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Abstract

Bahadur-Kiefer approximations for generalized quantile processes as defined in Einmahl
and Mason (1992) are given which generalize results for the classical one-dimensional quantile
processes. An as application we consider the special case of the volume process of minimum
volume sets in classes C of subsets of the d-dimensional Euclidean space. Minimum volume sets
can be used as estimators of level sets of a density and might be useful in cluster analysis. The
volume of minimum volume sets itself can be used for robust estimation of scale. Consistency
results and rates of convergence for minimum volume sets are given. Rates of convergence of
minimum volume sets can be used to obtain Bahadur—Kiefer approximations for the corres-
ponding volume process and vice versa. A generalization of the minimum volume approach to
non-i.i.d. problems like regression and spectral analysis of time series is discussed. ¢ 1997
Elsevier Science B.V.
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1. Introduction

The asymptotic behaviour of minimum-volume-sets (M V-sets) and of the generaliz-
ed quantile process as defined in Einmahl and Mason (1992) is studied in this paper.
We give consistency results and rates of convergence of M V-sets and Bahadur—Kiefer
approximations for the generalized quantile process. The results show that rates for
MV-sets can be used to obtain rates for the generalized quantile process and vice
versa. Empirical process theory is the main mathematical tool.

The setup is as follows. Let X, X, ..., ... be iid. random vectors in R? with
distribution F. Further , let C be a class of measurable of R? and let A denote
a real-valued function defined on C. Define the quantile function based on F, 4 and
C as

V(x) = inf{A(C): F(C)=2a, CeC}, O<a<l (1.1
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The empirical quantile function is defined as
V() = inf{A(C): F,(C)=2a, CeC}, O<a<l, (1.2)

where F, denotes the empirical distribution of the first n observations, which puts
mass n~ ! at each of the observations X, X, ..., X,. With C = {(— o0, t),t € R} and
A((— oo, t]) = t the quantities V() and V,(«) are the classical real-valued a-quantile
and empirical a-quantile, respectively. Suppose that V is differentiable with derivative
v, then

qa(0) = (v(@) ' 0" (Vo) — V(@) (1.3)

is the standardized generalized quantile process as defined by Einmahl and Mason
(1992). The factor (v(x))” ! is the analogue to the well-known factor f(F () of the
classical one-dimensional standardized quantile process. In case of existence we
denote a minimizing set in the definition of V(x) and V,(x) by Q(x) and Q,(«),
respectively, i.e. we have

V()= AQ(w) and V(o) = AQn(2)).

For A(C) = Leb(C), where Leb denotes Lebesgue measure, these minimizing sets are
called minimum-volume (MV }-sets in C (with respect to F or F,, respectively). We refer
to this situation as the MV-case and sometimes write §,, V,, V instead of g,, V., V,
respectively, to distinguish between the MV-case and the general case. g, is called
volume process. In the present paper we derive weak Bahadur—Kiefer approximations
for g,(x), i.e. we derive stochastic rates of convergence for sup,<,<i-,lga(®) +
vn(Q(a))|, where v,,(C) = n'/?(F, — F)(C)is the C-indexed empirical process and n > 0.
We also study the asymptotic behaviour of Q,(x).

The MV-case is an important special case of the presented approach. MV-sets have
been studied in the context of robust statistics. In the one-dimensional case Andrews
et al. (1972) used the mean of all data points inside a MV-interval as a robust
estimator of location which they called “shorth”, or “a-shorth”. Nowadays, in the
literature often MV-intervals itselves are called “shorth” or “a-shorth”. (Even earlier
than Andrews et al., Lientz (1970) investigated a certain localized approach. For every
fixed x € R, he used MV-intervals in the class of all intervals which contain x. See also
Sawitzki (1994)). In higher dimensions, Sager (1978, 1979) considered MV-sets in
classes of polynomial regions and in the class of convex sets in R?. Rousseeuw (1986)
used MV-ellipsoids to construct robust estimators of location and dispersion para-
meters. Davies (1987) studied these estimators in the context of S-estimators. The
volume of MV-sets, V,(a), can be used for scale estimation. This has first been
considered in Griibel (1988) in the onedimensional case. There V,(«) is the length of
the a-shorth. In our notation Griibel proved that under certain smoothness assump-
tions §,(x) with C the class of closed intervals converges weakly to a Brownian Bridge
if o is bounded away from zero and one. Einmahl and Mason (1992) generalized this
result in proving that under certain conditions supg <, <|¢.(®) + B,(a)| converges to
zero in probability as n tends to infinity, where B, are versions of standard Brownian
bridges. They also proved almost sure convergence for o« bounded away from O to 1.
Note that if f(x) = fol(x — p)/o), ne R, ¢ > 0, then the lengths of the level sets of
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f equal ¢ times the lengths of the corresponding level sets of f,. As already mentioned
in Einmahl and Mason this property can be used to generalize the well known
QQ-plots by plotting 170(oz) = Leb(Q()) against V,(x) = Leb(Q,(x)), where Qq(x)
denotes the MV-set with respect to f,.

V() can also be used to investigate modality of a distribution (cf. Section 5). If for
example the underlying univariate distribution is bimodal then there exists an « > 0
such that I7(zx) in the class of all unions of two intervals is smaller than 17(oc) in the class
of intervals. Therefore the (scaled) difference of the corresponding empirical versions
can be used for testing unimodality. This idea is related to the idea of using excess
mass estimates to investigate the modality of a distribution proposed by Miiller and
Sawitzki (1987) and Hartigan (1987) (for generalizations see Nolan, 1989, and Polonik,
1995b).

Another important statistical aspect of the M V-approach is level set estimation. Let
fdenote the Lebesgue density of F and let I'(1) = { f(x) = u} denote a level set of f. If
I'(y) € C then V(x) = Leb(I'(p,)), where u, > 0 is chosen such that F(I'(u,) = « (cf.
Fig. 1). Therefore a natural level set estimator is given by the empirical counterparts
Q.(x). Level set estimation is useful especially in cluster analysis, where one is
interested in regions which contain high mass concentration. (The case o = 1 corres-
ponds to estimation of the support of the underlying distribution.) For recent work in
the area of level sets estimation see for example Cuevas (1990), Cuevas and Fraiman
(1993) for support estimation, Molchanov (1993) for estimating level sets by means of
density estimation and Tsybakov (1997) for minimax rates of convergence for level set
estimators.

Let us briefly discuss the choice of C. First note, that richness of C (measured by
metric entropy) influences asymptotic properties of estimators and tests as considered
in this paper. The richer C the slower are the rates of convergence. Richness of C is
also crucial for time needed for calculation of the procedures proposed in this paper.
From this point of view rich classes are worse than sparse classes. In the MV-case
a further aspect comes in. There the assumption that all the level sets I'(u) of f lie in
C is crucial. Through this assumption richness of C means richness of the statistical
model. Note that by appropriate choice of C it is possible to model quantitative
aspects of the underlying density such as shape of level sets (e.g. convexity), symmetry,
monotonicity, modality (see Polonik, 1995a, 1995b). For example in the one dimen-
sional case monotone decreasing densities [0, oc) can be modeled by choosing
C ={[0, x], x e R}. Summing up it may be said, that for an appropriate choice of
C one has to balance between statistical properties, time needed for calculation and
richness of the model. In this paper we do not specify a class C. We consider general
types of classes such as Glivenko Cantelli classes, Vapnik Cervonenkis classes,
Donsker classes or more general classes which satisfy certain entropy conditions. The
classes of invervals, ellipsoids and convex sets are special cases.

The present paper is organized as follows. First the asymptotic behaviour of Q,(x) is
studied. Consistency of Q,(«) as an estimator of Q(x) is shown in Section 2 and rates of
convergence are given in Section 3 for case 2 = Leb. As a (pseudo) metric on C the
F-measure of symmetric difference is used. In Section 4 Bahadur—Kiefer approxima-
tions of the generalized quantile process are given, where the results are sharper for the
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case v = Leb. In Section 5 we study tests for multimodality based on the volume of
MV-sets. Section 6 contains some extensions and generalizations. It is indicated that the
MV-approach can also be applied to regression problems and to spectral analysis in the
time series context, and that it can be used to handle processes which appear in the
context of multivariate trimming in Nolan (1992). Section 7 contains all the proofs.

2. Consistency results

Let (€2, P) denote the underlying probability space. In order to avoid measurability
considerations we define for a function f: Q2 — R the measurable cover function f* as the
smallest measurable function from € to R lying everywhere above f (see e.g. Dudley,
1984). Furthermore, let P* and P, denote outer and inner probability, respectively.

Definition. A class C of measurable subsets of R? is called a Glivenko Cantelli
(GC)-class for F, iff

IF, — FlI¢:= (supcec| Fa(C) — F(C))* -0 as.

In what follows we denote some main assumptions by (A0), (Al), ..., etc.

(AO) C and A are such that (V,(«))* < oo a.s. for all a € [0, 1].
(Al) C is a GC-class for F.
The following proposition will be used below to derive consistency of Q,(«).

Proposition 2.1. Suppose that (AO) and (A1) hold. If V(*) is continuous in o, then
| Vale) — V(@)[* >0 as.

The convergence is uniform in o € A if U(*) is uniformly continuous in A < [0, 1].

In the MV-case continuity of ¥ holds in following situations:

(i) Suppose that F has a bounded Lebesgue density f without flat parts, i.e.
F{x:f(x) = pu} = 0 of all u. If the level sets I'(¢) (for u = 0 we define I'(0) to be the
support of F) all lie in C, then V is continuous in (0, 1) and uniformly continuous in
(0,1 — €] for every ¢ > 0. If the support of fis bounded then V is uniformly continous
in [0, 1].

(ii) Let f be a density on the real line which is bounded and unimodal in the sense
that there exists a point x, such that f is non-decreasing to the left of x, and non-
increasing to the right. Choose C as the class of all intervals. Then V is continuous.
This is easy to see, because if ¥ would be discontinuous at some o < 1, then the inverse
function would have a flat part. But that would mean that the maximal probability
content of an interval of given length could not be increased by increasing the length,
which would give a contradiction.

In order to formulate the next proposition we need some further assumptions:

(A2) F has a bounded Lebesgue density f.

(A3) For every ae[0,1] there exists a unique (up to F-nullsets) set Q(«) with

F-measure o
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(A4) For every a € [0, 1] there exists a set Q,(a).
(A5) 4 is lower semicontinuous for dp.

Assumption (A3) says that C has to be rich enough. Note that by definition Q(x)
has F-measure > a. Here we require Q{(x) to have F-measure exactly equal to «. (A3)
holds in the situations (i) and (i) given above. Whereas Q(x) is assumed to be
essentially unique, (A3), this is not required for the empirical sets Q,{(x). The results
given below hold for every choice of Q,(x). As a pseudo metric on the class C we
use

dp(C, D):= F(CAD), C,DecC.

Proposition 2.2. Suppose that (AO)—(AS) hold. Let n = 0. Assume that

(i) there exists a distribution G with positive Lebesque density such that (C, dg) is
quasi compact
(ii) V is continuous in [y, 1 — #]
then

< sup dF<Q,.<oc),Q<a))> -0 as.

n<a<l-n

Remark. In special cases (i.e. for special classes C) consistency of Q,(x) has been
proven in the literature before. Consistency of classical quantiles, and consistency of
MV-ellipsoids are well known. There of course one uses the Euclidean distance. In
non-parametric cases consistency of convex MV-sets (in Hausdorff-distance) is proven
in Sager (1979).

3. Rates of convergence of Q,(x)

In this section we only consider the MV-case, i.e. the case 4 = Leb. To formulate the
results in this section we need to introduce some additional terminology and notation.
For the proofs of the theorems given below we shall use results of Alexander (1984,
1985) about the behaviour of the empirical process. For that reason we also use some
of his terminology. Alexander considers empirical processes indexed by VC-classes
which he called “n-deviation measurable”. Here we do not give the definition of
“n-deviation measurable”, because all the standard VC-classes which we are interested
in (the classes of intervals, balls, ellipsoids in R? and finite unions and differences
of them) satisfy this measurability condition. Alexander calls a class C m-con-
structible out of D, if C can be constructed out of D by means of m € N set theoretic
operations, M, U \. For ve N a class C is called (v, m)-constructible V C-class if C is
m-constructible from a VC-class D whose index is smaller than or equal to v. The
index of a VC-class is defined as the smallest integer k, such that DD “shatters” no set
which consists of k points. And D “shatters” a finite set C, iff every B < C is of the
form CnD for some D € . We also need the notion of metric entropy with inclusion
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of € with respect to F. Let

Ni(e, C, F:=inf{meN:3Cy, ..., C,, measurable, such that for every C € C there
exist i,je{1,...,m} with C; = C < C; and F(C;\C;) < ¢},

thenlog N, (g, C, F) is called metric entropy with inclusion of C with respect to F. For
aset A c R?and ¢ > 0 we denote with A° the set A blown up by ¢, i.e. the set which
consists of the union of all closed ¢-balls around points in A.

As briefly noted in the introduction, metric entropy measures richness (or dimen-
sionality) of the class C, and it is used in empirical process theory to control the
asymptotic behaviour of the C-indexed empirical process. The same is true for the
VC-property. We shall assume roughly (cf. Theorem 3.1, Part Ib) that metric entropy
behaves like a polynome in & > 0 of degree r > 0. Separately we consider the case that
C is a VC-class. It can be shown that for VC-classes metric entropy behaves like
O(log ¢) for ¢ - 0. This fact is reflected in the rates of convergence given below,
namely, up to a log-term the below given rates of convergence for VC-classes C can be
obtained from the rates given under metric entropy conditions by formally replacing
r through 0.

We need some additional assumptions:

(A6) The sets I'(w) = {x e R%: f(x) = u}, u = 0 all lie in C.
(A7) C is such that supg ¢ < 1| Fo(Qn(@)) — a|* = O(1/n) as.

Assumption (A7) is satisfied for standard classes like closed intervals (in the univariate
case) circles, ellipsoids or convex sets (for higher dimensions) and the corresponding
m-constructible classes.

In the following theorem the quantity u, defined in the introduction (cf. Fig. 1)
becomes important. The reason is that in the situation of Theorem 3.1 we have
(o) = V'(&) = 1/u,, and this derivative appears in the definition of ,(x) (see (1.3)).

Theorem 3.1. Let A = Leb. Suppose that (A0)—(A7) hold. Let A = [0, 1] and suppose
that there exist constants y, C = 0 such that for all n > 0 small enough

sup F{x € R% | f(x) — | < 1} < C". (3.1)

acA
Part I. If in addition
(i) o — u, is Lipschitz continuous in x € A*n[0, 1] for some ¢ > 0, and
(i) infpeqptz >0
then we have the following:
(a) If C is an n-deviation measurable (v, m)-constructible V C-class then for 6 > y/(2 + v)

sup dp(Qn(@), Q(a)) = Ops(n*) asn— oco. (3.2)

axcA

(b) If C is such that for some A, r >0
log Ni(e, C,F) < Ag™" Ve>0 (3.3)
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()
Fig. 1. p, is defined through F(I'(g,)) = «
then as n — oc
sup dp(Qu(®), Q(a)) = Ope(3,(r)) (3.4)
acA
where
n~? for some 6 >y/(2+ (1 +r)y) ifr<l,
Su(r) ={ n "2 HV ogp ifr=1,

n*?/(lﬂ)(lﬂ) ifr> 1.

Part TI: Suppose instead of (i) and (ii) that f is continuously differentiable such that

sup a(l — Of)(llfj llgrad f(s)||~* ds)™' < ¢ < o0, (3.5)
0<a<l al(uy)

where oI (p,) = {x:f(x) = p,} and “ds” denotes the (d — 1)-dimensional Hausdorff
measure. Then the assertions of Part 1 hold with A = [0, 1].

Remarks. (i) The same rates of convergence as in Theorem 3.1 also appear in
Polonik (1995b) in the context of estimating level sets by means of the so called excess
mass approach. There one considers different (but related) level set estimators for
which that same upper bounds for the rates of convergence can be shown as for the
empirical MV-sets.

(i) The case A = [0, 1] is formulated separately in Part II, because for this case the
conditions of Part I are quite restrictive. In particular, assumption (i) of Part I is
satisfied for 4 = [0, 1] only if fis bounded away from zero inside a compact support.

(iti) In regular situations we have for fixed «, i.e. 4 = {x}, that (3.1) holds with 7 = L.
Such levels o will be called regular. For regular x Theorem 3.1 gives the following



8 W. Polonik | Stochastic Processes and their Applications 69 (1997) 1-24

rates. If I'(y,) lies in C then for ¢ > O arbitrary

Op(n~ 1379 for VC classes C,
Op+(n~27%%) for C = C*(K),
Op*(n"'"*logn) for C = C3*(K),
Op(n~ 1+ 1) for C = C4K), d >3,

dp(Qn(@) I (1)) =

where C?(K) denotes the class of convex sets in R? d > 2, lying in a compact set K.
The assertion for the convex sets follows since r = (d — 1)/2 for C = C*(K) (Dudley,
1984). Tsybakov (1997) shows (under slightly different smoothness assumptions) that
n~2" is the minimax rate for estimating convex level sets.

Since intervals and ellipsoids form VC-classes Theorem 3.1 gives us the almost
n~ 173 rate for these cases. Note that it is known that the center of the M V-interval (the
shorth) and also the center of the M V-ellipsoid converge at an n~ /> rates (cf. Andrews
et al,, 1972), for the one-dimensional case). Of course one should expect that the ¢ can
be removed from the rates, but at present we do not know how to do this.

(iv) Let us briefly discuss the validity of assumption (3.5). First note that (3.5) is
a special version of the general assumption supg << (1 — 0)|v'(@)|(v(®) ' <c < ©
which will be used in Section 4 (cf. discussion of assumptions of Theorem 4.2). If we
consider only values of « close to one, and restrict the supremum in (3.5) to such «,
then the tail behaviour of f determines the validity of (3.5). In the one-dimensional case
(3.5) holds for example for normal distributions, logistic distributions and exponential
distributions (see Shorack and Wellner, 1986, p. 644). If the supremum is (3.5)
is restricted to a close to zero and d = 1, then for (3.5) to be satisfied we only need f” to
be bounded inside I'(y,), for some o > 0. However, for d > 2 the integral
forwyllgrad f(s)|| ' ds can come close to zero even if ||grad f(s)|| is bounded, because
the (d — 1)-dimensional Hausdorff measure of éI'(u,) can become small. For example
assume that f has a mode in 0 and that locally around zero f(x) = — ||x||* + ¢, for
some ¢, k > 0. Then it is easy to verify that {,,,llgrad f(s)l| ' ds~a' ~*“ Hence the
integral [or,,llgrad f(s)|| ™' ds converges to zero if k < d. However, a(fsr(, ! grad
F()II 7 ds) ' ~ o', such that (3.5) is satisfied (for « close to 0) for each k > 0.

The main technical result for deriving the rates of Theorem 3.1 is inequality (3.6)
which is given in the following lemma. We formulate it here, since it shows that the
analysis of dp((Q,(«), I'(p,)) can be decomposed into a deterministic and a stochastic
term. Somehow, this is like a bias-variance decomposition. It also shows, how
condition (3.1) and the conditions on the empirical process come in. A similar
inequality has been used in Polonik (1995b) in the context of estimating level sets by
means of the excess mass approach.

Lemma 3.2. Let A= Leb. Suppost that (A0), (A3), (A4), (A6) hold and let
M =sup, gl f(X)|(< 00 by (A3)). Let o €(0, 1) and assume that the level sets I'(1) are
MV-sets in C for all 1 in a neighbourhood of u,. Then we have for every ¢ > 0 small
enough that

dp(Qn(2), Q@) < F({x:] f(x) — pal < £})
+ Me ™' (n 2 g,(0) — (F(Qu(®) — FQ@))). (3.6)
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We call n'"?(F(Q,(x)) — F(Q(x)) the generalized uniform quantile process. The stochas-
tic term in on the right-hand side of (3.6) equals n~ 2 times the difference of the
generalized and the generalized uniform quantile process. In the classical situation of

one-dimensional quantiles this difference has been studied by Csorgé and Revesz
(1978).

4. Bahadur—Kiefer approximations for ¢,

As for the classical quantile process it is possible to derive Bahadur-Kiefer type
approximations for the generalized quantile process. The given results in this sections
actually generalize some of the classical results on Bahadur-Kiefer approximations.

Theorem 4.1. Let A < [0, 1] and 2 = Leb. Suppose that F is twice continuously differ-
entiable such that (3.1) holds for 0 < y < 1 and that (3.5) is satisfied. In addition assume
that all the level sets I'(u) = {x:f(x) = pu}, p = 0 lie in C.

(a) If C is an n-deviation measurable (v, m)-constructible V C-class then for ¢ > 3/(2 + )

Sup(g(®) + vu(Q@)| = Ops(n %) asn—oc. (4.1)

aeA

(b) If C is such that (3.3) is satisfied for some r > 0 then

Sup [Gn(2) + vu(Q@)| = Opa(n ) asn— o, (4.2)

xeA

where

n? for 5>y(1 —=n2Q+ (1 +r)y) ifr<l,
0,(r) = { logn if r=1,

n(r*l)/Z(r+1)’ lj r> 1

For a fixed regular level o, where by definition y = 1, we obtain from Theorem 4.1
that |§,(a) + v.(Q(a))} is of the order Op« (n~ ') for n-deviation measurable VC-
class and Op+(n~ Y***9 for the class C*(K). The latter follows since for C*(K), d = 2,
one has r = r(d) = (d — 1)/2 (see above). Under mild conditions on the tail behaviour
of f the latter, and hence also the rate of approximations, can be extended to the class
C’. (The result about the metric entropy of C? can be found in Polonik, 1992). Note
that Theorem 4.1 does not generalize the classical rates for Bahadur—Kiefer approxi-
mations for the one-dimensional quantile process, although the class {( — o0, x] € R}
is a VC-class, but Theorem 4.2 does. See the end of Section 4 for an explanation.

The above theorem follows from Theorem 4.2 and (4.5) together with Theorem 3.1.
Theorem 4.2 gives Bahadur—Kiefer approximations for the generalized empirical
process for general 4. The given rates of approximation depend on the behaviour of
the modulus of continuity of C-indexed empirical process which is defined as

,,(8):= sup{|v,(C) — v,(D}}; C, D e C,dp(C,D) < 8}.
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To formulate Theorem 4.2 we need the following assumption whose validity is
discussed below:
(AR) V is differentiable in (0, 1) with derivative V' = v > 0.

Theorem 4.2. Suppose that (AO)—(AS) and (A8) hold and let n = 0.
Part 1. Suppose that for some & > 0 small enough

(i) v is Lipschitz continuous in [ — & 1 — n + ][0, 1]
(1) inf,<,<q—,0(x) >0
(iii) for any choice of Q(a) the class {Q(x), « € [0, 1]} is an n-deviation measurable
V C-class.
(iv) |F, — Flic = Op«(h(n)) for a function with n~*'* = O(h(n)) as n — oo, then

SUPy<a<1- ol da(®) + va(Q(@)] = Ope(n'h(n)) as n — oo . (4.3a)
In addition let {8,} be a sequence of positive real numbers and assume that

(v} a > Q), aen — &, 1 —n + &]n[0, 1] is Lipschitz continuous for dp.
(Vi) SUPy<a<1—ydp(Qa(@),Q()) = Opa(3,) as n — .
(vii) w, (6,) = Op+(g(d,)) for a function g with g(d,) = g(d., n) such that g(d,) — 0
and g(cd,) = O(g(d,)) as n > o for any ¢ > 0.

If h(n) = O(3,) and n'’* g(5,) = O(log n) then we have

sup [ ga(a) + va(Q(2))| = Op«(g(da)) as n — . (4.3b)
n<a<li-—n
Part II: Suppose that instead of (1) and (i1) of Part 1 we have that v is differentiable in
(0, 1) with derivative v' satisfying
sup a(l — a)|v'(@|(v(@) ! <c < oo (4.4)
O<a<1
Moreover, we assume that v is monotone increasing in an interval (1 — ¢, 1), ¢ > 0, and
either 0 < lim, ,,v(X) < 00 or v is monotone decreasing in an interval (0, €), ¢ > 0. If in

addition the other assumptions of Part 1 are satisfied then (4.3a) and (4.3b), respectively,
hold with n = 0.

Functions g satisfying condition (vii) are well known for certain classes C. For
VC-classes which satisfy some measurability condition we have ¢(5,) = (3, log n)'/?
(e.g. Pollard, 1984). If C satisfies (3.3), with r > 0, then it is known (Alexander, 1984)
that if n”2/**? logn = O(5,) then one can choose

s if r<t,
g(6,) =< logn fr=1, (4.5)
n(r—l)/Z(r+ 1) lf r> 1

Remarks. (i) Condition (4.4) has been used by Csorgé and Revesz (1978) to extend
Kiefer’s (1970) result for the one-dimensional quantile process (see also Corollary 4.3)
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to distributions with not necessarily compact support. Also Einmahl and Mason
(1992) used this condition.

(i1) Asin Theorem 3.1 we formulate the case n = 0 separately in Part II. The reason
is given in the remarks after Theorem 3.1.

Discussion of assumptions. Assumption (iv) in Theorem 4.2 is trivially satisfied if the
sets Q(a) are nested, because then dp(Q(x), Q(B)) = |F(Q(x) — F(Q(B)) = |z — B|.
This for example holds in the M V-case, provided the level sets are MV-sets. This also
holds in the classical case of real-valued quantiles, i.e. for C = {( — oc, ], t € R} and
A( — oo, t]) = t. Examples where (A8) is satisfied are the following:

(a) In the case of the classical one-dimensional quantile process, ie. for

= {(— oc, t] t € R} and A(( — oc, t]) = t, we have for all « with f(F~ '(a)) > 0 that
v(oc 1/ f(F~ (). Hence, 1ffls differentiable, v'(a) = f/(F~ Y(a)/f> (F~ *(«)).

(b) Consider the special situation of Section 3, i.e. let A = Leb and suppose that
I'(A) = {x: f(x) = A} e C for all 1 > 0. If f has no flat parts, i.e. F{f= u} =0 for all
u > 0 (this is equivalent to (3.1) above), there exists for every a € [0, 1] a unique y, = 0
such that F(Q()4I'(u,)) = 0. g, is defined through the equation F(I'(u,)) = a (cf.
Fig. 1) and we have v(a) = 1/u, for all a. If in addition fis continuously differentiable
then v'(®) = (43 far,,llgrad f(s)|| " ds) ' where “ds” denotes the (d — 1)-Hausdorff
measure and cF(ua {x:f(x) = u, }. Note the analogy to (a), since u, = (¢ C(a)).

In the special case of classical real-valued quantiles we have Qo) = ( — oc, F7* (oc)]
and Q,() = (~ o, F, ()], Hence, di(Qa(2).Q() =[5+ f(x)dx| = f(F '
F;'(a) — F~'(a)|. The latter is the absolute value of the standardized one- d1men~
sional quantile process (up to the factor n'/?). Hence, a first application of The-
orem 4.2, Part I, with 3, =1 gives dp(Q,(x),0(x)) = Op«(n~'"?). Since the class
C = {(— o0, 1], t € R} is a VC-class we have w, (3,) = Opt( - 12(log 8,)?) and a sec-
ond application of Theorem 4.2 gives an upper bound of Op.(n~**(log n)'/?) which is
the exact rate of approximation obtained by Kiefer (1970).

5. Testing for multimodality

The idea to construct tests for multimodality by means of a comparison of Lebesgue
measures of MV-sets for different classes of sets C and [0 has been given in the
introduction. Since in this section we simultaneously consider two different classes of
sets C and D, we add to our notation an index C or D, respectively. For example, if the
infimum in the definition of ¥ is extended over D we write V v, Qp(a) instead of V,
v and Q(a), respectively. An analogous notation is used for the corresponding empiri-
cal versions. We also write v, p and v, ¢ for the C and D-indexed empirical process,
respectively.

In general we consider the following test problem. Suppose that for two classes C,
D of measurable subsets of R? with C < D the minimum volume sets Q(x) and Qp, (a),
in C and D, respectively, are defined uniquely. Given 4 < [0, 1] we consider the
hypotheses

Hy: Qp(x)eC forallae A
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Versus
H,: Qp(x) e D\C for some € A.

Let V3c(@) = V,c(@)/V,.c(0.75) and V3 p(@) = V, 5(®)/V,,5(0.75) denote scaled ver-
sions of V, ¢(a) and V, p(a), respectively. (Note that if C is the class of intervals, then
V..c(0.75) denotes the interquartile range). As a test statistic for the above test
problem we propose

Tn,A(C’ D): SupasA(Vf,C(a) - VE,D(O())'

Proposition 5.1 shows that a test for H, versus H; based on T, 4(C, D) is consistent:
Let

T4(C, D):= sup,e4(VE(@) — V(@)
where Vi(a) = Ve(0)/V(0.75) and V3(«) is defined analogously with C replaced
by D.

Proposition 5.1 (Consistency). Let C, D be GC-classes for F with C = D). Assume that
Ve and Vi are uniformly continuous on A < [0, 1], then as n —» 0

| T, 4(C, D) — T4(C, D)| = Op(1).
Hence, under Hy as n - oo
T, 4(C, D) = Op:(1).
Theorem 5.2. (Rates of convergence). Let A = Leb and let A =[n,1 — 5], n > 0. Sup-

pose that F is twice continuously differentiable such that (3.1) holds for 0 <y < 1 and
that (3.5) is satisfied. The following rates hold under Hy:

(a) If C is an “n-deviation measurable” (v, m)-constructible V C-class then for
0>7y/2+7)

T,.4(C, D) = Ops(n~ 1272} g5 n > 0.
(b) If C is such that (3.3) is satisfied for some r > 0 then
T,,4(C, D) = OP*(n_(l/ZH('))) as n — oo
where
n? for 6 >y1—nR2Q+A+ry ifr<l,
0.(r)={logn if r=1,
pr= 1126+ 1) ifr>1.

Under H, the rate in (a) and in (b) for r < 1 are both n~ */* which in this case are the
exact rates.

Corollary 5.3. Suppose that the assumption of Theorem 5.2 hold. Assume that f is
unimodal with mode x, such that ||grad f(x)|| # 0 for x # x, and that the level sets
I' A ={x:f(x) = A} all lie in C.
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(a) Let C be the class of all intervals for d = 1 and the class of all ellipsoids for d = 2
If in addition D is a V C-class containing C, then we have for every ¢ > 0 that as n — oo

T,.4(C, D)= OP*(nmz/“E)-

(b) If C is the class of convex sets in R* and D is k-constructible out of C then we have
Jfor every ¢ > 0 that as n — o0

Opt(n74/7+£) l_f d= 2,
Tn.A(Ca D) = OP*(nil/Zlog n) lf d= 33
Opa(n 2412444y yr 5 3,

Corollary 5.3 follows immediately from Theorem 5.2, because the assumptions assure
that Theorem 5.2 can be applied with y = 1.

6. Extensions and generalizations

In the proofs of the above results we do not explicitly use the i.i.d assumption, but
only through the behaviour of the empirical process. Therefore the MV-approach can
be transfered to situations where other empirical processes appear with similar
properties as the usual empirical process used above. Such processes for example are
the set-indexed partial sum process (this process appears in the regression context, see
below) and the empirical spectral process which is used in spectral analysis.

The regression problem: Suppose that we have a nonparametric regression model on
a regular grid Y; = r(i/n) + &, where i€ {0, 1, ... ,n}, r: [0, 1] > [0, oc ) is the regres-
sion function and ¢; are 1.1.d. errors. Let C be a class of subsets of [0, 177 and for Ce C
let R(C) = |.r(x) dx and define

V(a):mf{A C):R(C)za, CeC), O<u<R, (6.1)
and the corresponding empirical version
V() = inf{A(C):R(C) =z, CeC}, 0<a<R. (6.2)
where
R(C)y=n""Y Y.
i:ifneC

The minimizing set in (6.1) is a level set of the regression function i if the level sets of
r lie in C. Note that there are practical problem where one is interested in estimating
level sets of a regression function (Messer, 1993). Similar results as in the previous
sections can be proved by using the process e,(C) = n *?(} ., ..c Yi — R(C)) instead
of v,. Under smoothness assumptions on r one has
e(CY=n"%"3Y & +o(l)
i:i/neC

Set-indexed partial-sum processes of the form n™%?% ., & have been studied (e.g.
Bass and Pyke, 1984; Goldie and Greenwood, 1986; Alexander and Pyke, 1986). These
results can be used to obtain results of the same type as given in the previous sections.
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Spectral analysis: In spectral analysis one has a regression like situation with approx-
imately independent “observations” if one considers the periodogram ordinates as
observations Y; and the spectral density as regression function. Proceeding as above
the empirical spectral process appears instead of the process e,. See Dahlhaus (1988)
for results on weak convergence of the empirical spectral process.

Multivariate trimming: Here we briefly indicate how the MV-approach can be used to
rederive the limiting distribution of a certain process appearing in multivariate
trimming as considered by Nolan (1992). This limiting distribution has already been
derived by Nolan with different methods.

Nolan studies a method of multivariate trimming connected to quantiles of projec-
tions on (d — 1)-dimensional hyperplanes. The trimming idea is to consider the
intersection of all halfplanes in R? which contain at least (1 — a) percent of the data.
The resulting convex set C, is called a-trimmed region. Let C denote the correspond-
ing theoretical a-trimmed region, i.e. the intersection of all halfplanes which contain
F-mass at least 1 — «. Nolan considered the following radius function on the unit
sphere $% 7 1

ro(u) = inf{r = 0: ru¢C,}, ueS*'.

If the origin lies in C, then ur,(u) is an element of 6C,, otherwise r,(u) = 0. Replace C,
by C to get the definition of r,{u). Assume that F is such that C is non-empty and that
(without loss of generality) O is an inner point of C. Let {-,;> denote the usual inner
product on R?. Nolan showed that r,(#) has the same limiting distribution as

qn () = gn(va(u))/<u, v4(u)>

where gq,(u) denotes the (one-dimensional) empirical (1 — «)-quantile of the projec-
tions <{u, X;», i =1, ...,n, and v,(u) is the outwarded (with respect to C) normal to
H(u), the supporting hyperplane to C at ru. Now we indicate how the limiting
distribution of g,(u) (and by that the limiting distribution of ¢;(u)) can be determined
by using generalized quantile processes. Let 3 (u) denote the class of all halfplanes
{{x,u) <c}, ce R, and for H € # (u) let r(H) = inf{r > 0: ru¢ H}. Then

ga(u) = Wy(a, u) = inf{r(H): F,(H) > 1 — o, H € # (u)}
and
q.(u) = W, u) = inf{r(H): F(H) 2 1 — o, H € # (u)}.

Under appropriate smoothness assumptions the derivative of W («, u) with respect to
ais w(x, u) = (p.(q.(w)~* where p, is the density of the distribution of (u, X> under F.
Analogous arguments as in the previous sections show that n'/? (w(a, v,(w)) !
(ga(va(w)) — qu(v,(w)) can be approximated by — n'/*(F, — F)(H(u)) uniformly in
ue S '. More precisely, if (among others) inf, g1 w(e, v,(1)) > 0, then

sup |n'2(g,(v.(u) — qu(va())) + n*w(et, v (WWF, — F)(H(w)| = Op(1).

ues?!
Note that g¥(y(u)) = {r(wu,v,(w)>. Hence, by definition of ¢ (u) it follows that n'/?
(g¥(u) — ro(u) has the same limiting distribution as n'/? w(a, v (1)) <{u,v(w)> '
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(F, — F)(H(u)). Under smoothness assumptions the process n''* (F, — F)(H(u))
converges in distribution to a mean zero Gaussian process with covariance
c(u, v) = F(H)nH(@®)) — F(Hw)F(H () = F(HwH(v)) — (1 — «)*. If the remain-
der terms can be controlled uniformly in u (which should be possible under appropri-
ate smoothness assumptions) then it follows that n'/?(¢¥(u) — r,(u) converges in
distribution to mean Gaussian process with covariance c(u, v) g(u)~ ' g(v) ', where
gu) ™t = wlonva(w) {u, va(w)> .

7. Proofs

Proof of Proposition 2.1. Let F,(t) =sup{F,(C): CeC, A(C)<V()} and let
F, (@) = inf{t €(0, 1): F,(t) > a} be the generalized inverse of F,(t). Einmahl and
Mason (1992) showed (see their Lemma 3.1) that on the set where V,(0) < o« (which
has inner probability 1 by (Al)

Vi) =V(F, *(2)) forall0<a<1 (7.1)

Hence, | V,(2) — V()| = |V(F, *(0)) — V()| on a set with inner probability 1 and the
continuity assumption on V together with the fact that supg <, < (|F, '(2) — x|* >0
a.s. (see Corollary 3.2 of Einmahl and Mason). [J

Proof of Proposition 2.2. Let {x,} be a sequence in [#, 1 — #]. We show that d(Q,(a,),
Q(a,)) > 0 and n — o0 on a set with inner probability 1. Let « denote a limit point of
{a,}. Then

dp(Qn(ot), Q(0n)) < dp(Qn(2n), Q@) + dp(Q (1), Q(a)).

First we show that dg(Q(a,),0(x)) converges to zero. Let Q be a limit point of {Q(2,)}
for dg. Then there exists a subsequence {Q(«,)} of {Q(x,)}converging to Q in dg and
hence also in dg. It follows from the continuity of V(a) = A(Q(a)) and the lower
semicontinuity of A (assumption (AS)) that

AQ(a)) = lim inf, (A(Q(2n)) = Q).

Since [F(Q) — F(Q(a,))| < dp(Q(,),Q) >0 and F(Q(an)) =2 > we have
F(Q) = a. The assertion now follows from the uniqueness of Q(x).

Now we show that dg(Q,(x,), @ () converges to zero on a set with inner probability
1. Let (for a fixed w & 2) R be a limit point of {Q,(x,)}. It follows as above together
with the consistency of V, (Proposition 2.1) that on a set with inner probability 1.

A(Q(a)) = lim inf, A(Q(x,)) = im inf, A(Q,(x,)) = A(R).
It remains to show that F(R) = a for all w € A with P,(A4) = 1. From this the assertion
follows by similar arguments as used above in proving that dg(Q(x,),Q(x)) converges
to zero. In order to prove that F(R) = o for all w € A first note that V is strictly
monotone. This follows from (ii) and (A3). Together with the uniform convergence of
V, to V it follows that as n — oo
sup | Fu(Qn()) —a[* >0 as. *)

n<x<l-n
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Since also Sup, <a < 1—ul Fa(@n(®)) — F(Qn(®)| < supcec| Fo(C) — F(C)| — 0 ass. the as-
sertion follows. [

Before we give the proofs of Section 3 we first prove Theorem 4.2. The reason is that
Theorem 4.2 will be used to prove the results of Section 3. The main technical result
for deriving Theorem 4.2 is given by the following:

Lemma 7.1. Suppose that (A0), (A3) and (A8) hold. Let Ay =« A = (0,1)and ¢, d > 0.
Suppose that the map o — Q(a), o € A is Lipschitz continuous for dp with Lipschitz
constant k=1. For 0<a<1 and 6>0 let o} =a—(F,—F)(C(®)+n '
w, (k(c +d)d). Then the following inequalities hold on the set B,=
{sUPyea, dr(Qn(0), Q) < cd}n{o,” € AVa € Ao} N {Sup,ey,lo; — a| < dd} for each
ae Ay

n(®) + va(Q(@) < V(& )v(@) ' w,, (k(c + d)9)

— (V@)™ = Dva(Q(), (7.22)
4,0 + va(Q(@) = — (&, )v(@) ' w,,(k(c + d)9)
— v " = Dva(Q(), (7.2b)

where £F lie between o, (8) and «, respectively.

Proof of Lemma 7.1. As in the proof of the consistency of V¥, (x) (Proposition 2.1) the
idea of the proofis to approximate V,(«) through V (a,) where o, is random, so that we
get rid of V. For each « we have

V(o) = inf{A(C): C e C,F,(C) = o}
=inf{A(C): Ce C,F(C) =z o — (F, — F)(C)}

= inf{A(C): Ce C,F(C) = o — (F, — F)(Q(®)
+ (F, — F)(Q(2) — (F, — F)(C)}.

Since the inf is attained at Q,(«) and since k > 1 we have that on B, for each a € A,

V(o) = inf {A(C): CeC, dp(C,0(x)) < k(c + d)3,
F(C) 2 a — (F, — F)(Q(®) + (F, — F)(Q(®) — (F, — F)(C))}.

Hence, it follows
inf{A(C): Ce C,F(C) = a, (8),dr(C, Q(0)) < k(c + d)d}
< V@)
<inf{A(C): Ce C,F(C) = o, ,dr(C, Q(2)) < k(c + d)}.

And since dp(Q(e,F),0(2) < kla, — a| < kdd we have V(a, () < V,(a) < V(a, ().
Hence, the following inequality holds on B,:

(V@)™ AV (a (0) — V(@) < ga(®) < (@) "2 (V (@ (9) — V(@)
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Inequalities (7.2a) and (7.2b) now follow easily by applying an one-term Taylor
expansion to the right-hand side and the left-hand side of the last inequality, respec-
tively. [

Proof of Theorem 4.2.

Part I: First we prove (4.3a). Since by assumption the class {Q(x), x € [0, 1]} is
a VC-class it follows from standard results of empirical process theory (e.g. Shorak
and Wellner 1986) that supg<,«i|v,(Q(a))| = Op«(1). It remains to show that
SUP, <z <1 - nlqn(@)| = Op+(n*/?h(n)). In order to do that we use the representation (7.1).
It follows that on a set with inner probability 1 for all 0 <« < 1

(@) = v(0,)v (@) a2 (F, ' (@) — a) (7.3)

for some 6, lying between F, !(x) and «. Since supo<,<q|Fy (%) —2]* =0 as.
(cf. proof of Proposition 2.1) it follows from assumptions (i) and (i) that
SUP, <z<1-y0(0,)0(0)"" = Op.(1) as n — oc. Now we consider n'/?|F, ' (o) — «f. First
note that supg <, < (n'?|F, ' (@) — %| = supg c s« 1 n'?|Fp (@) — a| . For F, (%) — x we
have the following: F,(0)—a < sup{(F, — F)(C): CeC, A(C)< V(2)}, and hence,
SUPg<x<1 N2 (Fu(2) — ) < nY2||F, — F|l¢c = Op+(n'*h(n)). Furthermore, F,(x) — x >
(F, — F){Q(a), such that — supg ., < n"*(F, () — 2) = Op«(1). This proves (4.3a).

Now we show (4.3b) by means of Lemma 7.1 {(Here the notation of Lemma 7.1 is
used): Set 4 = [ —¢e, | —n +e]n[0,1]and Ay =[5, | — »]. By definition of »,” we
have |2," — a| < 3||F, — F||c. Hence, because of (A1) the (inner) probability of the set
{«," € 4 for all x€ Ay} tends to one as n tends to infinity. The same holds for
¢ instead of o,F. It also follows that sup,c4 |, — x| = Op«(h(n)). Because of the
Lipschitz continuity of o — Q («) (assumption (v)) the quantity sup,. 4, dp(Qo," ).Q (%))
also is of order Op.(h(n)) and hence is Op«(d,).

Collecting all this it follows that for a given ¢ > 0 there exist constants ¢, d > 0 such
that P*(BS) < ¢ for n large enough. Furthermore, on B, the factor v(¢,") v(e)™ ' is
bounded uniformly in « € A,. Hence, the first term on the right-hand side of (7.2a)
gives the asserted order. It remains to consider the second term on the right-hand side
of (7.2a). Let K be the Lipschitz constant of v on A, then we have on B,

(W& )o@ = Doy(Q @) < [Ko(@) (€ — a)va(Q (@)
< K*la," — x|[va(Q ()]

with K* = K sup,.4,v(2) " '. Note that K* is finite by assumption (ii). The last
expression in the above sequence of inequalities of the order Op.{(h(n)).

By using inequality (7.2b) instead of (7.2a) the argumentation for — (g,(x) +
v,(Q(a))) 1s completely analogous.

Proof of Part II. This proof is in principle the same as the proof of (4.3a) under the
conditions of Part 1. The only difference is how to show that supg << 0(0,)v(®)” Vis
stochastically bounded. Here the boundedness (in outer probability) follows from
assumption (4.4). This has already been shown by Einmahl and Mason (1992).
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(Actually they proved this only for « close to 1, but the case a close to 0 can be proved
analogously since (4.4) also holds for « close to 0.)

Now we prove (4.3b). For short we write 4, (%) = g, () + v,(Q («)). Again we use
Lemma 7.1 (and the notation from this lemma) and we only give the upper bound for
SUPg < o< 1 4, (). By using (7.2b) instead of (7.2a) the upper bound for — supg«q< 1 4,(c)
is completely analogous.

Fix ¢ > 0. Choose ¢, > 0 such that P*(||F, — F||c > c.h(n)) < ¢ for n large enough
and let k > 0 denote the Lipschitz constant of &« — Q («). Let #, = 4kc h(n) and define
A, = [1:,1 — n,]. We split the interval (0, 1) into (0, 5,,), 4, and (1 — #,, 1) and show
that sup, <, 4(a), sup,> -, 4,(x) and sup, 4 4,(x) are of the asserted order.

First we consider the case a € 4,. Lemma 7.1 will be applied with 4, = 4, and
A =(0,1). Let d, > 0 be such that P*(sup,c,dr(Q,(2),0Q (®)) > d,5,) < & for n large
enough. Since h(n) = O(J,) there exists a constant ¢; > 0 with h(n) < ¢, ,. We show
that for the set B, as defined in Lemma 7.1 with ¢ = d, and d = kc, ¢, 6, we have

P*¥(By) <¢ asn— 0. (7.6)

Note that  supses de(Qo,),Q(a)) < k supyegy lotn — | < 3k||F, — Fllc.  Hence,
P*(sup,c 4, dp(Q(a," ),Q (®)) > keyc,0,) <e for n large enough. Furthermore, we
have P,(x, €(0,1)VaeAd,)=>1—¢ for n large enough. This follows from
P*sup,. 4 |o," — a| > 3¢, h(n)) < & and our choise of #,. Hence (7.6) follows.

On B, we know that (7.2a) holds. Therefore the assertion follows if we have shown
that

supo(¢,” )o(@) ™" = Op(1), (7.7)
sup|(v(&," )o@ " — Do, Q@) = Ope(g(8,)- (7.8)

We first prove (7.8). In order to do this we first rewrite the term (v(¢, )v(x) ™! — 1).
Since v is assumed to be differentiable we have on B,

o @ ' = 1=v00)v@ (€ —w)
= [0 (1 — 0,)0'(6,)v(6,)™ " 1[0, )o(®) ']
(6, (1 — 0.)17 (& — o),

where 0, lies between &, and a. By assumption (4.4) the first term in the last line is
bounded on B, uniformly « € A,. Hence, to prove (7.8) it remains to show

sup(u(0,)v (@) )0, (1 — 6,)) "a(l — o) = Ops(1), (7.9)
supl(@(1 — @) (& — @)v(Q (@)] = Op+(g(3n). (7.10)

It turns out that the proof of (7.9) is similar to the proof of (7.7). Therefore the proof of
(7.9) will be given below together with the proof of (7.7). Now we prove (7.10). Since &,
lies between a,F and « we have

1& — ol <o — o) S |(Fy = F)Q@)] + In™ o, (3,)].
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Hence, (7.10) follows from (7.11) and (7.12), where

supn'(a(l — a)) M (F, — FYQ@)I* = Op(g(3,)), (7.11)
sup(a(1 — o))" |(E, — F)(Q ()| = Op+(1). (7.12)
acd,

Note that by assumption F(Q («)) = « and that {Q(x), x € [0, 1]} is a VC-class. Hence,
(7.11) and (7.12) follow from that for VC-classes C

sup g (F(C)™va(C)] = Ops(n'*g(5,)"'2, (7.13)
m<FEO)<st-n,
sup  q2(F(C)™H[va(C)] = Ops(n''?), (7.14)

< FO <1,

where ¢q,(t) = (t((1 — t))"* and q,(t)=t(1 —1). However, since by assumption
n'2g(s,) = O(log n) Eq.(7.13) follows from Alexander (1985, Corollary 1.6 (i)).
Eq. (7.14) directly follows from Alexander (1985), Corollary 1.6(i1). To finish the proof
of sup,e4 4p(2) = Op«(g(6,)) it remains to show (7.7) and (7.9). First note that

o(s)o(@) P <[Vl = AIs Al —(sve)] ). (7.15)

This can be obtained from assumption (4.4) by easy analysis. (See for example
Shorack and Wellner (1986, p. 644).) By means of (7.15) we get that (7.7) and (7.9)
follow from

sup (1 —a)(1 =& P =0p(1) and sup af, ' = Op«(1) (7.16)

a<l-—n, azmn,

and that the same holds with &, replaced by 0, . This is because (7.15) and (7.16) imply
that sup,e 4 (v(&7)v(®)™") = Op+(1) and that sup,c 4 (0(6, )o(®) ') = Op-(1).(7.16) can
be seen as follows. Since £ and 0, lie between o, and o we have

o — o —o <& <at o, —af

and the same holds for 8, instead of £;. Hence, it suffices to show

P*(suploz,,+ —al*o(l —) ' > 1/2)—»0 as n — oo. (7.17)
acA,

Note that sup,eq,n "2, @)@ —2) ' <2 ', 'n 2w, (6,) = Op(g(5,) =
Op«(1). This together with (7.14) gives (7.17).

To complete the proof of the theorem we have to show that sup, ., |4,(x)| and
SUp, » 1 -y, | 4 ()] also are of the order Op«(g(9,)). We first discuss the idea for the case
% 2 1 — n,. By definition of g we have sup, . 1 -, |va{ Q (a})] = Op«(g (1,)) =Op+(g(n)).
Hence it remains to show that sup, . ; .., 19, ()] is of the same order. We again make
a splitting and first consider the region {1 —y, > a > 1 —n,} for an appropriate
sequence y, < 7,. Finally, we will show the assertion for {1 >a =1 —7,}.

We choose 7y, =2C,n '?g(d,), where C,>0 is such that P*(w, (J,)
> C,g(5,)) < e Then the above arguments for the case {a € A,} can be carried
through analogously for {1 —y, = « > 1 — #,} and also for {y, < « < n,}. It remains
t0 Show SUP, - 1 -, |gn (®)] = Ope(g (3,)) and sup, <., |4 (@) = Op+(g (3,)).
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We again first concentrate on the case « close to 1. To show that sup, 5 1, |g.(a)] is
of the asserted order we again use the representation (7.1). This leads to

F (@)

qn(@) = nl/zj v(s)v ()~ " ds. (7.18)
If o« > F, *(o) then the integrand is bounded by 1 and g,(a) < n'/*(x — F, ' (). It
follows that in this case sup,s -, |g.(@)| < n'?sup,s,-,, (@ —F, ' (@) =n'"?
SUPss £ (1 -, (Fa(®) —a). To estimate the last term we use the following fact: for
t € [0, 17 we have up to an exceptional set with outer probability tending to O that

sup(F, (@) — o) < sup  (F,(4) — F(4)), (7.19)

=t F(A)zt—h(n)logn
where here and in the following the sup is extended over A € C. Using this and the fact
that sup,eo, 13l Fy ' (@) — of = Op+(n~"/?), which follows from Corollary 3.1 of Ein-
mahl and Mason (1992), gives us

sup |gu(@)| <n'’? sup (F.(A) — F(A))

azl-—y, F(A) 21—y, 0p*(n" %)

1/2 sup (F,(4) — F(4))

F(A) 2 1—y,—0p*(n""?) —h(n)log n
= Op+(g(h(n) log n)) = Op«(g (5,))-

It remains to show (7.19). For any sequence f, we have

<n

(Fu(®) — &) < (sup{ Fy(A4): « — B, < F(A) <o} —a)
v (sup{ F,(A): o — B, > F(4)} — ).

<( sup (E.(A)—F(A))>

F(4)za—B,

v (sup(Fn(A) — F(A)) — /3,,).
AeC
Since  sup,ec(Fy(A4) — F(A) = Op«(h(n)) the assertion follows by choosing
B, = h(n) logn. For the case o < F, ! () we again start with (7.18) and use (7.15). This
gives for >3 and ¢ # 1
F, (@)

gn(0) < 2°n'?(1 — a)cj (1 —s5)°ds

<20 =721 —of [(1 = F @) ™~ (1 — o) €]
=2(1— o '’ [(1 = (1 — /(1 = F7 1 @) ™! — (1 — o],

For ¢ < 1 we have of course (1 — )/(1 — F, }(2))) ! < 1 and the assertion follows
by choice of y,. For ¢ > 1 we use the fact that sup,cpo, 1;((1 — ®)/(1 — F, }(a))) is
bounded in probability (Lemma 3.3, Einmahl and Mason, 1992).

Analogous arguments can be wused for ¢=1 where we have

J5 @1 — 5)7¢ ds = log((1 — /(1 — ' (2))).



W. Polonik [ Stochastic Processes and their Applications 69 (1997) 1-24 21

The case a < vy, follows the same line as the just considered case « = 1 — y,. Therefore
we only give a brief outline. If v is bounded in a neighbourhood of 0 and bounded
away from zero then we just need to show the analog of (7.19), and then the above
arguments can be carried through. This analog is that for t € [0, 1] we have

sup(F,(2) — o) < sup (F,(4) — F(A))

ast F(Ay <t
where on the right-hand side again the sup is extended over 4 € C. This fillows almost
directly from the definition of F,.
If v is unbounded and monotone decreasing near 0, then similar arguments as above

show that the crucial situation here is F, («) < o and ¢ = 1. It follows from (7.18) and
(7.15) that for « < 1/2

an(®) < 2°(c — D™ ' P o(e/F M @) ! — ol (7.20)

Analoguous arguments as used above for the case » > 1 — y, can now be used by just
replacing | — axand 1 — F, !(a) through « and F, ! (a), respectively. Note that Lemma
3.3 of Einmahl and Mason can under the stronger condition (4.4) easily be adapted to
show

sup a/F, (o) = O,(1) as n — oc. (7.21)

O0<ax<1

Proof of Lemma 3.2. Note that v(x) = u, ' for « < 1, where g, has been defined in
Section 3. Hence, the stochastic term of the right-hand side of (3.6) (i.e. n~ '/* times the

difference of the generalized and the generalized uniform empirical process) can be
rewritten as

n” 123,00 = (F(Q,(0) — F(Q (@) = H, (Q(2) — H, (Q,0), (7.22)

where H,(C) = (F — ALeb)(C) = | .(f @) dx, p = 0. The functional H, is maxi-
mized by I'(y,). Since I'(i,) € C is a minimum volume set it has the same Lebesgue
measure as @ (a). By definition F(I'(u,)) = F(Q()) = «. Hence H,_is also maximized
by Q(a). Note that this means that the difference of the generalized and the generalized
uniform empirical process is nonnegative. (The maximal value H,(I"(x)) as a function
in p is called excess mass and has been considered in Hartigan, 1987,
Miiller and Sawitzki, 1989: Nolan, 1989; Polonik, 1992, 1995a, 1995b). Now, for any
i, > 0 and any ¢ > 0 we have

H, (0n(®) — H, (0n(@)) = Hy (I'(1t2)) — H, (Qu(@)) = f 1 = gl dx
(%)

= eLeb(Dy (@) {x:] fIx) — o] > ¢), (7.23)
where for short D, (o) = 0, (2)AI (1,). Hence, (7.25) and (7.26) give for any & > 0
F(D,(2)) = F(D, () N {x:| f(x) = pal S &}) + F(Dp() {x:]f(X) — pa] > £})
S F{x1f () = pal < 8)) + M Leb(D, () {x:1 £(x) — pta] > &)
F({x:f(x) — ol < €)) + Me™ '(H,(Q (@) — H,(Qu(@)). O
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Proof of Theorem 3.1. First note, that from (A7) it follows that all « € (0, 1)

n” 124, (@) — (F(Qu (@) — F(Q(@) = [n™ 24, (@) + (F, — F)(@a(@)] + Ry,

where R} = O(1/n) (uniformly in «). Hence,

sup  dr((Qn(0)4Q (@) < O(el) + Me, ' [n™ %G, (o) — (F(Qa (®) — FQ@))]

< O(e) + Me, '[n™'23,(@) + (F, — F)(Q(@))]
— [ = F)(Q @) — (F, — F)(@x(@)))] + R.]. (7.24)

Below we use the following fact: On the set A; = {sup, <,<1-,dr((Q.(0)4Q () < 8},
¢ > 0 we have for the stochastic term on the right-hand side of (7.24)

sup [[n™ "4, () + (F, — F)(Q@)]

p<a<l1l-—n

— [(F, = FYQ () — (F, — F)(Q. ()] + R,]
= OP* (wv,, (5n ))

Since the sets Q(x) are nested the class {Q(x), « € [0, 1]} is a VC-class (of index 1).
Furthermore, we have v(a} = 1/y, such that (i) and (ii) of Theorem 4.2 follow from (i)
and (ii) of Theorem 3.1. Theorem 4.2 now shows, that the two stochastic terms in
brackets on the right-hand side of (7.24) are of the same order. Therefore, an
application of (4.3a) (with h, = n~'/?) gives for any sequence {¢,} of real numbers

sup  dp((Qn(0)4Q (@) < O(e}) + Me, 'Opa(n™ ) + R,,.

n<a<l-—n

Choose &, = O(n~ 23" ") to balance the two terms on the right-hand side. The
resulting rate of convergence is Op«(n~7"'%), where for short y* = y/(1 + 7). Now we
split the proof. First we proof Part I(a).

An application of (4.3b) with 5, = n~?"/? gives a rate of convergence for both of the
two stochastic terms in brackets in (7.24) of 3, = (n~ 7"/ log n)'/? since for VC-classes
(vii) of Theorem 4.2 holds with g(d,) = (8, log n)"*> (e.g. Pollard, 1984). Choose
g, = O((n~2(n" 7" log n)*/%)1 *M) to balance the stochastic and the non stochastic
term on the righthand side of (7.24). This leads to the new rate Op.(n 7721 *7%/2)
(log n)"™?). Iterating these arguments k-times leads to the rate n™" (log n)=~! with
rk = y*/23 %25 (¥*/2)’. We can do this iteration arbitrarily but finitely often. Since

= (y*/2)/(1 — y*/2) = y/(2 + y) equality (3.2) follows.

The proof of (3.4) is quite similar. Here functions g satisfying (vii) of Theorem 4.2 are
given in (4.5). Using these, analogous arguments as for VC-classes gives the asserted
rates. For r <1 the rate after k iterations is Op.(r™"™) with 7, =7%*/2

'};(l)(y*(l + 1)/2)’. Since r,, = /(2 + (1 + r)y) the assertion follows. For r > 1 iter-
ation is useless since 8, does not enter the function g and we are finished after the first
step. [
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Proof of Propesition 5.1. It follows from Proposition 2.1 that

sup|(Viae (@) — Vap @) — (VE(®) — V@) = Op(1)

xeA
Since in addition under H, we have for all x € A that V(x) = V3 (o) the assertion
follows. [

Proof of Theorem 5.2. Note that (3.5) is a version of assumption (4.4) (see Remark
after Corollary 3.2). Hence, it follows from the proof of Theorem 4.2 that

nHVp (@) — Vi () = vo(0) va(Qp () + va(@)y,  (34) + Run, (7.25)

where 9, is the rate of convergence of sup,. 4dr(Q,(%),Q(2)) and R, , is a remainder
term which is of lower order (uniformly in «). The same holds for C replaced for .
Under H, the first terms on the right-hand side in (7.28) are the same for C and D,
respectively, so that

|02 (Vo) — Ve@) = (Vaola) = Vo) < 2vp(@w,, , (8,) + Ryp + Ry

Since vp(x) = 1/u, and o is bounded away from 1 (and f is bounded) we have
SUPgealp () = SUP,e41/1, < oo . The rate §, we get from Theorem 3.1. This together
with the behaviour of w,, ,(6,) which has been derived by Alexander (1984) (Correc-
tion: Alexander, 1985) (cf. Section 4 after Theorem 4.2) gives the assertion for a test
statistics analogous to T, ,(C, D) constructed out of V, ;, and V', . instead of their
standardized versions V3, and V3., respectively. It remains to show that the
difference of these test statistics is at least of the same order, but this follows by
repeatedly using elementary reformulations of the type V3 (x)— Vi(x) =
(Vp(0.75)/V,0(0.75) — 1) Vp(0.75) ' (V, p(2) + Vp(0.75) " (Vap(2) — Vip(2)).

Under H, the first order terms in (7.28) for C and D, respectively, do not cancel.
Hence the asserted rate of Op.(n~'/?) follows. []
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