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Abstract

There are a wide array of smoothing methods available for finding struc-
ture in data. A general framework is developed which shows that many of
these can be viewed as a projection of the data, with respect to appropriate
norms. The underlying vector space is an unusually large product space,
which allows inclusion of a wide range of smoothers in our setup (includ-
ing many methods not typically considered to be projections). We give
several applications of this simple geometric interpretation of smoothing.
A major payoff is the natural and computationally frugal incorporation of
constraints. Our point of view also motivates new estimates and it helps to
understand the finite sample and asymptotic behaviour of these estimates.
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1. Introduction

Smoothing as a means of modelling non-linear structure in data is enjoying in-
creasingly widespread acceptance and use in applications. In many of these it
is required that the curve estimates obtained from smoothing satisfy certain
constraints, such as monotonicity. However, many of the usual formulations of
smoothing are not very amenable to the incorporation of constraints. This is be-
cause it 1s not clear in which sense, if any, they are a projection, i.e. the solution
to a minimization problem with respect to some norm. In this paper we develop
a framework in which a number of popular smoothing methods are ezactly a pro-
jection with respect to a particular norm. Our framework is a product vector
space that is larger than those usually considered for analyzing smoothing meth-
ods. The benefit of this type of geometric view of smoothing is that it reveals a
natural way to incorporate constraints, since the modified smoother is defined as
the projection onto the constrained set of functions.

Smoothing is illustrated in Figure 1.1 we show part of the “cars” data used in
the 1983 ASA Data Exposition. These data are available at the Statlib Inter-
net site (http://1lib.stat.cmu.edu/datasets/cars.data) at Carnegie Mellon
University. Here fuel consumption, in miles per gallon, is studied as a function of
engine output, in horsepower, and data points (X;,Y;) are displayed as a scatter-
plot. The curve in Figure 1.1 is a simple smooth, i.e. moving average, as described
in (2.1).

This smooth is not monotonically decreasing. But since one expects that more
powerful engines consume more fuel, it is sensible to request that the smooth be
decreasing. This, and other types of constraints are not natural to incorporate
into many types of smoothing, including the simple smooth used in Figure 1.1.
Green and Silverman (1994) have pointed out that smoothing splines, where many
types of constraints are incorporated in a natural way, are an exception to this
rule. In particular, smoothing splines are defined as minimizers of a penalized
sum of squares, so constrained smoothing splines are easily defined as minimizers
over the constrained set of functions. Here we show that the essence of this idea
is not restricted to smoothing splines, but applies quite generally, for example
to kernel and local polynomial methods. The key is to work with much larger
normed vector spaces than are usually considered in the analysis of smoothers.
Our framework, developed in Section 3, is a product structure, i.e. we consider
“vectors of objects”, where the objects are functions, vectors, or even sets of
functions or vectors. When the result of the smoothing process is a curve, the
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Figure 1.1: Raw data and simple smooth for Fuel consumption as a function
of engine output. Smooth is Nadaraya-Watson type with Gaussian kernel and

bandwidth A = 4.

objects are taken to be functions. When the result is a vector, e.g. the smooth
evaluated at the design points, the objects are taken to be vectors. For local
polynomial smoothing, projection follows from letting the objects be groups of
functions or vectors. In each case suitable norms are defined for our product
space, which correspond to the sums of squares that are usually considered, see
Section 2, and thus give representation of the smoothers as projections. By this
device a much broader class of smoothers can be viewed as projections, as shown
in Section 3, which allows natural incorporation of constraints for these methods.

In Section 4 our framework is seen to include smoothing splines and other
penalized methods, through the development of Sobolev type norms on our gen-
eral vector space. A number of asides are given in Section 5, including detailed
discussion of the case of monotone smoothing, some remarks about loss func-
tions, decompositions of sums of squares, numerical implementation, and sums of
squares. Fxtensions to local polynomials are given in Section 6. Application of
our approach to additive models is discussed in Section 7.
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Figure 1.2: Raw data and monotonicity constrained smooth for Fuel consumption
as a function of engine output. Smooth is Nadaraya-Watson type with Gaussian

kernel and bandwidth A = 4.

Figure 1.2 shows the result of the sophisticated projection ideas of Sections 4.1
and 5, starting with the simple smooth in Figure 1.1. Note that essentially the
increasing parts of the smooth have been “rounded off”.

For more background on smoothing, see any of a number of monographs, e.g. in
the last five years, Green and Silverman (1994), Wand and Jones (1995), Fan and
Gijbels (1996), Simonoff (1996), Hart (1997) and Bowman and Azzalini (1997).

2. Simple smoothing as minimization

Before developing our general vector space framework, we first show how simple
smoothing, as shown in Figure 1.1, can be written as a minimization problem.
Then we show how this viewpoint can be used to do constrained smoothing. A
mathematical formulation of smoothing has data (Xi,Y1),...,(X,, Y,), e.g. as



shown in the scatterplot of Figure 1.1, that are modeled as
1/2' :m(Xi)—I—&:Z», = 1,...,n,

where ¢;, 1 = 1,...,n, are mean 0 error random variables and m is some smooth
regression function.
The dashed curve in Figure 1.1 is a “simple smooth” of the form

Z?:l wl(x))/l
Z?:l wl(x) 7

i.e. a moving (in ) weighted average of the Y;. The weights w;(z) used in Fig-

(2.1)

m\s(l') =

ure 1.1 are of Nadaraya-Watson type, as discussed in Section 3.1. See Hardle
(1990) and Wand and Jones (1995) for an introduction to the basics of this non-
parametric regression estimator.

Note that there are several points where this curve, shown in Figure 1.1 is
not monotone decreasing. An approach to constraining this type of smooth to be
monotone is to recognize that it can be written as

mg = arg;nin/ %Zﬁ:{YZ —m(z) }?w;(z) v(de), (2.2)

where [ means definite integration over the real line, and where v is some measure.
A natural choice is v(dx) = dx, corresponding to Lebesgue integration. However,
other measures such as some form of counting measure might also be considered
(e.g. v(dx) = dF,(x) where F,, is the empirical distribution). The integral is not
necessary for this unconstrained estimator, because the minimum can be found
for each x individually, i.e.

. 1L

mg(x) = argmin — Z(YZ —m)*w;(z). (2.3)

meER n i=1

For the same reason the weight measure v also has no effect on mg(x). But
the integral is included because it reveals that simple smoothing is a projection
as developed below. This is the key to our natural formulation of constrained
smoothing. If ' is a set of functions satisfying some constraint, such as mono-
tonicity, then a constrained version of the simple smooth is:

msc = argmin/ % Zj:{YZ — m(x) }Pwi(z) v(dz). (2.4)

meC
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Figure 2.1: Unconstrained and constrained (monotone) smooths, for Fuel con-
sumption as a function of engine output, as in Figure 1.1. The constrained smooth
has “kinks” which have been smoothed out in the more sophiticated constrained
smooth of Figure 1.2

The weight measure v now plays an important role, because the minimizers at
different points = are linked through the constraints. In Figure 2.1, a discretized
version of Lebesgue measure is used.

While this estimate appears natural, the monotonicity constraint introduces
some “kinks” in Figure 2.1, essentially at “break points where mg is not mono-
tone”. Insight into these kinks and other aspects of constrained smoothing comes
from a particular normed vector space structure that will be introduced in the
next section. See Section 5.1 for further discussion, and methods to “round off
these corners” as shown in Figure 1.2.

3. Simple smoothers viewed as projections

In this section we shall introduce a normed vector space that contains the data
vector and the regression functions. We shall show that in this space kernel



smoothers appear as a projection of the data vector onto an appropriate vector
subspace. To capture all of these aspects, it is not enough to simply work with
n-dimensional vectors, or with functions. A vector space which reflects the full
structure of smoothing, i.e. includes both the data vector Y, and the candidate
smooths m(x), is a product space containing n-tuples of linear objects

1
Vs=<qwv =] |y, €Vye=1,....n

Un

where V' is some normed vector space. The vector space V will vary depending
on the type of smoother considered. When the result of the smooth is a function,
as in the rest of this section, and in Section 4, V' will be an appropriate space of
functions. But when the result of the smooth is a vector, e.g. when the smooth is
evaluated only at the design points, V' is a set of ordinary vectors. For local poly-
nomial smoothing, V' is taken to be vectors of functions (or vectors), as described
in Section 6.

For the rest of this section, we shall consider V' to be a space of functions, so

fi(=)

Vs=< [ = : iR = IR, 1=1,...,n
A
The data vector Y = [Y7,...,Y,] can be viewed as an element X> of Vs, which is
an n-tuple of constant functions, fi(x) =Y, 1 = 1,...,n. The subspace of such

n-tuples of constants functions will be called VY. For a candidate smooth m :
IR? — IR, we write m for the n-tuple where each entry is m(x), i.e. f;(x) = m(x),

1 = 1,...,n. The subspace of such n-tuples with identical entries is denoted by
V&, When w;(x) > 0, we may define an inner product on Vs:

1 n
(19)= [ L3 st

— — n.3

and its induced norm on Vg is given by

1] = /53 swrutertan 1)




Strictly speaking, this defines only a bilinear form and a seminorm if, for
some ¢, w;(x) = 0 on a set of ¥ whose v-measure is not zero (which happens
e.g. for kernel smoothing with a compactly supported kernel). By identifying
functions that are equivalent under this seminorm we can view (3.1) as a norm,
i.e. implicitly we work on classes of functions. We shall also assume that Vg is
complete with respect to this norm (which is possible by specifying an appropriate
space for the f; in the definition of Vg).

This notation shows that both the unconstrained and constrained simple smooths
are projections, because (2.2) and (2.4) can be rewritten as

2
it R 2
meVs
‘ 2
msc = argmin g—g , (3.3)

m:T_n)EC’S"

where CZ C VI is the subset of n-tuples with (identical) entries that are con-
strained, e.g. monotone in .

Using a Pythagorean relationship, the minimization problem (3.3) can be sub-
stantially simplified. This yields important computational advantages, and also
gives some important insights. In particular, for m € V& we have

2

) (3.4)

2
+lms—m
AL E

2
=Y —ms
— =

H Y —m

- =

because m g is the projection of Y onto the subspace VZ', whence Y — mg is
- — - =

orthogonal to @5 -m with respect to the inner product, see e.g. Rudin (1987,

Theorem 4.11). Furthermore,

. ? I &n
715 —m| = [ L)~ mP ) vid
= [ [ste) = m(@)] w(a) v(da),
where w(z) = 137 wi(z). An immediate consequence of this is the following

proposition:
Proposition 1: Assuming that each w;(x) > 0, the constrained simple smooth
can be represented as a constrained minimization over ordinary functions (i.e. over



m € C) as:

2

- argmin/{ms(x) — m(2)}Pw(z) v(de). (3.5)

meC

ms,c(x) = argmin
' m:T_n)EC’S"

M~
The geometric interpretation of Proposition 1 is that the projection of the data
vector Y onto CZ, (in our enlarged vector space Vg) is the same as the projection
(in the space of ordinary functions) of the unconstrained smooth onto C'.
The relation (3.4), and similar geometric considerations give other types of
insight about constrained smoothing. It is straightforward to check that the or-

thogonality used in the Pythagorean Theorem (3.4) follows from direct calculation
of

(%, - B Fs = ) =0
At first glance, one might suspect that the subspaces V¥ and V2 are orthogonal.

But they are not, because they have the intersection V¢, the n-tuples of constant

i
functions that are all the same. But even V¥ N (Vg) (the orthogonal complement

of V§ in VY) and VZ' N (Vg)L are not orthogonal, as can be seen from direct
calculation, or from the fact that this would imply that the projection of Y onto
V2 lies in V§ and thus is everywhere constant.

Visual understanding of Proposition 1 is given by Figure 3.1. The horizontal
plane represents the subspace V' of Vs. The diagonal line represents the subspace
VY (not orthogonal to VZ'). The set CZ is shown as the shaded horizontal region.
Proposition 1 states that the point in CZ" that is closest to Y is also the point in
CZ that is closest to mg(x).

Proposition 1 also suggests which statistical loss functions are associated with
choices of the weight measure v. In particular, if mo(x) is the “true” function,
then the loss (conditional on X, ..., X,) function

L, mo) = [{7i(x) = mo(a)}u(e) v(da) (3.6)
is essentially optimized by mg(x) over V& and by mgc(x) over C&. Specifics of L
are discussed in Section 5.2.

Proposition 1 shows that the constrained estimate can be calculated in two
relatively straightforward steps:

(1) Compute the unconstrained estimate ms.

8



Figure 3.1: Diagram representing location of data and unconstrained and con-
strained smooths, in the vector space Vs.

(2) Project mgs onto the constrained set of functions.

Implementation of each of these two steps is relatively straightforward and
much simpler than direct computation of (2.4). We shall come back to this point
in Section 5.4.

3.1. Some remarks and specific simple smoothers

Representations of the type (2.2) have been used for many purposes. For exam-
ple they provide easy understanding of how local polynomial methods, discussed
in detail in Section 6, extend conventional kernel smoothers, see Fan and Gij-
bels (1996). A different purpose is the motivation of “robust M-smoothing” as



introduced in Héardle and Gasser (1984) and Tsybakov (1986), where the square
in (2.2) is replaced by a “robust p function”. Application of our approach to these
smoothers will not be discussed here.

It is straightforward to show that the Proposition 1 still holds when some of
the w;(x) < 0, as long as w(x) > 0. This is important in the following.

Here are some specifics to show that many types of smoothers can be written
in the form (2.1), i.e. (2.2). Much of this approach to generality was developed by
Foldes and Revesz (1974) and Walter and Blum (1979) in the context of density

estimation.

1. Nadaraya-Watson smoother: here the weight functions have the form
wz(l') = [(h(l' — XZ),

where K is a nonnegative, integrable “kernel function” or “window function”

(often taken to be a symmetric probability density), and where the “band-

width” or “smoothing parameter” h controls the amount of smoothing, i.e.
1

local averaging, via Kj(-) = ¢ K (E)

2. Gasser-Miiller smoother: this is a somewhat different “kernel type” smoother,
where

Sq

wilz) :/5 Ko — t)dt,

1—1
for “in between points” s;, where sg < X; < s < Xy <--- <5, <X, <
$n. See Miiller (1988) for discussion of many properties of this estimator. See
Chu and Marron (1991) for comparison of this smoother with the Nadaraya-
Watson.

3. Bandwidth vartation: Our geometric approach extends to the case that
the bandwidth A depends on z, e.g. wi(x) = Kpey(z — X;) in the case
of Nadaraya-Watson smoothing.

4. Orthogonal Series: For an orthogonal basis {¢;}, e.g. the Fourier basis, or
a wavelet basis, a simple class of smoothers is

os(r) = Y Ojb;(x), (3.7)

JjE€S

where the “empirical Fourier coefficients” are gj = %Z?:l Yi;(X;), and
where S is some set of “coefficients containing most of my”, e.g. low fre-
quency coefficients in the Fourier case or unthresholded coefficients in the

10



wavelet case. Interchanging the order of summation shows that this type of
smoother is of the form (2.1) where

wi(x) = % Yo i(Xi)y(x).

JjE€S

A short description of orthogonal series estimates, including wavelets, can
be found in Section 3.2 of Ramsay and Silverman (1997) where additional
references are given for particular choices of function bases.

. Regression splines: A class of simple smoothers with a form that is related
to (3.7) is the class of regression splines,

mps(r) = Z ngj(l')v

JjE€S

but the functions Bj(x) are no longer orthogonal. Now they take the form
Bj(z) = 27, for j = 1,...,p and B;(z) = (x — k;)} for j > p, where
the k; are some given “knot points”. The coefficients éj are computed by
least squares, so they are still linear combinations of Y. Thus this type
of smoother can be written in the form (2.1) by interchanging order of
summation as above. See Section 7.2 of Eubank (1988) for discussion of
many properties of estimators of this form and see Stone et al. (1997) for
related estimators in more complicated models.

. Others: A variation on kernel type smoothers is local polynomials, which are
discussed in detail in Section 6. A different type of spline is the smoothing
spline discussed in detail in Section 4.

4. Extension to smoothing splines

Much of the work in constrained nonparametric regression has been done in the

context of splines. Smoothing splines are defined as minimizers of a penalized

sum of squares, see (4.1). Constraints can be easily incorporated by minimiz-
ing over the restricted set. For work on constrained smoothing splines see Dier-
ckx (1980), Utreras (1985), Irvine et al. (1986), Schmidt (1987), Villalobos and
Wahba (1987), Elfving and Andersson (1988), Micchelli and Utreras (1988), Ram-
say (1988), Fritsch (1990), Kelly and Rice (1990), Schmidt and Scholz (1990),
Gaylord and Ramirez (1991), Schwetlick and Kunert (1993), Tantiyaswasdikul

11



and Woodroofe (1994), Dole (1996), and Mammen and Thomas-Agnan (1998).
Some applications are discussed in the books by Wahba (1990) and Green and
Silverman (1994). Overviews on work on shape restricted splines are given in Dele-
croix and Thomas-Agnan (1997). Insight into how constrained smoothing splines
work comes from another type of generalization of the framework of Section 2.
The basic smoothing spline of order p is usually written as

1 e
Fiss(r) = argmin — 3 {V; — m(X))}? + A/m@)(x)?, (4.1)
m n =1
where A is the smoothing parameter. See Eubank (1988), Wahba (1990) and
Green and Silverman (1994) for discussion of many aspects of this estimator. It
can be written in a form which generalizes both (3.1) and (4.1) as

2
mgs(x) = argmin
m:mevVy

ﬁ-

Y —m
=

where the norm on Vg is now generalized to

2
1 & 2
AT 4.2
H f - ;:1: 1fi(2)ll, (4.2)
where ||-||, denotes the Sobolev type norm

12 = [ )R wie) de) +2 [ [79)] de.

The conventional smoothing spline (4.1) is the special case where w;(z) = 1 and

v is the empirical measure of the design points Xi,..., X,,. The norm (3.1) is the
special case where A = 0.

As above it is natural to write constrained smoothing splines as
2

v L
This constrained minimization is simplified, exactly as at (3.4), using a Pythagorean
relationship. Following the arguments of Section 3 yields:

Proposition 2: The constrained smoothing spline can be represented as a

constrained minimization over ordinary functions as:

2
Mmss,c(x) = argmin | mss — m
miee 177 7 (4.3)
= argmin /{mss(x) — () Voo(e) v(de) + A/{mgg@) — ()} 2da.
me
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Proposition 2 is proved in Mammen and Thomas-Agnan (1998). There this
representation of the smoothing spline was used to study asymptotics and algo-
rithms for shape restricted smoothing splines, see also Section 5.5.

4.1. Sobolev projection of smoothers

Motivated by Proposition 2 we propose to mix ideas from spline smoothing and
other smoothing approaches. We consider the following class of constrained
smoothers. For an arbitrary (unconstrained) smoother mg that is constructed
such that it has p derivatives we define the constrained smoother as:

2
msc(x) = argmin|ms— m
570( ) m:%n}EC’S" _>S —
= argmin/{m\g(x) — m(z)Yw(x) v(de)
meC

+A/{mf§>(x) — (@)} 2de.

This means that the constrained smoother mg ¢ is the projection of the uncon-
strained estimator mg onto the constrained set C. Here, the projection is taken
with respect to the Sobolev norm

1A = [ Faule)de) + A [ 19(@)da. (4.4)
This estimate has two advantages:

(1) The unconstrained estimate mg will only be changed if it violates any of
the constraints and then only in the neighborhood of this violation. In par-
ticular, for monotone smoothing mg will only be changed in neighborhoods
of sets where the monotonicity was violated by mgs. Hence, away from such
neighborhoods the constrained estimate has the same (theoretical) proper-
ties as the unconstrained estimator since it is identical to the latter. More
importantly, the good interpretability of the unconstrained estimator carries
over to the constrained estimator away from such neighborhoods.

(2) The constrained estimate mgc is a smooth function. The reason is that

2
the penalty term A [ {m(p)(x)} dx of the Sobolev norm forces mgc to be
smooth. In particular, for monotone smoothing with a choice p > 1 we

13



get an estimate that is differentiable. This means that this estimate does
not have the kinks observed in Figure 2.1 for monotone local linear fits.
This is shown in Figure 1.2 where the constrained smoother of Figure 1.1 is
shown. That projection is calculated with respect to (4.4) where the penalty
term has been replaced by a discretized version. This has been done for
computational reasons. For a more detailed discussion of algorithms using
local polynomial smoothers see Mammen et al. (1998). Delecroix et al. (1995,
1996) consider a related two step procedure for Priestley-Chao type kernel
smoothers.

5. Asides

5.1. The monotone case

For monotone smoothing, msc(x) is a version of the older idea of “smooth, then
monotonize” discussed e.g. in Barlow and van Zwet (1970), Wright (1982), Fried-
man and Tibshirani (1984), Mukerjee (1988), Kelly and Rice (1990) and Mam-
men (1991a) (see also Cheng and Lin, 1981; Ramsay, 1998; Mammen et al., 1998).
Moreover, to our knowledge, the fact that mg ¢ is the projection onto a constrained
set has not been recognized before.

It can be shown that for monotone (increasing) smoothing (3.5) implies that

ms,c(r) =max min Ju ms(s)w(s) v(ds)

u<lr v>x f;j w(S) I/(dS)

(5.1)

A proof of (5.1) for discrete measures v can be found in the books by Barlow et al.
(1972) or Robertson et al. (1988). The case of general v is discussed in Mammen
et al. (1998). A careful inspection of (5.1) shows that one obtains the monotone
function mgc from mg by replacing parts of mg by constant pieces. In an interval
where mg ¢ is constant it is equal to a weighted average of mg over this interval.
At the boundary of such intervals mg ¢ may not be differentiable. This explains
the kinks that were observed for the monotone smoother of the data in Section 2,
see Figure 2.1.

Mammen (1991a) also considers other proposals for monotone smoothing that
are of the form “monotonize then smooth”, denoted by m¢ s, which is a smooth
of the monotonized data denoted by Yq. Insight into how this type of smoother
compares with mg () comes from Figure 5.1. In both Figures 5.1(a) and 5.1(b),
the subspace VZ' (of ordinary functions) is shown as a horizontal line, and the

14
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(a)

Figure 5.1: Diagram showing relation of “monotonicity preserving smoothers”,
Panel (a), and “non-monotonicity preserving smoothers”, Panel (b), in the vector
space Vs.

subset CZ (of constrained functions) is the heavily shaded portion. The subspace
VY (of ordinary vectors) is shown as a diagonal line, and the subset C¥ (of vectors
satisfying the constraint) is the heavily shaded portion. Figure 5.1(a) corresponds
to the case that the smoother m¢ s is “monotonicity preserving” (i.e. when applied
to monotone data, the result is monotone), and Figure 5.1(b) is the case where

15



the smoother is not monotonicity preserving, which can happen for example for
local polynomial smoothers, as shown in Figure 6.1.

When the smoother is monotonicity preserving, the set CZ “covers all the area
directly underneath CY”, since smooths of monotone data are again monotone.
So when the data Y are first monotonized (i.e. projected onto CY) to get Y, the
resulting smooth m¢ s (which comes from projecting Yo onto VZ'), will typically
be “inside CZ'”. This means that this approach will tend to “round out the sharp
corners in mgc(x)”.

When the smoother is not monotonicity preserving, the smooth m¢ g of the
monotonized data Ye, i.e. the projection of Yo onto VZ', need not be monotone,
as shown in Figure 5.1(b). Another illustrative example for the situation in Fig-
ure 5.1(b) are functions that are constrained to go through the origin. A projection
of a function f onto the constrained set is achieved by replacing the single value
f(0) by 0. This example highlights that the resulting estimate of the approach
“smooth then constrain” may not be smooth. Furthermore the idea “constrain
then smooth” may not lead to a constrained estimate. The Sobolev projection
method described in Section 4.1 is a way of addressing this problem.

5.2. Remarks on implied loss functions

The constrained estimate minimizes a weighted L, distance from the smoothed
estimate. Different choices of the weight measure v lead to different Ly norms.
For different forms of the simple smoother (2.1), this entails different versions of
the implied loss (3.6) .

For Nadaraya-Watson weights, w(z) = 137 Kp(z — X;) is a kernel den-
sity estimator, so under reasonable assumptions (see e.g. Silverman, 1986; Wand
and Jones, 1995) w(x) is approximately f(z) the density of Xi,..., X,, so this

estimator is approximately optimizing

JHF() = mo(a)}2f () v{da).

For situations where “f weighting” is desirable in Nadaraya-Watson smoothing,
v(dx) = dx is appropriate. When “no weighting” is desired, then the choice
v(dz) = w(z)'dz is natural.

For Gasser-Miiller weights, w(z) = LY, [0 Kyp(z—t)dt = L [2" K (z—t)dL.
Under reasonable assumptions (either x is away from boundary regions, or so =
—00, 8, = 00), w(x) is approximately constant, so this estimator is essentially

16



optimizing
[ i) = mo(e)}* vld).

Thus v(dx) = dx gives “no weighting” and “f weighting” can be obtained from
v(de) = L300 Ky(e — Xi)da.

Next we study the effect of the weight function w under constraints. For
some constraints, the projection of the smoother onto the constraint set leads
only to “local” changes of the smoother. Consider e.g. the case of monotone
smoothing and assume that the smoother is nearly monotone with the exception
of some local wiggles. As noted at (5.1) one achieves the monotone smoother by
replacing the local wiggles by constant local pieces where the estimate is taken
as a local weighted average. Such local averages do not depend strongly on the
weight function w or on the measure v, unless the sample size is small (careful
investigation of this is done in Mammen et al., 1998). So usually the choice of the
weight measure v is of relatively minor importance.

5.3. ANOVA decompositions and model choice

Our projection framework can also be used for comparison of models and model
choice. For example assume that we have a class of nested submodels g, C

. C Cgy C Vg given. Our approach allows us to compare the corresponding
estimates using the norm (3.1) or its generalisation (4.2). Define for j =1,...,k
the constrained estimates analogous to (3.3):

2
msc,; =argmin|Y — m
Mscg =8t S 4
— 5
If the submodels Cgy, ..., Cg', are vector spaces, repeated application of the

Pythagorean Theorem yields:

2 2

—I— HmSOk — M S k-1

= Y — mscx
— —

Y —m
H—> — =50

2

—

+...4+ | Mmsce— Msca
_>77 [}

2

+ mSOk — M S kh-1
—

2

- ‘mS_mSCk

+...4+ | Mmsce— Msca
_>77 _>77
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Figure 5.2: Diagram showing the data vector Y and projections II; Y and II; Y
— — —

onto the orthogonal spaces Ly = Cgff NCS,4q and Ly = an],L NC&rys-

As opposed to “traditional” ANOVA decompositions, the summands in this de-
composition are usually not independent. This observation holds for finite samples
as well as asymptotically. To appreciate why, suppose that the errors ¢4,....¢,
are i.i.d. with standard normal N (0, 1) distribution and consider Vs endowed with
the norm (3.1). It follows that X> has a standard normal multivariate distribution
on the vector subspace VY.

Consider next two projections, say ng and Hgg, of X> onto orthogonal
subspaces Ly and Ly of VT as illustrated by Figure 5.2. Specifically, take L
and Ly as the orthogonal complements of Cg'; in Cg';,, for two different values

.. m,L m m,L m . . .
(if;], Le. LlA: Cs; NCY 4y E‘Lnd/\[/g = Cs’j/j Cgiiyy for 3 # 5. Hence, ng is
Mot — Mscyand oY ds Msc e — s

With this choice of [y and L, neither of the two subspaces is contained in
VY nor are they orthogonal to VY (see the discussion in Section 3). Therefore we
cannot conclude in general that ng and H2X> are independent. As an extreme

case consider the simple two dimensional plot of Figure 5.2. Here, X> has a one

(1)-dimensional normal distribution on the line V¥ and ng depends determin-
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istically on H2X>. This implies, in particular, that they are not independent.

2
do not have an

Furthermore, in general the summands

ﬁSCk_ ﬁSCk—l
_>77 _>77

(asymptotic) x? distribution, see e.g. Hardle and Mammen (1993) who propose
using bootstrap methods to avoid these problems. The situation is a little bit
simpler for orthogonal series estimates, see Section 3.1. For a general discussion
of lack-of-fit tests in nonparametric regression see Hart (1997).

5.4. Numerical implementation

According to Proposition 1 for the calculation of constrained estimates we have
only to calculate the unconstrained smoother and to calculate the projection of
the smoother onto the constrained set. This yields a big computational gain. For
example, if v i1s counting measure on an equally spaced grid of ¢ values of x, then
instead of minimizing over vectors of dimension n - g, as required for (3.3), only
vectors of dimension g need to be considered for (3.5). In addition, established
algorithms may be used on the reduced problem. The reduced problem (in its
discretized form) is a constrained (weighted) least squares problem. Algorithms
for such problems are studied well in the numerical literature. Solutions can be
iteratively calculated by active set methods (see e.g. McCormick, 1983), by the
method of iterative projections (see e.g. Dykstra, 1983; Robertson et al., 1988), or
primal-dual methods (see e.g. Goldfarb and Idnani, 1983). For monotone smooth-
ing the pool adjacent violators algorithm, which calculates effectively projections
onto monotone vectors, can be used in the second step. For a discussion of this
algorithm and other constrained least squares algorithms see the books by Barlow
et al. (1972) and Robertson et al. (1988). General optimization algorithms are
discussed, among others, in Fletcher (1987), den Hertog (1994) and Nash and
Sofer (1996).

5.5. Asymptotics for constrained estimates

Asymptotics for unconstrained kernel-type estimates is quite well-developed. For
some examples the asymptotic results of the unconstrained estimates carry over to
the constrained estimates. Trivially, this is the case if the unconstrained estimate
fulfils the constraint with probability tending to one. This implies that, with prob-
ability tending to one, the constrained estimate coincides with the unconstrained.
An important example for this case is monotone smoothing: Under appropriate
conditions, the derivative m’ of the regression function is consistently estimated
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by the derivative of kernel smoothers. Then, if m’ is bounded away from 0, the
constrained estimate is monotone with probability tending to one. So asymptotics
of the constrained estimate is reduced to the unconstrained case, see e.g. Muker-
jee (1988) and Mammen (1991a). This does not hold for monotonicity constraints
of higher order derivatives. Under such conditions the constrained estimate can
achieve faster rates of convergence than the unconstrained estimate. This has been
shown in Mammen and Thomas-Agnan (1998) for smoothing splines, see also the
results in Mammen (1991b) on constrained least squares estimates. An essen-
tial mathematical tool for showing rates of convergence of restricted smoothers is
given by empirical process theory, see van de Geer (1990).

6. Extension to local polynomials

Now we extend our projection framework for smoothing to local polynomial smoothers.
For simplicity of notation, we assume now that the covariables X; are one dimen-
sional and that the regression function m goes from IR to IR. Given a set of
weights w;(x), such as those of Section 3.1, a local polynomial smoother of order

p, can be written as

m\LP(SJC) = 50(51?)7

where

(6.1)
As for mg, the integral and the weight measure v play no role, because the mini-
mization can be done individually for each .
It is possible to represent myzp(x) in the form (2.1), as

B(l‘) = arg;nin{Y — X(:z;)ﬁ(:z;)}TW(x){Y — X(z)8(x)}

where
1 Xl—l' (Xl—l')p
I Xo—2 - (Xg—a)p
X()=|. Kemwl
I X,—a2 - (X, —a)
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W(z) = 0 U)Q(l’)
0
0 0 wy(x)
Standard linear algebra yields
Ba) = (X @) W@)X (@)} X (@) W)y (6.2)

Hence, mpp(x) can also be written as a “simple smoother” in the form (2.1).
Note, that the weights, say @;(x), used when writing myp(x) in the form (2.1)
differ from w;(x) used in (6.1) to define the local polynomial smoother. Moreover,
it is possible that w;(x) becomes negative but, since mpp(x) reproduces constant
functions, we are assured that .7 ; w;(x) = 1 and Proposition 1 holds as noted
in Section 3.1. The calculations in Section 2 could now be used for constrained
smoothing, but there are some limitations to this setup. In particular only con-
straints on BO(:L') would be allowed.

To write this smoother as a projection, in a space that is more generally
useful for understanding constrained smoothing, we use an expanded version of
the normed vector space Vs which is the set of n(p + 1) tuples of functions,

[ frolz) ]

fl,p(x)
Vip = f: :fm:ﬂ%—>ﬂ%,i:1,...,n,j:0,...,p
fn,O(l')

L fn,p(x) i
Now the data vector Y71 = [Y1,...,Y,] is viewed as an element X> of Vi p, which
is an n(p 4+ 1)-tuple of the form X>T = [¥1,0,...,0,¥2,0,....0,Y,,0,...,0], ie.

within blocks of p + 1, only the first entries may be nonzero, i.e.

(Y. =0
me?(x):{ 0 j:17“‘7p 77/—17-..7”.

The subspace of such n(p + 1)-tuples is called V}p. A candidate smooth now
involves several functions 3; : IR — IR, which are elements of Vpp of the form j,
%
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that are n(p 4+ 1)-tuples where entries are common across ¢, and for each j are
Bi(x), e fij(x) =Bi(x),1=1,....n, 5 =0,...,p. The subspace of n(p + 1)-
tuples with entries that are identical across ¢ is denoted by V7. The appropriate
analog of the norm (3.1) on Vip is

L
_>

This notation represents local polynomial smooths as a projection, because mrp(x)
Bo(x),where (6.1) can be rewritten as

-/ %; {éﬁ’j(m) (- XZ»)]} wi(@) v(de). (6.3)

2

B(l‘) = argmin
ﬁ:gevznp

Y -5

(6.4)
_>

Now given a set of constrained n - (p+ 1) tuples Cf'» C Vi'p, for example Gy(x)
monotone, a natural constrained local polynomial smoother is mpp () = Bo.c(x),

where )

; (6.5)

Bc(:z;) = argmin
F: B ECTp

LA

This constrained minimization is simplified, exactly as at (3.4), using a Py-
thagorean relationship. Following the same arguments (with nearly the same
notation) as in Section 2 yields:

Proposition 3: The constrained local polynomial smooth can be represented

as a constrained minimization over ordinary functions as mppc(x) = fo,c(x)
where:
- - 2
fB(x) =argmin| 8 — 3
B:8eCcm || — —
- 2
1 [ -
=argmin [ =3 13" (Bi(x) = Bi(0)) (v = X | wile)ulde)  (66)
ﬁ:gecm n =1 |[7=0
PP



As Proposition 1 in Section 3 for kernel smoothing, Proposition 3 gives geomet-
ric insights, as well as computational gains. Again, the computational problem
is reduced to a constrained least squares problem. So the remarks of Section 5.4
apply. In many cases the set of constrained functions 3 € Cpp will involve con-
straints only on some of the ;. For example, in monotone regression, a simple
constraint is that only () is increasing, but it could also be desirable to assume
in addition that f1(x) > 0, see below for the latter case.

Suppose that the restricted 3;(z) are grouped into a vector as A_(z)T =

(Bo(a).-+ Byr(2)), and that B4(2)7 = (B,(x),-- -, B,(x) s a grouping of the

unrestricted ones. Then the minimization problem (6.6) can be further simplified,
by explicitly minimizing in 84 (z) for fixed f_(x). Useful notation is

6-(2)" = (Bolx) = o). Byma(e) - 6 1(2))
Sy(2)T = (By(x) = By(w), -, Bylx) = By(a))

Uo(z) -+ Uplx)
Ulz)=1] : = X(2)'W ()X ().
Up(z) -+ Usp(x)

Alsolet U__(x), Us_(x), and Uy (2) denote respectively the upper left ¢ x g, lower
left (p — ¢) X ¢, and lower right (p — q) x (p — q) submatrices of U(x). Calculations
as done for (6.2) show that for given S_(x), the minimizer of (6.6), i.e

[ e | 30 | v

over 34(x) is given by the G, (2) component of
Op(a) = =Upp(2) " Us_(2)d-(2)
Hence, the minimization problem (6.6) can be reduced to minimizing
/5_(:1;)T [U__(2) = Uss () Ui ()} 6_(a

over _(x).

In the case ¢ = 1, this reduces to
mrpc(x) = argmin/{m\Lp(:L‘) —m(z)}?p(x) v(dx)
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where p(z) = U__(2) — Upy(2) ' Us_(x). But U__(z) = Up(z) = w(x), defined
before Proposition 1.

Similar remarks as in Section 5.2 now apply. In particular, in the case of
weights w;(z) = Kj, (¥ — X;), under some assumptions, p(x) ~ f(x), as for the
Nadaraya-Watson smoother.

We describe now an algorithm for the following special case of monotone
smoothing: for the local linear, do monotonization with the constraints Fo(x)
increasing, 1(x) > 0. Straight forward calculus shows that this gives the mini-
mization problem

argmin //i(l‘)dl‘,

[Bo increasing

where
{ I ifzecA
k(x) =

Il otherwise

where R R
A= {a: Us(a) ™ () [fo(x) = Fola)] < Bu(a)}.
I = {Uo(x) = Us(2) ™ Ur(2)* Ho(x) — Bo(x)}*,

11 = Up(2){Bo(x) — Bo(x)}* = 2B1(x)Ur (2 ){Bo(2) — Bol)} + Ua(a)Bu()”.
This minimization can be done by the following iterative calculation. In each step
the minimization is done for fixed set A. This gives a (weighted) least squares
problem with monotonicity constraint (that can be solved e.g. by application of
the pool adjacent violator algorithm). After each step the set A is updated by
using the last solution for the minimizer.

Propsition 3 shows that, as for kernel smoothing, constrained smoothing leads
to estimates of the form: “smooth then constrain”. Again, one could try estimates
based on the idea “first constrain then smooth”. For local polynomials this idea
does not work: smoothing by local polynomials is not monotonicity preserving.
This can be seen from Figure 6.1 that shows some artificial monotone data with a
local linear fit that is not monotone. This is in contrast to the Nadaraya-Watson
smoother that always preserves monotonicity (see Mukerjee, 1988; Mammen and
Marron, 1997). Sufficient conditions for a smoother to be monotonicity preserving
are given in Mammen and Marron (1997). They also discuss a modification of the
local linear smoother which is monotonicity preserving. A detailed discussion of
monotone local polynomials can be found in Mammen et al. (1998).
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Figure 6.1: Monotone artificial data with nonmonotone local linear fit.

7. Additive models

We consider now local polynomial fitting for additive models. In this model the
additive local polynomial smoother can be calculated by the backfitting algorithm.
Our geometric point of view can be used to show that this algorithm converges
under weak conditions. Furthermore, our geometric representations can be used as
essential tools to give the asymptotic distribution of the additive local polynomial
smoother, see Linton et al. (1997). We now describe how our projection framework
carries over to this model. For this purpose we have to extend our approach to
g dimensional covariables X; = (X 1,...,X;,). Our constraint on the regression
function m : IR? — IR is that

m(x) =mo+ my(a1) + ...+ my(x,) for z = (ay,...,2,), (7.1)

where mg is a constant and my, ..., m, are functions from IR to IR. For identifi-
ability, it is assumed that £ m;(X;;) =0,i=1,...,n;{=1,...,q. Discussion of
the additive model can be found in Hastie and Tibshirani (1990).

Given a set of weights w;(x), such as those of Section 3.1, the unconstrained
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local polynomial of order p, can be written as

~

/WAM(IL‘) = 50(51?)7
where

?0(1')
51,1(51?)

@)

N
8

S’
I

Brale)
] 1 n q P . 2
= arg;ﬂm/ - ; {1@» — Bolx) — ; 25]‘,1(1‘)(901 - Xi,;)]}
w;(x) v(de). (7.2)

As for ¢ = 1, the integral and the weight measure v play no role, because the
minimization can be done individually for each x. In the minimization, no mixed
terms of the form (x;, — Xi,ll){ (21, — Xiy, )‘% are used. This reduces the number
of fitted local parameters and it is natural in view of the constraint (7.1).

To use the constraint (7.1) we write B as a projection. The space Vs is now

defined as a set of n(pg + 1) functions

[ fl,o(l') |
f1,1,1(51?)

T
pr’.q( ) . f@o,fm"l IR — R, 1= 1,...,n,

Vam = = ;
AM L ) .]:17"'7p7l:17"'7q
f%@(w)
fn,1,1 51?)
| Jrpa(®) ]
Similarly as above the data vector Y7 = ( Y. - Y, ) is viewed as an element

L of Van, by putting fio(x) =Y, and fi;(z) =0for j=1,...,p,l =1,...,q,
1=1,...,n.

The subspace of such n(pg+1)-tuples is called V¥,,. A candidate unconstrained
smooth now involves several functions Gy : IR? — IR and 3;; : IR — IR. They
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define an element (3 of V4ps. Such elements are n(pg+ 1)-tuples where entries are
%

common across ¢, and for each j and [ are f; ;;(x) = (;,(x) and fio(x) = Bo(x),
t=1,...,n, g =1,....p, L = 1,...,q. The subspace of such elements is again
denoted by V7i,,. The appropriate norm on V4ps is now

L
_>

Note that (7.2) can be rewritten as

p

J 1/=1

— / % Zj: [fzo(:li) + Z Jii(x) (21 — Xz’,l)j] wi(z) v(dz). (7.3)

2

Y -5
—

(7.4)

B(l‘) = argmin
ﬁ:gEVZlM

The subset of constrained functions C’y;, C V4y; now consists of n(pg + 1)
tuples of functions (fio, fi;u:1=1,...,n, 3 =1,...,p, L = 1,...,q) for which
the following holds:

e The functions f; o, f; ;1 do not depend on 1.

e The function f;¢ is of additive form, i.e. there exist functions g{, . ,g({ IR —

IR such that f;o(z) = g{(:z;l) +...+ gg(:z;q).

e The functions f; ;; depend only on a one dimensional argument, i.e. there exist
functions h{l, cee h]J;q : IR — IR such that f; ;,(x) = h;l(xl).

The additive local polynomial smoother is now defined as man,c(x) = 3070(:1;),

where ,

; (7.5)

Bc(:z;) = argmin
BB €Cnm

Y —
LA
Again, using the same arguments as above one can show that

2

Bc(:z;) = argmin
BB €Cnm

B -8
— =

However, in this model we do not recommend first calculating the unrestricted
estimate [and then projecting this estimate on the subspace C7%y,]. The reason is
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that the calculation of the unrestricted estimate involves many unknown parame-
ters. If the data are too sparse this calculation would be instable or the estimate
may not even be defined for many points. A standard method to calculate the
constrained (i.e. additive) estimate is the backfitting algorithm (see Hastie and
Tibshirani, 1990). It is based on iterative minimization of Hg — g”z In each

minimization step the norm is minimized over one additive component while let-
ting the other components be fixed, i.e. for one 1 < £ < ¢ it is minimized over
gf(:z;) and h?k(:z;), . ,hﬁk(:p) with fixed glﬁ(:zj) and hil(:p) for 7 =1,...,p and
[ # k. In each cycle of the algorithm this is done for each component k. It can be
easily seen that each step in a cycle of the algorithm is a projection onto an appro-
priate subspace of the space V4ps. That means that, in our geometry, backfitting
is based on iterative application of projections. This is much easier to understand
as iterative application of smoothing operators. In particular, it can be used to
show that under weak conditions backfitting converges to the minimizer with ex-
ponential speed (see Linton et al. 1997). This implies not only consistency of the
backfitting algorithm, it shows also that for getting the asymptotic distribution
of the estimate it suffices to consider the result of the backfitting algorithm after
O(log n) cycles. Using this approach Linton et al. (1997) show that the local poly-
nomial estimate for one additive component achieves the same asymptotic normal
limit as the oracle estimate based on knowing the other components. For an
asymptotic result for another additive local polynomial backfitting estimate that
does not achieve the asymptotic oracle limit see Opsomer (1997) and Opsomer

and Ruppert (1997).

8. Extensions

In this paper we have only discussed constrained smoothing of regression func-
tions. Similar problems arise in other settings like density estimation, generalized
regression, white noise models and nonparametric time series models. Another
field of possible applications are semiparametric models where constraints are put
on the nonparametric components.

Here, we mention other variations from nonparametric regression.

o Boundary conditions. A regression function m, that is defined on [0,1], say,
is assumed to be zero at the boundary point 0. Or more generally, m is
supposed to take fixed known values in certain regions. He and Ng (1998)
note that US Army Construction Engineers use the flashing condition index
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(FCI) as a measurement for roof condition on buildings. Naturally, without
interference the condition cannot improve and at the time of construction a
roof is assumed to have an index of 100. Hence, He and Ng (1998) consider
fitting a decreasing regression function m with m(0) = 100 and 0 < m(z) <

100.

o Additive models with monotone components. The regression function m : IR? —
IR is supposed to be of additive form m(xq,...,2,) = my(ay) +...+my(x,)
where the additive components (or a subset of them) are monotone.

o Branching curves. One observes r samples that are modeled as
1/]‘2' :m]‘(X]‘i)—I-aS]‘Z', j: 1,...,T;i = 1,...,71]‘.

For the r regression functions my,...,m, the model assumption is made
that for some fixed known values 7;; it holds that m;(x) = my(z) for @ < 7.
Smoothing splines for this model have been discussed in Silverman and Wood

(1987), see also Green and Silverman (1994).

o Observed derivatives. One observes r samples corresponding to r regression
functions (as in the last point) with now r = 2. Now it is assumed that ms
coincides with the derivative of my, see Cox (1988).
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