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The asymptotic properties of the bootstrap in the frequency domain based on studentized

periodogram ordinates are studied. It is proved that this bootstrap approximation is valid

for ratio statistics such as autocorrelations. By using Edgeworth expansions it is shown

that the bootstrap approximation even outperforms the normal approximation. The

results carry over to Whittle estimates. In a simulation study the behaviour of the

bootstrap is studied for empirical correlations and Whittle estimates.

1. Introduction.   The bootstrap (Efron, 1979) is generally accepted as a powerful tool

for approximating certain characteristics, e.g. bias, variance or the distribution of statistics that

cannot at all or only with excessive effort be calculated by analytical means. For example, the

bootstrap provides second order corrected approximations to sampling distributions in the i.i.d.

set up (Singh, 1981; Babu and Singh, 1984). In time series analysis, where the data obey a

certain dependence structure, this kind of difficulty quite often comes up, particularly, if one is

not willing to assume Gaussianity of the data. In principle, one has with a time series only one

observation of a multivariate random variable and it is obvious that a bootstrap can only be

applied to parts of the data or to certain transformations (e.g. residual). Very often this requires

additional assumptions on the dependence structure (e.g. mixing-assumptions) or on the

underlying model (e.g. for a residual-based bootstrap).

Künsch (1989) and Liu and Singh (1992) propose to resample whole blocks of consecutive

observations. Instead of resampling from the data themselves another idea is to resample from

residuals that are approximately i.i.d.. Freedman (1984), Efron and Tibshirani (1986),

Swanepoel and van Wyk (1986) and Kreiss and Franke (1992) consider resampling the estimated
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innovations of parametric time series models. 

A different approach is to apply Efron's bootstrap method to periodogram ordinates, more

precisely to studentized periodogram ordinates, where the periodogram is studentized by a

spectral density estimate (cf. Franke and Härdle, 1992; Hurvich and Zeger, 1987; Nordgaard,

1992). For obvious reasons this method may be denoted as a frequency domain bootstrap,

whereas all procedures above resample in the time domain. Franke and Härdle apply this

procedure to kernel spectral density estimates and show a consistency result. They motivate the

approach by interpreting the spectral estimation problem as an approximate regression problem.

Unfortunately, the periodogram ordinates are only approximately independent. This causes

trouble for other estimates such as estimates of the autocovariance function. The dependence

between different periodogram ordinates leads for non Gaussian processes to an additional

contribution to the asymptotic variance of this estimate. Since the bootstrap replicates are

independent the additional part of the variance cannot be imitated. Therefore the method fails in

such cases. 

In this paper we study the class of estimators for which this bootstrap with periodogram

ordinates works, more detailed. As mentioned above it works for all spectral mean estimates if the

data are assumed to be Gaussian. The procedure keeps working without this assumption for the

kernel spectral density estimate (Franke and Härdle, 1992) since those estimators have a rate of

convergence less than T–1/2. However, in other cases the validity of this bootstrap is not obvious.

The main result of this paper is that there exists an important class of statistics for which the

bootstrap works: ratio statistics. These statistics may be represented as ratios of spectral mean

estimates and the integrated periodogram. For example, the usual moment estimator for the

autocorrelation is a ratio statistic. This estimate is a normalized version of the autocovariance

estimate for which the procedure fails. An inspection of the cumulants reveals that the method

does not only approximate the mean and the variance of ratio statistics, but also leads to the

correct skewness. Besides, by means of Edgeworth expansions for the statistics of interest and

their bootstrapped versions we find that the error of the bootstrap approximation is of order less

than T–1/2 and therefore outperforms the normal approximation.

A different approach was considered in Janas and Dahlhaus (1994). There we have suggested

a modification of the frequency bootstrap which imitates the weak dependence structure of the

periodogram and leads to a consistent bootstrap approximation for general spectral mean estimates

in the non-Gaussian case. However, one can check that this procedure does not lead to a correct

estimate of the skewness.

The paper is organized as follows: In section 2 we discuss the problem. The bootstrap
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procedure based on the sample of the studentized periodogram ordinates is presented and ratio

statistics are introduced . At the end of the section we summarize the assumptions and notations

needed throughout the paper. The main results are presented in section 3 and applied to Whittle

estimates in section 4 . In section 5 some simulation examples illustrate the performance of the

method. To make the paper more convenient for the reader some of the proofs are transferred to

an appendix.

2. Preliminaries.    Consider a real-valued stationary time series {Xt}t∈Z with  EXt = 0

and spectral density ( ≡ sd) f. Let us denote by

(2.1) A(φ,f) ≡ (  

0

π

φ
(1)

(α) f(α) dα, … ,  

0

π

φ
(d)

(α) f(α) dα)'( ≡ ∫φ f) 

the spectral mean, where φ
(r)

 are functions of bounded variation, r = 1, … , d. The canonical

estimate of A(φ,f) is 

(2.2) A(φ,IT)  ≡  (  

0

π

φ
(1)

(α) IT (α) dα , … ,  

0

π

φ
(d)

(α) IT (α) dα)'  ( ≡ ∫φ IT),

 

where IT(α) is the tapered periodogram, i.e.

(2.3) IT(α)  ≡   (2π H2,T)
–1

  dT(α) dT (– α) ,

where

(2.4) dT(α)  ≡ ∑
t=1

T

ht  Xt  exp( – i α t )

denotes the tapered finite Fourier transform,

(2.5) Hk,T (α)  ≡ ∑
t=1

T

ht
k  exp(– iαt)
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is the spectral window, and Hk,T = Hk,T(0).

The following special cases are covered by this class.

EXAMPLE 1 (autocovariance estimate): Let φ(α) = 2 cos (αu),  u∈Z. Then 

 A(φ,IT) =    

– π

π

IT (α)  exp( – iαu) dα

=  (H2,T)
–1  ∑

t =1

T

ht  Xt  ht+u  Xt+u  ≡  cT(u)

(with ht= 0 for t ≤ 0 and t > Τ) is the usual moment estimator with tapered data for the

autocovariance c(u) ≡ E(Xt Xt+u ) .

 

EXAMPLE 2 (spectral distribution function ( ≡ sdf) estimate): With φ(α) = χ[0,λ](α),

λ∈[0,π],  we get the integrated periodogram

A(φ,IT) =   

0

λ

IT(α) dα  ≡  FT(λ) ,

which is an estimate for the spectral distribution function F(λ) =  

0

λ

f(α)dα (sdf).

EXAMPLE 3 (Whittle estimate):  Let F = {fθ: θ∈Θ} be a parametric family of spectral densities.

Then, the parameter θ may be estimated by minimizing the Whittle likelihood

LT(θ) = (2π)
–1

  

0

π

{log fθ(α) + fθ
–1

(α) IT(α)} dα .

With φ(α) ≡ ∇fθ
–1

 we have

∇LT(θ)= 0 ⇔ A(φ,IT) – A(φ,f) = 0
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where f is the true spectral densitiy.

The basic idea of a bootstrap for A(φ,IT) relies on the fact that IT(α) / f(α) are for a fixed set of

frequencies {α1, … , αK} with αj ≠ 0 mod π asymptotically independent exponential variables

(cf. Brillinger, 1981, Theorem 5.2.6). This suggests the following bootstrap procedure. Let 

n = [T/2] and Ij = IT( 2πj
T

 ) .

Bootstrap procedure

(1) Obtain the sample of periodogram ordinates {Ij} for j = 1, … , n.

(2) Obtain an estimate f  of the spectral density f (e.g. a kernel estimate) .

(3) Form the studentized periodogram ordinates {εj} ≡ {Ij / fj} .

(4) Rescale εj and consider {εj} ≡ {εj / ε.}, where  ε.  =  1n  ∑j=1
n εj .

(5) Draw independent bootstrap replicates {εj
*} from the empirical distribution of the εj .

(6) Define bootstrap periodogram values by {Ij
*} ≡ {fj εj

*} .

REMARKS.  (1) The rescaling in step (4) avoids an unneccessary bias at the resampling stage.

(2) Exploiting our knowledge about the asymptotic distribution of IT(α) / f(α), we may modify

the procedure by replacing {εj
*} by independent and standard exponentially distributed variables

{Ej
*} . As in step (6) we get modified bootstrap periodogram values {Ij

+} ≡ {fjEj
*}. We see in the

next section that all results hold for both the original procedure as well as the modified one.

We now try to approximate the distribution of  A(φ,IT) - A(φ,f) by the distribution of

  B(φ,IT
*) – B(φ,f)  where

(2.6)   B(φ,IT
* ) ≡ 

π
n  ∑

j =1

n

φj Ij
*

and φj ≡ φ( 2πj
T

  ) .

To get an idea on the quality of this bootstrap approximation we study the asymptotic

behaviour of both statistics.

It is well known (cf. Dahlhaus, 1983, 1985a) that  T(A(φ,IT) – A(φ,f)) is asymptotically
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normal. For a linear process {Xt} and ht ≡ 1 the asymptotic variance is given by 

(2.7) 2π∫ φ
2
 f

2
 + (κ4/σ4

) (∫φf)
2
,

where κ4 is the fourth cumulant and σ
2
 is the variance of the innovations εt .

Under appropiate assumptions  T(B(φ,IT
*) – B(φ,f)) is also asymptotically normal, but with a

variance proportional to

(2.8) 2π∫φ
2
f

2
 .  

The difference in the two asymptotic distributions relies on the fact that the IT
* are independent,

while the dependence structure of the IT  cannot be neglected completely.

Therefore, this bootstrap can only work, if the additional term in (2.7) vanishes. There are

two cases in which this term is zero.

CASE  1. ∫φf = 0. If  ∇∫log fθ = 0 this is fulfilled for A(φ,IT) in the case of the Whittle

estimate (Example 3). Note, that ∇∫log fθ = 0 holds for several parametrizations. This can be

deduced from Kolmogorov's formula (cf. Brockwell and Davis, 1987, chapter 5.8).

CASE  2.  κ4 = 0. This condition is e.g. fulfilled if the innovations are assumed to be

Gaussian.

In these cases the procedure leads to a correct approximation of the variance. In general, there

is no hope for this. For instance, consider the examples of the autocovariance estimate (Example

1) and the sdf estimate (Example 2) in the non Gaussian case. 

In this paper we prove that the above bootstrap can successfully be used for the important

class of ratio statistics defined below. Denote the normalized spectral density by

(2.9) g(α)  ≡  f(α) / F(π) , 

where F is the sdf. Analogous to definition (2.1) we consider functionals of g of the form
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(2.10) A(φ,g)  ≡  

0

π

φ(α) g(α) dα  ( ≡∫ φg )

where φ = (φ
(1)

, … , φ
(d)

) and φ
(r)

: [–π,π] → R are functions of bounded variation, 

r = 1, … , d.

A(φ,g) is denoted as a normalized spectral mean. The corresponding normalized spectral mean

estimate is defined by 

(2.11) A(φ,JT)  ≡  φ(α) JT(α) dα

0

π

 (≡ ∫φ  JT) ,

where JT is the normalized periodogram, i.e. JT(α) ≡ IT(α) / FT(π) with FT being the integrated

periodogram (see Example 2).

The estimate A(φ,JT) can be written as a ratio of two spectral mean estimates

(2.12) A(φ,JT) = φ(α) IT(α)dα

0

π

  / IT(α) dα

0

π

 ,

and is therefore denoted as ratio statistic.

EXAMPLE  4 (autocorrelation estimate): Let φ(α) = cos(αu), where  u∈Z. Then

A(φ,JT)  = IT(α) exp(– iαu)

– π

π

 dα  / IT(α) dα

– π

π

  ≡  cT(u) / cT(0)  ≡  ρT(u)

is an estimator for the autocorrelation  ρ(u) ≡ c(u) / c(0) of lag u. 

EXAMPLE  5 (normalized sdf estimate). With φ(α) = χ[0,λ](α) , where λ∈[0,π], we get

A(φ, JT) = FT(λ) / FT(π) ,
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the normalized integrated periodogram which represents an estimate for the normalized sdf F(λ)

/ F(π) . 

Often, only the information about the normalized quantities is needed. For instance, the Yule-

Walker-estimates are based on estimates of the autocorrelations and not on the autocovariances,

and Bartlett's Up-statistic for a goodness-of-fit test is based on the normalized version of FT  (cf.

Dahlhaus, 1985b ).

Easy calculation shows that

T(A(φ,JT) – A(φ,g)) = T

∫ f ∫ I T

  ∫ ψ  IT

with ψ = φ ∫ f – ∫ φf . Since ∫ ψf = 0 it follows that the asymptotic distribution of 

T(A(φ,JT) – A(φ,g))  does not depend on the fourth order cumulant. Furthermore, it is equal to

the asymptotic distribution of the corresponding bootstrap statistic

(2.13) B(φ,  JT
* )  ≡  

π
n  ∑

j =1

n

φj Jj
*

where Jj
* =  Ij

* / (πn  ∑
k =1

n

Ik
* )  with  Ij

*  defined as above. This is a necessary property for the

bootstrap to be valid. In section 3 we will prove that the above bootstrap really works for ratio

statistics.

We now set down the assumptions.

(A1) {Xt}t∈Z  is a real-valued linear process, i.e.

Xt =  au∑
u∈Z

 εt–u  ,

where   {εt}t∈Z   are i.i.d. random variables satisfying

E ε1 = 0 ,  E ε1
2 = 1 ,  E εt

3 = 0 ,  E  ε1
8  < ∞. Denote by   A(α)  ≡  au∑u∈Z  exp(iαu) 

the transfer function and by f(α) ≡ (2π)
–1

 |A(α)|
2
 the spectral density   of {Xt}. f is

non vanishing, i.e.
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f(α)inf
α∈[0,π]

 > 0 .

(A2) f is an estimate of f, which is uniformly strong consistent, i.e.

| f(α) – f(α) |  →  0sup
α∈[0,π]

      almost surely ( ≡   a.s.) .

(A3) φ  ≡ (φ
(1)

 , … , φ
(d)

)' is a  d-dimensional vector of bounded functions 

φ
(r)

: [ – π,π] → R having bounded variation. Furthermore, φ
(r)  

is symmetric, i.e. 

φ
(r)

(– α) = φ
(r)

(α),   r = 1, … , d.

(A4) The taper ht is of the form ht = h  t
T  where h: R →  [0,1] is a function of bounded 

variation, h(x) = 0 for x∉(0,1] and H2  ≡  h2

0

1

 (x) dx > 0.

Such a taper h is introduced in practice to reduce leakage effects (cf. Dahlhaus, 1988). In addition

to (A4), we assume:

(A5) The function h is given by

hρ(x) ≡ u(x/ρ) χ(0,ρ/2) (x) + χ[ρ/2,1–ρ/2](x) + u((1 – x) /ρ) χ(1–ρ/2,1] (x),

where u: [0,1/2] → [0,1] is twice differentiable with bounded second derivative and 

u(0) = 0, u(1/2) = 1, and 0 < ρ ≤ 1 denotes the proportion of the data which is tapered. 

Furthermore, ρ depends on T, such that ρT ~ T
–δ

, where δ < 1/6.

Most of the tapers used in practise are of the form hρ(x). The assumption ρT = T
–δ

 implies that

the sequence of tapers hT ≡   hρT
 fulfills hT(x) →  χ (0,1)(x) pointwise, which is called

'asymptotically vanishing'.

To derive Edgeworth expansions we need the following assumptions in addition.

(A6) The filter coefficients {au} and the Fourier coefficients {φ(u)} of φ decrease 

exponentially, i.e. for all large u,
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|au| ≤ ρ|u| ,  || φ(u) || ≤ ρ|u| ,

where ρ is a fixed number with 0 < ρ < 1.

(A7) (ε1,ε1
2) satisfies Cramér's condition, i.e.

∃ δ > 0 ,  d > 0   ∀ || t ||  >  d

| E exp (i t'(ε1,ε1
2)') | ≤ 1 – δ .

(A8) Denote by ST the 8-dimensional finite Fourier transform 

T-1/2(dT( 
2π
T

  j(1)), … , dT(
2π
T

  j(8)))', (j(1), … , j(8) ∈ {1,...,T/2-1}) or of the 

(d + 1)-dimensional spectral mean estimate ∫ (φ', 1)' IT . In both cases ∑ ≡ lim
T→∞

D(ST)

exists and is positive definite, where D denotes the dispersion matrix. Further, the ma-

trix W ≡ ∫ (φ',1)' (φ',1) f2 is positive definite.

3. The validity of the bootstrap procedure. We now prove that the bootstrap

approximation holds for ratio statistics. In particular, the following theorem states that the

bootstrap approximation is even better than the normal approximation. The result is proved by

using Edgeworth expansions for the original and the bootstrapped statistic and by comparison of

the cumulants in both expansions. The evaluation of the cumulants will give additional insight

into the approximation. In particular, we will see that the skewness of the distribution is correctly

approximated.

To bootstrap the distribution of A(φ,JT) – A(φ,g) we use the statistic B(φ,  JT
* ) – B(φ,g ) where

gj =  fj / (π
n ∑k =1

n fk ). Furthermore, let  DT
2  = VT

–1  where VT is the dispersion matrix of T

A(φ,JT)  and  DT
2
  = VT

–1
 where  VT is the dispersion matrix of  T B(φ,  JT

* ).

By P* we denote the conditional distribution given the data and by E* the corresponding

conditional expectation.

THEOREM  1. Assume (A1) – (A8). Then for almost all samples {Ij}
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sup
C∈C d

| P( T DT (A(φ,JT) – A(φ,g))∈C) 

– P*( T DT (B(φ,JT
*) – B(φ,g ))∈C) | = o(T–1/2),

where C d  denotes the class of convex measurable C ⊆ R
d
 .

Before proving the theorem we make some comments on the result.

REMARKS. (1) The theorem says that the bootstrap approximation holds for the distribution of

ratio statistics that fulfill the assumptions (A1) – (A8). Thus, the method of resampling from

standardized periodogram ordinates is consistent. Furthermore, Theorem 1 gives an upper bound

for the rate of convergence of the bootstrap estimate: The accuracy of the bootstrap approximation

is of order less than T–1/2 and therefore outperforms the normal approximation. This is an

unexpected strong result, since the method not even imitates the covariance structure of the

underlying sample.

(2) If the mean is unknown we may use Xt – X  instead of Xt for the calculation of IT . In this

case we only have E A(φ,IT) = A(φ,f) + O(T
–1

) which leads to the same result as in Theorem 1

with o(T
–1/2

) replaced by O(T
–1/2

) .  In this case the bootstrap approximation is at least as good

as the normal approximation.

(3) The proof of the validity of the bootstrap procedure in this section reveals that all results hold,

if we replace the variables {εj
*} by variables drawn from the known asymptotic distribution . By

Theorem 1 we know that this modified procedure is accurate up to order o(T–1/2) as well as the

original one. On the other hand the formal Edgeworth expansions show that for both methods the

approximation is not better than O(T–1), since the fourth order cumulants of bootstrapped and

unbootstrapped terms do not match. Unfortunately, higher order asymptotics does not detect

differences between both approaches (as conjectured in Franke and Härdle (1992)) and none of

them is preferable. However, there exists a significant difference between both methods. The

modified procedure avoids one potential error source: resampling from the studentized

periodogram ordinates. At this stage the bias of the sd estimate influences the method heavily. It

seems reasonable to avoid this danger and to use the information about the asymptotic distribution

of the residuals. 

(4) Returning to the examples it is to say that Theorem 1 is applicable for the autocorrelation
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estimate (Example 4) If e.g. the underlying process is an ARMA(p,q)process, then all

assumptions can be fulfilled including the technical assumption (A6). This assumption causes

some trouble for the normalized sdf estimate (Example 5). The reason is that for φ = χ[0,λ] the

Fourier coefficients do not decrease exponentially. This problem can be solved by modifying the

estimate with a smoothed function φ. On the other hand the authors conjecture that the Edgeworth

expansion is also valid under a weaker condition than (A6). But the proof seems to be rather

complicated. In section 4 we consider Whittle estimates (Example 3) in some detail.

PROOF  OF  THEOREM  1. Let

VT,r = T(A(φ
(r)

,JT) – A(φ
(r)

,g))

and

VT,r
*  =  T(B(φ

(r)
,JT

*) – B(
 
φ

(r)
, g ))  .

We need Edgeworth expansions for VT,r and VT,r
*   as proved in Theorem 2 and 3 below. We then

only have to verify for the occuring expansion terms

ΛT,3(C) – ΛT,3
* (C) = o(T

–1/2
)

uniformly in C (see Bhattacharya and Ranga Rao, 1976, pp. 51 - 57, for the definition of ΛT,3
* .

Götze and Hipp, 1983, p. 217 may be consulted for a definition of ΛT,3 ). Since ΛT,3 and ΛT,3
*

only differ from each other by coefficients that depend on the underlying distributions through

their cumulants up to and including order three, this holds, if

cum (VT,r ) = cum*(VT,r
* )  +  o(T

–1/2
) a.s.

cum (VT,r , VT,s ) = cum*( VT,r
*  , VT,s

* ) + o(1) a.s.

cum ( VT,r , VT,s , VT,t ) = cum*(VT,r
* , VT,s

* , VT,t
*  ) + o(T

–1/2
) a.s. .

Since VT and VT
*  are ratio statistics these cumulants are difficult to calculate. However, due to

Bhattacharya and Ghosh (1978, Theorem 2(b)) , it is sufficient if we prove these equation for

stochastic approximations WT,r and WT,r
*   with
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WT,r  = VT,r + op(T
–1/2

)

WT,r
*  =  VT,r

*  + op*(T
–1/2

)

This is done in Theorem 4 and 5 below. Several lemmata provide the technical details.

THEOREM  2. Assume (A1) – (A8). Then the following approximation holds uniformly over

convex measurable C ⊆ R
d
:

P( T DT(A (φ,JT)  –  A(φ,g))∈C) =  ΛT,3(C) + o(T–1/2 
).

PROOF. From Janas (1993, Theorem 2.3) we obtain the following Edgeworth expansion for the

statistic A(φ,IT) where  φ' = (φ ',1).

P( T (A(φ,IT) – E A(φ,IT) )∈C) = ΨT,s(C) + o(T 
–(s–2)/2

 ) .

(cf. Götze and Hipp, 1983, p. 217, for the definition of ΨT,s). Lemma 1 (below) yields EA(φ,IT)

= A(φ,f) + o(T
–1

)  and we can therefore replace EA(φ,IT) by A(φ,f) in this expansion for s = 3.

We now apply the Transformation-Lemma of Bhattacharya and Ghosh (1978, Lemma 2.1) with

the transforming function H(x1, … , x,y) = ( x1
y  , … , 

xp
y  ). We have to check that this function

is sufficiently smooth in a neighborhood of μ = ∫(φ',1)' f and that (grad H) (μ) has full rank p.

The first statement follows from the positivity of F(π) = ∫ f , the variance of the underlying

process {Xt} , the second is trivial. ❏

THEOREM 3.  Assume (A1) – (A8) . Then for almost all samples {Ij} and uniformly over

convex measurable C ⊆ R
d
 :

P*( T DT (B(φ,JT
*) – B(φ,g ))∈C) = ΛT,3

* (C) + o(T–1/2 ) .

PROOF. We only sketch the proof. As in Theorem 2 we first establish an expansion for the

statistic B(φ,IT
*) with φ' = (φ', 1)  and then apply the Transformation-Lemma to get the expansion
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for the ratio B(φ,JT
*). B(φ,IT

*) is a weighted mean of independent and identically distributed

random variables with common distribution function Fn , the empirical distribution function of the

rescaled studentized periodogram ordinates {εj} defined in step (4) of the bootstrap procedure.

Corollary 1 (below) shows the weak convergence of Fn to an exponential distribution. Now we

can prove the edgeworth expansion as it was done for the ordinary sample mean in Babu and

Singh (1984). Only two changes are required: The cumulants have to be replaced by averaged

cumulants (cf. Bhattacharya and Ranga Rao, 1976, p. 71) and Cramér's condition has to be

modified in an obvious way. ❏

We now construct stochastic approximations of VT,r and VT,r
*  for which we check afterwards

the required equality of the cumulants. We start with an approximation for VT,r . Let 

(3.1) Δ(r) ≡ (φ(r) - ∫φ(r) g)g

where  g = f / ∫ f  is the normalized spectral density. Then we have

VT,r = T1/2 
 ∫φ(r)

IT

 ∫ IT

  –  
 ∫φ (r)

 f

 ∫ f

= T1/2  
 ∫(φ(r)

 – ∫φ(r)
 g) g(IT / f)

 ∫g(IT / f)
 

= T1/2  
 ∫Δ(r)

 (IT / f)

 ∫g(IT / f)

= T1/2  ∫ Δ
(r)

 (IT / f) (2 – ∫ g(IT / f)) + op(T
–1/2

) 

  

The last equation follows since 1x  = 2 – x + o( | x – 1 | ) . Note the equality

(3.2)  ∫ Δ
(r)

 = 0
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which is of particular importance as is seen later. Define the above approximation of VT,r as WT,r,

i.e.

(3.3)  WT,r  ≡  T1/2 ∫ Δ(r)(IT / f) (2 – ∫ g(IT /f)).

To calculate the first three cumulants of WT,r we need the following Lemma.

LEMMA 1. Suppose ψj are bounded functions and (A.1), (A.4) and (A.5) hold. Then we have

(i) cum (∫ ψ1 ΙΤ) = ∫ ψf + o(T-1)

(ii) cum (∫ ψ1 ΙΤ , ∫ ψ2 ΙΤ) =  O(T-1)

(iii) cum (∫ ψ1 ΙΤ , ..., ∫ ψ l ΙΤ) = ο(Τ−l /2)  (l ≥ 3).

PROOF. We only give a sketch. The exponential decrease of au implies ∑u |u|1+γ |c(u)| < ∞ for

any γ ∈ (0,1) and therefore also

|f(α + β) − f(α) − βf'(α)| ≤ Κ|β|1+γ

with some constant K. Then we obtain

|cum (∫ψ1 ΙΤ) − ∫ ψf | = | 
  1

2 ψ1
– π

π

(α) {f(α + β) – f(α)}
– π

π   |H1,T(β)|2

2π H2,T
dβdα |

≤ 
  

K |β|1 + γ
– π

π   |H1,T(β)|2

H2,T
dβ  ≤ O(T-1 - γ + 4δ) = o(T-1)

by using Lemma 5.4 of Dahlhaus (1988) (note that the taper of (A5) is of degree (1,2δ) in the

terminology of that paper). The proof of (ii) and (iii) is standard (cf. Dahlhaus, 1983, Lemma 6

and Lemma 7).
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The application of this lemma leads to the following expressions.

(3.4) cum (WT,r) = – T+1/2 cum (∫ Δ
(r)

 (IT / f) , ∫ g(IT / f)) + o(T
–1/2

)

(3.5) cum (WT,r ,WT,s)  =  T cum (∫ Δ
(r)

 (IT / f) , ∫ Δ
(s)

 (IT / f)) + o(T
–1/2

)

(3.6) cum (WT,r,WT,s,WT,t) = T3/2 cum (∫ Δ
(r)

(IT / f) , ∫ Δ
(s)

(IT / f) , ∫ Δ
(t)

(IT / f)) 

– 2 T
3/2

 cum (∫ Δ
(r)

(IT / f), ∫ g(IT / f))   cum (∫ Δ
(s)

(IT / f) ,∫ Δ
(t)

(IT / f) ) 

– 2 T
3/2

cum ( ∫ Δ
(s)

(IT / f) , ∫ g(IT / f) )   cum ( ∫ Δ
(r)

(IT / f) , ∫ Δ
(t)

(IT / f))

– 2 T
3/2

cum (∫ Δ
(t)

(IT / f), ∫ g(IT / f) ) cum ( ∫ Δ
(r)

(IT / f), ∫ Δ
(s)

(IT / f)) + o(T–1/2))

Observe that all cumulants can be expressed in terms of cumulants of second and third order of

statistics of the form ∫ φ
(r)

(IT / f) with φ
(r)

∈{Δ
(r)

, g} . For an asymptotically vanishing taper

these cumulants are given in the next lemma.

LEMMA 2. Under (A1), (A3) and (A5) we have

(i) T · cum (∫ φ
(r)

(IT / f) , ∫ φ
(s)

(IT / f))  

= 2π ∫ φ
(r)

 φ
(s)  

 + (κ4/σ4) ∫ φ
(r)

 ∫ φ
(s)   

+ o(1) ,

(ii) T
2
 · cum (∫ φ

(r)
(IT / f) , ∫ φ

(s)
(IT / f) , ∫ φ

(t)
(IT / f))

= 8 π
2
 ∫ φ

(r)
 φ

(s)
 φ

(t)

    + (κ4/σ4) · 4π (∫ φ
(r)

 φ
(s)

 ∫ φ
(t) 

+ ∫ φ
(r)

 φ
(t)

 ∫ φ
(s) 

+∫ φ
(s)

 φ
(t)

∫ φ
(r)

)

+ (κ6/σ6) ∫ φ
(r)

 ∫ φ
(s)

 ∫ φ
(t) 

+ o(1) ,
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where κ4(κ6) is the fourth (sixth) cumulant of the innovations εt .

PROOF. The lemma is proved by using the product theorem for cumulants (cf. Brillinger, 1981,

Theorem 2.3.2) and applying  again Lemma 5.4 of Dahlhaus (1988a). We omit details. 

For the calculation of the cumulants of WT,r we only need three kinds of cumulants of the

statistics ∫ Δ(IT / f) and ∫ g(IT / f) . For those cumulants we obtain by Lemma 2 and the equation

∫ Δ(r)
 = 0 the following expressions:

(3.7) T · cum (∫ Δ(r)
(IT / f), ∫ g(IT / f)) = 2π ∫ Δ(r)

g + o(1),

(3.8) T · cum (∫ Δ(r)
(IT / f) , ∫ Δ(s)

(IT / f)) = 2π ∫ Δ(r)
 Δ

(s) 
+ o(1) ,

(3.9) T
2
 · cum (∫ Δ(r)

(IT / f) , ∫ Δ(s)
(IT / f), ∫ Δ(t)

(IT / f) ) = 8π
2∫ Δ(r)

 Δ
(s)

Δ
(t)

 + o(1) .

Note that these cumulants are independent from the cumulants κ4 and κ6 of the innovations.

Furthermore, all contributions which stem from the dependence structure of the periodogram

ordinates cancel by means of the central equation (3.2). For the above cumulants it makes no

difference if we replace the dependent rvs {Ij / fj} by i.i.d. rvs {Ej} where Ej  is exponentially

distributed. Later, we will see that the bootstrap counterparts of {Ij / fj} behave similar as in-

dependent and exponentially distributed variables, and that the corresponding bootstrap cumulants

have the same limits as above. We now summarize our results on the cumulants of WT,r. 

THEOREM  4.  Under (A1), (A3) and (A5) we have 

        cum(WT,r )  = – T–1/2 2π ∫ Δ
(r)

 g + o(T–1/2) ,

   cum(WT,r ,WT,s) = 2π ∫ Δ
(r)

 Δ
(s)

 + o(1) ,

  cum (WT,r ,WT,s,WT,t) = T–1/2 8π2 
(∫Δ

(r)
 Δ

(s)
 Δ

(t)
 – ∫Δ

(r)
g∫Δ

(s)
Δ

(t)
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– ∫ Δ
(s)

g∫ Δ
(r)

Δ
(t)

 –
 
∫ Δ

(t)
g∫ Δ

(r)
Δ

(s) 
) + o(T–1/2) ,

where Δ
(r)

 ≡  (φ
(r)

 – ∫φ
(r)

 g) g ,  g ≡ f / F(π).

Before calculating the bootstrap cumulants of the corresponding approximation of VT,r
*  we set

down some auxiliary results. Let Gn denote the empirical distribution function of {Ij / fj}and G(x)

= 1 – exp(–x) . The next lemma provides a Glivenko-Cantelli lemma for {Ij / fj} . 

LEMMA  3.  Assume (A1), (A4) and (A6) – (A8). Then

(i)  |Gn(x) – G(x)|sup
x∈R

 →   0 a.s. ,

and

(ii) g(x) dGn(x)

0

∞

  →  g(x) dG(x)

0

∞

a.s.,

for every function g(x) which is piecewise uniformly continuous and satisfies

|g(x) | / (1 + |x|8)sup
x ∈R

  < ∞ .

PROOF. The proof is analogous to the proof of Theorem 1 in Chen and Hannan (1980).

However, due to the data taper we have to replace the required Edgeworth expansion by the

expansion given in Theorem 4.3 of Janas and von Sachs (1993).

From Lemma 3 we deduce the following corollary. Let Fn (Fn ) denote the empirical

distribution function of {εj} ({εj}) . Fn ⇒ F means that the distribution Fn converges weakly to F

(Fn may be random).

COROLLARY  1.  Under (A1), (A2), (A4) and (A6) – (A8) we have 

(i) 1
n   εj

p∑
j=1

n

 →   E χ1
p a.s. and 1

n   εj
p∑

j=1

n

  →  E χ1
p a.s. ,
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for all  p ≤ 8  where χ1 ~ G, and

(ii) Fn ⇒  G  a.s. and Fn ⇒ G   a.s..

The proof is given in the appendix.

The corollary says that the bootstrap distribution Fn converges to the exponential distribution

in the Mallow's metric dp defined as in Bickel and Freedman (1981). The exponential distribution

is absolutely continuous and fulfills Cramér's condition, which is important in the context of

Edgeworth expansions. From the first part of the corollary and by the linearity of the cumulants

we obtain the next lemma on the cumulants of the bootstrapped statistic B(φ,IT
*).

LEMMA  4. Under (A1) – (A4), and (A6) – (A8) we have for all p ≤ s, 

T
p–1

 · cum*( πn  φj
(r1)

 Ij
*∑

j=1

n

, … , πn  φj
(rp)

 Ij
*∑

j=1

n

 )  →  (p – 1) ! (2π)
p–1∫ φ(rj) f

p∏
j=1

p

a.s.

where r1, … , rp ∈ {1, … , d} .

PROOF. The result follows by using straightforward calculations.

The lemma shows that the cumulants of order  p ≥ 2  of the bootstrapped statistic B(φ, IT
*) do

not converge to the same limit as the cumulants of A(φ,IT). We know already the reason why the

bootstrap approximation fails in this situation: Independent resampling does not take care of the

dependence structure among the basic sample.

However, for ratio statistics we now prove that the bootstrap approximation with independent

resampling is sufficient. Let WT,r
*

  denote the bootstrap version of WT,r , i.e.

WT,r
*   ≡  T

1/2
  

π
n  ∑

j = 1

n

 Δ j
(r)

   
Ij
*

fj

  (2 –  
π
n  ∑

j = 1

n

gj 
Ij
*

fj

)

where  Δ j
(r)

 ≡ (φj
(r)

 – 
π
n  ∑

k = 1

n

φk
(r)

 gk ) gj , gj ≡ fj / ( 
π
n  ∑

k = 1

n

fk) .
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Replacing the cumulants in (3.7) - (3.9) by the corresponding bootstrap cumulants from Lemma 4

and proceeding as in the proof of Theorem 4 (with the integrals replaced by sums) leads to the

following result on the bootstrap cumulants.

THEOREM  5. Under (A1) – (A4) and (A6) - (A8) we have 

cum*(WT,r
* ) = – T–1/2 2π ∫ Δ

(r)
 g + o(T–1/2) a.s. ,

  cum*(WT,r
*  , WT,s

* )  = 2π ∫ Δ
(r)

 Δ
(s)

 + o(1) a.s. ,

cum*(WT,r
*  , WT,s

*  , WT,t
*  ) = T–1/2  

8π
2(∫ Δ

(r)
Δ

(s)
Δ

(t)
 – ∫ Δ

(r)   
g ∫ Δ

(s)
 Δ

(t)  

– ∫  Δ
(s)

 g∫ Δ
(r)

Δ
(t) 

–
 
∫  Δ

(t)
 g ∫ Δ

(r)
 Δ

(s)) + o(T–1/2) a.s.

Since the first three cumulants of  WT,r   and  WT,r
*   are the same we have established 

Theorem 1.

4.  Whittle estimates. Whittle estimates are based on the periodogram (Whittle, 1953).

They are obtained by minimizing the distance LT(θ)  of Example 3 between the periodogram and

the parametric form of the spectral densitiy. A detailed discussion may be found in Dzhaparidze

and Yaglom (1983).

Suppose {Xt}t∈Z is a linear process with spectral density f that fulfills the assumptions (A1)

and (A6) and we fit a parametric model F = {fθ: θ∈Θ} to the data. Suppose Θ = (σ2,τ), fθ = σ2

hτ and Kolmogorov's formula holds, i.e.

 

– π

π

log fθ (α) dα = 2π log σ
2

2π

(which is e.g. true for ARMA-models - c.f. Brockwell and Davies, 1987, chapter 5.8). We do

not assume that f∈F, i.e. we allow that the model is misspecified.
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The Whittle estimate θT =  (σT
2,τT)  is determined by minimizing the Whittle function LT(θ) of

Example 3, i.e. it fulfills the equations

 

0

π

IT(α)  ∇τ fθT

–1
 (α) dα = 0

and

1
π

   

0

π

f
θT

 (α)
–1

 IT(α) dα = 1 .

It is known that θT  converges to θ0 = (σ0
2,τ0) which minimizes the corresponding theoretical

function

L(θ) = 1
2π

   

0

π

{log fθ(α) + fθ(α)
–1

 f(α)} dα ,

i.e. θ0 is determined by the equations

 

0

π

f(α) ∇τ fθ0

–1
(α) dα = 0

and

1
π

   

0

π

fθ0
(α)

–1
 f(α) dα = 1.

The bootstrap version of LT(θ) is

LT
*(θ )  = 1

2
 log σ

2

2π
  +  1

2n
 fθ

–1∑
j=1

n

(2πj
T

 ) Ij
*
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and the bootstrap Whittle estimate θ* = (σ2*,τ*) is determined by minimizing LT
*(θ) which leads

to the equations

1
n  ∑

j=1

n

Ij
*   ∇τ fθ*

–1 (2πj
T

 ) =  0

and

1
n  ∑

j=1

n
  fθ*

–1  (2πj
T

 ) Ij
* = 1 .

It is heuristically obvious that θ* - θ  will converge to zero where   θ = (σ2,τ)  is obtained by

minimizing

   
LT(θ) = 

1
2

log
σ2

2π +
1
2n

fθ
–1∑

j=1

n

(
2πj
T

) fj

where f  is the (nonparametric) estimate of the bootstrap procedure. θ fulfills the same equations

as θ* with I* replaced by  f . (Intuitively, one might expect θ as the limit of θ*. The limit θ is a

consequence of the bootstrap which implies that E*Ij
* is equal to f  and not equal to Ij ). Note that

θ* and θ depend on T.

The heuristics in section 2 indicates that the bootstrap is valid for the parameter τ (since 

∫  f ∇τ fθ0

–1
  = 0). This will be proved below. However, the bootstrap does not work for the

parameter σ2 unless κ4 = 0 (e.g. if the innovations are Gaussian).

We restrict ourselves to the one-dimensional case. However, we conjecture that an analogous

result also holds in the general case. To eliminate the dependence of the parameter σ2 we note that

  τT  (τ0, τ∗, τ ) are also the minima of LT(τ) ≡ ∫ IT   h τ
– 1  (L(τ) ≡ ∫f   h τ

– 1 ,

L*(τ) ≡  π
n Σ j  I j

* hτ
  (2πj
T )– 1

,  L (τ) ≡  π
n Σ j  fj  hτ

  (2πj
T )– 1

 respectively). We need the following

assumption in addition to (A1) to (A8).

(A9) The set of parameters τ ⊂ R is compact. The parameters are identifiable, i.e. τ1 ≠ τ2 

implies hτ1
 ≠ hτ2

 on a set with positive Lebesgue measure.The function hτ(α) is four 
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times continuously differentiable with respect to τ∈τ and two times continuously differ-

entiable with respect to α∈[0,π]. hτ(α) and its derivatives are uniformly bounded, i.e. 

∃  0 < c ≤ c < ∞  ∀ τ∈τ  , α∈[0,π]

c ≤ hτ(α) ≤ c , | (  ∂
∂τ )

i
hτ

–1(α) | ≤ c (i = 1, …, 4) and |(  ∂
∂α )

j
hτ(α)| ≤ c (j = 1,2).

Let φτ = (φτ
(1)

,φτ
(2)

,φτ
(3)

)  with φτ
(i)

  ≡ (
∂

∂τ
 )

i
 hτ

–1 (i = 1,2,3) .There exists d0 > 0 such that

K(τ) ≡ L(2)(τ) = ∫φτ
(2)

 f ≥ d0   for all  τ∈τ .

Furthermore, in (A8) we have to replace ∫ (φ',1)' IT by ∫ φτ IT and to define the weight matrix

W as   ∫   φτ φτ' f
2
 . In addition let J(τ)  ≡  2π ∫(φτ

(1)
 f)

2
 , J*(τ) ≡ TE*(L*

(1)(τ))
2
 and 

K
*
(τ) ≡ E*L*

(2) (τ) .   

THEOREM  6. Assume that (A1) – (A9) hold. Then for almost all samples {Ij}

   |P((TK2(τ0)/J(τ0))
1/2 (τT – τ0) ≤ x) – P*((TK

*
2 (τ)/J

*
(τ))1/2 (τ* – τ) ≤ x) | = o(T–1/2)sup

x∈R

The proof is transferred to the appendix.

REMARK. Without proof we remark that the bootstrap also works for σ2 if κ4 = 0. In the case of

an AR(p)-model  θ* is the Yule Walker estimate with the covariances

c*(u)  =  
2π
n    ∑

j=1

n

Ij
* cos( 

2πj
T

  u) .

5. Practical considerations and simulations examples.  We now report on two

simulation examples and make remarks on the design of the bootstrap with respect to the estimate

f  and to data tapers.

A natural condidate for f  seems to be a kernel estimate as suggested in Franke and Härdle

(1992). However, our simulations with kernel estimates were not convincing. It is usually
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recommended for a bootstrap in nonparametric regression to choose a bandwidth which is a bit

larger than the optimal one (cf. Franke and Härdle, 1992). However, choosing a large bandwidth

leads to a strong bias in the neighbourhood of peaks in the spectrum. We are convinced that this

trade-off is the reason for our bad results.

The behaviour of the estimates becomes much better if one smoothes the log periodogram

(note that the log transformation is asymptotically variance stabilizing). In the simulations below

we used a kernel estimate with Epanechnikov kernel. A bias correction is obtained from the

following heuristic consideration. Suppose Zj are iid exponentially distributed random variables

with (constant) mean f(λ) (this is the asymptotic distribution of the periodogram ordinates in a

local neighbourhood) and wj are the kernel weights. Then

  E exp Σ wj log Zj = E Zj
wjΠ

j
= f(λ) Γ 1 + wjΠ

j

where Γ is the Gamma function. We therefore estimate fk by 

  
exp wj log Ik + j – log Γ 1 + wjΣ

j

where 
  

wj = 1
b

K 1
b

2πj
T  and   K(x) = 3

4π 1 – x
π

2 x ≤ π .

With this estimate the results turned out to be quite good. In particular they were insensitive

with respect to the choice of b. We therefore chose b by "eye inspection" having in mind that the

bandwidth in the bootstrap step should be a bit larger than the optimal one (with respect to the

mean square error).

Our theoretical results only hold for an asymptotically vanishing taper (which is a realistic

assumption). Since a taper is very often essential to obtain reasonable results for small samples

we recommend to correct for the taper by using

  TH4,T / H2,T B φ,JT
* – B φ,g

as the bootstrap estimate for the distribution of 

  A φ,JT – A φ,g .
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The additional factor tends to 1 for an asymptotically vanishing taper and to a correct (first order!)

bootstrap approximation in the general case.

In the first example we considered the estimate for the autocorrelation function from Example

4. Samples of size 64 of the AR(1) process

  Xt = aXt – 1 + εt

with a = 0.9 and εt uniform on [  – 3, 3 ] were considered. A 10% Tukey Hanning taper was

applied and the bandwidth of the above estimate was chosen to be b = 0.1. Figure 1 shows the

logarithm of the  periodogram of the sample together with the logarithm of the kernel estimate.

ρT(1) is also the Yule-Walker estimate for a. It is known that

   T ρT(1) – ρ(1) N 0, H4 / H2
2 1 – a2→D

where  Hk = lim T–1 Hk,T . In Figure 2 this asymptotic distribution is shown as the dashed line.

The solid line is the true distribution (simulated with 2000 replications). The dotted line is a

"typical" bootstrap approximation with the frequency bootstrap as described above calculated

from 2000 bootstrap samples. The corresponding plots for eight additional original processes can

be found in Figure 6. The bootstrap approximation is always better than the asymptotic

distribution. In particular it gives a good bias correction.

The second example shows the bootstrap in a much more complicated situation. T = 64

observations of an ARMA(4,2) process with AR-roots   0.9– 1ei 0.2π,   0.9– 1e– i 0.2π,   0.9– 1ei 0.5π,

  0.9– 1e– i 0.5π , MA-roots   0.8– 1ei 0.35π,   0.8– 1e– i 0.35π and uniform innovations on [  – 3, 3 ] were

generated. A (misspecified) AR(4)-model was fitted to the data and the Whittle estimate  aT  for the

parameters with a 10% Tukey-Hanning taper was calculated (in this case the Whittle estimate is

identical to the Yule-Walker estimate). Our goal is now to estimate the distribution of the

Mahalanobis distance in this misspecified situation.

If the AR(4)-model were correct we would have

   T aT – a0 N 0, H4 / H2
2 σ2Σ– 1→D

where Σ is the covariance matrix. In the misspecified case a similar result holds where  a0  now is

the minimizer of L( θ) (cf. section 4) and a different limit covariance matrix. In that case  a0  is the

best approximating value.
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Suppose we want to construct a confidence set for aO. In the correct specified case the above

result implies for the Mahalanobis distance

   T H2,T
2

H4,T
aT – a0

′ 1
σ2 Σ aT – a0 χ4

2→D
.

Replacing   1
σ2 Σ by a consistent estimate leads to an asymptotic confidence set for  a0 . As proved

in Section 4  aT  is approximately a ratio statistic. Futhermore, we may estimate

  1
c(0)Σij by   ρT(i – j)

and

  σ2 / c(0) by   1 – ajΣ
j = 1

P

ρT(j)

which again are ratio statistics. Therefore, it is heuristically clear that the frequency bootstrap also

works for the above Mahalanobis distance.

Figure 3 shows the logarithm of the true spectral density of the ARMA(4,2)-process

(connected crosses) and the parametric AR(4)-spectral density estimate (solid line). Figure 4

shows the tapered periodogram with the kernel estimate as discussed above where b = 0.05. In

Figure 5 the asymptotic   χ4
2  distribution of the above distance is shown as the dashed line. The

solid line is the true distribution of the statistic with   1
σ2 Σ replaced by the above estimates (in the

misspecified situation!). It was obtained by simulation with 2000 samples. The dotted line again

is a "typical" bootstrap approximation with the frequency bootstrap calculated from 2000

bootstrap samples. The corresponding plots for eight additional original processes can be found

in Figure 7.

Only the fourth picture of Figure 7 shows a bad result. In this case the nonparametric estimate

showed a third (small) peak and one of the two peaks of the fitted bootstrap-AR(4)-model

sometimes fell on that small peak resulting in a large Mahalanobis distance. 

In the other cases the bootstrap distribution is quite close to the true one. Since the bootstrap is

a nonparametric bootstrap it can be used to estimate also the effects due to model-

misspecification.

It is obvious that more simulation studies are needed. In particular it would be interesting to

see how the above bootstrap compares to an AR(∞) bootstrap or to a block-bootstrap.
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(dotted) distribution of the Mahalanobis-distance for
an AR(4)-model
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Figure 6. True (solid), asymptotic (dashed) and bootstrap (dotted) distribution of the first order correlation

for eight different realisations of an AR(1)-process
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Figure 7. True (solid), asymptotic (dashed) and bootstrap (dotted) distribution of the Mahalanobis-distance of an

AR(4)-model for eight different realisations of an ARMA(4,2)-process
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Appendix. PROOF OF COROLLARY 1. As in Bickel and Freedman (1981) we introduce

the metric dp as a measure for the distance between distributions F and G, for which the p-th

absolute moment exists.

(1) dp(F,G) ≡ inf{E |X – Y|
p
}

1/p
 ,

where the infinum is taken over all pairs of random variables X and Y having marginal

distributions F and G, respectively. For p = 2 this metric is the Mallow's metric. We write

dp(X,Y) instead of dp(F,G).

We show that

(2) dp(χ1,ε1
*)  →  0 a.s. .

By the triangle-inequality we have

(3) dp(χ1,ε1
*)  ≤  dp(χ1,ε1

0)  +   dp(ε1
0,  ε1 )  +   dp(  ε1 ,ε1

*),

where the df of ε1
0(  ε1 ) is the edf Gn(Fn) of the true residuals {Ij / fj} (of the unscaled empirical

residuals {Ij / fj}). We prove that all three terms on the right-hand side of (3) converge to zero

almost surely.

For the first term the assertion follows from Lemma 3. To get an upper bound for dp(ε1
0,  ε1 )

we choose the joint distribution of (ε1
0,  ε1 ) such that it assumes the value (Ij / fj, Ij / fj) with

probability n
–1

, j = 1, … , n . Then,

 dp (ε1
0,  ε1 )

p
≤  1

n  ∑
j =1

n

 
Ij

fj
  –  

Ij

fj

 
p

= 1
n  ∑

j =1

n Ij

fj

p
   1 – 

fj

fj

 
p

≤ sup
j

 1 – 
fj

fj

 
p
  ·   1n  ∑

j =1

n Ij

fj

p
  .
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By Lemma 3 (ii) we obtain

1
n  ∑

j =1

n Ij

fj

p
 →  E  χ1

p   <   ∞   a.s..

Therefore, the second term in (3) converges to zero by the convergence of the estimate f to f

(Assumption A2).

Using exactly the same argument as above, we also get  

      dp  (  ε1 ,ε1
*)

p
≤  1

n  ∑
j =1

n

|εj – εj|
p

=  1
n  ∑

j =1

n
   εj(ε. – 1)

ε.

p

=  | 
1
n  ∑

j =1

n

εj  –  1|
p

  ·  1n  ∑
j =1

n

εj
p / ( 1n   ∑

j =1

n

εj )
p
 

→ 0    a.s.,

by Lemma 3 (ii) and Assumption A2.  ❐

PROOF  OF  THEOREM  6 . As in the proof of Theorem 1  we derive Edgeworth expansions for

the distribution of the Whittle estimate and for its bootstrapped version. Then the result follows

by a comparison of the corresponding coefficients of the polynomials occuring in these

expansions. The Edgeworth expansion for the Whittle estimate is given in Janas (1993, Theorem

3.1) for the case where the model is correctly specified (f =   fθ0
). The proof for the more general

case discussed here is exactly the same. The expansion for the bootstrap counterpart can be

deduced in a similar way. Therefore we only mention the essential steps.

We set down

(4) V
*

  ≡ T(τ* – τ)
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(5) Z*
(i)(τ)  ≡ T(L*

(i)(τ)  – E L*
(i)(τ) )

(6) K
*

(τ) ≡ – E*L*
(2)(τ)   

and

(7) U
*

(τ)  ≡ – 
  Z*
(1)(τ)

K
*

(τ)
  + 1

T
  

  Z*
(1)(τ)

K
*

(τ)
   

  Z*
(2)(τ)

K
*
(τ)

 –  1
2 T

  
  Z*
(3)(τ)

K
*

(τ)
  

  
Z*

(1)(τ)

K
*

(τ)

2

We will show that the following stochastic expansion holds:

(8) V
*
 = U

*
(τ)  +  1

T
  ξ

*
 ,

where ξ
*
 satisfies P*( | ξ

*
 | > ρT T ) = o(T–1/2)  a.s. for some sequence ρT → 0,  ρT T →  ∞

as T → ∞ .

By a lemma of Chibisov (cf. Janas , 1993, Lemma  4.5), the Edgeworth expansions for V
*

and U
*

(τ) match up to order T–1/2 . But the Edgeworth expansion for U
*

(τ) follows from

Theorem  1  by the Transformation-Lemma of Bhattacharya and Ghosh (cf. Janas , 1993).

For the proof of (8) we consider the following Taylor expansion. Since 

L*
(1)(τ*) = 0, we have

(9) 0 = T L*
(1) (τ) + 1

T
  Z*

(2) (τ) V
*
 + K

*
(τ) V

*
 + 1

2 T
  L

*
(3)(τ)V

*
2  + 1

6T
  L

*
(4)(τ)V

*
3  ,

where |τ – τ | ≤ | τ* – τ | . We rewrite (9) as

(10) V
*  

= – 
  T L

*
(1)(τ)

K
*

(τ)
 –  

  Z*
(2)(τ)

K
*

(τ) T
 V

*
  –  

  L*
(3)(τ)

2K
*

(τ) T
  V

*
2   –  

  L*
(4)(τ)

6K
*

(τ)T
  V

*
3   .

The following bounds for tail probabilities can be derived analogous to the corresponding bounds

in Janas (1993).

For every α > 0 there exist positive constants d1, d2 and d3 such that

(11) P*(| τ* – τ | > d1  T
α–1/2) = o(T

–1/2
) a.s.,
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(12) P*(| L*
(i)(τ) – E*L*

(i) (τ)| > d2 T α–1/2) = o(T–1/2) a.s. , for i = 1,2,3

(13) P*(sup
τ∈τ

| L*
(4)(τ) | > d3 T

α
) = o(T–1/2) a.s..

By (11) – (13) with 0 < α < 1/10, we can write (10) as

(14) V
*
 = – 

T L*
(1)(τ)

K*(τ)
   +  1

T
  ξ*  ,

where P*(| ξ* | > d4 T2α) = o(T–1/2)  a.s. , for some d4 > 0.

Substituting (14) for the right-hand side of (10), and noting E*L*
(1)(τ) = 0  a.s., we have

V
*

 = – 
Z

*
(1)(τ)

K*(τ)
   +  1

T
  
Z

*
(1)(τ)

K*(τ)
   

Z
*
(2)(τ)

K*(τ)
   –  1

2 T
  
L

*
(3)(τ)

K*(τ)
  

Z*
(1)(τ)

K*(τ)

2

  +  1
T

  ξ*  ,

where P*(|   ξ*  | > d5 T3α) = o(T
–1/2

)  , for some d5 > 0. 
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