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Abstract

There are a wide array of smoothing methods available for �nding struc�
ture in data� A general framework is developed which shows that many of
these can be viewed as a projection of the data� with respect to appropriate
norms� The underlying vector space is an unusually large product space�
which allows inclusion of a wide range of smoothers in our setup �includ�
ing many methods not typically considered to be projections�� We give
several applications of this simple geometric interpretation of smoothing�
A major payo� is the natural and computationally frugal incorporation of
constraints� Our point of view also motivates new estimates and it helps to
understand the �nite sample and asymptotic behaviour of these estimates�
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�� Introduction

Smoothing as a means of modelling non�linear structure in data is enjoying in�
creasingly widespread acceptance and use in applications� In many of these it
is required that the curve estimates obtained from smoothing satisfy certain
constraints� such as monotonicity� However� many of the usual formulations of
smoothing are not very amenable to the incorporation of constraints� This is be�
cause it is not clear in which sense� if any� they are a projection� i�e� the solution
to a minimization problem with respect to some norm� In this paper we develop
a framework in which a number of popular smoothing methods are exactly a pro�
jection with respect to a particular norm� Our framework is a product vector
space that is larger than those usually considered for analyzing smoothing meth�
ods� The bene�t of this type of geometric view of smoothing is that it reveals a
natural way to incorporate constraints� since the modi�ed smoother is de�ned as
the projection onto the constrained set of functions�

Smoothing is illustrated in Figure ��� we show part of the �cars� data used in
the �	
� ASA Data Exposition� These data are available at the Statlib Inter�
net site �http���lib�stat�cmu�edu�datasets�cars�data at Carnegie Mellon
University� Here fuel consumption� in miles per gallon� is studied as a function of
engine output� in horsepower� and data points �Xi� Yi are displayed as a scatter�
plot� The curve in Figure ��� is a simple smooth� i�e� moving average� as described
in �����

This smooth is not monotonically decreasing� But since one expects that more
powerful engines consume more fuel� it is sensible to request that the smooth be
decreasing� This� and other types of constraints are not natural to incorporate
into many types of smoothing� including the simple smooth used in Figure ����
Green and Silverman ��		� have pointed out that smoothing splines� where many
types of constraints are incorporated in a natural way� are an exception to this
rule� In particular� smoothing splines are de�ned as minimizers of a penalized
sum of squares� so constrained smoothing splines are easily de�ned as minimizers
over the constrained set of functions� Here we show that the essence of this idea
is not restricted to smoothing splines� but applies quite generally� for example
to kernel and local polynomial methods� The key is to work with much larger
normed vector spaces than are usually considered in the analysis of smoothers�
Our framework� developed in Section �� is a product structure� i�e� we consider
�vectors of objects�� where the objects are functions� vectors� or even sets of
functions or vectors� When the result of the smoothing process is a curve� the
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Figure ���� Raw data and simple smooth for Fuel consumption as a function
of engine output� Smooth is Nadaraya�Watson type with Gaussian kernel and
bandwidth h � ��

objects are taken to be functions� When the result is a vector� e�g� the smooth
evaluated at the design points� the objects are taken to be vectors� For local
polynomial smoothing� projection follows from letting the objects be groups of
functions or vectors� In each case suitable norms are de�ned for our product
space� which correspond to the sums of squares that are usually considered� see
Section �� and thus give representation of the smoothers as projections� By this
device a much broader class of smoothers can be viewed as projections� as shown
in Section �� which allows natural incorporation of constraints for these methods�

In Section � our framework is seen to include smoothing splines and other
penalized methods� through the development of Sobolev type norms on our gen�
eral vector space� A number of asides are given in Section �� including detailed
discussion of the case of monotone smoothing� some remarks about loss func�
tions� decompositions of sums of squares� numerical implementation� and sums of
squares� Extensions to local polynomials are given in Section �� Application of
our approach to additive models is discussed in Section ��
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Figure ���� Raw data and monotonicity constrained smooth for Fuel consumption
as a function of engine output� Smooth is Nadaraya�Watson type with Gaussian
kernel and bandwidth h � ��

Figure ��� shows the result of the sophisticated projection ideas of Sections ���
and �� starting with the simple smooth in Figure ���� Note that essentially the
increasing parts of the smooth have been �rounded o���

For more background on smoothing� see any of a number of monographs� e�g� in
the last �ve years� Green and Silverman ��		�� Wand and Jones ��		�� Fan and
Gijbels ��		�� Simono� ��		�� Hart ��		� and Bowman and Azzalini ��		��

�� Simple smoothing as minimization

Before developing our general vector space framework� we �rst show how simple
smoothing� as shown in Figure ���� can be written as a minimization problem�
Then we show how this viewpoint can be used to do constrained smoothing� A
mathematical formulation of smoothing has data �X�� Y�� � � � � �Xn� Yn� e�g� as

�



shown in the scatterplot of Figure ���� that are modeled as

Yi � m�Xi � �i� i � �� � � � � n�

where �i� i � �� � � � � n� are mean � error random variables and m is some smooth
regression function�

The dashed curve in Figure ��� is a �simple smooth� of the form

cmS�x �

Pn
i��wi�xYiPn
i��wi�x

� ����

i�e� a moving �in x weighted average of the Yi� The weights wi�x used in Fig�
ure ��� are of Nadaraya�Watson type� as discussed in Section ���� See H�ardle
��		� and Wand and Jones ��		� for an introduction to the basics of this non�
parametric regression estimator�

Note that there are several points where this curve� shown in Figure ��� is
not monotone decreasing� An approach to constraining this type of smooth to be
monotone is to recognize that it can be written as

cmS � argmin
m

Z �

n

nX
i��

fYi �m�xg�wi�x ��dx� ����

where
R
means de�nite integration over the real line� and where � is some measure�

A natural choice is ��dx � dx� corresponding to Lebesgue integration� However�
other measures such as some form of counting measure might also be considered
�e�g� ��dx � dFn�x where Fn is the empirical distribution� The integral is not
necessary for this unconstrained estimator� because the minimum can be found
for each x individually� i�e�

cmS�x � argmin
m�IR

�

n

nX
i��

�Yi �m�wi�x� ����

For the same reason the weight measure � also has no e�ect on cmS�x� But
the integral is included because it reveals that simple smoothing is a projection
as developed below� This is the key to our natural formulation of constrained
smoothing� If C is a set of functions satisfying some constraint� such as mono�
tonicity� then a constrained version of the simple smooth is�

cmS�C � argmin
m�C

Z �

n

nX
i��

fYi �m�xg�wi�x ��dx� ����

�
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Figure ���� Unconstrained and constrained �monotone smooths� for Fuel con�
sumption as a function of engine output� as in Figure ���� The constrained smooth
has �kinks� which have been smoothed out in the more sophiticated constrained
smooth of Figure ���

The weight measure � now plays an important role� because the minimizers at
di�erent points x are linked through the constraints� In Figure ���� a discretized
version of Lebesgue measure is used�

While this estimate appears natural� the monotonicity constraint introduces
some �kinks� in Figure ���� essentially at �break points where cmS is not mono�
tone�� Insight into these kinks and other aspects of constrained smoothing comes
from a particular normed vector space structure that will be introduced in the
next section� See Section ��� for further discussion� and methods to �round o�
these corners� as shown in Figure ����

�� Simple smoothers viewed as projections

In this section we shall introduce a normed vector space that contains the data
vector and the regression functions� We shall show that in this space kernel

�



smoothers appear as a projection of the data vector onto an appropriate vector
subspace� To capture all of these aspects� it is not enough to simply work with
n�dimensional vectors� or with functions� A vector space which re�ects the full
structure of smoothing� i�e� includes both the data vector Y � and the candidate
smooths m�x� is a product space containing n�tuples of linear objects

VS �

������� v
��

�

����
v�
���
vn

	

� � vi � V� i � �� � � � � n

������
where V is some normed vector space� The vector space V will vary depending
on the type of smoother considered� When the result of the smooth is a function�
as in the rest of this section� and in Section �� V will be an appropriate space of
functions� But when the result of the smooth is a vector� e�g� when the smooth is
evaluated only at the design points� V is a set of ordinary vectors� For local poly�
nomial smoothing� V is taken to be vectors of functions �or vectors� as described
in Section ��

For the rest of this section� we shall consider V to be a space of functions� so

VS �

������� f
��

�

����
f��x
���

fn�x

	

� � fi � IR
q � IR� i � �� � � � � n

������ �

The data vector Y � �Y�� � � � � Yn� can be viewed as an element Y
��

of VS� which is

an n�tuple of constant functions� fi�x � Yi� i � �� � � � � n� The subspace of such
n�tuples of constants functions will be called VY

S � For a candidate smooth m �
IRq � IR� we write m

��
for the n�tuple where each entry is m�x� i�e� fi�x � m�x�

i � �� � � � � n� The subspace of such n�tuples with identical entries is denoted by
Vm
S � When wi�x � �� we may de�ne an inner product on VS��

f
��
� g
��

�
�
Z �

n

nX
i��

fi�xgi�xwi�x ��dx�

and its induced norm on VS is given by����� f��
�����
�

�
Z �

n

nX
i��

fi�x
�wi�x ��dx� ����

�



Strictly speaking� this de�nes only a bilinear form and a seminorm if� for
some i� wi�x � � on a set of x whose ��measure is not zero �which happens
e�g� for kernel smoothing with a compactly supported kernel� By identifying
functions that are equivalent under this seminorm we can view ���� as a norm�
i�e� implicitly we work on classes of functions� We shall also assume that VS is
complete with respect to this norm �which is possible by specifying an appropriate
space for the fi in the de�nition of VS�

This notation shows that both the unconstrained and constrained simple smooths
are projections� because ���� and ���� can be rewritten as

cmS � argmin
m�m
��
�Vm

S

����Y��� m
��

����� � ����

cmS�C � argmin
m�m
��
�Cm

S

����Y��� m
��

����� � ����

where CmS � Vm
S is the subset of n�tuples with �identical entries that are con�

strained� e�g� monotone in x�
Using a Pythagorean relationship� the minimization problem ���� can be sub�

stantially simpli�ed� This yields important computational advantages� and also
gives some important insights� In particular� for m

��
� Vm

S we have

����Y��� m
��

����� � ����Y��� cm
��S

����� � ����cm��S � m
��

����� � ����

because cm
��S is the projection of Y

��
onto the subspace Vm

S � whence Y
��

� cm
��S is

orthogonal to cm
��S � m

��
with respect to the inner product� see e�g� Rudin ��	
��

Theorem ����� Furthermore�����cm��S � m
��

����� �
Z �

n

nX
i��

�cmS�x�m�x��wi�x ��dx

�
Z

�cmS�x�m�x��w�x ��dx�

where w�x � �
n

Pn
i�� wi�x� An immediate consequence of this is the following

proposition�
Proposition �� Assuming that each wi�x � �� the constrained simple smooth

can be represented as a constrained minimization over ordinary functions �i�e� over

�



m � C� as�

cmS�C�x � argmin
m�m
��
�Cm

S

����cm��S � m
��

����� � argmin
m�C

Z
fcmS�x�m�xg�w�x ��dx� ����

The geometric interpretation of Proposition � is that the projection of the data
vector Y onto CmS � �in our enlarged vector space VS is the same as the projection
�in the space of ordinary functions of the unconstrained smooth onto C�

The relation ����� and similar geometric considerations give other types of
insight about constrained smoothing� It is straightforward to check that the or�
thogonality used in the Pythagorean Theorem ���� follows from direct calculation
of �

Y
��
� cm
��S� cm��S � m

��

�
� ��

At �rst glance� one might suspect that the subspaces VY
S and Vm

S are orthogonal�
But they are not� because they have the intersection VC

S � the n�tuples of constant

functions that are all the same� But even VY
S �

�
VC
S

��
�the orthogonal complement

of VC
S in VY

S  and Vm
S �

�
VC
S

��
are not orthogonal� as can be seen from direct

calculation� or from the fact that this would imply that the projection of Y onto
Vm
S lies in VC

S and thus is everywhere constant�
Visual understanding of Proposition � is given by Figure ���� The horizontal

plane represents the subspace Vm
S of VS� The diagonal line represents the subspace

VY
S �not orthogonal to Vm

S � The set CmS is shown as the shaded horizontal region�
Proposition � states that the point in CmS that is closest to Y is also the point in
CmS that is closest to cmS�x�

Proposition � also suggests which statistical loss functions are associated with
choices of the weight measure �� In particular� if m��x is the �true� function�
then the loss �conditional on X�� � � � �Xn function

L�cm�m� �
Z
fcm�x�m��xg

�w�x ��dx ����

is essentially optimized by cmS�x over Vm
S and by cmS�C�x over CmS � Speci�cs of L

are discussed in Section ����
Proposition � shows that the constrained estimate can be calculated in two

relatively straightforward steps�

�� Compute the unconstrained estimate cmS�
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Figure ���� Diagram representing location of data and unconstrained and con�
strained smooths� in the vector space VS�

�� Project cmS onto the constrained set of functions�

Implementation of each of these two steps is relatively straightforward and
much simpler than direct computation of ����� We shall come back to this point
in Section ����

���� Some remarks and speci�c simple smoothers

Representations of the type ���� have been used for many purposes� For exam�
ple they provide easy understanding of how local polynomial methods� discussed
in detail in Section �� extend conventional kernel smoothers� see Fan and Gij�
bels ��		�� A di�erent purpose is the motivation of �robust M�smoothing� as

	



introduced in H�ardle and Gasser ��	
� and Tsybakov ��	
�� where the square
in ���� is replaced by a �robust � function�� Application of our approach to these
smoothers will not be discussed here�

It is straightforward to show that the Proposition � still holds when some of
the wi�x � �� as long as w�x � �� This is important in the following�

Here are some speci�cs to show that many types of smoothers can be written
in the form ����� i�e� ����� Much of this approach to generality was developed by
F�oldes and Revesz ��	�� and Walter and Blum ��	�	 in the context of density
estimation�

�� Nadaraya�Watson smoother� here the weight functions have the form

wi�x � Kh�x�Xi�

whereK is a nonnegative� integrable �kernel function� or �window function�
�often taken to be a symmetric probability density� and where the �band�
width� or �smoothing parameter� h controls the amount of smoothing� i�e�
local averaging� via Kh�	 �

�
h
K
�
�
h

�
�

�� Gasser�M�uller smoother� this is a somewhat di�erent �kernel type� smoother�
where

wi�x �
Z si

si��

Kh�x� tdt�

for �in between points� si� where s� � X� 
 s� � X� 
 	 	 	 
 sn�� � Xn 

sn� See M�uller ��	

 for discussion of many properties of this estimator� See
Chu and Marron ��		� for comparison of this smoother with the Nadaraya�
Watson�

�� Bandwidth variation� Our geometric approach extends to the case that
the bandwidth h depends on x� e�g� wi�x � Kh�x��x � Xi in the case
of Nadaraya�Watson smoothing�

�� Orthogonal Series� For an orthogonal basis f�jg� e�g� the Fourier basis� or
a wavelet basis� a simple class of smoothers is

cmOS�x �
X
j�S

b	j�j�x� ����

where the �empirical Fourier coe�cients� are b	j � �
n

Pn
i�� Yi�j�Xi� and

where S is some set of �coe�cients containing most of m��� e�g� low fre�
quency coe�cients in the Fourier case or unthresholded coe�cients in the

��



wavelet case� Interchanging the order of summation shows that this type of
smoother is of the form ���� where

wi�x �
�

n

X
j�S

�j�Xi�j�x�

A short description of orthogonal series estimates� including wavelets� can
be found in Section ��� of Ramsay and Silverman ��		� where additional
references are given for particular choices of function bases�

�� Regression splines� A class of simple smoothers with a form that is related
to ���� is the class of regression splines�

cmRS�x �
X
j�S

b	jBj�x�

but the functions Bj�x are no longer orthogonal� Now they take the form
Bj�x � xj� for j � �� � � � � p and Bj�x � �x � kj

p
� for j 
 p� where

the kj are some given �knot points�� The coe�cients b	j are computed by
least squares� so they are still linear combinations of Y � Thus this type
of smoother can be written in the form ���� by interchanging order of
summation as above� See Section ��� of Eubank ��	

 for discussion of
many properties of estimators of this form and see Stone et al� ��		� for
related estimators in more complicated models�

�� Others� A variation on kernel type smoothers is local polynomials� which are
discussed in detail in Section �� A di�erent type of spline is the smoothing
spline discussed in detail in Section ��

�� Extension to smoothing splines

Much of the work in constrained nonparametric regression has been done in the
context of splines� Smoothing splines are de�ned as minimizers of a penalized
sum of squares� see ����� Constraints can be easily incorporated by minimiz�
ing over the restricted set� For work on constrained smoothing splines see Dier�
ckx ��	
�� Utreras ��	
�� Irvine et al� ��	
�� Schmidt ��	
�� Villalobos and
Wahba ��	
�� Elfving and Andersson ��	

� Micchelli and Utreras ��	

� Ram�
say ��	

� Fritsch ��		�� Kelly and Rice ��		�� Schmidt and Scholz ��		��
Gaylord and Ramirez ��		�� Schwetlick and Kunert ��		�� Tantiyaswasdikul

��



and Woodroofe ��		�� Dole ��		�� and Mammen and Thomas�Agnan ��		
�
Some applications are discussed in the books by Wahba ��		� and Green and
Silverman ��		�� Overviews on work on shape restricted splines are given in Dele�
croix and Thomas�Agnan ��		�� Insight into how constrained smoothing splines
work comes from another type of generalization of the framework of Section ��
The basic smoothing spline of order p is usually written as

cmSS�x � argmin
m

�

n

nX
i��

fYi �m�Xig
� � �

Z
m�p��x�� ����

where � is the smoothing parameter� See Eubank ��	

� Wahba ��		� and
Green and Silverman ��		� for discussion of many aspects of this estimator� It
can be written in a form which generalizes both ���� and ���� as

cmSS�x � argmin
m�m
��
�Vm

S

����Y��� m
��

�����
where the norm on VS is now generalized to����� f��

�����
�

�
�

n

nX
i��

kfi�xk
�
p
� ����

where k	k
p
denotes the Sobolev type norm

kf�xk�p �
Z

�f�x��wi�x ��dx � �

Z h
f �p��x

i�
dx�

The conventional smoothing spline ���� is the special case where wi�x � � and
� is the empirical measure of the design points X�� � � � �Xn� The norm ���� is the
special case where � � ��

As above it is natural to write constrained smoothing splines as

cmSS�C�x � argmin
m�m
��
�Cm

S

����Y��� m
��

�����
This constrained minimization is simpli�ed� exactly as at ����� using a Pythagorean
relationship� Following the arguments of Section � yields�

Proposition �� The constrained smoothing spline can be represented as a
constrained minimization over ordinary functions as�

cmSS�C�x � argmin
m�m
��
�Cm

S

����cm��SS � m
��

�����
� argmin

m�C

Z
fcmSS�x�m�xg�w�x ��dx � �

Z
fcm�p�

SS�x�m�p��xg�dx�

����

��



Proposition � is proved in Mammen and Thomas�Agnan ��		
� There this
representation of the smoothing spline was used to study asymptotics and algo�
rithms for shape restricted smoothing splines� see also Section ����

���� Sobolev projection of smoothers

Motivated by Proposition � we propose to mix ideas from spline smoothing and
other smoothing approaches� We consider the following class of constrained
smoothers� For an arbitrary �unconstrained smoother cmS that is constructed
such that it has p derivatives we de�ne the constrained smoother as�

cmS�C�x � argmin
m�m
��
�Cm

S

����cm��S � m
��

�����
� argmin

m�C

Z
fcmS�x�m�xg�w�x ��dx

��
Z
fcm�p�

S �x�m�p��xg�dx�

This means that the constrained smoother cmS�C is the projection of the uncon�
strained estimator cmS onto the constrained set C� Here� the projection is taken
with respect to the Sobolev norm

kfk� �
Z
f�x�w�x ��dx � �

Z
f �p��x�dx� ����

This estimate has two advantages�

�� The unconstrained estimate cmS will only be changed if it violates any of
the constraints and then only in the neighborhood of this violation� In par�
ticular� for monotone smoothing cmS will only be changed in neighborhoods
of sets where the monotonicity was violated by cmS� Hence� away from such
neighborhoods the constrained estimate has the same �theoretical proper�
ties as the unconstrained estimator since it is identical to the latter� More
importantly� the good interpretability of the unconstrained estimator carries
over to the constrained estimator away from such neighborhoods�

�� The constrained estimate cmS�C is a smooth function� The reason is that

the penalty term �
R h
m�p��x

i�
dx of the Sobolev norm forces cmS�C to be

smooth� In particular� for monotone smoothing with a choice p � � we

��



get an estimate that is di�erentiable� This means that this estimate does
not have the kinks observed in Figure ��� for monotone local linear �ts�
This is shown in Figure ��� where the constrained smoother of Figure ��� is
shown� That projection is calculated with respect to ���� where the penalty
term has been replaced by a discretized version� This has been done for
computational reasons� For a more detailed discussion of algorithms using
local polynomial smoothers see Mammen et al� ��		
� Delecroix et al� ��		��
�		� consider a related two step procedure for Priestley�Chao type kernel
smoothers�

�� Asides

	��� The monotone case

For monotone smoothing� cmS�C�x is a version of the older idea of �smooth� then
monotonize� discussed e�g� in Barlow and van Zwet ��	��� Wright ��	
�� Fried�
man and Tibshirani ��	
�� Mukerjee ��	

� Kelly and Rice ��		� and Mam�
men ��		�a �see also Cheng and Lin� �	
�� Ramsay� �		
� Mammen et al�� �		
�
Moreover� to our knowledge� the fact thatcmS�C is the projection onto a constrained
set has not been recognized before�

It can be shown that for monotone �increasing smoothing ���� implies that

cmS�C�x �max
u�x

min
v�x

R v
u
cmS�sw�s ��dsR v
u w�s ��ds

� ����

A proof of ���� for discrete measures � can be found in the books by Barlow et al�
��	�� or Robertson et al� ��	

� The case of general � is discussed in Mammen
et al� ��		
� A careful inspection of ���� shows that one obtains the monotone
function cmS�C from cmS by replacing parts of cmS by constant pieces� In an interval
where cmS�C is constant it is equal to a weighted average of cmS over this interval�
At the boundary of such intervals cmS�C may not be di�erentiable� This explains
the kinks that were observed for the monotone smoother of the data in Section ��
see Figure ����

Mammen ��		�a also considers other proposals for monotone smoothing that
are of the form �monotonize then smooth�� denoted by cmC�S� which is a smooth
of the monotonized data denoted by YC � Insight into how this type of smoother
compares with cmS�C�x comes from Figure ���� In both Figures ����a and ����b�
the subspace Vm

S �of ordinary functions is shown as a horizontal line� and the

��
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Figure ���� Diagram showing relation of �monotonicity preserving smoothers��
Panel �a� and �non�monotonicity preserving smoothers�� Panel �b� in the vector
space VS�

subset CmS �of constrained functions is the heavily shaded portion� The subspace
VY
S �of ordinary vectors is shown as a diagonal line� and the subset CYS �of vectors

satisfying the constraint is the heavily shaded portion� Figure ����a corresponds
to the case that the smoothercmC�S is �monotonicity preserving� �i�e� when applied
to monotone data� the result is monotone� and Figure ����b is the case where

��



the smoother is not monotonicity preserving� which can happen for example for
local polynomial smoothers� as shown in Figure ����

When the smoother is monotonicity preserving� the set CmS �covers all the area
directly underneath CYS �� since smooths of monotone data are again monotone�
So when the data Y are �rst monotonized �i�e� projected onto CYS  to get YC � the
resulting smooth cmC�S �which comes from projecting YC onto Vm

S � will typically
be �inside CmS �� This means that this approach will tend to �round out the sharp
corners in cmS�C�x��

When the smoother is not monotonicity preserving� the smooth cmC�S of the
monotonized data YC� i�e� the projection of YC onto Vm

S � need not be monotone�
as shown in Figure ����b� Another illustrative example for the situation in Fig�
ure ����b are functions that are constrained to go through the origin� A projection
of a function f onto the constrained set is achieved by replacing the single value
f�� by �� This example highlights that the resulting estimate of the approach
�smooth then constrain� may not be smooth� Furthermore the idea �constrain
then smooth� may not lead to a constrained estimate� The Sobolev projection
method described in Section ��� is a way of addressing this problem�

	��� Remarks on implied loss functions

The constrained estimate minimizes a weighted L� distance from the smoothed
estimate� Di�erent choices of the weight measure � lead to di�erent L� norms�
For di�erent forms of the simple smoother ����� this entails di�erent versions of
the implied loss ���� �

For Nadaraya�Watson weights� w�x � �
n

Pn
i��Kh�x � Xi is a kernel den�

sity estimator� so under reasonable assumptions �see e�g� Silverman� �	
�� Wand
and Jones� �		� w�x is approximately f�x the density of X�� � � � �Xn� so this
estimator is approximately optimizingZ

fcm�x�m��xg
�f�x ��dx�

For situations where �f weighting� is desirable in Nadaraya�Watson smoothing�
��dx � dx is appropriate� When �no weighting� is desired� then the choice
��dx � w�x��dx is natural�

For Gasser�M�uller weights� w�x � �
n

Pn
i��

R si
si��

Kh�x�tdt �
�
n

R sn
s�
Kh�x�tdt�

Under reasonable assumptions �either x is away from boundary regions� or s� �
��� sn � �� w�x is approximately constant� so this estimator is essentially

��



optimizing Z
fcm�x�m��xg

�
��dx�

Thus ��dx � dx gives �no weighting� and �f weighting� can be obtained from
��dx � �

n

Pn
i��Kh�x�Xidx�

Next we study the e�ect of the weight function w under constraints� For
some constraints� the projection of the smoother onto the constraint set leads
only to �local� changes of the smoother� Consider e�g� the case of monotone
smoothing and assume that the smoother is nearly monotone with the exception
of some local wiggles� As noted at ���� one achieves the monotone smoother by
replacing the local wiggles by constant local pieces where the estimate is taken
as a local weighted average� Such local averages do not depend strongly on the
weight function w or on the measure �� unless the sample size is small �careful
investigation of this is done in Mammen et al�� �		
� So usually the choice of the
weight measure � is of relatively minor importance�

	��� ANOVA decompositions and model choice

Our projection framework can also be used for comparison of models and model
choice� For example assume that we have a class of nested submodels CmS�� �
� � � � CmS�k � Vm

S given� Our approach allows us to compare the corresponding
estimates using the norm ���� or its generalisation ����� De�ne for j � �� � � � � k
the constrained estimates analogous to �����

cm
��S�C�j � argmin

m
��
�Cm

S�j

����Y��� m
��

����� �
If the submodels CmS��� � � � � C

m
S�k are vector spaces� repeated application of the

Pythagorean Theorem yields�����Y��� m
��

����� �
����Y��� cm

��S�C�k

����� � ����cm��S�C�k � cm
��S�C�k��

�����
� � � ��

����cm��S�C�� � cm
��S�C��

�����
�

����cm��S � cm
��S�C�k

����� � ����cm��S�C�k � cm
��S�C�k��

�����
� � � ��

����cm��S�C�� � cm
��S�C��

����� �
��
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Figure ���� Diagram showing the data vector Y
��

and projections �� Y��
and �� Y��

onto the orthogonal spaces L� � Cm��
S�j � CmS�j�� and L� � Cm��

S�j� � C
m
S�j����

As opposed to �traditional� ANOVA decompositions� the summands in this de�
composition are usually not independent� This observation holds for �nite samples
as well as asymptotically� To appreciate why� suppose that the errors ��� � � � � �n
are i�i�d� with standard normal N��� � distribution and consider VS endowed with
the norm ����� It follows that Y

��
has a standard normal multivariate distribution

on the vector subspace VY
S �

Consider next two projections� say �� Y��
and �� Y��

� of Y
��

onto orthogonal

subspaces L� and L� of Vm
S as illustrated by Figure ���� Speci�cally� take L�

and L� as the orthogonal complements of CmS�j in CmS�j�� for two di�erent values

of j� i�e� L� � Cm��
S�j � CmS�j�� and L� � Cm��

S�j� � C
m
S�j��� for j �� j�� Hence� �� Y��

iscm
��S�C�j�� � cm

��S�C�j and �� Y��
is cm
��S�C�j��� � cm

��S�C�j� �

With this choice of L� and L�� neither of the two subspaces is contained in
VY
S nor are they orthogonal to VY

S �see the discussion in Section �� Therefore we
cannot conclude in general that �� Y��

and �� Y��
are independent� As an extreme

case consider the simple two dimensional plot of Figure ���� Here� Y
��

has a one

���dimensional normal distribution on the line VY
S and �� Y��

depends determin�

�




istically on �� Y��
� This implies� in particular� that they are not independent�

Furthermore� in general the summands
����cm��S�C�k � cm

��S�C�k��

����� do not have an

�asymptotic �� distribution� see e�g� H�ardle and Mammen ��		� who propose
using bootstrap methods to avoid these problems� The situation is a little bit
simpler for orthogonal series estimates� see Section ���� For a general discussion
of lack�of��t tests in nonparametric regression see Hart ��		��

	��� Numerical implementation

According to Proposition � for the calculation of constrained estimates we have
only to calculate the unconstrained smoother and to calculate the projection of
the smoother onto the constrained set� This yields a big computational gain� For
example� if � is counting measure on an equally spaced grid of g values of x� then
instead of minimizing over vectors of dimension n 	 g� as required for ����� only
vectors of dimension g need to be considered for ����� In addition� established
algorithms may be used on the reduced problem� The reduced problem �in its
discretized form is a constrained �weighted least squares problem� Algorithms
for such problems are studied well in the numerical literature� Solutions can be
iteratively calculated by active set methods �see e�g� McCormick� �	
�� by the
method of iterative projections �see e�g� Dykstra� �	
�� Robertson et al�� �	

� or
primal�dual methods �see e�g� Goldfarb and Idnani� �	
�� For monotone smooth�
ing the pool adjacent violators algorithm� which calculates e�ectively projections
onto monotone vectors� can be used in the second step� For a discussion of this
algorithm and other constrained least squares algorithms see the books by Barlow
et al� ��	�� and Robertson et al� ��	

� General optimization algorithms are
discussed� among others� in Fletcher ��	
�� den Hertog ��		� and Nash and
Sofer ��		��

	�	� Asymptotics for constrained estimates

Asymptotics for unconstrained kernel�type estimates is quite well�developed� For
some examples the asymptotic results of the unconstrained estimates carry over to
the constrained estimates� Trivially� this is the case if the unconstrained estimate
ful�ls the constraint with probability tending to one� This implies that� with prob�
ability tending to one� the constrained estimate coincides with the unconstrained�
An important example for this case is monotone smoothing� Under appropriate
conditions� the derivative m� of the regression function is consistently estimated

�	



by the derivative of kernel smoothers� Then� if m� is bounded away from �� the
constrained estimate is monotone with probability tending to one� So asymptotics
of the constrained estimate is reduced to the unconstrained case� see e�g� Muker�
jee ��	

 and Mammen ��		�a� This does not hold for monotonicity constraints
of higher order derivatives� Under such conditions the constrained estimate can
achieve faster rates of convergence than the unconstrained estimate� This has been
shown in Mammen and Thomas�Agnan ��		
 for smoothing splines� see also the
results in Mammen ��		�b on constrained least squares estimates� An essen�
tial mathematical tool for showing rates of convergence of restricted smoothers is
given by empirical process theory� see van de Geer ��		��

�� Extension to local polynomials

Now we extend our projection framework for smoothing to local polynomial smoothers�
For simplicity of notation� we assume now that the covariables Xi are one dimen�
sional and that the regression function m goes from IR to IR� Given a set of
weights wi�x� such as those of Section ���� a local polynomial smoother of order
p� can be written as cmLP �x � b��x�
where

b�x �
����
b��x
���bp�x

	

� � argmin
�

Z �

n

nX
i��

���Yi �
pX

j��

j�x�x�Xi
j

��
�

wi�x ��dx�

����
As for cmS� the integral and the weight measure � play no role� because the mini�
mization can be done individually for each x�

It is possible to represent cmLP �x in the form ����� as

b�x � argmin
�

fY �X�x�xgTW �xfY �X�x�xg

where

X�x�

������
� X� � x 	 	 	 �X� � xp

� X� � x 	 	 	 �X� � xp

���
���

���
� Xn � x 	 	 	 �Xn � xp

	



� �

��



W �x �

�������
w��x � 	 	 	 �

� w��x
� � �

���
���

� � � � � � �
� 	 	 	 � wn�x

	




� �
Standard linear algebra yields

b�x � n
X�xTW �xX�x

o��
X�xTW �xY� ����

Hence� cmLP �x can also be written as a �simple smoother� in the form �����
Note� that the weights� say  wi�x� used when writing cmLP �x in the form ����
di�er from wi�x used in ���� to de�ne the local polynomial smoother� Moreover�
it is possible that  wi�x becomes negative but� since cmLP �x reproduces constant
functions� we are assured that

Pn
i�� wi�x � � and Proposition � holds as noted

in Section ���� The calculations in Section � could now be used for constrained
smoothing� but there are some limitations to this setup� In particular only con�
straints on b��x would be allowed�

To write this smoother as a projection� in a space that is more generally
useful for understanding constrained smoothing� we use an expanded version of
the normed vector space VS which is the set of n�p� � tuples of functions�

VLP �

�����������������������������
f
��

�

���������������

f����x
���

f��p�x
���

fn���x
���

fn�p�x

	












�
� fi�j � IR� IR� i � �� � � � � n� j � �� � � � � p

����������������������������
�

Now the data vector Y T � �Y�� � � � � Yn� is viewed as an element Y
��

of VLP � which

is an n�p � ��tuple of the form Y
��

T � �Y�� �� � � � � �� Y�� �� � � � � �� Yn� �� � � � � ��� i�e�

within blocks of p� �� only the �rst entries may be nonzero� i�e�

fi�j�x �

�
Yi j � �
� j � �� � � � � p

� i � �� � � � � n�

The subspace of such n�p � ��tuples is called VY
LP � A candidate smooth now

involves several functions j � IR� IR� which are elements of VLP of the form 
��

�

��



that are n�p � ��tuples where entries are common across i� and for each j are
j�x� i�e� fi�j�x � j�x� i � �� � � � � n� j � �� � � � � p� The subspace of n�p � ��
tuples with entries that are identical across i is denoted by Vm

LP � The appropriate
analog of the norm ���� on VLP is

����� f��
�����
�

�
Z �

n

nX
i��

���
pX

j��

fi�j�x �x�Xi
j

��
�

wi�x ��dx� ����

This notation represents local polynomial smooths as a projection� becausecmLP �x �b��x�where ���� can be rewritten as

b�x � argmin
�� �
��
�Vm

LP

�����Y��� 
��

�����
�

� ����

Now given a set of constrained n 	 �p�� tuples CmLP � Vm
LP � for example ��x

monotone� a natural constrained local polynomial smoother iscmLP�C�x � b��C�x�
where bC�x � argmin

�� �
��
�Cm

LP

����� Y��� 
��

�����
�

� ����

This constrained minimization is simpli�ed� exactly as at ����� using a Py�
thagorean relationship� Following the same arguments �with nearly the same
notation as in Section � yields�

Proposition �� The constrained local polynomial smooth can be represented
as a constrained minimization over ordinary functions as cmLP�C�x � b��C�x
where�

b�x � argmin
�� �
��
�Cm

����� b��� 
��

�����
�

� argmin
�� �
��
�Cm

Z �

n

nX
i��

�� pX
j��

�bj�x� j�x
�
�x�Xi

j

	��wi�x ��dx

� argmin
��CLP

Z pX
j��

pX
j���

� bj�x� j�x
� � bj��x� j��x

�
Uj�j��x ��dx

����

where

Uj�x �
�

n

nX
i��

�x�Xi
j
wi�x� for j � �� � � � � �p�

��



As Proposition � in Section � for kernel smoothing� Proposition � gives geomet�
ric insights� as well as computational gains� Again� the computational problem
is reduced to a constrained least squares problem� So the remarks of Section ���
apply� In many cases the set of constrained functions  � CLP will involve con�
straints only on some of the j� For example� in monotone regression� a simple
constraint is that only ��x is increasing� but it could also be desirable to assume
in addition that ��x � �� see below for the latter case�

Suppose that the restricted j�x are grouped into a vector as ��xT �
���x� 	 	 	 � q���x� and that ��xT � �q�x� 	 	 	 � p�x is a grouping of the
unrestricted ones� Then the minimization problem ���� can be further simpli�ed�
by explicitly minimizing in ��x for �xed ��x� Useful notation is

���xT �
� b��x� ��x� 	 	 	 � bq���x� q���x

�
�

���xT �
� bq�x� q�x� 	 	 	 � bp�x� p�x

�
�

U�x �

����
U��x 	 	 	 Up�x

���
���

Up�x 	 	 	 U�p�x

	

� � X�xTW �xX�x�

Also let U���x� U���x� and U���x denote respectively the upper left qq� lower
left �p � qq� and lower right �p� q�p� q submatrices of U�x� Calculations
as done for ���� show that for given ��x� the minimizer of ����� i�e�

Z
����x

T � ���x
T �U�x

�
���x
���x

�
��dx

over ��x is given by the ��x component of

���x � �U���x
��U���x���x

Hence� the minimization problem ���� can be reduced to minimizingZ
���x

T
n
U���x� U���x

��U���x
o
���x ��dx

over ��x�
In the case q � �� this reduces to

cmLP�C�x � argmin
m

Z
fcmLP �x�m�xg���x ��dx

��



where ��x � U���x � U���x��U���x� But U���x � U��x � w�x� de�ned
before Proposition ��

Similar remarks as in Section ��� now apply� In particular� in the case of
weights wi�x � Kh �x�Xi� under some assumptions� ��x � f�x� as for the
Nadaraya�Watson smoother�

We describe now an algorithm for the following special case of monotone
smoothing� for the local linear� do monotonization with the constraints ��x
increasing� ��x � �� Straight forward calculus shows that this gives the mini�
mization problem

argmin
�� increasing

Z
��xdx�

where

��x �

�
I if x � A

II otherwise

where
A � fx � U��x

��U��x
h
��x� b��xi 
 b��xg�

I � fU��x� U��x
��U��x

�gf��x� b��xg��
II � U��xf��x� b��xg� � � b��xU��xf��x� b��xg� U��x b��x��

This minimization can be done by the following iterative calculation� In each step
the minimization is done for �xed set A� This gives a �weighted least squares
problem with monotonicity constraint �that can be solved e�g� by application of
the pool adjacent violator algorithm� After each step the set A is updated by
using the last solution for the minimizer�

Propsition � shows that� as for kernel smoothing� constrained smoothing leads
to estimates of the form� �smooth then constrain�� Again� one could try estimates
based on the idea ��rst constrain then smooth�� For local polynomials this idea
does not work� smoothing by local polynomials is not monotonicity preserving�
This can be seen from Figure ��� that shows some arti�cial monotone data with a
local linear �t that is not monotone� This is in contrast to the Nadaraya�Watson
smoother that always preserves monotonicity �see Mukerjee� �	

� Mammen and
Marron� �		�� Su�cient conditions for a smoother to be monotonicity preserving
are given in Mammen and Marron ��		�� They also discuss a modi�cation of the
local linear smoother which is monotonicity preserving� A detailed discussion of
monotone local polynomials can be found in Mammen et al� ��		
�

��
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Figure ���� Monotone arti�cial data with nonmonotone local linear �t�

�� Additive models

We consider now local polynomial �tting for additive models� In this model the
additive local polynomial smoother can be calculated by the back�tting algorithm�
Our geometric point of view can be used to show that this algorithm converges
under weak conditions� Furthermore� our geometric representations can be used as
essential tools to give the asymptotic distribution of the additive local polynomial
smoother� see Linton et al� ��		�� We now describe how our projection framework
carries over to this model� For this purpose we have to extend our approach to
q dimensional covariables Xi � �Xi��� � � � �Xi�q� Our constraint on the regression
function m � IRq � IR is that

m�x � m� �m��x� � � � ��mq�xq for x � �x�� � � � � xq� ����

where m� is a constant and m�� � � � �mq are functions from IR to IR� For identi��
ability� it is assumed that E ml�Xi�l � �� i � �� � � � � n� l � �� � � � � q� Discussion of
the additive model can be found in Hastie and Tibshirani ��		��

Given a set of weights wi�x� such as those of Section ���� the unconstrained

��



local polynomial of order p� can be written as

cmAM�x � b��x�
where

b�x �

�������
b��xb����x
���bp�q�x

	




�
� argmin

�

Z �

n

nX
i��

���Yi � ��x�
qX
l��

pX
j��

j�l�x�xl �Xi�l
j

��
�

wi�x ��dx� ����

As for q � �� the integral and the weight measure � play no role� because the
minimization can be done individually for each x� In the minimization� no mixed
terms of the form �xl� �Xi�l�

j
� �xl� �Xi�l�

j
� are used� This reduces the number

of �tted local parameters and it is natural in view of the constraint �����
To use the constraint ���� we write b as a projection� The space VAM is now

de�ned as a set of n�pq � � functions

VAM �

���������������������������������������

f
��

�

��������������������

f����x
f������x

���
f��p�q�x

���
fn���x
fn�����x

���
fn�p�q�x

	

















�

�
fi��� fi�j�l � IR� IR� i � �� � � � � n�

j � �� � � � � p� l � �� � � � � q

��������������������������������������

�

Similarly as above the data vector Y T �
�
Y� 	 	 	 Yn

�
is viewed as an element

Y
��

of VAM � by putting fi���x � Yi and fi�j�l�x � � for j � �� � � � � p� l � �� � � � � q�

i � �� � � � � n�
The subspace of such n�pq���tuples is called VY

AM � A candidate unconstrained
smooth now involves several functions � � IRq � IR and j�l � IRq � IR� They

��



de�ne an element 
��

of VAM � Such elements are n�pq���tuples where entries are

common across i� and for each j and l are fi�j�l�x � j�l�x and fi���x � ��x�
i � �� � � � � n� j � �� � � � � p� l � �� � � � � q� The subspace of such elements is again
denoted by Vm

AM � The appropriate norm on VAM is now

����� f��
�����
�

�
Z �

n

nX
i��

��fi���x � pX
j��

qX
l��

fi�j�x �xl �Xi�l
j

	��wi�x ��dx� ����

Note that ���� can be rewritten as

b�x � argmin
�� �
��
�Vm

AM

�����Y��� 
��

�����
�

� ����

The subset of constrained functions CmAM � Vm
AM now consists of n�pq � �

tuples of functions �fi��� fi�j�l � i � �� � � � � n� j � �� � � � � p� l � �� � � � � q for which
the following holds�

� The functions fi��� fi�j�l do not depend on i�

� The function fi�� is of additive form� i�e� there exist functions gf� � � � � � g
f
q � IR�

IR such that fi���x � gf� �x� � � � �� gfq �xq�

� The functions fi�j�l depend only on a one dimensional argument� i�e� there exist

functions hf���� � � � � h
f
p�q � IR� IR such that fi�j�l�x � h

f
j�l�xl�

The additive local polynomial smoother is now de�ned as cmAM�C�x � b��C�x�
where bC�x � argmin

�� �
��
�Cm

AM

����� Y��� 
��

�����
�

� ����

Again� using the same arguments as above one can show that

bC�x � argmin
�� �
��
�Cm

AM

����� b��� 
��

�����
�

�

However� in this model we do not recommend �rst calculating the unrestricted
estimate �and then projecting this estimate on the subspace CmAM �� The reason is

��



that the calculation of the unrestricted estimate involves many unknown parame�
ters� If the data are too sparse this calculation would be instable or the estimate
may not even be de�ned for many points� A standard method to calculate the
constrained �i�e� additive estimate is the back�tting algorithm �see Hastie and
Tibshirani� �		�� It is based on iterative minimization of kY

��
� 
��
k�� In each

minimization step the norm is minimized over one additive component while let�
ting the other components be �xed� i�e� for one � 
 k 
 q it is minimized over

g
b�
k �x and h

b�
��k�x� � � � � h

b�
p�k�x with �xed g

b�
l �x and h

b�
j�l�x for j � �� � � � � p and

l �� k� In each cycle of the algorithm this is done for each component k� It can be
easily seen that each step in a cycle of the algorithm is a projection onto an appro�
priate subspace of the space VAM � That means that� in our geometry� back�tting
is based on iterative application of projections� This is much easier to understand
as iterative application of smoothing operators� In particular� it can be used to
show that under weak conditions back�tting converges to the minimizer with ex�
ponential speed �see Linton et al� �		�� This implies not only consistency of the
back�tting algorithm� it shows also that for getting the asymptotic distribution
of the estimate it su�ces to consider the result of the back�tting algorithm after
O�log n cycles� Using this approach Linton et al� ��		� show that the local poly�
nomial estimate for one additive component achieves the same asymptotic normal
limit as the oracle estimate based on knowing the other components� For an
asymptotic result for another additive local polynomial back�tting estimate that
does not achieve the asymptotic oracle limit see Opsomer ��		� and Opsomer
and Ruppert ��		��

	� Extensions

In this paper we have only discussed constrained smoothing of regression func�
tions� Similar problems arise in other settings like density estimation� generalized
regression� white noise models and nonparametric time series models� Another
�eld of possible applications are semiparametric models where constraints are put
on the nonparametric components�

Here� we mention other variations from nonparametric regression�

� Boundary conditions� A regression function m� that is de�ned on ��� ��� say�
is assumed to be zero at the boundary point �� Or more generally� m is
supposed to take �xed known values in certain regions� He and Ng ��		

note that US Army Construction Engineers use the �ashing condition index

�




�FCI as a measurement for roof condition on buildings� Naturally� without
interference the condition cannot improve and at the time of construction a
roof is assumed to have an index of ���� Hence� He and Ng ��		
 consider
�tting a decreasing regression function m with m�� � ��� and � 
 m�x 

����

� Additive models with monotone components� The regression function m � IRq �
IR is supposed to be of additive form m�x�� � � � � xq � m��x�� � � ��mq�xq
where the additive components �or a subset of them are monotone�

� Branching curves� One observes r samples that are modeled as

Yji � mj�Xji � �ji� j � �� � � � � r� i � �� � � � � nj�

For the r regression functions m�� � � � �mr the model assumption is made
that for some �xed known values �jl it holds that mj�x � ml�x for x 
 �jl�
Smoothing splines for this model have been discussed in Silverman and Wood
��	
�� see also Green and Silverman ��		��

� Observed derivatives� One observes r samples corresponding to r regression
functions �as in the last point with now r � �� Now it is assumed that m�

coincides with the derivative of m�� see Cox ��	

�
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