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� INTRODUCTION

Additive nonparametric regression models have found wide use in statistics �Hastie and Tibshirani�

����	� and remain an area of vigorous research �Opsomer and Ruppert����
� Opsomer� ����� Linton�

Mammen and Nielsen� ���
� Linton� ���
� Fan� H�ardle and Mammen� ����	� This paper explores

a variant of the problem in which the components of the additive model are linked parametrically�

Let Y be a scalar response and X  �X�� � � � � XJ	
T a vector of regressors� In the ordinary

additive model�

E�Y jX	  E�Y 	 �
JX
j��

mj�Xj	� ��	

where for identi�ability the component functions satisfy Efmj�Xj	g  ��

Hafner �����	 describes a problem in �nance where the component functions m���	� � � � � mJ��	
are linked by a parameter� see Section � for more details� Speci�cally� for a scaler parameter ��

and for j � ��

mj�x	  �j��� m��x	� ��	

Our purpose here is to estimate both the parameter �� and the base function m��x	� Among the

many possibilities� one stands out as relatively straightforward� namely to estimate the component

functions in the general model ��	 and somehow �shrink� them to the model ��	� One method we

pursue� which is based on considerations from the �eld of errors in variables� is computationally

straightforward� with the estimate of �� having an easily estimated standard error� In addition�

the estimator has the pleasing property that the �t to model ��	 can be done in a standard fashion�

without the need for any undersmoothing to insure that the estimate of �� converges at standard

parametric rates� The analysis of this method leads to a second method which is equally simple to

compute�

The paper is organized as follows� In Section �� we de�ne the methods used� Section � states the

asymptotic properties when the additive component functions of ��	 are estimated by a nonpara�

metric smoother that allows a stochastic expansion of order oP �n
����	� Section � provides details

of the motivating example from a nonparametric GARCH model� This model can be approximated

by nonparametric additive autoregression model� Section � extends our results from regression to

autoregression� In particular� it discusses the set up of the approximating model for our motivating

example in Section �� We discuss conditions under which estimates of the additive component allow

a stochastic expansion of order oP �n
����	� This is done for the integration estimates �see Linton

�



and Nielsen������ Tj�stheim and Auestad� ����	� Furthermore� the asymptotic theory of Section

� is extended to autoregression� All proofs are in the appendix�

� THE METHODS

The data are �Y��X�	� � � � � �Yn�Xn	� whereXi  �Xil� � � � � XiJ	
T � We describe here the two methods

used in this paper� Our methods relies on estimates f bm���	� � � � � bmJ��	g from the model ��	� speci�c

examples of which are discussed later in this article�

��� A Method from Errors�in�Variables

The �rst method has a natural interpretation as a functional errors�in�variables method �Fuller�

���
	� To explain this� �rst �x x� Then ignoring bias and other technical details� it is generally the

case that for some constants cn � � and functions wj�x	� the functions f bmj�x	gJj�� form a set of

nearly independent� nearly normal random variables� bmj�x	 � Normalf�j��� m��x	� cn�wj�x	g� If
one only had this single �xed x� then the unknowns are �� and m��x	� and they could be estimated

by minimizing in � and m��x	

JX
j��

wj�x	
nbmj�x	� �j��m��x	

o�
� ��	

This is an errors�in�variables model because we have the multivariate �response� f bm��x	� � � � � bmJ �x	g
with means f��m��x	� � � � � �

J��
� m��x	g� but instead of observingm��x	 we only have the error�prone

�predictor� bm��x	� Equation ��	 thus proposes estimating �� and m��x	 by an asymptotic form of

maximum likelihood� This is exactly the classical functional errors�in�variables estimate�

Continuing with �xed x� for a given � the minimizer of ��	 is Gf bm��x	� � � � � bmJ�x	� �g� where

Gfm��x	� � � � � mJ�x	� �g 
JX
j��

wj�x	mj�x	�
j���

JX
j��

wj�x	�
�j���

Note that Gfm��x	� � � � � mJ�x	� ��g  m��x	 since mj�x	  �j��� m��x	�

Hence� if we worked only with a �xed x� �� would be estimated to minimize

JX
j��

wj�x	
h bmj�x	� �j��G f bm��x	� � � � � bmJ�x	� �g

i�
� ��	

Summing ��	 over all the data suggests that we estimate � by minimizing

nX
i��

JX
k��

JX
j��

wj�Xik	
h bmj�Xik	� �j��G f bm��Xik	� � � � � bmJ�Xik	� �g

i
� ��	

�



��� A Method Based on Least Squares

A special case is illuminating and suggests a second method� Suppose that J  � and that the

variances of bm��x	 and bm��x	 are asymptotically the same� so that we can set w���	  w���	 � ��

Then ��	 reduces to minimizing in �

�� � ��	��
nX
i��

�X
j��

f bm��Xij	� � bm��Xij	g� � ��	

The leading term �����	�� in ��	 plays an important role in the usual errors�in�variables problem�

but here we have a di�erent situation� because the �errors�in�the�variables� are small asymptot�

ically due to the fact that the �error�prone predictor bm��x	� has error which is asymptotically

small� This suggests that one might �nd a reasonable estimate if one simply removes this leading

term and minimize instead
nX
i��

�X
j��

f bm��Xij	� � bm��Xij	g� � �
	

While there are numerical di�erences between our method �
	 and the least squares method ��	

�generally� the latter is larger for estimating ��	� asymptotically the two lead to the same distribu�

tion for b�� see Section 
�� for a sketch�

The method �
	 can be obtained alternatively by replacing G��	 in ��	 by bm���	� Thus the least
squares method minimizes

nX
i��

JX
j��

JX
k��

wj�Xik	
n bmj�Xij	� �j�� bm��Xik	

o�
� ��	

For J � �� ��	 leads to an estimator which is asymptotically di�erent from the solution to ��	� We

explore the di�erences numerically in Section ��

��� Alternatives

There are a host of possible alternative methods�

As we have described in section ���� the component functions can be looked at as if they came

from a �nonlinear	 errors�in�variables model� There is a huge literature on the topic of errors�in�

variables� and at least in principle one can develop many alternatives to the two methods we have

described� either based on small error considerations �Amemiya and Fuller� ����� Carroll� Ruppert

and Stefanski� ����	 or on simulation �Cook and Stefanski� ����	�

Alternatively� the method ��	 can be looked upon as regressing bmj��	 for j � � on bm���	� This
could be expanded to doing all possible regressions of bmj��	 on bmk��	 for j � k�

�



We have not explored these alternatives� although our methods of argument can in principle be

used to obtain limit distributions for them�

� ASYMPTOTIC THEORY FOR REGRESSION DATA

It is possible to obtain the asymptotic distribution of the estimates of � for di�erent estimates of

the component functions mj�x	� We assume that the estimates ful�ll the stochastic expansion ��	�

given below� In Section � we will show that this expansion holds for the integration estimate�

Let K��	 be a symmetric density function chosen without loss of generality to have variance

equal to one� De�ne �  Y � E�Y 	 �PJ
j��mj�Xj	 and let fj�x	 be the marginal density of the

fXijgni��� Let Xi be the vector �Xi�� � � � � XiJ	� Let h � � be the bandwidth� which is supposed

to have the usual rate h � n����� One of the important features of our theoretical work is that

we show that bandwidths of the usual rate can be used to estimate �� and no undersmoothing is

necessary�

We suppose that the estimators have the asymptotic expansion

bmj�x	  mj�x	 � ����	h��j��r�x	 � n��
nX
i��

Kh�Xij � x	uj�Xi� x	�i

�n��
nX
i��

vj�Xi� x	�i � n��
nX
i��

tj�Xi	 � op�n
����	� ��	

where r� uj � vj and tj are some functions� Kh�v	  h��K�v�h	 and Xi  �Xi�� � � � � Xip	T � Further�

more� it is supposed that Eftj�Xi	g  ��

We �rst consider the least squares estimator b�LS minimizing ��	� Make the de�nitions

H��X� ��	 
JX
j��

�j � �	�j���

nh
v�j �X	� �j��� v���X	

i

�
JX

k��

�wj�Xj	m��Xj	fk�Xj	uj�X� Xj	

� �j��� wj�X�	m��X�	fk�X�	u��X� X�	
io

�

H��X� ��	 
JX
j��

�j � �	�j���

n
s�j

h
t�j �X	� �j��� t���X	

io
�

DLS 
JX
j��

JX
k��

n
�j � �	�j���

o�
E
n
wj�Xk	m

�
��Xk	

o
�

v�j �x	  E

�
JX

k��

wj�Xk	m��Xk	vj�x� Xk	

�
�

�



s�j  E

�
JX

k��

wj�Xk	m��Xk	

�
�

���X	  Var�YjX	�

THEOREM � Let h � n����� Then under conditions �A� listed in the appendix� n����b�LS � ��	

is asymptotically normally distribution with mean zero and variance

�LS  E
hn
���X	H�

��X� ��	 �H�
��X� ��	

o
�D�

LS

i
�

Now we turn to the errors�in�variables estimator b�EIV � which minimizes ��	� Make the following

de�nitions�

s��� x	  f
JX
j��

wj�x	�
�j��g���

DEIV 
JX

j��

JX
k��

E�wj�Xk	s���� Xk	m
�
��Xk	f

JX
���

�	� j	w��Xk	�
���j��tg���

Rj�x� ��m�� � � � � mJ	 
JX
���

w��x	
n
��	� �	�����mj�x	� �	� j � �	���j��m��x	

o
�

M�x� �	  E

�� JX
j�k����

wj�Xk	s���Xk	Rj�Xk� �	w��Xk	f�����vj�x� Xk	

����j��v��x� Xk	g
i
�

T��j� k� 	� ��x	  �����wj�xj	w��xj	s��� xj	Rj�xj	fk�xj	uj�x� xj	�

T��j� k� 	� ��x	  ���j��wj�x�	w��x�	s��� x�	Rj�x�	fk�x�	u��x� x�	�

Dj����	  E

�
KX
k��

wj�Xk	s���Xk	Rj�Xk	w��Xk	

�
�

G�X� �	 
JX

j����

Dj����	
n
�����tj�X	� ���j��t��X	

o
�

H��x� �	 
JX

j�k����

fT��j� k� 	� ��x	� T��j� k� 	� ��x	g�

THEOREM � With h � n����� under the same regularity conditions as Theorem �� n����b�EIV �
��	 is asymptotically normally distributed with mean zero and variance

�EIV  E
h
���X	 fH��X� ��	 �M�X� ��	g� � G��X� ��	

i
�D�

EIV �

While the additive functions are naturally linked in our model through ��	� it is conceivable to

have other functions� e�g��mj�x	  Fjfm��x	� ��g� Our methods can be used to analyze such models

�



should they arise� For example� the analogue of the least squares criterion ��	 would minimize

nX
i��

JX
j�k��

wj�Xik	� bmj�Xik	� Fjf bm��Xik	� �g���

Our methods can be used to analyze this estimator� but there is one catch� Unless Fjfm��x	� �g 
ej��	m��x	 for some function ej��	� the bandwidth condition h � n���� no longer su�ces because

the bias in the nonparametric regressions has a role� In our example the �rst order bias terms

in bmj�Xik	 � Fjf bm��Xik	� �g cancel whereas for general Fj they do not� Cancelation of the bias

terms can be forced by replacing Fj by an appropriately �data adaptively	 chosen function eFj 
Fj � OP �h

�	� Otherwise� without replacing Fj � we could require undersmoothing� so that h 

o�n����	� In fact� what basically happens in this case is that there exists ��h  �� � O�h�	 such

that n����b�� ��h	 has a limit distribution similar to that described in described by Theorem �� By

imposing the condition h  o�n����	 we can replace ��h by ���

� NONPARAMETRIC MODELS FOR FINANCIAL TIME SE�

RIES

The recent development of nonlinear time series analysis is primarily due to the e�orts to overcome

the limitations of linear models such as autoregressive moving�average �ARMA	 models of Box and

Jenkins ���
�	 in real applications� It has long been recognized that �nancial time series models that

incorporate clusters of volatilities are more appropriate than ARMA speci�cations� We consider

here as a motivating example an application of nonlinear time series analysis to foreign exchange

high frequency data�

For these data the autoregressive heteroscedastic models �ARCH	 by Engle �����	 have been

extensively studied� An ARCH model for time series fYtg with ARCH error term of order q is

de�ned through Yt  �t
t� where 
t are independent mean zero and variance one random variables

and ��t  � � ��Y
�
t�� � ��Y

�
t�� � � �� �qY

�
t�q� with � � �� �i � �� i  �� � � � � q�

In foreign exchange data it has been found that the order q has to be selected quite high to

�t the model well� see Bollerslev �����	� The reason are volatility clusters� i�e� the conditional

variances are highly correlated� An ARMA like model for the squared observations was therefore

proposed for ��t in Bollerslev �����	�

��t  � �
qX

i��

�iY
�
t�i �

pX
j��

�j�
�
t�j � ���	

�



Models of this type are called GARCH �p� q	 models� For a general discussion of GARCH models

see also Bollerslev� Engle and Nelson �����	� Although this model class showed better �tting

properties it was soon criticized that the dependence of past observations is treated in a symmetric

way� Positive and negative shocks of Yt��� � � � � Yt�q have the same in uence on the volatility of the

current period� The forced symmetry of past shocks was one of the primary motivations for non�

and semiparametric extensions of ARCH models� Based on the QTARCH model of Gourieroux

and Monfort �����	� H�ardle and Tsybakov ����
	 considered the CHARN model Yt  m�Yt��	 �

��Yt��	
t� which was applied to DEM!USD exchange rates by Bossaerts� H�ardle and Hafner �����	

and extended to the multivariate case by H�ardle� Tsybakov and Yang �����	� In their analysis

volatility clusters and a strong asymmetry of the news impact function ��Yt��	 became apparent

and motivated research on the following semiparametric extension of ���	�

Yt  �t
t� ���	

��t  g�Yt��	 � ���t��� ���	

The model we consider in this paper is motivated by ���	 and ���	� By inverting equation ���	

and ���	� we can write ��t 
P�

j�� �
j��g�Yt�j	� An approximations of this model with a �nite

number J of lags reads

Y �
t 

JX
j��

�j��g�Yt�j	 � �t� ���	

with �t  Y �
t � ��t �

We now illustrate the application of model ���	 to foreign exchange rates� The behavior of for�

eign exchange �FX	 rates has been subject of many recent investigations� A correct understanding

of the foreign exchange rate dynamics has important implications for international asset pricing

theories� the pricing of contingent claims and policy�oriented questions�

The foreign exchange market is by far the largest �nancial market� According to the Wall Street

Journal of March � ����� the average daily FX trading volume is about "��� billion� Compared to

this� the NYSE#s �NewYork Stock Exchange	 largest volume day� October ��� ���
� only saw "��

billion of volume� The market is decentralized with the main trading locations being the Far East

�mainly Tokyo� Singapore and Hong Kong	� Europe �London and Frankfurt	 and North America

�New York	� It is an electronic market� active �� hours a day� Banks act as market makers and

place bid� and ask�quotes on the screen� Central information collectors such as Reuters provide the






quotes for the market makers� Actual trade takes place over the phone� This is the reason why there

is no information about actual prices and trading volume� By far the largest part of trading occurs

in US Dollars� which assumes the role of a num$eraire for the minor rates� Although there is some

important central bank intervention money� by far the largest part of the FX market is speculation

by the market makers� High frequency �nancial data analysis has become a broad research �eld

during the last decade� This is due to improved real�time information systems� relatively cheap data

supply by banks and research institutions and improved storing facilities� The data set HFDF�� on

which the following analysis is based was acquired from Olsen and Associates� Z�urich� It contains

bid and ask quotes for the rates Deutsche Mark against US Dollar �DEM!USD	� during the time

Oct � ���� and February �� ����� For each pair of bid� and ask�quotes� the time in GMT� the

quoting bank and the location of the bank are recorded� The quotes are collected from the Reuters

FXFX page� which is considered to be a broad but not #complete# data supply� For more information

about this data set� see Dacorogna� M�uller� Nagler� Olsen and Pictet �����	 and� more generally for

information about FX rate data suppliers and intra�daily FX data� Goodhart and Figliuoli �����	�

Figure � shows a plot of the DEM!USD returns� Our data set contains ����� data values� A kernel

density estimate of the returns is shown in Figure ��

For the data set we calculated back�tting and integration estimates� see the next section for a

description of these estimates� As discussed in the last section� in a �rst step estimation was done in

an additive model �without assumed links on the components gj	 given by Y �
t 

PJ
j�� gj�Yt�j	��t�

In this model we choosed J  � lags� Figures � and � show the resulting back�tting and integration

estimates of the additive components� The integration estimate was calculated by �tting the full

dimensional estimate on a grid of ��� points� This was done to save computation time� For all kernel

estimates we choose the empirical standard deviation as bandwidth� We �t the nonparametric

GARCH model ���	� For the estimation of � we used our method from errors�in�variables �see

Section ���	 and our least squares method �see Section ���	� The resulting estimates were ��
�� and

��
�� �for the back�tting estimate	 and ����� and ��

� �for the integration estimate	� respectively�

There are some di�erences between these estimates� largely along the lines of what one would expect

from Figures � and �� One would expect from these �gures that the least squares estimate of ��

would be smaller than the errors�in�variables estimate� since the latter compares j  �� �� �� � to a

weighted average of j  �� ���� �� which is closer to the results for j  �� �� �� � than to the result for

j  ��

�



The estimates bm�� � � � � bmJ and b� can be used to construct an estimate of m� that takes into

account that the additive components are linked� This can be done by using the averaged estimate

bm�
��x	 

JX
j��

bcj b��	j��
 bmj�x	�
JX
j��

bcj � ���	

where bcj  b��	j��
� see also ���	 and the discussion following Theorem 
 in the next section� Hereb� denotes our estimate based on the method from errors�in�variables or the least squares method�

respectively� Figures �� �� 
 and � show plots of the estimates bm�
� and bm�

j 
b�j�� bm�

�� The plots

di�er slightly for the di�erent methods� This must be explained by the fact that model ���	 only

approximates the underlying model� In particular use of the method from errors�in�variables leads

to more asymmetric news impact functions�

Figure � shows how the nonparametric estimates depend on the chosen number J of lags� It

compares the back�tting estimates of bm�
� for di�erent number of Lags �J  �� ��� ��� ��	� In these

calculations� � was estimated by the method from errors�in�variables� The estimated values are

��
�� �J  �	� ��
�� �J  ��	� ����� �J  ��	� and ��
�� �J  ��	� The nonparametric estimates

�besides small di�erences of the estimate for J  �	 are nearly indistinguishable� So� we conclude

that in this data example model ���	 approximates the nonparametric GARCH model ���	 and

���	 reasonably well�

Of course� this analysis should be taken as illustrative� since it focuses on short�term dependen�

cies� For modeling of long range dependencies like daily or weekly dependence� more complicated

models may be needed�

The next section discusses asymptotics of these estimates in an autoregression model�

� ASYMPTOTICS FOR AUTOREGRESSION

In this section we show that for the integration estimate the expansion ��	 holds� The integration

estimate has been introduced in Tj�stheim and Auestad �����	 and Linton and Nielsen �����	 for

the estimation of additive nonparametric components mj��	 in an additive model� We will do this

for the time series set up of Section �� We suppose that a stationary time series X�� � � � � Xn is

observed� We suppose that E�XJ��jXJ � � � � � X�	  � �m��XJ	 � �m��XJ��	 � � � ��J��m��X�	�

where for a weight function w the function m� satis�es E w�Xi	m��Xi	  �� For this setup the

�



expansion ��	 is given by

bmj�x	  mj�x	 � ����	h��j��r�x	 � n��
nX

i�J��

Kh�Xi�j � x	uj�Xi� x	�i

�n��
nX

i�J��

vj�Xi� x	�i � n��
nX

i�J��

tj�Xi	 � op�n
����	� ���	

where Xi is the vector �Xi��� � � � � Xi�J	�

In this section we study the validity of ���	 for the integration estimate �see Theorem �	� For

simplicity of notation� we will do this only for the case J  �� Then� we will consider errors�in�

variables and least squares estimation of � using arbitrary estimates of mj that ful�ll ���	� We

will show that for these estimates of � analogous asymptotic results apply as in the regression set

up �compare Theorems � and � with Theorems � and �	� An improved estimate of m� can be

constructed by use of the estimates of ��m�� � � � � mJ � Asymptotics for this estimate is described in

Theorem ��

We come now to the check of ���	 for the integration estimate� In a �rst step this estimate uses

a full dimensional local linear �t bmLL of the data� The preliminary estimate bmLL is de�ned as �

where the vector   ��� �� �	T is de�ned by

nX
i��

Kh��Xi�� � x�	 Kh��Xi�� � x�	�Yi � T 
i�x	�
i�x	  �� ���	

Here 
i�x	 denotes the vector ���
Xi���x�

h�
� Xi���x�

h�
	T � The integration estimate bmI

� of m� is de�ned

as

bmI
��x�	  emI

��x�	� n��
nX
i��

w�Xi	 emI
��Xi	�

�

n

nX
i��

w�Xi	� ��
	

Here� w is a weight function� The estimate emI
� is achieved by summing out an argument of the full

dimensional estimate bmLL

emI
��x�	  n��

nX
i��

w�Xi	 bmLL�x�� Xi	�n
��

nX
i��

w�Xi	� ���	

For simplicity� here the same weight function has been used as in ��
	� The estimate emI
� is achieved

by summing out the other argument of the full dimensional estimate bmLL� Our �rst result shows

that bmI
� and emI

� satisfy ���	�

THEOREM � Suppose J  �� Under the regularity conditions �B� listed in the appendix� and if

the bandwidths ful�ll that h�  h�� h��  o�n����	 and �logn	��
p
n h�h���� � �� the estimate bmI

�

��



has a stochastic expansion ��	� with h  h�  h� and

r�x	  m��
��x	�

Z
wm��

�f �

Z
wf ����

u��Xi� x	  w�Xi��	f�Xi��	p�x�Xi��	
���

v��Xi� x	  �w�Xi��	w�Xi��	f�Xi��	f�Xi��	p�Xi��� Xi��	
���

Z
wf ����

t��Xi	  �w�Xi��	m��Xi��	��

Z
wf ����

Here� Xi denotes the vector �Xi��� Xi��	
T � Furthermore� f denotes the density of Xi and p is the

density of �Xi��� Xi	� For bmI
� the expansion ��	� holds with the same r�x	� the same v��Xi� x	 

v��Xi� x	 and with t��Xi	  �t��Xi	 and with

u��Xi� x	  w�Xi��	f�Xi��	p�Xi��� x	
���

In both cases� the expansion ��	� holds uniformly for x � B� The set B was introduced in assumption

B �iii��

We conjecture that an expansion of the form ���	 holds �uniformly	 for the back�tting esti�

mate� In Linton� Mammen and Nielsen ����
	� for a version of the back�tting estimate bmBACK
j � a

stochastic expansion has been given� Applied to our set up this expansion is

bmBACK
j �x	  mj�x	 � ����	h��j��r�x	 � n��

nX
i�J��

Kh�Xi�j � x	uj�Xi� x	�i

�Op�n
���� logn	� ���	

where r�x	 is as for bmI
j � see Theorem � and where uj�Xi� x	  w�Xi��	�f�x	w��x	���� The

Op�n���� log n	 term in ���	 can be explicitly given by an in�nite series� see Linton� Mammen and

Nielsen ����
	� However� it seems to be complicated to show that this term is of order Op�n
����	

and that it has the form of the terms in ���	� For another recent asymptotic treatment of �another

version of	 the back�tting estimate� see Opsomer �����	 and Opsomer and Ruppert ����
	�

We suppose now that we have estimates of mj that ful�ll the expansion ���	� These estimates

can be used to construct an estimate of �� Asymptotics for this estimate is given in the next two

theorems� The �rst theorem describes least squares estimation of �� see Section ����

THEOREM � Suppose that the regularity conditions �B� hold� and for some estimates bmj assume

that they ful�ll ��	� uniformly for x � B� where r� uj� vj and tj are bounded functions with

E tj�Xi	  � and supx�z j ��

	�x
�uj�z� x	j �	� Then the estimate n����b�LS � ��	 has an asymptotic

��



normal distribution with mean � and variance D��
LS

P
k�ZZ cov�U�� Uk	 where Uk  H��Xk� ��	�k �

H��Xk� ��	�

The next theorem gives the asymptotic distribution of the errors�in�variables estimate of �� see

Section ����

THEOREM � Suppose that the assumptions of Theorem 
 hold for some estimates bmj �Then

the estimate n����b�EIV � ��	 has an asymptotic normal distribution with mean � and variance

D��
LS

P
k�ZZ cov�V�� Vk	� where Vk  fH��Xk� ��	 �M����Xk	g �k � G�Xk� ��	�

Under our model assumption that mj  �j��m� an improved estimate bm�
� of m� can be con�

structed by using the estimates bm�� � � � � bmJ and an estimate b� of �� This can be done for example

by putting

bm�
��x	 

JX
j��

bcj b��	j��
 bmj�x	�
JX
j��

bcj � ���	

where bcj are some data adaptive choices of weights� The next theorem gives the asymptotic distri�

bution bm�
��x	�

THEOREM � Suppose �B� and assume that bmj are estimates with

bmj�x	  mj�x	 � ����	h��j��r�x	 � n��
nX

i�J��

Kh�Xi�j � x	uj�Xi� x	�i � op�n
����	� ���	

where uj is a function with supz supjx�yj�� juj�z� y	� uj�z� xj � � for � � �� Furthermore suppose

that b� is an estimate of � with b�  � � oP �n
����	 and that for some constants cj it holds that

bcj  cj � oP �n����	� Then n���� bm�
��x	 �m�x	� has an asymptotic normal distribution with mean

����	n���h�r�x	 and variance n���h����K	f�x	
PJ

j�� c
�
j�

��	j��
s�j �x	��
PJ

j�� cj	
�� where ��K	 R

K��u	 du and s�j �x	  Ef��J��u�j �XJ � � � � � X�� x	jXJ�j��  xg� The variance is minimized by a

choice bcj with bcj  c��	j��
s��j �x	�oP �n
����� where c is some constant� In this case n���f bm�

��x	�
m�x	g has an asymptotic variance n���h����K	f�x	�

PJ
j�� �

�	j��
s��j �x	�

The asymptotic variance of n����b��	j��
 bmj�x	�m�x	� is equal to n���h����K	f�x	���	j��
s�j �x	�

see the proof of Theorem �� Clearly� the asymptotic variance of n���� bm�
��x	�m�x	� is strictly smaller

for all j for an asymptotically optimal choice of bcj � Typically� application of asymptotically opti�

mal weights requires estimation of s�j �x	� However� if the weight function w is chosen as indicator

function of an interval ��c� c� with c large enough we conjecture that for the back�tting estimate�

s�j �x	 does not depend strongly on j� This motivates in these cases the choice bcj  b��	j��
 that
leads to a nearly minimal asymptotic variance of bm�

��x	 for all x�

��



It can be shown that the asymptotic result of Theorem � applies under the conditions of Theo�

rems � and � for the choices b�  b�EIV and b�  b�LS � In particular� this includes estimation of the

additive components by the integration estimate or the back�tting estimate�

� DISCUSSION

The key feature of our model ��	 and ���	 is that of an additive model with parametrically linked

components� We have illustrated the use of the model in a �nancial time series context� and

obtained asymptotic results for autoregression as well as for the usual independent error structure

typical in additive models�

The methods are relatively simple� One �rst uses standard additive model techniques to obtain

estimates of the components� and then estimates the linking parameter �� by combining the com�

ponents� It is surprising and pleasing that standard additive model techniques can be used for the

�rst stage without the need for undersmoothing which often occurs in semiparametric modeling�

We have illustrated the use of two such combinations of the component estimates� one an intu�

itive least squares approach �section ���	� and one motivated by errors�in�variables considerations

�section ���	� At least in principle one would conjecture that the basic idea of estimating �� should

generalize to such things as generalized linear models� Obtaining asymptotic distributions for such

generalizations is likely to be challenging�

An interesting generalization of the model ���	 would be to allow for the addition of other

parametrically linked terms of the form TZt based on covariates Zt� In the context of the exam�

ple� these covariates might include information about previous market behavior� e�g�� yesterday#s

volatility� Again� while the ideas may seem straightforward� actually obtaining asymptotic results

may well prove to be di�cult�
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� APPENDIX

��� Assumptions

Condition A

	i
 �X��� � � � � X�J � Y�	� � � � � �Xn�� � � � � XnJ � Yn	 is an i�i�d� sequence with E�YijXi�� � � � � XiJ	  � �

m��Xi�	 � � � � � �J��mJ�Xi�	� For identi�ability� it is assumed that E�m��Xij		  � for

j  �� � � � � J �

	ii
 The weight functions wj have a continuous derivative and a bounded support Bj � j  �� � � � � J �

	iii
 The expansion ��	 holds uniformly for x � Bj � j  �� � � � � J with bounded functions r� uj � vj

and tj � The function uj�z� x	 has third partial derivative ��

	�x
�uj with respect to x� that are

uniformly bounded supx�z j ��

	�x
�uj�z� x	j �	�

��



	iv
 The density p of �X�� � � � � XJ	 is two times continuously di�erentiable and on B� 
 � � �
 BJ

it is bounded away from ��

	v
 The regression function m� is four times continuously di�erentiable�

	vi
 The absolute moments Ej�ijq are �nite for all q� Here� �i  Yi � E�YijXi�� � � � � XiJ	�

	vi
 The conditional variance ���x	 is continuous�

	vii
 The kernel K is a symmetric probability density with compact support� W�l�o�g� we assume

that
R
u�K�u	 du  ��

Condition B

	i
 X�� X�� � � � is a stationary process that is geometrically strongly mixing� i�e�� ��k	 � c��
k for

some constants c� and � � � � ��

	ii
 For all q there exists a constant cq such that for all indices i�� � � � � iq the density of �Xi�� � � � � Xiq	

is bounded by cq�

	iii
 The weight function w has a continuous derivative and a bounded support B�

	iv
 The density p of �X�� X�	 is two times continuously di�erentiable and on B
B it is bounded

away from ��

	v
 The regression function m� is four times continuously di�erentiable�

	vi
 The variables �i have a �nite Laplace transform� i�e� E exp���i	 �	 for j�j small enough�

	vii
 The conditional variance ���x	  E���i jXi  x	 is continuous�

	viii
 The kernel K is a symmetric probability density with compact support� W�l�o�g� we assume

that
R
u�K�u	 du  ��

��� Sketch that ��	 and ��	 Lead to the Same Limit Distribution for b� When
J 	 


It is easily shown that for b�LS � the minimizer of �
	�

n����b�LS � ��	 
n����

Pn
i��

P�
j��m��Xij	 f bm��Xij	� �� bm��Xij	g
E
�
m�

��X�	 �m�
��X�	

	 � op��	�

��



For b�EIV � the minimizer of ��	� a Taylor series shows that n���

b�EIV � ��

�
 An�Bn �op��	�

where

Bn  n��
nX
i��

�X
j��

� bm�
��Xij	 �

���
� � ���

bm��Xij	 f bm��Xij	� �� bm��Xij	g

�

�
����

�� ���	
�
� �

� � ���

�
f bm��Xij	� �� bm��Xij	g

�
p� E

n
m�

��X�	 �m�
��X�	

o
�

and An  An� �An�� where

An�  n���
nX
i��

�X
j��

bm��Xij	 f bm��Xij	� �� bm��Xij	g

 n����
nX
i��

�X
j��

m��Xij	 f bm��Xij	� �� bm��Xij	g� op��	�

An� 
n
����� � ��	

o
n����

nX
i��

�X
j��

f bm��Xij	� �� bm��Xij	g� �

Since An�  op��	� this completes the argument�

��� Sketch of Proof of Theorem �

By a Taylor series expansion�

�  n����
nX
i��

JX
j��

JX
k��

�j � �	�j��� wj�Xik	 bm��Xik	
nbmj�Xik	� �j��� bm��Xik	

o

� n��
nX
i��

JX
j��

JX
k��

�j � �	�j � �	�j��� wj�Xik	 bm��Xik	n bmj�Xik	� �j��� bm��Xik	
o
n���


b�LS � ��
�

� n��
nX

j��

JX
j��

JX
k��

�j � �	���j��� wj�Xik	 bm�
��Xik	n

����b�LS � ��	 � op��	�

The middle term is easily seen to be op��	� The last term is easily seen to be DLSn
���


b�LS � ��
�
�

op��	� where DLS 
PJ

j��

n
�j � �	�j���

o�
EfPJ

k�� wj�Xik	m
�
��Xik	g� Finally� the �rst term has

the same behavior as if the leading bm��Xik	 were the same as m��Xik	� Making this substitution

and invoking ��	� since m
	�

j �x	  �j��� m

	�

� �x	� we �nd that the result is asymptotically equivalent

to R� �R� where

R�  n����
nX
i��

JX
j��

JX
k��

�j � �	�j��� wj�Xik	m��Xik	



nX
���

��
n
Kh�X�j �Xik	uj�Xl� Xik	� �j��� Kh�X�� �Xik	u��Xl� Xik	

o
�

�




R�  n����
nX
i��

JX
j��

JX
k��

�j � �	�j��� wj�Xik	m��Xik	



nX
���

h
��
n
vj�Xl� Xik	� �j��� v��Xl� Xik	

o
�
n
tj�Xl	� �j��� t��Xl	

oi
�

Interchanging the indices i and 	 and using the fact that K��	 is symmetric� the term R� equals

n����
nX
i��

�i

JX
j��

JX
k��

�j � �	�j��� n��
nX
���

wj�X�k	m��X�k	



n
Kh�X�k �Xij	uj�Xi� X�k	� �j��� Kh�X�k �Xi�	u��Xi� X�k	

o
�

Using standard kernel theory� assumption A �iii	 and h�n��� � � one shows that the last summation

has the limit

wj�Xij	m��Xij	fk�Xij	uj�Xi� Xij	� �j��� wj�Xi�	m��Xi�	fk�Xi�	u��Xi� Xi�	�

Similarly� R�  R�� �R��� where

R��  n����
nX
i��

�in
��

JX
j��

JX
k��

nX
���

�j � �	�j��� wj�X�k	m��X�k	
n
vj�Xi� X�k	� �j��� v��Xi� X�k	

o

� n����
nX
i��

�in
��

JX
j��

JX
k��

�j � �	�j���

n
v�j �Xi	� �j��� v���Xi	

o
and

R��  n����
nX
i��

JX
j��

JX
k��

�j � �	�j��� wj�Xik	m��Xik	
nX

���

�
n
tj�Xl	� �j��� t��Xl	

o

� n����
nX
i��

JX
j��

�j � �	�j��� s�j

n
t�j �Xi	� �j��� t���Xi	

o
�

It thus follows that

n����b�LS � ��	  D��
LSn

����
nX
i��

f�iH��Xi� ��	 �H��Xi� ��	g� op��	� ���	

This veri�es Theorem ��

��
 Sketch of Proof of Theorem �

The proof is facilitated by noting that

mj�x	� �j��Gfm��x	� � � � � mJ�x	� �g

 f
JX
j��

wj�x	�
�j��g��

JX
k��

fwk�x	�
�k��mj�x	� wk�x	�

k�j��mk�x	g

 f
JX
j��

wj�x	�
�j��g��

JX
k��

wk�x	
n
��k��mj�x	� �k�j��mk�x	

o
�

��



Hence� b�EIV is formed by minimizing

n����
nX
i��

JX
j�k��

wj�Xik	s���Xik	

�
JX
���

w��Xik	
n
����� bmj�Xik	� ���j�� bm��Xik	

o��
�

De�ne s���� x	  �����	s��� x	 and s����� x	  �������	s��� x	� Further de�ne

Qj�x� ��m�� � � � � mJ	 
JX
���

w��x	
n
�����mj�x	� ���j��m��x	

o
�

Rj�x� ��m�� � � � � mJ	 
JX
���

w��x	
n
��	� �	�����mj�x	� �	� j � �	���j��m��x	

o
�

Then b�EIV minimizes n����
Pn

i��

PJ
j�k�� wj�Xik	s���Xik	Q

�
j �Xik� �� bm�� � � � � bmj	� and hence nec�

essarily solves

�  n����
nX
i��

JX
j�k��

wj�Xik	s����Xik	Q
�
j �Xik� �� bm�� � � � � bmJ	

� �n����
nX
i��

JX
j�k��

wj�Xik	s���Xik	Qj�Xik� �� bm�� � � � � bmJ 	Rj�Xik� �� bm�� � � � � bmJ	�

This is an estimating equation� and with an admitted lack of rigor we proceed to analyze it in a

standard fashion� Indeed� n���� times its �rst derivative evaluated at ���� m�� � � � � mJ	 is

n��
nX
i��

JX
j�k��

wj�Xik	s������ Xik	Q
�
j�Xik� ��m�� � � � � mJ	

� �n��
nX
i��

JX
j�k��

wj�Xik	s����Xik	Qj�Xik� ��� m�� � � � � mJ	Rj�Xik� ��� m�� � � � � mJ	

� �n��
nX
i��

JX
j�k��

wj�Xik	s���� Xik	R
�
j �Xik� ��� m�� � � � � mJ	

� �n��
nX
i��

JX
j�k��

wj�Xik	s���� Xik	Qj�Xik� ��� m�� � � � � mJ	�����	Rj�Xik� ��� m� � � � � mJ	�

However� note that Qj�x� ��� m�� � � � � mJ	  �� so that the �rst derivative of the estimating equation

when normalized and evaluated of ���� m�� � � � � mJ	 is

�n��
nX
i��

JX
j�k��

wj�Xik	s���� Xik	R
�
j�Xik� ��� m�� � � � � mJ	

p� �
JX

j�k��

Ewj�Xk	s���� Xk	m
�
��Xk	f

JX
�

w��Xk	�
���j���	� j	g�  �DEIV �

��



It is immediately obvious that since Q�
j �x� ��� bm�� � � � � bmJ	  op�n

����	� then n����b�EIV � ��	 is

asymptotically equivalent to

D��
EIV n

����
nX
i��

JX
j�k��

wj�Xik	s���� Xik	Qj�Xik� ��� bm�� � � � � bmJ 	Rj�Xik� ��� bm�� � � � � bmJ 	�

Since Qj�x� ��� m�� � � � � mJ	  �� n����b�EIV � ��	 is asymptotically equivalent to

D��
EIV n

����
nX
i��

JX
j�k��

wj�Xik	s���� Xik	Rj�Xik� ��� m�� � � � � mJ	



JX
�

w��Xik	

�
������ f bmj�Xik	�mj�Xik	g � ���j��� f bm��Xik	�m��Xik	g


� ���	

The proof is completed by using expansion ��	 and the fact that m
	�

j �x	  �j��� m

	�

� �x	� in a

manner similar to that of Theorem �� After some algebra one arrives at

n����b�EIV � ��	  D��
LSn

����
nX
i��

f�i fH��Xi� ��	 �M�Xi� ��	g� G�Xi� ��	g� op��	� ���	

This veri�es Theorem ��

��� Proof of Theorem �

Note that bmLL�x	  eT� fn��
Pn

i��Ai�x	
i�x	
i�x	
Tg��n��Pn

i��Ai�x	Yi
i�x	� where Ai�x	  Kh��Xi���
x�	Kh��Xi�� � x�	 and where eT�  ��� �� �	� Note that E�XijXi��� Xi��	  � � m��Xi��	 �

�m��Xi��	� Put �i  Xi � � � m��Xi��	 � �m��Xi��	� m�x	  � � m��x�	 � �m��x�	 and

bri�x	  m�Xi��� Xi��	�m�x	� �Xi���x�	m�
��x�	� �Xi���x�	�m�

��x�	� We can write bmLL�x	�
m�x	  eT� fn��

Pn
i��Ai�x	
i�x	
i�x	Tg��n��

Pn
i��Ai�x	f�i � bri�x	g
i�x	�

Now note that

n��
nX
i��

Ai�x	
i�x	
i�x	
T  p�x	

�B� � � �
� � �
� � �

�CA � h�p
	���
�x	

�B� � � �
� � �
� � �

�CA
�h�p

	���
�x	

�B� � � �
� � �
� � �

�CA� OP �h
�
� � h�� �

lognp
nh�h�

	

 p�x	I � h�p
	���
�x	I� � h�p

	���
�x	I�

�OP �h
�
� � h�� �

lognp
nh�h�

	� ���	

Here p	���
 and p	���
 denote the partial derivative of p with respect to x� or x�� respectively� The

expansion in ���	 holds uniformly for x � B 
 B� For a proof of ���	 one proceeds as in Bosq

��



�����	 where uniform rates are shown for kernel density estimates of strongly mixing observations

by using exponential inequalities for mixing sequences� see Theorem ��� in Bosq �����	�

Equation ���	 shows

�n��
nX
i��

Ai�x	
i�x	
i�x	
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n
I � h�p

	���
�x	p�x	��I� � h�p
	���
�x	p�x	��I�

�OP �h
�
� � h�� �

lognp
nh�h�

	

�
� ���	

Similarly as ���	 one shows uniformly for x � B 
 B

n��
nX
i��

Ai�x	�i
i�x	  OP �
log np
nh�h�

	 ��
	

and

n��
nX
i��

Ai�x	bri�x	
i�x	  OP �h
�
� � h��	� ���	

Equations ���	 � ���	 give uniformly for x � B 
 B�

bmLL�x	�m�x	  eT� p�x	
��
n
I � h�p

	���
�x	p�x	��I� � h�p
	���
�x	p�x	��I�

�OP �h
�
� � h�� �

lognp
nh�h�

	

�
n��

nX
i��

Ai�x	��i � bri�x	�
i�x	 � oP �n
����	� ���	

We use now that uniformly in x � B 
B�

n��
nX
i��

Ai�x	bri�x	
i�x	  ����	h��m
��
��x�	e� � ����	h���m

��
��x�	e� � oP �n

����	� ���	

For a proof of ���	 one uses the fact that m� is four times continuously di�erentiable and for the

treatment of the resulting sum of strongly mixing summands one proceeds as in the proof of ���	�

We treat now the estimate emI
��x�	  n��

Pn
i��w�Xi��	 bmLL�x�Xi��	��n��

Pn
i��w�Xi��	��

Note now that for all q with �� � � arbitrarily small and �� � � arbitrarily large�

sup
x��B

E

��h�n�� nX
j��

w�Xj��	
p	���
�x�� Xj��	

p�x�� Xj��	�
n��

nX
i��

Ai�x�� Xj��	�
�
i

���q

 O�h�q� �nh�	
�qn	�q	� ���	

where ��i  �i��j�ij � �� logn�� Ef�i��j�ij � �� logn�g� Claim ���	 can be shown by application of

Davydov#s inequality� see Corollary ��� in Bosq �����	� For this purpose one writes the left hand

side of ���	 as
P

j��


�j�q

P
i��

�i�q

h�q� n
��qEZi��j� � � � � � Zi�q �j�q � where Zi�j  w�Xj��	p	���
�x�� Xj��	

��



Ai�x�� Xj��	 �
�
i �p�x�� Xj��	

�� Davydov#s inequality and our mixing conditions imply that for arbi�

trarily large C there exist constants C� and C�� such that

��EZi��j� � � � � � Zi�q�j�q

�� � C��n�C � ���	

for all indices i�� ��� j�q such that there exists an � � l � �q with jil� ikj � C � logn for all k  l and

jil � jk j � C� logn for all k� For the proof of ���	 one makes use of B �ii	 ��iv	 and of the fact that

j��i j � ��� logn� Claim ���	 follows by a bound on the remaining terms�

With the help of ���	 and using the fact that� for c large enough������� �

�x�
h�n

��
nX

j��

w�Xj��	
p	���
�x�� Xj��	

p�x�� Xj��	�
n��

nX
i��

Ai�x�� Xj��	�
�
i

������ � nc ���	

we get that uniformly for x� � B

h�n
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nX
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w�Xj��	
p	���
�x�� Xj��	

p�x�� Xj��	�
n��

nX
i��

Ai�x�� Xj��	�
�
i  oP �n

����	� ���	

For a proof that ���	 holds uniformly for x� � B one shows �rst that it holds uniformly for x� � Bn

where Bn is a subset of B with nc
�

equidistant points and where c� is an arbitrary positive constant�

Then the claim follows from ���	 if c� has been chosen large enough�

Note now that for all C ��� there exists �� such that max��i�n j�ij � �� logn �with probability

tending to �� and jEf�i��j�ij � �� logn�gj � n�C
���

� Remember that �i has a �nite Laplace transform�

see B �vi	� Therefore ���	 with �� large enough implies

h�n
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nX
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p	���
�x�� Xj��	

p�x�� Xj��	�
n��

nX
i��

Ai�x�� Xj��	�i  oP �n
����	� ���	

Again� this expansion holds uniformly for x� � B�

With ���	 and with similar expansions for other terms we arrive at�
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��x�	 � ����	h���
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��Ai�x�� Xj��	�i � oP �n
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This expansion holds uniformly for x� � B� Using again Davydov#s inequality one shows that
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As above this shows that uniformly for x� � B
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�
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p�x�� Xj��	�
� w�Xi��	
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This gives uniformly for x� � B

emI
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Z
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The expansion for bmI
� stated in the Theorem follows by some straight forward calculations� For

the treatment of bmI
� one proceeds similarly�

��� Sketch of Proof of Theorem 


Along the lines of the proof of Theorem � one veri�es that the stochastic expansion ���	 remains

valid for autoregression� For doing this one proceeds as in the proof of Theorem �� Again� the

main tools are exponential inequalities and Davydov#s inequality for mixing sequences� Asymp�

totic normality of n����b�LS � ��	 follows by application of a central limit theorem for strongly

mixing sequences� see e�g� Theorem ��
 in Bosq�����	� We have to verify that for some � � �

E j�iH��Xi� ��	 �H��Xi� ��	j	 �	� This follows easily from B �vi	 and from the assumption that

the functions wj � m�� vj� fj � uj � tj are bounded for j  �� � � � � J �

��� Sketch of Proof of Theorem �

One shows �rst that the stochastic expansion ���	 remains valid for autoregression and then one

proceeds as in the last proof�

��� Sketch of Proof of Theorem �

Proceeding as in the proof of central limit theorems for kernel estimates of strongly mixing se�

quences �see e�g� Theorems ��� and ��� in Bosq �����	� and using the stochastic expansion

���	� one shows that the vector n���� bm��x	 � m��x	� � � � � bmJ �x	 � �J��m��x		
T has a normal

limit with mean ����	n���h�r�x	��� � � � � �J��	T and covariance matrix equal to a diagonal ma�

trix with diagonal elements n���h����K	f�x	 s�j �x	� Note that bmj�x	 and bmk�x	 are asymp�

totically independent for j  k� The �rst statement of Theorem � follows from the fact that

bm�
��x	�

PJ
j�� cj�

�	j��
 bmj�x	�
PJ

j�� cj  oP �n
����	� For the second statement of Theorem � note

that
PJ

j�� c
�
j�

��	j��
s�j �x	�
PJ

j�� c
�
j is minimized by cj  ��	j��
s��j �x	�

��



0 5 10
t

-5
0

5

sta
nd

ard
ise

d r
etu

rns

Figure �� Log returns for the rates Deutsche Mark against US Dollar �DEM!USD	� during the time
Oct � ���� and February �� ���� �scaled by their empirical standard deviation	�
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Figure �� Kernel density estimate of the data from Figure � with bandwidth h  ����
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Figure �� Back�tting estimates of the additive components gj in the model Y �
t 

PJ
j�� gj�Yt�j	 �

�t� j  � �dashed line	� � �small dots	� � �large dots	� � �black	� � �thick black	� Data as in Figure
��
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Figure �� Plots of the estimates bm�
j 

b�j�� bm�
�� see ���	� j  � �dashed line	� � �small dots	� � �large

dots	� � �black	� � �thick black	� �Estimation of the nonparametric components by back�tting and
of � by the method from errors�in�variables�	
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Figure �� Plots of the estimates bm�
j 

b�j�� bm�
�� see ���	� j  � �dashed line	� � �small dots	� � �large

dots	� � �black	� � �thick black	� �Estimation of the nonparametric components by back�tting and
of � by the least squares method�	
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Figure �� Integration estimates of the additive components gj in the model Y �
t 

PJ
j�� gj�Yt�j	 �

�t� j  � �dashed line	� � �small dots	� � �large dots	� � �black	� � �thick black	� Data as in Figure
��
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Figure 
� Plots of the estimates bm�
j 

b�j�� bm�
�� see ���	� j  � �dashed line	� � �small dots	� � �large

dots	� � �black	� � �thick black	� �Estimation of the nonparametric components by the integration
estimate and of � by the method from errors�in�variables�	
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Figure �� Plots of the estimates bm�
j 

b�j�� bm�
�� see ���	� j  � �dashed line	� � �small dots	� � �large

dots	� � �black	� � �thick black	� �Estimation of the nonparametric components by the integration
estimate and of � by the least squares method�	
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Figure �� Back�tting estimates of bm�
� for di�erent number of lags� Orienting at the right upper

corner� the highest to lowest values are associated with J  �� ��� ��� ��� respectively�


