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Abstract

We derive the asymptotic distribution of a new backfitting procedure for estimating the
closest additive approximation to a nonparametric regression function. The procedure employs
a recent projection interpretation of popular kernel estimators provided by Mammen et al.
(1997), and the asymptotic theory of our estimators is derived using the theory of additive
projections reviewed in Bickel et al. (1995). Our procedure achieves the same bias and variance
as the oracle estimator based on knowing the other components, and in this sense improves
on the method analyzed in Opsomer and Ruppert (1997). We provide ‘high level’ conditions
independent of the sampling scheme. We then verify that these conditions are satisfied in a

time series autoregression under weak conditions.
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1 Introduction

Separable models are important in exploratory analyses of nonparametric regression. The backfitting
technique has long been the state of the art method for estimating these models, see Hastie and
Tibshirani (1991). While backfitting has proven very useful in application and simulation studies, it
has been somewhat difficult to analyze theoretically, which has long been a drawback to its universal
acceptance. Recently, a new method, called marginal integration, has been proposed, see Linton and
Nielsen (1995), Tjgstheim and Auestad (1994) and Newey (1994), [see also earlier work by Auestad
and Tjgstheim (1991)]. This method is perhaps easier to understand for non-statisticians since it
involves averaging rather than iterative solution of nonlinear equations. Its statistical properties
are trivial to obtain, and have been established in the aforementioned papers. Although tractable,
marginal integration is not generally efficient. Fan, Mammen, and Hardle (1996) and Linton (1996)
showed how to improve on the efficiency of the marginal integration estimator in regression — in the

latter paper, this was achieved by carrying out one backfitting iteration from this initial consistent
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starting point. This modification actually achieves full oracle efficiency, i.e., one achieves the same
result as if one knew the other components. This suggests that backfitting itself is also efficient in
the same sense. Moreover, backfitting, since it relies only on one-dimensional smooths is free from
the curse of dimensionality.

Recent work by Opsomer and Ruppert (1997) and Opsomer (1997) has addressed the algorithmic
and statistical properties of backfitting. Specifically, they gave sufficient conditions for the existence
and uniqueness of a version of backfitting, or rather an exact solution to the empirical projection
equations, suitable for any (recentred) smoother matrix. They also derived an expansion for the
conditional mean squared error of their version of backfitting: the asymptotic variance is equal to
the oracle bound, while the precise form of the bias, as for the integration method, depends on the
way recentering is carried out, but in any case is not oracle, except when the covariates are mutually
independent. This important work confirms the efficiency, at least with respect to variance, of [their
version of] backfitting. Unfortunately, their version of backfitting is not design adaptive, which is
somewhat surprising given that they use local polynomial smoothers throughout. Furthermore, their
proof technique required rather strong conditions; specifically, the amount of dependence in the
covariates was strictly limited.

In this paper, we define a new backfitting-type estimator for additive nonparametric regression.
We make use of an interpretation of the Nadaraya-Watson estimator and the local linear estimator
as projections in an appropriate Hilbert space, which was first provided by Mammen et al. (1997).
Our additive estimator is defined as the further projection of these multivariate estimators down on
the space of additive functions. We examine this estimator and show how — in both the Nadaraya-
Watson case and in the local linear case — the estimator can be interpreted as a backfitting estimator
defined through iterative solution of the empirical equations. We establish the geometric convergence
of the backfitting equations to the unique solution using the theory of additive projections, see Bickel

et al. (1995). We use this result to establish the limiting behaviour of the estimates: we give both



the asymptotic distribution and a uniform convergence result. Qur procedure achieves the same
bias and variance as the oracle estimator based on knowing the other components, and in this
sense improves on the method analyzed in Opsomer and Ruppert (1997). Although the criterion
function is defined in terms of the high-dimensional estimates, we show that the estimator is also
characterized by equations that only depend on one- and two-dimensional marginals, so that the
curse of dimensionality truly does not operate here. Our first results are established using ideas from
Hilbert space mathematics and hold under ‘high level’ conditions, which are formulated independently
of specific sampling assumptions. We then verify these conditions in a time series regression with
strong mixing data. Our conditions are strictly weaker than those of Opsomer and Ruppert (1997),
and do not necessarily restrict the dependence between the covariates in any way.

This paper is organized as follows. In section 2 we show how local polynomial estimators can
be interpreted as projections. In section 3 we introduce our additive estimators in the simplest
situation, i.e., for the Nadaraya-Watson-like pilot estimator, establishing the convergence of the
backfitting algorithm and the asymptotic distribution of the estimator under high level conditions
that are suitable for a range of sampling schemes. In section 4 we extend the analysis to local
polynomials. In section 5 we investigate a time series setting and give primitive conditions that
imply the high level conditions. In section 6 we illustrate our procedure on financial data. All proofs

are contained in the appendix.

2 A projection interpretation of the local polynomials

Let Y, X be random variables of dimensions 1 and d respectively and let (Y X*'), ... (Y™ X")
be a random sample drawn from (Y, X). We first provide a new interpretation of local polynomial

estimators of the regression function m(xzq,...,24) = E(Y|X = z) evaluated at the vector x =

T

(x1,...,24)", see Mammen, Marron, Turlach and Wand (1997). This new point of view will be useful



for interpreting our estimators of the restricted additive function m(a) = g+ mq(x1) + - - - + ma(xq).

The full dimensional local [q’th order| polynomial regression smoother, which we denote by

m(z) = (Mm°(z), ..., m*(x))T, satisfies

~ . - i 0 Xi — I 1 Xé — g\’ qd T - i
m(x) = argmin Z Y'—m® — ; m o—...— ; m H[&h(XZ—:w),
= - /=1
(1)

where ¢ is the order of the polynomial approximation. In fact, for simplicity of notation we will

concentrate on the local linear case considered in Ruppert and Wand (1995) for which ¢ = 1 — the
Nadaraya-Watson case, for which ¢ = 0, is even simpler, see below. Define the matrices [of dimension

n X (d+1) and n x n, respectively]

Xll—xl Xcll—l’d
R
X(x) = )
Xln—l’l Xg_l’d
1 - -
K(z) = dia d o xl d g (Xn
el Tl Bn(X7 — o), Alm Ku(X7 —20) )
and write
~ —1 ~ ~
m(z) = {X(:z;)TK(:I;)X(:I;)} X(:L')T Kz)Y=V l(x)R(:I;), (2)

where Y = (Y',...,Y")T, V(z) = X(2)TK(2)X(x) and R(z) = X(2)T K(2)Y.
For the new interpretation of local linear estimators we think of the data Y = (Y*,...,¥")T as

an element of the space of tuples of 2n functions
F = {(f” ci=1,...,n;5=0,...,d): Here, f* are functions from R* to R}.

We do this by putting f*°(z) = Y* and f*(z) = 0 for 5 # 0. We define the following norm on JF,

l & : i a = X2 A .
1A= [ =S[00 + 0 ) =] T KalX] = ) da

=1 7=1 7=1




where Kj,(-) = K(-/h)/h with K(-) a univariate kernel. Consider now the following subspaces of F:

Frar = {fe€F: 1% does not depend on i for j =0, ... ,d}
Fota = {f € Frar: [70x) = g1(21) + ... ga(xyq) for some functions g; : R — R for j = 1,...,d

and f"(x) = ¢/(z;) for some functions ¢/ : R — R for j = 1,...,d if j ~0}.

The estimate m(z) defines an element of F by putting f*(x) = m’(z), 7 = 0,1,...,d. This is
an element of Fy,;. It is easy to see that, with respect to || ||., m is the orthogonal projection
of Y onto Fyu. Below we introduce our version m of the backfitting estimator as the orthogonal
projection of m onto F,4q [with respect to || |[«]. For an understanding of m it will become essential
that it be the orthogonal projection of Y onto F,44. For the definition of such norms and linear
spaces for higher order local polynomials and for other smoothers we refer to Mammen, Marron,
Turlach and Wand (1997). Each local polynomial estimator corresponds to a specific choice of inner
product in a Hilbert space, and the definition of the corresponding additive estimators is then the
projection further down on F,4q. In particular, for the local constant estimator (Nadaraya Watson-like

smoothers) one chooses:

F = {(fZ :i=1,...,n): Here, f* are functions from R to R}

Frai = {f € F: f* does not depend on z}
Fodd = {f € Frar: fi(z) = qu(xy) + ... ga(zq) for some functions g; : R — R}
1 e
2= |- Ku(X?— ;) de.
e = [ e H X )
Note that for functions m in Fry [i.e. m:=m! = ... =m"] we get

] - / (e (o) d

]&h(X — ;) is the kernel density estimate of the design density. In particular,

-1 n

where p(x) =n

in this case m is the projection of the full dimensional Nadaraya-Watson estimate onto the subspace



of additive with respect to the norm of the space Ly(p). We give a slightly different motivation for
the projection estimate m in the next section, see (7). There we will discuss the case of local constant

smoothing in detail.

3 Estimation with Nadaraya Watson-Like Smoothers

In this section we will motivate our backfitting estimate based on regression smoothers like the

Nadaraya-Watson

_ n d - 7 7
ﬁl(l‘) _ n ! Ei:l HZ:I Ah(xf _ XZ)Y ) (3)
n_l E?:l HZ:I [(h(xé - Xé)

The specific choice of the Nadaraya-Watson estimator is not important, but the smoother is supposed

to have the ratio form

m _7“\(:1;)_ n wi(z)Y?

where p(z), which depends only on X" = {X',... X"} is an estimator of p(z), the marginal density
of X. Here, the weighting sequence {w;(x)};_, only depends on X", as does the weighting sequence
{wy(x)};_, of the numerator 7(z) = Y7 w;(2)Y". The assumption that the pilot estimate i exists

[i.e., is everywhere and always finite] will be dropped in our asymptotic analysis in the next section,

which will allow us to include the case of high dimensions d. We assume for the most part that

m(x) =p 4+ my(x) + ...+ mg(zq), (5)

although our definitions make sense more generally i.e., when the regression function is not additive,
in which case the target function is the closest additive approximation to the regression function.

For identifiability we assume that

/ (e )ps(e)de; = 0, j=1.....d. (6)
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where the marginal density of X; is denoted by p;(-). Denote also the marginal density of (X;, X;)
by pi;(+,-) respectively (2,7 = 1,...,d). The vector (X; : ¢ # j) is denoted by X_; and its density by
P—;-

Recall that backfitting is motivated as solving an empirical version of the set of equations

my(r1) = BE(Y[Xy=21) = p— E{ma(X2)| X, = 21}

— o= E{mq(Xg)| X1 = 21},

ma(zq) = B(Y|Xg=w2q) —p— E{mi(X1)[Xq = 24}

—...— F {md_l(Xd_1)|Xd = l’d} .

In the sample, one replaces E(Y|X; = ;) by one-dimensional smoothers m;(-), and iterates from
some arbitrary starting values for m;(-) see Hastie and Tibshirani (1991, p. 108). Let p(x) and m(x)
be multidimensional density and regression smoothers defined above. We define backfitting estimates

m; as the minimizers of the following norm

I = 7lly = [ e) = = nar) = .. = ) o) (7)
where the minimization runs over all functions m(x) = p + >, m;(z;), with [ my(x;)p;(z;)dz; =0,
see Nielsen and Linton (1996) [we suppose that the density estimate p is non-negative|. This means
that m(x) = @ 4+ mi(x1) + ... + m;(aq) is the projection in the space Ly(p) of m onto the affine
subspace of additive functions {m € Lq(p) : m(x) = p 4+ ma(x1) + ... + mg(xq)}. This is a central
point of our discussion. For projection operators backfitting is well understood (method of alternating
projections, see below). Therefore, this interpretation will enable us to understand convergence of

the backfitting algorithm and the asymptotics of m;. We remark that not every backfitting algorithm



based on iterative smoothing can be interpreted as an alternating projection method. The solution

to (7) is characterized by the following system of equations (j = 1,...,d):

m;(x;) = ﬁlxﬁ(w) T_; — my(x pla) T_;— i
i) = [ dtogidens =3 [ tma e - ®)

i= [ @@, )

where mj(z;) = n7' YL Kp(z; — X;)Yi /Dj(x;) is the univariate Nadaraya-Watson regression
smoother, in which p;(z;) = [ p(z)dz_; is the marginal of the density estimate p(x). Straightforward

algebra gives

/m(x)f@ de_; = pii(e)n™ Y Ky(e; — XY /Hhh v — Xi)do_;

p]((E]) i=1 L£]

= m;(x;).

Furthermore, i = [mi(x)p(z)de = [7(x)dz, and when [w;(x)dz = 1, we find, as in Hastie and
Tibshirani (1991), that i = n=' > Y i.e., that i is the sample mean. So i is a \/n-consistent
estimate of the population mean and the randomness from this estimation is of smaller order and

can be effectively ignored. Note also that

A= [ At dey fori =1 (10)

We therefore define a backfitting estimator m;(x;), 7 = 1,...,d, as a solution to the system of

equations

mj(x;) = m;(a;) Z/mk Ty) d:z;_] w, j=1,...,d,

k#j



with @ defined by (10). Up to now we have assumed that multivariate estimates of the density and
of the regression function exist. This assumption is not reasonable for large dimensions d (or at least
such estimates can perform very poorly). Furthermore, this assumption is not necessary. Note that

(8) can be rewritten as

i(z;) = /mk z5) pf’“ x]’:;;k)dxk 7 (11)
oy pilz;

In this equation only two dimensional marginals of p are used. Note also that the solutions m;(x;) to
(11) inherit the smoothness properties of m(x) and p(x). We can therefore estimate the derivatives
of m;(x;), for example, by

() _ diimg(;) /mk o)L {pif’ (x”x’“)}dxk r=1,2,...
da’; dz”, oy da’; pilz;) 7 o

In the next section we will discuss estimates m; that are defined by (11) along with their asymptotic
properties. In practice our backfitting algorithm works as follows. One starts with an arbitrary

initial guess m ! for m;. In the j-th step of the r-th iteration cycle one puts

ll(2;) = () Z/ pyk %J/‘k Pkl 2h) g Z/ pj’i(xj’x’“)dxk _i

s pilx;) k> pi(x;)

and the process is iterated until a desired convergence criterion is satisfied. The integrals are com-

puted numerically, see section 4 below for further comments.

3.1 Asymptotics for the Nadaraya-Watson-like Version

We consider now estimates m; that are defined by (11) with i defined by (10), where m;, pjx, and p;
are some given estimates. The next theorem gives conditions under which, with probability tending

to one, there exists a solution m; of (11) that is unique and that can be calculated by backfitting.

10



Furthermore, the backfitting algorithm converges with geometric rate. Our assumptions, given below,
are ‘high-level’ and only refer to properties of m;, pjx, and p; [for example, we do not require that
p is the underlying density of X or that m;, p;r, and p; are kernel estimates] — these properties
can be verified for a range of smoothers under quite general heterogeneous and dependent sampling

schemes, and we investigate this in section 5 below.

ASSUMPTIONS. We suppose that there exists a density function p on R with marginals

pitas) = [ o) do
and
pik(Tj, ) = /p(l') dr_gjpy forj #k.

(A1) For all j # k, it holds that

2 (o
/—p]’k(x”xk) da;dzry < oo.
pr(zr)pi(z;)

(A2) For all j # k, it holds that
/ [ Pig(@xe)  pie(), an)

pr(xi)pi(2;)  pela)p;(z;)

2
} pr(k)pi(z;)de;dzy = op(1).
Furthermore,

/ﬁlj(xj)ﬁj(xj) dr; = const.

By definition this constant is equal to i , see (10).
(A3) There exists a constant C such that with probability tending to one for all j,
/ﬁ%f(%)pj(xj)d% <C.
(A4) There exists a constant C such that with probability tending to one for all j # k,

2 (x;,x
sup/ /zj’k(—i’k)dxj < (.
v J PR(ar)pi(e;)

11



(Ab) We suppose that for a sequence A, | 0 the one-dimensional smoothers m; can be decomposed as

o~

mj = ﬁle + ﬁlf with [ mj(x;)p;j(x;) dzj not depending on j and, where the first component

)
= op .
log n

For s = A and s = B, we define m? as the solution of the following equation:

i) = i) = 3 [ o BT ey (12)

k#j ])

ﬁle is mean zero and satisfies

T
sup ‘/p], i» %) f(:z;j)dxj
pk

where [* = [ m*(z)p(x)dx. Existence and uniqueness of ﬁle and ﬁlf is stated in the next
theorem. Note that m? is defined as m; in equation (11) with m; replaced by m? . We suppose
that for (deterministic) functions p;,(-) the term m satisfies

mP(x;) = pin(z;) + op(An),

These conditions, which we discuss further below, are all straightforward to verify, except perhaps
A5, and turn out to be weaker than those made by Opsomer and Ruppert (1997).

The following result is crucial in establishing the asymptotic properties of the estimates.

THEOREM 1 [CONVERGENCE OF BACKFITTING]. Suppose that conditions A1-A2 hold. Then,
with probability tending to one, there exists a solution m; of (11) and (10) that is unique. Furthermore
there exist constants 0 < v < 1 and ¢ > 0 such that, with probability tending to one, the following
inequality holds

~[r ~ 2 , ~ 2
[ [ = e pitede; < o [ [0 o (13
Here, forr =0 the function ml'l(z) = ﬁl[{](lil) +...+ ﬁlg](xd) is the starting value of the backfitting
algorithm.

12



Furthermore, for s = A and s = B, with probability tending to one there exists a solution m? of

(12) that is unique.

Our next theorem states that the stochastic part of the backfitting estimate is easy to understand.
It coincides with the stochastic part of a one-dimensional smooth. Therefore, for an understanding
of the asymptotic properties of the backfitting estimate it remains to study its asymptotic bias. This
will be done after the theorem for the special case that an asymptotic theory is available for the pilot

estimate m.

THEOREM 2. Suppose that conditions A1 - A5 hold for a sequence A,,. Then, it holds that

In particular, one gets

() = Mg (25) + pin(eg) +op(An).
We now apply Theorem 2 to the case that full dimensional pilot estimates p(x), 7(x) and m(x) =
F(x)/p(x) = Y0 wi(2)Y" exist and that @i, my, ..., my are defined as minimizers of (7) [i.e., T +m;+

...+ mg is the projection of m onto the class of additive functions in Ly(p).] For the one-dimensional

smooths, m;, we have, with appropriate weights w;;(z;), that

X

m(z;) = /m(x)f( ) dr_j =Y wjx)Y".
pi(x;) =1
We compare now the estimate m; with the infeasible estimate m; that uses the knowledge of the
other components m; with [ # j. More precisely, we define the infeasible estimator m;(x;) to be the
one-dimensional smooth of the unobserved data Y, = m;(X!)+e' [with e’ =Y* —p =37 mu(X})]

on X}, thus

i(e) =Y wil)Y., j=1,....d. (14)
=1

13



Then, under appropriate regularity conditions,

n¥ fri () = m(es)} = N B, iie) b =1, (15)
for certain functions b;(-) and #;(-). Moreover, because of cov {r;(z;), r(zx)} = o(n~*?) one has

n*5 L (x;) — mi(x;)} and n®® {fg(zr) — mi(ag)} are asymptotically independent for j # k.
(16)
The additional information that [m;(z;)p;(z;)dx; = 0 may have some value, and we can define
the mean corrected version of m;(x;), by mc(x]) mj(x;) —n~t Y, mj(X;), which has the same
asymptotic variance as rm;(x;) but bias b;( (x) — fb x)p;(a;)dz;.
We suppose now that our conditions hold with m4(z) = Y7 wy(x)e’ and mP(x) = D0 wi(2)

m(X*). One can decompose

my(z;) = /ﬁlA(x)A}jEij)dx—j = zn:wﬁ(%)g
/

@) 2o =S g m(X).

~ B
m;(x;) =
7 pi(z;) —

Suppose now that it can be shown for a function b that
ﬁlB(l') =m(x)+ n_2/5b(:1;) + 0p(n_2/5). (17)

We have the following

COROLLARY 1. Suppose that conditions A1-A5 hold with A, = n=/° and that (14) - (17) apply.
Then

| vi(zy) 0 0 ]
ﬁll(l'l) — ml(l'l) bl(l’l)
0
n?/® = N : , ,
mg(xg) — my(x ba(xq) !
a(xq) a(xq) dl T4 _ 0 0 vulia) |

14



where vi(x;) = vj(x;), 7 = 1,...,d, are defined above, while b;(x;) are solutions to the following

minimization problem

. (n;linb ()/[b(:z;) — = by(xy) — ... = bg(xg)]’ p(x)dz, s.t. /bj(xj)pj(xj)dxj =0,5=1,....d.
01 (+)5e-bal

For the special case that the function b is already of additive form b(x) = bi(x1) + ... + b3(xq), the

bias functions bj(x;) coincide with the bias b;(:zj]) of the ‘corrected’ oracle estimate m(x;). Also
W25 (i) — m(z)} = N by (), 04 (2],

where by (v) = > . bj(x;) and vi(x) =37 vi(z)).
Suppose additionally that for a sequence &, with n=*° = o(4,)

sup |mB(x) —m(x) —n~Pb(z)| = Op(4,)

sup [rivj(2;) —m ;)| = Op(6,) forj=1,...,d.

Then, we have for 7 =1,...,d,

sup [ (z) —mj(2)] = Op(dn).

4 Estimation with Local polynomials

We discuss now local polynomials. For simplicity of notation we consider only local linear smoothing.
All arguments and theoretical results given for this special case can be easily generalized to local
polynomials of higher degree.

Backfitting estimators based on local polynomials can be written in the form of equation (7) by

choosing p(z) = ‘7070(:1;) — {\7({_0(:1;){\7:(1)7_0(:1;){707_0(:1;), where

15



Uiy [ ool Vool ) ok (eX o).
V—o,o(fﬁ) V—o,—o(l‘)
with the scalar ‘7070(:1;) =nty " HZ:1 K (X} — ), and {\/—_070(:1;), {\/—_07_0(:1;) defined appropriately.
This approach has two disadvantages. First, it may work only in low dimensions — since for the
asymptotics, existence of the matrix {\/—:(1)7_0(:1;) and convergence of {\/—_07_0(:1;) is required under our
assumptions [and this may hold only for low dimensional argument z]. Second, the corresponding
backfitting algorithm does not consist in iterative local polynomial smoothing.

We now discuss another approach based on local polynomials that works in higher dimensions
and that is based on iterative local polynomial smoothing. We motivate this approach for the case
that {\/—(:1;) does exist, but we will see that the definition of the backfitting estimate is based on only
one- and two-dimensional ‘marginals’ of {\/—(:1;) So its asymptotic treatment requires only consistency
of these marginals, and the asymptotics work also for higher dimensions. This is similar to the
discussion in the last section where consistency has been needed only for one- and two- dimensional
marginals of the kernel density estimate p.

For functions f = (f°,..., f%) with components f7 : R* — R and d + 1 by d + 1 positive definite

matrix function M(-), define the norm

There is a one-to-one correspondence between functions f and functions in Fj,y. Furthermore,

taking M = V the norm ||I]|5; is simply the norm induced by the norm ||-||,. In Section 2 our

version m(z) = (m°(x),...,m%(x))? of the backfitting estimate was defined as the projection of [the

function in Fj,y corresponding to] m [see (1)] with respect to ||-||, onto the space F,q4. Therefore, m

o~

coincides with the Ly(V) projection, with respect to the norm || f||5, of m onto the subspace M 444,

16



where

Maas = {u( ) ( ( )7"'7ud(x))T€M|
u(z) =p +ui(ey) + ...+ ud(xd),ué(x) = wy(ay) for ( =1,...,d,
where uy, ..., uyg are functions R — R with /{\/—?70(:1:]4)%4(:1;]')([:1;]4 =0foryj=1,...,d

and where wy : £ = 1,...,d are functions: R — R},
where for each j the (d+1) x (d+1) matrix V] =/ V Jdz_;. The class M 44 contains functions
that are additive in the first component [for £ = 0] and where the other components [for { =1,...,d]

depend only on a one-dimensional argument. A function f in M,y 1s specified by a constant p and
2d functions R — R. Because f¢, ¢/ =1,...,d, depend only on one argument, in abuse of notation we
write also f‘(z/) instead of f*(z). Note that there is a one-to-one correspondence between elements
of Maq and Fraq.

We now discuss how m is calculated by backfitting. Note that m is defined as minimizer of
|m — m||. Recall that this is equivalent to minimize |[Y — ml|? over F,q4q. We discuss now mini-

mization of this term with respect to the j-th components m’(z;) and u + m;(x;). Define for each

Js

I = [ 23 [+ 3w H[xh )de,

and note the obvious fact that
1912 = [ 17 G =1

Therefore, because an integral is minimized by minimizing the integrand, our problem is solved by
minimizing |[Y —ml|?(z;) for fixed z; with respect to m?(x;) and p+m;(x;), for j = 1,...,d. After

some standard calculations, this leads to:



— g /mg x0)V, 00 :1;4,:1;]) dxy

£
—Z/ (¢ VZ0 (g, ;) day (18)
£
~ > oy 1 XZ — : L e
() Vg () + i () V7 - Z LR — )Y = V()
=1
_Z/mg $g 0] $g,$]) dl’g
£
—Z/ (¢ VM (¢, ;) day. (19)
£
Here, we have used one- and two-dimensional marginals of the matrix V:
Vi(z,) = / V() da_, (20)
Vi (a,, ) = /{\7(:1;) d_ (- (21)
The elements of these matrices are denoted by \7])’;(]( ») and VT J(x,,x5) with p,g=0,...,d. Together
with the norming condition
/m] x)V72(x;) dey =0, (22)
equations (18) and (19) define fi, m; and m’ for given Y and [m,, m* : { # j].
Equations (18) and (19) can be rewritten as
mj(e;) = mi(x;) +m;(x;)) (23)
m(ay) = () + o (), (24)
where m;(z;),m;(z;),m(x;) and M’ (z;) are defined by:
_ / 1 - - )
() Voola;) +m/ (x;)Vig(a;) = _Zhh(X — ;)Y (25)



_ oy i\ 1 o= X — a5 , :
s Vol 4 )W) = =30 S, )Y 20
1=1
s Wiofs) + 0 ) Via) = =il = 3 [ ae Ve ) da
&
—Z/m z)V, ZO :1;4,:1;]) dzx, (27)
£
s Volas) + 0 eV 5) = —iV(e) = 3 [ MU (e d
£
—Z/ (¢ VM (g, ;) day (28)
£

/m] z)V; :1;]) dx; =0, (29)

Note that (1m;,m7) is the one dimensional local linear fit of the observations Y* onto X]Z

Again, together with the norming condition (22), equations (23)-(29) define i, m; and m’ for
given Y and [mg,m* : £ # j]. In the j-th step of every cycle of the backfitting algorithm an update
of fi, m; and m’ will be calculated by solving equations (23)-(29). In the next subsection we will
discuss asymptotics for the backfitting estimate in a more general set up. In particular, there we will
not assume that (1mg,m") is a one-dimensional local linear fit nor that V¢ and V&' are motivated
by local linear smoothing. Furthermore, we will not make any assumptions on the stochastic nature
of the sample. For arbitrary choices of (1, m) is a one-dimensional local linear fit nor that V¢ and

V4 we will assume that m; and m’ are defined by

O A I I 30
{m? —m? () Vio(z)
ﬁlg(l‘g)
— Se (e, ;) dz,.
;/ m* ()

/m] z)V. :1;]) dx; = 0. (31)
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where

. Vi(z) VP(x

M](x]) _ AO,O( ]) A],{O( ]) 7 (32)
Vie(a;) Vi(x))
‘70&({ T, T5) ‘7;6](51;47%)

Sejwe, i) =
Let us finish this section by some computational remarks.

e In a faster implementation, the norming of m; done in (22) could be omitted and one could
put always i = 0. After the final cycle all functions m; could be replaced by m;(z;) —
/ ﬁlj(:zjj)vjfo(xj) dx; and [ defined appropriately. It is easy to see that this algorithm does the
same. If one is interested only in the estimation of the sum p+ my(a1)+ ...+ mq(xq) the final

norming could be omitted or replaced by another norming.

o A possible initialization of backfitting is given by putting 4 = 0, m, = m, and m* = m* for

(=1,....,d

e Note that the estimates m, and m* have to be calculated only at the beginning and have not

to be updated in each backfitting iteration.

e For an implementation of backfitting, all estimates [i.e., mg, m¢, rg, ', me, m?, V¢ and {\/—Ml]
have to be calculated on a grid and the integrals in (27) and (28) have to be replaced by
averages. It should be emphasized that the grid need not coincide with the set of design points.
In particular, for large data sets it may not be necessary or desirable that it contains the same

number of points.
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4.1 Asymptotics for Local Polynomials

We discuss now asymptotics for the backfitting estimate. This will be done in a general set up.
We assume that some estimates m,, m?, V¢ and V& [(,0' = 1,...,d] are given and that [, my
and m‘ [( = 1,...,d] are defined by (30) - (33). In particular, we will not assume that (/m,,m")
is a one dimensional local linear fit and that V¢ and V&' are motivated by local linear smoothing.

Furthermore, we will not make any assumptions on the stochastic nature of the sample.

ASSUMPTIONS. We suppose that there exists a density function p on R with marginals

pitas) = [ o) do
and
Pi(s,v5) = /P(l‘) de_gjry Jorj #k
and a positive definite (d + 1) x (d + 1) (deterministic) matriz V. We define M;(z;) and
Sii(xe, x)as in (32) and (33) and we pul

M, - Voo Vo 7
Vio Vi,
Voo Vio

SZ7] —
Vio Vi,

(A1) For all j # k, it holds that

2 .
/ P@n) e < oo
pr(zr)p;(;)

(A2') For all j # k, it holds that

2
. A NeETN: _
/ {My‘(%)_lsm(% ;) — Mflsé,jp7];<(; y J pe(xe) "' pj(;)dejdes = op(1).
J J .8

for r,s=1,2. Here [...].s denotes the (r,s) element of a matriz |...].
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(A3') There exists a constant C' such that with probability tending to one for all j
/m]‘(l’j)zpj(%)d% <C
and
/mj(xj)zpj(%)d% < C.
Furthermore fmj(xj)zﬁfo(x]‘) dx; does not depend on j and it is equal to [i.
(A4") There exists a constant C such that with probability tending to one for all j # k

Sup/traCG[M]‘(J}]‘)_1Sg7]‘($g,J}]‘)Mg(wg)_1Sg7]‘($g,J}]‘)M]‘(d/‘j)_l]dl‘g S C

T3
(Ab') We suppose that for a sequence A, the smoothers m; and m’ can be decomposed as m; =
mj‘ + mf and w7 = m>d + mPP | where the first components mj‘ and m?*  are mean zero

and satisfy

; : my(z;) A,
sup /M]‘(%)_lsm‘(%%) T ) dey| = 0p< )

oy my‘,A(x],) logn

For s = A and s = B we define i*, m$ and m?* as the solution of the following equations

. ms —mil . \Aféo x;
Ny | 0T ) [ Voele) (34)
{m?* —m?*}(z;) Vio(z;)
. m ()
- Sei(@e, ;) dz.
;/ m* ()
[ s Vit de; =o. (35)

Existence and uniqueness of ﬁ%f,ﬁlf,ﬁlf’A and m?P s stated in the next theorem. Note

that (m%,m?*) is defined as (m;,m’) in equations (30) and (31) with (m;,m’) replaced by

70

(m2, m?*). We suppose that for (deterministic) functions yi;,(-), p2B(+) the term ﬁlf satisfies:
g (25) = pyn(eg) + op(An)
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m?P(x;) = pl () + op(A,).

We remark again that these conditions are all straightforward to verify, except perhaps Ab’. Note
that we shall not require {\/—(:1;) to converge in probability to V(x) because this would depend on the
curse of dimensionality.

We state now results that are similar to the ones for Nadaraya-Watson smoothing in Section 3.

THEOREM 1’ [CONVERGENCE OF BACKFITTING]. Suppose that conditions A1'-A2" hold. Then,
with probability tending to one, there exists a solution [ i, me, m*: € =1,...,d] of (30) - (33) that
is unique. Furthermore, there exist constants 0 < v < 1 and ¢ > 0 such that, with probability tending

to one, the following inequality holds
N[r] " ? 2r
/{mj (:z:j)—mj(xj)} pi(zj)dz; < T,
/[W[r](%) — il (@)] piag)de; < ey,

where

R ~ 2 - 2
D=+ / )| pelwde; + / [0 (2e)] " pe(e)dae.
=1
Here, for r = 0 the functions il 77150] and mbY are the starting values of the backfitting algorithm.
Furthermore for s = A and s = B, with probability tending to one, there exists a solution [1*,

m? and m® g =1,...,d] of (34) - (35) that is unique.

Just as Theorem 2 stated for Nadaraya-Watson smoothing, the stochastic part of the backfitting
estimate coincides again with a one-dimensional local linear fit. This is stated in the following

theorem:
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THEOREM 2'. Suppose that conditions A1’ - A5" hold for a sequence A,. Then it holds that

sup [ () — 7] (2;)] = op(Ay).

In particular, one gets

my(x;) = ;) + pin(z;) + op(A,).

We suppose now that a full dimensional estimate m as described at the beginning of this section

exists. Under conditions analogous to (14)-(17) we get the following corollary.

COROLLARY 1. Suppose that conditions A1'-A5" hold with A, = n~2/° and that conditions of
type (14)-(17) apply for m. Then,

~ vi(z1) 0 0
ml(l'l) —ml(l’l) bl(l’l)
2/5 . ) 0 " :
n N i N . 9 9
: . 0
ﬁld(l'd) — md(xd) bd(l'd)
0 tee 0 Ud(l'd)
where vi(x;) = U;(x;), 7 = 1,...,d, are the variances of the infeasible ‘oracle estimate’ m;(x;)

[defined similarly as for Nadaraya-Watson smoothing in the last section], while b;j(x;) are solutions

to the following minimization problem

. (n;linb ()/[b(:z;) —p—=by(z)—...— bd(:z:d)]zp(x)dx, s.t. /bj(xj)pj(xj)dxj =0,5=1,....d.
01 (+)5e-bal

For the case that the function b is already of additive form b(x) = bi(x1) + ... + b5(xq) the bias

unctions b: coincide with the bias bS(x;) of the ‘corrected’ oracle estimate ré(z:). Also
J A J\I

n?® {m(z) — m(x)} = N [bye(2),v4(2)],
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where by (v) = > . bj(x;) and vi(x) =37 vi(z)).
Suppose additionally that for a sequence &, with n=*° = o(4,)

sup [P () — m(x) = n~b(x)| = Op(6,)

xr

sup [rivj(2;) —m ;)| = Op(6,) forj=1,...,d.
Then, we have for 7 =1,...,d,

sup [m(x) — m;(x)| = Op(dn).

xr

REMARK. For example, when the data are independent and identically distributed (i.i.d.) and
the smoother is the local linear, then the bias b is of additive form b(x) = bj(x1) + ...+ b5(x4). Then
the bias functions b; coincide with the bias b;(:zj]) of the ‘corrected’ oracle estimate mj(:z;]) :

e = Jim {122y 20 oty = [t oo |

n oo
for j = 1,...,d, where py(K) = [#*K(t)dt. In this case, the asymptotic bias and the asymptotic
variance are identical to bias and variance of the mean corrected ‘oracle’ estimator [ based also on
local linear estimation]. That means our estimate achieves the same first order asymptotics as if
the other components would be known. In particular, our estimate is design adaptive. This is in
contrast to Opsomer and Ruppert (1997) who propose a backfitting estimate, based on the local

linear smoother, that has design dependent bias.

5 Verification of Conditions

We now provide sufficient conditions for A1-A5 to hold in a time series setting for the Nadaraya-

Watson smoother. We suppose that {Y*,Z'}"__ is a jointly stationary process on the real line
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and let X; = (Z%,..., 2= In this case, m(-) is the d’th order autoregressive mean. Let F° be
the o-algebra of events generated by the random variables {Y*, Z%; a < j <b}. The stationary
processes {Y*, 7'} are called strongly mixing [Rosenblatt (1956)] if

sup |P(ANB)— P(A)P(B)| =a(k) -0 as k — .

AeF?  BEF®

We assume

(B1) The kernel K is bounded, has compact support, is symmetric about zero, and is Lipschitz

continuous, i.e., there exists a positive finite constant C such that |K(u) — K(v)| < C|u — v].

(B2) The density qo [= p] of Xo and the densities qos of (Xo, X¢), { = 1,..., are bounded away

from zero and infinity on their compact support.
(B3) For some 6 > 2, E(]Y]") < oo.

(B4) The conditional densities fx,v,(xolyo) of Xo given Yo and fx, x,vo,v,(o, Ze|Yo, ye) of (Xo, Xo)

given (Yo, Ys), 0 =1,..., exist and are bounded from above.

(B5) The processes {Y;, Z;} are strong mizing with 32, j° {oz(j)}l_Z/y < 0o for some v > 2 and
a>1-2/v

(B6) The strong mizing coefficients satisfy Y270, ¢(j;0) < oo and 3.2, ¢(ji¢) < oo for ¢ =
1,2, where: @(n;0) = (nLi(n) /ri(n)) (T2 logn )" o {ri(n)} with ri(n) = (n /T, logn)?
and Li(n) = (nT?[logn)"'* with T, = {nlogn(loglogn)'*}"'" for some & > 0, while
p(nse) = (nLy(n) fra(n)) (n /helogn)* o {ry(n)} with ro(n) = (nhe flogn)’* and Ly(n) =
(n /h*+2logn ).

(B7) The functions m and p are twice continuously differentiable.
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We apply some results of Masry (1996) to establish the conditions A1-A5.

THEOREM 3. Suppose that conditions B1-B7 hold. Then conditions A1-A5 hold.

6 TIllustration

We applied our backfitting method to the estimation of nonparametric AR-ARCH models on stock
return data. Specifically, we fit the following model

Yz' — /,L—I-ml(Yi_l) _I_m2(Yi—2) —I—Uiefi : 0_22' Y _I_UI(YZ'—I) _I_U2(Yi—2)7

first applying our method to the raw data to obtain estimates [, m1(-), and mz(-), and then applying
it to the squared residuals {Y* — i — m (Y71) — ﬁlg(Yi_z)}Q to obtain estimates 3\\,51(-), and vy(-).
As in Hardle and Yiang (1996), we expect estimation of the mean not to affect the estimation of the
variance and we have computed standard errors accordingly.

Our data is monthly return on the S&P500 index whose stocks were traded on the New York
Stock Exchange between 1946-1986. The results are shown below

A PIGURES HERE***

The confidence intervals reveal that the mean effect is not well determined, as is to be expected,
but that the variance effects are highly significant. The asymmetry in v;(-) has been found before
in stock returns, see Bollerslev, Engle, and Nelson (1994, pp. 3028-3029), and is possibly explained
by the ‘leverage effect’ — the limited liability of public companies makes downturns more risky than

upturns for investors.
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A Appendix: Proofs

Before we come to the proofs of our results let us collect some facts about iterative projections. Let

us define the following spaces of additive functions
H ={m € La(p) : m(x) = my(x1) + ...+ mg(zq) (p a.s.),/m(:z;)p(:z;)d:z; =0},

H;={m € H:m(x) =m;(z;) (pas.) for a function m; € La(p;)}.

The norm in the space H is denoted by ||m||? = fm z)dx for m € H. For m € H; we get
with m;(z;) = m(z) (p a.s.) that ||m|* = [m?*(z)p(x)dz = fm xj)p;(a;)dx;. The projection of
an element of H onto H; is denoted by II;. The operator W; = I — II; gives the projection onto the

linear space

J

HE = {meH: /m(:z;)qb(:z;])p(x)dx =0 for all p € H;}

For m(z) = my(xy) + ... + ma(zq) € H we get
Uym(x) =ma(a1) + ...+ moa(@on) +mi(a;) + mypa(eja) + ..o+ ma(ea) (36)
with
= /mk p]k l’],l'k) dl‘k (37)
Py pi(z;)

We define the operator \I/ as W; but with m7(z;) on the right hand side of (36) replaced by

X,
/mk l’k p]k J )k)d L. (38)
Py pi(x;
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Put T =¥, ---¥; and T = \/I\/d e {I\ll. We will see below that in our set up the backfitting algorithm
is based on iterative applications of T. A central tool for understanding backfitting will be given by

the next lemma that describes iterative applications of 7.

LEMMA [NORM OF THE OPERATOR T' |. Suppose that condition Al holds. Then T : Ly(p) —
Ly(p) is a positive self adjoint operator with operator norm 7 = sup{||Tf]| : ||f|| < 1} < 1. Hence,
for every m € ‘H we get

[T m|| < 7"[[m]|. (39)
Furthermore, for every m € H there exist m; € H; (1 < j < d) such that m(u) = my(uy) + ... +

mq(uq) (p a.s.) and with a constant ¢ > 0
[m|| = emax {|lmi]],.... |[mall}. (40)

PROOF OF LEMMA. We start by proving (39). It is known that (39) holds with 72 < 1 —
H;l:l sin’(7;) where cos 7; = p(H;, Hj41+...+H,) and where for two subspaces L; and L, the quan-
tity p(L1, L2) is the cosine of the minimal angle between Ly and Ly, i.e., p(L1, L2) = sup{ [ hi(z)ha(2)
p(z)dx : hy € L; N (Ly 0 Lyt ||kl < 1(5 = 1,2} This result was shown in Smith, Solomon, and
Wagner (1977). For a discussion, see Deutsch (1985) and Bickel, Klaassen, Ritov and Wellner (1993),
Appendix A.4. We will show now that for 1 < j < d the subspaces M; = H; 4+ ...+ H; are closed
subsets of Ly(p). This implies that p(H;41, M;) < 1 for j =1,...,d — 1, see again Deutsch (1985),
Lemma 2.5 and Bickel, Klaassen, Ritov and Wellner (1993), Appendix A.4, Proposition 2. To prove
that M is closed we will use the following two facts. For two closed subspaces L; and Ly of Ls(p) it
holds that L; + L, is closed if and only if there exists a constant ¢ > 0 such that for all m € L + L,

there exist my € Ly and mg € Ly with m(u) = mq(u1) + ma(uz) (p a.s.) and
[m]| = emax[[|ma][, ||mal]]. (41)

Furthermore, L1 + L is closed if the projection of Ly onto L; is compact. For the proof of these two

statements see Bickel, Klaassen, Ritov and Wellner (1993), Appendix A.4, Proposition 2. Suppose
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now that it has already been proved for j < j, — 1 that M is closed and that we want to show that
M, is closed. As mentioned above, for this claim it suffices to show that II; |M; _1 is compact. We
remark first that (41) implies that for every m € M, _; there exist m; € H; (j < j, — 1) such that

m(u) =mq(ur) + ...+ mj—1(uj,—1) (p a.s.) and with a constant ¢ > 0

[m|| = emax[[|ma],. .., [lmj, -] (42)
We will prove that
jo—1
1L, m||* < const. [Z/Rf,jo(%w]‘o)pj(l‘j)}?jo(l‘jo)d%d% lm]® (43)
7=1

with
Pji. (%5, ;) ‘
Pio(x5,)pi(x5)

Inequality (43) implies compactness of 1I; | M, _1. To see this one argues as in the standard proofs

Rj; (zj,2;,) =

for compactness of Hilbert-Schmidt operators, see e.g., Example 3.2.4 in Balakrishnan (1981).

It remains to show (43). This follows from (42) with applications of the Cauchy-Schwarz inequal-
ity.

Equation (40) follows as (42). [ |

Proor oF THEOREM 1. The following lemma establishes the result.

LEMMA [NORM OF THE OPERATOR T ]. Suppose that conditions A1-A2 hold. Choose v with
T < v < 1. Then, with probability tending to one, the operator norm sup {Hff(:z;)]” < 1} is
bounded by ~.
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PROOF OF LEMMA. We remark first that the distance between m? and m¥, see (37)-(38) can be

bounded as follows.
77— mil <O [l S
k#j
with

o _ [ [pirlenen)  Paplane) 10
ik = / {pk(l’k)}?j(%) pk(%)@(%)] pulon)pi(zs)dz; dos.

With S; = maxy; |S;x| this and equation (40) imply
ok b d
175 = m3ll < =ljm]S;.

Now because of (A2), S; = op(1). This gives H{I\/] — V|| = op(1). Now the statement of the lemma
follows from

|7 =71l = op(1).

LEMMA [STOCHASTIC EXPANSION OF m]. Suppose that conditions A1-A2 hold. Then there exist
constants 0 < v < 1 and C > 0 such that with probability tending to one, for m the following

stochastic expansion holds for s > 1:

S

m(e) =Y Tiin(e) +...+ Y Tyima(z) + B (),

r=0 r=0

T T |

where fj = {I\lj{flj_l e {I\lli\ld\ﬁd_l Wiy and R[S](l') = R[ls (1) + ...+ R&S](xd) is a function in H

IR < e, (44)

Under the additional assumption of (A3) it holds that

sup |RES](:1;j)| < CH°. (45)

Ty
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PROOF OF LEMMA. We remark first that (11) can be rewritten as

o~

m(x) = Wym(x) + mj(z;).

[terative applications of this equation for y = 1,... d gives

o~

m(x) = T(z) + 0(x),

where

§(a) =Wy Uiy () + ...+ Waing_1(a) + alaq).

With the last equality we get the following expansion

The operator norms of ﬁ, ey T, are smaller than ~, with probability tending to one, for v < 1 large

enough. This follows from the last lemma and it shows that the infinite series expansion in the last

equation is well defined. Furthermore, this can be used to prove that for Cy > 0 large enough, with

Assume now

probability tending to one, HRES]H < C1°. This implies claim (44) because of (40).

(A4). For the proof of (45) note that for Cy > 0 large enough with probability tending to one for all
functions f, g in H; with sup,_ |f(z;)] <1 and ||g|| <1 it holds for k # j that

T T
/p]k - k x])dxj < Oy,

pk l‘k

T T
/p]k i ) g(x))dz;| < Ch.

pk l‘k
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Equation (47) follows from assumption (A4) by application of the Cauchy Schwarz inequality. Equa-
tions (46) and (47) imply that for C5 > 0 large enough with probability tending to one for all
functions h in H with ||k]| < 1 it holds that

I 7R < Cs. (48)
Claim (45) can be shown by using (44) and (48). [ |
Proor oF THEOREM 2. The following lemma establishes the result.

LEMMA [BEHAVIOUR OF THE STOCHASTIC COMPONENT OF m]. Suppose (A1) - (A5). Then we
have that
sup |ﬁ1JA(:1;]) — ﬁl;‘(:p]ﬂ = Op(logn A,). (49)

Z;
PROOF OF LEMMA. Proceeding as in the last lemma we get with s = C*logn (where C* is

chosen large enough)

where R[S](l') = R[ls](:lil) +.. 4+ RE;](:L‘d) is a function in ‘H with

sup |R£S]($j| <A,

J
It remains to show

sup || Ty (2)]| = Op(A,).

This follows from assumption (A5) by arguments as in the proof of the last lemma. [ |

PROOFS OF THEOREMS 1’ AND 2’. The theorems follow as Theorems 1 and 2 by essentially the

same arguments. In particular, instead of Ly(p) we consider now Lo(Vp) = {f = (f°,...,f4) : f7:
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R? — R with [ fT(2)V f(2)p(x) dv < co}. Furthermore, now the spaces H and H; are defined as

H = {meLyVp):m®x)=my(x1)+ ...+ mg(zq) (p as.) for functions my € Ly(py),. ..,
mg € La(pa), /mo(:zj)p(x)dx =0 and for j = 1,...,d the functions m’ depend only
on z;},

H, = {meH:m’x)=m,z;) (pas.) fora function m; € Ly(p;)

and for ¢ /7 it holds that m‘(z) = 0}.

Note that again every function f in H is a sum of functions in H;: there exist functions f; : R — R?
with

r — < o € >f](:1;]) is a function in H;,

= Z < € €5 >f]($y)

71=1
Here for j = 0,...,d the vector ¢; denotes the (j + 1)st eigenvector of R+, The operators ¥; is
now defined as in (36) with
_ Z/M 1S]kp]k l'],l'k) (l’k)dl'k

Py pi(x;)

Furthermore, we define the operator {I\/j now as W; but with m*(x;) on the right hand side of (36)
replaced by

= Z/M J}]S (x;, xp)mp(xg)dey.

k#j
Proceeding as above one can show that the norm of the operators T'= W, --- ¥; and T = {I\/d e {I\ll
is smaller than v < 1 [with probability tending to one]. Theorems 1’ and 2’ follow by stochastic

expansions of m, compare the last two lemmas. [ |

ProoF oF THEOREM 3. Let ||g||_ = sup, |g(z)|. Then, under these conditions,
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~ ~ logn 1/2 N N log n 1/2
s~ EGioll. = 0F (~2 ws ¢ 5 - B =0 (2 .5(50)

1E®ix) = piklle = OM) as. 5 [[EQ)) = pjll, =00) as. (51)

1 1/2 ~
71 ::O{<f:> }‘“‘;‘Wf—mﬁmzmﬁ>a&, (52)

see Masry (1996) for a proof. Since inf., p;(x;) > 0 for all j and sup p; (2}, xx) < co, Al is satisfied.

Furthermore, since
inf p;(z;) = inf p;(z;) — sup |p;(x;) — pi(a;)] = inf p(x;) —o(l) a.s.,
Z; Z; x; Z;
by (50) and (51), assumptions A2 and A4 are also satisfied by straightforward use of the geometric

series expansion and the above result. Specifically, we have

I pila;) — pi(e;)

Piles) — pilx;)  Bileg)pila)
Likewise, assumption A3 is satisfied by B2, B3, and (52). By the triangle inequality,

Pik(xj k) 4 Pik(Tj, k) 4
su — ma(x)dx < su ma(xdx:| +
l’kp / pk(l‘k) ]( ]) ! p pk(l‘k) ]( ]) !
Pl x]vxk Pj,k(xjaxk)} A

su m () dx ;
o ‘/{ pr(Tr) pr(Tr) 5 ()

< sup /pj’k($j7xk)ﬁ1A(x dx

o pr(zr) 7R

+C {UB1 = pisellc + 1l B = pallo |77

where the second term on the right hand side is o(n=2/%) with probability one when h = O(n~'/%).

As for the first term, without loss of generality, we can suppose that
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12”;& — X vy(ay)

Py pi(x;) pilx;)
where F(n5|X*) = 0. Therefore,

Pik (T, k) o () ¢ e = [ K Pik( X} — uh, zy) y
/ pk(l’k) d J mem k ) fm( k)_/h( )pj(X;—Uh)pk(wk)d

by straightforward change of variables. The argument is now quite similar to that given in Masry

(1996). We drop the k subscript for convenience. Since the support of X is compact, it can be

covered by a finite number ¢(n) of cubes [, . with centres x, with dimension I(n). We then have

N
= max sup mefm(x)‘
=1

1<r<e(n) zeXnly

IA

max sup E Z Ujfm(l') — E Z Ujfm(:l?r) ‘
=1 =1

1<r<e(n) zeXnly

+ 1<r7p<z;Lan Z i i ‘
= @1+ @2, say.

It is straightforward to see that |&,;(x) — &ui(x,)| < al(n) for some constant a and that Q1 = O,(l(n)).
To handle the second term we must use an exponential inequality and a blocking argument as in
Masry’s proof. In conclusion, by appropriate choice of ¢(n), we obtain Q1 + Q3 = O(log n/n'/?) with
probability one. [ |
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