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Abstract

The interaction of light and matter is central in some of the most fundamental
processes in nature. The theoretical description of these processes is essential
for numerous applications in all fields of science. To gain an understanding of
light-induced reactions at a microscopic scale, it is necessary to study quantum
mechanical phenomena, for which quantum chemical methods are required.

Quantum chemical methods offer access to excitation energies, potential en-
ergy surfaces and excited-state properties, which are key for the description of
photo-chemical reactions. A variety of well-established quantum chemical meth-
ods is available, but however, many of these methods have limited applicability
due to their exceedingly large computational demands. In general a numerically
exact description is only possible for molecules with few atoms. Yet, biologically
or technically relevant systems comprise hundreds or thousands of atoms. Exam-
ples are protein-chromophore complexes, which take part in photosynthesis or the
reception of light in the eyes of humans and animals.

An important part in the field of quantum chemistry is the development of
suitable methods, which offer both, a sufficiently accurate description of the in-
volved physical effects, and feasible computational requirements. Of the avail-
able methods, which fulfill the above-stated requirements, many suffer from severe
drawbacks.

The central information obtained from quantum chemical calculations is the
energy of electronic states. However, for many interesting questions, further prop-
erties of the electronic states are required. Hence, an important part of the de-
velopment of quantum chemical methods is the derivation and implementation of
methodologies for the description of excited state properties. A key property is the
gradient of the energy. It is required to efficiently explore potential energy surfaces
and for the theoretical modeling of experimental findings. Other important quan-
tities are absorption cross-sections, which correspond to absorption coefficients in
spectroscopical experiments.

In this thesis, the so-called algebraic diagrammatic construction (ADC) scheme
for the polarization propagator is considered for the description of electronically
excited states. It is a quantum chemical method, which has gained more atten-
tion over the last decade. It could be shown that ADC offers for many relevant
systems a well-balanced mix of both accuracy and computational demand. In par-
ticular, in this thesis the derivation and implementation of excited state energy
gradients is presented. Furthermore an approach to obtain optical properties using
the so-called intermediate state representation (ISR) is discussed. The ISR/ADC
approach for the computation of two-photon absorption cross-sections and its im-
plementation are presented.

Both implementations are numerically tested and applied to two model sys-
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tems, all-trans-octatetraene and trans-bithiophene. The results for trans-bithiophene
are very promising, however, in the case of all-trans-octatetraene limitations for
the description of the excited state geometry by the presented derivative approach
are encountered.
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Zusammenfassung

Die Wechselwirkung von Licht und Materie spielt eine zentrale Rolle in einigen
der grundlegendsten Prozesse in der Natur. Die theoretische Beschreibung dieser
Prozesse ist elementar für zahlreiche Anwendungen in allen Bereichen der Na-
turwissenschaften. Um lichtinduzierte Reaktionen auf mikroskopischer Ebene zu
verstehen, ist die Beschreibung quantenmechanischer Phänomene notwendig. Für
die Untersuchung dieser Phänomene werden quantenchemische Rechenmethoden
benutzt.

Quantenchemische Rechenmethoden liefern die benötigten Informationen zur
Beschreibung von photochemischen Reaktionen wie Anregungsenergien, Potenti-
alhyperflächen und Eigenschaften angeregter Zustände. Eine Vielzahl von quan-
tenchemischen Rechenmethoden ist verfügbar. Allerdings ist die Anwendung eines
Großteils dieser Methoden aufgrund ihres enormen Rechenaufwandes stark ein-
geschränkt. Generell ist die Berechnung numerisch exakter Eigenschaften nur für
Moleküle mit sehr wenigen Atomen möglich, wohingegen biologische Systeme oder
Komplexe mit Relevanz für technische Anwendungen oft hunderte oder tausende
Atome enthalten. Ein Beispiel dafür sind Proteine, die bei der Photosynthese oder
dem Sehvorgang im Auge von Menschen und Tieren beteiligt sind.

Ein wichtiger Teil der Quantenchemie befasst sich mit der Entwicklung von Re-
chenmethoden, die zum einen anwendbar bei relevanten Systemen sind und zum
anderen eine ausreichende Genauigkeit in der Beschreibung der beteiligten physi-
kalischen Effekte liefern. Von den existierenden Methoden, die der oben genannten
Beschreibung entsprechen, haben viele teils schwerwiegende Nachteile.

Die zentrale Größe, die quantenchemische Rechenmethoden liefern, ist die Ener-
gie von elektronischen Zuständen. Darüber hinaus sind jedoch weitere Eigenschaf-
ten der elektronischen Zustände wichtig für zahlreiche Fragestellungen und die
Berechnung dieser Eigenschaften stellt eine wichtige Herausforderung dar. Dazu
müssen methodische Ansätze entwickelt und in Computerprogrammen implemen-
tiert werden. Eine wichtige Eigenschaft sind Ableitungen der Energie elektronischer
Zustände. Ableitungen werden benötigt, um stationäre Punkte in Potentialhyper-
flächen zu lokalisieren und experimentelle Spektren zu simulieren. Weitere wichtige
Eigenschaften um spektroskopische Experimente zu beschreiben sind Absorptions-
wahrscheinlichkeiten.

In dieser Arbeit wird das sogenannte algebraisch-diagrammatische Konstruk-
tionsverfahren (ADC) für den Polarisations-Propagator für die Beschreibung von
elektronisch angeregten Zuständen benutzt. ADC ist eine quantenchemische Re-
chenmethode, die in den letzten Jahren mehr Beachtung gefunden hat. Es konnte
gezeigt werden, dass ADC eine ausgewogene Mischung aus Genauigkeit und Re-
chenaufwand für viele relevante Systeme darstellt.

Im Detail werden in dieser Arbeit die Herleitung und die Implementierung von
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Ausdrücken für die Ableitung der Energie von angeregten Zustandständen vorge-
stellt. Zusätzlich wird ein theoretisches Verfahren zur Beschreibung von optischen
Eigenschaften über die sogenannte Darstellung in intermediären Zuständen (ISR)
dargestellt. Der ADC/ISR-Ansatz wird für die Berechnung von Zweiphotonenquer-
schnitten angewendet und die Implementierung der hergelteiteten Ausdrücke wird
beschrieben.

Mit den entwickelten Programmen werden numerische Testrechnungen durch-
geführt und die Anwendbarkeit beider Programmentwicklungen wird am Beispiel
von zwei Modellsystemen demonstriert. Als ein Modellsystem wird das Bithio-
phenmolekül gewählt und die erhaltenen Ergebnisse stimmen mit experimentellen
Befunden überein. Im Fall des zweiten Modellsystems, trans-Oktatetraen, werden
Schwierigkeiten bei der korrekten Beschreibung der angeregten Zustandsgeometrie
durch die neuimplementierten Ableitungen festgestellt.
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Chapter 1

Introduction

The theoretical investigation of electronically excited states of molecular systems

is necessary to study the interaction of light and matter at a microscopic scale and

is one of the major challenges for contemporary quantum chemistry. Processes

following light absorption are studied or utilised in all areas of science, i.e. physics,

chemistry, biology, medicine and material sciences and it is difficult to overstate

the importance of light-induced phenomena and their consequences for all areas

of life. Certainly, the most important example is photosynthesis. The photo-

initiated conversion of water and carbon dioxide to oxygen and carbohydrates

performed by plants, algae and bacteria [1] forms the basis for almost all life on

earth. Another important biological example is vision of humans and animals

involving a structural change in the rhodopsin protein caused by the enclosed

retinal pigment molecule undergoing an isomerisation reaction [2]. Similar light-

controlled activation or release reactions of drugs have medical applications or

facilitate in vivo studies [3]. Technical examples with extremely high relevance

are the conversion of solar energy in photovoltaic cells and the reverse process

of converting electric energy into light in light-emitting diodes. Especially the

design and development of efficient low-cost solar cells is a goal with strong societal

repercussions [4, 5].

Photo-initiated processes are triggered by the initial absorption of light by

a molecular system, promoting the system to an electronic excited state. The

excitation is followed by a variety of possible scenarios depending on the properties

of the system. These possibilities include chemical reactions, electron emission,

emission of a photon, and the dissipation of the excess energy into heat. To describe



Chapter 1. Introduction

and predict the evolution of the excited molecular system, the detailed knowledge

of the involved electronically excited states and their properties is crucial [6].

Experimentally, excited-state properties can be studied using absorption and

emission spectroscopy. Some features like excitation and fluorescence energies

of optically-allowed states can easily be accessed with simple steady-state spec-

troscopy. Obtaining signals of so-called dark states or the investigation of the

excited-state dynamics require more elaborate experiments. Today, a large se-

lection of highly sophisticated spectroscopic methods is available. For example

ultra-fast transient absorption spectroscopy can be used to study light-induced

chemical reactions on a femtosecond timescale [7]. However, the resulting spectra

are often complex and difficult to interpret, since the signals of many different

effects can interfere with each other. Naturally, the complexity of the spectra

increases for the study of bigger and more complex systems and in many cases

models based on accompanying quantum chemical calculations are inevitable for

the interpretation of the experimental findings.

The development of a theoretical model of the excited-state dynamics of photo-

initiated processes, requires the calculation of the energies of the involved electronic

excited states with quantum chemical methods. However, numerically exact com-

putations are strongly limited to exceedingly small systems with few atoms. Still,

systems of interest usually comprise of hundreds or even more atoms. Different

strategies are pursued to enable accurate computations of larger systems. One

scheme is to split the system into a quantum chemically treated subsystem, for

example the pigment molecule in a protein, and include the remaining system

through a computationally cheaper model, i.e., classical mechanics. Nevertheless,

such schemes may require the quantum chemical treatment of up to 200 atoms,

which is still too large for many highly accurate methods. For the electronic

ground state such calculations have become standard using density-functional the-

ory (DFT), while the development of applicable computational methods with suf-

ficient accuracy for the description of electronically excited states remains an im-

portant challenge.

Nowadays, several quantum chemical methods exist which facilitate the calcu-

lation of excited states and their properties. Yet, most of them cannot be applied to

large molecular systems, since they are exceedingly computationally demanding.
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The remaining methods are [6, 8]: semi-empirical approaches [9–11], configura-

tion interaction singles (CIS) [12, 13], time-dependent Hartree-Fock (TD-HF) [14],

complete active space self-consistent field (CASSCF) [15, 16] and time-dependent

density functional theory (TDDFT) [17, 18]. All of them can be applied to systems

of at least several hundred atoms. However, the application of these methods is

limited due to severe drawbacks, such as large errors in excitation energies, in-

correct description of the excited states, or the requirement of a priori knowledge

about the excited states of the systems. Especially the lack of predictability de-

mands extensive testing of the computed excited states against experimental data

or more reliable quantum chemical methods to allow for thorough interpretation

of the results. More accurate methods can be employed for small or medium-

sized molecules and are often used for benchmark calculations on model systems

with reduced size. Such methods can compute excitation energies with errors of

less than 0.4 eV and can be applied to molecules up to hundred atoms. Coupled

cluster (CC) [19] methods are among those respective methods and another ap-

proach, which has been given more attention over the last decade is the algebraic

diagrammatic construction (ADC) scheme for the polarization propagator [20].

All quantum chemical methods constitute approximations of the molecular

Schrödinger equation and most of them only treat its electronic part. The solu-

tion of the electronic Schrödinger equation in these approximative schemes yields

energies of electronic states and gives access to the electronic wavefunction. The

difference in energy between electronic states corresponds to the absorption or

emission wavelength in spectroscopic measurements. In addition, the simula-

tion of optical spectra requires, depending on the experiment, different properties

which are obtained through different methodologies. For example the oscillator

strength corresponds to the extinction coefficient in absorption spectra and multi-

photon cross-sections are required for the simulation of laser-driven non-linear

spectroscopy. Different techniques to obtain these properties are required for dif-

ferent quantum chemical models and their derivation and implementation is an

important part of the development of new methods.

Another key property for the description of various optical phenomena and the

understanding of chemical reactions is the gradient of the electronic energy and its

efficient evaluation using analytical derivative expressions is an important trait for

3
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quantum chemical methods. Since the early work of Pulay [21] analytical energy

derivatives have become a standard tool in quantum chemistry. As Pulay wrote

in a recent review article [22]: ‘Analytical calculation of energy derivatives with

respect to nuclear coordinates revolutionized applied molecular quantum mechanics

by allowing the routine calculation of molecular structures and related properties.’

Energy derivatives are employed in almost all in silico quantum chemical stud-

ies. A prominent example is the use of derivatives with respect to nuclear coordi-

nates to explore potential energy surfaces (PES) of molecular systems, which are

essentiell for the description of dynamical effects. For many properties of molecular

systems only the stationary points of PES are relevant, which can be obtained with

energy gradients through optimization. For example, the minima in the PES of

the lowest electronic state represent equilibrium structures of molecules, which are

required to access thermodynamical properties of chemical reactions or to simulate

steady-state absorption spectra. Likewise, the minimum of the first electronically

excited singlet state is required to simulate steady-state fluorescence spectra. In

addition, gradients offer access to so-called minimal energy pathways, which reveal

mechanisms of chemical reactions and they can be used to minimize the difference

between the PES of two electronic states to study so-called conical intersections,

which play important parts in light-induced processes.

Gradients of any energy functional can simply be obtained via finite differences

for each component of the perturbation. However, the applicability of numerical

derivatives of quantum chemical energy functions is limited for different reasons.

A limiting factor is the required number of single point energy calculation of at

least two points for each component of the perturbation. If the perturbation is a

geometrical distortion and the system has N atoms, than (in absence of symmetry)

at least 3N−6 single point energy calculations have to be performed. Additionally,

numerical differentiation suffers from numerical instabilities which can lead to slow

or failing convergence. In contrast to finite differences, analytical derivatives are

numerically stable and can for many quantum chemical methods be performed at

a computationally cost comparable to a single energy calculation[22, 23].

This thesis is organized as follows: in the first part, the development and

implementation of excited state properties, i.e., excited state gradients and non-

linear optical properties, using the algebraic diagrammatic construction scheme is

4



discussed and in the second part applications on molecular systems are presented.

First, the basic approximations inherent in all quantum chemical methods are

introduced in chapter 2. In chapter 3, the algebraic diagrammatic construction

scheme for the polarization propagator is presented and the working equations for

its second order variant are derived. In the subsequent chapter 4 an introduction

to analytical derivatives for ab initio methods is given and analytical gradient

expressions for the energy of the second and third order ADC approximations

are obtained. Chapter 5 deals with the computation of optical properties using

the so-called intermediate state representation approach. The first part of this

thesis is concluded by chapter 6, which covers details on the implementation of the

presented methodologies. In the first chapter of the second part, test calculations

are presented and in the subsequent chapter 8 the implemented features are applied

to study two medium-sized molecular systems. The thesis is concluded giving an

outlook on further developments

5
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Theoretical methods



Chapter 2

Theoretical foundations

2.1 Basic approximations

Quantum chemical methods are approaches to solve the molecular time-independent

Schrödinger equation (SE), which yields the energies of the molecular system E as

eigenvalues:

Ĥ(r,R)|Ψ(r,R)〉 = E|Ψ(r,R)〉, (2.1)

Here, the Hamiltonian Ĥ and the wavefunction |Ψ〉 depend on the electronic coor-

dinates r and the nuclear coordinates R. Since the SE in general cannot be solved

analytically, numerical approximations have to be introduced.

2.1.1 Born-Oppenheimer approximation

The first, most basic approximation, which is inherent in most quantum chemical

methods, is the Born-Oppenheimer approximation [24]. Since electrons and nuclei

differ in mass by at least three orders of magnitude, the electrons can assumed

to be moving through a constant electric field generated by the resting nuclei.

Thus, the electronic part can be treated as a separate problem and the nuclear

coordinates enter the electronic Schrödinger equation as parameters. The solution

of the electronic SE

Ĥel.(r; R)|Ψ(r,R)〉 = ε(R)|Ψ(r; R)〉, (2.2)
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yields so-called electronic states and state energies. However, the electronic SE

is still too complicated to be solved analytically and the main goal of quantum

chemistry is to find suitable schemes to obtain sufficiently accurate approximate

solutions.

2.1.2 Hartree-Fock

One of the most basic approaches to obtain the electronic state with the lowest

energy, the so-called ground state, is the Hartree-Fock (HF) approximation [24].

Here, as an ansatz for the N -particle ground-state wavefunction |Ψ0〉, a so-called

Slater determinant of single-particle wavefunctions (orbitals) φ1(r), . . . , φN(r) is

introduced. The electronic SE, which is a partial differential equation of N coupled

electrons, is split into systtem of N single-electron differential equations, which

yield the orbitals as solutions. The orbitals are constructed as a linear combination

of usually atom-centered basis functions {χµ(r)}:

φ(r)p =
∑
µ

Cpχµ(r). (2.3)

The coefficients {Cp} are determined by solving the Hartree-Fock equations [24].

Here, the electron spin has been omitted, which otherwise requires an additional

spin index for φp. The single-electron equations are still coupled through the

electron-electron interaction and the solutions of each differential equation depends

implicitly on all orbitals. These coupled non-linear single-electron equations are

solved self-consistently through an iterative procedure. This iterative procedure

minimizes the expectation value of the Slater determinant with respect to the

electronic Hamiltonian, based on the variational principle under the constraint of

orthonormal single-particle wavefunctions:∫
drφ?i (r)φj(r) = 〈φi|φj〉 = δij (2.4)

As a result, a set of n single-electron wavefunctions, so-called molecular orbitals

(MO), is obtained. The MO are transformed from the atom-centered basis (AO)

through the orbital transformation matrix C, of which the elements have been

introduced in equation 2.3, and n is the number of basis functions in the AO basis.

8



2.2. Second quantization

In addition, a set of n orbital energies is obtained, which together with the MO

can be used to calculate the HF ground-state energy:

EHF =
N∑
i

hii +
1

2

N∑
ij

〈ij|ij〉 − 〈ij|ji〉 =
N∑
i

εi −
1

2

N∑
ij

〈ij||ij〉 (2.5)

Here, the one-electron integrals {hpq} and the two-electron integrals 〈pq|rs〉, which

depend on the orbitals, have been introduced together with the symmetrized two-

electron integrals 〈pq||pq〉, which are defined as:

〈pq||rs〉 = 〈pq|rs〉 − 〈pq|sr〉 (2.6)

The index i in equation 2.5 is limited to the lowest first N orbitals. These are

the so-called occupied orbitals, because they are occupied by the N electrons of

the N -electron wavefunction in the electronic ground state. The remaining n−N
orbitals are unoccupied and the so-called virtual orbitals. In general, in this work

indices i, j, k, . . . refer to occupied orbitals, a, b, c, . . . refer to virtual orbitals and

p, q, r, . . . refer to general orbitals (both occupied and virtual).

In the HF approach, the electron-electron interactions are approximated. In-

stead of the full potential, each individual electron only experiences a static charge

distribution generated by all other electrons. Therefore, dynamic effects due to

changes in the electron movement are neglected. Though this approximation might

appear crude, it usually recovers 95% of the electronic energy. However, the re-

maining 5% are often crucial for the theoretical description of chemical effects,

since the thermodynamics of chemical reactions are driven by energy differences

of the same order of magnitude. The difference between the (numerically) exact

energy and the HF energy is called the correlation energy Ecorr. = Eexact−EHF and

post-HF methods, which are also called correlated or wavefunction-based methods,

aim at improving the HF results.

2.2 Second quantization

The formalism of second quantization [24, 25] offers a convenient way to introduce

and discuss post-HF methods. Here, a complete set of orthonormal single-particle

9



Chapter 2. Theoretical foundations

states (orbitals) and occupation numbers np for each orbital φp are used to rep-

resent many-particle states |n1, n2, . . . , n∞〉. This formalism can be used for both

fermionic and bosonic systems, however, in this work only electronic systems are

discussed and the occupation numbers can only assume the values 0 or 1. In addi-

tion, any state must be antisymmetric with respect to permutation of two electrons.

For many-electron states based on the HF orbitals, the set of single-electron states

is finite |n1, n2, . . . , nm〉, with m being the number of HF orbitals.

2.2.1 Creation and annihilation operators

All many-electron states can be obtained from the so-called vacuum state

|0, 0, . . . , 0〉, in which all single-electron states are unoccupied, by applying so-

called creation and annihilation operators. However, for the discussion of post-HF

methods, the vacuum state is usually replaced by the HF ground state

|ΨHF 〉 = |ni, nj, . . . , nN , na, nb, . . . , nm〉, (2.7)

with N being the number of electrons and ni = nj = · · · = nN = 1, na = nb =

· · · = nm = 0 . The creation and annihilation operators act on a many-electron

state by changing the occupation number of a given orbital while preserving the

required symmetry. The creation operator ĉ†p acts on the many-electron state

|n1, . . . , nm〉 by occupying orbital φp, i.e. changing its occupation number to 1,

and yields 0 if φp was already occupied.

ĉ†p|n1, . . . , nm〉 = −1(
∑p−1
τ nτ )δ(np, 0)|n1, n2, . . . , np−1, 1, np+1, . . . , nm〉 (2.8)

The adjoint operator ĉp removes the electron in orbital p, i.e. sets np to 0, and

yields 0 if φp was already unoccupied.

ĉp|n1, . . . , nm〉 = −1(
∑p−1
τ nτ )δ(np, 1)|n1, n2, . . . , np−1, 0, np+1, . . . , nm〉 (2.9)

It is important to note the anti-commutation relations of the creation and

annihilation operators, which follow from the definitions in equations 2.8 and 2.9:

ĉ†pĉ
†
q = −ĉ†q ĉ†p, ĉpĉq = −ĉq ĉp, ĉ†pĉq =δpq − ĉq ĉ†p. (2.10)

10



2.3. Møller-Plesset perturbation theory (MP)

2.2.2 Arbitrary operators

The creation and annihilation operators are used to represent the action of arbi-

trary operators on many-electron states. For example a single-particle operator Ô
has in second quantization the form:

Ô =
∑
pq

〈φp|Ô|φq〉ĉ†q ĉq =
∑
pq

opq ĉ
†
pĉq (2.11)

and 〈φp|Ô|φq〉 = opq are the matrix elements of Ô in the single-electron basis. In

the same way the electronic Hamiltonian, which will be called Ĥ in the following

can be expressed as:

Ĥel = Ĥ =
∑
pq

hpq ĉ
†
pĉq +

1

4

∑
pqrs

〈pq||rs〉ĉ†pĉ†q ĉsĉr (2.12)

2.3 Møller-Plesset perturbation theory (MP)

Perturbation theory offers a way to improve over the HF results. Møller-Plesset

perturbation theory (MP) [26] is a well-established quantum chemical method. It

is a special variant of Rayleigh-Schrödinger perturbation theory [27, 28], which is

discussed first in this section before the explicit Hamiltonian splitting of MP is

introduced.

2.3.1 Rayleigh-Schrödinger perturbation theory

In Rayleigh Schrödinger perturbation theory, the full Hamiltonian Ĥ is split into

a part Ĥ0 of which the complete spectrum is known and the remaining part

Ĥ1 = Ĥ − Ĥ0, which is assumed to be a small perturbation.

Ĥ0|Ψ(0)
I 〉 = E

(0)
I |Ψ

(0)
I 〉 (2.13)

Introducing an auxiliary parameter λ the Hamiltonian is written as:

Ĥ = Ĥ0 + λĤ1. (2.14)

11
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It is assumed, that both the exact eigenvalues of Ĥ, EI , and the eigenstates |ΨI〉
can be expressed in a series expansion:

EI =
∞∑
n=0

λnE
(n)
I |ΨI〉 =

∞∑
n=0

λn|Ψ(n)
I 〉 (2.15)

By inserting these series expansions in the eigenvalue equation for Ĥ:

(
Ĥ0 + λĤ1

) ∞∑
n=0

λn|Ψ(n)
I 〉 =

(
∞∑
n=0

λnE
(n)
I

)(
∞∑
n=0

λn|Ψ(n)
I 〉

)
(2.16)

and collecting all terms with the same exponent of λ, the Schrödinger equation

can be split into multiple equations:

Ĥ0|Ψ(0)
I 〉 = E0

I |Ψ
(0)
I 〉 (2.17)

Ĥ0|Ψ(1)
I 〉+ Ĥ1|Ψ(0)

I 〉 = E
(0)
I |Ψ

(1)
I 〉+ E

(1)
I |Ψ

(0)
I 〉 (2.18)

Ĥ0|Ψ(2)
I 〉+ Ĥ1|Ψ(1)

I 〉 = E
(0)
I |Ψ

(2)
I 〉+ E

(1)
I |Ψ

(1)
I 〉+ E

(2)
I |Ψ

(0)
I 〉 (2.19)

· · · .

It is useful to request that |Ψ(0)
I 〉 is normalized and orthogonal to higher order

contributions:

〈Ψ(0)
I |

∞∑
n=0

Ψ
(n)
I 〉 = 〈Ψ(0)

I |Ψ
(0)
I 〉 = 1. (2.20)

By multiplying the equations 2.17 - 2.19 from the left with 〈Ψ(0)
I | one obtains the

equations determining the energy contributions of different order:

E
(0)
I = 〈Ψ(0)

I |H0|Ψ(0)
I 〉 (2.21)

E
(1)
I = 〈Ψ(0)

I |H1|Ψ(0)
I 〉 (2.22)

E
(2)
I = 〈Ψ(0)

I |H1|Ψ(1)
I 〉 (2.23)

· · · .

In a similar way the corrections to the wavefunction can be found by multiplying

equations 2.18 - 2.19 from the left by 〈Ψ(0)
J |, with I 6= J . For example the first

12



2.3. Møller-Plesset perturbation theory (MP)

order contribution is defined by:

〈Ψ(0)
J |Ĥ0|Ψ(1)

I 〉+ 〈Ψ(0)
J |Ĥ1|Ψ(0)

I 〉 = 〈Ψ(0)
J |E

(0)
I |Ψ

(1)
I 〉+ 〈Ψ(0)

J |E
(1)
I |Ψ

(0)
I 〉. (2.24)

Using 〈Ψ(0)
J |Ψ

(0)
I 〉 = δIJ equation 2.24 simplifies to:

E
(0)
J 〈Ψ

(0)
J |Ψ

(1)
I 〉+ 〈Ψ(0)

J |Ĥ1|Ψ(0)
I 〉 = E

(0)
I 〈Ψ

(0)
J |Ψ

(1)
I 〉, (2.25)

from which follows:
〈Ψ(0)

J |Ĥ1|Ψ(0)
I 〉

E
(0)
I − E

(0)
J

= 〈Ψ(0)
J |Ψ

(1)
I 〉. (2.26)

Thus, the first order correction to the wavefunction is given as:

|Ψ(1)
I 〉 =

∑
J 6=I

|Ψ(0)
J 〉
〈Ψ(0)

J |Ĥ1|Ψ(0)
I 〉

E
(0)
I − E

(0)
J

(2.27)

and higher order corrections can be determined using the same procedure.

2.3.2 MP partitioning of the Hamiltonian

In MP the Hartree-Fock Hamiltonian F̂ is chosen as zeroth order Hamiltonian,

which is given as:

F̂ =
∑
pq

fpq ĉ
†
pĉq =

∑
pq

hpq ĉ
†
pĉq +

∑
pq

∑
k

〈pk||qk〉ĉ†pĉq (2.28)

and is diagonal in the basis of MO orbitals fpq = εpδpq. Thus Ĥ0 is defined as

Ĥ0 =
∑
p

εpĉ
†
pĉp (2.29)

and the remaining perturbation Ĥ1 is defined by equation 2.12 as:

Ĥ1 = −
∑
pq

∑
k

〈pk||qk〉ĉ†pĉq +
1

4

∑
pqrs

〈pq||rs〉ĉ†pĉ†q ĉsĉr. (2.30)
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Chapter 2. Theoretical foundations

The eigenstates of Ĥ0 are the HF ground state |Ψ(0)
0 〉 and all other N -electron

states, the so-called excited determinants. These are obtained from the HF ground

state by replacing occupied orbitals by virtual orbitals, which is done by applying

excitation operators ĈI ≡ {c†aci; c†ac
†
bcicj, a < b, i < j; . . . }:

|Ψ(0)
I 〉 = ĈI |Ψ(0)

0 〉. (2.31)

Depending on how many occupied orbitals have been replaced by virtual orbitals,

these excited determinants are referred to as singly-excited |Ψa
i 〉, doubly-excited

|Ψab
ij 〉 and so on. Inserting these definitions in the expressions derived earlier in

section 2.3.1 yields the expressions for the MP energy and wavefunction correc-

tions:

E
(0)
0 =

∑
p

〈Ψ(0)
0 |εpĉ†pĉp|Ψ

(0)
0 〉

=
∑
i

εi (2.32)

E
(1)
0 =−

∑
pq

∑
k

〈pk||qk〉〈Ψ(0)
0 |ĉ†pĉq|Ψ

(0)
0 〉

+
1

4

∑
pqrs

〈pq||rs〉〈Ψ(0)
0 |ĉ†pĉ†q ĉsĉr|Ψ

(0)
0 〉

=− 1

2

∑
ij

〈ij||ij〉 (2.33)

E
(2)
0 =−

∑
pq

∑
k

〈pk||qk〉〈Ψ(0)
0 |ĉ†pĉq|Ψ

(1)
0 〉

+
1

4

∑
pqrs

〈pq||rs〉〈Ψ(0)
0 |ĉ†pĉ†q ĉsĉr|Ψ

(1)
0 〉 (2.34)

Collecting all terms up to to first order yields the Hartree-Fock energy given in

equation 2.5 and thus, first-oder MP (MP(1)) provides no improvement over the

HF result and the second-order term is the first correction to the HF energy. Before

the second-order energy contribution can be evaluated, the first-order correction

to the wavefunction |Ψ(1)
0 〉 has to determined, which has according to equation 2.27

14



2.3. Møller-Plesset perturbation theory (MP)

the form:

|Ψ(1)
0 〉 =

∑
ia

|Ψa
i 〉
〈Ψa

i |Ĥ1|Ψ0〉
E

(0)
0 − EΨai

+
∑
i<j
a<b

|Ψab
ij 〉
〈Ψab

ij |Ĥ1|Ψ0〉
E

(0)
0 − EΨabij

+
∑
i<j<k
a<b<c

|Ψabc
ijk〉
〈Ψabc

ijk |Ĥ1|Ψ0〉
E

(0)
0 − EΨabcijk

+ · · ·
(2.35)

To simplify the expression for |Ψ(1)
0 〉, Brillouin’s theorem can be applied, which

states that the matrix element of the Hamiltonian between the HF ground state

and singly-excited determinants vanishes:

〈Ψ(0)
0 |Ĥ|Ψa

i 〉 = 〈Ψa
i |Ĥ|Ψ

(0)
0 〉 = 0. (2.36)

Inserting the partitioned Hamiltonian into equation 2.36 yields:

〈Ψ(0)|Ĥ0 + Ĥ1|Ψa
i 〉 = 〈Ψ(0)|Ĥ0|Ψa

i 〉+ 〈Ψ(0)|Ĥ1|Ψa
i 〉 = 0. (2.37)

The first term can be evaluated as

〈Ψ(0)
0 |Ĥ0|Ψa

i 〉 =
∑
p

〈Ψ(0)
0 |εpc†pcp|Ψa

i 〉 =
∑
i

εi〈Ψ(0)
0 |Ψa

i 〉 = 0 (2.38)

from which follows that:

〈Ψ(0)
0 |Ĥ1|Ψa

i 〉 = 〈Ψa
i |Ĥ1|Ψ(0)

0 〉 = 0. (2.39)

In addition, it can readily be seen, that matrix elements of single-particle operators

between determinants that differ by more than one excitation vanish. The same

applies to matrix elements of two-particle operators, in which the determinants

have more than two different excitations. Thus, the first order MP correction to

the wavefunction is given by:

|Ψ(1)
0 〉 =

∑
i<j
a<b

|Ψab
ij 〉
〈Ψab

ij |Ĥ1|Ψ0〉
E

(0)
0 − E(0)

. (2.40)
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Using the definition of |Ψ(1)
0 〉, the second order energy correction can be found as:

E
(2)
0 =

∑
i<j
a<b

〈Ψab
ij |Ĥ1|Ψ0〉

E
(0)
0 − E(0)

1

4

∑
pqrs

〈pq||rs〉〈Ψ(0)
0 |ĉ†pĉ†q ĉsĉr|Ψab

ij 〉. (2.41)

2.4 Wick’s theorem

Wick’s theorem [29] can be employed to evaluate matrix elements in second quan-

tization as they occur for example in the expressions for MP in the previous section

2.3.2. To introduce Wick’s theorem, first the contraction of two operators Â•B̂•

is defined as:

Â•B̂• = ÂB̂ − {ÂB̂}. (2.42)

In equation 2.42 the normal ordering of two operators {ÂB̂} has been introduced.

The normal ordering of an operator string is defined by the following requisition:

the expectation value of the HF ground state with respect to the normal-ordered

operator string must vanish:

〈Ψ(0)|{ÂB̂Ĉ . . . }|Ψ(0)〉 = 0. (2.43)

From the definition of the normal ordering follows, that in a normal-ordered string

of creation and annihilation operators all creation operators of virtual orbitals

ĉ†a, ĉ
†
b, . . . and annihilation operators of occupied orbitals ĉi, ĉj, . . . are on the left-

hand side and all creation operators of occupied orbitals ĉ†i , ĉ
†
j, . . . and annihilation

operators of virtual orbitals ĉa, ĉb, . . . are on the right-hand side of the operator

string.

Wick’s theorem states, that an operator string can be expressed as a sum of
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2.4. Wick’s theorem

all possible normal-ordered contractions of the operator string:

ÂB̂ĈD̂ÊF̂ . . . ={ÂB̂ĈD̂ÊF̂ . . .}

+
∑
single

contractions

{Â•B̂•ĈD̂ÊF̂ . . .}

+
∑
double

contractions

{Â•B̂•Ĉ••D̂••ÊF̂ . . .}

· · ·

+
∑
full

contractions

{Â•B̂•Ĉ••D̂••Ê•••F̂ ••• . . .}.

(2.44)

The key implication of Wick’s theorem can be realized by evaluating the expecta-

tion value of the HF ground state on both sides of equation 2.44:

〈Ψ(0)|ÂB̂ĈD̂ÊF̂ . . . |Ψ(0)〉 =〈Ψ(0)|{ÂB̂ĈD̂ÊF̂ . . .}|Ψ(0)〉

+
∑
single

contractions

〈Ψ(0)|{Â•B̂•ĈD̂ÊF̂ . . .}|Ψ(0)〉

+
∑
double

contractions

〈Ψ(0)|{Â•B̂•Ĉ••D̂••ÊF̂ . . .}|Ψ(0)〉

· · ·

+
∑
full

contractions

〈Ψ(0)|{Â•B̂•Ĉ••D̂••Ê•••F̂ ••• . . .}|Ψ(0)〉.

(2.45)

All terms on the right-hand side of equation 2.45 except the fully contracted ex-

pressions vanish, because they contain uncontracted normal-ordered operators.

Hence, the expectation value of the HF ground state with respect to an operator

string can be expressed as the expectation value of all possible full contractions of

the operator string.

〈Ψ(0)|ÂB̂ĈD̂ÊF̂ . . . |Ψ(0)〉 =
∑
full

contractions

〈Ψ(0)|{Â•B̂•Ĉ••D̂••Ê•••F̂ ••• . . .}|Ψ(0)〉

(2.46)

Wick’s theorem offers a straightforward route to evaluate matrix elements for

post-HF methods. In second quantization all matrix elements of arbitrary opera-
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tors can be represented as expectation value of the HF ground state with respect

to strings of excitation operators and the creation and annihilation operators of

the respective operators. To obtain a matrix element, all possible contractions of

the occurring creation and annihilation operators have to be formed. From the

definition of the normal ordering in equation 2.43 and from the anti-commutation

relations in equation 2.10 the contractions for all possible pairs of creation and or

annihilation operators can be obtained as:

ĉ†•i ĉ
†•
j =ĉ•i ĉ

•
j = 0, ĉ†•a ĉ

†•
b =ĉ•aĉ

•
b = 0, ĉ†•i ĉ

•
j =ĉ•aĉ

†•
b = 0,

(2.47)

ĉ†•i ĉ
•
j = −ĉ•j ĉ

†•
i = δij, ĉ†•a ĉ

•
b = −ĉ•b ĉ†•a = δab. (2.48)
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Chapter 3

Algebraic Diagrammatic

Construction Scheme for the

Polarization Propagator

3.1 Original derivation

The algebraic diagrammatic construction (ADC) scheme for the polarization prop-

agator is a quantum chemical method for the description of excited states [20, 30].

The ADC scheme has originally been derived using many-body Green’s function

theory [31]. The original derivation, which is briefly outlined, involves the spectral

representation of the polarization propagator Πpq,rs(ω) which is given as:

Πpq,rs(ω) =
∑
n6=0

(
〈Ψ0|ĉ†pĉq|Ψn〉〈Ψn|ĉ†pĉq|Ψ0〉

ω − (En − E0)
−
〈Ψ0|ĉ†pĉq|Ψn〉〈Ψn|ĉ†pĉq|Ψ0〉

ω + (En − E0)

)
(3.1)

Here, |Ψ0〉 and |Ψn〉 are the exact ground and n-th excited state of a molecular

system with the respective energies E0 and En. The polarization propagator has

poles at the positive and negative excitation energies ωn = En − E0 of the n-th

excited state. In addition, the numerators contain the so-called transition ampli-

tudes Tn from the ground to the n-th excited state. The transition amplitudes are

defined as:

T dn = 〈Ψ0|d̂|Ψn〉 =
∑
pq

dpq〈Ψ0|ĉ†pĉq|Ψn〉 (3.2)
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with respect to a single-particle operator d̂ =
∑

pq dpq ĉ
†
pĉq. Since both parts of

Πpq,rs(ω) = Π+
pq,rs(ω)+Π−pq,rs(ω) contain all information on the excitation spectrum,

it is sufficient to only consider one of them.

The representation of the polarization propagator in the exact eigenstates as

given in equation 3.1, diagonalize the molecular Hamiltonian. Hence, it is called

the diagonal form of Π(ω) and can be expressed in matrix notation as:

Π+
pq,rs(ω) =

∑
n6=0

〈Ψ0|ĉ†pĉq|Ψn〉〈Ψn|ĉ†pĉq|Ψ0〉
ω − (En − E0)

= x†pq (1ω −Ω)−1 xrs, (3.3)

by introducing the vectors of transition amplitudes xpq = 〈Ψ0|ĉ†pĉq|Ψn〉 and the

diagonal matrix Ω of excitation energies ωn. The ADC scheme postulates the

existence of a non-diagonal representation of Π+(ω):

Π(ω) = F† (1ω −M)−1 F, (3.4)

with the secular matrix M, the so-called ADC matrix, and the modified transition

amplitudes f . The index + has been dropped for brevity. M and f are expanded

in a perturbation series:

M = M(0) + M(1) + M(2) + . . . (3.5)

F = F(0) + F(1) + F(2) + . . . , (3.6)

which is compared to a perturbation expansion of Π(ω). The diagrammatic anal-

ysis of the perturbation expansion of the polarization operator using the Møller-

Plesset partitioning leads to algebraic expressions for the matrix elements of MIJ

and fI . Here, the indices I and J refer to excitation classes, i.e., singly, doubly and

higher excitation classes. The n-th order ADC approximation (ADC(n)) contains

all blocks of excitation classes required for the consistent describtion of Π(ω) in a

given order n of perturbation theory. The highest excitation class m contained in
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ADC(n) is [31]:

m =
1

2
n+ 1, (n even) (3.7)

m =
1

2
(n− 1) + 1, (n odd). (3.8)

Here, m = 1 refers to single excitations, which are called particle-hole (p,h) states,

m = 2 refers to double excitations, which are two-particle-two-hole (2p,2h) states.

The perturbative theoretical order required for each block in the elements of the

series expansion for the ADC matrix M(n) and modified transition amplitudes F(n)

up to third order are given in 3.1.

By solving the hermitian eigenvalue problem

MY = YΩ, (3.9)

the excitation energies ωI are obtained and using the eigenvectors yI from the

eigenvector matrix Y, the transition moments can be obtained as:

T dI = 〈Ψ0|d̂|ΨI〉 = y†IF
d (3.10)

3.2 Intermediate state representation (ISR)

An alternative route to obtain the expressions for the ADC matrix and modified

transition amplitudes is given by the so-called intermediate state representation

(ISR) approach [20, 33]. In addition, the ISR approach offers access to excited

state properties, which is later discussed in chapter 5. Here, similar to configu-

ration interaction [24], a matrix representation of the electronic Hamiltonian is

constructed. Instead of representing the Hamiltonian in the basis of Hartree-

Fock determinants, the Hamiltonian is represented in the basis of intermediate

states. These intermediate states can be interpreted as correlated excited de-

terminants, which are formally constructed by the action of excitation operators

ĈI ≡ {ĉ†aĉi; ĉ†aĉ
†
bĉiĉj, a < b, i < j; . . . on the exact ground state |Ψ0〉. In the follow-

ing, the formal construction of the intermediate states is presented.

In the first step, the so-called precursor states |Ψ#
I 〉 are introduced and orthog-
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Table 3.1: Block structure of the n-th-order ADC matrix M(n) and transition
amplitudes F(n) up to third order of perturbation theory [32]. The bold numbers
indicate the order of perturbation theory for each block of the n-th-order ADC
matrix and transition amplitudes.

M(n) p− h 2p− 2h

p− h

n = 0 : 0

n = 1 : 1

n = 2 : 2

n = 3 : 3

n = 2 : 1

n = 3 : 2

2p− 2h
n = 2 : 1

n = 3 : 2

n = 2 : 0

n = 3 : 1

F(n)

n = 0 : 0

n = 1 : 1

n = 2 : 2

n = 3 : 3

n = 2 : 1

n = 3 : 2

onalized with respect to the ground state:

|Ψ#
I 〉 = ĈI |Ψ0〉 − |Ψ0〉〈Ψ0|ĈI |Ψ0〉. (3.11)

Successively, these precursor states are orthonormalized yielding the intermediate

states |Ψ̃I〉:
|Ψ̃I〉 =

∑
J

|Ψ#
J 〉(S

− 1
2 )I,J . (3.12)

Here, the overlap matrix S = {SI,J} has been introduced with the elements:

SI,J = 〈Ψ#
I |Ψ

#
J 〉 =

(
〈Ψ0|Ĉ†I − 〈Ψ0|Ĉ†I |Ψ0〉〈Ψ0|

)(
ĈJ |Ψ0〉 − |Ψ0〉〈Ψ0|ĈJ |Ψ0〉

)
= 〈Ψ0|Ĉ†I ĈJ |Ψ0〉 − 2〈Ψ0|Ĉ†I |Ψ0〉〈Ψ0|ĈJ |Ψ0〉

+ 〈Ψ0|Ĉ†I |Ψ0〉〈Ψ0|Ψ0〉〈Ψ0|ĈJ |Ψ0〉

= 〈Ψ0|Ĉ†I ĈJ |Ψ0〉 − 〈Ψ0|Ĉ†I |Ψ0〉〈Ψ0|ĈJ |Ψ0〉
(3.13)

From the intermediate states a matrix representation of the ground-state-energy-
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shifted Hamiltonian H̃

H̃ = Ĥ − E0 (3.14)

is formed:

MIJ = 〈Ψ̃I |Ĥ − E0|Ψ̃J〉. (3.15)

Again, solving the hermitian eigenvalue problem

YtMY = Ω (3.16)

yields the excitation energies ωI . So far, no approximations have been introduced

and the equation 3.16 formally yields the exact excitation energies. However, by

using the Møller-Plesset partitioning of the Hamiltonian and by expanding the

exact ground state energy and exact ground state wavefunction in a perturbative

theoretical series, approximative expressions for M can be obtained which are

identical to the ADC matrix introduced earlier in section 3.1.

3.3 Construction of the ADC matrix using the

ISR approach

To derive the ADC matrix expressions via the ISR approach, a series expansion of

both the exact ground state energy and ground state wavefunction is inserted in

3.15. The auxiliary index λ is used to collect expressions with the same order of

perturbation theory.

M
(k+l+m)
I,J λk+l+m =

∑
K,L

(
S
− 1

2
I,K

)(k)

λk
(
〈Ψ#

K |Ĥ − E0|Ψ#
L 〉
)(l)

λl
(
S
− 1

2
L,J

)(m)

λm

(3.17)

In the following the expressions on the right-hand-side of equation 3.17 required for

the ADC(2) matrix are evaluated. For ADC(2) the indices I, J, . . .M are limited

to the excitation space of single and double excitations (p-h, and 2p-2h) according

to equation 3.7. Base on the block structure given in table 3.1, the p-h,p-h-block

of the ADC(2) matrix is needed up to second order, the coupling blocks p-h,2p-2h

and 2p-2h,p-h are required up to first order and the doubles excitation block is

required in zeroth order.
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First the single excitation precursor states |Ψ#
I 〉 are considered, with I ∈ {ĉ†i ĉa}:

|Ψ#
I 〉

(n)λn = ĈI |Ψ(n)
0 〉λn − |Ψ

(k)
0 〉〈Ψ

(l)
0 |ĈI |Ψ

(m)
0 〉λk+l+m, (3.18)

which in zeroth order are excited Hartree-Fock determinants:

|Ψ#
I 〉

(0) = ĈI |Ψ(0)
0 〉 − |Ψ

(0)
0 〉 〈Ψ

(0)
0 |ĈI |Ψ

(0)
0 〉︸ ︷︷ ︸

=0

. (3.19)

The first order term:

|Ψ#
I 〉

(1) = ĈI |Ψ(1)
0 〉 −

(
|Ψ(1)

0 〉 〈Ψ
(0)
0 |ĈI |Ψ

(0)
0 〉︸ ︷︷ ︸

=0

+ |Ψ(0)
0 〉
(
〈Ψ0|ĈI |Ψ0〉

)(1)

︸ ︷︷ ︸
=ρ

(1)
ia =0

)
(3.20)

reduces to

|Ψ#
I 〉

(1) = ĈI |Ψ(1)
0 〉, (3.21)

and the second order term is given by:

|Ψ#
I 〉

(2) = ĈI |Ψ(2)
0 〉 − |Ψ

(0)
0 〉
(
〈Ψ0|ĈI |Ψ0〉

)(2)

︸ ︷︷ ︸
=ρ

(2)
ia

)
. (3.22)

3.3.1 Overlap matrix

Using the expressions for the precursor states, the structure of the single excitation

block of the overlap matrix {SI,J}, with I, J ∈ {ĉ†i ĉa}, up to second order is

discussed, which is given as:

SI,J =
∑
n

S
(n)
I,Jλ

n =
∑
k,l

λk+l〈Ψ#
I |

(k)|Ψ#
J 〉

(l). (3.23)

In first order the block is diagonal:

S
(0)
I,J = 〈Ψ(0)

0 |Ĉ
†
I ĈJ |Ψ

(0)
0 〉 = δIJ (3.24)
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and the first order contributions vanish:

S
(1)
I,J = 〈Ψ(1)

0 |Ĉ
†
I ĈJ |Ψ

(0)
0 〉+ 〈Ψ(0)

0 |Ĉ
†
I ĈJ |Ψ

(1)
0 〉 = 0. (3.25)

The elements of S in second order contain three contributions:

S
(2)
I,J = 〈Ψ#

I |
(0)|Ψ#

J 〉
(2) + 〈Ψ#

I |
(2)|Ψ#

J 〉
(0) + 〈Ψ#

I |
(1)|Ψ#

J 〉
(1), (3.26)

of which for single excitations only the last term is non-zero. Thus, the elements

of the second order block are

S
(2)
I,J = 〈Ψ(1)

0 |Ĉ
†
I ĈJ |Ψ

(1)
0 〉. (3.27)

and the elements of S can be represented as:

SI,J = δIJ + S
(2)
I,J +O(3). (3.28)

Here O(3) contains third and higher order contributions. To obtain expressions

for S−
1
2 the function

S(x) = 1 + x, (3.29)

with x = S(2) +O(3) is introduced. And S−
1
2 is expanded in a Taylor series:

S−
1
2 (x) = S−

1
2 (0) + (S−

1
2 (0))′(x− 0) + . . .

= 1− 1

2
x

= 1− 1

2
S(2) +O(3)

(3.30)

Thus, S
− 1

2
I,J is given as:

S
− 1

2
I,J = δIJ −

1

2
S

(2)
I,J +O(3) (3.31)

3.3.2 Matrix representation in the precursor states

Now the matrix representation of the shifted Hamiltonian H̃ = Ĥ − E0 in the

precursor states with the Hamiltonian partitioning Ĥ = Ĥ0 + λĤ1 is discussed.
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The so-called precursor matrix M# has the form:

M#
IJ

(n)
λn =〈Ψ#

I |
(k)λk

(
Ĥ0 + λĤ1 − E(l)

0 λl
)
|Ψ#

J 〉
(m)λm

=
(
〈Ψ#

I |
(k)Ĥ0|Ψ#

J 〉
(m)
)
λ(k+m) +

(
〈Ψ#

I |
(k)Ĥ1|Ψ#

J 〉
(m)
)
λ(k+m+1)

− (SIJE0)λ(n)

(3.32)

The expressions for M#
IJ

(n)
up to second order are given as:

M#
IJ

(0)
=〈Ψ(0)

0 |Ĉ
†
IĤ0ĈJ |Ψ(0)

0 〉 − δIJE
(0)
0 (3.33)

M#
IJ

(1)
=〈Ψ(0)

0 |Ĉ
†
IĤ1ĈJ |Ψ(0)

0 〉 − δIJE
(1)
0 (3.34)

M#
IJ

(2)
=〈Ψ(1)

0 |Ĉ
†
IĤ1ĈJ |Ψ(0)

0 〉+ 〈Ψ(0)
0 |Ĉ

†
IĤ1ĈJ |Ψ(1)

0 〉

+ 〈Ψ(1)
0 |Ĉ

†
IĤ0ĈJ |Ψ(1)

0 〉 − δIJE
(2)
0 − S

(2)
IJ E

(0)
0 (3.35)

3.4 Explicit expressions for ADC(2)

From the results for the overlap matrix in section 3.3.1 and the precursor matrix

in 3.3.2, the terms required for the ADC(2) matrix can be obtained using equation

3.17. In addition, to extract explicit expressions, the terms of the series expansion

of the ground state and the ground state energy are required. The expressions for

E
(0)
0 , E

(1)
0 have already been given in section 2.3.2 as well as the remaining terms

E
(2)
0 and |Ψ(1)

0 〉. However, for the last two, the matrix elements in equations 2.40

and 2.41 have to be evaluated, which can be done using Wick’s theroem.

The first order correction to the wavefunction is given as:

|Ψ(1)
0 〉 =

∑
i<j
a<b

|Ψab
ij 〉
〈Ψab

ij |Ĥ1|Ψ(0)
0 〉

E
(0)
0 − E

(0)

Ψabij

(3.36)

The matrix element of Ĥ1, can be written as:

〈Ψab
ij |Ĥ1|Ψ(0)

0 〉 =
1

4

∑
pqrs

〈pq||rs〉〈Ψ(0)
0 |ĉ

†
j ĉ
†
i ĉbĉaĉ

†
pĉ
†
q ĉsĉr|Ψ

(0)
0 〉 (3.37)

Here, the single operator part of Ĥ1 has been omitted since the matrix element
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yields zero. Using Wick’s theorem, the expectation value 〈Ψ(0)
0 |ĉ

†
j ĉ
†
i ĉbĉaĉ

†
pĉ
†
q ĉsĉr|Ψ

(0)
0 〉

can be evaluated as:

〈Ψ(0)
0 |ĉ

†
j ĉ
†
i ĉbĉaĉ

†
pĉ
†
q ĉsĉr|Ψ

(0)
0 〉 = δjsδirδbpδaq − δjsδirδbqδap − δjrδisδbpδaq + δjrδisδbqδap

(3.38)

Thus, the matrix element in equation 3.37 can be obtained as:

〈Ψab
ij |Ĥ1|Ψ(0)

0 〉 =
1

4

∑
pqrs

〈pq||rs〉
(
δjsδirδbpδaq − δjsδirδbqδap

− δjrδisδbpδaq + δjrδisδbqδap
)

=
1

4
(〈ab||ij〉 − 〈ba||ij〉 − 〈ab||ji〉+ 〈ba||ji〉) = 〈ab||ij〉

(3.39)

By lifting the restrictions i < j and a < b in equation 3.36, the first order correction

to the wavefunction is finally obtained as:

|Ψ(1)
0 〉 = −1

4

∑
ijab

|Ψab
ij 〉

〈ab||ij〉
εa + εb − εi − εj

, (3.40)

which can be further simplified by introducing the so-called t-amplitudes:

tabij =
〈ab||ij〉

εa + εb − εi − εj
= t?ijab. (3.41)

Similar, the second order correction to the energy can be obtained as:

E
(2)
0 = −1

4

∑
ijab

t?ijab
1

4

∑
pqrs

〈pq||rs〉〈Ψ(0)
0 |ĉ†pĉ†q ĉsĉr|Ψab

ij 〉 = −1

4

∑
ijab

t?ijab〈ij||ab〉 (3.42)

In the same way, the matrix elements occurring in the terms for the overlap

and precursor matrix in sections 3.3.1 and 3.3.2 can be evaluated and the results

are presented in the following sections.
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3.4.1 Zeroth order and first order

Equation 3.17 yields for zeroth order:

M
(0)
I,J =

∑
K,L

(
S
− 1

2
I,K

)(0)

M#
IJ

(0)
(
S
− 1

2
L,J

)(0)

, (3.43)

which simplifies to:

M
(0)
I,J = 〈Ψ(0)

0 |Ĉ
†
IĤ0ĈJ |Ψ(0)

0 〉 − δIJE
(0)
0 =

∑
p

εp〈Ψ(0)
0 |Ĉ

†
I ĉ
†
pĉpĈJ |Ψ

(0)
0 〉 − δIJE

(0)
0

(3.44)

Equation 3.44 yields for the p-h,p-h-block:

M
(0)
ia,jb = (εa − εi) δabδij (3.45)

and for the 2p-2h,2p-2h-block:

M
(0)
iajb,kcld = (εa + εb − εi − εj) δacδbdδikδjl. (3.46)

Similar, the first order term is given as:

M
(1)
I,J =

∑
K,L

(
S
− 1

2
I,K

)(0)

M#
IJ

(1)
(
S
− 1

2
L,J

)(0)

= 〈Ψ(0)
0 |Ĉ

†
IĤ1ĈJ |Ψ(0)

0 〉 − δIJE
(1)
0 ,

(3.47)

which yields after evaluating the matrix element of Ĥ1 for the p-h,p-h-block:

M
(1)
ia,jb = −〈aj||bi〉+ E

(1)
0 δijδab − δijδabE(1)

0 = −〈aj||bi〉. (3.48)

Evaluating the matrix element in equation 3.47 for the coupling blocks yields:

M
(1)
ia,kcld = 〈kl||id〉δac − 〈kl||ic〉δad − 〈al||cd〉δik + 〈ak||cd〉δil (3.49)

M
(1)
iajb,kc = 〈kb||ij〉δac − 〈ka||ij〉δbc − 〈ab||cj〉δik + 〈ab||ci〉δjk (3.50)

(3.51)
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3.4.2 Second order

First, the overlap matrix in second order is considered, which is only required for

the p-h,p-h-block:

S
(2)
ia,jb =〈Ψ(1)

0 |ĉ
†
i ĉâ̂c

†
bĉj|Ψ

(1)
0 〉

=
1

16

∑
klmn
cdef

t?cdkltmnef〈Ψcd
kl |ĉ
†
i ĉaĉ

†
bĉj|Ψ

ef
mn〉

=
1

16

∑
klmn
cdef

t?cdkltmnef〈Ψ
(0)
0 |ĉ

†
l ĉ
†
kĉdĉcĉ

†
i ĉaĉ

†
bĉj ĉeĉf ĉ

†
mĉ
†
n|Ψ

(0)
0 〉.

(3.52)

Evaluating the expectation value 〈Ψ(0)
0 |ĉ

†
l ĉ
†
kĉdĉcĉ

†
i ĉaĉ

†
bĉj ĉeĉf ĉ

†
mĉ
†
n|Ψ

(0)
0 〉 using Wick’s

theorem yields:

S
(2)
ia,jb =

1

4

∑
cdkl

|tcdkl|2δijδab −
1

2

∑
kcd

tcdikt
?
cdjkδab −

1

2

∑
klc

tacklt
?
bcklδij +

∑
kc

tacikt
?
bcjk

(3.53)

Now, the matrix elements of Ĥ1, which contribute to the second order precursor

matrix given in equation 3.35 are evaluated for the p-h,p-h-block:

〈Ψ(1)
0 |ĉ

†
i ĉaĤ

(1)ĉ†bĉj|Ψ
(0)
0 〉 =

1

4

∑
pqrs

∑
klcd

t?cdkl〈pq||rs〉〈Ψcd
kl |ĉ
†
i ĉaĉ

†
pĉ
†
q ĉsĉrĉ

†
bĉj|Ψ

(0)
0 〉

=− 1

4
δijδab

∑
cdkl

〈cd||kl〉t?cdkl +
1

2
δij
∑
ckl

〈ac||kl〉t?bckl

+
1

2
δab
∑
cdk

〈cd||ik〉t?cdjk −
∑
ck

〈ac||ik〉t?bcjk,

(3.54)

〈Ψ(0)
0 |ĉ

†
i ĉaĤ

(1)ĉ†bĉj|Ψ
(1)
0 〉 =

1

4

∑
pqrs

∑
klcd

〈pq||rs〉tcdkl〈Ψ(0)
0 |ĉ

†
i ĉaĉ

†
pĉ
†
q ĉsĉrĉ

†
bĉj|Ψ

cd
kl〉

=− 1

4
δijδab

∑
cdkl

〈kl||cd〉tcdkl +
1

2
δij
∑
ckl

〈kl||bc〉tackl

+
1

2
δab
∑
cdk

〈jk||cd〉tcdki −
∑
ck

〈jk||bc〉tacik.

(3.55)
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The matrix element of Ĥ0, which is the third term on the right-hand side of

equation 3.35 can be evaluated as:

〈Ψ(1)
0 |ĉ

†
i ĉaĤ

(0)ĉ†bĉj|Ψ
(1)
0 〉 =

1

16

∑
pqrs

∑
klmn
cdef

t?cdkltefmn〈Ψcd
kl |ĉ
†
i ĉaĉ

†
pĉpĉ

†
bĉj|Ψ

ef
mn〉

=
1

4
δijδab

∑
cdkl

t?cdkltcdkl(E
(0)
0 + εc + εd − εk − εl + εa − εi)

− 1

2
δab
∑
cdk

tcdikt
?
cdjk(E

(0)
0 + εa + εc + εd − εi − εj − εk)

− 1

2
δij
∑
ckl

tacklt
?
bckl(E

(0)
0 + εc + εa + εb − εk − εl − εi)

+
∑
ck

tacikt
?
bcjk(E

(0)
0 + εa + εb + εc − εi − εk − εj).

(3.56)

The result in equation 3.56 can be rewritten by collecting the orbital energies in the

brackets in such a way that they cancel the denominators of the t-amplitudes. This

yields exactly half of the matrix elements defined in 3.54 and 3.55 with opposite

sign and a remainder:

〈Ψ(1)
0 |ĉ

†
i ĉaĤ

(0)ĉ†bĉj|Ψ
(1)
0 〉 = −1

2

(
〈Ψ(1)

0 |ĉ
†
i ĉaĤ

(1)ĉ†bĉj|Ψ
(0)
0 〉+ 〈Ψ(0)

0 |ĉ
†
i ĉaĤ

(1)ĉ†bĉj|Ψ
(1)
0 〉
)

+
1

4
δijδab

∑
cdkl

t?cdkltcdkl(E
(0)
0 + εa − εi)−

1

4
δab
∑
cdk

tcdikt
?
cdjk(E

(0)
0 + 2εa − εi − εj)

−1

4
δij
∑
ckl

tacklt
?
bckl(E

(0)
0 + εa + εb − 2εi) +

1

2

∑
ck

tacikt
?
bcjk(E

(0)
0 + εa + εb − εi − εj).

(3.57)

The terms containing E
(0)
0 cancel exactly the last term in equation 3.35. Thus, the

terms for the second order p-h,p-h-block of the precursor matrix can be summed
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up to:

M#
ia,jb

(2)
=

1

2

(
〈Ψ(1)

0 |ĉ
†
i ĉaĤ

(1)ĉ†bĉj|Ψ
(0)
0 〉+ 〈Ψ(0)

0 |ĉ
†
i ĉaĤ

(1)ĉ†bĉj|Ψ
(1)
0 〉
)

+
1

4
δijδab

∑
cdkl

t?cdkltcdkl(εa − εi)−
1

4
δab
∑
cdk

tcdikt
?
cdjk(2εa − εi − εj)

−1

4
δij
∑
ckl

tacklt
?
bckl(εa + εb − 2εi) +

1

2

∑
ck

tacikt
?
bcjk(εa + εb − εi − εj)− δabδijE(2)

0 ,

(3.58)

which can further be simplified to:

M#
ia,jb

(2)
=

1

2

(
〈Ψ(1)

0 |ĉ
†
i ĉaĤ

(1)ĉ†bĉj|Ψ
(0)
0 〉+ 〈Ψ(0)

0 |ĉ
†
i ĉaĤ

(1)ĉ†bĉj|Ψ
(1)
0 〉
)

+
1

2
S

(2)
ia,jb(εa +−εi) +

1

2
S

(2)
ia,jb(εb − εj)− δabδijE

(2)
0 .

(3.59)

According to equation 3.17 the contributions to the second order ADC matrix are:

M
(2)
ia,jb =

∑
klcd

(
S
− 1

2
ia,kc

)(2) (
〈Ψ#

ck|Ĥ − E0|Ψ#
dl〉
)(0) (

S
− 1

2
ld,jb

)(0)

+
∑
klcd

(
S
− 1

2
ia,kc

)(0) (
〈Ψ#

ck|Ĥ − E0|Ψ#
dl〉
)(0) (

S
− 1

2
ld,jb

)(2)

+M#
ia,jb

(2)
,

(3.60)

which simplifies to:

M
(2)
ia,jb =

∑
kc

(
S
− 1

2
ia,kc

)(2)

(εb − εj) δbcδjk +
∑
kc

(εa − εi) δacδik
(
S
− 1

2
kc,jb

)(2)

+M#
ia,jb

(2)

=− 1

2
Sia,jb (εb − εj)−

1

2
Sia,jb (εa − εi) +M#

ia,jb

(2)
.

(3.61)

The first two terms on the right-hand side of equation 3.61 cancel against parts of

M#
ia,jb

(2)
:

M
(2)
ia,jb =

1

2

(
〈Ψ(1)

0 |ĉ
†
i ĉaĤ

(1)ĉ†bĉj|Ψ
(0)
0 〉+ 〈Ψ(0)

0 |ĉ
†
i ĉaĤ

(1)ĉ†bĉj|Ψ
(1)
0 〉
)
−δabδijE(2)

0 (3.62)
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Eventually, the last part in equation 3.62, E
(2)
0 cancels against the first terms on

the right-hand side of equations 3.54 and 3.55 and the final result is given as:

M
(2)
ia,jb = =

1

4
δij
∑
ckl

(
tackl〈kl||bc〉+ tklbc〈kl||ac〉

)

+
1

4
δab
∑
cdk

(
tcdik〈jk||cd〉+ tjkcd〈cd||ik〉

)

− 1

2

∑
ck

(
tacik〈jk||bc〉+ tjkbc〈ac||ik〉

)
.

(3.63)

3.4.3 Summary

Finally, all contributions to the ADC(2) matrix are summarized:

Mia,jb = M
(0)
ia,jb +M

(1)
ia,jb +M

(2) A
ia,jb +M

(2) B
ia,jb +M

(2) C
ia,jb (3.64)

Mia,kcld = M
(1)
ia,kcld (3.65)

Miajb,kc = M
(1)
iajb,kc (3.66)

Miajb,kcld = M
(0)
iajb,kcld (3.67)

and the explicit expressions are given as:

M
(0)
ia,jb = (εa − εi) δabδij (3.68)

M
(1)
ia,jb = −〈aj||bi〉 (3.69)

M
(2) A
ia,jb =

1

4
δij
∑
ckl

(
〈ac||kl〉〈kl||bc〉
εa + εc − εk − εl

+
〈ac||kl〉〈kl||bc〉
εb + εc − εk − εl

)
(3.70)

M
(2) B
ia,jb =

1

4
δab
∑
cdk

(
〈cd||ik〉〈jk||cd〉
εc + εd − εi − εk

+
〈cd||ik〉〈jk||cd〉
εc + εd − εj − εk

)
(3.71)

M
(2) C
ia,jb = −1

2

∑
ck

(
〈ac||ik〉〈jk||bc〉
εa + εc − εi − εk

+
〈ac||ik〉〈jk||bc〉
εb + εc − εj − εk

)
(3.72)

M
(1)
ia,kcld = 〈kl||id〉δac − 〈kl||ic〉δad − 〈al||cd〉δik + 〈ak||cd〉δil (3.73)

M
(1)
iajb,kc = 〈kb||ij〉δac − 〈ka||ij〉δbc − 〈ab||cj〉δik + 〈ab||ci〉δjk (3.74)

M
(0)
iajb,kcld = (εa + εb − εi − εj) δacδbdδikδjl. (3.75)
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3.5 Expressions from perturbation theory

In this section, expressions from perturbation theory, which are required in the

following chapters are given. All terms enter the third order ADC density matrices

given in tables 4.3 and 4.5. In addition, ρ(2) enters the ISR excited state and state-

to-state densities given in table 5.1.

ρ
(2)
ij =− 1

4
(1 + Pij)

∑
kab

t?ijabtjkab (3.76)

ρ
(2)
ia =− 1

2 (εa − εi)

(∑
jbc

t?ijab〈ja||bc〉+ tjkab
∑
jkb

〈jk|ib

)
(3.77)

ρ
(2)
ab =

1

4
(1 + Pab)

∑
ijc

t?ijactijbc (3.78)

TDijab =

∑
kc t

?
ikac〈kb||jc〉 − 1

2

(∑
cd t

?
ijcd〈ab||cd〉+

∑
kl tklab〈ij||kl〉

)
εa + εb − εi − εj

(3.79)
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Chapter 4

Analytical Derivatives of the

Energy of the Algebraic

Diagrammatic Construction

Scheme

4.1 Analytical derivatives in quantum chemistry

Analytical derivatives have become a standard tool in quantum chemistry. To il-

lustrate the concepts and the techniques used in the derivation and implementation

of analytical gradients in modern quantum chemistry methods, a brief overview of

some of the major contribution to the topic is given.

4.1.1 Hellmann-Feynman theorem

The Hellmann-Feynman theorem [34, 35] is the first important realization for an-

alytical derivatives in quantum chemistry. It holds for the energy E of the exact

wavefunction |Ψ〉:
E = 〈Ψ|Ĥ|Ψ〉 (4.1)
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and it states that the derivative with respect to (w.r.t.) any perturbation ξ can

be obtained as the expectation value of the perturbed Hamiltonian.

∂E

∂ξ
= 〈Ψ|∂Ĥ

∂ξ
|Ψ〉 (4.2)

It can easily be extended to approximate wavefunctions depending on variationally

optimized parameters Θ = {θ1, . . . , θn}. Since Ĥ is independent of the parameters

Θ, the total derivative of the energy w.r.t. ξ is

dE(Θ, ξ)

dξ
=
d〈Ψ(Θ, ξ)|Ĥ|Ψ(Θ, ξ)〉

dξ
= 〈Ψ(Θ, ξ)|∂Ĥ

∂ξ
|Ψ(Θ, ξ)〉+

n∑
k

∂E(Θ, ξ)

∂θk

dθk
dξ

.

(4.3)

Because of the variational conditions

∂E(Θ, ξ)

∂θk
= 0, (4.4)

the elements of the sum in (4.3) vanish. For the same reasons the theorem also

holds for perturbation-independent parameters.

An example for optimized parameters are the variationally determined coeffi-

cients of a configuration interaction (CI) wavefunction expansion. However, CI-

wavefunctions generally do not fully satisfy the Hellmann-Feynman theorem, since

they depend implicitly on the parameters of the underlying reference state Φ0 [36].

4.1.2 Z-vector approach

For analytical derivatives of wavefunctions depending on non-optimized param-

eters the so-called non-Hellmann-Feynman contributions have in principle to be

evaluated for each pair of parameter and perturbation individually. Handy and

Schaefer realized that dealing with the direct perturbation dependence of the non-

optimized parameters can be avoided by introducing a perturbation-independent

set of response equations [37]. This so-called Z-vector approach has greatly im-

proved the efficiency of analytical derivative calculations.
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4.1.3 Lagrange formalism

A generalization and rigorous derivation of the Z-vector approach can be obtained

using a Lagrange formalism. The Lagrange formalism is an elegant and efficient

way to avoid the evaluation of non-Hellmann-Feynman contributions and has be-

come a standard method for the derivation of analytical gradients in quantum

chemistry [22, 23, 36].

Considering an energy expression E depending on an external perturbation ξ,

variationally optimized parameters Θ and non-optimized parameters ∆, the total

derivative of E w.r.t. ξ is given by

dE(Θ,∆, ξ)

dξ
=
∂E

∂ξ
+
∂E

∂∆

d∆

dξ
. (4.5)

Now the Lagrangian

L(∆,Θ, ξ,K) = E +
∑
i

κifi(∆) (4.6)

is introduced. Here {κk} = K are undetermined Lagrange multipliers and {fk(∆) =

0} are equations defining the non-optimized parameters. From the definition of

the Lagrangian follows, that L is stationary w.r.t. K, since ∂L
∂κk

= fk(∆) = 0.

If the Lagrange multipliers can be determined such that they solve the system of

equations {
∂L
∂δk

= 0

}
, (4.7)

then L is stationary w.r.t. all parameters and fulfilling the Hellmann-Feynman

theorem. Thus, using the partial derivative of the Lagrangian the total derivative

of E w.r.t. ξ can be obtained.

dE

dξ
=
dL
dξ

=
∂L
∂ξ

(4.8)
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4.2 Analytical energy derivatives of wavefunction-

based methods

In this work the Lagrange formalism is used in analogy to [23] to obtain expressions

for energy derivatives of different ADC models. Some aspects of the derivation are

independent of the respective method and will be discussed beforehand in this

section.

4.2.1 Energy functional

Energy expressions of wavefunction-based methods can be written in terms of

one- and two-electron integrals (hpq = 〈p|ĥ|q〉 and 〈pq||rs〉) and the one- and two-

particle reduced density matrices γ = {γpq} and Γ = {Γpqrs} (1RDM and 2RDM)

E =
∑
pq

hpqγpq +
1

4

∑
pqrs

〈pq||rs〉Γpqrs. (4.9)

4.2.2 Partial derivative

The partial derivative of the energy w.r.t. to an external perturbation ξ, the

Hellmann-Feynman term, is given as

∂E

∂ξ
=
∑
pq

hξpqγpq +
1

4

∑
pqrs

〈pq||rs〉ξΓpqrs. (4.10)

The perturbed one- and two-electron integrals can be obtained by transforming

the perturbed integrals from the atomic orbital basis {χµ} (AO) to the molecular

orbital basis {φp} (MO) using the orbital transformation matrix C.

∂hpq
∂ξ

= hξpq =
∑
µν

Cµph
ξ
µνCνq (4.11)

∂〈pq||rs〉
∂ξ

= 〈pq||rs〉ξ =
∑
µνστ

CµpCνq〈µν||στ〉ξCσrCτs (4.12)
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4.2.3 Total derivative

Applying the chain rule, the total derivative of post-Hatree-Fock energy expres-

sions, which depend on C and parameters T = {tz} from a correlation treatment,

w.r.t. ξ is given as

dE(C,T, ξ)

dξ
=
∂E

∂ξ
+
∂E

∂C

dC

dξ
+
∂E

∂T

dE

dξ
. (4.13)

If the parameters T are obtained non-variationally, i.e. through perturbation

theory, the third term on the right-hand side of equation 4.13, the partial derivative

w.r.t. T does not vanish.

However, as first realized by Handy and Schaefer [37], the total derivative can

be evaluated for all post-Hartree-Fock methods in the same way as the partial

derivative and requires in addition only a set of Lagrange multipliers Ω = {ωpq}
and the derivative of the overlap matrix S = {Spq} = {〈φp|φq〉} which can also be

obtained by transforming from the AO basis

∂Spq
∂ξ

= Sξpq =
∑
µν

CµpS
ξ
µνCνq. (4.14)

By introducing effective one- and two-particle reduced density matrices γe and Γe,

the total derivative can be written as

dE

dξ
=
∑
pq

hξpqγ
e
pq +

1

4

∑
pqrs

〈pq||rs〉ξΓepqrs +
∑
pq

ωpqS
ξ
pq. (4.15)

Three different parts contribute to the effective density matrices in 4.15 and their

explicit form can be derived using the Lagrange formalism as shown in the next

section.

4.2.4 Lagrangian of wavefunction-based methods

A Lagrangian for wavefunction-based methods can be used to avoid the computa-

tion of partial derivatives w.r.t. non-optimized wavefunction parameters. It can be

constructed using the conditions for the equations of the underlying reference state

and the correlation treatment as introduced in equation 4.6. If canonical Hartree-
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Fock is used the Fock matrix F = {fpq} is diagonal and the overlap matrix S is

the unity matrix, which can be expressed as

fpq − δpqεp = 0 and Spq − δpq = 0. (4.16)

It is necessary to find in a similar way equations {fz}, that satisfy the condition

fz(tz) = 0 (4.17)

for the parameters T = {tz}. Using 4.16 and 4.17, a general Lagrangian for

methods based on canonical Hartree-Fock can be constructed as [23]

L(C,T,Λ,Ω, T̃) = E(C,T)+
∑
pq

λpq(fpq−δpqεp)+
∑
pq

ωpq(Spq−δpq)+
∑
z

t̃zfz(tz).

(4.18)

Here, Λ = {λpq}, Ω = {ωpq}, and T̃ = {t̃z} are sets of undetermined Lagrange

multipliers. It should be noted, that the Lagrange multiplier matrices Λ and Ω

are symmetric. The first term of equation 4.18 is the energy E(C,T) given in 4.9

and the remaining terms are zero if the conditions 4.16 and 4.17 are satisfied.

From the definition of the Lagrangian it follows directly that L is stationary

w.r.t. the Lagrange multipliers:

∂L

∂λpq
= fpq − δpqεp = 0

∂L

∂ωpq
= Spq − δpq = 0

∂L

∂tz
= fz(tz) = 0

(4.19)

The undetermined Lagrange multipliers can be chosen freely and are defined by

imposing
∂L

∂C
!

= 0 (4.20)

and
∂L

∂T
!

= 0, (4.21)

meaning, that L is stationary w.r.t. all non-variational parameters. Thus, the
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Lagrangian is stationary w.r.t. to all wavefunction parameters (and Lagrange

multipliers) and the total derivative of L becomes equal to the partial derivative.

Hence, from the definition of L in 4.18 follows that the total derivative of the

energy E w.r.t. a perturbation ξ is given by

dE

dξ
=
dL

dξ
!

=
∂L

∂ξ
, (4.22)

if the Lagrange multipliers satisfy equations 4.20 and 4.21.

The partial derivative of L w.r.t. ξ is given by

∂L

∂ξ
=
∂E

∂ξ
+
∑
pq

λpq
∂fpq
∂ξ

+
∑
pq

ωpq
∂Spq
∂ξ

+
∑
i

t̃i
∂fi(ti)

∂ξ
, (4.23)

and can be sorted and rewritten as

∂L

∂ξ
=
∑
pq

hξpq

(
γpq(T ) + γOpq(Λ) + γApq(T̃ )

)
+

1

4

∑
pqrs

〈pq||rs〉ξ
(

Γpqrs(T ) + ΓOpqrs(Λ) + ΓApqrs(T̃ )
)

+
∑
pq

ωpqS
ξ
pq.

(4.24)

By comparing with 4.24 the effective density matrices from equation 4.15 can

be identified as

γe = γ(T) + γO(Λ) + γA(T̃) (4.25)

and

Γe = Γ(T) + ΓO(Λ) + ΓA(T̃). (4.26)

γ(T) and Γ(T) are the so-called unrelaxed densities which are identical to those in

equation 4.10 and only depend on the parameters from the correlation treatment.

The remaining terms on the right-hand side of equation 4.25 and 4.26 depend

on the Lagrange multipliers. γO(Λ) and ΓO(Λ) are the so-called orbital response

contributions, and depend on the set of Lagrange multipliers, which guarantees

stationarity of the Lagrangian w.r.t. changes in the parameters of the orbital basis.

Their explicit form is method-independent and is presented in the next section
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(4.2.5). The remaining terms, γA(T̃) and ΓA(T̃), the so-called amplitude response

contributions, depend on the Lagrange multipliers which ensure stationarity of L

w.r.t. the parameters of the correlation treatment and are thus method-specific.

Their explicit form is discussed for each model individually in section 4.3.

4.2.5 Orbital response

To determine the Lagrange multipliers, which ensure stationarity w.r.t. to the

parameters of the reference state, the so-called orbital response procedure is per-

formed. Here, a system of linear equation has to be solved, determined by the

imposed condition given in equation 4.20. This system of linear equations can be

derived starting from the definition of the Lagrangian in equation 4.18.

L = E +
∑
pq

λpq(fpq − δpqεp) +
∑
pq

ωpq(Spq − δpq) +
∑
z

t̃zfz(tz). (4.27)

It is useful to express the energy, using the relation between the Fock matrix

fpq = hpq +
∑
i

〈pi||qi〉 (4.28)

and the core Hamiltonian hpq, as

E =
∑
pq

fpqγ̃pq +
1

4

∑
pqrs

〈pq||rs〉Γ̃pqsr (4.29)

The introduced densities γ̃ and Γ̃ are identified as

γ̃pq = γpq (4.30)

Γ̃pqrs = Γpqrs − γpsδqrδq∈occ + γprδqsδq∈occ + γqsδprδp∈occ − γqrδpsδp∈occ. (4.31)

Here, Γ̃ is the so-called nonseparable part of the two-particle density matrix. In the

same way, the explicit form of the orbital response contributions can be identified
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as

γOpq = λpq (4.32)

ΓOpqrs = −λpsδqrδq∈occ + λprδqsδq∈occ + λqsδprδp∈occ − λqrδpsδp∈occ. (4.33)

The Lagrangian is sorted, collecting all contributions besides the orbital re-

sponse Lagrange multipliers in

γ′(T, T̃) = γ(T) + γA(T̃) and Γ′(T, T̃) = Γ̃(T) + ΓA(T̃) (4.34)

and thus, written as

L =
∑
pq

fpqγ
′
pq +

1

4

∑
pqrs

〈pq||rs〉Γ′pqrs +
∑
pq

λpq(fpq − δpqεp) +
∑
pq

ωpqSpq. (4.35)

Now the partial derivatives w.r.t. the elements of the orbital transformation matrix

C are evaluated. The Lagrangian depends on the elements of C through the Fock

matrix, the two-electron integrals and the overlap matrix. The system of linear

equations according to equation 4.20 has the form

0 =
∑
pq

∂fpq
∂Cµp

(
γ′pq + λpq

)
+

1

4

∑
pqrs

∂〈pq||rs〉
∂Cµp

Γ′pqrs +
∑
pq

ωpq
∂Spq
∂Cµp

. (4.36)

To obtain programmable expressions from equation 4.36,

∂L

∂Cµp
= 0, is replaced by

∑
µ

Cµq
∂L

Cµp
= 0, (4.37)

to avoid expressions with partially-transformed integrals and the partial derivatives

are performed. Evaluating the required derivatives of the Fock matrix, the two-

electron integrals and the overlap matrix is straightforward [23]. Equation 4.37
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yields

∑
µ

Cµu
∂L

∂Cµt
=
∑
pq

(
λpq + γ′pq

)
(δptfuq + δqtfpu + (〈pu||qt〉+ 〈pt||qu〉) δt∈occ.)

+
∑
pqr

1

2

(
Γ′tpqr〈up||qr〉+ Γ′qrtp〈qr||up〉

)
+
∑
pq

ωpq (δptSuq + δqtSpu) ,

(4.38)

which can be simplified by assuming real two-electron integrals and using fpq =

εpδpq, Spq = δpq, as well as the symmetry of Λ and Ω, to

∑
µ

Cµu
∂L

∂Cµt
=
∑
pq

2 (λtu + γ′′tu) (εu + 〈pu||qt〉δt∈occ.) +
∑
pqr

Γ′′tpqr〈up||qr〉+ 2ωut.

(4.39)

It should be noted that the contributions from the Hartree-Fock energy to 4.39

cancel and thus,

γ′′ij = γ′ij − δij and Γ′′ijkl = Γ′ijkl + δilδkj − δikδjl. (4.40)

Choosing the indices t and u in equation 4.39 from different orbital spaces

yields:

0 =
∑
µ

Cµi
∂L

∂Cµj

= 2
(
λij + γ′′ij

)
εi +

∑
pq

(
λpq + γ′′pq

)
〈pi||qj〉+

∑
pqr

Γ′′jpqr〈ip||qr〉+ 2ωij, (4.41)

0 =
∑
µ

Cµa
∂L

∂Cµi

= 2 (λia + γ′′ia) εa +
∑
pq

(
λpq + γ′′pq

)
〈pi||qa〉+

∑
pqr

Γ′′ipqr〈ap||qr〉+ 2ωia, (4.42)
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0 =
∑
µ

Cµi
∂L

∂Cµa
= 2 (λia + γ′′ia) εi +

∑
pqr

Γ′′apqr〈ip||qr〉+ 2ωij, (4.43)

0 =
∑
µ

Cµa
∂L

∂Cµb
= 2 (λab + γ′′ab) εa +

∑
pqr

Γ′′bpqr〈ap||qr〉+ 2ωij. (4.44)

Subtracting equations 4.42 from 4.43 yields the set of equation which determines

the Lagrange multipliers Λ:

0 = 2 (λia + γ′′ia) (εi − εa)

+
∑
pq

(
λpq + γ′′pq

)
(〈pa||qi〉 − 〈pi||qa〉) +

∑
pqr

(
Γ′′ipqr〈ap||qr〉 − Γ′′apqr〈ip||qr〉

)
.

(4.45)

If no approximations restricting the active orbital space are employed, λij and λab

are zero, since the energy is invariant w.r.t. orbital rotations within the space of

occupied or virtual orbitals. However, for frozen core or frozen virtual approxima-

tions λij and λab can be obtained through the equations:

0 =
∑
µ

Cµi
∂L

∂Cµj
−
∑
µ

Cµj
∂L

∂Cµi

= 2
(
λij + γ′′ij

)
(εi − εj) +

∑
pqr

(
Γ′′jpqr〈ip||qr〉 − Γ′′ipqr〈jp||qr〉

)
,

(4.46)

0 =
∑
µ

Cµa
∂L

∂Cµb
−
∑
µ

Cµb
∂L

∂Cµa

= 2 (λab + γ′′ab) (εa − εb) +
∑
pqr

(
Γ′′bpqr〈ap||qr〉 − Γ′′apqr〈bp||qr〉

) (4.47)

and then enter equation 4.45.

After the occupied-virtual block of Λ has been determined iteratively, equations

4.41, 4.42, and 4.44 can be used to determine Ω.

4.3 Analytical energy derivatives for ADC

In this work for the first time analytical derivative expressions for the second order

extended ADC model (ADC(2)-x) and third order ADC (ADC(3)) are presented.

Expressions for the strict second order model ADC(2) have been published earlier
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in [38]. Extending the computation of analytical energy derivatives for ADC(2)

to the ADC(2)-x model requires only few additional terms in the density matrices

and no additional Lagrange multipliers for the amplitude response. However, the

ADC(3) energy in contrast to ADC(2) contains additional parameters from the

perturbation treatment.

After the Lagrangian for an arbitrary ADC model is given, the expressions

for the amplitude response for ADC(3) are presented. How the expressions for

the density matrices can be derived is briefly demonstrated for the expressions of

ADC(2) and successively the results for all models are summarized.

All expressions presented in this section are derived from the equations pub-

lished for ADC(2) [31], ADC(2)-x [31] and ADC(3) [32] as they are implemented

in the adcman module [20, 30, 39] embedded in the Q-Chem package of programs

[40]. All occurring quantities are assumed to be real in the following sections.

4.3.1 ADC Lagrangian

The ADC excitation energy for an excited state I in terms of the excited state

vectors vI =
(
vIia, v

I
ijab,...

)T
is

ωI = v†IMvI (4.48)

and the total energy is obtained by adding the ground state energy

E = E0 + ωI . (4.49)

In the following the index I is omitted.

The Lagrangian for the energy of a given ADC(n) (MP(n)) model for n > 1

has the form

LADC(n) = EHF +
n∑
i>1

(
E(i) + v†M(i)v

)
+R

ADC(n)
A +RO(Λ,Ω)

= EHF +
∑
pq

fpqγ
(n)
pq +

1

4

∑
pqrs

〈pq||rs〉Γ(n)
pqrs +RO(Λ,Ω)

(4.50)
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with the orbital response contributions collected in

RO(Λ,Ω) =
∑
pq

λpq(fpq − δpqεp) +
∑
pq

ωpqSpq. (4.51)

It should be noted that the ADC energy is invariant w.r.t. changes in the excitation

vectors. The Lagrange multipliers and conditions R
ADC(n)
A ensure stationarity

w.r.t. parameters from the perturbation treatment that occur in the ADC(n)

matrix and E0(n), i.e. the t-amplitudes for MP(2), ADC(2) and ADC(2)-x, the

TD-amplitudes for MP(3) and additionally the second order density correction ρ(2)

for ADC(3).

R
ADC(0)
A = R

ADC(1)
A = 0 (4.52)

R
ADC(2)
A = R

MP (2)
A =

∑
ijab

t̄ijabf(tijab) (4.53)

R
MP (3)
A = R

MP (2)
A +

∑
ijab

T̄Dijabf(TDijab) (4.54)

R
ADC(3)
A = R

MP (3)
A +

∑
pq

ρ̄pqf(ρ(2)
pq ) (4.55)

To evaluate the derivative of the ADC energy, the expressions for the amplitude

response have to be determined, meaning the partial derivatives of the Lagrangian

w.r.t. to the non-variational parameters have to be evaluated. In addition, the ex-

pressions for the density matrices γ(n) and Γ(n) are required. The density matrices

can be obtained by comparing the left- and right-hand side of

n∑
i>1

(
E(i) + v†M(i)v

)
+R

ADC(n)
A =

∑
pq

fpqγ
(n)
pq +

1

4

∑
pqrs

〈pq||rs〉Γ(n)
pqrs. (4.56)

4.3.2 Amplitude response for ADC(3)

Three different quantities from the perturbative expansion enter the ADC(3) ma-

trix, i.e. the t-amplitudes, the TD amplitudes and second order one-particle den-

sity ρ(2). To ensure the stationarity of the Lagrangian w.r.t. these parameters,

Lagrange multipliers for the t-amplitudes (t̄) and the TD amplitudes (T̄D) have to

be introduced. In this work, the MP(2) correction to the density matrix is used
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and the stationarity w.r.t. the occupied-occupied and virtual-virtual blocks of ρ(2)

is guaranteed through the Lagrange multipliers t̄, since they contain only prod-

ucts of t-amplitudes. However, for the occupied-virtual part additional Lagrange

multipliers are required.

The Lagrangian for ADC(3) is constructed as

L = EHF −
1

4

∑
ijab

(
tijab + TDijab

)
〈ij||ab〉+ ω +RO

+
∑
ijab

t̄ijab (tijab (εa + εb − εi − εj)− 〈ij||ab〉)

+
∑
ijab

T̄Dijab
(
TDijab (εa + εb − εi − εj)− yijab

)
+
∑
ia

ρ̄ia

(
ρ

(2)
ia (εa − εi)− dia

)
.

(4.57)

First, the Lagrange multipliers T̄D are determined. Setting the partial derivative

of L w.r.t. to TD to zero yields:

T̄Dijab =
1

4

〈ij||ab〉 − ∂ω
∂TDijab

εa + εa − εi − εj
. (4.58)

The TD-amplitudes enter the ADC(3) matrix in the same position as the t-

amplitudes enter the ADC(2) matrix, in the p-h,p-h-block. Thus, equation 4.58

is identical to the equation determining the Lagrange multipliers t̄ for the t-

amplitudes in ADC(2). The derivative of the ADC(3) matrix w.r.t. to TD is

found as

∂ωADC(3)

∂TDijab
=
∂ωADC(2)

∂tijab
= (1− Pab)

∑
c

〈ij||cb〉
∑
k

vkavkc

+ (1− Pij)
∑
k

〈kj||ab〉
∑
c

vicvkc

− (1− Pij) (1− Pab) via
∑
ck

〈jk||bc〉vkc.

(4.59)

By omitting the second term in the numerator, the derivative of ω, equation 4.58

determines the Lagrange multipliers T̄D for MP(3) (and t̄ for MP(2) respectively),
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which are the t-amplitudes scaled by the factor 1
4
. Thus, they do not need to

be evaluated separately for the MP(2) [41] and MP(3) [42] energy derivatives

respectively.

Now, the equations for the Lagrange multipliers ρ̄ia are determined by evalu-

ating the partial derivative of L w.r.t. the occupied-virtual part of ρ(2):

ρ̄ia =
− ∂ω

∂ρ
(2)
ia

εa − εi
=

2

εa − εi

(∑
jk

〈ji||ka〉
∑
c

vjcvkc

−
∑
jb

vjb
∑
k

〈ji||kb〉vka

+
∑
bc

〈ib||ca〉
∑
k

vkbvkc

−
∑
jc

vjc
∑
b

〈jb||ca〉vib

)
(4.60)

It should be noted that, if higher-order corrections for the one-particle density in

the ADC(3) matrix are introduced, using the so-called Dyson expansion method

(DEM) [43], the partial derivatives w.r.t. occupied-occupied and virtual-virtual

blocks of ρ have to be evaluated as well and different conditions determining ρ

have to be included in the Lagrangian.

Finally, the Lagrange multipliers t̄ are determined. Here, it is important to no-

tice that both, TD and ρ(2), depend on the t-amplitudes. Hence, terms containing

their respective Lagrange multipliers enter t̄ and TD and ρ(2) have to be deter-

mined, before t̄ can be evaluated. The expressions for t̄ are lengthy and comprise

four different parts. First, the contribution from the ground state energy, which

is simply a two-electron integral, secondly the partial derivative of ω w.r.t. the t-

amplitudes, which is by far the longest part, and as third and fourth contributions,

the partial derivatives of the equations determining TD and ρ
(2)
ia .

The partial derivative of L w.r.t. t-amplitudes yields:

t̄ijab =

∂
∂tijab

(∑
klcd

1
4
〈kl||cd〉tklcd − ω +

∑
klcd

T̄Dklcdyklcd +
∑
kc

ρ̄kcdkc

)
εa + εb − εi − εj

. (4.61)

The contributions to t̄ from the partial derivative of ω are split further and equation

49



Chapter 4. Analytical Derivatives of the Energy of the
Algebraic Diagrammatic Construction Scheme

4.61 is written as:

t̄ijab =
〈ij||ab〉+

∑6
n=1

nt̃ijab + t̃T
D

ijab + t̃ρijab
εa + εb − εi − εj

(4.62)

The terms occurring in equation 4.62 are presented in table 4.4 in the next section

together with the expressions for the density matrices γ(n) and Γ(n) for different

ADC and MP models.

4.3.3 Explicit expressions

To demonstrate how the expressions for the density matrices can be obtained, the

expressions up to ADC(2) are derived, starting from the excitation energy in terms

of the excited state vectors.

First, the symmetry properties of the two-electron integrals and the two-particle

density matrices are noted. Assuming real quantities, both are antisymmetric

w.r.t. to exchanging the first with the second, as well as the third with the fourth

index. In addition, they are symmetric w.r.t. to exchanging two indices, the first

and second, with the third and fourth at the same time:

〈pq||rs〉 = −〈qp||rs〉 = 〈qp||sr〉 = 〈rs||pq〉 (4.63)

and

Γpqrs = −Γqprs = Γqpsr = Γrspq. (4.64)

Using equations 4.63 and 4.64 the sum∑
pqrs

Γpqrs〈pq||rs〉 (4.65)

can be split into the six so-called canonical blocks, which are referred to as OOOO,
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OOOV, OOVV, OVOV, OVVV and VVVV block:∑
pqrs

Γpqrs〈pq||rs〉 =
∑
ijkl

Γijkl〈ij||kl〉+ 4
∑
ijka

Γijka〈ij||ka〉

+ 2
∑
ijab

Γijab〈ij||ab〉+ 4
∑
ijab

Γiajb〈ia||jb〉

+ 4
∑
iabc

Γiabc〈ia||bc〉+
∑
abcd

Γabcd〈ab||cd〉.

(4.66)

Recognizing the factors on the right-hand side of 4.66 is important to assign the

correct coefficients to the contributions of the 2RDM.

Now, the expressions of the 1RDM and 2RDM are derived. The first order

γ(1) = γ(0) and Γ(1) stem from the zeroth and first order contributions to ω:

ω(0−1) =
∑
ab

fab
∑
i

viavib −
∑
ij

fji
∑
a

viavja +
∑
ijab

〈ia||bj〉vjavib

=
∑
pq

fpqγ
(0)
pq +

1

4

∑
pqrs

〈pq||rs〉Γ(1)
pqsr

(4.67)

and it is obvious that

γ
(0)
ab =

∑
k

vkavkb, γ
(0)
ij =−

∑
c

vjcvic, Γ
(1)
iajb =vjavib. (4.68)

The density matrices for the correlated part of the total ADC(2) energy are

defined by

− 1

4

∑
ijab

tijab〈ij||ab〉+ωADC(2) +R
ADC(2)
A =

∑
pq

fpqγ
(2)
pq +

1

4

∑
pqrs

〈pq||rs〉Γ(2)
pqrs. (4.69)

The first term on the left-hand side comprises the ground state energy and it can

readily be seen that its contribution to the OOVV part of the 2RDM is −1
2
tijab.

The third term, R
ADC(2)
A , contains the Lagrange multipliers t̄:

R
ADC(2)
A =

∑
ijab

t̄ijab

(
tijab

(∑
c

fac +
∑
c

fbc −
∑
k

fik −
∑
k

fjk

)
− 〈ij||ab〉

)
(4.70)
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Resorting the indices in equation 4.70 yields:

R
ADC(2)
A =−

∑
ijab

〈ij||ab〉t̄ijab

+
∑
ab

fab
∑
ijc

(t̄ijbctijac + t̄ijactijbc)

−
∑
ij

fij
∑
kab

(t̄jkabtikab + t̄ikabtjkab)

(4.71)

The second order contribution to the excitation energy comprises four distinct

terms:

ω(2) = ω11 + ω12 + ω21 + ω22. (4.72)

The first one, ω11, is given as

ω11 =
1

4

∑
ab

(∑
klc

tklac〈kl||bc〉+
∑
klc

〈kl||ac〉tklbc

)∑
i

viavib

+
1

4

∑
ij

(∑
kcd

tikcd〈jk||cd〉+
∑
kcd

〈ik||cd〉tjkcd

)∑
a

viavja

− 1

2

∑
ijab

(∑
kc

tikac〈jk||bc〉+
∑
kc

〈ik||ac〉tjkbc

)
viavjb.

(4.73)

Again, by resorting the indices and using the derived expressions above for γ(0)

one finds:

ω11 =
∑
ijab

〈ij||ab〉1
4

(∑
c

tijcbγ
(0)
ca −

∑
c

tijcaγ
(0)
cb

)

−
∑
ijab

〈ij||ab〉1
4

(∑
k

γ
(0)
ik tkjab −

∑
k

γ
(0)
jk tkiab

)

−
∑
ijab

〈ij||ab〉1
4

(
via
∑
kc

tjkbcvkc − vja
∑
kc

tikbcvkc

− vib
∑
kc

tjkacvkc + vjb
∑
kc

tikacvkc

)
.

(4.74)
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The next two contributions to ω(2)

ω12 =
∑
ijka

〈ij||ka〉
∑
b

vkbvijba +
∑
iabc

〈ia||bc〉
∑
j

vjavjibc (4.75)

and

ω21 =
∑
ijka

〈ia||jk〉
∑
b

vjkbavib +
∑
iabc

〈ab||ic〉
∑
j

vjiabvjc, (4.76)

can be summed up to

ω12 + ω21 = 2
∑
ijka

〈ij||ka〉
∑
b

vkbvijba + 2
∑
iabc

〈ia||bc〉
∑
j

vjavjibc (4.77)

and the last contribution is

ω22 = 2
∑
ab

fab
∑
ijc

vijacvijbc − 2
∑
ij

fji
∑
kab

vikabvjkab. (4.78)

As a result, we can identify the one and two-particle density matrices for ADC(2)

including the zeroth and first order contributions from equation 4.68 as

γ
(2)
ab = γ

(0)
ab + (1− Pab)

∑
ijc

t̄ijbctijac + 2
∑
ijc

vijacvijbc, (4.79)

γ
(2)
ij = γ

(0)
ij − (1− Pij)

∑
kab

t̄jkabtikab − 2
∑
kab

vjkabvikab (4.80)

and

Γ
(2)
ijab =− 1

2
tijab − 2t̄ijab

+
1

2
(1− Pab)

∑
c

tijbcγ
(0)
ca −

1

2
(1− Pij)

∑
k

γ
(0)
jk tkiab

− 1

2
(1− Pij) (1− Pab) via

∑
kc

tjkbcvkc,

(4.81)

Γ
(2)
ijka =2

∑
b

vkbvijba, Γ
(2)
iabc =2

∑
j

vjavjibc, (4.82)

Γ
(2)
iajb = Γ

(1)
iajb (4.83)
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Table 4.1: Explicit expressions for the one- and two-particle density matrices for ADC(1)
as defined in equation 4.56. All quantities are assumed to have real values.

γ
(1)
ij = γ

(0)
ij = −

∑
c vjcvic

γ
(1)
ab = γ

(0)
ab =

∑
k vkavkb

Γ
(1)
ijab = viavjb

and the explicit form of t̄ for ADC(2) is given in equation 4.59. The evaluation

of the ADC(2)-x energy derivatives only requires additional terms in the OOOO,

OVOV and VVVV blocks of the 2RDM.

The same procedure has been used to derive the expressions for the density

matrices and Lagrange multipliers for ADC(2)-x and ADC(3). The results are

collected in tables 4.1 - 4.4.

Table 4.4: Explicit expressions for the ADC(3) amplitude Lagrange multipliers. For
the definition of the intermediate rv see table 4.5. All quantities are assumed to have
real values.

t̄ijab =
〈ij||ab〉+

∑6
n=1

nt̃ijab+t̃
TD

ijab+t̃
ρ
ijab

εa+εb−εi−εj

1t̃ijab =
∑
kl

tlkab
∑
m

〈km||ij〉γ(0)
ml (1− Pab)

∑
k

vka
∑
l

〈ij||kl〉
∑
mc

tmlcbvmc

+ (1− Pij)

(
1

2

∑
k

γ
(0)
ki

∑
lm

〈jk||lm〉tlmab + 2
∑
k

tkjab
∑
lm

γ
(0)
lm 〈li||mk〉

)

+ (1− Pij) (1− Pab)

(
− 1

2
via
∑
kc

vkc
∑
lm

〈lm||kj〉tlmcb

+ 2
∑
k

vka
∑
kl

〈li||kl〉
∑
c

tkjcbvlc

)
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Table 4.4: (continued)

2t̃ijab =4

(∑
kc

〈ij||kc〉
∑
l

vlcvlkab − (1− Pij)
∑
k

vkiab
∑
kc

〈jl||kc〉vlc

+ (1− Pij) (1− Pab)
∑
kl

〈kj||lb〉
∑
c

vkcvilac

)

3t̃ijab =− (1− Pab)
∑
c

〈ij||cb〉γ(0)
ac + (1− Pij)

∑
k

〈kj||ab〉γ(0)
ik

+ (1− Pij) (1− Pab) via
∑
kc

〈jk||bc〉vkc

4t̃ijab = (1− Pij)

(
2
∑
k

tkjab
∑
cd

〈ic||kd〉γ(0)
cd − 2

∑
kl

tlkab
∑
c

vic
∑
d

vld〈jc||kd〉

−
∑
c

vic
∑
k

tkjab
∑
ld

vld〈lc||kd〉 −
∑
k

tkjab
∑
c

vkc
∑
ld

vld〈lc||id〉

)

+ (1− Pab)

(
− 2

∑
c

tijcb
∑
kl

〈ka||lc〉γ(0)
kl − 2

∑
cd

tijdc
∑
k

vka
∑
l

vld〈kb||lc〉

−
∑
k

vka
∑
c

tijcb
∑
ld

vld〈kd||lc〉 −
∑
c

tijcb
∑
k

vkc
∑
ld

vld〈kd||la〉

)

+ (1− Pij) (1− Pab)

(∑
c

γ(0)
ac

∑
kc

〈kc||jd〉tikbd +
∑
kc

〈jc||kb〉
∑
d

tikdaγ
(0)
dc

−
∑
k

γ
(0)
ik

∑
lc

〈lb||kc〉tjlac −
∑
kc

〈jc||kb〉
∑
l

tliacγ
(0)
lk

−
∑
c

vic
∑
k

〈jc||kb〉rvka − vjb
∑
kc

vkc
∑
ld

〈lc||id〉tklad

−
∑
k

vka
∑
c

〈jc||kb〉rvic − vjb
∑
kc

vkc
∑
ld

〈la||kd〉tilcd

+ 2
∑
kcd

vka〈kc||id〉

(∑
l

vlctljdb

)
+ 2

∑
klc

vic〈kc||la〉

(∑
d

vkdtljdb

))
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Table 4.4: (continued)

5t̃ijab = −4

(∑
kc

〈kc||ab〉
∑
d

vkdvijcd − (1− Pab)
∑
c

vijcb
∑
kd

〈kc||da〉vkd

+ (1− Pij) (1− Pab)
∑
kl

〈kj||lb〉
∑
c

vkcvilac

)

6t̃ijab =−
∑
cd

tijcd
∑
e

〈de||ab〉γ(0)
cd − (1− Pij)

∑
c

vic
∑
d

〈cd||ab〉
∑
ke

tkjedvke

− (1− Pab)

(
1

2

∑
c

γ(0)
ac

∑
de

〈bc||de〉tijde + 2
∑
c

tijcb
∑
de

γ
(0)
de 〈da||ec〉

)

− (1− Pij) (1− Pab)

(
1

2
via
∑
kc

vkc
∑
de

〈cb||de〉tkjde

− 2
∑
c

vic
∑
de

〈cd||ea〉
∑
k

tkjdbvke

)

t̃T
D

ijab = (1− Pij) (1− Pab)

(
4
∑
kc

T̄Dikac〈jc||kb〉

+ 2
∑
cd

T̄Dijcd〈cd||ab〉+
∑
kl

T̄Dklab〈kl||ij〉

)

t̃ρijab = − (1− Pij)
∑

c〈jc||ab〉ρ̄ic − (1− Pab)
∑

k〈ij||kb〉ρ̄ka

T̄Dijab = (1− Pab)
∑
c

〈ij||cb〉γ(0)
ac + (1− Pij)

∑
k

〈kj||ab〉γ(0)
ik

− (1− Pij) (1− Pab) via
∑
ck

〈jk||bc〉vkc

ρ̄ia =
−2

εa − εi

(∑
jk

〈ji||ka〉γ(0)
jk +

∑
jb

vjb
∑
k

vka〈ji||kb〉

−
∑
bc

〈ib||ca〉γ(0)
bc +

∑
jb

vjb
∑
c

vic〈jc||ba〉

)
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Table 4.2: Explicit expressions for the one- and two-particle density matrices for ADC(2)
and ADC(2)-x as defined in equation 4.56. All quantities are assumed to have real values.

γ
(2)−x
ij = γ

(2)
ij = γ

(0)
ij − (1− Pij)

∑
kab t̄jkabtikab − 2

∑
kab vjkabvikab

γ
(2)−x
ab = γ

(2)
ab = γ

(0)
ab + (1− Pab)

∑
ijc t̄ijbctijac + 2

∑
ijc vijacvijbc

Γ
(2)
iajb = Γ

(1)
iajb = viavjb

Γ
(2)−x
iajb = Γ

(2)
iajb − 4

∑
kc vkicbvkjca

Γ
(2)−x
ijab = Γ

(2)
ijab =− 1

2

(
tijab − 4t̄ijab + (1− Pab)

∑
c

tijbcγ
(0)
ca

− (1− Pij)
∑
k

γ
(0)
jk tkiab − (1− Pij) (1− Pab) via

∑
kc

tjkbcvkc

)

Γ
(2−x)
ijkl = 2

∑
ab vijabvklab

Γ
(2−x)
abcd = 2

∑
ij vijcdvijab

t̄ijab =
1

εa + εb − εi − εj

(
(1− Pab)

∑
c

〈ij||cb〉γ(0)
ac + (1− Pij)

∑
k

〈kj||ab〉γ(0)
ik

− (1− Pij) (1− Pab) via
∑
ck

〈jk||bc〉vkc

)
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Table 4.3: Explicit expressions for the one-particle density matrix and Lagrange mul-
tipliers for ADC(3) as defined in equation 4.56. All quantities are assumed to have real
values. Expressions for TD and ρ(2) are given in equations 3.76-3.79.

γ
(3)
ij =−

∑
a

viavja −
∑
kab

vjkabvikab

− (1 + Pij)

(∑
kab

t̄jkabtikab +
∑
kab

T̄DjkabT
D
ikab +

∑
a

ρ̄iaρja

)

γ
(3)
ab =

∑
i

viavib + 2
∑
ijc

vijacvijbc

+ (1 + Pab)

(∑
ijc

t̄ijactijbc +
∑
ijc

T̄DijacT
D
ijbc +

1

2

∑
i

ρ̄iaρ
(2)
ib

)

Table 4.5: Explicit expressions the two-particle density matrix. For the definitions of the
intermediates see table 4.3. All quantities are assumed to have real values. Expressions
for TD and ρ(2) are given in equations 3.76-3.79.

Γ
(3)
ijkl =2

∑
ab

vijabvklab +
1

2

(
1 + Pklij

)(
2
∑
ab

t̄Dijabtklab

− 1

2
(1− Pij)

∑
m

γ
(0)
jm

∑
ab

tmiabtklab

+ (1− Pkl)
∑
c

vkc
∑
b

tijcb
∑
ma

tmlabvma

+ (1− Pij) (1− Pkl)

(
ρ

(2)
jl γ

(0)
ik −

∑
b

(∑
a

t2ljabvia

)
vkb

))

Γ
(3)
ijka =2

∑
b

vkbvijba −
∑
l

vla
∑
bc

tljbavlkbc

+ (1− Pij)

(
− 2

∑
c

vic
∑
lb

tljbavlkbc + vja
∑
lbc

tlibcvklbc

+ ρ
(2)
ja γ

(0)
ik + via

∑
b

ρ
(2)
jb vkb +

1

2

∑
b

tijbaρ̄kb

)
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Table 4.5: (continued)

Γ
(3)
ijab =

1

2

(
− tijab − tDijab − 4t̄ijab

+ (1− Pab)
∑
c

(
tDijcb + tijcb

)
γ(0)
ca

− (1− Pij)
∑
k

(
tDkjab + tkjab

)
γ

(0)
ki

− (1− Pab) (1− Pij) via
∑
kc

tDkjcb
(
vkc + rvjb

))

Γ
(3)
iajb =− vjavib − 4

∑
kc

vkicbvkjca + ρ
(2)
ij γ

(0)
ab + ρ

(2)
ab γ

(0)
ij

+
1

2

(
1 + Pjbia

)(
− 4

∑
kc

tkidbt̄Dkjca

+ 4
∑
c

∑
kd

(tkjcdtkidb)
∑
l

vlcvla −
∑
k

∑
lc

(tklcatlicb)
∑
d

vkdvjd

+
∑
l

vla
∑
d

tlidbr
v
jd +

∑
d

vjd
∑
l

tlidbr
v
la

+ vja
∑
c

ρ
(2)
cb vic − vib

∑
k

ρ
(2)
kj vka − 2

∑
k

vka
∑
c

t2jkcbvic

+
1

2

∑
c

vjc
∑
d

vid
∑
kl

(tkldatklcb) +
1

2

∑
l

∑
k

(∑
cd

tkicdtljcdvka

)
vlb

)

Γ
(3)
iabc =2

∑
j

vjavjibc +
∑
d

vid
∑
jk

tjkbcvjkad

+ (1− Pbc)

(
− 2

∑
j

vjb
∑
kd

tkidcvjkad + vib
∑
jkd

tjkcdvjkad

− ρ(2)
ic γ

(0)
ab + vib

∑
j

ρ
(2)
jc vja +

1

2

∑
b

tjibcρ̄ja

)
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Table 4.5: (continued)

Γ
(3)
abcd =2

∑
ij

vijcdvijab +
1

2

(
1 + Pcdab

)(
2
∑
ij

t̄Dijabtijcd

+
1

2
(1− Pab)

∑
e

γ
(0)
eb

∑
jk

tjkeatjkcd

+ (1− Pab)
∑
k

vka
∑
j

tkjcd
∑
ie

tijebvie

+ (1− Pab) (1− Pcd)

(
ρ

(2)
bd γ

(0)
ac −

∑
j

(∑
i

t2ijdbvia

)
vjc

))

via =
∑
jb

vnjbtijab t2ijab =
∑
kc

tikactjkbc

60



Chapter 5

Obtaining Optical Properties

Using the Intermediate State

Representation

5.1 Intermediate state representation of general

operators

Molecular properties and state-to-state transition properties with respect to an

operator D̂ can be obtained as expectation values of a state or between two states

Dn =〈Ψn|D̂|Ψn〉, Tnm = 〈Ψn|D̂|Ψm〉. (5.1)

In the same way as the ISR is used to expand the ground-state-energy-shifted

Hamiltonian, a representation of an arbitrary one-particle operator

D̂ =
∑
pq

dpq ĉ
†
pĉq, (5.2)

shifted by the ground-state property D0 = 〈Ψ0|D̂|Ψ0〉 can be constructed as [33]:

DIJ = 〈Ψ̃I |D̂ −D0|Ψ̃J〉 (5.3)
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and D can be expanded in a perturbation series:

D = D(0) + D(1) + D(2) + . . . (5.4)

The matrix D for a given order of perturbation theory has the same structure as

the respective ADC matrix of the same order. Explicit expressions for the elements

of D can be determined using the same procedure as demonstrated for the ADC

matrix and have been published in [33]. Using the ISR of D̂ and the eigenvectors

{vn =
(
vnia, v

n
ijab,...

)t} from the ADC eigenvalue problem, the moments in equation

5.1 can be evaluated as:

Dn =v†nDvn +D0, Tnm =v†nDvm, with: n 6= m. (5.5)

Instead of constructing D for different operators, the elements from equation

5.3 can be used to derive the expressions for the excited-state and the state-to-state

transition densities. By comparing equations 5.5 with equations 5.1 one finds:

Dn = 〈Ψn|
∑
pq

dpq ĉ
†
pĉqD̂|Ψn〉 =

∑
pq

dpq 〈Ψn|ĉ†pĉq|Ψn〉︸ ︷︷ ︸
=ρnpq

= v†nDvn +D0 (5.6)

and

Tnm = 〈Ψn|
∑
pq

dpq ĉ
†
pĉqD̂|Ψm〉 =

∑
pq

dpq 〈Ψn|ĉ†pĉq|Ψm〉︸ ︷︷ ︸
=ρnmpq

= v†nDvm. (5.7)

Thus, the expressions for the excited state contribution to the density ρn and

the transition density ρnm can be obtained by collecting and sorting all terms in

equations 5.5, which contain the same matrix elements dpq, i.e. dij, dia, dai and

dab. Finally, the expectation values are obtained as:

Dn =
∑
pq

(
ρnpq + ρ0

pq

)
dpq, Tnm =

∑
pq

ρnmpq dpq, with: n 6= m. (5.8)

Here, ρn does not contain the contributions from the ground state density ρ0.

In addition, the excited-state and transition densities can be used for the anal-

ysis of excited states [44]. Explicit expressions for ρn and ρnm are given in table

5.1.
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5.2 Excited state absorption

For the theoretical description of excited-state absorption spectra in addition to

the excitation energies, the state-to-state transition dipole moments between the

excited states are required. These can be evaluated as expectation values of the

dipole operator, which is given along a coordinate α as:

µ̂α =
∑
pq

µαpq ĉ
†
pĉq (5.9)

According to equation 5.8 the transition dipole moments can be obtained as:

µαnm =
∑
pq

ρnmpq µ
α
pq. (5.10)

From the transition dipole moment, the oscillator strength fnm can be computed,

which corresponds to the absorption probability between state n and m in the

experiment, with the state-to-state excitation energy ωnm :

fnm =
2

3
ωnm

√ ∑
α=x,y,z

µαnm
2 (5.11)

5.3 Non-linear optical properties

Expressions from time-dependent response theory for the first and higher order

frequency-dependent polarizabilities contain functions of the following form:

fαβ(ω) = 〈Ψn|µ̂α
[
Ĥ − ω

]−1

µ̂β|Ψm〉, α, β ∈ {x, y, z}. (5.12)

The ISR approach offers two ways to evaluate such expressions. The first one

uses the excitation energies, the static and the state-to-state transition dipole

moments accessible through the ISR of the dipole operator to directly evaluate

fαβ(ω) in the limit of the number of calculated eigenvectors of the ADC matrix

[14]. The second one leads to a closed-form expression for fαβ(ω) [45], which can

be solved iteratively and numerically exact. In this work, both approaches are

used to obtain two-photon absorption cross-sections in section 5.4. In addition,
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the same techniques can also be used to compute the polarizability and higher

order hyperpolarizabilties. A closed-form expression of the complex polarizability

is presented in section 5.5.

5.4 Two-photon absorption

The expression for the two-photon absorption (TPA) matrix S = {Sαβ}, with

α, β ∈ {x, y, z}, stems from time-dependent response theory. For resonant TPA,

meaning the simultaneous absorption of two photons with the same energy, the

elements of S for the final excited state f with the excitation energy ωf have the

form [46]:

Sαβ = 〈Ψ0|µ̂α
[
Ĥ − ωf

2

]−1

µ̂β|Ψf〉+ 〈Ψ0|µ̂β
[
Ĥ − ωf

2

]−1

µ̂α|Ψf〉. (5.13)

From the two-photon absorption matrix, TPA cross-sections δTP for linear-polarized

light can be calculated according to [46]:

δTP =
1

30

∑
µν

2SµµS
?
µν + 2SµνS

?
µν + 2SµνS

?
νµ. (5.14)

In this section the two alternative routes to evaluate the expressions for S based

on the ISR approach are presented, which have been outlined in section 5.3.

5.4.1 Sum-over-states

Inserting the resolution of the identity (RI) of exact states
∞∑
n

|Ψn〉〈Ψn| in equation

5.13 yields a sum-over-states (SOS) [14] expression for S [47]:

Sαβ =
∞∑
n

〈Ψ0|µ̂α|Ψn〉〈Ψn|µ̂β|Ψf〉
ωn − ω

2

+ α↔ β, (5.15)

with ω0 = E0. Equation 5.15 simplifies to

Sαβ =
∞∑
n

µα0nµ
β
nf

ωn − ω
2

+ α↔ β (5.16)
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and can directly be evaluated after the computation of the eigenvalues of the

ADC-matrix and the successive computation of the static dipole and state-to-state

transition dipole moments via the ISR approach as described in section 5.1, and

the ground-to-excited state transition dipole moments via the modified transition

amplitudes.

5.4.2 Closed-form expression

Inserting the RI of the intermediate states
∞∑
I

|Ψ̃I〉〈Ψ̃I | in two positions in equation

5.13 leads to the following expression:

Sαβ =
N∑
I,J

〈Ψ0|µ̂α|Ψ̃I〉〈Ψ̃I |
[
Ĥ − ωf

2

]−1

|Ψ̃J〉〈Ψ̃J |µβ|Ψf〉+ α↔ β. (5.17)

This can be rewritten in matrix form yielding:

Sαβ = F†α (M− 1ω)−1 BβYf +
µα00µ

β
0f

E0 − ω
2

+ α↔ β. (5.18)

Here, Bβ is the IS representation of the dipole operator in direction β, F†α is the

matrix of modified transition amplitudes along coordinate α, and Yf is the eigen-

vector of the final state the f . It should be noted that the RI of intermediate

states contains the ground state as zeroth order excitation class, but the contribu-

tion from the ground state is not included in this matrix representation and has

to be added separately.

To solve the term involving the inverse shifted ADC matrix in 5.18, the vector

x†α is introduced:

x†α = F†α

(
M− 1

ω

2

)−1

. (5.19)

which is the solution of the system of linear equations:

x†α

(
M− 1

ω

2

)
= F†α. (5.20)

Equation 5.20 has to be solved iteratively for each component α ∈ {x, y, z}. The

resulting vectors can be used to compute pseudo-densities according to equation
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5.7

ραf = x†αDYf , (5.21)

which then can be contracted with the matrix elements of the dipole operator

along β and the elements of S are obtained as:

Sαβ =
∑
pq

ραfµβpq +
µα00µ

β
0f

E0 − ω
2

+ α↔ β. (5.22)

5.5 Complex frequency-dependent polarization

The use of conventional algorithms like the Davidson method [48] for the solution

of the eigenvalue problem of ADC faces limitations for the theoretical description

of absorption experiments if the involved states are in the high-energy region of

the spectrum or if the spectral features stem from a large number of excited states.

These algorithms usually compute the energetically-lowest excited states and thus,

if higher-lying states are of interest, require the computation of a potentially large

number of eigenstates, which play no role in the absorption phenomena. In addi-

tion, to compare with experimental spectra, the stick spectra obtained from solving

eigenvalue equations and the computation of oscillator strengths are convoluted

with a Gaussian or Lorentzian to simulate experimental line broadening. If the

spectral region has a high density of states, meaning that a large number of states

contribute to the spectral features, other approaches are more efficient.

An alternative route to simulate absorption spectra is the so-called complex

polarization propagator approach (CPP) [49]. It is based on introducing a com-

plex dampening factor in the frequency-dependent electric dipole polarizability

α(ω) = {αij(ω)}, with i, j ∈ {x, y, z}. Here, the complex polarization is computed

incrementally for the spectral range of interest and the absorption probability can

directly be obtained from the complex part of α(ω). For the efficient computa-

tion of α(ω), specially designed numerical algorithms have been presented and

implemented for different quantum chemical methods like HF/DFT [49] and CC

[50]. This algorithm enables the computation of α(ω) simultaneously for several

hundred frequencies with comparable computational costs of a single-frequency

calculation.
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To adapt the CPP approach to ADC, a closed-form ISR expression of α(ω)

is presented together with a proof-of-principle implementation using numerical

standard techniques. This implementation evaluates α(ω) for each frequency in-

dividually.

The elements of the complex frequency-dependend polarizability with the imag-

inary dampening factor γ have the form:

αij(ω) = 〈Ψ0|µ̂j
[
Ĥ − 1 (ω + iγ)

]−1

µ̂i|Ψ0〉+ 〈Ψ0|µ̂j
[
Ĥ + 1 (ω + iγ)

]−1

µ̂i|Ψ0〉.
(5.23)

In analogy to equation 5.18, through insertion of the RI of the intermediate states
∞∑
I

|Ψ̃I〉〈Ψ̃I | equation 5.23 becomes:

αij(ω) = F†i (M− 1 (ω + iγ))−1 Fj + F†j (M + 1 (ω + iγ))−1 Fi (5.24)

and the contributions from the ground state cancel out. Like the expression for

the TPA matrix S, the expressions in equation 5.24 can be evaluated by solving

the systems of linear equations:

(M− 1 (ω + iγ)) x−j = Fj, (5.25)

(M + 1 (ω + iγ)) x+
i = Fi. (5.26)

These systems of linear equations can be separated into a real and imaginary part

as shown for the first one, with the solution vector x−j = x + iy:

(M− ω) x− γy = Fj

i (M− ω) y + iγx = 0,
(5.27)

since the matrices Fi and Fj are real, the imaginary part is trivial and the solution

for x can be inserted in the real part of equation 5.27. This leads to:

1

γ
(M− ω)2 y − γy = Fj, (5.28)
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which can be rewritten as (
M′2 − γ

)
y = γFj, (5.29)

with M′ = M− ω. Equation 5.29 can be solved in the same way as the equtions

for the TPA matrix using iterative methods.

Table 5.1: Explicit expressions for the ISR transition density in second order. The
expressions contain the second order correction to the ground state density ρ(2) and the
t-amplitudes. The presented expressions have been obtained by rewriting the original
equations from [33] as outlined in section 5.1. Expressions for ρ(2) are given in equations
3.76-3.78.

ρnmij = γ1
ij + 2γ2

ij +
1

2

∑
k

γ1
ik

(
ρ

(2)
kj +

∑
l

ρ
(2)
il γ

1
lj

)

−
∑
kcd

tjkcd
1

2

∑
l

γ1
kl

(
tilcd −

∑
b

tikbdγ
1
bc

)

− 1

2

(∑
a

vmja
∑
kc

tikacr
vn

kc +
∑
a

vnia
∑
kc

tjkacr
vm

kc

)
−
∑
a

rv
n

ja r
vm

ia

ρnmab = γ1
ab + 2γ2

ab −
1

2

∑
c

γ1
ac

(
ρ

(2)
cb +

∑
d

ρ
(2)
ad γ

1
db

)

−
∑
klc

tklac
1

2

∑
d

γ1
dv

(
tklbd −

∑
j

tjlbcγ
1
kj

)

+
1

2

(∑
i

vmia
∑
kc

tikbcr
vn

kc +
∑
i

vnib
∑
kc

tikacr
vm

kc

)
−
∑
a

rv
n

ia r
vm

ib

ρnmia = γnmia +
∑
b

ρ
(2)
ib γ

1
ba +

∑
j

ρ
(2)
ja γ

1
ij +

∑
jb

tijabγ
mn
bj

−
∑
b

vnib
∑
klc

tklcav
m
klcb −

∑
j

vnja
∑
kcd

tikcdv
m
jkcd

ρnmai = γmnai +
∑
b

ρ
(2)
ib γ

1
ab +

∑
j

ρ
(2)
ja γ

1
ji +

∑
jb

tijabγ
nm
jb

−
∑
b

vmib
∑
klc

tklcav
n
klcb −

∑
j

vmja
∑
kcd

tikcdv
n
jkcd
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Table 5.1: (continued)

γ1
ij =−

∑
a

vnjav
m
ia γ1

ab =
∑
i

vniav
m
ib γ2

ij =−
∑
kab

vnjkabv
m
ikab γ2

ab =
∑
ijc

vnijacv
m
ijbc

γnmia =− 2
∑
bj

vnjbv
m
ijab γmnia =− 2

∑
bj

vmjbv
n
ijab

rv
n

ia =
∑
jb

vnjbtijab rv
m

ia =
∑
jb

tijabv
m
jb
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Chapter 6

Implementation

The expressions for the analytical energy derivatives and the optical properties

have been implemented in the adcman module [30], which is a C++ project con-

taining different variants of ADC and is embedded in the quantum chemical pro-

gram package Q-Chem [40]. However, due to the modular structure of adcman

and the related libraries, it can be integrated into other quantum chemical pro-

grams as well.

Of central importance is the open-source tensor library libtensor [51], which

handles all algebraic operations using optimized linear algebra routines at its core.

It splits large tensors into smaller blocks, which are stored on different levels of

memory, i.e., core memory and disk-space, enabling parallel algorithms. In ad-

dition, libtensor provides a convenient interface facilitating straightforward

implementations of tensor expressions and treats symmetries which are encoun-

tered in quantum chemical calculations, i.e., permutation and spin symmetry as

well as point-group symmetry.

6.1 Analytical energy derivatives

The evaluation of the analytical energy derivatives is for all implemented ADC

models performed in the same way. First, the eigenvalue problem of the respective

ADC matrix is solved using the Davidson algorithm [48]. In the next step, the La-

grange multipliers are computed. In the case of ADC(3) the Lagrange multipliers

for the MP(2) density and the TD amplitudes have to be evaluated first, because
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they are required for the computation of the t-amplitude Lagrange multipliers

t̄. Successively, the amplitude-relaxed one- and two-particle density matrices are

computed, which are used as input for the orbital response. The orbital response

Lagrange multipliers {λia} are found as the solution of a linear system of equations,

which is solved using the DIIS algorithm [52]. From the result, the fully relaxed

density matrices are computed together with the Lagrange multipliers {ωpq}. In

the last step, the fully relaxed density matrices and the Lagrange multipliers {ωpq}
are transformed in the AO basis and contracted with the perturbed integrals in

Q-Chem, to obtain the energy derivative.

6.2 Optical properties

For the calculation of excited-state properties, the excited-state densities are com-

puted using the eigenvectors of the ADC matrix according to the expressions pre-

sented in table 5.1. To compute the excited-state absorption oscillator strengths,

the densities are contracted with the matrix elements of the dipole operator in the

MO basis to obtain excited-state and state-to-state transition dipole moments. If

the eigenvectors from the ADC(3) matrix are combined with the second order ISR

densities, the resulting model is called ADC(3/2)

6.2.1 Two-photon absorption

The sum-over-states expressions for the TPA matrix are directly evaluated using

the excited-state and state-to-state dipole moments. For the closed-form expres-

sion, first the vector of modified transition moments for a certain coordinate α of

the dipole operator is computed, which is the inhomogeneity of equation 5.20 and

the system of linear equations is solved with the DIIS algorithm. The resulting

vector and the eigenvector of the final state are used to compute a pseudo-density

using the equations from table 5.1. Finally, this pseudo-density is contracted with

the MO representation of the dipole operator along another coordinate β to obtain

the TPA matrix element Sαβ.
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6.3 List of implemented features

• geometry optimizations using ADC(1), ADC(2), ADC(2)-x and ADC(3)

• excited state absorption using ADC(1), ADC(2), ADC(2)-x and ADC(3/2)

• two-photon absorption matrices for ADC(2) and ADC(2)-x
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Chapter 7

Benchmark and Test Calculations

7.1 Nuclear derivatives

Using the implementation described in section 6.1 of the expressions presented

in chapter 4, nuclear derivatives and excited state equilibrium structures have

been computed. To test the implementation, analytical energy derivatives are

compared to numerical derivatives. In addition, the performance of the first-

time implemented energy derivatives for ADC(2)-x and ADC(3) is evaluated using

reference values of other quantum chemical methods for a series of small molecules.

7.1.1 Numerical derivatives

Numerical derivatives have been computed using single point calculations for all

implemented ADC models, i.e., ADC(2), ADC(2)-x and ADC(3). Analytical

derivatives with respect to the interatomic bond lengths in the diatomic molecule

BH and the x-coordinate of a C and H atom in trans-butadiene have been com-

puted for comparison with numerical derivatives. Usually numerical differentiation

is performed using two single point calculations, however to ascertain the correct

implementation of the analytical derivative which in the case of ADC(3) depends

on a large number of small contributions, higher order approximations of numerical

derivatives have been used for comparison.
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Finite differences

Derivatives can be approximated numerically. The simplest approach is to calcu-

late the difference quotient:

f ′(x) ≈ f(x)− f(x+ h)

h
, (7.1)

which requires the evaluation of f at two points: x and x + h. However, a more

accurate approximation of f ′(x) using two single points can be obtained from the

so-called central difference:

f ′(x) ≈ f(x+ h)− f(x− h)

2h
. (7.2)

The expression for the central difference can be found through the Taylor series

around (x+ h) and (x− h):

f(x+ h) =f(x) + hf ′(x) + 2hf ′′(x) . . . (7.3)

f(x− h) =f(x)− hf ′(x) + 2hf ′′(x) . . . , (7.4)

of which the difference yields:

f(x+ h)− f(x− h) = 2hf ′(x)− h3f ′′′(x) . . . (7.5)

Thus, it follows:

⇒ f ′(x) =
f(x+ h)− f(x− h)

2h
+O(h2) (7.6)

and O(h2) contains the higher order terms of the Taylor series, which are at least

proportional to h2. In the same way, higher-order numerical approximations for

the derivative can be obtained by comparing the Taylor series around x+ nh and

x− nh, with n = 1, 2, . . . .

Difference between numerical and analytical gradients

For the BH molecule the derivatives have been computed at the interatomic dis-

tance of 1.208 Å. The numerical derivative have been obtained from single point
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Table 7.1: Analytical derivative and absolute difference between analytical and
numerical nuclear derivatives of the S1 of the BH molecule with respect to the
interatomic distance in atomic units. The numerical derivatives have been calcu-
lated using 2, 4, 6 and 8 single point calculations with an increment of ±0.001 Å
starting at the interatomic distance of 1.208 Å, at which the analytical derivative
has been computed. The calculations have been performed using the 6-31G basis
set.

Number of single points ADC(2) ADC(2)-x ADC(3)
analytical derivative 0.009482 0.016433 0.018564

2 4.25E-07 4.25E-07 4.71E-07
4 1.09E-08 7.74E-08 7.74E-08
6 9.99E-09 8.01E-08 4.48E-08
8 8.86E-09 8.20E-08 4.61E-08

calculations with a step size of 0.001 Å. For butadiene the x-coordinates of a C

and H atom have been altered with the same step size as for BH, starting from a

MP(2) optimized equilibrium ground state structure using the cc-pVDZ basis set.

The difference between the numerical derivatives using two, four, six and eight

single point calculations and the analytical gradient are presented in tables 7.1

and 7.2.

The numerical derivatives computed using the difference of two single point

calculations deviate in all cases from the analytical derivatives by a value of around

5.00E-07 a.u., which becomes smaller for the approximations based on more points.

For both molecules, the difference between the numerical derivative based on 8

single points and the analytical result is around 1.00E-07 a.u. which is one order

of magnitude smaller than the convergence criteria of the numerical algorithm

used for the excitation energies. Thus, it is assumed that the analytical gradient

implementation is correct.

7.1.2 Benchmark on small diatomic molecules

For the comparison of the ADC(2)-x and the ADC(3) energy derivatives with

other methods, a set of singlet and triplet excited state equilibrium distances of

four diatomic molecules: N2, CO, BF and BH, displayed in table 7.3 is used. It

has been presented in the first publication of ADC(2) gradients [38], together with
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Table 7.2: Analytical derivative and absolute difference between analytical and
numerical nuclear derivatives of the 2A−g state with respect to the x-coordinate of
a C and H atom in butadiene in atomic units. The numerical derivatives have been
calculated using 2 and 8 single point calculations with an increment of ±0.001 Å
starting at the ground state MP(2)/cc-pVDZ equilibrium geometry, at which the
analytical derivative has been computed. The calculations have been performed
using the 6-31G* basis set.

coordinate ADC(2) ADC(2)-x ADC(3)
analytical derivative

C-x 0.113281 0.193974 0.188352
H-x 0.005200 0.005774 0.006386

2 point
C-x 5.56E-07 5.20E-07 5.56E-07
H-x 5.28E-07 5.13E-07 5.74E-07

8 point
C-x 1.52E-07 1.32E-07 5.20E-08
H-x 1.08E-07 1.16E-07 9.96E-08

Table 7.3: The equilibrium distances of singlet and triplet excited states of the
four diatomic molecules: N2, CO, BF and BH. The results for ADC(2), ADC(2)-x
and ADC(3) have been obtained using the analytical derivative implementation
presented in this work and the aug-cc-pwCVQZ basis set. The results for CC,
CCSD, CCSDR(3) and CC3 have been taken from [38] and experimental results
are from [53].

ADC(2) ADC(2)-x ADC(3) CCSD CCSDR(3) CC3 Exp.

N2 A3Σ+
u 1.291 1.272 1.291 1.268 1.293 1.287

a′1Σ−u 1.290 1.288 1.272 1.248 1.269 1.280 1.275
a1Πg 1.246 1.236 1.208 1.201 1.215 1.222 1.220
w1∆u 1.281 1.281 1.267 1.242 1.263 1.274 1.268

CO a3Π 1.214 1.215 1.194 1.194 1.211 1.206
A1Π 1.278 1.250 1.210 1.222 1.233 1.245 1.235

BF a3Π 1.316 1.314 1.301 1.306 1.311 1.308
A1Π 1.312 1.312 1.294 1.301 1.305 1.307 1.304

BH A1Π 1.206 1.218 1.218 1.219 1.221 1.222 1.219

78



7.1. Nuclear derivatives

ADC(2) and CC(2) equilibrium distances. All values in the test set have been

obtained using the aug-cc-pwCVQZ basis set [54–56], for which the results are

expected to be close to the basis set limit, and the results for all ADC models

have been obtained using the very same basis. All ADC(2) results are found to be

identical to the first implementation in [38] except for smaller deviations < 0.001

Å, which is the accuracy, in which the restults in [38] have been presented.

In addition to computed excited state equilibrium structures, experimental

values are given, which have been published in [53]. Of the excited singlet and

striplet states of the four molecules, the first excited singlet state of each molecule

has been chosen in addition to the first triplet states of N2, CO and BF and the

second and third excited singlet state of N2.

For this choice of eight excited states the two third order CC methods CC3 and

CCSDR(3) show the best agreement with the experimental bond lengths. Both,

ADC(3) and CCSD, yield in average too short bond lengths for the excited states

and perform comparable for this test set. ADC(2) and ADC(2)-x overestimate the

excited state bond lengths and ADC(2) shows the largest errors. For the singlet

excited states of N2, ADC(3) yields results with an accuracy comparable to CC3,

while CCSD underestimates these excited-state bond lengths by about 0.2 Å. All

ADC models show the largest error for the first excited state of BF: ADC(2) largely

overestimates the excited bond lengths by 0.43 Å and ADC(3) underestimates it

by 0.25 Å, which is the largest absolute error for ADC(3) in the test set.

In all cases, ADC(2)-x improves over the strict second order results, which can

be attributed to the higher order treatment of double excitations in ADC(2)-x.

However, going to ADC(3) on average yields no improvement, in contrary the

maximum and mean absolute error is larger than the one of ADC(2)-x. The

underestimation of the ADC(3) bond lengths can be attributed to the underlying

MP(3) ground state. MP(3) is known to yield too short ground state equilibrium

distances for diatomic molecules [57], which leads to biased total energy potential

energy surfaces.

7.1.3 Small organic molecules

To further evaluate the performance of the implemented ADC models, test cal-

culations on small organic molecules have been performed. For comparison with
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Figure 7.1: Errors in calculated bond lengths for 8 excited states of diatomic
molcules compared to experimental data taken from [53]. For technical details see
text.

Table 7.4: Excited state equilibrium geometries for the first two excited states of
trans-butadiene. The ADC(2)-x and ADC(3) results have been obtained using the
6-31G* basis set and CASPT2 results are taken from [58].

CASPT2 ADC(2)-x ADC(3)
11B+

u π → π∗
C=C 1.421 1.425 1.424
C—C 1.399 1.400 1.397

21A−g π → π∗
C=C 1.418 1.563 1.543
C—C 1.498 1.381 1.399

CH3 CH3

OO

CH�
CH�

CH�

Figure 7.2: The structures of trans-butadiene, acrolein and acetone.
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CASPT2 results from [58], the equilibrium structures of the first excited state of

three molecules, i.e., acetone, acrolein and trans-butadiene (butadiene), have been

computed using the ADC(2)-x and ADC(3) models using the 6-31G* basis set.

In addition, the second excited state 21A−g of butadiene has been optimized. The

excited state bond lengths are presented in table 7.4 and 7.5.

For the 11B+
u state of butadiene, the results of ADC(2)-x and ADC(3) are very

close to the CASPT2 results. In the 21A−g state equilibrium structure ADC(2)-x

and ADC(3) drastically overestimate the bond length inversion in the excited state

and the double bonds are stretched over the lengths of a single carbon-carbon bond.

The overestimation of the double bonds by the ADC models can be explained by

the failure in the underlying MP(2) and MP(3) ground state respectively. Due to

the inversion of the bond lengths alternation pattern, the excited state structure

is too far off the equilibrium ground state structure and the shape of the potential

energy surface of the ground state in this region is incorrectly described by both

MP(2) and MP(3). Hence, the total energies and total energy derivatives become

unphysical.

For acetone and acrolein ADC(2)-x and ADC(3)-x yield different results. Com-

pared to the CASPT2 structure, ADC(2)-x overestimates the carbon-oxygen bond.

Again, this behavior stems from the ground state description of the method. The

overestimation of the correlation effects and thus, bond lengths, in MP(2) re-

sults in too long bond distances. In addition, ADC(2)-x overestimates the bond

lengths inversion of the carbon-carbon bonds. In contrast to ADC(2)-x, ADC(3)

underestimates the carbon-oxygen bond length, but describes the changes in the

carbon-carbon bonds qualitatively correct. Both bond lengths become similar in

the excited state even though, the carbon-carbon single bond is slightly larger than

the double bond, which is the opposite in CASPT2.

7.2 Excited-state absorption

The state-to-state transition dipole moments for the H2O molecule have been com-

puted with the aug-cc-pVDZ basis set, using ADC(2), ADC(2)-x and ADC(3/2).

The results are compared to CC2 and CCSD results from [59]. The ADC(2) and

CC2 results are practically identical and have the largest value for the three states
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Table 7.5: Excited state equilibrium geometries for the first excited states of
acrolein and acetone. The ADC(2)-x and ADC(3) results have been obtained
using the 6-31G* basis set and CASPT2 results are taken from [58].

CASPT2 ADC(2)-x ADC(3)
Acrolein n→ π∗

C=O 1.345 1.392 1.300
C—C 1.384 1.359 1.399
C=C 1.393 1.418 1.385

Acetone n→ π∗
C=O 1.368 1.450 1.310
C—C 1.489 1.486 1.506

Table 7.6: Excited state absorption from the 11B2 state of H2O computed using
ADC(2), ADC(2)-x and ADC(3) with the aug-cc-pVDZ basis set on the MP2/cc-
pVTZ equilibrium ground state structure. CC2 and CCSD results are taken from
[59].

State Direction CC2 CCSD ADC(2) ADC(2)x ADC(3/2)
11A2 X 7.103 6.652 7.162 6.819 6.349
21A1 Y 4.825 4.534 4.887 4.717 4.370
31B2 Z 3.483 3.147 3.445 3.256 3.038

of H2O. CCSD lies between the ADC(2)-x and ADC(3) results, which have the

smallest values. Overall the results are very similar, however, all states show

the same trend of declining values in the order: ADC(2) = CC2 > ADC(2)-x

> CCSD > ADC(3), which resembles the increasing order of perturbative the-

oretical treatment of the respective methods. ADC(2) and CC2 are based on a

second order ground state and treat single excitation up to second order, and dou-

ble excitations in zeroth order. Both ADC(2)-x and CCSD additionally treat the

double excitations in first order and CCSD additionally incorporates a third order

ground state. The highest order perturbative theoretical treatment is contained in

ADC(3), which in contrast to CCSD includes a third order treatment of the single

excitations.
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Table 7.7: Two-photon absorption cross-sections δTP in atomic units for the lowest
excited states of H2O using ADC(2), ADC(2)-x with the aug-cc-pVDZ basis set
on the MP2/6-31G* equilibrium ground state structure. A? indicates data from a
different implementation [47].

11B1 11A2 21A1 21B1 31A1

ADC(2)? 6.94 60.27 13.76 50.91 498.27
ADC(2)-x? 6.81 65.90 13.81 62.84 586.12
ADC(2) 7.29 61.60 13.80 49.83 504.20
ADC(2)-x 7.13 67.26 13.09 62.18 593.76

7.3 Two-photon absorption cross-sections

In addition, two-photon absorption cross sections for H2O with ADC(2) and ADC(2)-

x are presented. The performance of the ADC models for the theoretical descrip-

tion of TPA cross-sections has already been extensively discussed in a previous

publication [47]. However, in the previous work a different numerical procedure,

the band-Lanczos algorithm, has been used to solve the involved expressions. The

results are presented in table 7.7 and compared to the previous data. The small

deviations stem from a different description of the ground state density, which is in

the implementation of the previous work based on the so-called Dyson-expansion

method (DEM). Overall the results proof the correct implementation of the DIIS

algorithm in this work.
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Chapter 8

Calculations on Model Systems

To show the applicability of the first-time implemented ADC(2)-x and ADC(3) an-

alytical gradients and the two-photon absorption code, two medium-sized organic

chromophores have been examined. Of the two chosen molecules, the first one,

all-trans-octatetraene, is a model system for linear polyenes and poses problems

for the description with ADC(3), since its first excited state involves large changes

in the bond lengths compared to the equilibrium ground state structure. This is

comparable to the case of trans-butadiene, which has been discussed in the pre-

vious chapter. The second one, bithiophene, is an important system in technical

and medical applications.

8.1 All-trans-octatetraene

Linear all-trans-polyenes like all-trans-octatetraene (octatetraene) serve as model

systems for polyene chromophores which play important roles in many biological

photo-processes and in technical applications. For example, carotenoids possess

various important roles in photobiology as light harvesting pigments, as photo-

protective agents by quenching singlet and triplet states, and as scavengers of

CH�

CH�

Figure 8.1: Structure of all-trans-octatetraene.
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singlet oxygen [60, 61]. The study of the lowest excited states of linear polyenes

has a long history in theory and experiment [62–75], since for a fundamental under-

standing of the photo-physical functions of polyene chromophores, precise knowl-

edge of their excited states is crucial. Typically, the low-lying excited states of

carotenoids are characterized by the irreducible representations of the molecular

C2h point group symmetry of the all-trans polyene models, i.e., Ag, Bg, Au, Bu.

In addition, the states are usually assigned an additional index, – or + [76], which

specifies the anti-symmetric or symmetric linear combination of degenerate config-

urations. According to these rules, the electronic ground state of linear polyenes

is referred to as 11A−g . The correct ordering of the lowest excited states of linear

polyenes has been and is still a subject of much debate. However, it is generally

agreed that for octatetraene and longer polymers the lowest excited state singlet

state S1 is the optically forbidden 21A−g and the second excited singlet state S2 is

classified as 11B+
u . The reasons for the ongoing debate lie in the difficulties both

experimentalists and theoreticians face by the investigation of the excited states

of linear polyenes. From a theoretical point of view, difficulties in the description

of linear polyenes arise from the highly correlated nature of the ground state wave

function, which are further manifested in a large double-excitation character of the

excited state wave function of 21A−g (S1), while the 11B+
u (S2) state corresponds

to a clearly singly excited state. Therefore, to arrive at a balanced description of

both states, high-level methods are required.

8.1.1 Ground state structure and vertical excitation ener-

gies

It has been shown, that the calculation of vertical excitation energies with ADC(2)-

x and ADC(3) yields the correct ordering for the lowest excited states of lin-

ear polyenes [39, 77]. However, these results have been biased by the choice of

the ground state geometry, which is known to have significant influence on the

vertical excitation energies. In this work, vertical excitation energies have been

computed using a CCSD(T)/cc-pVTZ ground state equilibrium structure to yield

best-estimates for the vertical excitation energies using ADC(3) and the cc-pVTZ

basis set for octatetraene. These results are compared in table 8.1 to the estimates

for vertical excitation energies presented by Christensen et al. [78] and are in per-
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Table 8.1: Vertical ADC(3)/cc-pVTZ excitation energies in eV for the 21A−g and
11B+

u state at the CCSD(T)/cc-pVTZ ground state equilibrium structure. Exper-
imental ‘vertical excitation‘ energies have been taken from [78].

ADC(3) exp.
21A−g 3.94 4.0 ± 0.1
11B+

u 4.65 4.6 ± 0.1

fect agreement with the experimental estimates, which have been obtained through

elaborate experiments and reasonable assumption for the influence of experimental

effects.

8.1.2 Excited state structure

The next step is, to go beyond the approximation of vertical absorption energies

for the 21A−g state and to compute fluorescence energies, which can be compared

to fluorescence experiments from free jet expansions. This can be done by using

the newly implemented derivative program to optimize the 21A−g structure. The

S1 state has been optimized using ADC(3) and the so-called spin-flip variant of

ADC(3) (SF-ADC(3)) and the cc-pVTZ basis set. The resulting excited state ge-

ometries and vertical fluorescence energies are presented in table 8.2 together with

CASSCF results from [79] and experimental (0 - 0) transition energies from [80].

While the vertical absorption energies were in agreement with the experiments,

the computed fluorescence energies, 2.59 eV for SF-ADC(3) and 0.81 for ADC(3)

are compared to the experimental value of 3.59 eV by far too low. Comparing

the results for the SF-ADC(3) excited-state carbon-carbon bond lengths with the

CASSCF data, which is assumed to yield qualitatively correct results, it is obvious

that the double bonds, especially the internal, in the SF-ADC(3) structure are

too short. In the case of ADC(3) the description of the excited state geometry

is even worse and the internal double bond is by far too long and is stretched

almost to the lengths of a single carbon-carbon bond. The poor description of the

ADC(3) excited state structure can be explained by the failure in the underlying

MP(3) ground state energy. The excited state possesses an inversed bond-lengths-

alternation pattern, and the changes in the structure compared to the equilibrium
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Table 8.2: Bond lengths in Å for the carbon backbone in S1 optimized geometries of
all-trans-octatetraene and vertical S1 → S0 excitation energies in eV. Experimental
values have been taken from [80] and the CASSCF structure has been taken from
[79]. The optimized structures for SF-ADC(3) and ADC(3) have been computed
using the cc-pVTZ basis set.

SF-ADC(3) ADC(3) CASSCF Exp.
21A−g 2.59 0.81 3.59

C1=C2 1.423 1.438 1.438
C2—C3 1.360 1.352 1.376
C3=C4 1.415 1.483 1.437
C4—C4’ 1.393 1.340 1.392

Table 8.3: Bond lengths in Å for the carbon backbone of different ground state
geometries of octaetraene computed using the cc-pVTZ basis set.

HF CCSD(T) SF-ADC(3)
C1=C2 1.3206 1.3409 1.3164
C2—C3 1.4596 1.4468 1.4426
C3=C4 1.3266 1.3474 1.3401
C4—C4’ 1.4558 1.4416 1.4416

ground state structure are significant. MP(3) fails to correctly describe this part

of the ground state potential energy surface, which leads to an unphysical descrip-

tion of the excited state PES. The spin-flip variant of ADC(3) has been reported

to correct the unphysical behavior of MP(3) in the case of bond-breaking [81].

For the ground state equilibrium structure of octatetraene, SF-ADC(3) yields rea-

sonable results, which are presented in table 8.4. However, the terminal double

bond is described as too short compared to CCSD(T) and even shorter as in the

uncorrelated Hartree-Fock structure. For the excited state, SF-ADC(3) improves

over the ADC(3) result for the fluorescence energy, but, the result is still too low,

and the excited state equilibrium geometry is incorrect.
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Table 8.4: Two-photon absorption δTP cross-sections for the 21A−g state of octae-
traene computed at the CCSD(T)/cc-pVTZ ground state equilibrium structure
using the aug-cc-pVTZ basis. A ? indicates results from using a different imple-
mentation [47].

ADC(2) ADC(2)-x ADC(2)? ADC(2)?

δTP 78660 1546 71170 871

8.1.3 Two-photon absorption

The two-photon absorption cross-sections for octatetraene have already been pre-

sented using a MP(2)/6-31G* optimized ground state structure and the 6-31+G*

basis set [47]. Using the implementation in this work larger basis sets could be

applied and the TPA cross-sections have been obtained at the CCSD(T)/cc-pVTZ

ground state structure. The results for the 21A−g state using the aug-cc-pVTZ

basis set are given in table 8.4 together with the data from the previous work.

8.2 Trans-bithiophene

Oligothiophenes play important roles in medical and technical applications. Thio-

phene derivatives are often used as electron donors in the field of organic solar cells

[82–84] and oligo- and polythiophenes are used as imaging agents for the detec-

tion of β-amyloid protein deposits [85], of which the formation plays an important

role in degenerative protein misfolding diseases like Alzheimer’s disease. The key

mechanism, which can also be studied in the bithiophene molecule, is the pla-

narization of the non-planar bithiophene unit upon excitation. It is accompanied

by a significant stokes shift in the fluorescence energy and induces conformational

changes in its molecular environment.

8.2.1 Excited state structure and stokes shift

The first excited state of the trans-bithiophene (bithiophene) molecule has been

optimized using ADC(2), ADC(2)-x and ADC(3)/cc-pVDZ and the planarization

in the excited state is correctly described. The resulting vertical fluorescence en-

ergies are given in table 8.5 together with vertical excitation energies obtained at
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Figure 8.2: Non-planar ground state structure and planar structure of the first
excited state of bithiophene.

the MP2/def2-TZVPP ground state structure. The vertical absorption energies of

ADC(2)-x and ADC(3) are in good agreement with experimental findings as well

as the vertical fluorescence energies at the ADC(2)-x and ADC(3)-optimized struc-

ture. The experimentally observed stokes shift of about 0.7 eV is well reproduced

by all ADC models.

8.2.2 Two-photon absorption

Two-photon absorption spectroscopical measurements revealed an energetically

high-lying two-photon allowed excited state [86]. The TPA cross-sections for

bithiophene have been computed using ADC(2) and ADC(2)-x/cc-pVDZ at the

MP2/def2-TZVPP ground state equilibrium structure and the results are given in

table 8.5. The ADC(2) results show an excited state with a large TPA cross-section

around 6 eV. However, the 21A1 and 31A1 have substantial double excitation char-

acter. Thus, they are overestimated by ADC(2), which can be seen by comparison

with ADC(2)-x, which finds those states at substantially lower energies. ADC(2)-x

is known to underestimate the doubly excited states and ADC(3) excitation ener-

gies have computed for comparison, which find a 0.55 eV higher excitation energy

for the 21A1 state. Based on the ADC(2)-x and ADC(3) results, the state with the

largest two-photon activity can be assigned to the 21A1 state at 4.96 eV, which is

in good agreement with experimental results.
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Table 8.5: Vertical fluorescence and absorption energies and oscillator strengths
for the 11B1 state of bithiophene in atomic units using ADC(2)-x and ADC(3)/cc-
pVDZ. In addition, vertical excitation energies and TPA cross-sections δTP in
atomic units for the lowest states with A1 symmetry are given. The results have
been obtained using the cc-pVDZ basis set for geometry optimizations and TPA
cross-sections, which have been computed at the MP2/def2-TZVPP ground state
structure. Experimental values have been taken from a: [87], b: [86].

ADC(2) ADC(2)-x ADC(3) Exp.
11B1

vert. abs. 4.74 4.14 4.58 4.13a, 3.86 (0 - 0)a

osc.str. 0.47 0.36 0.43
vert. fluo. 3.81 3.23 3.63 3.40b

osc. str. 0.50 0.38 0.45
21A1 5.50 4.41 4.96

4.96a, 4.48 (0 - 0)b
δTP 1262 1361
31A1 6.07 4.59 5.38
δTP 4806 122
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Chapter 9

Conclusion

9.1 Overview

Method development for the quantum chemical description of electronically ex-

cited states for medium-sized and large molecular systems is an essential field of

modern theoretical chemistry. In this thesis, for the first time analytical derivative

expressions for the energy of the algebraic diagrammatic construction scheme of

the polarization propagator of third order and extended second order have been

derived and presented enclosed in a comprehensive review of analytical derivative

theory in quantum chemistry. In addition, an efficient program for the computa-

tion of two-photon absorption cross-sections for ADC(2) and ADC(2)-x has been

presented. The computation of TPA cross-sections is based on the implementa-

tion of expressions for excited-state one-particle densities obtained through the

intermediate state representation approach, which has been outlined in detail.

Analytical derivative expressions for ADC(2), ADC(2)-x and ADC(3), and the in-

troduced scheme for the calculation of the TPA cross-sections employing the DIIS

algorithm have been integrated in the adcman module embedded in the Q-Chem

package of programs. The integrity of the implemented features has been verified

through numerical testing. Furthermore, a numerical scheme for the computation

of the complex frequency-dependent electric dipole polarization has been outlined

and a preliminary proof-of-principle implementation has been carried out.

The analytical derivatives have been used for excited-state geometry optimiza-

tions and have been applied in the first step to small test molecules. Benchmark
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calculations on diatomic molecules have been used to evaluate the performance

of the excited state equilibrium structures obtained with ADC(2), ADC(2)-x and

ADC(3). For the chosen test set, ADC(2)-x showed a systematic improvement

over ADC(2) and both ADC(2)-x and ADC(3) performed comparable to CCSD.

Test calculations on small organic molecules revealed limitations of the applicabil-

ity of ADC(2)-x and ADC(3) for the description of excited state potential energy

surfaces, and the origin of the deficiencies has been imputed to the underlying

MP(2) and MP(3) ground state respectively.

Two model systems have been studied using the newly implemented features.

Both systems represent important classes of molecules with various biological func-

tions, and technical and medical applications. In the study of the first one, all-

trans-octatetraene, it could be shown that ADC(3) yields vertical excitation en-

ergies, which are in good agreement with experimental results. However, it has

been seen that ADC(2)-x and ADC(3) fail to correctly describe the excited state

geometry of the first excited state of linear polyenes like octatetraene. The study

of bithiophene showed, that ADC(3) yields accurate results for vertical absorption

and fluorescence energies and yields reasonable excited state geometries for the

first excited singlet state. In addition, ADC(2)-x and ADC(3) results predict a

two-photon-active excited state in the energy region, in which TPA experiments

revealed a one-photon-forbidden state.

9.2 Outlook

The newly implemented features in combination with the highly efficient and fully

parallel adcman program can be used to study medium-sized and larger organic

chromophores. Geometry optimizations with ADC(3) for systems up to four hun-

dred basis functions can be performed on sufficiently powerful computers within

a few days. In addition, comparing the results of computed two-photon absorp-

tion cross-sections with ADC(2) and ADC(2)-x yields qualitative and quantitative

insights for two-photon active states with large double excitation character. Fur-

thermore, it is straightforward to extended the two-photon absorption program to

the ADC(3/2) model due to the modular structure of the program.

Another promising perspective is the extension of the analytical derivatives to
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other ADC variants, i.e. the core-valence separation and ionization and electron

affinity ADC.

One of the most interesting questions is, how the deficiencies of the ADC(2)-x

and ADC(3) energy derivative can be overcome. In general, the vertical excitation

energies of ADC(2)-x and especially ADC(3) are very accurate and the failure to

correctly describe certain excited state potential energy surfaces can be attributed

to the ground state energy contribution of the total energy. Thus, it is obvious

that in order to improve or remediate the excited state derivatives of ADC models,

an improved treatment of the ground state energy is necessary. In principle, the

combination of any ground state method with ADC is possible, since it plays no

role in the hermitian eigenvalue problem. However, MP(n) is the intrinsic ground

state to a given ADC(n) model and thus, other combinations have no formal

justification. Nevertheless, pairing the excitation energy derivatives of ADC with

the derivatives of other ground state methods is straightforward since derivatives

can simply be added up and the modular structure of the adcman program offers

the required flexibility. Thus, this is a route, which should be explored in the

future.
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