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1. Introduction.

Detection of changes in the distribution parameters of a random sequence is important for many appli-
cations; see e.g. the recent books Brodsky and Darkhovsky (1993) and Basseville and Nikiforov (1993) and
the references herein.

This paper deals with nonparametric situation, which usually arises when the form of the distribution is
unknown a priori. As many statistical problems, the change-point problem allows two different formulations
- a posteriori and sequential, also called off-line and on-line, respectively. In the first case, the decision about
stochastic homogeneity of a random sequence (the abscence of change) is made after observing a sample of
a fixed length. In the sequential formulation, the decision must be made ’on line’ with the observations.

The change-point problem (both a posteriori and sequential approaches) is well-studied in the case of

independent observations (see e.g. Csorgd and Horvath (1988), Brodsky and Darkhovsky (1993) ), in which
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case one is interested in the detection of change of the cumulative distribution function. A natural statistic
for testing the null-hypothesis is a Kolmogorov - Smirnov (K-S) type statistic, used by several authors
(Picard (1985), Deshayes and Picard (1986), Hawkins (1988), Leipus (1988), Szyszkowicz (1994), Csorgd
and Szyszkowicz (1994)).

In this paper, we develop a general asymptotic approach to the change -point problem of the marginal
distribution function F(z) = P{X; < z} for (dependent) stationary observations X;,i € Z, based on the

asymptotics of the two-parameter empirical process

W (t,2) = [Nt](Fing(2) — F(2)), (t,z)€[0,1] x R, (1.1)
where
1 N
Fn(z) = Nzl{Xj <} (1.2)

is the empirical distribution function. Assuming that, for some normalizing constants dy — o, dj_\,1 W (t, z)
converge weakly in the Skorokhod space D([0, 1] x [—00, 4o0]) to some (nontrivial) limit W (¢, z), one obtains
the convergence of Type I error probabilities of rejecting the null-hypothesis to the probability expressed
in terms of the limit random field W (¢, #) (Propositions 2.1, 2.2). The same approach applies to testing
converging change-point alternatives introduced in Giraitis and Leipus (1992) for linear models, as a sub-
stitute for the more usual contiguous alternatives (Proposition 2.3). Sect. 3 discusses some nonparametric
estimators of the change point # itself, under the assumptions of Proposition 2.3. Finally, Sect. 4 dis-
cusses the change-point problem for long memory moving averages, including fractional ARIMA | processes
X; = ngj bi_s&s, j € Z, where {&,}sez an 1.1.d. sequence, and the weights b; decay slowly hyperbolically

as j — 00.

2. Testing the change-point hypotheses

Let us introduce some notation. Let 0 < 0 < 1, and F((z), F(*)(x) be two distribution functions. A
random vector Xy = (X1, ..., Xn) € Uy (0, F, F(z)) if

(1 :
XM 1<j<[Ng
j:{ i 1<j< I[N, @.1)

X, [NO<j<N,
where (X](»i))jez = X is a strictly stationary process with P{X](i) <} =FO(x),i=1,2 Here, ky =
[N6]+1 is the change-point of the marginal distribution of the sample X, ..., X. Note that no assumptions
about the joint distribution of the two processes X1 X(2) is being made. The class U (F) =: Un (1, F)

refers to all vectors (X1, ...., Xn) having the same marginal distribution F.
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) D(I . .
We consider the weak convergence, denoted by :(>), of random elements taking values in the space

D(I), I = [0,1] x [—00,+o0] equipped with the Skorokhod .J; topology (see Bickel and Wichura (1971)).
Write = for the weak convergence of finite dimensional distributions, and 2 for the equality in distribution

of random elements with values in a measurable space X’.
2.1. Testing the null-hypothesis when F(x) is known.

Consider the pair (Hy, Hy) of alternative hypotheses about the distribution of a given random sample

XN = (Xl,...,XN)Z
Hy . {XN c \IJN(F)},
Hy :{30 € (0,1) 3F, # F such that Xy € Un (0, F, F1)}.

The testing procedure for the pair (Hg, H;) is based on the statistic

Wi (L, 2) = (N = [N)(Fy _vg(@) — F(z)),

where
1 N
* _ .
FR (@) = Nk Z 1{Y; <z}
j=k+1
is the empirical distribution function based on the partial sample X;y1, ..., Xn. Namely, we reject the null

hypothesis Hy when

Ty = dy' sup |[Wit,z)| > ¢,
(t,z)el

where ¢, dy — oo are some constants.

Proposition 2.1. Let the hypothesis Hy be true, t.e. (X1,...,Xn) = Xn is a sample from a strictly

stationary process X, with known marginal distribution function F(x) = P{Xy < x}. Let, moreover,

D(I)

d' Wi (t, ) = W(t,z). (2.2)
Then for a.e. every ¢ > 0
lim P{Ty >c} = P{ sup |W(t, 2)| > c}. (2.3)
N—oo (t,z)el

Proof. Follows from stationarity of X and of the increments Wx (¢, #) — Wy (s, #), the convergence (2.2), and

the fact that sup; |w(¢, )| is a continuous functional on D(TI).

Remark 2.1. Tt is well-known Lamperti (1962) that the normalizing constants are necessarily of the form

dy = N®L(N), with some £ > 0 and L(-) a slowly varying at infinity function. The limit random field
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W (t, ) extends to a random element on I, = [0, +00) X [—00, +00], denoted by the same letter, and taking

values in the Skorokhod space D(I.,), which is s-self-similar, i.e. for any a > 0
Wat, z) D(éx’)a“W(t, z).

Remark 2.2. For independent observations X1, ..., Xy the convergence (2.2) is well-known and the limit

process is the Kiefer process W(t,x) = K(t,x), i.e. a zero mean Gaussian process with the covariance
EK({t,2)K({' 2') = t At (F(z A2') — F(z)F(z"). (2.4)

Berkes and Philipp (1977) and others obtained the convergence (2.2) for weakly dependent stationary pro-
cesses X, j € Z satisfying certain mixing conditions, to a zero mean Gaussian field W(t, z) with the covari-
ance

EW (@, o)W({',2') = t Ato(z,z), (2.5)

where
oz, ') = > (P{Xo <2, X; <a'} — P{Xo < 2} P{X; <a'}). (2.6)
J
Remark 2.3. The empirical process of long memory sequences of the form X; = H(Y}), j € Z, where H(-)is a
(measurable) function, and Y;, j € Z is a Glaussian process with zero mean and slowly decreasing covariance
function: Cov(Yp,Y;) ~ j~P (j — oo, D € (0,1)), was studied in Dehling and Taqqu (1989). Further
example of the empirical process’ convergence (2.2) are discussed in Sect. 4. Apparently, at the present time

the change-point problem provides the most important statistical application of such a convergence.
2.2. Testing the null-hypothesis when F(x) is unknown
Consider now the pair (lffo, ﬁfl) of alternative hypotheses defined by

Hy - {3F such that Xy € Un(F)},

Hy {30 € (0,1) 3F, # Fysuch that Xy € Un (6, Fy, Fy)}.

To test (lffo, lffl), we use the statistic

Ty = dj_\,1 sup |Vn (2, 2)],
(t,z)el

where
[NT)(N —[N])

VN(t,x) = I

(Fiva (@) — Fy_vg(@))- (2.7)



Proposition 2.2. Assume the hypothesis Hy is true, and the convergence (2.2) holds again. Then for a.e.

c>0
lim P{Tn >c¢}=P{ sup |W(t,z)—tW(l, )| > c}. (2.8)
N—oo (t,z)el
Proof. Write
N — [Nt N
Vn(t,z) = %WN(t,l‘) - %WN(t,x)

= (1 - tN)WN(t, l‘) - tN(WN(l, l‘) - WN(t, l‘)) = WN(t, l‘) - tNWN(l, l‘),

where ty = [Nt]/N — t. Hence, the convergence (2.8) follows by the same argument as in the previous

proposition.

2.3. Testing converging alternatives

The asymptotics of Type II error probability is usually discussed in the context of contiguous models
(contiguous alternatives). For K-S type statistics (2.3), (2.6), and independent observations Xy, ..., Xy,
the limit of the probabilities P{Ty > ¢}, P{Ty > ¢} under contiguous alternatives were studied by
Leipus (1988), Szyszkowicz (1994), Csorgd and Szyszkowicz (1994). Khmaladze and Parjanadze (1986),
Pardzhanadze and Khmaladze (1986) considered asymptotically most powerful rank tests based on sequen-
tial ranks and obtained the weak limit under contiguous alternatives for the uniform empirical process

simultaneously with the limits of the corresponding empirical rank processes.

However, the contiguity assumption (on the observations before and after the change-point) is rather
difficult to verify for certain dependent models, in particular, for the linear model studied in Sect. 4.
Therefore, we introduce a related notion of converging alternatives, which is formulated in terms of the joint
asymptotics of the corresponding pair of empirical processes, and which was first studied in Giraitis and
Leipus (1992) in the context of the empirical spectral process of a moving average process.

Let X5 be a class of bivariate strictly stationary processes (X1 X(?)) = (X](»l),X](»z))jez. Write X =
{X : IX’such that (X, X’) € Aa} for the corresponding class of univariate stationary processes. Introduce
the class ¥y (0; X2) of all vectors Xy = (X1,..., Xn) such that (2.1) holds with (X(l),X(Z)) € Xy and
FO(z) = P{X](i) <z}, i=1,2. Let (A1) = ¥y (1;X%) be defined analogously.

In the following definition, the class A5 = XZ(N) and the alternative distribution functions F(i)(x) =

F(i,N)(x)’ 1 = 1,2 depend on the sample size N. Put
ggN) = {30 € (0,1) such that Xy € ¥y (6; Xz(N))}
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and

iN _ iN i iN i
W2y = WEN (2 XON) = N (FGN (@) — FON (@),
t = 1,2, where
1 N
iN iN
Fy V) = 531 <)
j:l

is the corresponding empirical distribution function.

Definition 2.1. The pair (ﬁ[éN), ﬁ]iN)) of alternative hypotheses is said converging if there exist dy — o0, a
real function G(z), x € R from the Skorokhod space D[—o0, +00], and a random field (W D(t, z), W)L, z)),
(t,x) € I such that, for any pair (XM X(2)) ¢ XZ(N),

A WM, e), WM e)) 22w, x), WO, 2)) (2.9)
and
Jim Ayt N(FON () — FON)(2)) = G(z)  (in D[—o0, +o0)), (2.10)

Denote f[iN)(H) the alternative f[iN) when 6 € (0, 1) is fixed.

Proposition 2.3. Assume the pair (f]éN),fNIEN)) is converging and 6 € (0,1). Then under the alternative
f[iN)(H) fora.e. ¢>0

Jim P{Tx >c} = P{(t?:)lael|2(t,x)| > ¢}, (2.11)
where

Z(t,x) = (1 _t)(W<1>(t AOx)— WO NG, 2) + W(Z)(t,x))

- t(W<1>(t VO,2) = WOV, x)+ W, z) - wh, x)) +(tAO—10)G ().  (2.12)

Proof. Similarly as in the proof of Proposition 2.2, write

Vn(t,z) = (1— tN)(WJ(Vl’N)(t Ay = WEN A, 2) + W}ﬁ”&t,@)
— ity (WJ(Vl’N)(t Vo, x)— WMy e,y + w1, - w N, x))

+ (tn Ay —tnOn)N(FON () — PN (). (2.13)

Hence the convergence (2.11) follows from Definition 2.1, similarly as in Propositions 2.1, 2.2.

Remark 2.4. Independent observations satisfy the conditions of Proposition 2.3 (Definition 1.1) if 7™ ()

weakly converge to a distribution function F(x), ¢ = 1,2, and

lim VN(FOV(2) - FCN (1)) = G(x)

N—oo



at each continuity point of G(x), where () has bounded variation. The limit empirical process in (2.9) (with
dy = VN Vis (WOt 2), Wt z)) = (KW(t,x), KP)(t, 2)), where K(t,2), i = 1,2 are independent
Kiefer processes with the same covariance (2.4). Converging alternatives for moving average observation

processes are discussed in Sect. 4.

Remark 2.5. In a similar way, one can discuss testing change-point alternatives, using the empirical charac-

teristic function
1N
CN(Z) — /RezzxdFN(x) — NZ;eZZXj'
i=

The natural counterparts of the statistics Wx (¢, #), Wy (¢, 2), Vi (t, x) are their Fourier - Stieltjes transforms;

in particular, the null-hypothesis H; can be tested using

Un(t,z) = /Rei”dVN(t,x) = W(C[M](z)—c;_[m](z)),

where C%_,(z) = (N — k)~! Z;V:k+1 ¢?*Xi. The convergence of the one-parameter process Un(1,z) for
independent and weakly dependent observations was discussed in Feuerverger and Mureika (1977), Csorgd
(1981), Feuerverger (1990). Beran and Ghosh (1990, 1991) consider the above convergence for strongly

dependent Gaussian variables.

3. Estimation of the change-point

In order to be able to consistently estimate the change point ky = [N8] + 1, or the parameter 8, we

need that the alternative distribution functions F(i’N)(x), t = 1,2 converge more slowly than the empirical

processes WJ(\,i’N)(t, z), ¢ = 1,2. This leads to the following

Definition 3.1. A pair (f]éN), f[iN)) of converging alternatives is said slowly converging if the convergence

(2.9), (2.10) holds with (W) (t, z), W(t,2)) = 0 and G(z) £ 0.

We consider two types of estimators of # based on the uniform distance and the L2-distance between

distribution functions, respectively. Put
(VN lleo(t) = sup [V (¢, z)| (3.1)
and
On o = argmax{||Vu||oo(t) : t € [0,1]}, (3.2)
where Vi (¢, x) is defined by (2.7). Also, let

~ VN ooaN,oo
o = Wl v )

o = = S (3.3)
GN,oo(l_gN,oo)

7



Theorem 3.1. Let the pair (f]éN),fNIEN)) be slowly converging. Then under the hypothesis f[iN) for any
6e(0,1)
(HN,ooad]_\flﬁN,oo) — (9’ ||G||oo)a N — oo, (34)

where ||G||eo = sup,, |G(2)].

Proof. Denote G(t,x) = (t A0 —t0)G(x), then

sup |G(t,2)] = 0(1 — 0)]|G]]eo- (3.5)
(t,z)el

., From the proof of Proposition 2.3, under HEN), we have

dy' Va(t, ) 20 G, x),
which implies

d?vl(su)pIIVN(t,x)l = A3 Vi lleo(n,00) = 0(1 = )]G |oo. (3.6)
t,x)€

Moreover, using the representation (2.13) and the convergence dj_\,1 SUP (¢ 2yer |WJ(\,i’N)(t, z)| = 0, we obtain

7(0N 00, ONAGH[FN) = FEN| | = 6(1 = 0)[| G,

or

7(On.00,0) = 6(1 —6) = 7(6,6),

where 7(¢,0) :=t A0 — t0. Consequently, by the inequality 7(#,0) — r(¢,0) > [t — 0|((1 —6) A 9), t € (0,1)
we obtain

ON o = 0. (3.7)

Now, (3.4) follows from (3.6), (3.7).

Apart from the Kolmogorov - Smirnov type statistics Th, Ty, other statistics can be applied in the
change-point problem, in particular the Cramér - von Mises type statistics based on the Ls-distance, such

as

sup / Vi(t, x)dx (3.8)
0<i<1JR

or

/01 /R Vi(t, z)dtde. (3.9)

The asymptotics of the integrals (3.8), (3.9) under the hypothesis of Sect. 2 can be obtained from Propositions
2.1-2.3.



Consider estimation of 0 and of the distance ||[F(LN) — FZN)||, .= (fn |FON) () — F(Z’N)(x)|2dx)1/2

using the statistic (3.8). Put
1/2
Walla(t) = ( [ Vi oyis)
R

and define

Ono = argmax{||Vy||2(t) 1 t € [0, 1]},
Vv l|2(0n,2)

pPN2 = :
On2(l—0n2)
Theorem 3.2. Let the assumptions of Theorem 3.1 be satisfied, and, moreover, dj_\,lNHF(N’l)—F(N’Z)Hz —

[|G||2. Then

(bn 2, dy'Dv.2) = (6,1|G]2), N — oo.
Proof. The convergence (3.6) implies

d5? sup / V2t a)de = dy?|| Vil Bln ) = 0°(1 - 02|12
te[0,1]1 /R

from which the convergence §N72 — 0 and dj_\,lﬁNyz = ||G]]2 follow, similarly as in the proof of Theorem

3.1.

Remark 3.1. In the case of independent observations, Diimbgen (1991) studied the estimator HANVD which

maximizes

1 1
SN(W Z 5Xj—m Z 5X,),

1< <IN [Nt]<j <N
where sy (+) is a seminorm on the N-dimensional Euclidean space and &, is Dirac’s measure. In particular,
he showed that if v > 0 satisfy sN(F(l’N) — F(Z’N)) > C'O’y;,l for some Cy > 0 and all sufficiently large N
and 7% = o(N/loglog N), then

aN,D = 0+ Op(vx/N).

The estimators of Carlstein (1988) and Darkhovsky (1976) are special cases of Diimbgen’s estimator éN,D.

See also Ferger (1994b) for recent results on this estimator.

Remark 3.2. Ferger and Stute (1992) studied an U-statistic type estimator HANVU for the parameter ¢, when
the observations are independent and the alternatives are fixed, i.e. F(N) = ) § =1 2 for all N, and
showed that HANVU — 6 = O(In N/N) with probability 1. In the recent paper Ferger (1994a) obtained the
asymptotic distribution of a related class of max-type estimators of & when the alternatives approach each

other 1n a certain sense.



4. The empirical process of long-memory sequences

Conditions of Propositions 2.1 - 2.3 are well-studied for independent or, at least what concerns the basic
convergence (2.2), for weakly dependent observations X;, j € Z. In recent years, there is a considerable
interest in statistical inference for long-memory time series, including the behavior of empirical processes
(Beran (1992); Dehling and Taqqu (1989) ). One of the basic models is the moving average process

Xj =3 bj_se, (4.1)

s<i

where by, s € Zy = {0,1,...} are (non-random) weights such that >4 < oo, and €5, s € Z is a (noise)
sequence of 1.i.d. random variables, not necessarily Gaussian, with zero mean and variance 1. The long-

memory condition is usually introduced by requiring that the weights decay slowly hyperbolically:
by = L(s)s~(1+P)/2 (4.2)

where 0 < D < 1, and L(-) is a slowly varying function. Condition (4.2) guarantees the corresponding
hyperbolic decay condition
Cov(Xo, X;) = L(j)j~" (4.3)

of the covariance, with a slowly varying function L(j) ~ dL?(j), where d = fooo (u(l+ u))_¥du. The
series (4.1), (4.2) include fractional ARIMA models defined by

®(B)(1 - B)PPX; = W(B),

where BX; = X;_; is the backshift operator, (1 — B)P/? = > reo (Dk/z)(—B)k is the fractional difference
operator, and ®(z), ¥(z) are polynomials satisfying usual conditions ( Granger and Joyeux (1980), Hosking
(1981)).

Statistical analysis of (non-Gaussian) long-memory series (4.1), (4.2) is not easy since the usual tech-
niques of Hermite expansions do not apply. Similarly as in the Gaussian case, even quadratic statistics may
tend to a non-Gaussian limit, and the proofs of the convergence often are technically complicated, see e.g.
Giraitis and Surgailis (1990). The first result on the convergence of the empirical process was recently ob-
tained in Giraitis and Surgailis (1994) (see also Giraitis, Koul and Surgailis (1994)). Introduce the fractional
Brownian motion Zp(t),t € [0,1] (0 < D < 2), which is a (a.s. continuous) Gaussian process with zero

mean and the covariance

EZpt)Zp(s) = _(tP~P +|s|*~7 = |t = s|*~7).

N | =
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The fractional Brownian bridge Zg)(t), t € [0,1] can be defined by
209y = Zp(t) —tZp(1).

Put

dy = d'?L(N)N'-P/2, (4.4)

Theorem 4.1 (Giraitis and Surgailis (1994)). Let 0 < D < 1, and let for the moving average process X; of
(4.1}, (4.2), the following conditions be satisfied:

|Eeivee| < C(14 |u)™ (3C < 0o, Iy > 0), (4.5)
and
Eleg|™ < o0 (Vm > 0). (4.6)
Then
_ D(I
A Wi (tx) 25 2 p) Zp (1), (4.7)

where f(x) = F'(z) = dP{X; < «}/dz is the marginal probability density, Zp(t), t € [0,1] is a fractional
Brownian motion, and

1 1
cp = / / [t —s|~Pdtds = 2(1 — D)~'(2— D)~%.
0 0

Remark 4.1. The limit random field W (¢, z) = c}j/zf(x)ZD (t) in Theorem 4.1 coincides with the correspond-

ing limit in Dehling and Taqqu (1989), Theorem 1.1 for Gaussian X, j € Z. Condition (4.6) can be relaxed
in the sense that moments of ¢y of a sufficiently high order may be infinite. The proof of Theorem 4.1 is
based on the following ”weak uniform reduction principle ” (c.f. Theorem 3.1 of Dehling and Taqqu (1989)):

there are constants C'(8),y > 0 such that for any 0 < é < 1

P{supdy' |Wn(t,z) + J(@)Sing| > 0F < C(O)NT7, (4.8)
T
where
N
Sn = > _X;. (4.9)
j=0

Fix 0 < D < 1 and a slowly varying function Lg(+), and consider the class X1 = X1(D, Lo(+)) of all

moving average stationary processes X = (X;)jez of (4.1), (4.2) with

lim L(j)/Lo(j) = L,

J—00
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and satisfying the conditions of Theorem 4.1. From Proposition 2.2 and Theorem 4.1 it follows

Corollary 4.1. Let the hypothesis Hy = lffo(Xl) be true, i.e. (X1,...,XN) is a sample from a stationary

moving average process X € Xy1. Then for any ¢ > 0

P{Ty > ¢} = P{dy} sup Vi (t,2)| > ¢} = P{ sl[lp]|z<0>< )W > e/(erf 11 llo)}-
te)el te(o

There are several ways one can discuss the change-point problem for converging alternatives about the
moving average model, by specifying an appropriate class X(N). One possibility is as follows. Fix 0 < D < 1,
and a slowly varying function L(-). Put b; = L(j)j —(4D)/2 5 e Zy . Let X(N) X(N)(D L) be the class of

all pairs (XL XNy of moving averages of the form

XN = 37l ei= 1,2, (4.10)
s<y

satisfying the following four conditions:
(a.l) b;i’N) = LON()j=0+DI2 where LEN)(.) varies slowly at infinity;
(a.2) b;i’N) = b;(1+ 0(1)) as N — oo uniformly in j > 0;
(a.3) €5, s € Z are ii.d. and satisfy conditions (4.5), (4.6) of Theorem 4.1;

(a.4) limy_ o dj_\,lN(f(i’N)(x) — f(2)) = ¢"(x) uniformly on compacts and in L'(R), where fN)(z) =
dFGN)(2)/dzx is the marginal density of X(N)(5) (4.10), and f(z) is the density of X; = ngj bi_ses.

Let (lfI(N) lfI(N)) be the pair of alternative hypotheses defined in Sect. 2, and corresponding to the class

X(z) X(N)(D L). In particular, the alternative H( )( ) is

Yo B e, 1< < [0,
S BN, N0 < j <N

X; =
Theorem 4.2. The pair (f]éN), ﬁ[iN)) is converging in the sense of Definition 2.1, with dy given by (4.4),
WOt x) = WOt z) = el *F2)Zp(t), i=1,2,
Zp(t) being the fractional Brownian motion, and

G = [ @) - iy

Proof. From the assumptions (a.l) - (a.3) analogously as in the proof of Theorem 4.1 (see Giraitis and

Surgailis (1994)) one obtains the ”weak uniform reduction principle”:
Plsup d W3 (e 2) + FON @S | > 6} < CONTY,i= 1,2,
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where the constants C'(8),v > 0 do not depend on N. Hence the convergence (2.9) follows from (a.4) and
_ 1,N 2,N)y DOl 1/2
Ay (Sivg - Stvn ) = e (Zo(0), Zp (1), (4.11)

With (a.1) - (a.3) in mind, the last convergence is a rather simple fact; see Giraitis and Surgailis (1994),
or Taqqu (1975). In particular, the asymptotic normality of finite dimensional distributions can be directly

verified by computing cumulants of the left hand side of (4.11). Finally, (2.10) obviously follows from (a.4).

Corollary 4.2. Under the alternative f[iN) (0< b <1) foranyc>0

J\;im P{Ty > ¢} = P{ sup |c}3/2f(x)Z§)0)(t) + (A0 —tNG ()| > c}.
e (t,z)el
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