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Introdution

Flow reators are used in many appliations in industry and researh. Complex

interations in the reator, suh as superposition of onvetion and di�usion

proesses with hemial reations in the gas phase or at the walls, make it

diÆult for experimental data to be orretly interpreted. By means of a

detailed numerial simulation, these various e�ets an be distinguished and

the interating proesses ourring within reative mixing ows are easier to

understand.

Air Flux

Fuel Flux

Zone of

Mixing

Air Flux

Figure 1: Flow reator made of an inner and an outer tube where two gases

enter and get in ontat at the outlet of the entral tube.

Thus the main interest in the simulation of ow reators is the omprehension

of the omplex interplay between ow, mixing proesses and reation proesses.

To desribe the hemial and physial proesses taking plae in reative ows,

many hemial speies are to be onsidered with often a few hundred elemen-

tary reations. Considering the equations for veloities, pressure, temperature,

and eah speies, the system of PDEs modelling the reative ow ontains usu-

ally between 10 and 50 equations and is highly non-linear. The leading terms

in these equations may vary in spae and time. In the reation zones, the

system may beome reation-dominated through sti� soure terms. In other

parts of the domain where hemial reations are weak, either the onvetion

terms (by high Reynolds number) or the di�usive terms (as in non-reative

boundary layers) may be predominant.
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Several methods for the simulation of reative ows have already been imple-

mented, usually based on �nite di�erene or �nite volume disretizations on

tensor produt meshes (see for instane [18℄, [55℄). A ode based on �nite di�er-

enes has reently been applied to the simulation of a low-pressure ow reator

for kineti studies in [46℄, in order to improve existing methods (as plug-ow

tehniques) for evaluating data from isothermal ow kineti measurements. It

has been developed for the low Mah-number regime and makes use of splitting

tehniques for variables and spatial dimensions thereby reduing the ompu-

tational e�ort. Numerial results of full reative ow simulation have been

ompared with the measurement of elementary relaxation and vibrational en-

ergy transfer proesses. As a model system for a simple kineti proess the

heterogeneous relaxation of vibrationally exited hydrogen (H

2

(v

00

= 1)) and

its energy transfer in ollisions with deuterium (D

2

(v

00

= 0)) was onsidered

(see Chapter 6):

H

2

(v

00

= 1) wall

�����!

H

2

(v

00

= 0);

H

2

(v

00

= 1) +D

2

(v

00

= 0)

������!

H

2

(v

00

= 0) +D

2

(v

00

= 1):

This made it possible to evaluate speies wall deativation probabilities and

reation rate onstants for vibrational energy transfer. However, this simula-

tion did not bring enough information about the preision on the omputed

quantities, whih ould assure that the error done on these quantities was lower

than a given tolerane. Nor did the tensor-produt mesh allow to eÆiently

ontrol the auray of the alulation loally in the zones of the ow tube

that were of interest. Moreover, due to some instabilities in the method, it

was neessary to use pseudo-time stepping to obtain steady solutions, whih

ould have been avoided in some ases.

In order to eliminate these weaknesses and ahieve better auray in the

solution with reasonable omputational e�ort, we develop in this work a new

method for the simulation of hemial ow reators with preise evaluation

of some physial quantities. We derive this method from reent tehniques

for adaptive mesh re�nement whih allows to redue the numerial e�ort and

nevertheless ahieve good or even better auray in the data that may be of

interest ompared to a straightforward tensor produt approah. This makes

possible on the one hand to simulate ow reators on simple workstations

or PCs without any ompromise with respet to the quality of the omputed

solution, and on the other hand, on super-omputers, to reah an auray that

ould not be ahieved on simple tensor produt meshes or on loally adapted

meshes onstruted aording to ad ho riteria, usually justi�ed on physial

grounds, whose impat on the auray of the numerial solution is diÆult to

assess.

Chapter 1 disusses the dimension redution of the omputational domain.

For the simulation of irular ow tubes assuming an axial symmetry, it is
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suÆient to onsider only half of an meridional setion of the tube to desribe

the reative ow. We disuss here problems invariant under rotation, and the

derivation of weighted Sobolev spaes needed in the weak formulation of the

system to be solved.

The model onsidered onsists of the ompressible Navier-Stokes equations

with additional onvetion-di�usion-reation equations for the hemial speies.

The goal is the simulation of stationary or quasi-stationary reative ows at

low Mah number for the evaluation of kineti reation parameters as well as

proess optimization of hemial reation systems in ow reators. The om-

plete model for multispeies ows is presented in Chapter 2 and then restrited

by simplifying the di�usive part of the speies transport as well as taking into

aount the low-Mah number ow state, in order to make fast omputations

possible without too muh loss in the model auray aording to the physis.

The reation model is also presented and the form of the hemial soure terms

is disussed. Further the physial onstraints on the model are explained.

The disretization of the equations is disussed in Chapter 3. We use a �nite el-

ement method based on bilinear elements de�ned on retangles (Q

1

elements).

The standard Galerkin disretization using Q

1

elements is not stable and has

to be stabilized. Details are given about the pressure stabilization and the

streamline di�usion methods for steady and unsteady ompressible ows at

low Mah number.

The highly non-linear system obtained requires very eÆient numerial meth-

ods. Therefore a robust non-linear solver is needed. A defet orretion method

with step size ontrol is developed by approximating the Newton matrix. The

degree of approximation required is assessed aording to onsistene and solv-

ability of the orresponding linear systems.

In Chapter 4 the solver is desribed. The outer iteration is based on defet

orretion and the inner large linear problems are solved by an iterative method

GMRES with the help of a multigrid method as preonditioner. GMRES and

multigrid methods are among the most eÆient modern tehniques for solving

large sale algebrai systems resulting from �nite element disretizations of

PDEs. The multigrid method needs an appropriate smoother for reative ow

problems on loally re�ned meshes. The development of a Vanka smoother

for the Navier-Stokes part of the system and the use of Gauss-Seidel or ILU

smoothing for the hemial part lead to an eÆient and robust method.

Another important part of this work deals with error ontrol and mesh adap-

tivity. The aim is to ahieve reliability in the sense that physially relevant

derived quantities, whih an be thought of as funtionals of the solution, are

approximated to within a given tolerane. The use of duality arguments leads

to the ontrol of the error in funtionals of the solution, whih an be quanti-

ties suh as point values of the temperature or line averages of mass frations

11



(whih orresponds to a CARS signal for instane, see Chapter 6). The mesh

adaptivity based on an a posteriori error estimate gives us the possibility to

re�ne the mesh loally only in the zones where it is neessary in order to om-

pute these quantities with the required auray. We treat this problem of

adaptivity and aurate quantity omputations in Chapter 5. The onept of

error estimation for funtionals of the solution is explained and we apply this

method to produe \optimal" meshes for reliable and eÆient omputation of

reative ows in ow reators. A quantitative error estimation of funtionals

is espeially important for omparison between simulation and experiment to

validate the underlying model. The model and numerial method developed

in this work are indeed validated through experimental measurement whih

also provides the data essential for parameter estimation, suh as deativation

probabilities for vibrationally-exited H

2

moleules.

In order to test the eÆieny of the adaptive method and of the solvers, we

onsider in Chapter 6 three relevant problems in ow reators:

� CARS (Coherent Antistokes Raman Spetrosopy) measurement of de-

ativation reations and reation rate for energy transfer of vibrationally-

exited H

2

moleules,

� LIF-Spetrosopy for the kineti analysis of reations between NH and

NO moleules as well as between NH and O

2

moleules in the ase of

high temperatures, and

� CA-CVD (Combustion Aided Chemial Vapor Deposition) for the opti-

mization of a diamond deposition proess.

In the �rst ase, the mixture onsist of 9 speies with heterogeneous reations

of deativation on the wall as well as gas-phase reations between H

2

and D

2

moleules. The omplete hemial model onsist of 27 gas-phase reations

and 5 wall reations. The evolution of the onentration of some speies is

measured along the axis of the tube on well de�ned measurement points. The

solution method with adaptive mesh re�nement is applied to ompute the

evolution of the speies onentration along the axis with optimal preision on

these measurement points. We are then able to ompare aurate simulation

results with measurements and thus derive reation rates.

In the seond ase, the mixture onsidered (based on produts of reations be-

tween NO

2

and H

2

) onsists of 8 speies with homogeneous and heterogeneous

reations with heated walls (Dirihlet boundary onditions for the temperature

at the wall). The temperature range to be onsidered is 300K (temperature

of the inoming gas ow) to 1700K. These high temperature gradients indue

some numerial instabilities in the inow region so that only a quasi-stationary

solution an be found. We have to use here a time step method to be able to

onverge to a solution.
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A CA-CVD experiment (see [32℄ and [23℄) has also been simulated. The aim

is to optimize the quality and quantity of diamond deposition on a substrate.

The system to be solved is more omplex than the former system for the

simulation of the CARS experiment. The mixture ontains 39 speies and the

reation model onsists of 358 hemial reations. An injetion of methane

is done from a pipe into a gas mixture made of produts of a H

2

=O

2

ame.

It has been shown that the deposition of diamond strongly depends on the

onentration of CH

3

near the substrate. Working with suh a large system

of equations does not allow to use simple strutured meshes without error

ontrol on the values we are interested in. The adaptive proess developed in

this work not only allow us to ompute aurately physial values - suh as the

CH

3

onentration near the substrate - but also to deal with more ompliated

hemial proesses. This was made possible by improving the performane

of the simulation proess with respet to already existing odes. Using an

adaptive re�nement proess based on error funtionals allows us to get higher

auray on some physial value of interest with a given number of ells, and

thus drastially redue memory requirements. Moreover, the implementation

of robust and eÆient solvers make it possible to redue the omputation time.

All omputations here an be done on a workstation.

The basi priniples of �nite element methods is assumed to be known. Some

referenes are given for an introdution to �nite element disretizations.
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Chapter 1

Axisymmetri Problems and

Dimension Redution

Most physial problems are naturally formulated as boundary problems in

three dimensional domains. However three dimensional omputations are very

expensive and sometimes pratially impossible on workstations. It is there-

fore neessary to rewrite the problem with two dimensional equations. This

is obtained by assuming that the dependeny of the parameters, data and

solution with respet to one of the three variables an be negleted, whih

is justi�ed in many situations. Here we are interested in the ase where the

three-dimensional omputation domain is invariant under rotation around an

axis. Thus, without any approximation, the problem an be transformed into

a family of two dimensional equations on the Fourier oeÆients (f. [9℄).

Moreover, if the data satisfy suitable axisymmetry properties, only the Fourier

oeÆient of order 0 subsists, so that the three dimensional problem an be

redued to a two dimensional one. We will deal with this later ase in this

work. The problems we are interested in are indeed invariant under rotation

(see later).

The axisymmetri funtions whih belong to standard Sobolev spaes on the

three dimensional domain an be mapped onto funtions in the orresponding

two dimensional domain. These new funtions belong to weighted Sobolev

spaes, the weight being the distane to the symmetry axis. We haraterize

these funtions as the elements of the weighted spaes suh that suitable traes

vanish on the rotation axis.

All this leads to transform an axisymmetri boundary value problem on the

three dimensional domain into an equivalent problem on the orresponding

two dimensional domain. For more details see [11℄, [41℄ and [2℄.
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1.1 Desription of Axisymmetri Problems

For a generi point in R

3

, we use both artesian oordinates (x; y; z) and

ylindrial oordinates (r; �; z) in R

+

�℄� �; �℄� R, with

r =

p

x

2

+ y

2

and � =

(

� aros

x

r

if y < 0;

aros

x

r

if y � 0.

(1.1)

In R

2

we use the artesian oordinates (r; z) and we de�ne the half-spae R

2

+

as the set of points in R

2

with positive oordinate r.

Let 
 denote a bounded domain ontained in R

2

+

. The axisymmetri domain

�


 is the three-dimensional set obtained by rotating 
 around the axis r = 0.

We are interested in two-dimensional domains of the following types for the

reative ow omputations in Chapter 6:

� CARS ow reator:

Fuel Flux

Air Flux

Symmetry line

Mixing Zone

Figure 1.1: 
 = half axial setion of the CARS ow reator shown in Fig. 1.

� CVD ow reator:

�����������������������
�����������������������
�����������������������
�����������������������

Outflow

CH
4

H  / O
2 2

Symmetry line

Substrate (wall)

Inner pipe

(Flame inflow)

Figure 1.2: 
 = half axial setion of the CVD reator
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We denote by �

0

the part of the boundary �
 ontained in the axis r = 0, i.e.

the symmetry line. We set � = �
n�

0

. The boundary �
 is a polygon, i.e.

the union of a �nite number of segments.

The orresponding three-dimensional domain

�


, orresponding to the whole

ow reator shown in Fig. 1, is de�ned as:

�


 = f(x; y; z) 2 R

3

j (r; z) 2 
 [ �

0

and � � < � � �g: (1.2)

Let R

�

denote the rotation with angle � with respet to the axis r = 0 in R

3

,

i.e.

R

�

(x; y; z) = (x os � � y sin �; x sin � + y os �; z): (1.3)

Of ourse,

�


 is invariant by any rotation R

�

. The unit outward normal vetor

�n to

�


 is obtained by rotating the unit outward vetor n to 
 on �.

1.2 Problems Invariant under Rotation

The problems whih are onsidered in this work are invariant under rotation.

Let us onsider the boundary value problem [

�

A;

�

B℄ on

�


 where the unknown

is a vetorial funtion �v with M omponents:

(

�

A�v =

�

f in

�


;

�

B�v = �g on �

�


:

(1.4)

The symbol � over a letter means that the orresponding funtion, distribution

or operator is de�ned on

�


. Here

�

A is a linear system of partial di�erential

operators and

�

B is a system of boundary di�erential operators.

De�nition 1. Problem [

�

A;

�

B℄ is said to be invariant under rotation if the

following property holds for any smooth funtion �v from

�


 into R

M

:

8� 2 [��; �℄ :

(

�

A(�v Æ R

�

) = (

�

A�v) Æ R

�

;

�

B(�v Æ R

�

) = (

�

B�v) Æ R

�

:

(1.5)

Equivalently, problem [

�

A;

�

B℄ is invariant under rotation if the operators

�

A and

�

B an be written in the following form in ylinder oordinates (r; �; z):

�

A(x; y; z; �

x

; �

y

; �

z

) =

�

A(r; z; �

r

; �

�

; �

z

);

�

B(x; y; z; �

x

; �

y

; �

z

) =

�

B(r; z; �

r

; �

�

; �

z

);

(1.6)
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i.e. with oeÆients independent of the variable �. A basi example is the

Laplae operator

4 = �

2

x

+ �

2

y

+ �

2

z

= �

2

r

+

1

r

�

r

+

1

r

2

�

2

�

+ �

2

z

(1.7)

Dirihlet boundary onditions or, more generally, onditions whih only depend

on the normal derivative �

�n

to the boundary, are invariant under rotation.

1.3 Data and Solutions Invariant under Rota-

tion

De�nition 2. A funtion �v is said to be invariant under rotation if the fol-

lowing property holds

8� 2 [��; �℄ : �v Æ R

�

= �v: (1.8)

Problems whih are invariant under rotation are assoiated with funtions

invariant under rotation: if problem [

�

A;

�

B℄ satis�es (1.5) and if �v is invariant

under rotation, so are

�

f and �g; the onverse property holds when problem

[

�

A;

�

B℄ has at most one solution.

When the operators

�

A and

�

B as well as the data

�

f and �g are invariant under

rotation, we easily see that this problem is losely linked to the two-dimensional

problem

(

Av = f in 
;

Bv = g on �;

(1.9)

where

f(r; z) =

�

f(x; y; z);

g(r; z) = �g(x; y; z);

A(r; z; �

r

; �

z

) =

~

A(r; z; �

r

; 0; �

z

);

B(r; z; �

r

; �

z

) =

~

B(r; z; �

r

; 0; �

z

);

(1.10)

~

A and

~

B being de�ned in (1.6).

Thus in the ase of a problem invariant under rotation, we have atually re-

dued the number of variables from 3 to 2.

When problem [

�

A;

�

B℄ is invariant under rotation, and if the data

�

f and �g are

invariant under rotation, it is readily heked that the following propositions

are equivalent:

� �v is a solution of [

�

A;

�

B℄ and is invariant under rotation,

� v is a solution of [A;B℄.
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1.4 Basi Formulas

With eah oordinate system, we assoiate an orthonormal basis: (e

x

; e

y

; e

z

) for

the artesian system, and (e

r

; e

�

; e

z

) for the ylindrial system. The derivative

with respet to eah of these oordinates is denoted by � indexed by the

oordinate. From the basi identities

�

x

= �

r

os � �

1

r

�

�

sin �; �

y

= �

r

sin � �

1

r

�

�

os �

we derive the formulas for operators ating on salar funtions and on veto-

rial funtions. A funtion �v with values in R

3

is written either in artesian

oordinates v

x

e

x

+v

y

e

y

+v

z

e

z

or in ylindrial oordinates v

r

e

r

+v

�

e

�

+v

z

e

z

.

The problems we are interested in are invariant under rotation. Thus the

derivative aording to the variable � as well as the omponent v

�

of the vetor

de�ned above vanish, whih leads to the following formulas:

� For salar funtions:

artesian oordinates ylindrial oordinates

rv �

x

v e

x

+ �

y

v e

y

+ �

z

v e

z

�

r

v e

r

+ �

z

v e

z

4v �

2

x

v + �

2

y

v + �

2

z

v �

2

r

v +

1

r

�

r

v + �

2

z

v

� For vetorial funtions:

artesian oordinates ylindrial oordinates

r:�v �

x

v

x

+ �

y

v

y

+ �

z

v

z

�

r

v

r

+

1

r

v

r

+ �

z

v

z

4�v

(�

2

x

v

x

+ �

2

y

v

x

+ �

2

z

v

x

) e

x

+(�

2

x

v

y

+ �

2

y

v

y

+ �

2

z

v

y

) e

y

+(�

2

x

v

z

+ �

2

y

v

z

+ �

2

z

v

z

) e

z

(�

2

r

v

r

+

1

r

�

r

v

r

+ �

2

z

v

r

�

1

r

2

v

r

) e

r

+ (�

2

r

v

z

+

1

r

�

r

v

z

+ �

2

z

v

z

) e

z

r�v

2

4

�

x

v

x

�

x

v

y

�

x

v

z

�

y

v

x

�

y

v

y

�

y

v

z

�

z

v

x

�

z

v

y

�

z

v

z

3

5

2

4

�

r

v

r

0 �

r

v

z

0 v

r

=r 0

�

z

v

r

0 �

z

v

z

3

5
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1.5 Weighted Sobolev Spaes

In the problems we onsider, the solution is sought in a Sobolev spae or a

produt of Sobolev spaes. From the spae L

2

(

�


) of square integrable funtions

for the measure dx dy dz, the Sobolev spaes H

s

(

�


) for any positive integer s

are de�ned. Then we derive the spaes H

s

0

(

�


) as the losure in H

s

(

�


) of the

spae C

1

0

(

�


) and �nally the spaes H

�s

(

�


) as the dual spaes of H

s

(

�


).

1.5.1 De�nition and Properties of the Weighted Spaes

The spae L

2

�

(
) is de�ned as the set of measurable funtions w suh that

kwk

L

2

�

(
)

=

�

Z




w

2

(r; z) r

�

dr dz

�

1

2

< +1: (1.11)

For any positive integer s, H

s

�

(
) is the spae of funtions w in L

2

�

(
) suh

that their partial derivatives of order � s belong to L

2

�

(
). It is provided with

the semi-norm

jwj

H

s

�

(
)

=

 

s

X

l=0

k�

l

r

�

s�l

z

wk

2

L

2

�

(
)

!

1

2

; (1.12)

and with the norm

kwk

H

s

�

(
)

=

 

s

X

l=0

jwj

2

H

l

�

(
)

!

1

2

(1.13)

Thus it is a Hilbert spae.

We state the prinipal results in the following propositions. We �rst de�ne

a mapping for salar funtions. We are interested in the haraterization of

the funtions in H

s

(

�


) whih are invariant under rotation in the sense (1.8).

We denote the orresponding subspae by

�

H

s

(

�


). Any element �v in

�

H

s

(

�


) is

ompletely haraterized by the funtion v de�ned by

v(r; z) = �v(x; y; z):

Proposition 1. Let s be a positive integer. The mapping: �v ! v is one-to-one

from

�

H

s

(

�


) onto the spae H

s

+

(
) de�ned as follows:

� If s is not an even integer,

H

s

+

(
) =

n

w 2 H

s

1

(
); �

2j�1

r

wj

�

0

= 0; 1 � j �

s

2

o

; (1.14)

endowed with the natural norm

kwk

H

s

+

(
)

= kwk

H

s

1

(
)

; (1.15)
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� if s is an even integer,

H

s

+

(
) =

�

w 2 H

s

1

(
); �

2j�1

r

wj

�

0

= 0; 1 � j �

s

2

;

and �

s�1

r

w 2 L

2

�1

(
)

	

;

(1.16)

endowed with the natural norm

kwk

H

s

+

(
)

=

�

kwk

2

H

s

1

(
)

+ k�

s�1

r

wk

2

L

2

�1

(
)

�

1=2

: (1.17)

And then a mapping for vetorial funtions. We are interested in triple of

funtions �v = (v

x

; v

y

; v

z

) in artesian oordinates in H

s

(

�


)

3

whih also satisfy

(1.8) with I

�

= R

��

. This spae is also denoted by

�

H

s

(

�


). We de�ne, as

in setion (1.4), the radial omponent v

r

, the angular omponent v

�

, and the

axial omponent v

z

of the vetor �eld �v. Then the following proposition holds:

Proposition 2. Let s be a positive integer number. The mapping: �v !

(v

r

; v

�

; v

z

) is well de�ned and one-to-one from

�

H

s

(

�


) onto the produt spae

H

s

�

(
)�H

s

�

(
)�H

s

+

(
) where the spae H

s

+

(
) is de�ned in proposition (1)

and the spae H

s

�

(
) is de�ned as follows:

� If s is not an odd integer,

H

s

�

(
) =

�

w 2 H

s

1

(
); �

2j

r

wj

�

0

= 0; 0 � j �

s� 1

2

�

; (1.18)

� if s is an odd integer,

H

s

�

(
) =

�

w 2 H

s

1

(
); �

2j

r

wj

�

0

= 0; 0 � j �

s� 1

2

;

and �

s�1

r

w 2 L

2

�1

(
)

	

:

(1.19)

The proof of these theorems may be found in [2℄.

1.6 Speial Case

From these results we an derive the speial ase s = 1 whih we need in

hapter 3 to write the variational formulation.

�

H

1

(

�


) is the spae of funtions in H

1

1

(

�


) whih are invariant under rotation.

Aording to the previous propositions, the spaeH

1

+

(
) oinides withH

1

1

(
).

And H

1

�

(
) is the spae of funtions w in H

1

1

(

�


) suh that wj

�

0

= 0 and

w 2 L

2

�1

(
).
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To take boundary onditions into aount, we must introdue the subspae of

funtions in H

1

�

(
) whih vanish on a ertain part �

1

of the boundary of 


whih is not on the axis:

H

1

�;0

(
) =

�

v 2 H

1

�

(
); v = 0 on �

1

	

(1.20)

We de�ne in the same way the subspae of funtions in H

1

+

(
) whih vanish

on a ertain part �

1

of the boundary of 
 whih is not on the axis:

H

1

+;0

(
) =

�

v 2 H

1

+

(
); v = 0 on �

1

	

(1.21)
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Chapter 2

Equations

The intention for the numerial simulation presented in this work is to pro-

vide pro�les for onentration, temperature, density and veloity �elds. The

equations governing hemial reative ows are based on the ompressible for-

mulation of the Navier-Stokes equations, for the global behavior of the mixture

ow, with additional onvetion-di�usion-reation equations for the tempera-

ture and the hemial speies. The equations are written in the primitive form,

i.e. with the variables � (density) or p (pressure), u (veloity), T (tempera-

ture), and w (mass frations). The set of oupled partial di�erential equations

onsidered desribes the onvetive motion of the uid, the hemial reations

among the onstituent speies, and the di�usive transport proesses suh as

thermal ondution and moleular di�usion. Its origin is the onservation of

the physial variables �; �u; �E; �w. While using these variables to write the

equations, the formulation is said to be onservative. For smooth solutions,

both formulations (onservative or primitive) are equivalent. In many appli-

ations, the formulation with primitive variables has the advantage of simpler

boundary onditions and determination of transport oeÆients (most of them

are given as funtions of the primitive variables).

2.1 Navier-Stokes Equations

The most general desription of a uid ow is obtained from the full system of

Navier-Stokes equations. These are obtained by writing the mass and momen-

tum onservation. For multiomponent ows, they desribe the evolution in

time and spae of the density and veloity of the whole mixture, i.e. averaged

quantities for the global ow. They are the following:

� Mass onservation : The law of mass onservation is a general statement

of kinemati nature. It is independent of the nature of the uid or of
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the fores ating upon it. It expresses the empirial fat that, in a uid

system, mass annot disappear from the system nor be reated. The

mass onservation equation is

��

�t

+r � (� u) = 0; (2.1)

with � the density of the uid, whih ould not be onsidered as onstant

in the ase of multiomponent ows, even in the ase of low-Mah-number

ows, sine the mixture is not usually homogeneous. u is the veloity of

the ow.

� Momentum onservation : The soures for the variation of momentum

in a physial system are the fores ating on it. These fores onsist

of the external volume fores f

e

and the internal fores f

i

. The latter

are dependent on the nature of the uid onsidered, and result from

the assumptions made about the properties of the internal deformations

within the uid and their relation to the internal stresses. We will assume

that the uid is Newtonian, and therefore the total internal stresses �

are taken to be

� = �pI + � ; (2.2)

where I is the unit tensor and p the isotropi pressure. � is the visous

shear stress tensor. With the exeption of very high temperatures or

pressures, the stress tensor for Newtonian uids has the following form

(see [26℄):

� = �

�

ru+ (ru)

T

�

2

3

(r � u) I

�

; (2.3)

where � is the dynami visosity of the uid. In the ase of multiom-

ponent ows, it is a funtion of the partial visosities and mole fration

of eah speies (see setion 2.4).

The equation of motion then beomes

�

�u

�t

+ � (u � r) u+rp�r � � = � f

v

; (2.4)

with f

v

the external volume fores.

2.2 Energy Conservation

The pro�le of temperature of the multispeies ow an be obtained through

energy onservation. The energy ontent of a system is measured by its internal
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energy per unit mass e. This internal energy is a state variable of a system and

hene its variation during a thermodynamial transformation depends only on

the �nal and initial states. In a uid the total energy to be onsidered in

the onservation equation is the sum of its internal energy e and its kineti

energy per unit mass u

2

=2. The �rst law of thermodynamis states that the

soures for the variation of the total energy are the work of the fores ating

on the system plus the heat transmitted to this system. A distintion has to

be made between the surfae and volume soures. The volume soures are the

sum of the work of the volume fores f . Hene we have, Q

v

= � f � u. The

surfae soures are the result of the work done on the uid by the internal

shear stresses ating on the surfae of the volume onsidering that there are

no surfae heat soures:

Q

s

= � � u = �p u+ � � u: (2.5)

The di�usive ux q of heat due to moleular thermal ondution is given by

the Fourier's law of heat ondution

q = ��rT; (2.6)

with � the thermal ondutivity oeÆient and T the temperature.

Writing the onservation of the total energy and onsidering the mass and

momentum onservation equation as desribed in [44℄ or [26℄, we obtain

�

de

dt

+ pr � u = � : ru+r � (�rT ); (2.7)

with

de

dt

=

�e

�t

+ u � re the total derivative of the intern energy aording to

time.

We de�ne the spei� enthalpy as

h = e+

p

�

(2.8)

For an ideal gas (see Setion 2.6, [58℄), the enthalpy is a funtion of the temper-

ature T and gas hemial state whih an be represented by the mass fration

of eah omponent w = (w

i

)

i=1;::: ;n

s

, with n

s

the number of speies in the mix-

ture. The total variation of enthalpy for an ideal gas an be then expressed as

follow:

dh =

�

�h

�T

�

p;w

dT +

n

s

X

i=1

�

�h

�w

i

�

p;T

dw

i

: (2.9)
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By de�nition the variation of enthalpy aording to the temperature at on-

stant pressure and hemial state is alled 

p

, spei� heat apaity:



p

=

�

�h

�T

�

p;w

: (2.10)

We derive the total variation of internal energy:

de = 

p

dT +

p

�

2

d��

1

�

dp+

n

s

X

i=1

�

�h

�w

i

�

p;T

dw

i

: (2.11)

Using the ontinuity equation (2.1), it yields

�

de

dt

= � 

p

dT

dt

+ pr � u�

dp

dt

+

n

s

X

i=1

�

�h

�w

i

�

p;T

dw

i

dt

(2.12)

Sine h, the averaged enthalpy of the mixture onsidered as an ideal gas (see

[58℄), ful�lls the relation

h =

n

s

X

i=1

h

i

w

i

; (2.13)

with h

i

the spei� enthalpy of speies i, equation (2.12) an be written as

follow:

�

de

dt

= �

dp

dt

+ pr � u+ � 

p

dT

dt

+

n

s

X

i=1

h

i

dw

i

dt

: (2.14)

The total time derivative of w

i

an be expressed with a di�usion and a re-

ation terms (f. Setion 2.3 for the harateristis of these terms). This

result together with equation (2.7) leads to an equation whih desribes the

temperature evolution:

� 

p

dT

dt

=

dp

dt

+ � : ru+r � (�rT ) +

n

s

X

i=1

h

i

[r � j

i

� f

i

(T; w)℄: (2.15)

We use a simpli�ed form of this equation beause several terms may usually

be negleted. Sine we onsider only ows at low-Mah number, the energy

soure due to internal stresses an be negleted. We are interested in this

work in low pressure ow reator. For suh ows the pressure is onsidered as

quasi-onstant in time and spae. Therefore we do not take into aount in

the following the pressure variation term in this equation. Moreover the term

P

i

h

i

r � j

i

, whih represents the di�usion of speies with di�erent enthalpies,
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is usually omitted, onsidering that the partial enthalpies h

i

are nearly iden-

tial. Taking these simpli�ations into aount, the equation for temperature

beomes

� 

p

�T

�t

+ � 

p

u � rT �r � (�rT ) = f

T

(T; w): (2.16)

The oeÆients 

p

and � are the spei� heat apaity at onstant pressure

and the heat ondutivity of the mixture, respetively. The soure term f

T

depends on the temperature and the hemial state. Let us denote by h

i

the

spei� enthalpy of speies i, and by 

p

i

the spei� heat apaity of speies i.

The soure term is then

f

T

(T; w) = �

n

s

X

i=1

h

i

(T ) f

i

(T; w): (2.17)

The enthalpy h

i

of speies i is given by

h

i

(T ) = h

i;T

0

+

Z

T

T

0



p;i

(T

0

) dT

0

; (2.18)

with an enthalpy h

i;T

0

for a referene temperature T

0

. The partial heat a-

paity of speies i is represented by 

p;i

. The temperature dependene of these

partial heat apaities is modelled empirially. A fourth order polynomial �t

in T , with oeÆients determined by experiments, is widely used in numerial

omputations:



p;i

(T ) =

k

X

j=0

�

j

T

j

i = 1; : : : ; n

s

: (2.19)

We use the oeÆients from data bases developed at the Sandia National

Laboratories [36℄ for the omputations in hapter 6.

The heat ondutivity � orresponds to an average value for the mixture aor-

ding to the hemial state of the gas and is de�ned in Setion 2.4.

The fators f

i

(T; w

j

) are hemial prodution terms and are de�ned in the

next setion.

2.3 Speies Mass Conservation

The evolution of the hemial state of the gas in multiomponent ows an be

desribed with the mass onservation of eah hemial speies. These latter

an be represented by their mass fration or by their mole fration. We present

here the formulation in mass frations w

i

. Both formulations are equivalent
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although the formulation with mole frations leads to a slightly more om-

pliated transport term, while the formulation with mass frations leads to a

slightly more ompliated di�usion term. Another di�erene is found in the

alulation of the Jaobian matrix of the resulting non-linear system. We refer

here to Chapter 4 for more details. The mass onservation of eah speies

an be written with the help of a di�usion ux j

i

, a soure term (reation or

destrution) f

i

and the onvetive transport of the speies. For a mixture of

n

s

hemial speies, the orresponding equations are

�

�w

i

�t

+ � (u � r)w

i

+r � j

i

= f

i

(w; T ); i = 1; : : : ; n

s

; (2.20)

with w the vetor of all mass frations w

i

, haraterizing the hemial state,

and T the temperature. The soure term f

i

depends on both the temperature

and hemial state.

This setion deals further with the non-linearities brought by the multispeies

harater of the ow. In some regions of the domain, the ow may be dom-

inated by reation soure terms that ouple all the hemial variables with

eah other as well as with the temperature. Also in regions where the hem-

ial reations are weak, the non-onstant di�usion oeÆients ause another

non-linearity and a oupling between all the hemial equations.

2.3.1 Modelling of Chemial Reations and Soure Terms

For the desription of the hemial onversion in the gas phase, the hemial

mehanisms are made up of elementary reations. An elementary reation an

be generally desribed by

n

s

X

i=1

a

ir

�

i

k

r

�!

n

s

X

i=1

~a

ir

�i ; (2.21)

where �

i

represents the ith speies and k

r

the reation rate of the reation

number r. a

ir

and ~a

ir

are the stoihiometri oeÆients of speies i respetively

as edut and produt in the reation r. In order to onserve the mass, these

oeÆients must ful�ll the equation

n

s

X

i=1

M

i

(~a

ir

� a

ir

) = 0; (2.22)

with M

i

being the molar mass of speies i. In eah reation r of the above

type, up to three speies are involved on eah side. Therefore, only up to three

oeÆient a

ir

do not vanish for eah r.
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The prodution rate for speies i, denoted _w

i

, is obtained by adding the parti-

ipation of all the reations onsidered to the reation or destrution of speies

i. De�ning n

r

as the total number of reations,

_w

i

(T; w) =

n

r

X

l=1

(

(~a

il

� a

il

) k

l

(T )

n

s

Y

j=1



a

jl

j

(w)

)

; (2.23)

with 

j

the onentration of speies j, given by



j

=

�w

j

M

j

: (2.24)

The hemial soure terms for the speies equations in mass frations have the

form

f

i

(T; w) =M

i

_w

i

(T; w); i = 1; : : : ; n

s

: (2.25)

Due to the property (2.22) on the stoihiometri oeÆients we onlude that

the sum over all the n

s

soure terms vanishes:

n

s

X

i=1

f

i

= 0: (2.26)

The dependene on temperature for the reation rate is given by the following

Arrhenius-law

k

r

(T ) = A

r

T

�

r

exp

�

�

E

ar

RT

�

: (2.27)

This law is empirially validated. The onstants A

r

, �

r

and the ativation

energy E

ar

are usually determined through experiments. R is the ideal gas

onstant.

2.3.2 Surfae Reations

The reation model used in this work for surfae reations introdues a reation

probability  (named �stiking oeÆient

�

for partiles in the gas phase whih hit

a wall surfae (see [56℄ and [17℄ for more information about surfae reations

and their modelization). These partiles an reat (reombination, deompo-

sition) or di�use further unhanged in the gas phase. We onsider here the

ase of surfae reations in whih there is only one gas-phase reatant. These

reations are desribed by the following sheme:

a

jr

�

j



r

�!

n

s

X

i=1

~a

ir

�i; j = 1; : : : ; n

s

: (2.28)
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The orresponding reation rate per surfae unit for speies i over all the n

0

r

surfae reations is given by

_w

0

i

(T; w) =

n

0

r

X

r=1

(



r

1

4

s

8RT

�M

j



j

(~a

ir

� Æ

ij

a

jr

)

)

; (2.29)

j being the single edut speies of the reation r. In this wall reation model,

there is indeed exatly one edut speies for eah surfae reation.

The probability oeÆients are taken to be



r

= a

r

T

b

r

exp

�

�



r

RT

�

; r = 1; : : : ; n

0

r

; (2.30)

with a

r

, b

r

and 

r

usually determined by experiments. One goal of these simu-

lations is preisely to determine the value of wall deomposition probabilities

by omparing numerial with experimental results. In our appliations (see

Chapter 6) we have onsidered only onstant probability oeÆients.

From a numerial point of view, we must be areful to orretly evaluate the

surfae as well as the gas-phase prodution terms. Numerial experiments

showed us that a good loal onvergene in the reation zones have to be

reahed in order to get an aurate solution. Indeed the prodution or de-

strution of speies anywhere in the domain may have inuene on the whole

ow. Hene a onvergene statement on the global residuum is generally not

suÆient.

Sine the surfae reations our only loally on the walls, i.e. on some domain

boundaries, the numerial ontribution of these reations to the residuum and

jaobian matrix is only restrited to the edges orresponding to a wall, i.e. on

a few one-dimensional elements (for two-dimensional omputations). These

soure terms inuene the boundary onditions at walls for the temperature

and the speies mass frations (see Chapter 3). For the temperature, energy is

given to or taken from the gas phase depending on whether the reations have

reated or onsumed energy. For the speies boundary onditions, a balane

between the di�usion ux at the wall and the speies reation or destrution

rates is onsidered.

The inuene of the surfae reation terms on the ow is of importane even

if their partiipation to the global residuum might be small (due to their loal

existene). The auray on the solution needed loally to resolve these terms

reinfore the importane of the adaptive mesh-re�nement proess (f. Chapter

5).

2.3.3 Transport CoeÆients

Transport property evaluation plays an important and often time-onsuming

role in the omputational modelling of gaseous multiomponent reating ows.
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Two approahes are mostly onsidered for evaluating transport oeÆients. In

a �rst approah, a diret numerial inversion of the transport linear systems

derived from kineti theory is onsidered. This strategy often beomes ompu-

tationally expensive. In a seond approah, an empirial average expression is

used, whih yields less aurate transport oeÆients but allows to deal with

omplex reative systems with smaller omputational e�orts.

The di�usion ux, r � j

i

, in (2.20) an be written with the help of the speies

di�usion veloity V

i

as

j

i

= �w

i

V

i

; i = 1; : : : ; n

s

; (2.31)

the speies di�usion veloities being de�ned by the kineti theory of dilute

polyatomi gas mixture (see [54℄) as

V

i

=

1

x

i

M

n

s

X

j 6=i

M

j

D

ij

d

j

�

D

T

i

�w

i

1

T

rT ; (2.32)

with D

ij

the multiomponent di�usion oeÆients (see [27℄), D

T

i

the thermal

di�usion oeÆients and d

i

the di�usion driving fore of the ith speies. The

vetors d

i

inorporate the e�ets of various state-variable gradients and are

given by

d

i

= rx

i

+ (x

i

� w

i

)

rp

p

; 8 i = 1; : : : ; n

s

: (2.33)

x

i

denotes the mole fration of the ith speies, M

i

the speies molar mass of

the ith speies andM the mean molar mass of the mixture, whih depends for

multiomponent ows on the mixture hemial state:

1

M

=

X

i

w

i

M

i

: (2.34)

The mass frations w

i

and mole frations x

i

are related as follows:

x

i

= w

i

M

M

i

:

Thus we see from equations (2.32) and (2.33) that the di�usion ux from the

speies mass onservation equation (2.20) is omposed of three parts: mass

di�usion (Fik's law) due to gradients in molar frations, thermo-di�usion due

to temperature gradients (Soret e�et), and pressure di�usion due to pressure

gradients.

It follows from the above equations that the detailed modelling of a poly-

atomi gas mixture requires the evaluation of its transport oeÆients, i.e.
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the multiomponent and the thermal di�usion oeÆients. These oeÆients

are funtions of the state of the mixture as given by the variables p, T , and

w

1

; : : : ; w

n

s

. Their evaluation requires solving linear systems, referred to as

the transport linear systems (for more details on this see [20℄ and [35℄).

In order to redue the omputational e�ort, mixture-averaged formulations

may be used, whih allows to avoid solving linear systems. Mixture-averaged

di�usion oeÆients an be de�ned with the help of the multiomponent prop-

erties. By de�nition, in the mixture, the di�usion veloities are then related

to the speies gradients by a Fikian formula as

V

i

= �

1

x

i

D

i

d

i

�

D

T

i

�w

i

1

T

rT; i = 1; : : : ; n

s

: (2.35)

The mixture di�usion oeÆients (see [12℄) are omputed as

D

i

=

1� x

i

P

n

s

j 6=i

x

j

=D

ji

; i = 1; : : : ; n

s

; (2.36)

with D

ji

the binary di�usion oeÆient of speies pair (j; i) (see [27℄). These

oeÆients are nearly proportional to the square-root of the temperature and

inversely proportional to the pressure.

A potential problem with this expression is that it is not mathematially well-

de�ned in the limit of the mixture beoming a pure speies. Considering

equation (2.36), this modelling is not able to handle the speial ase of pure

speies. Even though di�usion itself has no real meaning in the ase of a pure

speies, a omputer-program implementation should ensure that the di�usion

oeÆients behave reasonably and that the ode does not \blow up" when

the pure speies ondition is reahed. To overome this diÆulty we always

maintain a residual amount of eah speies. Spei�ally, we assume in the

above formulas that

x

i

= x̂

i

+ Æ; (2.37)

where x̂

i

is the atual mole fration and Æ is a small number that is numeri-

ally insigni�ant ompared to any mole fration of interest, yet whih is large

enough in order to be represented in omputer arithmeti. We have experien-

ed reasonable numerial behavior onsidering Æ = 10

�12

.

A further problem is that this latter di�usion model does not neessarily ful-

�ll the mass onservation onstraint whih implies that the speies di�usion

veloities satisfy the mass onservation relation

n

s

X

i=1

w

i

V

i

= 0: (2.38)
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This topi will be onsidered in Setion 2.5 in more details.

Finally we have restrited in this work the di�usion ux to the �kian di�usion.

As result we obtain the following speies mass onservation equations:

�

�w

i

�t

+� (u � r)w

i

+r � (�D

i

rw

i

)

�r � (�D

i

w

i

M

rM) = f

i

(w; T ) ; i = 1; : : : ; n

s

: (2.39)

2.4 Mixture-Averaged Flow Properties

Our objetive in this setion is to determine mixture properties from the pure

speies properties. In the ase of visosity and heat ondutivity, we use the

empirial laws given in [56℄. The visosity � of a mixture an be modelled with

an auray of approximately 10% by the partial visosities �

i

and the mole

frations x

i

of the speies:

�(T; w) =

1

2

2

4

n

s

X

i=1

x

i

�

i

+

 

n

s

X

i=1

x

i

�

i

!

�1

3

5

: (2.40)

The �

i

= �

i

(T ) are nearly proportional to the square-root of the temperature.

We use a polynomial �t with oeÆients determined by experiments [36℄. The

heat ondutivity � has a similar representation:

�(T; w) =

1

2

2

4

n

s

X

i=1

x

i

�

i

+

 

n

s

X

i=1

x

i

�

i

!

�1

3

5

; (2.41)

with �

i

the partial heat ondutivity, whih are also alulated as a polynomial

of the temperature.

2.5 Physial onstraints

By de�nition, the sum over all mass frations must be one and the mass on-

servation implies that the sum over the di�usive uxes should vanish:

n

s

X

i=1

w

i

= 1 ;

n

s

X

i=1

j

i

= 0: (2.42)

Moreover eah mass fration w

i

must, also by de�nition, have a value between

zero and one:

0 � w

i

� 1; 8 i = 1; : : : ; n

s

: (2.43)
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Some are needs to be taken in using the mixture-averaged di�usion oeÆients

as desribed above. The mixture formulas are approximations and they are

not onstrained to require that the sum over all speies di�usion uxes is zero,

i.e. ondition (2.38) needs not be satis�ed. Therefore, one must expet that

applying these mixture di�usion relationships in the solution of a system of

speies onservation equations should lead to some non-onservation, i.e. the

resultant mass frations will not sum to one. Therefore one of a number of

orretive ations must be invoked to ensure mass onservation.

One possible approah is to de�ne a \onservation di�usion veloity" as re-

ommended in [16℄. In this approah it is assumed that the di�usion veloity

vetor is given as

V

k

=

^

V

k

+ V



; (2.44)

where

^

V

k

is the ordinary di�usion veloity given by equation (2.35) and V



is a onstant orretion fator (independent of speies, but spatially varying)

introdued to satisfy equation (2.38). The orretion veloity is de�ned by

V



= �

n

s

X

k=1

w

k

^

V

k

: (2.45)

An alternative is based on exluding the onservation equation for one speies.

Its mass fration is then omputed simply by subtrating the sum of the re-

maining mass frations from unity. This is an attrative method for problems

having one speies that is always present in exess. A similar approah involves

determining loally at eah omputational ell, whih speies is in exess. The

di�usion veloity for that speies is then omputed to require satisfation of

equation (2.38).

But even though the omplete multiomponent formulation is theoretially

fored to onserve mass, and so should also be orreted methods for the

simpli�ed formulation, numerial implementations and resolution errors an

ause some slight non-onservation. Depending on the numerial method, even

slight inonsistenies an lead to diÆulties. Therefore a third approah may

be used that ensures (2.38) but also (2.43). This latter basi ondition must

absolutely be ful�lled to avoid inonsistenies with the physis and that the

resolution method su�ers omputational ineÆienies or onvergene failures.

A orretion an be made diretly on the mass frations ŵ

i

that are alulated

with the mixture-averaged di�usion model. This model an deliver slightly

negative or greater-than-one mass frations. The orretion is then

~w

i

=

(

10

�12

if ŵ

i

� 10

�12

;

ŵ

i

otherwise;

w

i

=

~w

i

P

n

s

k=1

~w

k

:
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This allows to avoid the pure speies problem and leads to physially rea-

sonable values for the mass frations. Nevertheless the w

i

obtained are not

solution of the multiomponent-ow system anymore. One should ensure that

this orretion is not too strong aording to the solution ŵ

i

obtained by the

resolution of the system of partial di�erential equations. Therefore we may

apply this method as omplementary orretive measure to the methods de-

sribed above sine, in this ase, we an be sure that the magnitude of this

orretion will be signi�antly smaller.

In this work only the latter orretion is applied to the solution at every non-

linear step of the solving proess (see Chapter 4). Numerial tests showed us

that the other orretions did not have muh inuene on the solution for our

appliation ases. The order of the orretion in our tests was loally at most

10% on the speies mass frations.

2.6 Ideal Gas Law

Usually an algebrai equation of state for the mixture loses the system. In

many instanes a ompressible uid an be onsidered as a perfet gas, even

if visous e�ets are taken into aount. The ideal gas law gives a relation

between the pressure and the density:

p =

�R T

M

; (2.46)

where R is the universal gas onstant andM the mean molar mass of the mix-

ture. While onsidering the low-Mah-number approximation, the pressure

whih is to be found in this later state equation is the onstant thermodynam-

ial pressure p

th

.

De�ning  = 

p

=

v

, the speed of sound  is given by



2

=

�

�p

��

�

s

=

 R T

M

=

 p

�

; (2.47)

We an then de�ne the Mah number by

M =

juj



: (2.48)

For our appliations, it is supposed to be small. For example in the ow re-

ator for the CARS experiment presented in Chapter 6, with a uid veloity

of 50 m/s, the Mah number is 0.018. Under a value of 0.3, the uid may be

onsidered as hydrodynamially inompressible. However in the ase of multi-

omponent ows, this does not mean that the density of the ow is onstant.
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For ideal gases, the ontinuity equations an be rewritten in a form independent

of the variable �. From the relation 2.46, dividing the equation 2.1 by � yields

to the following form of the ontinuity equation:

1

p

dp

dt

+

1

M

dM

dt

�

1

T

dT

dt

+r � u = 0; (2.49)

with the de�nition of the total derivative

d

dt

=

�

�t

+ u � r.

In the following setion we will see that the pressure term an be negleted for

the pressure remains onstant in �rst approximation. The ontinuity equation

is �nally

1

M

dM

dt

�

1

T

dT

dt

+r � u = 0: (2.50)

2.7 Low-Mah-Number approximation

In low-Mah-number ows, the pressure �eld an be split in two parts, one

onstant and the other variable in spae and time. The �rst one is alled the

thermodynamial part and the seond one the hydrodynamial part:

p = p

th

+ p

hyd

: (2.51)

The hydrodynamial part p

hyd

is negligible aording to the thermodynamial

part p

th

. Rewriting the ideal gas law with these onditions leads to an equation

for the density:

� =

M p

th

RT

: (2.52)

This splitting has been used in many publiations (see for instane [42℄, [39℄,

[40℄) and we sketh here the method whih leads to it.

We must �rst write the governing onservation equations with non-dimensional

variables, taking the Mah number into aount. The Mah number used to

make the variables dimensionless is evaluated at the initial state. For the sake

of simpliity, we write here only the non-dimensional momentum equation:

M

2

�

dû

dt

= �rp̂+

M

2

R

e

r � �̂ : (2.53)

The^means that the orresponding variable is in non-dimensional form. Re =

L�u

�

is the Reynolds number of the ow (L is a harateristi length of the

problem) and

d

dt

=

�

�t

+ û � r. Sine the Mah number is small and sine it

appears in the equations as � = M

2

, all the gas dynami variables may be
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expanded in terms of �. That is, any variable � 2 [�; u; p; T; w℄ an be expanded

as follow:

�(x; t) = �

0

(x; t) + � �

1

(x; t) + �

2

�

2

(x; t) +O(�

3

): (2.54)

Considering the variable p and substituting into (2.53), the momentum equa-

tion reads

��

Dû

Dt

= �rp̂

0

� �rp̂

1

� �

2

rp̂

2

+

�

R

e

r � �̂ : (2.55)

Gathering terms that are independent of M , one �nds rp

0

= 0, whih shows

immediately that

p

0

= p

0

(t) (2.56)

This is the main result of the low Mah number approximation. The largest

omponent of the pressure is onstant throughout the �eld and hanges only

with time. p

0

is the thermodynami pressure. The seond omponent of

the pressure appears in the �-omponent of the expansion of the momentum

equation:

�

0

Du

0

Dt

= �rp

1

+

1

R

e

r � �

0

: (2.57)

p

1

is the hydrodynami pressure and is generated to balane the hanges in

momentum within the ow �eld. Its ontribution to the total pressure is

restrited to �.

2.8 Cylinder Coordinates

As we saw in Chapter 1, the operators in ylinder oordinates involve sup-

plementary terms that are not to be found in artesian oordinates. In this

setion we desribe the equations disussed in the previous setions developed

in ylinder oordinates and fous on these supplementary terms. Some infor-

mation about generalized urvilinear oordinates an be found in [24℄ or [1℄,

and about the Navier-Stokes equations in ylinder oordinates in [44℄.

2.8.1 The Stress Tensor

The stress tensor written in anonial form in Setion 2.3 depends on the

veloity-gradient tensor. Considering the symmetry ondition, just as in Chap-

ter 1, this latter tensor an be written in ylinder oordinates in the basis

(e

r

; e

�

; e

z

):
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A

The stress tensor is

� = � (ru+r

T

u)�

�

2

3

�r � u+ p

�

I:

De�ning a generalized pressure by

p

�

=

2

3

�r � u+ p (2.58)

and again taking into aount the symmetry ondition, the stress tensor be-

omes

� =

0

�

2�u

r

� p

�

0 � (w
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+ u
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)

0 2�

u

r

� p

�

0

� (w
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+ u
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) 0 2�w

z

� p

�

1

A

:

In the ylinder system of oordinates, whih is de�ned in this work with the

orthonormal base (e

r

; e

�

; e

z

), the �rst and third omponents of the divergene

of a symmetri tensor t of seond order is :

(r � t)

1

=

1

r

t

11

+

�t

11

�r

+

1

r
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��
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3

=

�t

33

�z

+

1

r

t

31

+

�t

31

�r

+

�t

32

��

:

Thus the �rst omponent of the divergene of the stress tensor in ylinder

oordinates with axial symmetry is

(r � �)

1

= r � (�ru

r

) + �

�

�r

(r � u) +r� �

�u

�r

� �

u

r

2

�

�p

�

�r

:

The seond omponent of the divergene of the stress tensor vanishes, due to

axial symmetry. It remains the third omponent:

(r � �)

3

= +r � (�ru

z

) + �

�

�z

(r � u) +r� �

�u

�z

�

�p

�

�z

:

One has to remember that the divergene in ylinder oordinates is

r � u =

�u

r

�r

+

u

r

r

+

�u

z

�z

:

38



2.8.2 The Equations in Cylinder Coordinates

Additional terms appear in ylinder oordinates for the vetorial equations.

Taking into aount the results of the previous hapter, we an then write the

momentum onservation equations (2.4) in ylinder oordinates. Writing the

veloity in ylinder oordinates u = (u

r

; u

z

), the system of equations is

1

M

dM

dt

�

1

T

dT

dt

+r � u = 0; (2.59)
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�u

r

�t

+ � (u � r) u
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�r � (�ru

r
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� �
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�r

(r � u)�r� �

�u

�r

+ �

u

r

r

2

+

�p

�

�r

= � f

(r)

v

;

(2.60)

�

�u

z

�t

+ � (u � r) u

z

�r � (�ru

z

)

� �

�

�z

(r � u)�r� �

�u

�z

+

�p

�

�z

= � f

(z)

v

;

(2.61)

� 

p

�T

�t

+ � 

p

(u � r)T +r � (�rT ) = f

T

(w; T ); (2.62)

�

�w

i

�t

+ � (u � r)w

i

+r � j

i

= f

i

(w; T ); 8 i = 1; : : : ; n

s

: (2.63)
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Chapter 3

Disretization

This hapter presents and analyzes a �nite element sheme for simulating the

three major proesses in reative ows: hemial reations, di�usion and on-

vetion.

The methods used in simulation of reative ows are usually based on either

�nite di�erenes for its simple implementation and mathematial bakground

as in [3℄ and [46℄ or �nite volumes whih are a range of methods widely spread

in the engineering �eld (see [19℄ for a study of some shemes). The method

used in this work is based on onforming \Q

1

/Q

1

" Galerkin �nite elements.

The basis on the mathematial theory of �nite element methods used in this

work an be found in the books of Johnson [30℄ and Brenner/Sott [15℄.

The hoie of a �nite element method is prinipally motivated by the exibility

it o�ers with respet to adaptive mesh re�nement. It an be oupled with error

ontrol based on a posteriori error estimates provided by the orthogonality

property of the method as explained in Chapter 5. Thus auray for some

physial quantities whih are to be preisely known an be guaranteed.

In this hapter, we disuss the disretization of the unsteady and steady multi-

speies low-Mah-number ompressible Navier-Stokes equations with advetion-

di�usion-reation equations for hemial speies. The aim is to simulate quasi-

stationary low-Mah-number ows in ow reators.

The appliation of onforming �nite elements to the inompressible or om-

pressible Navier-Stokes equations is standard (see for instane [4℄, [49℄ or [10℄).

Extensions to thermally oupled ows or multispeies reative ows have also

been developed in the last deade. The reader an �nd some examples in [38℄,

[50℄, [37℄ or in the more reent work [13℄.

In the ase of axisymmetri ows, the three-dimensional problem an be trans-

formed to a two-dimensional one (see hapter 1). Although suh a transfor-

mation redues the omputation time, we have to deal with the following

problems:
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� The di�erential operators in the axisymmetri formulation have singu-

larities on the axis. We have to work with weighted Sobolev spaes (see

hapter 1 or [41℄, [11℄).

� The radial and the axial omponents of the veloity belong to di�erent

Sobolev spaes.

We disretize the equations modelling axisymmetri multispeies reative ows

with stabilized Q1 elements for all variables. The equations onsidered have

indeed two di�erent soures of diÆulties that a stable disretization must

overome.

The �rst diÆulty is the veloity-pressure oupling brought by the saddle-point

struture of the Stokes system of equations. It is well known that this approah

does not lead to a stable disretization unless the �nite dimensional spaes

ful�ll the \inf-sup" ondition (see [25℄). In order to get a stable disretization,

we add weighted mesh-dependent least-squares terms to the standard Galerkin

formulation as proposed by Hughes et al. in [29℄.

The seond kind of instability ours in the ase of high Reynolds num-

bers, when the system beomes onvetion-dominated. The standard Galerkin

method for onvetion dominated problems produe approximations whih

ontain \spurious" osillations in ase of non-smooth exat solutions. The

osillations result from a lak of stability of the method. A standard �nite

element tehnique to deal with salar onvetion-di�usion equations is the

streamline di�usion method (see [30℄, [60℄). The stabilization is done by adding

further weighted least-square terms to the disrete equations. The stabilizing

perturbation term an be physially thought as a numerial di�usion term in

the diretion of the streamlines. This modi�ation enhanes stability with-

out a strong e�et on the auray beause the terms added are based on the

residual.

3.1 De�nitions

Using the notations of hapter 1, we denote the inner salar produt in L

2

1

(
)

by

(u; v) =

Z




u(r; z) v(r; z) r dr dz (3.1)

We also denote by X the solution vetor of the system presented in the next

setion, that is

X = [u

r

; u

z

; p

�

; T ℄

T

: (3.2)

For simpliity, in the following the notation p will replae p

�

. We will all it

the generalized pressure.
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3.2 The Variational Formulation

In this setion, we onsider the ontinuity equation (2.59) as well as the mo-

mentum equations (2.60) and (2.61). We also onsider a di�usion-onvetion-

reation equation modelling the evolution equations of temperature and speies

mass frations. It an be written as follow:

�

�T

�t

+ � (u � r)T +r � (�rT ) = f

T

(w; T ): (3.3)

The variational formulation of the resulting system is obtained by writing the

equations in weak form and integrating by parts. We de�ne the energy forms

for eah equation:

� The ontinuity equation:

a

1

(X; q) =

�

1

�

M

d

�

M

dt

; q

�

�

�

1

T

dT

dt

; q

�

+ (r � u; q); (3.4)

� The �rst momentum onservation equation:

a

2

(X;') =(�

du

r

dt

; ')�

�

p;

�'

�r

+

'

r

�

+ (�ru

r

;r')

+

�

�

u

r

r

2

; '

�

�

�

�

�

�r

(r � u); '

�

�

�

r� �

�u

�r

; '

�

;

(3.5)

� The seond momentum onservation equation:

a

3

(X; ) =

�

�

du

z

dt

;  

�

�

�

p;

� 

�z

�

+ (�ru

z

;r )

�

�

�

�

�z

(r � u);  

�

�

�

r� �

�u

�z

;  

�

;

(3.6)

� The energy or speies-mass onservation equations

a

4

(X; �) =

�

�

dT

dt

; �

�

+ (�rT;r�); (3.7)

with

d

dt

=

�

�t

+ u � r the total time derivative.

Using the notations of Chapter 1, we denote by V

�

= H

1

�;0

and V

+

= H

1

+;0

the

spaes for the veloity �eld, by Q = L

2

1

(
) the spae for the pressure and by

S = H

1

+;0

(
) the spae for the temperature and mass frations.
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We de�ne the vetorial energy form orresponding to the whole system by

a(X; �) = a

1

(X; q) + a

2

(X;') + a

3

(X; ) + a

4

(X; �); (3.8)

with the vetorial test funtion � = [q; ';  ; �℄

T

2 V = V

�

� V

+

�Q� S.

The right hand side vetor f of the system is

f = [0; f

(r)

v

; f

(z)

v

; f

T

℄

T

: (3.9)

The variational formulation onsists then in �nding X 2 V = V

�

�V

+

�Q�S

suh that

a(X; �) = (f; �) 8 � 2 V (3.10)

holds.

3.3 Boundary Conditions

3.3.1 General Boundary Conditions

For this problem, the boundary onditions are on the four di�erent boundaries

the following:

symmetry on �

0

: u

r

= 0;

inow on �

1

: u = u

0

; T = T

0

;

wall on �

2

: u = 0;

�T

�n

= f

0

T

;

outow on �

3

: �

�u

�n

� p � n = 0;

�T

�n

= 0;

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

(3.11)

where �
 = �

0

[ �

1

[ �

2

[ �

3

, and f

0

T

is a surfae soure terms. Sine the

integration is weighted by the fator r, the natural boundary ondition on

the symmetry boundary �

0

vanishes. Nevertheless, aording to the propo-

sition 2 of Setion 1.5.1, the radial veloity u

r

is zero on the symmetry line

�

0

. The Neumann or mixed onditions on the other domain boundaries are

obtained through the natural boundary onditions supplied by the variational

formulation.

3.3.2 Supplementary Conditions

Other onditions oming diretly from the equations for a steady-state solution

an be taken into aount.
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A ondition on u

z

an be found in the ase of a steady-state solution through

the ontinuity equation (2.1) whih leads to the relation

Z

�

3

� u � n d� +

Z

�

0

� u � n d� +

Z

�

1

� u � n d� = 0; (3.12)

sine the veloity is zero on the wall boundary �

2

. On the symmetry line, the

normal n is in the radial diretion. For the outow and inow it is in the axial

diretion. At the symmetry line the integration weight r is zero. We then

obtain

Z

�

3

� u

z

r dr =

Z

�

1

� u

z

r dr: (3.13)

The integral upon the inow boundary is known for u

z

whih is set by a

Dirihlet ondition. It physially means that the mass that ows into the tube

goes out.

Again for the outow, a ondition on the generalized pressure an be found

by onsidering the natural boundary ondition on the outow boundary. The

relation

Z

�

3

(�

�u

z

�z

� p) r dr = 0 (3.14)

is ompleted by the mass onservation property

�u

z

�z

= �

�(r u

r

)

�r

: (3.15)

The ontinuity equation in strong formulation may be written in this way

only if the density � remains onstant. This should be the ase on the outow

boundary. Therefore, to be sure that this relation is respeted, we must assume

that no hemial reation take plae on the outow and that the mixing proess

is omplete. If additionally the visosity � is also onstant on the outow (the

same hypothesis should lead to suh a situation), a diret integration yields

Z

�

3

p r dr = 0; (3.16)

sine r = 0 on the symmetry line and u

r

= 0 on the wall.

Another ondition an be derived from the ontinuity equation at least in the

ase of a strong solution of equation (2.1). We must here onsider the three-

dimensional domain and remember that the symmetry boundary orresponds

to the middle of the ow reator. Thus if the solution is smooth enough, the

mass onservation in strong form may be ful�lled, partiularly in the middle

of the tube where no singularity is found. Lets onsider the following integral:

I

0

=

Z

�

0

�r � (� u) r dz = 0 8� 2 L

2

1

(�

0

); (3.17)
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if the above hypothesis is ful�lled. This integral an be deomposed as follows

I

0

=

Z

�

0

r �

�� u

r

�r

dz +

Z

�

0

r �

�� u

z

�z

dz +

Z

�

0

r �

u

r

r

dz: (3.18)

We have I

0

= 0, sine r = 0 on this boundary. The �rst and seond integrals

of the right hand side are zero for the same reason. We an then dedue that

Z

�

0

�u

r

dz = 0 8� 2 L

2

1

(�

0

); (3.19)

whih means that the radial omponent of the veloity is zero on the symmetry

line. Therefore, if the above onditions are ful�lled, no Dirihlet boundary

ondition needs to be set on the symmetry line for the radial veloity.

3.3.3 Symmetry Boundary Condition

Depending on the spae whih the three-dimensional solution belongs to, the

mapping between the three-dimensional and the two-dimensional problems an

also lead to supplementary boundary onditions whih are ontained within

the �nite element spaes onsidered. One again aording to Proposition

2, the solution may indeed ful�ll supplementary onditions on the symmetry

boundary if it has enough regularity. In the ase of a three-dimensional solution

whih belongs to

�

H

2

(

�


), with regard to the de�nition of the spae H

2

+

, the

normal derivative to the symmetry boundary of the solution omponents u

r

,

p and T vanishes. If the solution is sought in H

1

+

, these boundary onditions

on the symmetry line for the variable ited above are not valid anymore.

3.4 Disretization in Spae

Starting from the variational formulation (3.10) supplemented by the bound-

ary onditions (3.11), we hoose the �nite element subspaes V

h

� V to obtain

the standard Galerkin disretization. We onsider in this work an approxi-

mation by pieewise bi-linear shape funtions on meshes T

h

= fKg made of

quadrilaterals and satisfying the usual regularity onditions (quasi-uniformity).

The width of the mesh T

h

is haraterized in terms of the mesh size funtion

h = h

max

= max

K2T

h

(h

K

) with h

K

= diam(K). In order to ease the re�ne-

ment and oarsening proesses, one hanging node per element edge is allowed.

Considering the vetorial energy form de�ned in (3.8), the disrete solution

X

h

2 V

h

is determined by the equation

a(X

h

; �

h

) = (f; �

h

) 8 �

h

2 V

h

; (3.20)

with V

h

the set of pieewise bi-linear shape funtions on T

h

, whih is a subset

of V de�ned in (3.8).
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3.5 Stabilization

As mentioned before, the standard Galerkin disretization obtained for the

Navier-Stokes equations does not yield a stable algorithm unless the spaes

ful�ll the disrete LBB-ondition (f. [14℄, [25℄). This ondition is a ompat-

ibility ondition for the veloity-pressure oupling. An alternative, presented

by Hughes et al. in [29℄, is to modify the disrete bilinear form in order to get

a stable disretization.

Moreover the onvetion terms in any onvetion-di�usion equation lead to

supplementary instabilities. Non-physial osillations an appear in numerial

solutions of the Navier-Stokes equations. Therefore the approah is modi�ed.

The stability of the Galerkin �nite element method has to be improved, but

it has to be done arefully sine additional stability is often obtained at the

prie of dereased auray. We onsider two ways of enhaning the stability

of the standard Galerkin �nite element method:

� introdution of weighted least-squares terms;

� introdution of arti�ial visosity based on the residual.

We refer to the Galerkin �nite element method with these modi�ations as

the streamline di�usion method. The �rst modi�ation adds stability through

least squares ontrol of the residual and the seond modi�ation adds stability

by the introdution of an ellipti term with the size of the di�usion oeÆient

depending on the residual with the e�et that di�usion is added where the

residual is large, i.e. typially where the solution is non-smooth. Both modi�-

ations enhane stability without a strong e�et on the auray beause both

modi�ations use the residual.

3.5.1 The Galerkin-Least-Squares Method

Let a be a linear operator on a vetor spae V with inner produt (.,.) and

orresponding norm k:k. Typially, A is a onvetion-di�usion di�erential

operator, and (.,.) is the L

2

inner salar produt over some domain 
. We

onsider the linear problem of �nding u suh that

Au = f; (3.21)

for whih the variational formulation reads:

Find u 2 V suh that

(Au; ') = (f; ') 8' 2 V:

(3.22)
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The least squares method for (3.21) is to �nd u 2 V that minimizes the residual

over V, that is

kAu� fk

2

= min

v2V

kAv � fk

2

: (3.23)

This is a onvex minimization problem (beause it is quadrati) and the solu-

tion is haraterized by

(Au;A') = (f; A') 8' 2 V (3.24)

The problem is symmetri positive de�nite (A is onsidered regular), and thus

an be solved without diÆulties. Equation (3.22) may be more diÆult to

solve, but may be more aurate than equation (3.24), for the test-funtion

spae used in the seond problem may ontain less information (for instane if

A ontains a di�erential operator and the ansatz funtions are linear). There-

fore a ombination of the 2 systems is taken. The resulting system should still

be aurate enough but easier to solve.

We now formulate the Galerkin-least-squares �nite element method for (3.21)

by taking a weighted formulation of (3.22) and (3.24):

Find u 2 V suh that

(Au; ') + (Au; ÆA') = (f; ') + (f; ÆA') 8' 2 V:

(3.25)

We an alternatively formulate the Galerkin-least-squares method as a Petrov-

Galerkin method, whih is a Galerkin method with the spae of test funtions

being di�erent from the spae of trial funtions. In our ase the test funtions

have the form '+ ÆA' with ' 2 V .

3.5.2 Arti�ial Visosity

Adding arti�ial visosity yields the streamline di�usion method in the form:

Find u 2 V suh that

(Au; '+ ÆA') + (�ru;r') = (f; '+ ÆA') 8' 2 V;

(3.26)

where � is the arti�ial visosity. It is de�ned in the disretization proess in

terms of the residual R(u) = Au� f through

� =  h

2

kR(u)k; (3.27)

with  a positive onstant to be hosen, and h the loal mesh size.
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3.5.3 Appliation to Salar Convetion-Di�usion Equa-

tions

Applying this stabilization to any salar onvetion-di�usion equation of type

(3.7), the streamline di�usion method introdues a stabilizing term by the use

of an additional test funtion of the form Æ u � r�. The introdution of the

additional least-squares terms is done in an element-wise fashion. This implies

that the weighting parameter Æ depends on the element. It will be subsribed

orrespondingly. We obtain the following equation:

�

�

dT

h

dt

; �

h

�

+ (�rT

h

;r�

h

) +

X

K2T

h

�

�

dT

h

dt

�r � (�rT

h

); Æ

K

u

h

� r�

h

�

= (f

T

; �

h

) +

X

K2T

h

(f; Æ

K

u

h

� r�

h

) 8�

h

2 S

h

:

(3.28)

The least-squares terms orrespond to the addition of visosity in the diretion

of the streamline. The method is onsistent in the sense that the stabilizing

terms vanish for a strong solution of system (2.59) - (2.63). We disuss later

the hoie of the parameter Æ

K

. The introdution of arti�ial visosity is

straightforward. However it should be brought into operation only if additional

ross-wind di�usion is really neessary to avoid osillations. In many ases the

least-squares terms are suÆient. The disretization still remains of seond

order (see [60℄) and stable for a wide range of di�usion parameters.

3.5.4 Pressure Stabilization

The spaes Q

h

and V

h

used in this work are based on pieewise bi-linear fun-

tions on quadrilateral elements, namely Q1/Q1-elements. For these spaes

the LBB-ondition is not satis�ed (see [14℄, [25℄). The stabilization of the

Navier-Stokes equations for our disretization with bi-linear onforming ele-

ments is done in the same way as the streamline di�usion, i.e. by adding

mesh-dependent least-squares terms to the Galerkin formulation. The dis-

retization then reads as follow:

(r � (� u

h

); q

h

) +

X

K2T

h

(R

u

; �

K

rq

h

)

K

=

X

K2T

h

(f

v

; �

K

rq

h

)

K

8 q

h

2 Q

h

;

�

�

du

h

dt

; '

h

�

+

�

�

u

r;h

r

2

; '

r;h

�

+ (�ru

h

;r'

h

)

�(�r(r � u

h

); '

h

)� (r� � ru

h

; '

h

)

�(p

h

;r'

h

) = (f

v

; '

h

) 8'

h

2 V

h

�

� V

h

+

;

9

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

;

(3.29)

49



where

R

u

= �

du

h

dt

�r � (�ru

h

) +rp

h

�r� � ru

h

��r(r � u

h

) +

�

r

2

�

u

r;h

0

�

;

(3.30)

and �

K

is proportional to h

2

K

. That amounts to additionally testing the mo-

mentum onservation equations by q

h

+�

K

rq

h

. The struture of the system is

hanged by the appearane of a pressure stabilization term

P

K

�

K

(rp

h

;rq

h

).

Due to the hange of the bilinear form, stability for pressure is now implied by

a generalized LBB ondition (f. [4℄). As for the streamline di�usion method,

the pressure stabilization vanishes for a strong solution u and p, sine the stabi-

lizing term is based on the residual of the momentum equation. This pressure

stabilization proess for the Navier-Stokes equations must also be ompleted

for the momentum equations by the onvetion stabilization proess that has

been presented in previous setions.

3.5.5 Stabilization Weights

We de�ne in a �rst step some forms that desribe the stabilizing terms. The

pressure stabilization is denoted by

(X

h

; q) =

X

K2T

h

(R

u

; �

K

rq )

K

; (3.31)

with R

u

de�ned in (3.30).

The streamline di�usion method for the veloities involves the term

s

u

(X

h

; �) =

X

K2T

h

(R

u

; Æ

K

u

h

� r� )

K

(3.32)

And the stabilization for the temperature equation onsists of the following

term:

s

T

(X

h

; �) =

X

K2T

h

�

�

dT

h

dt

�r � (�rT

h

); 

K

u

h

� r 

h

�

K

: (3.33)

From the energy form (3.20), we de�ne the energy form of the system aug-

mented by the least-squares terms by

a

Æ

(X

h

; �

h

) = a(X

h

; �

h

) + (X

h

; q

h

) + s

u

(X

h

; �

h

) + s

T

(X

h

;  

h

): (3.34)

This disretization has been analyzed for example in [28℄, [31℄ or [51℄. An error

analysis lari�es the role of the parameters and motivates their hoie. The
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parameters �

K

; Æ

K

and 

K

have to be hosen depending on the loal mesh size

h

K

, the onvetion u and the visosity � or � on eah ell K. Error estimates

obtained in [13℄ allow to derive values for the stabilization parameters for the

ompressible-low-Mah-number-ow system for whih the error of disretiza-

tion e = X �X

h

an be minimized. This study leads to the following values

for the veloity stabilization:

Æ

K

=

h

K

4t+ �=(� h

K

) + juj

1

: (3.35)

Analogously, minimization of the error in temperature gives

Æ

K

=

h

K

4t+ �=(

p

� h

K

) + juj

1

: (3.36)

4t represents the time step. We disuss time disretization in next setion.

A short analysis of the limit ases helps to understand this stabilization pa-

rameter. In the ase of onvetion dominane, the veloity u is greater as the

visosity or time step and Æ �

h

juj

1

. If di�usion rules the ow, there is no need

to add muh stabilization. Æ being then proportional to

h

2

�

, the seond order of

the method is assured. For unsteady solutions, when the time step proesses

are dominant, we have Æ � 1=4t.

3.6 Time disretization

In this work we are interested in stationary solutions of the system desribed

in Chapter 2. However severe non-linearities in reative ows may imply a

non-stationary behavior of the solution, with small instabilities in time whih

make a steady-state not exatly reahable. The solution may be onsidered as

quasi-stationary but the system an then only be solved using a non-stationary

solution algorithm.

In order to take into aount time variation of the solution, we use the expan-

sion u

h

(t; x) =

P

u

i

(t)�

i

(x). We divide the time interval onsidered into N

parts of size k

n

= t

n

� t

n�1

. We denote the value of any variable � at time t

n

by �

n

= �(t

n

).

The impliit Euler method leads to a system analogous to the following system:

b

Æ

(X

n

h

; �

h

) + k

n

a

Æ

(X

n

h

; �

h

) = b

Æ

(X

n�1

h

; �

h

); (3.37)

with b

Æ

being the L

2

salar produt augmented by stabilization terms, i.e.

b

Æ

(X; �) = (X; �) +

P

K2T

h

(X; Æ u � r�).

The additional term for the stabilization in the form b

Æ

may be negleted if

we are atually looking for a quasi-stationary solution, as said above, and are

therefore not interested in the exat evolution in time. This term does not bring

more stability to the sheme and makes the proess more time-onsuming.
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3.7 Full Disretization for Reative Flows

We an now write the disretization of the whole system (2.59)- (2.63). We

have the following boundary onditions:

symmetry on �

0

: u

r

= 0;

inow on �

1

: u = u

0

; T = T

0

; w

i

= w

(i)

0

;

wall on �

2

: u = 0;

�T

�n

=

n

s

X

i=1

h

i

M

i

_w

0

i

;

�w

i

�n

=M

i

_w

0

i

;

outow on �

3

: �

�u

�n

� p � n = 0;

�T

�n

= 0;

�w

i

�n

= 0:

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

(3.38)

The weak formulation an be written as

(r � u

h

; q) + (L(u

h

; w

h

); q) + (p

h

; u

h

; q) = N

h

(q) 8q 2 Q

h

;

1

k

n

(u

h

; �) + (� u

h

� ru

h

; �) + (�ru

h

; �)

�(r� � ru; �)� (�r(r � u); �)� (p

h

;r � �)

+(�

u

r;h

r

2

; �

r

) + s

u

(p

h

; u

h

;�) = F

h

(�) 8� 2 V

h

;

1

k

n

(w

(i)

h

;  ) + (� u

h

� rw

(i)

h

;  ) + (�D

i

rw

(i)

h

;  )

+(�D

i

w

(i)

h

rM; ) + s

i

(w

(i)

h

; u

h

; ) = P

h

(w

h

;  ) 8 2 S

h

;

9

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

;

(3.39)

where N

h

; F

h

and P

h

are the orresponding funtionals formed by the right-

hand side variational formulation and the stabilization. P

h

ontains the volume

hemial soure terms but also the surfae soure terms

R

�

3

M

i

_

w

0

i

� d�. The

operator L(u

h

; w

h

; q) onsists of the variational formulation of the onvetion

terms from the ontinuity equation (2.59). The temperature is onsidered here

as an additional speies w

0

, sine the struture of its evolution equation is the

same as the struture of a mass onservation equation for any speies. We have

D

0

= �=(� 

p

). The density is de�ned by an algebrai equation � = �(w

h

).

Sine di�usion oeÆients for eah speies an di�er strongly, one has to de�ne

a stabilization parameter for eah speies:

Æ

(i)

K

=

h

K

k

n

+D

i

=h

K

+ juj

1

: (3.40)

and the least-squares stabilization term:

s

i

(w

(i)

h

;u

h

; ) =

X

K2T

h

�

1

k

n

w

(i)

h

+ � u

h

� rw

(i)

h

�r �

�

�D

i

r(M w

(i)

h

)

�

�M

i

_w

(i)

h

; Æ

(i)

K

u

h

� r 

�

K

:

(3.41)
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Chapter 4

Numerial Solution

To solve the strongly non-linear system oming from the �nite element dis-

retization of multispeies reative ows, we onsider the lassial approah

based on a linearization of the system with the help of its jaobian matrix.

The iterative method used in this work is a defet orretion method whih

requires to solve a linear system in eah non-linear step. In suh an algo-

rithm for omputing omplex reative ows, two ingredients are deisive for

the eÆieny of the total solution proess: an eonomial storage tehnique

whih fully exploits the very speial struture of the jaobian matries, and an

eÆient and robust solver for the large oupled linear systems.

This hapter disusses the linear systems obtained from a simpli�ation of

the jaobian matrix, whih may be eÆiently solved. This iteration matrix

has to provide enough auray aording to the non-linear system to obtain

an aeptable onvergene rate of the defet orretion proess. We will also

desribe methods to solve the resulting linear systems.

To solve the linear systems we have hosen a Generalized Minimal Residual

(GMRES) algorithm. GMRES is appropriate for non-symmetri and inde�nite

matries. In order to obtain an eÆient solver with a rate of onvergene

independent of the mesh size, we use a multigrid sheme as a preonditioner.

The loally-re�ned struture of the mesh makes the preonditioning through a

multigrid method neessary to avoid the dependene of the ondition number

on the mesh width.

The grids under onsideration are obtained as follows: The oarsest mesh does

not ontain any hanging node and onsists of ells belonging to the level l = 0.

The ells of level l � 0 are obtained by re�nement of some ells belonging

to level (l � 1). Due to this hierarhial re�nement strategy the required

smoothing operations in a multigrid yle on level l are restrited to the ells

belonging to this level. We use in this work di�erent smoothing operators.

For the Navier-Stokes part of the system, we have implemented a method

similar to the smoother proposed by Vanka in [52℄ for staggered grid �nite
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di�erene disretizations, whih onsists of a blok Gauss-Seidel iteration loop.

The deomposition in bloks is done path-wise on eah level of the grid and

orresponds to a loal grouping of veloities and pressure unknowns. For the

smoothing of the temperature and speies equations we use two methods; the

�rst one is based on point-Gauss-Seidel iterations, while the seond one may be

used in the ase of sti�er systems and is based on a blok-ILU deomposition.

4.1 Defet Corretion

As mentioned above, the non-linear system of equations is solved by a defet-

orretion method. The iteration matrix is an approximation of the jaobian

of the non-linear equations. This method is based on the Newton iteration

whih onsists of the following �x-point iteration

X

n+1

=

0

�

u

p

w

i

1

A

n+1

=

0

�

u

p

w

i

1

A

n

� ! (D

R

)

�1

R

n

; (4.1)

with the following notations:

D

R

= derivative of R with respet to the variables u, p, T, w

i

;

R = residual of the system that is to be solved;

! = relaxation parameter:

For the sake of simpliity we will onsider the temperature in this hapter as

the �rst term of the vetor de�ning the hemial state of the ow, i.e. w

0

= T ,

sine the equations for temperature and those for the speies have exatly the

same harateristis.

We also denote the inrements for our solution vetor by

d

n+1

X

=

0

�

d

u

d

p

d

w

i

1

A

=

0

�

u

n+1

� u

n

p

n+1

� p

n

w

n+1

i

� w

n

i

1

A

; (4.2)

n+ 1 being the number of the urrent non-linear step.

In the defet-orretion proess, D

R

is atually not omputed exatly sine a

suitable approximation of this derivative is often suÆient to solve the system.

For this reason, with the additional use of a relaxation parameter !, this

method is alled quasi-Newton method, when the omputed D

R

onverges to

the exat �nal D

R

, or defet orretion method otherwise.

Damping the iteration step with the parameter w leads to a stabilization of

the algorithm. ! is hosen to be w = 2

�i

where i is the lowest integer greater
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than 0 suh that the monotoniity jR(X

n

� 2

�i

d

n+1

X

)j < jR(X

n

)j is ful�lled.

X

n+1

= X

n

� 2

�i

d

n+1

X

is then hosen as the update. This stabilization is

neessary to have a robust solver and avoid osillations in the onvergene of

the method. An example of divergene in the ase without damping an be

found in [48℄.

4.2 Newton Matrix

The aim of this setion is to desribe the onstrution of the jaobian matrix

and its approximation. We present the jaobian matrix and its approximation

used in this work in order to redue storage requirements and omputation

time. We introdue the following form whih is the residual of the system:

R(fp; u; wg; fq; �;  g) =R

u

(fp; u; wg; �) +R

p

(fp; u; wg; q)

+

n

s

X

i=0

R

w

i

(fp; u; wg;  );

(4.3)

where R

u

, R

p

are the partial residuals aording to the Navier-Stokes equations

and R

w

the partial residual aording to the temperature-speies equations:

R

u

(fp; u; wg; �) =

�

�

du

dt

; �

�

+ (�ru;r�)� (p;r � �)

+ (�

u

r

r

2

; �)�(r� � ru; �)� (�r(r � u); �)� (f

v

; �);

R

p

(fp; u; wg; q) = (r � u; q) + (L(u; w); q) + (rp; Ærq);

R

w

i

(fp; u; wg;  ) =

�

�

dw

i

dt

;  

�

+ (�D

i

rw

i

;r )� (f

w

i

;  );

i = 0; : : : ; n

s

:

(4.4)

Taking into aount the stabilization terms would not hange the struture

of this system. The only stabilizing term whih hanges the harateristis of

the system is the term (rp; Ærq) in the operator (X; q) de�ned in relation

(3.31).

The jaobian matrix orresponding to the residual given above is

D

R

=

2

6

6

6

6

6

4

�R

u

�u

�R

u

�p

�R

u

�w

j

�R

p

�u

�R

p

�p

�R

p

�w

j

�R

w

i

�u

�R

w

i

�p

�R

w

i

�w

j

3

7

7

7

7

7

5

; (4.5)
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with i = 0; : : : ; n

s

and j = 0; : : : ; n

s

. For the approximation of this matrix,

we must take the physis of the ow into onsideration as well as the ability to

eÆiently alulate the derivatives and solve the system at low omputational

ost. The ow variables u, p are oupled with the hemial state w through

the mixture visosity �, the density � and the mean molar mass

�

M in the

Navier-Stokes equations and through the veloity of the uid in the onvetion-

di�usion equations for the temperature and speies. For our appliation to ow

reators, no rapid variation of the physial quantities should be observed in

almost the whole domain. Therefore, in order to be able to bring eÆient

smoothers into play, we deide to keep only a weak oupling between the

Navier-Stokes equations and the temperature/speies equations. The system is

orrespondingly linearized at eah non-linear step. In the approximate jaobian

we neglet the bloks

�R

u

�w

,

�R

w

�u

and

�R

p

�w

. The term

�R

w

�p

is also not taken into

aount sine the temperature is almost independent of the pressure for low-

Mah-number ows. The density ouples the equations through the ideal gas

law (2.46). Visosity, mean molar mass and speies or temperature onvetion

veloities are alulated in eah non-linear step with the previous-non-linear-

iteration value of the solution vetor.

With these simpli�ations, the approximation of the operator D

R

has the

following blok-form:

e

D

R

=

2

4

A

pp

A

pu

0

A

up

A

uu

0

0 0 G

3

5

: (4.6)

While denoting the test and trial funtions by  and �, respetively, we an

write the approximated operators de�ning

e

D

R

using overlined variables as the

linearized variables alulated with their values taken from the previous non-

linear step.

For the ontinuity equation, A

pu

orresponds to the sum of the divergene oper-

ator with the element-wise least-squares terms stemming from the streamline-

di�usion stabilization and A

pp

results from the pressure veloity stabilization:

A

pp

=

X

K2T

h

(r�; �

K

r )

K

; (4.7)

A

pu

= (r � (� �);  ) +

X

K2T

h

( �

d�

dt

�r � (�r�)

+

�

r

2

�

u

r

0

�

� �r(r � �)�r� � r�; �

K

r )

K

; (4.8)

with the total time derivative

d

dt

=

�

�t

+�u�r. The variable �u is here the veloity

evaluated at the previous step of the iterative proess. We neglet the other

part of the derivative of the transport term with regards to u.
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Furthermore the operator A

up

represents the inuene of the pressure in the

momentum onservation equation, and A

uu

orresponds to the onvetion-

di�usion terms in this equation:

A

up

= �(�;r �	) +

X

K2T

h

(r�; �

K

�u � r	)

K

; (4.9)

A

uu

=

�

d�

dt

;	

�

+ (�r�;r	) + (�

u

r

r

2

;	

r

)

�(r� � ru;	)� (�r(r � u);	)

+

X

K2T

h

�

d�

dt

� �r�; �

K

�u � r	

�

K

: (4.10)

Considering (4.6), we see that the linearized system is split into two indepen-

dent parts. One part determines the evolution of the ow, the other part

orresponds to the hemistry and the behavior of speies within the ow.

The operator G orresponds to the onvetion-di�usion-reation terms of the

speies mass onservation equations and to the temperature evolution equa-

tion, whih have the same struture. While onsidering the interations be-

tween the speies, the blok-matrixG an be deomposed into (n

s

+1)�(n

s

+1)

matries, the temperature being onsidered as a separate speies. The diago-

nal matries G

ii

orrespond to the onvetion-di�usion of the mass fration of

the speies i, as well as the reation of this speies in the gas-phase or at the

wall. For all i = 0; : : : ; n

s

we have

G

ii

=

�

d�

dt

;  

�

+ (�D

i

r(M �);r )�

�

M

i

� _w

i

�w

i

;  

�

�

�

M

i

� _w

0

i

�w

i

;  

�

�

wall

+

X

K2T

h

�

d�

dt

+ �D

i

r(M �); Æ

(i)

K

�u � r 

�

K

�

X

K2T

h

�

M

i

� _w

i

�w

i

; Æ

(i)

K

�u � r 

�

K

:

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

(4.11)

The non-diagonal blok-matries elements of the matrix G, denoted by G

ij

where i; j = 0; : : : ; n

s

and i 6= j, orrespond to the oupling between the

speies through hemial reations: whih speies are reated while others

are hemially transformed. These blok-matries ontain only derivatives of

gas-phase or wall prodution terms. For all i; j = 0; : : : ; n

s

with i 6= j, we

have

G

ij

= �

�

M

i

� _w

i

�w

j

;  

�

�

�

M

i

� _w

0

i

�w

j

;  

�

�

wall

�

X

K2T

h

�

M

i

� _w

i

�w

j

; Æ

(i)

K

�u � r 

�

K

:

(4.12)
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As noted in Setion 2.3.2, we want here to emphasize the importane of the

gas-phase and wall prodution terms in the jaobian matrix. Even if these

prodution terms may have small inuene on the residuum (the surfae rea-

tions our on 1D domains { for 2D omputations), the onvergene largely

depends on their presene in the jaobian matrix. Atually the di�erene on

the onvergene between two methods using di�erent approximations of the

jaobian matrix may be notied only very late in the onvergene proess. The

onvergene riterion (often residuum smaller than a ertain tolerane) has to

be hosen arefully. Indeed numerial experiments showed us that, for some

approximations, a residuum drop whih ould seem to be suÆient aording

to aepted toleranes for Navier-Stokes solver, is atually not enough for the

onvergene of the hemial proesses, prinipally for surfae reations. Some

surfae reations may not be taken into aount at this point in the onver-

gene proess. This means that we must be areful about loal onvergene

for hemial reations or aept to solve the system with a onvergene to the

zero mahine. We have tested several approximations of the jaobian matrix

in order to understand whih terms were neessary. Comparison for the wall

reation terms an be found in Chapter 6.

If one deided to delete one speies, as proposed in Setion 2.5, in order to

make the approximated solution automatially ful�ll the onstraint (2.42), the

jaobian matrix has to be alulated in a slightly di�erent manner. The reader

an �nd a omplete explanation of this method in [13℄. A hemial omponent

an be deleted and its mass onservation equation substituted by the relation

(2.42). The jaobian matrix of the resulting system is then alulated.

4.3 Implementational Constraints

The size of G depends on the number of speies and the number of degree

of freedom in the disretization. The latter is ontrolled through an adaptive

proess whih will be disussed in Chapter 5; it is typially in a range between

3000 to 20000. The sparse matrix type we use in the implementation is sup-

plied by the DEAL library and is usually used for solving large linear system

resulting from a �nite element disretization. The reader an �nd a desription

of this sparse matrix struture in [43℄. In our test appliations, in Chapter 6,

the maximal number of speies onsidered is 39. Due to memory restritions,

with so many speies, if we want to ahieve enough approximation auray,

we annot keep the whole matrix G in memory. Thus, with regards to the

memory available, we deide to keep the whole matrix G or redue it to its

blok-diagonal part, i.e. not to take the matries G

ij

into aount. This sim-

pli�ation is reasonable only if the reation terms are smooth. We will see that

the resulting defet orretion method still onverges for our appliations with

an aeptable onvergene rate with regard to alulation time. For problem
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with more intense reations, we may be fored to take the whole matrix into

aount.

4.4 Solvers

The global solution proess for steady nonlinear systems used for our purpose

an be seen as a nested proess (see Fig. 4.1) involving, within a defet-

orretion sheme based on a Newton iterative method, a preonditioned Gen-

eralized Minimal Residual method (GMRES) as linear solver (see [45℄), where

the preonditioner is hosen to be a multigrid method. Our implementation

is based on the multigrid method developed by Beker in [4℄, whih o�ers the

ability to handle loally re�ned grids. For our multigrid method we use several

smoothers depending on the systems we have to solve. For unsteady problems

a loop over time steps wraps again the whole proess.

GMRES

Smoothers

 Gauss-Seidel
 Vanka

 ILU

Newton / Defect Correction

Multigrid (Preconditioner)

Figure 4.1: Nested solution proess.

In eah nonlinear step of the defet-orretion method, a linear system is to be

solved. Sine the linearized system is deoupled due to (4.6), we may imple-

ment two linear solvers: one for the mixture-averaged ow (i.e. Navier-Stokes),

the other for the speies onvetion-di�usion-reation proess. This requires

two di�erent strategies for the smoothing iteration. In our implementation

we have hosen a "Vanka smoother" for the Navier-Stokes part of the system
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and a Gauss-Seidel smoother or an ILU smoother for the hemial part of the

system.

4.4.1 Multigrid

The mesh we use for the disretization omes from a re�nement proess (see

Chapter 5) whih makes the hierarhial struture of the triangulation avail-

able. The idea is to use this struture to implement an eÆient preonditioner

based on multi-level tehniques.

The appliation of multigrid methods on loally re�ned mesh is not trivial.

The reader an �nd a detailed explanation in the work of Beker [4℄ and an

implementation in the DEAL �nite-element library (see [6℄). We only sketh

here the essential steps of suh a method.

The multigrid proess we use for our purpose is based on a V-yle. On

the oarsest grid T

0

the system is solved exatly. On other levels T

l

, a pre-

smoothing is done and the residual is then restrited on a oarser grid T

l�1

where this proess is reursively repeated until the oarsest grid is reahed.

Then the solution is prolongated from the oarser grid T

l�1

to the grid T

l

and

a post-smoothing is arried out.

Exact Solution

Pre-Smoothing

T

T

T

0

l

l-1
Pre-Smoothing

Post-Smoothing

Post-Smoothing

P
ro

lo
n
g
at

io
n

P
ro

lo
n
g
at

io
nR

estrictio
n

R
estrictio

n

Figure 4.2: Multigrid V-yle.

In the following subsetions we desribe the smoothing operators. The smoo-

thing of the residual is done level-wise. Smoothing the residual on eah level

of the mesh means eliminating its high frequenies in order to approximate

it aurately on a oarser grid. A possibility is to smooth the system with a

�xed number of GMRES steps on eah level of the triangulation. Nevertheless
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this leads to bad performane of the multigrid method, espeially when the

mesh ontains more than four or �ve levels. We need to use methods whih

have good smoothing properties (not ompulsorily a solver) without demand-

ing too muh omputational e�ort sine the smoother works on eah level of

the mesh. For the Navier-Stokes equations, we have therefore implemented

a Vanka-type smoother, whih is a blok-Gauss-Seidel iterative method. The

blok are onstruted by onsidering a path-wise grouping of pressure and

veloities unknowns. The speies equations are smoothed with the help of a

point-Gauss-Seidel iterative method or an ILU method. In order to obtain

good smoothing properties, it is well known that these two methods require

a renumbering of the grid nodes in the diretion of the ow. We will shortly

disuss this point as �nal remark.

4.4.2 Vanka Smoothing Operator

As smoothing operator for the Navier-Stokes equations we employ a blok-

Gauss-Seidel iteration similar to the one proposed by Vanka in [52℄. A smoo-

thing step onsists of a loop over the pressure degrees of freedom, where we

simultaneously update the orresponding pressure value together with the ve-

loity unknowns whih are oupled with it, by solving a loal system derived

from the Navier-Stokes equations.

l l

l

l l l

ll  = l

0 2

53

76 8

l
1

P
i

P 4

Figure 4.3: Path de�ning the loal problems for the Vanka smoother.

To this end, we assoiate with eah pressure point P

i

of the onsidered level a

path onsisting of the ells having P

i

in ommon (see Fig. 4.3). On eah path

we de�ne the indies l

i

with 0 � i � 8 for veloity degrees of freedom and the
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loal index l

p

orresponding to the pressure point. The disrete operator for

the stabilized Navier-Stokes system of equations an be written as follows:

�

A B

E C

�

: (4.13)

Having alulated the residuals r

i

and r

p

for the veloity and the pressure

respetively, we obtain, after simpli�ation, the following loal system for the

veloity and pressure updates d

i

and d

p

:
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: (4.14)

This system has been simpli�ed by negleting the oupling terms between

the veloity degrees of freedom (i.e. a

12

; : : : ). It an be easily solved with

two passes over the involved unknowns. This onstrution provides veloity

updates whih satisfy the mass onservation equation with respet to the test

funtion on the path.

The Vanka smoother showed more robustness than a simple Gauss-Seidel

smoothing during tests done on the Navier-Stokes equations with onstant

visosity. It is well known for saddle-point problems that by inreasing the

Reynolds number of the ow, the linearized systems may still be solved with

the Vanka smoother, while when using the Gauss-Seidel smoother the whole

proess shows poor onvergene rates or even diverges. Numerial tests on

our appliation ases for ow reators led us to set the number of pre- and

post-smoothing steps with the Vanka smoother eah to four. Less iteration

steps ould handiap the eÆieny of the multigrid method as preonditioner.

4.4.3 Chemial System Smoothing

The hemial system formed by the speies mass onservation equations and

the temperature evolution equations is solved with the help of Gauss-Seidel

iterations or, for more sti� systems, with an ILU method, a desription of

whih an be found in [13℄. We use an ILU(0) from the MV++ and IML++

pakages (see [43℄ and [21℄). MV++ implements eÆient matrix/vetor lasses

designed for high performane numerial omputing and IML++ is a olletion

of algorithms for solving or preonditioning linear systems of equations. The

idea of the ILU method is to ompute a fatorization of the form

A = LU; (4.15)
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where A is the matrix of our system, L and U are a lower and an upper

triangular matrix respetively. In general L and U will be dense matries.

The inomplete LU method of order zero provides approximations of these two

matries,

~

L and

~

U , whih have the same sparse struture as the matrix A. This

allows to redue memory requirements and to alulate the deomposition with

low omputational osts. The fatorization remains aurate enough to ensure

the robustness of the method. Some examples of appliation of inomplete LU

methods may be found in [59℄ and [13℄.

The blok Gauss-Seidel iterative method is not as robust as ILU methods but

is less time-onsuming and an be used as an eÆient smoother for linear

systems whih do not ontain too strong onvetion and soure terms. With

regard to the implementation of a smoother for the hemial system, one must

only be aware of the limits of this method and should make an ILU method

also available. The Gauss-Seidel smoother is used as pre- and post-smoother

for the multigrid method with a number of steps typially eah between two

and �ve.

The eÆieny of these two methods is extremely dependent on the numbering

of the mesh points. To be able to use the information transport within the ow,

the degrees of freedom have to be numbered in streamline diretion. Sine we

need the smoother on eah level of the mesh, the numbering of the nodes has

to be realized independently on eah re�nement level. A renumbering method

based on the minimization of a funtional depending on the veloity of the ow

is desribed in [13℄. However this sort of renumbering method might demand

some omputational e�ort and if the diretion of the ow is known in advane,

one may prefer to make the numbering simply dependent on this diretion,

whih is done very quikly. We used the latter method in our appliations on

low-pressure ow reators.
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Chapter 5

Adaptivity

5.1 Introdution

It is frequently the ase in engineering problems that the main quantity of

onern is not the solution of a partial di�erential equation, but a seondary

quantity whih is a salar funtional of the solution.

The strategies for mesh re�nement onventionally used in �nite element meth-

ods are mostly based on a posteriori error estimates in global norms involving

loal terms orresponding to residuals of the omputed solution. The mesh

re�nement proess aims at equilibrating these loal error indiators. However

meshes generated on the basis of suh global error estimates may not be appro-

priate for ontrolling the auray in approximating loal quantities suh as

point values or ontour integrals. More detailed information is needed on the

mehanism of error propagation with regard to these quantities depending on

the solution. This an be obtained by employing suitable duality arguments.

The orresponding dual solution is approximated on the urrent mesh and is

used to derive loal weight fators whih are used in the a posteriori error

estimates.

Our aim in this hapter is to propose an approah to the derivation of a pos-

teriori bounds on the error in linear funtionals for reative ows in order to

be able to ompute some physial quantities with best auray. A funtional

J(�) of the solution is de�ned, whih may represent for example loal values of

the temperature, ontour average of speies mass frations or point values of

ertain omponents of the system. In these ases the error ontrol is applied

only to a part of the solution. When suh well de�ned quantities are to be al-

ulated with preision, an error indiator allows to ontrol the approximation

error on these quantities for the alulated solution.

We present in this hapter an adaptive algorithm leading to reliable and eÆ-

ient error ontrol in our ontext, aording to a funtional as desribed above.
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It allows to alulate the solution with a ontrolled auray for the value of

the funtional J(�) on \optimal" meshes for our FEM Ansatz aording to the

orresponding error estimator. \Optimal" means either \most eonomial for

ahieving a presribed auray" or \most aurate for a given number N of

mesh points". The funtional is assumed in this work to be linear although

the approah an be extended to non-linear funtionals (see [8℄).

The error estimation is based on duality arguments. The dual problem is

obtained from a linearization of the primal problem. Sine the dual problem is

linear, the additional ost indued by the omputation of the error estimator

orresponds to only one Newton step of the solution of the non-linear primal

problem on eah mesh level.

In ontrast to the error bound obtained by duality arguments, a lassial ap-

proah to adaptivity for reative ows supplies error indiators usually based

on the estimation of a global stability onstant, independently of any quantity

derived from the solution (see [53℄). For salar equations, suh an indiator

�

ind

has the form

�

ind

=

X

K2T

h

!

K



K

; (5.1)

where !

K

is a weight depending on the ell K and 

K

is a suitable di�erene

quotient of the disrete solution approximating some derivative. In reative

ow omputations, the situation is more ompliated sine we deal with a

system of equations. For systems the orresponding indiator reads

�

ind

=

X

K2T

h

n

X

i=1

!

i

K



i

K

: (5.2)

In order to sum over all the equations, a saling of the omputed variables (for

instane the mass fration) may be neessary, sine the onentration of the

speies in the mixture may sensibly di�er by many orders.

Through the approximation of derivatives by di�erential quotients, suh an

indiator will apture the strong variations in onentration and therefore will

lead to a re�nement in reation zones. However the absene of information

on global error propagation as well as on the oupling between the di�erent

omponents may have negative inuene on the quality of the disrete solution

by not re�ning the mesh where the error is atually reated. Moreover there

is no possibilities to ontrol the error on quantities depending on the solution.

Other traditional approahes to the onstrution of loally adapted meshes

often resort to ad ho riteria, often gradients of physial quantities, whose

impat on the auray of the numerial solution is diÆult to assess.

In the �rst setion of this hapter an error estimate for a funtional in the

simple ase of a linear onvetion-di�usion equation is developed. This onept
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is then applied to a non-linear PDE. We �nally apply the error estimation to

reative-ow problems and then disuss how to organize a mesh re�nement

proess with the help of the omputed estimator.

5.2 Error Estimation for a Linear Salar Equa-

tion

We onsider the salar onvetion-di�usion equation with homogeneous Dirih-

let boundary onditions. Let � be a given vetor �eld. The variational formu-

lation onsists in �nding u 2 V = H

1

0

(
) suh that

a(u; �) = (� � ru; �) + (�ru;r�) = (f; �) 8� 2 V: (5.3)

This problem is approximated by a Galerkin �nite element method using a

sequene of test and trial spaes V

h

� V parameterized by a disretization

parameter h. The disrete problem reads: �nd u

h

in V

h

suh that

a(u

h

; �) = (f; �) 8� 2 V

h

: (5.4)

For the sake of simpliity, the modi�ation due to the stabilization of the

equation by the streamline di�usion method is not taken into aount; it will

be inluded later.

Subtrating (5.4) from (5.3), we obtain the Galerkin orthogonality relation for

the error e = u� u

h

,

a(e; �) = 0 8� 2 V

h

: (5.5)

The error e is orthogonal to the spae V

h

with respet to the bilinear form a,

whih is a harateristi property of Galerkin methods.

We now de�ne the funtional of the solution that is to be aurately known.

Let J : V ! R be a linear funtional. The aim of the adaptive proess

is to onstrut an appropriate triangulation T

h

and to ompute u

h

with the

ondition that

jJ(e)j = jJ(u)� J(u

h

)j � TOL (5.6)

for a given tolerane TOL.

To know if J(u

h

) is alulated aurately enough, one must be able to bound

the error J(e) de�ned above. Hene it must be expressed only in terms of the

approximated solution u

h

, sine the ontinuous solution u is not known.

We onsider therefore the solution z 2 V of a orresponding dual problem

a(�; z) = J(�) 8� 2 V; (5.7)
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where trial and test funtions are interhanged with respet to the primal

problem (5.3). The orresponding ontinuous operator of this dual problem is

by de�nition the adjoint of the operator of the primal problem. Integration by

parts yields the following representation of this operator:

L

�

= �� � r � �4: (5.8)

This means that onvetion ours in the opposite diretion as for the primal

problem. The dual problem arries information upstream.

The Galerkin orthogonality argument (5.5) and the dual problem (5.7) together

lead to an error representation in terms of the dual solution z:

J(e) = a(e; z) = a(e; z � i

h

z) = (f; z � i

h

z)� a(u

h

; z � i

h

z) (5.9)

for an arbitrary interpolation i

h

z 2 V

h

of the dual solution z 2 V . We will see

later the aim of the introdution of this interpolation of the dual solution in

the spae V

h

.

From (5.3) we get

J(e) = (f � � � ru

h

; z � i

h

z)� (�ru

h

;r(z � i

h

z)) (5.10)

Thus we have reahed a formulation of the funtional where the unknown on-

tinuous solution does not appear. Expressing the salar produt element-wise,

an integration by parts leads to the exat error representation as a funtion of

the residual of the primal system and [ru

h

℄, the jumps of the �rst derivatives

over the ell edges:

J(e) =

X

K2T

h

(f � � � ru

h

+ �4u

h

; z � i

h

z)

K

�

1

2

X

K2T

h

(�n � [ru

h

℄; z � i

h

z)

�K

;

(5.11)

with n the external normal vetor to the edge �K. Note that the normal

derivatives of u

h

are disontinuous over the ell edges.

Although equation (5.11) is independent of u, it still ontains the unknown

ontinuous dual solution z. Therefore the error on the funtional J(e) annot

be evaluated numerially in this form and the term z � i

h

z must be approx-

imated in an appropriate way. Several methods for this are presented in [8℄.

One usually uses the ell-wise approximation of the expression kz � i

h

zk

K

.

Indeed by applying the Cauhy-Shwarz inequality on (5.11) in order to get

an upper bound for J(e), the resulting estimator is

jJ(e)j �

X

K2T

h

!

K

�

K

(5.12)
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with �

K

the residual of the primal equation and !

K

additional weights depend-

ing on the dual solution:

�

K

:= h

2

k

k� � ru

h

� �4u

h

� fk

K

+

1

2

�h

3=2

k

kn � [ru

h

℄ k

�K

; (5.13)

!

K

:= max

n

h

�2

K

kz � i

h

zk

K

; h

�3=2

K

kz � i

h

zk

�K

o

: (5.14)

The residuals �

K

an be now omputed numerially sine they depend only on

the disrete solution u

h

. However the weights have still to be approximated.

!

K

an be replaed by an approximation obtained by using loal interpolation

estimates (see [5℄)

!

k

� C

K

kr

2

zk

K

; (5.15)

with an interpolation onstant C

K

.

Following the approah proposed in [8℄, in the loal interpolation estimate

(5.15) the exat dual solution z is replaed by an approximation z

h

, disrete

solution of the dual problem

z

h

2 V

h

: a(�; z

h

) = J(�) 8� 2 V

h

: (5.16)

For simpliity, we use the same disrete spae V

h

for the disrete dual problem,

although a �ner or oarser mesh ould be used.

The validity of this approximation in our appliation ases is justi�ed by the

results we obtain using this method in this work as well as by the results

obtained in other works suh as in [48℄. If we substitute the seond order

di�erene quotient kr

2

h

z

h

k

K

for the seond derivative of the dual solution in

the bound in (5.15), the error an now be estimated by

jJ(e)j � � :=

X

K2T

h

�

K

; �

K

= ~!

K

�

K

; (5.17)

with approximated weights ~!

K

numerially evaluated as

~!

K

:= C

K

kr

2

h

z

h

k

K

: (5.18)

After determining the solution u

h

of the primal problem (5.3), the disrete

dual problem (5.7) has to be solved. Then the residuals �

K

and weights ~!

K

are evaluated on eah ell in order to get the loal error indiators �

K

. The

total error with respet to the error funtional J is then estimated by (5.17).
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5.3 Error estimation with streamline di�usion

For the stabilized disretization, the orresponding error estimate involves fur-

ther terms whih are needed in further developments. The modi�ation of the

bilinear form does not a�et the pratial omputation but is relevant for the

form of the a posteriori error estimate given by (5.17). The reader an �nd

more details on this subjet in [22℄.

We modify the bilinear form a given in (5.3) just as in Setion 3.5.3 to obtain

the stabilized bilinear form a

h

:= a+ a

Æ

, with a

Æ

de�ned by

a

Æ

(u; �) :=

X

K2T

h

Æ

K

(� � ru� �4u; � � r�)

K

: (5.19)

We obtain in the same way the stabilized right hand side f

h

:= f + f

Æ

, with

f

Æ

de�ned by

f

Æ

(�) :=

X

K2T

h

Æ

K

(f; � � r�)

K

: (5.20)

The disrete equation is then

a

h

(u

h

; �) = f

h

(�) 8� 2 V

h

: (5.21)

The onsideration of the stabilized linear problem with least-square terms leads

to the full Galerkin orthogonality

a

h

(e; �) = 0 8� 2 V

h

: (5.22)

At this point, we are at the same stage in the method as for the simple Galerkin

orthogonality equation (5.5). We just have to interhange the bilinear form a

with the form a

h

. The dual solution z searhed in V ful�lls now the equation

a

h

(�; z) = J(�) 8� 2 V: (5.23)

The error estimate beomes then

J(e) = a

h

(e; z) = a(e; z � i

h

z) + a

Æ

(e; z � i

h

z)

= (f; z � i

h

z)� a(u

h

; z � i

h

z) + f

Æ

(z � i

h

z)� a

Æ

(u

h

; z � i

h

z):

Following the same reasoning as in the ase without stabilization, an a poste-

riori bound of the error with respet to the funtional J(�) an be derived:

jJ(e)j �

X

K2T

h

�

!

K

�

K

+ jÆ

K

(� � ru

h

� �4u

h

� f; � � r(z � i

h

z) )

K

j

�

; (5.24)

with !

K

�

K

de�ned as in previous setion.

70



The estimation of r(z � i

h

z) by the seond derivative of z,

kr(z � i

h

z)k

K

� C

K

h

K

kr

2

zk

K

; (5.25)

leads to the following bound:

jJ(e)j �

X

K2T

h

!

K

(�

K

+ j�j

1;K

Æ

K

h

K

k� � ru

h

� �4u

h

� fk

K

): (5.26)

It is to be noted that the supplementary stabilization term has at least the

same order in h

K

as the term �

K

, sine the stabilization parameter Æ

K

depends

on h

K

(see Setion 3.5.5).

5.4 Error Estimation for Non-linear Equations

We now apply the weighted error estimator, explained previously for a linear

salar equation, to non-linear problems. Let V be a Hilbert spae with inner

produt (., .) and orresponding norm k:k, and a(:; :) a semi-linear form (linear

in the seond argument). The variational formulation of the orresponding

problem is: �nd u 2 V suh that

a(u; �) = (f; �) 8� 2 V: (5.27)

The disretization in a �nite-dimensional subspae V

h

� V is: �nd u

h

2 V

h

suh that

a(u

h

; �) = (f; �) 8� 2 V

h

: (5.28)

Let e = u�u

h

be the error between the ontinuous and the disretized solution,

and J(�) the funtional of the solution, still onsidered as linear, whih is to

be aurately known.

The aim is to �nd a system, named dual system in the previous setion, whih

allows us to get an upper bound of the error on the funtional. In order to have

a variational formulation of this system, the form desribing the problem must

be linear in the test funtion. Moreover the linearity of the primal problem had

made it possible in the previous setion to write expliitely J(e) independently

of the ontinuous primal solution in equation (5.9) and following. The same

argumentation annot be used here.

Therefore, if we want to keep the same reasoning, we have to �nd, from the

primal non-linear system, a linear system whih allows us to write J(e) inde-

pendently of the ontinuous solution.
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With this aim in view, we onsider the derivative a

0

(�; �; �) of a(�; �) with respet

to its �rst argument, de�ned in a point w in the diretion v by

a

0

(w; v; �) = lim

�!0

�

1

�

( a(w + � v; �)� a(w; �) )

�

: (5.29)

We have the following orthogonality relation for the error e:

Z

1

0

a

0

(u

h

+ t e; e; �) dt = a(u; �)� a(u

h

; �) = 0 8� 2 V

h

: (5.30)

This suggests the use of the following bi-linear form for the onstrution of the

dual problem:

L(u; u

h

;�; z) :=

Z

1

0

a

0

(u

h

+ t e;�; z) dt; (5.31)

whih is linear in � and z.

For representing the error J(e), we then use the dual problem onsisting in

�nding z 2 V suh that:

L(u; u

h

;�; z) = J(�) 8� 2 V: (5.32)

Assuming that this problem has a unique solution z 2 V , and using the

Galerkin orthogonality (5.30), we obtain the error representation

J(e) = L(u; u

h

; e; z � i

h

z); (5.33)

with any approximation i

h

z 2 V

h

of z.

The goal is to evaluate the right hand side numerially, in order to get an a

posteriori estimate for the quantity J(e) and thus a riterion for the optimal

loal adjustment of the disretization. Sine the bilinear form L(u; u

h

; �; �)

ontains the unknown solution u, it has to be approximated. The simplest

way is to replae u by u

h

yielding a perturbed dual solution ~z 2 V de�ned by

L(u

h

; u

h

;�; ~z) = J(�) 8� 2 V: (5.34)

This approximation a�ets the quality of the resulting estimator

J(e) �

~

J(e) := L(u

h

; u

h

; e; ~z � i

h

~z): (5.35)

Controlling the e�et on the auray of this approximated error estimator may

be a diÆult task and depends strongly on the partiular problem onsidered.

Many appliations whih may be found for instane in [33℄, [48℄ or [5℄ tend to

suggest that the approximated estimator supplies orret information for the

loal mesh re�nement proess.
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In a similar way as for linear systems in Setion 5.2, an upper bound of

~

J(e)

an be omputed by solving the perturbed disrete dual system (5.34). The

appliation of the Cauhy-Shwarz inequality on the ell-wise representation

of equation (5.33) leads to an estimation of the error in the form

~

J(e) �

X

K2T

h

w

K

�

K

(5.36)

with residuals �

K

and weights !

K

.

In order to desribe these oeÆients, we take as example a part of the mo-

mentum onservation equation, for whih the form a is de�ned as

a(u; �) = u � ru+ �4u: (5.37)

The residuals and weights are then given by

�

K

:= h

2

k

ku

h

� ru

h

� �4u

h

� fk+

1

2

�h

3=2

k

kn � [ru

h

℄ k

�K

; (5.38)

!

K

:= max

n

h

�2

K

kz � i

h

zk

K

; h

�3=2

K

kz � i

h

zk

�K

o

: (5.39)

As before, we estimate the weights !

K

by the semi-norm jzj

K;2

whih is again

approximated numerially by the seond-order di�erene quotient of the solu-

tion z

h

2 V

h

of the disrete perturbed dual problem oming from (5.34),

!

K

(z) � ~!

K

(z

h

) = C

K

kr

2

h

z

h

k

K

: (5.40)

The resulting weighted-residual error estimator is

j

~

J(e)j � � =

X

K2T

h

�

K

; with �

K

= ~!

K

�

K

: (5.41)

As a �nal remark it is to be noted that an approximation has been made

in the bilinear form de�ning he dual system, in order to be able to write an

upper bound of J(e) whih may be numerially omputed. To keep a ontrol

on the auray of the proess it may be worth to ompare if the weights

omputed with the help of dual solutions on di�erent meshes do not di�er too

muh. In this ase the error estimates are believed to be reliable. Otherwise

one ould attempt to re�ne the mesh globally in order to improve the global

approximation of u and get less perturbed dual systems. This ould be the

ase for very oarse meshes.
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5.5 Appliation to Reative Flows

We apply the weighted-residual error estimation desribed in the previous se-

tions to reative ow problems. The primal system is given by equations

(2.59)-(2.63).

We denote the dual solution vetor by

z = [z

u

; z

p

; z

w

℄

T

: (5.42)

We refer to Chapter 3 for the notation onerning the primal problem. For

the sake of simpliity we do not take into aount the stabilizing terms in the

desription of the dual problem. Their e�et on the dual system is straightfor-

ward. The inuene of these terms on the estimator itself will be mentioned

later.

The derivation of the dual problem from the primal problem and the orre-

sponding a posteriori error estimate follows the same line of argument as in the

previous setion. For eonomial reasons, we do not use the full Jaobian of

the oupled system in setting up the dual problem, but only inlude its domi-

nant parts. The same simpli�ation is used in the nonlinear iteration proess.

Taking the notation of Chapter 1, the resulting dual problem is the following:

�nd z 2 V = V

�

� V

+

�Q� S suh that

�(� u � rz

u

; �) + (�rz

u

;r�) + (z

p

; �) = J

u

(�) 8� 2 V

�

� V

+

;

�(r � z

u

; �) + (

u

T

� rz

T

; �) = J

p

(�) 8� 2 Q;

�(� u � rz

(i)

w

;  ) + (�D

i

rz

(i)

w

;r )�

�

P ( ; z

w

) = J

w

( ) 8 2 S;

9

>

>

=

>

>

;

(5.43)

where the bilinear form

�

P orresponds to a linearization of the hemial pro-

dution term. The linear forms J

i

de�ned on the solution spae orrespond to

the funtional of the solution for whih we want to estimate the error. This

system is supplemented by appropriate boundary onditions indued by those

of the primal problem.

This problem has to be solved in order to evaluate the weights in the estimators

of the resulting a posteriori error estimate

jJ(e)j � � =

X

K2T

h

X

X2fu;p;w

i

g

(�

K;X

+ �

K;X

) ~!

K;X

; (5.44)

�

K;X

representing the terms oming from the stabilization of the system. We

sum over the error estimators orresponding to eah omponent of the fun-

tional, sine we may want to ontrol the error on a funtional depending on
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several variables of the primal problem. The residuals �

K;x

involve the ells

residuals and jumps of the disrete solution aross inter-elements boundaries:

�

K;u

= h

K

r

u

+

1

2

h

1=2

K

� k [�

n

u

h

℄ k

�K

;

�

K;p

= h

K

r

p

;

�

K;w

i

= h

K

r

(i)

w

+

1

2

h

1=2

K

D

i

k [�

n

w

(i)

h

℄ k

�K

;

r

u

= k� u

h

� ru

h

�r � �ru

h

+rp

h

k

K

;

r

p

= kr � u

h

+ L(u

h

; w

h

)k

K

;

r

(i)

w

= k� u

h

� rw

(i)

h

�r � (�D

i

rw

(i)

h

)�r � (�D

i

M

�1

i

w

(i)

h

rM)� f

i

(T

h

; w

h

)k

K

:

As already mentioned, the weights ~!

K;x

are evaluated by solving the dual

problem numerially and replaing the exat solution z by its numerial ap-

proximation z

h

:

~!

K;u

= C

K

h

K

kr

2

h

z

(u)

h

k

K

;

~!

K;p

= C

K

h

K

kr

2

h

z

(p)

h

k

K

;

~!

K;w

= C

K

h

K

kr

2

h

z

(w)

h

k

K

:

The error estimator for the omplete stabilized system is derived from the

estimator desribed just above and from the result of Setion 5.3. The omplete

estimation is

jJ(e)j � � + j(p

h

; u

h

; z � i

h

z)j+ js

u

(p

h

; u

h

; z � i

h

z)j

+

n

s

X

i=0

js

i

(p

h

; u

h

; z � i

h

z)j;

(5.45)

� being the estimator without stabilization. The forms , s

u

and s

i

are de�ned

in Setion 3.5.5 and orrespond to the pressure and streamline-di�usion stabi-

lizations. For eah equation of our system we apply the proess desribed in

Setion 5.3 in order to de�ne an upper bound of the stabilization term. An

upper bound of the error on the funtional is then

jJ(e)j � �

total

= � +

X

K2T

h

~!

K;u

r

u

Æ

K

(1 + juj

1;K

)

+

X

K2T

h

~!

K;w

i

r

(i)

w

Æ

(i)

K

juj

1;K

:

(5.46)

The most important aspet of this a posteriori error estimate is that the lo-

al ell residuals related to the various physial e�ets governing the ow and

transfer of temperature and hemial speies are systematially weighted aor-

ding to their impat on the error quantity to be ontrolled.
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5.6 Re�nement Strategies

The right hand side in the error bound (5.46) an be evaluated one the �nite

element solutions u

h

and z

h

of the primal and dual problems have been om-

puted and an be used to estimate the size of the global error J(e). Exploiting

this a posteriori error bound it is possible to adaptively ontrol the global error

to a desired tolerane level by suitably re�ning the mesh.

Let an error tolerane TOL and a maximum number of mesh points N

max

be

given. The goal is to �nd the most eonomial mesh T

h

on whih

jJ(e)j � �(u

h

) =

X

K2T

h

�

K

� TOL; (5.47)

with the loal error indiators �

K

= !

K

�

K

. The usual approah to onstrut-

ing a mesh whih does not ontain an exessively large number of elements is

to proeed iteratively: we start with a oarse mesh and re�ne it suessively

based on the size of the a posteriori error estimate. Inequality (5.47) an be

thought of as a stopping riterion in this iterative proess whih an be written

as follows:

1. Solve the disrete problem on T

h

.

2. Evaluate the estimator � =

P

K2T

h

�

K

.

3. If � > TOL : hange grid T

h

aording to �

K

and go to 1.

4. end.

Starting from some initial oarse mesh, the re�nement riteria are hosen in

terms of the loal error indiators �

K

(u

h

; z

h

). In fat various strategies an be

adopted to generate a re�ned mesh from a given one (point 3 of the algorithm).

Here we mention three of the most popular approahes (see [8℄, [48℄ or [33℄):

� Error-per-ell strategy: In this approah the mesh generation aims to

equilibrate the loal error indiators by re�ning or oarsening the ele-

ments K in the urrent mesh T

h

in order to reah the riterion

�

K

�

TOL

N

; (5.48)

with N the number of elements in the resulting mesh. Sine N depends

on the result of the re�nement deision, this strategy is impliit and re-

quires an iterative implementation. However it is ommon pratie to

work with a varying value of N on eah re�nement level, with N sues-

sively updated aording to the outome of the re�nement proess. This

strategy will deliver a partition on whih � � TOL, provided that N

max

is not exeeded. This re�nement riterion leads to an equidistribution of

the error over the whole mesh.
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� Fixed-fration strategy: In eah re�nement step, the elements are ordered

aording to the size of the loal error indiator �

K

(u

h

; z

h

), and then a

�xed portion of the elements K with largest �

K

(u

h

; z

h

) is re�ned (in two

dimension typially 30% sine this approximately doubles the number of

ells in eah re�nement yle). A smaller perentage of re�ned grid ells

per adaptive step leads to a more loalized re�nements of the mesh. This

proess is repeated until the stopping riterion � � TOL is satis�ed or

N

max

is exeeded.

� Fixed-redution strategy: We work here with a varying tolerane TOL

var

.

Having alulated the disrete solutions u

h

and z

h

on a mesh T

h

, the

tolerane is set to TOL

var

= � �, where � 2 (0; 1) is a �xed redution

fator. In the next step one or several yles of the error-per-ell strategy

are performed with tolerane TOL

var

, yielding a re�ned mesh T

h

new

and

new solutions u

new

h

, z

new

h

with assoiated error estimator �(u

new

h

; z

new

h

).

Then the tolerane is redued again by setting TOL

var

= � � and a

new re�nement yle begins. This iterative proess is repeated until

TOL

var

� TOL, or N

max

is exeeded.

In eah of the three strategies we repeat mesh modi�ation followed by solution

on the new mesh until the tolerane is satis�ed, or the presribed maximum

number of elements is exeeded.

For our appliation to reative ows in ow reators, we used prinipally the

seond re�nement strategy, whih allows to tune the loalization of the re�ne-

ment zones. This generally leads either to meshes ontaining a smaller number

of ells, sine in less ritial zones the error is allowed to remain over the bound

presribed in the �rst method, or to a better auray in ritial zones. An

appliation of the third re�nement strategy an be found in [48℄.
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Chapter 6

Appliations

In this hapter we present four reative ow problems with di�erent omplex-

ities in the hemial reations. The �rst two problems are based on CARS

(Coherent Antistokes Raman Spetrosopy) measurements for the evaluation

of the deativation rate of vibrationally exited H

2

moleules. In a �rst ex-

ample we take into aount only the wall-deativation proess, whih an be

onsidered as a set of slow hemial reations; 4 speies and 7 reations are

involved in the hemial system. In a seond example we onsider the wall-

deativation proess as well as the exhange of the vibrational energy of H

2

moleules with D

2

moleules. Here, the hemial system involves 9 speies and

the 32 reations. A third example, again based on the same CARS ow tube,

is the ow simulation of a mixture where hemial reations between H

2

, NO

2

and other produed moleules take plae by higher temperature (from 300K to

1700K). Sine the high temperature gradient within the ow auses numerial

instabilities, a time step method has to be used here to be able to onverge to

a quasi-stationary solution. The hemial system onsidered involves 7 speies

and 6 reations.

The fourth example is based on a CVD (hemial vapor deposition) exper-

iment. We are interested in the deposition of diamond on the surfae of a

substrate. As revelator of this deposition we look at the onentration of CH

3

near the surfae of the substrate. To improve the diamond deposition, this

onentration must be as high and homogeneous over the substrate as pos-

sible. The hemial model involves 39 speies and 358 elementary hemial

reations. Partiularly with so many speies and reations, the appliation of

the solution method developed in this work makes it possible to reah good

auray with reasonable memory requirement and omputation time. The

alulation of suh reative ows an be performed by the adaptive algorithm

presented in this work on a workstation or a PC.

79



6.1 CARS

6.1.1 Flow Reator { Overview

The ow tube tehnique has importane in modern experiments as one of the

most powerful tools for the determination of elementary hemial reation rate

onstants.

The basi priniple of ow tubes is always the same: mixing of reatants takes

plae upstream in a mixing setion and their onsumption or the buildup of

produts is followed along a measurement setion by some detetion method for

atoms, radials, or moleules. A reation rate onstant is then dedued from

measured axial onentration pro�les. In order to favor di�usive proesses,

whih minimize radial onentration gradients, a ow tube is traditionally

operated at low pressure. An assumed mean ow veloity allows to onvert the

axial oordinate (distane between the �rst point of mixing and the detetion

point) into reation time. The reation rate onstants of interest an then be

dedued by modelling the homogeneous reation system. However, the method

is known to bear systemati errors, sine it is based on the approximation of

a perfet deoupling of hemial and hydrodynami proess in the ow tube.

Espeially in the mixing setion of the reator this assumption is not valid.

In order to arry out a reliable evaluation of rate onstants from experimental

data, it is desirable to take into aount all relevant physial and hemial

proesses ourring in a reative ow. The detailed modeling of reative ow

�elds within a reator for kineti studies is therefore an important tool for the

experimental determination of elementary rate onstants.

6.1.2 Reation Kineti of the H

2

�D

2

System

The heterogeneous relaxation and the exhange of vibrational energy of the H

2

moleules has been experimentally investigated in [57℄ with the help of a test

reator. For this experiment, based on the assumption of non-turbulent sta-

tionary ow and hemial proess, the possibility of two-dimensional numerial

simulation with a �nite di�erene sheme has been studied in [46℄.

With the adaptive solution method developed in this work, we are able to get

an aurate determination of some physial quantities of interest (suh as mass

frations or onentrations) along the axis. These omputational results an

then be used together with experimental measurement results to get a good

approximation of reation rates for deativation or exhange of vibrational

energy forH

2

moleules. The automati adaptive proess re�nes the mesh only

where it is needed (essentially on the measurement points and on singularities

of the solution) to get aurate values on an optimal mesh, i.e. with a minimal
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Figure 6.1: CARS ow reator.

number of mesh nodes for a given preision. In this way we not only save

CPU-time but we also gain in auray, being assured of the preision on the

omputed quantities.

The reator onsidered here onsists essentially in the onentri disposal of

an external tube (radius 16 mm) in whih an interior tube (internal radius 5.5

mm and wall thikness 1 mm) hands in (see Fig. 6.1).

Two gases streaming out of the outer and interior tubes get in ontat at the

outlet of the entral tube. This entral tube is long enough to guarantee fully

developed laminar ow �elds for both inner and outer gas ows. From this

point on, the gases are mixed through onvetive and di�usive transport and

may reat with eah other. The main tube (the prolongation of the outer

tube) onsists of a straight 32 mm diameter setion equipped with an array of

diametrially opposed 2mm diameter holes in the wall to allow optial CARS

diagnostis with foused laser beams. In this way, it is possible to reord axial

pro�les for speies onentrations. A omplete desription of the experiment

an be found in [57℄, [47℄ and [46℄.
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He / D_2

H_2

Symmetry line

Mixing Zone

Figure 6.2: Two-dimensional �eld with measurement-line positions and alu-

lation �eld (half domain for symmetry reasons).

Vibrationally exited hydrogen moleules H

2

(v

00

= 1) are generated by mi-

rowave disharges (MW { see Fig. 6.1) in the sidearms of the mixing head

bringing the gas to the outer tube. The mirowave disharges reate also H

atoms. These atoms lead to additional reations whih the modelling of the

proess must take into aount. In the inner tube, HeliumHe or in-the-ground-

state Deuterium D

2

(v

00

= 0) are injeted.

The wall vibrational relaxation rate 

wall

for the deativation of H

2

(v

00

= 1) to

H

2

(v

00

= 0) and the vibrational energy transfer rate of H

2

(v

00

= 1) in ollisions

with D

2

(v

00

= 0) are the unknown reation kineti onstant whih have to be

alulated.

6.1.3 First Evaluation: Wall Relaxation

We investigate the deativation of vibrationally exited hydrogen moleules at

the wall (heterogeneous relaxation). An inert gas (Helium) is used as arrier

gas. It is streaming into the mixing tube from the internal tube. We onsider

the laminar ow for determining the reation rate of the elementary wall-

deativation reation (slow hemistry):

H

(�=1)

2

wall

�! H

(�=0)

2

: (6.1)
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Table 6.1: Simulation results for the H

2

(� = 1) wall-deativation experiment

on hand-adapted(top) and on automatially adapted (bottom) meshes.

Heuristi-based re�nement

Level # Cells H2(0) H2(1)

1 137 0.6556 0.005294

2 481 0.7373 0.00661

3 1793 0.7962 0.007096

4 6913 0.8172 0.007434

5 7042 0.8197 0.007419

6 7494 0.8240 0.007473

7 8492 0.8269 0.007504

8 10482 0.82858 0.007521

9 15993 0.82853 0.007545

Error-estimator-based re�nement

Level # Cells H2(0) H2(1)

1 137 0.6556 0.005294

2 282 0.7382 0.006063

3 619 0.7958 0.007132

4 1368 0.8149 0.007323

5 3077 0.8257 0.007457

6 6800 0.8295 0.007534

7 15100 0.8317 0.007564

8 33462 0.8328 0.007587

The omplete reation mehanism an be found in the appendix.

The unknown is the kineti reation onstant, i.e. the wall relaxation rate



wall

for the reation desribed just above. A de�nition of 

wall

is given in

Setion 2.3.2. The quantities to be omputed are the results of CARS mea-

surements of speies onentrations. The measured quantities are proportional

to a weighted mean value of the mass frations w

i

along lines perpendiular

to the symmetry axis of the reator, and are used to obtain approximations of

the speies onentrations along the axis of the tube.

We will present the omputed mean values of the mass frations of ativated

and deativated hydrogen along radial lines � of the two-dimensional alula-

tion �eld. The error funtional (see Chapter 5) used in the adaptive proess

is

J(') =

Z

�

'(r; z) dr: (6.2)
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In order to emphasize the advantages of the method presented in this work,

we also have omputed the averaged mass frations on tensor produt meshes

whih are a priori re�ned on the basis of heuristi onsiderations. This proess

is only based on the a priori knowledge of the measurement lines whih are

onsidered to be the re�nement lines. We begin with global mesh re�nement

and then go on with loal re�nement along the measurement lines as well as

on the known singularity of the solution.

Comparison of results shows that the re�nement based only on heuristi riteria

is not suÆient to get reliable values from the omputed solution. Table 6.1

shows the values of the average of the H

2

mass frations along a ross setion

of the tube for a simulation �rstly with the heuristi method and seondly

with the error-estimation method.

We observe improved auray on the automatially adapted meshes for about

the same number of grid points. In partiular, monotone onvergene of the

quantities of interest is ahieved. This is an important feature of our approah

whih provides high reliability of omputed solutions.

Corresponding solutions and meshes are shown in Figures 6.3, 6.4 and 6.5. For

the meshes re�ned with the use of an error estimator, the struture of the dual

solution reets the dependene of the quantity J(X) (the error funtional) on

the loal ell-residuals.

84



Figure 6.3: Mass fration of H

(�=1)

2

by the CARS simulation with heuristi

re�nement { Re�nement levels 2, 4 and 6.
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Figure 6.4: CARS simulation with adaptive loal re�nement { Mass fration

of H

(�=1)

2

{ Re�nement levels 2 and 4.
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Figure 6.5: CARS simulation with adaptive loal re�nement { Mass fration

of H

(�=1)

2

(top) and dual solution omponent orresponding to H

(�=1)

2

(bottom)

{ Re�nement level 6.
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Figure 6.6: CARS omparison between normalized simulation results (squares)

and experiment measurements (points) for the evolution of the H

(�=1)

2

mass

fration along the axis.

Our omputational results have been ompared to experimental measurements

(see Figure 6.6). For this omputation, the inow rate for the helium whih

ows from the interior tube is set to 148 l=min and the inow rate for the

hydrogen whih ows in the outer tube is set to 665 l=min. The thermody-

namial pressure is onsidered to be 5.33 mbar and is onstant in the whole

domain. The proportion in mole of the vibrationally exited H

2

moleules at

the inow is 0.5%, the proportion of H atoms is 0.3% and the rest 99.2% is

non vibrationally-exited H

2

moleules. The experimental measurements have

a relative error of around 20%.

Suh omparisons make it possible to approximate the deativation rate of H

2

moleules. At the present time we have to tune manually the value of the

orresponding reation rates whih we want to evaluate. A further develop-

ment should be to ouple the solution method with an optimization proess

in order to �nd the best approximation of the reation rate with regard to the

omparison between simulation and experiment.

As pointed out in Chapter 4, we also want here to show how di�erent the

onvergene proess an be when using di�erent Jaobian matrix approxima-

tion. This shows that the onvergene riterion has to be hosen arefully and

a residuum drop whih ould seem to be suÆient to get a orret approx-

imation of a Navier-Stokes ow may be insuÆient for ows with hemial
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Figure 6.7: H

(�=1)

2

mass fration along a radial setion at axial position 0.143

m in the CARS ow reator. Comparison between a alulation with a Jao-

bian matrix taking surfae reation terms into aount (above) and a alu-

lation with an approximated Jaobian matrix (below) by a onvergene with a

tolerane of 10

�8

on the residuum.
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reations. We ompare here two approximations of the Jaobian matrix, the

�rst one taking into aount all the hemial terms, the seond one without

the surfae reation terms. We want to remind the user that these terms are

still taken into aount in the residuum term of the defet-orretion method.

For a onvergene with a tolerane of 10

�8

on the residuum, we see in Figure 6.7

that the approximated Jaobian did not allow to get a orret approximation

of the solution at this point in the onvergene proess. The surfae reations

are not yet aught by the solver and the value on the wall surfae of the mass

frations for H

(�=1)

2

obtained with the help of the approximated Jaobian is

higher than the one obtained with the Jaobian taking into aount all hemial

terms. While reahing a residuum of 10

�9

, the obtained onvergene leads in

this ase to the same results for both methods.

This means that the orret evaluation of hemial proess may our only

late in the onvergene proess. Moreover we also have to be aware that using

approximated Jaobian may in some ases lead to problems in athing all

hemial proesses in the solution (and thus get onvergene) sine we have

to onverge with a very small tolerane on the residuum. We atually did not

experiene suh a problem in our appliations and with the approximations of

the Jaobian matrix we used (see Chapter 4).

6.1.4 Seond Evaluation: Wall Deativation and Ati-

vation Transfer

In this experiment helium is replaed by deuterium. Thus this latter gas is

added through the entral tube while vibrationally-exited hydrogen enters

through the outer tube. We have here to take into aount some more elemen-

tary reations suh as

H

(�=1)

2

+D

(�=0)

2

�! H

(�=0)

2

+D

(�=1)

2

: (6.3)

The omplete reation mehanism used for this omputation an be found in

the appendix.

Both hydrogen and deuterium are experimentally monitored in their �rst ex-

ited vibrational state. Therefore, in the simulation, we may be interested in

the average of H

(�=1)

2

or of D

(�=1)

2

mass frations along radial lines in the two-

dimensional alulation domain. As in previous setion, we ould onstrut the

orresponding funtionals given by (6.2) for both speies and use them for the

de�nition of the error funtional of the adaptive method. Another possibility

is to take as error funtional the sum of the error funtionals orresponding to

the mass frations of interest (i.e. for whih measurements are done).
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Table 6.2: Performane omparison between the simulation ode developed in

this work and based on the DEAL library and a �nite di�erene ode developed

by J. Segatz in [46℄.

CPU time (units � se. ) memory required

ode

global per vertex global per vertex

Waguet 13442 verties 9360 (� 2,5 h.) 0.70 63 Mb 4.7 Kb

Segatz 16000 verties 85750 (� 24 h.) 5.35 153 Mb 9.5 Kb

However, in order to demonstrate the exibility of the adaptive method based

on error estimates and duality arguments, we use here a di�erent error fun-

tional. The CARS signal delivers the value of a weighted integration along

radial lines in the tube and we had onsequently taken this funtional in the

previous simulation. But we are atually interested in the value of onentra-

tions along the axis. The numerial simulation allows diret aess of point

values of the onentrations. Therefore the funtional ould be hosen as

J(') = '(r

0

; z

0

); (6.4)

with r

0

= 0 and z

0

the oordinates of the point of interest along the axis. For

the following results we took as error funtional for the omplete system the

sum over error funtionals de�ned as above for several speies and several axial

oordinates.

We see in Figure 6.8 that the automati adaptive re�nement proess leads

to mesh re�nement on given points (r

0

; z

0

) but also on the zones where the

reations may strongly inuene the evolution of speies onentrations along

the whole tube or also in the zones where the solution may have a singularity

as on the top of the splitter plate.

The method desribed in this work requires less CPU-time and memory for

the alulation of the steady state of reative ows ompared to other existing

�nite di�erene methods based on tensor produt meshes. Table (6.2) shows

the omparison between the simulation ode developed in this work and a

�nite-di�erene ode already suessfully used for simulation of ow reators

developed in [46℄ by J. Segatz.

Considering the performane measurement for the ode developed in this work,

we see that the CPU time needed to attain onvergene has been redued by

a fator 7 with regard to the other ode, and that the memory requirement

has been redued by a fator 2. And this, without taking into aount the

advantages of the loal re�nement proess. The gain in performane allows

us to apply the method on more omplex systems with �ner (loally re�ned)
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Figure 6.8: CARS simulation with loal re�nement and point error funtional

{ Mass fration of HD

(�=1)

.
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grids and still ompute the solution on a workstation or a PC, as we also see

in the following setion.

6.1.5 NH-NO2 Chemial System

The main goal of this experiment is the diret measurement of reation rates

as well as the examination of their temperature dependeny in the range of

high temperature (300K - 1700K). The experimental material is the same as

for CARS measurements: a ow reator with an inner and an outer tube

from whih ow di�erent gas whih then reat with eah other in the mixing

zone of the tube. One di�erene is that the walls are heated and thus have

a given temperature. The simulation of high temperature ows is used for

interpretations of experimental measurements of reation rates as well as for

investigations on their temperature dependene.

As a �rst step toward the omputation of the omplete reation mehanism,

we ompute a high temperature ow reator with a mixture onsisting of H

2

,

NO

2

and He moleules whih produes through hemial reations OH, NO

and H

2

O moleules as well as H and O atoms. We use as error funtional the

global mean value of the NO onentration.

The solution proess we used here for onverging to a quasi-stationary solution

is the following:

� We ompute the reative ow on a oarse grid whih however is �ne

enough to allow to apture the prinipal strutures of the ow and hemi-

al reations. Typially numerial tests showed that, for this kind of ow,

a oarse grid with around 100 ells is suÆient. The quasi-onvergene of

the time-step proess is reahed as soon as the residual di�erene between

two following time-steps is smaller than a given tolerane.

� One a quasi-stationary solution is reahed on this oarse grid we re�ne

it loally using an error estimator.

� We ompute further time steps and re�ne again the grid loally as soon as

the quasi-onvergene ondition has been reah for the time step proess.

� We repeat the third point until the value of the error funtional reah a

given tolerane.

We show in Figures 6.9 and 6.10 respetively the time evolution of the NO

moleule and the O atom mass frations within the omputation domain whih

represents the half of an axial setion of the ow tube. From the inner tube

ows a mixture of NO

2

and He moleules with a mole fration distribution

respetively of 0.44 and 0.56 and with a maximal veloity of 30 m/s. From

93



the external tube ow H

2

moleules with a maximal veloity of 20 m/s. The

pressure of the inow is 5 mbar and the temperature 300K.

This omputation is the �rst step toward the simulation of the omplete rea-

tion mehanism whih was not available at the time of the alulation. With

the help of simulation, we are able to test several mehanisms and investigate

the temperature dependene of the di�erent reation rates whih are taken

into aount, by omparing the simulation results, e.g. onentrations of some

speies, with experimental measurements of these onentrations.
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Figure 6.9: Time evolution of NO mass fration for an inow of NO

2

moleules in the outer tube and of H

2

moleules in the inner tube{ red rep-

resents a null mass fration and blue represents a maximal mass fration for

this moleule
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Figure 6.10: Time evolution of O mass fration for an inow of NO

2

moleules

in the outer tube and of H

2

moleules in the inner tube { red represents a null

mass fration and blue represents a maximal mass fration for this atom.
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6.2 CA-CVD

In a \Chemial Vapor Deposition" (CVD) reator, diamond an be deposited

upon di�erent materials from an hydroarbon-hydrogen gas mixture under

moderate temperature and low pressure. Improvement of the growth rate and

the quality of the produed diamond layer as well as its homogeneous growth

are some of the aims whih are still to be reahed in this �eld. The ompre-

hension of the reations on the substrate where the diamond layer settles is

still inomplete. Even the speies whih ontrol the deposition kineti have

not been inontestably found and the omplex hemial mehanisms are not

suÆiently known.

For a deeper understanding of the omplex relations between gas phase and

surfae hemial proesses and hydrodynamial proesses, simulations must

omplement the experiments and supply a base for evaluating several models

of hemial proesses.

The reator is made of a 15m-diameter tube with a height of 20m. The

geometry of the reator used for the experiment is axially symmetri, whih

makes the two-dimensional modelling possible. The reator has three windows

for the inspetion of the gas omposition through the detetion of uoresent

light reated with the help of a laser beam (see Fig. 6.11). The reader an

�nd a omprehensive desription in [23℄. The pressure in the reator is set to

50 mbar with the help of an automatially-regulated pump.

The hemial radials whih are neessary for the diamond deposition upon

siliium substrates are produed injeting methane into the ombustion gas of

a H

2

=O

2

ame. The term used for this proess supported through ombustion

is \Combustion Assisted - Chemial Vapor Deposition", in short CA-CVD.

Hydroarbon moleules are transformed during the hemial proess in reative

radials, whih depose on the substrate with the adequate rystal struture in

form of diamond.

As noted above, the detailed steps of the proess are not ompletely understood

yet. However the methyl-radial (CH

3

) seems to have an important role in the

formation of diamond. The orresponding experimental onditions have to be

set suh that a suitable temperature as well as a high onentration of CH

3

moleules are found in the lose proximity of the substrate surfae. Methyl is

reated through the deomposition of methane or higher hydroarbons. The

mixing of a hot-ame exhaust gas with high onentration in hydrogen radials

with hydroarbons leads to hemial reations suh as:

CH

4

+H �! CH

3

+H

2

: (6.5)

The struture of the experiment is shown in Fig. 6.11. A hydrogen/oxygen

ame (premixed) burns above a burner. Its exhaust gas ontains beside the
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Figure 6.11: CVD ow reator.

ombustion produt H

2

O, also up to 25% H radials (in mole) and ontribute

to the warming of the methane injeted through the pipe. This latter gas is

then transported by onvetion and di�usion within a \stopping-point" ow

to the substrate surfae. Deomposition reations our on the way, suh that

the CH

3

onentration inreases at �rst by the onsumption of H radials,

and �nally dereases due to reombination and other reations.

This later proess an also be observed in the result of the simulation (see

Figure 6.13). With the help of the adaptive solution method developed in

this work, the onentration of CH

3

an be aurately omputed. In order to

optimize the CH

3

onentration on the substrate we ould use for our adaptive

proess an error funtional similar to the funtional desribed in Setion 6.1.3

and de�ned by relation (6.2). However as we want here to show the evolution of

the CH

3

mass fration in the reator, we deide to use a global error funtional
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Figure 6.12: CVD omputational �eld { half axial setion of the CVD reator

for symmetry reasons.

on this variable de�ned by

J(') =

Z




'(r; z) r drdz: (6.6)

This gives us ontrol on the mean value of the CH

3

mass fration over the

whole domain (see Chapter 5 for more details about error funtionals) and

makes the adaptive proess re�ne more globally where the gradient of this

variable is high or on some singularities and not on given measure points or

lines (see Figure 6.13). Table 6.3 gives the onvergene history of the error

estimator based on the resolution of the dual system and de�ned in (5.46).

Table 6.3: Results for the error estimator for the CVD simulation using as

error funtional the global mean value of the CH

3

mass fration.

Level # Cells �

1 412 4.21e-5

2 784 1.70e-5

3 1528 7.49e-6

4 2941 3.44e-6

5 5698 2.05e-6

6 11374 1.14e-6

7 23611 6.43e-7

A next step would be to optimize the CH

3

onentration on the substrate

surfae by ontrolling parameters suh as the inow veloities of the gas or

the geometry. In this purpose, we would use an error funtional giving ontrol
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Figure 6.13: CVD simulation with loal re�nement { Mass fration of CH

3

.

to the loal value of the CH

3

onentration or of the onentration of any

other speies involved in the diamond deposition on the substrate. One the

optimized parameters are found by simulation, they an be applied on the

experiment.

The di�erent parameters whih an be used for the optimization proess an be

the methane ow rate or the ame exhaust gas ow rate as well as the distane

between the pipe from whih methane ows and the substrate. These are two

di�erent kinds of parameters: the �rst one involves boundary onditions, the

seond one the geometry of the reator.

To simplify geometrial optimization, if we deide to optimize the distane

pipe/substrate, an automati mesh generator has been developed. It allows the

user to generate a mesh for the omputation domain aording to geometrial

parameters suh as the pipe distane to the substrate and to the ame, as well

as the reator size and the pipe size (see desription in Appendix C).

In a further work we ould also here ouple the solution proess developed in

this work with an optimization proess for instane on the inow boundary

onditions for the inow veloities or speies onentrations. Promising results

in this �eld an be found in [34℄.
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Chapter 7

Conlusion and Outlook

In this work, we have developed and implemented a solution method for the

low Mah-number formulation of the Navier-Stokes equations with supple-

mentary equations desribing the evolution of the temperature and hemial

speies (mass frations) with soure terms due to heterogeneous (surfae) and

homogeneous (gas-phase) hemial reations. These equations are written in

ylinder oordinates and are disretized with stabilized onforming Q1/Q1 �-

nite elements.

The resulting nonlinear system is solved by a full-oupled defet-orretion

iteration based on an approximation of the Jaobian matrix of the system. We

onstrut this approximation with regard to the onsistene and solvability of

the orresponding linear system.

A key element of the solver is the use of a multigrid preonditioner for the

GMRES method applied for solving the linear problems arising in the de-

fet orretion iteration. We implemented three di�erent smoothing operators

for our multigrid preonditioner: a Gauss-Seidel iteration and a robust ILU

fatorization for the speies equations, and a Vanka-type smoother for the

Navier-Stokes part of our system. The multigrid method we implemented is

based on the DEAL library and takes advantage of the hierarhial struture

of the mesh onstruted by suessive re�nements.

Adaptive meshes are suessfully applied in the ontext of reative ows. A

reent approah to ontrol the error in funtionals of the solution is presented

and applied to this type of problems. The reliability and eÆieny of the error

estimator for our appliations is demonstrated through numerial results for

two types of hemial models.

Comparing our method with a �nite-di�erene ode developed by J. Segatz and

used in the omputation of hemial ow reators (see [46℄), the alulation

time has been redued by a fator �ve for reation mehanisms made of around

30 elementary reations and involving around 10 speies. We have also suess-

fully applied our method to hemial ows involving 39 speies and more than
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350 hemial reations. Even by ows with so many speies and reations, the

adaptive method presented in this work allows to reah a ontrolled auray

on physial quantities of the ow with aeptable omputational e�orts.

As promising outlook we would like to emphasize the following points:

For large hemial systems a major part of the omputing time is onsumed

by the alulation of the Jaobian matrix of the hemial soure terms and its

inversion by Gauss-Seidel iterations or ILU fatorization. Beause these oper-

ations an be performed loally, a parallelization of the presented algorithm

seems to be an adequate method.

An appliation to 3D problems will also inrease the need of reduing memory

requirements and omputation times without sari�ing auray. Adaptive

re�nement methods will probably play an important role for solving 3D prob-

lems in order to reah the needed auray on physial quantities of interest

with an optimal number of ells.

Another �eld of investigation is the mesh adaption for unsteady solutions. A

�rst approah is to allow beside mesh re�nement also mesh oarsening, and

ompute a loally-re�ned mesh for eah time step. Researh is still needed

to implement a omplete mesh re�nement strategy for solutions depending on

time. Moreover a re�nement strategy for the time steps an also be de�ned.

Another promising perspetive is the appliation of error ontrol and adap-

tivity proesses for �nite element disretization to optimization problems gov-

erned by di�erential equations. The dual solution obtained during the adaptive

mesh re�nement an be used to build optimization strategies. This allows to

ontrol the value of the ost funtional of the optimization problem. Some

results in the �eld of oupling adaptivity and optimization methods an be

found in [7℄ and [34℄. As an example of possible optimization problem we want

to give the diamond deposition seen in Setion 6.2: by optimizing some speies

onentration on the substrate, the quantity and quality of the diamond layer

over the substrate an be drastially inreased.
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Appendix A

CARS-Experiment reation

model

� H

2

wall relaxation proess

MECHANISM OF H2(V=0,1) REACT. (York Shneider-Kuehnle)

****

******************************

**** *

**** 1. H2-HE MECHANISM *

**** * * reation rates *

*********************************************

H21 +H + >H20 +H * 2.36E+11 0.00 0.0

H21 +H20 + >H20 +H20 * 6.50E+07 0.00 0.0

H21 +HE + >H20 +HE * 1.56E+07 0.00 0.0

H +H +HE >H20 +HE * 5.00E+16 0.00 0.0

H +H +H20 >H20 +H20 * 2.90E+15 0.00 0.0

*********************************************

END

COLLISION EFFICIENCIES

END

COMPLEX REACTIONS

002 COMPLEX REACTIONS AT THE WALL

1.00 H21 *1.0 1.500E-03

1.00 H20 0.0 0.00

1.00 H *1.0 1.000E-04

0.50 H20 0.0 0.00

END

� H

2

=D

2

wall relaxation proess and vibrational energy exhange

MECHANISM OF H2(V=0,1) REACT. (T.DREIER)

****
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******************************

**** *

**** 1. H2+D- MECHANISM *

**** k = m3/mol/s * * reation rates *

*********************************************

H20 +D >HD0 +H * 1.78E+08 0.00 0.0

HD0 +H >H20 +D * 2.03E+07 0.00 0.0

D20 +H >HD0 +D * 1.27E+07 0.00 0.0

HD0 +D >D20 +H * 2.03E+07 0.00 0.0

H21 +H >H20 +H * 5.42E+10 0.00 0.0

HD1 +H >HD0 +H * 5.42E+10 0.00 0.0

H21 +D >H20 +D * 5.42E+10 0.00 0.0

HD1 +D >HD0 +D * 5.42E+10 0.00 0.0

H21 +D >HD0 +H * 2.00E+10 0.00 0.0

D21 +H >HD0 +D * 9.55E+09 0.00 0.0

HD1 +H >H20 +D * 9.55E+09 0.00 0.0

HD1 +D >D20 +H * 9.55E+09 0.00 0.0

H21 +D >HD1 +H * 1.04E+12 0.00 0.0

D21 +H >HD1 +D * 1.27E+09 0.00 0.0

HD1 +H >H21 +D * 5.21E+11 0.00 0.0

HD1 +D >D21 +H * 6.00E+10 0.00 0.0

H21 +HD0 >H20 +HD0 * 1.13E+11 0.00 0.0

HD1 +H20 >HD0 +H21 * 8.43E+09 0.00 0.0

H21 +D20 >H20 +D21 * 1.19E+10 0.00 0.0

D21 +H20 >D20 +H21 * 6.02E+07 0.00 0.0

HD1 +D20 >HD0 +D21 * 2.11E+09 0.00 0.0

H21 +H20 >H20 +H20 * 7.80E+07 0.00 0.0

H21 +HE >H20 +HE * 1.56E+07 0.00 0.0

HD1 +HE >HD0 +HE * 3.01E+07 0.00 0.0

H +H +HE >H20 +HE * 4.10E+08 0.00 0.0

H +H +H20 >H20 +H20 * 4.68E+08 0.00 0.0

D +D +D20 >D20 +D20 * 3.55E+08 0.00 0.0

*********************************************

END

COLLISION EFFICIENCIES

END

COMPLEX REACTIONS

005 COMPLEX REACTIONS AT THE WALL

1.00 H21 *1.0 8.700E-04

1.00 H20 0.0 0.00

1.00 D21 *1.0 8.700E-04

1.00 D20 0.0 0.00

1.00 HD1 *1.0 8.700E-04

1.00 HD0 0.0 0.00

1.00 H *1.0 1.000E-03

0.50 H20 0.0 0.00
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1.00 D *1.0 1.000E-03

0.50 D20 0.0 0.00

END

� NO

2

and H

2

reative mixture

******************************

**** *

**** 1. NO2-H2 MECHANISM *

**** k = m3/mol/s *

*********************************************

H +H +M >H2 +M * 2.50E+09 0.00 0.0 0

H +H +H2 >H2 +H2 * 2.90E+03 0.00 0.0 0

H +H +HE >H2 +HE * 2.50E+09 0.00 0.0 0

H +NO2 >OH +NO * 7.20E+13 0.00 0.0 0

H2 +OH >H2O +H * 4.52E+11 0.00 0.0 0

OH +OH >H2O +O * 1.00E+12 0.00 0.0 0

*********************************************

END

COLLISION EFFICIENCIES

END

COMPLEX REACTIONS

001 COMPLEX REACTIONS AT THE WALL

1.00 H *1.0 1.000E-03

0.50 H2 0.0 0.00

END
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Appendix B

CVD-Experiment reation

model

MECHANISM C1-C2,Methan, P = 50 MBAR, HIGH TEMP.,OHNE C2H5O BZW. C2H5OH

******************************************

**** 01. H2-O2 Reat. (no HO2, H2O2) * reation rates *

******************************************

O2 +H =OH +O 2.000E+14 0.0 70.300

H2 +O =OH +H 5.060E+04 2.670 26.300

H2 +OH =H2O +H 1.000E+08 1.600 13.800

OH +OH =H2O +O 1.500E+09 1.140 0.420

******************************************

**** 02. Reombination Reations

******************************************

H +H +M' =H2 +M' 1.800E+18 -1.000 0.000

O +O +M' =O2 +M' 2.900E+17 -1.000 0.0

H +OH +M' =H2O +M' 2.200E+22 -2.000 0.000

******************************************

**** 03. HO2 Formation/Consumption

******************************************

H +O2 +M' =HO2 +M' 2.300E+18 -0.800 0.0

HO2 +H =OH +OH 1.500E+14 0.0 4.200

HO2 +H =H2 +O2 2.500E+13 0.0 2.900

HO2 +H =H2O +O 3.000E+13 0.0 7.200

HO2 +O =OH +O2 1.800E+13 0.0 -1.7

HO2 +OH =H2O +O2 6.000E+13 0.0 0.0

******************************************

**** 04. H2O2 Formation/Consumption

******************************************

HO2 +HO2 =H2O2 +O2 2.500E+11 0.0 -5.200

OH +OH +M' =H2O2 +M' 3.250E+22 -2.000 0.0

H2O2 +H =H2 +HO2 1.700E+12 0.0 15.700

H2O2 +H =H2O +OH 1.000E+13 0.0 15.000
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H2O2 +O =OH +HO2 2.803E+13 0.0 26.800

H2O2 +OH =H2O +HO2 5.400E+12 0.0 4.200

******************************************

**** 05. CO REACTIONS

******************************************

CO +OH =CO2 +H 6.000E+06 1.500 -3.100

CO +HO2 =CO2 +OH 1.500E+14 0.0 98.700

CO +O +M' =CO2 +M' 7.100E+13 0.0 -19.000

CO +O2 =CO2 +O 2.500E+12 0.0 200.000

C +O2 =CO +O 2.000E+13 0.0 0.0

C +OH =CO +H 5.000E+13 0.0 0.0

******************************************

**** 10. CH Reations

******************************************

CH +O =CO +H 4.000E+13 0.0 0.0

CH +O2 =CHO +O 6.000E+13 0.0 0.0

CH +CO2 =CHO +CO 3.400E+12 0.0 2.900

CH +H2O =3CH2 +OH 5.700E+12 0.0 -3.200

CH +OH =C +H2O 4.000E+07 2.0 12.300

CH +H =C +H2 1.500E+14 0.0 0.0

C +H +M' =CH +M' 3.000E+14 0.0 -1.0

******************************************

**** 11. CHO REACTIONS

******************************************

CHO +M' =CO +H +M' 7.100E+14 0.0 70.300

CHO +H =CO +H2 9.000E+13 0.0 0.0

CHO +O =CO +OH 3.000E+13 0.0 0.0

CHO +O =CO2 +H 3.000E+13 0.0 0.0

CHO +OH =CO +H2O 1.000E+14 0.0 0.0

CHO +O2 =CO +HO2 3.000E+12 0.0 0.0

CHO +CHO =CH2O +CO 3.000E+13 0.0 0.0

CH +OH =CHO +H 3.000E+13 0.0 0.0

******************************************

**** 12. CH2 Reations

******************************************

3CH2 +H =CH +H2 6.000E+12 0.0 -7.500

3CH2 +O >CO +H +H 8.400E+12 0.0 0.0

3CH2 +O2 =CO +OH +H 1.300E+13 0.0 6.200

3CH2 +O2 =CO2 +H2 1.200E+13 0.0 6.200

1CH2 +M' =3CH2 +M' 1.200E+13 0.0 0.0

1CH2 +O2 =CO +OH +H 3.100E+13 0.0 0.0

1CH2 +H2 =CH3 +H 7.200E+13 0.0 0.0

3CH2 +3CH2 =C2H2 +H2 1.200E+13 0.0 3.4

3CH2 +3CH2 =C2H2 +H +H 1.100E+14 0.0 3.4

3CH2 +CH3 =C2H4 +H 4.200E+13 0.0 0.0

******************************************
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**** 13. CH2O Reations

******************************************

CH2O +M' =CHO +H +M' 5.000E+16 0.0 320.000

CH2O +H =CHO +H2 2.300E+10 1.05 13.700

CH2O +O =CHO +OH 4.150E+11 0.57 11.600

CH2O +OH =CHO +H2O 3.400E+09 1.2 -1.900

CH2O +HO2 =CHO +H2O2 3.000E+12 0.0 54.7

CH2O +CH3 =CHO +CH4 1.000E+11 0.0 25.500

CH2O +O2 =CHO +HO2 6.000E+13 0.0 170.700

3CH2 +OH =CH2O +H 2.500E+13 0.0 0.0

CH +H2O =CH2O +H 1.170E+15 -0.75 0.0

******************************************

**** 14. CH3 Reations

******************************************

CH3 +M' =3CH2 +H +M' 1.000E+16 0.0 379.000

CH3 +O =CH2O +H 8.430E+13 0.0 0.0

CH3 +H =CH4 1.060E+36 -7.30 36.25

CH3 +OH >CH3O +H 2.260E+14 0.0 64.8

CH3O +H >CH3 +OH 4.750E+16 -0.13 88.0

CH3 +O2 >CH2O +OH 3.300E+11 0.0 37.400

CH3 +HO2 =CH3O +OH 1.800E+13 0.0 0.0

CH3 +HO2 =CH4 +O2 3.600E+12 0.0 0.0

CH3 +CH3 >C2H4 +H2 1.000E+16 0.0 134.000

CH3 +CH3 =C2H6 1.300E+58-13.8 79.30

******************************************

**** 15a. CH3O Reations

******************************************

CH3O +M' =CH2O +H +M' 5.000E+13 0.0 105.0

CH3O +H =CH2O +H2 1.800E+13 0.0 0.0

CH3O +O2 =CH2O +HO2 4.000E+10 0.0 8.9

CH2O +CH3O >CH3OH +CHO 0.600E+12 0.0 13.8

CH3OH +CHO >CH2O +CH3O 0.650E+10 0.0 57.2

CH3O +O =O2 +CH3 1.100E+13 0.0 0.0

CH3O +O =OH +CH2O 1.400E+12 0.0 0.0

******************************************

**** 15b. CH2OH Reations

******************************************

CH2OH +M' =CH2O +H +M' 5.000E+13 0.0 105.0

CH2OH +H =CH2O +H2 3.000E+13 0.0 0.0

CH2OH +O2 =CH2O +HO2 1.000E+13 0.0 30.0

******************************************

**** 16. CH3O2 Reations

******************************************

CH3O2 +M' >CH3 +O2 +M' 0.724E+17 0.0 111.1

CH3 +O2 +M' >CH3O2 +M' 0.141E+17 0.0 -4.6

CH3O2 +CH2O >CH3O2H +CHO 0.130E+12 0.0 37.7
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CH3O2H +CHO >CH3O2 +CH2O 0.250E+11 0.0 42.3

CH3O2 +CH3 >CH3O +CH3O 0.380E+13 0.0 -5.0

CH3O +CH3O >CH3O2 +CH3 0.200E+11 0.0 0.0

CH3O2 +HO2 >CH3O2H +O2 0.460E+11 0.0 -10.9

CH3O2H +O2 >CH3O2 +HO2 0.300E+13 0.0 163.3

CH3O2 +CH3O2 >CH2O +CH3OH +O2 0.180E+13 0.0 0.0

CH2O +CH3OH +O2 >CH3O2 +CH3O2 0.000E+00 0.0 0.0

CH3O2 +CH3O2 >CH3O +CH3O +O2 0.370E+13 0.0 9.2

CH3O +CH3O +O2 >CH3O2 +CH3O2 0.000E+00 0.0 0.0

******************************************

**** 17. CH4 Reations

******************************************

CH4 +H =H2 +CH3 1.300E+04 3.000 33.600

CH4 +O =OH +CH3 6.923E+08 1.560 35.500

CH4 +OH =H2O +CH3 1.600E+07 1.830 11.600

CH4 +HO2 =H2O2 +CH3 1.100E+13 0.0 103.100

CH4 +3CH2 =CH3 +CH3 1.300E+13 0.0 39.900

******************************************

**** 18. CH3OH Reations

******************************************

CH3OH =CH3 +OH 1.130E+25 -3.40 372.9

CH3OH +H =CH2OH +H2 4.000E+13 0.0 25.5

CH3OH +O =CH2OH +OH 1.000E+13 0.0 19.6

CH3OH +OH =CH2OH +H2O 1.000E+13 0.0 7.1

CH3OH +HO2 >CH2OH +H2O2 0.620E+13 0.0 81.1

CH2OH +H2O2 >HO2 +CH3OH 0.100E+08 1.7 47.9

CH3OH +CH3 =CH4 +CH2OH 9.000E+12 0.0 41.1

CH3O +CH3OH >CH2OH +CH3OH 0.200E+12 0.0 29.3

CH2OH +CH3OH >CH3O +CH3OH 0.220E+05 1.7 45.4

CH3OH +CH2O >CH3O +CH3O 0.153E+13 0.0 333.2

CH3O +CH3O >CH3OH +CH2O 0.300E+14 0.0 0.0

******************************************

**** 19. CH3O2H Reations

******************************************

CH3O2H =CH3O +OH 4.000E+15 0.0 180.5

OH +CH3O2H =H2O +CH3O2 2.600E+12 0.0 0.0

****************************************

******************************

**** *

**** 4. C2 MECHANISM *

**** *

******************************

****************************************

**** 19B. C2 Reations

*****************************************

C2 +O2 =CO +CO 5.000E+13 0.0 0.0
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C +C +M' =C2 +M' 3.000E+14 0.0 -1.0

CH +CH =C2 +H +H 5.000E+13 0.0 19.0

CH +CH =C2 +H2 5.000E+12 0.0 0.0

C +CH =C2 +H 5.000E+13 0.0 0.0

******************************************

**** 20. C2H REACTIONS

******************************************

C2H +O =CO +CH 1.000E+13 0.0 0.0

C2H +O2 =HCCO +O 3.000E+12 0.0 0.0

C +3CH2 =C2H +H 5.000E+13 0.0 0.0

C2H +O2 =CO +CO +H 3.520E+13 0.0 0.0

C2H +OH =HCCO +H 2.000E+13 0.0 0.0

C2H +OH =C2 +H2O 4.000E+07 2.0 32.8

C2 +H2 =C2H +H 4.000E+05 2.4 4.1

******************************************

**** 20A. C2O REACTIONS

******************************************

C2O +H =CH +CO 1.000E+13 0.0 0.0

C2O +O =CO +CO 5.000E+13 0.0 0.0

C2O +OH =CO +CO +H 2.000E+13 0.0 0.0

C2O +O2 =CO +CO +O 2.000E+13 0.0 0.0

C2 +OH =C2O +H 5.000E+13 0.0 0.0

******************************************

**** 20B. HCCO REACTIONS

******************************************

HCCO +H =3CH2 +CO 1.500E+14 0.0 0.0

HCCO +O >CO +CO +H 9.600E+13 0.0 0.0

HCCO +3CH2 =C2H3 +CO 3.000E+13 0.0 0.0

******************************************

**** 21. C2H2 REACTIONS

******************************************

C2H2 +M' =C2H +H +M' 3.600E+16 0.0 446.0

C2H2 +O2 =HCCO +OH 2.000E+08 1.5 126.0

C2H2 +H =C2H +H2 1.500E+14 0.0 79.6

C2H2 +O =3CH2 +CO 1.720E+04 2.8 2.1

C2H2 +O =HCCO +H 1.720E+04 2.8 2.1

C2H2 +OH =H2O +C2H 6.000E+13 0.0 54.2

CH +3CH2 =C2H2 +H 4.000E+13 0.0 0.0

C +CH3 =C2H2 +H 5.000E+13 0.0 0.0

C2H2 +O =C2H +OH 3.160E+15 -0.6 61.5

CH +HCCO =C2H2 +CO 5.000E+13 0.0 0.0

******************************************

**** 21A. CH2CO REACTIONS

******************************************

CH2CO +M' =3CH2 +CO +M' 1.000E+16 0.0 248.0

CH2CO +H =CH3 +CO 3.600E+13 0.0 14.1
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CH2CO +O =CHO +CHO 2.300E+12 0.0 5.7

CH2CO +OH =CH2O +CHO 1.000E+13 0.0 0.0

CH +CH2O =CH2CO +H 9.460E+13 0.0 -2.11

******************************************

**** 25. C2H3 REACTIONS

******************************************

C2H3 =C2H2 +H 1.900E+38 -8.5 192.6

C2H3 +OH =C2H2 +H2O 5.000E+13 0.0 0.0

C2H3 +H =C2H2 +H2 1.200E+13 0.0 0.0

C2H3 +O =C2H2 +OH 1.000E+13 0.0 0.0

C2H3 +O =CH3 +CO 1.000E+13 0.0 0.0

C2H3 +O =CHO +3CH2 1.000E+13 0.0 0.0

C2H3 +O2 =C2H2 +HO2 5.400E+12 0.0 0.0

CH +CH3 =C2H3 +H 3.000E+13 0.0 0.0

C2H3 +CH =3CH2 +C2H2 5.000E+13 0.0 0.0

******************************************

**** 22A. CH3CO REACTIONS

******************************************

CH3CO =CH3 +CO 7.700E+23 -4.7 68.58

CH3CO +H =CH2CO +H2 2.000E+13 0.0 0.0

******************************************

**** 22B. CH2CHO REACTIONS

******************************************

CH2CHO +H =CH2CO +H2 2.000E+13 0.0 0.0

******************************************

**** 23. C2H4 REACTIONS

******************************************

C2H4 +M' =C2H2 +H2 +M' 2.500E+17 0.0 319.8

C2H4 +M' =C2H3 +H +M' 1.700E+18 0.0 404.0

C2H4 +H =C2H3 +H2 1.700E+15 0.0 62.9

C2H4 +O =CH2CHO +H 5.200E+05 2.08 0.0

C2H4 +O =CHO +CH3 1.210E+06 2.08 0.0

C2H4 +OH =C2H3 +H2O 6.500E+13 0.0 24.9

CH4 +CH =C2H4 +H 3.000E+13 0.0 -1.7

******************************************

**** 23A. CH3CHO REACTIONS

******************************************

CH3CHO +M' =CH3 +CHO +M' 7.000E+15 0.0 342.8

CH3CHO +H =CH3CO +H2 2.100E+09 1.16 10.1

CH3CHO +H =CH2CHO +H2 2.000E+09 1.16 10.1

CH3CHO +O =CH3CO +OH 5.000E+12 0.0 7.6

CH3CHO +O =CH2CHO +OH 8.000E+11 0.0 7.6

CH3CHO +O2 =CH3CO +HO2 4.000E+13 0.0 164.3

CH3CHO +OH =CH3CO +H2O 2.300E+10 0.73 -4.7

CH3CHO +HO2 =CH3CO +H2O2 3.000E+12 0.0 50.0

CH3CHO +3CH2 =CH3CO +CH3 2.500E+12 0.0 15.9
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CH3CHO +CH3 =CH3CO +CH4 2.000E-06 5.64 10.3

******************************************

**** 24. C2H5 REACTIONS

******************************************

C2H5 =C2H4 +H 7.370E+42 -9.5 211.94

C2H5 +H =CH3 +CH3 3.000E+13 0.0 0.0

C2H5 +O =CH3CHO +H 5.000E+13 0.0 0.0

C2H5 +O =CH2O +CH3 1.000E+13 0.0 0.0

C2H5 +O2 =C2H4 +HO2 1.100E+10 0.0 -6.3

C2H5 +CH3 =C2H4 +CH4 1.140E+12 0.0 0.0

C2H5 +C2H5 =C2H4 +C2H6 1.400E+12 0.0 0.0

******************************************

**** 25. C2H6 REACTIONS

******************************************

C2H6 +H =C2H5 +H2 1.400E+09 1.5 31.1

C2H6 +O =C2H5 +OH 1.000E+09 1.5 24.4

C2H6 +OH =C2H5 +H2O 7.200E+06 2.0 3.6

C2H6 +HO2 =C2H5 +H2O2 1.700E+13 0.0 85.9

C2H6 +O2 =C2H5 +HO2 6.000E+13 0.0 217.0

C2H6 +3CH2 =C2H5 +CH3 2.200E+13 0.0 36.3

C2H6 +CH3 =C2H5 +CH4 1.500E-07 6.0 25.4

******************************************

**** 26. C3 Reations

******************************************

H +C3 +M' =C3H +M' 7.000E+16 -1.000 0.00

H2 +C3 =C3H +H 4.000E+05 2.400 0.00

C +C2 +M' =C3 +M' 4.000E+16 -1.000 0.00

C +C2H =C3 +H 4.000E+16 -1.000 0.00

CH +C2 =C3 +H 1.000E+14 0.000 0.00

****

****************************************

END

COLLISION EFFICIENCIES

M' =H2 +H2O +O2 +CO2 +CO +CH4 +AR

1.0 6.5 0.4 1.50 0.75 3.0 3.0

END

COMPLEX REACTIONS

000 COMPLEX REACTIONS

END

*****

END
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Appendix C

A C++ Pakage for the

Calulation of Flow Reators

with Detailed Chemistry

{ User Guide {

C.1 Overall Struture

This ++ pakage allows to alulate multiomponent gas ows taking into

aount onvetion, di�usion and hemial reations in the gas phase as well

as reations at walls. It omputes the veloity �eld, pressure, density and

temperature distribution as well as the gas hemial omposition by solving a

system of PDEs desribing the evolution in spae and time of these variables.

The system is made of the Navier-Stokes equations supplemented with speies

mass onservation equations. The spatial disretization is based on a �nite

element approximation. The time disretization is restrited to an impliit

Euler sheme. This ode has been used to alulate quasi-stationary solutions

and therefore aurate time-step approximations were not needed.

A defet orretion sheme is used to solve the non-linear systems for eah

time-step. The resulting linear systems are solved with a GMRES method

preonditioned by a multigrid method. The global system is split in two parts

with respet to the defet-orretion matrix used; the �rst part orresponds to

the Navier-Stokes equations, whih desribe the average ow of the mixture,

and the seond part desribes the hemistry.

This ode is based on the DEAL ++ library whih provides a exible de-

velopment environment for adaptive �nite element methods. Be sure to have

this library installed on your omputer in order to be able to use the present
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pakage. The reader an �nd more informations about the DEAL library at

http://gaia.iwr.uni-heidelberg.de.

Our alulation ode as well as the DEAL library have been written and

tested on SUN Solaris workstations with GNU g 2.8. On other systems,

some hanges might be neessary to ahieve the ompilation and linking.

C.2 Getting Things Installed and Started

The pakage is available as a ompressed tar �le: flow reator.tar.gz. To

unompress and unpak the tar �le use the ommands:

gzip -d flow reator.tar.gz

tar xf flow reator.tar

There will be one diretory reated alled flow reator. In this diretory, a

set of subdiretories are to be found:

� Global hemial data ontains global hemial data about a lot of

hemial speies. It should not be hanged.

� SOURCE ontains the soure �les of the program reator.

� INSINP ontains a FORTRAN program whih uses the �les ontained

in the Global hemial data diretory as well as some other parameter

�les (see below) in order to reate a spei�ation �le de�ning the speies

that are to be found in the ow, with their hemial harateristis, as

well as the reations whih are to our in the mixture. This reated �le

is read by the program flow reator at the start to de�ne and initialize

the hemistry for the omputation.

� USER DATA ontains parameter �les whih desribe the hemial speies

found in the mixture, the hemial reations and the boundary ondi-

tions.

� OUTPUT ontains the results of the omputations, i.e. �les in UCD (.inp)

and GNUPLOT (.dat) formats.

To ompile the ode, go in SOURCE, edit the Makefile �le and write there the

absolute path of the USER DATA and SOURCE diretories in the USER and SOURCE

variable delarations:

USER = /absolute path/USER DATA

SOURCE = /absolute path/SOURCE Do the same for the DEAL library path:

DEAL = /absolute path/deal Save the �le and ompile the ode with gnu-

make by typing make.
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First a FORTRAN program alled insinp.x from the INSINP diretory also

has to be used in order to reate a �le speifying all parameters and variables

needed in the hemial proesses as well as the boundary onditions. This

exeutable is supplied within the pakage, but under ertain irumstanes it

might be neessary to ompile it again. If it is the ase go in the INSINP

diretory and type make -f Make Inp. This program reads hemial data and

reates a new �le ontaining the only data needed for the urrent alulation.

Here you may also have to edit the �le Make Inp and write the right path

delarations.

A sript-�le named go, whih has to be exeuted in the main diretory flow reator,

alls the two latter programs (insinp.x and reator), in the right order, to

start the omputation aording to the ow hemial harateristis de�ned

by the user. Thus to start the solution proess go in the main diretory and

type go.

C.3 Input and Output Data

The �les input, mehanism, simulation.data and onst data, in diretory

USER DATA, ontain all the parameters the program needs to know. A hange in

the �le onst data demands that the program is ompiled again (see Setion

C.2).

C.3.1 Chemial Mehanism

The hemial mehanism is desribed in the �le named mehanism. We give an

example of mehanism �le. The �rst part desribes the simple reations whih

take plae within the gas phase. The reation rate is given after the de�nition

of the orresponding reation on the same line. Further the reations at solid

boundaries are de�ned with their reation probability. Don't forget to set the

number of reations at the wall (named omplex reations).

MECHANISM OF D2(V=0,1) REACT.

****

******************************

**** *

**** 1. D2-HE MECHANISM *

**** *

*********************************************

D21 +D + >D20 +D * 2.36E+11 0.00 0.0 nist

D21 +D20 + >D20 +D20 * 6.50E+07 0.00 0.0 n.v.

D21 +HE + >D20 +HE * 1.56E+07 0.00 0.0 n.v.
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D +D +HE >D20 +HE * 5.00E+16 0.00 0.0 nist

D +D +D20 >D20 +D20 * 2.90E+15 0.00 0.0 n.v.

*********************************************

END

COLLISION EFFICIENCIES

END

COMPLEX REACTIONS

002 COMPLEX REACTIONS AT THE WALL

1.00 D21 *1.0 1.500E-03

1.00 D20 0.0 0.00

1.00 D *1.0 1.000E-04

0.50 D20 0.0 0.00

END

C.3.2 Inow Data

The inow data are given in the �le input. In this �le one an set the mole

frations of eah speies, the temperature, and veloity of the mixture at the

inow boundary. This boundary ontains two di�erent area, the inner and

outer tubes. The �le struture is the following:

OPTIONS...................(FORMAT 7(A4,6X), END WITH -END -)

REGRID /PCON /PROFIL /TSO / / / /

STORE /EXTRA 2/OUTPUT 1/ENERG 2/ / / /

END / / / / / / /

SPECIES..........................(Format 7(2A4,1X,A1), end with -END -)

HE ,H20 ,H21 ,H ,HD0 ,HD1 ,D20 ,

D21 ,D , , , , , ,

END

************************************************************************

INFLOW COMP. INNEN AUSSEN ...(FORMAT A10,2F10.3, END WITH -END -)

HE : 0.792 0.000 (SAME ORDER AS ABOVE !!!!!)

H20 : 0.000 0.992 (MOLE-FRACTION)

H21 : 0.000 0.005 ****

H : 0.000 0.003 ****

HD0 : 0.000 0.000 ****

HD1 : 0.000 0.000 ****

D20 : 0.115 0.000 ****

D21 : 0.002 0.000 ****

D : 0.091 0.000 ****

P : 5.33E-3 5.33E-3 BAR

T : 292. 292. K

U : 0.000 0.000 M/S

122



V : 64.00 34.00 M/S

There are some more lines in this �le but they are outdated and not taken into

aount. It is important to write the name of the speies in the list on the

top of the �le in the right format (8 haraters between 2 ommas). After the

speies list, the spei�ation of the inow data is to be found in two olumns

for the inner (INNEN) and the outer (AUSSEN) tube; �rst the speies mole

fration, then the pressure, the temperature and �nally the radial and axial

veloities. It is to be noted that the speies MOLE frations are to be given

in this �le, although the outputs of the program give mass frations.

In diretory GLOBAL CHEM DATA, the �les mol.dat and thermo.dat ontain

speies spei� databases and should not be hanged or even edited.

The sript go in the main diretory alls the preproessor insinp.x, whih

itself reads the input �les and speies data bases to reate a data set alled

fort.3 also written in the main diretory. This data set is read by the atual

simulation ode to de�ne the ow hemial harateristis.

C.3.3 Simulation Proess

The �le onst data.h in diretory USER DATA ontains data onerning the

solvers, the adaptive proess and the outputs. This �le is made of several well

de�ned parts:

� Time step - Solver tolerane:

#define TIME_STEP_SIZE 2.

#define TIME_STEP_NUMBER 50

#define MAX_SIMPLE_IT 30

#define SOLVER_TOL 1.E-7

The time step size is normed by the density of the mixture and there-

fore is atually around a fator 10

�4

smaller as the time step given by

TIME STEP SIZE.

The total number of time steps is given by TIME STEP NUMBER, and

the number of time steps without re�nement of the mesh is set by

MAX SIMPLE IT. A quasi-stationary state an in this way be reahed be-

fore the loal re�nement proess begins. After MAX SIMPLE IT number

of iterations the adaptive re�nement proess begins.

SOLVER TOL is the tolerane of the defet-orretion proess on the resid-

ual.

� Number of speies:
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#define SPECIES_COMP 10

It should be set to the number of speies + 1 for the temperature.

� Neutral speies:

#define NEUTRAL_SPECIE 1

It is used to de�ne the speies whih is found in the tube at the start of

the alulation. It should be a neutral speies whih does not reat (or

only weakly) with other speies of the mixture. This allow to avoid too

sti� soure terms at the beginning of the omputation.

� Wall-reation ag:

stati int WALL_CHEMISTRY = 1;

if WALL CHEMISTRY is equal to 1, the wall reations are taken into aount.

If it is equal to 0 they are not.

C.3.4 Re�nement proess

The re�nement proess is based on the aurate alulation of some average

or point values of mass frations for seleted speies. The following variables

allow the user to indiate whih values for whih speies has to be known with

auray.

� Observation ag (solve-dual-problem ag):

#define OBSERVATION 1

This ag is set to 1 if some physial values have to be known with a-

uray. In this ase the dual problem is solved for eah re�nement steps

and the dual solution is used to alulate the orresponding error esti-

mator that is used to re�ne the mesh.

If this ag is set to 0, the dual problem is not solved and the error

estimator does not ontain any weights.

The following variables make sense only if the latter ag is set to 1, i.e.

average or point values of some speies mass frations are to be known

with auray.

� Observed speies:
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#define OBSERVATION_SIZE 2

stati int OBSERVATION_SPECIES[OBSERVATION_SIZE℄ = {1,2};

The �rst variable de�nes the number of speies for whih the mass fra-

tion has to be known with auray. This number must be between 1

and SPECIES COMP-1. The seond variable is an array and ontains the

numbers of the orresponding speies. The speies are ordered in the

same way as in the �le input.

� Observation diretion:

#define OBSERVATION_XLINE 1

#define OBSERVATION_YLINE 0

#define OBSERVATION_AXE_POINTS 0

X orresponds to the radial diretion and Y orresponds to the axial

diretion. Here we de�ne whih value has to be known with auray.

For eah of these 3 variables the value one means that this value is to be

alulated with preision.

OBSERVATION XLINE orresponds to average values of the mass fration

of the speies de�ned above along radial lines whih are de�ned later.

OBSERVATION YLINE orresponds to average values of the mass fration

of the speies de�ned above along axial lines whih are de�ned later.

OBSERVATION AXE POINTS orresponds to the point values of the mass

fration of the speies de�ned above along the axis of the tube. The

positions of these points along the axis are de�ned later.

There must be one and only one of these three variables with the value

set to 1. The two others must have the value 0.

� Position of the observation lines/points (in meter):

#define OBSERVATION_NUMBER 4

stati double OBSERVATION_RADIUS[OBSERVATION_NUMBER℄ = {0.};

stati double OBSERVATION_HEIGHTS[OBSERVATION_NUMBER℄ = {1,2,3,4};

The variable OBSERVATION NUMBER de�nes the number of lines or points

where average or point values of the mass frations have to be known

with preision.

The variable OBSERVATION RADIUS is relevant only if OBSERVATION YLINE

is set to 1, sine it de�nes the radius for eah line (parallel to the tube

axis) where the averaged mass fration has to be alulated with prei-

sion.

The variable OBSERVATION HEIGHTS is relevant only if OBSERVATION YLINE

is set to 1, sine it de�nes the position on the tube axis for eah radial

line or point of the axis where the mass fration has to be alulated

with preision.
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� Number of maximal re�nement level

#define MAX_REFINEMENT_LEVEL 20

This variable de�nes the maximal number of re�nement level for the

adaptive mesh re�nement proess. It is set to as default to 20 and an

be left to this value.

C.3.5 Output Data

The output that an be ustomized here are done in Gnuplot format and

orresponds to the variable evolutions along radial lines. The output �les are

stored in the diretory OUTPUT whih is in the main diretory.

� Number of output lines:

#define OUTPUT_NUMBER 3

With this variable, one de�nes the number of lines for whih there must

be an output �le. In this �le the evolution of the ow and hemial

variables are written in Gnuplot format.

� Axial position of the output lines

stati double OUTPUT_HEIGHTS[OUTPUT_NUMBER℄ = {1,2,3};

This array ontains the axial position of the output lines expressed in

meter from the tube start.

These �les in Gnuplot-format have the following struture:

#file : OUTPUT/output_15_0.dat

#line output for y = 0.238 of variables:

#radial position, u, v, p*, T, HE, H20, H21, H, HD0, HD1,

D20, D21, D, rho, P/rho

0.0045 -0.115513 26.7997 0.549813 292 1 1.01773e-13 1e-13

1.35934e-13 1e-13 1e-13 1e-13 1e-13 1e-13 0.000878807 606504

The �rst line is the name of the �le. The seond line ontains a desription

of the setion for whih we get the variable evolution. The third line is a

desription of the order in whih the variables are stored in the �le. And the

following lines ontain the data. The units for these data are SI (m=s, Pa, K,

dots) and mass fration is stored for the speies.
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Additionally to these Gnuplot output �le, output �les ontaining the omplete

solution on the whole domain are reated at the end of eah time step or

re�nement step. They are also stored in the diretory OUTPUT. These �les are

in UCD format, whih an be read by AVS, dealvision or DeViSoR, whih all

three are visualization programs.

C.3.6 Mesh data

The name of the mesh �le is given in the �le simulation.data with absolute

or relative path from the main diretory where the sript go is alled. The

domain dimensions are also to be found in this �le.

#***************** Data about the omputational field *******************

#************************************************************************

#**** Mesh file name

# *******************

ars_split.inp

#**** Domain dimensions (in meter) : ***

# tube height | tube radius | splitter radius

0.15 0.016 0.006

The tube height is the length of the tube. The tube radius is the radius of

the outer tube. And the splitter radius is the radius of the intern tube. The

values are needed by the program to alulate the inow values.

C.4 Automati mesh generation for CVD

In order to simplify the geometrial optimization proess for CVD experiment

we developed a mesh generator for the CVD geometry. This is only one �le:

CVD mesh generator. whih an be simply ompiled and linked by any ++

ompiler.

The parameters whih need to be set in the �le are the following:

name = "mesh.inp";

/**

* |-- substrat

* V
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* |------------------------------------------------------------------

* | <----------------------------- symmetry line |

* | |

* | d_substrat |

* | |

* | CH4 inflow |

* |----| free outflow --> |

* | |

* | <- pipe |

* | |

* |----| |

* | |

* | |

* | d_pipe |

* | H2/O2 inflow |

* | |

* -------------------------------------------------------------------

*

*

*/

/**

* Enter here the numbers of olumns and lines of the mesh to be generated.

* ^ Lines

* |

* |

* |

* ----------> Columns

*/

// # = number of

int nb_under_pipe_ols = 2; // # olumns under the pipe

int nb_above_pipe_ols = 2; // # olumns over the pipe

int nb_under_substrat_ols = 15; // # olumns on the right of the pipe

int nb_under_lines = 3; // # lines under the pipe

int nb_pipe_lines = 3; // # lines beside the pipe

int nb_between_lines = 4; // # lines over the pipe

/**

* enter here the widths of the domain (in m)
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*/

double substrat_width = 0.025;

double pipe_width = 0.001;

/**

* enter here the heights of and distanes in the domain (in m)

*/

double substrat_height = 0.005;

double pipe_height = 0.003;

// distane between the inflow of the flame exhaust gas

double d_pipe = 0.003;

// distane between the pipe and the substrat

double d_substrat = 0.005;

/**

* enter the numbers of the different boundary lines

*/

int symmetry = 2;

int outflow = 0;

int wall = 3;

int substrat_wall = 7;

int CH4_inflow = 4;

int H2O2_inflow = 5;

/******************************************************************/
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