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Abstract 

Bahadur Kiefer approximations for generalized quantile processes as defined in Einmahl 
and Mason (1992) are given which generalize results for the classical one-dimensional quantile 
processes. An as application we consider the special case of the volume process of minimum 
volume sets in classes C of subsets of the d-dimensional Euclidean space. Minimum volume sets 
can be used as estimators of level sets of a density and might be useful in cluster analysis. The 
volume of minimum volume sets itself can be used for robust estimation of scale. Consistency 
results and rates of convergence for minimum volume sets are given. Rates of convergence of 
minimum volume sets can be used to obtain Bahadur-Kiefer approximations for the corres- 
ponding volume process and vice versa. A generalization of the minimum volume approach to 
non-i.i.d, problems like regression and spectral analysis of time series is discussed. !~ 1997 
Elsevier Science B.V. 

Keywords: Bahadur Kiefer approximation; Empirical process theory; Generalized uniform 
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1. Introduction 

The a sympto t i c  behav iou r  of  min imum-vo lume-se t s  (MV-sets)  and  of the general iz-  

ed quant i le  process  as defined in E inmah l  and  M a s o n  (1992) is s tudied in this paper .  

We  give consis tency results  and  rates of convergence  of MV-sets  and  Ba ha du r  Kiefer 

a p p r o x i m a t i o n s  for the general ized quant i le  process.  The  results show that  rates for 

MV-se ts  can be used to ob ta in  rates for the general ized quant i le  process  and  vice 

versa. Empi r ica l  process  theory  is the main  ma thema t i c a l  tool.  

The  se tup is as follows. Let  X1, X2 . . . . . . . .  be i.i.d, r a n d o m  vectors  in Na with 

d i s t r ibu t ion  F. F u r t h e r  , let C be a class of measu rab le  of Na and  let 2 denote  

a rea l -va lued  funct ion defined on C. Define the quant i le  function based  on F , / t  and 

C as  

V ( : 0 = i n f { 2 ( C ) : F ( C ) > ~ c ~ , C ~ C } ,  0 < e <  1 (1.1) 
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The empirical  quantile function is defined as 

V,(e) = inf{2(C): F , ( C )  >~ c~, C e C}, 0 < a < 1, (1.2) 

where F,  denotes the empirical distribution of the first n observations, which puts 

mass n-  1 at each of the observations X1, X2, . . . ,  X,. With C = { ( -  oo, t), t e ~ } and 
2 ( ( -  oo, t]) = t the quantities V(c0 and V,(e) are the classical real-valued ~-quantile 
and empirical e-quantile, respectively. Suppose that V is differentiable with derivative 

v, then 

q,(c 0 = (v(~)) a n'/2(V,(oO - V(~)) (1.3) 

is the standardized general ized quanti le  process  as defined by Einmahl and Mason 
(1992). The factor (v(e))-1 is the analogue to the well-known f a c t o r f ( F  1(~)) of the 
classical one-dimensional standardized quantile process. In case of existence we 

denote a minimizing set in the definition of V(c0 and V,(~) by Q(c 0 and Q,(~), 

respectively, i.e. we have 

V(c~) = 2(Q(~)) and V,(~) = 2(Q,(~)). 

For  2(C) = Leb(C), where Leb denotes Lebesgue measure, these minimizing sets are 
called min imum-vo lume  ( M V  )-sets in C (with respect  to F or F , ,  respectively). We refer 
to this situation as the MV-case and sometimes write ~,, V,, V instead of q,, V,, V, 
respectively, to distinguish between the MV-case and the general case. ~, is called 
volume process.  In the present paper we derive weak Bahadur-Kiefer  approximations 

for q,(~), i.e. we derive stochastic rates of convergence for sup,<~<~_,lq,(c0 + 
v,(Q(a))l, where v, (C)  = n l /Z (F ,  -- F)(C) is the C-indexed empirical process and t />/0.  

We also study the asymptotic behaviour of Q,(c 0. 
The MV-case is an important  special case of the presented approach. MV-sets have 

been studied in the context of robust statistics. In the one-dimensional case Andrews 
et al. (1972) used the mean of all data points inside a MV-interval as a robust 
estimator of location which they called "shorth", or "e-shorth". Nowadays,  in the 
literature often MV-intervals itselves are called "shorth" or "a-shorth". (Even earlier 
than Andrews et al., Lientz (1970) investigated a certain localized approach. For  every 
fixed x e ~, he used MV-intervals in the class of all intervals which contain x. See also 
Sawitzki (1994)). In higher dimensions, Sager (1978, 1979) considered MV-sets in 
classes of polynomial regions and in the class of convex sets in Rz. Rousseeuw (1986) 
used MV-ellipsoids to construct robust estimators of location and dispersion para- 
meters. Davies (1987) studied these estimators in the context of S-estimators. The 
volume of MV-sets, 17,(c 0, can be used for scale estimation. This has first been 
considered in Griibel (1988) in the onedimensional case. There IT,(c 0 is the length of 
the e-shorth. In our notation Griibel proved that under certain smoothness assump- 
tions ~,(c 0 with C the class of closed intervals converges weakly to a Brownian Bridge 
if ~ is bounded away from zero and one. Einmahl and Mason (1992) generalized this 
result in proving that under certain conditions supo<~< l lq.(~) + B.(~)I converges to 
zero in probabili ty as n tends to infinity, where B, are versions of standard Brownian 
bridges. They also proved almost sure convergence for c~ bounded away from 0 to 1. 
Note  that i f f (x)  =fo((X - I~)/a), # e R, a > 0, then the lengths of the level sets of 
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f equal a times the lengths of the corresponding level sets offo. As already mentioned 
in Einmahl and Mason this property can be used to generalize the well known 
QQ-plots by plotting 17o(e)= Leb(Q0(e)) against IT (e )=  Leb(Q,(e)), where Q0(e) 
denotes the MV-set with respect to f0. 

17,(~) can also be used to investigate modality of a distribution (cf. Section 5). If for 
example the underlying univariate distribution is bimodal then there exists an e > 0 
such that 17(c~) in the class of all unions of two intervals is smaller than 17(~) in the class 
of intervals. Therefore the (scaled) difference of the corresponding empirical versions 
can be used for testing unimodality. This idea is related to the idea of using excess 
mass estimates to investigate the modality of a distribution proposed by Mfiller and 
Sawitzki (1987) and Hartigan (1987) (for generalizations see Nolan, 1989, and Polonik, 
1995b). 

Another important statistical aspect of the MV-approach is level set estimation. Let 
f d e n o t e  the Lebesgue density of F and let F(kt) = {f(x) ~> #} denote a level set o f f  If 
F(p) E C then 17(c 0 = Leb(F(#,)),  where ~t~ > 0 is chosen such that F(F(t~,) = ~ (cf. 
Fig. 1). Therefore a natural level set estimator is given by the empirical counterparts 
Q,(~), Level set estimation is useful especially in cluster analysis, where one is 
interested in regions which contain high mass concentration. (The case ~ = 1 corres- 
ponds to estimation of the support of the underlying distribution.) For  recent work in 
the area of level sets estimation see for example Cuevas (1990), Cuevas and Fraiman 
(1993) for support estimation, Molchanov (1993) for estimating level sets by means of 
density estimation and Tsybakov (1997) for minimax rates of convergence for level set 
estimators. 

Let us briefly discuss the choice of C. First note, that richness of C (measured by 
metric entropy) influences asymptotic properties of estimators and tests as considered 
in this paper. The richer C the slower are the rates of convergence. Richness of C is 
also crucial for time needed for calculation of the procedures proposed in this paper. 
From this point of view rich classes are worse than sparse classes. In the MV-case 
a further aspect comes in. There the assumption that all the level sets F(p) of f lie in 
C is crucial. Through this assumption richness of C means richness of the statistical 
model. Note that by appropriate choice of C it is possible to model quantitative 
aspects of the underlying density such as shape of level sets (e.g. convexity), symmetry, 
monotonicity, modality (see Polonik, 1995a, 1995b). For example in the one dimen- 
sional case monotone decreasing densities [0, ~)  can be modeled by choosing 
C = {[0, x], x ~ ~}. Summing up it may be said, that for an appropriate choice of 
C one has to balance between statistical properties, time needed for calculation and 
richness of the model. In this paper we do not specify a class C. We consider general 
types of classes such as Glivenko Cantelli classes, Vapnik Cervonenkis classes, 
Donsker classes or more general classes which satisfy certain entropy conditions. The 
classes of invervals, ellipsoids and convex sets are special cases. 

The present paper is organized as follows. First the asymptotic behaviour of Q,(~) is 
studied. Consistency of Q,(~) as an estimator of Q (~) is shown in Section 2 and rates of 
convergence are given in Section 3 for case 2 = Leb. As a (pseudo) metric on C the 
F-measure of symmetric difference is used. In Section 4 Bahadur-Kiefer  approxima- 
tions of the generalized quantile process are given, where the results are sharper for the 
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case v = Leb. In Section 5 we study tests for multimodality based on the volume of 
MV-sets. Section 6 contains some extensions and generalizations. It is indicated that the 
MV-approach can also be applied to regression problems and to spectral analysis in the 
time series context, and that it can be used to handle processes which appear in the 
context of multivariate trimming in Nolan (1992). Section 7 contains all the proofs. 

2. Consistency results 

Let (~2, P) denote the underlying probabili ty space. In order to avoid measurability 
considerations we define for a function f :  (2 --* ~ the measurable cover function f *  as the 
smallest measurable function from (2 to ~ lying everywhere above f (see e.g. Dudley, 
1984). Furthermore,  let P* and P .  denote outer and inner probability, respectively. 

Definition. A class C of measurable subsets of ~d is called a Glivenko Cantelli 

(GC)-class for F, iff 

IIF. - FII*: = (supc~clF.(C) - F(C)I)* ~ 0 a.s. 

In what follows we denote some main assumptions by (A0), (A1), . . . ,  etc. 

(A0) C and 2 are such that (V,(ct))* < ~ a . s .  for all ~ [0, 1]. 
(A1) C is a GC-class for F. 
The following proposit ion will be used below to derive consistency of Q,(~). 

Proposition 2.1. Suppose that (A0) and (A1) hold. I f  V(.) is continuous in ~, then 

I V , ( ~ ) -  V ( ~ ) I * ~ 0  a.s. 

The convergence is uniform in ~ ~ A if U(') is uniformly continuous in A c [0, 1]. 

In the MV-case continuity of V holds in following situations: 
(i) Suppose that F has a bounded Lebesgue density f without flat parts, i.e. 

F{x: f (x )  = #} = 0 of all #. If the level sets F(p) (for # = 0 we define F(0) to be the 
support  of F) all lie in C, then V is continuous in (0, 1) and uniformly continuous in 
(0, 1 - e] for every e > 0. If the support  o f f  is bounded then V is uniformly continous 
in [-0, 1]. 

(ii) L e t f b e  a density on the real line which is bounded and unimodal in the sense 
that there exists a point Xo such that f is non-decreasing to the left of Xo and non- 
increasing to the right. Choose C as the class of all intervals. Then V is continuous. 
This is easy to see, because if V would be discontinuous at some ~ < 1, then the inverse 
function would have a flat part. But that would mean that the maximal probability 
content of an interval of given length could not be increased by increasing the length, 
which would give a contradiction. 

In order to formulate the next proposition we need some further assumptions: 
(A2) F has a bounded Lebesgue density f 

(A3) For every ~ ~ [0, 1] there exists a unique (up to F-nullsets) set Q(ct) with 
F-measure 
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(A4) For every c~ E [0, 1] there exists a set Q,(~). 

(A5) 2 is lower semicontinuous for de. 

Assumption (A3) says that C has to be rich enough. Note that by definition Q(c 6 
has F-measure ~> cc Here we require Q(c~) to have F-measure exactly equal to ~. (A3) 
holds in the situations (i) and (ii) given above. Whereas Q(~) is assumed to be 
essentially unique, (A3), this is not required for the empirical sets Q,(c~). The results 

given below hold for every choice of Q,(e). As a pseudo metric on the class C we 
u s e  

dv(C,D):= F(CAD), C , D ~ C .  

Proposition 2.2. Suppose that (A0)-(A5) hold. Let ~ >~ O. Assume that 

(i) 

(ii) 
then 

there exists a distribution G with positive Lebesgue density such that (C, de,) is 

quasi compact 
V is continuous in [tl, 1 - tl] 

sup dv(Q.(~),Q(e ~ 0  a.s. 
rl <~ a ~ l rt 

Remark.  In special cases (i.e. for special classes C) consistency of Q,(~) has been 
proven in the literature before. Consistency of classical quantiles, and consistency of 
MV-ellipsoids are well known. There of course one uses the Euclidean distance. In 
non-parametr ic  cases consistency of convex MV-sets (in Hausdorff-distance) is proven 

in Sager (1979). 

3. Rates of convergence of Q.(e) 

In this section we only consider the MV-case, i.e. the case ,i = Leb. To formulate the 
results in this section we need to introduce some additional terminology and notation. 
For  the proofs of the theorems given below we shall use results of Alexander (1984, 
1985) about  the behaviour of the empirical process. For  that reason we also use some 
of his terminology. Alexander considers empirical processes indexed by VC-classes 
which he called "n-deviation measurable". Here we do not give the definition of 
"n-deviation measurable", because all the standard VC-classes which we are interested 
in (the classes of intervals, balls, ellipsoids in R e and finite unions and differences 
of them) satisfy this measurability condition. Alexander calls a class C m-con- 
structible out of D, if C can be constructed out of ~ by means of m ~ N set theoretic 
operations, n ,  w \. For  v e N a class C is called (v, m)-constructible VC-class if C is 
m-constructible from a VC-class D whose index is smaller than or equal to v. The 
index of a VC-class is defined as the smallest integer k, such that ~ "shatters" no set 
which consists of k points. And D "shatters" a finite set C, iff every B c C is of the 
form C n D  for some D ~ ~. We also need the notion of metric entropy with inclusion 



6 w. Polonik/Stochastic Processes and their Applications 69 (1997) 1-24 

of C with respect to F. Let 

N1(e, C, F) := inf{m e N: 3 C1, . . . ,  Cr, measurable, such that for  every C ~ C there 

exist i, j E { 1 , . . . , m }  with C~ ~ C ~ Cj and F( C~\ Ci) < e}, 

then log Na (e, C, F) is called metric entropy with inclusion of C with respect to F. For  
a set A ~ Na and e > 0 we denote with A ~ the set A blown up by e, i.e. the set which 
consists of the union of all closed e-balls around points in A. 

As briefly noted in the introduction, metric entropy measures richness (or dimen- 
sionality) of the class C, and it is used in empirical process theory to control the 
asymptotic behaviour of the C-indexed empirical process. The same is true for the 
VC-property. We shall assume roughly (cf. Theorem 3.1, Part Ib) that metric entropy 
behaves like a polynome in e > 0 of degree r > 0. Separately we consider the case that 
C is a VC-class. It can be shown that for VC-classes metric entropy behaves like 
O(log e) for e ~ 0. This fact is reflected in the rates of convergence given below, 
namely, up to a log-term the below given rates of convergence for VC-classes C can be 
obtained from the rates given under metric entropy conditions by formally replacing 
r through 0. 

We need some additional assumptions: 

(A6) The sets F(/~) = {x e Na: f ( x )  >~ p}, p ) 0 all lie in C. 
(AT) C is such that supo ~,~ I [F , (Q , ( e ) ) -  ct[* = O(1/n) a.s. 

Assumption (AT) is satisfied for standard classes like closed intervals (in the univariate 
case) circles, ellipsoids or convex sets (for higher dimensions) and the corresponding 
m-constructible classes. 

In the following theorem the quantity /~ defined in the introduction (cf. Fig. 1) 
becomes important. The reason is that in the situation of Theorem 3.1 we have 
~(ct) = 17'(c0 = 1/#~, and this derivative appears in the definition of ~n(c 0 (see (1.3)). 

Theorem 3.1. Let  2 = Leb. Suppose that (A0)-(A7) hold. Le t  A c [-0, 1] and suppose 

that there exist constants 7, C >1 0 such that for  all t l > 0 small enough 

supF{x e Ra: If(x) - #~[ </1} ~< Ctf. (3.1) 
at~A 

Part I: I f  in addition 

(i) e--* p~ is Lipschitz continuous in ~ ~ A~n[0, 1]for  some e > 0, and 

(ii) inf~Ap~ > 0 
then we have the following: 

(a) I f  C is an n-deviation measurable (v, m)-constructible V C-class then for  fi > 7/(2 + ?) 

sup dr(Q,(~), Q(e)) = Op.(n -~) as n ~ oo. (3.2) 
0tEA 

(b) I f  C is such that for  some A, r > 0 

log Nl(e, C, F) <. Ae -"  Ve > 0 (3.3) 
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Fig. 1. p(. is defined through F(T(p,)) = cx 

then as n + cc 

sup &(Qn@), Q(4) = 0,=(&&)) 
aEA 

(3.4) 

where 

I 
nedfor some s>y/(2+(1+r)y) ifr<l, 

6,(r) = n- Y/2(1 +Y) log n ifr= 1, 

n-‘/C’ +r)(i +Y) if r> 1. 

Part II: Suppose instead of(i) and (ii) that f is continuously d@erentiable such that 

sup a(1 - E)(/Z 
O<a< 1 s 

flr(lc /l~~adf(s)ll-’ W’ < c < =, 
01 

(3.5) 

where ar(pL,) = {x: f(x) = pL,) and “ds” denotes the (d - 1)-dimensional Hausdot$ 

measure. Then the assertions of Part I hold with A = [0, 11. 

Remarks. (i) The same rates of convergence as in Theorem 3.1 also appear in 

Polonik (1995b) in the context of estimating level sets by means of the so called excess 

mass approach. There one considers different (but related) level set estimators for 

which that same upper bounds for the rates of convergence can be shown as for the 

empirical MV-sets. 

(ii) The case A = [O, l] is formulated separately in Part II, because for this case the 

conditions of Part I are quite restrictive. In particular, assumption (ii) of Part I is 

satisfied for A = [0, l] only iff is bounded away from zero inside a compact support. 

(iii) In regular situations we have for fixed cc, i.e. A = {xl, that (3.1) holds with ;’ = I. 

Such levels x will be called regular. For regular x Theorem 3.1 gives the following 
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rates. If F(#~) lies in C then for e > 0 arbitrary 

dv( Q,(a),r(~)) = { 

OF,*(?/-1/3+e) for VC classes C, 

Op*(n -2/7+e) for C = C2(K), 

Ov*(n-1/41ogn) for C = C3(K), 

Oe*(n -1/~+1)) for C = Ca(K), d > 3, 

where Ca(K) denotes the class of convex sets in N a, d >/2, lying in a compact  set K. 
The assertion for the convex sets follows since r = (d - 1)/2 for C = Ca(K) (Dudley, 
1984). Tsybakov (1997) shows (under slightly different smoothness assumptions) that 
n-2/7 is the minimax rate for estimating convex level sets. 

Since intervals and ellipsoids form VC-classes Theorem 3.1 gives us the almost 
n -  1/3 rate for these cases. Note that it is known that the center of the MV-interval (the 

shorth) and also the center of the MV-ellipsoid converge at an n-  1/3 rates (cf. Andrews 
et al., 1972), for the one-dimensional case). Of  course one should expect that the e can 
be removed from the rates, but at present we do not know how to do this. 

(iv) Let us briefly discuss the validity of assumption (3.5). First note that (3.5) is 
a special version of the general assumption sup0 < ~ < 1 ~(1 - a) lv'(e)l(v(c0)- 1 < c < oo 
which will be used in Section 4 (cf. discussion of assumptions of Theorem 4.2). If we 
consider only values of c~ close to one, and restrict the supremum in (3.5) to such ~, 
then the tail behaviour o f f  determines the validity of (3.5). In the one-dimensional case 
(3.5) holds for example for normal distributions, logistic distributions and exponential 
distributions (see Shorack and Wellner, 1986, p. 644). If the supremum is (3.5) 
is restricted to e close to zero and d = 1, then for (3.5) to be satisfied we only need f '  to 
be bounded inside F(/~), for some ~ > 0 .  However, for d >/2 the integral 

~or~,)[[gradf(s)ll 1 ds can come close to zero even if [[gradf(s)ll is bounded, because 
the (d - 1)-dimensional Hausdorff  measure of ~?F(#,) can become small. For  example 
assume that f h a s  a mode in 0 and that locally around zero f (x )  = - [ ]x l ]  k + c, for 
some c, k > 0. Then it is easy to verify that ~or(u,)[lgradf(s)l[-x d s~e l  kin. Hence the 

integral ~v~)[Igrad f(s)l1-1 ds converges to zero if k < d. However, c~@r~o)llgrad 
f(s)[]-1 ds) 1 ~ ~k/u, such that (3.5) is satisfied (for ~ close to 0) for each k > 0. 

The main technical result for deriving the rates of Theorem 3.1 is inequality (3.6) 
which is given in the following lemma. We formulate it here, since it shows that the 
analysis of dr((Q,(a), F(p~)) can be decomposed into a deterministic and a stochastic 
term. Somehow, this is like a bias-variance decomposition. It also shows, how 
condition (3.1) and the conditions on the empirical process come in. A similar 
inequality has been used in Polonik (1995b) in the context of estimating level sets by 
means of the excess mass approach. 

Lemma 3.2. Let 2 = Leb. Suppost that (A0), (A3), (A4), (A6) hold and let 
M = supx~Rlf(x)l(< oo by (A3)). Let c~ e (0, 1) and assume that the level sets F(2) are 
MV-sets in C for all 2 in a neighbourhood of p,. Then we have for every ~ > 0 small 
enough that 

dF(Q.(a),Q(a)) <~ F({x:lf(x) - / ~ 1  ~< ~}) 

+ M e - l ( n  1/2q,(a) - (F(Q,(a)) -- F(Q(a)))). (3.6) 
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We call nl/2( F(Q,(o:)) - F(Q(~)) the generalized uniform quantile process. The stochas- 
tic term in on the right-hand side of (3.6) equals n 1/2 times the difference of the 
generalized and the generalized uniform quantile process. In the classical situation of 
one-dimensional quantiles this difference has been studied by Cs6rg6 and Revesz 
(1978). 

4. Bahadur-Kiefer approximations for q. 

As for the classical quantile process it is possible to derive Bahadur Kiefer type 
approximations for the generalized quantile process. The given results in this sections 
actually generalize some of the classical results on Bahadur-Kiefer  approximations. 

Theorem 4.1. Let  A c [0, 1] and 2 = Leb. Suppose that F is twice continuously d!ffer- 

entiable such that (3.1) holds for  0 < 7 <~ 1 and that (3.5) is satisfied. In addition assume 

that all the level sets F(#)  = {x: f ( x )  >~ I~}, t~ >~ 0 lie in C. 

(a) U'C is an n-deviation measurable (v, m)-constructible V C-class then for 6 > 7/(2 + 7) 

suplc~,(c0 + v,(Q(c0)l = Op.(n 0/2) as n ~ oc. (4.1) 
~ E A  

(b) / f  C is such that (3.3) is satisfied for  some r > 0 then 

sup Ic~,(~) + v,(Q(~))l = Op.(n ~/~r)) as n--* o~, (4.2) 
:¢EA 

where 

~ n ~f i )r  6 > 7 ( 1 - r ) / 2 ( 2 + ( 1  +r)),) / f r <  1, 

6,(r) = ~log n /f r = 1, 
i [ n(~ 1)/2(r+1), if r > 1. 

For a fixed regular level ~, where by definition 7 = 1, we obtain from Theorem 4.1 
that I~,(c~) + v,(Q(c~))l is of the order OF* (n 1..6+~) for n-deviation measurable VC- 
class and Op.(n 1/14+~) for the class C2(K). The latter follows since for Ca(K), d >~ 2, 
one has r = r(d) = (d - 1)/2 (see above). Under mild conditions on the tail behaviour 
o f f  the latter, and hence also the rate of approximations, can be extended to the class 
C d. (The result about the metric entropy of C d can be found in Polonik, 1992). Note 
that Theorem 4.1 does not generalize the classical rates for Bahadur Kiefer approxi- 
mations for the one-dimensional quantile process, although the class {( -- o~, x] ~ ~} 
is a VC-class, but Theorem 4.2 does. See the end of Section 4 for an explanation. 

The above theorem follows from Theorem 4.2 and (4.5) together with Theorem 3.1 
Theorem 4.2 gives Bahadur-Kiefer  approximations for the generalized empirical 
process for general 2. The given rates of approximation depend on the behaviour of 
the modulus of continuity of C-indexed empirical process which is defined as 

~)v.(6):= sup{lv,(C) - v,(D)l; C, D e C,dv(C,  D) < 6}.  
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To formulate  Theorem 4.2 we need the following assumption whose validity 
discussed below: 
(AS) V is differentiable in (0, 1) with derivative V'  = v > O. 

is 

Theorem 4.2. Suppose that (A0) (A5) and (A8) hold and let ~l >~ O. 

Part  I: Suppose that for  some e > 0 small enough 

(i) v is Lipschitz cont inuous  in [ r / -  e, 1 - ~/+ e] n [0, 1-1 
(ii) inf.<~<l ,v(~) > 0 

(iii) for  any choice o f  Q(c 0 the class {Q(c 0, c~ e [0, 1]} is an n-deviation measurable 

V C-class. 

(iv) IIF. - f l l c  = Op.(h(n)) for  a funct ion with n -1/2 = O(h(n)) as n ~ o% then 

sup,<.< 1 ,lq.(~) + v.(Q(~))l = Op.(nl/2h(n)) as n--+ oo. (4.3a) 

In  addition let {6.} be a sequence o f  positive real numbers and assume that 

(v) e --+ Q(c 0, c~ e [q - e, 1 - q + c i r r i0 ,  1] is Lipschitz  continuous for  de. 

(vi) sup,<~<l ,dv(Q.(e) ,Q(e))  = Oa.(6.) as n --* oo. 

(vii) o)v.(6.) = Op.(g(6.)) f o r  a funct ion g with 9(6.) = g(6. ,  n) such that 9(6.) ~ 0 

and g(c6.) = O(g(6.))  as n --+ oo for  any c > O. 

I f  h(n) = 0(6 . )  and n 1/2 9(6.) = O(log n) then we have 

sup Iq.(c0 + v.(Q(c0)] = Op.(g(6.)) as n ~ oc. (4.3b) 
q < a < l  q 

Part  II: Suppose that instead of(i) and (ii) o f  Part  I we have that v is differentiable in 

(0, 1) with derivative v' satisfying 

sup c~(1 - ~)lv'(~)l(v(~)) 1 < C < O0. (4.4) 
0<co<  1 

Moreover,  we assume that v is monotone increasing in an interval (1 - e, 1), e > O, and 

either 0 < limx~oV(X) < ~ or v is monotone decreasing in an interval (0, O, e > O. 1 f in  

addition the other assumptions o f  Part  I are satisfied then (4.3a) and (4.3b), respectively, 

hold with q = O. 

Funct ions  g satisfying condi t ion (vii) are well known for certain classes C. For  
VC-classes which satisfy some measurabil i ty condit ion we have 9(6.)  = (6. log n) ~/2 

(e.g. Pollard,  1984). If C satisfies (3.3), with r > 0, then it is known (Alexander,  1984) 
that  if n - 2 / ( r + 2 )  log n = 0 ( 6 . )  then one can choose 

{ a~1-,/2 /f r < 1, 

9 ( 6 , ) =  l o g n  / f r =  1, 
n (r-1)/z~r+l) i f  r > 1. 

(4.5) 

Remarks.  (i) Condi t ion  (4.4) has been used by Cs6rg6 and Revesz (1978) to extend 
Kiefer's (1970) result for the one-dimensional  quanti le process (see also Corol lary  4.3) 
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to dis t r ibut ions with not  necessarily compac t  support .  Also Einmahl  and Mason  
(1992) used this condition.  

(ii) As in T h e o r e m  3.1 we formulate  the case ~/= 0 separate ly  in Par t  II. The reason 
is given in the remarks  after T h e o r e m  3.1. 

Discussion of assumptions. Assumpt ion  (iv) in Th eo rem 4.2 is trivially satisfied if the 
sets Q(c~) are nested, because then dv(Q(~), Q ( f l ) ) =  [ F ( Q ( ~ ) ) -  F(Q(fl))= I ~ -  [3l. 
This for example  holds in the MV-case,  provided the level sets are MV-sets.  This also 
holds in the classical case of  real-valued quantiles, i.e. for C = {( - oc, t], t c R} and 
2(( - oo, t]) = t. Examples  where (A8) is satisfied are the following: 

(a) In the case of the classical one-dimensional  quanti le  process, i.e. for 
C = {( - 0% t]), t ~ ~} and 2(( - oc, t])  = t, we have for all ct w i t h f ( F  1(c0) > 0 that  
v(:~) = 1/ f (F-  1(c~)). Hence,  if f is differentiable, v'(c0 =f ' (F  1(c~))/J'3 (F- 1(~)). 

(b) Consider  the special s i tuat ion of Section 3, i.e. let 2 = Leb and suppose  that  

F(2) = {x:f(x)  >>. 2} e C  for all 2 > 0. I f f h a s  no flat parts,  i.e. F { f = / , ]  = 0 for all 
/~ > 0 (this is equivalent  to (3.1) above),  there exists for every c~ e to, 1] a un ique /~  ~> 0 
such that  F(Q(cQAF(#=))= 0. #= is defined th rough  the equat ion  F(Y(/~=))= c~ (cf. 
Fig. 1) and we have v(@ = 1//~ for all c~. If in a d d i t i o n f i s  cont inuously  differentiable 

then v'(c 0 = (t~er(,~,)[[gradf(s)l[ -1 ds)-1 where "ds"  denotes  the (d 1)-Hausdorff  
measure  and gF(~t~) = {x:f(x) = kt~}. Note  the ana logy to (a), since ~ = f ( ? C ( ~ ) ) .  

In the special case of classical real-valued quanti les we have Q(c~) = ( -- oc, F 1(~)] 
V ~ (~) 

and Q , ( ~ ) = ( - ~ , F ; l ( a ) ] .  Hence,  d~.(Q~(2),Q(~))= I~v. ~ ) f ( x ) d x l  ~ f ( F  1(,~))1 
F~-I(~) F l(a)[. The  lat ter  is the absolute  value of the s tandardized one-dimen-  
sional quanti le  process (up to the factor  nl/2). Hence, a first appl icat ion of The-  
orem 4.2, Par t  I, with 6 ~ =  1 gives dr(Q~(~),Q(~))=Op,(n-~/2). Since the class 
C = {( o~, t], t ~ N} is a VC-class we have co,.,,(6,) = Op.(b£- 1/2(log 0n) 1/2) and a sec- 

ond appl icat ion of Theo rem 4.2 gives an upper  bound  of O~.(n ~/4(log n) ~/2) which is 

the exact rate of app rox ima t ion  obta ined  by Kiefer (1970). 

5. Testing for multimodality 

The idea to const ruct  tests for mul t imodal i ty  by means  of a compar i son  of Lebesgue 
measures  of MV-sets  for different classes of sets C and D has been given in the 
introduct ion.  Since in this section we s imul taneously  consider two different classes of 
sets C and D, we add to our  no ta t ion  an index C or D, respectively. Fo r  example,  if the 
inf imum in the definition of V is extended over  D we write VD vD, QE~(c~) instead of V, 
v and Q(~), respectively. An ana logous  no ta t ion  is used for the cor responding  empiri-  
cal versions. We also write v,,D and v,.( for the C and D-indexed empirical  process, 
respectively. 

In general we consider  the following test problem.  Suppose  that  for two classes C, 
D of measurab le  subsets of  R d with C c D the m i n i m u m  volume sets Qc(:0 and QD(~), 
in C and D, respectively, are defined uniquely. Given  A = [0, 1] we consider  the 
hypotheses  

Ho: QD(c~)~C for a l l c ~ A  
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versus 

Hi:  QD(~)~D\C f o r s o m e ~ A .  

Let vSc(~) = V.,c(~)/V.,c(0.75) and vS D(~) = V.,D(~)/V.,~(0.75) denote scaled ver- 
sions of V.,c(~) and V.,D(~), respectively. (Note that if C is the class of intervals, then 
V.,c(0.75) denotes the interquartile range). As a test statistic for the above test 
problem we propose 

T,,A(C, D):= sup,~A(VS, c(Ct) -- vS, D(a)). 

Proposition 5.1 shows that a test for Ho versus H~ based on T.,A(C, D) is consistent: 
Let 

TA(C, D):= sup,~a(VS(cQ - vS(~)), 

where vSc(~)= Vc(a)/Ve(0.75) and vS(~) is defined analogously with C replaced 
by D. 

Proposition 5.1 (Consistency). Let  C, D be GC-classes for  F with C c ~.  Assume that 

Vc and V~ are uniformly continuous on A c [0, 1], then as n -~ 

I T.,A(C, D) - TA(C, D)[ = Or.(1). 

Hence, under Ho as n --* oo 

T.,A(C, D) = Op,(1). 

Theorem 5.2. (Rates of convergence). Let  2 = Leb and let A = [tl, 1 - tl] , t 1 > O. Sup- 

pose that F is twice continuously differentiable such that (3.1) holds for  0 < ? <~ 1 and 

that (3.5) is satisfied. The following rates hold under Ho: 

(a) I f  C is an "n-deviation measurable" (v, m)-constructible VC-class then for  

3 > 7/(2 + 7) 

T,,A(C, ~) = Oe.(n -(1/2+a/2)) as n--+oo. 

(b) I f  C is such that (3.3) is satisfied for some r > 0 then 

T.,a(C, D) = Op.(n -(1/2+6(r))) as n--+oo 

where 

n-a for  6 > y ( 1 - - r ) / 2 ( 2 + ( 1  +r)7) i f r < l ,  

6,(r) = ~ log n if r = 1, 
! 

( n (r-1)/2('+1) if r > 1. 

Under H1 the rate in (a) and in (b) for  r < 1 are both n -1/2 which in this case are the 
exact rates. 

Corollary 5.3. Suppose that the assumption of  Theorem 5.2 hold. Assume that f is 

unimodal with mode Xo such that IIgradf(x)U # 0 for  x # Xo and that the level sets 
F(2) = {x: f (x )  >~ 2} all lie in C. 
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(a) Le t  C be the class o f  all intervals for  d = 1 and the class o f  all ellipsoids for  d >~ 2. 

I f  in addition ~ is a VC-class containing C, then we have for  every ~ > 0 that as n ~ 

T,,A(C, ~) = O p . ( n - 2 / 3 + e ) .  

(b) I f  C is the class o f  convex sets in ~a and ~) is k-constructible out o f  C then we have 

.for every e, > 0 that as n ~ 

I Op,(n 4-/7 +e) /f d = 2, 

T,,A(C, ~) = ~ Op.(n ~/21og n) i f  d = 3, 

(Op . (n  ¢2a-a)/¢zd+4)) /f d > 3. 

Corollary 5.3 follows immediately from Theorem 5.2, because the assumptions assure 
that Theorem 5.2 can be applied with 7 = 1. 

6. Extensions and generalizations 

In the proofs of the above results we do not explicitly use the i.i.d assumption, but 
only through the behaviour of the empirical process. Therefore the MV-approach can 

be transfered to situations where other empirical processes appear  with similar 
properties as the usual empirical process used above. Such processes for example are 
the set-indexed partial sum process (this process appears in the regression context, see 
below) and the empirical spectral process which is used in spectral analysis. 

The regression problem: Suppose that we have a nonparametr ic  regression model on 
a regular grid Yi = r(i/n) + ei, where i e {0, 1, . . . ,  n} a, r: [0, 1] e ~ [0, oc ) is the regres- 
sion function and ei are i.i.d, errors. Let C be a class of subsets of [0, l]  ~ and for C e C 
let R(C) = ~cr(X) dx  and define 

V(~) = inf{)L(C):R(C) >~ a, C ~ C}, 0 < ~ < R, (6.111 

and the corresponding empirical version 

V,(~) = in f {2 (C) :R , (C)  >1 ~, C ~ C}, 0 < ~ < R. (6.2) 

where 

R. (C)  = n a ~ Yi. 
i:i/n~C 

The minimizing set in (6.1) is a level set of the regression function i if the level sets of 
r lie in C. Note that there are practical problem where one is interested in estimating 
level sets of a regression function (Messer, 1993). Similar results as in the previous 
sections can be proved by using the process e, (C)  = n ~12(~i:i/,~ c Yi - R(C))  instead 
of v,. Under smoothness assumptions on r one has 

e, (C)  = n d/2 ~ e l + o ( 1 ) .  
i:i/neC 

Set-indexed partial-sum processes of the form n-a/2~i:i / ,~c ei have been studied (e.g. 
Bass and Pyke, 1984; Goldie and Greenwood, 1986; Alexander and Pyke, 1986). These 
results can be used to obtain results of the same type as given in the previous sections. 
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Spectral analysis: In spectral analysis one has a regression like situation with approx- 
imately independent "observations" if one considers the periodogram ordinates as 
observations Y~ and the spectral density as regression function. Proceeding as above 
the empirical spectral process appears instead of the process e,. See Dahlhaus (1988) 
for results on weak convergence of the empirical spectral process. 

Multivariate trimming: Here we briefly indicate how the MV-approach can be used to 
rederive the limiting distribution of a certain process appearing in multivariate 
trimming as considered by Nolan (1992). This limiting distribution has already been 
derived by Nolan with different methods. 

Nolan studies a method of multivariate trimming connected to quantiles of projec- 
tions on ( d -  1)-dimensional hyperplanes. The trimming idea is to consider the 
intersection of all halfplanes in Nd which contain at least (1 - a) percent of the data. 
The resulting convex set C, is called a-trimmed region. Let C denote the correspond- 
ing theoretical a-trimmed region, i.e. the intersection of all halfplanes which contain 
F-mass at least 1 - a. Nolan considered the following radius function on the unit 
sphere 5 d- 1: 

r,(u) = inf{r ~> 0: ruq~C.}, u e  5 d - I  

If the origin lies in C, then ur,(u) is an element of 0C., otherwise r.(u) = 0. Replace C, 
by C to get the definition of r,(u). Assume that F is such that C is non-empty and that 
(without loss of generality) 0 is an inner point of C. Let (.,.) denote the usual inner 
product on Nd. Nolan showed that r.(u) has the same limiting distribution as 

q*(u) = q,(v~(u))/(u, v~(u)) 

where q,(u) denotes the (one-dimensional) empirical (1 - a)-quantile of the projec- 
tions (u, Xi), i = 1, . . . ,  n, and v,(u) is the outwarded (with respect to C) normal to 
H(u), the supporting hyperplane to C at ru. Now we indicate how the limiting 
distribution of q,(u) (and by that the limiting distribution of q*(u)) can be determined 
by using generalized quantile processes. Let aft(u) denote the class of all halfplanes 
{(x, u) ~< c}, c E ~, and for H E o~(u) let r(H) = inf{r ~> 0: ruCH}. Then 

q,(u) = W,(a, u) = inf{r(H): F.(H) >1 1 -- a ,H ~ Jg(u)} 

and 

q,(u) = W(a, u) = inf{r(H): F(H)  >~ 1 -- a ,H ~ itS(u)}. 

Under appropriate smoothness assumptions the derivative of W(a, u) with respect to 
a is w(a, u) = (pu(q,(u))- 1 where p, is the density of the distribution of (u, X )  under F. 
Analogous arguments as in the previous sections show that n 1/2 (w(a,v,(u)) -1 
(q , (v~(u))-  q~(v,(u))) can be approximated by - n X / 2 ( F , -  F)(H(u)) uniformly in 
u 6 S n 1. More precisely, if (among others) inf.~s,-, w(a, v,(u)) > O, then 

sup Inl/Z(q.(v,(u)) -- q,(v~(u))) + nl/=w(a, v,(u))(F, -- F)(H(u))I = Op(1). 
u E S  d 1 

Note that q*(v~(u)) = (r~(u)u,v~(u)). Hence, by definition of q*(u) it follows that n 1/2 

( q * ( u ) -  r~(u) has the same limiting distribution as n 1/2 w(a,v~(u)) (u,v~(u)) 1 
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( F . -  F)(H(u)). Under  smoothness  assumptions the process n 1/2 ( F , -  F)(H(u)) 
converges in distr ibution to a mean  zero Gaussian process with covariance 

c(u, v) = F(H(u)c~H(v)) - F(H(u))F(H(v)) = F(H(u)H(v)) - (1 - ~)2. If the remain- 

der terms can be control led uniformly in u (which should be possible under  appropr i -  
ate smoothness  assumptions) then it follows that nl/Z(q*(u)-  r~lu) converges in 

distribution to mean Gaussian process with covariance c(u, v) g(u)-lq(v) 1 where 
g(U) 1 = W(~,Y~(~/)) (U,  Yc~(U)) 1. 

7. Proofs 

Proof  of Proposition 2.1. Let F , ( t ) =  sup{F, (C) :  C ~ C ,  2(C)~< V(t)} and let 

F,~ 1(~)= inf{t ~(0, 1): F,(t)~> ~} be the generalized inverse of F,(t). Einmahl  and 

Mason  (1992) showed (see their L e m m a  3.1) that on the set where V.(0) < oc (which 

has inner probabil i ty 1 by (A1) 

V,(~) = V(F~I(~)) for all 0 < c~ < 1 (7.1) 

Hence, [ V,(~) - V(c~)] = I V(F2I(a)) - v(cQI on a set with inner probabil i ty 1 and the 

continui ty assumpt ion on V together with the fact that  supo ~ ~ ~ 1 IF,- l(e) - :~l* -* 0 

a.s. (see Corol lary  3.2 of Einmahl  and Mason). [ ]  

Proof of Proposition 2.2. Let {~,} be a sequence in [r/, 1 - q]. We show that  dr(Q,(~,), 
Q(~,)) -~ 0 and n --* ~ on a set with inner probabil i ty 1. Let ~ denote  a limit point  of 

{c~.}. Then 

dF(Q,(~,),Q(~,)) <~ dv(Q,(~,),Q(cQ) + dv(Q(a,),Q(:t)). 

First we show that  dv(Q(c%),Q(~)) converges to zero. Let Q be a limit point  of {Q(~,)} 

for da. Then there exists a subsequence {Q(a',)} of {Q(~,)}converging to Q in da and 

hence also in dr. It follows from the continui ty of  V(c0 = 2(Q(~)) and the lower 

semicontinuity of  ). (assumption (A5)) that  

).(Q(~)) = lim inf,,(2(Q(c~,,)) ~> 2(Q). 

Since IF(Q)-F(Q(7, ,))I<~dF(Q(e, ,) ,Q)~O and F ( Q ( a , , ) ) = ~ , , - - * ~  we have 
F(Q) = ~. The assertion now follows from the uniqueness of  Q(ct). 

N o w  we show that dF(Q.(c~,),Q(cO) converges to zero on a set with inner probabil i ty 
1. Let (for a fixed co e Q) R be a limit point  of {Q.(ct,)}. It follows as above together 

with the consistency of V, (Propos i t ion  2.1) that  on a set with inner probabil i ty 1. 

,~(Q(~)) = lim inf,2(Q(c%)) = lim inf,2(Q,(~,)) ~> ),(R). 

It remains to show that  F(R) = c~ for all 0) ~ A with P.(A) = 1. F r o m  this the assertion 
follows by similar arguments  as used above in proving that dF(Q(~,),Q(e)) converges 
to zero. In order  to prove that  F(R)=  a for all co ~ A first note that V is strictly 
monotone .  This follows from (ii) and (A3). Together  with the uniform convergence of  

V, to V it follows that as n --, oo 

sup IF.(Q.(~)) - ~l* ~ 0 a.s. (*) 
r/~ :{ ~ 1-r t  
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Since also s u p n ~ , ~  1 nIF,(Q,(~)) - F(Q,(~))I ~< supc~c[F.(C) - F(C)[--* 0 a.s. the as- 
sertion follows. [ ]  

Before we give the proofs  of  Section 3 we first p rove  Theo rem 4.2. The  reason is that  
T h e o r e m  4.2 will be used to p rove  the results of Section 3. The  main  technical result 

for deriving Theo rem 4.2 is given by the following: 

L e m m a  7.1. Suppose that (A0), (A3) and (A8) hold. Le t  Ao c A c (0, 1) and c, d > O. 

Suppose that the map ~ ~ Q(a), ~ ~ A is Lipschitz continuous for  dr with Lipschitz 
constant k>>, 1. For 0 < ~ < ~  1 and 6 > 0  let ~+ = ~ - - ( F . - - F ) ( C ( a ) ) + _ n  1/2 

co,.(k(c + d)6). Then the following inequalities hold on the set B ,  = 

{sup~AodF(Q.(~),Q(~)) < c6} c~ {~+ ~ AV~ 6 Ao} c~ { s u p ~ A  o]0~ + - -  0~] < d6} for  each 

~ Ao: 

q,(a) + v,(Q(~)) <~ v(~+)v(~) lco,.(k(c + d)6) 

_ ( v ( ~ + ) v ( a ) - i  _ 1)v.(Q(a)), (7.2a) 

q.(o 0 + v.(Q(oO) >~ -- v (~ ,  )v(~)- l oa~.(k(c + d)5) 

- (v(~.-)v(~) -1 - 1)v.(Q(a)), (7.2b) 

where ~.+ lie between ~.+ (6) and a, respectively. 

Proof of L e m m a  7.1. As in the p roof  of the consistency of V,(c 0 (Propos i t ion  2.1) the 
idea of the p roo f  is to app rox ima te  V,(e) th rough  V(e,) where c~, is r andom,  so tha t  we 
get rid of V~. F o r  each e we have 

V~(e) = inf{2(C): C e C,F.(C) >~ e} 

= inf{2(C): C 6 C ,F (C)  ~> ~ - (F. - F)(C)} 

= inf{2(C): C e C ,F(C)  >~ ~ - (F, - F)(Q(~)) 

+ ((F. -- F)(Q(oO) - (F, - F)(C))}. 

Since the inf is  at ta ined at Q.(a) and since k >~ 1 we have that  on B. for each a E Ao 

V.(a) = inf {2(C) : C ~ C, dr(C, Q(~)) < k(c + d) 6, 

F(C)  >1 ~ - (F. - F)(Q(~)) + ((F. - F)(Q(~)) - (F. -- F)(C))}. 

Hence,  it follows 

inf{2(C): C ~ C ,F (C)  >~ ~,(6) ,dF(C,  Q(~)) < k(c + d)6} 

~< v.(~) 

~< inf{2(C): C ~ C , F ( C ) / >  ~,+,dF(C, Q(~)) < k(c + d)6}. 

And since dF(Q(a. + ),Q(a) <. kla.  +- - a l  <. kd6 we have V(a~ (5)) <~ V.(a) <<. V(a.+(5)). 
Hence,  the following inequali ty holds on B.: 

(y (~ ) ) -  1 n l /2 (  V((~ n- ((~)) _ V((~)) ~ qn(o0 ~ (V((~)) 1 n l / 2 ( W ( ~ ;  ((~)) _ V(~)) .  
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Inequali t ies (7.2a) and (7.2b) now follow easily by applying an one- term Tay lo r  
expansion to the r ight -hand side and the left-hand side of the last inequality, respec- 

tively. [ ]  

Proof  of  Theorem 4.2. 
Part I: First we prove  (4.3a). Since by assumpt ion  the class {Q(e), ~ • [0, 1]} is 

a VC-class it follows f rom s tandard  results of empirical  process theory (e.g. Shorak  
and Wellner 1986) that  supo<=<llV.(Q(:~))l =Oe . (1 ) .  It remains to show that  
sup,  <= < ~ , lq , (~ ) l  = O P * (  n~/2 h(n)). In order  to do that  we use the representat ion (7.1). 

It follows that  on a set with inner probabi l i ty  1 for all 0 < c~ < 1 

qn(o:) = l~(On)V(O 0 l n l / 2 ( F n  1 ( ~ ) -  ~) (7.3) 

for some 0, lying between ie,-l(c~) and c~. Since s u p o . < ~ . < l [ F , l ( : 0 - - ~ ] * - - , 0  a.s. 
(cf. p roof  of Propos i t ion  2.1) it follows f rom assumpt ions  (i) and (ii) that  
sup,<~<l  , v ( O , ) v ( ~ ) - l = O p , ( 1 ) a s n ~ o c .  N o w  we consider n l /2[F, l  (~) ~L. First 

note that  sup0 ~ ,  _< l nl/ZlFn 1 (~) __ :~l = supo ~ ~ ~ 1 n l/2lFn (~) - ~1 • For  F,  (~) - ~ we 

have the following: F , ( ~ ) - ~  ~< s u p { ( F ,  - F)(C): C •  C, 2(C) ~< V(~)I, and hence, 
supo<~<lnl /2(Fn(~)  oO <~ nl/2llF, - F l l c  = Op.(nl/2h(n)). Furthermore,  F,,(~) ~ >~ 
(F, F)(Q(~)), such that  - supo ,< ~ _< a nl/2(F~ (cQ - :~) = Op.(1). This proves (4.3a). 

Now we show (4.3b) by means  of L e m m a  7.1 (Here the nota t ion  of L e m m a  7.1 is 
used): Set A = [ r / -  ~, 1 - ~/+ e,]c~[0, 1] and Ao = [rl, 1 -- q]. By definition ofx , -  we 

have I~# - ~l ~< 3liE, - FII~:. Hence, because of(A1) the (inner) probabi l i ty  of the set 
{~]  e A for all :~•Ao} tends to one as n tends to infinity. The same holds for 

~ instead of :~+. It also follows that  sup~A0l.:~ + -- x[ = Op.(h(n)). Because of the 
Lipschitz cont inui ty  of :~ --* Q (c~) (assumpt ion (v)) the quant i ty  sup~Aodv(Q~,, + ),Q (~)) 
also is of order  Op,(h(n)) and hence is Op.(6,). 

Collecting all this it follows that  tbr a given e > 0 there exist constants  c, d > 0 such 
that  P*(B~) < e for n large enough.  Fur the rmore ,  on B, the factor  v(~, ~ ) v(~) t is 

bounded  uniformly in e • Ao. Hence, the first term on the r ight-hand side of (7.2a) 
gives the asserted order. It remains  to consider  the second term on the r ight-hand side 
of (7.2a). Let K be the Lipschitz cons tant  of v on A, then we have on B, 

t(v(~+)v(c 0 l_l)v.(Q(c0) I~<lKv(e)-I ~+ _ ( c .  ~ ) v . ( Q  (~))q 

~< K*lc~2 - ~ l lv . (Q(~) ) l  

with K * =  K sup~AoV(g) -1. Note  that  K* is finite by assumpt ion  (ii). The  last 
expression in the above  sequence of inequalities of the order  Op,(h(n)). 

By using inequali ty (7.2b) instead of (7.2a) the a rgumenta t ion  for - ( q , ( c 0  + 
v,(Q(:O)) is complete ly  analogous.  

Proof of  Par t  II. This p roof  is in principle the same as the p roof  of  (4.3a) under  the 
condi t ions  of Par t  I. The  only difference is how to show that  supo<~< l v(O.)v(~) ~ 1 is 
s tochast ical ly bounded.  Here  the boundedness  (in outer  probabil i ty)  follows f rom 
assumpt ion  (4.4). This has a l ready been shown by Einmahl  and Mason  (1992). 
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(Actually they proved this only for ~ close to 1, but  the case a close to 0 can be proved 

analogously  since (4.4) also holds for c~ close to 0.) 

N o w  we prove (4.3b). For  short  we write An(~) = qn(~) + Vn(Q(~)). Again we use 
L e m m a  7.1 (and the nota t ion  f rom this lemma) and we only give the upper  bound  for 

sup0 < ~ < 1 An (~). By using (7.2b) instead of (7.2a) the upper  bound  for - supo <, < 1 An (c 0 
is completely analogous.  

Fix e > 0. Choose  c~ > 0 such that  P*(I IF,  - File > c,h(n)) < e for n large enough 

and let k > 0 denote the Lipschitz constant  of ~ --* Q (c 0. Let r/n = 4kc~h(n) and define 

An = It/n, 1 -- t/,]. We split the interval (0, 1) into (0, t/n), A, and (1 - t/n, 1) and show 
that  sup~ < , A  (~), sups> 1- , .  An (~) and sup~A, An (c 0 are of the asserted order. 

First we consider the case ~ ~ An. Lemma 7.1 will be applied with Ao = An and 

A = (0, 1). Let d~ > 0 be such that  P*(sup,~AdF(Qn(~),Q(~)) > d, Sn) < e for n large 

enough.  Since h(n) = 0 ( 8 , )  there exists a constant  cl > 0 with h(n) <~ cl 8,. We show 

that  for the set Bn as defined in L e m m a  7.1 with c = d, and d = kclc~Sn we have 

P*(B~,) < e as n --* oe. (7.6) 

No te  that  sup~A.d~(Qc~ + ) ,Q(~))  ~< k sup~ea . [~  + - -  ~l ~< 3kllF, - File. Hence, 
P*(sup~adv(Q(c~+),Q(cO)>kClC, bn)<e for n large enough.  Fur thermore ,  we 

have P,(c~ + e ( 0 , 1 ) V e e A n ) ~ >  1 - e  for n large enough.  This follows from 

P*sup~a , l~  + -- 0~[ > 3c~h(n)) < e and our  choise of t/n. Hence (7.6) follows. 
On  Bn we know that  (7.2a) holds. Therefore the assertion follows if we have shown 

that  

supv(~ + )v(c¢) -1 = Op,(1), (7.7) 
a~An 

s u p I ( v ( ~  + )V(00 - 1  - -  1 ) V n ( Q ( o 0 )  I m O e , ( g ( 6 n ) ) .  (7.8) 
cz~A n 

We first prove (7.8). In order  to do this we first rewrite the term (v(~ + )v(c0 -1 - 1). 

Since v is assumed to be differentiable we have on Bn 

v ( ~ . + ) v ( ~ )  ' - 1 = v ' ( O : ) v ( ~ ) - l ( ~  + - ~ )  

= [0+(1 _ O+)v,(O+)v(O+ )- 1] [v(O+)v (o O- 1] 

[ 0 . + ( 1  _ 0 + ) ] - 1 ( ~ .  + _ ~), 

where 0, + lies between ~+ and ~. By assumpt ion  (4.4) the first term in the last line is 
bounded  on Bn uniformly ~ e An. Hence, to prove (7.8) it remains to show 

sup(v(O+)v (a)- 1)(0+ (1 -- 0+)) -1 c~(1 -- c¢) = Oe,(1), (7.9) 
~EAn 

sup[(~(1 -- ~))-1(~+ _ a)vn(Q(~))[ = Oe,(g(Sn)). (7.10) 
o ~ A  n 

It turns out  that  the p roof  of  (7.9) is similar to the p roof  of  (7.7). Therefore the p roof  of 
(7.9) will be given below together with the p roof  of  (7.7). N o w  we prove (7.10). Since (+ 

lies between a+ and c~ we have 

[~+ - c~l ~< [c~ + - ~l ~< I(F, - F)(O(cO)[ + In-'Zco~.(8.)l. 
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Hence,  (7.10) follows f rom (7.11) and (7.12), where 

sup nl/2(~(1 - ~))-  I[(F. - F)(Q(c0)[ 2 = Op,(0(8.)) ,  (7.11) 
~ A n  

sup(~(1 -- ~))- 1 [(F, -- F)(Q(~))[ = Op,(1). (7.12) 
ogEA n 

Note  that  by assumpt ion  F(Q(@ = ~ and that  {Q(e), e e [0, 1]} is a VC-class. Hence,  
(7.11) and (7.12) follow from that  for VC-classes C 

sup q~(F(C))-I]v,(C)[ = Oe,(nl/4 g(6,)1/2 , (7.13) 
tl. <~ F (C) <~ I rl. 

sup qz(F(C))-Xlv.(C)l = Oe,(nl/2), (7.14) 
rl n ~< F (C) ~ 1 tin 

where q x ( t ) = ( t ( 1 - 0 )  1/2 and q 2 ( t ) = t ( 1 - O .  However ,  since by assumpt ion  

n1/2g(6,) = O( logn)  Eq. (7.13) follows f rom Alexander  (1985, Corol la ry  1.6 (i)). 
Eq. (7.14) directly follows f rom Alexander  (1985), Coro l la ry  1.6(ii). To  finish the p roof  
of  sup~A A,(~) = Op,(g(6.))  it remains  to show (7.7) and (7.9). First  note  that  

I)(S)l)(t) 1 ~ ([(S V t)(1 -- (S /X t))] IS /X t)(1 -- (S V t))] 1)c. (7.15) 

This can be ob ta ined  f rom assumpt ion  (4.4) by easy analysis. (See for example  
Shorack  and Wellner  (1986, p. 644).) By means  of (7.15) we get that  (7.7) and (7.9) 
follow f rom 

sup (1 - c 0 ( 1  - ~ + )  i = O p , ( l )  and sup ~ + - 1  = O p , ( 1 )  (7.16) 

and that  the same holds with ~+ replaced by 0 + . This is because (7.15) and (7.16) imply 
that  sup~A.(v(~ + ) v ( ~ ) -  1) = Op , (1 )and  that  sup,CA,(v(0 + )v(~) 1) = Op,(1). (7.16)can 
be seen as follows. Since ~+ and 0 + lie between ~ and c~ we have 

I ~ .  + - ~1 ~< ~.+ ~< ~ + I ~ .  ~ - ~1 

and the same holds for 0 + instead of ~,+. Hence, it suffices to show 

P*(sup,c~.  + - c ~ , * ( ~ ( 1 - c ¢ ) )  1 >  1 / 2 / ~ 0  as n ~ o c .  (7.17) 
\ ~ A .  / 

No te  t h a t  sup=EAn-1/2(Ov.(~.)(O~(I--00) 1<~2 ~q, in 1/2CO,,((~n)=Op*(,q(15n))= 
Op,(1). This together  with (7.14) gives (7.17). 

To  complete  the p roof  of the theorem we have to show that  s u p ~ , . [ A , ( ~ ) [  and 
s u p ~  ~ ,°[A,(~)[ also are of the order  Op,(g(6.)) .  We first discuss the idea for the case 

>~ 1 - q,. By definition of g we have sup~ >~ 1 --,,I v,(Q (c~)) I = Op,(g  (~1,))= Op,(g(6,)).  
Hence  it remains  to show that  sup,  >~ 1 ~-,.[q. (e)[ is of the same order. We again make  
a splitting and first consider  the region {1 - ~, ~> :~ >~ 1 - ~/,} for an appropr ia t e  
sequence 7, ~< t/.. Finally, we will show the assert ion for { 1 > c~ >~ 1 - 7,}. 

We choose 7, = 2C~n ~/2g(~, ), where C~ > 0 is such that  P*(~o,,°(6,) 
>~ C~g(6,))<~ ~. Then  the above  a rguments  for the case {c~ E A,} can be carried 

th rough  ana logous ly  for {1 - ,/, ~> c~ ~> 1 - r/,} and also for {~. ~< ~ ~< r/,}. It remains 

to show sup=> ~_,e°lq,(~)l = Oe,(g(~Sn) ) and sup=<~,° Iq,(c0l = Op , (g (6n ) ) .  
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We again first concentrate  on the case ~ close to 1. To show that  sup, ~ a _ r.lq. (~)1 is 

of  the asserted order  we again use the representat ion (7.1). This leads to 

/,F 1(~) 
q.(o 0 = nl/2 J~ /)(S)V(0~) - 1  ds. (7.18) 

If  e > /F . - l (e )  then the integrand is bounded  by 1 and q.(c 0 ~< n l / 2 ( ~ -  F2I (~) ) .  It 
follows that  in this case sup~> 1-~.[q.(e)[ ~< n1/2 supz>~ 1 r .  (~  - -  F n l ( c 0 )  = nl/2 

sup.~>p.l(~_~.) ( F n ( e ) -  CO. TO estimate the last term we use the following fact: for 

t e [0, 1] we have up to an exceptional set with outer  probabil i ty tending to 0 that 

sup(F .  (~) -- ~) ~< sup (Fn(A) -- F(A)) ,  (7.19) 
>1 t F (A) >1 t -  h(n) log n 

where here and in the following the sup is extended over A s C. Using this and the fact 

that  sup.~to ' ~1IF. -1 (c 0 - ~ [  = Op.(n-a/2), which follows from Corol lary  3.1 of  Ein- 

mahl  and Mason  (1992), gives us 

sup [q.(~)[ ~< n 1/2 sup (F. (A)  - F(A))  
ct >I 1 - ~'. F(A) >1 i -Yn  OP*("-1/2) 

<~ n 1/2 sup (F . (A)  -- F(A))  
F(A) >~ i - y n - O p * ( n  t/z) -h (n ) log  n 

It  remains to show 

( F .  (~) - ~) ~< 

<~ 

= O p . ( g ( h ( n ) l o g  n)) = Op.(9 (6.)). 

(7.19). Fo r  any sequence ft. we have 

(sup{F.(A): ~ -- ft. <~ F(A)  <. ~} -- ~) 

v (sup{F.(A): c~ -- ft. > F(A)} - ~). 

Since sup~c(F, (A)  - F ( A )  = Op.(h(n))  the assertion follows by choosing 
ft, = h(n) logn.  Fo r  the case c~ < F,- 1 (~) we again start with (7.18) and use (7.15). This 
gives for ~ >~ 1 and c # 1 

q.(~) ~< 2CnX/2(1 -- - s )  - c  ds 

~< 2c(1 - c) - ln l /2(1  - ~)c[(1 - F ~ - I  (~))  1 - ~  - (1 - ~)1 c] 

= 2c(1 -- c)-lna/Z[(1 -- a)((1 -- c0/(1 - - / ~ n  1 (~ ) ) )  c - 1  - -  (1  - -  ~)]. 

Fo r  c < 1 we have of course ((1 - a)/(1 - F~- 1 (~)))c- 1 ~ 1 and the assertion follows 

by choice of  7.. Fo r  c > 1 we use the fact that  sup,~to, 11((1 - ~ ) / ( 1  - F,-l(a))) is 
bounded  in probabi l i ty  (Lemma  3.3, Einmahl  and Mason,  1992). 

Ana logous  arguments  can be used for c = 1 where we have 
F ~(a) 

~ .  (1 - -  s)  - c  d s  = l o g ( ( 1  - c0/ (1  - / ~ n  - 1  (00)). 
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The case :~ ~< 7n follows the same line as the just considered case ~ ~> 1 - 7,. Therefore 

we only give a brief outline. If v is bounded  in a ne ighbourhood  of  0 and bounded  

away from zero then we just need to show the analog of  (7.19), and then the above 

arguments  can be carried through.  This analog is that  for t ~ [0, 1] we have 

sup(Fn(~) - ~) ~< sup (Fn(A) - F(A)) 
~<~t F(AJ<~t 

where on the r ight-hand side again the sup is extended over A ~ C. This fillows almost  

directly from the definition of  F, .  

If v is unbounded  and m o n o t o n e  decreasing near 0, then similar arguments  as above 

show that  the crucial situation here is /Y,  1(~) ~< ~ and c ~> 1. It follows from (7.18) and 

(7.15) that for ~ ~< 1/2 

q,(~) ~< 2C(c _ 1)-lnl/2[~(:~/F71(~)),.  i _ ~]. (7.20) 

Analoguous  arguments  as used above for the case =~ ~> 1 - 7, can now be used by just 
replacing 1 - ~ and 1 - F,-  1 (~) th rough  ~ and F,, 1 (~), respectively. Note  that  Lemma 

3.3 of  Einmahl  and Mason  can under  the stronger condit ion (4.4) easily be adapted to 

show 

sup o~/Fnl(~) = Op.(1) as n--* oG, (7.21) 
0~<~¢~< 1 

P r o o f  o f  L e m m a  3.2. No te  that  v (~) = /a21  for ~ < 1, where #~ has been defined in 
Section 3. Hence, the stochastic term of the r ight-hand side of(3.6) (i.e. n i/2 times the 

difference of the generalized and the generalized uniform empirical process) can be 
rewritten as 

n-  ~/2~, (c 0 _ (F(Q,(~)) - F(Q (~))) = Hu~ (Q (~)) - Hu,(Q,(~) ), (7.22) 

where H,(C)  = (F - 2Leb)(C) = ~c(f(x)  - #) dx, ~t >>, O. The functional Hu, is maxi- 

mized by F(/~). Since F(/~) e C is a min imum volume set it has the same Lebesgue 

measure as Q (e). By definition F(F(I~))  = F(Q (e)) = ~. Hence H,,  is also maximized 
by Q (e). Note  that this means that  the difference of the generalized and the generalized 

uniform empirical process is nonnegative.  (The maximal  value Hu(F(I~)) as a function 

in # is called excess mass and has been considered in Hart igan,  1987; 
Mfiller and Sawitzki, 1989: Nolan,  1989; Polonik,  1992, 1995a, 1995b). Now, for any 

/~ > 0 and any e > 0 we have 

- Huo(Q,(~)) = Hu,(F(/~)) - Hu,(Q,(~)) = ~ I f (x)  - ~t,l dx  
3D .(~) 

>~ eLeb(On(~)c~ {x:tf(x) - / a , I  > e,), (7.23) 

where for short  D,(a) = Qn(a)AF(I~,). Hence, (7.25) and (7.26) give for any e > 0 

F(D,(~)) = F ( D , ( ~ ) ~ { x : l f ( x )  - #~{ ~< e}) + F(Dn(~)c~{x:l f (x)  - l~l > c}) 

~< F({x: If(x)  -- #~ I ~< e}) + M Leb(D. (~)c~ {x: If(x) -/t~,] > ~:}) 

<~ F({x : l f ( x )  - /as] ~ e}) + Me, '(H,~(Q(cO) - H~,~(Q,(cO)). [] 
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P r o o f  o f  Theorem 3.1. First  note, that  f rom (A7) it follows that  all ~ e (0, 1) 

n -  l/2~.(ct) -- (F(Q.(~))  - F(Q(a)))  = [ n - l / 2 0 . ( a  ) + (F. -- F)(Q.  (~)))] + R. ,  

where R* = O(1/n) (uniformly in e). Hence,  

sup dr((Q. (a)A Q (a)) ~< O(e.  ~) + M e 2  1 El, l -  '/2~n (0 0 -- (F(Q.  (~)) - F(Q(c0))] 
t/<~t< 1--q 

<~ O(e~.) + M e ;  l En - 1/2 g1. (c 0 + (17. -- F ) ( Q  (~)))3 

- [ (F.  - F ) ( Q  (~))) - ( F .  - F ) ( Q .  (~)))] + R . ] .  (7.24) 

Below we use the following fact: O n  the set A a = {sup, <. < 1 - ,d r ( (Q .  (cOAQ (~)) <<. 6}, 

6 > 0 we have for the stochast ic  te rm on the r ight -hand side of (7.24) 

sup [[n-l/2c~.(ct) + (F. -- F)(Q(~)))] 
t l < ~ < l - t  t 

- -  [ (F.  - -  F ) ( Q ( ~ ) )  - ( F .  - -  F ) ( Q .  (~)))] + R . ]  

= Op,(O)vn (t~n))- 

Since the sets Q(c 0 are nested the class {Q(c0, c~ e [0, 1]} is a VC-class (of index 1). 
Fur the rmore ,  we have v(ct) = 1/#~ such that  (i) and (ii) of  T h e o r e m  4.2 follow f rom (i) 
and  (ii) of  T h e o r e m  3.1. T h e o r e m  4.2 now shows, that  the two stochast ic  terms in 
brackets  on the r ight -hand side of  (7.24) are of the same order.  Therefore,  an 
appl ica t ion of (4.3a) (with h. = n - l / z )  gives for any sequence {e.} of  real numbers  

sup dF((Q.(~)AQ(~))  <~ O(e~) + M e 2 1 0 p . ( n  -1/2) + R . .  
q<a~< 1 r/ 

Choose  ~, = O(n -1/20+r)) to balance the two terms on the r ight -hand side. The  
resulting rate of convergence is O p , ( n - ~ * / 2 ) ,  where for shor t  7* = 7/( 1 + 7). N o w  we 
split the proof.  First  we p roo f  Pa r t  I(a). 

An appl icat ion of (4.3b) with 6. = n - r / 2  gives a rate of  convergence for bo th  of the 
two stochast ic  terms in brackets  in (7.24) of  6. = (n - r / 2  log n) 1/2 since for VC-classes 
(vii) of T h e o r e m  4.2 holds with 9(6.)  = (6. log n) 1/2 (e.g. Pol lard,  1984). Choose  
e. = O((n-1/2  ( n - r / 2  log n)l/2) 1/(a+ ~)) to balance the stochast ic  and  the non  stochast ic  
te rm on the r igh thand side of (7.24). This leads to the new r a t e  Op.(n -~*/2(1+7./2) 
(log n)r/2).  I tera t ing these a rguments  k-times leads to the rate n -'~ (log n) "~- 1 with 
rk = 7"/2~k2_0 ~ (7"/2) i. We can do this i terat ion arbi t rar i ly  but  finitely often. Since 

too = (7"/2)/(1 - 7*/2) = 7/(2 + 7) equali ty (3.2) follows. 
The  p roo f  of  (3.4) is quite similar. Here  functions 0 satisfying (vii) of T h e o r e m  4.2 are 

given in (4.5). Using these, ana logous  a rguments  as for VC-classes gives the asserted 
rates. Fo r  r <  1 the rate after k i terat ions is Oe.(n -rk) with r k = 7 * / 2  
Ek-l~ , / 1  s=o~7 t + r)/2) s. Since ro~ = 7/(2 + (1 + r)7 ) the assert ion follows. Fo r  r />  1 iter- 
a t ion is useless since 6. does not  enter  the function 9 and we are finished after the first 
step. [ ]  
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Proof of Proposition 5.1. It follows f rom P ropos i t i on  2.1 that  

sup l (VSc(~)  - vS, D(oO) - - ( v S ( ~ )  - vS(~))l  = Op.(1) 
~z~A 

Since in add i t i on  u n d e r / 4 o  we have for all ~ ~ A that  vS(~) = vS(~) the asser t ion 

follows. 

Proof of Theorem 5.2. No te  that  (3.5) is a version of a s sumpt ion  (4.4) (see Remark  

after Co ro l l a ry  3.2). Hence,  it follows from the p r o o f  of T he o re m 4.2 that  

nl/2(V, ,D (or) - VD (o0) = vD(c¢) v,(QD (o0) + vD(cOco ...... (6,) + R, ,~,  (7.25) 

where 6, is the rate  of  convergence  of sup~adF(Q,(oc),Q(~)) and  R,,~ is a r ema inde r  

term which is of lower o rde r  (uniformly in ~). The  same holds  for C replaced for ©. 

U n d e r  Ho the first terms on the r igh t -hand  side in (7.28) are the same for C and [k  

respectively,  so that  

In~/~(v..~(:¢)- vc(~)) -  (v . ,o(~) -  v~(~))l ~< 2vD(~)co ..... (6.) +/¢.,~ + R..~. 

Since vD(~)= 1/#~ and  0¢ is bounded  away  from 1 (and f is bounded)  we have 

sup~AVD(C~) = sup~A 1//t~ < oC. The  rate  6, we get from Theorem 3.1. This together  

with the behav iou r  of co . . . .  (6,) which has been der ived by Alexander  (1984) (Correc-  

tion: Alexander ,  1985) (cf. Sect ion 4 after Theo rem 4.2) gives the asser t ion for a test 

s tat ist ics ana logous  to Tn,a(~  , D) cons t ruc ted  out  of V,,D and V,,~ ins tead of their  

s t anda rd ized  versions s s Vn,C, V,,D and  respectively.  It remains  to show that  the 

difference of these test s tat ist ics is at  least  of the same order ,  but  this follows by 

repea ted ly  using e lementa ry  re formula t ions  of the type vs.D(~) - vS~(:¢)= 

(V~(O.75) /V , ,D(0 .75) -  1) V~(0.75) ~(V,,D(~)+ VD(0.75) ~ (V ,D(~) -  V~(~)). 

U n d e r  H~ the first o rde r  terms in (7.28) for C and  D, respectively,  do  not  cancel. 

Hence  the asser ted  ra te  of  Op.(n-1/2)  follows. [ ]  
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