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Introdu
tion

Flow rea
tors are used in many appli
ations in industry and resear
h. Complex

intera
tions in the rea
tor, su
h as superposition of 
onve
tion and di�usion

pro
esses with 
hemi
al rea
tions in the gas phase or at the walls, make it

diÆ
ult for experimental data to be 
orre
tly interpreted. By means of a

detailed numeri
al simulation, these various e�e
ts 
an be distinguished and

the intera
ting pro
esses o

urring within rea
tive mixing 
ows are easier to

understand.

Air Flux

Fuel Flux

Zone of

Mixing

Air Flux

Figure 1: Flow rea
tor made of an inner and an outer tube where two gases

enter and get in 
onta
t at the outlet of the 
entral tube.

Thus the main interest in the simulation of 
ow rea
tors is the 
omprehension

of the 
omplex interplay between 
ow, mixing pro
esses and rea
tion pro
esses.

To des
ribe the 
hemi
al and physi
al pro
esses taking pla
e in rea
tive 
ows,

many 
hemi
al spe
ies are to be 
onsidered with often a few hundred elemen-

tary rea
tions. Considering the equations for velo
ities, pressure, temperature,

and ea
h spe
ies, the system of PDEs modelling the rea
tive 
ow 
ontains usu-

ally between 10 and 50 equations and is highly non-linear. The leading terms

in these equations may vary in spa
e and time. In the rea
tion zones, the

system may be
ome rea
tion-dominated through sti� sour
e terms. In other

parts of the domain where 
hemi
al rea
tions are weak, either the 
onve
tion

terms (by high Reynolds number) or the di�usive terms (as in non-rea
tive

boundary layers) may be predominant.
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Several methods for the simulation of rea
tive 
ows have already been imple-

mented, usually based on �nite di�eren
e or �nite volume dis
retizations on

tensor produ
t meshes (see for instan
e [18℄, [55℄). A 
ode based on �nite di�er-

en
es has re
ently been applied to the simulation of a low-pressure 
ow rea
tor

for kineti
 studies in [46℄, in order to improve existing methods (as plug-
ow

te
hniques) for evaluating data from isothermal 
ow kineti
 measurements. It

has been developed for the low Ma
h-number regime and makes use of splitting

te
hniques for variables and spatial dimensions thereby redu
ing the 
ompu-

tational e�ort. Numeri
al results of full rea
tive 
ow simulation have been


ompared with the measurement of elementary relaxation and vibrational en-

ergy transfer pro
esses. As a model system for a simple kineti
 pro
ess the

heterogeneous relaxation of vibrationally ex
ited hydrogen (H

2

(v

00

= 1)) and

its energy transfer in 
ollisions with deuterium (D

2

(v

00

= 0)) was 
onsidered

(see Chapter 6):

H

2

(v

00

= 1) wall

�����!

H

2

(v

00

= 0);

H

2

(v

00

= 1) +D

2

(v

00

= 0)

������!

H

2

(v

00

= 0) +D

2

(v

00

= 1):

This made it possible to evaluate spe
ies wall dea
tivation probabilities and

rea
tion rate 
onstants for vibrational energy transfer. However, this simula-

tion did not bring enough information about the pre
ision on the 
omputed

quantities, whi
h 
ould assure that the error done on these quantities was lower

than a given toleran
e. Nor did the tensor-produ
t mesh allow to eÆ
iently


ontrol the a

ura
y of the 
al
ulation lo
ally in the zones of the 
ow tube

that were of interest. Moreover, due to some instabilities in the method, it

was ne
essary to use pseudo-time stepping to obtain steady solutions, whi
h


ould have been avoided in some 
ases.

In order to eliminate these weaknesses and a
hieve better a

ura
y in the

solution with reasonable 
omputational e�ort, we develop in this work a new

method for the simulation of 
hemi
al 
ow rea
tors with pre
ise evaluation

of some physi
al quantities. We derive this method from re
ent te
hniques

for adaptive mesh re�nement whi
h allows to redu
e the numeri
al e�ort and

nevertheless a
hieve good or even better a

ura
y in the data that may be of

interest 
ompared to a straightforward tensor produ
t approa
h. This makes

possible on the one hand to simulate 
ow rea
tors on simple workstations

or PCs without any 
ompromise with respe
t to the quality of the 
omputed

solution, and on the other hand, on super-
omputers, to rea
h an a

ura
y that


ould not be a
hieved on simple tensor produ
t meshes or on lo
ally adapted

meshes 
onstru
ted a

ording to ad ho
 
riteria, usually justi�ed on physi
al

grounds, whose impa
t on the a

ura
y of the numeri
al solution is diÆ
ult to

assess.

Chapter 1 dis
usses the dimension redu
tion of the 
omputational domain.

For the simulation of 
ir
ular 
ow tubes assuming an axial symmetry, it is

10



suÆ
ient to 
onsider only half of an meridional se
tion of the tube to des
ribe

the rea
tive 
ow. We dis
uss here problems invariant under rotation, and the

derivation of weighted Sobolev spa
es needed in the weak formulation of the

system to be solved.

The model 
onsidered 
onsists of the 
ompressible Navier-Stokes equations

with additional 
onve
tion-di�usion-rea
tion equations for the 
hemi
al spe
ies.

The goal is the simulation of stationary or quasi-stationary rea
tive 
ows at

low Ma
h number for the evaluation of kineti
 rea
tion parameters as well as

pro
ess optimization of 
hemi
al rea
tion systems in 
ow rea
tors. The 
om-

plete model for multispe
ies 
ows is presented in Chapter 2 and then restri
ted

by simplifying the di�usive part of the spe
ies transport as well as taking into

a

ount the low-Ma
h number 
ow state, in order to make fast 
omputations

possible without too mu
h loss in the model a

ura
y a

ording to the physi
s.

The rea
tion model is also presented and the form of the 
hemi
al sour
e terms

is dis
ussed. Further the physi
al 
onstraints on the model are explained.

The dis
retization of the equations is dis
ussed in Chapter 3. We use a �nite el-

ement method based on bilinear elements de�ned on re
tangles (Q

1

elements).

The standard Galerkin dis
retization using Q

1

elements is not stable and has

to be stabilized. Details are given about the pressure stabilization and the

streamline di�usion methods for steady and unsteady 
ompressible 
ows at

low Ma
h number.

The highly non-linear system obtained requires very eÆ
ient numeri
al meth-

ods. Therefore a robust non-linear solver is needed. A defe
t 
orre
tion method

with step size 
ontrol is developed by approximating the Newton matrix. The

degree of approximation required is assessed a

ording to 
onsisten
e and solv-

ability of the 
orresponding linear systems.

In Chapter 4 the solver is des
ribed. The outer iteration is based on defe
t


orre
tion and the inner large linear problems are solved by an iterative method

GMRES with the help of a multigrid method as pre
onditioner. GMRES and

multigrid methods are among the most eÆ
ient modern te
hniques for solving

large s
ale algebrai
 systems resulting from �nite element dis
retizations of

PDEs. The multigrid method needs an appropriate smoother for rea
tive 
ow

problems on lo
ally re�ned meshes. The development of a Vanka smoother

for the Navier-Stokes part of the system and the use of Gauss-Seidel or ILU

smoothing for the 
hemi
al part lead to an eÆ
ient and robust method.

Another important part of this work deals with error 
ontrol and mesh adap-

tivity. The aim is to a
hieve reliability in the sense that physi
ally relevant

derived quantities, whi
h 
an be thought of as fun
tionals of the solution, are

approximated to within a given toleran
e. The use of duality arguments leads

to the 
ontrol of the error in fun
tionals of the solution, whi
h 
an be quanti-

ties su
h as point values of the temperature or line averages of mass fra
tions

11



(whi
h 
orresponds to a CARS signal for instan
e, see Chapter 6). The mesh

adaptivity based on an a posteriori error estimate gives us the possibility to

re�ne the mesh lo
ally only in the zones where it is ne
essary in order to 
om-

pute these quantities with the required a

ura
y. We treat this problem of

adaptivity and a

urate quantity 
omputations in Chapter 5. The 
on
ept of

error estimation for fun
tionals of the solution is explained and we apply this

method to produ
e \optimal" meshes for reliable and eÆ
ient 
omputation of

rea
tive 
ows in 
ow rea
tors. A quantitative error estimation of fun
tionals

is espe
ially important for 
omparison between simulation and experiment to

validate the underlying model. The model and numeri
al method developed

in this work are indeed validated through experimental measurement whi
h

also provides the data essential for parameter estimation, su
h as dea
tivation

probabilities for vibrationally-ex
ited H

2

mole
ules.

In order to test the eÆ
ien
y of the adaptive method and of the solvers, we


onsider in Chapter 6 three relevant problems in 
ow rea
tors:

� CARS (Coherent Antistokes Raman Spe
tros
opy) measurement of de-

a
tivation rea
tions and rea
tion rate for energy transfer of vibrationally-

ex
ited H

2

mole
ules,

� LIF-Spe
tros
opy for the kineti
 analysis of rea
tions between NH and

NO mole
ules as well as between NH and O

2

mole
ules in the 
ase of

high temperatures, and

� CA-CVD (Combustion Aided Chemi
al Vapor Deposition) for the opti-

mization of a diamond deposition pro
ess.

In the �rst 
ase, the mixture 
onsist of 9 spe
ies with heterogeneous rea
tions

of dea
tivation on the wall as well as gas-phase rea
tions between H

2

and D

2

mole
ules. The 
omplete 
hemi
al model 
onsist of 27 gas-phase rea
tions

and 5 wall rea
tions. The evolution of the 
on
entration of some spe
ies is

measured along the axis of the tube on well de�ned measurement points. The

solution method with adaptive mesh re�nement is applied to 
ompute the

evolution of the spe
ies 
on
entration along the axis with optimal pre
ision on

these measurement points. We are then able to 
ompare a

urate simulation

results with measurements and thus derive rea
tion rates.

In the se
ond 
ase, the mixture 
onsidered (based on produ
ts of rea
tions be-

tween NO

2

and H

2

) 
onsists of 8 spe
ies with homogeneous and heterogeneous

rea
tions with heated walls (Diri
hlet boundary 
onditions for the temperature

at the wall). The temperature range to be 
onsidered is 300K (temperature

of the in
oming gas 
ow) to 1700K. These high temperature gradients indu
e

some numeri
al instabilities in the in
ow region so that only a quasi-stationary

solution 
an be found. We have to use here a time step method to be able to


onverge to a solution.
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A CA-CVD experiment (see [32℄ and [23℄) has also been simulated. The aim

is to optimize the quality and quantity of diamond deposition on a substrate.

The system to be solved is more 
omplex than the former system for the

simulation of the CARS experiment. The mixture 
ontains 39 spe
ies and the

rea
tion model 
onsists of 358 
hemi
al rea
tions. An inje
tion of methane

is done from a pipe into a gas mixture made of produ
ts of a H

2

=O

2


ame.

It has been shown that the deposition of diamond strongly depends on the


on
entration of CH

3

near the substrate. Working with su
h a large system

of equations does not allow to use simple stru
tured meshes without error


ontrol on the values we are interested in. The adaptive pro
ess developed in

this work not only allow us to 
ompute a

urately physi
al values - su
h as the

CH

3


on
entration near the substrate - but also to deal with more 
ompli
ated


hemi
al pro
esses. This was made possible by improving the performan
e

of the simulation pro
ess with respe
t to already existing 
odes. Using an

adaptive re�nement pro
ess based on error fun
tionals allows us to get higher

a

ura
y on some physi
al value of interest with a given number of 
ells, and

thus drasti
ally redu
e memory requirements. Moreover, the implementation

of robust and eÆ
ient solvers make it possible to redu
e the 
omputation time.

All 
omputations here 
an be done on a workstation.

The basi
 prin
iples of �nite element methods is assumed to be known. Some

referen
es are given for an introdu
tion to �nite element dis
retizations.
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Chapter 1

Axisymmetri
 Problems and

Dimension Redu
tion

Most physi
al problems are naturally formulated as boundary problems in

three dimensional domains. However three dimensional 
omputations are very

expensive and sometimes pra
ti
ally impossible on workstations. It is there-

fore ne
essary to rewrite the problem with two dimensional equations. This

is obtained by assuming that the dependen
y of the parameters, data and

solution with respe
t to one of the three variables 
an be negle
ted, whi
h

is justi�ed in many situations. Here we are interested in the 
ase where the

three-dimensional 
omputation domain is invariant under rotation around an

axis. Thus, without any approximation, the problem 
an be transformed into

a family of two dimensional equations on the Fourier 
oeÆ
ients (
f. [9℄).

Moreover, if the data satisfy suitable axisymmetry properties, only the Fourier


oeÆ
ient of order 0 subsists, so that the three dimensional problem 
an be

redu
ed to a two dimensional one. We will deal with this later 
ase in this

work. The problems we are interested in are indeed invariant under rotation

(see later).

The axisymmetri
 fun
tions whi
h belong to standard Sobolev spa
es on the

three dimensional domain 
an be mapped onto fun
tions in the 
orresponding

two dimensional domain. These new fun
tions belong to weighted Sobolev

spa
es, the weight being the distan
e to the symmetry axis. We 
hara
terize

these fun
tions as the elements of the weighted spa
es su
h that suitable tra
es

vanish on the rotation axis.

All this leads to transform an axisymmetri
 boundary value problem on the

three dimensional domain into an equivalent problem on the 
orresponding

two dimensional domain. For more details see [11℄, [41℄ and [2℄.

15



1.1 Des
ription of Axisymmetri
 Problems

For a generi
 point in R

3

, we use both 
artesian 
oordinates (x; y; z) and


ylindri
al 
oordinates (r; �; z) in R

+

�℄� �; �℄� R, with

r =

p

x

2

+ y

2

and � =

(

� ar

os

x

r

if y < 0;

ar

os

x

r

if y � 0.

(1.1)

In R

2

we use the 
artesian 
oordinates (r; z) and we de�ne the half-spa
e R

2

+

as the set of points in R

2

with positive 
oordinate r.

Let 
 denote a bounded domain 
ontained in R

2

+

. The axisymmetri
 domain

�


 is the three-dimensional set obtained by rotating 
 around the axis r = 0.

We are interested in two-dimensional domains of the following types for the

rea
tive 
ow 
omputations in Chapter 6:

� CARS 
ow rea
tor:

Fuel Flux

Air Flux

Symmetry line

Mixing Zone

Figure 1.1: 
 = half axial se
tion of the CARS 
ow rea
tor shown in Fig. 1.

� CVD 
ow rea
tor:

�����������������������
�����������������������
�����������������������
�����������������������

Outflow

CH
4

H  / O
2 2

Symmetry line

Substrate (wall)

Inner pipe

(Flame inflow)

Figure 1.2: 
 = half axial se
tion of the CVD rea
tor
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We denote by �

0

the part of the boundary �
 
ontained in the axis r = 0, i.e.

the symmetry line. We set � = �
n�

0

. The boundary �
 is a polygon, i.e.

the union of a �nite number of segments.

The 
orresponding three-dimensional domain

�


, 
orresponding to the whole


ow rea
tor shown in Fig. 1, is de�ned as:

�


 = f(x; y; z) 2 R

3

j (r; z) 2 
 [ �

0

and � � < � � �g: (1.2)

Let R

�

denote the rotation with angle � with respe
t to the axis r = 0 in R

3

,

i.e.

R

�

(x; y; z) = (x 
os � � y sin �; x sin � + y 
os �; z): (1.3)

Of 
ourse,

�


 is invariant by any rotation R

�

. The unit outward normal ve
tor

�n to

�


 is obtained by rotating the unit outward ve
tor n to 
 on �.

1.2 Problems Invariant under Rotation

The problems whi
h are 
onsidered in this work are invariant under rotation.

Let us 
onsider the boundary value problem [

�

A;

�

B℄ on

�


 where the unknown

is a ve
torial fun
tion �v with M 
omponents:

(

�

A�v =

�

f in

�


;

�

B�v = �g on �

�


:

(1.4)

The symbol � over a letter means that the 
orresponding fun
tion, distribution

or operator is de�ned on

�


. Here

�

A is a linear system of partial di�erential

operators and

�

B is a system of boundary di�erential operators.

De�nition 1. Problem [

�

A;

�

B℄ is said to be invariant under rotation if the

following property holds for any smooth fun
tion �v from

�


 into R

M

:

8� 2 [��; �℄ :

(

�

A(�v Æ R

�

) = (

�

A�v) Æ R

�

;

�

B(�v Æ R

�

) = (

�

B�v) Æ R

�

:

(1.5)

Equivalently, problem [

�

A;

�

B℄ is invariant under rotation if the operators

�

A and

�

B 
an be written in the following form in 
ylinder 
oordinates (r; �; z):

�

A(x; y; z; �

x

; �

y

; �

z

) =

�

A(r; z; �

r

; �

�

; �

z

);

�

B(x; y; z; �

x

; �

y

; �

z

) =

�

B(r; z; �

r

; �

�

; �

z

);

(1.6)
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i.e. with 
oeÆ
ients independent of the variable �. A basi
 example is the

Lapla
e operator

4 = �

2

x

+ �

2

y

+ �

2

z

= �

2

r

+

1

r

�

r

+

1

r

2

�

2

�

+ �

2

z

(1.7)

Diri
hlet boundary 
onditions or, more generally, 
onditions whi
h only depend

on the normal derivative �

�n

to the boundary, are invariant under rotation.

1.3 Data and Solutions Invariant under Rota-

tion

De�nition 2. A fun
tion �v is said to be invariant under rotation if the fol-

lowing property holds

8� 2 [��; �℄ : �v Æ R

�

= �v: (1.8)

Problems whi
h are invariant under rotation are asso
iated with fun
tions

invariant under rotation: if problem [

�

A;

�

B℄ satis�es (1.5) and if �v is invariant

under rotation, so are

�

f and �g; the 
onverse property holds when problem

[

�

A;

�

B℄ has at most one solution.

When the operators

�

A and

�

B as well as the data

�

f and �g are invariant under

rotation, we easily see that this problem is 
losely linked to the two-dimensional

problem

(

Av = f in 
;

Bv = g on �;

(1.9)

where

f(r; z) =

�

f(x; y; z);

g(r; z) = �g(x; y; z);

A(r; z; �

r

; �

z

) =

~

A(r; z; �

r

; 0; �

z

);

B(r; z; �

r

; �

z

) =

~

B(r; z; �

r

; 0; �

z

);

(1.10)

~

A and

~

B being de�ned in (1.6).

Thus in the 
ase of a problem invariant under rotation, we have a
tually re-

du
ed the number of variables from 3 to 2.

When problem [

�

A;

�

B℄ is invariant under rotation, and if the data

�

f and �g are

invariant under rotation, it is readily 
he
ked that the following propositions

are equivalent:

� �v is a solution of [

�

A;

�

B℄ and is invariant under rotation,

� v is a solution of [A;B℄.
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1.4 Basi
 Formulas

With ea
h 
oordinate system, we asso
iate an orthonormal basis: (e

x

; e

y

; e

z

) for

the 
artesian system, and (e

r

; e

�

; e

z

) for the 
ylindri
al system. The derivative

with respe
t to ea
h of these 
oordinates is denoted by � indexed by the


oordinate. From the basi
 identities

�

x

= �

r


os � �

1

r

�

�

sin �; �

y

= �

r

sin � �

1

r

�

�


os �

we derive the formulas for operators a
ting on s
alar fun
tions and on ve
to-

rial fun
tions. A fun
tion �v with values in R

3

is written either in 
artesian


oordinates v

x

e

x

+v

y

e

y

+v

z

e

z

or in 
ylindri
al 
oordinates v

r

e

r

+v

�

e

�

+v

z

e

z

.

The problems we are interested in are invariant under rotation. Thus the

derivative a

ording to the variable � as well as the 
omponent v

�

of the ve
tor

de�ned above vanish, whi
h leads to the following formulas:

� For s
alar fun
tions:


artesian 
oordinates 
ylindri
al 
oordinates

rv �

x

v e

x

+ �

y

v e

y

+ �

z

v e

z

�

r

v e

r

+ �

z

v e

z

4v �

2

x

v + �

2

y

v + �

2

z

v �

2

r

v +

1

r

�

r

v + �

2

z

v

� For ve
torial fun
tions:


artesian 
oordinates 
ylindri
al 
oordinates

r:�v �

x

v

x

+ �

y

v

y

+ �

z

v

z

�

r

v

r

+

1

r

v

r

+ �

z

v

z

4�v

(�

2

x

v

x

+ �

2

y

v

x

+ �

2

z

v

x

) e

x

+(�

2

x

v

y

+ �

2

y

v

y

+ �

2

z

v

y

) e

y

+(�

2

x

v

z

+ �

2

y

v

z

+ �

2

z

v

z

) e

z

(�

2

r

v

r

+

1

r

�

r

v

r

+ �

2

z

v

r

�

1

r

2

v

r

) e

r

+ (�

2

r

v

z

+

1

r

�

r

v

z

+ �

2

z

v

z

) e

z

r�v

2

4

�

x

v

x

�

x

v

y

�

x

v

z

�

y

v

x

�

y

v

y

�

y

v

z

�

z

v

x

�

z

v

y

�

z

v

z

3

5

2

4

�

r

v

r

0 �

r

v

z

0 v

r

=r 0

�

z

v

r

0 �

z

v

z

3

5
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1.5 Weighted Sobolev Spa
es

In the problems we 
onsider, the solution is sought in a Sobolev spa
e or a

produ
t of Sobolev spa
es. From the spa
e L

2

(

�


) of square integrable fun
tions

for the measure dx dy dz, the Sobolev spa
es H

s

(

�


) for any positive integer s

are de�ned. Then we derive the spa
es H

s

0

(

�


) as the 
losure in H

s

(

�


) of the

spa
e C

1

0

(

�


) and �nally the spa
es H

�s

(

�


) as the dual spa
es of H

s

(

�


).

1.5.1 De�nition and Properties of the Weighted Spa
es

The spa
e L

2

�

(
) is de�ned as the set of measurable fun
tions w su
h that

kwk

L

2

�

(
)

=

�

Z




w

2

(r; z) r

�

dr dz

�

1

2

< +1: (1.11)

For any positive integer s, H

s

�

(
) is the spa
e of fun
tions w in L

2

�

(
) su
h

that their partial derivatives of order � s belong to L

2

�

(
). It is provided with

the semi-norm

jwj

H

s

�

(
)

=

 

s

X

l=0

k�

l

r

�

s�l

z

wk

2

L

2

�

(
)

!

1

2

; (1.12)

and with the norm

kwk

H

s

�

(
)

=

 

s

X

l=0

jwj

2

H

l

�

(
)

!

1

2

(1.13)

Thus it is a Hilbert spa
e.

We state the prin
ipal results in the following propositions. We �rst de�ne

a mapping for s
alar fun
tions. We are interested in the 
hara
terization of

the fun
tions in H

s

(

�


) whi
h are invariant under rotation in the sense (1.8).

We denote the 
orresponding subspa
e by

�

H

s

(

�


). Any element �v in

�

H

s

(

�


) is


ompletely 
hara
terized by the fun
tion v de�ned by

v(r; z) = �v(x; y; z):

Proposition 1. Let s be a positive integer. The mapping: �v ! v is one-to-one

from

�

H

s

(

�


) onto the spa
e H

s

+

(
) de�ned as follows:

� If s is not an even integer,

H

s

+

(
) =

n

w 2 H

s

1

(
); �

2j�1

r

wj

�

0

= 0; 1 � j �

s

2

o

; (1.14)

endowed with the natural norm

kwk

H

s

+

(
)

= kwk

H

s

1

(
)

; (1.15)
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� if s is an even integer,

H

s

+

(
) =

�

w 2 H

s

1

(
); �

2j�1

r

wj

�

0

= 0; 1 � j �

s

2

;

and �

s�1

r

w 2 L

2

�1

(
)

	

;

(1.16)

endowed with the natural norm

kwk

H

s

+

(
)

=

�

kwk

2

H

s

1

(
)

+ k�

s�1

r

wk

2

L

2

�1

(
)

�

1=2

: (1.17)

And then a mapping for ve
torial fun
tions. We are interested in triple of

fun
tions �v = (v

x

; v

y

; v

z

) in 
artesian 
oordinates in H

s

(

�


)

3

whi
h also satisfy

(1.8) with I

�

= R

��

. This spa
e is also denoted by

�

H

s

(

�


). We de�ne, as

in se
tion (1.4), the radial 
omponent v

r

, the angular 
omponent v

�

, and the

axial 
omponent v

z

of the ve
tor �eld �v. Then the following proposition holds:

Proposition 2. Let s be a positive integer number. The mapping: �v !

(v

r

; v

�

; v

z

) is well de�ned and one-to-one from

�

H

s

(

�


) onto the produ
t spa
e

H

s

�

(
)�H

s

�

(
)�H

s

+

(
) where the spa
e H

s

+

(
) is de�ned in proposition (1)

and the spa
e H

s

�

(
) is de�ned as follows:

� If s is not an odd integer,

H

s

�

(
) =

�

w 2 H

s

1

(
); �

2j

r

wj

�

0

= 0; 0 � j �

s� 1

2

�

; (1.18)

� if s is an odd integer,

H

s

�

(
) =

�

w 2 H

s

1

(
); �

2j

r

wj

�

0

= 0; 0 � j �

s� 1

2

;

and �

s�1

r

w 2 L

2

�1

(
)

	

:

(1.19)

The proof of these theorems may be found in [2℄.

1.6 Spe
ial Case

From these results we 
an derive the spe
ial 
ase s = 1 whi
h we need in


hapter 3 to write the variational formulation.

�

H

1

(

�


) is the spa
e of fun
tions in H

1

1

(

�


) whi
h are invariant under rotation.

A

ording to the previous propositions, the spa
eH

1

+

(
) 
oin
ides withH

1

1

(
).

And H

1

�

(
) is the spa
e of fun
tions w in H

1

1

(

�


) su
h that wj

�

0

= 0 and

w 2 L

2

�1

(
).
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To take boundary 
onditions into a

ount, we must introdu
e the subspa
e of

fun
tions in H

1

�

(
) whi
h vanish on a 
ertain part �

1

of the boundary of 


whi
h is not on the axis:

H

1

�;0

(
) =

�

v 2 H

1

�

(
); v = 0 on �

1

	

(1.20)

We de�ne in the same way the subspa
e of fun
tions in H

1

+

(
) whi
h vanish

on a 
ertain part �

1

of the boundary of 
 whi
h is not on the axis:

H

1

+;0

(
) =

�

v 2 H

1

+

(
); v = 0 on �

1

	

(1.21)

22



Chapter 2

Equations

The intention for the numeri
al simulation presented in this work is to pro-

vide pro�les for 
on
entration, temperature, density and velo
ity �elds. The

equations governing 
hemi
al rea
tive 
ows are based on the 
ompressible for-

mulation of the Navier-Stokes equations, for the global behavior of the mixture


ow, with additional 
onve
tion-di�usion-rea
tion equations for the tempera-

ture and the 
hemi
al spe
ies. The equations are written in the primitive form,

i.e. with the variables � (density) or p (pressure), u (velo
ity), T (tempera-

ture), and w (mass fra
tions). The set of 
oupled partial di�erential equations


onsidered des
ribes the 
onve
tive motion of the 
uid, the 
hemi
al rea
tions

among the 
onstituent spe
ies, and the di�usive transport pro
esses su
h as

thermal 
ondu
tion and mole
ular di�usion. Its origin is the 
onservation of

the physi
al variables �; �u; �E; �w. While using these variables to write the

equations, the formulation is said to be 
onservative. For smooth solutions,

both formulations (
onservative or primitive) are equivalent. In many appli-


ations, the formulation with primitive variables has the advantage of simpler

boundary 
onditions and determination of transport 
oeÆ
ients (most of them

are given as fun
tions of the primitive variables).

2.1 Navier-Stokes Equations

The most general des
ription of a 
uid 
ow is obtained from the full system of

Navier-Stokes equations. These are obtained by writing the mass and momen-

tum 
onservation. For multi
omponent 
ows, they des
ribe the evolution in

time and spa
e of the density and velo
ity of the whole mixture, i.e. averaged

quantities for the global 
ow. They are the following:

� Mass 
onservation : The law of mass 
onservation is a general statement

of kinemati
 nature. It is independent of the nature of the 
uid or of
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the for
es a
ting upon it. It expresses the empiri
al fa
t that, in a 
uid

system, mass 
annot disappear from the system nor be 
reated. The

mass 
onservation equation is

��

�t

+r � (� u) = 0; (2.1)

with � the density of the 
uid, whi
h 
ould not be 
onsidered as 
onstant

in the 
ase of multi
omponent 
ows, even in the 
ase of low-Ma
h-number


ows, sin
e the mixture is not usually homogeneous. u is the velo
ity of

the 
ow.

� Momentum 
onservation : The sour
es for the variation of momentum

in a physi
al system are the for
es a
ting on it. These for
es 
onsist

of the external volume for
es f

e

and the internal for
es f

i

. The latter

are dependent on the nature of the 
uid 
onsidered, and result from

the assumptions made about the properties of the internal deformations

within the 
uid and their relation to the internal stresses. We will assume

that the 
uid is Newtonian, and therefore the total internal stresses �

are taken to be

� = �pI + � ; (2.2)

where I is the unit tensor and p the isotropi
 pressure. � is the vis
ous

shear stress tensor. With the ex
eption of very high temperatures or

pressures, the stress tensor for Newtonian 
uids has the following form

(see [26℄):

� = �

�

ru+ (ru)

T

�

2

3

(r � u) I

�

; (2.3)

where � is the dynami
 vis
osity of the 
uid. In the 
ase of multi
om-

ponent 
ows, it is a fun
tion of the partial vis
osities and mole fra
tion

of ea
h spe
ies (see se
tion 2.4).

The equation of motion then be
omes

�

�u

�t

+ � (u � r) u+rp�r � � = � f

v

; (2.4)

with f

v

the external volume for
es.

2.2 Energy Conservation

The pro�le of temperature of the multispe
ies 
ow 
an be obtained through

energy 
onservation. The energy 
ontent of a system is measured by its internal
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energy per unit mass e. This internal energy is a state variable of a system and

hen
e its variation during a thermodynami
al transformation depends only on

the �nal and initial states. In a 
uid the total energy to be 
onsidered in

the 
onservation equation is the sum of its internal energy e and its kineti


energy per unit mass u

2

=2. The �rst law of thermodynami
s states that the

sour
es for the variation of the total energy are the work of the for
es a
ting

on the system plus the heat transmitted to this system. A distin
tion has to

be made between the surfa
e and volume sour
es. The volume sour
es are the

sum of the work of the volume for
es f . Hen
e we have, Q

v

= � f � u. The

surfa
e sour
es are the result of the work done on the 
uid by the internal

shear stresses a
ting on the surfa
e of the volume 
onsidering that there are

no surfa
e heat sour
es:

Q

s

= � � u = �p u+ � � u: (2.5)

The di�usive 
ux q of heat due to mole
ular thermal 
ondu
tion is given by

the Fourier's law of heat 
ondu
tion

q = ��rT; (2.6)

with � the thermal 
ondu
tivity 
oeÆ
ient and T the temperature.

Writing the 
onservation of the total energy and 
onsidering the mass and

momentum 
onservation equation as des
ribed in [44℄ or [26℄, we obtain

�

de

dt

+ pr � u = � : ru+r � (�rT ); (2.7)

with

de

dt

=

�e

�t

+ u � re the total derivative of the intern energy a

ording to

time.

We de�ne the spe
i�
 enthalpy as

h = e+

p

�

(2.8)

For an ideal gas (see Se
tion 2.6, [58℄), the enthalpy is a fun
tion of the temper-

ature T and gas 
hemi
al state whi
h 
an be represented by the mass fra
tion

of ea
h 
omponent w = (w

i

)

i=1;::: ;n

s

, with n

s

the number of spe
ies in the mix-

ture. The total variation of enthalpy for an ideal gas 
an be then expressed as

follow:

dh =

�

�h

�T

�

p;w

dT +

n

s

X

i=1

�

�h

�w

i

�

p;T

dw

i

: (2.9)
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By de�nition the variation of enthalpy a

ording to the temperature at 
on-

stant pressure and 
hemi
al state is 
alled 


p

, spe
i�
 heat 
apa
ity:




p

=

�

�h

�T

�

p;w

: (2.10)

We derive the total variation of internal energy:

de = 


p

dT +

p

�

2

d��

1

�

dp+

n

s

X

i=1

�

�h

�w

i

�

p;T

dw

i

: (2.11)

Using the 
ontinuity equation (2.1), it yields

�

de

dt

= � 


p

dT

dt

+ pr � u�

dp

dt

+

n

s

X

i=1

�

�h

�w

i

�

p;T

dw

i

dt

(2.12)

Sin
e h, the averaged enthalpy of the mixture 
onsidered as an ideal gas (see

[58℄), ful�lls the relation

h =

n

s

X

i=1

h

i

w

i

; (2.13)

with h

i

the spe
i�
 enthalpy of spe
ies i, equation (2.12) 
an be written as

follow:

�

de

dt

= �

dp

dt

+ pr � u+ � 


p

dT

dt

+

n

s

X

i=1

h

i

dw

i

dt

: (2.14)

The total time derivative of w

i


an be expressed with a di�usion and a re-

a
tion terms (
f. Se
tion 2.3 for the 
hara
teristi
s of these terms). This

result together with equation (2.7) leads to an equation whi
h des
ribes the

temperature evolution:

� 


p

dT

dt

=

dp

dt

+ � : ru+r � (�rT ) +

n

s

X

i=1

h

i

[r � j

i

� f

i

(T; w)℄: (2.15)

We use a simpli�ed form of this equation be
ause several terms may usually

be negle
ted. Sin
e we 
onsider only 
ows at low-Ma
h number, the energy

sour
e due to internal stresses 
an be negle
ted. We are interested in this

work in low pressure 
ow rea
tor. For su
h 
ows the pressure is 
onsidered as

quasi-
onstant in time and spa
e. Therefore we do not take into a

ount in

the following the pressure variation term in this equation. Moreover the term

P

i

h

i

r � j

i

, whi
h represents the di�usion of spe
ies with di�erent enthalpies,
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is usually omitted, 
onsidering that the partial enthalpies h

i

are nearly iden-

ti
al. Taking these simpli�
ations into a

ount, the equation for temperature

be
omes

� 


p

�T

�t

+ � 


p

u � rT �r � (�rT ) = f

T

(T; w): (2.16)

The 
oeÆ
ients 


p

and � are the spe
i�
 heat 
apa
ity at 
onstant pressure

and the heat 
ondu
tivity of the mixture, respe
tively. The sour
e term f

T

depends on the temperature and the 
hemi
al state. Let us denote by h

i

the

spe
i�
 enthalpy of spe
ies i, and by 


p

i

the spe
i�
 heat 
apa
ity of spe
ies i.

The sour
e term is then

f

T

(T; w) = �

n

s

X

i=1

h

i

(T ) f

i

(T; w): (2.17)

The enthalpy h

i

of spe
ies i is given by

h

i

(T ) = h

i;T

0

+

Z

T

T

0




p;i

(T

0

) dT

0

; (2.18)

with an enthalpy h

i;T

0

for a referen
e temperature T

0

. The partial heat 
a-

pa
ity of spe
ies i is represented by 


p;i

. The temperature dependen
e of these

partial heat 
apa
ities is modelled empiri
ally. A fourth order polynomial �t

in T , with 
oeÆ
ients determined by experiments, is widely used in numeri
al


omputations:




p;i

(T ) =

k

X

j=0

�

j

T

j

i = 1; : : : ; n

s

: (2.19)

We use the 
oeÆ
ients from data bases developed at the Sandia National

Laboratories [36℄ for the 
omputations in 
hapter 6.

The heat 
ondu
tivity � 
orresponds to an average value for the mixture a

or-

ding to the 
hemi
al state of the gas and is de�ned in Se
tion 2.4.

The fa
tors f

i

(T; w

j

) are 
hemi
al produ
tion terms and are de�ned in the

next se
tion.

2.3 Spe
ies Mass Conservation

The evolution of the 
hemi
al state of the gas in multi
omponent 
ows 
an be

des
ribed with the mass 
onservation of ea
h 
hemi
al spe
ies. These latter


an be represented by their mass fra
tion or by their mole fra
tion. We present

here the formulation in mass fra
tions w

i

. Both formulations are equivalent

27



although the formulation with mole fra
tions leads to a slightly more 
om-

pli
ated transport term, while the formulation with mass fra
tions leads to a

slightly more 
ompli
ated di�usion term. Another di�eren
e is found in the


al
ulation of the Ja
obian matrix of the resulting non-linear system. We refer

here to Chapter 4 for more details. The mass 
onservation of ea
h spe
ies


an be written with the help of a di�usion 
ux j

i

, a sour
e term (
reation or

destru
tion) f

i

and the 
onve
tive transport of the spe
ies. For a mixture of

n

s


hemi
al spe
ies, the 
orresponding equations are

�

�w

i

�t

+ � (u � r)w

i

+r � j

i

= f

i

(w; T ); i = 1; : : : ; n

s

; (2.20)

with w the ve
tor of all mass fra
tions w

i

, 
hara
terizing the 
hemi
al state,

and T the temperature. The sour
e term f

i

depends on both the temperature

and 
hemi
al state.

This se
tion deals further with the non-linearities brought by the multispe
ies


hara
ter of the 
ow. In some regions of the domain, the 
ow may be dom-

inated by rea
tion sour
e terms that 
ouple all the 
hemi
al variables with

ea
h other as well as with the temperature. Also in regions where the 
hem-

i
al rea
tions are weak, the non-
onstant di�usion 
oeÆ
ients 
ause another

non-linearity and a 
oupling between all the 
hemi
al equations.

2.3.1 Modelling of Chemi
al Rea
tions and Sour
e Terms

For the des
ription of the 
hemi
al 
onversion in the gas phase, the 
hemi
al

me
hanisms are made up of elementary rea
tions. An elementary rea
tion 
an

be generally des
ribed by

n

s

X

i=1

a

ir

�

i

k

r

�!

n

s

X

i=1

~a

ir

�i ; (2.21)

where �

i

represents the ith spe
ies and k

r

the rea
tion rate of the rea
tion

number r. a

ir

and ~a

ir

are the stoi
hiometri
 
oeÆ
ients of spe
ies i respe
tively

as edu
t and produ
t in the rea
tion r. In order to 
onserve the mass, these


oeÆ
ients must ful�ll the equation

n

s

X

i=1

M

i

(~a

ir

� a

ir

) = 0; (2.22)

with M

i

being the molar mass of spe
ies i. In ea
h rea
tion r of the above

type, up to three spe
ies are involved on ea
h side. Therefore, only up to three


oeÆ
ient a

ir

do not vanish for ea
h r.
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The produ
tion rate for spe
ies i, denoted _w

i

, is obtained by adding the parti-


ipation of all the rea
tions 
onsidered to the 
reation or destru
tion of spe
ies

i. De�ning n

r

as the total number of rea
tions,

_w

i

(T; w) =

n

r

X

l=1

(

(~a

il

� a

il

) k

l

(T )

n

s

Y

j=1




a

jl

j

(w)

)

; (2.23)

with 


j

the 
on
entration of spe
ies j, given by




j

=

�w

j

M

j

: (2.24)

The 
hemi
al sour
e terms for the spe
ies equations in mass fra
tions have the

form

f

i

(T; w) =M

i

_w

i

(T; w); i = 1; : : : ; n

s

: (2.25)

Due to the property (2.22) on the stoi
hiometri
 
oeÆ
ients we 
on
lude that

the sum over all the n

s

sour
e terms vanishes:

n

s

X

i=1

f

i

= 0: (2.26)

The dependen
e on temperature for the rea
tion rate is given by the following

Arrhenius-law

k

r

(T ) = A

r

T

�

r

exp

�

�

E

ar

RT

�

: (2.27)

This law is empiri
ally validated. The 
onstants A

r

, �

r

and the a
tivation

energy E

ar

are usually determined through experiments. R is the ideal gas


onstant.

2.3.2 Surfa
e Rea
tions

The rea
tion model used in this work for surfa
e rea
tions introdu
es a rea
tion

probability 
 (named �sti
king 
oeÆ
ient

�

for parti
les in the gas phase whi
h hit

a wall surfa
e (see [56℄ and [17℄ for more information about surfa
e rea
tions

and their modelization). These parti
les 
an rea
t (re
ombination, de
ompo-

sition) or di�use further un
hanged in the gas phase. We 
onsider here the


ase of surfa
e rea
tions in whi
h there is only one gas-phase rea
tant. These

rea
tions are des
ribed by the following s
heme:

a

jr

�

j




r

�!

n

s

X

i=1

~a

ir

�i; j = 1; : : : ; n

s

: (2.28)
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The 
orresponding rea
tion rate per surfa
e unit for spe
ies i over all the n

0

r

surfa
e rea
tions is given by

_w

0

i

(T; w) =

n

0

r

X

r=1

(




r

1

4

s

8RT

�M

j




j

(~a

ir

� Æ

ij

a

jr

)

)

; (2.29)

j being the single edu
t spe
ies of the rea
tion r. In this wall rea
tion model,

there is indeed exa
tly one edu
t spe
ies for ea
h surfa
e rea
tion.

The probability 
oeÆ
ients are taken to be




r

= a

r

T

b

r

exp

�

�




r

RT

�

; r = 1; : : : ; n

0

r

; (2.30)

with a

r

, b

r

and 


r

usually determined by experiments. One goal of these simu-

lations is pre
isely to determine the value of wall de
omposition probabilities

by 
omparing numeri
al with experimental results. In our appli
ations (see

Chapter 6) we have 
onsidered only 
onstant probability 
oeÆ
ients.

From a numeri
al point of view, we must be 
areful to 
orre
tly evaluate the

surfa
e as well as the gas-phase produ
tion terms. Numeri
al experiments

showed us that a good lo
al 
onvergen
e in the rea
tion zones have to be

rea
hed in order to get an a

urate solution. Indeed the produ
tion or de-

stru
tion of spe
ies anywhere in the domain may have in
uen
e on the whole


ow. Hen
e a 
onvergen
e statement on the global residuum is generally not

suÆ
ient.

Sin
e the surfa
e rea
tions o

ur only lo
ally on the walls, i.e. on some domain

boundaries, the numeri
al 
ontribution of these rea
tions to the residuum and

ja
obian matrix is only restri
ted to the edges 
orresponding to a wall, i.e. on

a few one-dimensional elements (for two-dimensional 
omputations). These

sour
e terms in
uen
e the boundary 
onditions at walls for the temperature

and the spe
ies mass fra
tions (see Chapter 3). For the temperature, energy is

given to or taken from the gas phase depending on whether the rea
tions have


reated or 
onsumed energy. For the spe
ies boundary 
onditions, a balan
e

between the di�usion 
ux at the wall and the spe
ies 
reation or destru
tion

rates is 
onsidered.

The in
uen
e of the surfa
e rea
tion terms on the 
ow is of importan
e even

if their parti
ipation to the global residuum might be small (due to their lo
al

existen
e). The a

ura
y on the solution needed lo
ally to resolve these terms

reinfor
e the importan
e of the adaptive mesh-re�nement pro
ess (
f. Chapter

5).

2.3.3 Transport CoeÆ
ients

Transport property evaluation plays an important and often time-
onsuming

role in the 
omputational modelling of gaseous multi
omponent rea
ting 
ows.
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Two approa
hes are mostly 
onsidered for evaluating transport 
oeÆ
ients. In

a �rst approa
h, a dire
t numeri
al inversion of the transport linear systems

derived from kineti
 theory is 
onsidered. This strategy often be
omes 
ompu-

tationally expensive. In a se
ond approa
h, an empiri
al average expression is

used, whi
h yields less a

urate transport 
oeÆ
ients but allows to deal with


omplex rea
tive systems with smaller 
omputational e�orts.

The di�usion 
ux, r � j

i

, in (2.20) 
an be written with the help of the spe
ies

di�usion velo
ity V

i

as

j

i

= �w

i

V

i

; i = 1; : : : ; n

s

; (2.31)

the spe
ies di�usion velo
ities being de�ned by the kineti
 theory of dilute

polyatomi
 gas mixture (see [54℄) as

V

i

=

1

x

i

M

n

s

X

j 6=i

M

j

D

ij

d

j

�

D

T

i

�w

i

1

T

rT ; (2.32)

with D

ij

the multi
omponent di�usion 
oeÆ
ients (see [27℄), D

T

i

the thermal

di�usion 
oeÆ
ients and d

i

the di�usion driving for
e of the ith spe
ies. The

ve
tors d

i

in
orporate the e�e
ts of various state-variable gradients and are

given by

d

i

= rx

i

+ (x

i

� w

i

)

rp

p

; 8 i = 1; : : : ; n

s

: (2.33)

x

i

denotes the mole fra
tion of the ith spe
ies, M

i

the spe
ies molar mass of

the ith spe
ies andM the mean molar mass of the mixture, whi
h depends for

multi
omponent 
ows on the mixture 
hemi
al state:

1

M

=

X

i

w

i

M

i

: (2.34)

The mass fra
tions w

i

and mole fra
tions x

i

are related as follows:

x

i

= w

i

M

M

i

:

Thus we see from equations (2.32) and (2.33) that the di�usion 
ux from the

spe
ies mass 
onservation equation (2.20) is 
omposed of three parts: mass

di�usion (Fi
k's law) due to gradients in molar fra
tions, thermo-di�usion due

to temperature gradients (Soret e�e
t), and pressure di�usion due to pressure

gradients.

It follows from the above equations that the detailed modelling of a poly-

atomi
 gas mixture requires the evaluation of its transport 
oeÆ
ients, i.e.
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the multi
omponent and the thermal di�usion 
oeÆ
ients. These 
oeÆ
ients

are fun
tions of the state of the mixture as given by the variables p, T , and

w

1

; : : : ; w

n

s

. Their evaluation requires solving linear systems, referred to as

the transport linear systems (for more details on this see [20℄ and [35℄).

In order to redu
e the 
omputational e�ort, mixture-averaged formulations

may be used, whi
h allows to avoid solving linear systems. Mixture-averaged

di�usion 
oeÆ
ients 
an be de�ned with the help of the multi
omponent prop-

erties. By de�nition, in the mixture, the di�usion velo
ities are then related

to the spe
ies gradients by a Fi
kian formula as

V

i

= �

1

x

i

D

i

d

i

�

D

T

i

�w

i

1

T

rT; i = 1; : : : ; n

s

: (2.35)

The mixture di�usion 
oeÆ
ients (see [12℄) are 
omputed as

D

i

=

1� x

i

P

n

s

j 6=i

x

j

=D

ji

; i = 1; : : : ; n

s

; (2.36)

with D

ji

the binary di�usion 
oeÆ
ient of spe
ies pair (j; i) (see [27℄). These


oeÆ
ients are nearly proportional to the square-root of the temperature and

inversely proportional to the pressure.

A potential problem with this expression is that it is not mathemati
ally well-

de�ned in the limit of the mixture be
oming a pure spe
ies. Considering

equation (2.36), this modelling is not able to handle the spe
ial 
ase of pure

spe
ies. Even though di�usion itself has no real meaning in the 
ase of a pure

spe
ies, a 
omputer-program implementation should ensure that the di�usion


oeÆ
ients behave reasonably and that the 
ode does not \blow up" when

the pure spe
ies 
ondition is rea
hed. To over
ome this diÆ
ulty we always

maintain a residual amount of ea
h spe
ies. Spe
i�
ally, we assume in the

above formulas that

x

i

= x̂

i

+ Æ; (2.37)

where x̂

i

is the a
tual mole fra
tion and Æ is a small number that is numeri-


ally insigni�
ant 
ompared to any mole fra
tion of interest, yet whi
h is large

enough in order to be represented in 
omputer arithmeti
. We have experien-


ed reasonable numeri
al behavior 
onsidering Æ = 10

�12

.

A further problem is that this latter di�usion model does not ne
essarily ful-

�ll the mass 
onservation 
onstraint whi
h implies that the spe
ies di�usion

velo
ities satisfy the mass 
onservation relation

n

s

X

i=1

w

i

V

i

= 0: (2.38)
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This topi
 will be 
onsidered in Se
tion 2.5 in more details.

Finally we have restri
ted in this work the di�usion 
ux to the �
kian di�usion.

As result we obtain the following spe
ies mass 
onservation equations:

�

�w

i

�t

+� (u � r)w

i

+r � (�D

i

rw

i

)

�r � (�D

i

w

i

M

rM) = f

i

(w; T ) ; i = 1; : : : ; n

s

: (2.39)

2.4 Mixture-Averaged Flow Properties

Our obje
tive in this se
tion is to determine mixture properties from the pure

spe
ies properties. In the 
ase of vis
osity and heat 
ondu
tivity, we use the

empiri
al laws given in [56℄. The vis
osity � of a mixture 
an be modelled with

an a

ura
y of approximately 10% by the partial vis
osities �

i

and the mole

fra
tions x

i

of the spe
ies:

�(T; w) =

1

2

2

4

n

s

X

i=1

x

i

�

i

+

 

n

s

X

i=1

x

i

�

i

!

�1

3

5

: (2.40)

The �

i

= �

i

(T ) are nearly proportional to the square-root of the temperature.

We use a polynomial �t with 
oeÆ
ients determined by experiments [36℄. The

heat 
ondu
tivity � has a similar representation:

�(T; w) =

1

2

2

4

n

s

X

i=1

x

i

�

i

+

 

n

s

X

i=1

x

i

�

i

!

�1

3

5

; (2.41)

with �

i

the partial heat 
ondu
tivity, whi
h are also 
al
ulated as a polynomial

of the temperature.

2.5 Physi
al 
onstraints

By de�nition, the sum over all mass fra
tions must be one and the mass 
on-

servation implies that the sum over the di�usive 
uxes should vanish:

n

s

X

i=1

w

i

= 1 ;

n

s

X

i=1

j

i

= 0: (2.42)

Moreover ea
h mass fra
tion w

i

must, also by de�nition, have a value between

zero and one:

0 � w

i

� 1; 8 i = 1; : : : ; n

s

: (2.43)
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Some 
are needs to be taken in using the mixture-averaged di�usion 
oeÆ
ients

as des
ribed above. The mixture formulas are approximations and they are

not 
onstrained to require that the sum over all spe
ies di�usion 
uxes is zero,

i.e. 
ondition (2.38) needs not be satis�ed. Therefore, one must expe
t that

applying these mixture di�usion relationships in the solution of a system of

spe
ies 
onservation equations should lead to some non-
onservation, i.e. the

resultant mass fra
tions will not sum to one. Therefore one of a number of


orre
tive a
tions must be invoked to ensure mass 
onservation.

One possible approa
h is to de�ne a \
onservation di�usion velo
ity" as re
-

ommended in [16℄. In this approa
h it is assumed that the di�usion velo
ity

ve
tor is given as

V

k

=

^

V

k

+ V




; (2.44)

where

^

V

k

is the ordinary di�usion velo
ity given by equation (2.35) and V




is a 
onstant 
orre
tion fa
tor (independent of spe
ies, but spatially varying)

introdu
ed to satisfy equation (2.38). The 
orre
tion velo
ity is de�ned by

V




= �

n

s

X

k=1

w

k

^

V

k

: (2.45)

An alternative is based on ex
luding the 
onservation equation for one spe
ies.

Its mass fra
tion is then 
omputed simply by subtra
ting the sum of the re-

maining mass fra
tions from unity. This is an attra
tive method for problems

having one spe
ies that is always present in ex
ess. A similar approa
h involves

determining lo
ally at ea
h 
omputational 
ell, whi
h spe
ies is in ex
ess. The

di�usion velo
ity for that spe
ies is then 
omputed to require satisfa
tion of

equation (2.38).

But even though the 
omplete multi
omponent formulation is theoreti
ally

for
ed to 
onserve mass, and so should also be 
orre
ted methods for the

simpli�ed formulation, numeri
al implementations and resolution errors 
an


ause some slight non-
onservation. Depending on the numeri
al method, even

slight in
onsisten
ies 
an lead to diÆ
ulties. Therefore a third approa
h may

be used that ensures (2.38) but also (2.43). This latter basi
 
ondition must

absolutely be ful�lled to avoid in
onsisten
ies with the physi
s and that the

resolution method su�ers 
omputational ineÆ
ien
ies or 
onvergen
e failures.

A 
orre
tion 
an be made dire
tly on the mass fra
tions ŵ

i

that are 
al
ulated

with the mixture-averaged di�usion model. This model 
an deliver slightly

negative or greater-than-one mass fra
tions. The 
orre
tion is then

~w

i

=

(

10

�12

if ŵ

i

� 10

�12

;

ŵ

i

otherwise;

w

i

=

~w

i

P

n

s

k=1

~w

k

:
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This allows to avoid the pure spe
ies problem and leads to physi
ally rea-

sonable values for the mass fra
tions. Nevertheless the w

i

obtained are not

solution of the multi
omponent-
ow system anymore. One should ensure that

this 
orre
tion is not too strong a

ording to the solution ŵ

i

obtained by the

resolution of the system of partial di�erential equations. Therefore we may

apply this method as 
omplementary 
orre
tive measure to the methods de-

s
ribed above sin
e, in this 
ase, we 
an be sure that the magnitude of this


orre
tion will be signi�
antly smaller.

In this work only the latter 
orre
tion is applied to the solution at every non-

linear step of the solving pro
ess (see Chapter 4). Numeri
al tests showed us

that the other 
orre
tions did not have mu
h in
uen
e on the solution for our

appli
ation 
ases. The order of the 
orre
tion in our tests was lo
ally at most

10% on the spe
ies mass fra
tions.

2.6 Ideal Gas Law

Usually an algebrai
 equation of state for the mixture 
loses the system. In

many instan
es a 
ompressible 
uid 
an be 
onsidered as a perfe
t gas, even

if vis
ous e�e
ts are taken into a

ount. The ideal gas law gives a relation

between the pressure and the density:

p =

�R T

M

; (2.46)

where R is the universal gas 
onstant andM the mean molar mass of the mix-

ture. While 
onsidering the low-Ma
h-number approximation, the pressure

whi
h is to be found in this later state equation is the 
onstant thermodynam-

i
al pressure p

th

.

De�ning 
 = 


p

=


v

, the speed of sound 
 is given by




2

=

�

�p

��

�

s

=


 R T

M

=


 p

�

; (2.47)

We 
an then de�ne the Ma
h number by

M =

juj




: (2.48)

For our appli
ations, it is supposed to be small. For example in the 
ow re-

a
tor for the CARS experiment presented in Chapter 6, with a 
uid velo
ity

of 50 m/s, the Ma
h number is 0.018. Under a value of 0.3, the 
uid may be


onsidered as hydrodynami
ally in
ompressible. However in the 
ase of multi-


omponent 
ows, this does not mean that the density of the 
ow is 
onstant.
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For ideal gases, the 
ontinuity equations 
an be rewritten in a form independent

of the variable �. From the relation 2.46, dividing the equation 2.1 by � yields

to the following form of the 
ontinuity equation:

1

p

dp

dt

+

1

M

dM

dt

�

1

T

dT

dt

+r � u = 0; (2.49)

with the de�nition of the total derivative

d

dt

=

�

�t

+ u � r.

In the following se
tion we will see that the pressure term 
an be negle
ted for

the pressure remains 
onstant in �rst approximation. The 
ontinuity equation

is �nally

1

M

dM

dt

�

1

T

dT

dt

+r � u = 0: (2.50)

2.7 Low-Ma
h-Number approximation

In low-Ma
h-number 
ows, the pressure �eld 
an be split in two parts, one


onstant and the other variable in spa
e and time. The �rst one is 
alled the

thermodynami
al part and the se
ond one the hydrodynami
al part:

p = p

th

+ p

hyd

: (2.51)

The hydrodynami
al part p

hyd

is negligible a

ording to the thermodynami
al

part p

th

. Rewriting the ideal gas law with these 
onditions leads to an equation

for the density:

� =

M p

th

RT

: (2.52)

This splitting has been used in many publi
ations (see for instan
e [42℄, [39℄,

[40℄) and we sket
h here the method whi
h leads to it.

We must �rst write the governing 
onservation equations with non-dimensional

variables, taking the Ma
h number into a

ount. The Ma
h number used to

make the variables dimensionless is evaluated at the initial state. For the sake

of simpli
ity, we write here only the non-dimensional momentum equation:


M

2

�

dû

dt

= �rp̂+


M

2

R

e

r � �̂ : (2.53)

The^means that the 
orresponding variable is in non-dimensional form. Re =

L�u

�

is the Reynolds number of the 
ow (L is a 
hara
teristi
 length of the

problem) and

d

dt

=

�

�t

+ û � r. Sin
e the Ma
h number is small and sin
e it

appears in the equations as � = 
M

2

, all the gas dynami
 variables may be
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expanded in terms of �. That is, any variable � 2 [�; u; p; T; w℄ 
an be expanded

as follow:

�(x; t) = �

0

(x; t) + � �

1

(x; t) + �

2

�

2

(x; t) +O(�

3

): (2.54)

Considering the variable p and substituting into (2.53), the momentum equa-

tion reads

��

Dû

Dt

= �rp̂

0

� �rp̂

1

� �

2

rp̂

2

+

�

R

e

r � �̂ : (2.55)

Gathering terms that are independent of M , one �nds rp

0

= 0, whi
h shows

immediately that

p

0

= p

0

(t) (2.56)

This is the main result of the low Ma
h number approximation. The largest


omponent of the pressure is 
onstant throughout the �eld and 
hanges only

with time. p

0

is the thermodynami
 pressure. The se
ond 
omponent of

the pressure appears in the �-
omponent of the expansion of the momentum

equation:

�

0

Du

0

Dt

= �rp

1

+

1

R

e

r � �

0

: (2.57)

p

1

is the hydrodynami
 pressure and is generated to balan
e the 
hanges in

momentum within the 
ow �eld. Its 
ontribution to the total pressure is

restri
ted to �.

2.8 Cylinder Coordinates

As we saw in Chapter 1, the operators in 
ylinder 
oordinates involve sup-

plementary terms that are not to be found in 
artesian 
oordinates. In this

se
tion we des
ribe the equations dis
ussed in the previous se
tions developed

in 
ylinder 
oordinates and fo
us on these supplementary terms. Some infor-

mation about generalized 
urvilinear 
oordinates 
an be found in [24℄ or [1℄,

and about the Navier-Stokes equations in 
ylinder 
oordinates in [44℄.

2.8.1 The Stress Tensor

The stress tensor written in 
anoni
al form in Se
tion 2.3 depends on the

velo
ity-gradient tensor. Considering the symmetry 
ondition, just as in Chap-

ter 1, this latter tensor 
an be written in 
ylinder 
oordinates in the basis

(e

r

; e

�

; e

z

):
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ru =

0

�

�u

r

�r

0

�u

z

�r

0

u

r

r

0

�u

r

�z

0

�u

z

�z

1

A

The stress tensor is

� = � (ru+r

T

u)�

�

2

3

�r � u+ p

�

I:

De�ning a generalized pressure by

p

�

=

2

3

�r � u+ p (2.58)

and again taking into a

ount the symmetry 
ondition, the stress tensor be-


omes

� =

0

�

2�u

r

� p

�

0 � (w

r

+ u

z

)

0 2�

u

r

� p

�

0

� (w

r

+ u

z

) 0 2�w

z

� p

�

1

A

:

In the 
ylinder system of 
oordinates, whi
h is de�ned in this work with the

orthonormal base (e

r

; e

�

; e

z

), the �rst and third 
omponents of the divergen
e

of a symmetri
 tensor t of se
ond order is :

(r � t)

1

=

1

r

t

11

+

�t

11

�r

+

1

r

�t

12

��

+

�t

13

�z

�

t

22

r

;

(r � t)

3

=

�t

33

�z

+

1

r

t

31

+

�t

31

�r

+

�t

32

��

:

Thus the �rst 
omponent of the divergen
e of the stress tensor in 
ylinder


oordinates with axial symmetry is

(r � �)

1

= r � (�ru

r

) + �

�

�r

(r � u) +r� �

�u

�r

� �

u

r

2

�

�p

�

�r

:

The se
ond 
omponent of the divergen
e of the stress tensor vanishes, due to

axial symmetry. It remains the third 
omponent:

(r � �)

3

= +r � (�ru

z

) + �

�

�z

(r � u) +r� �

�u

�z

�

�p

�

�z

:

One has to remember that the divergen
e in 
ylinder 
oordinates is

r � u =

�u

r

�r

+

u

r

r

+

�u

z

�z

:
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2.8.2 The Equations in Cylinder Coordinates

Additional terms appear in 
ylinder 
oordinates for the ve
torial equations.

Taking into a

ount the results of the previous 
hapter, we 
an then write the

momentum 
onservation equations (2.4) in 
ylinder 
oordinates. Writing the

velo
ity in 
ylinder 
oordinates u = (u

r

; u

z

), the system of equations is

1

M

dM

dt

�

1

T

dT

dt

+r � u = 0; (2.59)

�

�u

r

�t

+ � (u � r) u

r

�r � (�ru

r

)

� �

�

�r

(r � u)�r� �

�u

�r

+ �

u

r

r

2

+

�p

�

�r

= � f

(r)

v

;

(2.60)

�

�u

z

�t

+ � (u � r) u

z

�r � (�ru

z

)

� �

�

�z

(r � u)�r� �

�u

�z

+

�p

�

�z

= � f

(z)

v

;

(2.61)

� 


p

�T

�t

+ � 


p

(u � r)T +r � (�rT ) = f

T

(w; T ); (2.62)

�

�w

i

�t

+ � (u � r)w

i

+r � j

i

= f

i

(w; T ); 8 i = 1; : : : ; n

s

: (2.63)
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Chapter 3

Dis
retization

This 
hapter presents and analyzes a �nite element s
heme for simulating the

three major pro
esses in rea
tive 
ows: 
hemi
al rea
tions, di�usion and 
on-

ve
tion.

The methods used in simulation of rea
tive 
ows are usually based on either

�nite di�eren
es for its simple implementation and mathemati
al ba
kground

as in [3℄ and [46℄ or �nite volumes whi
h are a range of methods widely spread

in the engineering �eld (see [19℄ for a study of some s
hemes). The method

used in this work is based on 
onforming \Q

1

/Q

1

" Galerkin �nite elements.

The basi
s on the mathemati
al theory of �nite element methods used in this

work 
an be found in the books of Johnson [30℄ and Brenner/S
ott [15℄.

The 
hoi
e of a �nite element method is prin
ipally motivated by the 
exibility

it o�ers with respe
t to adaptive mesh re�nement. It 
an be 
oupled with error


ontrol based on a posteriori error estimates provided by the orthogonality

property of the method as explained in Chapter 5. Thus a

ura
y for some

physi
al quantities whi
h are to be pre
isely known 
an be guaranteed.

In this 
hapter, we dis
uss the dis
retization of the unsteady and steady multi-

spe
ies low-Ma
h-number 
ompressible Navier-Stokes equations with adve
tion-

di�usion-rea
tion equations for 
hemi
al spe
ies. The aim is to simulate quasi-

stationary low-Ma
h-number 
ows in 
ow rea
tors.

The appli
ation of 
onforming �nite elements to the in
ompressible or 
om-

pressible Navier-Stokes equations is standard (see for instan
e [4℄, [49℄ or [10℄).

Extensions to thermally 
oupled 
ows or multispe
ies rea
tive 
ows have also

been developed in the last de
ade. The reader 
an �nd some examples in [38℄,

[50℄, [37℄ or in the more re
ent work [13℄.

In the 
ase of axisymmetri
 
ows, the three-dimensional problem 
an be trans-

formed to a two-dimensional one (see 
hapter 1). Although su
h a transfor-

mation redu
es the 
omputation time, we have to deal with the following

problems:
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� The di�erential operators in the axisymmetri
 formulation have singu-

larities on the axis. We have to work with weighted Sobolev spa
es (see


hapter 1 or [41℄, [11℄).

� The radial and the axial 
omponents of the velo
ity belong to di�erent

Sobolev spa
es.

We dis
retize the equations modelling axisymmetri
 multispe
ies rea
tive 
ows

with stabilized Q1 elements for all variables. The equations 
onsidered have

indeed two di�erent sour
es of diÆ
ulties that a stable dis
retization must

over
ome.

The �rst diÆ
ulty is the velo
ity-pressure 
oupling brought by the saddle-point

stru
ture of the Stokes system of equations. It is well known that this approa
h

does not lead to a stable dis
retization unless the �nite dimensional spa
es

ful�ll the \inf-sup" 
ondition (see [25℄). In order to get a stable dis
retization,

we add weighted mesh-dependent least-squares terms to the standard Galerkin

formulation as proposed by Hughes et al. in [29℄.

The se
ond kind of instability o

urs in the 
ase of high Reynolds num-

bers, when the system be
omes 
onve
tion-dominated. The standard Galerkin

method for 
onve
tion dominated problems produ
e approximations whi
h


ontain \spurious" os
illations in 
ase of non-smooth exa
t solutions. The

os
illations result from a la
k of stability of the method. A standard �nite

element te
hnique to deal with s
alar 
onve
tion-di�usion equations is the

streamline di�usion method (see [30℄, [60℄). The stabilization is done by adding

further weighted least-square terms to the dis
rete equations. The stabilizing

perturbation term 
an be physi
ally thought as a numeri
al di�usion term in

the dire
tion of the streamlines. This modi�
ation enhan
es stability with-

out a strong e�e
t on the a

ura
y be
ause the terms added are based on the

residual.

3.1 De�nitions

Using the notations of 
hapter 1, we denote the inner s
alar produ
t in L

2

1

(
)

by

(u; v) =

Z




u(r; z) v(r; z) r dr dz (3.1)

We also denote by X the solution ve
tor of the system presented in the next

se
tion, that is

X = [u

r

; u

z

; p

�

; T ℄

T

: (3.2)

For simpli
ity, in the following the notation p will repla
e p

�

. We will 
all it

the generalized pressure.
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3.2 The Variational Formulation

In this se
tion, we 
onsider the 
ontinuity equation (2.59) as well as the mo-

mentum equations (2.60) and (2.61). We also 
onsider a di�usion-
onve
tion-

rea
tion equation modelling the evolution equations of temperature and spe
ies

mass fra
tions. It 
an be written as follow:

�

�T

�t

+ � (u � r)T +r � (�rT ) = f

T

(w; T ): (3.3)

The variational formulation of the resulting system is obtained by writing the

equations in weak form and integrating by parts. We de�ne the energy forms

for ea
h equation:

� The 
ontinuity equation:

a

1

(X; q) =

�

1

�

M

d

�

M

dt

; q

�

�

�

1

T

dT

dt

; q

�

+ (r � u; q); (3.4)

� The �rst momentum 
onservation equation:

a

2

(X;') =(�

du

r

dt

; ')�

�

p;

�'

�r

+

'

r

�

+ (�ru

r

;r')

+

�

�

u

r

r

2

; '

�

�

�

�

�

�r

(r � u); '

�

�

�

r� �

�u

�r

; '

�

;

(3.5)

� The se
ond momentum 
onservation equation:

a

3

(X; ) =

�

�

du

z

dt

;  

�

�

�

p;

� 

�z

�

+ (�ru

z

;r )

�

�

�

�

�z

(r � u);  

�

�

�

r� �

�u

�z

;  

�

;

(3.6)

� The energy or spe
ies-mass 
onservation equations

a

4

(X; �) =

�

�

dT

dt

; �

�

+ (�rT;r�); (3.7)

with

d

dt

=

�

�t

+ u � r the total time derivative.

Using the notations of Chapter 1, we denote by V

�

= H

1

�;0

and V

+

= H

1

+;0

the

spa
es for the velo
ity �eld, by Q = L

2

1

(
) the spa
e for the pressure and by

S = H

1

+;0

(
) the spa
e for the temperature and mass fra
tions.
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We de�ne the ve
torial energy form 
orresponding to the whole system by

a(X; �) = a

1

(X; q) + a

2

(X;') + a

3

(X; ) + a

4

(X; �); (3.8)

with the ve
torial test fun
tion � = [q; ';  ; �℄

T

2 V = V

�

� V

+

�Q� S.

The right hand side ve
tor f of the system is

f = [0; f

(r)

v

; f

(z)

v

; f

T

℄

T

: (3.9)

The variational formulation 
onsists then in �nding X 2 V = V

�

�V

+

�Q�S

su
h that

a(X; �) = (f; �) 8 � 2 V (3.10)

holds.

3.3 Boundary Conditions

3.3.1 General Boundary Conditions

For this problem, the boundary 
onditions are on the four di�erent boundaries

the following:

symmetry on �

0

: u

r

= 0;

in
ow on �

1

: u = u

0

; T = T

0

;

wall on �

2

: u = 0;

�T

�n

= f

0

T

;

out
ow on �

3

: �

�u

�n

� p � n = 0;

�T

�n

= 0;

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

(3.11)

where �
 = �

0

[ �

1

[ �

2

[ �

3

, and f

0

T

is a surfa
e sour
e terms. Sin
e the

integration is weighted by the fa
tor r, the natural boundary 
ondition on

the symmetry boundary �

0

vanishes. Nevertheless, a

ording to the propo-

sition 2 of Se
tion 1.5.1, the radial velo
ity u

r

is zero on the symmetry line

�

0

. The Neumann or mixed 
onditions on the other domain boundaries are

obtained through the natural boundary 
onditions supplied by the variational

formulation.

3.3.2 Supplementary Conditions

Other 
onditions 
oming dire
tly from the equations for a steady-state solution


an be taken into a

ount.
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A 
ondition on u

z


an be found in the 
ase of a steady-state solution through

the 
ontinuity equation (2.1) whi
h leads to the relation

Z

�

3

� u � n d� +

Z

�

0

� u � n d� +

Z

�

1

� u � n d� = 0; (3.12)

sin
e the velo
ity is zero on the wall boundary �

2

. On the symmetry line, the

normal n is in the radial dire
tion. For the out
ow and in
ow it is in the axial

dire
tion. At the symmetry line the integration weight r is zero. We then

obtain

Z

�

3

� u

z

r dr =

Z

�

1

� u

z

r dr: (3.13)

The integral upon the in
ow boundary is known for u

z

whi
h is set by a

Diri
hlet 
ondition. It physi
ally means that the mass that 
ows into the tube

goes out.

Again for the out
ow, a 
ondition on the generalized pressure 
an be found

by 
onsidering the natural boundary 
ondition on the out
ow boundary. The

relation

Z

�

3

(�

�u

z

�z

� p) r dr = 0 (3.14)

is 
ompleted by the mass 
onservation property

�u

z

�z

= �

�(r u

r

)

�r

: (3.15)

The 
ontinuity equation in strong formulation may be written in this way

only if the density � remains 
onstant. This should be the 
ase on the out
ow

boundary. Therefore, to be sure that this relation is respe
ted, we must assume

that no 
hemi
al rea
tion take pla
e on the out
ow and that the mixing pro
ess

is 
omplete. If additionally the vis
osity � is also 
onstant on the out
ow (the

same hypothesis should lead to su
h a situation), a dire
t integration yields

Z

�

3

p r dr = 0; (3.16)

sin
e r = 0 on the symmetry line and u

r

= 0 on the wall.

Another 
ondition 
an be derived from the 
ontinuity equation at least in the


ase of a strong solution of equation (2.1). We must here 
onsider the three-

dimensional domain and remember that the symmetry boundary 
orresponds

to the middle of the 
ow rea
tor. Thus if the solution is smooth enough, the

mass 
onservation in strong form may be ful�lled, parti
ularly in the middle

of the tube where no singularity is found. Lets 
onsider the following integral:

I

0

=

Z

�

0

�r � (� u) r dz = 0 8� 2 L

2

1

(�

0

); (3.17)
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if the above hypothesis is ful�lled. This integral 
an be de
omposed as follows

I

0

=

Z

�

0

r �

�� u

r

�r

dz +

Z

�

0

r �

�� u

z

�z

dz +

Z

�

0

r �

u

r

r

dz: (3.18)

We have I

0

= 0, sin
e r = 0 on this boundary. The �rst and se
ond integrals

of the right hand side are zero for the same reason. We 
an then dedu
e that

Z

�

0

�u

r

dz = 0 8� 2 L

2

1

(�

0

); (3.19)

whi
h means that the radial 
omponent of the velo
ity is zero on the symmetry

line. Therefore, if the above 
onditions are ful�lled, no Diri
hlet boundary


ondition needs to be set on the symmetry line for the radial velo
ity.

3.3.3 Symmetry Boundary Condition

Depending on the spa
e whi
h the three-dimensional solution belongs to, the

mapping between the three-dimensional and the two-dimensional problems 
an

also lead to supplementary boundary 
onditions whi
h are 
ontained within

the �nite element spa
es 
onsidered. On
e again a

ording to Proposition

2, the solution may indeed ful�ll supplementary 
onditions on the symmetry

boundary if it has enough regularity. In the 
ase of a three-dimensional solution

whi
h belongs to

�

H

2

(

�


), with regard to the de�nition of the spa
e H

2

+

, the

normal derivative to the symmetry boundary of the solution 
omponents u

r

,

p and T vanishes. If the solution is sought in H

1

+

, these boundary 
onditions

on the symmetry line for the variable 
ited above are not valid anymore.

3.4 Dis
retization in Spa
e

Starting from the variational formulation (3.10) supplemented by the bound-

ary 
onditions (3.11), we 
hoose the �nite element subspa
es V

h

� V to obtain

the standard Galerkin dis
retization. We 
onsider in this work an approxi-

mation by pie
ewise bi-linear shape fun
tions on meshes T

h

= fKg made of

quadrilaterals and satisfying the usual regularity 
onditions (quasi-uniformity).

The width of the mesh T

h

is 
hara
terized in terms of the mesh size fun
tion

h = h

max

= max

K2T

h

(h

K

) with h

K

= diam(K). In order to ease the re�ne-

ment and 
oarsening pro
esses, one hanging node per element edge is allowed.

Considering the ve
torial energy form de�ned in (3.8), the dis
rete solution

X

h

2 V

h

is determined by the equation

a(X

h

; �

h

) = (f; �

h

) 8 �

h

2 V

h

; (3.20)

with V

h

the set of pie
ewise bi-linear shape fun
tions on T

h

, whi
h is a subset

of V de�ned in (3.8).
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3.5 Stabilization

As mentioned before, the standard Galerkin dis
retization obtained for the

Navier-Stokes equations does not yield a stable algorithm unless the spa
es

ful�ll the dis
rete LBB-
ondition (
f. [14℄, [25℄). This 
ondition is a 
ompat-

ibility 
ondition for the velo
ity-pressure 
oupling. An alternative, presented

by Hughes et al. in [29℄, is to modify the dis
rete bilinear form in order to get

a stable dis
retization.

Moreover the 
onve
tion terms in any 
onve
tion-di�usion equation lead to

supplementary instabilities. Non-physi
al os
illations 
an appear in numeri
al

solutions of the Navier-Stokes equations. Therefore the approa
h is modi�ed.

The stability of the Galerkin �nite element method has to be improved, but

it has to be done 
arefully sin
e additional stability is often obtained at the

pri
e of de
reased a

ura
y. We 
onsider two ways of enhan
ing the stability

of the standard Galerkin �nite element method:

� introdu
tion of weighted least-squares terms;

� introdu
tion of arti�
ial vis
osity based on the residual.

We refer to the Galerkin �nite element method with these modi�
ations as

the streamline di�usion method. The �rst modi�
ation adds stability through

least squares 
ontrol of the residual and the se
ond modi�
ation adds stability

by the introdu
tion of an ellipti
 term with the size of the di�usion 
oeÆ
ient

depending on the residual with the e�e
t that di�usion is added where the

residual is large, i.e. typi
ally where the solution is non-smooth. Both modi�-


ations enhan
e stability without a strong e�e
t on the a

ura
y be
ause both

modi�
ations use the residual.

3.5.1 The Galerkin-Least-Squares Method

Let a be a linear operator on a ve
tor spa
e V with inner produ
t (.,.) and


orresponding norm k:k. Typi
ally, A is a 
onve
tion-di�usion di�erential

operator, and (.,.) is the L

2

inner s
alar produ
t over some domain 
. We


onsider the linear problem of �nding u su
h that

Au = f; (3.21)

for whi
h the variational formulation reads:

Find u 2 V su
h that

(Au; ') = (f; ') 8' 2 V:

(3.22)

47



The least squares method for (3.21) is to �nd u 2 V that minimizes the residual

over V, that is

kAu� fk

2

= min

v2V

kAv � fk

2

: (3.23)

This is a 
onvex minimization problem (be
ause it is quadrati
) and the solu-

tion is 
hara
terized by

(Au;A') = (f; A') 8' 2 V (3.24)

The problem is symmetri
 positive de�nite (A is 
onsidered regular), and thus


an be solved without diÆ
ulties. Equation (3.22) may be more diÆ
ult to

solve, but may be more a

urate than equation (3.24), for the test-fun
tion

spa
e used in the se
ond problem may 
ontain less information (for instan
e if

A 
ontains a di�erential operator and the ansatz fun
tions are linear). There-

fore a 
ombination of the 2 systems is taken. The resulting system should still

be a

urate enough but easier to solve.

We now formulate the Galerkin-least-squares �nite element method for (3.21)

by taking a weighted formulation of (3.22) and (3.24):

Find u 2 V su
h that

(Au; ') + (Au; ÆA') = (f; ') + (f; ÆA') 8' 2 V:

(3.25)

We 
an alternatively formulate the Galerkin-least-squares method as a Petrov-

Galerkin method, whi
h is a Galerkin method with the spa
e of test fun
tions

being di�erent from the spa
e of trial fun
tions. In our 
ase the test fun
tions

have the form '+ ÆA' with ' 2 V .

3.5.2 Arti�
ial Vis
osity

Adding arti�
ial vis
osity yields the streamline di�usion method in the form:

Find u 2 V su
h that

(Au; '+ ÆA') + (�ru;r') = (f; '+ ÆA') 8' 2 V;

(3.26)

where � is the arti�
ial vis
osity. It is de�ned in the dis
retization pro
ess in

terms of the residual R(u) = Au� f through

� = 
 h

2

kR(u)k; (3.27)

with 
 a positive 
onstant to be 
hosen, and h the lo
al mesh size.
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3.5.3 Appli
ation to S
alar Conve
tion-Di�usion Equa-

tions

Applying this stabilization to any s
alar 
onve
tion-di�usion equation of type

(3.7), the streamline di�usion method introdu
es a stabilizing term by the use

of an additional test fun
tion of the form Æ u � r�. The introdu
tion of the

additional least-squares terms is done in an element-wise fashion. This implies

that the weighting parameter Æ depends on the element. It will be subs
ribed


orrespondingly. We obtain the following equation:

�

�

dT

h

dt

; �

h

�

+ (�rT

h

;r�

h

) +

X

K2T

h

�

�

dT

h

dt

�r � (�rT

h

); Æ

K

u

h

� r�

h

�

= (f

T

; �

h

) +

X

K2T

h

(f; Æ

K

u

h

� r�

h

) 8�

h

2 S

h

:

(3.28)

The least-squares terms 
orrespond to the addition of vis
osity in the dire
tion

of the streamline. The method is 
onsistent in the sense that the stabilizing

terms vanish for a strong solution of system (2.59) - (2.63). We dis
uss later

the 
hoi
e of the parameter Æ

K

. The introdu
tion of arti�
ial vis
osity is

straightforward. However it should be brought into operation only if additional


ross-wind di�usion is really ne
essary to avoid os
illations. In many 
ases the

least-squares terms are suÆ
ient. The dis
retization still remains of se
ond

order (see [60℄) and stable for a wide range of di�usion parameters.

3.5.4 Pressure Stabilization

The spa
es Q

h

and V

h

used in this work are based on pie
ewise bi-linear fun
-

tions on quadrilateral elements, namely Q1/Q1-elements. For these spa
es

the LBB-
ondition is not satis�ed (see [14℄, [25℄). The stabilization of the

Navier-Stokes equations for our dis
retization with bi-linear 
onforming ele-

ments is done in the same way as the streamline di�usion, i.e. by adding

mesh-dependent least-squares terms to the Galerkin formulation. The dis-


retization then reads as follow:

(r � (� u

h

); q

h

) +

X

K2T

h

(R

u

; �

K

rq

h

)

K

=

X

K2T

h

(f

v

; �

K

rq

h

)

K

8 q

h

2 Q

h

;

�

�

du

h

dt

; '

h

�

+

�

�

u

r;h

r

2

; '

r;h

�

+ (�ru

h

;r'

h

)

�(�r(r � u

h

); '

h

)� (r� � ru

h

; '

h

)

�(p

h

;r'

h

) = (f

v

; '

h

) 8'

h

2 V

h

�

� V

h

+

;

9

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

;

(3.29)
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where

R

u

= �

du

h

dt

�r � (�ru

h

) +rp

h

�r� � ru

h

��r(r � u

h

) +

�

r

2

�

u

r;h

0

�

;

(3.30)

and �

K

is proportional to h

2

K

. That amounts to additionally testing the mo-

mentum 
onservation equations by q

h

+�

K

rq

h

. The stru
ture of the system is


hanged by the appearan
e of a pressure stabilization term

P

K

�

K

(rp

h

;rq

h

).

Due to the 
hange of the bilinear form, stability for pressure is now implied by

a generalized LBB 
ondition (
f. [4℄). As for the streamline di�usion method,

the pressure stabilization vanishes for a strong solution u and p, sin
e the stabi-

lizing term is based on the residual of the momentum equation. This pressure

stabilization pro
ess for the Navier-Stokes equations must also be 
ompleted

for the momentum equations by the 
onve
tion stabilization pro
ess that has

been presented in previous se
tions.

3.5.5 Stabilization Weights

We de�ne in a �rst step some forms that des
ribe the stabilizing terms. The

pressure stabilization is denoted by


(X

h

; q) =

X

K2T

h

(R

u

; �

K

rq )

K

; (3.31)

with R

u

de�ned in (3.30).

The streamline di�usion method for the velo
ities involves the term

s

u

(X

h

; �) =

X

K2T

h

(R

u

; Æ

K

u

h

� r� )

K

(3.32)

And the stabilization for the temperature equation 
onsists of the following

term:

s

T

(X

h

; �) =

X

K2T

h

�

�

dT

h

dt

�r � (�rT

h

); 


K

u

h

� r 

h

�

K

: (3.33)

From the energy form (3.20), we de�ne the energy form of the system aug-

mented by the least-squares terms by

a

Æ

(X

h

; �

h

) = a(X

h

; �

h

) + 
(X

h

; q

h

) + s

u

(X

h

; �

h

) + s

T

(X

h

;  

h

): (3.34)

This dis
retization has been analyzed for example in [28℄, [31℄ or [51℄. An error

analysis 
lari�es the role of the parameters and motivates their 
hoi
e. The
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parameters �

K

; Æ

K

and 


K

have to be 
hosen depending on the lo
al mesh size

h

K

, the 
onve
tion u and the vis
osity � or � on ea
h 
ell K. Error estimates

obtained in [13℄ allow to derive values for the stabilization parameters for the


ompressible-low-Ma
h-number-
ow system for whi
h the error of dis
retiza-

tion e = X �X

h


an be minimized. This study leads to the following values

for the velo
ity stabilization:

Æ

K

=

h

K

4t+ �=(� h

K

) + juj

1

: (3.35)

Analogously, minimization of the error in temperature gives

Æ

K

=

h

K

4t+ �=(


p

� h

K

) + juj

1

: (3.36)

4t represents the time step. We dis
uss time dis
retization in next se
tion.

A short analysis of the limit 
ases helps to understand this stabilization pa-

rameter. In the 
ase of 
onve
tion dominan
e, the velo
ity u is greater as the

vis
osity or time step and Æ �

h

juj

1

. If di�usion rules the 
ow, there is no need

to add mu
h stabilization. Æ being then proportional to

h

2

�

, the se
ond order of

the method is assured. For unsteady solutions, when the time step pro
esses

are dominant, we have Æ � 1=4t.

3.6 Time dis
retization

In this work we are interested in stationary solutions of the system des
ribed

in Chapter 2. However severe non-linearities in rea
tive 
ows may imply a

non-stationary behavior of the solution, with small instabilities in time whi
h

make a steady-state not exa
tly rea
hable. The solution may be 
onsidered as

quasi-stationary but the system 
an then only be solved using a non-stationary

solution algorithm.

In order to take into a

ount time variation of the solution, we use the expan-

sion u

h

(t; x) =

P

u

i

(t)�

i

(x). We divide the time interval 
onsidered into N

parts of size k

n

= t

n

� t

n�1

. We denote the value of any variable � at time t

n

by �

n

= �(t

n

).

The impli
it Euler method leads to a system analogous to the following system:

b

Æ

(X

n

h

; �

h

) + k

n

a

Æ

(X

n

h

; �

h

) = b

Æ

(X

n�1

h

; �

h

); (3.37)

with b

Æ

being the L

2

s
alar produ
t augmented by stabilization terms, i.e.

b

Æ

(X; �) = (X; �) +

P

K2T

h

(X; Æ u � r�).

The additional term for the stabilization in the form b

Æ

may be negle
ted if

we are a
tually looking for a quasi-stationary solution, as said above, and are

therefore not interested in the exa
t evolution in time. This term does not bring

more stability to the s
heme and makes the pro
ess more time-
onsuming.
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3.7 Full Dis
retization for Rea
tive Flows

We 
an now write the dis
retization of the whole system (2.59)- (2.63). We

have the following boundary 
onditions:

symmetry on �

0

: u

r

= 0;

in
ow on �

1

: u = u

0

; T = T

0

; w

i

= w

(i)

0

;

wall on �

2

: u = 0;

�T

�n

=

n

s

X

i=1

h

i

M

i

_w

0

i

;

�w

i

�n

=M

i

_w

0

i

;

out
ow on �

3

: �

�u

�n

� p � n = 0;

�T

�n

= 0;

�w

i

�n

= 0:

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

(3.38)

The weak formulation 
an be written as

(r � u

h

; q) + (L(u

h

; w

h

); q) + 
(p

h

; u

h

; q) = N

h

(q) 8q 2 Q

h

;

1

k

n

(u

h

; �) + (� u

h

� ru

h

; �) + (�ru

h

; �)

�(r� � ru; �)� (�r(r � u); �)� (p

h

;r � �)

+(�

u

r;h

r

2

; �

r

) + s

u

(p

h

; u

h

;�) = F

h

(�) 8� 2 V

h

;

1

k

n

(w

(i)

h

;  ) + (� u

h

� rw

(i)

h

;  ) + (�D

i

rw

(i)

h

;  )

+(�D

i

w

(i)

h

rM; ) + s

i

(w

(i)

h

; u

h

; ) = P

h

(w

h

;  ) 8 2 S

h

;

9

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

;

(3.39)

where N

h

; F

h

and P

h

are the 
orresponding fun
tionals formed by the right-

hand side variational formulation and the stabilization. P

h


ontains the volume


hemi
al sour
e terms but also the surfa
e sour
e terms

R

�

3

M

i

_

w

0

i

� d�. The

operator L(u

h

; w

h

; q) 
onsists of the variational formulation of the 
onve
tion

terms from the 
ontinuity equation (2.59). The temperature is 
onsidered here

as an additional spe
ies w

0

, sin
e the stru
ture of its evolution equation is the

same as the stru
ture of a mass 
onservation equation for any spe
ies. We have

D

0

= �=(� 


p

). The density is de�ned by an algebrai
 equation � = �(w

h

).

Sin
e di�usion 
oeÆ
ients for ea
h spe
ies 
an di�er strongly, one has to de�ne

a stabilization parameter for ea
h spe
ies:

Æ

(i)

K

=

h

K

k

n

+D

i

=h

K

+ juj

1

: (3.40)

and the least-squares stabilization term:

s

i

(w

(i)

h

;u

h

; ) =

X

K2T

h

�

1

k

n

w

(i)

h

+ � u

h

� rw

(i)

h

�r �

�

�D

i

r(M w

(i)

h

)

�

�M

i

_w

(i)

h

; Æ

(i)

K

u

h

� r 

�

K

:

(3.41)
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Chapter 4

Numeri
al Solution

To solve the strongly non-linear system 
oming from the �nite element dis-


retization of multispe
ies rea
tive 
ows, we 
onsider the 
lassi
al approa
h

based on a linearization of the system with the help of its ja
obian matrix.

The iterative method used in this work is a defe
t 
orre
tion method whi
h

requires to solve a linear system in ea
h non-linear step. In su
h an algo-

rithm for 
omputing 
omplex rea
tive 
ows, two ingredients are de
isive for

the eÆ
ien
y of the total solution pro
ess: an e
onomi
al storage te
hnique

whi
h fully exploits the very spe
ial stru
ture of the ja
obian matri
es, and an

eÆ
ient and robust solver for the large 
oupled linear systems.

This 
hapter dis
usses the linear systems obtained from a simpli�
ation of

the ja
obian matrix, whi
h may be eÆ
iently solved. This iteration matrix

has to provide enough a

ura
y a

ording to the non-linear system to obtain

an a

eptable 
onvergen
e rate of the defe
t 
orre
tion pro
ess. We will also

des
ribe methods to solve the resulting linear systems.

To solve the linear systems we have 
hosen a Generalized Minimal Residual

(GMRES) algorithm. GMRES is appropriate for non-symmetri
 and inde�nite

matri
es. In order to obtain an eÆ
ient solver with a rate of 
onvergen
e

independent of the mesh size, we use a multigrid s
heme as a pre
onditioner.

The lo
ally-re�ned stru
ture of the mesh makes the pre
onditioning through a

multigrid method ne
essary to avoid the dependen
e of the 
ondition number

on the mesh width.

The grids under 
onsideration are obtained as follows: The 
oarsest mesh does

not 
ontain any hanging node and 
onsists of 
ells belonging to the level l = 0.

The 
ells of level l � 0 are obtained by re�nement of some 
ells belonging

to level (l � 1). Due to this hierar
hi
al re�nement strategy the required

smoothing operations in a multigrid 
y
le on level l are restri
ted to the 
ells

belonging to this level. We use in this work di�erent smoothing operators.

For the Navier-Stokes part of the system, we have implemented a method

similar to the smoother proposed by Vanka in [52℄ for staggered grid �nite
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di�eren
e dis
retizations, whi
h 
onsists of a blo
k Gauss-Seidel iteration loop.

The de
omposition in blo
ks is done pat
h-wise on ea
h level of the grid and


orresponds to a lo
al grouping of velo
ities and pressure unknowns. For the

smoothing of the temperature and spe
ies equations we use two methods; the

�rst one is based on point-Gauss-Seidel iterations, while the se
ond one may be

used in the 
ase of sti�er systems and is based on a blo
k-ILU de
omposition.

4.1 Defe
t Corre
tion

As mentioned above, the non-linear system of equations is solved by a defe
t-


orre
tion method. The iteration matrix is an approximation of the ja
obian

of the non-linear equations. This method is based on the Newton iteration

whi
h 
onsists of the following �x-point iteration

X

n+1

=

0

�

u

p

w

i

1

A

n+1

=

0

�

u

p

w

i

1

A

n

� ! (D

R

)

�1

R

n

; (4.1)

with the following notations:

D

R

= derivative of R with respe
t to the variables u, p, T, w

i

;

R = residual of the system that is to be solved;

! = relaxation parameter:

For the sake of simpli
ity we will 
onsider the temperature in this 
hapter as

the �rst term of the ve
tor de�ning the 
hemi
al state of the 
ow, i.e. w

0

= T ,

sin
e the equations for temperature and those for the spe
ies have exa
tly the

same 
hara
teristi
s.

We also denote the in
rements for our solution ve
tor by

d

n+1

X

=

0

�

d

u

d

p

d

w

i

1

A

=

0

�

u

n+1

� u

n

p

n+1

� p

n

w

n+1

i

� w

n

i

1

A

; (4.2)

n+ 1 being the number of the 
urrent non-linear step.

In the defe
t-
orre
tion pro
ess, D

R

is a
tually not 
omputed exa
tly sin
e a

suitable approximation of this derivative is often suÆ
ient to solve the system.

For this reason, with the additional use of a relaxation parameter !, this

method is 
alled quasi-Newton method, when the 
omputed D

R


onverges to

the exa
t �nal D

R

, or defe
t 
orre
tion method otherwise.

Damping the iteration step with the parameter w leads to a stabilization of

the algorithm. ! is 
hosen to be w = 2

�i

where i is the lowest integer greater
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than 0 su
h that the monotoni
ity jR(X

n

� 2

�i

d

n+1

X

)j < jR(X

n

)j is ful�lled.

X

n+1

= X

n

� 2

�i

d

n+1

X

is then 
hosen as the update. This stabilization is

ne
essary to have a robust solver and avoid os
illations in the 
onvergen
e of

the method. An example of divergen
e in the 
ase without damping 
an be

found in [48℄.

4.2 Newton Matrix

The aim of this se
tion is to des
ribe the 
onstru
tion of the ja
obian matrix

and its approximation. We present the ja
obian matrix and its approximation

used in this work in order to redu
e storage requirements and 
omputation

time. We introdu
e the following form whi
h is the residual of the system:

R(fp; u; wg; fq; �;  g) =R

u

(fp; u; wg; �) +R

p

(fp; u; wg; q)

+

n

s

X

i=0

R

w

i

(fp; u; wg;  );

(4.3)

where R

u

, R

p

are the partial residuals a

ording to the Navier-Stokes equations

and R

w

the partial residual a

ording to the temperature-spe
ies equations:

R

u

(fp; u; wg; �) =

�

�

du

dt

; �

�

+ (�ru;r�)� (p;r � �)

+ (�

u

r

r

2

; �)�(r� � ru; �)� (�r(r � u); �)� (f

v

; �);

R

p

(fp; u; wg; q) = (r � u; q) + (L(u; w); q) + (rp; Ærq);

R

w

i

(fp; u; wg;  ) =

�

�

dw

i

dt

;  

�

+ (�D

i

rw

i

;r )� (f

w

i

;  );

i = 0; : : : ; n

s

:

(4.4)

Taking into a

ount the stabilization terms would not 
hange the stru
ture

of this system. The only stabilizing term whi
h 
hanges the 
hara
teristi
s of

the system is the term (rp; Ærq) in the operator 
(X; q) de�ned in relation

(3.31).

The ja
obian matrix 
orresponding to the residual given above is

D

R

=

2

6

6

6

6

6

4

�R

u

�u

�R

u

�p

�R

u

�w

j

�R

p

�u

�R

p

�p

�R

p

�w

j

�R

w

i

�u

�R

w

i

�p

�R

w

i

�w

j

3

7

7

7

7

7

5

; (4.5)
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with i = 0; : : : ; n

s

and j = 0; : : : ; n

s

. For the approximation of this matrix,

we must take the physi
s of the 
ow into 
onsideration as well as the ability to

eÆ
iently 
al
ulate the derivatives and solve the system at low 
omputational


ost. The 
ow variables u, p are 
oupled with the 
hemi
al state w through

the mixture vis
osity �, the density � and the mean molar mass

�

M in the

Navier-Stokes equations and through the velo
ity of the 
uid in the 
onve
tion-

di�usion equations for the temperature and spe
ies. For our appli
ation to 
ow

rea
tors, no rapid variation of the physi
al quantities should be observed in

almost the whole domain. Therefore, in order to be able to bring eÆ
ient

smoothers into play, we de
ide to keep only a weak 
oupling between the

Navier-Stokes equations and the temperature/spe
ies equations. The system is


orrespondingly linearized at ea
h non-linear step. In the approximate ja
obian

we negle
t the blo
ks

�R

u

�w

,

�R

w

�u

and

�R

p

�w

. The term

�R

w

�p

is also not taken into

a

ount sin
e the temperature is almost independent of the pressure for low-

Ma
h-number 
ows. The density 
ouples the equations through the ideal gas

law (2.46). Vis
osity, mean molar mass and spe
ies or temperature 
onve
tion

velo
ities are 
al
ulated in ea
h non-linear step with the previous-non-linear-

iteration value of the solution ve
tor.

With these simpli�
ations, the approximation of the operator D

R

has the

following blo
k-form:

e

D

R

=

2

4

A

pp

A

pu

0

A

up

A

uu

0

0 0 G

3

5

: (4.6)

While denoting the test and trial fun
tions by  and �, respe
tively, we 
an

write the approximated operators de�ning

e

D

R

using overlined variables as the

linearized variables 
al
ulated with their values taken from the previous non-

linear step.

For the 
ontinuity equation, A

pu


orresponds to the sum of the divergen
e oper-

ator with the element-wise least-squares terms stemming from the streamline-

di�usion stabilization and A

pp

results from the pressure velo
ity stabilization:

A

pp

=

X

K2T

h

(r�; �

K

r )

K

; (4.7)

A

pu

= (r � (� �);  ) +

X

K2T

h

( �

d�

dt

�r � (�r�)

+

�

r

2

�

u

r

0

�

� �r(r � �)�r� � r�; �

K

r )

K

; (4.8)

with the total time derivative

d

dt

=

�

�t

+�u�r. The variable �u is here the velo
ity

evaluated at the previous step of the iterative pro
ess. We negle
t the other

part of the derivative of the transport term with regards to u.
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Furthermore the operator A

up

represents the in
uen
e of the pressure in the

momentum 
onservation equation, and A

uu


orresponds to the 
onve
tion-

di�usion terms in this equation:

A

up

= �(�;r �	) +

X

K2T

h

(r�; �

K

�u � r	)

K

; (4.9)

A

uu

=

�

d�

dt

;	

�

+ (�r�;r	) + (�

u

r

r

2

;	

r

)

�(r� � ru;	)� (�r(r � u);	)

+

X

K2T

h

�

d�

dt

� �r�; �

K

�u � r	

�

K

: (4.10)

Considering (4.6), we see that the linearized system is split into two indepen-

dent parts. One part determines the evolution of the 
ow, the other part


orresponds to the 
hemistry and the behavior of spe
ies within the 
ow.

The operator G 
orresponds to the 
onve
tion-di�usion-rea
tion terms of the

spe
ies mass 
onservation equations and to the temperature evolution equa-

tion, whi
h have the same stru
ture. While 
onsidering the intera
tions be-

tween the spe
ies, the blo
k-matrixG 
an be de
omposed into (n

s

+1)�(n

s

+1)

matri
es, the temperature being 
onsidered as a separate spe
ies. The diago-

nal matri
es G

ii


orrespond to the 
onve
tion-di�usion of the mass fra
tion of

the spe
ies i, as well as the rea
tion of this spe
ies in the gas-phase or at the

wall. For all i = 0; : : : ; n

s

we have

G

ii

=

�

d�

dt

;  

�

+ (�D

i

r(M �);r )�

�

M

i

� _w

i

�w

i

;  

�

�

�

M

i

� _w

0

i

�w

i

;  

�

�

wall

+

X

K2T

h

�

d�

dt

+ �D

i

r(M �); Æ

(i)

K

�u � r 

�

K

�

X

K2T

h

�

M

i

� _w

i

�w

i

; Æ

(i)

K

�u � r 

�

K

:

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

(4.11)

The non-diagonal blo
k-matri
es elements of the matrix G, denoted by G

ij

where i; j = 0; : : : ; n

s

and i 6= j, 
orrespond to the 
oupling between the

spe
ies through 
hemi
al rea
tions: whi
h spe
ies are 
reated while others

are 
hemi
ally transformed. These blo
k-matri
es 
ontain only derivatives of

gas-phase or wall produ
tion terms. For all i; j = 0; : : : ; n

s

with i 6= j, we

have

G

ij

= �

�

M

i

� _w

i

�w

j

;  

�

�

�

M

i

� _w

0

i

�w

j

;  

�

�

wall

�

X

K2T

h

�

M

i

� _w

i

�w

j

; Æ

(i)

K

�u � r 

�

K

:

(4.12)
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As noted in Se
tion 2.3.2, we want here to emphasize the importan
e of the

gas-phase and wall produ
tion terms in the ja
obian matrix. Even if these

produ
tion terms may have small in
uen
e on the residuum (the surfa
e rea
-

tions o

ur on 1D domains { for 2D 
omputations), the 
onvergen
e largely

depends on their presen
e in the ja
obian matrix. A
tually the di�eren
e on

the 
onvergen
e between two methods using di�erent approximations of the

ja
obian matrix may be noti
ed only very late in the 
onvergen
e pro
ess. The


onvergen
e 
riterion (often residuum smaller than a 
ertain toleran
e) has to

be 
hosen 
arefully. Indeed numeri
al experiments showed us that, for some

approximations, a residuum drop whi
h 
ould seem to be suÆ
ient a

ording

to a

epted toleran
es for Navier-Stokes solver, is a
tually not enough for the


onvergen
e of the 
hemi
al pro
esses, prin
ipally for surfa
e rea
tions. Some

surfa
e rea
tions may not be taken into a

ount at this point in the 
onver-

gen
e pro
ess. This means that we must be 
areful about lo
al 
onvergen
e

for 
hemi
al rea
tions or a

ept to solve the system with a 
onvergen
e to the

zero ma
hine. We have tested several approximations of the ja
obian matrix

in order to understand whi
h terms were ne
essary. Comparison for the wall

rea
tion terms 
an be found in Chapter 6.

If one de
ided to delete one spe
ies, as proposed in Se
tion 2.5, in order to

make the approximated solution automati
ally ful�ll the 
onstraint (2.42), the

ja
obian matrix has to be 
al
ulated in a slightly di�erent manner. The reader


an �nd a 
omplete explanation of this method in [13℄. A 
hemi
al 
omponent


an be deleted and its mass 
onservation equation substituted by the relation

(2.42). The ja
obian matrix of the resulting system is then 
al
ulated.

4.3 Implementational Constraints

The size of G depends on the number of spe
ies and the number of degree

of freedom in the dis
retization. The latter is 
ontrolled through an adaptive

pro
ess whi
h will be dis
ussed in Chapter 5; it is typi
ally in a range between

3000 to 20000. The sparse matrix type we use in the implementation is sup-

plied by the DEAL library and is usually used for solving large linear system

resulting from a �nite element dis
retization. The reader 
an �nd a des
ription

of this sparse matrix stru
ture in [43℄. In our test appli
ations, in Chapter 6,

the maximal number of spe
ies 
onsidered is 39. Due to memory restri
tions,

with so many spe
ies, if we want to a
hieve enough approximation a

ura
y,

we 
annot keep the whole matrix G in memory. Thus, with regards to the

memory available, we de
ide to keep the whole matrix G or redu
e it to its

blo
k-diagonal part, i.e. not to take the matri
es G

ij

into a

ount. This sim-

pli�
ation is reasonable only if the rea
tion terms are smooth. We will see that

the resulting defe
t 
orre
tion method still 
onverges for our appli
ations with

an a

eptable 
onvergen
e rate with regard to 
al
ulation time. For problem
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with more intense rea
tions, we may be for
ed to take the whole matrix into

a

ount.

4.4 Solvers

The global solution pro
ess for steady nonlinear systems used for our purpose


an be seen as a nested pro
ess (see Fig. 4.1) involving, within a defe
t-


orre
tion s
heme based on a Newton iterative method, a pre
onditioned Gen-

eralized Minimal Residual method (GMRES) as linear solver (see [45℄), where

the pre
onditioner is 
hosen to be a multigrid method. Our implementation

is based on the multigrid method developed by Be
ker in [4℄, whi
h o�ers the

ability to handle lo
ally re�ned grids. For our multigrid method we use several

smoothers depending on the systems we have to solve. For unsteady problems

a loop over time steps wraps again the whole pro
ess.

GMRES

Smoothers

 Gauss-Seidel
 Vanka

 ILU

Newton / Defect Correction

Multigrid (Preconditioner)

Figure 4.1: Nested solution pro
ess.

In ea
h nonlinear step of the defe
t-
orre
tion method, a linear system is to be

solved. Sin
e the linearized system is de
oupled due to (4.6), we may imple-

ment two linear solvers: one for the mixture-averaged 
ow (i.e. Navier-Stokes),

the other for the spe
ies 
onve
tion-di�usion-rea
tion pro
ess. This requires

two di�erent strategies for the smoothing iteration. In our implementation

we have 
hosen a "Vanka smoother" for the Navier-Stokes part of the system
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and a Gauss-Seidel smoother or an ILU smoother for the 
hemi
al part of the

system.

4.4.1 Multigrid

The mesh we use for the dis
retization 
omes from a re�nement pro
ess (see

Chapter 5) whi
h makes the hierar
hi
al stru
ture of the triangulation avail-

able. The idea is to use this stru
ture to implement an eÆ
ient pre
onditioner

based on multi-level te
hniques.

The appli
ation of multigrid methods on lo
ally re�ned mesh is not trivial.

The reader 
an �nd a detailed explanation in the work of Be
ker [4℄ and an

implementation in the DEAL �nite-element library (see [6℄). We only sket
h

here the essential steps of su
h a method.

The multigrid pro
ess we use for our purpose is based on a V-
y
le. On

the 
oarsest grid T

0

the system is solved exa
tly. On other levels T

l

, a pre-

smoothing is done and the residual is then restri
ted on a 
oarser grid T

l�1

where this pro
ess is re
ursively repeated until the 
oarsest grid is rea
hed.

Then the solution is prolongated from the 
oarser grid T

l�1

to the grid T

l

and

a post-smoothing is 
arried out.

Exact Solution

Pre-Smoothing

T

T

T

0

l

l-1
Pre-Smoothing

Post-Smoothing

Post-Smoothing

P
ro

lo
n
g
at

io
n

P
ro

lo
n
g
at

io
nR

estrictio
n

R
estrictio

n

Figure 4.2: Multigrid V-
y
le.

In the following subse
tions we des
ribe the smoothing operators. The smoo-

thing of the residual is done level-wise. Smoothing the residual on ea
h level

of the mesh means eliminating its high frequen
ies in order to approximate

it a

urately on a 
oarser grid. A possibility is to smooth the system with a

�xed number of GMRES steps on ea
h level of the triangulation. Nevertheless
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this leads to bad performan
e of the multigrid method, espe
ially when the

mesh 
ontains more than four or �ve levels. We need to use methods whi
h

have good smoothing properties (not 
ompulsorily a solver) without demand-

ing too mu
h 
omputational e�ort sin
e the smoother works on ea
h level of

the mesh. For the Navier-Stokes equations, we have therefore implemented

a Vanka-type smoother, whi
h is a blo
k-Gauss-Seidel iterative method. The

blo
k are 
onstru
ted by 
onsidering a pat
h-wise grouping of pressure and

velo
ities unknowns. The spe
ies equations are smoothed with the help of a

point-Gauss-Seidel iterative method or an ILU method. In order to obtain

good smoothing properties, it is well known that these two methods require

a renumbering of the grid nodes in the dire
tion of the 
ow. We will shortly

dis
uss this point as �nal remark.

4.4.2 Vanka Smoothing Operator

As smoothing operator for the Navier-Stokes equations we employ a blo
k-

Gauss-Seidel iteration similar to the one proposed by Vanka in [52℄. A smoo-

thing step 
onsists of a loop over the pressure degrees of freedom, where we

simultaneously update the 
orresponding pressure value together with the ve-

lo
ity unknowns whi
h are 
oupled with it, by solving a lo
al system derived

from the Navier-Stokes equations.

l l

l

l l l

ll  = l

0 2

53

76 8

l
1

P
i

P 4

Figure 4.3: Pat
h de�ning the lo
al problems for the Vanka smoother.

To this end, we asso
iate with ea
h pressure point P

i

of the 
onsidered level a

pat
h 
onsisting of the 
ells having P

i

in 
ommon (see Fig. 4.3). On ea
h pat
h

we de�ne the indi
es l

i

with 0 � i � 8 for velo
ity degrees of freedom and the
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lo
al index l

p


orresponding to the pressure point. The dis
rete operator for

the stabilized Navier-Stokes system of equations 
an be written as follows:

�

A B

E C

�

: (4.13)

Having 
al
ulated the residuals r

i

and r

p

for the velo
ity and the pressure

respe
tively, we obtain, after simpli�
ation, the following lo
al system for the

velo
ity and pressure updates d

i

and d

p

:
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: (4.14)

This system has been simpli�ed by negle
ting the 
oupling terms between

the velo
ity degrees of freedom (i.e. a

12

; : : : ). It 
an be easily solved with

two passes over the involved unknowns. This 
onstru
tion provides velo
ity

updates whi
h satisfy the mass 
onservation equation with respe
t to the test

fun
tion on the pat
h.

The Vanka smoother showed more robustness than a simple Gauss-Seidel

smoothing during tests done on the Navier-Stokes equations with 
onstant

vis
osity. It is well known for saddle-point problems that by in
reasing the

Reynolds number of the 
ow, the linearized systems may still be solved with

the Vanka smoother, while when using the Gauss-Seidel smoother the whole

pro
ess shows poor 
onvergen
e rates or even diverges. Numeri
al tests on

our appli
ation 
ases for 
ow rea
tors led us to set the number of pre- and

post-smoothing steps with the Vanka smoother ea
h to four. Less iteration

steps 
ould handi
ap the eÆ
ien
y of the multigrid method as pre
onditioner.

4.4.3 Chemi
al System Smoothing

The 
hemi
al system formed by the spe
ies mass 
onservation equations and

the temperature evolution equations is solved with the help of Gauss-Seidel

iterations or, for more sti� systems, with an ILU method, a des
ription of

whi
h 
an be found in [13℄. We use an ILU(0) from the MV++ and IML++

pa
kages (see [43℄ and [21℄). MV++ implements eÆ
ient matrix/ve
tor 
lasses

designed for high performan
e numeri
al 
omputing and IML++ is a 
olle
tion

of algorithms for solving or pre
onditioning linear systems of equations. The

idea of the ILU method is to 
ompute a fa
torization of the form

A = LU; (4.15)
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where A is the matrix of our system, L and U are a lower and an upper

triangular matrix respe
tively. In general L and U will be dense matri
es.

The in
omplete LU method of order zero provides approximations of these two

matri
es,

~

L and

~

U , whi
h have the same sparse stru
ture as the matrix A. This

allows to redu
e memory requirements and to 
al
ulate the de
omposition with

low 
omputational 
osts. The fa
torization remains a

urate enough to ensure

the robustness of the method. Some examples of appli
ation of in
omplete LU

methods may be found in [59℄ and [13℄.

The blo
k Gauss-Seidel iterative method is not as robust as ILU methods but

is less time-
onsuming and 
an be used as an eÆ
ient smoother for linear

systems whi
h do not 
ontain too strong 
onve
tion and sour
e terms. With

regard to the implementation of a smoother for the 
hemi
al system, one must

only be aware of the limits of this method and should make an ILU method

also available. The Gauss-Seidel smoother is used as pre- and post-smoother

for the multigrid method with a number of steps typi
ally ea
h between two

and �ve.

The eÆ
ien
y of these two methods is extremely dependent on the numbering

of the mesh points. To be able to use the information transport within the 
ow,

the degrees of freedom have to be numbered in streamline dire
tion. Sin
e we

need the smoother on ea
h level of the mesh, the numbering of the nodes has

to be realized independently on ea
h re�nement level. A renumbering method

based on the minimization of a fun
tional depending on the velo
ity of the 
ow

is des
ribed in [13℄. However this sort of renumbering method might demand

some 
omputational e�ort and if the dire
tion of the 
ow is known in advan
e,

one may prefer to make the numbering simply dependent on this dire
tion,

whi
h is done very qui
kly. We used the latter method in our appli
ations on

low-pressure 
ow rea
tors.
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Chapter 5

Adaptivity

5.1 Introdu
tion

It is frequently the 
ase in engineering problems that the main quantity of


on
ern is not the solution of a partial di�erential equation, but a se
ondary

quantity whi
h is a s
alar fun
tional of the solution.

The strategies for mesh re�nement 
onventionally used in �nite element meth-

ods are mostly based on a posteriori error estimates in global norms involving

lo
al terms 
orresponding to residuals of the 
omputed solution. The mesh

re�nement pro
ess aims at equilibrating these lo
al error indi
ators. However

meshes generated on the basis of su
h global error estimates may not be appro-

priate for 
ontrolling the a

ura
y in approximating lo
al quantities su
h as

point values or 
ontour integrals. More detailed information is needed on the

me
hanism of error propagation with regard to these quantities depending on

the solution. This 
an be obtained by employing suitable duality arguments.

The 
orresponding dual solution is approximated on the 
urrent mesh and is

used to derive lo
al weight fa
tors whi
h are used in the a posteriori error

estimates.

Our aim in this 
hapter is to propose an approa
h to the derivation of a pos-

teriori bounds on the error in linear fun
tionals for rea
tive 
ows in order to

be able to 
ompute some physi
al quantities with best a

ura
y. A fun
tional

J(�) of the solution is de�ned, whi
h may represent for example lo
al values of

the temperature, 
ontour average of spe
ies mass fra
tions or point values of


ertain 
omponents of the system. In these 
ases the error 
ontrol is applied

only to a part of the solution. When su
h well de�ned quantities are to be 
al-


ulated with pre
ision, an error indi
ator allows to 
ontrol the approximation

error on these quantities for the 
al
ulated solution.

We present in this 
hapter an adaptive algorithm leading to reliable and eÆ-


ient error 
ontrol in our 
ontext, a

ording to a fun
tional as des
ribed above.

65



It allows to 
al
ulate the solution with a 
ontrolled a

ura
y for the value of

the fun
tional J(�) on \optimal" meshes for our FEM Ansatz a

ording to the


orresponding error estimator. \Optimal" means either \most e
onomi
al for

a
hieving a pres
ribed a

ura
y" or \most a

urate for a given number N of

mesh points". The fun
tional is assumed in this work to be linear although

the approa
h 
an be extended to non-linear fun
tionals (see [8℄).

The error estimation is based on duality arguments. The dual problem is

obtained from a linearization of the primal problem. Sin
e the dual problem is

linear, the additional 
ost indu
ed by the 
omputation of the error estimator


orresponds to only one Newton step of the solution of the non-linear primal

problem on ea
h mesh level.

In 
ontrast to the error bound obtained by duality arguments, a 
lassi
al ap-

proa
h to adaptivity for rea
tive 
ows supplies error indi
ators usually based

on the estimation of a global stability 
onstant, independently of any quantity

derived from the solution (see [53℄). For s
alar equations, su
h an indi
ator

�

ind

has the form

�

ind

=

X

K2T

h

!

K




K

; (5.1)

where !

K

is a weight depending on the 
ell K and 


K

is a suitable di�eren
e

quotient of the dis
rete solution approximating some derivative. In rea
tive


ow 
omputations, the situation is more 
ompli
ated sin
e we deal with a

system of equations. For systems the 
orresponding indi
ator reads

�

ind

=

X

K2T

h

n

X

i=1

!

i

K




i

K

: (5.2)

In order to sum over all the equations, a s
aling of the 
omputed variables (for

instan
e the mass fra
tion) may be ne
essary, sin
e the 
on
entration of the

spe
ies in the mixture may sensibly di�er by many orders.

Through the approximation of derivatives by di�erential quotients, su
h an

indi
ator will 
apture the strong variations in 
on
entration and therefore will

lead to a re�nement in rea
tion zones. However the absen
e of information

on global error propagation as well as on the 
oupling between the di�erent


omponents may have negative in
uen
e on the quality of the dis
rete solution

by not re�ning the mesh where the error is a
tually 
reated. Moreover there

is no possibilities to 
ontrol the error on quantities depending on the solution.

Other traditional approa
hes to the 
onstru
tion of lo
ally adapted meshes

often resort to ad ho
 
riteria, often gradients of physi
al quantities, whose

impa
t on the a

ura
y of the numeri
al solution is diÆ
ult to assess.

In the �rst se
tion of this 
hapter an error estimate for a fun
tional in the

simple 
ase of a linear 
onve
tion-di�usion equation is developed. This 
on
ept
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is then applied to a non-linear PDE. We �nally apply the error estimation to

rea
tive-
ow problems and then dis
uss how to organize a mesh re�nement

pro
ess with the help of the 
omputed estimator.

5.2 Error Estimation for a Linear S
alar Equa-

tion

We 
onsider the s
alar 
onve
tion-di�usion equation with homogeneous Diri
h-

let boundary 
onditions. Let � be a given ve
tor �eld. The variational formu-

lation 
onsists in �nding u 2 V = H

1

0

(
) su
h that

a(u; �) = (� � ru; �) + (�ru;r�) = (f; �) 8� 2 V: (5.3)

This problem is approximated by a Galerkin �nite element method using a

sequen
e of test and trial spa
es V

h

� V parameterized by a dis
retization

parameter h. The dis
rete problem reads: �nd u

h

in V

h

su
h that

a(u

h

; �) = (f; �) 8� 2 V

h

: (5.4)

For the sake of simpli
ity, the modi�
ation due to the stabilization of the

equation by the streamline di�usion method is not taken into a

ount; it will

be in
luded later.

Subtra
ting (5.4) from (5.3), we obtain the Galerkin orthogonality relation for

the error e = u� u

h

,

a(e; �) = 0 8� 2 V

h

: (5.5)

The error e is orthogonal to the spa
e V

h

with respe
t to the bilinear form a,

whi
h is a 
hara
teristi
 property of Galerkin methods.

We now de�ne the fun
tional of the solution that is to be a

urately known.

Let J : V ! R be a linear fun
tional. The aim of the adaptive pro
ess

is to 
onstru
t an appropriate triangulation T

h

and to 
ompute u

h

with the


ondition that

jJ(e)j = jJ(u)� J(u

h

)j � TOL (5.6)

for a given toleran
e TOL.

To know if J(u

h

) is 
al
ulated a

urately enough, one must be able to bound

the error J(e) de�ned above. Hen
e it must be expressed only in terms of the

approximated solution u

h

, sin
e the 
ontinuous solution u is not known.

We 
onsider therefore the solution z 2 V of a 
orresponding dual problem

a(�; z) = J(�) 8� 2 V; (5.7)
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where trial and test fun
tions are inter
hanged with respe
t to the primal

problem (5.3). The 
orresponding 
ontinuous operator of this dual problem is

by de�nition the adjoint of the operator of the primal problem. Integration by

parts yields the following representation of this operator:

L

�

= �� � r � �4: (5.8)

This means that 
onve
tion o

urs in the opposite dire
tion as for the primal

problem. The dual problem 
arries information upstream.

The Galerkin orthogonality argument (5.5) and the dual problem (5.7) together

lead to an error representation in terms of the dual solution z:

J(e) = a(e; z) = a(e; z � i

h

z) = (f; z � i

h

z)� a(u

h

; z � i

h

z) (5.9)

for an arbitrary interpolation i

h

z 2 V

h

of the dual solution z 2 V . We will see

later the aim of the introdu
tion of this interpolation of the dual solution in

the spa
e V

h

.

From (5.3) we get

J(e) = (f � � � ru

h

; z � i

h

z)� (�ru

h

;r(z � i

h

z)) (5.10)

Thus we have rea
hed a formulation of the fun
tional where the unknown 
on-

tinuous solution does not appear. Expressing the s
alar produ
t element-wise,

an integration by parts leads to the exa
t error representation as a fun
tion of

the residual of the primal system and [ru

h

℄, the jumps of the �rst derivatives

over the 
ell edges:

J(e) =

X

K2T

h

(f � � � ru

h

+ �4u

h

; z � i

h

z)

K

�

1

2

X

K2T

h

(�n � [ru

h

℄; z � i

h

z)

�K

;

(5.11)

with n the external normal ve
tor to the edge �K. Note that the normal

derivatives of u

h

are dis
ontinuous over the 
ell edges.

Although equation (5.11) is independent of u, it still 
ontains the unknown


ontinuous dual solution z. Therefore the error on the fun
tional J(e) 
annot

be evaluated numeri
ally in this form and the term z � i

h

z must be approx-

imated in an appropriate way. Several methods for this are presented in [8℄.

One usually uses the 
ell-wise approximation of the expression kz � i

h

zk

K

.

Indeed by applying the Cau
hy-S
hwarz inequality on (5.11) in order to get

an upper bound for J(e), the resulting estimator is

jJ(e)j �

X

K2T

h

!

K

�

K

(5.12)

68



with �

K

the residual of the primal equation and !

K

additional weights depend-

ing on the dual solution:

�

K

:= h

2

k

k� � ru

h

� �4u

h

� fk

K

+

1

2

�h

3=2

k

kn � [ru

h

℄ k

�K

; (5.13)

!

K

:= max

n

h

�2

K

kz � i

h

zk

K

; h

�3=2

K

kz � i

h

zk

�K

o

: (5.14)

The residuals �

K


an be now 
omputed numeri
ally sin
e they depend only on

the dis
rete solution u

h

. However the weights have still to be approximated.

!

K


an be repla
ed by an approximation obtained by using lo
al interpolation

estimates (see [5℄)

!

k

� C

K

kr

2

zk

K

; (5.15)

with an interpolation 
onstant C

K

.

Following the approa
h proposed in [8℄, in the lo
al interpolation estimate

(5.15) the exa
t dual solution z is repla
ed by an approximation z

h

, dis
rete

solution of the dual problem

z

h

2 V

h

: a(�; z

h

) = J(�) 8� 2 V

h

: (5.16)

For simpli
ity, we use the same dis
rete spa
e V

h

for the dis
rete dual problem,

although a �ner or 
oarser mesh 
ould be used.

The validity of this approximation in our appli
ation 
ases is justi�ed by the

results we obtain using this method in this work as well as by the results

obtained in other works su
h as in [48℄. If we substitute the se
ond order

di�eren
e quotient kr

2

h

z

h

k

K

for the se
ond derivative of the dual solution in

the bound in (5.15), the error 
an now be estimated by

jJ(e)j � � :=

X

K2T

h

�

K

; �

K

= ~!

K

�

K

; (5.17)

with approximated weights ~!

K

numeri
ally evaluated as

~!

K

:= C

K

kr

2

h

z

h

k

K

: (5.18)

After determining the solution u

h

of the primal problem (5.3), the dis
rete

dual problem (5.7) has to be solved. Then the residuals �

K

and weights ~!

K

are evaluated on ea
h 
ell in order to get the lo
al error indi
ators �

K

. The

total error with respe
t to the error fun
tional J is then estimated by (5.17).

69



5.3 Error estimation with streamline di�usion

For the stabilized dis
retization, the 
orresponding error estimate involves fur-

ther terms whi
h are needed in further developments. The modi�
ation of the

bilinear form does not a�e
t the pra
ti
al 
omputation but is relevant for the

form of the a posteriori error estimate given by (5.17). The reader 
an �nd

more details on this subje
t in [22℄.

We modify the bilinear form a given in (5.3) just as in Se
tion 3.5.3 to obtain

the stabilized bilinear form a

h

:= a+ a

Æ

, with a

Æ

de�ned by

a

Æ

(u; �) :=

X

K2T

h

Æ

K

(� � ru� �4u; � � r�)

K

: (5.19)

We obtain in the same way the stabilized right hand side f

h

:= f + f

Æ

, with

f

Æ

de�ned by

f

Æ

(�) :=

X

K2T

h

Æ

K

(f; � � r�)

K

: (5.20)

The dis
rete equation is then

a

h

(u

h

; �) = f

h

(�) 8� 2 V

h

: (5.21)

The 
onsideration of the stabilized linear problem with least-square terms leads

to the full Galerkin orthogonality

a

h

(e; �) = 0 8� 2 V

h

: (5.22)

At this point, we are at the same stage in the method as for the simple Galerkin

orthogonality equation (5.5). We just have to inter
hange the bilinear form a

with the form a

h

. The dual solution z sear
hed in V ful�lls now the equation

a

h

(�; z) = J(�) 8� 2 V: (5.23)

The error estimate be
omes then

J(e) = a

h

(e; z) = a(e; z � i

h

z) + a

Æ

(e; z � i

h

z)

= (f; z � i

h

z)� a(u

h

; z � i

h

z) + f

Æ

(z � i

h

z)� a

Æ

(u

h

; z � i

h

z):

Following the same reasoning as in the 
ase without stabilization, an a poste-

riori bound of the error with respe
t to the fun
tional J(�) 
an be derived:

jJ(e)j �

X

K2T

h

�

!

K

�

K

+ jÆ

K

(� � ru

h

� �4u

h

� f; � � r(z � i

h

z) )

K

j

�

; (5.24)

with !

K

�

K

de�ned as in previous se
tion.
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The estimation of r(z � i

h

z) by the se
ond derivative of z,

kr(z � i

h

z)k

K

� C

K

h

K

kr

2

zk

K

; (5.25)

leads to the following bound:

jJ(e)j �

X

K2T

h

!

K

(�

K

+ j�j

1;K

Æ

K

h

K

k� � ru

h

� �4u

h

� fk

K

): (5.26)

It is to be noted that the supplementary stabilization term has at least the

same order in h

K

as the term �

K

, sin
e the stabilization parameter Æ

K

depends

on h

K

(see Se
tion 3.5.5).

5.4 Error Estimation for Non-linear Equations

We now apply the weighted error estimator, explained previously for a linear

s
alar equation, to non-linear problems. Let V be a Hilbert spa
e with inner

produ
t (., .) and 
orresponding norm k:k, and a(:; :) a semi-linear form (linear

in the se
ond argument). The variational formulation of the 
orresponding

problem is: �nd u 2 V su
h that

a(u; �) = (f; �) 8� 2 V: (5.27)

The dis
retization in a �nite-dimensional subspa
e V

h

� V is: �nd u

h

2 V

h

su
h that

a(u

h

; �) = (f; �) 8� 2 V

h

: (5.28)

Let e = u�u

h

be the error between the 
ontinuous and the dis
retized solution,

and J(�) the fun
tional of the solution, still 
onsidered as linear, whi
h is to

be a

urately known.

The aim is to �nd a system, named dual system in the previous se
tion, whi
h

allows us to get an upper bound of the error on the fun
tional. In order to have

a variational formulation of this system, the form des
ribing the problem must

be linear in the test fun
tion. Moreover the linearity of the primal problem had

made it possible in the previous se
tion to write expli
itely J(e) independently

of the 
ontinuous primal solution in equation (5.9) and following. The same

argumentation 
annot be used here.

Therefore, if we want to keep the same reasoning, we have to �nd, from the

primal non-linear system, a linear system whi
h allows us to write J(e) inde-

pendently of the 
ontinuous solution.
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With this aim in view, we 
onsider the derivative a

0

(�; �; �) of a(�; �) with respe
t

to its �rst argument, de�ned in a point w in the dire
tion v by

a

0

(w; v; �) = lim

�!0

�

1

�

( a(w + � v; �)� a(w; �) )

�

: (5.29)

We have the following orthogonality relation for the error e:

Z

1

0

a

0

(u

h

+ t e; e; �) dt = a(u; �)� a(u

h

; �) = 0 8� 2 V

h

: (5.30)

This suggests the use of the following bi-linear form for the 
onstru
tion of the

dual problem:

L(u; u

h

;�; z) :=

Z

1

0

a

0

(u

h

+ t e;�; z) dt; (5.31)

whi
h is linear in � and z.

For representing the error J(e), we then use the dual problem 
onsisting in

�nding z 2 V su
h that:

L(u; u

h

;�; z) = J(�) 8� 2 V: (5.32)

Assuming that this problem has a unique solution z 2 V , and using the

Galerkin orthogonality (5.30), we obtain the error representation

J(e) = L(u; u

h

; e; z � i

h

z); (5.33)

with any approximation i

h

z 2 V

h

of z.

The goal is to evaluate the right hand side numeri
ally, in order to get an a

posteriori estimate for the quantity J(e) and thus a 
riterion for the optimal

lo
al adjustment of the dis
retization. Sin
e the bilinear form L(u; u

h

; �; �)


ontains the unknown solution u, it has to be approximated. The simplest

way is to repla
e u by u

h

yielding a perturbed dual solution ~z 2 V de�ned by

L(u

h

; u

h

;�; ~z) = J(�) 8� 2 V: (5.34)

This approximation a�e
ts the quality of the resulting estimator

J(e) �

~

J(e) := L(u

h

; u

h

; e; ~z � i

h

~z): (5.35)

Controlling the e�e
t on the a

ura
y of this approximated error estimator may

be a diÆ
ult task and depends strongly on the parti
ular problem 
onsidered.

Many appli
ations whi
h may be found for instan
e in [33℄, [48℄ or [5℄ tend to

suggest that the approximated estimator supplies 
orre
t information for the

lo
al mesh re�nement pro
ess.
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In a similar way as for linear systems in Se
tion 5.2, an upper bound of

~

J(e)


an be 
omputed by solving the perturbed dis
rete dual system (5.34). The

appli
ation of the Cau
hy-S
hwarz inequality on the 
ell-wise representation

of equation (5.33) leads to an estimation of the error in the form

~

J(e) �

X

K2T

h

w

K

�

K

(5.36)

with residuals �

K

and weights !

K

.

In order to des
ribe these 
oeÆ
ients, we take as example a part of the mo-

mentum 
onservation equation, for whi
h the form a is de�ned as

a(u; �) = u � ru+ �4u: (5.37)

The residuals and weights are then given by

�

K

:= h

2

k

ku

h

� ru

h

� �4u

h

� fk+

1

2

�h

3=2

k

kn � [ru

h

℄ k

�K

; (5.38)

!

K

:= max

n

h

�2

K

kz � i

h

zk

K

; h

�3=2

K

kz � i

h

zk

�K

o

: (5.39)

As before, we estimate the weights !

K

by the semi-norm jzj

K;2

whi
h is again

approximated numeri
ally by the se
ond-order di�eren
e quotient of the solu-

tion z

h

2 V

h

of the dis
rete perturbed dual problem 
oming from (5.34),

!

K

(z) � ~!

K

(z

h

) = C

K

kr

2

h

z

h

k

K

: (5.40)

The resulting weighted-residual error estimator is

j

~

J(e)j � � =

X

K2T

h

�

K

; with �

K

= ~!

K

�

K

: (5.41)

As a �nal remark it is to be noted that an approximation has been made

in the bilinear form de�ning he dual system, in order to be able to write an

upper bound of J(e) whi
h may be numeri
ally 
omputed. To keep a 
ontrol

on the a

ura
y of the pro
ess it may be worth to 
ompare if the weights


omputed with the help of dual solutions on di�erent meshes do not di�er too

mu
h. In this 
ase the error estimates are believed to be reliable. Otherwise

one 
ould attempt to re�ne the mesh globally in order to improve the global

approximation of u and get less perturbed dual systems. This 
ould be the


ase for very 
oarse meshes.
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5.5 Appli
ation to Rea
tive Flows

We apply the weighted-residual error estimation des
ribed in the previous se
-

tions to rea
tive 
ow problems. The primal system is given by equations

(2.59)-(2.63).

We denote the dual solution ve
tor by

z = [z

u

; z

p

; z

w

℄

T

: (5.42)

We refer to Chapter 3 for the notation 
on
erning the primal problem. For

the sake of simpli
ity we do not take into a

ount the stabilizing terms in the

des
ription of the dual problem. Their e�e
t on the dual system is straightfor-

ward. The in
uen
e of these terms on the estimator itself will be mentioned

later.

The derivation of the dual problem from the primal problem and the 
orre-

sponding a posteriori error estimate follows the same line of argument as in the

previous se
tion. For e
onomi
al reasons, we do not use the full Ja
obian of

the 
oupled system in setting up the dual problem, but only in
lude its domi-

nant parts. The same simpli�
ation is used in the nonlinear iteration pro
ess.

Taking the notation of Chapter 1, the resulting dual problem is the following:

�nd z 2 V = V

�

� V

+

�Q� S su
h that

�(� u � rz

u

; �) + (�rz

u

;r�) + (z

p

; �) = J

u

(�) 8� 2 V

�

� V

+

;

�(r � z

u

; �) + (

u

T

� rz

T

; �) = J

p

(�) 8� 2 Q;

�(� u � rz

(i)

w

;  ) + (�D

i

rz

(i)

w

;r )�

�

P ( ; z

w

) = J

w

( ) 8 2 S;

9

>

>

=

>

>

;

(5.43)

where the bilinear form

�

P 
orresponds to a linearization of the 
hemi
al pro-

du
tion term. The linear forms J

i

de�ned on the solution spa
e 
orrespond to

the fun
tional of the solution for whi
h we want to estimate the error. This

system is supplemented by appropriate boundary 
onditions indu
ed by those

of the primal problem.

This problem has to be solved in order to evaluate the weights in the estimators

of the resulting a posteriori error estimate

jJ(e)j � � =

X

K2T

h

X

X2fu;p;w

i

g

(�

K;X

+ �

K;X

) ~!

K;X

; (5.44)

�

K;X

representing the terms 
oming from the stabilization of the system. We

sum over the error estimators 
orresponding to ea
h 
omponent of the fun
-

tional, sin
e we may want to 
ontrol the error on a fun
tional depending on
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several variables of the primal problem. The residuals �

K;x

involve the 
ells

residuals and jumps of the dis
rete solution a
ross inter-elements boundaries:

�

K;u

= h

K

r

u

+

1

2

h

1=2

K

� k [�

n

u

h

℄ k

�K

;

�

K;p

= h

K

r

p

;

�

K;w

i

= h

K

r

(i)

w

+

1

2

h

1=2

K

D

i

k [�

n

w

(i)

h

℄ k

�K

;

r

u

= k� u

h

� ru

h

�r � �ru

h

+rp

h

k

K

;

r

p

= kr � u

h

+ L(u

h

; w

h

)k

K

;

r

(i)

w

= k� u

h

� rw

(i)

h

�r � (�D

i

rw

(i)

h

)�r � (�D

i

M

�1

i

w

(i)

h

rM)� f

i

(T

h

; w

h

)k

K

:

As already mentioned, the weights ~!

K;x

are evaluated by solving the dual

problem numeri
ally and repla
ing the exa
t solution z by its numeri
al ap-

proximation z

h

:

~!

K;u

= C

K

h

K

kr

2

h

z

(u)

h

k

K

;

~!

K;p

= C

K

h

K

kr

2

h

z

(p)

h

k

K

;

~!

K;w

= C

K

h

K

kr

2

h

z

(w)

h

k

K

:

The error estimator for the 
omplete stabilized system is derived from the

estimator des
ribed just above and from the result of Se
tion 5.3. The 
omplete

estimation is

jJ(e)j � � + j
(p

h

; u

h

; z � i

h

z)j+ js

u

(p

h

; u

h

; z � i

h

z)j

+

n

s

X

i=0

js

i

(p

h

; u

h

; z � i

h

z)j;

(5.45)

� being the estimator without stabilization. The forms 
, s

u

and s

i

are de�ned

in Se
tion 3.5.5 and 
orrespond to the pressure and streamline-di�usion stabi-

lizations. For ea
h equation of our system we apply the pro
ess des
ribed in

Se
tion 5.3 in order to de�ne an upper bound of the stabilization term. An

upper bound of the error on the fun
tional is then

jJ(e)j � �

total

= � +

X

K2T

h

~!

K;u

r

u

Æ

K

(1 + juj

1;K

)

+

X

K2T

h

~!

K;w

i

r

(i)

w

Æ

(i)

K

juj

1;K

:

(5.46)

The most important aspe
t of this a posteriori error estimate is that the lo-


al 
ell residuals related to the various physi
al e�e
ts governing the 
ow and

transfer of temperature and 
hemi
al spe
ies are systemati
ally weighted a

or-

ding to their impa
t on the error quantity to be 
ontrolled.
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5.6 Re�nement Strategies

The right hand side in the error bound (5.46) 
an be evaluated on
e the �nite

element solutions u

h

and z

h

of the primal and dual problems have been 
om-

puted and 
an be used to estimate the size of the global error J(e). Exploiting

this a posteriori error bound it is possible to adaptively 
ontrol the global error

to a desired toleran
e level by suitably re�ning the mesh.

Let an error toleran
e TOL and a maximum number of mesh points N

max

be

given. The goal is to �nd the most e
onomi
al mesh T

h

on whi
h

jJ(e)j � �(u

h

) =

X

K2T

h

�

K

� TOL; (5.47)

with the lo
al error indi
ators �

K

= !

K

�

K

. The usual approa
h to 
onstru
t-

ing a mesh whi
h does not 
ontain an ex
essively large number of elements is

to pro
eed iteratively: we start with a 
oarse mesh and re�ne it su

essively

based on the size of the a posteriori error estimate. Inequality (5.47) 
an be

thought of as a stopping 
riterion in this iterative pro
ess whi
h 
an be written

as follows:

1. Solve the dis
rete problem on T

h

.

2. Evaluate the estimator � =

P

K2T

h

�

K

.

3. If � > TOL : 
hange grid T

h

a

ording to �

K

and go to 1.

4. end.

Starting from some initial 
oarse mesh, the re�nement 
riteria are 
hosen in

terms of the lo
al error indi
ators �

K

(u

h

; z

h

). In fa
t various strategies 
an be

adopted to generate a re�ned mesh from a given one (point 3 of the algorithm).

Here we mention three of the most popular approa
hes (see [8℄, [48℄ or [33℄):

� Error-per-
ell strategy: In this approa
h the mesh generation aims to

equilibrate the lo
al error indi
ators by re�ning or 
oarsening the ele-

ments K in the 
urrent mesh T

h

in order to rea
h the 
riterion

�

K

�

TOL

N

; (5.48)

with N the number of elements in the resulting mesh. Sin
e N depends

on the result of the re�nement de
ision, this strategy is impli
it and re-

quires an iterative implementation. However it is 
ommon pra
ti
e to

work with a varying value of N on ea
h re�nement level, with N su

es-

sively updated a

ording to the out
ome of the re�nement pro
ess. This

strategy will deliver a partition on whi
h � � TOL, provided that N

max

is not ex
eeded. This re�nement 
riterion leads to an equidistribution of

the error over the whole mesh.
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� Fixed-fra
tion strategy: In ea
h re�nement step, the elements are ordered

a

ording to the size of the lo
al error indi
ator �

K

(u

h

; z

h

), and then a

�xed portion of the elements K with largest �

K

(u

h

; z

h

) is re�ned (in two

dimension typi
ally 30% sin
e this approximately doubles the number of


ells in ea
h re�nement 
y
le). A smaller per
entage of re�ned grid 
ells

per adaptive step leads to a more lo
alized re�nements of the mesh. This

pro
ess is repeated until the stopping 
riterion � � TOL is satis�ed or

N

max

is ex
eeded.

� Fixed-redu
tion strategy: We work here with a varying toleran
e TOL

var

.

Having 
al
ulated the dis
rete solutions u

h

and z

h

on a mesh T

h

, the

toleran
e is set to TOL

var

= � �, where � 2 (0; 1) is a �xed redu
tion

fa
tor. In the next step one or several 
y
les of the error-per-
ell strategy

are performed with toleran
e TOL

var

, yielding a re�ned mesh T

h

new

and

new solutions u

new

h

, z

new

h

with asso
iated error estimator �(u

new

h

; z

new

h

).

Then the toleran
e is redu
ed again by setting TOL

var

= � � and a

new re�nement 
y
le begins. This iterative pro
ess is repeated until

TOL

var

� TOL, or N

max

is ex
eeded.

In ea
h of the three strategies we repeat mesh modi�
ation followed by solution

on the new mesh until the toleran
e is satis�ed, or the pres
ribed maximum

number of elements is ex
eeded.

For our appli
ation to rea
tive 
ows in 
ow rea
tors, we used prin
ipally the

se
ond re�nement strategy, whi
h allows to tune the lo
alization of the re�ne-

ment zones. This generally leads either to meshes 
ontaining a smaller number

of 
ells, sin
e in less 
riti
al zones the error is allowed to remain over the bound

pres
ribed in the �rst method, or to a better a

ura
y in 
riti
al zones. An

appli
ation of the third re�nement strategy 
an be found in [48℄.
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Chapter 6

Appli
ations

In this 
hapter we present four rea
tive 
ow problems with di�erent 
omplex-

ities in the 
hemi
al rea
tions. The �rst two problems are based on CARS

(Coherent Antistokes Raman Spe
tros
opy) measurements for the evaluation

of the dea
tivation rate of vibrationally ex
ited H

2

mole
ules. In a �rst ex-

ample we take into a

ount only the wall-dea
tivation pro
ess, whi
h 
an be


onsidered as a set of slow 
hemi
al rea
tions; 4 spe
ies and 7 rea
tions are

involved in the 
hemi
al system. In a se
ond example we 
onsider the wall-

dea
tivation pro
ess as well as the ex
hange of the vibrational energy of H

2

mole
ules with D

2

mole
ules. Here, the 
hemi
al system involves 9 spe
ies and

the 32 rea
tions. A third example, again based on the same CARS 
ow tube,

is the 
ow simulation of a mixture where 
hemi
al rea
tions between H

2

, NO

2

and other produ
ed mole
ules take pla
e by higher temperature (from 300K to

1700K). Sin
e the high temperature gradient within the 
ow 
auses numeri
al

instabilities, a time step method has to be used here to be able to 
onverge to

a quasi-stationary solution. The 
hemi
al system 
onsidered involves 7 spe
ies

and 6 rea
tions.

The fourth example is based on a CVD (
hemi
al vapor deposition) exper-

iment. We are interested in the deposition of diamond on the surfa
e of a

substrate. As revelator of this deposition we look at the 
on
entration of CH

3

near the surfa
e of the substrate. To improve the diamond deposition, this


on
entration must be as high and homogeneous over the substrate as pos-

sible. The 
hemi
al model involves 39 spe
ies and 358 elementary 
hemi
al

rea
tions. Parti
ularly with so many spe
ies and rea
tions, the appli
ation of

the solution method developed in this work makes it possible to rea
h good

a

ura
y with reasonable memory requirement and 
omputation time. The


al
ulation of su
h rea
tive 
ows 
an be performed by the adaptive algorithm

presented in this work on a workstation or a PC.
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6.1 CARS

6.1.1 Flow Rea
tor { Overview

The 
ow tube te
hnique has importan
e in modern experiments as one of the

most powerful tools for the determination of elementary 
hemi
al rea
tion rate


onstants.

The basi
 prin
iple of 
ow tubes is always the same: mixing of rea
tants takes

pla
e upstream in a mixing se
tion and their 
onsumption or the buildup of

produ
ts is followed along a measurement se
tion by some dete
tion method for

atoms, radi
als, or mole
ules. A rea
tion rate 
onstant is then dedu
ed from

measured axial 
on
entration pro�les. In order to favor di�usive pro
esses,

whi
h minimize radial 
on
entration gradients, a 
ow tube is traditionally

operated at low pressure. An assumed mean 
ow velo
ity allows to 
onvert the

axial 
oordinate (distan
e between the �rst point of mixing and the dete
tion

point) into rea
tion time. The rea
tion rate 
onstants of interest 
an then be

dedu
ed by modelling the homogeneous rea
tion system. However, the method

is known to bear systemati
 errors, sin
e it is based on the approximation of

a perfe
t de
oupling of 
hemi
al and hydrodynami
 pro
ess in the 
ow tube.

Espe
ially in the mixing se
tion of the rea
tor this assumption is not valid.

In order to 
arry out a reliable evaluation of rate 
onstants from experimental

data, it is desirable to take into a

ount all relevant physi
al and 
hemi
al

pro
esses o

urring in a rea
tive 
ow. The detailed modeling of rea
tive 
ow

�elds within a rea
tor for kineti
 studies is therefore an important tool for the

experimental determination of elementary rate 
onstants.

6.1.2 Rea
tion Kineti
 of the H

2

�D

2

System

The heterogeneous relaxation and the ex
hange of vibrational energy of the H

2

mole
ules has been experimentally investigated in [57℄ with the help of a test

rea
tor. For this experiment, based on the assumption of non-turbulent sta-

tionary 
ow and 
hemi
al pro
ess, the possibility of two-dimensional numeri
al

simulation with a �nite di�eren
e s
heme has been studied in [46℄.

With the adaptive solution method developed in this work, we are able to get

an a

urate determination of some physi
al quantities of interest (su
h as mass

fra
tions or 
on
entrations) along the axis. These 
omputational results 
an

then be used together with experimental measurement results to get a good

approximation of rea
tion rates for dea
tivation or ex
hange of vibrational

energy forH

2

mole
ules. The automati
 adaptive pro
ess re�nes the mesh only

where it is needed (essentially on the measurement points and on singularities

of the solution) to get a

urate values on an optimal mesh, i.e. with a minimal
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Figure 6.1: CARS 
ow rea
tor.

number of mesh nodes for a given pre
ision. In this way we not only save

CPU-time but we also gain in a

ura
y, being assured of the pre
ision on the


omputed quantities.

The rea
tor 
onsidered here 
onsists essentially in the 
on
entri
 disposal of

an external tube (radius 16 mm) in whi
h an interior tube (internal radius 5.5

mm and wall thi
kness 1 mm) hands in (see Fig. 6.1).

Two gases streaming out of the outer and interior tubes get in 
onta
t at the

outlet of the 
entral tube. This 
entral tube is long enough to guarantee fully

developed laminar 
ow �elds for both inner and outer gas 
ows. From this

point on, the gases are mixed through 
onve
tive and di�usive transport and

may rea
t with ea
h other. The main tube (the prolongation of the outer

tube) 
onsists of a straight 32 mm diameter se
tion equipped with an array of

diametri
ally opposed 2mm diameter holes in the wall to allow opti
al CARS

diagnosti
s with fo
used laser beams. In this way, it is possible to re
ord axial

pro�les for spe
ies 
on
entrations. A 
omplete des
ription of the experiment


an be found in [57℄, [47℄ and [46℄.
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He / D_2

H_2

Symmetry line

Mixing Zone

Figure 6.2: Two-dimensional �eld with measurement-line positions and 
al
u-

lation �eld (half domain for symmetry reasons).

Vibrationally ex
ited hydrogen mole
ules H

2

(v

00

= 1) are generated by mi-


rowave dis
harges (MW { see Fig. 6.1) in the sidearms of the mixing head

bringing the gas to the outer tube. The mi
rowave dis
harges 
reate also H

atoms. These atoms lead to additional rea
tions whi
h the modelling of the

pro
ess must take into a

ount. In the inner tube, HeliumHe or in-the-ground-

state Deuterium D

2

(v

00

= 0) are inje
ted.

The wall vibrational relaxation rate 


wall

for the dea
tivation of H

2

(v

00

= 1) to

H

2

(v

00

= 0) and the vibrational energy transfer rate of H

2

(v

00

= 1) in 
ollisions

with D

2

(v

00

= 0) are the unknown rea
tion kineti
 
onstant whi
h have to be


al
ulated.

6.1.3 First Evaluation: Wall Relaxation

We investigate the dea
tivation of vibrationally ex
ited hydrogen mole
ules at

the wall (heterogeneous relaxation). An inert gas (Helium) is used as 
arrier

gas. It is streaming into the mixing tube from the internal tube. We 
onsider

the laminar 
ow for determining the rea
tion rate of the elementary wall-

dea
tivation rea
tion (slow 
hemistry):

H

(�=1)

2

wall

�! H

(�=0)

2

: (6.1)
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Table 6.1: Simulation results for the H

2

(� = 1) wall-dea
tivation experiment

on hand-adapted(top) and on automati
ally adapted (bottom) meshes.

Heuristi
-based re�nement

Level # Cells H2(0) H2(1)

1 137 0.6556 0.005294

2 481 0.7373 0.00661

3 1793 0.7962 0.007096

4 6913 0.8172 0.007434

5 7042 0.8197 0.007419

6 7494 0.8240 0.007473

7 8492 0.8269 0.007504

8 10482 0.82858 0.007521

9 15993 0.82853 0.007545

Error-estimator-based re�nement

Level # Cells H2(0) H2(1)

1 137 0.6556 0.005294

2 282 0.7382 0.006063

3 619 0.7958 0.007132

4 1368 0.8149 0.007323

5 3077 0.8257 0.007457

6 6800 0.8295 0.007534

7 15100 0.8317 0.007564

8 33462 0.8328 0.007587

The 
omplete rea
tion me
hanism 
an be found in the appendix.

The unknown is the kineti
 rea
tion 
onstant, i.e. the wall relaxation rate




wall

for the rea
tion des
ribed just above. A de�nition of 


wall

is given in

Se
tion 2.3.2. The quantities to be 
omputed are the results of CARS mea-

surements of spe
ies 
on
entrations. The measured quantities are proportional

to a weighted mean value of the mass fra
tions w

i

along lines perpendi
ular

to the symmetry axis of the rea
tor, and are used to obtain approximations of

the spe
ies 
on
entrations along the axis of the tube.

We will present the 
omputed mean values of the mass fra
tions of a
tivated

and dea
tivated hydrogen along radial lines � of the two-dimensional 
al
ula-

tion �eld. The error fun
tional (see Chapter 5) used in the adaptive pro
ess

is

J(') =

Z

�

'(r; z) dr: (6.2)
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In order to emphasize the advantages of the method presented in this work,

we also have 
omputed the averaged mass fra
tions on tensor produ
t meshes

whi
h are a priori re�ned on the basis of heuristi
 
onsiderations. This pro
ess

is only based on the a priori knowledge of the measurement lines whi
h are


onsidered to be the re�nement lines. We begin with global mesh re�nement

and then go on with lo
al re�nement along the measurement lines as well as

on the known singularity of the solution.

Comparison of results shows that the re�nement based only on heuristi
 
riteria

is not suÆ
ient to get reliable values from the 
omputed solution. Table 6.1

shows the values of the average of the H

2

mass fra
tions along a 
ross se
tion

of the tube for a simulation �rstly with the heuristi
 method and se
ondly

with the error-estimation method.

We observe improved a

ura
y on the automati
ally adapted meshes for about

the same number of grid points. In parti
ular, monotone 
onvergen
e of the

quantities of interest is a
hieved. This is an important feature of our approa
h

whi
h provides high reliability of 
omputed solutions.

Corresponding solutions and meshes are shown in Figures 6.3, 6.4 and 6.5. For

the meshes re�ned with the use of an error estimator, the stru
ture of the dual

solution re
e
ts the dependen
e of the quantity J(X) (the error fun
tional) on

the lo
al 
ell-residuals.
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Figure 6.3: Mass fra
tion of H

(�=1)

2

by the CARS simulation with heuristi


re�nement { Re�nement levels 2, 4 and 6.
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Figure 6.4: CARS simulation with adaptive lo
al re�nement { Mass fra
tion

of H

(�=1)

2

{ Re�nement levels 2 and 4.
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Figure 6.5: CARS simulation with adaptive lo
al re�nement { Mass fra
tion

of H

(�=1)

2

(top) and dual solution 
omponent 
orresponding to H

(�=1)

2

(bottom)

{ Re�nement level 6.
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Figure 6.6: CARS 
omparison between normalized simulation results (squares)

and experiment measurements (points) for the evolution of the H

(�=1)

2

mass

fra
tion along the axis.

Our 
omputational results have been 
ompared to experimental measurements

(see Figure 6.6). For this 
omputation, the in
ow rate for the helium whi
h


ows from the interior tube is set to 148 l=min and the in
ow rate for the

hydrogen whi
h 
ows in the outer tube is set to 665 l=min. The thermody-

nami
al pressure is 
onsidered to be 5.33 mbar and is 
onstant in the whole

domain. The proportion in mole of the vibrationally ex
ited H

2

mole
ules at

the in
ow is 0.5%, the proportion of H atoms is 0.3% and the rest 99.2% is

non vibrationally-ex
ited H

2

mole
ules. The experimental measurements have

a relative error of around 20%.

Su
h 
omparisons make it possible to approximate the dea
tivation rate of H

2

mole
ules. At the present time we have to tune manually the value of the


orresponding rea
tion rates whi
h we want to evaluate. A further develop-

ment should be to 
ouple the solution method with an optimization pro
ess

in order to �nd the best approximation of the rea
tion rate with regard to the


omparison between simulation and experiment.

As pointed out in Chapter 4, we also want here to show how di�erent the


onvergen
e pro
ess 
an be when using di�erent Ja
obian matrix approxima-

tion. This shows that the 
onvergen
e 
riterion has to be 
hosen 
arefully and

a residuum drop whi
h 
ould seem to be suÆ
ient to get a 
orre
t approx-

imation of a Navier-Stokes 
ow may be insuÆ
ient for 
ows with 
hemi
al
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Figure 6.7: H

(�=1)

2

mass fra
tion along a radial se
tion at axial position 0.143

m in the CARS 
ow rea
tor. Comparison between a 
al
ulation with a Ja
o-

bian matrix taking surfa
e rea
tion terms into a

ount (above) and a 
al
u-

lation with an approximated Ja
obian matrix (below) by a 
onvergen
e with a

toleran
e of 10

�8

on the residuum.
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rea
tions. We 
ompare here two approximations of the Ja
obian matrix, the

�rst one taking into a

ount all the 
hemi
al terms, the se
ond one without

the surfa
e rea
tion terms. We want to remind the user that these terms are

still taken into a

ount in the residuum term of the defe
t-
orre
tion method.

For a 
onvergen
e with a toleran
e of 10

�8

on the residuum, we see in Figure 6.7

that the approximated Ja
obian did not allow to get a 
orre
t approximation

of the solution at this point in the 
onvergen
e pro
ess. The surfa
e rea
tions

are not yet 
aught by the solver and the value on the wall surfa
e of the mass

fra
tions for H

(�=1)

2

obtained with the help of the approximated Ja
obian is

higher than the one obtained with the Ja
obian taking into a

ount all 
hemi
al

terms. While rea
hing a residuum of 10

�9

, the obtained 
onvergen
e leads in

this 
ase to the same results for both methods.

This means that the 
orre
t evaluation of 
hemi
al pro
ess may o

ur only

late in the 
onvergen
e pro
ess. Moreover we also have to be aware that using

approximated Ja
obian may in some 
ases lead to problems in 
at
hing all


hemi
al pro
esses in the solution (and thus get 
onvergen
e) sin
e we have

to 
onverge with a very small toleran
e on the residuum. We a
tually did not

experien
e su
h a problem in our appli
ations and with the approximations of

the Ja
obian matrix we used (see Chapter 4).

6.1.4 Se
ond Evaluation: Wall Dea
tivation and A
ti-

vation Transfer

In this experiment helium is repla
ed by deuterium. Thus this latter gas is

added through the 
entral tube while vibrationally-ex
ited hydrogen enters

through the outer tube. We have here to take into a

ount some more elemen-

tary rea
tions su
h as

H

(�=1)

2

+D

(�=0)

2

�! H

(�=0)

2

+D

(�=1)

2

: (6.3)

The 
omplete rea
tion me
hanism used for this 
omputation 
an be found in

the appendix.

Both hydrogen and deuterium are experimentally monitored in their �rst ex-


ited vibrational state. Therefore, in the simulation, we may be interested in

the average of H

(�=1)

2

or of D

(�=1)

2

mass fra
tions along radial lines in the two-

dimensional 
al
ulation domain. As in previous se
tion, we 
ould 
onstru
t the


orresponding fun
tionals given by (6.2) for both spe
ies and use them for the

de�nition of the error fun
tional of the adaptive method. Another possibility

is to take as error fun
tional the sum of the error fun
tionals 
orresponding to

the mass fra
tions of interest (i.e. for whi
h measurements are done).
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Table 6.2: Performan
e 
omparison between the simulation 
ode developed in

this work and based on the DEAL library and a �nite di�eren
e 
ode developed

by J. Segatz in [46℄.

CPU time (units � se
. ) memory required


ode

global per vertex global per vertex

Waguet 13442 verti
es 9360 (� 2,5 h.) 0.70 63 Mb 4.7 Kb

Segatz 16000 verti
es 85750 (� 24 h.) 5.35 153 Mb 9.5 Kb

However, in order to demonstrate the 
exibility of the adaptive method based

on error estimates and duality arguments, we use here a di�erent error fun
-

tional. The CARS signal delivers the value of a weighted integration along

radial lines in the tube and we had 
onsequently taken this fun
tional in the

previous simulation. But we are a
tually interested in the value of 
on
entra-

tions along the axis. The numeri
al simulation allows dire
t a

ess of point

values of the 
on
entrations. Therefore the fun
tional 
ould be 
hosen as

J(') = '(r

0

; z

0

); (6.4)

with r

0

= 0 and z

0

the 
oordinates of the point of interest along the axis. For

the following results we took as error fun
tional for the 
omplete system the

sum over error fun
tionals de�ned as above for several spe
ies and several axial


oordinates.

We see in Figure 6.8 that the automati
 adaptive re�nement pro
ess leads

to mesh re�nement on given points (r

0

; z

0

) but also on the zones where the

rea
tions may strongly in
uen
e the evolution of spe
ies 
on
entrations along

the whole tube or also in the zones where the solution may have a singularity

as on the top of the splitter plate.

The method des
ribed in this work requires less CPU-time and memory for

the 
al
ulation of the steady state of rea
tive 
ows 
ompared to other existing

�nite di�eren
e methods based on tensor produ
t meshes. Table (6.2) shows

the 
omparison between the simulation 
ode developed in this work and a

�nite-di�eren
e 
ode already su

essfully used for simulation of 
ow rea
tors

developed in [46℄ by J. Segatz.

Considering the performan
e measurement for the 
ode developed in this work,

we see that the CPU time needed to attain 
onvergen
e has been redu
ed by

a fa
tor 7 with regard to the other 
ode, and that the memory requirement

has been redu
ed by a fa
tor 2. And this, without taking into a

ount the

advantages of the lo
al re�nement pro
ess. The gain in performan
e allows

us to apply the method on more 
omplex systems with �ner (lo
ally re�ned)
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Figure 6.8: CARS simulation with lo
al re�nement and point error fun
tional

{ Mass fra
tion of HD

(�=1)

.
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grids and still 
ompute the solution on a workstation or a PC, as we also see

in the following se
tion.

6.1.5 NH-NO2 Chemi
al System

The main goal of this experiment is the dire
t measurement of rea
tion rates

as well as the examination of their temperature dependen
y in the range of

high temperature (300K - 1700K). The experimental material is the same as

for CARS measurements: a 
ow rea
tor with an inner and an outer tube

from whi
h 
ow di�erent gas whi
h then rea
t with ea
h other in the mixing

zone of the tube. One di�eren
e is that the walls are heated and thus have

a given temperature. The simulation of high temperature 
ows is used for

interpretations of experimental measurements of rea
tion rates as well as for

investigations on their temperature dependen
e.

As a �rst step toward the 
omputation of the 
omplete rea
tion me
hanism,

we 
ompute a high temperature 
ow rea
tor with a mixture 
onsisting of H

2

,

NO

2

and He mole
ules whi
h produ
es through 
hemi
al rea
tions OH, NO

and H

2

O mole
ules as well as H and O atoms. We use as error fun
tional the

global mean value of the NO 
on
entration.

The solution pro
ess we used here for 
onverging to a quasi-stationary solution

is the following:

� We 
ompute the rea
tive 
ow on a 
oarse grid whi
h however is �ne

enough to allow to 
apture the prin
ipal stru
tures of the 
ow and 
hemi-


al rea
tions. Typi
ally numeri
al tests showed that, for this kind of 
ow,

a 
oarse grid with around 100 
ells is suÆ
ient. The quasi-
onvergen
e of

the time-step pro
ess is rea
hed as soon as the residual di�eren
e between

two following time-steps is smaller than a given toleran
e.

� On
e a quasi-stationary solution is rea
hed on this 
oarse grid we re�ne

it lo
ally using an error estimator.

� We 
ompute further time steps and re�ne again the grid lo
ally as soon as

the quasi-
onvergen
e 
ondition has been rea
h for the time step pro
ess.

� We repeat the third point until the value of the error fun
tional rea
h a

given toleran
e.

We show in Figures 6.9 and 6.10 respe
tively the time evolution of the NO

mole
ule and the O atom mass fra
tions within the 
omputation domain whi
h

represents the half of an axial se
tion of the 
ow tube. From the inner tube


ows a mixture of NO

2

and He mole
ules with a mole fra
tion distribution

respe
tively of 0.44 and 0.56 and with a maximal velo
ity of 30 m/s. From
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the external tube 
ow H

2

mole
ules with a maximal velo
ity of 20 m/s. The

pressure of the in
ow is 5 mbar and the temperature 300K.

This 
omputation is the �rst step toward the simulation of the 
omplete rea
-

tion me
hanism whi
h was not available at the time of the 
al
ulation. With

the help of simulation, we are able to test several me
hanisms and investigate

the temperature dependen
e of the di�erent rea
tion rates whi
h are taken

into a

ount, by 
omparing the simulation results, e.g. 
on
entrations of some

spe
ies, with experimental measurements of these 
on
entrations.
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Figure 6.9: Time evolution of NO mass fra
tion for an in
ow of NO

2

mole
ules in the outer tube and of H

2

mole
ules in the inner tube{ red rep-

resents a null mass fra
tion and blue represents a maximal mass fra
tion for

this mole
ule
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Figure 6.10: Time evolution of O mass fra
tion for an in
ow of NO

2

mole
ules

in the outer tube and of H

2

mole
ules in the inner tube { red represents a null

mass fra
tion and blue represents a maximal mass fra
tion for this atom.
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6.2 CA-CVD

In a \Chemi
al Vapor Deposition" (CVD) rea
tor, diamond 
an be deposited

upon di�erent materials from an hydro
arbon-hydrogen gas mixture under

moderate temperature and low pressure. Improvement of the growth rate and

the quality of the produ
ed diamond layer as well as its homogeneous growth

are some of the aims whi
h are still to be rea
hed in this �eld. The 
ompre-

hension of the rea
tions on the substrate where the diamond layer settles is

still in
omplete. Even the spe
ies whi
h 
ontrol the deposition kineti
 have

not been in
ontestably found and the 
omplex 
hemi
al me
hanisms are not

suÆ
iently known.

For a deeper understanding of the 
omplex relations between gas phase and

surfa
e 
hemi
al pro
esses and hydrodynami
al pro
esses, simulations must


omplement the experiments and supply a base for evaluating several models

of 
hemi
al pro
esses.

The rea
tor is made of a 15
m-diameter tube with a height of 20
m. The

geometry of the rea
tor used for the experiment is axially symmetri
, whi
h

makes the two-dimensional modelling possible. The rea
tor has three windows

for the inspe
tion of the gas 
omposition through the dete
tion of 
uores
ent

light 
reated with the help of a laser beam (see Fig. 6.11). The reader 
an

�nd a 
omprehensive des
ription in [23℄. The pressure in the rea
tor is set to

50 mbar with the help of an automati
ally-regulated pump.

The 
hemi
al radi
als whi
h are ne
essary for the diamond deposition upon

sili
ium substrates are produ
ed inje
ting methane into the 
ombustion gas of

a H

2

=O

2


ame. The term used for this pro
ess supported through 
ombustion

is \Combustion Assisted - Chemi
al Vapor Deposition", in short CA-CVD.

Hydro
arbon mole
ules are transformed during the 
hemi
al pro
ess in rea
tive

radi
als, whi
h depose on the substrate with the adequate 
rystal stru
ture in

form of diamond.

As noted above, the detailed steps of the pro
ess are not 
ompletely understood

yet. However the methyl-radi
al (CH

3

) seems to have an important role in the

formation of diamond. The 
orresponding experimental 
onditions have to be

set su
h that a suitable temperature as well as a high 
on
entration of CH

3

mole
ules are found in the 
lose proximity of the substrate surfa
e. Methyl is


reated through the de
omposition of methane or higher hydro
arbons. The

mixing of a hot-
ame exhaust gas with high 
on
entration in hydrogen radi
als

with hydro
arbons leads to 
hemi
al rea
tions su
h as:

CH

4

+H �! CH

3

+H

2

: (6.5)

The stru
ture of the experiment is shown in Fig. 6.11. A hydrogen/oxygen


ame (premixed) burns above a burner. Its exhaust gas 
ontains beside the
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Figure 6.11: CVD 
ow rea
tor.


ombustion produ
t H

2

O, also up to 25% H radi
als (in mole) and 
ontribute

to the warming of the methane inje
ted through the pipe. This latter gas is

then transported by 
onve
tion and di�usion within a \stopping-point" 
ow

to the substrate surfa
e. De
omposition rea
tions o

ur on the way, su
h that

the CH

3


on
entration in
reases at �rst by the 
onsumption of H radi
als,

and �nally de
reases due to re
ombination and other rea
tions.

This later pro
ess 
an also be observed in the result of the simulation (see

Figure 6.13). With the help of the adaptive solution method developed in

this work, the 
on
entration of CH

3


an be a

urately 
omputed. In order to

optimize the CH

3


on
entration on the substrate we 
ould use for our adaptive

pro
ess an error fun
tional similar to the fun
tional des
ribed in Se
tion 6.1.3

and de�ned by relation (6.2). However as we want here to show the evolution of

the CH

3

mass fra
tion in the rea
tor, we de
ide to use a global error fun
tional

98



������������������������
������������������������
������������������������

������������������������
������������������������
������������������������

Outflow

CH
4

H  / O
2 2

Symmetry line

Substrate (wall)

Inner pipe

(Flame inflow)

Figure 6.12: CVD 
omputational �eld { half axial se
tion of the CVD rea
tor

for symmetry reasons.

on this variable de�ned by

J(') =

Z




'(r; z) r drdz: (6.6)

This gives us 
ontrol on the mean value of the CH

3

mass fra
tion over the

whole domain (see Chapter 5 for more details about error fun
tionals) and

makes the adaptive pro
ess re�ne more globally where the gradient of this

variable is high or on some singularities and not on given measure points or

lines (see Figure 6.13). Table 6.3 gives the 
onvergen
e history of the error

estimator based on the resolution of the dual system and de�ned in (5.46).

Table 6.3: Results for the error estimator for the CVD simulation using as

error fun
tional the global mean value of the CH

3

mass fra
tion.

Level # Cells �

1 412 4.21e-5

2 784 1.70e-5

3 1528 7.49e-6

4 2941 3.44e-6

5 5698 2.05e-6

6 11374 1.14e-6

7 23611 6.43e-7

A next step would be to optimize the CH

3


on
entration on the substrate

surfa
e by 
ontrolling parameters su
h as the in
ow velo
ities of the gas or

the geometry. In this purpose, we would use an error fun
tional giving 
ontrol
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Figure 6.13: CVD simulation with lo
al re�nement { Mass fra
tion of CH

3

.

to the lo
al value of the CH

3


on
entration or of the 
on
entration of any

other spe
ies involved in the diamond deposition on the substrate. On
e the

optimized parameters are found by simulation, they 
an be applied on the

experiment.

The di�erent parameters whi
h 
an be used for the optimization pro
ess 
an be

the methane 
ow rate or the 
ame exhaust gas 
ow rate as well as the distan
e

between the pipe from whi
h methane 
ows and the substrate. These are two

di�erent kinds of parameters: the �rst one involves boundary 
onditions, the

se
ond one the geometry of the rea
tor.

To simplify geometri
al optimization, if we de
ide to optimize the distan
e

pipe/substrate, an automati
 mesh generator has been developed. It allows the

user to generate a mesh for the 
omputation domain a

ording to geometri
al

parameters su
h as the pipe distan
e to the substrate and to the 
ame, as well

as the rea
tor size and the pipe size (see des
ription in Appendix C).

In a further work we 
ould also here 
ouple the solution pro
ess developed in

this work with an optimization pro
ess for instan
e on the in
ow boundary


onditions for the in
ow velo
ities or spe
ies 
on
entrations. Promising results

in this �eld 
an be found in [34℄.
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Chapter 7

Con
lusion and Outlook

In this work, we have developed and implemented a solution method for the

low Ma
h-number formulation of the Navier-Stokes equations with supple-

mentary equations des
ribing the evolution of the temperature and 
hemi
al

spe
ies (mass fra
tions) with sour
e terms due to heterogeneous (surfa
e) and

homogeneous (gas-phase) 
hemi
al rea
tions. These equations are written in


ylinder 
oordinates and are dis
retized with stabilized 
onforming Q1/Q1 �-

nite elements.

The resulting nonlinear system is solved by a full-
oupled defe
t-
orre
tion

iteration based on an approximation of the Ja
obian matrix of the system. We


onstru
t this approximation with regard to the 
onsisten
e and solvability of

the 
orresponding linear system.

A key element of the solver is the use of a multigrid pre
onditioner for the

GMRES method applied for solving the linear problems arising in the de-

fe
t 
orre
tion iteration. We implemented three di�erent smoothing operators

for our multigrid pre
onditioner: a Gauss-Seidel iteration and a robust ILU

fa
torization for the spe
ies equations, and a Vanka-type smoother for the

Navier-Stokes part of our system. The multigrid method we implemented is

based on the DEAL library and takes advantage of the hierar
hi
al stru
ture

of the mesh 
onstru
ted by su

essive re�nements.

Adaptive meshes are su

essfully applied in the 
ontext of rea
tive 
ows. A

re
ent approa
h to 
ontrol the error in fun
tionals of the solution is presented

and applied to this type of problems. The reliability and eÆ
ien
y of the error

estimator for our appli
ations is demonstrated through numeri
al results for

two types of 
hemi
al models.

Comparing our method with a �nite-di�eren
e 
ode developed by J. Segatz and

used in the 
omputation of 
hemi
al 
ow rea
tors (see [46℄), the 
al
ulation

time has been redu
ed by a fa
tor �ve for rea
tion me
hanisms made of around

30 elementary rea
tions and involving around 10 spe
ies. We have also su

ess-

fully applied our method to 
hemi
al 
ows involving 39 spe
ies and more than
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350 
hemi
al rea
tions. Even by 
ows with so many spe
ies and rea
tions, the

adaptive method presented in this work allows to rea
h a 
ontrolled a

ura
y

on physi
al quantities of the 
ow with a

eptable 
omputational e�orts.

As promising outlook we would like to emphasize the following points:

For large 
hemi
al systems a major part of the 
omputing time is 
onsumed

by the 
al
ulation of the Ja
obian matrix of the 
hemi
al sour
e terms and its

inversion by Gauss-Seidel iterations or ILU fa
torization. Be
ause these oper-

ations 
an be performed lo
ally, a parallelization of the presented algorithm

seems to be an adequate method.

An appli
ation to 3D problems will also in
rease the need of redu
ing memory

requirements and 
omputation times without sa
ri�
ing a

ura
y. Adaptive

re�nement methods will probably play an important role for solving 3D prob-

lems in order to rea
h the needed a

ura
y on physi
al quantities of interest

with an optimal number of 
ells.

Another �eld of investigation is the mesh adaption for unsteady solutions. A

�rst approa
h is to allow beside mesh re�nement also mesh 
oarsening, and


ompute a lo
ally-re�ned mesh for ea
h time step. Resear
h is still needed

to implement a 
omplete mesh re�nement strategy for solutions depending on

time. Moreover a re�nement strategy for the time steps 
an also be de�ned.

Another promising perspe
tive is the appli
ation of error 
ontrol and adap-

tivity pro
esses for �nite element dis
retization to optimization problems gov-

erned by di�erential equations. The dual solution obtained during the adaptive

mesh re�nement 
an be used to build optimization strategies. This allows to


ontrol the value of the 
ost fun
tional of the optimization problem. Some

results in the �eld of 
oupling adaptivity and optimization methods 
an be

found in [7℄ and [34℄. As an example of possible optimization problem we want

to give the diamond deposition seen in Se
tion 6.2: by optimizing some spe
ies


on
entration on the substrate, the quantity and quality of the diamond layer

over the substrate 
an be drasti
ally in
reased.
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Appendix A

CARS-Experiment rea
tion

model

� H

2

wall relaxation pro
ess

MECHANISM OF H2(V=0,1) REACT. (Yor
k S
hneider-Kuehnle)

****

******************************

**** *

**** 1. H2-HE MECHANISM *

**** * * rea
tion rates *

*********************************************

H21 +H + >H20 +H * 2.36E+11 0.00 0.0

H21 +H20 + >H20 +H20 * 6.50E+07 0.00 0.0

H21 +HE + >H20 +HE * 1.56E+07 0.00 0.0

H +H +HE >H20 +HE * 5.00E+16 0.00 0.0

H +H +H20 >H20 +H20 * 2.90E+15 0.00 0.0

*********************************************

END

COLLISION EFFICIENCIES

END

COMPLEX REACTIONS

002 COMPLEX REACTIONS AT THE WALL

1.00 H21 *1.0 1.500E-03

1.00 H20 0.0 0.00

1.00 H *1.0 1.000E-04

0.50 H20 0.0 0.00

END

� H

2

=D

2

wall relaxation pro
ess and vibrational energy ex
hange

MECHANISM OF H2(V=0,1) REACT. (T.DREIER)

****
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******************************

**** *

**** 1. H2+D- MECHANISM *

**** k = 
m3/mol/s * * rea
tion rates *

*********************************************

H20 +D >HD0 +H * 1.78E+08 0.00 0.0

HD0 +H >H20 +D * 2.03E+07 0.00 0.0

D20 +H >HD0 +D * 1.27E+07 0.00 0.0

HD0 +D >D20 +H * 2.03E+07 0.00 0.0

H21 +H >H20 +H * 5.42E+10 0.00 0.0

HD1 +H >HD0 +H * 5.42E+10 0.00 0.0

H21 +D >H20 +D * 5.42E+10 0.00 0.0

HD1 +D >HD0 +D * 5.42E+10 0.00 0.0

H21 +D >HD0 +H * 2.00E+10 0.00 0.0

D21 +H >HD0 +D * 9.55E+09 0.00 0.0

HD1 +H >H20 +D * 9.55E+09 0.00 0.0

HD1 +D >D20 +H * 9.55E+09 0.00 0.0

H21 +D >HD1 +H * 1.04E+12 0.00 0.0

D21 +H >HD1 +D * 1.27E+09 0.00 0.0

HD1 +H >H21 +D * 5.21E+11 0.00 0.0

HD1 +D >D21 +H * 6.00E+10 0.00 0.0

H21 +HD0 >H20 +HD0 * 1.13E+11 0.00 0.0

HD1 +H20 >HD0 +H21 * 8.43E+09 0.00 0.0

H21 +D20 >H20 +D21 * 1.19E+10 0.00 0.0

D21 +H20 >D20 +H21 * 6.02E+07 0.00 0.0

HD1 +D20 >HD0 +D21 * 2.11E+09 0.00 0.0

H21 +H20 >H20 +H20 * 7.80E+07 0.00 0.0

H21 +HE >H20 +HE * 1.56E+07 0.00 0.0

HD1 +HE >HD0 +HE * 3.01E+07 0.00 0.0

H +H +HE >H20 +HE * 4.10E+08 0.00 0.0

H +H +H20 >H20 +H20 * 4.68E+08 0.00 0.0

D +D +D20 >D20 +D20 * 3.55E+08 0.00 0.0

*********************************************

END

COLLISION EFFICIENCIES

END

COMPLEX REACTIONS

005 COMPLEX REACTIONS AT THE WALL

1.00 H21 *1.0 8.700E-04

1.00 H20 0.0 0.00

1.00 D21 *1.0 8.700E-04

1.00 D20 0.0 0.00

1.00 HD1 *1.0 8.700E-04

1.00 HD0 0.0 0.00

1.00 H *1.0 1.000E-03

0.50 H20 0.0 0.00
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1.00 D *1.0 1.000E-03

0.50 D20 0.0 0.00

END

� NO

2

and H

2

rea
tive mixture

******************************

**** *

**** 1. NO2-H2 MECHANISM *

**** k = 
m3/mol/s *

*********************************************

H +H +M >H2 +M * 2.50E+09 0.00 0.0 0

H +H +H2 >H2 +H2 * 2.90E+03 0.00 0.0 0

H +H +HE >H2 +HE * 2.50E+09 0.00 0.0 0

H +NO2 >OH +NO * 7.20E+13 0.00 0.0 0

H2 +OH >H2O +H * 4.52E+11 0.00 0.0 0

OH +OH >H2O +O * 1.00E+12 0.00 0.0 0

*********************************************

END

COLLISION EFFICIENCIES

END

COMPLEX REACTIONS

001 COMPLEX REACTIONS AT THE WALL

1.00 H *1.0 1.000E-03

0.50 H2 0.0 0.00

END
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Appendix B

CVD-Experiment rea
tion

model

MECHANISM C1-C2,Methan, P = 50 MBAR, HIGH TEMP.,OHNE C2H5O BZW. C2H5OH

******************************************

**** 01. H2-O2 Rea
t. (no HO2, H2O2) * rea
tion rates *

******************************************

O2 +H =OH +O 2.000E+14 0.0 70.300

H2 +O =OH +H 5.060E+04 2.670 26.300

H2 +OH =H2O +H 1.000E+08 1.600 13.800

OH +OH =H2O +O 1.500E+09 1.140 0.420

******************************************

**** 02. Re
ombination Rea
tions

******************************************

H +H +M' =H2 +M' 1.800E+18 -1.000 0.000

O +O +M' =O2 +M' 2.900E+17 -1.000 0.0

H +OH +M' =H2O +M' 2.200E+22 -2.000 0.000

******************************************

**** 03. HO2 Formation/Consumption

******************************************

H +O2 +M' =HO2 +M' 2.300E+18 -0.800 0.0

HO2 +H =OH +OH 1.500E+14 0.0 4.200

HO2 +H =H2 +O2 2.500E+13 0.0 2.900

HO2 +H =H2O +O 3.000E+13 0.0 7.200

HO2 +O =OH +O2 1.800E+13 0.0 -1.7

HO2 +OH =H2O +O2 6.000E+13 0.0 0.0

******************************************

**** 04. H2O2 Formation/Consumption

******************************************

HO2 +HO2 =H2O2 +O2 2.500E+11 0.0 -5.200

OH +OH +M' =H2O2 +M' 3.250E+22 -2.000 0.0

H2O2 +H =H2 +HO2 1.700E+12 0.0 15.700

H2O2 +H =H2O +OH 1.000E+13 0.0 15.000
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H2O2 +O =OH +HO2 2.803E+13 0.0 26.800

H2O2 +OH =H2O +HO2 5.400E+12 0.0 4.200

******************************************

**** 05. CO REACTIONS

******************************************

CO +OH =CO2 +H 6.000E+06 1.500 -3.100

CO +HO2 =CO2 +OH 1.500E+14 0.0 98.700

CO +O +M' =CO2 +M' 7.100E+13 0.0 -19.000

CO +O2 =CO2 +O 2.500E+12 0.0 200.000

C +O2 =CO +O 2.000E+13 0.0 0.0

C +OH =CO +H 5.000E+13 0.0 0.0

******************************************

**** 10. CH Rea
tions

******************************************

CH +O =CO +H 4.000E+13 0.0 0.0

CH +O2 =CHO +O 6.000E+13 0.0 0.0

CH +CO2 =CHO +CO 3.400E+12 0.0 2.900

CH +H2O =3CH2 +OH 5.700E+12 0.0 -3.200

CH +OH =C +H2O 4.000E+07 2.0 12.300

CH +H =C +H2 1.500E+14 0.0 0.0

C +H +M' =CH +M' 3.000E+14 0.0 -1.0

******************************************

**** 11. CHO REACTIONS

******************************************

CHO +M' =CO +H +M' 7.100E+14 0.0 70.300

CHO +H =CO +H2 9.000E+13 0.0 0.0

CHO +O =CO +OH 3.000E+13 0.0 0.0

CHO +O =CO2 +H 3.000E+13 0.0 0.0

CHO +OH =CO +H2O 1.000E+14 0.0 0.0

CHO +O2 =CO +HO2 3.000E+12 0.0 0.0

CHO +CHO =CH2O +CO 3.000E+13 0.0 0.0

CH +OH =CHO +H 3.000E+13 0.0 0.0

******************************************

**** 12. CH2 Rea
tions

******************************************

3CH2 +H =CH +H2 6.000E+12 0.0 -7.500

3CH2 +O >CO +H +H 8.400E+12 0.0 0.0

3CH2 +O2 =CO +OH +H 1.300E+13 0.0 6.200

3CH2 +O2 =CO2 +H2 1.200E+13 0.0 6.200

1CH2 +M' =3CH2 +M' 1.200E+13 0.0 0.0

1CH2 +O2 =CO +OH +H 3.100E+13 0.0 0.0

1CH2 +H2 =CH3 +H 7.200E+13 0.0 0.0

3CH2 +3CH2 =C2H2 +H2 1.200E+13 0.0 3.4

3CH2 +3CH2 =C2H2 +H +H 1.100E+14 0.0 3.4

3CH2 +CH3 =C2H4 +H 4.200E+13 0.0 0.0

******************************************
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**** 13. CH2O Rea
tions

******************************************

CH2O +M' =CHO +H +M' 5.000E+16 0.0 320.000

CH2O +H =CHO +H2 2.300E+10 1.05 13.700

CH2O +O =CHO +OH 4.150E+11 0.57 11.600

CH2O +OH =CHO +H2O 3.400E+09 1.2 -1.900

CH2O +HO2 =CHO +H2O2 3.000E+12 0.0 54.7

CH2O +CH3 =CHO +CH4 1.000E+11 0.0 25.500

CH2O +O2 =CHO +HO2 6.000E+13 0.0 170.700

3CH2 +OH =CH2O +H 2.500E+13 0.0 0.0

CH +H2O =CH2O +H 1.170E+15 -0.75 0.0

******************************************

**** 14. CH3 Rea
tions

******************************************

CH3 +M' =3CH2 +H +M' 1.000E+16 0.0 379.000

CH3 +O =CH2O +H 8.430E+13 0.0 0.0

CH3 +H =CH4 1.060E+36 -7.30 36.25

CH3 +OH >CH3O +H 2.260E+14 0.0 64.8

CH3O +H >CH3 +OH 4.750E+16 -0.13 88.0

CH3 +O2 >CH2O +OH 3.300E+11 0.0 37.400

CH3 +HO2 =CH3O +OH 1.800E+13 0.0 0.0

CH3 +HO2 =CH4 +O2 3.600E+12 0.0 0.0

CH3 +CH3 >C2H4 +H2 1.000E+16 0.0 134.000

CH3 +CH3 =C2H6 1.300E+58-13.8 79.30

******************************************

**** 15a. CH3O Rea
tions

******************************************

CH3O +M' =CH2O +H +M' 5.000E+13 0.0 105.0

CH3O +H =CH2O +H2 1.800E+13 0.0 0.0

CH3O +O2 =CH2O +HO2 4.000E+10 0.0 8.9

CH2O +CH3O >CH3OH +CHO 0.600E+12 0.0 13.8

CH3OH +CHO >CH2O +CH3O 0.650E+10 0.0 57.2

CH3O +O =O2 +CH3 1.100E+13 0.0 0.0

CH3O +O =OH +CH2O 1.400E+12 0.0 0.0

******************************************

**** 15b. CH2OH Rea
tions

******************************************

CH2OH +M' =CH2O +H +M' 5.000E+13 0.0 105.0

CH2OH +H =CH2O +H2 3.000E+13 0.0 0.0

CH2OH +O2 =CH2O +HO2 1.000E+13 0.0 30.0

******************************************

**** 16. CH3O2 Rea
tions

******************************************

CH3O2 +M' >CH3 +O2 +M' 0.724E+17 0.0 111.1

CH3 +O2 +M' >CH3O2 +M' 0.141E+17 0.0 -4.6

CH3O2 +CH2O >CH3O2H +CHO 0.130E+12 0.0 37.7
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CH3O2H +CHO >CH3O2 +CH2O 0.250E+11 0.0 42.3

CH3O2 +CH3 >CH3O +CH3O 0.380E+13 0.0 -5.0

CH3O +CH3O >CH3O2 +CH3 0.200E+11 0.0 0.0

CH3O2 +HO2 >CH3O2H +O2 0.460E+11 0.0 -10.9

CH3O2H +O2 >CH3O2 +HO2 0.300E+13 0.0 163.3

CH3O2 +CH3O2 >CH2O +CH3OH +O2 0.180E+13 0.0 0.0

CH2O +CH3OH +O2 >CH3O2 +CH3O2 0.000E+00 0.0 0.0

CH3O2 +CH3O2 >CH3O +CH3O +O2 0.370E+13 0.0 9.2

CH3O +CH3O +O2 >CH3O2 +CH3O2 0.000E+00 0.0 0.0

******************************************

**** 17. CH4 Rea
tions

******************************************

CH4 +H =H2 +CH3 1.300E+04 3.000 33.600

CH4 +O =OH +CH3 6.923E+08 1.560 35.500

CH4 +OH =H2O +CH3 1.600E+07 1.830 11.600

CH4 +HO2 =H2O2 +CH3 1.100E+13 0.0 103.100

CH4 +3CH2 =CH3 +CH3 1.300E+13 0.0 39.900

******************************************

**** 18. CH3OH Rea
tions

******************************************

CH3OH =CH3 +OH 1.130E+25 -3.40 372.9

CH3OH +H =CH2OH +H2 4.000E+13 0.0 25.5

CH3OH +O =CH2OH +OH 1.000E+13 0.0 19.6

CH3OH +OH =CH2OH +H2O 1.000E+13 0.0 7.1

CH3OH +HO2 >CH2OH +H2O2 0.620E+13 0.0 81.1

CH2OH +H2O2 >HO2 +CH3OH 0.100E+08 1.7 47.9

CH3OH +CH3 =CH4 +CH2OH 9.000E+12 0.0 41.1

CH3O +CH3OH >CH2OH +CH3OH 0.200E+12 0.0 29.3

CH2OH +CH3OH >CH3O +CH3OH 0.220E+05 1.7 45.4

CH3OH +CH2O >CH3O +CH3O 0.153E+13 0.0 333.2

CH3O +CH3O >CH3OH +CH2O 0.300E+14 0.0 0.0

******************************************

**** 19. CH3O2H Rea
tions

******************************************

CH3O2H =CH3O +OH 4.000E+15 0.0 180.5

OH +CH3O2H =H2O +CH3O2 2.600E+12 0.0 0.0

****************************************

******************************

**** *

**** 4. C2 MECHANISM *

**** *

******************************

****************************************

**** 19B. C2 Rea
tions

*****************************************

C2 +O2 =CO +CO 5.000E+13 0.0 0.0
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C +C +M' =C2 +M' 3.000E+14 0.0 -1.0

CH +CH =C2 +H +H 5.000E+13 0.0 19.0

CH +CH =C2 +H2 5.000E+12 0.0 0.0

C +CH =C2 +H 5.000E+13 0.0 0.0

******************************************

**** 20. C2H REACTIONS

******************************************

C2H +O =CO +CH 1.000E+13 0.0 0.0

C2H +O2 =HCCO +O 3.000E+12 0.0 0.0

C +3CH2 =C2H +H 5.000E+13 0.0 0.0

C2H +O2 =CO +CO +H 3.520E+13 0.0 0.0

C2H +OH =HCCO +H 2.000E+13 0.0 0.0

C2H +OH =C2 +H2O 4.000E+07 2.0 32.8

C2 +H2 =C2H +H 4.000E+05 2.4 4.1

******************************************

**** 20A. C2O REACTIONS

******************************************

C2O +H =CH +CO 1.000E+13 0.0 0.0

C2O +O =CO +CO 5.000E+13 0.0 0.0

C2O +OH =CO +CO +H 2.000E+13 0.0 0.0

C2O +O2 =CO +CO +O 2.000E+13 0.0 0.0

C2 +OH =C2O +H 5.000E+13 0.0 0.0

******************************************

**** 20B. HCCO REACTIONS

******************************************

HCCO +H =3CH2 +CO 1.500E+14 0.0 0.0

HCCO +O >CO +CO +H 9.600E+13 0.0 0.0

HCCO +3CH2 =C2H3 +CO 3.000E+13 0.0 0.0

******************************************

**** 21. C2H2 REACTIONS

******************************************

C2H2 +M' =C2H +H +M' 3.600E+16 0.0 446.0

C2H2 +O2 =HCCO +OH 2.000E+08 1.5 126.0

C2H2 +H =C2H +H2 1.500E+14 0.0 79.6

C2H2 +O =3CH2 +CO 1.720E+04 2.8 2.1

C2H2 +O =HCCO +H 1.720E+04 2.8 2.1

C2H2 +OH =H2O +C2H 6.000E+13 0.0 54.2

CH +3CH2 =C2H2 +H 4.000E+13 0.0 0.0

C +CH3 =C2H2 +H 5.000E+13 0.0 0.0

C2H2 +O =C2H +OH 3.160E+15 -0.6 61.5

CH +HCCO =C2H2 +CO 5.000E+13 0.0 0.0

******************************************

**** 21A. CH2CO REACTIONS

******************************************

CH2CO +M' =3CH2 +CO +M' 1.000E+16 0.0 248.0

CH2CO +H =CH3 +CO 3.600E+13 0.0 14.1
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CH2CO +O =CHO +CHO 2.300E+12 0.0 5.7

CH2CO +OH =CH2O +CHO 1.000E+13 0.0 0.0

CH +CH2O =CH2CO +H 9.460E+13 0.0 -2.11

******************************************

**** 25. C2H3 REACTIONS

******************************************

C2H3 =C2H2 +H 1.900E+38 -8.5 192.6

C2H3 +OH =C2H2 +H2O 5.000E+13 0.0 0.0

C2H3 +H =C2H2 +H2 1.200E+13 0.0 0.0

C2H3 +O =C2H2 +OH 1.000E+13 0.0 0.0

C2H3 +O =CH3 +CO 1.000E+13 0.0 0.0

C2H3 +O =CHO +3CH2 1.000E+13 0.0 0.0

C2H3 +O2 =C2H2 +HO2 5.400E+12 0.0 0.0

CH +CH3 =C2H3 +H 3.000E+13 0.0 0.0

C2H3 +CH =3CH2 +C2H2 5.000E+13 0.0 0.0

******************************************

**** 22A. CH3CO REACTIONS

******************************************

CH3CO =CH3 +CO 7.700E+23 -4.7 68.58

CH3CO +H =CH2CO +H2 2.000E+13 0.0 0.0

******************************************

**** 22B. CH2CHO REACTIONS

******************************************

CH2CHO +H =CH2CO +H2 2.000E+13 0.0 0.0

******************************************

**** 23. C2H4 REACTIONS

******************************************

C2H4 +M' =C2H2 +H2 +M' 2.500E+17 0.0 319.8

C2H4 +M' =C2H3 +H +M' 1.700E+18 0.0 404.0

C2H4 +H =C2H3 +H2 1.700E+15 0.0 62.9

C2H4 +O =CH2CHO +H 5.200E+05 2.08 0.0

C2H4 +O =CHO +CH3 1.210E+06 2.08 0.0

C2H4 +OH =C2H3 +H2O 6.500E+13 0.0 24.9

CH4 +CH =C2H4 +H 3.000E+13 0.0 -1.7

******************************************

**** 23A. CH3CHO REACTIONS

******************************************

CH3CHO +M' =CH3 +CHO +M' 7.000E+15 0.0 342.8

CH3CHO +H =CH3CO +H2 2.100E+09 1.16 10.1

CH3CHO +H =CH2CHO +H2 2.000E+09 1.16 10.1

CH3CHO +O =CH3CO +OH 5.000E+12 0.0 7.6

CH3CHO +O =CH2CHO +OH 8.000E+11 0.0 7.6

CH3CHO +O2 =CH3CO +HO2 4.000E+13 0.0 164.3

CH3CHO +OH =CH3CO +H2O 2.300E+10 0.73 -4.7

CH3CHO +HO2 =CH3CO +H2O2 3.000E+12 0.0 50.0

CH3CHO +3CH2 =CH3CO +CH3 2.500E+12 0.0 15.9
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CH3CHO +CH3 =CH3CO +CH4 2.000E-06 5.64 10.3

******************************************

**** 24. C2H5 REACTIONS

******************************************

C2H5 =C2H4 +H 7.370E+42 -9.5 211.94

C2H5 +H =CH3 +CH3 3.000E+13 0.0 0.0

C2H5 +O =CH3CHO +H 5.000E+13 0.0 0.0

C2H5 +O =CH2O +CH3 1.000E+13 0.0 0.0

C2H5 +O2 =C2H4 +HO2 1.100E+10 0.0 -6.3

C2H5 +CH3 =C2H4 +CH4 1.140E+12 0.0 0.0

C2H5 +C2H5 =C2H4 +C2H6 1.400E+12 0.0 0.0

******************************************

**** 25. C2H6 REACTIONS

******************************************

C2H6 +H =C2H5 +H2 1.400E+09 1.5 31.1

C2H6 +O =C2H5 +OH 1.000E+09 1.5 24.4

C2H6 +OH =C2H5 +H2O 7.200E+06 2.0 3.6

C2H6 +HO2 =C2H5 +H2O2 1.700E+13 0.0 85.9

C2H6 +O2 =C2H5 +HO2 6.000E+13 0.0 217.0

C2H6 +3CH2 =C2H5 +CH3 2.200E+13 0.0 36.3

C2H6 +CH3 =C2H5 +CH4 1.500E-07 6.0 25.4

******************************************

**** 26. C3 Rea
tions

******************************************

H +C3 +M' =C3H +M' 7.000E+16 -1.000 0.00

H2 +C3 =C3H +H 4.000E+05 2.400 0.00

C +C2 +M' =C3 +M' 4.000E+16 -1.000 0.00

C +C2H =C3 +H 4.000E+16 -1.000 0.00

CH +C2 =C3 +H 1.000E+14 0.000 0.00

****

****************************************

END

COLLISION EFFICIENCIES

M' =H2 +H2O +O2 +CO2 +CO +CH4 +AR

1.0 6.5 0.4 1.50 0.75 3.0 3.0

END

COMPLEX REACTIONS

000 COMPLEX REACTIONS

END

*****

END
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Appendix C

A C++ Pa
kage for the

Cal
ulation of Flow Rea
tors

with Detailed Chemistry

{ User Guide {

C.1 Overall Stru
ture

This 
++ pa
kage allows to 
al
ulate multi
omponent gas 
ows taking into

a

ount 
onve
tion, di�usion and 
hemi
al rea
tions in the gas phase as well

as rea
tions at walls. It 
omputes the velo
ity �eld, pressure, density and

temperature distribution as well as the gas 
hemi
al 
omposition by solving a

system of PDEs des
ribing the evolution in spa
e and time of these variables.

The system is made of the Navier-Stokes equations supplemented with spe
ies

mass 
onservation equations. The spatial dis
retization is based on a �nite

element approximation. The time dis
retization is restri
ted to an impli
it

Euler s
heme. This 
ode has been used to 
al
ulate quasi-stationary solutions

and therefore a

urate time-step approximations were not needed.

A defe
t 
orre
tion s
heme is used to solve the non-linear systems for ea
h

time-step. The resulting linear systems are solved with a GMRES method

pre
onditioned by a multigrid method. The global system is split in two parts

with respe
t to the defe
t-
orre
tion matrix used; the �rst part 
orresponds to

the Navier-Stokes equations, whi
h des
ribe the average 
ow of the mixture,

and the se
ond part des
ribes the 
hemistry.

This 
ode is based on the DEAL 
++ library whi
h provides a 
exible de-

velopment environment for adaptive �nite element methods. Be sure to have

this library installed on your 
omputer in order to be able to use the present
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pa
kage. The reader 
an �nd more informations about the DEAL library at

http://gaia.iwr.uni-heidelberg.de.

Our 
al
ulation 
ode as well as the DEAL library have been written and

tested on SUN Solaris workstations with GNU g

 2.8. On other systems,

some 
hanges might be ne
essary to a
hieve the 
ompilation and linking.

C.2 Getting Things Installed and Started

The pa
kage is available as a 
ompressed tar �le: flow rea
tor.tar.gz. To

un
ompress and unpa
k the tar �le use the 
ommands:

gzip -d flow rea
tor.tar.gz

tar xf flow rea
tor.tar

There will be one dire
tory 
reated 
alled flow rea
tor. In this dire
tory, a

set of subdire
tories are to be found:

� Global 
hemi
al data 
ontains global 
hemi
al data about a lot of


hemi
al spe
ies. It should not be 
hanged.

� SOURCE 
ontains the sour
e �les of the program rea
tor.

� INSINP 
ontains a FORTRAN program whi
h uses the �les 
ontained

in the Global 
hemi
al data dire
tory as well as some other parameter

�les (see below) in order to 
reate a spe
i�
ation �le de�ning the spe
ies

that are to be found in the 
ow, with their 
hemi
al 
hara
teristi
s, as

well as the rea
tions whi
h are to o

ur in the mixture. This 
reated �le

is read by the program flow rea
tor at the start to de�ne and initialize

the 
hemistry for the 
omputation.

� USER DATA 
ontains parameter �les whi
h des
ribe the 
hemi
al spe
ies

found in the mixture, the 
hemi
al rea
tions and the boundary 
ondi-

tions.

� OUTPUT 
ontains the results of the 
omputations, i.e. �les in UCD (.inp)

and GNUPLOT (.dat) formats.

To 
ompile the 
ode, go in SOURCE, edit the Makefile �le and write there the

absolute path of the USER DATA and SOURCE dire
tories in the USER and SOURCE

variable de
larations:

USER = /absolute path/USER DATA

SOURCE = /absolute path/SOURCE Do the same for the DEAL library path:

DEAL = /absolute path/deal Save the �le and 
ompile the 
ode with gnu-

make by typing make.
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First a FORTRAN program 
alled insinp.x from the INSINP dire
tory also

has to be used in order to 
reate a �le spe
ifying all parameters and variables

needed in the 
hemi
al pro
esses as well as the boundary 
onditions. This

exe
utable is supplied within the pa
kage, but under 
ertain 
ir
umstan
es it

might be ne
essary to 
ompile it again. If it is the 
ase go in the INSINP

dire
tory and type make -f Make Inp. This program reads 
hemi
al data and


reates a new �le 
ontaining the only data needed for the 
urrent 
al
ulation.

Here you may also have to edit the �le Make Inp and write the right path

de
larations.

A s
ript-�le named go, whi
h has to be exe
uted in the main dire
tory flow rea
tor,


alls the two latter programs (insinp.x and rea
tor), in the right order, to

start the 
omputation a

ording to the 
ow 
hemi
al 
hara
teristi
s de�ned

by the user. Thus to start the solution pro
ess go in the main dire
tory and

type go.

C.3 Input and Output Data

The �les input, me
hanism, simulation.data and 
onst data, in dire
tory

USER DATA, 
ontain all the parameters the program needs to know. A 
hange in

the �le 
onst data demands that the program is 
ompiled again (see Se
tion

C.2).

C.3.1 Chemi
al Me
hanism

The 
hemi
al me
hanism is des
ribed in the �le named me
hanism. We give an

example of me
hanism �le. The �rst part des
ribes the simple rea
tions whi
h

take pla
e within the gas phase. The rea
tion rate is given after the de�nition

of the 
orresponding rea
tion on the same line. Further the rea
tions at solid

boundaries are de�ned with their rea
tion probability. Don't forget to set the

number of rea
tions at the wall (named 
omplex rea
tions).

MECHANISM OF D2(V=0,1) REACT.

****

******************************

**** *

**** 1. D2-HE MECHANISM *

**** *

*********************************************

D21 +D + >D20 +D * 2.36E+11 0.00 0.0 nist

D21 +D20 + >D20 +D20 * 6.50E+07 0.00 0.0 n.v.

D21 +HE + >D20 +HE * 1.56E+07 0.00 0.0 n.v.
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D +D +HE >D20 +HE * 5.00E+16 0.00 0.0 nist

D +D +D20 >D20 +D20 * 2.90E+15 0.00 0.0 n.v.

*********************************************

END

COLLISION EFFICIENCIES

END

COMPLEX REACTIONS

002 COMPLEX REACTIONS AT THE WALL

1.00 D21 *1.0 1.500E-03

1.00 D20 0.0 0.00

1.00 D *1.0 1.000E-04

0.50 D20 0.0 0.00

END

C.3.2 In
ow Data

The in
ow data are given in the �le input. In this �le one 
an set the mole

fra
tions of ea
h spe
ies, the temperature, and velo
ity of the mixture at the

in
ow boundary. This boundary 
ontains two di�erent area, the inner and

outer tubes. The �le stru
ture is the following:

OPTIONS...................(FORMAT 7(A4,6X), END WITH -END -)

REGRID /PCON /PROFIL /TSO / / / /

STORE /EXTRA 2/OUTPUT 1/ENERG 2/ / / /

END / / / / / / /

SPECIES..........................(Format 7(2A4,1X,A1), end with -END -)

HE ,H20 ,H21 ,H ,HD0 ,HD1 ,D20 ,

D21 ,D , , , , , ,

END

************************************************************************

INFLOW COMP. INNEN AUSSEN ...(FORMAT A10,2F10.3, END WITH -END -)

HE : 0.792 0.000 (SAME ORDER AS ABOVE !!!!!)

H20 : 0.000 0.992 (MOLE-FRACTION)

H21 : 0.000 0.005 ****

H : 0.000 0.003 ****

HD0 : 0.000 0.000 ****

HD1 : 0.000 0.000 ****

D20 : 0.115 0.000 ****

D21 : 0.002 0.000 ****

D : 0.091 0.000 ****

P : 5.33E-3 5.33E-3 BAR

T : 292. 292. K

U : 0.000 0.000 M/S
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V : 64.00 34.00 M/S

There are some more lines in this �le but they are outdated and not taken into

a

ount. It is important to write the name of the spe
ies in the list on the

top of the �le in the right format (8 
hara
ters between 2 
ommas). After the

spe
ies list, the spe
i�
ation of the in
ow data is to be found in two 
olumns

for the inner (INNEN) and the outer (AUSSEN) tube; �rst the spe
ies mole

fra
tion, then the pressure, the temperature and �nally the radial and axial

velo
ities. It is to be noted that the spe
ies MOLE fra
tions are to be given

in this �le, although the outputs of the program give mass fra
tions.

In dire
tory GLOBAL CHEM DATA, the �les mol.dat and thermo.dat 
ontain

spe
ies spe
i�
 databases and should not be 
hanged or even edited.

The s
ript go in the main dire
tory 
alls the prepro
essor insinp.x, whi
h

itself reads the input �les and spe
ies data bases to 
reate a data set 
alled

fort.3 also written in the main dire
tory. This data set is read by the a
tual

simulation 
ode to de�ne the 
ow 
hemi
al 
hara
teristi
s.

C.3.3 Simulation Pro
ess

The �le 
onst data.h in dire
tory USER DATA 
ontains data 
on
erning the

solvers, the adaptive pro
ess and the outputs. This �le is made of several well

de�ned parts:

� Time step - Solver toleran
e:

#define TIME_STEP_SIZE 2.

#define TIME_STEP_NUMBER 50

#define MAX_SIMPLE_IT 30

#define SOLVER_TOL 1.E-7

The time step size is normed by the density of the mixture and there-

fore is a
tually around a fa
tor 10

�4

smaller as the time step given by

TIME STEP SIZE.

The total number of time steps is given by TIME STEP NUMBER, and

the number of time steps without re�nement of the mesh is set by

MAX SIMPLE IT. A quasi-stationary state 
an in this way be rea
hed be-

fore the lo
al re�nement pro
ess begins. After MAX SIMPLE IT number

of iterations the adaptive re�nement pro
ess begins.

SOLVER TOL is the toleran
e of the defe
t-
orre
tion pro
ess on the resid-

ual.

� Number of spe
ies:
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#define SPECIES_COMP 10

It should be set to the number of spe
ies + 1 for the temperature.

� Neutral spe
ies:

#define NEUTRAL_SPECIE 1

It is used to de�ne the spe
ies whi
h is found in the tube at the start of

the 
al
ulation. It should be a neutral spe
ies whi
h does not rea
t (or

only weakly) with other spe
ies of the mixture. This allow to avoid too

sti� sour
e terms at the beginning of the 
omputation.

� Wall-rea
tion 
ag:

stati
 int WALL_CHEMISTRY = 1;

if WALL CHEMISTRY is equal to 1, the wall rea
tions are taken into a

ount.

If it is equal to 0 they are not.

C.3.4 Re�nement pro
ess

The re�nement pro
ess is based on the a

urate 
al
ulation of some average

or point values of mass fra
tions for sele
ted spe
ies. The following variables

allow the user to indi
ate whi
h values for whi
h spe
ies has to be known with

a

ura
y.

� Observation 
ag (solve-dual-problem 
ag):

#define OBSERVATION 1

This 
ag is set to 1 if some physi
al values have to be known with a
-


ura
y. In this 
ase the dual problem is solved for ea
h re�nement steps

and the dual solution is used to 
al
ulate the 
orresponding error esti-

mator that is used to re�ne the mesh.

If this 
ag is set to 0, the dual problem is not solved and the error

estimator does not 
ontain any weights.

The following variables make sense only if the latter 
ag is set to 1, i.e.

average or point values of some spe
ies mass fra
tions are to be known

with a

ura
y.

� Observed spe
ies:
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#define OBSERVATION_SIZE 2

stati
 int OBSERVATION_SPECIES[OBSERVATION_SIZE℄ = {1,2};

The �rst variable de�nes the number of spe
ies for whi
h the mass fra
-

tion has to be known with a

ura
y. This number must be between 1

and SPECIES COMP-1. The se
ond variable is an array and 
ontains the

numbers of the 
orresponding spe
ies. The spe
ies are ordered in the

same way as in the �le input.

� Observation dire
tion:

#define OBSERVATION_XLINE 1

#define OBSERVATION_YLINE 0

#define OBSERVATION_AXE_POINTS 0

X 
orresponds to the radial dire
tion and Y 
orresponds to the axial

dire
tion. Here we de�ne whi
h value has to be known with a

ura
y.

For ea
h of these 3 variables the value one means that this value is to be


al
ulated with pre
ision.

OBSERVATION XLINE 
orresponds to average values of the mass fra
tion

of the spe
ies de�ned above along radial lines whi
h are de�ned later.

OBSERVATION YLINE 
orresponds to average values of the mass fra
tion

of the spe
ies de�ned above along axial lines whi
h are de�ned later.

OBSERVATION AXE POINTS 
orresponds to the point values of the mass

fra
tion of the spe
ies de�ned above along the axis of the tube. The

positions of these points along the axis are de�ned later.

There must be one and only one of these three variables with the value

set to 1. The two others must have the value 0.

� Position of the observation lines/points (in meter):

#define OBSERVATION_NUMBER 4

stati
 double OBSERVATION_RADIUS[OBSERVATION_NUMBER℄ = {0.};

stati
 double OBSERVATION_HEIGHTS[OBSERVATION_NUMBER℄ = {1,2,3,4};

The variable OBSERVATION NUMBER de�nes the number of lines or points

where average or point values of the mass fra
tions have to be known

with pre
ision.

The variable OBSERVATION RADIUS is relevant only if OBSERVATION YLINE

is set to 1, sin
e it de�nes the radius for ea
h line (parallel to the tube

axis) where the averaged mass fra
tion has to be 
al
ulated with pre
i-

sion.

The variable OBSERVATION HEIGHTS is relevant only if OBSERVATION YLINE

is set to 1, sin
e it de�nes the position on the tube axis for ea
h radial

line or point of the axis where the mass fra
tion has to be 
al
ulated

with pre
ision.
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� Number of maximal re�nement level

#define MAX_REFINEMENT_LEVEL 20

This variable de�nes the maximal number of re�nement level for the

adaptive mesh re�nement pro
ess. It is set to as default to 20 and 
an

be left to this value.

C.3.5 Output Data

The output that 
an be 
ustomized here are done in Gnuplot format and


orresponds to the variable evolutions along radial lines. The output �les are

stored in the dire
tory OUTPUT whi
h is in the main dire
tory.

� Number of output lines:

#define OUTPUT_NUMBER 3

With this variable, one de�nes the number of lines for whi
h there must

be an output �le. In this �le the evolution of the 
ow and 
hemi
al

variables are written in Gnuplot format.

� Axial position of the output lines

stati
 double OUTPUT_HEIGHTS[OUTPUT_NUMBER℄ = {1,2,3};

This array 
ontains the axial position of the output lines expressed in

meter from the tube start.

These �les in Gnuplot-format have the following stru
ture:

#file : OUTPUT/output_15_0.dat

#line output for y = 0.238 of variables:

#radial position, u, v, p*, T, HE, H20, H21, H, HD0, HD1,

D20, D21, D, rho, P/rho

0.0045 -0.115513 26.7997 0.549813 292 1 1.01773e-13 1e-13

1.35934e-13 1e-13 1e-13 1e-13 1e-13 1e-13 0.000878807 606504

The �rst line is the name of the �le. The se
ond line 
ontains a des
ription

of the se
tion for whi
h we get the variable evolution. The third line is a

des
ription of the order in whi
h the variables are stored in the �le. And the

following lines 
ontain the data. The units for these data are SI (m=s, Pa, K,


dots) and mass fra
tion is stored for the spe
ies.
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Additionally to these Gnuplot output �le, output �les 
ontaining the 
omplete

solution on the whole domain are 
reated at the end of ea
h time step or

re�nement step. They are also stored in the dire
tory OUTPUT. These �les are

in UCD format, whi
h 
an be read by AVS, dealvision or DeViSoR, whi
h all

three are visualization programs.

C.3.6 Mesh data

The name of the mesh �le is given in the �le simulation.data with absolute

or relative path from the main dire
tory where the s
ript go is 
alled. The

domain dimensions are also to be found in this �le.

#***************** Data about the 
omputational field *******************

#************************************************************************

#**** Mesh file name

# *******************


ars_split.inp

#**** Domain dimensions (in meter) : ***

# tube height | tube radius | splitter radius

0.15 0.016 0.006

The tube height is the length of the tube. The tube radius is the radius of

the outer tube. And the splitter radius is the radius of the intern tube. The

values are needed by the program to 
al
ulate the in
ow values.

C.4 Automati
 mesh generation for CVD

In order to simplify the geometri
al optimization pro
ess for CVD experiment

we developed a mesh generator for the CVD geometry. This is only one �le:

CVD mesh generator.

 whi
h 
an be simply 
ompiled and linked by any 
++


ompiler.

The parameters whi
h need to be set in the �le are the following:

name = "mesh.inp";

/**

* |-- substrat

* V
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* |------------------------------------------------------------------

* | <----------------------------- symmetry line |

* | |

* | d_substrat |

* | |

* | CH4 inflow |

* |----| free outflow --> |

* | |

* | <- pipe |

* | |

* |----| |

* | |

* | |

* | d_pipe |

* | H2/O2 inflow |

* | |

* -------------------------------------------------------------------

*

*

*/

/**

* Enter here the numbers of 
olumns and lines of the mesh to be generated.

* ^ Lines

* |

* |

* |

* ----------> Columns

*/

// # = number of

int nb_under_pipe_
ols = 2; // # 
olumns under the pipe

int nb_above_pipe_
ols = 2; // # 
olumns over the pipe

int nb_under_substrat_
ols = 15; // # 
olumns on the right of the pipe

int nb_under_lines = 3; // # lines under the pipe

int nb_pipe_lines = 3; // # lines beside the pipe

int nb_between_lines = 4; // # lines over the pipe

/**

* enter here the widths of the domain (in m)
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*/

double substrat_width = 0.025;

double pipe_width = 0.001;

/**

* enter here the heights of and distan
es in the domain (in m)

*/

double substrat_height = 0.005;

double pipe_height = 0.003;

// distan
e between the inflow of the flame exhaust gas

double d_pipe = 0.003;

// distan
e between the pipe and the substrat

double d_substrat = 0.005;

/**

* enter the numbers of the different boundary lines

*/

int symmetry = 2;

int outflow = 0;

int wall = 3;

int substrat_wall = 7;

int CH4_inflow = 4;

int H2O2_inflow = 5;

/******************************************************************/
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