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Abstract

Attributes such as size, weight or color are at the core of conceptualization, i.e.,
the formal representation of entities or events in the real world. In natural language,
formal attributes find their counterpart in attribute nouns which can be used in order
to generalize over individual properties (e.g., big or small in case of size, blue or red
in case of color). In order to ascribe such properties to entities or events, adjective-
noun phrases are a very frequent linguistic pattern (e.g., a blue shirt, a big lion). In these
constructions, attribute meaning is conveyed only implicitly, i.e., without being overtly
realized at the phrasal surface.

This thesis is about modeling attribute meaning in adjectives and nouns in a dis-
tributional semantics framework. This implies the acquisition of meaning represen-
tations for adjectives, nouns and their phrasal combination from corpora of natural
language text in an unsupervised manner, without tedious handcrafting or manual
annotation efforts. These phrase representations can be used to predict implicit at-
tribute meaning from adjective-noun phrases – a problem which will be referred to as
attribute selection throughout this thesis.

The approach to attribute selection proposed in this thesis is framed in structured
distributional models. We model adjective and noun meanings as distinct semantic
vectors in the same semantic space spanned by attributes as dimensions of meaning.
Based on these word representations, we make use of vector composition operations in
order to construct a phrase representation from which the most prominent attribute(s)
being expressed in the compositional semantics of the adjective-noun phrase can be
selected by means of an unsupervised selection function. This approach not only
accounts for the linguistic principle of compositionality that underlies adjective-noun
phrases, but also avoids inherent sparsity issues that result from the fact that the
relationship between an adjective, a noun and a particular attribute is rarely explicitly
observed in corpora.

The attribute models developed in this thesis aim at a reconciliation of the conflict
between specificity and sparsity in distributional semantic models. For this purpose,
we compare various instantiations of attribute models capitalizing on pattern-based
and dependency-based distributional information as well as attribute-specific latent
topics induced from a weakly supervised adaptation of Latent Dirichlet Allocation.
Moreover, we propose a novel framework of distributional enrichment in order to
enhance structured vector representations by incorporating additional lexical infor-
mation from complementary distributional sources. In applying distributional enrich-
ment to distributional attribute models, we follow the idea to augment structured
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representations of adjectives and nouns to centroids of their nearest neighbours in se-
mantic space, while keeping the principle of meaning representation along structured,
interpretable dimensions intact.

We evaluate our attribute models in several experiments on the attribute selection
task framed for various attribute inventories, ranging from a thoroughly confined set
of ten core attributes up to a large-scale set of 260 attributes. Our results show that
large-scale attribute selection from distributional vector representations that have been
acquired in an unsupervised setting is a challenging endeavor that can be rendered
more feasible by restricting the semantic space to confined subsets of attributes. Be-
yond quantitative evaluation, we also provide a thorough analysis of performance
factors (based on linear regression) that influence the effectiveness of a distributional
attribute model for attribute selection. This investigation reflects strengths and weak-
nesses of the model and sheds light on the impact of a variety of linguistic factors
involved in attribute selection, e.g., the relative contribution of adjective and noun
meaning.

In conclusion, we consider our work on attribute selection as an instructive showcase
for applying methods from distributional semantics in the broader context of knowl-
edge acquisition from text in order to alleviate issues that are related to implicitness
and sparsity.
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1 Introduction

This thesis aims at automatically interpreting adjective-noun phrases with respect to
their attribute meaning. Using a distributional semantic framework, we acquire mean-
ing representations for adjectives, nouns and their phrasal combination from corpora of
natural language text in an unsupervised manner. These distributional representations
are designed as to give insight into attribute meanings that are implicitly conveyed by
the compositional semantics of adjective-noun phrases (e.g., the attribute COLOR being
conveyed by the phrase blue shirt, or STRENGTH being conveyed by strong lion). Thus,
they facilitate automatic exploitation of the rich source of hidden attribute knowledge
that is provided by the ubiquity of adjective-noun phrases in natural language.

1.1 Life Cycle of Knowledge in Natural Language Processing

Knowledge creators and knowledge consumers in NLP. The high relevance of onto-
logical knowledge for applications in Natural Language Processing has prevailed even
after the statistical turn and the machine-learning turn , as can be seen from examples in
several fields as diverse as question answering (Unger et al., 2012; Cimiano et al., 2014),
information retrieval (Fernández et al., 2011), word sense disambiguation (Ponzetto
and Navigli, 2010; Agirre et al., 2014) or coreference resolution (Ponzetto and Strube,
2006; Rahman and Ng, 2011), among others.

From this spectrum, a bidirectional interaction between NLP applications and onto-
logical knowledge can be construed, regarding NLP systems as knowledge consumers or
knowledge creators (Lenci, 2010). The former refers to knowledge-rich systems directly
responding to a user’s information need. Depending on the complexity of the partic-
ular task, such systems may integrate a variety of different knowledge sources, as has
been recently demonstrated by IBM’s Watson system for “deep question answering”
(Brown et al., 2013; Ferrucci et al., 2013). On the other hand, knowledge creators per-
form NLP tasks in order to generate knowledge for these knowledge consumers. The
division between creators and consumers is not always clear-cut, as knowledge cre-
ators may depend on initial knowledge themselves. Therefore, the issue well-known
as the knowledge acquisition bottleneck in Artificial Intelligence (Gruber and Cohen, 1987)
applies to both of them: Where does the knowledge come from?

Overcoming the knowledge acquisition bottleneck. Given that knowledge contin-
uously accumulates and changes over time, tedious and time-consuming handcraft-

11



1 Introduction

ing is clearly not a viable solution for creating and maintaining domain-specific and
up-to-date knowledge resources. Consequently, as argued by Lenci (2010), automatic
knowledge acquisition methods should be given preference, as they bear the poten-
tial to establish a “life cycle of knowledge” by tightly interlinking knowledge creators
and knowledge consumers. To this end, large amounts of text are used as the raw
material from which knowledge resources are automatically created and populated.
Subsequently, these knowledge resources are available to be used in practical NLP ap-
plications, i.e., knowledge consumers or linguistically enhanced knowledge creators.

1.2 Knowledge Induction from Text

Turning natural language text into machine-interpretable knowledge requires a com-
mitment to an “explicit specification of a shared conceptualization of a domain of inter-
est” in terms of a formal ontology (Gruber, 1993). Defining the common vocabulary in
which shared knowledge may be formally represented, ontologies provide a mapping
from possibly ambiguous natural language terms to formal concepts (Gruber, 1993). In
response to the knowledge acquisition bottleneck, the last years have seen the emer-
gence of ontology learning from text (Cimiano, 2006). At the core of ontology learning is
the task of relation extraction, i.e., detecting semantically meaningful relations between
previously determined or known (e.g., by referring to an already existing ontology)
domain-specific concepts.

Relation extraction. There is a wide range of approaches to relation extraction. At
one pole, pre-defined individual semantic relations are harvested using pattern-based
techniques in the tradition of Hearst (1992)1. In these approaches, ontological relations
of interest have to be specified in advance by manually providing possible linguistic
manifestations (e.g., is born in for the BIRTHPLACE relation holding between persons
and locations, or works for for the EMPLOYEE relation between persons and compa-
nies). Pattern-based approaches offer high precision for an often considerable amount
of manual specification efforts. At the other end of the spectrum, open information ex-
traction approaches (Banko et al., 2007; Etzioni et al., 2008) do not rely on pre-defined
extraction schemas, but extract all occurrences of particular syntactic configurations in
natural language text that are likely to convey different types of semantic relations (e.g.,
transitive verb constructions). Thus, open information extraction clearly overcomes the
rigidity of pattern-based approaches, at the expense of a lack of ontological grounding.

Drawbacks of surface-related approaches. Sticking closely to the linguistic surface,
both of these paradigms suffer from two major problems, viz. from (i) sparsity and (ii)

1In the seminal work of Hearst (1992), so-called is-a patterns (e.g., car is a vehicle) have been used in order
to detect taxonomic relations. In more recent work, pattern-based approaches have been extended to
non-taxonomic relations as well (Lin and Pantel, 2001; Pantel and Pennacchiotti, 2006).
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1.3 Attribute Knowledge in Knowledge Consumers and Knowledge Creators

a lack of semantic generality beyond individual surface patterns.
By the term sparsity we refer to a problem that is very common in corpus-based

modeling of natural language phenomena, i.e., the large number of rare or even un-
observed events (Manning and Schütze, 1999). As a consequence of sparsity, purely
surface-related approaches to relation extraction are notoriously incapable of acquiring
all possible instantiations of a semantic relation.

The generality problem is mainly due to lexical and syntactic alternations at the levels
of the information need specified by the user and the textual surface (e.g., kill vs. murder;
active vs. passive voice). Being out of the scope of pattern-based or open information
extraction methods, both these issues have only been addressed by grouping instances
of semantically similar surface patterns together (Wang et al., 2011; Lewis and Steed-
man, 2013). Their clusters or latent variables, respectively, do not provide an obvious
link to information needs explicitly specified by users, though.

In this thesis, we will explore ways of pursuing knowledge acquisition within a dis-
tributional semantic framework that allows for various adaptations in order to deal
with sparsity in particular. To this end, we will propose distributional semantic models
that incorporate aspects of compositionality and integrate latent variable models.

1.3 Attribute Knowledge in Knowledge Consumers and
Knowledge Creators

Abstraction in knowledge-consuming information systems. As a desideratum for fu-
ture developments in relation extraction, we envisage a semantic layer of abstraction
over individual relations that is accessible for intuitive specification by users, based on
abstract natural language terms. As a knowledge-consuming application in this direc-
tion, we anticipate attribute-based information retrieval: Imagine a user being interested in
evidence on whether or not HIV/AIDS is a dangerous disease or whether Heidelberg
is an attractive city to live in, for instance. These information needs may be presented
to the envisaged information system in terms of abstract queries as in (1):

(1) a. DANGER of the disease HIV/AIDS

b. ATTRACTIVENESS of the city Heidelberg

We argue that attribute nouns such as danger or attractiveness are of high value for this
purpose, as they are often ontologically grounded and provide a linguistic interface to
applications addressing information needs specified by users in natural language.

(2) ...interferes more and more with the immune system...
...making the patient much more likely to get infections inlcuding tumors...
...no cure or vaccine...
...treatment reduces risk of death...

13



1 Introduction

(3) ...situated on the River Neckar...
...fifth-largest town in Baden-Württemberg...
...popular tourist destination...
...romantic and picturesque cityscape...
...baroque-style Old Town...

In (2) and (3), we list several relevant results2 responding to these queries. Note that
none of these results contains an explicit mention of the query terms danger or attrac-
tiveness; they rather consist of individual semantic relations which can be subsumed
under the attributes provided in the query. It is the task of the underlying knowledge
acquisition methods to induce a link between the textual surface and the semantic layer
of abstraction that is referred to in the query in terms of attribute nouns.

A similar problem is encountered in aspect-based sentiment analysis (Pontiki et al., 2014)
aiming at the identification of aspects of given target entities and the sentiment ex-
pressed for each of them. While these aspects often denote ontological attributes of the
target entities (e.g., the TASTE of a meal, the PRICE of a car, etc.), textual descriptions
rarely mention them explicitly in terms of their corresponding attribute nouns.

A showcase life cycle of attribute knowledge. The relevance of attribute knowledge
is not limited to knowledge-consuming applications. In fact, we can imagine a full-
fledged life cycle of attribute knowledge in various sub-fields of NLP. For illustration, we
consider coreference resolution as an example case:

(4) [The box]m1
could not be moved. Due to [its heavy weight]m2

, it remains behind
the door.

(5) There are [two boxes]m1
in the room. The [red box]m2

is under the chair. The
[blue box]m3

has a yellow ribbon.

On the one hand, coreference resolution systems may contribute to the creation of at-
tribute knowledge, in that coreferent entities within a discourse enable the acquisition
of more meaningful and accurate attribute profiles. In (4), this is demonstrated for the
relation between the concept box and the attribute WEIGHT, which can only be estab-
lished if the coreference between m1 and m2 is successfully resolved.

On the other hand, knowledge-rich coreference resolution systems (Rahman and Ng,
2011) may benefit from a specific constraint rooted in attribute knowledge3 given in (6):

(6) If two entities exhibit different values for the same attribute in the same dis-
course, they are unlikely to be coreferent.

This is illustrated in (5), where both m2 and m3 are coreferent with m1. However, m2

and m3 are not coreferent with each other, as red box and blue box denote different values
2Manually extracted from the Wikipedia pages http://en.wikipedia.org/wiki/HIV/AIDS and http:
//en.wikipedia.org/wiki/Heidelberg, respectively; both last accessed on October 28, 2014.

3Thanks to Michael Strube (p.c.) for pointing this out.
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1.4 Attribute Meaning

for the same attribute COLOR. Taken together, these examples illustrate the potential of
knowledge-centered NLP architectures to enable a continuous life cycle based on the
entanglement of knowledge creators and knowledge consumers. Given their abstrac-
tion potential and their ubiquity in language and ontology, a vital role in all stages of
this life cycle may be played by attributes.

1.4 Attribute Meaning

Attributes are important in the fields of cognitive science, knowledge representation
and linguistics. We briefly review the basic notion of attribute in each of these fields
here, with an emphasis on the particular aspects that will be of relevence for the work
presented this thesis.

Cognitive science. In cognitive science, there is broad consensus that conceptual rep-
resentations in the human mind are not atomic, but involve a mechanism of decomposi-
tion of concepts into properties or features (Baroni et al., 2010). Properties may denote any
characteristics that qualify an instance of the respective concept. Properties describing
members of the concept bird, for example, may include feathers, flies, lays eggs and nest,
among many others (Barsalou, 1992).

The internal structure of concepts, however, is the cause of an intense, long-standing
debate. At one end of the spectrum, there are theories assuming that concept descrip-
tions merely consist of feature lists (Rosch and Mervis, 1975) with no structural differ-
ence being postulated between the singular properties in the list. The example proper-
ties given above for bird, for instance, comprise parts, activities and associated concepts,
without accounting for these semantic differences (cf. Poesio and Almuhareb, 2005).

In contrast, Barsalou (1992) assumes a frame structure being superimposed on the
properties describing a concept, arguing that “rather than categorizing entities solely on
the basis of specific values, people often categorize them on the basis of more abstract
attributes”. The building blocks of frames are sets of attributes and their possible values,
with values corresponding to such properties. Consider, for example, a possible frame
representation of the concept bird that might contain the attributes COLOR and SIZE,
among others, together with yellow and small as their corresponding values.

Linguistics. Natural language refers to attributes in terms of attribute nouns such as
color, size or shape. According to Guarino (1992), attribute nouns are ambiguous with
respect to functional and sortal readings in the sense that they may either denote “con-
ceptual components of something as well as concepts on their own”. In the latter case,
the noun has to be given a sortal reading as in (7b), contrary to the functional interpre-
tation in (7a).4

4These examples are due to Löbner (2013).
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(7) a. The color of the potato is purple.
b. Purple is a color.

In order to disambiguate these readings in a particular linguistic context, Guarino (1992)
suggests the following rule that he refers to as Woods’ linguistic test5:

(8) Y is a value of the attribute A of X if we can say that Y is an/the A of X.

Attribute nouns may denote sets (Löbner, 2013) or scales of values (Sheinman et al.,
2013; Hatzivassiloglou and McKeown, 1993; Levinson, 1983); hence they can be used
as “abstraction terms” in order to generalize over individual properties of entities or
events. Notably, attribute meaning in unrestricted natural language text is most often
conveyed by adjectives in predicative or attributive syntactic configurations, as illus-
trated in the following examples:

(9) The car is blue. (COLOR of the car)

(10) This is an old man. (AGE of the man)

Alternatively, attributes may be conveyed in noun compounds or by means of stative
verbs (Gamerschlag, 2008):

(11) This is a stone wall. (MATERIAL of the wall)

(12) These shoes cost 100 Euro. (PRICE of the shoes)

Note that in all these constructions, attribute meaning is conveyed only implicitly, i.e.,
without being overtly realized at the linguistic surface. In order to render implicit at-
tribute meaning explicit in an automatic corpus-based approach, lexico-syntactic pat-
terns similar to Woods’ test in (8) can be used. However, such patterns are very sparse
in natural language text, which is one of the main motivations for the distributional
approach to modeling attribute meaning taken in this thesis.

Knowledge representation. To some extent, attribute information is contained in ex-
isting semantic resources commonly used in NLP – most notably WordNet (Fellbaum,
1998), but also SUMO (Pease et al., 2002; Niles, 2003) or Cyc (Lenat, 1995; Matuszek
et al., 2006). However, these resources face limitations in that they cover attribute infor-
mation on the lexical or conceptual level only: In WordNet and SUMO, attribute infor-
mation is restricted to (attributes of) adjectives, i.e., no attribute knowledge is provided
for nouns. Cyc features attribute information on the concept level, but lacks lexical cov-
erage as the only existing mapping between Cyc and WordNet merely accounts for a
small subset of WordNet synsets (Scheffczyk et al., 2006).

As a consequence, neither of the existing resources is capable of assigning attribute
meaning to adjectives and nouns in context. This is clearly a shortcoming, given that
attribute meaning in natural language is most often implicitly conveyed in adjective-
noun phrases as in (9) and (10).

5Note that this test yields a positive result only for functional readings as in (7a), whereas sortal readings
as in (7b) can be determined only by exclusion.
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Main topics of this thesis. In this thesis, we treat the acquisition of attribute knowl-
edge as a special case of knowledge induction from text, with a focus on adjective-noun
phrases as ubiquitous sources of attribute knowledge in natural language. We will fol-
low an unsupervised induction approach that is embedded into a distributional seman-
tic framework. This enables us to acquire attribute knowledge for adjectives, nouns and
their phrasal combinations from text corpora without tedious handcrafting or manual
annotation efforts. We will show that distributional methods effectively alleviate issues
in attribute acquisition that are related to implicitness and sparsity.

Our methodology can be flexibly adapted to various domains with varying inven-
tories of attributes. We argue that this latter point is of major importance both from a
cognitive and a practical perspective: As Barsalou (1992) points out, attribute forma-
tion is a very productive process: “People are highly creative in their construction of
attributes, often producing new ones relevant to specific contexts”. This clearly un-
derlines the importance of an automated acquisition approach beyond static lexical or
ontological resources.

The approach followed in this thesis does not rely on a particular existing ontology
as backbone. Being primarily motivated from the linguistic abstraction potential of
attributes, it remains close to the linguistic surface, assuming a collection of attribute
nouns as its only requirement to be specified in advance. In the interest of being able to
explore a broad, large-scale inventory of attribute meaning, we rely on attribute nouns
as provided by WordNet (Fellbaum, 1998). Thus, we avoid translation efforts between
ontology and language (Gruber, 1993) during acquisition. Linking the acquired at-
tribute knowledge to a particular ontology is left as a subsequent task in this work,
which may be achieved manually or automatically, using techniques from entity link-
ing or word sense disambiguation, for instance Moro et al. (2014).

1.5 Thesis Overview

The thesis is structured as follows. Subsequently to this introduction, Chapter 2 out-
lines the foundations of distributional semantics most relevant in order to put the mod-
els proposed in this thesis into a broader context. This includes conceptual and nota-
tional foundations and different variants of distributional semantic models along with
their particular assumptions. Most importantly, we will focus on the difference be-
tween structured vs. unstructured distributional models and introduce the notions of
specificity and sparsity which relate to conflicting goals in distributional modeling.

Chapter 3 reviews previous work related to the most important aspects of this thesis,
i.e., attribute learning, adjective classification, structured distributional models, topic
models in distributional semantics, distributional models of phrase meaning and dis-
tributional enrichment of structured models.

Chapter 4 summarizes the most important research questions being addressed in
this thesis and its major contributions. In this chapter, we define the task of attribute
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selection from adjective-noun phrases, which constitutes the core of our approach to
the acquisition of attribute knowledge from text, and we outline our methodology in
addressing this task.

Chapter 5 restricts the subject matter to be investigated in this thesis by confining
attribute selection to a subclass of adjectives, i.e., property-denoting lexical types. To
this end, we propose an adjective classification scheme that is empirically validated in
a corpus annotation study and an automatic classification experiment.

Chapter 6 presents our attribute selection models in full technical detail, including
different configurations and parameters. This includes pattern-based and dependency-
based distributional models as well as distributional attribute models incorporating
attribute-specific latent topics as induced from weakly supervised variants of Latent
Dirichlet Allocation.

In Chapter 7, the different attribute selection models are subjected to a contrastive
experimental evaluation against specifically created data sets. These reflect two scenar-
ios of attribute selection being carried out (i) on a confined set of core attributes and (ii)
on a large scale.

In Chapter 8, the best-performing attribute model as identified in these experiments
undergoes a thorough performance analysis based on linear regression models. This
study assesses the impact of various linguistic variables on attribute selection, exposing
strengths of our model as well as potentials for improvement.

In Chapter 9, we present a framework for distributional enrichment that aims at im-
proving structured distributional representations. The framework is evaluated in an
experiment in order to assess its capabilities in enhancing the performance of distribu-
tional attribute models in large-scale attribute selection.

Chapter 10 concludes the thesis by summarizing its main contributions and high-
lighting perspectives for future work.
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2 Foundations of Distributional
Semantics

2.1 Distributional Hypothesis

Distributional modelling of lexical meaning is based on the fundamental assumption
known as the distributional hypothesis: “You shall know a word by the company it
keeps.” (Firth, 1957)

Following the late Wittgenstein’s meaning as use conception (Wittgenstein, 2001), the
distributional hypothesis states that the meaning of a word is largely characterized by
its observed use in language, i.e., the words in the context of which it frequently occurs.
As an important implication of the distributional hypothesis, words that occur in sim-
ilar contexts tend to be similar in meaning (Harris, 1954; Firth, 1957; Deerwester et al.,
1990).

In a more generalized form, “statistical patterns of human word usage can be used
to figure out what people mean” (Turney and Pantel, 2010). In fact, human speakers
are most often capable of guessing the meaning of a word solely based on its usage
(Erk, 2012), which confirms the plausibility of the distributional hypothesis. This holds
even for artificial non-words (not existing in the vocabulary of a particular language),
as demonstrated by Baldwin (2006):

(13) a. groyter

b. specialist, cause, patient, severity, biopsy

(14) a. hoonger

b. steep hoonger, hoonger top, climb a hoonger, wooded hoonger

Here, the words in (13a) and (14a) are the target words whose meaning is to be deter-
mined. Assume that groyter is frequently observed to occur in documents also men-
tioning the words given in (13b), while hoonger frequently occurs in contexts as given
in (14b). Even though neither groyter nor hoonger exist as real words of English, human
speakers almost effortlessly infer that the former is meant to denote a disease and the
latter a mountain or a hill.1

1I recommend to present these examples to students unfamiliar with distributional semantics, as I
recurrently did in all the courses I have taught on the topic. Both examples worked smoothly for all
participants (most of them non-native speakers of English), which made them immediately believe.

19



2 Foundations of Distributional Semantics

drive park engine flower
car 15 7 11 0

truck 13 4 16 0
tree 0 5 0 9

Figure 2.1: Vector representations for the target words car, truck and tree, using drive,
park, engine and flower as context words. The numbers in the individual
fields of each vector (being made up for this example) can be interpreted
as weights denoting the strength of the relationship between the target and
the respective context word.

Arguably, this inference process is due to a human capacity denoted as similarity-
based generalization in cognitive psycholinguistics (Yarlett, 2008) that empowers lan-
guage learners to acquire meaning representations for unknown words based on their
contextual similarity to already learned ones, which is a direct reflection of the distri-
butional hypothesis.

2.2 Meaning Representation in Distributional Semantic
Models

In computational linguistics, the distributional hypothesis is prominent in distributional
semantic models or vector space models (Turney and Pantel, 2010) which can be seen as
implementations of automated “discovery procedures” (Sahlgren, 2008) for represen-
tations of word meaning. Contrary to formal semantic approaches in the Fregean tra-
dition (cf. Portner, 2005), distributional representations do not rely on abstract logical
forms (e.g., car’ as a predicate for representing the meaning of car) which have to be
resolved against tediously hand-crafted models (Carnap, 1947), but on purely corpus-
based contextual cues for representing lexical meaning. The distributional approach
towards modeling the meaning of a target word would be to automatically collect all
context words (i.e., words contextually related to all mentions of the target in large text
corpora) and store them in a vector. See Figure 2.1 for an example.

Context words may be seen as empirically determined features or meaning compo-
nents contributing to the intensional meaning of a target word, similar to lexical de-
scriptions developed in componential analysis (Dowty, 1979). However, this analogy
to generativist approaches to lexical semantics should not be overstressed since distri-
butional features, given their origin in the language system itself, cannot be claimed to
be abstract and universal semantic primitives (Wierzbicka, 1996).

Within distributional semantics, the internal structure of word meaning (Pulman,
2005) is usually abstracted from, and so is the question as to whether contextual fea-
tures reflect such an internal structure or not. More importantly, the word vectors con-
structed through the distributional “discovery procedure” can be given a geometrical
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interpretation (Widdows, 2004) as points in a semantic space that is spanned by the con-
text words as its dimensions of meaning. This perspective licenses to equate topological
proximity with semantic relatedness (Baroni and Lenci, 2011), i.e., words that are closely
adjacent to each other in semantic space are considered semantically strongly related2.
Thus, in the example in Figure 2.1, car is much more closely related to truck than to tree.

The primary focus of distributional semantic models is on acquiring densely pop-
ulated vector representations which give rise to meaningful, reliable relatedness es-
timates for various target words. For most applications making use of vector space
models (e.g., word clustering, query expansion or document classification, to name just
a few prominent ones3), it is of primary importance that the dimensions of meaning
as spanned by the context words are sufficiently discriminative in order to facilitate
meaningful clusters of target words within the semantic space. In contrast, the linguis-
tic properties of the context words are often disregarded in models addressing these
tasks, which means that assessing the degree of similarity (or relatedness, respectively)
between target words is given preference over linguistic insights into its source (cf. Har-
tung and Frank, 2011a) or type (Padó and Lapata, 2003). In the next section, we outline
a spectrum of different variants of distributional semantic models, reflecting a range of
linguistic layouts and purposes of application.

2.3 Variants of Distributional Semantic Models

2.3.1 Conceptual and Notational Foundations

Our notation follows Thater et al. (2010). Assuming sets of target words W and context
words C, we define the most general variant of a Euclidean vector space V (Jänich, 1994)
being spanned by the set of orthonormal basis vectors {⃗ec|c ∈ C}. Given that any
vector in V can be represented as a linear combination of its basis vectors, a target vector
representing the meaning of a word w ∈W in V is defined as follows:

w⃗ = ∑
c∈C

ω(w, c) · e⃗c (2.1)

In this definition, ω : W×C → R is a function that assigns a weight to each component
of a vector, i.e. to each pair consisting of a target w ∈ W and a context word c ∈ C.
Throughout this thesis, we will refer to ω as the component weighting function. Depend-
ing on the type of vector space model and the envisaged tasks, its result can be raw

2In the distributional semantics literature, the terms relatedness and similarity are sometimes used inter-
changeably, which we consider a lack of terminological rigidity. We adhere to the notion of semantic
relatedness as introduced by Budanitsky and Hirst (2006) who regard semantic similarity as a spe-
cial case of semantic relatedness (which subsumes a variety of lexical semantic relations such as
hyponymy, meronymy, antonymy etc.). Citing an example from Resnik (1995), they consider car and
gasoline more closely related than car and bicycle, whereas the latter pair is more similar.

3See Turney and Pantel (2010) for a more exhaustive survey.
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frequencies as extracted from corpora or their transformations to association scores or
probabilities, for instance.

As an example, consider w⃗, the vector representation of a target word w in a vector
space with dimensions C = {drive, park, engine, flower} corresponding to base vectors
e⃗drive = (1, 0, 0, 0), e⃗park = (0, 1, 0, 0), e⃗engine = (0, 0, 1, 0) and e⃗ f lower = (0, 0, 0, 1). Assum-
ing we extracted 15 occurences of w in the context of drive, 7 occurrences of w with park
and 11 occurrences of w with engine from the underlying corpus, a purely frequency-
based instantiation of the context weighting function yields:

ω(w, drive) = 15 (2.2)

ω(w, park) = 7 (2.3)

ω(w, engine) = 11 (2.4)

ω(w, flower) = 0 (2.5)

By substitution into Equation (2.1), we have:

w⃗ = 15 · (1, 0, 0, 0) + 7 · (0, 1, 0, 0) + 11 · (0, 0, 1, 0) = (15, 7, 11, 0) (2.6)

Note that setting w = car in this example leads to the target vector c⃗ar as contained in
Figure 2.1; target vectors ⃗truck and ⃗tree can be constructed analogously.

Vector representations within one vector space can be compared with regard to their
spatial proximity which is considered as a distributional correlate of semantic similarity4

(Widdows, 2004). A common metric for assessing the degree of similarity between two
vectors w⃗1 and w⃗2 is given in (2.7):

sim(w⃗1, w⃗2) =
w⃗1 · w⃗2

||w⃗1|| ||w⃗2||
(2.7)

This metric is based on the inner product of w⃗1 and w⃗2 in the numerator. Normaliz-
ing both vectors by their magnitude in the denominator reduces them to unit length.
Thus, sim(w⃗1, w⃗2) is equivalent to the cosine of the angle enclosed by the two vectors
(Widdows, 2004). The metric is commonly referred to as as cosine similarity and widely
used within distributional semantics, mostly for its inherent normalization capacities
which abstracts from frequency effects and measures the semantic concordance of two
vectors only from their spatial orientation instead (Widdows, 2004). For instance, car
and truck are much more similar than truck and tree according to the example given
in Fig. 2.1 (sim(c⃗ar, ⃗truck) = 0.96 vs. sim( ⃗truck, ⃗tree) = 0.09), because their vector rep-
resentations have more dimensions of meaning in common, not because their overall
frequency profiles are similar. An overview of alternative similarity metrics and their
properties is given by Weeds et al. (2004).

4Being rooted in linear algebra rather than in linguistics, the interpretation of spatial proximity in vector
space models we discuss here does not account for the linguistically motivated differences between
semantic similarity and semantic relatedness as introduced above.
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In the following, we introduce several variants for constructing distributional seman-
tic models, leading to models of different layouts which will be of importance through-
out this thesis.

2.3.2 Structured vs. Unstructured Models

We first discuss two different modes of context selection (Padó and Lapata, 2007) which
result in the distinction between structured and unstructured distributional models. The
main difference between both types of models is that they impose different constraints
on the co-occurrence relation between target and context words.

Unstructured models. Our terminology largely follows Baroni and Lenci (2010) who
state that unstructured distributional models “do not use the linguistic structure of texts
to compute co-occurrences, and only record whether the target occurs in or close to the
context element, without considering the type of this relation”. The most important
parameter of such a model concerns the size of the contextual region5 surrounding a
target word (Sahlgren, 2006), often also denoted as the context window. Using five tokens
on either side as context region has become a popular setting (Church and Hanks, 1990),
even though considerably larger windows are also found useful for specific purposes
(Niwa and Nitta, 1994; Schütze and Pedersen, 1997; Schütze, 1998). At the extreme
end of the spectrum, entire documents are considered as context regions. Approaches
of this kind are usually adopted in information retrieval (Salton et al., 1975). Due to
their unordered nature and lack of internal structure, the context words selected by
unstructured distributional models are often denoted as bags of words.

Structured models. In contrast, structured models are based on the assumption that
specific linguistic contexts contribute to different aspects in the representation of word
meaning (Padó and Lapata, 2007; Lin, 1998). In the linguistic literature, syntactic pat-
terns of co-occurrence are found to be particularly important cues to lexical meaning
(Levin, 1993). Therefore, structured distributional models explicitly rely on linguistic
structure in order to select the context words used as features for representing target
words.6 Our notion of structured distributional models throughout this thesis sub-
sumes both dependency-based and pattern-based strategies7 for context selection: In the
former case, co-occurrence relations between target and context words are established

5Additionally, the context words extracted from a particular context region are often filtered by eliminat-
ing stop words (Turney and Pantel, 2010) and/or function words (Dagan et al., 1993), and lemmatized
(Karlgren and Sahlgren, 2001).

6In our notion of structured distributional models, we focus on the aspect of using linguistic structure for
context selection, whereas aspects of structured representation and their relationship to the expressive
power of distributional models (Baroni and Lenci, 2010) are abstracted from.

7For slightly different approaches also categorized as structured distributional models, see Erk (2012)
and Erk and Padó (2008, 2009).
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my new sports drives very fast the has a red color
car 1 1 1 1 2 2 1 1 1 1 0

(a) Unstructured model

my new sports drives very fast the has a red color
car 0 0 0 1 0 0 0 1 0 0 0

(b) Dependency-based model

my new sports drives very fast the has a red color
car 0 0 0 0 0 0 0 0 0 0 1

(c) Pattern-based model

Figure 2.2: Comparison of structured and unstructured distributional semantic models
constructed from toy corpus in Example (15).

along syntactic dependency paths, in the latter case by matching lexico-syntactic pat-
terns.

(15) My new sports car drives very fast. The car has a red color.

Specificity and sparsity of distributional models. Considering the toy corpus in (15),
we compare three different settings of constructing a distributional semantic model for
representing the lexical meaning of the target word car:

(a) an unstructured model, using a context window of three tokens on each side of a
target word (ignoring punctuation)

(b) a structured dependency-based model, extracting all head verbs linked to a tar-
get word by a sbj relation

(c) a structured pattern-based model, extracting all context words matching the lexico-
syntactic pattern: the TARGET has a JJ CONTEXT8

The distributional representations resulting from these settings are depicted in Fig-
ures 2.2a–2.2c. Despite being highly fragmentary, these vectors reveal interesting differ-
ences pointing to important analytical concepts for comparing distributional semantic
models of different types.

The first difference concerns the aspect of sparsity: Vector representations generated
from an unstructured model (cf. Figure 2.2a) tend to be rather dense, i.e., to contain

8Here, TARGET stands for the target word, CONTEXT for a context word, and JJ denotes arbitrary adjec-
tives as defined by the Penn Treebank tagset (Marcus et al., 1993).
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a large number of vector components populated with positive values, given that the
bag-of-words assumption yields a large number of target-context pairs. In contrast, the
pattern-based model (cf. Figure 2.2c) suffers from high sparsity, with only one vector
component above zero due to the fact that the lexico-syntactic pattern used for con-
text selection can be expected to yield only a small number of corpus matches. The
dependency-based model (cf. Figure 2.2b) is in an intermediate position.

The second difference concerns the aspect of specificity. As discussed above, the de-
gree of semantic relatedness between target words as predicted by a vector space model
spanning multiple dimensions of meaning does not necessarily allow a conclusion with
regard to the type of semantic relation holding between these targets (Baroni and Lenci,
2011).9 For instance, adopting an example by the same authors, it is fairly plausible to
imagine a distributional model rating dog and animal as highly related terms, as well
as dog and tail. Such a model clearly lacks the ability to discriminate different types of
semantic relations. As noted by Padó and Lapata (2003), this is one of the major criti-
cisms put forward against distributional models in general, as it may limit the practical
usability of such models in many NLP tasks that require this capability.

We argue, in turn, that criticisms of this kind are too broad as they ignore recent
trends in the field to (i) develop multi-purpose distributional models that can be adapted
to specific tasks (Baroni and Lenci, 2010) or (ii) tailor distributional models to particular
semantic relations in the first place. The latter can be achieved by intelligent combina-
tions of structured methods of context selection (Padó and Lapata, 2007; Baroni et al.,
2010) and similarity metrics (Weeds et al., 2004; Michelbacher et al., 2011).

Throughout this thesis, we refer to the ability of a distributional model to tailor its
context selection method to one particular semantic relation as its specificity. The ex-
ample in Figure 2.2c, for instance, illustrates a highly specific pattern-based model10

that selects only attribute terms as contexts for representing noun meaning. In com-
parison, the dependency-based model in Figure 2.2b selects a group of functionally
related contextual terms resembling qualia roles (Pustejovsky, 1995) which are difficult
to nail down to one particular semantic relation, though. Therefore, dependency-based
distributional models can be seen as representatives of medium specificity. Unstruc-
tured models, as exemplified in Figure 2.2a, usually induce a wide variety of relations
between targets and context words ranging from properties (car–new, car–fast, car–red)
to loose topical associations (car–sports), due to the lack of meaningful linguistic con-
straints imposed on their extraction. Thus, unstructured models are sufficiently rich in
order to cover the entire spectrum of semantic relatedness, at the same time being the
most unspecific ones among the three types of models compared here.

9According to Sahlgren (2008), this problem can be traced back to the distributional hypothesis being
“a strong methodological claim with a weak semantic foundation. It states that differences of meaning
correlate with differences of distribution, but it neither specifies what kind of distributional information
we should look for, nor what kind of meaning differences it mediates.”

10Apart from the showcase introduction provided here for ease of presentation, please refer to Section
3.3 for a more thorough discussion of previous work on structured distributional models.
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Figure 2.3: Different types of distributional models in a spectrum of specificity and
sparsity

Setting specificity and sparsity in relationship to each other, we observe a reciprocal
pattern that gives rise to the following hypothesis: The more specific a model, the more
liable it is to effects of sparsity, and vice versa. This relationship is graphically depicted
in Figure 2.3. It follows directly from this hypothesis that specificity and density are
conflicting goals in distributional models of lexical meaning. This leads to the impor-
tant research question as to whether distributional semantics is inherently limited to
capturing unspecific semantic relatedness, thus opposing its suitability for NLP appli-
cations that require more specific semantic knowledge, or how a practical compromise
between specificity and sparsity can be effectively achieved. In this thesis, this question
is investigated with regard to the attribute relation between adjectives and nouns.

2.3.3 Syntagmatic vs. Paradigmatic Models

Syntagmatic and paradigmatic distributional models owe their names to the functional
relation – syntagmatic or paradigmatic – that holds between the target elements being
represented within the respective model and the context words used to describe them.

Roots in structuralism. According to the structuralist school in linguistics (dating
back to de Saussure (1916)), syntagmatic relations hold between words11 that co-occur
in sequential configurations, whereas paradigmatic relations hold between words that

11In fact, structuralist theory can be (and has been) analogously applied to more basic units of language
such as morphemes and phonemes as well, but we are merely concerned with words here.
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boys like trains and cars

girls like books and dolls

linguists like words and phrases

paradigmatic

syntagmatic

Figure 2.4: Syntagmatic and paradigmatic relations
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Figure 2.5: Fragments of distributional models based on the toy corpus from Fig. 2.4

do not co-occur syntagmatically, but are substitutable by one another as they occur in
the same (or similar) contexts at different times. Thus, syntagmatic relations can be seen
as functional relations in praesentia, paradigmatic ones as relations in absentia (Sahlgren,
2006). For illustration, consider Figure 2.4, where three toy sentences were arranged in
a tabular structure in order to highlight their functional equivalences and differences:
All words in the same line stand in a syntagmatic relation, while all words in the same
column share a paradigmatic relation. These examples clearly demonstrate that the
semantic relations derived from syntagmatic and paradigmatic structural patterns are
both meaningful, but obviously different in type (e.g., linguist–book, linguist–word vs.
linguist–boy or linguist–girl).

Constructing syntagmatic distributional models. Based on these definitions, syntag-
matic distributional models can straighforwardly be constructed from text corpora by
(i) selecting sets of target elements and context words and (ii) extracting all instances
of syntagmatic relations between the members of these sets such that only those vec-
tor components linking syntagmatically related words obtain a positive value. Apply-
ing this procedure to the toy corpus from Fig. 2.4 yields the syntagmatic distributional
model displayed in Fig. 2.5a.
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Constructing paradigmatic distributional models. Paradigmatic distributional mod-
els aim at discovering members of paradigmatic semantic relations, e.g., fillers of a
predicate’s argument position. These are often “semantically coherent” in that they can
be subsumed under a particular ontological category and/or share common proper-
ties (Erk et al., 2010; Schulte im Walde, 2010). An idealized example of a paradigmatic
model is shown in Fig. 2.5b. According to this model, based on the toy data from
Fig. 2.4, boys are paradigmatically related to girls and linguists, while being unrelated to
trains and cars, for instance. Given that paradigmatic relations are functional relations
in absentia, the most common approach to inducing paradigmatic distributional mod-
els automatically from corpora is based on (i) constructing vector representations for
all target words of interest from appropriate syntagmatic contexts, and (ii) applying a
similarity metric (e.g., the cosine measure as introduced in Section 2.3.1 above) in order
to identify highly similar vectors. Thus, pairs of target words with a high proportion of
shared syntagmatic contexts are considered paradigmatically related12. Consequently,
the selection of syntagmatic contexts has an immediate impact on the prospects of ac-
quiring meaningful paradigmatic relations. Following up on our previous discussion
on structured vs. unstructured distributional models, paradigmatic models require a
thoroughly designed compromise between fostering specificity and avoiding sparsity
in order to be effective.

2.3.4 First-order vs. Second-order Models

The distinction between first-order and second-order distributional models is primar-
ily due to differences in their underlying notions of context representation: While first-
order models represent the meaning of a target word along directly co-occurring, syn-
tagmatically related context words, second-order models capitalize on context words of
context words (Schütze, 1998; Purandare and Pedersen, 2004).

Most intuituvely, these types of distributional models can be understood in graphical
terms as being constructed from contextual paths between target elements and context
words, where the path length k determines the order of the model (k = 1 yielding a
first-order model, k = 2 a second-order model). For illustration, compare Figs. 2.6
and 2.7, showing first- and second-order contextual paths for the target word tractor.
In both figures, the target word is surrounded by a rectangle, while all words entering
the resulting model as a context word are marked by an ellipse. As can be seen, the
first-order representation of tractor is solely based on paths with k = 1, i.e., each context
word is reached by following one arc (cf. Fig. 2.6). Second-order representations are
obtained recursively from computing contextual paths on top of all first-order context
words, thus extending the first-order paths by one additional arc (cf. Fig. 2.7). Note
that only end points of second-order contextual paths are used as context words in the

12In practice, either clustering techniques (Prescher et al., 2000; Purandare and Pedersen, 2004) or similar-
ity thresholds (McNamara et al., 2007; Corley and Mihalcea, 2005) are applied in order to discriminate
members of a valid paradigmatic relation from noise.
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ride

drive

tractor

engine repair

Figure 2.6: First-order contextual paths for tractor

horse ride drive

locomotive car

tractor

engine repair

Figure 2.7: Second-order contextual paths for tractor
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resulting second-order vector representation of the target word.
Following our definition from Chapter 2, originally based on Thater et al. (2010), we

give formal definitions of first-order and second-order vectors as follows. A first-order
vector w⃗ representing a target word w is defined as:

w⃗ = ∑
w′∈C

ω(w, w′) · e⃗w′ (2.8)

As can be seen from the definition in (2.8), the backbone for populating the components
of the first-order vector w⃗ is the contextual relation between w and each member w′ of
a set of context words C.

A second-order vector representing w is defined as:

w⃗ = ∑
w′′∈C

(
∑

w′∈C
ω(w, w′) ω(w′, w′′)

)
· e⃗w′′ (2.9)

This definition clearly emphasizes that second-order representations are constructed
from first-order contextual paths by recursion on w′. Thus, w′ merely serves as a hinge
between w and w′′, without being explicitly contained in the resulting second-order
vector: The components of w⃗ are determined by the relation (w, w′′) that is computed
by summing up all paths from w to w′′, generalizing over w′ (cf. Thater et al., 2010).

Essentially, the two strategies of vector construction just discussed are reflected by
different inventories of features that are available in order to describe the meaning of a
target word in a vector representation: A target is either described in terms of first-order
context words (e.g., a tractor drives, has an engine, etc.) or second-order context words
sharing the same first-order contexts (e.g., tractors are closely related to cars along the
shared context drive, and also to locomotives along the shared context emit fumes). Note
that the second-order approach increases the chance of observing a particular target-
context pair (w, w′′) by considering multiple paths along different intermediate con-
texts w′, whereas first-order models are dependent on observing (w, w′′) directly. This
aspect is often referred to as an advanced density of second-order vector representations
compared to first-order ones (cf. Schütze, 1998). Therefore, second-order distributional
models can be expected to be particularly effective in paradigmatic settings aiming at
the acquisition of pairs of target words that are members of the same semantic category.

2.4 Meaning Representation beyond the Word Level

For a long time, distributional semantic models have been merely applied to represent
the meaning of individual words. Only recently, the linguistic principle of composition-
ality, stating that the meaning of a complex linguistic expression is a function of its
constituents and their syntactic combination (Frege, 1892), has found its way into dis-
tributional modelling. Being deeply rooted in formal semantics since Montague (1974),
this principle is at the core of all computational approaches to semantics construction,
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i.e., the attempt of assigning formal meaning representations to natural language ex-
pressions.

Many of these approaches rely on predicate logic as target formalism, using the
lambda calculus for constructing logical representations of phrase and sentence mean-
ing (Blackburn and Bos, 2005; Bos, 2008). The formal system of the lambda calculus is
based on logical predicates as elementary representations of word meaning, from which
complex formulae are composed by means of the lambda operator used for binding ar-
guments to predicates or combining predicates.

In order to lift distributional semantic models beyond the word level, a similar idea
is applied, following Mitchell and Lapata (2010): Individual word vectors (as in Fig.
2.2, for instance) are taken as elementary representations of lexical meaning; as a com-
position operator, the two vector operations ⊕ (vector addition) and ⊙ (vector mul-
tiplication) are used. These operations are defined as component-wise addition and
multiplication, respectively, as given in Equations (2.10) and (2.11):

w⃗1 ⊙ w⃗2 = ∑
a∈A

ω(w1, a) · e⃗a ⊙ ∑
a∈A

ω(w2, a) · e⃗a

= ∑
a∈A

(ω(w1, a) ·ω(w2, a)) · e⃗a (2.10)

w⃗1 ⊕ w⃗2 = ∑
a∈A

ω(w1, a) · e⃗a ⊕ ∑
a∈A

ω(w2, a) · e⃗a

= ∑
a∈A

(ω(w1, a) + ω(w2, a)) · e⃗a (2.11)

This particular approach to compositionality in distributional semantic models has two
important implications: First, elementary and composed vectors live in the same se-
mantic space, i.e., one and the same model is used to represent lexical and phrasal (or
even sentential) meaning. While there are good reasons for assuming that this causes
problems on the level of sentence meaning (Erk and Padó, 2008; Baroni et al., 2014), we
consider it a practical assumption for the attribute selection task that is in focus of this
thesis. Second, the lambda operator and the vector operations introduced cannot be
seen as full equivalents, because vector representations – contrary to logical predicates
– usually do not encode syntactic properties of a target13. As a consequence, complex
vectors constructed by means of vector addition or vector multiplication do not reflect
the internal syntactic structure of their constituents14. In an attempt to overcome this
obvious violation of an inherent aspect of the principle of compositionality, Baroni et al.
(2014) propose to derive compositional distributional representations of phrase mean-

13See Erk and Padó (2008, 2009), Grefenstette and Sadrzadeh (2011) or Grefenstette et al. (2014) for
notable exceptions.

14Being commutative operations, vector addition and vector multiplication yield identical vector repre-
sentations for the phrases dog bites man and man bites dog, for instance.
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ing based on linear mappings15 closely replicating the notion of functional application
from formal semantics (cf. Heim and Kratzer, 1998).

Again, we argue that the shortcomings of vector-based composition just discussed do
not pose a major issue for the particular application of distributional semantic models
envisaged in this thesis. A more thorough discussion of these aspects is deferred until
Chapter 6.

15Please refer to Section 3.5 for a more detailed discussion of compositional distributional models based
on linear mappings.
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Previous work that is related to the topics investigated in this thesis comprises adjec-
tive classification and various aspects of distributional modeling of attribute meaning in ad-
jectives and nouns. Classification of adjective types is an important prerequisite for
the corpus-based acquisition of attribute meaning from adjectives, as adjectives can be
grouped into different semantic classes according to their ontological foundations. A
major distinction concerns the difference between property-denoting and relational ad-
jective types, among which only the former exhibit semantic characteristics that can be
leveraged for attribute learning.

3.1 Adjective Classification

Adjective classification schemes similar to the one we apply in this thesis have been
presented by Boleda (2006) for Catalan and Raskin and Nirenburg (1998) for English.
Their goal was the creation of a large-scale adjective lexicon for NLP tasks. The most
fundamental difference between the work of Raskin and Nirenburg and ours is that
they created their resource manually. In contrast, we aim at automatic classification,
as effective automatic methods have the advantage that they can be applied to novel,
specialized domains and possibly to other languages. Boleda (2006) made use of clus-
tering techniques to automatically establish adjective classes in Catalan. She obtained
various sets of clusters that were evaluated against a human-annotated gold standard,
yielding up to 73% accuracy. A strict comparison of the two approaches will not be pos-
sible due to the different languages considered and divergences regarding the selected
target classes. In fact, her approach included several language-specific features so that
it is unclear whether it can be transferred to English. Since our aim is the targeted ac-
quisition and classification of adjectives for the purpose of ontology learning, we opt
for a classification approach that allows us to pre-specify (and possibly refine and ex-
tend) appropriate target classes for concept learning – which is not possible within a
clustering approach.

Amoia and Gardent (2008) present a (manual) classification of adjectives that relies
on logical properties of adjectives in the tradition of Montague (1974). While this per-
spective is orthogonal to our work, their work might be useful to supplement our ap-
proach by providing further adjective classes that may be sorted out as being neither
property-denoting nor relational.

Methodologically, our approach to adjective classification is related to a great body of
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work in automatic verb classification (e.g., Miyao and Tsujii (2009)), going back to the
empirical work of Levin (1993). Although in this field the number of target classes is by
far greater and aimed at a conceptual semantic classification, the common denominator
between verb semantic classes and the adjective classes considered here is that certain
distributional properties on the type level are constitutive for class membership, while
the full range of these properties is not observable on the token level. In line with
this strand of work on Levin-style verb classification, our classification approach will
operate on the type level.

3.2 Attribute Learning

Manual efforts. The importance of attribute information for many NLP applications
is underlined by manual efforts to construct ontological resources such as the Extended
Named Entity Ontology (Sekine and Nobata, 2004; Sekine, 2008). This ontology contains
about 200 classes relevant for named entity recognition. It is built around attribute
information as the main source to distinguish these classes and arrange them in a hier-
archy. This information has been manually compiled from dictionaries and encyclope-
dias.

Learning from structured and semi-structured sources. Due to the tediousness and
notorious incompleteness of these manual attempts, other approaches have focused on
learning attribute information from semi-structured textual sources such as tables in
web pages (Tokunaga et al., 2005; Yoshinaga and Torisawa, 2007), Wikipedia infoboxes
(Wu et al., 2008; Bing et al., 2013), query logs (Alfonseca et al., 2010; Pasca, 2011) or even
existing knowledge bases or lexical resources (Lee et al., 2013; Bakhshandeh and Allen,
2015). These approaches underline the relevance of attribute knowledge for a variety
of practical applications; our work focusses on attribute knowledge acquisition from
unstructured textual sources, though.

Learning from unstructured text. Using adjectives for attribute learning has first been
proposed by Almuhareb and Poesio (2004) and Cimiano (2006). Cimiano’s work on
this particular task is based on the investigation of adjective-noun phrases from cor-
pora. For every adjective modifying a noun, its possible attributes are extracted from
WordNet (Fellbaum, 1998) and associated with the respective noun. As this approach
depends on an external lexical resource, it is obviously limited in coverage.

Almuhareb (2006) aims at learning this information by means of a pattern-based ap-
proach that operates on large web-based corpora. The outcome of his work on this
task, however, is considerably affected by the lack of a separation between property-
denoting and relational adjectives, such that a large number of adjectives is erroneously
identified by his system as denoting a property. In Chapter 5 of this thesis, we present
a classification approach for distinguishing these classes automatically. In Chapter 7,
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we provide a comparative evaluation of our distributional methods for attribute acqui-
sition against Almuhareb’s pattern-based approach.

In the Generative Lexicon (Pustejovsky, 1995), the internal lexical structure of nouns is
modeled as consisting of qualia roles which are grouped into FORMAL, CONSTITUTIVE,
AGENTIVE and TELIC qualia. Each qualia role subsumes particular types of properties:
The FORMAL role contains properties that are used to distinguish the referent of the
noun from related concepts; the other roles contain properties involved in bringing the
referent about, its use, or its constituitve parts, respectively. Hence, qualia roles can be
seen as further abstractions on top of attributes. Cimiano and Wenderoth (2007) aim
at automatically inducing ranked qualia structures from the web, using manually de-
signed patterns specifically created for each role in order to launch queries against a
web search engine. Their obtained qualia roles are rated as largely plausible by human
judges in an a posteriori evaluation; however, their approach achieves rather low per-
formance in both precision and recall in an experimental evaluation against a manually
created gold standard, which underlines the sparsity issues inherent to pattern-based
acquisition methods. Following a similar approach to their acquisition, Katrenko and
Adriaans (2008) demonstrate that qualia structures may be of use for automatic catego-
rization of concrete nouns.

Tandon et al. (2014) propose a semi-supervised method for populating a large knowl-
edge base with triples of nouns, attributes and adjectives, as given in (16):

(16) a. ⟨botanical-plant, hasColor, green-color⟩
b. ⟨power-plant, hasQuality, green-environmental⟩

Domain and range of these triples are acquired from predicative and attributive
adjective-noun phrases as occurring in the Google 5-grams corpus (Brants and Franz,
2006). Their system also includes word sense disambiguation, i.e., ambiguous adjec-
tives and nouns as in green plant are automatically mapped to their word senses ac-
cording to WordNet, as illustrated in (16a) and (16b). Apart from this disambiguation
aspect, their goal is similar to ours in that attribute knowledge that remains implicit
in adjective-noun phrases is made explicit. Importantly, however, they follow a semi-
supervised label propagation approach in order to determine the most appropriate at-
tribute for a given phrase: In a graph connecting adjectives, nouns and word senses,
a set of monosemous adjectives is labeled with the correct attribute as provided by
WordNet. Afterwards, these labels are propagated across the entire graph. Thus, their
approach crucially depends on the existence of a lexical resource providing initial map-
pings between adjectives and attributes.

Likewise in a semi-supervised setting, Probst et al. (2007) induce attributes from
product descriptions. Their work is based on highly product-specific attributes (e.g.,
hitting surface or construction for baseball bats). Using attribute profiles in order to com-
pare products from different vendors for recommendation purposes, they demonstrate
the relevance of attributes as a powerful source of knowledge for practical applications.
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3.3 Structured Models in Distributional Semantics

For this discussion, we distinguish two types of structured distributional models: de-
pendency-based models and pattern-based models.

Dependency-based models. Prominent examples for the former type of models are
Padó and Lapata (2007), Lin (1998) and Rothenhäusler and Schütze (2009), among oth-
ers, who use syntactic dependencies as contexts for constructing the meaning dimen-
sions of semantic spaces. The authors show that the higher degree of specificity of
their models compared to simple bag-of-words representations (cf. Section 2.3.2) may
be beneficial for various tasks, among them synonymy detection, word sense ranking
and concept categorization.

Extending the distributional hypothesis beyond individual words, Lin and Pantel
(2001) assume that dependency paths which frequently link the same set of words tend
to express similar meanings. Based on this assumption, their DIRT system discovers
semantic equivalences between dependency paths such as X wrote Y and X is the author
of Y which can be seen as paraphrases of each other and are highly useful for NLP tasks
such as question answering.

As an important difference between the models discussed so far, we note that Padó
and Lapata (2007) restrict themselves to rather short dependency paths (paths of length
1 plus a selection of additional paths covering the internal structure of noun phrases),
whereas Lin and Pantel (2001) and Rothenhäusler and Schütze (2009) also consider
more complex syntactic configurations beyond the clause level. In our work, we also
follow the latter strategy in order to design dependency paths meaningful for attribute
selection.

Baroni and Lenci (2010) criticize distributional models as being mostly tailored to one
particular task. As a consequence, they propose the Distributional Memory which has to
be regarded as the most general distributional model currently available. Overcoming
the assumption underlying all prior work in distributional semantics that distributional
patterns emerge from binary relations between target and context words, their frame-
work represents all corpus data in terms of triples of target words, context words, and
the link between them being made explicit. These triples are extracted from depen-
dency parses and stored in a three-dimensional tensor. This resource provides a unique
source of distributional information which can be exploited for numerous tasks by slic-
ing the tensor into individual matrices providing a particular view on the data that is
most suitable for the respective task. Despite its generality, however, the Distributional
Memory does not contain ready-to-use information for the attribute selection task.

Erk and Padó (2008, 2009) extend dependency-based approaches to models capa-
ble of capturing predicate-argument structure: In their model, transitive verbs, for in-
stance, are represented as triples of vectors comprising one lexical vector and two vec-
tors encoding their selectional preferences in each of their syntactic argument slot. The
model generates contextualized meaning representations by combining lexical vectors
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of predicates with preference vectors of arguments reflecting the particular syntactic
relation that holds between predicate and argument. For vector composition, they also
use component-wise multiplication and addition. Hence, this work is also represen-
tative for a second trend, i.e., the representation of meaning aspects going beyond the
word level in distributional models. As pointed out by the authors themselves, how-
ever, their system should not be considered as producing compositional meaning rep-
resentations: “Rather than yielding a single, joint vector for the whole expression, [this]
procedure for computing meaning in context results in one context-adapted meaning
representation per word, similar to the output of a WSD system.”

Thater et al. (2010, 2011) address the same problem in a more compositional man-
ner, i.e., by computing one phrase vector for a verb to be contextualized and one of its
arguments. In their approach, second-order dependency vectors are used to represent
predicate meaning, while arguments are still represented by first-order vectors. Thus,
the authors overcome a problem faced by many vector-based approaches to composi-
tional semantics, i.e., that verbs and their arguments have different syntactic neighbors,
which is why their first-order vectors are not easily interoperable in order to yield a
compositional representation of a verb-argument-pair (cf. Thater et al., 2010).

Pattern-based models. The Strudel system (Baroni et al., 2010) is the most prominent
example of a vector space model constructed from lexico-syntactic patterns for specify-
ing the relation between target and context words. Strudel highlights two strengths of
VSMs that incorporate interpretable dimensions of meaning: cognitive plausibility and
effectiveness in concept categorization tasks. Concepts induced by Strudel are charac-
terized in terms of salient properties and relations (e.g., children have parents, wolves live
in forests, grass is green). However, their approach is restricted to nouns. Open questions
are (i) whether it can be extended to different word classes (adjectives, in particular)
and (ii) whether the interpreted meaning layers are interoperable across word classes,
in order to cope with compositionality.

In Hartung and Frank (2011a), we extend pattern-based distributional modeling to
an interpretable, compositional vector space model that is applied to adjective-noun
composition with attributes providing shared dimensions of meaning. Moreover, to
our knowledge, this is the first attempt to expose such a model to a pairwise similarity
judgement task on the level of adjective-noun phrases.

Pattern-based distributional models can also be tailored to simulating complex cog-
nitive tasks such as analogy identification, as demonstrated in Turney (2008). At the
core of his Latent Relation Mapping Engine is a pair-pattern matrix representing pairs
of words (e.g., stone:mason or wood:carpenter) along dimensions of meaning constructed
from lexico-syntactic patterns. Following the distributional hypothesis, two pairs are
considered as forming an analogy if they share a substantial proportion of patterns
linked to them.
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Pattern-based approaches in Relation Extraction and Ontology Learning. The work
presented in this thesis is also influenced by other pattern-based approaches to mod-
elling lexical meaning whose underlying methodology clearly reflects distributional
principles, without being geared towards meaning representation in semantic spaces.
This comprises work in relation extraction and ontology learning, as summarized by
Frank and Padó (2012): In her seminal work on mining hypernym-hyponym pairs
from corpora by means of is-a patterns, Hearst (1992) laid the cornerstone for auto-
mated pattern-based extraction of fine-grained semantic or ontological relations. In
subsequent years, her methodology has been followed, among others, by Girju et al.
(2006) covering part-whole relations, Pantel and Pennacchiotti (2008) covering causal-
ity and Girju et al. (2009) classifying a variety of fine-grained semantic and ontological
relations.

Integration of word spaces and lexico-syntactic patterns. Lexico-syntactic patterns
are sometimes used for classifying or labeling the output of unspecific distributional
semantic models (i.e., clusters of semantically related words), typically built from bag-
of-words contexts (Lin et al., 2003; Pantel and Ravichandran, 2004). Apart from this, the
only research we are aware of that integrates pattern-based extractions with distribu-
tional semantic models is Mirkin et al. (2006) who aim at inducing word pairs exhibiting
lexical entailment. Based on the observation that lexico-syntactic patterns and distribu-
tional similarities (as provided by a dependency-based model in this case) offer some
complementarity (cf. Section 2.3.2), the authors propose to generate entailment candi-
dates from both sources first, then construct a feature set for these candidates based
on both extracted patterns and distributional similarity scores and finally select only
those candidates considered valid from both perspectives. The latter step, however,
implies supervised classification, which clearly goes beyond distributional semantics
as an inherently unsupervised methodology.

3.4 Topic Models in Distributional Semantics

Recently, Latent Dirichlet Allocation (Blei et al., 2003; Steyvers and Griffiths, 2007) has
found its way into lexical semantics. Originally designed for tasks such as text clas-
sification and document modeling, LDA provides an unsupervised generative proba-
bilistic approach to the decomposition of document collections into latent topics, i.e.,
probability distributions over words. These topics can be used (i) as low-dimensional
representations of the contents of individual documents, and (ii) in order to character-
ize the meaning of individual words within the collection.1

Topic modelling on pseudo-documents. The latter aspect, in particular, qualifies LDA
for being used in lexical semantics. Ritter et al. (2010) and Ó Séaghdha (2010), for in-

1More technical details of LDA will be given in Section 6.3.1.
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stance, model selectional restrictions of verb arguments by inducing topic distributions
that characterize mixtures of topics observed in verb argument positions. As a basis
for LDA modelling, they collect pseudo-documents, i.e., bags of words that co-occur in
syntactic argument positions. Thus, they are able to generalize over sets of individual
words observed in these syntactic positions, towards distributional approximations of
semantic roles.

Topics as dimensions. Mitchell and Lapata (2009, 2010) were the first to integrate
LDA and distributional semantic models by using topics induced from bag-of-words
context representations as dimensions in semantic spaces. The resulting model is eval-
uated in a similarity prediction task on pairs of adjective-noun, noun-noun and verb-
object phrases. In comparison to standard vector space models over bag-of-word con-
texts, LDA induces topic-based meaning representations which turn out inferior for
adjective-nouns and noun-nouns. Only in case of verb-object pairs, the topic space en-
ables more accurate similarity judgements than the word space model.

Comparison. In our work, we adopt an approach similar to Mitchell and Lapata (2010)
by embedding latent variable information from LDA into a distributional semantic
model representing adjective-noun meaning. However, our method differs from theirs
in two important aspects: First, we induce topics from attribute-specific pseudo-docu-
ments rather than bags of context words. As a result, the topics induced by our ap-
proach will be specifically tied to attribute meaning. Thus, they offer an interpretable
semantics2 and can be used as probabilistic indicators for the prediction of attributes as
semantic target categories in adjective-noun composition. Second, with respect to the
benefits of dimensionality reduction in semantic spaces, Mitchell and Lapata (2010)
exploit only part of the generative process underlying LDA, limiting themselves to
word-topic probabilities as the only source of probabilistic information being trans-
fered from LDA into the distributional model. In our approach, the use of attribute-
specific pseudo-documents licenses to consider probability distributions of topics over
attributes as well. This bears the potential of inferring smooth probability estimates for
the relation between target words and attributes to be injected into the distributional
model in order to alleviate sparsity problems.

3.5 Distributional Models of Phrase Meaning

In this section, we review previous work on distributional semantic models for repre-
senting meaning aspects beyond the word level. As this topic has received considerable

2The lack of interpretability is a notorious difficulty of plain LDA models (Chang et al., 2009) and other
methods for dimensionality reduction in distributional models such as Latent Semantic Analysis
(Deerwester et al., 1990; Landauer et al., 1998).
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attention in the literature throughout the last years (see Erk (2012) for an overview), we
focus on work involving adjective-noun compositionality here.

Vector Mixture Models. Mitchell and Lapata (2010) propose a general framework for
distributional vector mixture models, considering compositional phrase meaning in dis-
tributional models as a function of two individual word vectors. In their study, they
compare a variety of vector composition operators such as vector addition, vector mul-
tiplication (cf. Section 2.4 of this thesis), tensor product, circular convolution or dilation,
among others. In order to assess the linguistic plausibility of these operators and their
performance, they are used to generate composed vector representations for adjective-
noun, noun-noun and verb-object phrases. Comparing these phrase representations in
a similarity judgment task, the authors find that vector multiplication yields the best
correlation with human judgments (Spearman’s ρ = 0.46, compared to a human upper
bound of ρ = 0.55) for adjective-noun phrases. This result is confirmed in noun-noun
phrases (ρ = 0.49, equal to the upper bound), which suggests that vector multiplication
is a very plausible and robust choice for modeling vector composition in modification
contexts.

Linear Mappings. Based on the insight from theoretical linguistics that intersective
approaches to adjective-noun composition fail in cases of subsective or intensional ad-
jectives (Kamp, 1975), Baroni and Zamparelli (2010) as well as Guevara (2010) argue
that vector mixture models are not sufficiently expressive in order to provide a general
means for constructing compositional distributional representations of adjective-noun
phrases. Adopting the formal semantics approach taken by Montague (1970), they stip-
ulate that adjectives should be treated as functions from the meaning of a noun onto the
meaning of a modified noun, such that the original meaning of the noun is not necessar-
ily preserved in the compositional representation (as in phrases involving intensional
adjectives, e.g., fake gun).

Transferring this idea to linear algebra, the authors model adjectives as matrices en-
coding linear mappings between noun vectors. The weights populating these matri-
ces are estimated by partial least squares regression. In this process, noun vectors are
taken into account as independent variables, while observed vectors of adjective-noun
phrases become the dependent variable. Vectors of the latter kind are constructed by
collecting bag-of-words contexts for a particular phrase in the same way as for individ-
ual words. Hence, adjective meaning in these models can be seen as a mapping from
the contexts observed for an individual noun, on the one hand, to the contexts of the
same noun when being modified by the adjective in question, on the other. Consider-
ing fake gun as an example once again, a very small overlap would be expected between
the contexts observed with gun and those observed with fake gun, which is the typical
situation for intensional adjectives.

As a notable difference, Guevara (2010) learns one generic linear map for all adjectives
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in the corpus (thus analytically falling back behind Kamp (1975) again), while the linear
maps induced by Baroni and Zamparelli (2010) are specific to individual adjectives (thus
lacking generality).

Functional Application in Distributional Models. Baroni et al. (2014) generalize these
ideas to a general “program for compositional distributional semantics” that is centered
around the notion of functional application in semantic spaces. Their work can be seen
as the most comprehensive generalization of the insight that different linguistic phe-
nomena require to be modeled in corresponding algebraic structures, using different
composition operators as available for these structures (cf. Widdows, 2008; Grefenstette
and Sadrzadeh, 2011; Grefenstette et al., 2014).

Relying on categorial grammar (Montague, 1970) as syntactic backbone of their model,
Baroni et al. (2014) postulate a correspondence between syntactic categories and seman-
tic types. The semantic type then determines the algebraic structure chosen to encode
the compositional behaviour of the members of a syntactic category. While nouns, be-
ing of the elementary category N, are still represented as vectors, adjectives belong
to the complex category N/N mapping the meaning of a noun to a modified noun.
This mapping is encoded as a matrix. Transitive nouns, being of the complex category
(S\NP)/NP (mapping a noun phrase NP to another complex category taking an NP
itself in order to yield a fully specified sentence S), have to be encoded in terms of a
third-order tensor.3 Crucially, these mappings ensure that the algebraic structures used
to represent word and phrase meaning in distributional models are no longer forced
to be objects of the same space as in purely vector-based models. Hence, the proposal
of Baroni et al. (2014) adds a considerable degree of flexibility to distributional mod-
els of compositionality and empowers them to deal with an unprecedented variety of
linguistic phenomena.

For the time being, the empirical evidence put forward to support functional appli-
cation models is encouraging indeed: For instance, apart from Baroni and Zamparelli
(2010) (as discussed above), Vecchi et al. (2011) separate unseen adjective-noun phrases
into plausible and ill-formed ones. Their results suggest that composition by functional
application has an important role to play in distributional semantics. However, as ad-
mitted by Baroni et al. (2014) themselves, simple multiplicative vector mixture models
also “perform fairly well across the board”.

Boleda et al. (2012) subject various composition methods for computing distribu-
tional representations of adjective-noun phrases to an empirical test motivated from
formal semantics, i.e., their capability of discriminating three types of adjectives: in-
tersective, subsective and intensional ones (cf. Kamp, 1975; Amoia and Gardent, 2008).
Varying patterns of cosine similarities between phrase and individual word represen-
tations as generated by the composition functions under investigation are used as indi-

3With regard to the corpus-based induction of these mappings, Baroni et al. (2014) stick to the linear
regression approach from Baroni and Zamparelli (2010) discussed above.
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cators for differences between the three classes. Their results show that multiplicative
vector composition and functional application based on adjective-specific linear maps
as proposed by Baroni and Zamparelli (2010) are most appropriate for this task. As an
important qualification, it has to be mentioned that the data set used in this study is
clearly not representative for the entire spectrum of intersective and subsective adjec-
tives, as it contains only color-denoting adjectives in these classes and a relatively small
number of adjective types overall.

In fact, relying on a broader data set and framing the task as a two-class problem
of discriminating intensional vs. non-intensional adjectives, Boleda et al. (2013) do not
observe any difference across the different composition strategies: Neither vector mix-
ture models nor functional application by linear maps are capable of separating the
two classes. Interpreting this negative result which is counterintuitive from a theoret-
ical perspective, the authors hypothesize that (i) bags-of-words contexts might not be
accurate for modelling the differences between these two classes of adjectives, or (ii)
using differences in the cosine similarities between phrase and individual word repre-
sentations might be inappropriate as an experimental approach for this task.

Comparison. While both these shortcomings apply to vector mixture and functional
application models equally, we would like to point out another possible explanation
which may challenge a fundamental assumption of the functional application paradigm:
From our view, it is questionable whether contextual differences between adjectives and
observed adjective-noun pairs are, in general, indicative of the compositional contribu-
tion of the adjective to the phrase meaning. Just as much as it seems plausible that the
observed contexts of, e.g., alleged murderer exhibit very little overlap with the contexts
of the intensional adjective alleged, we expect the contexts of red car or fast boat to reveal
very little about the meaning of the non-intensional adjectives red and fast.

For these reasons, and because we anticipate that vector mixture models lean them-
selves directly to intersective compositional processes underlying attribute meaning in
adjective-noun phrases, our approach to capturing this aspect of phrasal semantics will
be entirely based on word-based vector representations and their composition.

3.6 Distributional Enrichment of Structured Models

Precursors of distributional enrichment. Distributional semantic models have long
been a natural choice for leveraging lexical coverage issues in other models, either
knowledge-rich or data-driven, in various application domains such as word sense
discovery (Pantel and Lin, 2002) and disambiguation (Miller et al., 2012), selectional
preference modeling in computational psycholinguistics (Erk et al., 2010), dependency
parsing (Wang et al., 2005) or named entity recognition (Jonnalagadda et al., 2012). The
overarching idea in these approaches is that lexical items for which only a sparse or
otherwise insufficient feature representation can be provided may be enriched by more
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informative features gained from distributionally similar items.
On the other hand, in order to overcome sparsity issues in distributional semantic

models themselves, dimensionality reduction techniques such as Singular Value Decom-
position or Latent Semantic Analysis (Deerwester et al., 1990; Martin and Berry, 2007)
have become a de-facto standard in distributional modeling (Turney and Pantel, 2010).
These approaches have been proven widely effective in distributional modeling. How-
ever, they come at the expense of linguistic intransparency, as the dimensions of the re-
sulting semantic space are no longer semantically interpretable (Hu et al., 2007). There-
fore, dimensionality reduction cannot be straightforwardly applied in distributional
tasks or settings like ours that require interpretable dimensions of meaning.

Recently, Padó et al. (2013) coined the term derivational smoothing for their work on
overcoming sparsity issues in a structured distributional model by enriching sparse
word representations with information about derivationally related words (e.g., the
word vector representing oldish is enriched by the representation of old such that both of
them will be assigned a high semantic similarity to ancient). Previous approaches to use
morphological information for enhancing distributional models have been presented
by Bergsma et al. (2008) and Allan and Kumaran (2003).

Bootstrapping. Besides, distributional enrichment has a close relation to bootstrap-
ping approaches in the tradition of Riloff and Jones (1999), mostly being applied in
pattern-based relation extraction approaches. The underlying idea is to acquire, from a
limited set of manually approved seed instances, a large amount of additional instances
sharing semantic properties with the seeds, thus instantiating the same semantic rela-
tion. Bootstrapping is an iterative, semi-supervised process based on the duality of
patterns and extracted instances (Brin, 1999): Each iteration of the system yields new
candidates, the most reliable ones of which enter the next iteration as additional seeds,
or new extraction patterns which can be used further for candidate extraction, respec-
tively. This procedure requires a compromise between the antagonistic goals of general-
ization (for the sake of acquiring a large number of additional instances) and consistency
(in order to avoid semantic drifts). Confidence metrics being applied in order to ensure
consistency range from the proportion of positive and negative extractions generated
by a pattern (Riloff and Jones, 1999; Agichtein and Gravano, 2000; Rozenfeld and Feld-
man, 2006) to association scores between patterns and extracted instances based on mu-
tual information (Pantel and Pennacchiotti, 2008) and probabilistic correlates of preci-
sion and recall in random walk processes (Fang and Chang, 2011). Generalization may
be achieved by string alignment (Rozenfeld and Feldman, 2006), canonicalization (e.g.,
replacing named entities by their semantic category; Pantel and Pennacchiotti, 2008) or
distributional similarity between a candidate instance and the centroid of previously
encountered instances (Agichtein and Gravano, 2000).

Outside information extraction, bootstrapping has also been applied by Zhitomirsky-
Geffet and Dagan (2009) who aim at improving the predictability of entailment relations

43



3 Related Work

between words found distributionally similar. To this end, they propose a bootstrap-
ping approach in order to promote those features in dependency-based word vectors
that are most likely to enforce lexical entailment in word pairs exhibiting high similar-
ity. In their approach, the compromise between generalization and consistency in repre-
senting the meaning of a target word is achieved by selecting, from the close vicinity of
the target in the semantic space, those neighbours with the highest overlap in features
assumed as indicative for entailment.

Representing words as regions. Erk (2009a,b) represents words as regions in semantic
space, not primarily in order to increase density, but for performing word sense disam-
biguation for polysemous verbs and to support inferences such as hyponymy. Mem-
bership of a token vector4 x⃗ to a region surrounding a word type vector w⃗ is predicted
using a log-linear model that is trained in a self-supervised manner without recourse
to labeled data: Token vectors of w are considered as positive training instances, token
vectors of other words as negative ones. Spatial distances in the semantic space hosting
w⃗ and x⃗ serve as features for classification.

Similarly, Schütze (1998) discriminates different word senses of a polysemous word w
by determining the nearest sense vector for a context vector representation of w. Context
vectors are constructed as centroids by summing over all words in the context of w;
clustering several context vectors in close proximity yields a sense vector. Hence, sense
vectors can be expected to provide a very dense and coherent representation of a region
in the vector space and, thus, to have a better chance of matching the observed contexts
of an ambiguous word.

Apart from being used for word sense disambiguation, the techniques proposed by
Schütze (1998) and Erk (2009a,b) may serve a more general purpose of increasing den-
sity in distributional semantic models of different kinds. However, their approaches
remain self-contained in the sense that they do not import complementary information
from additional semantic sources.

Tensor factorization. Most recently, Zhang et al. (2014) presented a probabilistic ten-
sor factorization approach (cf. Kolda and Bader, 2009) in order to combine semantic
information of varying type and provenance. Their model integrates relatedness infor-
mation from static lexical semantic resources (i.e., synonymy and antonymy relations)
and distributional word vectors encoding distributional similarity in a third-order ten-
sor representation. The three modes of the tensor correspond to (i) a lexical semantic
relation being encoded for two target words, (ii) the degree of distributional relatedness
between them, and (iii) the particular type of relatedness (e.g., relatedness along topical
dimensions, taxonomic hierarchies or other ontological relations). Bayesian probabilis-

4Token vectors, in these models, represent a word in a particular context, e.g. supersede knowledge.
They are computed by combining their constituent type vectors, i.e., supersede and knowledge, in this
example (Erk, 2009a,b).
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tic factorization methods are applied to decompose the tensor into latent word vectors
which can afterwards be used for predicting relatedness scores for originally unob-
served pairs of target words. For the task of answering antonymy questions from the
GRE data set (Mohammad et al., 2008), the authors demonstrate that this approach is
capable of almost doubling the recall (at a slight loss of precision) of detected antonyms
by effectively enriching the highly precise, but very sparse lexical relations provided by
a combination of WordNet and Roget’s thesaurus.

Due to the generality of tensors as a data structure for representing relational data,
Zhang et al.’s approach can be adapted to combining arbitrary semantic representa-
tions. Aiming at improving potentially sparse structured distributional vector repre-
sentations by taking additional information from a complementary semantic perspec-
tive into account, our own approach to distributional enrichment follows a similar
idea while remaining in a purely distributional framework and without relying on any
hand-crafted lexical resources.

Comparison. None of the approaches reported in this section is fully compliant with
our notion of distributional enrichment. In fact, our goal of improving structured distri-
butional semantic models by distributional means, relying on complementary information
from additional distributional models, to be outlined in Chapter 9, combines elements
from three of the sources discussed in this section: The bootstrapping method used
by Agichtein and Gravano (2000) in the Snowball system is similar to distributional en-
richment in that they combine a pattern-based extraction approach with distributional
candidate filtering using a bag-of-words model. We extend their approach by relying
on an auxiliary distributional model that is tailored to complementary information of a
more specific kind than that provided by bag-of-words representations. The aspect of
taking complementary sources of semantic information into account is most prominent
in Zhang et al. (2014). Being based on existing lexical resources, their implementa-
tion of this idea is clearly incompatible with our goal of an unsupervised corpus-based
approach, though. Procedurally, our account to distributional enrichment is closely re-
lated to the construction of centroids from distributional neighbours (Erk, 2009a,b) in
order to enhance sparsely represented noun meanings.
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4 Distributional Models of Attribute
Meaning

In this chapter1, we develop the main research questions underlying this thesis (Section
4.1), followed by a high-level overview of the methods used to address them (Sections
4.2, 4.3 and 4.4) and the main contributions of the thesis (Section 4.5).

4.1 Research Questions

In proposing corpus-based semantic models of attribute meaning in adjectives and
nouns, this thesis addresses the following research questions:

Learning Implicit Knowledge from Text. To what extent can attribute information,
being partly in the realm of world knowledge, be learned from textual sources? World
knowledge is of particular relevance for deep natural language understanding. How-
ever, it often remains implicit in natural language as it is assumed to be primarily ac-
quired from situational context or perceptual input (Andrews et al., 2009; Barsalou,
2010; Thill et al., 2014) and thus taken for granted by individual speakers in their ut-
terances (Frank and Padó, 2012; Saba, 2007). Therefore, attribute learning provides a
challenging example for harvesting implicit knowledge automatically from text.

Large-scale Attribute Learning. With respect to the coverage of attributes and their
nature, we raise the task of attribute learning from text to a large scale. Previous ap-
proaches have been limited to a small selective range of attributes (Almuhareb, 2006).
Beyond such restricted experimental settings, it is an open question whether attribute
learning from textual sources scales to larger inventories of attributes. Moreover, is it
possible to fit an attribute model to a largely “universal” scheme of attributes such that
it can be flexibly adapted to different attribute-related NLP tasks? Large-scale attribute
learning implies a particular challenge as it runs the risk of including more abstract
attribute concepts, which might further aggravate the textual acquisition bottleneck
discussed above. In order to investigate these questions based on a broad range of at-
tributes that does not commit to a particular domain of interest in the first place, our

1Parts of this chapter have been previously published in Hartung and Frank (2010b), Hartung and Frank
(2011b) and Hartung and Frank (2014).
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approach to large-scale attribute modeling relies on attribute nouns as provided by
WordNet (Fellbaum, 1998).

Compositionality. Previous work has attempted to learn attribute knowledge from
adjectives in isolation (Almuhareb, 2006; Cimiano, 2006). We argue that these approaches
fall short of contextual shifts in adjective meaning, given that adjectives most frequently
occur in language as syntactic dependents of nouns. In contrast, we will investigate
as to what extent attribute meaning is the result of compositional semantic processes be-
tween an adjective and a noun when being syntactically combined in an adjective-noun
phrase.

Degree of Supervision. Following recent trends in corpus-based modelling of seman-
tic knowledge for specific domains, tasks and needs (Turney and Pantel, 2010), we aim
at the development of models for attribute learning from adjectives and nouns that are
unsupervised or weakly supervised.

Specificity and Sparsity in Structured Distributional Models. Our work is framed
in structured distributional models that are built from syntactic dependencies or lexico-
syntactic patterns. These models have the advantage of being able to address specific
semantic relations of interest along naturally interpretable dimensions of meaning. Fol-
lowing the discussion in Section 2.3.2 above, we will explore whether it is feasible to
tailor a structured model to attribute meaning, taking compositionality in adjective-noun
phrases into account, while at the same time harmonizing the antagonistic principles
of specificity and sparsity.

In order to address these questions, our approach follows three steps: We first iden-
tify attribute-denoting adjectives in an automated machine learning-based classifica-
tion approach. Then, we broaden the perspective from the level of individual adjectives
to the phrase level in order to investigate which attributes are evoked when adjectives
and nouns are composed in adjective-noun phrases. Finally, we propose a novel frame-
work for distributional enrichment that aims at alleviating sparsity issues of structured
distributional models by integrating lexical semantic information about attribute mean-
ing in adjectives and nouns from complementary distributional sources.

4.2 Identifying Attribute-denoting Adjectives

Background and Motivation. Previous work has developed a separation between
attribute-denoting and relational adjectives (Boleda, 2006; Raskin and Nirenburg, 1998),
which is highly relevant for knowledge representation and ontology learning. In a ma-
chine learning-based classification experiment capitalizing on distributional features
extracted from corpus data, we show how this separation can be automatically carried
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out in order to focus on relevant classes of adjectives for knowledge acquisition and
particularly attribute learning.

Attribute learning, as initiated by Almuhareb and Poesio (2004) and Almuhareb
(2006), aims at the automatic acquisition of concept representations in terms of attribute-
value sets from natural language corpora. For example, from the co-occurrence of a
noun and a attribute-denoting adjective in a phrase such as red car, we can infer that
(i) members of the concept car have an attribute COLOR, that (ii) red is one of its possi-
ble values, and that (iii) the particular exemplar being referred to in the phrase has the
value red for COLOR.

In relation learning tasks, the goal is to discover (non-taxonomic) relations between
previously established concepts (Buitelaar et al., 2005). For this purpose, relational
adjectives provide a valuable source of information. For instance, an adjective-noun
phrase such as agricultural equipment, being composed of the relational adjective agri-
cultural and a noun referring to the concept EQUIPMENT, is indicative of the semantic
relation EQUIPMENT to be used in AGRICULTURE (Miller, 1998).

Adjective-noun phrases as introduced in the examples above are a particularly rich
source for both learning attribute and relation learning, as they abound in natural lan-
guage and can be easily detected in corpora without the need for deep syntactic anal-
ysis. On the downside, the distinction between attribute-denoting and relational ad-
jectives is a critical prerequisite in order to (i) determine which adjectives are suitable
for either attribute or relation learning and (ii) for appropriately encoding the acquired
knowledge in ontologies, given that attributes and relations are formally disjoint com-
ponents of an ontology (Cimiano, 2006) and, therefore, different formal requirements
apply for their representation.

The formal distinction between attributes and relations is of importance for several
NLP applications as well, e.g. question answering systems operating as interfaces be-
tween natural language queries and structured knowledge bases. Attribute-denoting
adjectives and relational ones require different mappings from their natural language
meaning into formal queries to the knowledge base (see recently Walter et al. (2014)).

Previous attempts to corpus-based attribute learning from adjectives (Almuhareb,
2006) have entirely neglected the distinction of different semantic types of adjectives.
In our work on adjective classification (to be presented in Chapter 5.2), we aim at au-
tomatically separating attribute-denoting adjectives from relational ones, in order to
provide a more reliable basis for attribute learning from text.

Methodology. Our classification approach involves two steps: First, we assess the va-
lidity of the classification scheme being adopted in a corpus study based on human
annotations. Second, we present a machine learning approach for automatically classi-
fying adjectives into attribute-denoting and relational lexical types.

In our annotation experiment, we observe that token-level annotation for lexical ad-
jective types is time-consuming and difficult. At the same time, careful analysis of the
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annotated corpus reveals that property-denoting and relational adjectives constitute
stable classes of lexical types, with only few occurrences of class shifts observed at the
token level. This ability of an adjective to change its class on the token level will be
denoted as class volatility. A second observation is that features effectively that may
be used to separate the two classes in a machine learning approach essentially operate
on the level of lexical types, i.e., they focus on grammatical properties that may not be
observable from single token occurrences in each individual context.

These insights suggest a type-based classification approach, similar to work in se-
mantic verb classification by Miyao and Tsujii (2009). Based on the observed low class
volatility, we opt for a weakly supervised training regime, using the token-level anno-
tations from our annotated corpus as seeds for the acquisition of a large training set
that is heuristically labeled by annotation projection.

The resulting classification model facilitates the identification of adjectives that are
out of the scope of attribute learning. Thus, adjective classification also lays the foun-
dation for our approach to the attribute selection task to be described in the next section.

4.3 Compositional Representations of Attribute Meaning in
Adjective-Noun Phrases

Having separated adjectives into different semantic classes as discussed in the previous
section, we aim at predicting the attribute(s) being evoked when attribute-denoting
adjectives and nouns are composed in adjective-noun phrases. We refer to this problem
as attribute selection and propose a structured distributional model which captures this
aspect of the compositional semantics of adjectives and nouns.

Attribute Selection. We define attribute selection as the task of predicting the attribute
meaning impliticly conveyed by a property-denoting adjective in composition with a
noun without being overtly realized on the textual surface. Consider the following
examples:

(17) hot summer→ TEMPERATURE

(18) hot debate→ EMOTIONALITY

(19) hot soup→ TASTE/TEMPERATURE

The adjective hot may denote (a value of) attributes such as TEMPERATURE, TASTE or
EMOTIONALITY. These adjectives can be combined with nouns such as summer, soup
or debate which can be characterized in terms of attributes as well. For instance, debate
might elicit attribute meanings such as EMOTIONALITY, DURATION, DEPTH or VOL-
UME, among others. It is by way of the composition of adjective and noun that specific
attributes are selected (Pustejovsky, 1995) from the compositional semantics of the ad-
jective and the noun, and lead to a disambiguation of the adjective and possibly the
noun.
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From a knowledge acquisition perspective, the examples in (17)–(19) clearly indicate
the importance of a compositional approach to attribute selection. Purely adjective-
based acquisition methods (Almuhareb, 2006; Cimiano, 2006) miss out the contribution
of the noun. Thus, they do not exploit the disambiguation potential that is inherent
in compositional semantics and do not take any knowledge into account that can be
derived from co-occurrence statistics of the adjective and the noun. These shortcomings
of purely adjective-based approaches would result in an overgeneration of knowledge
base entries, as shown in (20) for the concept summer2:

(20) a. TEMPERATURE(summer)=hot

b. * EMOTIONALITY(summer)=hot

c. * TASTE(summer)=hot

Note, however, that adjective-noun phrases may still be ambiguous with regard to their
implicit attribute meaning; (19) provides an example. Resolving ambiguities of this
kind is out of the scope of our approach to attribute selection, as this requires additional
context beyond the phrase to be taken into account. Instead, our model is designed
to yield all attributes that are licensed by the compositional semantics of a particular
phrase, irrespective of surrounding clausal or sentential context.

Roots in Formal Semantics. Attribute selection is rooted in formal semantics. One
of the claims in the Generative Lexicon (GL) theory (Pustejovsky, 1995) is that the com-
positional semantics of intersective adjectives and nouns is brought about by a process
denoted as selective binding, where the adjective selects one out of several possible roles
or attributes from the noun. In the original statement of the theory, adjectives select
properties which are part of a particular qualia role3. In our framework, these proper-
ties (as elicited by adjectives) are accessed from a more specific level of granularity, i.e.,
the attribute nouns under which they may be subsumed. This can be seen from the
examples in (21) below:

(21) a. cool summer

b. long summer

While GL would assign both cool and long in these examples to the formal quale from the
meaning of summer, our approach provides a more explicit semantics by predicting the
attributes TEMPERATURE and DURATION, respectively. It is an open question whether
attribute selection will be able to cover properties from all four qualia roles effectively.
The experiments conducted in this thesis will provide first insights into this issue.

2And analogously for debate and soup from (18) and (19).
3Four different roles are offered by GL: a formal, constitutive, telic and agentive role. Pustejovsky (1995)

does not provide a concrete implementation of the theory; i.e., in order to apply GL to semantic tasks,
population of qualia roles with individual properties is an open issue which has been found very
hard to address in a corpus-based induction approach (Cimiano and Wenderoth, 2007).
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Methodology. Our approach to attribute selection as proposed in this thesis is fully
framed in a structured distributional semantic model. Thus, it requires no manual work
apart from prior specification of (i) the attribute inventory to be investigated and (ii)
linguistic cues to the relation between adjectives and nouns to attributes. Given such
cues, instantiations of these relations are extracted fully automatically.

As discussed in Section 2.3.2, tailoring a distributional model to a particular semantic
relation (i.e., the attribute relation between adjectives and nouns in our case) requires
reconciling the conflicting goals of specificity and sparsity. Ideally, attribute knowledge
could be extracted from corpora by searching for patterns as in (22)4:

(22) the colorATTR of the carNOUN is blueADJ

However, linguistic patterns that explicitly relate nouns, adjectives and attributes are
very rarely observed in corpora. We avoid these sparsity issues by reducing the triple

r=⟨noun, attribute, adjective⟩

to tuples

r′=⟨noun, attribute⟩ and r′′=⟨attribute, adjective⟩,

as suggested by Turney and Pantel (2010) for similar tasks. Both r′ and r′′, as instanti-
ated by (23) or (24), for instance, can be observed much more frequently in text corpora
than r.

(23) the colorATTR of the carNOUN

(24) blueADJ colorATTR

Moreover, this enables us to model adjective and noun meanings as distinct semantic
vectors in the same semantic space being spanned by attributes as dimensions. Based
on these semantic representations, we make use of vector composition operations in
order to reconstruct r from r′ and r′′. This, in turn, allows us to obtain composed vector
representations for complete noun-attribute-adjective triples such as ⟨car, COLOR, blue⟩,
from which the attribute(s) implicitly hidden in the phrase semantics can be selected in
a fully unsupervised manner.

Hence, vector composition serves a double purpose in our models: On the one hand,
it reflects the compositionality that is inherent to the attribute selection task, on the
other hand, it provides a handle for overcoming sparsity issues. This general idea for
resolving the antagonism between specificity and sparsity is implemented in two vari-
ants of structured distributional models for attribute selection: a pattern-based and a
dependency-based model. The latter is extended to a topic-based distributional model
by inducing attribute-specific latent topics from weakly supervised variants of Latent
Dirichlet Allocation (Blei et al., 2003).

4Note that we are alternating between two levels here: While NOUN and ADJ refer to word classes,
ATTR denotes a semantic category. In this thesis, we assume that attribute knowledge is always ex-
pressed via nouns. Therefore, the terms attribute and attribute noun will often be used interchangeably.
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4.4 Distributional Enrichment

Background and Motivation. Structured distributional models are typically designed
to extract distributional information that characterize specific semantic relations or prop-
erties. This focus on specificity usually goes along with sparsely populated vector rep-
resentations if the target relation is either rarely observed in the corpus or tends to occur
in a variety of surface realizations that are not comprehensively covered by the patterns
or dependency paths used for co-occurrence extraction.

Apart from decomposing a complex target relation into more elementary ones as
dicussed for the attribute relation in Section 4.3 above, we propose distributional en-
richment as an additional strategy for alleviating sparsity issues in structured distribu-
tional models, while at the same time preserving their particular strengths with respect
to specificity.

Methodology. Distributional enrichment aims at enhancing structured vector repre-
sentations of individual target words by considering complementary distributional infor-
mation in terms of their semantic neighbours. These are acquired from complementary
distributional sources. The basic idea underlying distributional enrichment is formal-
ized in Equation 4.1 in a slightly simplified form5:

w⃗′attr = w⃗attr ⊕ ∑
n⃗∈Vaux

µ(⃗n) · λ(η(w⃗), n⃗) · χ(⃗n) (4.1)

Here, w⃗attr denotes the original structured vector representation of a target word w in
an attribute-based distributional model, Vattr. The result of distributional enrichment,
i.e., an enhanced version of this vector in the attribute model, is denoted as w⃗′attr.

The enrichment process essentially works by computing a centroid of structured vec-
tor representations. The vectors taking part in the centroid are selected from an auxil-
iary distributional model, Vaux, which is designed to provide distributional information
complementary to Vattr. Note that Vattr and Vaux are of different dimensionality; there-
fore, we use mapping functions η(·) and µ(·) to map vector representations from Vattr

to Vaux and vice versa.
For building the centroid (cf. the sum in Equation 4.1), we iterate over all vector

representations n⃗ in Vaux, using µ(⃗n) to retrieve the structured representation of the
target word n in Vattr. This structured vector is weighted by (i) a scalar λ(η(w⃗), n⃗) that
determines the strength of relatedness between w and n in Vaux, and (ii) an indicator
function χ(⃗n) which decides whether or not n⃗ is an appropriate semantic neighbour of
w⃗ and becomes a member of the centroid.

In previous related work, supervised learning has been applied to centroid induction
in one and the same distributional model (Erk, 2009a); in our approach to distributional

5For the sake of comprehensibility in this introductory context, we are abstracting from some additional
parameters and constraints here. Their full specification is deferred until Section 9.3.
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enrichment, we address the problem across complementary semantic spaces of differ-
ent dimensionality and in an unsupervised manner.

We apply distributional enrichment to structured distributional attribute models as
discussed above. In this scenario, two types of semantic neighbours are considered
in order to enhance sparse attribute-based target vectors: (i) distributionally similar
nouns, and (ii) adjectives being observed as modifiers of these sparse nouns. Thus, the
principle of meaning representation along interpretable, attribute-based dimensions is
kept intact, while at the same time the overall density of the attribute space will be
increased.

4.5 Contributions of this Thesis

Summarizing this chapter, the major contributions of this thesis will be as follows:

1. We present empirical evidence for an adjective classification scheme for separat-
ing lexical adjective types into a attribute-denoting and a relational class so that
adjectives to be used for attribute learning can be automatically distinguished
from other types that are more suitable for relation learning tasks. This distinc-
tion has been largely neglected in prior work. We show that an effective identifica-
tion of attribute-denoting adjectives has a substantial impact on attribute selection
from adjectives.

2. We define a new task of attribute selection from adjective-noun phrases. This
task consists in eliciting attribute(s) from a pre-defined inventory that are implicit
in the compositional semantics of an adjective and a noun. We experiment with
different inventories of attributes (of varying breadth and cardinality) that are
compiled from the attribute nouns contained in WordNet.

3. We develop a novel class of structured distributional models for representing
adjectives and nouns in a semantic space spanned by attributes as dimensions.
These models make use of vector composition in order to reflect compositional
processes in adjective-noun phrases and to alleviate the conflict between speci-
ficity and sparsity that is inherent in distributional models. Thus, contrary to
prior work on attribute learning, our models enable attribute selection from phra-
sal contexts in an unsupervised manner.

4. The attributes harvested by our method are ontologically grounded, which situ-
ates our work at the interface of distributional semantics and knowledge induc-
tion from textual sources. We demonstrate that distributional semantics offers
promising methods to address the challenges that ontological knowledge is very
abstract in nature and usually remains implicit in natural language.
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5. We compare various instantiations of attribute models built on pattern-based and
dependency-based distributional information as well as attribute-specific topics
induced from weakly supervised versions of Latent Dirichlet Allocation. These
models will be evaluated on the attribute selection task framed for several inven-
tories of attribute concepts, up to a large-scale set of 260 attributes. In practical
application contexts, this inventory could be tailored to specific tasks by grouping
individual attributes together, selecting subsets or mapping them to a particular
target domain.

6. We provide a thorough performance analysis of our best-performing attribute se-
lection model. This investigation reflects strengths and weaknesses of the model
and sheds light on the impact of a variety of linguistic factors involved in at-
tribute selection, e.g., the relative contribution of adjective and noun meaning.

7. We present a framework for distributional enrichment of structured distribu-
tional models. Its potential for alleviating sparsity issues inherent in such models
is demonstrated by successfully applying distributional enrichment to distribu-
tional attribute models.

8. We release three annotated data sets for adjective classification and attribute se-
lection used as gold standards throughout the experiments reported in this thesis,
making them openly available to the research community.
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Attribute Learning

In this chapter, we empirically investigate the task of classifying adjectives into property-
denoting vs. relational types. As only property-denoting adjectives are informative for
corpus-based approaches to attribute learning, this distinction is highly relevant for the
attribute models to be proposed in this thesis in that it facilitates candidate selection of
adjectives that are useful for attribute learning. In previous work on attribute selection
from adjectives (Almuhareb, 2006), the separation between property-denoting and re-
lational adjectives has been entirely overlooked, with negative effects on performance.
Therefore, our goal in the present study is to learn a classification model for identifying
property-denoting adjectives at high levels of precision in order to be applied as a filter
during attribute selection. Moreover, we are interested in analyzing which features are
most important for this classification task.

Based on an adjective classification scheme that separates adjectives into subtypes
relevant for ontology learning, we proceed in two steps: First, we assess the validity of
the scheme in a human annotation task. In a second step, the resulting annotations are
exploited in order to train a classification model for separating adjectives into property-
denoting and relational lexical types in a weakly supervised manner.1

5.1 Corpus Annotation and Analysis

As a starting point for distinguishing adjective classes relevant for ontology learning,
we adhere to the three-way classification that has been proposed for Catalan adjectives
by Boleda (2006). According to the class labels (basic, event-related and object-related),
we name this classification scheme BEO classification. In the following, we give a brief
overview of the properties exhibited by the BEO classes, paying special attention to
their relevance for ontology learning.

5.1.1 Classification Scheme

Basic Adjectives. Basic adjectives denote values of an attribute exhibited by an entity.
In case of scalar attributes (Levinson, 1983; Hatzivassiloglou and McKeown, 1993; de
Melo and Bansal, 2013), adjectives either denote points or intervals on the scale, as in

1Major parts of the content of this chapter have been previously published as Hartung and Frank (2010a)
and Hartung and Frank (2014).
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(25) and (26), respectively. If the values of an attribute cannot be ordered on a scale (as
for SHAPE, for instance), an adjective denotes an element in the set of possible values of
the attribute, as in (27).

(25) blue car↔ COLOR(car)=blue

(26) young girl↔ AGE(girl)=young

(27) oval table↔ SHAPE(table)=oval

Event-related Adjectives. These adjectives modify an associated event the referent of
the noun takes part in, as illustrated by the following paraphrases (cf. Lapata, 2001):

(28) eloquent person↔ person that speaks eloquently

(29) comfortable chair↔ chair that is comfortable to sit on

(30) interesting article↔ article that is interesting to read

Object-related Adjectives. This class comprises adjectives that are morphologically
derived from a noun, denoted as A/N and Nb, respectively, as in (31)–(33). In these
cases, Nb refers to an entity that acts as a semantic dependent of the head noun N.

(31) economic[A/N ] crisis[N] ↔ crisis of the economy[Nb]

(32) political[A/N ] debate[N] ↔ debate on politics[Nb]

(33) philosophical[A/N ] question[N] ↔ question about philosophy[Nb]

Note that the paraphrases given in these examples move object-related adjectives
into the proximity of filling a semantic role (Fillmore, 1968) offered by the semantics of
the head noun. In (31), economic relates to the EXPERIENCER role of crisis; (32) and (33)
exemplify THEME roles.

BEO classes in Formal Semantics. Note that, from a formal semantics perspective,
basic adjectives are mostly intersective in the sense that the meaning of an adjective-
noun phrase entails both the adjective and the noun meaning individually (Amoia and
Gardent, 2007):

[AN] |= N

[AN] |= A

On the other hand, many event-related and object-related adjectives belong to the
category of subsective modifiers. The underlying inferential pattern is characterized by
the fact that the phrase meaning entails only the noun, but not the adjective meaning
(Amoia and Gardent, 2007):
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[AN] |= N

[AN] ̸|= A

BEO classes in Ontology Learning. As seen above, the BEO classes distinguish prop-
erties (basic and event-related adjectives) from relational meanings (object-related ad-
jectives). This distinction can be utilized in ontology learning for the acquisition of
property-based concept descriptions and semantic relations between concepts, respec-
tively.

5.1.2 Annotation Process

Methodology. To validate the BEO classification scheme, we ran an annotation exper-
iment with three human annotators. We compiled a list of 200 high-frequency English
adjectives from the British National Corpus2 and for each of them randomly extracted
five example sentences from the written section of the BNC. The annotators labeled
each item as BASIC, EVENT, OBJECT or IMPOSSIBLE. The latter was supposed to be used
in case the annotators were unable to provide a label due to erroneous examples3, insuf-
ficient context, or instances belonging to alternative classes of adjectives not considered
here.

Ambiguities between BEO Classes. The most notable ambiguity among BEO classes
holds between basic and event-related adjectives. Consider the following competing
analyses for fast horse:

(34) a. fast horse↔ SPEED(horse)=fast
b. fast horse↔ horse that runs fast

We argue that this ambiguity sheds light on the difference between independent and
founded properties4 of an object (cf. Guarino, 1992). For disambiguation, we propose the
inference patterns5 in (35).

2We used version 3 of the BNC XML Edition, available from: http://www.natcorp.ox.ac.uk/
3Part-of-speech tagging was the primary source of errors here.
4In its original statement, the notion of foundation is defined as follows: “For a concept α to be founded

on another concept β, any instance χ of α has to be necessarily associated to an instance ϕ of β which
is not related to χ by a part-of relation” (Guarino, 1992). We extend this notion from concepts to prop-
erties, arguing that event-based adjectives denote founded properties that are necessarily associated
with an implicit event.

5Note that these patterns are mutually exclusive: (35a) applies to examples such as comfortable chair and
interesting article in (29) and (30), where ENT fills the patient role of EVENT. In contrast, eloquent
person in (28) can be identified as event-based by (35b) only, as ENT acts as the agent of EVENT here
(cf. Lapata, 2001). We expect that disambiguating basic and event-related readings should work best
if (35a) is constrained such that EVENT may not be instantiated by perception verbs such as look, feel,
taste etc.
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Annotator 1 Annotator 2 Annotator 3

Annotator 1 — 0.762 0.235
Annotator 2 0.762 — 0.285
Annotator 3 0.235 0.285 —

Table 5.1: Agreement figures in terms of Fleiss’ κ

BASIC EVENT OBJECT IMPOSS

κ 0.368 0.061 0.700 0.452

Table 5.2: Category-wise κ-values for all annotators

(35) a. ENT(ity) can be attested to be ADJ(ective) by EVENT.

b. If ENT was not able to EVENT, it would not be an ADJ ENT.

Applied to (34), these patterns indicate that, in the case of a horse, being fast should
be formalized as a property that is founded on the horse’s inherent ability to run (or, at
least, to move). If this ability was absent, it would no longer be possible to qualify the
horse as being fast (cf. (35b)). Hence, we prefer an event reading for fast horse.

5.1.3 Agreement Figures

Table 5.1 displays agreement figures for our annotation experiment in terms of Fleiss’
Kappa6 (Fleiss, 1971). Total agreement between all three annotators amounts to κ =

0.404. Note that we observe substantial agreement of κ = 0.762 between two of the
annotators, which suggests that the upper bound is higher than the observed over-
all agreement. Table 5.2 displays the overall agreement figures broken down into the
four class labels. These results underline our intuition that the distinction between the
classes BASIC and EVENT is very difficult even for human subjects.

This is corroborated by a thorough analysis of the cases of annotator disagreements
in Table 5.3 on the facing page. This table overviews all cases where one annotator
disagrees with the other two. The rightmost column indicates the total number of 2:1-
disagreements for each class. The missing mass is due to the IMPOSSIBLE class. As
can be seen, the situation where two annotators vote for BASIC, while one prefers the
EVENT class, accounts for most of the disagreements among the annotators (172 cases
in total). The following instances, taken from the set of disagreement cases, exemplify
the problems encountered by the annotators when being confronted with the BASIC
vs. EVENT distinction:

6κ measures the agreement among annotators in classification tasks. Its values reflect the degree of
agreement above chance: κ = 1 indicates perfect agreement, whereas κ = 0 indicates an agreement that
is merely due to chance (Fleiss, 1971).
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1 voter

BASIC EVENT OBJECT Total

2 voters

BASIC – 172 16 283

EVENT 18 – 1 21

OBJECT 54 10 – 66

Table 5.3: Distribution of Disagreement Cases over Classes

BASIC+EVENT OBJECT IMPOSS

κ 0.696 0.701 -0.003

Table 5.4: Category-wise κ-values, binary classification scheme

(36) Any changes should only be introduced after proper research and costing, and after an
initial experiment.

(37) Matthew thought his mother sounded very young, her voice bright with some emotion
he could not quite define.

Resorting to (35), we argue for an event-based reading of proper in (36) (e.g., “re-
search that has been properly conducted”), while bright in (37) should be given a basic
interpretation.

As becomes evident from the quantitative analysis in Table 5.3 and these examples,
the ambiguity between basic and event-related adjectives is the primary source of dis-
agreement in our annotation experiment.

5.1.4 Re-Analysis: Binary Classification Scheme

This observation led us to re-analyze our data using a binary classification that col-
lapses basic and event-related adjectives into one class. This re-analysis is merely a shift
in granularity, as both basic and event-related adjectives denote properties, whereas
object-related adjectives denote relations. Re-analyzing the data in this way improves
overall agreement to κ = 0.69. See Table 5.4 for detailed agreement figures.

The remaining disagreements between annotators have been manually adjudicated.
After adjudication, the data set contains 689 adjective tokens that are unambiguously
annotated, given the respective context, as denoting a property, while 138 tokens are
labeled as relational. In total, 190 (out of 200) lexical adjective types are covered. Again,
the missing mass is due to items marked as IMPOSSIBLE by at least one annotator.
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Type after adjudication before adjudication
#ATTR #REL #ambig. #ATTR #REL

black 2 2 0 2 2
male 4 1 0 4 1
personal 2 2 1 2 3
political 2 2 1 1 4
white 3 1 0 3 1

detailed 5 0 0 4 1
mental 0 5 0 2 3
military 0 5 0 1 4
nuclear 0 5 0 1 4
professional 0 5 0 3 2
regional 0 5 0 1 4
technical 0 4 0 1 3

Table 5.5: Overview of volatile adjectives in the data set

5.1.5 Class Volatility

In order to judge the possibility of a type-based automatic adjective classification, we
need to quantify the degree of class volatility as observed in the annotated corpus, i.e.,
the proportion of lexical types that are assigned alternating class labels at the token
level.

We identified 12 adjectives that are volatile in the sense that they can undergo a type
shift between basic and event-related vs. object-related adjectives7 on the token level.
Thus, the proportion of volatile types in the data set amounts to 6.3%8.

In a further adjudication step, the number of volatile types could be reduced to 5
by evaluating fine-grained interpretation differences. Table 5.5 displays the full list of
adjectives considered before and after adjudication, including their frequency distribu-
tion over the two classes. The subset of adjectives established as “true volatiles” after
adjudication is given in boldface. In the following, we discuss some typical cases of
shifts between property-denoting and relational interpretations of adjectives.

Shifts from ATTR to REL

(38) a. Certain stations in black rural areas or town locations were expected to be used
exclusively by Africans.

b. The suburban commuter station was emphatically a male preserve at certain times
of day.

7Henceforth, we will refer to these binary classes as ATTR(ibutive) and REL(ational).
8In a selective investigation on more representative data, class volatility turns out to be only slightly

higher (cf. Section 5.2.4).
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Both black in (38a) and male in (38b) have to be assigned a relational interpretation
even though the basic meaning of these adjectives is property-denoting. This shift can
be analyzed as a metonymic process where the adjective is re-interpreted as referring to
an entity to which the respective property applies (concretely: black people). This entity,
in turn, acts as an argument in a relation with the head noun. Thus, black rural areas in
(38a) and male preserve in (38b) can be paraphrased as rural areas inhabited by black people
and a preserve occupied by male people, respectively.

Shifts from REL to ATTR

Clear Contextual Shifts. In the following example, we observe a shift from a rela-
tional to a property-based adjective reading:

(39) But then aren’t you taking a political stance, rather than an aesthetic one?

(40) Their reasons for study are various and include simple personal interest and skill ac-
quisition in connection with present or possible future employment.

We argue that a political stance, as in (39), does not denote a particular stance on pol-
itics (which would be the obvious relational interpretation), but a property: a stance
that is politically motivated or held for political reasons. The given context crucially elicits
the class-delineating function of the adjective, in that different subtypes of stances are
contrasted.

The same holds for (40): Again, personal denotes a property that delineates a particu-
lar subtype of interest. This yields a semantic interpretation that is closer to a reflexive
(someone’s own interest) than to a relational reading (someone’s interest as a person/related
to a person).

Ambiguities. The following examples are considered ambiguous between a reading
that has been shifted from relational to attributive and their original relational reading:

(41) By offering a range of study modes and routes, including part-time associate status,
individuals are encouraged to use the course for a variety of personal purposes.

(42) Owing to unexplained political pressures, General Choi then left the country.

Both a reflexive and a subjective interpretation (see discussion above) are possible
for personal purposes in (41). Analogously, there are two possible readings for political
pressures in (42): Either the adjective is metonymically coerced to a noun reading (people
involved in politics; see discussion of (38a) above) in order to fill the AGENT role of the
noun, or the pressures are conceived of as being exerted for political reasons.

Comparing the examples in (39) and (40) to those in (41) and (42) sheds light on the
possible influence of the head noun on the interpretation of the adjective. We presume
that prototypical shifts as in (39) and (40) are licensed by a particular class of nouns
we may call psychological nouns. Besides interest and stance, also attitude, assessment
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and confidence, among others, might be representatives of this class, thus licensing the
same shift in the context of adjectives such as personal or political. A more thorough
investigation of this hypothesis, however, is beyond the scope of this work.

5.2 Automatic Type-based Classification of Adjectives

In this section, we report the results of a machine learning experiment addressing the
feasibility of an automatic corpus-based classification of adjectives on the type level.
We restrict the task to the distinction between property-denoting and relational adjec-
tives in the first place as we are not aware of any overt features that are (i) sufficiently
discriminative to capture the fine-grained distinction between basic and event-based
adjectives in borderline cases such as 34 and (ii) frequently observable in corpora. Our
particular focus in this experiment is on determining a feature set that yields robust
performance on the binary classification task.

5.2.1 Features for Classification

Our classification approach is based on the observation that property-denoting and re-
lational adjectives systematically differ with regard to their behaviour in certain gram-
matical constructions. These differences can be captured in terms of lexico-syntactic
patterns (Amoia and Gardent, 2008; Beesley, 1982; Raskin and Nirenburg, 1998; Boleda,
2006). We cluster these patterns into groups (see Table 5.69):

• Group I: features encoding comparability

• Group II: features encoding gradability

• Group III: features encoding predicative use

• Groups IV and V: features encoding the use in particular constructions

• Group VI: feature encoding morphological derivation from noun

The features from groups I–V encode grammatical properties that can be found with
property-denoting adjectives only, while relational adjectives do not license them. As
a positive feature for relational adjectives, we consider morphological derivation from
nouns (group VI), e.g. criminal – crime, economic – economy). This information was ex-
tracted from the CELEX2 database (Baayen et al., 1996).

9The pattern descriptions used in the table make use of part-of-speech tags according to the Penn
Treebank nomenclature Marcus et al. (1993).
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Group Feature Pattern Example

I

as as JJ as as cheap as possible
comparative-1 JJR NN halogen produces a brighter light
comparative-2 RBR JJ than more famous than your enemies
superlative-1 JJS NN this is the broadest question
superlative-2 the RBS JJ NN the most beautiful buildings in Europe

II

extremely an extremely JJ NN an extremely nice marriage
incredibly an incredibly JJ NN an incredibly low downturn
really a really JJ NN a really simple solution
reasonably a reasonably JJ NN a reasonably clear impression
remarkably a remarkably JJ NN a remarkably short amount of time
very DT very JJ gets onto a very dangerous territory

III
predicative-use NN (WP|WDT)? is|was|are|were RB? JJ my digital camera is nice
static-dynamic-1 NN is|was|are|were being JJ the current unit was being successful
static-dynamic-2 be RB? JJ . Be absolutely certain:

IV one-proform a/an RB? JJ one a hard one

V see-catch-find see|catch|find DT NN JJ 90% found the events relevant

VI morph adjective is morphologically derived from noun culture→ cultural

Table 5.6: Set of features used for classification.
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5.2.2 Heuristic Generation of Training Instances from Seeds

A major problem we encounter with the features presented above is their severe spar-
sity. Applied to our annotated corpus of 1000 sentences, the complete feature set yields
only 10 hits.

Given the results of our corpus analysis in Section 5.1.5, however, we can raise the
classification task to the type level, under the proviso that class volatility is limited to
only a small number of adjective types and particular contextual occurrences. Under
this assumption, we use our annotated data set as seed material for heuristically la-
belling adjective tokens in a large unannotated corpus. In this process, the unanimous
class labels gathered from the manually annotated corpus are projected to the unanno-
tated data. This means that potential class changes on the token level are completely
disregarded.

5.2.3 Data Set Construction

Using the heuristic annotation projection technique described above, we created two
data sets which provide the training and evaluation data for our classification experi-
ments.

Data Set 1. The first data set we created is based on the manually annotated cor-
pus described above. We identified all adjective types in the corpus that exhibit per-
fect agreement across all annotators and are not found to be volatile. This yields 164
property-denoting and 18 relational types, which we use as seeds for heuristic token-
level annotation. For each lexical adjective type, we acquired a corpus of 5000 sentences
from a subsection of the ukWaC corpus (Baroni et al., 2009) to which the labels from the
annotated corpus were projected as described in section 5.2.2. We refer to this data set
as DS1.

Data Set 2. In order to assess the soundness of our features on a larger and possi-
bly more representative sample and to evaluate whether our method of heuristic an-
notation projection can be generalized to different data sets, we also compiled a gold
standard of property-denoting and relational adjectives from WordNet 3.0.

Like any other part-of-speech category, adjectives in WordNet are organized in synsets,
i.e., sets of (nearly) synonymous types. Every synset reflects fine-grained meaning dif-
ferences in terms of word senses. All lexical knowledge in WordNet is encoded by se-
mantic relations between word senses. The information of interest for our task is cap-
tured by the relations attribute and pertainymy (Miller, 1998): Presence of an attribute
relation between an adjective and a noun sense indicates that the noun denotes a prop-
erty and the adjective specifies a possible value of this property. A pertainymy relation10

10Note that the pertainymy relation in WordNet is uni-directional as it contains only links from adjectives
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DS1 DS2

Data Source manual annotation WordNet 3.0

Num. ATTR Types 164 246

Num. REL Types 18 140

Num. Training Tokens
5000 5000

per Type

Labeling Procedure
heuristic WordNet relations

annotation projection attribute and pertainymy

Evaluation Mode 10-fold cross validation train/test split (80%/20%)

Table 5.7: Characteristics of data sets used in adjective classification experiments

linking an adjective and a noun sense indicates a relational adjective meaning. If nei-
ther an attribute nor a pertainymy relation is specified for a given adjective, nothing can
be inferred regarding the binary classification considered here.

For the construction of our gold standard, we collected all adjectives from Word-
Net that are unambiguously property-denoting or relational, meaning that all of their
senses are marked with either the attribute or the pertainymy relation. This yields 3727
property-denoting and 3655 relational types (i.e., roughly one third of the overall 21486
adjective types in WordNet). We only considered adjectives with more than 2000 occur-
rences in the same subsection of the ukWaC corpus used for the construction of DS1.
The final data set comprises 246 property-denoting and 140 relational adjective types.
Again, we extracted up to 5000 sentences from ukWaC for each of these adjectives, and
assigned them the class labels ATTR and REL, respectively. The resulting data set is
referred to as DS2. The characteristics of both data sets are summarized in Table 5.7.

5.2.4 Experimental Evaluation

Classification algorithms. For evaluating our classification approach, we use two ma-
chine learning-based classification frameworks: Decision Trees and Logistic Boosting.
Both of them provide an expressive output that can be used to gain insights into the
feature space in order to determine the impact of different features or dependencies
among them.

Decision trees represent the space of training instances in a tree structure. Internal
nodes in the tree correspond to a subset of instances that are covered by splitting the
possible values of one feature into several branches. Features to be split and the par-
ticular value to be used are selected according to the information gain provided by each

to their morphological base nouns, but not from derived nouns to base adjectives. For instance,
cultural and culture or dental and tooth are linked by pertainymy, while no such link exists between
short and shortness.
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split. An unseen instance is classified by following the corresponding path in the tree
from the root to a leaf node which provides the classification. Therefore, a decision tree
can also be considered as a cascade of if-then classification rules. (Mitchell, 1997; Witten
and Frank, 2005)

Logistic boosting is a meta-learning approach combining several complementary
base classifiers into one ensemble classification model. Base classifiers are usually sim-
ple – in our case, they are one-level decision trees. Boosting implements an iterative
forward selection procedure that starts with an empty ensemble. In each iteration, the
base classifier maximizing the predictive performance of the ensemble as a whole is
added. Throughout this process, it is guaranteed that the next model is particularly
suitable for those instances that have not been correctly classified so far. (Witten and
Frank, 2005)

In our experiments, we use the ADTree and LogitBoost implementations provided
by the Weka toolkit (Witten and Frank, 2005).

Evaluation metrics. As our classification is intended to be used in ontology learning
tasks, we evaluate the performance of the classifiers in separating property-denoting
vs. relational adjectives in terms of precision and recall. Depending on whether at-
tribute or relation learning is in focus, it is primarily important to achieve high perfor-
mance for the respective target category of adjectives rather than good overall accuracy
for both classes. However, in case this classification might be of interest for tasks differ-
ent from ontology learning as well, we also report accuracy scores.

Feature combinations. We report the classification performance on both data sets,
based on different feature combinations: In all-feat, all features are used individually,
while in all-grp we collapsed them into groups (see Table 5.6). As a morphological
lexicon might not be available in all domains and languages, we also experimented
with a feature combination no-morph that incorporates all the collapsed features from
all-grp except for the morphological derivation feature from group VI.

Baselines. We compare all these feature combinations against (i) a majority baseline
that assumes that all adjective types are classified as belonging to the class that accounts
for the majority of types in the data and (ii) a rule-based morph-only baseline that relies
on the morph feature only: If an adjective is derived from a noun, it is classified as rela-
tional, otherwise as property-denoting. The performance of this decision rule allows to
assess the added value that results from a classification approach capitalizing on multi-
ple corpus-derived features in comparison to a simple rule-based approach that merely
relies on an existing lexical resource.

Statistical significance. All results reported in the following are statistically signifi-
cant (p < 0.05) relative to the baselines, according to McNemar’s test (McNemar, 1947).
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5.2 Automatic Type-based Classification of Adjectives

ATTR REL
Learner P R F1 P R F1 Acc.

all-feat
ADTree 0.95 0.98 0.96 0.71 0.56 0.63 0.93
Boosted 0.96 0.99 0.97 0.79 0.61 0.69 0.95

all-grp
ADTree 0.95 0.98 0.96 0.71 0.56 0.63 0.93
Boosted 0.96 0.99 0.97 0.85 0.61 0.71 0.95

no-morph
ADTree 0.96 0.96 0.96 0.67 0.67 0.67 0.93
Boosted 0.95 0.96 0.95 0.56 0.50 0.53 0.91

morph-only
ADTree 0.96 0.78 0.86 0.25 0.67 0.36 0.77
Boosted 0.96 0.78 0.86 0.25 0.67 0.36 0.77

majority 0.90 1.00 0.95 0.00 0.00 0.00 0.90

Table 5.8: Class-based precision and recall scores on DS1 (cross-validation)

Cross Validation Results on Annotated Corpus (DS1)

We ran a first experiment on the heuristically annotated data set, using 10-fold cross
validation. As the data in DS1 is highly skewed towards the property-denoting class,
we also created a balanced data set by random oversampling (Batista et al., 2004).

Precision and recall figures for both classes of adjectives as achieved by the ADTree
and the Boosted Learner, respectively, are summarized in Table 5.8. We observe very
high precision values for the ATTR class, while precision for REL adjectives is lower.
The decision tree performs surprisingly well on the unbalanced set with the no-morph
feature combination. Interestingly, this holds for both classes, even though the morpho-
logical feature is the only positive feature we provided for the REL class. This suggests
that morphological derivation as provided by CELEX2 does not perfectly discriminate
the two classes.

In Table 5.9 on the next page, we show that even higher precision values, well above
the baseline, can be obtained for both classes when an equal number of training in-
stances is provided by random oversampling (Batista et al., 2004). This indicates that a
corpus-based classification approach can be applied equally well for attribute and rela-
tion learning. Moreover, as revealed by the performance of the morph-only baseline in
Table 5.9 on the following page, corpus-based learning is clearly superior to a simple
lexicon lookup procedure that relies on morphological derivation as the only source of
information.

Comparing the decision tree and the boosted learner, we observe slight improve-
ments for the ATTR class, but – more importantly – a considerable increase on the REL
class when the all-grp combination is used with boosting. Apparently, this classifier
benefits from collapsing individual features into groups, thus merging the values of
sparse features. For this classifier, at least, the morphological feature provides valuable
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ATTR REL
Learner P R F1 P R F1 Acc.

all-feat
ADTree 1.00 0.93 0.97 0.94 1.00 0.97 0.97
Boosted 1.00 0.91 0.95 0.92 1.00 0.96 0.95

all-grp
ADTree 1.00 0.93 0.97 0.94 1.00 0.97 0.97
Boosted 1.00 0.91 0.95 0.92 1.00 0.96 0.95

no-morph
ADTree 1.00 0.92 0.95 0.93 0.99 0.96 0.95
Boosted 1.00 0.92 0.96 0.92 1.00 0.96 0.96

morph-only
ADTree 0.96 0.78 0.86 0.25 0.67 0.36 0.77
Boosted 0.73 0.78 0.75 0.76 0.71 0.73 0.74

Baseline 0.50 0.50 0.50 0.50 0.50 0.50 0.50

Table 5.9: Class-based precision and recall scores on DS1 (cross-validation, random
oversampling)

information11, while the decision tree performs surprisingly well on the unbalanced
set when this feature is omitted. Interestingly, this affects both classes, even though
morphological derivation is the only positive feature we provided for the REL class.
However, for the small set of relational adjectives in DS1, the morphological informa-
tion is not sufficiently precise, as can be seen from the performance of the morph-only
baseline in Table 5.8 on the previous page.

In sum, our results indicate that automatically distinguishing property-denoting and
relational adjectives at the type level is possible with high accuracy, even on the basis
of small training sets.

Results on WordNet Data (DS2)

With 246 property-denoting vs. 140 relational adjective types, the class distribution on
DS2 is less skewed in comparison to DS1. Furthermore, DS2 offers sufficient training
data for both classes. DS2 was therefore separated into training (80%) and test data
(20%). The test set contains 49 property-denoting and 28 relational adjectives.

On DS2, the boosted classifier yields the best results. Detailed figures are displayed
in Table 5.10. While all feature combinations outperform both baselines, the all-grp
combination achieves the best results for both classes in terms of F-score and accuracy.
Considering all features without collapsing them into groups yields lower performance
in general, except for recall on the ATTR class. Again, morph-only constitutes a very
strong baseline. Completely omitting the derivation feature leads to a slight decrease in

11Note, however, that the boosted learner benefits from morphological information only in combination
with other features, as can be seen from the equal performance of both classifiers in the morph-only
configuration.
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ATTR REL
P R F1 P R F1 Acc.

all-feat 0.85 0.82 0.83 0.70 0.75 0.72 0.79
all-grp 0.91 0.80 0.85 0.71 0.86 0.77 0.82

no-morph 0.87 0.80 0.83 0.69 0.79 0.73 0.79

morph-only 0.80 0.84 0.82 0.69 0.64 0.66 0.77
majority 0.64 1.00 0.53 0.00 0.00 0.00 0.64

Table 5.10: Class-based precision and recall scores for the Boosted Learner on DS2

performance, while the best results are obtained by combining derivation information
with the corpus-based features.

Comparing the performance on DS1 and DS2, we find, above all, that the REL class
benefits from the less skewed class distribution in terms of recall. The results on DS2
underline that property-denoting adjectives can be identified with high precision and
decent recall. With regard to relational adjectives, we also observe highly satisfactory
recall scores, while precision is lower, but still acceptable.

Feature Analysis

In order to determine the features that are particularly valuable for classifying ad-
jectives denoting properties and relations, we retrace the selection procedure of the
boosted learner in the all-grp configuration on DS2. The results are shown in Ta-
ble 5.11 on the following page. Rows in the table correspond to iterations of the learner;
each row displays the feature group that has been selected in the respective iteration,
as it guarantees a maximally informative partition when dividing the instance space
at a particular split value (Witten and Frank, 2005). Thus, the order of features being
selected in the boosting procedure indicates their relative impact on the performance of
the ensemble learner. Positive feature weights (as given in the rightmost column of the
table) are in favour of the ATTR class, negative weights in favour of REL.

Being selected in the first iteration, the predicative features (cf. Table 5.6) turn out
to be most effective for the classification task as they imply a strong preference for
the property-denoting class (feature weight: 1.63) if being frequently observed with
an adjective. When being used as the only feature group in the Boosted Learner on
DS2, these features yield a classification performance of P=0.87, R=0.65, F1=0.74 for the
ATTR class. We conclude that lexico-syntactic patterns of predicative use are cheap, but
reliable indicators to detect property-denoting adjectives in corpora.
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Iteration Base Classifier Split Value Weight

1 Group III ≤ 2.5 −0.25
> 2.5 1.63

2 Group I ≤ 13.5 −0.28
> 13.5 1.44

3 morph ≤ 0.5 0.67
> 0.5 −0.79

4 Group II ≤ 2.5 −0.29
> 2.5 0.90

5 one-proform ≤ 6.5 −0.03
> 6.5 1.53

6 see-catch-find ≤ 0.5 −0.10
> 0.5 0.89

7 Group I ≤ 4.5 −0.15
> 4.5 0.45

8 Group III ≤ 17.5 −0.04
> 17.5 1.22

9 one-proform ≤ 0.5 0.23
> 0.5 −0.19

10 one-proform ≤ 7.5 −0.02
> 7.5 1.76

Table 5.11: Overview of most informative features and their weights for classifying
property-denoting and relational adjectives (10 iterations of the boosted
learner on DS2); positive weights are in favour of the property class (ATTR),
negative weights in favour of the REL class.
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5.2 Automatic Type-based Classification of Adjectives

Type ATTR REL IMPOSS
Tokens Tokens Tokens

beautiful (ATTR) 50 0 0
black (ATTR) 35 7 8
bright (ATTR) 45 1 4
heavy (ATTR) 42 0 8
new (ATTR) 50 0 0

civil (REL) 0 49 1
commercial (REL) 5 44 1
cultural (REL) 2 48 0
environmental (REL) 0 48 2
financial (REL) 0 46 4

Table 5.12: Volatility of prototypical class members

5.2.5 Discussion

As discussed in Section 5.1.5, a type-based classification approach runs the risk of being
affected by class shifts on the token level. This is not reflected by the evaluation carried
out on the heuristically acquired corpus. In order to investigate the strength of this ef-
fect, we selected five adjective types of each class and inspected a random sample of 50
tokens for each type. As example cases, we chose types that were automatically classi-
fied with high confidence scores, since, at this point, we were particularly interested in
the class change potential of prototypical class members.

The results of this investigation are shown in Table 5.12. The columns labeled with
ATTR and REL display counts of tokens that matched one of our target categories,
whereas the rightmost column subsumes all tokens that could not be assigned to the
ATTR or REL class. The majority of these cases is due to contexts where the adjective is
part of a multi-word expression that does not elicit either a property or a relation, e.g.
black hole or heavy metal band.

The average class volatility on the token level amounts to 8.6%. These figures can
be considered as rough estimates for the average error that is introduced by raising
our classification task to the type level irrespective of potential word sense ambiguities.
Still, our findings suggest that class volatility is not an issue that affects entire classes on
a large scale, but seems to be limited to individual contexts. This result is corroborated
by examining WordNet: Analyzing the distribution of property-denoting and relational
readings over the different word senses of adjectives in entire WordNet we found that
13.9% of all types exhibit volatile word senses that cannot be uniformly assigned a
property-denoting or a relational reading. Even though this proportion is higher than
the one we observed in our corpus (cf. Section 5.1.5), it is still tractable.
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5.3 Summary

In this chapter, we investigated the task of automatically separating adjective types
with regard to their ontological type in an empirical, corpus-based classification ap-
proach. Such a classification is expected to be useful as a filter in attribute selection in
order to confine the range of adjectives considered to property-denoting ones.

In a corpus study based on human annotations, we find that only a coarse-grained
classification into adjectives denoting properties and relations yields stable results in
terms of annotator agreement. Similar to Boleda (2006), we do not find clear supporting
evidence for a third class that highlights the fine-grained difference between indepen-
dent and founded properties12.

We show that by abstracting from this subtle difference, automatic classification of
property-denoting and relational adjectives is feasible at high performance levels. To
compensate for sparse and expensive training data on the token level, we generate ad-
ditional training instances in a heuristic, weakly supervised manner. Our experiments
show good and consistent results on two data sets, one of them manually annotated
and another one acquired from WordNet. The pattern-based features we use for clas-
sification on the type level achieve high performance on the identification of property-
denoting adjectives. Feature analysis reveals that patterns encoding predicative use are
most effective in order to detect adjectives of this type.

An open issue concerns the feasibility of separating adjectives that are neither property-
denoting nor relational (including intensional ones, for instance). Since adjectives of
this kind are too sparse in our annotated data and they do not constitute a homoge-
neous class in WordNet, we could not investigate the problem here. Recent work in
this direction (Boleda et al., 2013) underlines the difficulty of discriminating adjectives
according to their inferential characteristics.

In summary, we consider the type-based adjective classification proposed here as an
attractive method for supporting corpus-based ontology learning. Apart from devel-
opping a weakly supervised classification model for the ATTR/REL distinction, our
experiments provide useful guidelines for the attribute selection task to be tackled in
the remainder of this thesis by having identified the most reliable features for this task,
viz. lexico-syntactic patterns encoding predicative use. Given that these patterns can
easily be extracted from corpora, they are highly suitable for corpus-based detection
of property-denoting adjectives in an unsupervised manner, without the need for an
upstream classification process that requires costly annotations and/or the availability
of lexical resources. In the following chapter, we demonstrate how these corpus-based
indicators of property-denoting adjectives can be incorporated into distributional at-
tribute models.

12This distinction might be substantiated in psycholinguistic rather than purely corpus-based settings,
given that adjective-noun phrases such as difficult mountain have been found to cause human readers
higher processing costs in eye-tracking studies than, e.g., difficult exercise (Frisson et al., 2011).
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6 Attribute Selection from
Adjective-Noun Phrases: Models and
Parameters

In this chapter, we introduce our approach to attribute selection from adjective-noun
phrases capitalizing on structured distributional attribute models. These models are
based on (i) attribute-based vector representations for adjectives and nouns in a single
distributional space, (ii) vector composition functions in order to construct composed
phrase vector representations from individual word vectors and (iii) attribute selection
functions in order to select those attribute(s) that are most prominent in the composi-
tional semantics of an adjective-noun phrase from its composed vector representation.
These components are introduced in Section 6.1. A pattern-based and a topic-based in-
stantiation of these attribute models are described in Sections 6.2 and 6.3, respectively.1

6.1 Foundations of Structured Distributional Models for
Attribute Selection

Definition. Following the definitions of general distributional models in Section 2.3,
we define structured distributional attribute models as a special case of structured distribu-
tional models: We assume sets of target words W and attribute nouns A. This enables
us to define the structured vector space Vattr being spanned by the set of orthonormal
basis vectors {⃗ea|a ∈ A}. Hence, structured attribute vectors representing the meaning of
a target word w ∈W in Vattr are defined as follows:

w⃗attr = ∑
a∈A

ω(w, a) · e⃗a (6.1)

6.1.1 Attribute-based Distributional Representations of Adjective and
Noun meaning

Contrary to prior work, we model attribute selection as involving triples

r = ⟨noun, attribute, adjective⟩
1Parts of the content of this chapter have been previously published in Hartung and Frank (2010b) and

Hartung and Frank (2011b).
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of nouns, attributes and adjectives. We propose to decompose r into tuples

r′ = ⟨noun, attribute⟩ and r′′ = ⟨attribute, adjective⟩.

Previous learning approaches focussed on r′ (Cimiano, 2006) or r′′ (Almuhareb, 2006)
in isolation only.

(43) a. bluevalue carconcept

b. ⟨concept, ATTR, value⟩  
r

= ⟨concept, ATTR⟩  
r′

◦ ⟨ATTR, value⟩  
r′′

c. ATTR(concept) = value

Our approach to attribute selection is illustrated in (43): Starting from adjective-noun
phrases as in (43a), consisting of an adjective denoting a property value (e.g., blue) and
a noun denoting a concept (e.g., car), our goal is to induce a triple r, as given in (43b).
The triple r explictly relates the concept and the value to an attribute that is evoked in
the semantics of the adjective-noun phrase without being made explicit on the phrase
level. In the interest of better coverage in a corpus-based distributional model, r is
decomposed into tuples r′ and r′′, as can also be seen in (43b). We assume that the
distributional representation of r can be re-constructed from r′ ◦ r′′, i.e., by composing
the individual representations of r′ and r′′, using ◦ as an appropriate composition func-
tion2. Translating r into a logical form as given in (43c), the acquired triple can be used
to populate a knowledge base or an ontology.

In our corpus-based approach to attribute selection, we model the semantics of adjec-
tives and nouns in an attribute-based distributional model tailored to r′ and r′′. Thus,
adjectives and nouns are represented in semantic vectors defined over pre-defined at-
tributes as dimensions of meaning. Vector components are populated along linguis-
tic patterns capturing meaningful co-occurrences of nouns and attributes (as for r′) or
adjectives and attributes (as for r′′), as will be described in more detail for different
instantiations of attribute selection models in Sections 6.2 and 6.3. A fragment of the
distributional backbone of a generic attribute model is shown in Fig. 6.1, where the up-
per part displays examples of attribute-based vector representations for the adjective
enormous and the noun ball, with dimensions of meaning being set to a range of ten
attributes3.

6.1.2 Vector Composition Functions

In order to reconstruct a distributional representation of the triple r from individual
vector representations for r′ and r′′, vector composition is used as a hinge for their

2At this point, ◦ is deliberately left underspecified; concrete instantiations of composition functions will
be discussed below.

3For illustration purposes, the vector components in Fig. 6.1 are set to raw corpus-based co-occurrence
counts.
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⃗enormous 1 1 0 1 45 0 4 0 0 21
b⃗all 14 38 2 20 26 0 40 0 0 20

⃗enormous⊙ b⃗all 14 38 0 20 1170 0 160 0 0 420
⃗enormous⊕ b⃗all 15 39 2 21 71 0 44 0 0 41

Figure 6.1: Attribute-based vector representations of the adjective enormous, the noun
ball and their compositions into a phrase vector representing enormous ball

combination. This serves two purposes: First, the fine granularity of linguistic patterns
that capture the triple r comes at the cost of their sparsity when being applied to cor-
pus data. Hence, this “reduce-and-reconstruct” approach can be seen as a strategy to
recover from sparsity issues. Second, we argue that this approach is also linguistically
sound, assuming that attribute selection is a compositional process rooted in formal se-
mantics. From this point of view, vector composition can be seen as the distributional
correlate of a formal semantic process where the adjective selects one or more of the
roles provided by the deep semantic structure of the noun (Pustejovsky, 1995).

In our models, following Mitchell and Lapata (2010), we make use of two vector com-
position functions: vector multiplication (denoted as⊙ henceforth) and vector addition (⊕)
as defined in Equations (2.10) and (2.11) on page 31. We expect vector multiplication
to perform best in attribute selection as it comes closest to the linguistic function of
intersective adjectives (Amoia and Gardent, 2007), i.e., to promote dimensions that are
prominent both for the adjective and the noun. In case of sparsely populated vector
components, it may be reasonable to rely on vector addition, though.4 In the lower part
of Fig. 6.1, both composition functions are illustrated.

Note that both ⊙ and ⊕ belong to the class of vector mixture models which rely on two
fundamental assumptions (Baroni et al., 2014):

1. Individual word vectors and complex phrase vectors (as the result of the compo-
sition process) live in the same semantic space.

2. Syntactic structure in the constituents taking part in the composition does not
matter (since vector mixtures are commutative operations).

These assumptions are certainly crucial to many problems in compositional distribu-
tional semantics. However, it is a widely held view that particular linguistic phenom-

4Mitchell and Lapata (2010) offer a range of other composition functions which are merely variations
of vector multiplication and vector addition as defined above. As none of these alternatives seems to
capture our intuitions on attribute selection as an intersective compositional process equally well, we
decided to restrict ourselves to vector multiplication and vector addition.
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ena beyond the word level are most adequately modeled in distributional semantics
by individual composition functions reflecting the functional behaviour of these phe-
nomena (cf. Section 3.5). Therefore, we argue that both assumptions are less critical to
attribute selection. In fact, the first assumption is deliberately included in the design of
our model, as we consider attributes as a layer of meaning that is intersectively shared
between adjectives and nouns (cf. Section 4.3). Moreover, capitalizing on attributes as
dimensions of meaning, we make adjectives and nouns interoperable in a composi-
tional distributional model, which poses a challenge to other variants of vector mixture
models (cf. Thater et al., 2010).

With respect to the second assumption, we anticipate that, in some cases, the syn-
tactic head-modifier relationship in adjective-noun phrases might be more adequately
captured by assigning different weights to the adjective and noun representations (cf.
Mitchell and Lapata, 2010; Baroni and Zamparelli, 2010) rather than composing them
in a fully symmetric manner. As it is an open question which of the two constituents
of an adjective-noun phrase should be awarded a higher weight in their composition
(cf. Pustejovsky (1995) for an adjective-centered and Asher (2011) for a noun-centered
account)5, we will remain within in the realm of symmetric composition functions in
this thesis.6

6.1.3 Attribute Selection Functions

In order to select attributes from attribute-based vector representations, we propose
four attribute selection functions:

• Most Prominent Component Selection (MPC)

• Threshold Selection (TSel)

• Entropy Selection (ESel)

• Median Selection (MSel)

These selection functions operate in a fully unsupervised manner and rely on free pa-
rameters to the smallest possible extent, as will be discussed in detail below. Their main
purpose is to separate semantically meaningful dimensions in composed attribute-
based vector representations from “noise”, i.e., other dimensions of meaning which
denote attributes that are not particularly prominent in the compositional semantics of
a given adjective-noun phrase.

5This aspect and its impact on attribute selection will be investigated in Chapter 8.
6Further criticisms against vector mixture models put forward by Baroni et al. (2014) – issues in extract-

ing distributional representations for grammatical and function words, incapability of representing
differences in semantic structures, inability to account for recursion in modification contexts – do not
apply to attribute selection.
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Attribute selection from word and phrase vectors. Each of these selection functions
can also be applied to word vector representations. Exploring attribute meanings in in-
dividual adjectives and nouns out of context may be interesting in order to assess (i) the
ambiguity of adjectives with regard to the attributes they select and (ii) the disambigua-
tion capacity of adjective and noun vectors when being considered jointly. Moreover,
these attribute selection functions can be used to (iii) compare word and phrase vec-
tor representations in order to determine attributes that are prominent in a noun in
isolation, without being selected on the phrase level. These effects can be observed in
the phrase enormous ball (cf. Fig. 6.1), for example, which offers several dimensions of
meaning. The adjective enormous may select a set of possible attributes (SIZE or WEIGHT,
among others), while the noun ball elicits several attributes in accordance with its dif-
ferent word senses7. As can be seen from Fig. 6.1, these ambiguities are nicely captured
by the separate vector representations for the adjective and the noun (upper part); by
composing these representations, the ambiguity is resolved (lower part) and some of
the dimensions that are prominent in the word meaning of the noun (e.g., SPEED) are
down-weighted in the phrase vector.

Requirements. Depending on whether attributes are to be selected from adjective,
noun or phrase vectors, an attribute selection function faces different requirements.
This can be seen from Fig. 6.1 as well. This example describes a typical configura-
tion with one vector representing a property-denoting adjective that exhibits relatively
strong peaks on one or more dimensions, whereas noun vectors generally show a ten-
dency for broad and flat distributions over their dimensions. This suggests using a
selection function that is (i) rather strict (by choosing few very prominent dimensions)
in case of adjectives, (ii) less restrictive for nouns (by licensing the inclusion of more di-
mensions of lower relative prominence), and (iii) largely flexible in case of phrase vec-
tors (by adapting to the compositional processes underlying adjective-noun phrases).
In general, we are interested in finding a selection function that relies on as few free pa-
rameters as possible in order to avoid efforts for optimizing them by supervised train-
ing or to adapt them to different component weighting functions or dimensionalities.

Most Prominent Component Selection (MPC). An obvious method for attribute se-
lection is to choose the most prominent component from any vector (i.e., the highest
absolute value). All other components are rejected, irrespective of their relative impor-
tance. MPC obviously fails to capture polysemy of targets, which affects adjectives such
as hot, in particular.

Threshold Selection (TSel). TSel recasts the approach of Almuhareb (2006) in se-
lecting all dimensions as attributes whose components exceed a frequency threshold.

7WordNet senses for the noun ball include, among others: 1. round object [...] in games; 2. solid projectile,
3. object with a spherical shape, 4. people [at a] dance.
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This avoids the drawback of MPC, but introduces a parameter that needs to be opti-
mized. Also, it is difficult to apply absolute thresholds to composed vectors, as the
range of their components may be subject to great variation, and it is unclear whether
the method will scale with increased dimensionality of the semantic space.

Entropy Selection (ESel). In information theory, entropy measures the average un-
certainty in a probability distribution (Charniak, 1996). We define the entropy H(w⃗attr)

of an attribute-based vector w⃗attr over its components as:

H(w⃗attr) = − ∑
a∈A

p(w, a) log p(w, a), where

p(w, a) =
ω(w, a)

∑a′∈A ω(w, a′)
.

We use H(w⃗attr) to assess the impact of singular vector components on the overall en-
tropy of the vector: We expect entropy to detect components that contribute noise, as
opposed to those that contribute important information.

We define the algorithm used for entropy-based attribute selection in Figure 6.2 on
the facing page. Essentially, the algorithm returns a list of informative dimensions,
selectedAttributes, by iteratively suppressing combinations of vector components
one by one. The possible combinations of components (stored in ocList, cf. line 8) are
determined by (i) sorting the n vector components in descending order of their value
and (ii) collecting from this sorted list all n subsequences consisting of the first element
and its successors up to the length of n. Each of these subsequences in ocList consti-
tutes a dimCombination to be suppressed (cf. lines 11f.) in order to test whether this
leads to a gain in vector entropy (cf. line 15). Given that a gain in entropy is equivalent
to a loss of information and vice versa, we assume that every combination of compo-
nents that leads to an increase in entropy when being suppressed is actually responsible
for a substantial amount of information. The algorithm includes a back-off to MPC for
the special case that a vector contains a singular peak (i.e., H(w⃗attr) = 0; cf. lines 4–6 ),
so that, in principle, it should be applicable to vectors of any kind. In case of vectors
with very flat distributions over their dimensions, entropy selection may result in an
empty attribute set, if no combination of components is found to be sufficiently infor-
mative to be selected. In the example given in Fig. 6.1, this holds for the word vector
b⃗all and the composed vector ⃗enormous⊕ b⃗all. For the adjective vector ⃗enormous in the
same example, ESel results in the selection of SIZE and WEIGHT, while the attributes
SIZE, WEIGHT and SPEED are selected from ⃗enormous⊙ b⃗all.
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Algorithm 1 Entropy Selection Algorithm

1: procedure ENTROPYSELECTION(vector)
2: entropy← computeEntropy(vector)
3: selectedAttributes← empty list
4: if entropy == -0.0 then
5: selectedAttributes←most prominent component
6: return selectedAttributes ▷ back-off to MPC
7: else
8: ocList← computeOrderedCombinations(dimensions)
9: for all dimCombination in ocList do

10: vectorPrime← vector
11: for all component in dimCombination do
12: vectorPrime← set component to 0 ▷ suppress all components in dimCombination
13: end for
14: entropyPrime← computeEntropy(vectorPrime)
15: if entropyPrime > entropy then ▷ dimCombination was informative
16: selectedAttributes← dimCombination
17: return selectedAttributes
18: end if
19: end for
20: return selectedAttributes
21: end if
22: end procedure

Figure 6.2: Entropy Selection Algorithm
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Median Selection (MSel). As a further method we rely on the median m that can
be informally defined as the value that separates the upper from the lower half of a
probability distribution8 (Krengel, 2003). It is less restrictive than MPC and TSel and
may overcome a possible drawback of ESel. Using this measure, we select all dimen-
sions whose components exceed m. Thus, for the vector representing ball in Fig. 6.1, the
attributes WEIGHT, DIRECTION, SHAPE, SPEED and SIZE are selected.

As one of the main characteristics of the attribute selection problem, the number of
attributes to be predicted for each adjective-noun phrase is unknown in advance. In
that respect, attribute selection resembles a multi-label classification problem, where each
data point is assigned a set of labels of varying cardinality (Tsoumakas and Katakis,
2007). Contrary to common practice in this area, our goal is to design unsupervised
distributional models for attribute selection. From the attribute selection functions in-
troduced here, we expect ESel to come closest to an unsupervised multi-label selection
function, while MPC and MSel represent strong baselines that do not require parameter
tuning either.

6.2 Pattern-based Distributional Model

In this section, we define components that are specific to pattern-based attribute mod-
els. These include (i) the inventory of lexico-syntactic patterns used in order to acquire
initial adjective and noun vectors from corpora and (ii) further parameters used for
filtering of extractions or weighting of singular patterns.

6.2.1 Lexico-syntactic Patterns for Attribute Acquisition

We use the following lexico-syntactic patterns9 for the acquisition of vectors capturing
the tuple r′′ = ⟨attribute, adjective⟩. Even though some of these patterns (A1 and A4)
actually match triples of nouns, attributes and adjectives, we only use them for the
extraction of binary tuples (underlined), thus abstracting from the modified noun.

(A1) ATTR of DT? NN is|was JJ

(A2) DT? RB? JJ ATTR

(A3) DT? JJ or JJ ATTR

(A4) DT? NN’s ATTR is|was JJ

(A5) is|was|are|were JJ in|of ATTR

8The same notion can be straightforwardly applied to semantic vectors, even if their component weights
may not always yield a proper propbability distribution.

9Some of these patterns are taken from Almuhareb (2006) and Sowa (2000). The descriptions rely on
the Penn Treebank Tagset (Marcus et al., 1993). Optional elements in a pattern are marked by ?.
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In order to acquire noun vectors capturing the tuple r′ = ⟨noun, attribute⟩, we rely on
the following patterns. Again, we only extract pairs, as indicated by the underlined
elements.

(N1) NN with|without DT? RB? JJ? ATTR

(N2) DT ATTR of DT? RB? JJ? NN

(N3) DT NN’s RB? JJ? ATTR

(N4) NN has|had a|an RB? JJ? ATTR

These patterns were partly inspired by Almuhareb (2006) and Sowa (2000). We also
experimented with further post-modification patterns, such as:

(*N5) NN for/at/of DT? RB? JJ? ATTR

However, due to the fact that prepositional phrases exhibit numerous ambiguities10,
which is particularly severe for the preposition of, we decided to do without them (cf.
Poesio and Almuhareb, 2005).

6.2.2 Model Parameters

Some of the adjectives extracted by patterns (A1)–(A5) are not property-denoting and
thus represent noise for attribute learning. This affects in particular pattern (A2) which
extracts, among others, privative adjectives11 like former, relational ones such as eco-
nomic or geographic, or quantifiers like more.

This problem may be addressed in different ways: As shown in Chapter 5, it is possi-
ble to train a supervised classifier that is capable of automatically separating property-
denoting adjectives from relational ones at decent performance levels. In the interest of
staying within an unsupervised corpus-based framework, however, we opt for alterna-
tive approaches based on (i) using lexico-syntactic patterns for adjective target filtering
or (ii) eliminating error-prone extractions using intersective pattern filtering.

Target Filtering. During target filtering, adjective extractions are checked against a
predicative pattern (P1) :

(P1) DT NN is|was JJ

In our experiments on adjective classification, predicative use of adjectives turned out
as the most informative feature for identifying property-denoting adjectives, achieving
a precision of 87% (cf. Section 5.2.4)12. Pattern-based target filtering of adjectives is
implemented such that all extractions of patterns (A1)–(A5) that do not match (P1) are
ignored throughout the population of adjective vectors.
10See the vast literature on PP Attachment, e.g. Hindle and Rooth (1993); Merlo and Ferrer (2006).
11This class is characterized by the inference pattern [AN] |= ¬N (Amoia and Gardent, 2007).
12This classification performance has been achieved on the dichotomy of property-denoting vs. relational

adjectives. We hypothesize that the filtering capacities of (P1) go beyond relational adjectives, i.e., the
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Ex(Q1) ={⟨hot, TEMPERATURE⟩, ⟨hot, TEMPERATURE⟩}
Ex(Q2) ={⟨hot, TEMPERATURE⟩, ⟨hot, SPEED⟩}
Ex(Q3) ={⟨hot, TASTE⟩}

pf(Q1, Q2) ={⟨hot, TEMPERATURE⟩, ⟨hot, TEMPERATURE⟩}
pf(Q2, Q1) ={⟨hot, TEMPERATURE⟩}
pf(Q1, Q3) =∅

pf({Q1, Q2, Q3}, Q1) ={⟨hot, TEMPERATURE⟩, ⟨hot, TEMPERATURE⟩}

Figure 6.3: Pattern Filtering Example

Pattern Filtering. Inspired by Pantel and Pennacchiotti (2008), we aim at reducing
the impact of noise due to low-confidence patterns. In our models, we experiment with
a validation approach that checks the extractions of a particular pattern Q1 by filtering
them against the extractions of another pattern Q2, such that only those extractions from
Q1 are retained which are also extracted by Q2, whereas all others are discarded.

An example can be seen in Fig. 6.3, where Ex(Q) denotes the multiset of pairs ex-
tracted by some pattern Q, and pf(Q1, Q2) denotes the pattern filtering function for vali-
dating the extractions of pattern Q1 against the ones obtained from Q2. As shown in the
last example in Fig. 6.3, pf can also be used to validate the extractions of several patterns
at a time.

6.3 Distributional Attribute Models based on Weakly
Supervised Topic Models

Distributional attribute models based on weakly supervised topic models differ from
pattern-based models in two respects: First, they make use of dependency paths rather
than lexico-syntactic patterns for acquiring word vectors from corpus data. Second,
they generalize over observed co-occurrences of adjectives and attributes or nouns and
attributes, respectively, by mapping them to abstract topics obtained from probabilistic
topic models such as Latent Dirichlet Allocation (LDA; Blei et al., 2003). In our work,
we adapt LDA in a weakly supervised manner such that the resulting topics are highly
attribute-specific and can be injected into a structured distributional attribute model.

pattern may also be beneficial for eliminating privative adjectives and some quantifiers.
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1: For each topic:
2: Draw a distribution over words β⃗k ∼ DirK(η).
3: For each document:
4: Draw a vector of topic proportions θ⃗d ∼ DirV (⃗α).
5: For each word:
6: Draw a topic assignment Zd,n ∼ Mult(θ⃗d), Zd,n ∈ {1, . . . , K}.
7: Draw a word Wd,n ∼ Mult( ⃗βZd,n), Wd,n ∈ {1, . . . , V}.

Figure 6.4: Generative process underlying LDA (Blei and Lafferty, 2009)

We proceed by giving a brief introduction to probabilistic topic models in Section
6.3.1, focussing on unsupervised (LDA) and a variant of supervised models (Labeled
LDA). The details of inducing attribute-specific topics by weakly supervised variants
of LDA and how these topics are embedded into a structured distributional attribute
model are explained in Section 6.3.2.

6.3.1 Background: Probabilistic Topic Models

Latent Dirichlet Allocation. LDA is a generative probabilistic model for document
collections. Each document is represented as a mixture of latent topics, where each topic
is a probability distribution over words. These topics can be used as dense features for,
e.g., document clustering (Blei et al., 2003; Steyvers and Griffiths, 2007). Depending on
the number of topics, which has to be specified in advance, the dimensionality of the
document representation can be considerably reduced in comparison to simple bag-of-
words models.

The generative process underlying LDA is given in Fig. 6.4, following Blei and Laf-
ferty (2009). Here, K denotes a pre-defined number of topics, V the size of the vocabu-
lary. The vector α of size K is used as a Dirichlet prior on the document-specific topic
proportions. The scalar η functions as a symmetric Dirichlet prior on the word-topic
distributions.

Considering the documents w⃗1:D in the corpus D as observed variables, the posterior
distribution of the latent variables given the observed (or pre-specified) ones, as stated
in (6.2), can be determined by approximation techniques such as mean field variational
inference or Gibbs sampling, among others (Blei and Lafferty, 2009).

p( ⃗θ1:D, z1:D,1:N , β⃗1:K|w1:D,1:N , α, η) =
p( ⃗θ1:D, ⃗z1:D, β⃗1:K|w⃗1:D, α, η)∫

β⃗1:K

∫
⃗θ1:D

∑z⃗ p( ⃗θ1:D, ⃗z1:D, β⃗1:K|w⃗1:D, α, η)
(6.2)

As a result of the approximation, estimates of overall word-topic probabilities β̂k,v, topic
proportions per document θ̂d,k and word-topic assignments ẑd,n,k in each document can be
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1: For each topic k ∈ {1, . . . , K}:
2: Generate βk = (βk,1, . . . , βk,V)

T ∼ Dir(· | η).
3: For each document d:
4: For each topic k ∈ {1, . . . , K}.
5: Generate Λ(d)

k ∈ {0, 1} ∼ Bernoulli(· | Φk).
6: Generate α(d) = L(d) × α.
7: Generate θ(d) = (θl1 , . . . , θlMd

)T ∼ Dir(· | α(d)).
8: For each i in {1, . . . , Nd}:
9: Generate zi ∈ {λ(d)

1 , . . . , λ
(d)
Md
} ∼ Mult(· | θ(d)).

10: Generate wi ∈ {1, . . . , V} ∼ Mult(· | βzi).

Figure 6.5: Generative process underlying L-LDA (Ramage et al., 2009)

used in order to decompose a document collection. Compared to exploring a corpus
by merely inspecting the bag-of-words profiles of singular documents, these quantities
provide a better abstraction over its contents (Blei and Lafferty, 2009).

Labeled LDA. L-LDA (Ramage et al., 2009) extends standard LDA by including su-
pervision for specific target categories. The differences are as follows: (i) The generative
process includes a second observed variable, i.e., each document is explicitly labeled
with a target category. A document may be labeled with an arbitrary number of cate-
gories; unlabeled documents are also possible. However, L-LDA permits only binary
assignments of categories to documents; probabilistic weights over categories are not
intended. (ii) Contrary to LDA, where the number of topics has to be specified as an ex-
ternal parameter in advance, L-LDA sets this parameter to the number of unique target
categories. Moreover, the model is constrained such that documents may be assigned
only those topics that correspond to their observable category label(s).

More specifically, L-LDA extends the generative process of LDA by constraining the
topic distributions over documents θ(d) to only those topics that correspond to the docu-
ment’s set of labels Λ(d). This is done by projecting the parameter vector of the Dirichlet
topic prior α to a lower-dimensional vector α(d) whose topic dimensions correspond to
the document labels (Ramage et al., 2009).

This extension is integrated in steps 5 and 6 of the generative process given in Fig. 6.5:
First, in step 5, the document’s labels Λ(d) are generated for each topic k, using a
Bernoulli coin toss with a labeling prior Φk. The resulting vector of document labels
λ(d) = {k | Λ(d)

k = 1} is used to define a document-specific label projection matrix

L(d)
|λ(d)|×K

, such that L(d)
ij = 1 if λ

(d)
i = j, and 0 otherwise. This matrix is used in step

6 to project the Dirichlet topic prior α to a lower-dimensional vector α(d), whose topic
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dimensions correspond to the document labels. In step 7, a distribution of topics for
the corresponding document is generated from this reduced parameter space (Ramage
et al., 2009).

Irrespective of these adaptations in the generative process, posterior approximation
for L-LDA is carried out analogously to LDA, resulting in word-topic probabilities,
topic proportions and topic assignments as well.

6.3.2 Integrating Latent Topics into Distributional Attribute Models

Representing attribute meaning in pseudo-documents. Applying LDA to problems
in lexical semantics, where the primary goal is not document modeling but the induc-
tion of semantic knowledge from high-dimensional co-occurrence data, requires cer-
tain adaptations of the framework in order to tailor the estimated topics to reflect lex-
ical semantic relations rather than document structure. As shown in previous work on
modeling selectional restrictions of verbs by inducing topic distributions that char-
acterize mixtures of topics observed in verb argument positions (Ritter et al., 2010;
Ó Séaghdha, 2010), this can be achieved by (i) collecting pseudo-documents, i.e., bags
of words that co-occur in syntactic argument positions, and (ii) applying LDA to these
pseudo-documents.

We apply a similar idea to the attribute selection problem: We compile attribute-
specific pseudo-documents that characterize attributes by adjectives, nouns and verbs
that co-occur with the attribute nouns in carefully selected dependency relations. The
topic distributions obtained from fitting an LDA model to the collection of these pseudo-
documents can then be injected into attribute-based vector representations for adjec-
tives and nouns.

The list of dependency paths that are used for populating attribute-specific pseudo-
documents is shown in Table 6.1 on the next page. The notation of paths follows the
scheme ⟨attribute⟩ : ⟨path⟩ : ⟨target⟩, where = in a path description denotes concate-
nation of edges, and target words are constrained by their generalized part-of-speech
category (J for adjective, N for noun, V for verb)13. Individual edges within a path are
specified in terms of the dependency labels provided by the Malt parser (Nivre et al.,
2007). Edge labels point from the syntactic dependent to the head by default, inverse
edges pointing to the dependent are marked by 1 (as in SBJ1, for instance).

This method of compiling pseudo-documents is in line with our strategy of reducing
the triple r into tuples r′ and r′′ (cf. Section 6.1). Accordingly, LDA is only exposed to
binary tuples obtained from attributes and adjectives or nouns, respectively. As an ad-
ditional source of distributional information, the dependency paths also collect verbs
in particular syntactic environments of attribute nouns. These verbs are used for pop-
ulating the pseudo-documents and, hence, for inducing attribute-specific topics from
them, but they do not occur as target words in the resulting distributional attribute

13Generalized categories match all their fully specified sub-categories in the Penn Treebank nomenclature
(Marcus et al., 1993). For instance, J matches JJ, JJS, JJR, etc.
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Dependency Path Example

N:NMOD1:J ...[warm] temperature...
N:SBJ=OBJ1=PRD1:J ...the color seems to be [black].
N:SBJ=PRD1:J ...texture was [flat]...
N:SBJ=VC1=PRD1:J ...the taste has been [fantastic]...
N:SBJ=VC1=OBJ1:J ...price was considered [expensive].
N:SBJ=VC1=VC1=PRD1:J ...price might have been too [expensive]...
N:SBJ=VC1=VC1=OBJ1:J ...the comfort has been considered [excellent]...
N:SBJ=VC1=VC1=VC1=OBJ1:J ...the comfort might have been considered [excellent]...
N:PMOD=NMOD=SBJ=PRD1:J ...the level of the smell was [horrible].

N:NMOD1:N ...[car] ’s speed...
N:COORD1:N ...in terms of size and [popularity]...
N:SBJ=PRD1:N ...loyalty is the only solid [foundation]...
N:SBJ=VC1=PRD1:N ...distance has been the only [impediment]...
N:SBJ=VC1=OBJ1:N ...morality is considered the [basis]...
N:NMOD1=PMOD1:N ...speed of the [car]...
N:PMOD=NMOD=SBJ=PRD1:N ...foundation of success is the [willingness] to...

N:SBJ:V Popularity [requires]...
N:OBJ:V ...[requires] fairness.
N:SBJ=VC1:V The price will [increase]...
N:SBJ=VC1=VC1:V More power would have [helped]...
N:SBJ=VC1=VC1=VC1:V The price may have been [reduced]...
N:SBJ=VC1=OBJ1:V ...its color may seem to [change]...
N:PMOD=ADV:V ...[approved] of the beauty...
N:SBJ=VC1:V ...its complexity was [criticized]...
N:SBJ=VC1=VC1:V ...potential has been [exploited]...
N:SBJ=OBJ1:V His friendliness used to [calm] people down...

Table 6.1: Dependency paths used to generate attribute-specific pseudo-documents; at-
tribute nouns given in boldface, context words used to populate pseudo-
documents by matching the given dependency path in brackets.
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What is the speed of the [car]? The machine runs at a very [fast] speed.

N:NMOD1=PMOD1:N
N:NMOD1:J

Figure 6.6: Example for populating an attribute-specific pseudo-document by match-
ing dependency paths

model. Figure 6.6 gives an example (using the same nomenclature as in Table 6.1) of
populating a pseudo-document for the attribute noun SPEED that contains the noun
car and the adjective fast. With respect to possible word sense ambiguities in attribute
nouns, we expect these dependency paths to be sufficiently precise in order to prevent
substantial amounts of noise. Assuming that every occurrence of a candidate attribute
noun in one of these paths actually denotes an attribute concept14, we do not apply any
additional methods dedicated to word sense disambiguation.

Inducing attribute-specific topics. As introduced in Section 6.3.1, LDA is an unsuper-
vised process that estimates topic distributions θd over documents d and topic-word
distributions ϕk with topics represented as latent variables. Estimating these param-
eters on a document collection yields document-specific topic proportions p(k|d) and
word-topic distributions p(w|k) that can be used to compute a smooth distribution p(w|d)
as in (6.3), where k denotes a latent topic, w a word and d a document in the corpus.

p(w|d) = ∑
k∈K

p(w|k) p(k|d) (6.3)

In order to link the LDA-inferred topics to attribute meaning and integrate them into
a distributional attribute model, we propose Controled LDA (C-LDA) as an extension
to standard LDA that is capable of implicitly taking supervised attribute information
into account. C-LDA will be compared against L-LDA which achieves the same goal
by including an additional observable variable into the generative process.

Attribute-specific topics from Controled LDA. The generative story behind C-LDA
is equivalent to standard LDA. However, the collection of pseudo-documents used as

14This assumption is similar to the distant supervision hypothesis commonly applied to relation extraction
problems in the absence of labeled data (Mintz et al., 2009). Their extraction approach is supervised
by a knowledge base that contains large amounts of pairs instantiating a particular relation type of
interest. The distant supervision hypothesis states that “any sentence that contains a pair of entities
that participate in a known [...] relation [as contained in the knowledge base] is likely to express that
relation in some way” (Mintz et al., 2009). In our setting, the target categories (i.e., attributes) are also
previously known from a knowledge resource (i.e., WordNet). In line with Mintz et al. (2009), we
consider every occurrence of an attribute noun in one of the syntactic patterns defined in Table 6.1 as
an instantiation of an ontological attribute relation. Contrary to their approach, however, our model
does not take any previous knowledge about possible instantiations of these relations into account (in
terms of pre-defined pairs of attributes and adjectives, for instance).
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input to C-LDA is structured in a controled way such that each document conveys
semantic information that specifically characterizes the individual categories of interest
(attributes, in our case). Thus, the pseudo-documents constructed in this way can be
regarded as distributional fingerprints of the meaning of the corresponding attribute.

Presenting LDA with these attribute-specific pseudo-documents can be seen as im-
posing weak supervision on the estimation process in two respects: The estimated topic
proportions p(k|d) will be highly attribute-specific, and similarly so for the word-topic
distributions p(w|k). We expect that this makes the model more expressive for the at-
tribute selection task. Moreover, since C-LDA collects pseudo-documents focused on
individual target attributes, we are able to link external categories to the generative
process by heuristically labeling pseudo-documents with their respective attribute as
target category. Thus, we approximate p(w|a), the probability of a word given an at-
tribute, by p(w|d) as obtained from LDA:

p(w|a) ≈ p(w|d) = ∑
k∈K

p(w|k) p(k|d) (6.4)

Finally, setting the component weighting function of the distributional attribute model
to this quantity effectively couples probabilistic and distributional modeling for the
purpose of attribute selection:

w⃗C-LDA = ∑
a∈A

p(w|a) · e⃗a (6.5)

Attribute-specific topics from Labeled LDA. In our instantiation of L-LDA, we collect
pseudo-documents for attributes exactly as for C-LDA. Documents are labeled with
exactly one category, the attribute noun. This implies that each document is assigned
exactly one topic, which renders L-LDA equivalent to a Naive Bayes model (Ramage
et al., 2009).

Note that, even though the relationship between documents and topics is fixed, the
one between topics and words is not. Any word occurring in more than one document
will be assigned a non-zero probability for each corresponding topic. Consequently, un-
der the assumptions of L-LDA, the component weighting function of the distributional
attribute model is directly set to the estimate of p(w|k):

w⃗L-LDA = ∑
k∈L(a),

a∈A

p(w|k) · e⃗a, (6.6)

where LA×K denotes a label projection matrix that is an integral part of L-LDA (cf. line
6 in Fig. 6.5 on page 86) in order to map attribute labels to topics.

Comparison between C-LDA and L-LDA. With regard to attribute modeling, C-LDA
and L-LDA build an interesting pair of opposites: L-LDA assumes that attributes are
semantically primitive in the sense that they cannot be decomposed into smaller topical
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units, whereas words may be associated with several attributes at the same time. C-
LDA, at the other end of the spectrum, licenses semantic variability on both the attribute
and the word level. Particularly, a word might be associated with some of the topics
underlying an attribute, but not with all of them, and an attribute can be characterized
by multiple topics. Thus, C-LDA and L-LDA focus on different aspects of corpus-based
modeling of lexical meaning, i.e., smoothing and disambiguation.

Smoothing is generally understood as a strategy to overcome sparsity issues that are
frequently encountered in probabilistic models (Chen and Goodman, 1999). In latent
variable models such as LDA, this positive smoothing effect is achieved by marginal-
ization over the latent variables (cf. Prescher et al., 2000). In case of C-LDA, for instance,
it is unlikely to observe a dependency path linking the adjective mature to the attribute
MATURITY. Such a relation is more likely for young, for example. If young co-occurs
with mature in a different pseudo-document (AGE might be a candidate), this results in
a situation where (i) young and mature share one or more latent topics and (ii) the topic
proportions for the attributes MATURITY and AGE will become similar to the extent of
common words in their pseudo-documents. Consequently, the final attribute model
is assigns a (small) positive probability to the relation between mature and MATURITY

without observing it in the training data.
On the other hand, the pseudo-documents collected for our extensions of LDA con-

tain a substantial amount of words that are widely spread over several documents
as they co-occur with many attribute nouns (e.g., high, great or extreme). Due to the
sparse Dirichlet prior on the word-topic distributions, L-LDA effectively enforces a
concentration of such adjectives and nouns to fewer attributes in their vector repre-
sentations. Given that the attribute selection functions implemented in our attribute
models reward clearly peaked distributions in word vectors rather than flat, uniform
attribute profiles, L-LDA may specifically support the disambiguation capacities of a
topic-enriched attribute selection model.

6.4 Summary

In this chapter, we have laid the foundations for learning attribute knowledge from
adjective-noun phrases using a corpus-based approach. We have defined structured
distributional attribute models for constructing attribute-based distributional represen-
tations of adjectives and nouns that can be composed into phrase vectors from which
the attribute(s) that are most prominent in the compositional semantics of an adjective-
noun phrase can be inferred by means of unsupervised attribute selection functions.

For the acquisition of word-level adjective and noun representations along attributes
as dimensions of meaning, two variants of structured distributional models have been
introduced: (i) a pattern-based model capitalizing on a small set of lexico-syntactic ex-
traction patterns specifically tailored to capturing attribute meaning in adjectives and
nouns, and (ii) a dependency-based model embedding weakly supervised, attribute-
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specific topics from Latent Dirichlet Allocation. Incorporating the principle of compo-
sitionality and coupling distributional information with the smoothing capacities that
can be expected from probabilistic latent variable models, our models are designed so
as to balance the conflicting goals of specificity and sparsity in distributional semantic
modeling.

In the following chapter, the attribute models introduced here will be subjected to an
empirical evaluation on the task of attribute selection from adjective-noun phrases.
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7 Attribute Selection: Experimental
Evaluation

In this chapter1, the attribute-based distributional models as introduced in the previous
chapter are subjected to an experimental evaluation on the attribute selection task. We
systematically compare the attribute selection performance of these models in two sce-
narios which we denote as core attribute selection and large-scale attribute selection. They
differ in the inventories of attributes being considered: The core attribute selection task
is restricted to ten attributes as proposed by Almuhareb (2006), whereas the inventory
underyling the large-scale task encompasses more than 260 attributes as represented
in WordNet. In the latter setting, our goals are to assess (i) the feasibility of building a
large-scale attribute model that is applicable to various tasks in which different attribute
inventories may be of interest, and (ii) the capacities of the models when maxing out
the dimensionality of the attribute space.

We have constructed two data sets to be used as gold standards in these experiments.
We first describe the construction of these data sets and their characteristics in Section
7.1. We present experiments for evaluating the pattern-based and the topic-based at-
tribute selection models in Sections 7.2 and 7.3. Section 7.4 summarizes the results.

7.1 Construction of Labeled Data Sets

Due to the absence of lexical or ontological resources that provide reliable semantic
links between attributes, nouns and adjectives, we have created two data sets for eval-
uating attribute selection in the core attributes and the large-scale setting. In this section,
we describe the procedure of creating these gold standards and their most import char-
acteristics. Both data sets are available to the research community.2

7.1.1 Core Attributes Gold Standard

The core attributes data consists of three gold standards for evaluating attribute se-
lection on the core inventory of ten attributes (cf. Appendix A.1) from semantic vec-
tors representing adjectives, nouns or adjective-noun phrases. We first describe the

1Parts of this chapter have been previously published in Hartung and Frank (2010b) and Hartung and
Frank (2011b).

2http://www.cl.uni-heidelberg.de/~hartung/data/
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approaches for sampling the data points in each of these gold standards, before we
present the annotation procedure.

Data Sampling

Adjectives. An appropriate gold standard for attribute selection from adjective vec-
tors can be compiled from WordNet (Fellbaum, 1998). In the interest of comparability,
we replicate the procedure of Almuhareb (2006): We collect all adjectives that are linked
to at least one of the core attributes by WordNet’s attribute relation (including similar-
links). This amounts to 1063 adjectives in total. The resulting data set will is referred to
as CoreAttributes-Adj.

Nouns. The test set of nouns has been manually annotated with each of the ten core
attributes they may elicit. This data set has been created as follows: We started from
a representative set of nouns compiled by Almuhareb (2006), comprising 402 nouns
that are balanced with regard to their semantic class (according to the WordNet super-
senses), ambiguity and frequency. Running the extraction patterns (N1)–(N4) as intro-
duced in Section 6.2 on the ukWaC corpus (Baroni et al., 2009) yields semantic vectors
for 216 of these nouns. From this subset, we randomly sampled 100 nouns which were
then manually annotated, resulting in the CoreAttributes-Nouns data set.

Adjective-Noun Phrases. For constructing a gold standard for attribute selection from
adjective-noun phrases, we started from the same subset of 216 nouns described above.
In order to select a set of property-denoting adjectives that are appropriate modifiers of
these nouns, we applied the predicative extraction pattern (P1) on page 83 to ukWaC.
This yielded 2085 adjective types which were further reduced to 386 by frequency fil-
tering (n ≥ 5). The phrases in the adjective-noun test set were sampled from all pairs
in the cartesian product of the 386 adjectives and 216 nouns that occurred at least 5
times in a subsection of ukWaC. We controled for the number of ambiguous adjectives
in the data by sampling in two-step procedure: First, we sampled four nouns each for a
manual selection of 15 adjectives of all ambiguity levels in WordNet. Ambiguity levels
and adjectives selected here are displayed in Table 7.1. This leads to 60 adjective-noun
pairs. Second, another 40 pairs were sampled fully automatically. The resulting data
set is referred to as CoreAttributes-Phrases.

Annotation Procedure

Both the noun and phrase samples as described above were manually labeled by the
same three human annotators. Throughout the annotation process, all items (nouns or
phrases) were presented to the annotators together with all ten attributes. Their task
was to remove all attributes from each item that were not part of the noun meaning
or the compositional semantics of the phrase, respectively, either because the attribute
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7.1 Construction of Labeled Data Sets

Ambiguity Num.
Examples

Level Adj. Types

1 761 green, high, enormous
2 99 bitter, red, windy
3 31 narrow, foul, massive
4 16 blue, crisp, great
5 3 short, little, wide
6 2 yellow, flat
7 3 warm, white, broad
8 4 heavy, light, deep
9 1 straight

10 1 cold
11 1 hot

Table 7.1: Ambiguity level of adjectives contained in the CoreAttributes-Phrases data
(in terms of the number of different attribute senses they are linked to in
WordNet). The number of adjective types per ambiguity level and exam-
ples for each level are given in the second and third column, respectively.
Adjectives manually selected for the ambiguity-controlled sampling step are
displayed in boldface.

does not apply to the noun or because it is not selected by the adjective. The annotators
were free to accept any number of attributes per item. In case of word sense ambigui-
ties, they were instructed to consider all possible senses of a word and to retain every
attribute that was acceptable for at least one sense. Additionally, the annotators were
allowed to provide alternative labels if they decided that none of the given attributes
was appropriate.

Overall agreement among the three annotators in terms of Fleiss’ Kappa (Fleiss, 1971)
amounts to κ = 0.69 for nouns and κ = 0.67 for phrases. Detailed agreement figures
broken down to singular attributes are shown in Table 7.23. As can be seen from this
table, the attributes SIZE and DIRECTION caused the annotators most problems on the
noun level. Both these attributes were less prone to disagreement in adjective-noun
phrases, whereas DURATION is most problematic on the phrase level.

After adjudication by majority voting, CoreAttributes-Nouns contains 424 attributes
for 100 nouns. In CoreAttributes-Phrases, 86 attributes were assigned to 76 adjective-
noun phrases. 24 phrases could not be assigned any attribute, either because the adjec-
tive did not denote a property, as in private investment, or the most appropriate attribute
for the phrase was not included in the inventory, as in new house, for instance.

3The attributes smell and taste were not assigned to any of the phrases to be annotated. Therefore,
the agreement score in the respective cells in the table is given as NaN.
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Attribute κNouns κPhrases

COLOR 0.72 0.81
DIRECTION 0.35 1.00
DURATION 0.51 0.28

SHAPE 0.72 0.59
SIZE 0.20 0.59

SMELL 0.62 NaN
SPEED 0.68 0.76
TASTE 0.69 NaN

TEMPERATURE 0.67 0.80
WEIGHT 0.71 0.48

overall 0.69 0.67

Table 7.2: Inter-annotator agreement in attribute assignment to nouns and phrases in
terms of Fleiss’ κ

Inspection of Cases of Disagreement

Selective manual inspection reveals the following major sources of disagreement among
the annotators in the CoreAttributes-Phrases data. We expect that these factors not only
cause difficulties to the annotators, but also shed light on particular problems which an
automatic attribute selection system has to cope with. Throughout this discussion, we
refer to the three annotators as A1, A2 and A3.

Different Interpretations of Attribute Meaning. As one source of disagreement, we
observe differences in the interpretation of certain attributes among the annotators. We
restrict our analysis on the attributes SHAPE, SIZE and WEIGHT here, as they can be seen
to form a coherent cluster of physical properties from an ontological perspective.

A1 and A3 agree with respect to a semantic dependence of these attributes: Accord-
ing to their annotations, WEIGHT is completely subsumed by SIZE and may be sub-
sumed by SHAPE. From the perspective of A2, all three attributes are semantically
independent. Much of this difference can be explained by A2 having a wider inter-
pretation of the meaning of SIZE. A2 consistently accepts the SIZE attribute for phrases
that involve abstract nouns in combination with degree modifiers, such as low income,
high interest or wide acceptance. Albeit plausible in its own right, this interpretation is not
in accordance with the physical meaning of SIZE that was intended in the annotation
experiment.

Word Sense Ambiguities. The impact of word sense ambiguities can be seen from the
example short corner, for instance. This example has been annotated with DIRECTION

by A3, while the other two annotators did not accept any of the predefined labels. A3’s
decision to label short corner with DIRECTION was based on a less prominent word sense
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of corner that is related to the sports domain and has been overlooked by the other
annotators4: In soccer, for instance, short corner denotes a corner kick that is not served
straight into the box in front of the goal mouth, but passed to another player somewhere
near the corner of the field. This interpretation clearly involves a DIRECTION aspect.

Interpretation Differences on Phrase Level. In the example red deer, the annotators
disagree with respect to the attribute SHAPE. This is due to an ambiguity of red deer
with regard to a compositional and a non-compositional reading: In the former case,
the phrase denotes a deer that is colored red, while in the latter case the phrase refers
to red deer as the denominator of a species (whose particular silhouette is arguably a
protoypical feature that may be subsumed under the attribute SHAPE). As the phrases
to be annotated have been sampled regardless of this difference and presented to the
annotators without any contextual clues that might be informative for disambiguation,
ambiguities of this kind are a potential source of disagreement among our annotators –
and certainly are problematic for automatic attribute selection systems as well.

Semantic Associates. A semantic relation between a property-denoting adjective and
an attribute may be expressed in different ways: An adjective can either denote one par-
ticular value or a set of possible values of the attribute (as discussed in Section 5.1.1)
or the adjective and the attribute may be loosely linked by means of semantic associa-
tion5. In our attribute selection data, the latter relation becomes manifest in the phrases
beautiful day, blue day, cloudy day and the attribute TEMPERATURE.

We argue that in all these cases, the underlying semantic relation between the ad-
jective and the attribute is merely associative as aspects of TEMPERATURE are certainly
called to mind by these phrases, while they do not sufficiently determine points or in-
tervals on a temperature scale. Arguably, a beautiful day is usually associated with a
comfortable range of temperature, which may still vary from summer to winter, for
instance.

Indirect Predications. The phrase cloudy day as discussed above is also interesting
with regard to its relation to the attribute COLOR. A1 is the only annotator assigning
this label to this phrase. Her notion of COLOR covers several typical COLOR-denoting
adjectives (among them red, blue and yellow). It is certainly fair to say that the adjective
cloudy does not completely fit with these adjectives when being analyzed out of context.

We argue, however, that the attribution of COLOR to the compositional phrase cloudy
day, can be justified in consideration of an indirect predication. By this term we refer to

4This is not surprising given that the WordNet database (Fellbaum, 1998) does not even list this sense
of corner.

5Semantic associates are defined as “those words spontaneously called to mind by a stimulus word”,
assuming that “these evoked words reflect highly salient linguistic and conceptual features of the
stimulus word” (Schulte im Walde et al., 2008).
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small large
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smallish
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Figure 7.1: Dumbbell structure for representation of adjective meaning in WordNet
(taken from Sheinman et al., 2012).

cases where the attribute relation does not hold between the adjective A and the noun
N directly, but between A and an entity N′ that is semantically related to N instead.
Being a special case of subsective modification, indirect predications generalize over the
categories of event-related and object-related adjectives as discussed in Section 5.1.1.
In the case of cloudy day, a valid COLOR relation may be established by means of an
indirect predication of cloudy over N′ = sky.

7.1.2 Large-scale Gold Standard

The large-scale gold standard has been induced from WordNet. Even though attribute
information in WordNet is explicitly encoded only for (some) adjectives and generally
missing for nouns, we propose a strategy for acquiring valuable attribute information
for adjective-noun phrases based on structural properties of the WordNet resource to-
gether with the glosses provided for each word sense. As will be discussed below, this
strategy involves a manual validation step which has been carried out in a collaborative
annotation setup at Heidelberg and Princeton. Therefore, we refer to the resulting large-
scale gold standard as HeiPLAS (Heidelberg Princeton Large-scale Attribute Selection)
data set.

Representation of Adjective Meaning in WordNet

Adjectives in WordNet are organized in a so-called dumbbell structure (Miller, 1998;
Sheinman et al., 2012), as depicted in Fig. 7.1. In this structure, adjective meaning
strictly unfolds along a small number of pairs of anchors which are explicitly linked
by an antonymy relation. All other property-denoting adjectives are linked to an an-
chor by means of a similar relation. This leads to a very low degree of interconnectivity
in the adjective network. In particular, only anchor adjectives are explicitly linked to
an attribute concept. For all other adjectives, their related attributes can only be de-
termined by following a similar link to their most closely related anchor. This causes
problems due to the very heterogeneous nature of the similar links which conflate var-
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Anchor Attribute Similar

pure PURITY sheer
corrupt CORRUPTNESS putrid

unoriginal ORIGINALITY stale
significant SIGNIFICANCE fundamental

fresh FRESHNESS hot
hot TEMPERATURE sweltering

Table 7.3: Examples of (partial) inconsistencies between anchors and similar adjectives
with respect to attribute meaning

Figure 7.2: Automatic construction of labeled adjective-noun phrases from WordNet

ious degrees of semantic similarity, different classes of selectional preferences, or even
different semantic scales (Sheinman et al., 2012, 2013). Table 7.3 shows some examples
of anchors and similar adjectives which are not fully consistent with respect to their
attribute meaning.

Therefore, our strategy to induce an attribute selection gold standard from WordNet
involves two steps: First, all similar links in the network are expanded. This yields a
maximally comprehensive collection of adjective-attribute pairs which are extended to
triples of attributes, adjectives and nouns by mining example phrases in the glosses of
these adjectives. Second, triples that are obtained from similar links are subjected to a
filtering procedure based on an external ontological resource (i.e., the SUMO ontology)
and human expert annotations. Details of these two steps are given in the following.

Acquisition of Labeled Adjective-Noun Phrases from WordNet

The acquisition process starts by looking up all adjective senses in WordNet that are
linked to an attribute synset, either directly (in case of anchor adjectives) or indirectly

99



7 Attribute Selection: Experimental Evaluation

via similar links. For each of the resulting pairs, the gloss of the adjective is retrieved
and scanned for example phrases containing adjective-noun phrases following the part-
of-speech sequences given in (44) and (45)6:

(44) NN* VB* JJ

(45) JJ NN !NN

Given that these examples have been created by the WordNet editors in order to sub-
stantiate the meaning of the adjective in its respective attribute sense, we assume that
this attribute is also manifest in the compositional semantics of the example phrase.
Therefore, we use the attribute link originally provided for the adjective as a label
for the complete adjective-noun phrase. This yields an intermediate result of 3755
adjective-noun phrases labeled with 285 unique attributes.

In the example given in Fig. 7.2 on the preceding page, attribute links provided for the
pairs ⟨hot, TEMPERATURE⟩ and ⟨hot, EMOTIONALITY⟩ are propagated to the phrases hot
stove, hot water, hot forehead and hot temper, hot topic, hot argument, respectively. Note that,
for the sake of clarity, only one of these phrases per attribute is highlighted in the figure
and that only direct attribute links are covered in this example. The same procedure
is applied analogously for similar links as well; due to their semantic heterogeneity (as
discussed above), example phrases acquired via similar links might introduce semantic
drifts to different attribute meanings. Therefore, these cases are subjected to a two-step
filtering procedure as described in the following.

Filtering Procedure

Step 1: SUMO Validation. As a first step, the attribute labels of the example phrases
obtained via similar links are automatically validated against the SUMO ontology (Niles
and Pease, 2001; Pease et al., 2002).

WordNet and SUMO offer different perspectives on attributes: While the focus in
WordNet is on attributes as abstract linguistic concepts and their relation to singular
properties they subsume, attributes in SUMO are defined from a knowledge represen-
tation point of view, with an emphasis on their class-constitutive and class-separating
function. With regard to the notion of attributes in SUMO, Niles and Pease (2001) state
that “the class of Attributes includes all qualities, properties, etc., that are not reified
as Objects. For example, rather than dividing the class of Animals under Objects into
FemaleAnimals and MaleAnimals, we make Female and Male instances of Biological-
Attribute, which is a subclass of Attribute”. As a result, the granularity of attributes
in SUMO and WordNet differ substantially. For instance, SUMO incorporates a class
SubjectiveAssessmentAttribute for concepts involving “a criterion which varies from
subject to subject and even with respect to the same subject over time” (Niles and Pease,

6Notation in these patterns follows the Penn Treebank Tagset. We use the wildcard symbol ∗ to match
exactly one arbitrary character. Categories preceded by ! are negated; i.e., pattern (45) does not
match phrases including a noun compound as they are not covered by our system.
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Can you say that

⟨AN phrase⟩ makes a statement about the ⟨attribute⟩ of the ⟨head noun⟩?

slow boat makes a statement about the SPEED of the boat?

Figure 7.3: Classification test for manually rating example phrases

2003). This subclass conflates a substantial proportion of the attributes in WordNet.
On the other hand, SUMO bears one clear advantage over WordNet in that attributes
and their corresponding properties are directly linked, which makes SUMO a valuable
complementary resource for consistency checks on the heuristically gathered attribute
labels.

Our procedure is as follows: For each adjective in a labeled example phrase obtained
via similar links, we determine its anchor from WordNet, its SUMO attribute and its an-
chor’s SUMO attribute. The SUMO attributes are obtained from the WordNet-SUMO
mapping provided by Niles and Pease (2003). The SUMO attributes of the adjective and
its anchor are compared with each other: Cases of discordance in these attributes sug-
gest a semantic drift in the underlying similar link in WordNet and lead to elimination
of the phrase from the gold standard. After this check, 2621 phrases and 274 attributes
remain.

Step 2: Manual validation. In a second step, we aim at eliminating remaining diffi-
culties gone unnoticed by this coarse-grained method: e.g., semantic drifts that could
not be identified by consulting SUMO7 or phenomena already encountered in the core
attributes gold standard such as indirect predications, semantic associates, cases of non-
compositionality, etc. These subtle issues can only be assessed by human annotators.
Therefore, we set up an annotation task with 11 participating annotators (all undergrad-
uate students from Princeton University, native speakers of English and with prior ex-
perience in lexicographic work). They were asked to decide, for each of the remaining
example phrases after SUMO validation, whether its heuristically assigned attribute
label correctly reflects an implicit attribute meaning or not. The original annotation
guidelines are given in Appendix B.

The task was run in an online environment, enabling annotators to carry out their

7Consider the case where SUMO assigns a SubjectiveAssessmentAttribute to both an adjective and
its anchor. In this situation, the phrase is accepted, while possible drifts within the heterogeneous
class of SubjectiveAssessmentAttribute may go unnoticed.
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Development Set Test Set

Num. Attributes 254 222
Num. Unique Adj.-Noun Phrases 919 737
Num. Unique Adj. Types 919 737
Num. Unique Noun Types 612 540

Table 7.4: Properties of HeiPLAS gold standard

annotations in an intuitive way, by dragging phrase items over the screen and drop-
ping them into one of two boxes corresponding to the categories attribute and trash (cf.
Fig. B.1 in Appendix B). Annotators were instructed to base their rating on the test in
Fig. 7.3, similar to Woods’ linguistic test (Guarino, 1992).

The data were split among the annotators on a per-attribute basis such that three
annotations were collected for each phrase on average. Attributes were grouped into
frequency ranges (high, medium, low frequency according to their occurrence in the
ukWaC corpus) and a maximally balanced number of attributes from each range was
presented to each annotator. In order to make the annotators familiar with the intended
meaning of an attribute and its subsumed properties, they were always presented a
definition from WordNet alongside several adjectives and adjective-noun phrases for
explication8 before they were allowed to start annotating the candidate phrases of the
respective attribute. Inter-annotator agreement in terms of Fleiss’ Kappa (Fleiss, 1971)
on all data points for which at least three judgments could be collected amounts to
κ = 0.28. This must be considered a fairly low agreement which underlines the dif-
ficulty of the task even for human expert annotators. To increase the reliability and
consistency of the annotated data, we decided to retain only those phrases with unan-
imous agreement between all annotators. The resulting gold standard was randomly
split into a development and test section, as given in Table 7.4.9 Note that, as an artifact
of the acquisition procedure and unlike the core attributes gold standard, this data set
does not contain any adjective-noun phrases that are explicitly marked as ambiguous
by being assigned more than one attribute label.

7.1.3 Summary of Data Sets

The data sets just discussed are summarized in Table 7.5 on page 104, together with
their most important characterists and references to the experiments they are used in.
The table describes, for each data set, statistics about the number of data points (DPs)
contained and their type (adjectives, nouns or phrases), the total number of attributes

8Explicative adjectives consisted of anchor adjectives, for which reliable attribute links are available.
Explicative phrases were extracted from WordNet glosses describing these anchor adjectives.

9Differences in numbers of attributes between development and test section are due to 32 attributes for
which only one adjective-noun phrase could be retained. In these cases, the respective attribute was
decided to become part of the development section.
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assigned to these data points and the number of different attributes that assigned to
each data point on overage (columns 2–4). If this ratio equals 1 (as in the HeiPLAS
data), every data point is annotated with exactly one attribute; otherwise, a subset of
data points is assigned more or less than one correct attribute. The fifth column pro-
vides an insight into the distribution of data points over attributes in terms of the most
frequent and (one of) the most infrequent attribute(s) in the data, respectively. Column
6 briefly summarizes the compilation process for each data set; column 7 points to the
descriptions of the experiments these data sets are used in.
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Name Data Points Num. Attrs.
Avg. Num. Attrs. Distribution of

Data Source
Used in

per Data Point DPs over Attrs. Experiments

CoreAttributes-Adj 1063 Adjectives 10 1.02

COLOR: 381
...

WEIGHT: 16

reconstructed from
WordNet following

Almuhareb (2006)
(cf. Section 7.1.1)

Attribute Selection
from Adjective Vectors

(Section 7.2.1)

CoreAttributes-Nouns 100 Nouns 10 4.24

SIZE: 93
...

DIRECTION: 8

manual annotation of Attribute Selection
partially controled sample from Noun Vectors

(sem. class, frequency, ambiguity) (Section 7.2.2)
(cf. Section 7.1.1)

CoreAttributes-Phrases 100 Phrases 8 0.86

SIZE: 32
...

DIRECTION: 1

Attribute Selection
manual annotation of from Phrase Vectors

partially controled sample (Section 7.2.3);
(frequency, ambiguity) C-LDA Attr. Selection

(cf. Section 7.1.1) from Phrase Vectors
(Section 7.3.1)

HeiPLAS-Dev 919 Phrases 254 1.00

SIZE: 20
...

WILDNESS: 1
acquired from WN glosses,

filtered by SUMO,
manually validated

(cf. Section 7.1.2)

Large-scale Attr. Selection
from Phrase Vectors

(Section 7.3.3);
Distributional Enrichment

(Section 9.4)
HeiPLAS-Test 737 Phrases 222 1.00

SIZE: 19
...

WILDNESS: 1

Table 7.5: Overview of data sets used for the experiments reported in this thesis. Columns 2–4 show relevant statistics
about the data points (DPs) contained in each data set and the attributes assigned to them; column 5 indicates
the overall range of the distribution of data points over attributes; columns 6 and 7 summarize the compilation
process for each data set and refer to the experiments they are used in.
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Pattern Label Num. Hits (Web) Num. Hits (ukWaC)

(A1) 2249 815
(A2) 36282 72737
(A3) 3370 1436
(A4) – 7672
(A5) – 3768

(N1) – 682
(N2) – 5073
(N3) – 953
(N4) – 56

Table 7.6: Number of pattern hits on the Web (Almuhareb, 2006) and on ukWaC

7.2 Evaluation of the Pattern-based Attribute Model

We evaluate the attribute selection performance of the pattern-based attribute model in
three experiments on the core attributes data: In Experiment 1 and Experiment 2, we
evaluate the individual qualitiy of attribute-based word vector representations captur-
ing adjective and noun meaning, respectively. Experiment 3 investigates the selection
of hidden attributes from vector representations constructed by composition of adjec-
tive and noun vectors. All experiments are evaluated in terms of Precision, Recall and
F1 score. Note that in these experiments it may be required to evaluate m predictions
against n labels in the gold standard (due to attribute selection functions returning more
or less than one attribute and gold standard phrases being assigned more or less than
one attribute, respectively). In these cases, each of the m predictions must be correct in
order to achieve P = 1 and each of the n labels must be predicted in order to achieve
R = 1.

7.2.1 Experiment 1: Attribute Selection from Adjective Vectors

The first experiment evaluates the performance of attribute-based vector representa-
tions on attribute selection from adjectives. We compare this model against a re-imple-
mentation of Almuhareb (2006).

Experimental settings and gold standard. In order to reconstruct Almuhareb’s ap-
proach, we ran patterns (A1)-(A3)10 on the ukWaC corpus. Table 7.6 shows the number
of hits when applied to the Web (Almuhareb, 2006) vs. ukWaC. (A1) and (A3) yield less
extractions on ukWaC as compared to the Web.11 We introduced two additional pat-
terns, (A4) and (A5), that contribute about 10,000 additional hits. The extractions of all
patterns are evaluated individually and in combination.

10All patterns referred to in this section are defined in Section 6.2.1 on page 82.
11The difference for A2 is an artifact of Almuhareb’s extraction methodology.
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Almuhareb (reconstr.) PattAM (TSel + Target Filter) PattAM (ESel + Target Filter)
Pattern(s) P R F1 Thr P R F1 Thr FPatt P R F1 FPatt

(A1) 0.183 0.005 0.009 5 0.300 0.004 0.007 5 (A3) 0.519 0.035 0.065 (A3)
(A2) 0.207 0.039 0.067 50 0.300 0.033 0.059 50 (A1) 0.240 0.049 0.081 (A3)
(A3) 0.382 0.020 0.039 5 0.403 0.014 0.028 5 (A1) 0.375 0.027 0.050 (A1)
(A4) 0.301 0.020 0.036 10 (A3) 0.272 0.020 0.038 (A1)
(A5) 0.295 0.008 0.016 24 (A3) 0.315 0.024 0.045 (A3)

(A1)–(A5) 0.420 0.024 0.046 183 (A1) 0.225 0.054 0.087 (A3)

(a) PattAM models based on TSel and ESel with target and pattern filtering being applied

PattAM (ESel)
Pattern(s) P R F1

(A1) 0.231 0.045 0.076
(A2) 0.084 0.136 0.104
(A3) 0.192 0.059 0.090
(A4) 0.135 0.055 0.078
(A5) 0.105 0.056 0.073

(A1)–(A5) 0.076 0.152 0.102

(b) PattAM model based on ESel without target and pattern filtering

Table 7.7: Evaluation results for Experiment 1 (Attribute Selection from Adj. Vectors)

We adopted Almuhareb’s manually chosen thresholds for attribute selection for his
original patterns (A1)–(A3); for (A4), (A5) and a combination of all these patterns, we
manually selected optimal thresholds. With regard to attribute selection functions, we
compare TSel (as used by Almuhareb), ESel, MSel and MPC.

In this experiment, we use the CoreAttributes-Adj data set (cf. Section 7.1.1) as gold
standard, which facilitates comparability to Almuhareb (2006).

Evaluation results. Results for Experiment 1 are displayed in Table 7.7. Rows indicate
the individual or combinations of patterns; the performance of different models is com-
pared across columns. Those columns labeled with PattAM refer to the results of our
pattern-based attribute model. PattAM is instantiated using various attribute selection
methods and combinations of target and pattern filtering settings, the best-performing
ones of which are summarized in Table 7.7a. Regarding pattern filtering, we only report
the best filter pattern for each configuration, denoted as FPatt12 in the table.

The results for our re-implementation of Almuhareb’s individual patterns are com-
parable to his original figures13, except for (A3) which seems to suffer from quantitative
differences of the underlying data. Combining all patterns leads to an improvement in
precision over (our reconstruction of) Almuhareb’s best individual pattern when TSel

12FPatt refers to the second argument of the pattern filtering function pf as defined in Section 6.2.2 and
exemplified in Fig. 6.3 on page 84. The first argument of pf is instantiated with the pattern(s) given in
the first column of the respective row in the table.

13Precision scores given by Almuhareb (2006) are as follows: P(A1)=0.176, P(A2)=0.218, P(A3)=0.504.

106



7.2 Evaluation of the Pattern-based Attribute Model

MPC ESel MSel
Pattern(s) P R F P R F P R F

(N1) 0.22 0.06 0.10 0.29 0.04 0.07 0.22 0.09 0.13
(N2) 0.29 0.18 0.23 0.20 0.06 0.09 0.28 0.39 0.33
(N3) 0.34 0.05 0.09 0.20 0.02 0.04 0.25 0.08 0.12
(N4) 0.25 0.02 0.04 0.29 0.02 0.03 0.26 0.02 0.05

(N1)–(N4) 0.29 0.18 0.22 0.20 0.06 0.09 0.28 0.43 0.34

Table 7.8: Evaluation results for Experiment 2 (Attribute Selection from Noun Vectors)

is used with target and pattern filtering. MPC and MSel perform worse (not reported
here). As for pattern filtering, (A1) and (A3) generally work best.

Both TSel and ESel benefit from the combination with pattern filtering with respect
to precision, where the largest improvement (and the best overall result) is observable
for ESel on pattern (A1) only. This is the pattern that performs worst in Almuhareb’s
original setting. From this, we conclude that both an entropy-based attribute selection
function and pattern-based strategies for filtering error-prone extractions are valuable
extensions to pattern-based attribute models when precision is in focus.

Similar to Almuhareb, recall is problematic. Even though ESel, when being used
without any pattern or target filtering (cf. Table 7.7b), leads to slight improvements, the
scores are far from satisfying (and at the expense of considerable loss in precision). In
line with Almuhareb, we note that this is mainly due to a high number of extremely
fine-grained adjectives in WordNet that are rare in corpora.14

7.2.2 Experiment 2: Attribute Selection from Noun Vectors

Experiment 2 evaluates the performance of attribute selection from attribute-based noun
vectors, using the labeled nouns from the CoreAttributes-Nouns Gold Standard as
ground truth.

Evaluation results. Results for Experiment 2 are given in Table 7.8. Performance is
lower in comparison to Experiment 1, which suggests that the tuple r′′ might not be
fully captured by overt linguistic patterns. Note that, in the interest of acquiring distri-
butional representations that reflect the often very broad attribute profile of nouns as
much as possible, we do not apply any pattern filtering in this experiment.

Against this background, MPC is relatively precise, but poor in terms of recall. ESel,
being designed to select more than one prominent dimension where appropriate, coun-
terintuitively fails to increase recall, suffering from the fact that many noun vectors
show a rather flat distribution without any strong peak. MSel turns out to be most suit-
able for this task: Its precision is comparable to MPC – with (N3) as an outlier –, while

14For instance: bluish-lilac, chartreuse or pink-lavender as values of the attribute color.
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MPC ESel MSel
P R F P R F P R F

⊙ 0.60 0.58 0.59 0.63 0.46 0.54 0.27 0.72 0.39
⊕ 0.47 0.56 0.51 0.42 0.51 0.46 0.18 0.91 0.30

BL-Adj 0.44 0.60 0.50 0.51 0.63 0.57 0.23 0.83 0.36
BL-N 0.27 0.35 0.31 0.37 0.29 0.32 0.17 0.73 0.27
BL-P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 7.9: Evaluation results for Experiment 3 (Attribute Selection from Adjective-
Noun Phrase Vectors)

recall is about twice as high. Overall, these results indicate that attribute selection for
adjectives and nouns, though similar, should be viewed as distinct tasks that require
different attribute selection methods.

7.2.3 Experiment 3: Attribute Selection from Phrase Vectors

In this experiment, we compose noun and adjective vectors in order to yield an attribute-
based phrase representation, on which attribute selection is performed.

Experimental settings. The quality of the attributes being selected is assessed against
the manually labeled adjective-noun phrases from the CoreAttributes-Phrases Gold
Standard. Individual vectors for the adjectives and nouns from the test pairs were
constructed using all patterns (A1)–(A5) and (N1)–(N4).

For attribute selection, we tested MPC, ESel and MSel. The results are compared
against three baselines: BL-P implements a purely pattern-based method, i.e., running
the patterns that extract the triple r – i.e., (A1), (A4), (N1), (N3) and (N4), with JJ and NN
instantiated accordingly – on the pairs from the test set. BL-N and BL-Adj are back-offs
for vector composition, taking the respective noun or adjective vector, as investigated
in Experiments 1 and 2, as surrogates for a composed vector.

Evaluation results. Results are given in Table 7.9. Attribute selection based on the
composition of adjective and noun vectors yields a considerably higher precision and
recall figures than observed in Experiments 1 and 215.

Comparing the results of Experiment 3 against the baselines reveals two important
aspects of our work. First, the complete failure of BL-P16 underlines the attractive-
ness of our method to build structured vector representations from patterns of reduced
complexity. Second, vector composition is suitable for selecting hidden attributes from

15Note, however, that these figures are not exactly comparable, due to the differences in the underlying
data sets (cf. Section 7.1.1).

16The patterns used yield no hits for the test pairs at all.
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adjective-noun phrases that are jointly encoded by adjective and noun vectors: Both
composition methods we tested outperform BL-N.

However, the choice of the composition method matters: ⊙ performs best with a
maximum precision of 0.63. This confirms our expectation that vector multiplication
is a good approximation for attribute selection in adjective-noun semantics. Being out-
performed by BL-Adj in most categories, ⊕ is less suited for this task17.

All selection methods outperform BL-Adj in precision. Comparing MPC and ESel,
ESel achieves better precision when combined with the ⊙-operator, while doing worse
for recall. The robust performance of MPC is not surprising as the test set contains only
ten adjective-noun pairs that are still ambiguous with regard to the attributes they elicit.
The stronger performance of the entropy-based method with the ⊙-operator is mainly
due to its accuracy on detecting false positives, in that it is able to return “empty”
selections. In terms of precision, MSel did worse in general, while recall is decent. This
underlines that vector composition generally promotes meaningful components, but
MSel is too inaccurate to select them.

Given that attribute selection from individual word vectors has been shown to be a
difficult task in Experiments 1 and 2, we consider these very promising results for our
approach to attribute selection from structured vector representations. The results also
corroborate that previous approaches to attribute learning from adjectives in isolation
fall short of the precision that can be achieved in a compositional approach.

7.2.4 Discussion

In this section, we evaluated a pattern-based attribute model as a framework for infer-
ring hidden attributes from the compositional semantics of adjective-noun phrases.

By reconstructing Almuhareb (2006), we showed that attribute-based vector repre-
sentations of adjective meaning consistently outperform simple pattern-based learning,
up to 13 points in precision. A combination of target filtering and pattern weighting
turned out to be effective here, by restricting the extractions of lexico-syntactic patterns
to particularly reliable ones and filtering adjectives that are not property-denoting.

Our distributional attribute model offers a natural account for resolving sense ambi-
guity of adjectives and nouns by means of vector composition. Thus, the composition
of pattern-based adjective and noun vectors robustly reflects aspects of composition-
ality in the tradition of formal semantics. Moreover, in a comparison against a purely
pattern-based baseline in Experiment 3, we showed that composition of vectors rep-
resenting complementary meaning aspects is beneficial to overcome sparsity effects in

17In the ESel⊕ setting, a considerable boost in precision can be gained from transforming vector com-
ponents of the composed phrase vector to the log10 scale: P = 0.71, R = 0.35, F = 0.47. This result
is an artifact of the smaller range of component values enforced by the logarithm function: Running
ESel on vector representations with a broader, less peaked attribute profile produces more results in
which no attributes are predicted. Thus, the increase in precision is traded against a substantial drop
in recall.
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acquiring complex semantic relations.
However, our compositional approach clearly meets its limits if the patterns cap-

turing adjective and noun meaning in isolation are too sparse to acquire sufficiently
populated vector components from corpora. Our experimental results from Experi-
ment 2 and the performance of the noun-based baseline from Experiment 3 suggest
that this issue is most severe for noun representations. In the following section, we in-
vestigate whether an alternative attribute model can alleviate this problem by relying
on a dependency-based extraction strategy and incorporating attribute-specific topic
modeling.

7.3 Evaluation of Topic-based Attribute Models

In this section, we evaluate the performance of the attribute models based on C-LDA
and L-LDA. Our experiments are conducted in two contrastive settings: First, we ex-
plore the impact of embedding topic models into attribute-based distributional models
by comparing them against a pattern-based attribute model on the CoreAttributes data.
Second, we assess the prospects of using distributional attribute models spanning 286
attributes as dimensions for large-scale attribute selection.

Evaluation Settings. The gold standards used in these experiments are the Core-
Attributes-Phrases and the HeiPLAS-Dev data sets as introduced above (cf. Table 7.5
on page 104). We report precision, recall and F1-score. Where appropriate, we test dif-
ferences in the performance of various model configurations for statistical significance
in a randomized permutation test (Yeh, 2000), using the sigf tool (Padó, 2006).

Baselines. We compare our models against two baselines, PattAM and DepAM. Pat-
tAM refers to the best pattern-based attribute models from the previous experiments in
Section 7.2 (cf. Table 7.9 on page 108). We consider ESel and MPC in combination with
⊙ and ⊕, without any pattern oder target filtering being applied. DepAM is similar to
PattAM; however, it relies on dependency paths that connect the target elements and
attributes in local contexts. The paths are identical to the ones used for constructing
pseudo-documents in C-LDA and L-LDA (cf. Table 6.1 on page 88). As in PattAM, the
vector components are set to raw frequencies over extracted paths.

LDA Implementations. Our models were implemented using MALLET (McCallum,
2002) for C-LDA and the Stanford Topic Modeling Toolbox18 for L-LDA. In both cases,
1000 iterations of Gibbs sampling were run, relying on default values for all hyperpa-
rameters.

18Available from http://nlp.stanford.edu/software/tmt/.
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Training Data. The pseudo-documents are collected from dependency paths obtained
from the parsed pukWaC corpus (Baroni et al., 2009).

7.3.1 Experiment 4: Topic-based Attribute Selection on Core Attributes

In this experiment, we evaluate the performance of C-LDA and L-LDA on the attribute
selection task over 10 core attributes. Apart from a comparison to the pattern-based
and dependency-based PattAM and DepAM attribute models, we are particularly in-
terested in the relative performance of the LDA models.

Table 7.10 summarizes the results for attribute selection over 10 attributes against the
labeled adjective-noun pairs in the CoreAttributes-Phrases set, using ESel and MPC as
selection functions on vectors composed by multiplication (Table 7.10a) and addition
(Table 7.10b). The results reported for C-LDA correspond to the best performing model
(with number of topics empirically set to 42, as this setting yields the best and most
constant results over both composition operators).

C-LDA shows highest F1 scores and recall over all settings, and highest precision
with vector addition.19 We obtain the best overall results in this experiment with vector
addition20 (ESel: P: 0.55, R: 0.66, F: 0.61; MPC: P: 0.59, R: 0.71, F: 0.64). The difference
between C-LDA and L-LDA is small but significant for vector multiplication; for vector
addition, it is not significant.

Compared to the LDA models, the pattern-based and dependency-based attribute
models are competitive21, but tend to perform lower. This effect is statistically sig-
nificant for ESel with vector multiplication: Each of the LDA models statistically sig-
nificantly outperforms one of DepAM and PattAM. With ESel and vector addition,
both LDA models outperform both DepAM and PattAM statistically significantly. The
LDAESel,⊕ models outperform the PattAMESel,⊕ model by a high margin in F1 score:
+0.15 for C-LDA; +0.09 for L-LDA. Compared to the stronger multiplicative settings
PattAMESel,⊙ and PattAMMPC,⊙ this still represents a plus of +0.07 (p=0.072) and +0.02
(p≫0.1) in F1 score for C-LDA, respectively.

We further observe a clear improvement of the LDA models over PattAM and De-
pAM in terms of recall (+0.20, C-LDAESel,⊕ vs. PattAMESel,⊙), at the expense of some
loss in precision (-0.08, C-LDAESel,⊕ vs. PattAMESel,⊙). This clearly confirms a stronger
generalization power of attribute models with embedded topic models compared to
purely distributional models.

19In Table 7.10, statistical significance of the differences between the models is marked by the superscripts
L, D and P, denoting a significant difference over L-LDA, DepAM and PattAM, respectively. All
differences reported are significant at p < 0.05, except for the difference between C-LDA and L-LDA
in Table 7.10a (p < 0.1).

20In line with Mitchell and Lapata (2010), who also achieved better correlation scores with human judge-
ments from additive rather than multiplicative models in a similarity prediction task on adjective-
noun phrases, using a distributional model with LDA-induced topics as dimensions of meaning.

21In contrast, recall from Experiment 3 that a purely pattern-based baseline entirely fails on the data set
investigated here (cf. the BL-P setting in Table 7.9 on page 108).
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ESel, ⊙ MPC, ⊙
P R F P R F

C-LDA 0.58 0.65 0.61L,P 0.57 0.64 0.60
L-LDA 0.68 0.54 0.60D 0.55 0.61 0.58D

DepAM 0.48 0.58 0.53P 0.57 0.60 0.58
PattAM 0.63 0.46 0.54 0.60 0.58 0.59

(a) Vector composition by ⊙

ESel, ⊕ MPC, ⊕
P R F P R F

C-LDA 0.55 0.66 0.61D,P 0.59 0.71 0.64
L-LDA 0.53 0.57 0.55D,P 0.50 0.45 0.47D,P

DepAM 0.38 0.65 0.48P 0.57 0.60 0.58
PattAM 0.42 0.51 0.46 0.47 0.56 0.51

(b) Vector composition by ⊕

Table 7.10: Performance of topic-based attribute models (C-LDA and L-LDA) in Ex-
periment 4 (Attribute Selection from CoreAttributes-Phrases)

Figure 7.4: Performance of C-LDAESel,⊙ in Experiment 4 for different topic numbers,
compared against all other models
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Figure 7.5: Performance of C-LDAESel,⊕ in Experiment 4 for different topic numbers,
compared against all other models

With regard to selection functions, we observe that MPC tends to perform better in
DepAM and PattAM, while ESel is more suitable for the LDA models.

Figures 7.4 and 7.5 display the overall performance curve ranging over different topic
numbers for C-LDAESel,⊕ and C-LDAESel,⊙ – compared to the remaining models that
are not dependent on topic size. For topic numbers smaller than the attribute set size,
C-LDA underperforms, for obvious reasons. Increasing ranges of topic numbers to 60
does not show a linear effect on performance. Parameter settings with performance
drops below the baselines are rare, which holds particularly for vector addition at topic
ranges larger than 10. With vector addition, C-LDA outperforms L-LDA in almost all
configurations, yet at an overall lower performance level of L-LDA (0.55 with addition
vs. 0.6 with multiplication). Note that in the multiplicative setting, C-LDA reaches
the performance of L-LDA only in its best configurations, while with vector addition
it obtains high performance that exceeds L-LDA’s top F1 score of 0.6 for topic ranges
between 10 and 20.

Based on these observations, vector addition seems to offer the more robust setting
for C-LDA, the model that is less strict with regard to topic-attribute correspondences.
Vector multiplication, on the other hand, is more suitable for L-LDA and its stricter
association of topics with class labels.
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ESel MPC
P R F P R F

C-LDA 0.39 0.31 0.35 0.37 0.27 0.32
L-LDA 0.30 0.18 0.23 0.20 0.18 0.19

DepAM 0.20 0.10 0.13 0.37 0.26 0.30
PattAM 0.00 0.00 0.00 0.00 0.00 0.00

(a) Vector composition by ⊙

ESel MPC
P R F P R F

C-LDA 0.43 0.33 0.38 0.44 0.28 0.34
L-LDA 0.34 0.16 0.22 0.37 0.18 0.24

DepAM 0.16 0.17 0.17 0.36 0.21 0.27
PattAM 0.13 0.04 0.06 0.17 0.25 0.20

(b) Vector composition by ⊕

Table 7.11: Smoothing power of attribute models on sparse vectors

7.3.2 Smoothing Power

Our hypothesis was that LDA models should be better suited for dealing with sparse
data, compared to purely distributional pattern-based or dependency-based approaches.
While this is broadly confirmed in the above results, we conduct a special evaluation
focused on those pairs in the core attributes test set that suffer from sparse data. We
selected all adjective and noun vectors that did not yield any positive component val-
ues in the PattAM model. The 22 adjective-noun pairs in the evaluation set affected by
these “zero vectors” were evaluated using the remaining models.

The results in Tables 7.11a and 7.11b yield a very clear picture: C-LDA obtains highest
precision, recall and F1 score across all settings, followed by L-LDA and DepVSMESel ,
while their ranks are reversed when using MPC. Again, MPC works better for the
purely distributional models (DepAM and PattAM), ESel for the LDA models. Vec-
tor addition performs best for C-LDA with F1 scores of 0.38 and 0.34 – outperforming
the pattern-based results on sparse vectors by orders of magnitude.

The results also show that the LDA models clearly benefit from the more general and
flexible method of acquiring distributional information on attribute nouns from depen-
dency paths rather than from lexico-syntactic patterns. On top of that, C-LDA and
L-LDAESel contribute additional capacities in order to alleviate sparsity in vector repre-
sentations: Given that C-LDA and L-LDA estimate attribute-specific topic distributions
in the structured pseudo-documents under different assumptions regarding the corre-
spondence of attributes and topics, the impact of C-LDA is due to directly smoothing
insufficiently populated vector components, while the focus of L-LDA is on sharpening
the attribute profiles of highly ambiguous target words (cf. Section 6.3.2). Hence, this
analysis suggests that smoothing is more important than disambiguation for attribute
selection from a confined set of core attributes.

7.3.3 Experiment 5: Large-scale Attribute Selection

This experiment is designed to max out the space of attributes to be modeled, to assess
the capacity of both LDA models and the DepAM baseline model in the attribute se-
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⊙ ⊕
P R F1 P R F1

C-LDA 0.08 0.05 0.06L,D 0.03 0.03 0.03
L-LDA 0.15 0.02 0.03 0.05 0.02 0.03
DepAM 0.16 0.02 0.03 0.09 0.03 0.05

Table 7.12: Performance figures of C-LDAESel , L-LDAESel and DepAMESel in Experi-
ment 5 on 254 attributes

lection task on a large attribute space.22 Moreover, we are interested in exploring the
prospects of training a model on a general, largely domain- and task-independent in-
ventory of attributes. In contrast to the previous experiment with its confined semantic
space of 10 target attributes, this represents a huge undertaking.

Overall performance. Table 7.12 displays the performance of all models on large-scale
attribute selection on the HeiPLAS development set23 which covers a range of 254 at-
tributes. We compare vector addition and multiplication. For C-LDA, the number of
topics was empirically set to 400.

Overall performance on the large-scale task in terms of F1 score is very low for all
three models and both composition methods. C-LDA performs significantly better24

than L-LDA and DepAM in the multiplicative setting, yet at an unsatisfactory level. The
relative superiority of C-LDA is due to recall (which underlines the strong smoothing
capacities of the model once again), whereas DepAM and L-LDA yield better precision.

Examples. Evidently, raising the attribute selection task from 10 to 254 attributes poses
a true challenge to our models, by the sheer size and diversity of the semantic space con-
sidered. Table 7.13 gives an insight into the nature of the data and the difficulty of the
task, by listing correct and false preditions of C-LDA for a small sample of adjective-
noun pairs. Possible explanations for false predictions are manifold, among them near
misses (e.g., weak president, short flight, rough bark), or idiomatic expressions (e.g., faint
heart, fluid society).

Performance of individual attributes. To gain a deeper insight into the modeling ca-
pacity of the LDA models for this large-scale selection task, Table 7.14 (column all)

22We did not apply PattAM to this large-scale experiment, as only poor performance can be expected in
the first place, due to very few pattern hits for a large number of attributes.

23HeiPLAS-Test has been held out until the final evaluation that involves distributional enrichment of
attribute models (reported in Section 9.4).

24Again, statistically significant differences are marked by superscripts (cf. footnote 19). All differences
reported are significant at α < 0.05, except for C-LDA⊕ vs. L-LDA⊕ (α < 0.1).
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Prediction Correct

thin layer THICKNESS THICKNESS

heavy load WEIGHT WEIGHT

shallow water DEPTH DEPTH

short holiday DURATION DURATION

short hair LENGTH LENGTH

weak president POSITION POWER

fluid society REPUTE CHANGEABLENESS

short flight DISTANCE DURATION

rough bark TEXTURE EVENNESS

faint heart CONSTANCY COWARDICE

Table 7.13: Sample of correct and false predictions of C-LDAESel,⊙ in large-scale at-
tribute selection

presents a partial evaluation of attributes that could be assigned to adjective-noun pairs
at an individual performance of F1 >0 by C-LDAESel,⊙ when being trained on the en-
tire range of 254 attributes. Despite the disappointing overall performance of the LDA
models on this large attribute space, it is remarkable that C-LDA is able to induce dis-
tinctive topic distributions for 23 attributes which yield an average F1 score of 0.44. In
comparison, L-LDAESel,⊙ yields 11 attributes with an average F1 score of 0.34.

7.3.4 Re-Training on Confined Subsets of Attributes

In an attempt to improve the attribute selection performance of topic-based attribute
models, we re-train them on various subsets of the previously considered 254 attributes.
These subsets (denoted as property attributes, measurable attributes and selected attributes)
are designed such that they confine the large-scale inventory in a meaningul way in
order to reduce the complexity of the task. At the same time, the resulting subsets still
exceed the cardinality of the 10 core attributes introduced by Almuhareb (2006) in order
not to lose sight of the intended large-scale coverage of the model.

Property attributes. Although the 254 attributes used in the large-scale experiment
are rather diverse, including concepts such as HEIGHT, KINDNESS or INDIVIDUALITY,
we observe a high proportion of core attributes that are successfully modeled (7 out of
10, cf. column all in Table 7.14)25. Given that they are categorized into the property class
in WordNet26, we presume that the varying performance across attributes might be
influenced by their ontological subtype. This hypothesis is validated by re-training our
attribute models on the 73 attributes pertaining to the property subtype in WordNet27.

25Their averaged performance amounts to P=0.50, R=0.38, F1=0.43.
26WordNet separates attributes into properties, qualities and states, among several others.
27Refer to Appendix A.2 for a comprehensive list of these property attributes.
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all property measurable
P R F1 P R F1 P R F1

QUANTITY 0.80 0.22 0.35 0.33 0.22 0.27 1.00 0.22 0.36
WIDTH 1.00 0.80 0.89 1.00 0.80 0.89 0.75 0.60 0.67

CONSISTENCY 0.75 0.40 0.52 0.50 0.20 0.29 0.25 0.20 0.22
AGE 0.22 0.33 0.27 0.20 0.40 0.27 0.50 0.40 0.44

POSITION 0.08 0.11 0.09 0.18 0.22 0.20 0.33 0.11 0.17
LIGHT 0.17 0.33 0.22 0.07 0.33 0.12 0.13 0.33 0.18
COLOR 0.27 0.33 0.30 0.23 0.43 0.30 0.33 0.43 0.38

COMPLEXION 0.06 0.33 0.11 0.11 0.33 0.17 0.10 0.33 0.15
TEMPERATURE 0.60 0.67 0.63 0.54 0.78 0.64 0.70 0.78 0.74

SIZE 1.00 0.15 0.26 0.50 0.30 0.38 1.00 0.25 0.40
SPEED 0.60 0.33 0.43 0.83 0.56 0.67 1.00 0.44 0.62

TEXTURE 0.15 0.40 0.22 0.13 0.20 0.15 0.22 0.40 0.29
WEIGHT 0.67 0.67 0.67 0.50 0.67 0.57 0.50 0.67 0.57

DISTANCE 0.25 0.29 0.27 0.25 0.29 0.27 0.40 0.29 0.33
DEPTH 0.33 0.25 0.29 1.00 0.50 0.67 0.50 0.50 0.50

DURATION 0.75 0.43 0.55 0.60 0.43 0.50 0.83 0.71 0.77
COMPLEXITY 1.00 0.17 0.29 1.00 0.17 0.29

VOLUME 0.25 0.25 0.25 0.33 0.25 0.29
QUALITY 0.18 0.11 0.14 0.33 0.06 0.10

STRENGTH 0.25 0.17 0.20 1.00 0.17 0.29
SEX 1.00 0.33 0.50 0.50 0.33 0.40

LENGTH 0.33 0.33 0.33 0.14 0.33 0.20
PITCH 0.33 0.50 0.40 0.08 0.50 0.13
CRISIS 0.25 0.33 0.29

REALITY 0.25 0.14 0.18
IMPORTANCE 1.00 0.17 0.29
NORMALITY 0.25 0.20 0.22

ABSORBENCY 1.00 1.00 1.00
REGULARITY 1.00 0.33 0.50

DEGREE 0.33 0.07 0.12
CONTINUITY 1.00 0.17 0.29

MODERATION 0.25 0.08 0.12
SHARPNESS 0.14 0.50 0.22

STATURE 0.17 0.25 0.20
POWER 0.20 0.20 0.20
HEIGHT 0.33 0.40 0.36

THICKNESS 0.33 0.20 0.25
INTELLIGENCE 0.33 0.33 0.33
SIGNIFICANCE 0.25 0.20 0.22

average 0.54 0.36 0.44 0.41 0.34 0.37 0.49 0.36 0.41
avg. overall 0.08 0.05 0.06 0.23 0.19 0.21 0.26 0.21 0.23

Table 7.14: Attribute selection on 254 attributes (column all), 73 property attributes
(column property) and 65 measurable attributes (column measurable); per-
formance figures of C-LDAESel,⊙ for best attributes (F1 > 0)
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⊙ ⊕
P R F1 P R F1

C-LDA 0.23 0.19 0.21L,D 0.15 0.13 0.14D

L-LDA 0.26 0.03 0.06 0.17 0.08 0.11
DepAM 0.23 0.04 0.07 0.16 0.06 0.09

Table 7.15: Performance figures of C-LDAESel , L-LDAESel and DepAMESel in Experi-
ment 5 on 73 property attributes (after re-training)

The evaluation set was restricted accordingly, resulting in 303 pairs from HeiPLAS-Dev
that are assigned a property attribute. The number of topics in the re-trained model was
empirically set to 125.

The overall performance of the models in this experiment is shown in Table 7.15.
With vector multiplication, the best-performing composition function across all mod-
els, In comparison to large-scale attribute selection on the entire attribute inventory
(cf. Table 7.12), C-LDA shows a considerable benefit of +0.16 points in F1 score, which
amounts to an improvement by 320%. This constitutes a statistically significant ad-
vantage of C-LDA over both L-LDA and DepAM, for which smaller improvements of
+0.03 and +0.04 points are observed. In this confined setting, the superiority of C-LDA
over L-LDA and DepAM in recall (at the expense of lower precision relative to L-LDA,
though) is even more accentuated compared to the large-scale results. With vector addi-
tion, the performance gains are lower in general. The advantage of C-LDA over L-LDA
and DepAM diminishes to +0.02 and +0.05 points in F1 score, respectively, which still
yields a statistically significant difference between C-LDA and DepAM. Note that the
affinity of C-LDA with vector addition and L-LDA with vector multiplication, which
has been observed in Experiment 4 (cf. Table 7.10 on page 112), is inverted here.

While these overall results are still far from satisfactory, they clearly indicate that
the C-LDA attribute model works effectively for at least a subset of attributes, out-
performing both L-LDA and the DepAM baseline. Again, a more detailed analysis is
given in Table 7.14 (column property), showing the performance of the best individual
property attributes (F1 > 0) in the restricted experiment. Average performance in this
subset of attributes amounts to F1 = 0.38. As expected, narrowing down the attribute
inventory results in a higher number of property attributes with F1 > 0. However,
in comparison to the unrestricted setting, only some of the property attributes previ-
ously modeled successfully (cf. column all) benefit from model training on selective
data (e.g., COLOR, SPEED or WEIGHT). Thus, apparently, some of the adjectives asso-
ciated with non-property attributes in the full set provide some discriminative power
that is helpful to distinguish property types.

In a qualitative analysis of the non-property attributes filtered out in this experiment,
we find that SUMO (Pease et al., 2002) does not provide differentiating definitions for
about 60% of these attributes, linking them to a single subjective assessment attribute
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⊙ ⊕
P R F1 P R F1

C-LDA 0.26 0.21 0.23 0.15 0.14 0.14
L-LDA 0.28 0.22 0.25 0.13 0.14 0.14
DepAM 0.26 0.19 0.22 0.18 0.16 0.17

Table 7.16: Performance figures of C-LDAESel , L-LDAESel and DepAMESel in Experi-
ment 5 on 65 measurable attributes (after re-training)

instead. This suggests that in many cases the distinctions drawn by WordNet are too
subtle even for humans to reproduce.

Measurable attributes. Based on the observation that a substantial proportion of at-
tributes successfully modeled by C-LDA is physically measurable, we construct a se-
mantically coherent subset of measurable attributes by manually selecting all attributes
in the HeiPLAS-Dev data which satisfy at least one of the following criteria:

1. Are humans equipped with a sensory organ that enables them to detect different
values of the attribute?

2. Does an objective unit of measurement exist in order to distinguish different values
of the attribute?

3. Does a technical device (such as an artificial sensor) exist in order to distinguish
different values of the attribute?

4. Does the attribute denote a scientific concept that can be operationalized by verifi-
able criteria or axiomatically grounded?

This method yields 65 measurable attributes; a comprehensive list is included in Ap-
pendix A.3. The results of re-training our models on this subset of attributes are shown
in Table 7.16. In this experiment, the number of C-LDA topics has been empirically set
to 130.

We find a further overall improvement of all models compared to the property sub-
set (cf. Table 7.15). In contrast to the previous configurations, however, the best perfor-
mance in this experiment is obtained by L-LDA with vector multiplication. With vector
addition, the dependency-based model performs surprisingly well. The differences be-
tween the models are not statistically significant, though.

Selected attributes. As seen above, all attribute models benefit from being fitted to
semantically confined subsets of attributes. Their overall performance still does not
fully meet our expectations, though. Therefore, we re-train our attribute models on an
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⊙ ⊕
P R F1 P R F1

C-LDA 0.41 0.39 0.40 0.33 0.33 0.33
L-LDA 0.51 0.33 0.40 0.35 0.33 0.34
DepAM 0.46 0.29 0.35 0.32 0.31 0.32

Table 7.17: Performance figures of C-LDAESel , L-LDAESel and DepAMESel in Experi-
ment 5 on 23 selected attributes (after re-training)

inventory of selected attributes. This subset comprises 23 attributes which have obtained
an individual performance of F1 > 0 in the initial large-scale setting (cf. Table 7.14, col-
umn all). The number of topics in the C-LDA model has been empirically set to 50. This
experiment can be seen as an attempt to maximize the attribute selection performance
of unsupervised distributional models while still keeping large-scale coverage in focus.

The results are summarized in Table 7.17. Both LDA models and DepAM benefit
considerably from the more confined space of attributes. In this configuration, C-LDA
and L-LDA are on a par. Their equal performance of F1=0.40 reflects different propor-
tions of precision and recall, however: C-LDA balances precision and recall almost har-
monically (P=0.41, R=0.39), whereas L-LDA strongly prefers precision (P=0.51, R=0.33).
These results are in line with C-LDA’s advantage in recall as found in previous exper-
iments. DepAM follows the pattern observed in L-LDA, at an overall lower perfor-
mance, though. Also in line with findings in previous large-scale experiments, multi-
plicative vector composition is clearly superior to vector addition across all models.

7.3.5 Discussion

Overall findings. Taken together, the experiments conducted in this section in order
to compare different types of attribute models with respect to their attribute selection
performance on various inventories of attributes follow three trends:

1. Topic-based attribute models (C-LDA, L-LDA) are clearly superior to purely de-
pendency-based models (DepAM). This finding is stable across all inventories of
attributes investigated here (either large-scale or confined according to size or
semantically motivated subtype).

2. Large-scale attribute selection is a difficult task which cannot be solved at sat-
isfactory performance levels by the unsupervised attribute models investigated
here (neither topic-based nor purely dependency-based ones). However, selec-
tion performance improves considerably across all models on more confined sub-
inventories, up to F1=0.40 for selected attributes, for instance. This tendency is cor-
roborated by a separate evaluation of C-LDA and L-LDA on the core attributes
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Figure 7.6: Comparison of C-LDA and L-LDA attribute selection performance (ESel,
⊙) after re-training on different subsets of the HeiPLAS-Dev data

subset within HeiPLAS-Dev: In this evaluation, C-LDA⊙ yields P=0.60, R=0.44,
F1=0.51; L-LDA⊙ achieves P=0.68, R=0.23, F1=0.34.28

3. For the sake of a comparative summary of all experiments conducted in this sec-
tion, Fig. 7.6 contrasts the performance of C-LDA and L-LDA attribute models
when (i) the entire space of all 254 attributes from HeiPLAS-Dev is maxed out,
and (ii) when the models are re-trained on smaller subsets. We find that on small
ranges of attributes, the difference between C-LDA and L-LDA largely boils down
to a trade-off between precision and recall, whereby superior recall turns out as
the distinctive feature of C-LDA. In larger spaces of attributes, C-LDA signifi-
cantly outclasses L-LDA (e.g., by 11 points in F1 score on the property subset), as
L-LDA tends to offer better precision in general, but cannot keep up with the
growing need for smoothing in these settings.

Smoothing and disambiguation capacities of topic-based attribute models. As dis-
cussed before, we argue that the quantitative differences between C-LDA and L-LDA
are largely due to their different behavior with respect to smoothing and disambigua-
tion. In order to shed light on these differences, we investigate a selected sample of

28Note, however, that the same models yield a performance of F1=0.61 (C-LDA) and F1=0.60 (L-LDA) in
Experiment 4 on the CoreAttributes-Phrases data set (cf. Table 7.10a on page 112). These differences
suggest that the observed difficulties in the large-scale task are not entirely due to shortcomings of
our models, but may also reflect adverse conditions in the underlying data.
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7 Attribute Selection: Experimental Evaluation

DepAM L-LDA C-LDA

deep sleep – – DEPTH

deep concentration COLOR – DEPTH

wide margin WIDTH, SIZE WIDTH WIDTH

right side LIGHT – DIRECTION

cool breeze – – TEMPERATURE

short life DURATION, DISTANCE DURATION DURATION, DISTANCE

Table 7.18: Example predictions of DepAM, L-LDA and C-LDA in Experiment 5 (after
re-training on selected attributes)

instructive example phrases from the HeiPLAS-Dev data for which C-LDA and L-LDA
differ in their attribute selections (when being trained on the selected attributes subset).
The result of this study is shown in Table 7.18, together with DepAM predictions for
comparison.

The table clearly shows that L-LDA, compared to C-LDA and DepAM, yields the
smallest number of predictions for the example cases under consideration. This con-
firms the general pattern that underlies L-LDA performance throughout all experi-
ments in this section by consistently favoring high precision over low recall. L-LDA
is particularly beneficial in cases of ambiguity which cannot be resolved by a purely
dependency-based attribute model, e.g., wide margin or short life. In both these exam-
ples, L-LDA yields the correct disambiguation, whereas only in case of wide margin,
C-LDA is capable of replicating this result. C-LDA, on the other hand, is clearly su-
perior in cases where DepAM either yields (i) no prediction at all, because the relation
between the correct attribute and the adjective and the noun in the phrase cannot be
sufficiently substantiated based on overtly observable dependency paths alone, as in
deep sleep or cool breeze, or (ii) a spurious prediction of DepAM must be overridden,
as in deep concentration or right side. In all of these cases, C-LDA returns the correct
prediction, whereas L-LDA abstains from selecting any attribute.

Comparison against related work. Recently, Tandon et al. (2014) have proposed the
WebChild knowledge base which contains triples of attributes, nouns and adjectives
that are automatically acquired from adjective-noun phrases (cf. Section 3.2). With
respect to individual performance per attribute, the authors encounter a similar effect,
i.e., despite being trained on the entire attribute inventory provided by WordNet, their
system successfully acquires triples for 19 attributes29 only.

For this subset, however, the system is highly accurate, achieving an F1 score of 0.65
(P = 0.93, R = 0.50). In comparison, their re-implementation of C-LDA performs
at F1=0.27 (P=0.33, R=0.23). Even though these figures are not exactly comparable to

29These are displayed in Table A.4 in Appendix A.4. WebChild covers 7 of the 10 core attributes and 10
of the 73 property attributes.
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the ones reported in Tables 7.12 and 7.14, as they have been determined on a previ-
ous version of the gold standard30, they clearly point out a performance gap between
WebChild and C-LDA. This can be explained by the fact that WebChild capitalizes on
semi-supervised learning in a knowledge-based environment: While WebChild uses the
attribute relations between anchor adjectives and attributes as provided by WordNet
as seed material for label propagation, C-LDA is required to acquire this information
in an unsupervised manner from raw corpus data. On the other hand, this compari-
son also confirms that attribute selection on the large scale is still challenging even for
systems operating at a higher level of supervision.

7.4 Summary

In this chapter, we evaluated two purely distributional (pattern-based and dependency-
based) attribute models and two attribute models which integrate attribute-specific top-
ics induced by weakly supervised variants of LDA (C-LDA and L-LDA) on the attribute
selection task. These experiments were carried out in two settings contrasting invento-
ries of 10 core attributes and a large-scale set of more than 250 attributes.

On the CoreAttributes dataset, we outperform previous work on attribute selection
from adjectives only (Almuhareb, 2006) by wide margins. Extending the task to a lin-
guistically more adequate scenario in which attributes are selected from adjective-noun
phrases, our models achieve robust performance, with F1 scores above 0.60.

Throughout all experiments, the attribute models incorporating attribute-specific top-
ics consistently outperform the purely distributional approaches, though the pattern-
based model offers slight margins in precision in singular configurations. We show
that the general advantage of C-LDA and L-LDA is due to their specific smoothing and
disambiguation capabalities which help to overcome inherent sparsity and ambiguity
issues of pattern-based and dependency-based models.

Comparing C-LDA and L-LDA, we find an overall preference for C-LDA which is
most clearly visible in the large-scale experiments, whereas on smaller inventories, the
differences are not always significant. With respect to an overall assessment of vector
composition operators and attribute selection functions, our results remain inconclu-
sive. In the interest of flexibility, we have a preference for entropy selection, which
tends to mesh best with vector multiplication. In the large-scale setting, this combina-
tion is the only one that yields significant differences between the models, with a clear
advantage of C-LDA over both L-LDA and the dependency-based model.

Raising the attribute selection task to the large scale poses a grand challenge to our
models. In fact, all models in all configurations investigated obtain very low perfor-
mance in this experiment, with C-LDA standing out as “the best of a bad bunch”. Im-
proved selection performance on more confined attribute subsets across all models lead

30Released with Hartung and Frank (2011b).
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7 Attribute Selection: Experimental Evaluation

to the question as to what extent the observed difficulties in large-scale attribute selec-
tion are actually due to shortcomings of our models or reflect adverse conditions in
the underlying data. Therefore, the next chapter will be devoted to a thorough multi-
variate linear regression analysis in order to (i) discover performance factors of the
C-LDA attribute model that might explain its observed low selection quality and (ii)
identify optimization potentials for large-scale attribute selection.
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8 Explaining C-LDA Performance in
Large-scale Attribute Selection

In this chapter, we thoroughly analyze the performance of C-LDA in large-scale at-
tribute selection as reported in the previous chapter. Our goal is to gain insights into
key properties of the model, along with its strenghts and systematic errors, in order to
derive strategies for refinement and improvement.

Our line of analysis encompasses three steps. We first assess the validity of two pos-
sible explanations for the observed low performance of large-scale attribute selection:
It might be due to (i) issues in the approach taken by C-LDA in order to cope with se-
mantic compositionality in adjective-noun phrases (Section 8.2), or (ii) on the level of
individual representations of adjective and noun meaning. In order to explore these
hypotheses, we subject C-LDA performance on the levels of lexical and phrasal mean-
ing to a linear regression analysis (Section 8.3) that investigates various explanatory
variables in order to account for both (i) inherent semantic properties underlying the
data and (ii) aspects of our implementation of adjective-noun compositionality in an
unsupervised distributional framework. Finally, we describe how the conclusions to be
drawn from this analysis can be utilized in order to devise a distributional optimization
procedure that aims at improving overall C-LDA performance in large-scale attribute
selection (Section 8.4).

Before turning to these aspects in the given order, we first define the explanatory
variables guiding the subsequent analyses (Section 8.1).

8.1 Explanatory Variables

The explanatory variables to be investigated can be grouped into six categories: se-
mantic features, morphological features, corpus frequency features, ambiguity-related features,
features assessing the degree of uncertainty in a vector representation, and vector quality
features. Unless explicitly stated otherwise, these variables have been explored based
on the data in HeiPLAS-Dev after filtering out-of-vocabulary (OOV) words, i.e., leaving
all instances from the gold standard aside for which no reliable C-LDA phrase vector
could be constructed due to sparsity issues on the level of word representation. OOV
filtering is performed at two levels: At level 1, we exclude all phrases whose phrase
representations are composed from a sparse adjective and a sparse noun (i.e., neither
the adjective nor the noun are found to co-occur with any attribute noun in the corpus
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8 Explaining C-LDA Performance in Large-scale Attribute Selection

Attribute Adjective Noun Phrase

Semantic Fea-
tures

AbstractnessAttr AbstractnessAdj AbstractnessNoun
PropertyAttr AdjMorphAttr
MeasurableAttr

Morphological
Features

AdjMorphAttr

Frequency Fea-
tures

AttrPseudoDocsFreq AdjFreq NounFreq PhraseFreq
AdjPseudoDocsFreq NounPseudoDocsFreq

Ambiguity Fea-
tures

NumAttrSenses
AttrSemcorEntropy
PropAttrReadings

Uncertainty
Features

AdjEntropy NounEntropy PhraseEntropy

Vector Quality
Features

AttrRankAdj AttrRankNoun AttrRankComp
DeltaAdj DeltaNoun

Table 8.1: Explanatory variables investigated in order to explain C-LDA performance

data). At level 2, all phrases are excluded that are composed from either a sparse ad-
jective or a sparse noun. Note that OOV filtering has only been applied in the post-hoc
analyses carried out in this section, not in the evaluation of the models in Section 7.3.

8.1.1 Semantic Features

Abstractness. Following Andrews et al. (2009), we hypothesize that attributes are
more likely to adhere to concrete rather than abstract words. Given that concrete words
“refer to things, events, and properties that we can perceive directly with our senses”,
while abstract words “refer to ideas and concepts that are distant from immediate per-
ception” (Turney et al., 2011), the position of a concept on a scale ranging from high
abstractness to high concreteness might serve as an approximation for the difficulty of
assigning an attribute to it.

We extract abstractness scores for adjectives (AbstractnessAdj), nouns (Abstract-
nessNoun) and attributes (AbstractnessAttr) from a data set presented by Turney et al.
(2011). Their data contains 114,501 words (nouns, verbs, adjectives) that are semi-
automatically assigned a score ranging from 0 (indicating high concreteness) to 1 (high
abstractness).1 Attributes differ in their abstractness themselves. Consider, for in-
stance, SIZE vs. NICENESS. According to the definitions stated above, SIZE is consid-
erable more concrete than NICENESS, which is also reflected by their abstractness scores
(SIZE: 0.53711; NICENESS: 0.75087). If our assumptions are correct, an attribute se-
lection system should face less problems in identifying phrases invoking SIZE rather
than NICENESS. Consequently, we extract abstractness scores for attributes as well
(AbstractnessAttr).

1The data set is available from Peter Turney on request.
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8.1 Explanatory Variables

Property Attributes. As detailed in Sections 7.3.1 and 7.3.3, the overall performance
of C-LDA decreases considerably when the underlying attribute inventory is enlarged
from 10 core attributes to more than 250 attributes in total. Based on the observation
that all attributes in the core inventory share the common feature of being part of the
property sub-hierarchy in WordNet, we were able to show that reducing the large-scale
inventory to a subset of property attributes improves performance by approximately
factor 3 (cf. Table 7.14 on page 117).

In order to relate this effect to the impact of other factors, we augmented all at-
tributes in the development set with information about its property status in WordNet
(PropertyAttr): If at least one sense of the attribute noun is a hyponym of property in
WordNet, the attribute receives true as its property label, otherwise FALSE. For a com-
prehensive list of the resulting 73 property attributes, please refer to Appendix A.2.

Measurability. Additional performance gains can be achieved by narrowing down the
attribute space to physically measurable attributes (cf. Table 7.14 on page 117 again).

In order to determine how measurability interacts with other potential performance
factors, we manually judged all attributes in the development set according to the cri-
teria introduced on page 119. If at least one of these criteria is accepted for a particu-
lar attribute, it receives true as its measurability label, otherwise false. This method
yields 65 measurable attributes; a comprehensive list is included in Appendix A.3.

8.1.2 Morphological Features

Morphological Relation between Adjectives and Attribute Nouns. If an attribute has
an orientation with regard to the properties it denotes, one of these properties can be
considered its default or unmarked value, while all other values on the scale are marked
deviations from this default. The adjective denoting the unmarked value of such an at-
tribute is usually morphologically related to the attribute name, unlike most of its marked
counterparts (Miller, 1998). For example, the attribute DEPTH has deep as its unmarked,
morphologically related default value, while its direct antonym, shallow, is regarded as
the most prominent deviation from this default.

Recall from Section 6.3 that overtly observable dependency paths are the backbone
for populating pseudo-documents in order to model attribute meaning in C-LDA (cf.
Table 6.1 on page 88). Due to the morphological relationship between an unmarked
adjective and the respective attribute noun, they rarely co-occur explicitly in corpora,
i.e., unmarked adjectives tend to be underrepresented in pseudo-documents. The same
holds true for antonyms if they are morphologically derived from unmarked adjectives
by prefixation.

The left part of Table 8.2 on the following page demonstrates these sparsity effects
by way of an example involving the attribute IMPORTANCE. The table displays, for
each adjective, its morphological relation to either the attribute name or the unmarked
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Adjective
Morphological Corpus

Relation Frequency

important + 17
unimportant + 0

crucial – 186
great – 999
central – 140

Phrase AdjMorphAttr

important rule true
unimportant feature true

crucial information false
great work false
central cause false

Table 8.2: Comparison of adjectives related to the attribute importance with regard to
their morphological relation to attribute noun or unmarked value and their
corpus frequency in context of attribute noun (left); AdjMorphAttr labels for
example phrases related to the attribute importance (right)

value, and their corpus frequency in the context of the attribute IMPORTANCE2. The up-
per part of the table contains the adjective denoting the unmarked value, important, and
the corresponding antonym derived from it by prefixation, unimportant. Both are mor-
phologically related to the attribute noun. Relative to the morphologically unmarked
marked values in the lower part of the table, the corpus frequencies of important and
unimportant are much lower, and thus do not reflect their prominence for the attribute
IMPORTANCE.

In order to analyze the impact of these morphological effects on C-LDA performance,
we manually labeled all phrases in HeiPLAS-Dev with regard to the morphological sta-
tus of the adjective involved: If the adjective is morphologically related to the attribute
noun or to another adjective that denotes the unmarked value of the attribute, the
phrase is assigned true as its AdjMorphAttr label, otherwise false. See Table 8.2 (right)
for illustration. In the following, we will refer to adjectives with AdjMorphAttr=true as
morphologically marked, all others as morphologically unmarked ones.

8.1.3 Ambiguity Features

Like many other words, attribute nouns may also denote various meanings or word
senses, depending on their respective context (Navigli, 2009). Therefore, if an attribute
noun is ambiguous, the respective pseudo-document runs the risk of being populated
with context words that are unrelated to this noun’s attribute sense, which may in-
troduce noise into the resulting attribute model. Thus, C-LDA may be affected from
the problem of word sense conflation that is generally faced by distributional semantic
models (Erk, 2012).

The variables introduced in this section are intended to analyze the impact of word
sense ambiguities in attribute nouns on attribute selection performance. For the re-

2Note that this is equivalent to the frequency of the adjective in the pseudo document used to model
the attribute.
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mainder of this discussion, we divide the set of word senses pertaining to an attribute
noun, S(n), into two subsets

S(n) = Sattr(n) + Snon-attr(n),

where Sattr(n) refers to attribute senses and Snon-attr(n) to non-attribute senses. Relying
on the sense inventory provided by WordNet, the former category applies to all senses
that are subsumed by the attribute concept, the latter to all others. Consider the noun
volume as an example: Among the six different word senses of volume listed in Word-
Net, we identify three attribute senses expressing attribute meanings defined as “the
amount of three-dimensional space occupied by an object”, “the property of something
that is great in magnitude” or “the magnitude of sound”, respectively.3 The remain-
ing non-attribute senses listed for volume have a clear sortal interpretation, referring to
books, publications and amounts (in the context of fluids). As becomes evident from this
example, it may not always be possible to determine one singular attribute sense for an
attribute noun. We investigate the following features in order to assess the ambiguity
potential of an attribute noun.

Number of Word Senses per Attribute Noun. For each of the attribute nouns in
HeiPLAS-Dev, we investigate the number of its word senses according to WordNet:

NumAttrSenses := |S(n)|

Attribute Sense Entropy. A high number of different senses for a word is not neces-
sarily problematic for predicting the correct word sense, as many of the senses listed
in WordNet are very rarely instantiated in natural language use (Kilgarriff and Rosen-
zweig, 2000). In fact, many word sense disambiguation (WSD) systems face severe
difficulties outperforming the so-called most frequent sense baseline (Manandhar et al.,
2010), which underlines the importance of sense-specific frequency information.

For the purpose of the present study, this means that merely focussing on the number
of word senses per attribute noun might over-estimate the impact of attribute ambigu-
ity in cases where some of the non-attribute senses are very infrequent and thus very
unlikely to occur as confounders in the training data presented to C-LDA. As a more
robust indicator, we compute a frequency distribution over all word senses of each
attribute noun from a sense-labeled corpus and determine the entropy of this distribu-
tion:

AttrSemcorEntropy := − ∑
s∈S(n)

p(s) log p(s), where

p(s) =
freq(s)

∑si∈S(n) freq(si)

3All quotes in this passage are due to definitions in WordNet 3.0 (Fellbaum, 1998).
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The underlying intuition is that the entropy metric indicates, for each attribute noun,
the risk of introducing noise into the C-LDA model that is due to sense ambiguities.
Attribute nouns with only a few frequent word senses exhibit a lower entropy, while
attribute nouns with several frequent senses receive a higher entropy.

For reasons of reliability, we do not perform automated WSD on our training data
in order to determine AttrSemcorEntropy, but extract word sense frequencies from the
manually curated Semcor resource4, assuming that the frequency patterns underlying
the use of attribute nouns will be roughly similar in the samples constituted by Semcor
and our data.

Proportion of Attribute/Non-Attribute Senses. We also investigate the impact of
confounding senses from different semantic classes, i.e. attribute vs. non-attribute senses
– a distinction that is disregarded by NumAttrSenses and AttrSemcorEntropy. Relying
on word sense frequencies obtained from Semcor, we determine the following factors,
accounting for the proportion of attribute senses and non-attribute senses, respectively:

PropAttrSenses :=
∑si∈Sattr(n) freq(si)

∑sj∈S(n) freq(sj)

PropOtherSenses := 1− PropAttrSenses

Adjective and Noun Ambiguity. In contrast to attribute nouns, we do not compute
any ambiguity features for the adjectives and nouns used as distributional descriptors
of attribute meaning, due to the fact that adjectives and nouns enter a pseudo-document
only to the extent that they explicitly co-occur with the respective attribute noun. We
consider this a sufficient disambiguation constraint in order to prevent adjectives and
nouns from contributing substantial noise to attribute representations.

Apart from that, the disambiguation capacity provided by existing lexical resources
such as WordNet in order to disambiguate adjectives and regular nouns with regard
to their attribute senses is rather limited, given that WordNet does not contain any
explicit links between noun senses and attributes, and the similar-links that need to
be traversed in order to decide whether or not an adjective sense denotes a particular
attribute meaning are too heterogeneous to be reliable5 (Sheinman et al., 2013).

4SemCor covers a subset of the Brown corpus (Kucera and Francis, 1967) with content words (nouns,
verbs, adjectives and adverbs) being manually annotated with part-of-speech, lemma, and word sense
information (Miller et al., 1993). In total, SemCor annotations comprise more than 230,000 tokens from
352 texts. While the manual annotations have originally been carried out on the sense inventory from
WordNet 1.6, an automatic mapping to WordNet 3.0 is provided by Rada Mihalcea under http:
//lit.csci.unt.edu/~rada/downloads/semcor/semcor3.0.tar.gz.

5See also the discussion in Section 7.1.2 of this thesis.
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8.1.4 Frequency Features

As attested by Bullinaria and Levy (2007) in a distance comparison task6, words with
higher frequency of occurrence have a higher chance a priori to be accurately repre-
sented in distributional semantic models, because more training material can be ac-
quired for them. We consider it highly plausible that this frequency hypothesis should
also hold in the context of related semantic tasks, and in particular also for attribute se-
lection. Consequently, we propose pseudo-document frequency and global frequency
as measures to investigate frequency effects on the attribute selection performance of
C-LDA.

Pseudo-Document Frequency. Following the frequency hypothesis outlined above,
better attribute selection performance can be expected for phrases that invoke an at-
tribute for which a larger amount of training material is available. We measure this
quantity in terms of the number of tokens of adjectives, nouns and verbs that are con-
tained in the pseudo document representing the respective attribute (AttrPseudoDocs-
Frequency).

Global Frequency. We measure global frequency of adjectives (AdjFreq), nouns (Noun-
Freq) and adjective-noun phrases (PhraseFreq) in unrestricted contexts by querying
the ukWaC corpus (Baroni et al., 2009) via the CQP engine (Christ et al., 1999). Queries
were formulated such that lemmas and their part-of-speech categories were targeted,
without imposing any constraints on the context of occurrence.

8.1.5 Uncertainty Features

Using C-LDA attribute models in a similarity prediction experiment (Hartung and
Frank, 2011a), we found that (i) adjective vectors as generated by C-LDA exhibit lower
entropy than noun vectors, and (ii) that lower entropy within a vector representation
tends to correlate with better performance in similarity prediction. It seems plausible
that C-LDA reveals similar patterns also in attribute selection. Therefore, we deter-
mine the entropy H(w⃗) of each vector w⃗ representing either an adjective (AdjEntropy),
a noun (NounEntropy) or a phrase (PhraseEntropy) within the development set as fol-

6This task can be seen as a variation of a pseudo disambiguation task (Rooth et al., 1999): A distributional
semantic model is used to predict, for a collection of 200 target words, the semantic distance of each
target to a number of response words that are collected in a supervised way such that one of them is
semantically related, while ten others are random confounders. Bullinaria and Levy (2007) evaluate
the performance of their model in terms of the proportion of random response words for which the
model predicts a larger distance compared to the actually related response word.
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8 Explaining C-LDA Performance in Large-scale Attribute Selection

lows:

H(w⃗) = − ∑
a∈A

p(w, a) log p(w, a), where

p(w, a) =
ω(w, a)

∑a′∈A ω(w, a′)

Here, ω(w, a) denotes the value of the vector component that relates the target word w
to the attribute a. Normalizing this value to p(w, a) guarantees that H(w⃗) is equivalent
to the standard notion of entropy as originally defined for probability distributions
(Shannon, 1948).

The rationale underlying vector entropy is that it distinguishes vectors with a smaller
number of relatively pronounced, i.e., informative, components from others exhibiting
a rather flat, near-uniform distribution. Thus, H(w⃗) quantifies the amount of uncer-
tainty faced by C-LDA when being confronted with the problem of selecting one or
more attributes from w⃗. Intuitively, lower vector entropy corresponds to more accentu-
ated peaks in the distribution over vector components, which reduces the difficulty for
an attribute selection system to decide for individual components whether they con-
tribute information or noise. Note that this idea is also utilized by our entropy-based
attribute selection method (cf. Section 6.1.3). Thus, evaluating the impact of vector en-
tropy also serves as another benchmark for assessing the appropriateness of using ESel
for attribute selection.

If a vector representation generated by C-LDA exhibits a flat distribution, however,
there may be two reasons for this: Either the respective target word resists distribu-
tional modelling in an attribute space due to inherent semantic properties, or the partic-
ular approach taken by C-LDA modeling fails at promoting the most important vector
components.

8.1.6 Vector Quality Features

Rank Features. As the most direct way to assess the quality of semantic vectors, we
determine the rank of the correct attribute according to the gold standard within the
ordered list of all vector components, assuming that in an ideal attribute-based meaning
representation, the correct attribute should be ranked at first position. More generally,
the lower the rank of the correct attribute in a vector representation (i.e., the closer it is
to rank 1), the higher its quality.

We define a function rank : W × A → N that effectively re-arranges the components
of the original vector w⃗ in decreasing order and assigns integer values to each of them,
such that, for all ai, aj ∈ A:

rank(w, ai) < rank(w, aj) if ω(w, ai) > ω(w, aj)

rank(w, ai) = rank(w, aj) if ω(w, ai) = ω(w, aj)

rank(w, ai) > rank(w, aj) if ω(w, ai) < ω(w, aj)
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Based on this function, the factors AttrRankAdj and AttrRankNoun can be determined
in terms of rank(w, acorr), where w stands for an individual adjective or noun and acorr

denotes the correct attribute according to the gold standard. Note that the gold stan-
dard provides correct attributes for phrases only, from which they are propagated to the
adjective and noun vectors representing the constituents of the phrase. Thus, the fac-
tors AttrRankAdj and AttrRankNoun always reflect the correct attribute(s) in the phrase
context. Note that, even though the rank-function establishes a partial order on the at-
tributes, we do not observe any ties (i.e., two or more attributes being assigned the same
rank) in the data (except for out-of-vocabulary terms, where all vector components are
0 anyway). In case of several correct attributes provided for a particular vector repre-
sentation, the rank-function picks out the lowest of the corresponding ranks. In order
to determine attribute ranks for phrase vectors in an analogous way (AttrRankComp),
the domain of the rank-function as given above is extended to cover phrases as well.

Compositionality Features. In order to investigate the effect of vector composition,
we are interested in comparing the quality of phrase vectors to vectors representing
their constituents. Following Boleda et al. (2012), we define two further factors based
on the rank function described above, DeltaAdj and DeltaNoun. These factors are com-
puted as the difference of the rank of the correct attribute in the individual vector and
its rank in the composed vector:

DeltaAdj = AttrRankAdj− AttrRankComp (8.1)

DeltaNoun = AttrRankNoun− AttrRankNoun (8.2)

Intuitively, these factors take high (i.e, positive) values if vector composition yields an
improvement of the correct attribute in the phrase vector beyond the individual noun
vector, low (negative) values otherwise.

8.2 Compositionality in C-LDA

The design of the attribute models proposed in this thesis has been based on the as-
sumption from formal semantics that attribute selection instantiates a compositional
process in which the adjective selects particular aspects of meaning provided by the
deep lexical semantics of the noun (Pustejovsky, 1995). In our attribute models, this as-
sumption is reflected in the intersective approach to constructing vector representations
of adjective-noun phrase meaning from individual adjective and noun vectors by way
of multiplicative vector composition, followed by an entropy-based method to select
the most informative attributes from the composed phrase vector.

Hypothesis. In this section, we seek to show that the distributional approach to at-
tribute selection developed in this thesis follows formal semantic principles, using the
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Phrase Attribute DeltaAdj DeltaNoun

confusing signal CLARITY 7 57
ineffective legislation EFFECTIVENESS 8 20
wrong assumption CORRECTNESS 5 32
perfect reproduction PERFECTION 20 16
good knife QUALITY 29 0
meager resource SUFFICIENCY 28 2

Table 8.3: Examples of compositional gains due to phrase rank improvements over
individual adjective or noun vector (as indicated by positive DeltaAdj or
DeltaNoun values, respectively)

method of proof by contradition. The hypothesis to be falsified is that the low perfor-
mance of the C-LDA attribute model in large-scale attribute selection is due to weak-
nesses in the model which prevent it from capturing traits of compositionality in the
adjective-noun data it is evaluated on. We argue that in order to falsify this hypothesis,
at least two criteria must be met by C-LDA:

1. An attribute model reflecting compositional principles should yield compositional
gains in the sense that phrase vectors combine individual attribute profiles of ad-
jectives and nouns in such a way that the rank of the correct attribute in the phrase
vector is lower than in the word vectors.

2. The predictions of the model should be traceable to compositional semantic pro-
cesses, i.e., linguistically meaningful patterns in the interaction of adjective and
noun meaning. In order to assess this criterion, we investigate as to what extent
observed attribute ranks in composed phrase vectors being high or low, respec-
tively, can be reduced to meaningful patterns in the attribute ranks of the word
vectors contributing to the phrase representation.

Compositional Gains. The first criterion is assessed in terms of the compositional fea-
tures defined in Equations 8.1 and 8.2 on the previous page: We expect attribute se-
lection from a composed adjective-noun vector to result in positive values of either
DeltaAdj or DeltaNoun. In fact, we observe compositional gains in terms of a positive
delta in either the adjective or the noun vector in more than 91% of the instances in the
development set after OOV filtering at level 1 (as described in Section 8.1 on page 125).
Hence, in line with what can be expected from a linguistically adequate distributional
compositional model, the approach taken by C-LDA is generally capable of contextu-
ally improving the quality of individual attribute-based adjective or noun vector rep-
resentations. A small sample of selected examples of compositional gains is shown in
Table 8.3.
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RankComp≤ 10 RankComp> 10
RankNoun≤ 10 RankNoun> 10 RankNoun≤ 10 RankNoun> 10

RankAdj≤ 10
ADJ-N-COMP ADJ-n-COMP ADJ-N-comp ADJ-n-comp

(36; 4.1%) (62; 7.1%) (0) (32; 3.7%)

RankAdj> 10
adj-N-COMP adj-n-COMP adj-N-comp adj-n-comp

(37; 4.3%) (29; 3.3%) (47; 5.4%) (626; 72.0%)

Table 8.4: Overview of data subsets after dichotomization of AttrRankAdj,
AttrRankNoun and AttrRankComp at rank 10; cells of the table contain subset
identifier and number/proportion of items within the respective set

Compositional Processes. In a first step towards assessing the second criterion, we
explore several segments of the large-scale development data set that are obtained from
dichotomizing the variables AttrRankAdj, AttrRankNoun and AttrRankComp at rank 10,
respectively. Thus, each of these variables is split into ranges indicating high (attribute
rank ≤ 10) and low vector quality (attribute rank > 10).

Table 8.4 gives an overview of all subsets resulting from this segmentation process,
together with their cardinalities. For instance, the upper left cell of the table displays
that the data set contains 36 instances in total where all three rank variables have values
lower than 10. The lower right cell, on the other hand, aggregates all 626 instances in the
data with ranks above 10 for all three variables. Throughout the following discussion,
we refer to these subsets by the following convention: If a variable has values lower
than 10 (indicating that the corresponding vectors are of HIGH quality), its shorthand
notation will be written in uppercase (ADJ, N or COMP, respectively), otherwise in
lowercase letters.7 Consequently, the subset in the upper left and lower right cells are
abbreviated as ADJ-N-COMP and adj-n-comp, for instance.

The cardinalities of the subsets as given in Table 8.4 are insightful in various respects:
First, instances with high-quality phrase vectors are clearly in the minority, as can be
seen from comparing *-*-COMP (164 cases) and *-*-comp (705 cases). Apparently, the
compositional gains outlined above are, in most cases, not strong enough in order to
promote the correct attribute to ranks that are within the scope of entropy-based at-
tribute selection. Second, within the *-*-COMP fraction, the majority of cases is due
to high-quality adjective vectors (98 vs. 66 instances), which suggests that, in success-
ful attribute selection, the contribution of adjective vectors to the composed meaning
representation of an adjective-noun phrase is more prominent than the contribution of
the noun. This is intuitively plausible given that nouns tend to offer a wider range
of attributes in their semantics, from which the adjective selects the most appropriate
one(s) in the given phrasal combination. From this perspective, the observations in the
segments ADJ-N-COMP and ADJ-n-COMP can be attributed to the vital contribution

7Moreover, we will use * as wildcard symbol denoting the following disjunctions: ADJ or adj, N or n,
COMP or comp.
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Phrase Attribute Rank Adj. Rank Noun Rank Phrase

breathtaking adventure EXCITEMENT 65 2 3
low hill HEIGHT 17 2 2
high ceiling HEIGHT 89 1 3
broad shoulder WIDTH 55 2 1
deep voice PITCH 79 5 7

Table 8.5: Selected examples from adj-N-COMP subset

of the adjective vector, thus putting the compositional capacities of C-LDA in line with
Pustejovsky (1995).

In case of adj-N-COMP, however, C-LDA seems to adapt to a claim put forward by
Asher (2011): According to his argument, adjectival modification of nouns preserves
the general semantic type of the noun. From this perspective on compositionality, ad-
jectives are arguments of the noun conforming to the type presuppositions of the noun.
Table 8.5 contains a selection of examples from the adj-N-COMP subset. These exam-
ples show a much stronger preference for the correct attribute in the lexical meaning of
the noun, which can be readily interpreted in terms of Asher’s notion of noun-triggered
type presuppositions.

In case of suboptimal noun vectors, a high-quality adjective representation may even
be sufficient in order to achieve an adequate phrase representation, as demonstrated by
the ADJ-n-COMP segment. Likewise, if both the adjective and the noun are represented
reliably, their composition will very unlikely result in a phrase vector that lags behind
the quality of its individual constituents (cf. |ADJ-N-comp| = 0). Conversely, if neither
the adjective nor the noun vector are of reliable quality, it is plausible to assume that
the resulting phrase vector is not reliable either (cf. adj-n-comp).

Compositionality Puzzles. With regard to the hypothesis to be falsified – i.e, that lin-
guistic principles of compositionality are insufficiently reflected in C-LDA –, we can
state that compositional gains are indeed an integral part of the model’s behaviour,
which satisfies the first requirement for falsification. Concerning the second criterion,
the subsets ADJ-n-comp, adj-n-COMP and adj-N-comp8 still pose a puzzle for the oth-
erwise consistent explanation of C-LDA predictions along the lines of compositional
semantic processes. Given that these subsets account for only 12% of the data points in
HeiPLAS-Dev, we conclude that C-LDA is in fact largely aware of compositionality.

Issues on the Level of Word Meaning. This leads to the conjecture that the poor per-
formance of the model in large-scale attribute selection is primarily due to particular
aspects on the level of word meaning which seem to obstruct the corpus-based induc-
tion of attribute-based representations of adjective and noun meanings in the first place.

8For illustration, all instances comprising these subsets are shown in Tables C.1-C.3 in Appendix C.

136



8.3 Linear Regression of C-LDA Performance at the Intersection of Word and Phrase Meaning

In fact, one major question that remains unanswered by the analysis conducted yet is:
Why are more than 70% of the instances in the development data (cf. adj-noun-comp
subset) affected by individual adjective and noun vectors that are highly error-prone in
that the correct attributes are barely pronounced in these vectors?

In the next section, we explore a variety of semantic criteria in order to identify the
most detrimental factors opposing effective attribute-based representations of word
meaning in C-LDA and how they might be improved upon.

8.3 Linear Regression of C-LDA Performance at the
Intersection of Word and Phrase Meaning

The previous analysis has revealed that the compositional aspects of the attribute selec-
tion task seem to be robustly captured by C-LDA in principle in the sense that compo-
sitionality gains are achieved by composing adjective and noun vectors to phrase-level
representations. In practice, however, the traits of compositionality underlying C-LDA
are not always sufficient in order to promote the correct attribute(s) in the phrase vec-
tor such that they are selected by the model. In order to subject this tension in C-LDA
performance to a closer analysis, our discussion proceeds in three further steps:

1. On the level of phrase meaning, we assess the relative impact of various factors
on phrase vector quality. To this end, we exhaustively examine all explanatory
variables summarized in Table 8.1 on page 126 in a linear regression model of
attribute ranks in phrase vectors. This analysis serves two purposes: From an
explorative perspective, it allows for a more thorough investigation of possible
predictors of phrase vector quality. Moreover, the learned regression model can
afterwards be used as an objective function for optimizing C-LDA performance
via complementary distributional information, as will be outlined in Section 8.4.

2. Zooming in on the word level, we take individual word vector quality into focus.
This is achieved by means of a linear regression of attribute ranks in adjective and
noun vectors on the same variables used in the first step.

3. Eventually, the perspectives taken in the previous steps are linked to each other.
Our particular interest is to obtain a more comprehensive picture of the composi-
tional processes at the intersection of the word and the phrase level in C-LDA.

Before delving into these three steps of analysis, we give a brief survey of the founda-
tions of linear regression modelling in order to clarify the basic notions and the termi-
nology to be used in the subsequent study.

8.3.1 Foundations of Linear Regression Modelling

This outline is entirely based on Cohen et al. (2003) and Fox (1997), unless explicitly
stated otherwise.
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Goals of Regression Modelling. Linear regression models are used to investigate the
relationship between particular outcomes of a dependent variable (DV) Y as a function
of one or a combination9 of independent variables X (IVs; also denoted as explanatory
variables, regressors or predictors):

Y = f (X) (8.3)

Linear regression analysis postulates that f be a linear function in the sense that Y is
determined by taking the weighted sum of the independent variable X and a constant
a. Thus, the model equation has the following form:

Y = a + bX (8.4)

Thinking of linear regression in geometrical terms, Equation (8.4) denotes the curve10

relating Y to X. The weight or coefficient b determines the slope of this curve, while the
constant a denotes its intercept, i.e. the point of intersection with the y-axis.

The primary goal of linear regression analysis is to assess the validity of a model
that posits a hypothesis about the true relationship of a DV and the IVs in the form of
Equation (8.4). Moreover, finding optimal estimates for the coefficients and the inter-
cept contained in the model facilitates predicting the outcome of the DV for new data
points. These goals are achieved by fitting the curve given by a function in the form of
Equation (8.4) to a number of empirical observations.

Residual Error. In practice, however, a perfect fit of the model is rarely encountered.
The residual error E is defined as the difference between the observed value Y and the
predicted value Ŷ for each observation:

E = Y− Ŷ = Y− (a + bX) (8.5)

In the particular framework of least-squares regression that we will use for the subsequent
analyses, the best regression curve incorporating optimal estimates for the coefficients
and the intercept is obtained by minimizing S, the sum of the squared residuals over
all N observations (Fox, 1997):

S(a, b) =
N

∑
i=1

E2
i =

N

∑
i=1

(Yi − a + bXi)
2 (8.6)

9For the sake of simplicity, we limit this initial discussion to the case where the DV is determined by
only one IV. Note, however, that linear regression models can be straightforwardly extended to an
arbitrary number of IVs.

10If the model equation contains two IVs, its geometrical equivalent is a plane in three-dimensional
space. Obviously, it is impossible to continue this geometrical analogy for larger numbers of IVs.
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Interpreting Regression Results

Effect Size of Predictors. The most important aspect brought to light by a linear
regression model concerns the strength of the relationship between the DV and the IVs.
For each IV involved in the model equation, an individual coefficient indicating its effect
size is computed. The effect size of each IV is characterized in terms of the magnitude
of the coefficient and its sign, indicating a positive or a negative association to the DV.

In that sense, regression coefficients are similar to correlation coefficients such as
Spearman’s ρ or Pearson’s r (Spearman, 1904; Pearson, 1896). Compared to these single-
factor correlation models, linear regression models have the advantage that they are
capable of studying multiple variables that simultaneously influence the DV, while sep-
arating their individual impact. It is important to consider this aspect in interpreting
the coefficients estimated by a multi-factor regression model: Assuming a model

Y = a + b1X1 + b2X2,

the coefficient bi pertaining to Xi indicates the average increase11 of Y that is associated
with a one-unit increase in Xi, if all Xj with j ̸= i (i.e., all other IVs in the model) are
held constant. The intercept a has to be interpreted as the expected mean value of Y
when ∑N

i=1 Xi = 0.

Interaction Terms. It is also possible to include interaction terms in a linear model. For
instance, a model accounting for the effect on Y that is due to an interaction between a
predictor X and a moderator Z can be designed as:

Ŷ = a + b1X + b2Z + b3XZ (8.7)

The underlying assumption is that the relationship between Y and X is moderated by
Z, i.e., the coefficient b3 quantifying the relationship between Y and X is not assumed
as constant, but varying with changes in Z – and analogously so, when predictor and
moderator are interchanged (Cohen et al., 2003).

In interpreting interactions, we follow Cohen et al. (2003), who suggest to analyze
the values predicted for Y by X at several meaningful values of Z. For this purpose,
(8.7) is first refactored into the following simple regression equation:

Ŷ = (b1 + b3Z)X + (a + b2Z) (8.8)

Note that this equation actually describes a line, with its slope being determined by
b1 + b3Z and a + b2Z as its intercept, both depending on Z. The simple regression
equation is very useful for analyzing interactions, as inserting meaningful values of Z
(e.g., the mean, the maximum and the minimum) licenses to evaluate the change in Ŷ

11Consequently, a decrease in Y associated to X is indicated by a negative sign of b. Also note that, unlike
single-factor correlation coefficients, regression coefficients are not confined to ranging from 0 to 1.
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that is due to X, while Z is being controlled for in an instructive way. Moreover, a simple
regression line can be constructed for each value of Z, in order to assess the interaction
in graphical terms: Only in case of non-parallel regression lines, indicating a change
of the regression of Y on X as a function of Z, we can readily accept the presence of
an interaction between X and Z. Otherwise, the possibility of an interaction must be
rejected as the regression of Y on X is constant for all values of Z. (Cohen et al., 2003)

Reliability of Linear Regression Models

In interpreting the results of a linear regression model, several aspects have to be taken
care of, both on the level of the regression as a whole and the individual regression
coefficients.

Overall Level. As an indicator of the “goodness of fit” between the empirical obser-
vations and the model predictions, we inspect the squared multiple correlation, R2:

R2 =
∑(Ŷi − Ȳ)2

∑(Ŷi − Ȳ)2 + ∑ E2
i

(8.9)

R2 indicates the proportion of the variation in Y that is accounted for by the combina-
tion of IVs in the model. Ranging between 0 and 1, higher values of R2 indicate a better
fit of the model. As noted by Cohen et al. (2003), R2 is slightly biased in the sense that
it tends to increase with more IVs in the model, even if these additional variables do
not have any explanatory power. A more conservative measure that is sensitive for the
number k of IVs in the model is R2

adj, shorthand for adjusted R2 as given in Equation
(8.10). Here, N denotes the number of observations.

R2
adj = 1− (1− R2) · N − 1

N − k− 1
(8.10)

A second question of interest is whether the predictive power of the regression model
is statistically significant. This question is commonly answered by an F-test evaluating
the null hypothesis that all coefficients of the IVs in the model (except the intercept)
are 0, which amounts to no predictive power at all. As usual in statistical significance
testing, the p-value of this test gives the probability of the null hypothesis. If this prob-
ability is above 0.05, i.e., the null hypothesis can not be rejected, the p-values of the
individual coefficients (see below) should be disregarded.

Note that the F-test is based on the assumption of normally distributed residual er-
rors. If the residuals deviate markedly form normality, the test becomes invalid. In this
case, the reliability of the regression model is questionable. In particular, the individual
coefficients and their p-values should be interpreted with caution, as the model is likely
to miss a major explanatory factor (Baayen, 2008).

The requirement of normally distributed residuals can also be motivated from the
perspective that there should be no consistent over- or underestimation in the model.
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Therefore, the standard error SE being close to 0 is another desirable property of a linear
regression model. This quantity is measured in terms of the average size of the residuals
as defined below:

SE =

√
∑ E2

i
n− p− 1

(8.11)

In the denominator of (8.11), n stands for the total number of data points underlying
the estimation, p for the number of IVs in the model. The denominator as a whole is
often also referred to in terms of degrees of freedom (df) of the model.

Individual Coefficients. On the level of individual coefficients, the statistical signifi-
cance of the estimates obtained from the model is also assessed in terms of p-values.
The individual p-value of each coefficient indicates the probability of the null hypothe-
sis that the coefficient has a value of 0 (i.e., no impact on the DV at all). If p < 0.05, we
can be confident that the effect of the respective predictor on the DV as revealed by the
model is statistically significant.

The quality of a regression model is also influenced by possible interactions among
the predictors. In general, relationships between predictors may range from full orthog-
onality to strong correlations. In the former case, all preditors are completely independent
of one another, i.e., each Xi explains a different part of the outcome of Y, which is very
rare in practice. In the latter situation, also known as multi-collinearity (Belsley et al.,
1980), “highly correlated independent variables are explaining the same part of the
variation in the dependent variable, so their explanatory power and the significance of
their coefficients is divided up between them.” (Cohen et al., 2003)

If a severe degree of multi-collinearity is present in a model, individual regression co-
efficients are likely to change their magnitude and possibly even their sign when being
considered in combination. Therefore, it is important to pay attention to this quantity
when interpreting regression coefficients. A common measure of multi-collinearity is
the variance inflation factor (VIF) that is computed for each independent variable Xi as
given in (8.12):

VIFi =
1

1− R2
i

(8.12)

Here, R2
i denotes the squared multiple correlation (as introduced in Equation (8.9)

above) of a regression model that incorporates Xi as the DV and all other Xj(j ̸= i)
as IVs. Thus, a situation where the combination of all other IVs bears no explanatory
power for Xi (i.e., they are fully uncorrelated) yields VIFi = 1. The stronger the corre-
lation between Xi and the other IVs, the larger VIFi will increase. As a rule of thumb,
Cohen et al. (2003) propose to take a VIFi score above 10 as evidence for serious multi-
collinearity in the model that is to be attributed to Xi.
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8.3.2 Phrase Level: Least Squares Regression of Phrase Vector Quality

The explanatory variables summarized in Table 8.1 on page 126 cover a wide range of
properties of the adjective-noun phrases and their constituents involved in the attribute
selection task. We now investigate these variables in a least squares regression model in
order to identify the main effects, i.e., those factors with the strongest impact, on C-LDA
performance.

This experiment was carried out on the HeiPLAS large-scale development set. Af-
ter OOV filtering at level 2 (cf. Section 8.1 on page 125), 665 phrases (distributed over
254 attributes) are retained. Being annotated with values for each of the explanatory
variables displayed in Table 8.1 on page 126, these phrases constitute the record of ob-
servations that enter the regression model. AttrRankComp is selected as the dependent
variable.

Discussion of Full Model

We start out with a full regression model12, taking into account all explanatory variables
from Table 8.1. All variables indicating ranks or frequencies (including the DV) were
transformed to a logarithmic scale in order to smooth their distributions and account
for possible outliers.13

The full model yields an R2 score of 0.926, which means that our selection of variables
is definitely reasonable, as their combination explains almost 93% of the variance in
the ranks of correct attributes in C-LDA phrase vectors. The regression as a whole is
highly significant (p < 2.2 · 10−16) with a relatively small standard error (SE = 0.4488).
The main results with regard to the individual IVs are summarized in Table 8.6. The
columns in this table show, for each IV in the model, its regression coefficient, VIF,
p-value and a significance code14.

As can be seen from this table, the variables AttrRankAdj, AbstractnessAdj, Attr-
RankNoun, AbstractnessNoun and PhraseEntropy have the strongest effect on the DV.
All of them are statistically significant, except for AbstractnessNoun. Moreover, a small
effect can be observed for PropertyAttr and AdjEntropy, at a rather low significance
level, though. All variables in the model show very tolerable VIF scores clearly below
10, which suggests that multi-collinearity seems to be unproblematic in this model. In
fact, most of the VIFs are close to the minimum of 1, with exceptions only in those cases
where several variables from the same feature group are present in the model (e.g.,
several frequency or ambiguity features).

12All regression models reported in the following have been implemented in R (R Core Team, 2013),
using the lm function. For model inspection and evaluation, the packages rms (Harrell, 2013) and car
(Fox and Weisberg, 2011) were used.

13The same holds for all subsequent analyses as well.
14All significance codes follow the conventions used in R: 0 < p < 0.001: ‘***‘; 0.001 ≤ p < 0.01: ‘**’;

0.01 ≤ p < 0.05: ‘*’; 0.05 ≤ p < 0.1: ‘.’. Results above the 0.1 level are considered not significant. (R
Core Team, 2013)
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Coefficient VIF p-value Sig.

(Intercept) -1.370900 d.n.a. 6.80 · 10−6 ∗∗∗
AttrRankAdj 0.715268 1.387924 < 2 · 10−16 ∗∗∗
AttrRankNoun 0.638044 1.215864 < 2 · 10−16 ∗∗∗
PropertyAttr=TRUE -0.075221 1.578067 0.09747 .

MeasurableAttr=TRUE -0.028699 1.690963 0.55679
AbstractnessAttr 0.066882 1.138450 0.50401
AdjEntropy 0.044287 1.412564 0.09323 .

NounEntropy 0.016622 1.296238 0.59310
PhraseEntropy -0.106237 1.661267 8.52 · 10−9 ∗∗∗
AttrSemcorEntropy -0.015895 5.018194 0.75347
PropAttrReadings 0.042109 1.808370 0.42265
NumAttrSenses 0.001921 3.779184 0.93302
AttrPseudoDocsFreq -0.002986 2.517128 0.73807
AdjFreq -0.012117 6.780736 0.61573
AdjPseudoDocsFreq -0.004919 6.332131 0.82958
AbstractnessAdj -0.168825 1.155386 0.00285 ∗∗
AdjMorphAttr= TRUE 0.002593 1.258837 0.94791
NounFreq -0.001787 3.744689 0.92949
NounPseudoDocsFreq -0.004652 3.692467 0.82083
AbstractnessNoun 0.114662 1.149755 0.22367
PhraseFreq 0.009975 1.266668 0.14940

Table 8.6: Results of full regression model, using all explanatory features for predicting
AttrRankComp
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Coefficient VIF p-value Sig.

(Intercept) -1.271656 d.n.a. 1.10 · 10−11 ∗∗∗
AttrRankAdj 0.719686 1.223624 < 2 · 10−16 ∗∗∗
AttrRankNoun 0.640025 1.141171 < 2 · 10−16 ∗∗∗
PropertyAttr=TRUE -0.089508 1.168155 0.02118 ∗
AdjEntropy 0.044310 1.305858 0.07877 .

PhraseEntropy -0.104388 1.401142 6.04 · 10−10 ∗∗∗
PhraseFreq 0.009724 1.169529 0.14105
AbstractnessAdj -0.159653 1.069653 0.00317 ∗∗
AdjFreq -0.017720 1.213130 0.08105 .

AbstractnessNoun 0.115377 1.046346 0.19645

Table 8.7: Refined regression model after backward elimination (BE model)

Backward Elimination of IVs from Full Model

This initial model is subjected to a stepwise refinement procedure in order to eliminate
(i) potential noise due to the relatively large number of insignificant predictors and
(ii) redundancy due to several features from the same group. We follow an iterative
strategy known as backward elimination (Miller, 2002): In each step, the variable with the
largest p-value is removed from the model, as long as R2

adj increases and SE decreases.
The model resulting from this procedure is summarized in Table 8.7 and will be referred
to as BE model henceforth.

Results. First and foremost, backward elimination does not cause any substantial
change in overall model behavior: The BE model is still highly significant as a whole
(p < 2.2 · 10−16). R2 = 0.928 and SE = 0.4459 differ to an extent that is barely noticeable.
This underlines that the variables removed during backward elimination are justified
in their own right; some of them might even turn out as meaningful predictors whose
impact is overridden by other variables in the model.

Next, we investigate important characteristics of the residuals. As discussed in Sec-
tion 8.3.1 above, their normality and independence are requirements that must be largely
met in order for a regression model to be fully reliable. As can been seen from the left
side of Fig. 8.1 on the next page, however, the distribution of studentized residuals of
the BE model actually resembles a heavy-tailed rather than a normal distribution. This
means that, its mean close to 0 and the small deviations from this mean in the central
part of the distribution notwithstanding, the BE model has a hard time predicting the
correct outcome of the DV for the observations located at the tails of the distribution.
Not only does this indicate a substantial proportion of outliers in the data (Fox, 1997);
moreover, these outliers are extreme outliers compared to the data points in the center
of the distribution. This analysis is supported by the quantile-quantile plot on the right
side of Fig. 8.1 which compares the actual distribution of residuals against an idealized
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8.3 Linear Regression of C-LDA Performance at the Intersection of Word and Phrase Meaning

Figure 8.1: Studentized residuals in BE model, displayed as density plot (left) and
quantile-quantile plot with superimposed line of normality (right)

line of normality superimposed on the plot. In summary, the BE model explains most of
the observations very well, on the one hand, but also yields large errors for a minority
of data points, on the other.

Outlier Removal. In order to explore to what extent the estimates of the coefficients
and their significance levels are affected by these outliers15, we follow a strategy of
re-fitting the same model to a revised data set from which 20% of the data points ac-
counting for the most extreme residuals have been purged beforehand (10% from the
left and the right tail, respectively). The remaining 80% of the data fit the BE model
much more accurately. As can be seen from the residuals plot in Fig. 8.2 (left), the
heavy-tail issue is largely alleviated, apart from slight deviations from normality on
the right tail of the distribution. In fact, almost all residuals emerging from the new
fit follow a normal distribution within a confidence interval of 0.95 as indicated by the
dashed curves surrounding the superimposed normality line in Fig. 8.2 (right).

Outlier removal leaves the regression coefficients and significance levels of the indi-
vidual variables as displayed in Table 8.7 largely unchanged, which is why we do not
explicitly report them here. Nevertheless, we consider this an important finding as it
suggests that the results of the BE model are sufficiently reliable for our purposes.

15Recall from Equation (8.6) that, due to the least-squares minimization criterion, the models discussed
here are in general very susceptible to large residuals.
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8 Explaining C-LDA Performance in Large-scale Attribute Selection

Figure 8.2: Studentized residuals in BE model after outlier removal, displayed as den-
sity plot (left) and quantile-quantile plot with superimposed line of nor-
mality surrounded by 0.95 confidence interval (right)

Interpretation of Backward Elimination Results

Main Effects. After outlier removal, the following IVs are identified as simple main
effects: AttrRankAdj, AttrRankNoun, PhraseEntropy, AbstractnessAdj and Property-
Attr. Among them, AttrRankAdj and AttrRankNoun exhibit by far the largest effect
sizes (0.719686 for adjective and 0.640025 for noun ranks, respectively)16.

Apart from their effect sizes, further evidence for the importance of the rank vari-
ables comes from their relative contribution to the overall explanatory power of the BE
model: A comparative regression model containing only AttrRankAdj and AttrRank-
Noun as IVs already achieves an R2

adj score of 0.9211 at a very high level of significance
(p < 2.2 · 10−16) and at the only expense of a slightly larger standard error (SE=0.4632).
Comparing these figures against the BE model (R2

adj=0.9269; SE=0.4459) points out that
the composed rank as predicted by C-LDA is, above anything else, a function of the
individual ranks.

Compositionality. These findings clearly corroborate the role of compositionality in
C-LDA: On average, vector composition by pointwise multiplication improves upon

16These figures have to be interpreted such that, whenever an attribute rank in an adjective vector
changes by one unit, the same attribute in a phrase vector with the corresponding adjective as one of
its constituents can be expected to change by 0.72 units into the same direction on average, assuming
that all other variables in the model are held constant. The same holds analogously for noun vectors,
at a smaller effect size, though. Note that ranks and frequencies were transformed to log space, i.e., k
units of change on the decimal scale equal ek units on the logarithmic scale.
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the quality of individual vector representations, yielding a composed vector with the
correct attribute located at a lower rank (even though the degree of improvement is
often not sufficient in order to be effective in attribute selection, as discussed in Section
8.2). In that process, the contribution of the adjective vector is more influential than the
one of the noun. Additional support for this finding comes from an inspection of the
means of DeltaAdj and DeltaNoun17 as computed over all instances in the development
set: On average, DeltaNoun is higher than DeltaAdj (14.41 vs. 11.66), which suggests
that adjective vectors not only have a stronger impact on vector composition, but are
also superior in terms of their individual quality.

Negative Suppressor Variables. Besides the paramount explanatory power of Attr-
RankAdj and AttrRankNoun, further significant contributions to phrase vector quality
are due to PhraseEntropy and AbstractnessAdj. Note, however, that the negative
sign of their coefficients seems controversial: If our intuitions as outlined in Section
8.1 were correct, we would expect lower entropy in a phrase vector to coincide with
the correct attribute being located on a lower rank (and vice versa). Similarly, lower
scores on the abstractness scale (denoting higher concreteness) should also result in
lower ranks. Thus, positive coefficients for both PhraseEntropy and AbstractnessAdj
would reflect our intuitions much better. Indeed, each of these variables shows a posi-
tive effect when being correlated with AttrRankComp in a bivariate setting, using Spear-
man’s rank-correlation coefficient ρ: PhraseEntropy yields ρ = 0.21 (p = 3.029 · 10−8),
AbstractnessAdj a slightly lower ρ = 0.16 (p = 3.567 · 10−5).

These discrepancies suggest that AttrRankAdj and AttrRankNoun might have a dom-
inating influence not only on the DV, but on the other IVs contained in the BE model as
well. In fact, PhraseEntropy and AbstractnessAdj show all properties of negative sup-
pressor variables18 of irrelevant variance in AttrRankAdj or AttrRankNoun (Darlington,
1968; Lutz, 1983).

Unveiling Negative Suppression Effects

In the interest of an unobstructed understanding of the effects associated with the po-
tential suppressor variables, we compute another regression model, BE-NoR, by run-

17Recall from the definitions in Section 8.1 that DeltaAdj refers to the improvement of a noun represen-
tation that has been triggered by composition with an adjective vector; analogously, DeltaNoun refers
to the improvement of an adjective vector due to the compositional contribution of a noun. Note that
neither DeltaAdj nor DeltaNoun have been included in the full regression model (cf. Table 8.6), due
to severe multi-collinearity.

18As summarized by Pandey and Elliott (2010), a negative suppressor is characterized by “removing ir-
relevant variance from a predictor (or set of predictors), increasing the predictor’s regression weight,
and increasing overall predictability of the regression equation”. Furthermore, the negative suppres-
sor exhibits a “positive zero-order correlation with other predictor variable(s) and with the outcome
variable; however, when entered in multiple regressions, [...], contrary to what is expected, the regres-
sion weight of the negative suppressor has an opposite sign.”
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Coefficient VIF p-value Sig.

(Intercept) 3.13635 d.n.a. 6.77 · 10−11 ∗∗∗
PropertyAttr=TRUE -0.20375 1.371234 0.121524
MeasurableAttr=TRUE -0.91891 1.488522 2.16 · 10−10 ∗∗∗
AttrPseudoDocsFreq -0.14057 1.303204 4.97 · 10−12 ∗∗∗
AdjEntropy 0.12754 1.280087 0.102531
AbstractnessAdj -0.22184 1.067169 0.188554
AbstractnessNoun 0.70757 1.048366 0.011621 ∗
PhraseEntropy 0.17651 1.325297 0.000516 ∗∗∗

Table 8.8: Regression model without dominating factors AttrRankAdj and
AttrRankNoun (BE-NoR model)

ning an independent backward elimination on the BE model, initially leaving aside
AttrRankAdj and AttrRankNoun.

A summary of the BE-NoR model is shown in Table 8.8. The regression as a whole is
highly significant (p < 2.2 · 10−16). R2 amounts to 0.2913, which is considerably lower
compared to the BE model, but still indicates that the predictive power of a regression
model explaining attribute ranks in C-LDA phrase vectors does not entirely depend on
the presence of AttrRankAdj and AttrRankNoun.

Predictors in BE-NoR. Contrary to the BE model, BE-NoR does no longer contain
the frequency features PhraseFreq and AdjFreq. It seems that global frequencies are
somewhat helpful as correctives for predicting phrase ranks, but do not contribute
any explanatory power individually. PropertyAttr and AdjEntropy are still present
in BE-NoR, but no significant effect can be attested for them. Importantly, however,
AbstractnessNoun, after being part of the BE model as an insignificant effect, now turns
out as highly influential at a robust level of significance (β = 0.70757; p = 0.011621).
Hence, completely in line with expectations from the literature (Andrews et al., 2009),
our data shows that adjective-noun phrases containing a concrete noun fare consider-
ably better in attribute selection than ones with abstract nouns do.

Additionally, BE-NoR involves two variables not included in the BE model: Measur-
ableAttr, actually being the strongest predictor in the model (β = −0.91891; p =

2.16 · 10−10), and AttrPseudoDocsFreq (β = −0.14057; p = 4.97 · 10−12). The estimated
measurability coefficient indicates that, whenever the correct attribute is not measur-
able, its rank in the composed vector is about 2.5 positions higher19, on average, holding
all other variables constant. The observed effect of AttrPseudoDocsFreq is less strong,
yet highly plausible, indicating that attributes with less training data are harder to rep-

19Note that AttrRankComp is transformed to log scale, while MeasurableAttr is not. Therefore, the exact
increase in AttrRankComp that is associated with a 1-unit decrease of MeasurableAttr is e0.91891 =
2.484323.
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Coefficient VIF p-value Sig.

(Intercept) −0.98379 d.n.a. 0.53827
MeasurableAttr=TRUE −0.53978 2.241759 8.68 · 10−10 ∗∗∗
PropertyAttr=TRUE −0.06369 1.516129 0.35309
AttrPseudoDocsFreq −0.13137 1.430201 4.65 · 10−10 ∗∗∗
PhraseEntropy 0.14420 1.622710 0.00962 ∗∗
PhraseFreq 0.06913 7.757674 0.19069
AdjEntropy 0.32228 3.035512 0.00702 ∗∗
AbstractnessAdj 2.19053 51.139300 0.05885 .

AdjEntropy:AbstractnessAdj −0.40627 53.314445 0.02936 ∗
AdjFreq −0.07105 1.888976 0.07110 .

AdjMorphAttr=TRUE −1.13485 51.430755 0.14743
AdjMorphAttr=TRUE:AdjFreq 0.09560 42.785826 0.13644
AdjMorphAttr=TRUE:AbstractnessAdj 0.57861 7.204284 0.18576
AdjMorphAttr=TRUE:MeasurableAttr 0.28349 2.153931 0.03379 ∗
NounFreq −0.02107 1.211155 0.55214
NounEntropy 0.48281 5.472519 0.01485 ∗
AbstractnessNoun 7.25282 120.654973 0.01506 ∗
NounEntropy:AbstractnessNoun −0.91651 128.793619 0.03342 ∗
PhraseFreq:AbstractnessNoun −0.12109 7.197317 0.17213
PhraseFreq:AbstractnessAdj −0.04202 3.920773 0.37507

Table 8.9: BE-NoR model with additional interaction terms

resent for the model.

Summarizing this comparison between the BE and BE-NoR models, we observe that
BE seems to favor features encoding global frequencies and shapes of distributions,
whereas in BE-NoR, semantic features become considerably more prominent.

Suppressor Variables revisited. The suppression hypothesis that originally gave rise
to BE-NoR can be partially confirmed, at least, as PhraseEntropy now turns out as a
positive factor, as expected, whereas AbstractnessAdj still behaves counterintuitively.
Note that, compared to the BE model, the intercept changed its sign as well, which
licenses a much more intuitive interpretation: If all IVs in the model are incidentally
zero, the predicted composed rank becomes relatively high. Given the coding scheme
of the IVs involved, this implies a situation where the correct attribute is neither a prop-
erty nor measurable, no training material at all is available, the adjective and the noun
are both extremely concrete in nature, the corresponding vectors representing the ad-
jective and the phrase are highly peaked. Albeit completely virtual, this configuration
underlines the relative impact of the different feature groups: Even for adjective-noun
phrases that are represented by ideally shaped C-LDA vectors, the composed rank as
predicted by the BE-NoR model will be no lower than 23, on average, if the attribute to
be predicted exhibits detrimental semantic properties or a lack of training data.
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Exploring Interactions between Features

The final model is constructed by including interaction terms between some of the
previously insignificant variables20 as formalized in (8.13). Interaction terms are high-
lighted in boldface.

log(AttrRankComp) ∼ PropertyAttr + MeasurableAttr +

AdjEntropy + AbstractnessAdj +

AdjEntropy * AbstractnessAdj +

NounEntropy + AbstractnessNoun +

Noun Entropy * AbstractnessNoun +

log(AdjFreq + 1) + log(NounFreq + 1) +

log(PhraseFreq + 1) + AdjMorphAttr +

MeasurableAttr * AdjMorphAttr +

AdjMorphAttr * log(AdjFreq+1) +

AbstractnessAdj * log(PhraseFreq+1) +

AbstractnessNoun * log(PhraseFreq+1) +

AbstractnessAdj * AdjMorphAttr +

log(AttrPseudoDocsFreq + 1) + PhraseEntropy (8.13)

Compared to BE-NoR, this model yields slight improvements in terms of R2
adj (∆ =

0.0114) and SE (∆ = −0.011), while the overall significance of the model stays at the
same, very high level (p < 2.2 · 10−16). This implies that the interaction terms are
effective, which can also be recognized from the changes on the level of coefficients as
displayed in Table 8.9 on the preceding page. We discuss these interactions in the order
given in (8.13).

AbstractnessAdj moderating AdjEntropy. AbstractnessAdj finally turns out as a pos-
itive predictor with a rather high positive coefficient (β = 2.19053; p = 0.05885). Taking
part in the interaction term also strengthens the impact of the AdjEntropy variable, both
in terms of magnitude and significance (β = 0.32228; p = 0.00702). The interaction it-
self, denoted as AdjEntropy:AbstractnessAdj in Table 8.9, exhibits a negative impact
on the DV (β = −0.40627; p = 0.02936).

In interpreting this interaction, we follow the strategy suggested by Cohen et al.
(2003), as summarized in Section 8.3.1 on page 139. Considering AdjEntropy as the
predictor and AbstractnessAdj as the moderator, we select 0.2, 0.5 and 0.8 as mean-
ingful values21 for the latter. These values and the relevant coefficients from Table 8.9
20In this investigation, possible interaction terms are limited to combinations of adjective/adjective,

noun/noun, adjective/attribute and noun/attribute factors.
21These values were selected as to include representatives from the “concrete”(0.2) and the “abstract”

(0.8) poles plus one from the middle (0.5) of the spectrum.
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(a) Y = AttrRankComp on X =
AdjEntropy at three levels of
Z = AbstractnessAdj

(b) Y = AttrRankComp on X =
NounEntropy at three levels of
Z = AbstractnessNoun

(c) Y = AttrRankComp on X = AdjMorphAttr at two levels of Z = MeasurableAttr

Figure 8.3: Simple regression lines for three interaction terms
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are used to compute three simple regression lines for Z = low, Z = med and Z = high,
with X ranging from the minimum to the maximum observed value of AdjEntropy.
The resulting lines are displayed in Fig. 8.3a.

Most importantly, the three lines are not parallel, which allows us to accept the in-
teraction as a valid statistical factor, as there is obviously a change in AttrRankComp as
predicted by AdjEntropy that is due to different values of AbstractnessAdj. Moreover,
comparing the lines against each other gives interesting insights into the characteris-
tics of the interaction: If Z values are low (indicating concrete adjectives; solid line),
attribute ranks in the phrase vector increase with increasing entropy. This is perfectly
in line with our expectations and holds, to a slightly smaller degree, also for adjectives
being located in the middle of the abstractness scale (dashed line). For highly abstract
adjectives, however, we barely find any differences in composed ranks predicted based
on adjective vectors of varying entropy (dotted line), which implies that in this particu-
lar segment of the data, the predictive power of individual vector entropy is drastically
diminished by semantic properties of the respective adjective.

AbstractnessNoun moderating NounEntropy. The impact of AbstractnessNoun in-
creases by an order of magnitude due to its interaction with NounEntropy, turning out
as the most important factor in the model (β = 7.25282; p = 0.01506). NounEntropy,
after remaining insignificant in the BE-NoR model, is now rendered a significant con-
tributor of modest relative importance (β = 0.48281; p = 0.01485). Again, the impact of
the interaction term on the DV is negative in its own right (β = −0.91651; p = 0.03342).

The simple regression lines displayed in Fig. 8.3b22 indicate that only in case of
concrete nouns (low Z values, solid lines) low vector entropy coincides with low at-
tribute ranks in the composed vector, as would be expected. In the medium range of Z
(dashed line), noun abstractness exerts no influence at all on the relationship between
NounEntropy and AttrRankComp, whereas for rather abstract nouns (high Z values, dot-
ted line), low vector entropy favors high attribute ranks. Evidently, vector quality and
vector entropy drastically diverge in this segment of the data: C-LDA is still capable
of producing highly peaked representations for abstract nouns; at the same time, the
likelihood of going astray in promoting the correct attribute in the composed vector
considerably increases.

MeasurableAttr moderating AdjMorphAttr. The effect of MeasurableAttr acting as
a moderator in the relationship between AdjMorphAttr and AttrRankComp is definitely
statistically valid, albeit rather small (β = 0.28349; p = 0.03379), as confirmed by the
almost parellel simple regression lines in Fig. 8.3c. These lines have to be interpreted
such that the correct attribute(s) are ranked lower in phrase vectors involving a mor-
phologically marked adjective. Holding for both measurable and non-measurable at-

22Computing simple regression lines for the NounEntropy:AbstractnessNoun interaction follows the
same procedure as described above for AdjEntropy:AbstractnessAdj.
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Coefficient VIF p-value Sig.

(Intercept) 4.15515 d.n.a 2.60 · 10−13 ∗∗∗
AdjEntropy 0.29606 1.048864 1.06 · 10−5 ∗∗∗
AdjFreq -0.09319 1.636237 0.007633 ∗∗
AdjMorphAttr=TRUE -1.74947 37.394894 0.006045 ∗∗
AttrPseudoDocsFreq -0.09925 1.322539 2.38 · 10−7 ∗∗∗
MeasurableAttr=TRUE -1.21749 1.846985 2.24 · 10−15 ∗∗∗
AdjFreq:AdjMorphAttr=TRUE 0.15141 39.908664 0.010440 ∗
AdjMorphAttr=TRUE:MeasurableAttr=TRUE 0.93839 1.752005 0.000166 ∗∗∗

Table 8.10: Regression model for predicting attribute ranks in adjective vectors

tributes, the moderation effect is slightly stronger in the former case (cf. flatter slope of
the dashed line).

All other interactions included in this model (cf. Equation (8.13) on page 150 again)
are not significant. Apart from the factors just discussed, the variables already involved
in the BE-NoR model are left largely unchanged by the interactions introduced here.

As a last finding on Table 8.9, we point out that there are differences in orders of
magnitude among several coefficients, with AbstractnessNoun and AbstractnessAdj
being the most influential ones by far. This corroborates that attributes provide a layer
of meaning that is generally favored by concrete rather than abstract words.

Summary of Findings on Phrase Level

Overall, the results of regressing phrase vector quality support the conjecture that the
compositional approach taken by C-LDA in order to compute attribute-based represen-
tations of adjective-noun phrases is largely reasonable. Main sources of the inadequa-
cies becoming apparent in large-scale attribute selection are due to the construction of
individual attribute-based word representations. Deepening the analysis by focussing
on word vector quality in the next section, we are interested in identifying the factors
that are detrimental to effective adjective and noun representations in C-LDA.

8.3.3 “Zooming in”: Regression of Word Vector Quality

Explaining Adjective Vector Quality

Regression of attribute ranks in adjective vectors starts out with all adjective and at-
tribute features from Table 8.1 on page 126. Removing insignificant predictors by back-
ward elimination and including interaction terms where appropriate, we finally arrive
at the model summarized in Table 8.10. This model yields an R2

adj = 0.2505 at an ex-
tremely high level of significance (p < 2.2 · 10−16).

We identify two independent predictors of adjective vector quality that do not take
part in any interaction, both of them being highly significant, albeit rather modest in
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(a) Y = AttrRankAdj on X =
AdjMorphAttr at three levels
of Z = AdjFreq

(b) Y = AttrRankAdj on X =
AdjMorphAttr at two levels of
Z = MeasurableAttr

Figure 8.4: Simple regression lines for two interaction terms

magnitude: AdjEntropy (β = 0.29606; p = 1.06 · 10−5) and AttrPseudoDocsFreq (β =

−0.09925; p = 2.38 · 10−7). Not surprisingly, the quality of adjective representations
benefits from a sufficient amount of training data, and low entropy in adjective vectors
coincides with better vector quality in terms of lower ranks of the correct attribute(s).

Moreover, two important semantic factors stand out in this model: AdjMorphAttr
(β = −1.74947; p = 0.006045) and MeasurableAttr (β = −1.21749; p = 2.24 · 10−15),
both exerting a highly significant negative impact on the DV. In the case of the measura-
bility variable, the negative sign confirms the pattern already observed in our previous
analysis of attribute ranks in phrase vectors (cf. Table 8.9): Obviously, adjectives de-
noting measurable attributes are favored by C-LDA not only on the phrase level, but
already on the level of individual word representations.

The negative coefficient of AdjMorphAttr indicates that C-LDA is remarkably effec-
tive for morphologically marked adjectives, thus overcoming the inherent sparsity is-
sues that render this subclass of adjectives a notorious challenge to corpus-based ap-
proaches. Effectiveness on morphologically marked adjectives is mitigated by two in-
teractions, however: AdjMorphAttr:AdjFreq (β = 0.15141; p = 0.010440) and Adj-
MorphAttr:MeasurableAttr (β = 0.93839; p = 0.000166). These interactions are visual-
ized in terms of simple regression lines23 in Figs. 8.4a and 8.4b. Considering AdjMorph-
Attr:AdjFreq first, we observe that particularly infrequent, morphologically marked
adjectives (low Z values, solid line) are modeled more effective than their morpholog-

23Recall from its definition in Section 8.1 on page 128 that AdjMorphAttr is actually a binary factor taking
only 0 and 1 as values. Therefore, the predicted values of Ŷ are strictly points; for the sake of better
visibility, however, we decided to link these points by lines anyway.
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Coefficient VIF p-value Sig.

(Intercept) 2.11095 d.n.a. 0.0226 ∗
NounEntropy 0.18629 1.093246 0.0268 ∗
NounFreq 0.12979 6.306811 0.0924 .

AbstractnessNoun 3.12733 33.337728 0.0362 ∗
AttrPseudoDocsFreq -0.09730 1.227773 1.50 · 10−7 ∗∗∗
MeasurableAttr=TRUE -0.52998 1.313636 3.16 · 10−5 ∗∗∗
NounFreq:AbstractnessNoun -0.26440 38.045267 0.0614 .

Table 8.11: Regression model for predicting attribute ranks in noun vectors

Figure 8.5: Simple regression lines for Y = AttrRankNoun on X = AbstractnessNoun
at three levels of Z = NounFreq

ically unmarked counterparts in this segment of the data. With increasing frequency
of occurrence, however, this trend is reversed (cf. dashed and dotted line). With re-
spect to the AdjMorphAttr:MeasurableAttr interaction, we find that measurability of
the correct attribute does not make much of a difference in case of morphologically
marked adjectives, given that both lines start at similar points for X = 1. Morphologi-
cally unmarked adjectives end up at higher ranks in general, while this overall trend is
attenuated by adjectives denoting measurable attributes (higher Z values, dashed line).

Explaining Noun Vector Quality

Table 8.11 summarizes the regression of AttrRankNoun on all noun and attribute fea-
tures. As before, insignificant variables were removed by backward elimination, inter-
action terms were included where appropriate. In this model, R2

adj amounts to 0.1302
only, overall significance being extremely high, though (p < 2.2 · 10−16).

The factors NounEntropy (β = 0.18629; p = 0.0268), AttrPseudoDocsFreq (β =
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−0.09730; p = 1.50 · 10−7) and MeasurableAttr (β = −0.52998; p = 3.16 · 10−5) be-
have as expected, i.e., in line with previous analyses of adjective and phrase vector
quality (cf. Tables 8.9 and 8.10). As a notable exception, we find a positive coeffi-
cient for NounFreq (β = 0.12979; p = 0.0924), indicating that C-LDA tends to favor
low-frequency over high-frequency nouns. Recurring to the relationship of high word
frequency and strong polysemy that has been frequently observed in the literature (Kil-
garriff, 1997; Kremer et al., 2012, i.a.)24, we consider this an interesting tendency (even
though small in impact and barely significant) suggesting that C-LDA noun represen-
tations are susceptible to multiple senses of highly frequent nouns being conflated in
one vector representation.
AbstractnessNoun turns out as the most important predictor in this model (β =

3.12733; p = 0.0362). Concrete nouns are modeled much more adequately than ab-
stract ones in general, even though this pattern is slightly mitigated by an interaction
with NounFreq (β = −0.26440; p = 0.0614), as can be seen from the simple regression
lines in Fig. 8.5: Low ranks are observed for concrete nouns when their frequency of
occurrence is low (cf. solid line), whereas increasing frequencies of occurrence add a
considerable amount of noise to this pattern (cf. dashed and dotted line).

8.3.4 Compositional Processes: Linking Word and Phrase Level

Having analyzed various factors with respect to their impact on C-LDA word and
phrase vector quality, we now summarize our findings by linking the levels of word
and phrase meaning to each other. We argue that this will enable interesting per-
spectives on the compositional processes taking place at the intersection from word
to phrase meaning.

Table 8.12 presents an overview of all factors that turned out significant in at least
one of the regression models on the adjective, noun or phrase level. The direction of
the effect is given in terms of +, − or 0, where 0 indicates that a significant effect on
one level could not be reproduced on the other. This table enables a distinction of two
types of factors according to their behavior on both levels of analysis: Variables with
coefficients proven to be statistically significant and concordant (with regard to their
direction) on both the word and the phrase level are denoted consistent, all others in-
consistent.25 Consistent factors are mostly directly propagated from the word to phrase

24In fact, the factors NounFreq and NumNounSenses (accounting for the number of different word senses
according to WordNet) show a rather strong positive correlation in our data (ρ = 0.55; p < 2.2 · 10−16),
confirming the claim put forward by Kilgarriff (1997).

25Recall from Section 8.3.1 that the coefficients involved in a regression function can only be interpreted
in the context of all other variables in the respective model. Therefore, the overview presented in
Table 8.12 might be criticized as an overgeneralization from a strictly mathematical perspective, as
it implies a comparison of individual coefficients across several regression models. Nevertheless, we
argue, the concentration of perspectives conducted here may still reveal interesting insights into the
interplay of word and phrase meaning in C-LDA, as long as the conclusions to be drawn are not
interpreted in terms of exact rules but rather general tendencies.
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Feature Adj. Level Noun Level Phrase Level

AdjEntropy + n/a +
NounEntropy n/a + +
PhraseEntropy n/a n/a +

AdjFreq − n/a −
NounFreq n/a + 0
PhraseFreq n/a n/a 0
AttrPseudoDocsFreq − − −
MeasurableAttr − − −
AdjMorphAttr − n/a 0
AdjMorphAttr:AdjFreq + n/a 0
AdjMorphAttr:MeasurableAttr + n/a +
AbstractnessAdj 0 n/a +
AbstractnessAdj:AdjEntropy 0 n/a −
AbstractnessNoun n/a + +
AbstractnessNoun:NounFreq n/a − 0
AbstractnessNoun:NounEntropy n/a 0 −

Table 8.12: Impact of features on word and phrase vector quality

level as a result of multiplicative vector composition, whereas inconsistent factors shed
light on interesting compositional processes underlying C-LDA. In that respect, this
summary also complements the compositionality analysis in Section 8.2.

Consistent Factors

Entropy Features. Consistently across adjective, noun and phrase representations,
vector entropy turns out as a reasonable approximation of vector quality: The lower its
entropy, the lower the rank of the correct attribute(s) within a vector. On the other hand,
vector entropy – and particularly phrase vector entropy – is clearly not sufficient to
explain vector quality in its own right, as is reflected by the rather modest coefficients of
the entropy variables throughout all levels of analysis: There is a considerable number
of C-LDA vectors that exhibit low entropy, yet promote incorrect attributes for a given
adjective-noun phrase.

Frequency Features. Densely populated pseudo-documents providing large amounts
of training data for the individual attributes are generally supportive for attribute selec-
tion. For adjectives, we find that the larger their global frequency, the better both their
individual vector quality and the quality of the composed phrase vectors they take part
in. Only if an adjective is sufficiently frequent in the first place, there is a chance to
capture its attribute meaning reliably by means of surface dependency patterns.
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8 Explaining C-LDA Performance in Large-scale Attribute Selection

Attribute Semantics. In line with the results from re-training C-LDA on confined
subsets of attributes (cf. Section 7.3.4), the correct attribute being measurable is strongly
advantageous. If the correct attribute is not measurable, however, attribute selection is
most likely to yield a suboptimal result for the respective adjective-noun phrase.

Interaction between Adjective and Attribute Semantics. Attribute measurability
also acts as an important moderator on morphological relatedness. In general, adjec-
tive representations generated by C-LDA tend to prefer morphologically marked ad-
jectives26, unless the respective adjective denotes an attribute that is measurable. Note
that this explains the relative advantage of L-LDA over C-LDA on the subset of mea-
surable attributes (cf. Table 7.16 on page 119 and Fig. 7.6 on page 121). Apparently,
adjectives denoting measurable attributes require a great deal of disambiguation rather
than smoothing.

In a nutshell, major obstacles to attribute-based adjective representations as gener-
ated by C-LDA are due to infrequent, morphologically unmarked adjectives denoting
attributes that are not measurable. As a result of multiplicative vector composition,
these detrimental characteristics of adjective meaning are directly propagated from the
word to the phrase representation.

Noun Semantics. Abstractness of the noun consistently stands out as the factor with
the strongest impact on the noun and the phrase level, indicating that attribute selection
by C-LDA stronlgy benefits from concrete nouns.

Inconsistent Factors

We now turn to the factors found to be inconsistent, i.e., to exhibit interesting variance
across the word and the phrase level. From the perspective of semantic compositional-
ity, there are two explanations for this kind of divergences:

1. If a factor is encountered in one constituent, but not on the phrase level, it must
have been compositionally overridden by the other constituent.

2. If a factor is encountered on the phrase level, but in only one of the constituents,
it must have been compositionally introduced by the other constituent.

In the following, we explore compositional effects that are triggered by nouns and over-
ride or introduce some aspects of adjective meaning. After that, we focus on the inverse
effect, i.e., the noun being affected by compositional processes triggered by the adjec-
tive.

26This effect is present both on the word and the phrase level; it is not significant on the latter, though.
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Adjective-based Recovery from Insufficient Nouns. Abstractness of adjectives acts
as a positive factor on the phrase level, strongly in favor of concrete adjectives. On
the phrase level, abstractness further acts as a moderator on the positive relationship
between adjective entropy and phrase vector quality, such that low entropy coincides
with lower ranks for concrete adjectives; for adjectives showing a medium or even high
degree of abstractness, however, the predictive power of vector entropy considerably
diminishes. On the word level, there is no evidence for abstractness as a valid main
effect, and neither for the interaction between abstractness and vector entropy, which
suggests that some properties in the semantics of the noun result in the appearance of
adjective abstractness as a significant predictor on the phrase level. We illustrate this
by way of the examples27 given in Table 8.13 on the next page.

It turns out that, if NounEntropy is high (either because the noun is highly abstract in
nature and tends to resist attribute-based modeling or because it is highly polysemous
and collapsing the attribute profiles of its various senses into one vector representation
yields an uninformative distribution), low values of AbstractnessAdj and AdjEntropy
are essential in order to achieve good phrase vector quality. The example phrases abnor-
mal power and short life as given in Table 8.13 are cases in point, where uninformative,
low-quality vector representations resulting from rather abstract nouns are leveled out
by concrete adjectives whose vector representations are much more selective and of ex-
cellent quality, thus empowering C-LDA to select the correct attribute in both cases.
This analysis is further supported by the phrase equal terms as displayed in the same
table: The noun exhibits similar properties with regard to abstractness and vector en-
tropy, whereas the adjective is in itself rather abstract and poorly modeled. Conse-
quently, the composed vector is incapable of capturing the correct attribute meaning of
the phrase. We visualize this pattern in Fig. 8.6 on the following page28.

Morphologically marked Adjectives: Disambiguation and Deterioration Effects. Adj-
MorphAttr emerges as another inconsistent factor of adjective meaning. Ranking mor-
phologically marked adjectives lower than morphologically unmarked ones on aver-
age, C-LDA can be considered very effective in alleviating sparsity issues in adjective
representations that are due to morphological relatedness. Highly frequent adjectives,
however, are responsible for a reversal in this preference, which we traced back to their
relatively high ambiguity potential (cf. Kremer et al., 2012). Both these effects are lev-
eled out by vector composition, which suggests some heterogeneous influence of C-
LDA noun representations.

27In selecting these examples, we controled for highly abstract, highly frequent and highly polysemous
nouns resulting in uninformative, low-quality vector representations. The adjectives exhibit various
patterns of abstractness and individual vector entropy in order to demonstrate in which cases these
features of an adjective make a difference in predicting phrase vector quality.

28In this and the subsequent visualizations of compositional processes underlying C-LDA, nodes labeled
with + represent variables with a positive impact on phrase vector quality, whereas variables with a
detrimental impact are labeled with −.
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− + + +

NounEntropy
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AttrRankComp
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Noun Adjective Phrase

Figure 8.6: Adjective-based Recovery from Insufficient Nouns

abnormal power short life equal terms
(NORMALITY) (DURATION) (EQUALITY)

NounEntropy 7.361527 7.016088 7.420787
AbstractnessNoun 0.628940 0.631840 0.700700
NounFreq 96320 200215 61831
NumNounSenses 9 14 7

AdjEntropy 6.104194 4.230792 7.022189
AbstractnessAdj 0.459440 0.563920 0.608870

AttrRankAdj 1 2 77
AttrRankNoun 71 119 71
AttrRankComp 1 1 62

Table 8.13: Examples for adjective-based recovery from insufficent nouns

high mountain modern history
(HEIGHT) (MODERNITY)

AdjMorphAttr TRUE TRUE

AdjFreq 1147823 263866
AdjEntropy 5.670378 5.599181

NounEntropy 6.858342 6.936956
AbstractnessNoun 0.281690 0.471770
NounFreq 13842 131973
NumNounSenses 2 5

AttrRankAdj 89 62
AttrRankNoun 1 1
AttrRankComp 5 6

Table 8.14: Examples for disambiguation of ambiguous morphologically marked ad-
jectives by nouns
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evil purpose offensive remark nasty trick
(EVIL) (OFFENSIVENESS) (NASTINESS)

AdjMorphAttr TRUE TRUE TRUE

NounEntropy 6.908904 6.576570 6.488986
AbstractnessNoun 0.634390 0.584540 0.543240
NounFreq 45542 1635 4592
NumNounSenses 3 2 7

AttrRankAdj 2 5 8
AttrRankNoun 164 245 205
AttrRankComp 6 33 37

Table 8.15: Examples for deterioration of morphologically marked adjectives on the
phrase level

On the one hand, the AdjMorphAttr:AdjFreq interaction disappears, which we in-
terpret in terms of a positive disambiguation effect being triggered by nouns. This is
shown in Table 8.14 for the adjectives high and modern: Both of them may also con-
vey evaluative readings, which are strongly dispreferred in the context of the nouns
mountain and history, however. Note that these examples nicely illustrate the view pur-
ported by Asher (2011) that the contribution of the noun constituent is predominant
in the compositional semantics of adjective-noun phrases in that nouns introduce type
presuppositions that are preserved throughout adjectival modification. On the other
hand, the overall preference for morphologically marked adjectives on the word level
may also deteriorate as a result of vector composition. We conclude that in a consid-
erable number of cases, the contribution of the noun vectors causes C-LDA attribute
selection to go astray, as illustrated in Table 8.15.

In both cases, it is hard to identify noun-specific characteristics that are responsible
for the observed disambiguation or deterioration effect. We conjecture that the typi-
cality of the respective attribute in the concept denoted by the noun might play a role,
given that HEIGHT in mountain and MODERNITY in history (triggering disambiguation;
cf. Table 8.14 and Fig. 8.7) are intuitively much more typical29 than EVIL in purpose,
OFFENSIVENESS in remark or NASTINESS in trick (all triggering deterioration; cf. Table
8.15). Given that typicality of features strongly correlates with production frequency
(Mervis et al., 1976), it seems plausible that relations between a noun and attributes
that are highly prominent in its meaning are more frequent in corpora, which shapes
the resulting attribute-based noun vector in a more accentuated way.

Apart from typicality, we suppose that surface sparsity might also be caused by in-
direct predications. By this term we refer to adjective-noun phrases where the attribute
relation does not hold between the adjective Adj and the noun N directly, but rather

29We are using the term typicality along the lines of prototype theory (Rosch, 1973) here, assuming that
some attributes are more central to the meaning of a concept than others.
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Figure 8.7: Disambiguation of morphologically marked, highly frequent adjectives by
nouns
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Figure 8.8: Deterioration of morphologically marked adjectives by nouns

between Adj and an entity or event N′ that is semantically related to N. The phrase
nasty trick (cf. Table 8.15) is a case in point, as nasty is not exactly a predicate over trick;
rather the person that does the trick acts in a nasty way. Consequently, nastiness and trick
are rather unlikely to occur in an overtly observable relation (other than, for instance,
nastiness and person). Therefore, even though NASTINESS is quite well represented in
the adjective vector, the noun vector is almost completely ignorant of this aspect of
meaning. See Fig. 8.8 for a visualization of this deterioration process. Note that this
process provides an explanation for one of the “compositionality puzzles” encountered
in Section 8.2 (cf. ADJ-n-comp subset in Table 8.4 on page 135).

Noun Disambiguation by Adjectives. Inconsistent factors involving C-LDA noun rep-
resentations comprise NounFreq (as a main effect), AbstractnessNoun and NounEntropy
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short life great work difficult time uncomfortable day
(DURATION) (IMPORTANCE) (DIFFICULTY) (COMFORT)

NounFreq 200215 348754 569317 257258
NumNounSenses 14 7 10 10

AdjEntropy 4.230792 7.368324 7.023659 6.145984
AbstractnessAdj 0.563920 0.573950 0.799080 0.593280
AdjFreq 418048 1225742 301267 16989

AttrRankAdj 2 11 18 193
AttrRankNoun 119 20 67 71
AttrRankComp 1 1 19 151

Table 8.16: Examples for disambiguation of nouns by adjectives

⃗life =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ASSURANCE : 0.045
HOLINESS : 0.035
HANDINESS : 0.033
QUALITY : 0.033
ORDINARINESS : 0.027
CHANGEABLENESS : 0.025
HAPPINESS : 0.025
SEX : 0.021
BENIGNITY : 0.021
FULLNESS : 0.019

...
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(a) Word vector: life

⃗short⊙ ⃗life =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

DURATION : 0.18
NICENESS : 0.12
CONSTANCY : 0.11
DISTANCE : 0.09
SENSATIONALISM : 0.08
LENGTH : 0.03
BENEFICENCE : 0.03
DULLNESS : 0.03
PITCH : 0.02
BENIGNITY : 0.02

...
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(b) Phrase vector: short life

Figure 8.9: Fragment of attribute-based vector representations comprising 10 most
prominent dimensions

(in interactions).
Following our analysis of individual noun vector quality, we interpret NounFreq as a

proxy of noun polysemy. Against this background, we consider it a desirable property
of the C-LDA model that high noun frequency is found as a detrimental feature on the
word level that is leveled out by vector composition, as this indicates that adjective
representations are largely capable of resolving ambiguity issues present in attribute-
based noun representations.

Consider the examples in Table 8.16: All phrases shown are composed of highly fre-
quent nouns, each of them exhibiting numerous senses according to WordNet. Conflat-
ing this variety of senses in one vector representation may result in a rather blurred,
hardly selective attribute profile as sketched, for the noun life, in Fig. 8.9. Note that
at least two senses of life coalesce in the ten most prominent dimensions of its C-LDA
word vector, as the attributes ASSURANCE, HOLINESS and ORDINARINESS are related
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Figure 8.10: Disambiguation of nouns by adjectives

to a collective interpretation of the term, whereas QUALITY, CHANGEABLENESS, HAP-
PINESS and FULLNESS clearly denote aspects of individual living30. Thanks to the con-
tribution of the adjective, the phrase vector as depicted in Fig. 8.9 correctly promotes
the DURATION attribute to the first rank and generally tends to favour other aspects of
individual living (e.g., NICENESS, CONSTANCY).

With regard to the specific characteristics of the adjectives that support disambigua-
tion, we find that among different configurations of abstractness, morphological re-
latedness, vector entropy and frequency as summarized in Table 8.16 on the previous
page, the latter factor is the most decisive one. Apparently, high corpus frequencies
of adjectives are generally beneficial, since they increase the chance of obtaining more
accentuated adjective representations, and may even contribute to the resolution of am-
biguity issues in noun representations as summarized in Fig. 8.10.

Susceptibility of abstract nouns to unselective adjectives. Moreover, Abstractness-
Noun moderates NounEntropy on the phrase level such that only for concrete nouns,
low-entropy word representations coincide with high phrase vector quality. In case of
abstract nouns, C-LDA may still produce highly selective noun vectors that tend to pro-
mote the wrong attributes in the phrase meaning, however. This interaction between
AbstractnessNoun and NounEntropy has not been observed on the level of individual
noun representations, which indicates a considerable proportion of inauspicious com-
binations of particular adjectives with abstract nouns in the data.

The most important characteristics of the adjectives involved in such combinations
can be understood from the examples in Table 8.17 on the facing page. The adjective
vectors involved in these examples are either not selective enough in order to reinforce
the correct attribute(s) as found in the noun vector (cf. the relatively high adjective vec-
tor entropy in manifest disapproval and accurate measurement), or simply fail to capture the
attribute meaning of the adjective by giving strong preferences to incorrect attributes

30These senses are paraphrased in WordNet as denoting “living things collectively” and “the actions and
events that occur in living [...] of an individual”, respectively.
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manifest disapproval unswerving devotion accurate measurement
(OBVIOUSNESS) (CONSTANCY) (ACCURACY)

NounEntropy 6.242087 5.773019 6.358582
AbstractnessNoun 0.692660 0.725450 0.679850

AbstractnessAdj 0.767840 0.621350 0.638840
AdjEntropy 6.619185 5.079476 6.351236
AdjFreq 7290 514 87214

AttrRankAdj 198 179 46
AttrRankNoun 16 20 6
AttrRankComp 101 49 13

Table 8.17: Examples for susceptibility of abstract nouns to unselective adjectives

−

Noun Adjective Phrase
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med
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high
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Figure 8.11: Susceptibility of Abstract Nouns

(cf. low entropy and low quality of the adjective vector in unswerving devotion), thus
causing a deterioration of individual noun vector quality. We conclude that abstract
nouns, even if represented by sufficiently selective word vectors, are particularly sus-
ceptible to poor adjective representations, as summarized in Fig. 8.11. Note that this
pattern provides an explanation for another “compositionality puzzle” from Section
8.2, i.e., the adj-N-comp subset (cf. Table 8.4 on page 135).

8.3.5 Major Findings and Discussion

The analysis presented above helped to reveal some of the major strengths and weak-
nesses of the C-LDA attribute model. On the positive side, adjective-noun phrases most
likely to be effectively modeled by C-LDA tend to exhibit a combination of features
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wide road young people hot water
(WIDTH) (AGE) (TEMPERATURE)

AdjEntropy 6.684649 5.160293 5.903032
NounEntropy 6.751190 6.836761 6.139176
PhraseEntropy 4.440063 2.696725 2.044959

MeasurabilityAttr TRUE TRUE TRUE

AttrPseudoDocsFreq 8413 73234 28751

AdjFreq 473767 642947 145770
AdjMorphAttr TRUE FALSE FALSE

AbstractnessNoun 0.322410 0.445570 0.326570

AttrRankAdj 8 1 1
AttrRankNoun 1 7 3
AttrRankComp 1 1 1

Table 8.18: Examples exhibiting beneficial combinations of consistent factors

such as the following (cf. Table 8.18 for exemplary instantiations of such phrases):

• low vector entropy

• highly populated pseudo document for the correct attribute

• high corpus frequency of the adjective

• measurable attribute

• morphologically marked adjective

• concrete noun

As a particular strength of the model, we emphasize that C-LDA is capable of generat-
ing reliable adjective representations even in cases of morphological relatedness, where
purely pattern- or dependency-based approaches are doomed to failure (cf. analysis of
smoothing power in Section 7.3.2). In general, C-LDA adjective vectors are of a bet-
ter individual quality than their counterparts representing nouns, as revealed by their
respective impact on the quality of composed vectors.

On the other hand, the analysis also clearly points out the limitations of an attribute-
based distributional model such as C-LDA: First and foremost, the inventory of at-
tributes investigated in the large-scale experiment is separable along a measurability
axis that strongly correlates with selection performance: Measurable attributes gently
favor, while non-measurable ones tend to resist attribute selection.

Measurable attributes largely subsume physical or experiential properties. Given that
learning abstract word meanings from experientially grounded data is considered to be
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sense consequence regard assumption attitude
explanation disregard understanding distinction sympathy

Table 8.19: 10 nouns in HeiPLAS-Dev set with highest values in abstractness

a “fundamental challenge” (Andrews et al., 2009), it is not surprising that C-LDA faces
a challenge in modelling abstract concepts. Even human subjects may find it difficult
to provide succinct attribute-based descriptions for this class of concepts31.

Against this background, the fact that C-LDA does provide adequate vector repre-
sentations for a subset of the data provides supporting evidence for the view that it is –
at least partially – possible to induce experientially grounded knowledge from purely
textual sources (cf. Baroni et al., 2010), even at the higher granularity of attributes rather
than individual properties.

Finally, we were able to identify a number of compositional processes underlying C-
LDA attribute models which either (i) enable the system to recover from some of the
detrimental characteristics encountered on the level of modeling word meaning (e.g.,
disambiguation of polysemous nouns or highly frequent, morphologically marked ad-
jectives), or (ii) explain some of the weaknesses of C-LDA in large-scale attribute selec-
tion, e.g., the susceptibility of abstract nouns to unselective adjectives or the deteriora-
tion of morphologically marked adjectives due to indirect predications32.

8.4 Options for Enhancing C-LDA Performance

Capitalizing on the results of the regression anaylsis just presented, we explore the
prospects of optimizing C-LDA performance by improving individual word vector rep-
resentations in order to yield attribute-based vector representations that are more infor-
mative with regard to the correct attribute(s) denoted by an adjective-noun phrase and,
thus, better suited for attribute selection.

We frame this task as an optimization problem in a distributional enrichment frame-
work33. In this framework, individual word vectors are enriched by means of com-
plementary distributional information, such that a particular objective function yields an

31We encourage the reader to try this for the examples in Table 8.19 which constitute the ten most abstract
nouns in the development set.

32The latter phenomenon is closely related to event-based adjectives which already surfaced in Chapter
5 of this thesis in the context of adjective classification. Apart from obvious parallels in their linguistic
behavior, indirect predications and event-based adjectives have in common that they are very hard for
human subjects to identify in corpus annotation studies: As discussed in Section 5.1.4, we were not
successful in establishing a separate class of event-based adjectives on empirical grounds. Likewise,
the annotators of the HeiPLAS data, despite being instructed accordingly in the annotation guide-
lines (cf. Appendix B), were not fully reliable in eliminating indirect predications from the WordNet
examples. In fact, that is the only reason why example phrases involving indirect predications such
as nasty trick and warm coat do actually appear in the data analyzed in this study.

33Formal details of distributional enrichment are deferred until Chapter 9.
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Phrase Entropy Noun Entropy Adj. Entropy

all attributes 0.21∗∗∗ 0.11∗∗ 0.15∗∗∗

property attributes 0.17∗∗∗ 0.08 0.16∗∗

measurable attributes 0.47∗∗∗ 0.06 0.34∗∗∗

selected attributes 0.35∗∗∗ 0.05 0.18∗∗

Table 8.20: Correlation scores (Spearman’s ρ) between composed ranks and entropy of
word and phrase vectors

optimal value. For this task, we consider phrase vector quality as a criterion for the ob-
jective function to be maximized. More precisely, we will use the regression equations
learned in regressing phrase vector quality (cf. Section 8.3.2) as objective functions in
the optimization process, arguing that the impact of a particular vector update opera-
tion (i.e., whether an update results in an improved or an impaired vector representa-
tion) can be evaluated in terms of the expected changes in the dependent variable.

As discussed throughout Section 8.3, there are several options for regressing phrase
vector quality which consequently result in different options to formulate an objective
function based on this quantity. These are briefly explained in the following.

Oracle. An obvious strategy to optimize phrase vector quality is to formulate an ob-
jective function in terms of AttrRankComp:

minimize AttrRankComp (8.14)

Note that this objective function includes an oracle as it involves information about
the correct attribute, which is generally not available to the model at prediction time.
Therefore, it is not compatible with an unsupervised setting.

No-Ranks. As a second option, the regression equation obtained from the BE-NoR
model (cf. Table 8.8 on page 148) can be used as objective function. This model is less ad-
equate in explaining phrase vector quality, but fully compatible with an unsupervised
distributional setting as it does not leverage any external information about which at-
tributes are correct for a given example phrase. Removing all insignificant factors from
the original regression equation yields:

minimize AttrRankComp =3.14− 0.92 MeasurableAttr

− 0.14 AttrPseudoDocsFreq

+ 0.71 AbstractnessNoun

+ 0.18 PhraseEntropy (8.15)
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Minimal. A minimal objective function relies on PhraseEntropy as the only factor to
be minimized:

minimize AttrRankComp = PhraseEntropy (8.16)

Apart from its parsimony34, this objective function shows another interesting property
in that PhraseEntropy is expected to harmonize particularly well with the measurabil-
ity filter discussed above. This can be seen from Table 8.20, where correlation scores
between composed ranks and vector entropy in phrase and individual word vectors,
respectively, are compared for different attribute inventories.

In Chapter 9, these settings will be embedded into a novel distributional enrichment
framework for systematic vector updating that aims to establish a principled strategy
to improve the performance of topic-based attribute models in attribute selection.

8.5 Summary

This chapter was devoted to a linear regression analysis of various factors that deter-
mine the performance of C-LDA in the task of attribute selection from adjective-noun
phrases. Our intention was three-fold: (i) to determine strengths and weaknesses of the
system at the levels of lexical meaning and compositionality, (ii) to gain insights into
the linguistic processes at the intersection of lexical and phrasal meaning, and (iii) to
devise an optimization strategy that is targeted at improving the predictive quality of
C-LDA in attribute selection.

Compositionality. The rules of compositionality are found to be largely intact and
successfully mirrored in C-LDA, given that vector composition yields relative improve-
ments in vector quality in more than 90% of the instances in the large-scale development
data. We consider this a justification of our approach to treat attributes as an abstract
layer of meaning that is shared between adjectives and nouns. Attribute selection can
be seen as an intersective process, and the multiplicative vector composition method
anchored in C-LDA mimics this intersective character of the problem quite well. With
regard to the relative contribution of the constituents to the compositional meaning of
the phrase, we found that the adjective is more influential than the noun. This is in-
teresting from a theoretical perspective, as it qualifies attribute selection as a process
where the adjective selects the most appropriate attribute(s) from a range provided by
the noun, in line with Pustejovsky (1995).

In sum, the compositional aspect of the attribute selection problem is captured by
C-LDA; sources of error mainly concern the semantic layer of word meaning and its
suitability to be modeled by attribute-based vector representations, as well as certain
properties of attribute meaning (to be summarized below).

34According to Occam’s Razor, simple theories are generally preferable over more complex ones: “Accept
the simplest explanation that fits the data” (MacKay, 2003).
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8 Explaining C-LDA Performance in Large-scale Attribute Selection

Lexical Meaning and Attribute Meaning. On the level of attribute meaning, we found
that measurability of the correct attribute for each example phrase is highly benefi-
cial for attribute selection. To a lesser extent, this also holds for attributes being sub-
classified as properties in WordNet. On the other hand, attributes that are neither mea-
surable nor a property pose a hard challenge to C-LDA. Due to their abstractness and
fine granularity, grouping them toghether (either manually or using automatic cluster-
ing approaches) might be a promising avenue to pursue in future work. These aspects
have been attested both in a regression analysis of phrase vector quality and in an ex-
periment that evaluates C-LDA performance on different subsets of attribute invento-
ries. On the contrary, lexical ambiguity on the level of attributes is not an issue for
C-LDA.

On the level of word meaning, we found a general qualitative superiority of adjec-
tive over noun vectors. Moreover, we highlighted several lexical properties that are
beneficial to attribute selection, among them morphological relatedness of adjectives
(showing that C-LDA smoothing is very effective in overcoming sparsity issues due
to rare occurrences of adjectives with their morphologically marked attribute nouns in
linguistic surface patterns) and a limited degree of polysemy as well as semantic con-
creteness of nouns.

Intersection of Word and Phrase Meaning. Linking the results obtained from re-
gressing word and phrase vector quality to one another, we identified several linguisti-
cally plausible processes at the intersection of word and phrase meaning. In particular,
C-LDA shows robust capabilities in resolving lexical ambiguities. Disambiguation is
found to be mostly triggered by adjectives, but – in particular circumstances – also by
nouns. Moreover, confirming both the stronger compositional impact of adjectives over
nouns in C-LDA and their qualitative superiority, adjectives also have the potential to
help the model “recover” from insufficiently modeled noun meanings.

Optimization Strategies. Having traced back most of the deficits of C-LDA to the
level of lexical modeling, we will develop a new optimization strategy for distribu-
tional semantic models using factors from regression analysis as objective function for
optimization. Along these lines, a complete framework for enhancing attribute selec-
tion performance of topic-based attribute models will be formulated in the next chapter.
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9 Distributional Enrichment: Improving
Structured Vector Representations

Distributional semantic models are usually instantiated as structured or unstructured
ones, thus enforcing either specificity or density. Depending on its intended purpose, it
may seem reasonable to maximize specificity or to minimize sparsity in a distributional
model: Lexical tasks such as attribute selection, for instance, clearly call for an inter-
pretable, structured model such as C-LDA, as shown in the previous chapters of this
thesis. Using the same model in a similarity judgement task for predicting phrasal sim-
ilarity for pairs of adjective-noun phrases, however, turns out not successful (Hartung
and Frank, 2011a).

In this chapter, we propose a novel framework for distributional enrichment in order to
combine the specific advantages of structured and unstructured distributional models.
Key to distributional enrichment is the idea to augment structured representations of
individual words to centroids of their nearest neighbours, while keeping the principle
of meaning representation along structured, interpretable dimensions intact and at the
same time increasing the overall density of the semantic space. The selection of nearest
neighbours is carried out in an auxiliary model, i.e., a distributional space that repre-
sents semantic information from a different perspective that is complementary to the
original model. This approach aims at reducing the sparsity of the structured meaning
representations, while preserving their specificity to the largest extent possible.1

Distributional enrichment can be instantiated in various ways and, hence, tailored
to various lexical tasks. In the context of this thesis, the motivation for distributional
enrichment arises from the poor performance of topic-based attribute models in large-
scale attribute selection.

This chapter is structured as follows: In the next section, we provide more technical
detail on the general idea of distributional enrichment, including background and mo-
tivation. In Section 9.2, we describe the notion of auxiliary models which is at the core
of distributional enrichment. We discuss possible instantiations of auxiliary models
and assess their suitability for enhancing topic-based attribute models in a systematic
benchmark test against the BLESS data set (Baroni and Lenci, 2011). A formal descrip-
tion of the distributional enrichment framework is given in Section 9.3. Besides, this
section presents concrete instantiations used in an experiment on applying the frame-

1Erk et al. (2010) follow a similar idea by relying on a primary and secondary corpus for selectional
preference modeling. In their approach, however, the aspects of complementarity and preservance of
specificity are less pronounced than in the framework proposed here.
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work to C-LDA and L-LDA attribute models to improve their large-scale attribute se-
lection performance. The results of this experiment are summarized and discussed in
Section 9.4. Section 9.5 concludes the chapter by summing up the major findings.

9.1 General Idea and Overview

Similarly to recent work by Zhang et al. (2014), distributional enrichment aims at model
combinations from different semantic perspectives. In cases where semantic represen-
tations generated by structured distributional models are too sparse or otherwise unre-
liable, distributional enrichment exploits complementary sources of distributional in-
formation and integrates them into an orginal (structured) distributional space. As a
major challenge in distributional enrichment, auxiliary models have to be designed as
to preserve most of the semantic information contained in the original model, while
generating denser and more reliable meaning representations.

Due to their underlying complementarity, original and auxiliary models usually dif-
fer in their dimensionality. Therefore, their vector representations are not easily in-
teroperable, i.e., vectors from the original and the auxiliary model cannot be directly
combined with each other.

In addition, the distributional enrichment framework to be proposed here stipulates
a vector update process which iterates between the original and the auxiliary model, as
depicted in Figure 9.1. This figure contains three distributional models in their graph-
ical representation: the original model before the update (which in our case is an
attribute-based structured distributional model) in the top left area, an auxiliary model
(which we posit as an unstructured distributional model) at the bottom, and the origi-
nal model after the update2 in the upper right area. The visualization of these models
is restricted to three dimensions each. These dimensions are semantically different,
which is indicated by different axis labels: In the original model(s), they correspond
to attributes (denoted as a1, a2 and a3), while the dimensions of the auxiliary model
correspond to arbitrary context words (denoted as c1, c2 and c3).

Distributional enrichment comprises the four steps of target retrieval, carrier selection,
carrier projection and centroid construction (indicated in the figure by labels ➀ to ➃), which
we describe in the following by way of an informal example:

➀ Target Retrieval: Assume that the attribute-based vector representation of the
noun tractor in the original model is unreliable. The vector representation of trac-
tor in the auxiliary model is looked up.

➁ Carrier Selection: This step aims at collecting additional semantic information
in the auxiliary model. To this end, a number of vectors that are located in close

2In fact, the update process underlying distributional enrichment integrates complementary distribu-
tional information provided by the auxiliary model into the original model. The difference between
the originial model before and after the update is made here only for ease of presentation. Technically,
they are the same object.
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a1
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a3
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car
truck
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tractor

truck
car
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Figure 9.1: Distributional enrichment as a four-step process including: ➀ target retrieval
in the auxiliary model, ➁ carrier selection in the auxiliary model, ➂ carrier
projection back into the original model, and ➃ centroid construction in the
original model
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proximity to tractor in auxiliary space are collected. We refer to these vectors
as carriers. In our example, car and truck are selected as carriers for tractor, as
indicated by the dotted region in Figure 9.1. An important question is how to
determine the number of carriers to be selected for a given target. This will be
discussed in Section 9.3.

➂ Carrier Projection: For each of the selected carriers, carrier projection retrieves
structured vector representations from the original model. In our example, this
yields attribute-based vectors for car and truck. This step can be seen as the inverse
of target retrieval. Note that up to now, no additional information has been added
into the original model.

➃ Centroid Construction: Finally, the structured vector representations correspond-
ing to the carriers are used to construct a centroid vector in the original space. In
our example, the centroid, denoted as tractor′ is computed from the structured
vectors of tractor, car and truck. Only at this point, the original model is updated
such that the vector originally representing tractor is replaced by the centroid
tractor′. The selection of carriers and their projection to a centroid vector has to
be optimized in such a way that the new structured representation of tractor is
semantically closer to car and truck (cf. dotted arrow in Figure 9.1), and thus more
reliable relative to the original vector.

Assumptions. This procedure is aimed at the derivation of richer structured represen-
tations in the sense that the properties characterizing a particular vector are passed on
to its semantic neighbours. Overall, this leads to a denser and more coherent seman-
tic space. Two requirements must be be met to achieve this result: First, significant
overlap between targets and carriers is required, i.e., the original model must provide
structured meaning representations for a substantial proportion of carrier elements in
the first place. Second, the auxiliary model must be constructed in such a way that
the carriers can be expected to promote exactly the intended features, i.e., proximity
in the auxiliary model needs to correlate with semantic relatedness between target and
carriers.

9.2 Auxiliary Distributional Models

As discussed in the previous section, the main function of auxiliary models in distribu-
tional enrichment is to select appropriate carrier vectors from the semantic neighbour-
hood of the targets of enrichment. Thus, auxiliary models provide a complementary
semantic perspective in the interest of higher overall density of the original structured
model. Carrier selection can be performed in a paradigmatic manner by nearest neigh-
bour search (Yianilos, 1993) or by relying on the strength of association between a target
and syntagmatically related context words. In both cases, it is crucial that the carriers
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are carefully selected in order to avoid semantic drift effects (McIntosh and Curran,
2009) when being projected back into the structured model and used for centroid con-
struction. With respect to our goal of using distributional enrichment for enhancing
structured attribute models, the carrier vectors need to be selected such that they are
attribute-preserving, i.e., that their attribute profiles are semantically compatible with the
target representations to be enriched.

9.2.1 Benchmarking First- and Second-order Auxiliary Models for
Attribute-preserving Carrier Selection

In this section, various options for constructing auxiliary models will be subjected to
a benchmark investigation in order to assess their suitability for acquiring attribute-
preserving carrier vectors. In particular, we compare the prospects of first-order vs.
second-order auxiliary models for this task.

Recall from Section 2.3.4 that first-order distributional models use purely syntagmatic
contexts as features to describe a target word, whereas second-order models capitalize
on contexts of first-order context words. Due to higher density in the resulting mean-
ing representations, second-order distributional models can a priori be expected to be
particularly effective in discovering paradigmatic neighbours.

Paradigmatic relatedness is not necessarily equivalent to an attribute-preserving re-
lationship, though: For instance, the phrases small boy and small house establish a valid
paradigmatic relation between boy and house. Obviously, however, these concepts do
not share an attribute-preserving relation.3 This leads to the question as to which distri-
butional contexts facilitate the acquisition of attribute-preserving semantic neighbours
in first- and second-order distributional models. We approach this question by subject-
ing various instantiations of both types of models to the BLESS benchmark (Baroni and
Lenci, 2011) which has been specifically designed for comparatively evaluating distri-
butional semantic models of different kinds. In this study, we assume that membership
in the same ontological category is a sufficient condition for two concepts to be sub-
stantially compatible in their attribute meaning (cf. Baroni et al., 2010).

Benchmark data. As argued by Baroni and Lenci (2011), a thorough evaluation of vec-
tor space models should address the aspects of (i) “determining to what extent words
close in semantic space are actually semantically related”, and (ii) “analyzing, among
related words, which type of relation they tend to instantiate”. For these purposes, the
same authors released the BLESS data set which is, to our knowledge, the most care-
fully designed and most comprehensive data set currently available that covers both
these aspects.

The BLESS data consists of manually selected triples of target concepts, their relata
and the particular semantic relation that holds between them. Consider Table 9.1 for

3Similar arguments can be brought up for the case of syntagmatic relations as well.
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Concept Relation Relatum

alligator-n COORD crocodile-n
dishwasher-n HYPER appliance-n

snake-n MERO tongue-n
castle-n EVENT defend-v
coat-n ATTRI short-j

bottle-n RANDOM-N microphone-n
plum-n RANDOM-V tour-v
table-n RANDOM-J fast-j

Table 9.1: Examples of triples taken from BLESS data set (Baroni and Lenci, 2011)

Cardinality
Relation min. avg. max.

COORD 6 17.1 35
HYPER 2 6.7 15

RANDOM-N 16 32.9 67

Table 9.2: Distribution of coord, hyper and random-n relations in the BLESS data set
in terms of minimal, average and maximal number of relata per target word
(taken from Baroni and Lenci (2011))

instructive examples. As can be seen from the table, BLESS features six types of rela-
tions in total4. Overall, the data set comprises 200 unique target concepts5 associated to
5676 unique relata in 26654 different relations. For additional information concerning
further statistics or details of the construction of the resource, the reader is referred to
Baroni and Lenci (2011).

For the purpose of using BLESS as a benchmark for evaluating auxiliary distribu-
tional models with respect to their capacity of acquiring attribute-preserving relata (in
the terminology of BLESS), we are mainly interested in those triples involving COORD

and HYPER relations, assuming that concepts being linked by one of these relations
are most likely to share similar attribute profiles. For comparison, we consider the
RANDOM-N relation as well. Relevant statistics about the distribution of these types of

4As for the relation types, coord, hyper and mero are relations between nouns, denoting co-hyponymy,
hypernymy and meronymy, respectively. event denotes a relation between a noun and a typical
event the concept is involved in or affected by. attri stands for a relation between a noun and
an adjective denoting one of its attributes (without any further specification of the attribute itself).
Finally, random-* is included in order to control for nouns, verbs and adjectives that are semantically
unrelated to the target. (Baroni and Lenci, 2011)

5Baroni and Lenci (2011) point out that their focus was on semantically concrete concepts when they
compiled the data set.
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relations in the BLESS data are reported in Table 9.2.

Procedure. Our benchmarking methodology is as follows:

1. For each target concept in BLESS, we use the vector representations in Vaux to pre-
dict its nearest neighbours at ranks k = 1, k = 3 and k = 5, based on computing
the cosine vector similarity (as introduced in Chapter 2) over all pairs of nouns
contained in Vaux.

2. For each of these neighbours, we look up the semantic relation that holds between
the target and the neighbour according to BLESS.

3. If this relation is one of COORD or HYPER, the prediction counts as positive; if
the relation is RANDOM-N (or any other BLESS relation), the prediction counts as
negative. If the predicted neighbour is not covered by BLESS, we check whether
it is a synonym according to WordNet6. In this case, the prediction counts as
positive as well, otherwise as unknown.

4. Vaux is assigned overall precision-at-rank scores7 (P@k) computed as the fraction
of positive predictions among all (i.e., positive+ negative+ unknown) predic-
tions (Manning et al., 2008).

5. In order to assess the quality of nearest neighbours that are unknown to BLESS,
we consult the WordNet taxonomy as an additional resource, computing the av-
erage inverse path distance (IPD)8 between the target and the nearest neighbour
over all unknown and (for comparison) positive cases.

9.2.2 Benchmark Results

First-order models. We constructed various instantiations of first-order distributional
models along contextual paths9 inspired from previous work (Padó and Lapata, 2007;

6For this purpose, we look up all synsets of which the target noun is a member, irrespective of any sense
distinctions. Every noun in each of these synsets is considered as a synonym of the target noun.

7Lenci and Benotto (2012) use Average Precision (AP; Kotlerman et al. (2010)) as a metric for evaluating
ranked neighbour lists reflecting the BLESS semantic relations. We do not adhere to this metric here,
as deviations from the ideal ranking are averaged over all ranks by AP. For assessing the prospects of an
auxiliary model in distributional enrichment, however, we are mainly interested in the performance
on the first k ranks, which is why we consider precision-at-rank more meaningful for our purposes.

8Intuitively, the shorter a path linking two nodes in the taxonomy, the higher their semantic relatedness.
(Budanitsky and Hirst, 2006) IPD accounts for this intuition by computing the inverse of the shortest
of all possible paths between two lemmas, taking all their synsets into account. Thus, IPD scores
range from 0 to 1, with larger values indicating a higher degree of relatedness. An IPD score of 1
is awarded only if two words are members of the same synset. For computing IPD, we rely on the
Wordnet::Similarity package (Pedersen et al., 2004).

9The cooccurrences instantiating the dependency paths were extracted from the pukWaC corpus (Baroni
et al., 2009).
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Parameter Setting

Num. Dimensions 2000
Component Weighting Function PosPMI (Niwa and Nitta, 1994)
Stopword Filtering active
Lemmatization active
Frequency Thresholds θbow ≥ 10; θdep ≥ 1
BOW context window 5 words left, 5 words right
Part-of-Speech Tags Penn Treebank, coarse-grained

Table 9.3: Best parameter settings in first-order auxiliary models as determined in
BLESS benchmark; part-of-speech tags from the Penn Treebank (Marcus
et al., 1993) are mapped to their base class (i.e., all different noun tags to
N, all verb tags to V, etc.); frequency thresholds θbow and θdep are applied to
relations extracted from bag-of-words or dependency paths, respectively.

P@1 P@3 P@5
Avg. IPD Avg. IPD
(unknown) (positive)

N:COORD:N 0.38 0.34 0.30 0.15 0.28
N:SBJ:V:OBJ1:N 0.03 0.01 0.01 0.08 0.27
N:SBJ:V 0.02 0.01 0.01 0.08 0.31
N:SBJ:M:VC1:V 0.02 0.02 0.01 0.08 0.27
N:OBJ:V 0.09 0.08 0.06 0.08 0.29
N:OBJ:M:VC1:V 0.00 0.00 0.00 0.10 0.23
N:SBJ:V:PRD1:J 0.02 0.01 0.01 0.07 0.15
N:SBJ:M:VC1:V:PRD1:J 0.02 0.01 0.01 0.09 0.16
N:SBJ:V:IOBJ1:N 0.00 0.00 0.00 0.09 0.26
N:SBJ:M:VC1:V:IOBJ1:N 0.01 0.01 0.01 0.11 0.23
N:NMOD1:I:PMOD1:N 0.13 0.07 0.05 0.08 0.36
N:NMOD1:N 0.16 0.09 0.08 0.06 0.35
N:SBJ:V:PRD1:N 0.12 0.10 0.07 0.10 0.23

Top-4 0.36 0.27 0.22 0.06 0.34
Top-2 0.33 0.26 0.22 0.09 0.32
all 0.40 0.30 0.24 0.09 0.30

BOW 0.32 0.25 0.21 0.11 0.35

Table 9.4: Benchmark results for best instantiations of first-order auxiliary models (cf.
Table 9.3) on BLESS data
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Rothenhäusler and Schütze, 2009) and subjected them to the benchmark methodology
described above. The best overall parameterization is given in Table 9.3. The perfor-
mance values corresponding to these settings are displayed in Table 9.4 which is struc-
tured as follows: The area above the first horizontal line contains the performance of
each contextual path (as given in the first column10) when being used to construct an
individual model. The area below this line contains three configurations with in which
all, the top-2 and the top-4 contextual paths (according to their individual precision) are
collapsed into one model. For comparison, the performance of a model constructed
along bag-of-words contexts11 is given below the second horizontal line.

As can be seen from the table, the best precision at k = 1 (P@1 = 0.40) is obtained
from the configuration that combines all individual dependency paths into one model.
Due to its linguistically more principled way of extracting contextual material, this
model clearly outperforms the BOW configuration (P@1 = 0.32). Breaking down the
overall score into the contribution of individual paths, we find that overall performance
is largely determined by the N:COORD:N relation. Given that this relation can be consid-
ered as the syntagmatic manifestation of a paradigmatic functional relation, this result
is not surprising. Moreover, the predictions of N:COORD:N are most stable on subsequent
ranks, as becomes evident from a comparative inspection of the P@3 and P@5 scores.

Interestingly, there seems to be no complementarity among the best-performing in-
dividual paths, as can be seen from the fact that the combinations of N:COORD:N with
N:NMOD1:N (i.e., the Top-2 configuration) and with N:NMOD1:N, N:NMOD1:I:PMOD1:N and
N:SBJ:V:PRD1:N (Top-4), respectively, yield a performance inferior to N:COORD:N on its
own. This effect is also confirmed by investigating IPD for predicted neighbours un-
known to BLESS: Average IPD amounts to 0.15 for N:COORD:N in these cases, which is
clearly the best result across all configurations (including the combined models).

In the face of these results, the capacity of first-order models to be used as auxiliary
models in distributional enrichment of C-LDA vector representations must be consid-
ered questionable. Even though there might be some potential in neighbours classified
as unknown by BLESS, an overall chance of less than 50% for acquiring an attribute-
preserving auxiliary vector obviously poses a risk for distributional enrichment.

10Our notation for specifying dependency paths is as follows: Each path begins with the part-of-speech
tag of the target word and ends with the part-of-speech tag of the context word. In between, there is
either exactly one dependency edge label (in case of a path containing only one edge) as generated by
the Malt parser (Nivre et al., 2007) or an alternating sequence of edge labels and part-of-speech tags
of intermediary nodes (in case of longer paths). Edge labels point from the syntactic dependent to the
head by default, inverse edges pointing to the dependent are marked by 1 (as in SBJ1, for instance).
All elements within a path description are separated by a colon.

11The window used to extract context words for a target element in this setting comprises five words
to the left and five words to the right, which is a common setting in the literature (cf. Mitchell and
Lapata (2010), among others). For full comparability, all other parameters are in concordance with
the settings used for the dependency-based models as given above.
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Parameter Setting

Num. Dimensions 2000
Component Weighting Function PosPMI (Niwa and Nitta, 1994)
Stopword Filtering active
Lemmatization active
Frequency Thresholds bow+bow: θbow ≤ 10

dep+dep: θdep ≥ 1
combined: θbow ≥ 5; θdep ≥ 1

Part-of-Speech Tags Penn Treebank, coarse-grained

Table 9.5: Best parameter settings in second-order auxiliary models as determined in
BLESS benchmark; part-of-speech tags from the Penn Treebank (Marcus
et al., 1993) are mapped to their base class (i.e., all different noun tags to
N, all verb tags to V, etc.); frequency thresholds θbow and θdep are applied to
relations extracted from bag-of-words or dependency paths, respectively.

P@1 P@3 P@5
Avg. IPD Avg. IPD
(unknown) (positive)

N:OBJ:V/V:OBJ1:N 0.30 0.23 0.20 0.12 0.27
N:SBJ:V/V:SBJ1:N 0.07 0.05 0.04 0.09 0.23
N:COORD:N/N:COORD1:N 0.52 0.48 0.46 0.16 0.30
N:SBJ:V:OBJ1:N/N:OBJ:V:SBJ1:N 0.07 0.07 0.05 0.12 0.47
N:NMOD:N/N:NMOD1:N 0.15 0.13 0.12 0.13 0.34
N:NMOD1:I:PMOD1:N/N:PMOD:I:NMOD:N 0.13 0.09 0.08 0.11 0.29
N:SBJ:V:PRD1:N/N:PRD:V:SBJ1 0.20 0.02 0.02 0.15 0.36
all-inv 0.29 0.23 0.19 0.12 0.29
sel-inv 0.37 0.27 0.21 0.13 0.27

N:BOW5:N/sel-dep 0.19 0.15 0.15 0.12 0.29
sel-dep/N:BOW5:N 0.33 0.26 0.20 0.13 0.28
N:BOW5:N/N:COORD:N 0.24 0.22 0.19 0.12 0.34
N:COORD:N/N:BOW5:N 0.55 0.50 0.45 0.16 0.29

N:BOW5:N/N:BOW5:N 0.20 0.14 0.11 0.12 0.31

Table 9.6: Benchmark results for best instantiations of second-order auxiliary models
(cf. Table 9.5) on BLESS data
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Second-order models. As defined in Section 2.3.4, second-order distributional models
are characterized by target and context words being linked along two contextual paths.
Each path can be specified in terms of a syntactic dependency or a bag-of-words rela-
tion.12 In a search for the best instantiation of second-order models for distributional
enrichment, we explored three types of configurations: (i) models constructed from two
inverse dependency paths13 (dep+dep), (ii) models being based on two bag-of-words re-
lations (bow+bow), and (iii) combined models being constructed from one dependency
and one bag-of-words path. The best parameterizations for these models are given in
Table 9.5.

Table 9.6 shows performance figures as achieved by benchmarking various instantia-
tions of second-order models based on these parameterizations against the BLESS data.
The table is sub-divided into three sections: The upper part, above the first horizontal
line, contains purely dependency-based models. The setting all-inv refers to the combi-
nation of all first-order paths from Table 9.4 being extended to yield a second-order path
by their individual inverse. The setting sel-inv refers to the combination of all second-
order paths listed explicitly in the upper part of Table 9.6. The middle part of the table
contains a selection of combined models, where sel-dep refers to the set of first-order
paths taking part in the previously mentioned sel-inv setting. The bottom part, below
the second horizontal line, contains one BOW model14 to be considered as a baseline
for comparison.

Interpreting these results, we observe moderate individual performance of most in-
verse second-order dependency paths. N:COORD:N/N:COORD1:N is a notable exception,
as it yields the best individual performance by far (P@1 = 0.52). As a major advan-
tage, this model performs relatively robust at k = 3 and k = 5 as well, contrary to
the other inverse models. Similarly to first-order dependency models (cf. Table 9.4 on
page 178), combinations of individual inverse second-order models (all-inv, sel-inv) are
detrimental: They clearly outperform the second-order BOW baseline, but do not meet
the performance of the best individual model.

As for the combined models, the results show that combinations using a depen-
dency path in the first and a BOW path in the second step are considerably more
effective than vice versa. The overall best result is achieved by the combination of
N:COORD:N/N:BOW5:N (P@1 = 0.55). Apparently, the best compromise in second-order

12We formalize second-order contextual relations using the notation <path1>/<path2>, where <path1>
and <path2> can be described as given in Footnote 10.

13Dependency paths can be inverted by making each of its constitutive arcs point from the dependent to
the head. For instance, the inverse of the path N:SBJ:V is V:SBJ1:N, the inverse of N:SBJ:V:PRD1:J is
J:PRD:V:SBJ1:N. Combining a dependency path and its inverse path results in a second-order path
that can be considered as linking a target to a context word sharing similar properties, which is highly
desirable for the task of detecting attribute-preserving neighbours. For example, all context words
extracted for a target word w along the second-order path N:OBJ:V/V:OBJ1:N are characterized by
occurring as syntactic objects of the same head nouns (cf. Thater et al., 2010).

14Throughout the entire discussion, BOW5 refers to contextual paths extracted from a bag-of-words context
window of five words to the left and five words to the right of the target word.
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P@1 P@1 P@1
(BLESS) (manual, strict) (manual, lenient)

1st-order: all 0.39 0.51 0.54
2nd-order: N:COORD:N/N:BOW5:N 0.54 0.73 0.79

Table 9.7: Results after manual assessment of nearest neighbours predicted by best
first-order and second-order model

distributional modeling can be achieved from being as restrictive as necessary in the
first step and as permissive as possible in the second.

Compared to their respective first-order counterparts, most of the inverse second-
order paths yield relative gains in their individual performance15, at small margins,
though. However, N:COORD:N/N:COORD1:N is the only dependency-based second-order
setting outperforming the first-order BOW model (P@1 = 0.52 vs. P@1 = 0.32; cf. Ta-
ble 9.4). This clearly shows that second-order distributional models are not prima facie
superior to plain first-order BOW models, if particular semantic relations are in focus
(hypernyms and co-hyponyms, in our case). With careful, linguistically principled con-
text selection, however, their larger potential becomes clearly visible.

Discussion. The generally high quality of the BLESS data set notwithstanding, all
benchmark results reported above have to be considered in light of the large propor-
tions of nearest neighbour predictions that could not be evaluated due to coverage is-
sues of the gold standard. In case of the best-performing second-order model, for in-
stance, the proportion of unknown nearest neighbours amounts to more than 42%. As
a first attempt to estimate the quality of these predictions, we computed path distance
metrics for unknown predictions in all models. These scores, as reported in Tables 9.4
and 9.6, can be seen as rough estimates of the quality of unknown predictions. Given
the general limitations of path-based distance metrics computed from the WordNet tax-
onomy16, they are certainly not fully accurate.

In order to obtain a more solid estimation, we manually evaluated the unknown
nearest neighbour predictions of the best-performing first-order (configuration all; cf.
Table 9.4) and second-order model (N:COORD:N/N:BOW5:N; cf. Table 9.6) with respect to
whether target words and their nearest neighbours according to the auxiliary model
can be expected to exhibit similar attribute profiles. This criterion was operational-
ized in two settings: In the strict setting, only members of the same semantic category

15Except for N:NMOD:N/N:NMOD1:N.
16Most importantly, WordNet has been found to exhibit varying granularity across different areas of the

taxonomy (Leacock and Chodorow, 1998) (e.g., the shortest path between rice and potato comprises
three nodes, while the one linking freezer and microwave has length 7), and concepts whose semantic
relatedness is due to aspects different from hyponymy are often widely dispersed across the taxonomy
(e.g., tennis, ball and net). The latter issue is known as the “tennis problem” (Fellbaum, 1998).
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were accepted (i.e., co-hyponyms and hypernyms), assuming that their attribute pro-
files should be characterized by significant overlap (e.g., cauliflower–leek, giraffe–rhino). In
the lenient setting, only partial overlap in the attribute profiles was required, i.e., near-
est neighbours were also accepted if their category membership differs from the target,
while they still share some aspects of meaning that indicate agreement of individual
attributes. This situation may be caused by concordant telic roles (Pustejovsky, 1995) as
in spinach–sauce, for instance.

The results of this study (in terms of P@1) are shown in Table 9.7. Both models show
a considerable boost in performance relative to the BLESS setting, which indicates that
a high proportion of nearest neighbours not covered by the BLESS gold standard is ac-
tually attribute-preserving. Given the difficulty of the task – each nearest neighbour
is picked from a total set of 5676 candidates –, we consider the overall precision of
the N:COORD:N/N:BOW5:N model (P@1 = 0.79) very satisfactory. Among the remaining
errors of this model, there is a high proportion of “near misses” due to topical relation-
ships between the target and the predicted nearest neighbour (e.g., pub–supermarket,
fighter–battle).

Conclusions. From these benchmark results, we draw the following conclusions: First,
distributional enrichment of attribute-based vector representations should capitalize
on second-order auxiliary models built from a combination of contextual paths that in-
corporate syntactic coordinates in the first and their syntagmatically related nouns in
the second step (N:COORD:N/N:BOW5:N). Second, first-order models are not suitable for
detecting attribute-preserving nearest neighbours, given their low performance in our
tailored benchmarks. Nevertheless, they may still be useful for distributional enrich-
ment in a purely syntagmatic setting where the context words being extracted from
contextual paths are directly taken as (syntagmatic) neighbours at face value, rather
than being used as features in paradigmatic nearest neighbour acquisition.

9.3 Distributional Enrichment for Attribute Selection

Overview. In this section, we apply distributional enrichment to structured distribu-
tional attribute models. Following a formal definition of the framework, we devise
concrete instantiations to be used for enhancing topic-based attribute models. Our goal
is to test whether distributional enrichment is capable of improving large-scale attribute
selection performance, thus minimizing the gap between C-LDA and semi-supervised
approaches (cf. Section 7.3.5 on page 122).

Formal definition of the framework. Let w be a target word, w⃗attr its vector represen-
tation in the structured distributional model Vattr spanning attributes A as dimensions,
and w⃗aux its vector representation in the auxiliary model Vaux with context words C as
dimensions. We define the following parameters:
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• structured distributional model Vattr:

Vattr =

{
w⃗attr

⏐⏐⏐⏐⏐ w⃗attr = ∑
a∈A

ω(w, a) · e⃗a

}
, ∀w ∈Wattr (9.1)

• auxiliary model Vaux:

Vaux =

{
w⃗aux

⏐⏐⏐⏐⏐ w⃗aux = ∑
c∈C

ω(w, c) · e⃗c

}
, ∀w ∈Waux (9.2)

• targets of enrichment I:

I ⊆Wattr (9.3)

defines whether distributional enrichment is applied to all targets in Wattr or only
a subset of them.

• target retrieval function η:

η : I → Vaux (9.4)

is used to retrieve the vector representation ⃗iaux from Vaux for a particular target
of enrichment i ∈ I, based on string identity.

• carrier elements J:

J ⊆
{

Waux (in paradigmatic setting)

Caux (in syntagmatic setting)
(9.5)

Being represented in both Vaux and Vattr, carrier elements function as the bridge
between structured and auxiliary models. Depending on the concrete instantia-
tion of distributional enrichment, J contains adjectives or nouns. An ideal carrier
j ∈ J provides a strong, attribute-preserving relation to the target of enrichment
i within Vaux. Thus, j can be used to carry complementary semantic information
from Vaux to Vattr in order to enrich the structured representation of i, ⃗iattr. The
vector representing j in the structured model, ⃗jattr, can be retrieved by the carrier
projection function defined below.

• carrier retrieval function θ:

θ : J → Vattr (9.6)

is used to retrieve the structured vector representation ⃗jattr from Vattr for a partic-
ular carrier element j ∈ J, based on string identity.
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• relatedness function r:

r : I × J → R (9.7)

determines the strength of relatedness between a target of enrichment i ∈ I and a
carrier j ∈ J in Vaux. Depending on a paradigmatic or syntagmatic setting, r can
either be based on paradigmatic similarity or a score measuring the strength of
the syntagmatic relation between i and j.17

• ordered set of carriers C for a target i:

C(i) = {⟨jk, λk⟩} with 1 < k < |J|,

where λk = r(i, jk) and a partial ordering is imposed on the pairs ⟨jk, λk⟩ ∈ C(i)
such that

λ1 ≥ λ2 ≥ . . . ≥ λk. (9.8)

Thus, C(i) arranges the carriers for each target i in descending order according to
their strength of relatedness. In the following, we will use the notation Ck(i) in
order to refer to the pair in C(i) at position k.

• carrier projection function µ:

µ : J ×R→ Vattr

is used to map a pair from C(i), consisting of a carrier element and an associated
weight, to a structured vector representation ⃗jattr in Vattr. µ can be instantiated in
a weighted and an unweighted setting, such that

⃗jattr =

{
µweighted(jk, λk) = λk · θ(jk)

µunweighted(jk, λk) = θ(jk)
(9.9)

Here, θ is used to map the carrier element jk back into the structured attribute
space. The retrieved vector may be weighted according to its relatedness to jk,
using λk as a scaling factor.

• objective function predict-quality:

predict-quality : Vattr → R (9.10)

This function predicts the estimated quality of an attribute-based phrase represen-
tation based on different regressor variables estimated during linear regression of
phrase vector quality (cf. Section 8.4).

17Accordingly, we will instantiate r with cosine similarity and PosPMI scores, respectively, in different
model instantiations.
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Distributional Enrichment as Centroid Construction:

w⃗′attr(k) :=w⃗attr ⊕
K

∑
k=1

µ(Ck(w))

=w⃗attr ⊕
(
λ1 · ⃗j1attr ⊕ . . .⊕ λK · ⃗jKattr

)
for the smallest number 1 ≤ K ≤ |J| such that

predict-quality(w⃗′attr(k)) ≤ predict-quality(w⃗′attr(k− 1)),

where initially

predict-quality(w⃗′attr(0)) = predict-quality(w⃗attr).

Figure 9.2: Formal statement of Distributional Enrichment; w⃗′attr(k) denotes the cen-
troid replacing the original structured vector w⃗attr in the k-th iteration of
the procedure.

In distributional enrichment, predict-quality serves the purpose of an objective
function, i.e., to assess whether a particular noun vector w⃗attr ∈ Vattr can be ex-
pected to contribute to an enhanced attribute-based phrase representation when
being added to the centroid. Based on the regression functions for maximizing
phrase vector quality as given in Equations (8.14)–(8.16) on page 169, we explore
three different instantiations of predict-quality for the task of improving structured
noun representations in a distributional attribute model:

predict-qualityoracle = AttrRankComp (9.11)

predict-qualityno−ranks = 0.71 AbstractnessNoun+ 0.18 PhraseEntropy

− 0.92 MeasurableAttr− 0.14 AttrPseudoDocsFreq
(9.12)

predict-qualityminimal = PhraseEntropy (9.13)

Smaller values of predict-quality correspond to an expected higher quality of w⃗attr.
Note that all regressor variables in the original regression functions that are in-
dependent of the noun vector to be enhanced (e.g., factors related to adjective
vectors) are omitted in these instantiations, as they can be regarded as constants
for the purposes of predict-quality.
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1: function UPDATE(Vattr, Vaux, I, J, η, θ, C, µ, r, predict-quality)
2: for all i ∈ I do
3: ⃗centroid← w⃗iattr

4: vectorList← empty list
5: vectorList.append(w⃗iattr )
6: objValue← predict-quality(w⃗iattr )
7: for 1 ≤ k ≤ |J| do
8: vectorList.append(µ(Ck(i)))
9: ⃗tmp← buildCentroid(vectorList)

10: currentObjValue← predict-quality( ⃗tmp)
11: if currentObjValue ≤ objValue then
12: ⃗centroid← ⃗tmp
13: objValue← currentObjValue
14: else
15: break
16: end if
17: end for
18: w⃗iattr

′ ← ⃗centroid
19: end for
20: end function

Figure 9.3: Algorithm for Iterative Vector Updating

Formal statement. Based on these parameters, the goal of distributional enrichment
of Vattr is to replace w⃗attr by a centroid w⃗′attr which is constructed from the top-K carriers
⟨jk, λk⟩ ∈ C(w), as displayed in Fig. 9.2.

Iterative update algorithm. Thus, distributional enrichment can be seen as a min-
imization problem which we solve by means of an iterative vector update algorithm.
Apart from different assignments of the parameters introduced above (which will be
discussed in Sections 9.3.1 and 9.3.2 below), the core procedure is generic across all
instantiations. It is implemented as given in Fig. 9.3:

• For each target of enrichment i ∈ I, the procedure yields an attribute-based vector
representation w⃗iattr

′ which is set to the centroid of all carrier vectors satisfying the
objective criterion (cf. line 18). Initially, ⃗centroid is set to w⃗iattr (cf. line 3). Thus, in
the special case that no carrier can be found that satisfies the objective criterion,
w⃗iattr

′ equals w⃗iattr , i.e., no update is performed.

• Carrier vectors that are candidates to become members of the centroid are col-
lected in a list vectorList which initially contains w⃗iattr as its only element (cf. lines
4 and 5). In each step of the inner loop (lines 7–17), the kth-best carrier vector
from C(i) is added to vectorList (cf. line 8).

• The objective criterion is assessed in a “looking-ahead” approach (cf. lines 9–16):
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An intermediate centroid is computed from the current elements of vectorList and
stored in ⃗tmp. By applying the objective function to ⃗tmp (cf. line 10), the relative
quality of the intermediate centroid can be evaluated: An equal or lower score of
currentObjValue compared to objValue (which stores the objective value previously
determined from ⃗centroid) indicates an expected improvement of ⃗tmp over the
previous centroid. In this case, ⃗centroid is set to ⃗tmp (cf. line 12) and the inner loop
continues with the next carrier at rank k + 1. Otherwise, the previous centroid
remains unchanged and the procedure is aborted18 (cf. line 15).

Note that this procedure licenses either (i) to keep the original structured vector or (ii)
to replace it by a centroid that may be constructed from an arbitrary number of carrier
vectors, depending on the lower bound of semantic relatedness between carriers and
targets of enrichment that is introduced by superimposing the objective function onto
the iteration cycle over ordered carriers. In the latter case, the resulting centroid is
assumed to capture more attribute-specific information than w⃗attr in the sense that the
contribution of semantically related carriers will promote coherent sets of attributes in
the structured vector, thus increasing their chances in attribute selection.

Unsupervised nature of the framework. It is important to emphasize, however, that
information about the correct attribute(s) is generally not available to the objective func-
tion at prediction time. Therefore, there is no guarantee that attributes being promoted
by distributional enrichment result in overall adequacy of the distributional profile in
an updated semantic representation. In other words, the enrichment framework pro-
posed here is unsupervised in the sense that it does not include any means in order to
control for the correct attributes being promoted directly. The only means to facilitate
this desired effect is to instantiate the carrier elements in such a way that they exhibit
an attribute-preserving semantic relation to the respective target of enrichment.

Key aspects of distributional enrichment. In the following, we discuss several in-
stantiations of the framework. These instantiations will be compared with regard to
the following key aspects of distributional enrichment (cf. Table 9.8) which we consider the
major determinants for enhancing structured vector representations by distributional
enrichment:

• functional relationship between target and carrier: This basically determines
whether the carrier elements stand in a syntagmatic or paradigmatic relation to
the target words.

• semantic relation between target and carrier: What are the (syntactic) correlates
that facilitate attribute-preserving semantic relations between target and carrier?

18Recall from the definiton of C(i) that subsequent carriers are guaranteed to be less similar to i, which
is why they can be ignored.

188



9.3 Distributional Enrichment for Attribute Selection

Variant
Functional Relationship Semantic Relation

Complementarity
Target – Carrier Target – Carrier

ParaDisE paradigmatic
NN:COORD:NN/

low
NN:BOW5:NN

ParaDisE-Adj paradigmatic
JJ:PRD:VB:SBJ1:NN/

low
NN:SBJ:VB:PRD1:JJ

SynDis-Co syntagmatic NN:COORD:NN low

SynDis-Mo syntagmatic NN:SBJ:VB:PRD1:JJ high

Table 9.8: Key aspects of distributional enrichment in different instantiations of the frame-
work; first column contains an abbreviation used to refer to the respective
model throughout the text

• complementarity: To what extent can the semantic information that is used to
construct the centroid vector be considered as complementary in the sense that it
extends the model with additional information beyond the one initially contained
in Vattr?

9.3.1 Paradigmatic Distributional Enrichment

Paradigamtic distributional enrichment may be used to enhance attribute-based vector
representations of nouns or adjectives, as detailed in the following.

Paradigmatic Distributional Enrichment of Noun Vectors (ParaDisE-Noun)

In this setting, paradigmatic neighbours are used for iteratively updating attribute-based
noun vectors. To this end, the algorithm is initialized with all nouns from Vattr as targets
of enrichment and all target words from Vaux as potential carriers:

I := {w ∈W(Vattr)|w is a noun} J := W(Vaux)

The relatedness function r is set to return the strength of association between each target
i and carrier j in terms of the cosine similarity of their vectors in the auxiliary model:

r(i, j) := cos(w⃗iaux , w⃗jaux)

Thus, the ordered set of weighted carriers for target i, C(i), encompasses the semantic
neighbours of i in Vaux in descending order of their spatial proximity. As Vaux inherits all
parameters from the second-order model that performed best in the BLESS benchmark
(cf. Section 9.2.1), we expect that a large proportion of the nearest neighbours predicted
for i exhibit an attribute-preserving semantic relation of either co-hyponymy, hypernymy,
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or even (near-)synonymy, so that their most prominent attributes are likely to dominate
the attribute profile of the resulting centroid.

Note, however, that ParaDisE-Noun is characterized by low complementarity of in-
formation sources: Given that the attribute information that enters the centroid is not
externally acquired but merely pooled from previously existing noun vectors in Vattr,
there remains a risk of acquiring attribute-preserving neighbours that are insufficiently
represented in Vattr themselves. Depending on whether insufficent representations in
Vattr turn out as an issue that is limited to singular vectors or affects entire semantic re-
gions, this lack of complementarity might undermine the prospects of ParaDisE-Noun.

Paradigmatic Distributional Enrichment of Adjective Vectors (ParaDisE-Adj)

Apart from nouns, paradigmatic neighbours can also be used for enhancing attribute-
based adjective representations. In such an instantiation, all adjectives from Vattr be-
come the targets of enrichment:

I := {w ∈W(Vattr)|w is an adjective} J := W(Vaux)

Analogously to ParaDisE-Noun, the relatedness function r yields the strength of asso-
ciation between each target i and carrier j in terms of their cosine similarity in Vaux:

r(i, j) := cos(w⃗iaux , w⃗jaux)

Note, however, that Vaux must be constructed such that it contains adjectives as target
words. We implement Vaux as a second-order adjective model. The relation between
target and context words is defined by a combination of inverse dependency paths:
JJ:PRD:VB:SBJ1:NN/NN:SBJ:VB:PRD1:JJ. Along these contextual paths, a target adjec-
tive is linked to all other adjectives that are observed as modifiers of the same nouns
in a predicative syntactic construction. Thus, distributional descriptors of the meaning
of property-denoting adjectives in this model are properties that coincide in the same
concepts. For instance, (i) an insurance may be designated as being expensive or costly
at different occurrences in a corpus, (ii) different instances of persons may be described
as young or old, and (iii), apart from being calm, a hotel may also be qualified as luxury
(coincident properties). Being used in a paradigmatic setting, we expect these descrip-
tors to produce semantic neighbours that are highly attribute-preserving. Nevertheless,
similarly to ParaDisE-Noun, paradigmatic enrichment of adjective vectors is also char-
acterized by low complementarity of information sources, because the adjective centroid
is accumulated from previously existing adjective vectors from Vattr.

9.3.2 Syntagmatic Distributional Enrichment

For comparison, we propose two further instantiations of distributional enrichment
based on syntagmatic relations between targets of enrichment and carriers. The syntag-
matic character of this relation has an important implication: While paradigmatically
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related carriers are selected by taking the entire distribution over all dimensions of an
auxiliary vector into account (via the cosine metric), syntagmatic relata are assumed to
be meaningful by themselves due to their in praesentia status19. In that respect, syntag-
matically acquired carriers might serve as an instrument in order to preserve attribute
meaning without relying on the potentially error-prone detour via paradigmatic neigh-
bours.

Distributional Enrichment of Noun Vectors based on Syntagmatic Coordinates
(SynDis-Co)

Contrary to the ParaDisE approach described above, the set of carrier elements equals
the context words from Vaux now, while the targets of enrichment encompass all nouns
from Vattr again:

I := {w ∈W(Vattr)|w is a noun} J := C(Vaux)

The relatedness function r is set to return the component value of w⃗iaux that measures
the strength of the relationship between i and the context word j in Vaux:

r(i, j) := ωaux(wi, wj)

In this instantiation, Vaux is framed as a first-order distributional model with dimen-
sions being selected along the dependency path N:COORD:N20. Thus, all context words
in Vaux are nouns that are syntagmatically related to a target of enrichment i as its syn-
tactic coordinates. We readily utilize these nouns as carrier elements, expecting them to
share a high degree of semantic properties with i and hence to be useful for substituting
the insufficient attribute vector ⃗iattr in Vattr.

Note that this instantiation of the update algorithm requires substantial overlap be-
tween C(Vaux) and W(Vattr), as only those nouns that are already represented in Vattr

can serve as effective carriers. Therefore, low complementarity of information sources
might still be an issue in this model.

Distributional Enrichment of Noun Vectors based on Syntagmatic Predicative
Modifiers (SynDis-Mo)

This variant of the update procedure capitalizes on syntagmatic carrier selection as
well. Analogously to SynDis-Co, J is set to the context words of Vaux and r inherits the
component weights from the auxiliary vectors:

I := {w ∈W(Vattr)|w is a noun} J := C(Vaux)

r(i, j) := ωaux(wi, wj)

19Provided that the particular syntagmatic relation has been carefully selected.
20All other settings are in concordance with the models performing best in the BLESS benchmark (cf.

Section 9.2.1).
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The major characteristics of Vaux, however, crucially differ from SynDis-Co. The cooc-
currences of target and context words in this instantiation of Vaux are exclusively ex-
tracted along the first-order dependency path N:SBJ:V:PRD1:J. As a result, the context
words of Vaux comprise only adjectives that are observed as predicative modifiers of the
target nouns.21

Using adjectives as carrier elements for updating insufficient noun vectors can be
motivated from the compositionality of (property-denoting) adjectives and nouns in
language, given that attribute selection in adjective-noun phrases is an intersective pro-
cess, i.e., the attributes that are highlighted in the compositional semantics of a phrase
are a subset of the ones denoted by an adjective in isolation (cf. Pustejovsky, 1995). In
our own analysis in Section 8.2, we have found a considerable proportion of adjective-
noun phrases in which the adjective triggers compositional gains by promoting the cor-
rect attributes in the compositional phrase vector representation, which supports Puste-
jovsky’s claim that adjectives can be used in language as selectors of properties in the
deep lexical structure of a noun. Consequently, it should be possible to approximate the
total range of the noun’s possible attributes by aggregating a large number of selectors
(in terms of a centroid over adjectives). This is the main idea underlying the design of
the SynDiS-Mo model. Restricting the carrier elements to predicative adjectives only is
motivated by our finding that predicative use is a robust indicator of attribute-denoting
adjectives (cf. Table 5.11 on page 72).

Using adjectives as carriers has positive implications on the complementarity of this
model: Contrary to the previously described update procedures via paradigmatic neigh-
bours and syntagmatic nominal coordinates, it is the only instantiation that incorpo-
rates substantial external information in order to complement the noun vectors already
present in Vattr beforehand. Given that adjective vectors tend to exhibit stronger peaks
in their distribution over attributes, we avoid the risk of running into an “insufficiency
regress” (i.e., constructing the centroid over vectors that are insufficient themselves)
that is inherent in both ParaDisE and SynDis-Co.

9.3.3 Joint Distributional Enrichment of Adjective and Noun Vectors

In this instantiation of the framework, distributional enrichment is applied in order to
enhance adjective and noun vector representations simultaneously. To this end, the
ParaDisE-Noun, ParaDisE-Adj, SynDis-Co and SynDis-Mo models are combined in a
joint model that essentially implements an iterative wrapper procedure around singu-
lar update steps of the indvidual models. At each step of the process, the joint model
considers one update proposal of each individual model and selects the best one ac-
cording to the objective function. In more detail, the joint model for distributional
model is summarized in Fig. 9.4. In the following, we point out the most important
aspects of the procedure:

21Again, all other settings are in concordance with the models performing best in the BLESS benchmark
(cf. Section 9.2.1).
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1: function JOINTDISTRIBUTIONALENRICHMENT(D, M, Vattr, predict-quality)
2: for all phrases p ∈ D do
3: objValue← predict-quality( ⃗adjattr ⊙ ⃗nounattr)
4: adjCentroid← a⃗dj
5: nounCentroid← ⃗noun
6: adjsInCentroid← empty list
7: adjsInCentroid.append(a⃗dj)
8: nounsInCentroid← empty list
9: nounsInCentroid.append( ⃗noun)

10: while true do
11: adjLookAheadList← adjsInCentroid
12: nounLookAheadList← nounsInCentroid
13: for all model instances m ∈ M do
14: cand← m.getNextCarrier()
15: if m is adj model then
16: adjLookAheadList.append(cand)
17: adjLookAheadCentroid← computeCentroid(adjLookAheadList)
18: lookAheadResults← predict-quality(adjLookAheadCentroid ⊙ nounCentroid)
19: else
20: nounLookAheadList.append(cand)
21: nounLookAheadCentroid← computeCentroid(nounLookAheadList)
22: lookAheadResults← predict-quality(adjCentroid ⊙ nounLookAheadCentroid)
23: end if
24: end for
25: bestProposal← arg min(lookAheadResults)
26: if bestProposal.getObjValue() ≤ objValue then
27: bestCarrier← bestProposal.getCarrier()
28: if bestProposal.getModelInstance() is a noun model then
29: nounsInCentroid.append(bestLookAheadResult.getWordVector())
30: nounCentroid← computeCentroid(nounsInCentroid)
31: else
32: adjsInCentroid.append(bestLookAheadResult.getWordVector())
33: adjCentroid← computeCentroid(adjsInCentroid)
34: end if
35: objValue← bestProposal.getObjValue()
36: bestProposal.getModelInstance().removeFromCarriers(bestCarrier)
37: else
38: break
39: end if
40: end while
41: ⃗adjattr

′ ← adjCentroid
42: ⃗nounattr

′ ← nounCentroid
43: end for
44: end function

Figure 9.4: Algorithm for Joint Distributional Enrichment
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• Parameters of the procedure (cf. line 1) are a collection of adjective-noun phrases
D22, a set of individual model instantiations M, a structured attribute model Vattr

and an objective function predict-quality as defined in (9.10) on page 185.

• Two centroids, adjCentroid and nounCentroid, are constructed simultaneously (cf.
lines 4–9), in order to replace the original structured vectors ⃗adjattr and ⃗nounattr in
Vattr (cf. lines 41 and 42). If the objective function does not license any update
throughout the procedure, the original structured vector ( ⃗adjattr or ⃗nounattr in Vattr,
respectively) remains unchanged effectively (cf. initializations in lines 4 and 5).

• At each step of the iterative update procedure (cf. lines 10–40), the individual
model instances m ∈ M are consulted in order to propose a carrier as a candidate
to become a member of one of the centroids (cf. line 14). All proposals collected
within one iteration (in the list variable lookAheadResults) are individually evalu-
ated in a “look-ahead” manner, i.e., they are tentatively added to the centroid and
evaluated by the objective function (cf. lines 15–23). Only the best-performing car-
rier that minimizes the objective value in the current iteration (stored in bestCar-
rier, cf. line 25) actually enters one of the centroids (cf. lines 30 and 33), provided
that it also outperforms the current global objective value (cf. line 26).

• At the transition from one iteration step to the next, the singular bestCarrier is
removed from the carrier list Cm of the respective enrichment model instance m
(cf. line 36). All other carriers from instantiations m′ ∈ M (with m′ ̸= m) that were
not selected as globally optimal are kept in their respective local carrier lists Cm′

23.
Thus, they are still available for selection in further steps and it is guaranteed that
the entire space of carriers (across all model instantiations) can be explored.

• As long as at least one of the model instances in the current iteration yields a
carrier that improves the objective criterion, the procedure continues with the
next iteration; otherwise, it aborts immediately without any further update of the
centroids (cf. line 38).

The parameterizations of individual model instances m ∈ M entering the joint model
follow the specifications given in Sections 9.3.1 and 9.3.2 above.

22Contrary to the individual enrichment models, the joint model is not applied to individual adjectives
or nouns, but to adjective-noun phrases in the first place.

23Recall from definition (9.8) on page 185 that carrier lists within an indvidual instantiation m of en-
richment models M are always arranged in decreasing order with respect to their expected degree of
attribute preservance.
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9.4 Experiment 6: Large-scale Attribute Selection after
Distributional Enrichment

The effectiveness of distributional enrichment in large-scale attribute selection is eval-
uated by measuring the impact of applying the enrichment variants introduced above
to topic-based attribute models.

9.4.1 Experimental Settings

In these experiments, Vattr is instantiated with a topic-based attribute model, i.e., ei-
ther a C-LDA or an L-LDA attribute model in their best-performing configuration as
determined in Experiment 5 (cf. Section 7.3). This implies using multiplicative vector
composition and ESel as attribute selection function. Each instance of these attribute
models comprises a total of 12,987 noun vectors and 3,984 adjective vectors as targets.
Auxiliary spaces are constructed as given below. In all instantiations of Vaux, targets
of enrichment are set to the nouns from Vattr which occur in phrase vectors with ranks
greater than 1, and the carrier projection function µ is used in an unweighted manner.

ParaDisE-Noun. A ParaDisE model for noun enrichment is constructed according to
the settings that achieved best performance throughout the second-order benchmarks
in Section 9.2.2: 2000 dimensions of meaning populated along the second-order paths
N:COORD:N/N:BOW5:N, using positive pointwise mutual information (PosPMI; Niwa and
Nitta (1994)) as component weighting function, stopword filtering and lemmatization
being active, frequency thresholds of θdep ≥ 1 for dependency relations and θbow > 5
for bag-of-words relations, as well as a coarse-grained set of part-of-speech tags with
all tags from the Penn Treebank (Marcus et al., 1993) being mapped to their base class
(i.e., all different noun tags were mapped to N, all verb tags to V, etc.). For comparison,
we test a strictly inverse second-order model along the paths N:COORD:N/N:COORD1:N,
with all other settings being equal. The vocabulary represented in both these models
comprises all 922 nouns from the HeiPLAS data set. Overlap between the target words
in Vattr and the carrier elements in each of these instantiations of Vaux amounts to 92%.

ParaDisE-DM. For comparison, an additional paradigmatic auxiliary model is con-
structed from the Distributional Memory (DM; Baroni and Lenci, 2010) which is presum-
ably the largest and most versatile distributional semantic resource currently openly
available. We use TypeDM, an instantiation of DM that contains 30,693 first-order vec-
tor representations over more than 25,336 dimensions of meaning populated from a
mixture of lexicalized and syntactic patterns. In this setting, lexical overlap between
the target words in Vattr and the carriers selected from Vaux amounts to 100%. Vector
components are weighted according to the degree of variation in the surface realiza-
tions of a pattern (Baroni and Lenci, 2010). For building an auxiliary space from DM,
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Parameter Setting

Num. Dimensions 2000
Component Weighting Function PosPMI (Niwa and Nitta, 1994)
Stopword Filtering active
Lemmatization active
Frequency Threshold θdep ≥ 1
Part-of-Speech Tags Penn Treebank, coarse-grained
Contextual Paths JJ:PRD:VB:SBJ1:NN/NN:SBJ:VB:PRD1:JJ

Table 9.9: Parameter settings of second-order auxiliary model used for paradigmatic
enrichment of adjective vectors (ParaDisE-Adj)

we rely on pre-compiled lists of the 10 nearest neighbours for each TypeDM target as
provided by the authors24. This model allows for an interesting comparison against
our own ParaDisE instantiation as it (i) is purely based on first-order co-occurrences,
(ii) it contains a much larger vocabulary (which enables exploration of a larger seman-
tic space for nearest neighbour selection, on the one hand, but also renders this task
more difficult, on the other), (iii) it is of a much higher dimensionality, and (iv) the di-
mensions are constructed in a different way, relying on a mixture of lexical and syntac-
tic linguistic patterns. We are mainly interested in understanding how a second-order
auxiliary model being tailored to attribute preservation as much as possible compares
to the large-scale and much more general approach underlying TypeDM in a paradig-
matic distributional enrichment scenario.

SynDis-Co. This model contains all nouns from the HeiPLAS data set as target el-
ements, while carriers are selected along (i) the singular first-order dependency path
N:COORD:N or (ii) the combination of all first-order paths as given in Table 9.4 on page 178
(which is equivalent to the best first-order setting in the BLESS benchmark). Again, the
set of part-of-speech tags is reduced to a coarse-grained inventory, with stopword fil-
tering and lemmatization being active. Co-occurrence counts are weighted by PosPMI
and the 2000 nouns resulting in the highest PosPMI values over all targets are selected
as context words (i.e., as carrier elements). In these instantiations, the target/carrier
overlap between Vattr and Vaux amounts to 23% (all paths) and 97% (N:COORD:N).

SynDis-Mo. In this model, the carrier elements comprise only adjectives found as
predicative modifiers of the target words in the HeiPLAS data set, being extracted
from pukWaC along the dependency path N:SBJ:V:PRD:J (using coarse-grained part-
of-speech tags). After stopword filtering and lemmatization, co-occurrence counts are
weighted by PosPMI and the 2000 adjectives resulting in the highest PosPMI values

24The list has been constructed by Partha Pratim Talukdar and is freely available from http://clic.
cimec.unitn.it/dm/materials/ri.w-lw_nn_10.txt.gz.
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over all targets are selected as carrier elements. In this instantiation, the target/carrier
overlap between Vattr and Vaux amounts to 55%.

ParaDisE-Adj. Motivated by our finding that attribute-based adjective vectors have
a stronger impact on phrase vector quality than noun vectors have on average (cf. Ta-
ble 8.7 on page 144), we apply distributional enrichment to adjective representations
as well. We construct a second-order auxiliary model for adjectives according to the
settings given in Table 9.9. The vocabulary being represented in this model comprises
4213 adjectives, the target/carrier overlap between Vattr and Vaux amounts to 91%.

EnJoiDis. A joint enrichment model is implemented as a combination of the ParaDisE-
Noun, ParaDisE-Adj, SynDis-Co and SynDis-Mo models as detailed above, following
the algorithm outlined in Fig. 9.4 on page 193. The EnJoiDis model is applied to all
adjective-noun phrases in the HeiPLAS data.

Evaluation metrics. The impact of distributional enrichment on attribute selection is
measured by comparing the performance of the original C-LDA models and the instan-
tiations of distrubutional enrichment just described, in terms of precision, recall and F1

score (computed as micro averages over all attributes considered).

9.4.2 Experimental Results

Experimental results on the HeiPLAS development set are summarized in Table 9.10
on the following page. Results of distributional enrichment of C-LDA attribute mod-
els are reported in the upper part of the table, results of distributional enrichment of
L-LDA models in the lower part. In the last row of each part, the attribute selection
performance achieved by the original structured attribute models before distributional
enrichment (C-LDA and L-LDA, respectively) are repeated as baselines. Preceding
rows compare the performance of the ParaDisE25, SynDis-Co26, SynDis-Mo, EnJoiDis,
ParaDisE-Adj and ParaDisE-DM enrichment models, where minimal, no-ranks and oracle
denote the objective function being used. The columns refer to precision, recall and F1

scores; statistical significance over the baseline (as determined by iterative re-sampling
(Yeh, 2000; Padó, 2006)) is given in the last column.

Our main interest in analyzing these results is on comparing (i) the effectiveness of
distributional enrichment across C-LDA, L-LDA and the various attribute inventories,
(ii) the individual performance of the different objective functions, and (iii) the impact
of joint modelling in distributional enrichment compared to individual model instanti-
ations.
25The setting based on N:COORD:N/N:BOW5:N consistently outperforms N:COORD:N/N:COORD1:N. There-

fore, only the former is reported here and discussed in the following.
26The setting based on N:COORD:N consistently outperforms the one based on the conjunction of all first-

order paths, which is why only the former is reported here and discussed in the following.
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all attrs. property attrs. measurable attrs. selected attrs.
P R F P R F P R F P R F

ParaDisE minimal 0.08 0.05 0.07 0.18 0.16 0.17 ∗ 0.27 0.22 0.24 0.42 0.41 0.41
no-ranks 0.08 0.05 0.07 0.19 0.16 0.17 ∗ 0.27 0.22 0.24 0.42 0.41 0.42

oracle 0.09 0.06 0.07∗ 0.24 0.20 0.22 0.31 0.25 0.27∗∗ 0.45 0.44 0.45∗

SynDis-Co minimal 0.08 0.05 0.06 0.19 0.17 0.18. 0.27 0.23 0.25 0.42 0.40 0.41
no-ranks 0.08 0.05 0.06 0.19 0.17 0.18. 0.27 0.23 0.25 0.42 0.40 0.41

oracle 0.10 0.07 0.08∗∗ 0.22 0.20 0.21 0.29 0.24 0.26∗ 0.46 0.45 0.46∗∗

SynDiS-Mo minimal 0.08 0.05 0.06 0.28 0.18 0.22 0.27 0.22 0.24 0.43 0.41 0.42
no-ranks 0.08 0.05 0.06 0.28 0.18 0.22 0.27 0.22 0.24 0.43 0.41 0.42

oracle 0.09 0.06 0.07∗ 0.29 0.19 0.23 0.28 0.23 0.25. 0.43 0.42 0.43

ParaDisE-Adj minimal 0.08 0.05 0.07 0.19 0.19 0.19 0.25 0.24 0.25 0.39 0.42 0.40
no-ranks 0.08 0.05 0.07 0.19 0.19 0.19 0.25 0.24 0.25 0.39 0.42 0.40

oracle 0.09 0.06 0.07∗ 0.23 0.21 0.22 0.29 0.26 0.27∗ 0.44 0.46 0.45∗

EnJoiDis minimal 0.09 0.06 0.07∗ 0.21 0.19 0.20 0.26 0.25 0.25 0.40 0.43 0.41
no-ranks 0.09 0.06 0.07. 0.21 0.19 0.20 0.26 0.25 0.25 0.41 0.43 0.42

oracle 0.08 0.05 0.06 0.21 0.19 0.20 0.28 0.24 0.26 0.39 0.42 0.40

ParaDisE-DM minimal 0.08 0.05 0.06 0.19 0.16 0.17. 0.26 0.21 0.23 0.4 0.41 0.40
no-ranks 0.08 0.05 0.06 0.19 0.16 0.17. 0.26 0.21 0.23 0.41 0.40 0.41

oracle 0.09 0.06 0.07∗∗ 0.24 0.20 0.22 0.26 0.21 0.23 0.45 0.45 0.45∗

C-LDA 0.08 0.05 0.06 0.23 0.19 0.21 0.26 0.21 0.23 0.41 0.39 0.40

ParaDisE minimal 0.13 0.02 0.03 0.19 0.06 0.09∗ 0.27 0.22 0.24 0.49 0.33 0.40
no-ranks 0.15 0.02 0.03 0.22 0.04 0.07 0.27 0.22 0.24 0.48 0.33 0.39

oracle 0.15 0.02 0.04 0.31 0.07 0.11∗∗ 0.28 0.23 0.25 0.44 0.33 0.38

SynDis-Co minimal 0.10 0.03 0.04 0.22 0.05 0.09. 0.28 0.22 0.25 0.51 0.35 0.42
no-ranks 0.09 0.02 0.03 0.19 0.04 0.06 0.29 0.23 0.25 0.50 0.35 0.41

oracle 0.16 0.03 0.05∗ 0.29 0.05 0.09. 0.29 0.23 0.26 0.52 0.36 0.42

SynDis-Mo minimal 0.12 0.03 0.05∗ 0.26 0.18 0.21∗∗∗ 0.28 0.23 0.25 0.50 0.35 0.41
no-ranks 0.12 0.03 0.05∗ 0.26 0.18 0.21∗∗∗ 0.28 0.23 0.25 0.50 0.35 0.41

oracle 0.17 0.03 0.05∗ 0.31 0.21 0.25∗∗ 0.28 0.26 0.27 0.52 0.35 0.42

ParaDisE-Adj minimal 0.17 0.02 0.04 0.26 0.05 0.08 0.27 0.25 0.26 0.52 0.35 0.42
no-ranks 0.17 0.02 0.04 0.24 0.04 0.07 0.27 0.25 0.26 0.52 0.35 0.42

oracle 0.17 0.02 0.04 0.26 0.06 0.09. 0.30 0.25 0.28∗ 0.52 0.36 0.43

EnJoiDis minimal 0.15 0.03 0.04 0.22 0.04 0.07 0.27 0.25 0.26 0.48 0.35 0.40
no-ranks 0.13 0.03 0.05 0.25 0.07 0.11∗∗ 0.28 0.25 0.26 0.47 0.35 0.40

oracle 0.12 0.02 0.04 0.23 0.05 0.08∗ 0.29 0.25 0.27. 0.53 0.34 0.41

ParaDisE-DM minimal 0.10 0.02 0.04 0.20 0.05 0.08 0.28 0.22 0.25 0.52 0.33 0.40
no-ranks 0.14 0.02 0.03∗∗ 0.24 0.03 0.06 0.28 0.23 0.25 0.50 0.34 0.40

oracle 0.12 0.02 0.03 0.26 0.05 0.08 0.29 0.25 0.27 0.50 0.37 0.43

L-LDA 0.15 0.02 0.03 0.26 0.03 0.06 0.28 0.22 0.25 0.51 0.33 0.40

Table 9.10: Attribute selection performance on HeiPLAS development set after distri-
butional enrichment of attribute models based on C-LDA (upper part) and
L-LDA (lower part) attribute models; significance over original C-LDA and
L-LDA attribute models, respectively. Best results highlighted in boldface
(unsupervised settings) and italics (oracle setting).
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Figure 9.5: Largest improvements in F1 score (y-axis) over original structured C-LDA
and L-LDA models achieved by distributional enrichment in various in-
ventories of attributes from HeiPLAS-Dev data (x-axis). Texture of bars
indicates different objective functions used (cf. legend).

Overall effectiveness of distributional enrichment. Distributional enrichment is mildly
effective in enhancing the large-scale attribute selection capabilities of both C-LDA and
L-LDA models: Small, but significant improvements of +0.01 and +0.02 points in F1

score over the original C-LDA and L-LDA models can be observed, leading to a maxi-
mum performance of P = 0.09, R = 0.06, F1 = 0.07 for C-LDA and P = 0.17, R = 0.03,
F1 = 0.05 for L-LDA. In smaller subsets of attributes, however, the improvement rate
tends to increase, up to +0.19 points in F1 score relative to the original L-LDA model on
the property attribute inventory. On this subset of the data, distributional enrichment
exhibits a strong preference for L-LDA vector representations; in all other cases, the size
of improvements achieved by distributional enrichment does not seem to be strongly
influenced by the original attribute model being based on C-LDA or L-LDA. These
findings are graphically summarized in Fig. 9.5 which shows the largest improvements
in F1 score over original C-LDA and L-LDA models that can be achieved in individual
instantiations of distributional enrichment across the various attribute inventories. Dis-
tributional enrichment does not affect the overall pattern that L-LDA attribute vectors
enable attribute selection at higher precision, whereas C-LDA representations yield an
attribute selection performance that is more balanced between precision and recall (cf.
discussion in Section 7.3.5).
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9 Distributional Enrichment: Improving Structured Vector Representations

Impact of objective functions. With respect to the three objective functions being
evaluated here, we find that individual models favour the minimal setting, whereas
joint models tend to perform better with no-ranks. In most cases, the gap between un-
supervised settings (i.e., minimal and no-ranks) and the supervised upper bound (oracle)
is rather small (cf. plain vs. crossed bars in Fig. 9.5). This indicates that objective func-
tions merely based on phrase entropy (i.e., minimal) and additional semantic factors
(i.e., no-ranks) are reasonable approximations of the factor to be optimized during dis-
tributional enrichment, i.e., the rank of the correct attribute in the composed phrase
vector. On the other hand, the type of information that unsupervised objective func-
tions have at their disposal is not always sufficient for enhancing phrase vector quality,
as a decrease in vector entropy may also be due to suboptimal updates which either
erroneously promote an incorrect attribute or get stuck after relative improvements of
the correct attribute, for instance. These detrimental effects can be observed in some
of the paradigmatic enrichment models on the property subset, for instance, which are
significantly inferior to the original C-LDA attribute model. Yet, in very few configura-
tions involving joint models, it is even more beneficial to use one of minimal or no-ranks
instead of oracle. In these cases, the supervised update process guided by AttrRankComp
runs into local optima that can be bypassed by relying on an objective criterion based
on phrase vector entropy.

Impact of joint modelling. Our results clearly show that, taken in isolation, all in-
stantiations of distributional enrichment evaluated here are reasonable, given that each
of them tends to develop individual strengths on a particular subset of the data. Fur-
thermore, distributional enrichment generally benefits from combining individual in-
stances of enrichment models into a joint model: First, nearly all instantiations of joint
models across the various attribute inventories outperform the respective original at-
tribute model in either precision or recall.27 Second, the joint models are mostly su-
perior to the individual model instantiations they are composed from, which indicates
that the joint approach effectively exploits complementary aspects of meaning in carrier
vectors in order to construct attribute-preserving centroids.

Example. Fig. 9.6 shows an update process produced by a joint distributional enrich-
ment model28 for the phrase scarce vegetables (correct attribute: QUANTITY). The original
C-LDA model yields an incorrect prediction for this phrase, namely SMELL. The update
process visualized in the figure results in an enhanced structured vector representation
from which the correct attribute is selected.

The example demonstrates that the carrier vectors provided by the individual en-
richment models are individually plausible and capture different aspects of semantic

27The C-LDA property setting poses the only exception to this pattern.
28In this example, the original structured model is a C-LDA model in property attribute space; the update

procedure is run using no-ranks as objective function.
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Figure 9.6: Example of an update process produced by joint distributional enrichment,
visualized as state transition network. States are depicted as nodes, transi-
tions as labeled edges. Possible transitions correspond to carrier elements
provided by an individual enrichment model. Nodes framed in black de-
note the carrier elements that have been selected in the respective transition.

relatedness: Carriers proposed by ParaDisE-Noun and SynDiS-Co tend to be mem-
bers of the same ontological category or at least thematically related (e.g., vegetable–
fruit/salad/bread). ParaDisE-Adj and SynDiS-Mo propose adjectives with a tendency to
be located on the same semantic scale (e.g., scarce–abundant) or selecting typical proper-
ties in the meaning of the modified noun (e.g., vegetable–bland), respectively.

Fig. 9.6 also illustrates the potential of joint distributional enrichment models to con-
struct an enhanced phrase vector representation from various semantic sources which
mutually complement each other. In the given example, the semantic information that
enters the centroid is a mixture of adjectives from the same scale and a collection of
nouns from the same and related ontological categories.

Moreover, the example points out how the impact of a particular carrier element
may vary, depending on the current state of the update process. The contribution of the
carrier grain as proposed by the ParaDisE-Noun model, for instance, is found relevant
only after three carriers from two different sources have been previously used to shape
the centroid towards the intended attribute profile. We consider it another advantage
of joint distributional enrichment that the procedure of combining different semantic
sources in order to construct an enhanced structured representation is implemented
in a way that is aware of possible path depencies. Thus, joint models also bear the
potential of bypassing local optima that may occur in individual models.

9.4.3 Evaluation on Test Set

In a last experiment, the attribute selection capacities of the attribute models based on
C-LDA and L-LDA, after being subjected to distributional enrichment, are evaluated
on the previously held-out HeiPLAS test set. The results are reported in Table 9.11 for
all attribute inventories, using the configurations previously optimized on the devel-
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all attrs. property attrs. measurable attrs. selected attrs.
P R F P R F P R F P R F

ParaDisE 0.09 0.05 0.07. 0.18 0.15 0.16 0.24 0.18 0.20. 0.39 0.37 0.38
SynDis-Co 0.09 0.06 0.07∗∗ 0.18 0.15 0.16 0.24 0.18 0.21. 0.36 0.34 0.35
SynDis-Mo 0.08 0.05 0.06 0.24 0.14 0.17 0.23 0.17 0.19 0.37 0.33 0.35
Adj-ParaDisE 0.08 0.05 0.06 0.17 0.15 0.16 0.20 0.17 0.19 0.38 0.39 0.38.

EnJoiDis 0.09 0.06 0.07∗ 0.17 0.15 0.16 0.22 0.20 0.21 0.36 0.39 0.38.

ParaDisE-DM 0.09 0.06 0.07∗ 0.19 0.15 0.17 0.24 0.18 0.21. 0.37 0.35 0.36

C-LDA 0.08 0.05 0.06 0.18 0.14 0.16 0.22 0.16 0.19 0.38 0.33 0.35

ParaDisE 0.16 0.02 0.04 0.24 0.07 0.11∗ 0.22 0.17 0.19 0.41 0.26 0.32
SynDis-Co 0.08 0.02 0.03∗∗∗ 0.24 0.06 0.09. 0.25 0.20 0.22∗ 0.45 0.26 0.33
SynDis-Mo 0.09 0.02 0.03 0.23 0.14 0.18∗∗∗ 0.22 0.18 0.20 0.43 0.24 0.31
Adj-ParaDisE 0.13 0.02 0.03 0.22 0.04 0.07 0.21 0.18 0.19 0.48 0.31 0.37
EnJoiDis 0.13 0.03 0.05∗∗ 0.28 0.08 0.12∗ 0.21 0.20 0.20 0.42 0.30 0.35
ParaDisE-DM 0.09 0.02 0.03∗∗∗ 0.25 0.05 0.08 0.23 0.18 0.20 0.44 0.26 0.33

L-LDA 0.14 0.02 0.03 0.28 0.04 0.07 0.22 0.17 0.19 0.47 0.26 0.33

Table 9.11: Attribute selection performance on HeiPLAS test set after distributional
enrichment of attribute models based on C-LDA (upper part) and L-LDA
(lower part) attribute models; significance over original C-LDA and L-LDA
attribute models, respectively

opment set. This implies vector composition by multiplication, entropy-based attribute
selection (ESel) and distributional enrichment in the minimal (individual enrichment
models) or no-ranks setting (joint models). Significance codes used in the table refer to
differences over the performance of the original C-LDA or L-LDA model (given in the
last rows of the upper and lower part of the table, respectively).

By and large, the results on the test set confirm the observations during develop-
ment: Distributional enrichment is generally effective, given that, for both C-LDA and
L-LDA, significant improvements over the original attribute models can be obtained in
all subsets of the data.

More in detail, our large-scale evaluation on the entire HeiPLAS test set results in
small, but significant improvements (+0.01 F1 over C-LDA, +0.02 over L-LDA); on
smaller subsets of the data, however, more substantial improvements can be obtained.
The strongest growth rate is achieved by applying SynDis-Mo enrichment to an L-LDA
property space (+0.11 F1; p=0.004). In absolute numbers, the best overall result amounts
to F1=0.38 (P=0.38, R=0.39) as obtained from ParaDisE-Adj over C-LDA on the selected
subset. This corresponds to an increase of +0.03 points in F1 score (p=0.098). The general
tendency of L-LDA favouring precision over recall has been confirmed during testing
once again. Therefore, if precision is in focus, it is most advisable to rely on an L-LDA
attribute model. The best overall precision is yielded by ParaDisE-Adj over L-LDA in
the selected subset (P=0.48). This particular configuration of distributional enrichment
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also exhibits considerable smoothing power, which results in a recall of R=0.31 (+0.05
over the original L-LDA model; p=0.24) and thus comes very close (F1=0.37) to the best
overall model.

Comparing our specifically designed enrichment models to the generic ParaDisE-
DM model, we cannot attest a systematic advantage to the latter: ParaDisE-DM tends
to be on a par with more specific models based on C-LDA (except for the selected at-
tributes sample, where it lags in recall), whereas it is systematically inferior to at least
one specific model throughout all configurations that are based on an L-LDA model.

9.4.4 Discussion

Relationship between attribute inventories and types of enrichment models. Our
experimental results shed light on characteristic relationships between types of enrich-
ment models and particular subsets of the data: On the entire large-scale data set, joint
distributional enrichment generates the most adequate representations, which is intu-
itively plausible under the assumption that the entirety of the HeiPLAS data covers
a variety of phenomena (cf. Section 8.3.4) for which it is hard to devise a unified en-
richment strategy in advance. On the property subset, we find a strong preference for
SynDis-Mo enrichment. This is also obvious given that this model has been specifi-
cally tailored to property-denoting adjectival modifiers based on insights from adjective
classification (cf. Table 5.11 on page 72). Nevertheless, in view of the relatively small tar-
get/carrier overlap in this model instance (cf. Section 9.4.1), the large growth rates ob-
tained are remarkable. These results clearly support the hypothesis that attribute-based
meaning representations can be approximated from syntagmatically related predica-
tive adjectives at least for a fraction of attributes. On the measurable subset, the picture
is less clear: Among the L-LDA configurations, a preference towards the SynDis-Co
model can be observed, whereas for C-LDA, SynDis-Co, ParaDisE, ParaDisE-DM and
Joint are almost on par. Finally, the sample of selected attributes clearly demands for
enrichment of adjective vectors, given that ParaDisE-Adj stands out here (most clearly
visible in L-LDA).

Key aspects of distributional enrichment. These findings are also instructive with
respect to the key aspects of distributional enrichment as introduced in Table 9.8 on
page 189: In view of the particular effectiveness of individual enrichments models in
certain sub-spaces of attribute meaning and the fact that there is no singular configu-
ration of enrichments models that turns out globally most effective, we conclude that
factors relating to the functional and semantic relationship between targets and carri-
ers have a stronger impact on the capacities of distributional enrichment models than
complementarity and overlap, as the former license to tailor the semantic properties of
an auxiliary model to the specific requirements and phenomena in the data. This is cor-
roborated by the observation that, despite its much larger data basis and target/carrier
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Figure 9.7: Performance of C-LDA and L-LDA attribute models in F1 score before
(shaded bars) and after (plain bars) distributional enrichment

overlap, the generic ParaDisE-DM model is found to be on a par with more specific
enrichment models in some configurations, but predominantly inferior.

Comparing C-LDA and L-LDA attribute models after distributional enrichment. Af-
ter distributional enrichment, the differences in attribute selection performance that
have been observed in the original attribute models (cf. Fig. 7.6 on page 121) are largely
leveled out. C-LDA models are still slightly superior in the large-scale challenge and
on the selected attributes subset (and also exhibit a more balanced precision-recall ra-
tio). However, on the property and the measurable inventories, distributional enrichment
causes the best L-LDA models to outperform their C-LDA counterparts.29 These effects
are graphically summarized in Fig. 9.7.

On the one hand, this suggests that in smaller, semantically more confined attribute
spaces, it may be reasonable to use less densely populated, more accentuated word rep-
resentations of the L-LDA type as point of departure, thus leaving the needs for smooth-
ing entirely to the distributional enrichment process. On the other hand, the gradual
assimilation of C-LDA and L-LDA, taken together with the relatively small gains ob-
tained from incorporating an oracle (cf. development results in Table 9.10 on page 198),
may also be indicative of a plateau effect suggesting that distributional enrichment has
exploited its full potential in distributionally enhancing topic-based attribute models in
their current state.

29These differences between C-LDA and L-LDA models after distributional enrichment are not statisti-
cally significant, though.
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Conclusion. Taken together, our results show that unsupervised distributional attribute
models such as C-LDA benefit from distributional enrichment in terms of enhanced
performance in the challenging task of large-scale attribute selection. The improve-
ments are not substantial enough to reduce the disparity between unsupervised and
semi-supervised approaches, though. Nevertheless, there is a clear potential in refining
structured meaning representations by distributional enrichment. In doing so, tailor-
ing auxiliary models to particular types of distributional information may add an addi-
tional gain, compared to using a large-scale distributional resource of lower specificity
as auxiliary model.

The positive impact of distributional enrichment notwithstanding, attribute selec-
tion crucially depends on appropriately restricted sub-spaces of attribute meaning. Al-
together, the attribute inventory offered by WordNet turns out too heterogeneous to
provide a solid foundation for attribute-based distributional semantic modeling. The
fact that our attribute models yield considerable improvements when being adapted
to regions of attribute meaning that are confined by semantic principles (measurable
attributes, property attributes) is encouraging for the general prospects of structured
distributional models, however. With respect to large-scale attribute selection, automat-
ically grouping related attributes together by hierarchical clustering methods (Manning
et al., 2008), for instance, might be a promising avenue to explore in future work.

9.5 Summary

In this chapter, we have introduced a novel framework for distributional enrichment,
with the intended purpose of enhancing structured distributional models with recourse
to auxiliary distributional models. These are designed to encode complementary se-
mantic information in order to facilitate the reduction of sparsity in the original struc-
tured model, while preserving most of the specific semantic information it contains.
At the core of distributional enrichment is the idea of substituting structured vector
representations that are considered insufficient by a centroid of so-called carrier vectors,
i.e., other structured vectors that are found in close proximity to the insufficient ones
in auxiliary space. The members of the centroid are determined by a greedy update
algorithm based on a partial ordering on the carrier vectors with respect to their de-
gree of relatedness and an objective function to assess whether a particular centroid
can be expected to contribute to a more adequate structured meaning represenation.
The framework licenses different instantiations of this objective function capitalizing
on different degrees of supervision.

As proof-of-concept, we have applied distributional enrichment to the attribute-based
word representations in C-LDA and L-LDA attribute models. Owing to the insights de-
rived from the analyses in Chapter 8 that attribute selection performance should, for the
main part, benefit from improved noun vectors, we devised three variants of auxiliary
models for distributional enrichment of structured noun vectors. Relying on the BLESS
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data set for benchmarking, these auxiliary models have been tailored to yield attribute-
preserving carriers, capitalizing on paradigmatic neighbours and predicative modifiers
as carrier elements. These instantiations were supplemented by an additional auxiliary
model for distributional enrichment of attribute-based adjective vectors and a model
combination for enhancing adjective and noun vectors in a joint approach.

In comparison to the attribute selection performance of the original C-LDA and L-
LDA attribute models on the HeiPLAS test set, distributional enrichment yields sig-
nificant improvements of up to +0.11 points in F1 score. Moreover, in the majority of
attribute spaces investigated (all, measurable, property and selected attributes), one in-
stantiation of distributional enrichment is found to outperform a baseline capitalizing
on the Distributional Memory (DM; Baroni and Lenci, 2011) as auxiliary model, which
demonstrates the general potential underlying distributional enrichment for enhancing
structured meaning representations. At the same time, these results emphasize the ben-
efits of tailoring auxiliary models to particular semantic relations of interest. From com-
paring our distributional enrichment models against the DM baseline, we can conclude
that the latter point is even more important than other aspects such as the sheer size of
the auxiliary space or target/carrier overlap across structured and auxiliary space.
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The main research focus of this thesis has been on the automated acquisition of at-
tribute knowledge from textual data. For this purpose, we have relied on adjective-
noun phrases, as they are a ubiquitous source of this type of ontological knowledge in
text corpora. However, this goal implies the challenges that (i) not all adjective-noun
phrases convey attribute knowledge, due to different semantic classes of adjectives, (ii)
lexical types of adjectives and nouns may be highly ambiguous with respect to their
individual attribute meaning, and (iii) attribute meaning is not overtly expressed at the
linguistic surface of an adjective-noun phrase, but implicitly embedded in its composi-
tional semantics.

In the face of these challenges, our approach to attribute learning from text has capi-
talized on corpus-based distributional models. In the form of structured distributional
models, they offer a principled account to the unsupervised corpus-based acquisition
of distributional information of a specific type or relation. At the same time, structured
distributional models tend to induce rather sparse representations of meaning. There-
fore, capturing the attribute relation between adjectives and nouns in such a model
demands for a practical compromise between specificity and sparsity.

10.1 Contributions of this Thesis

Against this background, this thesis contributes to the state of the art in distributional
semantics and knowledge acquisition from text in several ways.

Distributional attribute models between specificity and sparsity. We have developed
different variants of distributional attribute models that aim at reconciling the conflict-
ing goals of specificity and sparsity in distributional modeling. For their empirical eval-
uation, we have established the novel task of attribute selection from adjective-noun
phrases for which we have created two manually annotated gold standards covering
ten core attributes and a large-scale inventory of more than 260 attributes, respectively.

All attribute models are based on a structured distributional model which represents
target adjectives and nouns in relation to attribute nouns as dimensions of meaning.
Two vector mixture operations, viz. vector multiplication and vector addition, are used
to compose attribute-based meaning representations of adjective-noun phrases from
their constituents. Thus, the complexity of the corpus-based acquisition task is sub-
stantially reduced from triples of adjectives, nouns and attributes to pairs of adjectives
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and attributes or nouns and attributes, respectively. On top of this distributional core,
the attribute models are equipped with unsupervised attribute selection functions for
predicting the attribute(s) elicited by an adjective-noun phrase from its composed vec-
tor representation.

In the pattern-based attribute model, a small, focused set of lexico-syntactic patterns
specifically tailored to the task is used to populate attribute-based vector representa-
tions of adjectives and nouns. On the core attributes gold standard, this model outper-
forms previous work on attribute selection from adjectives by wide margins. Extend-
ing the task to a linguistically more adequate scenario in which attributes are selected
from adjective-noun phrases, our models have achieved robust performance, with pre-
cision scores well above 0.60. Moreover, we have empirically demonstrated that our
approach of complexity reduction throughout the corpus-based acquisition of mean-
ing representations is essential in order to circumvent fundamental sparsity issues in
purely pattern-based distributional models. Otherwise, the acquisition of sufficiently
dense attribute-based vector representations is intractable, which renders the attribute
selection task infeasible.

Dependency-based models are built from a range of manually devised dependency
paths. Compared to lexico-syntactic patterns, these paths (i) provide more flexibility
in capturing sparse surface relations between attributes and adjectives/nouns, and (ii)
aim at a semantically richer distributional representation of attribute meaning by con-
sidering additional paths linking attributes and verbs. Dependency-based models have
been found to achieve a substantial advantage over pattern-based ones in terms of re-
call, while their precision lags behind in most of the cases.

Moreover, we have proposed topic-based attribute models which represent attribute
meaning via attribute-specific topics induced from weakly supervised variants of La-
tent Dirichlet Allocation, C-LDA and L-LDA. In their underlying distributional con-
tents, topic-based attribute models are equivalent to the dependency-based ones. How-
ever, C-LDA and L-LDA augment purely distributional dependency-based represen-
tations of attribute meaning with probabilistic techniques geared towards smoothing
and disambiguation. Throughout all experiments, topic-based attribute models incor-
porating attribute-specific topics have consistently outperformed purely distributional
approaches in terms of F1 score, also offering good trade-offs between precision and
recall. A focussed evaluation on particularly sparse vectors has revealed that C-LDA,
due to its excellent smoothing capacities, is best prepared among all models to alleviate
sparsity issues.

Distributional enrichment. In Chapter 9, we have proposed a novel framework of
distributional enrichment that is designed to augment structured distributional models
with complementary distributional information. We have applied distributional en-
richment to attribute models in order to improve the semantic expressivity of attribute-
based noun representations. Contrary to representing each target word by one attribute
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vector, distributional enrichment yields centroids of attribute-based noun representa-
tions which are acquired from auxiliary models, i.e., distributional sources comple-
mentary to the ones taken into account by previous attribute models. In order to en-
rich attribute-based adjective and noun representations, we have tailored our auxiliary
models to provide distributionally similar nouns or semantically related adjectives.

Large-scale attribute selection. In Chapter 7, we have carried out attribute selection
on a large scale, presenting the system with more than 260 attributes as possible can-
didates to select for a given adjective-noun phrase. Our results show that this poses a
great challenge to our systems across all settings and configurations. However, restrict-
ing the attribute inventory to ontologically confined sets (i.e., measurable and property-
denoting attributes) renders the large-scale selection task more tractable.

Large-scale attribute selection over measurable and property-denoting attributes has
served as an empirical testbed for distributional enrichment of C-LDA and L-LDA at-
tribute models. In a contrastive evaluation, we have found that distributional enrich-
ment achieves small, but significant improvements over both types of topic-based at-
tribute models for different configurations of auxiliary models. Using the Distributional
Memory (Baroni and Lenci, 2011) as auxiliary model for comparison, we have been able
to show that distributional enrichment benefits more from the specificity of the comple-
mentary information than from the wide coverage of a multi-purpose auxiliary model.

Adjective-noun compositionality. In our experiments, we have found that attribute
selection is most effectively modeled as an intersective compositional process, using
vector multiplication in order to combine adjective and noun representations. Analyz-
ing the interface of word and phrase meaning in our C-LDA model in Chapter 8, we
have identified a recurrent pattern of adjectives having a stronger impact on the promi-
nence of the correct attribute(s) in the phrase representation than nouns. We consider
this as supporting evidence for the view that nouns tend to offer a wider range of at-
tributes in their semantics, from which the adjective selects the most appropriate one(s)
in the given phrasal combination (Pustejovsky, 1995).

From the perspective of modeling compositional aspects of phrasal semantics in dis-
tributional vector space models, we believe that our approach poses an interesting
contrast to distributional models involving linear mappings and functional applica-
tion (Baroni and Zamparelli, 2010; Baroni et al., 2014, inter alia). Contrary to the latter
approaches, our models are not geared towards the full compositional semantics of
an adjective-noun phrase. Rather, we intend to capture particular aspects of phrasal
semantics (i.e., attribute meaning) along interpretable dimensions of meaning which
provide an easily interoperable interface to knowledge bases and ontologies.

In contrast to purely pattern-based methods, the compositional approach taken by
our attribute models is also capable of resolving ambiguities on the level of word mean-
ing, as in short hair vs. short flight, for instance. Ambiguities on the phrase level, as in
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hot soup or green plant, however, are out of the scope of the current model which does
not account for context beyond the adjective-noun phrase.

Adjective Classification. In Chapter 5, we have presented a machine learning ap-
proach for automatically classifying adjectives into property-denoting and relational types.
In a classification experiment based on a weakly supervised training regime, the classi-
fier separates property-denoting adjectives at excellent performance levels beyond 90%
precision. Analyzing the impact of the features used by the classifier, we have identified
the occurrence in predicative contextual patterns as a criterion that is highly informa-
tive for detecting property-denoting adjectives and can be smoothly integrated into un-
supervised corpus-based models of adjective meaning. In the experiments carried out
in this thesis, this criterion has proven its effectiveness for improving a pattern-based
attribute model in Chapter 7 and for constructing a distributional enrichment model
based on property-denoting adjectives in Chapter 9.

10.2 Conclusions and Perspectives

Linguistic insights. Adjective-noun phrases most likely to be successfully modeled by
a topic-based attribute model such as C-LDA share the following features in support of
concise attribute profiles: low vector entropy, densely populated pseudo-document for
the correct attribute, high corpus frequency of the adjective. Moreover, measurability
of the attribute and concreteness of the noun are highly beneficial. On the downside,
abstract nouns pose severe problems to the C-LDA approach (and presumably other
approaches as well).

As a particular strength of the model, thanks to the smoothing capacities of attribute-
specific topic modelling, C-LDA is largely capable of generating reliable adjective rep-
resentations even in cases of markedness, where purely pattern- or dependency-based
approaches are shown to fail. In general, C-LDA adjective vectors are of a better indi-
vidual quality than their counterparts representing nouns, as revealed by their respec-
tive impact on the quality of composed vectors and contrastive evaluation of attribute
selection from word representations.

Generality of attribute inventories. From our findings on large-scale attribute selec-
tion, we conclude that robust performance can only be expected from unsupervised
models when being restricted to particularly confined attribute inventories. In that re-
spect, this thesis has also touched a “deep and difficult issue” from the early days of
knowledge representation, i.e., which particular attributes, relations and constraints
should be established in structures representing general, multi-purpose commonsense
knowledge (cf. Barsalou, 1992). In fact, our findings give rise to the conclusion that
acquisition of domain- and task-independent attribute knowledge beyond a tightly re-
stricted set of core attributes in the tradition of Almuhareb (2006) is hard for unsuper-
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vised attribute models. Attribute selection models should rather be specifically adapted
to the particular application or task at hand, as is already common practice in, e.g.,
aspect-based sentiment analysis (McAuley et al., 2012; Liu, 2015).

If large-scale attribute acquisition is in focus, it is most advisable to present the sys-
tem with ontologically coherent samples of attributes. In our experiments, a subset of
measurable attributes proves most feasible. In the coarser granularity of the Generative
Lexicon, this subset roughly corresponds to aspects in the FORMAL quale which “dis-
tinguishes an object within a larger domain”, such as orientation, magnitude, shape,
dimensionality, color or position (Pustejovsky, 1995).

In this thesis, attributes have been treated as independent and non-hierarchical. There-
fore, exploiting possible subordination or inclusion relations between attributes may
bear further potential for enhancing the models proposed. Automatically grouping re-
lated attributes together, e.g., by hierarchical clustering methods (Manning et al., 2008),
might be a feasible alternative to restricting the inventory.

Merits of supervision. In recent work on automatically populating the common-sense
knowledge base WebChild with triples of attributes, nouns and adjectives, Tandon et al.
(2014) achieve very good attribute selection performance beyond C-LDA in a semi-
supervised setting, using explicitly encoded adjective-attribute relations from WordNet
as seed material. Their approach yields highly accurate triples for a restricted set of 19
attributes. Thus, the coverage limitations of large-scale attribute selection seems to be a
more general problem, not only affecting the particular approach taken by C-LDA, but
(semi-)supervised methods as well.

Given the superior performance of WebChild, it seems worthwhile to explore further
prospects of supervision by treating attribute selection as a multi-label classification
problem within a discriminative training regime (Lacoste-Julien et al., 2009). Alterna-
tively, the task of predicting the most salient attributes from an adjective-noun phrase
could also be formulated in a recursive neural network architecture along the lines of
Socher et al. (2013). Such an approach bears the advantage of integrating the aspects
of word-level representation, compositionality and attribute prediction in a uniform
learning framework. However, it requires substantial amounts of labeled input-output
pairs for training (i.e., adjective-noun phrases with their correct attributes).

Implications for learning implicit ontological knowledge from text. Using attribute
selection from adjective-noun phrases as an example case, we have been able to show
that learning implicit ontological knowledge from textual sources is generally feasible,
provided that an effective strategy to overcome the sparsity of overt linguistic cues to
the targeted knowledge structures in textual data can be found. To this end, structured
distributional models as proposed in this thesis render a valuable service, as they (i)
are sufficiently versatile to be tailored to particular types of semantic knowledge to be
acquired, (ii) are sufficiently powerful to capture compositional linguistic processes,
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(iii) are compatible with a variety of complementary distributional sources that can be
harnessed for distributional enrichment of individual structured word representations
and (iv) can be extended to incorporate probabilistic smoothing techniques.

With respect to the acquisition of attribute knowledge from adjective-noun phrases,
abstractness in meaning turns out to be a major obstacle. Impeding abstractness may
be encountered in attributes themselves (in terms of non-measurable attributes, for in-
stance) or in the noun. Both cases are detrimental to distributional attribute models:
Abstract attributes are often highly variable in their meaning (Borghi and Binkofski,
2014), which leads to very diverse contextual profiles, limiting the prospects of corpus-
based distributional models in the first place. Abstract nouns, being “distant from im-
mediate perception” (Turney et al., 2011), are often hard to describe in terms of con-
crete attributes which can be seen as approximations of perceptually or experientially
grounded information (Silberer and Lapata, 2012).

This is consistent with a line of research in cognitive psychology that postulates a
separation between experiential knowledge that is learned through experience with
the physical world, on the one hand, and distributional knowledge that is acquired
from language, on the other (cf. Andrews et al., 2009). However, the finding that distri-
butional attribute models provides adequate vector representations for a considerable
and clearly confined subset of the data provides supporting evidence for the view that
it is, at least partially, possible to approximate experiential knowledge from purely tex-
tual sources (cf. Baroni et al., 2010), without the need to elicit it from human subjects in
costly procedures (McRae et al., 2005; Fountain and Lapata, 2010).

Further applications. Apart from attribute selection, we believe that the models and
techniques developed in this thesis may find further application in knowledge acquisi-
tion or different areas of natural language processing.

For the attribute selection task, we have focussed on adjective-noun phrases involv-
ing property-denoting adjectives. Structured distributional models also bear the poten-
tial to treat relational adjectives in a similar way in order to detect implicit role-like
structures in their semantics (cf. Section 5.1.1) and make them explicit. Due to the de-
nominal characteristics of relational adjectives, the problem may be framed as an in-
stance of classifying implicit semantic relations between nominals (Girju et al., 2007).
Assuming that noun-noun relations such as cause–effect or product–producer tend to fol-
low stable lexicalization patterns that can be observed in corpora (analogously to the
attribute relation between adjectives and nouns), this seems a promising field of appli-
cation for structured distributional models.

With respect to adjective classification, the distinction between intensional vs. non-
intensional adjectives is still an important open issue which we also have ignored
in this thesis. Boleda et al. (2013) hypothesize a connection between the typicality of
attributes and non-intensionality, arguing that “the more typical the attribute described
by an adjective is for the sort of thing the noun denotes, the closer the phrase vector
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is to both its adjective and its noun vector components”. In their work, typicality of
attributes is operationalized using association metrics based on surface co-occurrences
between adjectives and nouns. We believe that compositional attribute-based meaning
representations as provided by our attribute models may be more instructive clues to
typicality and thus more informative for separating the two classes. Applying C-LDA
to this task will also provide interesting insights as to what extent vector representations
lacking a distinctive attribute profile are meaningful in their own right or artifacts of
weaknesses in the model.

As another promising avenue to explore, our attribute models may be applied to
learning qualia structures from text, given that properties of target concepts expressed
in terms of adjective-noun phrases have not been taken into account in previous work
in this area (Cimiano and Wenderoth, 2007; Katrenko and Adriaans, 2008). Using at-
tribute models for qualia learning requires an explicit mapping between qualia and
attributes which, at the current state of the art, has to be manually provided. Provided
such a mapping is available, attributes serve as an intermediate layer between singular
properties and overly abstract qualia roles. In the face of the lessons learned in this
thesis, we expect that acquisition methods operating on this middle ground offer better
prospects than purely pattern-based approaches targeting singular properties.

Distributional attribute models find an increasingly popular field of application in
aspect-based sentiment analysis. Until recently, the goal of sentiment analysis has
been to assign sentiment labels to large textual spans such as sentences, paragraphs or
even entire documents. On the contrary, as defined by Pontiki et al. (2014), aspect-based
sentiment analysis aims at the identification of aspects of given target entities and the
sentiment expressed for each of these aspects in so-called subjective phrases (Klinger and
Cimiano, 2013).

(46) The [battery life]aspect of [this camera]target is [too short]subjective.

From the example in (46), taken from Klinger and Cimiano (2013) in slightly adapted
form, it becomes clear that aspects correspond to attribute nouns (not necessarily on-
tological attributes, though) and subjective phrases often contain adjectives. Conse-
quently, in the context of sentiment analysis, attribute selection from adjective-noun
phrases as pursued in this thesis can also be regarded as aspect identification. Harnessing
distributional attribute models for aspect-based sentiment analysis requires the follow-
ing adaptations: (i) The attribute inventory should be tailored to the target domain, as
discussed above, (ii) the model must be extended so as to include the polarity of ad-
jectives (by linking them to existing resources such as SentiWordNet (Baccianella et al.,
2010), for instance), and (iii) there is a need to broaden the scope of attribute selection
beyond the current focus on adjective-noun phrases in order to account for different
linguistic realizations of subjective phrases. The latter issue may be addressed in a dis-
tributional approach along the lines of Schulte im Walde (2010), using second-order
distributional models to propagate implicit attributes from adjective-noun phrases to
contextually related words or phrases.
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(47) Happy children laugh all day long.

Considering the example in (47), for instance, the attribute EMOTIONALITY as invoked
by the phrase happy children may be spread to its governing verb laugh.

Even at their current state of development, we believe that our topic-based attribute
models may provide valuable information for supervised machine learning approaches.
For example, Klinger and Cimiano (2013) propose to model targets, aspects and subjec-
tive phrases in a joint inference architecture. From the underperformance of their model
on the task of predicting relations between targets, aspects and subjective phrases, the
authors conclude that more informative features are needed. In future work, we will
investigate whether the semantic knowledge provided by topic-based attribute mod-
els contributes to better performance of structured prediction models in aspect-based
sentiment analysis.

In summary, we have shown several interesting applications of distributional at-
tribute models in such diverse areas as formal semantics, knowledge acquisition and,
finally, NLP applications. Despite having not explored these avenues within the scope
of this thesis, we still believe that distributional semantic models of attribute meaning
bear the potential for closing the life cycle of knowledge being automatically induced
from textual data in order to flow back into practical applications.
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A Different Attribute Inventories

A.1 Core Attributes

AGE DIRECTION SIZE SPEED TEMPERATURE

COLOR DURATION SMELL TASTE WEIGHT

Table A.1: Subset of 10 core attributes due to Almuhareb (2006)

A.2 Property Attributes

ABSORBENCY DEGREE MODERATION SHARPNESS

ABSTEMIOUSNESS DEPTH MODERNITY SIZE

ACQUISITIVENESS DESTRUCTIBILITY MUSICALITY SMELL

AGE DISPOSITION NUMEROUSNESS SOLIDITY

ANCESTRY DISTANCE OBVIOUSNESS SPEED

ANIMATENESS DULLNESS PERMANENCE STALENESS

ANIMATION DURATION PITCH STATURE

APPETIZINGNESS FAIRNESS POSITION STRENGTH

ATTENTION FRESHNESS POWER TEMPERATURE

AUDIBILITY FULLNESS QUALITY TEXTURE

BOLDNESS HARDNESS QUANTITY THICKNESS

BREAKABLENESS HEIGHT REASONABLENESS TIMING

COLOR IMMEDIACY REGULARITY VOLUME

COMPLEXION LENGTH SENIORITY WEIGHT

CONSISTENCY LIGHT SENSITIVITY WIDTH

CONTINUITY LUMINOSITY SENTIENCE WILDNESS

CUBICITY MAGNITUDE SERIOUSNESS

CURLINESS MAJORITY SEX

CURRENTNESS MINORITY SHAPE

Table A.2: Subset of 73 property attributes according to WordNet 3.0
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A.3 Measurable Attributes

ABSORBENCY DURATION MOTION SIZE

AGE EFFECTIVENESS NUMEROUSNESS SMELL

AIRWORTHINESS EFFICACY OPACITY SOCIABILITY

AUDIBILITY EQUALITY PITCH SOLIDITY

CLARITY FERTILITY POSITION SPEED

CLEANNESS FRESHNESS PRICE STRENGTH

CLEARNESS HARDNESS PURITY TASTE

COLOUR HEALTH QUALITY TEMPERATURE

COMPLEXION HEIGHT QUANTITY TEXTURE

COMPLEXITY INTELLIGENCE REPULSION THICKNESS

CONSISTENCY LENGTH SEAWORTHINESS TYPICALITY

CONSTANCY LIGHT SENTIENCE VALENCE

DEHISCENCE LIKELIHOOD SEX VOLUME

DEPTH LOGICALITY SHAPE WEIGHT

DIFFERENCE LUMINOSITY SHARPNESS WETNESS

DIRECTION MAGNETISM SIGNIFICANCE WIDTH

DISTANCE MATURITY SIMILARITY

Table A.3: Subset of 65 measurable attributes due to manual selection

A.4 WebChild Attributes

ABILITY FEELING SENSITIVITY STRENGTH

APPEARANCE LENGTH SHAPE TASTE

BEAUTY MOTION SIZE TEMPERATURE

COLOR SMELL SOUND WEIGHT

EMOTION QUALITY STATE

Table A.4: Subset of 19 attributes used by Tandon et al. (2014)
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A.5 Large-scale Attribute Data Set

ABILITY CRITICALITY INTROSPECTIVENESS PROLIXITY
ABSORBENCY CUBICITY INTROVERSION PROPRIETY
ABSTEMIOUSNESS CURLINESS INTRUSIVENESS PURITY
ABSTRACTNESS CURRENTNESS INWARDNESS QUALITY
ACCURACY CYCLICITY KINDNESS QUANTITY
ACQUISITIVENESS DEGREE LAWFULNESS READINESS
ACTION DEHISCENCE LEGALITY REALITY
ACTIVENESS DEPTH LENGTH REASONABLENESS
ACTUALITY DESTRUCTIBILITY LIGHT REASSURANCE
ADEQUACY DIFFERENCE LIKELIHOOD RECOGNITION
ADMISSIBILITY DIFFICULTY LIKENESS REGULARITY
AFFECTEDNESS DIRECTION LITERACY REPULSION
AGE DIRECTNESS LIVELINESS REPUTE
AIRWORTHINESS DISPENSABILITY LOGICALITY RESPONSIBILITY
ALARM DISPOSITION LOYALTY RIGHTNESS
AMBITION DISTANCE LUMINOSITY SAMENESS
ANCESTRY DIVERSENESS MAGNETISM SARCASM
ANIMATENESS DOMESTICITY MAGNITUDE SEAWORTHINESS
ANIMATION DORMANCY MAJORITY SENIORITY
APPETIZINGNESS DRAMA MALEFICENCE SENSATIONALISM
APPROPRIATENESS DULLNESS MALIGNITY SENSITIVITY
ASSURANCE DURATION MANDATE SENTIENCE
ASTRINGENCY EASE MATERIALITY SEPARATION
ATTENTION EFFECTIVENESS MATURITY SERIOUSNESS
ATTENTIVENESS EFFICACY MEASURE SEX
ATTRACTIVENESS EMOTIONALITY MIND SHAPE
ATTRIBUTION EQUALITY MINDFULNESS SHARPNESS
AUDIBILITY ESSENTIALITY MINORITY SIGNIFICANCE
AUSPICIOUSNESS EVENNESS MODERATION SIMILARITY
AWARENESS EVIL MODERNITY SINCERITY
BEAUTY EXCITEMENT MODESTY SIZE
BEING EXPLICITNESS MORALITY SMELL
BENEFICENCE EXTINCTION MOTHERLINESS SOCIABILITY
BENIGNITY FAIRNESS MOTION SOCIALITY
BOLDNESS FAMILIARITY MUSICALITY SOLIDITY
BREAKABLENESS FATHERLINESS NASTINESS SPEED
CAPABILITY FEAR NATURALNESS STALENESS
CAREFULNESS FELICITY NATURE STATURE
CERTAINTY FERTILITY NECESSITY STATUS
CHANGEABLENESS FIDELITY NICENESS STRENGTH
CHEERFULNESS FINALITY NOBILITY SUBSTANTIALITY
CIVILITY FOREIGNNESS NORMALITY SUCCESS
CLARITY FORMALITY NUMERACY SUFFICIENCY
CLEANNESS FREEDOM NUMEROUSNESS SUSCEPTIBILITY
CLEARNESS FRESHNESS OBEDIENCE TAMENESS
COLOUR FRIENDLINESS OBVIOUSNESS TASTE
COMFORT FULLNESS OFFENSIVENESS TEMPERATURE
COMMERCE FUNCTION OPACITY TEXTURE
COMMONALITY GENERALITY ORDINARINESS THICKNESS
COMMONNESS GENEROSITY ORIGINALITY THOUGHTFULNESS
COMPLETENESS GLUTTONY ORTHODOXY TIMIDITY
COMPLEXION GOOD OTHERNESS TIMING
COMPLEXITY GREGARIOUSNESS OUTWARDNESS TRACTABILITY
COMPREHENSIVENESS HANDINESS PASSIVITY TRUTH
CONCRETENESS HAPPINESS PERFECTION TYPICALITY
CONFIDENCE HARDNESS PERMANENCE ULTIMACY
CONNECTION HEALTH PERMISSIVENESS UNFAMILIARITY
CONSISTENCY HEIGHT PIETY USUALNESS
CONSPICUOUSNESS HOLINESS PITCH UTILITY
CONSTANCY HONESTY PLAYFULNESS VALENCE
CONTINUITY HONORABLENESS PLEASANTNESS VIRGINITY
CONVENIENCE HUMANENESS POLITENESS VIRTUE
CONVENTIONALITY HUMANNESS POPULARITY VOLUME
CONVERTIBILITY HUMILITY POSITION WARINESS
CORRECTNESS IMMEDIACY POSSIBILITY WEIGHT
CORRUPTNESS IMPORTANCE POTENCY WETNESS
COURAGE INDEPENDENCE POTENTIAL WIDTH
COURTESY INDIVIDUALITY POWER WILDNESS
COWARDICE INTEGRITY PRACTICALITY WORTHINESS
CREATIVITY INTELLIGENCE PRESENCE
CREDIBILITY INTENTIONALITY PRICE
CRISIS INTEREST PRIDE

Table A.5: Entire set of all attributes as extracted from WordNet-3.0
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B Annotation Instructions for
Acquisition of HeiPLAS Gold Standard

B.1 Background and Task Definition

The task we ask you to perform is concerned with classifying adjective-noun phrases
according to their attribute meaning.

Attributes are terms that denote properties. For instance, the attribute SPEED denotes
properties such as fast, slow or swift, while COLOR denotes black, red, etc.

AN phrase Property Head Noun Attribute

fast car fast car SPEED

slow boat slow boat SPEED

grey house grey house COLOR

Table B.1: Examples of attributes and properties in adjective-noun (AN) phrases

Table B.1 exemplifies attribute meaning on the phrase level: If a property-denoting
adjective is combined with a head noun to form an adjective-noun (AN) phrase such as
fast car, this phrase makes a statement about a particular attribute of the entity denoted
by the head noun. To be explicit, in fast car, fast makes a statement about the SPEED of a
car.

In the course of the experiment, you will be presented attributes together with a
number of AN phrases. Your task is to decide, for each AN phrase, whether it makes a
statement about that particular attribute or not, in the way just illustrated.

For your convenience, we developed a graphical user interface for you to perform
the task (see Figure B.1). Before providing you with more detailed guidelines on how
to complete the task in Section B.3, we first give a brief description of the functionality
of this interface.
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Figure B.1: GUI for completing the classification task

B.2 Functionality of the User Interface

Please direct your web browser to (...)1 and enter a unique user name2 into the dialog
window showing up. Afterwards, you should be able to see an interface consisting of
two frames. In the upper frame, you are given the following information:

Attribute: name of the attribute
Definition: definition of the attribute
Example Adjectives: some typical example adjectives that denote properties be-
longing to this attribute
Example Phrases: some adjective-noun phrases composed of example adjectives
and carefully selected nouns in order to introduce you to the spectrum of the at-
tribute’s meaning

Clicking the OK button below changes the appearance of the lower frame into one that
should be similar to Figure B.1.

1Original URL omitted.
2Please make sure to remember the name you entered for the case that you want to interrupt the

experiment at some point to resume it later on or technical problems occurring.
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B.3 Classification Guidelines

The lower frame includes three boxes labeled with Instances, Attribute Box and
Trash Box. The leftmost box contains all AN phrases to be classified wrt. this attribute.
Each of these phrases can be “dragged” (i.e., moved by the mouse, with left mouse key
pressed) and “dropped” into one of the other boxes (release left key when the mouse
pointer is over the intended target box).

After having dropped all phrases into one of the boxes available, you may proceed to
the next attribute by clicking on the Next button in the bottom bar. The position of an
item in one of the boxes is permanently saved no earlier than this, i.e. before proceeding
to the next attribute you are free to move an item back and forth between all boxes.

If you want to interrupt the task, you can do so by clicking the Pause button in the
bottom bar. The current state of your work will be saved and automatically restored
when you come back and identify yourself correctly with the same user name you en-
tered before. Note that only attributes that are completed will be reliably restored.
Therefore, we recommend that you make use of the save function only after having
finished an attribute by clicking “Next”. Our apologies for this inconvenience.

B.3 Classification Guidelines

B.3.1 General Instructions

In order to complete the classification task, please proceed as follows:

1. Read carefully through the definition and the examples provided for the attribute.

2. Once you are familiar with the meaning of the attributes and comprehend the
examples, click OK.

3. Classify each AN phrase by dropping it into either the Attribute Box or the
Trash Box, subject to the test presented in the following section.

Note that many attributes are scalar, i.e. the properties they denote can be ordered
wrt. different degrees of intensity or occurrence. SPEED, for example, establishes a scale
ranging from slow to fast. In some cases, however, the definition of an attribute and/or
the example phrases provided do not reflect the full scale of properties, but merely one
end of the entire spectrum. In deciding whether an AN phrase denotes an attribute,
please try to always consider the full scale, including properties that indicate degrees
of low intensity (such as slow in the case of SPEED) or even zero intensity of the attribute.
The example adjectives provided might give you a hint, as they usually cover both ends
of the spectrum.

Note also that the data set may contain several attributes without any AN phrases
to be dropped into the Trash Box.
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B.3.2 Classification Test

Can you say that

⟨AN phrase⟩ makes a statement about the ⟨attribute⟩ of the ⟨head noun⟩?

slow boat makes a statement about the SPEED of the boat?

If your answer to this test is

• “yes”, then put the AN phrase into the Attribute Box.

• “no”, then put the AN phrase into the Trash Box.

In applying this test, you should focus on (i) whether the AN phrase expresses an
attribute meaning in the sense given by the definition, and (ii) whether this attribute
meaning also applies to the head noun, i.e. whether the phrase really makes a state-
ment about the attribute of the noun. Both these aspects are illustrated in the examples
below.

Example 1
Attribute: speed

Definition: “a rate (usually rapid) at which something happens”
Example Adjectives: slow, fast
AN Phrases to be judged: slow boat, fast lane
Comment: This test is designed to check whether the respective attribute meaning
is expressed both in the entire AN phrase and the head noun as well. Thus, it can
certainly be said that slow boat “makes a statement about the speed of the boat”,
whereas it sounds odd to say that fast lane “makes a statement about the speed of
the lane”, as the meaning of speed does not apply to lane directly. In fact, it would
be correct to say that in the latter case a statement is made “about the speed of the
cars driving on that lane”.
Judgements: slow boat→ Attribute Box; fast lane→ Trash Box

Example 2
Attribute: age

Definition: “how long something has existed”
Example Adjectives: new, immature, young, old, mature
AN Phrases to be judged: little girl, newfound star
Comment: It holds true that little girl “makes a statement about the age of the girl”
(in addition to a statement about another attribute, namely size).

The statement made in newfound star is not “about the age of the star” (in the
sense of the definition) but about the period of time that has passed since the star
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was found.
Judgements: little girl→ Attribute Box; newfound star→ Trash Box

Example 3
Attribute: cheerfulness

Definition: “the quality of being cheerful and dispelling gloom”
Example Adjectives: cheerful, depressing, uncheerful, cheerless
AN Phrase to be judged: blue morning
Comment: Your judgement about the attribute meaning of an AN phrase should
not only be confined to its literal meaning, but may also take possible metaphorical
interpretations into account. In this example, the adjective blue denotes color in
its literal meaning, which does certainly not apply to the noun morning on its own.
In a metaphorical reading, however, blue can also be interpreted as dark or gloomy,
thus making a statement “about the cheerfulness of the morning” that is bound
to the negative end of the spectrum provided by cheerfulness.
Judgement: blue morning→ Attribute Box

Example 4
Attribute: success

Definition: “a state of prosperity or fame”
Example Adjectives: successful, unsuccessful
AN Phrase to be judged: self-made millionaire
Comment: In this example, the notion of success in the “state of prosperity” sense
provided by the definition is already inherent in the word meaning of the noun mil-
lionaire. However, this is not sufficient for claiming that the entire phrase including
the adjective “makes a statement about the success of the millionaire”. The contri-
bution of self-made is such that the circumstances of achieving the particular “state
of prosperity” are in focus. In fact, it would be more appropriate to paraphrase the
meaning of self-made millionaire as “making a statement about the circumstances of
having become a millionaire”. Hence, in this case we observe a situation where
the noun does express the attribute meaning on its own, while the adjective con-
tributes to the phrase meaning by bringing some other meaning aspect into focus.
Judgement: self-made millionaire→ Trash Box
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C “Compositionality Puzzles”: Examples
from HeiPLAS Development Data

Phrase Attribute Rank Adj. Rank Noun Rank Phrase

bitter quinine* TASTE 1 24 24
uneven color EVENNESS 5 72 15
offensive remark OFFENSIVENESS 5 245 33
soothing ointment* COMFORT 6 239 239
actual beating REALITY 10 87 11
cardinal rule IMPORTANCE 8 130 15
high opinion DEGREE 6 150 12
superior wisdom QUALITY 5 170 62
even application EVENNESS 10 196 30
common sailor COMMONNESS 9 258 26
thick smoke CONSISTENCY 2 110 16
common man COMMONNESS 9 125 14
unlikely story LIKELIHOOD 5 169 35
fearless reporter BOLDNESS 10 200 34
peppery salsa* TASTE 1 24 24
coarse weave* TEXTURE 1 22 22
tall ship STATURE 6 185 30
nasty trick NASTINESS 8 205 37
unlikely butcher LIKELIHOOD 5 235 12
common nuisance COMMONNESS 9 264 44
short smokestack* STATURE 3 32 32
faithful patriot* FIDELITY 8 174 174
high hope DEGREE 6 226 56
thick fog CONSISTENCY 2 106 11
sacred mosque* HOLINESS 7 155 155
uneven ground EVENNESS 5 163 18
lowly corporal* SENIORITY 10 51 51
late evening TIMING 8 114 21
good secretary QUALITY 5 180 20
meager fare SUFFICIENCY 4 274 48
high point DEGREE 6 192 19
nasty accident NASTINESS 8 243 73

Table C.1: ADJ-n-comp subset from HeiPLAS-Dev data (32 items; cf. Section 8.2); as-
terisks indicate OOV terms.
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Phrase Attribute Rank Adj. Rank Noun Rank Phrase

dispensable* item DISPENSABILITY 200 7 200
inclined* plane DIRECTION 202 2 202
short ration QUANTITY 45 10 11
affable* smile FRIENDLINESS 168 10 168
dramatic rescue DRAMA 207 7 23
competent performance ADEQUACY 181 8 35
colorful* autumn COLOR 240 1 240
brave man COURAGE 136 6 15
brusque* manner COURTESY 218 3 218
high building HEIGHT 89 3 12
abominable* workmanship QUALITY 66 1 66
illusory promise REALITY 96 7 26
coarse-grained* wood TEXTURE 22 4 22
impish* laughter PLAYFULNESS 82 9 82
lifelong study DURATION 167 3 29
ethereal form SUBSTANTIALITY 219 5 43
curt* reply COURTESY 218 3 218
straight line SHAPE 44 10 11
intractable metal TRACTABILITY 210 9 25
uncivil* tongue CIVILITY 244 7 244
atypical behavior TYPICALITY 15 8 15
voracious* shark GLUTTONY 163 7 163
vehement* defense STRENGTH 30 6 30
determinate answer FINALITY 209 8 33
uncomfortable chair COMFORT 193 1 19
efficacious* medicine EFFICACY 189 1 189
admissible* evidence ADMISSIBILITY 275 3 275
odorless* flower SMELL 38 2 38
accurate measurement ACCURACY 46 6 13
critical shortage CRISIS 147 6 23
glaring error CONSPICUOUSNESS 216 4 21
untouchable resource HANDINESS 253 9 30
little boy AGE 206 1 33
courageous example COURAGE 177 5 19
stale bread STALENESS 234 2 12
treble voice PITCH 164 5 32
odorous* bread SMELL 38 6 38
attentive suitor ATTENTION 278 5 14
prismatic* light COLOR 240 5 240
hallucinatory* dream REALITY 63 3 63
separate church SEPARATION 136 3 14
gluttonous* appetite GLUTTONY 163 6 163
acknowledged accomplishment RECOGNITION 127 10 31
challenging task DIFFICULTY 141 10 35
practical application PRACTICALITY 93 6 15
knotty* problem COMPLEXITY 233 9 233
true story TRUTH 85 9 15
scarce vegetable QUANTITY 111 6 11

Table C.2: adj-N-comp subset from HeiPLAS-Dev data (47 items; cf. Section 8.2)
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Phrase Attribute Rank Adj. Rank Noun Rank Phrase

unconventional dress CONVENTIONALITY 23 22 9
insufficient fund QUANTITY 13 30 4
responsible cabinet RESPONSIBILITY 17 17 3
deep concentration DEPTH 14 54 5
uncommon flood COMMONNESS 17 27 5
black deed EVIL 42 18 6
rough life PLEASANTNESS 24 14 5
heavy fog THICKNESS 15 40 8
right hand POSITION 19 19 8
big business SIZE 15 21 5
great work IMPORTANCE 11 20 1
massive sculpture SIZE 36 17 8
ample waistline SIZE 22 25 7
direct exposure IMMEDIACY 38 15 4
speedy resolution SPEED 18 25 4
pure tone PURITY 24 33 6
sharp point SHARPNESS 23 16 6
potent toxin POTENCY 17 29 10
pure air PURITY 24 17 6
fundamental revolution SIGNIFICANCE 14 19 5
dirty work CLEANNESS 35 15 7
amiable villain NATURE 14 23 7
potent weapon POWER 12 18 5
genuine emotion SINCERITY 13 22 10
responsible captain RESPONSIBILITY 17 16 2
low furniture HEIGHT 17 15 5
right bank POSITION 19 12 5
miniature camera SIZE 11 31 9
right side POSITION 19 18 7

Table C.3: adj-n-COMP subset from HeiPLAS-Dev data (29 items; cf. Section 8.2)
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