
Contributions to the large-scale
Simulation of Flow and Transport in

Heterogeneous Porous Media

Olaf Ippisch

Habilitationsschrift

vorgelegt an der Fakultät für Mathematik und Informatik der
Ruprecht-Karls-Universität Heidelberg

zur Erlangung der Venia legendi im Fachgebiet

Informatik





To my wife

Vera

and

my children

Ronja and Florian





Contents

1. Introduction 1
1.1. Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Relevance of Porous Media Research . . . . . . . . . . . . . . . . . . . . 1
1.3. The Multi-Scale Nature of Geosystems . . . . . . . . . . . . . . . . . . . 2
1.4. Scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4.1. Pore Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4.2. Laboratory Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4.3. Field Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4.4. Landscape Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5. Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.6. Scope of this Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

I. Water Flow in Porous Media 7

2. Continuum Scale Modelling of Water Flow in a Two-Phase System 9
2.1. Standard Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1. Two-Phase Flow Equations . . . . . . . . . . . . . . . . . . . . . 9
2.1.2. Richards’ equation . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2. Alternative Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1. Dynamic Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2. Macroscopic Explanations for Dynamic Effects . . . . . . . . . . . 12
2.2.3. Microscopic Explanations for Dynamic Effects . . . . . . . . . . . 13
2.2.4. Hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.5. Models including Hydraulic Non-Equilibrium . . . . . . . . . . . . 14

2.3. Hydraulic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.1. Parametrisations for the Soil Water Characteristic . . . . . . . . . 19
2.3.2. Parametrisations for the Hydraulic Conductivity Function . . . . 22
2.3.3. Hysteretic Hydraulic Functions . . . . . . . . . . . . . . . . . . . 28
2.3.4. Miller Similarity Scaling . . . . . . . . . . . . . . . . . . . . . . . 29

2.4. Water Vapour Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5. Root Water Uptake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5.1. Water Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5.2. Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6. Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

v



Contents

3. Numerical Solution of Richards’ Equation 35
3.1. Requirement Specification . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2. Classification of the Equation . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3. Discretisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.1. Spatial Discretisation . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.2. Numerical Flux Function . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.3. Upwinding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.4. Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.5. Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4. Time Discretisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.5. Linearisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.6. Solution of linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.7. Time Step Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.7.1. Heuristic Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.7.2. Indicator-based Approach . . . . . . . . . . . . . . . . . . . . . . 51

3.8. Hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.9. Dynamic Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.10. Interpolation of the Flow Field . . . . . . . . . . . . . . . . . . . . . . . 52

4. Implementation of an Efficient and Scalable Solver for Richards’ Equation 53
4.1. General Software Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2. Grid Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3. Discretisation Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4. Parallelisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4.1. Parallel Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4.2. Dune-ISTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5. Parameter Management . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.5.1. Hydraulic Properties . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.5.2. Interpolation Tables . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.6. File I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.6.1. Parameter files . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.6.2. Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.6.3. Unit System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.6.4. Material Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.6.5. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.6.6. Backup and Restart . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.7. Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.8. Code Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.8.1. Global Mass Balance . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.8.2. Comparison with Analytical Solutions . . . . . . . . . . . . . . . 67

5. Parameter Estimation 71
5.1. Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

vi



Contents

5.2. Iterative Methods for Non-linear Least-Squares Problems . . . . . . . . . 72
5.2.1. Gauss-Newton Algorithm . . . . . . . . . . . . . . . . . . . . . . . 72
5.2.2. Levenberg-Marquardt Algorithm . . . . . . . . . . . . . . . . . . 73
5.2.3. Assembly of Hessian . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2.4. Solution of linear Problem . . . . . . . . . . . . . . . . . . . . . . 73
5.2.5. Covariance Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2.6. Parameter Constraints . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.3.1. Object Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.3.2. Data Management . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3.3. Model Implementation . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3.4. Parallelisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

II. Solute Transport in Porous Media 81

6. Continuum Scale Component Transport 83
6.1. Convection-Dispersion Equation . . . . . . . . . . . . . . . . . . . . . . . 83

6.1.1. Solute Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.2. Solute Adsorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7. Numerical Solution of the Convection-Diffusion Equation 87
7.1. Classification of the Equation . . . . . . . . . . . . . . . . . . . . . . . . 87
7.2. Spatial Discretisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.3. Initial and Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . 90
7.4. Time Discretisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.5. Sorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.6. Interpolation of Water Content and Flux Densities . . . . . . . . . . . . 92

8. Implementation of an Efficient and Scalable Solver for the Convection Dif-
fusion Equation 95
8.1. Parallelisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
8.2. File I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
8.3. Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
8.4. Code Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

8.4.1. Comparison with Analytical Solutions . . . . . . . . . . . . . . . 98

III. Applications 101

9. Parameter Estimation for Heterogeneous Soil Samples 103
9.1. Multi-step Outflow Experiments . . . . . . . . . . . . . . . . . . . . . . . 103
9.2. Synthetic Test Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

vii



Contents

9.3. Undisturbed Soil Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
9.3.1. Parameter estimation with Dual van Genuchten-Mualem Model . 107
9.3.2. Deduction of sub-material Porosity and Conductivity from Dual

van Genuchten-Mualem Model . . . . . . . . . . . . . . . . . . . . 111
9.3.3. Solute Transport Simulation . . . . . . . . . . . . . . . . . . . . . 115
9.3.4. Three-dimensional Inversion . . . . . . . . . . . . . . . . . . . . . 117

10.Virtual Soil Systems 121
10.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
10.2. Water Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

10.2.1. Soil Structure and Parameters . . . . . . . . . . . . . . . . . . . . 123
10.2.2. Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
10.2.3. Results of three-dimensional Simulations . . . . . . . . . . . . . . 127

10.3. Solute Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
10.4. Virtual Data Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

11.Dynamic Effects in Heterogeneous Soil 135

12.Large Scale Simulation of Water and Solute Transport 141
12.1. Scalability Tests for µϕ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

12.1.1. Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
12.1.2. Results on JUGENE . . . . . . . . . . . . . . . . . . . . . . . . . 145
12.1.3. Results on JUQUEEN . . . . . . . . . . . . . . . . . . . . . . . . 151

12.2. Scalability Tests for Solute Transport . . . . . . . . . . . . . . . . . . . . 153
12.2.1. Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
12.2.2. Results on JUQUEEN . . . . . . . . . . . . . . . . . . . . . . . . 153

12.3. Parallel File Transfer on JUGENE and JUQUEEN . . . . . . . . . . . . 156
12.3.1. File Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
12.3.2. File Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

IV. Conclusions and Outlook 159

13.Conclusions 161

viii



List of Figures

2.1. Brooks-Corey model for the soil water characteristic . . . . . . . . . . . . 20
2.2. Van Genuchten model for the soil water characteristic . . . . . . . . . . . 21
2.3. Pore structure of a natural porous medium . . . . . . . . . . . . . . . . . 22
2.4. Relative permeability function with the Brooks-Corey/Burdine and Brooks-

Corey/Mualem model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5. Relative permeability function with the van Genuchten/Mualem model . 25
2.6. Modified dependent domain model of hysteresis by Mualem . . . . . . . . 28
2.7. Stress function for root water uptake . . . . . . . . . . . . . . . . . . . . 33

4.1. UML-diagram of the classes involved in a grid. . . . . . . . . . . . . . . . 55
4.2. Class structure of the parameter objects of µϕ. . . . . . . . . . . . . . . . 57
4.3. Class structure of the parameter management of µϕ. . . . . . . . . . . . 60
4.4. Class structure of the hydraulic functions objects. . . . . . . . . . . . . . 62
4.5. Matric potential profiles during steady-state flux into layered soil . . . . 68
4.6. Profiles of volumetric water content during infiltration in a homogeneous

sand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1. Class structure of the parameter estimation part. . . . . . . . . . . . . . 78

7.1. REA principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

8.1. Breakthrough curves from solute transport test . . . . . . . . . . . . . . 99

9.1. Multi-Step Outflow Experiment . . . . . . . . . . . . . . . . . . . . . . . 104
9.2. Structure used for the synthetic test case . . . . . . . . . . . . . . . . . . 105
9.3. Boundary condition, measured values and best fit for the synthetic test

case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
9.4. Grey-scale CT-Image of the undisturbed soil sample . . . . . . . . . . . . 108
9.5. Boundary condition, measured outflow and best fit for the undisturbed

soil column . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
9.6. Categorised structure in different resolutions . . . . . . . . . . . . . . . . 114
9.7. Outflow simulated with the reconstructed parameters . . . . . . . . . . . 114
9.8. Measured and simulated breakthrough curve with the reconstructed pa-

rameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
9.9. MSO-experiment optimised with three-dimensional simulation . . . . . . 118
9.10. Measured and simulated breakthrough curve with parameters from the

three-dimensional optimisation . . . . . . . . . . . . . . . . . . . . . . . . 119

ix



List of Figures

10.1. Soil structure and scaling parameter images for the two-dimensional virtual
soil systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

10.2. Soil structure of the three-dimensional virtual soil systems . . . . . . . . 125
10.3. Soil hydraulic parameters for virtual soil systems . . . . . . . . . . . . . 126
10.4. Potential and water content distribution in the virtual soil systems . . . . 129
10.5. Potential and water content distribution in the virtual soil systems . . . . 130
10.6. Evaporation and seepage in the 2D and 3D virtual soil systems . . . . . . 131
10.7. Isosurfaces for solute concentrations in the virtual soil systems . . . . . . 133

11.1. Scaling parameter field for the heterogeneous simulations with different
correlation length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

11.2. Distribution of flux density, water content and potential for a correlation
length of 8 cm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

11.3. Potential distribution for a horizontal correlation length of 2 cm and 24 cm138
11.4. Effective hydraulic functions for the heterogeneous medium . . . . . . . . 139
11.5. Profiles of water content after different amounts of cumulative infiltration 140

12.1. Matric potential, volumetric water content and conductivity for the parabolic
scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

12.2. Run-time and parallel efficiency for the parabolic scenario . . . . . . . . 147
12.3. Saturated hydraulic conductivity, pressure distribution and flux density

for the elliptic scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
12.4. Linear iterations for the elliptic scenario . . . . . . . . . . . . . . . . . . 149
12.5. Run-time and parallel efficiency for the elliptic scenario . . . . . . . . . . 149
12.6. Run time for the parabolic test case with up to 917’504 processes for the

three scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
12.7. Effect of hyper-threading on computation time . . . . . . . . . . . . . . . 154
12.8. Total computation time and parallel efficiency for solute transport with

up to 917’504 processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
12.9. File transfer rates on JUGENE and JUQUEEN . . . . . . . . . . . . . . 157

x



List of Tables

4.1. Different unit systems available in µϕ. . . . . . . . . . . . . . . . . . . . 64
4.2. Material parameters used for the tests with analytical solutions . . . . . 67

9.1. Fixed parameters for the synthetic test case. . . . . . . . . . . . . . . . . 105
9.2. True, initial and estimated parameters for the synthetic test case. . . . . 106
9.3. Correlation coefficients for the synthetic test case . . . . . . . . . . . . . 106
9.4. Parameters for the undisturbed soil sample with a nine parameter model 109
9.5. Correlation coefficients for the undisturbed soil sample with a nine pa-

rameter model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
9.6. Parameters for the undisturbed soil sample with a five parameter model . 110
9.7. Correlation coefficients for the undisturbed soil sample with a five param-

eter model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
9.8. Parameters for the light matrix and the dense aggregates . . . . . . . . . 113
9.9. Parameters for macropores, ceramic plate, tensiometer and background . 113
9.10. Computation time for water and solute transport . . . . . . . . . . . . . 116
9.11. Parameters estimated with fully three-dimensional optimisation . . . . . 117
9.12. Correlation coefficients for the three-dimensional parameter estimation . 117

10.1. Soil parameters used for the virtual soil system . . . . . . . . . . . . . . 125
10.2. Boundary conditions for the three-dimensional virtual soil system simula-

tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
10.3. Discretisation used for the three-dimensional virtual soil system simulations.127

11.1. Parameters for the heterogeneous simulations with different correlation
length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

12.1. Parameters for the van Genuchten/Mualem in the scalability tests . . . . 143
12.2. Iterations needed for the parabolic scenario . . . . . . . . . . . . . . . . . 146
12.3. Computation time for components with the parabolic scenario . . . . . . 146
12.4. Number of unknowns and linear iterations for elliptic scenario . . . . . . 150
12.5. Computation times for different components with the elliptic scenario . . 150
12.6. Iterations and computation times for the parabolic block test case on

JUQUEEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
12.7. Number of time steps and computation times for the solute scalability

test on JUQUEEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
12.8. Average transfer rates of file I/O on JUGENE and JUQUEEN . . . . . . 157

xi





List of Algorithms

3.1. Inexact Newton with line-search . . . . . . . . . . . . . . . . . . . . . . . 48

5.1. Levenberg-Marquardt algorithm . . . . . . . . . . . . . . . . . . . . . . . 74
5.2. Generic part of an iterative fitting algorithm . . . . . . . . . . . . . . . . 77

xiii





Nomenclature

Scalar values, functions and sets are denoted by normal letters (e.g. pl, kr, Si, . . . ).
Vectors are typeset in boldface italic roman symbols (e.g. x), whereas tensors are
written in boldface sans serif letters (e.g. K).

Uppercase Latin Letters

Aij Flux contribution for face j of element i

Eh Partitioning of the domain Ω

H Hessian

J Jacobian

Mi Storage contribution for element i

Qi Sink contribution for element i

T Time domain

Ds Dispersion coefficient [m2 s−1]

Ds,m Diffusion coefficient for solute in aqueous solution [m2 s−1]

K Permeability tensor [m2]

Ks Saturated hydraulic conductivity [m/s]

Knw [m2 Pa−1 s−1]

Fi Body force per unit volume acting on phase i [N m−3]

C Average solute concentration [mol m−3]

Dw
g,atm Diffusion coefficient for water vapour in air [m2 s−1]

Dw
n Diffusion coefficient for water vapour [m2 s−1]

Dseff
Effective (molecular) diffusion coefficient in porous media [m2 s−1]

Enw Net rate of production of interfaces[m−1 s−1]

J(Sw) Leverett J-function [–]

xv



List of Algorithms

Js Numerical flux function for solute transport

Js(Ui, Uj) Numerical flux function

Js,conv Numerical flux function for convection

Js,diff Numerical flux function for diffusion

K Number of time steps [–]

Kw
n Equivalent conductivity for water vapour transport [kg m−2 s−1]

KF Freundlich adsorption coefficient

KL Langmuir adsorption coefficient [m3 mol−1]

Ks Linear adsorption coefficient [m3 kg−1]

Mi Mass exchange of phase i with other phases [kg m−3 s−1]

Pd Pore blockage factor [–]

R Ideal gas constant [J mol−1 K−1]

R Retardation factor [–]

Rs Solute sink density [mol m−3 s−1]

Rw Average sink term for element i

Rij Viscous drag coefficient between phase i and j [kg s−1 m−3]

Sdrain Main drainage curve [–]

Seff Effective saturation [–]

Simb Main imbibition curve [–]

Smax Maximal wetting phase saturation (1− Snr) [–]

Smob Mobile fraction of the wetting phase (1− Snr − Swr) [–]

Sref Wetting phase saturation at reversal point [–]

Si Saturation of phase i [–]

Snr Residual non-wetting phase saturation [–]

Swr Residual wetting phase saturation [–]

T Temperature [K]

xvi



List of Algorithms

Tpot Potential transpiration rate [kg3 s−1]

Uk Average matric potential in time step k [m/Pa/m2s−2]

Ui Cell average of ψm on element ei

V w
m Molar volume of liquid water [m3 mol−1]

Wh Broken polynomial space of order zero

Lowercase Latin Letters

ez Unit vector in the vertical direction [–]

f Right-hand side of linear equation system in the Newton scheme

ji Mass flux density [kg m−2 s−1]

j Volumetric flux density of the liquid phase [m s−1]

js Molar solute flux density [mol m−2 s−1]

jsconv Molar solute flux density due to convection [mol m−2 s−1]

jsdisp
Molar solute flux density due to dispersion [mol m−2 s−1]

mi Momentum transfer between phase i and other phases [N m−3]

n Unit outer normal vector

v Pore water velocity [m s−1]

vk,m Correction in step m of the Newton scheme in time step k

vi velocity of phase i [m s−1]

wnw Average velocity of the fluid-fluid interfaces [m s−1]

x Vector of measurement points (optimisation)

y Vector of measurement values (optimisation)

∂ei Boundary of element i

anw Specific area of the wetting/non-wetting phase interface [m−1]

cs Solute concentration in the liquid phase [mol m−3]

cmax Langmuir maximal adsorbed concentration [m3 kg−1]

cssorb
Adsorbed solute concentration [mol kg−1]

xvii



List of Algorithms

ei Element i

fi Weighting factor in the multiple van Genuchten model [–]

g Acceleration of gravity [m s−2]

h Mesh width [m]

keff Effective hydraulic conductivity [kg m−2 s−1]

kri Relative permeability of phase i [–]

m Van Genuchten Parameter [–]

n Freundlich exponent [–]

n Van Genuchten Parameter [–]

pwsat Partial pressure of water vapour over pure liquid [Pa]

pc Capillary pressure [Pa]

peqc Capillary pressure in hydraulic equilibrium [Pa]

pi Pressure of phase i [Pa]

qw Volumetric sink term [–]

ri Sink term for phase i [kg m−3 s−1]

rr Sink term due to root water uptake [m2 s−1]

rs Compensation factor for root water uptake [–]

rs Sink density for solute [mol m−3 s−1]

rrpot Potential sink term due to root water uptake [m2 s−1]

rsmax Maximal compensation factor for root water uptake [–]

t0 Initial time [s]

tend Final time [s]

tk Discrete point in time [s]

unp,wu Energy density stored in np/wu phase interface [J m−3]

uwp,nu Energy density stored in wp/nu phase interface [J m−3]

wi Weighting function i

xviii



List of Algorithms

wij Water exchange between flow domains [kg m−3 s−1]

x Cartesian coordinate in a metric system [m]

y Cartesian coordinate in a metric system [m]

z Cartesian coordinate in a metric system [m]

Uppercase Greek Letters

Ω̄ Closed domain

Σi Stress tensor in phase i [N m−2]

Ω Open domain

∂Ω Boundary of the domain

Φ Porosity [–]

Ψia Material property for water flow due to gradients in anw [Pa m]

ΨiS Material property for water flow due to saturation gradients [Pa]

Ψnw Material property for interface transport due to water saturation gradients [Pa]

Θ Contact angle [–]

Lowercase Greek Letters

α Van Genuchten Parameter [m−1]

αij Exchange rate for water transfer between flow domains [kg m−3 s−1 Pa−1]

χ Length scale in Miller similarity [m]

η Effective saturation in the Barenblatt model [–]

η Scaling parameter in Miller similarity [–]

κ Mualem integral in the multiple van Genuchten model [–]

λ Brooks-Corey parameter [–]

λ Levenberg-Marquardt parameter (optimisation)

λi Line search parameter [–]

λl Longitudinal dispersivity [m]

λt Transversal dispersivity [m]

xix



List of Algorithms

β Parameter vector (optimisation)

µi Dynamic/kinematic viscosity [Pas]

νwn Molar density of water vapour in the gas phase [mol m−3]

νssorb
Adsorbed molar density [mol m−3]

φ Base function for Hermite spline [–]

φN Normal flux density at Neumann boundary [kg m−2 s−1]

ψ Soil water potential [m/Pa/m2s−2]

ψD Potential at Dirichlet boundary [m/Pa/m2s−2]

ψg Gravity potential [m/Pa/m2s−2]

ψm Matric potential [m/Pa/m2s−2]

ψo Osmotic potential [m/Pa/m2s−2]

ψoo Potential at lower end of optimal root water uptake [m/Pa/m2s−2]

ψsat Potential at which root water ceases due to lack of oxygen [m/Pa/m2s−2]

ψuo Potential at upper end of optimal root water uptake [m/Pa/m2s−2]

ψwilt Potential at wilting point [m/Pa/m2s−2]

ψm0 Air entry value [Pa]

ψmrev Matrix potential at reversal point [m/Pa/m2s−2]

ρi Density of phase i [kg m−3]

ρr Root density [m−3]

ρs Bulk density of the soil [kg m−3]

ρij Correlation coefficient

σki Reconstructed slope of solute concentration distribution in element i at time tk

[mol m−4]

σw Surface tension of wetting fluid [N m−1]

σnw Macroscale interfacial tension [N m−1]

τ Relaxation time [s]

τ Tortuosity [–]

xx



List of Algorithms

τ k Time step in interval [tk : tk+1] [s]

θw Volumetric water content [–]

θweq Water content at equilibrium in the Ross and Smettem model [–]

θwr Residual volumetric water content of the wetting phase [–]

θws Saturated volumetric water content of wetting phase [–]

ξ Base function for Hermite spline [–]

ξ Tortuosity coefficient [–]

Subscripts

n Non-wetting phase

np Percolating non-wetting phase

nu Non-percolating non-wetting phase

s Solid phase

w Wetting phase

wp Percolating wetting phase

wu Non-percolating wetting phase

Superscripts

k Time step index

k,m Iteration m in time step k

xxi





Preface

The simulation of porous media requires an interdisciplinary approach. While the models
describing the flow process and the properties of porous media are 50 to 100 years old,
there are many open questions and pitfalls. Hysteresis is still widely ignored, which is
also a consequence of unsatisfactory hysteresis models. Hydraulic non-equilibrium seems
to occur not only in fast processes, but has also recently been shown in rather slow
multi-step flux experiments.

On the other hand, flow in porous media is also interesting from a mathematical point
of view. Nearly all types of first and second-order partial differential equations occur.
Many discretisation schemes have been developed to solve the two-phase flow equations
and their advantages and disadvantages are still not fully understood. Richards’ equation
has for a long time attracted less attention, but this has changed in the last years.

Finally, porous media are also interesting for the computer scientist. Due to their
natural heterogeneity and the strong non-linearity of their parameter functions, the use
of massively parallel computers is necessary for further progress. The development of
simulation software which is user friendly, efficient, scalable and maintainable is not an
easy task.

In the last decade I had the honour of working and cooperating with excellent scientists.
To list all of them is not possible. Thus I hope that everybody who reads this rather
feels himself included instead of left out.

Above all I want to thank my family for their patience during long days and nights I
spent at the computer and not with them. I want to thank them for their encouragement
and their support and I want to thank my parents for encouraging me to pursue a path
to higher education.

Peter Bastian has introduced me into the art of scientific computing and numerical
mathematics and at the same time gave me room for my own developments. Kurt Roth
has shaped my understanding of the physics of porous media. Hans-Jörg Vogel is not
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also became a close friend. Ingrid Hellwig has helped me with many practical problems
in the last years. Without them this work would not have been possible.
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age of the solver and has optimised the AMG during the scalability tests on JUGENE.
Jö Fahlke has implemented the parallel transient solute transport model based on a pre-
vious version of Peter Bastian. Hans-Jörg Vogel and Steffen Schlüter wrote the structure
generator used for the virtual soil systems. Steffen performed the simulations of the two-
dimensional virtual soil systems and Hans-Jörg the simulations of the dynamic systems.
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Together with them, as well as with Wolfgang Durner, Jan Vanderborght and Kurt Roth
we found after long discussions hydraulic parameter sets for the virtual soil systems. Jan
Vanderborght helped in acquiring computation time on JUGENE. Alexandra Herzog
implemented the Hermite splines during her diploma thesis and included the singular
value decomposition into the parameter estimation code. The Jülich Supercomputing
Center and Wolfgang Frings in particular provided excellent support and gave us the
opportunity to test the scalability of our code. The Dune Project develops great software
and I profited from their parallel communication sub-system, but also suffered under the
build system. To all of them my sincere thanks.

I also had the pleasure to act as a so-called “mentor” for some Ph.D. students and I
had many interesting discussions with Pavel Hron, Ole Klein, Rebecca Neumann, Sven
Marnach, Steffen Müthing, Adrian Ngo, Jurgis Pods, Dan Popovic, Anatja Samouëlian
and Klaus Schneider-Zapp. I also want to mention here my former colleagues Christian
Engwer, Volker Reichenberger and Uli Weller.

Heidelberg, January 2014 Olaf Ippisch
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1. Introduction

1.1. Definitions

A porous medium can be generally defined as a solid material which only fills part of
the total space and thus has void spaces included. Furthermore this void spaces (called
the pore space) are distributed over the whole medium. For transport to be possible in
the porous medium, the pore space has to be interconnected.

If the porous medium is not in vacuum it is filled with a gas phase and/or one or
more immiscible liquid phases. Bear and Bachmat 1991 define a phase as a chemically
homogeneous portion of a system under consideration which is separated from other
such portions by a definite physical boundary. In a single-phase system the whole pore
space is filled with a single gas or fluid. Each of the phases can consist of one or more
components, i.e. of one or more distinct chemical species. The same components can
be present in more than one phase. If atoms or molecules are crossing the boundary
between two phases a phase change occurs.

The solid phase itself can be chemically uniform (mostly in technical porous media)
or be a composite of different materials. The properties of porous media result from
the chemical nature of the solid phase, the geometry of the pore space and the surface
properties of the solid phase, which are often different from the properties of the bulk
solid phase.

1.2. Relevance of Porous Media Research

Porous media defined in this general sense are of central importance for life on earth.
Even the cell itself with its cytoskeleton can be interpreted as a (very complex, high
porosity) porous medium. Bones also form a porous structure. However, in this study
the focus is more on larger scale applications and in porous media which are not part
of living organisms. The theory of porous media flow was developed for applications in
hydrology, agriculture and civil and petrol engineering and this is still the main area of
research today.

Whith the world population still growing, water is one of the central scarce resources
on our planet. It is needed for drinking water and irrigation as well as for industrial
production. According to the Federal Institute for Geosciences and Natural Resources
(BGR) 2014 more than 70 per cent of the public drinking water production in Germany
are from groundwater reservoirs. Agriculture is consuming 70 per cent of the global
freshwater production. In the least developed countries it is even up to 90 per cent. At
the same time soil salinity is an imminent threat (World Water Assessment Programme
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2012). Thus the optimal use of irrigation water is a topic of intense research (e.g. Zhao
et al. 2012; McCarthy et al. 2013; Boutraa 2010; Lorite et al. 2012). However, intensive
agriculture is also a threat for groundwater quality. Precision agriculture is trying to
optimise the use of pesticides and fertilisers not only to obtain maximal output at minimal
costs, but also to reduce groundwater pollution (Gebbers and Adamchuk 2010; Inoue
et al. 2012).

Soils and groundwater are also under threat of contamination e.g. with oil and
other hydrocarbons. Environmental remediation is therefore a major research area
including the surfactant enhanced ”pump and treat” approach (Mulligan et al. 2001),
soil vapour extraction (Class and Helmig 2002), injection of nano particles (Zhang 2003)
or bioremediation (Boopathy 2000). As industrial societies produce huge amounts of
(partially toxic) waste, the security assessment of landfills and nuclear waste repositories
is important as well (e.g. Tsang et al. 2012).

Porous media are also central to many topics in the field of energy production. Petrol
engineering is getting a more and more complicated matter. A recent development is the
massive increase of the production of shale gas and shale oil with fracking (Gassiat et al.
2013). But geologic formations are also investigated as possible storage sites for carbon
dioxide (Neumann et al. 2013). The domestic use of geothermal energy for heating
requires more intensive planning, as the density of these facilities increases. It is also a
potential source of electrical energy (Bayer et al. 2013).

Soil atmosphere interactions are highly relevant for global climate (Seneviratne et al.
2010). With models for weather and climate prediction getting better, an improved
representation of soils is crucial for further improvement. The large scale and the large
grid block size are a big challenge for science. Soils are not only a store for energy and
water, but a potential source for greenhouse gases as well.

Finally, porous media have also important technical applications, e.g. in catalysts and
fuel cells.

1.3. The Multi-Scale Nature of Geosystems

Geosystems are – as a consequence of their genesis and history – heterogeneous on many
different scales. The processes producing these heterogeneous structures are manifold.
In magmatic rocks they are mainly a consequence of different magma composition and
cooling, in sediments they are due to the sedimentation history and in metamorphic
rocks this structure is altered again by pressure and heat. Folding processes, faults,
fractures and karst formation, mineral dissolution and precipitation contribute to the
complexity of natural porous media. In soils the heterogeneity of the parent material
is reshaped by soil forming processes like frost and chemical weathering, cryoturbation,
bioturbation by mobile organisms and roots, erosion by wind and water, and last but
not least by human impact e.g. by ploughing.

Thus geosystems and especially soils are inherently multi-scale systems with many
different levels of heterogeneity. Multi-scale systems are a topic of current research in
many different fields, e.g. research on steel (EXASTEEL 2014) and in hydrogeology.
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Mathematical theories for multi-scale analysis have been successfully developed and
applied e.g. for groundwater flow problems (Jenny et al. 2003). However, there are
special aspects which make the situation more difficult in multi-phase flow systems
and especially in soils. First of all multi-phase flow in contrast to single-phase flow is
described by non-linear partial differential equations. Unfortunately, averages of non-
linear functions have different properties than those of linear functions. The relationship
between the average of two quantities which are related by a non-linear function, is
typically non-unique and shows phenomena like hysteresis. One consequence of non-
linear processes is, that there is not necessarily a smoothing of small-scale processes.
They still can have significant consequences on much larger scales. Additionally, while in
soils the main flow direction is vertical, the different soil types are located besides each
other. Thus the processes are at most – if at all – weakly coupled and can operate on
very different time scales. Even in the (vertical) main direction of transport soil horizons
are very thin and processes often do not reach an asymptotic limit.

1.4. Scales

An important aspect of porous media research is the existence of several spatial (and
related temporal) scales which are involved. In this work we want to distinguish four
scales: the pore scale, the laboratory scale, the field scale and the landscape scale. Our
capabilities to describe the processes on each of these scales with appropriate transport
equations differs. The possibility to perform experiments is limited on some scales and
therefore our knowledge and uncertainty about the system is scale-dependent.

1.4.1. Pore Scale

At the pore scale (micrometre to centimetre) the spatial distribution of all phases can be
resolved. Only one phase may be present at each point in space and time. The physical
laws are in principle well known, but they are not always easy to apply. The geometry of
the pore space is often complicated. This makes numerical simulations very challenging.
Additionally, the solid phase can be composed of different materials. In practice even
(micro-)organisms might be important. The pore space geometry today can be measured
with very high accuracy using X-ray micro-tomography or neutron tomography. It is
even possible to distinguish the fluid and the gas phase. Experiments are difficult to
perform and usually are only possible in simplified geometries.

1.4.2. Laboratory Scale

At the laboratory scale (centimetre to metre) it is no longer possible to resolve single
pores (except macropores). The main constraints are the maximal sample size in micro-
tomography and the extreme high storage requirements of such a representation. Porous
media at this scale are described in a continuum representation, where fractions of
every phase are present at any point in space and time. Transport laws are rather well

3



1. Introduction

known, but there are limitations especially for fast processes. This is the scale of most
experiments, where the initial and boundary conditions can be very well controlled and
the reaction of the system can be measured with sometimes surprisingly high resolution
in space and time.

1.4.3. Field Scale

The main difference between laboratory and field scale (one to one hundred metre) is,
that it is much harder to determine subsurface structures, (hydraulic) parameters and
state variables, or to control the boundary conditions of the system. Thus the uncertainty
about the state and the future of the system is growing significantly. As long as the
properties of the porous medium are more or less uniform, a description with the same
transport laws as used in the laboratory is often possible. However, there are difficulties
to transfer parameters determined in the laboratory to the field. At the field scale many
porous media start to become interesting for practical applications (e.g. agriculture,
remediation).

1.4.4. Landscape Scale

The length scale of catchments to landscapes or even to the whole earth surface (one kilo-
metre to thousands of kilometres) is the scale of interest for many important applications
(groundwater management, flood control, oil production, CO2 sequestration, weather
and climate prediction. . . . ). At this scale it is often neither possible to resolve the
heterogeneity of the system nor to assume homogeneity with good conscience. Even with
the most powerful computers available the grid resolution is too coarse. One example are
land surface applications, where each grid cell includes very different soil types. In reser-
voir modelling it is not possible to resolve fractures or the detailed caprock topography.
Thus the uncertainty on this scale is growing drastically. Effective transport equations
which could give a correct averaged representation on the large grid blocks are essentially
unknown. Multi-phase flow equations or simplified forms like Richards’ equation are still
used and the parameters are estimated using data assimilation and parameter estimation
techniques. Experimental capabilities on this scale have been rather limited in the past.
However, remote sensing offers new possibilities for observation.

1.5. Challenges

The different scales described before, the different accessibility of each scale to physical
description and experiment, and the typically large scale applications require the use of
scientific computing to bridge the scale gap and come to reliable predictions. Simple
multi-scale approaches do not seem sufficient due to the non-linearity of the system and
the ignorance about small scale features. For the time being it is therefore necessary to
simultaneously conduct separate research projects on different scales with their respective
problems. Due to the multi-scale heterogeneity it is necessary to simulate systems with
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complex parameter distributions on any given scale. Thus the use of massively parallel
computing is mandatory.

1.6. Scope of this Work

In this work we want to describe some contributions to the description and mainly to the
parallel simulation and parameter estimation at the continuum scale. The main focus
is on the robust and efficient simulation of (unsaturated) water and solute transport in
strongly heterogeneous porous media.

After a review of the physical description of two-phase flow (which is focused on the
liquid phase), a robust numerical approach for the solution of Richards’ equation will be
developed and its implementation as a user-friendly and scalable software tool will be
described. As parameters in porous media are often unknown, a framework for parameter
estimation will be developed.

The second part of this work concentrates on the massively parallel solution of the
convection-diffusion equation with transient fields of volumetric water content and flux
density, calculated with the water transport code developed before.

Applications at different scales from the laboratory sample to the landscape scale
will be presented in the third part. The first application assesses the possibility to
predict solute transport through an undisturbed soil core using small scale hydraulic
parameters estimated from multi-step outflow experiments, and the internal structure of
the soil sample measured by X-ray tomography. The next two applications investigate
the possibility to represent heterogeneous soils with one-dimensional effective models at
the field scale. First high-resolution three-dimensional virtual soil systems are created.
Then dynamic effects originating from macroscopic heterogeneity are studied.

In the last chapter thorough weak scalability tests of the developed codes are performed
using two supercomputers of the BlueGene series. The test does not only test the
scalability of the calculations but also investigates massively parallel file transfer. With
simulations using up to 917’504 threads the scalability tests ideally combine the two
meanings of large-scale simulation in computer science (many parallel processes) and
geoscience (large domains).
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Part I.

Water Flow in Porous Media
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2. Continuum Scale Modelling of
Water Flow in a Two-Phase System

2.1. Standard Theory

2.1.1. Two-Phase Flow Equations

The traditional theory of two-phase flow in porous media was originally not derived from
pore scale equations. It is mainly based on empirical findings following the ideas of Darcy
1856 on single-phase flow and later considerations by Buckingham 1907, Wyckoff and
Botset 1936, Muskat and Meres 1936 and Leverett 1940a. It can be developed starting
with mass conservation equations for the wetting and non-wetting phase (neglecting
phase change at the moment):

∂ (ΦSiρi)

∂t
+∇ · ji + ri = 0 i = w, n (2.1)

Here Φ is the porosity, Si is the saturation/volumetric fraction of phase i, ρi is the density,
ji the mass flux density and ri is a sink term for phase i.

The flux laws follow a simple first order approach with the phase pressure difference
and gravity as driving force, multiplied with a saturation-dependent material coefficient
which includes both properties of the fluid and of the porous medium:

ji = −ρiK
kri(Si)

µi
(∇pi − ρigez) (2.2)

K is the absolute permeability tensor of the material, kri(Si) the (usually scalar) relative
permeability function, µi the dynamic/kinematic viscosity, pi the pressure of phase i, g
the constant of gravity and ez the unit vector in the direction of gravity. The vertical
axis points in the direction of gravity.

According to Hilfer 2006b these flux laws can be derived from momentum balance
equations assuming that the fluids are incompressible, the stress tensors of the fluids
are diagonal, the inertial term is negligible and the body forces are given by gravity. It
is further necessary to assume that the momentum transfer between the fluids and the
rigid matrix is governed by viscous drag which is proportional to the phase velocities ji
with a proportionality constant given by K−1 µiΦ

2S2
i

kri (Si)
. A further (not completely necessary)

condition is the macroscopic homogeneity of the porous medium. These are rather strong
conditions and are not generally fulfilled. However, the theory has been successfully
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applied in numerous studies over the last decades. Alternative approaches will be
discussed in section 2.2.

The combination of the flux laws and the continuity equations gives two equations
for four unknowns (the two phase saturations Si and the two phase pressures pi). One
unknown can be eliminated by the assumption that the two phases together always fill
the full pore space:∑

i=w,n

Si = 1. (2.3)

The equation system is then closed by the assumption that there is a unique relationship
between the difference of the phase pressures and the saturation called the capillary
pressure-saturation curve

pn − pw = pc(Sw). (2.4)

This assumption is experimentally well supported for static systems and slow flow con-
ditions.

2.1.2. Richards’ equation

Under the condition that the non-wetting phase is mobile enough to always be (almost)
at the same pressure, the two equations can be decoupled. If only the flow of the wetting
phase is of interest, it is then sufficient to solve a scalar equation, the so called Richards’
equation1.

∂ (ΦSwρw)

∂t
−∇ ·

[
ρwK

krw(Sw)

µi
(∇pw − ρwgez)

]
+ rw = 0 (2.5)

For a system where the wetting phase is water and the non-wetting phase is air, it has
been shown by numerical tests that this assumption is justified as soon as both phases
exist and are continuous (e.g. Ippisch 2001).

In soil physics, where this equation is generally used, it is common to write the equation
in terms of the volumetric water content θw = ΦSw and the soil water potential ψ. It is
defined as the energy needed to transfer an infinitesimally small amount of water from
the porous medium to free pure water at a reference height. The advantage of the soil
water potential is that it is well defined and includes more possible driving forces than
just the phase pressure. The potential is a sum of different contributions e.g. the osmotic
potential ψo, the gravity potential ψg =

∫ z
z0
ρw(x)gezdx and the matric potential ψm,

which takes into account the interactions between water and the porous medium. We
will use the matric potential in a (common) wider definition, in which positive values are
allowed for ψm under saturated conditions, corresponding to positive water pressures.

If the potential is expressed as energy per unit volume, the dimensions of the soil water
potential are the dimensions of a pressure. The negative of the matric potential can

1named after L. A. Richards who proposed the equation in 1931 (Richards 1931)

10



2.2. Alternative Equations

then be identified with the difference between atmospheric pressure and water pressure,
i.e. the capillary pressure. If we neglect osmotic effects and use that ∇ψg = −ρwgez we
obtain

∂ (θwρw)

∂t
−∇ ·

[
ρwK

krw(θw)

µi
(∇ψm − ρwgez)

]
+ rw = 0 (2.6)

It is common to assume a constant water density and express the potential as energy
per unit weight. The potential has then the dimensions of a length, which is the height
of a hanging water column producing the suction necessary to extract water from the
porous medium. It is often called the hydraulic head h. We then obtain the most common
form of Richards’ equation in the form of a volume conservation equation

∂θw
∂t
−∇ · [Kskrw(θw) (∇h− ez)] + qw = 0 (2.7)

where Ks = Kρwg
µw

is the saturated hydraulic conductivity tensor with dimension [L/T ]
and qw is a volumetric sink term.

Having one equation for the two unknowns θw and ψm we are again one equation short.
The closure is again done by relating the matric potential ψm and the volumetric water
content by a material function

θw = ΦSw(ψm) = ΦSw (−hρwg) . (2.8)

The function Sw(ψm) is called soil water characteristic and is essentially the inverse of
the capillary pressure-saturation curve.

2.2. Alternative Equations

Alternative equations have been proposed mainly to describe two effects: hysteresis and
the occurrence of so-called dynamic effects.

2.2.1. Dynamic Effects

The term dynamic effects usually means the rate dependence of hydraulic characteristics
in multi-phase flow processes. In a more general approach also effects occurring in tran-
sient flow situations are included which cannot be represented with Richards’ equation
or classic multi-phase flow equations with a time and rate-independent set of hydraulic
parameter functions. We want to denote situations where dynamic effects occur with
the term hydraulic non-equilibrium.

Dynamic effects have been discussed as early as 1960 (Biggar and Taylor 1960) and
have been extensively studied especially in the last fifteen years. Dynamic effects occurred
in drainage experiments (Topp et al. 1967; Vachaud et al. 1972), imbibition experiments
(Biggar and Taylor 1960; Nielsen et al. 1962; Rawlins and Gardner 1963), different kinds
of multi-step outflow experiments with different non-wetting phases (Schultze et al. 1999;
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Wildenschild et al. 2001; O’Carroll et al. 2005; Vogel et al. 2008; Camps-Roach et al.
2010 ), in spontaneous imbibition experiments (Le Guen and Kovscek 2006; Schembre
and Kovscek 2006; Hassanizadeh et al. 2002 and in a so-called multi-step flux experiment
(Weller et al. 2011a). Most experiments were conducted with water as the wetting and
air as the non-wetting phase, but other fluids have been used as well. This list of course
does not attempt to be complete. In the experiments it was found that there was often a
flow-rate-dependent behaviour which could not be explained with the classical equations.
Often hydraulic parameter functions obtained from combinations of local measurements
had a distinctly different shape than the relationships measured at equilibrium. Most
experiments addressed the drainage of water from soil samples and found that the matrix
potential was more negative at the same saturation than expected from the equilibrium
curves. In imbibition experiments the opposite was found.

In general three different effects have been described

• all types of experiments showed that a curve constructed from combinations of
locally measured potential and wetting phase saturation during a dynamic experi-
ment is different from a curve measured under hydraulic equilibrium. The curves
are non-unique and depend on the speed of change.

• in multi-step and one-step outflow experiments a rapid outflow at the beginning
is followed by a slower secondary outflow even at high water contents. During the
secondary outflow there is no measurable change of soil water potential.

• in multi-step flux experiments the water flux at the boundary is changed in a
step-wise fashion. A change of the flux rate is followed by a rapid adjustment
of wetting phase saturation and potential. After a while the potential change is
reversed while the saturation change continues slowly. Potential overshoots have
been observed both in imbibition and drainage in different materials from sand to
loam.

In all experiments the dynamic effects were most pronounced in well sorted coarse
material.

There are different kinds of possible explanations for dynamic effects and it is important
to separate them carefully. We want to distinguish between macroscopic effects, which
could in principle be resolved with Richards’ equation or multi-phase flow equations by
a more elaborate analysis of the measurements or by a simulation with higher spatial
resolution, and microscopic effects which occur at the transition from pore scale to
continuum scale and would require a modification of the transport equations.

2.2.2. Macroscopic Explanations for Dynamic Effects

Possible explanations on the macroscale are:

Averaging If two quantities are related by a non-linear relationship and there is some
time-dependent distribution of both quantities which locally obeys this relationship
it can easily be shown mathematically that the relationship obtained by averaging
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each quantity separately over space at each time and making pairs of the averaged
quantities at the same time, will in general not be the original local relationship.

Measurement characteristic (temporal and spatial) Each measurement device has al-
ways a measurement characteristic determining how it is integrating the signal to
be measured over space and time. Instantaneous point measurements are only
possible in theory. The measurement characteristic can have a marked influence
on the presence of sharp gradients and rapid changes.

Macroscopic Heterogeneity Averaging effects already occur in macroscopically homo-
geneous porous material. In macroscopically heterogeneous porous media they can
be much more pronounced. Different materials have a different time response to
external forcing. If e.g. infiltration in a heterogeneous porous medium is to be de-
scribed with a one-dimensional simulation using effective homogeneous parameters,
it is necessary that the infiltration process is slow enough to allow for horizontal
equilibration of the different materials. Else preferential flow processes will result
in dynamic effects with an extent depending on the flow rate.

2.2.3. Microscopic Explanations for Dynamic Effects

Apart from this macroscopic effects there are explanations which refer to pore scale
processes. A nice list of possible effects is given in Wildenschild et al. 2001.

Phase Entrapment In rapid flow processes parts of a phase can get discontinuous. They
block the flow of the other phase and can only drain very slowly by dissolution/
evaporation or surface film flow. Wildenschild et al. 2001 distinguished four types
of phase entrapment.

• Water Phase Entrapment refers to the detachment of water clusters from
the percolating water phase at high flow velocities, which could drain during
slower drainage processes.

• Pore Water Blockage is caused by a rapid drainage at the bottom of the soil
sample above the ceramic plate, blocking further outflow of the water phase.
Viscous fingering could enhance this process in MSO experiments driven by a
air pressure increase at the upper boundary.

• Air entrapment : As suggested by Schultze et al. 1999 the limited availability
of air due to a not fully continuous air phase can lead to reduced drainage. If
entrapped air is present, a rapid outflow compensated by a pressure decrease
in the discontinuous air phase can be followed by a retarded outflow when the
air pressure in the gas bubbles is equilibrated. Thus this effect should be more
pronounced for compressible non-wetting phases and for samples containing
entrapped air at the start of a drainage experiment.

• Air-entry Value Effect occurs in well sorted porous media with a well-defined
air-entry value. If the air entry-value is exceeded in a completely water satu-
rated porous medium in a large step, the outflow can occur in a more piston
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2. Continuum Scale Modelling of Water Flow in a Two-Phase System

like fashion due to the limited air availability than predicted by Richards’
equation. However, this could in principle be simulated using multi-phase
flow equations.

Dynamic Contact Angle At a moving contact line the contact angle between fluid and
pore wall may be different under dynamic compared to steady-state conditions,
and probably it may even depend on the phase velocity. O’Carroll et al. 2010 found
reduced dynamic effects if the soil was treated to have a contact angle of about
80° compared to a fully water wet sample and explained this by a reduced effect
of the dynamic contact angle.

Local Heterogeneity Dynamic effects could also result from soil heterogeneity so that
the sensors are in contact with different materials with a different time-dependent
behaviour. However, as the most pronounced dynamic effects were observed in
homogeneous sand packings this is not a very likely explanation.

Phase Redistribution Weller et al. 2011b proposed in the analysis of multi-step flux
experiments an internal redistribution of the phases as a reason for dynamic ef-
fects. After a change of the boundary condition the phases would first assume a
configuration which can be reached quickly and afterwards redistribute to reach a
more stable equilibrium phase configuration.

2.2.4. Hysteresis

Hysteresis is defined as the dependence of the hydraulic characteristics on the flow history
and especially on the direction of flow. In particular this means that the relationship
between volumetric water content and matric potential is non-unique. It was reported
as early as 1927 (Haines 1927; Haines 1930) and also discussed in Richards 1931. The
hysteresis of the relative permeability curve depending on the volumetric water content is
generally assumed to be negligible (e.g. Topp 1971). Hysteresis is generally explained by
phase entrapment and a different filling of individual pores caused by the pore geometry
(so called “ink bottle effect”) or by a different contact angle in drainage and imbibition.

The most common (and generally accepted) approach to hysteresis is to assert its
existence and importance and then state to ignore it for the rest of the work. If hysteresis
is taken into account it is mostly done by special forms of the soil water characteristic,
which do not only depend on the volumetric water content, but also on history (see
section 2.3.3). As entrapped air is dissolved and removed from the system over time,
hysteresis is also a non-equilibrium process (though on potentially very long time scales).

2.2.5. Models including Hydraulic Non-Equilibrium

Different mathematical models have been proposed to extend or replace the multi-phase
flow equations and deliver a better description of dynamic effects and hysteresis. The
models here have been rewritten in a consistent way to allow for a better comparison
of the approaches. We distinguish between models, which are based on microscopic
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explanations for dynamic effects (see section 2.2.3) and models, which attribute the
effects mainly to heterogeneity (see section 2.2.2).

Models based on microscale considerations are based on effects which also occur in
homogeneous porous media. The most common models of this type are the following
four:

2.2.5.1. Dynamic-capillary pressure

A time-dependent relation between actual capillary pressure pn − pw and the capillary
pressure in equilibrium was first proposed by Stauffer 1978 and afterwards again based on
thermodynamic arguments by Hassanizadeh and Gray 1990. The basic idea is that the
actual capillary pressure is only equal to the static capillary pressure when the system
is in equilibrium. Else there is a difference which depends on the time derivative of
saturation and a relaxation time τ :

pn − pw = peqc − τ
∂ Sw
∂ t

(2.9)

Dynamic capillary pressure has been widely discussed and there exists also some theo-
retical work (e.g. Schweizer 2012; Van Duijn et al. 2013).

2.2.5.2. Barenblatt

Barenblatt et al. 2003 proposed a slightly different model. They assume that capillary
pressure and relative permeabilities do not depend directly on the current saturation,
but on an effective saturation η, which depends on the rate of saturation change:

krw = krw(η), krn = krn(η), pn − pw = peqc (η) (2.10)

η = Sw + τ
∂ Sw
∂ t

(2.11)

An advantage of the Barenblatt model compared to dynamic-capillary pressure is, that
it also produces dynamic effects in relative permeability for which experimental evidence
exists in multi-step flux experiments (Weller et al. 2011a).

2.2.5.3. Hassanizadeh and Gray (interfacial area)

Hassanizadeh and Gray 1993 proposed a model which is thermodynamically motivated
and tries to incorporate the energy stored in interfaces into the flow equations introducing
the specific area (the area per unit volume) anw of the interface between the wetting and
non-wetting phase as new state variable. In the form presented by Joekar-Niasar and
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Hassanizadeh 2011 they get the new flux equations:

ji = −ρiK
kri(Si)

µi
[∇pi − ρigez − Ψia∇anw − ΨiS∇Si] (2.12)

∂ anw
∂ t

+∇ · (anwwnw) = Enw (2.13)

wnw = −Knw · [∇ (anwσnw) + Ψnw∇Sw] (2.14)

(2.15)

where Ψia and ΨiS are material properties, wnw is the average velocity of the fluid-fluid
interfaces, Enw is the net rate of production of interfaces between wetting and non-
wetting phase, σnw is the macroscale interfacial tension and Ψnw is another material
property.

They additionally assume a dynamic relation between the phase pressure difference
and the static capillary pressure:

pn − pw = peqc (Sw, anw)− τ ∂ Sw
∂ t

(2.16)

The capillary pressure at equilibrium is now assumed to be a function of interfacial area
as well.

2.2.5.4. Hilfer

Hilfer et al. (Hilfer 2006a; Doster et al. 2010) propose a different approach to develop
improved equations for multi-phase flow. They start from a set of mass and momentum
balances for each phase:∑

i

Si = 1 (2.17)

∂ (ΦSiρi)

∂ t
+∇ · ji = Mi (2.18)

ji = ∇ · (SiΦρivi) (2.19)

SiΦρi
Di

Dt
vi − SiΦ∇ ·Σi − SiΦFi = mi − viMi (2.20)

where Mi is mass exchange with other phases, Di/Dt = ∂/∂t + vi · ∇ is the material
derivative for phase i, vi is the velocity of phase i, Σi is the stress tensor in phase i, Fi
is the body force per unit volume acting on phase i and mi is the momentum transfer
to all other phases.

The traditional multi-phase flow equations for two phases (i = {n,w}) can be obtained
by ignoring inertial terms, using the fluid phase pressure gradient for the divergence of
the stress ∇ ·Σi = −∇pi, restricting the body forces Fi to gravity and using a special
choice for the viscous drags mi introducing relative permeability. Finally a capillary
pressure saturation equation is needed as closure.
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Hilfer now proposes to improve this equations by dividing the wetting and non-wetting
phase in a percolating and a non-percolating phase. Four balance equations are then
obtained, one for each of the four phases (i = {np, nu, wp, wu}, with e.g. nu being the
non-percolating non-wetting phase).

The exchange between the percolating and non-percolating phase of the same fluid is
assumed to be a function fi of the two respective saturations and of the time derivative
of the total saturation of the fluid:

Mwp = −Mwu = Φρwfw(Swu , Swp , ∂t Sw) (2.21)

Mnp = −Mnu = Φρnfn(Snu , Snp , ∂t Sn) (2.22)

The (scalar) stress for the percolating phases is the same as in the standard model.
However, the stress in the non-percolating phases is quite different. It cannot depend on
the pressure in the percolating phase of the same fluid, as there is no contact between
both. It therefore is assumed to depend on the pressure in the percolating phase of the
other fluid plus an energy density uip,ju stored in the interface between the two phases,
which he assumes to depend on the non-percolating phase saturation:

Σwp = −pwp , Σnp = −pnp (2.23)

Σwu = −pnp + unpwu(Swu), Σnu = −pwp + uwpnu(Snu) (2.24)

The body force acting on the percolating phases is also produced by gravity, but
additional capillary body forces Fci are acting on the non-percolating fluids keeping
them trapped inside the medium.

Fwp = ρwgez, Fnp = ρngez (2.25)

Fwu = ρwgez + Fcw(Swp), Fnp = ρngez + Fcn(Snp) (2.26)

Finally the viscous drag is assumed to be a linear function of the velocity difference
between the phases and the matrix (i = s) with coefficient Rij which are material
properties. Of course as there is no contact between the percolating and non-percolating
phase of the same fluid there is also no viscous drag term for these pairs:

mwp = Rwpnp(vnp − vwp) +Rwpnu(vnu − vwp)−Rwpsvwp (2.27)

mwu = Rwunp(vnp − vwu) +Rwunu(vnu − vwu)−Rwusvwu (2.28)

mnp = Rnpwp(vwp − vnp) +Rnpwu(vwu − vnp)−Rnpsvnp (2.29)

mnu = Rnuwp(vwp − vnu) +Rnuwu(vwu − vnu)−Rnusvnu (2.30)

Hilfer proposes concrete functions for fw, fn, uij, Fcw and Fcn but their specific forms
still need to be investigated. As the assumptions listed above provide only nine equations
for ten unknowns, an additional closure condition is needed. Here again different choices
are possible.
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2.2.5.5. Ross and Smettem

There are two models also addressing to some degree non-equilibrium effects, but using
explanations based on macroscopic heterogeneity. One of them was proposed by Ross and
Smettem 2000 for an effective one-dimensional description of heterogeneous porous media
at the macroscale. Their model is similar to the model proposed by Barenblatt. The
basic idea is a partial decoupling of potential and saturation. The change in saturation
is lagging behind the equilibrium value calculated from the current matric potential ψm
and only relaxing to equilibrium values over time:

∂θw
∂t

=
1

τ
(θweq(ψm)− θw) (2.31)

A peculiarity of the approach of Ross and Smettem is that they obtain a discretised
version of this equation by a separation of variables and a subsequent integration. The
discrete form is

θk+1
w = θkw +

(
θweq(ψ

k+1
m )− θk

) (
1− e−∆t/τ

)
(2.32)

with the water contents θkw and θk+1
w in time step k and k + 1 and a time step size of ∆t.

They argue, that the use of this formula would be more exact than an Implicit Euler
scheme. However, to perform the separation of variables they completely ignore the time
dependence of the potential and thus of θweq . Thus this statement is rather questionable.

2.2.5.6. Multiple-Domain

The non-equilibrium between materials with different hydraulic properties results in
preferential flow processes. Different preferential flow models have been developed as
an extension of Richards’ equation. One of the most prominent is the dual-permeability
model of Gerke and Genuchten 1993, which assumes that macropore flow can be described
by two coupled Richards’ equations for the macropores and the aggregates, which are
coupled by a first order exchange term wij depending on the potential difference between
the two flow domains i and j and an empirical parameter αij which at least depends on
the materials and the flow rate. In general a multi-domain model can be written in the
following form:

∂ (ρwΦSi)

∂ t
+∇ · ji + ri + wij = 0, i, j ∈ {1, . . . , N} (2.33)

ji = −ρwKi
kri(Si)

µw
(∇ψi − ρwgez) (2.34)

Si = f(ψci), Si ∈ [0, Simax ],
N∑
i=1

Si = Sw (2.35)

wij = αij (ψi − ψj) , i, j ∈ 1, . . . , N (2.36)
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2.3. Hydraulic Functions

2.3. Hydraulic Functions

In the classical two-phase flow equations, in Richards’ equation and in most of the
alternative models described in section 2.2 the properties of the material/fluid interactions
are represented by three parameter functions: The relative permeability functions kri(Si)
and the soil water characteristic Sw(ψm) or its inverse, the capillary pressure–saturation
curve pc(Sw). Together they are often called the hydraulic functions of a porous medium.

The functions have to be experimentally determined for each material though there
are some physical constraints: The relative permeabilities should be equal to one for full
saturation of the respective phase and equal to zero if the phase is absent. The wetting
phase saturation should be one if the hydraulic head is lower than the so called air entry
value, the potential at which the largest pores present in the system are completely filled
with water, and approach zero for very large hydraulic heads. The relative permeability
functions and the soil water characteristic should be monotonically increasing and the
capillary pressure–saturation curve should be monotonically decreasing.

For the simulation of multi-phase flow in porous media, the soil water characteristic
and the relative permeability functions for the two phases are needed in the form of
steady functions over the whole range of potentially occurring potentials. Especially
the relative permeability functions are quantities which are hard to measure. Therefore
it is common to use parametrised functions which reduce the measurement problem to
the determination of suitable parameters for the sample. This is often done by solving
parameter estimation problems. It should be noted that model errors gravely influence
the parameter estimation process and may not always result in a bad agreement between
experimental data and simulation results, but rather in unreliable parameter estimates.
Thus the selection of appropriate parametrisations of the hydraulic functions is of utmost
importance for a meaningful model output.

2.3.1. Parametrisations for the Soil Water Characteristic

As the sum of the two phase saturations in two-phase flow is 1, one function relating
saturation and matric potential is sufficient. By convention the wetting phase saturation
is used. As the capillary pressure–saturation curve is just the inverse of the soil water
characteristic only the latter will be discussed in this work. Matric potential will be
used as independent variable, as the term capillary pressure narrows the perspective on
capillary forces. Water at low matric potentials is not bound by capillary forces, but by
surface interactions between water and the solid phase.

There exists an incredibly large (and still growing) number of parametrisations for the
soil water characteristic. In this section some of the most prominent will be discussed.
However, there is still some interesting development. Tuller et al. 1999 for example
proposed a model based on the assumption of angular pores which should represent
better water sitting in corners and films.

To include residual saturations of trapped discontinuous wetting or non-wetting phase
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Figure 2.1.: Dependency of the Brooks-Corey model for the soil water characteristic on
the parameter λ (left) and the air entry value ψm0 (right).

it is common to formulate a parametrisation for the so called effective saturation

Seff(ψm) =
θw − θwr
θws − θwr

=
Sw − Swr

1− Snr − Swr
,

where θwr and Swr are the residual wetting phase content and the residual wetting phase
saturation, θws = Φ(1−Snr) is the maximal wetting phase content at saturation and Snr
is the residual non-wetting phase saturation.

2.3.1.1. Brooks-Corey Model

Brooks and Corey 1966 proposed the model

Seff(ψm) =

{ (
ψm
ψm0

)−λ
if ψm < ψm0

1 if ψm ≥ ψm0

The model has two parameters:

ψm0 is called air entry value. It specifies the potential at which the largest pores start
to drain. Above this point the soil is completely saturated.

λ specifies the steepness of the soil water retention curve. A very high λ corresponds to
pores which all have the same size and thus drain at the same potential.

The disadvantage of the Brooks-Corey model is that its derivative is discontinuous at
the air entry point.

2.3.1.2. Van Genuchten Model

The unsteadiness of the derivative of the Brooks-Corey function at the air entry value
may cause problems in numerical codes. van Genuchten 1980 proposed an alternative
parametrisation, which is differentiable everywhere:

Seff(ψm) = [1 + (α|ψm|)n]−m
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Figure 2.2.: Dependency of the van Genuchten model for the soil water characteristic on
the parameters n (left) and α (right).

The model has three parameters:

n is related to the steepness of the function (like the λ in the Brooks-Corey model).

α The inverse of α is the point of inflection of the soil water characteristic. Thus for
high n (steep functions) α is related to the position of the air entry value (and is
often wrongly called so).

m Due to a restriction coming from the application of the Mualem model (see below) m
is not a free parameter but is fixed to m = i− 1

n
and usually m = 1− 1

n
is taken.

2.3.1.3. Multiple van Genuchten model

Many natural soils are a mixture of materials with different grain size, mineralogical
properties etc. and also contain large pores (macropores) originating from animals or
roots. The soil water characteristic of such soils is more complicated and its derivative
has more than one maximum. To get more flexibility in the parametrisation, so-called
multiple van Genuchten models were proposed in the early nineties (e.g. Durner 1994). A
multiple van Genuchten model is constructed as a weighed sum of ordinary van Genuchten
models with different values αi, ni and mi for each sub-material. The weighting factors
fi add to one.

Seff(ψm) =
∑
i

fi [1 + (αi|ψm|)ni ]−mi (2.37)

In contrast to multi-domain models (section 2.2.5.6) an essential assumption of multiple
van Genuchten models is that the materials are so intimately mixed that they are always
in equilibrium at the time scale of interest.
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Figure 2.3.: Pore structure of a natural porous medium reconstructed from serial sections.

2.3.2. Parametrisations for the Hydraulic Conductivity Function

As wetting and non-wetting phase conductivities in a porous medium are notoriously
difficult to measure, methods have been proposed for the derivation of the relative per-
meability functions from the soil water characteristic. The basic idea of these approaches
is the derivation of an equivalent pore size distribution from the soil water characteristic
and the calculation of relative permeabilities through integrals over pore conductivities
times weighted with their relative frequency. Originally the models have been motivated
by the idea of representing a porous medium as a bundle of cylindrical capillaries. This
is obviously not true. The real pore structure of porous media is much more complicated
(figure 2.3).

Especially at low water content and when the water phase loses its connectivity, water
flow is dominated by liquid films and pendular rings. Tuller and Or 2001 thus derived
relative permeability from the assumption of angular pores. However, the traditional
models work surprisingly well. This might be due to the fact that larger pores dominate
the overall flow behaviour and that due to capillarity effects there is really a relation
between a cylindrical approximation of the conductivity at the narrowest portion of a
flow path and the potential at which it desaturates.

The same principles can be applied to calculate wetting and non-wetting phase relative
permeabilities. The only difference is the range over which the integration has to be
conducted. For the non-wetting phase one has to integrate from full wetting phase
saturation to the saturation of interest (as the largest pores are always filled with the
non-wetting phase), for the wetting phase from zero wetting phase saturation to the
saturation of interest (as the smallest pores are occupied by the wetting phase). The
residual saturations are assumed to not contribute to the conductivity, thus the models
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are again formulated as functions of Seff .
As this work is mainly concerned with the simulation of unsaturated water flow with

Richards’ equation, only the wetting phase relative permeabilities will be given.

2.3.2.1. Burdine Model

If we assume that the conductivity of a pore can be calculated from its radius with the
law of Hagen-Poiseuille it scales with the square of its radius. If the pore size distribution
is known, the relative permeability can be calculated from

krw(Seff) = Sτeff

∫ Seff

0
1

ψm(S)2dS∫ 1

0
1

ψm(S)2dS

This model was first proposed by Burdine 1953. The additional term Sτeff is intended to
take the tortuosity of the pores into account (i.e. that the flow path gets more tortuous
if their water content drops). τ is a dimensionless fitting parameter.

The Burdine model is often used together with the Brooks-Corey model. Using the
Young-Laplace-Equation (Bear 1972) to relate matric potential and effective pore radius
r:

ψm = −2σw cos(Θ)

r
, (2.38)

where σw is the surface tension of the wetting fluid and Θ is the contact angle, the
integrals can be directly evaluated and one obtains:

krw(Seff) = S
τ+1+2/λ
eff

where usually τ = 2 is used.

2.3.2.2. Mualem Model

Mualem 1976 proposed a slightly different model assuming that the length of a pore
is proportional to its radius and that the pores are randomly connected. He argued
(not completely convincingly) that the square could then be taken out of the integral to
obtain

krw(Seff) = Sτeff

[∫ Seff

0
1

h(S)
dS∫ 1

0
1

h(S)
dS

]2

For the Brooks-Corey model Mualem obtained

krw(Seff) = S
τ+2+2/λ
eff

Mualem argued that there is a good agreement between experimental values and model
results for many soils with τ = 0.5. This value is used in many studies (probably also as

23



2. Continuum Scale Modelling of Water Flow in a Two-Phase System

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

lambda=0.5
lambda=2
lambda=5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

burdine lambda=0.5
burdine lambda=2
burdine lambda=5

mualem lambda=0.5
mualem lambda=2
mualem lambda=5

Figure 2.4.: Dependency of the relative permeability calculated by the Brooks-
Corey/Burdine model on λ (left) and comparison of the Brooks-
Corey/Burdine and the Brooks-Corey/Mualem model (right).

the influence of τ on the shape of the relative permeability function is rather small). The
only difference between the Brooks-Corey/Mualem and the Brooks-Corey/Burdine model
is the interpretation of τ . With the standard values of τ for both relative permeability
models one obtains an exponent of 2.5 + 2/λ for the Brooks-Corey/Mualem model in
contrast to 3 + 2/λ obtained by the Brooks-Corey/Burdine model.

2.3.2.3. van Genuchten/Mualem

Van van Genuchten 1980 was able to show that for his model the integral

Seff∫
0

1

|ψm(S)|
dS. (2.39)

can be solved analytically assuming that m = i− 1/n (where usually i = 1 is used) with
the result:

Seff∫
0

1

|ψm(S)|
dS = 1− (1− S1/m

eff )m (m = 1− 1/n). (2.40)

The relative permeability is then given by

krw(Seff) = Sτeff ·
[
1−

(
1− S1/m

eff

)m]2

. (2.41)

However, as has been shown by Ippisch et al. 2006, the van Genuchten/Mualem model
can produce very steep relative permeability curves for Seff → 1, which are non-physical,
if n < 2 or α too large. This is caused by the missing air entry value in the van Genuchten
model. As the permeability is proportional to the square of the pore radius large pores
will have a dominant influence on the relative permeability. As each porous medium
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Figure 2.5.: Dependency of the van Genuchten/Mualem model for the relative wetting
phase relative permeability on the parameter λ (left) and τ (right).

has a maximal effective pore radius, there is also a minimal hydraulic head (i.e. an air
entry value), which can be calculated by the Young-Laplace-Equation (equation 2.38).
In the van Genuchten model pores with an arbitrary large radius are only excluded if

the derivative
∣∣∣ dSdψm ∣∣∣ goes faster to zero than 1/ψm. As

∣∣∣∣ dSdψm
∣∣∣∣ = αmn (α|ψm|)n−1 [1 + (α|ψm|)n]

−(m+1)
, (2.42)

this is only the case if n > 2.

The maximum of
∣∣∣ dSdψm ∣∣∣ is located at α−1. This should at least be larger than the air

entry value corresponding to the largest pores present in the soil. This results in the
additional condition

α−1 � |ψm0| ⇔ α|ψm0| � 1 (2.43)

2.3.2.4. Modified van Genuchten/Mualem Model

The straightforward introduction of an air-entry value ψm0 in the van Genuchten model
is difficult, as there is no known solution for the resulting Mualem integral. However,
Vogel et al. 2001 proposed a modification, which is a truncation and rescaling of the
original van Genuchten model for which the solution to the integral is well known. This
approach has been simplified by Ippisch et al. 2006 to
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2. Continuum Scale Modelling of Water Flow in a Two-Phase System

Seff(ψm0) =

{
1
S∗

eff
· [1 + (α|ψm|)n]−m ψm < ψm0

1 ψm ≥ ψm0

, S∗eff = [1 + (α|ψm0|)n]−m

krw(Seff) =


Sτeff ·

1−
(

1−(SeffS
∗
eff)

1/m
)m

1−
(

1−S∗1/m

eff

)m
2

Seff < S∗eff

1 Seff ≥ S∗eff

(2.44)

For ψm0 = 0 one obtains the standard van Genuchten/Mualem model and for α|ψm0| �
1 this model converges to the Brooks-Corey model as then

[1 + (α|ψm|)n]−m ≈ (α|ψm|)−mn for ψm < ψm0 (2.45)

and

Seff(ψm) ≈ (α|ψm|)−mn

(α|ψm0|)−mn
=

(
ψm
ψm0

)−mn
. (2.46)

2.3.2.5. Multiple van Genuchten/Mualem model

A closed form solution for the relative permeability function for a multiple van Genucht-
en/Mualem model was published by Priesack and Durner 2006:

κ(ψm) =

∑
i

fiαi
{

1− (αi|ψm|)ni−1 [1 + (αi|ψm|)ni ]−mi
}

∑
i

fiαi
(2.47)

krw(ψm) = Seff(ψm)τκ(ψm)2 (2.48)

2.3.2.6. Modified multiple van Genuchten/Mualem model

Of course the same technique used to produce a van Genuchten model with an air entry
value can also be applied to the multiple van Genuchten model to obtain the modified
multiple van Genuchten model:

Seff(ψm) =

{
Seff(ψm)
Seff(ψm0 )

ψm < ψm0

1 ψm ≥ ψm0

(2.49)

krw(Seff) =

{
Seff(ψm)τ

(
κ(ψm)
κ(ψm0 )

)2

ψm < ψm0

1 ψm ≥ ψm0

(2.50)
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2.3. Hydraulic Functions

2.3.2.7. Splines

Splines are an attractive alternative for the specification of the soil water characteristic
and the relative permeability curve as they require (nearly) no assumptions on the shape
of the hydraulic function. Chardaire and Liu 1992 used linear splines to estimate the
capillary pressure-saturation curve and the relative permeability curve. Kastanek and
Nielsen 2001 used cubic splines for the description of the soil water characteristic and
Bitterlich et al. 2004 estimated the coefficients of quadratic B-splines and piecewise cubic
Hermite splines to determine the hydraulic functions. Piecewise cubic Hermite splines
are defined by

s(x) =
n∑
i=0

(yiφi(x) + y′iξi(x)) (2.51)

where φi and ξi are cubic base functions which have non-zero values only on the interval
]xi−1 : xi+1[ with φi(xi) = ξ(xi) = 1 and yi and y′i are the value and the derivative of the
function to be interpolated at point xi.

As Fritsch and Carlson 1980 showed, a piecewise cubic Hermite spline is monotone if
the data is monotone, i.e.

y0 ≤ y1 ≤ · · · ≤ yn for x0 ≤ x1 ≤ · · · ≤ xn, (2.52)

and if the derivatives are in a monotonicity region. This can be either achieved by ex post
checking and modification of given derivatives or by approximation of the derivatives
from the difference quotients of the adjoining intervals. Brodlie 1980 proposed to use

y′i ≈

{
∆i−1∆i

α∆i−1+(1−α)∆i
if ∆i−1∆i > 0

0 else
(2.53)

with ∆i =
yi+1 − yi
xi+1 − xi

and α = 1/3

(
1 +

xi+1 − xi
xi+1xi−1

)
.

Fritsch and Butland 1984 recommended

y′i ≈

{
2 ∆i−1∆i
∆i−1+∆i

if ∆i−1∆i > 0

0 else
. (2.54)

As the latter produces an interpolated function which is still close to a piecewise lin-
ear interpolation (Herzog 2005) but is differentiable, it seems preferable if no further
knowledge about the function is available.

Monotone piecewise cubic Hermite splines can be used for both the soil water char-
acteristic and the relative permeability function. Of course it would also be possible to
derive a relative permeability function from the interpolated soil water characteristic
with the Mualem or Burdine model.
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Figure 2.6.: Main hysteresis loops and scanning curves in a porous medium produced
with the modified dependent domain model by Mualem.

2.3.3. Hysteretic Hydraulic Functions

As explained in section2.2.4 hysteresis is mostly a consequence of phase entrapment. An
alternative to treating the entrapped non-wetting phase explicitly like in the model of
Hilfer (section 2.2.5.4) is the usage of hysteresis models. Here functions for the water
character are used, which do not only depend on the matric potential, but also on
the wetting history of the system. If completely saturated porous media 2 are drained
completely, the primary drainage curve is obtained. The subsequent re-wetting to the
maximal achievable saturation yields the main imbibition curve, the following drainage
the main drainage curve. Curves obtained by reverting the direction of flow at points in
between are called scanning loops (figure 2.6). Typically hysteresis models use the main
drainage and main imbibition curve to derive intermediate curves by some scaling laws.

Mualem derived a variety of physically motivated hysteresis models (Mualem 1974;
Mualem and Dagan 1975; Mualem 1977; Mualem and Morel-Seytoux 1978; Mualem 1984)
allowing for a different degree of flexibility and requiring different amounts of information
(only the main imbibition and drainage curves or additionally some scanning loops). Kool
et al. 1987 proposed a simpler model, which is rather popular. However, there is an
important difference. If the direction of saturation change is reversed at some potential
and then reversed again, the saturation at the initial potential should be the same due to
thermodynamic reasons. While Mualem’s models produce such closed hysteresis loops,
the Kool and Parker model doesn’t. As open hysteresis loops result in energy production
or dissipation this is hard to accept. The Kool and Parker model is also restricted to a
van Genuchten parametrisation, whereas the Mualem models are in principle much more
flexible. Parker and Lenhard proposed a hysteresis model for three-phase flow (Parker
and Lenhard 1987) and even developed a theory for the change of the conductivity due
to phase entrapment (Lenhard and Parker 1987).

In this study the modified dependent domain model of Mualem was used.

2this can only achieved after a very long time or with special techniques like saturation under vacuum
or a gas phase of CO2
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2.3. Hydraulic Functions

2.3.3.1. Modified Dependent Domain Model

For a shorter notation of the equations we define the maximal wetting phase saturation
Smax = 1− Snr and the extractable part of the wetting phase Smob = 1− Snr − Swr .

The modified dependent domain model calculates the saturation from the main
drainage curve Sdrain(ψm) and the main imbibition curve Simb(ψm). Additionally the
saturation Srev and the matric potential ψmrev where the direction of saturation change
has reversed last is needed. The model can be written in the following simplified form
(compared to Mualem’s original version).

If the current potential is more negative than ψmrev (drainage) the saturation is calcu-
lated from

S(ψm) = max

(
Sdrain(ψm), Srev −

Pd(S(ψm))

Smob
[Smax − Simb(ψm)] [Srev − Simb(ψm)]

)
(2.55)

If the current potential is less negative than ψmrev (imbibition) the saturation is calcu-
lated from

S(ψm) = min

(
Simb(ψm), Srev +

Pd(Srev)

Smob
[Smax − Simb(ψmrev)] [Simb(ψm)− Simb(ψmrev)]

)
(2.56)

The so-called pore block factor Pd(S) accounts for the fact that during imbibition a
part of the pore space might be filled with a disconnected non-wetting phase.

Pd(S) = Smob ·
Smax − S

Smax − Simb(S−1
drain(S))

(2.57)

Equation 2.55 is an implicit definition of the saturation (with the saturation occurring
also on the right side of the equation) and thus the root of a non-linear equation has to
be computed to obtain the solution.

In principle any drainage and imbibition curves with arbitrary shape can be used
as long as it is guaranteed that Simb(ψm) ≤ Sdrain(ψm) at any potential ψm. For the
Brooks-Corey model this is always fulfilled if the same λ is used for both curves and
ψm0 imb

≥ ψm0drain
, for the van Genuchten model if n and m are the same for imbibition

and drying and αimb ≤ αdrain. Different values for λ or n and m should be possible if the
hysteresis model is only applied in a range where the above condition holds.

2.3.4. Miller Similarity Scaling

The effect of fine scale heterogeneity can be represented using the assumption of Miller
similarity. 3 The concept of Miller similarity (Miller and Miller 1956) implies that at

3This paragraph is a nearly literal quote from Ippisch 2003. For the sake of readability the quotation
marks are omitted.
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2. Continuum Scale Modelling of Water Flow in a Two-Phase System

different locations the geometry of the pore space is exactly the same and only the
size of the elements which compose the pore space is different. If we can associate a
scaling parameter with a typical length scale of the pore space (e.g. average or maximal
pore diameter), the hydraulic parameters measured at a certain scale χ∗ can be used
at a different scale χ, if capillary pressure and permeability are scaled using the factor
η = χ/χ∗ by the relation:

Sw(ψm) = S∗w (η · ψm) (2.58)

krw(ψm) = k∗rw (η · ψm) (2.59)

Ks = η2 ·K∗s (2.60)

By definition, porosity is constant in Miller similar media.
Miller similarity can also be seen as a special case of the Leverett J-function (Leverett

1940b), which states that

ψm(Sw)
√

K/Φ

σw cos(Θ)
= J(Sw) (2.61)

whereΘ is the contact angle at the fluid solid interface, K is the permeability of the porous
medium and J(Sw) is a generalised function for a certain type of material. Obviously
Miller similarity is obtained if contact angle and porosity are kept constant.

2.4. Water Vapour Transport

In dry soils the wetting phase can get disconnected and the wetting phase relative
permeability thus can approach zero very quickly, especially in sandy material. Here we
want to consider a water/air system. Water vapour transport is then the main transport
mechanism for the wetting phase and water transport is gravely underestimated if vapour
transport is completely neglected. Due to the high energy associated with the phase
change, the transport of water vapour is, of course, in principle a non-isothermal process.
However, if the porous medium is dry enough to let the relative humidity decrease
noticeably (which is true when vapour transport starts to become the dominant flow
process inside a porous medium), the evaporation rates are low enough to keep the
temperature approximately constant. The secondary phase of evaporation from a soil
surface, where the evaporation rate is controlled by soil moisture and starts to decrease,
can be described well with an isothermal model (Schneider-Zapp and Ippisch 2010).

To model isothermal vapour transport in a porous medium, we assume local thermo-
dynamic equilibrium. The most natural notation is obtained using the molar density
νwn (amount of substance of water vapour per volume) to quantify the amount of water
vapour in the gas phase. If we assume that the ideal gas law is valid, νwn can be calculated
from (Rawlins and Campell 1986)

νwn =
pwsat(T )

RT
exp

(
ψmV

w
m

RT

)
, (2.62)
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2.4. Water Vapour Transport

where V w
m is the molar volume of liquid water, R is the ideal gas constant, T is the

temperature of the porous medium and pwsat(T ) the partial pressure of water vapour over
pure liquid water at temperature T . It can be described with Magnus’ formula (Murray
1967) as

pwsat(T ) = 610.78Pa exp

(
17.2694(T − 273.16K)

T − 35.86K

)
. (2.63)

Of course by inversion of this function it is also possible to calculate the equilibrium
matric potential from the partial pressure of water vapour.

The diffusive water vapour flux jwn is given by

jwn = −V w
mD

w
n∇νwn , (2.64)

where Dw
n is the diffusion coefficient for water vapour in the porous medium, which can

be reformulated, using the chain rule, as

jwn = −V w
mD

w
n

(
∂νwn
∂T
∇T +

∂νwn
∂ψm
∇ψm

)
. (2.65)

If only isothermal water vapour transport is considered, the first term in the brackets
can be dropped. If equation 2.63 is used to calculate the molar density of the water
vapour, we obtain:

jwn = −Dw
n

pws (T )V w2

m exp
[
ψmV wm
RT

]
(RT )2

∇ψm. (2.66)

A comparison of different models for the dependency of diffusion coefficients in the gas
phase on soil moisture by Jin and Jury 1996 showed that one of the models proposed by
Millington and Quirk (Millington 1959; Millington and Quirk 1961

Dn
w(θw) =

θ2
n

Φ2/3
·Dw

g,atm =
(Φ− θw)2

Φ2/3
·Dw

g,atm (2.67)

gave the best agreement with experimental data.
As isothermal water transport is only an important transport process under dry

conditions, we assume for the calculation of the diffusion coefficient that θw = 0 (i.e.
θn = Φ) and obtain

Dn
w ≈ Φ4/3Dw

g,atm. (2.68)

Thus the diffusive flux is given by

jwn = −Dw
g,atm

Φ4/3 · pwsat(T ) · (V w
m )2 · exp

(
ψmV wm
RT

)
(RT )2

∇ψm, (2.69)
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2. Continuum Scale Modelling of Water Flow in a Two-Phase System

which can be conveniently included in Richards’ equation by introducing an equivalent
conductivity for water transport in the gas phase

Kw
n (ψm) = Dw

g,atm

Φ4/3 · pwsat(T ) · (V w
m )2 · exp

(
ψmV wm
RT

)
(RT )2

(2.70)

.
The transport equation then becomes

∂ (θwρw)

∂t
+∇ ·

[
Kw
n (ψm) · ∇ψm + ρwK

krw(Sw)

µi
· (∇ψm − ρwgez)

]
+ rw = 0 (2.71)

Under very dry conditions the gradient of matric potential will be the dominant driving
force compared to gravity while under wet conditions water vapour transport itself will
be negligible. Therefore we finally obtain, by neglecting the missing gravity term in the
vapour transport part:

∂ (θwρw)

∂t
+∇ ·

[(
Kw
n (ψm) + ρwK

krw(Sw)

µi

)
· (∇ψm − ρwgez)

]
+ rw = 0. (2.72)

Isothermal water vapour transport thus can be considered by adding an effective water
vapour conductivity to the wetting phase conductivity in the mass balance equation for
the water component.

2.5. Root Water Uptake

In soils root water uptake by transpirating plants is probably the most important water
extraction process. In contrast to bare soil evaporation it is not located at the soil
surface but distributed over the whole root zone. Therefore it cannot be modelled by a
boundary condition but rather by a sink term. While the potential root water uptake
depends mainly on subsurface plant features (growth stadium, leaf area . . . ) and weather
conditions (temperature, humidity, solar radiation . . . ), the actual root water uptake
depends on the availability of water in the root zone. Two effects have to be considered:
The ability of a root to locally extract water from the surrounding soil, and the ability
of a plant to compensate dry conditions in one part of the root system by higher water
uptake in wetter parts of the domain.

We assume for the following that the potential transpiration Tpot is already known,
e.g. from a plant model. The potential local root water uptake rrpot(x) can then be
calculated by multiplication with the local root density ρr(x), which is normalised to
give a partition of unity over the whole domain:

rrpot(x) = Tpot ·
ρr(x)∫

Ω

ρr(x) dV
(2.73)
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Figure 2.7.: Stress function used in the root water uptake model. Schematic text book
representation (left) and with realistic values for the potentials (right).

2.5.1. Water Stress

The actual local root water uptake rr(x) is calculated as a product of the potential local
root water uptake rrpot(x) and a stress function f(ψm(x)) depending on the current local
matric potential.

rr(x) = rrpot(x) · f(ψm(x)) (2.74)

This model for root water uptake follows an approach from Feddes et al. 1976, which
has been used in many studies since, mostly in one-dimensional simulations. It has been
used for two-dimensional heterogeneous systems by Kuhlmann et al. 2012.

The shape of the stress function f(ψm) : ψm ∈ R→ [0, 1] is unknown and plant-specific.
A simple piecewise linear function is normally used (figure2.7). Root water uptake is
assumed to be zero above a potential ψsat due to limited oxygen availability for the roots,
and below a potential ψwilt called the wilting point. It is assumed to be optimal in a
potential range [ψlo : ψuo]. The four potentials are free (plant-specific) parameters of the
model. The potential at the lower end of the optimal range ψlo can also depend on the
transpiration rate.

2.5.2. Compensation

If the water uptake of a plant is reduced by stress in some part of the root system, this
can be compensated by a higher uptake in unstressed parts of the root system. This is
called compensation. The importance of compensation and which models are appropriate
to represent it, is still under intensive discussion (Jarvis 1989; Li et al. 2001; Guswa
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2. Continuum Scale Modelling of Water Flow in a Two-Phase System

2005; Varado et al. 2006; Lier et al. 2008; Kuhlmann et al. 2012). Variants between
full compensation (full transpiration as long as there is still water accessible to roots
somewhere) and no compensation exist.

A simple way to implement full compensation is the scaling of the potential root water
uptake with the ratio between potential and actual transpiration rs:

rr(x) = rrpot(x) · f(ψm(x)) · rs (2.75)

rs = max

1,
Tpot∫

Ω

rr(x) dV

 (2.76)

It makes sense to introduce an upper limit rsmax for rs. On the one hand an increase of
rs might not further increase root water uptake if the soil is dry everywhere and uptake
limited by the stress function, on the other hand the potential of roots to increase water
uptake for compensation is limited. According to Guswa 2005 the capability of roots for
compensation “can range from one to more than two” depending on the plant. We thus
finally obtain

rr(x) = rrpot(x) · f(ψm(x)) ·min (rsmax , rs) . (2.77)

The implicit equation 2.75 can be solved either iteratively or explicitly by using values
from a prior time step.

2.6. Model Selection

In this work we want to present an efficient and massively parallel numerical model for the
simulation of water transport in strongly heterogeneous soils. The model will be based
on Richards’ equation (section 2.1.2) as the non-wetting phase is formed by air for which
the basic assumption of Richards’ equation is mostly well fulfilled. Isothermal water
vapour transport will be (optionally) included as an increase of the hydraulic conductivity
(section 2.4), hysteresis in the form of the modified dependent domain model of Mualem
(section 2.3.3.1). Root water uptake is simulated with the approach described in section
2.5. Dynamic effects will be introduced to study the effect of macroscopic heterogeneity
on water transport. This will be done with the model of Ross and Smettem (section
2.2.5.5), as it is easy to implement yet allows an impact assessment of dynamic effects.
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3. Numerical Solution of Richards’
Equation

The mathematical model described in section 2.6 essentially requires the numerical
solution of Richards’ equation. Hysteresis and the dynamic effects of Ross and Smettem
only modify the evaluation of the time derivative. Isothermal water vapour transport
affects the conductivity function and root water uptake the sink term. We thus want to
concentrate in this chapter on a solution of Richards’ equation in the form

∂(ρwθw(ψm))

∂t
−∇ ·

[
ρwKkr(ψm)

µw
(∇ψm − ρwgez)

]
+ rw = 0. (3.1)

with K being at most a diagonal tensor.
For all problems to be solved here, the PDE is posed on a finite domain Ω with

boundary ∂Ω and for a finite time interval T = [t0 : tend]. We will use ψm as the
independent variable.

3.1. Requirement Specification

All numerical approximations have their individual strengths and weaknesses and there
is no general best or worst choice. Before the selection of a numerical approach for the
solution of Richards’ equation, it is thus necessary to analyse the requirements of the
resulting model.

The program to be developed in this work is intended to be used for teaching and for
research applications. The intended application area is the simulation of structured and
highly heterogeneous porous media at the scale of laboratory samples (cm to dm) up to
the field scale (1-100 m). At least a two-scale heterogeneity should be simulated. The
structures will have deterministic (soil horizons) and stochastic components (sub-scale
heterogeneity). Interest is often not only in water transport but in the transport of a
dissolved solute.

From the intended application area the following requirements can be derived:

• A flexible input and management for the soil structure and the corresponding
hydraulic properties is necessary.

• It is hardly possible to manage the necessary high spatial resolution with an
unstructured grid, and as the structure will be obtained from measurements (e.g.
georadar, digital images, X-ray tomography) or generators using a structured grid,
it makes sense to use a structured grid for the discretisation.
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3. Numerical Solution of Richards’ Equation

• High gradients of matric potential can occur at the surface during evaporation,
thus a tensor-product grid is necessary.

• High-spatial resolution with larger domains requires the use of massively parallel
computing.

• As the heterogeneity can lead to sharp contrasts of the hydraulic functions, a very
stable numerical scheme is necessary. On the other hand as the permeability field
is piecewise constant with jumps at element boundaries and thus the solution is
expected to have a low regularity, the use of higher-order methods is not necessary.

• As the flow field calculated from the water transport equation will be used for
solute transport, a locally mass-conservative numerical scheme is necessary.

• The complex results require the use of powerful visualisation tools. It makes sense
to use existing programs like Data Explorer or ParaView for this task and thus to
add appropriate output formats to the model.

• An easy specification of model parameters and features is necessary to make the
program useful for students and geoscientists.

• Hydraulic parameters are often unknown and have to be estimated. The program
thus must be easily usable in an optimisation context.

3.2. Classification of the Equation

The basis for the selection of an appropriate numerical solution scheme is the correct
classification of the partial differential equation. Richards’ equation obviously is a non-
linear partial differential equation of second order. For a more detailed classification we
need to bring it in a form where only the independent variable occurs in the derivatives.

For the two-dimensional case a linear second-order PDE has the general form:

a(x, y)
∂2ψm
∂x2

(x, y) + 2b(x, y)
∂2ψm
∂x∂y

(x, y) + c(x, y)
∂2ψm
∂y2

(x, y)

+ d(x, y)
∂ψm
∂x

(x, y) + e(x, y)
∂ψm
∂y

(x, y) + f(x, y)ψm(x, y) + g(x, y) = 0. (3.2)

At a point (x, y) the PDE can be classified according to the first three terms (main part)
into

elliptic if det ( a bb c ) = a(x, y)c(x, y)− b2(x, y) > 0

hyperbolic if det ( a bb c ) = a(x, y)c(x, y)− b2(x, y) < 0

parabolic if det ( a bb c ) = a(x, y)c(x, y)− b2(x, y) = 0 and

Rank

[
a b d
b c e

]
= 2 in (x, y)
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For higher dimensional problems the general form is

n∑
i,j=1

aij(x)
∂2ψm
∂xi∂xj

+
n∑
i=1

ai(x)
∂ψm
∂xi

+ a0(x)ψm − f(x) = 0 in Ω. (3.3)

and the classification is done according to the eigenvalues of the matrix formed by the
coefficients aij(x) of the second order derivatives.

For the sake of simplicity we start with the one-dimensional Richards’ equation without
gravity:

∂(ρwθw(ψm))

∂t
− ∂

∂x

[
ρwKkr(ψm)

µw

∂ψm
∂x

]
+ rw = 0 (3.4)

Assuming a constant water density ρw and applying the product rule we obtain

∂θw
∂ψm︸ ︷︷ ︸
C(ψm)

∂ψm
∂t
− Kkr(ψm)

µw︸ ︷︷ ︸
D(ψm)

∂2ψm
∂x2

+

[
− ∂

∂x

(
Kkr(ψm)

µw

)]
︸ ︷︷ ︸

v(ψm)

·
(
∂ψm
∂x

)
+
rw
ρw

= 0. (3.5)

This is a non-linear convection-diffusion equation with the diffusion coefficientD(ψm) =
Kkr(ψm)

µw
, the velocity v(ψm) = − ∂

∂x

(
Kkr(ψm)

µw

)
and the specific soil water capacity C(ψm).

If gravity is considered, by applying the chain rule to the gravity term we obtain

∂θw
∂ψm︸ ︷︷ ︸
C(ψm)

∂ψm
∂t
− Kkr(ψm)

µw︸ ︷︷ ︸
D(ψm)

∂2ψm
∂z2

+

[
− ∂

∂z

(
Kkr(ψm)

µw

)
+ ρwg

∂

∂ψm

(
Kkr(ψm)

µw

)]
︸ ︷︷ ︸

v(ψm)

·
(
∂ψm
∂z

)
+
rw
ρw

= 0. (3.6)

This only adds the term ρwg
∂

∂ψm

(
Kkr(ψm)

µw

)
to the velocity.

A classification is now possible. We get a zero determinant

det

(
−Kkr(ψm)

µw
0

0 0

)
= 0 (3.7)

and the additional rank condition

Rank

[
−Kkr(ψm)

µw
0 − ∂

∂z

(
Kkr(ψm)

µw

)
+ ρwg

∂
∂ψm

(
Kkr(ψm)

µw

)
0 0 ∂θw

∂ψm

]
= 2. (3.8)

The coefficients depend on space and time. Thus the type of Richards’ equation can be
different at different points in space or time. Richards’ equation is a formally parabolic
PDE. However, if the porous medium is saturated, the derivative of water content vanishes
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3. Numerical Solution of Richards’ Equation

and Richards’ equation becomes an ordinary differential equation (in one-dimension) or
an elliptic PDE (in two- or three space dimensions).

In its discretised form Richards’ equation can also become effectively hyperbolic. For a
grid with grid spacing h Richards’ equation will become effectively convection-dominated
if the (non-linear) grid Peclet number hv

2D
is larger than 1:

h
∣∣∣ ∂∂z (Kkr(ψm)

µw

)
+ ρwg

∂
∂ψm

(
Kkr(ψm)

µw

)∣∣∣
2Kkr(ψm)

µw

> 1 (3.9)

For a homogeneous material (i.e. if K and µw do not depend on z) this condition can
be simplified. We can then apply the chain rule again to the first part of the velocity
and get:∣∣∣ Kµw ∂kr(ψm)

∂ψm
·
(
∂ψm
∂z
− ρwg

)∣∣∣
2K kr(ψm)

µw

>
2

h
(3.10)

⇔
∣∣∣∣ 1

kr(ψm)

∂kr(ψm)

∂ψm
·
(
∂ψm
∂z
− ρwg

)∣∣∣∣ > 2

h
(3.11)

⇔
∣∣∣∣∂ ln (kr(ψm))

∂ψm
·
(
∂ψm
∂z
− ρwg

)∣∣∣∣ > 2

h
(3.12)

Thus convection will be the dominant process if gravity and potential gradient point into
the same direction (which is the case during imbibition from above) and if the relative
permeability curve is very steep. Thus it should occur most frequently in well graded
and coarse textured materials, like coarse sands1.

Richards’ equation is a potentially degenerate non-linear second-order partial differen-
tial equation, which can become elliptic, parabolic and effectively hyperbolic at the same
time in different parts of the domain (this is also true for problems with two and three
space dimensions). This needs to be taken into account in the choice of the numerical
scheme.

3.3. Discretisation

Based on the requirements specified in section 3.1 a method of lines approach with a
cell-centred Finite-Volumes discretisation in space and an implicit Euler scheme in time
was chosen.

1All quantities in condition 3.11, apart from the pressure derivative of the relative permeability curve
have to be calculated anyhow to solve the equation. Thus this might be a cheap estimator for the
necessity for regularisation of Richards’ equation e.g. by upwinding.
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3.3. Discretisation

3.3.1. Spatial Discretisation

A weak form of Richards’ equation is obtained by integration of the PDE times weighting
functions wi over the domain Ω∫

Ω

wi ·
(
∂(ρwθw(ψm))

∂t
+∇ · jw + rw

)
dV = 0

with jw = −ρwKkr(ψm)

µw
(∇ψm − ρwgez) (3.13)

Let Eh = {ei}, i = 0, . . . , N be a partitioning of the domain Ω into elements ei (lines

(1D), rectangles (2D) or cuboids (3D)) with Ω̄ =
N⋃
i=0

ēi and ei ∩ ej = ∅ ∀i 6= j. h

is an indicator for the mesh width. For a tensor-product grid let h = min(hi) with
hi, i = x, y, z being the vector of element width in x, y and z direction. We now choose
the weighting functions to be piecewise constant functions which are one on element ei
and zero elsewhere. We then obtain n equations one for each element:∫

ei

(
∂(ρwθw(ψm))

∂t
+∇ · jw + rw

)
dV = 0. (3.14)

We split the integral in three parts and apply the Satz of Gauß to the divergence∫
ei

∂(ρwθw(ψm))

∂t
dV +

∫
∂ei

jw · n dA+

∫
ei

rw dV = 0. (3.15)

where ∂ei is the boundary of element ei and n is the unit outer normal. We can exchange
the time derivative and the integration and obtain an equation for the time evolution of
the averages. For the chosen tensor product grid each element ei has 2d boundary faces
fij, we thus can also split the boundary integral into 2d face integrals:

∂

∂t

∫
ei

ρwθw(ψm) dV +
2d∑
j=0

∫
fij

jw · n dA+

∫
ei

rw dV = 0. (3.16)

Please note that the index j in fij is a local number of the face and not the index of the
adjacent element.

We now want to find a solution in the broken polynomial space of order zero (piecewise
constants)

Wh(Ω, Eh) =
{
U ∈ C0(Ω) : U |e = const ∀e ∈ Eh

}
. (3.17)
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3. Numerical Solution of Richards’ Equation

where Ui represents the cell average of ψm on element ei. We can obtain an approxi-
mation of the weak form by quadrature using the midpoint rule∫

ei

ρwθw(ψmi) dV ≈ ρw · θw(Ui) · Vi =Mi(ψm) (3.18)

∫
fij

jw · n dA ≈ Jw(Ui, Uj) · nj · Aij = Aij(ψm) (3.19)

∫
ei

rw dV = Rw(Ui) · Vi = Qi(ψm). (3.20)

Jw(Ui, Ukj) is the numerical flux function, which still has to be determined and kj is the
index of the element sharing the element face fij. In our two point flux approximation
Jw(Ui, Ukj) only depends on the cell averages of the two cells with the common face
fij. As a consequence of the tensor product grid, Jw(Ui, Uj) is a scalar function and
nj ∈ {−1, 1}.

As equations 3.18, 3.19 and 3.20 can be interpreted as applications of a midpoint rule
to the integrals they yield second order accurate approximations. We obtain semi-discrete
equations for the cell averages:

∂ (ρwθw(Ui)Vi)

∂t
+

2d∑
j=0

(Jw(Ui, Uj) · nj · Aij) +Rw · Vi = 0, (3.21)

or in abbreviated form

∂Mi(U)

∂t
+

2d∑
j=0

Aij(U) +Qi(U) = 0. (3.22)

In fact, equation 3.21 is the equation for elements with interior faces only. The domain
boundary will be treated in section 3.3.4 and will lead to different values of Aij(U).

3.3.2. Numerical Flux Function

A good numerical flux function can be obtained by the analysis of the one-dimensional
problem in a domain Ω =]0, `[ with the Dirichlet boundary conditions ψm(0) = ψ0 and
ψm(`) = ψ`. The one-dimensional (horizontal) Richards’ equation is

∂(ρwθw(ψm))

∂t
− ∂

∂x

[
ρwKkr(ψm)

µw

∂ψm
∂x

]
+ rw = 0. (3.23)

If there are no sources or sinks, if we neglect the time derivative and introduce the
conductivity k(ψm, x) = ρwKkr(ψm)/µw

∂jw
∂x

= 0 (3.24)

jw = −k(ψm, x)
∂ψm
∂x

(3.25)
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3.3. Discretisation

As the spatial derivative of jw is zero, the flux has to be a constant j0.

j0 = −k(ψm, x)
∂ψm
∂x

⇔ ∂ψm
∂x

= − j0

k(ψm, x)
(3.26)

Integration of both sides over the domain yields

`∫
0

∂ψm
∂x

dx = [ψm(x)]`0 = ψ` − ψ0 = −j0

`∫
0

1

k(ψm, x)
dx (3.27)

j0 = − `∫̀
0

1
k(ψm,x)

dx︸ ︷︷ ︸
eff.conductivity

· ψ` − ψ0

`︸ ︷︷ ︸
approx.gradient

(3.28)

If we assume that the conductivity distribution is piecewise constant on `l < `

k(x) =

{
kl x ≤ `l

Kr x > `l
(3.29)

(this is the case when the absolute permeability K is different and the effect of relative
permeability is negligible), we can calculate the effective conductivity keff :

keff =
`∫̀

0

1
k(x)

dx

=
`

`l
1
kl

+ (`− `l) 1
kr

=
`klkr

`lkr + (`− `l)kl
(3.30)

and obtain a weighted harmonic mean. For saturated conditions (where all the assump-
tions hold) this effective permeability yields the exact solution (in 1D) if the spatial
derivative is replaced by a difference quotient. For other distributions of k(x) we would
obtain other effective conductivities. If K is homogeneous and the difference only results
from kr(ψm), a geometric mean of the conductivities might give a better approximation.

From the analysis of the one-dimensional problem we thus get the following numerical
flux function for the flux over face fij between the elements ei and ej with conductivities
ki and kj and element width hi and hj:

Jw(Ui, Uj) = −keff(Ui, Uj)
Ui − Uj
(hi+hj)

2

(3.31)

keff =
(hi + hj)kikj
hjki + hikj

. (3.32)

3.3.3. Upwinding

If Richards’ equation becomes effectively hyperbolic, a central difference approximation
will not produce a stable and correct solution and some stabilisation is necessary. In
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3. Numerical Solution of Richards’ Equation

two-phase flow an upwinding of the mobility λw = kr(ψm)
µw

is an often used approach

(Helmig and Huber 1998). However, this will not work for elements with different
relative permeability functions. Bastian 1999 presented a formulation with interface
conditions for a vertex-centred Finite-Volume method.

Effective hyperbolicity is linked to the passing of sharp fronts through the domain.
Upwinding can be viewed as assuming that the front has already passed and using the
values behind the front. While saturation and relative permeability might be discon-
tinuous over element interfaces, potentials will be continuous. We can thus perform an
upwinding of matric potential, calculate saturations and relative permeabilities from the
element functions and calculate the effective conductivity as a harmonic mean of the
element conductivities. In the case of homogeneous material this is equivalent to an
upwinding of mobilities. The direction of flow can be easily determined from the sign of
the gradient of total potential ∇ψm − ρwg.

With the upwind operator (here presented only for the vertical direction2 with zi < zj)

upwind(Ui, Uj) =

{
Ui if

Ui−Uj
`
− ρwg ≥ 0

Uj if
Ui−Uj
`
− ρwg < 0

(3.33)

the effective permeability between two elements ei and ej with average matric potential
Ui and Uj and conductivity functions ki(ψm) and kj(ψm) can be calculated from

keff,upw(Ui, Uj) =
hi + hj

hi
1

ki(upwind(Ui,Ui))
+ hj

1
kj(upwind(Ui,Uj))

. (3.34)

Thus we can finally define our numerical flux function for heterogeneous porous media
with potential hyperbolicity to be

Jw(Ui, Uj) = −keff,upw(Ui, Uj)
Ui − Uj
(hi+hj)

2

. (3.35)

3.3.4. Boundary Conditions

For a parabolic partial difference equation initial conditions and boundary conditions
on all space boundaries are needed to get a well-posed problem. As there is always
a diffusive contribution, this remains true even if Richards’ equation gets effectively
hyperbolic. For an elliptic problem it is further necessary to have Dirichlet boundary
conditions at least at one point (else the solution is only fixed up to a constant). Besides
Neumann and Dirichlet boundary conditions some additional variants are common for
porous media flow.

Boundary conditions for the cell-centred Finite-Volume scheme are specified face-wise.
In contrast to the standard Finite-Element or the vertex-centred Finite-Volume scheme,
the choice of the boundary conditions does not influence the number of unknowns or the
position of the boundary and the solution is still obtained in an unconstrained space.

2Please remember that the vertical axis is pointing in the direction of gravity
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3.3. Discretisation

3.3.4.1. Neumann Boundary Condition

At Neumann boundaries the normal flux φN is prescribed. In the cell-centred Finite-
Volume scheme this is easily incorporated by approximating the integral 3.19 at the
boundary face fij by∫

fij

jw · n dA ≈ φN · Aij = AijN . (3.36)

3.3.4.2. Dirichlet Boundary Condition

At Dirichlet boundaries the value of the potential ψD is prescribed. In the approximation
of the flux it has to be taken into account, that the distance is only h/2

AijD = JwD(Ui, ψD) · nj · Aij = −keff,upw(Ui, ψD)
Ui − ψD

hi
2

· nj · Aij. (3.37)

3.3.4.3. Limited-Flux Boundary Condition

For the simulation of the upper boundary of soils or certain lysimeters it is convenient
to pose a boundary condition with a combined constraint on the potential and the flux.
It can be understood as a kind of Signorini problem and is used when a flux is to be
prescribed, but a pure Neumann boundary condition can result in non-physical results.
Typical application cases for the limited inflow boundary condition are:

• Precipitation rates are known but pure Neumann conditions can lead to very high
pressures at the surface if the precipitation rate is higher than the conductivity of
the soil. If surface run-off is not explicitly simulated instantaneous run-off can be
modelled by limiting the flux into the domain to not exceed the flux obtained with
a matric potential of zero at the upper boundary.

• Free-drainage lysimeters are containers filled with soil material which are open at
the lower boundary (or placed on coarse gravel, which is nearly the same). Outflow
can then only occur if the pressure at the lower boundary is positive. This can be
modelled by limiting the flux into the domain to zero but allow fluxes out of the
domain calculated with a prescribed matric potential of zero. This is often also
called a seepage boundary condition.

A typical application case for the limited outflow boundary condition is:

• Potential evaporation is known, but cannot be sustained if the soil is already too
dry. Posing a Neumann boundary condition can lead to a break-down of the
simulation. Actual evaporation can be modelled by limiting the flux out of the
domain to not exceed the flux obtained with a minimal prescribed matric potential
at the upper boundary.
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3. Numerical Solution of Richards’ Equation

This kind of boundary conditions is often realised with a switch of the boundary condition
type from Dirichlet to Neumann and vice versa. However, it is easier to formulate the
limited inflow boundary condition as

AijLIF
= JwLIF

(Ui, ψD, φN) ·nj ·Aij = max

(
−keff,upw(Ui, ψD)

Ui − ψD
hi
2

nj, φN

)
·nj ·Aij.

(3.38)

and the limited outflow boundary condition as

AijLOF
= JwLOF

(Ui, ψD, φN) ·nj ·Aij = min

(
−keff,upw(Ui, ψD)

Ui − ψD
hi
2

nj, φN

)
·nj ·Aij.

(3.39)

This is of course also a switch. However, both boundary conditions can be implemented
as in the form of a flux. This would also be beneficial for vertex-centred Finite-Volume or
Finite-Element schemes as there is no need to include the Dirichlet boundary conditions
as essential boundary conditions in the Ansatz space.

3.3.4.4. Surface-Storage

The limited influx boundary condition assumes instant run-off of ponding water. This is
not always realistic. Water might just be stored in (unresolved) bumps at the surface. An
alternative to the limited influx boundary condition is the introduction of surface storage.
If the matric potential at the soil surface gets positive, the ponding water is properly
accounted for in the storage term of the elements at the surface and can infiltrate later.
For the surface elements we get

θw = Sw(ψm)Φ+ max

(
0,

ψm
hρwg

− 1/2

)
(3.40)

where h is the element height of the uppermost element. In contrast to full consideration
of surface run-off, there is no horizontal flow of the surface water. As high precipitation
rates usually do not last long, surface storage in combination with Neumann boundary
conditions yields a realistic approximation for many practical cases.

3.3.4.5. Gravity-Flow Boundary Condition

In soils the potential gradients are strongly damped in deeper parts of the profile. If the
lower boundary of the simulation domain is still above groundwater level but there is
always a net percolation, it is possible to neglect the potential gradient and assume that
gravity is the only driving force:

AijG = JwG(Ui) · nj · Aij = k(Ui)ρwg · nj · Aij. (3.41)
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3.4. Time Discretisation

3.3.5. Initial Conditions

Initial conditions are boundary conditions in the time direction. Essentially just the
value of the independent variable has to be specified, in this case the matric potential.
Simple as it seems there still are different choices of initial conditions depending on
the situation to simulate. If no measurement values are available, a constant potential
everywhere is often a good initial condition for steady-state simulations. For time-
dependent simulations a given matric potential at the lower boundary or the matric
potential corresponding to a given saturation, and hydraulic equilibrium above

ψminitial
= ψ0 + ρwg(z0 − z) (3.42)

is a sensible choice. For sandy materials it makes sense to use hydraulic equilibrium in
the wetter part and a constant potential above, to avoid too dry initial conditions. For
hysteretic material also the hysteresis state (drainage or imbibition) and the last reversal
point must be given (if the initial condition is not on one of the main branches).

3.4. Time Discretisation

With the spatial discretisation and appropriate boundary conditions we obtain a system
of non-linear ordinary differential equations for the time evolution of the potentials.

We introduce the partitioning of T into the discrete time sequence tk, k = 0, . . . , K
with ∆tk = tk+1 − tk > 0 and tend = t0 +

∑K−1
k=0 ∆tk. The solution U0 at t0 is given by

the initial condition. We obtain the solution Uk+1 at tk+1 from Uk at tk by integration
of the semi-discrete equation 3.22 over the interval τk = (tk+1 − tk):

tk+1∫
tk

(
∂Mi(U)

∂t

)
dt = −

tk+1∫
tk

[
2d∑
j=0

Aij(U) +Qi(U)

]
dt. (3.43)

The integral on the left side of the equation can be directly evaluated. For the integral
on the right side we have to use an integration rule. The easiest integration is obtained
by a one-step Θ method

Mi(U
k+1)−Mi(U

k) =−Θ · τ k ·

[
2d∑
j=0

Aij(Uk+1) +Qi(Uk+1)

]

− (1−Θ) · τ k ·

[
2d∑
j=0

Aij(Uk) +Qi(Uk)

]
(3.44)

With Θ = 0 we obtain the explicit Euler scheme, with Θ = 1 the implicit Euler
scheme. Both are first order accurate in time, but while the implicit Euler scheme
is unconditionally stable in the infinity norm and the L2 norm, the explicit Euler scheme
is only stable when a time step restriction is obeyed. The Crank-Nicholson scheme with
Θ = 1/2 is second order but is only unconditionally stable in the L2 norm.
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3. Numerical Solution of Richards’ Equation

As we are interested in maximal stability, the implicit Euler scheme is used in this
work. As the discretised equations result from a local mass balance, the scheme is locally
and thus also globally mass conservative.

3.5. Linearisation

The discretised equations form a non-linear equation system

f(U k+1) = 0 (3.45)

with

fi(U
k+1) =Mi(U

k+1)−Mi(U
k) + τ k

2d∑
j=0

Aij(Uk+1) + τ kQi(Uk+1). (3.46)

and the vector of unknowns U k+1 ∈ RN .
Farthing and Miller 2003 compared Newton’s method and fix-point iteration (also

called Picard iteration) for the non-linear equation systems obtained from a cell-centred
Finite Differences discretisation of Richards’ equation with steady-state test cases, trying
to obtain directly the steady-state solution or using time dependent solver to converge
to the steady-state solution. They found that “. . . Newton’s method with a line search
is the most efficient approach for obtaining steady-state solutions to Richards’ Equation”
and that “if Newton’s method fails or performs poorly for a given steady-state problem, it
is worth examining a range of linear solver and line-search parameters before abandoning
a Newton approach”.

The non-linear equation system in this work is thus solved with Newton’s method
following the procedure of Bastian 1999, where in each step of an iterative scheme a
correction to the current approximation of the solution is obtained. Starting with an
initial guess U k+1,0 (the solution from the last time step or the initial condition) in each
step m the correction vk+1,m is calculated by solution of the linear equation system

J (U k+1,m) · vk+1,m = f(U k+1,m), (3.47)

where J (U k+1,m) is the Jacobian with

Jij(U k+1,m) =
∂fi
∂Uj

∣∣∣∣
Uk+1,m

(3.48)

The Jacobian is assembled by numerical differentiation

Jij(U k+1,m) ≈ fi(U
k+1,m +∆Ujej)− fi(U k+1,m)

∆Uj
(3.49)

with

∆Uj =
√
ε · (1 + |U k+1,m

j |) (3.50)
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3.6. Solution of linear Equations

if ε is the precision of the floating point data type used to store U .
Convergence is determined by a sufficient reduction of the non-linear defect

d = ||f(U k+1,m)||2 ≤ εnl · ||f(U k+1,0)||2 = εnl · d0 (3.51)

Newton’s method only converges if the initial guess is sufficiently close to the solution.
To increase the area of convergence, a line search can be used, where the correction is
multiplied by a damping factor λk, λ ∈]0 : 1[ in the kth step of the line search until the
approximation by the linearisation is good enough to get an improvement. The required
reduction is linked to the size of the damping factor (Bastian 1999; Braess 1992) by

||f
(
U k+1,m + αvk+1,m

)
||2 < (1− 1/4 · λk) · dm−1. (3.52)

The solution is sped up by using an inexact Newton’s method. As the initial guess is
usually far away from the correct solution, it is not necessary to solve the linear equation
system exactly. The required reduction is the minimum of a prescribed reduction and
the square of the defect reduction in the last iteration (based on the idea that Newton’s
method has a quadratic convergence). A further reduction of the computational burden
is obtained by reassembling the Jacobian only if the convergence rate in the last iteration
is below a certain threshold.

Algorithm 3.1 gives the full algorithm for the inexact Newton method in pseudo code.

3.6. Solution of linear Equations

In each step of Newton’s method it is necessary to solve a large sparse linear equation
system:

Ax = b (3.53)

where A is the N ×N Jacobian matrix with only up to 2d+ 1 non-zero entries per line.
With A originating from a cell-centred Finite-Volume discretisation of Richards’ equation
with upwinding, it is generally not symmetric. Especially for the elliptic case, where the
matrix is only weakly diagonally dominant, the condition of the matrix gets worse with
the number of grid cells. In the parabolic case the matrix is strictly diagonally dominant,
but the condition of the matrix can still be bad due to highly varying coefficients. Thus
a robust linear solver is required. Because of the fill-in and the corresponding memory
and computing time requirements and as their scalable implementation on large scale
supercomputers is difficult, direct linear solvers are not an option.

A class of iterative linear solvers which can be implemented in a scalable and memory-
efficient fashion are preconditioned Krylov-Space methods like conjugate gradients. As
conjugate gradient solvers are limited to symmetric matrices they are not applicable
for our problem. BiCGstab (Vorst 1992) is an established variation of the conjugate
gradient scheme for non-symmetric matrices. However, the convergence rate of Krylov-
Space methods depends on the distribution of the eigenvalues of the matrix and thus an
appropriate preconditioner is needed.
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3. Numerical Solution of Richards’ Equation

Algorithm 3.1: Inexact Newton with line-search (after Bastian 1999)

function Newton(U0, εnl, εreass, εlinmin,maxit,maxline)
U ← U0 . initialise variables
m← 0
dold ← d← d0 ← ||f(U)||2
while (d > εnl · d0) ∧ (m < maxit) do

εlin = min (εlinmin, (d/dold)
2))

if (m = 0) ∨ (d/dold < εreass) then
assemble J = J (U) . assemble matrix (by numerical differentiation)

end if
solve d+ J · v = 0 to precision εlin · d . solve linear equation system
dnew ← d . initialise variables
λ← 1
α← 1
k ← 0
loop . line search

dnew = ||f (U + αv) ||2
if dnew > α · d then

if k = maxline then
throw exception

else
λ← 1/2 · λ . damping strategy after Braess 1992
α← 1− 1/4 · λ
k ← k + 1

end if
end if

end loop
U ← U + α · v . update variables
dold ← d
d← dnew

m← m+ 1
end while
if m = maxit then

throw exception
else

return U . algorithm converged, return result
end if

end function
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Another class of efficient iterative linear solvers suitable for parallel computing are
multigrid schemes. They operate on a hierarchy of coarser and finer discretisations of
the problem and thus can eliminate low frequencies error components efficiently on the
coarser grids and high frequency error components on the finer grids. Geometric multigrid
schemes have been shown to yield optimal convergence rates for elliptic problems. They
are memory-efficient and have been shown to scale in a matrix-free implementation up
to 1012 unknowns and 294′912 processes (Gmeiner et al. 2012). However, for an optimal
convergence it is necessary to resolve the heterogeneity of the system on the coarse grid
(or to have very good upscaling techniques).

As it is the intention of this work to develop a program for strongly heterogeneous
porous media, algebraic multigrid (AMG) schemes are much more attractive. Algebraic
multigrid schemes construct a hierarchy of coarser matrices from an analysis of the
matrix resulting from a fine grid discretisation using heuristic strategies. A variety of
AMG implementations exist. They differ for example in the work spent to construct
on the coarsening, in the iteration schemes (e.g. V-cycle, W-cycle) and in the resulting
change of the number of iterations with the number of unknowns.

In this work we use the algebraic multigrid solver from the Iterative Solver Template
Library (DUNE-ISTL) of the software framework DUNE (Distributed and Unified Nu-
merics Environment, Bastian et al. 2008a; Bastian et al. 2008b ). ISTL provides a matrix
and vector interface for a flexible storage of sparse matrices and several solvers and
preconditioners (Blatt and Bastian 2007). ISTL also includes parallel solvers and tools
(e.g. parallel index sets) for dealing with parallel data from a domain decomposition
(Blatt and Bastian 2008).

The ISTL-AMG is meant to be used as a preconditioner. It is based on ideas of
Braess 1995. A sequential version was already used in Bastian 1999. The parallel
implementation was done by Markus Blatt. The ISTL-AMG is of agglomeration type.
A detailed description is given in Blatt et al. 2013. Here we will give only an outline of
the algorithm.

Two unknowns of the fine level matrix A can be merged into an aggregate, if they are
strongly connected. The strength of a connection is measured by

w(i, j)w(j, i)

aii ajj
(3.54)

where the weights are defined as

w(i, j) =

{
0 if aij ≥ 0

|aij| if aij < 0
. (3.55)

Two unknowns are strongly connected if

w(i, j)w(j, i)

aii ajj
> δ min(ηi, ηj) (3.56)

where the criterion is defined as a given threshold 0 < δ < 1 times the maximal strength
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of connection to other unknowns

ηi = max
k

w(i, k)w(k, i)

aii akk
. (3.57)

Nodes with ηi below a certain threshold are considered as isolated and are not aggregated.
The advantage of this definition is, that there is no aggregation over strong discontinuities
in the coefficients of the PDE.

The strongly connected unknowns are clustered with a greedy algorithm, which also
tries to build round aggregates and merge small clusters to preserve the sparsity pattern
also on the coarser level and thus minimise the fill-in. The coarsening is repeated
recursively with the coarser matrix until the number of unknowns is small enough or the
coarsening rate falls below a certain threshold.

In the solution process the AMG is used as a preconditioner for a BiCGstab-solver. A
V-cycle is performed on the multigrid hierarchy with piecewise constant restriction and
prolongation between the grid levels. The coarse grid correction is scaled by a factor
ω ≈ 2. Symmetric Gauss-Seidel is used as smoother, and the coarse grid problem is
solved directly with SuperLU (Demmel et al. 1999; Li et al. 1999). This is crucial for
the convergence with matrices from discretisation of elliptic PDE.

The combination of AMG and BiCGstab is expected to have a O(N log(N)) com-
plexity. Napov and Notay 2012 have presented a theory with which they can guarantee
the optimal convergence for a similar agglomeration type AMG. However, they use a
different multigrid cycle (AMLI-γ-cycle with γ > 1) which is more costly. In practice the
ISTL AMG has been found to be quite robust for elliptic problems with heterogeneous
coefficients.

The coarsening and solution phases of ISTL are easy to run in parallel. Communication
is combined into as little messages as possible. Even if there is only one unknown per
processor left, the problem size P can still be considerable on the largest supercomputers
(e.g. up to 1.8 million on the BlueGene/Q type JUQUEEN). A direct solution is not
possible on such large systems and is not efficient in parallel anyhow, an iterative
solution may converge too slowly. If the number of unknowns per process is below a
certain threshold, the ISTL AMG therefore performs a merge to fewer processors. Three
different approaches have been tested:

• accumulate data from all processes to one process at once.

• recursive repartitioning to a smaller number of processes using ParMetis to calculate
a suitable partitioning on the full connectivity graph.

• recursive repartitioning to a smaller number of processes. To calculate the parti-
tioning accumulate a reduced connectivity graph on one process and use Metis.

The first approach obviously only works for a small number of processes. In the second
approach ParMetis tried to allocate a P×P matrix, which for large process numbers is not
feasible. The third approach works, but obviously introduces a P to one communication,
which is a bottleneck.

In a comparison of different algebraic multigrid schemes Mueller and Scheichl 2013
found the ISTL AMG to perform very well.
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3.7. Time Step Control

The reasonable time step size can change considerably during a simulation based on
Richards’ equation. If the boundary conditions change, high non-linearity can require
very small time steps. After a while, as a consequence of the smoothing property of
parabolic partial differential equations, there is hardly any change during one time step,
and an increase is sensible. To optimise the balance between computational speed and
precision an automatic time step control is necessary. Different approaches between
purely heuristic methods and methods based on accurate estimations of the time dis-
cretisation error are possible.

3.7.1. Heuristic Approach

In the simple heuristic approach a time step is reduced, if the Newton algorithm for the
solution of the non-linear systems or the solver for the linear systems in a Newton step
do not converge. A time step is increased if the defect reduction in the first Newton step
is below a certain threshold or if the number of Newton iterations is below a threshold.
This approach is very simple to implement, but not linked to any criteria regarding
numerical precision.

3.7.2. Indicator-based Approach

A time step control should in the optimal case be based on a-posteriori error estimators.
One possibility is the use of embedded methods of different order (e.g. embedded Runge-
Kutta schemes) to estimate the step width (if the solution is regular enough) or with
methods with different step width (extrapolation schemes).

To avoid the overhead of these approaches simple error indicators can be used. For
the Richards’ equation one possibility is to take the maximal change of the saturation
∆Sw in the domain as an indicator for the time step size. If the maximal saturation
change is below a factor β0 times the threshold ∆Swmax it is increased in the next time
step. If it is above the threshold ∆Swmax , the time step is recomputed with a step width
β1 · ∆Sw/∆Swmax (0 < β0 ≤ β1 ≤ 1).

3.8. Hysteresis

If hysteresis is modelled using the modified dependent domain model of Mualem (section
2.3.3.1), the saturation at the new time step Sk+1

w depends on the direction of the
saturation change, which is given by the sign of ψk+1

m −ψk
m and on the stored last position

(ψmrev ,Swrev) where a direction of saturation change was reversed (from imbibition to
drainage or vice versa) in each cells. As a change of the hysteresis branch corresponds to
a non-differentiable switch, problems may occur, if these changes are integrated into the
Newton iteration itself. Thus the test for a possible reversal of the direction of saturation
change is performed after convergence of the Newton scheme. If a reversal occurred in a
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set of cells j, the position (ψmrev,j , Swrev,j) is set to (ψkmj , Sw(ψkmj)) for all affected cells j
and the time step is recalculated. This is iterated if necessary. The iteration converges
usually very fast.

3.9. Dynamic Processes

The model of Ross and Smettem for dynamic processes (section 2.2.5.5) decouples
saturation and potential. Thus it is necessary to store the saturations at the last time
step Swold

and to solve an ordinary differential equation

∂Sw
∂t

=
1

τ
(Sweq(ψm)− Sw) (3.58)

for each cell to calculate the new saturation. Following the suggestion of Ross and
Smettem 2000 the new saturation is calculated as

Sk+1
wi

= Skwi +
(
Sweq(ψmi)− Skwold,i

)
e−∆t/τ . (3.59)

After the time step is accepted, Swold
is overwritten with the new saturation Sk+1

w .

3.10. Interpolation of the Flow Field

For the simulation of solute transport with a finer grid resolution or with particle
tracking it is necessary to provide a flux field at every point of the domain. However, the
cell-centred Finite-Volume scheme only yields the normal fluxes at every face. Raviart-
Thomas elements of order zero (RT0) are used to interpolate the flux field. The RT0-space
is H(div) conforming, i.e. if the normal fluxes for the element are divergence-free, the
interpolated flux field is also divergence-free at every point in space. The RT0 space is
defined as (Raviart and Thomas 1977)

RT0 =
{
v ∈ [L2(Ω)]d : v|e ∈ RT0(e) ∀e ∈ Eh

}
(3.60)

composed of piecewise linear polynomials for each spatial dimension with

RT0(e) = {ai + bi · xi, 0 ≤ i < d, x ∈ e} . (3.61)

The normal fluxes for each face give 2d conditions for the 2d values of the coefficient
vectors a and b can be easily calculated by solving a simple linear equation system for
each element. The flux field is continuous on each face in the normal direction (though
there can be jumps in the transversal components), which is regular enough for most
solute transport models. Even at faces were the conductivity in one element is zero, a
sensible solution is obtained.
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Scalable Solver for Richards’
Equation

The numerical approach described in the last chapter was implemented in the simula-
tion code µϕ (muPhi). C++ is used as programming language, as it combines modern
programming techniques with very good compiler optimisation. A sequential version of
µϕ was developed first, which was later parallelised (section 4.4). The code is keeping
rather strictly to the standard and thus runs on a variety of platforms. It has been
tested on Android, MacOS X, Windows (using Cygwin) and on Linux-systems, from
ordinary Desktop computers up to supercomputers like BlueGene/P and BlueGene/Q.
It compiles on iOS, but as there is no possibility to start command line programs on
iOS, a graphical user interface needs to be developed before it can be used.

4.1. General Software Design

µϕ is more than a single simulation program. It consists of two parts:

• a library containing functionality for discretisation in space and time, l, input and
output, grid handling and a framework for parameter management including a
default implementation of the parameter handler.

• application programs for specific applications sometimes using specialised param-
eter classes. However, many tasks can be handled with an already very powerful
and flexible default program.

The library defines different types of functionality:

• Discretisation of a PDE in space and time (time control, solver for non-linear
equation systems, assembly of the linear equation systems)

• Grid management (domain definition, iterators, element geometry, connectivity
information)

• Linear Algebra (efficient solution of the linear equation system, handling of vectors
and matrices)

• Parameter Management (input of configuration files, management of hydraulic
functions, storage of material distribution and sub-scale heterogeneity)
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• Time Control (automatic time-step adjustment, management of points of time
which have to be met exactly (for output or boundary condition changes)

• Input/Output (read and write backup files, input of structural parameter fields,
output of data in different file formats)

Throughout the library abstract base classes are used to define interfaces, which
are then realised in derived classes. This usage of virtual functions allows a choice of
parametrisations, grid type, linear solver etc. at run-time. This is important as µϕ was
designed as a software for scientific and teaching applications and it asks too much from
the average user to directly modify the source code.

As the author of this work has previously developed a model for freezing soils based on
a vertex-centred Finite-Volume discretisation (Ippisch 2003) and implemented it with the
toolbox UG (Bastian et al. 1997), the discretisation and non-linear solver part of µϕ are
very much inspired by the numerical procedures part of UG. However, there are important
differences. µϕ is implemented in C++ instead of C and thus can exploit object-oriented
programming techniques more easily. The linear algebra part is completely different,
especially in the parallel version and, most important of all, the discretisation is based
on a new efficient structured grid. The idea of having an own scripting language was
dropped completely and output in the format of popular visualisation tools is used
instead of a proprietary visualisation.

4.2. Grid Implementation

The computational grid is a central part of the program. A grid is understood as a set
of elements which fill a given domain. Its implementation is light weight and tailored
for cell-centred Finite-Volume schemes. The grid provides information about the total
number of elements, about the size of the domain and it also has iterator-like constructs
to traverse all elements of the grid. The element plays a central role. It has not only
a volume and a size, it also provides information about the number of nodes related
to the element (the first node is always the node in the centre of the element and the
other nodes are the nodes in the centre of the adjacent elements), the control volume
faces, which relate two nodes via an interface, and the boundary faces, where boundary
conditions have to be provided. A control volume face has an area and provides the
distance between the cell centres adjacent to the interface, the fraction of this interface
in each of the neighbouring elements and the element local index of the element. Each
node has a globally unique and consecutive index, over which the degrees of freedom are
related to the grid. The class structure of the grid implementation is shown in figure 4.1.

A grid stores only very general information about the grid geometry, the total number
of elements and the number of elements in each direction of Cartesian space. The
geometrical and topological information for every element is calculated on the fly and is
updated during the traversal of the grid with an iterator. The current element to which
the iterator points is stored inside the grid class. Thus the design is not thread-safe and
only one iterator may be used with each grid object simultaneously. The iterator itself
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1

1..(2d+ 1)

1

0..2d

1

0..2d

1

1

SimpleGridClass

. . .

. . .

VarGridClass

. . .

. . .

�interface�

GridClass

. . .

NumElements() virtual Int Dimension(Int direction)

virtual Float Size(Int direction)= 0

virtual Float Area(Int direction)= 0

virtual ElementClass *First()

virtual ElementClass *Next()= 0

ElementClass *Last()

virtual ElementClass *FVFirst()= 0

virtual ElementClass *FVNext()= 0

virtual ElementClass *FLFirst()= 0

virtual ElementClass *FLNext()= 0

virtual ElementClass *ElementFromPosition(Float *position)= 0

virtual ElementClass Interpolate(Float *position)= 0

. . .

ElementClass

. . .

Float Volume()

Float *Size()

Int NumNodes()

Int NumCVF()

Int NumBF()

NodeClass &Node(Int i)

ControlVolumeFaceClass &CVF(Int i)

BoundaryFaceClass &BF(Int i)

. . .

ControlVolumeFaceClass

. . .

Int I()

Int J()

Float weightI()

Float weightJ()

Int Direction()

Int Side()

Float Area()

Float Distance()

. . .

BoundaryFaceClass

. . .

Int Direction()

Int Side()

Float Area()

Int Boundary()

Int Normal()

. . .

NodeClass

. . .

Int Index()

Float *Position()

Int NumBF()

Float Weight()

. . .

Figure 4.1.: UML-diagram of the classes involved in a grid.
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is a pointer returned by the grid method First and incremented by Next. In the current
implementation it just points to the element object held by the grid, but that could be
easily changed to obtain multiple (and thread-safe) iterators. To save computation time,
the grid provides different iterators which generate different amounts of information.
The standard iterator (First, Next) just set the index and position of the centre node,
while the full iterator (FLFirst, FLNext) sets full geometry and topological information
for the element. As the fluxes are continuous at each face, it is sufficient to handle each
face exactly once and the grid also provides an iterator (FVFirst, FVNext), which only
handles the left, back and upper side of each element plus all the boundary faces. The
handled faces have a consecutive numbering. With methods returning the number of
control volume faces (or interior faces) and boundary faces, a simple (and cheap) for

loop can be used to iterate over the faces and handle the different face types.

Grids which are equidistant in each Cartesian direction are handled by the SimpleGridClass,
tensor-product grids by the VarGridClass. During iterator traversal only the informa-
tion which changes between the elements is updated and in the simple grid, most of
the information remains constant. Thus the traversal of tensor-product grids is more
expensive.

4.3. Discretisation Part

Figure 4.2 gives an UML-representation of the discretisation and non-linear solver part
of µϕ. The inexact Newton scheme with line search (algorithm 3.1) for the solution of
non-linear equations is a realisation of a general non-linear solver. During the Newton
iterations a linear equation system has to be assembled. This is done by the one-step
theta time discretisation (section 3.4), which is implemented as one realisation of a
non-linear assembler, and uses itself as a realisation of a linear assembler to calculate the
contributions originating from the spatial discretisation for the two steps of the one-step
theta scheme. For an implicit Euler scheme this is the storage part for the old time and
the storage, flux and source part for the new time (equation 3.22). For a new spatial
discretisation or the simulation of other processes only this linear assembler part needs
to be modified. Besides the Richards’ solver discussed in this work, also a two-phase
flow and a non-isothermal two-phase flow realisation of the TAssembleClass interface have
been implemented. The class also provides methods which are executed at the beginning
and at the end of each time step and a method to initialise the matrix and vector storage
at simulation start-up.

The components of the Jacobian are calculated by numerical differentiation for the
flux, storage and source/sink components of an element and are afterwards accumulated
to the global matrix.

In the sequential version of µϕ the vectors and matrices are stored as AMG_VECTOR and
AMG_MATRIX (compressed row storage) data structures defined by the algebraic multigrid
implementation of Peter Bastian. The simple direct solver for the coarse grid problem
included in the AMG implementation was replaced by a call to SuperLU (Demmel et
al. 1999) and a symmetric Gauss-Seidel preconditioner was added to the AMG imple-
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�interface�

NonLinearAssembleClass

virtual Int Initialize(Vector **,Matrix **)= 0

virtual Int PreProcess(Vector *,Int *)

virtual Int AssembleSolution(Vector *,Int *)= 0

virtual Int AssembleDefect(Vector *,Vector *,Matrix *,Int *)= 0

virtual Int AssembleMatrix(Vector *,Vector *,Vector *,Matrix *,Int *)= 0

virtual Int PostProcess(Vector *,Vector *,Matrix *,Int *)

�interface�

TAssembleClass

virtual Int Initialize(Vector **,Matrix **)= 0

virtual Int AssemblePreProcess(Float,Float,Float,Vector *,Vector *,Vector *,Int *)

virtual Int AssembleInitial(Float,Vector *,Int *)= 0

virtual Int AssembleSolution(Float,Vector *,Int *)= 0

virtual Int AssembleDefect(Float,Float,Float,Vector *,Vector *,Matrix *,Int *)= 0

virtual Int AssembleMatrix(Float,Float,Vector *,Vector *,Vector *,Matrix *,Int *)= 0

virtual Int PostProcess(Float,Float,Float,Vector *,Vector *,Vector *,Float *)

OneStepThetaClass

tAssembler_: TAssembleClass *

nonLinearSolver_: NonLinearSolverClass *

. . .

virtual Int TimePreProcess(Int *)

virtual Int TimeInit(Int *)= 0

virtual Int TimeStep(Int *)= 0

virtual Int TimePostProcess(Int *)

OneStepThetaClass(TAssembleClass *,NonLinearSolverClass *)

. . .

�interface�

NonLinearSolverClass

nlAssembler_: NonLinearAssembleClass *

reduction_: Float

abslimit_: Float

virtual Int PreProcess(Vector *,Int *)

virtual Int Solve(Vector *,Int *)

virtual Int PostProcess(Vector *,Int *)

virtual Int Initialize(NonLinearAssembleClass *,Vector *)

virtual NonLinearSolverClass(Float,Float)

NewtonClass

jacobian_: Matrix

defect_: Vector

correction_: Vector

savedSolution_: Vector

. . .

. . .

RichardsClass

param_: RichardsParamClass *

grid_: GridClass *

. . .

RichardsClass(RichardsParamClass *,GridClass *)

. . .

Figure 4.2.: Class structure of the parameter objects of µϕ.
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mentation. Additionally it is now possible to solve the linear equation system directly
with SuperLU, which is more efficient for smaller 2D problems. For 1D problems direct
elimination with the Thomas-Algorithm is used for the tridiagonal systems.

4.4. Parallelisation

The consequent usage of an abstract grid interface, of element iterators and function-
wrapped access to vectors and matrices made the parallelisation of the code so easy that
it could be realised in a software practical by Felix Heimann. The implementation of a
parallel grid and the switch to a linear algebra subsystem which can handle distributed
vectors and matrices were the two most important things which had to be changed.
Of course there was also a need for parallel file I/O (section 4.5) and for some global
reduction operations to calculate global sums and global maxima, but these were minor
issues. Most of the higher level constructs (non-linear solver, onestep-theta scheme,
parameter handling, main program) could remain virtually unchanged.

4.4.1. Parallel Grid

The parallelisation uses a domain decomposition approach. Each process is responsible
for a rectangular subdomain. To be able to assemble whole matrix lines, each process
needs to store one layer of overlap, which corresponds to all elements with a common
face with the elements it owns. A node of the parallel grid thus has, besides the globally
unique index, also a local index which is consecutive over all elements of each process,
and a partition type, which is either PT_INTERIOR if the process owns the element to which
the node belongs, PT_COPY if the process has a copy in the overlap and PT_FOREIGN if the
node is not available on the process. The spatial coordinates of the node are always
global coordinates. Finally the grid also provides a consecutive index for the interior
elements, which is needed in file operations. Information about the global, local and
interior domain size and number of elements (total and in each space direction) can also
be accessed via the grid interface. The element iterator implementation was adjusted to
traverse only the local elements.

4.4.2. Dune-ISTL

For the parallel linear algebra DUNE-ISTL is used in µϕ. It is open source, developed
in the work group in which also the author works, and provides distributed vectors and
matrices as well as powerful iterative linear solvers, in particular a parallel algebraic
multigrid preconditioner, which is the successor of the AMG used in the sequential
version (section 3.6). ISTL provides different matrix types. For this work a matrix of
type BCRSMatrix<Dune::FieldMatrix<Float,1,1>> is used to store the Jacobian and vectors
of type Dune::BlockVector<Dune::FieldVector<Float,1>> for the unknowns and the right-
hand side of the linear equation system.
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A parallel linear solver needs to exchange information to update the copied values in the
overlap and to calculate vector norms and dot products. For this purpose ISTL provides
communication objects. An object of type Dune::OwnerOverlapCopyCommunication<long

long,long long> is used to exchange data between processes with common degrees. The
data type long long is used for indices to allow for the huge amount of unknowns possible
with modern super computers. Access to the communication object is provided by the
grid interface so that other parts of µϕ can use the communication infrastructure to
exchange data (e.g. concerning structure) for the overlap.

There is also a wrapper for MPI, defined in DUNE-Common, providing standard
communications like send, receive, reduce and broadcast. Thus parallel communication
can be performed without touching standard MPI functions.

4.5. Parameter Management

The simulation of water flow in heterogeneous soils requires the handling of a number
of mostly space and sometimes also time-dependent parameters, like soil water char-
acteristics, relative permeability function, porosity etc. All parameter functions are
encapsulated in an object of a parameter class. The methods are defined via an ab-
stract base class, and different parameter functions and distributions can thus be easily
implemented and chosen at run-time. As many parameter functions are expensive to
evaluate anyhow, this is not a big performance burden. The class structure is given in
figure 4.3. A default implementation is provided in the library. New parameter classes
can be derived from the default implementation. Thus it is enough to just redefine
methods, which need to be changed.

4.5.1. Hydraulic Properties

Heterogeneous materials are realised via two spatially distributed fields. One field stores
an index for a field with hydraulic parameter function objects, the other a scaling value
for Miller similarity scaling (section 2.3.4). The resolution for each field can be different
and does not have to match the grid resolution as scaling value and material index are
sampled from the respective field at the element centre. The input of the material and
parameter field is described in section 4.6.4. At run-time the material is either accessed
via the coordinates (sequential version) or via the element index (parallel version).

The hydraulic functions themselves are objects derived from the base class HydrParamClass
(figure 4.4). The base class already handles the entry pressure and the calculation of
the actual saturation from the effective saturation (section 2.3.1). The derived classes
only need to implement virtual functions to calculate effective saturation and relative
permeability from matric potential. There exists a variety of implementations (some
versions implemented for single research projects are not listed here):

• VanGenuchtenParamClass: van Genuchten/Mualem model)

• ModVanGenuchtenParamClass: modified van Genuchten/Mualem model
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RichardsClass

param_: RichardsParamClass *

grid_: GridClass *

. . .

RichardsClass(RichardsParamClass *,GridClass *)

. . .

�interface�

RichardsParamClass

const Float SOIL_TEMPERATURE

virtual Float Porosity(Float *)= 0

virtual Float DensityWater(Float *)

virtual Float ViscosityL(Float *)

virtual Float RelativePermeabilityL(Float *)= 0

virtual Float CapillaryPressure(Float *)

virtual Float Saturation(Float *)= 0

virtual Int AbsolutePermeability(Float *,Float *)= 0

virtual Int Gravity(Float *)

virtual Float Temperature(Float *)

virtual Float Pressure(Float *)= 0

virtual Float Source(Float *)

virtual Float Material(Float *)

virtual Float Material(Int index)= 0

virtual Float InitialValue(Float *)= 0

virtual Int BoundaryCondition(Float *,Int,Float,Float *,Int *)= 0

RichardsParamClass()

RichardsParamClass(Float temperature)

DefaultRichardsParamClass

materialParameter_: std::vector<unsigned char>

scalingParameter_: std::vector<Float>

sourceIntensity_: std::vector<unsigned char>

rootDens_: std::vector<unsigned char>

hydrPar_: std::vector<HydrParamClass *>

porosity_: std::vector<Float>

absPerm_: std::vector<Float>

boundCond_: std::vector<BoundaryConditionType>

. . .

virtual void PlotHydraulicFunctions(map<string,string> &,const string &)

virtual void SetHydraulicParameters(map<string,string> &)

virtual void ReadBoundaryConditions(map<string,string> &)

virtual void ReadStructure(INT,ParallelGridClass *,map<string, string> &)

. . .

ComplexBoundParamClass

. . .

. . .

DynamicRichardsParamClass

. . .

. . .

RootCompensationParamClass

. . .

. . .

. . .

Figure 4.3.: Class structure of the parameter management of µϕ.
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• RegModVanGenuchtenParamClass a modified van Genuchten/Mualem model implemen-
tation where the non-differentiable edge is smoothed

• MultVanGenuchtenParamClass: multiple van Genuchten/Mualem model

• ModMultVanGenuchtenParamClass: modified multiple van Genuchten/Mualem model

• BrooksCoreyParamClass: Brooks-Corey/Mualem model

• RegBrooksCoreyParamClass Brooks-Corey/Mualem model implementation where the
non-differentiable edge is smoothed

• HydrSplineClass: cubic Hermite-Splines for both the soil water characteristic and
the relative permeability curve

4.5.2. Interpolation Tables

As the evaluation of some of the parametrisation can be quite costly, it makes sense
to sacrifice some memory and use interpolation tables. Interpolation is available with
cubic Hermite splines and with linear splines. To obtain the same precision of the
approximation, linear splines need more memory for the interpolation tables, but are
also faster to evaluate. Thus if enough memory is available the use of linear splines is
recommended and can improve the total speed of calculation up to a factor of two.

Interpolation is fastest with equidistant intervals, as the coefficient index in the inter-
polation table can then be calculated directly. The functions which need to be evaluated
most frequently are Sw(ψm) and kr(ψm). As the curves can be highly non-linear, the
choice of an appropriate interval ∆ψm for the setup of the tables is crucial for precision.
It is chosen as

∆ψ = min
2≤i<( 1−∆Sw

∆Sw
)
(ψm(i ·∆Sw)− ψm((i− 1) ·∆Sw)) (4.1)

The limits of the interpolation interval [ψlow : ψup] and the number of interpolation points
n are given by

ψup = max (0, ψm0)

ψlow = max (ψmin, ψup − nmax ·∆ψ)

n = min

(
nmax,

ψup − ψlow

∆ψ

)
, (4.2)

where ψm0 is the air entry value of the material. The required saturation resolution
∆Sw, the maximal number of interpolation intervals nmax and the minimal interpolation
potential ψmin are user defined parameters. Below ψlow the hydraulic functions are still
evaluated directly. Compared to approaches where the user directly specifies a potential
interval ∆ψ, like used for example in Hydrus (Simunek et al. 1997), this provides a more
reliable error control. At the moment this is only used for the setup of linear interpolation
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DefaultRichardsParamClass

hydrPar_: std::vector<HydrParamClass *>

. . .

. . .

HydrParamClass

hydrPar_: std::vector<HydrParamClass *>

. . .

Float Sl(Float psiM)

Float KRelLpC(Float psiM)

virtual Float EffSl(Float psiM)

virtual Float EffKRelLpC(Float psiM)

. . .

HydrLinearInterpolationClass

hydrPar_: std::vector<HydrParamClass *>

. . .

. . .

HydrCubicInterpolationClass

hydrPar_: std::vector<HydrParamClass *>

. . .

. . .

VanGenuchtenParamClass

. . .

. . .

BrooksCoreyParamClass

. . .

. . .

HydrSplineClass

. . .

. . .

. . .

Figure 4.4.: Class structure of the hydraulic functions objects.
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tables. For cubic interpolation tables the interval [ψup : ψmin] is just divided into (nmax

intervals.

To use the interpolation tables it is enough to pass an initialised hydraulic parameter
object to the interpolation object. The interpolation table takes care of the hydraulic
parameter object as it is still needed below ψlow. Interpolation tables are a realisation of
HydrParamClass (figure 4.4) and thus can be directly used as hydraulic parameter object.

4.6. File I/O

Files are used to control the program’s behaviour, to provide structural information and
material parameters and to store results. They also are the main user interface to a
scientific simulation code like µϕ. Thus they are a critical part of the software design.

4.6.1. Parameter files

A complex numerical model like µϕ has a lot of control parameters like the domain
size, the element width (which may be vectorial in case of tensor product grids), conver-
gence limits and limits for the maximal amount of non-linear iterations or time steps,
parameters for time step control, parameters describing hydraulic functions and struc-
tural patterns, root water uptake etc. The implementation of new functionality always
also comes with new parameters. Thus the file format needs to be flexible and easy to
comprehend.

While XML-based formats are easy to read by machines, they are less obvious and
a bit tedious for human users. For µϕ thus a file format based on a keyword value
principle was selected. The first entry in every line is always either a keyword identifying
the type of the entry or the hash sign # marking a comment. The rest of the line is a
string which is parsed when the entry is used. All key value pairs are stored in a map
of type std::map<std::string,std::string>. There is a helper function ReadParameterFile

and a function template GetValue<T> to extract parameters of different data types (string,
bool, double, int, vectors). This also ensures that a type-safe parsing is performed. The
adding of new parameters is trivial, as this only requires the addition of a matching call
to GetValue to extract the value from the parameter map.

For the storage of boundary conditions and for the element width vectors of tensor
product grids there are separate files as both might be used in combination with several
parameter files. The latter has a very simple format. In the first line just the d numbers
of elements in each space direction is given, in the next d lines follow a matching number
of element width. Comment lines are allowed and are again marked by a hash mark. It
is checked by the constructor of the tensor-product grid that the domain size resulting
from the sum of the element widths is equal to the total domain size. The name of the
grid file is specified given in the main input file (of course in the keyword/value format).
For parallel computations the content of the main input file, grid file and boundary
condition file is just read by the rank zero process and broadcasted to all other processes.
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sp_units sih_units si_units

time h s s
potential cm m Pa
length cm m m
flux rates cm/h m/s kg / m2 s
conductivity cm/h m/s m/s
temperature K K K

Table 4.1.: Different unit systems available in µϕ.

4.6.2. Boundary Conditions

There are different types of input formats for boundary conditions dependent on the
application. In the ordinary boundary condition file the first line contains the number
of boundary conditions and the following lines contain a space separated list of time,
lower boundary condition type and values (if necessary) and upper boundary condition
type and values. For the parallel version at the moment only this type of input format
is supported. At all other boundaries no-flow boundary conditions are used.

For the sequential version and for 2D simulations only there is a more flexible input
format, where for all sides of the domain different boundary conditions can be specified
for arbitrary sub-intervals. This variety was easily implemented by a parameter class,
derived from the default implementation, where the (virtual) method for the input of
boundary conditions and the method which is called by the discretisation to obtain the
boundary conditions are overloaded.

4.6.3. Unit System

Many parameters have units attached. Unfortunately in petrol engineering, civil engi-
neering, soil physics and hydrology different unit systems are common. While in soil
physics matric potential is measured in centimetre, in civil engineering capillary pressure
is given in Pascal. Saturated hydraulic conductivity is given in metres per second or
centimetres per hour . . .

To handle this problem a switchable unit system was introduced. Internally µϕ always
uses SI-units. All parameters, boundary condition values and results are multiplied on
input or output by conversion factors provided by a global object UNITS of class Units.
The unit system to be used can be chosen by a parameter in the main input file. A
different unit system thus can be created by adding a few lines to the Units class. Three
different unit systems are predefined (table 4.1).

4.6.4. Material Files

For 2D simulations one of the simplest ways to specify a heterogeneous structure is by
a grey-scale image, where every grey value corresponds to a different material. In µϕ
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TIFF-images are used for this purpose, and the corresponding material properties are
given in the main parameter file for a stated number of materials (up to 256). For each
material a different parametrisation type and the necessary parameters can be given as
well as the grey value for which the hydraulic function should be used. For sub-scale
heterogeneity, which is represented by Miller similarity, a second image is used and the
scaling parameter η is calculated from the grey value k and a given standard deviation
σ as

η = exp

(
σ · k − 128

128

)
. (4.3)

For 3D simulations the ddd file format of the Quantim library (Vogel 2008) is used,
which itself is a 3D generalisation of the TIFF format. Quantim is a free library for
scientific image processing and specialised on post-processing of porous media data. Thus
it is often already known to potential users.

The structures for large-scale parallel simulations can get much larger than the memory
of a single compute node, especially with low-memory platforms like the BlueGene/P
and /Q. Thus parallel file input is necessary for the material and scaling parameter files.
One rather obvious candidate is parallel HDF5. It is a common library, available on
many different operating systems and supports the parallel input of so-called hyperslabs.
Each process just reads the data block relevant for the part of the domain it owns. The
ISTL communication object is then used to exchange the data for the overlap. In the
parallel version, the scaling parameter is stored directly as float and not as grey value
and converted. Additionally parallel output with the SIONlib (Frings et al. 2009; Frings
2009–2013) has been implemented. A comparison of the obtained transfer rates during
input is given in section 12.1.1.5.

4.6.5. Results

Some results produced by the simulation are simple scalar values, like the flux or the
cumulative flow over the boundaries. Other results are complete spatial fields of matric
potential, volumetric water content or flux density vector and can be very large (up to
several Terabyte). The sequential version of µϕ supports output in a format suitable for
the Open Visualization Data Explorer of IBM, the vtr-format of ParaView and an own
(simple) binary file format. The parallel version supports output based on HDF5 and
SIONlib. Two different versions of the HDF5-output have been implemented:

• Output using the hyperslab concept to write a three-dimensional structure, which
can be directly used by other programs like ParaView. This requires a reordering
of the data from all processes during the write operation. This is suitable for small
to mid-size clusters.

• Output into a single flat vector, where each process writes its data as a large con-
tiguous block. Reordering can be performed afterwards on high-memory sequential
computers. This is faster on large machines.

65



4. Implementation of an Efficient and Scalable Solver for Richards’ Equation

Parallel file output can slow down considerably if more than one process tries to access
the same file system block at the same time. This problem increases with the number of
processes and the size of file system blocks. IBM General Parallel File System (GPFS)
for example uses file system blocks of up to 4 Megabyte. The SIONlib library makes
sure that whole file system blocks are allocated for each process and thus is faster on
large supercomputers. Information about the grid is written into each result file only
by the rank zero process. Utilities to convert the output of the flat HDF5 file format
and from SIONlib files to ordinary HDF5 or parallel vtr file format are part of the µϕ
distribution. A comparison of the obtained transfer rates during output is also given in
section 12.1.1.5.

4.6.6. Backup and Restart

The maximal allowed run-time for a single job is usually limited to some hours up to one
day on large parallel computers. For problems which require a longer total run-time a
backup and restore option is necessary. This is also advantageous as the probability of a
system breakdown increases with the number of cores. µϕ can read matric potential or
saturation output files and use them as initial condition for continuing the calculation.

4.7. Documentation

Good documentation is crucial for the usability and maintainability of software. The
best documentation is a good and logical software design and the use of speaking vari-
able names throughout the code. Comments are added were necessary. A user guide
(Ippisch 2013) is documenting all input files and the keys and values for the program
(concentrating on the sequential version).

4.8. Code Verification

Testing is important but increasingly difficult for complex simulation software.

4.8.1. Global Mass Balance

As the cell-centred Finite-Volume scheme is inherently locally mass conservative, it
should also be globally mass conservative. This can be exploited as an indicator for the
quality of the solution. The total mass is calculated by

Mtot(t
k) =

∑
ei∈E

Mi(U
k), (4.4)

the total cumulative source by

Qcum(tk) =
∑

0<l<k

[
∆tl ·

∑
ei∈E

Qi(Uk)

]
, (4.5)
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material θr θs α n Ks τ

[–] [–] [cm−
1
] [–] [cm/h] [–]

Sand 0.045 0.43 0.15 3.0 41.67 0.5
Loam 0.08 0.43 0.04 1.6 2.083 0.5

Table 4.2.: Material parameters used for the comparison with the analytical solutions
(from Vanderborght et al. 2005).

and the total cumulative flow over the boundary of the domain by

Acum(tk) =
∑

0<l<k

∆tl · ∑
fij∈∂⊗

Aij(Uk)

 (4.6)

The global mass balance error can then be calculated as

∆M(tk) = Mtot(t
k) + Acum(tk) +Qcum(tk)−Mtot(t

0) (4.7)

or for the last time step

∆Mstep(tk) = Mtot(t
k) + Acum(tk) +Qcum(tk)−Mtot(t

k−1). (4.8)

The acceptable mass balance error increases with the number of elements and the size
of the domain. However, if the linear and non-linear equation systems are solved very
precisely, the relative error compared to the largest of the components of the global mass
balance equation should be close enough to machine precision.

4.8.2. Comparison with Analytical Solutions

Problems for which analytical solutions exist can be used to test the validity of a
simulation program. A set of test cases with analytical solutions was published by
Vanderborght et al. 2005 and applied to compare different existing solvers for Richards’
equation and the Convection-Dispersion equation. Two of the test cases have been
used to test µϕ. A special class to calculate the two analytical solutions by numerical
integration for arbitrary hydraulic properties was written. For an easy comparison with
the results published for other models in the paper of Vanderborght et al. 2005 the same
parameters (table 4.2), initial and boundary conditions have been used. The clay was
not included in the simulations as it has a van Genuchten n of 1.1, which produces
non-physically steep relative permeability functions (section 2.3.2.3).

The first test case is based on a Kirchhoff transform of the Buckingham-Darcy equa-
tion. For steady-state condition the equation can be integrated over a range of matric
potentials, resulting in the spatial distance between the matric potentials used as upper
and lower integration boundaries:

∆x = x1 − x0 =

ψ0∫
ψ1

1(
jl

K(ψ)
− ρwg

)dψ. (4.9)
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Figure 4.5.: Analytical solution for the matric potential profile during steady-state flux
into a layered soil and values calculated with µϕ for different discretisation
width with loam above sand (left) and sand above loam (right).

This can be used to calculate profiles of matric potential in layered-soil.
Simulations with an element size of 0.1, 1 and 10 centimetres have been run to study

grid convergence with a flux rate of 0.02833 cm/h. For both cases the numerical solutions
converge to the analytical solution (figure 4.5). The deviation for an element size of 1 cm
is comparable to the models tested by Vanderborght et al. 2005.

A semi-analytical solution of Richards’ equation for infiltration in homogeneous soil
has been published by Philip 1969 based on a travelling wave approximation and also was
used by Vanderborght et al. 2005. In an infinite domain the initial and lower boundary
condition is given by a constant water content θ(x, 0) = θi and the upper boundary
condition is given by an (also constant) water content θ(0, t) = θsur. A transformed
coordinate η is introduced by

η = x− K(θsur)−K(θi)

θsur − θi
. (4.10)

If the derivative of θ to η is assumed to be zero at both ±∞ the following solution can
be obtained by integration:

∆η = η(θ)− η(θa)

=

θa∫
θ

[θsur − θi]Dw(θ)

[K(θsur)−K(θi)] [θ − θi]− [K(θ)−K(θi)] [θsur − θi]
dθ

where θa is a reference water content. According to this solution, the shape of water
content profiles at the infiltration front should not change over time, only their position.
If the profiles are plotted relative to a reference water content θa all profiles should lie
on top of each other and match the analytical solution.
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Figure 4.6.: Profiles of volumetric water content during infiltration in a homogeneous
sand with a constant flux rate after 2.4, 4.8 and 7.2 hours for two different
element width (left). Water content profiles plotted relative to the position
where the volumetric water content is equal to 0.1 (right) together with the
semi-analytical solution of Philip.

A flux of 4.167 cm/h was applied to a dry sand with an initial matric potential of
-400 cm. To approximate a semi-infinite profile, gravity flow was used as lower boundary
condition. Profiles after 2.4, 4.8 and 7.2 h calculated with a discretisation width of 0.1
and 1 cm are shown on the left of figure 4.6. A mapping to a reference water content
of 0.1 shows a quick convergence to the semi-analytical solution (figure 4.6, right). All
profiles of a single simulation with given element width overlap perfectly. The results
are in very good agreement with the results published in Vanderborght et al. 2005.
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The hydraulic functions of porous media are often hard to determine from direct mea-
surements. Parameter estimation is a very useful tool to obtain information about the
hydraulic functions fast and reliably from transient measurements. The experiment is
simulated with a model of the system, and the distance between simulated and measured
data is measured by a so-called objective function. The parameters of the model are
then chosen to minimise the objective function. If the model is a non-linear function of
the parameters this is not a trivial problem. So-called global optimisation algorithms
(Vrugt et al. 2004) try to sample the whole parameter space in an intelligent way. Other
algorithms make assumptions over the shape of the hyperplane formed by the objective
function and use approximations to make a quick descent (Bock 1987). While the latter
have a tendency to end up in global minima, especially for ill-conditioned problems, the
former have a complexity which is exponential in the number of parameters to be opti-
mised. This is not feasible if the model is a highly resolved discretisation of a non-linear
partial differential equation. In this study we will thus use iterative algorithms which
use approximations of the Hessian of the objective function. The two most prominent
of these are the Gauss-Newton and the Levenberg-Marquardt algorithm.

5.1. Objective Function

The most common choice for the objective function F (x,y,β) is:

F (x,y) =
1

2
(y − f(x,β))T CYY (y − f(x,β)) , (5.1)

where x is the vector of simulated values, y is the vector of measurements, β is the
vector of parameters, f the vector of measurement functions and CYY is the covariance
matrix of the measurements. In our application the evaluation of f(x,β) requires one
run of a forward model, i.e. one transient water transport simulation. For uncorrelated
measurements CY Y is given by

CY Y,ij =

{
σ−2
i if i = j

0 else
(5.2)

where σ2
i is the variance of measurement i. The objective function then becomes

F (x,y,β) =
1

2

N∑
i=0

(
yi − fi(xi,β)

σi

)2

, (5.3)

the squared sum of weighted residuals.
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5.2. Iterative Methods for Non-linear Least-Squares
Problems

At the minimum of the objective function with respect to the parameters we have

∇βF (x,y,β) = 0. (5.4)

This is a system of non-linear equations with

∂F (x,y,β)

∂βm
=

N∑
i=0

(yi − fi(xi,β))

σ2
i

∂fi(xi,β)

∂βm
. (5.5)

To find the root with Newton’s method we have to solve in each step the linear equation
system

Hk∆βk = ∇βF (x,y,βk), (5.6)

where H is the Hessian of the objective function with

Hk
lm =

∂2F (x,y,βk)

∂βl∂βm
=

∂

∂βl

[
N∑
i=0

(
yi − fi(xi,βk)

)
σ2
i

∂fi(xi,β
k)

∂βm

]
(5.7)

=
N∑
i=0

− 1

σ2
i

∂fi(xi,β
k)

∂βl

∂fi(xi,β
k)

∂βm
+

(
yi − fi(xi,βk)

)
σ2
i

∂2fi(xi,β
k)

∂βl∂βm
. (5.8)

5.2.1. Gauss-Newton Algorithm

In the Gauss-Newton scheme the Hessian is approximated by dropping the last term in
equation 5.8. Thus in each iteration step the linear equation system

Akνk = bk (5.9)

is solved with

Aklm = −
N∑
i=0

1

σ2
i

∂fi(xi,β
k)

∂βl

∂fi(xi,β
k)

∂βm

bkm =
N∑
i=0

(
yi − fi(xi,βk)

)
σ2
i

∂fi(xi,β
k)

∂βm
.

To increase the region of convergence, a line search is used with

βk+1 = βk + λiν
k, λi ∈]0 : 1] (5.10)

with

λi = 2−i, i = {0, ...,max} (5.11)

until a new set of parameters is found for which the objective function is sufficiently
reduced. For each line search step, one run of the forward model is necessary. Close
enough to the solution of the minimisation problem, the Gauss-Newton algorithm should
converge quadratically.
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5.2.2. Levenberg-Marquardt Algorithm

The Gauss-Newton algorithm converges well, if a quadratic function is a good approxima-
tion of the objective function. A direction in which the function is always decreasing is
given by the gradient. The Levenberg-Marquardt (Marquardt 1963) algorithm therefore
is an alternative to using a linear search. If the convergence is very good, the steps are in
the Gauss-Newton direction and quadratic convergence is achieved. If the convergence is
bad, the algorithm moves the search direction toward steepest descent and at the same
time reduces the step size. This is achieved by using a modified matrix A′ with

A′lm = (1 + δlmλ)Alm

where δlm is the Kronecker delta. Thus only the diagonal element is modified. If λ
is very large, the off-diagonal entries can be ignored and the correction will be in the
direction of the gradient and scaled by λ−1. If lambda is very small, the Gauss-Newton
system will be solved. If in a step the objective function is not reduced λ is decreased,
e.g. by a factor of ten, and a new correction is calculated by solving the linear equation
system with the modified matrix. An iteration is terminated if there was a reduction
of the objective function or if the maximal value for λ is reached. After a successful
iteration step λ is always reduced by a given factor (e.g. ten). Algorithm 5.1 describes
a whole Levenberg-Marquardt scheme as described by Press et al. 1992. The algorithm
is terminated if there is no convergence with the maximally allowed λ, if the residual is
small enough, the reduction in the last time step is below a certain threshold or if the
number of iterations is too large.

5.2.3. Assembly of Hessian

The Assembly of the Hessian requires the knowledge of the partial derivatives of the
model values to the different parameters. These derivatives are calculated by numerical
derivative

∂fi(xi,β
k)

∂βm
≈ fi(xi,β

k +∆βmek)− fi(xi,βk)
∆βm

, (5.12)

with increment ∆βm = 10−4 · βk and ek being the k-th Cartesian unit vector. As the
measurement functions fi are all evaluated during the same model run, the number of
additional model runs to assemble the Hessian is equal to the number of parameters (the
run with unmodified parameters is already needed to calculate the objective function).

5.2.4. Solution of linear Problems

If the model does not depend on a certain parameter, the matrix will be singular. With a
non-linear model this can also be a temporary effect depending on the actual parameter
combination. A linear solver thus has to be able to cope with singular matrices and
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Algorithm 5.1: Levenberg-Marquardt algorithm (after Press et al. 1992)

function LevenbergMarquardt(x,y,β0, λ0, λmin, λmax,maxit, εrel, εabs)
β ← β0

λ← λ0

d0 = d = F (x,y,β)
m = 0
repeat

dold = d
assemble matrix A, vector b
A′ ← A
repeat

for (i = 0; i < N ; i = i+ 1) do
A′ii = Aii · (1 + λ)

end for
solve A′ · ν = b
Check(ν, β) . Make ν fulfil the parameter constraints
compute d = F (x,y,β + ν)
if d ≥ dold then

λ = 10 · λ
if λ > λmax then

throw exception
end if

else
λ = min (λ/10, λmin)

end if
until d < dold

β ← β + ν
m = m+ 1

until (d < εreld0) ∨ (|d− dold| < εrel) ∨ (|d− dold| < εabs) ∨ (m ≥ maxit)
if m = maxit then

throw exception
else . algorithm converged

Assemble matrix A
return d,β,A−1 . return residual, parameters and covariance matrix

end if
end function
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return a sensible solution for the non-singular parameters. One possibility is a singular
value decomposition, where the M ×N matrix A is decomposed into

A = UΣVT (5.13)

where U is a unitary M ×M matrix, Σ is a M ×N diagonal matrix and V is a N ×N
unitary matrix. The (non-negative) diagonal values of Σ are called singular values. The
pseudo inverse A+ of A can be calculated from this singular value decomposition as

A+ = VΣ+UT (5.14)

where the pseudo inverse of Σ is obtained by replacing all non-zero diagonal elements
with their reciprocal. With the pseudo inverse it is possible to solve the linear equation
system using only the equations with non-zero singular value. For non-singular matrices
the pseudo inverse of the matrix is identical to the inverse of the matrix. The complexity
of the singular value decomposition is a factor two times higher than the complexity of
Gaussian elimination. This is completely irrelevant as the number of parameters will
always be small.

5.2.5. Covariance Matrix

The uncertainty of the parameters and the correlation between them is indicated by
the covariance matrix of the linearised problem. It is the inverse of the Hessian. An
approximation can be obtained by inverting the approximated Hessian from the Gauss-
Newton scheme or the Levenberg-Marquardt scheme with λ = 0

Cββ = A−1. (5.15)

To obtain a covariance matrix also for singular matrices, again the pseudo inverse is
calculated from the singular value decomposition.

The square root of the reciprocal of the diagonal element gives the standard deviation
of the parameters in the linearised problem. The correlation coefficients

ρij =
Cββ,ij√

Cββ,ii · Cββ,jj
(5.16)

give normalised information about the correlation between individual parameters. If
the correlation coefficient is close to plus or minus one, the parameters are directly
or indirectly proportional. If it is close to zero, there is no correlation between the
parameters.

Covariances, standard deviations and correlation coefficients calculated this way have
to be handled with care as they are the values for an approximation of the linearised
problem. Uncertainties for the non-linear problem can be much larger. However, their
assessment would require e.g. some kind of Monte-Carlo scheme.
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5.2.6. Parameter Constraints

For many of the parameters of a water flow model there are limits in which the parameters
have to be, either due to physical restrictions or due to heuristic knowledge. For example
the saturated hydraulic conductivity has to be a strictly positive number due to physical
reasons and within the range of 10−9 and 10−1 m/s for most materials due to experience.
Sometimes it is also necessary, that some values are in ascending or descending order,
for example the saturations and matric potentials in a spline interpolation.

There is another reason to constrain parameter updates: If the model is only marginally
sensitive to a certain parameter, a huge update will be calculated. This is often the case
in the first steps of the optimisation when the parameter estimate is far away from the
true values. The resulting parameters after such a huge update can result in forward
problems which are very hard to solve, or in situations where other parameters do no
longer have any effect. Thus the maximal change in a parameter is limited to one order
of magnitude.

After calculating the correction in the Gauss-Newton or Levenberg-Marquardt algo-
rithm the correction is first restricted to one order of magnitude. The resulting parameters
are then checked with regard to them being within the range of validity. If this is not the
case the correction is reduced to yield exactly the value at the boundary of the validity
interval. A user definable function is then called, which can perform additional checks.
After all the checks, the new objective function is calculated and the convergence checks
are performed.

5.3. Implementation

The functionality for parameter estimation is directly included into the µϕ library. It
forms a framework for general parameter estimation. The advantage of an own imple-
mentation over the usage of an existing external tool is that it is easier to integrate
additional functionality like ordering constraints or parallel parameter estimation. The
optimisation functionality is implemented both for the sequential and the parallel version
of µϕ.

5.3.1. Object Hierarchy

The central classes of this framework are (figure 5.2)

FitDataClass provides an interface to store experimental data which should be fitted,
together with the type of the measurement, its measurement error, a flag if it should
be included into the optimisation process and the index of this measurement in a
continuous vector of measurement data needed by the optimiser

FitModelClass provides an interface for a model used to generate the model data for
the measurements and for the handling of parameters.
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FitClass provides a general interface for parameters to be optimised and objects of
FitDataClass and FitModelClass need by any optimisation algorithm.

IterativeFitClass implements the common functionality for the iterative optimisa-
tion algorithms. This includes methods to assemble the sensitivity matrix (the
approximated Hessian) and the residuum vector using numerical differentiation,
to calculate the correction from the assembled matrix, calculate the covariance
matrix and a fit method, which starts individual iteration steps and tests for
convergence of the optimisation (algorithm 5.2). It also stores convergence criteria
and parameters for numerical differentiation.

Based on these classes it is only necessary to implement the operations for one iteration
step in the classes LevMarqClass and GaussNewtonClass. This includes the manipulation of
the diagonal elements of the sensitivity matrix by the Levenberg-Marquardt algorithm
or the line search for the Gauss-Newton scheme.

Algorithm 5.2: Generic part of an iterative fitting algorithm

function Fit(x,y,β0,maxit, εrel, εabs)
β ← β0

d0 = d = F (x,y,β)
m = 0
repeat

d = FitStep(dold,x,y,β)
m = m+ 1

until (d < εreld0) ∨ (|d− dold| < εrel) ∨ (|d− dold| < εabs) ∨ (m ≥ maxit)
if m = maxit then

throw exception
else . algorithm converged

Assemble matrix A
return d,β,A−1 . return residual, parameters and covariance matrix

end if
end function

5.3.2. Data Management

A challenge for the implementation of the optimisation code is the management of the
measurement data. For the optimisation algorithm it is only a vector of values with their
standard error. But for the forward model it is also necessary to know at which time
which kind of measurement has to be performed to generate the model value. Both tasks
are handled by the FitDataClass.

One part of this class is the data file reader. Each file starts with a header in which
the number of measurement times and the different measurement types and the relative
or absolute standard error for each measurement are given. The measurement type is
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measurementType

active: bool

type: std::string

value: Float

stdDev: Float

index: Int

�interface�

FitDataClass

virtual OutputSolution = 0

virtual GetNumValues = 0

virtual GetTimes = 0

virtual GetValue = 0

virtual GetMeasurements = 0

virtual GetStdDev = 0

�interface�

FitModelClass

virtual Model = 0

virtual CheckParameter

virtual OutputParameter = 0

virtual GetNumParameter = 0

virtual GetParameter = 0

virtual GetParameters = 0

virtual SetParameter = 0

virtual GetParameterName = 0

virtual LogScale

virtual GetLowerBoundary = 0

virtual SetLowerBoundary = 0

virtual GetUpperBoundary = 0

virtual SetUpperBoundary = 0

FitClass

protected:

fitData_: FitDataClass &

fitModel_: FitModelClass &

chiSqr_: Float

covariance_: Float **

yModel_: std::vector<Float>

residual_: std::vector<Float>

virtual fit = 0;

friend operator<< protected:

virtual AssembleResidual = 0

virtual AssembleCovariance = 0

IterativeFitClass

protected:

relLimit_: Float

absLimit_: Float

maxIterations_: Float

EPS_: Float

INCREMENT_: Float

virtual fit

SetMaxIterations

SetAbsLimit

protected:

virtual Initialize

virtual AssembleSensitivityMatrix

virtual CalculateCorrection

virtual fitStep = 0

AssembleResiduum

AssembleCovariance

virtual CheckParameter

LevMarqClass

lambda_: Float

SetInitialLambda

private:

virtual fitStep

virtual Initialize

InitAssembleSensitivityMatrixParallel

AbortAssembleSensitivityMatrixParallel

AssembleSensitivityMatrixParallel

GaussNewtonClass

private:

virtual fitStep

Figure 5.1.: Class structure of the parameter estimation part.
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just a string, which is interpreted by the the forward model, and the number of different
measurements is automatically derived from the number of white-space separated strings
in the respective line. If the standard error is unknown, the values are a means to rescale
the different measurements and define their relative weight. A standard error of zero
deactivates the whole column of measurements for the parameter estimation process. A
relative error is denoted by the char ’r’ after the value. The header is followed by the
specified number of lines, each containing the time and the measured values. A missing
value is marked by a negative value smaller than −1200, which never occurs in reality.
Comment lines starting with a hash mark can be inserted everywhere.

The class can provide the data in different forms. It can return a continuous vector
of the experimental data and it can return just a vector of measurement times to be
handed to the time control object to assure that the measurement times are exactly
met by the forward model. For each of the measurement times it can return a list of
the measurements which have to be performed together with information if and which
measurement is to be evaluated and at which index of the result vector it has to be
stored.

5.3.3. Model Implementation

From the perspective of the optimisation algorithm the model is just an object with a
method which returns a vector of model results to be compared with the experimental
data, and with methods to get and set the parameters to be estimated and their validity
range. To guarantee this, each model is derived from an abstract base class. The
actual model is mainly a µϕ main program with some additional methods to perform
the measurements at the right time and methods to parse the parameter file and to
handle the parameters. This includes the distinction between values which need to be
estimated and values which are regarded as constant. Nearly every numerical quantity in
an input file can be estimated (except parameters for space and time grid management).
A parameter is marked for optimisation by adding three values after the parameter value
(which then becomes the initial guess): an indicator if the value is to be fitted (0 or
1) and a lower and upper boundary for the value. From this information the model
implementation determines at run-time the number of parameters to be estimated and
provides a vector of the values to the optimisation algorithm. The set function defined in
the interface of the base class then makes sure, that the value in the internal parameter
structure of the forward model can be manipulated by the optimiser. Thus an existing
forward model requires very few changes to be used in the inversion.

5.3.4. Parallelisation

The assembly of the Hessian is easy to parallelise using a master/slave approach. Each of
the runs with a disturbed set of parameters can be executed by a different process. After
all processes have been started and MPI has been initialised, only the master process will
execute the full program. The slave processes wait until they receive a set of parameters
via MPI. Every slave runs the forward model for its set of parameters and sends a vector
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of results to the master. The master assembles the sensitivity matrix, calculates the
parameter updates and the new objective function. It performs the line search or the
tests with increasing values of the Levenberg-Marquardt parameter λ until a reduction
of the objective function has been achieved. During this phase the slaves are idle and
only contribute again during the assembly of the next sensitivity matrix. It is assumed
that there are as many processes as parameters, so load distribution is rather simple and
on shared memory machines load balancing is done by the scheduler.

The process can be sped up and a better exploitation of the available computer power
can be achieved if the matrix is always already assembled during the convergence check.
If the iteration step is accepted, the next step can be performed immediately and the
parallel run-time is the number of iteration steps times the run-time for one run of the
forward model and thus independent of the number of parameters (though the number
of processes required does increase with the number of parameters).

Both varieties have been implemented already for the sequential version of µϕ and
can be chosen be a run-time switch. However, while this approach is sufficient for the
inversion of one-dimensional simulations of experiments with homogeneous material, it is
not appropriate for the simulation of heterogeneous materials. It also limits the number
of parallel processes to the number of parameters and thus cannot even exploit mid-range
clusters. Thus in combination with the parallel version of µϕ, a two-level parallelism
was implemented, where each forward simulation can be a parallel process. The total
number of processes should be an integer multiple of the number of parameters plus one.
To achieve this the MPI_COMM_WORLD communicator is split by colouring. The rank zero
process of the master process group sends the parameters to all slaves and the rank zero
process of the slave process groups send the results back to the rank zero process of the
master process group, which calculates the updates.
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Part II.

Solute Transport in Porous Media
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6. Continuum Scale Component
Transport

The wetting and non-wetting phase of a two-phase system can be composed of many
different components (e.g. nutrients, pesticides, . . . ). In this chapter we want to address
the transport of components (solutes) dissolved in water (solvent) as wetting phase and
ignoring phase change. The mean free path in water is well below typical pore sizes,
thus effects like Knudsen-Diffusion can be ignored. Most aqueous solutions in natural
porous media are dilute, i.e. collisions of dissolved components are mainly with water
molecules and the density of the solution is (almost) the same as the density of water.
The transport of each solute can then be assumed to be independent of the transport
of other solutes and the component transport depends on the phase transport (via the
velocity field) but not vice versa.

6.1. Convection-Dispersion Equation

The transport of solutes in an aqueous dilute solution can be described by the Convection-
Diffusion Equation. In porous media the situation is a bit more complicated. The local
velocities even in a single pore differ depending on the distance to the pore walls. Over
different pores the spreading of flow velocities is even higher. In a near field limit this
leads to stochastic convection, where the initial solute distribution is just propagated with
the different flow velocities. Over time mixing and diffusion will result in an exchange
between the different stream lines and in the far-field limit we get – as a consequence of
the central limit theorem – again a convection-diffusion type equation (Roth 2012). The
velocity for the convective part is given by the average pore water velocity v = j/θw
obtained from the phase transport equations, where j = jw/ρw is the volumetric water
flux density. Due to the additional spreading resulting from different pore scale velocities
diffusion is increased, while due to the blocking influence of the solid matrix it is reduced
compared to the molecular diffusion. The new effective diffusion coefficient is called
dispersion coefficient and the equation is called the Convection-Dispersion Equation
(CDE). As the effects in the direction of water flow and perpendicular to it are different,
the dispersion coefficient is a full tensor. The dispersion tensor depends on the volumetric
water content and also on the pore water velocity. The component transport equation
than has the form

js = jsconv + jsdisp
(6.1)
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with

jsconv = cs · j (6.2)

jsdisp
= −Ds(θw,v)∇cs, (6.3)

where cs is the concentration of solute s and Ds(θw,v) is the dispersion tensor.

6.1.1. Solute Dispersion

The combination of molecular diffusion, pore scale and macro-scale heterogeneity, dif-
fusive mixing and convective mixing results in an increased macroscopic dispersion
coefficient. This coefficient is a full tensor, which is symmetric with the main directions
parallel (longitudinal) to and perpendicular (transversal) to the direction of water flow.
According to Bear 1961 and Scheidegger 1961 it can be written as

Dsij = [λl − λt]
vivj
||v||2

+ [λt||vw||2 +Dseff
(θw)] δij (6.4)

The velocity dependent part is caused by hydromechanic dispersion. Dseff
(θw) is the

part resulting from molecular diffusion. For the longitudinal dispersivity λl and the
transversal dispersivity λt the condition λl ≥ λt holds. As the dispersivities have the
dimension of a length and as they represent sub-scale features, they are smaller than the
length scale at which the spatial heterogeneity of the soil is resolved. Thus if the spatial
resolution is high and the flow velocity not too large, molecular diffusion is the dominant
process.

Different models exist for the water content dependent reduction of the diffusion
coefficient Dseff

(θw) by the solute matrix. A common feature of all these models is that
the diffusion coefficient at saturation is given by Φ4/3Ds,m, where Ds,m is the molecular
diffusion coefficient for solute s in free water. Two popular parametrisations for the
shape below saturation are given by the models of Millington 1959

Dseff
(θw) =

θ
10/3
w

Φ2
Ds,m (6.5)

and Millington and Quirk 1961

Dseff
(θw) =

θ2
w

Φ2/3
Ds,m, (6.6)

also known as the first and second Millington-Quirk model.

6.2. Solute Adsorption

Hardly any solute is transported in a porous medium without some interaction with the
solid matrix. A common mechanism is the adsorption of a solute to the surface of the
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solid phase. There are different binding mechanisms from van der Waals forces over
electrical charges to weak chemical bonding.

Macroscopically adsorption is described by sorption isotherms (Moore 1990). They are
relations between the solute concentration in the liquid phase and the mass or amount
of substance of adsorbed solute. The easiest sorption isotherm is a linear relation. It
assumes, that there is an unlimited amount of sorption sites, where each binding has the
same energy. Thus the amount of adsorbed solute only depends on the concentration
in the fluid phase and a material parameter characterising the intensity of the binding.
These assumptions are nearly always true at low concentrations.

cssorb
= Kscs (6.7)

where Ks is the sorption parameter. The molar density of adsorbed solute is then given
by

νssorb
= ρbcssorb

= ρbKscs (6.8)

where ρb is the bulk density of the soil, i.e. the mass of solid phase per volume of soil.
For linear adsorption

θwcs + ρbcssorb
= θwcs + ρbKscs =

(
1 +

ρbKs

θw

)
θwcs (6.9)

where the dimensionless term R = 1 + ρbKs
θw

is called retardation factor. The solution
of the pure convection equation for linear sorption thus is the same as without sorption
but with a time scale stretched by the factor R.

If the number of sorption sites is limited or the sorption sites have a different energy
(which is always true at high-enough solute concentrations), the sorption isotherm gets
non-linear. Two popular models are

Freundlich Isotherm
cssorb

= KF c
n
s

assumes that the energy of the adsorption sites decreases logarithmically

Langmuir Isotherm

cssorb
=
KLcmaxcs
1 +KLcs

assumes that adsorption occurs only in a mono-molecular layer with a limited
number of sorption sites which all have the same energy, and that there is no
interaction between neighbouring sorption sites.

The Convection-Dispersion equation including adsorption can be written as

∂ [θwcs + ρbcssorb
(cs)]

∂t
+∇ · (csj −D(θw)∇cs) + rs = 0 (6.10)
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7. Numerical Solution of the
Convection-Diffusion Equation

In this chapter we want to develop a numerical solution approach for the convection-
dispersion equation. As the intended resolution is about 1 centimetre, the dispersivity
is nearly of the same order as the molecular diffusion coefficient. Thus the error in only
using a scalar diffusion coefficient is acceptable. The equation to solve is then given by

∂(θwcs)

∂t
+∇ · [cs · j −Ds(θw)∇cs] + rs = 0 (7.1)

The second model of Millington and Quirk (Millington and Quirk 1961) is used for the
dependency of the diffusion coefficient on volumetric water content.

7.1. Classification of the Equation

To determine the type of the transient convection dispersion equation it is again necessary
to transform it. Using product and chain rules one obtains:

−Ds(θw) · ∂
2cs
∂x2

+ θw ·
∂cs
∂t

+

(
j − ∂Ds(θw)

∂x

)
· ∂cs
∂x

+

(
∂j

∂x
+
∂θw
∂t

)
· cs + rs = 0. (7.2)

Inserting the Millington and Quirk law one obtains:

−Ds(θw) · ∂
2cs
∂x2

+θw ·
∂cs
∂t

+

(
j − 2θwDm

Φ2/3
· ∂θw
∂x

)
· ∂cs
∂x

+

(
∂j

∂x
+
∂θw
∂t

)
·cs+rs = 0. (7.3)

As with Richards’ equation we again get a zero determinant

det

(
−Ds(θw) 0
0 0

)
= 0 (7.4)

and the additional rank condition

Rank

[
−Ds(θw) 0

(
j − 2θwDm

Φ2/3 · ∂θw∂x
)

0 0 θw

]
= 2. (7.5)

In contrast to Richards’ equation the transient convection diffusion equation is a linear
partial differential equation as all coefficients only depend on properties of the flow field,
the porous medium and the diffusion coefficient, but not on solute concentration. There
are two interesting features:
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C(x)

i− 2 i− 1 i i+ 1

evolve−→

I II

xi− 1
2
xi+ 1

2

a

a·τ h−a·τ

cell i

Figure 7.1.: REA principle: A piecewise polynomial function is reconstructed from the
average concentration values (left), propagated and averaged again (right).

• A decrease in water content in the direction of flow increases the apparent flow
velocity.

• A positive divergence of the flux field (a net source of water) acts like an increase of
the water content. There is a dilution of the solute and a decrease in concentration.
This marks the influence of sources or sinks for water only.

Like Richards’ equation the CDE can get effectively hyperbolic on coarse grids. However,
as the diffusion coefficient for solutes in water is rather small, this is much more probable.
The grid Peclet number hv

2D
in this case is

h ·
(
j − 2θwDs,m

Φ2/3 · ∂θw
∂x

)
2Ds(θw)

. (7.6)

7.2. Spatial Discretisation

The discretisation is based on the assumption that convection-dominated flow is the rule
and not the exception. Many different approaches are possible to solve the convection
diffusion equation e.g. Streamline-Diffusion Finite-Elements (Brooks and Hughes 1982),
Discontinuous-Galerkin schemes (Rivière 2008; Di Pietro and Ern 2012) and variations
of methods tracking characteristics like the Modified Method of Characteristics (Douglas
and Russell 1982), ELLAM (Binning and Celia 1996) or particle tracking (Bechtold et al.
2011). One drawback of many higher-order schemes is the occurrence of oscillations at
sharp fronts, which due to the Satz of Godunov is unavoidable for linear methods which
are more than first-order accurate (Leveque 2002).

A simple and monotonicity-preserving higher-order method for the solution of a first
order hyperbolic PDE are Godunov methods in combination with a slope limiter. Go-
dunov methods are based on the reconstruct, evolve, average (REA) principle (figure
7.1). A piecewise polynomial function is reconstructed from the cell averages, propagated
with the velocity field, and the resulting concentration distribution is averaged over each
element to calculate the new average concentrations. A piecewise constant reconstruction
results in first-order full-upwind schemes. Second-order correct methods are obtained
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with a piecewise linear reconstruction. Different choices for the slope of the recon-
structed linear function in each element lead to different discretisation schemes (Fromm,
Lax-Wendroff, Beam-Warming). Monotonicity-preserving methods are obtained by the
application of slope-limiters, which select the slope depending on the current solution.
This makes the method non-linear and thus circumvents the Satz of Godunov.

As a Godunov method can be understood as a special kind of Finite-Volume scheme,
the discretisation of the equation follows the same approach as described in section 3.3.1
yielding equation 3.22. Using C for the average solute concentration in the liquid phase,
the storage, flux and source terms are given by:

Mi(C) = Ci · θwi · Vi (7.7)

Aij(C) = Js(C) · nj · Aij (7.8)

Qi(C) = Rsi · Vi (7.9)

The numerical flux function Js(C) = Js,diff(Ci, Cj)+Js,conv(C) consists of a convection
and a diffusion part. Due to the piecewise linear reconstruction, the convection part can
depend on the concentration in more than two cells. The diffusion part is given (as for
water flux) by a difference quotient multiplied with a weighted harmonic mean of the
two diffusion coefficients:

Js,diff(Ci, Cj) = −(hi + hj)DiDj

hjDi + hiDj

· Ci − Cj
(hi+hj)

2

(7.10)

As the diffusion coefficient does not depend on the concentration, no linearisation and
stabilisation are necessary for the diffusive part. Due to the central-difference quotient
this approximation is second-order accurate in space.

In an REA approach the numerical flux function for the convective part Js,conv(C) is
given by

Js,conv(C) = j · Ci,i+1, (7.11)

where j is the volumetric water flux density and Ci,i+1 can be calculated from the REA
approximation (Leveque 2002):

Ck+1
i,i+1 =

{
Ck
i + 1

2

(
h− vτ k

)
· σki if v ≥ 0

Ck
i+1 − 1

2

(
h+ vτ k

)
· σki+1 if v < 0

(7.12)

with σki and σki+1 being the slopes of the reconstructed linear function in element i and
i+ 1, h the (equidistant) grid spacing, v = j/θ the pore water velocity and τ k the time
step.

In transient flow situations, however, the velocity v changes in space and time. Even
in the RT0 reconstruction used in this work it is already a linear function in space. Thus
the determination of the correct propagation for the REA approach is complicated in
itself.
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7. Numerical Solution of the Convection-Diffusion Equation

In this work, we thus use a kind of MUSCL (monotonic upstream-centred scheme for
conservation laws) approach (Leveque 2002) for the semi-discretisation of the hyperbolic
part in space. The upstream concentration at the interface is reconstructed using a
piecewise linear function

Ci+1/2 =

{
Ci + hi

2
· σ(C,h, i− 1, i, i+ 1) if jwi+1/2

≥ 0

Ci+1 − hi+1

2
· σ(C,h, i, i+ 1, i+ 2) if jwi+1/2

< 0
. (7.13)

The indices of the concentrations and element width relevant for the calculation of the
slope depend on the flow direction.

The concentration at the interface is then propagated with the flux density ji+1/2

normal to the interface

Js,conv(C) = ji+1/2 · Ci+1/2. (7.14)

In contrast to the pore water velocity the flux density is steady even over the interface
between elements with different volumetric water content.

To prevent oscillations a minmod slope limiter is used to calculate σj. The minmod
function is defined as (Leveque 2002)

minmod(a, b) =


a if |a| ≤ |b| and a · b > 0

b if |b| < |a| and a · b > 0

0 if a · b < 0 (i. e. different sign)

(7.15)

The slope can now be calculated from the concentrations at both sides of the interface
and the concentration of the next upstream element. The generalisation to unstructured
grids follows the suggestion of Leveque 2002:

σ(C,h, l, c, r) = σ̃(C,h, r, c) ·minmod

(
1,
σ̃(C,h, r, c)

σ̃(C,h, c, l)

)
(7.16)

with σ̃(C,h, i, j) =
Ci − Cj

(hi + hj)/2

As for the calculation of the slopes the neighbour after next is needed, this approach
cannot be used close to the domain boundaries. Where it is not applicable, a full-upwind
scheme is used.

7.3. Initial and Boundary Conditions

In contrast to Richards’ equation, due to the linear nature of the convection-diffusion
equation the initial and boundary conditions are rather simple. The concentration is given
as initial condition. For the convection part boundary conditions are only to be given at
inflow boundaries. As the flux is calculated as the flux density (which does not depend
on the concentration) times concentration, Dirichlet and Neumann boundary conditions
are equivalent. For the diffusive part Dirichlet or Neumann boundary conditions have
to be given at all boundaries.
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7.4. Time Discretisation

A one-step Θ scheme with Θ = 0, i.e. an explicit Euler scheme is used for the time
discretisation. The linear system is given by

Mi(C
k+1) =Mi(C

k)− τ k ·

[
2d∑
j=0

Aij(Ck) +Qi(Ck)

]
. (7.17)

As the flux functions and the sink terms only depend on the current solution and all
equations are linear, the new concentration can be directly calculated without solution
of a linear equation system.

The discretisation is first-order in time and second-order in space. To guarantee
stability a CFL-condition has to be observed. For one-dimensional pure convection with
a constant velocity v the CFL-condition is given by:

Courant =
v ·∆t
h

=
j ·∆t
θwh

≤ 1 (7.18)

If diffusion is acting as well with a constant diffusion coefficient D, one can show that for
the diagonal entry of the matrix to be positive (and thus the matrix to be an M-matrix)
the restriction becomes

∆t

(
j

θwh
+

2D

h2

)
≤ 1 (7.19)

For this work we used the formulation

max
(
|ji−1/2|, |ji+1/2|

)
hi

+
2Di

h2
i

≤ θwi
∆t

. (7.20)

For two- and three-dimensional simulations the term on the left was summed over all
directions. With this time step restriction no oscillations occurred, while a slightly larger
time step resulted in clearly detectable extrema.

Probably an even better criterion would be:

max
(
0,−ji−1/2

)
+ max

(
0, ji+1/2

)
+

2Di−1/2

hi−1 + hi
+

2Di+1/2

hi + hi+1

≤ θwihi
∆t

(7.21)

where due to the upwinding only fluxes out of the element contribute to the restriction.
However, as the use of slope limiters produces a complicated relation between Ci and
the flux out of the element, both criteria are approximations anyhow.

For diffusion-dominated flow on very fine grids the time step can get prohibitively
small due to the h2 dependency of the time step condition for diffusion. For diffusion
dominated flow thus an implicit time discretisation with central difference quotients for
diffusion and convection is the method of choice, as it is stable and has no time step
restriction.
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7. Numerical Solution of the Convection-Diffusion Equation

7.5. Sorption

Linear sorption can easily be integrated into the discretised form by changing the storage
term to

Mi(C) = (θwi + ρbiKsi) · Ci · Vi (7.22)

For non-linear sorption isotherms we get a non-linear partial differential equation with
the non-linearity only on the time derivative. Thus it is sufficient to solve one additional
scalar non-linear equation for each grid element. If a Langmuir isotherm is used, the
storage term is given by

Mi(C) =

(
θwCi + ρbi

KLicmaxiCi
1 +KLiCi

)
· Vi (7.23)

With the explicit time discretisation we can calculate

Mk+1
i = Mk

i − τ k ·

[
2d∑
j=0

Akij +Qk
i

]
. (7.24)

We can then rewrite equation 7.23 to(
Mk+1

i

Vi
− θwiCk+1

i

)
·
(
1 +KLiC

k+1
i

)
− ρbiKLicmaxi = 0 (7.25)

which is a quadratic equation in Ck+1
i . As the concentration has to be positive it has

the unique solution

Ck+1
i =

1

2KLiθwi

[(
KLiM

k+1
i − ρbiKLicmaxi − θwi

)
(7.26)

+

√(
ρbiKLicmaxi + θwi −KLiM

k+1
i

)2
+ 4KLiθwiM

k+1
i

]
(7.27)

The storage equation for the Freundlich Isotherm

Mk+1
i = θwiC

k+1
i + ρbiKFi(C

k+1
i )ni (7.28)

is not directly invertible and it is necessary to solve the equation numerically. While
this is not a problem, the Freundlich isotherm is not currently implemented in the solute
transport model.

7.6. Interpolation of Water Content and Flux Densities

If the field of volumetric flux densities and water contents to be used for the calculation of
solute transport stems from a solution of Richards’ equation as described in the previous
chapters, the time step for the solution of water transport and the time step given by
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the CFL-condition will in general not be the same and most often the time step for
solute transport will be smaller. Thus several time steps for solute transport have to be
performed for one time step of water transport. As a cell-centred Finite-Volume scheme,
especially with an explicit time discretisation, is always mass conservative, eventual
errors in the interpolation of water content and flux densities will show only in erroneous
concentrations. One basic requirement which has to be met by a reasonable numerical
solution of solute transport is that a constant concentration propagated in time will
remain constant if there are no sources and sinks for water or solute only.

If an implicit Euler scheme with a locally mass-conservative cell-centred Finite-Volume
scheme is used for the time-discretisation of Richards’ equation, the divergence in the
flux field at the new time is balanced by an increase in the volumetric water content
from θk to θk+1. Let us assume that m sub-time steps are made in the time interval
[tk : tk+1] with a sub-time step size of τ k,l and

m∑
l=0

τ k,l = τ k. (7.29)

For the solute transport water content is linearly interpolated in time

θk,l+1
w = θk,lw + τ k,l · θ

k+1
w − θkw
τ k

(7.30)

with θk,0w = θkw and θk,m+1
w = θk+1

w . The discretised PDE for the solute concentration Ci
in element i is(

Ck,l+1
i θk,l+1

w Vi − Ck,l
i θk,lw Vi

)
+ τ k,l

{
2d∑
j=0

(
Js(C

k,l
i , Ck,l

j ) · nj · Aij
)

+Rk+1
s · Vi

}
= 0.

(7.31)

For a concentration Ck = C constant everywhere and Dirichlet boundary conditions
with CD = C the concentration Ck+1 should be C as well. This is the case if the
discretised evolution equation is fulfilled for a constant concentration. If we assume that
Rk+1
s = C 1

ρw
Rk+1
w with constant water density ρw and sum the right-hand side over all

sub-time steps we get

m∑
l=0

[(
Cθk,l+1

w Vi − Cθk,lw Vi
)

+ τ k,l

{
2d∑
j=0

(Js(C,C)njAij) + C
1

ρw
Rk+1
w Vi

}]
(7.32)

= CVi

m∑
l=0

(
θk,l+1
w − θk,lw

)
+

(
m∑
l=0

τ k,l

)
·

[
2d∑
j=0

(Js(C,C)njAij) + C
1

ρw
Rk+1
w Vi

]
.

(7.33)

The diffusive flux is zero for constant concentration and the concentration at the interface
calculated with the slope limiters by equations 7.13 and 7.16 is C as well. The sum over
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the differences of the water contents is θk,m+1
w − θk,0w = θk+1

w − θkw and the sum over all
sub-time steps is τ k according to equation 7.29. Thus the sum becomes

CVi

m∑
l=0

(
θk,l+1
w − θk,lw

)
+ τ k

[
2d∑
j=0

(
C

1

ρw
Jw(Uk+1

i , Uk+1
j )njAij

)
+ C

1

ρw
Rk+1
w Vi

]

(7.34)

= C

{
Vi
(
θk+1
w − θkw

)
+ τ k

1

ρw

[
2d∑
j=0

(
Jw(Uk+1

i , Uk+1
j )njAij

)
+Rk+1

w Vi

]}
︸ ︷︷ ︸

=0 (discretised PDE for water transport)

(7.35)

= 0. (7.36)

Thus constant concentration remains constant if the water content is linearly interpolated
in time and if the fluxes and sink terms at time tk+1 are used. This also remains true, if
a spatially refined grid is used for the solute transport, as the RT0 field has an element
wise constant divergence and linearly interpolated normal fluxes.
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Scalable Solver for the Convection
Diffusion Equation

Solute transport was also implemented using C++ . In an explicit scheme very few
operations have to be performed for each grid element. Thus efficiency is crucial. The
code therefore uses templates more intensively.

A first parallel version was developed by Peter Bastian solving the CDE on equidistant
grids with a constant diffusion coefficient and porosity. It was originally integrated with
a solver for the stationary groundwater flow equation. As underlying grid it used an
early version of YaspGrid, which is now part of the grid module of DUNE. An input for
a (stationary) flow field, as well as support for spatially varying moisture content and a
moisture dependent diffusion coefficient were added by the author to use results from µϕ
simulations. In this version the whole parameter fields are read (and kept in memory)
by every process. This limits its use to small clusters with ample memory. Linear and
Langmuir-type sorption with material-dependent sorption parameters were also added
to this model, which was used successfully in studies by Michela Rossi (Rossi et al. 2007;
Rossi et al. 2008) at ETH Zürich to simulate solute transport in a highly heterogeneous
sand tank experiment. Special output options were integrated for Beatrice Kulli, who
performed simulations to create virtual experiments used in teaching at ETH Zürich
(Kulli 2004).

To perform large-scale simulations with transient flow fields and moisture distributions
on tensor-product grids, a new version of the solute transport model was developed in
2012. It uses the parallel grid developed for µϕ and the same distributed parallel I/O.
The implementation was mainly done by Jorrit Fahlke. At the moment this massively
parallel version does not support adsorption. However, this can be added very easily.

8.1. Parallelisation

Parallelisation is again carried out with a domain decomposition approach. The parallel
grids developed for water transport can be for the computations (section 4.4.1). The
rectangular sub-domains are chosen to match the sub-domains with which the flow field
was calculated. However, due to the use of slope limiters, a larger overlap of two is
required. As the slope limiter only needs the concentration and the element width of the
second to next element, this element was not added to the general element information.
Rather two methods where added to the grid interface, which return the index and
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element width for elements with an arbitrary distance from the current element in a
specified direction. The same ISTL vector format as for water transport (section 4.4.2)
is used to store concentrations, water contents and porosities. Thus the communication
facilities of DUNE can be used to communicate information for the overlap.

8.2. File I/O

The keyword value based I/O system of µϕ is also used for the parameter file of the
solute transport model. The adjustable units system will be integrated in the near
future. At the moment time is measured in seconds, length in metre and concentration
in mol/m3. In principle it is even possible to use a single input file for both solute and
water transport simulations, as the keywords are compatible.

The normal components of the volumetric flux density and the volumetric water
contents are exchanged between µϕ and the solute transport code by data files. It is
intended to later integrate the models more closely and directly integrate solute transport
into the water transport simulation. Then, after one time step of water transport, solute
transport will be simulated for the same time interval. This will need only very little
extra memory, as the matrix needed for the water transport simulations is not needed
during solute transport and the computed flux field does not need to be stored during
water transport simulations. Thus the additional memory requirement would be in the
order of one additional vector for the solute concentration after the last water time
step. This will result in significant savings in computation time, as the input of flux
fields and water contents can require a significant fraction of the total computation time
(section 12.2.2.2).

The normal volumetric water fluxes are stored by µϕ with all values for one direction
in consecutive fashion. The volumetric water contents are stored in the same file. Each
process of µϕ stores the values for its interior partition (i.e. the value it owns) in a
parallel I/O operation using SIONlib. Output must be performed after every time step,
as the divergence of the fluxes and the change in water content will no longer balance
else. The porosity is written in a separate file at the program start. The solute transport
model initially reads the porosity file, and two files with normal fluxes and water contents
needed for the simulation of the first time interval. Every process in a parallel operation
reads only the values of its interior partition. The overlap values of porosity, water
content and normal fluxes are communicated after the input is finished.

The solute transport model can store the concentration field and the normal compo-
nents of the solute flux at points of time specified in the main input file again using
parallel file I/O with SIONlib. A utility program is used to convert it to a Paraview
readable vtr or a HDF5 file format. It also stores the boundary fluxes after every time
step to obtain breakthrough curves.
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8.3. Optimisation

Two aspects are important to achieve optimal performance on a modern high-performance
CPU: Optimal use of memory bandwidth and exploitation of the SIMD units of the
processor cores.

In each time step water content has to be interpolated. To reduce the necessary
communication, the water content is also interpolated for the overlap. To enable the
compiler to use SIMD instructions for the involved operations, they are performed in
simple loops over the whole index range. Interpolation is done by

FLOAT factorS = (currentIntervalEnd_ -time) / (currentIntervalEnd_ -

currentIntervalStart_);

FLOAT factorE = (time -currentIntervalStart_) / (currentIntervalEnd_ -

currentIntervalStart_);

for (size_t i=0;i<thetaStart_ ->size();++i)

theta_[i] = (* thetaStart_)[i] * factorS + (* thetaEnd_)[i] * factorE;

These operations can easily be performed using SIMD instructions. Additionally the
diffusion coefficient has to be calculated from the Millington-Quirk model as Ds,m · ξ(θw)
where the tortuosity coefficient ξ is given by

ξ(θw) =
θ2
w

Φ2/3
(8.1)

After input the cube root of porosity is calculated using the fast library function cbrt.
Thus the tortuosity coefficient can be calculated from the interpolated water contents by

xi = Dune::SQR(theta/porosity)

where the SQR function calculates the square by multiplication of the argument. This
again is done in a vectorisable loop.

There is also some room for improvement in the calculation of a single time step. Let
us assume that we have two vectors containing the concentration C and the amount of
substance of solute per volume of soil θwiViCi.

As the fluxes are continuous at interfaces, the flux for each interface needs only to be
calculated once. Thus in a loop over all elements using the (old) concentration

• the fluxes are calculated for the interior faces in the direction of the coordinate
axes.

• the face flux is multiplied by the area and the time step, and is added to the total
concentration vector for the elements on both sides of the face

• boundary faces of the element are handled, but only influence the total concentra-
tion in the current element

• the source term times volume is added to the total concentration in the element

At the end of this loop the new total concentration is known. The new solute concen-
tration is calculated from the total concentrations by division with θwiVi (again in a
vectorisable loop) and the procedure can be repeated for the next time step.
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For an explicit finite volume discretisation of a linear PDE memory bandwidth limita-
tion is especially severe, as very few operations have to be performed with each value.
Best exploitation of memory bandwidth and caches can be achieved if all involved data
has the same ordering to avoid jumps between many different cache blocks. While
this is easy to arrange for diffusion coefficients, volumetric moisture contents and con-
centrations it is harder to achieve for the volumetric water flux densities. In the file
produced by µϕ they are stored in as little memory as possible with a storage require-
ment of (Nx + 1) × Ny × Nz floating point values for the flux densities in x-Direction
and Nx × (Ny + 1)×Nz and Nx ×Ny × (Nz + 1) floating point values for the fluxes in
y- and z-direction. However, this format is not optimal for the calculations. It proved
advantageous to store the fluxes in a (Nx + 1)× (Ny + 1)× (Nz + 1) field with the three
components of the flux density required by the same element stored consecutively. Even
as the flux field had to be reordered after import it still saved significant amounts of
computation time.

The water content and flux field for the next time interval of water transport could
also already be preloaded in a multi-threading operation during the calculation and be
exchanged by a pointer swap with the current flow field and water content when they are
needed. Unfortunately, SIONlib seams not to be thread-safe at the moment. However,
the solute transport model already uses pointers to access the arrays for water content
and flux vectors which are rotated to avoid copying.

8.4. Code Verification

A global mass balance is also a very good error indicator for solute transport. However,
due to the explicit time stepping used for solute transport, it is only an indicator for
grave programming errors. Most errors will rather show up in erroneous concentrations
(e.g. negative concentrations or concentrations higher than the initial concentration).

8.4.1. Comparison with Analytical Solutions

An analytical solution for the breakthrough curve of a conservative tracer with a constant
concentration at the inflow boundary of an initially tracer-free homogeneous medium is
given by (Roth 1996):

Cf (t; z)

C0

=
1

2
erfc

(
z/j − t/θw√

4Dt/j2

)
+

1

2
exp

(
jz

θwD

)
erfc

(
z/j + t/θw√

4Dt/j2

)
(8.2)

where erfc(x) = 1−erf(x) is the complimentary error function. The equation has already
been rewritten in terms of the volumetric flux density j. With the CDE given in the
transient form of equation 7.1, the diffusion coefficient D is given by D = Dseff

(θ)/θ.
Cf (t; z) is the flux concentration at depth z at time t. The flux concentration is defined
by Cf = js/j and is the measured quantity in breakthrough experiments.

If the transport is strongly convection-dominated, the second summand of equation 8.2
goes to zero while the first factor of it goes to infinity and the second factor to zero.
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Figure 8.1.: Flux concentration in the outflow at the lower boundary of the domain for
a constant velocity and diffusion coefficients of 0 (top left), 10−8 (bottom
left), 10−7 (top right) and 10−6 m2/s (bottom right).

The analytical solution under these conditions can be calculated more robustly by the
approximation:

Cf (t; z)

C0

=
1

2
erfc

(
z/j − t/θw√

4Dzθw/j3

)
. (8.3)

In the following comparison the second formulation was used if the argument of the
exponential function was jz

θwD
> 100.

Transport with a constant velocity of 1.148 cm/h and diffusion coefficients of 0, 10−8, 10−7

and 10−6 m2/s of a step-function was simulated for a domain of 1 m length with the
transient solute transport model. The time dependent flux concentration in water leaving
the domain at the lower boundary is shown in figure 8.1 together with the respective
analytical solution. In all test cases the solution approaches the analytical solution with
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decreasing mesh size with grid convergence in the picture norm.
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9. Parameter Estimation for
Heterogeneous Soil Samples

The determination of the hydraulic functions of porous media is one of the preconditions
for process simulation. Popular methods for this are the evaporation method (e.g. Peters
and Durner 2008; Schindler et al. 2010) and multi-step outflow experiments (see Van
Dam et al. 1994; Hopmans et al. 2002; Durner and Iden 2011). Recently combinations
of both have been suggested (Schelle et al. 2011) to improve the quality of the estimated
parameters and extend the pressure range for which parameters can be estimated reliably.
A crucial assumption in all these methods is the assumption that the soil sample can be
considered as a homogeneous material. The inverse option of µϕ has also been used to
estimate parameters from evaporation experiments (Schneider et al. 2006) and multi-step
outflow experiments (e.g. Vogel et al. 2008) for homogeneous samples.

If the assumption of homogeneity fails at the scale of typical laboratory samples it is
hard to determine the hydraulic properties of the sub-scale materials. The homogeneous
regions are often too small to take samples of a sufficient size. One possibility to solve
this problem is the use of downscaling approaches, where the parameters of the sub-scale
materials are derived from some proxy information like the density in X-ray tomography
(e.g. Vogel et al. 2002). The direct estimation of the material properties from multi-
step outflow experiments with inverse modelling of the heterogeneous sample would be
an attractive alternative. Without additional knowledge the estimation of distributed
hydraulic properties is a hopeless endeavour as the number of data points is much smaller
than the number of parameters to estimate. However, if we assume that the internal
structure of the sample is known e.g. by X-ray tomography it might be possible to reduce
the problem to the estimation of hydraulic functions for a small number of materials, the
spatial arrangement of which is known. It might even be safe to assume that a material
which is denser in an X-ray tomography has also a smaller hydraulic conductivity. In
this chapter the feasibility of this approach will be examined using a synthetic test case
and experimental data.

9.1. Multi-step Outflow Experiments

In multi-step outflow (MSO) experiments a soil sample is placed on a ceramic plate, a
pressure gradient is applied to the sample and the time evolution of the outflow, the
matric potential and sometimes also the water content at one or more locations in the
sample is measured. The pressure at the boundary is changed step-wise to cover a
range of potentials. There exist two fundamentally different setups. In one version the
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Figure 9.1.: Multi-Step Outflow Experiment: Setup (left) and typical result (right).

pressure of the gas phase above the sample is increased above atmospheric pressure to
enforce the outflow. In the alternative approach the pressure of the water phase below
the ceramic plate is decreased (figure 9.1). The water is collected in a burette and the
amount of water can be measured with pressure transducers (Schultze 1998). This has
the advantage that the pressure can also be increased again to perform not only drainage
but also imbibition experiments. The direct forcing of the more viscous liquid phase
should also avoid viscous fingering which is to be expected if the pressure of the gas phase
is increased rapidly. A typical size for soil samples in MSO experiments is a diameter of
16 cm and a height of 10 cm.

9.2. Synthetic Test Case

To test the possibility of estimating parameters for the hydraulic functions of different
materials simultaneously, an MSO experiment with a simple heterogeneous sample con-
sisting of a fine and a coarse sand was simulated with µϕ. The structure (figure 9.2)
was chosen to allow a two-dimensional radially symmetric simulation, which of course
is much faster than a full three-dimensional inversion. The ceramic plate on which the
sample was placed is included in the simulation to account for the potential damping
effect of the plate. Random noise was added to the simulated measurement values of
outflow and matric potential at one position in the sample. The pressure steps at the
boundary and the resulting curves of outflow and potential are shown in figure 9.3. The
parameters used for the simulation are given in table 9.1 and table 9.2.

The optimisation process was started with rather general parameters, which were
identical for both materials except for the van Genuchten α. The value of α for the coarse
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Figure 9.2.: Structure used for the synthetic test case with coarse coarse sand in the
middle (black) and fine sand at the outside (light grey).
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Figure 9.3.: Boundary condition, measured values and best fit for the synthetic test case.

parameter unit value

hx cm 0.2
hz cm 0.2
nx – 40
nz – 60
Plate thickness cm 2
Height of tensiometer cm 10
Kplate cm/h 20.
θr – 0.0
τ – 0.5

Table 9.1.: Fixed parameters for the synthetic test case.
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parameter unit value
exact initial estimated

coarse sand
α cm−1 0.080 0.2 0.0803± 0.0003
n – 6.2 2.0 6.42± 0.03
K cm/h 120. 40 188.± 2
θs – 0.30 0.34 0.297± 0.001

fine sand
α cm−1 0.021 0.1 0.02093± 4 · 10−5

n – 4.5 2.0 4.46± 0.02
K cm/h 20. 40. 19.6± 0.1
θs – 0.30 0.34 0.304± 0.001

Table 9.2.: True, initial and estimated parameters for the synthetic test case.

αc αf Kc Kf θs,c θs,f nc

αf 0.37
Kc 0.21 0.07
Kf 0.17 0.24 0.01
θs,c -0.67 -0.53 -0.26 -0.18
θs,f 0.42 -0.21 0.15 -0.02 -0.62
nc -0.72 -0.58 0.11 0.07 0.50 -0.09
nf -0.42 -0.28 -0.10 -0.24 0.64 -0.65 0.14

Table 9.3.: Correlation coefficients for the synthetic test case. Coarse sand parameters
are marked by a subscript c and fine sand parameters with a subscript f .

sand was set to twice the α value of the finer material. Without additional constraints the
measured parameters were not satisfying. There are two sets of parameters which yield a
local minimum for the estimation problem, with the two materials just exchanged. Only
when it was additionally required that αc > αf , the correct branch was selected. The
agreement between true and estimated parameters was very good (table 9.2). However,
the results also show the limited significance of the standard deviation of the linearised
problem. For the conductivity of the coarse sand the standard deviation is more than a
factor of 20 smaller than the difference between true and estimated value. The saturated
hydraulic conductivity is notoriously hard to estimate from MSO experiments. Thus the
large error in the conductivity of the coarse sand is not surprising considering the low
conductivity of the ceramic plate. Several parameters are correlated but the correlation
is not very high. The highest (negative) correlation of −0.72 occurs between the van
Genuchten n and α values of the coarse sand.

This test case shows, that for a sample with a rather simple structure composed of
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two materials, which have contact to both phases at the boundary, the parameters of the
two van Genuchten models can be estimated reliably from a single multi-step outflow
experiment.

9.3. Undisturbed Soil Sample

For a more realistic test the optimisation approach was applied to an MSO experiment
with an undisturbed soil sample (Orthic Luvisol) taken from the upper A-horizon of a
silty agricultural soil near Merzenhausen, Germany (Kasteel et al. 2000). The structure
of the sample was measured by X-ray tomography. A solute transport experiment
was conducted with the same sample and can be used to verify the correctness of the
(principally unknown) parameters. The sample consists of two different materials: dense
aggregates and a lighter matrix (figure 9.4, left). The X-ray tomography also allows to
distinguish macropores, the tensiometer ceramic and the tensiometer void.

The data was already used in previous studies. Kasteel et al. 2000 performed the
experiments, segmented the tomography data into different materials (figure 9.4) and
performed a spatially resolved simulation of the solute transport experiment with the
Finite-Element code SWMS. To perform the water transport simulation the hydraulic
functions of the light matrix were determined by network-modelling. For the dense
aggregates the parameters of the matrix were used with a smaller α. It was assumed
that the known saturated hydraulic conductivity of the whole sample can be calculated
from a volume weighted geometric average of the conductivities of matrix and aggregates√
Ks,eff = Vmat

√
Ks,mat +Vagg

√
Ks,agg. This allowed a downscaling by assuming different

ratios of the conductivities of the two materials. A good agreement between the measured
and simulated data for the solute transport experiment was obtained.

Vogel et al. 2002 used a downscaling approach based on the grey values from the X-ray
tomography to derive hydraulic parameters for 48 different density classes in the sample.
They demonstrated, that a spatially resolved simulation of the MSO experiment with
the downscaled parameters agreed well with the experimental data but they did not
simulate the solute transport experiment.

In this study two different approaches to determine the hydraulic properties of the light
matrix and dense aggregates are compared: a variation of downscaling in combination
with a one-dimensional optimisation and a fully three-dimensional parameter estimation.

9.3.1. Parameter estimation with Dual van Genuchten/Mualem
Model

The basic idea of a multiple van Genuchten model (section 2.3.1.3) is that a material is a
composite of two or more materials, which are so intimately mixed, that they are always in
local equilibrium. The aggregates in the sample are rather large to justify this assumption.
The advantage of this approach is that parameter estimation can be performed with a one-
dimensional homogeneous model. A modified dual van Genuchten/Mualem model was
used to exclude an influence of the missing air entry value in the van Genuchten/Mualem
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Figure 9.4.: Grey-scale CT-Image of the undisturbed soil sample (left) and averaged cross-
section (right) segmented into light matrix (dark grey), dense aggregates
(light gray) and macropores (black).

model. A modified dual van Genuchten/Mualem model requires ten parameters: the
saturated conductivity Keff , tortuosity τ , air-entry value ψm0 , the saturated and residual
water content θs and θr of the composite material, the van Genuchten α and n values for
the two sub-materials and the fraction fmat of the light matrix contribution to the soil
water characteristic (the volume fractions of the aggregates is given by fagg = 1− fmat).
As the measured outflow curve showed a rapid drainage already at the beginning, an
additional leakage parameter was fitted, which is an offset added to the calculated outflow
and accounts for water coming from gaps at the sample boundary and not from the
sample itself. As it is impossible to estimate both the saturated and residual water
content from outflow data alone, the residual water content was fixed at zero. The
tortuosity was assumed to be 0.5 as suggested by Mualem 1976.

A parameter optimisation with nine parameters was performed starting with the same
initial values as in the simple heterogeneous test case before. Unfortunately only the
outflow data of the original MSO experiment is still available while the potential mea-
surements are lost. There was a very good agreement between simulated and measured
outflow, but the parameters had a high uncertainty (table 9.4) and some of them are
strongly correlated (table 9.5) with the highest correlation coefficient of 0.994 between
conductivity and air entry value.

This is usually an indicator for an over-parametrised model. A reduced model was
thus developed. The n value for the aggregates was fixed to 2 as they seem to remain
close to saturation and thus this value is very uncertain. As the n value for the matrix
was well above 2, the air entry value was dropped and an ordinary multiple van Genucht-
en/Mualem model was used. Because of the high correlation between saturated water
content and the matrix fraction, saturated water content was fixed at a value of 0.4. The
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parameter unit value
initial estimated

Keff cm/h 40 2.8± 3
θs – 0.34 0.33± 0.1
θr – 0.0 (not fitted)
τ – 0.5 (not fitted)
ψm0 cm −0.01 −1.5± 1.8
fmat – 0.5 0.0.2± 0.1
αmat cm−1 0.2 0.06± 0.002
nmat – 2 4.4± 0.9
αagg cm−1 0.1 0.02± 0.01
nagg – 2 1.5± 0.3 (not fitted)
leakage cm 0 0.02± 0.05

Table 9.4.: Initial and estimated parameters for the undisturbed soil sample with a nine
parameter modified dual van Genuchten/Mualem model.

ψm0 αmat αagg Keff fmat leakage θs nmat

αmat 0.549
αagg -0.790 -0.774
Keff 0.994 0.480 -0.726
fmat 0.870 0.814 -0.950 0.819
leakage -0.956 -0.396 0.628 -0.977 -0.711
θs -0.864 -0.735 0.768 -0.835 -0.928 0.724
nmat -0.580 -0.789 0.933 -0.504 -0.832 0.422 0.582
nagg 0.901 0.773 -0.873 0.862 0.979 -0.754 -0.982 -0.704

Table 9.5.: Correlation coefficients for the undisturbed soil sample with a nine parameter
modified dual van Genuchten/Mualem model.
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Figure 9.5.: Boundary condition, measured outflow and best fit for the undisturbed soil
column with the five parameter model.

parameter unit value
initial estimated

Keff cm/h 40 2.6± 0.1
θs – 0.4 (not fitted)
θr – 0.0 (not fitted)
τ – 0.5 (not fitted)
fmat – 0.5 0.328± 0.005
αmat cm−1 0.2 0.0588± 0.0005
nmat – 2 2.83± 0.06
αagg cm−1 0.1 0.0063± 0.0001
nagg – 2.0 (not fitted)

Table 9.6.: Initial and estimated parameters for the undisturbed soil sample with a five
parameter modified dual van Genuchten/Mualem model.
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9.3. Undisturbed Soil Sample

αmat αagg Keff fmat

αagg 0.532
Keff -0.579 -0.152
fmat -0.432 -0.954 0.094
nmat 0.102 0.778 0.014 -0.909

Table 9.7.: Correlation coefficients for the undisturbed soil sample with a five parameter
modified dual van Genuchten/Mualem model.

leakage parameter was obviously irrelevant and was dropped. The agreement between
estimated and measured outflow for the resulting five parameter model was nearly as
good as for the nine parameter model (figure 9.5) with residuum slightly increased from
63 to 65. The uncertainty of the parameters was markedly reduced (table 9.6). The
correlation between parameters is also reduced. However, there is still a high correlation
between the fraction of the matrix and the α value of the aggregates and the n value
of the matrix. There seems to be not enough information in the experiment to fix the
mobile water fraction of the aggregates and the potential at which they start to drain at
the same time, while a reduced fraction of the matrix can be compensated by a higher
n value.

9.3.2. Deduction of sub-material Porosity and Conductivity from
Dual van Genuchten/Mualem Model

While the α and n values for the matrix and the aggregates can be directly taken from
the multiple van Genuchten model, only the effective conductivity and saturated water
content for the composite sample are estimated. Thus the deduction of these parameters
has to be based on additional assumptions.

We assume that the effective conductivity of the composite material is given by the
geometric mean of the saturated conductivity of the aggregates and the matrix, which
was suggested by Matheron et al. 1967.

K =
√
Kmat ·Kagg. (9.1)

To get another condition we assume that – as in Miller similarity scaling – the conductivity
is proportional to the square of the α coefficient:

Ki

Kj

=

(
αi
αj

)2

. (9.2)

Both conditions together allow the derivation of the saturated conductivity for the two
materials from the effective conductivity of the composite as

Ki =
αj
αi
Keff . (9.3)
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The water content calculated by the multiple van Genuchten model has to be equal
to the volume weighted sum of the water content calculated from the van Genuchten
models for matrix and aggregates. If we assume a constant potential in the sample and
call θs − θr the drainable water content θmob, the amount of water coming out of the
sample has to be equal for the composite and the spatially resolved column. With this
we get the condition

θmob [1− (fmatSmat(ψm) + faggSagg(ψm))] =

θmob,matfvol,mat (1− Smat(ψm)) + θmob,aggfvol,agg (1− Sagg(ψm)) . (9.4)

If the drainable water content of the aggregates is known, the drainable water content of
the matrix can be calculated from (omitting the common argument ψm of the saturation
functions)

θmob,mat =
θmob [1− fmatSmat + (1− fmat)Sagg]− θmob,aggfvol,agg (1− Sagg)

(1− Smat) fvol,mat
. (9.5)

The volume fraction of the aggregates from image analysis is 0.285 and the image
fraction of the matrix 0.715. As the estimated fraction of the aggregates in the multiple
van Genuchten model is 0.672 and thus much higher than the volume fraction of the
aggregates, we assume that the whole saturated water content of the aggregates is
drainable water.

The porosity of the sample is not sure. Kasteel et al. 2000 and Vogel et al. 2002 used
a porosity of 0.5 and 0.503 for their work. The breakthrough curve suggests that the
volumetric water content during the solute transport experiment was around 0.33. As
the sample was still close to saturation this suggests a saturated water content of 0.4.
As the saturated water content is crucial for the velocity of convection in the solute
transport experiment, parameters have been calculated using saturated water contents
of 0.4 and 0.5 (table 9.8) and will be used to assess the sensitivity on θs.

A forward simulation of the MSO experiment was performed with both parameter sets
and the sample structure in two different resolutions (figure 9.6, middle and right). There
are some additional materials involved in the forward simulation. Reasonable guesses
were made for their parameters (table 9.9). As the sample has a cylindrical shape and
is simulated with a rectangular grid, a background material is used for the elements
outside the cylinder. For the MSO simulations a Brooks-Corey parametrisation with a
high air-entry value and a very low conductivity was used which does not influence the
result. For the plate, the tensiometer ceramic and the tensiometer void Brooks-Corey
models with high air-entry value were used as well. The conductivity of the plate was
measured in the experiment, the conductivity of the tensiometer void is just a very high
value also used for the macropores. The macropores have parameters chosen to force a
rapid drainage. The possibility to directly include potential disturbance by measurement
devices like the tensiometer is an additional advantage of this approach.

The agreement is not perfect, with the reconstruction of the material property being
only an approximation. The simulations with the high resolution structure (356× 356×
93 voxel) are a little bit closer to the measurements than the one with the medium
resolution (118× 118× 62 voxel), but the difference is rather small.
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9.3. Undisturbed Soil Sample

parameter unit value
low porosity high porosity

light matrix
K cm/h 24.3 24.3
τ – 0.5 0.5
θs – 0.4 0.5
θr – 0.184 0.29
α cm−1 0.0588 0.0588

dense aggregates
K cm/h 0.279 0.279
τ – 0.5 0.5
θs – 0.4 0.5
θr – 0.0 0.0
α cm−1 0.0063 0.0063
n – 2.0 2.0

Table 9.8.: Parameters for the light matrix and the dense aggregates used in the forward
simulation of the MSO experiment and in the simulation of solute transport.

K τ θs θr α n λ ψm0

macropores : van Genuchten
1000 0.5 1 0 1 10

ceramic plate: Brooks-Corey
2.16 0.5 0.34 0 – – 3 200

tensiometer ceramics: Brooks-Corey
2.16 0.5 0.3 0 – – 2 200

tensiometer void : Brooks-Corey
1000 0.5 1 0 – – 2 200

background MSO : Brooks-Corey
10−10 0.5 10−5 – – 2 200
background solute transport : van Genuchten

0 0.5 10−40 0 20000 3

Table 9.9.: Parameters used for the other materials involved in the three-dimensional
forward simulation of the MSO experiment and of solute transport and in
the three-dimensional optimisation.
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9. Parameter Estimation for Heterogeneous Soil Samples

Figure 9.6.: Categorised structure in different resolutions used for the three-dimensional
inversion (left) and for the forward simulations with medium (middle) and
high resolution (right). The light matrix is shown in dark blue, the dense
aggregates in light blue, macropores in grey and the ceramic plate in red.
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Figure 9.7.: Outflow simulated with the reconstructed parameters for matrix and aggre-
gates with different water content and different resolution of the structure
used.
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Figure 9.8.: Measured and simulated breakthrough curve for the medium-resolution struc-
ture (118× 118× 62 voxel) with different saturated water content, for the
high-resolution structure (356 × 356 × 93 voxel) and a homogeneous sam-
ple (2× 2× 2000 elements). The breakthrough curves for the medium and
high-resolution structure are on top of each other.

9.3.3. Solute Transport Simulation

A solute transport experiment was conducted by Kasteel et al. 2000 where first a steady-
state flow with 11.4 mm/h was established. The matric potential measured inside the
sample was -15 cm. Initially the sample was infiltrated with a 0.5 mmol/l solution
of CaCl2. After steady-state had been established it was switched to a 0.5 mmol/l
solution of CaBr2. Thus effects due to a change in ionic strength were avoided. The
breakthrough curve resulting from the step change was measured with one sample taken
every 21 minutes for about 22 hours. The concentrations were determined with ion
chromatography.

The steady-state water flux field was simulated with the parallel version of µϕ for
the reconstructed parameters with a saturated water content of 0.4 and 0.5 (table 9.8),
with the medium resolution structure and with the parameters for a saturated water
content of 0.4 also for the high-resolution structure. The CDE for a homogeneous
material was solved as a reference with a very high resolution in the direction of transport
(2×2×2000 elements). It is essential that no solute enters the background region around
the sample as this would result in artificial tailing. For the background therefore a van
Genuchten parametrisation with a conductivity of zero and an extremely low porosity
is used. As the diffusion coefficient is proportional to φ4/3 the diffusion coefficient is
essentially zero. A zero conductivity is possible without the Jacobian becoming singular,
if the derivative of saturation with respect to matric potential is non-zero. With an initial
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scenario run-time platform

3D parameter estimation
low resolution s 28 cores 2.1 GHz AMD Opteron 6172

water transport MSO
medium resolution, θs = 0.4 8641 s 2 cores 2.4 GHz Intel i5
medium resolution, θs = 0.5 10432 s 2 cores 2.4 GHz Intel i5

water transport
homogeneous 11 s 1 core 2.4 GHz Intel i5
medium resolution, θs = 0.4 500 s 2 cores 2.4 GHz Intel i5
medium resolution, θs = 0.5 730 s 2 cores 2.4 GHz Intel i5
medium resolution, fitted 453 s 2 cores 2.4 GHz Intel i5
medium resolution, fitted constrained 463 s 2 cores 2.4 GHz Intel i5
high resolution, θs = 0.4 2482 s 16 cores 2.1 GHz AMD Opteron 6172

solute transport
medium resolution, θs = 0.4 8470 s 2 cores 2.4 GHz Intel i5
medium resolution, θs = 0.5 8355 s 2 cores 2.4 GHz Intel i5
medium resolution, fitted 7360 s 2 cores 2.4 GHz Intel i5
medium resolution, fitted constrained 6932 s 2 cores 2.4 GHz Intel i5
high resolution, θs = 0.4 61971 s 16 cores 2.1 GHz AMD Opteron 6172

Table 9.10.: Computation time for water and solute transport for the different scenarios
of water and solute transport.

condition of ψm = −15 cm and a van Genuchten parametrisation this is guaranteed. At
the upper boundary a constant flux of 11.4 mm/h is applied and a no-flow boundary
condition is used where the material is background. A Dirichlet boundary condition with
ψm = −15 cm is used at the bottom.

Solute transport was simulated with the parallel transient solute transport model.
Given the high spatial resolution, dispersion can be neglected and the molecular diffusion
coefficient of 2 ·10−9 m2/s was used. A Dirichlet boundary condition with a concentration
of 1 is used at the top of the sample. The flux concentration at the bottom of the sample
is calculated as quotient of the solute flux density and the volumetric water flux density.
Computation times for the different simulations are given in table 9.10.

While the breakthrough with a saturated water content of 0.5 occurs too late, it nearly
matches perfectly with a saturated water content of 0.4. In contrast to the solution of
the CDE for homogeneous material, the shape of the breakthrough curve agrees very
well with the experiment for all scenarios simulated with the soil structure, however,
with a less pronounced tailing than in the experiment. As the difference between the
high-resolution and the medium-resolution simulation is negligible this seems not to be
an effect of under-resolved structure or of grid resolution.
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9.3. Undisturbed Soil Sample

parameter initial value 3D inversion 3D inversion
Kagg fixed

light matrix
α [m−1] 5.88 5.23± 0.2 5.6± 0.2
K [cm/h] 24.3 2.9± 2 5.8± 0.6
θr [–] 0.184 0.19± 0.02 0.206± 0.003
n [–] 2.83 2.5± 0.1 2.6± 0.2

aggregates
α [m−1] 0.63 0.8± 0.6 1.2± 0.5
K [cm/h] 0.279 2.7± 3 fixed
θr [–] 0.0 0.02± 0.2 10−3 ± 0.05
n [–] 2.0 fixed Kmat

αagg

αmat
= 1.2

τ [–] 0.5
θs [–] 0.4
steps 30 6
successful steps 15 3
residual 5012 123 135

Table 9.11.: Parameters estimated with the fully three-dimensional optimisation with a
seven and six parameter model.

9.3.4. Three-dimensional Inversion

A three-dimensional two-level parallel inversion was started with a low resolution version
of the structure (59 × 59 × 31 voxel). With the additional elements for the plate, the
forward problem had 128′797 unknowns. With permeabilities, residual saturations and
α values for both materials and the n value for the matrix, seven parameters had to
be estimated. The van Genuchten n for the aggregates was fixed at a value of 2. The
results obtained from reconstruction were used as initial guess.

Parallel inversion was performed with 28 processes, using always 4 processes for each
forward problem. The inversion reduced the residuum from 5012 to 123 (table 9.11) in

αmat αagg Kmat θr,mat θr,agg

αagg 0.964
Kmat -0.668 -0.607
θr,mat 0.959 0.984 -0.551
θr,agg -0.019 0.100 -0.138 -0.063
nr,mat 0.862 0.918 -0.435 0.963 -0.159

Table 9.12.: Correlation coefficients for the three-dimensional parameter estimation of
the undisturbed soil column with the six parameter model.
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Figure 9.9.: Boundary condition, measured outflow and best fit for the three-dimensional
parameter estimation of the undisturbed soil column.

30 steps, 15 of which were accepted, . One step took 15 minutes on a four processor
server with 2.1 GHz AMD Opteron 6172 (Magny-Cour) twelve-core CPU’s. While the
model agrees well with the measured data (figure 9.9), the parameters have a high
uncertainty. The saturated hydraulic conductivity is nearly the same for aggregates
and matrix, which is not very realistic. Thus a new inversion was started with only
six parameters. The permeability of the aggregates was fixed internally in the forward
model to Kagg = Kmat

αagg

αmat
. This optimisation reduces the residuum in only 6 steps, 3 of

which were accepted, to 135. This is only slightly larger than for the seven parameter
model and the outflow curves are nearly the same (figure 9.9). However, there is still a
high correlation between the two α values, the residual water content of the aggregates
and the n value of the matrix (table 9.12).

The breakthrough curve simulated with the parameters from the three-dimensional
optimisation with seven parameters predicts the experiment significantly worse than the
breakthrough curve simulated with the reconstructed parameters from the homogeneous
inversion (figure 9.10). The curve is too steep and arrives too late. The curve obtained
with the six parameter optimisation gives a much better prediction of the tailing, but
the front is still slower than in the experiment.

While it could be demonstrated that a three-dimensional two-level parallel inversion
works in principle, the information content of the available data set is too low for a reliable
estimation of the parameters. Additional information from e.g. tensiometers would be
helpful, but it would also be necessary to use measurement techniques like evaporation
experiments, which can reduce the potential enough to also drain the aggregates. Given
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Figure 9.10.: Measured and simulated breakthrough curve for the medium-resolution
structure (118 × 118 × 62 voxel) with θs = 0.4 and the reconstructed
parameters , the parameters from the three-dimensional optimisations, and
a homogeneous sample (2× 2× 2000 elements).

the very limited available information, the prediction of the breakthrough curve with
the homogeneous parameter estimation with a multiple van Genuchten model and a
subsequent reconstruction of the material parameters was astonishingly good.
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10. Virtual Soil Systems

10.1. Motivation

The scale of small agricultural fields (0.01–1 ha) is relevant for practical applications like
precision agriculture. It is also the size of the smallest elements in regional scale modelling
of catchments or in the interpretation of remote-sensing data. In such simulations each
of these blocks is treated as a homogeneous porous medium. As soils are heterogeneous
in reality it is an open question under which circumstances this assumption is justified.
Simulations of sufficiently realistic soils could help to test this.

It also has often be observed that the transfer of measured hydraulic properties from
the laboratory to the field is difficult. There are different explanations for this starting
from the limited size of laboratory samples. Recent measurements by Weller et al.
2011a; Weller and Vogel 2012 indicated that hydraulic non-equilibrium and its different
consequences depending on the type of forcing applied, could also be a reason for the
difficulties.

One problem of field scale measurements is, that there is much less experimental
control over the system than in the laboratory. Differences between simulation and
observation can have various reasons:

• an insufficient precision of the performed measurements

• spatial and temporal averaging of the measurement devices especially during fast
processes

• the unresolved heterogeneity of the system

• principal errors in the basic process model or the effective model used to describe
the flow or transport process

It is nearly impossible to separate these reasons with real measurements. However, if
the measurements would be performed on a realistic enough virtual soil system, it would
be possible to quantify the influence of the first three of these points. As the virtual
soil system has to be simulated with a chosen set of equations, the last point can only
be tested to a certain degree. It is strongly linked to the question of the system being
“realistic enough”. If it behaves similar to real soil and the same problems occur already
with the virtual soil system, the basic process model probably is not the main reason for
the difficulties. If the virtual soil system, however, is much easier to describe effectively,
the real processes are not represented precisely enough.

Within the framework of the virtual research institute “INVEST” virtual soil sys-
tems have been developed and water and solute transport has been simulated with µϕ.
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“INVEST” was funded by the Helmholtz foundation with Jan Vanderborght and Harry
Vereecken (Forschungszentrum Jülich), Wolfgang Durner (TU Braunschweig), Peter Bas-
tian and Kurt Roth (Heidelberg University) and Hans-Jörg Vogel (Helmholtz Centre for
Environmental Research,UFZ) as principal investigators. Jan Vanderborght from the In-
stitute of Bio- and Geosciences, Agrosphere at Forschungszentrum Jülich was the speaker
of the virtual institute which ended in 2012. The author of this work was responsible for
the forward modelling of water and solute transport.

The purpose of the virtual soil systems is to provide data which might be used to find
answers to the following questions:

• Are the properties of virtual soil systems similar to real soils?

• Do effective one-dimensional models exist at the scale of small agricultural fields?

• What are suitable effective models?

• How can the effective properties of soils be determined more accurately?

• What are optimal measurement strategies?

• How can parameter estimation be optimally performed?

• How precise are the predictions?

• How large is the variability of predictions?

• How can the predictions be improved?

• What is the influence of additional measurements on the precision of the predic-
tions?

The central assumption of the simulations is the validity of Richards’ equation. The
basic requirement to a virtual soil system was a resolution and problem size large enough
to represent a two-scale heterogeneity consisting of a deterministic structure (horizons)
with a random sub-scale heterogeneity. This requires grids with 106 (2D) to 109 (3D) de-
grees of freedom. The system should be simulated with a high temporal resolution of one
hour to allow for virtual time-dependent measurements with a realistic resolution. Thus
thousands of time steps are necessary to simulate several weeks. The three-dimensional
simulations therefore require massive parallel computing with hundreds to thousands of
processes. If measurements are to be performed after the costly simulations, the whole
simulated data at least for potential, water content and flux field have to be stored. This
requires tens of Terabyte of hard disk storage. The handling of this data also requires
an efficient parallel file I/O.

After the creation of the virtual institute a comparison between µϕ and the Richards’
equation solver ParSWMS was performed. ParSWMS (Hardelauf et al. 2007) is developed
at Forschungszentrum Jülich and uses a Finite-Element discretisation in space with an
implicit Euler scheme in time, a fixed-point iteration for the linearisation of the non-linear
equations and PETSc for the solution of the linear equation systems. The application
of both models to a heterogeneous test problem showed that depending on the number
of processes ParSWMS needed a factor 13 to 16 times longer than µϕ to solve the test
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problem. This is partially caused by the overhead of using an unstructured grid, which
leads to a higher memory consumption per grid cell. As µϕ also had a better scalability
it was chosen as the model to be used for the virtual soil systems.

10.2. Water Transport

10.2.1. Soil Structure and Parameters

The virtual soil is intended to represent the features of an average agricultural soil. The
selected structure resembles a Luvisol. It consist of four horizons:

• an Ap2 horizon with tractor wheel tracks, compacted clods and a harrowed seedbed
(Ap1) on top.

• a plough pan with holes (Ap3)

• a marmorated Bt-horizon

• a sandy Cv1-horizon with loam lenses (Cv2)

Different parametrisations were used for topsoil, sand, loam, plough pan and seedbed.
The marmorated features, the wheel tracks and the heterogeneity of the upper horizons
are realised with scaling parameters.

A structure generator was written by Hans-Jörg Vogel at UFZ Halle, which generates
two TIFF images (in 2D) or ddd images (in 3D) for the material distribution and the
scaling parameters. This structure generator was optimised by the author and an HDF5-
output was added so that the structure and scaling image can be read by µϕ using
parallel HDF5. Instead of unsigned char values in the TIFF and ddd-images, single
precision floating point variables are used for the scaling parameters in the HDF5-file.

Different structure scenarios have been constructed for two-dimensional simulations by
Steffen Schlüter (UFZ Halle). The domain size is 5× 5 m. They differ by the amount of
structural features included. Soil C has the most structural features including a harrowed
seedbed with wheel tracks, a plough pan and holes in the plough pan. Soil B does not have
wheel tracks and holes in the plough pan and soil A has neither plough pan nor seedbed.
The upper and lower boundary of the plough pan have a prescribed roughness. Its shape
is generated using an auto-correlated random field with a correlation length λrough. The
Ap2 and Bt horizon have a small-scale heterogeneity. The field of scaling parameters was
also generated using auto-correlated random fields. The correlation lengths are different
for the two horizons and also in horizontal and vertical direction. The shape of the clay
lenses was generated by taking the threshold of another auto-correlated random field.
All correlation lengths are given in table 10.2.1.

All three soils exist in a version with a flat boundary between the Bt and Cv horizon
in 1.5 m depth and a version with a sinusoidal boundary between the two horizons. One
period of a sinus curve was used with the maxima in 1 m depth at the domain boundary
and the minimum in 2 m depth at the centre. This resulted in a set of six different
scenarios in total (figure 10.1).
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Figure 10.1.: Soil structure (top) and scaling parameter images (bottom) for the six sce-
narios of two-dimensional virtual soil systems: soil A (left), soil B (middle)
and soil C (right) (from Schlüter et al. 2012).

For the three-dimensional simulation only soil C was used due to the high computa-
tional demand of the simulations. A larger domain size of 10× 10× 6.4 m was chosen
to allow virtual measurements with a larger support like georadar or geoelectrics. The
depth of each horizon is given in table 10.2.1.

Following a suggestion of Jan Vanderborght, the depth z of the horizon boundary was
described by

z = 1.5 + 0.5 · sin
(

4π

(
x

dx
+

1

4

))
· sin

(
4π

(
y

dy
+

1

4

))
. (10.1)

where dx and dy are the size of the domain in x and y-direction. The resulting boundary
can be seen on the right of in figure 10.2.

The material parameters to be used for the different horizons have been intensively
discussed among the members of INVEST. The parametrisations for the Ap2, Bt, Cv1

and Cv2 horizon where taken from the ROSETTA database (Schaap et al. 2001). Steffen
Schlüter derived parametrisations for the harrowed horizon and the plough pan from the
silt parameter set. The details are given in Schlüter et al. 2012. All parameters are given
in table 10.2.1 and plots of the hydraulic functions are shown in figure 10.3.

It was intended to use Miller similarity scaling with the scaling parameters. However,
due to a software bug which was only detected very recently, the scaling was only applied
to the saturated conductivity and the soil water characteristic but not to the relative
permeability function. Two-dimensional simulations with the correct Miller similarity
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Figure 10.2.: Soil structure of the three-dimensional virtual soil systems: Water content
distribution (left) and subsurface boundary with sandy subsoil (red) and
clay lenses (blue).

Ap1 Ap2 Ap3 Bt Cv1 Cv2

harrowed plough pan sand loam

Source ROSETTA ROSETTA ROSETTA ROSETTA
silt silt sand loam

Type mmVG mVG mVG mVG VG mVG
θs [–] 0.54 0.49 0.41 0.49 0.38 0.40
θr [–] 0.05 0.05 0.06 0.05 0.05 0.06
τ [–] 5 0.5 0.5 0.5 0.5 0.5
Ks [cm/h] 9.11 1.82 0.02 1.82 26.8 0.5
α [cm−1] 0.66/20 0.66 0.387 0.66 10 1.11
n [–] 1.68/4 1.68 1.68 1.68 3.18 1.47
ψm0 [cm] -2 -2 -2 -2 – -2

σlog [–] 0.5 0.5 – 0.5 – –

depth [cm] 0 - 8 8 - 27 27 - 33 33 - 150 150 - 640 –
roughness [cm] 0 2 2 50 0 –
λrough [cm] 0 20 20 250 – –
λx,y [cm] – 4 8 8 50 –
λz [cm] – 4 ∞ 24 15 –

Table 10.1.: Soil parameters used for the virtual soil system. The possible types of
parametrisation are mmVG = modified multiple van Genuchten/Mualem,
mVG = modified van Genuchten/Mualem, VG = van Genuchten/Mualem.

125



10. Virtual Soil Systems

 1

 10

 100

 1000

 0  0.1  0.2  0.3  0.4  0.5

�
 [c

m
]

� [-]

Soil Water Characteristic

Topsoil
Sand
Loam

Plough pan
Seedbed

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1  10  100  1000

K
 [

c
m

/h
]

ψ [cm]

Hydr. Conductivity

Topsoil
Sand
Loam

Plough pan
Seedbed

Figure 10.3.: Soil hydraulic parameters for different materials used in the virtual soil
systems.

scaling show that the average fluxes calculated are nearly identical, while the local flux
field can be different.

For the two-dimensional simulations the scaling parameter was calculated from the
grey-scale images (figure 10.1) as described in section 4.6.4. For the three-dimensional
simulations the scaling parameter was calculated from

η = exp (σlog · χ) . (10.2)

with χ being the value of the normalised normal distribution read from the HDF5-file
and σlog is the standard deviation of the resulting log-normal distribution (table 10.2.1)
for the material.

10.2.2. Simulation Setup

For the analysis of the system response somewhat extreme artificial weather conditions
are used1. For the two-dimensional virtual soil systems, simulations with atmospheric
boundary conditions haven been performed by Schlüter et al. 2014. Ten days of constant
precipitation with a flux rate of 2 mm/h are followed by 2 days of no-flow and 30 days
of evaporation with 0.4 mm/h. Limited flux boundary conditions are used for the
precipitation and evaporation, where the potential at the upper boundary might never
get positive during precipitation and never get more negative than −105 cm during
evaporation. No-flow boundary conditions are used at the sides and a Dirichlet boundary
condition with a constant potential of 140 cm at the bottom (table 10.2). Thus the
lower boundary condition is essentially the same as for the two-dimensional simulations
where a Dirichlet boundary condition with a pressure of 0 cm was used in a depth of 5 m.
Hydrostatic equilibrium with a water table in 5 m depth was used as initial condition.

1However, similarly long periods of rain and drought occurred in Germany last year.
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10.2. Water Transport

Boundary Conditions
boundary time type flux density potential

top 0-10 d limited flux 2 mm/h 0 cm
42-52 d
10-12 d no flow 0 mm/h
52-54 d
12-42 d limited flux -0.4 mm/h -105 cm
54-84 d

bottom Dirichlet 140 cm

sides no flow 0 mm/h

Table 10.2.: Boundary conditions for the three-dimensional virtual soil system
simulations.

Discretisation
depth grid spacing

vertical 0-15 cm 1 mm
15-50 cm 2.5 mm

50-200 cm 5 mm
200-640 cm 20 mm

horizontal 10 mm

time step 1 h

Table 10.3.: Discretisation used for the three-dimensional virtual soil system simulations.

As the potential gradient can be very steep during evaporation, a high spatial resolution
is needed close to the soil surface. Tests with the two-dimensional soil system have shown
that a resolution of 1 mm is sufficient. The element height is increased in three steps
with depth (table 10.3). Thus the discretisation is second order accurate except at
the three positions where the element width changes. In the horizontal direction an
element width of 1 cm is used. For the given domain size this results in a system with
1024× 1024× 810 ≈ 850 · 106 unknowns. A constant time step of one hour is used for
the whole simulation. This makes it possible to perform hourly measurements on the
virtual soil system. Thus 2016 time steps had to be performed.

10.2.3. Results of three-dimensional Simulations

The simulations where run on 1024 quad-core nodes of the BlueGene/P type system
JUGENE at Forschungszentrum Jülich. The whole simulation required 17 days of
computation time. Thus the ratio between computed time and computation time is
around five. With the potential being stored as double precision values (for restarts)
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10. Virtual Soil Systems

and the water content and flux field as single precision values, more than 40 TB of data
have been produced. 27 hours of the 17 days were needed for the output of the results
corresponding to a file transfer rate of 350 MB/s. As the maximal run-time per job is
limited to 24 hours, the job had to be restarted several times. The time for the input of
structure and scaling value thus can not be neglected, but with a total of 1.5 hours it is
still comparatively low.

Surface plots of the distribution of potential and volumetric water content for six
different times are given in figures 10.4 and 10.5. At the start of the simulation the soil
is very dry with a potential of −500 cm at the soil surface (which is rather challenging
for the numerical solver). Infiltration occurs with a rather sharp front until the plough
pan is reached after 16 hours. Water is ponding on the plough pan and infiltrates
through the holes. A capillary barrier effect occurs at the upper boundary of the Cv

horizon. The water is accumulating in the troughs and enters the loam lenses until a
breakthrough into the sand occurs at the tip of the troughs after 140 hours. When the
precipitation stops after 240 hours the water continues to percolate through the sand
in a kind of macroscopic fingers, while the flow is reversed close to the surface. At the
end of the evaporation after 1008 hours the soil surface and the uppermost horizon have
dried considerably. The wheel tracks are still wetter and act as a kind of wick for the
evaporation. In the subsoil the water has reached a nearly uniform distribution. As the
subsoil is much wetter during the second infiltration the water percolates much faster.
Though the capillary barrier effect has been overcome previously the water still flows
preferentially in the wetter part of the subsoil. The final distribution is nearly identical
to the situation at the end of the first cycle and is thus not shown.

The ratio of actual to potential evaporation and the seepage to the groundwater are
shown in figure 10.6 in a comparison with the two-dimensional simulations of the soils
with the same structural features and a sinusoidal or flat boundary to the Cv horizon
(from Schlüter et al. 2012). Evaporation is exactly the same for the first and the second
cycle and thus is only shown once, while there are pronounced differences between the
cycles for the seepage.

Initially all three soils are evaporating with the potential evaporation rate. In the two-
dimensional simulation with the sinusoidal boundary the evaporation rate drops first, as
most of the water is stored in the trough in the centre of the domain relatively far from the
surface. In the two-dimensional simulation with the flat boundary to the Cv horizon the
evaporation starts to decrease last and the evaporation rate remains consistently higher
than in the other scenarios as more water is stored close to the surface. The evaporation
calculated with the three-dimensional simulation stays at potential rate nearly as long
as in the scenario with the flat boundary and then drops quickly to values only slightly
above the values in the scenario with the sinusoidal boundary. As a consequence of the
topography of the subsoil boundary (figure 10.2) the fraction of material close to the
surface is higher than in the case with the sinusoidal boundary. However, after this water
has evaporated or drained into the trough, the distance to the surface is very similar to
the case with the sinusoidal boundary which explains the actual evaporation rate.

While the subsurface geometry is reflected very clearly and for long time spans in
the evaporation rate, the seepage for the three scenarios is much more similar. While
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10.2. Water Transport

Figure 10.4.: Distribution of potential (left) and volumetric water content (right) at the
start of the simulation (top), after 17 hours (middle) and after 140 hours
(bottom).
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Figure 10.5.: Distribution of potential (left) and volumetric water content (right) at the
end of the first infiltration period (top), at the end of the first cycle (middle)
and at end the second infiltration period (bottom).
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Figure 10.6.: Evaporation (left) and seepage (right) in the 2D and 3D virtual soil systems.

the onset of seepage occurs later for the scenario with a flat subsoil boundary, the
seepage rates approach each other very quickly. The total amount of seepage in the
three-dimensional case is smaller in the first period than for the other scenarios. This is
partially due to the higher evaporation (which also shows in the later onset in the second
period) but mainly it is a consequence of the fact that the water after infiltrating into
the sand can be distributed more efficiently away from the finger. The onset of seepage
is much earlier and the cumulative seepage is much higher in the second period for all
scenarios due to the already much wetter subsoil.

One interesting result of this study is that evaporation and seepage are obviously
controlled by different features of the subsurface. While the moisture content of the
deep subsoil is crucial for the dynamics of the seepage, the evaporation rate is mostly
controlled by the water content (and the soil structure) close to the surface. As land-
surface models are often calibrated using run-off data, this might have consequences for
the predicted evaporation rates.

10.3. Solute Transport

Solute transport was simulated with the water content distribution and flux fields of the
second cycle. A constant concentration of 1 mmol/l was added to the infiltrating water,
i.e. a Dirichlet boundary condition of 1 was used during infiltration. There was no solute
in the soil initially. After the end of the precipitation a no-flow boundary condition
was applied on top. A molecular diffusion coefficient of 2 · 10−9 m2/s was used. Solute
transport was simulated for 42 days with the maximal time step allowed by the CFL
condition using the same grid as for the water transport. The concentration and the
solute flux field were written to the disk after every hour of simulated time.
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10.3.0.1. Results of 3D Simulations

4096 processes on 128 nodes of the BlueGene/Q type supercomputer JUQUEEN were
used for the simulation. Total simulation time for the 30′252 time steps was 18.7 hours.
Thus solute transport could be simulated much faster than water transport. Only
8.4 hours were needed for the actual calculations but 5.6 hours for the input of flux fields
and volumetric water content and 2.7 hours for the output of the result. This is not a
consequence of slow hard disk access but of the huge amount of data. A total of 13.7 TB
of data has to be read and the same amount has to be stored. Thus the transfer rates
are 680 MB/s for reading and 820 MB/s for writing.

Isosurfaces of the solute concentration are shown in figure 10.7. The initially very
homogeneous infiltration front can also be seen in the solute concentration after 36 hours,
as a very sharp front is moving into the soil. The holey plough pan has a more pronounced
effect on the shape of the front of the solute infiltration after 100 hours than could be
seen in the water content distribution. This structure is preserved for a long time as
can be seen in the isosurfaces after 200 and 300 hours. The solute flow concentrates on
the troughs and starts to infiltrate the sandy subsoil after 300 hours. With the onset of
evaporation after 288 hours there is a flow reversal close to the surface. As the solutes
remain in the soil, the solute concentration increases above 1 close to the surface and an
additional (red) isosurface occurs. The solute transport essentially comes to a hold. None
of the solute seems to reach the lower boundary which is also reflected by the negligible
flux over the lower boundary until the very end of the simulation. As a considerable
seepage was found in the water transport simulations (figure 10.6) all the water reaching
the groundwater is old water, which was already in the system before the infiltration
started.

The fronts of the concentration step remain sharp during the whole simulation. Thus
numerical diffusion is not very high as is to be expected for a second-order scheme with
such an extremely high spatial resolution.

10.4. Virtual Data Server

A special storage server with a total storage capacity of 124 TB has been acquired for the
simulation results. The data is converted from the SIONlib-format used for the parallel
output to a compressed HDF5-file format. This saves considerable amounts of disk space.
As it is impossible to send the whole data set to any interested user, it must be possible
for users to access the data remotely. This should be realised without having to create
user accounts for all interested persons and without human interaction.

A web front-end has been created to allow data access over the internet. In the web-
form a set of measurements can be defined. The measurements are performed by the
web-server, and a link to the data is provided to the user.

Python scripts have been implemented to perform different measurements on the data.
A measurement in this context is understood as the sampling of data points or sub-
samples of the data from water content, potential or flux fields. A measurement also
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10.4. Virtual Data Server

Figure 10.7.: Isosurfaces for solute concentrations of 0.25, 0.5, 0.75 and 1.0 at different
times. The concentration only increases above 1.0 when evaporation starts
after 288 hours and solute is accumulating in the uppermost part of the
soil. As evaporation is largest in the wheel tracks they can be clearly
distinguished in the last picture.
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may include a spatial averaging of the data. The system is still in the setup and testing
phase and will be available soon.
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11. Dynamic Effects in Heterogeneous
Soil

Infiltration into heterogeneous soils can be preferential, resulting in rough infiltration
fronts. While small scale heterogeneities should average out, the equilibration time
should be too long for larger scale heterogeneities. To study this effect, structures with a
different horizontal correlation length have been used in a work published already in 2010
(Vogel et al. 2010). Different approaches for a one-dimensional effective model which is
equivalent to the heterogeneous simulation have been tested. The work was mostly done
by Hans-Jörg Vogel. µϕ was used for all simulations and some new features were added
by the author.

An auto-correlated Gaussian random field with an isotropic correlation length of 8 cm
was generated using the Quantim-library and stored as a grey-scale image. Log-normal
scaling parameters with a standard deviation of σlog = 0.25 were calculated using this
image (as described in section 4.6.4). The parameters of the van Genuchten/Mualem
model used for the reference curve are given in table 11.1. Because of the software bug
mentioned before, the scaling was only applied to the saturated conductivity and the soil
water characteristic but not to the relative permeability function. In this case this was
rather fortunate, as the full Miller-similarity scaling produces much smoother infiltration
fronts.

The scaling parameter field was used to perform simulations of heterogeneous systems
with different horizontal correlation lengths by just changing the horizontal size of the
domain with a domain size of 2× 1 m for the simulation with a horizontal correlation
length of 8 cm, a domain size of 0.5× 1 m for a correlation length of 2 cm and a domain
size of 8× 1 m for simulations with a correlation length of 24 cm.

The initial condition was hydrostatic equilibrium with a matric potential of -20 cm at
the bottom, which was also the lower boundary condition. A constant flux of 3 cm/h

Keff θs θr τ α n σlog

cm/h – – – cm−1 – –

reference 20 0.32 0.02 0.5 0.063 3.0 0.25
heterogeneous 24.5 0.32 0.02 0.5 0.062 2.56 –

Table 11.1.: Parameters of the reference curve used for the simulation of the heteroge-
neous structures with different correlation lengths and parameters obtained
by fitting the effective values obtained for the heterogeneous structure.
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11. Dynamic Effects in Heterogeneous Soil

Figure 11.1.: Scaling parameter field with an isotropic correlation length of 8 cm used as
base for the simulation of the heterogeneous infiltrations. A grey value of
128 yields the reference curve, darker grey values correspond to finer and
lighter grey values to coarser material (from Vogel et al. 2010).

was applied at the top. A grid size of 128 × 64 elements was used for all simulations.
The time step was adjusted automatically.

An example of the resulting spatial distributions of flux density, volumetric water
content and matric potential for the structure with a correlation length of 8 cm after a
cumulative infiltration of 66.7 mm is given in figure 11.2. The rough infiltration front
and the preferential flow paths are clearly visible.

Figure 11.3 shows a comparison of the potential for the simulations with 2 and 24 cm
correlation lengths also after 66.7 mm of cumulative infiltration. The results of both
simulations have been scaled to the same width (please note the different horizontal
scales) for easier comparability. The infiltration front for the larger correlation length
is much rougher, as the time for equilibration available during the advancement of the
front is too short.

To perform an effective one-dimensional simulation of the experiment, the effective
hydraulic properties of the heterogeneous system have to be determined. They are not
the same as the parameters of the reference curve. The effective soil water characteristic
can be directly calculated from the soil water characteristic of the reference curve and
the fraction fi of the scaling value ηi (as they are calculated from the grey-scale image
there are only 256 material classes) as

θhet(ψm) = θ
∑

fiSref(ηiψm). (11.1)

For the random field used in this work the resulting curve is simple enough to be fitted by
an ordinary van Genuchten model. The parameters of this curve are given in table 11.1.
At hydrostatic equilibrium an effective curve can also be obtained by averaging over each
horizontal line, where each depth corresponds to a potential. As the number of data
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Figure 11.2.: Distribution of flux density (top), water content (middle) and potential
(bottom) for the scenario with an isotropic correlation length of 8 cm after
66.7 mm of cumulative infiltration (from Vogel et al. 2010).
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Figure 11.3.: Potential distribution for the fields with a horizontal correlation length of
2 cm (top), and 24 cm (bottom) after 66.7 mm of cumulative infiltration
(from Vogel et al. 2010).

points in each line is limited, the resulting curve is a bit noisy but agrees very well with
the effective curve (figure 11.4).

The relative permeability function can be calculated with the Mualem approach from
the multiple van Genuchten/Mualem model or the fitted van Genuchten/Mualem model.
The saturated hydraulic conductivity is calculated as a geometric mean of the saturated
conductivities of the materials (Matheron et al. 1967). Alternatively the effective hy-
draulic conductivity can be measured by simulating gravity flow in the heterogeneous
system at different flow rates yielding the hydraulic conductivity at different potentials.
These values are then interpolated with cubic Hermite-splines. Both approaches produce
similar values (figure 11.4) with the values from direct simulations being slightly higher.
A special hydraulic function object was added to µϕ which combines a multiple van
Genuchten model for the soil water characteristic with a spline interpolation for the rel-
ative permeability curve. For the sake of efficiency it is mandatory to use interpolation
tables with this parametrisation as the evaluation of 256 van Genuchten models for every
data point makes calculations prohibitively slow.

Horizontally averaged profiles of the water content after different amounts of cumu-
lative flow into the profile are shown in figure 11.5 on the left for the simulations with
2 cm and 24 cm correlation lengths. The simulations performed with the effective soil
water characteristic calculated with equation 11.1 and the spline interpolated, measured
conductivities describe the average position of the infiltration front rather well. However,
the infiltration fronts of the heterogeneous systems are less steep with a more disperse
shape for the higher correlation length as is to be expected due the longer time needed for
equilibration with a high correlation length. As this is a sign of hydraulic non-equilibrium,
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Figure 11.4.: Effective hydraulic functions derived for the heterogeneous medium. Vol-
umetric water content (left) for the multiple van Genuchten model (red
circles), line averaging during hydrostatic equilibrium (blue squares) and
a van Genuchten function fitted to the red circles (black line). Conduc-
tivity function (right) derived with the Mualem model from the fitted van
Genuchten curve using a saturated conductivity obtained by geometric av-
eraging (black line) and spline interpolation (blue dashed line) of effective
conductivity values calculated from stationary flow at different potentials
(red dots) (from Vogel et al. 2010).

simulations of the homogeneous system with the dynamic process model of Ross and
Smettem (section 3.9) and different relaxation times τ have been performed (figure 11.2,
right). While they show a similar widening of the infiltration front with large values of
τ , the water content in the upper part of the profile is too low especially at early times.
Thus the general approach to derive effective properties is promising but still requires
future research.
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Figure 11.5.: Profiles of water content after five different amounts of cumulative infil-
tration. In the figure at the right line-averaged water contents from the
structures with 2 cm and 24 cm horizontal correlation lengths are denoted
by closed and open symbols, respectively. Profiles in the left figure are
calculated with the effective properties and the dynamic model of Ross and
Smettem for different relaxation times τ of 500 s (open symbols), 1200 s
(closed symbols) and 2000 s (open symbols). The dashed lines in both fig-
ures are calculated with the effective parameters and an ordinary Richards’
equation (from Vogel et al. 2010).
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12. Large Scale Simulation of Water
and Solute Transport

Applications in water management, remote sensing and weather prediction require the
simulation of water transport on large spatial scales from several up to thousands of
kilometres. These simulations typically have to be performed with rather large grid
elements. As there is no known effective coarse scale model, Richards’ equation is still
used in these calculations. In one grid block, which often has a size of a hundred metre
to several kilometre, very different soil types can be present and vegetation cover varies
considerably from pasture over different agricultural crops up to woodland. There is also
anthropogenic impact from irrigation to human settlements. All this different influences
are lumped into a single set of parameters for the hydraulic functions, where the param-
eters are either averaged or estimated. Often just an ordinary van Genuchten/Mualem
model is used. While local heterogeneity can probably be averaged and represented
with effective models, even this is not a trivial task, as has been shown in the previous
chapters. It is rather hard to imagine, how processes in soils which are hundreds of
metres apart should produce a simple average. Due to the non-linearity of the hydraulic
functions they operate on very different time scales even if they experience the same
forcing by atmospheric boundary conditions. It is also quite obvious, that soils composed
of very different material like sands and loams can hardly be represented by simple
averaged parameters. Thus it seems reasonable to increase the grid resolution sufficiently
to resolve individual units of soil types and land use. This requires massively parallel
computing. However, existing codes only have a limited scalability. Parflow has been
shown to scale to several thousands of processors, but the parallel efficiency dropped
markedly from 4096 to 16384 processes (Kollet et al. 2010).

Weak scaling tests have been performed for µϕ and the transient solute transport model
with different test problems and supercomputers to assess its applicability in large-scale
simulations (with large-scale referring to large domain size and a huge number of parallel
processes).

12.1. Scalability Tests for µϕ

12.1.1. Setup

As Richards’ equation is a non-linear partial differential equation, it can assume a
different PDE type in different parts of the domain (section 3.2). This may also have
consequences for parallel scalability. The scalable solution of the linear equation systems
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from a discretisation of an elliptic second order PDE is notoriously harder than the
solution of a parabolic PDE. While the matrices produced by the former are only weakly
diagonally dominant, the time derivative makes the matrices occurring in the latter
strongly diagonally dominant with implications for the complexity of the linear solver.
The soil structure used in the computations will also influence the difficulty of the
problem. The case of a homogeneous material distribution and a saturated system for
example is equivalent to the solution of Laplace’s equation. Different test cases are
needed to separate these effects.

12.1.1.1. Test Platforms

The BlueGene/P type supercomputer JUGENE at Jülich Supercomputing Center was
used for the first weak scalability tests. It was operative from February 2008 to July
2012. Each of the 73’728 nodes of JUGENE had one quad-core CPU with Power-PC 450
cores and 2 GB of memory (512 MB per core). JUGENE thus had a total of 294’912
cores and 151 TB of main memory. The storage cluster of JUGENE, attached via one
I/O node per 128 compute nodes, used the IBM General Parallel File System (GPFS)
with a block size of 2 MB and a measured maximum usable band width of 25 GB/s.

JUQUEEN is the successor of JUGENE and has been operative since 2012. It is
a BlueGene/Q type computer and has only 28’672 nodes. However, each node has
now 16 compute cores (and 1 core for operating system assistance, MPI handling and
asynchronous I/O). Each of the PowerPC A2 cores has a floating point unit for four
double precision SIMD operations and supports quadruple hardware hyper-threading. A
total of 1’835’008 threads can thus be run in parallel. As each node is equipped with
16 GB of memory each thread can have as little as 256 MB of main memory. JUQUEEN
is also connected to an improved storage cluster using GPFS with 4 MB block size.

12.1.1.2. Test Cases

Two different sets of initial and boundary conditions where used in the scalability tests
which enforce different PDE types. In the “elliptic” scenario stationary ground water flow
was calculated, while for the “parabolic” scenario vertical infiltration in a relatively dry
unsaturated porous medium was simulated. According to typical practical use cases the
shape of the domains was also different for both scenarios. For the elliptic scenario a cubic
domain was used, while the domain in the parabolic scenario was a large quadrilateral
resembling a land surface. The domain in the parabolic scenario therefore only was
scaled in the horizontal directions with a growing number of processes.

For each scenario three different test cases were performed regarding the structure of
the porous medium: in the “large” test case a structure with the resolution of the whole
computational grid was read by parallel file I/O. In the “block” test case the structure
is the same for every process. Thus it could be read by the rank zero process and be
broadcasted to all other processes. Finally in the “homogeneous” test case the same
hydraulic properties were used everywhere.
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12.1. Scalability Tests for µϕ

parameter θs θr Ks n α τ

value 0.34 0.0 40.0 cm/h 2.0 5.0 0.5

Table 12.1.: Parameters for the van Genuchten/Mualem model used for the reference
curve in the scalability tests.

12.1.1.3. Simulation Parameters

For the three parabolic test cases 64× 64× 128 unknowns were used per process. Infil-
tration with a constant flux rate of 2 mm/h in a soil initially at hydrostatic equilibrium
with a matric potential of zero at the bottom and no-flow boundary conditions at the
sides was simulated. With a grid resolution of 1 cm and P processes the size of the
domain thus was

√
P · 0.64 ×

√
P · 0.64 × 1.28 m3. The structure in the “large” and

“block” test case had a two-scale heterogeneity which was created by using for every point
the mean of a value from a coarse structure with a correlation length of 102 centimetre
in the horizontal and 20.5 centimetre in the vertical direction (resulting in an anisotropy
ratio of 5), and a value from a fine structure with an isotropic correlation length of
2 centimetre. One time step of 1 hour was simulated. A reduction of the non-linear
defect by 10−5 was required.

803 unknowns per process were used for the elliptic test cases. Dirichlet boundary
conditions at the left and right side of the domain were chosen to produce a horizontal
pressure gradient of 1 m/m. No-flow boundary conditions were used everywhere else.
A grid resolution of 10 centimetre resulted in a domain size of (P 1/3 · 8)3 m3 for P
processes. A two-scale heterogeneity was used as well. The correlation lengths of the
coarse structure were 10.2 metre horizontally and 2.05 metre vertically, the correlation
length of the fine structure 20 centimetre. As this scenario results in a linear problem, the
solution was accepted when a reduction of the linear defect by 10−11 had been achieved.

To generate the heterogeneity the hydraulic properties of a reference material described
by a van Genuchten/Mualem model of a medium sand (table 12.1) were scaled using a
scaling parameter from an auto-correlated random field. While it was intended to use
Miller-similarity scaling, due to a software bug only the saturated conductivity and the
soil water characteristic have been scaled and not the relative permeability function. For
the elliptic scenario both approaches are completely equivalent as only the saturated
conductivity is relevant. In the parabolic test cases the conductivity functions are parallel
shifted, while the conductivity function in Miller-similarity intersect at some point. As
the task of Miller-similarity here was only to generate challenging non-linear problems
with strong heterogeneity, this does not affect the validity of the scalability tests.

12.1.1.4. Structure Generation

The auto-correlated random field of scaling parameters for the test cases was generated
using a modified version of the random field generator grf3 of the Quantim image
processing library (Vogel 2008). The data type of the field values was changed to float
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instead of double to save memory and computation time. For the “large” test cases
structures with a size up to 34′752× 34′752× 128 for the parabolic and 5′2803 for the
elliptic scenario were needed. As the generation of such huge structures would need
excessive amounts of memory and computation time, the large structures were generated
by repetition of a periodic base structure with 10243 values. The generation of this
structure with the required two-scale heterogeneity already took 3 hours of computation
time on one core of a 2.1 GHz AMD Opteron 6172. To save computation time the base
structure was stored and can be read by the structure generator for later usage. For
smaller structures a block with the required size was taken from the upper, left, front
part of the base structure.

12.1.1.5. File I/O

As the structures to be read and the results to be written were huge, efficient file transfer
was a central part of the considerations from the very beginning. Two different libraries
have been used: HDF5 (The HDF Group 2000–2013) and SIONlib (Frings 2009–2013).

HDF5 allows the storage of multi-dimensional data structures and the parallel access
to arbitrary sub-blocks of such structures with so-called hyperslabs. As HDF5 is a widely
used file format, this has the advantage, that the data can be directly read by other
programs like the visualisation tool ParaView. Additionally, data partitioning can be
done directly at the start of the input operation. However, the disadvantage is that the
data belonging to a single process in a parallel computation is not stored consecutively
on disk but has to be reordered during input and output operations. While this can be
done in a memory cache for small clusters with ample main memory, it can result in very
inefficient data transfer on large super computers.

SIONlib is optimised for parallel file systems, especially GPFS. A file system block
size of 1 to 4 MB is recommended with GPFS on supercomputers. This is larger than
the block size of ordinary file systems. Without additional measures several processes
will frequently try to access the same file system block, which results in very poor file
transfer rates. SIONlib guarantees that each process gets always assigned complete file
system blocks to store its data. This may result in a considerable overhead in file size if
the blocks are not fully used, but can speed up file transfer considerably. SIONlib does
not provide any support for the storage of structured data. Each process only gets a
POSIX-file pointer from which it can read or to which it can write its data. SIONlib
also allows to use a separate file for every I/O-node of JUGENE/JUQUEEN during
output, which can improve write rates further. The drawback of SIONLIB-based file
I/O is the need to partition the input data in advance and to post-process the output
data. However, this can be done very efficiently sequentially on a high-memory compute
server.

The difference between the two approaches was already visible in the preparation of
the files with scaling values. The largest structure had a size of 575 GB and thus was
too large to be stored in the 128 GB of main memory of the available compute server.
The HDF5-file thus had to be written with hyperslabs. This slowed down the output
operations markedly. Nearly 24 hours were needed to write the 575 GB file. With
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Figure 12.1.: Matric potential [Pascal] (top), volumetric water content [–] (middle) and
conductivity [m/s] (bottom) for the parabolic scenario with a block struc-
ture with 64 processes (left) and a large structure with 1024 processes
(right).

SIONlib the data for the individual processes is always written one after the other. Thus
the transfer rate remained high even for the very large files.

12.1.2. Results on JUGENE

12.1.2.1. Parabolic Scenario

Figure 12.1 shows the conductivity field, the water content and the matric potential after
a single time step for the block structure with 8×8 processes and the large structure with
32× 32 processes. Especially in the water content it is clearly visible that the structure
in the block test case is the same for each process and that there is no smooth transition
between processes. For the large test case the full structure is first resolved with 16× 16
processes. It can be seen in the figure how the structure repeats periodically twice in
every direction. It is also important to note that the conductivity varies over 9 orders of
magnitude at the surface for the large scenario, but the variation is – as a consequence
of the structure size – smaller for the block scenario which looks almost macroscopically
homogeneous.

The run-time without I/O (figure 12.2, left) is smallest for the homogeneous test case as
it requires less Newton iterations, less linear iterations (table 12.2) and the times required
to calculate the non-linear defect, assemble the Jacobian, build the coarse grid matrices
and apply one step of the linear solver are smaller than for the two heterogeneous test
cases. There is a marked increase in the computation time when the number of processes
is increased from four to eight as for the larger grids five newton iterations are required
instead of four. The total computation time stays nearly constant afterwards. The
calculation of the non-linear defect, the assembly of the Jacobian and the application
of one step of the linear solver scale nearly perfectly up to 16’384 processes with an
efficiency well above 90 per cent (figure 12.2, right). Only the coarsening step, where
the coarse grid hierarchy of the AMG solver is assembled shows a more pronounced drop
in the parallel efficiency from 1 to 16 processes. As the efficiency stays nearly constant
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homogeneous block large

iterations defect iterations defect iterations defect

P unknowns Newton linear eval. Newton linear eval. Newton linear eval.

1 524 · 106 4 9 8 5 20 9 5 20 9
4 2.10 · 106 4 11 8 5 20 9 7 28 11

16 8.39 · 106 5 12 9 5 20 9 6 29 13
64 33.6 · 106 5 12 9 5 20 9 12 57 36

256 134 · 106 5 13 9 5 20 9 12 60 36
1’024 537 · 106 5 13 9 5 21 9 12 61 36
4’096 2.15 · 109 5 14 9 5 21 9 12 62 36

294’849 155 · 109 12 63 36

Table 12.2.: Number of unknowns, non-linear and linear iterations and defect evaluations
for the different test cases of the parabolic scenario.

homogeneous block large

P defect matrix build tit defect matrix build tit defect matrix build tit

1 8.7 35.3 18.2 4.7 9.9 39.8 20.8 4.9 9.9 39.7 20.7 4.9
4 8.9 36.0 21.0 4.7 10.1 40.6 23.8 5.4 10.2 41.0 24.5 5.4

16 8.9 36.1 23.8 4.9 10.3 41.4 26.9 5.8 10.3 41.2 27.7 5.6
256 8.8 36.0 24.0 4.9 10.3 41.5 26.9 5.8 10.2 41.1 29.5 5.7

1024 8.8 35.9 24.1 4.8 10.3 41.2 27.1 5.8 10.3 41.1 29.6 5.7
4096 8.9 36.0 24.0 4.8 10.3 41.4 27.1 5.6 10.3 41.3 29.5 5.7

16’384 8.9 36.1 23.9 4.8 10.3 41.4 27.2 5.6 10.3 41.3 29.5 5.6
294’849 11.3 45.1 30.5 5.7

Table 12.3.: Computation times for the calculation of the non-linear defect, the assembly
of the Jacobian, the setup of the coarse grid hierarchy and the application of
one step of the linear solver (tit) for the different test cases of the parabolic
scenario.
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Figure 12.2.: Run-time without I/O (left) and parallel efficiency of the components (right)
for the three test cases of the parabolic scenario with up to 294’849 processes.
tit is the time for one iteration of the linear solver.

afterwards this is not problematic. If the efficiency would be calculated relative to 16
or 64 processes as often done in the literature, the scaling would still be nearly perfect.
While the number of iterations should be constant for a strictly diagonally dominant
problem, there is an increase from 9 to 15 iterations.

The behaviour of the block test case is very similar. The total computation time is
higher as nearly twice as many linear iterations are needed to solve the more complex
problem. In contrast to the homogeneous test case the number of linear iterations stays
nearly constant with increasing problem size. Probably due to more complex coarse grid
problems the time for the application of one step of the linear solver increases slightly
during the transition from sequential to parallel but stays constant afterwards.

The parallel run-time for the large test case increases by a factor of 3.5 from 1 to 64
processes and stays nearly constant afterwards. This is a consequence of an increase
in the number of non-linear and above all the linear iterations. The number of defect
evaluations rises as well, as line-search steps in the Newton scheme are necessary to
achieve convergence. With an increase of the domain size more and more of the large
structure (figure 12.1) is taken into account. The structure is fully resolved for the
first time with 256 processes. The problem is thus becoming more heterogeneous with
the increase in P and therefore more difficult to solve. When most of the structure is
included in the simulations, the computation time stays essentially constant. As in the
other test cases the parallel efficiency of the individual components is excellent even up
to 294’849 processes.

For the parabolic test case, µϕ and the ISTL-AMG show an excellent scalability with
the number of processes and a very good complexity in the number of unknowns as
reflected in the nearly constant number of linear iterations.
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Figure 12.3.: Surface plot of the saturated hydraulic conductivity [m/s] (left), pressure
distribution [Pa] (middle) and horizontal cross-section of the flux density in
the middle of the domain (right), where colours show the euclidean norm
of the flux density and glyphs the flux density vectors, for the large test
case of the elliptic scenario and 4096 processes.

12.1.2.2. Elliptic Scenario

The structure used in the elliptic scenario with 4096 processes can be seen in a surface
plot of the saturated hydraulic conductivity, (figure 12.3, left). The high variation of
the conductivity which varied by 14 orders of magnitude resulted in a correspondingly
heterogeneous distribution of pressure (figure 12.3, middle) and flux density (figure 12.3,
right).

Whereas the parallel run-time stays nearly constant for the parabolic test case a
linear increase can be seen in the computation time for the homogeneous and block
test cases of the elliptic scenario (figure 12.5, left). The main reason for this increase
is a linear increase in the number of iterations needed for the solution of the linear
equation system (table 12.4, figure 12.4). This is to be expected for the agglomeration
AMG used in the calculations and is responsible for its O(N log(N)) complexity. For
the large test case the increase in the number of iterations does no longer seem to
be linear. In the elliptic scenario the domain grows in all three-dimensions with an
increasing number of processes. The full structure is therefore resolved for the first time
with 163 = 4096 processes. While this could explain the above-linear increase of the
number of iterations up to 4096 processes, it does not explain the increase from 4096 to
287’496 processes.

In the (linear) elliptic test case it is not necessary to evaluate the non-linear relative
permeability function and the soil water characteristic. Thus the time for the calculation
of the defect and the assembly of the Jacobian is only about 50 % of the time needed
in the parabolic test case while the number of unknowns per process is nearly the same
(table 12.3). The calculation of the defect, assembly of the matrix and the application of
one iteration of the linear solver have a parallel efficiency very similar to the parabolic
scenario (figure 12.5, right). The time for one solver step is initially significantly lower in
the homogeneous test case. With increasing problem size it approaches the time needed
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Figure 12.4.: Linear iterations for the elliptic scenario with up to 287’496 processes for
the three test cases.
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Figure 12.5.: Run-time without I/O (left) and parallel efficiency of the components (right)
for the three test cases of the elliptic scenario with up to 287’496 processes.
tit is the time for one iteration of the linear solver.
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linear iterations

P unknowns homogeneous block large

1 512 · 103 4 10 10
8 4.10 · 106 6 14 13

64 32.8 · 106 7 17 18
512 262 · 106 8 20 27

4096 2.10 · 109 14 23 38
287’496 147 · 109 20 33 81

Table 12.4.: Number of unknowns and linear iterations for the different test cases of the
elliptic scenario.

homogeneous block large

P defect matrix build tit defect matrix build tit defect matrix build tit

1 4.7 17.8 16.8 4.1 5.2 18.8 19.9 5.1 5.2 18.8 19.8 5.1
8 5.0 18.6 20.0 4.7 5.4 19.6 25.3 5.3 5.4 19.6 24.6 5.2

64 5.0 18.6 31.9 5.0 5.4 19.6 37.1 5.7 5.4 19.6 35.9 5.5
512 5.0 18.6 33.5 5.4 5.3 19.5 40.5 5.6 5.3 19.5 40.2 5.7

4096 4.9 18.5 39.6 5.4 5.3 19.6 43.0 5.7 5.3 19.6 41.9 5.8
287’496 4.9 18.6 71.9 5.9 5.4 19.6 84.0 6.1 5.4 19.6 82.8 6.0

Table 12.5.: Computation times for the calculation of the non-linear defect, the assembly
of the Jacobian, the setup of the coarse grid hierarchy and the application
of one step of the linear solver (tit) for the test cases of the elliptic scenario.

in the other test cases. This results in a seemingly lower parallel efficiency.

The only part of the program which is not scaling very well is the coarsening. There
is a fundamental challenge when applying our type of agglomeration AMG to elliptic
problems in a massively parallel environment. Initially the coarsening is performed by
aggregation of unknowns on each process. If this works perfectly, there is one unknown
left for each process on the coarsest grid. Thus the coarse grid matrix has a dimension
of at least P . If the coarse grid problem is solved iteratively this might result in slow
convergence on large-scale computers like JUGENE. This was not a problem for the
parabolic scenario as for this case it was sufficient to perform some smoothing on the
coarse grid to obtain good convergence. For elliptic problems, however, it is necessary to
solve the coarse grid problem exactly. Thus if the number of unknowns on each process
drops below a certain threshold, the coarse matrix is redistributed to fewer processes. For
small clusters it is possible to directly redistribute the matrix to a single process, which
performs the further coarsening and the LU-decomposition of the coarsest matrix, as
soon as it is small enough, while the other processes fall idle. However, this approach will
not scale to large numbers of processes. An alternative is the successive repartitioning
of the matrix to fewer and fewer processes. To reduce the amount of communication a
(semi-)optimal partitioning has to be found. This is a graph-partitioning problem and
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Figure 12.6.: Run time for the parabolic test case with up to 917’504 processes for the
three scenarios.

can be solved with libraries like METIS or ParMETIS. A first implementation solving
the partitioning problem for the full coarse grid matrix with ParMETIS did not work
on JUGENE, as ParMETIS tried to allocate a P × P matrix which does not fit into the
memory of a compute node. A working alternative was obtained by sending only the
connectivity pattern of whole processes to the rank zero process and then solving the
partitioning problem sequentially with METIS. While this works, it involves an all-to-one
communication, which seems to be responsible for the bad scalability of the coarsening.
This problem is currently addressed in a project within the framework of the German
Priority Programme “Software for Exascale Computing”.

Despite the fact that the coarsening still has to be improved, µϕ and the ISTL-AMG
scaled reasonably well also for the elliptic scenario and produced solutions for problems
with nearly 150 billion unknowns in a reasonable time of 200 to 600 seconds.

12.1.3. Results on JUQUEEN

With JUQUEEN, the successor of JUGENE, it is possible to use even more parallel
processes. JUQUEEN has 524’288 cores but as it also supports 4-way hyper-threading,
up to 1’835’008 threads can be started. An interesting question is the efficiency of
the hyper-threading. To test this, a simulation of the parabolic block test case with
4096 processes was started either on 256 compute nodes without hyper-threading or on
128 compute nodes with 2-fold hyper-threading. The computation time without I/O
increased from 508 seconds with 256 nodes to 701 seconds with 128 nodes. However, as
the accounting of computation time is done by multiplication of the number of nodes with
the time they were used, it is still cheaper with hyper-threading. A more thorough testing
of the hyper-threading was performed with the solute transport code (section 12.2.2.1).

For the scalability test on JUQUEEN only the block scenario was used, as it allows
to assess the parallel efficiency of the components and is not trivial, while it is not too
costly in computation time. By using two-fold hyper-threading, the weak scaling test
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iterations defect time per step

P unknowns Newton linear eval. defect matrix build tit

1 524 · 106 5 20 9 8.2 32.3 20.3 3.3
4 2.10 · 106 5 20 9 8.4 33.4 22.3 3.7

16 8.39 · 106 5 20 9 8.5 34.2 28.4 7.0
64 33.6 · 106 5 20 9 12.0 48.2 37.4 8.4

256 134 · 106 5 21 9 11.9 47.1 39.6 8.3
1024 537 · 106 5 21 9 12.4 49.5 34.2 5.9
4096 2.15 · 109 5 21 9 12.6 51.9 30.7 5.9

16’384 8.59 · 109 5 20 9 12.5 49.8 34.8 6.1
65’536 34.4 · 109 5 20 9 12.4 50.6 33.1 6.1

262’144 137 · 109 5 20 9 12.8 50.3 36.6 6.1
524’288 275 · 109 5 20 9 13.3 52.8 35.5 6.3
917’504 481 · 109 5 20 9 12.7 50.9 40.5 6.3

Table 12.6.: Number of unknowns, non-linear and linear iterations and defect calculations,
as well as computation times for the calculation of the non-linear defect, the
assembly of the Jacobian, the setup of the coarse grid hierarchy and the
application of one step of the linear solver (tit) for the block test case of the
parabolic scenario on JUQUEEN.

could be performed with up to 917’504 processes and 481 billion unknowns.

After an initial increase the parallel run-time without I/O (figure 12.6, left) stays more
or less constant up to 917’504 processes. With 64 processes the 2-fold hyper-threading
was used for the first time, which partially explains the massive increase in run-time from
16 to 64 processes. This is reflected in a corresponding drop in the parallel efficiency of
the program components (figure 12.6, right). However, a close analysis of the absolute
times needed for different components of the code (table 12.6) shows, that there has to
be an additional reason. While the time needed for the calculation of the defect and
the assembly of the Jacobian stays more or less the same from one to sixteen processes,
increases by 40% on 64 processes and then remains again nearly constant, the time for
one step of the linear solver already increases considerably with 16 processes and rises
to 2.5 times the original value with 64 and 256 processes. tit then drops to 1.8 times
the sequential value with 1024 processes and afterwards remains there up to 917’504
processes. For the coarsening the situation is similar but less pronounced. The jobs up
to 256 processes are started on a different partition than the larger jobs, which suggests
that there is a technical reason for this effect. Up to know even after consultation of the
technical staff in Jülich it was not possible to find a detailed explanation. The number
of linear iterations was the same as in the scalability test on JUGENE and was nearly
constant as well. The run-time with hyper-threading was only a little bit higher than
the run-time on JUGENE which is a result of the faster processor cores on JUQUEEN.
However, as the problem is bounded by memory bandwidth, the 4-fold SIMD unit could
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not be exploited.
As 917’504 and 524’288 are no square numbers, the rectangular grids with a size of

57344× 65536× 128 and 32768× 57344× 128 were used for the two largest simulations.
For all other simulations the grid was quadratic in the horizontal. While the grid was
always partitioned in the horizontal only, the partitioner chose a partition of 512 ×
896 × 2 processes for the full machine run. This also resulted in a different shape of
the heterogeneity as the same structure was now stretched to 0.64× 1.28× 0.64 metres
instead of 0.64 × 0.64 × 1.28 metres. Neither the change of the domain shape nor of
the partitioning did significantly affect the simulation time, which is an indicator for the
reliability of the scalability data.

With this data µϕ was shown to scale up to the full machine of JUQUEEN and was
admitted as ninth program into the High-Q club of best scaling software on JUQUEEN.

12.2. Scalability Tests for Solute Transport

12.2.1. Setup

The flux fields produced by the scalability test of µϕ on JUQUEEN were used to simulate
solute transport and assess the weak scalability of the transient solute transport model.
A Dirichlet boundary condition of 1 was used at the upper boundary. No-flow boundary
conditions are used at the sides and for the diffusive flux at the bottom. The same grid
and domain decomposition as in the flow calculations was used for the solute transport
as well.

12.2.2. Results on JUQUEEN

12.2.2.1. Hyperthreading

For a more thorough testing of the efficiency of the hyper-threading more thoroughly,
solute transport was simulated with the flow field calculated with 4096 processes. The
number of threads per node was increased from 4 to 64 while the number of compute
nodes was decreased from 1024 to 64. The rise of the parallel run-time from 4 to 16
threads (figure 12.7, left) is caused solely by an increase in the time needed for file
I/O while the actual computation time stays constant. With less compute nodes there
are also less I/O nodes available and thus the bandwidth is reduced. There is a slight
increase in the computation time with 2-fold hyper-threading and a marked increase with
4-fold hyper-threading which is partially compensated by a decrease of the time needed
for file I/O. The small jobs are run on a partition with more I/O nodes per compute
node and thus file transfer is more efficient. The 10 % increase in the time needed for
the actual calculations from 16 to 32 threads is much smaller than the 40 % increase
measured for µϕ. This is unexpected as an explicit time-stepping scheme should more
likely be memory bandwidth-limited, but on the other hand shows that the measures
taken to make the calculations vectorisable and to optimise the memory layout have
been successful. There is a 63 % increase in calculation time from 32 to 64 threads

153



12. Large Scale Simulation of Water and Solute Transport

 0

 100

 200

 300

 400

 500

 1  10  100

T
im

e
 [

s
]

# Threads per Node [-]
Calculation I/O Total

 0.1

 1

 10

 1  10  100

re
la

tiv
e

 c
o

s
ts

 [
-]

# Threads per Node [-]
Calculation I/O Total

Figure 12.7.: Change of computation time (left) and the relative computational costs
(right) with the number of threads per node while keeping the total problem
size constant.

and an 80 % increase from 16 to 64 threads. Thus 4-fold hyper-threading is still most
efficient in terms of relative computational costs (figure 12.7, right), defined as the time
needed with X-threads compared to the time needed with 16 threads. While the use of
64 threads thus is optimal for solute transport, 32 threads seem to be more reasonable
for the water transport. As the scalability test of the water and solute transport had to
be run in one batch, the number of nodes had to be the same. Thus 32 threads were
used for the whole scalability test.

12.2.2.2. Scalability

There is a small increase in total computation time without I/O time from 1 to 16
processes (figure 12.8, left and table 12.6). The 2-fold hyper-threading results in an
additional increase, but afterwards the time stays essentially constant. The time with
917’504 is much shorter, but this is due to the different structure resulting from the
changed grid partitioning. This results in a different flux field and a larger time step
calculated by the CFL condition and thus a smaller number of time steps. The time for
a single time step is still the same. The parallel efficiency for a single time step is 85 %
(compared to a sequential computation) up to 917’504 processes (figure 12.8, right). If
the 10 % loss by hyper-threading is taken into account it is even 95 %. While this is to
be expected for an explicit scheme in principle it is still surprisingly good.

However, computation time for the largest simulations is only in the order or below
the time needed for file transfer. This is partly due to the fact that only 900 seconds
of computed time have been simulated. As an hourly time step was used for the water
transport calculation there would only be a need to read one set of flux densities and
volumetric water content and write one set of results every hour. Thus for longer
simulations the ratio of file transfer to calculation for the largest simulation would be
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P steps total input output calculation tstep

1 355 650.7 2.4 0.9 648.2 1.8
4 368 677.5 3.1 1.1 674.4 1.8

16 372 700.5 7.3 1.3 693.2 1.9
64 372 762.7 11.5 7.4 751.3 2.0

256 372 774.3 16.6 6.5 757.7 2.0
1024 376 782.3 25.5 15.1 756.8 2.0
4096 376 793.7 27.2 11.7 766.5 2.0

16’384 372 959.8 199.7 127.8 760.2 2.0
65’536 372 1015.8 244.2 233.8 771.6 2.1

262’144 376 1386.0 597.2 379.0 788.8 2.1
524’288 376 1000.6 222.9 138.0 777.7 2.1
917’504 216 805.1 368.6 166.8 436.5 2.0

Table 12.7.: Number of time steps and total parallel run time, time for file input and
output, the pure calculation and time needed for one time step (tstep) for
the block test case of the parabolic scenario on JUQUEEN.
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Figure 12.8.: Total computation time and parallel efficiency for solute transport with up
to 917’504 processes.
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more like 1 : 5. File transfer is faster for the two largest simulations (table 12.7) as some
parameters for SIONlib have not been set optimally for the smaller test cases.

12.3. Parallel File Transfer on JUGENE and JUQUEEN

As file transfer can be a bottleneck for large-scale simulations it will be analysed more
closely in this section using data from all scalability test performed.

12.3.1. File Input

As mentioned in section 12.1.1.5 the input of the structure used in the large test cases
was realised with two different libraries: HDF5 as well as SIONlib. Whereas for the large
test case of the parabolic scenario file I/O with HDF5 was used, for the large test case
of the elliptic scenario the file I/O was based on SIONlib as the former was too slow for
large problems. The dependency of the read file transfer rate on the number of processes
is shown in figure 12.9 on the left. With up to 512 processes the file transfer rate on
JUGENE increased with the number of processes following a power law both for HDF5
and for SIONlib, with the latter being faster by about a factor of three. However, the
file transfer rate with HDF5 stays more or less constant from 4096 to 294’849 processes,
while the file transfer rate with SIONlib increases. For the largest problems SIONlib
is, with a maximal transfer rate of 6.28 GB/s, faster by a factor 15 (table 12.8). On
JUQUEEN there was no need for parallel input in the water transport simulation as
the block-structure was read by the rank zero process and broadcasted to the other
processes. The solute transport code had to read fields of porosity, water content and
flux density. SIONlib was used for this purpose. File transfer was nearly four times
faster than measured on JUGENE with the same number of processes and increased up
to 47.4 GB/s with 917’504 processes.

12.3.2. File Output

For the output of the results HDF5 was also tested initially. However, output to three-
dimensional data formats was already prohibitively slow on JUGENE with several hun-
dred processes. This is most probably due to the necessary reordering of the data during
writing. A modified version, where each process wrote its data consecutively in a one-
dimensional array, performed better, but was not competitive with SIONlib and also
required a post-processing. The better performance of SIONlib probably is a consequence
of the prevention of access to the same (large) file system block.

The measured write file transfer with SIONlib also follows a power law (figure 12.9).
While the file transfer rate for small processes shows some spreading, the file transfer
rate for the large simulations is rather similar. However, this effect is also exaggerated
by the double logarithmic plot. The slow output for µϕ on JUQUEEN up to 262’144
processes and for solute from 16384 to 262144 processes was caused by the use of a wrong
communicator for SIONlib. For the simulations with the corrected code (solute with
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transfer rate [GB/s] transfer data [TB]

processes input output input output

JUGENE
HDF5 4’096 0.18 0.009

294’849 0.40 0.62
SIONlib 4’096 0.63 1.4/4.8 0.008 0.05/0.11

287’496 6.28 13.5 0.59 7.7
294’849 10.1 1.24

JUQUEEN
µϕ 4’096 0.76 0.1

917’504 77.0 21.3
solute 4’960 2.09 5.19 0.08 0.06

917’504 47.4 81.2 17.5 13.5

Table 12.8.: Average transfer rates of file I/O on JUGENE and JUQUEEN and total
amount of transferred data. Here 1 TB = 1000 GB=1012 byte.
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1 to 65’536 and the simulations with 524’288 and 917’504 processes) the transfer rates
were also above the values measured on JUGENE with the same number of processes.
The maximal measured write rate was 81.2 GB/s. Wolfgang Frings, the developer of
SIONlib, measured maximal write rates of 100-120 GB/s and read rates of ≈ 65 GB/s
with 1.8 million processes in a favourable configuration (personal communication). As
the transfer rates given in table 12.8 are net transfer rates with the file system blocks
assigned to each process not always filled completely, this is very close to the maximal
bandwidth of the file system.

With the same number of processes the transfer rates for writing were always higher
than for reading. While for the structures only a single file could be used as the sequential
version of SIONlib does not support the writing of multiple files, this does not explain
the lower rates during the input of the solute transport code, where the data had been
already written to multiple files. As it was also measured by Wolfgang Frings it seems
to be a hardware effect.

The scalability tests of file I/O showed that efficient parallel file transfer with the
huge data sets involved in the simulation of large systems (up to 21 TB in the tests)
is possible. Data I/O can, however, still consume a significant fraction of the total
run-time. To obtain a high performance it is mandatory that each process stores its data
in a consecutive block. In the best case each process gets a file system block of its own.
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13. Conclusions

In this work powerful software tools for the sequential and parallel simulation of water
and solute transport in strongly heterogeneous porous media have been developed. They
have been shown to scale extremely good on BlueGene/P and /Q supercomputers.
The efficient use of petascale computers is thus already possible. If massively parallel
computers like JUQUEEN become available to a wider public this would open up a
new perspective for high-resolution large-scale land-surface simulations. Together with
a handful of other models µϕ and its transient solute transport solver are members of
the High-Q club of best scaling codes on JUQUEEN.

A bottleneck especially for the solution of elliptic problems is the repartitioning of un-
knowns during the coarsening of the algebraic multi-grid solver. This is already addressed
as part of the EXADUNE project funded by the German Research Association within
the framework of the German Priority Programme “Software for Exascale Computing”.

The input and output of structures and results can require a major part of the run-time
of massively parallel simulations if frequent output is required or the simulated time is
rather short. Thus it is reassuring that parallel file systems can be used efficiently with
transfer rates close to the technical maximum. A careful choice of the libraries and of
the I/O strategy is a necessary precondition for this.

The developed software has been applied to several problems of practical relevance.
Solute transport in heterogeneous unsaturated systems is still a problem with many open
questions. The fitting of breakthrough curves only gives limited insight and the obtained
parameters are hardly transferable. Thus the inclusion of structural information is a
promising approach. While structural information today is easy to measure e.g. with
X-ray micro-tomography, the hydraulic parameters of the different materials are not.
The comparison of two different approaches for parameter estimation showed that the
direct usage of the structure in a three-dimensional optimisation is not an easy task.
The estimation of effective parameters from a one-dimensional inversion with subsequent
down-scaling of the properties in contrast yielded a surprisingly good prediction of the
shape of the breakthrough curve when the measured structure was included into the
simulation. For saturated porous media three-dimensional inversion is more advanced as
the system is linear and less over-parametrised. Here new parallel geostatistic inversion
schemes are currently developed in our group.

The estimation of parameters for heterogeneous soils remains, however, an important
task. Virtual soil systems can be useful tools in the optimisation of measurement
strategies, the development of better effective models and the analysis of model errors.
Three-dimensional virtual soil systems with a realistic structure and a high spatial
resolution have been presented in this work. Water and solute transport have been
simulated with unprecedented resolution in space and time. The results gave interesting
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insights in the influence of sub-surface properties on effective fluxes into atmosphere and
groundwater. While evaporation fluxes depended mostly on the near-surface structure
of the soil, the subsoil boundary in 1.5 metre depth still had a significant influence.
Seepage rates on the other hand were hardly influenced by this factors and depended
more on the amount of water already stored in the sub-surface. Soil heterogeneity had a
much higher influence on solute transport than on water flow. The solute simulations
also showed, that all water reaching the groundwater was “old” water. The simulation
results are currently being processed and will be made available for public access via a
web front-end.

One approach to develop effective models for heterogeneous soils is the inclusion of
macroscopic hydraulic non-equilibrium. The model of Ross and Smettem (which is very
similar to the model of Barenblatt) was implemented and tested with simulations of
infiltration into heterogeneous soils with different correlation length. Effective hydraulic
functions were derived for the heterogeneous systems. The qualitative agreement between
the heterogeneous simulations and homogeneous simulations with the effective properties
and different relaxation times was good. However, there are systematic differences in
the shape of the water content profiles behind the infiltration front. Further research is
necessary as (macroscopic) non-equilibrium is an issue during fast flow processes.
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porösen Medien”. MA thesis. Ruprecht-Karls-Universität Heidelberg.

Hilfer, R. (2006a). “Capillary pressure, hysteresis and residual saturation in porous
media”. In: Physica A 359, pp. 119–128. doi: 10.1016/j.physa.2005.05.086.

Hilfer, R (2006b). “Macroscopic capillarity and hysteresis for flow in porous media”. In:
Physical Review E 73.1, p. 016307.

Hopmans, J. W. et al. (2002). “Simultaneous determination of water transmission and
retention properties. Inverse methods”. In: Methods of Soil analysis. Part 4. Ed. by
J. H. Dane and G. C. Topp. SSSA, Madison, WI.

Inoue, Yoshio, Kataryna Dabrowska-Zierinska, and Jiaguo Qi (2012). “Synoptic assess-
ment of environmental impact of agricultural management: a case study on nitrogen
fertiliser impact on groundwater quality, using a fine-scale geoinformation system”.
In: International Journal of Environmental Studies 69.3, pp. 443–460.

Ippisch, O (2001). “Coupled transport in natural porous media”. In: Combined faculties
forthe natural sciences and for mathematics. Heidelberg, Germany: Rupertus Carola
University, p. 123.

Ippisch, O. (2003). “Coupled Transport in Natural Porous Media”. PhD thesis. University
of Heidelberg. url: http://www.ub.uni-heidelberg.de/archiv/3220.

Ippisch, O., H.-J. Vogel, and P. Bastian (2006). “Validity Limits for the van Genuchten-
Mualem Model and Implications for Parameter Estimation and Numerical Simu-
lation.” In: Advances in Water Resources 29.12, pp. 1780–1789. doi: 10.1016/j.
advwatres.2005.12.011.

Ippisch, Olaf (2013). Muphi/Fitphi Guide. http://conan.iwr.uni-heidelberg.de/
muphi.

166

http://dx.doi.org/10.1016/j.physa.2005.05.086
http://www.ub.uni-heidelberg.de/archiv/3220
http://dx.doi.org/10.1016/j.advwatres.2005.12.011
http://dx.doi.org/10.1016/j.advwatres.2005.12.011
http://conan.iwr.uni-heidelberg.de/muphi
http://conan.iwr.uni-heidelberg.de/muphi


Bibliography

Jarvis, N J (1989). “A simple empirical model of root water uptake”. In: Journal of
Hydrology 107.1, pp. 57–72.

Jenny, P, S.H Lee, and H.A Tchelepi (2003). “Multi-scale finite-volume method for
elliptic problems in subsurface flow simulation”. In: Journal of Computational Physics
187.1, pp. 47 –67. issn: 0021-9991. doi: http://dx.doi.org/10.1016/S0021-
9991(03)00075-5. url: http://www.sciencedirect.com/science/article/pii/
S0021999103000755.

Jin, Y. and W. A. Jury (1996). “Characterizing the Dependence of Gas Diffusion Coeffi-
cient on Soil Properties”. In: Soil Sci. Soc. Am. J. 60.1, pp. 66–71.

Joekar-Niasar, V. and S. M. Hassanizadeh (2011). “Specific interfacial area: The missing
state variable in two-phase flow equations”. In: Water Resour. Res. 47.W05513,
pp. 1–14. doi: 10.1029/2010WR00929.

Kastanek, Ferdinand J and Donald R Nielsen (2001). “Description of soil water character-
istics using cubic spline interpolation”. In: Soil Science Society of America Journal
65.2, pp. 279–283.

Kasteel, R., H.-J. Vogel, and K. Roth (2000). “From local hydraulic properties to effective
transport in soil”. In: European J. Soil Sci. 51. copied, pp. 81–91.

Kollet, Stefan J et al. (2010). “Proof of concept of regional scale hydrologic simulations
at hydrologic resolution utilizing massively parallel computer resources”. In: Water
Resources Research 46.4.

Kool, J. B., J. C. Parker, and M. T. van Genuchten (1987). “Parameter estimation for
unsaturated flow and transport models - a review”. In: J. Hydrol. 91. pdf, copied,
pp. 255–293.

Kuhlmann, A et al. (2012). “Influence of soil structure and root water uptake strategy
on unsaturated flow in heterogeneous media”. In: Water Resources Research 48.2,
W02534.

Kulli, Beatrice (2004). ”Durchblick in Bodenphysik – Webbasierte Hilfsmittel zur Vor-
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