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Abstract

We derive the asymptotic distribution of a new back�tting procedure for estimating the

closest additive approximation to a nonparametric regression function� The procedure employs

a recent projection interpretation of popular kernel estimators provided by Mammen et al�

������	 and the asymptotic theory of our estimators is derived using the theory of additive

projections reviewed in Bickel et al� ����
�� Our procedure achieves the same bias and variance

as the oracle estimator based on knowing the other components	 and in this sense improves

on the method analyzed in Opsomer and Ruppert ������� We provide �high level� conditions

independent of the sampling scheme� We then verify that these conditions are satis�ed in a

time series autoregression under weak conditions�
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� Introduction

Separable models are important in exploratory analyses of nonparametric regression� The back�tting

technique has long been the state of the art method for estimating these models� see Hastie and

Tibshirani ������� While back�tting has proven very useful in application and simulation studies� it

has been somewhat di�cult to analyze theoretically� which has long been a drawback to its universal

acceptance� Recently� a new method� called marginal integration� has been proposed� see Linton and

Nielsen ����	�� Tj
stheim and Auestad ������ and Newey ������� �see also earlier work by Auestad

and Tj
stheim ������
� This method is perhaps easier to understand for non�statisticians since it

involves averaging rather than iterative solution of nonlinear equations� Its statistical properties

are trivial to obtain� and have been established in the aforementioned papers� Although tractable�

marginal integration is not generally e�cient� Fan� Mammen� and H�ardle ������ and Linton ������

showed how to improve on the e�ciency of the marginal integration estimator in regression � in the
latter paper� this was achieved by carrying out one back�tting iteration from this initial consistent
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starting point� This modi�cation actually achieves full oracle e�ciency� i�e�� one achieves the same

result as if one knew the other components� This suggests that back�tting itself is also e�cient in

the same sense� Moreover� back�tting� since it relies only on one�dimensional smooths is free from

the curse of dimensionality�

Recent work by Opsomer and Ruppert ������ and Opsomer ������ has addressed the algorithmic

and statistical properties of back�tting� Speci�cally� they gave su�cient conditions for the existence

and uniqueness of a version of back�tting� or rather an exact solution to the empirical projection

equations� suitable for any �recentred� smoother matrix� They also derived an expansion for the

conditional mean squared error of their version of back�tting� the asymptotic variance is equal to

the oracle bound� while the precise form of the bias� as for the integration method� depends on the

way recentering is carried out� but in any case is not oracle� except when the covariates are mutually

independent� This important work con�rms the e�ciency� at least with respect to variance� of �their

version of
 back�tting� Unfortunately� their version of back�tting is not design adaptive� which is

somewhat surprising given that they use local polynomial smoothers throughout� Furthermore� their

proof technique required rather strong conditions� speci�cally� the amount of dependence in the

covariates was strictly limited�

In this paper� we de�ne a new back�tting�type estimator for additive nonparametric regression�

We make use of an interpretation of the Nadaraya�Watson estimator and the local linear estimator

as projections in an appropriate Hilbert space� which was �rst provided by Mammen et al� �������

Our additive estimator is de�ned as the further projection of these multivariate estimators down on

the space of additive functions� We examine this estimator and show how � in both the Nadaraya�
Watson case and in the local linear case � the estimator can be interpreted as a back�tting estimator
de�ned through iterative solution of the empirical equations� We establish the geometric convergence

of the back�tting equations to the unique solution using the theory of additive projections� see Bickel

et al� ����	�� We use this result to establish the limiting behaviour of the estimates� we give both
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the asymptotic distribution and a uniform convergence result� Our procedure achieves the same

bias and variance as the oracle estimator based on knowing the other components� and in this

sense improves on the method analyzed in Opsomer and Ruppert ������� Although the criterion

function is de�ned in terms of the high�dimensional estimates� we show that the estimator is also

characterized by equations that only depend on one� and two�dimensional marginals� so that the

curse of dimensionality truly does not operate here� Our �rst results are established using ideas from

Hilbert space mathematics and hold under �high level� conditions� which are formulated independently

of speci�c sampling assumptions� We then verify these conditions in a time series regression with

strong mixing data� Our conditions are strictly weaker than those of Opsomer and Ruppert �������

and do not necessarily restrict the dependence between the covariates in any way�

This paper is organized as follows� In section � we show how local polynomial estimators can

be interpreted as projections� In section � we introduce our additive estimators in the simplest

situation� i�e�� for the Nadaraya�Watson�like pilot estimator� establishing the convergence of the

back�tting algorithm and the asymptotic distribution of the estimator under high level conditions

that are suitable for a range of sampling schemes� In section � we extend the analysis to local

polynomials� In section 	 we investigate a time series setting and give primitive conditions that

imply the high level conditions� In section � we illustrate our procedure on �nancial data� All proofs

are contained in the appendix�

� A projection interpretation of the local polynomials

Let Y�X be random variables of dimensions � and d respectively and let �Y ��X��� � � � � �Y n�Xn�

be a random sample drawn from �Y�X�� We �rst provide a new interpretation of local polynomial

estimators of the regression function m�x�� � � � � xd� � E�Y jX � x� evaluated at the vector x �

�x�� � � � � xd�T � see Mammen� Marron� Turlach and Wand ������� This new point of view will be useful
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for interpreting our estimators of the restricted additive function m�x� � ��m��x��� � � ��md�xd��

The full dimensional local �q�th order
 polynomial regression smoother� which we denote bybm�x� � �bm��x�� � � � � bmqd�x��T � satis�es

bm�x� � argmin
m��m������mqd�T

nX
i��

�
Y i �m� �

�
X i

� � x�
h

�
m� � � � ��

�
X i

d � xd
h

�q

mqd

�� dY
���

Kh�X
i
� � x���

���

where q is the order of the polynomial approximation� In fact� for simplicity of notation we will

concentrate on the local linear case considered in Ruppert and Wand ����	� for which q � � � the
Nadaraya�Watson case� for which q � �� is even simpler� see below� De�ne the matrices �of dimension

n� �d� �� and n� n� respectively


X�x� �

�BBB�
�

X�

�
�x�
h

� � � X�

d�xd
h

���
���

� � �
���

� Xn
�
�x�
h

� � � Xn
d
�xd
h

�CCCA �

K�x� � diag
	 Qd

���Kh�X�
� � x��� � � � �

Qd
���Kh�Xn

� � x��


�

and write bm�x� � �X�x�TK�x�X�x����X�x�T K�x�Y � bV���x�bR�x�� ���

where Y � �Y �� � � � � Y n�T � bV�x� � X�x�TK�x�X�x� and bR�x� � X�x�T K�x�Y�
For the new interpretation of local linear estimators we think of the data Y � �Y �� � � � � Y n�T as

an element of the space of tuples of �n functions

F � ��f i�j � i � �� � � � � n� j � �� � � � � d� � Here� f i�j are functions fromRd to R
�
�

We do this by putting f i���x� � Y i and f i�j�x� � � for j �� �� We de�ne the following norm on F �

kfk�� �
Z
�

n

nX
i��

h
f i���x� �

dX
j��

f i�j�x�
xj �X i

j

h

i� dY
j��

Kh�X
i
j � xj� dx�

	



where Kh��� � K���h��h with K��� a univariate kernel� Consider now the following subspaces of F �

Ffull � ff � F � f i�j does not depend on i for j � �� � � � � dg
Fadd � ff � Ffull � f

i���x� � g��x�� � � � � gd�xd� for some functions gj � R� R for j � �� � � � � d

and f i�j�x� � gj�xj� for some functions g
j � R� R for j � �� � � � � d if j � ��g�

The estimate bm�x� de�nes an element of F by putting f i�j�x� � bmj�x�� j � �� �� � � � � d� This is

an element of Ffull� It is easy to see that� with respect to k k�� bm is the orthogonal projection

of Y onto Ffull� Below we introduce our version em of the back�tting estimator as the orthogonal

projection of bm onto Fadd �with respect to k k�
� For an understanding of em it will become essential

that it be the orthogonal projection of Y onto Fadd� For the de�nition of such norms and linear

spaces for higher order local polynomials and for other smoothers we refer to Mammen� Marron�

Turlach and Wand ������� Each local polynomial estimator corresponds to a speci�c choice of inner

product in a Hilbert space� and the de�nition of the corresponding additive estimators is then the

projection further down on Fadd� In particular� for the local constant estimator �NadarayaWatson�like

smoothers� one chooses�

F �
�
�f i � i � �� � � � � n� � Here� f i are functions fromRd to R

�
Ffull �

�
f � F � f i does not depend on i�

Fadd �
�
f � Ffull � f

i�x� � g��x�� � � � � gd�xd� for some functions gj � R� R
�

kfk�� �

Z
�

n

nX
i��

�f i�x�
�
dY

j��

Kh�X
i
j � xj� dx�

Note that for functions m in Ffull �i�e� m �� m� � � � � � mn
 we get

kmk�� �
Z

m�x���p�x� dx�

where �p�x� � n��
Pn

j��Kh�X i
j�xj� is the kernel density estimate of the design density� In particular�

in this case em is the projection of the full dimensional Nadaraya�Watson estimate onto the subspace
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of additive with respect to the norm of the space L��bp�� We give a slightly di�erent motivation for
the projection estimate em in the next section� see ���� There we will discuss the case of local constant
smoothing in detail�

� Estimation with Nadaraya Watson�Like Smoothers

In this section we will motivate our back�tting estimate based on regression smoothers like the

Nadaraya�Watson

bm�x� � n��
Pn

i��

Qd
���Kh�x� �X i

��Y
i

n��
Pn

i��

Qd
���Kh�x� �X i

��
� ���

The speci�c choice of the Nadaraya�Watson estimator is not important� but the smoother is supposed

to have the ratio form

bm�x� � br�x�bp�x� �
nX
i��

wi�x�Y
i� ���

where bp�x�� which depends only on X n � fX�� � � � �Xng � is an estimator of p�x�� the marginal density
of X� Here� the weighting sequence fwi�x�gni�� only depends on X n� as does the weighting sequence

fw�
i �x�gni�� of the numerator br�x� �Pn

i��w
�
i �x�Y

i� The assumption that the pilot estimate bm exists
�i�e�� is everywhere and always �nite
 will be dropped in our asymptotic analysis in the next section�

which will allow us to include the case of high dimensions d� We assume for the most part that

m�x� � � �m��x�� � � � ��md�xd�� �	�

although our de�nitions make sense more generally i�e�� when the regression function is not additive�

in which case the target function is the closest additive approximation to the regression function�

For identi�ability we assume thatZ
mj�xj�pj�xj�dxj � �� j � �� � � � � d� ���
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where the marginal density of Xj is denoted by pj���� Denote also the marginal density of �Xi�Xj�

by pij��� �� respectively �i� j � �� � � � � d�� The vector �Xi � i �� j� is denoted by X�j and its density by

p�j �

Recall that back�tting is motivated as solving an empirical version of the set of equations

m��x�� � E�Y jX� � x��� � �E fm��X��jX� � x�g
� � � �� E fmd�Xd�jX� � x�g �

��� �
���

md�xd� � E�Y jXd � xd�� � �E fm��X��jXd � xdg
� � � �� E fmd���Xd���jXd � xdg �

In the sample� one replaces E�Y jXj � xj� by one�dimensional smoothers bmj���� and iterates from
some arbitrary starting values for mj��� see Hastie and Tibshirani ������ p� ����� Let bp�x� and bm�x�
be multidimensional density and regression smoothers de�ned above� We de�ne back�tting estimatesemj as the minimizers of the following norm

kbm�mk
bp �

Z
�bm�x�� �� �m��x��� � � �� �md�xd�


� bp�x�dx� ���

where the minimization runs over all functions m�x� � � �
P

j �mj�xj�� with
R
�mj�xj�bpj�xj�dxj � ��

see Nielsen and Linton ������ �we suppose that the density estimate bp is non�negative
� This means
that em�x� � b� � em��x�� � � � � � emj�xd� is the projection in the space L��bp� of bm onto the a�ne

subspace of additive functions fm � L��bp� � m�x� � � �m��x�� � � � � �md�xd�g� This is a central
point of our discussion� For projection operators back�tting is well understood �method of alternating

projections� see below�� Therefore� this interpretation will enable us to understand convergence of

the back�tting algorithm and the asymptotics of emj� We remark that not every back�tting algorithm
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based on iterative smoothing can be interpreted as an alternating projection method� The solution

to ��� is characterized by the following system of equations �j � �� � � � � d��

emj�xj� �

Z bm�x� bp�x�bpj�xj�dx�j �X
k ��j

Z emk�xk�
bp�x�bpj�xj�dx�j � b� ���

b� �

Z bm�x�bp�x�dx� ���

where bmj�xj� � n��
Pn

i��Kh�xj � X i
j�Y

i �bpj�xj� is the univariate Nadaraya�Watson regression
smoother� in which bpj�xj� � R bp�x�dx�j is the marginal of the density estimate bp�x�� Straightforward
algebra gives

Z bm�x� bp�x�bpj�xj�dx�j � bp��j �xj�n�� nX
i��

Kh�xj �X i
j�Y

i

Z Y
� ��j

Kh�x� �X i
��dx�j

� bmj�xj��

Furthermore� b� � R bm�x�bp�x�dx � R br�x�dx� and when R wj�x�dx � �� we �nd� as in Hastie and

Tibshirani ������� that b� � n��
Pn

i�� Y
i� i�e�� that b� is the sample mean� So b� is a pn�consistent

estimate of the population mean and the randomness from this estimation is of smaller order and

can be e�ectively ignored� Note also that

b� � Z bmj�xj�bpj�xj� dxj for j � �� � � � � d� ����

We therefore de�ne a back�tting estimator emj�xj�� j � �� � � � � d� as a solution to the system of

equations

emj�xj� � bmj�xj��
X
k ��j

Z emk�xk�
bp�x�bpj�xj�dx�j � b�� j � �� � � � � d�
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with b� de�ned by ����� Up to now we have assumed that multivariate estimates of the density and
of the regression function exist� This assumption is not reasonable for large dimensions d �or at least

such estimates can perform very poorly�� Furthermore� this assumption is not necessary� Note that

��� can be rewritten as

emj�xj� � bmj�xj��
X
k ��j

Z emk�xk�
bpjk�xj� xk�bpj�xj� dxk � b�� ����

In this equation only two dimensional marginals of bp are used� Note also that the solutions emj�xj� to

���� inherit the smoothness properties of bm�x� and bp�x�� We can therefore estimate the derivatives
of mj�xj�� for example� by

dr emj�xj�

dxrj
�

dr bmj�xj�

dxrj
�
X
k ��j

Z emk�xk�
dr

dxrj

�bpj�k�xj� xk�bpj�xj�
�
dxk� r � �� �� � � �

In the next section we will discuss estimates emj that are de�ned by ���� along with their asymptotic

properties� In practice� our back�tting algorithm works as follows� One starts with an arbitrary

initial guess em���
j for emj� In the j�th step of the r�th iteration cycle one puts

em�r�
j �xj� � bmj�xj��

X
k�j

Z em�r�
k �xk�

bpjk�xj� xk�bpj�xj� dxk �
X
k�j

Z em�r���
k �xk�

bpjk�xj� xk�bpj�xj� dxk � b��
and the process is iterated until a desired convergence criterion is satis�ed� The integrals are com�

puted numerically� see section � below for further comments�

��� Asymptotics for the Nadaraya�Watson�like Version

We consider now estimates emj that are de�ned by ���� with b� de�ned by ����� where bmj� bpjk� and bpj
are some given estimates� The next theorem gives conditions under which� with probability tending

to one� there exists a solution emj of ���� that is unique and that can be calculated by back�tting�
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Furthermore� the back�tting algorithm converges with geometric rate� Our assumptions� given below�

are �high�level� and only refer to properties of bmj� bpjk� and bpj �for example� we do not require that
p is the underlying density of X or that bmj� bpjk� and bpj are kernel estimates
 � these properties
can be veri�ed for a range of smoothers under quite general heterogeneous and dependent sampling

schemes� and we investigate this in section 	 below�

Assumptions� We suppose that there exists a density function p on Rd with marginals

pj�xj� �

Z
p�x� dx�j

and

pj�k�xj� xk� �

Z
p�x� dx��j�k� for j �� k�

�A�� For all j �� k� it holds that Z
p�j�k�xj� xk�

pk�xk�pj�xj�
dxjdxk ���

�A�� For all j �� k� it holds thatZ 
 bpj�k�xj� xk�
pk�xk�bpj�xj�� pj�k�xj� xk�

pk�xk�pj�xj�

��
pk�xk�pj�xj�dxjdxk � oP ����

Furthermore� Z bmj�xj�bpj�xj� dxj � const�

By de�nition this constant is equal to b� � see �����

�A�� There exists a constant C such that with probability tending to one for all j�Z bm�
j�xj�pj�xj�dxj 	 C�

�A�� There exists a constant C such that with probability tending to one for all j �� k�

sup
xk

Z bp�j�k�xj� xk�bp�k�xk�bpj�xj�dxj 	 C�

��



�A	� We suppose that for a sequence  n 
 � the one	dimensional smoothers bmj can be decomposed asbmj � bmA
j � bmB

j with
R bmj�xj�bpj�xj� dxj not depending on j and� where the �rst componentbmA

j is mean zero and satis�es

sup
xk

����Z bpj�k�xj� xk�bpk�xk� bmA
j �xj�dxj

���� � oP

�
 n

log n

�
�

For s � A and s � B� we de�ne ems
j as the solution of the following equation


ems
j�xj� � bms

j�xj��
X
k ��j

Z ems
k�xk�

bpjk�xj� xk�bpj�xj� dxk � b�s� ����

where b�s � R bms�x�bp�x�dx� Existence and uniqueness of emA
j and emB

j is stated in the next

theorem� Note that ems
j is de�ned as emj in equation ���� with bmj replaced by bms

j � We suppose

that for �deterministic� functions �j�n��� the term emB
j satis�es

emB
j �xj� � �j�n�xj� � oP � n��

These conditions� which we discuss further below� are all straightforward to verify� except perhaps

A	� and turn out to be weaker than those made by Opsomer and Ruppert �������

The following result is crucial in establishing the asymptotic properties of the estimates�

Theorem � �Convergence of backfitting�� Suppose that conditions A�	A� hold� Then�

with probability tending to one� there exists a solution emj of ���� and ���� that is unique� Furthermore

there exist constants � � � � � and c � � such that� with probability tending to one� the following

inequality holds Z hem�r�
j �xj�� emj�xj�

i�
pj�xj�dxj 	 c��r

Z �em����x�
��
p�x�dx� ����

Here� for r � � the function em�r��x� � em�r�
� �x�� � � � �� em�r�

d �xd� is the starting value of the back�tting

algorithm�

��



Furthermore� for s � A and s � B� with probability tending to one there exists a solution ems
j of

���� that is unique�

Our next theorem states that the stochastic part of the back�tting estimate is easy to understand�

It coincides with the stochastic part of a one�dimensional smooth� Therefore� for an understanding

of the asymptotic properties of the back�tting estimate it remains to study its asymptotic bias� This

will be done after the theorem for the special case that an asymptotic theory is available for the pilot

estimate bm�
Theorem �� Suppose that conditions A� 	 A� hold for a sequence  n� Then� it holds that

sup
xj

jemA
j �xj�� bmA

j �xj�j � oP � n��

In particular� one gets emj�xj� � bmA
j �xj� � �j�n�xj� � oP � n��

We now apply Theorem � to the case that full dimensional pilot estimates bp�x�� br�x� and bm�x� �
br�x��bp�x� �Pn

i��wi�x�Y i exist and that b�� em�� � � � � emd are de�ned as minimizers of ��� �i�e�� b�� em��

� � �� emd is the projection of bm onto the class of additive functions in L��bp��
 For the one�dimensional
smooths� bmj� we have� with appropriate weights wji�xj�� that

bmj�xj� �

Z bm�x� bp�x�bpj�xj� dx�j �
nX
i��

wji�x�Y
i�

We compare now the estimate emj with the infeasible estimate �mj that uses the knowledge of the

other components ml with l �� j� More precisely� we de�ne the infeasible estimator �mj�xj� to be the

one�dimensional smooth of the unobserved data Y i
� � mj�X

i
j�� 	

i �with 	i � Y i���Pn
k��mk�X

i
k�


on X i
j� thus

�mj�xj� �
nX
i��

wji�xj�Y
i
� � j � �� � � � � d� ����

��



Then� under appropriate regularity conditions�

n��	 f �mj�xj��mj�xj�g �� N
n
�bj�xj�� �vj�xj�

o
� j � �� � � � � d� ��	�

for certain functions �bj��� and �vj���� Moreover� because of cov f �mj�xj�� �mk�xk�g � o�n�
�	� one has

n��	 f �mj�xj��mj�xj�g and n��	 f �mk�xk��mk�xk�g are asymptotically independent for j �� k�

����

The additional information that
R
mj�xj�pj�xj�dxj � � may have some value� and we can de�ne

the mean corrected version of �mj�xj�� by �mc
j�xj� � �mj�xj� � n��

Pn
i�� �mj�X i

j�� which has the same

asymptotic variance as �mj�xj� but bias �bcj�x� �
�bj�x��

R
�bj�x�pj�xj�dxj �

We suppose now that our conditions hold with bmA�x� �
Pn

i�� wi�x�	i and bmB�x� �
Pn

i��wi�x�

m�X i�� One can decompose

bmA
j �xj� �

Z bmA�x�
bp�x�bpj�xj�dx�j �

nX
i��

wji�xj�	
i

bmB
j �xj� �

Z bmB�x�
bp�x�bpj�xj�dx�j �

nX
i��

wji�xj�m�X
i
j��

Suppose now that it can be shown for a function b that

bmB�x� � m�x� � n���	b�x� � oP �n
���	�� ����

We have the following

Corollary �� Suppose that conditions A�	A� hold with  n � n���	� and that ��
� 	 ���� apply�

Then

n��	

�����
em��x���m��x��

���emd�xd��md�xd�

����� �� N

�BBBBBB�
�����
b��x��
���

bd�xd�

����� �
��������
v��x�� � � � � �

�
� � �

���
���

� � � �

� � � � � vd�xd�

��������

�CCCCCCA �

��



where vj�xj� � �vj�xj�� j � �� � � � � d� are de�ned above� while bj�xj� are solutions to the following

minimization problem

min
��b���������bd���

Z
�b�x�� �� b��x��� � � �� bd�xd�


� p�x�dx� s�t�

Z
bj�xj�pj�xj�dxj � �� j � �� � � � � d�

For the special case that the function b is already of additive form b�x� � b���x�� � � � � � b�d�xd�� the

bias functions bj�xj� coincide with the bias �bcj�xj� of the �corrected� oracle estimate �mc
j�xj�� Also

n��	 fem�x��m�x�g �� N �b��x�� v��x�
 �

where b��x� �
P

j bj�xj� and v��x� �
P

j vj�xj��

Suppose additionally that for a sequence 
n with n���	 � o�
n�

sup
x
jbmB�x��m�x�� n���	b�x�j � OP �
n�

sup
x
j �mj�xj��mj�xj�j � OP �
n� for j � �� � � � � d�

Then� we have for j � �� � � � � d�

sup
x
jemj�x��mj�x�j � OP �
n��

� Estimation with Local polynomials

We discuss now local polynomials� For simplicity of notation we consider only local linear smoothing�

All arguments and theoretical results given for this special case can be easily generalized to local

polynomials of higher degree�

Back�tting estimators based on local polynomials can be written in the form of equation ��� by

choosing bp�x� � bV����x�� bVT
�����x�bV��

������x�bV�����x�� where

�	



bV�x� �
�� bV����x� bV�����x�bV�����x� bV������x�

�A � X�x�TK�x�X�x��

with the scalar bV����x� � n��
Pn

i��

Qd
���Kh�X i

� �x��� and bV�����x�� bV������x� de�ned appropriately�

This approach has two disadvantages� First� it may work only in low dimensions � since for the
asymptotics� existence of the matrix bV��

������x� and convergence of bV������x� is required under our

assumptions �and this may hold only for low dimensional argument x
� Second� the corresponding

back�tting algorithm does not consist in iterative local polynomial smoothing�

We now discuss another approach based on local polynomials that works in higher dimensions

and that is based on iterative local polynomial smoothing� We motivate this approach for the case

that bV�x� does exist� but we will see that the de�nition of the back�tting estimate is based on only
one� and two�dimensional �marginals� of bV�x�� So its asymptotic treatment requires only consistency
of these marginals� and the asymptotics work also for higher dimensions� This is similar to the

discussion in the last section where consistency has been needed only for one� and two� dimensional

marginals of the kernel density estimate bp�
For functions f � �f�� � � � � fd� with components f j � Rd� R and d� � by d� � positive de�nite

matrix function M���� de�ne the norm

kfkM �
Z

f�x�TM�x�f�x�dx�

There is a one�to�one correspondence between functions f and functions in Ffull� Furthermore�

taking M � bV the norm k�kM is simply the norm induced by the norm k�k�� In Section � our
version em�x� � �em��x�� � � � � emd�x��T of the back�tting estimate was de�ned as the projection of �the

function in Ffull corresponding to
 bm �see ���
 with respect to k�k� onto the space Fadd� Therefore� em
coincides with the L��bV� projection� with respect to the norm kfk

bV
� of bm onto the subspaceMadd�

��



where

Madd � fu�x� � �u��x�� � � � � ud�x��T � Mj
u��x� � � � u��x�� � � � �� ud�xd�� u

��x� � w��x�� for � � �� � � � � d�

where u�� � � � � ud are functions R� R with

Z bVj
j���xj�uj�xj�dxj � � for j � �� � � � � d

and where w� � � � �� � � � � d are functions� R� Rg�

where for each j the �d�����d��� matrix bVj�xj� �
R bV�x�dx�j � The classMadd contains functions

that are additive in the �rst component �for � � �
 and where the other components �for � � �� � � � � d


depend only on a one�dimensional argument� A function f inMadd is speci�ed by a constant � and

�d functions R� R� Because f �� � � �� � � � � d� depend only on one argument� in abuse of notation we

write also f ��x�� instead of f ��x�� Note that there is a one�to�one correspondence between elements

ofMadd and Fadd�

We now discuss how em is calculated by back�tting� Note that em is de�ned as minimizer of

kbm�mk
bV
� Recall that this is equivalent to minimize kY �mk�� over Fadd� We discuss now mini�

mization of this term with respect to the j�th components mj�xj� and � �mj�xj�� De�ne for each

j�

kfk�j �xj� �
Z
�

n

nX
i��

h
f i���x� �

dX
j��

f i�j�x�
xj �X i

j

h

i� dY
j��

Kh�X
i
j � xj� dx�j �

and note the obvious fact that

kfk�� �
Z
kfk�j �xj�dxj� j � �� � � � � d�

Therefore� because an integral is minimized by minimizing the integrand� our problem is solved by

minimizing kY�mk�j�xj� for �xed xj with respect to mj�xj� and ��mj�xj�� for j � �� � � � � d� After

some standard calculations� this leads to�

emj�xj�bV j
����xj� � emj�xj�bV j

j���xj� �
�

n

nX
i��

Kh�X
i
j � xj�Y

i � ��bV j
����xj�

��



�
X
� ��j

Z em��x��bV ��j
��� �x�� xj� dx�

�
X
� ��j

Z em��x��bV ��j
��� �x�� xj� dx� ����

emj�xj�bV j
j���xj� � emj�xj�bV j

j�j�xj� �
�

n

nX
i��

X i
j � xj

h
Kh�X

i
j � xj�Y

i � ��bV j
j���xj�

�
X
� ��j

Z em��x��bV ��j
��j �x�� xj� dx�

�
X
� ��j

Z em��x��bV ��j
��j �x�� xj� dx�� ����

Here� we have used one� and two�dimensional marginals of the matrix bV�
bVr�xr� �

Z bV�x� dx�r ����

bVr�s�xr� xs� �

Z bV�x� dx��r�s�� ����

The elements of these matrices are denoted by bV r
p�q�xr� and bV r�s

p�q �xr� xs� with p� q � �� � � � � d� Together

with the norming condition Z emj�xj�bV j
j���xj� dxj � �� ����

equations ���� and ���� de�ne ��� emj and emj for given Y and �em�� em� � � �� j
�

Equations ���� and ���� can be rewritten as

emj�xj� � �mj�xj� � !mj�xj� ����

emj�xj� � �mj�xj� � !m
j�xj�� ����

where �mj�xj�� !mj�xj�� �mj�xj� and !mj�xj� are de�ned by�

�mj�xj�bV j
����xj� � �m

j�xj�bV j
j���xj� �

�

n

nX
i��

Kh�X
i
j � xj�Y

i ��	�

��



�mj�xj�bV j
j���xj� � �m

j�xj�bV j
j�j�xj� �

�

n

nX
i��

X i
j � xj

h
Kh�X

i
j � xj�Y

i ����

!mj�xj�bV j
����xj� � !m

j�xj�bV j
j���xj� � ���bV j

����xj��
X
� ��j

Z em��x��bV ��j
��� �x�� xj� dx�

�
X
���j

Z em��x��bV ��j
��� �x�� xj� dx� ����

!mj�xj�bV j
j���xj� � !m

j�xj�bV j
j�j�xj� � ���bV j

j���xj��
X
���j

Z em��x��bV ��j
��j �x�� xj� dx�

�
X
���j

Z em��x��bV ��j
��j �x�� xj� dx� ����Z

!mj�xj�bV j
j���xj� dxj � �� ����

Note that � �mj� �mj� is the one dimensional local linear �t of the observations Y i onto X i
j �

Again� together with the norming condition ����� equations ��������� de�ne ��� emj and emj for

given Y and �em�� em� � � �� j
� In the j�th step of every cycle of the back�tting algorithm an update

of ��� emj and emj will be calculated by solving equations ���������� In the next subsection we will

discuss asymptotics for the back�tting estimate in a more general set up� In particular� there we will

not assume that � �m�� �m�� is a one�dimensional local linear �t nor that bV� and bV���� are motivated

by local linear smoothing� Furthermore� we will not make any assumptions on the stochastic nature

of the sample� For arbitrary choices of � �m�� �m�� is a one�dimensional local linear �t nor that bV� andbV���� we will assume that emj and emj are de�ned by

�Mj�xj�

�� femj � �mjg�xj�
femj � �mjg�xj�

�A � ���
�� bVj

����xj�bVj
j���xj�

�A ����

�
X
���j

Z
�S��j�x�� xj�

�� em��x��em��x��

�A dx��Z emj�xj�bV j
j���xj� dxj � �� ����

��



where

�Mj�xj� �

�� bV j
����xj� bV j

j���xj�bV j
j���xj� bV j

j�j�xj�

�A � ����

�S��j�x�� xj� �

�� bV ��j
��� �x�� xj� bV ��j

��� �x�� xj�bV ��j
j�� �x�� xj� bV ��j

��j x�� xj�

�A � ����

Let us �nish this section by some computational remarks�

� In a faster implementation� the norming of emj done in ���� could be omitted and one could

put always �� � �� After the �nal cycle all functions emj could be replaced by emj�xj� �R emj�xj�V
j
j���xj� dxj and �� de�ned appropriately� It is easy to see that this algorithm does the

same� If one is interested only in the estimation of the sum ��m��x��� � � ��md�xd� the �nal

norming could be omitted or replaced by another norming�

� A possible initialization of back�tting is given by putting �� � �� em� � �m� and em� � �m� for

� � �� � � � � d�

� Note that the estimates �m� and �m
� have to be calculated only at the beginning and have not

to be updated in each back�tting iteration�

� For an implementation of back�tting� all estimates �i�e�� �m�� �m�� !m�� !m�� em�� em�� bV� and bV���� 


have to be calculated on a grid and the integrals in ���� and ���� have to be replaced by

averages� It should be emphasized that the grid need not coincide with the set of design points�

In particular� for large data sets it may not be necessary or desirable that it contains the same

number of points�

��



��� Asymptotics for Local Polynomials

We discuss now asymptotics for the back�tting estimate� This will be done in a general set up�

We assume that some estimates �m�� �m�� bV� and bV���� ��� �� � �� � � � � d
 are given and that ��� em�

and em� �� � �� � � � � d
 are de�ned by ���� � ����� In particular� we will not assume that � �m�� �m��

is a one dimensional local linear �t and that bV� and bV���� are motivated by local linear smoothing�

Furthermore� we will not make any assumptions on the stochastic nature of the sample�

Assumptions� We suppose that there exists a density function p on Rd with marginals

pj�xj� �

Z
p�x� dx�j

and

pj�k�xj� xk� �

Z
p�x� dx��j�k� for j �� k

and a positive de�nite �d � �� � �d � �� �deterministic� matrix V� We de�ne �Mj�xj� and

�S��j�x�� xj�as in ���� and ���� and we put

Mj �

�� V��� Vj��

Vj�� Vj�j

�A �

S��j �

�� V��� V���

Vj�� V��j

�A �

�A��� For all j �� k� it holds that Z
p�j�k�xj� xk�

pk�xk�pj�xj�
dxjdxk ���

�A��� For all j �� k� it holds thatZ 

�Mj�xj�

���S��j�x�� xj��M��
j S��j

pj���xj� x��

pj�xj�

��
r�s

p��x��
��pj�xj�dxjdx� � oP ����

for r� s � �� �� Here �� � �
r�s denotes the �r� s� element of a matrix �� � �
�

��



�A��� There exists a constant C such that with probability tending to one for all jZ
�mj�xj�

�pj�xj�dxj 	 C

and Z
�mj�xj�

�pj�xj�dxj 	 C�

Furthermore
R
�mj�xj��bV j

j���xj� dxj does not depend on j and it is equal to ���

�A��� There exists a constant C such that with probability tending to one for all j �� k

sup
xj

Z
trace� �Mj�xj�

���S��j�x�� xj� �M��x��
���S��j�x�� xj� �Mj�xj�

��
dx� 	 C�

�A	�� We suppose that for a sequence  n the smoothers �mj and �mj can be decomposed as �mj �

�mA
j � �m

B
j and �mj � �mj�A � �mj�B � where the �rst components �mA

j and �mj�A are mean zero

and satisfy

sup
xk

������
Z

�Mj�xj�
���S��j�x�� xj�

�� �mA
j �xj�

�mj�A�xj�

�A dxj

������ � oP

�
 n

log n

�
�

For s � A and s � B we de�ne ��s� ems
j and emj�s as the solution of the following equations

�Mj�xj�

�� fems
j � �ms

jg�xj�
femj�s � �mj�sg�xj�

�A � ���
�� bVj

����xj�bVj
j���xj�

�A ����

�
X
���j

Z
�S��j�x�� xj�

�� ems
��x��em��s�x��

�A dx��Z ems
j�xj�bV j

j���xj� dxj � �� ��	�

Existence and uniqueness of emA
j �emB

j �emj�A and emj�B is stated in the next theorem� Note

that �ems
j� emj�s� is de�ned as �emj� emj� in equations ���� and ���� with � �mj� �mj� replaced by

� �ms
j� �m

j�s�� We suppose that for �deterministic� functions �j�n���� �j�Bn ��� the term emB
j satis�es


emB
j �xj� � �j�n�xj� � oP � n�

��



emj�B�xj� � �jn�xj� � oP � n��

We remark again that these conditions are all straightforward to verify� except perhaps A	�� Note

that we shall not require bV�x� to converge in probability to V�x� because this would depend on the
curse of dimensionality�

We state now results that are similar to the ones for Nadaraya�Watson smoothing in Section ��

Theorem �� �Convergence of backfitting�� Suppose that conditions A� �	A� � hold� Then�

with probability tending to one� there exists a solution � ��� em�� em� � � � �� � � � � d� of ���� 	 ���� that

is unique� Furthermore� there exist constants � � � � � and c � � such that� with probability tending

to one� the following inequality holdsZ hem�r�
j �xj�� emj�xj�

i�
pj�xj�dxj 	 c��r"�Z �emj��r��xj�� emj�xj�

��
pj�xj�dxj 	 c��r"�

where

" � ������
� �
dX

���

Z hem���
� �x��

i�
p��x��dx� �

Z �em������x��
��
p��x��dx��

Here� for r � � the functions ������ em���
� and em����� are the starting values of the back�tting algorithm�

Furthermore for s � A and s � B� with probability tending to one� there exists a solution ���s�ems
j and emj�s � j � �� � � � � d� of ��
� 	 ���� that is unique�

Just as Theorem � stated for Nadaraya�Watson smoothing� the stochastic part of the back�tting

estimate coincides again with a one�dimensional local linear �t� This is stated in the following

theorem�

��



Theorem ��� Suppose that conditions A� � 	 A� � hold for a sequence  n� Then it holds that

sup
xj

�� emA
j �xj�� bmA

j �xj�
�� � oP � n��

In particular� one gets emj�xj� � bmA
j �xj� � �j�n�xj� � oP � n��

We suppose now that a full dimensional estimate bm as described at the beginning of this section

exists� Under conditions analogous to ��������� we get the following corollary�

Corollary ��� Suppose that conditions A� �	A� � hold with  n � n���	 and that conditions of

type ��
�	���� apply for bm� Then�

n��	

�����
em��x���m��x��

���emd�xd��md�xd�

����� �� N

�BBBBBB�
�����
b��x��
���

bd�xd�

����� �
��������
v��x�� � � � � �

�
� � �

���
���

� � � �

� � � � � vd�xd�

��������

�CCCCCCA �

where vj�xj� � �vj�xj�� j � �� � � � � d� are the variances of the infeasible �oracle estimate� �mj�xj�

�de�ned similarly as for Nadaraya	Watson smoothing in the last section�� while bj�xj� are solutions

to the following minimization problem

min
��b���������bd���

Z
�b�x�� �� b��x��� � � �� bd�xd�


�
p�x�dx� s�t�

Z
bj�xj�pj�xj�dxj � �� j � �� � � � � d�

For the case that the function b is already of additive form b�x� � b���x�� � � � � � b�d�xd� the bias

functions bj coincide with the bias �bcj�xj� of the �corrected� oracle estimate �mc
j�xj�� Also

n��	 fem�x��m�x�g �� N �b��x�� v��x�
 �

��



where b��x� �
P

j bj�xj� and v��x� �
P

j vj�xj��

Suppose additionally that for a sequence 
n with n���	 � o�
n�

sup
x
jbmB�x��m�x�� n���	b�x�j � OP �
n�

sup
x
j �mj�xj��mj�xj�j � OP �
n� for j � �� � � � � d�

Then� we have for j � �� � � � � d�

sup
x
jemj�x��mj�x�j � OP �
n��

Remark� For example� when the data are independent and identically distributed �i�i�d�� and

the smoother is the local linear� then the bias b is of additive form b�x� � b���x��� � � �� b�d�xd�� Then

the bias functions bj coincide with the bias �bcj�xj� of the �corrected� oracle estimate �m
c
j�xj� �

bj�xj� � lim
n��

�
h�n��	

� ���K�

�

�
m��

j �xj��
Z

m��
j �xj�pj�xj�dxj

�
for j � �� � � � � d� where ���K� �

R
t�K�t�dt� In this case� the asymptotic bias and the asymptotic

variance are identical to bias and variance of the mean corrected �oracle� estimator � based also on

local linear estimation
� That means our estimate achieves the same �rst order asymptotics as if

the other components would be known� In particular� our estimate is design adaptive� This is in

contrast to Opsomer and Ruppert ������ who propose a back�tting estimate� based on the local

linear smoother� that has design dependent bias�

� Veri�cation of Conditions

We now provide su�cient conditions for A��A	 to hold in a time series setting for the Nadaraya�

Watson smoother� We suppose that fY i� Z ig�i��� is a jointly stationary process on the real line

�	



and let Xi � �Z i� � � � � Z i�d����� In this case� m��� is the d�th order autoregressive mean� Let F b
a be

the ��algebra of events generated by the random variables fY i� Z i� a 	 j 	 bg� The stationary
processes fY i� Z ig are called strongly mixing �Rosenblatt ���	��
 if

sup
A�F�

��
�B�F�k

jP �A 
B�� P �A�P �B�j � 
�k�� � as k ���

We assume

�B�� The kernel K is bounded� has compact support� is symmetric about zero� and is Lipschitz

continuous� i�e�� there exists a positive �nite constant C such that jK�u��K�v�j 	 C ju� vj �

�B�� The density q� �� p
 of X� and the densities q��� of �X��X��� � � �� � � � � are bounded away

from zero and in�nity on their compact support�

�B�� For some � � �� E�jY j	� ���

�B�� The conditional densities fX�jY��x�jy�� of X� given Y� and fX��X�jY��Y��x�� x�jy�� y�� of �X��X��

given �Y�� Y��� � � �� � � � � exist and are bounded from above�

�B	� The processes fYj� Zjg are strong mixing with
P�

j�� j
a f
�j�g����
 � � for some � � � and

a � �� ����

�B�� The strong mixing coe�cients satisfy
P�

j�� ��j� �� � � and
P�

j�� ��j� c� � � for c �

�� �� where
 ��n� �� � �nL��n� �r��n�� �nT �
n �log n�

��


 fr��n�g with r��n� � �n �Tn log n�

���

and L��n� � �nT �
n �log n�

���
with Tn �

�
n log n�log log n����

���	
for some 
 � �� while

��n� c� � �nL��n� �r��n�� �n �hc log n�
��



 fr��n�g with r��n� � �nhc �log n�
��� and L��n� �

�n �hc�� log n�
c��

�

�B�� The functions m and p are twice continuously di�erentiable�

��



We apply some results of Masry ������ to establish the conditions A��A	�

Theorem �� Suppose that conditions B�	B� hold� Then conditions A�	A� hold�

� Illustration

We applied our back�tting method to the estimation of nonparametric AR�ARCH models on stock

return data� Speci�cally� we �t the following model

Y i � ��m��Y
i��� �m��Y

i��� � �i	i � ��i � � � v��Y
i��� � v��Y

i����

�rst applying our method to the raw data to obtain estimates b�� em����� and em����� and then applying
it to the squared residuals fY i � b� � em��Y i���� em��Y i���g� to obtain estimates b��ev����� and ev�����
As in H�ardle and Yiang ������� we expect estimation of the mean not to a�ect the estimation of the

variance and we have computed standard errors accordingly�

Our data is monthly return on the S#P	�� index whose stocks were traded on the New York

Stock Exchange between ���������� The results are shown below

��� Figures Here���

The con�dence intervals reveal that the mean e�ect is not well determined� as is to be expected�

but that the variance e�ects are highly signi�cant� The asymmetry in v���� has been found before
in stock returns� see Bollerslev� Engle� and Nelson ������ pp� ����������� and is possibly explained

by the �leverage e�ect� � the limited liability of public companies makes downturns more risky than
upturns for investors�

��



A Appendix	 Proofs

Before we come to the proofs of our results let us collect some facts about iterative projections� Let

us de�ne the following spaces of additive functions

H � fm � L��p� � m�x� � m��x�� � � � ��md�xd� �p a�s���

Z
m�x�p�x�dx � �g�

Hj � fm � H � m�x� � mj�xj� �p a�s�� for a function mj � L��pj�g�

The norm in the space H is denoted by kmk� � R
m��x�p�x�dx for m � H� For m � Hj we get

with mj�xj� � m�x� �p a�s�� that kmk� � R
m��x�p�x�dx �

R
m�

j�xj�pj�xj�dxj� The projection of

an element of H onto Hj is denoted by $j� The operator %j � I �$j gives the projection onto the

linear space

H	
j � fm � H �

Z
m�x���xj�p�x�dx � � for all � � Hjg

� fm � H �
Z

m�x�p�x�dx�j � � �pj a�s��g�

For m�x� � m��x�� � � � ��md�xd� � H we get

%jm�x� � m��x�� � � � ��mj���xj��� �m�
j �xj� �mj���xj��� � � � ��md�xd� ����

with

m�
j �xj� � �

X
k ��j

Z
mk�xk�

pjk�xj� xk�

pj�xj�
dxk� ����

We de�ne the operator b%j as %j but with m�
j�xj� on the right hand side of ���� replaced by

bm�
j �xj� � �

X
k ��j

Z
mk�xk�

bpjk�xj� xk�bpj�xj� dxk� ����

��



Put T � %d � � �%� and bT � b%d � � � b%�� We will see below that in our set up the back�tting algorithm

is based on iterative applications of bT � A central tool for understanding back�tting will be given by
the next lemma that describes iterative applications of T �

Lemma �norm of the operator T �� Suppose that condition A� holds� Then T � L��p� �
L��p� is a positive self adjoint operator with operator norm � � supfkTfk � kfk 	 �g � �� Hence�

for every m � H we get

kT rmk 	 � rkmk� ����

Furthermore� for every m � H there exist mj � Hj �� 	 j 	 d� such that m�u� � m��u�� � � � � �

md�ud� �p a�s�� and with a constant c � �

kmk � cmax fkm�k� � � � � kmdkg � ����

Proof of Lemma� We start by proving ����� It is known that ���� holds with � � 	 � �Qd
j�� sin

���j� where cos �j � ��Hj�Hj��� � � ��Hr� and where for two subspaces L� and L� the quan�

tity ��L�� L�� is the cosine of the minimal angle between L� and L�� i�e�� ��L�� L�� � supf
R
h��x�h��x�

p�x�dx � hj � Lj 
 �L� 
 L��	� khjk 	 ��j � �� �g� This result was shown in Smith� Solomon� and
Wagner ������� For a discussion� see Deutsch ����	� and Bickel� Klaassen� Ritov and Wellner �������

Appendix A��� We will show now that for � 	 j 	 d the subspacesMj � H� � � � ��Hj are closed

subsets of L��p�� This implies that ��Hj���Mj� � � for j � �� � � � � d � �� see again Deutsch ����	��
Lemma ��	 and Bickel� Klaassen� Ritov and Wellner ������� Appendix A��� Proposition �� To prove

thatMj is closed we will use the following two facts� For two closed subspaces L� and L� of L��p� it

holds that L��L� is closed if and only if there exists a constant c � � such that for all m � L��L�

there exist m� � L� and m� � L� with m�u� � m��u�� �m��u�� �p a�s�� and

kmk � cmax�km�k� km�k
� ����

Furthermore� L��L� is closed if the projection of L� onto L� is compact� For the proof of these two

statements see Bickel� Klaassen� Ritov and Wellner ������� Appendix A��� Proposition �� Suppose

��



now that it has already been proved for j 	 jo� � thatMj is closed and that we want to show that

Mjo is closed� As mentioned above� for this claim it su�ces to show that $jojMjo�� is compact� We

remark �rst that ���� implies that for every m � Mjo�� there exist mj � Hj �j 	 jo � �� such that
m�u� � m��u�� � � � ��mjo���ujo��� �p a�s�� and with a constant c � �

kmk � cmax�km�k� � � � � kmjo��k
� ����

We will prove that

k$jomk� 	 const�

�
jo��X
j��

Z
R�
j�jo�xj� xjo�pj�xj�pj��xj��dxjdxj�

�
kmk� ����

with

Rj�jo�xj� xjo� �
pj�jo�xj� xjo�

pjo�xjo�pj�xj�
�

Inequality ���� implies compactness of $jo jMjo��� To see this one argues as in the standard proofs

for compactness of Hilbert�Schmidt operators� see e�g�� Example ����� in Balakrishnan �������

It remains to show ����� This follows from ���� with applications of the Cauchy�Schwarz inequal�

ity�

Equation ���� follows as �����

Proof of Theorem �� The following lemma establishes the result�

Lemma �norm of the operator bT �� Suppose that conditions A�	A� hold� Choose � with

� � � � �� Then� with probability tending to one� the operator norm sup
n
kbTf�x�
k � kfk 	 �o is

bounded by ��

��



Proof of Lemma� We remark �rst that the distance between m�
j and bm�

j � see ��������� can be

bounded as follows�

kbm�
j �m�

jk 	
X
k ��j

kmkkSjk�

with

S�
jk �

Z 

pj�k�xj� xk�

pk�xk�pj�xj�
� bpj�k�xj� xk�
pk�xk�bpj�xj�

��
pk�xk�pj�xj�dxj dxk�

With Sj � maxk ��j jSjkj this and equation ���� imply

kbm�
j �m�

jk 	
d

c
kmkSj�

Now because of �A��� Sj � oP ���� This gives kb%j �%jk � oP ���� Now the statement of the lemma

follows from

kbT � Tk � oP ����

Lemma �stochastic expansion of em�� Suppose that conditions A�	A� hold� Then there exist

constants � � � � � and C � � such that with probability tending to one� for em the following

stochastic expansion holds for s � �


em�x� � sX
r��

bT r
� bm��x� � � � ��

sX
r��

bT r
d bmd�x� �R�s��x��

where bTj � b%j
b%j�� � � � b%�

b%d
b%d�� � � � b%j�� and R�s��x� � R

�s�
� �x�� � � � �� R

�s�
d �xd� is a function in H

with

kR�s�
j k 	 C�s� ����

Under the additional assumption of �A�� it holds that

sup
xj

jR�s�
j �xj�j 	 C�s� ��	�

��



Proof of Lemma� We remark �rst that ���� can be rewritten as

em�x� � b%j em�x� � bmj�xj��

Iterative applications of this equation for j � �� � � � � d gives

em�x� � bT em�x� � b
�x��
where b
�x� � b%d � � � b%� bm��x� � � � �� b%d bmd���x� � bmd�xd��

With the last equality we get the following expansion

em�x� � �X
r��

bT rb
�x��
Plugging the de�nition of b
 into this equation gives

em�x� � �X
r��

bT r
� bm��x� � � � ��

�X
r��

bT r
d bmd�x��

The operator norms of bT�� � � � � bTd are smaller than �� with probability tending to one� for � � � large

enough� This follows from the last lemma and it shows that the in�nite series expansion in the last

equation is well de�ned� Furthermore� this can be used to prove that for C� � � large enough� with

probability tending to one� kR�s�
j k 	 C��

s� This implies claim ���� because of ����� Assume now

�A��� For the proof of ��	� note that for C� � � large enough with probability tending to one for all

functions f� g in Hj with supxj jf�xj�j 	 � and kgk 	 � it holds for k �� j that����Z bpjk�xj� xk�bpk�xk� f�xj�dxj

���� 	 C�� ��������Z bpjk�xj� xk�bpk�xk� g�xj�dxj

���� 	 C�� ����

��



Equation ���� follows from assumption �A�� by application of the Cauchy Schwarz inequality� Equa�

tions ���� and ���� imply that for C� � � large enough with probability tending to one for all

functions h in H with khk 	 � it holds that

kbThk 	 C�� ����

Claim ��	� can be shown by using ���� and �����

Proof of Theorem �� The following lemma establishes the result�

Lemma �behaviour of the stochastic component of em�� Suppose �A�� 	 �A��� Then we

have that

sup
xj

jemA
j �xj�� bmA

j �xj�j � OP �log n  n�� ����

Proof of Lemma� Proceeding as in the last lemma we get with s � C� log n �where C� is

chosen large enough�

emA�x�� bmA�x� �

sX
r��

bT r
� bmA

� �x� � � � ��

sX
r��

bT r
d bmA

d �x� �R�s��x��

where R�s��x� � R
�s�
� �x�� � � � ��R

�s�
d �xd� is a function in H with

sup
xj

jR�s�
j �xjj 	  n�

It remains to show

sup
x
kbT r

� bmA
� �x�k � OP � n��

This follows from assumption �A	� by arguments as in the proof of the last lemma�

Proofs of Theorems �� and ��� The theorems follow as Theorems � and � by essentially the

same arguments� In particular� instead of L��p� we consider now L��V p� � ff � �f�� � � � � fd� � f j �

��



R
d� R with

R
fT �x�V f�x�p�x� dx ��g� Furthermore� now the spaces H and Hj are de�ned as

H � fm � L��V p� � m
��x� � m��x�� � � � ��md�xd� �p a�s�� for functions m� � L��p��� � � � �

md � L��pd��

Z
m��x�p�x�dx � � and for j � �� � � � � d the functions mj depend only

on xjg�
Hj � fm � H � m��x� � mj�xj� �p a�s�� for a function mj � L��pj�

and for � � �j it holds that m��x� � �g�

Note that again every function f in H is a sum of functions in Hj� there exist functions fj � R� R
�

with

x �
	
e� ej



fj�xj� is a function in Hj�

f�x� �
dX

j��

	
e� ej



fj�xj��

Here for j � �� � � � � d the vector ej denotes the �j � ��st eigenvector of Rd��� The operators %j is

now de�ned as in ���� with

m�
j�xj� � �

X
k ��j

Z
M

��
j Sj�k

pjk�xj� xk�

pj�xj�
mk�xk�dxk�

Furthermore� we de�ne the operator b%j now as %j but with m
�
j�xj� on the right hand side of ����

replaced by

m�
j�xj� � �

X
k ��j

Z
�M
��
j �xj��Sj�k�xj� xk�mk�xk�dxk�

Proceeding as above one can show that the norm of the operators T � %d � � �%� and bT � b%d � � � b%�

is smaller than � � � �with probability tending to one
� Theorems �� and �� follow by stochastic

expansions of em� compare the last two lemmas�
Proof of Theorem �� Let kgk� � supx jg�x�j � Then� under these conditions�

��



kbpj�k � E�bpj�k�k� � O

��
log n

nh�

����
�

a�s� � kbpj � E�bpj�k� � O

��
log n

nh

����
�

a�s��	��

kE�bpj�k�� pj�kk� � O�h� a�s� � kE�bpj�� pjk� � O�h� a�s� �	��

��bmA
j

��
�
� O

��
log n

nh

����
�

a�s� �
��bmB

j �mj

��
�
� O�h�� a�s�� �	��

see Masry ������ for a proof� Since infxj pj�xj� � � for all j and sup pj�k�xj� xk� ��� A� is satis�ed�

Furthermore� since

inf
xj
bpj�xj� � inf

xj
pj�xj�� sup

xj

jbpj�xj�� pj�xj�j � inf
xj

pj�xj�� o��� a�s��

by �	�� and �	��� assumptions A� and A� are also satis�ed by straightforward use of the geometric

series expansion and the above result� Speci�cally� we have

�bpj�xj� � �

pj�xj�
� bpj�xj�� pj�xj�bpj�xj�pj�xj� �

Likewise� assumption A� is satis�ed by B�� B�� and �	��� By the triangle inequality�

sup
xk

���� Z bpj�k�xj� xk�bpk�xk� bmA
j �xj�dxj

���� 	 sup
xk

���� Z pj�k�xj� xk�

pk�xk�
bmA
j �xj�dxj

�����
sup
xk

����Z 
 bpj�k�xj� xk�bpk�xk� � pj�k�xj� xk�

pk�xk�

� bmA
j �xj�dxj

����
	 sup

xk

���� Z pj�k�xj� xk�

pk�xk�
bmA
j �xj�dxj

����
�C

�kbpj�k � pj�kk� � k bpk � pkk�
���bmA

j

��
�

where the second term on the right hand side is o�n���	� with probability one when h � O�n���	��

As for the �rst term� without loss of generality� we can suppose that

�	



bmA
j �xj� � n��

nX
i��

Kh�xj �X i
j��

i
j

pj�xj�
� bvj�xj�

pj�xj�
�

where E��ijjX i
j� � �� Therefore�Z

pj�k�xj� xk�

pk�xk�
bmA
j �xj�dxj �

�

n

nX
i��

�ij�ni�xk� � �ni�xk� �

Z
K�u�

pj�k�X i
j � uh� xk�

pj�X i
j � uh�pk�xk�

du

by straightforward change of variables� The argument is now quite similar to that given in Masry

������� We drop the k subscript for convenience� Since the support of X is compact� it can be

covered by a �nite number c�n� of cubes In�r with centres xr with dimension l�n�� We then have

sup
x�X

���� Z pj�k�xj� x�

pk�x�
bmA
j �xj�dxj

���� � max
�
r
c�n�

sup
x�X�ln�r

������n
nX
i��

�ij�ni�x�

�����
	 max

�
r
c�n�
sup

x�X�ln�r

������n
nX
i��

�ij�ni�x��
�

n

nX
i��

�ij�ni�xr�

�����
� max

�
r
c�n�

������n
nX
i��

�ij�ni�xr�

�����
� Q� �Q�� say�

It is straightforward to see that j�ni�x�� �ni�xr�j 	 al�n� for some constant a and that Q� � Op�l�n���

To handle the second term we must use an exponential inequality and a blocking argument as in

Masry�s proof� In conclusion� by appropriate choice of c�n�� we obtain Q��Q� � O�log n�n���� with

probability one�

��
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