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Abstract

The metabolism of all living organisms, and specifically also of their smallest constituents, the cell, is

based on chemical reactions. A key factor determining the speed of these processes is transport of re-

actants, energy, and information within the and between the cells of an organism. It has been shown

that the relevant transport processes also depend on the spatial organization of the cells. Such transport

processes are typically investigated using fluorescence correlation spectroscopy (FCS) in combination

with fluorescent labeling of the molecules of interest. In FCS, one observes the fluctuating fluorescence

signal from a femtoliter-sized sub-volume within the sample (e.g., a cell). The variations in the intensity

arise from the particles moving in and out of this sub-volume. By means of an autocorrelation analysis

of the intensity signal, conclusion can be drawn regarding the concentration and the mobility parameters,

such as the diffusion coefficient. Typically, one uses the laser focus of a confocal microscope for FCS

measurements. But with this microscopy technique, FCS is limited to a single spot a every time. In order

to conduct parallel multi-spot measurements, i.e., to create diffusion maps, FCS can be combined with

the lightsheet based selective plane illumination microscopy (SPIM). This recent widefield microscopy

technique allows observing a small plane of a sample (1−3μm thick), which can be positioned arbitrar-

ily. Usually, FCS on a SPIM is done using fast electron-multiplying charge-coupled device (EMCCD)

cameras, which offer a limited temporal resolution (∼ 500μs). Such a temporal resolution only allows

measuring the motion of intermediately sized particles within a cell reliably. The limited temporal reso-

lution renders the detection of even smaller molecules impossible. In this thesis, arrays of single photon

avalanche diodes (SPADs) were used as detectors. Although SPAD-based image sensors still lack in

sensitivity, they provide a significantly better temporal resolution (1− 10μs for full frames) that is not

achievable with sensitive cameras and seem to be the ideal sensors for SPIM-FCS.

In the course of this work, two recent SPAD arrays (developed in the groups of Prof. Edoardo Charbon,

TU Delft, the Netherlands, and EPFL, Switzerland) were extensively characterized with regards to their

suitability for SPIM-FCS. The evaluated SPAD arrays comprise 32×32 and 512×128 pixels and allow

for frame rates of up to 300000 or 150000 frames per second, respectively. With these specifications, the

latter array is one of the largest and fastest sensors that is currently available. During full-frame readout,

it delivers a data rate of up to 1.2 GiB/s. For both arrays, suitable readout-hardware-based on field

programmable gate arrays (FPGAs) was designed. To cope with the high data rate and to allow real-time

correlation analysis, correlation algorithms were implemented and characterized on the three major high

performance computing platforms, namely FPGAs, CPUs, and graphics processing units (GPUs). Of all

three platforms, the GPU performed best in terms of correlation analysis, and a speed of 2.6 over real

time was achieved for the larger SPAD array.

Beside the lack in sensitivity, which could be accounted for by microlenses, a major drawback of

the evaluated SPAD arrays was their afterpulsing. It appeared that the temporal structure superimposed

the signal of the diffusion. Thus, extracting diffusion properties from the autocorrelation analysis only

proved impossible. By additionally performing a spatial cross-correlation analysis such influences could

be significantly minimized. Furthermore, this approach allowed for the determination of absolute dif-

fusion coefficients without prior calibration. With that, spatially resolved measurements of fluorescent

proteins in living cells could be conducted successfully.





Zusammenfassung

Für alle Organismen ist der Transport von Stoffen, Energie und Information Voraussetzung dafür, ihren

komplexen Stoffwechsel, basierend auf chemischen Prozessen, aufrechtzuerhalten. Dies gilt insbeson-

dere für die kleinsten lebenden Einheiten, die Zellen. Ein wesentlicher Faktor, der die Geschwindigkeit

diese Prozesse bestimmt, ist der Transport von Reaktionspartner, Energie und Information innerhalb von

und zwischen den Zellen eines Organismus. Es wurde bereits gezeigt, dass die relevanten Transport-

prozesse auch von der räumlichen Organisation der Zelle abhängen. Solche Transportprozesse werden

typischerweise mit Hilfe von Fluoreszenz-Korrelations-Spektroskopie (FCS) in Kombination mit fluo-

reszenzmarkierten Molekülen untersucht. Hierbei beobachtet man die Fluktuationen des Fluoreszenzsi-

gnals in einem kleinen Femtoliter-großen Teilvolumen innerhalb der Probe (z.B.: eine Zelle). Die In-

tensitätsschwankungen des Signals kommen dadurch zustande, dass Moleküle in das Volumen hinein-

und wieder herausdiffundieren. Mittels Autokorrelationsanalyse des Intensitätssignals lassen sich Rück-

schlüsse auf die Konzentration und Mobilitätseigenschaften, insbesondere den Diffusionskoeffizienten,

ziehen. Typischerweise werden diese kleinen Volumina (∼ 1μm3) durch einen Laserfokus erzeugt und

mit einem konfokalen Laser-Mikroskop beobachtet. Der konfokale Aufbau lässt jedoch zu jedem Zeit-

punkt Messungen nur an einem Ort zu. Um parallele ortsaufgelöste Messungen durchführen zu können,

um beispielsweise Diffusionskarten zu erstellen, kann FCS etwa mit Lichtscheibenfluoreszenzmikrosko-

pie (SPIM) kombiniert werden. Diese relative neue Weitfeldmikroskopietechnik erlaubt es eine beliebig

positionierbare Ebene (1− 3μm Dicke) in einer Zelle zu beobachten. Typischerweise kommen dabei

schnelle elektronenvervielfachende CCD-Kameras (EMCCD) zum Einsatz. Diese bieten nach aktuellem

Stand den besten Kompromiss zwischen Sensitivität und maximaler zeitlicher Auflösung (∼ 500μs). Die

begrenzte zeitliche Auflösung erlaubt allerdings nur das Auflösen der Bewegung von mittelgroßen Mo-

lekülen in einer Zelle. Sehr kleine Teilchen können damit nicht beobachtet werden. Im Rahmen dieser

Arbeit wurden Arrays aus Einzelphoton-Lawinenphotodioden (SPADs) als Detektoren verwendet. Diese

bieten eine für Kameras unerreichbare hohe zeitliche Auflösung (1−10μs für ganze Bilder) und sind da-

mit scheinbar ideale Detektoren für SPIM-FCS. Allerdings liegt der Nachteil bei der deutlich reduzierten

Photosensitivität.

In der vorliegenden Arbeit wurden zwei dieser neuartigen SPAD-Arrays (entwickelt in der Gruppe von

Prof. Edoardo Charbon, TU Delft, Niederlande, und EPFL, Schweiz) bezüglich der Eignung in einem

SPIM-FCS ausführlich charakterisiert. Die verwendeten SPAD-Arrays umfassen 32×32 und 512×128

Pixel und können mit bis zu 300000 bzw. 150000 Bildern pro Sekunde ausgelesen werden. Das letzt-

genannte Array ist damit einer der größten und schnellsten Sensoren, wobei die Datenrate für Vollbilder

im Bereich von 1,2 GiB/s liegt. Die Ansteuerung und Auslese wurde in beiden Fällen mit Hilfe von

rekonfigurierbarer Logik (FPGAs) realisiert. Um bei den hohen Datenraten der verwendeten Sensoren

die FCS-Analyse in Echtzeit ausführen zu können, wurden die Korrelationsalgorithmen auf den drei

wichtigsten Plattformen für Hochleistungsrechnen, nämlich FPGAs, CPUs und Grafikkarten (GPUs),

implementiert und charakterisiert. Von allen drei Plattformen war die GPU hinsichtlich Korrelationsana-

lyse besonders performant und es wurde eine Geschwindigkeit von 2,6 oberhalb von Echtzeit für den

größeren SPAD-array erreicht.

Neben der geringen Empfindlichkeit der untersuchten SPAD-Arrays, welche durch Mikrolinsen ver-

bessert werden können, stellte sich das Nachpulsen (afterpulsing) als großer Nachteil der evaluierten

SPAD-Arrays heraus. Dessen zeitliche Struktur überlagerte sich mit dem durch Diffusion verursachten

Verhalten. Dies machte es unmöglich die Diffusionsprozesse aus der Autokorrelationsanalyse alleine zu

extrahieren. Es zeigte sich jedoch, dass diese Einflüsse unter Zuhilfenahme der ram̈lichen Kreuzkorrelati-

on deutlich minimiert werden konnten. Gleichzeitig war es damit möglich, absolute Diffusionskoeffizien-

ten zu extrahieren. Schließlich konnten erfolgreich erste ortsaufgelöste Messungen von fluoreszierenden

Proteinen in Zellen durchgeführt werden.





Table of Contents

Abstract vii

Contents xi

1 Introduction 1
1.1 Imaging transport processes in live cells . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Aim of this thesis and outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 List of publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Basic principles 11
2.1 Photodetectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Fluorescent labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Fluorescence microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Measuring diffusion: fluorescence fluctuation fechniques . . . . . . . . . . . . . . . . . 34

2.5 Application accelerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.6 Multi-core CPUs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.7 Graphics processing units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.8 Comparison of the different platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3 State of the art 61
3.1 Detectors for imaging FCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2 Fast signal correlators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 SPAD arrays for imaging FCS: readout design and evaluation 67
4.1 The RADHARD2 single photon avalanche diode array . . . . . . . . . . . . . . . . . . . 67

4.2 The Swiss single photon avalanche diode array . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Characterization of the CHSPAD sensor . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5 Implementation of fast signal correlation analysis 101
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2 Mapping the multiple-τ correlator algorithm onto different hardware platforms . . . . . 102

5.3 CPU correlator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.4 GPU correlator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.5 FPGA correlator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.6 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6 Application of SPAD arrays for in vitro and in vivo measurements 139
6.1 Measurement protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.2 Settings and measurement conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.3 Characterization measurements using fluorescent beads . . . . . . . . . . . . . . . . . . 142

xi



Table of Contents

6.4 Influence of detected light intensity and binning on diffusion coefficient and concentration 154

6.5 Dependency of the measured diffusion coefficient on the minimum lag time . . . . . . . 156

6.6 Measurement of the diffusion of small fluorescent dyes . . . . . . . . . . . . . . . . . . 158

6.7 Summary of diffusion measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.8 Particle concentration measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.9 Mapping diffusion properties of eGFP-oligomers in HeLa cells . . . . . . . . . . . . . . 165

6.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7 Conclusion and outlook 171
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

Appendices 181
A Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

B FPGA development boards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

C SPIM: light intensity measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

D CPU correlator: efficient data conversion . . . . . . . . . . . . . . . . . . . . . . . . . . 185

E Further SPIM-FCS measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Nomenclature 199

Acronyms 201

Figures 203

Tables 209

Listings 211

Algorithms 213

Bibliography 215

Acknowledgments 233

xii



1. Introduction

1.1. Imaging transport processes in live cells

1.1.1. Transport processes in living cells

The cell is the basic structural unit of all known living organisms. Typical animal cells, as sketched in

Figure 1.1, are 15 μm in diameter, enclosing a volume of approximately 14 fL. Cells contain a dense

aqueous solution, the cytoplasm, that is confined by a lipid bi-layer, the cell membrane. The cytoplasm

contains various proteins, lipids, sugars and other small molecules [4].

All animal cells have membrane contained compartments that provide specialized reaction chambers

(different pH) for many metabolic processes, like for example glycolysis. The concentration of the

molecules varies from 103 to 109 copies per cell [4]. The genome, consisting of the deoxyribonucleic

acid (DNA) molecules with a total length of approximately 2 m for humans, is located inside the nucleus

of every single cell. The DNA is packed into the nucleus in a hierarchic manner.

To react, the partners have to be in contact. When chemical reactions are modeled, the underlying

transport processes have to be taken into account. Three common transport processes occur in a living

cell, as illustrated in Figure 1.2.

The simplest and one of the most important transport process of molecules is BROWNIAN motion (BM)

(cf., Figure 1.2a), where particles perform a random walk through a gel-like, or viscous, environment.

Each time a particle collides with another, its speed and direction changes slightly. Figure 1.2a shows

the typical quivering motion of a random walk [28, 60, 126, 170–172, 224].

A statistical description is needed to quantify the undirected, random motion. For a single particle

moving along a trajectory�r(t), the global behavior is well described by the mean squared displacement

(MSD), which is defined as the time average over the squared displacements within the trajectory over

different given time lags τ:

MSD(τ)≡ 〈r2(τ)
〉

t := lim
T→∞

1

T

∫ T

0
|�r(t + τ)−�r(t)|2 dt. (1.1)

From the stochastic single-particle view, a deterministic particle density description can be derived,

which is known as FICK’S second law [60, 65]:

∂c(�r, t)
∂ t

= D∇2c(�r, t), (1.2)

nucleus

nucleolus

cytoplasm

mitochondrium

golgi apparatus

centrosome

cytoskeleton

cellular membrane

Figure 1.1.: Sketch of an animal cell. Drawing provided by JAN W. KRIEGER.

1



1. Introduction

where D is the diffusion coefficient and c(�r, t) the concentration at position�r and time t. A comparison

of the MSD with the solution of FICK’S second law gives the following linear relation for particles

undergoing BROWNIAN motion in a viscous medium in n spatial dimensions [60]:

MSD(τ) = 2n ·D · τ. (1.3)

The diffusion coefficient is to random motion what the velocity is to linear movement: both define the

distance a particle has traveled on average within a certain time.

For spherical particles with radius Rh diffusing through a liquid with viscosity η , temperature T and a

low REYNOLDS number, the diffusion coefficient is given by the STOKES-EINSTEIN equation [60]:

D =
kB ·T

6π ·η ·Rh
, (1.4)

where kB is the BOLTZMANN constant. More precisely, Rh is the hydrodynamic radius of a particle

which takes into account, that a sphere of any material will drag along some of its surrounding solvent

molecules. Therefore it will appear to be slightly larger than its geometrical radius. Typical biological

proteins have a hydrodynamic radius of Rh = 1nm . . .10nm [64], thus resulting in a diffusion coefficient

of Dcell, 20 ◦C ≈ 60 . . .5μm2/s (Equation (1.4)) assuming a viscosity of ηcell ≈ 3 ·ηwater [21, 58, 71, 138].

In a dense environment like the cytoplasm, the free diffusion is hindered (Figure 1.2b). A large fraction

of the cell is occupied by different molecules and large complexes (protein machinery, DNA, etc.). Within

such a crowded space, the MSD is no longer a linear function of time but follows a power-law. This

phenomenon is called anomalous diffusion [92, 148, 149, 232, 233]:

MSD(τ) = 2n ·Γ · τα , (1.5)

where Γ is the generalized anomalous diffusion coefficient and α is the anomaly parameter.

Finally, in some cases diffusion-based transport of molecules is not sufficient for the needs of a cell.

The bigger the molecule, the slower its movement, and the longer the time the molecule needs to reach

its destination. To maintain chemical reactions at sufficiently large rates and to direct particles to specific

places, active transport is required (e.g., motion of vesicles with neurotransmitters in a cm-long nerve-

cell). This task is accomplished, for example, by motor proteins, that move along the internal structures

of the cell (Figure 1.2c). These proteins gain velocities of up to v = 100μm/s (observed e.g., in plants

[195]). The MSD for active transport is described as:

MSD(τ) = (v · τ)2 . (1.6)

Both, active transport and normal diffusion can be described as special cases of anomalous diffusion

(either α = 1 for BROWNIAN motion or α = 2 for active transport).

(a) free BROWNIAN motion

(b) diffusion in a crowded environ-

ment (c) directed motion

Figure 1.2.: Different transport processes inside a cell. (a) Free BROWNIAN motion. (b) BROWNIAN motion in a crowded

environment. (c) Directed motion of a motor-protein along a cell structure.
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1.1. Imaging transport processes in live cells

1.1.2. Measuring transport processes

To measure the random motion of particles, they have to be made distinguishable from other particles in

a cell. A common method to achieve this goal is to label them fluorescently. Such prepared molecules

can then be observed by several methods.

Single particle tracking

The most straightforward approach to analyze the motion of a particle is by tracking its trajectory�r(t)
and to directly calculate the MSD. This method, called single particle tracking (SPT), is illustrated in

Figure 1.3a. SPT measurements are either based on point-scanning confocal setups or on wide-field

microscopy. In the latter case, a camera records a time series of images. The positions of the particles

is registered in each frame and trajectories are obtained by merging particles over time. Although a

pixel-based detector is used, the position can be determined with sub-pixel accuracy, that is better than

the optical resolution. A two to ten times higher resolution is achieved by fitting a GAUSSIAN function

to the image of each particle [106]. This method can be used to track molecules in a cell [51, 130, 207]

or entire cells in a living organism [108].

Another recent technique makes use of a point-scanning confocal microscope [130]. The microscope

detects the fluorescence from a small focal volume within the sample. Once a particle has been identified,

a circular path around the particle is continuously scanned, as illustrated in Figure 1.3b. When the particle

moves, the fluorescence intensity along the laser path is no longer constant but maximal in the direction

of motion of the particle. The center of the scanning circle is then moved to the point of the highest

intensity and thus tracks the particle’s trajectory. Three-dimensional tracking is possible by extending

the scanning along the z-axis.

Both techniques rely on very low sample concentrations to identify and follow single particles inde-

pendently. Irrespective of the method used for SPT, these techniques lack in speed as many trajectories

are necessary to gain reasonable statistics.

(a) principle of SPT (b) principle of laser scanning

fluorescent particle

tracked trajectory
tracked particle

scanning laser focus

particle has moved

increased fluorescence

moved scanning area

Figure 1.3.: Principle of single particle tracking (SPT). (a) Widefield view of the motion of particles within one plane of the

cell. (b) SPT using a circularly scanning laser.
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1. Introduction

Observation of the transition into equilibrium

Instead of differentiating between single particles, other methods have been developed that rely on ob-

serving the transition of an entire system, e.g., a cell, between a non-equilibrium and equilibrium state.

This allows for measurements of the labeled particles at higher concentrations. In the simple case, these

systems follow FICK’S second law (cf., Equation (1.2)). As the fluorescence intensity is proportional to

the particle concentration I(�r, t) ∝ c(�r, t) it can be observed easily with a microscope and the diffusion

coefficient D can be extracted from the observed transition by solving FICK’S law.

One of these methods is fluorescence recovery after photobleaching (FRAP), which is illustrated in

Figure 1.4. It relies on the artificial induction of a non-equilibrium state, by bleaching the fluorophores

in a part of the sample (Figure 1.4b) [12, 150]. The particles in the space surrounding the bleached spot

diffuse back into that area and the dark spot recovers (Figure 1.4c). The characteristic recovery time

(Figure 1.4e) is inversely proportional to the mobility of the particles.

Fluorescence fluctuation techniques

The techniques described so far are either based on the measurement of single particles or perturbing the

system into non-equilibrium and observing its relaxation. A different approach is to observe the system in

its equilibrium state. At high temporal resolution, small fluctuations of the concentration δc(�r, t) around

an average concentration 〈c(�r, t)〉t become apparent for a reasonably small volume only (cf., Figure 1.5):

c(�r, t) = 〈c(�r)〉t +δc(�r, t) with 〈δc(�r, t)〉t = 0. (1.7)

The statistical fluctuations δc〈�r, t〉 are caused by inherent random processes that drive the motion of

particles, i.e., BROWNIAN motion. They can be measured by observing a small sub-volume of the

sample, typically containing 10 to 100 particles. The statistical properties of δc(�r, t) are then used to

draw conclusions about the underlying processes causing the motion. For example, the particle number

N(t) = c(t) ·Vobs in the observed sub-volume obeys POISSONIAN statistics:

Var(c(�r, t)) =
〈
[c(�r, t)−〈c(�r)〉t ]2

〉
t
=
〈

δc(�r, t)2
〉

t
= 〈c(�r, t)〉t . (1.8)

It states that the mean concentration of the particles 〈c(�r, t)〉t can be extracted by analyzing the fluctua-

tions, only.

Particles moving in and out of the observation volume create temporal correlations in δc(�r, t) on a time

scale that is given by the average time the particle spends in the observation volume, i.e., the diffusion

time τD. τD is related to the size of the observation volume Vobs and the MSD of the particles. Assuming

(a) (b) (c) (d)

(e)

0

I0

a b c d

fl
u

o
re

sc
en

ce

time

I(t)

Figure 1.4.: Principle of fluorescence recovery after photobleaching (FRAP). (a) Initial equilibrium state. (b) Bleaching of

the selected region. (c) Partial recovery of the sample. (d) Full recovery of equilibrium state. (e) Progression of the intensity.
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1.1. Imaging transport processes in live cells

a cubical or spherical volume with an edge length wobs, Vobs ∝ wobs
3, the following scaling behavior can

be derived by requiring MSD(τD)
!
= wobs

2:

τD ∝
w2

obs

D
(1.9)

The correlation of δc(�r, t) can be extracted by an autocorrelation analysis of the measured intensity

time-trace I(�r, t) ∝ c(�r, t). The normalized autocorrelation function is defined as:

G(τ) =
〈δ I(t) ·δ I(t + τ)〉t

〈I(t)〉2t
=
〈I(t) · I(t + τ)〉t

〈I(t)〉2t
−1, τ > 0. (1.10)

This method is called fluorescence correlation spectroscopy (FCS). It was first described in 1974 by

Magde et al. [142, 143]. He also showed that

G(0) ∝ 1/N, (1.11)

where N is the average number of particles in the focus.

Nowadays FCS is typically implemented on a confocal microscope as shown in Figure 1.6a. Typi-

cally, the focal volume is Vobs = 0.2 . . .0.6μm3 in size with a diameter of wobs ≈ 500nm [179]. Such

a small focal volume also allows for a measurement of the structure of the sample with a high spatial

resolution, for example by scanning the sample point-wise. Single photon avalanche diodes (SPADs)

or photomultiplier tubes (PMTs) are commonly used as detectors in confocal microscope setups. Fast

readout electronics allow for temporal resolutions in the range of 10 ns, but pico-second time resolution

can be achieved as well [228].

FCS is a common technique for the determination of particle concentrations and diffusion coefficients

in solution. A review of the technique and its application is given in Ref. [118]. FCS is well established

and has been used to determine concentrations and diffusion coefficients in various parts of the cell

[13, 19, 21, 83, 133, 136]. It was further used to study active transport [112, 144], anomalous diffusion

[192, 225, 232], and the internal motion of polymers [139, 197, 198, 240].

With fast detectors and acquisition electronics, high temporal resolution can be achieved, therefore

FCS can be applied to also study photophysical effects of the dyes themselves. A common effect is

blinking of fluorophores [82, 87, 234], which takes place on the μs to ms timescale. Also, the photon-

antibunching of the fluorophores, i.e., their fluorescence lifetime, can be measured.
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Figure 1.5.: Illustration of fluorescence correlation spectroscopy (FCS).
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Figure 1.6.: Implementation of fluorescence correlation spectroscopy (FCS) on different types of microscopes. Excitation

light is shown in blue, fluorescent light is shown in green. (a) Confocal fluorescence correlation spectroscopy (FCS). The addi-

tional pinhole in the detection path rejects out-of-focus light. (b) total internal reflection fluorescence correlation spectroscopy

(TIRFCS). (c) lightsheet fluorescence microscopy (LSFM).

To further allow the observation of, for example, reaction kinetics, FCS can be extended to multiple

spices labeled with differently colored dyes. The cross-correlation amplitude Gr,g(0) of the two color

channels, r and g (e.g., ‘red’ and ‘green’), is proportional to the concentration of constructs comprising

both dyes. The normalized temporal cross-correlation function is defined as:

Gr,g(τ) =
〈δ Ir(t) ·δ Ig(t + τ)〉t
〈Ir(t)〉t · 〈Ig(t)〉t

, τ > 0. (1.12)

2-color FCCS has been successfully used for various in vivo and in vitro measurements [13, 19, 83, 96,

134, 177, 220].

The FCS techniques described so far are all limited to single spot measurements. As the interior of

cells is not uniform, FCS or fluorescence cross-correlation spectroscopy (FCCS) techniques have been

extended to allow parallel multi-spot measurements. One possible solution is to carry out serial mea-

surements at different positions, either at many positions and short dwell times [181], or small numbers

of positions and long dwell times [57, 225]. By recording FCS data for many locations of the cell it

is possible to generate two-dimensional distributions of particle numbers and diffusion coefficients. A

typical map of diffusion coefficients is shown in Figure 1.7. The pixel dwell time strongly influences

the noisiness of the autocorrelation curve (ACC) and thereby also the reliability of the extracted mobility

parameters and concentration. In live cell measurements, the dwell time is usually limited by the cell

which tends to move during acquisition and may also die if too much light is imposed.

Other techniques for measuring several positions that were implemented on confocal setups are based

on scanning the laser focus over the sample, which can be done either circularly [182] or by following

a line [176]. Both techniques allowed measuring of approximately 10 to 100 positions on a single

trajectory.

Simultaneous measurements at different spots within the sample were achieved either with line con-

focal detection [22, 88], or spinning disk microscopy [156, 202]. Both techniques relied on cameras as

fluorescence detectors. With at least 100 μs integration time for a single line, those cameras were several

orders of magnitude slower than SPADs or PMTs, so temporal resolution is traded for spatial resolution.

For parallel multi-spot measurements SPAD arrays have been used to improve temporal resolution

[40, 41, 74, 111]. These sensors combined 4 to 1024 individual SPADs on a single microchip, in different

arrangements (2×2 or 1×8, up to 32×32). Their fast readout allows for temporal resolutions of 10 μs
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1.1. Imaging transport processes in live cells

(a) 158 single spot measurements (b) reconstructed map of diffusion coefficients

Figure 1.7.: Map of diffusion coefficients of two differently labeled molecules (green: eGFP, red: mRFP) in a HeLa cell.
Diffusion coefficients are given in μm2/s. Sample temperature was 37 ◦C. Images taken from Ref. [58].

or better. To create up to 1024 laser foci within the sample simultaneously, spatial light modulator

(SLM) based on liquid crystal displays (LCDs) or diffractive optical elements (DOEs) were used. The

fluorescence from each focus is then imaged onto a single SPAD. Recently (2013), such a setup was

successfully used for live-cell imaging [111].

If more than a single spot is measured simultaneously, not only the signal autocorrelation or cross-

correlation between two species sharing the same focal volume can be calculated, but also the cross-

correlation between two spatially distinct spots. In comparison to an autocorrelation analysis, a spatial

cross-correlation analysis implies a certain averaging over space, as more than a single spot is taken into

account. For two foci at positions�r and�r+�s the spatial cross-correlation function (CCF) is defined as

g(τ,�s) =
〈δ I(�r, t) ·δ I(�r+�s, t + τ)〉t
〈I(�r, t〉t · 〈I(�r+�s, t + τ)〉t

. (1.13)

A major advantage of cross-correlation is that the effect of the size and shape of the focal volume is

less important than its distance, which is typically known precisely. Therefore, diffusion measurements

based on spatial cross-correlation have been successfully carried out in various cellular systems [53, 54,

84, 114, 115, 236–238].

An alternative approach for parallel multi-spot FCS was taken by Kannan et al. [107] in 2007. Com-

bining a wide-field microscope and a sensitive camera, they pioneered imaging fluorescence correlation

spectroscopy (imaging FCS) on a total internal reflection (TIRF) microscope. The setup is illustrated in

Figure 1.6b. A thin layer above the glass cover slip is illuminated by an evanescent wave. This limits the

observation volume to a 100 nm to 200 nm thin layer above the cover slip which results in a fluorescence

signal with very low background contributions that often renders the actual signal undetectable. The

penetration depth is very small, so this technique only allows to observe outer structures of a sample.

Such a setup was successfully used to analyze diffusion in biological membranes with relatively slow

diffusing molecules (τD in the order of milliseconds) [15–18, 24, 78, 185].

In 2010, Wohland et al. [241] pioneered the use of a lightsheet fluorescence microscopy (LSFM)

to perform imaging FCS. The working principle of a LSFM is shown in Figure 1.6c [75, 95]. A thin

sheet of light with a diameter of about 1− 2μm, typically formed by a cylindrical lens, illuminates a

slice of a sample. The fluorescence is detected perpendicular to the illumination and projected onto

a fast image sensor. At each pixel a volume of approximately 1− 2μm3 is observed. In contrast to
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TIRF, this technique is not limited to the surface of a sample. The setup is less complex compared to

multi-focal setups and much easier to operate. The technique is usually called SPIM-FCS (selective

plane illumination microscopy fluorescence correlation spectroscopy).

Similar to confocal setups, SPIM-FCS can be extended to SPIM-FCCS by detecting in two channels

simultaneously. It was successfully used to study protein interactions [25, 34].

1.1.3. Correlation analysis

Signal correlation is usually performed by a so called correlator. Being either a piece of software or dedi-

cated hardware, the correlator computes Equation (1.12). To cover a large range of different delay values

τ , also referred to as lag-times, ranging from microseconds to seconds, most correlators use a logarithmic

scaling [187]. Some dedicated hardware correlators also feature data acquisition circuitry and perform

the correlation analysis in real time [62]. Commercially available hardware correlators provide up to

32 channels [5, 46] which are sufficient for a small number of pixels [74]. They are typically based on

reconfigurable logic, such as field programmable gate arrays (FPGAs), or dedicated application-specific

integrated circuits (ASICs) [62, 63, 91]. Custom built hardware correlators are typically FPGA-based

[72, 73, 93, 101, 102, 105, 135, 256].

Most software implementations are optimized to process photon arrival times [128, 191, 226], where

the detector attaches a high-resolution time-tag to each photon event. Even parallel approaches exist

for detectors with multiple pixels [49, 129, 217]. Recently, first graphics processing unit (GPU)-based

implementations were reported [127, 222]. A more detailed overview of various correlators is given in

section 3.2.

1.2. Aim of this thesis and outline

As depicted above, fluorescence correlation spectroscopy (FCS) and its two-dimensional advancement

imaging fluorescence correlation spectroscopy (imaging FCS) are versatile methods to gain informa-

tion about the properties of small molecules in living cells. With the availability of new single photon

avalanche diode (SPAD) arrays with a camera-like amount of pixels and frame rates above 100000 fps,

the question arises whether these devices are suitable as detectors in LSFM.

In this work, the performance of two different SPAD arrays, the RADHARD2 (cf., section 2.1.3) and

the CHSPAD (Swiss single photon avalanche diode array, see section 2.1.4), both designed in EDOARDO

CHARBON’S lab (TU Delft, Netherlands and EPFL, Switzerland), were evaluated with respect to their

usefulness for SPIM-FCS. Further, the feasibility of such detectors to create real-time diffusion maps

was assessed.

A first step was to design a readout for both detectors, to allow image acquisition in real time at highest

frame rates (cf., section 4.1.1 and section 4.2). Secondly, the correlation analysis of the raw image data

had to be implemented on high performance computing (HPC) platforms to achieve real-time image

processing. This was done with the example of two recent CPU architectures, AMD Piledriver and

INTEL Haswell (cf., section 5.3), a consumer grade GPU, an NVIDIA GTX 780 Ti (cf., section 5.4), and

a XILINX VIRTEX 2 field programmable gate array (FPGA) (cf., section 5.5). Moreover, considerations

regarding FPGA-based dataflow computing were made (cf., section 5.5.7). Finally, the performance of

the SPAD arrays integrated into a custom build SPIM was evaluated (cf., section 6). For that purpose,

several fluorescent dyes were tested and, as a last step, first in vivo measurements of enhanced green

fluorescent protein (eGFP) oligomers in HeLa cells are shown (cf., section 6.9.3).
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2. Basic principles

2.1. Photodetectors

2.1.1. Photon counting Detectors

In this section, first the theory of operation of different photodetectors is described. The second part

gives a more detailed description of the two detectors, the Swiss single photon avalanche diode array

(CHSPAD) and the RADHARD2, which were used in the course of this thesis.

Single photon avalanche diodes

Single photon avalanche diodes (SPADs) are the main workhorse for single photon counting applications

like fluorescence correlation spectroscopy (FCS). These detectors can be seen as a solid state equivalent

to photomultiplier tubes, which convert incoming photons into electrical pulses that can be counted.

Their ability to count individual photons mitigates against gain noise or circuit noise. SPADs are pho-

todetectors operated above the breakdown voltage Vbreak, the so called GEIGER-mode. This is done by

applying a reversed bias operating voltage VOP well above the breakdown voltage Vbreak. A single in-

cident photon creates an avalanche, which can be detected and counted easily. When operated below

break-down voltage, the avalanche effect leads to a stochastic gain, which is proportional to the pho-

tocurrent.

Figure 2.1a shows the cross-section of a typical reach-through p+−π− p−n+ APD structure used

as SPAD. It is built from four differently doped regions, two low doped areas π and p, and two highly

doped regions p+ and n+. Photon absorption occurs in the relatively large π region. A photon hitting

the area creates an electron-hole pair within the low doped absorption area π of the diode with a certain

probability. The single charge-carrier injected into the absorption area is then amplified in the bias field

into an electron avalanche, the so called avalanche breakdown which is shown in Figure 2.1b. These

avalanches can be detected as a strong current spike [47, 86, 184].

+ +
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Figure 2.1.: Schematic drawing of a single photon avalanche diode (a) Cross-section of a reach-through p+−π− p−n+

APD structure used as SPAD including space charge distribution under reverse voltage. The plot on the right shows the strength

of the electric field. The p+ and n+ regions are heavily doped. (b) Charge carrier multiplication in a SPAD under reverse

voltage. Image adapted from Ref. [119].

11



2. Basic principles

(a)

RQ

S
PA

D

VSPAD

Iph.

VOP

discriminator

Vout

(b)

VSPAD

Iphoton

Vout

Vbreak

output signal

photo-current

photons

SPAD voltage

Figure 2.2.: Passive quenching circuit of a single photon avalanche diode. (a) Passive quenching circuit for a SPAD with a

series-connected resistor. (b) Course of voltages and currents in that circuit. Images adapted from Ref. [119].

The drifting process is driven by VOP, and limited by collisions of the charge carriers with the semi-

conductor lattice. When the electrons reach the multiplication region, a thin p−n+ junction with a high

electric field |−→E (x)|, an avalanche with millions of secondary electrons is created by repeated impact

ionization.

In case of APDs, amplification increases with the reverse bias VOP. If VOP rises above the break-

down voltage Vbreak, the amplification gets virtually infinite. At that point, photons create self-sustaining

avalanches, and the avalanche photodiode (APD) operates in photon counting or GEIGER mode. Shortly

after a photon hits the detector, the current rises with the starting of the avalanche and causes the resis-

tance across the SPAD to drop. By series connecting the SPAD with a resistor, the breakdown of VSPAD

can be detected by a discriminator circuit (this can be seen in Figure 2.2a).

Each avalanche must be stopped, so called quenched, to avoid damage to the diode due to the current

and to re-arm the detector. Generally, two implementations are possible [47]:

• active quenching: By adding a dedicated circuit that detects an avalanche and actively lowers

VSPAD, the avalanche is stopped.

• passive quenching: A resistor is placed in series with the SPAD. If the current increases through

the diode, a higher voltage drops over the resistor that lowers the diode voltage VSPAD until

VSPAD <Vbreak and the avalanche stops. This circuit is shown in Figure 2.2a, the voltage curve

and the progression of the currents are shown in Figure 2.2b.

Independent of whether the active or passive quenching technique is used, the reverse bias voltage of

the SPAD is reduced below the breakdown voltage. This inactivates the SPAD, as now the voltage across

the diode is too low to cause another avalanche and to detect any photons. This “dead time” (typically

in the order of 100 ns), can be reduced by shortening RQ [132, 159]. This technique is called active
recharge.

Feedback of the detector leads to additional pulses that were not caused by actual photon detection

This so called afterpulsing may occur when charge carriers get trapped in the depletion region and get

released after a short random period when the SPAD is again in operation. These carriers then re-trigger

an avalanche, which was not caused by an actual photon. Studies showed, that the afterpulsing follows a

power-law timing distribution [99, 119, 219, 258] (see section 2.4.3 for further details).
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2.1. Photodetectors

Sensor array size pixel type pixel pitch SPAD diameter fill factor

dpixel [μm] dSPAD [μm] FF [%]

Rech et al. [175] 8×1 fully addressable 250 50 N/A

Niclass et al. [157] 32×32 single addressable 58 7 1.1
Carrara et al. [36] 32×32 memory 30 6 3.1
Burri et al. [31] 128×512 memory 24 6 4.9

Niclass et al. [160] 128×128 column TDC 25 7 6

Gersbach et al. [69] 32×32 TDC 50 5.5 1

Tisa et al. [218] 32×32 TDC/memory 100 20 3.1

Table 2.1.: Comparison of recent SPAD arrays with their most relevant properties.

Single photon avalanche diode arrays

In the last decade, arrays of SPADs have been developed to allow camera like single-photon imaging at

high frame rates [20, 30, 32, 35, 69, 70, 160, 193, 218]. These sensors consist of up to 65536 single

SPADs organized in a pixel array structure, as known from conventional cameras. They are typically

based on complementary metal-oxide-semiconductor (CMOS) chips. Some devices also integrate addi-

tional quenching or readout circuitry, partially on a per-pixel basis. A comparison of the major properties

is shown in Table 2.1.

The least complex devices are linear SPAD arrays with diodes that are fully accessible on the outside.

Such an array, comprising eight pixels, has been demonstrated in Refs. [97, 175]. Quenching and readout

was performed on external electronics.

In parallel, two dimensional detectors were developed. Although the pixels are rectangular, the SPADs

are typically circular in these devices due to the high electric field strengths. With a higher number of

single SPADs, full access to every diode was not possible any more. Pixels became row-accessible,

with shared column outputs that are typically connected to data processing electronics, e.g. field pro-

grammable gate arrays (FPGAs). The first larger array of that kind was published in 2005 [157]. Each of

the 32×32 pixels contained an integrated discriminator and a column output driver implemented as five

transistors. Only one pixel could be addressed and read simultaneously (cf., Figure 2.3c for the structure

of the pixels).

The sensors described above were not suitable for the read-out of many pixels at high temporal res-

olutions. Either only a single line of SPADs was available or the pixel had to be selected prior to a

measurement. In the latter case, scanning was employed to simulate imaging. To allow imaging with a

large amount of pixels simultaneously, all pixels have to be scanned. Therefore, the information that a

photon was detected, must be conserved until the pixel can be read.

The active area of a SPAD, i.e., the region of the pixel which actually detects the photons, is crucial

for single photon detectors. To keep the circuit area in a pixel at a minimum and therefore allow for

larger SPADs, mostly single bit memories were implemented [30, 32, 35]. In existing SPAD arrays this

requires 12 or more transistors. The saved information only tells whether none or at least one photon

was detected (cf., Figure 2.3d for pixel structure). The probability to miss photon events when more than

one photon is detected by the SPAD can be reduced by increasing the readout speed. A more detailed

description of the implementation of two such sensors given in section 2.1.3 and section 2.1.4. Data from

such arrays is typically read row-wise. When a row has been read, the state of the memories is reset and

the next row is accessed. This mode of operation is called “rolling shutter” mode and also common in

CMOS cameras (see below).

A major drawback of the read-out procedure described above is that the temporal resolution (i.e., the

accuracy of the detection of photon arrival times) now fully relies on the time it takes to read the entire

image. By only reading a subset of pixels, the temporal resolution can be improved, but then the high
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Figure 2.3.: SPAD array with different pixel designs. (a) Row-wise accessible SPAD array. (b) A TDC is embedded in each

pixel to resolve the timing of a photon event. Typically the photon time-tag is saved per pixel for later readout. (c) Each pixel

is individually addressable, no further circuitry. (d) A latch stores a photon event in each pixel. An additional reset signal is

required. The switches at the output of each pixel are controlled by the row-decoder.

pixel count is not used any more. To overcome this limitation, time to digital converters (TDCs) were

integrated into each column [160] or each pixel [69] (cf., Figure 2.3b for pixel structure). In the latter

case, fill-factor was traded for additional circuitry. For common circular SPADs with a diameter dSPAD

and quadratic pixels with an edge length of dpixel, the fill-factor is defined as:

FFpixel :=
active area

pixel area
=

π · (dSPAD/2)2

d2
pixel

. (2.1)

A possible solution to overcome the typically low fill-factors in most available SPAD arrays, is to attach

microlenses to the pixels. These concentrate the incident light onto the active area of the SPADs. See

section 4.3.7 for more details.

The readout of the in-pixel TDCs is typically done in rolling-shutter mode, too, but now time-stamps

are read from every pixel. This requires higher bandwidths, as several bit have to be read from each

pixel. Such arrays achieve temporal resolutions in the order of 100 ps.

Tisa et al. [218] reported a sensor with a TDC in every pixel. This TDC can also be reconfigured

to operate as an 8 bit counter to allow camera-like imaging. SPAD arrays, whether they are based on

TDCs or not, typically allow for read-out rates of 100 kHz to 150 kHz for full frames of 32× 32 to

512×128 pixels.

2.1.2. Linear detectors

Introduction

The detectors described so far generate a series of pulses representing a single, detected photon each. In

the following, “linear” detectors will be described. These detectors generate a signal, typically a charge

that is transformed to a voltage, that is proportional to the number of incident photons.

CMOS cameras

CMOS cameras are made of a two-dimensional array of pixels. Each pixel consist of a photodiode and

an additional transistor used as source follower (see Figure 2.4). This transistor amplifies the signal from
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Figure 2.4.: CMOS active pixel sensor. The inset shows the simplified electronic circuit of a single pixel with three transistors

(3T). Figure adapted from Ref. [165].

the photocharges in the photodiode, making the pixel ‘active’. A specific pixel can be selected by driving

the selection transistor (SEL). A third transistor used for reset (RST). Due to the active nature of the

pixels, such devices are also called active pixel sensor (APS). The digitalization is done in each column

by a column amplifier. Typically, pixels are addressed row-wise.

Additional transistors can be used to separate photodetection and photoconversion regions to eliminate

specific noise. As already described for SPAD arrays, also in CMOS image sensor, the space in each pixel

has to be shared between the electronics and the photodiode. The reduced fill-factor is often compensated

by applying microlenses to the pixels. Another solution is to use back-illuminated sensors. Here the

substrate is thinned down so that light can penetrate the sensor from the back. Other possibilities are to

use transparent substrates (e.g., silicon-on-sapphire).

Light detection in a CMOS-pixel works as follows: Prior to integration, the diode is reset to a distinct

voltage (Vdiode = VDD−Vtransistor, threshold) by turning on the reset transistor for a short time. After that

the diode is electrically floating and photogenerated carriers accumulate in the diode. The accumulated

charges lower the potential of the diode, which is then amplified by the electronics in the pixel. After a

certain integration time, the pixel is read and the operation starts over. Reading a pixel’s value does not

destroy the charge of the diode, because of the high input impedance of the amplifier. Generally, two

different modes for reading full images exists:

• rolling shutter: The sensor is continuously read line by line. When a line has been read, the pixels

are reset. In this mode, the integration time of each line starts at a different point in time.

• global shutter: All pixels are reset simultaneously and the integration time is identically. During

readout, the detector is insensitive (“dead-time”). For this mode, usually one capacitor is added

to each pixel. An additional transistor is used to transfer the charges of the diode to the capacitor,

which is then read-out via the amplification transistor.

The analogue output of the pixels is digitized by an analogue-to-digital converter (ADC) and the values

are typically transferred to a computer for further processing. Depending on the size of the array and the

required frame rate, CMOS cameras either use a single ADC per chip, or in the other extreme, they use

one ADC per column.

Scientific CMOS cameras

Recently, a new generation of CMOS cameras was introduced, which is especially designed for scientific

image acquisition. These scientific CMOS (sCMOS) cameras offer more than a million pixels (dpixel =
6.5μm), very low noise, and a frame rate in the region of 100 fps. Some sCMOS sensors further allow

for global shutter modes (with an addition transistor per pixel, 5T). Usually microlenses are applied to

15



2. Basic principles

pixel pixel

T = 0

T = 1

T = 2

T = 3

charge transport

metal eleactrode
SiO2 insulator
silicon substrate

potential wells

Figure 2.5.: Design and shift operation of a three-phase CCD. A pixel is defined by a group of three gates. Charges are

accumulated in potential wall below the center gate. Readout is done from left to right.

the sensors to reach a photon detection probability (PDP) above 60 %. Such cameras are optimized for

low-light applications, for example fluorescence microscopy and bio-imaging [8, 39].

CCD cameras

A different type of analog linear detectors are charge coupled device (CCD) cameras. Contrary to CMOS

cameras, these are made of passive pixels. CCD cameras are basically a two-dimensional array of metal-

insulator-semiconductor (MIS) capacitors (see Figure 2.5). They consist of a piece of bulk silicon with

an insulation layer and metal gates on top. By applying a specific voltage pattern to those gates, a po-

tential well is formed below the electrodes in the bulk silicon. Photoinduced charges accumulate in that

well below the electrode of the pixel. By applying different electric patterns to the gates, accumulated

charge carriers can be transported across the array and towards the readout registers. From there they are

finally transported off the chip. Further details are given in Refs. [89, 208].

The simplest CCD sensors are organized as arrays of light sensitive pixels only. This is shown in

Figure 2.6a. For faster readout, such sensors are subdivided into several regions. The actual readout

is done by shifting the charges vertically towards the readout registers and then horizontally to external

amplification and ADC electronics. A major drawback of this scheme is the effect of smearing that can

occur, since the pixels are still sensitive during the charge transport phase. This problem is addressed

by interline transfer or frame transfer sensors. Here, the photocharges are transferred to light-shielded

(a) full sensor, subdivided (b) interline transfer (c) frame transfer

readout register

readout register

readout register readout register

light-sensitive pixels shielded pixels readout registers

Figure 2.6.: Different transfer architectures of CCD sensors. Figures adapted from Refs. [89, 208].
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areas prior to readout. In the case of an interline transfer sensor, which is shown in Figure 2.6b, the pixel

content is first shifted horizontally into the shielded shift registers. For readout, charges are then shifted

vertically into the main readout register. Figure 2.6c shows a frame transfer sensor, here the half of the

sensor is shielded. During readout, the image is first transferred to the shielded area, which can be done

very fast and reduces the effect of smearing. The latter two methods allow for parallel acquisition during

readout, which reduces the dead-time of the detector.

EMCCD cameras

To further increase the signal to noise ratio (SNR) for very low light levels, additional on-chip amplifi-

cation is done. This is achieved by placing a high-voltage gain-register between the readout register and

the output amplifier. Figure 2.7 shows the design of such a sensor. At each stage of that shift register,

the transported electrons are multiplied by impact ionization similar to the avalanche effect in APDs.

Such a sensor is therefore called electron multiplying charge coupled device (EMCCD). Although the

amplification in each single stage of the shift register is low, a large number of stages (in the order of

100) gives EM-gains of up to 1000× [10].

Quantum efficiency and photon detection probability

The quantum efficiency (QE), ηdet, is a crucial property of an image sensor especially when used in

low-light applications. It is defined as the ratio of incident photons to converted electrons, or pulses

in case of digital counters. The photon detection probability (PDP) is defined as the effective quantum

efficiency, which also considers the fill-factor FF (equation (2.1)):

PDP = ηdet ·FF. (2.2)

Figure 2.8 gives an overview of typical QEs of various cameras as a function of the wavelength of

the incident light. The figure includes front- and back-illuminated cameras as well as SPAD arrays.

Back-illuminated cameras can reach QEs above 90 %. In case of the SPAD arrays, only the active area is

taken into account. Experiments that were carried out in the course of this thesis were done in the blue to

green spectral range (λ = 450nm . . .550nm). This is also the part of the spectrum where all sensor have

their maximum.

readout register

EM gain register

Figure 2.7.: Architecture of a frame-transfer EMCCD image sensor. EM gain registers are shown in yellow.
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Figure 2.8.: Quantum efficiency of various scientific cameras. All cameras except the ANDOR iXon X3 860 are front-

illuminated. In case of the SPAD arrays, only the active area is taken into account. Excess bias voltage for the SPAD arrays:

Vex, RADHARD2 = 3.3V and Vex, CHSPAD = 4.0V. Data taken from Refs. [8–10, 33, 158, 193].

Statistics of image sensors

In photodetectors, the number of actually detected photons Nphoton obeys POISSONIAN statistics and the

variance equals the mean number of photons:

Var(Nphoton) =
〈
Nphoton

〉
. (2.3)

The mean number of actually detected photons is defined as〈
Nphoton

〉
= ηdet ·Φ ·Δtexp, (2.4)

for an integration time Δtexp and a mean photon flux Φ.

Photodetectors also tend to have a certain dark count rate (DCR), which is introduced by random

output pulses that do not originate from incident photons. Main causes for these pulses are avalanches

that are started by thermally created fluctuations or afterpulsing. The DCR Ṅdark can be reduced by

cooling the sensor. The rate fall exponentially with the temperature.

The rare occurrences of dark counts can be characterized by a POISSONIAN distribution with a mean

value of Ndark = Ṅdark ·Δtexp and a variance of σ2
dark = Ndark. That said, equation (2.4) and equation (2.3)

can be extended to 〈
Nphoton,dark

〉
=

(
ηdet ·Φ+ Ṅdark

) ·Δtexp (2.5)

Var(Nphoton,dark) = Var(Nphoton)+σ2
dark =

〈
Nphoton,dark

〉
. (2.6)

For a linear detector, the average number of detected photoelectrons can be written analogously to

equation (2.4):

〈Ne〉= 〈G〉 ·ηdet ·Φ ·Δtexp, (2.7)

where 〈G〉 is the average charge amplification factor for on-chip amplification (i.e., for EMCCD cam-

eras). As the stochastic processes of photodetection and gain are statistically independent, the variance

of the detected photoelectrons is given as:

Var(Ne) =
〈
N2

e

〉−〈Ne〉2 = ηdetΦ ·Δtexp · 〈G〉2 . (2.8)

The conversion of the analogue output signal of the chip is done by a linear analogue-to-digital con-

verter (ADC). The ADC is used to quantize the signal into 2RADC different values, where RADC is the
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2.1. Photodetectors

integer resolution in bits. The digital output of the ADC is commonly called analog-to-digital units

(ADUs). The conversion process is modeled by a conversion factor AADC that is given in analog-to-

digital units (ADUs) per photoelectron.

Even in full darkness, linear image sensors tend to exhibit a small background signal, which has several

reasons:

• dark current: Within each active pixel of the detector, thermally created electron-hole pairs

may be generated that are indistinguishable from photogenerated charges. Their contribution (see

above) to the image and background noise is:

〈Ndark〉= 〈G〉 · Ṅdark ·Δtexp, σ2
dark = Ndark (2.9)

• clock-induced charges: In CCD cameras, the shifting process might induce an average of Ncic

additional charges per readout cycle. This effect can be reduced by a careful design of the readout.

Due to the POISSONIAN nature of the process, it contributes as follows to the noise of the sensor:

σ2
cic = 〈G〉2 · 〈Ncic〉 . (2.10)

• read noise: The read noise is not signal-dependent, but imposed by the readout electronics (e.g.,

amplifiers or ADCs):

〈Nread〉= 0, σ2
read. (2.11)

• quantization noise: The quantization noise describes the noise imposed by the limited resolution

of the ADC. Its upper limit is typically the least significant bit:

〈NADC〉= 0, σ2
ADC ∼

1

AADC
. (2.12)

All the noise components described above typically contribute to the background image noise:

σ2
back = σ2

dark +σ2
cic +σ2

read +σ2
ADC ∼ σ2

dark +σ2
read. (2.13)

2.1.3. The RADHARD2 single photon avalanche detector array

The first sensor that was evaluated for selective plane illumination microscopy (SPIM)-FCS in the course

of this thesis was the RADHARD2 SPAD array, designed in EDOARDO CHARBON’S lab. A micrograph

of the chip is shown in Figure 2.9. Table 2.2 summarizes a subset of signals that were driven by the

controller described in section 4.1. Figure 2.10 shows a schematic drawing of a single pixel.

The name stems from its radiation tolerance and the sensor can resist up to 30 mRad [35]. A drawback

of the radiation hardness is the decreased fill-factor and an increase in electronics size. In total a single

pixel comprises 12 transistors. The chip is fabricated in a 0.35 μm high voltage CMOS process. Each

SPAD is operating in GEIGER mode above breakdown voltage that was Vbreak = 18.8V for the described

sensor. Operating voltage was VOP = 22.0V, so the excess voltage was Vex = 3.2V accordingly.

The RADHARD2 SPAD array comprises 32× 32 pixels, that are accessed row-wise. Each pixel is

30μm×30μm in size with an active area of the SPAD dSPAD < 6μm (based on personal communication,

4 μm is more likely). In total, the fill factor is 1.4 %.

Driven at almost 100 MHz, full frames integrations times as low as 1.2 μs can be achieved. A very

low afterpulsing probability < 1% and a reasonable dark-count rate of 140 Hz at room temperature and

Vex = 3.3V were reported. The active area of the SPAD has a PDP of about 35 % in the blue to green

range, which is ideal for several commonly used biological dyes (for a comparison of the PDP of different

cameras see Figure 2.8). When considering fill-factor and the PDP of the active area, a per-pixel PDP of

0.5 % is reached.
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32×32 pixel array

Figure 2.9.: RADHARD2: micrography of the chip. The green inset shows a single pixel. The active area is the inner blue

circle. Image adapted from Ref. [35].
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Figure 2.10.: RADHARD2: Transistor level diagram of a single pixel’s electronics. The circuitry consists of three major

parts: detection (red), memory (yellow) and output (green). Transistor T1 is used as tunable quenching resistors (via VQ). All

signals shown (RESET, ROW_SET, COL_SET and SEL) are generated internally by the sensor. The outputs OUT of all pixels in

a column are connected and are driven by a pull-up. Schematic adapted from Ref. [35].

signal / pin description

VDD positive logic supply voltage, provided by motherboard, 3.3 V

VOP positive SPAD supply voltage, 22.0 V

VQ tunable passive quenching resistor, 1.0 V

ROW_ADD (5 bit) address of row to select (0..31)

ROW_CLK rising-edge latches ROW_ADD
ROW_RESET reset currently selected row

DATA_OUT (32 bit) output of the selected row

Table 2.2.: RADHARD2: input voltages and signals.
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2.1. Photodetectors

Principle of operation. When a photon hits the diode, it creates an avalanche that causes a current flow

through the diode and the quenching resistor T1. T2 senses the avalanche voltage and causes the latch

to be set to logic 1. The latch is reset by driving T8. T3 prevents memory conflicts if the SPAD is firing

during reset.

The avalanche stops automatically when the voltage drops below Vbreak (passive quenching, cf., sec-

tion 2.1.1). This characteristic can be fine-tuned by setting an appropriate bias voltage VQ selecting a

trade-off between dead time and afterpulsing probability.

2.1.4. The Swiss single photon avalanche diode array

In this section, the second evaluated SPAD array is described. The design of the SPAD itself is based

on the design of the RADHARD2 SPAD array. Some details presented in here are based on personal

communication with the designer SAMUEL BURRI (EPFL, Switzerland). Further description of the

sensor can be found in Refs. [29, 31, 33]. Table 2.3 compares several properties of the two sensors, the

RADHARD2 and the CHSPAD.

Figure 2.11 shows a micrograph of the CHSPAD. The mounting of the CHSPAD within the inner part

of the microscope is shown in Figure 2.14 (see section 2.3.1 for details on the microscope). Figure 2.12

shows a circuit diagram of the internal layout of the CHSPAD. Every four columns share a single output

pin, which is selected by COL_ADD. Due to this inner structure, reading a single row (512 pixels) takes

four clock cycles.

Circuitry of a single pixel. A single pixel’s circuitry, shown in Figure 2.13, consists of 14 transistors

which can be grouped into three major parts. Each pixel uses four voltages and seven signals (five global

and two local). Table 2.4 summarizes the voltages and signals of a single pixel. The detection part

(red) comprises the large SPAD, a tunable resistor T12 used for passive quenching, a transistor T2 for

active recharge, an off-switch T1, a gating-transistor T4, and a transistor T3 to set the memory (yellow).

Therein the event of a photon is saved in a simple N-type metal-oxide-semiconductor (NMOS)-latch (T7

and T8, with tunable resistors T5 and T6, via VTop). The state is reset by T9 with an internal reset signal

generated when a new row is selected during readout. Finally, the third part of the circuitry is the output

drivers (made-up of T10 and T11) which drive the output low when the pixel is selected via SEL and a

photon was detected. In each column the outputs of all pixels are connected and are driven by a pull-up.

Row selection is done by driving ROW_ADD (cf., Figure 2.12; see Figure 4.1 for a timing diagram).

The address is internally latched with a rising edge of ROW_CLK. The same applied for the addressing of

the columns.

property unit RADHARD2 CHSPAD

manufacturing process 0.35 μm CMOS

array size pixels 32×32 512×128

single pixel size μm2 30×30 24×24

diameter of active area dSPAD μm < 6 < 6

fill-factor percent 3 5

quantum efficiency % 35 45 (λ = 450nm)

PDP % 0.5 2.2

DCR Hz 140 366

quenching transistor bias voltage VQ V 1.0 1.1‡

SPAD operating voltage VOP V 22.1 24‡

SPAD excess voltage Vex V 3.2 3.7‡

Table 2.3.: Comparison of the RADHARD2 SPAD array and the CHSPAD array. Data from Ref. [33, 35]. Values for the

CHSPAD are given for Vex = 4V. ‡ Data is based on evaluations described in section 4.3.
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2. Basic principles

Figure 2.11.: Micrograph of the CHSPAD. The pixel area is enclosed by logic on three sides. Two sensors can be put together

with a gap of less than 6 pixels. The small inset shows 2×2 pixels with a pitch of 24 μm. The SPAD is the blueish circular area

surrounded by the reddish guard ring. Image taken from Ref. [33].
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Figure 2.12.: Schematic drawing of the internal layout of the CHSPAD. The array is internally organized in 128 rows and

512 columns. The outputs of all pixels are connected column-wise with a pull-up circuit. For each output pin, the output of one

of four neighboring columns can be selected via column_addr. All signals are connected to an FPGA.
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Figure 2.13.: CHSPAD: Transistor level diagram of a single pixel’s electronics. The circuitry consists of three major parts:

detection (red), memory (yellow) and output (green). Three of the 12 transistors (T5, T6 and T12) are used as tunable resistors

(via VQ and VTop). Two further unused transistors are not shown. Additionally to the logic supply voltage VDD a second positive

supply voltage VOP is needed for the SPAD. Two of the five input signals (RST and SEL) are generated internally by the sensor,

the others (RECHARGE, OFF and GATE) apply for the entire sensor. The outputs OUT of all pixels in a column are connected

and are driven by a pull-up. Schematic adapted from Ref. [33].

signal / pin description

VDD positive logic supply voltage, 3.3 V

VOP positive SPAD supply voltage, 20 V to 25 V

VQ tunable passive quenching resistor, 0 V to 1.2 V

VTop tunable SRAM resistors, 2.0 V

(SPAD)OFF disable SPAD, must not be active when RECHARGE is active

RECHARGE force recharge of SPAD, bypass passive quenching

GATE disable photon event recording in memory

ROW_ADD 7 bit address of row to select (0..127)

ROW_CLK rising-edge latches ROW_ADD
COL_ADD (1..0) address for multiplexer of column output (0..3)

COL_CLK rising-edge latches COL_ADD
COL_OUT (127..0) output of the selected output columns

PULLUP enable pull-up of the output columns

RESET_EN enable reset of row after deselection

ROW_SEL_EN enable row selection by ROW_ADD
TCSPC (not shown) TCSPC-mode, bypass transistor between output of memory and gate of T10

TUPC (not shown) TUPC-mode, bypass transistor between output of SPAD and gate of T10

Table 2.4.: CHSPAD: input voltages and signals.
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Figure 2.14.: CHSPAD: Sensor including hardware platform mounted in the inner part of the SPIM setup.

Photon detection. Within the active SPAD an avalanche is triggered when a photon hits the active area.

The current flow raises the anode voltage and naturally quenches the avalanche. A higher voltage at

the gate of T3 causes the latch to flip if T4 is open. For re-arming the SPAD after a break-through two

different possibilities exist. Either the anode voltage can be lowered again by an active recharge pulse

via T2, or passively by the tunable resistor T12. The SPAD can be disabled by driving T1, which then

lowers the excess bias voltage of the diode by raising the anode voltage.

2.2. Fluorescent labels

In this thesis, the motion of molecules is measured with the help of fluorescent labels. This way, it is

possible to observe or track a single species of interest, even in a mixture of various particles (e.g., in

a cell). In the following, the basic principles of fluorescence are introduced. Section 2.2.4 gives and

overview of the dyes, which were used in this work.

2.2.1. Fluorescence

Fluorescence is the emission of a photon by a molecule after its excitation by an incident photon. This

is illustrated by the JABLONSKY diagram, as shown in Figure 2.15. The Energy spectrum is split into

quantized electronic states Sν of a specific energy Eν , numbered by the quantum number ν. S0 is called

the electronic ground state, S1,S2, . . . are called excited states. Each of these electronic states further split

up into multiple vibrational and rotational sub-states (S∗ν ), that only differ slightly in their energy level.

The more complex a fluorescent molecule is, the more densely these states are packed, almost forming

a continuum. Vibrational relaxation involves dissipation of energy to the surrounding and thus cannot

occur for isolated molecules.

A photon of the wavelength λex. carries the energy of

Ephoton =
h · c0

λex.
, (2.14)

where h is PLANCK’S constant and c0 is the speed of light in vacuum. If the photon’s energy matches the

difference of an excited state (in Sμ , μ = 1,2, . . . ) and the state of an electron within S0, the electron may

absorb the photon’s energy and gets excited into a higher state. Typically, the electron gets excited into

a vibrational sub-state, and decays quickly to the ground-state of the respective electronic state by heat
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Figure 2.15.: JABLONSKI diagram of a fluorescent molecule. Sν and Tν denote the singlet and the triplet state of the molecule

with the quantum number ν . Solid lines indicate transitions between electronic states with absorption or emission of a photon

(wavy line). Non-radiative transitions are shown as black dashed lines. The vibrational ground state of each electronic state is

indicated with a thick line.

dissipation. After a certain time, the electron decays back into S∗0. The energy difference is emitted as a

new photon with an increased wavelength λfluorescence > λexcitation. Once again, the electron decays into

ground state S0. The difference between the peak excitation wavelength and the fluorescence wavelength

Δλ = λfl.−λex. is called STOKES shift. The energy difference is typically lost in heat dissipation. The

timescale of the absorption is typically in the picosecond range, whereas the internal conversion is on the

femtosecond timescale. The fluorescent lifetime is of the order of nanoseconds.

So far only the excitation and decay within the same spin-multiplicity (e.g., singlet to triplet) was con-

sidered. So called inter-system crossings, the transitions between states of different spin multiplicity can

give rise to the effect of phosphorescence. Here, a classically forbidden transition from, for example, the

lowest triplet state to the singlet ground state occurs. Still statistically unfavored, these decays are al-

lowed in quantum mechanics. Thus, typical lifetimes of such triplet states are of the order of milliseconds

to minutes.

2.2.2. Photobleaching

Photobleaching is another decay channel for excited fluorescent molecules. Instead of a reversible ab-

sorption and emission of photons, the incident light induces a photochemical destruction of the molecule.

As this process typically involves a structural change, photobleaching is mostly non-reversible or very

long-lived.

2.2.3. Brightness of a fluorophore

The molar extinction coefficient εfluor is a measure of how strong a molecular species absorbs light. The

actual absorbency A depends on the pathlength l, εfluor, and the concentration c (BEER-LAMBERT law):

A = εfluor · l · c. (2.15)

The quantum yield φfluor of a fluorescent molecule is the ratio between the numbers of emitted and

absorbed photons:

φfluor =
Nemitted

Nabsorbed
. (2.16)
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The brightness of a fluorescent molecule is proportional to the product of the extinction coefficient and

the quantum yield:

Bfluor ∼ εfluor ·φfluor (2.17)

2.2.4. Dyes

Throughout this work, four different types of fluorescent dyes were used, which are described in the

following. Table 2.5 summarizes their fluorescent properties.

Fluorescent micro-spheres

Calibrating and characterizing the microscope requires for bright probes. For that purpose, two different

types of fluorescent beads were used, TetraSpeck ∅ = 100nm fluorescent beads (T7279, INVITROGEN)

and FluoSpheres YG ∅= 100nm fluorescent beads (F8803, INVITROGEN). These are polystyrene beads

that are stained throughout with fluorescent dyes.

Figure 2.16a shows an example image of TetraSpeck beads for different excitation wavelengths. In case

of the TetraSpeck beads, four different fluorescent dyes are embedded, for the yellow-green (YG) beads,

a single dye is used with a peak absorption at λ = 505nm. Both samples are well suited for 488 nm laser

excitation. The brightness of the FluoSpheres YG beads is equivalent to 7.4×103 fluorescein molecules

[215].

TetraSpeck beads have a diffusion coefficient of DTS,ϑ=20 ◦C = (3.9±0.6)μm2/s in water [154], and a

diameter of (100±7) nm [214]. The same values were assumed for the YG beads.

Quantum dots

Quantum dots (QDs) are another frequently used sample in fluorescence microscopy. They are made

of nano-crystals of semiconductor materials (roughly 104 atoms). Dimensions are so small (∼ 6nm,

the range of the DE BROGLIE wavelength of an electron at room temperature), that the charge carriers

(electrons and electron holes) within crystal undergo quantum-mechanical effects and energy can only

exist at discrete levels. Examples of the photoluminescence of different quantum dots is shown in Fig-

ure 2.16b. The properties of such crystals (e.g., color) can be be fine tuned (e.g. by changing the size, or

the chemical composition). To use the crystals in biological samples, they are coted with a polymer and

can be further coupled to proteins [212]. In contrast to other dyes, QDs do not bleach even after hours of

excitation [204].

The size of the QDot-525 streptavidin ITK (Q10041MP, INVITROGEN) used in here is comparable

to a large macromolecule or protein (roughly 15 nm to 20 nm) and is therefore much smaller as the

∅ = 100nm fluorescent beads described above. Thus, they are much better suited for performance

evaluation of a microscopic setup for the evaluation of small molecules. Another major advantage of the

quantum dots is their broad extinction coefficient in the blue spectrum [213].

dye εfluor [1/(M cm)] φfluor Bfluor = εfluor ·φfluor [1/(mM cm)]

Alexa-488 73.000 0.92 67

eGFP 55.000 0.60 33

QDot-525 streptavidin ITK 130.000 0.29 38

fluorescein 76.900 0.93 72

TetraSpeck ∅= 100nm fluorescent beads N/A

FluoSpheres YG ∅= 100nm fluorescent beads 7.4×103 fluorescein equivalents

Table 2.5.: Properties of the dyes. Data was taken from Refs. [146, 203, 210, 211, 216].
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Alexa-488

A third type of fluorescent dyes, a chemical fluorophore, that was used in this thesis is Alexa-488. The

chemical structure is shown in Figure 2.17a. Alexa-488 has its absorption maximum at 495 nm and

its emission maximum at 519 nm [209]. With these properties the dye is, as the name indicates, well

suited to be used with 488 nm lasers. The quantum yield is φ = 0.92 and the molecular extinction

coefficient ε = 73000/(cm M) [210, 211]. In comparison to the formerly used standard dyes (fluorescein,

rhodamine, etc.), Alexa-488 dyes tend to be more photostable.

Due to its small size, the diameter is about 1 nm, the fluorescent molecule is relatively fast (D20,W =
406959μm2/s) [173]. Its high mobility makes it hard to be characterized with CMOS based cameras.

Typically, the molecule is used as a label and is connected to some other molecule at the marked position

(* in Section 2.2.4). Furthermore, Alexa-488 is used as a standard for calibration in confocal FCS [59].

Green fluorescent protein

The green fluorescent protein (GFP) is a protein composed of 238 amino acids (26.9 kDa) that exhibits

bright green fluorescence when exposed to blue or ultraviolet light. GFP was first isolated from jel-

lyfish A. victoria in 1962 [196]. Its discovery and development was honored with the Nobel Prize

in chemistry in 2008. The enhanced form of GFP that was used in here, enhanced green fluorescent

protein (eGFP) [257], has a fluorescence quantum yield of φ = 0.60 and an extinction coefficient of

ε = 55.000/(M cm)[146]. Instead of the rather complex excitation spectra of wild type GFP, eGFP has a

single excitation peak at 488 nm. In cell and molecular biology, GFP is often used as a marker for gene

expression or as a marker molecule [38]. Via transfection methods, the GFP-DNA can be incorporated

into a target cell.

In this work, different eGFP oligomers were used as samples (either in solution of in live cells). As an

example, the commonly assumed form eGFP tetramers is shown in Figure 2.17b. The proteins in solution

were extract from transient (non permanent) transfected cells expressing the specific constructs.
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(a) TetraSpeck beads (b) QDot-525

Figure 2.16.: TetraSpeck beads and QDot-525. (a) Four exposures of three TetraSpeck beads. Image taken from https:
//www.lifetechnologies.com/order/catalog/product/T7279. (b) Photoluminescence of ∅= 6nm quantum

dots of different chemical compositions. Image taken from http://www.sigmaaldrich.com/materials-science/
nanomaterials/quantum-dots.html.
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Figure 2.17.: Alexa-488 and eGFP oligomers. (a) Structure of the Alexa-488 fluorophore. Image adapted

from http://www.operon.com/products/custom_oligos/modifications/fluorescentdyes.aspx. (b)

eGFP monomers and eGFP tetrameters as used as inert tracer molecules. Crystal structure taken from Ref. [167]. Images

adapted from Ref. [119].
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2.3. Fluorescence microscopy

2.3.1. SPIM

In the following, the principle of lightsheet fluorescence microscopy (LSFM) using the example of se-

lective plane illumination microscopy (SPIM) is described. The second part introduces the microscope,

that was used in the course of this work.

Principle of lightsheet fluorescence microscopy

Confocal microscopy, as shown in Figure 2.18b and also Figure 1.6, offers a high resolution and a fast

readout but lacks the ability for parallel multi-spot measurements. Figure 2.18c shows the principle of

lightsheet fluorescence microscopy (LSFM). A cylindrical lens is used to focus down an expanded beam

of parallel light in only one direction. By that, a thin sheet of light, the lightsheet is created. Perpendicular

to the lightsheet an infinity corrected detection objected is positioned. Its object plane is superimposed

by the lightsheet. The thickness of the lightsheet and the z-extend of the image plane of the detection

objective are typically matched to avoid out-of-focus light.

Being a wide-field illumination method (cf., Figure 2.18a) combined with a strongly improved z-

sectioning, it can be seen as compromise between confocal and epi-fluorescence microscopy. In compar-

ison to wide-field fluorescence microscopy, a major advantage of lightsheet microscopy is its ability to

reject out-of-focus light in the detection path. Furthermore, the selective illumination reduces negative

photophysical effects on the sample as, for example, photobleaching of the fluorophores or photodam-

age [95]. As other fluorescence microscopes, lightsheet microscopy allows for using multiple colors

illumination and detection.

History

The technique of lightsheet microscopy (LSM) was first described by Siedentopf and Zsigmondy [199]

in 1902. First, this technique was used to study scattered light from nano-sized particles [145]. In 1925

Zsigmondy [260] received the Nobel prize.

First fluorescence measurements were published in 1993 by Voie et al. [223]. Their setup made use of

a cylindrical lens only and achieved a minimum width of the lightsheet of 20 μm. A breakthrough was

achieved in by Huisken et al. [95] in 2004 who replaced the single cylindrical lens used for lightsheet

formation by a combination of a cylindrical lens (CL) and a projection objective (PO, cf., Figure 2.20).

This type of setup is referred to as the first selective plane illumination microscopy (SPIM) setup. A

major advantage of such a setup is, that the optical parameters of the lightsheet do not longer depend on

the quality of the cylindrical lens, but on the projection objective, which are typically available in higher
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Figure 2.18.: Comparison of different fluorescence microscopy techniques.
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(a) three-dimensional rendering (b) top view
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Figure 2.19.: Principle of LSFM. The three-dimensional rendering was provided by JAN W. KRIEGER.

quality [75]. Instead of using a cylindrical lens, a sheet of light can also be formed with a scanning laser

[108].

Description of the setup

The setup used in the course of this thesis is based on this design proposed by Greger et al. [75]. It

was designed and built by JAN W. KRIEGER (DKFZ Heidelberg, Germany) as an enhanced version for

cameras with a pixel size of 20 μm to 30 μm [119].

Figure 2.20 shows a schematic drawing of the setup, a photograph is shown in Figure 2.21∗. As a light

source, a λ = 488nm diode laser is used with an output power of 60 mW. Its emission light is cleaned

up by a bandpass filter (CF). An additional neutral density filter is built into the beam path to attenuate

the laser power. That was crucial as the laser beam is more stable when the laser is driven at its specific

output power. A custom built laser shutter is the next part within the light path. After that, the beam

is expanded (BE). The gimbal mounted mirror (GMM) in combination with the relay telescope, that is

formed by the lens-doublets L1 and L2, allows for fine adjustment of the z-position of the lightsheet.

Viewed from top, the incident laser beam is not affected by the cylindrical lens and focused down to

a thin sheet of light by the projection objective. Viewed from the side, the cylindrical lens (CL) and the

projection objective (PO) form a telescope producing a parallel beam within the sample chamber (SC).

First described in Ref. [75], this method allows using high-quality microscope objective lenses to form

the lightsheet. Instead of a single cylindrical lens this results in less optical aberrations and a overall

thinner lightsheet.

As projection objective a 10× microscope objective is used (numerical aperture of 0.3 and a focal

length of fPO = 20mm). The lightsheet geometry can be approximated with a GAUSSIAN beam with a

width wLS(y) along the propagation direction (y-axis) given by [119, 183]:

wLS(y)≈ wLS,min ·
√

1+

(
y

1.58 ·dLS

)2

. (2.18)

The parameters of the lightsheet depend on the sample medium. For water, the following values can be

derived for the minimum thickness of the lightsheet wLS and the longitudinal 1/e2-half width [119]:

λ = 488nm : wLS ≥ 1.33 and dLS ≥ 20.2μm. (2.19)

The geometry of the lightsheet is plotted in Figure 2.22a. Figure 2.22b shows a photograph of the

lightsheet within the sample chamber.

∗Additional laser light sources and dual color splitting optics that were not used in this work are not shown for simplicity.
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Figure 2.20.: Schematic drawing of the SPIM setup as used during the course of this thesis. The upper part of the image

shows the top view of the SPIM setup. The lower, shaded part shows the side view (frontal) of the illumination beam path. The

position of the CHSPAD sensor is shown as a red rectangle. Connections to the computer used to control the instrument are

shown in red. More details on the setup and the used components are given in Ref. [119].
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Figure 2.22.: Light-sheet in the SPIM setup. (a) Geometry of the lightsheet. Calculations were done for a 488 nm laser

light source and a water filled sample chamber (SC). (b) Photograph of the lightsheet in the sample chamber. To visualize the

lightsheet, a solution of TetraSpeck ∅= 100nm fluorescent beads was filled into the sample chamber. The projection objective

is located in the bottom left, the detection objective on the top right.

sensor type resolution pixel size d2
pixel d2

pixel at 60× FOV at 60×
[μm2] [nm2] [μm2]

ANDOR iXon X3 860 EMCCD 128×128 24×24 400×400 51.2×51.2
RADHARD2 SPAD 32×32 30×30 500×500 16.0×16.0
CHSPAD SPAD 512×128 24×24 400×400 204.8×51.2

Table 2.6.: Geometrical parameters of the image sensors used in the SPIM setup. The two last columns give the respective

pixel size and the field of view (FOV) in the image plane at 60× magnification. Data taken from Refs. [8, 33, 36].

The detection system of the SPIM setup consist of a water dipping objective (DO) with a 60× magni-

fication (NA = 1.0, focal length fDO = 3.33mm). It is used to collect the fluorescence from the sample

(S) excited by the lightsheet.

The detection objective is infinity corrected and a tube lens (TL) is used to focus down the light onto

the detectors. A 50:50 beam-splitter (BS) or a mirror can be used to select one of the detectors or to use

both in parallel. Different filters can be selected in a filter-wheel, which is placed between the detection

objective and the beam-splitter. Typically, filters are used to select a certain range of the spectrum for

detection (i.e., fluorescence) and to block scattered light from the sample.

Table 2.6 shows the geometrical parameters for the three detectors that were used in this thesis work.

Except for the RADHARD2, those match the size of a typical sample, i.e., cell.

As the detection path comprises a water dipping objective, the sample chamber (SC) needs to be filled

with pure water or buffer solution, depending on the sample. The sample, mounted on a three-axis

translational stage, is brought in hanging from above. Liquid samples such a free dyes, are filled into

small seal-able bags with the same refractive index as water (FEP foil). Cells are typically grown on

glass cover slips and are directly hung into the buffer solution. Another possibility is to embed a sample

into a gel, which in turn can then be inserted into the filled sample chamber.

2.3.2. Bleach correction

Fluorescent dyes, especially fluorescent proteins, have the tendency to loose their ability to emit photons

over time (see section 2.2.2). This effect cannot be integrated into the fit models, thus requiring a cor-
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rection of the raw dataset. In Ref. [176] a correction formula for a time-trace of intensity values I(t) was

proposed:

I(c)(t) =
I(t)√

f (t)/ f (0)
+ f (0) ·

(
1−

√
f (t)/ f (0)

)
, (2.20)

where I(c)(t) is the corrected time-trace and f (t) is a function which describes the progression of the

fluorescence intensity I(t). In Ref. [119] an extended mono-exponential model was successfully used:

f (t) = f0 · exp

(
− 1

τb

Nf

∑
i=1

fi · ti

)
, (2.21)

which is also used in here. The parameters τb and fi can be obtained from a fit of intensity time-trace. In

this thesis, a polynomial degree of five was chosen (Nf = 5).

2.3.3. Experiment control and data evaluation software

The entire SPIM microscope, including lasers, laser shutters, the LED illumination, the EMCCD cam-

era, the motorized stages to move the sample, etc., and even the RADHARD2 and CHSPAD sensors

are controlled by the QuickFit3 open source software. QuickFit3 was developed by JAN W. KRIEGER

[122]. Apart from the experiment control, the focus of QuickFit3 is data evaluation for fluorescence

microscopy, especially correlation analysis and curve fitting. In case of the RADHARD2 SPAD array

and the CHSPAD, plug-ins have been developed for reading raw data files as well as raw data from the

FPGA-based correlator (see section 5.5). Additionally, a live-view was integrated. Due to the limited

data rate of the RADHARD2, correlation analysis of the raw data can be done with QuickFit3, too. In

case of the CHSPAD, QuickFit3 can be used to remote-control the data acquisition software ngsoft (see

section 4.2.3) and allows displaying a real-time view of the sensor. Correlation analysis is done with

an external program based on the CPU correlator (‘correlator_vc_chspad_raw’). This software does the

auto- and cross-correlation analysis. The outcome can be directly imported to QuickFit3. Furthermore,

‘correlator_vc_chspad_raw’ can be used for bleach correction (see section 2.3.2).

2.3.4. Characterization of the molecular detection efficiency

After the alignment of the microscope (see [119] for details), the molecular detection efficiency (MDE)

of the setup is measured. The MDE is essentially the convolution of the point spread function (PSF) of

the microscope and a function describing the shape of a single pixel [201, 241]. To measure the MDE, a

gel cylinder that contains a small amount of TetraSpeck ∅= 100nm fluorescent beads is scanned along

the z-axis in steps of 200 nm [119]. The image stack is automatically evaluated using the Beadscan
Evaluation: PSF plug-in in QuickFit3. In a first step bead candidates are detected by selecting the

brightest spots per frame which are then merged with neighbors in z direction. In a second step, the bead

candidates are fitted using a three-dimensional GAUSSIAN model yielding 6 parameters (position in the

stack, and parameters of the GAUSSIAN volume). For later analysis, the largest width of the GAUSSIAN

volume is taken as wz, and the mean value of the shorter ones as wxy. The median values of the largest

and the smallest widths of the major axis of the GAUSSIAN fits were used as wxy and wz, respectively. To

account for the inhomogeneous illumination of the CHSPAD with microlenses, the detection algorithm

for bead candidates was adapted to apply a de-trending operation first (see section 6.3.5 for details on the

de-trending method).

2.4. Measuring diffusion: fluorescence fluctuation fechniques

This section gives an introduction to the principles of fluorescence correlation spectroscopy. Starting

with the basic concepts of correlation analysis (section 2.4.1), different algorithms to calculate correlation
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functions are introduced (section 2.4.2). Using this as a starting point, the implementation of such an

algorithm on different hardware architectures is described (section 2.4.3). Parts of this work have been

already published as Ref. [155].

2.4.1. Signal Correlation

As already introduced in section 1.1.2, the method of choice in this thesis to assess the mobility of

molecules was fluorescence correlation spectroscopy (FCS). This technique was pioneered by [142]

[142–144] in 1974. Figure 2.23 illustrates the principle: A fluorescent label is excited and detected

in a small sub-volume of the sample (some μm3, (a)). In that volume, the particle number in time N(t) is

low enough to distinguish between single particles entering and leaving the volume. The measured flu-

orescence intensity I(t) is proportional to the number of fluorescent molecules within the volume ((b)).

Due to the continual motion, e.g., diffusion, N(t) is permanently fluctuating around its mean value 〈N〉,
giving:

N(t) = 〈N〉+δN(t) ⇒ I(t) = 〈I〉+δ I(t) with 〈δN(t)〉= 〈δ I(t)〉= 0 (2.22)

The fluctuations of the particle number and the detected fluorescence intensity are represented by δN(t)
and δ I(t). This is directly related to the speed of the particle (diffusion coefficient) and can be quantified

using an autocorrelation analysis.

By means of an autocorrelation analysis the characteristic diffusion time is extracted ((c)). The nor-

malized FCS autocorrelation function is defined as

G(τ) =
〈δ I(t) ·δ I(t + τ)〉

〈I(t)〉2 =
〈I(t) · I(t + τ)〉

〈I(t)〉2 −1, τ > 0, (2.23)

with the averaging function 〈·〉 over an interval [0...T ]:

〈I(t)〉= lim
T→∞

1

T

∫ T

0
I(t)dt. (2.24)

Generally, a correlation function measures the similarity of two signals IA(t) and IB(t + τ) shifted in

time. In the case of an autocorrelation function, the self-similarity of the fluorescence intensity signal
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Figure 2.23.: Illustration of the principle of fluorescence correlation spectroscopy (FCS). (a) Sample with moving particles.

Within the observation volume (black circle), the fluorescence is shown in green. (b) Fluorescence intensity as measured from

two different samples, showing the fluctuations δ I(t) around the mean intensity 〈I(t)〉. A slow diffusing species is shown in

red, a fast species in blue. (c) Autocorrelation curves calculated from the intensity traces in (b). The diffusion times τD, fast and

τD, slow are defined as g(τD) = g(0)/2.
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I(t) to its time-shifted variant I(t + τ) is measured. For a completely random intensity signal I(t) (i.e.,

white noise), the correlation function equals DIRAC’S function, G(τ) ∝ δ (τ), and decays for all τ > 0.

When I(t) contains a non-random component, the correlation G(τ) will be non-zero for a certain range

of lag-times τ .

The first channel of the correlation function G(0) (see equation (2.23)) is proportional to the average

particle number in the observation volume:

G(0) =

〈
(δ I(t))2

〉
〈I(t)〉2 ∝

〈
(δN(t))2

〉
〈N(t)〉2 =

1

〈N〉 . (2.25)

The last step is valid as the particle number N(t) obeys POISSONIAN statistics:〈
(δN(t))2

〉≡ Var(N(t)) = 〈N〉 . (2.26)

Further, the correlation function decays for large τ:

G(∞) = 0. (2.27)

Discretization

A typical camera discretizes the continuous stream of fluorescence intensity I(t) with a fixed time base,

the frame time or integration time τmin, into a finite sequence of NT intensity measurements, with

NT · τmin = T :

In =
∫ τmin

0
I (n · τmin + t) dt, n = 0,1, ...NT −1. (2.28)

THat givel, the continuous averaging function, equation (2.24), turns into

〈I〉= 1

NT

NT−1

∑
t=0

I. (2.29)

Autocorrelation

The discrete counterpart of the correlation function (equation (2.23)) is called correlation curve g. Care

has to be taken not to bias the normalization 1/〈I〉2. A viable choice is the “symmetric normalization”

introduced by Schätzel et al. [190] and [189]:

gsym(τk) =

1
NT−k ·

=:gk︷ ︸︸ ︷
NT−1

∑
n=k

In · In−k[
1

NT
·

NT−1

∑
n=0

In︸ ︷︷ ︸
=:Mu

]
·
[

1
NT−k ·

NT−1

∑
n=k

In−k︸ ︷︷ ︸
=:Md

] = gk · NT

Mu ·Md . (2.30)

In the formula shown above, the continuous τ is also replaced by its discrete counterpart τk:

τk = k · τmin, k = 0,1, ...NT −1, (2.31)

The so called ‘lag time’. Note that Mu = g0 for a binary input signal, so the first correlation channel

contains important information for the normalization.
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Schätzel [189] showed, that a naïve implementation

gasym(τk) =

1
NT−k ·

NT−1

∑
n=k

In · In−k[
1

NT
·

NT−1

∑
n=0

In

]2
(2.32)

leads to additional noise as it includes contributions due to boundary terms [190]. A comparative study

of different normalizations can be found in Ref. [52].

Cross-correlation

The formulas described above only measure the self-similarity of a signal. To be able to compare neigh-

boring pixels, e.g., to evaluate flows, equation (2.30) can be modified to its generalized form

gCCF
sym (τk) =

1
NT−k ·

NT−1

∑
n=k

Iu
n · Id

n−k[
1

NT
·

NT−1

∑
n=0

Iu
n

]
·
[

1
NT−k ·

NT−1

∑
n=k

Id
n−k

] . (2.33)

The values Iu
n and Id

n represent discrete intensity values of two different pixels u and d (see below).

2.4.2. Algorithms

To calculate the correlation curve g(τ) several algorithms can be used. This section gives an overview

of representative types of correlators. It follows the arguments given in Ref. [113] which also gives

an analysis of the errors of the different correlators. The actual implementations of a correlator may

vary depending on the exact input data type. Typically, the input stage (the so called ‘front end’) of the

correlator differs and specific optimization can be taken.

A special position is taken by time-correlated single-photon counting (TCSPC) data. Instead of a

continuous stream of accumulated or binary values (photon or no photon), such a detector provides

photon arrival times. In case of low count rates, this can be thought of as kind of compression. Details

on the algorithms can be found in Ref. [227].

Direct correlation

The simplest approach to calculate the (auto-)correlation function is to evaluate the correlation function

directly. Therefore, the full sequence {In}n=0...NT−1 is required and a correlator (typically a software

implementation) evaluates equation (2.30) for an arbitrary (also logarithmically) spaced set of lag times

τk. This gives an unbiased estimation of the autocorrelation function (ACF) (“direct correlation”). The

computational cost for calculating equation (2.30) is of the order of

O( NT︸︷︷︸
Number of samples

· NT︸︷︷︸
Number of τ values

)
= O

(
N2

T
)
. (2.34)

As the correlation function typically ranges from μs to s, a logarithmic spacing of τk is more computa-

tional cost efficient:

O( NT︸︷︷︸
Number of samples

· log(NT )︸ ︷︷ ︸
Number of τ values

) ∈ O (NT logNT ) . (2.35)

By choosing a certain number of τk, the complexity can be reduced to O (NT ). A major drawback of this

algorithm is, that the entire dataset has to be held in memory during calculation. The implementations

described in the following overcome this issue.
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Figure 2.24.: Linear-τ correlator. The basic building block of the correlator is a shift register.
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Figure 2.25.: Exponential-τ correlator. A linear correlator with an exponentially increasing number of shift registers in

between.

Linear-τ correlator

Figure 2.24 shows a sketch of a so called linear-τ correlator [100], with linearly spaced lags:

τk = k · τmin. (2.36)

It is a direct implementation of gk in equation (2.30), forming a shift register of individual lags (delay

element and multiply accumulate operation) with a corresponding lag time τk. Due to the design of a

correlator (see below), typically one input signal is delayed (d), whereas the other signal (u) passes the

correlator without delay.

A major advantage of such a linear correlator over the direct evaluation of the correlation function

is that input values can be discarded once they have passed the correlator. To be able to normalize the

correlation function when a measurement is done, the monitor channels Mu and Md have to be calculated

additionally. If τ should embrace multiple decades in time, the consumption of hardware or computing

resources is enormous. This requires for different approaches, which are discussed in the following.

Exponential-τ correlator

The exponential-τ correlator addresses the the high amount of hardware or processing power that is

necessary if a linear correlator is used. To cover a larger range of lag times τk, additional shift registers

are inserted between full featured lags. By increasing their length exponentially, a logarithmic scale is

introduced. Figure 2.25 shows an implementation that uses the following relation:

τk =

(
k

∑
i=1

2�|i−3|/2+0.5� −1

)
· τmin ∝

(
2

1
2

)k+1 · τmin. (2.37)

The last relation arises as a result of a geometric series∗.

Multiple-τ correlators

The latest result of correlator development are multiple-τ correlators, which are able to span decades

of delay values τk with only a couple of hundred lags. Their major advantage over the exponential-τ
correlator is, that by introducing an averaging of the intensity values In at some point, they can reduce

hardware or computational effort tremendously. Such an averaging step, also called binning with a ratio

∗�x� := max{k ∈ Z | k ≤ x}
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Figure 2.26.: Parallel multiple-τ correlator. Basic building blocks are linear correlators which are run in parallel. In each

linear correlator the delay time is doubled (m = 2) and an averaging is done on the input signals. Due to the overlap (shown in

gray), the first half of each linear correlator is redundant.

of m single values, is a convolution of the intensity values and a rectangular filter kernel. Equation (2.23)

can then be written as

G′(τ) =
〈I(t)∗hrect(t;m · τmin) · I(t + τ)∗hrect(t + τ;m · τmin)〉

〈I(t)∗hrect(t;m · τmin)〉2
−1

= G(τ)∗htriangle(t;m · τmin). (2.38)

The kernel functions are defined as follows:

hrect(t;T ) =
1

T

{
1 |t|< T/2

0 else
(2.39)

htriangle(t;T ) = hrect(t;T )∗hrect(t;T ) =
1

T

{
1−|t| |t|< T

0 else.
(2.40)

Parallel multiple-τ correlator. The parallel multiple-τ correlator described by Magatti and Ferri [140]

is based on linear-τ correlators but makes use of binning to save computation time. Figure 2.26 shows

a sketch of such a correlator. It is based on a set of S linear correlators (s = 0,1...,S− 1) having an

increasing integration time and a binning ratio m:

τmin,s = ·ms · τmin, s = 0,1,2...,S−1. (2.41)

For each linear correlator the delay values are given as

τk,s = k · τmin,s. (2.42)

A major drawback of such a design is that per linear correlator 1
m of each correlator is overlapping with

the previous one. Commonly, a binning ratio of m = 2 is chosen for correlator implementation.

Serial multiple-τ correlator. The working principle of a (serial) multiple-τ correlator used in here was

proposed by Schätzel [186]. Figure 2.27 shows a sketch of the design. It consists of B linear-τ correlators,

so called blocks, typically comprising L= 8 or L= 16 single lags. Each lag is made up of a delay element
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Figure 2.27.: Schematic drawing of a multiple-τ correlator. (a) shows a linear-τ correlator for comparison. (b) multiple-τ
correlator consisting of blocks of linear-tau correlators with four lags each. Between adjacent blocks two consecutive global

or local values are summed up. Corresponding channels are grouped with the same color. Global/un-delayed (Iu
n) and lo-

cal/delayed (Id
n) inputs are located on the left. For autocorrelation, the delayed and un-delayed signal inputs to the 0-th block

(Iu
n = Id

n = In) are identical. The Δτ blocks represent delay elements, the ⊗-blocks multipliers and the Σ -blocks accumula-

tors. Typically Δτ = τmin. Panel (c) shows a schematic view of the multiple-τ correlator, where the linear-τ correlator building

blocks are summarized by a single block.

(τmin), a multiplier (×) and an accumulator (∑). Usually, the minimum delay value is chosen to be the

minimum integration time of the sensor (Δτ = τmin). In between adjacent linear blocks, m consecutive

values of the global and the local inputs are summed up. The delay values of the following block are

scaled in the same manner (τb = m · τb−1 = mb · τmin). This introduces a semilogarithmic spacing and

several orders of magnitude can be covered with ∼ 100 lags. Each of the linear correlators estimates the

correlation function at L linearly spaced lags. The lag times are given by the following relations:

τ0,0 = 0

τb,0 =
(
τb−1,L−1 +ms−1

)
τmin

τb,l = (τb,l−1 +ms)τmin =

(
b·L+l

∑
i=1

m
⌊ i−1

L

⌋)
︸ ︷︷ ︸

kb,l

τmin, (2.43)

with b = 0 . . .B−1 and l = 0 . . .L−1.

The input samples for each block Ib,n (n is the same index as in equation (2.30), so that Ib=0,n = In) are

calculated as a summation of input values of the previous block, giving

Ib,n =
ms

∑
k=1

Ib−1,n−k, for b > 0. (2.44)

As shown in Ref. [113], the estimator gsym,multiple-τ(τb,l) for a multiple-τ correlator equals the ideal

correlation function gsym(τb,l · τmin) (see equation (2.30)) convolved with a triangular kernel (see equa-

tion (2.40)) of width mb:

gsym,multiple-τ(τb,l) = gsym(τmin)∗htriangle(t;mb · τmin), (2.45)

From one block to the next, the delay time is scaled with m in the multiple-τ scheme, reducing the input

data rate of block b+ 1 by a factor of two in comparison to block b. Additionally, the frequency of

execution of each block is scaled by 1
m .
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Optimizations. Instead of building a cascade of linear blocks, a single linear block can be re-used for

all. Under the assumption, that the execution time is equal, the complete runtime Tmulti-τ of the entire

multiple-τ correlator is only a small multiple of the runtime Tlin-τ of the first linear correlator block:

Tmulti-τ =

1st lin. corr.︷ ︸︸ ︷
1 ·Tlin-τ +

2nd lin. corr.︷ ︸︸ ︷
1

m
·Tlin-τ +

3rd lin. corr.︷ ︸︸ ︷
1

m2
·Tlin-τ + · · · ≤

∞

∑
n=0

1

mn ·Tlin-τ =
m

m−1
·Tlin-τ . (2.46)

The equation shown above was calculated by exploiting the geometric series. Usually m = 2 is chosen,

resulting in

Tmulti-τ ,m = 2 = 2 ·Tlin-τ . (2.47)

Such an implementation requires additional memory in between the blocks to hold the state of the delay

elements. Furthermore, a scheduling algorithm is needed which determines the order of blocks to be

processed.

If the underlying hardware offers sufficient performance, even the linear correlator block can be re-

placed by a single lag. This lag processes all lags of the linear correlator serially. The content of the

delay registers is then stored in a dedicated memory. This so called ‘virtual correlator structure’ was

proposed by Jakob et al. [101].

Normalization. In case of a multiple-τ correlator, the symmetric normalization (cf., equation (2.30))

yields the following [48]:

gsym,multiple-τ(τb,l) =
gb,l

2b ·
NT

Mu
b,l ·Md

b,l
(2.48)

Both values Mu
b,l and Md

b,l are usually calculated on-the-fly in so called monitor channels that simply

accumulate the values Iu
n, Id

n that enter a specific lag. To minimize the computational costs, only the

first lag in a block is equipped with such monitor channels, and M(d,u)
b,l are considered constant for a linear

lag, introducing a certain error. If it is guaranteed that all local values or their accumulated variants Ib,l
pass all lags (cf., next section), Mu

b,l = Mu for all lags.

Under the assumption that In is a stationary random process and that T > τs,p, the per-block monitors

Md
s,p can be estimated in the following manner:

Md
b,l = Mu · NT − kb,l

NT
. (2.49)

So only the Mu monitor channel is necessary for normalization. For the autocorrelation function the

monitor channel equals the first channel Mu = g0, but in case of a cross-correlator, both input signal Iu

and Id have to be accumulated separately.

Figure 2.28 shows the effect of the estimation in equation (2.48) (magenta) in comparison to a direct

estimation of the ACF using equation (2.30) (green) and a multiple-τ correlator with a monitor channel

per lag (blue). Data in (a) and (b) were obtained by correlating the input signal

I(t) = 1+ sin(2πt/(1.51 ·10−4)), (2.50)

for which the exact ACF is known to be

g(theoretical)(τ) = 1+ cos(2πτ/(1.51 ·10−4)), (2.51)

time t and lags τ are unit free). The data in (c) was created by simulating a Tsim = 1s long FCS experiment

with one diffusing species∗. The computation was performed with an FCS simulation software described

in Refs. [119, 239].

∗The diffusion coefficient was D = 20μm2/s (corresponding to an intermediately sized protein in water), the simulation

time-step of the random walk, as well as the minimum lag time were Δtsim = τmin = 1μs. There were around 1.2 particles in

the effective observation volume Veff ≈ 0.4μm3 on average.
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Figure 2.28.: Simulation results for different implementations of multiple-τ correlators. The left panels (a),(b) show sim-

ulations for a sine wave input signal I(t) = 1+ sin(2πt/(0.151ms)). The simulations on the right (c),(d) were created using

an FCS simulation. The top graphs (a),(c) are estimates of the autocorrelation function using direct correlation from equa-

tion (2.53) (green), a multiple-τ correlator with one monitor channel per lag time (blue) and the estimated normalization from

equation (2.48) (magenta). Graph (a) also shows the theoretical ACF g(theoretical)(τ) = 1+ cos(2πτ/(0.151ms)) for the sine

signal (light red). The lower graphs (b),(d) show the absolute deviation of the estimates from g(theoretical)(τ) (b) and from a fit

to the curves (d). The parameters resulting from the fit in (c) are the same within < 2.5% for all three estimates. Figure taken

from Ref. [155].

Flushing the correlator. To ensure that all local values Ib,l pass all lags, the correlator has to be run even

after the actual measurement with In≥NT = 0. The last block (b = B−1) has to be run L times, the second

last (b = B−2) has to be run 2 ·L times, the third last block (b = B−3) 4 ·L times and so forth. Thus, the

number of values NF that have to be fed into the correlator until all input values have propagated through

all blocks is

NF = 2B−1 ·L. (2.52)

2.4.3. Theoretical FCS models

As the SPAD’s diameters are small in comparison to the pixel pitch, they are treated as point like and the

same model functions as in FCS were used. In contrast to that, the EMCCD camera with its rectangular

pixels and an almost 100 % fill factor, different fit models were used (see [119] for details).

For evaluation, a theoretical model curve is fitted to the correlation curve that is obtained from the

correlator. The model function can be established from the evaluation of the definition of the correlation

function (see also equation (2.23)):

G(τ) =
〈I(t) · I(t + τ)〉

〈I(t)〉2 −1, τ > 0. (2.53)

The unknown intensity trace I(t) can be modeled as the integral over the fluorescence of all particles:

I(t) = φ ·
∫∫∫

η · ε · c(t,x,y,z) ·MDE(x,y,z)dxdxdz, (2.54)

with the extinction coefficient ε , the quantum efficiency η (see section 2.2.3 for details on both), and an

additional parameter φ , which models further loss in intensity due to the optics. The molecular detection

efficiency (MDE) is used to describe the focal volume and c(t,x,y,z) represents the particle concentration

of the observed species. For a confocal microscope setup as well as for point like detectors in SPIM-FCS,
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2.4. Measuring diffusion: fluorescence fluctuation fechniques

a three-dimensional, rotationally symmetric GAUSSIAN function with the 1/e2 width wxy and 1/e2 height

wz is a good approximation:

MDE(x,y,z) = exp

(
−2

x2 + y2

wxy
2
−2

z2

wz
2

)
. (2.55)

Normal three-dimensional diffusion

By inserting equation (2.54) and equation (2.55) into equation (2.53), the FCS autocorrelation function

for normal diffusion of a single component can be obtained [118, 142, 143]:

Gnorm(τ) =
1

N
·
(

1+
4Di · τ
wxy

2

)−1

·
(

1+
4Di · τ

wz
2

)−1/2

(2.56)

with the diffusion coefficient D and the particle number N.

The underlying BROWNIAN motion implies a relation of the diffusion time of (cf., equation (1.9)):

τD ∝
√

Vobs3
2

D
, (2.57)

which becomes

τD =
wxy

2

4D
. (2.58)

The parameters described above allow to calculate several derived values. Such as the effective volume

Veff = π
3
2 ·w2

xy ·wz, (2.59)

and the particle concentration in the focus

c =
N

Veff
. (2.60)

Afterpulsing

Afterpulsing is a common artifact in single photon detectors, particularly in SPADs (see also section 2.1.1).

It becomes visible as a fast decaying component superimposing the autocorrelation curve. As demon-

strated in Ref. [119, p. 148], the afterpulsing that was prominent in the CHSPAD can be modeled using

a single component power-law function:

Gap(τ) = aap · τ−bap , (2.61)

with the amplitude aap and the exponent bap. It was also shown, that bafter = 1.1 is an acceptable value

for all pixels. An example curve of the afterpulsing of the CHSPAD is shown in section 4.2.4.

Normal three-dimensional diffusion for two foci

For two focus cross-correlation, equation (2.56) can be extended by a distance dependent term [27, 178]:

G2f(τ) =
1

N
·
(

1+
4Di · τ
wxy

2

)−1

·
(

1+
4Di · τ

wz
2

)−1/2

· exp

(
− δ 2

xy

wxy
2 +4Dτ

)
, (2.62)

where δxy is the lateral displacement of the two foci. Typically, no afterpulsing correction is applied, as

it is not correlated for different pixels.
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Oscillation fit model

Another model that was used in the course of this thesis is the oscillation fit model:

Gosc(τ) = A · cos(2π · f · τ) , (2.63)

where A is the amplitude and f the frequency of the oscillation.

Although this model function is not related to diffusion, it was used for hardware and software tests.

Typically, a frequency modulated light source was used to illuminate the sensor. As the excitation is

precisely known, the entire chain of detection and evaluation can be tested.

Multi-component fit model and offset correction

To account for multiple species within the same observation volume, further components can be added

to the fit model additively. If the correlation curve does not decay to zero as expected from the theory, an

offset was added to the fit models.

2.4.4. Model fitting of correlation curves

The last step of the data evaluation process is the fitting of a model function G(τ) to the obtained raw

correlation curves gi. This was carried out using the QuickFit3 software (see section 2.3.3) for each pixel

i and all required auto- and cross-correlation curves.

For each correlation curve i, parameters are obtained by solving the least-squares optimization problem

for all lag times τ:

Si(β i) = argmin
β i

∑
τ
[G(τ,β i)−g(τ)]2 (2.64)

with the parameter vector

β i = (Di,Ni,wxy,i,wz,i, . . .), (2.65)

for a three-dimensional diffusion model as described above. The vector β contains all required parame-

ters of the model function. Typically, some of these parameters are fixed to a constant value, which was

obtained differently.

Model fitting was done throughout this thesis work using a non-linear least-squares LEVENBERG-

MARQUARD fit algorithm. As a software-implementation, lmfit was used [242]. Due to the sheer amount

of pixels, an unattended fitting procedure is desired and it appeared that choosing optimal initial values

is crucial for the fit algorithm to converge for a high number of pixels. Typically, N and D are used as

free parameters, whereas wxy and wz are fixed (e.g., obtained from bead-scan, see section 2.3.4). When

more free parameters (except for the amplitude of the afterpulsing or a constant offset) are used, the fits

tend to not converge any more.

Binning

The correlation curves of single pixels are typically noisy and fitting of a model function does not work

well in many cases. When using imaging fluorescence correlation spectroscopy (imaging FCS) tech-

niques, one can take advantage of the large number of pixels that measured simultaneously. A valid

approach is then to bin raw intensity values of neighboring pixels. This increases the light intensity but

also the focal volume of the resulting binned pixels. A major drawback is that the raw data has to be

kept or the size of the binning region has to be chosen a priory to the measurement. Also, if a dedicated

hardware correlator is used, this step might impose modifications of the hardware.
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A different method which was used in the course of this thesis does not rely on the raw data but on the

correlation curves of each pixel: Neighboring pixels are binned post-correlation by averaging correlation

curves g(x,y,τ) of different pixels (x,y):

ḡ(x,y,τ) =
1

b2

b/2

∑
xb=−b/2

b/2

∑
yb=−b/2

g(x+ xb,y+ yb,τ), (2.66)

with b being the number of pixels to be used for binning. In principle, also a GAUSSIAN kernel can be

used or the median value instead of this rectangular shaped kernel. This procedure is only valid under

the assumption that changes in the diffusion coefficient are small in a local binned region and this step

effectively reduces the resolution of imaging FCS.

2.5. Application accelerators

To calculate the correlation function of every single pixel of the CHSPAD in real time, high performance

computing platforms are required. Starting with the general concepts of acceleration, the architectural

properties of current CPU, graphics processing units (GPUs) and FPGAs are introduced.

2.5.1. Introduction

The power consumption of any digital circuit scales linearly with its clock frequency [85]. Thus, accel-

eration by increasing the clock frequency of a single CPU core found its end in the mid-2000s, when

the so called “power ceiling” inhibited further speed increase as cooling became more and more imprac-

tical [166]. At that point, the focus started to shift towards parallelization and first chips with multiple

processor cores entered the market. But also other architectures benefit from the still-increasing number

of transistors: Similar to CPUs, also GPUs gain compute power by adding additional cores, or blocks

of cores. FPGAs benefit from a large amount of logic resources by increasing the overall length of the

processing pipeline, or by multiple instantiations of the same pipeline.

Limits of Acceleration

The maximum achievable speedup ηs due to parallelization can be assessed by AMDAHL’S law [7]:

ηs,A =
T

ts + tNP +
tp
NP

≤ T
ts
, (2.67)

with the runtimes of the parallel and serial code tp and ts, the total runtime T = ts + tp, the number of

parallel processors NP and the time required for additional synchronization tNP . Even for an infinite

number of processors, the serial section cannot be accelerated any further, which leads to a fixed upper

limit. For example, a program with only 5 % sequential code only gains a maximum speedup of 20.

If contrary to the assumption of AMDAHL, the size of the dataset is not fixed, but the execution time,

the following speedup can be gained by increasing the problem’s size (GUSTAFSON’S law) [79]:

ηs,G = NP +(1−NP) · ts
T
. (2.68)

A typical application in high performance computing (HPC) is real-time processing of data. Therein,

the total amount of processing time is fixed. By using more compute elements in parallel, it is possible to

calculate more datasets in parallel, so that GUSTAFSON’S law applies, and a linear speedup is expected.
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Flinn’s Taxonomy

Different computer architectures can be subdivided based on the instruction stream or data stream par-

allelism. Almost five decades ago, FLYNN described a taxonomy which is still in use today to describe

hardware architectures:

• single instruction, single data (SISD): Classic single core computers, that perform their tasks

serially, like PCs or workstations. The hardware is typically based on the VON-NEUMANN or

HARVARD architecture. Acceleration is possible by reordering instructions and by pipelining their

execution, which can be done in the background without interaction from the programmer. Data

dependencies limit the total length of the pipeline and the overall performance.

• single instruction, multiple data (SIMD): Typical (classical) examples are mainframe computers

and super-computers with array or vector processors. Fast execution of a single operation on

multiple data streams (e.g., used for image processing). Modern architectures typically feature

SIMD instructions through instruction set extensions. Examples are the multimedia extension

(MMX), the soft streaming extension (SSE) and the advanced vector extensions (AVX) [98]. A

second representative of this class of computers are graphics processing units with thousands of

compute units that perform the same instructions in parallel.

• multiple instruction, single data (MISD): Contrary to vector processors, where each pipeline

stage is a fragment of a single instruction, this architecture can be considered as a pipeline of inde-

pendent functional units operating on the same stream in parallel [67]. For example FPGA-based

image processing pipelines with independent compute units fall into this category [55] and also

dataflow computing [66]. Another representative are fault tolerant systems. Here multiple com-

pute units perform the same operations on a single data stream and a final stage must agree on the

results [205].

• multiple instruction, multiple data (MIMD): Typically, a MIMD machine is obtained by creat-

ing a set of independent SIMD or MISD processors that share a globally available memory.

Well established concepts for programming traditional and modern computers (SISD, SIMD and

MIMD) like imperative, functional or logic computer languages do not fit the MISD architecture. Here

a dataflow description is needed to build a pipeline of independent functional units. Until now, no full

transformation is possible, that achieves maximum parallelism [194].

Single instruction, multiple thread (SIMT). A fifth class of architectures was recently added to FLYNN’S

taxonomy: The SIMT architecture is comparable to the SIMD paradigm and was first introduced by

NVIDIA as a parallel execution model for GPU platforms [131]. A set of SIMD processors virtually

execute a much larger amount of threads in parallel by executing groups of threads serially. If a set of

threads stalls, ideally another group of threads is ready to be executed and takes over the computing

resources. This technique can be used to hide memory latencies and limits the instruction fetching

overhead.

2.5.2. Dataflow computing

In dataflow computing, a program is modeled as a direct graph. Data flows between compute nodes

along the arcs. If the underlying hardware is an FPGA, mapping is done by instantiating pipelines, and

operations are performed in parallel on the data stream (MISD architecture). Classic programming con-

cepts focusing on commands, in line with VAN-NEUMANN concepts, have to be substituted by inherently

parallel approaches. This usually leads to a full redesign of the software.
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Data is transferred between all nodes in a pipeline in each clock cycle. Therefore, an overall much

higher bandwidth is achieved. This may help to reduce the impact of the processor-memory performance

gap, which is the difference in growth in performance of CPUs and memory [85]. Thus, only the memory

bandwidth for the sources and sinks are significant, whereas the overall lower clock speed reduces the

requirements for the node-to-node connections. With all nodes working in parallel, the hardware is

utilized evenly. A typical application of dataflow computing is image processing, and usually each node

handles a single pixel’s value.

2.5.3. Field programmable gate arrays

The terminology in the following section is based on the XILINX documentation [243].

A field programmable gate array (FPGA) is an integrated circuit (IC) whose function is configured post

manufacturing by the customer. First FPGAs were introduced 1985 by XILINX, Inc.[23].

Usually, programmable logic is used when general-purpose hardware does not meet requirements and

designing an application-specific integrated circuit (ASIC) is no option. Being configured within sec-

onds, FPGAs can be chosen if the design maps onto the available resources, offering speed comparable

to custom hardware. Using also the same descriptive language as used for ASIC design, porting existing

designs is relatively easy.

Since their market launch in 1985, FPGAs have been used in various domains. Started as classical

glue-logic, FPGAs now have evolved to ASIC replacements in low to medium range quantities. They

are also used for ASIC prototyping or emulation. Due to their flexibility, FPGAs have ever since been

used as domain specific co-processors and entered the market for HPC as application accelerators, for

example in astronomy simulation[81].

In this work, FPGAs play an important role at different stages: They are used as ASIC replacements

and prototypes for the control and the readout of the detectors as well as application accelerators for

signal correlation analysis.

2.5.4. Circuitry

Figure 2.29a shows the basic internal structure of FPGAs that has not changed ever since: a large array of

CLBs is embedded into a programmable network of wire interconnects, the so called ‘fabric’. A config-

urable logic block (CLB) consists of lookup tables (LUTs) and registers (i.e., flip-flops) that are grouped

into slices (cf., Figure 2.29b), allowing for implementation of either arbitrary combinatorial n-ary binary

functions or sequential circuits (cf., Figure 2.29c). Larger functions are realized by interconnecting mul-

tiple CLBs. Each CLB is connected to a switch matrix, which allows configuring the wire interconnects.

Additional connections to adjacent blocks allow for fast carry chains, etc. Although the registers within

the CLBs can be used as memory, too, dedicated memory blocks, so called block RAM (BRAM, see

below), can be found in most FPGAs.

A slice found in a VIRTEX 6 device contains four LUTs featuring six inputs (red boxes of Figure 2.29c)

and two outputs each. Eight single bit storage elements (green) that can be used, e.g., as flip-flops (FFs),

and various multiplexers. The combinatorial logic of a slice is generated by the six-input LUTs, which is

realized as a small 26×2 static random access memory (SRAM). By utilizing the inputs as address lines,

it is used to look-up the result of an arbitrary six-ary binary function. The truth table is programmed

during the configuration of the FPGA.

Special functions, that cannot be represented as a circuit in the fabric, are realized as additional blocks

within the FPGA. Examples are input/output blocks (IOBs), digital clock managers (DCMs), blocks

related to the (re-) configuration process, multi-Gbit transceivers, etc. To save logic resources, commonly

used logic is available as dedicated blocks, too. These blocks range from multipliers (e.g., DSP cells,

see below) through PCIe blocks to RISC-processors (PowerPC on VIRTEX-4 or ARM on VIRTEX-6,
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(a) Simplified FPGA Block Structure

(b) Basic configurable logic block (CLB) structure

(c) Diagram of a single slice
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Figure 2.29.: Internal structure of an FPGA. Three different levels of abstraction are shown for a XILINX VIRTEX-6 FPGA.

(a) Coarse grain structure of an FPGA. (b) Structure of a CLB. (c) Structure of a single slice. LUTs are shown in red; flip-flops

in green. Two slices form a single CLB. Images are taken from Refs. [244, 253].
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between the functional blocks to allow a high degree of pipelining. Adapted from Ref. [250].

[246, 252]) The additional layer of logic abstraction leads to a more then 30-fold overhead in silicon area

consumption when the same logic function is implemented compared to an ASIC of the same CMOS

process. By making heavy use of special function blocks, the overhead can be brought down below five

[124].

Each component within the FPGA is configured with a few single bits. The total amount of bits is

called the ‘bitstream’ and determines the full configuration of the device. This configuration has to be

loaded each time the FPGA is re-powered. For a XILINX VIRTEX 6 device, the size of the bitstream is

on the order of 10 MB [248].

2.5.5. Block RAM

Memory within the FPGA fabric can either be implemented using the slice registers or by using dedicated

resources, the so called block RAM (BRAM). A BRAM is a dedicated two port memory containing sev-

eral kilobits (VIRTEX-6: 4.5 kB per BRAM and up to 912 BRAMs per FPGA). Its flexible, configurable

interface allows input data widths of 1 bit to 36 bit. Typically, the dedicated blocks have features beyond

storing and loading data like error correction or first in - first out buffer (FIFO) logic [255]. Both ports,

of which each can be used for reading or writing, of the BRAM are truly independent, and may even be

located within different clock domains.

2.5.6. Digital signal processors

Most arithmetic functions based on generic integer or fixed point data types, e.g., addition, subtraction,

or logical operations, can be implemented in the fabric logic with a low resource usage and acceptable

speed. However, when multiplication is required, a large amount of logic resources is necessary. The re-

quired resources scale with O
(
n2
)

in the number of bits n for a fully pipelined multiplier (WALLACE-tree

algorithm [230]).

As multiplication is often required in digital signal processors (DSPs), current FPGAs feature ded-

icated multipliers. The schematic of a DSP slice found in a XILINX VIRTEX-6 FPGA is shown in
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Figure 2.30. Depending on its configuration, once per clock cycle the term P = ((A±D)×B)+Cin)±C
can be evaluated. Adjacent DSP slices can be inter-connected and/or cascaded for wider operations.

Applications are fast Fourier transforms, floating-point calculations and filter functions [250].

2.5.7. Hardware description languages

When first FPGAs entered the market in the mid-1980s, less than 100 CLBs were present in a single chip

(i.e., XILINX XC2064: 8×8 CLBs). At such a low level of complexity, designing the logic manually was

still feasible. However, with an increasing amount of available resources in FPGAs and also in ASICs,

software was required to ease the development and to allow describing the hardware on a higher level of

abstraction.

Very High Speed Integrated Circuit Hardware Description Language

The Very High Speed Integrated Circuit Hardware Description Language (VHDL), among Verilog, is one

of the two widely used hardware description languages (HDLs). It is used to describe digital systems

system such as FPGAs and integrated circuits. VHDL was first standardized by IEEE in 1987. Its

syntax is influenced by Pascal and Ada. In contrast to procedural programming languages such as C and

assembly code which run sequentially, VHDL is a dataflow language which allows the description of a

concurrent system. It is used to write text models to describe a logic circuit. This is done on the register

transfer level (RTL), which is a design abstraction that models the flow of signals through combinational

logic between registers. One of the key features of VHDL is that it allows modeling as well as simulating

a circuit before its translation into real hardware. Thus, only a subset of the language itself can be

synthesized into actual hardware. Higher level constructs, for example loops with a variable number

of iterations, are limited to simulation only. Another key benefit is its portability: as the description is

independent of the underlying hardware architecture, logic circuits that were created once can be ported

between those easily.
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Figure 2.31.: WALKER-GIJSKI diagram showing the levels of abstraction versus domains of description. The RTL that is

described with common HDLs (e.g., VHDL and Verilog) is shown in red. A high-level hardware description language moves

the description to the algorithmic layer, which is shown in green. Adapted from Ref. [229].
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High-level hardware description

The HDLs described above provide a certain level of abstraction when compared to gate level design

using a schematic editor. However, since the creation of HDLs, efforts were made to raise hardware

description to a higher level.

Figure 2.31 shows a WALKER-GIJSKI diagram of the different levels of abstraction. Abstraction

increases from the inner towards the outer rings. The actual undisclosed hardware of FPGAs itself is

found at the center of the diagram (circuit layer). The layer above, the logic layer, contains the basic

logic elements of an FPGA (e.g., LUTs, FFs, etc.). VHDL and Verilog describe hardware on the layer of

functional blocks, the RTL.

A higher level of abstraction significantly increases the productivity of a programmer and reduces the

risk of bugs. Several frameworks were proposed for this purpose, which usually fall into five categories

[14]: These frameworks are either based on existing HDLs as extension (System-Verilog) or C-based

frameworks where only a subset of the language itself is allowed and additional concurrent structures

are added (i.e., Handel-C). A third category are CUDA/OpenCL based frameworks. Due to the pop-

ularity of GPU computing, which exploits the massive-parallel architecture of GPUs (SIMD), several

CUDA/open computing language (OpenCL)-to-VHDL/Verilog were proposed. Another category are

high-level language-based frameworks, which make use of highly abstract, object oriented, modern pro-

gramming languages. Some of these are based on Java and typically a graph oriented description is used.

The last category are Model-based frameworks. Examples are NATIONAL INSTRUMENTS LabView or

MATHWORKS Matlab HDL Coder. These domain-specific frameworks are useful if the programmer is

already familiar with the software but does not have further expertise in HDL programming.

2.5.8. FPGA design implementation flow

The conversion step from the RTL description of a circuit to the configuration file, that can be loaded

into the FPGA (‘bitfile’), is called design flow [251]. The required steps are done automatically by the

tools provided by the FPGA vendor. Typically, the process is done in two steps:

Logic synthesis. After syntax checking, the source code is parsed and the recognition of specific lan-

guage patterns such as state machines, memories, DSP cells, etc. is done. Additionally, a low level

optimization is performed, which includes a resource sharing check. As a result, the synthesis pro-

cess generates an architecture-specific ‘netlist’. This netlist contains a representation of the design by

describing it as a set of logical elements and their interconnections.

Implementation. The actual implementation of the netlist is done in four steps: As a first step, the

Translate process converts incoming netlists to vendor specific primitives. Second, the Map process fits

the design to the hardware resources of the target device. Then, the Place and Route process places and

routes the design according to the predefined timing specifications. Lastly, a ‘bitfile’ is created from the

results that can be downloaded to the target device.

2.6. Multi-core CPUs

As PCs are all around, a natural choice for application acceleration is a workstation computer with a

conventional CPU. Thus, the correlation algorithm was implemented and evaluated on two different

CPUs (INTEL Haswell and AMD Piledriver, see below). Table 2.7 shows performance related data of

both CPUs.

Although being made for general purpose, todays (server-) CPUs offer up to almost 20 individual

physical cores on a single chip (e.g., INTEL Haswell-EP), additional virtual cores (i.e., hyper-threading),
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CPU cores 256 bit FMA units clock SP-FMA performance memory bandwidth

per core GHz AVX [Gflops/s] SSE [Gflops/s] GiB/s

INTEL i5-2520M
(Haswell)

8 2 3.4 217 [64] 109 [32] 25.6

AMD FX-8320
(Piledriver)

8 1 3.5 112 [32] 112 [32] 29.9

Table 2.7.: Theoretical peak performance of both used CPU platforms. The number of cores also counts the virtual cores

due to hyper-threading. Values in squared brackets represent the performance per clock cycle.

and dedicated vector units. Current SIMD vector units perform the same operation on eight single pre-

cision floating-point values in parallel. If all of this parallelism is working together, almost 300 single

precision floating-point operations can be performed in a single clock cycle. An exceptional advantage

of using a conventional workstation computer as a platform is the portability. If the code is written in a

generic form, is can be run on almost any computer. On the contrary, GPU or FPGA code is typically

limited to a specific hardware platform or vendor.

2.6.1. SIMD instruction set extension

First SIMD features were introduced to CPUs as the multimedia extension (MMX), which allowed to

concurrently process two 32 bit integers, or four 16 bit integers, or even eight 8 bit integers. In 1999,

the soft streaming extension (SSE) was introduced with the INTEL Pentium-3 to counter AMD’s three-
dimensionalNow! instruction set extension, which added floating-point support to the existing integer-

only MMX. On current 64 bit computers, the SIMD register file comprises 16 independent 128 bit reg-

isters, that can be used as two 64 bit double precision floating-point values, four 32 bit single precision

floating-point values or integers of the same size. SSE registers underwent a doubling in width with the

AVX instruction set extension from 128 bit to 256 bit. Additionally, the three operand instruction format

was introduced, to support non-destructive operations. Still, the 128 bit instructions are supported. With

AVX 2, introduced with the INTEL Haswell microarchitecture, most integer commands were expanded

to make use of the full 256 bit-wide AVX registers.

Although widely used compilers can make use of SIMD instructions, unattended vectorization of

source code, so called auto-vectorization, is still limited. Here, the compiler needs to understand the

program at a higher level. Thus, manual optimizations can improve performance significantly.

Recent SIMD instruction set extensions are supported by compilers via so called intrinsics. These

instructions are abstractions for the corresponding assembler code. A comprehensive list of intrinsics for

the INTEL-C-compiler, which is also applicable for most other C-compilers, can be found in Ref. [42].

Fused multiply accumulate

The fused multiply accumulate (FMA) operation is a variant of the multiply accumulate (MAC) operation

on floating-point values, whereby rounding, if any, is done last:

a← a+(b · c). (2.69)

This operation is available in INTEL and AMD microprocessors for single precision or double precision

operands since 2011, either as a three-operand instruction (FMA-3) or a four-operand instruction (AMD

only). Beside the higher precision, these operations are typically executed within a single cycle of the

CPU, leading to a doubling in the total floating-point performance when used.
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Further developments

AVX 3 (also known as AVX-512) extends the 256 bit wide SIMD registers to 512 bit. At the same time

it doubles their amount. This new instruction set will be introduced with the upcoming INTEL Skylake
microarchitecture and INTEL Xeon Phi Knights Landing.

2.6.2. INTEL Haswell

One of the two CPU platforms that were used in the course of this thesis was the INTEL i7-4770 [43],

based on the Haswell microarchitecture. Figure 2.32 shows a sketch of the architecture of a single phys-

ical core. The Haswell microarchitecture, the successor of Ivy-Bridge, features 2 to 8 physical cores

with hyper-threading support. Clock frequencies for this architecture are in the range of 2 GHz to 4 GHz.

The memory interfaces are either dual-channel and quad channel, with theoretical peak bandwidth of

25.6 GiB/s (i7-4770) up to 68 GiB/s (i7-5960X [44], introduced June 2013). The Haswell microar-

chitecture doubled the SIMD floating-point performance with respect to its predecessor to 32 single

precision-floating-point operations per second (FLOPSs) or two single precision AVX-FMA instructions

respectively per cycle per core. When double precision floating-point values are used, half of this perfor-

mance is reached. It supports SSE version 4.2 and and AVX version 2.

Hyper-threading

INTEL hyper-threading (HT) is a technology that allows hardware-based multi-threading. Each physical

core is addressed by the operating system (OS) as two virtual cores. Instead of duplicating all resources,

only some parts of the hardware are exclusively used by one virtual core (e.g., register file). The re-

maining resources (e.g., execution units, caches, system-bus interfaces, etc.) are shared among both. As

the executing resources can be used in parallel, these can be used by another scheduled task. This does

not increase the theoretical peak performance, but increases its utilization. Depending on the software,

HT may have a significant performance increase, but additional OS scheduling and potential resource

conflicts may also have a negative impact.

2.6.3. AMD Piledriver

The second CPU that was used in the course of this thesis was the AMD FX-8320, which is based on the

Piledriver microarchitecture. Two physical cores of the CPU, so called ‘integer clusters’, are grouped

into a ‘module’ with a shared floating-point unit (FPU). Figure 2.33 shows a sketch of the execution units

of a module. The FPU is capable of processing two 128 bit vectors in parallel for SSE, but only a single

256 bit vector for AVX operations. In total, the two memory channels of the CPU have a peak bandwidth

of 29.9 GiB/s.

2.6.4. Vc library

To write platform independent code while using the specific SIMD instructions supported by the target

CPU, a library for explicit vectorization was used, the Vc library [117]. It allows to use an abstract class

for vectorization without introducing any overhead. During compile-time the target platform is detected

and optimizations are enabled accordingly. The library further allows for switching between different

SIMD instruction set extensions,e.g., AVX, SSE, or scalar implementations.

Version 0.7.1 was used during this thesis work. Various patches were created to add support for both

platforms and their respective features. Especially for the platform detection code and support for AMD

specific FMA-4 instructions.
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Figure 2.32.: Sketch of execution units and memory hierarchy of the INTEL Haswell microarchitecture. The FMA units

are shown in red. Data related units are shown in green, others in blue. AGU denotes address generation unit. Adapted from

http://www.realworldtech.com/haswell-cpu/.
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Figure 2.33.: Sketch of the execution units and memory hierarchy of a single module of the AMD Bulldozer mi-
croarchitecture. The sketch shows a single CPU core and the shared FPU (left hand side). FMA units are shown in

red. Data related units are shown in green, others in blue. AGU denotes address generation unit. Adapted from http:
//www.realworldtech.com/bulldozer/.
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2.7. Graphics processing units

The terminology in the following section is based on the NVIDIA compute unified device architecture
(CUDA) documentation [162].

A GPU combines a graphics processor and dedicated graphics memory on a single PCB. The graphics

processor contains several multiprocessors that allow each the execution of groups of threads in parallel

(SIMT). A schematic of a typical GPU is shown in Figure 2.34a.

2.7.1. GPU computing

Originally, graphics processing units (GPUs) were designed to offload time-consuming graphics process-

ing from the CPU to dedicated hardware. With the availability of programmable shaders with support for

floating-point arithmetic, general purpose computation on graphics processing units (GPGPUs) became

practically usable. The dedicated compute elements intended to transform geometry are well suited for

matrix and vector operations. Manufacturers recognized the potential for GPGPU-based HPC and added

additional features like shared memory and synchronization. Shaders were extended to so called ‘com-

pute kernels’, which became programmable in C-like languages. Software development kits (SDKs)

were released, that facilitated the programming of multi-threaded applications on GPUs.

For GPU programming, several frameworks exist. CUDA was the first, and is restricted to NVIDIA

cards only. Other well known platform independent frameworks are for example the OpenCL and Di-
rectCompute from MICROSOFT.

Specialized GPUs have been developed over the past few years to address the HPC market. They

feature ECC memory and direct access of other PCIe devices (GPUdirect) and even lack a connector

for a screen. Another drawback that was handled in the last years was the support for double precision

floating-point operations. Being emulated in the beginning, current GPUs have dedicated hardware for

double precision floating-point operations. But these are only accessible in the HPC version of the GPU

and are disabled in the consumer grade ’low cost’ equivalent.

Driven by the three-dimensional computer games mass market, the theoretical peak performance of

GPUs nowadays is much higher than on any general purpose CPUs which leads to a very low price per

FLOPS. Although GPUs run at much lower clock rates, the sheer parallelism of these devices massively

accelerates parallel program execution.

2.7.2. NVIDIA GK110 architecture

The NVIDIA GK110 graphics processor, that was introduced in February 2013, consists of 15 streaming

multiprocessors (SMXs) and six memory controllers that achieve a combined bandwidth of the order of

300 GiB/s. A SMX, which is shown in Figure 2.35, comprises 192 single precision floating-point CUDA

cores, 64 dedicated double precision floating-point units, 32 load / store units and 32 special function

units used for transcendental functions. Threads are distributed across the units in groups of 32 threads,

a so called ‘warp’. Up to four warps may run concurrently, limited by the number of warp schedulers

that are available per SMX on the chip. Each warp scheduler can dispatch two instructions per cycle.

Therefore a maximum of 64 warps can be handled by the schedulers, allowing up to 2048 concurrent

threads which all execute a single instruction. Such an architecture is called SIMT (cf., section 2.5.1).

Since the launch of the Fermi architecture, even multiple compute kernels may run concurrently. Each

SMX has a register pool comprising 65536 registers, each 32 bit wide, that are shared among all warps.

Additionally, up to 64 KiB of shared memory is available. The latter is shared with the 64 KiB L1 cache,

allowing for different partitioning.

Due to the large register file, context switches can be done without overhead. Global memory access

is done for half a warp in parallel, and can be done in one transaction (called coalescing) if the requested
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Figure 2.34.: Schematic of the architecture of current GPUs and the parallel programming model. (a) Graphics processor

and attached GPU memory. Typically, for performance issues, memory is exclusively used by the GPU. For each graphics

processor several multiprocessors are available. Each multiprocessor consist of a set of compute elements (CE) which are

controlled by a common instruction unit (IU). Texture memory and constant memory reside in GPU memory but are accessed

via individual caches. (b) A thread is executed as a grid of blocks of threads. The threads in a block are run synchronously.

Blocks in a grid are scheduled individually. Multiple grids, or kernels can run concurrently on recent GPUs. Both, the grid and

the blocks are depicted two-dimensional.

data is located in an aligned segment of the 16 data words (either 32 B, 64 B or 128 B, depending on the

data type). If data is not aligned to segment boundaries, two transactions–one per segment–are required.

On the other hand, branches within a compute kernel’s code are expensive in view of cycles: if a thread

diverges, each path is executed serially. Threads that do not need to be executed are transparently masked

and excluded.

A summary of the features of a GK110 based GPU, the EVGA GTX 780Ti, is shown in Table 2.8. In

contrast to the professional grade TESLA cards, the card used in the course of this work is a consumer

grade GPU with an artificially limited double precision floating-point performance (factor of 8).

base clock 876 MHz

streaming multiprocessors 15

CUDA cores / ALUs 2880 (192 per SMX)

peak performance (single precision) 2.5 Tflops/s (FMA instructions)

peak performance (double precision) 0.1 Tflops/s (FMA instructions)

registers per SMX 64k (256 kB)

host interface PCIe 3.0

graphics RAM 3 GB GDDR 5-SDRAM

memory bandwidth 336 GB/s

Table 2.8.: Properties of the EVGA GTX 780Ti GPU which is based on the NVIDIA Kepler GK110 chip. Data taken from

Refs. [1, 163].
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Figure 2.35.: Architecture of a single streaming multiprocessor (SMX) found on an NVIDIA GK110 chip. Each SMX

comprises 192 single precision (SP) CUDA cores, 64 double precision (DP) units, 32 special function units (SFU, e.g. for

transcendental functions), 32 load/store units (L/S) and 4 warp schedulers with 2 instruction dispatchers each. A full GK110
includes 15 streaming multiprocessor (SMX). Image adapted from Ref. [163].
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1 // Kernel definition

2 __global__ void VecAdd(float* A, float* B, float* C){

3 int i = threadIdx.x;

4 C[i] = A[i] + B[i];

5 }

6

7 int main(){

8 ...

9 VecAdd«<1, N»>(A, B, C); // Kernel invocation with N threads

10 ...

11 }

Listing 1: Illustration of declaration and invocation of CUDA kernels. In the shown example a vector addition is performed.

threadIdx.x is the implicit thread index. Taken from Ref. [162].

2.7.3. NVIDIA CUDA

With the CUDA general-purpose parallel computing platform and programming model, GPU software is

implemented as so called compute kernels or kernels for short. These are functions written in an extended

C language. Kernels are invoked within the classic CPU code, and are then executed N times in parallel

by N different CUDA threads on the GPU. An example is shown in Listing 1. In the programming model,

as shown in Figure 2.34b, processing threads and data accesses are organized in ‘blocks’ and blocks are

organized in ‘grids’, which may both be multidimensional (see Figure 2.34b for naming conventions).

All threads have access to the same global memory. Shared memory is local to blocks and per thread

up to 255 registers can be used. Each thread has access to an implicit index that is used to identify

its position in a warp, block, or grid. This index is typically used to access the input/output data the

thread operates on. Blocks may cooperate among themselves through barrier synchronization or shared

memory. The size of a block must be set during compute kernel invocation. By setting the block and

grid size, threads can be grouped easily to better match the underlying problem, even multidimensional

blocks and grids are allowed.

Memory is transferred from the CPU to the GPU and back using the CUDA application programming

interface (API). Kernels and data transfers may be parallelized using so called ‘streams’. A stream is a

sequence of commands of the CUDA API, e.g., memory transfers or kernel invocation. Multiple of these

streams may run concurrently. The API also supports explicit synchronization between such streams.

Kernel occupancy

Memory latency is one major cause for threads to stall execution. To hide the latency, the SIMT ar-

chitecture supports fast switching between different warps with no overhead. To keep the hardware as

busy as possible, it is advantageous to have a high number of warps ready to be scheduled on a single

multiprocessor.

The ratio of currently active warps in a multiprocessor to the number of possibly active warps, the so

called kernel occupancy, is used as a performance measure. Limiting factors for the maximum number

of warps are, for example, the number of registers used by a thread. Here the number of active threads

is crucial, which is 2048 at max for an SMX of the Kepler architecture (64 scheduler entries, 32 threads

per warp, see above). The total amount of registers is limited to 65536, thus if more than 31 registers

are used per thread (plus one implicit for indexing) a full occupancy cannot be achieved. Other limiting

factors are the amount of shared memory used per block as well as the size of the blocks. As up to 16

blocks per SMX are allowed, block sizes lower than 128 cannot reach full occupancy. Depending on the
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kernel, whether it is compute- or memory-bound, the number of registers per thread can be traded for the

number of active warps. Which may influence the kernel performance positively.

2.7.4. Benchmarking

As shown in Ref. [180], compute kernel execution times on NVIDIA GPUs follow an almost GAUSSIAN

distribution. Already five runs give sufficient statistics to reach 0.2 % relative root mean square (RMS).

Thus, all measurements shown in this work are mean values of five runs.

2.8. Comparison of the different platforms

Table 2.9 shows various performance measures of the platforms described above. If only the performance

and memory bandwidth to the external RAM is considered, the GPU outperforms all of its competitors.

A major advantage of the CPUs are the large caches that can compensate for the significantly lower

memory bandwidth. The GPU on the other hand does not have large caches, and memory accesses have

to be optimized to achieve a high performance. A key feature of the FPGA is its versatility. By designing

long pipelines, memory accesses can be eluded.

Hardware Chip clock execution units SP performance DP performance memory bandwidth

MHz Gflops/s (FMA) Gflops/s (FMA) GB/s

CPU
INTEL Haswell

i7-4770
3400 64 217 109 25.6

CPU
AMD Piledriver

FX-8320
3500 32 112 56 29.9

GPU NVIDIA GK110 876 2880 2528 841† 336

FPGA
XILINX VIRTEX-6

XC6VSX475T
600 2016 1210‡ N/A ∼ 105∗

Table 2.9.: Theoretical peak performance of various architectures used in this thesis work. The number of execution units

is given for SP units only. The given memory bandwidth considers the interface to external memory, only. Caches are not

taken into account. In the case of the FPGA, the memory bandwidth depends on the actual design and external hardware. Also

only the DSP slices contribute to the given performance. For both CPUs, each entry in a SIMD vector is counted as a core.
†: This performance is not available on consumer grade hardware-based on this chip. ‡: Natively, no floating-point support

is available, thus the performance measure accounts for integer operations only. ∗: Assuming that all 840 IO-pins are used to

interface memory. In the highest speed-grade, up to 1 Gbit/s per pin can be achieved [249].
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In this chapter, starting with an overview of fast scientific cameras, the state-of-the-art in correlator

design is discussed. An introduction of the SPIM-FCS technique was already given in section 1.1.2

and correlation algorithms were already discussed in section 2.4.1. The following section contains a

comparison of several detectors that are used for SPIM-FCS. An introduction to fast signal correlators

that are suitable for FCS is given in the subsequent section.

3.1. Detectors for imaging FCS

Fast cameras with a good sensitivity are required to detect the movement of small particles in solution

entering and leaving the focal volume of a microscope. These detectors also have to provide a sufficient

number of pixels to allow imaging of larger structures, e.g., cells. Therefore single-line detectors are

impractical. Figure 3.1 shows the performance of several scientific cameras that were commercially

available in 2013. Additionally, the RADHARD2 single photon avalanche diode (SPAD) array is shown.

The figure shows results of 100 nm fluorescent microspheres as a medium sized sample. Table 3.1

summarizes the features of the different detectors. The plots show that only the RADHARD2, the SA-05
and the ORCA-Flash4.0 were able to resolve the plateau of the correlation curve that is necessary for a

reliable determination of the particle concentration. From those three detectors, the RADHARD2 showed

the lowest noise.

Next to speed, the sensitivity of the detector is crucial, because single fluorescent molecules have to

be detected. In this discipline, electron multiplying charge coupled device (EMCCD) cameras proved

advantageous. In case of the back-illuminated iXon X3 860, a quantum efficiency (QE) of above 90 % is

reached with a very low readout noise [11]. Front illuminated cameras are typically 30 % less sensitive

(see section 2.1.2 for a comparison). The active area of SPAD arrays has a comparable performance in

the blue to green spectrum. However, only a small part of a single pixel can be used for light detection,

thus limiting the sensitivity even further.
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Figure 3.1.: SPIM-FCS autocorrelation curves of 100 nm green fluorescent microspheres, obtained with several different
cameras. The detectors were read out as fast as possible for the given ROI. See Table 3.1 for the parameters of the sensors.

These results were already published in Ref. [201].

Radhard2 SA-05 ORCA-Flash4.0 iXon X3 860 pco.edge Evolve 512

technology SPAD array CMOS sCMOS EMCCD sCMOS EMCCD

QE @ 525 nm [%] 35 35 70 95 54 95

pixel size [μm] 4 20 6.5 24 6.5 16

pixel pitch [μm] 30 20 6.5 24 6.5 16

exposure time [μs] 16.6 38.80 450 486 2000

cycle time [μs] 3 16.8 38.95 489 495 2380

ROI [pixels] 8×32 20×20 6×100 32×32 20×20 20×20

ROI [μm2] 240×960 400×400 39×6500 768×768 130×130 320×320

Table 3.1.: Comparison of various parameters of different cameras evaluated for imaging fluorescence correlation spec-
troscopy. Exposure time and cycle time are given for the specific ROI. For simplicity, QE and PDP are equated. Adapted from

Ref. [201].
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3.2. Fast signal correlators

The basic task that a correlator performs is to multiply two discrete intensity values and to accumulate

the result for each lag time τ; a multiply accumulate (MAC) operation (see equation (1.10)). In case

of a multiple-τ correlator with the binning ratio m = 2 and L = 8 lags per block, 16 MAC operations

have to be executed for every input value (see section 2.4.2). Therefore the speed of a correlator mostly

depends on the performance and the parallelizability of the MAC-operation. Correlators that are based on

field programmable gate arrays (FPGAs) typically implement these operations in discrete digital signal

processor (DSP) cells which can run in parallel. Implementations for either CPUs or graphics processing

units (GPUs) are commonly based on the floating-point data type. Hence, a MAC operation is performed

as two single floating-point operations (FLOPs), or if supported, a single fused multiply accumulate

(FMA) FLOP.

Throughout this work the performance is given in FMA-flops/s. In case of correlator implementations

that are not based on intensity time series, but rather on photon arrival times or inter-photon times, an

equivalent performance of a comparable multiple-τ correlator is given.

Michalet et al. [151] already proposed that dedicated digital signal processors, FPGAs or GPUs are

needed to achieve real-time processing of data, obtained with imaging sensors. In the following, several

hard- and software implementations of correlators are discussed. Most of them have been developed

especially for the application in confocal fluorescence correlation spectroscopy (FCS) and dynamic light

scattering, therefore they were no option for the large amount of pixels that are required in imaging FCS.

Hardware correlators

First correlators were built as application-specific integrated circuits (ASICs) [188]. Since the availability

of FPGAs, most hardware correlators are based on reconfigurable hardware. To further improve the

performance, ASICs have still been used as front ends [62, 90]. Several correlators, and especially the

commercial hardware correlators, are used as raw data acquisition devices, too. The latter are either

available as PC add-on cards or USB devices, supporting up to 32 channels [5, 46].

Hardware correlators are mostly based on the multiple-τ algorithm. Either using a parallel implemen-

tation of linear blocks (see section 2.4.2) [73, 90, 102], or a serial multiple-τ scheme (see section 2.4.2)

[72, 105, 135, 152, 155]. Resource sharing, e.g., of DSP blocks within the FPGA, is mostly used for the

less often executed higher order blocks [101, 103, 105, 152, 155]. More advanced implementations use

up to three different designs for the linear blocks [72]. First blocks are typically made of shift registers,

this is particularly efficient because single-bit-multiplication becomes a simple and-operation. Blocks

in the middle of the correlator use dedicated DSP-slices, whereas blocks at the end of the correlator share

resources with neighboring pixels.

A completely different approach is followed in Ref. [93]. Here a logarithmically spaced correlator

with a single-bit data path is proposed. To span several decades of delay values, signals are delayed

using on-FPGA FIFOs.

Table 3.2 compares a variety of implementations that were published before and during this work. The

FPGA-based implementation described in section 5.5 is referred to as Ref. [155] Prior to the start of this

work no hardware correlator was available that could deal with more than 32 channels in parallel. At the

same time, the commercial solutions were on average an order of magnitude faster than the published

implementations. From the perspective of total performance, no implementation was able delivering

164 Gflops/s, that is required for real-time correlation of the CHSPAD’s raw data.

Software correlators

CPU correlators. To not depend on dedicated correlator hardware, several software implementations

have been proposed that can run on standard PC hardware. Table 3.3 gives details on the different
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publication type platform res. ch. lag org. hardware perf.

[Gflops/s]

Schätzel [188] (1985) multi-τ ASIC 5.3 μs 1 8 or 16 “ALV-3000” 0.006

Engels et al. [62] (1999) multi-τ ASIC 5.0 ns 1 32 “CORR32” 6.6
Hoppe et al. [91] (2001) multi-τ ASIC 6.26 ns 1 16/8 N/A 3.8
Jakob et al. [102] (2007) multi-τ FPGA 10 ns 1 16/8 N/A 2.4
Liu et al. [135] (2008) multi-τ FPGA 1 μs 1 8 XC2VP100 0.016

Mocsár et al. [152] (2012) multi-τ FPGA 400 ns 4 8 XC2V3000 0.160

Buchholz et al. [155] (2012) multi-τ FPGA 10 μs 1024 8 XC2VP40 1.6
Kalinin et al. [105] (2012) multi-τ FPGA 4 ns 2 8 XC6SLX45T 8

Hromalik et al. [93] (2013) log-τ FPGA 100 ns 256 40 tot. XC6VFX550T (41)

Gong et al. [72] (2014) multi-τ FPGA 100 ns 32 16/8 XC6SLX150T 7.7
Gong et al. [73] (2014) multi-τ FPGA 10 ns 1 16/8 XC6SLX150T 2.4

ALV7004/FAST [5] (2007) multi-τ FPGA or ASIC 3.125 ns 4 16/8 30.7
ALV7032 [5] (2011) multi-τ FPGA or ASIC 50 ns 32 16/8 15.4
Flex01LQ-05 [46] (<2010) multi-τ FPGA 5 ns 1 64/32 “MT-64” 19.2

Table 3.2.: Comparison of different hardware correlators. For comparison, commercial products are shown in the lower part

of the table. FPGA implementations are mostly based on XILINX chips, starting with XC. If different correlator architectures

are combined, e.g. FPGA plus CPU, only the front end correlator is considered. ch. represents the number of independent

channels. lag org. represents the organization of lags. If two values are given, the first is the number of lags in the first linear

block and the second value the number of lags for all other blocks. Performance measures given (perf.) are either based on the

actual implementation or, if denoted in braces, assuming an eight lag multiple-τ correlator with the same temporal resolution.

The value is given in Gflops/s (FMA). The thick line indicates the start of this work.

publication type platform res. ch. lags software perf.

[Gflops/s]

Magatti and Ferri [140] (2001) multi-τ INTEL P3 550MHz 5 μs 1 28 LabView 0.01

Magatti and Ferri [141] (2003) m-τ + PM INTEL P4 1.5GHz 30 μs 1 28 LabView 0.02

Wahl et al. [226] (2003) PM AMD 1800+ 1.5 GHz 10 μs 1 — C (0.002)

Laurence et al. [128] (2006) PM INTEL P-M 2 GHz 4.6 μs 1 — (0.003)

Lee et al. [129] (2009) PM 1/4th of quad-core <0.1 μs 3 — C (0.48)

Tieman et al. [217] (2011) multi-τ compute cluster, 2 cores <1.7 s 106 ? MPI (0.01)

Schaub [191] (2012) PM INTEL i7 Q720 1.6 GHz 0.1 μs 1 — (0.16)

Vitali et al. [222] (2014) multi-τ NVIDIA GeForce GTX 780 31 μs 1024 8 CUDA 0.5

Table 3.3.: Comparison of different CPU and GPU correlators. For photon-mode (PM) correlators, the resolution given

is the time needed to process a single photon. ch. represents the number of independent channels, or – if used for imaging

fluorescence correlation spectroscopy (imaging FCS)– the number of pixels. lags represents the number of lags in a linear

block. Performance measures (perf.) given are either based on the actual implementation or, if denoted in braces, assuming

an eight lag multiple-τ correlator with the same temporal resolution. The value is given in Gflops/s (FMA). The thick line

indicates the start of this work.
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implementations and their performance. A major advantage of CPU-based correlators is their ability to

improve performance by buying new hardware or using multiple computers in parallel. Furthermore, the

computers can also be used for visualization and data storage.

Fast CPU correlators typically fall into two main categories: the first group is based on photon arrival

times, working in so called photon-mode (PM), the second relies on intensity time series that can be

calculated by accumulating light, i.e., photons, in fixed time-bins. PM correlators typical need a constant

time per photon event and thus work well in low-light situations, i.e., they are O
(
Nphoton

)
[128, 129, 191,

226]. If the photon rate exceeds a certain threshold, they loose the ability to process data in real time.

Their temporal resolution is typically limited by the accuracy of the time-tags of the photons.

Most of the correlators, that fall into the second category, need a constant time to process a single

frame or time-bin [140, 141, 217]. Such correlators are typically based on the multiple-τ algorithm

and introduce a certain averaging for larger lag times, which is not necessarily a disadvantage for FCS.

The multiple-τ algorithm, with an algorithmic complexity of O (Nframes), allows for easy parallelization

either on the block-level [49] or per pixel on a computer cluster based on MPI [217]. A special position

is taken by the correlator described in Ref. [141] which uses a combination of both: For small lag times a

multiple-τ correlator is used, whereas longer lag times are calculated in PM. A different approach based

on fast Fourier transform (FFT; WIENER-CHINTCHIN-theorem [109]) is described in Ref. [125].

The overall performance of the software correlators is significantly below that of the commercial hard-

ware correlators, but can constantly be increased with newer hardware. Only one implementation exists,

that can deal with many pixels as required for the Swiss single photon avalanche diode array (CHSPAD)

array. Unfortunately, the performance was three order of magnitude below the requirements. The ta-

ble further shows that when more than three channels are processed, usually the multiple-τ correlation

algorithm is used.

GPU correlators. Graphics processing units (GPUs), that are particularly optimized for MAC opera-

tions, seem to be a promising platform for correlator development, too. Their massive parallel structure

is ideal for parallel correlation of thousands of pixels. So far, only two implementations have been pro-

posed [127, 222] (performance details were only available for the second implementation). Table 3.3

gives an overview of the performance details. Although the described correlator offers 1024 channels,

which would match the RADHARD2 SPAD array, the overall performance is lower than recent FPGA-

based implementations. And a factor of three below the requirements of the RADHARD2.

Conclusion

At the beginning of this thesis (mid-2010), no solution to calculate correlation estimates for several hun-

dred pixels in parallel was available. Even from the perspective of performance none of the implementa-

tions fulfilled the requirements of the CHSPAD. Initially, the most promising platform seemed to be an

FPGA as hardware-based implementations typically outperformed every software correlator. Therefore

the FPGA was chosen as a first platform for a new design of a massive parallel correlator. Later, recent

developments in the field of CPU and GPU computing made these platforms particularly attractive for

correlator design, too. Especially on those platforms much shorter development times are expected.
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4. SPAD arrays for imaging FCS:
readout design and performance evaluation

This chapter introduces the two SPAD arrays that were evaluated in this work as well as the hardware

used for their readout. First the RADHARD2 sensor is described in section 4.1 and the newer CHSPAD

sensor in 4.2. The chapter closes with a characterization of the CHSPAD array in section 4.3.

4.1. The RADHARD2 single photon avalanche diode array

The first sensor that was assessed and integrated into the SPIM-setup was the RADHARD2, that was

available from the beginning of this work. This sensor was designed in EDOARDO CHARBON’S lab (TU

Delft, Netherlands and EPFL, Switzerland) and was first published in 2009. An in-depth documentation

of the RADHARD2 can be found in Refs. [35, 36].

4.1.1. Sensor hardware platform

The RADHARD2 sensor is supplied soldered onto a PCB (printed circuit board, the so called ‘daughter

board’) that fits onto the connectors of the ‘LASP’ FPGA development board (EPFL, Switzerland; see

appendix B.1 for further details). This development board carries two VIRTEX 2 field programmable

gate arrays (FPGAs) along with the necessary peripherals and a small amount of static random access

memory (SRAM). Both FPGAs are linked by a 100 bit wide parallel interconnect. Data transfer to a

host computer was realized using the on board CYPRESS EZ-USB USB 2.0 controllers with the provided

firmware. The board features two USB ports, one connected to each of the two FPGAs. The 48 MHz

clock provided by the USB controllers, was used as a clock source for the entire hardware design.

4.1.2. Readout controller

The sensor was shipped with a rudimentary firmware that allowed capturing single frames. For SPIM-

FCS, a complete redesign was done to also support fast raw data acquisition. The ‘readout controller’

core generates the signaling, required by the RADHARD2 single photon avalanche diode (SPAD) array,

and reads out the sensor in rolling shutter mode (cf., section 2.1.1). The acquired raw data is then trans-

ferred to a host computer via USB. Table 4.1 summarizes the properties of this core. During readout, a

row is selected, read and reset. This scheme is shown in Figure 4.1. This takes four clock cycles of the

main clock and in sum 2.7 μs for the entire SPAD array at 48 MHz. Less time is required when only a

subregion is read. The exposure time can be extended from 2.7 μs by introducing additional wait-cycles

property value

base clock of readout hardware 48 MHz

minimum full-frame integration time 2.7 μs

maximum frame rate 370 kfps

maximum data rate (incl. frame overhead) 49.6 MB/s

minimum integration time for subregion 169 ns (2×32 pixel)

Table 4.1.: Properties of the RADHARD2 detection system.
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Clock

ROW_ADDR 0 1 2 3 4

ROW_CLK

ROW_RESET

DATA_OUT ROW 0 ROW 1

Figure 4.1.: Timing diagram of the readout procedure of the RADHARD2 SPAD array. Signals ROW_ADDR, ROW_CLK
and ROW_RESET are driven by the FPGA. DATA_OUT is connected to input pins of the FPGA. The clock of the controller core

is shown for reference. Constantly driven signals are omitted. Signal names are according to Table 2.2.

between two readouts. A further reduction of the readout scheme towards three or fewer cycles or higher

clock rates might allow for shorter frame integration times, but this was not tested.

Various aspects of the controller can be configured during runtime via USB by writing to several

registers of the controller core. These registers allow setting a region of interest (ROI), to start and stop

the acquisition, to set the exposure time of a single frame, and to enable or disable temporal binning for

the correlator (see below). This is fully supported in the QuickFit3 RADHARD2 camera plug-in.

Additionally, the readout controller adds start-of-frame and end-of-frame markers. Data is then fed

into two data paths: one path towards the correlator within the second FPGA and another one to the

USB-interface. The latter encapsulates raw data into frames by adding a 32 bit header containing the

frame number and a start-of-frame marker (0xFF) as well as a 16 bit cyclic redundancy check (CRC)

checksum (standard CRC-CCITT polynomial 0x1021). After being packed into a frame format (see

below), data is pushed to the USB interface controller. At this stage no further buffering is done, so if

the USB controller stalls, data is lost.

The final data rate at 10 μs integration time (134 B per frame) is 12.8 MB/s. Although this should

easily be handled by a USB 2.0 connection (max. bandwidth ∼ 40MB/s), data loss occurred above that

rate. Therefore, frame-based error checking was introduced, which allows detecting missing or broken

frames based on CRC. Probably, retransmits during bulk transfer caused the USB controller to stall in

this situation.

Temporal binning

At high fluorescence intensities, the probability of more than one photon event during the integration

time of a single pixel increases (this effect can be seen in Figure 4.16 for the CHSPAD if the count rates

exceeds 1 kHz). To effectively reduce the probability to miss photons, so called ‘temporal binning’ can

be enabled on demand. If enabled, three consecutive frames are added up pixel-wise in the read-out

controller core. Thus, a three fold higher frame rate can be used although the hardware correlator (see

section 5.5.2 for details) is limited to 100 kfps.

4.1.3. System overview

Figure 4.2 gives a schematic overview of the final design for the RADHARD2 SPAD array. The left

part of the image shows the LASP development board with the daughter board and the RADHARD2 on

top. The hardware design in the FPGAs is depicted in the grayish area. External memory used for

data reorganization and context store is shown in light yellow. Data acquisition is mainly done in the

first FPGA. The design of the second FPGA comprising the correlator is described in more detail in

section 5.5. Each of the two FPGAs use a dedicated USB interface to the host computer, which allows

data transfer of the raw data as well as remote control of the firmware.
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local memory

correlator 0correlator 2 correlator 31

Figure 4.2.: System layout of the RADHARD2 hardware design. On the left, the LASP main board is shown which holds the

daughter board (blue inset) with the RADHARD2 SPAD array (red inset). The FPGA design is shown in gray. Data acquisition

shown on the left hand side of the design is done within the first FPGA, the right hand side comprises the hardware correlator

(cf. section 5.5.2), that is implemented in the second FPGA. The correlators are shown in green. External memory (yellow) is

used for storing each pixel’s context (light blue).

4.2. The Swiss single photon avalanche diode array

In 2012, a more advanced SPAD array, the Swiss single photon avalanche diode array, became available.

As the RADHARD2, this sensor was also incorporated into the microscope. Due to its significantly larger

size and different pixel structure, the readout had to be redeveloped. This sensor was also designed

in EDOARDO CHARBON’S lab and was first published in 2013. Details on the Swiss single photon

avalanche diode array (CHSPAD) can be found in Refs. [29, 31, 33].

This section focuses on the design of the readout controller. A more detailed characterization of the

entire system comprising sensor, the FPGA firmware, and the optics is given in section 4.3.

4.2.1. Hardware platform

Figure 4.3 shows an overview of the hardware platform used for the CHSPAD. The Broaddown 4 FPGA

development board (Enterpoint Ltd., Malvern, United Kingdom) forms the basis of the system (see ap-

pendix B.2 for details). It features two XILINX VIRTEX 4 FPGAs as well as DDR 2 memory and various

peripherals. The daughter board holding up to two CHSPADs is directly attached to the development

board. Each of the two possible sensor positions is controlled by a single FPGA. Both VIRTEX 4 are

connected by set of differential pairs. Unfortunately, the board itself lacks any high-speed interface to

connect to the outside world. Thus, a connection to the host computer was realized again with a CYPRESS

EZ-USB USB 2.0 controller attached to one of the pin headers.

Originally, a custom firmware was designed for real-time data acquisition. It was implemented based

on the limited information that was available on the CHSPAD at that time. This implementation, mostly

two CHSPAD chips
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CHSPADs bonded onto daughterboard

Broaddown 4
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Figure 4.3.: Overview of the CHSPAD hardware platform. The left part shows the Broaddown 4 FPGA development board

(blue) including the daughter board (center, green). The CHSPAD chip(s), as shown on the right, are bonded directly onto the

daughter board.
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based on the RADHARD2 readout design described above, proved to have some disadvantages regarding

the active recharge and was therefore not used for sample measurements. As it offers real-time data

acquisition, it is described in section 4.2.5. Sample measurements as described in chapter 6, were carried

out using a modified version of the provided firmware, which is described in the following.

4.2.2. Provided readout firmware

The readout firmware provided for the CHSPAD by SAMUEL BURRI (EPFL, Switzerland) was only

able to readout full frames. Due to a lack of high-speed interfaces, raw data was written to 2 GiB on

board DDR-2 memory. After the measurement, data was transferred to the host computer via a USB 2.0

interface.

In each clock cycle, one forth of a line can be read (4-to-1 multiplexer, see section 2.1.4 and Figure 2.12

for details), so 512 clock cycles are required for reading a full frame. To increase the frame rate, readout

is done in a rolling shutter mode. The readout process itself is fully independent of the electrical driving

of the diodes (e.g., active recharge) to reduce artifacts that might occur due to correlation of both signals:

If for example a recharge pulse, which is applied globally to all SPADs, occurred once per frame, a

gradient would be visible, as the active period of the SPADs differs between lines. Thus, to reduce

these artifacts, the controlling part and the readout part of the CHSPAD are located in different (mostly

unrelated) clock domains.

4.2.3. Enhancements of the readout firmware

To fulfill the requirements of a detection system for SPIM-FCS, several features were added to the

original readout firmware: The memory on the development board was increased to 4 GB DDR 2 RAM

to allow measuring for a longer duration. Also the clock speed of the firmware was increased to 80 MHz,

which is the maximum possible clock speed for the CHSPAD and increases the frame rate to 156250 fps.

Further modifications are described in the following.

Broken pixel removal

The CHSPAD sensor with microlenses (chip C21) had ∼ 1800 broken pixels, which were ∼ 3% of all

pixels (a map of the broken pixels is shown in Figure 4.5). The majority of these defective pixels tended

to detect photons in most of the frames and might have suffered from short circuits or other defects in

the silicon substrate. Still others were over-proportionally dark and have probably been covered by dust

particles. Another possibility for defective pixels were defects in the microlens coating.

Those broken pixels were sorted out by hand in the control software, based on the measured gray

values at different light intensities. The aim was to have a homogeneous field of view for a homogeneous

illumination.

To achieve homogeneous images, broken pixels were removed from the images by filling in the miss-

ing information from the surrounding pixels. This can either be done in software after data has been

transferred to the recording computer (e.g., by using an average over the surrounding ’good’ pixels in

a 3× 3 neighborhood), or directly in hardware. The latter option is extremely efficient if large image

stacks are recorded since no further data processing step for defect removal is required after recording.

Also when data compression based on entropy encoding is used (see below), pixels that do not follow

the majority statistics may have a strong negative impact on the overall compression efficiency.

In hardware, the averaging process is done in a five stage process by randomly selecting either a left or

right ’good’ pixel for every broken pixel from an external map of defective pixels. Figure 4.4 shows the

corresponding network. The mask of defective pixels is loaded by the control software into the FPGA

firmware and propagates along with the actual pixel information through the averaging stages. In the

first three stages randomly replace a masked pixel by a ’good’ pixel in a horizontal neighborhood of
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Figure 4.4.: Schematic drawing of the five stage averaging process for broken pixels. The first three stages, averaging units

(‘AVG’) randomly select a ’good’ pixel in a five pixel neighborhood, if the center pixel pn is masked broken. In total, horizontal

areas of up to eleven masked pixels can be averaged with ’good’ pixels. The two last stages randomly choose the left or the

right pixel if the center pixel is masked. Data flow is from top to bottom. Beside the value of a pixel, also the mask information

is passed through the stages.

five pixels. The last two stages randomly replace a masked pixel by its left or right neighbor. With this

scheme, up to 11 masked neighboring pixels can be replaced.

In each stage a linear feedback shift register (LFSR) with a unique initial value calculates the required

random numbers. The random replacement does not impose an any further correlated signal that might

distort the correlation curves in an FCS analysis.

Region of interest

The provided design was only able to record full frames. Considering the limitation of 4 GiB of DDR

2 SDRAM of the development board, measurements were limited to less than four seconds. This is

typically too short for proper fluorescence correlation spectroscopy (FCS) measurements. But as single

biological cells only cover a small part of the sensor, a valid method to reduce the overall amount of data

and at the same time to extend the duration of the measurement is to discard information of unneeded

pixels.

To keep the complexity of the hardware implementation as low as possible, a ROI cannot have arbitrary

size. Vertically, it can start at any line, but horizontally only blocks of 128 pixels are allowed, starting at

x-axes position x = n ·128 with n = 0,1,2,3. Typical animal cells (e.g., HeLa-cells, see section 6.9.3) are

smaller than the 128 pixels (≈ 51.2μm at 60× magnification). Due to these limitations, it is important to

position the sample within one of the four blocks of 128 pixels, which is easy to do on the selective plane

illumination microscopy (SPIM) setup. The raw data stream from the sensor consists of multiplexed

128 bit data words. In a first step, these are de-multiplexed and repacked to 128 bit wide words containing

pixels in the correct order. Data words of 128 bit in a single frame are then accepted and discarded based

on their number (0 . . .511) for a rough selection of the ROI. Additionally, unused columns in between

are cut out. The settings of the ROI are written to a configuration file that is interpreted by the CPU- and

GPU-based correlators, so that they can rebuild a proper image from the raw data stream.
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4. SPAD arrays for imaging FCS: readout design and evaluation

Readout software

To control the firmware and to display a live-view from the sensor, a graphical user interface (GUI)

software, ngsoft, was used. The software was provided along with the firmware by SAMUEL BURRI

(EPFL, Switzerland). Several modifications were applied to this software to account for the changes in

the firmware. Support for remote control was added via a TCP/IP server component. It gives QuickFit3
full control over the software and the sensor (QuickFit3-client-plugin, development was done in coopera-

tion with JAN W. KRIEGER, DKFZ Heidelberg, Germany). Further view modes were added to ngsoft, to

support the experimenter during the alignment of the instrument and for automatic contrast enhancement.

Figure 4.5 shows and image of the GUI.
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4. SPAD arrays for imaging FCS: readout design and evaluation

4.2.4. Reduction of afterpulsing

Initially, the CHSPAD was controlled with a signal pattern as proposed by the chip designer (SAMUEL

BURRI, EPFL, Switzerland). Unfortunately, this control scheme led to a significant afterpulsing in low-

light conditions (see also section 2.4.3). Figure 4.6a shows an average autocorrelation function for a

measurement on a darkened sensor (sensor D1, see section 4.3 for details on the sensor). For an ideal sen-

sor, a flat correlation curve is expected (white noise has an autocorrelation function (ACF) G(τ) ∝ δ (τ)).
Contrary to this expectation, the autocorrelation curve showed a significant low-lag amplitude that de-

cays towards large lag-times τ. The afterpulsing can be divided into two regimes, one fast decaying

“strong” component, which was only visible in the first channel, and a slow decaying “weak” component

that was visible on the microsecond to millisecond time-scale (see Figure 4.6a). The strong component

can be explained by trapped charges in the silicon substrate that cause a second avalanche in the diode

[61]. These are typically removed by discarding the first channel of an autocorrelation curve (ACC). The

weak component with a much longer decay time is still not fully understood. A possible cause could be

the correlation of the CHSPAD signaling and the readout.

A reduction of the afterpulsing is essential for successful FCS measurements, since the decay-time of

the afterpulsing is of the same order as the diffusion time of many molecular probes (e.g. Alexa-488, see

section 2.2.4).

Control signal schemes

To reduce the afterpulsing at least to some extent, different signal patterns were tested to drive the

CHSPAD. Figure 4.6b shows the results for the mean autocorrelation curve for different control schemes

1, 2, 3, 4, and 8. The parameters of the schemes are shown in Table 4.2. The timing diagram of the

original scheme and scheme 8 are displayed in Figure 4.7.

As standard setting, scheme 8 was chosen, because the afterpulsing was lowest. Here, the recharge of

the diodes is done passively via the tunable quenching resistor. With all different schemes, the duration of

the overall control cycle was not changed. It seems as if a longer cycle further increases photon detection

probability (PDP), but no further investigations were done on this effect.
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Figure 4.6.: Mean autocorrelation curve of the dark count rate (DCR) for the CHSPAD sensor without microlenses D1.
(a) Log-log plot of the autocorrelation function including standard deviation starting with the first channel. Raw data is shown

as dots, the corresponding fit as a thin line. (b) Comparison of different gating schemes. Raw data (dots) and a fit (solid line).

Schemes 5,6 and 7 (not shown) are comparable to 8, but with a slightly higher amplitude. The first channel is omitted. Row

data is shown as points, fits are shown as solid lines.

74



4.2. The Swiss single photon avalanche diode array

1

8

Clock

Cycle # 107 108 109 110 0 1 2 3 4 5 6 7 8 107 108 109 110 0 1 2 3 4 5 6 7 8

RECHARGE

SPADOFF

GATE

RECHARGE

SPADOFF

GATE

Figure 4.7.: Timing diagram of two repetitions of the control signals for CHSPAD that are common for all pixels. The

original scheme is shown in red, the optimized in blue.
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Figure 4.8.: CHSPAD: Afterpulsing amplitude as a function of the count rate. For each dataset the median value of all pixels

is shown. Except for the outliers, the amplitude of afterpulsing is about 2.5 fold lower with gating scheme 8. Additionally, the

count rate is about 2 % higher, except for the dark count rate (DCR) value (leftmost dataset).

75



4. SPAD arrays for imaging FCS: readout design and evaluation

Scheme length SPADOFF RECHARGE GATE AP amplitude [10−6]

ON OFF ON OFF ON OFF

1 110 106 2 2 6 6 106 1.37

2 110 106 2 3 6 6 106 1.15

3 110 106 2 4 6 6 106 0.82

4 110 106 2 5 6 6 106 0.54

8 110 0 1 1 1 1 110 0.41

Table 4.2.: Influence of the control signal scheme on the afterpulsing of the CHSPAD. The length is given in clock cycles.

Signal names a shown according to Table 2.4. Values for ON and OFF represent the respective clock-cycle. Scheme 8 uses

passive quenching only. The amplitude is extracted by a fit of the mean ACF estimate (cf., equation (2.61)). Measurements are

based on the DCR only.
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Figure 4.9.: CHSPAD: detected light intensity as a function of VQ. Data is normalized to the EMCCD camera that was used

in parallel (50:50 beam splitter). The measurement was done with the LED light source.

Influence of the count rate on the afterpulsing amplitude. In Figure 4.8 the influence of the count rate

on the amplitude of the afterpulsing is shown. By using passive recharge, the afterpulsing is about 2.5
fold lower in comparison to the original gating scheme for almost two orders of magnitude.

Optimizing VQ. To optimize the voltage applied to the tunable quenching resistor, its relation to the

PDP of the CHSPAD was evaluated. The results are shown in Figure 4.9. An electron multiplying

charge coupled device (EMCCD) camera was used in parallel to normalize the results for the illumination

intensity. With regards to the detection efficiency, a value of VQ = 0.9V . . .1.1V delivered best results.

4.2.5. Design of a fast readout for real-time data acquisition

A first readout chain was developed to be used for the first sample of the CHSPAD (without microlenses,

start of 2013). It allows streaming the full raw data at maximum clock speed (80 MHz clock, 156250 fps)

to the host computer in real time. For this purpose, data is streamed from the Broaddown 4 development

board to a XILINX ML605 FPGA development board [254] installed into the computer that is used for

recording. The XILINX ML605 is then used as a bus bridge between the serial link from the Broaddown
4 and the PCIe interface of the host computer. Figure 4.10 gives an overview of the entire system.

Figure 4.11 illustrates the data path including bandwidths of the different interfaces. Details are given in

the following.
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4.2. The Swiss single photon avalanche diode array

(a)
(b)

(c)

(d)

Figure 4.10.: Overview of the CHSPAD real time readout system. (a) CHSPAD on daughter board. (b) Broaddown 4
development board with two FPGAs each connected to the CHSPAD. The daughter board is attached from the back. (c)

XILINX ML605 development board used as bus bridge to interface the PCIe bus of the host computer. (Image: XILINX) (d)

CPU of the host computer. Red arrows specify the direction of dataflow.
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given per interface.
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Broaddown 4 to ML605

The raw data rate of the CHSPAD sensor is 1.22 GB/s at 80 MHz clock speed. The development board

used for readout does not feature any specific interface (e.g., an optical link) that is capable of handling

this data rate. Although the board is equipped with a PCIe connector, it is only capable of transferring

up to 250 MiB/s due to the used bridge chip. Another option would have been a redesign of the mother

or daughter board, during which an appropriate interface could have been added. But, the CHSPAD

daughter board was specifically designed for the Broaddown 4 board and a redesign was no option∗. So

a different solution had to be found that is able to deal with the data rate.

Another problem was the distance between the sensor and the readout computer, as well as the limited

space within the microscope. The CHSPAD daughter board is directly attached to the Broaddown 4 de-

velopment board: Therefore it has to be placed directly in the optical path of the SPIM. A host computer

that is used for data processing or at least for data storage needs to be placed outside the light-shielding

box, without contact to the optical table to guarantee vibration isolation. Therefore, a flexible cable con-

nection between the sensor in the microscope and an external computer, with at least 1 m length, was

required.

The option that was finally chosen and fulfills both requirements is based on the “edge connector”

of the Broaddown 4 board that makes 20 differential pairs available. These were connected with the

corresponding pins of the ML605 board. The latter serves as an interface converter between the host’s

PCIe bus and the cable.

To interface IO-pins of the XILINX ML605 IO-pins, a special high pin-count connector (HPC) is

required. Here, the XILINX FMC XM105 debug card is used as a break-out to standard 2.54 mm pin-

headers. The connection is formed by five Cat 6A cables of a length of about 1 m. One of the 19

differential pairs transmits the reference clock.

To achieve DC-balancing†, the 8b/10b line code [235] is applied to each differential signal pair. Beside

that, the whole link is HAMMING encoded [80], and 6 of the 19 differential pairs transmit parity infor-

mation. Each data word has an extended HAMMING distance of four instead of three with an additional

parity bit (also known as SECDED). This scheme allows correcting single bit errors and to detect double

errors. Such an error correction was especially useful if a single differential pair showed a large amount

of bit errors.

As only 13 differential pairs are used to transmit sensor data, each link needs a bandwidth of 1000 Mbit

or 500 MHz double data rate (DDR) to achieve the required 1.22 GiB/s. Although this is above the spec-

ification of the VIRTEX-4 serial transceivers (400 MHz reference clock frequency range, cf., Ref. [245]),

tests showed (see below) that the FPGA can cope with the higher clock rate.

The same type of connection was also used for the communication between the two VIRTEX 4 FPGAs

on the Broaddown 4 board. Depending on the position of the SPAD array‡, the first or the second FPGA

is in control of the sensor and in some cases data has to be transferred to the other FPGA first. The

high-speed clock needed for serial data transmission is generated externally by a clock generator. As

the same clock source is used for both FPGAs on the Broaddown 4 board, no additional clock signal is

transmitted on this interconnect.

Bit error rates of the serial links. A single word, as transferred between the FPGAs on the Broaddown
4 or between the Broaddown 4 and the XILINX ML605, consists of 13 ·8bit = 104bit of user data. Due

to 8b/10b and hamming encoding, actually 190 bit are transmitted over the wires for every 104 bit of

∗In late 2014 a new daughter board was announced, featuring a SPARTAN-6 for and a high pin-count connector as it can be

found on most XILINX development boards. But it is not available yet.
†DC-balanced signals are required to prevent bit errors in capacity coupled circuits such as high-speed communication

systems.
‡For tests with and without microlenses two different daughter boards were used with the SPAD array wired to different

positions.
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4.2. The Swiss single photon avalanche diode array

user data. For a stability test, 4.90×1013 words were transmitted (duration ∼ 110h) at 600 MHz DDR.

During the test, 2.06× 105 single bit errors occurred in the raw data and were successfully corrected.

This gives a word error probability of pword = 4.20×10−9 or pbit = 2.21×10−11 for single bits. The

occurrence of an uncorrectable error (2 bits in 19 bits, 1
10

of a word.) is given by

P(2) =
(

19

2

)
· (pbit)

2 · (1− pbit)
19−2 = 8.35×10−20. (4.1)

At the given data rate, this is likely to happen less than once per year. Using both encodings in combina-

tion should enable the detection and correction of further errors. In addition, even if a few bits flip within

a dataset, the impact on the correlation analysis is negligible, due to the overall large amount of data. At

a lower clock rate of 500 MHz DDR (this was used in the final design) almost no errors occurred in the

raw data.

ML605 to host computer

The ML605 development board is used as an interface converter between the serial link from the Broad-
down 4 and the PCIe bus of the host computer. Hardware and software used for PCIe readout were

provided by HEIKO ENGEL (Frankfurt University, Germany).

Arriving data is buffered in an on board DDR-3 RAM and then transported to the host computer via a

PCIe v2.0 x4 connection. Of the theoretically peak bandwidth of 2000 MB/s, approximately 1554 MB/s

were achieved. A full simulation of the hardware and software predicted 1580 MB/s.

4.2.6. Data compression

The enormous data rate generated by the CHSPAD demands for high-speed interfaces on the hardware

platform, Broaddown 4, that were not easy to implement. Although high-speed interfaces could be

improvised by combining the Broaddown 4 with the XILINX ML605 as bus bridge to PCIe and by

operating the VIRTEX 4 transceivers above their specifications, a compression of the amount of data to be

transferred is desirable. For that purpose, two possibilities were examined: One is to reduce the data rate

by selecting a subregion of the active area, but this neutralizes the advantage of the high resolution of the

sensor. Another possibility is lossless data compression based on entropy encoding, which is discussed

in the following.

Lossless data compression

Lossless data compression is an algorithm that allows the perfect reconstruction of the original data from

the compressed data. The input alphabet A comprising n symbols that describe the input data,

A = {a1,a2, . . . ,an} , (4.2)

and a set of symbol weights P for each symbol of the alphabet, which is usually proportional to the

probability,

P = {p1, p2, . . . , pn} , (4.3)

are mapped by the compression algorithm to a set of code words C, the output:

C(A,P) = {c1,c2, . . . ,cn} . (4.4)

The compression is efficient, if the length L of the encoded input data is less than the original input:

L(C) =
n

∑
i=1

wi · length(ci)≤ L(T ), for any code T (A,P) (4.5)
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Figure 4.12.: Histogram of photon and non-photon bursts used for entropy encoding of SPAD data. The ROI was 512×4

pixel wide, and 131072 frames were taken into account. The length of the longest non-photon burst was approximately 400.

Bursts were counted by walking through the entire dataset row-major order.

If the raw and encoded data are a set of binary codewords, their length is the number of required bits.

The code C must be prefix-free and obey Kraft’s inequality [116] to be uniquely decodable.

The challenging tasks is to find a symbol alphabet that describes the input data and allows for efficient

compression. For low light applications, such as FCS, only few photons are expected with long pauses

in between. Thus, the symbol alphabets described in the following are based on the run length of photon

bursts.

Burst-length encoding

In FCS, with molecules entering and leaving the focal volume, per pixel a time series of rare photon

events and long pauses in between is expected. This is supported by Figure 4.12, which shows a typical

histogram of photon and non-photon bursts for a TetraSpeck ∅= 100nm fluorescent beads measurement

(see section 2.2.4 for details on the dye and chapter 6 for details on the measurement procedure). Thus,

a compression scheme based on the length of the bursts seemed to be a valid choice. In a next step, the

symbol alphabet for the input data has to be found.

Constructing the input symbol alphabet. In the following three different symbol alphabets A were

tested. As the matching process of the raw data onto the symbols should be done in hardware, the

alphabet need to be as simple as possible. First, the most naïve set comprises different bursts of either

N1 photons or N0 non-photons:

Anaïve = {0,00,000, . . . ,0 . . .0,1,11,111, . . . ,1 . . .1}= {0a|0 < a≤ N0}∪{1a|0 < a≤ N1} . (4.6)

Secondly, a two dimensional alphabet comprising burst of non-photons and photons with varying sizes

combined into a single symbol was tested:

Atwo-dimensional = {01,001,011,0001,0011,0111, . . .}=
{
0a1b|0 < a≤ N0,0 < b≤ N1

}
. (4.7)

Finally, an alphabet consisting of photon-terminated non-photon bursts was tested:

Aphoton-terminated = {1,01,001, . . . ,0 . . .1}= {0a1|0 < a≤ N0} . (4.8)
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4.2. The Swiss single photon avalanche diode array

Constructing the codewords. The loss-less data compression applied to the raw data is based on en-

tropy encoding. The HUFFMAN algorithm was used to construct an optimal prefix-free code C [94].

For every data set an individual HUFFMAN tree was constructed. Further optimizations can be done on

the input alphabet A to better match the statistical nature of the raw data and to improve the compres-

sion factor. The entire process is similar to the so called modified HUFFMAN coding used for encoding

monochrome images in fax machines [221].

Results. Figure 4.13 shows the performance of the symbol alphabets described above in relation to the

maximum run-length of an input symbol. A symbol length equal or above 128 seems to be optimal for

efficient coding. Typically, compression is done for each pixel independently (solid line). For a homo-

geneous sample, the behavior of all pixels should be comparable, but a dedicated compression core (if

implemented in hardware) is required for every single pixel; 128× 512 in total. A more hardware effi-

cient approach is to consider the entire raw data as a row-major stream (dashed line), which only requires

a single compression core. Figure 4.14 shows the result of the evaluation of measurements of enhanced

green fluorescent protein (eGFP) in HeLa cells (see section 6.9.3 for details on the measurement). Al-

though the raw data has an implicit pattern due to the inherent structure of the cell, a significant influence

of this pattern on the coding efficiency in comparison to homogeneous samples could not be detected.

In comparison to an output of coordinates of photon events, a significantly better compression factor is

reached.

Summary

Compression based on entropy encoding seems to be a promising method to reduce the high data rate

of the CHSPAD sensor. The measurements showed that there is no significant difference, whether the

data is encoded in time for each pixel individually or spatially line-by-line (‘row-major’). The latter

should have a much simpler implementation in hardware. Since the coding efficiency strongly depends

on the count rate from the sample, entropy encoding is especially well-suited for low light single-photon

measurements. For very dim samples, a more than 20 fold reduction in the data rate was achieved. Even

if the count rate is increased beyond 10 kHz, e.g. with a more sensitive sensor, one could still compress

the raw data stream.

4.2.7. Computer storage

For further analysis, data must not only be transferred to a host computer, but also to a long-term storage,

preferably low-cost hard disks or network attached storage. This has to be done in real time in parallel to

the ongoing data acquisition or time-shifted from the host’s RAM. The latter typically limits the overall

measurement time or measurement repetition rate (e.g., 27 s for 32 GiB). The bandwidth requirements

for real-time storage are slightly above the raw data rate of 1.2 GiB/s, due to the overhead of the file

system. This exceeds the continuous data rate of most available conventional (rotating magnetic disk)

hard disks and flash based solid state disks (SSDs). Such devices typically offer a data rate in the range

of 500 MB/s. But by combining multiple of those disks, i.e., in a redundant array of inexpensive disks

(RAID) level 0 configuration∗, the desired data rate can be achieved.

Current consumer mainboards feature about four to eight SATA-3 (6 GB/s) ports. As one is typically

used for the system disk, the remaining ports can be used with a host-based (i.e., software) RAID so-

lution†. The SATA connectivity is typically located in the southbridge part of the computer’s chipset,

∗Strictly speaking, a striping configuration is no RAID, as no redundancy nor fault tolerance is given. It is just an array of

independent disks.
†Nowadays this functionality is offered by the operating system.
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TetraSpeck ∅= 100nm fluorescent beads is shown in red. The compression efficiency of samples of eGFP oligomers in HeLa
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128 pixel wide ROI best fitting the cell, cf., Figure 6.23. Hyperbolic fits of the data are shown as a thin line. Laser power was

80 W/cm2. A compression based on 16 bit position encoding is shown in green.
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which usually implements the slower capabilities of the motherboard. In todays computers, the south-

bridge is connected to the CPU by a PCIe v2.0 x4 like interface (i.e., AMD A-Link Express III or INTEL

Direct Media Interface 2.0). This limits the theoretical peak performance of 2 GB/s. Additionally, this

link is shared with any other transfer from or to the chipset.

Tests showed, that the continuous data rate of 1.2 GiB/s cannot be achieved, even if four SAMSUNG

840 PRO are used in a software RAID 0 configuration. This problem might be overcome by using more

recent SSDs that are using a PCIe interface, and can therefore communicate with the CPU directly (e.g.,

M.2 form factor).

4.3. Characterization of the CHSPAD sensor

Several characterization measurements of CHSPAD were done which are described in the following

sections. For these measurements, the sensors were integrated into the SPIM setup (see Figure 2.20 for

details on the microscope set-up). In total, two different chips were utilized: A sensor with microlenses

C21 and a sensor without microlenses D1, which was mostly used for comparison. The sensor with

microlenses was hand-selected by the designer of the chip and showed above average sensitivity. The

sensor without microlenses was only used for comparison and showed some defects (short circuit on VQ,

large defects on the sensor area, and significantly higher power consumption). If not stated differently,

all measurements were performed using a sensor with microlenses.

4.3.1. Sensor alignment procedure

Prior to any measurement, the sensors have to be aligned. The SPIM setup was already aligned for the

EMCCD camera, thus the following steps are specific to the CHSPAD: First, the position of the CHSPAD

is adjusted to the focal plane of the tube lens. If the camera is used in parallel, both sensors need to be

aligned in a way to have an overlapping field of view, which is shown in Figure 4.15. This is done by

moving the x-y-stage of the sensor’s mounting. A sharp metal tip, which is mounted in the water filled

sample chamber, is used as a reference sample.

As a next step, a possible misalignment of the microlenses is corrected: By adjusting the sensor’s pan

and tilt, the intensity maximum is centered (see section 4.3.7 for details). In case of a sensor without

microlenses, no further actions are required and the chip is adjusted perpendicular to the optical axis.

4.3.2. Signal to noise ratio

An important characteristic of the light detection process is the amount of noise that is added to the

signal. For an ideal detector without further sources of noise, the probability to detect photons follows

POISSONIAN statistics. Further sources of noise are thermal noise due to random creation of electron-

hole-pairs and readout noise of the analog to digital conversion process. A quantification of the quality

of a signal is the signal to noise ratio (SNR) which is defined as the ratio of the signal power Ps to the

noise power Pn:

SNR =
Ps

Pn
, (4.9)

with the signal s and the noise n. Assuming a detection process like the following:

X = s+n (4.10)

with X being the detected intensity, s the constant intensity signal and n a random variable modeling all

different kinds of noise with an expected value equal to zero. The SNR then equals

SNR(X) =
s2

σ2
n
. (4.11)
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(a) EMCCD (b) CHSPAD

Figure 4.15.: SPIM alignment. Parallel adjustment of (a) EMCCD camera and (b) CHSPAD using a small metal tip. Height

of both images: 128 pixels, width: 128 and 512 pixels. Ruler: 9.6 μm in the image plane (576 μm on the sensor). Images are

brightness and contrast enhanced.

For an ideal detector where the detection probability of a photon follows the rules of POISSONIAN

statistics, this can be written as

SNR(X)ideal =
s2

√
s2

= s. (4.12)

Measurement procedure

For each sensor, a series of images is taken for multiple LED light intensity settings. From the images,

the mean value and the variance were calculated. In case of the EMCCD, 1000 frames were taken at

10 ms integration time. For the CHSPAD array, 25 frames with 16 bit resolution were taken at 419 ms

integration time. Prior to calculation, the background is subtracted from the raw images. To verify the

position independence of the SNR in case of the CHSPAD, the visible area was divided into tiles of

32× 32 pixels. Every tile was handled as an independent measurement. For the EMCCD camera the

intensity values are converted into photoelectrons by a fitting procedure (cf., [168]).

For the measurement the typical SPIM setup was used without sample chamber and with the LED as

light source. The currents of the LED illumination ranged from 0 mA to 1000 mA. To access even lower

light intensities, neutral density filters (OD 1 and OD 2) were mounted in front of the light source.

Results

Figure 4.16 shows the result of an SNR measurement of the CHSPAD (red) and the iXon X3 860 EM-

CCD. In case of the EMCCD camera, different EM-gain settings were used (orange, pink, green and

blue). For comparison, the characteristic SNR of an ideal photon detector (POISSONIAN noise) is shown

(black). The respective values are plotted against the detected count rate. A raise in the PDP would result

in a right shift of the curve along the straight line of the ideal sensor.

The plot shows that the CHSPAD can be treated as a ideal sensor for count rates above 1 kHz. Below

that value, the DCR seems to have a stronger influence (see next section). For values above 10 kHz, the

CHSPAD’s SNR seemed to outperform the ideal sensor. This was an artifact, since in this regime the

probability for double-photons becomes significant and therefore several photons are not detected, which

limits the SNR over-proportionally. Theoretically, the upper limit for the count rate is 156 kHz which

cannot be reached for larger areas of the sensor due to electrical restrictions∗. The EMCCD camera, on

the other hand, with its stochastic amplification in the EM-gain register suffers from an additional noise

component (excess noise).

∗Each detected photon creates an avalanche of electrons. The higher the overall intensity, the more current is drawn by the

sensor. To prevent the sensor from damage, the total current is limited to 600 mA.
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4.3.3. CHSPAD dark count rate

A key parameter in defining the detector noise is the so called dark count rate (DCR), which is the rate

of detected pulses when the sensor is in complete darkness. As explained in section 2.1.2, these are

caused by thermally created electron-hole-pairs in the sensor substrate. The influence of the excess bias

Vex (see next section) in the DCR is shown in Figure 4.17a. A histogram of the DCR at a typical value of

VOP = 24V for different sensors with and without microlenses is given in Figure 4.17b.

The higher DCR of the sensor without microlenses (D1) most likely stemmed from inherent defects of

the die (cf., Figure 4.26). In case of the sensor C21, the obtained value of 100 Hz to 200 Hz was slightly

better than the reference (211 Hz for Vex = 3.5V [33]).

4.3.4. Breakdown voltage

When operated in Geiger-mode, the breakdown voltage Vbreak is the bias voltage over the sensor, above

which avalanches can occur. A higher voltage bias above breakdown, the excess bias Vex, increases the

gain (and DCR) of the sensor. The sum of both, the operating voltage VOP =Vbreak+Vex, is limited by the

chip production process (‘high-voltage CMOS’-process for the CHSPAD). The excess bias is typically

used to compare properties of different sensors, as for example the light sensitivity. The breakdown

voltage is measured as described in the following.

Measuring a SPADs breakdown voltage. If the diode is individually accessible, the breakdown voltage

is measured by observing the I-V of the diode. The voltage is reached, when a bifurcation in the charac-

teristic occurs (photon and non-photon states). If the diode is not directly accessible, which is especially

true for digital SPAD-arrays like the CHSPAD, a different approach is used: For different operating volt-

ages VOP a series of single frames were acquired. A single pixel was considered to be active, when at

least one photon was counted. This can either be measured in the dark, so that only the DCR plays a role,

or under light conditions. By counting the number of active pixel for every VOP, a cumulative distribution

function of Vbreak is obtained. The mean value can then be determined by a fit.

Results

Figure 4.18 shows the histogram of the breakdown voltages across all pixels for both SPAD arrays. The

mean value was obtained from a GAUSSIAN fit. The values slightly diverged for different settings of

VQ. A color-coded image of the breakdown voltage on the whole chip is shown in Figure 4.19. The map

shows that the breakdown voltage is not evenly distributed but shows some large-scale structures, which

may stem from substrate imperfections.
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provided by JAN W. KRIEGER.
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in Figure 4.18. Data is based on a DCR measurement. VQ = 800mV.

87



4. SPAD arrays for imaging FCS: readout design and evaluation

4.3.5. Detection efficiency

By increasing the excess bias, the detection efficiency is increased. This effect is shown in Figures 4.20

and 4.21.The first, Figure 4.20, shows the detected number of photons at a constant illumination for

different values of Vex. The second, Figure 4.20, shows the linearity of the detection for different values

of Vex by comparing the detected number of photons with the intensity measured with the EMCCD

camera in parallel.

4.3.6. Final test of the hardware-software co-design for correlation analysis

To ensure the functional correctness of all hardware and software components involved in the data acqui-

sition and evaluation process, a homogeneous sample with a known timing characteristic was measured

and evaluated. After fitting an appropriate model function to the estimates of the ACFs of every pixel, the

obtained parameters should have a narrow distribution if all pixels behave similar. As sample, a white

LED light source was used in a frequency-modulated mode. The frequency was set to fLED ∼ 1kHz.

Adequate optics ensured that the entire sensor was illuminated uniformly. The oscillation model (cf.
section 2.4.3) was used as fit model for the ACCs of all pixels.

The duration of the measurement was 3.35 s, and full frames were acquired. An average count rate of

(40±1) kHz was observed. Figure 4.22 shows the distribution of the frequency parameter obtained from

the model fits. A GAUSSIAN fit of the histogram yielded a mean frequency of (1042.43±0.06)Hz. The

divergence between the set frequency and the mean value obtained from fit (≈ 4%) might stem from the

frequency generator from which the LED frequency was derived (micro-controller based, 16 MHz clock,

see Ref. [119]). The very small width of the distribution of the frequencies obtained from model fits of

each pixel showed that the pixels behave similarly and that the entire system was working as expected.
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selected. The LED was used as light-source. ILED = 30mA.
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4.3.7. Effect of microlenses

The overall low PDP due to a low fill-factor in cameras can be overcome by using micros-lenses. There-

fore a small lens that focuses the light onto the active area, a so called microlens, is mounted in front of

each single pixel. Figure 4.23 shows an image of the microlenses attached to the CHSPAD (sensor C21).

Simulations for the CHSPAD predicted an up to ten-fold light concentration [169].

Being an additional component in the light-path of the microscope, microlenses may have a significant

influence on the detection. This is assessed in the following.

Influence of microlenses on the optical system

The microlenses that were placed on top of each single SPAD were not aberration corrected, but were

designed for parallel incident light only. Figure 4.24a shows the effect of the optical system: If, as in

case of a microscope set-up, a tube-lens is used to focus down the light onto the sensor, the focal spot

of the microlenses is not necessarily overlapping with the active area inside the pixel any more. This

effect gets more severe with increasing distance of the center of the field of view. Figure 4.24b shows

a possible correction scheme for this telecentric error by a local displacement of the microlenses: With

increasing distance, the position of microlenses is displaced towards the center.

The non-optimal placement of the microlenses lead to a visible drop of the intensity towards the border

of the field of view, which is shown in Figure 4.25a. Compared to the center, roughly a factor of two

in intensity is lost. By using parallel light for illumination, as shown in Figure 4.25b, a constant signal

across all pixels is measured as expected. If a sensor without microlenses was used, which is shown in

Figure 4.26, the drop in intensity towards the edges could not be detected.

Concentration factor of the microlenses

An important property of microlenses is their ability to focus down the light onto the active area. This

can be quantified by the so called concentration factor CFμL, which represents the gain in intensity

by microlenses. In general, it is not possible to test chips prior to the application of the microlenses,

or to remove the microlenses, once they were applied. Therefore, chips with and without microlenses

have to be compared to estimate CFμL. This is not very precise as the properties of the sensors vary

between chips, especially for the prototypes used in this work. And even the application process of the

microlenses or the microlenses themselves may change the characteristics of a sensor. Still, an effort was

made to get such an estimate.

The concentration factor CFμL of the microlenses was determined for various excess voltages Vex =
VOP−Vbreak and different light intensities of the LED, that were set by its current ILED. The evaluation is

based on the light intensity I detected with two different sensors. It is calculated as follows:

CFμL(Vex, ILED) =
ICHSPAD C21, rel(Vex, ILED)

ICHSPAD D1, rel(Vex, ILED)
, (4.13)

with the relative light intensity Irel, which is dark count corrected and normalized to a parallel measure-

ment with the EMCCD camera∗ (50 : 50 beam splitter) to compensate for any variations in the LED

intensity:

ICHSPAD, rel(Vex, ILED) =
ICHSPAD(Vex, ILED)− ICHSPAD(Vex, ILED = 0mA)

IEMCCD(ILED)− IEMCCD(ILED = 0mA)
. (4.14)

To account for image artifacts, only the inner 96× 96 pixels of the EMCCD camera were taken into

account. In case of the CHSPAD with microlenses the brightest 128× 128 pixels were selected auto-

matically which were then clipped to 96×96. This reduced the influence of the misplaced microlenses

∗As shown in Figure C.3, the camera can be treated as linear in the evaluated range.
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Figure 4.23.: Microscopic image of the microlenses attached to the CHSPAD. Provided by C. BRUSCHINI (EPFL, Switzer-

land).
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Figure 4.24.: Influence of the optical system on microlenses attached to a sensor. Pixels are depicted as gray boxes, the

active area is shown in red. (a) shows the propagation of a light beam (green) through a tube-lens and microlenses for the

central pixel and a pixel further outside. (b) Microlenses (blue) are displaced to account for the effect shown in (a). The

displacement increases with the distance to the center (green).
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(a) SPIM optics (b) parallel light
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Figure 4.25.: Influence of the SPIM optics on the CHSPAD with microlenses C21. (a) CHSPAD mounted in the SPIM setup

behind fTL = 200mm tube lens. Intensity drops about 50 % to the edges. (b) CHSPAD illuminated with parallel light. Outer

right part of the sensor was not illuminated. A Gaussian fit of the histogram of intensity-values gives a variance of σ = 6%).

Which is mainly due to imperfections of the light source. Below the images, the progression of the light intensity for the center

row is shown. For both images, dead pixels are directly removed in hardware. Remaining dark and bright spots on the left

image are mainly due to dust on the sensor.

Figure 4.26.: Influence of the SPIM optics on the CHSPAD without microlenses D1. The image is much noisier due to the

significantly reduced PDP. In the center area a large defect is visible. The image is contrast enhanced.
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Figure 4.27.: Concentration factor of microlenses in relation to the excess bias for the CHSPAD sensor C21. Sensor D1
was used as a reference. The concentration factor is shown for two different settings of VQ. Raw data was linearly interpolated

and corrected for the DCR and normalized to the count rate of the EMCCD camera. The LED light source was used for

illumination; ILED = 30mA. Defective pixels were excluded from evaluations.
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and led to an estimate of the maximum possible gain. The sensor without microlenses was used almost

completely (512×96 pixels). All measurements were normalized to their respective breakdown voltage

Vbreak (cf., section 4.3.4).

The alignment of the sensor was done according to section 4.3.1. As for detection a water immersion

objective was used, the sample chamber was filled with purified water. Further details on the alignment

of the setup are described in Ref. [119].

Figure 4.27 shows the measured gain in intensity of CHSPAD C21 over D1 in relation to the break-

down voltage. For excess bias voltages above 3 V a gain in intensity of approximately 22 was obtained.

For Vex < 2.5V unrealistically high gain factors were measured due to nonlinearities of the CHSPAD

sensors. Throughout this thesis, measurements were performed at VOP = 24V which is approximately

3 V above Vbreak and still suitable for the electronics of the sensor regarding degradation. Although the

overall gain by the microlenses decreases for higher Vex, the PDP still increases (cf., Figure 4.20).

According to Ref. [33], the active area of the CHSPAD has a diameter of about 6μm. The theoretical

peak concentration factor is the relation of the area of single micro-lens to the active area of a single pixel

CFμLmax
=

π(24μm/2)2

π(6μm/2)2
= 16.

From simulations, a factor of about 10 is expected [169]. As CHSPAD C21 has been hand-selected

for best performance among all sensors with microlenses, it might have an above-average PDP. On the

contrary, CHSPAD D1 shows lots of defects, so its PDP might be below average. The higher DCR of the

sensor without microlenses (see above) disproportionately reduced the denominator of equation (4.13).

The measured signal was only four times higher than the DCR; for the sensor with microlenses, this was

about 100-fold. If both chips had had the same PDP, the relatively high concentration factor shown above

could be explained with an overall smaller active area of the single SPAD (dSPAD � 5μm for CFμL = 22).

Influence of the microlenses on SPIM-FCS measurements

Microlenses have a significant influence on the number of detected photons due to their ability to con-

centrate light. In the following the influence of the microlenses on SPIM-FCS measurements is tested.

For this purpose, TetraSpeck ∅ = 100nm fluorescent beads were used as a sample (for details on the

sample see section 2.2.4). First, the fluorescence intensity was recorded by the sensor with microlenses,

C21, which was then exchanged by the sensor without microlenses, D1. The sensors were re-aligned

prior to each measurement. Everything else in the SPIM setup was left unchanged between the measure-

ments. The EMCCD camera was used in parallel (50:50 beam splitter) for alignment and control. The

laser power at the lightsheet was approximately ILS = 80W/cm2.

Figure 4.28 shows the ACCs for two single pixels taken either by the sensor with (blue) or without (red)

microlenses. In the latter case, the noise on the ACC was significantly increased. Also, the detected count

rate was about 12 times less (0.5 kHz instead of 6 kHz). This drop in the count rate is in good agreement

with the expected gain factor of approximately 10 to 20. With the decrease of detected photons, the

afterpulsing becomes more prominent. This can be seen as a steep increase of the ACC towards small

lag times τ < 10ms.

Figure Figure 4.29 shows the distribution of the measured diffusion coefficients of the sample for both

sensors. Data was obtained by a global fit (see chapter 6 for details), a fit of the ACCs only did not

yield any meaningful result for the CHSPAD without microlenses. In the case of the sensor without

microlenses, the mean diffusion coefficient for all pixels was Dno μ-l = (3.6±2.4) μm2/s. For the sensor

with microlenses, a GAUSSIAN fit to the distribution of all pixels’ diffusion coefficients resembled Dμ-l =
(4.1±0.3) μm2/s.

Both mean values of the measured diffusion coefficients are comparable and in agreement with the

theoretical value of (3.85±0.63) μm2/s [154]. The increased PDP of the CHSPAD with microlenses
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Figure 4.28.: Autocorrelation curves including fits of TetraSpeck ∅ = 100nm fluorescent beads detected by CHSPAD
with and without microlenses. (a) Representative example of a single pixel. (b) Mean value of all pixels. Data obtained from

the sensor with microlenses (C21) is shown in blue, otherwise (D1) shown in red. Dots with thin lines resemble correlation

estimates, corresponding fits are shown as solid lines. Data is normalized to N = 1 and corrected for an offset.
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Figure 4.29.: Distribution of diffusion coefficients of a TetraSpeck beads sample a measured by a CHSPAD with and
without microlenses. Data was obtained using a global fit (see chapter 6 for details). A GAUSSIAN fit of the distribution is

shown as a solid curve. Mean values from fit are shown above the plot.

94



4.3. Characterization of the CHSPAD sensor
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Figure 4.30.: Schematic drawing of the focus GAUSSIAN with an ellipsoid shape in a confocal microscope.
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Figure 4.31.: Histogram of the focal volume parameters wxy and wz as obtained from a bead-scan. Data is normalized to

the amplitude obtained from GAUSSIAN fit. Fit results are shown above the plot.

lead to an eight-fold decrease in the width of its distribution. More details on the measurement procedure

are presented in chapter 6.

4.3.8. Determination of the size of the focal volume at each pixel

Important parameters for the determination of the diffusion coefficients and the particle concentrations

in FCS measurements are the size and shape of the focal volume. In imaging fluorescence correlation

spectroscopy (imaging FCS), each single pixel (x,y) in combination with the detection optics defines

a virtual focal volume in the image plane. Assuming each focus to have an ellipsoid shape with two

equal axes, two parameters are required for its description: the lateral 1/e2 half width wxy(x,y) and the

longitudinal 1/e2 half width wz(x,y), which are shown in Figure 4.30. Typically, for detectors with fewer

pixels, these parameters are assumed to be constant for the entire detection array ([119]). The four-fold

larger field of view of the CHSPAD compared to the EMCCD required a more detailed analysis.

An adequate method to determine the focal shape is a bead-scan as described in section 2.3.4. Fig-

ure 4.31 shows the resulting histograms of both focal parameters wxy and wz. Data was obtained from

a single bead-scan with 1001 frames and a step width of 200 nm in z-direction. The distribution of wxy

were in good agreement with a GAUSSIAN distribution, whereas the distribution of wz is slightly skewed,

which might indicate a position dependence.

The corresponding maps of the parameters across the whole sensor area are shown in Figure 4.32. The

distributions of the parameters along the axes are shown in Figure 4.33. The lateral width wxy seemed to

be distributed evenly, only with a slight increase in the absolute value along the x-axes (Figures 4.32a and
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4. SPAD arrays for imaging FCS: readout design and evaluation

(a) Map of wxy across CHSPAD sensor
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(b) Map of wz across CHSPAD sensor
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Figure 4.32.: Distribution of focal volume parameters wxy and wz across the CHSPAD with microlenses obtained from
bead-scan. Scattered values from detected and fitted beads were binned into 8×8 tiles. In total, 1402 beads were found in the

z-stack. The majority of the beads was detected in the center area.
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4.3. Characterization of the CHSPAD sensor
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Figure 4.33.: Distribution of the focal volume parameters wxy and wz along the x and y axis as obtained from bead-scan.
In (a) and (b) position dependence on the x and y axis of wxy is shown. The position dependence of wz is shown in (c) and (d).

97



4. SPAD arrays for imaging FCS: readout design and evaluation

4.33a). The second parameter, wz, seemed to have a minimum in the center of the sensor with an increase

towards the edges (Figures 4.32b and 4.33d), which can be explained with the shape of the lightsheet.

Additionally, a slight decrease along the x-axes was visible (Figure 4.33c).

It can be stated, that the distribution of the parameters of the focal volume, as obtained by a bead-scan,

followed GAUSSIAN distributions. A significant position dependence, except for the shape of the light-

sheet was not detected. Further investigations of the homogeneity of the size of the focal volume based

on the evaluation of correlation curves of a known sample is shown in appendix E.1.

4.3.9. Temperature of the sensor

In contrast to scientific cameras, the CHSPAD did not allow for any efficient cooling. Figure 4.34 shows

the progression of the temperature for a 110 s measurement. To slightly decrease the temperature, a fan

was placed below the Broaddown 4 board to blow air through the gap between both boards. During

the measurement, the temperature that was measured on the back of the daughter board rose by about

6 K. Without an ongoing measurement, the sensor had a temperature of about 32 ◦C, which was approx-

imately 10 K above room temperature. This increase in temperature is mostly due to the photon induced

avalanches in the photodiodes of the sensor. Due to the quenching, heat dissipates directly in every single

pixel.

The design of the CHSPAD daughter board and its connection to the Broaddown 4 evaluation board

did not allow for placing any heat-conductor in between. Unfortunately, heat dissipating electronics

(high-speed clock drivers) were located on the Broaddown 4 directly below the CHSPAD. In addition

to the heat dissipation of the electronics of each pixel, every single avalanche generates heat in the

quenching circuitry. Thus, the heat quantity depends on the incident light intensity.
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Figure 4.34.: Progression of the temperature of the CHSPAD sensor for a typical measurement. The duration of the

measurement is shown as a light gray area. The temperature was measured by a temperature sensor (Pt100) attached to

backside of the daughter board behind the CHSPAD sensor.
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4.4. Conclusion

For both different SPAD arrays, the RADHARD2 and the CHSPAD, readout hardware was developed,

that allows frame acquisition above 100 kHz and camera-like usage of the sensors within the microscope

setup. For the CHSPAD, the existing firmware and readout software could be extended to support features

that are necessary in the daily routine when used in a microscope. Examples are the support for a region

of interest or a hardware-based correction of defective pixels. Moreover, a readout system was designed

that allows real-time data acquisition from the CHSPAD at full frame rate. To reduce the overall data

rate, lossless compression based on entropy encoding can be efficiently used for the compaction of the

raw data. Further improvements of the control signal patterns were done to reduce the significant amount

of afterpulsing seen in this sensor.

The CHSPAD array proved advantageous in comparison to commonly used EMCCD cameras regard-

ing the signal to noise ratio in imaging mode, which is expected for this type of sensor as it should

behave close to an ideal photodetector. Microlenses, that were attached to every individual pixel of a

second CHSPAD chip, led to a more than ten-fold gain in detected light intensity. Several measurements

suggested that such microlenses do not have a negative effect on FCS measurements. The only drawback

of microlenses were, that if they are not specifically corrected for a certain optical setup, as they are

for the SPIM setup, a significant decrease in sensitivity towards the edges of the active area can occur.

Except for a position dependence of the depth of the focal volume wz due to the shape of the lightsheet,

no significant position dependency of the parameters of the focal volume were detected.

In summary it can be stated, that both sensors, but especially the CHSPAD with microlenses, are in

principle suitable for SPIM-FCS measurements. This is further evaluated in chapter 6 on the basis of

commonly used dyes.
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5. Implementation of fast signal correlation analysis

5.1. Introduction

In this chapter, the implementation of different multiple-τ correlation algorithms as introduced in sec-

tion 2.4.2 is described. As hardware platforms for the implementation of the correlators, two recent

CPUs, a field programmable gate array (FPGA), and a graphics processing unit (GPU) were evaluated.

5.1.1. Initial situation

When the project was started, a software implementation of a multiple-τ correlator already existed in

the evaluation software QuickFit3 used for the microscope (see section 2.3.3). This correlator is still

available (Multi-Tau 1, see QuickFit3 on-line help for details). The overall performance was roughly

1.4 Mflops/s∗ which was even too slow for real-time correlation using the RADHARD2 system (at least

102.4 Mflops/s would have been required). A significant amount of time (about 2 %) was spent for

initial data conversion from raw binary data to floating-point values. The conversion was done prior to

correlation, so on-line calculation of streaming input data was not possible, and a significant amount

of memory was required. Furthermore, the existing code does not make use of any optimization, such

as single instruction, multiple data (SIMD) instruction set extensions or threads. The tested code was

written with versatility in mind and does allow background-correction and bleach-correction. Its main

targets were image series, taken with a conventional scientific camera with much lower frame rates and

a 12 . . .16bit data format.

5.1.2. Requirements of the implementation

A major goal of all implementations in this chapter was the possibility to provide the results of the cor-

relation in real time. This could be used to provide the operator of the microscope with spacial resolved

maps of the ongoing diffusion within the sample. That way, he or she can get a brief impression whether

the observed sample, e.g., a cell, contains the molecule of interest in an appropriate concentration. Based

on this preview, a rough estimation of the sample quality can be done and measurements can be limited

to particularly promising samples, which saves evaluation time and disk space.

Real time correlation also gives operator of a microscope the feedback that is needed to align the

instrument properly. Singh [200, p. 61] showed, that when the lightsheet and the focal plane of the de-

tection objective overlap perfectly, the resulting diffusion coefficient of the observed species is maximal

and the particle number is minimal. So, using the results of a correlation analysis, the alignment can be

automated and an overall higher accuracy and better signal quality can be achieved.

Depending on the samples used, typical measurements have a duration in the order of seconds to

minutes. With the worst case data rate of about 1.2GiB/s for the Swiss single photon avalanche diode

array (CHSPAD), the amount of raw data would exceed the available RAM of almost any computing

platform within seconds. Therefore, the algorithm should support data streaming and should not rely on

the entire dataset. Also, the amount of working memory used per correlator should be kept as small as

possible, because several thousand correlators can be run in parallel.

∗Tested with a 450 MB dataset taken with the RADHARD2 system comprising 12.6×106 frames of 32×8 pixels. Corre-

lation time was about 40 min, when running on an INTEL i5-2520M 2.5 GHz (turbo: 3.2 GHz).
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5.1.3. Properties of the correlation function

An important feature of the autocorrelation function is that processing of several pixels can be trivially

parallelized, because pixel do not share data. This is not valid if a spatial cross-correlation function is

calculated. But then, the FPGA used for readout can also be used to presort data, split and duplicate the

data (e.g., for cross-correlation), so that the correlators do not have to pre-process their input.

The multiple-τ correlation algorithm used in this thesis allows for a further parallelization on the level

of linear blocks, resulting in a series connection of linear correlators. Input data is then flowing between

such blocks, while passing through the entire correlator.

If only a few pixels are measured, i.e., with photomultiplier tubes (PMTs) or single photon avalanche

diodes (SPADs), typical frame rates range from 1×105 to 1×109 fps. For cameras with thousands of

pixels, the frame rate usually drops down to 1×103 fps. Implementations proposed so far (see section 3.2

for an overview) typically focused on efficient correlators with only a few channels (i.e., pixels). With

new SPAD arrays, which comprise several thousands of pixels, a completely new implementation was

required.

Another important property is the format of the input data, that is, whether the detecting device outputs

simple photon / no-photon data (black and white, i.e., SPAD arrays) or accumulated values (gray-scale,

i.e., CMOS cameras). If only binary data with single bit information (e.g., no photon / ≥ 1 photon)

is processed, data paths can be optimized accordingly. This is especially relevant for hardware-based

implmentations. Correlators based on CPUs or GPUs typically use a generic data type with a constant

width of the data path (i.e., 32 bit-wide single precision floating-point values).

5.2. Mapping the multiple-τ correlator algorithm onto different hardware
platforms

For all multiple-τ algorithms in this thesis, in between two linear correlator blocks, two successive values

have been averaged (i.e., m = 2 in section 2.4.2). The calculation of the correlation function is typically

split into two steps. First, gτk = 〈I(t) · I(t + τk)〉 (the nominator in equation (2.30)) is evaluated and

finally the full correlation curve is calculated by normalizing gτk . The monitor channel M = ∑t I(t) (cf.,
equation (2.30)) is calculated in parallel in the first stage of the correlator, the so called ‘front end’.

The most recurring operation in the calculation of the autocorrelation function (equation (2.30)) for a

specific delay time τk (i.e., a single lag) is to multiply two intensity values I and accumulate the results,

a multiply accumulate (MAC) operation:

(Gk)n = In · In−k +(Gk)n−1 . (5.1)

This operation has to be repeated for all n input values in every single lag of each block. It perfectly

maps to dedicated functional units found in recent high performance hardware, such as arithmetic logic

units (ALUs) of modern CPUs, MAC units on signal processors, or DSP slices found in FPGAs. If the

underlying data type is a floating-point value, this is equal to two floating-point operations (FLOPs) or

a single FMA-FLOP, since some modern CPUs can execute this as a single operation (see [174] for a

detailed description). In case of the FPGA with no native support for floating-point operations, MAC

operations are equated with FMA-FLOPs for comparability.

Depending on the target architecture, two main optimizations can be done, determined by the amount

of available memory: If only a small amount of RAM is at hand, the output data stream of a single block

cannot be saved and the consecutive blocks have to be executed in an increasing order. Input data is then

propagated through the entire correlator until it is consumed (i.e., by an accumulation step between two

blocks) and the next input value can be processed. This way, all lags of all correlator blocks must be

present in memory at all times.
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5.2. Mapping the multiple-τ correlator algorithm onto different hardware platforms

input: input values of the first channel Iu
0 . . . I

u
N−1,

input values of the second channel Id
0 . . . I

d
N−1

data : accumulators for each lag ACC[Nblocks,Nlags],
delay registers for each lag REG[Nblocks,Nlags],
storage for output values of each block Iu

old[Nblocks] and Id
old[Nblocks],

the current intensity values that are processed Iu and Id

1 for n← 0 to N−1 do /* iterate over all input values */

2 Iu ← Iu
n ;

3 Id ← Id
n ;

4 for b← 0 to Nblocks−1 do
5 for l ← 0 to Nlags−1 do /* process all lags in current block */

6 ACC[b, l]← Iu · Id + ACC[b, l];
7 SWAP(REG[b, l], Id); /* store current and load old value */

8 end
9 if block was executed an even number of times then /* run next block */

10 Iu ← Iu + Iu
old;

11 Id ← Id + Id
old;

12 else /* store values for next iteration and stop processing */

13 Iu
old[b]← Iu;

14 Id
old[b]← Id ;

15 stop processing of b, continue with next n;

16 end
17 end
18 end

Algorithm 5.1: Naïve algorithm of a multiple-τ correlator. The algorithm is used to calculate the correlation function esti-

mates for a multiple-τ correlator with B blocks (b = 0 . . .Nblocks−1) comprising L lags each (l = 0 . . .Nlags−1). The correlator

accepts two input values Iu
n and Id

n in each cycle n. If used as an autocorrelator, set Iu
n = Id

n . In each lag an accumulator ACC
holds the result of the specific correlation. Values in the delayed data path are stored per lag in REG. The actual correlation is

performed in line 6 on the current values Iu and Id . If a block has been processed an odd number of times, the resulting output

values are stored for each block in Iu
old and Id

old. In case of an even number of executions, the next block is processed using the

sum of the current values Iu and Id and the stored values Iu
old and Id

old as inputs. This algorithmic representation is optimized

for a low usage of registers. After all N input values have been processed, the correlator needs to be flushed, i.e., executed with

zeros as input values, until all delayed values have passed through all lags.

If a large amount of memory is available, a certain linear block of the correlator can be processed

for multiple input values. Its output is buffered in memory and is later consumed by the next correlator

block. In the latter case, only a small amount of local memory (e.g., register file or block RAM (BRAM))

is needed to hold the accumulators of a single block as well as the values in the delayed data path.

5.2.1. Naïve implementation of the correlation algorithm

The initial implementation that was done for the CPU correlator is based on the ‘naïve algorithm’, which

is shown in Algorithm 5.1. It is optimized for a small memory footprint.

The basic idea is to propagate a single input value through all lags until it is consumed by an accumula-

tion step between two correlator blocks. The algorithm is optimized for low register usage so that ideally

all accumulators of a single block fit into the register file (commonly the 16 MMX registers of a CPU

with SIMD instruction set extension, cf., section 2.6.1). With the help of ‘vertical unrolling’ (i.e., the pro-
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input: input values of the first channel Iu
0 . . . I

u
N−1,

input values of the second channel Id
0 . . . I

d
N−1

data : accumulators for each lagACC[Nblocks,Nlags],
delay registers for each lag REG[Nblocks,Nlags],
storage for output values of each block Iu

old[Nblocks] and Id
old[Nblocks]

the current intensity values that are processed Iu and Id

1 for n← 0 to 2 ·N−1 do /* iterate over all input values */

2 b← getBlock(n); /* determine current block */

3 if b = 0 then /* load single pair of input values */

4 Iu ← Iu
n/2

; /* either directly from input... */

5 Id ← Id
n/2

;

6 else
7 Iu ← Iu

old[b−1]; /* ...or from value store */

8 Id ← Id
old[b−1];

9 Iu
old[b−1]← 0; /* reset, so a simple addition can be used */

10 Id
old[b−1]← 0;

11 end
12 for l ← 0 to Nlags−1 do /* process all lags in current block */

13 ACC[b, l]← Iu · Id + ACC[b, l];
14 SWAP(REG[b, l], Id); /* store current and load old value */

15 end
16 Iu

old[b]← Iu
old[b]+ Iu; /* store values for following block */

17 Id
old[b]← Id

old[b]+ Id ;

18 end

Algorithm 5.2: FPGA-optimized version of the naïve algorithm for a multiple-τ correlator. In contrast to the naive im-

plementation (cf., algorithm 5.1), the order of blocks is determined by the block scheduling algorithm (line 2) described in

section 5.2.4. This requires to run two linear blocks of the correlator per single input value. Typically, the entire context is

stored in a BRAM of an FPGA. In case of a hardware implementation, the conditional (line 3) can be unified trivially.

cessing of multiple time-steps in parallel, see section 5.2.8) the entire register file can be used efficiently.

With slight modifications, this algorithm was also be used for the FPGA-based implementation.

5.2.2. FPGA-optimized implementation

The LASP board (see appendix B.1) which was used for the RADHARD2 and the implementation of an

FPGA-based correlator (cf., section 5.5.2) has relatively small memory resources (432 KiB BRAM and

20 MiB RAM for each FPGA). Thus, the algorithm described above was adapted to fit this platform, too.

An advantage of an FPGA, if compared to a CPU, is the large amount of BRAM inside the device,

which can be used in the same way as the (smaller) register file of a CPU. This way, data required by a

correlator for a single pixel, the so called context, is available without latency.

The naïve algorithm is based on branching, which does not map well to an FPGA. This was overcome

in algorithm 5.2 by using a scheduler (line 2) instead of a conditional branch to determine the order of

execution of the linear blocks within the correlator. By running two linear blocks per single input value,

it is possible to perform the processing of all blocks in the correct order (see section 5.2.4 for details on

the scheduling). In contrast to the naïve algorithm, this solution requires for an additional storing of the

output values in each iteration.
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5.2. Mapping the multiple-τ correlator algorithm onto different hardware platforms

input: buffer for input values Iu
v [0,0 . . .Nc−1], Id

v [0,0 . . .Nc−1]
data : accumulators for each lag ACC

[
Nblocks,Nlags

]
,

delay registers for each lag REG
[
Nblocks,Nlags

]
,

output buffers for intensity values Iu
v [Nblocks,Nchunks] and Id

v [Nblocks,Nchunks],
counter for invocation of linear blocks ticks[Nblocks],
the current intensity values that are processed Iu and Id

1 while input data available do
2 b← getBlock(); /* determine next block to process */

3 for c← 0 to Nc−1 do /* process a full block of input values */

4 Iu ← Iu
v [c,b]; /* load input data... */

5 Id ← Id
v [c,b];

6 Iu
v [c,b]← 0; /* ...and reset */

7 Id
v [c,b]← 0;

8 for l ← 0 to Nlags−1 do /* process all lags in current block */

9 ACC[b, l]← Iu · Id +ACC[b, l];
10 SWAP(REG[b, l], Id); /* store current and load old value */

11 end
12 p← c/2+MOD(ticks[b+1],2) ·Nc; /* calculate output data position */

13 Iu
v [b+1, p]← Iu

v [b+1, p]+ Iu;

14 Id
v [b+1, p]← Id

v [b+1, p]+ Id ;

15 end
16 ticks[b]← ticks[b]+1;

17 end

Algorithm 5.3: Streaming algorithm for a multiple-τ correlator. Input data must be provided in multiple buffers

Iu,d
v [0,0 . . .Nc− 1], and might be written asynchronously in parallel, if this does not affect the ongoing correlation. In each

linear block Nchunks input values are processed. The next block to process, b, can be determined by the scheme described in

section 5.2.4. The ticks counters are used to determine the output locations for the data, and whether the first or second half is

written. After being read the input data must be zeroed as it is used to add up the output values (line 13). Vertical unrolling and

input data conversion are not shown.

5.2.3. Streaming correlator algorithm

When implementing the multiple-τ algorithm on a GPU, the significantly different structure required

for a different correlation algorithm: A GPU is typically characterized by a large amount of memory

that is connected to the processing units with a high latency (several hundred clock cycles, no cache).

The multiprocessors of a GPU have a rather large register file (in comparison to a CPU) to balance

the memory interface characteristics. Over all, the GPU architecture is optimized for streaming large

quantities of data, while applying highly parallelized transformations to it. Such problems are often

encountered in three-dimensional computer graphics. For the implementation of a multiple-τ correlator,

this implies that the number of context switches, which break the dataflow, had to be minimized.

The solution shown in Algorithm 5.3 is optimized for a large amount of memory with a high latency

and a small register file, thus fitting the needs of the GPU. A schematic drawing of the dataflow is shown

in Figure 5.1. As for the FPGA-optimized implementation, the order in which correlator blocks are

processed is determined by the scheduler (line 2). Again, alternately with a higher order block, the first

order block is executed.

If a large amount of memory is available, which applies particularly for GPUs, a single block of the

correlator can be processed for a long time. The input and output is buffered in memory and switches to
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Figure 5.1.: Schematic drawing of the streaming correlator algorithm. Only one single linear block of the correlator is

executed at every instant. Input and output is read from and written to buffers residing in the memory. The order of the blocks

is determined by a scheduler.

another correlator block are reduced. The relatively small amount of data in the context (typically eight

accumulators and the same number of delay values) can be held in the register file all the time. If free

registers remain, these can be used for further optimizations, such as the combination of two correlator

blocks into a single one (this was also done for the GPU correlator; see section 5.4.2).

During the design of the GPU correlator, it was found that this streaming algorithm was also quite effi-

cient on the CPU (see section 5.3.4 for details on the implementation). Also the proposed implementation

of the FPGA-based correlator following the dataflow paradigm is based on this algorithm (section 5.5.7).

5.2.4. Block scheduling algorithm

As shown in equation (2.23), the execution time of a multiple-τ-correlator (m = 2) is just twice the

execution time of the first linear correlator block times the number of its invocations. So when the

operation of the entire correlator is divided into time slots, every second slot is devoted to the first block,

every fourth to the second block and so forth. For both, the FPGA and for the GPU implementation of

the correlation algorithm, an efficient scheme had to be found that determines the order of blocks and

only depends on a counter c of the already processed blocks. Further, this scheduling scheme had to

guarantee that a linear correlator block b is only executed after its predecessor b− 1 has been executed

twice. In Algorithm 5.2 and Algorithm 5.3 this scheduling was denoted as a call to getBlock().

Its implementation is based on the following relations between the block number b and the counter c,

mentioned above:

b = 0 : c mod 21 = 0

b = 1 : c mod 22 = 3

b≥ 2 : c mod 2b+1 = (2b−3) (5.2)

Figure 5.2 shows the order of blocks b that are processed in 32 time steps (c= 0 . . .31). If c is represented

as a binary number, certain patterns in its digits become apparent, which are summarized in Table 5.1 for

the first eight blocks. For example, the linear correlator b = 0 is executed in every second cycle when

the last digit of c is ‘0’; the block b = 1 is executed whenever c ends with ‘11’ and so forth. This scheme

can be used to directly implement the scheduler in hardware or software. In hardware (i.e., on an FPGA)

this is especially efficient, since its implementation is based on comparison operations only.
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Figure 5.2.: Illustration for the block scheduling algorithm for the multiple-τ correlator. The counter c in the top row

counts the number of already processed linear blocks. Below that the order of processing is illustrated: When a block has

been processed twice, the following block, b+ 1, can be processed using the summed output of its predecessor. ∑: output

summation.

block b binary representation of the counter c
28 27 26 25 24 23 22 21 20

0 * * * * * * * * 0
1 * * * * * * * 1 1
2 * * * * * * 0 0 1
3 * * * * * 0 1 0 1
4 * * * * 0 1 1 0 1
5 * * * 0 1 1 1 0 1
6 * * 0 1 1 1 1 0 1
7 * 0 1 1 1 1 1 0 1

Table 5.1.: Block scheduling algorithm. Binary representation of counter c that solves equation (5.2) for a given linear corre-

lator block b. * denotes a don’t care condition.

5.2.5. Data types

The basic data type used for the all correlators is the 32 bit wide IEEE 754-2008 [2] single precision

floating-point number. Solely the FPGA implementation is based on 32 bit integer values for the accu-

mulator and a 16 bit-wide data path.

5.2.6. Performance considerations

To handle 156250 frames per second, the frame rate of the CHSPAD with 512×128 pixels, 10.2×109

pixel have to be processed by the correlator per second. When a new input value arrives for a pixel, it

has to be shifted (cf., the illustration of the multiple-τ correlator as a shift register in Figure 2.27) into the

first linear correlator block, which then has to execute 8 MAC operations, one for each lag. To process all

further blocks, another 8 MAC operations have to be executed. This surprising finding of only 16 MAC

operations used per input value for processing all blocks is explained by the averaging between linear

correlator block, and is detailed in section 2.4.2. Therefore, in order to process all pixels of the CHSPAD

sensor at the maximum frame rate of 156250 fps in real time, a total performance of 164 Gflops/s (FMA)

is required.

5.2.7. Memory bandwidth and performance requirements

For a single precision floating-point implementation of the correlator, the first block has to expand single

bit input values to the 32 bit representation of floating-point values used for block processing. In case of

a cross-correlator, the input data has to be expanded to even to 64 bit, as two different input values have
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(a) classic implementation
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Figure 5.3.: Concept of vertical unrolling of a linear correlator. In (a) a ’classic’ linear correlator is shown for two time-steps.

By executing two time-steps in parallel, a vertical unrolling of factor 2 (b), the number of delay elements can be halved. See

Figure 2.27 for the schematic of a multiple-τ correaltor.

to be processed. For a typical raw dataset of 4 GiB, this will augment the dataset to at least 128 GiB for

single precision floating-point values to be processed and would typically not fit into a current computer’s

or GPU’s memory. In case of double precision floating-point values, the amount is again doubled. Thus,

the processing of the data requires a slicing of the raw data into chunks that can fit the available RAM.

If the data type across all blocks is the same, each block of a multiple-τ correlator reduces its input

dataset by a factor of two (due to the averaging step) before handing it over to the next block. According

to the scheduling scheme described above, the first order correlator block is run once per input frame,

reading the raw data and storing expanded data for the next block. Additionally, a second higher order

block is processed. Thus, for each frame the streaming algorithm requires about 1 MiB of combined data

transfers from and to memory∗.

For a correlator with an adaptive data path, where each block has only the required bus width this

effect is less significant: Although the output data rate is halved by each block, the bus width increases

by one bit for each successive block (i.e., first level: one bit, second level: two bit, third level: three bit,

and so forth). Thus, for low order blocks the data rate is almost constant and only halves for higher order

blocks, where the increase in bus width is less significant.

Therefore, if 156250 frames of 512×128 pixels shall be processed every second, the streaming algo-

rithm requires an accumulated memory bandwidth of 154 GiB/s. Without taking further optimizations

into account (i.e., chaches), only the GPU hardware is suited to achieve this requirement.

5.2.8. Vertical unrolling

The classical approach of a multiple-τ correlator is a series of identical designed lags organized in blocks

with some additional summation in between. Without further optimization, five CPU-cycles are neces-

sary for each single lag (cf., algorithm 5.1): load value for summation (s), load stored current value

c → vl,i+1, store local value from predecessor (vl,i → c), correlate values, and store s. Modern CPUs

can use their load/store engine and floating-point unit (FPU) in parallel, but then four cycles are still

necessary.

The basic concept, as shown in Figure 5.3, is to combine a certain number NVU of consecutive time-

steps t into one repetition of the inner block. Operations are then performed on the same accumulator s,

∗ 8KiB︸ ︷︷ ︸
1st level, read

+ 256KiB︸ ︷︷ ︸
1st level, write

+ 512KiB︸ ︷︷ ︸
n-th level, read

+ 256KiB︸ ︷︷ ︸
n-th level, write

≈ 1MiB
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and corresponding loads/stores can be omitted. That way the current value has to be loaded and stored

once per lag (see Listing 3).

The drawback of this method is the higher usage of registers, which are typically limited to 16 on

current CPUs (cf., section 2.6.1). Despite the sum s, both the local values vl and the global values vg

have to be held in memory. As NVU also represents the number of MAC operations that can be performed

in a row, increasing NVU can significantly improve the performance.

Vertical unrolling is typically limited by the number of registers that are available. If during opera-

tion more values are accessed than fit into the register file, some values have to be exchanged with the

memory, or at least with the cache.

5.3. CPU correlator

In the following the implementation of the CPU correlator is described. Both algorithms, the naïve and

the streaming version, are compared and evaluated on two different CPUs.

5.3.1. CPU platforms

The software implementation was evaluated on an AMD FX-8320 (Piledriver microarchitecture) and

an INTEL i7-4770 (Haswell microarchitecture, see appendix A.2 for details on the computer-platforms).

Both CPUs feature SSE and AVX instructions for vectorization, as well as fused multiply accumulate

(FMA) operations. Further details on the CPUs are given in section 2.6.

Although the AMD Piledriver platform features eight cores with dedicated 128 bit soft streaming

extension (SSE) units each, 256 bit wide advanced vector extensions (AVX) operations are performed

by combining two of those, in a so called module. In contrast to that, the INTEL platform offers twice

the performance per GHz as every core comprises two dedicated 256 bit FPUs, so one for each thread

(hyper-threading).

5.3.2. Maximum performance considerations

As already pointed out in section 5.2.6, a memory bandwidth of 154 GiB/s is required to achieve real-

time performance with the streaming algorithm for the CHSPAD. From this point of view, the imple-

mentation should achieve a maximum of 17 % (INTEL) or 20 % (AMD) of the real-time performance

(see Table 2.7 for details on the CPUs). Typically, internal caches significantly reduce the number of

accesses to external memory, so a higher performance was expected. If the theoretical single precision

floating-point performance is taken into account, speed-ups of 1.3× (INTEL) and 0.7× (AMD) over real

time should be achievable.

5.3.3. Precision considerations

The CPU correlators are based on the single precision floating-point data type. If a bleach-correction is

applied, at least double precision floating-point must be used to retain enough precision.

Results slightly differed between the FMA version of the code and the version without. This diver-

gence originates in the rounding step that is only performed once after the full multiplication and addition

in case of the FMA instruction. Classically, rounding is done after each floating-point operation.

Although the correlation operation (i.e., MAC operation) is done on binary input data only, floating-

point values were used for the implmentations, due to the better support of this data type in the AVX

and SSE instruction set extensions. The single precision floating-point data type with a 23 bit mantissa

(M = 23) can represent an integer with an absolute value smaller than 224. This is sufficient for the data

path for the typically used 16 linear blocks in a multiple-τ correlator. In case of the accumulators, further

109



5. Implementation of fast signal correlation analysis

considerations are needed: Due to the summation step after each linear correlator block, which is used

for averaging in the multiple-τ algorithm, the width of the data path increases by a a single bit for every

subsequent block (e.g. 1 bit → 2 bit from first to second block and so forth). In turn, the execution rate

is halved. For the worst case scenario with a constant input signal equal to ‘1’, the content of the accu-

mulator is increased by 22b/2b = 2b∗ in each lag for a linear block b = 0 . . .B−1. This in turn leads to the

requirement of an additional bit in the width of the accumulators for each block, to maintain comparable

accuracy.

To not overflow the accumulators in a B = 16 block multiple-τ correlator, the number of input sample

in the last block (b = 15) must be smaller than N < 2(M+1)−(B−1) = 29 = 512 for the worst case sce-

nario described above. As in SPIM-FCS light conditions are typically very dim and also the correlation

curves are expected to decay for higher blocks, the results tended to be exact for a significantly higher

number of input values. For a random dataset (white noise, 720000 frames of input data) of which the

normalized correlation resembles constant 0, a comparison of the single precision and double precision

implementations gave a maximum relative deviation of δsingle, double < 4 · 10−6. The maximum relative

deviation of the single precision implementation with FMA and without FMA instructions of the same

dataset was δsingle, FMA < 4 ·10−7.

5.3.4. Implementation

For performance evaluations, the naïve algorithm as well as the streaming algorithm were implemented.

Both implementations are based on a platform-independent zero-overhead vectorization library (see sec-

tion 2.6.4) to make use of the most recent SIMD instruction set extensions (i.e., AVX and SSE). These

instructions operate on vectors with 4 (SSE) or 8 (AVX) entries instead of scalar values.

Although recent compilers are able to automatically vectorize code within limitations, manual vec-

torization is usually required to gain the highest possible performance. Depending on the vectorization

instruction set, a group of 4 or 8 pixels is processed in a single thread in parallel. For an entire image

of the CHSPAD detector (65536 pixels) several thousand threads are instantiated using the OpenMP
compiler extension [50]. OpenMP then schedules subsets of these threads for execution, so only as many

threads as CPU cores run in parallel.

Both algorithms, the naïve algorithm and the streaming algorithm were implemented as described in

section 5.2.1 and section 5.2.3. In case of the streaming algorithm, the implementation was split into two

distinct routines: one for the first linear block and another one for all other blocks. These two routines

are scheduled intermittently as described before. The first routine, the ‘front end’, also converts binary

input data into vectors SSE or AVX vectors.

In order to optimized the MMX-register usage, ‘vertical unrolling’ was used for both implementations.

The correlator code can be configured by several preprocessor macros (e.g., for the level of vertical

unrolling, the chunk size, the data reorganization, etc.). This reduces the amount of performance limiting

branches in the code, but also requires rebuilding the correlator upon changes of the parameters. As the

correlator software was also used for data evaluation, additional statistics and calculations of the raw

dataset can be generated on demand, including bleach correction.

Low-level optimizations

Although several optimizations were done by the compiler itself, further optimization was still possi-

ble. It appeared that manual loop unrolling improves performance significantly, although loop unrolling

was explicitly forced by a compile keyword†. By explicitly using pointer arithmetic, a further gain in

∗For a linear correlator block b = 0 . . .B−1, the maximum value in the data path of a linear block is 2b, thus the maximum

value of the multiplication is 22b. At the same time the execution rate is reduced by a factor of 2b.
†(__attribute__((optimize("unroll-loops")))
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performance was reached.

A crucial precondition for optimal cache performance was the alignment of the vector data in memory.

To optimize the CPU’s memory access performance, vectors were aligned to 32 Byte boundaries. Sev-

eral variables were explicitly pinned to the CPU registers, using the type C type-modifier register. In

addition, data locality (and thus memory and cache performance) was optimized by keeping often-used

state variables (e.g., the accumulators and the delay registers) in a contiguous memory buffer in alternat-

ing order. This way, data can be prefetched by the CPU to the caches in background, and no additional

time is spend waiting for memory access.

Input data reordering

The input data usually arrives frame after frame, in row-major order, so the time series of each pixel is not

contiguous. For the correlation algorithms, this order is not advantageous, especially for the streaming

variant, as this processes data from buffers containing time series of single pixels (or few in a vector).

Therefore, a reordering step was introduced, which was done in software, but could potentially also be

off-loaded to the FPGA used for data acquisition. If only the runtime of the correlator is considered, a

performance gain of roughly 180 % over the implementation without reordering was achieved, as caches

were used much more efficiently (see Figure 5.5 for the runtime of the reordering). In the following, time

required for reorganization is not taken into account.

Conversion of raw input data

Data conversion of the 8× 1bit input to an AVX floating-point vector of 8× 4Byte can either be done

with a lookup table (LUT), where the input data is used as an index, or with a set of integer and logic

operations (see appendix D). The latter option proved to be faster, especially for an expansion on an

8 bit input word with a relatively large corresponding LUT (8 KiB), which interferes with the caching

efficiency of the correlator.

Flushing the correlator

After all raw input data has been processed by the correlator, a sufficient amount of zeros has to be fed

into it so that all input values in the delayed data path propagate through all lags. Without this ‘flushing’

of the correlator, the full statistical power of the input dataset would not be used for the correlation

function estimation. The basic strategy for flushing is to run the entire correlator until a full cycle is

reached (i.e., the last block was executed once, the 2nd last block twice, the 3rd last block four times and

so forth). Then, the correlator is run once again for an additional full cycle, so that the accumulators in

between two blocks release all intermediate results.

The required number of input values (either single frames or chunks, depending on the implementa-

tion) that have to be processed to flush the correlator is:

ninput values = 2B+1− (nvalues processed mod 2B) . (5.3)

Depending on the number of input values that have to be processed per block, flushing all blocks can

take a huge amount of additional processing time, which even might exceed the runtime of the actual

correlation. For the GPU correlator that uses larger chunks of input data, a more advanced flushing

algorithm was used (cf., section 5.4.2) which one could also use for the CPU implementation.
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5.3.5. Performance evaluations

Test conditions

On a CPU that exclusively runs the corrector, the execution time should be the same, whenever the cor-

relator is run. But since the software runs on a system that also executes an operating system (OS) which

runs various background tasks that are not related to the correlator itself, a lot of non-determinism will

be encountered in such a real-world setting. Additional non-deterministic influences are the interactions

between the CPU cores (e.g., cache coherence), the different caches, pipelining of the CPU, etc. All

these influences will inevitably lead to a certain jitter on the results of any performance evaluation. An

in-depth discussion of these influences can be found in Ref. [231].

For each dataset in the following tests, at least five single measurements were taken into account.

Tasks were executed in a way that identical configurations of the correlator were not run successively

to account for non-deterministic influences on a rather long timescale (i.e., IO background-tasks). The

execution time was measured using the clock_gettime(CLOCK_MONOTONIC, ...), which in

principle provides nanosecond resolution. Compared to the gettimeofday() function, it tends to be

more accurate. If not stated differently, measurements were done using Nthreads = 8 threads and a chunk

size of sc = 64 input samples. Raw data was generated randomly with a frame size of 128×512 pixels.

The functional correctness of all correlators was ensured by comparing the individual output with the

expected result of the test dataset, which was calculated in advance.

The code was run on two different platforms with eight virtual CPU cores each. One platform used a

AMD Piledriver CPU (FX-8320), the other platform used an INTEL Haswell CPU (i7-4770) with 16 GiB

DDR-3 memory each. See appendix A.2 for details on the system configurations

In case of the Haswell, hyper-threading (HT) is used to virtually double the amount of cores to eight.

With two AVX units per physical core, each virtual core has access to a dedicated FMA enabled FPU. In

case of the Piledriver microarchitecture, four modules are available with two cores each. Each physical

CPU core contains a dedicated SSE FPU. To perform AVX operations, both FPUs in a module act jointly,

actually halving the performance.

Influence of multi-threading

Figure 5.4 shows the performance of the different correlator implementations as a function of the number

of threads. For both platforms, the performance grew approximately linearly with the number of real

cores. For the Haswell architecture, the performance still increased for the HT-cores, but the slope was

more shallow as these cores are no full cores. If the number of threads exceeds the number of virtual

cores, the performance did not increase any further because the FPUs were effectively saturated. The

same applied for the SSE implementation, as the the number of dedicated vector units is equivalent.

Although the eight cores of the AMD processor share only four AVX units, the performance surpris-

ingly scaled linearly up until eight threads. When more than four threads were used, a performance

decrease was expected as now two threads share a single FPU. At the same time the overall performance

was significant lower than that of the SSE implementation (see Figure 5.6 for a detailed comparison of

all implementations). Probably here the bandwidth to the caches was limiting the overall performance.

For the SSE variant, that had access to a dedicated FPU per core, the course of the curve seemed to be

similar to the Haswell platform. This variant also achieved a two fold higher performance than the AVX

implementation on the same hardware. As expected, on both platforms the curves leveled up when the

number of hardware resources are exhausted.
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Figure 5.4.: Performance of the CPU correlator in relation to number of threads used. Data is shown for both evaluated

CPUs and both SIMD instruction set extensions (AVX and SSE) and different implementations. The curves are normalized to

Nthreads = 8. str. denotes the ‘streaming implementation’, opt. a manually optimized implementation. The slope of the green

curve in (a) is 0.19, and 0.12 in (b) for Nthreads = 1 . . .4. Evaluations are based on a random input dataset with 240000 frames.

Influence of the chunk size

In case of the streaming algorithm, the chunk size sc is a parameter that allows for additional tuning

of the correlator performance. For every block of each correlator a buffer for sc samples is allocated.

Therefore, lowering the chunk size has a significant influence on the memory footprint of the correlator.

Depending on the chunk size, the memory blocks that are required to store output buffers may or may not

fit into CPU caches. If they fit, this effectively lowers the bandwidth requirements for the external RAM.

If sc is increased, the correlator processes more consecutive values, thus requiring less context switches.

Figure 5.5 shows the influence of the chunk size on the runtime of the correlator for the example of

the streaming algorithm. Tests showed, that for sc < 1024 no significant decrease in performance was

detectable. With regards to the memory consumption and also the runtime of the flushing procedure, a

smaller chunk size is desirable. Due to these requirements and the findings above, sc = 64 was chosen

for all further evaluations.

Comparison of the different implementations on different platforms

Listing 2 and Listing 3 show the assembly language code of two lags in the linear correlator as generated

by the C compiler for the implementation of the naïve and streaming algorithm. This code is reused for

all blocks. The main difference is, apart from the amount of vertical unrolling, which is clearly visible

in the number of consecutive FMA operation, the number of load/store instructions (vmovps) relative

to the amount of math instructions (vfmadd231ps). In the second implementation, only two instead

of four load/store instructions are used per lag. As only one block is processed at a time in the streaming

algorithm, both, the input values and the delayed values are kept in the register file. In the implemen-

tation of the naïve algorithm only the input values resides in registers. For both implementations, the

accumulators are held in memory.

In Listing 2, the ratio of load and store instructions on the total number of FMA instructions is 8/12 =
0.66 whereas in Listing 3 the ratio is 4/8 = 0.5. Due to pipelining of the CPU, the performance of the

streaming implementation is expected to be higher as the time spent waiting for memory can be bridged

with arithmetic instructions. For both, the ratios of math-instructions on the total number of instructions
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Figure 5.5.: Runtime of the CPU correlator as a function of the chunk size. Data is shown for both evaluated CPUs and the

AVX instruction set extensions. The evaluation is based in the hand-optimized implementation of the streaming algorithm with

NVU = 4. The runtime of the correlation only is shown in blue, time used for the reordering process is shown in red and the

sum of both in green. Points indicate median values, error-bars minimum and maximum. Measurements were done using an

input dataset of 720000 frames filled with random data.

are identical: 8/12 = 12/18 = 0.67.

Figure 5.6 shows the actual performance of the different implementations. The implementation of the

naïve algorithm is shown in red, the generic implementation of the streaming algorithm is shown in blue,

and a hand-optimized version (i.e., explicit loop unrolling of inner loops, manually pinned registers) of

the same algorithm is shown in green. The AVX implementation of the naïve algorithm with NVU = 6

also uses manual register assignment.

It appeared, that the implementation of the naïve algorithm was always outperformed by the streaming

correlator as expected from the ratio of math instructions. Manual loop unrolling or register allocation

(hand-optimized implementation) had a significant impact on the achieved performance. In case of the

AVX instruction set extension, the implementations behaved differently on the two evaluated platforms.

For the SSE variants, the behavior in terms of relative performance was comparable.

Considering the size of the register file, vertical unrolling up to NVU = 6 is possible on both platforms

without requiring to constantly exchange the registers with memory. Therefore, this was expected to

be the most efficient implementation of a correlator for the naïve algorithm, but only applied for the

AVX-based implementations. Accordingly, the implementations based on NVU = 8 were less efficient

than the implementations based on NVU = 4, which was true except for the AVX-based implmentations

on the AMD platform.

Runtimes were very reproducible, except for some outliers. For the INTEL platform, the jitter was typ-

ically less than 1 % around the median value. On the AMD platform, almost no jitter was measured. The

performance of the correlator on both platforms dropped by up to 6 %, when a three times larger dataset

was correlated (6 GiB file-size instead of 2 GiB). This effect is neither specific to the implementation of

the streaming algorithm nor to the naïve algorithm. Therefore, the drop in performance might be related

to the memory management of the OS.

Using the SSE implementation, about 50 % of the theoretical peak performance was reached on both

platforms∗. In case of the Haswell platform using AVX, about 40 % of the peak performance was reached.

On the AMD platform, approximately 20 % of the theoretical peak performance was achieved, only half

∗On the INTEL Haswell microarchitecture, the theoretical peak performance for both SSE and AVX differ by a factor of

two (cf., section 2.6).
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of the performance of the SSE implementation. Even if the internal scheduling of the two FPUs per

CPU module that are combined to a single AVX unit is not running optimally, a significant increase in

performance should be visible for only four threads, as here an AVX unit is exclusively available per

thread.

Double precision floating-point performance

As described in section 5.3.3, single precision floating-point values are not sufficient when a bleach

correction is applied to the raw data prior to the correlation. Thus, the next wider data type,i.e., double

precision floating-point values, is required in such a case. With their double width, these values halve

the number of entries in SSE or AVX vectors. Measurements showed that this also results in a two-fold

decrease in performance (data not shown). An influence due to a less efficient input data conversion was

not detectable (conversion of two half-words instead of a single word).

Influence of the ROI on the performance

To test the influence of the size of the detector or eventually the chosen region of interest (ROI), various

frame sizes were tested. Figure 5.7 shows the results of a performance evaluation for different frame

sizes. It can be seen, that the runtime scales linearly with the frame size. Therefore the frame size does

not have a significant influence on the performance of the algorithm, which is expected since every pixel

is processed independently (GUSTAFSON’S law, see section 2.5.1).
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1 vmovaps 0x120(%rcx),%ymm13

2 vmovaps -0x58(%rsp),%ymm15

3 vfmadd213ps 0x140(%rcx),%ymm13,%ymm14

4 vfmadd231ps %ymm11,%ymm4,%ymm14

5 vfmadd231ps %ymm9,%ymm3,%ymm14

6 vfmadd231ps %ymm6,%ymm2,%ymm14

7 vfmadd231ps %ymm7,%ymm1,%ymm14

8 vfmadd231ps %ymm8,%ymm0,%ymm14

9 vmovaps %ymm14,0x140(%rcx)

10 vmovaps 0x1a0(%rcx),%ymm14

11 vfmadd213ps 0x180(%rcx),%ymm5,%ymm15

12 vfmadd231ps %ymm13,%ymm4,%ymm15

13 vfmadd231ps %ymm11,%ymm3,%ymm15

14 vfmadd231ps %ymm9,%ymm2,%ymm15

15 vfmadd231ps %ymm6,%ymm1,%ymm15

16 vfmadd231ps %ymm7,%ymm0,%ymm15

17 vmovaps %ymm15,0x180(%rcx)

18 vmovaps %ymm7,0x1a0(%rcx)

Listing 2: Assembly language representation of the implementation of the naïve correlation algorithm generated by the
C-compiler for the INTEL Haswell CPU. This excerpt shows two out of eight lags in the basic linear correlator. Six FMA

instructions are in a sequence, representing the amount of vertical unrolling, NVU = 6. The first FMA instruction (e.g., line 3)

also loads the contents of the accumulator into the register file.

1 vmovaps 0x88(%rsp),%ymm15

2 vfmadd231ps %ymm5,%ymm3,%ymm15

3 vfmadd231ps %ymm6,%ymm2,%ymm15

4 vfmadd231ps %ymm7,%ymm1,%ymm15

5 vfmadd231ps %ymm8,%ymm0,%ymm15

6 vmovaps %ymm15,0x88(%rsp)

7 vmovaps 0x68(%rsp),%ymm15

8 vfmadd231ps %ymm4,%ymm3,%ymm15

9 vfmadd231ps %ymm5,%ymm2,%ymm15

10 vfmadd231ps %ymm6,%ymm1,%ymm15

11 vfmadd231ps %ymm7,%ymm0,%ymm15

12 vmovaps %ymm15,0x68(%rsp)

Listing 3: Assembly language representation of the implementation of the streaming correlation algorithm generated
by the C-compiler for the INTEL Haswell CPU. This excerpt shows two out of eight lags in the basic linear correlator. Four

FMA instructions are in a sequence, representing the amount of vertical unrolling, NVU = 4. ymm15 holds the accumulator.

The vmovps instructions preceding and following each block of FMA instructions load and store the sum (e.g., line 1 and 6).

All other values are kept in the register file.
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(b) Haswell SSE
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(c) Piledriver AVX
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(d) Piledriver SSE
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Figure 5.6.: Runtime of different implementations of the CPU correlator in relation to the vertical unrolling. Data is

shown for both CPU platforms and both vector instruction extensions (AVX and SSE). The implementation of the naïve al-

gorithm is shown in red, the generic implementation of the streaming algorithm is shown in blue, and the hand-optimized in

green. Reordering of the raw data is not taken into account. For each dataset the three values from left to right represent a raw

dataset of 240000 frames, 480000 frames, and 720000 frames, respectively. The median is shown as a broader line. Real time

performance of the correlator would be 164 Gflops/s. The theoretical peak performance was taken from Table 2.9.
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Figure 5.7.: Influence of the size of the ROI on the CPU correlator performance. The size of the ROI was set to 128×
1 . . .512. For both platforms the slope of the curves is∼ 1. A dataset of 720000 frames filled with random data was used for the

performance measurements. Data is normalized to the full frame. The evaluation is based in the hand-optimized implementation

of the streaming algorithm with NVU = 4.

5.3.6. Performance summary

Table 5.2 shows the maximum performance that was achieved for the CPU correlator on both CPU

platforms, using the AVX and SSE instruction set extensions. The fact that on both platforms more than

40 % of the theoretical peak performance of the CPUs was achieved with the streaming algorithm, did

not indicate that its implementation was heavily IO bound.

For the CPU implementation of the streaming algorithm, the theoretically required memory bandwidth

exceeded the actual bandwidth by a factor of 4. Each correlator block processes sc = 64 input values, so

that the input and output fits into the caches. If then the next block can directly access this data from the

cache, no access to the external memory is required.

Similar results regarding the performance were obtained using the LinPack [56] benchmark on the

same Haswell CPU model. Using AVX and optimized libraries, a performance of 177 Gflops/s was

achieved [110]. Therefore, it seems that the correlator reaches nearly the complete available performance.

For the correlation algorithm, the INTEL Haswell microarchitecture outperformed the AMD Piledriver
microarchitecture if the CPU has the same number of virtual cores∗. The larger number of FMA-FPUs

and the wider interface to the caches on the INTEL chip proved advantageous, although the AMD CPU

had a higher theoretical memory bandwidth to the external RAM.

th. peak performance SP-FMA performance AVX SP-FMA performance SSE

[Gflops/s] [Gflops/s] relative of real time [Gflops/s] relative of real time

INTEL i5-2520M
(Haswell)

217 85 0.39 0.52× 53 0.24 0.32×
AMD FX-8320
(Piledriver)

112 21 0.19 0.14× 52 0.46 0.32×

Table 5.2.: Achieved maximum performance of the CPU correlator. Data is shown for the fastest implementation in each

case (median value). Relative performance is shown in comparison to theoretical peak performance of the CPU for the AVX

instruction set extension.

∗Equating AMD Piledriver ‘modules’ with INTEL Haswell HT-cores.
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5.3.7. Conclusion

Although the goal of real-time correlation could not be achieved on the evaluated CPUs, a significant

reduction in correlation time compared to an existing implementation was possible. The fastest im-

plementation reduced the total processing time by a factor of almost 4000× compared to the existing

implementation (see Section 5.1.1).

On both CPU platforms, 40 % to 50 % of the theoretical peak performance was achieved, when the

streaming algorithm was used. This is comparable to results achieved with for example the LinPack
benchmark, which measures the practically achievable performance [110]. Interestingly, the SSE based

implementation outperformed the AVX implementation on the AMD platform. Here possibly the shared

FPU (one AVX FPU for two cores) lead to a decrease in performance.

Across all platforms, the streaming algorithm proved to be advantageous. Although using a larger

memory footprint, this implementation was approximately 25 % faster than the implementation of the

naïve algorithm. The main cause is the reduced fraction of load/store instructions and the beneficial use

of the cache for buffers in between correlator blocks. Double blocks, as used for the GPU correlator,

were not tested due to the limited size of the CPU register file.

5.3.8. Outlook

As mentioned before, the real-time requirements of the CPU correlator can be achieved by simply adding

CPU cores to the system. This can either be done by physically adding another CPU to the computer or

by using a CPU model that comprises more cores. Here the INTEL Haswell 5960X with eight physical

cores should be sufficient to achieve real-time performance.

The complex interplay of optimizations, that were done by hand or by the compiler, and the highly

complex CPU make it difficult to predict the performance of each individual implementation. In order

to select a specific correlator implementation for a given computer architecture, all different parameters

have to be tested (i.e., vertical-unrolling, chunk size, number of threads, AVX or SSE, etc.). If the

correlator should be shipped as a package with an evaluation tool, e.g., QuickFit3, auto-detection of the

best implementation should be done on every new hardware to optimize the correlation performance.

As already shown for the streaming correlator, different implementations of linear correlator blocks

can be plugged together simply. Here, the first stage differs much from the others. This concept of plug-

ging together different blocks also allows for using different data types (i.e., double precision floating-

point) in later stage without a huge impact on the overall performance. Additionally, it is possible to use

a wider data type for the accumulators only.

With the INTEL Xeon Phi co-processor, a single instruction for mask loading was introduced. This can

be used to convert raw binary input data to floating-point vectors (_mm512_int2mask), and should

reduce the number of instructions used for conversion to two. Furthermore this architecture (Knights
Landing) uses double width SIMD units (AVX-512 with 512 bit instead of 256 bit) and comprises more

than 50 individual CPU cores. With a performance above 1 Pflops/s, this is an interesting architecture

for a future high-performance correlator.

5.4. GPU correlator

This section describes the design and implementation of a multiple-τ correlator on a GPU. The im-

plementation is based on NVIDIA’s CUDA API. An introduction to GPU computing using compute

unified device architecture (CUDA) is given in section 2.7. Table 5.3 lists the software that was used for

the development of the correlator.
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5. Implementation of fast signal correlation analysis

software version

NVIDIA GPU drivers 331.20

CUDA toolkit 5.5.22

CUDA profiler (nvprof ) 5.5

CUDA visual profiler (nvvp) 5.5.0

Table 5.3.: Software used for the development of the GPU correlator.

5.4.1. Hardware platform

All evaluations were carried out on the B040-SPIM2 computer (cf. section A.2) with an EVGA GTX
780Ti GPU. Its specifications are shown in Table 2.8. The GPU is based on the GK110 Kepler chip from

NVIDIA.

For the development of the correlator, a consumer-grade GPU was used. It performs close to the

current NVIDIA’s single-chip top model GPU Tesla K40, which is based on the same chip. However,

the GTX 780Ti variant has a slightly higher base clock rate and consequently a higher single precision

performance. It is only outperformed by the TESLA K80 which is based on two GK210 chips. Being a

consumer graphics card, the GTX 780Ti lacks features like error correcting memory or a larger graphics

RAM.

An important limitation of this test system was, that only a PCIe 2.0 16× link could be used between

CPU and GPU. This limits the bandwidth to a theoretical value of 7.8 GiB/s.

All evaluations were done using compute model 2.0. Although the hardware is compatible to compute

model 3.5, tests showed that the register usage was lower and the overall performance was significantly

better due to a higher occupancy when using compute model 2.0.

5.4.2. Implementation of the GPU correlator

The GPU correlator is based on the streaming variant of the multiple-τ algorithm (see section 5.2.3).

Each single linear block of the correlator is represented by a compute kernel which is executed on the

GPU. Therefore, several of these compute kernels have to be executed serially in order to calculate all

lags (i.e., all blocks) of the complete correlator. The order in which these compute kernels are processed,

as well as the scheduling of the data transfers between the CPU and the GPU is done on the host CPU.

To not limit their performance, the compute kernels had to be kept as simple as possible. Especially

unpredictable branching that might lead to a stalling of a part of the thread group (“warp”) on the GPU

had to be avoided (cf., section 2.7).

When a compute kernel is started, it first loads the state (called “context” in the following) of the

current linear correlator block from GPU memory to the register file. Then it processes a fixed number

of input frames in a for loop and finally writes back the altered context. Each compute kernel comprises

65536 GPU-threads, where each thread processes data from one pixel. The scheduling of the parallel

execution is done by the GPU itself. The threads are organized into 256 blocks with 256 GPU-threads

each. In this implementation, all compute kernels (or blocks) are processed serially, which implies the

possibility to run other processing tasks in parallel to the ongoing correlation on the GPU. This way, also

halting-states (e.g., when a thread waits for a memory access) can be exploited to perform additional

compute intensive tasks, such as a fit (cf., SIMT, section 2.5.1).

The GTX 780Ti contains 3 GiB dedicated graphics RAM. Two thirds (2 GiB) are used to store in-

put/output-data of the linear correlator blocks (compute kernels). The remaining 1 GiB is used to hold

the contexts of all blocks and in addition the raw data that is processed by the first block, the so-called

‘front end’. To save bandwidth, the raw binary data from the CHSPAD detection system (see section 4.2

for details on the design) is transferred to the GPU without further processing. Since the correlation
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5.4. GPU correlator

algorithm operates on single precision floating-point values, raw image data has to be converted before

the correlation. This task is performed by the front end, too.

In total, three different compute kernels (i.e., blocks of the correlator) are used: The front end compute

kernel performs the data conversion and processing of the first block. A ‘generic’ correlator compute

kernel is used for all other blocks except the last one. Finally, the ‘last-stage’ kernel is identical to the

generic correlator but does not generate any output for further blocks. That way, its performance was

significantly improved (by approx. 22 %). Each compute kernel is started with five parameters: the

current block level, the source of the input data, the destination of the output data, the storage address

for the context and the number of frames to process. The context comprises the state of the accumulators

and the delayed values, which is also the data that is finally returned by the algorithm. In case of the

front end compute kernel, the storage address for the monitor channels has to be passed to the compute

kernel in addition to the other five parameters.

Figure 5.8a shows the naïve implementation of the scheduling of the compute kernels and the memory

transfers without use of asynchronous data transfers. To allow transferring of new chunks of raw data to

the device in parallel to the ongoing processing of the compute kernels, two CUDA streams are executed

simultaneously (see Figure 5.8c). The first CUDA-stream alternatingly handles the front end correlator

and the CPU-to-GPU data transfer. A second CUDA-stream exclusively handles the scheduling of higher

order correlator blocks. Both streams are synchronized when the front end correlator exits and again

after the higher order blocks have been processed. This way, the data transfer is done in parallel to the

processing of higher order compute kernels.

For the actual implementation of this algorithm the standard configuration of 16 blocks per correlator

with 8 lags each was used. Figure 5.9 shows the streaming of input data for the first three blocks, together

with the intermediate storage of input and output data of the different blocks: The first correlator is run

in a way that its output complete fills the available storage. The data is then consumed by the second

correlator block. Here the data is reduced by a factor of two and written to the first or second half of

the output storage. If the same correlator block is run again, the other half is filled. After that, the next

correlator can be run again consuming a completely filled storage.

When 2 GiB are used for storing input/output data, 128 MiB are available in each of the 16 blocks.

To completely fill this output storage space of each block, 512 frames∗ of single precision floating-point

numbers have to be processed by the block†. As shown in Figure 5.8b, the data transfer from the CPU

to the GPU may take longer than execution of a compute kernel for a higher order block. This leads to a

stall of the entire correlator, as the input data is not ready to be processed. To overcome this, instead of

running all compute kernels with the same number of input frames (256 frames, Figure 5.8a), the front

end compute kernel gets twice the amount of input frames, and two higher order blocks are executed

during the transfer. This strategy overcomes the stalling, but doubles the amount of raw data that has to

be transferred to the GPU in each copy operation to 4 MiB for 512 frames. The scheduling in this mode

is illustrated in Figure 5.8c. Now both CUDA streams run compute kernels and data transfers, and no

time is spend waiting for memory transfers to complete.

GPU data structures. The context of each correlator consists of the contents of the accumulators and

the delay elements. It has a size of 4 MiB for each block. To improve the load/store performance, the

data is organized thread-major, so that neighboring threads access adjacent data. This can be visualized

as follows:

thread id : 0,1, . . . ,N−1︸ ︷︷ ︸
first lag

,0,1, . . . ,N−1︸ ︷︷ ︸
second lag

, . . . ,0,1, . . . ,N−1︸ ︷︷ ︸
last lag︸ ︷︷ ︸

accumulators

,0,1, . . . ,N−1︸ ︷︷ ︸
first lag

, . . . ,0,1, . . . ,N−1︸ ︷︷ ︸
last lag︸ ︷︷ ︸

delay elements

.

∗Size of a frame: 512×128 pixels
†Nframes ·xres ·yres ·NBytes per float = 2 · 1

2 ·512 ·128 ·512 ·4B = 128MiB
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front-endGPU CPU to GPU copy block >0 front-endCPU to GPU copy block >0
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GPU stream 0 CPU to GPU copyCPU to GPU copy
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Figure 5.8.: Parallelization of the GPU correlator execution and data transfer with two CUDA streams. In (a) a linear

implementation is shown. First, data is transferred to the GPU (yellow). Then the first block (the front end compute kernel,

violet) is executed. After that the higher order block compute kernel (dark blue) is run and so forth. In (b), data transfers are

done in parallel to the higher order block. If a data transfer takes longer than the runtime of a compute kernel, the GPU is idle.

The “initial” implementation is shown in (c). Here the front end processes twice the amount of frames so that the second block

(turquoise) has to be run immediately after, prior to the execution of a higher order block. The “optimized” implementation

using “double blocks” uses the scheme shown in (b). Synchronization barriers between threads are shown in red.

0 MB 128 MB 128 MB

block 1

256 MB 256 MB 384 MB

block 0 block 2raw data

GPU memory

Figure 5.9.: Schematic drawing of the streaming algorithm used for the GPU correlator. The front end (block 0, violet)

processes twice the amount of frames than the other blocks. Every other block takes a full 128 MiB dataset as input which is

reduced to 64 MiB at its output. This output is either written to the first or second half of the next blocks’ input. Coloring is in

accordance with Figure 5.8c.

In contrast, a naïve implementation would be to use the lag-major memory layout:

lag id : 0,1, . . . ,N−1︸ ︷︷ ︸
first correlator

,0,1, . . . ,N−1︸ ︷︷ ︸
second correlator

, . . . ,0,1, . . . ,N−1︸ ︷︷ ︸
last correlator︸ ︷︷ ︸

accumulators

,0,1, . . . ,N−1︸ ︷︷ ︸
first correlator

, . . . ,0,1, . . . ,N−1︸ ︷︷ ︸
last correlator︸ ︷︷ ︸

delay elements

.

This layout is easier to debug but leads to an about 30 % lower performance and was therefore used

only during the development of the correlator. The reason for this is, that neighboring threads access

adjacent data words, which is much more efficient in the thread-major layout (coalescing access). The

same applies for the buffers used input and output data of the correlator blocks. Additionally, the global

(un-delayed) values and the local (delayed) values are stored in an alternating manner.

By packing several data structures into the same memory block, for example the accumulators and

delay elements or the local and global values, fewer registers are required for the access of the data.

Only the base pointer needs to be held in a register. The actual position of the values relative to this

base address is then derived from the index of the thread. Reducing the number of registers can in turn

increase the occupancy of the compute kernel and thus increase the overall performance.

Correlator data type

The GPU correlator was designed for single precision floating-point data only. In principle, the correlator

could also be implemented to use double precision, but then the performance drops significantly (24×
less) due to the limitations of the GPU (artificially reduced double precision floating-point performance

in consumer-grade variants). However, the modular structure of the compute kernels would allow to use

double precision floating-point values for a subset of correlator blocks. For example only higher order
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vert. unrolling NVU avg. compute kernel exec. time #registers occupancy performance

[ms] [%] [Gflops/s (SP FMA)]

32 6.8 148 12.5 178

16 1.5 103 25 422

8 1.5 98 25 418

4 1.5 101 25 419

Table 5.4.: Influence of the vertical unrolling on the performance of the GPU correlator. Results are shown for the generic

compute kernel of the optimized implementation.

blocks can be implemented using double precision floating-point values as here an increased precision

can be beneficial. As each block is executed half as often as its predecessor, a longer execution time of

higher order blocks will not have a huge impact on the overall performance.

Verification

The results of the GPU correlator were verified against the CPU correlator. Both implementations (GPU

and CPU) yielded identical values.

Flushing

When all raw input values have been processed, the correlator has to be flushed in order to propagate

all values through all lags of the entire correlator (cf., section 5.3.4). To reduce the time that has to be

spent for this operation, the flushing algorithm has further been optimized. Instead of running the entire

correlator for a certain number of input values until the last block has been executed a sufficient number

of times, each block is executed just as often as needed until it is flushed with zeros. When the flushing

starts, the normal scheduling of the blocks in the correlator is continued. After the first block has been

run L times, its execution is blocked as now the output is completely zeroed. The same applies for the

second block: After the execution of the first block is stopped, it is only executed further L times, and so

forth. The entire procedure took about 0.2 s instead of 0.5 s for this improved algorithm.

Vertical unrolling

Vertical unrolling, described in section 5.2.8, combines several adjacent time steps of the correlation

algorithm into a single one. Thus, it reduces the number of required load and store operations, and

the memory-bandwidth requirements can be lowered. Furthermore, by using more registers, vertical

unrolling makes better use of GPU architecture. In case of the CPU correlator, this approach already

proved to be advantageous and a significant performance increase could be achieved (approximately

30 % by increasing NVU = 2 to NVU = 4).

In case of the GPU, the entire context of a correlator block is held in the register file. The context

is loaded once when a compute kernel is started, and written back to GPU memory when a compute

kernel exits. As the register file of the GPU in comparison to the CPU is much larger larger a higher

degree of vertical unrolling is possible. Thus allowing compute kernels to process more time-steps of the

correlation algorithm simultaneously.

During the runtime of a compute , the full memory bandwidth is used to load and store the intensity

values that pass through the correlator block. As shown in Table 5.4), vertical unrolling has only a minor

influence on the compute kernel performance, as memory accesses are limiting the overall performance

Only when the register count reduces the occupancy, a significant performance drop is detectable (e.g.,

NVU = 32).
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Contrary to that, vertical unrolling is important when more than one block is combined into a single

compute kernel. As each following block consumes two adjacent input values simultaneously to generate

a single output value, the preceding block must consume four consecutive values to provide these two,

and so forth. Thus, the vertical unrolling of each preceding block doubles, so that:

Ncombined blocks ≤ log2 (NVU) . (5.4)

At the same time, the number of registers is increased by the size of a block’s context, which is 2 ·Nlags.

This in turn can lead to a reduced occupancy.

Further optimizations

As indicated in the last paragraph, the performance of the correlator is mainly limited by the bandwidth

of the GPU’s memory. To effectively decrease the amount of data transfers, a new compute kernel was

designed (so called ‘optimized’ implementation) that executes two blocks in a single compute kernel.

Then the output of the first block is directly consumed by the second block and does not have to be

stored in GPU memory in between. This is most efficient, if the level of vertical unrolling of the first

block is twice as high as the second block: Four input values of the first block are combined to two input

values of the second block which is then reduced to a single output value of the compute kernel. In total,

the required amount of data transfers is almost halved (5/9 = 0.56). The resulting execution scheme is

comparable to the one shown in Figure 5.8b).

In case of the front end this is extremely efficient as the input data is neglectable in comparison to the

output. Here, the execution time could be reduced by about 15 %, whereas at the same time the amount

of processed blocks is doubled. For higher order blocks the reduction is about 8 % in processing time,

but in this time 1.5-times more operations are executed, i.e., a full block and a half of the following block

are executed. As a side effect, also the storage for input and output is reduced by a factor of two as now

every second correlator does not produce any output. These ‘double-blocks’ require a new scheduling

scheme, because data reduction is fourfold in comparison to the twofold reduction of the original scheme.

Instead of every two, the next block only has to be executed every four cycles. A simple approach to

this scheduling is to always execute the lowest order block that has a completely filled input buffer. As

this scheduling is done on the CPU, it has no influence on the code and execution time of the compute

kernels.

5.4.3. Performance analysis

Maximum performance considerations

The single precision peak performance of the GPU (2.5 Tflops/s (FMA)) would theoretically be suffi-

cient to calculate the correlation estimates for all pixels of the CHSPAD in about 1/15-th of the time

that is required for the data acquisition (cf. section 5.2.6). This limit can only be reached, when memory

operations are not taken into account and if the code has 100 % occupancy. Also, the CPU-GPU connec-

tion (here via a PCIe-2.0 bus) has a huge influence on the overall correlator performance. In the setup

described above, the bandwidth was 5.0 GiB/s which already limits the speedup to ∼ 4.2× above real

time, if only CPU-to-GPU data transfers are considered. Finally, the interface to the GPU memory is

also important. In the implementation described above, the front end compute kernel reads 8 MiB and

writes 132 MiB (512 frames) and the higher order blocks read 132 MiB and write 68 MiB (256 frames).

In each cycle, the first block is executed once and the others are executed twice which results in 540 MiB

of data to be transferred (full correlation of 512 frames). At the given peak memory bandwidth, this will

therefore limit the overall speedup to ∼ 2.7×.
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Influence of the chunk size

As seen for the CPU correlator, the number of frames processed by a correlator block in a single run,

the so called chunk size, has an impact on the overall performance. Table 5.5 shows the results from

a performance evaluation for different chunk size configurations. It shows that the performance maxi-

mum is reached for the standard configuration (256 MiB), which requires 2 GiB of GPU memory. Even

if the chunk size is doubled again (512 MiB) and less less blocks re processed (8 instead of 16), the

performance was not further increased. Overall the performance is not very sensitive to the chunk size,

even if it is reduced by a factor of four (drop of approximately 8 %). However, this configuration was

much more efficient in terms of memory consumption as only 0.5 GiB of GPU memory are required for

the correlation. Thus, additional memory can be freed for other tasks on the GPU, if a minor drop in

correlator performance is acceptable.

Performance of the correlator

The performance of the correlator was tested extensively using randomly generated datasets. To measure

the overall runtime of the correlator, CUDA events were used. An overview of the results for the different

implementations is given in Table 5.6.

The initial implementation, which is based on single blocks, reached an overall speedup of 1.4×
over real time, which means an instruction throughput of 229 Gflops/s (FMA). To further increase the

performance towards the PCIe bandwidth limit, the additional steps described in the last section were

implemented. This optimized implementation reached a speedup of 2.6× over real time, almost dou-

bling the performance of the initial implementation. As memory transfers from CPU to GPU were not

fully parallelized to the ongoing correlation (see Figure 5.8b). Hence, if only the time required by the

compute kernel is taken into account, i.e., assuming a fully parallelized data transfer, one could reach a

performance of approximately 560 Gflops/s (speedup of 3.4× over real time).

Performance evaluation of the compute kernels

A full correlator is made up of at least two compute kernels. The front end handles data conversion

and processes the first block(s) of the correlator. Further blocks are then handled by a second ‘generic’

compute kernel. To further optimize the performance a third compute kernel can be used for the last

block, which omits any output.

In the following, a more detailed evaluation of the individual compute kernels is given. The perfor-

mance measures are based on the output of the NVIDIA profiler nvprof . Table 5.7 summarizes the

results of the performance evaluations of the different compute kernels.

The measurements show, that a maximum memory bandwidth of approximately 250 GiB/s can be

reached. This seems to be the upper limit of the proposed access pattern for the correlator and is roughly

75 % of the peak performance of the memory interface.

chunk size number of blocks B memory requirements performance normalized performance

[GiB] [Gflops/s (SP FMA)]

512 MiB 8 2 416 0.99

256 MiB 16 2 419 1

128 MiB 16 1 410 0.98

64 MiB 16 0.5 385 0.92

32 MiB 16 0.3 322 0.77

Table 5.5.: Performance of the GPU correlator in relation to the chunk size per correlator block.
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Implementation speed-up over real time performance (SP FMA) [Gflops/s]

initial implementation (single block) 1.4× 229

optimized implementation (double-blocks) 2.6× 419

fully parallelized opt. implementation‡ ≈ 3.4× ≈ 560

Table 5.6.: Performance of the GPU correlator. In the initial implementation, per compute kernel a single block is evaluated.

The optimized implementation uses a single compute kernel per two linear correlator blocks. ‡: Assumption based on compute

kernel runtime only.

For all compute kernels except for the optimized front end, this was limiting the total performance.

Even a higher occupancy (optimized generic compute kernel), did not improve performance, as the

threads are mostly waiting for memory transfers to complete. In case of the optimized front end, reducing

the dependency on memory transfers by combining two correlator blocks into a single compute kernel,

doubles the performance of the compute kernel to almost 35 % of the peak performance of the GPU.

5.4.4. Conclusion

The GPU-based correlator achieved a performance of about 420 Gflops/s, a speed of 2.6× above real

time. With that, the correlator outperformed the CPU and the FPGA platform, as well as every other

implementation proposed so far (section 3.2).

The correlator achieved 70 % of the peak memory bandwidth, which seemed to be the upper limit on

the GPU. In case of the front end compute kernel, with less requirements to the memory bandwidth, a

performance above 850 Gflops/s was reached, which indicated that the algorithm is mostly IO bound.

If only floating-point operations related to the actual correlation are considered, a performance of up

to 560 Gflops/s was achieved. This corresponds to 22 % of the theoretical peak performance of the GPU,

or a speed of 3.4× above real time.

5.4.5. Outlook

As the GPU correlator over-fulfilled real-time performance, it should be possible to at least calculate two

additional cross-correlation estimates per pixel. If then three correlators ran in parallel, the chunk size

would have to be reduced. However, this can be done with only a minor drop in performance.

When running as a real-time correlator, the unexploited performance could also be used to calculate

additional monitor channels. Currently only the front end counts the number of incoming photons for

each pixel. It was shown, that the normalization of the correlation function estimates benefits if monitor

channels are employed per correlator block.

compute kernel #frames runtime RAM throughput performance #registers occup.

read write combined (SP FMA)

[ms] [GiB/s] [GiB/s] [GiB/s] [Gflops/s] [%]

initial impl., front end 512 0.64 14.0 217.3 231.3 419 53 50

initial impl., generic block 256 0.82 168.1 86.6 254.7 163 61 50

opt. impl., front end 1024 0.94 18.2 152.4 170.6 858 64 50

opt. impl., generic block 512 1.48 189.2 51.6 240.8 272 103 25

Table 5.7.: Performance of the compute kernels of the GPU correlator. Data is based on the metrics dram_read_throughput,
dram_write_throughput, flops_sp_fma as well as the execution time that were evaluated using nvprof . Number of registers and

occupancy was determined using nvvp. The optimized implementation (opt. impl.) is based on double-blocks. occup. refers to

occupancy.
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5.5. FPGA correlator

This section describes the implementation of an FPGA correlator. The correlator was designed as an

integral part of the RADHARD2 readout-system with a frame rate of 100 kHz and full frames (32×
32 pixels). Its operation is based on the algorithm described in section 5.2.2. A single DSP cell combined

with a dedicated memory block (BRAM) forms the basis to calculate all lags of a linear block as well as

multiple blocks. The hardware is based on the LASP development board (see appendix B.1 for details on

this board), featuring two XILINX VIRTEX-II XC2VP40 FPGAs.

Even with these relatively old FPGAs, the correlator achieved real-time performance. The readout-

system including correlator were successfully used in the SPIM-FCS setup. Parts of this implementation

have already been published in Ref. [155].

5.5.1. Hardware platform

For the implementation, two XILINX VIRTEX-II XC2VP40 FPGAs were available on the platform. Since

one of them was mainly used for the readout, the correlator was implemented in the second FPGA. Both

FPGAs are connected on the board via a parallel bus. Table 5.8 gives an overview of the resources that

are available in such an FPGA and compares them to a more recent VIRTEX 6 FPGA.

FPGA design tools

Table 5.9 summarizes the development tools used for the design of the FPGA correlator. The support

for VIRTEX-II FPGAs was dropped in newer design tools from XILINX. Therefore, the latest version

featuring support for the VIRTEX-II was used.

5.5.2. Implementation

The design of the FPGA correlator is based on hand-written VHDL code (Very High Speed Integrated

Circuit Hardware Description Language). The basic design goal was to calculate the correlation function

estimates of all 1024 pixels of the RADHARD2 SPAD array in real time. At that stage, the readout con-

troller of the RADHARD2 was capable to read 100000 fps. Due to limitations of the available memory,

the correlator processes 14 blocks with 8 lags each, spanning five orders of magnitude (10 μs to 1.23 s).

Most parts of the correlator except for the required data reordering (see blow) were implemented into a

single XILINX XC2VP40 FPGA. Although the correlator was used for an autocorrelation analysis only,

its generic design allows for cross-correlation, too.

The correlator core is mainly based on the MAC operation, which can be implemented using DSP

slices. Thus, their speed determines the maximum performance of the whole correlator. The VIRTEX-

II used in here contains 192 digital signal processor (DSP) slices that can be operated at a maximum

frequency of 147 MHz [247]. The chip also contains the same number of BRAMs. Since always one

DSP and one BRAM share some hardware resources, both cannot be used at full data width at the same

resource XILINX VIRTEX-II XC2VP40 XILINX VIRTEX-6 XC6VLX240T

registers 39k 301k
LUT 19k 151k
BRAM 192 (3.4 Mbit in total) 832 (15.0 Mbit in total)

multipliers 192 (18x18) 768 (25x18)

Table 5.8.: Overview of the resources of the XILINX VIRTEX-II XC2VP40 and the VIRTEX-6 XC6VLX240T FPGA. Here

only resources that play an integral role in the correlator design are mentioned. The VIRTEX-II is used on the LASP board and

the VIRTEX 6 on the XILINX ML605 development board.
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correlators

row FIFOsSPAD array

Figure 5.10.: Schematic of the data reordering and context switching of the FPGA correlator. As an example a 3× 3

SPAD array is used.

time. If all DSPs work at their highest data rate, a peak performance of 28 Gflops/s is reached on this

VIRTEX-II. If (as it will be done in the implementation of the correlator) each DSP is combined with at

least one BRAM, the theoretical peak performance is reduced to 14 Gflops/s due to the resource shar-

ing between the two coupled units ∗. For comparison, a more recent VIRTEX 6 XC6VSX475T FPGA

has 2016 DSPs that can operate with up to 600 MHz, which gives a theoretical peak performance of

1210 Gflops/s [250, 252].

To maximize the overall performance of an FPGA-based correlator, as many DSP slices as possible

have to be used. In principle, multipliers can be implemented in the fabric, too, but reach a comparable

performance for small widths only and they would require a large amount of logic cells. Therefore such

multipliers can only be used for the first linear blocks of a correlator.

Due to the limited number of 192 DSPs, in comparison to the requirement of 1024 correlators, the only

possibility is to reuse the hardware to compute the correlation estimates for all pixels and share resources.

On top of that, the overall amount of available memory is not sufficient to store an entire dataset from

a single measurement on the board (∼ 12MiB/s or 720 MiB for a typical measurement of one minute).

Therefore, processing all pixels one after the other at the end of a measurement is also no option. Due

to all these limitations, a design was chosen, which reuses a single correlator to process multiple pixels.

To do so, a fast pixel-context switch is necessary, which completely reconfigures the correlator, stores

the intermediate results of the current pixel to external memory, and loads the data for a new pixel. Such

a switching also requires a resorting of the data stream from the sensor into chunks that group pixels

which are processed in parallel. That way, the correlators can process as many values as possible of the

same row of the SPAD array continuously. When the operation on a specific row is finished, a context

switch is performed, and the next row is processed for a certain time, and so forth. Figure 5.10 shows

this principle of data reordering, that happens in parallel to the ongoing data acquisition (see Figure 4.2

for a schematic of the whole system). As raw data is read row-wise from the RADHARD2 SPAD array

in lines of 32 pixels, 32 identical correlators were implemented in parallel. To cover all 1024 pixels of

the SPAD array, each single correlator has to process 32 pixels.

To allow fast switching of different linear blocks in a single correlator or between different pixels, the

delay registers in the delayed data path (local values) in between the multipliers must be implemented in

product version

SYNOPSYS (Mountain View, California, U.S.) Synplify Pro (synthesis) D-2010.03

XILINX (San Jose, California, U.S.) ISE (implementation) 10.1.03

MENTOR GRAPHICS (Wilsonville, Oregon, U.S.) ModelSim (simulation) 10.1c

Table 5.9.: Software used for the development of the FPGA correlator.

∗Since the VIRTEX 4 generation, both units work independently.
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BRAMs. A context switch of a block level then becomes a change in the base address of the memory

location. The order of blocks is determined by the block scheduling algorithm (see section 5.2.4 for

details). The same applies for the sums in the accumulators, which will be returned as the final result

of correlation. For each lag, these two data words (accumulator and delayed value) are combined into a

48 bit word which does not fit into a single BRAM which is 32 bit wide. Therefore, at least two BRAMs

have to be used in each single correlator lag. In principle, resource sharing between different correlators

is possible so that only 1.5 BRAMs are occupied. As the number of BRAMs and DSPs is the same,

the available memory blocks are limiting the overall correlator design. In case of the VIRTEX-II, 192

BRAMs are available and by using 1.5 BRAMs for each correlator lag, one could implement up to 64

lags in parallel. If only one physically existing lag is used for a full correlator, at least 16 pixels need to

share the same hardware to process 1024 pixels in parallel.

The context of a single pixel consist of 128 word of 48 bit, or 0.8 MiB for all pixels. This is about

twice the amount of the resources available on the FPGA (cf. Table 5.8). To overcome this limitation,

only the current context is loaded to the FPGA on-chip memory, whereas unneeded contexts are stored in

external SRAM. A double buffering strategy is employed to keep the time required for context switching

at a minimum: One part of the BRAMs attached to each correlator holds the current context while the

other part holds the context of the prior/next block. During the processing of a certain row of the SPAD

array, the currently unused context is exchanged with the next needed context from the external memory.

When the processing of the current context is done, the buffers are switched. As contexts are constantly

exchanged with external memory, this stream of data is directly output via the USB interface to allow the

operator of the microscope following correlation.

A further limiting factor of the FPGA was the number of ports offered by the BRAMs: Each memory

block has only two ports for reading and writing. If data has to be exchanged constantly, only one port

is left for the actual correlation operations. In addition, each port can only be used to either read or

write during a single clock cycle, which effectively halves the performance, as two clock cycles become

necessary for processing one lag of a correlator.

Internally, each correlator uses a 16 bit wide data path for the delayed and un-delayed values as well

as for the multipliers. The accumulators are 32 bit wide, but especially in the lags for large delay times

they can still overflow frequently. These overflows are followed by a wrap-around in hardware, which

is detected and corrected for later in the read-out software. This is possible, because the USB-interface

does not only transfer the final results, but also some of the intermediates during the correlation. In fact,

the USB-interface constantly streams intermediate results to the host that are first stored and then later

mangled into final, normalized correlation curves.

The main clock is provided by the USB interface running at 48 MHz. The correlator core itself runs

at 144 MHz, the threefold frequency. Since the MAC operation is simple to implement with the help of

DSP cells, the data housekeeping was the more demanding task. Finally, the results of the correlation

analysis are transferred to the host computer via a dedicated USB 2.0 link using the same frame format

as for the raw data.

After the processing of all input values, the correlators have to be flushed to allow all values the

propagation through the entire correlator. This is done according to the scheme described in section 5.3.4.

Single correlator design

Figure 5.11 gives an overview of two out of 32 correlators. A single correlator consists of a DSP cell used

for the MAC operation and two attached BRAMs. One BRAM holds the 32 bit accumulators, the other

one holds the 16 bit wide contents of the delay elements. As multipliers and BRAMs share resources

(see above), a single correlator occupies two BRAMs and two multipliers. For the correlator, only one

of the two memory ports of the BRAMs is available. The second port is used for context exchanging the

contexts with external memory.
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Figure 5.11.: Schematic drawing of the FPGA correlator. Only two of the 32 correlators are shown. Each correlator (dark

gray) comprises a single lag which is re-used for the whole correlator and multiple pixels. Each correlator uses two attached

BRAMs. The current context is shown in green. In parallel to the ongoing correlation, a second context is stored/loaded from

external SRAM (blue) using the second memory port of the BRAMs. The whole operation in controlled by the controlling

circuit (yellow) which also contains the block scheduler and memory exchange logic. Raw data (red) is captured and re-ordered

by the first FPGA on the LASP board.

clock cycle c 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

lag 0 L W M A S L W M A S lag 4

lag 1 L W M A S L W M A S lag 5

lag 2 L W M A S L W M A S lag 6

lag 3 L W M A S L W M A S lag 7

Table 5.10.: Inner core of the FPGA correlator: interleaved pipeline scheme for eight lags. As only one port of the BRAM

is available, only a single Load or Store operation can occur per cycle. Further cycles are Wait for memory completion,

Multiply and Accumulate.
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position in context 1st BRAM 16 bit 2nd BRAM 32 bit

0 . . .111 raw accumulator values gτb,l delay register Id
b,l

112 - current cycle counter c
113 . . .125 - intermediate results for handover between blocks Ib,0

126 - un-delayed monitor channel Mu
0

127 - delayed monitor channel Mu
0

Table 5.11.: Memory layout of a pixels’ context. Each context occupies 128 words of 512 words in a BRAM.

To efficiently use the multiplier and BRAM resources, the processing of a single block is done in a

pipelined manner, which is shown in Table 5.10. The single multiplier processes all the 8 lags in each

linear correlator block. With this scheme, 16 cycles are needed for the processing of a single block,

referred to as a ‘hardware-thread’, and three further cycles for loading and storing the thread’s context.

According to the scheduling scheme (see section 2.4.2), a new input value may arrive once during the

processing of two blocks or every 38 cycles. At a clock frequency of 144 MHz this means a new input

value every 264 ns. All in all, each correlator is able to process data approximately 37 fold faster than

the single pixel data rate (i.e., frame rate) of the RADHARD2 SPAD array. Therefore, sharing resources

of a single correlator to process multiple pixels is possible, and each correlator is designed to compute

the correlation function estimates of 32 pixels. Processing a single pixel is referred to as a ‘hardware

process’. Loading and storing the context of such a process takes five additional clock cycles, which is

still within the available time-budget due to the high-speed of the correlator core.

Data structures

Table 5.11 gives an overview of the data structure of a single pixel’s context. Each context comprises

128 data words, which are 48 bit wide. The lower 112 words are used to store the delay registers and the

accumulators of 14 blocks with 8 lags each. The upper 16 words are used for data handover and monitor

channels and cannot be used for correlation. Thus, only 14 linear blocks with 8 lags each are calculated.

Row reordering and context switching

To reduce the number of context switches, data acquired with the SPAD array had to be reordered to

allow processing of a single row for a longer duration than just a single frame. The principle of this

reordering is sketched in Figure 5.10:

The runtime of a hardware process (correlation of a single pixel) on the correlator is defined by the

time required for the exchange of the currently unused contexts in the double buffering BRAM. In each

context switch, the contexts of all 32 correlators have to be replaced by the next contexts. In total, 2×
32 ·128 ·48bit = 48KiB have to be transferred. To simplify internal logic, the second BRAM comprising

16 bit is treated as 32 bit, too. Thus, a total amount of 64 kB is transferred for each context switch. For a

32 bit wide static random access memory (SRAM) with an access time of 10 ns, this takes at least 164 μs.

In that lapse of time, 621 raw input values can be processed (264 ns for each). Therefore, a context switch

is done every 1024 input values (at least 270 μs).

In order to process 1024 consecutive values of a single row, all other rows have to be stored in the

mean time. This is done on the first FPGA in 32 first in - first out buffers (FIFOs) of 32 bit width, which

are implemented in the external SRAM. Under the assumption, that the correlator starts processing when

all FIFOs are equally filled with 1024 values, the last row’s FIFO has to be capable of holding additional

32 ·1024 ·264ns/10ns = 865 values. Thus, a capacity of 2048 entries for every single FIFO, or 0.3 MB

in total, is sufficient.
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Additional implementation details

Data integrity. Data integrity during transport via the USB connection is ensured by using the same

frame format as for the raw data , which includes a CRC-16 checksum. Each context that is transferred

to the host computer is packed into a single frame. Therefore transmission errors can be detected and

since the data is highly redundant, these errors can be corrected in most cases.

Optimizations. The correlator core operates at almost maximum clock frequency of the given FPGA

hardware. To achieve timing closure, most signals are pre-calculated several cycles in advance and the

final assignment is done with a latch. Furthermore, only a single state machine (‘control’, yellow, in

Figure 5.11) is used for all 32 correlators.

Region of interest. The design described above can handle input data rates of up to 3.2×106 single

lines per second. Either full frames can be processed with 10 μs integration time, or subregions down to

two lines at higher speeds (625 ns integration time for a single line). Then only a reduced set of contexts

is required. The selection of the lines in the region of interest (ROI) and the required reordering is done

in the first FPGA.

Extended input stage. Although the correlator is limited to 10 μs integration time for full frames, the

RADHARD2 SPAD array can be operated down to 2.5 μs integration time. To take advantage of this

higher frame rate, in between the SPAD array and the correlator an accumulation stage was introduced

stage that sums up three consecutive frames. This way, the sensor is read every 3.3 μs and the probability

for undetected double or triple photon events is reduced. Internally this is done by doubling the data path

in the front end to 2 bit. The generic correlator itself operates on a 16 bit-wide data path and remained

unchanged.

5.5.3. Simulation and testing

The entire correlator including SRAM was simulated using random datasets. After the correlation and

the flushing, the contents of the memory was compared to the results of a software implementation of the

correlator. In addition, the hardware correlator was tested with known input signals: Figure 5.12a shows

a test measurement performed with the RADHARD2 SPAD array and the FPGA correlator. A LED was

used as light source, which was blinking with a fixed frequency of 2.5 kHz. The runtime of the correlator

was 1.2 s. A fit of the autocorrelation curves with the oscillator model (blue, see section 2.4.3) yielded a

frequency of (2507±4)Hz. This along with the simulations positively showed the full functionality of

the correlator hardware.

Further tests were performed within the microscope setup and known samples. Figure 5.12b shows

a SPIM-FCS measurement of TetraSpeck ∅ = 100nm fluorescent beads beads. Frames were acquired

at 3.3 μs resolution and temporarily binned, whereas the correlator ran at a temporal resolution of 10 μs.

Although the detector is only suited for such bright samples, the diffusion of the beads could be deter-

mined accurately. Further details on this measurement as well as further measurements are shown in

appendix E.4.

5.5.4. Resource utilization

Table 5.12 shows the resource utilization of the whole correlator. With 32 individual correlator cores for

1024 pixels, less than 50 % of the available resources are utilized. Although the final resource utiliza-
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Figure 5.12.: Measurements performed with the hardware correlator. (a) Mean value of 1024 ACFs taken by the RAD-
HARD2 sensor, exposed to a 630 nm LED sine-modulated with a frequency of 2.5 kHz. The correlator was running for 1.2 s

(131072 samples at τmin = 10μs). The theoretical model g(theoretical)(τ) = 1+A · cos(2π f · τ) is fitted against the mean in the

interval [10μs,0.6ms], and is shown until τ = 1ms. The fit yields a frequency of (2507±4)Hz. The standard deviation of the

1024 curves is shown as light red area. (b) Autocorrelation curves of a measurement of TetraSpeck ∅ = 100nm fluorescent

beads for a single pixel (blue) and the average over all pixels (red). See appendix E.4 for further details.
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tion after the implementation of the design might have been higher∗, one should be able to extend the

design to 64 parallel correlators. This additional performance can either be used to improve temporal

resolution, i.e., by halving the number of pixels that are processed by a single correlator, or to calculate

cross-correlation curves in parallel.

5.5.5. Conclusion

In total, the FPGA correlator achieved a performance of 1.6 Gflops/s. This is comparable to other im-

plmentations based on the VIRTEX 2 FPGA, but an order of magnitude below the performance of com-

mercially available correlators.

The correlator achieved 11 % of the peak performance of the FPGA and used less than half of the its

resources. By doubling the number of correlators, one could further increase the performance. Assuming

a linear scaling of the performance, such a correlator design should also achieve real-time performance

for the CHSPAD, if a more recent VIRTEX-6 platform† is used. Under this assumption, the correlator

would outperform any other hardware based correlator that has been proposed so far (cf., section 3.2).

The correlator was successfully used in the SPIM setup (see section 2.3.1 for details on the micro-

scope). Although the design is based on quite old hardware, the goal of real-time performance for the

RADHARD2 SPAD array was achieved.

A major disadvantage of an HDL-based correlator implementation was the tedious and time-consuming

design and verification process. Additionally, the used hardware platform was quite limited regarding on

board memory resources and interfaces.

The implementation does also not take advantage of the single photon input data. As for the first

blocks multiplication of single bits is trivial, these blocks could be implemented as shift registers. That

way, one could improve the temporal resolution or save DSP resources. Such a design using different

implementations for different blocks was already described in Ref. [72].

5.5.6. Outlook

The implementation of the FPGA correlator is based on the ‘naïve’ algorithm (see section 5.2.1 for

a description). As shown for the CPU and GPU platform, the streaming algorithm achieved a higher

performance on parallel architectures if sufficient memory is available. But due to the limitations of the

hardware platform, this approach could not be implemented. In the following section a correlator design

based on the streaming algorithm is proposed which follows the dataflow paradigm.

5.5.7. Dataflow computing

category occupied ressources utilization [%]

registers 14×103 36

LUT 16×103 41

multiplier 32 16

BRAM 66 34

Table 5.12.: Resource consumption of the FPGA correlator (entity name ‘correlation_processing_unit’). Further logic

used for interfacing, etc., is not considered. Data according to SYNPLIFY’S output after synthesis. Values differ slightly after

design implementation with XILINX tools due to low level optimizations. Utilization is relative to the resources of the FPGA.

∗If free resources are available during the implementation phase, those are typically used to duplicate logic. This can

improve performance as data paths can be shortened.
†Assuming a ratio of 20 % of the theoretical peak performance and a VIRTEX 6 XC6VSX475T FPGA (∼ 240Gflops/s).
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The paradigm of dataflow computing, that was first mentioned in the 1960s, models a program as a

directed graph. Data then flows along the connections between various nodes, which execute dedicated

operations on the data stream (MISD). All operations are run in parallel if input data is available [206].

Figure 5.13 shows an example for modeling the calculation of the mean value: First, input data qi is

forwarded to two nodes. One of the nodes counts the number of input values, the other node reduces the

input data stream to the sum of values obtained so far. Finally, a third node determines the quotient of its

two input values and passes the result to the output μ
Several programming languages allow for modeling in the dataflow paradigm [104]. In this context,

FPGAs are quite interesting, as the dataflow paradigm maps well onto their inner structure with a huge

amount of parallel resources. As shown in the next section, there are also hardware and software tools

available that allow for direct programming reconfigurable hardware in the dataflow paradigm without

the need of an hardware description language (HDL). If an algorithm can be described as a dataflow

graph, this could be a promising method to create an FPGA design in a much shorter time than required

for a manual design using an HDL.

MAXELER TECHNOLOGIES MaxWorkstation

An example of a software and hardware ecosystem especially designed for dataflow computing are de-

vices sold by MAXELER TECHNOLOGIES [3]. Their FPGA-based accelerator cards, called dataflow

engines (DFEs), are based on XILINX VIRTEX-6 FPGAs (e.g., XC6VSX475T on the MAX3 board), that

are connected to the host computer via PCIe with a bandwidth of 2 GB/s. The FPGA has access to

24 GiB RAM with a bandwidth of 38.4 GiB/s [37]. Multiple of these DFEs can be interconnected via a

proprietary link (MaxRing).

Software development is done with MaxJ, a Java dialect, specifically designed for programming in

the dataflow paradigm. The Java code is compiled into VHDL by the MaxCompiler which is then

synthesized with the XILINX design tools and finally executed on the FPGA cards.

Modeling the multiple-τ correlation algorithm as a dataflow graph

At a first glance, the multiple-τ correlation algorithm is already described as a directed graph (cf., Fig-

ure 2.27): In a single linear correlator block, intensity values flow from the input through several lags

towards the output. The entire correlator is made up of a chain of such linear blocks.

A major difference is that the output of the correlation does not happen at the end of the graph but

is acquired perpendicular to the direction of flow (cf., Figure 5.14). Furthermore the output of the last

block of the correlator is discarded. Also data between two adjacent blocks is not handed over in every

step but only in every second, which was the starting point for the optimizations used on other platforms.

q ∑ /

counter

μ

N

[. . . ,qi,qi+1,qi+2, . . . ] ∑i qi μ = ∑i qi/N

Figure 5.13.: Dataflow graph for a mean-value calculation. The directed graph comprises an input q, a counter, a stream

operator /, a accumulating element ∑, and an output μ . It describes the calculation of μ = ∑i qi/N for all supplied input values

qi. The values of N are generated by the counter. Adapted from Ref. [76].
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Figure 5.14.: Schematic drawing of a “sub-correlator” used for the dataflow implementation of the multiple-τ correlator.
The shown “sub-correlator” comprises three linear correlator blocks. In each time-step, eight consecutive input values (pairs of

local and global values each) are processed and a single value pair is provided as output. The result of the correlation are the

states of the accumulators (red) that are retrieved perpendicular to the direction of flow of the intensity values (blue).

The concept of multiple pixels that share the same hardware correlator, as it was used for the FPGA

implementation (see section 5.5.2), is not compatible with the dataflow paradigm and requires state ma-

chines and context switches (i.e., an alteration of the graph and the states of its nodes during operation).

But even if these problems are solved, the performance limitations of the FPGA remain: Each lag of

the correlator consists of a multiplier and an adder circuit, which would be a natural choice for a single

dataflow core. Then, the total number of cores is limited by the number of multipliers that are available

in the FPGA (not considering the expensive implementation of such a function in the logic fabric). Even

if all these could be saturated in parallel, the theoretical maximum performance (cf., section 5.5.2) would

only be twice the real performance of the GPU correlator (see Table 5.6). This is achieved only if the

hardware can be run at the maximum clock frequency allowed by the FPGA. According to MAXELER

TECHNOLOGIES, “dataflow computing achieves high performance through employing massive paral-

lelism at low clock frequencies” [147], so the final speed of the design might be much slower (of the

order of 200 MHz, i.e., Ref. [77]).

Implementation

A possible implementation of a dataflow-optimized correlator for the MAXELER TECHNOLOGIES MAX3
is as follows: Instead of reducing the execution rate by a factor of two between subsequent blocks, the

execution rate of the previous block can be doubled. As the base clock for the hardware is constant,

this can be achieved by doubling the hardware. One possible solution is the vertical unrolling described

in section 5.2.8. Here two (or more) consecutive input values are processed in parallel so that a sub-

sequent block can be run at full speed. Multiple blocks can be series-connected in a binary tree-like

structure, which is shown in Figure 5.14. A similar approach was used for the GPU-based correlator (cf.,
section 5.4) as this implementation helps to reduce the memory bandwidth requirements.

With eight lags per block, 252 blocks can be implemented in hardware, which is sufficient for a

correlator with 7 levels of linear blocks, if one DSP slice is used in every lag∗. If a single correlator

with 16 levels of blocks should be implemented, 131072 single blocks are necessary. For a correlator

with four levels of linear correlator blocks, 15 single blocks are needed. The available resources are then

sufficient for 16 “sub-correlators”, processing four blocks each (1920 DSP slices). To process the full

∗XILINX VIRTEX-6 devices, e.g., XC6VSX475T have 2016 DSP slices.
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correlation, assuming a multiple-τ correlator with 16 linear blocks, data has to be transferred trough that

structure four times. Only the last block needs to have the full data width of 16 bit. In the predecessors,

the data width can be reduced by 1 bit between two blocks, so that the input is only 13 bit wide. If all 16

“sub-correlators” process the fourth cycle of a data stream,

(16 ·13bit︸ ︷︷ ︸
input

+17bit︸ ︷︷ ︸
output

) · 16︸︷︷︸
#correlator-blocks

· 2︸︷︷︸
local and global value

= 832Byte+68Byte = 900Byte (5.5)

of memory input/output is required in each cycle.

If the output is discarded and a 13 bit data path is assumed, running at a clock rate of 600 MHz,

a memory bandwidth of 464 GiB/s is required (832 Byte per cycle). At a given limit of 38.4 GiB/s

for memory input/output (IO), a peak performance of 95 Gflops/s is expected at a clock frequency of

50 MHz. This should be feasible in hardware, but would give a performance of 0.6× of the real time,

which is slower than required.

The assumptions only apply for the last block (fourth block), which is executed less frequently. If 16

first order “sub-correlators” are processed in parallel and if the bandwidth is limited as described, one

should achieve up to 941 Gflops/s. The final performance is expected to lie in between and should allow

for real-time correlation.

Conclusion

Although the overall performance is limited by the achievable memory bandwidth, a dataflow imple-

mentation that allows real-time performance on MAXELER TECHNOLOGIES hardware (i.e., XILINX

VIRTEX-6 XC6VSX475T) should be feasible. Therefore, a correlator of 16 linear blocks is cut into four

‘sub-correlators’, that comprise four blocks each and are based on vertical unrolling. Again, one sub-

correlator can be used to calculate all the required lags of a correlator, if appropriate scheduling of the

data streams is applied.

The memory bandwidth of a sub-correlator depends on its position within the correlator. If multiple

sub-correlators are combined into a single design and these are operating at different positions, a mean

bandwidth should be achieved, that allows correlating the CHSPAD data in real time or faster.

In view of the high costs of the development of a dataflow correlator and given that the GPU-based

implementation achieved above real-time performance, no efforts were made towards an implementation

on the MAXELER TECHNOLOGIES hardware.

5.6. Summary and conclusion

Table 5.13 summarizes the performance of the multiple-τ correlators that were evaluated on different

platforms. The GPU correlator outperformed all other implementations by far. It was approximately

five-fold faster than the CPU correlator and 260× faster than the FPGA-based implementation. The

GPU correlator also outdid all commercially available correlators by at least one order of magnitude as

well as the correlators proposed so far. Moreover, the correlators described above are also one of the first

that feature such a large amount of channels (i.e., pixels).

For all implementation based on the streaming algorithm, which performed best, the memory band-

width was the limiting factor. This limitation was partially circumvented by using vertical unrolling to

calculate several time-steps at once. On the CPU up to six time steps could be combined to make full

use of the existing AVX register-set. In case of the GPU two correlator blocks could be merged by uti-

lizing vertical unrolling to avoid data transfer to GPU memory in between the two blocks. This idea

was extended for the proposed implementation based on the dataflow paradigm: Up to four blocks are

combined to efficiently use the available DSP slices.
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5. Implementation of fast signal correlation analysis

platform theoretical implementation performance performance speed-up

peak performance absolute rel. to peak-perf. over real time

[Gflops/s] (FMA) [Gflops/s] (FMA) [%]

‘classic’ 70 32 0.43×
CPU 217

‘streaming’ 85 39 0.52×
FPGA VIRTEX-II 29 ‘classic’ 1.6 6 0.01×
FPGA VIRTEX-6 1210 dataflow† > 164 > 14 > 1.00×

‘initial’ 229 9 1.40×
‘optimized’ 419 17 2.55×GPU 2523

‘fully optimized’‡ 557 22 3.40×

Table 5.13.: Comparison of different correlator implementations that were evaluated in the course of this thesis. The

speed-up in comparison to the real-time requirements is shown in curled braces. In case of the CPU and the GPU values are

given in FMA instructions, in case of the FPGA implementation, MAC operations are shown. Real time requirements are

164 Gflops/s. The streaming algorithm requires approximately 1 MB per frame or 117 GB/s for real-time correlation. The

theoretical peak performance is a characteristic of the device/hardware. †: Suggested implementation. ‡: Assumption based on

compute-kernel runtime only.

Memory bandwidth requirements were much lower on the FPGA platform, as the data path can be

adapted to the required width. In case of the CPU or GPU, the implementation is limited to the generic

data types. It proved to be advantageous to use the single precision floating-point values as these are

better supported by current SIMD instruction set extensions. Assuming a correlator of 16 blocks and a

32 bit wide data path, more than half of the required bandwidth remains unused (the last block needs a

16 bit wide input).
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measurements

In this chapter, the performance of the Swiss single photon avalanche diode array (CHSPAD) array with

microlenses (cf., section 2.1.4) in the SPIM-FCS setup is assessed (see section 2.3.1 for details on the

microscope). Especially the interplay between the optics of the microscope, the microlenses, and the

sensor, as well as the data analysis is examined. Comparable measurements were performed with the

RADHARD2 single photon avalanche diode (SPAD) array, too, these are shown in appendix E.4. Due

to its limited detection efficiency and the lack of microlenses, which increased the photon detection

probability (PDP) of the CHSPAD approximately ten-fold (see section 4.3.7), the RADHARD2 was used

successfully only for the measurement of bright samples.

The overall objective was the measurement of the spatially resolved diffusion of fluorescent molecules.

This information can either be used to create parameter maps or to obtain statistical information from

the sample. The method of choice was fluorescence correlation spectroscopy (FCS), therefore the fluo-

rescence intensity signal was recorded at every single pixel. As a next step, the correlation curves were

calculated for every pixel. By model fitting these curves, the diffusion times of the species were obtained.

With that, and if the shape of the focal volume is known, the diffusion coefficient can be calculated, or

vice versa. This can either be used to characterize an unknown sample, to characterize the focal volume,

or to assess the effect of the microscope optics on the measured values.

6.1. Measurement protocol

In the following, the standard procedures for several aspects of a single diffusion measurement are de-

scribed. If not stated differently, these protocols were followed. The steps are in chronological order and

are based on the procedure described in Ref. [119].

6.1.1. Sample preparation

Sample preparation was done according to Ref. [119]. All used dyes (see section 2.2.4 for details) were

measured in aqueous solution. Small bags made of fluorinated ethylene propylene (FEP) foil were filled

with 30 μL to 50 μL of these dilutions and were then heat-sealed. Bags were then mounted from above

into the water filled sample chamber of the instrument. HeLa cells were grown on fragments of glass

cover slips and were hung from above into the sample chamber filled with cell medium.

6.1.2. Alignment

First, basic alignment of the optics was done as described in Ref. [119]. As a second step, the detection

efficiency of the CHSPAD was optimized: To do this, the sensor was illuminated with a white LED

through the microscope optics (cf., Figure 2.20). The sample chamber was filled with water but with

any sample removed. In conjunction with the microlenses, the microscope optics lead to an image from

the CHSPAD that has a bright spot in it. By adjusting the pan and tilt of the sensor board this peak was

centered (cf., section 4.3.7).

Next, the overlap between the focal plane of the detection objective and the lightsheet was optimized

by adjusting the gimbal mounted mirror (GMM). For this purpose, a dilution of TetraSpeck ∅= 100nm
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6. Application of SPAD arrays for in vitro and in vivo measurements

fluorescent beads was used as a sample, as here single beads were visible in the live-view from the sensor.

The lightsheet was then shifted until maximum contrast was achieved, which means a maximum overlap

of the lightsheet and the focal plane of the detection objective.

Finally, to determine the molecular detection efficiency (MDE) parameters of the microscope, Tetra-
Speck ∅ = 100nm fluorescent beads embedded in a stiff gel were used to perform a bead-stack (i.e., a

z-scan of the gel) which was evaluated as described in section 2.3.4. The estimates of wxy and wz (if not

used as free parameters in the model fit) were used for all FCS fits in the following.

6.1.3. Image acquisition

Image acquisition was done using the CHSPAD control software ngsoft (see section 4.2.3 for details),

which was remote controlled by QuickFit3 as main experiment control software (via the CHSPAD-

TCP/IP camera plug-in, see section 2.3.3). To cover a wide area and to allow measuring for a long

duration, an region of interest (ROI) of 512×4 pixels in the center of the sensor was chosen. With these

settings, a single measurement contained 15.8×106 single frames that were captured during a period of

101 s.

6.1.4. Data treatment

Raw photon data, as output by ngsoft, was correlated using the ‘correlator_vc_chspad_raw’ program

(based on the CPU implementation described in section 5.3). This program also performed a bleach

correction of the raw data (see section 2.3.2 for details) and further created a statistical analysis of the

raw data (total count rate, time-binned videos, etc.). The latter were used by QuickFit3 for the evaluation

process. For all samples except for the bright and non-bleaching 100 nm beads, the bleach-corrected

correlation curves were used for analysis.

6.1.5. Data fitting

Correlation curves as obtained from the correlator were fitted using the models described in section 2.4.3.

For the autocorrelation curves (ACCs), a three-dimensional normal diffusion model (equation (2.56))

was used and a two-focus FCS model (equation (2.62)) in case of the cross-correlation estimates. The

afterpulsing was accounted for by adding equation (2.61) to the model function if required. The shape

of the focal volume was taken from the bead-scan performed during the alignment step. Noise on the

correlation curves was reduced, if required, by averaging neighboring correlation curves prior to the

model fitting step (so called binning). Therefore, the mean correlation function estimate of a pixel and

its direct neighbors in a region of 2×2 or 3×3 pixels was used for model fitting.

6.1.6. Data representation

Autocorrelation curves shown in this work are plotted normalized by the particle number N, i.e., as

N ·g(τ), where g(τ) are the correlation function estimates. The value of N was taken from the model fit.

Cross-correlation curves, when shown, were scaled with the same factor as the ACCs. Mean diffusion

coefficients were obtained as the mean value of a GAUSSIAN fit to a histogram of the diffusion coeffi-

cients of all pixels. Usually, the standard deviation from those fits is given as uncertainty or error of the

mean value. If mean or median values of several measurements are given, the errors are also mean or

median values of the standard deviation.

Diffusion coefficients were normalized to standard conditions (ϑ = 20 ◦C, according to equation (E.1)).
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6.2. Settings and measurement conditions

Mean diffusion coefficient and relative standard deviation. Ideally, a homogeneous sample of a diffus-

ing species has the same diffusion coefficient D in every evaluated pixel. Unfortunately, a certain noise

is added to the intensity signal by various parts of the system. It is expected that all influences occur

randomly and therefore the final parameters (usually N and D) are distributed normally. Resulting values

are therefore mean value μ obtained from a GAUSSIAN fit of the parameter’s histogram for all evaluated

pixels. The fit additionally gives a measure of the spread of the values, the standard deviation σ , which

is used in the following as error estimate.

To be able to compare the distributions of a parameter for different species, the relative standard

deviation, also known as the coefficient of variation, was used. It is defined as:

cv =
σμ

μ
. (6.1)

6.2. Settings and measurement conditions

For all measurements described in this chapter, the CHSPAD was operated at the same settings, if not

stated differently. These are shown in Table 6.1. A ROI of 512× 4 pixels was chosen as a trade-off

that allows for relatively long acquisition times of 101 s but also covers a wide area of the sensor to

get an insight in the homogeneity of it and the optical setup. The dimensions of the focal volume were

estimated from bead-scans as described in the last section. For this analysis, the values for wxy and wz

were obtained as mean values from four bead-scans. Defective pixels were excluded from all evaluations.

Typically, the laser was set to its maximum power (Plaser = 60mW) to get the best stability. The

intensity was then reduced by an neutral density (ND) filter with OD = 0.5 in the light path. After the

propagation through all optical components, the laser power at the center of the lightsheet was measured

to be 260 W/cm2. This is roughly half of the light intensity of a confocal FCS microscope (Plaser =
5 μW, wxy = 250nm → Iconfocal ∼ 2500W/cm2) and about a factor of two higher than typically used

for SPIM-FCS with electron multiplying charge coupled device (EMCCD) cameras (100−200W/cm2)

[119, p. 168].

Parameter Value

VOP 24.0 V

VQ 1.0 V

VTop 2.0 V

gating scheme optimized, passive quenching

single measurement duration 15.8×106 frames (101 s)

ROI 512×4

wxy (450±91) nm

wz (1348±210) nm

effective laser power Peff 19.2 mW (60 mW laser + 0.5 OD filter)

light intensity at the center of the lightsheet ILS ∼ 260W/cm2

Table 6.1.: CHSPAD: Settings of various parameters used during data acquisition and data analysis. For details on the

parameters of the CHSPAD see section 2.1.4.
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6. Application of SPAD arrays for in vitro and in vivo measurements

6.3. Characterization measurements using fluorescent beads

This section describes several aspects of the evaluation of the diffusion of a sample at the example of

TetraSpeck ∅ = 100nm fluorescent beads. Due to the high brightness of the sample, the TetraSpeck
beads were also used for a characterization of the instrument. The insights gained in this section found a

basis for the evaluations presented in the following sections. On the SPIM-FCS setup equipped with the

CHSPAD, six measurements (so called ‘runs’) of the same sample were performed in a series with a ten

minute interval in between, without changing the setup. All evaluations presented in the following were

done with the same raw datasets.

For direct comparison, the same sample was also measured on a standard confocal FCS setup. An

example of the obtained ACCs is shown in Figure 6.1a. From 21 consecutive 15 s measurements a

diffusion coefficient of DFCS,20W = (4.10±0.38)μm2/s was obtained on the confocal setup. This is in

good agreement with the reference value D20W,th = (3.9±0.6)μm2/s [154].

6.3.1. Evaluation of the autocorrelation curves

Figure 6.1b shows two representative ACCs of a single pixel, measured at different locations of the sen-

sor. The red curve was measured in the significantly brighter center area of the CHSPAD, whereas the

orange curve was measured at the edge of the sensor. Despite from a higher noise due to the approxi-

mately two fold reduced light intensity (and with that a higher afterpulsing component), the shift between

the two curves indicated a significant change in the diffusion time.

Figure 6.2a shows the histogram of the diffusion coefficients obtained individually for each pixel by a

fit of the ACCs. From GAUSSIAN fits of the histograms, a median diffusion coefficient for all six runs of

D̄1...6 = (2.5±1.0) μm2/s was extracted. This value underestimates the expected diffusion coefficient of

(3.9±0.6) μm2/s roughly by a factor of 1.5.

Contrary to the expectations for a homogeneous sample, the histogram in Figure 6.2a did not follow a

GAUSSIAN shape. The relative standard deviation of cvD ∼ 30% is more than twice off the theoretical

value (cv ∼ 7%, see section 2.2.4). The source of this distortion becomes clear, when the dependence

of D on the x-position is taken into account, which is depicted in Figure 6.2b. Although a homogeneous

sample was used, D ranged from 1 μm2/s to 4 μm2/s. Furthermore, a horizontal shift between the two

measurements indicated a drift of either the sample or an optical component.

For the evaluations described so far, D and N were used as free parameters whereas the shape of

the focal volume defined by wxy and wz was obtained from a bead-scan (cf., section 2.3.4). Such a

bead-scan is typically limited by the number of detected beads (in the order of thousand) and tends to

lose precision towards the edges as fewer beads are detected in the outer areas (i.e., reduced intensity of

the CHSPAD). Although evaluations of these scans did not yield any significant inhomogeneity across the

sensor area (see section 4.3.8), these parameters may not be as constant as expected. To get a more precise

assessment, the focal volume can also be derived from a measurement of the diffusion of a known sample.

If the diffusion coefficient is known, the particle number N and the lateral axis of the focal volume wxy

can be used as free parameters for a model fit of the ACCs. Figure 6.3 shows the x-dependence of the

lateral half axis of the focus wxy obtained by such a fit. The mean value of the evaluation described above

was taken as the constant diffusion coefficient. The graph indicates a significant position dependence

of wxy, which was neither prominent in the bead-scans nor was detected with the EMCCD camera so

far. An influence due to the shape of the lightsheet could be ruled out, as the ROI ran perpendicular

to the direction of light propagation. A further evaluation of this inhomogeneity, which is shown in

appendix E.1, suggested that the main cause of this effect was the overlap between the lightsheet and the

focal plane of the detection objective under a small angle

Since it is known that the diffusion coefficient should be constant for a homogeneous sample, the

variation of the measured D in the fits must originate in a variation of the focal volume (i.e., of the
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(b) CHSPAD measurement
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Figure 6.1.: Representative autocorrelation curves including fits and residuals of TetraSpeck ∅ = 100nm fluorescent
beads measured on two different setups. (a) Confocal FCS setup using an ALV 5000 correlator card. Measurement duration

was 15 s. (b) measurement performed on the SPIM setup using the CHSPAD. The correlation curve is shown as a thin line, the

corresponding fit as a solid curve. The model function without afterpulsing is shown as a dashed line.
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Figure 6.2.: Distribution of the measured diffusion coefficients D of TetraSpeck ∅= 100nm fluorescent beads from fits of
the autocorrelation curve. Two different measurements (‘runs’) of the same sample are shown in red and green. (a) Histogram

of the diffusion coefficients D obtained for all pixels. Solid lines represent GAUSSIAN fits of the histograms. Fit results are

given in the plot. (b) x-dependence of D. The theoretical value of (3.85±0.63) μm2/s [154] is indicated as a dashed black line,

its error as a gray area.
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Figure 6.3.: Distribution of the lateral half width of the focus GAUSSIANwxy of a TetraSpeck ∅ = 100nm fluorescent
beads sample. Data is shown for run 1. The diffusion coefficient D was set to the value obtained from Figure 6.2.

parameters wxy and wz) across the sensor. Therefore, it would be beneficial to not only fit the parameters

N and D, but also wxy. If only the ACCs are used, this cannot be done, because D and wxy are strongly

correlated by the definition of the diffusion time:

τD =
wxy

2

4D
. (6.2)

From the intensity traces obtained in a measurement, not only the autocorrelation curves can be cal-

culated, but also cross-correlation curves with neighboring pixels. These are evaluated in the following

section.

6.3.2. Evaluation of the cross-correlation curves

In addition to the autocorrelation curves, also the cross-correlation curves (CCCs) with neighboring

pixels can be calculated by a correlator from the raw intensity traces. As the amplitude of the cross-

correlation function (CCF) decays exponentially with the distance of the pixels, correlation curves of

pixel with a distance above two pixels were not considered. In the following, the applicability for the

evaluation of the diffusion of the CCCs with the left and right direct neighbor (one pixel distance, CCC

1) and the left and right neighbors with a distance of two pixels (CCC 2) is assessed∗. As a fit model, the

normal three-dimensional diffusion model was used for the ACCs (see section 2.4.3) and the two-focus

FCS model for the CCCs (see section 2.4.3).

Figure 6.4 shows a set of correlation curves including fits for a representative pixel of the first run. As

D and wxy are no independent fit parameters (see above), the value for wxy and wz were kept constant

for the fit of the ACC and the CCC 1. In case of the CCC 2, the spatial distance of the pixels reduces

the correlation of D and wxy and both were used free fit parameters. The plot shows, that the fit models

correspond well with the correlation curves.

The histograms of the diffusion coefficients for two runs and both cross-correlation curves are dis-

played in Figure 6.5a and (b). The plots in (c) and (d) show the corresponding x-dependence of the

diffusion coefficient. In comparison with the results of the fits of the ACCs (Figure 6.2), the distributions

of the diffusion coefficient obtained by fits of the CCCs is much more narrow. The mean diffusion co-

efficient obtained from CCC 1 still underestimates the theoretical value by a factor of 1.5. If wxy is used

as a free parameter, the resulting diffusion coefficient obtained from CCC 2 is in range of the theoretical

value. Figure 6.5e depicts the x-dependence of wxy in the fits of the CCC 2. The shape of this curve is

similar to the shape obtained from a fit of the ACCs with a constant D (see Figure 6.3). Its minimum is

in accordance with the value obtained from the bead-scan.

∗The raw data provided by the sensors is organized row-major, therefore only horizontal neighbors were taken into account.
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Figure 6.4.: Representative correlation curves including fits and residuals of TetraSpeck ∅ = 100nm fluorescent beads.
The plot shows the ACC, CCC 1 and CCC 2 (thin lines) including individual fits (solid lines). For the fits of CCC 2, wxy was

used as a free parameter.

The narrow distribution of the measured D indicates that the fits of the CCC 1 are insensitive to

variations of wxy. On the contrary, if the focal volumes did not overlap, a fit of the CCC 2 allowed for the

characterization of the lateral size of the focal volume and the diffusion coefficient simultaneously. If the

diffusion coefficient is determined this way, the relative standard deviation slightly increases (cvCCC 2 ∼
25% instead of cvCCC 1 ∼ 20%).

To increase the precision of the results, all correlation curves discussed so far can be combined into

a single global fit. Thus, all the advantages of every single fit of a correlation curve can be used. This

method will be discussed in the following section.

6.3.3. Global fit of auto and cross-correlation curves

As shown above, model fits of single correlation curves were not sufficient to match the expected value of

the diffusion coefficient. A major problem was the exact determination of the MDE and its inhomogene-

ity across the sensor area. To account for this, wxy had to be used as a free fit parameter. In case of the

CCC 2, this was already possible, but such fits of the ACC and the CCC 1 did not converge. Especially

the ACC is important for a precise estimation of the particle number. To benefit from the advantages of

every correlation curve, the model fitting of these were done simultaneously with the parameters N, D,

and wxy linked over the different model functions. Such a fit is called a ‘global fit’. The well known

separation between two neighboring pixels decouples wxy and D in the CCFs (see equation (2.62)) and

therefore all three parameters can be determined accurately in such a fit.

For the global fit, the minimization problem for a single correlation curve i shown in equation (2.64)

turns into:

Si(β i) = argmin
β i

∑
δx∈{−2,−1,0,1,2}

∑
τ
[Gi(τ,δxi,β i)−gi(τ)]2 , (6.3)

with the correlation curve g, the appropriate model function G, the horizontal pixel-pixel distance δx, and

the parameter vector

β i = (Ni,Di,wxyi,wzi, . . .). (6.4)
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Figure 6.5.: Distribution of the measured diffusion coefficients D and the lateral half width of the focus GAUSSIANwxy
of TetraSpeck ∅ = 100nm fluorescent beads obtained from fits of the cross-correlation curves. Different measurements

(‘runs’) of the same sample are plotted in red and green. (a) and (c) show evaluations based on CCC 1 with a constant wxy, (b),

(d) and (e) show evaluations based on CCC 2 with wxy as a free fit parameter. (a) & (b) Histograms of the measured diffusion

coefficients D obtained from fits of all pixels. Solid lines represent GAUSSIAN fits of the histograms. Fit results are given in

the plot. The theoretical value of (3.85±0.63) μm2/s [154] is indicated as a dashed black line, its error as a gray area. (c) &

(d) Dependence of D on the x-position of the CHSPAD. (e) x-position dependence of wxy.
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(a) TetraSpeck beads
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(b) FluoSpheres YG beads
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Figure 6.6.: Representative correlation curves of a single pixel for two different samples of fluorescent beads including
global fits. The plot shows all five correlation curves including global fits and residuals. Thin lines represent the raw data, thick

curves are the corresponding fit results. Results shown in (a) correspond to Figure 6.2.

If afterpulsing is accounted for, or an offset correction is done, further parameters may be added. The

parameters of diffusion were assumed to be identical, thus the same particle number Ni = N, the same

diffusion coefficient Di = D, and the same focal volume (wxyi = wxy and wzi = wz) were used for all

correlation curves in the global fit. During minimization, all correlation functions were treated equally

and no weighting of the correlation curves was done. It should be noted, that a global fit that takes CCCs

into account is only valid under the assumption that the parameters and diffusion properties are constant

for all involved pixels. Otherwise, this method introduces a certain averaging.

To account for the inhomogeneity of the MDE, it is in principle possible to calibrate the focal volumes

at each pixel with a known sample. But as indicated above, the variation seems not to be constant for

multiple measurements, which can be seen as a drift in Figure 6.2b. Furthermore, changing the sample

also influences the optical system, as the refractive indices of the different samples may not be identical.

Also the detection efficiency of the CHSPAD was limited, so that a method not based on calibration was

preferred.

Figure 6.6 shows the result of a global fit of two representative pixels for two different samples of

fluorescent beads. The curves shown in (a) correspond to the measurement presented in Figure 6.1.

Figure 6.6b shows a measurement of FluoSpheres YG ∅ = 100nm fluorescent beads. The fits are in

good agreement with the correlation curves. A slight over- and underestimation might stem from an

inaccurate estimation of wz (obtained from bead-scan).

Figure 6.7 shows the histograms of the diffusion coefficients obtained by fits of different sets of cor-

relation curves. The results of fits of the ACCs are shown in red. The histograms in blue and green were

obtained from fits of the CCCs. For CCC 1 (blue), again only D and N were free fit parameters and wxy

was still taken from the bead-scan. For this short distance, the two focal volumes still overlap and D and

wxy are still correlated. This is relaxed only for the two-pixel distance in CCC 2 (green). Here N, D and

wxy could be used as free fit parameters. Finally, the histogram of the diffusion coefficients obtained by a

full global fit to the autocorrelation curve and the left and the right cross-correlation curves with one and
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Figure 6.7.: Histograms of the measured diffusion coefficients D of TetraSpeck ∅ = 100nm fluorescent beads obtained
from fits of different sets of correlation curves. A GAUSSIAN fit (solid curve) is applied to each histogram (not all are shown).

The suffix ‘only’ denotes a model fit of a single correlation curve. ‘ACC +CCC 1’ denotes a global fit of the ACC and the left

and right CCC. In a global fit, wxy was used as a free parameter. In case of cross-correlation estimates, both, left and right

neighbors were taken into account. The curves of CCC 2 and CCC2only did not decay to zero, therefore an offset-correction

was added to the model function. For the CCC2only fits, wxy was used as free parameter. Data is shown for run 6 (cf.,
Figure 6.1b and Figure 6.2). Result from global fit: Dglobal = (3.6±0.7) μm2/s. The theoretical value of (3.85±0.63) μm2/s

[154] is indicated as a dashed black line, its error as a gray area. For further evaluations of different samples see Figure E.3.

two pixel distance is shown in magenta. A solid curve represents the GAUSSIAN fit of each histogram.

Further evaluations of different samples are shown in appendix E.2.

Figure 6.7 shows that by fitting a single correlation curve only (red, blue and green in Figure 6.7),

the resulting diffusion coefficients systematically underestimated the expected value (dashed black line).

This can be explained by the fact that a bead-scan may not be sufficient to assess the parameters of the

focal volume with good accuracy. In case of the ACCs, the inhomogeneity in wxy lead to a broadening of

the histogram of the diffusion coefficients. On the contrary, the CCC 1, seems to be mostly insensitive to

this inhomogeneity and showed a significantly narrower GAUSSIAN distribution. But still its mean value

underestimated the diffusion coefficient. The histogram of the measured diffusion coefficients that were

obtained by a fit of the CCC 2 tended to be broader than those obtained by a fit of the CCC 1, but were

almost in range of the expected value.

By optimizing all correlation curves simultaneously in a global fit, the resulting distributions were in

good agreement with the expected value (see Table 6.2 for a collection of the values). As shown in the

last section, the fit of the CCC 2 (in contrast to the ACC) is more sensitive to the lateral size of the focal

volume wxy. On the contrary, a model fit of the ACC allows for a more precise estimation of N and D if

the parameters of the focal volume are known with a good accuracy. Finally, the combination of all five

correlation curves yielded the best results (cf., Figure 6.7).

Going back to the example mentioned above, Figure 6.8 shows the result of global fits for the measure-

ments already presented in Figure 6.1. The distribution of measured diffusion coefficients (Figure 6.8a)

was much more narrow with an relative standard deviation below cvD = 20%, which is significantly

lower tan the results shown in the previous section (cvD > 30%). In the horizontal distribution of dif-

fusion coefficients (b) still a position dependence is prominent, but this dependence is way weaker than

before and D only varies between 2.5 μm2/s to 5.0 μm2/s.

The x-dependence of the fit-parameter wxy is shown in Figure 6.8c. For comparison, the orange curve

in Figure 6.8c was obtained from a fit of the ACC only where a constant diffusion coefficient (from global

fit) was assumed and wxy was used as a free parameter. Both showed a similar shape. The minimum of

both curves was in agreement with the result of the bead-scan. The derived concentration in the focus c, is

plotted in Figure 6.8d. Contrary to the expectations, the measured c is not constant for the homogeneous
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Figure 6.8.: Distribution of the measured diffusion coefficients D, the lateral half width of the focus GAUSSIANwxy, and
the particle concentration c of TetraSpeck ∅ = 100nm fluorescent beads obtained from global fits. Different measure-

ments (‘runs’) of the same sample are shown in red and green. (a) Histogram of the diffusion coefficients D obtained for

all pixels. Solid lines represent GAUSSIAN fits of the histograms. Fit results are given in the plot. The theoretical value of

(3.85±0.63) μm2/s [154] is indicated as a dashed black line, its error as a gray area. (b) Dependency of D on the x-position

(horizontal). (c) Position dependency of wxy. The data from Figure 6.3 are shown for comparison (orange). (c) Position

dependency of the particle concentration in the focal volume.
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6. Application of SPAD arrays for in vitro and in vivo measurements

sample. As c also depends on the longitudinal half axis of the focus,

c ∝ N ·wxy
−2 ·wz

−1, (6.5)

the drift might stem from an inhomogeneity of wz, which will be addressed in the next section.

6.3.4. Global fit with constant c

Until now, the concentration c in the fit models used for auto- and cross-correlation was a derived pa-

rameter. It is calculated from wxy, wz, and N (see section 2.4.3). In order to use wz as a free parameter

and c as a constant, the role of both is exchanged. According to the definition of the effective volume,

equation (2.59), wz can be written as

wz =
Veff

π3/2 ·wxy
2
. (6.6)

Whereby the effective volume can be expressed by the particle number and the concentration (cf., equa-

tion (2.60)):

Veff =
N
c
. (6.7)

By substituting wz with equation (6.6) and equation (6.7) in the fit models, modified models were derived

that rely on D, N, wxy, and c instead of D, N, wxy, and wz.

Figure 6.9 shows the result of a global fit with a constant concentration for the sample evaluated in

the last section. Figure 6.9b illustrates the x-dependence of the diffusion coefficient. In comparison to

the global fit with a constant wz (see last section, Figure 6.8b), the curve is almost flat across the entire

sensor. Thus, the corresponding histogram of the diffusion coefficients, as shown in (a), is much more

narrow. A GAUSSIAN fit of the histogram yields a value for the relative standard deviation of about

cvD = 10%. The mean diffusion coefficient D1...6 = (4.0±0.4) μm2/s is in good agreement with the

theoretical value.

Figure 6.9c and (d) show the horizontal dependence of both parameters of the focus. The progression

of wxy is almost identical to that of the global fit (see last section, Figure 6.8c). Contrary to the expec-

tations, the global fit with constant c indicated a significant position dependence of wz, which was not

further investigated.

For this evaluation, the mean value of the concentration by a previously ran global fit of the same

dataset (cf. Figure 6.8) was used as a constant. This value can also be determined by a different measure-

ment technique (e.g. FCS, photometer, etc.). If the concentration is not known (wxy, wz, and c used as

free parameters), global fits did not converge. Therefore, in the following evaluations the original models

are used with a constant wz determined by a bead-scan. This is justified as the influence of wz is much

less than that of wxy in the model functions.

So far, the global fit with a constant concentration yielded the lowest relative standard deviation of

the diffusion coefficient. In the following section, the theoretical minimum of the relative standard

deviation is evaluated. Table 6.2 shows a comparison of the diffusion coefficients obtained by different

fit approaches.
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Figure 6.9.: Distribution of the measured diffusion coefficients D and the lateral and longitudinal half width of the focus
GAUSSIANwxy and wz of TetraSpeck ∅= 100nm fluorescent beads obtained from global fits with a constant concentration
c. Different measurements (‘runs’) of the same sample are shown in red and green. (a) Histogram of the diffusion coefficients D
obtained for all pixels. Solid lines represent GAUSSIAN fits of the histograms. Fit results are given in the plot. The theoretical

value of (3.85±0.63) μm2/s [154] is indicated as a dashed black line, its error as a gray area. (b) x-dependence of D. (c)

x-dependence of wxy. (d) x-dependence of wz.
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6. Application of SPAD arrays for in vitro and in vivo measurements

6.3.5. Relative standard deviation of the measured diffusion coefficient

To get an impression of the theoretical relative standard deviation (rel. sd.) of the measurements shown

above, the spread of the measured diffusion coefficients was evaluated in a local environment of the

x-position. Therefore, the diffusion coefficient D(x) is scaled at every position x with the local median

of its ten pixel neighborhood:

Ddetr.(x) =
D(x)

median({D(χ),χ ∈ [x−5,x+5]}) . (6.8)

The resulting histogram is fitted with a GAUSSIAN function. For the fit parameters the following relations

apply:

μD � 1 (6.9)

cvD =
σD

μD
� σD. (6.10)

This so called ‘de-trending’ is used to estimate the spread of a signal that is not constant but slow chang-

ing in time or along an axis. As this method does not conserve the absolute value of D, only a statement

about the relative errors can be made.

Figure 6.10a shows the distribution of the relative standard deviation of the measured diffusion co-

efficient after de-trending. The diffusion coefficients were obtained by fits of the ACCs only. The

corresponding position dependence is shown in (b). For this TetraSpeck ∅ = 100nm fluorescent beads

sample, the relative standard deviation of the diffusion coefficient was about 6 % on the average. A de-

trending of the diffusion coefficients obtained by global fits yielded comparable results. Similar values

of approximately cvD = 10% were achieved for the fits of the ACCs in the center of the sensor without

de-trending by choosing a 128 pixel wide subregion∗ (data not shown).

6.3.6. Comparison of different fit approaches

Table 6.2 shows an assembly of the measured diffusion coefficients based on fits of different sets of

correlation curves. The values obtained by a global fit are in good agreement with the theoretical value
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Figure 6.10.: Distribution of the de-trended diffusion coefficients Ddetr. of TetraSpeck ∅ = 100nm fluorescent beads
obtained by fits of the autocorrelation curves. Different measurements (‘runs’) of the same sample are shown in red and

green. (a) Histogram of the de-trended diffusion coefficients Ddetr. obtained for all pixels. Solid lines represent GAUSSIAN fits

of the histograms. Fit results are given in the plot. (b) x-dependence of Ddetr..

∗In principle, an arbitrary sized region can be chosen, but as the EMCCD camera has 128× 128 pixels, this is a natural

choice.
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of (3.85±0.63) μm2/s [154]. A fit of the ACCs only underestimated the expected value by almost a

factor of two.

By de-trending the measured diffusion coefficients along the lateral axis, a lower limit of 6 % for the

relative standard deviation could be found. This is in agreement with the typical variations in the size of

the beads (cv = 7% [214]). The de-trended results are comparable for all different fit approaches.

The narrowest distribution of cvD ∼ 10% was reached by the global fit with a constant concentration.

With a fixed wz, the global fit yielded an relative standard deviation of less than cvD ∼ 20%. Results that

were obtained by fits of the ACCs only, had a relative standard deviation of 30% and above.

6.3.7. Conclusion

The evaluation of TetraSpeck ∅ = 100nm fluorescent beads revealed a possible position dependence of

the focal volume. The exact cause of this inhomogeneity is not known to full extend. As indicated in

appendix E.1, a possible source is the angle between the focal plane of the detection objective and the

lightsheet. Other reasons might be optical aberrations that appear in the tube lens and the objective.

These effects are visible only due to the large size of the sensor. The inhomogeneous light distribution

across the CHSPAD due to the equidistant spacing of the microlenses or a divergence between the focal

plane of the tube-lens and the focal plane of the microlenses seemed not to have a significant influence.

As Figure E.2 shows, the same spacial variation of wxy was visible for the sensors with and without

microlenses. This effect was not detected so far with the four times smaller sensor of the EMCCD

camera.

The results suggest, that by model fitting multiple correlation curves globally, it was possible to use

wxy as a free parameter and to account for the inhomogeneity in wxy during the evaluation. It can be stated

that the progression of wxy along the x-axis is comparable to what can be obtained by a model fit of the

ACC only with a fixed D and a free wxy. At the same time the constancy of wz has to be questioned, and it

should in principle be used as a free parameter, too. Unfortunately, fits with such a set of free parameters

did not converge.

Another solution would be to only use the inner 128× 128 pixels of the sensor. A model fit of the

ACCs only in this central area yielded a comparable (or even better) relative standard deviation than the

global fit of the entire sensor. But at the same time this would eliminate the benefit of the huge size of

the CHSPAD.

Finally, by using a de-trending of the measured diffusion coefficients, it could be shown that the setup

is in principle capable of measuring diffusion coefficients of a homogeneous sample of fluorescent beads

with a relative standard deviation of only 6 %. The remaining standard deviation might be caused by

system-inherent noise or variations of the sample itself.

fit run 1 run 6 median

D±σD cvD cv
detr.
D D±σD cvD cv

detr.
D D±σD cvD cv

detr.
D

[μm2/s] [%] [%] [μm2/s] [%] [%] [μm2/s] [%] [%]

ACC (wxy, wz fix) 2.5±0.8 33 5 2.5±1.0 42 6 2.5±1.0 39 5

CCC 1 (wz fix) 2.4±0.5 22 - 2.4±0.4 15 - 2.4±0.4 19 -

CCC 2 (wz fix) 3.2±0.8 26 - 3.4±0.7 20 - 3.3±0.8 24 -

global (wz fix) 3.6±0.7 19 5 3.8±0.6 15 5 3.7±0.6 16 5

global (c fix) 3.9±0.4 11 6 4.0±0.4 9 6 4.0±0.4 11 6

Table 6.2.: Measured diffusion coefficients D of TetraSpeck ∅ = 100nm fluorescent beads obtained by fits of different
set of correlation curves. The first column of every set represent the mean value of a GAUSSIAN fit of the histogram of the

diffusion coefficients. Its relative standard deviation is shown in the second column. The third column of every set gives the

relative standard deviation of the de-trended diffusion coefficient (‘detr.’). The median value accounts for all six runs.
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6. Application of SPAD arrays for in vitro and in vivo measurements

6.4. Influence of the detected light intensity and the binning on the measured
diffusion coefficient and the particle concentration in the focus

A major problem of the detector is its limited photon detection efficiency. When samples are measured,

the remaining question is the quality of the extracted diffusion coefficients, and whether the emitted light

is sufficient for a correct determination of the diffusion coefficient and its independence of binning by

averaging correlation curves from neighboring pixels.

In Figure 6.11 these effects are simulated using TetraSpeck ∅ = 100nm fluorescent beads (T7279,

INVITROGEN). The original dataset containing the raw photon information was artificially dimmed, by

randomly removing photon events from the dataset. The raw data were acquired at mean laser intensity

of the lightsheet of about 70 W/cm2. Figure 6.11a shows the dependency of the measured diffusion

coefficient and its relative standard deviation on the light intensity of the lightsheet. The results suggest

that binning does not have a big influence on the final value of the measured diffusion coefficient, but

significantly reduces the width of their distribution, especially for low light intensities. By using 4× 4

pixels for binning, the same standard deviation as for the non-binned dataset can be reached, but already

at an almost thirty-fold decreased laser power. Using a region of 2×2 pixels, a ten-fold lower intensity

resembled this relative standard deviation. The plot also indicates that there is a lower limit of the relative

standard deviation at about cvD = 15% which cannot be decreased any further by a higher light intensity.

This minimum might be inherent to the sample, to the entire detection system, or to the fit procedure

(compare last section). For this type of sample, a threshold of cvD = 20% relative standard deviation can

be defined which guaranteed an almost constant mean diffusion coefficient.

Figure 6.11b shows the measured particle concentration in the focus obtained from the same simula-

tion. For c, the lower limit for the relative standard deviation seemed to be about 40 %. In comparison

to the diffusion coefficient, the result of the measured particle concentration in the focus is less stable.

Roughly below 10 W/cm2, the fits start to underestimate the value at high count rates. Binning can be

used to act against this tendency. The effect of underestimating the diffusion coefficient for low light sit-

uations can also be seen in the measurements of QDot-525 streptavidin ITK and eGFP oligomers shown

in the Appendix (see Figure E.5 and Figure E.9).

Figure 6.12 shows the relative standard deviation as a function of the count rate per molecule (CPM).

The evaluation is based on the dataset already presented in Figure 6.11. The simulation showed, that

for values CPM < 300Hz the relative standard deviation of the measured diffusion coefficient increases.

This value has been used as a measure for the accuracy of the obtained diffusion coefficient.
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6.4. Influence of detected light intensity and binning on diffusion coefficient and concentration
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Figure 6.11.: Simulated influence of the detected light intensity on the measured diffusion coefficient and the particle
concentration in focus of TetraSpeck ∅= 100nm fluorescent beads obtained by global fits. (a) Diffusion coefficient D. (b)

Particle concentration in focus c. Results are shown for different bin-sizes (1× 1 to 4× 4). The respective relative standard

deviation σ is shown as a dotted line, absolute standard deviation is shown as a semi-transparent area. All diffusion coefficients

were re-calibrated to ϑ = 20◦C. A single measurement with an effective laser power Peff = 5mW, which is approximately

ILS = 70W/cm2 at the center of the lightsheet. Single photon events were then randomly removed from the raw dataset to

stimulate measurements with a reduced excitation laser power.
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Figure 6.12.: Simulated influence of the count rate per molecule on the relative standard deviation of the measured
diffusion coefficient of TetraSpeck ∅ = 100nm fluorescent beads obtained by a global fit. Results are shown for different

bin-sizes (1×1 to 4×4). Data is based on a single measurement with an effective laser power Peff = 5mW, which is approxi-

mately ILS = 70W/cm2 at the center of the lightsheet. Single photon events were then randomly removed from the raw dataset

to stimulate a reduced excitation laser power. Same data as also shown in Figure 6.11.
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6. Application of SPAD arrays for in vitro and in vivo measurements

6.5. Dependency of the measured diffusion coefficient on the minimum lag
time

SPAD arrays allow for much higher frame rates and therefore for shorter correlation times in FCS ex-

periments. If the minimum correlation time τmin is too high, the plateau of the correlation curve cannot

be resolved and consequently the fits cannot accurately estimate the parameters anymore. The impact is

highest for the particle number, which is proportional to 1/G(0). To be able to obtain reliable results, it

is therefore important to know the minimum value τmin which is necessary to resolve the parameters of

interest with a reasonable precision.

Knowing the limits of τmin is also valuable information for designing a readout system with respect to

the maximum frame rate. But also for correlator design where every additional low-lag time correlator

block increases the computational effort by a factor of two. If the single frame integration time is higher

than the required τmin, consecutive input values can be binned in the time domain and be correlated at

reduced speed. In the following, the dependence of the measured diffusion coefficient D on τmin is eval-

uated for two different samples: TetraSpeck ∅ = 100nm fluorescent beads and QDot-525 streptavidin
ITK.

To simulate a slower detection system, all correlator channels with τ smaller than the desired τmin

were excluded from the dataset before the model fit. As the impact of the afterpulsing (cf., section 2.4.3)

is quite high, data is normalized to the measurement with the first five channels excluded (D5, c5). All

datasets were fitted with the same models that include afterpulsing. Both samples diffuse quite differ-

ently, so only relative concentrations and diffusion coefficients were considered. The given errors are

relative standard deviations of GAUSSIAN fits to the resulting histograms of the corresponding parame-

ters obtained for each single pixels. A single measurement took 51.2 s (80×106 frames) with a field of

view of 4×512 pixels. The first channel corresponded to τ1 = 6.4μs.

Figure 6.13 shows the measured relative diffusion coefficients and particle concentrations for the two

samples in relation to the minimum τmin/τD. These evaluations were done for fits of the ACCs only ((a) &

(b)), and for the global fit ((c) & (d)). The standard deviation is shown as solid area, the relative standard

deviation of the mean value is shown as a dotted curve.

When only the autocorrelation function (ACF) estimates were taken into account, the diffusion coeffi-

cients as well as the particle concentrations were less stable for an increasing τmin/τD. For both samples, the

relative standard deviation started to change significantly at roughly τmin/τD = 0.05. For the QDot-525
streptavidin ITK sample, the width of the distribution of the diffusion coefficient is significantly better

than for the TetraSpeck ∅= 100nm fluorescent beads sample, which was opposite in case of the particle

concentration. The same evaluations with the same samples were done using the global fit: When only

the mean values of the distributions were considered, the diffusion coefficient was almost constant even

for τmin/τD > 1 in case of the TetraSpeck beads. For the QDot-525 it started to change at τmin/τD = 0.1.

Considering the concentrations, the mean value was more stable and could be determined for values

above τmin/τD = 1. In contrast to the fits of the ACCs, the measured concentration tends to underestimate

the expected value for an increasing τmin/τD. A similar study for the same sample using an EMCCD

camera was published in Ref. [120].
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6.5. Dependency of the measured diffusion coefficient on the minimum lag time
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Figure 6.13.: Dependence of the measured diffusion coefficient D and the particle concentration c on the minimum
lag-time used for recording. Plots (a) and (b) are based on fits of the ACCs, (c) and (d) on global fits. The effect is shown for

two samples, TetraSpeck ∅= 100nm fluorescent beads (red) and QDot-525 streptavidin ITK (blue). In both plots, the relative

change of the fit parameter compared to the measurement without the first five channels is shown in relation to τmin.
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6. Application of SPAD arrays for in vitro and in vivo measurements

6.6. Measurement of the diffusion of small fluorescent dyes

The evaluations presented so far were done with relatively large and bright 100 nm fluorescent beads.

In this section, smaller and thus faster dyes are evaluated in the SPIM-FCS setup for the use with the

CHSPAD. These were the medium sized QDot-525 streptavidin ITK (Q10041MP, INVITROGEN) with a

diameter of about 6 nm, Alexa-488 (INVITROGEN), which is one of the smallest dyes (1 nm in diameter),

and enhanced green fluorescent protein (eGFP) oligomers with diameters ranging from 4nm to 12nm

(see section 2.2 for details on the dyes). Such fluorescent dyes are commonly used for the labeling of

biological samples.

6.6.1. QDot-525 and Alexa-488

Figure 6.14 shows representative examples of the correlation curves obtained for QDot-525 streptavidin
ITK and Alexa-488, including global fits. In contrast to the significantly brighter 100 nm fluorescent

bead samples, here the effect of afterpulsing became much more prominent in the ACCs. In case of the

QDot-525, the afterpulsing was still well separated from the diffusion induced decay of the correlation

curve. For the sample of Alexa-488, a fit of the ACCs did not yield any meaningful result as both decays

were on the same timescale. The afterpulsing was not detected in the CCF estimates, as the read-out of

different pixels is not correlated.

Figure 6.15 shows the corresponding histograms including GAUSSIAN fits of the measured diffusion

coefficients for both samples. In both cases, reasonable narrow distributions were obtained for the non-

binned data: cvDQDot-525 = 30% and cvDAlexa-488 = 30% for the mean values of three samples each. In

comparison to the TetraSpeck ∅= 100nm fluorescent beads (T7279, INVITROGEN) the distributions are

about a factor of two wider (cvDTetraSpeck beads ≈ 13%). This can be explained with the significantly lower

brightness of both fluorophores and with that more noisy correlation curves.

The effect of afterpulsing could be corrected for using a global fit as already explained in the last

section. Without a global fit, distinguishing between the afterpulsing and the diffusion was impossible in

case of Alexa-488, as the decay of the afterpulsing is in the range of the diffusion time of the sample (see

Figure 6.14c). Again, for both samples, additional binning significantly reduced the noise, consequently

improved the fit accuracy, and almost halved the width of the distribution of diffusion coefficients (see

Table 6.3 for a summary).

Additional measurements of the samples are shown in appendix E.3. The results of this measurement

are compared to results of several other diffusion measurements in section 6.7.

6.6.2. eGFP oligomers

As a third sample eGFP oligomers were evaluated. These fluorescent proteins can be used to create

fusion-proteins of a target protein and the dye which can then be integrated into live cells via trans-

fection. The cell then starts to produce the fusion-proteins which can be investigated for example with

fluorescence microscopy techniques. In this section eGFP oligomers were assessed in the SPIM-FCS

setup. For this purpose, dilutions of the protein in aqueous solution were evaluated. Live cell measure-

ments of eGFP oligomers are presented in the next section.

Figure 6.16 shows representative ACCs of two different eGFP oligomers with and without binning and

results of a global fits (CCCs are omitted for a better readability). Again, as for Alexa-488, the diffusion

time of eGFP monomers (red) overlapped with the decay time of the afterpulsing. For the four fold larger

and brighter tetramers, both components could be separated easier. Due to the low fluorescence intensity,

the curves without spatial binning showed heavy noise.

The corresponding histograms of the measured diffusion coefficients including GAUSSIAN fits are

depicted in Figure 6.17. By applying spatial binning, the relative standard deviation was decreased

by a factor of two down to cvDeGFP-1x ∼ 30% and cvDeGFP-4x ∼ 16%. The mean values are in good
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6.6. Measurement of the diffusion of small fluorescent dyes

(a) QDot-525, 1×1 binning
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(c) Alexa-488, 1×1 binning
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(d) Alexa-488, 3×3 binning
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Figure 6.14.: Representative examples of single pixel measurements of QDot-525 streptavidin ITK and Alexa-488 in
solution with and without binning. The plots show all five correlation curves (i.e., ACC + 4 CCCs) including global fits and

residuals. Laser intensity at the center of the lightsheet was approximately ILS = 255W/cm2. Thin lines represent the raw data,

thick curves are the corresponding fit model.

159



6. Application of SPAD arrays for in vitro and in vivo measurements
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Figure 6.15.: Histogram of the measured diffusion coefficients D for three different samples of QDot-525 and Alexa-488
in solution. Diffusion coefficients were obtained by global fits. The mean values of the GAUSSIAN fits of the histogram are

shown above the plot. (a) QDot-525 streptavidin ITK. Laser intensity in the center of the lightsheet was set to 80 W/cm2

(red,blue) and 400 W/cm2 (green). The gray rectangle in the background represents the expected diffusion coefficients of for

spherical particles of a diameter 15 nm to 20 nm. No binning was applied. Mean value of the three measurements: D̄QDot-525 =
(21±7) μm2/s. (b) Alexa-488. Laser intensity in the center of the lightsheet was set to 80 W/cm2. Results are shown for three

different dilutions. Mean value of the measurements: D̄Alexa-488 = (411±124) μm2/s. Raw data has been binned 3× 3. The

literature value D20,WAlexa-488, lit. = 407μm2/s [173] is shown as a black dotted line.
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Figure 6.16.: eGFP oligomers in solution: Example of raw autocorrelation curves including global fits. Pixels were

selected to show a diffusion coefficient similar to the mean value of each sample. Fits are shown as a thick line. The two plots

show curves of the same pixels (a) without and (b) with binning.

160



6.7. Summary of diffusion measurements
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Figure 6.17.: eGFP oligomers in solution: Histograms of the measured diffusion coefficients obtained by global fits. The

mean values of the GAUSSIAN fits (solid lines) of the histograms are written above the plot. Results are shown without (a) and

out binning (b).

agreement with measurements of the same sample on the same instrument with the EMCCD camera

[119]. Additional measurements of eGFP oligomers are shown in the appendix E.3. The results of the

diffusion measurements of various samples are assembled in Table 6.3.

6.7. Summary of diffusion measurements

The diffusion measurements described so far, as well as further measurements described in appendix E,

are summarized in Table 6.3. Only measurements of the fluorescent bead samples exceeded the threshold

for the count rate per molecule of 300 Hz which is required for an accurate determination of the diffusion

coefficient (i.e., cvD < 20%, see section 6.4). All other samples had a significantly lower count rate

per molecule, of the order of 100 or below. For all samples, 3× 3 spatial binning reduced the relative

standard deviation of the diffusion coefficient D approximately by a factor of two. Binning also lowered

the risk of underestimating the diffusion coefficient of dim samples (i.e., eGFP-1x, see also section 6.4).

It can be stated, that all samples evaluated with the CHSPAD sensor yielded results that are in agreement

with the references within the errors (see Table 6.3 for details on the reference values).

In case of the eGFP oligomers, the high background signal in relation to the fluorescence made it

impossible to detect significant changes in the count rate per molecule for the different constructs. Es-

pecially for the dim monomers, afterpulsing had a significant influence on the count rate, so that the

expected factor of three to four in the CPM between the monomer and the tetramer was not observable.

However, the mean diffusion coefficients were nearly identical to the results that were obtained in a

comparable measurement of the same oligomers on the instrument with the EMCCD camera [119].
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6. Application of SPAD arrays for in vitro and in vivo measurements

sample binning D20,W cvD20,W
CPM Dtheo. comments

[μm2/s] [%] [Hz] [μm2/s]

TetraSpeck beads 1×1 3.71±0.45 12 ∼ 660 3.85±0.63 1 measurement

FluoSpheres YG beads 1×1 4.09±0.65 16 ∼ (3 . . .12) ·103 3.85±0.63 4 samples

1×1 20.8±8.4 40 ∼ 30 . . .170 21 to 29 17 measurements

2×2 21.4±6.3 29 21 to 29 18 measurementsQDot-525
3×3 21.8±5.2 24 21 to 29 18 measurements

1×1 375±119 32 ∼ 66 . . .127 407 6 samples

2×2 385±79 21 407 6 samplesAlexa-488
3×3 391±55 14 407 6 samples

eGFP-1x 1×1 102±68 67 ∼ 34 . . .38 118±8 4 measurements

eGFP-1x 3×3 116±34 29 118±8 7 measurements

eGFP-2x 1×1 71±43 61 ∼ 26 . . .37 77±9 4 measurements

eGFP-2x 3×3 77±21 27 77±9 4 measurements

eGFP-3x 1×1 59±20 34 ∼ 32 . . .55 N/A 4 measurements

eGFP-3x 3×3 61±11 18 N/A 4 measurements

eGFP-4x 1×1 57±18 32 ∼ 34 . . .61 63±6 4 measurements

eGFP-4x 3×3 57±09 16 63±6 4 measurements

Table 6.3.: Summary of measured diffusion coefficients of various samples performed with the CHSPAD. All diffusion

coefficients were obtained from global fits. The given values for the diffusion coefficients are medians includin median values of

the standard deviation (sd). Values for 100 nm beads are taken from Figure E.3. The theoretical value is taken from Ref. [154].

Detailed measurements of FluoSpheres YG ∅ = 100nm fluorescent beads are shown in Figure E.4. The theoretical value is

assumed to be identical to the one of TetraSpeck beads. Detailed measurements of QDot-525 streptavidin ITK are shown in

Figure E.5. The theoretical value is calculated for a sphere with a ∅ = 15 . . .20nm. Detailed measurements of Alexa-488
are shown in Figure E.7. The theoretical value is taken from Ref. [173]. Detailed measurements of eGFP oligomers are

shown in Figure E.9. The reference values are based on EMCCD data that were taken on the same instrument [119]. For the

measurements where no binning was applied, the count rate per molecule is given.
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6.8. Particle concentration measurements

6.8. Particle concentration measurements

Apart from the diffusion coefficient D, the second basic parameter that can be obtained from FCS mea-

surements is the particle concentration c in the focal volume. To assess the performance of the CHSPAD

sensor within the SPIM-FCS setup, several measurements of dilution series were performed on the in-

strument. For reference, the same samples were measured on a standard confocal setup in parallel.

Figure 6.18 shows the histograms of the measured concentrations c of a dilution series of Alexa-488.

Every sample of the dilution series was clearly distinguishable from the others. The resulting histograms

showed an almost GAUSSIAN shape, as expected for homogeneous samples, with an average relative

width below cvc = 20%, which is comparable to the diffusion coefficient.

Figure 6.19 shows the measured concentration in comparison to confocal measurements of the same

samples for the dilution series of three different samples, Alexa-488, FluoSpheres YG ∅= 100nm fluo-

rescent beads (F8803, INVITROGEN), and QDot-525 streptavidin ITK (Q10041MP, INVITROGEN). For

the CHSPAD, each data point represents a single measurement. The mean value and the standard devia-

tion were obtained for each sample from a GAUSSIAN fit of the histogram. In case of confocal FCS, each

data point represents the mean value of at least six measurements. The coefficients that are presented in

Table 6.4 were obtained from weighted linear fits (dashed lines in Figure 6.19). For the three different

samples, linear relationships between the concentrations measured in a SPIM with the CHSPAD and on

a confocal setup were obtained over almost three orders of magnitude. All three samples yielded con-

centration values of about a factor of 1.7 above the value obtained with the confocal setup. With the

EMCCD camera, the overestimation on the same setup was typically three fold [119, p. 126]. The origin

of the overestimation is not yet known but may stem from a too simple model for the focal volume in the

model functions [119, 201].

The high temporal resolution of the CHSPAD allowed for a precise determination even of the fast

Alexa-488, with approximately the same overestimation as obtained for the significantly brighter TetraSpeck
beads. Due to the linear relation, this overestimation can easily be corrected for by a calibration sam-

ple of known concentration. Without further calibration, the setup is well suited for the assessment of

relative concentrations.

sample binning cSPIM/cconfocal

FluoSpheres YG beads 1×1 1.60±0.02

Alexa-488 1×1 1.69±0.13

1×1 1.83±0.06

2×2 1.92±0.07QDot-525 streptavidin ITK
3×3 1.95±0.08

Table 6.4.: Relative particle concentrations in the focus of various samples in relation to confocal FCS. The respective

plots are shown in appendix E.
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6.9. Mapping diffusion properties of eGFP-oligomers in HeLa cells

The cells for this section were prepared by Gabriele Müller (DKFZ, Heidelberg, Germany). Details on the cell
culture protocols can be found in Ref. [119, pp. 206].
As described in the introduction (cf., Figure 1.7), the final goal of this thesis was to create mobility

maps of fluorescent proteins in live cells. In this section well established HeLa cells were used as a

test system. These cells were genetically modified to produce different oligomers of enhanced green

fluorescent protein (eGFP). Figure 6.20 shows a combined view of the transmission and fluorescence of

the measured HeLa cells, expressing tetrameric eGFP. The image was acquired on an epi-fluorescence

microscope. The measurements in this section were a proof of concept for further in-vivo measurements

in live cells on the SPIM-FCS setup. Currently no other detection system is capable of such many

simultaneous multi-spot measurements at such a high temporal resolution.

6.9.1. Measurement protocol

For live cell measurements, the protocol described in section 6.1 was adapted. The ROI on the sensor

was chosen as small as possible, to still fit a single cell. Sample cells were selected by shape (no blebs, a

recognizable nucleus, typical elongated shape, etc.), to measure healthy ones only. To be able to capture

a high number of photons, only the brightest cells that could be found were measured. Raw data was

captured until the 4 GB limit of the readout design was reached with a typical duration (depending on the

exact ROI) of about 50 s or more. The data was bleach-corrected according to the procedure described

in section 2.3.2 and the correlation curves were calculated using the correlator described in section 5.3.

For further analysis, parts of the image outside of the cells were masked by imposing a threshold on the

fluorescence intensity. As a last step, a global fit of all five correlation estimates (CEs) was performed as

described in section 6.3.3 using the fit models described above.

6.9.2. Photobleaching

To account for the low sensitivity of the CHSPAD, again, a laser-power of approximately peff = 20mW

was used, which roughly corresponds to ILS = 260W/cm2 at the center of the lightsheet. This is about a

factor of two higher than the laser-power typically used for cell measurements with the EMCCD camera

on the same setup. The higher illumination intensity led to a strong photobleaching, which is shown in

Figure 6.21 for a typical measurement. After a measurement, the cells in the focal plane were almost

completely bleached and hardly visible. Free eGFP undergoes bleaching, too, but the pool of unaffected

dye in a sample bag is some orders of magnitudes larger than in the volume of a cell. Therefore, in the

sample-bags, un-bleached dye molecules constantly diffuse back into the focal volume and bleaching is

significantly less pronounced.

Bleaching adds a time-dependent component to the correlation curves, which reduces the quality of

the fits. This was accounted for by a correction of the raw data prior to the correlation according to

equation (2.20).
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Figure 6.20.: Combined transmission and fluorescence images of HeLa-cells expressing eGFP-4x. Image width is 162 μm.

The image was acquired on an epi-fluorescence microscope with a magnification of 40× and a LUMENERA Infinity2-1R CCD

camera. The image have been optimized for better contrast. The image is taken from Ref. [119].
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Figure 6.21.: Representative intensity time-trace of the fluorescence detected by a single pixel of the CHSPAD during
a 43 s measurement of eGFP-8x in HeLa-cells. The intensity (red) decreases by a factor 2.7 over time. A fit of the model-

function,equation (2.21), is shown in blue.
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6.9.3. In-vivo measurements

Figure 6.22 shows the maps for three HeLa cells expressing different oligomers (monomers: eGFP-1x;

tetramers: eGFP-4x; and octamers: eGFP-8x). The first column contains an overview image based on

the detected fluorescence intensity. In the second column the map of diffusion coefficients D is shown.

Finally, the last column contains a map of the particle concentration in the focus c. To impose no

additional averaging, no binning was applied. Figure 6.23 shows the corresponding distributions of D
and c including GAUSSIAN fits.

For the three cells, representative ACCs are plotted in Figure 6.24. The higher viscosity of the cyto-

plasm, in comparison to water (see section 6.6.2, for results from the free dye), reduced the diffusion

coefficients of the eGFP oligomers approximately five-fold. This made it easier for the fit to distinguish

between the afterpulsing component and diffusion component.

Figure 6.25 summarizes the results of several measurements of HeLa cells expression eGFP oligomers

that were performed with the CHSPAD. Numbers are given in Table 6.5. For comparison, results for

the same samples obtained on the same instrument with an EMCCD camera [119] and on a confocal

FCS instrument performed in the same lab [59] are shown, too. Those results were obtained using a

two-component model (for two diffusing species). Due to the higher noise and the afterpulsing in the

correlation curves obtained with the CHSPAD, a two-component model could not be fitted reliably and

results obtained with CHSPAD showed a significantly lower diffusion coefficient (almost factor of two).

For the tetramers and octamers the measurements of the diffusion coefficients yielded a relative standard

deviation of cvD ∼ 25% (with binning), which is about a factor of 1.5 above the value obtained for

the free dye. In case of the much dimmer monomers, a relative standard deviation of cvD ∼ 40% was

obtained. Without binning, the distributions were about two-fold wider.

To account for the systematic error introduced by a single component fit model, relative diffusion

coefficients between two species were evaluated. These relative values were comparable for all three

setups, showing that the setup with the CHSPAD allows to clearly distinguish between different eGFP

oligomers. However, the high noise of the obtained maps did not allow for making statements on the

spatial organization of fluorescent dye within the cell. For that purpose a more sensitive detector is

required.

A rough estimation showed that the count rates per molecule for the samples plotted in Figure 6.23

were around 50 Hz. This value is significantly below the threshold of 300 Hz and explains the large width

of the distributions. Again, as for the free eGFP in solution, the count rate per molecule did not change

significantly for the different oligomers.

Sample DCHSPAD DEMCCD Dconfocal

1×1 binning 3×3 binning

D20,WeGFP-1x [μm2/s] 20.7±12.6 25.5±9.9 38.2±7.0 33.3±7.3
D20,WeGFP-4x [μm2/s] 8.6±6.0 9.1±2.4 15.5±2.2 14.1±3.3

D20,WeGFP-8x [μm2/s] 5.6±1.7 6.5±1.6 11.6±2.9 N/A

D20,WeGFP-1x

/
D20,WeGFP-4x 2.4±2.2 2.8±1.3 2.5±0.6 2.4±0.8

D20,WeGFP-1x

/
D20,WeGFP-8x 3.7±2.5 3.9±1.8 3.3±1.0 N/A

D20,WeGFP-4x

/
D20,WeGFP-8x 1.5±1.1 1.4±0.5 1.3±0.4 N/A

Table 6.5.: eGFP oligomers in HeLa-cells: Summary of the measured diffusion coefficients. Results given for the CHSPAD

are median values of the measurements shown in Figure 6.25. EMCCD data was taken on the same instrument (cf. [119]).

Confocal data was taken from Ref. [59]. The latter two used a two component model.
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Figure 6.25.: eGFP oligomers in HeLa cells: Summary of the measured diffusion coefficients in different cells obtained
by global fits. Results are shown without (a) and with 3×3 binning (b). Symbols are mean values from GAUSSIAN fits of the

histograms of the measured diffusion coefficients. Error bars indicate standard deviations. The horizontal dashed lines represent

the mean value, the solid lines the median value for all measurements of a single species. Semi-transparent areas indicate the

median of the standard deviation for each species.
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6.10. Conclusion

It can be stated that the CHSPAD with microlenses was used successfully as a sensor in a SPIM-FCS

setup. The sensor performed best for bright samples (e.g., TetraSpeck beads), but also less bright dyes

used as biological markers were measured with good accuracy (i.e., QDot-525, Alexa-488 and eGFP

oligomers).

Especially the use of a global fit of the auto- and cross-correlation curves proved advantageous. With

this method it was possible to compensate for the inhomogeneity that was detected in the molecular

detection efficiency. Moreover, the effect of afterpulsing that superimposed the ACCs could be mitigated

so that the measurement of the diffusion of Alexa-488 became possible. Global fits of the correlation

curves allowed for a calibration-free measurement of various samples. The quality of the results was

further improved by spatial binning of the correlation curves.

In addition to the diffusion coefficient also the particle concentration in the focus can be measured. Test

show, that the results obtained with the CHSPAD tend to overestimate the concentration almost two-fold,

when compared to measurements performed on a confocal setup. Thus, if absolute concentrations are to

be measured, a calibration is required.

In the last section it was shown, that even in-vivo measurement were possible. Although the noisy

data rendered the usage of typically used two-component fit models impossible, the diffusion of eGFP

oligomers in HeLa cells could be determined. As the absolute values of the diffusion coefficient were

influenced by the choice of the fit model and varied on different microscopes, the relative factors be-

tween any two samples were almost the same on all these instruments. Unfortunately, maps of diffusion

parameters were to noisy to draw conclusions about the spatial distribution of the dye molecules within

the cells. The overall low sensitivity of the CHSPAD with microlenses also required for an increased

light intensity of the lightsheet, which also caused significant photobleaching. This was successfully

accounted for by a raw-data bleach-correction.
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7.1. Conclusion

This study investigated the suitability of new single photon avalanche diode (SPAD) arrays for imaging

fluorescence correlation spectroscopy (imaging FCS). Two arrays were first evaluated in terms of gen-

eral fitness for low-light imaging and especially for FCS-applications and appropriate readout-hardware

was designed. Correlation algorithms required for data evaluation were then implemented and assessed

on different high performance computing (HPC) platforms with regards to real-time image processing:

FPGA, CPU, and GPU. Finally, both sensors were experimentally validated in an imaging FCS micro-

scope.

7.1.1. Sensor hardware platforms

The first sensor evaluated was the RADHARD2. Developed in EDOARDO CHARBON’S lab (TU Delft,

Netherlands and École polytechnique fédérale de Lausanne, Switzerland), the sensor was already avail-

able at the beginning of this work (mid 2010). Featuring 32×32 single SPADs, the sensor can be read out

at a typical frame rate of 100000 full frames per second. The readout of the array was done by a custom

hardware design (see section 4.1), which was based on field programmable gate arrays (FPGAs). Raw

data was transferred to the host computer via a standard USB 2.0 interface. Integrated into an existing

lightsheet microscope, the RADHARD2 was successfully used for the determination of diffusion prop-

erties of various samples. Lacking microlenses for efficient photon collection, the low photon detection

probability (PDP) of this sensor (< 1%) limited its application to bright samples (e.g., fluorescent beads,

see appendix E.4).

In 2012 a new sensor became available, the Swiss single photon avalanche diode array (CHSPAD), also

from EDOARDO CHARBON’S lab. This sensor was integrated into the existing microscope setup, too,

and appropriate readout electronics were designed. Being manufactured in a more recent CMOS process,

the electronics in each pixel was shrunk and the pixel pitch was reduced from 30 μm to 24 μm. But still

the sensor uses the same SPAD design as the RADHARD2. For full frames, comprising 512×128 pixels,

a readout rate of up to 156250 fps was achieved, which resulted in a total data rate of 1.2 GiB/s. Again,

FPGAs were used for the development of a custom read-out design (see section 4.2).

To cope with the high data rate, two different approaches were used: The simple solution used the on

board memory (4 GiB) of the sensor’s mainboard to store the raw data. This limited the total measure-

ment time to 3.3 s at full resolution, or longer for subregion read-out. After image acquisition, data was

transferred to the host computer using a standard USB 2.0 interface, which usually took several minutes.

Real-time data acquisition was achieved using a second solution: Although the sensor board did not

feature any fast interfaces, the bandwidth requirements were fulfilled using several IO-pins operated

above their specification. The sensor’s mainboard was connected with 20 differential pairs to a second

FPGA board, which was then used as an interface-bridge to the host-computer’s PCIe-interface.

Instead of optimizing the data transfer, one could also reduce the data rate. Simulations showed that

lossless compression based on HUFFMANN coding could reduce the data rate more than two-fold (see

section 4.2.6).
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7.1.2. SPAD Arrays as detectors in SPIM-FCS

By the end of 2013, the CHSPAD array with microlenses finally became available for low-light mea-

surements. The sensor was used to demonstrate live cell measurements on a SPIM-FCS microscope with

commonly used dyes (cf., section 6.9.3).

Due to their digital single-photon counting capabilities, SPAD arrays proved advantageous over elec-

tron multiplying charge coupled device (EMCCD) cameras for imaging FCS applications: In comparison

to EMCCD cameras, the to-day work-horses for imaging FCS, the evaluated SPAD arrays offer a bet-

ter signal to noise ratio (SNR) (see section 4.3.2). Additionally, no further noise is added during the

readout process or during additional amplification steps in the gain-register (EMCCDs only, so called

excess-noise).

When looking at the number of pixels, their amount on the SPAD arrays was comparable to state-

of-the-art EMCCD cameras, which are typically used for lightsheet fluorescence microscopy (LSFM),

[26, 123, 200]. The two orders of magnitude higher frame rate allowed for measuring molecular motion

that cannot be resolved otherwise (e.g., small-molecules used as drug targets [71]).

The main factor that limited the usability of the CHSPAD for low-light fluorescence correlation spec-

troscopy (FCS) measurements was the overall low PDP. Although the quantum efficiency (QE) is about

40 %, and comparable to scientific cameras, the low fill-factor significantly reduces the PDP of each pixel

to 2.2 %. In comparison, back illuminated EMCCD cameras have a PDP above 90 %. This could partly

be accounted for by using microlenses, which increased the PDP approximately ten-fold.

A second limiting factor of the evaluated SPAD arrays was a significant afterpulsing. For the CHSPAD

array, the decay time of the afterpulsing was about one order of magnitude slower than expected for

substrate related effects. The afterpulsing affected several orders of magnitude of lag-times in the au-

tocorrelation curve (ACC), and could not be separated from the actual signal, especially if the detected

signal is low. The exact origin of this afterpulsing-like component could not be identified exactly during

this thesis (cf., section 4.2.4).

The afterpulsing disappeared in the spatio-temporal cross-correlation. Though, by using a global fit,

the advantages of afterpulsing-free cross-correlation estimates and the information content of the auto-

correlation estimate could be combined for more precise estimation of the diffusion coefficients. Addi-

tionally, cross-correlation introduces an independent “ruler”, as the pixel distance is precisely known. In

combination with the autocorrelation estimates, this allowed for calibration-free measurements. How-

ever, the spatial resolution is lowered when evaluating the cross-correlation curves, because multiple

pixels are taken into account and averaged over.

Global fits were also used successfully to compensate for an inhomogeneity that was detected in the

molecular detection efficiency (MDE) of the SPIM-FCS setup. Measurements showed, that the focal

volume at each pixel was not constant as expected. By using a global fit these values could be used as

free parameters, and the diffusion could be determined more accurately (cf., section 6.3.3).

A major drawback of the CHSPAD sensor platform was the lack of temperature stability. Usually,

commercially available scientific cameras adapt active cooling to keep the sensor’s temperature constant.

The combination of sensor board and motherboard did not allow for any efficient cooling of the sensor.

Depending on the incident light intensity, a sensor temperature of up to 50 ◦C was reached (see sec-

tion 4.3.9). This heating significantly increased the dark count rate (DCR) and active or passive cooling

will prove advantageous for any further application of the CHSPAD.

7.1.3. Correlation analysis

Beside FCS, correlation analysis is used to improve SNR of receivers (e.g., RADAR or GPS). In FCS,

this method is used to extract diffusion properties of the samples. Thus, several orders of magnitude need

to be evaluated in the time domain.

172



7.1. Conclusion

Correlation analysis for imaging data can either be done pixel-wise for a single color channel (au-

tocorrelation), for two pixels but one color channel (spatio-temporal cross-correlation), or for two color

channels (fluorescence cross-correlation spectroscopy, FCCS). For diffusion measurements, typically the

first two methods are applied. FCCS can be used to distinguish differently labeled species or to evaluate

reaction kinetics. The large amount of pixels and the high frame rate offered by the CHSPAD sensor

required for fast algorithms.

Signal convolution, often used for digital image processing, is closely related to correlation analysis

(WIENER-CHINTCHIN-theorem). Thus, beside the direct evaluation of the correlation integral with, for

example, a logarithmic spacing (see section 2.4.2), also data evaluation based on fast Fourier transform

(FFT) is possible (cf., section 3.2). Both variants, direct and FFT-based correlation, have a computational

complexity of O (N · logN) and rely on the full raw dataset, with N samples. To overcome the limit of

memory size, imaging FCS correlation analysis is typically done using a correlation algorithm which

allows for streaming.

As several orders of magnitude of lag times τ are evaluated, the computational costs for a simple linear

spacing of the τ-values would be too high (O
(
N2
)
). Thus the multiple-τ correlation algorithm, based on

a cascade of short linear correlators (so called blocks), is employed. For each subsequent linear block

the frequency of execution is reduced, creating a quasi-logarithmic scale. Typically, consecutive input

values for each block are accumulated to not loose information. The implicit averaging that increases

from block to block is beneficial for the application of FCS as the correlation decays to zero. On the

contrary, for signals that do not decay (e.g., a sine wave), the multiple-τ algorithm is counter-productive.

As the correlation function is evaluated at a constant number of fixed time points, the complexity is

reduced to O (N).

The multiple-τ correlation algorithm, that was used in this work, allows for easy parallelization (see

section 2.4.2). This can either be done trivially on the level of pixels, or even on the level of linear blocks.

As all linear blocks are equal, except for their time basis, the hardware for a single block, or even a single

lag, can be re-used to form a full correlator. If performance requirements permit, such hardware can even

be reused for multiple pixels.

In this study, several implementations of the multiple-τ correlation algorithm were explored in chap-

ter 5 with regards to a massively parallel correlation analysis of more than 1000 pixels and real-time

performance. The explored implementations were based on different hardware platforms, a XILINX VIR-

TEX 2 FPGA, two current CPU models, and a recent consumer-grade graphics processing unit (GPU).

On all three platforms, the correlators are centered around fast multiply accumulate (MAC) operations

(DSP-slices on FPGAs, FMA operations on CPUs and GPUs). So far, available software and hardware

implementations (cf., chapter 3) were either optimized for a few pixels only or did not achieve real-time

processing for the data rate of the CHSPAD.

For the CHSPAD sensor, the aim of real-time autocorrelation analysis was achieved on the GPU plat-

form (see section 5.4). For both, the CPU and the GPU, the achieved performance was significantly

higher than any other implementation reported so far (cf., section 3.2). Details on the three different

implementations are illustrated in the following.

GPU correlator

The GPU implementation of the multiple-τ correlation algorithm offered the highest performance of all

platforms (approximately 420 Gflops/s). Being 2.6× faster than real time on a consumer-grade NVIDIA

GTX 780Ti GPU, the correlator outperformed existing implementations by several orders of magnitude.

For the implementation of the GPU correlator, the NVIDIA compute unified device architecture

(CUDA) SDK was used. Thus, the code can be run on any NVIDIA GPU that supports compute capa-

bility 2.0 or higher. The correlator was implemented making use of the massive parallelism offered by

the GPU. Therefore, for each pixel a single thread was used to correlate the data (SIMT architecture).
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The used algorithm exploits the large amount of graphics memory and the large number of registers

in order to reduce the frequency of context switches. Thus, the most limiting factor of the implemen-

tation turned out to be the memory-bandwidth of the graphics memory. Further improvements were

described, that should allow for a speedup of approximately 3.4× over real time. Still being limited

by the memory-bandwidth, that way ∼ 22% of the theoretical peak performance of the GPU should be

achieved.

CPU correlator

The implementation of a CPU correlator was done using the current SIMD instruction set extensions and

recent fused multiply accumulate (FMA) operations. On the CPU platform, based on the INTEL Haswell
microarchitecture available in this work (INTEL 4770, quad-core processor), 50− 60% of the required

performance for real-time correlation analysis could be reached. This was approximately 39 % of the

theoretical peak performance of the chip, which is similar to results obtained by the LinPack benchmark

[110]. On the second platform, based on the AMD FX-8320 CPU, approximately 30 % of the real-time

performance was achieved.

As shown in section 5.3.5, the algorithm scaled linearly with the number of cores, so replacing the

CPU by a model with eight cores (e.g. the consumer-grade INTEL 5960X CPU), real-time correlation

should be achievable. If double precision floating-point values instead of single precision floating-point

values were used as data type, which is particularly required for bleach-corrected data, the performance

was halved.

Following the GPU implementation, the CPU correlator is the second fastest multiple-τ correlator

offering 85 Gflops/s. With that, the CPU correlator was significantly faster than other CPU-based im-

plementations.

FPGA correlator

The implementation of an FPGA correlator for the RADHARD2 was the first that was able to deal with

more than 1000 pixels. Based on hand-written hardware description language (HDL) code, real-time

correlation was achieved at a temporal resolution of the sensor of 10 μs [155]. The design is based on

32 correlators running in parallel, each handling 32 pixels. Its performance was comparable to other

implementations based on the same XILINX VIRTEX 2 family (section 3.2). Naturally, the presented

implementation is outperformed by more recent hardware and did not achieve the performance of com-

mercial correlators, although it offered significantly more channels. Assuming a moderate 25× increase

in performance (clock speed and logic resources) for a recent XILINX VIRTEX 6 FPGA over the VIR-

TEX 2 platform, the same performance as the fastest proposed hardware design should be achievable (cf.,
section 3.2).

Dataflow computing

Contrary to classical computing, dataflow computing does not use an imperative programming model

to model an algorithm but describes it as a directed graph. In such a graph data flows between small

processing elements, which perfectly map massively parallel hardware, such as FPGAs.

In section 5.5.7 a correlator design based on such a dataflow description was proposed. This design

should allow for an efficient implementation on dedicated dataflow computing platforms as, for example,

MAXELER TECHNOLOGIES MaxStation. Within the limits of such hardware (recent FPGAs), real-time

correlation should be feasible. A major benefit of this approach is the significantly reduced development-

time compared to hand-written HDL code, although typically a full redesign of the algorithm is required.
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Cost and time efficiency

From a financial point of view, the cheapest correlator was the GPU-implementation, which also offered

the best performance. The INTEL Haswell 5960X costs about a factor of two more than the GPU, but did

not provide comparable performance for this type of algorithm. At least another factor of two has to be

budgeted for the acquisition costs, if an FPGA-based solution is chosen. However, an FPGA is required

anyways for the SPAD readout, so this one can also be used for correlation, if free resources remain.

From the developer’s perspective, the FPGA implementation, based on hand-written HDL, required

the longest development time. Although the core component with the digital signal processor (DSP)

block was implemented within days, much effort had to be put into its optimization and the design of the

periphery (memory controllers, USB interfaces, etc.). The development of a CPU-based correlator was

about two to three times faster. Here, a time-consuming part was the creation of platform-independent

code, because several CPUs were used for the evaluation of the algorithms. Although a special software

library was utilized for platform-independent vectorization, support for specific features of each CPU

had to be implemented manually. Even less time was spent for the GPU platform.

A main advantage of the CPU or GPU software is the much faster response to changes in the design:

Source code can be compiled and executed within seconds (in contrast to tens of minutes for HDL-code

synthesis for FPGAs). The same applies for the debugging process: On the CPU and GPU well known

debuggers can be used and dumping the contents of variables is done easily.

7.2. Outlook

7.2.1. CHSPAD real-time data acquisition and correlation analysis

In a typical confocal setup with two avalanche photodiodes (APDs), the detector signals are directly fed

into a correlator-card. This device digitizes the raw signal and performs the correlation analysis of the

signals, typically two autocorrelations and two cross-correlations. The estimated correlation functions

are displayed in real time so that they can be used for alignment (cf., Ref. [200]) or immediate inspection

of the sample quality.

In imaging FCS it would be beneficial to display real-time maps of the ongoing diffusion, which could

be used for the alignment, too (i.e., optimizing the size of the focal volume of each pixel). Depending on

the model, the required curve fitting typically takes several minutes for the CHSPAD sensor on a recent

CPU. First efforts were made to bring the LEVENBERG-MARQUARDT fit algorithm used in here onto the

GPU have been proposed in Ref. [259]. The gain in speed compared to a quad-core CPU was reported

to be about 50× and may allow for almost real-time estimation of diffusion parameters.

Real-time operation of the microscope also allows for choosing samples with a good quality. So far,

cells were selected based on the visible fluorescence intensity. If in parallel to the intensity image a

false color image of the diffusion parameters was provided, the selection process of the samples could

be accelerated. Additionally, no further time is spent waiting for the results of the correlation analysis.

Such a selection process saves expensive disk space and evaluation time, because samples that do not

meet the requirements can be excluded prior to evaluation. If the raw data were recorded in parallel, too,

a more in-depth analysis could be done afterwards, e.g., bleach correction or further cross-correlations.

Another limiting factor of the microscopic setup was the hardware platform for the CHSPAD sensor

itself, which lacked any high-speed interfaces. Thus, real-time data transfer of the raw data was only

possible when the hardware was used above specifications. To solve this issue, a new platform is under

development∗ featuring a dedicated, up-to-date FPGA for readout and high-speed interfaces (i.e., USB

3.0 or better). The new platform will also allow for efficient cooling of the sensor.

∗Based on personal communications with the designer of the CHSPAD, SAMUEL BURRI.
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7. Conclusion and outlook

7.2.2. Correlator development

The trend in computer industry towards more parallelism, which especially applies for graphics cards,

is ideal for imaging FCS. Since the autocorrelation analysis is independent for every single pixel, more

parallel computing hardware allows to process more pixels. According to GUSTAFSON’S law, a linear

scaling of the algorithm is expected, and future arrays in the mega-pixel range can be handled, too. If

the computing hardware is not used to full capacity for autocorrelation analysis, even cross-correlation

curve can be calculated simultaneously.

A still limiting factor for correlators based on the streaming algorithm (see section 5.2.3) is the memory

bandwidth of current CPUs and GPUs. With new three-dimensionally stacked memory placed directly

on-chip, these limitations were addressed. GPUs featuring this new architecture were recently released

by AMD [6]. A similar GPU-architecture with on-chip memory was announced by NVIDIA, too [164].

With up to 1 TB/s of bandwidth and more than 20 GB of memory, these architectures should be ideal for

high performance computing in general and especially for correlation analysis.

The correlation algorithms still offer potential for additional optimizations. In case of the GPU imple-

mentation, an implementation was proposed that can further reduce execution times. Also the FPGA-

based correlator did not make use of the full potential of the underlying hardware: By taking advantage

of the binary nature of the input signal, the first linear blocks of the multiple-τ correlator could be imple-

mented as shift registers with a trivial 1× 1bit multiplication. This helps to increase the clock rate and

to save DSP resources of the correlator. A similar but less performant solution was already described in

Ref. [72].

7.2.3. SPAD arrays

The temporal resolution of the detector (i.e., its frame rate) is crucial to resolve fast molecular motion

of small particles. In the used SPIM-FCS setup, the decay time of small molecules is typically of the

order of 100 μs (e.g., Alexa-488: ∼ 150μs). The frame rate has to be at least one order of magnitude

higher than the decay time to resolve the plateau of the correlation function, which contains information

about the particle number. Especially when only the occurrence of one photon (single bit memory) can

be stored in each pixel, a higher readout rate reduces the probability to miss photon events. Therefore,

the CHSPAD sensor was read out at maximum speed in rolling shutter mode.

Unfortunately not all external signals are applied row-wise to the individual diodes. Some of them

apply to the entire sensor. Especially when active recharge is used (manual re-arming of the SPADs),

it would be advantageous to have row-wise control, as for example of the reset-signal. Then, the active

period of every single SPAD would be identical and as long as possible.

On the other hand, the gating signals, to turn on and off the SPADs are not required for imaging

FCS and could be removed in favor of larger diodes, which improves the fill-factor and the photon

detection probability. The overall limited fill-factor could be increased by further reducing the size of the

electronics. Another option to gain sensitivity is to use rectangular-shaped diodes or back-illumination,

as used for EMCCD cameras.

The aspect ratio of the CHSPAD array is well suited for multicolor setups. Here, the intensity signal

from the sample is typically split into several color-channels that are imaged onto the sensor simultane-

ously side-by-side. As SPIM-FCCS is well established using cameras, the application of SPADs is the

next step. The aspect ratio of the CHSPAD is particularly suited for multi-color setups.

7.2.4. FCS measurements

Light-induced bleaching of the sample was a major problem of real-time FCS. By adding a component on

long time scales to the intensity signal, the correlation curves get distorted, rendering any model-fitting

impossible. Bleach-correction algorithms are based on modifying the raw data, when the progression of
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7.2. Outlook

the intensity is known. As this is only known after the measurement has ended, a correlation analysis

cannot be done in parallel. Bleach correction is applied to the binary input data stream, and requires

floating-point values. In case of an FPGA-based correlator such data are difficult to handle, as floating-

point values are not supported natively. Moreover, single precision floating-point values do not provide

sufficient accuracy, making a re-design of the correlators based on double precision mandatory.

Therefore, algorithms are required that allow post-correlation corrections for bleaching. If, for exam-

ple, an intensity trace is required for each pixel, this can be generated by the acquisition hardware in

parallel with a significantly lower temporal resolution.
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A. Materials and methods

A. Materials and methods

A.1. SPIM microscope

description manufacturer comments used settings

power-meter Thorlabs PM100D with S121C detector

(400nm−1100nm, 500milliW)

λ = 491nm, auto-range

EMCCD camera iXon X3 860 iXon X3 860

TetraSpeck ∅ = 100nm fluorescent

beads

INVITROGEN, T7279

FluoSpheres YG ∅ = 100nm fluores-

cent beads

INVITROGEN, F8803

QDot-525 streptavidin ITK INVITROGEN, Q10041MP
Alexa-488 INVITROGEN

Table A.1.: List of materials and components used during the experiments.

A.2. Computers

For the development of the CPU correlator on the INTEL and AMD platform, the two following com-

puters were used.

B040-SPIM2

component details

mainboard GIGABYTE GA-990FXA-UD3, BIOS FD 05/30/2012

CPU AMD FX-8320 eight-core processor

memory 2×8GB KINGSTON KHX18C10T3K2/16X, DDR 3 1600 MHz

GPU NVIDIA GTX 780Ti
harddisk WESTERN DIGITAL WD2002FAEX, 2 TB

Table A.2.: B040-SPIM2 hardware specifications.

software details

gcc compiler 4.7.3 (Gentoo 4.7.3-r1 p1.4)

Linux kernel 3.10.25-gentoo

Vc (section 2.6.4) 0.7.1 (released on 26 Mar 2013), including various patches

NVIDIA CUDA 5.5.22

Table A.3.: B040-SPIM2 software specifications.

B040-SPIM3

component details

mainboard ASUS Z87-A, BIOS 1007

CPU INTEL i7-4770 [45]

memory 2×8GB KINGSTON KHX1600C10D3B1K2/16G, DDR 3 1600 MHz

GPU integrated into CPU

harddisk WESTERN DIGITAL WD1002FAEX, 1 TB

Table A.4.: B040-SPIM3 hardware specifications.
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software details

gcc compiler 4.7.3 (Gentoo 4.7.3 p1.1)

Linux kernel 3.10.25-gentoo

Vc (section 2.6.4) 0.7.1 (relaesed on 26 Mar 2013), including various patches

Table A.5.: B040-SPIM3 software specifications.

B. FPGA development boards

B.1. LASP

The LASP FPGA development board (EPFL, Switzerland) was used as mainboard for the RADHARD2
SPAD array. Table B.1 gives an overview of the main resources.

Figure B.1.: Photograph of the LASP development board. Image taken from Ref. [36].

resource details

FPGA 2× VIRTEX-II XC2VP40
SRAM 2×4 ISSI IS61LV51216, 10 ns, 512k×16

SDRAM 2×2 MICRON MT48LC2M32B2, PC-100 SDR-SDRAM, 2M×32bit

USB interface 2× CYPRESS CY7C68013A EZ-USB FX2 USB Microcontroller High-Speed USB Peripheral Controller

Table B.1.: LASP: Main hardware resources.

B.2. Broaddown 4

The Broaddown 4 FPGA development board (Enterpoint Ltd., Malvern, United Kingdom) was used as

mainboard for the CHSPAD sensor. Table B.2 summarizes the main resources used in this work. Refer

to the manual for further details (Ref. [137]).
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C. SPIM: light intensity measurement

resource details

FPGA 2× VIRTEX 4 Virtex4 XC4VLX100-10, see [246] for an overview

SDRAM CRUCIAL CT51264AC800, 4 GiB, DDR 2-SDRAM (configured as MICRON

MT16HTF51264HZ in the controller core)

USB interface CYPRESS CY7C68013A EZ-USB FX2 USB Microcontroller High-Speed USB Peripheral

Controller

high-speed clock generator 1× ICS8442 and ICS8745 PLL up to 700 MHz

low speed clock generator 2× cypress CY22394

Table B.2.: Broaddown 4: Main hardware resources.

High-speed link between the development boards

The high-speed link reaches from the ‘Edge Connector’ of the Broaddown 4 to a FMC XM105 Debug
Card attached to the XILINX ML605. Table B.3 summarizes the hardware.

resource details

Broaddown 4 side 3M 7860-0000PR PCB Connector Grid pitch: 2.54 mm, 60 pins

cable 3M Volition Cat.6A S/FTP 1 m

XILINX ML605 side no name PCB Connector, 2.54 mm pitch, 40 pins

Table B.3.: Hardware used for the link between the FPGA boards.

C. SPIM: light intensity measurement

C.1. Light intensity of the lightsheet

Figure C.1 shows the light intensity at the center of the lightsheet as a function of the laser power. The

height of the lightsheet was 1.5 mm; the width 2.7 μm.

C.2. LED light source

For the majority of measurements, a custom built LED light source was used [119], which can be re-

motely controlled with QuickFit3. Figure C.2 shows the dependence of the output power on the settings

used. A fit shows that the LED light source can be assumed linear within the used range.

C.3. EMCCD as reference

For all measurements with the CHSPAD, the EMCCD is used as reference. It accounts for slight changes

in the illumination path, the light path, or the sample chamber. Figure C.3 shows the intensity measured

by the EMCCD camera as a function of the set current flux through the LED light source. A linear fit

shows the expected linearity.
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Figure C.1.: Intensity of the lightsheet in relation to the output power of the 491 nm laser. No additional ND filter was

integrated into the light path. Slope from fit: 13.3. Data taken from Ref. [119].
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Figure C.2.: Light intensity of the LED as a function of the set current. Output power, as measured with a power-meter, as

a function of the set LED current. Raw data is marked with +, the red line resembles a linear fit.
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Figure C.3.: Measured intensity of the EMCCD camera depending on LED light source current. Raw data is marked with

+, the red line resembles a linear fit. Error bars indicate the standard deviation.

184



D. CPU correlator: efficient data conversion

D. CPU correlator: efficient data conversion

A different approach that tuned out to be faster is based on logic operations using floating-point and

integer instructions in combination on the same values. Listing 4 shows the source code of the algorithm.

First, the raw data is then loaded to an MMX register and copied into every entry with a single instruction

(line 7). Using a constant binary mask with only one bit set per entry, the raw data is tested for set bits

(line 8) using an and operation. Although still integer data is in the register, a further conversion step

from the resulting integer to the float data type (_mm256_cvtepi32_ps, between line 8 and 9) can

be omitted, as the representation of 0 are identically for both data types (floating-point: exponent E = 0,

mantissa M = 0). The comparison with 0 yields a vector-mask (line 9) which then in turn can be used to

select either ones or zeros (line 10). Thus the entire conversion can be done in four SIMD-instructions.

Typically, more than one conversions are done serially so the constants can reside in the register file.

1 const __m256 val_0=_mm256_setzero_ps();

2 const __m256 val_1=_mm256_set1_ps(1.0F);

3 const __m256 val_c=reinterpret_cast<__m256>((__m256i){0x0000000200000001,

0x0000000800000004, 0x0000002000000010, 0x0000008000000040};↪→

4

5 inline __m256 convert(uint8_t *data){

6 register __m256 ymm;

7 ymm = _mm256_broadcast_ss(reinterpret_cast<const float*>(data));

8 ymm = _mm256_and_ps(ymm, val_c);

9 ymm = _mm256_cmp_ps(val_0, ymm, 0x00);

10 return _mm256_blendv_ps(val_1, val_0, ymm);

11 }

Listing 4: Raw input data conversion using AVX. 1 Byte of input data is converted to a vector of 8 single precision floating-

point values.

E. Further SPIM-FCS measurements

In this section, further SPIM-FCS measurements of different samples obtained with the selective plane

illumination microscopy (SPIM) using the CHSPAD sensor with microlenses are shown.

E.1. Inhomogeneity of the size of the focal volume

To assess the above described inhomogeneity of the focal volume, additional FCS-measurements of

TetraSpeck ∅ = 100nm fluorescent beads were performed with slight variations in the alignment of the

microscope. The parameter of choice was the overlap of the lightsheet and the focal plane of the detec-

tion objective, which is tuned by the gimbal mounted mirror (GMM). For the evaluation, the diffusion

coefficient D in the fits of the ACCs was fixed, whereas the lateral half width of the focus GAUSSIANwxy

was used as a free parameter.

Figure E.1 shows the dependency of wxy on the position for three different setting of the overlap.

If combined, the three plot show a parabolic shape in the course of wxy along the x-axis. The value

of wz was estimated from a bead-scan. In between the measurements the GMM was rotated slightly by

turning the micrometer screw for a few degrees. To preclude any effect of the microlenses, a comparative

measurement was performed without microlenses, which is shown in Figure E.2. Although the obtained

shape of the curve is more distorted, the same parabolic shape is detectable.
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Figure E.1.: Dependence of wxy on the x-position for a TetraSpeck ∅ = 100nm fluorescent beads sample. The ACCs

were fitted with wxy as a free parameter and a fixed diffusion coefficient taken from global fit. Three different settings for

the manual alignment of the overlap of the lightsheet and the focal plane of the detection objective were chosen: (b) best

possible alignment (maximum sharpness); (a) slightly de-focused. (c) also slightly de-focused, but to the other direction. In

the background a GAUSSIAN kernel density estimation is shown. Faulty pixels were excluded. Outliers are most likely due to

aggregates passing by.
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Figure E.2.: CHSPAD without microlenses: horizontal dependency of lateral half width of the focus GAUSSIANwxy for
TetraSpeck ∅= 100nm fluorescent beads. The ACCs were fitted with wxy as a free parameter and a fixed diffusion coefficient

(wxy = 1.5μm). Peff = 60mW.
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E. Further SPIM-FCS measurements

The plots suggest that a slight misalignment between the focal plane of the detection objective and the

lightsheet is present, which was not unveiled by the bead-scans (see section 4.3.8). This effect was not

detectable by the EMCCD camera, where wxy can be considered constant in a 128 pixel wide region.

Conclusion

It appears, that by slightly shifting the lightsheet along the y-axes, the minimum of the wxy distribution

could be moved along the x-axes of the sensor. This optimization of the overlap of the focal plane of the

detection objective and the lightsheet is the last step of the alignment of the instrument (cf. protocol )

Typically this is done by manually focusing TetraSpeck ∅= 100nm fluorescent beads using the EMCCD

camera. When a good overlap of both the lightsheet and the focal plane is reached, wxy is minimized and

the sharpness of the image is enhanced. Focusing the sample manual works quite well with rather large

and bright fluorescent sample, as for example 100 nm fluorescent latex beads, and is rather impossible

for small dyes like Alexa-488. Possibly, an automated optimization based on the calculated sharpness

parameter proves advantages. For that purpose, the micrometer screws of the GMM used for alignment

have to be replaced by piezo-electric ones.

The possibility to move the minimum suggests, that both planes are not perfectly parallel but do cut

under a small angle. A further position dependence of wz was not evaluated so far.

E.2. Distribution of the diffusion coefficient obtained by global fits of different sets of
correlation curves

In Figure E.3 the histograms over the diffusion coefficients obtained for all pixels using different sets

of correlation functions estimates are shown. The histogram for the TetraSpeck ∅= 100nm fluorescent

beads beads described above (run 5) is shown in Figure E.3a. A different measurement of TetraSpeck
∅ = 100nm fluorescent beads beads is shown in Figure E.3b. In Figure E.3c a different kind of beads

of the same size were used (100 nm yellow-green (YG)). The histograms of the diffusion coefficients

obtained for every single pixel using the results of an individual autocorrelation analysis is shown in

red, the histograms in blue and green were obtained from fits of the cross-correlation curves (CCCs), for

the next neighbor (blue) and two pixel distance (green). In case of the CCC 2, wxy was used as a free

parameter. The histograms of the diffusion coefficients obtained by a global fit (autocorrelation curve

and left and right cross-correlation curve with one and two pixel distance) are shown in magenta. To not

rely on a specific alignment, all measurements were carried out on different days. A GAUSSIAN fit of

each histogram is shown as a solid curve. Two examples of the corresponding correlation curves for a

single pixel including global fits are shown in Figure 6.6.
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Figure E.3.: Example of histograms over the diffusion coefficients D of two samples of 100 nm beads in water using
global fits of different sets of correlation estimates. A GAUSSIAN fit (solid curve) is applied to each histogram (not all are

shown). The suffix ‘only’ denotes a fit of a single correlation estimate with wxy = 1348nm (from bead-scan, see Table 6.1).

‘ACC +CCC 1’ denotes a global fit of the ACC and the left and right CCC. In a global fit, wxy was used as a free parameter. In

case of cross-correlation estimates, both, left and right neighbors were taken into account. The curves of CCC 2 and CCC2only

did not decay to zero, therefore an offset-correction was added to the model function. For the CCC2only fits, wxy was used

as free parameter. (a) TetraSpeck ∅ = 100nm fluorescent beads as already shown in Figure 6.1b and Figure 6.2. Result from

global fit: D20W, global = (3.77±0.50) μm2/s. (b) TetraSpeck ∅ = 100nm fluorescent beads beads with ILS = 27W/cm2.

Result from global fit: D20W,global = (3.35±0.51) μm2/s. (c) YG-100 nm beads with ILS = 80W/cm2. Result from global fit:

D20W,global = (3.63±0.53) μm2/s. The theoretical value of (3.85±0.63) μm2/s [154] is indicated as a dashed black line, its

error as a gray area.
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E. Further SPIM-FCS measurements

E.3. Detailed measurements of various fluorescent dyes in solution

All measurements were performed with the CHSPAD sensor with microlenses. Details on the measure-

ment protocol are given in chapter 6. Section 6.7 summarizes the results.

FluoSpheres YG ∅= 100nm fluorescent beads

Figure E.4 shows measurements of different dilutions of QDot-525 in water. The obtained diffusion

coefficient is in good agreement with the theoretical value.

QDot-525 streptavidin ITK

In addition to the measurements presented in section 6.6.1, Figure E.5 shows various measurements

of QDot-525, with different settings for the binning (1× 1, 2× 2 and 3× 3, left to right). Figure E.6

shows the measured concentration in relation to measurements on a confocal setup of the same samples.

The resulting median diffusion coefficients are in good agreement with the theory (sphere with DW =
15μm2/sto20μm2/s).

Alexa-488

In addition to the values shown in section 6.6.1, the measured diffusion coefficients of a dilution series of

Alexa-488 are shown in Figure E.7. Figure E.8 shows the corresponding histograms including GAUSSIAN

fits. Table E.1 summarizes the measured diffusion coefficients and the particle concentration (from

Figure 6.18). The median values, especially for 3×3 binning, are in good agreement with the literature

value D20,WAlexa-488, lit. = 407μm2/s [173].

eGFP oligomers

In addition to the measurements presented in section 6.6.2, Figure E.9 shows various measurements of

eGFP-oligomers in solution. The median values including reference values are summarized in Table E.2.

To account for systematic errors, also the relative diffusion coefficients between each two species are

given. The median values of the measured diffusion coefficients, especially for 3× 3 binning, were in

very good agreement with the results obtained on the same setup with the EMCCD camera. The overall

reduced sensitivity of the CHSPAD led to significantly higher standard deviations (two to ten-fold). Con-

sidering relative diffusion coefficients between every two samples, the results were also in accordance to

confocal measurements, that were performed in the same lab.

189



3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

B4 B5 B6 B8

d
if

fu
si

o
n

co
ef

fi
ci

en
t

D
2
0
,W

[μ
m

2
/s

]

Figure E.4.: Distribution of the diffusion coefficient D of FluoSpheres YG ∅ = 100nm fluorescent beads for different
concentrations. A single cross marks a single measurement. Groups of samples reflect multiple measurements. Concentrations

ranged from (4.4±0.2) nM down to (0.47±0.05) nM (left to right, obtained with confocal FCS). The theoretical value is shown

as a black line, median (dotted, ) and mean (solid line, error ranges as light box) values from the measurements are shown in

green. Each sample is represented as spot, the theoretical value for a 100 nm sphere, 3.85 μm2/s, is shown as a dotted black

line. A solid green line represents the median, the dotted green line and light green box represent mean value and standard

errors. The median value is D20,W = (4.1±0.6) μm2/s.
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Figure E.5.: Influence of binning on the diffusion coefficient D of QDot-525 streptavidin ITK. Three different bin-sized were

applied (1×1, 2×2 and 3×3). Results are sorted by laser intensity (0.5 mW to 30 mW). Light gray boxes indicate ranges for a

15 nm to 20 nm sphere. The resulting median diffusion coefficients are D1×1 = (20.8±8.4) μm2/s, D2×2 = (21.7±6.3) μm2/s

and D3×3 = (22.0±5.2) μm2/s.

Sample D20,W [μm2/s] cvD c [nM] cvc

A10 426±53 0.12 300±38 0.12

A11 365±87 0.24 180±44 0.24

A12 460±113 0.25 77±20 0.26

A13 388±59 0.15 48.2±6.9 0.14

A14 393±53 0.14 21.8±3.2 0.15

A15 382±55 0.14 13.5±2.4 0.18

Table E.1.: Diffusion coefficients, D, of Alexa-488 in water for different particle concentrations. Different dilutions were

created from the same stock solution. Corresponding distributions of the diffusion coefficients are also shown in Figure E.8 and

Figure E.7. Raw data has been binned (3×3) and fitted globally. The literature value is D20,WAlexa-488, lit. = 407μm2/s [173].
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Figure E.7.: Influence of binning on the diffusion coefficient, D, of Alexa-488 in water. Different bin sized were applied

(1×1 to 3×3). The median value is shown for each set as a dashed line, the mean value including standard deviation as a solid

line with a surrounding semitransparent area. The absolute values of the 3×3 binning are also shown in Table E.1. In each set,

measurements from left to right are A10 to A15. Median values of all six measurements are D1×1 = (375.4±119.0) μm2/s,

D2×2 = (385.0±79.3) μm2/s and D3×3 = (390.6±54.6) μm2/s. The literature value D20,WAlexa-488, lit. = 407μm2/s [173] is

shown as a black dotted line.

Sample CHSPAD EMCCD FCS

1×1 binning 3×3 binning

D20,WeGFP-1x [μm2/s] 102±68 (0.67) 116±34 (0.30) 118.0±8.0 -

D20,WeGFP-2x [μm2/s] 71±43 (0.61) 77±21 (0.27) 76.9±8.6 -

D20,WeGFP-3x [μm2/s] 59±20 (0.34) 61±11 (0.18) - -

D20,WeGFP-4x [μm2/s] 57±18 (0.32) 57±9 (0.16) 62.7±6.0 -

D20,WeGFP-1x

/
D20,WeGFP-2x 1.4±1.3 1.5±0.6 1.5±0.2 1.3

D20,WeGFP-1x

/
D20,WeGFP-3x 1.7±1.3 1.9±0.7 - 1.6

D20,WeGFP-1x

/
D20,WeGFP-4x 1.8±1.3 2.0±0.7 1.9±0.2 2.1

D20,WeGFP-2x

/
D20,WeGFP-4x 1.2±0.8 1.4±0.4 1.2±0.2 1.6

Table E.2.: Diffusion coefficients of eGFP oligomers in water determined by different setups. All values are given in

μm2/s and are re-calibrated to ϑ = 20◦C. Data obtained with the CHSPAD stems from single measurements at 19.2 mW (cf.
Figure E.9). EMCCD data were taken on the same instrument (cf. [119]). Confocal FCS data were measured in the same lab

and were taken from Ref. [59]. Values in braces give the relative fraction of the standard deviation on the absolute value.
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(dotted line).
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E.4. Performance evaluation of the RADHARD2 SPAD array

The first sensor that was available an therefore was evaluated in the SPIM-FCS setup first, was the

RADHARD2 SPAD array. This SPAD array has a low fill-factor and thus a low light-collection efficiency.

This problem was addressed by not using the standard tube-lens for NIKON microscopes objectives

( fTL = 200mm), but a lens with half the focal length. This effectively halves the magnification but

increases the light intensity by a factor of four. At the same time this should have only a minor influence

on the point spread function (PSF) of each pixel, as the focus size (i.e., the PSF) is mainly determined by

the 60× NA 1 detection objective (even at 30× the SPAD size in the image plane stays sub-diffractive).

To test the overall performance of the RADHARD2 SPAD array, several samples with a biological

relevance were tested. The low PDP was further compensated by setting laser power to the maximum

PLaser = 60mW (without additional filters) which resulted in an intensity of ILS � 800W/cm2 in the

center of the lightsheet. Temporal binning (summation of 3 consecutive frames, which reduces the frame

time to 3.3 μs) was used to further increase photon sensitivity, as it lowers the probability to miss a photon

(see section 4.1.2, with these settings no raw data could be recorded). The raw data was correlated using

the FPGA correlator at full speed (10 μs minimum correlation time). Except for the minor differences

described above, the same measurement protocol as for the CHSPAD was used (see section 6.1).

Figure E.10 shows the mean ACCs red, averaged over all pixels and an ACC from a representative

single pixel blue for four different samples, TetraSpeck ∅ = 100nm fluorescent beads (T7279, INVIT-

ROGEN) (a), QDot-525 streptavidin ITK (Q10041MP, INVITROGEN) (b), Alexa-488 (INVITROGEN) flu-

orescent dye (d), and eGFP tetramers (c). The three-dimensional diffusion model including afterpulsing

and offset correction was used for the fits (see section 2.4.3 and section 2.4.3 for the models). Model

functions without afterpulsing are shown as dashed thick lines. In case of the TetraSpeck ∅ = 100nm

fluorescent beads, the measurement duration was 42 s. The duration of all other measurements was

approximately 165 s. Sample temperature was 24 ◦C in all cases.

As the raw data could not be recorded in parallel, no bleach correction was applied. Thus, the signifi-

cant bleaching in case of the eGFP tetramers (c) was accounted for by a two-component fit model of the

ACCs (sum of two three-dimensional diffusion models).

Figure E.11 shows the distribution of the diffusion coefficients obtained by fits of the ACCs for the

same samples. The ACCs of the single pixels of all samples showed a significant amount of noise. This

resulted in a broad distribution of diffusion coefficients as depicted in Figure E.11. Only the two brightest

samples (TetraSpeck ∅ = 100nm fluorescent beads and QDot-525 streptavidin ITK) showed a GAUS-

SIAN shape of the histogram which allowed to extract a mean value. For the two other sample, a single

GAUSSIAN curve did not match the distribution and a sum of two curves was used for model fitting.

Table E.3 summarizes the results of the measurements. In addition to the mean diffusion coefficients ob-

measurement theory

sample D20,W [μm2/s] cvD20,W
CPM [Hz] D20,W [μm2/s]

TetraSpeck beads 3.0±0.7 0.23 349 ∼ 4

QDot-525 16±6 0.37 50 ∼ 25

eGFP tetramers 551 - - ∼ 60

Alexa-488 751 - 32 ∼ 410

1 The fit of the histogram was done using the sum of two GAUSSIAN functions.

Thus, the standard deviation is not meaningful.

Table E.3.: Diffusion coefficients of various samples measured with the RADHARD2 SPAD array. Shown results are mean

values and standard deviations obtained from GAUSSIAN fits of the histogrammed shown in Figure E.11. For theoretical values

and details on the dyes see section 2.2.4. The third column shows the photon count rate divided by the number of particles

obtained from fit, the so called count rate per molecule (CPM). In case of eGFP tetramers, no value could be extracted as the

bleaching has a strong effect on the particle number.
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(b) QDot-525 streptavidin ITK
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(d) Alexa-488
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Figure E.10.: Example measurement of various samples in water using the RADHARD2 SPAD array. The mean ACCs

over all pixels are shown in red with the standard deviation as a light red area. An example curve of a single pixel is shown

in blue. The fit of the full model function is shown as a solid line (three-dimensional diffusion model including afterpulsing

and offset-correction), the model function without afterpulsing is plotted as a dashed graph. Residuals are shown below of

each plot. (a) TetraSpeck ∅ = 100nm fluorescent beads. (b) QDot-525 streptavidin ITK. (c) eGFP tetramers. (d) Alexa-488
fluorescent dye. All measurements were done at maximum laser intensity ILS = 800W/cm2, at ϑ = 24◦C. In (b), (c) and (d)

afterpulsing is taken into account. Raw data was not bleach-corrected, thus the effect of bleaching is clearly visible as a strong

decay around τ = 0.1s in (c). This was accounted for by a two-component fit (sum of two three-dimensional diffusion models).

Defective pixels were excluded.
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Figure E.11.: Histogram of the diffusion coefficients of all pixels of the RADHARD2 SPAD array for various samples. The

mean values from the fits are shown above the plots. (a) TetraSpeck ∅= 100nm fluorescent beads. (b) QDot-525 streptavidin
ITK. (c) eGFP tetramers. (d) Alexa-488 fluorescent dye. Focal parameters were wxy = (490±70)nm and wz = (1105±310)nm

(obtained from bead-scan).
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tained from GAUSSIAN fits of the histograms, the mean count rate per molecule during the measurement

is given. Simulations showed (cf., section 6.4), that a value above 300 Hz per molecule is required for an

accurate determination of the diffusion coefficient (i.e., relative standard deviation (rel. sd.) < 0.2).

E.5. Conclusion

To measure the diffusion coefficient with high precision, a certain number of photon counts per molecule

have to be detected. These measurements showed that the PDP of the RADHARD2 is too low for samples

less bright than TetraSpeck ∅ = 100nm fluorescent beads. Therefore, measurements with biologically

relevant dyes were not feasible. By pushing incident light intensity to the max (more than ten fold of

what is typically used for in-vivo measurements), it was at least possible to measure mean diffusion

coefficients of QDot-525 streptavidin ITK and eGFP tetramers that were both in range of the theoretical

value.

Regarding the afterpulsing, the RADHARD2 showed a similar behavior as the CHSPAD. The after-

pulsing component was clearly visible in all ACCs and its amplitude increases with the decreasing fluo-

rescence intensity. In case of Alexa-488, the afterpulsing interfered with the diffusion time and inhibited

proper fitting. Together with the low PDP, this lead to a four-fold underestimation of the diffusion coef-

ficient.

To reduce the number of missed photons at the high fluorescence intensity, the RADHARD2 was

operated at maximum speed. At these settings, a parallel acquisition of the raw data was not possible.

Therefore, no bleach-correction could be performed. Due to the lack of support for cross-correlation in

the FPGA-based correlator, global fits could not be carried out. The overall poor PDP and the availability

of the CHSPAD with microlenses led to a discontinuation of the enhancement and development of the

RADHARD2 platform.

E.6. Recalibration

To account for different sample temperatures, diffusion coefficients need to be re-calibrated to 20 ◦C to

allow comparison. According to the STOKES-EINSTEIN equation (equation (1.4)), a diffusion coefficient

D0 at temperature T0 and viscosity η0 can be re-calibrated to conditions T1 and η1 as follows:

D1 =
D0 ·T1

T0
· η0

η1
, (E.1)

Assuming water as the solvent, a good estimation for the viscosity is [68]:

ηW(T ) = A ·10B/(T−C), with A = 2.414×10−5 Ns/m2,B = 247.8K,C = 140K. (E.2)

Diffusion coefficients given in this thesis are re-calibrated to T = 20 ◦C, so called D20,W.

E.7. Image sharpness

For aligning the instrument, 100 nm fluorescent beads are used. Due to their size and speed those beads

are good distinguishable when being imaged with the EMCCD camera using standard settings. The

CHSPAD can also be used for focusing, but the lower quantum efficiency and thus a higher integration

time makes it difficult to distinguish between single beads (smearing). To have an objective measure for

the sharpness of the live-image, a sharpness-factor s is introduced. Under the assumption that a sharper

image has more prominent edges, an edge detection is performed and the resulting gray-scale values are

added up [161]. For edge detection, a discrete Laplace operator D2
xyis used:

s = ∑
xy

(
D2

xy ∗ Ixy
)

(E.3)
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with

D2
xy =

⎡
⎣0 1 0

1 −4 1

0 1 0

⎤
⎦ . (E.4)
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Nomenclature

εfluor Molar extinction coefficient of a fluorophore.

ηdet Quantum efficiency.

SNR Signal to noise ratio.

Var Variance

φfluor Quantum yield of a fluorophore.

τmin Minimum correlation time.

τD Diffusion time.

τk Correlation time of lag k.

CFμL Concentration factor of the microlenses.

FF Fill-factor of a sensor.

MDE molecular detection efficiency.

ϑ Temperature in ◦C.

Bfluor Brightness of a fluorophore.

c Particle concentration in the focus.

D20,W Diffusion coefficient corrected for standard conditions (ϑ = 20°, viscosity of water).

D Diffusion coefficient.

fTL Focal length of the tube-lens.

Gk Not normalized correlation function estimate at position k.

gk Normalized correlation function estimate at position k.

G Correlation function, used as model.

g Correlation curve obtained from correlator.

Id Delayed intensity signal in a correlator.

Iu Undelayed intensity signal in a correlator.

ILS Laser intensity at the center of the lightsheet.

Ik Raw intensity value at position k.

m Binning ratio of a multiple-τ correlator. Typically, m = 2.
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Nthreads Number of threads.

NVU Amount of vertical-unrolling.

N Particle number in the focus.

Peff Effective laser power.

Rh Hydrodynamic radius.

sc Chunk size. The number of input values processed by a correlator in a sequence before a context

switch is performed.

VSPAD Voltage of the SPAD.

Vbias Voltage bias of the SPAD.

Vbreak SPAD breakdown voltage.

VDD Positive logic supply voltage.

Veff Effective observation volume.

Vex Excess voltage above breakdown of the SPAD.

Vobs Size of the observation volume.

VOP SPAD operating voltage.

VQ Supply voltage of the quenching transistor.

VTop Tunable SRAM resistors of CHSPAD.

wobs Diameter of the sphere forming the observation volume.

wxy Lateral half axis of the focus GAUSSIAN.

wz Longitudinal half axis of the focus GAUSSIAN.

cv Relative standard deviation (rel. sd.).
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Acronyms

ACC autocorrelation curve.

ACF autocorrelation function.

ADC analogue-to-digital converter.

ADU analog-to-digital unit.

AGU address generation unit.

ALU arithmetic logic unit.

APD avalanche photodiode.

API application programming interface.

APS active pixel sensor.

ARM advanced RISC machines.

ASIC application-specific integrated circuit.

AVX advanced vector extensions.

BIOS basic input output system.

BM BROWNIAN motion.

BRAM block RAM.

CCC cross-correlation curve.

CCD charge coupled device.

CCF cross-correlation function.

CE correlation estimate.

CHSPAD Swiss single photon avalanche diode ar-

ray.

CLB configurable logic block.

CMOS complementary metal-oxide-semiconductor.

CPM count rate per molecule.

CPU central processing unit.

CRC cyclic redundancy check.

CUDA compute unified device architecture.

DC direct current.

DCM digital clock manager.

DCR dark count rate.

DDR double data rate.

DFE dataflow engine.

DKFZ German cancer research center.

DNA deoxyribonucleic acid.

DOE diffractive optical element.

DP double precision.

DSP digital signal processor.

ECC error-correcting code.

eGFP enhanced green fluorescent protein.

EM electron multiplication.

EMCCD electron multiplying charge coupled de-

vice.

EPFL École polytechnique fédérale de Lausanne.

FCCS fluorescence cross-correlation spectroscopy.

FCS fluorescence correlation spectroscopy.

FEP fluorinated ethylene propylene.

FF flip-flop.

FFT fast Fourier transform.

FIFO first in - first out buffer.

FLOP floating-point operation.

FLOPS floating-point operation per second.

FMA fused multiply accumulate.

FOV field of view.

FP floating-point.

FPGA field programmable gate array.

FPU floating-point unit.

FRAP fluorescence recovery after photobleaching.

GDDR graphics double data rate.

GFP green fluorescent protein.

GMM gimbal mounted mirror.

GPGPU general purpose computation on graphics

processing unit.

GPS global positioning system.

GPU graphics processing unit.

GUI graphical user interface.

HDD hard disk drive.

HDL hardware description language.

HeLa Henrietta Lacks.

HPC high pin-count connector.

HPC high performance computing.

HT hyper-threading.

IC integrated circuit.

IEEE Institute of Electrical and Electronics Engi-

neers.

imaging FCS imaging fluorescence correlation

spectroscopy.

201



Acronyms

IO input/output.

IOB input/output block.

LCD liquid crystal display.

LED light emitting diode.

LFSR linear feedback shift register.

LSFM lightsheet fluorescence microscopy.

LSM lightsheet microscopy.

LUT lookup table.

MAC multiply accumulate.

MDE molecular detection efficiency.

MIMD multiple instruction, multiple data.

MIS metal-insulator-semiconductor.

MISD multiple instruction, single data.

MMX multimedia extension.

mRFP monomeric red fluorescent protein.

MSD mean squared displacement.

MUX multiplexer.

NA numerical aperture.

ND neutral density.

NMOS N-type metal-oxide-semiconductor.

OD optical density.

OpenCL open computing language.

OS operating system.

PC personal computer.

PCB printed circuit board.

PCIe peripheral component interconnect express.

PD photodiode.

PDP photon detection probability.

PLL phase-locked loop.

PM photon-mode.

PMT photomultiplier tube.

PowerPC performance optimization with en-

hanced RISC performance chip.

PSF point spread function.

QD quantum dot.

QE quantum efficiency.

RADAR radio detection and ranging.

RAID redundant array of inexpensive disks.

RAM random access memory.

rel. sd. relative standard deviation.

RISC reduced instruction set computer.

RMS root mean square.

ROI region of interest.

RTL register transfer level.

SATA serial advanced technology attachment.

sCMOS scientific CMOS.

sd standard deviation.

SDK software development kit.

SDR single data rate.

SDRAM synchronous dynamic random access

memory.

SIMD single instruction, multiple data.

SIMT single instruction, multiple thread.

SISD single instruction, single data.

SLM spatial light modulator.

SMX streaming multiprocessor.

SNR signal to noise ratio.

SP single precision.

SPAD single photon avalanche diode.

SPIM selective plane illumination microscopy.

SPT single particle tracking.

SRAM static random access memory.

SSD solid state disk.

SSE soft streaming extension.

TCP/IP transmission control protocol / internet

protocol.

TCSPC time-correlated single-photon counting.

TDC time to digital converter.

TIRF total internal reflection.

TIRFCS total internal reflection fluorescence cor-

relation spectroscopy.

TUPC time-uncorrelated photon-counting.

USB universal serial bus.

VHDL Very High Speed Integrated Circuit Hard-

ware Description Language.

YG yellow-green.
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