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Abstract

There are a wide array of smoothing methods available for �nding struc�
ture in data� A general framework is developed which shows that many of
these can be viewed as a projection of the data� with respect to appropriate
norms� The underlying vector space is an unusually large product space�
which allows inclusion of a wide range of smoothers in our setup �includ�
ing many methods not typically considered to be projections�� We give
several applications of this simple geometric interpretation of smoothing�
A major payo� is the natural and computationally frugal incorporation of
constraints� Our point of view also motivates new estimates and it helps to
understand the �nite sample and asymptotic behaviour of these estimates�
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�� Introduction

Smoothing as a means of modelling non�linear structure in data is enjoying in�
creasingly widespread acceptance and use in applications� In many of these it
is required that the curve estimates obtained from smoothing satisfy certain
constraints� such as monotonicity� However� many of the usual formulations of
smoothing are not very amenable to the incorporation of constraints� This is be�
cause it is not clear in which sense� if any� they are a projection� i�e� the solution
to a minimization problem with respect to some norm� In this paper we develop
a framework in which a number of popular smoothing methods are exactly a pro�
jection with respect to a particular norm� Our framework is a product vector
space that is larger than those usually considered for analyzing smoothing meth�
ods� The bene�t of this type of geometric view of smoothing is that it reveals a
natural way to incorporate constraints� since the modi�ed smoother is de�ned as
the projection onto the constrained set of functions�

Smoothing is illustrated in Figure ��� we show part of the �cars� data used in
the �	
� ASA Data Exposition� These data are available at the Statlib Inter�
net site �http���lib�stat�cmu�edu�datasets�cars�data
 at Carnegie Mellon
University� Here fuel consumption� in miles per gallon� is studied as a function of
engine output� in horsepower� and data points �Xi� Yi
 are displayed as a scatter�
plot� The curve in Figure ��� is a simple smooth� i�e� moving average� as described
in ����
�

This smooth is not monotonically decreasing� But since one expects that more
powerful engines consume more fuel� it is sensible to request that the smooth be
decreasing� This� and other types of constraints are not natural to incorporate
into many types of smoothing� including the simple smooth used in Figure ����
Green and Silverman ��		�
 have pointed out that smoothing splines� where many
types of constraints are incorporated in a natural way� are an exception to this
rule� In particular� smoothing splines are de�ned as minimizers of a penalized
sum of squares� so constrained smoothing splines are easily de�ned as minimizers
over the constrained set of functions� Here we show that the essence of this idea
is not restricted to smoothing splines� but applies quite generally� for example
to kernel and local polynomial methods� The key is to work with much larger
normed vector spaces than are usually considered in the analysis of smoothers�
Our framework� developed in Section �� is a product structure� i�e� we consider
�vectors of objects�� where the objects are functions� vectors� or even sets of
functions or vectors� When the result of the smoothing process is a curve� the
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Figure ���� Raw data and simple smooth for Fuel consumption as a function
of engine output� Smooth is Nadaraya�Watson type with Gaussian kernel and
bandwidth h � ��

objects are taken to be functions� When the result is a vector� e�g� the smooth
evaluated at the design points� the objects are taken to be vectors� For local
polynomial smoothing� projection follows from letting the objects be groups of
functions or vectors� In each case suitable norms are de�ned for our product
space� which correspond to the sums of squares that are usually considered� see
Section �� and thus give representation of the smoothers as projections� By this
device a much broader class of smoothers can be viewed as projections� as shown
in Section �� which allows natural incorporation of constraints for these methods�

In Section � our framework is seen to include smoothing splines and other
penalized methods� through the development of Sobolev type norms on our gen�
eral vector space� A number of asides are given in Section �� including detailed
discussion of the case of monotone smoothing� some remarks about loss func�
tions� decompositions of sums of squares� numerical implementation� and sums of
squares� Extensions to local polynomials are given in Section �� Application of
our approach to additive models is discussed in Section ��
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Figure ���� Raw data and monotonicity constrained smooth for Fuel consumption
as a function of engine output� Smooth is Nadaraya�Watson type with Gaussian
kernel and bandwidth h � ��

Figure ��� shows the result of the sophisticated projection ideas of Sections ���
and �� starting with the simple smooth in Figure ���� Note that essentially the
increasing parts of the smooth have been �rounded o���

For more background on smoothing� see any of a number of monographs� e�g� in
the last �ve years� Green and Silverman ��		�
� Wand and Jones ��		�
� Fan and
Gijbels ��		�
� Simono� ��		�
� Hart ��		�
 and Bowman and Azzalini ��		�
�

�� Simple smoothing as minimization

Before developing our general vector space framework� we �rst show how simple
smoothing� as shown in Figure ���� can be written as a minimization problem�
Then we show how this viewpoint can be used to do constrained smoothing� A
mathematical formulation of smoothing has data �X�� Y�
� � � � � �Xn� Yn
� e�g� as

�



shown in the scatterplot of Figure ���� that are modeled as

Yi � m�Xi
 � �i� i � �� � � � � n�

where �i� i � �� � � � � n� are mean � error random variables and m is some smooth
regression function�

The dashed curve in Figure ��� is a �simple smooth� of the form

cmS�x
 �

Pn
i��wi�x
YiPn
i��wi�x


� ����


i�e� a moving �in x
 weighted average of the Yi� The weights wi�x
 used in Fig�
ure ��� are of Nadaraya�Watson type� as discussed in Section ���� See H�ardle
��		�
 and Wand and Jones ��		�
 for an introduction to the basics of this non�
parametric regression estimator�

Note that there are several points where this curve� shown in Figure ��� is
not monotone decreasing� An approach to constraining this type of smooth to be
monotone is to recognize that it can be written as

cmS � argmin
m

Z �

n

nX
i��

fYi �m�x
g�wi�x
 ��dx
� ����


where
R
means de�nite integration over the real line� and where � is some measure�

A natural choice is ��dx
 � dx� corresponding to Lebesgue integration� However�
other measures such as some form of counting measure might also be considered
�e�g� ��dx
 � dFn�x
 where Fn is the empirical distribution
� The integral is not
necessary for this unconstrained estimator� because the minimum can be found
for each x individually� i�e�

cmS�x
 � argmin
m�IR

�

n

nX
i��

�Yi �m
�wi�x
� ����


For the same reason the weight measure � also has no e�ect on cmS�x
� But
the integral is included because it reveals that simple smoothing is a projection
as developed below� This is the key to our natural formulation of constrained
smoothing� If C is a set of functions satisfying some constraint� such as mono�
tonicity� then a constrained version of the simple smooth is�

cmS�C � argmin
m�C

Z �

n

nX
i��

fYi �m�x
g�wi�x
 ��dx
� ����


�
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Figure ���� Unconstrained and constrained �monotone
 smooths� for Fuel con�
sumption as a function of engine output� as in Figure ���� The constrained smooth
has �kinks� which have been smoothed out in the more sophiticated constrained
smooth of Figure ���

The weight measure � now plays an important role� because the minimizers at
di�erent points x are linked through the constraints� In Figure ���� a discretized
version of Lebesgue measure is used�

While this estimate appears natural� the monotonicity constraint introduces
some �kinks� in Figure ���� essentially at �break points where cmS is not mono�
tone�� Insight into these kinks and other aspects of constrained smoothing comes
from a particular normed vector space structure that will be introduced in the
next section� See Section ��� for further discussion� and methods to �round o�
these corners� as shown in Figure ����

�� Simple smoothers viewed as projections

In this section we shall introduce a normed vector space that contains the data
vector and the regression functions� We shall show that in this space kernel

�



smoothers appear as a projection of the data vector onto an appropriate vector
subspace� To capture all of these aspects� it is not enough to simply work with
n�dimensional vectors� or with functions� A vector space which re�ects the full
structure of smoothing� i�e� includes both the data vector Y � and the candidate
smooths m�x
� is a product space containing n�tuples of linear objects

VS �

������� v
��

�

����
v�
���
vn

	

� � vi � V� i � �� � � � � n

���
���
where V is some normed vector space� The vector space V will vary depending
on the type of smoother considered� When the result of the smooth is a function�
as in the rest of this section� and in Section �� V will be an appropriate space of
functions� But when the result of the smooth is a vector� e�g� when the smooth is
evaluated only at the design points� V is a set of ordinary vectors� For local poly�
nomial smoothing� V is taken to be vectors of functions �or vectors
� as described
in Section ��

For the rest of this section� we shall consider V to be a space of functions� so

VS �

������� f
��

�

����
f��x

���

fn�x


	

� � fi � IR
q � IR� i � �� � � � � n

���
��� �

The data vector Y � �Y�� � � � � Yn� can be viewed as an element Y
��

of VS� which is

an n�tuple of constant functions� fi�x
 � Yi� i � �� � � � � n� The subspace of such
n�tuples of constants functions will be called VY

S � For a candidate smooth m �
IRq � IR� we write m

��
for the n�tuple where each entry is m�x
� i�e� fi�x
 � m�x
�

i � �� � � � � n� The subspace of such n�tuples with identical entries is denoted by
Vm
S � When wi�x
 � �� we may de�ne an inner product on VS��

f
��
� g
��

�
�
Z �

n

nX
i��

fi�x
gi�x
wi�x
 ��dx
�

and its induced norm on VS is given by����� f��
�����
�

�
Z �

n

nX
i��

fi�x

�wi�x
 ��dx
� ����


�



Strictly speaking� this de�nes only a bilinear form and a seminorm if� for
some i� wi�x
 � � on a set of x whose ��measure is not zero �which happens
e�g� for kernel smoothing with a compactly supported kernel
� By identifying
functions that are equivalent under this seminorm we can view ����
 as a norm�
i�e� implicitly we work on classes of functions� We shall also assume that VS is
complete with respect to this norm �which is possible by specifying an appropriate
space for the fi in the de�nition of VS
�

This notation shows that both the unconstrained and constrained simple smooths
are projections� because ����
 and ����
 can be rewritten as

cmS � argmin
m�m
��
�Vm

S

����Y��� m
��

����� � ����


cmS�C � argmin
m�m
��
�Cm

S

����Y��� m
��

����� � ����


where CmS � Vm
S is the subset of n�tuples with �identical
 entries that are con�

strained� e�g� monotone in x�
Using a Pythagorean relationship� the minimization problem ����
 can be sub�

stantially simpli�ed� This yields important computational advantages� and also
gives some important insights� In particular� for m

��
� Vm

S we have

����Y��� m
��

����� � ����Y��� cm
��S

����� � ����cm��S � m
��

����� � ����


because cm
��S is the projection of Y

��
onto the subspace Vm

S � whence Y
��

� cm
��S is

orthogonal to cm
��S � m

��
with respect to the inner product� see e�g� Rudin ��	
��

Theorem ����
� Furthermore�����cm��S � m
��

����� �
Z �

n

nX
i��

�cmS�x
�m�x
��wi�x
 ��dx


�
Z

�cmS�x
�m�x
��w�x
 ��dx
�

where w�x
 � �
n

Pn
i�� wi�x
� An immediate consequence of this is the following

proposition�
Proposition �� Assuming that each wi�x
 � �� the constrained simple smooth

can be represented as a constrained minimization over ordinary functions �i�e� over

�



m � C� as�

cmS�C�x
 � argmin
m�m
��
�Cm

S

����cm��S � m
��

����� � argmin
m�C

Z
fcmS�x
�m�x
g�w�x
 ��dx
� ����


The geometric interpretation of Proposition � is that the projection of the data
vector Y onto CmS � �in our enlarged vector space VS
 is the same as the projection
�in the space of ordinary functions
 of the unconstrained smooth onto C�

The relation ����
� and similar geometric considerations give other types of
insight about constrained smoothing� It is straightforward to check that the or�
thogonality used in the Pythagorean Theorem ����
 follows from direct calculation
of �

Y
��
� cm
��S� cm��S � m

��

�
� ��

At �rst glance� one might suspect that the subspaces VY
S and Vm

S are orthogonal�
But they are not� because they have the intersection VC

S � the n�tuples of constant

functions that are all the same� But even VY
S �

�
VC
S

��
�the orthogonal complement

of VC
S in VY

S 
 and Vm
S �

�
VC
S

��
are not orthogonal� as can be seen from direct

calculation� or from the fact that this would imply that the projection of Y onto
Vm
S lies in VC

S and thus is everywhere constant�
Visual understanding of Proposition � is given by Figure ���� The horizontal

plane represents the subspace Vm
S of VS� The diagonal line represents the subspace

VY
S �not orthogonal to Vm

S 
� The set CmS is shown as the shaded horizontal region�
Proposition � states that the point in CmS that is closest to Y is also the point in
CmS that is closest to cmS�x
�

Proposition � also suggests which statistical loss functions are associated with
choices of the weight measure �� In particular� if m��x
 is the �true� function�
then the loss �conditional on X�� � � � �Xn
 function

L�cm�m�
 �
Z
fcm�x
�m��x
g

�w�x
 ��dx
 ����


is essentially optimized by cmS�x
 over Vm
S and by cmS�C�x
 over CmS � Speci�cs of L

are discussed in Section ����
Proposition � shows that the constrained estimate can be calculated in two

relatively straightforward steps�

��
 Compute the unconstrained estimate cmS�
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Figure ���� Diagram representing location of data and unconstrained and con�
strained smooths� in the vector space VS�

��
 Project cmS onto the constrained set of functions�

Implementation of each of these two steps is relatively straightforward and
much simpler than direct computation of ����
� We shall come back to this point
in Section ����

���� Some remarks and speci�c simple smoothers

Representations of the type ����
 have been used for many purposes� For exam�
ple they provide easy understanding of how local polynomial methods� discussed
in detail in Section �� extend conventional kernel smoothers� see Fan and Gij�
bels ��		�
� A di�erent purpose is the motivation of �robust M�smoothing� as

	



introduced in H�ardle and Gasser ��	
�
 and Tsybakov ��	
�
� where the square
in ����
 is replaced by a �robust � function�� Application of our approach to these
smoothers will not be discussed here�

It is straightforward to show that the Proposition � still holds when some of
the wi�x
 � �� as long as w�x
 � �� This is important in the following�

Here are some speci�cs to show that many types of smoothers can be written
in the form ����
� i�e� ����
� Much of this approach to generality was developed by
F�oldes and Revesz ��	��
 and Walter and Blum ��	�	
 in the context of density
estimation�

�� Nadaraya�Watson smoother� here the weight functions have the form

wi�x
 � Kh�x�Xi
�

whereK is a nonnegative� integrable �kernel function� or �window function�
�often taken to be a symmetric probability density
� and where the �band�
width� or �smoothing parameter� h controls the amount of smoothing� i�e�
local averaging� via Kh�	
 �

�
h
K
�
�
h

�
�

�� Gasser�M�uller smoother� this is a somewhat di�erent �kernel type� smoother�
where

wi�x
 �
Z si

si��

Kh�x� t
dt�

for �in between points� si� where s� � X� 
 s� � X� 
 	 	 	 
 sn�� � Xn 

sn� See M�uller ��	


 for discussion of many properties of this estimator� See
Chu and Marron ��		�
 for comparison of this smoother with the Nadaraya�
Watson�

�� Bandwidth variation� Our geometric approach extends to the case that
the bandwidth h depends on x� e�g� wi�x
 � Kh�x��x � Xi
 in the case
of Nadaraya�Watson smoothing�

�� Orthogonal Series� For an orthogonal basis f�jg� e�g� the Fourier basis� or
a wavelet basis� a simple class of smoothers is

cmOS�x
 �
X
j�S

b	j�j�x
� ����


where the �empirical Fourier coe�cients� are b	j � �
n

Pn
i�� Yi�j�Xi
� and

where S is some set of �coe�cients containing most of m��� e�g� low fre�
quency coe�cients in the Fourier case or unthresholded coe�cients in the

��



wavelet case� Interchanging the order of summation shows that this type of
smoother is of the form ����
 where

wi�x
 �
�

n

X
j�S

�j�Xi
�j�x
�

A short description of orthogonal series estimates� including wavelets� can
be found in Section ��� of Ramsay and Silverman ��		�
 where additional
references are given for particular choices of function bases�

�� Regression splines� A class of simple smoothers with a form that is related
to ����
 is the class of regression splines�

cmRS�x
 �
X
j�S

b	jBj�x
�

but the functions Bj�x
 are no longer orthogonal� Now they take the form
Bj�x
 � xj� for j � �� � � � � p and Bj�x
 � �x � kj


p
� for j 
 p� where

the kj are some given �knot points�� The coe�cients b	j are computed by
least squares� so they are still linear combinations of Y � Thus this type
of smoother can be written in the form ����
 by interchanging order of
summation as above� See Section ��� of Eubank ��	


 for discussion of
many properties of estimators of this form and see Stone et al� ��		�
 for
related estimators in more complicated models�

�� Others� A variation on kernel type smoothers is local polynomials� which are
discussed in detail in Section �� A di�erent type of spline is the smoothing
spline discussed in detail in Section ��

�� Extension to smoothing splines

Much of the work in constrained nonparametric regression has been done in the
context of splines� Smoothing splines are de�ned as minimizers of a penalized
sum of squares� see ����
� Constraints can be easily incorporated by minimiz�
ing over the restricted set� For work on constrained smoothing splines see Dier�
ckx ��	
�
� Utreras ��	
�
� Irvine et al� ��	
�
� Schmidt ��	
�
� Villalobos and
Wahba ��	
�
� Elfving and Andersson ��	


� Micchelli and Utreras ��	


� Ram�
say ��	


� Fritsch ��		�
� Kelly and Rice ��		�
� Schmidt and Scholz ��		�
�
Gaylord and Ramirez ��		�
� Schwetlick and Kunert ��		�
� Tantiyaswasdikul

��



and Woodroofe ��		�
� Dole ��		�
� and Mammen and Thomas�Agnan ��		

�
Some applications are discussed in the books by Wahba ��		�
 and Green and
Silverman ��		�
� Overviews on work on shape restricted splines are given in Dele�
croix and Thomas�Agnan ��		�
� Insight into how constrained smoothing splines
work comes from another type of generalization of the framework of Section ��
The basic smoothing spline of order p is usually written as

cmSS�x
 � argmin
m

�

n

nX
i��

fYi �m�Xi
g
� � �

Z
m�p��x
�� ����


where � is the smoothing parameter� See Eubank ��	


� Wahba ��		�
 and
Green and Silverman ��		�
 for discussion of many aspects of this estimator� It
can be written in a form which generalizes both ����
 and ����
 as

cmSS�x
 � argmin
m�m
��
�Vm

S

����Y��� m
��

�����
where the norm on VS is now generalized to����� f��

�����
�

�
�

n

nX
i��

kfi�x
k
�
p
� ����


where k	k
p
denotes the Sobolev type norm

kf�x
k�p �
Z

�f�x
��wi�x
 ��dx
 � �

Z h
f �p��x


i�
dx�

The conventional smoothing spline ����
 is the special case where wi�x
 � � and
� is the empirical measure of the design points X�� � � � �Xn� The norm ����
 is the
special case where � � ��

As above it is natural to write constrained smoothing splines as

cmSS�C�x
 � argmin
m�m
��
�Cm

S

����Y��� m
��

�����
This constrained minimization is simpli�ed� exactly as at ����
� using a Pythagorean
relationship� Following the arguments of Section � yields�

Proposition �� The constrained smoothing spline can be represented as a
constrained minimization over ordinary functions as�

cmSS�C�x
 � argmin
m�m
��
�Cm

S

����cm��SS � m
��

�����
� argmin

m�C

Z
fcmSS�x
�m�x
g�w�x
 ��dx
 � �

Z
fcm�p�

SS�x
�m�p��x
g�dx�

����


��



Proposition � is proved in Mammen and Thomas�Agnan ��		

� There this
representation of the smoothing spline was used to study asymptotics and algo�
rithms for shape restricted smoothing splines� see also Section ����

���� Sobolev projection of smoothers

Motivated by Proposition � we propose to mix ideas from spline smoothing and
other smoothing approaches� We consider the following class of constrained
smoothers� For an arbitrary �unconstrained
 smoother cmS that is constructed
such that it has p derivatives we de�ne the constrained smoother as�

cmS�C�x
 � argmin
m�m
��
�Cm

S

����cm��S � m
��

�����
� argmin

m�C

Z
fcmS�x
�m�x
g�w�x
 ��dx


��
Z
fcm�p�

S �x
�m�p��x
g�dx�

This means that the constrained smoother cmS�C is the projection of the uncon�
strained estimator cmS onto the constrained set C� Here� the projection is taken
with respect to the Sobolev norm

kfk� �
Z
f�x
�w�x
 ��dx
 � �

Z
f �p��x
�dx� ����


This estimate has two advantages�

��
 The unconstrained estimate cmS will only be changed if it violates any of
the constraints and then only in the neighborhood of this violation� In par�
ticular� for monotone smoothing cmS will only be changed in neighborhoods
of sets where the monotonicity was violated by cmS� Hence� away from such
neighborhoods the constrained estimate has the same �theoretical
 proper�
ties as the unconstrained estimator since it is identical to the latter� More
importantly� the good interpretability of the unconstrained estimator carries
over to the constrained estimator away from such neighborhoods�

��
 The constrained estimate cmS�C is a smooth function� The reason is that

the penalty term �
R h
m�p��x


i�
dx of the Sobolev norm forces cmS�C to be

smooth� In particular� for monotone smoothing with a choice p � � we

��



get an estimate that is di�erentiable� This means that this estimate does
not have the kinks observed in Figure ��� for monotone local linear �ts�
This is shown in Figure ��� where the constrained smoother of Figure ��� is
shown� That projection is calculated with respect to ����
 where the penalty
term has been replaced by a discretized version� This has been done for
computational reasons� For a more detailed discussion of algorithms using
local polynomial smoothers see Mammen et al� ��		

� Delecroix et al� ��		��
�		�
 consider a related two step procedure for Priestley�Chao type kernel
smoothers�

�� Asides

	��� The monotone case

For monotone smoothing� cmS�C�x
 is a version of the older idea of �smooth� then
monotonize� discussed e�g� in Barlow and van Zwet ��	��
� Wright ��	
�
� Fried�
man and Tibshirani ��	
�
� Mukerjee ��	


� Kelly and Rice ��		�
 and Mam�
men ��		�a
 �see also Cheng and Lin� �	
�� Ramsay� �		
� Mammen et al�� �		

�
Moreover� to our knowledge� the fact thatcmS�C is the projection onto a constrained
set has not been recognized before�

It can be shown that for monotone �increasing
 smoothing ����
 implies that

cmS�C�x
 �max
u�x

min
v�x

R v
u
cmS�s
w�s
 ��ds
R v
u w�s
 ��ds


� ����


A proof of ����
 for discrete measures � can be found in the books by Barlow et al�
��	��
 or Robertson et al� ��	


� The case of general � is discussed in Mammen
et al� ��		

� A careful inspection of ����
 shows that one obtains the monotone
function cmS�C from cmS by replacing parts of cmS by constant pieces� In an interval
where cmS�C is constant it is equal to a weighted average of cmS over this interval�
At the boundary of such intervals cmS�C may not be di�erentiable� This explains
the kinks that were observed for the monotone smoother of the data in Section ��
see Figure ����

Mammen ��		�a
 also considers other proposals for monotone smoothing that
are of the form �monotonize then smooth�� denoted by cmC�S� which is a smooth
of the monotonized data denoted by YC � Insight into how this type of smoother
compares with cmS�C�x
 comes from Figure ���� In both Figures ����a
 and ����b
�
the subspace Vm

S �of ordinary functions
 is shown as a horizontal line� and the

��
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Figure ���� Diagram showing relation of �monotonicity preserving smoothers��
Panel �a
� and �non�monotonicity preserving smoothers�� Panel �b
� in the vector
space VS�

subset CmS �of constrained functions
 is the heavily shaded portion� The subspace
VY
S �of ordinary vectors
 is shown as a diagonal line� and the subset CYS �of vectors

satisfying the constraint
 is the heavily shaded portion� Figure ����a
 corresponds
to the case that the smoothercmC�S is �monotonicity preserving� �i�e� when applied
to monotone data� the result is monotone
� and Figure ����b
 is the case where

��



the smoother is not monotonicity preserving� which can happen for example for
local polynomial smoothers� as shown in Figure ����

When the smoother is monotonicity preserving� the set CmS �covers all the area
directly underneath CYS �� since smooths of monotone data are again monotone�
So when the data Y are �rst monotonized �i�e� projected onto CYS 
 to get YC � the
resulting smooth cmC�S �which comes from projecting YC onto Vm

S 
� will typically
be �inside CmS �� This means that this approach will tend to �round out the sharp
corners in cmS�C�x
��

When the smoother is not monotonicity preserving� the smooth cmC�S of the
monotonized data YC� i�e� the projection of YC onto Vm

S � need not be monotone�
as shown in Figure ����b
� Another illustrative example for the situation in Fig�
ure ����b
 are functions that are constrained to go through the origin� A projection
of a function f onto the constrained set is achieved by replacing the single value
f��
 by �� This example highlights that the resulting estimate of the approach
�smooth then constrain� may not be smooth� Furthermore the idea �constrain
then smooth� may not lead to a constrained estimate� The Sobolev projection
method described in Section ��� is a way of addressing this problem�

	��� Remarks on implied loss functions

The constrained estimate minimizes a weighted L� distance from the smoothed
estimate� Di�erent choices of the weight measure � lead to di�erent L� norms�
For di�erent forms of the simple smoother ����
� this entails di�erent versions of
the implied loss ����
 �

For Nadaraya�Watson weights� w�x
 � �
n

Pn
i��Kh�x � Xi
 is a kernel den�

sity estimator� so under reasonable assumptions �see e�g� Silverman� �	
�� Wand
and Jones� �		�
 w�x
 is approximately f�x
 the density of X�� � � � �Xn� so this
estimator is approximately optimizingZ

fcm�x
�m��x
g
�f�x
 ��dx
�

For situations where �f weighting� is desirable in Nadaraya�Watson smoothing�
��dx
 � dx is appropriate� When �no weighting� is desired� then the choice
��dx
 � w�x
��dx is natural�

For Gasser�M�uller weights� w�x
 � �
n

Pn
i��

R si
si��

Kh�x�t
dt �
�
n

R sn
s�
Kh�x�t
dt�

Under reasonable assumptions �either x is away from boundary regions� or s� �
��� sn � �
� w�x
 is approximately constant� so this estimator is essentially

��



optimizing Z
fcm�x
�m��x
g

�
��dx
�

Thus ��dx
 � dx gives �no weighting� and �f weighting� can be obtained from
��dx
 � �

n

Pn
i��Kh�x�Xi
dx�

Next we study the e�ect of the weight function w under constraints� For
some constraints� the projection of the smoother onto the constraint set leads
only to �local� changes of the smoother� Consider e�g� the case of monotone
smoothing and assume that the smoother is nearly monotone with the exception
of some local wiggles� As noted at ����
 one achieves the monotone smoother by
replacing the local wiggles by constant local pieces where the estimate is taken
as a local weighted average� Such local averages do not depend strongly on the
weight function w or on the measure �� unless the sample size is small �careful
investigation of this is done in Mammen et al�� �		

� So usually the choice of the
weight measure � is of relatively minor importance�

	��� ANOVA decompositions and model choice

Our projection framework can also be used for comparison of models and model
choice� For example assume that we have a class of nested submodels CmS�� �
� � � � CmS�k � Vm

S given� Our approach allows us to compare the corresponding
estimates using the norm ����
 or its generalisation ����
� De�ne for j � �� � � � � k
the constrained estimates analogous to ����
�

cm
��S�C�j � argmin

m
��
�Cm

S�j

����Y��� m
��

����� �
If the submodels CmS��� � � � � C

m
S�k are vector spaces� repeated application of the

Pythagorean Theorem yields�����Y��� m
��

����� �
����Y��� cm

��S�C�k

����� � ����cm��S�C�k � cm
��S�C�k��

�����
� � � ��

����cm��S�C�� � cm
��S�C��

�����
�

����cm��S � cm
��S�C�k

����� � ����cm��S�C�k � cm
��S�C�k��

�����
� � � ��

����cm��S�C�� � cm
��S�C��

����� �
��
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Figure ���� Diagram showing the data vector Y
��

and projections �� Y��
and �� Y��

onto the orthogonal spaces L� � Cm��
S�j � CmS�j�� and L� � Cm��

S�j� � C
m
S�j����

As opposed to �traditional� ANOVA decompositions� the summands in this de�
composition are usually not independent� This observation holds for �nite samples
as well as asymptotically� To appreciate why� suppose that the errors ��� � � � � �n
are i�i�d� with standard normal N��� �
 distribution and consider VS endowed with
the norm ����
� It follows that Y

��
has a standard normal multivariate distribution

on the vector subspace VY
S �

Consider next two projections� say �� Y��
and �� Y��

� of Y
��

onto orthogonal

subspaces L� and L� of Vm
S as illustrated by Figure ���� Speci�cally� take L�

and L� as the orthogonal complements of CmS�j in CmS�j�� for two di�erent values

of j� i�e� L� � Cm��
S�j � CmS�j�� and L� � Cm��

S�j� � C
m
S�j��� for j �� j�� Hence� �� Y��

iscm
��S�C�j�� � cm

��S�C�j and �� Y��
is cm
��S�C�j��� � cm

��S�C�j� �

With this choice of L� and L�� neither of the two subspaces is contained in
VY
S nor are they orthogonal to VY

S �see the discussion in Section �
� Therefore we
cannot conclude in general that �� Y��

and �� Y��
are independent� As an extreme

case consider the simple two dimensional plot of Figure ���� Here� Y
��

has a one

��
�dimensional normal distribution on the line VY
S and �� Y��

depends determin�

�




istically on �� Y��
� This implies� in particular� that they are not independent�

Furthermore� in general the summands
����cm��S�C�k � cm

��S�C�k��

����� do not have an

�asymptotic
 �� distribution� see e�g� H�ardle and Mammen ��		�
 who propose
using bootstrap methods to avoid these problems� The situation is a little bit
simpler for orthogonal series estimates� see Section ���� For a general discussion
of lack�of��t tests in nonparametric regression see Hart ��		�
�

	��� Numerical implementation

According to Proposition � for the calculation of constrained estimates we have
only to calculate the unconstrained smoother and to calculate the projection of
the smoother onto the constrained set� This yields a big computational gain� For
example� if � is counting measure on an equally spaced grid of g values of x� then
instead of minimizing over vectors of dimension n 	 g� as required for ����
� only
vectors of dimension g need to be considered for ����
� In addition� established
algorithms may be used on the reduced problem� The reduced problem �in its
discretized form
 is a constrained �weighted
 least squares problem� Algorithms
for such problems are studied well in the numerical literature� Solutions can be
iteratively calculated by active set methods �see e�g� McCormick� �	
�
� by the
method of iterative projections �see e�g� Dykstra� �	
�� Robertson et al�� �	


� or
primal�dual methods �see e�g� Goldfarb and Idnani� �	
�
� For monotone smooth�
ing the pool adjacent violators algorithm� which calculates e�ectively projections
onto monotone vectors� can be used in the second step� For a discussion of this
algorithm and other constrained least squares algorithms see the books by Barlow
et al� ��	��
 and Robertson et al� ��	


� General optimization algorithms are
discussed� among others� in Fletcher ��	
�
� den Hertog ��		�
 and Nash and
Sofer ��		�
�

	�	� Asymptotics for constrained estimates

Asymptotics for unconstrained kernel�type estimates is quite well�developed� For
some examples the asymptotic results of the unconstrained estimates carry over to
the constrained estimates� Trivially� this is the case if the unconstrained estimate
ful�ls the constraint with probability tending to one� This implies that� with prob�
ability tending to one� the constrained estimate coincides with the unconstrained�
An important example for this case is monotone smoothing� Under appropriate
conditions� the derivative m� of the regression function is consistently estimated

�	



by the derivative of kernel smoothers� Then� if m� is bounded away from �� the
constrained estimate is monotone with probability tending to one� So asymptotics
of the constrained estimate is reduced to the unconstrained case� see e�g� Muker�
jee ��	


 and Mammen ��		�a
� This does not hold for monotonicity constraints
of higher order derivatives� Under such conditions the constrained estimate can
achieve faster rates of convergence than the unconstrained estimate� This has been
shown in Mammen and Thomas�Agnan ��		

 for smoothing splines� see also the
results in Mammen ��		�b
 on constrained least squares estimates� An essen�
tial mathematical tool for showing rates of convergence of restricted smoothers is
given by empirical process theory� see van de Geer ��		�
�

�� Extension to local polynomials

Now we extend our projection framework for smoothing to local polynomial smoothers�
For simplicity of notation� we assume now that the covariables Xi are one dimen�
sional and that the regression function m goes from IR to IR� Given a set of
weights wi�x
� such as those of Section ���� a local polynomial smoother of order
p� can be written as cmLP �x
 � b
��x
�
where

b
�x
 �
����
b
��x

���b
p�x


	

� � argmin
�

Z �

n

nX
i��

���Yi �
pX

j��


j�x
�x�Xi

j

�
�
�

wi�x
 ��dx
�

����

As for cmS� the integral and the weight measure � play no role� because the mini�
mization can be done individually for each x�

It is possible to represent cmLP �x
 in the form ����
� as

b
�x
 � argmin
�

fY �X�x

�x
gTW �x
fY �X�x

�x
g

where

X�x
�

������
� X� � x 	 	 	 �X� � x
p

� X� � x 	 	 	 �X� � x
p

���
���

���
� Xn � x 	 	 	 �Xn � x
p

	



� �

��



W �x
 �

�������
w��x
 � 	 	 	 �

� w��x

� � �

���
���

� � � � � � �
� 	 	 	 � wn�x


	




� �
Standard linear algebra yields

b
�x
 � n
X�x
TW �x
X�x


o��
X�x
TW �x
Y� ����


Hence� cmLP �x
 can also be written as a �simple smoother� in the form ����
�
Note� that the weights� say  wi�x
� used when writing cmLP �x
 in the form ����

di�er from wi�x
 used in ����
 to de�ne the local polynomial smoother� Moreover�
it is possible that  wi�x
 becomes negative but� since cmLP �x
 reproduces constant
functions� we are assured that

Pn
i�� wi�x
 � � and Proposition � holds as noted

in Section ���� The calculations in Section � could now be used for constrained
smoothing� but there are some limitations to this setup� In particular only con�
straints on b
��x
 would be allowed�

To write this smoother as a projection� in a space that is more generally
useful for understanding constrained smoothing� we use an expanded version of
the normed vector space VS which is the set of n�p� �
 tuples of functions�

VLP �

�����������������������������
f
��

�

���������������

f����x

���

f��p�x

���

fn���x

���

fn�p�x


	












�
� fi�j � IR� IR� i � �� � � � � n� j � �� � � � � p

��������������
��������������
�

Now the data vector Y T � �Y�� � � � � Yn� is viewed as an element Y
��

of VLP � which

is an n�p � �
�tuple of the form Y
��

T � �Y�� �� � � � � �� Y�� �� � � � � �� Yn� �� � � � � ��� i�e�

within blocks of p� �� only the �rst entries may be nonzero� i�e�

fi�j�x
 �

�
Yi j � �
� j � �� � � � � p

� i � �� � � � � n�

The subspace of such n�p � �
�tuples is called VY
LP � A candidate smooth now

involves several functions 
j � IR� IR� which are elements of VLP of the form 

��

�

��



that are n�p � �
�tuples where entries are common across i� and for each j are

j�x
� i�e� fi�j�x
 � 
j�x
� i � �� � � � � n� j � �� � � � � p� The subspace of n�p � �
�
tuples with entries that are identical across i is denoted by Vm

LP � The appropriate
analog of the norm ����
 on VLP is

����� f��
�����
�

�
Z �

n

nX
i��

���
pX

j��

fi�j�x
 �x�Xi

j

�
�
�

wi�x
 ��dx
� ����


This notation represents local polynomial smooths as a projection� becausecmLP �x
 �b
��x
�where ����
 can be rewritten as

b
�x
 � argmin
�� �
��
�Vm

LP

�����Y��� 

��

�����
�

� ����


Now given a set of constrained n 	 �p��
 tuples CmLP � Vm
LP � for example 
��x


monotone� a natural constrained local polynomial smoother iscmLP�C�x
 � b
��C�x
�
where b
C�x
 � argmin

�� �
��
�Cm

LP

����� Y��� 

��

�����
�

� ����


This constrained minimization is simpli�ed� exactly as at ����
� using a Py�
thagorean relationship� Following the same arguments �with nearly the same
notation
 as in Section � yields�

Proposition �� The constrained local polynomial smooth can be represented
as a constrained minimization over ordinary functions as cmLP�C�x
 � b
��C�x

where�

b
�x
 � argmin
�� �
��
�Cm

����� b
��� 

��

�����
�

� argmin
�� �
��
�Cm

Z �

n

nX
i��

�� pX
j��

�b
j�x
� 
j�x

�
�x�Xi


j

	��wi�x
 ��dx


� argmin
��CLP

Z pX
j��

pX
j���

� b
j�x
� 
j�x

� � b
j��x
� 
j��x


�
Uj�j��x
 ��dx


����


where

Uj�x
 �
�

n

nX
i��

�x�Xi

j
wi�x
� for j � �� � � � � �p�

��



As Proposition � in Section � for kernel smoothing� Proposition � gives geomet�
ric insights� as well as computational gains� Again� the computational problem
is reduced to a constrained least squares problem� So the remarks of Section ���
apply� In many cases the set of constrained functions 
 � CLP will involve con�
straints only on some of the 
j� For example� in monotone regression� a simple
constraint is that only 
��x
 is increasing� but it could also be desirable to assume
in addition that 
��x
 � �� see below for the latter case�

Suppose that the restricted 
j�x
 are grouped into a vector as 
��x
T �
�
��x
� 	 	 	 � 
q���x

� and that 
��x
T � �
q�x
� 	 	 	 � 
p�x

 is a grouping of the
unrestricted ones� Then the minimization problem ����
 can be further simpli�ed�
by explicitly minimizing in 
��x
 for �xed 
��x
� Useful notation is

���x
T �
� b
��x
� 
��x
� 	 	 	 � b
q���x
� 
q���x


�
�

���x
T �
� b
q�x
� 
q�x
� 	 	 	 � b
p�x
� 
p�x


�
�

U�x
 �

����
U��x
 	 	 	 Up�x


���
���

Up�x
 	 	 	 U�p�x


	

� � X�x
TW �x
X�x
�

Also let U���x
� U���x
� and U���x
 denote respectively the upper left q
q� lower
left �p � q

q� and lower right �p� q

�p� q
 submatrices of U�x
� Calculations
as done for ����
 show that for given 
��x
� the minimizer of ����
� i�e�

Z
����x


T � ���x

T �U�x


�
���x

���x


�
��dx


over 
��x
 is given by the 
��x
 component of

���x
 � �U���x

��U���x
���x


Hence� the minimization problem ����
 can be reduced to minimizingZ
���x


T
n
U���x
� U���x


��U���x

o
���x
 ��dx


over 
��x
�
In the case q � �� this reduces to

cmLP�C�x
 � argmin
m

Z
fcmLP �x
�m�x
g���x
 ��dx


��



where ��x
 � U���x
 � U���x
��U���x
� But U���x
 � U��x
 � w�x
� de�ned
before Proposition ��

Similar remarks as in Section ��� now apply� In particular� in the case of
weights wi�x
 � Kh �x�Xi
� under some assumptions� ��x
 � f�x
� as for the
Nadaraya�Watson smoother�

We describe now an algorithm for the following special case of monotone
smoothing� for the local linear� do monotonization with the constraints 
��x

increasing� 
��x
 � �� Straight forward calculus shows that this gives the mini�
mization problem

argmin
�� increasing

Z
��x
dx�

where

��x
 �

�
I if x � A

II otherwise

where
A � fx � U��x


��U��x

h

��x
� b
��x
i 
 b
��x
g�

I � fU��x
� U��x

��U��x


�gf
��x
� b
��x
g��
II � U��x
f
��x
� b
��x
g� � � b
��x
U��x
f
��x
� b
��x
g� U��x
 b
��x
��

This minimization can be done by the following iterative calculation� In each step
the minimization is done for �xed set A� This gives a �weighted
 least squares
problem with monotonicity constraint �that can be solved e�g� by application of
the pool adjacent violator algorithm
� After each step the set A is updated by
using the last solution for the minimizer�

Propsition � shows that� as for kernel smoothing� constrained smoothing leads
to estimates of the form� �smooth then constrain�� Again� one could try estimates
based on the idea ��rst constrain then smooth�� For local polynomials this idea
does not work� smoothing by local polynomials is not monotonicity preserving�
This can be seen from Figure ��� that shows some arti�cial monotone data with a
local linear �t that is not monotone� This is in contrast to the Nadaraya�Watson
smoother that always preserves monotonicity �see Mukerjee� �	

� Mammen and
Marron� �		�
� Su�cient conditions for a smoother to be monotonicity preserving
are given in Mammen and Marron ��		�
� They also discuss a modi�cation of the
local linear smoother which is monotonicity preserving� A detailed discussion of
monotone local polynomials can be found in Mammen et al� ��		

�

��
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Figure ���� Monotone arti�cial data with nonmonotone local linear �t�

�� Additive models

We consider now local polynomial �tting for additive models� In this model the
additive local polynomial smoother can be calculated by the back�tting algorithm�
Our geometric point of view can be used to show that this algorithm converges
under weak conditions� Furthermore� our geometric representations can be used as
essential tools to give the asymptotic distribution of the additive local polynomial
smoother� see Linton et al� ��		�
� We now describe how our projection framework
carries over to this model� For this purpose we have to extend our approach to
q dimensional covariables Xi � �Xi��� � � � �Xi�q
� Our constraint on the regression
function m � IRq � IR is that

m�x
 � m� �m��x�
 � � � ��mq�xq
 for x � �x�� � � � � xq
� ����


where m� is a constant and m�� � � � �mq are functions from IR to IR� For identi��
ability� it is assumed that E ml�Xi�l
 � �� i � �� � � � � n� l � �� � � � � q� Discussion of
the additive model can be found in Hastie and Tibshirani ��		�
�

Given a set of weights wi�x
� such as those of Section ���� the unconstrained

��



local polynomial of order p� can be written as

cmAM�x
 � b
��x
�
where

b
�x
 �

�������
b
��x
b
����x

���b
p�q�x


	




�
� argmin

�

Z �

n

nX
i��

���Yi � 
��x
�
qX
l��

pX
j��


j�l�x
�xl �Xi�l

j

�
�
�

wi�x
 ��dx
� ����


As for q � �� the integral and the weight measure � play no role� because the
minimization can be done individually for each x� In the minimization� no mixed
terms of the form �xl� �Xi�l�


j
� �xl� �Xi�l�


j
� are used� This reduces the number

of �tted local parameters and it is natural in view of the constraint ����
�
To use the constraint ����
 we write b
 as a projection� The space VAM is now

de�ned as a set of n�pq � �
 functions

VAM �

���������������������������������������

f
��

�

��������������������

f����x

f������x


���
f��p�q�x


���
fn���x

fn�����x


���
fn�p�q�x


	

















�

�
fi��� fi�j�l � IR� IR� i � �� � � � � n�

j � �� � � � � p� l � �� � � � � q

�������������������
�������������������

�

Similarly as above the data vector Y T �
�
Y� 	 	 	 Yn

�
is viewed as an element

Y
��

of VAM � by putting fi���x
 � Yi and fi�j�l�x
 � � for j � �� � � � � p� l � �� � � � � q�

i � �� � � � � n�
The subspace of such n�pq��
�tuples is called VY

AM � A candidate unconstrained
smooth now involves several functions 
� � IRq � IR and 
j�l � IRq � IR� They

��



de�ne an element 

��

of VAM � Such elements are n�pq��
�tuples where entries are

common across i� and for each j and l are fi�j�l�x
 � 
j�l�x
 and fi���x
 � 
��x
�
i � �� � � � � n� j � �� � � � � p� l � �� � � � � q� The subspace of such elements is again
denoted by Vm

AM � The appropriate norm on VAM is now

����� f��
�����
�

�
Z �

n

nX
i��

��fi���x
 � pX
j��

qX
l��

fi�j�x
 �xl �Xi�l

j

	��wi�x
 ��dx
� ����


Note that ����
 can be rewritten as

b
�x
 � argmin
�� �
��
�Vm

AM

�����Y��� 

��

�����
�

� ����


The subset of constrained functions CmAM � Vm
AM now consists of n�pq � �


tuples of functions �fi��� fi�j�l � i � �� � � � � n� j � �� � � � � p� l � �� � � � � q
 for which
the following holds�

� The functions fi��� fi�j�l do not depend on i�

� The function fi�� is of additive form� i�e� there exist functions gf� � � � � � g
f
q � IR�

IR such that fi���x
 � gf� �x�
 � � � �� gfq �xq
�

� The functions fi�j�l depend only on a one dimensional argument� i�e� there exist

functions hf���� � � � � h
f
p�q � IR� IR such that fi�j�l�x
 � h

f
j�l�xl
�

The additive local polynomial smoother is now de�ned as cmAM�C�x
 � b
��C�x
�
where b
C�x
 � argmin

�� �
��
�Cm

AM

����� Y��� 

��

�����
�

� ����


Again� using the same arguments as above one can show that

b
C�x
 � argmin
�� �
��
�Cm

AM

����� b
��� 

��

�����
�

�

However� in this model we do not recommend �rst calculating the unrestricted
estimate �and then projecting this estimate on the subspace CmAM �� The reason is

��



that the calculation of the unrestricted estimate involves many unknown parame�
ters� If the data are too sparse this calculation would be instable or the estimate
may not even be de�ned for many points� A standard method to calculate the
constrained �i�e� additive
 estimate is the back�tting algorithm �see Hastie and
Tibshirani� �		�
� It is based on iterative minimization of kY

��
� 

��
k�� In each

minimization step the norm is minimized over one additive component while let�
ting the other components be �xed� i�e� for one � 
 k 
 q it is minimized over

g
b�
k �x
 and h

b�
��k�x
� � � � � h

b�
p�k�x
 with �xed g

b�
l �x
 and h

b�
j�l�x
 for j � �� � � � � p and

l �� k� In each cycle of the algorithm this is done for each component k� It can be
easily seen that each step in a cycle of the algorithm is a projection onto an appro�
priate subspace of the space VAM � That means that� in our geometry� back�tting
is based on iterative application of projections� This is much easier to understand
as iterative application of smoothing operators� In particular� it can be used to
show that under weak conditions back�tting converges to the minimizer with ex�
ponential speed �see Linton et al� �		�
� This implies not only consistency of the
back�tting algorithm� it shows also that for getting the asymptotic distribution
of the estimate it su�ces to consider the result of the back�tting algorithm after
O�log n
 cycles� Using this approach Linton et al� ��		�
 show that the local poly�
nomial estimate for one additive component achieves the same asymptotic normal
limit as the oracle estimate based on knowing the other components� For an
asymptotic result for another additive local polynomial back�tting estimate that
does not achieve the asymptotic oracle limit see Opsomer ��		�
 and Opsomer
and Ruppert ��		�
�

	� Extensions

In this paper we have only discussed constrained smoothing of regression func�
tions� Similar problems arise in other settings like density estimation� generalized
regression� white noise models and nonparametric time series models� Another
�eld of possible applications are semiparametric models where constraints are put
on the nonparametric components�

Here� we mention other variations from nonparametric regression�

� Boundary conditions� A regression function m� that is de�ned on ��� ��� say�
is assumed to be zero at the boundary point �� Or more generally� m is
supposed to take �xed known values in certain regions� He and Ng ��		


note that US Army Construction Engineers use the �ashing condition index

�




�FCI
 as a measurement for roof condition on buildings� Naturally� without
interference the condition cannot improve and at the time of construction a
roof is assumed to have an index of ���� Hence� He and Ng ��		

 consider
�tting a decreasing regression function m with m��
 � ��� and � 
 m�x
 

����

� Additive models with monotone components� The regression function m � IRq �
IR is supposed to be of additive form m�x�� � � � � xq
 � m��x�
� � � ��mq�xq

where the additive components �or a subset of them
 are monotone�

� Branching curves� One observes r samples that are modeled as

Yji � mj�Xji
 � �ji� j � �� � � � � r� i � �� � � � � nj�

For the r regression functions m�� � � � �mr the model assumption is made
that for some �xed known values �jl it holds that mj�x
 � ml�x
 for x 
 �jl�
Smoothing splines for this model have been discussed in Silverman and Wood
��	
�
� see also Green and Silverman ��		�
�

� Observed derivatives� One observes r samples corresponding to r regression
functions �as in the last point
 with now r � �� Now it is assumed that m�

coincides with the derivative of m�� see Cox ��	


�

References

��� Barlow� R�E� and van Zwet� W�R� ��	��
 Asymptotic properties of isotonic
estimators for generalized failure rate function� Part �� Strong consistency�
Nonparametric techniques in statistical inference� �M�L� Puri� ed�
 ��	!����
Cambridge University Press�

��� Barlow� R�E�� Bartholomew� D�J�� Bremner� J�M� and Brunk� H�D� ��	��

Statistical inference under order restrictions� Wiley� New York�

��� Bowman� A�W� and Azzalini� A� ��		�
 Applied smoothing techniques for
data analysis� Oxford Science Publications� Oxford�

��� Cheng� K�F� and Lin� P�E� ��	
�
 Nonparametric estimation of a regression
function� Zeitschrift f�ur Wahrscheinlichkeitstheorie und Verwandte Gebiete�
��� ���!����

�	



��� Chu� C�K� and Marron� J�S� ��		�
 Choosing a kernel regression estimator
�with discussion
� Statistical Science� �� ���!����

��� Cox� D�D� ��	


 Approximation of method of regularization estimators� An�
nals of Statistics� �� �	�!����

��� Delecroix� M� and Thomas�Agnan� C� ��		�
 Kernel and spline smoothing un�
der shape restrictions� to appear in� Smoothing and Regression� Approaches�
Computation and Application �M� Schimek� ed�
� Wiley� New York�

�
� Delecroix� M�� Simioni� S� and Thomas�Agnan� C� ��		�
 A shape constrained
smoother� Simulation study� Computational Statistics� ��� ���!����

�	� Delecroix� M�� Simioni� S� and Thomas�Agnan� C� ��		�
 Functional estima�
tion under shape restrictions� Journal of Nonparametric Statistics �� �	!
	�

���� den Hertog� D� ��		�
 Interior Point Approach to Linear� Quadratic and
Convex Programming� Kluwer Academic Publishers� Dordrecht�

���� Dierckx� P� ��	
�
 An algorithm for cubic spline �tting with convexity con�
straints� Computing� ��� ��	!����

���� Dole� D� ��		�
 Scatterplot smoothing subject to monotonicity and convexity�
Unpublished manuscript�

���� Dykstra� R�L� ��	
�
 An algorithm for restricted least squares regression�
Journal of the American Statistical Association ��� ���!��
�

���� Elfving� T� and Andersson� L�E� ��	


 An algorithm for computing con�
strained smoothing splines� Numerische Mathematik� ��� �
���	��

���� Eubank� R�L� ��	


 Spline smoothing and nonparametric regression� Marcel
Dekker� New York�

���� Fan� J� and Gijbels� I� ��		�
 Local Polynomial Modeling and Its Applications�
Chapman and Hall� London�

���� Fletcher� R� ��	
�
 Practical Methods of Optimization� Second Edition� Wiley�
Chichester�

��
� F�oldes� A� and Revesz� P� ��	��
 A general method for density estimation�
Studia Scienti	ca Mathematica Hungarica� 	� 
��	��

��



��	� Friedman� J� and Tibshirani� R� ��	
�
 The monotone smoothing of scatter�
plots� Technometrics� ��� ���!����

���� Fritsch� F�N� ��		�
 Monotone piecewise cubic data �tting� Algorithms for
Approximation II �J�C� Mason and M�G� Cox� eds�
� Chapman and Hall�
London� pp� 		!����

���� Gaylord� C�K� and Ramirez� D�E� ��		�
 Monotone regression splines for
smoothed bootstrapping� Computational Statistics Quarterly� �� 
�!	��

���� Goldfarb� D� and Idnani� A� ��	
�
 A numerically stable dual method for
solving strictly convex quadratic programs� Mathematical Programming� ���
�!���

���� Green� P�J� and Silverman� B�W� ��		�
 Nonparametric regression and gen�
ralized linear models� a roughness penalty approach� Chapman and Hall� Lon�
don

���� H�ardle� W� and Gasser� T� ��	
�
 Robust nonparametric function �tting�
Journal of the Royal Statistical Society� Series B� ��� ��!���

���� H�ardle� W� ��		�
 Applied Nonparametric Regression� Cambrdige University
Press� Cambridge� UK�

���� H�ardle� W� and Mammen� E� ��		�
 Testing parametric versus nonparametric
regression� Annals of Statistics ��� �	��!�	���

���� Hart� J�D� ��		�
� Nonparametric Smoothing and Lack�of�Fit Tests� Springer�
Verlag� New York�

��
� Hastie� T� and Tibshirani� R� ��		�
� Generalized Additive Models� Chapman
and Hall� London�

��	� He� X� and Ng� P� ��		

 COBS� Qualitatively Constrained Smoothing via
Linear Programming� Computational Statistics� To appear

���� Irvine� L�D�� Marin� S�P� and Smith� P�W� ��	
�
 Constrained interpolation
and smoothing� Constructive Approximation� �� ��	!����

���� Kelly� C� and Rice� J�R� ��		�
 Monotone smoothing with application to dose�
response curves and the assessment of synergism� Biometrics� ��� ����!��
��

��



���� Linton� O�� Mammen� E� and Nielsen� J� ��		�
 The existence and asymp�
totic properties of a back�tting projection algorithm under weak conditions�
Unpublished manuscript�

���� Mammen� E� ��		�a
 Estimating a smooth monotone regression function�
Annals of Statistics� �	� ���!����

���� Mammen� E� ��		�b
 Nonparametric regression under qualitative smoothness
assumptions� Annals of Statistics� �	� ���!��	�

���� Mammen� E� and Marron� J�S� ��		�
 Mass recentered kernel smoothers�
Biometrika� 
�� ���!��
�

���� Mammen� E�� Marron� J�S�� Turlach� B�A� and Wand� M�P� ��		
b
 Monotone
local polynomial smoothers� Forthcoming manuscript�

���� Mammen� E� and Thomas�Agnan� C� ��		

 Smoothing splines and shape
restrictions� Scandinavian Journal of Statististics� to appear�

��
� McCormick� G�P� ��	
�
 Nonlinear programming� theory� algorithms and ap�
plications� Wiley� New York�

��	� Micchelli� C�A� and Utreras� F�I� ��	


 Smoothing and interpolation in a
convex subset of a Hilbert space� SIAM Journal of Scienti	c and Statistical
Computing� 	� ��
!����

���� M�uller� H�G� ��	


� Nonparametric regression analysis of longitudinal data�
Springer�Verlag� New York�

���� Mukerjee� H� ��	


 Monotone nonparametric regression� Annals of Statistics�
��� ���!����

���� Nash� S�G� and Sofer� A� ��		�
 Linear and Nonlinear Programming�
McGraw!Hill� New York�

���� Opsomer� J�D� ��		�
 On the existence and asymptotic properties of back�t�
ting estimators� Preprint�

���� Opsomer� J�D� and Ruppert� D� ��		�
 Fitting a bivariate additive model by
local polynomial regression� Annals of Statistics� ��� �
�!����

��



���� Ramsay� J�O� ��	


 Monotone regression splines in action �with discussion
�
Statistical Science� �� ���!����

���� Ramsay� J�O� ��		

 Estimating smooth monotone functions� Journal of the
Royal Statistical Society� ��� ���!����

���� Ramsay� J�O� and Silverman� B�W� ��		�
 Functional data analysis� Springer�
Verlag� New York�

��
� Robertson� T�� Wright� F�T� and Dykstra� R�L� ��	


 Order restricted sta�
tistical inference� Wiley� New York�

��	� Rudin� W� ��	
�
 Real and Complex Analysis� McGraw!Hill� New York�

���� Schmidt� J�W� ��	
�
 An unconstrained dual program for computing convex
C��spline approximants� Computing� �	� ���!����

���� Schmidt� J�W� and Scholz� I� ��		�
 A dual algorithm for convex�concave
data smoothing by cubic C��splines� Numerische Mathematik� ��� ���!����

���� Schwetlick� H� and Kunert� V� ��		�
 Spline smoothing under constraints on
derivatives� Bit� ��� ���!��
�

���� Silverman� B�W� ��	
�
 Density estimation for statistics and data analysis�
Chapman and Hall� London�

���� Silverman� B�W� and Wood� J�T� ��	
�
 The nonparametric estimation of
branching curves� Journal of the American Statistical Association� 
�� ���!
��
�

���� Simono�� J� S� ��		�
 Smoothing methods in statistics� Springer�Verlag� New
York�

���� Stone C�J�� Hansen� M�H�� Kooperberg� C� and Truong� Y�K� ��		�
 Poly�
nomial splines and their tensor products in extended linear modeling� �with
discussion
 Annals of Statistics� ��� ����!�����

���� Tantiyaswasdikul� C� and Woodroofe� M�B� ��		�
 Isotonic smoothing splines
under sequential designs� Journal of Statistical Planning and Inference� �
�
��!

�

��



��
� Tsybakov� A�B� ��	
�
 Robust reconstruction of functions by the local ap�
proximation method� Prob� Info� Transmission� ��� ���!���

��	� Utreras� F� ��	
�
 Smoothing noisy data under monotonicity constraints�
existence� characterization and convergence rates� Numerische Mathematik�
��� ���!����

���� van de Geer� S� ��		�
 Estimating a regression function� Annals of Statistics�
�
� 	��!	���

���� Villalobos� M� and Wahba� G� ��	
�
 Inequality constrained multivariate
smoothing splines with application to the estimation of posterior probabili�
ties� Journal of the American Statistical Association� 
�� ��	!��
�

���� Wahba� G� ��		�
 Spline models for observational data� Philadelphia� SIAM�

���� Walter� G�G� and Blum� J� ��	�	
 Probability density estimation using delta
sequences� Annals of Statistics� �� ��
�����

���� Wand� M�P� and Jones� M�C� ��		�
 Kernel Smoothing� Chapman and Hall�
London�

���� Wright� F�T� ��	
�
 Monotone regression estimates for grouped observations�
Annals of Statistics� ��� ��
!�
��

��


