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Summary

Microbes need to extract relevant information from their environment and use this information

to produce adequate behavioral responses that ensure their survival. Quantitative, mathematical

analysis of microbial sensory systems (such as various signaling pathways) and their effectors (such

as bacterial motors) forms the basis of the field of systems biology. Because of their relative

simplicity, in comparison with analogous systems in multicellular organisms, these structures are

more amenable to quantitative modelling. In this dissertation I present the quantitative analysis

of three microbial sensory-effector systems, two in bacteria and one in the unicellular eukaryote

Saccharomyces cerevisiae. In all three cases I look at a behavior that is an evolutionarily selected

response to a given problem that the microorganism is confronted with. I then explain the

mechanistic basis of this response in the sensory or effector system by a mathematical model.

In the first case, mating in yeast cells, the problem the cells need to solve is to establish the

likelihood of mating and invest cellular resources accordingly to prepare for the mating event.

The solution that wild-type yeast MATa cells have evolved to tackle this problem is fractional

sensing, the ability to sense robustly the fraction of partner cells in a mixed population. The

mechanism that enables this behavior is the degradation of the partner cells’ pheromone signal by

a secreted enzyme. I show mathematically that the necessary consequence of this mechanism is the

rescaling of the signal strength proportionally to the fraction of partner cells, as opposed to their

absolute quantity. Additionally, I also explain the experimentally observed difference between the

fractionally sensing wild-type cells and the mutants performing absolute sensing, due to the latter’s

lack of a signal attenuation mechanism. Moreover, by a cost-benefit model of mating, I show that

the strategy of fractional sensing and resource investment is optimal, as compared to sensing the

absolute amount of partners.

In the second case, I look at the most prevalent bacterial signaling systems, the so-called

two-component systems and their capacity to generate bistability, or, in behavioral terms, memory.

In the case of two-component systems that control developmental processes, an irreversible shift

is required at the level of individual cells: once the system is turned ‘on’, it should not revert

to its ‘off’ state, within some range of the input. At the population level, because of the

stochasticity of chemical reactions and variation in expression levels, a bistable control system

can result in a bimodal distribution with some cells in ‘on’ and others in ‘off’ state. In fluctuating

and unpredictable environments this strategy of ‘bet hedging’ is another advantageous feature of

bistability. I first describe post-translational mechanisms that can generate bistable behavior and

analyze the parametric properties of bistable systems. Second, I show that the transcriptional
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auto-induction of pathway components can lead to bistability in the ‘canonical’ two-component

system with a bifunctional sensor kinase as well, a question not resolved in the previous literature.

In the third case, I analyze the motility of the marine bacteria Shewanella putrefaciens. Higher

efficiency of spreading and chemotaxis is expected to lead to higher fitness as it enables a bacterial

population to better explore and exploit the resources of its environment. Wild-type Shewanella

cells achieve this higher efficiency by inducing a lateral flagellar system, leading to a lower mean

turning angle. By lowering the mean of the turning angle distribution, the presence of the lateral

flagella leads to higher directional persistence and hence increased spreading efficiency. By both

analytical calculations and stochastic simulations I reproduce the experimentally observed trends

of spreading. Furthermore, I show that in shallow gradients the higher directional persistence also

leads to higher chemotactic efficiency.

By mathematical analysis I was able to identify the mechanisms underlying these evolutionarily

selected behaviors. Moreover, in the case of yeast mating, I also showed that the observed behavior

of fractional sensing is optimal in cost-benefit terms. In the case of transcriptionally induced

bistability in bacterial two-component systems, the analysis identified parametric properties of

bistable systems that can be potentially used to engineer monostable signaling systems into bistable

ones experimentally.
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Zusammenfassung

Mikroorganismen müssen relevante Informationen aus ihrer Umwelt wahrnehmen

und verwenden, um geeignete Verhaltensantworten zu geben, die ihr Überleben

sichern. Die quantitative, mathematische Analyse von mikrobiellen Sinnessystemen (wie

Signaltransduktionswegen) und den zugehörigen Effektoren (wie bakteriellen Motoren) bildet die

Grundlage des Wissenschaftsfeldes der Systembiologie. Aufgrund ihrer relativen Unkompliziertheit

im Vergleich zu analogen multizellulären Systemen sind diese Systeme zugänglicher für

quantitative Modellierung. In der vorliegenden Dissertation präsentiere ich die quantitative

Analyse von drei mikrobiellen Sensor-Effektor-Systemen - zwei bakteriellen sowie einem System

des unizellulären Eukaryonten Saccharomyces cerevisiae. In jedem dieser Fälle betrachte ich ein

Verhaltensmuster, das eine evolutionär selektierte Reaktion auf ein gegebenes Problem ist, mit

dem der Mikroorganismus konfrontiert wird. Ich erkläre und analysiere dann die mechanistische

Grundlage des Verhaltensmusters innerhalb des relevanten sensorischen oder Effektorsystems

mithilfe eines mathematischen Modells.

Im ersten Fall untersuche ich das Paarungsystem von S. cerevisiae. Das Problem, welches

die Zellen hier lösen müssen, ist die Ermittlung der Wahrscheinlichkeit einer Paarung (bzw.

anders ausgedrückt die Wahrscheinlichkeit, eine Partnerzelle zu finden) und eine dementsprechende

Investition von zellulären Ressourcen in die Vorbereitung auf das Paarungsereignis. Die

Lösung dieses Problems, die die Zellen des Paarungstypes MATa entwickelt haben, ist die

fraktionelle Perzeption, d.h. die Fähigkeit, in einer gemischten Population den relativen Anteil

von Partnerzellen festzustellen. Der Mechanismus, der dieses Verhaltensmuster ermöglicht,

basiert auf der Degradation des Pheromonsignals der Partnerzellen (Sender) durch ein von

den Empfängerzellen sekretiertes Enzym. Ich zeige mathematisch, dass das Ergebnis dieses

Mechanismus ein Umskalieren der Signalstärke proportional zum Anteil der Partnerzellen,

im Gegensatz zu ihrer absoluten Menge, ist. Das mathematische Model kann zudem den

experimentell beobachtbaren Unterschied zwischen Wildtypzellen mit fraktioneller Perzeption

und Mutanten ohne Signaldämpfungsmechanismus, welche die absolute Menge der Partnerzellen

wahrnehmen, erklären. Weiterhin zeige ich, dass die Strategie von fraktioneller Perzeption und dazu

proportionaler Investition von Ressourcen optimal ist im Vergleich zur Perzeption der absoluten

Menge von Partnerzellen.

Im zweiten Fall untersuche ich die am häufigsten vorkommenden bakteriellen

Signaltransduktionswege, sogenannte Zweikomponentensysteme, und ihre Kapazität zur

Ausbildung von Bistabilität bzw., anders ausgedrückt, Erinnerungsvermögen. Im Fall von
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Zweikomponentensystemen, die Entwicklungsprozesse kontrollieren, müssen individuelle Zellen

einen irreversibelen Übergang durchlaufen: wenn das System “angeschaltet” ist, soll es im Fall einer

Absenkung des Eingangssignals (zumindest innerhalb eines bestimmten Bereichs) nicht in seinen

Ausgangszustand zurückkehren. Auf Populationsebene führt solch ein bistabiles Kontrollsystem

wegen Stochastizitäten der chemischen Reaktionen und interzellulären Unterschieden in der

Genexpression zu bimodalen Verteilungen mit einigen Zellen im Aus- und anderen im Ein-Zustand.

In einer schwankenden und unvorhersehbaren Umwelt ist diese Strategie von “bet-hedging” (ein

Absichern nach allen Seiten) ein zusätzlicher Vorteil von Bistabilität. Erstens beschreibe ich in

der vorliegenden Arbeit posttranslationale Mechanismen, die zu Bistabilität führen können, und

analysiere die Parametereigenschaften der bistabilen Systeme. Zweitens demonstriere ich, dass

transkriptionelle Autoinduktion von Komponenten des Signaltransduktionswegs im “kanonischen”

Zweikomponentensystem mit einer bifunktionellen Kinase ebenfalls zu Bistabilität führen kann.

Im dritten Fall analysiere ich die Motilitätmuster des marinen Bakteriums Shewanella

putrefaciens. Neben einem polaren Flagellensystem exprimieren Shewanella-Zellen ein zweites,

laterales Flagellensystem, was zu einer Verringerung des Durschnittswinkels bei Änderungen der

Bewegungsrichtung führt. Diese Tatsache führt zu einer höheren Effizienz von Ausbreitung

und Chemotaxis, was die Fitness der Bakterien erhöht, da dies eine bessere Erkundung und

Ausbeutung der Umweltressourcen ermöglicht. Mithilfe analytischer Ableitungen als auch

stochastischer Simulationen reproduziere ich die experimentellen Beobachtungen. Weiterhin

demonstriere ich, dass in flachen Gradienten der durch das zusätzliche Flagellensystem bewirkte

geringere durchschnittliche Umkehrwinkel und eine damit einhergehende ausgeprägtere direktionale

Persistenz zu besserer Chemotaxis führt.

Mithilfe mathematischer Analyse war ich imstande, die den evolutionär selektierten

Verhaltensmustern zugrunde liegenden Mechanismen zu identifizieren. Im Fall der Analyse des

Paarungssystems von Hefezellen konnte ich zudem demonstrieren, dass das beobachtete Verhalten

der fraktionellen Perzeption unter Kosten/Nutzen-Gesichtspunkten optimal ist. Im Fall der

transkriptionell induzierten Bistabilität in bakteriellen Zweikomponentensystemen wurden durch

die Analyse parametrische Bedingungen identifiziert, die potentiell dazu verwendet werden können,

ein monostabiles System experimentell in ein bistabiles System umzuwandeln.
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Project aims

In my dissertation I present the quantitative analysis of three cases of microbial sensing and/or

motility. I summarize below the main aims of the three projects contained in the dissertation.

Section 1: Microbial sensing and decision making: yeast mating

The sexually reproducing unicellular eukaryote Saccharomyces cerevisiae has evolved a

pheromone-based communication system to regulate its mating behavior in accordance with the

availability of mating partners. In this project I quantitatively analyzed this regulatory behavior,

both in mechanistic and cost-benefit terms. Specifically, my first aim was to analyze mathematically

the mechanism behind the fractional sensing behavior that MATa yeast cells show in their partner

sensing. Second, I explored if the observed behavior of relative (fractional) sensing and pathway

induction was an optimal strategy, compared to the absolute sensing behavior of mutants without

a signal attenuation mechanism.

This work was done in collaboration with my colleagues Dr Alvaro Banderas and Dr Alexander

Anders. The author of this dissertation performed all mathematical and computational analysis

and wrote the corresponding sections of a manuscript (“Sensory input attenuation allows

predictive sexual response in yeast”), at the time of writing under the second round of review. All

experimental work was carried out by my co-workers.

Section 2: Microbial memory: bistability in bacterial two-component systems

Two-component systems are the most widespread environmental sensors in the bacterial

kingdom, regulating diverse physiological processes in bacterial cells. The aim of the project was

to systematically investigate the question whether two-component systems are capable of showing

bistable behavior either due to post-translational or transcriptional mechanisms.

I used an algebraic method to analyze several topologies with different post-translational

mechanisms for their capacity to be bistable. After identifying the topologies capable of bistability,

I performed parameter sampling, made efficient by the algebraic simplification of the system, to

find the parameters critical for bistable behavior.

In the second approximation, I performed the same analysis with the transcriptional

auto-induction of pathway components included, to see if transcriptionally induced bistability is

possible in the minimal two-component system with a bifunctional sensor kinase.
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Section 3: Microbial motility: increased directional persistence by lateral flagellation

An organism’s ability to actively move, and thereby better explore and exploit the resources of

its environment is a basic evolutionary adaptation that is already present in bacteria. Movement

in bacteria occurs both in the form of uniform spreading and biased movement along chemical

gradients (chemotaxis), the efficiency of both kinds of movements depending on motility parameters

such as speed or directional persistence.

The aim of this project was to explain the higher spreading efficiency of the laterally flagellated

wild-type cells of the marine bacteria Shewanella putrefaciens compared to mutants having only a

polar flagellar system. Experimental data showed that the laterally flagellated wild-type cells have

a different turning angle distribution with a lower mean. I performed analytical calculations to

explore the effect of the lower mean turning angle on the efficiency of spreading, while also using

more detailed stochastic simulations including the backtracking behavior of cells. Moreover, I also

investigated the effects of the turning angle distribution on chemotactic efficiency.

This work was done in collaboration with the group of Professor Dr Kai Thormann. The results

were published in the article Secondary bacterial flagellar system improves bacterial spreading by

increasing the directional persistence of swimming, in Proceedings of the National Academy of

Sciences (2014), 111, 31, 11485-11490 [27], with the author of this dissertation as an equal first

contributor. All computational work was performed by the author of this dissertation, along with

writing the corresponding sections of the manuscript. All experimental work was carried out by

Dr Sebastian Bubendorfer and Florian Rossmann.
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1 Microbial sensing and decision making: yeast mating

1.1 Introduction: mating in Saccharomyces cerevisiae

In a sexually reproducing microbe such as the yeast species Saccharomyces cerevisiae, one essential

form of sensing and decision-making is the detection of available sexual partners and, as a function

of this information, the initiation of cellular processes required for mating. In S. cerevisiae, the two

haploid mating types, MATa and MATα cells, rely on mutual pheromone-based communication

to sense each others’ presence.

each protein reduced the SE of the estimated mean values to
∼8% of mean abundances (Table S1).
The least abundant essential system protein, the MAPK

scaffold Ste5, was present at ∼480 molecules/cell. Ste5 was, thus,
2- to 43-fold less abundant than the different kinases that it binds
(Ste11, Ste7, Fus3, and Kss1) (Fig. 2A). The pheromone re-
sponse system shares kinase components with two other signaling
systems: the filamentous growth (FG) and high osmolarity glyc-
erol response (HOG) systems (20). In all three systems, MAPK
(Fus3, Kss1, or Hog1) abundance was greater than MAPKKK
(Ste11) abundance, which in turn, was greater than MAPKK
abundance (Ste7 or Pbs2) (Table S1).

We determined the effect of system induction by exposing cells
to high pheromone (1 μM) for 15 min and then measuring
abundance. Five proteins (Gpa1, Fus3, Ste12, Msg5, and Far1)
showed stimulation-dependent increases above the measure-
ment error by factors ranging from 1.3- to 2.1-fold (Table S1).
The observed increases were expected: pheromone stimulation
diminishes Far1 degradation (21) and increases transcription of
the GPA1, FUS3, STE12, MSG5, and FAR1 genes (22).
To cross-calibrate these numbers and measure their cell to cell

variation, we quantified YFP-tagged proteins in single cells. We
showed previously (23) that quantification based on fluorescent
proteins can be accurate given knowledge of the light-collecting
biases in experimental equipment, the rate of dilution caused by
cell growth, the ratio of steady state expression of tagged protein
to native protein, the rate of maturation of the fluorophore, and
the rate of degradation of the fused protein (lack of correction
for fluorophore maturation and degradation results in under-
quantification). Fluorescence measurements showed that cells
averaged (±SEM) 434 ± 34 molecules of Ste5, consistent with
the immunoblotting measurement of 484 ± 61. To compare cell
to cell variation for other system proteins, we quantified fluo-
rescence for four additional protein fusions: Fus3-YFP, Ste7-
YFP, Dig1-YFP, and CFP-Ste12. Coefficients of variation (CVs)
for total fluorescence were 28–40% for the five proteins (Fig. 4B
and Table S2). Notably, higher abundance proteins did not ex-
hibit higher cell to cell variation as previously reported for yeast
proteins in general (24, 25). We did not calculate single cell
abundance for these proteins, because we had not measured
their degradation rates, with the exception of Ste5 (23). How-
ever, fluorescence of cells expressing Fus3-YFP was only ap-
proximately twofold higher than fluorescence of cells expressing
YFP-Ste5 (Fig. 4), suggesting that degradation of the Fus3-YFP
fusion may be high (Results and Discussion).
Fig. 2 illustrates some differences between our current meas-

urements and previous reports (Table S1). The most significant
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Fig. 1. The yeast pheromone response system represented as three sub-
systems. The receptor/G protein (green), MAPK cascade (blue), and gene ex-
pression (red) subsystems. System input in MATa cells is α-factor, secreted by
MATα yeast cells. α-Factor binds the G protein-coupled receptor Ste2, causing
release of the Gβ-Gγ dimer Ste4-Ste18 from the inhibitory Gα subunit Gpa1. Gβ-
Gγ then recruits the scaffold protein Ste5 to the cell membrane and bridges an
interaction between the scaffold Ste5 and the kinase Ste20. Ste5 binds three
sequentially activated kinases of a MAPK cascade. Ste20 then phosphorylates
three sites on the MAPKKK Ste11. Phosphorylated Ste11 then phosphorylates
two sites on a MAPKK Ste7, which in turn, phosphorylates two sites on each of
two MAPKs, Fus3 and Kss1. Both active MAPKs then phosphorylate transcrip-
tional regulators (Ste12, Dig1, and Dig2) and thereby, induce pheromone re-
sponsive gene expression. Active Fus3 also phosphorylates additional substrates
that promote morphological changes and arrest the cell cycle. A number of
phosphatases (Msg5, Ptp2, and Ptp3) inactivate the MAPKs.
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Ghaemmaghami et al. (9) and fluorescent correlation spectroscopy in (C) the
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Fig. 3. Improved protein quantification through careful immunoblotting.
(A) Fluorescence scanner image of a representative Ste11 immunoblot. We
diluted the Ste11-His6 protein standard into a protein extract from a ste11Δ
strain and loaded the protein standards on a gel alongside protein extract
from a WT strain (corresponding to the indicated number of cells). We
probed the membrane with primary antibodies against Ste11 and secondary
antibodies linked to a fluorophore. (B) Plot of total fluorescence intensities
of the Ste11 bands above. We fit lines to standard (Left) and experimental
(Right) data and used the slopes of the lines to calculate 3,152 molecules/cell
of Ste11 in this experiment.
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Figure 1. Components of the yeast mating pathway. In MATa cells the input ligand is α-factor
that binds to the G protein-coupled receptor Ste2. The dimer Ste4− Ste18 is then released from
the inhibitory Gα subunit Gpa1. The scaffold protein Ste5 is recruited to the cell membrane and
docks downstream kinases. Ste11, Ste7 and Fus3 are the sequentially activated kinases of the
MAPK cascade. The activated MAPK Fus3 phosphorylates the transcriptional regulators Ste12,
Dig1, and Dig2, leading to the activation of pheromone-associated genes. Activated Fus3 also
phosphorylates other substrates causing morphological changes and the arrest of the cell cycle.
The phosphatases Msg5, Ptp2, and Ptp3 interact with the kinases as negative regulators. Image
from [154].

A specialized signaling pathway, the mating pathway has evolved in yeast to detect these

pheromone signals and convey the information from the membrane-bound receptor Ste2 to the

nucleus, as shown in Figure 1. The molecular details and quantitative properties of the mating

pathway have been extensively studied in recent decades, both experimentally and theoretically

[12, 41, 74, 80, 98, 112, 119]. Expression of genes associated with the mating pathway is a cost ly

1
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decision (Figure 18), slowing down growth, potentially inducing cell-cycle arrest and leading to

mating-specific morphological changes. At the same time, induction of the mating pathway is

required for mating, to have the benefits of sexual reproduction [8, 20, 37, 69, 93, 137].

Therefore, sensing the availability of partner cells, or more generally, the likelihood of mating,

and initiating the required cellular processes is crucial and can be described as an optimization

task [10, 25, 38, 54, 116] of the fitness trade-off between the costs and benefits of mating response

induction.

In most studies of yeast mating, cells are immobilized on a solid surface with respect to each

other (Figure 2a). In this case, it is the distance between mates and their ability to grow mating

projections towards each other that primarily determines the likelihood of mating [9]. In such a

situation, pheromone gradients can allow the cells to determine the direction toward, and under

some circumstances, the distance from their mating partners. Only in the case of close proximity

of a partner cell would a mating attempt be triggered, because only then would the pheromone

concentration be sufficiently high. Several studies hypothesized that the barrier peptidase Bar1

[96] secreted by MATa cells, responsible for degrading α-pheromone, enhances the precision of

directional sensing [13, 104, 128]. The correct orientation of mating projections is necessary for

mating. But this already presupposes that cells are immobilized and in immediate proximity of

each other. Mating of haploid yeast cells often occurs within the ascus containing the spores [79],

but haploid cells can also be released by ascus degradation (e.g. in the gut of fruit-flies [36]).

In this case, unlike in the spore, there can be significant variation in the ratio of the two mating

types and proximity is achieved by specific sexual aggregation via α/a-agglutinins, expressed on

the cell surface of the respective mating types [92, 124, 171]. This ecologically also relevant

scenario of mating can occur in a suspension of cells mixed in liquid or following the detachment

and mixing of cells that have been growing on a liquid covered surface (e.g. leaves). If cells

are in a suspension, aggregation is a precondition of mating (Figure 2) and mating efficiency is

determined by the probability of random encounters of cells. This in turn is a function of global

population parameters, namely the total density (concentration of cells) ρT and the composition of

the population, which can be defined by the fraction of one of the mating types. From here on, I

denote the fraction of MATα-cells as θα.
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Figure 2. Partner sensing in yeast mating. a. For yeast mating on a surface, pheromone levels
can convey spatial information. MATa cells (white/green) can use of α-factor concentration
(pink) as a signal for the distance of potential mating partners (MATα cells; black), inducing
transcriptional response (green), cell-cycle arrest and morphological changes. Formation of the
mating protrusion (shmoo; right) only occurs at high levels of the α-factor. The pheromone
gradient can guide the orientation of the shmoo. b. For yeast mating in suspension, the first step
of mating is sexual aggregation following random collisions of cells. The probability for a given
MATa cell to mate is determined by the abundance of both cell types. c. Pheromone
communication without signal attenuation, α-factor denoted with pink circles. Higher numbers of
MATα cells results in higher α-factor concentration (upper row). The α-factor concentration
would be the same however with a larger number of recipient MATa cells (lower row), although
the mating probability for a MATa cell is different in this case. Also, overstimulation of recipient
cells may occur (rightmost panel). d. A signal attenuation mechanism dependent on MATa
density (ρa) can align the response to the mating likelihood by separating the two population
parameters, the absolute emitter density (blue box; fraction of emitters constant, while the total
density changes) and the relative emitter density (red box; total population density constant,
while population composition changes). By this mechanism overstimulation and premature
shmooing can also be avoided. Figure from joint manuscript, figure created by Dr Alvaro
Banderas.

In this context, where mating is a mass-action-like process driven by global population

parameters, we hypothesized that pheromone signaling and the signal attenuation mechanism

through Bar1 can have a different - though not contradictory or exclusive - function than local

3
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sensing. Namely, it could function as a system for detecting the global population parameters

in such a way that cells can estimate the likelihood of mating, so they invest cellular resources

accordingly.

1.2 Fractional sensing by signal degradation

1.2.1 Analytical investigation of fractional sensing for a linearly responding pathway

The starting point of our analysis of pheromone communication in sexually reproducing S.

cerevisiae was the observed response pattern of MATa cells in experiments where population

parameters were systematically varied, as shown in Figure 3. To monitor the induction of the

mating pathway, the PFUS1-GFP transcriptional reporter was used as a readout.

When the total density of cells, ρT , is fixed but the composition of the population is varied,

increasing the fraction of MATα-cells from 0.1 to 0.9, cells with (3b) and without (3d) the diffusible

peptidase Bar1 (that degrades α-pheromone) show very different patterns. The wild-type (wt) cells

producing the enzyme exhibit a nearly linear response to the fraction of partner cells. Moreover,

at higher total densities, the total density ρT loses its effect, with responses at the same θα value,

but different ρT values becoming nearly identical (compare the green and purple lines in panel b)

of Figure 3).

In other words, we see density-independent sensing of the fraction of partner cells, if the total

density is above a certain level. In contrast, bar1∆ cells are highly sensitive to total cell density.

Additionally, at high densities their response is saturated over almost the entire range of θα values.

In another experiment (panels a and c), the control variable was the absolute amount of

MATα-cells, ρα, which was increased while keeping the fraction of MATα-cells, θα, fixed. This

means that the number of MATa-cells was also increased here to keep the population composition

constant. The response of wt cells to ρα, the absolute amount of partner cells, becomes flat after

some level, and the response is instead defined by the partner cell fraction (θα) again.

In contrast, the response of bar1∆ cells essentially follows ρα, the absolute amount of partner

cells. thus, bar1∆ cells are unable to distinguish between situations where the absolute amount of

partner cells is identical, but their fraction in the total population is different.
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Figure 3. Mean responses of MATa cells from mixing experiments. Data is from flow cytometry
experiment measuring the PFUS1-GFP transcriptional reporter as a readout, the first row
showing the responses of wild-type, the second bar1∆ cells. Error bars show standard errors of
the mean for three biological replicates. Experiment by Dr Alvaro Banderas.

Figure 4. Dynamic response of the PFUS1-GFP reporter to purified α-factor in wild-type and
Bar1 knockout (bar1∆) MATa cells. In the wild-type, pathway induction is strongly shifted to
the right compared to the bar1∆ strain, showing the signal attenuation effect of Bar1.
Experiment and figure by Dr Alvaro Banderas.
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These results can be explained by a mathematical model capturing the main features of the

pheromone signalling system in a mixed population of yeast cells. In a detailed biochemical study

[106] the KM of the enzyme Bar1 was determined to be 30 µM, which is far higher than the sensitive

range of the pheromone response (Figure 4), which is the biologically relevant concentration range.

Therefore, instead of a non-linear Michelian term for the rate of degradation, we can use simple

first-order kinetics with respect to the substrate, α-pheromone.

I will first write down the equations without any rate constants for simplicity. The concentration

dynamics of α-factor and the enzyme Bar1 in a homogeneous mixed population of MATα and

MATa cells can be described by the following ordinary differential equations (ODE):

dα(t)

dt
= ρα − α(t)b(t) (1)

db(t)

dt
= ρa − b(t) (2)

Where α(t) and b(t) are the concentrations of α-factor and Bar1, respectively; ρα and ρa are

the number of MATα and MATa cells per unit of volume. Using the initial values α(t = 0) = α0,

b(t = 0) = b0, and substituting the solution for Bar1 into Equation 1 we get:

dα(t)

dt
= ρα − α(t)(e−t (b0 − ρa) + ρa) (3)

The analytical solution for the differential equation for α(t) is then:

α(t) = α0e
e−t(b0−ρa)+(1−t)ρa−b0 + ραe

e−t(b0−ρa)−tρa
(∫ t

0

ee
−z(ρa−b0)+zρa dz

)
(4)

Or, if α(t = 0) = b(t = 0) = 0, this simplifies to:

α(t) = ραe
−(t+e−t)ρa

∫ t

0

e(z+e
−z)ρa dz (5)

In the limit of t >> 1, the exponents simplify to:

α(t) = ραe
−tρa

∫ t

0

ezρa dz =
ρα (1− e−tρa)

ρa
(6)

Which for t >> 1 converges to the steady state concentration [α∗]:

α∗ =
ρα
ρa

(7)
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That is, the steady-state concentration of the signal, α-pheromone, is exactly the ratio of MATα

to MATa cells, rα. Rate constants for production and degradation would simply scale the ratio

by a constant (see below).

Our initial observation was a linear dependence of the cellular response of wild-type MATa-cells

on the fraction of MATα-cells, θα (Figure 3b), and not on the ratio, rα. The relationship between

fraction and ratio is:

rα =
θα

1− θα
(8)

It is however the cellular response to the signal (α-pheromone) that scales linearly with θα,

not the signal strength itself. Converting the signal [α], that scales as [α] ∝ θα
1−θα , to a response

that scales linearly with θα can be achieved by the classical saturation curve that many signaling

pathways follow (note that the EC50 is set to 1 here):

response ∝ [α]

[α] + 1
∝ rα
rα + 1

=
θα

1−θα
θα

1−θα + 1
= θα (9)

So far I have established two basic features of this system. First, the simple signaling system

that yeast cells use, in which the recipient (MATa) cells produce an enzyme that degrades the

signal of their partner (MATα) cells, makes the steady state signal scale as the ratio of emitter to

recipient cells, if the enzyme operates (far) below saturation, so the rate of degradation is linear

with the substrate. Second, if the readout of this signal by recipient cells is through a signaling

pathway with a saturating dose response curve, this leads to a response that is a linear function

of the fraction of partner (emitter) cells within the total population, in our case θα.

Going into more detail, we have to consider the fact that Bar1 is very stable on the timescale of

mating and is not degraded to any substantial extent by the time that the steady state response

patterns emerge (Figure 3, responses plotted at t=140min). We can investigate the effect of Bar1’s

stability by assigning a rate constant k to the first-order degradation (or any kind of loss) of the

enzyme itself, so that the ODE for Bar1, Equation 2, is:

db(t)

dt
= ρa − k b(t) (10)

and the equation for α-factor dynamics, with the analytical solution of Bar1 substituted in, is:

dα(t)

dt
= ρα − α(t)

ρa
(
1− e−kt

)
k

(11)
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The solution for α(t) is then (using again the initial values α(t = 0) = b(t = 0) = 0):

α(t) = ραe
−
ρa(kt+e−kt)

k2

∫ t

0

e
ρa(kz+e−kz)

k2 dz (12)

Which in the limit of t >> 1 is:

α(t >> 1) = ραe
− tρak

∫ t

0

e
zρa
k dz = k

ρα
ρa

(
1− e− tρak

)
(13)

So that the steady state is:

α∗ = k
ρα
ρa

(14)

While the steady state concentration of α is only a function of the ratio (rα) and the rate

constant of the loss of Bar1 (k), in the dynamics there are differences as a function of total density

ρT as well, as shown in Figure 5.
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Figure 5. Dynamics of α-pheromone as a function of population parameters and the stability of
Bar1. Analytical solution of α-pheromone dynamics from Equation 12. The x axis (time) is
logarithmic in the lower two rows to show the peaking behavior. The different colors stand for
different values of Bar1’s degradation rate constant, k = 0.1 (blue), k = 1 (red), k = 10 (orange).

These dependencies are analyzed in Figure 6. As we know from Equations 12-14, the steady

state itself is independent of ρT , shown in Figure 6a. The time required to get to 90% of a given

steady state value (Figure 6b) decreases with higher total cell densities, ρT . Finally, if Bar1 is

stable, the dynamics of α-pheromone is non-monotonic, with the peak value a function of both the

ratio (rα) and, with a weaker dependence, total cell density (ρT ), as shown in Figure 6c.
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Figure 6. Key properties of α-pheromone dynamics as a function of population parameters and
the stability of Bar1. The first row shows the steady state α-pheromone concentrations at
different values of Bar1’s degradation constant, k. The second row shows the time required to
reach 90% of the steady state values (x axis). The third row shows the peak value of
α-pheromone, at the lowest value of k, where the dynamics shows non-monotonic behavior.

In the limiting case of no Bar1 degradation at all, the analytical solution for α(t) becomes:

α(t) =
ρα√
ρa

√
π

2
erfi

(
t

√
ρa
2

)

)
exp

(
−
(
t

√
ρa
2

)2
)

(15)

√
π

2 exp(−x2)erfi(x) = exp(−x2)
∫ x

0
exp(t2)dt is the so-callad Dawson integral F (x), therefore

we can also re-write the equation as

α(t) =
ρα√
ρa

√
2F

(√
ρa
2
t

)
(16)

The Dawson integral F (x) has a maximum at F ′(x) = 0, or 1 −√π exp(−x2) x erfi(x) = 0,

numerically at F (0.9241) = 0.541. In our case, with F
(√

ρa
2 t
)
, the value of t where α(t) reaches

its maximum scales as 1.30693√
ρa

.

I analyze three properties of the α-pheromone dynamics: the maximal concentration that

the pheromone reaches (αmax), the time to reach the maximum (tmax) and the integral of the

pheromone concentration up to the timepoint it falls back to 10% of its peak value.

A mixed population can be defined with two population parameters, either by ρa and ρα, or

ρT and θα (or rα). I look at how these three measures of the signal dynamics depend on either the

densitities of the two cell types (ρa and ρα), or of the total cell density ρT and the composition of

the population, defined by rα or θα.
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The maximal concentration reached by alpha pheromone is algebraically defined as

αmax = max

(
ρα√
ρa

√
2F

(√
ρa
2
t

))
= max

(
ρα√
ρa

√
2F (t)

)
=
√

2 0.541
ρα√
ρa

= 0.767
ρα√
ρa

(17)

Which can be rewritten as:

0.767
ρα√
ρa

= 0.767
√
ρT

θα√
1− θα

= 0.767
√
ρT

rα√
1 + rα

(18)

The linear scaling of αmax with θα√
1−θα

and
√
ρT , is shown in panel 3 of the first and second

rows of Figure 8, respectively. The time to reach the maximal concentration only depends on the

density of recipient cells, that is:

tmax =
1.30693√

ρa
=

1.30693√
(1− θα)ρT

= 1.30693

√
1 + rα
ρT

(19)

shown in the panels 1 (first and second rows) of Figure 8.

We can see that the maximal α-pheromone concentration and the time point it is reached has

an inverse dependence on the total density ρT : tmax ∝ 1√
ρT

, αmax ∝ √ρT .

If we take the integral of the α-pheromone dynamics from 0 to a time point where α(t) falls

back to a given (smaller or equal to 100%) percentage of the maximal α-pheromone value, we find

that this measure is invariant of ρT , as shown in panels 4 and 5 of the second row of Figure 8.

This is due to the mathematical properties of the function α(t). At a constant fraction θα we can

rewrite the equation α(t) =
√
ρT

θα√
1−θα

√
2F

(√
ρT (1−θα)

2 t

)
as

α(t) ∝ √ρT exp(−(
√
ρT t)

2) erfi(
√
ρT t) (20)

the other terms omitted being constants. The time point of the maximum concentration

reached, tmax, scales as tmax ∝ 0.924139√
ρT

. Similarly, the timepoint tc (tc ≥ tmax) the pheromone

concentration falls back to a fraction c (0 < c ≤ 1) of its peak concentration αmax also scales as

tc ∝ 1√
ρT

.

To take a concrete example, in the case of c = 0.1, t0.1 = 9.29582√
ρT

.

Integrating the α-pheromone concentration up to the point tc we get:

∫ τ√
ρT

0

√
ρT erfi(

√
ρT t) exp

(
−(
√
ρT t)

2
)
dt =

τ2
2F2

(
1, 1; 3

2 , 2;−τ2
)

√
π

(21)

This definite integral is independent of total density
√
ρT . 2F2 is the generalized hypergeometric
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function. In the integration limit, τ is a constant that depends on what percentage of the peak

concentration we define for the α-pheromone concentration to fall back, for example for 10%, it is

τ = 9.29582.

Calculations of α(t) with two values of ρT and their integrals from t = 0 to α(t0.1) = 0.1αmax

(t0.1 > tmax) are shown in Figure 7.

2 4 6 8 10 t

0.2

0.4

0.6

0.8

1.0

1.2

α(t)

Figure 7. α-pheromone dynamics at two different ρT values, with the ratio rα fixed, when Bar1
is stable. The shaded areas show the definite integral of the pheromone concentrations from t = 0
to the time point t0.1 when α(t0.1) = c αmax (t0.1 > tmax, c = 0.1). This measure is invariant of
ρT for any value of 0 < c ≤ 1.

To turn to the effect of the partner cell fraction, θα, we can see that at a fixed total density

α(t) scales with θα as:

α(t) ∝ θα√
1− θα

F
(
t
√

1− θα
)

(22)

Again, the timepoint tc (tc ≥ tmax) where the pheromone concentration falls back to a fraction

c (0 < c ≤ 1) of its peak concentration αmax scales as tc ∝ 1√
1−θα

, as shown in Figure 8 (first row,

panels 1 and 2). If we look at the dependence of this integral on the fraction θα we get:

∫ τ√
1−θα

0

θα√
1− θα

F
(
t
√

1− θα
)
dt =

θα
1− θα

τ2
2F2

(
1, 1; 3

2 , 2;−τ2
)

2
= rα

τ2
2F2

(
1, 1; 3

2 , 2;−τ2
)

2

(23)

2F2 is the generalized hypergeometric function. That is, the integral of α(t) from t = 0 until

the timepoint tc, where α(t) falls back to a defined fraction of αmax scales linearly with the ratio

of MATα to MATa cells, rα, as shown in Figure 8 (first row, panels 4 and 5).
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To summarize, in a simple production-degradation system with two cell types, where the signal

produced by one cell type (MATα) is detected by the other (MATa), while also being degraded

by a stable enzyme secreted by recipient cells, the integral of the signal molecule concentration up

to its maximal value, or the timepoint where it falls back to a defined level of its maximum, is

independent of the total density of cells and scales linearly with the ratio of emitter to recipient

cells. The signaling dynamics of this system is therefore eminently capable of robustly carrying

information of the relative abundance of partner cells at different total densities of the population.

Next, I investigated how the cellular response behaves as a function of the stimulation

(α-pheromone dynamics). We know from dose-response experiments with purified α-factor that

pathway induction is, in some (lower) range of the input concentration [α], roughly linear with [α].

I first investigate pathway behavior in this linear range to make it more tractable mathematically.

In this case, the ordinary differential equation for the pathway output (PFUS1-GFP, denoted as

GFP (t) in mathematical expressions) is:

dGFP (t)

dt
= α(t)− kdegGFP (t) =

θα√
1− θα

√
ρT
√

2F

(√
ρT (1− θα)

2
t

)
− kdegGFP (t) (24)

with F being the Dawson-integral. We want to see how the GFP -dynamic depends on the

population parameters θα and ρT , respectively.

In the case of a constant fraction θα, GFP (t) scales with ρT as (also neglecting the degradation

rate constant kdeg):

dGFP (t)

dt
∝ √ρTF (

√
ρT t)−GFP (t) (25)

The analytical solution (for the initial condition GFP (t) = 0) is then, as a function of ρT (and

time):

GFP (t) ∝ e−t
∫ t

0

ez
√
ρTF (

√
ρT z) dz (26)

and with the fraction, θα:

GFP (t) ∝ e−t
∫ t

0

ez
θα√

1− θα
F
(√

1− θα z
)
dz (27)

We cannot integrate this function in closed form like for the signal dynamics, but by numerical

calculations we can investigate the same dynamical properties as for α-factor, as a function of the

two population parameters, θα and ρT .
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I performed numerical calculations at three different values of the degradation rate constant of

GFP, kdeg (10−3, 10−2, 10−1, 100), to see the effect of the separation of the timescales of signal

and pathway dynamics. The scaling properties of GFP with θα and ρT are shown in Figures 9

and 10, respectively.

When kdeg = 1 and pathway output tracks signal dynamics closely, its scaling properties with

the population parameters are nearly identical to those of signal dynamics α(t). The integral under

the GFP curve can be regarded as the cumulative transcriptional output [101].

The integral up to tmax, the timepoint of the maximal pathway output GFPmax, scales linearly

with the ratio rα (= θα
1−θα ), as shown in the fourth and fifth panels of the first row in Figure 9.

This measure, the integral of pathway output, is nearly independent of ρT (fourth and fifth panels

of the first row in Figure 10).

If kdeg is lower, making pathway dynamics slower, the integrals
∫ tmax

0
GFP (t)dt and∫ tc

0
GFP (t)dt start to show some density dependence, which can be seen in the fourth and fifth

columns of Figure 9 and 10, as we move downward. When integrating the different (in terms of

the input population parameter θα and ρT ) trajectories to the same absolute timepoint (t = 104

on the plot), we see the same pattern as with α(t) (compare Figure 8 panel 6 in the first row),

namely, a linear dependence with rα and a much weaker linear dependence on the logarithm of

ρT .

In summary, in the linear range (of pathway induction) pathway dynamics scale nearly identically

with signal dynamics with regard to the population parameters θα and ρT . Specifically, the integral

under the curve up to its maximal value, GFPmax, or to a given fraction of the maximum at a

later timepoint scales linearly with rα, the ratio of emitter to recipient cells, while being largely

independent of the total density of cells, ρT .

In other words, the cumulative pathway output reflects the fraction of partner cells as well,

showing that the signaling system we have in yeast is robustly ‘designed’ for fractional sensing. In

the next section I use a more detailed non-linear model to explain the experimental results directly.
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1.2.2 Parameter fitting of the non-linear pathway model

I. Basic model: constant production rate of pheromones

The experimental data in Figure 3 showed an approximately linear response (level of pathway

induction at a given timepoint) to partner cell fraction θα, whereas in the previous subchapter 1.2.1

the cumulative output scaled linearly with the ratio rα = θα/(1 − θα). As shown in Equations

8-9, a signal scaling linearly with rα can be converted to a response scaling linearly with θα by

a saturating pathway profile. We know from our experimental data, shown in Figure 4, that the

mating pathway response indeed saturates with α-factor concentration. In the previous section

1.2.1 I investigated the properties of the pathway response in the linear range to highlight its

fundamental properties as clearly as possible

To capture the non-linearity in the pathway response, I used a standard saturation curve [125]

for the production rate of our reporter PFUS1-GFP. I did not model the molecular details of the

mating pathway. I am primarily interested in the input-output relation of the system (what we also

have empirically, shown on Figure 4), not the intra-pathway molecular events. Therefore I used a

model that directly connects the output to the level of stimulation detected by the receptors, α(t):

dGFP (t)

dt
= V0 + Vmax

α(t)H

α(t)H + ECH50

− δGFPGFP (t) (28)

V0 is the basal production rate, Vmax the maximal production rate, H is a Hill-coefficient for

response cooperativity, EC50 the level of stimulation that produces a half-maximal production rate

and δGFP the rate constant for the first-order degradation/dilution of GFP. This equation cannot

be solved analytically, and my aim instead was fitting its parameters to explain the experimental

results.

The concentration dynamics of α-factor and the enzyme Bar1 in a homogeneous mixed

population of MATα and MATa cells can be described by the following ordinary differential

equations:

dα(t)

dt
= ραν1 − κ α(t)b(t)− kαdegα(t) (29)

db(t)

dt
= ρaν2 − kbdegb(t) (30)

where α(t) and b(t) are the concentrations of α-factor and Bar1, respectively; ρα and ρa are

the number of MATα and MATa cells per unit of volume; ν1 and ν2 are per cell production

rates of α-factor and Bar1, respectively; and κ is the rate constant of Bar1-dependent α-factor
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degradation. The enzymatic α-factor degradation has linear kinetics (no saturation) here, which is

justified because the KM of Bar1(30 µM) is much higher [106] than the concentrations within the

sensitive range of the pheromone response. I further neglected spontaneous degradation of Bar1

and of α-factor, as both are negligible on the time-scale of the experiment. This simplifies the two

equations above to

dα(t)

dt
= ραν1 − κ α(t)b(t) (31)

db(t)

dt
= ρaν2 (32)

The system of Equations 31 and 32 has the exact solution, for the initial conditions

b(t = 0) = 0, α(t = 0) = 0:

α(t) = c1
ρα√
ρa
exp

(
−(t c2)2

)
erfi(t c2) (33)

where c1 = 1.253 ν2
1

κ ν2
, c2 = 0.707

√
κ ν2 ρa and erfi is the imaginary error function.

As discussed in the previous section, the solution has non-monotonic time dependence, falling

to zero after reaching a maximum αmax = c ρα√
ρa

, where c is a combination of kinetic constants,

c = 1.253ν1

√
1

κ ν2
0.6105 (irrespective of the value of c2).

The ODE for GFP was already described above, in Equation 28. When fitting the model, some

of the parameters were fixed or constrained by experimental data:

- δGFP is the parameter for first-order GFP degradation (and dilution), experimentally

estimated as δGFP ≈ 0.02/min (unpublished data, Alvaro Banderas). This parameter is allowed

to vary in a narrow range [0.01; 0.03] around the experimentally determined value.

- The EC50 value is fixed to 2nM , derived from the experimentally measured dose-dependence

of reporter induction upon stimulation with synthetic α-factor (Figure 4).

- The value of the Hill-coefficient, H, was allowed to vary between 1 and 3 because of the mild

sigmoidality observed in dose-response experiments (Figure 4).

- The maximal GFP production rate Vmax and the basal rate V0 are allowed to vary within

10−4 ≤ Vmax ≤ 10−3(AU/min). The ratio (V0 + Vmax)/δGFP is fixed to the maximal (steady

state) fluorescence value measured in flow cytometry (0.044 AU).

- The parameters ν1 and the product ν2κ (Equations 31 - 32) are allowed to vary within the

constraints 10−9 ≤ ν1 ≤ 10−5 (pmol/min) and 10−16 ≤ ν2κ ≤ 10−10 (L/min2), respectively.
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The objective function to be minimized to fit these parameters is the weighted sum of squared

residuals between the data points (GFP data, mean of the 3 replicas of the mixed cells experiments)

and the model outputs (GFPmod), normalized by the value of data points, fitting the model

predictions simultaneously to the wt and bar1∆ responses:

F =

M∑
i=1

N∑
j=1

K∑
k=1

(
GFP dataWT (θi, ρj , tk)−GFPmodWT (θi, ρj , tk)

GFP dataWT (θi, ρj , tk)

)2

+

(
GFP databar1∆(θi, ρj , tk)−GFPmodbar1∆(θi, ρj , tk)

GFP databar1∆(θi, ρj , tk)

)2

(34)

F = 1.1675.

Normalizing by the standard deviation of the responses leads to a fit dominated by a few

datapoints, since the standard deviation is in some cases very small.

The parameter values are from fitting to a total of 80 GFP values from flow cytometry

experiments, as we fit the model to 20 pairs of values of the input parameters θα and ρT at

two timepoints (t = 135min and t = 195min) and to two samples (wild-type and bar1∆).

The parameter values we obtained are the following: ν1 = 1e-08 pmol/min; ν2κ = 1.14e-13

L/min2; δGFP = 0.03/min, V0 = 4.04e-04 AU/min, Vmax = 9.39e-04 AU/min, H = 1.24. In

Equation 34, M is equal to the number of θα values, N to the number of ρT values and K the

number of timepoints, M=5, N=4, K=2. Fitting was performed by the local search algorithm

fmincon of MATLAB sampling over initial values within the allowed range of values for all fit

parameters.

The fit at t = 195min shown in Figure 12 becomes poorer, as feedback effects within the mating

pathway start to reshape the response in ways not explained by our minimal pathway model.
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Figure 12. Mean responses in mixing experiments (squares) at t=195 min. First row shows
wild-type responses, second bar1∆.
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II. Model with mutual pheromone induction

One important property of the system that is not included in the basic model above is the fact that

pheromone production by the cells is not constant, but inducible [107, 142]. Therefore, stimulation

of MATa cells by α-factor induces production of a-factor and vice versa. I described this induction

with a deterministic model:

rate of pheromone production ∝ ν
(

1 + Φ α(t)HMF

α(t)HMF +EC
HMF
50

)
.

For simplicity and lack of the relevant parameters from experiments or the literature, I assumed

that pheromone induction has similar dose-dependence as PFus1 −GFP .

I therefore fixed the EC50 of pheromone induction to 2 nM, but let its Hill coefficient (HMF ),

fold-change parameter (Φ) and the basal production rate (ν) vary. For simplicity, I also assumed

that a- and α-factor induction follow identical dependence, except for the absolute level of ν (ν1:

α-factor basal production rate, ν3: a-factor basal production rate).

The dynamics of the α- and a-factor induction can then be described as

dα(t)

dt
= ν1

(
1 + Φ

a(t)HMF

a(t)HMF + ECHMF50

)
− κα(t)b(t) (35)

and

da(t)

dt
= ν3

(
1 + Φ

α(t)HMF

α(t)HMF + ECHMF50

)
− kadega(t) (36)

Since we focus on the early time points of the response, I further neglected spontaneous

degradation of the a-factor (kadeg). The equations describing other variables (Bar1, GFP) are

the same as above (Equations 31 and 32).

The resulting fit yields the parameter values: ν1 = 5.3-09 pmol/min; ν2κ = 1.3e-13 L/min2;

δGFP = 0.034/min, V0 = 4.4e-04, V max = 1e-03, HGFP = 1.41, ν3 = 2.96e-08 pmol/min, HMF

= 1.46, Φ = 1.36. This model produced only marginally better fits, at the cost of four further free

parameters. The fits are shown in Figure 13.

One qualitative feature of the response that this model reproduces is the negative dependence

of the bar1∆ responses on θα when they are plotted as a function of ρα. These curves are separate

and the ones at higher θα values are to the left of those with lower θα values. To see whether this

is indeed due to mutual pheromone induction would require experiments removing the mutual

feedback.
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Figure 13. Mean responses in mixing experiments (squares) at t=135 min, with error bars
showing standard errors of the mean (SEM) for three biological replicates. Solid lines show fits to
the data using the computational model including mutual induction of pheromone production
(Model II). First row shows wild type responses, the second bar1∆.

In the previous section 1.2.1, I showed that the time integral of the signal (pheromone)

concentration is a function of the fraction of partner cells (θα) only, completely independent of

the total density of cells. Moreover, I also showed that in the case of a linear pathway, the integral

of the pathway output, which is a measure of resource investment by the cell, behaves nearly

identically, that is, it is primarily a function of the partner cell fraction and depends only very

weakly on the absolute density of cells. The experimental data I used does not have the sufficient

time resolution to calculate the time integral. Instead, I constructed a more detailed, non-linear

pathway model to reproduce the responses at given time points.

In summary, we can see that signal degradation coupled with a non-linear, saturating signaling

pathway produces the behavior observed in the experiments. Namely, for wild-type cells we see a

linear response to the fraction of partner cells (θα) with a weak dependence on the total density

of cells (ρT ). In the case of bar1∆ cells we see that due to the absence of signal attenuation, the

respose is simply a function of the density of partner cells (ρα). In the next section I provide

statistical analysis of the experimental data as a function of population parameters, to show that
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the difference between wild-type and bar1∆ responses is statistically significant.

1.2.3 Statistical analysis of cellular response in mixed population experiments

It is visually clear from Figure 3 a and c that in the case of wild type cells the response is determined

primarily by θα, whereas for bar1∆ cells it is simply the amount of emitter (MATα) cells that

determines the response. At a fixed ρα, moving up the value of θα means decreasing the amount of

recipient cells as θα = ρα
ρα+ρa

. According to the model without induction of pheromone (or Bar1)

production, the bar1∆ responses at the same value of ρα, but different amounts of recipient cells

(ρa) should be identical. However in the experimental data we see some variation with θα as well.

To test the significance of the variation of the response with population parameters, I used

a generalized linear model (GLM, [107]). The test has to be performed with two population

parameters that define both cell populations, and which are independent of each other. Therefore,

I tested the mean responses as a function of ρα and ρa, which is in effect testing for absolute

density sensing versus relative density sensing. In the first case (absolute density sensing, bar1∆)

the response is only a function of ρα, and the amount of recipient cells (ρa) has no statistically

significant effect. In the second case (relative density sensing, shown by wild-type cells) both

population sizes, ρα and ρa, have an effect.

Using a linear model Y ∼ x1 + x2, with Y being the response, the predictor x1 standing for

ρα and x2 for ρa; and a normal distribution of the responses at a given value of the predictor,

I used MATLAB’s fitglm function to perform the statistical analysis. Although using a linear

model and a normal distribution can produce negative values for the response (if using the model

for predictions), in the range of predictor values I used, this does not pose a problem.

The results obtained are:

Table 1. Statistical test of bar1∆ responses

estimate SE tstat pvalue
Intercept 0.02 0.002 12.1 8e-19
x1 (ρα) 0.02 0.002 9.1 2e-13
x2 (ρa) -1e-04 0.002 -0.05 0.96

72 observations, 69 error degrees of freedom. Estimated Dispersion: 6.99e-05.

F-statistic vs. constant model: 42.2, p-value = 1.07e-12.

Table 2. Statistical test of wt responses

estimate SE tstat pvalue
Intercept 0.02 0.001 23.1 3e-34
x1 (ρα) 0.01 0.001 14 8e-22
x2 (ρa) -0.006 0.001 -7.23 5e-10
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72 observations, 69 error degrees of freedom. Estimated Dispersion: 1.25e-05.

F-statistic vs. constant model: 136, p-value = 1.16e-24.

As expected, statistical analysis shows that for the bar1∆ response the sole significant predictor

is ρα (the p-value for ρa is 0.96). In contrast, for the wild-type response both population

parameters, ρα and ρa, have a significant effect. In the experiments it is the parameters θα

and ρT that have fixed values (θα = {0; 0.1; 0.3; 0.5; 0.7; 0.9}, ρT = {0.25; 0.5; 1; 2}), so we do not

have a plot where responses are grouped by fixed ρa values, but instead only by fixed ρT values,

shown below in Figure 14. Performing a significance test by a GLM for ρα and ρT leads to the

same result, that is, for the wt response both variables are significant, whereas for bar1∆ only ρα

is significant.
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Figure 14. Mean responses in mixing experiments to density of partner cells ρα, for wt and
bar1∆ cells, at fixed total cell densities ρT . The two panels in the lower row show the
corresponding simulations.

With simulations however, I created a ρα − ρa plot, shown in Figure 15, where the findings of

the statistical analysis shown in Table 1 - 2 are visually illustrated.
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Figure 15. Simulated mean responses in mixing experiments to density of partner cells ρα, for
wt and bar1∆ cells, at fixed densities of receiver cells (ρa).

To summarize, statistical analysis of the responses by a GLM confirmed what the ODE model

predicts, and the experimental results visually suggest. Namely, wt cells using signal attenuation

carry out relative density sensing, whereas bar1∆ MATa cells detect only the absolute density

of their partners, with their own density (ρa) not having a statistically significant effect on their

response.

1.3 Optimality of fractional sensing compared to density sensing

1.3.1 Alignment of pathway induction with mating probability

The mechanism described in the previous section represents a new type of population sensing in

microorganisms, enabling them to measure the ratio of the two cell types, instead of absolute

population density as in the case of conventional quorum sensing. The hypothesis was that the

observed dependence of pathway induction on population parameters have a physiological meaning,

in coupling the mating response to the likelihood of successful mating.

Formation of mating pairs in a mixed suspension is primarily determined by random cell

encounters, with both the sex ratio and population density are determinants of the likelihood

of pair formation. If the duration of mating reactions is limited, the probability for a MATa cell

to collide with a MATα cell and to form a mating pair will increase both with the population

density and with the fraction of the MATα cells at low population densities. However, it is solely

determined by the sex ratio of the population at higher densities, and/or if the reaction is given

enough time to reach its steady state.

Describing the probability of mating mathematically, I assumed a simple scenario where collision

of cells leads to the irreversible formation of a mating pair. This process can be described by mass

action kinetics, without any parameters (rate constants), as:
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dρα(t)

dt
=
dρa(t)

dt
= −ραρa (37)

dρm(t)

dt
= ραρa (38)

where ρm is the concentration of mating pairs. I used the conservation relation ρα(t = 0) +

ρa(t = 0) = ρa(t) + ρα(t) + 2ρm(t) to obtain the analytical solution for the fraction of mated

MATa cells:

ρ̃m(t) =
1− exp (2(θα − 0.5)ρT t)

1−θα
θα
− exp (2(θα − 0.5)ρT t)

(39)

The stationary solution of this equation is

ρ̃ssm =


1−θα
θα

, if θα < 0.5.

1, if θα ≥ 0.5.

(40)

The steady-state fraction of mated MATa-cells is completely independent of total density and

depends only on the partner cell fraction θα. At time points before reaching the steady state there

is a dependence on ρT as well, as shown in Figure 16.

The ρ̃ssm ∝ f(θα) relation in Figure 16 at later timepoints is similar, but not identical to the

wt response at higher densities (Figure 3b, largely independent of ρT ). Namely, the fraction of

mated a-cells reaches 1 and saturates at θα = 0.5, whereas the wt response spans the entire range

of partner cell fractions linearly.

However, we also had experimental data directly testing the dependence of mating pair

formation (in a mixed suspension) on the sex ratio. In this experiment wild-type MATa and

MATα cells were co-incubated and the free and aggregated fractions of haploid cells were

distinguished by flow cytometry. As a negative control, aga2∆ MATa strains were used, showing

no significant aggregation. This experiment showed a linear dependence of mating pair formation

on the sex ratio, shown in Figure 17, akin to the wt response in Figure 3.
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Figure 16. Mating encounter probability simulated using an irreversible mass-action model of
cell collisions as a function of ρα at fixed values of θα (left panel) or as a function of θα at fixed
values of ρT (right panel), at three different timepoints.

The relation ρssaggr = θα, that is, the fraction of aggregated MATa cells equal to partner

cell fraction θα, persisted over time and did not saturate at θα = 0.5 even at later time

points. Therefore, at a 1:1 ratio, not all cells can find a partner, showing the sub-optimal

aggregation/mating efficiencies already observed in [131]. In short, the wild-type response (Figure

3) follows the empirical probability of mating in a regime of random encounters in a mixed

population (Figure 17).
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Figure 17. Fraction of aggregated wild-type MATa cells as a function of the initial fraction of
MATα cells (θα) at a fixed ρT = 0.3 and at indicated time points. The aggregated fraction was
determined as the number of MATa cells in aggregates divided by the total number of MATa
cells. Fitting the results at the last timepoint (t = 259min) as a linear function of θα (no
intercept) yields a R2 value of R2 = 0.95. Figure from manuscript. Experiment by Dr Alvaro
Banderas.

1.3.2 The fitness trade-off of pathway induction: cost and benefit

The alignment of the mating likelihood with the wild-type cellular response pattern implies that

yeast cells have evolved to sense the sex ratio, thereby effectively detecting the probability of

mating, and inducing the mating pathway in line with this likelihood. This also suggests that

pathway induction imposes a fitness burden that is on the other hand counterbalanced by the

advantage of a higher mating efficiency. Our experimental data confirms these predictions.

Response (AU)
500 1000 1500 2000 2500 3000 3500 4000 4500

N
o

rm
a

liz
e

d
 g

ro
w

th

0

0.2

0.4

0.6

0.8

1

1.2

control WT
control bar1
MDR WT
MDR bar1

 R
2
=0.6357

Figure 18. Population growth for the wild-type (triangles) or bar1∆ (circles) MATa cells as a
function of the PFUS1-GFP response under stimulation with varying concentrations of purified
α-factor (open symbols) or varying density and sex ratio in coincubation experiments (closed
symbols). For each sample, the values were normalized to the growth rate of the unstimulated
MATa populations at equivalent starting ρa values. Experiment by Dr Alvaro Banderas.
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First, as Figure 18 shows, pathway induction reduces growth linearly. This represents a fitness

cost for haploid cells that induce the mating pathway but do not succeed in mating.

On the side of benefits, sexual reproduction is known to have a fitness advantage [111, 137] in

many cases, a topic with an extensive literature in evolutionary biology. Specifically, in the case of

S. cerevisiae, experiments have shown fitness advantages of diploidy under stress conditions such as

the presence of antifungal drugs [5], or the presence of mutagenizing agents [95]. Diploids also show

a cryptic fitness advantage invading haploid populations and overgrowing them, although showing

no clear growth advantage when measured separately in standard fitness assays [60]. Moreover,

diploidy also confers the ability to sporulate.

This is the benefit of the formation of diploids, the (potential) outcome of pathway induction.

More directly, pathway induction should have a (positive) effect on the efficiency of mating

itself, in facilitating this beneficial outcome. This hypothesis is confirmed again by experimental

observations showing that mating pathway induction in MATa cells allows them to outcompete

non-stimulated MATa cells for access to MATα partners both in sexual aggregation (Figure

19a) and in mating (Figure 19b) assays. These experiments show that pathway induction has a

well-defined benefit (facilitating mating, that is itself beneficial in evolutionary terms) and a cost

(reducing the growth rate of haploid cells). Therefore, the response pattern of wt cells indeed

represents the balancing of a fitness trade-off.

Figure 19. Pre-induction of MATa cells with α-factor increases sexual aggregation (a) and
mating efficiency (b). Two competing populations (“P1” and “P2”) were mixed at a 1:1 ratio and
then incubated with MATα cells at indicated total cell densities (ρT ). Either of the two
differentially labelled populations (indicated on the x axis) was pre-treated with 20 nM
pheromone. Plots show the mean and standard deviation of two independent experiments for the
fraction of each MATa population found in aggregates (a) or the ratios between diploids
originating from either MATa population (b). Experiment and figure by Dr Alexander Anders.

It is intuitive that in the case of a costly decision that facilitates the attainment of a beneficial

outcome, but also has a cost, it is a good strategy to set the relative level of investment equal to
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the likelihood of the outcome. The fractional sensing pattern of wt cells that I explained by signal

degradation in 1.2.1, achieves this alignment.

Below I show quantitatively that this intuition is correct and the investment of cellular resources

proportional to mating likelihood is a superior strategy in cost-benefit terms, compared to pathway

induction as a function of the absolute amount (density) of partner cells.

1.3.3 Comparison of fractional and absolute sensing strategies

To define the conditions under which sex ratio sensing may confer a selective advantage over partner

density sensing for mating induction, I constructed a schematic model that recapitulates the basic

features of the two strategies.

To perform this schematic cost-benefit comparison between the wild-type strategy of fractional

(sex ratio) sensing and the bar1∆ strategy of absolute sensing (or density sensing) of mating

partners, I consider the fitness effect of these two regulation strategies on an initial population of

haploid MATa cells encountering different amounts of partner (MATα) cells (Figure 20a).

A fraction of the MATa population will mate (benefit), whereas the fitness of MATa cells

that are stimulated and induce the mating response, but do not mate is reduced, e.g. due to a

transient cell-cycle arrest (cost, f). The cellular response f is a schematic representation of our

experimental data: for the sex-ratio sensor (wild type), the response becomes invariant to total

density over a reference value (defined as ρT=1), and simply equals the partner cell fraction θα

(Equation 41). In contrast, the density sensor (bar1∆) simply follows the absolute abundance of

partner cells (the product θαρT ), going into saturation for θαρT ≥ 1 (Equation 42).

I assume that the efficiency of mating, g, which is the fraction of the initial MATa population

that forms diploid cells, is proportional to the level of response induction in MATa cells, physically

limited however by the abundance of MATα cells as observed experimentally (Figure 17). The

resulting model for the wild-type and bar1∆ MATa cells is the following.

Wild type (fractional sensor)

fWT (θα, ρT ) =


θαρT , if ρT ≤ 1.

θα, if ρT > 1.

gWT (θα, ρT ) =


θαρT , if ρT ≤ 1.

θα, if ρT > 1.

(41)

Bar1∆ density sensor
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f∆(θα, ρT ) =


θαρT , if θαρT ≤ 1.

1, if θαρT > 1.

g∆(θα, ρT ) =


θαρT , if ρT ≤ 1.

θα, if ρT > 1.

(42)

where f(θα,ρT ) is the relative response or cost, fε[0, 1]; and g(θα,ρT ) is the mating efficiency

gε[0, 1]. Here I do not consider regulation of MATα cells, partner cells are treated as a ‘resource’.

In general form, the fitness equation for the population is

W = λg + (1− g)(1− f) (43)

The contribution of diploid cells to the population fitness is the fraction of mated cells (g),

scaled by a parameter λ, representing the relative advantage of diploidy [137]. The contribution of

the remaining haploid cells to the population fitness is again their fraction in the total population

(1− g) times their fitness, which is proportionally reduced with the level of induction, (1− f).

As in our model above fWT (θα, ρT ) = gWT (θα, ρT ) = g∆(θα, ρT ), these functions can be simply

replaced by g(θα, ρT ). The fitness of the population (W ) for the wild type or bar1∆ strategy (at

a particular total cell density and partner cell fraction) is, respectively

WWT = λg + (1− g)2

W∆ = λg + (1− f∆)(1− g)

(44)

From Equation 42, we can see that f∆ ≥ g, therefore WWT ≥W∆ is always true in the current

model. Whatever distribution θα and ρT have, this will also be true for the mean fitness values

over these distributions, i.e. 〈WWT 〉 ≥ 〈W∆〉.

With the maximal mating efficiency g limited as above (based on our experimental data,

Figure 17), the higher induction of bar1∆ cells at higher population densities cannot yield higher

benefits, but will result in a higher cost. Therefore, the population fitness yielded by density

sensing bar1∆ cells will always be lower.

To make a more general comparison, I consider that cells using the density sensing (bar1∆)

strategy could adjust in an evolutionary sense their response sensitivity to achieve a higher fitness.

Then the response, mating efficiency and fitness of the density sensor are
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f∆(θα, ρT ) =


c θαρT , if c θαρT ≤ 1.

1, if c θαρT > 1.

g∆(θα, ρT ) =


c θαρT , if cρT ≤ 1.

θα, if cρT > 1.

W∆ = λg∆ + (1− f∆)(1− g∆)

(45)

Here the response of the density sensor cells is scaled by a parameter c that can be optimally

adjusted to maximize the fitness of the density sensors, as illustrated in Figure 20 b.

I further consider that the population parameters θα and ρT could assume different probability

distributions, and I therefore need to calculate a mean fitness value 〈W 〉 over these distributions. I

first explore the two limiting cases of no variation in the two parameters and a uniform distribution

for both. I then consider the intermediate case of normal distributions of varying width.

1.3.3.1 No variation or uniform distributions for population parameters

In these two limiting cases analytical solutions for the mean fitness can be obtained. In the

first limiting case, if there is no variation in θα and ρT (θα = 0.5 and ρT = 1), then

〈WWT 〉 = 0.5λ+ 0.25

W∆ =


0.5λc+ (1− 0.5c)2, if c ≤ 1

0.5λ+ (1− 0.5c)0.5, if 1 < c < 2

0.5λ, if c > 2

(46)

In the second and third case (of 〈W∆〉) it is easy to see that 〈W∆〉 is smaller than 〈WWT 〉. In

the first case of c < 1, for 〈W∆〉 > 1 , c + 2λ > 4 has to be true, but for 〈W∆〉 > 〈WWT 〉 the

condition is c+ 2λ < 3, which cannot be both true. Consequently, the density sensing strategy is

either identical (c = 1) to the wild type, or performs worse.

In the second limiting case, I assume that θα is uniformly distributed within the interval [0,1],

whereas ρT is also uniformly but logarithmically distributed in the interval [e−γeγ ].

The mean of a function f(x) over an interval [e−γeγ ], with logarithmically spaced x values

(with uniform probability) is:

< f(x) >=
1

2γ

∫ −γ
γ

f(ex)dx, (47)
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Figure 20. The fitness equation W = λg + (1− g)(1− f) summarizes the balancing of costs
with benefits in a mating situation. I describe the benefit as the fraction of the original
population forming diploids (set by the mating efficiency g), scaled by a parameter λ, standing
for the relative advantage of diploidy. The cost is the fitness reduction (1− f) of the remaining
haploid population (1− g). I describe a mating situation with a partner cell fraction θα = 0.5
with a total cell density ρT=2. In both cases the mating efficiency is g = 0.5, half of the original
haploid population will mate. However, in the case of the bar1∆ (density-sensing) population
strategy, the fitness reduction of the remaining haploid cells is heavier, resulting in a lower
average fitness of the population. Figure from manuscript.

Integrating over the distributions, I obtained analytical solutions for the mean fitness, which

are, respectively:
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1 Microbial sensing and decision making: yeast mating

〈WWT 〉 =
e−γ (eγ(3γλ+ 8γ + 3λ− 6) + 2 sinh(γ)− 3λ+ 6)

12γ

< W∆ >=



c2 sinh(2γ)+3c(λ−2) sinh(γ)+6γ
6γ , if c < e−γ

e−2γ(−2c4−6eγc3(λ−2)+e2γc2(6γ(λ+2)+6λ−5)+6e2γc2(λ−2) log(c)−6eγc+1)
24c2γ , if e−γ ≤ c ≤ eγ

3γc2λ+3c sinh(γ)−sinh(γ) cosh(γ)
6c2γ , if c > eγ

(48)

or in general form:

〈W∆〉 =
c2
(
2e2r − 2e−2γ

)
+ e−2γ−e−2r

c2 + 6γ(λ+ 2) + 6e−γc(λ− 2) (eγ+r − 1) + 6e−r−6e−γ

c − 6(λ− 2)r

24γ

(49)

where r = max(−γ,min(γ,−ln(c))).

For any value of γ (defining variability of total density values) and λ, I take the density sensor

strain with the highest mean fitness (an optimal value of c) and compare it to the mean fitness of

the wild-type by taking the ratio 〈WWT 〉
max
c
〈W∆〉 . This analysis shows that the fractional sensing strategy

outperforms the density-sensing strategy, as long as γ (total density variation) exceeds a minimal

value and the advantage of diploidy (λ) is moderate, as it is shown in Figure 21a.

1.3.3.2 Normal distribution for θα and log-uniform distribution for ρT

For the intermediate case, I assume that the mean of θα is 0.5 and the distribution is a truncated

Gaussian, as values are only possible in the range [0,1].

p(θα) =

exp

(
− 1

2

(
θα−0.5
σθ

)2
)

√
2π σθ erf

(
1

2
√

2σθ

) (50)

The total densities are log-uniformly distributed as in the previous example (Equation 47).

The mean fitness values are calculated by numerical integration. For any two distributions of

the population parameters (defined by σθ and γ), I again take the density sensor strain with the

highest mean fitness (an optimal value of c) and compare it to the mean fitness of the fractional

sensor. As in the case of the uniform distributions (for both parameters) above, I observed that at

intermediate values of λ the wild type strategy performs better (i.e.,

〈
〈WWT 〉

max
c
<Wconstant>

〉
> 1) over

a wide range of σθ and γ, with the difference generally growing with σθ and γ (Figure 21b).
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1 Microbial sensing and decision making: yeast mating

Figure 21 legends.

a. Cost-benefit model of wild type regulation compared to the density sensing strategy, assuming a

uniform distribution of both population parameters θα and ρT . The ratio 〈WWT 〉
max
c
〈W∆〉 at different levels

of λ (value of diploidy) and γ (defining the interval of ρT values in which these are log-uniformly

distributed). Values smaller than 1 are in blue and not colored gradually. On the right we have

the mean of 〈WWT 〉
max
c
〈W∆〉 values over the range of γ values (1 ≤ γ ≤ 21),

〈
〈WWT 〉

max
c
〈W∆〉

〉
, plotted as a

function of λ. b. The ratio 〈WWT 〉
max
c
〈W∆〉 plotted at different levels of λ, comparing the wt fractional

sensor strategy with the density sensor (bar1∆), in the case of a truncated Gaussian distribution

for θα and a log-uniform distribution of ρT . The value r is the average of 〈WWT 〉
max
c
〈W∆〉 values over

the range of γ (1 ≤ γ ≤ 21) and σθ (0.05 ≤ σθ ≤ 0.55) values used. On the rightmost panel we

have this average,

〈
〈WWT 〉

max
c
〈W∆〉

〉
, at different values of λ. c. The ratio 〈WWT 〉

max
c
〈W∆〉 plotted at different

levels of λ, comparing the wild type fractional sensor strategy with the density sensor (bar1∆),

in the case of a truncated Gaussian distribution for θα and a log-normal distribution of ρT . The

rightmost panel shows

〈
〈WWT 〉

max
c
〈W∆〉

〉
at different values of λ. d. The ratio 〈WWT 〉

max
c
<Wconstant>

plotted

at different levels of λ, comparing the wild type fractional sensor strategy with one of constant

investment (pathway induction). The rightmost panel shows

〈
〈WWT 〉

max
c
<Wconstant>

〉
at different values

of λ. Figure from manuscript.

1.3.3.3 Normal distribution for θα, log-normal distribution for ρT

Alternatively, for total densities one can also use a lognormal distribution with the median at

ρT = 1:

p(ρT ) =

exp

(
− 1

2

(
log(ρT )
σρ

)2
)

ρT
√

2π σρ
(51)

I calculated the mean fitness of the population with given distributions of the two population

parameters as:

< W >=

∫ ∞
0

∫ 1

0

p(θα)p(ρT )W (θα, ρT ) dθα dρT (52)

For any two distributions of the population parameters (defined by σθ and σρ) I again take the

density sensor strain with the highest mean fitness (an optimal value of c) and compare it to the

mean fitness of the fractional sensor. As in the case of the uniform distribution above, I observed

that at intermediate values of λ, the wild type strategy performs better, i.e. 〈WWT 〉
max
c
〈W∆〉 > 1 over a

wide range of σθ and σρ, as shown in Figure 21c.

36
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1.3.4 Comparison of fractional sensing with a constant-investment strategy

One can also compare the fractional sensing strategy to one where the level of induction is constant

and not regulated. In this case, the level of induction f is a constant, fc, 0 ≤ c ≤ 1, and mating

efficiency g is gc =


c, if c ≤ θα

θα, if c > θα

, which yields the fitness function:

Wconst =


λc+ (1− c)2, if c ≤ θα

λθα + (1− c)(1− θα), if c > θα

(53)

Calculating the mean fitness again the same way as before at a certain distribution of θα and

ρT , we have (using a log-normal and a truncated Gaussian distribution):

〈Wconst〉 =

∫ ∞
0

∫ 1

0

p(θα)p(ρT )Wconst(θα, ρT ) dθα dρT (54)

I make two comparisons. In the first case, I compare the constant investment strategy to a

fractional investment strategy that is completely independent of the total density. In the second

case, I compare the constant investment strategy to our previous fractional investment model,

which has density dependence for ρT < 1.

1.3.4.1 Comparison of density-independent fractional sensing (wt) strategy with a

constant-investment strategy

Here I assume constant investment, irrespective of the total cell density. Therefore, I first make

the comparison with a fractional sensing strategy that is also completely density-independent and

has the fitness equation:

WWT = λ θα + (1− θα)2 (55)

First I compare the two strategies in the limiting cases of no variation or a uniform distribution

of θα. For a fixed θα=0.5, we obtain

WWT = 0.5λ+ 0.25

Wconst =


λc+ (1− c)2, if c ≤ 0.5

0.5λ+ (1− c)(1− 0.5), if c > 0.5

(56)

The fitness function Wconst is evidently smaller than WWT in the case of c > 0.5 and identical

to WWT if c = 0.5. In the case of c < 0.5, for Wconst > 1 we need λ > 1.5. The roots of

WWT − Wconst = 0 are c = 0.5 and c = 0.5(3 − 2λ), and between these values of c, WWT –
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Wconst > 0. Therefore, if there is no variation in θα, the constant investment strategy is identical

to the wild type regulation if c = 0.5, or is worse if c has any other value.

If θα is uniformly distributed, the equations for mean fitness are

〈Wconst〉 =

∫ 1

c

(
λc+ (1− c)2

)
dθα +

∫ c

0

(λθα + (1− c)(1− θα)) dθα =

=
1

2

(
−c3 − c2(λ− 3) + 2c(λ− 2) + 2

)
〈WWT 〉 =

∫ 1

0

λθα + (1− θα)2dθα =
1

6
(3λ+ 2)

(57)

For 〈Wconst〉 > 〈WWT 〉 to be true, λ < −3c3+9c2−12c+4
3(c−1)2 . But 〈Wconst〉 also needs to be

larger than 1 to be a viable strategy of investment of resources into mating, and the condition

for this is λ > c2−3c+4
2−c . But for 0 < c < 1, these two conditions cannot be true at the same

time, as λ < −3c3+9c2−12c+4
3(c−1)2 < c2−3c+4

2−c . Therefore, the constant investment strategy always

performs poorer than regulated fractional investment under a uniform distribution of the partner

cell fraction.

1.3.4.2 Comparison of density-dependent fractional sensing (wt) strategy with a

constant investment strategy

Alternatively, one can compare the fitness of the constant investment strategy to the

density-dependent fractional (wild type) strategy by again taking the ratio 〈WWT 〉
max
c
〈Wconst〉 as a function

of σθ and σρ, and at different λ values. Again, at each value of σθ, σρ and λ the best-performing

‘constant investor’ (highest 〈Wconst〉) is compared to the fitness of the fractional sensor. A

constant investment strategy performs poorer when the partner cell fraction has higher variation

(Figure 21d). As in the other comparisons, at intermediate λ values the fractional sensor strategy

outperforms the constant investment strategy (Figure 21d).

In summary, the cost-benefit analysis I performed demonstrates that sex ratio-modulated

(fractional) mating induction leads to a higher population fitness than sensing the absolute density

of partners, or the unregulated, constitutive activation of the pathway. This result holds even if

the density sensor strategy is permitted to optimize the sensitivity of induction to the distribution

of θα and ρT values, while the sex ratio sensor is not. Therefore, sex-ratio sensing should be

selectively favoured as long as the benefits of diploidy are modest, which is upheld for yeast [172],

and the composition of the population is variable.
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1.4 Conclusions

In this section of my thesis, I mathematically analyzed the signaling and regulatory system that

controls the commitment to mating in one of the two haploid types (MATa) of the sexually

reproducing unicellular microbe, Saccharomyces cerevisiae.

I started the analysis by an experimental observation on the level of induction of the mating

pathway reporter gene PFUS1 − GFP in wild type MATa cells as a function of population

parameters. The mating pathway’s function is to detect the availability of potential mates

and control the process of mating, and its output can be interpreted as an indicator of a cell’s

commitment to mating. Any mixed population can be defined by two parameters: the composition

of the population (defined by the fraction of MATα-cells, θα), and the total density of the

population, ρT . The level of pathway induction in wt cells is a linear function of the fraction

of partner (MATα) cells (θα) in the population, while showing sensitivity to the total cell density

of the population (ρT ) only at low levels, with the response becoming solely a function of the

fraction if the total density is sufficiently high.

By mathematical analysis I showed that signal degradation by the recipient cell-secreted enzyme

Bar1 can explain this response pattern. If the enzyme is unstable, the steady state level of

α-pheromone is equal (up to a constant defined by the kinetic parameters of production and

degradation) to the sex ratio, that is, the ratio of emitter (MATα) to recipient (MATa) cells.

In reality however, Bar1 is stable on the timescale of the mating assays, therefore I modified the

model accordingly. In this case, α-factor concentration has a non-monotonic dynamics, reaching a

maximum before starting to fall to zero. The total stimulation over time, that is, the time integral

of the signal up to its maximum (or to a time point where it falls back to a given fraction of its

maximal concentration) is again equal (up to a constant) to the sex ratio. Moreover, if the signal

induces a linear signaling pathway, the time integral of transcriptional output, a measure of the

total resource investment of the cell associated with the mating pathway, is again equal (up to a

constant) to the sex ratio, although showing a very weak dependence on total cell density as well.

By using a more detailed non-linear model of the pathway, this linear response with the sex

ratio can be converted to a linear response to the fraction (θα) of partner cells, as it is observed

experimentally. I numerically fitted this model at many different population parameter values

(pairs of θα and ρT values) to our experiments with wild type and bar1∆ cells, the latter lacking

signal attenuation. With the non-linear model, I recovered the observed patterns of fractional

sensing in the case of wild type cells, and density sensing for bar1∆ cells.

As we are looking at yeast mating in suspension with large numbers of cells, one can consider
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mating to be a mass action-like process, driven by population parameters and the interaction

strength for aggregation. A simple calculation shows that if mating is modeled as an irreversible

reaction, the steady state fraction of mated cells for one cell type (MATa) is determined only by

the fraction of partner cells (θα), independently of the total density of the population, although

at pre-steady state timepoints, total density also has an effect. Experimental evidence shows that

the fraction of aggregated MATa cells is in fact equal to the partner cell fraction θα, meaning that

the response of fractional sensing wild type cells is aligned to mating probability.

This predictive allocation of cellular resources proportional to the mating likelihood suggests

that there is a fitness trade-off to pathway induction. On the one hand, pathway induction has

a benefit: it is necessary for and facilitates mating, leading to diploid formation, which is the

evolutionarily favoured strategy of yeast. On the other hand, experiments show that pathway

induction also has associated costs as the growth rate of induced (non-mated) haploid cells is

proportionally reduced. I constructed a cost-benefit model incorporating this trade-off, comparing

fractional sensing (shown by wild type yeast cells) to the strategy of sensing the absolute density

of partners (shown by bar1∆ cells). I found that as long as the benefit of diploidy is below a

certain level, the fractional sensing strategy of wild type cells is superior, yielding a higher mean

population fitness, for various distributions of the population parameters.

In summary, I provided a mechanistic explanation of the fractional sensing pattern observed in

yeast MATa cells. In a mixed population of two cell types, a simple signal degradation mechanism

through a secreted, non-saturated enzyme by recipient cells transforms the pheromone signal

produced by emitter cells, so that the cumulative signal strength is equal (up to a constant) to

the ratio of emitters to recipients. This mechanism applies generally for any biomolecular system

with the same structure. A non-linear signaling pathway then converts the signal strength to a

response that scales linearly with the fraction of emitter cells in the population, thereby aligning

the response of recipient cells with their likelihood of finding a mate. Finally, because the response

(pathway induction) has both a cost and a benefit for cells, this strategy of response alignment

with the likelihood of mating was shown to be optimal in cost-benefit terms by a schematic fitness

model.

Additionally, as described in section 4.1 of the Appendix, I used information theory to quantify

the information transmission capacity of wt cells. Much of the variation we observe in the response

of a population is due to variation in the expression capacity of cells. I wanted to have a measure

of the fidelity of signaling by removing this source of variation in the population data. Using a

linearization approximation for the noise components this correction can be performed and yields

an improved estimate of signaling fidelity.
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2 Microbial memory: bistability in bacterial two-

component systems

2.1 Introduction: two-component systems

Two-component (TC) systems are the most prevalent signaling systems in bacteria, found in

hundreds of bacterial species. Typically, in a bacterial cell we find a few dozen to a hundred

separate TC pathways [29, 82], see Figure 22, consisting of a membrane-bound histidine sensor

kinase (SK) and an intracellular response regulator (RR), functioning as a transcription factor.

The number of TC systems scale approximately linearly with the genome size [29].
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Figure 2
Diversity of two-component signaling gene content in bacterial genomes. (a) Plot showing the number of
histidine kinases and response regulators in a range of organisms. Generally, most genomes contain equal
numbers of kinases and regulators, as pathways typically comprise one kinase and one cognate regulator.
When the ratio is not 1:1, there are usually more kinases than regulators, suggesting that response regulators
may sometimes integrate signals from multiple kinases. (b) Plot showing the number of two-component
proteins as a function of genome size for the same organisms as in panel a. Each plot is based on 504
bacterial genomes (22). A handful of well-studied and notable species are marked with red squares.
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Figure 22. Number of histidine kinases and response regulators in different bacterial species.
Most genomes contain equal numbers of kinases and regulators, as pathways typically consist of
one kinase and one cognate response regulator. In the remaining cases, there are usually more
kinases than regulators, making it possible for response regulators to integrate signals from
multiple kinases. Figure from [29].

Besides the bacterial kingdom, TC systems are also present in some archaea, plants, and lower

eukaryotes; however they were lost in metazoans. Throughout evolution, bacteria have expanded

their spectrum of two-component signaling proteins via gene duplication and lateral gene transfer.

In the evolution of TC signaling proteins, domain shuffling is ubiquitous, especially following gene

duplication, leading to the rapid emergence of new sensory and regulatory functions. Moreover,

the transcriptional outputs of TC signaling systems also show very high plasticity, with the gain

and loss of cis-regulatory elements being very common. This can lead to diversification of the

transcriptional repertoire of RRs. Co-evolution of cognate SKs and RRs have been widely reported
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2 Microbial memory: bistability in bacterial two- component systems

[29], a phenomenon required to avoid cross-talk, which is generally preferred to retain pathway

specificity, although cross-talk between pathways also occurs [87, 135] and may represent a form

of signal integration.

The structure of TC systems is simple, consisting of two components, the SK and its target, the

intracellular RR. The sensor histidine kinase (SK), working in two steps, functions differently from

eukaryotic kinases. First, in the presence of its input ligand, the SK phosphorylates itself by binding

and hydrolyzing ATP. The rate constant of this autophosphorylation step (denoted c0 later on) is a

function of the ligand (input) concentration [L]. In the models below, I simply use the rate constant

c0 as the input parameter of a TC system. In reality, the rate of autophosphorylation might have a

nonlinear relationship with the ligand concentration, but as I start the model at the rate constant

itself, including this nonlinearity would not change our results. The auto-phosphorylated SK then

transfers a phosphoryl group to the RR in a phospho-transfer step, thereby activating it. These

two steps are universally found in almost all bacterial two-component systems.

Another crucial feature of TC systems that is not always present is the bifunctionality of

the SK [2]. A bifunctional SK not only transfers its phoshphate group to the RR, but also, in

its dephosphorylated state, dephosphorylates its cognate RR [72, 114, 115, 134]. Not all TC

systems have a bifunctional SK, for instance the SK of the chemotaxis system in E. coli, CheA,

is monofunctional and can only phosphorylate its cognate RR, CheY, but not dephosphorylate it

(there is a separate phosphatase, CheZ). Once phosphorylated, the RRs undergo a conformational

change and effect a physiological change by binding to the promoter region of the gene(s) that is

(are) under their control. RRs in most cases homo-dimerize following phosphorylation and then

bind to DNA, but there are also single-domain RRs [57, 58].

The inputs to TC systems are various. The SK often reacts to the concentration of an

extracellular ligand, such as phosphate (PhoB/PhoR system, [31]) or nitrate (NarX/NarL, [170]).

In other cases the input is an environmental parameter such as osmolarity (EnvZ/OmpR system

[71]), oxygen limitation (ResE/ResD, [105]) or turgor pressure (PhoQ/PhoP, [103]). In some cases,

the ligand is not known (e.g. in the YedV/YedW system [65]).

In terms of the physiological function of TC systems we can divide them into three groups.
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(Figure 1b). The phosphatase reaction serves, in part, to
modulate the level of pathway output and to inhibit the
pathway after an activating signal has subsided [17].
Importantly, the phosphatase activity of a histidine kinase
also serves to minimize unwanted cross-talk by depho-
sphorylating the cognate response regulator when it is
inappropriately phosphorylated by another kinase or a
small molecule phosphodonor (Figure 2a). Many
response regulators can be nonspecifically phosphory-
lated by the cellular pool of acetyl-phosphate [18–20];
by acting as phosphatases for their cognate response
regulators, histidine kinases effectively clear this
spurious, signal-independent phosphorylation [21!].

Consequently, mutations that eliminate the phosphatase
activity of a histidine kinase, including deletion of the
histidine kinase gene, can lead to the inappropriate
activation of the kinase’s cognate response regulator
under noninducing conditions (Figure 2a) [21!].

Specificity is further enhanced by the relative cellular
concentrations of histidine kinases and their cognate
response regulators, and by competition between regu-
lators for phosphorylated kinases (Figure 2b). For most
two-component pathways, abundance of the response
regulator likely exceeds that of the cognate kinase.
The well-characterized E. coli kinase EnvZ and its
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Canonical two-component signal transduction system. (a) When activated by an input signal, canonical histidine kinases use ATP to
autophosphorylate on a conserved histidine. The phosphoryl group is transferred to a conserved aspartate on the cognate response regulator, which
can then effect an output response by changing cellular physiology or gene expression. (b) Most histidine kinases are bifunctional such that, in the
absence of an input signal, a histidine kinase will drive dephosphorylation of its cognate response regulator, thereby suppressing an unwanted output.
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Multiple mechanisms ensure the specificity of two-component signaling pathways. (a) In addition to molecular recognition, phosphotransfer specificity
is enforced by the phosphatase activity of histidine kinases. Unwanted cross-talk from a noncognate kinase (HK2) to a response regulator (RR1) is
normally eliminated by the phosphatase activity of the cognate kinase (HK1). Deleting a kinase (depicted in faded color) can, consequently, lead to
spurious activation of a pathway. (b) Competition between response regulators can further enhance the specificity of phosphotransfer. When a kinase
(HK1) is autophoshorylated, its cognate response regulator (RR1) will typically outcompete other response regulators for phosphotransfer. Deleting a
regulator (RR1 depicted in faded color) can therefore allow its cognate kinase to phosphorylate a noncognate substrate (RR2).
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Figure 23. The canonical TC signal transduction system with a bifunctional SK. a. Activated
by its ligand, a canonical SK uses ATP to autophosphorylate itself on a histidine residue, and
then transfer its phosphoryl group to a conserved aspartate of its cognate RR, which can then
activate gene expression. b. Most SKs are bifunctional and in the absence of their ligand, the
unphosphorylated SK will dephosphorylate its cognate RR, deactivating the response. Figure
from [118].

In the first group are some TC systems that are environmental sensors (e.g. PhoR/PhoP

[64] in B. subtilis, BaeS/BaeR [11] in E. coli, and SphS/SphR [146] in Synechocystis), detecting

some ligand or physico-chemical parameter of the environment and (usually) gradually inducing a

corresponding transcriptional response.

In the second group we have TC systems that play a role in differentiation and cell cycle

transitions. These are often processes that need switch-like or hysteretic control. Examples are

developmental phospho-relays, such as DivJ/DivK [113] and PleC/PleD [1] in B. subtilis or the

YycG/YycF [70] TC system in the same species.

Third, some TC systems control growth or virulence in a particular environment, such as

CreC/CreB [86], NarX/NarL [170], and YehU/YehT [84] in E. coli, and PrrB/PrrA [44] in

Mycobacterium tuberculosis.

For the latter two types of TC systems, a switch-like response, and hysteresis in switching can

be advantegous: once a developmental, transition-like decision is made, at least in some range of

the input variable, it should not be reversed even if the input falls back to its original level. In

other words, the TC system in these cases might have multiple steady states in some range of their

input parameter, a phenomenon called multistability, that I discuss in the next section.

43



2 Microbial memory: bistability in bacterial two- component systems

2.2 Multistability (multi-stationarity) in the systems biology literature

The presence of multiple stable steady states as a function of a control parameter and the

resulting hysteresis effect have been studied extensively in systems biology; indeed, it is one of

the foundational themes of the field [51, 52, 66, 97, 109, 110, 121, 155].

In the systems biological literature two principal mechanisms have been identified that can

lead to bi- or multistability. Some of the literature considered post-translational mechanisms

only, typically phosphorylation-dephosphorylation systems, where the total concentrations are

fixed, but enzymes (kinases) and their substrates can exist in several modification forms

(‘phospho-forms’ [67, 153]). In such multi-site modification (phosphorylation) systems, multiple

steady states are already possible. The first analysis that showed that bistability is possible

in a two-site phosphorylation-dephosphorylation system was by Kholodenko and colleagues [97,

110]. Subsequently a large analytical literature has emerged on the algebraic analysis of the

steady-states of such multi-site chemical modification systems, pioneered by Jeremy Gunawardena

[32, 48, 49, 67, 68, 83, 121, 153]. These studies showed that with a growing number of modification

sites (and therefore of chemical species in the system), the number of stable steady states can

be more than one (and even more than two), especially if scaffolding mechanisms [14, 32, 145]

and compartmentalization [19, 68] are also taken into account. In mechanistic terms, the bi- or

multistability in these systems is due to enzyme sharing [48], i.e. that kinases and/or phosphatases

catalyze multiple reactions, and therefore interact with many species. This results in competition

between substrates for enzymes, creating implicit feedback effects that can lead to multi-stability.

The complexity of these systems is increased further in the case of

phosphorylation-dephosphorylation cascades with multiple levels, when kinases are activated

by other kinases. In this case, enzymes are also substrates and the interactions through the

competing sequestration of components (“intrinsic feedbacks” [132]) can lead to not only

multi-stability, but also oscillations, without any explicit feedback loops [47, 78, 121, 164,

165, 168, 173]. Importantly for our analysis on TC systems below, a study by Legewie and

colleagues [89] showed that if enzymes can also bind to their substrate in their inactive form,

forming (reversibly) so-called ‘dead-end’ complexes, this can extend the range of bistability in

MAPK cascades. Such interactions are bound to occur as the selectivity of the enzymes is not

perfect. Such post-translational mechanisms of intrinsic feedbacks leading to multi-stability

have been analyzed extensively mathematically, but experimental data showing such ‘purely’

post-translational bi-/multistability has not yet been produced, although retroactive effects

flowing from downstream to upstream components in multi-level signaling cascades have been
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shown [78].

The second, more well-known and experimentally confirmed mechanism leading to bistability

is the existence of explicit positive feedback loops, in particular transcriptional feedback loops

[50, 51, 102]. Besides many eukaryotic examples, there are bacterial systems as well that are

bistable because of transcriptional auto-induction [42, 156], such as the system regulating genetic

competence [138, 143, 161] or the sporulation network [30, 161] in Bacillus subtilis. Bistable genetic

control systems that are based on double inhibition have also been described in bacteria [59], but

as TC systems are auto-inducing through a direct positive transcriptional feedback loop, I will not

analyze them. Moreover, ’growth bistability’ has also become the focus of attention lately: the

expression of a protein is a burden on the growth rate, slowing down the protein’s dilution, working

as an additional positive feedback loop that can lead to bistability, as shown experimentally [39,

148].

Turning to TC systems, I asked the question if these simple sensory systems that microbes use

to explore and react to their environment are capable of generating bistability.

On the one hand these systems are extremely simple, so in terms of post-translational

interactions they lack the complexity of eukaryotic phosphorlyation cascades with several

phospho-sites and/or multi-level cascades. An article by Igoshin and co-authors [72] however

showed by numerical calculations that interaction between inactive SKs and RRs (i.e. if the RR

can dock and reversibly bind to the SK when both are unphosphorylated, forming a ’dead-end’

complex) can lead to bistability under some conditions. The conditions for bistability were not

analytically investigated in this study, and the analysis was carried out for one network topology.

In another study [4], so-called ’split’ histidine kinases were shown to have the capacity of bistability,

along with systems with a ’phosphate sink’, where a single SK phosphotransfers to two separate

RRs [3].

On the other hand, the fact that most TC systems are self-inducing, that is, the activated

RR induces the production of the system’s own components raises a plausible question if they

are capable of transcriptionally induced bistability. In a number of studies the possibility of such

feedback-induced bistability was investigated [61, 144, 156, 157, 158], mainly through numerical

simulations. These models included additional features however, for example the system described

in [156, 157] includes multiple transcriptional feedback loops.

Our aim was to explore systematically the potential for bistability in a number of experimentally

described and/or biochemically plausible TC system topologies with different post-translational

mechanisms, if possible analytically, to prove conclusively if a certain topology is capable of
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2 Microbial memory: bistability in bacterial two- component systems

bistability or not.

In the case of transcriptional induction I wanted to see if the ’core’ TC topology of a

bifunctional SK and auto-induction of both components is sufficient for bistability, without

additional components.

Besides the existence of bistability for a given topology, I also identified the key parameters

in bistable behavior, made possible by the algebraic method described below. The existence of

bistability itself can also be ascertained by using the so-called deficiency-theory (from chemical

reaction network theory) developed by Feinberg and others [45, 46], provided the kinetic system

only has elementary mass action terms, but no rational functions such as Hill-functions.

There a number of reasons why bistable behavior in a TC system can be advantageous. First, as

already mentioned above, in the case of a TC system controlling a developmental event, an abrupt

transition is needed, provided by the bifurcation that a bistable response generates at a certain

value of the input parameter. Second, in the case of a transition activating a complex expression

program with many genes and therefore having high costs, shifting to the ’on’ state often has to be

irreversible either completely or to some extent. Once the bifurcation happens, lowering the input

parameter should not make the system move back to the lower branch of steady states (Figure 24

a). The reverse bifurcation, with the system moving back to the lower branch of steady states,

happens only at a lower value of the input parameter, or never, if the upper branch extends back

to the lowest value of the input parameter.

responses are possible. This curve consists of three branches; two
of them represent the stable steady states, and the intermediate
branch represents the unstable steady state (Fig. 1a). As the inter-
mediate branch is unstable, a signal corresponding to Point 2
(which lies within the range of bistability) will result in either of
the two stable branches, depending on the initial conditions. Such
curves can be easily computed from a deterministic mathematical
model of the underlying network. In the case of the lac operon, the
two steady states correspond to two levels of lac operon expression
(response) at the same level of extracellular inducer (signal). At the
boundaries of the bistable signal range, the steady-state response
of the system discontinuously jumps from one state to the other
(arrows in Fig. 1a). Note that this discontinuous jump in the steady
state does not indicate a fast dynamic response to a signal that
crosses the threshold. In fact, the second characteristic of a bistable
switch is a slow response to a signal near the switching threshold
(Fig. 1b). In addition, stochastic models of bistable switches can re-
veal other dynamic properties. In single cells, slow switching in re-
sponse to an above-threshold signal will lead to a very noisy
response with heterogeneous switching times in the population
(Fig. 1b). This heterogeneity may manifest as a transient bimodal
distribution in the population. A bimodal distribution is also ex-
pected in populations responding to a signal in the bistable range
(Fig. 1c).

In this review, we discuss some conceptual network designs
that produce bistable behavior. Later, we present examples of
how these designs are used in bacterial master-regulatory circuits.
We discuss mechanisms of bistability in two-component systems,
sigma-factor networks, and a multistep phosphorelay. For each
example, we point out physiologically relevant dynamical conse-
quences of bistability. Analyzing these examples allows us to ex-
pand the knowledge of evolutionary design principles of
biochemical networks with bistable responses.

2. Conceptual network designs of bistable mechanisms

2.1. Positive feedback with cooperativity

One of the most widely accepted and studied mechanisms
through which bistability can be attained in a genetic circuit is a
direct or indirect transcriptional positive feedback characterized
by a kinetic order greater than one (cooperativity), so that the
dependence of the expression rate on the transcription factor
(TF) is superlinear. This mechanism is sufficient to produce bista-
bility for a wide range of parameter values. Fig. 2a illustrates one
of the simplest examples of such a mechanism. Protein A is ex-
pressed from a promoter autogenously regulated by its own
homodimer, A2. A simple model for this system has the following
kinetic equations:

dA
dt
¼ bþ mA2

K þ A2
# 2kaA2 þ 2kdA2 # kdegA ð1Þ

and

dA2

dt
¼ 2kaA2 # 2kdA2 # kdegA2; ð2Þ

where A and A2 are the concentrations of monomer A and activator
dimer A2, respectively; b and m are the basal and maximal synthesis
rates of monomer A, respectively; K is the equilibrium dissociation
constant of dimer A2 from the promoter; ka and kd are the rate con-
stants for dimer association and dissociation, respectively; and kdeg

is the protein degradation rate (for stable proteins in bacteria, this
degradation is dominated by dilution due to growth and thus re-
flects the doubling time).

Assuming the quasi-steady-state approximation for the kinetics
of dimer formation in Eq. (2) and using the result obtained in Eq.
(1), the rate of change of A (dA/dt) can be plotted as a function of
A (Fig. 2b). The quasi-steady-state assumption is justified biologi-
cally as protein production and degradation processes are slower
than the post-translational reactions. This assumption is used here
to graphically illustrate the existence of bistability, but the result-
ing conclusions can be generalized beyond this approximation. The
intersections with the dashed line (dA/dt = 0) define the steady
states of the network. The two filled circles represent the stable
steady states, and the open circle represents the unstable steady
state. The existence of bistability depends on the kinetic parame-
ters of the network: for some parameter values, the inflection
points of the curve fall on opposite sides of the dashed line,
whereas for others, this is not the case and the system possesses
only one (physically meaningful) steady state.

2.2. Positive feedback without cooperativity: post-translationally
generated ultrasensitivity

In the previous example, dimerization of the activator is neces-
sary to produce the superlinear transcriptional input that is re-
quired for bistability. However, for TFs that do not undergo
dimerization and therefore function as monomers, positive tran-
scriptional feedback does not lead to bistability in the system
(dashed gray curve in Fig. 2d). Not all transcriptional activators
function as high-cooperativity multimers; what mechanisms can
provide superlinearity in these cases? One way to achieve super-
linearity is by activating the TF via a post-translational network
that is ultrasensitive, in which a sharp transition occurs between
inactive and active forms of the TF. For example, ‘zero-order ultra-
sensitivity’ can be observed in multistep or reversible covalent
modification cascades as long as one of the enzymes involved oper-
ates near saturation (zero kinetic order) [25–27].
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Fig. 1. Characteristics of a bistable switch. (a) The steady-state signal–response curve shows a range of signals for which two different steady-state responses are possible. At
the boundaries of the range of bistability, the steady-state response of the system discontinuously jumps from one state to the other (arrows). The two solid curves represent
the stable steady states, which are separated by the unstable steady state (dotted curve). (b) An above-threshold signal (starting at Point 1 and increasing to Point 3 in panel a)
results in a noisy response with switching-time heterogeneity in the population. The black curve corresponds to the deterministic response, whereas the gray curves
correspond to simulations of the stochastic model. (c) Deterministic bistability in the system gives rise to a bimodal population distribution at steady state. Distributions are
computed from the long-time limit of the Gillespie simulations at the signal corresponding to Point 2 in panel a. The two peaks correspond to the low (‘off’) and high (‘on’)
steady-state responses of panel a, respectively.

A. Tiwari et al. / Mathematical Biosciences 231 (2011) 76–89 77

Figure 24. Properties of bistable systems in a deterministic and stochastic framework. a. A
bifurcation diagram showing the steady-state response of a bistable system at different values of
the input paramater. Solid curves show the stables steady states. At the black arrows, the
response jumps to the higher steady state (saddlenode bifurcation). b. Deterministic (solid line)
and stochastic trajectories when the input is increased from point 1 to 3 (panel a). Grey curves
show stochastic simulations with large heterogeneity in response times. c. The population
distribution when the input parameter is at point 2 (panel a) shows bimodality, in stochastic
simulations [62]. The two peaks correspond to the high and low steady states at point 2. Figure
from [158].
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This means, that the system has memory in some range of the input signal: which steady state

it assumes depends on its history, and once it adapts to one of the branches of steady states it will

stay there, even if the input changes (within some range). This is often a required property for

cell fate decisions, where minor fluctuations in the input should not shift the system back to its

initial ’off’ state. With regard to the dynamical behavior of bistable systems, in the vicinity of the

bifurcation points there is a slow-down effect, so that the stimulation needs to be more sustained

[100, 126], working as a filtering mechanism against transient fluctuations in the input.

Biological signaling systems, especially in bacterial cells, operate with a relatively small number

of interacting molecules, in bacteria typically from a few dozen to a few thousand copies of a given

protein. Therefore a deterministic description does not capture all properties of the system, and

stochastic effects play an important role. In the case of bistable systems, as shown in Figure

24b and c, if the input parameter is in the range of two stable steady states, the noise-induced,

stochastic switching of cells results in a bimodal distribution of the response, when looking at the

population in stochastic simulations or experiments with single-cell resolution (e.g. flow cytometry)

[42, 143, 148, 162, 163]. This phenomenon of two distinct sub-populations is called ’bet-hedging’

and was shown to be a strategy employed by bacteria in the case of developmental switches,

the most well-studied example being sporulation in B. subtilis [55, 56]. Bet-hedging, that is, a

clonal population of (bacterial) cells under the same conditions showing phenotypic variability,

was shown to increase the fitness of a population (compared to a homogeneous population) under

some conditions [163]. However a bimodal distribution on the population level is not always the

sign of an underlying bistable control system, as expression noise and a monostable, but strongly

nonlinear (ultrasensitive) input-output relation can generate a bimodal response distribution on

the population level without multiple steady states and hysteresis being present [22, 160].

The emergence of two distinct subpopulations under identical conditions can be advantageous

as a form of risk spreading: at least some of the cells will fit the (future) environment and survive.

This strategy might not be an ideal strategy in a stable environment, but in a variable environment

a heterogenous population can have a fitness advantage and outcompete a homogenous population,

as theoretical studies have shown [85, 150]. I now turn to the algebraic method used to identify

topologies capable of bistability and the analysis of individual topologies.

2.3 Post-translational mechanisms leading to bistability in TC systems

TC systems in the deterministic limit can be described as systems of coupled ordinary differential

equations. I use elementary step mass action kinetics, avoiding approximations such as linear

or Michaelis-Menten kinetics, as these often do not apply to signaling systems where the
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concentrations of enzymes and substrates are comparable [24, 99]. In the case of looking at

post-translational mechanisms only, I abstract from production and degradation of the chemical

species of the reaction network and ask if post-translational mechanisms can lead to bistable

behavior on their own. These post-translational mechanisms include autophosphorylation,

phosphotransfer and dephosphorylation reactions, and the formation of complexes between

molecules.

The algebraic method to determine the possibility of multistability is the following, already

used in [48]. In each case, our system is described as a dynamical system ẋi = f(xi), with i =

1...n. These n polynomial differential equations are complemented by k conservation laws of the

form Yj = gj(x), with Yj the total concentration of RR or SK (or some other species), and gj(x)

the different modification forms of a molecule that sum up to a conservation constraint. As I am

looking at the steady state properties of the system only, the left side of all ODEs are set to 0,

transforming the system into one of coupled (nonlinear) algebraic equations.

By successive elimination of variables we arrive at an algebraic relation Yj = ϕ(xi), that is, an

equality between a conserved quantity of the system (a total concentration) and a rational function

ϕ in one of the variables, xi. The variable xi is the steady state concentration of one of the species

of the system. The terms in ϕ will contain parameters, including other total concentrations than

Yj .

For example, we end up with an equation RRT = ϕ(RRP ), with ϕ(RRP ) a sum of all

species containing RR (in phosphorylated or unphosphorylated form, free or bound to other

species), each of them expressed as functions of RRP (typically ratios of polynomials in RRP ),

the phosphorylated form of RR.

Because all concentrations are non-negative, RRT is restricted to a set Γ of possible values.

Moreover, for any RRT ≥ 0 there is at least one (biologically meaningful) steady state, i.e. a

relation RRT = ϕ(RRP ).

I have found no examples of more than three (two stable) steady states, so from here on

will discuss bistability only. Whether bistability is possible can be seen from the analysis of

ϕ. If the function is strictly decreasing or increasing then for any given total amount of RRT

there is a unique RRP steady state value, and therefore bistability cannot occur. If on the

other hand, ϕ has increasing and decreasing parts (or Γ is not connected, but I have not found

examples of that, see below), then multiple steady states might exist at some RRT , such that

RRT = ϕ(RRP1) = ϕ(RRP2) = ϕ(RRP3) and RRP1 6= RRP2 6= RRP3. This means that at

some total concentration there are three steady state concentrations of RRP that satisfy the

conservation relation. Once it is found that a topology is capable of bistability, I further analyze
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the function ϕ to try to identify parametric conditions for bistability.

Post-translational mechanisms that I review below are:

• bifunctional and monofunctional SK

• spontaneous dephosphorylation of SKP and/or RRP

• ’dead-end’ complex formation between SK and RR

• the existence of a separate phosphatase that dephosphorylates RRP

• binding of the SK or RR to some other cellular species, e.g. the SK or RR of another TC

system, as an example of crosstalk between TC systems [63, 166]
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Figure 25. Metrics of a bistable response. The bistability output range Φ is the difference in the
normalized response (RRP/RRT ) between the bifurcation points y1 and y2, whereas the input
range λ is the ratio of the input values between which we have multiple steady states.

The standard topology of a TC system, with a bifunctional SK, no spontaneous

dephosphorylation of either RRP or SKP, and no interaction between the inactive species was

described in [134], and I do not reproduce it here. In this case the only dephosphorylation process

of the RRP is the enzymatic dephosphorylation by the SK. As was shown by Shinar et al [134], the

steady state RRP concentration, that can be considered as the output of the system, is invariant of

the total RRT and SKT concentration, as long as these are not limiting. Variations of this topology

including spontaneous dephosphorylation were also analyzed in [134] and show no bistability.

For all topologies below I take the autophosphorylation rate c0 to be the input parameter of

the system, that is the function of the ligand concentration. I define two metrics for bistability,

the output range Φ and the input range λ, shown in Figure 25.
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The units and median values of parameters for the numerical sampling are shown in Table 3.
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Figure 26. Topologies with post-translational mechanisms only (fixed total concentrations)
analyzed for bistability. Index of topologies capable of bistability written in red.

Table 3. Unit and median of the randomly generated parameter values for topologies with
post-translational mechanisms only. Every parameter is generated from a lognormal distribution
with a standard deviation of 2.

Parameters Unit Logarithm of median
a1, a2, aγ (µMmin)−1 1
d1, d2, dγ min−1 1
c1, c2, cα, cβ min−1 1
SKT µM 1
RRT µM 1
SK1T , SK2T µM 1
ET µM 1
FT µM 1

2.3.1 Topology 1 (monofunctional SK, spontaneous dephosphorylation)

This topology has a monofunctional SK, and spontaneous dephosphorylation of both SKP and

RRP. The SKP-RR complex is denoted as X1.
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The ordinary differential equations are:

˙SK = −c0SK + cαSKP + c1X1 (1)

˙SKP = c0SK − cαSKP + d1X1 − a1SKP RR (2)

˙RRP = c1X1 − cβRRP (3)

ṘR = d1X1 + cβRRP − a1SKP RR (4)

Ẋ1 = a1SKP RR− (d1 + c1)X1 (5)

(58)

The conservation laws:

SKT = SK + SKP +X1

RRT = RR+RRP +X1

(59)

After setting the derivates to 0 for steady state, and variable elimination, I end up with the

rational function ϕ:

SKT = ϕ(X1) =
cα
c0

(c1 + d1)X1

a1(RRT −X1(1 + c1
cβ

))
+
c1
c0
X1 +

(c1 + d1)X1

a1(RRT −X1(1 + c1
cβ

))
+X1 (60)

As all terms are monotonically increasing in X1, therefore bistability is excluded.

2.3.2 Topology 2 (monofunctional SK, spontaneous dephosphorylation, dead-end

complex)

This topology has a monofunctional SK, and spontaneous dephosphorylation of both SKP and

RRP. Moreover, dead-end complex formation between SK and RR is allowed. The SKP-RR

complex is denoted as X1, the dead-end complex SK-RR as X2.

The ordinary differential equations are:

˙SK = −c0SK + cαSKP + c1X1 − aγSK RR+ dγX2 (1)

˙SKP = c0SK − cαSKP + d1X1 − a1SKP RR (2)

˙RRP = c1X1 − cβRRP (3)

ṘR = d1X1 + cβRRP − a1SKP RR− aγSK RR+ dγX2 (4)

Ẋ1 = a1SKP RR− (d1 + c1)X1 (5)

Ẋ2 = aγSK RR− dγX2 (6)

(61)
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The conservation laws:

SKT = SK + SKP +X1 +X2

RRT = RR+RRP +X1 +X2

(62)

After setting the derivates to 0 for steady state, and variable elimination, I end up with the

rational function ϕ:

SKT = ϕ(X1) = αX1 + β
(p1 + p2X1)X1

p3 − p4X1
+ γ

(p5 − p6X1)X1

p1 + p2X1
(63)

Where α = (1 + c1
c0

), β = (1 + cα
c0

) and γ = KA, p1 = cβc0, p2 = cβc1KA, p3 = c0cβκ1RRT ,

p4 = KAcαcβ + c0κ1(c1 + cβ), p5 =
cαcβ
κ1

+ c1cβRRT , p6 = c1(c1 + cβ).

As shown in the Appendix 4.2.1, the first two terms are strictly increasing in X1, but the

last one can have both increasing and decreasing parts, therefore this topology is capable of

bistability.

I took the derivative of the equation SKT = ϕ(X1) (with respect to X1), which is a rational

function, and solved for the roots of the numerator, a (quartic) polynomial equation, and performed

parameter sampling in MATLAB. I took those parameter sets where there are more than one roots

in the biologically meaningful range, that is, all parameters and total concentrations are positive

and the solution for X1 obeys the conservation laws. For each parameter set, the equation is

solved by MATLAB’s polynomial solver, the roots algorithm. For 105 parameter sets, this takes

approximately 10 seconds (on a personal computer with a 2.5 GHz processor), several orders of

magnitudes faster than solving the initial ODEs in Equation 61. All parameters are generated

from lognormal distributions with MATLAB’s lognrnd algorithm. Numerical parameter sampling

confirmed the existence of bistability. I show the relation SKT = ϕ(X1) for 30 bistable parameter

sets in Figure 27.

These are not traditional bifurcation plots yet, but show the SKT values where we have

bistability. However, from these plots, where SKT is a dependent variable, we cannot see either

the bistability input range λ, or the output range Φ (Figure 25).

One can convert these into ’traditional’ bifurcation diagrams (the input parameter c0 on the x

axis and the steady state(s) on the y axis), by choosing a SKT value where we have three steady

states (dotted red lines in Figure 27, drawn at the midpoint of SKT values with three steady

states). I then convert Equation 63 to a polynomial in X1 and start finding real and positive

roots from the initial c0 value, now c0 being the independent variable, while all other parameters

are fixed, including SKT . Conservation constraints and the positivity of each species is checked

simultaneously.

52



2 Microbial memory: bistability in bacterial two- component systems

0
0
.0

5
0
.1

SK
T

05

1
0

0
0
.0

0
5

0
.0

1
0

0
.1

0
.2

0
.3

0
.4

0
1
0

2
0

0

2
0

4
0

6
0

8
0

0
0
.5

05

1
0

1
5

×
1
0

-4

0
5

0

1
0

2
0

3
0

0
1

2
0

2
0

4
0

0
0
.5

SK
T

0246

0
1

2
0

5
0

1
0
0

1
5
0

0
5

1
0

0

5
0

1
0
0

1
5
0

0
0
.5

1
0

2
0

4
0

6
0

8
0

×
1
0

-3

0
5

0

0
.2

0
.4

0
.6

0
5

0

2
0

4
0

6
0

0
2
0

4
0

SK
T

0

2
0

4
0

6
0

8
0

0
5

0

2
0
0

4
0
0

6
0
0

0
0
.2

0
.4

05

1
0

1
5

2
0

0
0
.5

1
012

0
0
.1

0
.2

0

1
0

2
0

0
5

0

1
0

2
0

3
0

4
0

0
0
.1

0
.2

SK
T

0

0
.51

1
.5

0
0
.2

0
.4

05

1
0

0
5

1
0

0

5
0

1
0
0

0
5

05

1
0

0
2
0

4
0

0

2
0

4
0

6
0

0
0
.0

2
0
.0

4
05

1
0

1
5

2
0

2
5

X
1

×
1
0

-3

0
5

SK
T

0

0
.51

1
.52

X
1

0
0
.5

1
012345

X
1

0
1
0

0

2
0

4
0

6
0

X
1

0
0
.5

1
0

1
0

2
0

3
0

4
0

X
1

0
2

0

2
0

4
0

X
1

0
2
0

4
0

0

5
0

1
0
0

F
ig

u
re

2
7
.
S
K
T

=
ϕ

(X
1
)

re
la

ti
o
n

s
fo

r
3
0

ra
n

d
o
m

ly
ch

o
se

n
p

a
ra

m
et

er
se

ts
,

fo
r

to
p

o
lo

g
y

2
(S

ec
ti

o
n

2
.3

.2
).

53



2 Microbial memory: bistability in bacterial two- component systems

0
2

4
6

8

RRP/RR
T

0

0
.2

0
.4

0
.6

0
.81

λ
=

1
.1

,Φ
=

0
.3

3

0
5
0

1
0

0
1

5
0

0

0
.2

0
.4

0
.6

0
.81

λ
=

1
.1

,Φ
=

0
.3

9

0
5

1
0

1
5

2
0

0

0
.2

0
.4

0
.6

0
.81

λ
=

3
.1

,Φ
=

0
.2

8

0
2

4
0

0
.2

0
.4

0
.6

0
.81

λ
=

1
.2

,Φ
=

0
.4

1

0
0
.0

2
0

.0
4

0
.0

6
0
.0

8
0

0
.2

0
.4

0
.6

0
.81

λ
=

1
.4

,Φ
=

0
.7

3

0
0

.5
1

1
.5

2
0

0
.2

0
.4

0
.6

0
.81

λ
=

1
.1

,Φ
=

0
.2

6

0
1

2

RRP/RR
T

0

0
.2

0
.4

0
.6

0
.81

λ
=

1
.3

,Φ
=

0
.4

2

0
1

2
3

0

0
.2

0
.4

0
.6

0
.81

λ
=

2
.9

,Φ
=

0
.4

2

0
1

0
2

0
0

0
.2

0
.4

0
.6

0
.81

λ
=

1
.6

,Φ
=

0
.2

3

0
2

4
6

0

0
.2

0
.4

0
.6

0
.81

λ
=

1
.4

,Φ
=

0
.1

7

0
1

2
3

0

0
.2

0
.4

0
.6

0
.81

λ
=

1
,Φ

=
0
.1

3

0
2

4
6

8
0

0
.2

0
.4

0
.6

0
.81

λ
=

5
.6

,Φ
=

0
.5

3

0
1
0

2
0

3
0

RRP/RR
T

0

0
.2

0
.4

0
.6

0
.81

λ
=

1
0
.8

,Φ
=

0
.4

1

0
5

1
0

0

0
.2

0
.4

0
.6

0
.81

λ
=

6
.2

,Φ
=

0
.4

9

0
0
.5

1
0

0
.2

0
.4

0
.6

0
.81

λ
=

1
.2

,Φ
=

0
.4

3

0
1

2
3

0

0
.2

0
.4

0
.6

0
.81

λ
=

1
.2

,Φ
=

0
.3

2

0
2

4
6

0

0
.2

0
.4

0
.6

0
.81

λ
=

2
.4

,Φ
=

0
.4

9

0
2

4
6

8
0

0
.2

0
.4

0
.6

0
.81

λ
=

1
3
,Φ

=
0
.5

3

0
1
0

2
0

3
0

RRP/RR
T

0

0
.2

0
.4

0
.6

0
.81

λ
=

1
.4

,Φ
=

0
.4

6

0
1

2
0

0
.2

0
.4

0
.6

0
.81

λ
=

1
.2

,Φ
=

0
.4

3

0
0

.5
1

1
.5

0

0
.2

0
.4

0
.6

0
.81

λ
=

1
,Φ

=
0
.0

7

0
1
0

2
0

3
0

0

0
.2

0
.4

0
.6

0
.81

λ
=

1
,Φ

=
0
.1

2

0
5

0
1
0

0
0

0
.2

0
.4

0
.6

0
.81

λ
=

1
.1

,Φ
=

0
.2

0
0

.5
1

1
.5

0

0
.2

0
.4

0
.6

0
.81

λ
=

4
.7

,Φ
=

0
.5

7

c
0

0
0
.1

0
.2

0
.3

RRP/RR
T

0

0
.2

0
.4

0
.6

0
.81

λ
=

1
.6

,Φ
=

0
.4

9

c
0

0
5

1
0

1
5

2
0

0

0
.2

0
.4

0
.6

0
.81

λ
=

1
.2

,Φ
=

0
.3

9

c
0

0
5

1
0

0

0
.2

0
.4

0
.6

0
.81

λ
=

1
,Φ

=
0
.1

1

c
0

0
5

0
1
0

0
0

0
.2

0
.4

0
.6

0
.81

λ
=

1
.7

,Φ
=

0
.4

6

c
0

0
1
0

2
0

0

0
.2

0
.4

0
.6

0
.81

λ
=

1
.5

,Φ
=

0
.5

1

c
0

0
2

4
6

0

0
.2

0
.4

0
.6

0
.81

λ
=

2
.3

,Φ
=

0
.4

F
ig

u
re

2
8
.

B
if

u
rc

at
io

n
d

ia
gr

am
s

sh
ow

in
g

st
ea

d
y

st
at

es
o
f
R
R
P

a
s

a
fu

n
ct

io
n

o
f
c 0

,
fo

r
th

e
sa

m
e

3
0

ra
n

d
o
m

ly
ch

o
se

n
p

a
ra

m
et

er
se

ts
a
s

in
F

ig
u

re
2
7

fo
r

T
op

ol
og

y
2.

U
n

st
ab

le
st

ea
d

y
st

at
es

ar
e

d
ep

ic
te

d
w

it
h

re
d

ci
rc

le
s.

E
a
ch

p
lo

t
h

a
s

it
s

b
is

ta
b

il
it

y
m

et
ri

cs
a
b

ov
e

it
,
λ

a
n

d
Φ

,
se

e
F

ig
u

re
2
5
.

54



2 Microbial memory: bistability in bacterial two- component systems

From the derivation we have the output variable RRP expressed as a function of X1, RRP =

c1
cβ
X1, and in Figure 28, I plot the solutions for RRP as a function of the input parameter c0.

I analyzed the distributions of the parameter values for bistable and monostable parameter sets,

and calculated the correlation between parameter values and the bistability metrics Φ (bistable

output range) and λ (bistable input range), shown in Table 4.

Table 4. Pearson correlation coefficients between parameters and bistability metrics. Asterisk
shows if correlation has a p-value larger than 0.01. Sample size: 25523 parameter sets. Strongest
correlations in bold.

KM cα cβ SKT RRT SKT /RRT KA

λ -0.01* -0.01 -0.05 0.05 0.09 -0.04 0.02
Φ -0.02* -0.04 -0.18 -0.06 -0.01* -0.38 -0.11

I also plotted the distributions of parameter values for mono- and bistable parameter sets in

Figure 29. The parameters where the difference is the most marked are again the binding affinity of

complex formation KA, the total RR concentration RRT and the rate constant for the spontaneous

dephosphorylation of RRP .
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Figure 29. Distributions of parameter values for mono- (blue) and bistable (red) parameter
sets, for Topology 2. Vertical line shows the median.

In summary, dead-end complex formation between the unphosphorylated RR and SK and

spontaneous dephosphorylation of RRP can already lead to bistable behavior, with the interaction

strength for the dead-end complex, the dephosphorylation of RRP and the level and ratio of total

concentrations SKT and RRT being the key parameters.

2.3.3 Topology 3 (sequestration of SK)

This topology has again a monofunctional SK, spontaneous dephosphorylation of both RRP

and SKP . I ask if the reversible binding interaction (sequestration) of the SK with a cellular

component external to the TC pathway (denoted E; most plausibly the SK of another TC pathway)

can lead to bistability. The inactive complex is denoted as X2.

The ODEs are:
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2 Microbial memory: bistability in bacterial two- component systems

˙SK = −c0SK + cαSKP + c1X1 − aγSK E + dγX2 (1)

˙SKP = c0SK − cαSKP + d1X1 − a1SKP RR (2)

˙RRP = c1X1 − cβRRP (3)

ṘR = d1X1 + cβRRP − a1SKP RR (4)

Ẋ1 = a1SKP RR− (d1 + c1)X1 (5)

Ẋ2 = aγ SK E − dγX2 (6)

Ė = −aγ SK E + dγX2 (7)

(64)

The conservation laws:

SKT = SK + SKP +X1 +X2

RRT = RR+RRP +X1

ET = E +X2

(65)

After setting the left-hand side of the ODEs to 0, and variable elimination we end up with the

rational function ϕ:

SKT = ϕ(X1) =

X1(
c1
c0

+
cα

c0κ1[RRT −X1(1 + c1
cβ

)]
) +

X1

κ1[RRT −X1(1 + c1
cβ

)]
+X1+

ETKAX1[p1(p2X1 − p3)− p4]

p5(p2X1 − p3) +KAX1[p1(p2X1 − p3)− p4]

(66)

where p1 = c1κ1, p2 = c1 + cβ , p3 = cβRRT , p4 = cαcβ , p5 = c0κ1.

The first three terms are increasing in X1, the more difficult one is the last term, X2 expressed

as a function of X1 and parameters, written as f(X1).

Taking the derivative, we get f ′(X1) =
ETKAp5p1p

2
2X

2
1−2p1p2p3X1+p1p

2
3+p3p4)

(−KAp1p2X2
1+KAp1p3X1+KAp4X1−p2p5X1+p3p5)2 .

As the denominator is always positive, we have to find the roots of the numerator, which are

S+/− = p1p3±
√
−p1p3p4

p1p2
, that is, both roots are complex. At X1 = 0 the value of the function

in the numerator is positive, and since the first coefficient is positive as well, the parabola opens

upward, therefore the value of the function is always positive.

Since both the denominator and the numerator are positive, f ′(X1) is also always positive.

Therefore the last term, f(X1), in the rational function ϕ is always increasing and multistationarity

is excluded if the function is continuous.

Three (physically possible) steady states at some SKT value would also be possible if the

function has discontinuities in the interval X1ε[0; p3

p2
). The first three terms are continuous in this

interval, it is only the last one that could have discontinuities, if its denominator equals 0. To have
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2 Microbial memory: bistability in bacterial two- component systems

3 steady states (as in the case of the simplest multistationarity, bistability) in the relevant interval,

the denominator has to be zero twice in this interval.

Let us denote the last term as f(X1) = f1(X1)
f2(X1) , then the denominator f2(X1), has to obey

f2(X1) = 0, X1ε[0; p3

p2
). But at X1 = 0, f2(X1) = −p5

p3
. Moreover for any value X1 <

p3

p2
, the

denominator f2(X1) < 0. That is, f2(X1) is always negative and does not have any roots in the

interval, therefore the function ϕ cannot have discontinuities in this interval either. Therefore,

bistability is excluded for this topology.

2.3.4 Topology 4 (sequestration of RR)

Here I assume the same mechanisms as in Topology 3, but this time it is the RR in its

unphosphorylated form that is sequestered by an external component. Notations are analogous to

those for Topology 3.

The ODEs are:

˙SK = −c0SK + cαSKP + c1X1 (1)

˙SKP = c0SK − cαSKP + d1X1 − a1SKP RR (2)

˙RRP = c1X1 − cβRRP (3)

ṘR = d1X1 + cβRRP − a1SKP RR− aγRR E + dγX2 (4)

Ẋ1 = a1SKP RR− (d1 + c1)X1 (5)

Ẋ2 = aγ RR E − dγX2 (6)

Ė = −aγ RR E + dγX2 (7)

(67)

The conservation laws are:

SKT = SK + SKP +X1

RRT = RR+RRP +X1 +X2

ET = E +X2

(68)

After setting the left-hand side of the ODEs to 0, and variable elimination we end up with the

rational function ϕ:

RRT = RR+RRP +X1 +X2 =

(c0 + cα)X1

κ1(SKT − (c0 + c1)X1)
+
c1
cβ
X1 +X1 +

(c0 + cα)ETKAX1

[(c0 + cα)KA − (c0 + c1)κ1]X1 + κ1SKT

(69)

Each term is strictly increasing in X1, therefore bistability is not possible if the function is
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2 Microbial memory: bistability in bacterial two- component systems

continuous. X1ε[0; SKT
c0+c1

) has to be true for all variables to be positive. In this physically admissible

range X1ε[0; SKT
c0+c1

) none of the terms have a discontinuity, as the last term’s denominator is linearly

increasing with X1 and has a positive value at both X1 = 0 and X1 = SKT
c0+c1

. Therefore, bistability

is excluded for this topology.

2.3.5 Topology 5 (sequestration of both SK and RR)

For this topology, I assume both the inactive response regulator, RR and the sensor kinase, SK

are sequestered by (separate) external components, E1 and E2, forming the inactive complexes X2

and X3. Notations are analogous to those for Topology 3.

The ODEs are:

˙SK = −c0SK + cαSKP + c1X1 − aγ2 SK E + dγ2X3 (1)

˙SKP = c0SK − cαSKP + d1X1 − a1SKP RR (2)

˙RRP = c1X1 − cβRRP (3)

ṘR = d1X1 + cβRRP − a1SKP RR− aγRR E + dγX2 (4)

Ẋ1 = a1SKP RR− (d1 + c1)X1 (5)

Ẋ2 = aγ1 RR E1− dγ1X2 (6)

Ẋ3 = aγ2 SK E2− dγ2X3 (7)

Ė1 = −aγ1
RR E + dγ1

X2 (8)

Ė2 = −aγ2 SK E + dγ2X3 (9)

(70)

The conservation laws are:

SKT = SK + SKP +X1 +X3

RRT = RR+RRP +X1 +X2

E1T = E1 +X2

E2T = E2 +X3

(71)

After setting the left-hand side of the ODEs to 0, and variable elimination we end up with the
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2 Microbial memory: bistability in bacterial two- component systems

rational function ϕ:

SKT = ϕ(RR) = SK + SKP +X1 +X3 =

1

1 + c1/cβ

(
c1
c0

+
cα

c0κ1RR

)[
RRT −

RR(1 + E1TKa1
+Ka1

RR)

1 +Ka1RR

]
+

1

(1 + c1/cβ)κ1RR

[
RRT −

RR(1 + E1TKa1
+Ka1

RR)

1 +Ka1
RR

]
+

1

1 + c1/cβ

[
RRT −

RR(1 + E1TKa1 +Ka1RR)

1 +Ka1
RR

]
+KA3

E2T
1/φ(RR) +KA3

(72)

Where φ(RR) = SK = 1
1+c1/cβ

(
c1
c0

+ cα
c0κ1RR

) [
RRT − RR(1+E1TKa1

+Ka1
RR)

1+Ka1
RR

]
.

All terms are strictly decreasing in RR, as shown in the Appendix, therefore bistability is

excluded for this topology. The function does not have discontinuities if RR > 0, because

there are no negative terms in the denominators.

2.3.6 Topology 6 (dead-end complex, independent phosphatase)

Here I assume, that besides spontaneous dephosphorylation of RRP molecules, there is an

independent phosphatase (as in some phosphorelays) dephosphorylating them and that the inactive

SK and RR can form a dead-end complex X2. This topology has already been analyzed and

demonstrated to exhibit bistability numerically [72]. Here, I simplify the system to one equation

and explore it further.

The ODEs are:

˙SK = −c0SK + cαSKP + c1X1 − aγ SK RR+ dγX2 (1)

˙SKP = c0SK − cαSKP + d1X1 − a1SKP RR (2)

˙RRP = c1X1 − cβRRP − a2 RRP F + d2X3 (3)

ṘR = d1X1 + cβRRP − a1SKP RR− aγRR SK + dγX2 + c2X3 (4)

Ẋ1 = a1SKP RR− (d1 + c1)X1 (5)

Ẋ2 = aγ RR SK − dγX2 (6)

Ẋ3 = a2 RRP F − (d2 + c2)X3 (7)

Ḟ = −a2 RRP F + (d2 + c2)X3 (8)

(73)

59



2 Microbial memory: bistability in bacterial two- component systems

The conservation laws are:

SKT = SK + SKP +X1 +X2

RRT = RR+RRP +X1 +X2 +X3

FT = F +X3

(74)

After setting the left-hand side of the ODEs to 0, and variable elimination we end up with the

rational function ϕ:

SKT = ϕ(RRP ) = SK + SKP +X1 +X2 =

−RRP
RRP3κ2

2KAc
2
β + RRP2p8 + RRPp9 + c0 (cβ + c2κ2FT )

p1RRP3 + p2RRP2 + p3RRP− c0c1κ1RRT

+RRP
p4RRP3 + p5RRP2 + p6RRP− p7

p1RRP3 + p2RRP2 + p3RRP− c0c1κ1RRT

+
RRP

c1

(
cβ +

(c2κ2)FT
κ2RRP + 1

)
+

(
−KARRP

(
p4RRP3 + p5RRP2 + p6RRP− p7

)
c1κ1[RRP3κ2

2KAcβ + RRP2p10 + RRPp11 + c0]

)
(75)

These rational functions have high order polynomials in both their denominator and numerator,

and their sum can have both increasing and decreasing parts, making this topology capable of

bistability, as shown in the Appendix. pi, i = 1..11 are lumped parameters of kinetic constants

and total concentrations.

To generate bistable parameter sets, I performed numerical sampling for the parameters c0,

cα, a1, d1, c1, aγ , dγ , a2, d2, c2 and RRT and solved the equation ϕ(RRP )′ = 0 numerically.

If the equation has multiple solutions RRP ε [0, RRT ], then in some range of SKT values the

given parameter set exhibits multistationarity, because the function has critical points in that

range. Taking these parameter sets we can, as for Topology 2, calculate the SKT = ϕ(RRP ) curve

(compare the curves in Figure 27), and select a SKT value. At this value of SKT , the bifurcation

diagram showing RRP steady states as a function of the input parameter c0 can be generated.

I analyzed the distributions of the parameter values for bistable and monostable parameter

sets, and the correlations between parameter values and the bistability metrics Φ (bistable output

range) and λ (bistable input range), the results shown in Table 5, and some sample bifurcation

diagrams in Figure 30.
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2 Microbial memory: bistability in bacterial two- component systems

Table 5. Pearson correlation coefficients between parameters and bistability metrics. Asterisk
shows if correlation has a p-value larger than 0.01. Sample size: 13200 bistable parameter sets.
Strongest correlations in bold.

KM1 KM2 cα cβ RRT SKT SKT /RRT FT KA

λ -0.04 -0.06 0.16 -0.01 0.01 0.06 0.22 0 -0.03
Φ -0.1 -0.15 -0.01 0 -0.06 -0.15 0.2 -0.01 -0.01

0 2 4 6 8 10

R
R

P
/R

R
T

0

0.2

0.4

0.6

0.8

1

λ=3.2,Φ=0.56

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

λ=1.9,Φ=0.44

0 10 20 30
0

0.2

0.4

0.6

0.8

1

λ=1.2,Φ=0.31

0 1 2 3

R
R

P
/R

R
T

0

0.2

0.4

0.6

0.8

1

λ=2.1,Φ=0.43

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

λ=7.1,Φ=0.38

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

λ=1.5,Φ=0.39

c
0

0 2 4 6 8

R
R

P
/R

R
T

0

0.2

0.4

0.6

0.8

1

λ=1.6,Φ=0.51

c
0

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

λ=3.6,Φ=0.52

c
0

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

λ=2.3,Φ=0.53

Figure 30. Bifurcation diagrams showing steady states of RRP as a function of c0, for 9
randomly chosen parameter sets of Topology 6 (2.3.6). Unstable steady states are depicted with
red circles. Each plot has its bistability metrics above it, λ and Φ.
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Figure 31. Distributions of parameter values for mono- (blue) and bistable (red) parameter
sets, for Topology 6. Vertical line shows the median.

The rate constant of spontaneous dephosphorylation of SKP , the KM of phosphatase-driven
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2 Microbial memory: bistability in bacterial two- component systems

dephosphorylation and the ratio of total concentrations SKT to RRT show the strongest

correlations with the bistability metrics. In particular, a higher SKT /RRT ratio expands the

input and output range of bistability as well. The different distributions of these parameters for

mono- and bistable parameter sets, respectively, are shown in Figure 31.

2.3.7 Topology 7 (split kinase)

As analyzed in [4], in some bacterial TC systems there is a secondary SK (SK2) binding to the

main SK (SK1), that is necessary for the autophosphorylation of SK1. As this kinase-kinase

complex is not capable of dephosphorylating response regulators, strong nonlinearities can arise

due to competition effects. The output species of the topology, RRP , is dephosphorylated by

the main SK, SK1. In the case of this TC system, we can treat the catalytic constant c3 of

the (auto)phoshorylation rate of the SK1.SK2 complex as the input parameter that changes as

a function of ligand concentration. The intermediate complexes are: X1 = SK1P.RR, X2 =

SK1.RRP , X3 = SK1.SK2.

The ODEs describing this topology are:

˙SK1 = cαSK1P − a3SK1 SK2 + d3X3 + c1X1 − a2SK1 RRP + (d2 + c2)X2(1)

˙SK1P = −cαSK1P + c3X3 − a1SK1P RR+ d1X1(2)

ṘR = −a1SK1P RR+ d1X1 + c2X2 + cβRRP (3)

˙RRP = c1X1 − a2SK1 RRP + d2X2 − cβRRP (4)

Ẋ1 = a1SK1P RR− (d1 + c1)X1(5)

Ẋ2 = a2SK1 RRP − (d2 + c2)X2(6)

˙SK2 = −a3SK1 SK2 + (d3 + c3)X3(7)

Ẋ3 = a3SK1 SK2− (d3 + c3)X3(8)

(76)

The conservation laws are:

SK1T = SK1 + SK1P +X1 +X2 +X3

RRT = RR+RRP +X1 +X2

SK2T = SK2 +X3

(77)

After setting the left-hand side of ODEs to 0, and variable elimination we can express all

variables as functions of SK1:

RRP = c1κ3cαSK12+p1SK1−c1cαSK1T
p2SK12+p3SK1+p4
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2 Microbial memory: bistability in bacterial two- component systems

RR =
−c2κ2κ3cαSK13+p5SK12+p6SK1+cαcβSK1T
c1c2κ1κ2κ3SK13+p7SK12+p8SK1−c1κ1cβSK1T

X1 =
c2κ2κ3cαSK13−p5SK12−p6SK1−cαcβSK1T

p2SK12+p3SK1+p4

X2 = κ2SK1
c1κ3cαSK2

1+p1SK1−c1cαSK1T
p2SK2

1+p3SK1+p4

and the rational function ϕ is a sum of these:

RRT = ϕ(SK1) = RR+RRP +X1 +X2 (78)

Where pi, i=1..8 are again lumped parameters. As shown in the Appendix and by numerical

parameter sampling below, ϕ can have increasing and decreasing parts, and therefore this

topology is capable of bistability. Sample bifurcation plots are shown in Figure 32.
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Figure 32. Bifurcation diagrams showing steady states of RRP as a function of c3, for 9
randomly chosen parameter sets of Topology 7 (2.3.7). Unstable steady states are depicted with
red circles. Each plot has its bistability metrics above it, λ and Φ.

Parameter analysis shows marked differences in some parameter values, shown by the

histograms in Figure 33. Specifically, bistable parameter sets have higher absolute levels of the

SKs (SK1 and SK2), a higher ratio of SK1 to SK2, and a stronger interaction between them

(Kd = a3/d3). This is intuitive, as the interaction between the two SKs competes with the

dephosphorylation of RRP, constituting the mechanism behind bistable behavior. At the same

time, spontaneous dephosphorylation of SK1P or RRP (rate constants cα and cβ) works against

bistability.
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Figure 33. Distributions of parameter values for mono- (blue) and bistable (red) parameter
sets, for Topology 7. Vertical line shows the median.

2.4 Transcriptional feedback leading to bistability in TC systems

Most TC systems are auto-inducing, with pathway activation inducing the expression of the same

pathway’s components, constituting a positive feedback loop [122, 156, 158]. Therefore, bistability

could also be caused by transcriptional regulation, and the interaction between post-translational

mechanisms and the transcriptionally-regulated production of the pathway’s species has to be taken

into account.

It is intuitive that if the transcriptional positive feedback is on a monofunctional SK, this

makes bistability possible, as the production curve of SK (and RR) is a non-linear (sigmoidal,

see Appendix 4.3) function of RRP due to the dimerization of RRP molecules and because a

monofunctional SK is an activator of RRP , making the sign of the feedback positive. These

two criteria, sigmoidality of feedback induction and positive sign of the feedback, is sufficient for

bistability [6, 7].

In the case of a bifunctional SK however, that both activates and deactivates the RR molecule,

it is less clear what the effect of the induction would be and whether it can lead to bistability. A

number of publications illustrated the possibility of bistability in TC systems with a bifunctional SK

[77, 156, 169], but under special conditions. In [156], a second (parallel) feedback loop is present

besides the direct self-induction of SK and RR, and this additional feedback loop is strongly

non-linear, enabling bistability. Therefore, the topology under investigation is more complex than

the core TC topology. In [77] only one parameter set is analyzed and the feedback loop is only on
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2 Microbial memory: bistability in bacterial two- component systems

RR, not SK.

Below, I investigate the core TC topology with a bifunctional SK and auto-induction of both

pathway components by algebraically reducing it to a single equation and then applying extensive

parameter sampling to find bistable parameter sets. The structure of the system is illustrated in

Figure 34.

SKP SK 

RR 

RRP 

rr sk 

Output	genes	

Figure 34. Auto-induction in the canonical TC system topology with a bifunctional SK.

To describe the system with transcriptional induction and degradation, I use a Hill-equation

with a cooperativity index of two, to model the effect of dimerization of the activated transcription

factor, RRP . In the Appendix, I show that using a quadratic Hill-function instead of explicit

modeling of dimerization is legitimate. The degradation of species is modeled as a linear

(first-order) process. The degradation terms can be thought of as a combination of protein

degradation and the dilution of components due to cell growth. Growth-rate dependence of the

degradation rates themselves [39, 148] is not considered here. mRNA molecules are not represented

separately, instead the concentration of RRP directly regulates the production rate of RR and SK

as:

vprod(SK) = β + φ
RRP 2

RRP 2 + θ2

vprod(RR) = λ

(
β + φ

RRP 2

RRP 2 + θ2

) (79)

As SK and RR are in most cases co-transcribed from one autoregulated operon [156], the

dependency of the production rate on RRP is set to be identical. Differences in mRNA processing

however result in different copy numbers, typically 10-100-fold higher copy numbers for response

regulators. This is captured by the scaling parameter λ, defining the RRT to SKT ratio. β is

the basal production rate from the operon, φ the maximal induced rate of production, and θ is
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2 Microbial memory: bistability in bacterial two- component systems

the concentration of the activated transcription factor (RRP ) at which the production rate is

half-maximal.

The full system of equations for the bifunctional TC with transcriptional feedback and

degradation of each species is then:

˙SK =

(
β + φ

RRP 2

RRP 2 + θ2
− γSK

)
− c0SK − a2SK RRP + (c2 + d2)X2 + c1X1

ṘR =

(
λ

(
β + φ

RRP 2

RRP 2 + θ2

)
− γRR

)
− a1SKP RR+ d1X1 + c2X2

Ẋ1 = −γX1 + a1SKP RR− (d1 + c1)X1

Ẋ2 = −γX2 + a2SK RRP − (d2 + c2)X2

˙RRP = −γRRP − a2SK RRP + d2X2 + c1X1

˙SKP = −γSKP − a1SKP RR+ d1X1 + c0SK

(80)

Due to the production and degradation (with γ the first-order rate constant) of species,

there are no such conserved quantities as total concentrations (SKT and RRT ) when considering

post-translational mechanisms only. Setting the left-hand side of the ODEs to 0, and making use

of the fact that in steady state, the inflow and outflow of phosphate groups has to be equal, one

can reduce the system to an equation in one variable, RRP . This equation is an algebraic relation,

where we have the input parameter c0 on the left-hand side of the equation and a rational function

in the steady state value of RRP on the right, f(RRP ). This is an inverted bifurcation diagram,

as c0 (which is on the y-axis) is the input parameter. For the core TC topology with a bifunctional

SK, this relation is:

c0 =
RRP(c2(a2(βθ+RRP2(β+φ))+γ2(θ+RRP2))+γ2d2(θ+RRP2))(c1(a1(−βθλ+γRRP3−λRRP2(β+φ)+γθRRP)−γ2(θ+RRP2))−γ2d1(θ+RRP2))

(c2+d2)(c1(a1(βθ+RRP2(β+φ))(−βθλ+γRRP3−λRRP2(β+φ)+γθRRP)+γ3RRP(θ+RRP2)2)+γ3d1RRP(θ+RRP2)2)

(81)

Or, converting the numerator and denominator both into polynomial form:

c0 =

RRP

(
5∑
i=0

aiRRP
i

)
5∑
j=0

bjRRP j
(82)

where the coefficients are:

p0 = −θ2
(
c2
(
a2β + γ2

)
+ γ2d2

) (
c1
(
a1βλ+ γ2

)
+ γ2d1

)
p1 = a1γc1θ

2
(
c2
(
a2β + γ2

)
+ γ2d2

)
p2 = −θ(c1(c2(a1λ(2a2β(β + φ) + γ2(2β + φ)) + γ2
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(a2(2β + φ) + 2γ2)) + γ2d2(a1λ(2β + φ) + 2γ2)) + γ2d1(c2(a2(2β + φ) + 2γ2) + 2γ2d2))

p3 = a1γc1θ
(
c2
(
a2(2β + φ) + 2γ2

)
+ 2γ2d2

)
p4 =

(
c2
(
a2(β + φ) + γ2

)
+ γ2d2

) (
−
(
c1
(
a1λ(β + φ) + γ2

)
+ γ2d1

))
p5 = a1γc1

(
c2
(
a2(β + φ) + γ2

)
+ γ2d2

)
and

r0 = a1

(
−β2

)
c1θ

2λ (c2 + d2)

r1 = γθ2 (c2 + d2)
(
c1
(
a1β + γ2

)
+ γ2d1

)
r2 = −2a1βc1θλ(β + φ) (c2 + d2)

r3 = γθ (c2 + d2)
(
c1
(
a1(2β + φ) + 2γ2

)
+ 2γ2d1

)
r4 = a1c1(−λ)(β + φ)2 (c2 + d2)

r5 = γ (c2 + d2)
(
c1
(
a1(β + φ) + γ2

)
+ γ2d1

)
.

For the topology to be capable of bistability, there has to be some c0 value where c0 =

f(RRP (1)) = f(RRP (2)) = f(RRP (3)), and RRP (1) 6= RRP (2) 6= RRP (3) are both true. For

these conditions to be satisfied, the function f(RRP ) has to have two critical points, that is, the

derivative of f(RRP ) has to have two biologically meaningful roots. To search for such parameter

sets, I take the derivative of f(RRP ), which is also a rational function that is the ratio of two

polynomials, and look for roots of the numerator while performing parameter sampling. Parameters

are randomly generated numbers from lognormal distributions, with the properties shown in Table

6. The parameters are centred around biochemically realistic values and are defined in such a way

that the total concentration of pathway components are in the nM −µM range, as reported in the

literature.

Table 6. Unit and median of the randomly generated parameter values for the canonical TC
topology with transcriptional induction. Every parameter is generated from a lognormal
distribution with a standard deviation of 2.

Parameters Unit Logarithm of median
a1, a2 (µMmin)−1 2.5
d1, d2 min−1 2.5
c1, c2 min−1 2.5
γ min−1 -2
β µM/min -2
Φ µM/min -2
θ µM -2
λ unitless 2

Physically unfeasible bifurcation plots are discarded, e.g. if the lower branch of steady states

extends to the right indefinitely. I have also discarded parameter sets where there is nominal

bistability, but the two bistability metrics have very low values, specifically if λ < 2 or Φ < 0.1.
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Figure 35. Bifurcation diagrams for the transcriptionally auto-regulating core TC topology,
with a biunctional SK. Each plot has its bistability metrics above it, λ and Φ. Unstable steady
states in red.
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Figure 36. Bifurcation diagrams for the transcriptionally auto-regulating core TC topology,
with a bifunctional SK. Solutions shown where the first bifurcation point is at
RRP/max(RRT ) > 0.05. Each plot has its bistability metrics above it, λ and Φ. Unstable steady
states in red.
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Φ is now defined slightly differently, than in Figure 25: it is the difference between the value of

the output variable at the bifurcation point x2 and the value of the upper branch at the same x

value. The bifurcation plots of some sample bistable parameter sets are shown in Figure 35. As we

can see, for many of the bistable systems the lower branch of solutions is at a very low value, which

means that the system is barely induced, i.e. there is only very low expression of RR and SK. This

means that the system works as an all-or-none bistable switch. By filtering out solutions where at

the bifurcation point for the lower branch of solutions (x2 in Figure 25) RRP/max(RRT ) < 0.05,

we can see that there are also parameter sets where the system is already significantly induced

before the bifurcation occurs, as shown in Figure 36. As a last step, some bistable parameter sets

were selected and the original system of ODEs was re-simulated from two different initial values

of expression levels (but at the same value of the input parameter c0) to show bistability in the

dynamical behavior of the system, shown of Figure 38.

Turning to the analysis of parameters now, the results of the parameter scan highlight five

biologically meaningful parameters that have significantly different values in the case of bistable

parameter sets:

- basal expression level, β: the median value of β for (strongly) bistable parameter sets is

significantly lower than for all parameter sets.

- fold change of induction, Φ/β: the median value of Φ/β for (strongly) bistable parameter

sets is significantly higher than for all parameter sets.

- the maximal amount of pathway components SKT (β+φ
γ ) and RRT (λβ+φ

γ ): both are

significantly lower for (strongly) bistable parameter sets than for the entire parameter set.

- EC50 of transcriptional induction as a fraction of maximal amount of RRT , θ
max(RRT ) :

the median value for (strongly) bistable parameter sets is significantly higher than for all

parameter sets.

To summarize, we can see that bistability due to transcriptional auto-induction is indeed

possible in the minimal TC topology with a bifunctional SK. I found that bistable systems typically

have lower copy numbers, a lower basal expression level, a higher fold change and a higher EC50

(relative to the maximal expression level of RRT ) of transcriptional induction.
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Figure 38. Resimulation of a sample bistable system with the full system of ODEs. On the left
panel is the bifurcation diagram of a sample bistable system. I select two values of c0. One is
within the bistable range with two stable steady states (c0 = 6, red circles). For the other value
of c0 = 9 the system has only one steady state (blue circle). On the right panel are dynamic
simulations of the original system of ODEs at the two selected c0 values. For the c0 value within
the bistable range the system can converge to two different steady states (red curves), depending
on whether its initial condition is the basal expression level of SK and RR, or the maximal
induction level. In the case of c0 = 9, the system converges to the same (unique) steady state
irrespective of its initial condition, albeit with different dynamics.
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2.5 Conclusions

I looked at post-translational mechanisms and the auto-inducing transcriptional feedback loop

present in many TC systems to see if they are capable of generating bistable behavior. Bistability

for TC systems that control developmental transitions might be needed for different reasons. On

the one hand they can be required for an irreversible shift to occur in the expression level of the

controlled genes at a single-cell level. Through the same process, at a population level bistable

control systems can generate two distinct subpopulations with different means of expression levels.

This can be an advantageous strategy for a population in a fluctuating, unpredictable environment

(bet-hedging).

I analyzed TC systems in two frameworks, first considering only post-translational mechanisms,

with fixed total concentrations. In the second, more realistic approximation I also include

degradation of species and their transcriptional auto-induction.

In the first approximation, looking at post-translational interactions only, one mechanism that

enables bistability is complex formation between inactive pathway components coupled with a

SK-independent dephosphorylation route. Another is split SKs, already analyzed in an article

[4]. Following numerical sampling I looked at parameter distributions of bistable and monostable

systems and highlighted the key parameters for the existence of bistability.

In the second approximation, I showed conclusively that the minimal TC system with

transcriptional auto-induction can indeed be bistable. Furthermore, by analyzing the distributions

of parameter values for mono- and bistable parameter sets, I identified parametric properties

of transcriptionally induced bistability. Transcriptionally bistable TC systems have a low basal

expression level, a high fold change of transcriptional induction and a higher relative EC50 of

transcriptional induction.

The above analysis can be extended in a number of directions. First, the models above can be

converted into stochastic ones, exploring the effects of bistability at a population level. Second, by

analysis of the coefficients of polynomial equations that I obtained for each system, one might derive

inequalities between parameters that have to be fulfilled for bistability. Third, the dimerization of

RRPs and their binding to a promoter site can be explicitly modeled, as well as transcription and

translation as separate processes. Fourth, the transient behavior of bistable systems could also be

analyzed in more detail. Finally, the parametric conditions derived for transcriptionally induced

bistability are potentially amenable for experimental implementation, such as a higher EC50 of

expression, a higher fold change or a lower basal level of expression. By following these criteria,

engineering a monostable TC system into a bistable one might be experimentally feasible.
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3 Microbial motility: increased directional persistence by

lateral flagellation

3.1 Introduction: bacterial motility and chemotaxis

Any organism that is able to actively explore and exploit the resources of its environment has

a major advantage over its competitors. Therefore, it is no surprise that in evolution, we see

the emergence of the capacity for motility and in particular directed movement already in the

simplest organisms, that is, bacteria [76, 88]. Most bacterial species navigate their environment by

a so-called random walk [15, 16], a process that is the succession of random steps. The common

organelle for locomotion in bacteria are flagella, consisting of long protein filaments protruding from

the cell’s surface and rotated by a membrane-embedded motor. A bacterial random walk consists

of straight runs (perturbed by rotational diffusion to some extent) and reorientations of the cell.

Without chemical gradients that bacteria can detect, the process of random walks results in uniform

spreading. Many bacterial species however evolved a chemotactic apparatus to detect gradients

of nutrients (attactants) or toxic compounds (repellents), making it possible to actively seek out

and exploit the resources of their environment. Whereas chemotactic eukaryotic cells can sense

gradients by direct comparisons of concentrations along their cell body [40], bacteria employ the

strategy of temporal comparisons along their swimming trajectory [18]. Early theoretical work on

chemotaxis showed [17] that for the size and swimming velocity of bacterial cells this is the workable

sensing strategy. In the presence of a gradient of a compound that bacterial chemoreceptors can

detect, the bacterial random walk becomes a biased random walk. When swimming in a favourable

direction, cells suppress reorientations and maintain their runs by making temporal comparisons

of the stimulus strength (concentration of some compound). The components of the chemotaxis

machinery are shown in Figure 39. Bacteria can have one or multiple chemotaxis systems that

detect stimuli to control flagellar motors accordingly [81, 91, 140, 141]. The signal is detected and

amplified by clusters of receptor proteins on the cell surface. The signal is then transmitted by

the histidine kinase CheA that interacts with the receptors, and phoshorylates the intracellular

signaling protein, CheY accordingly.
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Figure 39. Components of the chemotaxis signaling system and its relation to the polar
flagellum in Shewanella. This figure is to illustrate the interaction of the chemotaxis signaling
system with the polar flagella; in the case of Shewanella chemotactic clusters (MCPs) are in
reality located at the pole only. The lateral flagellum operates independently of the signaling
system.

Phosphorylated CheY diffuses to and directly interacts with the flagellar motor and changes

the motor bias in an ultrasensitive fashion, inducing a switch in rotation or a motor break.

Most bacterial motors are bidirectional and can rotate either clockwise (CW) or counter-clockwise

(CCW). In peritrichously flagellated bacteria, the flagella are distributed all over the cell body’s

surface, such as in the case of E. coli. In the case of these bacteria, CCW rotation leads to the

formation of a flagellar bundle, propelling the cell forward in a ‘run’. Switching to CW rotation

of the motors leads to the disassembly of the bundle, resulting in a ‘tumble’ and reorientation of

the cell. Following the cell’s reorientation, a run in a different direction is started, with the motor

rotating CCW again [15, 18].

Numerous bacterial species in contrast are polarly flagellated, resulting in a different swimming

pattern. For instance, Vibrio alginolyticus, a bacteria with a polar flagellar filament, is also

propelled forward by the motor rotating CCW, but the cell is then pulled backward when it

switches to CW rotation. Also, cell re-orientation does not happen through a ‘tumble’ but an

instantaneous reorientation of the cell (‘flick’), caused by a buckling instability of the flagellar

hook, when switching back to CCW rotation [139]. This ‘run-reverse-flick’ pattern results in

realignments of approximately 90 degrees and is used for spreading and chemotaxis by Vibrio and

some Pseudomonas species [120, 139]. In the species under consideration, Shewanella putrefaciens,

there is a secondary flagellar system in addition to the primary polar one [26]. A significant fraction

of cells express the secondary flagellar system already under planktonic conditions, having one or

two additional lateral filament(s).
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3 Microbial motility: increased directional persistence by lateral flagellation

3.2 Experimental results

A number of experiments were performed by my collaborators Dr. Sebastian Bubendorfer and

Florian Rossmann, where the spreading and chemotactic efficiency of Shewanella cells with and

without lateral flagellation was compared. In these experiments the flagellar motor protein FliM2

(a component only occurring in the lateral flagellar system) was functionally fused to sfGFP, to

distinguish cells with and without the lateral flagellar system. A mutant strain ∆flaAB2 was

constructed lacking (due to deletion) the flagellin subunits of the secondary flagellar system, flaA2

and flaB2. These cells exclusively form single polar flagellar filaments.

In one spreading experiment, wild type cells were placed on soft-agar plates and after the

radial expansion of the bacterial population, samples were taken at different radial distances from

the center. Close to the center of the lateral extension zone about half of sampled cells showed

the green fluorescent loci (meaning that they induced the lateral system), a fraction similar to

what is observed in planktonic cultures. In contrast all cells isolated from the fringes expressed

FliM2-sfGFP, having one or two additional filament(s), as shown in Figure 40a, b.

In another set of experiments on soft-agar plates, the spreading performance of cells with and

without functional lateral flagella was compared. Wildtype and mutant cells were mixed in equal

amounts and allowed to spread on soft agar for 16h. The growth rate of the two cell types was

almost identical. Again, samples were taken at different radial distances from the center and the

ratio of wildtype to mutant cells was quantified with fluorescence microscopy. The larger the

distance from the center of the lateral extension zone, the further the ratio of both strains was

shifted towards the wild type, as shown in Figure 40c. At the fringes of the swimming zones, more

than 90% of the population was wild-type, in most cases with a single lateral filament (in addition

to the polar system).

Similar results were obtained with chambers consisting of two reservoirs connected by a channel.

A 1:1 mixture of wildtype and ∆flaAB2 cells were added to one reservoir. After 12 hours of

incubation the samples taken from the other reservoir showed significant enrichment in wildtype

cells with a single additional lateral filament, see Figure 40d. The presence of a lateral flagellar

system improved the spreading capacity of cells again.

Trajectories of cells with lateral flagellar filaments are different from those with only polar ones,

see Figure 41a, b. In both cases, cells follow a ‘forward-reverse-flick’ pattern: a long forward run

is followed by a short backtracking phase, in turn followed by a quick cellular realignment. The

average duration (length) and swimming speed of wild type and ∆flaAB2 cells are given in Table

7.
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Figure 40. Cells with both polar and lateral flagellar systems outperform mutants with polar
flagella only in both soft-agar and liquid medium. a. Cells’ radial extension in soft agar.
Numbers in boxes mark the corresponding sampling areas (1, center; 2, intermediate; 3, rim). b.
Micrographs of CN-32 fliM2-sfgfp cells isolated from sampling area 1 and sampling area 3. Scale
bars represent 5 µm. c. Percentage of fluorescently labeled wild-type and ∆flaAB2-mutant cells
in samples isolated from the corresponding sampling areas. d. Percentage of fluorescently labeled
wild-type and ∆flaAB2-mutant cells after traveling from reservoir 1 (R1) to reservoir 2 (R2)
through a medium-filled channel. Figure from joint publication [27]. Figure created by Dr
Sebastian Bubendorfer.

However, there is also a difference between cells with and without a lateral filament in the

distribution of turning angles during these realignments. Whereas for ∆flaAB2 cells without a

lateral flagellar system, the range of angles center around 90 degrees, the wild type cells change

direction with a much wider spectrum of angles, and therefore their average turning angle is below

90 degrees. Further knockout experiments showed that the chemotaxis system interacts with the

polar flagellar system only, responsible for chemotaxis-induced forward-backward movements. The

lateral system on the other hand has a role in shifting the cellular reorientation to smaller angles.

I asked if this difference, also taking into account the other differences in the swimming

parameters, duration and speed, can explain the observed differences in spreading performance.

Furthermore I wanted to investigate the general effects of the turning angle distribution on

spreading and chemotaxis.
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Figure 41. Lateral filament affects the trajectories of swimming cells. A representative
trajectory of a wild-type (a) and ∆flaAB2 mutant (b), showing a forward run (red triangles),
reversal (blue square), short backward run (blue triangles), flick (purple circle), and forward run
movement. (c) Turning angle distribution of wild-type (black) and ∆flaAB2-mutant (gray) cells.
Figure from joint publication [27]. Figure created by Dr Sebastian Bubendorfer.

3.3 Mathematical model: effects of the turning angle distribution

3.3.1 Computational Model of Spreading of Shewanella Wild-Type and Mutant Cells

To determine whether the observed differences in swimming behavior are sufficient to explain the

observed advantage in spreading, I performed mathematical analysis and computer simulations

of motility and chemotaxis of wild-type vs. mutant cells. The movement of cells in a uniform

environment without gradients can be described analytically as a 2D correlated random walk [75,

151]. In this approximation, the mean square displacement (MSD) of the population after time t,

R(t), can be obtained from the autocorrelation function of the velocity:

〈v(t)v(0)〉 = exp (− (λ+ 2Dr) t) v
2exp(λγt) = v2exp (− (λ(1− γ) + 2Dr) t) (83)
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3 Microbial motility: increased directional persistence by lateral flagellation

where λ is the turning rate, i.e., reciprocal of the mean run duration, Dr is the coefficient of

rotational diffusion, v is the speed of swimming, and γ is the persistence factor of the movement,

i.e., the mean of the cosine of the turning angles, γ = 〈cos(θ)〉. The value of the parameters can

be seen in Table 7.

Table 7. Parameters of swimming trajectories for wild type and ∆flaAB2 mutant cells.

wild type ∆flaAB2
〈cos(θ)〉 0.214 rad 0.058 rad
v (swimming speed) 47 µm/sec 57 µm/sec
〈d〉 (run duration) 21 sec 10 sec

Here, I assumed an exponential distribution of run durations and neglected the short

backtracking movement that S. putrefaciens CN-32 cells show following runs. The backtracking

runs are included later on in stochastic numerical simulations to see if neglecting them has an

effect.

Double integration in time on Equation 83 gives the value of the MSD:

R(t) =
2v2 (exp (−t(2Dr + λ(1− γ))) + 2Drt− 1) + 2λv2(1− γ)t

(2Dr + λ(1− γ))
2 (84)

The exponential term in the numerator goes to zero on the timescale of spreading experiments

(hours), simplifying Equation 84 to:

R(t) =
2v2t

2Dr + λ(1− γ)
− 2v2

(2Dr + λ(1− γ))
2 (85)

Equation 85 shows that the value of R(t) increases at higher values of the persistence factor γ,

as proposed already in a previous theoretical study on insect movement [75]. The lower average

turning angle observed for the movement of wild-type cells can thus yield higher persistence and

lead to faster spreading.
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Figure 42. a. Analytical solution for the root mean square displacement (RMSD) of cells using
identical parameter values (v = 57µm/s, λ = 0.1/s), except for the persistence factor
(γWT = 0.214, γmutant = 0.058). b. Same as in panel a, but with experimentally measured
parameter values (vmutant = 57µm/s, λmutant = 0.1/s , γmutant = 0.058 and vWT = 47µm/s,
λWT = 0.05/s, γWT = 0.214). Dr = 0.023rad2/s. c. Numerical simulations with same
parameters as in a, but including backtracking, with duration of backtracking 0.3sec on average.
The lines show the mean of 10 independent simulations, with RMSD of 200 cells determined in
each simulation. Dots show minimal and maximal values. d. Numerical simulations of the
population spreading with same parameters as in b, but with backtracking included. Figure from
joint publication [27].

I next calculated the root mean square distance (RMSD) for the mutant and wild-type strains

using the full expression of Equation 84 and the experimentally determined parameter values.

The difference in RMSD in our example is not solely due to the difference in the persistence

factor γ, but is a combination of differences in the parameter values: besides higher persistence

wildtype cells on the one hand swim slower, but on the other have longer runs. I separately analyzed

these effects of Figure 42, where on a and c all parameters of the wildtype and the mutant are set

equal, except the persistence factor γ.

In wild-type cells, the effects of their longer run periods and lower speed are mutually

compensatory, as can be calculated from Equation 84 (Figure 84 a compared to b) and confirmed

by numerical simulations (Figure 84 c compared to d) as well.

The numerical simulations also took into account backward runs. The experimentally measured
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3 Microbial motility: increased directional persistence by lateral flagellation

angles were binned and assigned discrete probability values. Turning angles in the simulations are

generated by drawing random numbers and binning them by these probability intervals. Similarly,

run durations are also generated by random number generation from an exponential distribution

with the experimentally determined means.

To go into more detail, the movement of an individual cell in the x and y coordinates during

the mth run was described as

x(t+ l) = x(t) + v l(m)cos(α(m))

y(t+ l) = y(t) + v l(m)sin(α(m))

(86)

where t is time, l(m) is the duration of the mth run, v is the speed of movement, and α(m) is

the orientation of the cell during the mth run. α(m) changes from the m-1 th to the mth run as

α(m) = α(m− 1) + Θ(m) (87)

where Θ(m) is the turning angle preceding the mth run. Because there are no observable

tumbling periods for Shewanella cells, I assumed in our simulations that cells turn instantaneously

at the end of runs (and after the short backtracking period). Taking into account rotational

diffusion, cell orientation in our simulations changes at every time step ∆t as

α(t+ ∆t) = α(t) + η (88)

where η is the term due to rotational diffusion. I assumed the random variable η to be normally

distributed as

N(m,σ) = N(0, [2Dr∆t]
1/2) (89)

where Dr is the coefficient of rotational diffusion. The value of Dr = 0.023 rad2/s was

used, which is the value determined for Pseudomonas putida [151], a bacteria of similar size

and polar flagellation. Run durations l and turning angles Θ have experimentally measured

probability distributions p(l) and p(Θ), respectively. I assume that p(l) is exponentially distributed.

Monte Carlo simulations were performed by drawing random numbers from the probability

distributions of forward run durations, backward run durations and turning angles. The probability

distribution for turning angles was obtained by binning our experimental data using 10◦ bins. For

run durations, the means were experimentally measured, and values were generated from the

exponential distribution with the respective mean. All scripts were written in MATLAB, using
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MATLAB’s randn algorithm to generate random numbers.

may not only add propulsion forces for viscous environments
or for swarming across surfaces but also enables more efficient
spreading under conditions where polar flagella would be suffi-
cient for swimming.
It was shown previously that cells of S. putrefaciens are capable

of highly efficient chemotactic swimming that, for example,
allows cells to successfully track motile marine algae (27). Here,
we have demonstrated that S. putrefaciens CN-32 and presumably
other Shewanella sp. most likely navigate by a run-reverse-flick
mechanism as has recently been proposed to mediate efficient
chemotaxis in Vibrio species (8, 9, 28). S. putrefaciens CN-32 with
a single polar filament exhibit cellular reversals and quick cellular
rearrangements by an angle of ∼90° upon resuming forward
swimming. Under the conditions tested, e.g., with little or no
gradient of attractants or repellents, the full run-reverse-flick
three-step cycle occurred in less than 0.1 s. In contrast, the sec-
ondary lateral flagella function in a unidirectional fashion and
were only observed to exhibit CCW rotation, as has similarly
been described in an earlier study on the lateral system of
V. alginolyticus (29). However, while, in this species, CheY is able
to interact with both flagellar motor systems and slows down
rotation of the lateral filaments, we have found no indication
that CheY affects lateral flagellar rotation in CN-32. Functional
modulation of the flagellar motors requires specific interactions

between CheY and the motor protein FliM (5). Notably, FliM2 of
the lateral system has little homology to FliM1 of the polar motor
and lacks the predicted CheY binding domain that is well con-
served in FliM1 (Fig. S5). Also the homology between FliM of the
lateral systems in CN-32 and V. parahaemolyticus is surprisingly
low, indicating that FliM2 of the secondary flagellar system of
S. putrefaciens CN-32 has lost the ability to functionally interact
with CheY. In contrast, we demonstrate that the secondary system
of CN-32 exhibits its function by decreasing the cellular turning
angle. In addition, directional switches of the cells were observed
at lower frequency, which might indicate that the secondary fil-
ament is even able to fully suppress a visible directional change.
Using mathematical modeling and computer simulations, we
propose that the resulting lowering of the turning angle distri-
bution of a bacteria’s movement leads to more efficient spreading
and chemotaxis due to higher directional persistence. Our results
are consistent with previous theoretical studies (18) but provide
a specific example of how this strategy is used by bacteria. We
expect that this function of lateral flagella will be similarly ap-
plicable to many of the other numerous bacterial species that are
equipped with secondary flagellar systems. Some findings in
previous studies indicate that this might be the case: The ex-
pression of a secondary flagellar system of Bradyrhizobium
japonicum planktonic cultures in planktonic cultures has been

Fig. 4. Modeling and simulations of spreading and chemotaxis for wild-type and ∆flaAB2 cells. (A) Analytical solution for nondirectional spreading of
bacterial cells (RMSD) in absence of chemotactic gradient, using Eq. 2 with experimentally measured parameter values (vmutant = 57 μm/s, λmutant = 0.1 s−1,
γmutant = 0.058 and vWT = 47 μm/s, λWT = 0.05s−1, γWT = 0.214). The coefficient of rotational diffusion was set to Dr = 0.023 rad2·s−1. (B) Numerical simulations of
the population spreading with same parameters as in A and using the experimentally measured turning angle distribution, also including backtracking. The
lines show the mean of 10 independent simulations, with RMSD of 200 cells determined in each simulation. Dashed lines show minimal and maximal values.
(C) Percentage of wild-type and ∆flaAB2 cells from B after 16 h, at different (radial) distances from the center. The ratio of wild-type to mutant cells rises with
increasing distance from the center. The error bars are based on 10 independent simulations. (D) Simulations of chemotaxis in gradients, using the exper-
imentally measured turning angle distributions for wild-type and ∆flaAB2 cells. The scaling factor e (see SI Materials and Methods) was set to e = 0.1. Results
are from five independent simulations, each including 1,000 cells. Gradients of indicated steepness (dc/dx) are linearly increasing along the x axis, with c = 0 at
x = −100. At the onset of simulation, cells are placed in random orientations at x = 0. The mean position, <x>, of the cell population along the x axis indicates
chemotactic drift along the gradient. The units of distance are millimeters, whereas the unit for concentration c is arbitrary. The basal turning rate was set to
λ0 = 0.2 s−1. For simulations with other values of λ0 and e, see Fig. S4.
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Figure 43. Percentage of wild-type and ∆flaAB2 cells from the simulation in Figure 42 b after
16h, at different (radial) distances from the center. The ratio of wild-type to mutant cells rises
with increasing distance from the center. The error bars are based on 10 independent
simulations. Figure from joint publication [27].

Due to the mutually compensatory effect of the longer run duration but slower swimming speed

in the case of wildtype cells, about 90% of the difference in RMSD is attributable to the higher

persistence of the wildtype movement. The difference in terms of the RMSD is rather small, but

it yields a consistent increase in the ratio of wild-type to mutant cells at the edge of the simulated

spreading population, as shown in Figure 43, similar to that observed experimentally (Figure 40c).

3.3.2 Computational Model of Chemotaxis of Shewanella Wild-Type and Mutant

Cells

The enhancement of spreading in a uniform environment might be an explanation in itself for the

benefit conferred by the lateral flagella. Beyond spreading however, higher directional persistence

has also been proposed to have a positive effect on the chemotactic movement of bacteria in

gradients [94, 108, 151]. To see if this is the case, I constructed a phenomenological model of

chemotaxis (based on a model proposed by [94]), to see the effect of the difference in the measured

turning angle distribution. I chose this model as it does not require knowledge of the intracellular

biochemical parameters of the chemotaxis pathway, since these are unknown for Shewanella.

I assumed (as in [94]) that in shallow gradients, the probability of discontinuing a run and

turning, the “turning rate”, depends on the recent concentration history of the cell as:

λ(t) = λ0(1−∆(t)) (90)

where λ0 is the basal turning rate (equal to the reciprocal of mean run duration if there is no

gradient present) and ∆(t) is the fractional change of the turning rate. The turning rate is biased

by a response function mapping the attractant concentration history of the cell into the fractional
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change of the turning rate:

∆(t) =

∫ t

−∞
c(τ)R(t− τ) dτ (91)

where c(τ) is the concentration of attractant experienced by the cell at time τ , and R(t−τ) is the

response function of the cell, specifying the impulse response to the chemoattractant. The turning

rate ∆(t) is then given as the convolution integral of the impulse response and the attractant

concentration history, meaning that the chemotaxis system is treated as linear. This model is

motivated by the experiments of Berg and Segall and coworkers [23, 129] and has been shown by

previous publications to capture the adaptive properties of the chemotaxis pathway [34, 94, 127].

As Shewanella is also capable of chemotaxis, its response function should have a similar shape

to that of E. coli, so that the cell is capable of performing temporal comparisons. R(t) as a function

of time should then be double-lobed, with the two important properties that:

∫ ∞
0

R(t) dt = 0,

lim
t>>1

R(t) = 0,

(92)

in the case of E. coli, for t > 4/λ0, R(t) should decay to zero.

The response function was previously described as having the form :

R(t) = Wexp(−λ0t)

{
1−A

[
λ0t+

(λ0t)
2

2

]}
(93)

W and A are parameters to scale the response. When implementing the chemotaxis model, I

chose to use a simpler, sinusoidal, response function that has the same two properties as mentioned

in Equation 92, but is computationally less expensive:

R(t) =


ε

λ2
0

vswim
π
8 sin

(
πλ0t

2

)
, if 0 ≤ t ≤ 4/λ0

0, otherwise

(94)

so that only the last 4/λ0 seconds of the cell’s concentration history has to be stored and used

for the calculation.

When implementing the response function, I discretized time into time steps of 0.1s, and the

turning rate was calculated by a discrete approximation of the convolution integral of Equation 91,

using MATLAB’s trapz function. A random number p is then generated at each time step (randn

function of MATLAB), and if P < 0.1λ0 (the unit of λ0 is s−1, but time steps are in 0.1s), the cell

turns, with a turning angle generated from the discrete probability distribution of turning angles
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3 Microbial motility: increased directional persistence by lateral flagellation

we have from our experiments. Otherwise the run is continued. Rotational diffusion is also taken

into account at each time step, as described above in Equation 88.

Results of the simulations at different values of the model parameters are shown in Figure 44.

Fig. S4. Modeling and simulations of spreading and chemotaxis for wild-type and ∆flaAB2 cells. (A) Analytical solution for the root mean square displacement
(RMSD) of cells using identical parameter values (v = 57μm/s, λ=0.1 s−1), except for the persistence factor (γWT = 0.214, γmutant = 0.058). (B) Numerical simulations
with same parameters as in A, but including backtracking, with duration of backtracking 0.3 s on average. The lines show the mean of 10 independent
simulations, with RMSD of 200 cells determined in each simulation. Error bars show minimal and maximal values. (C) Simulations of chemotaxis in gradients,
using the experimentally measured turning angle distributions for wild-type and ∆flaAB2 cells. The scaling factor e was set to e = 0.2. Results are from five
independent simulations, each including 1,000 cells. Gradients of indicated steepness (dc/dx) are linearly increasing along the x axis, with c = 0 at x = −100. At
the onset of simulation, cells are placed in random orientations at x = 0. The mean position, <x>, of the cell population along the x axis indicates chemotactic
drift along the gradient. The units of distance are millimeters, whereas the unit for concentration c is arbitrary. The basal turning rate λ0 is varied.

Bubendorfer et al. www.pnas.org/cgi/content/short/1405820111 4 of 9

Figure 44. Simulations of chemotaxis in gradients, using the experimentally measured turning
angle distributions for wild-type and ∆flaAB2 cells. The scaling factor ε was set to ε = 0.2.
Results are from five independent simulations, each including 1.000 cells. Gradients of indicated
steepness (dc/dx) are linearly increasing along the x axis, with c = 0 at x = −100. At the onset
of simulation, cells are placed in random orientations at x = 0. The mean position, 〈x〉, of the
cell population along the x axis indicates chemotactic drift along the gradient. The units of
distance are millimeters, whereas the unit for concentration c is arbitrary. The basal turning rate
λ0 is varied. Figure from joint publication [27].

The values for the steepness of gradients displayed in the plots show the derivative d[c]/dx,

the unit of distance being millimeters, whereas concentration [c] is in arbitrary units. I also varied

the time window for sensing and the gradients’ steepness, to investigate the effect of persistence

under different conditions. Wild-type cells indeed showed faster chemotactic movement in shallow

attractant gradients (Figure 44), suggesting that under these conditions, the observed higher

persistence of movement is sufficient to enhance chemotaxis. This difference became negligible in

steeper gradients (Figure 44), presumably because already short directional runs in steep gradients

enable cells to experience strong chemotactic stimulation. Moreover, the model used here is likely to
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3 Microbial motility: increased directional persistence by lateral flagellation

become imprecise in steep gradients. The positive effect of persistence on the chemotactic efficiency

is also diminished or annulled by the increase in the run time (Figure 44), because during longer

runs, rotational diffusion results in the loss of directional correlation. The exact relation between

the run time and the benefit of persistence depends on the value of the coefficient of rotational

diffusion, which is not known exactly for S. putrefaciens CN-32.

3.4 Conclusions

In the above analysis, I used analytical calculations and stochastic simulations to show that the

lower mean turning angle observed in the laterally flagellated wild-type form of the bacteria

Shewanella leads to more efficient spreading in a uniform environment.

The root mean square distance of a population moving in two dimensions can be derived

analytically and analyzed as the function of the motility parameters: swimming speed, run duration

and directional persistence. I calculated from this formula that the advantage in spreading that

wild-type cells show is due to their higher directional persistence, which in turn is a result of the

turning angle distribution having a lower mean.

Furthermore, by stochastic simulations of a phenomenological chemotaxis model, I also showed

that higher directional persistence has a positive effect on directed movement (i.e. chemotaxis)

as well, as long as gradients are relatively shallow, so that the response function of the turning

bias can be modeled linearly. This advantage in spreading and chemotaxis is likely to be one

evolutionary factor for the emergence and maintenance of the lateral flagellar system.
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4 Appendix

4.1 Information theoretical analysis of sensing in the mating pathway

It is visually evident from Figure 45, showing the response of wt and bar1∆ cells to partner cell

fraction θα (at ρT = 2), that the wt strains perform better at extracting information on the fraction

of partner cells within the total population, due to the nearly linear, non-saturating response that

signal attenuation leads to. I wanted to quantify how much information wt and bar1∆ cells can

extract about the partner cell fraction (θα) by using the concept of mutual information from

information theory. The main concepts of information theory are reviewed in the textbooks [117,

152], or, in a biological context, in the reviews [123, 167]. I review now very briefly the main

concepts of information theory.
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Figure 45. Mean responses in mixing experiments to partner cell fraction θα, for wt and bar1∆
cells. Responses to θα are shown at the highest total density ρT = 2 (2 ∗ 107 cells/ml). Error bars
show standard deviation of the underlying single cell data. The flow cytometry experiment
measuring the output of the mating pathway reporter gene PFUS1-GFP was carried out by Dr
Alvaro Banderas.

4.1.1 Main concepts of information theory

Information theory was originally developed by Claude Shannon to analyze artificial

communication systems [133], but it provides a general mathematical framework to quantify the

amount of information that can be transmitted through a noisy communication channel. The

attractive feature of this analytical framework, which makes it applicable to cell signaling as

well, is that only input and output measurements are required, and a detailed understanding

of the signaling system is not a prerequisite. Using information theory, a complex system can be

reduced to a black box communication channel and its capacity for information transmission can

be quantified.

Cellular signaling can be described as an information transmission problem, where chemical

signals (such as α-pheromone) convey information about some feature of the external environment

(such as the amount or fraction of α-cells) to the ‘decision centers’ (for instance the nucleus) of the
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cell. Due to the stochastic nature of chemical reactions in the signaling networks (a noisy channel)

of a cell, molecular noise will hamper the fidelity of any messages received by the cell, leaving it

with imperfect information about the environmental cue. The traditional metrics for noise (such

as variance) tell us the magnitude of noise, but they do not quantify the degree to which the

noise hampers the ability to discriminate between different inputs. With the measures provided by

information theory, such a quantification can be carried out. In the case of biological systems and

biological noise, one would typically look at the distribution of responses to a certain input by a

population of genetically identical cells. In this case, the variation in the response distribution has

two fundamental sources, often termed ‘intrinsic’ and ‘extrinsic’ in the systems biology literature

[43, 147]. One is molecular noise, due the stochastic nature of chemical events (intrinsic noise).

The other is cell-to-cell variation in expression levels of the components of the signaling pathway

or expression capacity (extrinsic noise).

To quantify the fidelity of information transmission by a given cellular signaling system, we

need to describe it as a communication channel, which couples an input source of information to

some output. A channel can be mathematically described by a random variable for its input and

another random variable for its output, with the values of the two variables depending on each

other. Measuring the output value helps to resolve the input value and we can quantify the amount

of information gained by the concept of mutual information.

The concept most commonly used to quantify information itself is Shannon-entropy (from now

on simply entropy), which is a measure of uncertainty, quantifying how unpredictable the value of

a random variable is. For a discrete random variable X that can take on the values x1, x2 ... xn

with probabilities p(x1), p(x2),..., p(xn), the entropy H is calculated as:

H(X) = −
n∑
i=1

p(xi)log2(p(xi)) (95)

Using a base 2 logarithm means that the entropy is measured in bits. Because 0 ≤ p(xi) ≤ 1

(and in calculations we define 0 log20 = 0) entropy is necessarily non-negative.

In a biological context, entropy is used both to quantify the uncertainty in the input (probability

distribution of input values), and the responses that a population of cells produce at a given

stimulus. If the variance of the response distribution is higher, there is more uncertainty in how

an individual cell responds to the given stimulus, and therefore the associated entropy is higher.

Using the entropy measure, the fidelity of signaling is quantified by the concept of mutual

information. Considering that the signaling pathway of a cell is a communication channel that

maps an input to an output, successful communication occurs if the knowledge of the output value

86



Appendix

makes it possible to determine the input value that was transmitted through the channel. Mutual

information I(X,Y ) is the reduction in the uncertainty about the input X given the value of output

Y , as can be seen in the mathematical definition for discrete random variables:

I(X,Y ) = H(X)−H(X|Y ) (96)

H(X|Y ) is the conditional entropy, quantifying the amount of information we need to determine

the outcome of random variable X (the input) given that the value of random variable Y (the

response or output) is known. In the case of a communication channel without any noise, this is

zero, and the mutual information is maximal, equal to H(X). At the other extreme, H(X|Y ) =

H(X), and the mutual information is 0, as the output does not reduce the uncertainty about the

input at all.

Calculation of mutual information can be performed by the formula [123]:

I(X,Y ) =
∑
i,j

p(xi, yj)log2
p(xi, yj)

p(xi)p(yj)
(97)

and requires binning of the data, to obtain marginal (p(xi), p(yj)) and joint (p(xi, yj))

probability distributions. Because of the finite sample size, mutual information estimates obtained

by binning can produce significant overestimates if samples are too small [33]. As the estimates

I provide are either from flow cytometry data with typically 10,000 cells per input value, or are

based on simulations, this bias due to undersampling is not a problem in our examples.

4.1.2 Application of information theory to the wild type response and noise

correction

I quantified the mutual information of the response of wt and bar1∆ strains to θα (Figure 45) by

binning of the data, as plotted in Figure 46. Here, as in all mutual information calculations below,

a uniform distribution was assumed for the input θα.
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Figure 46. Mutual information estimate from flow cytometry experiment. Blue line is wt cells,
red bar1∆ cells.

This estimate however is arguably underestimating the cells’ capacity of information

transmission, because of the following. Some of the variation in the response of the cells, lowering

the mutual information estimate, is due to differences in their expression capacity, e.g. different

number of ribosomes. As I wanted to have a measure of the fidelity of signaling by the mating

pathway, I argued that this source of variation should be ideally separated and removed, as it does

not constitute a measurement ‘error’ from the point of view of an individual cell. For instance, if the

response of an individual cell could be measured over and over, its expression capacity would scale

its responses identically. Also, its general resource investment (response of other genes induced

by the mating pathway) into the mating response would also be scaled by its expression capacity.

Therefore I wanted to remove the fraction of variation in the response of the population that is

due to cell-to-cell differences in expression capacity, and then re-estimate the mutual information.

To do this, I used the linearization approximation for the output of a gene developed by [35].

At the same time, I made explicit some necessary assumptions required by this model that was

not discussed there. In this approximation the output of a gene in an individual cell is described

as:

yi = (Li + λi)(Gi + γi) (98)

yi is the output of a gene, which is described as the product of two subsystems, the ‘pathway’ and

‘expression’ subsystem. In each subsystem there are two sources of variation, stochastic chemical

events (λi, γi) and cell-to-cell differences in ‘capacity’ (pathway capacity: Li and expression

capacity: Gi) that persist on a longer timescale (considered constant on the timescale of a mixing

experiment for example). In an individual cell, if the experiment could be repeated over many

times, the average output would be defined by the (product of) pathway and expression capacity,
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as the deviations due to stochastic chemical reactions in both subsystems would average to zero. If

however this could be repeated for another cell j, the average output (over time) would be different,

defined by LjGj .

The first subsystem, the pathway, encompasses all steps that lead to the activation of

transcription, i.e. the binding of activated transcription factors. The pathway capacity (L) is

then the average level of pathway activation in a given cell at a certain level of stimulation. The

stimulation (input) in our case is the concentration of α-factor, which in turn is a function of the

amount of partner cells (α-cells, θα) in mixing experiments. Pathway capacity L could vary from

cell to cell due to the expression levels of the pathway’s regulatory proteins for example (which on

a longer timescale could also change). The stochastic part (λ) of the pathway subsystem is due to

the probabilistic nature of individual chemical reactions (binding-unbinding events and covalent

modifications), even if expression levels are constant. Together their sum makes up the output of

the pathway susbsystem: Pi = Li + λi, which in the case of the mating pathway would be the

number of active Ste12 molecules binding to the promoter PFUS1.

The second subsystem, expression, includes all steps from transcription initiation to the

accumulation of the protein, and its output is the amount of mature fluorescent reporter protein.

The output is defined as a sum of expression capacity (Gi), which would include factors such

as the numbers of ribosomes or RNA polymerase II complexes or the cellular energy level, and

stochastic chemical events during the expression process (γi).

In this framework, the total variation (η2 = σ2

µ2 ) for a population of cells for a gene is a sum of

these factors, plus a correlation term:

η2 = η2
L + η2

λ + η2
G + η2

γ + 2ρ(L,G)ηLηG (99)

This relation is obtained by including only linear (and neglecting all higher order) terms when

calculating the variance, as derived in [35]. The same linear approximation gives us the mean

output:

ȳ = L̄Ḡ(1 + ρ(L,G)ηLηG) (100)

The stochastic noise term within the pathway subsystem, λ, cannot be separately determined

from the data (see below), therefore I use the total variation of the pathway subsystem ηP from

now on, replacing η2
L + η2

λ with η2
P and ρ(L,G)ηLηG with ρ(P,G)ηP ηG. Then Equations 99 and

100 become:

η2 = η2
P + η2

G + η2
γ + 2ρ(P,G)ηP ηG (101)
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and

ȳ = P̄ Ḡ(1 + ρ(P,G)ηP ηG) (102)

The noise terms can be inferred from the data in the following way. First, in double reporter

experiments with two copies of the same promoter, the only uncorrelated part of the variation are

stochastic chemical events in the expression subsystem, ηγ . The variation (both stochastic events

and variation in pathway capacity) in the pathway subsystem is transmitted to the expression

subsystem, therefore these are correlated. The uncorrelated part of the variation (denoted Z) in

this case (for two copies of gene i) is:

Zii = η2
i (1− ρi,i) = η2

γi (103)

ηi is the total variation calculated from the data for one fluorophore (under the control of the

same promoter, I take this to be identical for the two flurophores), and ρi,i is the correlation of

the two fluorophores. From these equations one can determine the stochastic noise term of the

expression subsystem, ηγ .

For double reporter experiments with two different promoters (promoters i and j, i 6=j ) per

cell, the uncorrelated part of the noise includes both the pathway subsystem (as the two promoters

have different pathways) and the stochastic noise of the expression module, and Z is:

Zij =
η2
i + η2

j

2
− ηiηjρi,j =

η2
γi + η2

γj

2
+
η2
P i + η2

P j

2
(104)

Again, ηi, ηj and ρi,j are empirical measures calculated from the data.

As the number of equations generated from Equations 103 and 104 is n(n+1)
2 (n being the

number of reporter genes), and the number of unknowns 2n, we need n(n+1)
2 = 2n, n=3 (three

reporter genes) to determine the pathway noise (ηP ) and stochastic expression noise (ηγ) terms

separately. If n=2, only the sum η2
P1 + η2

P2 could be determined. The three genes would be two

constitutive (in practice inducible promoters, such as the doxycycline-induced repressor system

PTET07) promoters, and the third gene the pathway gene of interest, in our case PFUS1, see Table

8 for the statistical parameters of each promoter that I used.

Working with three reporter genes, now we already have ηP1, ηP2, ηP3 and ηγ1, ηγ2, ηγ3.

I want to calculate the width of the distribution without the variation in expression capacity

(ηG). Having calculated ηP and ηγ , I can simply set the terms including expression variation ηG
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to 0 in Equation 99, so that the equation for total noise becomes:

η̂2
i = η2

P i + η2
γi (105)

However, to calculate the distributions excluding expression capacity variation, I also need to

re-calculate the means of the distributions (using Equation 102) as they also depend on expression

capacity, because of the (possible) correlation of expression and pathway capacity. The corrected

mean ˆ̄y will be equal to P̄ Ḡ, but I have no access to this product, so it has to be calculated from

Equation 102, making it necessary to calculate ηG and the correlation terms ρ(P,G) from the

system of equations generated by Equation 106.

To determine ηG and the correlation terms ρ(P1, G), ρ(P2, G), ρ(P3, G), I can use the sums for

the total noise of each gene:

η2
i = η2

P i + η2
G + η2

γi + 2ρ(Pi, G)ηP iηG (106)

Alternatively, one can write down the equations for the correlated part of the variation of two

reporter genes for identical promoters:

ρiiη
2
i = η2

P i + η2
G + 2ρ(Pi, G)ηP iηG (107)

or for two different promoters (i 6=j ):

ρijηiηj = η2
G + ρ(Pi, G)ηP iηG + ρ(Pj , G)ηP jηG (108)

The left hand side of each equation is determined from the data, as are the terms ηP i and ηγi

(from Equation 103 and 104), which can then be absorbed into a constant on the left-hand side,

rewriting Equation 106 as

ci = ηG(ηG + 2ρ(Pi, G)ηP i) (109)

and Equation 108 as

aij = ηG(ηG + ρ(Pi, G)ηP i + ρ(Pj , G)ηP j). (110)

Clearly, aij =
ci+cj

2 , so I can only use the system of equations either from Equation 109 or

Equation 110, as the two are equivalent. This gives us n+ 1 unknowns for n equations, namely ηG

and ρ(Pi, G), i = 1...n.
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In the case of three promoters (reporter genes) the system of equations (using Equation 110) I

have is:

ρ1,2η1η2 = ηG(ηG + ρ(P1, G)ηP1 + ρ(P2, G)ηP2)

ρ1,3η1η3 = ηG(ηG + ρ(P1, G)ηP1 + ρ(P3, G)ηP3)

ρ2,3η2η3 = ηG(ηG + ρ(P2, G)ηP2 + ρ(P3, G)ηP3)

(111)

To solve for ηG and the correlation terms, at least one correlation term has to be arbitrarily

defined (a fact that is not made clear in [35]). A biologically reasonable choice is to set the

correlation ρ(Pi, G) = 0 in the case of a constitutively expressed reporter gene (in our example

ρ(P1, G) = 0), as here there are no pathway components (except for the repressor) for which a

feedback effect as a function of global expression could be operational. Treating ρ1 (shorthand for

ρ(P1, G)) as a parameter, we can solve for the other three unknowns (left-hand sides of Equations

111 denoted a12, a13, a23, respectively). The positive solutions of this system of quadratic equations

are:

ηG =
√

2a12 − a23 + η2
P1ρ

2
1 − ηP1ρ1

ρ2 =
a12ρ1ηP1 − a12

√
2a12 − a23 + ρ2

1η
2
P1 + a23

√
2a12 − a23 + ρ2

1η
2
P1

2a12ηP2 − a23ηP2

ρ3 =
a13

(√
2a12 − a23 + ρ2

1η
2
P1 + ρ1ηP1

)
+ (a23 − 2a12)

√
2a12 − a23 + ρ2

1η
2
P1

(2a12 − a23) ηP3

(112)

When setting ρ1 = 0, the solutions are:

ηG =
√

2a12 − a23

ρ2 =
a23 − a12√

2a12 − a23ηP2

ρ3 =
−2a12 + a13 + a23√

2a12 − a23ηP3

(113)

In the following, I provide a numerical example with a total noise estimate from experimental

data (experiments by Dr Alexander Anders) and noise composition from [35]. As I did not have

the necessary experimental data, all values below are simulations. The parameters used are shown

in Table 8. I use a schematic description of the mating pathway’s behavior in wild type cells at

a sufficiently high value of ρT , where the response is a function of the fraction of partner cells,

θα (see Section 1.3). Specifically, I define the (normalized) mean response as simply equal to θα,

ȳ = θα.
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Table 8. Statistical properties of noise components for simulated mixing experiment. Pathway
capacity (L) is correlated with the expression capacity (G) through the scaling factor β in the
exponential term. The correlation is weak (β = −0.02) for the constitutive promoters which have
a single ‘pathway’ component (a repressor), and stronger for the pathway reporter gene
(β = 0.5). The variation terms L and G are gamma-distributed random values, with the
probability distribution Γ(k, θ) = 1

Γ(k)θk
xk−1e−

x
θ , generated by MATLAB’s gamrnd algorithm.

The mean output of the pathway subsystem of gene 3, L̄3 is equal to the partner cell fraction θα.

ηG ηP ηγ ρ(P,G)

gene 1
(constitutive)

Γ(30, 1/30)
Li = Γ(10, 1

10exp(β(Gi− < G >))
β = −0.02
λ ∼ N(0, σλ = 10−1.5)

N(0, σγ = 10−1.5) ≈ −0.05

gene 2
(constitutive)

Γ(30, 1/30)
Li = Γ(10, 1

10exp(β(Gi− < G >))
β = −0.02
λ ∼ N(0, σλ = 10−1.5)

N(0, σγ = 10−1.5) ≈ −0.05

gene 3
(pathway)

Γ(30, 1/30)
Li = Γ(θα

exp(β(Gi−<G>))
0.182 , 0.182)

β = 0.5
λ ∼ N(0, σλ = θα10−1.5)

N(0, σγ = 10−1.5) 0.16 < ρ < 0.44

The aim with this numerical calculation was two-fold. On the one hand, I wanted to see the

extent of increase in mutual information by the mating pathway’s reporter gene, if the variation

due to expression capacity is removed through this noise decomposition method. Second, as I am

working here with simulated ‘data’, I could assess to what extent the noise decomposition and

subtraction of the expression capacity variation gives us a good estimate of the response variation

‘cleansed’ of this source of variation. To do this, I also generated a population of simulated ‘cells’

without any variation in expression capacity but with the other noise components having identical

statistical properties. I compare the response distributions of these in silico cells to those we get

by noise decomposition and subtraction ηG from the cells with all noise sources, see the results in

Figure 51.

The mean value of the output follows the input due to pathway activity, so that L̄ = P̄ = θα.

We do not expect the mean expression capacity Ḡ to vary with the input. The stochastic terms

in the pathway and expression subsystems are modeled as normal variables with zero mean, λ ∼

N(0, σλ), γ ∼ N(0, σγ). The terms for pathway and expression capacity variation were modeled

as gamma-distributions. Protein expression levels have been described to approximate the latter

[21, 28, 53, 149], having the additional advantage in simulations of excluding negative values (that

would have to be removed, thereby changing the shape of the distribution). As shown in Figure

47, the experimental data shows that the η2 for the pathway decreases with mean pathway output,

both in dose-response experiments with purified α-factor, or in mixing experiments, where θα is

varied.
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Figure 47. Coefficient of variation (η) and correlation measures from microscopy data
(experiment by Dr Alexander Anders), as a function of the mean fluorescence of cells. Each blue
circle or square is the mean GFP fluorescence at a given dose of α-pheromone. Data is from
several dose-response experiments. a) Correlation of Fus1-GFP and mCherry values increasing
with the mean Fus1-GFP value. The dashed blue line shows the mean correlation values after
binning mean GFP fluorescence from 0 to 0.05 by bins of 0.005. b) Coefficient of variation of
GFP values from the mating pathway gene Fus1-GFP as a function of their mean (µ) for dose
response experiments (same as a)) with purified α-factor. Fitted (dashed blue line) with the
relation η ∝ 1√

µ . c) Coefficient of variation of GFP values from the doxycycline-induced

constitutive promoter expressing mCherry as a function of their mean (µ). There is no noticeable
trend, as the mean output does not change with the pheromone dose.

As ηG or ηγ should not vary with the mean pathway output, the decrease in total noise (with the

mean output) is due to ηP , the variation in the pathway subsystem (which includes the binding of

transcription factors as well). I defined ηP ∝ 1√
µ (µ the mean output of the pathway subsystem) in

simulations. in Figure 47 we can see the increasing correlation of PFUS1-GFP and PTET07-mCherry

values in microscopy data.

As already explained above, the noise decomposition and the subtraction of expression capacity

variation ηG (Equations 103-113) can only be performed with three reporter genes (one, the

pathway reporter of interest and two other constitutive promoters), each tagged with 2 different

fluorescent proteins. In total, six experiments are needed, three experiments with two copies

of identical promoters (Equation 103), and three experiments where each cell has two different

promoters.

Figure 47 shows the η and correlation trends of the simulated data. The parameters used to

generate the simulated data are shown in Table 8.
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Figure 48. Coefficient of variation (η) and correlation measures for simulated data. a) The CV
is plotted as a function of the mean value of the pathway reporter gene (gene 3 in Table 8), the
different components of the total noise η (filled blue squares) are shown. The dashed blue line
shows the noise estimate from the linearization approximation,

η =
√
η2
P + η2

G + η2
γ + 2ρ(P,G)ηP ηG. b) Correlation between the pathway reporter gene and the

constitutive reporter growing with the mean output of the former, as in the experimental data
shown in Figure 47a).
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Figure 49. Noise components of the pathway output gene (gene 3 in Table 8) as a function of
mean pathway output and their estimates inferred from simulated data using the linearization
approximation, and setting ρ(P1, G) = 0, see Equation 113. The insets show the relative error of
the estimates, ε = |x−xapprox.x |, where x is (in this case simulated) data.

The actual values of the noise components and their estimates derived from the simulated data

using the approximations (setting ρ(P1, G) = 0) can be seen in Figure 49. As we have the actual

values of the noise components, I can quantify the error of the approximation, plotted in the insets
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of Figure 49, showing the relative error ε of the noise components ηG, ηP3, ηγ3, and the correlation

term ρ(P3, G). For each component of the total noise (of the pathway reporter gene), the relative

error of the approximation is less than 10% (the only exception is the ηγ estimate at the lowest

pathway output). The error estimates shown in this figure are for the case when the neglected

correlation term ρ(P1, G) = −0.02. Besides linearization, there is also an error introduced to the

noise component estimates due to setting ρ(P1, G) = 0. I also varied the value of this term to

see how the error increases, see Figure 50. In the case of a weak correlation between expression

and pathway capacity for the constitutive reporter gene, the error introduced by neglecting this

term is minimal. If the correlation of global expression capacity (G) and pathway capacity (L) is

stronger, the deviation of the approximation from the actual value grows, as shown in Figure 50.
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Figure 50. Relative error of noise components and correlation estimates as a function of the
neglected correlation term ρ(P1, G).

Continuing with our numerical example where ρ(P1, G) was low (−0.02), I re-calculated the

mean pathway outputs, as described by Equation 102: ˆ̄y = ȳ
1+ρ(P3,G)ηP3

ηG
, where ȳ is the mean

pathway output from the data, and ˆ̄y the corrected one.

Next, I had to re-generate a distribution without the global expression variation term, that is:

η̂2 = η2
P3 + η2

γ , η̂ being the corrected CV. I re-generated the corrected distribution as a gamma

distribution, as this was used for generating the noise components of our simulated data, but the

procedure could also be performed with a normal distribution, if the experimental data can be

better fit that way. Since we now have the CV (η̂ = σ
µ ) and the mean (ˆ̄y = µ) of the corrected

distribution, I could calculate the two parameters of the gamma distribution, as σ2 = kθ2 and

µ = kθ. After performing the noise decomposition and re-generating the response distributions

without expression capacity variation, I looked at how these inferred distributions deviate from
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those of the in silico cells without expression capacity variation. I made two comparisons here.

First, I calculated the distance of the noise-corrected distributions from those obtained from the

in silico cells without expression capacity variation (Gi=<G> for every cell). Second, I compared

the estimates for mutual information from these two sources.

There are several distance metrics that can be used to compare two probability distributions,

here I used total variation distance [90] of the distributions P (x) and Q(x), which on a countable

state space Ω is:

δ(P,Q) =
1

2

∑
xεΩ

|P (x)−Q(x)| (114)

This metric assumes values in [0, 1]. Although we have the analytical formula for the corrected

distribution, this is not the case for the data from the in silico experiments without global

expression variation, therefore for this calculation both distributions have to be binned. in Figure

51, I plotted the two distributions and their total variation distances.

We can see that the distance between the re-generated distributions based on the linearization

approximation and those from the in silico experiment without global expression noise is minimal.

As the last step, I calculated the mutual information between the response and the partner cell

fraction θα. This was again compared to the mutual information from the in silico experiment

without global expression noise, to see if the mutual information estimate from the linearization

approximation is a faithful estimate of the information transmission by cells if we remove the

variation of global expression capacity. Finally, the mutual information estimate of the corrected

distribution was compared to that of the original (simulated) data to see the extent of improvement

in information transmission after variation of global expression capacity was removed.

With the total noise estimate taken from our microscopy data and noise composition from the

literature [35], we get a roughly 30% increase in mutual information. The relative error from the

in silico experiment without global expression capacity variation (ηG) is 2%, which also shows

that the estimate we get from the noise decomposition above is a faithful representation of the

response distributions without variation in expression capacity. Naturally, if the fraction of global

expression variation (ηG) (and/or its (positive) correlation with pathway capacity) is larger within

the total noise, then the improvement in mutual information would be higher.

Since I worked here with simulated data using 106 datapoints per input value, overestimation

of mutual information due to limited sample size [33] is not a problem.
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Figure 51. Comparison of distributions. Distribution of pathway output values from the in
silico experiment without variation in global expression capacity (red), the corrected distribution
inferred by the linearization approximation with this noise component removed (blue) and the
original simulated data (orange). Each panel is at a different partner cell fraction θα, growing
from left to right, from 0.1 (top left) to 0.9 (bottom right). The δ(P,Q) value shows the total
variation distance between the corrected distribution and the ‘data’ from the in silico experiment
without variation in global expression capacity.
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Figure 52. Mutual information estimates for the original (simulated) data (blue), the corrected
distributions inferred by noise decomposition (red) and the in silico experiment without global
expression capacity variation (orange). The inset shows the relative error of the corrected
distribution’s mutual information estimate from that of the in silico experiment without any
variation in global expression capacity.

The method above relied on a number of assumptions. First of all the description of

a gene’s output as the product yi = Pi(Gi + γi) is highly schematic, and the assumption

that global expression capacity (G) uniformly scales the output of different genes might not
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be completely true. Another assumption is that the constitutive reporter’s pathway capacity

does not correlate (strongly) with global expression capacity (ρ(P,G) ≈ 0), in the case of a

doxycyline-induced repressor-system, repressor numbers are not compensated against (or amplified

by) global expression capacity. For example, in a cell with a global expression capacity twice the

population average (at a given doxycycline dose) the output would also be twice the population

average, not less or more.

A further technical difficulty with actual experimental data is that different fluorophores, even

when under the control of identical promoters will not have the same folding time or degradation

dynamics. Therefore the marginal probability distributions of the gene outputs in a double-reporter

experiment with identical promoters, which I used to infer ηγ , assuming marginal probability

distribution for the two copies of each gene to have identical statistical properties, will not be the

same. This is in effect another source of ‘extrinsic’ noise that I have not addressed above.

Despite these difficulties, the above analysis - based on experimental noise estimates - shows

that double reporter experiments and noise decomposition through a schematic model of gene

expression can be combined to give an improved estimate for the information transmission capacity

of signaling pathways. A further question addressed by [130] is that the dynamics of signaling

pathways can help to mitigate, and can potentially eliminate, extrinsic noise–induced information

loss. Moreover, in the above analysis I quantified information transmission through a single output

gene of a signaling pathway. If however a certain signaling pathway has multiple genes as outputs,

the cell can also use this to extract more information about the pathway’s input [136, 159].

4.2 Algebraic analysis of post-translational mechanisms in TC systems

4.2.1 Topology 2

Expressing SK, SKP and X2 as functions of X1:

SKP =
X1cβ(c0+KAc1X1)

c0cβκ1RRT−X1(KAcαcβ+c0κ1(c1+cβ))

SK = X1[
cαcβ(c0+KAc1X1)

c0(c0cβκ1RRT−X1(KAcαcβ+c0κ1(c1+cβ))) + c1
c0

] = c1
c0
X1 + cα

c0
SKP

X2 = KA(X1[
cαcβ(c0+KAc1X1)

c0(c0cβκ1RRT−X1(KAcαcβ+c0κ1(c1+cβ))) + c1
c0

])(
c0cβκ1RRT−X1(KAcαcβ+c0κ1(c1+cβ))

cβκ1(c0+KAc1X1) ) =

= KAX1{ cα
c0κ1

+
c1(c0cβκ1RRT−X1(KAcαcβ+c0κ1(c1+cβ)))

c0cβκ1(c0+KAc1X1) } = KAX1{ cαcβ+c1κ1(RRT cβ−(c1+cβ)X1)
cβκ1(c0+KAc1X1) }
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Then for the conservation equation of SKT we get:

SKT = X1 + c1
c0
X1 + (1 + cα

c0
)[

cβ(c0+KAc1X1)X1

c0cβκ1RRT−(KAcαcβ+c0κ1(c1+cβ) )X1
] +

KA{ [cαcβ/κ1+c1cβRRT−c1(c1+cβ)X1]X1

cβ(c0+KAc1X1) }

The first two terms are linearly increasing with X1. For the last two terms, let us lump the

parameters and write:

cβ(c0+KAc1X1)X1

c0cβκ1RRT−(KAcαcβ+c0κ1(c1+cβ) )X1
as f(X1) = (p1+p2X1)X1

p3−p4X1
and

(cαcβ/κ1+c1cβRRT−c1(c1+cβ)X1)X1

cβ(c0+KAc1X1) as g(X1) = (p5−p6X1)X1

p1+p2X1

Then the relation ϕ is SKT = ϕ(X1) = αX1 + β (p1+p2X1)X1

p3−p4X1
+ γ (p5−p6X1)X1

p1+p2X1
.

α = (1 + c1
c0

) , β = (1 + cα
c0

) and γ = KA.

p1 = cβc0, p2 = cβc1KA, p3 = c0cβκ1RRT , p4 = KAcαcβ + c0κ1(c1 + cβ), p5 =
cαcβ
κ1

+

c1cβRRT , p6 = c1(c1 + cβ)

To obtain positive values for SKP , X1 <
p3

p4
has to be true.

To obtain positive values for X2, X1 <
p5

p6
has to be true.

The derivative of f(X1) is ∂f
∂X1

=
2p2p3X1+p1p3−p2p4X

2
1

(p3−p4X1)2 .

At X1 = 0 the derivative ∂f
∂X1

= p1p3

p5
, that is, positive.

At the maximal value X1 = p3

p4
, the numerator of ∂f

∂X1
equals

p2p
2
3

p4
+p1p3, which is also positive.

Therefore, the parabola opens downward, and between the values of 0 and p3

p4
its value is always

positive. Since the denominator is always positive, the derivative also has to be positive within

the values 0 and p3

p4
.

The interesting term is the last one, g(X1).

The derivative of g(X1) is: ∂g
∂X1

=
−p2p6X

2
1−2p1p6X1+p1p5

(p1+p2X1)2 .

At X1 = 0 the derivative ∂g
∂X1

= p1

p5
, that is, positive.

At the maximal value X1 = p5

p6
, the numerator of ∂g

∂X1
is −p1p5 − p2p

2
5

p6
, that is, negative. In

other words, if min(p5

p6
, p3

p4
) > X1+ , then the last term has an increasing and a decreasing part.

The positive root of the quadratic equation in the numerator is X1+ =
−p1p6+

√
p1p6(p1p6+p2p5)

p2p6
.

Between 0 and this value ∂g
∂X1

> 0, between X1+ and p5

p6
, ∂g
∂X1

< 0.

For multistationarity to be possible, there has to be three steady states (at least) in the range

X1ε [0,min(p3

p4
, p5

p6
)], i.e. ϕ(X1) = ϕ(X∗1 ) = ϕ(X∗∗1 ) = SKT , with X1 6= X∗1 6= X∗∗1 . At X1 = 0

the function is increasing, therefore there has to be a range of X1 values 0 < X1 < min(p3

p4
, p5

p6
)

where ϕ(X1)′ < 0 , and at X1 = min(p3

p4
, p5

p6
) again ϕ(X1)′ > 0. In other words the function ϕ(X1)′

has to have two roots in the range 0 ≤ X1 < min(p3

p4
, p5

p6
) , as ϕ and ϕ(X1)′ are both continuous

in this range.
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As the first three terms are all positive in X1ε [0,min(p3

p4
, p5

p6
)], and the fourth term is positive

in X1ε [0, X1+] , ϕ(X1)′ > 0 is positive in X1ε [0, X1+] .

Therefore, the 2 roots of ϕ(X1)′ have to be in X1ε [X1+,min(p3

p4
, p5

p6
)] .

If p3

p4
> p5

p6
, then X1ε [0, p5

p6
] , if p3

p4
< p5

p6
then X1ε [0, p3

p4
].

The derivative of ϕ(X1) is:

ϕ(X1)′ = α+ β(
2p2p3X1+p1p3−p2p4X

2
1

(p3−p4X1)2 ) + γ(
−p2p6X

2
1−2p1p6X1+p1p5

(p1+p2X1)2 )

Which can be rewritten as a quartic polynomial. This polynomial has to have 2 roots in

X1ε [X1+,min(p5

p6
, p3

p4
)] .

Numerical sampling in the parameters show that the derivative ϕ(X1)′ can indeed have 2 roots

in X1ε [0,min(p5

p6
, p3

p4
)], so there are values X1 6= X∗1 6= X∗∗1 , that ϕ(X1) = ϕ(X∗1 ) = ϕ(X∗∗1 ) =

SKT is true.

4.2.2 Topology 5

Let us start with the first term, which is φ(RR), its constituent terms g(RR) = 1
1+c1/cβ

( c1c0 + cα
c0κ1RR

)

and h(RR) = RRT − RR(1+E1TKa1
+Ka1

RR)

1+Ka1RR
, so that φ = g h.

Following the chain rule of differentiation, f ′(RR) = g′h+gh′. The function g is always positive

for positive values of RR (not defined for RR = 0), and h has to be positive as well to yield a

biologically meaningful value for SK.

Therefore, RR ε (0,
−1+Ka1 (RRT−E1T )+

√
4Ka1RRT+[1+Ka1 (E1T−RRT )]2

2Ka1
]. As both g and h are

strictly decreasing in RR, their derivatives are negative, therefore φ′(RR) = g′h+ gh′ < 0.

The same reasoning can be applied to the second and third term (the latter one is simply the

function h(RR)).

Turning to the last term, we note that φ(RR) is the same as the first term ( SK) of the entire

function ϕ, which is strictly decreasing in RR. It is the reciprocal of φ(RR) in the denominator of

the fourth term, and (φ(RR)−1)′ = − φ(RR)′

φ(RR)2 . As shown above φ(RR)′ is always negative, whereas

the φ(RR)2 has to be positive, therefore (φ(RR)−1)′ > 0 .

Then
∂(KA3

E2T
1/φ(RR)+KA3

)

∂RR = − KA3E2T
(1/φ(RR)+KA3)2 (− φ(RR)′

φ(RR)2 ) = KA3E2T
(1/φ(RR)+KA3)2

φ(RR)′

φ(RR)2 .

As shown above, φ(RR)′ is always negative, and the other terms are positive, therefore the

whole term is always negative, meaning that the last term is strictly decreasing in RR.

We have therefore shown that all terms are strictly decreasing in the rational function ϕ,

101



Appendix

4.2.3 Topology 6

Expressing SKP as a function of RRP, f1(RRP) from the conservation law on RRT :

SKP = f1(RRP ) = −RRP
RRP3κ2

2KAc
2
β + RRP2p8 + RRPp9 + c0 (cβ + c2κ2FT )

p1RRP3 + p2RRP2 + p3RRP− c0c1κ1RRT

Where p1 = κ2
2KAcαcβ + c0κ1κ

2
2cβ + c0c1κ1κ

2
2

p2 = c2κ
2
2KAcαFT + 2κ2KAcαcβ + 2c0κ1κ2cβ + c0c1κ1κ

2
2FT + c0c2κ1κ

2
2FT + 2c0c1κ1κ2 −

c0c1κ1κ
2
2RRT

p3 = c2κ2KAcαFT +KAcαcβ + c0κ1cβ + c0c1κ1κ2FT + c0c2κ1κ2FT + c0c1κ1 − 2c0c1κ1κ2RRT .

As the coefficients in the numerator are all positive, the denominator has to be negative, so

that SKP is positive.

Expressing SK as a function of RRP, after some rearrangements:

SK = f2(RRP) = RRP
p4RRP3 + p5RRP2 + p6RRP− p7

p1RRP3 + p2RRP2 + p3RRP− c0c1κ1RRT

Where

p4 = κ1κ
2
2c

2
β + c1κ1κ

2
2cβ

p5 = κ2 (c1κ1 (cβ (κ2FT − κ2RRT + 2) + c2κ2FT ) + cβ (2κ1cβ − κ2 (cα − 2c2κ1FT )))

p6 = κ1c
2
β + c1κ1[cβ (κ2FT − 2κ2RRT + 1) + c2κ2FT (κ2FT − κ2RRT + 1)]

−2κ2cβ (cα − c2κ1FT ) + c2κ
2
2FT (c2κ1FT − cα)

p7 = (cβ + c2κ2FT ) (cα + c1κ1RRT )

Expressing X1 as a function of RRP:

X1 = f3(RRP) =
RRP

(
cβ + (c2κ2)FT

κ2RRP+1

)
c1

Expressing X2 = f4(RRP)

X2 = f4(RRP ) = −KARRP

(
p4RRP3 + p5RRP2 + p6RRP− p7

)
c1κ1[RRP3κ2

2KAcβ + RRP2p10 + RRPp11 + c0]

As the denominator is always positive, the numerator p4RRP3 + p5RRP2 + p6RRP− p7 has to

be negative to obtain positive values for X2.

Using the conservation identity for SKT :

ϕ(RRP ) = SK + SKP +X1 +X2 = f2(RRP) + f1(RRP) + f3(RRP) + f4(RRP)

SKT = ϕ(RRP ) = f2(RRP) + f1(RRP) + f3(RRP) + f4(RRP)
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f3(RRP)(X1) is strictly increasing in RRP , but the other terms’ derivatives can all change sign

several times in the range RRP ε [0, RRT ].

The derivatives are:

f1(RRP)′ =
∑6

i=0 αiRRP
i

[RRP(p1RRP2+p2RRP+p3)−c0RRT(c1+κ1)]2

α0, α1 > 0, α5, α6 < 0 and α2, α3, α4 can be either 0, negative or positive.

f2(RRP)′ =
∑6

i=0 βiRRP
i

[RRP(p1RRP2+p2RRP+p3)−c0RRT(c1+κ1)]2

β5, β6 > 0, β0 < 0 and β1, β2, β3, β4 can be either 0, negative or positive.

f3(RRP)′ =
κ1(c2κ2FT+cβ(κ2RRP+1)2)

(c1+κ1)(κ2RRP+1)2

The derivative f3(RRP)′ (X ′1) is always positive, therefore X1 is strictly increasing in RRP.

f4(RRP)′ = −KA

∑6

i=0 γiRRP
i

c1κ1(κ2RRP+1)2(RRPKA(c2κ2FT+cβ(κ2RRP+1))+c0(κ2RRP+1))2

γ0, γ5, γ6 < 0, and γ1, γ2, γ3, γ4 can be either negative, 0 or positive.

Multistationarity is possible if

a) the function ϕ is continuous, then the derivative ϕ′ has to have at least 2 roots in the range

RRP ε [0, RRT ] for ϕ(RRP1) = ϕ(RRP2) = ϕ(RRP3), RRP1 6= RRP2 6= RRP3 to be true.

or

b) there are discontinuities in the range RRP ε [0, RRT ], then the derivative ϕ′ does not have

to have multiple roots for ϕ(RRP1) = ϕ(RRP2) = ϕ(RRP3), RRP1 6= RRP2 6= RRP3 to be true.

The terms SKP and SK have a singularity if p1RRP3 + p2RRP2 + p3RRP− (c1 +κ1)RRT = 0. No

other discontinuities are possible, because the other denominators cannot be 0.

p1RRP3 + p2RRP2 + p3RRP− (c1 + κ1)RRT = 0 can only have one positive root.

This is because p2/κ2 > p3, therefore if p2 is negative, then p3 is also negative. p1 is always

positive, and the last term’s sign is always negative. Therefore the possible signs of the coefficients

are thus { + - - - }, {+ + + - } or { + + - - }, therefore according to Descartes’s rule of signs,

there can only be one positive solution.

As p1RRP3+p2RRP2+p3RRP−(c1+κ1) is negative at RRP = 0, and positive at RRP = RRT ,

the real positive root of p1RRP3 + p2RRP2 + p3RRP − (c1 + κ1) has to be in RRP ε [0, RRT ].

However, for values larger than the root, RRP+ , p1RRP3 + p2RRP2 + p3RRP − (c1 + κ1) > 0,

which would make SK negative, and therefore not admissible. Consequently, the function ϕ is only

defined RRP ε [0, RRP+]. In this range however, the function is continuous and multistationarity

is only possible in case a).

If the function is continuous (as I have showed it has to be in the physically meaningful range),

we can find multistationary solutions in the following way.

We perform numerical sampling for the parameters c0, cα, a1, d1, c1, aγ , dγ , a2, d2, c2 and RRT

and solve the equation ϕ(RRP )′ = f1(RRP)′+ f2(RRP)′+ f3(RRP)′+ f4(RRP)′ = 0 numerically.
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If the equation has multiple solutions RRP ε [0, RRT ], then at some SKT value(s) the given

parameter set exhibits multistationarity. Substituting the RRP values where the roots are located

back into the equation ϕ(RRP ), we obtain the SKT values between which the parameter set

exhibits multistationary behavior.

4.3 Algebraic analysis of feedback mechanisms in TC systems: using a

Hill-equation instead of explicit dimerization.

In the model including transcriptional feedback in Section 2.4, I used a Hill-equation with a

cooperativity index of 2, to model the nonlinearity introduced by dimerization of activated

transcription factors (RRP ). I show here that this approximation is legitimate. I start by

a standard model of transcription [73, 125], with the rate of transcription proportional to the

fractional occupancy of the promoter by its transcription factor x:

vtranscr =
x

x+K
(115)

I take a self-inducing system, producing the protein x, with x dimerizing and binding to its

own promoter, thereby inducing its own expression. It is the dimer that binds to the operator site,

therefore the fractional occupancy of the latter scales with the dimer concentration as with x in

Equation 115. Treating the mono- and dimeric versions of the protein as separate variables I can

describe the system as in Equation 116 below. One feature of the system neglected here is that

some of the dimer pool is bound to the operator site.

ẋ(t) =

(
β + φ

d(t)

d(t) +K
− γ1x(t)

)
+
(
2koffd(t)− 2konx(t)2

)
ḋ(t) = konx(t)2 − (koff + γ2)d(t)

(116)

It is easy to see that in the case of the degradation rate γ2 of the dimer being zero, in steady

state d = kon
koff

x2. This simplifies the first equation to the quadratic Hill-equation (setting kon =

koff = 1), and in steady state the equation is:

0 = β + φ
x2

x2 +K
− γx (117)

This equation can have three roots. We can obtain the range of bistability by rearranging the

equation, treating the basal expression rate β as the dependent variable: β = γx− φ x2

x2+K . With

that I assume that β is the input parameter of the system. The derivative with respect to x of the

right-hand side of the equation is ∂β
∂x = x4+2x2−2φx+1

(x2+1)2 .
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The (real and positive) roots of the derivative are the bifurcation points and define the range of

bistability, as shown in Figure 53 for the parameter values φ = 1.8, K = 1. The total concentration

of x at steady state is xT = x+ x2.

Figure 53. Bistable range of an auto-inducing transcriptional system with dimerization of the
transcription factor.

If instead we describe the system by not having a dimer fraction, so now the entire system is

simply:

ẋ(t) = β + φ
x(t)2

x(t)2 +K
− γ1x(t) (118)

The steady state equation and its bistability range will be the same, the roots of ∂β
∂x =

x4+2x2−2φx+1
(x2+1)2 = 0. In this case however, the solutions for x stand for the total pool of protein, as

now xT = x.

Since in Section 2.4 our goal was to detect the existence of bistability and to determine the

relative range of bistability in terms of both the input and the output, this simplification does not

qualitatively change the results.
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