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1 INTRODUCTION

Additive nonparametric regression models have found wide use in statistics (Hastie and Tibshirani,
1990), and remain an area of vigorous research (Opsomer and Ruppert,1997; Opsomer, 1998; Linton,
Mammen and Nielsen, 1997; Linton, 1997; Fan, Hardle and Mammen, 1998). This paper explores
a variant of the problem in which the components of the additive model are linked parametrically.

Let Y be a scalar response and X = (Xq,.. .,XJ)T a vector of regressors. In the ordinary

additive model,

J
EY[X) IE(Y)+Z:mj(Xj)7 (1)

where for identifiability the component functions satisfy £E{m;(X;)} = 0.

Hafner (1998) describes a problem in finance where the component functions mq(-),...,ms(-)
are linked by a parameter, see Section 4 for more details. Specifically, for a scaler parameter 3,
and for j > 2,

m; () = 55 m (). (2)
Our purpose here is to estimate both the parameter 3y and the base function m;(z). Among the
many possibilities, one stands out as relatively straightforward, namely to estimate the component
functions in the general model (1) and somehow “shrink” them to the model (2). One method we
pursue, which is based on considerations from the field of errors in variables, is computationally
straightforward, with the estimate of fy having an easily estimated standard error. In addition,
the estimator has the pleasing property that the fit to model (1) can be done in a standard fashion,
without the need for any undersmoothing to insure that the estimate of 8y converges at standard
parametric rates. The analysis of this method leads to a second method which is equally simple to
compute.

The paper is organized as follows. In Section 2, we define the methods used. Section 3 states the
asymptotic properties when the additive component functions of (1) are estimated by a nonpara-
metric smoother that allows a stochastic expansion of order op(n='/2). Section 4 provides details
of the motivating example from a nonparametric GARCH model. This model can be approximated
by nonparametric additive autoregression model. Section 5 extends our results from regression to
autoregression. In particular, it discusses the set up of the approximating model for our motivating
example in Section 4. We discuss conditions under which estimates of the additive component allow

a stochastic expansion of order op(n~'/2). This is done for the integration estimates (see Linton



and Nielsen,1994; Tjgstheim and Auestad, 1994). Furthermore, the asymptotic theory of Section

3 is extended to autoregression. All proofs are in the appendix.

2 THE METHODS

The data are (Y7, X1), ..., (Y,, X,), where X; = (X;1, ..., X;s)T. We describe here the two methods
used in this paper. Our methods relies on estimates {74 (-), ..., m(-)} from the model (1), specific

examples of which are discussed later in this article.
2.1 A Method from Errors—in—Variables

The first method has a natural interpretation as a functional errors-in-variables method (Fuller,
1987). To explain this, first fix . Then ignoring bias and other technical details, it is generally the
case that for some constants ¢, — 0 and functions w;(z), the functions {ﬁzj(x)}}]:l form a set of
nearly independent, nearly normal random variables: m;(z) ~ Normal{ 3 my (z), cn/w;(z)}. 1f
one only had this single fixed z, then the unknowns are 8y and my(z), and they could be estimated

by minimizing in § and mq(z)

J 2
Z:wy {m] — 37 (w )} . (3)

This is an errors-in-variables model because we have the multivariate “response” {mq(z),...,ms(z)}
with means {8omy (), ..., 5 ‘my(x)}, but instead of observing m; () we only have the error-prone

“predictor” my(z). Equation (3) thus proposes estimating [y and m;(z) by an asymptotic form of
maximum likelihood. This is exactly the classical functional errors-in-variables estimate.

Continuing with fixed z, for a given § the minimizer of (3) is G{m(z), ..., ms(x), 5}, where

J
Gma (), -.oomy(2), 5 = 37 wj(w)m;(2) 5 I/ij )32,

Note that G{my(z),...,mj(z), Bo} = mi(z) since m;(z) = 817y (2).

Hence, if we worked only with a fixed z, 3y would be estimated to minimize

d 2
2 (2) [y (2) =BG i (2), ... g (2), Y] (4)

Summing (4) over all the data suggests that we estimate § by minimizing

n J
SO0 Y wi (X [y (Xaa) = 871G i (Xa), - g (Xie), Y] (5)

=1 k=1 ;=1



2.2 A Method Based on Least Squares

A special case is illuminating and suggests a second method. Suppose that J = 2 and that the
1.

variances of m(z) and mz(x) are asymptotically the same, so that we can set wy(-) = wy(-)

Then (5) reduces to minimizing in 3
n 2
(L4597 30D {ma(Xiy) — B (X)) (6)

The leading term (1+3%)~! in (6) plays an important role in the usual errors-in-variables problem,
but here we have a different situation, because the “errors—in—the—variables” are small asymptot-
ically due to the fact that the “error-prone predictor mq(z)” has error which is asymptotically
small. This suggests that one might find a reasonable estimate if one simply removes this leading

term and minimize instead
n

DD Ama(Xiy) = B (Xij) (7)

=1 7=1

While there are numerical differences between our method (7) and the least squares method (6)
(generally, the latter is larger for estimating fg), asymptotically the two lead to the same distribu-
tion for ﬁ, see Section 7.2 for a sketch.

The method (7) can be obtained alternatively by replacing G/(+) in (5) by m4(+). Thus the least

squares method minimizes

n

d 2
ZZZMJ ik) {m] 2]) ﬁ] i m( zk)} . (8)

=1 j=1k=1
For J > 3, (8) leads to an estimator which is asymptotically different from the solution to (5). We

explore the differences numerically in Section 4.
2.3 Alternatives

There are a host of possible alternative methods.

As we have described in section 2.1, the component functions can be looked at as if they came
from a (nonlinear) errors-in—variables model. There is a huge literature on the topic of errors-in—
variables, and at least in principle one can develop many alternatives to the two methods we have
described, either based on small error considerations (Amemiya and Fuller, 1988; Carroll, Ruppert
and Stefanski, 1995) or on simulation (Cook and Stefanski, 1995).

Alternatively, the method (8) can be looked upon as regressing m;(-) for j > 2 on my(-). This

could be expanded to doing all possible regressions of m;(-) on my(-) for j > k.



We have not explored these alternatives, although our methods of argument can in principle be

used to obtain limit distributions for them.

3 ASYMPTOTIC THEORY FOR REGRESSION DATA

It is possible to obtain the asymptotic distribution of the estimates of 5 for different estimates of
the component functions m;(z). We assume that the estimates fulfill the stochastic expansion (9),
given below. In Section 5 we will show that this expansion holds for the integration estimate.

Let K(-) be a symmetric density function chosen without loss of generality to have variance
equal to one. Define e = Y — E(Y) — E}Izl m;(X;) and let f;(z) be the marginal density of the
{X;;};. Let X; be the vector (X;,...,X;5). Let b — 0 be the bandwidth, which is supposed

to have the usual rate h ~ n=1/5

. One of the important features of our theoretical work is that
we show that bandwidths of the usual rate can be used to estimate 3, and no undersmoothing is
necessary.

We suppose that the estimators have the asymptotic expansion

imj(x) = my(x) + (1/2)R75 " r 1ZKh w)uj(Xi; 2)e;

n

+n7 Y (X 2)e 4+ n” IZt i)+ op,(n~Y?), 9)

1=1 1=1
where 7, u;, v; and ¢; are some functions, K,(v) = h"'K(v/h) and X; = (X;1, ..., X;p) 7. Further-
more, it is supposed that E{t;(X;)} = 0.

We first consider the least squares estimator 75 minimizing (8). Make the definitions
J .
* =1 %
HiX,Bo) = D= DA { [0 (X) = B i (X)]

J
+ > Ty (X ) ma (X5) fie(X5)ui (X, X5)
= B g (X m (X0) fe( X (X, X0)] |

J
Ho(X, ) = DG -8 s [ - 5x0]):

Ds = Y3 {6 -0} B{u;(X0mi(X};
j=1k=1
J
Vi) = E[ w]«<xk>m1<xk>vj<x,xk>];
k=1



o*(X)

J
F [Z wj(Xk)ml(Xk)] :

THEOREM 1 Let h ~ n~Y/>. Then under conditions (A) listed in the appendiz, nl/Q(BLS — Do)

is asymptotically normally distribution with mean zero and variance

Sis = B [{o?(X)HH(X, fo) + H3(X. o) | /Dis| -

Now we turn to the errors-in-variables estimator BEI% which minimizes (5). Make the following

definitions.

Ri(xz,B,mq,...,myj)

M(x, )

Tl(j7k7£7ﬁ7x)
T2(j7k7£7ﬁ7x)
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32, (x, X3} 5
B2 2w (@) we()s(8, ) Ry()) fi (@) (x, 25);
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K
K {Z w;(Xp)s(5, Xk)Rj(Xk)W(Xk)} ;
k=1

J

> DyelB) {8472 5(X) - B 2(X) §
7.0=1
J
Z {Tl(j7k7£7ﬁvx) - T2(j7k7£7ﬁvx)}'
7,k =1

THEOREM 2 With h ~ n~/%, under the same reqularity conditions as Theorem 1, nl/z(BEIV —

Bo) is asymptotically normally distributed with mean zero and variance

Serv = E [0%(X) {Ha(X, fo) + M(X, 50)}? + G*(X, o) | / D1y

While the additive functions are naturally linked in our model through (2), it is conceivable to

have other functions, e.g., m;(z) = F;{mi(z), Bo}. Our methods can be used to analyze such models



should they arise. For example, the analogue of the least squares criterion (8) would minimize

n J
SN w (Xaw) [y (Xaw) — Fy{m (Xar), B2
k=

i=1j,k=1
Our methods can be used to analyze this estimator, but there is one catch. Unless F;{mq(z), 5} =
e;(B)m () for some function e;(3), the bandwidth condition A ~ n='/% no longer suffices because
the bias in the nonparametric regressions has a role. In our example the first order bias terms
in m;(Xi) — Fi{mi(X;), B} cancel whereas for general F; they do not. Cancelation of the bias
terms can be forced by replacing F; by an appropriately (data adaptively) chosen function ﬁj =
Fj + Op(h*). Otherwise, without replacing Fj, we could require undersmoothing, so that A =
o(n_1/4). In fact, what basically happens in this case is that there exists 85 = 8y + O(h?) such
that nl/z(ﬁ — ;) has a limit distribution similar to that described in described by Theorem 1. By

imposing the condition h = o(n~/4) we can replace B by Bo.

4 NONPARAMETRIC MODELS FOR FINANCIAL TIME SE-
RIES

The recent development of nonlinear time series analysis is primarily due to the efforts to overcome
the limitations of linear models such as autoregressive moving-average (ARMA) models of Box and
Jenkins (1976) in real applications. It has long been recognized that financial time series models that
incorporate clusters of volatilities are more appropriate than ARMA specifications. We consider
here as a motivating example an application of nonlinear time series analysis to foreign exchange
high frequency data.

For these data the autoregressive heteroscedastic models (ARCH) by Engle (1982) have been
extensively studied. An ARCH model for time series {Y;} with ARCH error term of order ¢ is
defined through Y; = 0:&;, where & are independent mean zero and variance one random variables
and 02 = w+ 1Y%, —|—042Y,52_2...—|—04qY752_q7 with w > 0,0, > 0,0=1,...,q.

In foreign exchange data it has been found that the order ¢ has to be selected quite high to
fit the model well, see Bollerslev (1986). The reason are volatility clusters, i.e. the conditional
variances are highly correlated. An ARMA like model for the squared observations was therefore
proposed for ¢ in Bollerslev (1986):

q P
ol =w+y aYi 4> ol (10)

=1 7=1



Models of this type are called GARCH (p, ¢) models. For a general discussion of GARCH models
see also Bollerslev, Engle and Nelson (1994). Although this model class showed better fitting
properties it was soon criticized that the dependence of past observations is treated in a symmetric
way: Positive and negative shocks of ¥;_y,...,Y;_, have the same influence on the volatility of the
current period. The forced symmetry of past shocks was one of the primary motivations for non-
and semiparametric extensions of ARCH models. Based on the QTARCH model of Gourieroux
and Monfort (1992), Hérdle and Tsybakov (1997) considered the CHARN model Y; = m(Y;—1) +
o (Yi—1)&;, which was applied to DEM /USD exchange rates by Bossaerts, Hardle and Hafner (1996)
and extended to the multivariate case by Héardle, Tsybakov and Yang (1998). In their analysis
volatility clusters and a strong asymmetry of the news impact function o(Y;_1) became apparent

and motivated research on the following semiparametric extension of (10),

Yi = 04 (11)

0 = (Vi) + fob . (12)

The model we consider in this paper is motivated by (11) and (12). By inverting equation (11)
and (12), we can write o7 = >%2, #/71g(Y;—;). An approximations of this model with a finite
number J of lags reads

J
V2= (Yis)) + e, (13)

=1
with ¢, = Y2 — o2.

We now illustrate the application of model (13) to foreign exchange rates. The behavior of for-
eign exchange (FX) rates has been subject of many recent investigations. A correct understanding
of the foreign exchange rate dynamics has important implications for international asset pricing
theories, the pricing of contingent claims and policy—oriented questions.

The foreign exchange market is by far the largest financial market. According to the Wall Street
Journal of March 1 1990, the average daily FX trading volume is about $650 billion. Compared to
this, the NYSE’s (NewYork Stock Exchange) largest volume day, October 19, 1987, only saw $21
billion of volume. The market is decentralized with the main trading locations being the Far East
(mainly Tokyo, Singapore and Hong Kong), Europe (London and Frankfurt) and North America
(New York). It is an electronic market, active 24 hours a day. Banks act as market makers and

place bid— and ask—quotes on the screen. Central information collectors such as Reuters provide the



quotes for the market makers. Actual trade takes place over the phone. This is the reason why there
is no information about actual prices and trading volume. By far the largest part of trading occurs
in US Dollars, which assumes the role of a numéraire for the minor rates. Although there is some
important central bank intervention money, by far the largest part of the X market is speculation
by the market makers. High frequency financial data analysis has become a broad research field
during the last decade. This is due to improved real-time information systems, relatively cheap data
supply by banks and research institutions and improved storing facilities. The data set HFDF93 on
which the following analysis is based was acquired from Olsen and Associates, Ziirich. It contains
bid and ask quotes for the rates Deutsche Mark against US Dollar (DEM/USD), during the time
Oct 1 1992 and February 16 1993. For each pair of bid— and ask-quotes, the time in GMT, the
quoting bank and the location of the bank are recorded. The quotes are collected from the Reuters
FXFX page, which is considered to be a broad but not ‘complete’ data supply. For more information
about this data set, see Dacorogna, Miiller, Nagler, Olsen and Pictet (1993) and, more generally for
information about FX rate data suppliers and intra-daily FX data, Goodhart and Figliuoli (1991).
Figure 1 shows a plot of the DEM/USD returns. Our data set contains 10000 data values. A kernel
density estimate of the returns is shown in Figure 2.

For the data set we calculated backfitting and integration estimates, see the next section for a
description of these estimates. As discussed in the last section, in a first step estimation was done in
an additive model (without assumed links on the components g;) given by Y;? = E}Izl 9;(Yi—;) €.
In this model we choosed J = 5 lags. Figures 3 and 6 show the resulting backfitting and integration
estimates of the additive components. The integration estimate was calculated by fitting the full
dimensional estimate on a grid of 26° points. This was done to save computation time. For all kernel
estimates we choose the empirical standard deviation as bandwidth. We fit the nonparametric
GARCH model (13). For the estimation of § we used our method from errors-in-variables (see
Section 2.1) and our least squares method (see Section 2.2). The resulting estimates were 0.793 and
0.736 (for the backfitting estimate) and 0.892 and 0.779 (for the integration estimate), respectively.
There are some differences between these estimates, largely along the lines of what one would expect
from Figures 3 and 6. One would expect from these figures that the least squares estimate of g
would be smaller than the errors—in—variables estimate, since the latter compares 7 = 2,3,4,5to a
weighted average of 7 = 1, ..., 5, which is closer to the results for j = 2, 3,4, 5 than to the result for

j=1.



The estimates mq,...,my and B can be used to construct an estimate of my that takes into

account that the additive components are linked. This can be done by using the averaged estimate
J . J

mi(2) =67V i () / Y e, (14)
i=1 i=1

where ¢; = 3201 see also (20) and the discussion following Theorem 7 in the next section. Here
B denotes our estimate based on the method from errors-in-variables or the least squares method,
respectively. Figures 4, 5, 7 and 8 show plots of the estimates mj and m} = Bj_lﬁzf. The plots
differ slightly for the different methods. This must be explained by the fact that model (13) only
approximates the underlying model. In particular use of the method from errors-in-variables leads
to more asymmetric news impact functions.

Figure 9 shows how the nonparametric estimates depend on the chosen number J of lags. It
compares the backfitting estimates of m7 for different number of Lags (J = 5,10, 20,30). In these
calculations, § was estimated by the method from errors-in-variables. The estimated values are
0.789 (J = 5), 0.799 (J = 10), 0.809 (J = 20), and 0.788 (J = 30). The nonparametric estimates
(besides small differences of the estimate for J = 5) are nearly indistinguishable. So, we conclude
that in this data example model (13) approximates the nonparametric GARCH model (11) and
(12) reasonably well.

Of course, this analysis should be taken as illustrative, since it focuses on short—term dependen-
cies. For modeling of long range dependencies like daily or weekly dependence, more complicated
models may be needed.

The next section discusses asymptotics of these estimates in an autoregression model.

5 ASYMPTOTICS FOR AUTOREGRESSION

In this section we show that for the integration estimate the expansion (9) holds. The integration
estimate has been introduced in Tjgstheim and Auestad (1994) and Linton and Nielsen (1995) for
the estimation of additive nonparametric components m;(+) in an additive model. We will do this
for the time series set up of Section 4. We suppose that a stationary time series Xg,..., X, is
observed. We suppose that F(X 11| X,..., X1) = a+m (X)) + mi(Xy_1) +...87 7 my (Xy),

where for a weight function w the function my satisfies £ w(X;)mq(X;) = 0. For this setup the



expansion (9) is given by

mi(x) = mi(z)+ (1/2)R°6'r Z Kp(Xij — 2)ui(X;, )6
i=J+1
+n~t Zn: vj(Xi,w)ei—l—n_l Zn: tj(Xi)+0p(n_1/2). (15)
i=J+1 i=J+1

where X is the vector (X;_1,..., X;—j).

In this section we study the validity of (15) for the integration estimate (see Theorem 3). For
simplicity of notation, we will do this only for the case J = 2. Then, we will consider errors-in-
variables and least squares estimation of § using arbitrary estimates of m; that fulfill (15). We
will show that for these estimates of 3 analogous asymptotic results apply as in the regression set
up (compare Theorems 1 and 2 with Theorems 3 and 4). An improved estimate of m; can be
constructed by use of the estimates of 3, my, ..., my. Asymptotics for this estimate is described in
Theorem 6.

We come now to the check of (15) for the integration estimate. In a first step this estimate uses
a full dimensional local linear fit myr of the data. The preliminary estimate myy, is defined as 6q

where the vector 6 = (6, 0;,02)7 is defined by

S K, (Xt = 1) Ky (Yoo — )Y — 07 (@)]€4(2) = 0. (16)

Here &;(2) denotes the vector (1, Xi_gl_xl ) Xi_ﬁ;” ). The integration estimate 7} of m; is defined

(o) = i) = 07 S0 w (XA D (X (17)

Here, w is a weight function. The estimate 7] is achieved by summing out an argument of the full

dimensional estimate iy,

n n

e -t Zw dmpr (e, X;)/nt Zw(XZ) (18)

i=1 i=1
For simplicity, here the same weight function has been used as in (17). The estimate ) is achieved
by summing out the other argument of the full dimensional estimate mpy. Our first result shows
that mi and m! satisfy (15).
THEOREM 3 Suppose J = 2. Under the regularity conditions (B) listed in the appendiz, and if
the bandwidths fulfill that hy = ha, b3 = o(n='/?) and (logn)?[\/n hihy]™' — 0, the estimate @}

10



has a stochastic expansion (15) with h = hy = hy and

rw) = mie) - [wmlff e,
w (X, 2) = w(Xi—z)f(Xi—z)P($7Xz’—z)_17
0(Xio) = —w(Ximw(Xia) F(Ximt) (X 2)p(Xiot, Xoa) [ [ w017,
(X)) = [o(Xm (X)) [ wi ™
Here, X; denotes the vector (Xi_l,Xi_g)T. Furthermore, f denotes the density of X; and p is the

density of (X;_1,X;). For mi the expansion (15) holds with the same r(z), the same vy(X;, z) =
v1(Xy, 2) and with t2(X;) = ft1(X;) and with

up(Xiy w) = w(Xi1) f(Xima)p(Xioy, @)~

In both cases, the expansion (15) holds uniformly for x € B. The set B was introduced in assumption

We conjecture that an expansion of the form (15) holds (uniformly) for the backfitting esti-

mate. In Linton, Mammen and Nielsen (1997), for a version of the backfitting estimate ﬁzfACK, a
stochastic expansion has been given. Applied to our set up this expansion is
~ BACK _ . 2a5—1 -1 - - . . . .
m; (z) = my(z)+ (1/2)R°F " r(z)+n Z Kn(Xio; — 2)u; (X, 2)¢
i=J+1
0, (n~ 2 10g n), (19)

where r(z) is as for m!, see Theorem 3 and where u;(X;,2) = w(X;_3)[f(z)w*(x)]™*. The
Op(n_l/Qlog n) term in (19) can be explicitly given by an infinite series, see Linton, Mammen and
Nielsen (1997). However, it seems to be complicated to show that this term is of order O, (n='/?)
and that it has the form of the terms in (15). For another recent asymptotic treatment of (another
version of)) the backfitting estimate, see Opsomer (1998) and Opsomer and Ruppert (1997).

We suppose now that we have estimates of m; that fulfill the expansion (15). These estimates
can be used to construct an estimate of 3. Asymptotics for this estimate is given in the next two

theorems. The first theorem describes least squares estimation of 3, see Section 2.2.

THEOREM 4 Suppose that the regularity conditions (B) hold, and for some estimates m; assume

that they fulfill (15) uniformly for x € B, where r, u;, v; and t; are bounded functions with

E t;(X;) =0 and sup,. , |%u]‘(2’, )| < co. Then the estimate n*/?(Brs — Bo) has an asymptotic

11



normal distribution with mean 0 and variance ng Yorez cov(Uo, Uy) where Uy = H1 (X, Bo)er +
7{2 (Xk7 ﬁO) .
The next theorem gives the asymptotic distribution of the errors-in-variables estimate of 3, see

Section 2.1.

THEOREM 5 Suppose that the assumptions of Theorem 4 hold for some estimates m;.Then
the estimate nl/z(BEIV — Bo) has an asymptotic normal distribution with mean 0 and variance
ng Yokez cov(Vo, Vi), where Vi, = {Ha(Xy, Bo) + M(Bo, Xi) } ex + G( Xk, fo).

Under our model assumption that m; = 3~'m;y an improved estimate m} of m; can be con-
structed by using the estimates mq,...,ms and an estimate B of 4. This can be done for example

by putting
J o J
i) =380 ()Y e, (20)
7=1 7=1

where ¢; are some data adaptive choices of weights. The next theorem gives the asymptotic distri-

bution mj(z).

THEOREM 6 Suppose (B) and assume that m; are estimates with

mj(a) = m;() + (1/2)R*6 " r(2) + 7" Zn: Kn(Xizj — 2)uj(Xi,2)ei + 0, (n7/%),  (21)

1=J41

where w; is a function with sup, sup,_y <5 [uj(2,y) — uj(z, 2] = 0 for § = 0. Furthermore suppose
that B is an estimate of 3 with B =0+ 0p(n_2/5) and that for some constants c; it holds that
¢; = ¢; +op(n~2/%). Then n*/°[i(z) — m(z)] has an asymptotic normal distribution with mean
(1/2)n?/°h?r(z) and variance n*/®h='v(K)f(z) E}Izl c _Q(j_l)s?(x)/(ijl c;)?, where v(K) =
JEK?(u) du and s¥(z) = E{e3, w3 (X, ..., X1, 2)|[Xj_j11 = «}. The variance is minimized by a
choice ¢; with ¢; = cﬁz(j_l)s]fQ(x) +op(n~2/5, where ¢ is some constant. In this case n*/>{m}(zx) —
m(z)} has an asymptotic variance n1/5h_1l/(K)f(ac)/Z}IZI ﬁz(j_l)s]fz(x).

The asymptotic variance of n2/5[3_(j_1)ﬁ1j(x)—m($)] is equal to n1/5h_1V(I(')f(x)ﬁ_z(j_l)s?(96),
see the proof of Theorem 6. Clearly, the asymptotic variance of n2/5[m’(x) —m(z)] is strictly smaller
for all j for an asymptotically optimal choice of ¢;. Typically, application of asymptotically opti-
mal weights requires estimation of s?(ac) However, if the weight function w is chosen as indicator
function of an interval [—e¢, ¢] with ¢ large enough we conjecture that for the backfitting estimate,

2

sj(ac) does not depend strongly on j. This motivates in these cases the choice ¢; = BQU_I) that

leads to a nearly minimal asymptotic variance of mj(z) for all z.
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It can be shown that the asymptotic result of Theorem 6 applies under the conditions of Theo-
rems 4 and 5 for the choices B = BEIV and B = BLS- In particular, this includes estimation of the

additive components by the integration estimate or the backfitting estimate.

6 DISCUSSION

The key feature of our model (2) and (13) is that of an additive model with parametrically linked
components. We have illustrated the use of the model in a financial time series context, and
obtained asymptotic results for autoregression as well as for the usual independent error structure
typical in additive models.

The methods are relatively simple. One first uses standard additive model techniques to obtain
estimates of the components, and then estimates the linking parameter 3y by combining the com-
ponents. It is surprising and pleasing that standard additive model techniques can be used for the
first stage without the need for undersmoothing which often occurs in semiparametric modeling.

We have illustrated the use of two such combinations of the component estimates, one an intu-
itive least squares approach (section 2.2), and one motivated by errors-in—variables considerations
(section 2.1). At least in principle one would conjecture that the basic idea of estimating o should
generalize to such things as generalized linear models. Obtaining asymptotic distributions for such
generalizations is likely to be challenging.

An interesting generalization of the model (13) would be to allow for the addition of other
parametrically linked terms of the form 67 Z; based on covariates Z;. In the context of the exam-
ple, these covariates might include information about previous market behavior, e.g., yesterday’s
volatility. Again, while the ideas may seem straightforward, actually obtaining asymptotic results

may well prove to be difficult.
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7 APPENDIX

7.1 Assumptions

Condition A

1) (Xi1,.. . Xan Y1), oo, (Xog, oo, X, V) is an iiid. sequence with F(Y;| Xi,..., X)) = a+
mi(Xi) + ...+ 877 'my(X;1). For identifiability, it is assumed that E(mq(X;5)) = 0 for
=1,

(ii) The weight functions w; have a continuous derivative and a bounded support B;, j = 1,...,J.

(iii) The expansion (9) holds uniformly for 2 € B;,j = 1,...,J with bounded functions r, u;, v;

and ¢;. The function u;(z, ) has third partial derivative %u]' with respect to x, that are

uniformly bounded sup, . |%u]‘(2’7 z)| < oo.
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(iv) The density p of (X1,..., X ) is two times continuously differentiable and on By x ... x By

it is bounded away from 0.
(v) The regression function my is four times continuously differentiable.
(vi) The absolute moments F|¢;|? are finite for all ¢. Here, ¢, =Y; — E(Y;| X1, ..., Xi).
(vi) The conditional variance o) is continuous.

(vil) The kernel K is a symmetric probability density with compact support. W.l.o.g. we assume

that [u?K(u) du = 1.
Condition B

(i) X1, X,...is a stationary process that is geometrically strongly mixing, i.e., a(k) < cop® for

some constants ¢g and 0 < p < 1.

(ii) For all ¢ there exists a constant ¢, such that for all indices 4y, ..., ¢, the density of (X;,..., X; )

is bounded by ¢,.
(iii) The weight function w has a continuous derivative and a bounded support B.

(iv) The density p of (X3, X;) is two times continuously differentiable and on B x B it is bounded

away from 0.
(v) The regression function my is four times continuously differentiable.
(vi) The variables ¢; have a finite Laplace transform, i.e. Eexp(ve;) < oo for |y| small enough.
(vii) The conditional variance o%(z) = F(e?|X; = ) is continuous.

(viii) The kernel K is a symmetric probability density with compact support. W.l.o.g. we assume

that [«?K (u) du = 1.

7.2 Sketch that (6) and (7) Lead to the Same Limit Distribution for 3 When
J =2

It is easily shown that for BLS, the minimizer of (7),

_ n=V2NE SR ma (Xg) s (Xij) — Borin (Xi5)}
n1/2 — = ! J ! d d : o .
(BLs — o) E{m?(X1) + m2(Xa)} o)
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For BEI% the minimizer of (6), a Taylor series shows that nl/2 (BEIV — ﬁo) = A,/B, +o,(1),

where

+ {1_4%2 }{A (X )—ﬂoml(Xij)}] B 5 {md(X1) +mi(Xa)},

A, = nlf? Z 1 (Xij) {ma(Xij) — Boma (Xij)}

_1/2227”1 i) ima(Xi;) = Borma (X)) + 0p(1);

=1 j5=1

D5/(14 59} =173 5" (s (X4 — o (X:))?

=1 j5=1

An2

Since A, = 0,(1), this completes the argument.
7.3 Sketch of Proof of Theorem 1

By a Taylor series expansion,

J o 4
0 = n V237373 (G - DB wi(Xaw) i (Xar) {7 (Xia) = 33" (Xin) }

The middle term is easily seen to be 0,(1). The last term is easily seen to be DL5n1/2 (BLS — ﬁo) +
0,(1), where Drg = E}Izl G-18" 2} E{Y_ wi(Xip)m} (X)), Finally, the first term has
the same behavior as if the leading m4(X;;) were the same as mq(X;;). Making this substitution
and invoking (9), since mgz)(x) = ﬁé_lm(lz)(x), we find that the result is asymptotically equivalent
to Ry + Ry where

n J J

Ry = n723 33— 1B 2w (Xan)ma(Xix)
i=1 j=1 k=1

€ {Kh(Xz]‘ — Xa)u; (Xy, Xig) — By Kp (X — Xik)u1(Xl7Xik)}7

—_

gﬁ

~
Il

1
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n J J
Ry nT YNNG = 1B w (Xak)ma(Xin)

i=1 j=1 k=1
xzn:[ {v] (X0, Xiw) — 85 or (X, zk} {t Xi) = (X’)H
=

Interchanging the indices ¢ and ¢ and using the fact that K(-) is symmetric, the term Ry equals

n

J J n
nTY TGS G- DB Y wi (X ma (X
=1 j=1k=1 /=1

X {I(h(XZk — X ui (X, Xo) — B K (Xow — Xin)un (X, Xék)} .

Using standard kernel theory, assumption A (iii) and h3n/2 = 0 one shows that the last summation

has the limit
wi (Xij)ma (Xig) fio(Xij)wg (X, Xig) — 85wy (X )ma (X)) fi (X)) (X, Xia).-

Similarly, Ry = Ro1 + Ros2, where

n J n
Ry = n723en™ 333" - 185wy (Xaw)ma (Xew) {U](X27Xék) By (X“XM)}
= j=1k=1¢=1
J o 4
~ 1/2Zen "SI G-18 {v]*(XZ)— é_lvf(Xi)}
=1 7=1k=1
and
n J J ]
Ry = n_S/QZZZ (-1 ﬁo w](sz)ml ik) Z—I—{t Xi) ﬁé_lh(xl)}
=1 j=1k=1

n J .
~ YN 087 {5 (X - BT (X0

=1 7=1
It thus follows that

n2(Brs — Bo) = Drin™"2 > {eHi (X, Bo) + Ha(Xi, Bo)} + 0,(1). (22)
=1
This verifies Theorem 1.

7.4 Sketch of Proof of Theorem 2

The proof is facilitated by noting that

m;j(x) —ﬁj_lG{ml(ﬂﬁ)w my(z), 0}
J

= {D_ wi(2)p¥ ! Z{wk )87 2m (@) — wi(2) By ()}
7=1 k=1
J

= (L w7y Zw (2) {8 2m; (x) = B "2mp () }
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Hence, gy is formed by minimizing

_1/22 Z w;(Xi)s(3, Xir) [sz {ﬁ% A (X )_ﬂé_j_zmé(Xik)}] :

1=1 j,k=1

Define sg(3,2) = (8/08)s(8, ) and sgs(3,2) = (8%/93%)s(B, x). Further define

wel) {872 mj(x) = B P my(a) §

]~

Qj($7ﬁ7m17...,MJ) =

~
Il
-

welw) {(20 = 2)8%Pm;(0) — ((+5 = 2)5m() } .

]~

Ri(xz,B,mqy,...,mjy) =

=1
Then BEIV minimizes n~/2 Y%, 2]7 —1 wi(Xi)s(B, sz)Q (Xig, B,mq,...,m;), and hence nec-
essarily solves
J
0 = _1/22 Z w] zk Sﬁ ﬁ sz)Q ( 2k7ﬁ7m17"'7mJ)
1=1 j,k=1
n J
+ 2n_1/2 Z Z ﬁ sz)Q]( zkvﬁvmh .. '7mJ)Rj(Xik7ﬁ7ml7 .. -ﬂ?&J).
1= ljk:

This is an estimating equation, and with an admitted lack of rigor we proceed to analyze it in a

standard fashion. Indeed, n=1/2 times its first derivative evaluated at (Bo, m1,...,my) is

w; (Xik)sps(Bo, Xin) Q3 (Xik, B,ma, ..., my)
1

-
Sy

o
Il
—

s

wi(Xix)sp(BoXin) Q5 (Xik, Bos ma, ..., mg)R; (Xig, Bo, ma, ..., my)

+
o
3I

J
=1 j,k:l
n J
+ 207 > wi(Xik)s(Bo, Xaw) RS (Xik, Bo, ma, - . . my)
1=1 j,k=1
n J
+ 207> > w(Xap)s(Bo, Xin) Q5 (Xik, Bo, ma, - .., my)(9/0B)Rj(Xik, Bo,m, .. ., my).
1=1 j,k=1
However, note that Q;(z, Bo, m1, ..., mj) = 0, so that the first derivative of the estimating equation
when normalized and evaluated of (5o, mq,...,my) is

n

7
IZ;% (B0, Xiw) R3(Xin, Bo, mas ..., my)

Jik=1

—_

1=

J J
=2 Bwi(Xg)s(Bo, Xe)mi(Xp) {D_ we(Xp) g2 =40 = )} = 2Dpv.
7,k=1 L
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It is immediately obvious that since Q?(x,ﬁo,ﬁzl, ce,my) = op(n_l/z)7 then nl/z(BEIV — Po) is

asymptotically equivalent to

Dmvn_l/zz Z w;(Xik)s(Bo, Xie) Q@ (Xiks Bos s - -y g ) Rj(Xig, Bo, My - .y 1i0g).
=1 j,k=1
Since Q;(z, fo, m1,...,my) =0, nl/z(BEIV — fo) is asymptotically equivalent to
J
Dby S 10, (Xa)s (o, Xot) By (Ko, o, )
=1 7,k=1

xZwe ) [ﬁé“{m](Xik)— (X)) — AL g (Xa) — mo(Xa)}]. (23)

The proof is completed by using expansion (9) and the fact that mgz)(x) = é_lmgz)(x), in a

manner similar to that of Theorem 1. After some algebra one arrives at

nM2(Bprv — o) = Dysn~t/? Z {ei {M3(Xs, Bo) + M(Xy, o)} + G(Xiy Bo) } + 0p(1). (24)

=1

This verifies Theorem 2.
7.5 Proof of Theorem 3

Note that m " (z) = el {n=! 0, A;(2)&(2)&(2) T} "=t 0 Ay(2)Yi&i(e), where A;(z) = Ky, (X;_1
21)Kp, (Xi_2 — 29) and where el = (1,0,0). Note that E(X;|X; 1, X;2) = a + my(X;_1) +
pmi(Xi—2). Put ¢ = Xi — o — mi(X;_1) — fma(Xi—2), m(z) = a+ mi(z1) + fmi(zz) and
Fi(z) = m(Xi_1, X;_o) —m(2) — (Xiog —a1)mf (z1) — (Xi_g — 22) S} (25). We can write mlL(z) —
m(z) = ef {n™" I Ai(@)&(2)&(2) T In Tt D Ai(e){e + Fo(2) }i(w).

Now note that

n 1 0 0 0 1 0
nT' Y Ai@)&(@)6@) = pla) [ 001 0 [+ hptO@) [ 10 0
3 0 0 1 0 0 0

logn
\ nh1 h2

Here p(®1) and p(?) denote the partial derivative of p with respect to z; or z,, respectively. The

+O0p(hi+ h% + ). (25)

expansion in (25) holds uniformly for # € B x B. For a proof of (25) one proceeds as in Bosq
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(1996) where uniform rates are shown for kernel density estimates of strongly mixing observations
by using exponential inequalities for mixing sequences, see Theorem 2.2 in Bosq (1996).

Equation (25) shows
[ Zn:Ai(w)&(x)gi(x)T]_l = pla)”! {I — hpO (@) p(z) " = hop®V (2)p(a) 7,

logn
Op(h? 4+ h2 4+ —— }. 26
+ P( 1+ 2+\/m) ( )

Similarly as (25) one shows uniformly for 2 € B x B

logn

_1 Z A 252 - (\/m) (27)
and
! Z Al (x) = Op(h3 + h3). (28)

Equations (26) - (28) give uniformly for 2 € B X B:

R (2) = miz) = L p(e) ™ {1 = hip 0 @)p(a) ™y = hop®D (@)p(e) ' Iy

logn
nh1 h2

n

Y A+ RIEE) +or(0 . (29)

=1

+Op(hi + 3 +
We use now that uniformly in z € B x B:
LS Ad@)i(@)e) = (1/2)h3m! (ar)er + (1/2)h30m ! (ws)er + op (n=1/%). (30)

For a proof of (30) one uses the fact that m4 is four times continuously differentiable and for the
treatment of the resulting sum of strongly mixing summands one proceeds as in the proof of (25).
We treat now the estimate mf (1) = n™' S0, w(X; o) (2, X;_2) /[n ' 0 w(Xi—2)].

Note now that for all ¢ with v > 0 arbitrarily small and 2 > 0 arbitrarily large:

2q

n (1 0)($1 X. 2
sup E |hin 1) w I TN A, X
71 €EB ]Z: P(9017X] 2) ZZ; i )

O(h3*(nhy) ™10, (31)

where € = ¢1]|¢;| < y2logn] — E{e1]|e;| < v2logn]}. Claim (31) can be shown by application of
Davydov’s inequality, see Corollary 1.1 in Bosq (1996). For this purpose one writes the left hand
side of (31) as 32 o Yo o Ry TEZ Gy Zig gy Where Z = w(Xj_g)ptO (21, X o)
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Ai(w1, Xj—2) € /p(21, X;—2)*. Davydov’s inequality and our mixing conditions imply that for arbi-

trarily large C' there exist constants €’ and C” such that

\EZi, - | <", (32)

Z2q7]2q

for all indices iy, .., j2, such that there exists an 1 <1 < 2¢ with |i; — i;| > C"logn for all k # [ and
li; — ji| > C"logn for all k. For the proof of (32) one makes use of B (ii) -(iv) and of the fact that
leX| < 2y, logn. Claim (31) follows by a bound on the remaining terms.

With the help of (31) and using the fact that, for ¢ large enough,

n

X;

A 12 p(l 0)($17 G- 2 _1ZA ) < (33)
—hin w T, n’
3961 ! =1 ] 2 P(9017X] 2) =1 ! ] :
we get that uniformly for z; € B
- PO (21, X
Y w(X;_ LX) ntN A (e, = op(n~'1?). 34
]Z:; (X-2)" ENSTINE ; 1, Xj2)ef = op(n=/7) (34)

For a proof that (34) holds uniformly for z; € B one shows first that it holds uniformly for z; € B,
where B, is a subset of B with n¢ equidistant points and where ¢’ is an arbitrary positive constant.
Then the claim follows from (33) if ¢ has been chosen large enough.

Note now that for all C" there exists v, such that max;<i<, €] < y2logn [with probability
tending to 1] and | E{e;1[|¢;] < v2logn]}| < n=¢". Remember that ¢; has a finite Laplace transform,

see B (vi). Therefore (34) with v large enough implies

n_lzn:w(Xj_z) (10)($17X] 2 n-! ZA v1, X i 2) P(n—1/2)‘ (35)
p($17X] 2) i=1

Again, this expansion holds uniformly for z; € B.

With (35) and with similar expansions for other terms we arrive at:
(o) = ot mi(en) + (12 km () + (17283 [ mle
1 n
—2 Z $17Xj—2)_1Ai($17Xj—2)6i‘|‘0P(n_1/2)-

This expansion holds uniformly for z; € B. Using again Davydov’s inequality one shows that

f(Xi2)
p(xleZ 2)

n Ky (X290 — X._
En 3 {u(x_g) etz = i) e
7,75=1

= O(hy! (nhy)~ ™).

THE, (Xioy = )]
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As above this shows that uniformly for 21 € B

R Kp,(X;—2 — X;_ fXG- . -
ﬁ E w(X]_Q) p(($1 i( 2)é 2) - UJ(XZ_Q)(72)2‘| I(hl (Xi—l — $1)€Z' = op(n 1/2).
T y X j—

This gives uniformly for 2y € B

_1210 xl? ) 1f( i— Z)I(hl(Xi—1 —$1)€Z’—|-0p(n_1/2),
The expansion for ﬁzl stated in the Theorem follows by some straight forward calculations. For

the treatment of Ml one proceeds similarly.
7.6 Sketch of Proof of Theorem 4

Along the lines of the proof of Theorem 1 one verifies that the stochastic expansion (22) remains
valid for autoregression. For doing this one proceeds as in the proof of Theorem 3. Again, the
main tools are exponential inequalities and Davydov’s inequality for mixing sequences. Asymp-
totic normality of nl/z(ﬁLS — Bo) follows by application of a central limit theorem for strongly
mixing sequences, see e.g. Theorem 1.7 in Bosq(1996). We have to verify that for some v > 2
F e, H1(Xi, Bo) + H2(Xi, Bo)|” < oo. This follows easily from B (vi) and from the assumption that

the functions w;, mq,v;, f;, u;,t; are bounded for j =1,...,J.
7.7 Sketch of Proof of Theorem 5

One shows first that the stochastic expansion (24) remains valid for autoregression and then one

proceeds as in the last proof.
7.8 Sketch of Proof of Theorem 6

Proceeding as in the proof of central limit theorems for kernel estimates of strongly mixing se-
quences [see e.g. Theorems 2.3 and 3.4 in Bosq (1996)] and using the stochastic expansion
(21), one shows that the vector n?/5(imy(z) — my(z),...,my(z) — /~'my(2))T has a normal
limit with mean (1/2)n?/5h?r(z)(1,...,37~")T and covariance matrix equal to a diagonal ma-
trix with diagonal elements n'/5h='v(K)f(x) s2(x). Note that m;(z) and my(z) are asymp-
totically independent for j # k. The first statement of Theorem 6 follows from the fact that
mi(z) — Z}] LB (2)/ Z] L ¢; = op(n~%/%). For the second statement of Theorem 6 note

that E}Izl C?ﬁ_ - sj(x)/zjzl ¢2 is minimized by ¢; = FU=Dg72(2).

J
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standardised returns

Figure 1: Log returns for the rates Deutsche Mark against US Dollar (DEM/USD), during the time
Oct 1 1992 and February 16 1993 (scaled by their empirical standard deviation).
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standardised returns

Figure 2: Kernel density estimate of the data from Figure 1 with bandwidth h = 0.8.



Figure 3: Backfitting estimates of the additive components g; in the model Y, = }]:1 g;(Yi—;) +
¢t,j = b (dashed line), 4 (small dots), 3 (large dots), 2 (black), 1 (thick black). Data as in Figure
1.

Figure 4: Plots of the estimates m} = Bi=Yinr, see (14), j = 5 (dashed line), 4 (small dots), 3 (large
dots), 2 (black), 1 (thick black). (Estimation of the nonparametric components by backfitting and
of # by the method from errors-in-variables.)



Figure 5: Plots of the estimates mj = 3=Vig, see (14), j = 5 (dashed line), 4 (small dots), 3 (large
dots), 2 (black), 1 (thick black). (Estimation of the nonparametric components by backfitting and
of # by the least squares method.)

Figure 6: Integration estimates of the additive components g; in the model Y, = Z}‘]:1 g;(Yi—;) +
¢t,j = b (dashed line), 4 (small dots), 3 (large dots), 2 (black), 1 (thick black). Data as in Figure
1.



Figure 7: Plots of the estimates mj = 3=Vig, see (14), j = 5 (dashed line), 4 (small dots), 3 (large
dots), 2 (black), 1 (thick black). (Estimation of the nonparametric components by the integration
estimate and of 5 by the method from errors-in-variables.)

Figure 8: Plots of the estimates m} = Bi=Yinr, see (14), j = 5 (dashed line), 4 (small dots), 3 (large
dots), 2 (black), 1 (thick black). (Estimation of the nonparametric components by the integration
estimate and of § by the least squares method.)



Figure 9: Backfitting estimates of mj for different number of lags. Orienting at the right upper
corner, the highest to lowest values are associated with J = 5,10, 20, 30, respectively.



