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Abstract

We �t a class of semiparametric models to a nonstationary process. This class is parametrized
by a mean function �(·) and a p-dimensional function �(·) = (� (1)(·); : : : ; � (p)(·))′ that
parametrizes the time-varying spectral density f�(·)(�). Whereas the mean function is estimated
by a usual kernel estimator, each component of �(·) is estimated by a nonlinear wavelet method.
According to a truncated wavelet series expansion of � (i)(·), we de�ne empirical versions of the
corresponding wavelet coe�cients by minimizing an empirical version of the Kullback–Leibler
distance. In the main smoothing step, we perform nonlinear thresholding on these coe�cients,
which �nally provides a locally adaptive estimator of � (i)(·). This method is fully automatic
and adapts to di�erent smoothness classes. It is shown that usual rates of convergence in Besov
smoothness classes are attained up to a logarithmic factor. c© 2001 Elsevier Science B.V. All
rights reserved.

MSC: primary 62M10; secondary 62F10
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1. Introduction

Stationarity of the observations is crucial for the validity of proposed methods in
the vast majority of papers in time-series analysis. However, this assumption is often
violated in practical applications. In the present paper we develop methodology to
�t semiparametric models which, in particular, allow for modeling the time-varying
behavior of the process. In order to present a rigorous asymptotic theory, we suppose
that the observations X1; : : : ; XT stem from a locally stationary process as de�ned in
Dahlhaus (1997) – see De�nition 2.1 below. The main idea consists of a rescaling
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of the time axis to the interval [0,1]. By imposing smoothness conditions on certain
parameter functions in this rescaled time we can develop an asymptotic theory for
estimates of these parameter functions.
The model to be �tted is characterized by the mean function �(u) and a p-

dimensional parameter function �(u); u ∈ [0; 1], which de�nes the time-varying spectral
density f�(u)(�). An example is the time-varying ARMA process

r∑
j=0

aj

( t
T

)
Xt−j;T =

s∑
j=0

bj

( t
T

)
�t−j;T ;

where a0(·) ≡ b0(·) ≡ 1; �t;T ∼ N(0; �(t=T )2), �(u) = (a1(u); : : : ; ar(u); b1(u); : : : ;
bs(u); �2(u)), and

f�(u)(�) =
�2(u) |∑s

j=0 bj(u) exp(i�j)|2
2� |∑r

j=0 aj(u) exp(i�j)|2

(cf. Dahlhaus 1996a). Consistent estimation of these functions is possible under appro-
priate restrictions on the class of possible models. Accordingly, we impose smoothness
conditions on the functions � and �.
The estimation of � does not cause any substantial problems and can be carried out

by “direct methods”. It may be done, as proposed in the present article, by a usual
kernel estimator. In contrast, the estimation of � is much more involved. The reason is
that we do not observe �(·) “directly” (as in nonparametric regression where we observe
�(·) plus some noise). Instead all characteristics of the process (such as f�(u)(�))
usually depend on the parameter curves in a highly nonlinear way. We therefore suggest
in Section 3 a minimum distance method for the estimation of �(·) which is based on
a distance between the time-varying spectral density and some nonparametric estimate
of it. This raises the problem of �nding a suitable nonparametric estimate. One may
certainly use usual periodograms on small segments, as proposed in Dahlhaus (1997)
and von Sachs and Schneider (1996). However, such local periodograms contain an
additional parameter, the segment length N , which acts like a smoothing parameter in
time direction (see Section 2). This means that beside the major smoothing step of
nonlinear wavelet thresholding (which we aim at) we have an additional nonadaptive
smoothing step at this preliminary stage. A possible alternative is given by the so-called
preperiodogram proposed in Neumann and von Sachs (1997) – see also Dahlhaus
(2000). Motivated by the convergence result (2.4), this preperiodogram has the form

J �̃
T (u; �) =

1
2�

∑
k:k∈Z;16[uT+0:5−k=2]6T
and 16[uT+0:5+k=2]6T

(
X[uT+0:5−k=2];T − �̃

(
[uT + 0:5− k=2]

T

))

×
(
X[uT+0:5+k=2];T − �̃

(
[uT + 0:5 + k=2]

T

))
exp(−ik�); (1.1)

where �̃(·) is some estimator of the mean function and [x] is the largest integer smaller
or equal to x. The preperiodogram has a similar structure as the Wigner–Ville spectrum
(cf. Martin and Flandrin, 1985). It may be regarded as a raw estimate of the spectral
density at time u and frequency �. However, in order to obtain a consistent estimator
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smoothing in time and frequency is necessary. The obvious advantage of this de�nition
is that it does not contain any implicit smoothing, neither in frequency nor in time.
Consequently, the decision about the degree of smoothing in each of these directions
is left to the major smoothing step itself.
An estimate for the parameter curves �(·) can now be obtained by a minimum dis-

tance �t of f�(·)(�) to J �̃
T (· ; �) together with some smoothing. Dahlhaus (2000) has

used this strategy in the �nite-dimensional case, i.e. in the case where the parameter
curves themselves are parameterized. In this paper we show how this approach to-
gether with a truncated wavelet series approximation can be used in the case of strong
inhomogeneous smoothness of �(·) – for example, for piecewise smooth functions with
jumps. In order to adapt the degree of smoothing to the local smoothness characteristics
of the curves we apply a nonlinear regularization method based on a truncated wavelet
series approximation of the parameter functions � (i), that is

� (i)(u) =
∑
k

�l;k;i�l;k(u) +
∑

l6j¡j∗

∑
k

�j;k;i j; k(u):

Here {�l;k}k ∪{ j;k}j¿l;k forms an orthonormal wavelet basis of L2[0; 1]. As a starting
point, we obtain empirical versions, �̃l; k;i and �̃j; k;i, of the coe�cients �l;k;i and �j;k;i,
respectively, by minimizing some empirical distance measure. In order to get a locally
(in u) (near-)optimal degree of smoothing, we intend to apply nonlinear thresholding of
these empirical coe�cients. This method was introduced into statistics by Donoho and
Johnstone in a series of papers (see, for example, Donoho and Johnstone, 1998). Non-
linear thresholding is roughly the same as a pre-test estimator, where the signi�cance
of each individual coe�cient is separately tested in a previous step.
To carry out this plan, we need knowledge about the stochastic behavior of �̃j; k;i −

�j;k;i. It will turn out that �̃j; k;i can be approximated by a certain quadratic form in
(X1;T −EX1;T ); : : : ; (XT;T −EXT;T ). On the basis of cumulant methods and some simple
truncation technique, we derive a general result on the asymptotic normality of such
quadratic forms in terms of probabilities of large deviations. This result is used to derive
estimates for the tail behavior of the empirical coe�cients �̃j; k;i. This allows us to act
in the same way as in the case of normally distributed wavelet coe�cients. Hence,
we can transfer methodology developed in several papers by Donoho and Johnstone
to our particular estimation problem. The empirical wavelet coe�cients are treated by
nonlinear rules, which �nally provide near-optimal estimators of � (i) after applying the
inverse wavelet transform. If the �tted model is an AR(p)-model with time varying
coe�cients the estimate is very similar to the one obtained in Dahlhaus et al. (1999).
This paper also contains two examples with simulations which demonstrate the behavior
of the estimate.
The paper is organized as follows. In Section 2 we recall the de�nition of locally

stationary processes and discuss two versions of local periodograms. In Section 3 we
describe the construction of empirical versions of the wavelet coe�cients that corre-
spond to a wavelet expansion of the parameter curves � (i)(·). Nonlinear thresholding
of these coe�cients, which �nally leads to a locally adaptive estimate for � (i), is de-
scribed in Section 4. In order to preserve a readable structure of this paper, most of
the technicalities are deferred to the appendix. Part I of this appendix contains some
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technical results on asymptotic normality of quadratic forms while Part II contains the
proofs of the assertions.

2. Some tools for a local analysis of nonstationary processes

Assume we observe a stretch X1; : : : ; XT of a possibly nonstationary time series and
we intend to �t a certain semiparametric model to this process. As always in nonpara-
metric curve estimation, desirable properties like consistency can only be derived under
certain restrictions on the complexity of the object of interest. An appropriate frame-
work, which allows for a rigorous asymptotic treatment of nonstationary time series,
is the following model for locally stationary processes (cf. Dahlhaus, 1997). We cite
this de�nition, which generalizes the Cram�er representation of a stationary stochastic
process.

De�nition 2.1. A sequence of stochastic processes {Xt;T}t=1; :::;T is called locally
stationary with transfer function Ao and trend � if there exists a representation

Xt;T = �
( t
T

)
+
∫ �

−�
Ao
t;T (!) exp(i!t) d�(!); (2.1)

where
(i) �(!) is a stochastic process on [ − �; �] with �(!) = �(−!); E�(!) = 0 and

orthonormal increments, i.e.,

cum{d�(!1); : : : ; d�(!k)}= �

 k∑
j=1

!j

 hk(!1; : : : ; !k−1) d!1; : : : d!k;

where cum{: : :} denotes the cumulant of order k; |hk(!1; : : : ; !k−1)|6const:k for
all k (with h1 = 0; h2(!) = 1) and �(!) =

∑∞
j=−∞ �(! + 2�j) is the period 2�

extension of the Dirac delta function (Dirac comb), and where
(ii) there exists a positive constant K and a smooth function A(u; !) on [0; 1]×[−�; �]

which is 2�-periodic in !, with A(u;−!) = A(u; !), such that for all T ,

sup
t;!

|Ao
t;T (!)− A(t=T; !)|6KT−1: (2.2)

A(u; !) and �(u) are assumed to be continuous in u.

The smoothness of A and � in u restricts the departure from stationarity and ensures
the locally stationary behavior of the process. A detailed motivation and discussion of
the model is contained in Dahlhaus (1996a). It allows also for a reasonable de�nition
of a time-varying spectral density.

De�nition 2.2. As the time-varying spectral density of {Xt;T} given by (2.1) we
de�ne, for u ∈ (0; 1),

f(u; !) := |A(u; !)|2: (2.3)
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By Dahlhaus (1996a, Theorem 2:2) if A(u; !) is uniformly Lipschitz in u and !
with index �¿ 1=2, then, for all u ∈ (0; 1),∫ �

−�

∣∣∣∣∣f(u; �)− 1
2�

∞∑
k=−∞

cov(X[uT+0:5−k=2];T ; X[uT+0:5+k=2];T ) exp(−i�k)
∣∣∣∣∣
2

d�=o(1)

(2.4)

which establishes the link between the De�nitions 2.1 and 2.2.

2.1. Preperiodogram versus periodogram on small segments

In this section we assume for simplicity that � ≡ 0. The properties of the preperi-
odogram JT in relation to the ordinary periodogram IT can be best understood by the
following relation (cf. Dahlhaus 2000):

IT (�) =
1
2�T

∣∣∣∣∣
T∑

t=1

Xt;T exp(−i�t)
∣∣∣∣∣
2

=
1
2�

T−1∑
k=−(T−1)

 1
T

T−|k|∑
t=1

Xt;TXt+|k|;T

 exp(−i�k)
=
1
T

T∑
t=1

1
2�

∑
k:k∈Z;16[t+0:5−k=2]6T
and 16[t+0:5+k=2]6T

X[t+0:5−k=2];T X[t+0:5+k=2];T exp(−i�k)

=
1
T

T∑
t=1

JT
( t
T
; �
)
: (2.5)

Thus, the periodogram over the whole stretch of data is the average of the preperi-
odogram over time. While the periodogram is the Fourier transform of the covariance
estimator of lag k over the whole segment the preperiodogram JT (t=T; �) just uses the
single product X[t+0:5−k=2];T X[t+0:5+k=2];T as a kind of “local estimator” of the covariance
of lag k at time t (note that [t + 0:5 + k=2]− [t + 0:5− k=2] = k).
A classical kernel estimator of the spectral density of a stationary process at some

frequency �0 therefore can be regarded as an average of the preperiodogram over
the frequencies in the neighborhood of �0 and all time points which is justi�ed if
the process is stationary. It is therefore plausible that averaging the preperiodogram
around some frequency �0 and some time point u0 gives a consistent estimate of the
time-varying spectrum f(u0; �).
For a locally stationary process the preperiodogram is asymptotically unbiased but

has a diverging variance as T → ∞. Thus, smoothing in time and frequency is essential
to make a consistent estimate out of it. Beside the two-dimensional kernel estimate
mentioned above, we may apply a local polynomial �t in time and frequency or even
a nonlinear wavelet method in both directions. The latter approach has been studied in
Neumann and von Sachs (1997) where it was shown that the resulting estimate has the
optimal rate of convergence in anisotropic function classes up to a logarithmic factor.
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A possible alternative for locally stationary processes seems to be to start with an
ordinary periodogram over small segments. This has been proposed by Dahlhaus (1997)
for the purpose of �tting parametric models to nonstationary processes and in von Sachs
and Schneider (1996) as a starting point for a wavelet estimator of the time-varying
spectral density. In the nontapered case, such a local periodogram has the form

IN (u; �) =
1
2�N

∣∣∣∣∣
N∑

k=1

X[uT−N=2+k];T exp(−i�k)
∣∣∣∣∣
2

:

Note, that the parameter N = N (T ), which is usually assumed to obey N → ∞ and
N=T → 0 as T → ∞, acts in two ways: First, as (2.5) shows it delivers a cut-o�
point, from which on covariances of higher lags are excluded. Hence a small value of
N introduces some bias. Second, IN (u; �) already contains some implicit smoothing in
time: it is equivalent to a kernel estimate based on a modi�ed preperiodogram (with N
instead of T ) around u with bandwidth N=T (with a rectangular kernel – with tapering
one gets a smooth kernel!).
The use of IN (u; �) as a starting point is reasonable as long as the degree of smooth-

ing in time in the following smoothing step exceeds the degree of smoothing implicitly
contained in the de�nition of IN (u; �) (e.g. if a kernel with bandwidth b/N=T is used)
or if the smoothing in time direction is purely controlled by the parameter N and in ad-
dition only some smoothing in frequency direction is applied (e.g. a kernel estimate as
in Dahlhaus, 1996b). However, since IN (u; �) is nearly the same as our preperiodogram
JT (t=T; �) smoothed with a rectangular kernel we cannot make full use of smoothness
of higher order of f(u; �) in time direction. Moreover, problems clearly arise if an
adaptive method is used in the second step (as in the present paper). For that reason
we prefer the preperiodogram where we have full control over the smoothing in the
second step. Below we use the preperiodogram in a minimum distance functional to
obtain estimates of the parameter curves �(·).
From here on, we consider the general case of an unknown mean function �. A

particular estimate for � is given by the kernel estimator introduced in Gasser and
M�uller (1979),

�̃(u) =
T∑

t=1

[∫ t=T

(t−1)=T

1
b
K
(
u− v
b

)
dv

]
Xt;T : (2.6)

Here b denotes the bandwidth and K is an ordinary kernel with support [ − 1; 1],
if 06u − b¡u + b61, and a boundary kernel otherwise. We can of course also
use other nonparametric estimates here, as for example local polynomial estimates.
From now on we use the preperiodogram J �̃

T (u; �) with mean corrected data as de�ned
in (1.1).

2.2. Some properties of the preperiodogram

To reduce the burden of technicalities in the following sections, we investigate �rst
some stochastic properties of J �̃

T (u; �). In what follows, we have to deal with quantities
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of the form

F(J �̃
T ) =

∫ 1

0
q(u)

∫ �

−�
p(u; �)J �̃

T (u; �) d� du;

where q(u) may depend on T . F(J �̃
T ) describes the asymptotic behavior of the wavelet

coe�cients, cf. (B.7) below. q(u) typically plays the role of a wavelet while p(u; �)
is some function of the spectral density. The result stated in Lemma 2.1 below is of
interest beyond its particular application in this paper. For example, if q is a kernel
function and p(u; �) = exp(i�k) then F(J �̃

T ) is an estimate of the local covariance
function of lag k. We will show below that F(J �̃

T ) is asymptotically equivalent to
F(J �

T ) and that these quantities are asymptotically normally distributed in terms of
probabilities of large deviations. Before we investigate F(J �̃

T ) and F(J �
T ), we introduce

a convenient notion, which is slightly stronger than the usual OP.

De�nition 2.3. We write

ZT = Õ(�T )

if for each �¡∞ there exists a C = C(�)¡∞ such that

P(|ZT |¿C�T )6CT−�:

The statement ZT = Õ(�T ) describes the fact that ZT is O(�T ) with a probability
exceeding 1−O(T−�). Here and in the following we use the convention that � in the
exponent of T denotes an arbitrarily large and � an arbitrarily small coe�cient.
To derive some useful stochastic properties of F(J �̃

T ) we use the following
assumptions:

(A1) {Xt;T} is a locally stationary process and A(u; �) is Lipschitz continuous in u.
(A2) (i) Assume that for all L¡∞ there exists a KL ¡∞ such that

E|Xt;T |L6KL

(ii) {Xt;T} is �-mixing uniformly in T with mixing coe�cients

�(s)6C1 exp(−C2|s|):
(A3) � is r times di�erentiable with |�(r)(x)|6C and the kernel K is of order r.

Remark 1. Assumptions (A2) and (A3) are used as follows. Lemma 2.1 below states
asymptotic normality for a functional of the preperiodogram in terms of probabilities
of large deviations. Such results are usually derived by means of cumulant techniques
under the assumption that there exist constants M ¡∞ and 
¡∞ such that∑

t2 ;:::; tk

|cum(Xt1 ;T ; : : : ; Xtk; T )|6Mk(k!)1+
; (2.7)

see for example Saulis and Statulevicius (1991, Lemmas 2:3 and 2:4). Since such a
quantitative condition to hold simultaneously for all cumulants is unnecessarily restric-
tive we assume instead (A2) which yields an upper bound similar to (2.7) by a result
of Statulevicius and Jakimavicius (1988) and a simple truncation argument (for details,
see Lemma A.1 in the appendix).
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Assumption (A3) leads to a certain decay of the bias of a nonparametric kernel
estimator of � which implies that the di�erence between F(J �̃

T ) and F(J �
T ) is asymp-

totically negligible.

Lemma 2.1. Suppose that (A1); (A2);{∑
k

|k| sup
u∈[0;1]

∣∣∣∣∫ �

−�
p(u; �) exp(−ik�) d�

∣∣∣∣
}

¡∞;

‖q‖1‖q‖∞ =O(1)

as well as

‖q‖∞ =O(T 1=2−�)

for any �¿ 0; are ful�lled. The asymptotic variance of F(J �
T ) is given by

�2T = 2�T−1
{∫ 1

0

[∫ �

−�
2|q(u)p(u; �)f(u; �)|2 d�

+
∫ �

−�

∫ �

−�
q(u)p(u; �)q(u)p(u;−�)f(u; �)f(u; �)h4(�;−�; �) d� d�

]
du

}
:

(i) If �T¿C0T−1=2 for some C0¿ 0; then

P(±[F(J �
T )− EF(J �

T )]¿�T x) = (1− �(x))(1 + o(1)) + O(T−�)

holds uniformly in x ∈ R; where � denotes the cumulative distribution function
of a standard normal random variable.

(ii) If �T =O(T−1=2); then; for ��T =max{�T ; C0=
√
T} and arbitrary C0¿ 0;

P(±[F(J �
T )− EF(J �

T )]¿ ��T x)62(1− �(x))(1 + o(1)) + O(T−�)

holds uniformly in x ∈ R.
(iii) EF(J �

T )− F(f) = O(‖q‖∞T−1).
(iv) If additionally (A3) is satis�ed; then

F(J �̃
T )− F(J �

T )

= Õ(‖q‖2T−1=2{[(Tb)−1=2 + br]
√
log T + brT �−1=2‖q‖1‖q‖2∞=‖q‖32}

+‖q‖1[(Tb)−1 + b2r]);

where b denotes the bandwidth of the estimator for �̃.

Part (i) states asymptotic normality in terms of probabilities of large deviations in
the case that there is a favorable relation between �T and our upper estimates for the
cumulants. If such a relation is not guaranteed, we can still show that the quadratic
forms “behave not worse” than a Gaussian random variable (see (ii)). Assertion (iii)
provides an estimate for the bias, EF(J �

T ) − F(f). Typically, we have in this article
that this bias is of order o(T−1=2), and therefore negligible. Finally, according to (iv),
the e�ect of estimating � is also of negligible order.
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In the Gaussian case a slightly di�erent large deviation result for the statistic J �
T has

recently also been obtained by Zani (1999).

3. Fitting a semiparametric model

As the mean and the spectral density being important characteristics of a station-
ary time series, so the mean function and the time-varying spectral density are cen-
tral quantities of a locally stationary process. In this article we study the �tting of a
semiparametric model parametrized by the mean function �(·) and a parameter curve
� : [0; 1] → �⊆Rp that de�nes a time-varying spectral density f�(u)(�). The special
case of �tting an AR(p) process with time-varying coe�cients has been considered
by Dahlhaus et al. (1999). In contrast to that paper, we do not assume that the data
generating process obeys the structure of the �tted model. Moreover, we develop the
theory in a more general context.
If the goal of the analysis is the estimation of the time-varying spectrum, then one can

use fully nonparametric estimates of the spectral density f(u; �). Based on the prepe-
riodogram, Neumann and von Sachs (1997) developed a nonlinear wavelet estimator
of the time-varying spectral density. On the other hand, there are some good reasons
why a semiparametric estimate f�̂(u)(�) could be preferable over a fully nonparametric
estimate. A successful estimate of a two-dimensional curve usually requires a consid-
erable number of observations while a semiparametric estimate has good properties
with much less observations provided that the model class describes the underlying
process reasonably well. Furthermore, semiparametric models are a good tool for de-
scribing special features of the time-varying spectrum, such as the location of peaks in
the spectrum over time. Another example is the time-varying version of Bloom�eld’s
exponential model (cf. Bloom�eld, 1973) which can be �tted by the methods of this
paper.
Very often one is interested in time-varying models that are purely de�ned in the

time domain, such as time-varying ARMA models. In this case the method of this
paper via the spectrum may just be regarded as a technical tool for estimation.
In the present paper we intend to develop a nonparametric estimate of the parameter

curve �. There are two reasons to employ wavelet thresholding as the main smoothing
step. It is well known that such estimators adapt to spatially inhomogeneous smoothness
properties of a function; see, e.g., Donoho and Johnstone (1998) for minimax results in
Besov classes, and Hall and Patil (1995) as well as Hall et al. (1996) who show that
usual rates of convergence remain valid if the function to be estimated is smooth only
in a piecewise sense. Another advantage is the simplicity of the estimation scheme:
rather than aiming at the optimal compromise between variability of the estimate and
bias due to smoothing; we have here an orthogonal series estimator based on empirical
versions of coe�cients that passed a simple signi�cance test.

3.1. A wavelet expansion for the parameter function

Since the nonparametric estimation of � is straightforward, we concentrate on the
estimation of the parameter function �(·)=(� (1)(·); : : : ; � (p)(·))′. First, we introduce an
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appropriate orthonormal basis of L2[0; 1]. Assume we have a scaling function � and a
so-called wavelet  such that {2l=2�(2l · −k)}k∈Z ∪ {2j=2 (2j · −k)}j¿l; k∈Z forms an
orthonormal basis of L2(R). The construction of such functions � and  , which are
compactly supported, is described in Daubechies (1988).
Using Daubechies’ wavelets Meyer (1991) constructed an orthonormal basis of

L2[0; 1], essentially by truncation of the above functions to the interval [0; 1] and
a subsequent orthonormalization step. We use throughout this paper Meyer’s basis
{�l;k}k∈I0l

∪ { j;k}j¿l;k∈Ij , where #Ij = 2
j and #I 0l = 2

l + N for some integer N de-
pending on the regularity of the wavelet basis. The functions �l;k and  j;k are equal to
2l=2�(2l · −k) and 2j=2 (2j · −k), respectively, as long as the supports of the latters lie
entirely in [0; 1]. Otherwise they are derived from certain boundary-modi�ed versions
of � and  . More exactly, there exist both N left-sided functions �[−N ]; : : : ; �[−1] and
 [−N ]; : : : ;  [−1] as well as N right-sided functions �[1]; : : : ; �[N ] and  [1]; : : : ;  [N ]. Ap-
propriate translations and dilations of these functions yield the members of the Meyer
basis:

�l;1(u) = 2l=2�[−N ](2lu− 1); : : : ; �l;N (u) = 2l=2�[−1](2lu− N );

�l;N+1(u) = 2l=2�(2lu− (N + 1)); : : : ; �l;2l(u) = 2
l=2�(2lu− 2l);

�l;2l+1(u) = 2
l=2�[1](2lu− (2l + 1)); : : : ; �l;2l+N (u) = 2

l=2�[N ](2lu− (2l + N ));

and analogously

 j;1(u) = 2j=2 [−N ](2ju− 1); : : : ;  j;2j (u) = 2
j=2 [N ](2ju− 2j):

Accordingly, we can expand the function � (i) in an orthogonal series

� (i) =
∑
k∈I0l

�l;k;i �l;k +
∑
j¿l

∑
k∈Ij

�j;k;i  j; k ; (3.1)

where �l;k;i =
∫
� (i)(u)�l;k(u) du; �j;k;i =

∫
� (i)(u) j;k(u) du are the usual generalized

Fourier coe�cients, also called wavelet coe�cients in this context. Note that we could
equally well use the boundary-adjusted basis of Cohen et al. (1993) rather than Meyer’s
basis.
The starting point in our construction is an approximation of � (i) by a truncated

wavelet series

� (i) ≈
∑
k∈I0l

�l;k;i �l;k +
∑

l6j¡j∗

∑
k∈Ij

�j;k;i  j; k ; (3.2)

where the range of appropriate values of j∗ is described in Theorem 3.1 below.
The principal problem in deriving reasonable empirical coe�cients is that we have

no direct “access” to the � (i)(·) which prevents us from �nding simple empirical co-
e�cients. For example in nonparametric regression, where we usually observe the pa-
rameter curve �(·) plus some noise, we can obtain empirical coe�cients by a simple
Fourier transform of the observations with respect to the wavelet basis.
A naive approach to this problem would be to estimate �(u) by a classical (station-

ary) method based on the observations on some small segment around u and to apply
a Fourier transform to the estimate in order to obtain the empirical wavelet coe�cients.
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However, as for the periodogram on small segments any such method implicitly con-
tains some smoothing on the selected segment and will therefore be in con
ict with
the main smoothing step. In particular, certain features of the curve (such as jumps)
are already lost by this implicit smoothing and can hardly be recovered afterwards.
Our solution out of this dilemma is to de�ne the empirical coe�cients implicitly by a

minimum distance method where we use some distance D(f�; J
�̃
T ) between f�(u)(�) and

the preperiodogram J �̃
T (u; �). The use of the preperiodogram in this distance guarantees

that no implicit presmoothing is hidden in this step.
The distance we use is

D(f�; f) =
1
4�

∫ 1

0

∫ �

−�

{
logf�(u)(�) +

f(u; �)
f�(u)(�)

}
d� du; (3.3)

which is up to a constant the asymptotic Kullback–Leibler information divergence in
the case of a Gaussian process (see Theorem 3:4 in Dahlhaus, 1996a). Thus, we take
as the empirical distance

D(f�; J
�̃
T ) =

1
4�

∫ 1

0

∫ �

−�

{
logf�(u)(�) +

J �̃
T (u; �)
f�(u)(�)

}
d� du: (3.4)

Dahlhaus (2000, Theorem 3:5) has proved that this is approximately the Gaussian
likelihood of a locally stationary process with spectrum f�(u)(�). Thus, by using this
distance the empirical wavelet coe�cients obtained by minimizing this distance are
quasi-maximum likelihood estimates. However, other distances are possible as well,
under appropriate modi�cations of the assumptions.
In the following we include the case of model-misspeci�cation, that is we do not

assume that the true spectral density f(u; �) lies in the class {f�; � ∈ �}. An example
is the situation where we �t a time-varying AR(1)–model but our process is no AR(1)
at all. In the case of model misspeci�cation our estimate will not converge to the true
parameter curve (which does not exist) but to

�0(u) = argmin
�∈�

∫ �

−�

{
logf�(�) +

f(u; �)
f�(�)

}
d�; (3.5)

which gives the best approximation with respect to the distance chosen above.
We will use the following technical assumptions which are mainly conditions on the

parametrization of {f�; � ∈ �}:
(A4) (i) f� is four times di�erentiable in �,

(ii) inf u∈[0;1] inf �∈@�‖�0(u)− �‖¿C ¿ 0,
(iii)

∫ �
−� [{logf�(�) + f(u; �)=f�(�)} − {logf�0(u)(�) + f(u; �)=f�0(u)(�)}] d� �
‖� − �0(u)‖2, where r1(x) � r2(x) means that there are positive constants
C1; C2 such that C1r1(x)6r2(x)6C2r1(x) for all arguments x,

(iv) ∇2D(f�; f) is Lipschitz continuous in �,
(v) inf �∈� �min(∇2

∫ �
−� {logf�(�) + f(u; �)=f�(�)} d�)¿M ¿ 0.

Condition (ii) means that the best parameter curve is in the interior of � for all
u. Condition (iii) basically says that the optimization of an empirical version of the
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Kullback–Leibler distance leads to a reasonable estimate of the parameter �0. Condition
(v) will be used to derive a certain rate for the empirical estimate of �0, see e.g. (B.12)
below. Finally, (i) and (iv) are some technical regularity conditions.
The empirical distance (3.4) will be used to get preliminary estimates of the unknown

coe�cients in expansion (3.2). Note that the right-hand side of (3.2) can be rewritten as∑
k∈I0l

�l;k;i�l;k(u) +
∑

l6j¡j∗

∑
k∈Ij

�j;k;i  j; k(u) =
∑
k∈I0

j∗

�j∗ ; k;i �j∗ ; k(u): (3.6)

The latter representation allows a more convenient derivation of the stochastic proper-
ties of the empirical coe�cients since the calculations are then on a single scale (see,
e.g., parts (i) and (ii) of the proof of Theorem 3.1). Moreover, on the basis of this
representation, we can now replace a high-dimensional optimization problem by a cer-
tain number of separate lower-dimensional optimization problems; see the discussion
below. Let �= ((�j∗ ;1)′; : : : ; (�j∗ ;2j∗+N )

′)′, where �j∗ ; k = (�j∗ ; k;1; : : : ; �j∗ ; k;p)′. De�ne

f�(u; �) = f∑
k
�j∗ ; k�j∗ ; k (u)

(�):

Now one could obtain an empirical version of � by minimization of D(f�; J
�̃
T ). How-

ever, this would lead to a optimization problem in (2j
∗
+ N ) · p variables, which can

turn out to be very time consuming, even for moderate j∗. (Notice that we will assume
that 2j

∗
grows at some rate T�, for some �¿ 0, as T → ∞.) To end up with a prac-

ticable method, we de�ne empirical wavelet coe�cients as the solution to a number of
separate, low-dimensional optimization problems.
Suppose we want to de�ne an appropriate empirical version of �j∗ ; k , where �j∗ ; k is

not one of the boundary-corrected wavelets. Then we take, besides �[0]j∗ ; k = �j∗ ; k ; N

left-sided boundary functions, �[−N ]
j∗ ; k−N ; : : : ; �

[−1]
j∗ ; k−1, and N right-sided boundary func-

tions, �[1]j∗ ; k+1; : : : ; �
[N ]
j∗ ; k+N . Let �k=

⋃N
l=−N supp(�

[l]
j∗ ; k+l). According to the construction

of Meyer (1991), {�[l]j∗ ; k+l}l=−N; :::;N is an orthonormal system on �k .
Now, we set

�̃k = ((�̃
[−N ]
j∗ ; k−N )

′; : : : ; (�̃[N ]j∗ ; k+N )
′)′ = arg inf

�
D(k)T (�); k = N + 1; : : : ; 2j

∗
; (3.7)

where

D(k)T (�) =
1
4�

∫
�k

∫ �

−�

logf∑l
�l�

[l]
j∗ ; k+l

(u)(�) +
J �̃
T (u; �)

f∑
l
�l�

[l]
j∗ ; k+l

(u)(�)

 d� du (3.8)

and de�ne

�̃j∗ ; k = �̃[0]j∗ ; k : (3.9)

Empirical coe�cients corresponding to the left-sided boundary functions, �[−N ]
j∗ ; l ; : : : ;

�[−1]j∗ ;N ; are obtained as �̃[−N ]
j∗ ;1 ; : : : ; �̃[−1]j∗ ;N , whereas their right-sided counterparts are taken

as �̃[1]j∗ ;2j∗+1; : : : ; �̃
[N ]
j∗ ;2j∗+N . The original problem of minimizing D(f∑ �j∗ ; k�j∗ ; k

; J �̃
T ) w.r.t.
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�j∗ ;1; : : : ; �j∗ ;2j∗+N is replaced by a collection of independent lower-dimensional opti-
mization problems (3.7). In total we have to solve 2j

∗ − N independent optimization
problems in (2N + 1) · p variables.
Notice that �̃k primarily estimates �k;inf , where

�k;inf = ((�
[−N ]
j∗ ; k−N ;inf )

′; : : : ; (�[N ]j∗ ; k+N ;inf )
′)′ = arg inf

�
D(k)(�) (3.10)

and

D(k)(�) =
1
4�

∫
�k

∫ �

−�

logf∑l
�l�

[l]
j∗ ; k+l

(u)(�) +
f(u; �)

f∑
l
�l�

[l]
j∗ ; k+l

(u)(�)

 d� du:

(3.11)

To demonstrate the usefulness of our proposed method, we intend to show that our
nonlinear wavelet estimator attains rates of convergence that are usually not obtained
by conventional linear smoothing methods. Accordingly, we consider Besov classes as
function classes which may contain functions with high spatial inhomogeneity in their
smoothness properties. Furthermore, Besov spaces represent the most convenient scale
of function spaces in the context of wavelet methods, since the corresponding norm
is equivalent to a certain norm in the sequence space of coe�cients of a su�ciently
regular wavelet basis. For an introduction to the theory of Besov spaces Bm

p;q see, e.g.,
Triebel (1990). Here m¿1 denotes the degree of smoothness and p; q (16p; q6∞)
specify the norm in which smoothness is measured. These classes contain traditional
H�older and L2-Sobolev smoothness classes, by setting p= q=∞ and 2; respectively.
Moreover, they embed other interesting spaces like Sobolev spaces Wm

p ; for which the
inclusions Bm

p;p ⊆Wm
p ⊆Bm

p;2 in the case 1¡p62; and Bm
p;2⊆Wm

p ⊆Bm
p;p if 26p¡∞

hold true; see, e.g., Theorem 6:4:4 in Bergh and L�ofstr�om (1976).
According to given smoothness classes Fi =Fi(mi; pi; qi; C1; C2); for �(i)0 ; we have

to choose a wavelet basis that is actually able to exploit the underlying smoothness. In
accordance with this, we choose compactly supported wavelet functions of regularity
r ¿max{m1; : : : ; mp}; that is
(A5) (i) � and  are Cr[0; 1] and have compact support,

(ii)
∫
�(t) dt = 1;

∫
 (t)tk dt = 0 for 06k6r.

For convenience, we de�ne our function class by constraints on the sequences of
wavelet coe�cients. Fix any positive constants C1, C2. We will assume that �

(i)
0 lies

in the following set of functions:

Fi =

f =
∑
k

�l;k�l;k +
∑
j; k

�j;k j;k

∣∣∣∣∣∣ ‖�l:‖∞6C1; ‖�::‖mi;pi ;qi6C2

 ;

where

‖�::‖m;p;q =

∑
j¿l

2jsp∑
k∈Ij

|�jk |p
q=p


1=q

;

s = m + 1=2 − 1=p. For the parameters de�ning the class Fi ; we assume that mi¿1;
16pi; qi6∞; and mi ¿ 1=pi. The latter condition implies that each function in Fi
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is continuous. It is well known that the class Fi lies between the classes Bmi
pi;qi(c)

and Bmi
pi;qi(C); for appropriate constants c and C; cf. Donoho and Johnstone (1998,

Theorem 2).
The coe�cients �[0]j∗ ; k;inf de�ned above may be di�erent from the �j∗ ; k , but the fol-

lowing lemma asserts that this di�erence is asymptotically negligible in smoothness
classes we intend to consider.

Lemma 3.1. Suppose that (A4) and (A5) are ful�lled and that �(i)0 ∈ Fi for all
i = 1; : : : ; p. Then

2j
∗∑

k=N+1

‖�[0]j∗ ; k; inf − �j∗ ; k‖2 +
N∑

k=1

‖�[−k]
j∗ ;N+1−k;inf − �[−k]

j∗ ;N+1−k‖2

+‖�[k]j∗ ;2j∗+k;inf − �[k]j∗ ;2j∗+k‖2 = O(2−2j
∗s);

where s=min{s1; : : : ; sp} and si = mi + 1=2−max{1=2; 1=pi}.

The di�erence between �[0]j∗ ; k; inf and �j∗ ; k is indeed negligible, because an error of
O(2−2j

∗s) is incurred in any case by the truncation of the wavelet expansion of �0(u)
at the scale j∗.
It will be shown in the proof of Theorem 3.1 that, with a probability exceeding

1− O(T−�); �̃k and �k;inf are interior points of the set of admissible values. Hence,

∇D(k)T (�̃k) =∇D(k)(�k;inf ) = 0:

This yields that

0 =∇D(k)T (�̃k)−∇D(k)T (�k;inf ) +∇D(k)T (�k;inf )−∇D(k)(�k;inf )

=∇2D(k)(�k;inf )(�̃k − �k;inf ) +∇D(k)T (�k;inf )−∇D(k)(�k;inf ) + Rk;T ;

where Rk;T =∇D(k)T (�̃k)−∇D(k)T (�k;inf )−∇2D(k)(�k;inf )(�̃k − (�k;inf ). It will be shown
further that Rk;T can be asymptotically neglected, which leads to the following explicit
approximation of �̃k :

�̃k ≈ �k;inf − [∇2D(k)(�k;inf )]−1(∇D(k)T (�k;inf )−∇D(k)(�k;inf )): (3.12)

This means that �̃j∗ ; k can be approximated to �rst order by a weighted integral of the
preperiodogram.
Note that both {�l;1; : : : ; �l;2l+N ;  l;1; : : : ;  l;2l ; : : : ;  j∗−1;1; : : : ;  2

j∗−1

j∗−1;2j∗−1} and
{�j∗ ;1; : : : ; �j∗ ;2j∗+N} are orthonormal bases of the same space Vj∗ . Hence, there exists
an orthonormal ((2j

∗
+ N )× (2j∗ + N ))-matrix � with

(�l;1; : : : ;�l;2l+N ;  l;1; : : : ;  l;2l ; : : : ;  j∗−1;1; : : : ;  j∗−1;2j∗−1)
′=�(�j∗ ;1; : : : ;�j∗ ;2j∗+N)

′:
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This implies

(�j∗ ;1;i ; : : : ; �j∗ ;2j∗+N ;i)

 �j∗ ;1
...

�j∗ ;2j∗+N

= (�j∗ ;1;i ; : : : ; �j∗ ;2j∗+N ;i)�
′



�l;1
...

�l;2l+N

 l;1
...

 j∗−1;2j∗−1


:

Hence, having any reasonable estimate of (�j∗ ;1;i ; : : : ; �j∗ ;2j∗+N ;i), we can readily
de�ne a reasonable estimate of the corresponding coe�cients in the other basis. We
de�ne

�̃j; k;i = �j;k(�̃j∗ ;1;i ; : : : ; �̃j∗ ;2j∗+N ;i)
′; (3.13)

where �j;k is the appropriate row of the matrix �′. (�̃l;1;i ; : : : ; �̃l;2l+N ;i are de�ned
analogously.)
According to (3.12), the coe�cients �̃j; k;i can be again approximated by a weighted

integral over the preperiodogram. By Lemma A.3 one can show asymptotic normality
of

√
T (�̃j; k;i − �j;k;i). Moreover, this asymptotic normality can be expressed in terms

of probabilities of large deviations. However, an explicit expression of the asymptotic
variance of �̃j; k;i is presumably quite involved. Hence, we do not try to specify it
further. It is only important to know that the tails of

√
T (�̃j; k;i − �j;k;i) can be approx-

imated by tails of a certain normal distribution. This is formalized in the following
theorem.

Theorem 3.1. Suppose that (A1)–(A5) are ful�lled and that �(i)0 ∈ Fi for all i =
1; : : : ; p. Further; assume that [(Tb)−1+b2r]=O(T−1=2). We choose the cut-o� point j∗

such that 2j
∗
=O(T 1−�) and 2−j∗ =O(T−2=3). Then there exists a universal constant

�¡∞ such that

P(±(�̃j; k;i − �j;k;i)¿x�=
√
T )62(1− �(x))(1 + o(1)) + O(T−�)

holds uniformly in x and (j; k) ∈ TT .

Even if we do not explicitly know the constant �, this result will prove to be a
reasonable starting point for devising a locally adaptive smoothing strategy by nonlinear
thresholding.

4. Locally adaptive estimation by wavelet thresholding

In this section we turn to the major regularization step of our method. Whereas
most of the commonly used smoothers (kernel, spline) modify noisy data in a linear
manner, we intend to apply nonlinear thresholding to the empirical wavelet coe�cients.
It is well known that traditional linear estimators are able to achieve optimal rates
of convergence in settings where these issues are usually studied, i.e., as long as
the underlying smoothness of the curve to be estimated is not too inhomogeneous.
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However, they are not able to achieve optimal rates in cases where the degree of
smoothness varies strongly over the domain; see, for example, Donoho and Johnstone
(1998), Hall and Patil (1995), and Hall et al. (1996). To achieve optimality in the latter
case, one has to apply di�erent degrees of smoothing at di�erent locations. This, of
course, coincides with the natural idea of using kernel estimators with locally varying
bandwidths in cases of functions with inhomogeneous smoothness properties.
To explain the need for nonlinear smoothing schemes on a more technical level,

assume that empirical coe�cients �̃j; k are given which are exactly normally distributed,
that is

�̃j; k ∼ N(�j;k ; �2T ); (j; k) ∈ JT : (4.1)

For a linear estimator, c�̃j;k ; it is easy to see that

∑
k

E(c�̃j;k − �j;k)2¿
1
2
min

{∑
k

�2j; k ;
∑
k

�2T

}
: (4.2)

In contrast, for nonlinear estimators �(:)(�̃j; k ; �T ) with �T = �T
√
2 log #JT introduced

below, it can be shown that∑
k

E(�(:)(�̃j; k ; �T )− �j;k)26C
∑
k

min{�2j; k ; �2T}+O(T−1): (4.3)

If now the majority of the coe�cients within the scale j are of smaller order of
magnitude than �T while a few of them are pretty large, then it may well happen that

inf
c

{∑
k

E(c�̃j;k − �j;k)2
}
/
∑
k

E(�(:)(�̃j; k ; �T )− �j;k)2: (4.4)

This is just the case for certain functions from Besov classes Bm
p;q(C) if p¡ 2; see

Donoho and Johnstone (1998). Another, even more obvious case are piecewise smooth
functions with jumps between the smooth parts. This case was studied by Hall and
Patil (1995) and Hall et al. (1996). They showed that the coe�cients assigned to basis
functions supported on one of the smooth parts decay at the rate 2−j(m+1=2); where m is
the degree of smoothness. In contrast, they decay at the much slower rate 2−j=2 around
the jumps. This is a typical scenario leading to (4.4). The same e�ect, although in a
less drastic form, occurs with certain functions from the Besov scale.
Two frequently used rules to treat coe�cients obeying (4.1) are
(1) hard thresholding

�(h)(�̃j; k ; �) = �̃j; k I(|�̃j; k |¿�)

and
(2) soft thresholding

�(s)(�̃j; k ; �) = (|�̃j; k | − �)+ sgn(�̃j; k):

To simplify notation, we will use the symbol �(:) to denote either �(h) or �(s).
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An exceptionally simple all-purpose rule for the tuning of this function propagated
in a series of papers by Donoho and Johnstone is given as

�T = �T

√
2 log(#JT ); (4.5)

where {�̃j; k ; (j; k) ∈ JT} is the set of empirical coe�cients to be thresholded. Although
this rule is slightly suboptimal w.r.t. the rate of convergence for the L2-risk of the
corresponding estimator, it has a number of interesting properties; see Donoho and
Johnstone (1994).
Finally, one composes an estimator of g(u) =

∑
k∈I0l

�l;k�l;k(u) +
∑

j¿l

∑
k∈Ij �j;k

 j;k(u) from the nonlinearly modi�ed empirical coe�cients as

ĝ(u) =
∑
k∈I0l

�̃l; k�l;k(u) +
∑

(j; k)∈JT

�(·)(�̃j; k ; �T ) j;k(u): (4.6)

Besides some other properties that partly compensate for the slight suboptimality of
wavelet estimators based on logarithmic thresholds as in (4.5), one major advantage of
this method is its universality. The above scheme is neither restricted to speci�c models
nor to speci�c smoothness classes. Actually, only some appropriate type of asymptotic
normality for the empirical coe�cients is necessary for the successful application of
this method. That means in particular, that we neither need any speci�c structural
assumptions on the data generating process nor on the joint distribution of the empirical
wavelet coe�cients.
Now, it is straightforward to transfer this nonlinear thresholding scheme to our

particular context of estimating the parameter functions �(i)0 .
Let JT ={(j; k) | k ∈ Ij; j¿l; 2j6T 1−
}, for some 0¡
61=3, be the set of coe�-

cients to be thresholded. Because of the exponentially decaying tails of the distribution
of

√
T (�̃j; k;i−�j;k;i) stated in Theorem 3.1, it will turn out to be su�cient for purposes

of “denoising” to apply the thresholds

�T = KT−1=2√log T ; (4.7)

where K is some su�ciently large constant. According to the above discussion, we
de�ne

�̂j; k;i = �(·)(�̃j; k;i ; �T ): (4.8)

This leads to the estimator

�̂
(i)
(u) =

∑
k∈I0l

�̃l; k;i�l;k(u) +
∑

(j; k)∈JT

�̂j; k;i j; k(u): (4.9)

Now, we can state a theorem that characterizes the convergence properties of �̂
(i)

in Fi.

Theorem 4.1. Suppose that (A1)–(A5) are ful�lled and that �(i)0 ∈ Fi holds for all
i = 1; : : : ; p. Then

E‖�̂ (i) − �(i)0 ‖2 = O((log T=T )2mi=(2mi+1) + 2−2j
∗s):

According to (A4)(iii), this theorem has an immediate implication for the risk in
estimating the best projection f�0 , measured in the Kullback–Leibler distance.
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Corollary 4.1. Suppose that (A1)–(A5) are ful�lled and that �(i)0 ∈Fi holds for all
i = 1; : : : ; p. Then

E
∫ 1

0

∫ �

−�

[{
logf�̂(u)(�) +

f(u; �)
f�̂(u)(�)

}
−
{
logf�0(u)(�) +

f(u; �)
f�0(u)(�)

}]
d� du

=O((log T=T )2m=(2m+1));

where m=min{m1; : : : ; mp}.

Theorem 4.1 and Corollary 4.1 basically say that the proposed estimators converge
to the corresponding target quantities �0 and f�0 with a rate that matches the optimal
rate in smoothness classes Fi in cases where such a minimax rate is known (regression,
density estimation, etc.). This does not require that the �tted model is adequate. We
decided to formulate these results under mixing conditions rather than under a more
restrictive condition such as (2.7) on the cumulant sums. We did not include simula-
tions. For the special case of �tting an AR(p)-process with time varying coe�cients,
some promising simulation results on a wavelet estimator are contained in Dahlhaus
et al. (1999).

Appendix A Asymptotic normality of quadratic forms

As often in spectral analysis, theoretical results are based in large parts on an analysis
of certain quadratic forms. In order to preserve a clear structure for the rest of the paper,
we collect some technical results on quadratic forms in the subsection. We think that
these results might also be of independent interest, and therefore we conclude this
subsection with simple examples that classify Toeplitz matrices with respect to the
asymptotic distributions of corresponding quadratic forms.
The derivation of the asymptotic normality is essentially based on upper estimates

of the cumulants. Such estimates, which slightly generalize a result by Rudzkis (1978),
are derived in Neumann (1996) under the assumptions EXt = 0 and

sup
t1

{
T∑

t2 ;:::; tk=1

|cum(Xt1 ; : : : ; Xtk )|
}
6Ck(k!)1+
 for all k = 2; 3; : : : (A.1)

and appropriate C ¡∞; 
¿0. Even if (A.1) can be shown to hold under appropriate
mixing conditions for some textbook distributions (see Neumann, 1996, Remark 3:1), it
is somehow annoying to have such a quantitative restriction to hold simultaneously for
all k¿2. In particular, for (A.1) to hold we have to assume that there exists constants
C ¡∞; 
¡∞ such that E|Xt |k6Ck(k!)
 is satis�ed for all k. Instead of (A.1), here
we impose condition (A2) on the process {Xt}. Now, we have a qualitative restriction
on the moments of the Xt’s, that is instead of the explicit bounds for them we assume
only their �niteness. The bridge to a cumulant estimate like (A.1), which is needed
to apply Lemma 1 of Rudzkis et al. (1978) for proving the asymptotic normality of
the quadratic form, is obtained via a simple truncation argument, that is the Xt will
be replaced by certain truncated and recentered random variables X̃ t . Under (A2), we
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obtain a domain of attraction to the normal law of the form [−√C log(T );
√

C log(T )],
which corresponds to “remaining tail probabilities” of order T−C=2. In contrast, we
obtained in Neumann (1996) a domain of attraction of the form [− T�; T�] for some
�¿ 0, which led to exponentially decaying tail probabilities.
We remind the reader that we use the convention that �¡∞ denotes an arbitrarily

large and �¿ 0 an arbitrarily small constant.

Lemma A.1. Suppose that EXt = 0 and that (A2) is ful�lled. Further; let �; �¿ 0
be arbitrary. Then there exists random variables X̃ t with EX̃ t = 0;

P(Xt 6= X̃ t) = O(T−�);

EX̃ t1 · · · X̃ tk = EXt1 · · ·Xtk +O(T
−�)

and

sup
t1

{
T∑

t2 ;:::; tk=1

|cum(X̃ t1 ; : : : ; X̃ tk )|
}
6Ck for all k = 2; 3; : : : :

Moreover; there exists a unique constant C such that

sup
t1

{
T∑

t2 ;:::; tk=1

|cum(X̃ t1 ; : : : ; X̃ tk )|
}
6CkT�k(k!)3 for all k = 2; 3; : : : :

Proof. (i) Construction of {X̃ t}: We de�ne appropriate X̃ t’s by truncation at T�=2
and recentering of these random variables.
Let

X ∗
t =

{
Xt if |Xt |6T�=2;
0 otherwise:

From Markov’s inequality we have that

P(Xt 6= X ∗
t ) = P(|Xt |¿T�=2) = O(T−�E|Xt |�=�) = O(T−�)

holds for arbitrary �¡∞. Furthermore, we have
|EX ∗

t | = |EXtI(|Xt |¿T�=2)|
6
√
EX 2

t

√
P(|Xt |¿T�=2) = O(T−�):

We de�ne, for some set 
t with P(
t) = 2EX ∗
t =T

�,

X̃ t =
{

X ∗
t − T�=2 if X ∗

t 6
t;
X ∗
t otherwise:

Then EX̃ t = 0, |X̃ t |6T� a.s., and

P(Xt 6= X̃ t) = O(T−�): (A.2)

Since X̃ t is a function of Xt , the mixing property (A2)(ii) remains true for the sequence
{X̃ t} as well.
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Further, we have that

EX̃ t1 · · · X̃ tk − EXt1 · · ·Xtk

=
k∑

i=1

EXt1 · · ·Xti−1 (X̃ ti − Xti)X̃ ti+1 · · · X̃ tk

6
k∑

i=1

√
P(X̃ ti 6= Xti)

√
EX 2

t1 · · ·X 2
ti−1
(X̃ ti − Xti)2X̃

2
ti+1 · · · X̃

2
tk

=O(T−�):

(ii) Estimation of the cumulant sums: Using (1)(a) of Theorem 3 in Statulevicius
and Jakimavicius (1988) we have, for t16t26 · · ·6tk , that

|cum(X̃ t1 ; : : : ; X̃ tk )|6min
i

{
(k − 1)!2k sup

t
{‖X̃ t‖k∞}�(|ti − ti+1|)

}
6 (k − 1)!2kT �k

k−1∏
i=1

�1=(k−1)(|ti − ti+1|):

Now, we obtain∑
t2 ;:::; tk

|cum(X̃ t1 ; : : : ; X̃ tk )|

=
∑
s2 ;:::; sk

|cum(X̃ t1 ; X̃ t1+s2 ; : : : ; X̃ t1+sk )|

6k!(k − 1)!2kT �k

[∑
s2

�1=(k−1)(|s2|)
]
· : : : ·

[∑
sk

�1=(k−1)(|sk |)
]

6Ck(k!)2T�k(k − 1)k−1
6CkT�k(k!)3:

The last inequality follows from the relation kk = k(1 + 1=(k − 1))k−1(k − 1)k−16
ke(k − 1)k−16 · · ·6k!ek .

In the following, we consider the stochastic behavior of quadratic forms X ′MX ,
where X = (X1; : : : ; XT )′ and M is a symmetric matrix. According to Lemma A.1, we
can replace this quadratic form by X̃

′
MX̃ , where X̃ = (X̃ 1; : : : ; X̃ T )′, which will be

considered �rst.

Lemma A.2. Suppose that EXt = 0 and (A2) are ful�lled. Further; let M be a
symmetric matrix. Then there exist random variables X̃ t with

P(Xt 6= X̃ t) = O(T−�)

and

|cumk(X̃
′
MX̃ )|6(k − 1)!2k−1[tr([M Cov(X̃ )]2)]k=2 + Rk;
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where

Rk6CkT�k((2k)!)3 max
s; t

{|Ms;t |}M̃‖M‖k−2∞ ;

M̃ =
∑
s

max
t
{|Ms;t |}; ‖M‖∞ =max

s

{∑
t

|Ms;t |
}

:

Proof. Follows from the previous lemma and Lemma 3.1 in Neumann (1996).

Lemma A.3. Suppose that EXt = 0 and (A2) are ful�lled. Further; let M be a sym-
metric matrix. Then

�2T = var(X
′MX )

= 2 tr(M Cov(X )M Cov(X )) +
∑

t1 ; t2 ; t3 ; t4

Mt1 ;t2Mt3 ;t4 cum(Xt1 ; Xt2 ; Xt3 ; Xt4 );

where

cum(Xt1 ; Xt2 ; Xt3 ; Xt4 )

=EXt1Xt2Xt3Xt4 − EXt1Xt2EXt3Xt4 − EXt1Xt3EXt2Xt4 − EXt1Xt4EXt2Xt3

is the fourth-order cumulant.
Moreover; we assume that

‖M‖∞ =O(T−1=2−�)

and

max
s; t

{|Mst |}M̃‖M‖∞ =O(T−3=2−�):

(i) If �T¿C0T−1=2 for some C0¿ 0; then

P
(
± X ′MX − EX ′MX

�T
¿x
)
= (1− �(x))(1 + o(1)) + O(T−�)

holds uniformly in x ∈ R.
(ii) If �T =O(T−1=2); then; for ��T =max{�T ; C0=

√
T} and arbitrary C0¿ 0;

P
(
± X ′MX − EX ′MX

��T
¿x
)
62(1− �(x))(1 + o(1)) + O(T−�)

holds uniformly in x ∈ R.

Proof. According to Lemma A.1, we have with a probability exceeding 1 − O(T−�)
that

X ′MX − EX ′MX = X̃
′
MX̃ − EX̃ ′

MX̃ + Õ(T−�−1=2); (A.3)

which allows to consider the X̃ t’s instead of the Xt’s. By Lemma A.2 we have, for
k¿2, that

|cumk(X̃
′
MX̃ )|6k!Ck [tr(M 2)]k=2 + (k!)6Ck max

s; t
{|Ms;t |}M̃ (T�‖M‖∞)k−2;

(A.4)

which implies the �rst assertion by Lemma 1 of Rudzkis et al. (1978).
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The second assertion is based on the fact that the quantity X̃
′
MX̃ + �T , where

�T ∼ N(0; ��2T −�2T ) is independent of X̃
′
MX̃ , has variance ��2T and the same cumulants

of order k = 3; 4; : : : as X̃
′
MX̃ . Hence, (ii) follows from (i) and

P
(
± X ′MX − EX ′MX

��T
¿x
)
62P

(
± X ′MX + �T − EX ′MX

��T
¿x
)

:

Remark 2. It can be seen from the proof of Lemma A.1 that a certain �nite num-
ber L of moments in (A1)(ii) would be enough to guarantee a domain of attraction
[−√CL log(T );

√
CL log(T )], where CL has to be chosen in accordance with L. This

is in analogy to the situation for sums of independent random variables, where also
a certain �nite number of moments is enough to guarantee asymptotic normality on a
domain of attraction [−√CL log(T );

√
CL log(T )]; cf. Amosova (1972).

Remark 3. As a simple example, we brie
y consider quadratic forms with Toeplitz
matrices M , that is Ms;t = M|s−t|. We consider the simple case of Ms;t ∈ {0; 1} for
all s; t.
Case 1: If Ms;t=I(s=t), then we have asymptotic normality, where limT→∞{T−1�2T}

usually depends on the fourth-order cumulants as well.
Case 2: If Ms;t = I(|s− t|6�T ), where �T � T� for some 0¡�¡ 1, then we have

asymptotic normality where limT→∞{T−1�2T} does not depend on the fourth-order
cumulants.
Case 3: If Ms;t = 1 ∀s; t, then T−1X ′MX is asymptotically �21 distributed.
These three cases have their approximate counterparts in spectral density estimation

for stationary processes. Case 1 corresponds to the case of a smoothed periodogram
with �xed window, whereas case 2 corresponds to the case with a converging window.
Finally, case 3 corresponds roughly to a single value of the periodogram.
The following lemma gives an upper estimate in terms of Õ for linear forms.

Lemma A.4. Suppose that EXt = 0 and (A1) are ful�lled.
Then

T∑
t=1

wtXt = Õ(‖w‖l2{
√
log T + [‖w‖l1‖w‖2l∞ =‖w‖3l2 ]T�}):

Proof. From

cumk

(∑
wtXt

)
=

∑
16t1 ;:::; tk6T

cum(wt1Xt1 ; : : : ; wtk Xtk );

we obtain that

∣∣∣cumk

(∑
wkXt

)∣∣∣6 sup
t
{|wt |k−1} sup

t1

{∑
t2 ;:::; tk

|cum(Xt1 ; : : : ; Xtk )|
}∑

t

|wt |

6Ckk!‖w‖1‖w‖k−1∞ T�k : (A.5)
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On the other hand, we have that

cum2
(∑

wtXt

)
= var

(∑
wtXt

)
= w′ Cov(X )w =O(‖w‖22): (A.6)

Because of ‖w‖226‖w‖1‖w‖∞ we get by (A.5) and (A.6) that∣∣∣cumk

(∑
wtXt=‖w‖2

)∣∣∣6(k!
2

)
Ck−1

(‖w‖1‖w‖2∞T�

‖w‖32

)k−2
holds for k=2; 3; : : : ; which yields the assertion by Lemma 2.1 in Bentkus and Rudzkis
(1980).

Appendix B. Proofs of the assertions

Proof of Lemma 2.1. (i) and (ii): Let Yt;T = Xt;T − �(t=T ). We have

F(J �
T ) =

∑
k

∫ 1

0
q(u)Y[uT+0:5−k=2];T Y[uT+0:5+k=2];T

[
1
2�

∫
p(u; �) exp(−ik�) d�

]
du

=
∑
s; t

Ms; tYs;T Yt;T ;

where

Ms;t =
1
2�

∫ (t+s+1)=(2T )

(t+s−1)=(2T )
q(u)

∫ �

−�
p(u; �) exp(−i(t − s)�) d� du

and p(u; �) is supposed to be 0 for u 6∈ [0; 1]. For the matrix M = ((Ms;t))s; t=1; :::;T ,
we get the relations

max
s; t

{|Ms;t |}=O(T−1‖q‖∞);

M̃6
∑
s; t

|Ms;t |=O(‖q‖1)

and

‖M‖∞ =O(T−1‖q‖∞):
Hence, we have ‖M‖∞=O(T−1=2−�) and maxs; t{|Ms;t |}M̃‖M‖∞=O(T−3=2−�), which
yields (i) and (ii) by Lemma A.3.
(iii) Using

cov(X[t+0:5−s=2];T ;X[t+0:5+s=2];T ) =
∫ �

−�
A0[t+0:5−s=2];T (�)A

0
[t+0:5+s=2];T (�) exp(i�s) d�

and

f(u; �) =
1
2�

∞∑
s=−∞

∫ �

−�
f(u; �) exp(i�s) d� exp(−i�s);
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we obtain

EF(J �
T )− F(f)

=
1
2�

∫ 1

0
q(u)

∫ �

−�

∑
s:16[uT+0:5−s=2];[uT+0:5+s=2]6T

∫ �

−�
p(u; �)

×
[
A0[uT+0:5−s=2];T (�)A

0
[uT+0:5+s=2];T (�)− f(u; �)

]
× exp (i(� − �)s) d� d� du− 1

2�

∫ 1

0
q(u)

∫ �

−�
p(u; �)

×
∑

s:[uT+0:5−|s|=2]¡1 or [uT+0:5+|s|=2]¿T

∫ �

−�
f(u; �) exp(i(� − �)s) d� d� du

=R1 + R2:

Now we have, by (A1), that

R1 = O

(
‖q‖∞

∑
s

sup
u

{∣∣∣∣∫ p(u; �) exp(−i�s) d�
∣∣∣∣}

× sup
�

{∫ 1

0
|A0[uT+0:5−s=2];T (�)A

0
[uT+0:5+s=2];T (�)− f(u; �)| du

})
=O(‖q‖∞T−1)

and

R2 = O

(
‖q‖∞

∑
s

sup
u

{∣∣∣∣∫ �

−�
p(u; �) exp(−i�s) d�

∣∣∣∣ ∣∣∣∣∫ �

−�
f(u; �) exp(i�s) d�

∣∣∣∣}

×
∫ 1

0
I([uT + 0:5− |s|=2]¡ 1 or [uT + 0:5 + |s|=2]¿T ) du

)
=O(‖q‖∞T−1):

(iv) We de�ne the vectors � = (�(1=T ); : : : ; �(T=T ))′; Y = (Y1;T ; : : : ; YT;T )′, and the
smoothing matrix W such that WY = (�̃(1=T ); : : : ; �̃(T=T ))′. Now we split up

F(J �̃
T ) = (Y + (� −W�)−WY )′M (Y + (� −W�)−WY )

= F(J �
T )− 2Y ′MWY + Y ′W ′MWY

+2(� −W�)′MY − 2(� −W�)′MWY + (� −W�)′M (� −W�)

= F(J �
T ) + T1 + · · ·+ T5: (B.1)

We get easily that

ET1 =−2
∑
s; t

Ms; t

[∑
u

wu(t=T )EYs;T Yu;T

]

=O

(
(Tb)−1

∑
s; t

|Ms;t |
)
=O((Tb)−1‖q‖1): (B.2)
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To �nd an upper estimate for T1−ET1, we write T1=
∑

k T1k , where T1k=−2Y ′M (k)WY
and

M (k)
s; t = I(|t − s|= k)Ms;t :

Since Lemma A.3 requires a symmetric matrix, we simply write T1k = −2Y ′N (k)Y ,
where N (k) = (M (k)W + (M (k)W )′)=2. Now, we get

(M (k)W )s; t

=Ms;s+kWs+k; t +Ms;s−kWs−k; t

=

{
O((Tb)−1(|Ms;s+k |+ |Ms;s−k |)) if |s+ k − t|6CTb or |s− k − t|6CTb;

0 otherwise

which implies that

tr((N (k))2)6
∑
s; t

|(M (k)W )s; t |2

= O

(∑
s

(|Ms;s+k |+ |Ms;s−k |)2(Tb)−1
)
=O(c2k‖q‖22T−1(Tb)−1);

where ck = supu{|
∫
p(u; �) exp(−ik�) d�|}. Further, we have

max
s; t

{|N (k)
s; t |}=O(ckT−1‖q‖∞(Tb)−1);

Ñ (k) = O(ckT−1‖q‖∞)
and

‖N (k)‖∞ =O(ckT−1‖q‖∞):
By Lemma A.3 we get the estimate

T1k − ET1k = Õ(ck [‖q‖2T−1=2 + ‖q‖∞T−1](Tb)−1=2
√
log T + ckT−1‖q‖∞T�):

Because of
∑

ck =O(1) we get

T1 − ET1 = Õ(‖q‖2T−1=2(Tb)−1=2
√
log T + ‖q‖∞T�−1): (B.3)

T2 can be estimated analogously.
To get an estimate for T3, observe that

‖M (� −W�)‖26
∑
k

‖M (k)(� −W�)‖2

=
∑
k

O(ck‖q‖2T−1=2br) = O(‖q‖2T−1=2br);

‖M (� −W�)‖16
∑
k

‖M (k)(� −W�)‖1

=
∑
k

O(ck‖q‖1br) = O(‖q‖1br)
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and

‖M (� −W�)‖∞6
∑
k

‖M (k)(� −W�)‖∞

=
∑
k

O(ck‖q‖∞T−1br) = O(‖q‖∞T−1br):

By Lemma A.4 we obtain that

T3 = Õ(‖q‖2T−1=2br[
√
log T + T�−1=2‖q‖1‖q‖2∞=‖q‖32]): (B.4)

The term T4 can be estimated analogously.
Since (� −W�)t =O(br), we get

T5 = O

(
b2r
∑
s; t

|Ms;t |
)
=O(‖q‖1b2r): (B.5)

Collecting the upper estimates from (B:2)–(B:5), we get the assertion.

Proof of Lemma 3.1. Let �k = ((�
[−N ]
j∗ ; k−N )

′; : : : ; (�[−N ]
j∗ ; k−N )

′)′. A two-fold application of
(A4)(iii) provides that

2j
∗∑

k=N+1

‖�[0]j∗ ; k; inf − �j∗ ; k‖2 +
N∑

k=1

‖�[−k]
j∗ ;N+1−k;inf − �[−k]

j∗ ;N+1−k‖2

+‖�[k]j∗ ;2j∗+k;inf − �[k]j∗ ;2j∗+k‖2

6
∑
k

‖�k;inf − �k‖2

6
∑
k

∫
�k

∥∥∥∥∥
N∑

l=−N

�[l]j∗ ; k+l;inf�
[l]
j∗ ; k+l(u)− �0(u)

∥∥∥∥∥
2

du

�
∑
k

∫
�k

∫ �

−�

[{
logf�k;inf (u; �)−

f(u; �)
f�k;inf (u; �)

}

−
{
logf�0(u)(�)−

f(u; �)
f�0(u)(�)

}]
d� du

6
∑
k

∫
�k

∫ �

−�

[{
logf�k (u; �)−

f(u; �)
f�k (u; �)

}

−
{
logf�0(u)(�)−

f(u; �)
f�0(u)(�)

}]
d� du

�
∑
k

∫
�k

∥∥∥∥∥
N∑

l=−N

�[l]j∗ ; k+l�
[l]
j∗ ; k+l(u)− �0(u)

∥∥∥∥∥
2

du:
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According to Theorem 2 in Donoho and Johnstone (1998) we obtain that

∑
k

∫
�k

∥∥∥∥∥∑
l

�[l]j∗ ; k+l�
[l]
j∗ ; k+l(u)− �0(u)

∥∥∥∥∥
2

du=O(2−2j
∗s);

which proves the assertion.

Proof of Theorem 3.1. (i) Since �(i)0 is uniformly continuous on [0,1] we obtain that

max
k

{
sup
u∈�k

{�(i)0 (u)} − inf
u∈�k

{�(i)0 (u)}
}
= o(1):

Moreover, since one can choose (�[−N ]
j∗ ; k−N ; : : : ; �

[N ]
j∗ ; k+N )

′ in such a way that∑N
l=−N �[l]j∗ ; k+l;i�

[l]
j∗ ; k+l(u) = 1 for all u= �k , we obtain by (A4)(ii) that

D(k)(�k;inf )− 1
4�

∫
�k

∫ �

−�

{
logf�0(u)(�)−

f(u; �)
f�0(u)(�)

}
d� du

�
∫
�k

∥∥∥∥∥
N∑

l=−N

(�[l]j∗ ; k+l;inf )i�
[l]
j∗ ; k+l(u)− �(i)0 (u)

∥∥∥∥∥
2

= o(2−j∗):

On the other hand, if � lies on the boundary of the corresponding set of admissible
values, then we get by (A4)(ii)

D(k)(�)− 1
4�

∫
�k

∫ �

−�

{
logf�0(u)(�)−

f(u; �)
f�0(u)(�)

}
d� du¿C2−j∗ ;

for some constant C ¿ 0. Hence, for T su�ciently large, all �k;inf are interior points
of the corresponding sets of admissible values.
(ii) According to (A4)(iii), we have

D(k)(�̃k)− D(k)(�k;inf )¿C‖�̃k − �k;inf‖2;

which yields, in conjunction with D(k)T (�k;inf )− D(k)T (�̃k)¿0, that

[D(k)T (�k;inf )− D(k)(�k;inf )]− [D(k)T (�̃k)− D(k)T (�̃k)]¿C‖�̃k − �k;inf‖2: (B.6)

By (A4)(i) it is easy to see that

∑
s

sup
u∈�k

{∣∣∣∣∫ �

−�

[
1

f�k;inf (u; �)
− 1

f�̃k (u; �)

]
exp(−is�) d�

∣∣∣∣}6C2j
∗=2‖�k;inf − �̃k‖:
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Hence, we obtain, by applying Lemma A.3 and (ii) and (iii) of Lemma 2.1 on a
su�ciently �ne grid, that

[D(k)T (�k;inf )− D(k)(�k;inf )]− [D(k)T (�k)− D(k)T (�k)]

=
1
4�

∫
�k

∫ �

−�

[
1

f�k;inf (u; �)
− 1

f�k (u; �)

]
[J �̃

T (u; �)− f(u; �)] d� du

6C�T−1=2√log(T )‖�k − �k;inf‖ (B.7)

is simultaneously satis�ed for all �k in a compact set with a probability of 1−O(T−�).
(B.6) and (B.7) imply

‖�̃k − �k;inf‖= Õ(T−1=2√log(T )): (B.8)

Therefore, we have

sup
u∈�k

{∥∥∥∥∥
N∑

l=−N

�(l)j∗ ; k+l;inf�
(l)
j∗ ; k+l(u)− �0(u)

∥∥∥∥∥
}
= Õ(2j

∗=2T−1=2√log T ); (B.9)

that means, with a probability exceeding 1−O(T−�), the �̃k are also interior points of
the corresponding sets of admissible values.
(iii) Assume in the following that both �k;inf and �̃k are interior points. Then

∇D(k)T (�̃k) =∇D(k)(�k;inf ) = 0, which implies that

0 =∇D(k)T (�̃k)−∇D(k)T (�k;inf ) +∇D(k)T (�k;inf )−∇D(k)(�k;inf )

=∇2D(k)(�k;inf )(�̃k − �k;inf ) +∇D(k)T (�k;inf )−∇D(k)(�k;inf ) + Rk; (B.10)

where

Rk = [∇D(k)T (�̃k)−∇D(k)T (�k;inf )]−∇2D(k)(�k;inf )(�̃k − �k;inf ): (B.11)

In other words, we have

�̃k = �k;inf − (∇2D(k)(�k;inf ))−1[∇D(k)T (�k;inf )−∇D(k)(�k;inf ) + Rk ]: (B.12)

It is clear from the mean value theorem that

‖Rk‖=O
(

sup
�:‖�−�k;inf‖6‖�̃k−�k;inf‖

max
i1 ; i2 ;l1 ;l2

{∣∣∣∣∣ @2

@�(i1)l1 @�(i2)l2

[D(k)T (�)− D(k)(�k;inf )]

∣∣∣∣∣
}
‖�̃k − �k;inf‖

)
: (B.13)
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We have that, for ‖�− �k;inf‖6‖�̃k − �k;inf‖,

@2

@�(i1)l1 @�(i2)l2

D(k)T (�)

=
1
4�

∫
�k

�[l1]j∗ ; k+l1 (u)�
[l2]
j∗ ; k+l2 (u)

×
∫ �

−�

{
f(i1 ; i2)� (u; �)
f�(u; �)

− f(i1)� (u; �)f(i2)� (u; �)
f2� (u; �)

− J �̃
T (u; �)f

(i1 ; i2)
� (u; �)

f2� (u; �)

+ 2
J �̃
T (u; �)f

(i1)
� (u; �)f(i2)� (u; �)
f3� (u; �)

}
d� du

=
@2

@�(i1)l1 @�(i2)l2

D(k)(�)

+
1
4�

∫
�k

�[l1]j∗ ; k+l1 (u)�
[l2]
j∗ ; k+l2 (u)

∫ �

−�

{
2f(i1)� (u; �)f(i2)� (u; �)

f3� (u; �)
− f(i1 ; i2)� (u; �)

f2� (u; �)

}

×[J �̃
T (u; �)− f(u; �)] d� du

=
@2

@�(i1)l1 @�(i2)l2

D(k)(�) + Õ(2j
∗=2T−1=2√log T + 2j∗T−1)

=
@2

@�(i1)l1 @�(i2)l2

D(k)(�k;inf ) + Õ(2j
∗=2T−1=2√log T ): (B.14)

This implies that

‖Rk‖= Õ(2j∗=2T−1 log T ): (B.15)

(iv) According to (3.13) we obtain

�̃j; k − �j;k;inf = �′
j; k(∇2D(�inf ))

−1[∇DT (�inf )−∇D(�inf )] + Sj;k ; (B.16)

where ∇2D(�inf ) =Diag(∇2D(1)(�1;inf ); : : : ;∇2D(2
j∗+N )(�2j∗+N ;inf ));∇DT (�inf ) =

(∇D(1)T (�1;inf ); : : : ;∇D(2
j∗+N )

T (�2j∗+N ;inf ))
′, ∇D(�inf ) = (∇D(1)(�1;inf ); : : : ;∇D(2

j∗+N )

(�2j∗+N ;inf ))
′, �inf = (�1;inf ; : : : ; �2j∗+N ;inf )

′; and

Sj;k = �′
j; k(∇2D(�inf ))

−1(R1; : : : ; R2j∗+N )
′: (B.17)

We will show that Sj;k is of negligible order for most of the k.
It is easy to see that

‖�j;k‖1 = O(2(j∗−j)=2‖�j;k‖2) = O(2(j∗−j)=2): (B.18)
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Observe that the matrix

F(u) = ((�[l1]j∗ ; k+l1 (u)�
[l2]
j∗ ; k+l2 (u)))l1 ;l2=1;:::;2N+1

=


�[−N ]

j∗ ; k−N (u)
...

�[N ]j∗ ; k+N (u)

 (�[−N ]
j∗ ; k−N (u) · · ·�[N ]j∗ ; k+N (u))

is positive semide�nite, which implies by (A4) (v) that

∇2D(k)(�) =
∫
�k

[
F(u)⊗∇2

∫ �

−�

{
logf�(u; �) +

f(u; �)
f�(u; �)

}
d�
]
du

¿
∫
�k

F(u)⊗M du= I2N+1 ⊗M: (B.19)

Since ∇2D(�inf ) is a block diagonal matrix, we have

‖(∇2D(�inf ))
−1‖∞6max

k
{‖(∇2D(k)(�k;inf ))−1‖∞}

= O
(
max

k
{1=�min(∇2D(k)(�k;inf ))}

)
=O(1): (B.20)

This yields, in conjunction with (B.15), that

Sj;k 6 ‖�j;k‖1‖(∇2D(�inf ))
−1‖∞‖(R1; : : : ; R2j∗+N )

′‖∞
= Õ(2j

∗−j=2T−1 log T; T−�); (B.21)

that is the remainder terms Sj;k are negligible. Moreover, asymptotic subgaussianity of
the leading term of (B.16), �′

j; k(∇2D(�inf ))
−1[∇DT (�inf ) − ∇D(�inf )], follows from

Lemma 2.1.

Proof of Theorem 4.1. First, we obtain by Parseval’s identity that

E‖�̂ (i) − � (i)‖2 =
∑
k∈I0l

E(�̃l; k;i − �l;k;i)2

+
∑

( j; k)∈JT

E(�(·)(�̃j; k;i ; �T )− �j;k;i)2

+
∑

( j; k)6∈JT

�2j; k;i

= T1 + T2 + T3: (B.22)

It is obvious that

T1 = O(T−1): (B.23)

Using Theorem 3.1 we may reduce the problem of estimating E(�(·)(�̃j; k;i ; �T ) −
�j;k;i)2 to the case of normally distributed empirical coe�cients for which there are
appropriate results available. Let

��j;k;i ∼ N(�j;k;i ; ��2T ): (B.24)
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Since �(·) is monotonic in its �rst argument we have that

(�(·)(�̃j; k;i ; �T )− �j;k;i)2¿x

if and only if

�̃j; k;i − �j;k;i¿= ¿fj;k;i(x) or �̃j; k;i − �j;k;i6= ¡gj;k;i(x)

for appropriate functions fj;k;i and gj;k;i, where the equality sign has to be included if
and only if �(·)(· ; �T ) is not left- or right-continuous, respectively, at the corresponding
points. Hence, we obtain from Theorem 3.1 that

P((�(·)(�̃j; k;i ; �T )− �j;k;i)2¿x)

62P((�(·)( ��j;k;i ; �T )− �j;k;i)2¿x)(1 + o(1)) + O(T−�): (B.25)

Let

�j;k;i = sup{x: P((�(·)(�̃j; k;i ; �T )− �j;k;i)2¿x)¿T−�}:
Then

P((�(·)(�̃j; k;i ; �T )− �j;k;i)2¿�j;k;i)6T−�;

which yields by the Cauchy–Schwarz inequality that∫ ∞

�j; k;i

P((�(·)(�̃j; k;i ; �T )− �j;k;i)2¿x) dx

6E(�(·)(�̃j; k;i ; �T )− �j;k;i)2I((�(·)(�̃j; k;i ; �T )− �j;k;i)2¿�j;k;i)

6
√
E(�(·)(�̃j; k;i ; �T )− �j;k;i)4

√
P((�(·)(�̃j; k;i ; �T )− �j;k;i)2¿�j;k;i) = O(T−�);

and, analogously,∫ ∞

�j; k;i

P((�(·)( ��j;k;i ; �T )− �j;k;i)2¿x) dx =O(T−�):

Therefore, we obtain, in conjunction with (B.25), that

E(�(·)(�̃j; k;i ; �T )− �j;k;i)2

=
∫ �j; k;i

0
P((�(·)(�̃j; k;i; �T )− �j;k;i)2¿x) dx

+
∫ ∞

�j; k;i

P((�(·)(�̃j; k;i ; �T )− �j;k;i)2¿x) dx

62(1 + o(1))E(�(·)( ��j;k;i ; �T )− �j;k;i)2 + O(T−�): (B.26)

By Lemma 1 of Donoho and Johnstone (1994) we have that

E(�(·)( ��j;k;i ; �)− �j;k;i)26C
(
��2T

(
�
��T
+ 1
)

’
(

�
��T

)
+min{�2; �2j; k;i}

)
(B.27)

holds uniformly in �¿0 and �j;k;i ∈ R, where ’ denotes the standard normal density.
Therefore, we obtain analogously to the proof of Theorem 5:2 in Neumann (1996)

that

T2 = O((log T=T )2m=(2m+1)) (B.28)
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and, by Theorem 2 of Donoho and Johnstone (1998),

T3 = O(2−2j
∗{m+1=2−1=(p∧2)}) = O(T−2m=(2m+1)); (B.29)

which completes the proof.
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