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COMPONENTS IN ADDITIVE MODELS1
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and Ruprecht-Karls-Universitat Heidelberg¨
Additive regression models have turned out to be a useful statistical

tool in analyses of high-dimensional data sets. Recently, an estimator of
additive components has been introduced by Linton and Nielsen which is
based on marginal integration. The explicit definition of this estimator
makes possible a fast computation and allows an asymptotic distribution
theory. In this paper an asymptotic treatment of this estimate is offered
for several models. A modification of this procedure is introduced. We
consider weighted marginal integration for local linear fits and we show
that this estimate has the following advantages.

Ž .i With an appropriate choice of the weight function, the additive
components can be efficiently estimated: An additive component can be
estimated with the same asymptotic bias and variance as if the other
components were known.

Ž .ii Application of local linear fits reduces the design related bias.

1. Introduction. In this paper we consider the multivariate regression
model

1.1 E Y � X � x � � � f x � f x , x ,Ž . Ž . Ž . Ž .1 1 23 2 3

Ž .where Y is a real-valued dependent variable, X � X , X , X is a vector of1 2 3
explanatory variables and � is a constant. The variables X and X are1 2
continuous with values in � p or � q, respectively, and X is discrete and3

r Ž . Ž .takes values in � . For identifiability, we assume Ef X � Ef X , X � 0.1 1 23 2 3
Ž .The novelty of this paper is to directly estimate f x at the usual nonpara-1

metric rate with good sampling properties. Our model includes the additive
nonparametric regression model:

1.2 E Y � U � u � � � g u � ��� �g u ,Ž . Ž . Ž . Ž .1 1 p p

Ž .where now U � U , . . . , U is a vector of explanatory variables. A discussion1 p

Ž .of this model can be found in Buja, Hastie and Tibshirani 1989 and Hastie
Ž . Ž .and Tibshirani 1990 . Model 1.2 is easy to interpret and is much more

flexible than a linear model. Furthermore, the additive components g can bej
� Ž .�estimated with the one-dimensional nonparametric rate Stone 1985, 1986 .
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The main conclusion of this paper is somewhat surprising: The component gj
can be estimated with the same asymptotic bias and variance as the one-di-
mensional smoother, as if the other components were known. This kind of
adaptivity result appears to be new in the literature. It provides foundational
insights into additive modeling: Unknown components in the additive model,
although increasing the effective number of parameters, do not add any extra
difficulty of estimation, at least asymptotically.

In most papers, for the calculation of the additive components, algorithms
have been proposed which are based on iterative procedures using backfit-
ting. Recently, asymptotic properties of backfitting estimates have been

Ž . Ž .analyzed in Opsomer and Ruppert 1997 , Opsomer 1997 and Linton, Mam-
Ž .men and Nielsen 1997 . Because of the implicit definition of these estimates,

their behavior is difficult to understand. For this reason, in Linton and
Ž . Ž .Nielsen 1995 , Tjøstheim and Auestad 1994 and Chen, Hardle, Linton and¨

Ž .Severance-Lossin 1996 a direct method has been proposed that is based on
‘‘marginal integration.’’ This procedure is based on the fact that, up to a

Ž .constant, g u is equal toj j

EW U , . . . , U , U , . . . , U m U , . . . , U , u , U , . . . , U ,Ž . Ž .1 j�1 j�1 s 1 j�1 j j�1 s

Ž . Ž .where m u � E Y � U � u . Here W is a weight function with

EW U , . . . , U , U , . . . , U � 1.Ž .1 j�1 j�1 s

Ž .The estimate of g is achieved by weighted marginal integration of anj
estimate of m. In particular, this method does not use iterations. Fast
computation can be implemented. Furthermore, the explicit definition allows
a detailed asymptotic analysis.

The present paper extends this idea in two directions:

Ž .i It introduces a weighting scheme W, which leads to efficient estimation
�for another proposal for efficient estimation based on marginal integration,

Ž .�see Linton 1997 .
Ž .ii It allows a more flexible model, which can be incorporated with dis-

crete data.

Ž .Our asymptotic analysis can be extended to the case that model 1.1 does
Ž . Ž .not hold see Remark 3 . Then in the case of the additive model 1.2 the

marginal integration estimate gives a consistent estimate of

g u � EW U , . . . , U , U , . . . , U m U , . . . , U , u , U , . . . , U .Ž . Ž . Ž .j j 1 j�1 j�1 s 1 j�1 j j�1 s

This can be interpreted as an average effect of the jth component and is the
� Ž .�best additive approximation under some specific L -norm see Fan 1997 .2

The backfitting estimate behaves quite differently. Under appropriate condi-
� � Ž . � Ž .tions it is a consistent estimate of g where � � g u � ��� �g u is thej 1 1 p p

Ž .orthogonal projection in the Hilbert Space L p onto the subspace of addi-2
Ž . Ž .tive functions. Here p is the joint density of U , . . . , U design density . For1 p

� � Ž .identifiability, g is normed s.t. Eg U � 0. This statement follows from thej j j
Ž . Ž .results of Linton, Mammen and Nielsen 1997 . So, if model 1.2 is only



ESTIMATION OF ADDITIVE COMPONENTS 945

approximately true, we conjecture that backfitting will lead to a more accu-
rate estimate of the full-dimensional regression function m. This would be
preferable if one is interested in prediction. Furthermore, the application of
marginal integration requires consistency of a full-dimensional smoother.
This puts restrictions on the dimension that may not be shared by the

Ž .backfitting estimate; see Linton, Mammen and Nielsen 1997 . On the other
Ž .hand, in the case of model misspecification , the average effect g is alwaysj

easy to interpret and it may be argued that marginal integration is preferable
as a data analytic tool.

ŽOur model includes additive partial linear models. With X � U , . . . , U ,1 p
. Ž .X , x � u , . . . , u , x we write3 1 p 3

1.3 E Y � X � x � � � g u � ��� �g u � xT � .Ž . Ž . Ž . Ž .1 1 p p 3

In this case, each nonparametric additive component can be estimated with
optimal rate by our direct estimate g , j � 1, . . . , p. Furthermore, we willˆj
show that a least-squares estimate

�̂ �1T T� Z Z Z Y � g � ��� �gŽ . ˆ ˆŽ .1 pˆž /�

possesses root-n consistency. Here, for n observations Y , . . . , Y and design1 n
i Ž .vectors X � U , . . . , U , X , i � 1, . . . , n, the vectors Y and g have ele-ˆ1 i p i 3 i j

Ž .ments Y and g U , respectively, i � 1, . . . , n; j � 1, . . . , p. The designˆi j i j

Ž T .matrix Z has rows 1, X .3 i
Another application of our model consists of partial interaction models

1.4 E Y � U � u � � � g u , u � g u � ��� �g u .Ž . Ž . Ž . Ž . Ž .12 1 2 3 3 s s

Our method directly applies interactions such as g by treating the rest of12
� Ž .�the variables as X -vectors and�or X -vectors see 1.1 .2 3

This paper is organized as follows. In Section 2, we introduce our estima-
tion procedure. Section 3 presents asymptotic results. A further discussion of

Ž . Ž .additive models 1.2 , additive partially linear models 1.3 and partial inter-
Ž .action models 1.4 can be found in Section 4. In Section 5 our methodology is

applied to a data set on female labor supply in East Germany. Furthermore,
there a small simulation study can be found. Assumptions and proofs are
postponed to Section 6.

Ž . Ž2. Estimation procedure. Let m x , x , x � E Y � X � x , X � x ,1 2 3 1 1 2 2
. q�rX � x be the regression function and let W: � � � be a known function3 3
Ž . Ž .with EW X , X � 1. Observe that under 1.12 3

Em x , X , X W X , X � � � f x � Ef X , X W X , XŽ . Ž . Ž . Ž . Ž .1 2 3 2 3 1 1 23 2 3 2 3

2.1 � � � f xŽ . Ž .1 1 1

� f � x ,Ž .1 1

where
2.2 � � � � Ef X , X W X , X .Ž . Ž . Ž .1 23 2 3 2 3
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Thus, f can be directly estimated within a constant factor. This can be done1
by averaging out a nonparametric estimator of m with respect to other

Ž .variables X , X . Since, in practice, f � will be normalized to have sample2 3 1
mean 0, the constant fact � is irrelevant to the final estimated curve. This1

Ž .kind of integration idea was studied in the additive model 1.1 by Tjøstheim
Ž . Ž .and Auestad 1994 , Linton and Nielsen 1995 and Chen, Hardle, Linton and¨

Ž .Severance-Lossin 1996 .
Ž .To utilize 2.1 , we consider the local linear approximation near a fixed

point x :1

f v � a x � bT x v � x ,Ž . Ž . Ž . Ž .1 1 1 1 1 1

where v lies in a neighborhood of x . Further, the local constant approxima-1 1
tion for f at a fixed point x and x is employed:23 2 3

f v , x � c x , x for v � x .Ž . Ž .2 2 3 2 3 2 2

Ž .Thus, in a neighborhood of x , x and for the given value of x , we can1 2 3
approximate the regression function as

m v , v , x � � � a x � bT x v � x � c x , xŽ . Ž . Ž . Ž . Ž .1 2 3 1 1 1 1 2 32.3Ž .
� � � � T v � x .Ž .1 1

Ž .Note that f �; x is locally approximated by a constant. This is because:23 3

Ž . Ž . Ž .i the function c x , x will be averaged out by an integration via 2.1 ;2 3
Ž .ii the higher-order approximation will increase the number of local pa-

rameters and hence is harder to implement in higher dimensions.

Ž .In principle, we can approximate f � to a higher order. We opt not to do1
this for simplicity. Furthermore, the higher-order approximation rarely takes
effect for the finite amount of data�the size of the local neighborhood plays a

� Ž .�more crucial role see, e.g., Fan and Gijbels 1996 .
Ž .Consider now that we have an i.i.d. data set Y , X , X , X , i � 1, . . . , n,i 1 i 2 i 3 i

Ž . Ž .for model 1.1 . The local model 2.3 leads to the following regression prob-
lem: Minimize

n
2T � 42.4 Y � � � � X � x K X � x L X � x I X � x .Ž . Ž . Ž . Ž .Ž .Ý i 1 i 1 h 1 i 1 h 2 i 2 3 i 31 2

i�1

Here K and L are kernel functions and for bandwidths h and h we put1 2

1 t 1 t
K t � K and L t � L .Ž . Ž .h hp q1 2ž / ž /h h h h1 1 2 2

Ž .Note that the factor K L I in 2.4 is just to confine our localization idea.h h1 2ˆŽ . Ž . Ž . Ž .Let � x and � x be the solution to 2.4 . Then, from 2.3 by settingˆ
Ž . Ž .v , v , x � x, we can easily see that m x � � . Thus, our partial local1 2 3
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Ž . Ž .linear estimator is m x � � . By 2.1 , we propose the following estimator:ˆ ˆ
n1

�̂2.5 f x � m x , X , X W X , XŽ . Ž . Ž . Ž .ˆÝ1 1 1 2 i 3 i 2 i 3 in i�1

and
n1

� �ˆ ˆ ˆ2.6 f x � f x � f , f � f X .Ž . Ž . Ž . Ž .Ý1 1 1 1 1 1 1 1 in i�1

Ž . Ž .Note that when the local constant fit is employed i.e., � � 0 in 2.3 ,
the resulting estimate � is basically the multivariate kernel regressionˆ
estimator.

Let X be the design matrix and let A be the diagonal weight matrix to the
Ž .least-squares problem 2.4 . Then

�̂ �1T T� X AX X AY ,Ž .ˆž /�

Ž .T Ž .where Y � Y , . . . , Y , and simple algebra shows that m x � � can beˆ ˆ1 n
expressed as

n

2.7 m x � K X � x Y ,Ž . Ž . Ž .ˆ Ý n i i
i�1

Ž . Ž T . T Ž .where, with S x � X AX and e � 1, 0, . . . , 0 ,n 1

1T �1 � 42.8 K t , t , t � e S K t L t I t � 0 .Ž . Ž . Ž . Ž .n 1 2 3 1 n h 1 h 2 31 2tž /1

Note that it follows from least-squares theory that
n n

2.9 K X � x � 1 and K X � x X � x � 0.Ž . Ž . Ž . Ž .Ý Ýn i n i 1 i 1
i�1 i�1

Ž .3. Main results. Let us begin by introducing some notation. Let p x1 1
Ž . Ž .and p x , x be respectively the density of X and X , X and let1, 2 1 2 1 1 2

Ž . Ž .p x , x ,� x , p x � x be respectively the conditional density of1, 2 � 3 1 2 3 2 � 3 2 3

Ž . Ž . Ž .X , X given X and of X given X . Set p x � P X � x . The condi-1 2 3 2 3 3 3 3 3
Ž .tional variance of � � Y � E Y � X is denoted by

� 2 x � E � 2 � X � x � var Y � X � x ,Ž . Ž . Ž .
Ž .where X � X , X , X . Let1 2 3

� � 2 2 TK � K and � K � tt K t dt .Ž . Ž .H H2

Then, under Condition A in Section 6, we have the following theorem that
Ž .generalizes the main result in Linton and Nielsen 1995 .
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THEOREM 1. Under Condition A for a point x 	 � p, if the bandwidths1
are chosen such that nh phq�log n � 	, h � 0, h � 0 in such a way that1 2 1 2
hd�h2 � 0, then2 1

�p 2ˆ3.1 nh f x � f x � � � b x � o h � N 0, v x ,Ž . Ž . Ž . Ž . Ž .' Ž .� 4Ž .1 1 1 1 1 1 1 1 1

where
1 �23.2 b x � h tr f x � KŽ . Ž . Ž . Ž .Ž .1 1 1 1 22

and

� � 2v x � K p xŽ . Ž .1 1 1

2 2p X � X W X , XŽ . Ž .2 � 3 2 3 2 32� E � X , X , X X � x .Ž .1 2 3 1 12½ 5p X , X � XŽ .1, 2 � 3 1 2 3

3.3Ž .

Ž .REMARK 1. Condition A vi is also not a necessary condition for Theorem
1. It is imposed to simplify the technical proof. In the proof we approximate
the matrix S�1 by a deterministic sequence. If we used a higher-ordern

�1 Ž .stochastic expansion of S , Condition A vi could be weakened. Note that ifn
the local polynomial of order d is used to approximate the function f instead2
of using the local constant fit with a higher-order kernel, then the result of

Ž .Theorem 1 continues to hold without imposing Condition A vi and the
Ž .derivative conditions on p x , x � x . In other words, these conditions1, 2 � 3 1 2 3

are not essential to our estimation problem.

REMARK 2. Under the additional assumptions that X has compact sup-1
�port XX and that Condition A holds uniformly for x 	 XX i.e., the infimum in1

Ž .A iii is uniformly bounded from below and the derivatives considered in
Ž . Ž . �A iii and A iv are uniformly bounded , it is easy to show that

n1 1
� 2ˆf � f X � b � o h � o ,Ž . Ž .Ý1 1 1 i 1 P pž /n nh' 1i�1

� �1 2 ˆ ˆ� Ž . Ž .�where b � h E tr f X � K . So it follows from Theorem 1 for f � f �1 1 1 2 1 12

f that1

p 2ˆnh f x � f x � b � b x � o h � N 0, v x .Ž . Ž . Ž . Ž .' Ž .� 4Ž .1 1 1 1 1 1 1 1

Note that the ‘‘additional bias’’ term b can be dropped in the preceding
Ž .expression if a different bandwidth smaller than h is used to construct f .1 1

If one can only assume that Condition A holds uniformly over a subset XX
� of

� �nˆ ˆ ˆŽ . Ž .XX , then one could consider f � f � f with f � Ý 
 X f X �1 1 1 1 i�1 1 i 1 1 i
n � ˆŽ .Ý 
 X , where 
 is a weight function that vanishes outside of XX . Then fi�1 1 i 1

Ž . Ž . Ž . Ž .is a consistent estimate of f x � E
 X f X �E
 X and its asymptotic1 1 1 1 1 1
distribution can be easily seen from Theorem 1. Our following results have
similar implications. For brevity we will not mention them.
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REMARK 3. An analogous result can be proved for the case that model
Ž . Ž . � �1.1 does not hold, that is, that the regression function m x � E Y � X � x

Ž . Ž . Ž .is not of the form � � f x � f x , x . If Condition A iv is replaced by1 1 23 2 3
Ž .the assumption that m u , u , u has bounded partial derivatives up to1 2 2

order 2 with respect to u and up to order d with respect to u for u in a1 2 1
Ž .neighborhood of x and for u , u in the support of the weight function W,1 2 3

Ž .one can show that 3.1 holds with
21 �

2b x � h � K E tr m x , X , X W X , XŽ . Ž . Ž . Ž .1 1 1 2 1 2 3 2 32½ 52 � xŽ .1

�̂Ž . � Ž . Ž .�and with � � f x replaced by E m x , X , X W X , X . In this case f1 1 1 1 2 3 2 3 1
is a consistent estimate of a weighted average effect of the covariable X .1

�̂ Ž .REMARK 4. Due to the local linear fitting, the resulting estimate f x is1 1
automatically adapted to the boundary of the design density of X . This can1
be seen from our proof. The theoretical formulation of boundary properties of

Ž .a nonparametric estimator can be found in Gasser and Muller 1979 and its¨
Žapplications to the local polynomial fitting is given by Fan and Gijbels 1992,

. Ž .1996 , and Ruppert and Wand 1994 .
Ž .We now consider the optimal weight function W � . This is equivalent to

minimizing

p2 X � X W 2 X , XŽ . Ž .2 � 3 2 3 2 323.4 min E � X � X � xŽ . Ž . 1 12½ 5p X , X � XW Ž .1, 2 � 3 1 2 3

Ž .subject to EW X , X � 1.2 3
We first state a simple lemma.

2Ž . 2Ž .LEMMA 1. The minimization problem min HW x g x dx subject toW
Ž . Ž .HW x h x � 1 is obtained at

h x h2Ž .
W � H2 2g x gŽ .

� 2Ž . 2Ž . 4�1and the minimum value is Hh x �g x dx .

PROOF. Using the Language multiplier method, we have to minimize
2 2 2Ž . 2Ž . Ž . Ž .HW g � � Wh. This is equivalent to minimizing W x g x � � W x h x ,

yielding the solution
� h xŽ .

W x � .Ž . 22 g xŽ .
The constraint HWh � 1 gives

h x h2Ž .
W x � .Ž . H2 2g x gŽ .

This completes the proof. �
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Ž .Applying Lemma 1 to problem 3.4 , we obtain the optimal solution

p X , X p2 x , X � XŽ . Ž .2, 3 2 3 1, 2 � 3 1 2 3�1W X , X � cŽ .2 3 2 2� x , X , X p X � X p X , X � xŽ . Ž . Ž .1 2 3 2 � 3 2 3 2, 3�1 2 3 1
3.5Ž .

p x , X , X p xŽ . Ž .1 2 3 1 1�1� c ,2� x , X , X p X , XŽ . Ž .1 2 3 2, 3 2 3

Ž . Ž . Ž . Ž . Ž . Ž .where p x � p x , x � x p x and p x � p x � x p x are1, 2 � 3 1 2 3 3 3 2, 3 2 � 3 2 3 3 3
Ž . Ž .respectively the joint ‘‘density’’ of X � X , X , X and X , X and where1 2 3 2 3

Ž .2 � �2 Ž . 4c � p x E � X � X � x . The minimal variance is1 1 1 1

� � 2K �1�23.6 min v x � E � X � X � x .Ž . Ž . Ž .� 41 2 1p xW Ž .1 1

REMARK 5. The optimal weight function W depends on x . When it is1
� Ž .�used, the constant � see 2.2 depends on x . So in this case the estimate1 1

�̂ Ž .f x no longer estimates a function that is parallel to f . Nevertheless the1 1 1
ˆestimate f is a consistent estimate of f . Note that for the calculation of1 1

ˆ �̂Ž . Ž . Ž . Ž .f x the same weight function depending on x is used for f X in 2.6 .1 1 1 1 1 i
Ž .Therefore the term � � � x cancels. See also Remark 2. Furthermore, as1 1 1

noted in Remark 2, the extra term of bias can be completely eliminated if a
different bandwidth is applied to construct f.

Ž . Ž . Ž .REMARK 6. Typically, the design densities p X , p X , p X , X are1 1 2, 3 2 3
not known. A theoretically satisfactory way out consists of dividing our
sample into a relatively small first subsample and a relatively large second
subsample. Then, under our smoothness assumptions, the design densities
can be consistently estimated by the first subsample. The regression func-
tions can be estimated in a second step using the other subsample. This
shows that the optimal variance can be achieved, at least theoretically. The
practically more relevant procedure, using the full data set for the estimation
of the design densities and of the regression function, is not covered by our
theory.

Ž . 2Ž . 2REMARK 7. When f x , x is known and � x � � , one can directly23 2 3
Ž . Ž .smooth Y � f X , X on X to obtain an estimate of f x and this23 2 3 1 1 1

� Ž .�estimate is optimal in an asymptotic minimax sense cf. Fan 1993 . The
2 � � 2 Ž . Ž .variance of this estimate is � K �p x , which is the same as 3.6 . In1 1

Ž .other words, our direct estimator 2.6 shares the same optimality as this
ideal estimator and has the same ability of estimating the additive compo-
nent even if f is unknown.23
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Ž . 2Ž . 2REMARK 8. In the case that X is independent of X , X and � x � � ,1 2 3
Ž . �one can directly smooth Y on X to obtain an estimate of f x cf. Hardle¨1 1 1

Ž .�and Tsybakov 1995 . This estimator has the asymptotic variance

� � 2K
2� � var f X , X ,� 4Ž .23 2 3p xŽ .1 1

Ž . Ž .which is larger than our direct estimator 2.6 with the optimal weight 3.5 .
To summarize, we have

Ž .THEOREM 2. Under the assumptions of Theorem 1, if the ideal weight 3.5
is used, we have

�p 2ˆnh f x � f x � � � b x � o hŽ . Ž . Ž .' � 4Ž .1 1 1 1 1 1 1 1

� � 2K �1�2� N 0, E � X � X � x ,Ž .� 41 1ž /p xŽ .1 1

Ž . Ž .where b x was defined in 3.2 .1

4. Applications to special models.

4.1. Additive model. We now assume the following additive model:

4.1 Y � � � g U � ��� �g U � � ,Ž . Ž . Ž .1 1 p p

Ž . Ž .where g � , . . . , g � are univariate functions satisfying the identifiability1 p
condition

E U � 0, . . . , E U � 0Ž . Ž .g 1 g p1 p

and U , . . . , U are continuous variables having a joint density p. Now, for1 p
� Ž .each variable U , we can form directly g as in 2.6 , using now h � h andˆ� � 1 1�

h � h .2 2 �

THEOREM 3. If the conditions of Theorem 1 hold for each component � ,
then we have the following joint asymptotic normality:

�� 1 2 2nh g u � g u � � � h � K g u � o hŽ . Ž . Ž . Ž .' � 4ˆ Ž .11 1 1 1 1 11 11 2 1 1 112

...
4.2Ž .

�� 1 2 2� 0nh g u � g u � � � h � K g u � o hŽ . Ž . Ž . Ž .ˆ' ½ 5Ž .1 p p p p p 1 p 1 p 2 p 1 1 p2

� N 0,  ,Ž .d

Ž .where � is analogous to that defined in 2.1 and1�

� � 2 2 2 � K diag � , . . . , �Ž .1 p

and
2 2 2� U p u p U W UŽ . Ž . Ž . Ž .� � �� �� � ��2� u � E U � u ,Ž .� � �2½ 5p UŽ .

Ž .with U � U , . . . , U , U , . . . , U and p is its joint density.�� 1 ��1 a�1 p ��
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REMARK 9. When W � 1, the variance matrix  is the same as that
Ž .obtained by Chen, Hardle, Linton and Severance-Lossin 1996 . However,¨

since we employ the local linear fit, our bias has a nicer expression. Put
Ž .another way, the local linear fit 2.6 uses one extra local parameter without

Ž .increasing the variance. See Fan and Gijbels 1996 for further discussion on
the advantages of using local polynomial fits.

REMARK 10. Under the standard assumption that all components are only
Ž .two times continuously differentiable i.e., d � 2 and smoothing of opti-

Ž �1�5.mal order is done for � i.e., h is of order n , then the conditions1�
p�1 �nh h �log n � 	, h �h � 0 imply p 
 4. Furthermore, Condition1� 2 � 2 � 1�

Ž . �A vi implies p 
 2. However, this condition can be weakened; see Remark 1.
So for p � 5 two times differentiable component rates of order n�2�5 cannot
be achieved by the marginal integration estimate. However, with a modifica-

Ž .tion given by Hengartner 1996 , the marginal integration estimate can still
achieve the optimal rate of convergence.

Ž .If the ideal weight scheme 3.5 is applied to each additive component, the
weight function should be

p U p U p U p UŽ . Ž . Ž . Ž .� � � �
4.3 W � dUŽ . H� ��2 2� U p U � UŽ . Ž . Ž .�� ��

� � 2 2 Ž . 2Ž . 2and the ideal variance is K � �p U if � U � � .� �

4.2. Additive partially linear model. Consider the additive partially lin-
Ž .ear model 1.3 , which possesses the flexibility to model a part of covariates

Ž .in particular, discrete variables linearly. In this model, one can form the
Ž . � Ž . �estimate of g � via g � as in Section 4.1 by treating the additionalˆ� �

�discrete variable X as in Section 3 . Let3

p

4.4 � � � .Ž . Ý 1�
��1

Then g� � ��� �g� overestimates g � ��� �g by an amount of � . Sinceˆ ˆ1 p 1 p

Ž .model 1.3 involves an intercept term, this will only affect the estimate of �,
not the slope �. Since the grand mean � � EY � EX T� can be estimated as2

n n1 1
T ˆ4.5 � � Y � X � ,Ž . ˆ Ý Ýi 3 in ni�1 i�1

the actual value of � is not a concern to us.
The quality of the estimator g� is not high at the region where the dataˆ�

are sparse. To eliminate such deficiencies used in the parametric estimation,
i Ž .we use the ith data point if X � U , . . . , U , X 	 A, where A is a1, i p, i 3, i
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Ž . p�rprescribed set usually a rectangle in � . Now consider the following
least-squares problem:

n
2� � T i� 44.6 min Y � g U � ��� �g U � � � X � I X 	 A .Ž . Ž .ˆ ˆ Ž .� 4Ý i 1 1 i p p i 3 i

� , � i�1

1 T˜ Ž .Let Z � and Z � Z , . . . , Z be the design matrix.i 1 nXž /3 i

�̂�1 n ˆ� � 4 � 44Put � � diag I X 	 A , . . . , I X 	 A and � � . Thenž /�̂

�1
� � �T Tˆ ˜ ˜ ˜� � Z �Z Z � Y � g � ��� �g ,Ž . ˆ ˆŽ .1 p

Ž .T � Ž � Ž . � Ž ..Twhere Y � Y , . . . , Y and g � g U , . . . , g U . To state theˆ1 n � � � 1 � � n
ˆ�asymptotic normality of � , we use the notation introduced in Section 4.1.

Additionally, we need the following notation.
Ž . Ž .Let p � be the marginal density of U and let p � be the marginal� � �� , 3
Ž .density of U , X , � � 1, . . . , p,�� 3

Z � Z I X 	 AŽ .A

p W U , X p U , XŽ . Ž .� �� 3 �� , 3 �� 3� p U E Z I X 	 A � U .� 4Ž . Ž .Ý � � �p XŽ .��1

� � �� Ž .Put � � . For simplicity of discussion, we assume that W � is�ž /�
ˆ�Žindependent of u . Otherwise, the root-n of � holds, but the covariance is�

more complicated. Set

� 4V � W U , X � 1 E g U I X 	 A Z� 4Ž . Ž .� � �� 3 � �

� g U � X T� W U , XŽ . Ž .� Ž .�� �� 3 � �� 3

T � 4�E g U � X � W U , X E I X 	 A Z ,Ž . Ž . 4Ž .�� �� 3 � �� 3

where

g U � g U � ��� �g U � g U � ��� �g U .Ž . Ž . Ž . Ž . Ž .�� �� 1 1 ��1 ��1 ��1 ��1 p p

� �THEOREM 4. Under the assumptions of Theorem 3, if X has a bounded3
2 2Ž p�1. Ž .2 Ž �1�4.fourth moment, nh h � log n � 	 and h � o n , we have1� 2 � 1�

� � �1 �1ˆ'n � � � � N 0, B B B ,Ž .Ž . 1 2 1

where
B � EI X 	 A ZZTŽ .1

and
p

2 TB � E� X Z Z � var V .Ž . Ý2 A A �ž /
��1

Ž .When X contains quite a few binary variables, the estimator 2.6 can be3
Ž .hard to use, since few data points are available in 2.4 . For the additive
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Ž .partially linear model 1.3 , special care is needed. In the local step, we can
Ž .replace 2.4 by
n

2T4.7 Y � a � b U � u � X � K U � u L X � x ,Ž . Ž . Ž . Ž .Ž .Ý i 1 i 1 3 i h 1 i 1 h 2 i 21 2
i�1

Ž .T Ž .T Ž .where X � U , . . . , U and x � u , . . . , u . Note that 4.7 is ob-2 i 2 i p i 2 2 p
Ž .tained via the local regression model in a neighborhood of u , x . This kind1 2
Ž .of idea appears already in Carroll, Fan, Gijbels and Wand 1997 . We denote

ˆ ˆŽ . Ž . Ž . Ž .g u � g u � ��� �g u . Let a, b and � minimize 4.7 . Thenˆ1 1 p p

g� u , x � aŽ .ˆ ˆ1 2

Ž .is a nonparametric estimator of g. Let W x be a function such that2
Ž .EW X � 1 and2

g� u � � � g u � EW X f X � g u � �� ,Ž . Ž . Ž . Ž . Ž .1 1 1 1 2 2 2 1 1 1

where f � g � ��� �g . Then2 2 p

n
�� �14.8 g u � n g u , X W XŽ . Ž . Ž . Ž .ˆ ˆÝ1 1 1 2 i 2 i

i�1

�Ž .is an estimator of g u , with the following asymptotic properties.1 1

THEOREM 5. Suppose that Condition B holds for � � 1. Then, if
nh h p�1�log n � 	 and h � 0 and hd�h2 � 0,1 2 1 2 1

�� 1� 2 2nh g u � g u � � � h � K g u � o hŽ . Ž . Ž . Ž .' � 4ˆ Ž .1 1 1 1 1 1 1 2 1 1 12

� N 0, v� u ,Ž .Ž .1

Ž .with p , p , p being the densities of U , X and U ; X , respectively,1 2 1, 2 1 2 1 2

W 2 X p XŽ . Ž .2 2 2 22� 2 T �1 �1� �v u � p u K E � X e    e � U � u ,Ž . Ž . Ž .1 1 1 1 1 2 1 1 1 12½ 5p U , XŽ .1, 2 1 2

T1 X3
 � E U , X ,1 1 2T½ 5ž /X X X3 3 3

1 X T
3

 � .2 Tž /X X X3 3 3

REMARK 11. If we apply the estimating procedure to each additive compo-
Ž .nent of model 1.3 , then the resulting estimators are asymptotically indepen-

dent and normal.
� ˆ�� Ž .Next, we estimate the parameter �. Let � and � minimize 4.6 withˆ

g� replaced by g�. Then we can compute explicitly the asymptotic variance ofˆ ˆ� �
ˆ��� in a similar fashion to Theorem 4. Since the notation gets very compli-
cated, we only state a simpler version of it.
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THEOREM 6. Under the assumptions of Theorem 4, we have

��ˆ'n � � � � N 0, BŽ .Ž . 3

for some positive definite matrix B .3

The proof of this theorem is similar to that of Theorem 4 and is omitted.

REMARK 12. Theorems 5 and 6 can be extended to the case that X is3
continuous.

Ž .REMARK 13. For the case of one nonparametric component p � 1 and
Ž .continuous X , Speckman 1988 has shown that another method leads to an3

unbiased estimate of �. The approach of Speckman does not require under-
� Ž �1�4.�smoothing i.e., h � o n . The estimate is based on the regression of1�

Ž . Ž .I � M Y onto I � M X , where M denotes a smoothing matrix. It is notS S 3 S
clear to us how this approach generalizes to the case with more than one
additive components. Efficient estimation of � for p � 1 has been considered

Ž .in Bhattacharya and Zhao 1997 .

4.3. Exploring possible interactions. Suppose one is interested in validat-
Ž .ing the additive model 1.2 by checking whether there is a nonnegligible

Ž . Ž .interaction term such as g u , u . One can embed the additive model 1.212 1 2
Ž . Ž .into the model 1.4 or more generally model 1.1 with p � 2. Now, estimate

Ž .the function g using our method. Plot g �; x for a few different values ofˆ ˆ12 12 2
x . The parallelism of the plot suggests the additivity contributions of x and2 1
x . This provides a quick and informal model diagnostic tool.2

5. Simulations and an application. In a small simulation study we
� Ž .�have compared the ‘‘indicator method’’ see 2.4 and the ‘‘linear approach’’

where the linear parametric part has been incorporated in the local linear
� Ž .�smoothing see 4.7 . In our simulation and in the following data example we

have not studied estimation of the optimal weight function W. First experi-
ence suggests that a practically working adaptation of this idea needs some
further research.

We have generated 100 samples of 200 normal observations Y. Four
covariates have been generated: U and U are normal with mean 0, variance1 2
1 and covariance 0.4; Z takes values 1, 2, 3 and 4 with probability 0.25, 0.35,1
0.25 or 0.15, respectively; Z takes values 0 or 1 with probability 0.2 or 0.8,2

Ž . � Ž 2 2 2respectively. The conditional variance of Y is 1 � U � U � Z �1 2 1
2 .1�24 Ž . Ž .Z �4. The simulated regression function is 1.5 � g u � g u �2 1 1 2 2

Ž . 2 Ž . Ž .� z � � z with g u � 1 � u , g u � sin �u , � � 0.3 and � �1 1 2 2 1 1 1 2 2 2 1 2
�0.5. In the estimation of the parametric components only observations have

� � � � Ž .been used with U 
 1.5 and U 
 1.5; see 4.6 . Bandwidths 0.3 and 0.41 2
have been used for the smoothing of the estimated or the nuisance nonpara-

Žmetric component, respectively. Table 1 shows the simulated MASE i.e., the
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TABLE 1
Results from a small simulation study comparing the ‘‘linear approach’’ and the

‘‘indicator method.’’ Two nonparametric additive components g and g ; two1 2
linear parameters � and � ; sample size n � 200*1 2

ˆ ˆg g � � mˆ ˆ ˆ1 2 1 2

Indicator 0.1857 0.1775 0.0096 0.0409 0.2647
Ž . Ž .Method 0.0609 0.518

MASE Linear 0.2739 0.3207 0.0075 0.0393 0.5081
Ž . Ž .Approach 0.1450 0.1549

*In parentheses the MASE are given for the nonparametric components with summation region
truncated by the 2.5% and 97.5% quantiles of the covariates.

.squared error averaged over the design points . The values in parentheses are
the MASE for the nonparametric components with the summation region
truncated by the 2.5% and 97.5% quantiles of the covariates. These values
have been added because they reflect better the behavior of the curve
estimates in the middle region.

In this simulation the ‘‘indicator method’’ clearly shows a better perfor-
mance. We conjecture that the ‘‘indicator method’’ may be outperformed by
the ‘‘linear method’’ only in cases where the discrete variables take on a
rather large number of different values. In the following data example we
used the ‘‘indicator method.’’

Figure 1 contains the resulting plots from a study on the female labor
supply in East Germany. A sample of 607 women with a job who live together
with a partner were asked their weekly number Y of working hours. Further-
more, the following information was recorded: if the woman has children less

Ž .than 16 years old Z , the unemployment rate Z in the ‘‘land’’ of the1 2
Federal Republic of Germany where she lives, the age U of the woman, her1

�wage per hour U , the ‘‘Treiman prestige index’’ of her job U see Treiman2 3
Ž .� Ž1978 , her years U of education introduction of this covariate makes sense4
because of the strongly regulated system of education in the former East

.Germany , her rent or redemption U , and the monthly net income U of her5 6
husband. A partial linear model for these data has been fitted. The fit has
been chosen linearly in Z and Z . The covariate Z takes only five values.1 2 2
Ž .There are five ‘‘lands’’ in the eastern part of Germany. The other six
additive components have been estimated nonparametrically. For this data
set a constant weight function W has been used. Bandwidths 0.4 and 0.6
times the empirical standard deviation of the covariable have been used for
the smoothing of the estimated or the nuisance nonparametric component,
respectively. The resulting parametric estimates are � � �1.46 and � �1 2
0.52. The resulting nonparametric fits can be found in the left frames of
Figure 1. Dashed lines have been added for indicating the pointwise variance
of the curve estimates. These lines differ from the curve estimates by 1.64
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FIG. 1. Female labor supply in East Germany. Left frames show nonparametric estimates of
additive components with approximate 90% confidence intervals. Right frames give kernel
density estimates of the covariates.

Ž .times the estimated pointwise standard deviation of the curve estimates;
Žthat is, this corresponds to an approximate 90% confidence interval without

.bias correction . The estimation of the pointwise standard deviation of the
curve estimates has been done under the additional assumption that the
conditional variance of the errors is constant. Note that all curve estimates at
a fixed point are averages Ýw Y of the observations Y . The variance of thisi i i
estimate can be estimated by Ýw2� , where � 2 is the empirical variance ofˆ ˆi 2

ˆ ˆŽ .the residuals � � Y � � � Ý f U � Ý � Z . Another estimate of the vari-ˆ ˆ j j j j j j

ance of Ýw Y is Ýw2� 2. This estimate does not require the additionalˆi i i i
assumption that the conditional variance of the errors is constant. Plots of
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FIG. 1. Continued

pointwise confidence intervals based on this estimate are of similar size but
of rougher shape. They are not shown here. In each plot of Figure 1 the
covariable has been plotted against the estimated function plus the logarithm

ˆ� Ž . Ž . � �of the residual i.e., f U � sgn � log � ; the logarithmic transform has beenˆ ˆ� �

�used to show all data . The right frames show the density estimates of the
covariates.

The plots show some clear nonlinearities. In particular, one sees a flat part
in the lower range for rent and prestige index and in the middle range of
hourly earnings, whereas the relation is monotone elsewhere. The results
quantify the extent to which each variable affects the female labor supply.
Using the dynamic ranges of the plots as a criterion to assess the practical
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importance of a variable, the key factors that affect the labor supply are
hourly earnings U and monthly net income of husbands U . Slightly less2 6
influential covariates are age of the woman U and prestige of the job U .1 2
Table 2 shows the results of a parametric least-squares analysis.

2 Ž .2 2 Ž .2The covariates U � AGE W. and U � WAGE P. H. have been1 2
introduced in the parametric model. The presence of these quadratic terms is
highly significant. The introduction of U 2 is motivated partially by the shape1
of the nonparametric estimate of g . There is no significant change in the1
values of the parameters � and � . Otherwise, there are some differences1 2
between the parametric and the semiparametric analysis. Clearly, the piece-
wise linear shape of g , g , and g cannot be recovered in the parametric2 3 5
model. For g the sign of the estimated parameter agrees with the slope of5
the nonparametric estimate in the upper part. Note that for g the paramet-2
ric analysis with covariates U and U 2 differs strongly for the upper part of2 2
g . At the boundaries of the functions g , g and g we see some differences2 4 5 6
between the parametric analysis and the semiparametric analysis. Clearly,
the boundary behavior of the nonparametric estimates depends on a rela-
tively small fraction of the observations. For example, the monotone decreas-
ing part at the beginning of g , is caused by only 15 women with 9 years of4
education and an introduction of a covariate U 2 in the parametric analysis is4
not significant.

It seems to be difficult to verify the data analytic findings of a semipara-
metric analysis. A first step is to consider test statistics which are based on
the comparison of parametric and nonparametric fits; see, for instance,

TABLE 2
Female labor supply in East Germany. Results of an ordinary least-squares analysis

Source Sum of squares Degrees of freedom Mean square F-ratio
Regression 6526.3 10 652.6 9.24
Residual 42,101.1 596 70.6

Ž .R squared � 13.4% R squared adjusted � 12.0%

Standard Probability
[ ]Variable Estimate error t-value � t

CONSTANT 1.36 8.95 0.15 0.8797
CHILD �2.63 1.09 �2.41 0.0163
UNEMPLOYMENT 0.48 0.22 2.13 0.0333
AGE W. 1.63 0.43 3.75 0.0002

2Ž .AGE W. �0.021 0.0054 �3.82 0.0001
WAGE P. H. �1.07 0.18 �6.11 
 0.0001

2Ž .WAGE P. H. 0.0017 0.0033 4.96 
 0.0001
PRESTIGE 0.13 0.034 3.69 0.0002
YEARS EDUC. 0.66 0.19 3.58 0.0004
RENT�RED. 0.0018 0.0012 1.56 0.1198
NET INC. H. �0.0016 0.0003 �4.75 
 0.0001
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Ž . Ž .Hardle and Mammen 1993 and Hardle, Mammen and Muller 1995 . The¨ ¨ ¨
second paper discusses also extensions to generalized regression.

6. Conditions and proofs.

Ž .CONDITION A. i We suppose that the functions W and f are bounded on2
Ž .the support S of W. The weight function W x , x is uniformly continous2 3

with respect to x .2
Ž .ii The kernel functions K and L are symmetric and have bounded

supports. Furthermore, L is an order-d kernel.
Ž .iii The support of the discrete variable X is finite and3

inf p x p u , x � x � 0 for some � � 0.Ž . Ž .3 3 1, 2 � 3 1 2 3
u 	x 	�1 1
Ž .x , x 	S2 3

Ž .For u in a neighborhood of x and for u , u in S, the conditional density1 1 2 3
Ž .p u , u � u has bounded partial derivatives up to order 2 with respect1, 2 � 3 1 2 3

to u and up to order d with respect to u .1 2
Ž .iv f has a bounded second derivative in a neighborhood of x and1 1

Ž .f x , x has a bounded dth-order derivative with respect to x .2 3 2
Ž . 4 2Ž . Ž 2 .v E� is finite and � x � E � � X � x is continuous, where � � Y �

Ž .E Y � X . Furthermore, for a � � 0, the conditional absolute moment
Ž � � 2�� � .E � X � u is bounded for u in a neighborhood of x .1 1 1 1
Ž . p 2 q 2 4 qvi nh h �log n � 	 and h log n�h � 0.1 2 1 2

Ž .CONDITION B. i The functions g and W are bounded on the support�� �

S of W . The weight function W is uniformly continuous.� � �

Ž . Ž .ii The same as Condition A ii .
Ž . Ž .iii inf p u , . . . , u � 0, where the infimum runs over u 	 x 	 � and1 p � �

Ž .u , . . . , u , u , . . . , u 	 S . For u in a neighborhood of x and for1 ��1 ��1 p � 1 1
Ž .u , . . . , u , u , . . . , u 	 S , the density p has bounded partial deriva-1 ��1 ��1 p �

tives up to order 2 with respect to u and up to order d with respect to u ,� �

� 
 � .
Ž .iv g has bounded and continous derivatives up to order 2 and g ,� �

� 
 � , have bounded and continous derivatives up to order d.
Ž . Ž .v The same as Condition A v .
Ž . 2Ž p�1. 2 4 p�1vi nh h �log n � 	 and h log n�h � 0.1 2 1 2

i Ž .PROOF OF THEOREM 1. Let x � x , X , X and let E denote the1 2 i 3 i i
Ž . Ž .conditional expectation given X � X , X , X . Denote by p x �i 1 i 2 i 3 i

Ž . Ž . Ž . Ž .p x p x , x � x . Then, by 2.1 and Condition A i , we have3 3 1, 2 � 3 1 2 3

n
��1 i �1�26.1 n m x W X , X � f x � O n .Ž . Ž . Ž . Ž . Ž .Ý 2 i 3 i 1 1 p

i�1
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Thus,
n

� � �1 i if̂ x � f x � n m x � m x W X , X� 4Ž . Ž . Ž . Ž . Ž .ˆÝ1 1 1 1 2 i 3 i
i�16.2Ž .

� O n�1�2 .Ž .p

Ž . Ž i. �Ž .T Ž .Let r � m X � m x � f x X � x and let r be the resulting n � 1ˆ ˆi j j 1 1 1 j 1 i
Ž .vector. Then, by 1.1 and the definition of K , it follows thatn

m x i � m x iŽ . Ž .ˆ
1 ��� 1T �1 i i� e S x A x r � � ,Ž . Ž . ˆ ˜Ž .1 n iX � x ��� X � xž /11 1 1n 1

6.3Ž .

Ž . Ž . Žwhere A x is a diagonal matrix with diagonal elements A x � K X �i h 1 i1

. Ž . � . Ž .T Ž .x L X � x I X � x and � � � , ��� , � with � � Y � m X . Let˜1 h 2 i 2 3 i 3 1 n i i i2

Ž �1 �1. Ž . Ž .H � diag 1, h , . . . , h be a p � 1 � p � 1 diagonal matrix and a �1 1 n

� Ž p q .41�2log n� nh h . Then, owing to the uniform convergence of the kernel1 2
� Ž .�density estimator cf. Stone 1993 , we have

n�1HS x HŽ .n

Tn 1 1�1� n A xŽ .Ý i X � x �h X � x �hž / ž /Ž . Ž .1 i 1 1 1 i 1 1i�1

T
1 1

� EA x � O aŽ . Ž .i p nX � x �h X � x �hž / ž /Ž . Ž .1 i 1 1 1 i 1 16.4Ž .
TŽ1 , 0.p x h p x � KŽ . Ž . Ž .1 2� � O cŽ .p nŽ1 , 0.ž /h � K p x p x � KŽ . Ž . Ž . Ž .1 2 2

p x 0Ž .
� � o c ,Ž .p nž /0 p x � KŽ . Ž .2

where c � h2 � hd � a and where pŽ1, 0. denotes the vector of partialn 1 2 n
derivatives of p with respect to x . Now note that1

�1
TŽ1 , 0.p x h p x � KŽ . Ž . Ž .1 2

Ž1 , 0.ž /h � K p x p x � KŽ . Ž . Ž . Ž .1 2 2

�1
p x 0Ž .

� ž /0 p x � KŽ . Ž .2

TŽ1 , 0.h 0 p x � KŽ . Ž .1 2 2� � O h .Ž .p 1Ž1 , 0.p x ž /Ž . p x � K 0Ž . Ž .2
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A similar argument to the above leads to the following uniform results:

1 ��� 1�1 in H A x rŽ . îX � x ��� X � xž /11 1 1n 1

n 1�1 i� n A x rŽ . ˆÝ j i j X � x �hŽ .ž /1 j 1 1j�1

1
i� E A X r � O aŽ . Ž .ˆi j i j p nX � x �hŽ .ž /1 j 1 1

� O c ,Ž .p n

where in the third expression j is an arbitrary index with j 
 i and

1 ��� 1�1 in H A x �Ž . ˜X � x ��� X � xž /11 1 1n 1

n 1�1 i� n A x �Ž .Ý j j X � x �hŽ .ž /1 j 1 1j�1

� O a .Ž .p n

Ž .Substituting all of the above expressions into 6.3 , after some algebra, we
obtain

m x i � m x iŽ . Ž .ˆ
�1

ip x 0Ž .T� e1 iž /0 p x � KŽ . Ž .2

TŽ1 , 0. ih 0 p x � KŽ . Ž .1 2� � O cŽ .p ni Ž1 , 0. ip xŽ . ž /p x � K 0Ž . Ž .2

n 2�1 i� n A x r � �Ž . ˆŽ .Ý j i j j X � x �hŽ .ž /1 j 1 1j�1

n
�1 i i� n A x r � � �p xŽ . Ž .ˆŽ .Ý j i j j

j�1
j
i

n
T�1 i �1 i Ž1 , 0. i� n A x r � � p x p x � K X � xŽ . Ž . Ž . Ž .ˆ Ž .Ž .Ý j i j j 2 1 j 1

j�1
j
i

� O c2 .Ž .p n

Clearly, the second term will be smaller than the first one by an order of
Ž . Ž .O h . When the above O -term is averaged in 6.2 , it is still of the order1 p

�1�22 pO c � o nhŽ .Ž . Ž .p n p 1
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by the conditions on the bandwidths. Furthermore, by calculation of the first
two moments one can show that

T�2 i �2 i Ž1 , 0. in W X , X A x r p x p x � K X � xŽ . Ž . Ž . Ž . Ž .ˆ Ž .Ý 2 i 3 i j i j 2 1 j 1
j
i

�1�22 d p� o h � O h � o nhŽ .Ž . Ž . Ž .1 2 p 1

and
T�2 i �2 i Ž1 , 0. in W X , X A x � p x p x � K X � xŽ . Ž . Ž . Ž . Ž . Ž .Ý 2 i 3 i j j 2 1 j 1

j
i

�1�2p� o nh .Ž .Ž .p 1

Ž .In other words, the approximation error from 6.4 is negligible.
Note that, for j 
 i,

1 �i 2 i 2 dE A x r � h tr f x � K p x � o h � O h .� 4Ž . Ž . Ž . Ž .ˆ Ž . Ž .i j i j 1 1 1 2 1 22

Ž i. Ž i. Ž .Let r � A x r � E A x r for j 
 i and r � 0 for j � i. Thus, by 6.2 ,˜ ˆ ˆ ˜i j j i j i j i j i j
we have

� � 1 �2f̂ x � f x � h tr f x � K� 4Ž . Ž . Ž . Ž .1 1 1 1 1 1 1 22

�1�22 p� o h � T � T � o nh ,Ž .� 4Ž .1 n , 1 n , 2 p 1

6.5Ž .

where

T � n�1 � K X � x � X , X L X � X I X � X� 4Ž .Ž . Ž .Ýn , 1 j h 1 j 1 2 i 3 i h 2 j 2 i 3 j 3 i1 2
j
i

and
T � n�2 � X , X r ,Ž . ˜Ýn , 2 2 i 3 i i j

j
i

with
� X , X � W X , X �p x i .Ž . Ž . Ž .2 i 3 i 2 i 3 i

� Ž . Ž . ŽWe will show that with � � G X , X � , G X , X � � X ,j 2 j 3 j j 2 j 3 j 2 j
. Ž .X p X , X ,3 j 2, 3 2 j 3 j

n
�1�2��1 p6.6 T � n K X � x � � o nhŽ . Ž .Ž .Ý Ž .n , 1 h 1 j i j p 11

j�1

and
�1�2p6.7 T � o nh .Ž . Ž .Ž .n , 2 p 1

Ž . Ž .Combination of 6.5 � 6.7 leads to
� � 1 �2f̂ x � f x � h tr f x � K� 4Ž . Ž . Ž . Ž .1 1 1 1 1 1 1 22

n
�1�2��1 p� n � K X � x � o nh .Ž .Ž . � 4Ý j h 1 j 1 p 11

j�1

6.8Ž .
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It is easy to show that
n

�p �16.9 nh n � K X � x � NN 0, v xŽ . Ž .' Ž .Ž .Ý1 j h 1 j 1 11
j�1

Ž . Ž .by checking the Lyapounov condition. By using 6.8 and 6.9 , we establish
Ž . Ž .Theorem 1. It remains to verify 6.7 and 6.8 .

Ž .PROOF OF 6.6 . Let

V � � X , X L X � X I X � X� 4Ž . Ž .i , j 2 i 3 i h 2 j 2 i 3 i 3 j2

� p X p X � X � X , X .Ž . Ž . Ž .3 3 j 2 � 3 2 j 3 j 2 j 3 j

Note that, for i 
 j,

E V � p X � x , X L x � X p x � X dxŽ . Ž . Ž . Ž .Hj i , j 3 3 j 2 3 j h 2 2 j 2 � 3 2 3 j 22

� p X p X � X � X , X .Ž . Ž . Ž .3 3 j 2 � 3 2 j 3 j 2 j 3 j

Thus,

� �E V 
 � X � h u , X p X � h u � XŽ . Ž .Hj i , j 2 j 2 3 j 2 � 3 2 j 2 3 j

�� X , X p X � X L u du � 0.Ž .Ž . Ž .2 j 3 j 2 � 3 2 j 3 j

Ž .Note also that the difference between the left-hand side of 6.6 and the main
Ž .term on the right-hand side of 6.6 can be expressed as

D � n�2 � K X � x V .Ž .Ýn , 1 j h 1 j 1 i , j1
j
i

Ž .To prove 6.6 , it suffices to show
�12 pED � o nh .Ž .Ž .n , 1 1

It follows from direct expansion that

ED2 � n�4 E� K X � x V � K X � x V .Ž .Ž .Ýn , 1 j h 1 j 1 i , j l h 1 l 1 k , l1 1
i
j ; k
l

� 4Because of E � � X � 0 we havej j

ED2 � n�4 E� 2K X � x V � K X � x V .Ž .Ž .Ýn , 1 j h 1 j 1 i , j l h 1 l 1 k , j1 1
i
j ; k
j

Ž �p �q.For i � k the order of summands on the right-hand side is at most O h h .1 2
�2 �p �q Ž �1 .Because of n h h � o n , we have1 2

ED2 � n�4 E� 2K 2 X � x V V � o n�1Ž .Ž .Ýn , 1 j h 1 j 1 i , j k , j1
i
j
k
i

� n�4 E� 2K 2 X � x E V E V � o n�1Ž .Ž .Ý j h 1 j 1 j i , j j k , j1
i
j
k
i

� o n�1 h�p .Ž .1



ESTIMATION OF ADDITIVE COMPONENTS 965

Ž . 2 ŽŽ p.�1 .PROOF OF 6.7 . The claim follows from ET � o nh . Note thatn, 2 1

E r � 0. Therefore, for the calculation of ET 2 we need only consider˜i i, j n, 2
terms of the form

n�4 E� X , X r � X , X r ,Ž . Ž .˜ ˜2 i 3 i i , j 2 k 3k k , l

� 4 � 4where i 
 j, k 
 l, j 	 k, l and l 	 i, j . It is easy to bound the summands
for two different indices. For three different indices we have j � l and
i 
 j 
 k 
 i. Note now that for this case

�p 4 2E� X , X r � X , X r � O h h � h .Ž . Ž .˜ ˜ Ž .2 i 3 i i , j 2 k 3k k , j 1 1 2

Here we have used that the random variables r are always bounded by aî, j
Ž 2 .constant which is of order O h � h . Thus,1 2

�12 �1 �p 4 2 pET � O n h h � h � o nh ,Ž .Ž . Ž .n , 2 1 1 2 1

Ž .verifying 6.7 .

Ž . Ž . � Ž .PROOF OF THEOREM 3. By 6.5 � 6.7 , each component of g u has theˆ� �

following stochastic representation:

g� u � g u � �Ž . Ž .ˆ� � � � 1�

1 �2 2� h � K g u � o hŽ . Ž . Ž .1� 2 � � 1�26.10Ž . n
�1�2�1� n K U � U G U � � o nh ,Ž .Ž . Ž . Ž .Ý h � j � � �� j j p 1�1 �

j�1

where

W U p UŽ . Ž .� �� j �� �� j
G U � ,Ž .� �� j jp UŽ .�

j Ž .with U � U , . . . , U , u , U , . . . , U . For � 
 �, the covariance for� 1 j ��1, j � ��1, j p j

Ž .the stochastic terms in 6.10 is

n n
�1 �1cov n K U � u G U � , n K U � u G U �Ž . Ž . Ž . Ž .Ý Ýh � j � � �� j j h � j � � �� j j1 � 1 �ž /

j�1 j�1

�1 2� n E K U � u G U K U � u G U �Ž . Ž . Ž . Ž .h � � � �� h � � � ��1 � 1 �

�1�2�1�2�1� O n � o nh nh .Ž . Ž . Ž .ž /1� 1�

Therefore, the asymptotic covariance should be 0.
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PROOF OF THEOREM 4. We only outline the key steps of the proof. Proceed-
ing as in the proof of Theorem 1, one shows first that

n1
�iZ I X 	 A g U � g U � �Ž . Ž . Ž .ˆÝ i � � i � � i 1�n i�1

n1 1
i� Z I X 	 A K U � UŽ . Ž .Ý Ýi h � j � i1 �n ni�1 j
k

�L U � U I X � XŽ . Ž .h �� j �� k 3 j 3k2 �

j� m X � m U , U , XŽ . Ž .� i �� k 3k

��g U U � U � �Ž . Ž .� � i � j � i k

1
2 �1�2� � O c � o n ,Ž .Ž .P n pp U , U , XŽ .� i �� k 3k

2 d � Ž p�1.41�2where now c � h � h � log n� nh h . Note that under our as-n 1� 2 � 1� 2 �
2 Ž �1�2 .sumptions we have c � o n . By considering the first two moments ofn

Žthe difference, one can show that see also the asymptotic treatment of Tn, 1
.and T in the proof of Theorem 1n, 2

n1
�iZ I X 	 A g U � g U � �Ž . Ž . Ž .ˆÝ i � � i � � i 1�n i�1

n n
�2 i� n Z I X 	 A K U � UŽ . Ž .Ý Ý i h � j � i1 �

i�1 j�1

6.11Ž .

�G U , U , X � � o n�1�2 ,Ž .Ž .� � i �� j 3, j j p

where

W U , X p U , XŽ . Ž .� �� j 3, j �� , 3 �� j 3, j
G U , U , X � .Ž .� � i �� j 3, j p U , U , XŽ .� i �� j 3, j

ˆ�Thus, the main term of � is
�1

� � T T �1�2ˆ ˜ ˜ ˜6.12 � � � � Z �Z Z �� � o n ,Ž . Ž .Ž . p

where the ith element of � is
p n

�1� � � � n K U � UŽ .Ý Ýi i h � j � i1 �

��1 j�1

p
��G U , U , X � � � .Ž . Ý� � i �� j 3, j j � i

��1

6.13Ž .

Obviously, by the law of large numbers,

�1 T T˜ ˜6.14 n Z �Z � E I X 	 ZZ � o 1 � B � o 1 .Ž . Ž . Ž . Ž .p 1 p



ESTIMATION OF ADDITIVE COMPONENTS 967

� Ž . Ž .Let � � g U a � b be the approximation error in 6.1 , where� i � � i n, � n, �
n

�1a � n W U , X � 1Ž .Ýn , � � �� j 3 j
j�1

and
n

�1 Tb � n g U � X � W U , XŽ . Ž .� 4Ýn , � �� �� 3 j � �� j 3 j
j�1

T� E g U � X � W U , X .Ž .Ž .� 4�� �� j 2 � �� 3

We need only consider the term
n

�1 T �1 i˜ � 4n Z �� � n Z � I X 	 AÝ i i
i�1

n
�1 i� 4� n Z � I X 	 AÝ i i

i�1
p n

�1 i� 4� n Z I X 	 A g U a � bŽ .Ž .Ý Ý i � � i n , � n , �
��1 i�1

6.15Ž .

pn n
�1 �1� n � n G U , U , XŽ .Ý Ý Ýi � � j �� i 3, i

i�1 ��1 j�1

� j 4�K U � U I X 	 A .Ž .h � j � i1 �

Ž .By using the same argument as in the proof of 6.6 , we can show that
n n

�1 �1 j� 4n � n G U , U , X K U � U Z I X 	 AŽ . Ž .Ý Ýi � � j �� i 3, i h � j � i j1 �

i�1 j�1
n

�1� n � G U , U , XŽ .Ý i � � i �� i 3, i
i�1

6.16Ž .

�E Z I X i 	 A � U p U � o n�1�2 .Ž . Ž . Ž .� 4i � i � � i p

� i 4 p Ž . � Ž i .Let Z � Z I X 	 A � Ý G U , U , X E Z I X 	 A �i , A i �� 1 � � i � � i 3, i i
4 Ž . Ž . Ž .U p U . Then, by combining 6.15 and 6.16 , we obtain� i � � i

n
�1�2 T �1�2˜n Z �� � n Z �Ý i , A i

i�1
p

�1�2 � 4� n E Z I X 	 A g U aŽ .Ý � � n , �
��16.17Ž .
� 4� E Z I X 	 A b � o 1Ž .n , � p

p
2 T� N 0, E � Z Z � var V .Ýi i , A i , A �ž /ž /

��1
i Ž .By conditioning on X , one can easily see that the covariance matrix in 6.17
Ž . Ž . Ž .is B . Combination of 6.12 , 6.14 and 6.17 shows the statement of Theo-2

rem 4.
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PROOF OF THEOREM 5. The main ideas of the proof are the same as those
i Ž .of Theorem 1. Thus, we only indicate the main steps. Let x � u , X . Then1 2 i

we have
n

�1 i � �1�26.18 n m x W X � g u � O nŽ . Ž . Ž . Ž . Ž .Ý 2 i 1 1 p
i�1

and
n

�� � �1 i ig u � g u � n m x � m x W X� 4Ž . Ž . Ž . Ž . Ž .ˆ ˆÝ1 1 1 1 2 i
i�16.19Ž .

� O n�1�2 .Ž .p

Ž . Ž . Ž . Ž .Set A u � K U � u L X � x . Let X be the design matrix of 4.7j h 1 j 1 h 2 j 21 2

Ž . Ž Ž . Ž ..and A u � diag A u , . . . , A u be the corresponding weight matrix.1 n
Denote by

r � g U � g u � g� u U � u � f X � f X ,Ž . Ž . Ž .ˆ Ž . Ž . Ž .i j 1 1 j 1 1 1 1 1 j 1 2 2 j 2 2 i

Ž . Ž . Ž . Ž .where f x � g u � ��� �g u . Let r be the resulting n � 1 vector.ˆ2 2 2 2 p p i
Then

6.20 g� x i � g x i � eTS�1 x i X TA x i r � � ,Ž . Ž . Ž . Ž . Ž .ˆ ˆ ˜Ž .1 n i

Ž . T Ž i. Ž .where S x � X A x X. For u � u , x letn 1 2

T� 1 0 X3� �0 � K 0Ž .S u � E U � u , X � xŽ . 2 1 1 2 2
T� 0� �X 0 X X3 3 3

and
1

�1h1

H � .1
. . .� 0

1

With the same ideas as in the proof of Theorem 1, one gets an expansion of
� �1 Ž . ��1 Ž .n HS u H up to error terms of order O c where, as in the proof ofn P n

2 d � Ž p�1.41�2Theorem 4, c � h � h � log n� nh h . In particular, we haven 1� 2 � 1� 2 �

that
6.21 n�1HS u H � p u S u � o 1Ž . Ž . Ž . Ž . Ž .n p

uniformly in u. Direct calculation yields

n�1E HX TA x i rŽ . ˆi i

1
�1 2 2 d i 0� h g u � K � o h � O h p x .Ž . Ž . Ž .� 4Ž . Ž .1 1 1 2 1 22

i� 0E X � XŽ .3 i

6.22Ž .
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Note now that

11
i 0S x � .Ž . 0

iž / � 0E X � x0 Ž .3 i

Therefore,

1
T �1 i 06.23 e S x � 1.Ž . Ž .1

i� 0E X � xŽ .3 i

� �1 Ž . ��1 Ž .Substituting the higher-order expansion of n HS u H and 6.22n
Ž . Ž .into 6.20 , we obtain with 6.23 that

g� x i � g x iŽ . Ž .ˆ
1 �2 2 d� h g u � K � o h � O hŽ . Ž . Ž . Ž .1 1 1 2 1 22

1
n

�1�1 i T �1 i i U � u �hŽ .j1 1 1� n p x e S x A x �Ž . Ž . Ž .Ý 1 j j
j�1 � 0X3 j

6.24Ž .

n
�1�1 i T �1 i �1�2� n p x e S x r � O n ,Ž . Ž . Ž .˜Ý 1 i j p

j�1

where

1 1
i iU � u �h U � u �hŽ . Ž .1 j 1 1 1 j 1 1r � A x r � E A x r .Ž . Ž .˜ ˆ ˆi j j i j i j i j� 0 � 0X X3 j 3 j

Note that again we obtain that the expansion of the estimate depends only on
Ž . �1 Ž .the first-order approximation 6.21 n HS u H.n

Using the same argument as in the proof of Theorem 1, the average of the
Ž . Ž �1�2 . Ž . Ž .last term in 6.24 over i is of order o n . Thus, by 6.19 and 6.24 , wep

have

1 �� � 2 2 dg u � g u � h g u � K � o h � o hŽ . Ž . Ž . Ž .ˆ Ž . Ž .1 1 1 1 1 1 1 2 1 22

n n
�1�2 i T �1 i i� n p x e S x A x W XŽ . Ž . Ž . Ž .Ý Ý 1 j 2 i

i�1 j�1

1
�1�2U � u �hŽ .j1 1 1� � � o n .Ž .j p� 0X3 j
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By the projection argument which we used when treating T in the proof ofn, 1
Theorem 1, we obtain

6.25Ž .
�1� � 2g u � g u � h g u � KŽ . Ž . Ž . Ž .ˆ1 1 1 1 1 1 1 22

n
�1�2��1� n K U � u � � o nh ,Ž .Ž . Ž .Ý h 1 j 1 j p 11

j�1

where

1T �1 j� p X e S x W XŽ .Ž . Ž .j 2 2 j 1 2 j� U � u �hŽ .j1 1 1� � .j jp xŽ . � 0X3 j

Therefore, by checking the Lyapounov condition, we can establish Theorem 5,
Ž .where the variance is obtained from 6.25 along with some algebra.
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