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Forces and Flow of Contractile Networks

Biological cells use contractile networks of cross-linked semiflexible biopoly-

mers, the so-called actin cytoskeleton, to control their shapes and to probe

the mechanical properties of their environment. These processes are es-

sential for cell survival and function. In this thesis we present a general

framework to model two-dimensional contractile networks embedded in ei-

ther two- or three-dimensional space. A surface representation with trian-

gles and edges allows us to explicitly address the heterogeneity of biopoly-

mer networks. In adherent cells, thick polymer bundles called stress fibers

strongly influence cellular mechanics. We establish methods to assess their

contribution to traction force generation, intracellular force balance, and

intracellular flow from experimental data. Further, we develop a theory for

the excitable nature of the cell cortex, which is a thin polymer layer lining

the inner side of the cell membrane, and show how it is related to global

cell shape changes.

Kräfte und Fluss von kontraktilen Netzwerken

Biologische Zellen benutzen kontraktile Netzwerke von miteinander verknüpften,

semiflexiblen Biopolymeren, um ihre Form zu steuern und die mechanischen

Eigenschaften ihrer Umgebung zu erkunden. Diese Prozesse sind entscheidend

für das Überleben und die Funktionsfähigkeit der Zellen. Die vorliegende Arbeit

zeigt einen allgemeinen Rahmen auf, um zweidimensionale kontraktile Netzw-

erke zu modellieren, die in den zwei- oder dreidimensionalen Raum eingebettet

sind. Eine Beschreibung von Oberflächen mit Dreiecken und Kanten ermöglicht

es uns, explizit auf die Heterogenität von Biopolymernetzwerken einzugehen. In

adhärierenden Zellen beeinflussen dicke Polymerbündel, die Stressfasern genannt

werden, die Zellmechanik. Wir führen Methoden ein, um deren Einfluss auf

die Erzeugung von Traktionskräften, das intrazelluläre Kräftegleichgewicht und

den intrazellulären Fluss auf der Grundlage experimenteller Daten festzustellen.

Darüber hinaus entwickeln wir eine Theorie für die Anregbarkeit des Zellkortexes,

einer dünnen Polymerschicht auf der Innenseite der Zellmembran, und zeigen wie

diese mit globalen Veränderungen der Zellform zusammenhängt.
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1 Introduction

1.1 Fundamentals of Cellular Mechanics

Cellular forces are essential for our lives. We need them to open our eyes in the

morning when we wake up, to stand up, and to eat breakfast. They are necessary

to gather food, to breath and to pump blood through our vessels. Many of the

1013 cells in our body have to work together in order to accomplish these tasks

that require forces in the range of 1 − 103N and act on the length scale of meters.

Forces are also very important on the scale of single cells though, which is on the

order of 30µm. For instance, when a suspended cell first makes contact with a

surface, it needs forces in order to adhere to it and spread. Moreover, cells actively

probe the mechanical properties of their surrounding and adapt to what they sense.

If mesenchymal stem cells are seeded on substrates of the stiffness of brain, they

differentiate into brain cells. However, if the same cells adhere to stiffer bone-like

substrates, they become bone cells [1]. Conversely, if cells cannot exert forces to

their environment over longer times, they die [2]. During cell division forces are

necessary to pull the chromosomes apart from each other, and for the mechanical

division process itself. Forces generated by single cells are in the range of µN .

Not only do cells actively generate forces, but they are also subject to mechanical

stresses exerted from the extracellular environment. It is important for them to

withstand these forces in order to maintain the integrity of intracellular organelles

like the nucleus to guarantee their functionality. Thus they have developed networks

of polymeric filaments that provide them with rigidity, which are summarized as the

cytoskeleton (CSK). With the help of the CSK, the cell defines a reference shape

in a fluid environment and resists stretch and shear; the cell behaves like an elastic

solid. However, being purely elastic would hinder the cell in vital processes. Often

cells need to adapt their shape, for example when they grow, divide or migrate.

To allow for rapid reorganization, the CSK undergoes continuous turn-over, which

means that it permanently dis- and reassembles. Thus the reference shape changes

with time; the cell behaves like a viscoelastic-plastic fluid.

Cells naturally live in a three-dimensional environment. Some are suspended without

external connections, like for example eggs or red blood cells (RBCs). Others sense

1



1.1. FUNDAMENTALS OF CELLULAR MECHANICS

A B C

D E

Figure 1.1: Cellular shapes. (A) Epithelial cells show typically squamous (top),

cuboidal (middle), or columnar (bottom) shapes. Taken from [3]. (B) Fibroblast on

two-dimensional micropatterned substrate with circular invaginations at the periph-

ery. Functionalized substrate regions the cell can adhere to are colored blue. Scale

bar: 10µm. Taken from [4]. (C) Human Mesenchymal Stem Cell in engineered

three-dimensional matrix. Scale bar: 50µm. Taken from [5]. (D) Biconcave red

blood cells. Taken from [6] (E) Cell in three-dimensional scaffold. Taken from [7].

and interact with surrounding cells in all spatial directions and form tight tissues.

Dependent on their environment and function, cells assume characteristic shapes.

In animal tissue, epithelial cells that line inner and outer surfaces in the body are

usually cuboidal, columnar, or squamous (thin and flat), Fig. 1.1 A. Each of these

configurations allows for dense packing and therefore a protective effect. Fibroblasts,

which are cells that form connective tissue, exhibit circular invaginations in their

contour when they are cultured on patterned substrates where they can only adhere

to functionalized parts of the flat surface (Fig. 1.1 B). In fact, circular arcs also

occurs for many other cell types and even on the scale of tissues [8]. Some cells

form long extensions to connect to each other (Fig. 1.1 C). Egg cells are typically

spherical, while RBCs maintain a characteristic biconcave discocyte shape under

2



1.2. THE CYTOSKELETON

physiological conditions (Fig. 1.1 D). In all cases, cell shape is an expression of intra-

and intercellular mechanics. Observing the shape can therefore help to deduce the

cell’s state and is sometimes used to diagnose diseases. For instance, RBCs lose

their discocyte shape when they get infected with malaria parasites or if their CSK

is altered, e. g. by hereditary diseases like sickle cell anemia [6, 9].

Cell shapes can also be used to infer mechanical forces. This approach was recently

taken for fibroblasts that were cultured on flat substrates with specific regions the

cells could adhere to [4]. The use of flat substrates is traditionally very common in

cell culture and facilitates imaging. It breaks the symmetry of space though and

constricts adhesion to the ventral surface of the cell (the surface in contact with the

substrate). In the aforementioned work, the fibroblasts show circular invaginations

in their contour (Fig. 1.1 B), which represent a force balance between a line tension

along the contour and a surface tension acting in the normal direction. By theoretical

modeling, one can estimate the forces that lead to these shapes [4, 10]. Recently it

has become possible to build three-dimensional scaffolds that allow to observe cells

in a controlled geometry in three dimensions (Fig. 1.1 E).

Cells exhibit active, elastic, and viscous properties that determine their shape and

functions. They control their mechanics mainly via the CSK, which is a dynamic

viscoelastic network with embedded active molecular motors. As the interactions

between the different components are very complex, theoretical modeling is needed

to carve out the relevant factors and quantify experimental results. In order to un-

derstand the details of cellular forces, some knowledge about the molecular structure

of the CSK is required, which we review in the following section. We then summa-

rize previous theoretical approaches and outline how this work helps to understand

CSK mechanics.

1.2 The Cytoskeleton

The CSK consists of three parts, namely microtubules, intermediate filaments, and

the actin-CSK. In the case of microtubules, the protein tubulin polymerizes into

polar protofilaments that in turn form polar hollow cylindrical structures. These

structures have a persistence length of several millimeters [12], which means that

they are very hard to bend; in fact, if microtubules were an homogeneous and

isotropic elastic material, the corresponding Young’s modulus would be about the

same as Plexiglas [13]. Microtubules are important for cell division, as they form the

spindle apparatus which segregates the chromosomes. They also provide cargo routes

on which specialized motor proteins can walk for directed intracellular transport [14].

Tubulin is present in all animal cells [12].

3



1.2. THE CYTOSKELETON
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Figure 1.2: Actin cytoskeleton. (A) Actin-based structures include a. filopodium,

b. lamellopodium, c. lamellum, d. microvilus, e. cortical actin, f. podosome, g.

endosome, h. phagocytic cup, i. endocytic pit, j. Golgi-associated actin, k. nuclear

actin, l. cadherin-based adherens juctions, m. stress fibers, n. ruffles. (B) Top:

a nucleation factor is needed for initial assembly of F-actin (steps along the red

arrow). Middle: Different assembly factors lead to different characteristics of single

filaments or bundles and networks (bottom). Images adapted from [11].

Intermediate filaments (IFs) are fibrous biopolymers that form bundles and networks

that provide the cell with mechanical rigidity [15]. IFs have obtained their name

from the fact that their cross-section diameter of 10nm is smaller than the one of

microtubules, which is about 20nm, but thicker than that of actin filaments (8nm)

[12]. Different than the other two main CSK constituents, IFs do not occur in all

animal cells and the monomeric constituents vary. Malfunctions are known to lead

to, for example, skin diseases [16].

As the name suggests, the actin-CSK is mainly built from the protein actin. It plays

an important role in many processes in the cell (Fig. 1.2 A). In its monomeric form,

actin is a globular protein of 4nm in diameter and is referred to as G-actin. In its

center, actin provides a binding site fore adenosine triphosphate (ATP), which serves

as an energy source in cells, or its inactive form adenosine diphosphate (ADP). In

the actin monomers the ATP-bound state dominates, since usually there is more

ATP than ADP in the cytoplasm [12]. The molecular structure is asymmetric: the

direction into which the cleft towards the ATP/ADP binding site points is referred

to as the plus or barbed end, while the opposite direction is called the minus or

pointed end.

Actin monomers can assemble into double-helical filaments called F-actin (Fig. 1.2

4



1.2. THE CYTOSKELETON

B, top). In F-actin, all monomers are aligned such that all plus and minus ends

point in the same direction, respectively. We denote the on and off rates at the plus

end as k+
on, k+

off , and as k−on, k−off at the minus end. As the binding interface and

therefore the free energy associated with binding is the same on both sides, the ratio

of on and off rates has to be equal if ADP/ATP hydrolysis is not considered [17],

k+
on

k+
off

=
k−on
k−off

. (1.1)

However, the monomers have to undergo a conformational change when they bind

to the filament which leads to a higher kon at the plus end than at the minus end

[12]. If the concentration of G-actin is high, both ends grow.

While ATP is very stable in G-actin, its probability to be hydrolyzed to ADP in-

creases in the filamentous form. Thus it is possible for a certain range of G-actin

concentration that the typical time between two monomer bindings at the plus end

t+ is larger than the mean ATP hydrolysis time tH , t+ > tH , while the binding time

at the minus end t− is smaller than tH , t− < tH . Thus it is more likely to find

ADP-bound actin at the minus end of the filament than at the plus end. Further,

the ADP-bound actin monomers are more likely to leave the filament, which implies

that the off rate is higher at the minus end and Eq. 1.1 does not hold any more.

It follows that the critical free monomer concentration for the plus end to grow is

now lower than the critical concentration at the minus end. If the actual G-actin

concentration lies between the two, the filament grows at the plus end and shrinks

at the minus end at the same time. This effect is called treadmilling [18].

In the next structural step, F-actin can form various types of networks and bun-

dles, which are present at different locations within the cell (Fig. 1.2 B, middle and

bottom). The actin cortex, for instance, lies directly underneath the plasma mem-

brane and forms a dense but thin network that provides the cell hull with in-plane

elasticity. Another example are actin stress fibers (SFs), which are tight, highly

cross-linked actin bundles. There are many more forms of actin structures in animal

cells, including filopodia, lamellopodia, lamella, dorsal ruffles, microvilli, podosomes,

endosomes, phagocytic cups, endocytic pits, Gogli-associated actin, nuclear actin,

and adherens junctions (Fig. 1.2 A). We refer the interested reader to [11] to learn

more about these structures and their assembly mechanisms. Briefly, the assembly

of F-actin into the different structures is guided by so-called assembly factors. The

first to be found was the protein complex Arp2/3, which serves as a nucleation point

for new actin filament assembly on the side of an existing one with a branching angle

of 70◦ (Fig. 1.2 B)[11]. Thus Arp2/3 leads to a dendritic structure as in the case of

the lamellopodium, for example. Other actin nucleators are proteins of the formin

and spire class. While the former enhance straight filament assembly, the latter

can cross-link multiple actin filaments [11]. Cross-linking is very important for both

5



1.2. THE CYTOSKELETON

A B

Figure 1.3: Actin stress fibers. (A) Classification following Hotulainen et al. from

whom the image is taken [19]. (B) SF severing. The ablation point is marked by a

white arrow. Scale bar: 2µm.

network and bundle structures and is also accomplished by other protein such as

α-actinin or aggregates of myosin motor proteins, the myosin bipolar filaments (cf.

Fig. 1.4 A).

The aforementioned SFs are one of the most prominent actin structures in cells

adhering to flat surfaces. Cellular adhesions are mediated by micrometer-sized hi-

erarchic protein assemblies called focal adhesions (FAs) [12]. FAs connect the actin

CSK to the extracellular environment and are important for the mechanical sensing

of the cell [20]. SFs consist of 10 - 30 F-actin filaments that are cross-linked into

bundles [21]. They can be further classified into different categories by their con-

nectivity to FAs [19]. Dorsal SFs (DSFs) emanate from a FA at the cell’s periphery

and grow radially into the center along the dorsal membrane (Fig. 1.3 A, red). At

their free ends, they are typically connected to transverse arcs (TAs), which run

parallel to the cell edge and are only indirectly connected to FAs via DSFs (Fig.

1.3 A, yellow). Ventral SFs (VSFs) are close to the ventral surface of the cell and

terminate in FAs at both ends (Fig. 1.3 A, green). The assembly mechanisms of

different fiber types are not yet completely understood, but there is indication for

6



1.2. THE CYTOSKELETON

Myosin II

Bipolar minifilament
Actin

Actin

Force dipole

A BHead
domainTail domain

150 nm

Figure 1.4: Non-muscle myosin II molecular motors. (A) 14 - 20 single myosin motor

proteins assemble to bipolar minifilaments by binding with their tail domains. (B)

Bipolar filaments move towards the plus end of F-actin. They thereby exert relative

forces and act as force dipoles. Images adapted from [25].

the following processes [19]: DSFs grow from focal adhesions supported by formin

assembly factors and α-actinin cross-linking. These fibers are mechanically pas-

sive, as they do not contain motor proteins [22]. The emergence of TAs follows a

very different scheme. When the dendritic lamellopodium polymerizes against the

plasma membrane, the counter forces push the whole network towards the interior

of the cell, generating the so-called retrograde flow. Some microns away from the

membrane, the flow is hindered by FAs, and the dendritic network breaks. Myosin

motor proteins attach to the ends of the pieces and connect several filaments to a

new structure that develops into a TA. VSFs seem to form by fusion of two DSFs

and one TA. If a VSF is ablated by a femtosecond laser pulse, the two severed ends

spontaneously retract (Fig. 1.3 B, [23]). The initial retraction speed is very high

in the cellular context at about 1µm/s and decays exponentially. The whole recoil

process lasts about 15s and completes a distance of 2 − 5nm. The kinetics can be

fitted well with a Kelvin-Voigt viscoelastic model. In this material model a viscous

dashpot element and a Hookean spring are connected in parallel. Thus the dashpot

damps the motion induced by the spring. In the context of SFs this means that

VSFs are typically under appreciable mechanical load, which can be described as

an elastic prestress, i. e. the rest length of the SF is smaller than its actual length

in the cell. Note the difference towards active motor forces; if the SF only featured

a constant force dipole (cf. Fig. 1.4), one would expect constant retraction speeds

through the viscous environment of the cell. The kinetics could be also explained by

an active force that decreases over time or a constant active force working against

increasing mechanical resistance [24].

Myosin motors have been mentioned before in this introduction. They convert

7



1.2. THE CYTOSKELETON

Figure 1.5: Simplified RhoA path-

way. RhoA can be switched

between its inactive GDP-bound

state and the active GTP-bound

state. In the latter, it activates

both actin polymerization and

myosin through formin proteins

(actin) and the rho-associated

protein kinase (ROCK, myosin).

Adapted from a draft by Patrick

Oakes.

RhoA∙GDP

G
A
P G

EF

Formins ROCK

Myosin IIF-actin

RhoA∙GTP

chemical energy into motion. In contact with actin filaments, they move towards

the plus end of the filament (with the exception of myosin VI, which moves in

the inverse direction) [12]. Myosin proteins consist of a head and a tail domain

(Fig. 1.4 A). The former contains the actual molecular motor, and the latter offers

the opportunity for many proteins to stick their tails together and form a bipolar

filament that has head groups on both sides. Bipolar filaments can cross-link and

contract actin networks, as they can attach to two filaments at the same time and

exert relative forces that lead to F-actin sliding (Fig. 1.4 B). Myosin activity always

introduces a contractile effect in actin networks and fibers. Many different forms of

myosin exist [12], but we restrict ourselves here to non-muscle myosin II, which is

the type that causes contractility in tissue cells.

Interestingly, both actin polymerization and myosin activity are controlled, among

other factors, by the protein RhoA (Fig. 1.5). Similar to actin and myosin, RhoA

carries a source of energy. Here, the nucleoside that binds either two or three phos-

phate groups is called guanosine, and the high and low energy forms are abbreviated

GTP and GDP, respectively. In its active GTP-bound state, RhoA activates both

formins that enhance actin polymerization as discussed above and myosin II. The

conversion of the GTP-bound to the GDP-bound state is regulated by so-called

RhoGAP, and the reverse by RhoGEF proteins (Fig. 1.5). Activation of RhoA

takes place close to the plasma membrane, however the GEFs diffuse through the

whole cell. Recently, a new experimental technique was developed by Elizabeth

Wagner and Michael Glotzer from the University of Chicago where the GEFs can

be bound to the membrane via a photo-activatable binding site. In this way one can

exert spatial control over RhoA and thus actomyosin activity. We will use this tech-

nique in chapter 5 to clarify the relative contributions of active, elastic and viscous

components in the CSK.
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1.3 Modeling Shape and Mechanics of Cells

Many approaches have been taken in the last decade to model the CSK on different

length scales in order to explain the underlying mechanisms and understand the

system quantitatively. Here we constrict ourselves to models for the whole cell for

the sake of brevity. For a more detailed and comprehensive discussion, we refer

the interested reader to a recent review of Schwarz and Safran [26]. In the case of

a cell adhering to a flat surface, an obvious approach is to describe it by its two-

dimensional projection, as those cells typically spread out widely and their height

is small compared to their lateral dimensions. The simplest setting is assumed by

contour models, which disregard the internal structure of the cell and only consider

the force balance along the rim of the cell. This approach is justified if the cell’s

interior is sufficiently homogeneous and has been proven useful to explain invagina-

tions between sites of adhesion. As these inwards curved arcs that are reinforced

by SFs are often circular, they were seen as the expression of a lower-dimensional

analog to the Laplace law for a spherical soap bubble, R = 2σ/∆p, where R is the

radius of curvature (equivalent to the radius of the sphere), σ the surface tension

and ∆p the pressure difference between inside and outside of the bubble. Here σ

contracts the surface against the pressure that conserves volume. In the case of

contractile cells on substrates, the relation is slightly different, as the shape has

to be balanced by adhesive connections of the cell to the surrounding space. The

radius of the invagination is then determined by the local force balance between a

line tension λ along the contour and the surface tension, λ d~t(s)/ds = σ~n(s), where

s is the arc length coordinate, ~t the tangential vector, and ~n the normal vector.

Exploiting the definition of the radius of curvature, this amounts to σ = λ/R or

R = λ/σ. However, this relation cannot account for the experimentally observed

dependence of the arc radius on the spanning distance between neighboring adhesion

sites. The problem can be solved by assuming that the line tension is of an elastic

origin, λ = EA(L − L0)/L0, where EA is the one-dimensional Young’s modulus of

the arc SF, and L, L0 its current and resting length, respectively (Fig. 1.6 A) [4].

Cellular Potts Models (CPMs, Fig. 1.6 B) are closely related to contour models.

CPMs discretize space to a lattice of spins like in an Ising model, and represent

space occupied by the cell by spin up and extracellular space by spin down. Though

they thereby technically include a description of the interior of the cell, spin flips

are usually assumed to only happen at the interface between the two regions to

avoid holes in the cell. In this way, they can also be regarded as contour models.

The propagation of the contour is achieved by Metropolis dynamics in a quasi-static

manner. CPMs have been used among other applications to describe cell sorting

in tissues [27] and the shape of single cells [28]. Recently, a single cell CPM was

extended to include cell spreading, division, cell-cell interaction and migration to

9
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predict the shape of multiple cells on large patterned substrates [29, 30].

If the interior of the cell plays an important mechanical role (e. g. bulk elasticity),

contour models are not sufficient. Recently, Oakes et al. combined the idea of an

actively contracting elastic interior of the cell with a line tension along the contour to

appreciate the difference in convex and concave regions of the contour [31]. Another

reason for modeling the cell’s interior is if chemical and mechanical properties of

the bulk are of interest. In this spirit, Deshpande et al. introduced a continuum

elastic model to explain the spatial organization of the CSK in adherent cells [32].

Here, the idea is to assume a homogeneous passive elastic material and superpose a

spatially and directionally inhomogeneous active stress associated with stress fibers.

For this purpose, angular space [0, 2π] is discretized at each point in space, and the

angle is referred to as Φ. In each Φ direction and at each point in space, they define

a SF activity level 0 ≤ η ≤ 1, which is governed by the first order kinetics

η̇(Φ) = α (1− η(Φ)) e−t/τ − β
(

1− σ(Φ)

σ0

)
η(Φ) , (1.2)

which is supposed to follow an initial signal that decays exponentially with time

constant τ . The system can only assume a steady state if the local stress σ(Φ)

reaches the isometric stress σ0. This condition is in their work related to the strain

rate ε̇ along the SF axis. If ε̇ is positive in the course of the decaying activation

signal and reaches the steady state ε̇ = 0 from above, the SF activation level is

conserved. Where this is true depends primarily on the boundary conditions. On a

square cell with four supports at the corners, they retrieve high SF activation near

the free edges and in the direction towards the center. However, the cell shape does

not exhibit the characteristic circular arcs expected in these situations (Fig. 1.6 C).

In three spatial dimensions, shapes of suspended cells and vesicles are predominantly

discussed along the lines of the pioneering work of Helfrich in the literature [33]. He

reasoned that the bending energy of the membrane provides the dominant energy

contribution. The so-called Hamiltonian reads

HHelfrich =

∫
dA

(
κb
2

(
1

R1

+
1

R2

− c0

)2

+ κg
1

R1R2

)
, (1.3)

where R1, R2 denote the principal radii of curvature and κb, κg the bending moduli

associated with the mean and Gaussian curvature, respectively. The integral over a

closed surface over the second term in Eq. 1.3 is a topological invariant due to the

Gauss-Bonnet theorem and is therefore often not considered. Fig. 1.6 D shows the

discocyte, which is a minimal energy shape of Eq. 1.3 for c0 = 0 at fixed volume and

surface area. An excellent review of the history of different models and studies based

on this Hamiltonian is given in [34]. The development of this model culminates in

the theoretical calculations of the shapes of the red blood cells, which we review
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H2 dA

A C

B

D

Figure 1.6: Whole cell models. (A) The tension-elasticity model predicts the de-

pendence of the arc radius R from the spanning distance d. Taken from [4]. (B)

Lattice-based cellular Potts model. Taken from [29]. (C) Continuum mechani-

cal model that predicts the orientation of the cytoskeleton. Taken from [32]. (D)

The discocyte shape as the minimal energy shape for the Helfrich-Hamiltonian with

c0 = 0 at fixed volume and surface area, cf. main text.

and reproduce in the next chapter in order to demonstrate the capabilities of our

software.

1.4 Outline and Main Results

The theoretical work we present in this thesis was inspired by the versatile effects of

contractile actomyosin networks that control force generation in cells and thereby

their shape. We aim at providing a common framework to investigate contractile

networks in both two and three spatial dimensions. We specifically consider the

heterogeneity of the networks introduced by SFs and show that SFs strongly im-

pact force generation and distribution. We here outline the content of the separate

chapters and summarize the main results.

11



1.4. OUTLINE AND MAIN RESULTS

In chapter 2 we describe the software we use throughout this work. We use

triangulation methods to represent surface models that can be embedded either in

a two- or three-dimensional space. In this way we can model cells that adhere to

flat substrates or three-dimensional scaffolds, and also suspended cells in the same

framework. Further, triangulated surfaces provide a natural way to embed one-

dimensional structures such as SFs on the edges of the triangles. We describe how

different energy contributions can be defined on triangulated surfaces and reproduce

different shapes from the shape spectrum of red blood cells.

In chapter 3 we investigate the forces and shapes of cells on patterned environments

in two and three dimensions. We pay special attention to inner SFs that connect to

invaginated arcs between two adhesive regions. We discuss the special importance

of the orientation of the inner SFs as well as the location of the connection point

along the peripheral arc. We then turn towards three-dimensional representations of

the cell and discuss the effect of enclosed volume and radii of curvatures in different

intersection planes on three-dimensional cell shapes.

In chapter 4 we develop a novel technique to reconstruct heterogeneous cellular

tensions. We discuss that previous methods suffer from the fact that the inverse

problem of elasticity theory is ill-posed and how regularization schemes are intro-

duced to stabilize the solution in the presence of noise. However, regularization also

biases the final result. We use a whole cell model with embedded SFs similar as

in chapter 3 in an approach we call model-based traction force microscopy and find

that SFs are the main source of contractility in the cell type of interest. Further,

we show that the force of SFs depend on the fiber type in a statistically significant

way.

In chapter 5 we introduce viscosity and dynamics to triangulated surfaces to model

an experimental system, where we can control the spatial distribution of RhoA and

therefore actomyosin contractility. We establish new methods to dynamically alter

the triangulation in order to preserve mesh integrity in the presence of sources and

sinks of material. In this way, we can investigate the behavior of discrete one-

dimensional SFs in the viscous flow of the surrounding medium. In agreement with

the results from chapter 4, we find that if SFs exist, their contraction is the main

source of flow within the cell, and that they further provide the main part of cellular

elasticity.

In chapter 6 we investigate the dynamics of a contraction wave that runs across the

surface of a suspended cell. We propose simple relations for an activator inhibitor

system encouraged by observations discussed in the literature. We derive the phase

plane diagram for the system and find that this system gives rise to excitable be-

havior and allows pulses of high myosin concentrations to travel at constant speed.
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Further, we investigate the mechanical impact of the contractile ring that propagates

over the surface of the cell from one pole to the other and find that the contraction

from the myosin activity working against a passive elastic material can account for

the flattened shapes observed in the experiments.
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2 Numerical Methods

2.1 Introduction

The description of surfaces in three-dimensional space has fascinated physicists and

mathematicians ever since Euklid summarized the axioms of geometry around the

year 300 BC and surely even before. The reason is that the configuration of the

surface is linked to its properties and functions. In architecture and construction,

stability, weight and material usage are primary concerns in building for example

roofs, bridges, and dams [35, 36]. From ancient up to medieval times, soldiers had

to find a balance between coverage, stability, and weight of their shields. Math-

ematicians have investigated the area of surfaces in three-dimensional space. The

most famous example is probably Gauss, who invented modern geodesy in order

to survey his home region around Braunschweig geologically. They are also inter-

ested in minimal surfaces, where the mean curvature vanishes at every point of the

surface. Minimal surfaces can be infinitely extended or confined by a closed bound-

ary that might be rigid (Plateau’s problem, see [37]) or elastic [38]. In physics,

two-dimensional surfaces in three-dimensional space are of interest in many research

areas, e. g. interfaces between different fluids [39], configurations of foams [40], and

wetting [41, 42].

In biophysics, the description of membranes that consist of lipid bilayers has a

long tradition. Biomembranes are essentially two-dimensional, since their lateral

extension of some µm is much larger than their thickness of 4nm. The simplest

model system is the one of vesicles [34, 43], whose shapes can be well described

with the Canham-Helfrich Hamiltonian [33, 44]. Famous is also the shape spectrum

of red blood cells (RBCs), which ranges from the cup-shaped stomatocyte over

the physiologically most relevant biconcave discocyte up to the echinocyte, which

resembles a sphere with spikes [45, 46]. Here it is not sufficient to only describe the

mechanics of the lipid bilayer, but one also needs to take a network of biopolymers

that lies underneath the membrane into consideration. This network is about 50nm

thick, which is considerably more than the membrane thickness. Nevertheless, both

layers together are still very thin compared to the diameter of the cell, which is

approximately 8µm, such that it is still justified to describe the composite with a
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surface model. The network consists of spectrin proteins that respond non-linearly

elastic to stretch and shear, which stabilizes the spiculated shapes of RBCs.

Several methods have been developed to describe surfaces in order to investigate

their properties and find their equilibrium shapes. Equilibrium here defines an opti-

mal configuration with respect to some energy functional that depends on the shape

of the surface and additional constraints. Such energies can relate to, for exam-

ple, stretch, bending rigidity, and tension, while constraints include among others

area and volume conservation, and adherence to some defined points or surfaces in

space. Simulations typically start from a reference surface and iteratively alter their

description until it arrives at a stationary result.

For some energy functionals and well parameterizable surfaces it is possible to derive

shape equations in an Euler-Lagrange formalism. This has been exploited before in

various publications [43, 47–51]. The description of the surface then completely

depends on a set of initial conditions, which are integrated to assess the energy as-

sociated with the surface. Often constraints are formulated in terms of requirements

for the endpoint of integration. Shooting methods can be applied to seek solutions

for an individual parameter set, and parameters have to be varied to find possible

shapes and associated energies.

An interesting method was recently introduced by Khairy et al. which uses an

expansion of the surface in spherical harmonic functions YL,K(θ,Φ),

x(θ,Φ) =
Lmax∑
L=0

L∑
K=−L

Cx
L,KYL,K(θ,Φ) ,

and similar for y and z [52]. The optimization then consists of finding the set of

coefficients Ci
L,K , i ∈ {x, y, z}, that lead to minimal energy. The method has been

demonstrated in the context of RBC shape and can be used to both fit experimen-

tal data and calculate theoretical shapes depending on the optimization measure

applied. The method is capable of reproducing surfaces that do not form a star-

shaped domain. This means that there is no need for a center that directly ”sees”

all points of the surface, as it would be the case for the classical spherical harmon-

ics parameterization, where the radius R replaces the components x, y, and z. It

is computationally efficient if spherical harmonics provide a sufficient description

already for low L as in the case of RBC shapes [52].

Another approach of simulating surfaces are level set methods. Here one describes

the surface with the help of an implicit representation by an isocontour of a function

Φ(~x) [53]. Usually Φ = 0 is used and Φ is defined such that the gradient does not

vanish at the zero isocontour. This allows to differentiate between the inside and

the outside of a closed surface just by evaluation of the sign. Level set methods

come at the cost that one needs to discretize a domain of the whole embedding
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space, in contrast to surface tracking methods that only discretize the surface itself.

Conversely, it avoids the issue of mesh homogeneity, which becomes problematic

with surface tracking methods for large deformations or if surfaces merge or divide.

Triangulated surfaces constitute a surface description which is widely used in image

processing [54], computer-aided design [55], and the calculation of surface shapes

and dynamics [45, 46, 56]. The surface is described by a set of vertices, which are

interconnected by a set of edges. The connection is such that all faces defined by

minimal closed edge loops are triangles. When simulating membranes, one has to

differentiate between fluid and polymerized membranes. In fluid membranes like

the lipid bilayer in vesicles, the connectivity of neighbors is not fixed. Vertices need

to be allowed to change connections to other vertices and can thus move across the

surface. Thus a fluid membrane cannot withstand shear stresses and elastic energy

contributions are limited to stretch and bending. In a polymerized membrane like

in RBC, where the lipid bilayer is connected to a stable elastic spectrin network,

the coordination is fixed and it thus resists shear stresses. An open source soft-

ware focused on tension problems that incorporates a wide set of features for the

optimization of triangulated surfaces and meshing is the SurfaceEvolver [56]. Here

the user specifies the geometry of the reference surface and the energies of interest

in an input file and can then interactively minimize the surface. In this way it is

possible to utilize optimization steps of different solvers, change the mesh size, or

apply noise to the vertices while the resulting surface is displayed. One can also

solve more difficult partial differential equations like reaction diffusion systems on

the surface with the help of finite element surface methods [39].

2.2 The Software SurfaceMaster

In this thesis we present an approach using triangulated surfaces for most numerical

tasks. The range of applications includes cell shapes on patterns in two and three

dimensions (chapter 3), traction force reconstruction (chapter 4), viscous flow (chap-

ter 5) and three-dimensional shapes of spheroids with contractile elements (chapter

6). We choose this method out of the ones explained above since it is equally appro-

priate to consider shapes and forces in two and three dimensions and as it defines

a natural way of embedding one-dimensional heterogeneities into the structures by

setting special properties on a sequence of edges in the mesh. The latter part en-

ables us to consider especially strong bundled structures in the cell’s cytoskeleton

which we will need in the chapters 3, 4, and 5. We need to apply several energy and

force dependent solvers, including deterministic energy minimizers and a dynamical

model. Since we need a great flexibility in controlling the reference surface, appro-

priate energies, their minimization, and data output, we decided to develop a new
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Figure 2.1: Triangulated surfaces with the software SurfaceMaster. (A) Piece of a

spherical triangulated surface. The surfaces is represented by a set of vertices that

are interconnected by edges to form triangles. (B), (C) SurfaceMaster can output

VTK files ([57], cf. main text) with associated data for vertices, edges, and triangles.

Here the same discocyte is shown with the local mean curvature (B) and the local

squared mean curvature (C) in color coding.

software, though many of the features are also implemented in the SurfaceEvolver

mentioned above. In analogy to this software, we will call our own software Sur-

faceMaster. In the following, we will introduce its design principles and its internal

organization.

2.2.1 Overview

The purpose of SurfaceMaster is to deform and evolve triangular meshes with respect

to specified energies and forces. The code is written in the programming language

C++. In order to provide the greatest flexibility possible, the software is organized

in a modular way and offers the user to pick the parts of interest. It is also possible to

extend the software in a straight forward way. The core components of the software

are:

1. The GeomObject, which stores all geometrical information about all vertices,

edges, and triangles of the mesh as well as their connectivity.

2. Energies, which store information about the current energy configuration and

its gradients.

3. Constraints under which the energies are to be minimized.
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4. The Minimizer, which implements an optimization scheme to change the con-

figuration of the GeomObject according to the defined energies.

It is then the user’s task to write a controller class that defines the work flow.

This includes initializing the individual components and connecting instances of the

GeomObject, Energy, Constraint, and Minimizer classes. Then the controller can

define the iteration of the chosen optimization scheme and organize data output.

2.2.2 The GeomObject

The GeomObject contains all information about the current geometry of the surface.

For this purpose it holds a list of objects of each of the three basic entities it consists

of, namely vertex, edge, and triangle. Vertex objects store their three-dimensional

locations and define basic functions, e. g. scalar and vector product, and the norm.

They also store information about their connection to edges and triangles. Edges

store their two end points as vertex objects, and keep a list of the triangles in

which the are contained. They also offer some geometrical functions like intersection

checking and can store additional information, like for example a rest length which

is necessary to determine elastic energies. Triangles know about vertices and edges

they contain and methods to calculate their normal, area, and volume contribution

as is explained e. g. in [46, 56, 58]. Note that the information about the connection

between vertices, edges, and triangles is stored redundantly, which one need to take

special care of if the mesh is to be changed. However, this redundancy yields large

performance benefits.

The GeomObject class itself adds some more features that relate to the sum of its

parts. It offers methods to calculate area and volume, and adds input and output

features. GeomObjects can be assembled automatically from VTK files [57], or

constructed manually. The output is in the VTK format as well. Here the mesh

can be annotated with data readouts through subclasses of a template class, which

defines methods that collect data associated with points or triangles. Instances of

these classes can be stacked according to the decorator pattern to allow for multiple

data output (cf. e. g. [59]). We recommend the free software ParaViewer to view

input and output meshes in the VTK format [60].

2.2.3 Energies

Energies that control the evolution of the surface are defined as subclasses of the

superclass Energy. The subclasses are basically prescribed to implement methods

to calculate the energy of the whole surface and its gradient on single vertices. A
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generic numerical gradient determination is implemented already in the superclass

but may be overridden by subclass methods. For performance reasons, energies

contain two Boolean fields that indicate if a new calculation of energies and gradients

is necessary. They are supposed to be set to true by the optimizer in the beginning

of an iteration. This allows the energy classes to perform an efficient calculation of

energy and all gradients in one step, save the results, and answer with subsets of

the saved data to calls for gradients of single vertices. It also allows to calculate

gradients that are used in several energies only once per iteration.

Here we give a summary of all energy formulations implemented in SurfaceMaster :

• Surface tension energy Eσ = σA: The energy is proportional to the area A of

the surface, and the coefficient is called the surface tension σ. A guide how to

determine surface gradients can be found in [46, 56, 58].

• Adaptive surface tension energy: In addition to the background surface tension

σ, one can store individual surface tensions for each triangle i. The energy is

then computed as E =
∑

i(σ + σi)Ai, where Ai is the area of triangle i.

• Quadratic area difference energy EA = cA/2 · (A − A0)2: This energy can

be used to enforce area conservation. A and A0 are the current area and a

reference area of the surface, and cA the proportionality coefficient.

• Quadratic volume difference energy EV = cV /2 · (V − V0)2: This works analo-

gously to the quadratic area difference energy. An introduction to volume and

volume gradient calculations for triangulated surfaces is given in [46, 56, 58].

• Different implementations of bending energies are provided that calculate

E = α
∫
H2 dA + β

∫
H dA + γ(

∫
H dA)2, where H = (κ1 + κ2)/2 is the

mean curvature of the surface and κ1, κ2 are the principal curvatures. The

parameters α, β, and γ allow to control the bending stiffness, spontaneous

curvature and area-difference elasticity [34]. The last is related to a difference

of the resting area in the two sheets of a lipid bilayer and is often considered

for biological membranes. Gaussian curvature bending was not implemented,

since its integral over a closed surface is a topological invariant, and we are not

interested in changes of the topology here [37]. The methods we implemented

are the one described by Jülicher [61] and Wintz [58]. While the first is easier

to calculate and computationally more efficient, the idea of Wintz provides the

correct scaling of the energy for sharp edges.

• Hookean spring and active cable energies: These energies are defined on the

edges alone. A passive cable is defined as a spring in the extension regime

l > l0, where l, l0 are the length and rest length of the cable. In contrast, it

does not resist compression, so the force is zero for l ≤ l0. An active cable is a
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passive cable which features an additional constant force dipole that actively

contracts the cable.

• Nonlinear two-dimensional elasticity is described by

E =

∫
dA0

[
Kα/2 · (α2 + a3α

3 + a4α
4) + µ(β + b1αβ + b2β

2)
]

. (2.1)

We refer to the book chapter of Lim, Wortis, and Mukhopadhyay in [46] for a

derivation and an explanation of its numerical discretization for triangulated

surfaces.

2.2.4 Constraints

Constraints can be treated in different ways. Vertices contain a special flag which

can be set if they are supposed to keep their spatial position. Other constraints

can be treated as quadratic potentials, which are simply stated as energy classes ex-

plained above. It is however also possible to specify hard constraints. The constraint

classes calculate the deviation from the given value, e. g. the difference between cur-

rent volume and target volume, and a gradient. The optimizer must then include

a method to project forces onto all constraints and perform an compensation for

any deviation between current and target value. The method implemented in the

deterministic minimizers is taken from the SurfaceEvolver and can be looked up in

its documentation [56].

2.2.5 Optimization

Optimal configurations can be found by minimizing the energy, which can be done

in multiple ways. A very robust and fast method is deterministic minimization

using gradients. We implement a steepest decent algorithm which always follows

the direction down the local energy gradient. As this method is inefficient for tight

valleys in the energy landscape, we also implement the conjugated gradient method

as described in the book Numerical Recipes in C++ [62]. Here, a history vector is

created and updated over all iterations in order to find directions together with the

local energy gradient that are more efficient to find the optimum. The algorithm

is constructed such that it can find the minimum of any N -dimensional quadratic

function in N iterations.

If energy barriers need to be crossed and local minima occur in the energy landscape,

deterministic optimization methods do not automatically converge to the minimal

energy. For this reason, we also implement a Monte Carlo solver with the Metropolis

algorithm [46, 63]. The idea is that vertices are subjected to trial moves that cause
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a small difference in energy ∆E. If ∆E < 0, the trial move is accepted. However,

even if ∆E > 0 we accept it with a probability of exp(−∆E/(kBT )), where kB is

the Boltzmann constant and T is called computational temperature. This procedure

is linked to statistical mechanics as it reproduces the thermal ensemble of shapes at

the computational temperature.

We also include a possibility of simulating dynamics in a noiseless overdamped way.

This means that the velocity of vertex i, ~vi, is proportional to the force it experiences,
~Fi, which leads to ~Fi = η~vi. Here, η is the effective viscosity of the medium. This

method will be explained in more detail in chapter 5, where we consider flow in

filamentous networks.

2.3 Example: Red Blood Cell Shapes

Red blood cells (RBCs) show a variety of shapes under different conditions that

are used to identify certain diseases. As early as in 1675, the dutch microscopist

Antonie van Leeuwenhoek observed that RBCs are soft and can deform from their

round resting shape into ovals and back [6]. Some 340 years later, we know that

RBCs show a rich spectrum of shapes at different conditions and that the shapes

are determined mainly by the membrane and the underlying network of spectrin

polymers [46, 64].

During growth and maturation in the bone marrow, RBCs first expel their nucleus

and then sequentially degrade other organelles [64]. The remainder consists mainly

of hemoglobin, electrolytes and water enclosed in a hull of membrane and mem-

brane associated cytoskeleton (see e. g. [44]). It is therefore an ideal model system

for physicists, since the cell has lost most of its biological activity. The mature RBC

exhibit a physiological volume of about V = 100µm2 and a surface area of approx-

imately 140µm2, which means that it has an excess area of ca. 35% compared to a

sphere with the same volume [46]. Without external forces it relaxes to a resting

shape of the biconcave discocyte, which is about 8µm in diameter and 1.7µm thick

(Fig. 2.3 C).

2.3.1 Theoretical Background

The shape spectrum of RBCs is very rich and requires many of the energy terms

implemented in SurfaceMaster. We will therefore demonstrate the computing ca-

pability of the software by calculating theoretical RBC shapes. Before we do so,

we briefly review how the Hamiltonian describing RBC shapes was found and the
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effects of its single parts on the shape spectrum. The biconcave resting shape was

first explained by Canham, Deuling and Helfrich, who proposed that it was deter-

mined by the minimal energy state of the membrane with respect to bending [44,

65]. The bending energy is given by

Hbend =
κb
2

∫
(2H − C0)2 dA =

κb
2

∫ (
1

R1

+
1

R2

− C0

)2

dA , (2.2)

where κb is the bending rigidity, H the mean curvature of the surface, C0 the spon-

taneous curvature, and R1, R2 the principal curvatures. This Hamiltonian can be

derived either from the elastic description of a thin plate [66, 67] or with an ex-

pansion in curvature [33, 34] : As the energy cannot depend on the choice of the

coordinate system, it has to consist of a combination of the two invariants of the

curvature tensor, namely the the mean curvature H and the Gaussian curvature

K = 1/(R1R2). If one requires that the energy should not depend on whether the

surface is bent inwards or outwards, terms linear in H drop out and we arrive at

Hbend = α

∫
H2 dA+ β

∫
K dA . (2.3)

Here we expanded to lowest order and ignored a constant term that would correspond

to a surface tension. The second integral is a topological invariant though, which is

stated by the Gauss-Bonnet theorem [37]. As RBCs do not change their topology,

we arrive at Eq. 2.2 as the relevant part of the expansion. There, the spontaneous

curvature accounts for an asymmetry in the membrane, which reintroduces a term

linear in H.

Minimizing Eq. 2.2 at constant volume and area indeed reproduces the resting bi-

concave shape of RBCs and can also account for cup-shaped stomatocytes (Fig. 2.3

B). However, especially the spikes in the shapes of echinocytes and spiculed shapes

(Fig. 2.3 D, E) show that minimization of the squared mean curvature is not enough

to explain the full spectrum of RBC shapes. There needs to be a mechanism which

drives the system towards a locally more curved state, and an explanation for this

is found in the area-difference elasticity (ADE) model.

An excellent review of its history and different variations is found in [34]. The main

idea is that the membrane does not consist of a single layer, for which Eq. 2.2

was appropriate, but of a bilayer. As the lipids can hardly be exchanged between

the two layers, they may possess different resting areas and consequently a resting

area difference ∆A0. Now consider two patches of membranes of equal area, one

in each layer. When the membrane is bend and the layers are assumed to remain

parallel surfaces, the local difference in area between the patches is to first order

proportional to D · H, where D is the distance between the two layers and H the

local mean curvature. We can now write down a quadratic potential which accounts
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A

C

B

D

Figure 2.2: Initial shapes for RBC shape determination at different volumes. The

initial volume defines the resting state of the membrane skeleton. The final RBC

shapes all exhibit the same physiological volume of 100µm3. Surface area A =

140µm2 is held constant for all initial and final RBC shapes. (A) V = 100µm3 (B)

V = 130µm3 (C) V = 148µm3 (D) V = Vsphere(A = 140µm2) = 155.8µm3

for the trend of the two monolayers to assume the preferred state in area difference,

HADE = α (∆A−∆A0)2 = α

(
D ·
∫
H dA−∆A0

)2

, (2.4)

where α can be calculated from the elastic response to stretching membrane patches.

Combining Eqs. 2.2 and 2.4 yields the complete Hamiltonian for a lipid bilayer that

includes its bending elasticity and the area difference between the two layers. Both

the spontaneous curvature and the ADE model introduce a term linear in
∫
H dA

that can be combined and written in terms of an effective spontaneous curvature.

Controlling this quantity can drive budding in vesicles [34], which is also interesting

in the context of RBCs. In the simplest case, a spherical extension appears on a
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2.3. EXAMPLE: RED BLOOD CELL SHAPES

spherical vesicle, and the two domains are connected by a narrow neck region (see

e. g. [47]). In terms of Eq. 2.2 at C0 = 0, the neck does not cost energy since

the two principal curvatures are equal in their absolute value but of different signs.

Further, in this equation the energy for a sphere is independent of its radius, as∫
H2 dA = 4π/3.

With RBCs we do not observe budding but the formation of spikes or spicules. From

the bending energy alone, one would expect buds instead of spicules [68]. Iglic and

others proposed that the elasticity of the membrane associated cytoskeleton could

stabilize the spicules [68, 69]. One can account for this by considering the non-linear

elastic Hamiltonian

Helastic =
Kα

2

∫
dA0

(
α2 + a3α

3 + a4α
4
)

+ µ

∫
dA0

(
β + b1αβ + b2β

2
)

. (2.5)

Here, Kα and µ are the modules for stretch and shear, α and β are the area and shear

strain invariants, and ai, bi are the coefficients that define the nonlinear behavior. A

detailed derivation of these terms as well as a discretization approach for triangulated

surfaces can be found in [46].

2.3.2 Numerical Determination of RBC Shapes

For a demonstration of the software SurfaceMaster, we follow the study conducted

by Lim, Wortis, and Mukhopadhyay [45, 46], where all parameters can be found.

As explained above, all necessary energies are implemented in SurfaceMaster. The

procedure is as follows. First, the initial shapes for the algorithm are determined by

specifying the resting state volume Vms for the membrane skeleton and calculating

the according shape on the discocyte sphere transition sequence, where the surface

area is always fixed at A = 140µm2. The calculations start at spherical shapes

that are constructed from icosahedrons and refined subsequently. Deviating from

the work of Lim et. al. [45, 46], we here employ a deterministic energy minimization

scheme with conjugated gradients instead of a Monte Carlo simulation. This is suffi-

cient after a small initial symmetry break as no local minima arise. As the software

allows to switch the optimization method, it is easy to set up and we can there-

fore exploit the benefit of shorter computation times for deterministic minimization.

Exemplary resting shapes for different Vms are depicted in Fig. 2.2.

In the second step, an appropriate initial shape and the effective spontaneous cur-

vature are chosen as parameters. A Monte Carlo simulation is performed, where the

number of sweeps is sufficiently high to arrive at the shape class of interest. Instead

of gradually decreasing the simulation temperature as done by Lim and coworkers,

we again use a deterministic energy minimization to calculate the T = 0 shapes.
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The results agree with those presented in [46] and are shown in Fig. 2.3. We re-

produced shapes for non-axisymmetric and axisymmetric stomatocytes, discocytes,

echinocytes, and spiculated shapes from the parameter space investigated in the

work by Lim and coworkers. We conclude that SurfaceMaster is a suitable tool to

compute even highly nontrivial shapes such as the ones shown here for RBCs.

2.4 Discussion & Outlook

In this chapter we introduced the software SurfaceMaster, which we use for most

numerical tasks presented in this thesis. We chose the representation of surfaces

by triangulation, as this is especially well suited to model shapes in both two and

three spatial dimensions. Furthermore, this kind of discretization provides a nat-

ural way to include one-dimensional fiber-like structures into a two-dimensional

surface embedded in either two or three spatial dimensions. Such structures will be

important for the investigation of cellular force generation, cellular elasticity and

three-dimensional shape problems in the subsequent chapters.

The internal structure of SurfaceMaster is modular, which allows it to be easily

extended in terms of additional definitions of energies, constraints, and optimiza-

tion schemes. We refrain from providing a general input file structure as offered

by e. g. the SurfaceEvolver, and encourage the user to write their own controllers

together with the source code of SurfaceMaster directly in the programming lan-

guage C++. In this way one can combine all features of interest while retaining the

flexibility which is needed for most numerical studies. The implemented energies

and optimization schemes allow to set up a project quickly and to concentrate on

the biophysical aspects instead of programming.

One of the convenient features of the software is that it uses standard VTK files

for input and output meshes. By sticking to this standard, SurfaceMaster can be

used together with other software without the need for converters. Input files can

be constructed and results viewed with 3rd party programs. We recommend the

software gmsh [70] for generating initial meshes, since it offers advanced meshing

features and is easy to use. For two-dimensional image segmentation combined with

mesh generation, we also provide an extension for the image processing software

ImageJ [71], which will be discussed in chapter 4. In order to view the output files,

we used the software ParaView throughout this work.

For demonstration purposes, we calculated representative shapes of RBCs. We

briefly reviewed the parts of the Hamiltonian. The area-difference elasticity term

can drive the system to different shapes, where the spiculated echinocytes are sta-

bilized by the nonlinear elasticity of the membrane cytoskeleton. In this study we

26



2.4. DISCUSSION & OUTLOOK

A

B

C

D

E

Figure 2.3: Experimental and calculated shapes for RBCs. V = 100µm3 and A =

140µm2 for all calculated shapes. Initial shape volume Vms and ADE parameter m̄0

(cf. [46]) vary. (A) Non-axisymmetric stomatocyte, Vms = 130µm3, m̄0 = −45 (B)

Axisymmetric stomatocyte, Vms = 148µm3, m̄0 = −10 (C) Axisymmetric discocyte

Vms = 100µm3, m̄0 = 15 (D) Echinocyte, Vms = 100µm3, m̄0 = 100, (E) Spiculated

shape, Vms = 148µm3, m̄0 = 120
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showed how different energy definitions and optimization schemes implemented in

SurfaceMaster can be utilized to calculate highly nontrivial cell shapes.
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3 Force and Shape of Geometrically

Constrained Cells

3.1 Introduction

In the past 20 years, micro-patterned substrates have become an important tool in

cell culture (cf. Fig. 3.1). If cells are cultured in homogeneous environments, they de-

velop a rich variety of shapes, sizes, and internal organizations. Often this biological

variability impedes the reproducibility of experiments and hinders the acquisition of

statistically significant data. By their ability to regulate and normalize cell geome-

try, patterns have helped to unravel details of important biological processes such as

migration [Refs from Philipp] or proliferation [72–74]. Further, patterns have shed

light on the direct influence of geometry on cellular function. Chen and coworkers

discovered that cells die if they do not find enough space to adhere to [2]. Cell geom-

etry was also found to regulate the organization of the cytoskeleton (CSK) [75, 76]

and to influence traction stresses [29–31]. A recent study even inverts the problem

and predicts the optimal shape of pattern networks that allow cells to divide and

migrate on them with the help of a cellular Potts model and a genetic algorithm

[30].

A recurring feature of cells cultured on structured substrates in two dimensions are

circular invaginations which form between adhesive islands (Fig. 3.1). Interestingly,

such arcs also form on the larger scale of a tissue [4]. In cells, these arcs are often

reinforced by actin filament bundles, so called stress fibers (SF) [77]. The circular

shape of the invaginations expresses the equilibrium between two local forces, namely

a line tension λ and a surface tension σ (Fig. 3.1 D). The line tension acts in the

direction of the arc tangent ~t, while the surface tension pulls perpendicular to this

direction. In two dimensions, this direction is uniquely defined by the normal of

the arc contour, κ~n = d~t(s)/ds. κ denotes the curvature of the line and s is the

arc length coordinate which means that |~x′(s)| =
√
x′(s)2 + y′(s)2 = 1. Together

with the tensions, we can now formulate the simple tension model by assuming force
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A B

C D

Figure 3.1: Cells on patterned substrates. (A) Cell adhering to microdots on a flat

substrate (taken from [4]). Scale bar: 10µm. (B) Cell in a V -shaped pattern that

is lifted from the ground by microposts. Scale bar: 10µm. (C) Three-dimensional

scaffold with the geometry of a box ring for normalizing three-dimensional cell shape.

(D) Line tension λ and surface tension σ determine arc shape in the tension elasticity

model (taken from [10]). (B), (C): Courtesy of the group of Martin Bastmeyer,

Karlsruhe Institute of Technology.

balance in the normal direction,

λ
d~t

ds
= λκ~n = σ~n

1

κ
= R =

λ

σ
.

(3.1)

In the second equation we introduced the radius of curvature, R = 1/κ, which is

constant as long as σ and λ are. Thus circular arcs form. However, this concept

cannot explain the observation that the arc radius depends on the spanning distance

d [4]. The dependence on an reference length suggests an elastic effect. This is
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3.2. FORCE DISTRIBUTION ON THE CELL CONTOUR

incorporated by the tension-elasticity model (TEM) proposed by Bischofs et al. in

[4]. The line tension is assumed to be of elastic origin, λ = EA(L − L0)/L0, for

which case one can derive a self-consistent equation for the radius R,

R = lf

(
2R

αd
arcsin

(
d

2R

)
− 1

)
. (3.2)

In the equations above, E denotes the Young’s modulus and A is the cross section

of the arc, L and L0 its length and rest length. The rest length parameter α = L0/d

defines the prestrain for a straight connection between the anchoring points. To-

gether with the length scale lf = EA/σ, it completely describes the two dimensional

system.

In this chapter we will extend the TEM in two different ways in order to learn more

about the internal force distribution in the CSK. We will first give up the idea of

a homogeneous surface tension as the driving force for the invaginations. This is

meaningful if the CSK condenses to fiber structures also in the interior of the cell,

and if these fibers connect to the peripheral one. We predict the force distribution for

such cases and verify our results by a comparison to the distance the fiber retracts

when severed with a laser nanoscissor [23], which is done by Elena Kassiandiou

in the group of Sanjay Kumar at the University of California, Berkeley. Further,

we will extend the TEM to three dimensions and investigate the effects of volume

constraints and curvature. The latter part is inspired by experiments performed in

the group of Martin Bastmeyer at the Karlsruhe Institute of Technology, to which

we will compare our findings. For both extensions we use the fact that TEM shapes

can be simulated with cable networks under isometric tension [4, 78, 79]. Here we

will alter either the isometric towards a directed tension in the first part, while in

the latter we will consider non-planar networks with finite enclosed volume.

3.2 Force Distribution on the Cell Contour

Stress fibers (SF) are thick tightly bundled and cross-linked structures build mainly

of actin filaments. They have attracted high attention over the past decade regarding

their formation, molecular composition, and mechanical properties [19, 21, 22, 24,

32, 76, 77, 80–87]. Though stress fibers were associated with forces already in the

1980s [81], it is a difficult task to measure the internal stress. Precise methods could

only be used in the last decade. After laser ablation of SFs, one can measure the

either retraction velocity or retraction length to infer forces [23, 24, 83, 88]. Laser

ablation is also used to measure tension in the cell cortex [8, 89]. Atomic force

microscopy was used to indent SFs and retrieve forces [90]. In a recent study, we

presented an approach how one can measure SF tensions in a whole cell in a non-
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A B

Figure 3.2: Ablation of peripheral stress fibers. (A) Actin CSK (green) of a U2OS

cell on a flat, U-shaped pattern (blue) with one free spanning arc. The yellow

arrow indicates the location where the fiber is severed. (B) Steady state after fiber

retraction. Scale bar: 10µm. Courtesy of Elena Kassianidou.

intrusive way [91]. The latter approach will be discussed in detail in chapter 4 of

this thesis.

Recent experiments by Kassianidou and Kumar (unpublished) have raised the ques-

tion how the force load of a peripheral SF depends on the connectivity to other

internal SFs. U2OS-cells were seeded on U-shaped pattern, on which they assume

rectangular shapes with one freely spanned arc. This invagination is reinforced by a

peripheral SF, to which other internal SFs can attach (cf. Fig. 3.5 A, B). Connection

angles were recorded in the experiment, before the peripheral SF was severed (Fig.

3.2). The retraction dynamics were fitted to a Kelvin-Voigt model [CIT], where a

viscous and an elastic element are connected in parallel. The model predicts an

exponential law for the retraction length, l(t) = l0 · (1−exp(−t/τ))+Da, where l0 is

the asymptotic retraction length, Da the length of the SF destroyed by the laser, and

τ = η/E a the decay time scale which is usually on the order of some seconds [23].

The latter is determined by the ratio of the viscosity η and the Young’s modulus E

of the viscous and elastic element, respectively.

3.2.1 Symmetrical Stress Fiber Configuration

In order to understand the effect of internal SFs pulling a peripheral SFs inwards, we

develop a simple mechanical model of connected cables subjected to external force

(Fig. 3.3 A). The internal SFs are modeled by an active force F0 that encloses an

angle α with the horizontal axis. The peripheral SF is modeled by an active cable,

that is dissected by the connection points of the internal SF. Both parts feature a

constant force dipole of the same tension F0 and can be under elastic stress. The

elastic stress builds up because they are located at the periphery and are therefore

32
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Figure 3.3: Theoretical model for a symmetric configuration of connected stress

fibers. (A) One half of the peripheral stress fiber is modeled by two cables with

different elastic properties. The connecting fiber from the interior is purely active,

since it is in the compression regime. (B) Solution of the implicit equations (orange

line) and network calculations (blue dots) show excellent agreement. The slight force

overestimation in the network model is due to a small active tension on each network

link, which is added in order to regularize triangle shapes. The parameters used were

F0 = 5nN , k = EA/l0, k2 = EA/l2,0, EA = 500nN , l0 = 26µm, l2,0 = 4µm.

stretched when the contour is pulled inwards. We are interested now in the force

Fcentral in the central part, as this would determine retraction after the peripheral

SF is severed along the symmetry line. Note that the configuration resembles a

common situation observed in experiments, see Fig. 3.5 A.

It is sufficient to evaluate the left side of the picture shown in Fig. 3.3 A, since

we focus on a symmetrical situation for simplicity. Without elastic elements, force

balance in x and y direction immediately leads to α = β, Fcentral = 2F0 cos(α). In

this simple picture one might naively assume, one would expect that retraction is

strongest for small α. However, experiments indicate that this is not the case.

With the full model including the elastic elements, the force balance and geometrical

conditions read

F0 · sin(α)− ((F0 + k(l − l0)) · sin(β) = 0

F0 · cos(α) + (F0 + k(l − l0)) · cos(β) = F0 + k2(l2 − l2,0)

cos(β) =
l0 + l2,0 − l2

l

0 ≤ β ≤ π

2
.

(3.3)

Note that the elastic parts are only evaluated if l− l0 > 0, which represents the cable

asymmetry between stretch and compression. We numerically solved this system of

equations with the software Mathematica. For the parameters we chose F0 = 5nN ,

k = EA/l0, k2 = EA/l2,0, EA = 500nN , l0 = 26µm, l2,0 = 4µm, which are typical

values for U2OS-cells [91]. The result is shown in Fig. 3.3 B (orange line). Different
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from the naively expected simple force decay with increasing α, the force distribution

shows a peak at α ≈ 70◦, and the maximal force is considerably higher than the

active forces involved. The force the decreases for higher α until it reaches the active

force level close to α = 180◦. The plateaus on the left and right end of the curve are

the regimes where either the outer (left) or central (right) cable is in the compression

regime. This result is confirmed by network simulations with active cables for the

same parameters (Fig. 3.3 B, blue dots). The slight overestimation of force is due

to a small active tension in the background network which was put for numerical

reasons.

In terms of the experiment, this simple model gives the remarkable hint, that the

exact magnitude of active forces might not be the only determinant for the retraction

length. As the internal SFs pull the contour inwards, an elastic stress occurs in the

peripheral SF that might be higher than the active force of the internal SF. This

elastic stress is released when the fiber is severed. Experiments confirm that the

contour not only retracts along itself after ablation but also moves inwards in this

process. This indicates that there is indeed a stress caused by inwards pulling

internal SFs. This stress is primarily determined by the connection location of

internal and peripheral SF, and by the connection angle.

We investigated the impact of the different parameters further by changing the

connection point along the peripheral SF determined by l0, the active force F0 and

the fiber stiffness EA respectively (Fig. 3.4). If the connection angle α is either close

to zero or π, the rest length of the fiber does not matter as no elastic contributions

occur. At intermediate connection angles the effect becomes stronger when the

connection points are closer to the center (large l0, Fig. 3.4 left). In contrast, the

variation of the active forces changes the base force level and affects also the extreme

ends of the range of α (Fig. 3.4 middle). As expected, SF stiffness induces only an

elastic effect, which leaves the force levels unchanged for large and small α. We

conclude that configurations with either only small or only large α are well suited

to figure out the scale of active forces in experiments.

3.2.2 Asymmetric Stress Fiber Configurations

The symmetric model provided insight in the important characteristics of force dis-

tribution with active and elastic elements. We now want to evaluate whether this

describes the situation found in laser ablation experiments. However, cells on mi-

cropatterns hardly show purely symmetric situations. It is therefore difficult to

gather enough data to support or reject the symmetric model. We pursued a differ-

ent approach using simulations with active cable networks (ACN). Fig. 3.3 B shows

the agreement between solving the system of equations 3.3 and ACN simulations.
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Figure 3.4: Parameter variation in the symmetric model with respect to the choice

in Fig. 3.3 B. All plots show the total force in the inner cable, cf. Fig. 3.3 A. When

the rest length l0 of the outer cable is altered, the rest length of the inner cable

changes to l2,0 = ltot − l0 = 30µm − l0. The effect of inner SFs is strongest when

they connect close to the center (left). As expected, stronger active forces lead to

higher total force levels in the central part (middle). Most elastic stress is generated

when the fiber is stiffest (right).

The advantages of ACN simulations are that they are very flexible regarding the

geometry of the fiber distribution and that they allow us to introduce a background

network tension.

The workflow is illustrated in Fig. 3.5 and is as follows. We take the actin fluo-

rescence image and enhance the contrast in ImageJ [71] such that the fibers are

clearly visible (Fig. 3.5 A). We then use our plugin for the Segmentation of Focal

Adhesions and STress fibers (SoFAST), which we discuss in detail in chapter 4.

Briefly, the user can manually segment SFs by marking them with segmented lines,

Fig. 3.5 B. The plugin also allows to segment cell area from the actin image. It then

generates a triangular network that covers the whole cell area and embeds the stress

fibers as marked edges.

It is however difficult to segment the cell in such a way that a curved SF lies ex-

actly at the cell rim. For this reason, we implemented a mesh alteration routine

in SurfaceMaster which removes the network part on the outside of the peripheral

SF. We then perform an optimization with respect to the ACN energy. Here we

chose the same active force and one-dimensional Young’s modulus as for the sym-

metric model, F0 = 5nN and EA = 500nN for all SFs. As we segment already

the invaginated contour of the cell, we set the rest length of the peripheral SF to

98% of its segmented length. The background network was chosen to be softer by

an order of magnitude and with a very small active component, which was added

for numerical reasons. An example of a network after energy optimization with the

software SurfaceMaster is shown in Fig. 3.5 C, where the force magnitude is shown

in color code.
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A B

C

Figure 3.5: Segmentation and predicted force distribution. (A) Actin fluorescence

image of an U2OS-cell on an U-shaped pattern with dimensions of 60µm by 20µm.

The thick actin bundles are clearly visible. (B) Segmentation of the stress fibers with

the ImageJ plugin SoFAST discussed in chapter 4. (C) Predicted force distribution

in the cytoskeleton. (A) and (B): Scale bar: 10µm, courtesy of Elena Kassianidou.

Fig. 3.5 C shows that the qualitative behavior found for the symmetric model also

transfers to the ACN simulation. Although the individual SFs add only 5nN of

active force, the total force in the fiber is as high as 25nN at the center. The other

segments show lower forces depending on the connectivity of the internal SFs. We

can now use these force predictions to compare the model to experiments. We inves-

tigate two data sets, where either n = 8 or n = 5 cells where cultured on U-shaped

patterns with dimensions of 25µm by 48µm and 20µm by 60µm, respectively. We

used the same parameters that were noted in the last paragraph for all simulations,

so the difference between simulations is reduced to the different segmentations. We

then recorded the predicted force at the location of ablation in the correspond-

ing experiment. We converted these forces to lengths lF for comparison with the

retraction length l0 using a simple spring model, Fsim = k · lF + Fres. We chose

k = 3nN/µm, Fres = 9nN for the first data set, and k = 1.5nN/µm, Fres = 4.8nN

for the second one. An intuitive interpretation of the meaning of these parameters

is difficult. First, it is clear that there needs to be a spring constant which describes

the effective stiffness of the surrounding CSK close to the cut, which eventually

balances the retracting forces. The residual force is then the effective active force in

this part of the cell. However, it is not obvious why these parameters should vary

between the different patterns. It seems more reasonable that in the 20µm by 60µm

pattern, the peripheral SF experiences more load and is therefore reinforced more

strongly, leading to other elastic and active force parameters. In the future, one
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Figure 3.6: Comparison of model predictions LF and experimentally measured re-

traction lengths L0. As the model only predicts forces in the cytoskeleton prior to

ablation, the forces are converted to retraction length by a simple Hookean spring

model, F = kLF + Fcenter (cf. main text). The model parameters were always as

follows: Factive = 5nN , α = 0.98, EAfiber = 500nN . (A) Result for n = 8 cells on a

pattern of 25x48µm dimensions for k = 3nN/µm and Fres = 9nN . (B) Result for

n = 5 cells on a pattern of 20x60µm for k = 1.5nN/µm and Fres = 4.8nN .

should therefore invert the force reconstruction by postulating that k, Fres be the

same on all geometries and optimize for the best parameter choice. It is remarkable

though that we obtain the same qualitative result with the same choice of parame-

ters, which implies that their absolute values do not change the qualitative aspects

of the result.

The results are shown in Fig. 3.6. The retraction lengths and the force lengths l0

and lF match surprisingly well. Apart from one cell in each data set, the difference

∆l = |l0−lF | is below 1µm. Cells that show large retraction lengths show high forces

at the point of ablation in the simulations, and, conversely, SFs with low retraction

lengths are predicted to be under low force. We emphasize that information about

the experimental retraction length did not enter the force prediction process, and

that the parameter settings were the same for all simulations. This means that the

active force was assumed to be the same for all SFs within all cells in both data

sets. This is obviously a very strong assumption and underlines the claim from the

symmetric model that the connectivity determines peripheral SF forces more than

force magnitudes. We conclude that ACN simulations are a fast and reliable way of

estimating the force distribution along the contour.
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3.3 Cellular Tension and Elasticity in Three

Dimensions

Inside organisms, cells naturally live in three dimensions. However, some cells only

feel a two-dimensional space around them. For example, epithelial cells that line

inner and outer surfaces in the body are only attached to them on one side of the

cell. The same is true for endothelial cells that line inner organs and blood vessels.

For theses cells, culture on flat surfaces provides a natural environment. Other cells

like fibroblasts that form connective tissue live in a three-dimensional matrix. For

them, flat substrates are an artificial surrounding. The lower dimensionality breaks

the symmetry in the vertical direction of space and forces the cells to rearrange

internal organelles such as the nucleus. It is therefore unclear if the behavior of

such cells on flat substrates is comparable to in vivo situations. At the same time,

the task to observe and analyze cells in three-dimensional contexts is a challenge

to imaging, segmentation, and modeling. The group of Martin Bastmeyer at the

Karlsruhe Institute of Technology uses the method of direct laser writing to pro-

duce full three-dimensional scaffolds, into which cells can spread and attach only

to some functionalized adhesive regions [CIT]. This three-dimensional equivalent of

flat patterned substrates again allows to normalize the variability between different

cells. To gather quantitative information is still problematic though, especially since

conventional optical microscopes only allow for a resolution up to 800nm in the z

direction.

In the following we will look at two different situations. First we will look at a quasi

two-dimensional V-shaped pattern, which is lifted from the grounds via microposts.

As it is embedded in 3D space but still directs the cell towards a flat shape, we

will refer to this situation as 2.5-dimensional. We then turn towards a full three-

dimensional scaffold with the shape of a pyramid with a pentagon base.

3.3.1 Tension-Elasticity Model in Three Dimensions

Regarding TEM, the situation is now different from the previous section. Stress

fibers do not occur as frequently in three-dimensional situations, and are often lim-

ited to arc structures at the periphery. We will therefore return to the view of a

homogeneous surface tension σ instead of discrete elements contributing the main

part of the inward forces. However, in three spatial dimensions the cell cannot be

modeled by its two-dimensional projection as we have previously done for cells on

flat substrates.

The three-dimensional analogue to the TEM in two dimensions is shown in Fig. 3.7.
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The cell model resides in a 2.5-dimensional pattern which fixes cell shapes along

two lines in the shape of the letter V. The model includes elastic responses only at

the free edge that would complete the V to a triangle, where one can observe actin

bundles in the experiments which were conducted by Mona Jaggy in her master the-

sis (unpublished) [92]. Apart from the elasticity and the fixed outer geometry, the

shape is completely determined by a surface tension and a non-vanishing enclosed

volume. The latter causes the upper and lower membrane connecting to the periph-

eral SF to enclose an effective opening angle φ > 0. If the enclosed volume tends

towards zero, V → 0, φ becomes very small as well. Thus this limit corresponds

to the two-dimensional TEM with σ2D = 2σ3D. Note, however, that the bending

rigidity of the membrane prohibits sharp edges on microscopic length scales. Thus

φ has to be defined at the intersection of two straight lines that are embedded in the

membrane a bit away from the arc where the influence of bending is small compared

to that of the surface tension. In the triangulated surface representation, φ can be

defined as the angle of two triangles that are adjacent to an edge of the peripheral

arc. As the situation is symmetric in the z direction, we can calculate the local force

balance condition similar to the two-dimensional TEM,

λ
d~t

ds
= λκ~n = 2σ cos(φ/2)~n

⇒ R =
λ

2 cos(φ/2)σ
.

(3.4)

Note though that the effective opening angle φ does not need to be constant, which

leads to non-circular arcs.

3.3.2 V-Shaped Patterns

One factor that might affect the opening angle φ in the three-dimensional extension

of the TEM, Eq. 3.4, is a finite enclosed volume condition. The V-shaped 2.5-

dimensional pattern is ideal to investigate this effect, since it defines a single, usually

well developed arc, whose curvature we can quantitatively explore in the model. In

experiments, these arcs often appear to be flattened at the central region, cf. Fig.

3.1 B. As a model system, we rebuild the pattern from the experiment in a surface

mesh. The opening angle of the V shape is 60◦, such that both the lateral sides of

the pattern and the spanning distance of the free arc share the same length, in this

case 30µm. As the reference volume we chose the volume of a pyramid with height

h = 6µm, V0 = 780µm3, which is also shown in Fig. 3.7.

Numerically, the optimization of an isometric tension on triangles is challenging,

since it is a purely local energy. This means that the triangles away from the free

arc are not affected when the arc invaginates from its straight starting position.
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σ
σ

λ λ

A

B

Figure 3.7: Tension-elasticity model in three dimensions. (A) TEM model for a cell

on a V-shaped pattern lifted away from the ground. The turquoise box marks the

region magnified in part (B), and the arrow indicates the view direction. The red

lines indicate where vertex locations are fixed in the model due to the geometry of

the pattern. (B) In three dimensions the surface tensions σ of the two membrane

patches connected to the stress fiber (red line) add vectorially.

As a consequence, triangles at the border become very thin and impede numerical

optimization. We circumvent this problem by splitting the optimization into two

runs. During the first we add a small linear elastic shear and compression energy on

the triangles as presented in the numerical methods chapter, and find the optimal

configuration for the combined energy assay. As the prefactor of the elastic energy

is small, the optimal shape is already close to the one for the system without elas-

tic energy. The triangle coverage of the surface remains much more homogeneous

though. In a second optimization run, we then minimize the surface energy without

the elastic contribution to the triangles. As the deformations are now small, triangle

sizes are not hindering the numerical procedure. Elastic regularization of triangu-

lations are also used with other surface functionals that do not specify a reference
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shape for each triangle, for example in the case of bending energies [46, 93, 94].

Apart from the volume, we retain both control parameters of the two-dimensional

TEM, namely the rest length parameter α = l0/d, where l0 is the rest length of the

elastic component and d the spanning distance, and the length scale lf = 2EA/σ.

The factor of two comes from the consideration, that lf should converge to the

definition of the two-dimensional TEM for φ → 0. We now want to qualitatively

evaluate the effect of finite enclosed volume. As the numerical procedure has to

be adjusted in terms of the elastic prefactor for each lf , and different values of

lf lead to the same overall qualitative behavior in control samples, we confine the

systematic variation to the volume fraction V/V0 and the rest length parameter α

and fix lf = 250µm, which is a typical value for the two-dimensional TEM.

Maximal 
curvature

Minimal 
curvature

A B

C D

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 0.5 1 1.5 2

κ
(µ

m
-1

)

Volume fraction

Minimal curvature vs volume fraction

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 0.5 1 1.5 2

κ
(µ

m
-1

)

Volume fraction

Maximal curvature vs volume fraction

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 0.5 1 1.5 2

κ
(µ

m
-1

)

Volume fraction

Average curvature vs volume fraction

Figure 3.8: Non-circular arcs as a result of the fixed volume condition at α = 1.

The volume is measured relative to the reference volume shown in Fig. 3.7. The

blue lines indicate the analytic predictions by the two-dimensional tension-elasticity

model. Red circles mark simulation results at finite volume in a triangular network

(see main text). (A) Maximal curvature increases for higher enclosed volumes, while

the minimal curvature decreases (B), which leads to flattened arcs. (C) The mean

curvature along the arc is only slightly decreased. (D) Example of a cell with volume

fraction V/V0 = 2, where regions of minimal and maximal curvature are indicated

by arrows.

The results are shown in Fig. 3.8. For small volume fractions, the maximal line
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curvature along the peripheral converges towards the two-dimensional prediction,

while the minimal and average line curvature fall slightly lower. When the volume

fraction is increased, the maximal curvature increases (Fig. 3.8 A), while the minimal

curvature drops (Fig. 3.8 B). The reason is that the enclosed volume forces a large

opening angle φ in the central region of the peripheral SF, which is illustrated for the

highest volume fraction of V/V0 = 2 in Fig. 3.8 D. Consequently, the arc is not pulled

inwards there, and the curvature is reduced. Further, it reduces the overall elastic

tension in the peripheral SF (not shown), which leads to higher maximal curvatures

at locations with smaller φ. The effect is more pronounced for large α (not shown).

This is expected, because large α allow the arc to be pulled further inwards, and

therefore interfere more strongly with the volume condition. Surprisingly, the mean

curvature along the arc is only marginally affected. This implies that fitting circular

arcs to experimental data in the three-dimensional environment is still meaningful,

even if the arcs are flattened.

We also investigated the effect of the bending stiffness of the membrane. In experi-

mental units, the stiffness constant takes a value of κb = 0.0002nN ·µm, which leads

to small bending energy contribution compared to the ones associated with a surface

tension of σ ≈ 1nN/µm and the elastic response of the peripheral SF at lf = 250.

Further, around the peripheral SF, the local surface shape is already close to optimal

with respect to bending energy, since the two principal curvatures are of different

sign. Qualitatively, the curvature perpendicular to the fiber direction also seems to

be higher in regions of high SF line curvature and the other way round. This means

that the local structure around the SF resembles the neck configuration, where the

two principal curvatures are equal but of different signs. Thus, the mean curvature

vanishes and its square of the mean curvature is assumes its minimal value zero,

H2 = 0. In this context it is not surprising that including bending energy terms at

the experimentally relevant stiffness or even an order of magnitude higher does not

influence the line curvature of the peripheral SF in this configuration.

3.3.3 Pyramid Scaffolds

We now take another step and arrive at full three-dimensional scaffolds. An ex-

emplary scaffold is shown in Fig. 3.1 C, that shows the geometry of a box ring.

Here we now turn towards cells in the geometry of an upside down pyramid, Fig.

3.9. The experiments are performed by Benjamin Richter in the Bastmeyer lab.

Interestingly, there are still arc-like structures that reinforce invaginations. In terms

of the TEM, difference to the 2.5-dimensional case is that the outer geometry now

offers anchoring points for the contractile cell to assume a fully three-dimensional

structure without a fixed volume condition. We now generalize the TEM in such a
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C

A B Figure 3.9: Cells cultured in

a three-dimensional scaffold

with the geometry of an up-

side down pyramid. (A) Scan-

ning electron microscope im-

age of a pyramid structure

with square base. (B) Three-

dimensional image of a 3T3

cell adhering to the struc-

ture shown in (A) constructed

from confocal microcope im-

age stacks. (A), (B) Courtesy

of Benjamin Richter from the

Bastmeyer group, Karlsruhe.

(C) Three-dimensional TEM

model for a cell in a pyramid

structure with pentagon base

(cf. main text).

way, that we assume that all links in the network model are elastic and obey the

same cable law.

Fig. 3.1 B shows a 3D view on both the model and the segmented arcs from the

experiment in the same outer geometry. The arcs resemble contracting elastic stripes

to which multiple radii can be assigned depending on which plane it is projected to.

Here two planes were chosen for segmentation:

1. The xy plane in the standard coordinate system parallel to the ground and

pentagon base at the height of maximal intensity over the whole arc.

2. A plane spanned by the two upper anchoring points of the stripe and the point

of highest intensity at its center. We will refer to this as the tilted plane.

For the model calculations, we used lf = 50µm and α = 1. Note that the latter

means that the equilibrium shape of the model cell is assumed if the corners of the

outer geometry are connected by straight edges only. In the experiment, we could

determine the radii of the arc spanned between neighboring posts of the pentagon

to be Rtilted,exp = 5.6 ± 0.7µm and Rxy,exp = 6.8 ± 1.4µm with a custom software

written by Marco Linke from the Schwarz group. For our simulation parameters,

we achieve excellent agreement with simulated arc radii of Rtilted,sim = 5.9µm and

Rxy,sim = 7.7µm.

43



3.4. DISCUSSION & OUTLOOK

Figure 3.10: TEM in three di-

mensions. (A) Measured arc

radius vs. spanning distance

in the plane of the pentagon

(red) and in an upwards tilted

direction (blue, cf. main text).

The circle fitting to exper-

imental data was done by

Marco Linke. (B) The trian-

gulated surface fits nicely to

the arcs segmented from ex-

periments (green) for α = 1,

lf = 50µm. The parts of

the scaffold functionalized for

adhesion are shown in red.

The circles correspond to the

arc radii plotted for all cells

in (A). The segmentation of

arcs and structure was done by

Marco Linke with the image

processing software Imaris.
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Interestingly, SFs occuring in experiments co-localize with regions where stress con-

denses to single links in the model, emphasizing that these structures are needed to

provide the cell with rigidity. This means that with the simple model assumptions

that all links obey the same relation, we can also predict where actin bundles form

in a three-dimensional structure. Interestingly, the cellular cortex is under much

lower stress between the connection points of the adhesive regions at the top of the

posts and at the central one at the bottom. Accordingly, we could only observe a

single arc in this direction in n = 4 representative cells, whereas we observed n = 15

arcs between connected adhesive regions at the top of the posts.

3.4 Discussion & Outlook

In this chapter we discussed several extensions to the tension-elasticity model to

address cells with prominent internal SFs in patterned environments and cells in

three-dimensional scaffolds. First, we presented an approach to investigate the ten-
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sion in different segments of a peripheral SF that is pulled inwards by discrete inner

SFs rather than by a homogeneous surface tension. The investigated cells were

cultured on flat substrates, and develop thick actin bundles mostly in one plane.

For these reasons, it is adequate to model the mechanics only in a two-dimensional

projection of the cell. With the help of a simple semi-analytical model, we could

demonstrate that apart from force magnitudes, especially the connection location

and angle are important to predict the force along the contour. We then turned

to a typical experimental situation, where the symmetry assumptions of the simple

model do not hold. We used an active cable network with embedded fiber structures

to predict the force distributions. We chose the simplest assumptions possible, i. e.

the same active and elastic properties for all SFs in all cells of two data sets. Fur-

ther, these properties were set solely from approximate values reported for similar

situations, but do not rely on measurements in this setting. Surprisingly though,

we could accurately predict the retraction length up to two constants we needed to

convert forces to lengths. These constants had to be chosen differently for the differ-

ent pattern aspect ratios of the two data set. This highlights that the variability in

active tension among the SFs of the same cell type is only of secondary importance

for the retraction of peripheral SFs. It is rather the connectivity with inner SFs that

plays a fundamental role for force distribution and retraction.

Further experiments are necessary to shed more light onto peripheral SF retraction.

One interesting option is to sever an contour arc at two different locations subse-

quently in the same cell. Together with the model, this provides an estimate of the

relation between forces at two different points in the same cell, which would help

to better understand the meaning of the force to length conversion constants. We

also aim at performing model-based traction force microscopy on some cells on the

patterned substrates. This technique is the topic of the next chapter and provides

insight into the absolute force scale, specifically for the active forces along inner SFs.

Once these are known, it will also be possible to assess the elastic properties of the

peripheral SF in more detail.

In the second part of the chapter we addressed an assay where cells where cultured

in three-dimensional environments. First, we looked at an essentially flat structure

that was lifted away from the surface. Without a finite enclosed volume, cells in

such structures which exhibit a surface tension should also be flat and do not differ

from cells on two-dimensional patterns, which is why we refer to those structures as

2.5-dimensional. However, the basic principle of the cell’s membrane is to partition

space and separate its interior from the outside space. Thus it is not surprising that

the cells are not flat in experiments. At the same time, they often show arc-like

structures at free edges, which are however often not circular. We extended the

TEM to contain a fixed volume and used triangulated closed surfaces pinned to the
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geometry of a V-shaped pattern to simulate 3D cell shape. In this way we could

show that the flattening of peripheral arc can be caused by the enclosed volume. We

explained this effect with the change in the opening angle φ that the two membrane

patches enclose at the peripheral arc. This angle changes along the contour, reaching

a maximum at the center of the arc. Consequently, here the line curvature along the

arc is lowest by the local TEM force balance. The interaction of enclosed volume

and arc shape becomes stronger if the enclosed volume is higher or the elastic force

along the arc is reduced. Apart from the flattened region, arcs affected by the volume

condition also exhibit stronger curved regions in these patterns. This is due to the

fact that the elastic force on the arc is reduced while the surface tension is not, and

the effective opening angle is still small close to the adhesive areas at the end of the

arcs. Surprisingly, the mean curvature along the arc is only very slightly decreased,

meaning that circle fits are still a valid tool to assess tension and elasticity in this

situation. This statement is not general though and has to be validated for each

structure of interest.

Finally we have adapted the TEM for full cable networks with homogeneous proper-

ties to investigate cells in pyramid structures. We have found that α = 1, lf = 50µm

reproduce arc radii of the experiments, which are also typical for two-dimensional

TEM fits. The condition α = 1 means that the reference shape for the elastic en-

ergy is assumed by connecting adhesion points by straight lines. The length scale

lf = EA/σ denotes the relative impact of active force and passive elasticity. Differ-

ent from the 2D situation, we defined to planes for each arc and measured the radius

in the projection to each of it. Interestingly, both radii could be reliably predicted

with the same parameter set which is typical also for the two-dimensional TEM [4].

We have also observed that the elastic stress in the model condenses at the locations

where cells in the patterns develop actin bundles, though the network links all obey

the same relation. We also saw that another possible location for actin arcs between

the adhesive areas at the base of the pyramid and the top bear considerably less

stress in the model of this geometry. This is in agreement with the fact that we could

only observe a single SF in this direction compared to n = 15 arcs between neigh-

boring adhesive regions at the base. In the future, one could change the geometry of

the pyramid to see also arcs at different locations and different spanning distances.

Further, it would be interesting to alter the stiffness of the scaffold, as cells sense

and respond to the stiffness of their surrounding. The three-dimensional TEM could

help to understand and quantify changes in cell elasticity in these settings.
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4 Model-based Traction Force

Microscopy

4.1 Introduction

This chapter contains joint work obtained with Jérôme Soiné and was published in

[91].

Adherent cells continuously exert forces to their extracellular environment in order

to adapt and respond to its mechanical properties. This process is vital, as cells make

fate decisions like proliferation, differentiation or even cell death dependent on their

mechanical surroundings [1, 2, 95, 96]. It enables them to sense the stiffness of the

surrounding matrix, which is important for cell spreading and even capacitates them

to migrate along stiffness gradients [97]. Contractile forces are mainly generated in

the system of actin filaments and myosin II motor proteins and are mediated to

the extracellular space by large protein assemblies called focal adhesions (FAs, cf.

chapter 1). FAs exhibit over 150 different proteins constituents and are important

for mechanotransduction [20, 98].

The actin cytoskeleton (CSK) plays a central role in cellular force generation. Actin

can generate forces that push the cell edge outwards by polymerizing against the

plasma membrane during spreading or migration [99]. Molecular myosin motors

generate forces that actively contract filamentous actin networks. Especially dis-

tinct structures visible under normal fluorescence microscopes are stress fibers (SFs),

which are highly cross-linked actin bundles. They occur in different locations within

the cell and exhibit different molecular compositions, and are therefore classified into

different subtypes [19, 77] (cf. Fig. 4.1 A and also chapter 1). Dorsal stress fibers

(DSFs) are typically anchored at an FA at the cell’s leading edge and grow radially

towards the center along the dorsal membrane. Transverse arcs (TA) connect to the

free ends of the DSFs and run parallel to the cell edge. They are not directly linked

to FAs. Conversely, ventral stress fibers (VSF) are anchored at FAs at both ends

and run along the ventral side of the cell. SFs are believed to play a key role in

cellular mechanics for both stability and force generation [21, 77, 84].
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As cell-generated forces are fundamental for their integrity and function, it is es-

sential to develop tools and methods to measure them. One well known technique

is traction force microscopy, where forces at the cell-substrate interface are inferred

from elastic deformations of the substrate material [100]. In this chapter, we present

a new way to combine traction force microscopy with biophysical modeling in or-

der to increase resolution and assess the internal force distribution within the CSK,

which specifically includes the estimation of SF contractility. We give a new perspec-

tive on regularization and investigate the effects of different regularization schemes.

4.2 Traction Force Microscopy

As force is an invisible physical quantity, it is necessary to quantify its impact on

its surrounding in order to make measurements. For example, one could observe the

acceleration of a freely falling ball to measure the earth’s gravitational force, or the

velocity of a sphere being dragged through a fluid with Stokes friction. The classical

case is of course the measurement of a Hookean spring’s extension.

Many established methods to measure cell-generated forces from utilize elastic de-

formations. The most direct way is the use of fluorescent force sensors, where an

elastic linker polymer connects two fluorophores that interact via fluorescence reso-

nance energy transfer (FRET). As the FRET signal depends with the sixth power

on the distance of the fluorophores, it constitutes a very sensitive signal for the

stretch in the linker polymer, and thereby force [101, 102]. These molecular force

sensors can be integrated in proteins, e. g. the FA constituent Vinculin [101], or

functionalized to bind to transmembrane and the extracellular environment [102–

104].

Traction force microscopy (TFM) measures forces at the cell-substate interface via

the deformation of an elastic material the cell adheres to. In pillar assays, the cell

sits on top of a grid of elastic rods. In the limit of small bending, the force extension

curve is linear and the stiffness can easily be controlled by the geometry of the posts

[105, 106]:

F

x
∝ r4

L3
(4.1)

Here, F , x, r, and L denote force, deflection, pillar radius, and pillar length, re-

spectively. However, one disadvantage of this method is that cells seem to sense

the non-homogeneous underground [100, 107]. They form FAs that enclose the tips

of the posts, indicating that they deviate from their normal size and shape [108].

Further, the global distribution of FAs is limited to positions and sizes of the rods
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Figure 4.1: Traction force microscopy on soft elastic substrates. (A) The cell adheres

to a planar substrate. The deformation field caused by cellular traction forces can

be tracked via marker beads embedded in the substrate. (B) Typical data set for

MBTFM. In addition to the bead displacement field, we acquire fluorescence images

of the actin CSK and the focal adhesion protein paxillin.

that are covered by the cell.

Here we focus on TFM on flat elastic substrates. A typical experimental setup is

illustrated in Fig. 4.1 A. Fluorescent marker beads are embedded in a soft thick

elastic polymer film. When the cell adheres to the substrate and contracts, one can

record the material displacement field by tracking bead movements (Fig. 4.1 B).

The main advantages compared to elastic posts are that cells can be presented to a

smoothly functionalized surface, and that they can be cultured only with minimal

deviations from standard cell culture protocols. This however comes at the cost

that stress and strain at different positions in the material are now coupled, which

renders it more difficult to determine them.

In the framework of continuum elasticity theory we are interested in displacements

~u, and the tensor quantities strain and stress, which we will denote by ε and σ. From

the absolute material movements, the displacements, we can define the symmetric

strain tensor
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εik =
1

2
(∂kui + ∂iuk + ∂iul∂kul) ≈

1

2
(∂kui + ∂iuk) , (4.2)

which contains information about local changes in the displacement field in all di-

rections. Note that only these changes in the displacement field lead to elastic forces

or stress, as a constant displacement field corresponds to a non-deformational rigid

body motion. In the following we will always assume that all ∂kui � 1, so the third

term in Eq. 4.2 is small to second order and the approximation holds true. If for

any k, i, ∂kui ' 1 holds, one speaks of geometric nonlinearities. In linear elasticity

theory, we also assume that the material stress tensor σ depends linearly on the

strain tensor ε. Then, in an isotropic material, the dependency is characterized by

two material constants, namely the Young’s modulus E and the Poisson ratio ν:

σik =
E

1 + ν

(
εik +

ν

1− 2ν
εllδik

)
(4.3)

In TFM, one can directly calculate the local stress tensor from local strain in the

framework of linear elasticity theory [109]. However, this approach needs very well

resolved bead positions, as not only displacements but also strains, i. e. derivatives

of displacements, have to be calculated from the image data. For more information

about the different kinds of TFM, their best-suited applications and a collection

of useful software, we refer the reader to a recent review by Schwarz and Soiné

[100]. Here we focus on the standard approach, which is to invert and solve the

force balance equation of linear elasticity theory, ∇σ = ~f , where ~f denotes the body

forces. This is called the inverse problem of elasticity theory.

In order to understand the scope and the ideas of model-based traction force mi-

croscopy (MBTFM), the method we introduce in this chapter, one has to know about

two different approaches to solve the inverse problem. First, we will explain Fourier

Transform Traction Cytometry (FTTC), which will serve as a reference technique

[110–112]. Then we describe how to state the inverse problem as a boundary value

problem and solve it with the help of finite element methods (FEM), since MBTFM

includes the method of FEM-TFM.

The theoretical basis of FTTC is that there exists a Green’s function G for the effect

of a point force on the boundary of an infinite linearly elastic half space, which is

called the Boussinesq solution [66]:

G(~x) =
1 + ν

πEr3

(
(1− ν)r2 + νx2 νxy

νxy (1− ν)r2 + νy2

)
. (4.4)

Here we confined ourselves to the solution along the boundary surface of the elastic
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half space and used the two spatial coordinates x and y, and the two-dimensional

distance r =
√
x2 + y2. We note for completeness, that a solution is also known for

an elastic film of finite thickness [113]. With a known Green’s function, one can use

the superposition principle to calculate the resulting displacement ~u for any traction

distribution:

~u(~x) =

∫
S

G(~x− ~x′)~t(~x′)d2x′ (4.5)

The inversion is done easiest in Fourier space, since Eq. 4.5 is a convolution integral.

Hence we can exploit the convolution theorem that tells us that a convolution in real

space decomposes into a simple product in Fourier space. This allows to compute a

numerical solution efficiently [110].

We now describe how to reconstruct tensions with FEM in the context of a bound-

ary value problem (BVP). A more complete text on the method and the particular

implementation used in MBTFM can be found in [114]. The substrate is modeled

as a linear elastic cuboid Ω that is discretized. With a given cellular traction dis-

tribution ~t, the force balance equation ∇σ = 0 is solved for the following boundary

conditions:

σ · ~n = ~t for ∂Ωtop

σ · ~n = 0 for ∂Ωsides

~u = 0 for ∂Ωbottom

(4.6)

This means that the traction boundary on the top surface is given by the forces the

cell exerts on the substrate, while the sides are assumed stress-free. The bottom

is fixed to a glass substrate, hence a no-slip boundary is assumed. The problem is

now well-posed, and one can calculate the displacement field, especially at the top

surface of the material for comparison with experimental data, which we call usim

here.

Now we have solved the forward problem of calculating displacements for a given

traction field. The purpose of TFM is, however, to infer tractions from displace-

ments, which is known as the inverse problem. To achieve this, the forward method

is complemented with an optimization scheme as follows. By the discretization of

the cuboid, also the cell traction boundary condition is discretized and can be rep-

resented by N individual tractions ~ti, i ∈ {1...N}. Now the displacement solution

~usim is completely determined by the finitely many {~ti}, which we will refer to as the

degrees of freedom (DoF) of the optimization. By comparing ~usim to the displace-

ments measured in the experiment, ~uexp, one can define a least squares estimator L2

by
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L2 =
∑
k

(~usim,k − ~uexp,k)
2 , (4.7)

which measures the deviation of the two displacement field. Consequently, a perfect

reconstruction yields L2 → 0. One now implements a standard minimization scheme

such as the conjugated gradient method [62] to vary the DoFs and minimize the L2

value. The final set of ~ti’s, which yield the minimal L2, is the solution to the inverse

problem of elasticity theory. However, the inverse problem is ill-posed and requires

additional stabilization techniques to gain unique approximate results, which we

discuss below.

4.3 Inverse Ill-posed Problems and Regularization

The methods for traction reconstruction seem fine at first glance, however there is a

fundamental issue. Since the elastic interaction is long-ranged, the inverse problem

is ill-posed. We will now explain what this means, how the two methods explained

above deal with the issue by regularization, and which possible problems might

arise from that. This part is fundamental to understand one of the main goals of

MBTFM, which is to rebase regularization on biophysical arguments. The following

is mainly based on the books of Kabanikhin [115], Engl and coworkers [116], and

Ababarnel and coworkers [117].

4.3.1 Inverse Ill-posed Problems

A problem in mathematical physics is called a direct problem, if the governing equa-

tion and its domain, initial conditions and boundary conditions are known and the

problem is well-posed in the sense of Hadamard. This means that a solution function

exists, which is unique and varies smoothly with both boundary and initial condi-

tions [115]. The last part means, that the operator A mapping all known functions

and quantities to the solution, is continuous. In the inverse problem, the solution

function is given but parts of the governing equation, the domain, the initial or

the boundary conditions are unknown. Such inverse problems are often ill-posed,

which means not well-posed. The problem in data evaluation is usually not the ex-

istence of a solution, but difficulties typically arise from uniqueness or the stability

of the unknown functions against small perturbations in the data. These two issues

might both cause problems in the inverse problem of elasticity theory and shall be

addressed in this introduction.
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We introduced Eq. 4.5 as the governing equation for FTTC. It is a Fretholm integral

equation of the first kind, whose general form is

∫ b

a

K(x, s)q(s)ds = f(x) . (4.8)

In the context of TFM, the solution function f(x) (the data) and the integration

kernel K(x, s) (the Green’s function) are known and q(s) (the traction) is to be

inferred. This kind of equation can be either well-posed or ill-posed, depending on

the form of K, and especially the interaction range. This can be easily seen from the

two extreme cases of interaction ranges, if we assume that both q and f are smooth

functions that are defined for all real numbers. If K is the delta function (infinitely

short interaction), K(x, s) = δ(x, s), then by definition:

∫ b

a

K(x, s)q(s)ds =

∫ b

a

δ(x, s)q(s)ds = q(x) = f(x) for a ≤ x ≤ b (4.9)

If the integration boundaries are extended to ±∞ we can uniquely infer q(x) ≡ f(x).

On the other hand, if K and f are constants (infinitely long interaction), Eq. 4.8

transforms into determining the area below a curve, or more precisely: determining

the curve that encloses area f , which is obviously not unique and therefore ill-posed.

Like all integral equations, Eq. 4.8 represents a smoothing operation in the sense

that high-frequency oszillations are suppressed [116]. This can be made plausible

by considering the integrand g(x) = n sin(nx/δ), where n � δ. Integrating yields

G(x) = f0 − δ cos(nx/δ), i. e. the amplitude of high frequency modes has dropped

significantly. In the inverse problem to such equations, one can consequently expect

small errors with high frequencies to have large effects.

4.3.2 Tikhonov Regularization

We take a step back and introduce Tikhonov regularization along the lines of the

book of Engl [116]. Since the operator theoretical foundation is substantial, we will

dispense with showing proofs and rather concentrate on presenting a clear picture

of the general line of thoughts that leads to a regularization approach for both

FEM-TFM and FTTC. All proofs can be found in [116] and references therein.

We begin with formally writing the inverse problem as

Tx = y , (4.10)

where T is a bounded linear operator that maps x ∈ X to y ∈ Y , X, Y are Hilbert

spaces, and we search for a solution for x. In our problem, clearly x represents
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cellular traction and y the displacement field, and the elastic half space convolution

integral the operator T :

Tx = T
[
~t(~x)

]
=

∫
S

G(~x− ~x′)~t(~x′)d2x′ = ~u(~x) = y , (4.11)

where G is the Green’s function from Eq. 4.4. Note that since G is only weakly

singular [111], the operator T is compact [116]. One can now define what we seek

for.

Definitions [116]

x ∈ X is called least-squares solution of Tx = y if

‖Tx− y‖ = inf {‖Tz − y‖ | z ∈ X} (4.12)

x ∈ X is called best-approximate solution of Tx = y if x is least-squares solution

and

‖x‖ = inf {‖z‖ | z is least-squares solution of Tz = y} (4.13)

We note that if T−1 exists and is bounded, i. e. the problem is well-posed, it is

trivial to find the unique least-squares and best-approximate solution as x = T−1y.

However, existence may fail due to y /∈ im(T ) or ker(T ) 6= {0}. For this reason, one

constructs the well-defined Moore-Penrose generalized inverse T † of T as the unique

linear extension to T̃−1 by

T̃ := T |ker(T )⊥ : ker(T )⊥ → im(T )

D(T †) := im(T ) +̇ im(T )⊥

ker(T †) = im(T )⊥

(4.14)

Here D(·) denotes the domain of an operator. If y ∈ D(T †), then the following two

statements hold:

x† := T †y is a unique best-approximate solution to Tx = y

T ∗Tx = T ∗y ⇔ x is a least-squares solution to Tx = y
(4.15)

Being well-defined, T † might still be unbounded (not continuous). In fact, for any

compact T with dim(im(T )) = ∞, the Moore-Penrose inverse is a densely defined

unbounded operator, just as in the Boussinesq case. The effects become best visible,

if we use the fact that for any compact linear operator T there exists a singular

system (σn; vn, un) that allows us to write

Tx =
∞∑
n=1

σn 〈x, vn〉un (4.16)

T ∗y =
∞∑
n=1

σn 〈y, un〉 vn (4.17)

T ∗Tx =
∞∑
n=1

σ2
n 〈x, vn〉 vn , (4.18)
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the latter meaning that (σ2
n, vn) is an eigensystem for the self-adjoined operator T ∗T .

This also motivates the definition of a function of T ∗T , which reads

f(T ∗T ) =
∞∑
n=1

f(σ2
n) 〈·, vn〉 vn . (4.19)

If T ∗T is continuously invertible, we can write down its inversion of explicitly via

the eigensystem diagonalization,

(T ∗T )−1x =
∞∑
n=1

1

σ2
n

〈x, vn〉 vn , (4.20)

and characterize the best-approximate solution with the second part of 4.15 and Eq.

4.20 by

x† = (T ∗T )−1T ∗y

=
∞∑
n=1

1

σn
〈y, un〉 vn.

(4.21)

If, however, the problem is ill-posed, 0 ∈ {σn} holds and the sum does not converge.

Even if σn 6= 0 ∀n, some eigenvalues of T ∗T might still be very small, such that a

small error in 〈y, un〉 is amplified by an unacceptably large factor.

Now the problem has become visible: If we have a small error in the data ‖y−yδ‖ < δ,

where we call δ the noise level, then ‖T †yδ − T †y‖ can still be very large. In other

words: xδ = (T ∗T )−1T ∗yδ is not a good estimate for xδ.

The idea is to replace (T ∗T )−1 by some function gλ(T
∗T ) other than g0(T ∗T ) =

1/(T ∗T ) = (T ∗T )−1, such that the error between

xλ = gλ(T
∗T )T ∗y (4.22)

and

xδλ = gλ(T
∗T )T ∗yδ (4.23)

is bounded.

In classical Tikhonov regularization theory, we choose

gλ(α) =
1

α + λ
, (4.24)

which leads to

gλ(T
∗T ) =

∞∑
n=1

1

σ2
n + λ

〈·, vn〉 vn = (T ∗T + λI)−1 . (4.25)

The latter part can be easily seen by using Eq. 4.19:

T ∗T + λI =
∑
n

σ2
n〈·, vn〉vn + λ

∑
m

〈·, vn〉vn =
∑
n

(σ2
n + λ)〈·, vn〉vn (4.26)
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We can directly see in comparison with Eq. 4.21 that errors are no longer amplified

unboundedly,

xδλ =
∞∑
n=1

σn
σ2
n + λ

〈y, un〉 . (4.27)

Indeed, this choice for gλ yields a clear relation between Eqs. 4.22 and 4.23, as the

following theorem states [116].

Theorem. Let y ∈ im(T ) and ‖y − yδ‖ < δ. If λ = λ(δ) fulfills

lim
δ→0

λ(δ) = 0 (4.28)

lim
δ→0

δ2

λ(δ)
= 0 , (4.29)

then

lim
δ→0

xδλ(δ) = T †y . (4.30)

One can also show, that xδλ for this choice of gλ is the unique minimizer of the

Tikhonov functional [116]

x 7→ ‖Tx− yδ‖2 + λ‖x‖2 . (4.31)

4.3.3 Effect of the Regularization Parameter

In the context of TFM we seek a solution for the traction field ~t, which we therefore

identify with the solution x of the last section. An interpretation of the practical

effect of this regularization can be gained from the variational characterization of

the Tikhonov functional, Eq. 4.31. Here we see that the regularization is achieved by

setting a side constraint: The residual norm ‖Tx− yδ‖2 is minimized, as expected,

but under the condition that the norm of the solution ‖x‖2 be small. In other

words, the presented Tikhonov regularization achieves stability by postulating that

the overall traction magnitude of the force field be low. The regularization parameter

λ controls how strongly this side constraint is weighted.

This postulate makes sense also from a heuristic point of view. We already discussed

that instability in the integral equation emerges from high frequency modes that are

damped in the forward problem but are consequently amplified during reconstruc-

tion. The regularization now filters high noise amplitudes that increase the overall

traction but do not decrease the residual norm by the necessary amount. Here the

regularization parameter λ defines what necessary means.

Typical traction reconstructions derived with FTTC for different regularization pa-

rameters are shown in Fig. 4.2. The underlying displacement field was already shown

in Fig. 4.1 B. It is obvious that the traction field is noise dominated for λ = 0 and
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Regularization

λ=0

FTTC

0 1300Pa

λ=1e-6

Pa0 1150

λ=1e-5

Pa0 790

λ=1e-4

Pa0 360

Figure 4.2: Effect of the regularization parameter on traction reconstruction. Higher

values for λ lead to smoother traction fields with lower traction magnitudes. The

Bayesian estimate choice is marked by a red frame.

becomes gradually smoother as the regularization parameter is increased until it is

finally much less detailed as one would expect for a biological cell on an unstruc-

tured flat substrate at λ = 10−4. Here, the disadvantage of regularization becomes

visible: as we increase the regularization parameter, the reconstructed solution veers

away from the data. The details of the traction field vanish and the overall force

magnitude decreases as the regularization parameter increases.

The question is now, how an optimal intermediate value for the regularization pa-

rameter can be found, which efficiently suppresses noise, but does not smooth the

traction field too heavily. A heuristic argument can be found by the L-curve crite-

rion [118, 119]. The norm of the regularized solution is plotted against the residual

norm ‖Tx − yδ‖2 for different λ, and the resulting curve has the shape of the let-

ter L. The optimal regularization parameter is then found at the corner of the L.

From there, further increasing λ leads almost only to a larger deviation from the

data (larger residual norm) without improving the regularization condition, while

decreasing λ from there does increase ‖x‖2, i. e. the noise contribution, without de-

creasing the residual norm. Another way of estimating the regularization parameter

is via Bayesian theory [112, 119].

4.4 Method

4.4.1 General Idea

With model-based traction force microscopy, our aim is to overcome the need for

regularization and to increase the resolution in observing biological structures of
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Figure 4.3: Model-based traction force

microscopy utilizes additional data to

regularize traction reconstruction geo-

metrically. FA locations (purple) are

used to select fixed points in the mesh

(red dots), and actin SFs (green bun-

dles in the experimental part) are seg-

mented and classified into DSFs (green

lines), TAs (light blue lines), and VSFs

(red lines).

interest. The idea originates from recalling how Tikhonov regularization effects

the reconstruction. The decision between different possible traction solutions is

systematically biased towards the one with the least norm, which suppresses local

noise contributions. Traction noise is characterized by not contributing enough to

decrease the residual norm. Typical for such noise contributions is that they are

not systematically oriented and that their magnitude shows high spatial variations.

Traction reconstruction can also be regularized by prescribing the local traction field

directions as well as their spatial distribution and homogeneity. This process can

be regarded as a geometrical regularization. Noise is filtered as its contributions are

just not contained in the solution space. In this way, geometrical optimization works

fundamentally different than Tikhonov regularization, as they address two different

properties of Hadamard’s definition of well-posed problems. Tikhonov regularization

reestablishes the continuity of the solution from the boundary and initial condition

in an ill-posed problem. In contrast, geometric regularization restricts the solution

space in a way that the problem is well-posed from the beginning. The number of

degrees of freedom is reduced from typically 105 in FEM-TFM to about 102 model

parameters.

The geometric rules that govern traction field organization need to be provided by

a biophysical model, which is why the method is called model-based. The model has

to contain additional information about the system of interest. In our study, the

investigated cells show pronounced SFs and FAs, that together provide a structural

picture of the cells force generating and transmitting machinery. Fig. 4.3 illustrates

how this information can be turned into a model via image processing. Stress

fibers are segmented, classified, and embedded into a network that also contains

information about FA locations.
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The introduction of a biophysical model to the reconstruction has another advantage,

as it can be interrogated for biophysical questions. In this work we investigate

the forces at FAs and in SFs. Without MBTFM, one had to apply the model

after regularized traction reconstruction where the regularization parameter is a

potentially critical degree of freedom. In our method, we directly project the data

on the biophysical questions during reconstruction.

4.4.2 Model Choice

In our study we correlate cellular forces with SFs and FAs. For this purpose we

need to utilize a mechanical model for the entire cell that allows us to describe

its force generating and transmitting behavior. Several models describing forces

of adherent cells have been developed over the past decade. Contour models have

been shown to give reasonable estimates for cell forces and shapes if there are no

prominent internal structures [4, 29]. Continuum mechanics models focus on the

elastic properties of the bulk cell material [32, 120, 121]. In a recent study, these

approaches have been combined in a continuum mechanics model with line tension

similar as in the tension-elasticity model (TEM) [31]. In contrast to the TEM, here

the tension runs along outwards curved regions of the cell leading to an inwards

directed force. All of these models have a continuum character and none of them

can easily implement differential tensions in discrete stress fibers. For pillar assays,

truss models have been used to estimate tension in internal stress fibers from post

displacements [122, 123], but these models did not consider the effect of the cell

body and work only for a small number of adhesion sites.

For our model choice, we were guided by the following four principles:

1. The considered cell type is characterized by prominent stress fibers that have

to be modeled as discrete elements.

2. Stress fibers are under tension and the tension may vary between individual

SFs.

3. There is a homogeneous contractile tension in the cell resulting from various

distributed actomyosin networks not visible with a standard optical micro-

scope.

4. Forces are transmitted to the extracellular space mainly via focal adhesions.

A suitable framework to implement these assumptions is a network of active cables

[78]. A cable responds like a Hookean spring to extension while it does not resist

compression, and an active cable additionally features a constant contractile tension

(see also Fig. 4.4). Each link of the network is therefore associated with the energy
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Figure 4.4: Network optimization.

Each link in the network follows

the depicted force extension curve

of an active cable. The active

tension T may vary between dif-

ferent stress fibers and the back-

ground network. Stress fibers

are smoothly integrated into the

surrounding network. Vertices

near focal adhesions are fixed (red

dots).

Ei = LiTi + k(Li − Li,0)2/2 for Li > Li,0 and Ei = LiTi for Li ≤ Li,0, where Li,

Li,0 represent the actual and the rest length of link i, respectively, Ti is its active

tension, and k is the spring constant for the elastic regime. We also introduce a

cutoff length Li,c � Li,0, where we interpolate a continuous transition Ti → 0 for

Li → 0. This model represents several typical mechanical properties of the actin

CSK. If under compressive load, filaments can slide telescopically along each other,

or depolymerize or buckle, while they respond elastically to stretch [124]. Cell area

is not conserved because the model only considers the two-dimensional projection

onto the substrate, thus cellular material can be exchanged with the third dimension.

The constant contractile tension arises from myosin II motors that work in the stall

regime. Active cable models have been shown to correctly predict shapes of adherent

cells on micro-patterned substrates and yield force distributions that are robust with

respect to local changes in network geometry or topography [4, 78, 79]. Note that

this differs remarkably from networks of Hookean springs. Springs in particular

propagate compressive force modes over long distances, which do not appear in

cables by definition. In order to achieve a close relation to experiments, the model

is built directly from image data.

Regarding the model’s parameters, we allow for individual tension values for each
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SF and one more for the background network. So the number of parameters is

P = n + 1, where n is the number of segmented stress fibers. The one-dimensional

Young’s modulus for all links is chosen to be EA = 50nN , which can be justified

for SFs and looser cytoskeletal actin structures [79]. Note that this stiffness is only

of minor importance, since most of the links are in the Li < Li,0 regime where

their force is determined by the active tension alone. Only at the border links are

typically elongated to balance forces directed to the interior.

4.4.3 Image Processing

The data we use to construct the active cable model has to be extracted from

fluorescence images. For quicker image processing, we wrote a extension for the

software ImageJ [71] which we call plugin for the Segmentation of Focal Adhesions

and STress Fibers (SoFAST plugin). With this software, one can use ImageJ’s

powerful tools specifically composed for the segmentation of the CSK. We show

three sample segmentations in Fig. 4.5.

The workflow begins by loading the actin fluorescence image and starting the soft-

ware. Stress fibers can be identified and manually segmented as piecewise straight

lines. The user can then classify a segmented fiber into one of the three different

types, namely dorsal SF (DSF), ventral SF (VSF), and transverse arcs (TA). For

classification one can also switch back and forth to a fluorescence image of the FA

distribution. In our study, we followed the characterization of the fibers according

to [19]. SFs emanating from a FA at the outer rim that grow radially towards the

center are classified as DSFs, SFs that lie parallel to the cell edge and do not connect

to FAs are TAs. VSFs are typically straight and connected to FAs at both ends.

Focal adhesions are segmented in the second step. Here we apply several steps

of ImageJ’s outlier finding algorithm and remove everything but the outliers from

the image. Afterwards we apply the despeckling algorithm to remove very small

outliers and we apply a global threshold to remove outliers in the background noise.

After that, another application of despeckling completes the segmentation. We now

additionally fit ellipses to all FAs and record the center coordinates, the lengths of

the major and minor axis, their orientation, and the distance to cell edge.

The third step concerns cell area segmentation. We use different global thresholding

techniques already implemented for ImageJ and tools directly from the palette of

the software.

In the last step we generate the network model from the segmented data. We first

introduce vertices and links along stress fibers, before the whole cell area is covered

with a homogeneous density of vertices. From these vertices we construct a Delauney
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triangulation with the help of the open source software Java Delauney Triangulation

[125]. The stress fiber links are kept in the network. We then perform a modified

version of the distmesh algorithm [126] to achieve a homogeneous triangulation. In

the last step, links are considered as compressed springs that introduce a linear force

distance relation for neighboring vertices. The vertices and links that belong to SFs

are not moved. Finally, all vertices that lie in the neighborhood of segmented FAs

are fixed.

4.4.4 Optimization

In the following we describe how we determine a complete set of tension values for

our model from an experimental displacement field with the help of a cell-specific

active cable network model. There are three different optimization schemes involved:

1. Network energy equilibration

2. Displacement calculation in the finite element substrate model

3. Combined optimization of the forward problem to solve the inverse problem

Network optimization

The minimal energy configuration of the active cable network is determined with

the software SurfaceMaster as discussed in chapter 2. After equilibration, the only

force bearing vertices are the ones that were fixed in the neighborhood of FAs during

image processing (Fig. 4.4, red dots). These forces are mapped to the FA ellipse fit

that is closest to the vertex position. All forces mapped to the same FA are added

vectorially and converted into tractions by division through the ellipse’s area. In

summary, the network model for n SFs maps a set of n + 1 tensions to a set of N

elliptic traction patches, where N is the number of segmented FAs.

Substrate model displacements

For obtaining the substrate’s displacement field in response to the traction patches,

we use finite element methods as explained for the forward problem in FEM-TFM.

The Young’s modulus for the substrate is on the order of several kPa in this study.

The optimization scheme mentioned above is used to iteratively solve the system of

linear equations associated with the finite element method. We use the open source

library deal.II [127] for FEM calculations. As we want to resolve the shape of indi-

vidual FAs, the mesh size for the FEM needs to be two orders of magnitude smaller
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than usual in TFM. To achieve this, we iteratively refine the three-dimensional mesh

around FA locations at the top surface until the desired resolution is achieved. In

order to ensure that the lateral sides of the mesh are stress free, we extend the

visible image area of typically 100 × 100µm2 for the mesh by 30µm in each lateral

direction. We hereby defined a method to map elliptic traction patches to a three

dimensional traction field in the substrate model. We finally restrict this result to

the two-dimensional projection of the top surface boundary displacements in order

to compare them to experimental data.

Joint optimization

With subsequent calculations of the cell and substrate models we can solve the

forward or direct problem of mapping SF and background tensions to simulated

substrate displacements at the cell’s top surface. The direct problem is summarized

in Fig. 4.6 A and schematically shown in the middle column of Fig. 4.6 B. Here it is

also shown that the substrate displacements are the available experimental data. By

comparing the two displacement fields, we obtain an error estimate for the deviation

between experimental and simulated displacement fields. In practice, we use a least

squares estimator defined by L2 =
∑

i(~xs,i − ~xei). The sum runs over all locations

where displacement information is available from the experiment, ~xei denotes the

experimental displacements at these locations, and ~xs,i is the projected interpolated

displacement at the top surface of the FEM mesh. In the following we describe how

we can solve the inverse problem of calculating the tensions from the experimental

data.

The whole process is depicted in Fig. 4.6 B, where the first two columns summarize

the usage of experimental data and the calculation of the direct problem. The inverse

problem is solved by minimizing the error estimate with respect to the tension

parameters of the active cable model. We start by setting all tensions to zero

and implement a conjugated gradient scheme for optimizing the tensions from this

initial value configuration. Here we treat the degree of freedom of the background

tension differently, as we optimize it separately after each ten steps of SF tension

optimization. This procedure is necessary to achieve quick convergence (cf. chapter

4.5).

4.5 Method Validation

In order to test our method we simulate an experimental displacement field which

can be reconstructed afterwards. The benefit of this procedure is that the expected
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Figure 4.6: Computational workflow of MBTFM. (A) Structural information about

the cell’s force generating and transmitting machinery is converted into a cell-specific

descriptive model. (B) In the direct problem, one can calculate displacement fields

from tension parameters, which leads to an error estimate in comparison with exper-

imental data. Repeatedly solving the inverse problem allows to optimize the tension

parameter set for the cell.

result is known and that one can systematically investigate the performance of the

method. We take the test segmentation shown in Fig. 4.7 A and sample SF tensions

from a homogeneous probability distribution on the interval [0, 10]nN . As the net-

work tension is expected to be smaller than typical SF tensions, we assign a value

of tnetwork = 0.06nN . We then perform the direct problem to convert the full set of

tension parameters into a simulated displacement field. We sample N = 10000 dis-

placements at random positions of the displacement field which yields the simulated

data.
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Figure 4.7: Reconstruction of simulated data. (A) Test segmentation. (B) Recon-

struction of the same noiseless data set. Separation of the network tension degree

of freedom is necessary to achieve satisfactory results. (C) Deviation of the recon-

structed tension from the simulation values.

4.5.1 Reconstruction of Simulated Data

Fig. 4.7 shows the relative L2 value during the iterative reconstruction, and the

number of iterations is counted for the joint optimization. An unchanged conjugated

gradient method stalls early and does not show the desired convergence (red line).

The problem is associated with the network tension. If this parameter is known from

the beginning, optimization is only limited by numerical accuracy. This degree of

freedom differs from the stress fiber tensions in two ways. First, its numerical value

is lower than typical SF values. This issue could be fixed by rescaling the quantity

in the conjugated gradient algorithm. However, secondly, its nature is more global

compared to other degrees of freedom. While the tensions of SFs are typically only

transmitted to FAs at their ends or kinks, the network tension alters the traction

at all FAs at the periphery. For this reason, we decided to optimize the network

tension parameter seperately after each ten steps of SF tension optimization. The

result of this procedure is shown by the blue curve in Fig. 4.7 B.

Fig. 4.7 C confirms that the results for the convergence of the L2 value can be

transferred to the reconstruction of tension parameters. While for the standard

conjugated gradient approach the reconstructed tensions differ widely from their

original value (red), reconstruction is nearly perfect if the network tension is known

(green). Separating the network degree of freedom allows to reliably reconstruct the

network tension as well (blue).

4.5.2 Influence of Noise

The effect of noise in the data is of primary concern in the context of regularization.

In order to test the performance of our method, we added Gaussian noise of different
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strengths to the simulated data. We define the noise level by the ratio of the standard

deviation of the noise and the maximal displacement in the data set. Experimental

noise levels can be determined from image regions without cells and range between

5% and 10% in our study. For the validation of this method, we covered a larger

range and produced n = 10 different noisy displacement fields at each of the noise

levels 3%, 5%, 7%, 10%, 15%, 20%, and 25%.

Fig. 4.8 exemplary shows the traction reconstruction with noisy data for 25% noise

level. The traction stress field calculated with the network model is mapped to a

noise-free displacement field (direct problem), to which Gaussian noise is added. The

noisy displacement field is then reconstructed using MBTFM. Note that 25% is a

very high noise level, since the noise level is defined relative to the maximal displace-

ment. Average displacements are well smaller, so the noise plays a dominant role at

this level. FTTC cannot recover the original stress field in these situations. With

MBTFM we can recover the main features of data, though with slight deviations.

We systematically show the influence of noise in Fig. 4.9, where the experimentally

relevant range is marked by the light grey boxes. The relative L2 error estimate is

very low for noiseless data (cf. Fig. 4.7). As expected, it gradually increases with

increasing noise since the displacement noise cannot be reconstructed by the model.

The L2 value saturates for noise levels of about 25% and larger, since the noise then

dominates the displacement field (Fig. 4.9 A).

We are now interested in how the noise influences the reconstruction result rather

than the residual norm. We therefore define the total force of the cell as Ftot =∫
A
|~T (~x)|dA =

∑
i |~Ti| · Ai, where ~T (~x) is the traction on the substrate, ~Ti is the

traction of traction patch i in the network model, Ai its area, and the sum runs over

all traction patches. We also define the network force by the total force when the

SF tensions are all set to zero in the model, which means that it is determined by

the background tension alone.

Fig. 4.9 B shows the dependence of both total and network force on the noise level.

As expected, the congruence between data (black lines) and reconstruction (blue /

green dots) is very good for small noise levels. However, even for very large noise

values, both whole cell force quantities differ only very slightly from the correct

value, and variances remain small. In summary, total force and network force are

very robust against noise. The latter also means that the reconstruction of the

background tension is very robust.

This picture changes a bit when we investigate the influence of noise on the recon-

struction of single stress fiber tensions. To quantify the effect, we introduce the mean

relative deformation MRD = 1/n
∑n

i=1

(
1/NSF

∑NSF

j=1 |ti,j − t0j |/t0j
)

. Here n = 10

is the number of reconstructions with different noisy displacement fields, NSF the
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Figure 4.8: Influence of high noise levels in simulated data (25% noise level is shown).

Standard regularization techniques in FTTC fail to recover the details of the dis-

placement field. Structural information enables MBTFM to still determine a good

approximate solution.

number of segmented stress fibers in the model, ti,j the reconstructed tension of SF

j with displacement field i, and t0j the correct value for the tension of SF j. The

quantity averages the relative deviations of SF tensions after reconstruction from

their correct value over all SFs in the segmentation and all reconstructions with

different noise and thereby provides an estimate of the fiber tension reconstruction

quality.

Fig. 4.9 C shows that average deviations reach over 50% for high noise levels. This

dependence, in contrast to the stable reconstruction of the background tension, is

caused by the more localized nature of SF tractions. SFs transmit their forces to the

substrate mainly at FAs in the neighborhood of their ends. Reversely, displacement

noise at the end of stress fibers induces errors in tension reconstruction more rapidly

than for the background tension. To alter the latter, all FAs at the periphery had to

show consistent displacement noise, which is very unlikely. From this perspective, it

is surprising that the total force that includes the effect of SF tensions is that robust

even for high noise. However, the MRD value drops approximately quadratically

with decreasing noise level. In the experimentally relevant range, typical recon-

struction deviations are of the order of 10%. This value is acceptable and well below
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Figure 4.9: Reconstruction in the presence of noise. Typical experimental noise levels

are highlighted by grey boxes. (A) The relative L2 estimate increases with the noise

level as the segmented structure cannot reproduce the noisy displacement field. (B)

Even at high noise levels, overall network forces and stress fiber forces are estimated

well. (C) Tensions of individual stress fibers are well estimated if the noise level is

below 10%. (B), (C) We used n = 10 different noisy displacement fields.

typical biological variability.

4.5.3 Segmentation Uncertainties

Segmentation of SFs is a manual process and as such prone to errors. In this section

we investigate how either segmenting too many or too few stress fibers influences

the result, which we call oversegmentation and undersegmentation, respectively. In

the case of oversegmentation, we artificially embed more stress fibers into the recon-

struction model than we had in the model that the data was produced with. Fig.

4.10 A shows the segmentation where three VSF have been added in an otherwise

SF-free area. The additional fibers have been marked with yellow triangles.

The effect of oversegmentation can already be seen by looking at the development

of the relative L2 estimate during optimization (Fig. 4.10 D). Only small numeri-

cal inaccuracies separate the oversegmented model from the correct segmentation.

Also the relative SF tension deviations (Fig. 4.10 E) and the total and network

force estimates (Fig. 4.10 F) are very close to the reconstruction with the correct

segmentation. The reason for this is that if there are no displacements that can be

associated to the effect of the tension of the additional SFs, they are optimized to

bear zero tension. In this way they do not influence the surrounding network.

Undersegmentation is more problematic. Since degrees of freedom are missing to

describe the data sufficiently, the system is forced into a new configuration. We

investigated this scenario by removing two DSFs (Fig. 4.10 B) or one VSF (Fig.

4.10 C). Each removed fiber is marked with a yellow triangle. In the first case

the tension is mainly redistributed to neighboring parallel bundles (red triangles).
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Figure 4.10: Influence of oversegmentation and undersegmentation of stress fibers.

(A) - (C) Indication of additionally segmented and missing stress fibers, respectively.

(D) Optimization results for different segmentations. (E) Relative tension deviations

for individual stress fibers. (F) Network and total force for different segmentations.

Their reconstructed tensions are considerably increased compared to the original

value (Fig. 4.10 E). The effect is local in the sense that other SFs are not disturbed

as much. However, some compensate the higher tension in their surrounding by

exerting less tension than in the original forward problem. As expected, the total

force is slightly decreased in this case, while we can see a small increase in the

network force (Fig. 4.10 F). This means that the contribution of the SFs to the total

force is decreased as expected.

Removing the VSF shows more long-ranged effects. Since its traction was partly

balanced by another VSF, there appears to be a different stress configuration in

the center of the cell. Here, the TAs marked by the red triangles redistribute their

tension. Still most other SFs are agnostic of the change and do not show an altered

tension. Again, the SF contribution to the total force is decreased. In terms of the

relative L2 estimate, undersegmentation prohibits the very good convergence of the

oversegmented and correct model in the noiseless state. We conclude that in the

segmentation process it is important to segment rather too many SFs than too few.
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Figure 4.11: Orientation of SFs, FAs, and local displacements. (A) Alignment of

the long axis of the ellipse fit to the FA with the connected SF (n = 1305). (B)

Alignment of SF directions with local substrate deformations (n = 1297). (C) Area

distribution of mature FAs that are connected (blue) or not connected (green) to a

SF (n = 3612). The underlying data set encompasses 19 U2OS cells.

4.6 Force Distribution in the Cytoskeleton of U2OS

Cells

In this section we present a MBTFM study with U2OS-cells that adhere to poly-

acrylamid substrates with a Young’s modulus of E = 8.4kPa. The experiments

where performed by Jonathan Stricker and Patrick Oakes from the lab of Margaret

Gardel at the University of Chicago, USA. Our focus will be on the force distribution

among different parts of the CSK.

4.6.1 Alignment of Stress Fibers and Focal Adhesion with Local

Displacements

Before we begin reconstructing tensions with MBTFM, we perform a correlation

analysis to check if our model assumptions were meaningful. Fig. 4.11 A shows that

the orientations of FAs are correlated with the directions of SF that are attached to

them. This already hints at forces in the stress fibers that act as growth templates

for FAs, for which forces are important for maturation and growth [128–130]. The

assumption that SFs carry force is also justified by the fact that local substrate

displacements are aligned with the SF orientation where they are attached to FAs

(Fig. 4.11 B). This means that FA orientation is aligned with the direction of local

substrate displacements in the presence of SFs (data not shown). Another hint for

force-dependent FA growth is given by Fig. 4.11 C, which shows that the probability

for a FA to grow larger than 1µm2 is considerably higher for FAs attached to a SF

than compared to unattached FAs.
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4.6.2 Comparison to FTTC

A side by side comparison of the two TFM methods MBTFM and FTTC is illus-

trated in Fig. 4.12. FTTC only uses information about the elastic properties of

the substrate and the experimentally measured displacement field to reconstruct

tension (Fig. 4.12 B, first row). As discussed before, it is necessary to apply regular-

ization techniques to receive an unique approximate solution. At the same time, the

regularization scheme biases the reconstructed solution in the sense that stronger

regularization (higher λ) leads to smoother traction fields with increasing feature

size and to a decrease in the overall traction magnitude. In this picture, it becomes

increasingly difficult to associate forces with cellular structures, such as SFs or FAs.

In contrast, MBTFM uses more information as it takes the cytoskeletal structure of

the individual cell into account and only allows for solutions which are compatible

with the applied model. In this way the method can dispense with Tikhonov regu-

larization, as the inverse problem gets well-posed by restriction of the solution space

to its biophysically relevant subspace. By the choice of our model, we can naturally

correlate tractions with FAs, as they are the only force transmitting structures and

thereby forces are uniquely associated with FAs. Even simpler, tensions in SFs are

the direct result of our reconstruction and can be analyzed directly.

We will exploit these features of MBTFM in the following sections but first ensure

that the force scale is consistent with MBTFM. For this purpose, we performed

TFM with both MBTFM and FTTC for the cells in our data set and plotted the

results in terms of total force against each other (Fig. 4.12 A). With a prescribed

regularization parameter in FTTC of λ = 10−4, we observe a linear correlation with

the results of MBTFM, though the absolute values are slightly lower (red dots).

The linear relation between both methods in terms of total forces is preserved when

we change the regularization parameter, but the slope of fitted line changes. The

last part was to be expected, since the choice of λ directly influences the total force

of the reconstruction, as high total forces are penalized in the regularization term

(cf. Eq. 4.31). We can now estimate FTTC’s regularization parameter by fitting the

linear relation of total forces to a line of slope one. In this way, we get λ = 10−5.

Note that this is approximately the same value as one would pick from a Bayesian

estimate for this data (see Fig. 4.2).

4.6.3 Forces on Focal Adhesions

FAs play an important role in mechanosensing [20, 131], i. e. they help to translate

mechanical cues to biochemical signals within the cell. Consequently, forces on FAs

and their effect on FA maturation and growth and their correlation to cell properties
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Figure 4.12: Comparison of MBTFM and FTTC. (A) There is a linear correlation

for total forces determined with both methods for n = 19 cells (red). The slope is

determined by the regularization parameter in FTTC, which can be chosen to yield

a one-to-one correspondence (blue). (B) The MBTFM method uses additional data

to avoid standard regularization techniques.

like cell area, number of FAs, and total FA area have been thoroughly investigated

[128, 129, 132, 133]. Despite this fact, the results do not show a consistent picture.

Both FA area and number have been shown to correlate positively with traction

forces [129, 133], but also cell area and geometry [31, 134–137]. The reasons for

sometimes even contradicting results are twofold. First, very different cell times

have been investigated, ranging from epethelial cells [134] over airway muscle cells

[138] and tendon fibroblasts [137] up to multipotent stem cells [133]. They are

exposed to different forces at their typical location in the body and fulfill different

functions. It is therefore expected that they also follow different strategies and

control mechanisms for force generation and transmission. The second reason is that

the methods to achieve these results were very different. Apart from homogeneous

soft elastic substrates [134], also patterned substrates [139] and pillar assays [133,

136] were used. Pillar assays and also patterned substrates influence the distribution

and shape of focal adhesions. On flat elastic substrates, one still faces the challenge

of mapping smoothed traction fields to single FAs. This can be done manually by

drawing ellipses around FAs and integrating the traction in this area [132].

With MBTFM, all tractions are uniquely associated with individual FAs directly

after reconstruction. We contribute to the versatile picture of FA forces with an

evaluation of our data set of human osteosarcoma U2OS-cells where we use MBTFM.

In order to check if the results are really determined by force, we also introduce two

variations to the wild type (WT) U2OS-cells. If we apply Y-27632, we inhibit the

rho-associated kinase (ROCK) signaling pathway and thereby reduce the activity of

molecular myosin II motors. The other alteration we perform is a knockdown (KD)

of α-actinin 1, which is a cross-linker for actin and important for the bundling of

actin filaments into SFs.
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Figure 4.13: Correlation of force, focal adhesion area, and cell area for n = 40 cells,

which are either wild type (blue dots), Y-27632 inhibited (red dots), or with α-

actinin knockdown (green dots). (A) - (D) The total force exerted by stress fibers

correlates linearly with the number of FAs and total FA area. (E) - (F) We cannot

find a clear scaling of traction forces with cell area.

Our findings are depicted in Fig. 4.13. We find a clear linear dependence of the total

force with the number of FAs (Fig. 4.13 A). Interestingly this is true for wild type

cells (blue dots) as well as for the less contractile and less cross-linked variations

(red and green dots). As expected, those cells show weaker forces than WT cells.

At the same time, they develop fewer FAs, such that the force per FA is conserved.

We calculate the average force per FA to be 1.9 ± 0.05nN . Note that our result is

consistent with an analysis with FTTC, since total forces are estimated to the same

value in both methods if the regularization parameter is chosen accordingly. Even

if it is not, the linear correlation is conserved and so is the result for the correlation

of force and FA number.

With MBTFM, we find that this scaling is due to force generation in SFs, as the

isotropic network force shows no clear scaling with the number of FAs (Fig. 4.13

C). The relation is thus due to anisotropic stress fiber forces (Fig. 4.13 B), which

also contribute approximately six times as much to the total force compared to the

background tension. An exception is constituted by the cells from the KD and

inhibition experiments. For cells treated with Y-27632 the network force is even

larger than the SF contribution.

We can also assess the relation between the number of FAs and their total area

directly from our segmentation. Interestingly, for WT and non-WT cells alike, there

is a strong linear correlation which allows us to determine an average size per FA

of 0.46 ± 0.1µm2, though individual FAs very widely in their size. We can now

also retrieve the average traction per FA to be 4.13 ± 0.1N/µm2, which is in the

same range as it was previously found for cardiac myocytes (5.5± 2nN/µm2, [129]),
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human mesenchymal stem cells (1.98 ± 0.28 − 3.66 ± 0.46nN/µm2, depending on

pillar stiffness [133]), and human umbilical vein endothelial cells (2.25±0.42−4.14±
0.50nN/µm2, depending on pillar stiffness [133]).

However, different from the results shown in [133], we cannot find a clear scaling

between FA area and cell size (Fig. 4.13 H). The same is true for total force, stress

fiber force, and network force (Fig. 4.13 E-G). We therefore conclude that in U2OS-

cells, force is associated with total FA size and number, and not with cell area.

4.6.4 Force Distribution Among Different Stress Fiber Types

SF tensions are directly available as the reconstruction result in MBTFM. It is

therefore easy to evaluate the tension distribution in different SF types. As ex-

plained before, we classified SF during segmentation in three categories, namely

DSFs, VSFs and TAs. We emphasize that the reconstruction algorithm in MBTFM

is absolutely agnostic of this classification and that it was used only after the tension

reconstruction was completed.

The different SF types vary in their location within the cell as well as their molecular

composition. DSFs are anchored in a FA typically at the leading edge of the cell and

grow towards the center in the retrograde flow. They are bundled and cross-linked,

but do not contain myosin II [22]. TAs are typically connected to DSFs at their

free end and run parallel to the cell edge, and they contract actively [19]. VSFs are

attached to FAs at both ends and are close to the ventral surface of the cell. It is

typical for VSF to show myosin II striation patterns [19, 77].

Sorted by the different types, we find the tension distributions shown in Fig. 4.14

A. While the occurrence of SFs bearing higher tensions decreases for all types, SFs

bearing tensions of 5nN and more are most often VSFs. They are also the strongest

SF type on average. DSFs are the weakest type, reflecting the absence of active

force generation of myosin. Still there are DSFs which bear considerable tension,

which seems to be a contradiction if the fiber is indeed passive. Here we refer to

the limits of our model that allows for contraction as the only force generating

process. It is however possible, that the measured forces arise through a different

mechanism that does not require myosin inside the bundle, e. g. frictional forces

of the surrounding retrograde flow or pull exerted through the DSF by an TA. TAs

adopt an intermediate state between VSFs and DSFs. As they are not directly

connected to FAs, the determination of their tensions is the most indirect one. It is

though expected that TAs should be stronger than DSFs as they contain myosin II,

but should be weaker than VSFs since they cannot transmit their force directly to

the cell’s outside.
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Figure 4.14: Distribution of tension among different stress fiber types. (A) Histogram

of single stress fiber tensions sorted by fiber type (16 U2OS-cells, N = 369 SFs).

Ventral SFs (red) show the highest tension on average. (B) Cross-Validation of

the statistical significance. When we sample SF tensions from the distributions

shown in (A), we get a Gaussian distribution of L2 values for one cell (green). If

the distributions for ventral SF and dorsal SF are switched, the estimates become

significantly worse (blue).

In order to check the statistical relevance of the SF tension distributions, we per-

formed a cross-check of the result in the following way (Fig. 4.14 B). We took an

arbitrary cell from the data set and sampled tensions for the individual stress fibers

from the distributions shown in Fig. 4.14 A. We then calculated the direct problem

(middle column in Fig. 4.6 B) to achieve an L2 error estimate in combination with

the cells displacement field recorded in the experiment. When we repeat this process

for many times, we get a Gaussian distributions of L2 values (Fig. 4.14 B, green

distribution). When we exchange the distributions for VSFs and DSFs, which differ

the most, we get a similar but broader Gaussian distribution, and at a significantly

higher mean L2 value (Fig. 4.14 B, blue distribution). We conclude that albeit

the distributions for the different SF types are not clearly separated, their detailed

structure is important and of statistical significance.

4.7 Discussion & Outlook

With MBTFM we have introduced a novel technique to reconstruct cellular traction

fields from displacement data of soft elastic planar substrates. The key idea is

to use additional image data and biophysical modeling to dispense with Tikhonov

regularization. MBTFM can directly relate model properties to experimental data

without any influence of a regularization parameter.

We coined the term geometrical regularization in analogy to Tikhonov regularization

as both methods yield a stable way to reconstruct cellular traction fields in the

presence of noise. We have shown that geometric regularization is very robust to
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noise in terms of total force estimates and that even single SF tensions can be

reliably reconstructed at noise conditions typical for experiments. Still geometric

regularization pursues a very different approach than Tikhonov regularization, as it

does not continuously bias different almost identical solutions to a single one based

on a priory assumptions, but restricts the solution space of the inverse problem

to a biophysically relevant subspace. In this way we do not need to estimate any

regularization parameter.

A further advantage of MBTFM is that it relates model parameters directly to

experimental data. We have explained that other techniques bias FA size and dis-

tributions, or need to quantify traction forces exerted by single FAs by specifying

elliptic areas around FAs, where traction is integrated. MBTFM directly projects

the data on the model parameters, which in our case means that they are related to

SF and background tensions, and with that, to FA tractions.

The projection of data to model parameters also means that one has to be very care-

ful about choosing an appropriate model for MBTFM. In this study, we thoroughly

checked the model assumptions with a correlation analysis based on the segmented

images alone, without using any results of the reconstruction. The result ensured

us that it is justified to model the SFs as stress generating structures. One also

needs to know the descriptive limits of the model, since it is important not to inter-

pret results as biological facts which are in reality due to the details of the model

definition. Again, we stress that the results we acquired for FAs could be obtained

with FTTC in a similar manner, but they are more conveniently assessed from the

segmentation for the MBTFM model. For the SF type tension distribution analysis,

the MBTFM algorithm is unaware of any SF classification. Therefore we regard

both results not to be influenced by the description of the model. We are further

encouraged by the fact that FTTC and MBTFM reconstruct the same total forces

if the regularization parameter is set in the vicinity of the Bayesian estimate.

In terms of biological results, we have attained two very important findings. Firstly,

FAs in U2OS-cells bear a sharply defined average force and traction, and the cell

scales their number and total area with the total force the cell exerts. The average

traction per FA of 4.1 ± 0.1nN/µm2 is in line with the values for other cell types

found in the literature. Secondly, we have shown that different SF types show

characteristic tension distributions, and that the difference in the distributions is of

statistical significance. The latter result can only be obtained with MBTFM, since

it is the only technique so far to our knowledge that allows to assess the tension of

multiple SFs in a cell in a non-invasive manner.

MBTFM as presented here requires good-quality images of both the actin CSK and

FA locations. This poses a challenge to experiments and limits its applicability in
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knockdown and inhibition experiments. Here we found that segmentation becomes

increasingly difficult and that no consistent picture for stress fiber tensions could be

found in the case of ROCK inhibition or α-actinin knockdown. However, because

total force measurements are very robust, we could still use this data for our FA

force analysis.

In future assays MBTFM can be implemented with different models and differ-

ent experimental settings. Though experimentally difficult, precise data for three-

dimensional traction fields could yield deep insights in combination with three-

dimensional whole cell modeling. It would also be interesting to combine MBTFM

with laser cutting in order to assess the tension of the same SFs with two indepen-

dent methods.
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5 Viscous Flow in Cable Networks

5.1 Introduction

Viscous flow is omnipresent in cells. Starting at the cell’s outer envelope, the plasma

membrane is a two-dimensional fluid of lipids and membrane-associated proteins. Up

to 70% of the cell’s volume consist of water, which constitutes a viscous environ-

ment for many active flow processes [140]. The driving forces are usually provided

by actin polymerization or molecular motors, though in a variety of different fash-

ions. In some organisms like starfish or Xenopus, surface contraction waves occuring

in oocytes prior to cytokinesis induce flow in the cytosol [141]. Active drag on or-

ganelles by myosin XI motors induces flow in plant cells that enhances and directs

diffusion [142]. One of the most prominent examples is the retrograde actin flow in

motile cells [143, 144]. At the leading edge of the cell actin monomers polymerize

into filaments that push against the plasma membrane. The counter forces then

drive the filaments backwards to the center of the cell, where they are eventually

disassembled.

Despite the fact that many cellular components show properties of liquids, cells and

their constituents can also exhibit the behavior of solids. The main difference of

a solid and a fluid is that the solid has an internal memory of an original resting

state, and that it exerts restoring forces when it is deformed. The physical theory

to describe these forces and their effects is elasticity theory. Again, a prominent

biological example is given by the actin cytoskeleton (CSK). Individual filaments

can be cross-linked and bundled to form highly elastic structures, so called stress

fibers (SFs) as explained in the introduction [19, 21]. But also less stable components

show elastic behavior on short time scales.

The combination of viscous, elastic and active components is a challenge to the-

oretical modeling. The classical framework to describe materials that show both

liquid and solid properties is viscoelasticity (see e. g. [145] for an introduction in

the context of polymers and [146] for a discussion of growth models). Continuum

models are useful whenever one can define an intermediate length scale that is larger

than the microscopic elements and smaller than the system size. Tlili et al. describe

a general modeling approach starting from a constitutive mechanical relation, that
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can either show a viscous or an elastic behavior in the long time limit [147]. Ac-

tive gel theory has been developed in the past decade with a strong focus on active

components and long time properties of a fluid as reviewed in [148]. However, all

of these continuum approaches struggle if the material of interest is not sufficiently

homogeneous in its internal organization.

In this chapter, we present a new discrete modeling approach to viscous flows in

the actin CSK with triangular networks of cables. Cable networks have been used

previously as mechanical models for the whole cell, e. g. to predict cell shapes on

micro-patterned substrates [4, 78], or to assess the internal distribution of tension

within the CSK as described also in chapter 4 [91, 114]. A cable responds like a

Hookean spring under tension, but does not resist compressive forces. These proper-

ties reflect the polymeric nature of the CSK. While stretched cross-linked filaments

can bear forces in the range of a few nN , they buckle and eventually depolymerize

under compressive loads. The discrete modeling enables us to investigate the dif-

ferent viscoelastic properties of distinct cytoskeletal structures, namely stress fibers

and more distributed actin networks.

5.2 Modeling

Discrete viscoelastic models generally consist of two basic units, i. e. a viscous dash-

pot and an elastic spring. These two can be arranged in multiple different ways

to form material models. The both simplest and most well known models are the

Maxwell and the Kelvin-Voigt model (Fig 5.1). In the Maxwell case, spring and

dashpot are connected in series. In a massless system, any external force applied

will lead to an instant strain in the spring, which in turn transmits the force to

the dashpot (Fig 5.1 A). The viscous unit then starts to flow, thereby altering the

resting length of the component. It will only stop when no more force is transmitted

by the spring. The behavior of the whole model is viscous in the long time limit.

When the external force is released and the ends of the element are clamped, the

spring force will still induce a flow in the dashpot, until the spring finally arrives in

the unstrained state.

The behavior of the Kelvin-Voigt model is distinctly different (Fig 5.1 B). As spring

and dashpot are arranged in parallel, the dashpot only delays the spring’s strain

buildup. Consequently, there exists a maximal strain at constant external force,

which is set by the spring’s stiffness and rest length alone. The element will further

recover its original configuration eventually after the extension force is turned of. In

summary, in the Kelvin-Voigt model the elastic properties determine the long time

behavior of the system. For completeness, we note that there are many material
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A B

Figure 5.1: Discrete viscoelastic models. Under constant external force F , the

Maxwell element (A) flows with constant velocity v = F/η (viscous limit, dash-

pot viscosity η), while the Kelvin-Voigt element (B) balances the force and assumes

a steady state with v = 0 (elastic limit).

models connecting more than just two units, e. g. the Zener, Lethersich, and Burgers

models [149–151].

With our model we seek to describe the interplay between elastically and viscously

dominated parts of the actin CSK on the intermediate time scale that the cell needs

to rearrange its structure. We will focus on cells adhering to planar substrates,

which induces rather flat cell shapes. This allows us to consider only the two-

dimensional projection of the cell for our model. The various distributed actin

networks are described by a triangular network as described in chapter 4. However,

the mechanical model for the links between two vertices are chosen differently for

this purpose.

The majority of actin filaments is organized in distributed networks that cannot

be observed by standard resolution optical microscopy. As these networks are only

weakly cross-linked and subject to high turnover rates, we assume that they obey a

Maxwell type material model (Fig 5.2 A). However, for the polymeric nature of the

CSK, we replace springs for cables and reference the corresponding element as cable-

Maxwell. To account for the viscous environment of the cytoplasm, we additionally

couple each vertex to the ground via a viscous Stokes drag element.

The situation is markedly different for actin stress fibers (SFs), which are clearly

visible in standard fluorescence microscopy. Here, many actin filaments are tightly

bundled and cross-linked, resulting in a much more stable structure on the time

scale of a few minutes up to an hour. In the context of laser ablation, SF retraction

dynamics have been successfully predicted with a Kelvin-Voigt type material [23].

However, here we are less interested in the short time dynamics of individual fibers,

so we disregard the dashpot for simplicity and take cables alone (Fig 5.2 B).

The solution of the equations of motion for the network has been implemented in the
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A B

Figure 5.2: Viscoelastic network model. (A) Triangular network of cable-Maxwell

elements, where springs of standard Maxwell elements are exchanged for cables.

Vertices are coupled viscously to the environment by Stokes drag elements. (B)

Modeled by cables alone, a stress fiber (blue) is embedded in the cable-Maxwell

network. Viscous coupling to the environment is not shown for clarity.

software SurfaceMaster. Before we describe the details of the algorithm, we want to

make some remarks on the definition of the dashpot model. From a single discrete

viscous element, one might expect a constant velocity response to an external force,

regardless of its length, like the velocity of a sphere being dragged through a viscous

fluid in a tube at constant force against Stokes’ friction does not depend on the

tube’s length. We will find a distinctly different behavior for the dashpot, however.

Its constitutive relation is defined as

σ = η · ε̇ (5.1)

with stress σ, dynamical viscosity η, and strain rate ε̇, which we substitute into the

equation of motion,

ρ
∂2u

∂t2
=
∂σ

∂x
, (5.2)

where u is the displacement, ρ the mass density, and x the spacial coordinate, to

get
∂v

∂t
=
η

ρ

∂2v

∂x2
. (5.3)

Here we substituted in the velocity v = ∂u/∂t. This diffusion equation can now

be solved for the boundary conditions σ(a) = σ(b) = ηε̇ = η∂v/∂x = f and

v ((a+ b)/2) = 0, where a and b denote the borders of the dashpot and f is an

external stress. The stationary solution found by setting ∂v/∂t = 0, reads

v(x) =
f

η

(
x− a+ b

2

)
(5.4)

Clearly, the velocity with which the endpoints move away from each other, ve =

v(a) − v(b) = f/η · (a − b), grows linear with the system’s size. A constant force
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velocity relation therefore only exists, if one artificially holds the system size con-

stant. In contrast, if we identify the term a − b as the system size l and ve as its

time derivative, we arrive at

l̇ =
f

η
· l , (5.5)

which obviously leads to an exponentially growing flow velocity of the dashpot

model. Note that the last conclusion is only valid, if the steady state in the diffusion

equation 5.3 is reached sufficiently fast. That holds true for high velocity diffusion

constants Dv = η/ρ, which is especially valid in a massless system we investigate

later. The result has been confirmed by finite element simulations of a Maxwell fluid

by Dimitri Probst (personal communication).

This is consistent with the picture of a fixed line density λ of elements showing

Stokes drag viscosity: The velocity of a single Stokes drag element is

v = α · F/η , (5.6)

where α is a proportionality constant. Coupled in series, all elements contribute to

the total velocity

l̇ = vtot = n · v = λl · αF
η

=
F

η̃
· l (5.7)

with effective viscosity η̃. Note that eqs. 5.5 and 5.7 are equivalent.

These findings match the expectations of a viscous polymeric system. If a piece of

filamentous network of length l flows with velocity v in response to a force f , this

is due to molecular processes like the unbinding and binding of crosslinker proteins,

or polymerization. If the system size is doubled to 2 · l, the number of crosslinkers,

binding sites, etc. is also twice as large, resulting in a flow velocity of 2 · v. In

contrast, the viscous coupling of the vertices to the environment should not depend

on any distance from an arbitrary initial position, but resemble the situation of

Stokes’ drag.

Though the viscous environment coupling does not depend on the initial position,

it has to depend on the mesh size. We expect it to be the same regardless if an area

A is triangulated with n or rather 2n vertices, for example. Further, the viscosity

should remain constant over the whole triangulated region even if the vertex density

is significantly higher in some regions as in others. We therefore set α = αi = l̃/Ai

in Eq. 5.6, where l̃ is a characteristic length scale, and Ai the area associated with

vertex i (one third of all triangles adjacent to the vertex).

In order to solve the equations of motion for the network, we employ an Euler

algorithm that consists of repeating the following steps.

1. Determine the total contractile force Fν on each link ν and its elastic part F e
ν

from the current cable configuration alone.
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2. Determine the force ~Fi on each vertex i as
∑

ν Fν ·~eν , where the sum runs over

all adjacent links and the ~eν denote unit vectors along the links pointing away

from v.

3. Move each vertex v by ~s =
(
~Fi · l̃ ·∆t

)
/ (η∗ · Ai), where ∆t is the chosen

time step, η∗ the viscosity of the surrounding medium, and l̃ is a characteristic

friction length scale.

4. Account for the flow in the dashpot by adjusting the rest length l0,ν of each

cable in a cable-Maxwell element by

l0,ν,new = l0,ν + v ·∆t = l0,ν ·
(

1 +
F e
ν

ηνA0

·∆t
)

, (5.8)

where ∆t is the same time step as above, A0 is the cross section of the fiber

and ην the viscosity of the cable-Maxwell element. Note that l0,ν can never

decrease in a cable-Maxwell model due to the absence of pushing forces. The

rest lengths of pure cable links representing SFs are not adjusted.

5. Adjust the mesh to retain a good discretization.

5.3 Mesh Alterations

The description of a viscously flowing matter with a triangular mesh faces some

challenges regarding mesh integrity. As discussed before, we expect sources and

sinks of cytoskeletal material due to polymerization and depolymerization processes

as well as compression and stretching. When we consider a source, we expect all

vertices of the surrounding mesh to flow away from it. This results in increasingly

large and pointed triangles in this area, until the material cannot be described with

the desired resolution any more and discretization artifacts become visible in the

simulations. The converse holds for sinks: as all vertices flow inwards, triangle sizes

decrease until numerical difficulties arise. As a consequence we need to dynami-

cally alter the mesh configuration by refining large triangles in source regions and

removing small triangles at sinks. This necessarily comes at the cost that one de-

stroys information contained in removed triangles, edges and vertices, or introduces

artificial information for newly created mesh elements. Still one can retain most of

the information of the original state, and we will show how to achieve this in the

following sections.

To determine when mesh alterations are necessary, we define a characteristic link

length l̄0 as the average of all resting lengths at the beginning of the simulation and

a scale factor S. Then l̄0 ·S constitutes an upper threshold for edge resting lengths,

and l̄0/S a lower threshold.
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Figure 5.3: Triangle refinement. (A) Triangle refinement by splitting all edges yields

three additional triangles but introduces hanging nodes (red). (B) Refining one long

edge connecting two triangles. Only two additional triangles are created without

hanging nodes. Edges are denoted by ei prior to the refinement, and fj afterwards.

5.3.1 Triangle Refinement

There are multiple ways to introduce new triangles into a triangular mesh. The first

one that might come to one’s mind is to replace one large triangle by four smaller

ones of equal size (Fig 5.3 A). However, this introduces hanging nodes, if adjacent

triangles are not refined as well. We therefore stick to an even simpler way to insert

new triangles into the mesh, as shown in Fig 5.3 B. An edge connecting two triangles

is split in half, if its length exceeds l̄0 · S. The midpoint is connected to the two

opposing tips of the triangles that shared the split edge. In this way, we introduce

only two new triangles in one refinement step and preserve mesh integrity.

For triangle refinement it is also straightforward to define the viscous and elastic

properties on the new edges. We are guided by the idea that we want to describe

the same material with a different discretization, which in particular means that the

forces on any vertex should not change and that the elastic properties of the links

need to be adjusted. It is well known that two springs with spring constants k0 in

series behave like one spring with k1 = k0/2. So kf1 = kf2 = 2ke0 holds to describe

the same material. In our simulations we will choose the spring constants for f3, f4

from a homogeneous background stiffness, which is set to represent the elasticity of

the unstrained cytoskeleton. Regarding the viscous properties, η(f1) = η(f2) = η(e0)

can be directly transferred from e0 to f1, f2, since the viscosity is already defined

per length. Similar to the spring constant, we choose the filament viscosity from a

background viscosity for the newly created edges.
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Figure 5.4: Triangle removal. (A) The short edge shared by the red triangles is

collapsed, only the green triangles remain. (B) The height of the red triangle is

small compared to its longest edge and is collapsed. At the same time, the blue

triangle has to be split in half to avoid hanging nodes, so the overall number of

triangles in the mesh is constant.

5.3.2 Triangle Removal

As for refinement, triangles can be removed from a mesh in many different ways.

The minimal well known approach is the edge collapse algorithm, where an edge

is replaced by a vertex, which is then connected to the surrounding vertices [152].

This technique is most appropriate if triangles contain one edge which is significantly

shorter than the other two. In our simulations with flowing cable networks, we also

observe another way of triangle shrinkage: one height of the triangle becomes small

compared to the corresponding edge. These two cases are best treated with the two

procedures described below (Fig 5.4).

Edge collapse

This is the standard case for triangle removal in our simulations, as it is the simplest

way to reduce the overall number of triangles. The procedure is triggered if an edge

becomes shorter than l̄0/S and works as follows. First, the center of the short edge

shared by the red triangles in Fig 5.4 A is obtained. Second, the red triangles

are removed from the mesh. Third, the vertices where e1, e2 and e3, e4 meet are

displaced to the center determined previously. In the last step, each of the two edges

that a red triangle shared with green ones have to be merged.

Note that there are mesh configurations, in which the procedure as described above

does not yield the desired results. We here list the three checks we perform before
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the operation is executed. If any of the checks is positive, the operation is prohibited.

1. One of the dashed white lines may intersect with one of the outer edges of

a green triangle. In this case, the application of the edge collapse algorithm

would lead to a failure in the mesh (some area is covered by two triangles,

while some other area is uncovered at the same time).

2. Either of the red triangles in Fig. 5.4 A may posses an internal structure of

even smaller triangles. In this case, the algorithm would transform the sub-

triangles into a straight line, which leads to undefined behavior.

3. One of the dashed white lines may become longer than a threshold for triangle

refinement and thereby cause an infinite sequence of refinement and removal

steps.

Height collapse

Edge collapse is not sufficient as the only way to remove triangles from the mesh.

Each edge length might still be above a given threshold for a long and pointed trian-

gle, but the triangle area can still tend towards zero. For this reason, we introduce

another operation, which removes one triangle and splits another. Consequently,

the overall number of triangles is conserved under this operation. However, it leads

to more homogeneous distributions of triangle areas.

The procedure is triggered if the height of a triangle becomes smaller than l̄0/(2S).

As depicted in Fig 5.4 B, the central triangle (red) is removed, and the joint vertex

of all green triangles is moved to the center of the red triangle. The blue triangle

that shares the long edge of the red one is split in two in order to avoid hanging

nodes. Note that the long edge is therefore split in two, and each of the parts is

merged with one edge of the now neighboring green triangle.

Again, one has to check for several pitfalls that may occur for certain mesh config-

urations. If any of the following checks is positive, the operation is prohibited. The

triangle colors now refer to the ones in Fig 5.4 B.

1. As for the edge collapse case, one of the dashed white lines may intersect with

one of the outer edges of a green triangle. In this case, the application of

the edge collapse algorithm would lead to a failure in the mesh (some area

is covered by two triangles, while some other area is uncovered at the same

time).

2. The four triangles that share an edge with the red triangle could match the

height collapse criterion as well (the blue one counts as two once it is splitted).
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If they do, this can lead to an infinite chain of refinements.

Conserving important structures during triangle removal

Note that we introduce one new vertex in each of the triangle removal operations.

Its position is indicated in Fig. 5.4 by the point where the dotted white lines merge.

However, this might not be appropriate if the operations are to be performed in

the presence of fixed vertices, free boundaries, or stress fibers. These structures

are to be preserved, as they are of special importance to some of the simulations.

This means for fixed vertices to keep their position, and for edges at the boundary

or edges of stress fibers to remain straight lines. If it is not possible to retain all

structures unperturbed, we give highest priority to keeping the location of fixed

vertices, followed by vertex locations at the boundary and within stress fibers in

this order.

Cable properties during triangle removal

We are again guided by the idea to describe the same material, now with a coarser

discretization. Forces on vertices and local elastic properties should not change.

However, it is not possible to achieve this completely, since we are removing infor-

mation from the mesh. In the edge collapse case, the orientation and therefore the

force direction of edges e1 - e4 in Fig. 5.4 A changes only slightly, since the collapsed

edge is short. However, force magnitudes may change significantly depending on the

local spring constants. We therefore adjust the resting length for each of these edges

such that F (ei) = F (fi), where F denotes the edge force, while the spring constants

are kept constant. As e6, e7 and e5, e8 are merged, their spring constants k are added

to yield k(f5) = k(e5) + k(e8) and k(f6) = k(e6) + k(e7). In this sum we account

only for edges that are in the extension limit, as cables cannot build up compression

forces. Rest lengths l0 are chosen such that force of the merged edge equals the sum

of its two predecessors. If both preceding edges do not bear force, the rest length

is ill-defined because of the flat force-extension curve for cables in the compression

regime. In this case, we choose the new rest length such that the length difference

∆l between current length l and rest lengthl0, ∆l = l− l0, of the merged edge is the

average of the two predecessors. If the preceding edges carry active forces, the new

edge will carry the summed force.

In the height collapse case, we combine the algorithms for edge splitting and edge

merging, that are adopted from the edge collapse and the triangle refinement oper-

ations. The edge shared by the red and the blue triangle is split as in the triangle

insertion section, and each of the two parts is merged with the corresponding edge
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Parameter Symbol Numerical value Unit

Initial link length l̄0 10 µm

Initial spring constant k 5 / l̄0 nN/µm

Effective filament viscosity ηfil = ην · A0 1000 nN · s
Effective coupling viscosity ηc = η∗/l̃ 0.003 nN · s/µm3

Scale factor S 2.3

Central active tension t 0.3 · l̄0 nN

Table 5.1: Parameters used in the method validation section unless stated otherwise

share by the red and a green triangle.

Regarding the viscous properties, we note that splitting an edge does not change

the filament viscosity as it is defined per length (cf. Modeling section). Merging

however does increase the viscosity of the single dashpots to their sum in the joint

element. So for merging, filament viscosities are treated just as it is explained above

for the spring constants.

5.3.3 Edge Flipping

After some repetitions of triangle insertion and removal, some vertices show an

increase in connectivity, i. e. in the number of edges connected to one vertex,

which ultimately leads to numerical and algorithmic difficulties (e. g. the problems

discussed in the triangle removal section). We introduce edge flipping in order to

keep a homogeneous distribution of connectivity. If two triangles are connected by

an edge e, and if the two triangle angles opposite to e are larger than a threshold

angle α > π/2, the edge is flipped and connects now the two vertices which where

unconnected before. During this operation, we can conserve hardly any elastic

properties of the material. We simply select the spring constant for the new edge

from the background elasticity and apply zero strain. To keep these events rare, we

use α = 110◦ in our simulations.

5.4 Method Validation

We now focus on how these mesh alterations change the simulations of a viscoelastic

fiber network. We take a rectangle of 800µm by 300µm dimensions that is covered

by a triangular network of active Maxwell cable elements. In the central region,

the links feature a constant force dipole which actively contracts the network (Fig.

5.5 A). We impose no-displacement boundary conditions along the whole rim of the
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rectangle. For the plots in this section, we use the parameters listed in Tab. 5.1

unless stated otherwise. Note the definitions for the effective filament viscosity ηfil

for the dashpot in the cable-Maxwell elements and the effective coupling viscosity ηc

for the Stokes drag elements determining the viscous coupling to the environment.

5.4.1 Effects of Different Mesh Alterations

First we investigate how the flow velocity profiles change with different stages of

the mesh alteration algorithm: (a) without any alterations, (b) only with triangle

splitting and edge flipping, (c) only with edge and height collapse, and (d) with

the full alteration algorithm. For this purpose we average the flow velocities in x-

direction in both space and time. The spatial averaging zones are illustrated in Fig.

5.5 B, and the temporal average is taken over 1s.

Fig. 5.5 (C) - (H) show the resulting velocity courses at different mesh sizes and

varying distance from the contractile zone. Qualitatively, the main features of the

curves are similar for all algorithm variations. After an initial peak, where strain

builds up in the cables, the velocities decrease until they assume a plateau which

is determined by the dashpot viscosity ηfil and the coupling viscosity ηc. When the

contraction is switched off at t = 500s, the flow immediately reverses its direction

in box I and decays until the springs have reached their resting lengths. As box

II is farther away from the contractile region, the response in both contraction

and relaxation is slightly delayed and the magnitude of the flow velocities drops

down. This is the expected behavior for the viscoelastic fluid, and we will show a

comparison to finite element simulations of a corresponding continuum mechanics

model later. The roughness of the red curve (no alterations) can be explained by the

discrete number of vertices leaving the box to the interior at an velocity higher than

the average and the vertices entering the box from the outwards facing direction

with a velocity smaller than the average. For all other curves, discrete steps during

mesh alterations cause additional roughness. This effect decreases for smaller mesh

sizes, as discrete vertex displacements due to mesh alterations become very small.

In the details we expect to find some differences due to the different mesh alteration

steps applied. Each additional alteration method leads to a slight increase in the

creep velocities (plateau velocities). It is obvious that the collapse algorithm intro-

duces periodic inclines to the flow field at l̄0 = 10µm (Fig. 5.5 F). This is due to the

highly homogeneous starting configuration of the mesh, which leads to the situation

that many edges fall under the collapse threshold at the same time. The resulting

finite displacement of vertices adds an effective force on short time scales. This effect

is less pronounced at l̄0 = 20µm, where the mesh is distorted more rapidly and the

effect vanishes in the general noise and at l̄0 = 6µm, where vertex displacements are

90



5.4. METHOD VALIDATION

C D

B
ox

 I

B
ox

 I

B
ox

 I
I

B
ox

 I
I

E F

G H

A B

-0.15
-0.1

-0.05
0

0.05
0.1

0.15
0.2

0.25
0.3

0 100 200 300 400 500 600 700 800 900 1000
Time (s)

Different mesh alterations at l
-
0=10µm (Box II)

-1

-0.5

0

0.5

1

0 100 200 300 400 500 600 700 800 900 1000
Time (s)

Different mesh alterations at l
-
0=10µm (Box I)

No mesh alterations
Only splitting / flipping

Only edge / height collapse
Full algorithm

-0.15
-0.1

-0.05
0

0.05
0.1

0.15
0.2

0.25
0.3

0 100 200 300 400 500 600 700 800 900 1000
Time (s)

Different mesh alterations at l
-
0=6µm (Box II)

-1

-0.5

0

0.5

1

0 100 200 300 400 500 600 700 800 900 1000
Time (s)

Different mesh alterations at l
-
0=6µm (Box I)

No mesh alterations
Only splitting / flipping

Only edge / height collapse
Full algorithm

-0.15
-0.1

-0.05
0

0.05
0.1

0.15
0.2

0.25
0.3

0 100 200 300 400 500 600 700 800 900 1000
Time (s)

Different mesh alterations at l
-
0=20µm (Box II)

-1

-0.5

0

0.5

1

0 100 200 300 400 500 600 700 800 900 1000
Time (s)

Different mesh alterations at l
-
0=20µm (Box I)

No mesh alterations
Only splitting / flipping

Only edge / height collapse
Full algorithm

M
e
a
n
 v

e
lo

ci
ty

 [
μ

m
/s

]
M

e
a
n
 v

e
lo

ci
ty

 [
μ

m
/s

]
M

e
a
n
 v

e
lo

ci
ty

 [
μ

m
/s

]

M
e
a
n
 v

e
lo

ci
ty

 [
μ

m
/s

]
M

e
a
n
 v

e
lo

ci
ty

 [
μ

m
/s

]
M

e
a
n
 v

e
lo

ci
ty

 [
μ

m
/s

]

M
e
a
n
 v

e
lo

ci
ty

 [
μ

m
/s

]

Figure 5.5: Average flow velocities towards the central contractile rectangle for dif-

ferent mesh sizes. The outer frame of the network is fixed. (A) The contraction zone

is located in the central region. (B) Flow velocities are measured and averaged spa-

cially within boxes I and II (horizontal velocity is shown in color code). Additional

time averaging is applied within 1s. (C) - (D) Flow velocity profiles for l̄0 = 20µm

within each box over simulation time. At t0 = 500, the contractility is switched off.

(E) - (F) Flow velocity profiles for l̄0 = 10µm. (G) - (H) Flow velocity profiles for

l̄0 = 6µm.
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smaller due to the smaller mesh size.

A conserved feature between the different mesh sizes is the maximal peak velocity,

which is mainly set by the contractile tension and the coupling viscosity to the

environment. We conclude that the scaling for these quantities seem to yield the

expected results, though we will investigate this further below. The decrease in the

creep velocity for smaller l̄0 is mainly an effect of the different properties of dashpots

added in the vertical or horizontal direction. If dashpots are added in the vertical

direction, the effective viscosity of the network increases as there are more dashpots

to be elongated at the same force. However, if more dashpots are added in the

horizontal direction, we know that the viscosity has to remain unchanged. When

the mesh size is altered, these two effects happen at the same time, and there is no

simple relation to account for both.

This discussion about two-dimensional versus one-dimensional scaling of the filament

viscosity in principle also applies to the cable stiffness k, though it is not as clearly

visible from the velocity plots. The difference is that the one-dimensional scaling

defined by EA = k/l̄0 is length dependent in that case, which at the same time

accounts for the higher number of cables in the vertical direction if we decrease the

mesh size in the rectangle.

In the expansion regime t > 500s, we find the expected results. The more mesh

alterations are applied and the more elastic information is thereby destroyed, the

lower are the expansion velocities in the outflow. The effect is less visible for smaller

mesh sizes, since the mesh alterations induce only smaller vertex displacements,

which leads to less loss of information. We conclude that with the full algorithm,

we will underestimate the flow associated with relaxation in homogeneous meshes

without stress fibers.

Fig. 5.6 reveals the necessity for mesh alterations. Without changing the mesh,

it becomes obvious at t = 500s that long and flat triangles lead to an unexpected

stress in the y-direction which is a discretization artifact. At the same time, triangles

densify at the rim of the contraction region close to the horizontal symmetry axis.

For longer simulation times, this leads to numerical instabilities (not shown). This

problem is even amplified when triangle refinement is allowed, since large triangles

are split before reaching the contraction zone and therefore an even higher number

of triangles arrives. This leads to stalling in the simulations (e. g. interrupted green

curve in Fig. 5.5 F). Despite this fact, the flipping and splitting operations efficiently

prevent the stress buildup in y-direction. Edge and height collapses on the other

hand keep triangles at acceptable sizes close to the contraction zone, while triangles

in the stream become more and more flattened. Only combined the algorithms

retain a good discretization for the whole rectangle.
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Figure 5.6: Representative mesh configurations t = 200s and t = 500s during con-

traction with different parts of the remeshing algorithm enabled. The starting po-

sition for t = 0 is the one shown in Fig. 5.5 (A). All simulations performed at

l̄0 = 20µm.

5.4.2 Effects of Different Parameters of the Cable-Maxwell

Elements

We now systematically vary four different parameters of the model, namely the

scaling factor S, the contractile tension t (Fig. 5.7), the spring constant k, and

the filament viscosity ηfil (Fig. 5.8). Note that the scaling factor sets the threshold

for edge splitting and collapse by l/l̄0 = S±1. It is thereby also an important

indicator for mesh homogeneity as it defines the maximal link length ratio within

the mesh lmax/lmin = S2. The choice of the scaling factor S does not influence the

creep velocity (Fig. 5.7 A), though it determines when the first alterations occur

and thereby when the curve forks away from the reference state without any mesh

alterations (red line). Note that the seemingly periodical velocity inclines due to the

collapse algorithm as discussed in the previous section (see e. g. S = 2.3, dark blue

line) vanish for larger S (e. g. S = 5, black line). Again, this is due to smaller vertex
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Figure 5.7: Effects of the scaling factor S and tension level t. (A) The scale factor

controls the threshold for splitting and collapse relative to l̄0. (C) The tension is

driving contraction and defines velocity magnitudes. (B), (D) Insets for (A),(C) for

480s ≤ t ≤ 700s. All curves plotted for box I.

displacements during the collapse algorithm, as edges and heights to be collapse are

already very small.

The tension t is the driving force of the flow. In all simulations of this section, we

assume a homogeneous background tension, which is raised in the central region by

a factor of 4. The transition between the high and the low tension zone is smoothly

interpolated. Afterwards we subtract the background tension from all links, such

that all links outside of the contractile zone and the transition region do not bear

any tension. This is for the reason that any homogeneous line tension drives the

system towards equilateral triangles, since an equilateral triangle has the minimal

boundary length at fixed area. This however induces numerical artefacts in the

relaxation process, since our starting configuration consists of almost equilateral

triangles, i. e. the system appears to be elastic where it is actually viscous. Fig.

5.7 (C) and (D) show that the amount of elastic relaxation after the contraction

is switched off directly depends on the creep velocity and with this, on tension.

This is expected, since the stored elastic energy must be given by the ratio of two

time scales: the one that determines strain buildup, i. e. the velocity, and the one

governing strain dissipation, i. e. the filament viscosity.

The variation of the cable stiffness k illustrates that the initial peaks at the begin-
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Figure 5.8: Effects of the spring constant k and filament viscosity η. (A), (B) The

spring constant shapes the velocity peaks in the initial contraction and relaxation

phases. (C), (D) Filament viscosities determine the creep velocity.

ning of both the contraction and relaxation phases are determined by the elastic

properties of the mesh, though in different manners. At the beginning of contrac-

tion, all cable-Maxwell elements are in their resting state. Consequently, the forces

from the contractile zone are only balanced by the viscous coupling to the environ-

ment, which results in rapid movement. As soon as the springs build up considerable

stress, the forces that need to be balanced by the viscous environment drop until the

velocity is determined by the dashpot part of the cable-Maxwell elements and the

coupling viscosity. In a Maxwell fluid the decay is proportional to exp(E/ηfil · t). It

is clear that stiffer springs experience these stress levels earlier, since a lower amount

of strain and therefore movement is necessary than for soft springs (cf. Fig. 5.8 A).

Fig. 5.8 B shows the relaxation flow in more detail. In this regime, the springs are

stressed from the beginning due to the previous contraction phase. Their internal

stress is now the only force that drives the system. The decay of flow velocities is

again determined by the spring constant k. The stiffer the cables are, the sharper

is the initial peak. This is due to the fact that the same stress is stored at less

strain for high k, which allows the system to relax quickly against the viscous en-

vironment. Conversely, low spring constants lead to a longer relaxation flow, since

it takes longer until the larger movements caused by larger strains relax against

the viscous coupling. This also means that more energy is dissipated through the

dashpot elements during the relaxation flow for soft cables than for stiffer ones.
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The filament viscosity parameter ηfil impacts the creep velocity as expected (Fig.

5.8 C). Low viscosities increase the fluidity of the system, which leads to larger

dashpot movements in response to the same driving forces. In the relaxation regime,

low filament viscosities lead to only weakly developed backwards flow (Fig. 5.8 D).

The reason for this is twofold: First, the forces and therefore strains that can be

maintained by the cable components are smaller if the dashpot yields more quickly.

Consequently the elastic energy stored in the network is low, such that there is little

potential for relaxation. Second, the dashpots still elongate the rest lengths of the

cable-Maxwell elements during relaxation. This effect is also more pronounced if ηfil

is low.

5.4.3 Comparison to Continuum Mechanics

An important issue to compare theory and experiment is to estimate model param-

eters which are valid for the experimental situation. The typical ways to retrieve

parameters are either fitting of experimental data with the model of interest, or

direct experimental measurements. For our model, we need to estimate

• line tension t,

• filament viscosity ηfil,

• cable stiffness k,

• and coupling viscosity ηc.

The first three are one-dimensional properties of single links. However, quantities

that describe active, elastic and viscous properties of the material gained from bi-

ological experiments are usually of higher spacial dimension, such as the surface

tension σ, the bulk viscosity γ, and the Young’s modulus E. As discussed before, it

is not trivial to calculate the one-dimensional properties from the three-dimensional

ones, since often the mesh size l̄0 is involved and conclusive theories about the scal-

ing are often missing. We will therefore estimate the quantities from comparison to

continuum theories, that can directly assess the experimentally obtainable values.

Edge tension versus surface tension

Edge tension is the easiest parameter to begin with, since the analogous quantity

measured in experiments, the surface tension, can be simulated together with the

flowing triangular mesh in the framework of our software. We begin with a short

theoretical glimpse at the scaling between line tension t and surface tension σ. Let us

assume that the triangles in the mesh are equilateral. In this case, the energy related
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Figure 5.9: Homogeneous surface tension. (A) Edge tension versus surface tension

at l̄0 = 10µm. Simulation with active tensions t defined on edges are equivalent

to simulations with a surface tension σ = 0.8
√

3t/l0 defined on the triangles, cf.

main text. (B) Velocity curves at different mesh sizes and representative filament

viscosities for a constant surface tension defined on the triangles. The creep velocities

are equal (purple and dark blue line, red and light blue line) if filament viscosity

and mesh size change by the same fraction from a reference state (green line).

with line tension is Et = 3/2 · t · l, where l is the length of the edges. The factor 1/2

comes from the fact that each edge is shared between two triangles. Similar, the

surface tension energy can be expressed as Eσ = σA =
√

3/4 · σ · l2, where A is the

area of the equilateral triangle. If we want both energies to yield the same driving

forces for uniform shrinking or expansion, we need to set

Ft =
∂Et
∂l

=
∂Eσ
∂l

= Fσ

σ =
√

3
t

l
.

It is this 1/l scaling that motivates the definition of the tension in Tab. 5.1, which

should lead to a constant surface tension. Fig. 5.9 A shows that this calculation

overestimates the surface tension which is necessary to generate the same creep

velocity. This can be explained by the fact that triangles become elongated in the

transition zone between the zero and the high tension regime. Thus, t/l is actually

smaller in this zone where the movement is generated. We determine the correction

factor to be approximately 0.8 for all simulated mesh sizes.

In Fig. 5.9 B we plotted the velocity curves for the same surface tension at different

mesh sizes and filament viscosities. Interestingly, if the filament viscosity is changed

accordingly to the mesh size, the creep velocities remain constant. This is intuitively

clear, as the number of dashpots per height unit is doubled when the mesh size is

halved. If the viscosity is halved as well, the force-viscosity ratio stays constant.

However, the exponential decay from the peak towards the creep region changes,
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which is related to the fact that scaling for the viscosities should be different in the

horizontal and vertical direction as discussed earlier.

Parameters controlling elasticity and viscosity

In order to validate the general behavior of the model and to assess the elastic

and viscous properties that correspond to a continuum description, we fitted the

model data with a one-dimensional Maxwell model that is viscously coupled to the

ground (Fig. 5.10 A). All continuum simulations were done by Dimitri Probst. The

one-dimensional continuum model is governed by the equation

τγ
∂2ux
∂t2

+ γ
∂ux
∂t

= (λ+ 2µ) η
∂3ux
∂t∂x2

. (5.9)

Here, γ is the friction coefficient equivalent to the coupling viscosity, η corresponds to

ηfil, ux is the displacement in the x-direction, λ and µ the elastic Lamé coefficients,

and τ = E/η with the Young’s modulus E. Fig. 5.10 B, C show that we could

achieve a very good correspondence between the continuum model and the discrete

algorithm. First, we set ηfil = ∞ to exclude the influence of the filament flow

and used the parameters listed in Tab. 5.1 otherwise. In addition, we switched off

the remeshing algorithm for better congruence between the models. We obtained

the corresponding one-dimensional continuum parameters E = 0.6kPa, ηc = 2.9 ·
106kg/m2, and σ0 = 0.6kPa, for which the models agree well (Fig. 5.10 B). Then,

we also took ηfil from Tab. 5.1 in the discrete model. In the continuum model, we

kept the parameters found before and only varied η. Optimal agreement between

the two models was found for η = 0.1MPa · s (Fig. 5.10 C). We conclude that the

velocity course of the two-dimensional discrete model matches an one-dimensional

continuum description for an effective parameter set. The main limitation of the

one-dimensional model is that it cannot account for the lateral no-displacement

boundary conditions. They lead to a spatially varying flow in the two-dimensional

model: at the boundary, the flow velocity has to be zero and then gradually increases

towards a maximum in the center. In a Newtonian fluid, these considerations lead

to the famous Hagen-Poiseuille law that states that the volume of fluid that can

pass through a pipe at a constant pressure difference scales with R4, where R is the

radius of the pipe. To cover this effect, we aim at comparing the discrete model

to a two-dimensional continuum model equivalent of Eq. 5.9, which is challenging

because one has to account for the difference of cables in the discrete model and

springs in the continuum theory. This is still work in progress and will be covered

in the PhD thesis of Dimitri Probst.
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Figure 5.10: Comparison of a one-dimensional continuum mechanics model to the

discrete model without remeshing. (A) Sketch of the continuum model. (B) Fit

of the continuum model to the discrete model in the elastic limit. (C) Fit of the

filament viscosity in the continuum model to the filament viscosity in the discrete

model. All other parameters for the continuum model are taken from the fit in (B).

5.5 Application to Biological Data

We now apply our model to data obtained from experiments by our collaboration

partners from the University of Chicago, Patrick Oakes, Elizabeth Wagner, Michael

Glotzer, and Margaret Gardel. They use a novel experimental approach with tunable

light-inducible dimerization tags (TULIPs) that was recently introduced in [153].

There, binding between a light-oxygen-voltage (LOV) domain that naturally occurs

in oat plants and an engineered PDZ domain (ePDZ) can be controlled by laser light

(Fig. 6.2 A). These groups can be used as tags on other proteins. In this study, the

LOV group was attached to membrane-bound green fluorescence protein (GFP), and

ePDZ via the fluorescent protein mCherry to a RhoGEF (Fig. 6.2 A). GEFs transfer

the GDP-bound state of RhoA towards the GTP-bound state. Only in the latter

state, RhoA induces actin polymerization and myosin activity (Fig. 6.2 B, also cf.

chapter 1). Since RhoA is typically membrane-attached, this process predominantly

occurs at the plasma membrane. When the binding between the tags of membrane-

bound GFP and the GEF is activated, the GEF itself becomes membrane-bound

and continuously activates RhoA in its proximity. Thus, by activating this binding

via a laser, one can spatially and temporarily control the distribution of active
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GTP-bound RhoA. The experiments are conducted in 3T3 fibroblast cells.

Fig. 6.2 C shows that actin and myosin activity is indeed increased in the regions

that are photo-activated by laser light. The number of FAs and their distribution

are not affected (Fig. 6.2 D). As expected from the higher myosin activity, traction

stresses increase after activation. The increase happens at the boundary of the

activated region only (Fig. 6.2 D), which underlines that the effect can be described

by a surface tension. Only a gradient in tension leads to forces, which is in agreement

with our model.

5.5.1 Stress Fibers Provide the Cell with Elasticity

So far we have investigated the system’s behavior for homogeneous networks with-

out any internal structure. However, the cells in our study exhibit many SF span-

ning the whole cell (compare Fig. 6.2 C), which renders them highly anisotropic.

The strength of the approach we describe here is that it can account for distinct

one-dimensional structures which are embedded in a two-dimensional viscoelastic

material. For this reason, it is especially well suited to investigate the role of stress

fibers in the mechanics of adherent cells. In the following, we systematically in-

vestigate the mechanical effects that one-dimensional structures of cable elements

introduce to a cable-Maxwell network, i. e. the role of elastic SFs in a visco-elastic

fluid environment.

As explained above, we introduce SFs as non-viscous cable-element line structures

in the mesh of cable-Maxwell elements (cf. Fig. 5.2). A non-viscous cable element

corresponds to a cable-Maxwell element for ηfil = ηSF = ∞. Further, here and

below we decrease the filament viscosity of the viscous elements to ηfil = 100nN · s
to emphasize the elastic effect of SFs on shorter time scales. All other parameters

of Tab. 5.1 are kept unchanged for the background mesh. The active tension of

SFs is chosen to be tSF = 5nN , and we assume that the tension is by the factor of

4 higher in the activation region, like we assumed for the background mesh. The

stiffness of the SFs is assumed to be EA = 50nN like in chapter 4, where EA is the

one-dimensional Young’s modulus.

We now subsequently add SFs to the mesh. The first one is positioned in the ver-

tically centered region of the simulation rectangle (Fig. 5.12 A, left). It spans the

whole boxes I and II on both sides, and consequently also the activation region

(cf. Fig. 5.5 B). Further SFs are added in parallel such that they are equally dis-

tributed among the vertical space between the topmost and the lowermost SF in the

configuration with 9 SFs (Fig. 5.12 A, right).

Fig. 5.12 B shows that the addition of SFs gradually transforms the character of
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Figure 5.11: Optically controlling RhoA activity in 3T3 fibroblast cells. (A) Shin-

ing laser light on LOV domains attached to membrane-bound GFP activates the

binding with engineered PDZ domains. As PDZ domains are attached to GEFs

one can thereby locally bind GEFs to the membrane and control RhoA activity.

(B) Simplified RhoA pathway. GEF proteins promote GDP-bound RhoA to active

GTP-bound RhoA, which induces actin polymerization and myosin activity. (C)

When the boxed regions are activated by laser light, actin and myosin activation

increases locally. (D) The distribution of the FA protein paxillin is not affected by

RhoA activation, but traction stresses increase at the boundary of the activated

region. Courtesy of Gardel and Glotzer labs.
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Figure 5.12: Stress fibers provide the cell with elasticity. (A) Computational setting.

We subsequently add SFs (white lines) to the simulation box. Left : 1 SF. Right : 9

SFs. (B) The system gradually changes its behavior from viscous (red line, no SFs)

to elastic (yellow line, 9 SFs).

the whole mesh from a Maxwell fluid (red line) towards a Kelvin-Voigt solid (yellow

line). The creep velocity is decreased and is almost zero for N = 5 and N = 9 SFs.

The reason is that during the flow, the SFs accumulate elastic energy. The elastic

restoring forces eventually balance the active contractile forces and the SFs stall.

In this situation, they act as additional no-displacement boundaries in the system.

The remaining mesh can only move in the small channels between them. This

situation is similar to the Hagen-Poiseuille law for a Newtonian fluid as discussed

above. Likewise, the flow is greatly reduced for small channels in the cable-Maxwell

case. In addition to the smaller creep flow, the backwards flow after the activation

is switched off is also increased if more SFs are added, which also underlines the

increasing elastic behavior.

102



5.5. APPLICATION TO BIOLOGICAL DATA

5.5.2 Stress Fibers are the Main Contractile Elements
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Figure 5.13: Stress fibers are the main source of contraction. The main flow direc-

tions in the steady state are marked with white arrows. (A) If isotropic contractility

in the background network was significant, SFs should be dragged into the contrac-

tile zone (red box). (B) If only the SFs bear tension, flow is oriented parallel to the

SFS. (C) If SFs are purely elastic and the main contractile elements, the flow stalls

when the elastic forces balance the active forces.

In order to investigate the effect of active tension, we take the simulation box with

N = 9 SFs from the previous section and restrict the activation zone in height, such

that onlym = 1...9 SFs run through the activation zone initially. The activation zone

is always symmetrical to the central SF. Here, m = 2 means that the SFs adjacent

to the central one are in the interpolation region between high and low tension.

Remarkably, with the same parameters as before, SFs are pulled perpendicular to

their orientation into the activation region (Fig. 5.13 A). This effect persists if SF

tensions are increased, if SFs are assumed to have a larger spring constant, or if SFs

are put under prestress. The inwards pull also occurs when the background tension

is reduced by two orders of magnitude (Note that it was already assumed to be one

order of magnitude smaller than the SF tension from the beginning).

In stark contrast, SFs remain completely straight in the experiments, even if only

some of them run through the activation region. Thus the gradient in background

tension has to be negligible compared to the forces in the SFs. As myosin is more

active in the activation region, we conclude that it predominantly attaches to SFs

and that it does not exert appreciable forces to distributed actin networks. This is

in agreement with the results from chapter 4, where we also found that the total

traction exerted by a cell is dominated by SF forces. In conclusion, the background

network constitutes a mainly passive viscoelastic environment for active SF elements.

The observation that the background network has to be passive leads to another

interesting consequence. If SFs are rather rigid objects on the scale of the extension

they experience in the flow, they will eventually stall as discussed in the previous

section. Due to the passiveness of the background, this implies that the overall flow
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has to decay to zero (Fig. 5.13 C). Typical flow velocities in the experiments are on

the order of 2nm/s and activation times on the order of 15 minutes. This means

that the total extension is about L = 2µm, which compares to the total length of the

SF of approximately L0 = 20µm. Thus the strain is on the order of ε = L/L0 = 0.1,

which at the assumed Young’s modulus of EA = 50nN amounts to a restoring force

of 5nN . This should lead to a significant reduction of the contraction speed towards

the end of the activation period. However, this is not observed in the experiments

(cf. Fig. 6.2 C, peak activation actin image). This means that either the active

tensions are significantly larger than expected, or the SFs are significantly softer, or

they are not purely elastic. The first possibility seems rather unlikely, since we have

found in chapter 4 that 5nN is a very high tension for SFs in U2OS cells, which are

known to exhibit very prominent SFs. It would be surprising if 3T3 cells built SFs

with a significantly higher tension. At the same time, the analysis of SFs with the

TEM in chapter 3 suggests that the Young’s modulus is in the range of 50 − 500nN .

Thus EA = 50nN assumed here is at the lower end of expected values. It is unlikely

that SFs are considerably softer here. Consequently, the most likely explanation for

the persistent flow is that SFs are also viscoelastic structures of the Maxwell type.

5.5.3 Stress Fibers are Viscoelastic Structures

Before we investigate the filament viscosity of SFs, we first refine our parameter

choice. For this purpose, we observe that no initial peak is visible at the beginning of

the activation period and that typical flow velocities are in the range of 2 − 5nm/s in

the experiments. This indicates that the coupling viscosity ηc could be higher and the

excess SF tension could be lower than we assumed so far. Fig. 5.14 A shows different

choices for the coupling viscosity at an excess SF tension of tSF = 2nN , which

seems to be more appropriate than the 15nN assumed earlier. If ηc is increased,

the initial peak becomes less pronounced as expected and is hardly recognizable at

ηc ≥ 0.05nN · s/µm3. There needs to exist a maximum though, since the velocity

has to decrease eventually for purely elastic SFs.

Taking tSF = 2nN and ηc = 0.05nN · s/µm3, we now consider SFs as viscoelastic

structures at finite viscosity ηSF . Fig. 5.14 B shows the velocity course for different

SF viscosities. If ηSF is very high, an initial peak is visible since the creep velocity is

limited by ηSF . If the SF viscosity is very low, however, the creep velocity is limited

by the coupling viscosity instead. The velocity curves then asymptotically approach

that limit for large times.

Note that the relaxation flow is reduced for small ηSF . This result is confirmed

experimentally by inhibiting the protein zyxin, which is responsible for SF repair.

Without zyxin the SF should become more fluid, which corresponds to lower ηSF . In
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Figure 5.14: Parameter estimation for coupling viscosity, SF tension and SF filament

viscosity. (A) For increasing coupling viscosities, the initial velocity peaks become

less pronounced and overall movement is reduced. (B) Different choices for ηSF

at ηc = 0.05nN · s/µm3 and excess tension tSF = 2nN . (C) Zyxin-dependent

relaxation flow. A relative position of 100% corresponds to a point 5µm away from

the activation region. Measurements are performed in unperturbed wild type (WT)

cells, cells where zyxin is inhibited (Zyxin-null) and rescued after inhibition (Zyxin-

rescue; Zyxin-null + EGFP zyxin).

the experiments, zyxin null cells exhibit less relaxation, while rescuing zyxin restores

the relaxation flow (Fig. 5.14 C).

5.6 Discussion & Outlook

In this chapter we have developed a novel approach to simulate viscous flow in cable

networks. We explained the algorithm we implemented for overdamped dynamics to

account for the dashpots in the cable-Maxwell model. The main challenge to such

methods is preserving mesh integrity and homogeneity in the presence of sources
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and sinks, and large mesh deformations. We have introduced one method to refine

the mesh dynamically by replacing two triangles that share an edge by four new

triangles. In this process, we need to introduce new information to the system to

initialize the properties of the two new edges, which we choose from a homoge-

neous background stiffness and viscosity. We discussed how the viscous and elastic

properties of the other edges have to be adjusted to describe the same material as

before.

The second process necessary to preserve a good discretization is to remove small

triangles from the mesh. We have introduced two methods to accomplish this by

collapsing either a short edge or a short height of a triangle. The former reduces

the total number of triangles in the mesh by two. However, in the latter we need to

subsequently split an adjacent triangle, such that the overall number of triangles is

constant under this operation, but triangle sizes are distributed more homogeneously

after its application. We discussed how the viscous and elastic properties of the edges

that remain in the mesh have to be altered by merging and splitting springs and

dashpots.

We thoroughly investigated the impact on single parameters and mesh size on the

velocity curves for the homogeneous model and found that they match with the

expectations. For this purpose we used a rectangular box of 800 by 300µm and ap-

plied an active tension to the links in a horizontally central region across the whole

height of the cell. The scaling of the active and elastic properties with mesh size was

as expected. However, the scaling of the dashpot viscosity should be addressed in

more detail in the future. This quantity is problematic, since it should be constant

for refining dashpots connected in series but reduce by the factor of 1/n for n dash-

pots connected in parallel to yield the same effective viscosity. We also compared

the model parameters with continuum descriptions. Here, a homogeneous surface

tension instead of line tensions could be examined in the same framework of the

triangulated mesh. We found that the simple assumption of a mesh with equilateral

triangles gives a good approximation for the relation between surface tension and

line tension. In order to compare the viscous and elastic properties of the discrete

model to a continuum mechanics model, we fitted a one-dimensional Maxwell fluid

with viscous coupling to the ground to the velocity curve of the discrete model and

achieved very good agreement in the elastic limit as well as in the general setting.

To associate model parameters with experimental accessible quantities we aim at

comparing a two-dimensional continuum model to the discrete model in the future.

In order to investigate data from experiments with our model, we utilized its capabil-

ity of introducing discrete one-dimensional structures on the edges of the triangles.

In this way we can account for SFs that appear very prominently in the observed

cells. We first assumed SFs to be purely elastic objects and found that subsequently
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adding more SFs transforms the system from a fluid to a solid viscoelastic system.

We conclude that SFs have to play an important role for the elastic properties of

the cell, since they are mechanically more stable and bear higher tensions than

distributed actin networks that are too small to be observed with standard light

microscopy.

Next we constrained the activation region in height and found that initially straight

SFs that run along outside of the activation region are pulled inwards by hypothet-

ical forces in the background network. As this does not happen in experiments, we

concluded that the background mesh is a passive viscoelastic medium for the stress

fibers. This conclusion was only possible because we allowed for an active contri-

bution of the background network from the start. In comparison in experiments

that alter the mechanical integrity of the SFs, we observed that SFs are not purely

elastic but also viscous on the time scale of our experiments. In agreement with

the model, relaxation flows were found to be reduced for lower SF viscosities. In

conclusion, the discrete modeling approach allowed us to establish SFs as the main

active and elastic structures within the cell. With this knowledge, we can now bet-

ter utilize traction force microscopy data to infer the absolute mean force change in

SFs during activation, which would give a fixed value for one of the discrete model

parameters. Regarding the viscosity, we need further experimental analysis that

perturbs the properties of the viscous coupling towards the environment, or more

fine-grained evaluation of the velocity curves at the beginning of the activation to

dissect to which amounts the SF viscosity or the coupling and background network

viscosity contribute to the creep velocity.
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6 Cortical Network Dynamics and

Shapes

6.1 Introduction

In the two preceding chapters we have addressed the active, elastic, and viscous

properties of cells by modeling a two-dimensional projection of the cell. This is an

approach that works well for cells adhering to flat substrates, since all important

cellular components are mainly organized in a planar layer parallel to the substrate.

However, such methods are not appropriate if non-planar cell shapes are to be con-

sidered. We have already discussed two such scenarios in chapter 2 (red blood cells,

RBCs) and chapter 3 (three-dimensional scaffolds). In this chapter, we now turn

towards cells with spherical resting shapes and focus on the shapes and dynamics

induced by contractile activity in the cell cortex.

The cell cortex is a filamentous network that lies directly underneath the plasma

membrane [154, 155]. Its thickness was measured for mitotic HeLa cells to be about

190nm, and it is typically built of actin proteins, together with cross-linking and

motor proteins [155]. The thickness is of special importance for the mechanics, since

the bending energy of a thin sheet scales like Hbend = E h3, where E is the Young’s

modulus. Due to the high cross-linking, these networks can provide the cell with

structural rigidity that enables it to withstand external mechanical stresses. At the

same time, the cortex is often highly dynamic, as its components undergo rapid

turnover that can be further enhanced by molecular motors that are incorporated

into the cortex and generate active tension [156].

An important aspect of the cortex is its mechanosensitivity [157], which denotes its

capability of translating mechanical stimuli into biochemical signals. This enables

the cell to not only react as a passive elastic medium to mechanical stresses, but to

actively adapt and orchestrate cortical behavior. In some cases, cells even organize

cortical contractility to contraction waves that run as ring-shaped contractile regions

over the whole surface. This is important if cells become so large that diffusion is

too slow to propagate signals efficiently. In contrast to diffusion, traveling waves in

an excitable medium exhibit a constant wave speed and work equally well in small
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and large cells. A typical example is constituted by the animal oocytes, that feature

contraction wave during maturation. Starfish oocytes provide a good model system

as these cells are very large with a diameter of 180µm and are transparent, which

facilitates imaging [158].

In this chapter we will investigate contraction waves from two perspectives. First

we investigate the dynamics of wave propagation with tools from the field of non-

linear dynamics. We propose an excitable medium theory for the interplay of actin

filaments and myosin II motors that features traveling pulses. We then look at how

ring-shaped contractile regions influence cell shape and compare the results with

measurements in starfish oocytes.

6.2 The Cellular Cortex as an Excitable Medium of

Actin and Myosin

The cortex not only reacts passively but adapts actively to stimuli, which may be

mechanical or chemical and originate from the outside or the cortex itself. Thus

many possibilities for feedback systems arise, which are broadly discussed in the

literature [159]. Sometimes a small perturbation is enough to drive the system out

of equilibrium and cause a long trajectory in phase space before it returns to the same

state as before. Such states are called excitable. Excitable media became famous

in biophysics with the publication of Hodgkin and Huxley’s model for the action

potentials of neurons in 1952 (HH model) [160]. Some ten years later, FitzHugh

generalized the equation of the van der Pol oscillator, ü+ c(u2− 1)u̇+ u = 0, to the

system of equations [161]

u̇ = c (v + u− u3/3)

v̇ = −(u− a+ bv)/c .
(6.1)

Here, a, b, and c are dimensionless parameters that determine the behavior of the

system as we will see below. The equations include the van der Pol oscillator for

the case a = b = 0, which can be verified applying Lienard’s transformation, v =

u̇/c+u3/3−u, to the van der Pol equation [161]. The model provides a simplification

of the complex HH model as it reduces the number of variables from four to two

[161]. It was picked up and further analyzed by Nagumo and coworkers [162] and is

therefore referred to as the FitzHugh-Nagumo model (FHN).

In the phase plane of the FHN model, the nullclines, where either of u, v is stationary,

form a N-shaped curve and a straight line, respectively, that intersect in one, two,

or three fixed points (FP; Fig. 6.1). The fixed points exhibit different stability

properties, leading to three possible behaviors of the system. If the system only has
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Figure 6.1: Bistable (A),

(B), excitable (C), (D),

and oscillatory (E), (F)

behavior of the FHN

model. Sample trajec-

tories are displayed in

red and blue for different

starting positions. In

the phase plane diagrams

(B), (D), (E), black lines

denote the nullclines,

black dots stable and

white dots unstable FPs.

Taken from [163].

one unstable FP, oscillations arise around this point (Fig. 6.1 C). When the straight

line is tilted by increasing the parameter b, two more FPs form, the first of which

is always unstable. Depending on the stability of the second, the system is either

excitable (FP unstable) or bistable (FP stable). In the bistable case (Fig. 6.1 A),

the system relaxes into one of the stable states depending on its initial conditions.

Only if a certain threshold is crossed, the system will assume the other stable state

eventually. If the system is pushed away from the resting state in the excitable state

and crosses the x nullcline, it first circles the unstable FP before it eventually relaxes

to the stable FP (Fig. 6.1 B). In this way a small perturbation that is large enough

to cross the threshold leads to a large loop in the phase space, which is the typical

property of excitable media.

So far we have only investigated a system of two first-order ordinary differential

equations of two time-dependent variables. However, cells utilize excitability mainly

in order to transport information over large distances [163]. While diffusion processes

are sufficient to synchronize the behavior of single cells on the length scale of 10µm,

time scales increase quadratically for longer distances d, t = d2/(2D) in one spatial

dimension. D ≈ 250µm2/s is a typical value for the diffusion constant in the

cytoplasm [163]. This leads to diffusion times of circa 50 years on a meter scale.

Even on the scale of a large cell like the starfish or Xenopus oocyte of 0.2 − 1mm,

diffusion takes tens of minutes to deliver signaling molecules. On the other hand,

waves in excitable media offer length scale independent velocities. One example is

constituted by action potentials in neurons that can travel through the body on

the time scale of milliseconds. Others are calcium waves that occur on different

occasions in animal cells, or waves of the protein kinase Cdk1 that synchronize the
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cell cycle over different cells in the Xenopus embryo [159, 164].

It is therefore important to include the spatial dimension into the modeling. The

simplest way to achieve this is by diffusive coupling. In the FHN model this amounts

to adding diffusive flux for both species,

u̇ = Du
∂2u

∂2x
+ c (v + u− u3/3)

v̇ = Dv
∂2v

∂2x
− (u− a+ bv)/c .

(6.2)

We now explain how pulses can form and travel in space in the excitable case.

The description is also valid for the propagation of oscillations (leading to pulse

trains) and a change of the stable state in the bistable case (leading to a traveling

wave front). In the ODE system 6.1, a certain threshold needs to be crossed for

the system to follow a large loop in phase space before returning to the resting

state. The initial crossing can be introduced by increasing the concentration of u,

for example. During the course of the trajectory, u is actively produced. By the

diffusive coupling, the high local u concentration generates a large diffusive flux

towards neighboring points in space. If this flux is high enough such that u crosses

the threshold, the same excited trajectory will be induced there, leading to a spread

of the initial signal. It is important to note that though neighboring points in

space are coupled by diffusion, the propagation speed of a signal does not follow the

classical one-dimensional diffusion law 〈s2〉 = 2Dt. Instead, it leads to waves with

constant speed that can be approximated by v = 2
√
D/τ , where D is the diffusion

constant and τ the supra-threshold doubling time for the propagating species [163,

165].

6.2.1 A Model for an Excitable Actomyosin Network

Recently, Bement and coworkers discovered a feedback mechanism between actin and

the small GTPase RhoA that leads to spiral waves on the surface of Xenopus eggs

and embryos [166]. They occur during cell division and originate from an activator-

inhibitor process. We investigate a similar system given by starfish oocytes, that

undergo cortical contraction waves during maturation. The experiments and image

acquisition was performed by Johanna Bischof from the Lénárt lab at the European

Molecular Biology Laboratory, Heidelberg. Our approach is complementary to that

presented in [166], as we focus on the forces that are induced by myosin in the actin

cortex. Fig. 6.2 shows the experimental setting. Starfish oocytes are very large

cells with a diameter of 180µm (Fig. 6.2 A). During contraction, the local radius of

curvature changes as the cell flattens from its initially spherical shape (Fig. 6.2 B).

Fig. 6.2 C shows images of the different stages of a contraction wave that indicate the
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Figure 6.2: Cortical contraction wave in starfish oocytes. (A) Oocyte before con-

traction. The nucleus is still visible. (B) Kymograph of the change of the radius

of curvature along a line from the vegetal pole (VP), where the contraction wave

starts, to the animal pole (AP). The box marks the region of the contraction wave.

(C) Fluorescence images of myosin motor proteins at different stages of wave pro-

gression. Non-muscle myosin II accumulates to the flattened regions of the cortex.

Courtesy of Johanna Bischof, Lénárt group, EMBL Heidelberg.

importance of the motor protein myosin for this flattening as high concentrations of

myosin colocalize with the flattened region. Note that the myosin signal decreases

again behind the wave front. However, the molecular details of the process are

largely unknown to this point, such that we consider a general possible feedback

mechanism encouraged by experimental findings in the literature.

Interaction of actin and myosin has been a major research interest over the past 20

years [CIT]. Here we are mostly interested in the dynamics of myosin recruitment

to the actin cortex. In a recent study, Luo and coworkers specifically investigated

this topic by micropipette aspiration experiments and revealed that myosin II accu-

mulates where the cortex is stressed [157]. More specifically only stress that affects

the compression and dilation modulus of the cortex leads to myosin recruitment,

whereas shear was associated with accumulation of the cross-linking protein filamin.

Interestingly, myosin accumulation follows a sigmoidal curve, indicating that it is

both self-enhancing and limited. An upper bound for the cortical myosin concen-
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tration needs to exist because of e. g. limited binding sites and a limited number

of myosin proteins in the cell. The self-enhancing effect has been termed myosin

cooperativity (cf. [157, 167, 168], for example). Here we propose that myosin co-

operativity and the compression / dilation dependent accumulation of myosin are

linked, and can be described as

∂tM ∝ σ2

(
1− M

Mmax

)
σ ∝M .

(6.3)

Here, M denotes the concentration of myosin bound to the cortex, Mmax its upper

limit given by the biochemistry of the system, and σ the contractile force exerted by

myosin. We assumed that the force dependent myosin cooperativity induces second

order kinetics. Note that the relations 6.3 are enough to reproduce the sigmoidal

accumulation. Further, we assume that myosin can detach from the cortex at a

constant rate and that it can diffuse to neighboring sites.

The substrate to which myosin is recruited is provided by cortical actin filaments.

The actin network itself is not mechanosensitive [157]. However, myosin generated

contractility compacts the network [169], which leads to depolymerization and im-

pedes further contraction [155, 156, 170]. The exact mechanisms of the formation

of the cortex remain to be elucidated, however it assumes a steady state by protein

turnover [155]. We combine these findings to propose the following simple dynamics

for contractible actin A in the cortex,

∂tA = α

(
1− A

Amax

)
− βσ

σ ∝ A .

(6.4)

The first term of the first equation describes the relaxation to the steady state

of the actin network by turnover, while the second phenomenologically covers the

compactification and depolymerization related to contractile force. The rates α and

β are constant. With the second relation of 6.3 and 6.4 we also propose that force

generation is proportional to both the concentration of myosin in the cortex M as

well as the concentration of contractible actin A. It follows that σ = σ0 ·AM to first

order. Substituting this relation into the first parts of 6.3 and 6.4 and accounting

for myosin detachment and diffusion, we can now summarize our model equations

to be

∂tM = DM∇2M + δσ2
0A

2M2

(
1− M

Mmax

)
− ζM

∂tA = α

(
1− A

Amax

)
− βσ0AM .

(6.5)

Here, ∇2 denotes the Laplace operator, DM is the diffusion constant for myosin

along the cortex, and δ, ζ control the effects of myosin aggregation and detachment.
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We will now investigate whether this system can actually give rise to traveling

contraction waves such as those occurring in starfish oocytes.

Before we analyze the phase plane, we first non-dimensionalize the system in one

spatial dimension in order to concentrate on its qualitative behavior rather than

units. For this purpose, we set M = Mmaxm, A = Amaxa, t = t0τ , and x = l0χ. The

last two relations define a characteristic time and length scale t0 and l0, and imply

∂t = (∂τ/∂t)∂τ = t−1
0 ∂τ and ∂x = (∂χ/∂x)∂χ = l−1

0 ∂χ. Substituting these equations

into Eq. 6.5 we arive at

l20
DM t0

∂τm = ∂χχm+
δσ2

0A
2
maxMmaxl

2
0

DM

(a ·m)2 (1−m)− ζl20
DM

m

∂τa =
αt0
Amax

(1− a)− βσ0Mmaxt0 a ·m .

(6.6)

We still have the freedom to choose the length and time scale, which we exploit

by setting t0 = Amax/α and l20 = DMAmax/α. In this way, we identify three di-

mensionless positive parameters of the system 6.6, namely λ1 = δσ2
0A

3
maxMmax,

λ2 = ζAmax/α, and λ3 = βσ0MmaxAmax/α. With these definitions, we rewrite Eqs.

6.6 in their dimensionless form

∂τm = ∂χχm+ λ1 (a ·m)2 (1−m)− λ2 m

∂τa = 1− a− λ3 a ·m .
(6.7)

The equations 6.7 constitute an activator inhibitor (AI) model. Actin is needed for

myosin recruitment and thus represents the activator. On the other hand, myosin

provides negative feedback to the actin concentration and is consequently the in-

hibitor. Many other AI models have been discussed in the literature. The most

prominent example is probably Turing systems, where the homogeneous steady state

can become unstable and evolve towards a stable stationary pattern. This instabil-

ity is driven by diffusion. However, here we are more interested in dynamic systems.

The aforementioned work of Bement and coworkers also describes an AI approach

[166]. They consider a system of three species, namely filamentous actin (A), inac-

tive RhoA (RD), active RhoA (RT), where RD mainly provides a pool for RT. RT

activates actin polymerization and therefore A. In turn, A drives the equilibrium

between RD and RT towards RD, and thus acts as an inhibitor for RT. Further, the

activator RT exhibits a positive feedback on its production from RD. The model

shows spiral wave patterns in two-dimensional space which are driven from noise

fluctuations in A. The system can therefore regarded to be excitable.

Another interesting approach was taken by Kumar et al. who investigate an ad-

vection diffusion system of two fluid species A and I. The two are considered as

activator (A) and inhibitor (I) for a stress field in the fluid that drives convection of

both of them. If the concentration of I is low in a region R, then A induces a high
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Figure 6.3: Exemplary phase planes for the system 6.7 without diffusive terms.

Myosin nullclines are shown as blue lines, actin nullclines are colored in red. The

system can exhibit from one (A) up to three FPs (B).

local stress that pulls both A and I into this region. However, A diffuses much faster

than I and leaves the region R faster as the stress level decreases. Thus neighboring

regions experience an excess of A and follow the same dynamics, pulling A and I

out of R. In this way pulsatory patterns arise without reactions between A and I

or even intra-species feedback, which means that the total amount of both A and

I is conserved individually [171]. However, the AI model pattern is still present.

Species A locally leads to higher concentrations of both A and I, which means that

A activates both itself and I. At the same time, I predominantly leads to lower A

concentration due to the fast diffusion of the latter, thus acting as an inhibitor for

A. In this way the system is very similar to the work of Bement and coworkers

[166], where the activator also activates the inhibitor and itself, while the inhibitor

negatively feeds back on the activator.

The system we propose in Eqs. 6.7 is similar to those systems as actin can be

identified as the activator for myosin which in turn inhibits actin. Different from

refs. [166, 171], however, not the activator but the inhibitor feeds back positively

on itself. We will now evaluate if this system can also give rise to excitability and

traveling waves as the one presented by Bement and coworkers [166].

6.2.2 Phase Plane Analysis

In order to develop a deeper understanding of the system 6.7, we investigate the

spatially uncoupled system, where we disregard the diffusive term. For this reduced

system, we can derive two-dimensional phase plane diagrams. Two examples are

shown in Fig. 6.3. For all numerical phase plane calculations we use a custom

software implemented in MATLAB. We first determine the nullclines where either
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m or a are stationary. In the case of m this amounts to solving the cubic equation

a2m2(1 − m) − λ2/λ1m = 0, where the trivial solution m = 0 can be read off

immediately. The remaining quadratic equation yields the solutions

m1,2 =
1

2

(
1±

√
1− 4λ2

λ1a2

)
, (6.8)

which exist in R if a2 ≥ 4λ2/λ1. As by their definition a,m ∈ [0, 1], these nullclines

are only relevant when they cross the square [0, 1] × [0, 1] ∈ R2. This condition

is always fulfilled for the m-coordinate, m1,2 < 1, but requires λ1 ≥ 4λ2 for the a

coordinate. The actin nullcline is calculated from 1 − a − λ3 a ·m and is a shifted

hyperbola,

m = λ−1
3

(
a−1 − 1

)
. (6.9)

The FPs are defined as the points where the time derivative of both species vanishes,

∂τm = ∂τa = 0, which holds true at the intersection points of the nullclines. In this

system, either one, two, or three FP exist. The one which is always present is

defined by the intersection of the hyperbola with the m = 0 line and is located at

P1 = (a1,m1) = (1, 0). Additional FPs are defined by the intersections of Eqs. 6.8

and 6.9, which leads to

1

λ3

(
1

a
− 1

)
=

1

2

(
1±

√
1− 4λ2

λ1a2

)

a2,3 =
1

2

λ3 + 2

λ3 + 1
±

√
1

4

(
λ3 + 2

λ3 + 1

)2

− λ2
3λ2/λ1 + 1

λ3 + 1
.

(6.10)

Eq. 6.10 also provides the criterion to decide how many FPs exists by setting the

discriminant equal to zero. This condition simplifies to

λ̄1 = 4λ2(1 + λ3) , (6.11)

where λ̄1 denotes the value for λ1 where exactly two FPs exist in total. It follows

that three FPs are present for the case λ1 > λ̄1, and P1 is the only FP for λ1 < λ̄1.

We now investigate the location of the FPs and their stability for each of the three

cases.

One FP: λ1 < 4λ2(1 + λ3)

The location of the the first FP P1 has already been determined to be (a1,m1) =

(1, 0). We now investigate its stability using the fact that the full non-linear system

ṁ = p(m, a)

ȧ = q(m, a)
(6.12)
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has apart from some special cases the same stability properties as its linearized form

around the FP P = (mP , aP ) of interest [172, 173],

∂τ (m−mP ) =
∂p(m, a)

∂m

∣∣∣∣
P

(m−mP ) +
∂p(m, a)

∂a

∣∣∣∣
P

(a− aP )

∂τ (a− aP ) =
∂q(m, a)

∂m

∣∣∣∣
P

(m−mP ) +
∂q(m, a)

∂a

∣∣∣∣
P

(a− aP ) .

(6.13)

In matrix notation we can rewrite the system 6.13 as ∂τ (m − mP , a − aP )T =

J |P (m − mP , a − aP )T , where J is called the Jacobian matrix. We now search

for two independent solutions by determining the eigensystem of J . These solutions

have the form ~si = ~vi e
µit, where ~vi is the eigenvector of J for eigenvalue µi.

The Jacobian for the system 6.7 reads

J =

(
∂mp ∂ap

∂mq ∂aq

)
=

(
λ1a

2m(2− 3m)− λ2 2λ1am
2(1−m)

−λ3a −1− λ3m

)
, (6.14)

which we can evaluate at P1 to yield

J |P1
= −

(
λ2 0

λ3 1

)
. (6.15)

The eigenvalues are given by µ1 = −1 and µ2 = −λ2, which are both negative since

λ2 > 0. It follows that all trajectories in the proximity of P1 approach it, which

means P1 is a stable node for all parameter choices.

Two FPs: λ1 = 4λ2(1 + λ3)

Two FPs occur if the hyperbolic a-nullcline touches but not intersects the non-

trivial m-nullcline 6.8. This happens if the discriminant in the second part of Eq.

6.10 vanishes, which is equivalent to λ1 = 4λ2(1 + λ3). The a coordinate of the

second fixed point, which we will refer to as P2 = (m2, a2), can be read off to be

a2 = (λ3 + 2)/(2(λ3 + 1)), and m2 = λ−1
3 (a−1

2 − 1) = (λ3 + 2)−1 follows. Note that

the coordinates of P2 depend only on λ3, however λ1, λ2 have to obey the existence

relation for P2.

In order to assess its stability properties we evaluate the Jacobian 6.14 at P2,

J |P2
=

(
λ2λ3
λ3+1

4λ2
λ3+1

(λ3+2)2

−λ3
2
λ3+2
λ3+1

−2λ3+1
λ3+2

)
. (6.16)

However, this time the determinant of the Jacobian vanishes, and it therefore ex-

hibits only one non-zero eigenvalue µ = λ2λ3
λ3+1
− 2λ3+1

λ3+2
. Trajectories in the direction

of the corresponding eigenvector approach the FP if µ < 0, i. e. λ2 < λ̃2 = 2(λ3+1)2

λ3(λ3+2)
.
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This is surely the case if λ2 ≤ 2, since λ̃2 = 2
λ23+2λ3+1

λ23+2λ3
> 2. The eigenvector corre-

sponding to the zero eigenvalue points along the tangent where the two nullclines

touch. Stability cannot be inferred from the linear system in this case [173]. Nu-

merical evaluation shows though that it can be both stable (e. g. for λ1 = 8, λ2 = 1,

λ3 = 1) or unstable (e. g. for λ1 = 360, λ2 = 9, λ3 = 9).

Three FPs: λ1 > 4λ2(1 + λ3)

In this case two more FPs P3 = (m3, a3) and P4 = (m4, a4) occur in addition

to the first stable fixed point, while P2 does not exist. Since the a-nullcline is a

monotonously decreasing function and the non-trivial m-nullclines are symmetric to

the m = 1/2 axis, we can always order P3 and P4 such that a3 > a4 and m3 < m4.

In this convention, P3 is the FP closer to P1. The coordinates of the FPs evaluate

to

a3,4 =
λ3

2(λ3 + 1)

(
1 +

2

λ3

±
√

1− 4
λ2

λ1

(λ3 + 1)

)

m3,4 =
1

λ3

(
1

a3,4

− 1

)
.

(6.17)

Note that both FPs converge towards P2 for λ1 → 4λ2(1 + λ3).

We first turn towards P3, whose stability properties will prove to be independent of

the parameters. To see this, we calculate the corresponding Jacobian,

J |P3
=

(
λ2

(
1 + 1

λ3+1

)
+ λ1(q−1)

2(λ3+1)2
−4λ2(1+λ3)(q−1)

(2+λ3(q+1))2

−λ3(2+λ3(q+1))
2(λ3+1)

− 2(λ3+1)
2+λ3(q+1)

)
. (6.18)

Here, q =
√

1− 4λ2/λ1(λ3 + 1) was used. The exact eigenvalues are rather complex

and little insightful, as we are only interested in stability. For this purpose we only

need to know whether the eigenvalues are real or complex and whether the sign of

its real part is positive or negative. For brevity, we recall that the eigenvalues µi of

a 2× 2 matrix A can be determined by

µ1,2 =
1

2

(
TrA±

√
(TrA)2 − 4|A|

)
, (6.19)

where TrA denotes the trace of A and |A| its determinant. For the Jacobian of

interest, the latter evaluates to∣∣J |P3

∣∣ = − λ1

2(λ3 + 1)

(
1− q2 + λ1(1− q)

)
< 0 . (6.20)

The inequality holds since 0 < q < 1 by the condition for the occurrence of three

FPs, and λi > 0. As (TrA)2 ≥ 0, the eigenvalues of the Jacobian at P3 are always
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real numbers. Further, they are of different sign, as the radicand is greater than

(TrA)2. It follows that P3 is always a saddle node.

The properties of P4 are not quite as simple, but give rise to a variety of different

behaviors. The corresponding Jacobian is

J |P4
=

(
λ1(1+q)
4(1+λ3)2

(λ3(1− q)− 2q) λ1(1−q)(1+q)2

(2+λ3(1−q))2

−λ3(2+λ3(1−q))
2(1+λ3)

− 2(λ3+1)
2+λ3(1−q)

)
, (6.21)

and its determinant calculates to∣∣J |P4

∣∣ =
λ1q(q + 1)

2(1 + λ3

> 0 . (6.22)

Thus the real parts of the eigenvalues have the same sign, such that P4 cannot be a

saddle. However, all remaining possibilities are assumed for suitable parameters:

1. Tr J |P4
> 0. In this case, the eigenvalues have a positive real part, and P4

is therefore unstable. More precisely, P4 is an unstable node if
(
Tr J |P4

)2
>∣∣J |P4

∣∣ and an unstable spiral point if the inequality is inverted.

2. Tr J |P4
< 0. As the real part of the eigenvalues is negative, P4 is either a

stable node or stable spiral under the same conditions as above.

3. Tr J |P4
= 0. Here, P4 is a center, since its eigenvalues are purely imaginary.

Fig. 6.4 A shows the different regimes of P4 stability for λ2 = λ3. The red line marks

where exactly two FPs occur, λ1 = 4λ2(1 + λ3). P4 only exists above this line. The

blue curve marks where
(
Tr J |P4

)2
= 4

∣∣J |P4

∣∣ is fulfilled and therefore separates real

from complex eigenvalues. It segregates unstable nodes (red shaded region) from

spirals (blue shaded region). The purple line is found for the same condition as the

blue one, but in the regime where P4 is stable. Thus it separates stable nodes from

stable spirals as shown in Fig. 6.4 A (purple and green shaded regions, respectively).

The green line is finally obtained by the condition TrA = 0. It thus separates the

phase space in the regions where P4 is stable (above the green lline) and unstable or

non-existent (below). The system is bistable if P4 is stable, and excitable otherwise.

However, excitability measured by the length of trajectory in phase space compared

to the initial displacement from the stable FP P1 may vary for different parameter

choices (not shown).

6.2.3 Traveling Pulses

We now reintroduce the diffusive term in the system 6.7 and investigate numerically

whether the excitability gives rise to traveling waves. For this purpose we again

use the software MATLAB. We prescribe the initial conditions to be (m(χ, τ =
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Figure 6.4: Phase space for the stability of P4 and example trajectories for λ2 = λ3.

The example phase planes and trajectories are all plotted for λ2 = λ3 = 9. (A)

Conditions and meaning of the colored lines are explained in the main text. (B,

C) The system is excitable if only one (λ1 = 200) or two (λ3 = 360) FPs exist.

The third FP can either be an unstable node (D, λ1 = 362), an unstable spiral (E,

λ1 = 550), a center (F, λ1 = 682), a stable spiral (G, λ1 = 1000), or a stable node

(H, λ1 = 5000). The system is bistable if P4 exists and is stable (F-H), and excitable

otherwise (B-E). The starting point of the exemplary trajectory is marked with a

purple circle in all phase plane plots. Arrows indicate the direction of the derivative

field (ṁ, ȧ).
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Figure 6.5: Dependence of wave speed c on the parameters λi. (A) λ2 = λ3 = 9 (B)

λ1 = 300, λ3 = 9 (C) λ1 = 300, λ2 = 9

0), a(χ, τ = 0)) = ((1−χ)Θ(δ−χ− 1), 1) and numerically observe the development

in time and space.

In this way we indeed observe traveling pulses. Fig. 6.6 A shows a representative

example. The spatially uncoupled system is excitable, and its phase plane is de-

picted in Fig. 6.4 B. Once the myosin threshold for following an excited trajectory is

passed locally, more myosin is produced before the actin level decreases. The myosin

produced in this time span diffuses to neighboring sites, leading to an increase in

myosin concentration that excites the system at this site as well. In this way the

wave can spread in space and even reoccur periodically when the uncoupled system

oscillates (Fig. 6.6 B). However, Fig. 6.6 C, D show that excitability of the local

system is not sufficient for pulse propagation. This can be understood in terms of

the diffusion constant DM , which is controlled by the choice of the typical time scale

t0 = Amax/α and length scale l0 =
√
DM t0. If DM is too low, to few myosin per

time arrives from neighboring locations, thus myosin degradation keeps the system

below the threshold.

An interesting property of traveling wave fronts and pulses is their speed. While

we do not understand the dependence on the parameters λi analytically to this

point, we can analyze their qualitative influence numerically. As expected, the wave

speed increases for higher λ1, as this parameter is associated with the cooperative

myosin accumulation (Fig. 6.5 A). The dependence seems to be logarithmic, which is

illustrated by the choice of the logarithmic axis scale. As the two other parameters

are linked to either myosin (λ2) or actin (λ3) degradation, they both negatively

affect wave speed.
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6.3 Cell Shape under the Influence of Contractile

Rings

We now turn towards the question which shape the starfish oocyte assumes when

under a ring-shaped contractile tension. We follow three assumptions in order to

model the shape problem:

1. The volume of the oocyte is conserved during the contraction wave.

2. The myosin motor activation leads to an increased tension within the cortex.

3. The cortex acts as an elastic sheet on the time scale of the contraction wave.

While the first two assumptions are valid for many cell types (cf. e. g. [167, 174]),

the last one is more difficult. The elasticity of the cortex should depend on the

ratio of time scale of typical turn-over (which releases strain) and the time scale

of the contraction wave. The latter is on the order of 7 minutes, but experimen-

tal observations are still elusive for the former part. We will show that an elastic

response reliably reproduces the shapes of the contraction wave sequence. Follow-

ing the assumptions stated above, the Hamiltonian of the complete system reads

Htot = Helastic + Hactive + Hvolume, where the first part includes contributions from

bending and in-plane deformations, Helastic = Hbending + Hstretch + Hshear. Thus the

Hamiltonian is very similar to the one we used to simulate the shapes of RBCs in

chapter 2, apart from that we dropped the constraint of constant surface area and

added a spatially inhomogeneous active surface tension. Another difference to the

RBC Hamiltonian is that we only consider linear elasticity here. Further, we neglect

bending effects originating from the difference in area between the two membrane

layers and spontaneous curvature. The complete Hamiltonian therefore reads

Hshape = 2κb

∫ (
H2 + σ(~x)

)
dA+

∫ (
Kα

2
α2 + µβ

)
dA0 +

kV
2

(V − V0)2 , (6.23)

where H denotes the mean curvature, σ(~x) the spatially varying surface tension, Kα

and µ the stretch and shear modulus, α and β the two strain invariants associated

with stretch and strain, kV the prefactor of the constant volume constraint, and

V , V0 the current and initial volume. Note that the integration for the in-plane

elasticity is performed over a reference shape A0, which in our case is the spherical

resting shape of the oocyte. The numerical evaluation is performed with the software

SurfaceMaster, which is discussed in chapter 2.

Regarding the parameter choice, the surface tension was found experimentally to be

around σ = 1nN/µm in the presence of the contraction wave, and otherwise well

below (Johanna Bischof, personal communication). We therefore assume that the

peak active tension generated by myosin motors is also on the order of 1nN/µm at
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Figure 6.6: Traveling pulses in the excitable media. Single pulses can travel persis-

tently in the system 6.7 (A). If P3 is a center, we also observe trains of traveling

pulses (B). (C), (D) Excitablity is a necessary but not sufficient condition for travel-

ing pulses. The trajectory depicted in (C) can be regarded as excitable, however, an

initial pulse decays and does not travel for this parameter setting (D). Parameters

choices were λ2 = λ3 = 9, λ1 = 200 for (A), λ2 = λ3 = 9, λ1 = 682 for (B), and

λ2 = λ3 = 2, λ1 = 22 for (C), (D).

the peak region and negligible far from the peak. We interpolate between these two

levels with a squared cosine function with a period of w = 100µm, which is a typical

lateral extension of the wave in experiments (cf. Fig. 6.2 C). The resting shape and

volume are assumed to stem from the spherical shape the oocyte assumes before

the contraction wave starts, and kV is chosen such that |(V − V0)/V0| < 10−4. The

elastic constants can now be fitted by comparing the calculated shapes to the ones

measured in experiments. While we assumed µ = Kα/2 like in the case of RBCs,

we find that the elastic moduli need to be on the order of Kα ≈ 5 · 10−3J/m2, which

is 1000-fold higher than for RBCs. Note, however, that starfish oocytes possess

a surface area that is about 20.000-fold the one of a RBC. Thus it is a necessity

to build a more rigid layer underneath to prevent large deformations on the larger

length scales, especially as the oocytes are released to the sea after fertilization and

have to resist environmental influences. The resulting shape sequence is shown in

Fig. 6.7 and compares well to the experimental observations in Fig. 6.2 C.
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Figure 6.7: Contraction wave in the mechanical model. The active tension follows

one period of the function σ(s) = cos2(π(s− s0)/w) symmetric to s0, where s is the

coordinate along the contour measured from the north pole of the sphere, s0 the

mid position of the wave, and w = 100µ the width of the wave. The color coding

shows the in-plane elastic energy stored in the triangle (A) and the surface tension

(B).

6.4 Discussion & Outlook

In this chapter we have investigated the cell’s cortex as an excitable medium. We

first introduced a simple model where we postulated simple interaction kinetics for

a filamentous actin network with myosin motor proteins. This model belongs to

the class of activator inhibitor models. In contrast to existing models where usually

the activator also features auto-activation, in our model this property is set on the

inhibitor.

After non-dimensionalization, we thoroughly investigated the phase plane of our

model and found that it exhibits either one, two, or three FPs. The first FP P1

arises from the intersection of the actin nullcline with the trivial myosin solution

m = 0 and is always stable. In the case of λ1 = 4λ2 · (λ3 + 1), where two FPs exist,

we could not determine the stability of the second FP P2 analytically. Numerically

we found both stable and unstable behavior for different parameters. We conjecture

that P2 is stable if the third FP P4 in the three FP case, which arises for a slight

increase of λ1, is also stable, and that P2 is unstable otherwise. If all three FPs

exist, the one closer to P1 we called P3 is always a saddle node. However, the

remaining FP P4 can be everything but a saddle, leading to a rich behavior of the

system, including excitability, oscillations, and bistability. We have shown that all
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6.4. DISCUSSION & OUTLOOK

of these behaviors actually occur even if we restrict the model to λ2 = λ3 and have

investigated the phase space for the two remaining free parameters.

Next we showed that pulses can travel through the system at constant speed if the

system is in an excitable state, i. e. P4 does not exist or is unstable. If conversely P4

is stable, the system is bistable and only one wave front travels through the system

that connects the two stable FPs for τ → ±∞. The experimental situation is clearly

that of a pulse though, as we observe that the myosin concentration decreases again

behind the propagating wave (cf. Fig. 6.2 C). We also showed that excitability is only

a necessary but not sufficient condition for the occurrence of traveling pulses. If the

production of myosin is not high enough to lead to sufficient diffusion to neighboring

sites, the signal decays over time. Numerical investigation of wave speed has shown

the expected results. As λ1 controls myosin accumulation, it enhances wave speeds.

Conversely, λ2 and λ3 control myosin and actin degradation, respectively. The wave

therefore becomes slower when either of the two is increased.

Recent experimental observations by Johanna Bischof and Peter Lénárt indicate

that in the system of starfish oocyte, myosin is more likely to build a feedback

loop with the protein RhoA that also controls actin rather than with actin directly.

RhoA activity was found to propagate as a single wave front when myosin was

suppressed, or as a traveling pulse in the undisturbed oocyte (unpublished data).

RhoA further activates myosin through the ROCK pathway (cf. e. g. [80]), thus the

role of actin could be reconsidered to be occupied by RhoA. Moreover, the wave

speed has been observed to be negatively correlated with the amount of myosin

that accumulates at the surface. To include this effect into the model, one could

consider contraction-driven convection as in the work of Kumar we discussed in

the introduction [171]. The mechanism would be that high myosin concentrations

lead to high contraction. Thus convection arises in the direction of highest myosin

activity, which works against diffusion that propagates the wave. We leave it to

future work to address this problem in detail.

In the last part of this chapter we have shown that surface tension increased in a

ring-shaped structure explains the flattening of an elastic cortex. We constrained the

volume to be constant at the value of the spherical resting shape of the oocyte. Thus

the deviation in shape must result from an increase in surface area, which is driven

by the tension gradients and balanced by in-plane elasticity. As the driving tensions

are known from experiments to be in the range of 1nN/µm, we could determine the

elastic moduli to be on the order of 5 ·10−3N/m2, which is three orders of magnitude

higher than for RBCs. In the future, it would be interesting to directly couple the

reaction diffusion system for the dynamics with the shape equations, as this allowed

to investigate the feedback of mechanical distorted space to the chemical system.
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7 Summary & Outlook

In this thesis we presented a general framework to model forces and flow in two-

dimensional contractile networks. We modeled the networks as two-dimensional

surfaces described by triangles and edges embedded in either two- or three-dimensio-

nal space. The main results were already discussed at the end of each chapter. Here

we summarize our findings and give a short outlook.

In the chapters 3, 4, and 5, we especially considered the heterogeneity introduced

to actomyosin networks by thick actin bundles called stress fibers (SFs). In chapter

3, we found that elastic forces are essential for the force balance of peripheral SFs

in agreement with the tension elasticity model (TEM) [4]. Refining the TEM, we

considered inner SFs that grow from the interior of the cell towards the boundary

and connect to inwards curved spanning arcs at the periphery. We compared the

model to experiments, where the peripheral SF is severed with a laser. We found

that elastic forces in the peripheral SF can be of the same magnitude and higher

than active forces generated by myosin motors in individual SFs. Further, the elastic

force magnitude not only depends on the active forces and the number of inner SFs

connecting to the arc, but also on the locations of the connection points and of the

connection angles. Interestingly, we also found that SF elasticity is important in the

presence of flow in the interior of the cell as described in chapter 5. There, SFs first

contract until elastic forces balance the active tension gradient. However, we found

that SFs are viscoelastic, such that the elastic force leads to a persistent flow.

In the absence of tension gradients, the elastic properties of SFs in the interior

of the cell are only of minor importance. If an inner SF features a constant ac-

tive tension along its entire length, it acts as a single active force along each of its

straight parts. Thus there is also no flow induced in this situation, because active

forces are balanced at each point. We exploited this property in chapter 4, where

we used a tension-dominated active cable model to regularize the reconstruction of

cellular traction forces in traction force microscopy (TFM) in a novel approach we

call model-based TFM (MBTFM). In TFM cells adhere to and deform soft elastic

substrates. Solving the inverse problem of elasticity theory, one can infer traction

forces from the displacement field of the substrate. However, as this inverse problem

is ill-posed, it requires regularization that is usually based on Tikhonov theory. We
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briefly discussed how this approach stabilizes reconstruction by altering the oper-

ator describing the corresponding forward problem such that the inverse problem

becomes well-posed. However, in this framework one has to specify a regularization

parameter, whose choice biases the reconstruction result. In MBTFM we take a

different approach and combine image processing and biophysical modeling to con-

strain the solution space for the reconstruction by the construction of the model.

Image data is often difficult to analyze, especially in three dimensions. Here new and

refined techniques are needed for fast, automatable, and reliable image segmenta-

tion. This could facilitate assessing important parameters of cellular mechanics. In

MBTFM, we showed that the inverse problem is well-posed on the solution space re-

duced through image processing and modeling and found that heterogeneous forces

along SFs contribute over 80% of total cellular traction force, whereas homogeneous

tension in the background adds less than 20% of total traction. We also find that

the distribution of tension within single SFs depends on the SF type. Ventral SFs

that span between focal adhesions at each end are the strongest, dorsal SFs the

weakest, and transverse arcs are on an intermediate level. This is in agreement with

recent experimental findings that dorsal SFs do not contain myosin motors and are

therefore passive [22]. Transverse arcs do contain myosin II, however they are not

directly attached to focal adhesions and therefore cannot transmit tension directly

to the extracellular environment.

The finding that SFs are the main active components in the cell is also confirmed by

our simulations of flow in the cell in response to a non-homogeneous active tension in

chapter 5. Here, striking evidence is given by straight fibers that run outside of the

high tension region. If the background network actively contracted due to enhanced

myosin activity, the SFs from outside the activation region would get pulled towards

the high tension zone. As this is not observed in experiments, we concluded, in

agreement with the MBTFM study, that SFs are the main source of contractility

in adherent cells. In this way our findings in chapter 5 emphasize the validity of

the model assumptions we made for MBTFM. Note that these observations have

been made with two different cell types, namely bone cancer cells in MBTFM and

connected tissue cells in the flow simulations. The situation needs to be different

for cell types that do not develop SFs. It would be interesting to compare force

scales of such cells as well as flow directions to the situation we found in cells with

many SFs. For cells without SFs it would be appropriate and convenient to apply

continuum mechanics and use the finite element method with viscoelastic-plastic

bodies. However, new concepts are required for including discrete elements like SFs

also in this framework.

Moreover it would be interesting to compare laser ablation experiments, as investi-

gated in chapter 3, and local myosin activation, as described in chapter 5, to more
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detail. A marked difference of the two setups is the different time scale of movement.

While SF ends retract at the speed of up to 1µm/s after ablation, the flow speed

measured after local myosin activation is typically below 10nm/s. This indicates

that either the difference in active tension in the activated and non-activated regions

is small compared to the overall active tension, or that SF extension experiences a

much higher viscosity than SF compression. The most likely explanation is that

both effects contribute to the difference in the velocities. It would be a substantial

advance to combine both experimental techniques in the same setup.

In chapter 3, we also extended the tension elasticity model to three dimensions and

found two interesting results. First, in a quasi two-dimensional setup, we found

that the enclosed volume condition leads to shapes of peripheral arcs that are not

circular but flattened. Interestingly though, we found that the mean curvature

along the arc is only slightly affected, and thus the established technique of fitting

circles to estimate the ratio of line tension and surface tension is still valid in such

assays. In fully three-dimensional scaffolds we find that a model of the whole cell

surface as a network of active cables describes cell shape surprisingly well. Moreover,

this congruence between model and experiment was achieved for elastic parameters

and active tensions that were also estimated for the two-dimensional case in the

tension-elasticity model. This indicates that heterogeneities in actomyosin networks

become less important in three dimensions. Cells hardly develop SFs in three-

dimensional environments, though invaginated arcs are still reinforced in the three-

dimensional scaffold experiments. One possible explanation is that cells do not

develop a lamellopodium in three-dimensional environments, which seems to be

essential for SF formation. However, SF formation is still not completely understood

and requires more attention. One step further, the cortex of the initially spherical

oocyte we investigated in chapter 6 does not exhibit any structural heterogeneities.

We therefore chose an energy description based on triangles rather than edges for the

flattened shapes we observed during the contraction wave. We found that a localized

contractile ring working against an elastic hull explains the global shape changes at

the different stages of the contraction wave. To account for the wave dynamics,

we proposed an activator inhibitor model for the excitable nature of the cortex.

Different to other models, in our model the inhibitor instead of the activator is self-

enhancing, which still yields an excitable system for a wide range of parameters. In

future work we will address the counterintuitive observation that the contraction

wave slows down when it becomes stronger. As discussed in chapter 6, a possible

ansatz would be to account for convection due to stress gradients that counteract

diffusion.
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and Stephan W Grill. “Anisotropies in cortical tension reveal the physical

basis of polarizing cortical flows.” In: Nature 467.7315 (2010), pp. 617–21.

issn: 1476-4687. doi: 10.1038/nature09376. arXiv: 77957364208. url:

http://www.ncbi.nlm.nih.gov/pubmed/20852613.

[90] Lan Lu, Sara J Oswald, Hai Ngu, and Frank C-P Yin. “Mechanical properties

of actin stress fibers in living cells.” In: Biophysical journal 95.12 (2008),

pp. 6060–6071. issn: 00063495. doi: 10.1529/biophysj.108.133462. url:

http://dx.doi.org/10.1529/biophysj.108.133462.
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