using Differential Optical Absorption Spectroscopy (see chapter 3). Both, tradi-

tional active long path DOAS and Multi-Axis-DOAS (see section 3.5) were applied in the

field. First, a brief description of two preparatory field campaigns will be given. One main

part of this thesis was the ALERT2000 Polar Sunrise Experiment in the Canadian high

Arctic, which will be presented in section 5.2. The following sections will show halogen

oxide measurements from the first two field campaigns of the EU project ELCID1 in the

Mediterranean (section 5.3) and the Hudson Bay region (section 5.4). The field study

at the Hudson Bay represents the first ground-based DOAS measurements in this most

interesting low Arctic region (see also section 2.3).

5.1 Preparatory Field Studies

5.1.1 First MAX-DOAS Measurements on the Zugspitze
Mountain

The first MAX-DOAS experiments were carried out in winter 1999/2000 on the Zugspitze

Mountain in the German Alps. The main objective of this study was to test the MAX-

DOAS instrument and to find a possible BrO background in the free troposphere (see

also section 2.3). After the description of the measurement site and a brief overview of the

meteorological conditions the MAX-DOAS measurements and evaluation will be presented.

Measurement Site

The Environmental Research Station Schneefernerhaus (Umwelt Forschungsstation

Schneefernerhaus, UFS) is located just below the summit of Germany’s highest mountain

1EvaLuation of the Climatic Impact of Dimethylsulfide
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Zugspitze (10◦59’E, 47◦25’N, altitude 2650m above sea level). The UFS was established in

1998 to promote atmospheric research, it also participates in the United Nation’s Global

Atmosphere Watch program (GAW). Due to its location high above all sources of pollution

the station is representative for the background continental free troposphere most of the

time. Local sources of pollution are very sparse, mainly pollution from the nearby ski area

can be expected during winter.

Meteorological Parameters

An overview of the meteorological parameters observed at the Zugspitze summit weather

station for the period of the DOAS measurements is shown in Figure 5.1. The ambient

temperature at the Zugspitze summit ranged between +6◦C and -24◦C with a mean value

of -9◦C. At the UFS temperatures are on average 2 degrees warmer compared to the

summit assuming a typical adiabatic lapse rate of 0.7K/100m. The pressure at the UFS

is about 30 hPa higher at the UFS than at the summit, where a mean value of 700 hPa

was recorded. As expected for northern mid-latitudes the prevailing wind direction is from

the west. The visibility and opacity data can serve as indicators for understanding the

radiative transport which is crucial for DOAS measurements using scattered sunlight.

MAX-DOAS Measurements

From October 6, 1999 to March 13, 2000 MAX-DOAS measurements were performed

at the UFS station2. The instrument employed for these measurements is described and

characterized in section 4.1. The telescope/stepper motor assembly was mounted at the

facade of the fifth floor (observation deck) of the Schneefernerhaus station. The telescope

could be moved from zenith observation mode to elevation angles down to 20◦ by means

of the computer controlled stepper motor drive. The telescope azimuth orientation was

exactly south. Figure 5.2 shows the light receiving telescope in zenith position. The viewing

direction of the telescope is shown as an image of the Webcam mounted close to the DOAS

telescope. The automated measurement routine was continuously recording spectra of

scattered sunlight in the wavelength region from 320 nm to 400 nm at a spectral resolution

of 0.35 nm during daytime (solar zenith angle ϑ ≤ 97◦). After five spectra in the zenith

viewing mode, one spectrum at 20◦ elevation angle was taken. During nighttime routine

offset and dark current measurements were performed.

During local noontime (around 11h UT) the relative solar azimuth angle, i.e. the azimuth

angle between the sun and the telescope viewing direction was very small in the 20◦

elevation angle measurements. This causes particular changes in the radiative transfer,

the related problems are discussed below. On November 26, 1999 the combination of a

2The data acquisition was interrupted between the morning of November 26 and December 15,
1999 due to repair of the quartz fiber assembly.
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Figure 5.1: Overview of the meteorological parameters temperature, relative humidity, pressure, wind direction, wind speed,
visibility and opacity for the period of the DOAS measurements in October 1999 to March 2000.
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Figure 5.2: Left: DOAS telescope and stepper motor assembly at the Schneefernerhaus.
The telescope is in zenith mode, the 45◦ angle of the telescope front window (see section
4.1.1 prevents snow from accumulating and obscuring the field of view. Right: View from
the Schneefernerhaus towards the south. The Sonnalpin station and the ski area are the
only possible local sources of pollution.

small relative azimuth angle and a noontime solar elevation of ≈20◦ led to a damage of

the quartz fiber bundle due to the heat related to the focus of direct sunlight inside the

telescope housing. After the repair the measurements continued on December 15, 1999.

Integration times for the spectra ranged from 5min during daytime to 10min during

twilight.

MAX-DOAS Evaluation

All scattered sunlight spectra recorded during the Zugspitze measurements were evalu-

ated by the same DOAS analysis procedure (see section 3.1.2). After subtraction of the

electronic offset and dark current signal the logarithm was applied. For the DOAS fit the

wavelength range between 346 nm and 359 nm was used, since this wavelength range pro-

vides the optimum results (minimum residual structure) for the BrO retrieval. As reference

spectra the following spectra were included in the fitting process:

• Fraunhofer reference spectrum (FRS, see section 3.2.2) from October 7, 1999 at

11:00 UT (SZA=53◦) taken at 90◦ elevation angle (zenith mode).

• Ring spectrum as described in section 3.2.3. The Ring spectrum was calculated from

the FRS using the ’Y’ command of the software MFC [Gomer et al. 1993] to derive
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the rotational raman spectrum.

• reference spectra of BrO at 228K [Wahner et al. 1988], NO2 at 230K, O3 at 221K

and 241K and O4 were convoluted with the 334.15 nm mercury line to match the

instrumental line shape.

All reference spectra were simultaneously fitted to the atmospheric spectra using the linear-

nonlinear fit procedure of the analysis software MFC. A polynomial of 2nd order is also

included to remove broadband absorption structures due to Rayleigh and Mie scattering.

An example of the fit results of the BrO evaluation is shown in Figure 5.3. The com-

plete data set obtained during the Zugspitze measurements is included in the appendix

(see pages 218 to 222). The DOAS evaluation yielded differential slant columns for the

absorbers included in the fitting process. For ozone and NO2 most of the time the well

known diurnal behavior of dSCDs for stratospheric absorbers was found. Figure 5.4 shows

typical examples for the stratospheric background of these species. For the NO2 dSCD

time series shown in Figure 5.4 the red data points representing the 20◦ elevation are on

average slightly higher than the corresponding zenith values, which is an indication for the

presence of local NO2 pollution which enhances the absorption in the low elevation angle

(see section 3.5.3). Some events of relatively high local pollution were also observed, in

general correlated with high tourist season in the Zugspitze ski area (Christmas holidays,

26.12.1999 to 29.12.1999 and the weekends 21.-22.01.2000, 19.-20.02.2000, which were all

cloudy days leading to large tropospheric lightpath enhancement, see also enhanced O4

absorption signal).

To assess the abundance of free tropospheric BrO two typical time periods are regarded.

From January 11 to January 14, 2000 typical clear sky conditions prevailed at the mea-

surement site and over the Alps. The MAX-DOAS results for this period are shown in

Figure 5.5. During noontime significant changes in the BrO dSCD are found, generally

the zenith values drop during this time. For O4, which is a strong absorber in the lower

atmosphere, the differences are not as strong. These observations point to one major prob-

lem encountered during the Zugspitze measurements: since the telescope pointed to the

south during noontime the direct sun was very close to the line of sight of the MAX-DOAS

instrument for the 20◦ elevation geometry (very small relative azimuth angles). This might

have led to a significant amount of direct sunlight received by the telescope. Even though

the telescope’s field of view was less than 1◦, illumination of dust particles on the quartz

lens has possibly led to a significant fraction of direct sunlight scattered into the quartz

fiber3. Alternatively the origin could also be a change in the radiative transfer in the at-

mosphere when the angle between the sun and the viewing direction is small. In this case

3The layout of the receiving telescope is such, that the part of the quartz lens seen by the fibers
can be illuminated by direct sunlight when the angle between viewing direction and sun is less
than 25◦. This is consistent with the azimuth interval exhibiting the sudden changes.
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Figure 5.3: Example of the DOAS BrO evaluation for the Zugspitze spectra. The atmo-
spheric spectrum was taken on 26.02.2000 at 7:30UT and a local SZA of 77◦. Note that
the Fraunhofer lines have typical optical densities of 0.3-0.5. All other optical densities
are given in units of 10−3. For better comparison the y-scale for the different absorbers is
expanded by a factor of 5(O3) and 10 (O4, NO2, BrO), respectively. The BrO absorption
found corresponds to (6.2±0.7)×1013molec/cm2. Typical residual structures during the
Zugspitze measurements were less than 10−3.
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Figure 5.4: Sample dSCDs of O3 and NO2 for October 30, 1999. Left: typical diurnal
pattern of the ozone dSCD. Only stratospheric O3 can be identified, no difference is
visible between the different viewing directions. Right: the shape of the NO2 dSCD
series is characteristic for a stratospheric NO2 profile. However, slightly elevated dSCDs
for the 20◦ elevation (red data points) indicate a fraction of NO2 in the lower atmosphere,
possibly from local pollution.

dramatic changes of the radiative transfer, which determines the light paths of photons

received by the telescope, could originate from a significant amount of quasi-direct sun-

light, which is forward scattered by Rayleigh and Mie scattering very close to the direct

solar rays. However, the observations are most likely due to direct light scattered in the

telescope because the anomalies are found in the spectra taken in zenith mode, not in the

low elevation ones. For the telescope pointing in zenith direction the sun could illuminate

dust on the quartz lens because the front window is tilted by 45◦ (see also Figure 4.1 for

a sketch of the telescope).

To show the difference for observations during overcast or cloudy periods, as an example

the period from March 1 to March 4, 2000 is plotted in Figure 5.6. Since one objec-

tive of the Zugspitze measurements was to study BrO in the free troposphere, another

effect should be mentioned here. As mentioned above stratospheric absorbers show a U-

shaped diurnal variation of the slant column densities. Measurements by D. Perner (private

communication, 1999) at Sondrestrøm Fjord, Greenland and at the Jungfraujoch in the

Swiss Alps showed an anomalous behavior of ’W-shaped’ diurnal variations of the BrO

SCD. It was speculated whether these anomalies could be explained by free tropospheric

BrO. Since the events were correlated with the occurrence of clouds and tropospheric fog,

Pfeilsticker et al. [1998] proposed that ’cloud effects’ lead to optical path modifications and

enhanced absorption due to interstitial BrO. During the measurements on the Zugspitze,

several similar diurnal variations were observed, Figure 5.7 shows an example of March

4-5, 2000. Also plotted is the visibility recorded by the weather station, which was less
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Figure 5.5: MAX-DOAS results (black points: zenith, red points: 20◦ elevation) for the typical clear sky period from January 11
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Fraunhofer and Ring fit coefficients point to sudden changes in the radiative transfer.
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than 50m due to dense fog until the late afternoon of March 5, 2000. A study suggesting

a free tropospheric background of 1-3 ppt of BrO based on multi-platform observations of

BrO has been recently presented by [van Roozendael et al. 2000].
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Figure 5.7: BrO dSCDs measured during a fog period on March 4 and 5, 2000. Especially
the March 5 diurnal variation shows a clear deviation from the U-shape expected for a
purely stratospheric absorber.

5.1.2 Preparatory Field Campaign in the Southern Indian
Ocean

Overview of the Campaign

In December 2000 measurements in the southern Indian Ocean were carried out as prepar-

ative study for an intensive field campaign within the ELCID4 project planned for austral

summer January to March 2002 in the French TAAF5 overseas district. Due to their re-

moteness - the French islands are situated approximately in the middle between South

4Evaluation of the Climatic Impact of Dimethylsulfide
5Terres Australes et Antarctiques Françaises
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Africa and Australia, with South Africa being the closest upwind source of anthropogenic

pollution at a distance of about 4000 km - the TAAF islands are ideal for studying the back-

ground marine boundary layer chemistry. The islands are inhabited by 20 to 100 scientists

per station, so local pollution is minimal. Two types of experiments were performed:

• shipborne MAX-DOAS measurements (on board the research vessel Marion

Dufresne) on the route from Réunion Island via Crozet, Kerguelen and Amster-

dam Island back to Réunion.

• Active Long-Path DOAS measurements were carried out for 1 12 days during the 2

day stopover at Port-aux-Français on Kerguelen Island.

The ship track and the location of the French islands in the southern Indian Ocean are

shown in Figure 5.8.

GMT 2001 Nov  6 15:02:23 OMC - kk+w

40°E

40° E

60°E

60° E

80°E

80° E

40°S 40° S

20°S 20° S

0 500 1000

km

Réunion Island

21°S 55.5°E

Crozet

46.4°S 51.7°E

Kerguelen Islands

49.5°S 70°E

37.7°S 77.5°E
Amsterdam Island

Figure 5.8: Map of the Indian Ocean Measurement Region: The shipborne measurements
started on the French Island Réunion 700 km east of Madagascar, the indicated track
was followed in a counterclockwise direction. Active Long-Path DOAS measurements
were performed during the stopover at Kerguelen Island.
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Measurements aboard Marion Dufresne

The French islands in the Indian Ocean are - except for Réunion Island - only accessible

by sea. The research vessel Marion Dufresne serves the islands Crozet, Kerguelen and Am-

sterdam as means of transportation and for atmospheric and oceanographic research. In

December 2000 a newly developed MAX-DOAS instrument (see section 4.3.1) was tested

on board of Marion Dufresne. The measurements were carried out from December 10 until

December 18, 2000 from the tropical island Réunion via Crozet to the subpolar Kerguelen

Islands. After the stop at Kerguelen, scattered sunlight DOAS measurements were con-

tinued from December 21 to December 28 on the way back to Réunion via Amsterdam

Island, which is located at mid-latitudes.

The MAX-DOAS telescope was mounted on the top level deck just behind the bridge.

Because of a failure of the stepper motor controller the telescope could only be adjusted

manually to receive light from different elevation angles. In standard mode the telescope

observed off axis scattered sunlight from a 5◦ elevation angle6. Once daily multi-axis mea-

surements were done by manually turning the telescope to elevation angles of 10◦, 20◦,

40◦, 60◦ and 90◦ (zenith). The integration time per spectrum was 200ms, during the spec-

tra acquisition 1000 scans were co-added. The spectra were evaluated using the DOAS

evaluation software WINDOAS (kindly provided by C. Fayt, IASB). An example of the

DOAS analysis in the spectral range 346 nm-359 nm for the evaluation of BrO is shown in

Figure 5.9. The atmospheric spectrum was taken on December 10, 2000 at 10:45:43 UT

(Start time 10:42:18, End time 10:49:08). The average number of counts in the evaluation

range is 4×105 counts (corresponding to 3.2×106 photoelectrons). As minimum theoretical

residual noise the photon noise of 5.6×10−4 RMS can be calculated. The residual noise

after simultaneous fitting of all known reference spectra in this wavelength range yields

7.5×10−4 RMS, which is nearly the expected theoretical noise level. In order to further

decrease the noise more spectra had to be co-added. However, in this evaluation co-adding

did not improve the results but rather degraded the quality of the fit. This was proba-

bly due to the variability of several critical parameters, e.g. instrumental (spectrograph

and detector temperatures), atmospheric (SZA, clouds, etc.) and other effects. Due to the

higher noise level the DOAS fit errors and also the errors of the derived dSCDs are on

average a factor of 3 to 4 higher compared to the other measurements shown in this thesis.

The results of the evaluation for ozone and NO2 dSCDs do not show any deviation from

the behavior expected for stratospheric absorbers and are therefore only included in the

appendix on page 224 together with latitude, longitude and SZA.

Since one main objective of the study was to assess the abundance of BrO in the southern

Indian Ocean marine boundary layer, in Figure 5.10 four example days of the BrO evalu-

ation are shown. The O4 MAX-DOAS series of December 10 shows the expected increase

6the roll of the ship (usually less than 3◦) was not compensated
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Figure 5.9: Top: atmospheric spectrum in the range 346 nm to 359 nm taken on De-
cember 10, 2000 at 10:45:43UT. Bottom: typical DOAS fit results in the BrO fit range.
Peak-to-Peak residual structures are in the range (2-4)×10−3.



12
4

C
H

A
P

T
E

R
5.

F
IE

L
D

M
E

A
S
U

R
E

M
E

N
T

S

(x (E (� (M (� d( dd d1 dn d; dx dE

(

x-d(
d;

d-d(
dx

d-d(
dx

Is��S1(((

 
�!
SI
7
]
*
S>
{8

T1
H

�$8�S>=qH

Td-d(
;;

Tx-d(
;n

(

x-d(
;n

d(S*�{

Sx�

Sd(�

S1(�

S;(�

SE(�

S�(�

S

!
;S
I
7
]
*
S>
s�
Z
�H

(d (1 (n (; (x (E (� (M (� d( dd d1 dn d; dx dE

(

x-d(
d;

d-d(
dx

d-d(
dx

Sx�

Sd(�

S1(�

S;(�

SE(�

S�(�

Is��S1(((

 
�!
SI
7
]
*
S>
{8

T1
H

�$8�S>=qH

T1-d(
;;

T1-d(
;;

Td-d(
;;

Tx-d(
;n

(

x-d(
;n

ddS*�{

S

!
;S
I
7
]
*
S>
s�
Z
�H

(d (1 (n (; (x (E (� (M (� d( dd d1 dn d; dx dE

(

x-d(
d;

d-d(
dx

d-d(
dx

Is��S1(((

 
�!
SI
7
]
*
S>
{8

T1
H

�$8�S>=qH

T1-d(
;;

T1-d(
;;

Td-d(
;;

Tx-d(
;n

(

x-d(
;n

d1S*�{

Sx�

Sd(�

S1(�

S;(�

SE(�

S�(�

S

!
;S
I
7
]
*
S>
s�
Z
�H

(( (d (1 (n (; (x (E (� (M (� d( dd d1 dn d;

(

x-d(
d;

d-d(
dx

d-d(
dx

Is��S1(((

 
�!
SI
7
]
*
S>
{8

T1
H

�$8�S>=qH

T1-d(
;;

T1-d(
;;

Td-d(
;;

Tx-d(
;n

(

x-d(
;n

11S*�{

Sx�

Sd(�

S1(�

S;(�

SE(�

S�(�

S

!
;S
I
7
]
*
S>
s�
Z
�H

Figure 5.10: Four days of the BrO MAX-DOAS evaluation results are shown. The dSCDs measured at different elevation angles
are indicated in different colors. O4 dSCDs show the expected increase in dSCD with decreasing elevation angle, while for BrO
no significant systematic behavior can be found.



5.1. PREPARATORY FIELD STUDIES 125

in dSCD, whereas for BrO the low elevation angles show no increased values. The 60◦ and

zenith value even show higher dSCD than the neighbor points, which cannot be explained

so far. The three other days show the same behavior for the O4 series. For BrO no sig-

nificant differences between the geometries exist. Also, no anomalies like on December 10

were observed. It can also be seen from Figure 5.10 that the noise level for that day is lower

than for the rest of the days. This is due to a change in integration time per spectrum

from 400 s to 200 s on December 11 because of detector saturation problems in the visible

spectral range.

From the measurements carried out on Marion Dufresne therefore only upper limits of BrO

in the marine boundary layer of the southern Indian Ocean can be derived. Assuming a

boundary layer height of 1 km, on December 10, 2000 an enhancement of 1×1014molec/cm2

could have been identified if present. This corresponds to a mixing ratio of ≤4 ppt if aver-

aged along a 10 km lightpath in the boundary layer (geometric approximation for α=5◦).

For the other days this upper limit is higher due to the shorter integration time per spec-

trum. The problems associated with co-adding of spectra after the measurements were

already mentioned above.

Active LP-DOAS Measurements at Kerguelen

During the 2 day stopover at Kerguelen from December 19 to December 21, 2000, a feasi-

bility study was carried out as preparation for the intensive long path DOAS measurements

planned in the framework of the ELCID project for austral summer 2001/2002. The French

research station Port-aux-Français is located at 49.5◦S, 70◦E at the north coast of Golfe

Morbihan, a large bay of ≈300 km2 and 30m average depth, which is connected to the

circumpolar ocean to the southeast (see Figure 5.11). The Kerguelen islands are geolog-

ically classified as continental shelf and the waters around the islands are a biologically

very productive region. A large fraction of the waters is populated with different kinds of

macroalgae. Therefore precursor species of reactive iodine and bromine should be abun-

dant. The main objective of the measurements presented here was to prepare an intensive

long path DOAS field campaign at Port-aux-Français for austral summer 2001/2002 and

also to take test measurements to determine if iodine oxides can be identified in the marine

boundary layer at Kerguelen. Figure 5.11 shows the surroundings of the French research

station where a long path instrument was operated for two days. The specially built small

footprint LP-DOAS instrument described in section 4.3.2 was used for the first time at

Kerguelen. After the arrival of R/V Marion Dufresne in the morning of December 19, 2000

the retro reflectors were set up in a distance of 5.35 km along the shoreline. LP-DOAS mea-

surements were started in the afternoon at 10UT (15h local time). Atmospheric spectra

were recorded in the range from 390 nm7 to 536 nm. The absorbers of interest in this

7below 390 nm light was absorbed by the Schmidt lens of the telescope, which is opaque in the
UV
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Figure 5.11: Map of the measurement site on Kerguelen Island. The French station Port-
aux-Français is located in a Bay which is protected from the open ocean. The site is
characterized by large fields of macroalgae covering the waters around the island. The
DOAS lightpath between the station and the retro reflectors in a distance of 5.35 km is
indicated as black arrow.

range are iodine oxide (IO) and NO2, which could be emitted locally. The time series

of both species for the measurements at Kerguelen is shown in Figure 5.12. During De-

cember 19, some local pollution from Port-aux-Françcais was observed with NO2 mixing

ratios up to 3 ppb. Also a few data points of IO mixing ratios above the detection limit

could be measured during the afternoon. An example of the IO evaluation using the WIN-

DOAS software (C. Fayt, IASB) is shown in Figure 5.13, yielding an IO mixing ratio of

(9.8±3.9) ppt. The residuals of the fit (and therefore the fit errors) are generally about a

factor of 3 larger compared to the ship borne scattered sunlight measurements using the

same spectrograph and detector. The two main problems encountered for the evaluation

of the long-path measurements were the temporal variability of the lamp structures and

possible structures caused by the quartz fiber, since only simple mode mixing was per-

formed (only shaking of the fiber, no squeezing; for details on quartz fiber mode mixing

and its importance for LP-DOAS see section 3.2.1). The variable lamp structures (pressure

broadened Xenon emission lines) had to be excluded from the fit, because no lamp refer-

ence spectrum included in the performed test fits could eliminate the strong structures.
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Figure 5.12: Overview of the LP-DOAS results from the measurements at Kerguelen
Island. The evaluated absorbers are shown with their errors (2×fit error) and the 2σ
detection limit (red line). Wind speeds of 150 km/h and more did not allow measurements
during the first night.

Unfortunately the lamp emission lines overlap largely with the IO absorptions, so only 1

and a half absorption bands could be fitted. Nevertheless several data points showing IO

mixing ratios above the detection limit could be found. Most part of the first night no

measurements were possible due to extremely high wind speeds of 150 km/h and more.

After the retro reflectors were cleaned the next morning the measurements continued un-

til the morning of December 21, when R/V Marion Dufresne left for the return trip to

Réunion via Amsterdam Island.

5.2 MAX-DOAS Measurements during the

ALERT2000 Polar Sunrise Experiment

From February to mid-May 2000 the Polar Sunrise Experiment ALERT2000 took place in

the Canadian Arctic. ALERT2000 was a follow up experiment of several previous studies.

During the last 15 years these Polar Sunrise Experiments have first discovered and sub-
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Figure 5.13: Top: Measured atmospheric spectrum at 11:45UT on December 19, 2000
during the LP-DOAS measurements at Port-aux-Français, Kerguelen. The Xenon emis-
sion lines visible in the spectrum originate from the used high pressure Xe arc lamp.
Bottom: DOAS fit result for the IO evaluation region. Two Xe emission lines had to be
excluded from the fit due to fluctuations of the lamp spectrum. The IO column density
calculated by the fit corresponds to a mixing ratio of (9.8±3.9)ppt.
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sequently elucidated the phenomenon of sudden surface ozone loss and related processes

after polar sunrise (see Section 2.3). Between February 1 and May 10, 2000 (for the dates

of polar sunrise see Figure 5.14) more than 30 scientists from North America, Europe,

and Japan conducted a diverse set of experiments at the Canadian Forces Station (CFS)

Alert, Nunavut, Canada, which will be described in this section. Details can also be found

on the ALERT2000 web page (http://www.msc-smc.ec.gc.ca/alert2000/).

Figure 5.14: Daylight/Darkness Chart for Alert

5.2.1 Measurement Sites

Alert, Nunavut, Canada is a Canadian Forces military base and the world’s northernmost

climate and weather station. It is located at the northern end of Ellesmere Island in the

Canadian Arctic at 82.5◦N, 62.3◦W. Figure 5.15 shows the North Pole region and the

location of Alert. The surroundings of the measurement site are shown in Figure 5.16.

MAX-DOAS measurements were performed at the Ice Camp (82◦32’N, 62◦43’W) on the

Arctic Ocean sea ice surface just west of Williams Island in Black Cliffs Bay. The site was

located in 7 km distance from the Alert base and about 9 km north of the GAW (Global

Atmospheric Watch), SST (Special Studies Trailer) and FTX (Far Transmitter building)

sites, where other experiments were located. MAX-DOAS measurements were performed

using the instrument described in section 4.1. The viewing direction of the MAX-DOAS
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Figure 5.15: Map of Alert and the North Polar Region: Alert is situated at the northern
tip of Ellesmere Island at 82.5◦N, in about 800 km distance from the North Pole.

telescope was true north and the closest land shore was in a distance of 3 km perpendicular

to the viewing direction (see Figure 5.16). The view towards the horizon was unobstructed

due to the generally flat sea ice surface. The MAX-DOAS system operated at Alert received

scattered (by Rayleigh and Mie scattering) and reflected sunlight from different elevation

angles. It combined zenith measurements (elevation angle α = 90◦) with measurements

at α = 60◦, 40◦, 20◦, 10◦ and 5◦ above the horizon. The MAX-DOAS receiving telescope

could be automatically moved to point in these directions using a stepper motor drive.

The setup of the MAX-DOAS telescope and stepper motor arrangement at the ice camp

is shown in Figure 5.17.

5.2.2 Meteorological Parameters

An overview of the meteorological parameters (T, Wind, p) observed at the Global At-

mospheric Watch (GAW) station and the climate station (cloud fraction and visibility) at
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Figure 5.16: Overview of the locations of the measurement sites during the ALERT2000
measurement campaign.

Alert for the period of the DOAS measurements is shown in Figure 5.18. At the beginning

of the study ambient temperatures ranged between -30◦C and -20◦C during a period of

high pressure, low wind speeds and clear sky. On April 26, the weather changed suddenly

when the wind changed to northerly direction at wind speeds of up to 10m/s. Tempera-

tures rose to values between -20◦C and -13◦C, the visibility decreased significantly and low

clouds/blowing snow prevailed during the next 10 days associated with a low pressure sys-

tem. The visibility and opacity data provide important information on associated changes
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Figure 5.17: Photograph of the MAX-DOAS setup at the Ice Camp near Alert. The small
telescope could be turned to different elevation angles by a stepper motor. The light was
transmitted to the spectrograph by the quartz fiber bundle.

in the radiative transport which can strongly influence the MAX-DOAS measurements.

5.2.3 MAX-DOAS BrO Measurements

Continuous measurements of scattered sunlight were performed after polar sunrise from

April 20 to May 9, 2000. In an automated measurement loop after each series of 10 spectra

taken at 5◦ elevation one MAX-DOAS series including elevation angles of 10◦, 20◦ and

90◦ was completed. Around midnight (SZA ϑ around 85◦, relative azimuth angle <20◦)

a different loop taking MAX-DOAS series at 90◦, 60◦ and 40◦ elevation was executed.

During daytime this measurement program led to a time resolution of 5 minutes for the

5◦ geometry and 1 hour for the higher elevation angles, respectively. Besides BrO, ozone,

NO2 and O4 absorptions were measured simultaneously in the same wavelength region.

The spectra recorded in the wavelength range from 320 nm to 400 nm were analyzed for

atmospheric trace gases by the DOAS fit (see section 3.1). As FRS (Fraunhofer reference

spectrum, see section 3.2.2) a noontime atmospheric spectrum (from April 22, 2000, 15:44

UT, SZA=70◦, SAA8=173◦) taken at elevation angle α = 90◦ was used, where only mini-

mum background trace gas absorption was present. In order to detect the BrO absorptions,

reference spectra of NO2, O3 (221K and 241K), O4, a Ring spectrum (see section 3.2.3),

the FRS and the BrO reference spectrum were simultaneously fitted to the atmospheric

8Solar Azimuth Angle, for the Alert measurements SAA and relative azimuth angle are identical
because the telescope direction was true north
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Figure 5.18: Overview of the meteorological parameters temperature, wind speed, wind direction, pressure, opacity and visibility
for the period of the DOAS measurements at Alert in April/May 2000.
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spectrum. A polynomial of 2nd order was also included to remove broadband absorption

structures and the effects of Rayleigh and Mie scattering. An example of the fit result

for the spectral range from 346 nm to 359 nm as used for the BrO evaluation is shown in

Figure 5.19.

The fit procedure yields differential slant column densities (dSCD) for the atmospheric

absorbers (differential with respect to the FRS). The results for the fit coefficient of the

Ring spectrum, the O3 and NO2 dSCDs and O4 fit coefficients from this analysis are shown

in Figure 5.20. For the mainly stratospheric absorbers O3 and NO2 the dSCD strongly

resembles the behavior of the solar zenith angle ϑ (cf. upper part of Figure 5.21). The

dSCD for these species depends on ϑ only, no significant difference for different elevation

angles α can be found. Only a few single data points from the 5◦ elevation NO2 series

are significantly larger than the stratospheric background, indicating that local pollution

was observed (possibly from the Alert base or the diesel power generator near the Ice

Camp). In contrast, the absorption by O4, which is abundant in the lower atmosphere9,

is almost independent of the solar zenith angle. Instead, large absorption is found for the

lowest elevation angles, very small absorption for zenith observations. This proves the ex-

cellent sensitivity of MAX-DOAS for measurements in the low troposphere. Enhanced O4

absorption is also found for high elevation angles between April 27 and April 29, 2000.

During this period high wind speeds led to snowdrift in the surface layer at Alert and at

the measurement site at the Ice Camp. In this low cloud/snowdrift layer near the ground

of approximately 100m vertical extent enhanced lightpaths due to multiple scattering and

reflection resulted in generally higher O4 absorption for all elevation angles. Additionally

multiple scattering averaged (to a certain extent) the photon path distributions for the

different elevation angles. However, the method still yields qualitatively correct results.

The lightpath enhancement seen in the O4 absorption is also visible for the fit coefficient

of the Ring spectrum, which is proportional to the intensity of rotational Raman scatter-

ing. Since the rotational Raman scattered light is proportional to the slant column density

of air molecules, it is also sensitive to light path enhancement. The low elevation angle

measurements generally exhibit higher Raman scattered intensities than the zenith data.

The 40◦ and 60◦ measurements were possibly influenced by direct sunlight received by the

telescope (see below).

The complete time series of BrO dSCDs for all elevation angles is shown in Figure 5.21.

On the first day of measurements (April 20) very small differences between the different

geometries can be seen, the following two days show no difference between the data from

different elevation angles, typical for BrO at higher altitudes. From April 24 small and

after April 26 very large BrO values are found. For the small elevation angles, the highest

BrO absorption is found. This is the typical behavior of an absorber in the boundary layer

as seen above for O4 and explained in section 3.5.2. On April 27, 2000 BrO slant column

9The O2 dimers O4 decrease vertically with a scale height of ≈4 km
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Figure 5.19: Example of the BrO DOAS analysis applied to the UV spectra measured
during ALERT2000. The black lines indicate the respective fit results after subtracting
all other absorbers, the overlaid red lines are the scaled reference spectra. Typical residual
structures left after subtracting all known absorptions were of the order of (0.5-2)×10−3.
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densities of more than 1015molec/cm2 were observed. Until the end of the campaign BrO

SCDs remained elevated, only on May 3 and from May 6 to 7 BrO absorption approached

the baseline for all geometries.

As already mentioned above for the Ring effect, the 40◦ and 60◦ elevation angle measure-

ments around midnight were probably again influenced by a significant amount of direct or

quasi-direct sunlight (see also section 5.1.1) received by the MAX-DOAS telescope. Here,

the zenith measurements were not affected because of the high solar zenith angle of ≈85◦

around midnight. Therefore the 40◦ and 60◦ data will not be included in further analysis.

5.2.4 MAX-DOAS IO Measurements

From the afternoon of May 1 until the end of the measurements on May 9, 2000, spectra

were also recorded in the wavelength range from 359 nm to 439 nm. After each MAX-DOAS

series in the UV spectral range (see section 5.2.3), spectra were taken in the blue wave-

length region at α=90◦ and 5◦. In the wavelength range from 400 nm to 439 nm absorption

by iodine oxide radicals (IO) could be analyzed. Besides IO only NO2, Fraunhofer and Ring

reference spectra and a 3rd order polynomial were fitted to the atmospheric spectra. In

order to identify IO in the arctic boundary layer, the 5◦ elevation spectra were always eval-

uated using the previous 90◦ spectrum as reference spectrum. Thus ∆SCD values with

∆SCD = SCDα=5◦ − SCDα=90◦

could be derived. The IO ∆SCD time series is shown in Figure 5.22. Most IO data points

range below the detection limit defined by twice the measurement error and indicated as

red line in Figure 5.22. However, there are many values near and several also above the

detection limit. To show how IO absorption structures were identified in the atmospheric

spectra, a sample evaluation for May 6, 2000 21:06UT at ϑ=71◦ is given in Figure 5.23.

The IO column density found in this case was (1.9±0.6)·1013molec/cm2. Assuming the IO

to be homogeneously distributed in a 1 km surface layer, this slant column corresponds to

a mixing ratio of (0.73±0.23) ppt.

5.2.5 Ozone Measurements during ALERT2000

Since the main objective of the Polar Sunrise Experiments at Alert is to study the physical

and chemical processes involved in Arctic boundary layer ozone depletion, a comprehensive

set of ozone measurements was collected during the ALERT2000 field study. The surface

ozone reference data set from the Global Atmospheric Watch (GAW) station, Alert is

shown in Figure 5.24 together with the DOAS BrO data measured at the Ice Camp. Both

species are clearly anti-correlated which was expected from previous measurements (see

section 2.2). Detailed results will be presented in section 6.3. The vertical profile of ozone

was also studied in detail during ALERT2000. Twice daily ozone sonde measurements were
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Figure 5.24: Top: Time series of the surface ozone mixing ratios during ALERT2000. The measurements were taken at the Global
Atmospheric Watch (GAW) station. Middle: Time series of TGM (total gaseous mercury) during ALERT2000. The measurements
were taken at the Ice Camp. Mercury data kindly provided by Steffen et al. [2002] Alert. Bottom: DOAS BrO data, only the 5◦

elevation measurements are shown.
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performed by Bottenheim et al. [2002]. In Figure 5.25 a contour plot of the vertical profile

of tropospheric ozone during ALERT2000 as a function of time is shown. Additionally,

several height profiles for the lowest 1000m were recorded at the Ice Camp using a tethered

balloon [Bottenheim et al. 2001]. The blue regions indicating ozone depletion are always

2� >SSE@

Figure 5.25: Vertical distribution of the ozone mixing ratio during ALERT2000. Contour
plot produced by J.W. Bottenheim, MSC, Environment Canada.

at the ground, extending to heights between 500m and 1.5 km.

5.2.6 Mercury Measurements during ALERT2000

To monitor the mercury depletion episodes during polar spring (see section 2.5), at-

mospheric mercury concentrations were measured at 3 different sites using commer-

cial Tekranr mercury analyzers for total gaseous mercury (TGM) and different filter

packs to collect total particulate mercury (TPM). The time series of TGM measured by

Steffen et al. [2002] at the Ice Camp is shown in Figure 5.24. The behavior of gas phase

mercury for the beginning of the ozone depletion strongly resembles the one of ozone.

However, later during the complete ozone loss period Hg shows a correlation with solar

radiation, which might be due to re-emission of Hg0 from the snow or aerosol to the gas

phase (see also section 6.3). The mass concentrations given for Hg (in ng/m3) can be con-

verted to volume mixing ratios (in ppt) by multiplication with the factor 0.115 ppt·m3/ng

for the temperature and pressure levels at Alert. Maximum Hg mixing ratios therefore

range between 0.2 and 0.3 ppt.
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5.3 LP-DOAS Measurements during the

Crete2000 Field Campaign at Finokalia

In July and August 2000, a 4 week intensive field study was carried out within the ELCID

project (see also section 5.1.2 and 5.4) to study the oxidants of dimethylsulfide (DMS)

in the moderately polluted Mediterranean atmosphere. As pointed out in section 2.3.3

halogen oxides (especially BrO) can be an important sink for DMS.

5.3.1 Measurement Site

Finokalia (35◦19’N, 25◦40’E, altitude ∼130m above sea level) is a coastal remote site 70 km

eastward of Heraklion on the Greek island Crete in the Mediterranean Sea. It is located

at the top of a hilly elevation facing the sea within the sector of 270◦ to 90◦. Depending

on the weather conditions the air masses reaching the station originate from Europe or

Africa.

GMT 2001 Dec 28 12:32:23 OMC - kk+w
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Figure 5.26: Finokalia is located 70 km east of Heraklion at the northern coast of the
Greek island Crete in the eastern Mediterranean Sea.
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5.3.2 Meteorological Parameters

The meteorological parameters obtained during the Crete2000 field campaign at the Fi-

nokalia measurement site are shown in Figure 5.27. Typical temperatures at Crete ranged
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Figure 5.27: Temperature, relative humidity, wind speed and wind direction time series
for the period of the DOAS measurements at Finokalia, Crete.

between 20◦C at night and 30◦C during noontime, with occasional peaks up to 40◦C. Dur-

ing the dry summer months on Crete the relative humidity was as low as 10%, reaching

90% only during a few nights. Winds were from the northwest during almost the complete

period of the measurements, light winds from southeasterly directions were observed only

on 2 days. The frequency distribution of the wind direction is illustrated in Figure 5.28.

5.3.3 Active LP-DOAS BrO, IO, OIO Measurements

From July 8 to August 7, 2000 active long path DOAS measurements were performed

at Finokalia. The used LP-DOAS instrument is described in section 4.2. Two light paths

were set up, with one retro reflector array in a distance of 8.16 km and one for hazy

conditions in a distance of 5.18 km. The reflectors were set up at 10-20m above sea level,

therefore the measurements yielded concentrations vertically averaged for the lower 150m
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Figure 5.28: Relative frequency dis-
tribution of the wind direction dur-
ing the DOAS measurements at Fi-
nokalia, Crete, in intervals of 1◦.

of the marine boundary layer at the north coast of Crete. Figure 5.29 shows the view

from the DOAS instrument at the Finokalia site in the direction of the lightpaths along

the coastline. In the continuous measurement loop for the DOAS instrument at Finokalia,

jBt�Sj$�Y�S}s�YSw1S-SM�dES,8D

RYB��Sj$�Y�S}s�Y
w1S-Sx�dMS,8D

Figure 5.29: View from the DOAS instruments at the Finokalia measurement site in the
direction of the DOAS lightpaths along the coast.

atmospheric absorption spectra were taken in the UV (295 nm - 375 nm), blue (390 nm -

470 nm) and green (510 nm - 590 nm) spectral ranges, where the halogen oxides BrO, IO

and OIO exhibit high differential absorption cross sections. The analysis for the halogen
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oxides was carried out according to the procedure described in section 3.1.2. The data

obtained for the halogen oxides is shown in Figure 5.30 together with the simultaneously

measured ozone mixing ratios. During the complete 1 month measurement period the

halogen oxides remained below their respective detection limits given in Table 5.1.

M�� d(�� d1�� d;�� dE�� dM�� 1(�� 11�� 1;�� 1E�� 1M�� n(�� d�M n�M x�M ��M

(
1
;
E
M
d(

S8$-$t�S�s�$BR
SI���{�$BtSj$8$�R

!
y!
S>
}
}
�H

Is��SFZjkS\SVZ�ZR�S1(((S>=qH

(
1
;
E
M
d(

�

y!
S>
}
}
�H

T1
(
1
;
E
M
d(

�

 
�!
S>
}
}
�H

(

1(

;(

E(

M(

M�� d(�� d1�� d;�� dE�� dM�� 1(�� 11�� 1;�� 1E�� 1M�� n(�� d�M n�M x�M ��M

�

!
nS
>}
}
A
H

Figure 5.30: Results of the measurements of O3, BrO, IO and OIO. While ozone mixing
ratios ranged between 40 ppb and 80 ppb, the halogen oxides always remained below
their respective detection limits (red lines).

Species average detection limit [ppt] minimum detection limit [ppt]
BrO 1.5 0.7
IO 0.8 0.25

OIOa 4 1.6
a for OIO the cross section reported by Bloss et al. [2001] was used. However, other data by

Ingham et al. [2000] suggest a value 2.5 times higher. This would result in all OIO mixing

ratios to be divided by 2.5

Table 5.1: Detection limits of the investigated halogen oxides at Finokalia on Crete during
July/August 2000. Since no halogen oxides were found above the detection limit, these
values can be considered as upper limits of the atmospheric mixing ratios.
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5.3.4 Nitrogen Compounds at Finokalia

Because of their influence on the halogen chemistry in the marine boundary layer, DOAS

data of nitrogen species will also be shown here. In the UV spectral range absorption

by NO2 and nitrous acid (HONO) were evaluated. NO2 was also measured in the blue

and green wavelength range. Measurements in the spectral range from 605 nm to 680 nm,

where the nitrate radical (NO3) has its strongest absorption bands, were taken daily from

the late afternoon overnight until the morning and around noon for additional daytime

reference spectra. An overview of all the nitrogen species measured with the LP-DOAS

system is given in Figure 5.31. Ozone mixing ratios are also shown for comparison. From
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Figure 5.31: Overview of all nitrogen compounds measured by the LP-DOAS system.
Nitrous acid (HONO), nitrogen dioxide (NO2) and nitrate radicals (NO3) mixing ratios
(data points) and their respective detection limits (red lines) are shown. Also included
is the ozone time series (top).

the NO2 time series it can be seen that Finokalia is a moderately polluted marine site, in

some nights NO2 values reached 3-4 ppb. The mean value was 0.5 ppb over the complete

measurement period, minimum values scattered around ≈100 ppt. Nitrous acid (HONO),

an important nighttime compound in the urban atmosphere (see e.g. [Alicke 2000]) was

below the detection limit of 60 ppt on average. During several nights when the flow was
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from the west (air masses influenced from Heraklion, which is located 70 km to the west),

HONO rose above the detection limit to values up to 100-150 ppt. Nitrate radical mixing

ratios increased to values between 10 and 20 ppt during most nights, at sunrise NO3 was

quickly photolyzed due to its short photolytic lifetime of ∼1 s during daytime. In several

nights very high NO3 of more than 100 ppt and in one night up to 310 ppt of NO3 were

observed. The corresponding atmospheric spectrum and the NO3 DOAS fit results are

shown in Figure 5.32.
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Figure 5.32: Atmospheric spectrum in the red spectral region taken at Finokalia on
July 25, 2000 at 23:27UT. Two daytime reference spectra, where no NO3 absorption
is present were included in the analysis and subtracted from the atmospheric spectrum.
The 4th trace shows the atmospheric spectrum after subtracting the daytime spectra,
thus eliminating the strong water absorption between 623 nm and 660 nm. The result is
perfectly described by an NO3 reference spectrum scaled to show absorption of 310 ppt
NO3. The residual after the fit (lowest trace) results in an error of ±4 ppt for NO3 in
this case.
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5.4 LP-DOAS and MAX-DOAS Measurements

at Kuujjuarapik, Hudson Bay, Canada

During April/May 2001, a 3 1/2 week intensive field campaign was carried out in the

framework of the ELCID project (see also section 5.1.2 and 5.3) to investigate the role of

bromine oxide as oxidant of DMS in the lower Arctic. The measurement location at the

east coast of Hudson Bay was chosen also to prove the high tropospheric bromine oxide

levels observed by the GOME satellite instrument (see section 2.3 [Richter et al. 1998;

Wagner et al. 2001]).

5.4.1 Measurement Site

Kuujjuarapik, Nunavik, Quebec, Canada is located at the south east coast of Hudson Bay

at 55.31◦N, 77.75◦W. Besides its official Inuit name the small village can also be found

as Poste-de-la-Baleine (French), Great Whale River (English) or Whapmagoostui (Cree

Indian) on different maps. For an overview map of the Hudson Bay region and the sur-

rounding Canadian low Arctic see Figure 5.33. Kuujjuarapik is a small settlement of 1200

inhabitants, there is no local industry but some pollution from the local community power

plant is possible. The airport is frequented by two small aircraft per day. The DOAS

instruments were set up in a container about 2 km north of the village on a hillock to

allow an unobstructed view towards the Bill of Portland Islands just off the coast where

the main retro reflector array was set up. The long lightpath used for the LP-DOAS was

2×7.6 km across the ice-covered Hudson Bay at an average height of 30m above the sea ice

surface. In case of low visibility due to snowdrift, haze or rain the short lightpath to a retro

reflector array in 1.95 km distance along the shore (2×1.95 km=3.9 km total lightpath) was

used instead. For the first parallel measurements of LP-DOAS and MAX-DOAS simulta-

neous measurements with a ground-based MAX-DOAS were performed. The MAX-DOAS

telescope received light from direction north at different elevation angles above the hori-

zon as well as from zenith direction in a sequential mode. A detailed comparison of both

measurement techniques and results will be given in section 6.5.4.

5.4.2 Meteorological Parameters

An overview of the meteorological parameters (T, Wind, p, RH, visibility) observed at the

Centre d’études nordiques (CEN) weather station (T, Wind, RH) and the local climate

station (p, visibility) at Kuujjuarapik covering the time period of the DOAS measurements

is shown in Figure 5.35. The measurements during the field study were strongly influenced

by the local and synoptic scale weather conditions, that can be seen in Figure 5.35. At

the beginning of the study associated with generally high pressure ambient temperatures

ranged between -20◦C and near 0◦C, prevailing winds were from the north and northwest,
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Figure 5.33: Map of the Hudson Bay Region: Kuujjuarapik (55.31◦N, 77.75◦W) is situ-
ated at the south east coast of Hudson Bay.

so arctic air masses reaching the site have travelled a long way over Hudson Bay. During

the middle and the end of the measurement period low pressure systems usually associated

with southerly and easterly winds led to warmer temperatures up to 20◦C and continental

air masses reaching the site. The frequency distribution of the local wind direction at

Kuujjuarapik during the measurement period is shown as polar diagram in Figure 5.36.

The visibility data in Figure 5.35 provides important information on several snowdrift

episodes encountered during the measurements.
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Figure 5.34: Topography and Lightpaths at Kuujjuarapik, Hudson Bay

5.4.3 First LP-DOAS Measurements at the Hudson Bay

Active long path DOAS measurements were performed between April 15 and May 8, 2001

from the DOAS container located ≈ 2 km north of Kuujjuarapik. The employed LP-DOAS

instrument is described in section 4.2. The continuous measurement loop for the LP-DOAS

instrument recorded atmospheric absorption spectra in the UV (295 nm - 375 nm), blue

(390 nm - 470 nm) and green (510 nm - 590 nm) spectral ranges. These are the spectral
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Figure 5.36: Relative frequency dis-
tribution of the wind direction dur-
ing the DOAS measurements at
Kuujjuarapik, Hudson Bay in 10◦

intervals.

intervals, where the halogen oxides BrO, OClO, OBrO, IO and OIO have their highest

differential absorption cross sections. For solar zenith angles larger than 80◦ also spectra

in the red spectral region (605 nm - 680 nm) were taken to measure NO3 radicals. Spectra

were taken from the long light path, only during periods of low visibility the short light

path was used instead. Since the probed atmospheric column was smaller by a factor of

∼4, the measurement errors and detection limits were ∼4 times higher for the short light

path compared to the long one. The DOAS fit for the halogen oxides and other trace gases

was performed according to the analysis procedure described in section 3.1.2.

Bromine Oxide and Ozone Data

Atmospheric spectra in the UV spectral range were analyzed for O3 and BrO absorption

in the wavelength interval between 312 nm and 357 nm. This interval contains the 10

strongest absorption bands (4-0 to 13-0) of the A2Π3/2 ←X2Π3/2 transition of the BrO

radical. An example showing the fit results of the LP-DOAS evaluation for O3 and BrO

is shown in Figure 3.4 in section 3.1.7. The time series of BrO and ozone during the

Hudson Bay measurements is shown in Figure 5.37. Until the end of April several events

of high BrO mixing ratios reaching 30 ppt were observed, correlated to sudden drops in the

ozone mixing ratio from background levels between 40 and 50 ppb to 30 ppb and in several

cases to less than 20 ppb. Strong winds and snowdrift frequently prohibited LP-DOAS

measurements in the beginning of the campaign, especially during several BrO events.

Sometimes very low visibility of less than 100m did not even allow measurements on the

short lightpath. In the night from April 26 to April 27, 2001 ozone was almost completely

depleted. During this night the visibility was less than 1 km (see visibility data in Figure

5.35 for 27.04.01 00:00-12:00UT) and wind speeds of 15m/s led to drifting snow. DOAS

measurements were possible only until a solar zenith angle of 98.5 ◦, when BrO had reached
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Figure 5.37: Time series of the first LP-DOAS Measurements of Bromine Oxide radicals at Kuujjuarapik, Hudson Bay. Besides
BrO mixing ratios the DOAS data for ozone and the solar zenith angle ϑ are shown. Measurements during low visibility conditions
taken on the short lightpath are indicated as blue data points.
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4 ppt.

From the beginning of May on BrO mixing ratios always remained below 5 ppt. However,

still small events of halogen activation with BrO mixing ratios of 2-3 ppt and small ozone

losses were observed before sunrise on May 3 and May 5, 2001. These measurements

represent the first ground-based DOAS measurements of bromine oxide at Hudson Bay.

The observation of nighttime BrO (SZA=97◦) is also reported for the first time here.

Other Halogen Oxides

In the UV spectral range, besides BrO also OClO has strong absorption features. Therefore

OClO was also included in the DOAS fit for BrO. However, including OClO in the BrO fit

did not yield any significant absorptions attributed to OClO. Therefore, the evaluation of

OClO was optimized by narrowing down the fit interval to the range 331.5 nm to 354 nm,

which contains only the three strongest UV absorption bands of the OClO molecule for the

best signal to noise ratio. The mean detection limit of OClO in this analysis was 1.7 ppt

(2σ) on average.

Iodine oxide (IO) was evaluated in the blue spectral range from 423-447 nm comprising

the three strongest IO absorption bands (2-0, 3-0 and 4-0) of the A2Π3/2 ←X2Π3/2 tran-

sition of the IO radical. Besides IO, reference spectra of water vapor, NO2, O4, OBrO,

OClO and a Xenon lamp spectrum were included in the DOAS fit. The limiting factor

for optimizing the IO analysis was the correct removal of the Xenon lamp emission lines

(e.g. at 438 nm and for λ ≥ 446nm). The best results, i.e. the lowest residual structures,

were obtained when a lamp reference spectrum averaged over the complete measurement

period was used, resulting in a mean detection limit of 1.3 ppt for IO.

The strongest absorption bands of the halogen dioxides OBrO and OIO are in the green

spectral range between 500 nm (OBrO) and 550 nm (OIO). Therefore an optimized DOAS

evaluation for these species was performed between 541 nm and 565 nm, where both

molecules exhibit four strong absorption bands. Besides the two halogen dioxides OIO

and OBrO, reference spectra of water vapor, NO2, O4 and a lamp reference spectrum

were simultaneously fitted to the measured atmospheric spectra. Variable Xenon lamp

structures were again the limiting factor when analyzing the absorption spectra in this

spectral range. Frequently residual structures of up to 5×10−3 (peak-to-peak value) due

to changes of the shape of the Xenon emission lines could not be adequately described by

the reference spectra included in the analysis. The resulting average detection limits were

5.5 ppt for OBrO and 6.6 ppt for OIO, respectively.

The complete data set obtained for the halogen oxides OClO, IO, OBrO and OIO is shown

in Figure 5.38. During the measurement period none of the halogen oxides besides BrO

was identified in the measured absorption spectra. The respective detection limits for all

halogen oxide species investigated at Kuujjuarapik are given in Table 5.2.
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Figure 5.38: Time series of the evaluated halogen oxides OClO, OBrO, IO and OIO
during the Hudson Bay measurements. Only data from the long lightpath is shown. The
red lines indicate the respective detection limits.

5.4.4 Etalon Structures

During the measurements at the Hudson Bay at several occasions strong, but so far un-

known structures were observed in the atmospheric spectra besides the known features

Species average detection limit [ppt] minimum detection limit [ppt]
BrO 1.5 0.6
OClOa 1.7 0.9
OBrOa 5.4 0.9
IOa 1.3 0.7

OIOa,b 6.6 1.0
a not detected
b taking the cross section by [Bloss et al. 2001]

Table 5.2: Detection limits of the investigated halogen oxides during the Hudson Bay
campaign in April/May 2001. The values can be considered as upper limits of the atmo-
spheric mixing ratios.



5.4. HUDSON BAY CAMPAIGN 157

like structures from the diffraction grating of the spectrometer and Xenon lamp structures

(see lower part of Figure 5.40. The features were strongest in the green spectral range,

but at the same time, the spectra taken in the blue and UV exhibited similar features.

Since the spectral width of the structures was ∼ 1 − 1.5 nm and did not vary over time,

while the intensity of the structures did vary from day to day, a so far unknown absorber

was proposed first to explain the observations. A reference spectrum for the respective

fit interval was derived by manually removing all known absorptions from a measured

spectrum clearly exhibiting the unknown features (typically in the range of 1-2% optical

density). Further investigations showed, that when the so-derived reference spectrum was

included in the fit, residual structures decreased significantly for spectra taken on the

short lightpath. Furthermore, the occurrence of the phenomenon was strictly correlated

with measurements on the short lightpath. Figure 5.39 shows the time series of the fit co-

efficient for the additional reference spectrum included e.g. in the BrO fit procedure. The
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Figure 5.39: Time series of the fit coefficient for a reference spectrum prepared to contain
only the etalon structures. Blue data points indicate spectra taken on the short lightpath,
black triangles are spectra taken from the long lightpath.

blue triangles indicate all measurements taken on the short lightpath, which exclusively

show fit coefficients significantly different from zero. The main difference between the two
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light paths besides the total length was the fact, that the short path was very close to

surface (vegetation and ice) and oriented parallel to the coastline, where the melting of

the ice set in first at temperatures above freezing. However, the unknown structures were

found both at sub-zero temperatures and above zero.

Another approach to explain the structures is the so-called Etalon effect (see Appendix

on page 215). It is an instrumental effect caused by multiple reflections between reflecting

parallel surfaces in the optical path. These multiple reflections lead to interference effects

which are visible in the spectrum as wave-form modulations of the light intensity. The

Etalon effect and its influence on DOAS measurements has been studied by Stutz [1991],

who reported relatively broadband modulations (∼10-30 nm) caused by multiple reflec-

tions between the detector material and a possible coating or thin layer of water or ice.

Hönninger [1999] found high frequency modulations (0.03 nm) originating from quartz

windows with a thin reflective layer in the optical path. Those modulations could be cor-

rectly modelled by a function describing multiple reflections between two parallel plates

with reflective surfaces. Measurements at Kuujjuarapik were taken using different color

filters to reduce stray light (e.g. UG5 filter to remove the visible spectrum above 400 nm

for the UV measurements). However, no combination of color or grey filters was strictly

correlated with the structures observed in spectra from the short lightpath. In particu-

lar, several spectra taken without any filters still exhibited the features. The only further

difference between long and short lightpath, however, are the different retro reflector ar-

rays applied. Retro reflectors themselves behave the same way as a back surface mirror

in a distance from the reflector front surface, which is determined by twice the distance

between the cube corner and the front surface. This depends on the particular geometry

of the respective retro reflector. For all retro reflectors used on the short lightpath this

geometric distance was 96mm. The retro reflectors therefore act as a parallel plate of

96mm thickness with a reflectivity of 100% at the back surface as long as the angle of the

incident light is small. Multiple reflections causing Etalon effects are strongly enhanced

when an additional reflecting layer (e.g. a film of water or ice) is present on the front

surface of the retro reflector. Thin ice and water layers were indeed noticed and removed

during the campaign when the retro reflector arrays were routinely cleaned. To assess this

possibility, a model function for multiple reflection between two layers (equation A.5 in

the appendix on page 216) was fitted to the observed structures in the blue and green

wavelength regions. The result is shown in Figure 5.40 (top) as red lines. The model func-

tion can reasonably explain the wavelength modulation in both spectral intervals. For the

parameters of the model fit the dimension of one reflecting layer was held constant10. The

fit predicts an additional reflecting layer of ≈200µm optical thickness on the surface of the

retro reflectors. It is assumed that thin ice layers and particularly thin water films were

10the optical path in the retro reflector is 96mm×nquartz, with nquartz ≈1.54, resulting in an
input parameter of 14.784 cm=1.4784E8 nm
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responsible for the observed strong structures in the measured spectra. This assumption

is supported by the fact that the intensity of the structures or the amplitude of the etalon

effect (corresponding to the fit coefficient in Figure 5.39) increased strongly towards the

end of the measurements, when the Hudson Bay sea ice surface was melting and a lot of

moisture was present at the site where the retro reflectors were located. In contrast to the

retro reflector array for the long lightpath which was set up at ≈30m above the ice, the

small array for the short lightpath was set up on a rock ≈10m from the Hudson Bay ice

(water) surface at ≈1m above sea level. The ’reference spectra’ of the described Etalon

effect were included like an additional absorber in all DOAS evaluations for the short

lightpath in order to remove the structures and allow to evaluate all other investigated

species.

5.4.5 Local Pollution

Besides halogen oxides local pollution was monitored at Kuujjuarapik by simultaneous

measurements of SO2 (in the UV range) and NO2 (best in the blue range), which can

be regarded as tracers for anthropogenic pollution. During background conditions both

species ranged below their respective detection limits of 0.16 ppb (min 0.02 ppb) for SO2

and 0.08 ppb (min 0.04 ppb) for NO2. However, several spikes are visible in the time series

of both species in Figure 5.41. These spikes indicate local pollution very close to the mea-

surement site. Sharp NO2 peak values of up to 8 ppb were correlated with wind directions

from the southeast where the village of Kuujjuarapik is located. Additionally the DOAS

lightpath is almost parallel to this wind direction leading to high concentrations over the

full length of the lightpath (see bottom part of Figure 5.41). Even more important than

pollution from Kuujjuarapik is probably the plume of the power generator next to the

DOAS container where the instruments were set up. For southeasterly winds the plume

of the generator was very likely affecting the DOAS measurements. Also, in some cases

the exhausts of aircraft landing at Kuujjuarapik and passing over the DOAS measurement

site could have contributed to the observed pollution levels. SO2 is not correlated to the

NO2 peaks, most elevated values are during the last two days of the measurements when

fire was set on the local dump site at Kuujjuarapik and the plume was blown towards the

DOAS measurement site. SO2 emissions from the power generator are very unlikely since

it was operated with unleaded gasoline which has a very low sulfur content.

In general the NO2 and SO2 levels measured by DOAS are representative for clean back-

ground air, especially during BrO events which were always associated with north-westerly

wind and arctic air masses reaching Kuujjuarapik. The effects of the observed pollution

spikes on the BrO measurements is therefore negligible.
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Figure 5.41: Top: Time series
of NO2 and SO2 as indicators
of local anthropogenic pollu-
tion. Red dotted lines indicate
the respective detection lim-
its. Left: Pollution events as a
function of wind direction.

5.4.6 MAX-DOAS BrO Measurements

For the first time during the Hudson Bay field campaign MAX-DOAS measurements

were performed simultaneously with LP-DOAS measurements. A sequential MAX-DOAS

instrument (for an instrument description see section 4.1) was operated at the DOAS
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Figure 5.42: Setup of the MAX-DOAS telescope/stepper motor arrangement at the
DOAS site near Kuujjuarapik.

measurement site from April 19 until May 8, 2001. The viewing direction of the MAX-

DOAS telescope was true north, passing approximately 1 km west of the LP-DOAS retro

reflectors located at the southern tip of Bill of Portland Island. Therefore towards the

horizon the line of sight of the telescope was above the Hudson Bay sea ice surface.

The MAX-DOAS system was operated in a sequential mode receiving scattered sunlight

from elevation angles of 5◦, 10◦ and 20◦ as well as from zenith direction. The MAX-

DOAS receiving telescope was mounted to a stepper motor drive/joint system allowing to

move the telescope in these directions by computer control. The setup of the MAX-DOAS

telescope and stepper motor arrangement at the DOAS container is shown in Figure

5.42. Continuous measurements of scattered sunlight were performed in an automated

measurement loop for solar zenith angles smaller than 93◦. After 2 spectra taken at 5◦

elevation a MAX-DOAS sequence at elevation angles of 90◦, 20◦ and 10◦ was recorded.

During daytime the integration time was ∼5 minutes, so one complete MAX-DOAS series

was usually measured within 30minutes. Only at dawn and dusk integration times reached

10min. The spectra recorded in the wavelength range from 319 nm to 381 nm were analyzed

for atmospheric absorbers by the DOAS analysis procedure (see section 3.1.2). In order

to evaluate the bromine oxide absorption reference spectra of BrO, ozone, NO2 and O4 as

well as a FRS (Fraunhofer reference spectrum, see section 3.2.2) taken on April 30, 2001
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at 16:25UT (SZA=41◦, SAA=164◦, α=90◦) and a calculated Ring spectrum (see section

3.2.3) were simultaneously fitted. Additionally, a polynomial of 2nd order was included in

the fit process to remove broadband absorption structures and the effects of Rayleigh and

Mie scattering. For the fitting process the spectral range between 346 nm to 359 nm was

used (see also section 5.2.3 and example in Figure 5.19). The time series of BrO dSCDs

resulting from the DOAS fit is shown in Figure 5.43. Until April 29, 2001, the MAX-DOAS

dSCDs show clear differences between the measurements at low elevation angles and in

zenith mode. Like during the measurements at Alert (see section 5.2.3) this indicates, that

a large fraction of the observed BrO is present in the boundary layer. In the evening of April

24 and in the early morning of April 27, the 5◦ elevation dSCDs reached maximum values

of 1015molec/cm2, which is the same range as for the Alert measurements. From April

30 until the end of the measurements the BrO dSCDs are almost entirely characterized

by the absorption of stratospheric BrO, which manifests itself in the typical U-shape of

the diurnal dSCD cycle. However, between May 3 and 5 small differences between the 90◦

data and values at the lower elevation angles are visible.

5.4.7 Ozone Measurements at Kuujjuarapik

Ozone measurements at Kuujjuarapik were performed both by DOAS (as a side product

of the BrO measurements, see sample evaluation on page 59) and using a commercial

in situ ozone analyzer. The commercial ozone instrument was operated at the Centre

d’études nordiques (CEN) in Kuujjuarapik, about 2 km south of the DOAS measurement

container (O3 data kindly provided by L. Poissant, Meteorological Service of Canada,

[Poissant 2001]). The ambient ozone data measured at the CEN is shown in Figure 5.44

together with the LP-DOAS ozone data measured between the DOAS container and Bill

of Portland Island. In order to correlate both measurements the in situ ozone data with

a time resolution of 5min was averaged over the respective DOAS integration time of

30min on average. However, sampling of different air masses, which is possible since the

instruments were located on opposite sides of the village, could not be corrected for. The

correlation plot for both ozone data sets is shown in Figure 5.45. Both data sets are clearly

correlated, but some deviations are visible. However, there are no systematic differences

in the data sets, but rather single data points which show high deviations. This could

be explained by sampling of different air masses by both instruments, e.g. when CEN in

situ data was influenced by local NOx emissions from the village which did not affect the

DOAS measurements for northerly flows. In general it can be assumed that both data sets

correctly quantify the ozone levels at Kuujjuarapik.
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5.4.8 Mercury Measurements at Kuujjuarapik

For measurements of total gaseous mercury (see section 2.5) at Kuujjuarapik dur-

ing spring 2001, a commercial Tekranr mercury analyzer was installed at the Centre

d’études nordiques in Kuujjuarapik [Poissant 2001]. The time series of TGM measured by

Poissant [2001] at the CEN is shown in Figure 5.24. The behavior of gas phase mercury is
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Figure 5.46: Top: Total gaseous mercury time series measured at the CEN by
Poissant [2001] (1 ng/m−3 ≈0.1 ppt). Bottom: BrO mixing ratios measured by LP-
DOAS.

anti-correlated to that of BrO like it was the case for Alert (see section 5.2.6). However,

at Kuujjuarapik no complete Hg depletion was found, but rather small episodic events of

several hours duration. During these mercury depletion events (MDE) TGM dropped from

background levels of ∼2 ng/m3 to below 1 ng/m3 within a few hours (3-5). The behavior

of gaseous mercury at Kuujjuarapik is further discussed in section 6.6.



Chapter 6

Results

6.1 BrO in the Free Troposphere

As already mentioned in section 5.1.1 the BrO measurements at the Zugspitze show some

further indications for a background of free tropospheric BrO, at least during certain

periods. Anomalous W-shapes of the BrO dSCD diurnal variation, especially during cloudy

periods could be explained by additional BrO absorption due to tropospheric interstitial

BrO. This observation supports the findings of other authors (see section 2.3) who derive a

free tropospheric background of BrO in the range 1-2 ppt. This background could either be

due to efficient upward mixing of BrO from the planetary boundary layer, which probably

contributes significantly to free tropospheric BrO in polar regions during springtime. In

mid-latitudes and in the tropics, however, organic bromine precursors like methyl bromide

and bromoform (see section 2.3.1) could play the major role. Due to its high efficiency in

destroying ozone, a free tropospheric background of reactive bromine would significantly

affect the chemistry of the troposphere (especially ozone, HOx and NOx cycles, see section

2.2.1).

6.2 Halogen Oxides in the Southern Indian Ocean

The ship borne measurements performed in the Indian Ocean did not yield any BrO above

the detection limit, however, if more than 4 ppt of BrO had been present, a signal would

have been observed by the MAX-DOAS measurements. Nevertheless bromine chemistry

could still play a role in the Indian Ocean marine boundary layer, because model simu-

lations by [Vogt et al. 1996] for the remote marine boundary layer indicate that even at

BrO levels below 1 ppt reactive halogen chemistry can account for 5-40% of the total ozone

loss, depending on aerosol surface and speciation.

The first LP-DOAS measurements in the southern Indian Ocean at Port-aux-Français, Ker-

guelen Island showed that IO is likely present in the marine boundary layer at Kerguelen

167
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Island at maximum levels of approximately 10 ppt. This agrees well with previous findings

at Mace Head, Ireland [Alicke et al. 1999; Hebestreit 2001], the Canary Islands and Cape

Grim, Tasmania [Allan et al. 2000; Allan et al. 2001] as well as with the observations of

Frieß et al. [2001] at Neumayer Station, Antarctica. Although these measurements still

represent only a limited data set, it can be concluded that iodine oxide mixing ratios in

the range 0 - 10 ppt are always present in the boundary layer of remote coastal regions. As

was shown by Stutz et al. [1999] these levels of reactive iodine can destroy up to ∼0.45 ppb

ozone per hour. Additionally, IO at these levels strongly influences the boundary layer pho-

tochemistry, namely the ratios of OH/HO2 and the Leighton ratio NO/NO2 (cf. section

2.1.2). This significant perturbation of standard boundary layer chemistry is likely to alter

the results of currently used chemistry and transport models.

6.3 Results from ALERT2000

6.3.1 Time Series of BrO during ALERT2000

Measurements of BrO were performed on 20 days from April 20 to May 9, 2000. During

12 days BrO SCDs clearly exceeded the stratospheric background levels. The smallest

detectable deviation from the stratospheric background column was 1× 1013 molec/cm2.

The time series of BrO ∆SCDs during the campaign are shown in Figure 6.1. ∆SCDs are

defined as

∆SCD(t) ≡ dSCD(α, t)− dSCD(α = 90◦, t) (6.1)

where both dSCDs are differential with respect to the slant column density of the same

Fraunhofer reference spectrum (FRS) SCDref . In this case there is no difference if dif-

ferential SCDs or total SCDs are subtracted, since a possible contribution of SCDref is

cancelled out. ∆SCDs are a good measure for boundary layer concentrations, since the

stratospheric and possible upper tropospheric fraction of the absorber has nearly identi-

cal airmass factor contributions for all elevation angles, whereas the boundary layer SCD

is highly enhanced for the low elevation angles. Subtracting the dSCD(α=90◦) therefore

eliminates the stratospheric and possible upper tropospheric part of the total SCD. The

small amount of the boundary layer SCD contained in the slant column of the zenith

measurement, which is also subtracted, has to be considered and corrected for, when the

∆SCDs are converted to trace gas concentrations.

Two possibilities were investigated to calculate ∆SCD for the BrO time series:

1. The data shown in the upper part of Figure 6.1 (∆SCD∗) were derived by analyzing

all DOAS spectra at low elevation angles with the immediately previous zenith spec-

trum as the Fraunhofer reference spectrum. This method yields very small DOAS

fit errors since both spectra are taken at very similar atmospheric and instrumental

conditions except for the different elevation angle.
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Figure 6.1: MAX-DOAS time series of BrO ∆SCD for the elevation angles 5◦, 10◦ and 20◦. Two possible approaches to determine
the ∆SCD are shown. Top: ∆SCD derived by the DOAS fit when the immediately previous zenith spectrum is taken as FRS.
Bottom: ∆SCD derived by subtracting the zenith dSCDs from the dSCDs at the low α’s, all evaluated using the same FRS as
shown in section 5.2.3
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2. The time series in the bottom part of Figure 6.1 (∆SCD) was derived from the

complete BrO data set (shown in Figure 5.21), which was entirely evaluated with

only one single Fraunhofer reference spectrum for all spectra (cf. section 5.2.3).

From all dSCDs at the low elevation angles (α=5◦, 10◦ and 20◦) then the dSCD

linearly interpolated between the previous and the following zenith measurements

were subtracted. This method leads to generally slightly higher DOAS fit errors,

because of spectral shifts and squeezes allowed during the nonlinear fit to account

for possible instrumental differences between the overall Fraunhofer reference and

the respective spectrum to be analyzed. However, the advantage is that interpolation

between the zenith measurements before and after the MAX-DOAS series (typically

one hour apart) yields more reliable results when the changes in the BrO column

are not negligible over the one hour MAX-DOAS measurement interval.

Obviously, a combination of both methods could further improve the analysis. However,

since the slightly higher DOAS fit error was not the limiting factor for most conclusions

derived from the measurements, the second approach was generally found to be sufficient.

In Figure 6.1 both time series show identical ∆SCDs within the respective measurement

errors for almost the complete measurement time. Only between April 26 and April 28,

2000, when the highest BrO values and the fastest changes were observed, the methods

yield different results.

6.3.2 The Vertical Extent of the BrO Layer

Using the dependence of the BrO ∆SCDs on the elevation angle α, the height of the

BrO layer can be derived. In Figure 6.2 the ∆SCDs of May 4, 2000 for the low elevation

angles are plotted in different colors. As a general pattern the ∆SCD is highest for the

5◦ elevation angle, on average the ∆SCD nearly doubles when comparing the 20◦ with

the 10◦ and the 10◦ with the 5◦ elevation measurements. As a case for deriving the BrO

layer height the data from this particular day was taken as an example, because BrO was

elevated during the ozone depletion period and the cloud-free conditions of May 4 allow

reliable modelling of the AMFs. The high sensitivity of the airmass factor differences for

different assumed BrO profiles in the lowest part of the troposphere can be seen in Figure

6.3, where the measured data from May 4, 2000 and predicted ∆SCDs for various BrO

profiles are shown. The four different lines show the expected behavior for a vertical extent

of the BrO layer of 0.5 km, 1 km and 2 km, respectively, and for an elevated layer between

1 km and 2 km. A BrO layer height of 1 km at the ground is best compatible with the

measurements, whereas BrO layers of 0.5 km and 2 km can be considered as lower and

upper limits. A BrO layer starting e.g. at 1 km altitude and extending to 2 km cannot

explain the observed SCDs. There are cases, however, where the observed SCDs show a

different pattern which could be explained by an elevated BrO layer. An example for a



6.3. RESULTS FROM ALERT2000 171

dn d; dx dE d� dM d� 1( 1d 11 1n

(�(

(�x

d�(

d�x

1�(

���

���

��

�

 
�!
S ∆
7
]
*
S>
d
(d

; {
8
T1
H

�$8�S>=qH

�(

M(

(� d( dd d1 dn d; dx dE d� dM d�
jB{sjS�$8�

�

7
�
V
S>

°H

Figure 6.2: BrO ∆SCDs measured at Alert on May 4, 2000. This day was characterized
by a nearly constant vertical BrO column in the boundary layer (for SZA<75◦) and
clear-sky conditions.

day which is in agreement with an elevated BrO layer is shown in Figure 6.4. The small

differences between the ∆SCDs for the low elevation angles, especially the fact that the

∆SCD for α=5◦ and 10◦ are almost equal agrees well with the assumption that BrO was

present in an elevated layer on April 30, 2000. The behavior of the ∆SCDs can be explained

by the green line in Figure 6.3, which represents an elevated layer between 1 km and 2 km.

In the majority of cases, however, the comparison of modelled and measured ∆SCDs

shows that the observed BrO can be attributed to the boundary layer of approximately

1 km thickness at the surface. This agrees very well with the height of the ozone depletion

layer determined by Bottenheim et al. [2002] (see contour plot in Figure 5.25).

6.3.3 BrO during Ozone Depletion

The time series of the BrO ∆SCDs from the 5◦ measurements can be converted to mixing

ratios, when a boundary layer of 1 km is assumed. In Figure 6.5 the high resolution BrO

time series is shown together with the ozone data set from the GAW station, located

approximately 9 km south of the ice camp. BrO concentrations [BrO]bl and mixing ratios
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∆SCD for different elevation angles. The different colors indicate models for the different
indicated BrO box profiles in the low troposphere.
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Figure 6.4: BrO ∆SCDs measured at Alert on April 30, 2000. On this cloud free day the
∆SCDs indicate an elevated BrO layer.



6.3. RESULTS FROM ALERT2000 173

in the boundary layer were calculated assuming a homogeneous BrO layer of 1 km thickness

according to:

[BrO] =
VCDbl

1 km

=
1

1 km
·

∆SCD

AMFbl,α=5◦ −AMFbl,α=90◦
(6.2)

The anti-correlation of ozone and BrO is clearly visible over the complete measurement

period. Cloudy periods are hashed to indicate that the radiative transfer could have been

strongly influenced by cloud layers due to multiple reflection and by blowing and drift-

ing snow at the surface due to multiple scattering. This fact could have led to enhanced

absorption paths in the lowest atmospheric layer and thus to an overestimation of the cal-

culated BrO mixing ratio. However, taking into account the fact that multiple scattering

also significantly enhances the absorption for dSCDzenith, which is subtracted, and the

uncertainty of the mixing layer height (∼50 %), BrO levels could also have been under-

estimated in these cases. The lack of information on the exact shape of the BrO profile

constitutes another possible source of uncertainty. The first week of measurements was a

period of low boundary layer BrO. The diurnal cycle of BrO shows variations of less than

5 ppt1 and only few cases with significant difference for the different elevation angles can

be found in Figure 6.1. Only two small tropospheric BrO events with mixing ratios up to

5 ppt occurred (April 23-24 and April 25-26). Ambient ozone dropped somewhat but did

not reach zero during that time. Probably the depletion was just starting or occurring in

a layer not extending all the way down to the surface (near surface layers of zero - ozone

air were e.g. observed in Antarctica [Wessel et al. 1998; Frieß 2001]). Starting April 26 in

the late morning hours BrO rose to very high values of more than 25 ppt. During that

time there was strong wind from the North causing drifting snow. Ozone levels dropped

from 40 ppb at 10:00 UT on April 26 to less than 1 ppb by 7:30 UT on April 27. This

corresponds to an average ozone destruction rate of

d[O3]

dt
≈ 2 ppb/h

This very fast O3 loss can only partially be explained by catalytic destruction by 25 ppt

of BrO, which can destroy ∼0.5 ppb/h. Taking into account 0.7 ppt of IO (see also section

6.3.5) and 1 ppt of HO2 leads to O3 loss rates of 0.6-0.7 ppb/h. The very fast drop in the

ozone mixing ratio can, however, be explained by a combination of fresh catalytic bromine

chemistry and advection of an airmass which has already been affected by O3 depletion for

several days. Indeed, 5 day back trajectories ending at Alert on April 25 and 26, respec-

tively, show that air masses reaching Alert changed from subpolar air, which has passed

1for very low sun (SZA>83◦) equation 6.1 is not a good approximation anymore and can yield
negative ∆SCDs and therefore negative [BrO].
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Figure 6.5: Ozone and BrO Mixing Ratios during ALERT2000. BrO mixing ratios were calculated from the concentrations derived
using equation 6.2 for a 1 km BrO layer.
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mostly over land, on April 25 to air from the north pole, which was in contact with sea ice

for several days, on April 26 (see Figure 6.6). When ozone at the surface was completely

Figure 6.6: 5 day back trajectories ending at Alert just before (left) and after (right)
surface ozone destruction was observed.

lost, BrO also decreased to values near zero around 10:00 UT on April 27. The period of

ozone depletion is shown in Figure 6.7 on an extended scale. The next day (April 27) BrO

reached again a maximum of almost 20 ppt. Over a period of 10 days elevated BrO levels

were present, during the same time surface ozone levels were below the detection limit

most of the time (see Figure 6.7). Enhanced BrO could still be found when ozone was

already depleted at the surface, probably due to ozone advection from aloft. Especially

after ozone was completely depleted at the surface, BrO is likely present in an elevated

layer. Small recoveries of surface ozone, probably due to ozone rich air mixed in from the

free troposphere, were usually correlated with disturbances of the BrO layer which can

be seen in Figure 6.7. For example on May 3, BrO is near zero and the low elevation

angles show no difference in BrO ∆SCD, indicating that the BrO layer was elevated. This

is supported by the fact that ozone was present above 500m altitude as measured by an

ozone instrument operated on a tethered balloon at the ice camp (see Figure 6.8). Ozone

remained low until May 6, when BrO had also decreased to stratospheric background lev-

els. At the ice camp ozone had already recovered down to ≈200m above the surface as

shown by the tethersonde profile in Figure 6.9. In the following ozone at the surface was

recovering to 20-30 ppb, however, there were still dips in the ambient ozone time series

coinciding with elevated BrO levels, indicating that reactive bromine chemistry is taking

place. An analysis of back trajectories for the complete O3 depletion period (see appendix

on page 226) shows, that O3 depletion always coincides with air masses having travelled
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Figure 6.7: Behavior of O3 and MAX-DOAS BrO during the period of ozone depletion. The scale for the BrO mixing ratio only
applies to the 5◦ values (black points). Arrows indicate ozone recovery events.
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Figure 6.8: Profiles of potential temperature, relative humidity, wind speed and ozone
mixing ratios (not calibrated) measured at the Ice Camp on May 3, 2000 around noon,
local time. Data provided by J. Bottenheim, J. Fuentes and J. Arnold (priv. comm.
2001).
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Figure 6.9: Profiles of potential temperature, relative humidity, wind speed and ozone
mixing ratios (not calibrated) measured at the Ice Camp on May 6, 2000 around noon,
local time. Data provided by J. Bottenheim, J. Fuentes and J. Arnold (priv. comm.
2001).
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over the Arctic Ocean sea ice surface before reaching Alert. The fact, that sometimes en-

hanced BrO levels were still observed when ozone was already completely depleted at the

surface can be explained by Br/BrO reactions taking place not at the surface but rather

in parts of the boundary layer where ozone is still present. BrO is produced by reaction

2.26a destroying ozone that is mixed in from the free troposphere.

In Figure 6.10 DOAS BrO mixing ratios are plotted versus ozone mixing ratios. The
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Figure 6.10: BrO mixing ratios
measured at the Ice Camp ver-
sus O3 measured at the GAW
station. The red data points in-
dicated periods of fresh ozone
depletion.

anti-correlation of both species is obvious and agrees very well with previous studies

[Hausmann and Platt 1994; Tuckermann et al. 1997; Martinez et al. 1999; Lehrer 1999].

All data points are shown for ozone levels below 36 ppb, which was taken as threshold

indicating bromine chemistry. In general high levels of BrO (up to 24 ppt) coincide with

ozone depletion at the surface whereas during periods of background ozone levels no BrO

is detectable in the boundary layer. This behavior is typical for ’old’ air masses, where

catalytic ozone destruction by Br/BrO was already taking place for some days. The red

data points in Figure 6.10 indicate the very beginning (April 26) of the long ozone deple-

tion period when the catalytic ozone destruction was just starting and both species, BrO

and ozone, could be observed at high mixing ratios. These results show again the impor-

tance of BrO for the understanding of Arctic ozone chemistry and stress the importance

of vertical profile measurements of all involved species. The results of these measurements

in the Arctic also contribute to the understanding of bromine chemistry in the marine

boundary layer on a global scale.
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6.3.4 Comparison with GOME Vertical Column Densities

Spectra taken from the GOME satellite instrument can be evaluated to yield vertical

column densities for various trace gases, e.g. for BrO [Wagner 1999]. For regions pole-

wards of 75◦ GOME provides a daily coverage, which can be compared to ground based

measurements. For BrO GOME measurements do not provide vertical profiles. How-

ever, in many cases, particularly in polar regions, it is possible to distinguish between

stratospheric background levels and BrO in the boundary layer [Wagner and Platt 1998;

Richter et al. 1998; Hegels et al. 1998]. High BrO levels in the boundary layer usually ap-

pear as large ’clouds’ on the GOME BrO maps, frequently covering several million square

kilometers [Wagner et al. 2001]. In Figure 6.11 BrO maps for the period of the ground-

based MAX-DOAS measurements are shown for the north pole region (BrO maps provided

by J. Hollwedel, IUP). The GOME data shows large areas covered by BrO ’clouds’, which

are indicated in Figure 6.11 as red regions (VCDBrO '6-7×1013molec/cm2). On April 20,

2000 Alert is located at the eastern end of a large BrO cloud, so some boundary layer

BrO could be derived from GOME data. It should be noted, that GOME measurements

are averaged over a ground pixel size of 320×40 km2. Therefore no perfect agreement

between satellite data and ground-based measurements can be expected. Nevertheless,

if no large horizontal gradients are present, the comparison yields generally good agree-

ment. From April 21 to April 26, 2000, the GOME maps show BrO VCDs for Alert of

(4-5)×1013molec/cm2. This is also the background VCDbg for regions, where no boundary

layer BrO clouds are present. The ground-based MAX-DOAS observations show maximum

BrO levels of 4 ppt during this time. Assuming that 4 ppt BrO are well mixed in the lowest

1 km, a vertical column density of VCDbl=1×1013molec/cm2 results, which is within the

variability of the satellite data. High GOME BrO VCDs are found for April 27 and for the

period from April 29 to May 5, 2000 as well as on May 9, 2000. The values range between

6×1013molec/cm2 and 8×1013molec/cm2. The MAX-DOAS shows up to 25 ppt BrO in

the boundary layer. This translates to a VCDbl of 6×10
13molec/cm2. Adding a VCDbg of

4-5×1013molec/cm2 yields total VCDs of about (1-1.1)×1014molec/cm2, which is higher

than measured by GOME. There are several possible explanations for these deviations:

• snowdrift during high BrO events leads to lightpath enhancement in the boundary

layer to which the ground-based instrument is highly sensitive, whereas the satel-

lite likely underestimates BrO in the boundary layer because light received by the

satellite might not have penetrated all the way down to the earth’s surface.

• the temporal coincidence between both measurements is not guaranteed for the

GOME maps and the ground-based MAX-DOAS. When the ground-based MAX-

DOAS BrO data are averaged over a day, mixing ratios of 10-12 ppt result, which

are in agreement with the satellite data. The BrO satellite maps are interpolated,

which leads to temporal and spatial averaging. Thus smaller values for the GOME
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Figure 6.11: GOME Satellite BrO Maps during ALERT2000. Vertical column densities
range between 5×1013molec/cm2 and 8×1013molec/cm2 at Alert, which is indicated on
the Map for April 20, 2000. GOME BrO maps were kindly provided by J. Hollwedel, IUP.
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maps result.

• BrO located higher in the free troposphere is cancelled out in the MAX-DOAS

data, when ∆SCDs are calculated, since this fraction is present both in the zenith

dSCDs and for the low elevation angles. Cases, when the satellite maps show higher

values than calculated from precise boundary layer data and a stratospheric back-

ground VCD could point to BrO in the free troposphere. However, both deriving the

stratospheric background from satellite measurements and from ground-based mea-

surements have large uncertainties, which mask small amounts of free tropospheric

BrO.

As a result it can be summarized, that the GOME BrO VCDs and the ground-based

MAX-DOAS agree quite well, however, the differences between the measurements listed

in Table 6.1 should be kept in mind.

GOME ground-based MAX-DOAS
Horizontal Resolution 320×40 km2 10-15 km
Vertical Resolution 2 pointsa 0.5-1 km near the groundb

Time Resolution <1-3 days 5min - 1 hour
Data Product global maps of VCDBrO [BrO]boundarylayer, layer height

aboundary layer can be separated from total VCD using a regional background
babove 3 km altitude the method is insensitive to the vertical profile

Table 6.1: Comparison of GOME with ground-based MAX-DOAS measurements

6.3.5 Iodine Chemistry in the Arctic Boundary Layer

During the ALERT2000 field campaign the first MAX-DOAS measurements of the IO

radical in the Arctic boundary layer were performed. While the majority of measurements

yielded values below the detection limit of 1.7×1013molec/cm2 on average (minimum de-

tection limit: 8×1012molec/cm2) there were also several cases when IO boundary layer

∆SCDs rose above the detection limit and the absorption structures of 3 IO absorption

bands of the A2Π3/2 ←X2Π3/2 transition (3-0, 4-0, 5-0) could be clearly identified in the

boundary layer absorption spectra (see Figure 5.23). No IO precursors have been measured

during ALERT2000. It can be assumed, however, that iodocarbons are present at low ppt

levels from emissions by sea ice algae and released from the ocean which is exposed to

the atmosphere at open leads (cf. Figure 2.8) in the pack ice [Legendre et al. 1992]. The

derived IO mixing ratios of up to 0.8 ppt (corresponding to ∆SCDbl=2×1013molec/cm2)

are too low to cause significant destruction of O3 themselves. However, the interaction of

up to 1 ppt of IO with the observed levels of BrO can dramatically increase the ozone loss

rate due to combined BrO/IO catalytic O3 destruction cycles described in section 2.2.1.
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The O3 loss rate calculated according to equation 2.29 in ppb/h as a function of the BrO

and IO mixing ratios in the range observed at Alert is shown in Figure 6.12. The fast self
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Figure 6.12: O3 Loss Rate as Function of [BrO] and [IO] for the levels observed at Alert.
For HO2 a mixing ratio of 1 ppt is assumed.

and cross reactions involving IO can strongly accelerate the ozone destruction chemistry.

Compared to an ozone loss of 0.5 ppb/h at 30 ppt BrO, taking into account additional

0.8 ppt IO yields O3 destruction rates of ∼0.85 ppb/h. Therefore reactive iodine chem-

istry can - even at the sub-ppt concentrations measured at Alert - significantly enhance

boundary layer ozone destruction during Arctic spring.

6.4 Results from Crete2000

6.4.1 Upper Limits of Halogen Oxides in the Mediterranean
Region

During the Crete2000 field study the measured halogen oxides BrO, IO and OIO always

ranged below the respective detection limits of the LP-DOAS instrument. Besides halogen
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Species Average Maximum average Detection Limit (Minimum)
BrO n.d.a - 1.5 ppt (0.7)
IO n.d. - 0.8 ppt (0.25)
OIO n.d. - 4 ppt (1.6)b

NO2 0.46 ppb 4.24 ppb 0.04 ppb (0.012)
NO3 SZA>75◦ 17 ppt 308 ppt 1.6 ppt (0.24)

SZA<30◦ 0.29 ppt 3.8 ppt 1.6 ppt (0.45)
HONO SZA>75◦ 13.8 ppt 188 ppt 53 ppt (30)
O3 54.5 ppb 79 ppb 2.5 ppb (1.1)
SO2 0.6 ppb 5.0 ppb 0.06 ppt (0.022)
HCHO 1.18 ppb 3.17 ppb 0.31 ppb (0.14)

anot detected
bassuming the cross section by Bloss et al. [2001]

Table 6.2: Average and maximum trace gas mixing ratios of the species investigated
by LP-DOAS on Crete. Also shown is the mean and minimum detection limit for the
respective trace gas.

oxides, also nitrogen compounds were a major focus of the measurements on Crete. The

average levels and detection limits of all species measured by DOAS during the 4 weeks of

measurements are listed in Table 6.2. The results for the measurements at Finokalia, Crete,

show that the region is influenced by moderate anthropogenic pollution levels. Therefore

a chemical model was used to verify, if the observed trace gas levels agree with the present

understanding of the chemistry of the moderately polluted marine boundary layer.

6.4.2 Results from MOCCA Model Simulation

The chemical box model MOCCA (Model Of Chemistry Considering Aerosols)

[Sander and Crutzen 1996; Vogt et al. 1996] was run in order to compare the model re-

sults with DOAS observations on Crete. MOCCA was written by Sander and Crutzen in

FACSIMILE [Curtis and Sweetenham 1987], a numerical integration package for stiff dif-

ferential equations. It includes the basic chemistry of HOx, NOx, halogen (Cl, Br, I) and

limited VOC chemistry2 both in the gas phase and in sea salt and sulphate aerosols. De-

tails can be found in the MOCCA User’s manual3. To model the gas phase chemistry for

Crete2000, the initial gas phase mixing ratios and emission rates listed in Table 6.3 were

used for the model run. The initial values were set to the average measured values where

available (ozone, NO2). For the other species and emission rates values were assumed such,

that equilibrium conditions were reached after several days. Besides the initial mixing ra-

tios and emission rates the model was adapted to the Crete2000 case by adjusting the

2volatile organic compounds
3accessible at http://www.mpch-mainz.mpg.de/∼sander/mocca/
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Species Initial Mixing Ratio Emissiona

O3 60 ppb 5×1010molec/(cm2s)
NO2 1 ppb
NO 5×1010molec/(cm2s)
CH3I 2 ppt 6×106molec/(cm2s)
C3H7I 1 ppt 1×106molec/(cm2s)
CH2ClI 2×106molec/(cm2s)
CH2I2 3×106molec/(cm2s)
CH2BrI 2×106molec/(cm2s)

aEmissions are treated as fluxes from the surface, mixed over a boundary layer of 1 km height.

Table 6.3: Initial mixing ratios and emission rates for the MOCCA run to simulate the
situation for Crete2000.

photolysis rates to 35◦N latitude during July, the temperature was set to 300K.

MOCCA was run for a period of 8 days, gas phase concentrations were output every hour.

The complete model results for all gas phase species are included in the appendix on pages

228 to 235. The model results for ozone, NO2, NO3 and HOx for the first 2 days of the

run are shown in Figure 6.13. The model results for the species shown in Figure 6.13 com-
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Figure 6.13: Ozone, NOx and HOx results for Crete2000 MOCCA run for the first 48
hours. Note that all radical species are multiplied by 1000.

pare very well to the average values measured at Finokalia (see Table 6.2). It is therefore

assumed that the basic NOx chemistry is correctly described by the model.
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The model predictions for the bromine and iodine species BrNO3, BrO, Br, Br2, HBr,

HOBr, IBr, INO3, IO, OIO, I, HOI and HI are shown in Figure 6.14 for the first 2 days.

Note that for iodine emissions of organic precursors (see Table 6.3) were included, while

bromine can also be produced by heterogenous reactions on sea salt aerosol (besides the

emission of CH2BrI). Immediately after the start of the simulation (at midnight) nearly
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the main iodine species as predicted by the model.
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2 ppt of Br2 are produced, mainly from the oxidation of sea salt bromide by N2O5 and

NO3 which are taken up by the aerosol (see reactions 2.39, 2.41 and 2.42 on pages 24 and

25). In the following the (re)cycling processes described in section 2.2.1 take place to yield

the diurnal patterns shown. Br2 is photolyzed at sunrise yielding Br atoms, which destroy

ozone in reaction cycles 2.23 and 2.26. However, the most important daytime bromine

species at the NOx levels observed are BrNO3 and HOBr, which are formed by reactions

2.30a and 2.35b of BrO with NO2 and HO2, respectively. The minimum of BrNO3 around

noon is due to its photolysis according to reaction 2.30b. The daytime maximum level of

BrO predicted by the model is 0.3-0.4 ppt. This is a factor of 2 below the minimum de-

tection limit for the LP-DOAS BrO measurements. The main nighttime reservoir species

are Br2 and IBr, while the major reactive bromine sink HBr is only slowly recycled by

heterogeneous reactions on the aerosol surface overnight.

Initial iodine is only formed after sunrise due to photolysis of the organic precursor species

listed in Table 6.3. The main iodine species during daytime is HOI, indicating the impor-

tance of the HOx cycle (see reactions 2.26 on page 18) for iodine. IO is the most important

reactive iodine species at maximum levels between 0.1 and 0.2 ppt in the morning and af-

ternoon hours. OIO rises to maximum levels of 0.3 ppt just after sunset4. The mixing

ratios for IO and OIO predicted by the model are still a factor of 2.5 and 5, respectively,

below the minimum LP-DOAS detection limits during the Crete2000 measurements. INO3

(formed by reaction 2.30a) is also an important daytime reservoir species at mixing ratios

up to 0.2 ppt in the morning. Photolysis (reaction 2.30b) leads to the noontime minimum

of INO3. The main nighttime reservoir species for reactive iodine are OIO, formed by the

IO self- and IO-BrO cross-reaction, and IBr, which is formed by the heterogeneous reac-

tion of HOI with bromide on aerosols.

In summary the MOCCA simulation of halogen chemistry in the moderately polluted

Mediterranean region shows significant halogen activation. However, the predicted maxi-

mum daytime levels of BrO, IO and OIO (nighttime), which were measured by LP-DOAS

on Crete, are below the respective detection limits. The standard NOx and HOx chemistry

was well described by the model run, suggesting strong halogen-NOx interaction and an

important role of the reservoir species XNO3 (X=Br, I).

6.5 Results from the Hudson Bay Measurements

Some of the most interesting results obtained in this work are based upon the first

ground-based observations of BrO and ozone at the Hudson Bay in spring 2001. Hud-

son Bay was proposed to be a major source region for boundary layer bromine oxide

4OIO chemistry is still a major uncertainty in the model, since the possible photolysis reaction
yielding I+O2 [Plane et al. 2001; Hebestreit 2001] is not included. The only loss processes for OIO
are reactions with OH and NO.
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radicals [Richter et al. 1998; Wagner et al. 2001], because the region frequently showed

enhanced BrO VCDs on the GOME satellite maps. These BrO VCDs were explained

by the assumption of boundary layer BrO levels comparable to the ones measured

by ground-based instruments in polar regions (typically 20-30 ppt as measured by e.g.

Hausmann and Platt [1994] at Alert and Tuckermann et al. [1997] at Spitsbergen). How-

ever, Hudson Bay is located much further south between 55◦N and 65◦N and can be

classified as low Arctic region. Until the measurements were performed in this work there

was still distrust in the somewhat indirect measurements from the GOME satellite instru-

ment, because an artefact caused e.g. by cloud or ground albedo effects or anomalies of

the stratospheric BrO column (elevated for very low tropopause height) could not be ruled

out by the satellite observations.

6.5.1 First Halogen Oxide Measurements at Hudson Bay

Within this work the first direct bromine oxide measurements (shown in Figure 5.4.3)

were carried out at Kuujjuarapik on the east coast of Hudson Bay. These measurements

unambiguously identified BrO in the Hudson Bay boundary layer (see sample spectrum

in Figure 3.4 on page 59) and proved its abundance at levels comparable to previous

measurements at high Arctic sites [Hausmann and Platt 1994; Tuckermann et al. 1997;

Martinez et al. 1999]. These measurements also represent the southernmost (55◦N) field

data for Arctic springtime ozone depletion associated with reactive bromine chemistry

in the boundary layer. Additionally day/night cycles of the key species involved in

surface ozone depletion were measured for the first time in this work. Figure 6.15
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Figure 6.15: BrO mixing ratios
measured at Kuujjuarapik ver-
sus O3. The blue data points in-
dicate measurements from the
short lightpath.
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Figure 6.16: Back trajectories ending at Kuujjuarapik on April 27, 2001, 6h UT. Height
levels of 1m, 500m, 1 km, 2 km and 3 km are indicated in different colors.

shows the clear anti-correlation of ozone and BrO for the complete data set obtained at

Kuujjuarapik (note also the same Figure 6.10 for the ALERT2000 data). This also proves

that bromine oxide is associated with surface ozone depletion involving catalytic cycles

at the Hudson Bay. However, during the measurements in spring 2001 ozone depletion

periods were generally short (several hours) and only one complete ozone depletion

event was monitored starting on April 26 after sunset. This event was associated with

strong winds from the north and heavy snowdrift which did not allow active LP-DOAS

measurements due to visibilities of less than 1 km. The 5 day back trajectories calculated

for this case with the HYSPLIT model [Draxler 1999] are shown in Figure 6.16. The

trajectories ending at Kuujjuarapik during the night of April 26 to 27, 2001 show that
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air masses originating from the high Arctic reached the site. These air masses could be

affected by bromine chemistry and ozone destruction for several days leading to complete

ozone depletion. The fact that the trajectories for the different height levels are almost

parallel to the ground for the 2 days prior to the arrival at Kuujjuarapik indicates, that

the vertical exchange was negligible due to stable conditions and the ozone free boundary

layer was not replenished with ozone from higher altitudes. Starting at dawn of April

27, 2001 first MAX-DOAS measurements (see section 6.5.4 and Figure 6.22) and, when

the visibility allowed measurements on the short lightpath after local noon, also active

LP-DOAS measurements proved the influence of reactive bromine chemistry with BrO

mixing ratios around 20 ppt.

6.5.2 Day/Nighttime Chemistry of Bromine Oxide

The measurements at Kuujjuarapik at the Hudson Bay also provided the first opportunity

to study the photochemical changes in the chemical system involving reactive halogen

species, which is responsible for ozone depletion at the surface. At high Arctic sites like

Alert (82.5◦N) or Ny Ålesund, Spitsbergen (78◦N) during spring there is always sunlight

available and the diurnal modulations with the changing solar radiation are rather weak.

The southernmost study of BrO and springtime Arctic ozone depletion was carried out

at Kangerlussuaq, Greenland, which is located just north of the Arctic Circle at 67◦N

[Miller et al. 1997]. Miller et al. [1997] also reported that at several sites further south

(Edmonton and Goose Bay, Canada, 54◦N; Churchill, west coast of Hudson Bay, Canada,

60◦N; Iceland, 63◦N and Finland, 67◦N) no evidence for springtime depletion of surface

ozone was found (see also [Oltmans 1993]).

The measurements presented here therefore not only represent the first direct measure-

ments of BrO in the boundary layer at the Hudson Bay, but they also prove, that the

phenomenon of springtime surface ozone depletion can extend as far south as 55◦N in

the Hudson Bay region. Since Kuujjuarapik is located at mid-latitudes, during April and

May there were about 14 hours of daylight and 10 hours night. About 8 hours were com-

pletely dark, so photolysis of any chemical species could be neglected during this time5.

The sudden changes of solar radiation during sunrise and sunset in combination with ac-

tive LP-DOAS measurements at high temporal resolution (1-30min) represent the first

field observations adequate to model the photochemical changes of the chemical system

involving reactive bromine compounds and ozone chemistry.

5maximum solar zenith angles in the first nights of the measurement period were 115◦, at the
beginning of May minimum SZAs around local noon were 40◦.
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Case Study April 18-19, 2001

As first example the observation period from noon of April 18 to sunset on April 19,

2001 is shown in Figure 6.17 on an expanded time scale. On April 18, daytime BrO
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Figure 6.17: Time series of BrO and ozone mixing ratios observed at Kuujjuarapik on
April 18 and 19, 2001. Periods of day and nighttime are indicated, red vertical lines
indicate the times of sunrise and sunset.

levels ranged between 7 and 10 ppt. These BrO levels cause moderate ozone loss rates

of ≤0.1 ppb/h6. The fact that ozone levels on that day are around 35 ppb indicates that

the air masses reaching the site have not been subject to ozone depletion chemistry for a

longer time, so ’fresh’ bromine chemistry and its effects on ozone could be studied. The 5

day back trajectories ending at Kuujjuarapik on April 18, 18h (UT) are shown in Figure

6.18, indicating that the arriving air masses have passed over the frozen Hudson Bay and

could be enriched in reactive bromine through the bromine explosion mechanism (see

Equations 2.44). As the sun sets on April 18, a rapid decay of BrO from 10 ppt before

sunset to zero within 4 hours is visible in Figure 6.17. For the DOAS ozone data before

sunset no significant change is visible due to the large error bars. After sunset ozone

slowly recovers from 35 to 38 ppb. Also shown in Figure 6.17 is the ozone time series

6calculated according to Equation 2.29 for 1 ppt HO2, neglecting other halogen oxides
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Figure 6.18: Back trajectories ending at Kuujjuarapik on April 18, 2001, 18h UT.

measured by the in situ monitor at the Centre d’études nordiques (CEN) in Kuujjuarapik

[Poissant 2001]. While the DOAS measurements were taken over the Hudson Bay, the

CEN is located ∼2 km inland. This may lead to enhanced vertical mixing of air in the

boundary layer because of the local topography. A time offset and a more diluted effect

of bromine chemistry on ozone would be expected. For this particular case the ozone time

series from the CEN indeed lags behind by 1-2 hours and ozone loss rates of maximum

0.25 ppb/h can be derived.

After sunset, the BrO lifetime can be determined to τBrO=1hour. The major reaction

path for BrO radicals at night is the self reaction (see section 2.3.2), which produces
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bromine atoms (85%) and bromine molecules (15%)7. Since Br atoms are rapidly con-

verted back to BrO by reaction with ozone, the loss to HBr by reaction with unsaturated

hydrocarbons, formaldehyde or peroxy radicals is very slow (τ & 15000 s). The lifetime

with respect to Br2 formation is 4800 s at 10 ppt BrO and 260K, which is only slightly

longer than the value of 1 hour derived from the measured BrO decay. Additional loss

processes are therefore assumed to play a minor role only, however, the possible cross

reactions with small amounts of ClO or IO could lead to additional loss pathways forming

the reservoir species BrCl and IBr. HO2 radicals are believed to be of minor importance

at night. If present at significant levels, the reaction with BrO would yield HOBr, which

can be recycled heterogeneously on aerosols or the sea ice surface to effectively produce

additional Br2 and BrCl through the reactions listed in cycle 2.44.

After all reactive bromine is converted to nighttime reservoir species, no more BrO can

be produced, which is confirmed by the zero levels measured after the decay. As discussed

above, Br2 is believed to be the major nighttime reservoir species for reactive bromine at

Kuujjuarapik. At sunrise Br2 is rapidly photolyzed to yield bromine atoms which produce

a morning peak of BrO and destroy ozone. This fact is clearly visible in Figure 6.17. BrO

peaks shortly (30min to 1 hour) after sunrise at levels of 3 ppt. This is in agreement with

1.5 ppt of Br2 being present just before sunrise. The photolytic lifetime of Br2 decreases

to less than 10min at SZA=80◦, which is reached 1 hour after sunrise. At the same time

as BrO shows its sunrise peak, the DOAS ozone data show a small dip from 38 ppb before

sunrise to 36 ppb immediately after sunrise. This shows, that photochemical reactions

starting at sunrise trigger the catalytic reaction cycles involving bromine. The same effect

can be seen in the in situ ozone data measured at the CEN by Poissant [2001], but there

the ozone decrease is not as sharp. In the following BrO levels decreased to near zero

as the wind direction changed from west to south by noon on April 19, so no more air

influenced by the sea ice was observed (cf. Figure 5.35).

These measurements represent the first observations of this kind. Compared to previous

high latitude observations these unique measurements at mid-latitudes exhibit the key

processes responsible for polar tropospheric ozone depletion in springtime on the very

short time scale of only a few hours.

Case Study April 21-23, 2001

As a second example the period from sunset of April 21 to the morning hours of April 23,

2001 (shown in Figure 6.19) is considered. During the first night of this period the situation

is similar as in the above case. BrO again decreases to zero by midnight. However, in this

case BrO rises to values of 10 ppt 1 hour after sunrise. During this time strong northerly

7for T=298K, at lower temperatures the Br2 yield increases, for 260K 25% Br2 are formed.
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Figure 6.19: Time series of BrO and ozone mixing ratios observed at Kuujjuarapik on
April 22 and 23, 2001. Periods of day and nighttime are indicated, red vertical lines
indicate the times of sunrise and sunset.

winds were associated with snowdrift and low visibility, resulting in comparably high mea-

surement errors for the DOAS data. The strong northerly winds changed to westerlies over

the course of the day and the visibility improved. BrO levels remained high over the whole

day, but effects on ozone (loss rates of ∼0.1 ppb/h at 10 ppt BrO) were probably masked

by the meteorological changes. Particulary in the afternoon the simultaneous increase of

ozone and decrease of BrO suggests a transport effect. After sunset on April 22, BrO first

decreases to zero, but a small peak of more than 2 ppt BrO coinciding with a decrease in

ozone from 40 ppb to 30 ppb is observed just before midnight.

Above the first measurements of BrO at nighttime were discussed and attributed to BrO

left from the sunlit daytime due to the relatively long lifetime. The case considered here

presents BrO increasing at night, which cannot be explained by commonly assumed chem-

ical reactions. Therefore transport has to be taken into account to explain the observed

phenomenon. The corresponding backward trajectories arriving at Kuujjuarapik on April

23 at 4h UT for the height levels 10m and 500m are shown in Figure 6.20 (top). The

back trajectories show that the air mass observed around midnight at Kuujjuarapik origi-

nated from the high Arctic and had been in contact with the Hudson Bay sea ice over the
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previous days. However, if the last 12 hours before approaching the measurement site are

regarded in detail (bottom part in Figure 6.20), the trajectories show, that the observed

air mass was approaching from the south. Indeed the weather station at Kuujjuarapik

reported southerly winds just for the 2 hours of ozone depletion, easterly winds before

and after this period. Therefore a transport effect has very likely caused the observation

of BrO increase at nighttime. The observed 2 ppt BrO after 4 hours of darkness can be

explained by assuming 30 ppt BrO at sunset, if the BrO self reaction leading to Br2 for-

mation is considered as the only loss process. Note that the BrO lifetime is very short in

the beginning and increases quadratically when the BrO concentration falls. The assumed

high levels of BrO before sunset in the airmass observed at midnight at the measurement

site are also supported by the fact that significant ozone depletion was simultaneously

observed. In summary the observations are most likely due to advection of a bromine rich

airmass, which was affected by bromine catalyzed ozone destruction during the previous

day.

Comparison of Measured and Modelled Photolysis Frequencies

Photolysis frequencies used for the interpretation of data from Kuujjuarapik were calcu-

lated with the model FLUX [Röth et al. 1996]. To show that this model correctly describes

the average actinic fluxes at Kuujjuarapik, a comparison of the modelled photolysis fre-

quencies with the photolysis frequencies jNO2 of NO2 measured at Kuujjuarapik by a

calibrated filter radiometer is shown in Figure 6.21. The black data points represent all

jNO2 values as a function of solar zenith angle. The large scatter of the data is due to

changes of the radiative transfer by clouds, fog, albedo changes, etc. The red data points

result when only the downwelling actinic flux is considered. This results in a strong un-

derestimation of the j values since due to the high reflectivity of snow at the beginning of

the measurements at Kuujjuarapik the ground albedo was near 1, only in May the snow

melted and the ground albedo decreased strongly. Besides the FLUX model result for

jNO2 and the corresponding NO2 lifetime (> 1000 s at twilight to < 50 s at noon) also the j

values included in the current version of MoccaIce8 [Sander et al. 1997] calculated by the

PAPER model [Landgraf and Crutzen 1998] are shown. Since the PAPER values were cal-

culated for an albedo of 0 they strongly underestimate the photolysis frequencies. For the

modelling studies shown in section 6.5.6 therefore the FLUX model was used to calculate

the photolysis frequencies needed to describe the photochemistry in the boundary layer

at Kuujjuarapik. Figure 6.21 shows, that the FLUX model also correctly predicts jNO2

at solar zenith angles near 90◦, which is essential to model the photochemistry around

sunrise and sunset.

8Model Of Chemistry Considering Aerosols In Cold Environments
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Figure 6.21: NO2 photolysis frequencies measured at Kuujjuarapik (black data points
include the ground albedo effects, red data points consider the downwelling actinic
flux only) and photolysis frequencies calculated by the FLUX model (black line,
albedo=1) [Röth et al. 1996] and the PAPER model (green and red lines, albedo=0)
[Landgraf and Crutzen 1998]. The black dotted line represents the NO2 lifetime calcu-
lated by the FLUX model.

6.5.3 Upper Limits of the Halogen Oxides IO, OIO, OBrO
and OClO

For the halogen oxides IO, OIO, OBrO, OClO upper limits were derived for the low Arctic

boundary layer at Kuujjuarapik, Hudson Bay. The average detection limits listed in Table

5.2 can be regarded as an indication of the upper limit for these species. For particular

cases and points of time, however, it is more reliable to take the 2σ or 3σ measurement

error as better indication for the upper limit at a given time.

IO was not observed at the Hudson Bay, however, as shown in section 6.3.5, even IO levels

of less than 1 ppt, which cannot be ruled out for Kuujjuarapik, can strongly accelerate the

O3 loss due to combined bromine/iodine catalytic cycles and therefore have a significant

impact on the ozone levels.

If both IO and BrO were present simultaneously, OIO could have been formed in the IO
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self and BrO/IO cross reactions (see Table 2.2). The high detection limit for OIO during

the measurements at Kuujjuarapik does not allow to draw any further conclusions.

The production of OBrO in the atmosphere in the IO/BrO cross reaction (see Table 2.2) is

very unlikely. Rowley et al. [2001] found no indication for OBrO formation in laboratory

studies of this reaction and derived an upper limit for the quantum yield of 0.15. OBrO

formation in the BrO/ClO cross reaction or the BrO self reaction has not been reported

either [Turnipseed et al. 1991; Turnipseed et al. 1990]. In laboratory studies of the OBrO

molecule and absorption cross section (e.g. [Knight et al. 2000]) OBrO was produced by

discharge in Br2/O2/He mixtures. Previous investigations of OBrO in the atmosphere

were restricted to the stratosphere. OBrO was proposed at significant levels (20 ppt) in the

nighttime stratosphere by Renard et al. [1998], however, Erle et al. [2000] derived upper

limits of 6.4 ppt for the stratosphere at night. For Kuujjuarapik an average upper limit of

5.4 ppt OBrO in the boundary layer was derived.

OClO can be produced by the ClO self reaction as well as in cross reactions with BrO and

IO (see Table 2.2). In the stratosphere it has been frequently observed in the polar vortex

as an indicator for chlorine activation (e.g. [Solomon et al. 1987; Leue et al. 2001]). In the

troposphere it has not been reported to date. During the measurements at the Hudson Bay

OClO has not been identified in any atmospheric absorption spectrum. The average upper

limit derived for the boundary layer at Kuujjuarapik was 1.7 ppt. Since the photolytic

lifetime of OClO was calculated to less than 40 s shortly after sunrise and 4 s at noon for

Kuujjuarapik using the FLUX model [Röth et al. 1996], reactive chlorine could still play a

minor role during ozone depletion at the Hudson Bay, even though OClO was not observed

above 1.7 ppt on average.

6.5.4 Comparison of LP-DOAS and MAX-DOAS Results

For the BrO data measured at the Hudson Bay the first intercomparison of the ac-

tive LP-DOAS and passive ground-based MAX-DOAS techniques was possible. The LP-

DOAS measurements yield average concentrations along the respective lightpath (7.6 km

or 1.95 km) at an average altitude of 30m above the Hudson Bay sea ice surface. The

MAX-DOAS measurements on the other hand provide differential slant column densities

(dSCD) for elevation angles of α=5◦, 10◦, 20◦ and 90◦. From these dSCDs boundary layer

∆SCDs can be derived according to equation 6.1. The approximate height of the BrO

layer can also be derived as shown in section 6.3.2. In Figure 6.22 the BrO ∆SCDs de-

rived for the Hudson Bay MAX-DOAS measurements are shown in the bottom part (right

y-axis). For the high boundary layer BrO events visible in the LP-DOAS data (top part

in Figure 6.22) the pattern of the BrO ∆SCD behavior for the low elevation angles (5◦,

10◦ and 20◦, shown in different colors in Figure 6.22) is very similar to the one shown in

Figure 6.3 for Alert, indicating a BrO layer of ≈1 km at the surface. In order to better
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compare the MAX-DOAS results to the LP-DOAS data, the ∆SCDs for 5◦ were therefore

converted to mixing ratios according to equation 6.2 assuming a BrO layer of 1 km at

the surface. For the high BrO events associated with surface ozone depletion (see section

6.5.1) the LP-DOAS and MAX-DOAS BrO mixing ratios agree perfectly both in time and

absolute levels. This finding represents the first ’validation’ of ground-based MAX-DOAS

using the well-established LP-DOAS method and proves that MAX-DOAS measurements

can - for boundary layer studies - be applied as substitute for LP-DOAS measurements.

Additionally, the MAX-DOAS results provide important information on the vertical BrO

profile near the surface. For the days 19.4., 20.4., 23.4., 25.4., 26.4., 28.4. and 29.4.2001,

when no or very small surface ozone loss was reported and the LP-DOAS measurements

show only small amounts or no BrO, the MAX-DOAS ∆SCD are still elevated and the

negligible differences between the 5◦, 10◦ and 20◦ geometries indicate elevated BrO lay-

ers (see section 6.3.2). These elevated BrO layers are likely to have a strong influence on

the ozone budget of the polar troposphere during spring and also indicate that vertical

mixing of reactive bromine from the boundary layer to the free troposphere is a proba-

ble mechanism during polar spring. An important difference between the LP-DOAS and

MAX-DOAS methods is that the passive MAX-DOAS relies on the sun as its light source.

Therefore measurements are only possible during daytime with limited time resolution

during sunrise and sunset. In contrast, active LP-DOAS measurements using an artificial

light source provide the possibility of nighttime measurements and high time resolution

also during dawn and dusk, when the atmospheric photochemistry involved in the ozone

destruction cycles changes rapidly. A major drawback of the LP-DOAS method is, that

no measurements are possible during snowdrift and low cloud/fog episodes frequently ob-

served during ozone depletion events in the Arctic, because no light is received from the

retro reflectors at low visibilities. MAX-DOAS can provide valuable information during

these episodes, e.g. during the Hudson Bay measurements on April 21 and before noon

on April 27, when major BrO events were observed and LP-DOAS measurements could

not be performed due to visibilities as low as 100m. The comparison of LP-DOAS and

ground-based MAX-DOAS is summarized in Table 6.4.

6.5.5 Comparison of Boundary Layer BrO Data with
GOME Maps

In the same way as for the ALERT2000 ground-based BrO data (see section 6.3.4), bound-

ary layer BrO measured by both active LP-DOAS and MAX-DOAS can be compared to

satellite measurements of BrO vertical column densities from the GOME instrument. In

Figure 6.23 BrO maps for the period of the ground-based MAX-DOAS measurements are

shown for the Hudson Bay region. Kuujjuarapik is marked with a blue diamond symbol at

the south east coast of Hudson Bay (BrO maps provided by J. Hollwedel, IUP). During the
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Figure 6.23: Daily GOME satellite BrO maps during the Hudson Bay campaign: Ku-
ujjuarapik is marked with a blue diamond symbol at the east coast of Hudson Bay.
Vertical column densities range between 5×1013molec/cm2 and 8×1013molec/cm2 at
the station. GOME BrO maps were kindly provided by J. Hollwedel, IUP.
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LP-DOAS MAX-DOAS
time resolution 1-30min 5-60mina

performance at
low visibility

short lightpath or
not possible

qualitatively
correct measurements

light source artificial (lamp) sun (daytime)

vertical resolution
only for

several lightpaths
500m-1 km in the BL

accuracy concentrations ±5-10%b 10-20% for ∆SCDs
50-100% for concentrationsc

experimental effort high, frequent service low, works automated

atime resolution depends strongly on the measurement loop (number of α’s, sequence)
baveraged along lightpath
cdepends on RTM model precision

Table 6.4: Main characteristics of the LP-DOAS and MAX-DOAS methods.

first half of the period (upper half of Figure 6.23) Kuujjuarapik was almost daily affected

by bromine oxide ’clouds’, shown as orange to red patches in the satellite maps. From

April 29 to the end of the ground-based measurements GOME did not observe any BrO

clouds near Kuujjuarapik. The BrO VCDs during that time allow to derive a seasonal

background (containing the stratospheric BrO column and a possible free tropospheric

fraction) VCDbg ≈4×10
13molec/cm2. In order to compare the satellite and ground-based

data, this background VCD was added to the boundary layer VCDbl calculated from the

boundary layer mixing ratios/∆SCDs under the assumption of a 1 km homogeneously

mixed BrO layer at the surface. The GOME instrument passes above Kuujjuarapik ap-

proximately at 10:15h local time each day. In Figure 6.24 the BrO VCDs measured by

GOME and the corresponding VCD calculated from VCDbg and VCDbl from the ground-

based MAX-DOAS instrument at 10:15h local time are compared. The comparison shows

an agreement of both data sets for the majority of days. However, there are also strong

deviations visible for a few cases. Especially on April 27 and 29 the GOME data shows

VCDs about 2×1013molec/cm2 smaller compared to the ground-based instrument. In con-

trast, on April 25 and from May 3 to 6 the GOME VCDs are higher by 1×1013molec/cm2.

The deviations of GOME VCDs can be explained by the following differences between the

both measurement platforms:

• snowdrift and low clouds during high BrO events are associated with enhanced

absorption paths in the boundary layer to which especially the ground-based instru-

ment is sensitive. In contrast, BrO located close to the surface and interstitial BrO

might be shielded from the satellite due to the high albedo of the cloud top (applies

to April 27 and 29).

• the spatial averaging of the satellite instrument (320 km×40 km) and no perfect
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Figure 6.24: Daily GOME BrO VCDs for the Kuujjuarapik pixel compared to VCDs
calculated from the MAX-DOAS ∆SCDs during the Hudson Bay campaign: VCDbl was
calculated assuming a 1 km homogeneously mixed surface layer, and a background VCD
of 4×1013molec/cm2 was added to yield total columns. GOME BrO time series provided
by J. Hollwedel, IUP.

temporal coincidence between both measurements may explain deviations of the

VCDs in both ways.

• towards the end of the ground-based measurements at the beginning of May the

ground albedo of the Kuujjuarapik pixel has changed significantly because the snow

at the Hudson Bay coast melted completely. Additionally the surface of the Hudson

Bay was covered with a layer of liquid water on top of the ice which also led to a

much smaller ground albedo. If this effect is not taken into account correctly, wrong

airmass factors may result and the BrO VCDs could be wrong.

• an incorrect or variable VCDbg strongly affects the ground-based data at the begin-

ning of May, since the boundary layer VCDbl was close to zero after May 1st.

As a result it can be summarized, that the GOME BrO VCDs and the ground-based

MAX-DOAS measurements agree quite well. The differences found can be explained by
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systematic differences between the two measurement platforms. Additionally the differ-

ences pointed out in the comparison for Alert (see Table 6.1) should be noted.

6.5.6 Results of a 1D Model to Simulate Day/Nighttime
Chemistry of Halogen Oxides at Kuujjuarapik

For the modelling studies presented here, the 1-dimensional model developed by

Lehrer [1999] was adapted to the conditions at Kuujjuarapik. The model proved to be

adequate for modelling the bromine release processes (’Bromine Explosion’, see section

2.3.1) which cause the phenomenon of surface ozone destruction in polar spring. It was

also found by Lehrer [1999] that the high sea salt concentrations of the sea ice surface are

needed to explain the observed amounts of bromine found at various sites in the Arctic.

Additionally the recycling of the inactive species HOBr and HBr on aerosol surfaces was

needed to sustain the high bromine concentrations for a longer time. The model includes

the basic gas phase chemistry for HOx, NOx, and VOCs, photochemistry as well as chlorine

and bromine reactions. Additionally heterogeneous recycling reactions of HOX (X=Cl, Br)

and HX on aerosols and primary release processes via the reaction of HOX with sea salt

on the sea ice surface are included in the model. The vertical mixing over the boundary

layer (assumed vertical extent 1 km) is parameterized for turbulent diffusion between 8

boxes with thicknesses of 100µm above the sea ice surface logarithmically increasing to

900m.

The model was adapted for the situation at Kuujjuarapik especially including correct pa-

rameterization of the diurnal variation of the photolysis frequencies. The results for jNO2

were compared to the values measured by a calibrated filter radiometer in section 6.5.2

above. Because of the reasonable agreement for jNO2 , the uncertainties of the photolysis

frequencies for the other photolyzable compounds is believed to be of minor importance.

The model has already been applied to study the primary release processes when negligible

initial bromine was present and to investigate vertical gradients and the effects of vertical

mixing [Lehrer 1999]. In this work the model was initialized with 60 ppt total bromine

at night in order to investigate the day and night chemistry on short time scales of a

few days. The initial bromine concentration was chosen such that the daytime maximum

values of BrO were in the range of the measurements. Initial amounts of NOx (5 ppt NO,

5 ppt NO2) were found to be negligible. The results of the model run for the first four days

are shown in Figures 6.25, 6.26 and 6.27. For the comparison with the field measurements

at Kuujjuarapik the first three days (72 hours) are adequate. The fourth day represents

a situation of complete ozone loss which was not observed during the field measurements

at Kuujjuarapik. Ozone is depleted over the course of 4 days from background levels of

40 ppb to less than 1 ppb. It should be noted that ozone depletion always stops over night

because photochemistry is needed for efficient catalytic ozone destruction. BrO shows a
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Figure 6.25: Model results for O3, HO2 and OH for the simulation of the Kuujjuarapik
situation.

sharp early morning peak due to photolysis of nighttime reservoir compounds (Br2 and

BrCl) at sunrise. This agrees well with the findings discussed in section 6.5.2. The BrO

decrease after sunset from ∼30 ppt at sunset to 0.7 ppt over the course of the night is also

in agreement with the observed nighttime decays of BrO with corresponding lifetimes of

the order of <1 hour at 30 ppt BrO and >10 hours at 1 ppt BrO derived from the field data.

In the model Br2 is also the predicted major reservoir species during the night at levels

up to 20 ppt. This supports the proposed major role of Br2 as a nighttime reservoir, which

is responsible for sunrise peaks of BrO radicals observed at Kuujjuarapik. HOBr, which is

always present at high levels until ozone is completely depleted, is efficiently recycled in

the model and HBr is the final loss compound for reactive bromine after complete ozone

depletion. The almost constant level of HOBr also indicates that the abundance of HO2

radicals, which are needed to produce HOBr, is not a critical parameter in this case.

For reactive chlorine, the major compound is the interhalogen molecule BrCl, formed

mainly by the heterogeneous reaction of HOBr with HCl on aerosols. BrCl builds up in

the model simulation to levels of up to 4 ppt over night, so it can produce Br and Cl

atoms by photolysis during sunrise. The ClO peaks predicted by the model at sunrise are

probably not detectable by DOAS, because the detection limits are of the order of 10 ppt
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Figure 6.26: Model results of the major bromine species for the simulation of the Kuu-
jjuarapik situation.
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Figure 6.27: Model results of the major chlorine species for the simulation of the Kuu-
jjuarapik situation.
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[Tuckermann et al. 1997]. Maybe chemical amplification can be used to measure the early

morning behavior of ClO [Perner et al. 1999]. OClO formation is shown by the model to

yield highest values at sunrise and sunset, but mixing ratios of ≈2 ppt have to be present

to be detectable by DOAS measurements. The main loss of reactive chlorine are reactions

with organic compounds (e.g. methane, CH4) to form HCl. HCl is only lost at night due

to recycling processes on aerosols involving HOX (X=Cl, Br).

To summarize, the model simulations strongly support the findings discussed in section

6.5.2 and seems to correctly describe the day/night cycle of bromine and chlorine com-

pounds for the situation at Kuujjuarapik. Iodine chemistry is not yet included in the

model, but future applications, e.g. to model the observations at Alert, where IO was

first measured simultaneously with BrO in this work, would require iodine and combined

iodine/bromine chemistry to be included in the model.

6.6 The Role of BrO as Oxidant for Gas Phase

Mercury

The possible role of BrO as oxidizing species for gaseous elemental mercury (GEM) has

been proposed by Boudries and Bottenheim [2000] (see also section 2.5.2). The measure-

ments shown in this work represent the first simultaneous observations of both Hg0 and

BrO at high time resolution allowing to study the proposed oxidation reaction between

the two molecules. The scatter plot in Figure 6.28 shows the anti-correlation between both

species for the ALERT2000 field study. At Alert, mercury depletion events (MDE) were
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MAX-DOAS BrO mixing
ratios.



208 CHAPTER 6. RESULTS

frequently observed during the period of MAX-DOAS BrO observations at the Ice Camp.

The time series shown in Figure 5.24 exhibits a strong decrease in the mercury concen-

tration on April 26, 2000, which is shown on an extended time scale in Figure 6.29. The
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Figure 6.29: Time series of GEM and BrO at the beginning of the ozone and mercury
depletion period.

1 ng/m3 Hg, which was still present at 12:00 UT, was completely depleted by 00:00 UT on

April 27. Assuming the rate limiting step for this rapid loss of Hg0 to be the proposed re-

action 2.63 of Hg with BrO and neglecting all transport effects, the rate constant kHg+BrO

for this reaction can be estimated to

kHg+BrO =
1

τHg0 · [BrO]
(6.3)

where τHg0 is the lifetime of GEM. Assuming an upper limit of 12 hours for τHg0 and

6.2×108molec/cm3 (24 ppt) for [BrO], a lower limit for kHg+BrO can be calculated to

3.7×10−14cm3/(molec·s). This is already a factor of 2 to 3 faster than the reaction of Hg

with OH which was studied by Sommar et al. [2001].

For the measurements at Kuujjuarapik, the anti correlation of TGM (as measured by

Poissant [2001]) and BrO can be seen in Figure 6.30, where TGM concentrations are

plotted versus BrO mixing ratios measured by the long path DOAS. At Kuujjuarapik
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Figure 6.30: TGM concentra-
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no complete mercury depletion event was observed during the measurement period (see

also the mercury time series shown in Figure 5.46). The mercury depletion rates and

corresponding BrO mixing ratios for the MDEs observed at Kuujjuarapik are listed in

Table 6.5. At average levels of 2 ng/m3 Hg0 or 0.2 ppt the lifetime at Kuujjuarapik is also

d[Hg]
dt

[ppt/h] BrO mixing ratio [ppt] Date
0.02 25 15.04.2001
0.01 15 16.04.2001
0.02 15 17.04.2001
0.026 5 21.04.2001

Table 6.5: Mercury depletion rates and corresponding BrO mixing ratios for the mercury
depletion events at Kuujjuarapik.

of the order of 10 hours. The calculation of kHg+BrO according to Equation 6.3 therefore

leads to similar values as inferred above for the ALERT2000 campaign.

6.6.1 Reactive Bromine - Mercury - Interaction

The first simultaneous direct measurements of gaseous mercury and bromine oxide at

Alert and Kuujjuarapik support the theory that BrO plays a key role as oxidant of el-

emental mercury in the gas phase, which was proposed by several authors based on as-

sumptions or indirect measurements [Boudries and Bottenheim 2000; Poissant et al. 2001;

Lu et al. 2001]. From the measurements at Alert it seems clear now that during mercury
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depletion events Hg0 is transformed to reactive gaseous mercury (RGM, Hg(II)) in the gas

phase [Steffen et al. 2002]. For this process very likely BrO is responsible. This is supported

by the observed anti-correlation between the direct measurements of both species and the

fact that the BrO radical is known to be a strongly oxidizing species. Steffen et al. [2002]

also found that only part of the Hg0 lost during MDEs can be recovered from its reac-

tive form Hg(II) in the gas phase. Additionally, accumulation of Hg was found on the

snow pack during MDEs. As pointed out by Lu et al. [2001], the deposition of significant

amounts of mercury in the Arctic environment during spring leads to a massive input of

this toxic heavy metal in the Arctic biosphere, which may accumulate in the food chain

and therefore influence the health of people living in the Arctic environment.



Chapter 7

Summary and Outlook

In this work, halogen oxide radicals (BrO, IO) were measured at several locations in the

high Arctic, for the first time at a low Arctic site in mid-latitudes and in the Indian Ocean

mid-latitude marine boundary layer. Besides the well-established active Longpath-DOAS

technique, the new Multi-Axis-DOAS technique, developed in this work, was for the first

time applied to measure BrO and IO in the boundary layer.

The main results of this thesis are discussed in chapter 6 and are summarized here:

• high levels of BrO radicals (around 30 ppt) have been found in the Arctic bound-

ary layer, correlated to ozone depletion at the surface. This result is in very good

agreement with previous measurements by Longpath-DOAS during ozone depletion

events in the Arctic. In most cases the largest fraction of the BrO total column was

located in a surface layer of approximately 1 km thickness.

• IO was observed in the Arctic boundary layer for the first time at levels of 0.6-0.8 ppt.

These measurements represent the first simultaneous observation of both BrO and

IO radicals in the Arctic boundary layer, implying that combined bromine/iodine

chemistry takes place in the atmosphere leading to strongly accelerated ozone de-

pletion.

• the MAX-DOAS BrO measurements at Alert allowed for the first time to derive

information on the vertical profiles of BrO near the ground which helps to under-

stand the dynamic processes involved in surface ozone depletion after polar sunrise.

Especially elevated layers of BrO, which might escape detection by other methods,

were monitored by MAX-DOAS several times.

• the measurements at the Hudson Bay represent the first ground-based and direct

observations of reactive bromine in this low Arctic region. It was also the south-

ernmost location, where Arctic springtime ozone depletion and BrO chemistry was

reported to date.
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• It was ruled out that the GOME satellite observations of large bromine oxide clouds

in the Hudson Bay region during spring is an artefact, caused e.g. by anomalies of

the stratospheric column.

• the measurements at the Hudson Bay allowed for the first time to study the

day/night behavior of bromine oxide radicals and showed that Br2 is formed as

the major reservoir compound during nighttime. Peaks of BrO in the early morning

correlated with ozone destruction during sunrise were for the first time observed on

short timescales of a few hours.

• the first simultaneous measurements of BrO in the boundary layer by a traditional

Longpath-DOAS instrument and the MAX-DOAS technique developed in this work

were also carried out at the Hudson Bay. The very good agreement between both

techniques can be regarded as successful validation of MAX-DOAS for ground-based

measurements in the boundary layer.

• the observation of mercury depletion events in the high and low Arctic and the first

simultaneous BrO measurements showing a strong anti-correlation between both

compounds support previous indirect conclusions that BrO is the proposed gas phase

oxidant for gaseous elemental mercury. The rate constant for the Hg+BrO reaction

was for the first time estimated based on simultaneous measurements of Hg and

BrO at high time resolution.

• the first IO measurements in the southern Indian Ocean agree with previous studies

at other sites in the coastal remote boundary layer and suggest that IO radicals can

be observed in all clean coastal regions where short-lived organic iodine precursors

are abundant.

• the upper limits derived from the Longpath-DOAS measurements in the moderately

polluted marine boundary layer in the Mediterranean on the Island of Crete suggest,

that halogen chemistry plays only a minor role at semi-polluted sites.

It was shown in the course of this thesis that ground-based MAX-DOAS allows the

determination of relatively precise concentration levels of absorbers in the boundary layer

as well as approximate layer heights and profile shapes with simple instrumentation. The

operation of stand alone long term measurements is also possible with the same setup. The

airmass factor modelling carried out in this thesis without taking into account clouds and

precise aerosol scattering phase functions is only valid for cloud-free and non-snowdrift

conditions. However, the MAX-DOAS technique yields qualitatively correct values at high

time resolution also during periods of blowing/drifting snow when other optical instru-

ments like Long Path DOAS cannot operate well due to low visibility.

It is planned and tested to operate improved instrumental setups allowing simultaneous
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measurements at different elevation angles (or other geometries) rather than the sequen-

tial observations employed in this work. This further development should allow the de-

termination of several parameters of the vertical distribution function of absorbers in the

troposphere. In addition observations of O4 and improvements of the model itself will al-

low more precise radiation transport calculations. Airborne MAX-DOAS (AMAX-DOAS)

measurements will be carried out in the near future to investigate BrO in the free tropo-

sphere. Further future applications of the MAX-DOAS technique have been discussed at

the end of chapter 3 (including the application of the MAX-DOAS technique for other trace

gases (e.g. ozone, NO2), MAX-DOAS measurements to study halogen emissions from salt

lakes, volcanic or industrial plumes of pollution, etc.). For this the implementation of the

MAX-DOAS geometries in advanced radiative transfer models is needed, which correctly

describe the effects of local topography, albedo and clouds/aerosols. Possibly measured

O4 slant columns can serve as input parameters for the RTM calculations to yield better

results.

Further instrument development will allow the application of small footprint, lightweight

and low power consuming DOAS instruments. Using these new mini-DOAS and micro-

DOAS systems simpler and cheaper field measurements will be possible, so the still very

limited data set on halogen oxides in the troposphere can be further expanded.

Simultaneous observations with other experimental techniques aimed at measuring reac-

tive halogen species (e.g. chemical amplification, chemical ionization mass spectroscopy

for halogens (HALOCIMS), etc.) will further improve the understanding of the chemical

reaction schemes involved in atmospheric halogen cycles.

BrO as a gas phase oxidant for gaseous elemental mercury, which is a global pollutant,

can lead to significant accumulation of mercury in the polar environments and affect the

health of peoples and influence the whole biosphere in these regions. Further laboratory

studies to determine the kinetics of the involved reactions as well as field observations

to monitor the changes are clearly needed to elucidate the global cycling of atmospheric

mercury.
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Appendix A

The Etalon-Effect

The Fabry-Perot Etalon-Effect, or short Etalon-Effect, was observed during DOAS mea-

surements by Stutz [1991], Senne [1996], Volkamer [1996] and [Hönninger 1999]. It can be

explained by multiple reflections on parallel planes in the optical path, which cause inter-

ference effects. These interferences can strongly affect spectroscopic measurements due to

low and/or high frequency modulations of the intensity with wavelength. Generally mul-

tiple reflections between thin layers cause very broadband Etalon structures (e.g. ∼30 nm

for the ∼5µm SiO2 layer on Photo Diode Array detectors [Stutz 1991]), whereas narrow

spectral structures (as low as 0.03 nm) are associated with reflecting layers of ∼3mm

[Hönninger 1999].

Mathematical Description

The intensity modulation for two rays of incident intensity I0 perpendicular on a plane

parallel plate (reflectivity R, thickness d) can be expressed as

I(λ) = I0(λ)(1 + 2Rcos
2n1d

λ
2π) (A.1)

for one reflection [Stutz 1991]. Here n1 denotes the refractive index of the parallel plate.

The light intensity I after passing the plate is therefore cosine-modulated with wavelength.

In case of more than one reflection equation A.1 changes to:

I(λ) = I0(λ)
1

1− 2Rcos2n1d
λ 2π +R2

(A.2)

For the limit of small R, i.e. single reflection only, equations A.2 and A.1 are equal.

The superposition of two oscillations of similar, but different frequencies leads to a beat.

This can originate from two or more plane parallel plates in the optical path, with multiple

refections between the reflecting planes. In case of two layers S1 and S2, with thicknesses

d1 and d2 and refractive indices n1 and n2, several possible interference patterns are given.

The ray, which is reflected once and therefore passes both layers twice has an optical path
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difference to the direct ray of δ1, another ray, which is reflected on the plane between the

two layers has the optical path difference δ2 compared to the direct beam.

δ1 = 2(n1d1 + n2d2) (A.3)

δ2 = 2n2d2 (A.4)

Therefore, in this simple model three rays interfere, with a normalized total intensity of:

I(λ) = 1 +
√

R1R2cos(2π
δ1
λ
) +

√

R2R3cos(2π
δ2
λ
) +R3

√

R1R2cos(2π
δ1 − δ2
λ

) (A.5)

Using the formulas given here, the etalon structures described in section 5.4.4 can be

explained.
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Figure D.1: 5 day back trajectories for ALERT2000. Daily trajectories are shown from
April 20, 2000 to May 9, 2000, arriving at Alert at 12h UT.



Appendix E

MOCCA Simulation Results for
Crete2000

227



228 APPENDIX E. MOCCA SIMULATION RESULTS FOR CRETE2000

Figure E.1: 8 day time series for the gas phase mixing ratios included in MOCCA.
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Figure E.2: 8 day time series for the gas phase mixing ratios included in MOCCA.
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Figure E.3: 8 day time series for the gas phase mixing ratios included in MOCCA.
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Figure E.4: 8 day time series for the gas phase mixing ratios included in MOCCA.



232 APPENDIX E. MOCCA SIMULATION RESULTS FOR CRETE2000

Figure E.5: 8 day time series of the photolysis frequencies of photolyzable species included
in MOCCA.
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Figure E.6: 8 day time series of the photolysis frequencies of photolyzable species included
in MOCCA.
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Figure E.7: 8 day time series of the photolysis frequencies of photolyzable species included
in MOCCA.
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Figure E.8: 8 day time series of the photolysis frequencies of photolyzable species included
in MOCCA.
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Perner, D., T. Arnold, J. Crowley, T. Klüpfel, M. Martinez, and R. Seuwen (1999). The
Measurements of Active Chlorine in the Atmosphere by Chemical Amplification. J.
of Atm. Chem., Vol. 34, 9–20.

Perner, D., D. H. Ehhalt, H. W. Paetz, U. Platt, E. P. Roeth, and A. Volz (1976). OH
Radicals in the lower Troposphere. Geophys. Res. Lett., Vol. 3, 466–468.

Perner, D. and U. Platt (1979). Detection of Nitrous Acid in the Atmosphere by Dif-
ferential Optical Absorption. Geophys. Res. Lett., Vol. 6, 917–920.
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