
Keeping Statistics Alive in Documents1

Günther Sawitzki
StatLab Heidelberg

Im Neuenheimer Feld 294
D 69120 Heidelberg

<gs@statlab.uni-heidelberg.de>

Abstract:

We identify some of the requirements for document integration of software components in
statistical computing, and try to give a general idea how to cope with them in an imple-
mentation.

1. Introduction

Stimulated by developments in data analysis, we have seen drastic changes in the way we use
statistics over the last decades. With advanced technical possibilities and computational based
methods, dynamic aspects have become more important: interactive methods are common in
data analysis now; simulation supported methods have first class importance; “experimental
statistics” is by now an indispensable part in statistical research and method development.

If it comes to disseminating methods and results, we are largely lagging behind. Though there
are good examples to enhance paper based publications by software (added on a CD, say) or
for making use of the web-based facilities, most of the papers and publications are “dead”,
even where the contents would strongly suggest a live presentation. The question is which
technologies can be used to create live documents, and which special conditions to keep in
mind. We will discuss the use of component technology in document generation for statistical
computing. Scatterplot brushing and linked windows can serve as an example of what we want
to cover. These are basic techniques in interactive data analysis. In a paper document, we are
restricted to static pictures or (long) verbal descriptions. A live document should preserve inter-
activity and global consistency of the linking.

1 This paper was written during a visit to Sonderforschungsbereich 373 (“Quantifikation und

Simulation ökonomischer Prozesse” at Humboldt-Universität zu Berlin, supported by the Deutsche

Forschungsgemeinschaft. Thanks to W. Härdle and the members of his group for hospitality and

discussions. Special thanks to W. Härdle for granting access to his personal Oberon variant. Presented

at SFB 373, Berlin, Sep. 14th, 1999. Part of this material was presented at the 52th Session of the, ISI

Helsinki 99.

- 1 -
Components Sat, Nov 13, 1999 00:07

Ad hoc solutions are possible: we can produce special purpose software, possibly linking to an
underlying pre-existing “compute machine” to drive a multi-media document on a CD, say.
ActivStats (Velleman et al., 1996) is an excellent example of this approach. But we want to go
beyond this and ask for technologies to create compound documents, including the typical,
possibly interactive elements we need in statistics, in much the same way we use to prepare
papers and reports.

Component technology in principle allows composing documents for statistical computing,
such as reports and status charts, as well as other documents like methodological papers or
teaching material, from predefined reusable components. The advantage is on the one side to
open new realms for documents with dynamic character, to be used for example for delivering
up-to-date information (if the dynamics is controlled by the state of the data) or allowing true
interactivity (when the dynamic is controlled by the user). The other advantage of component
technology is to put document generation in the hand of the author and to give the freedom to
compose the document using available components, relieving from the dependency on ad hoc
solutions.

In general document processing, support for component technology is already available in a
limited form. Editors may allow extensions implemented for example as dynamic link libraries
(DLLs) and presented as ActiveX or OpenDoc elements to be embedded in a text. Likewise,
HTML allows imbedding applets and scripts to provide dynamic facilities, PDF allows
imbedding JavaScripts.

The kind of documents needed in statistical computing generally are data based, and the link to
the underlying data should be preserved and reflected in the documents. In statistical data
analysis for example, this leeds to linked dynamic plots, and a state-of-the-art implementation
of documents should preserve linking and dynamical characteristics, while preserving the
performance needed for statistical computing.

We will identify some of the requirements for document integration of software components in
statistical computing, an try to give a general idea how to cope with them in an implementation.
Our documents used as an example are taken from research papers or teaching materials, but
the discussion applies to other material such as reports or status summaries as well. Most ex-
amples focus on graphical output. Adequate handling of statistical display seems to be the most
challenging aspect, but the general discussion applies to other displays such as tables or
summary statistics as well.

We start with an example to illustrate what we mean by an “integrated document”, and give an
example of what we mean by “software components” in statistical computing. In the main part,
we discuss the necessary requirements on tools for making documents. We will focus on three

- 2 -
Components Sat, Nov 13, 1999 00:07

general features of documents:

• Documents have a well defined contents which is maintained in a reliable way. Persistence
must be supported. Document contents, dynamic linking and must be preserved if docu-
ments are stored or communicated.

• Documents are structured internally and each part has a context. Structure and context re-
lations must be supported. Components should be sensitive to their context and adapt to
the structure and context of the embedding document, allowing pre-defined components to
be used in an efficient and flexible way.

• Documents may be communicated. Sharing of documents and data must be supported.
This needs taking into account of the problems possibly coming from duplication of infor-
mation, partial or delayed access, and different user environments.

A document is always used in an environment, and any user will have his or her preferred en-
vironment. These choices should be respected. In a final part, we discuss merging of docu-
ments and components in the user environment, taking this into account.

2. Integrated Documents

Figure 1 illustrates what we mean be integrated documents. The paper (Sawitzki 1994) origi-
nated as a loose-leaf collection of notes, used for consulting. Figure 1 shows elements from an
interactive version. The first thing to note is a seamless integration of graphics in an imbedding
text. The possible interaction cannot be seen in the printed version. In the interactive version,
the graphical elements are live - even when imbedded in the text. The reader can query the data
values - clicking on a plot will open a window with the data set. Dragging your own data from
a spreadsheet or some other source onto the plot will change it to show your data. Copying the
plot to your own document lets you integrate the plot - with all interactivity preserved - into
your own document.

- 3 -
Components Sat, Nov 13, 1999 00:07

Figure 1: an excerpt from an integrated document.See interactive version.

While drag&drop is a mere convenience when used with static data, its main effect so far could
even be achieved in a command-based environment, or by linking a plot to some “form” which
allows data entry. True interactivity, and true dynamic integration comes into play if you apply
it to other elements. For example, the illustrations allow to draw some distribution by hand,
sample data from this user-defined distribution, and show the sample in any of the displays. If
the distribution is changed, a new sample is drawn. Linking a time signal from a clock would
give a running simulation. See the “Readme” file which comes with (Sawitzki 1994) to try
these examples.

- 4 -
Components Sat, Nov 13, 1999 00:07

Figure 2: Integrated Documents. Interactivity, e.g. drag&drop data to displays,
 mouse input for distribution, linking are supported. See interactive version.

Besides the now familiar integration of texts and graphics, the integrated document preserves
the dynamics of the graphics. This was a new feature at the time the example was published.
Nowadays, active elements or applets are readily available ways to implement this. What goes
still beyond active elements or applets are dynamically reconfigurable links. For example
dragging a data set on a display in Figure 2 makes it show that data set. Dragging a distribution
will link the display to a random number generator with that distribution, and random samples
can be shown. If additionally the clock is dragged to the distribution, the clock pulse will be
linked to a random number generator and as the result you see a real time simulation.

Let us have a short look behind the scene. The technique to achieve this is the well-know
model-view-controller separation, already known since Smalltalk and quite common in Java:
each display element is actually a view on an underlying model. Two views on the same
model may be different, but they always will be consistent as far as the data represented in the
model are concerned. If data or a data generating object are dragged on top of a display, their
model is replaces the recipient model, leading to consistent linking. If a model changes, a
message is broadcast through display space, triggering an update. This is all the magic which
is behind the dynamic linking.

- 5 -
Components Sat, Nov 13, 1999 00:07

3. Software Components

The example for software components is taken from a technical research paper. For this
example will need some statistical background. We consider some observed input, which may
be a noisy signal:

Input Y = signal + noise
Working in discrete time, we have the input signal observe at n time points. To make life
simple, we consider the canonical model

Y random vector in �n

Y ~ N(µ,σ2) with µ∈ �n, n large.
Here µ is our signal. If we have copies of the input, we could average to recover the signal.
But Stein taught us: the arithmetic mean is not an admissible estimator for µ. Use shrinkage!
The argument still holds if we just have one copy: in particular, Y is not an admissible esti-
mator for µ.
Applying Stein shrinkage in general is not helpful in signal recovery. The important obser-
vation of (Beran and Dümbgen 1998) was: Stein’s argument applies to all representations of Y.
So instead of working with the original input Y, they use some “good” orthogonal basis for

�n. Stein shrinkage is applied to the transformed signal, and then the inverse transformation is
applied. “No transformation”, the identity, is but a special case of this setting. The additional
idea to allow varying shrinkage factors opened access to the potential inherent in James-Stein
estimators.

We can get a full picture of our data by a series of displays (Figure 3). None of these displays
is problem specific - all of them can be generated by “off the shelf” software.

- 6 -
Components Sat, Nov 13, 1999 00:07

signal

Y=signal+σ noise

Y*= Y transformed

Y recovered

σ=noise factor

noise

Y* shrinked

raw residuals

Figure 3: Views on data for signal recovery (no transformation applied, no shrinkage)

If we have properly linked windows, we already have a dynamic model. We can modify signal
or noise, or draw repeated samples. But with classical software, we would have to modify our
programs to to apply the Beran/Dümbgen idea for Stein shrinkage. With software components,
we can modify or replace individual components. While initially (no transformation) the data

are copied over to go from Y to Y* resp. from (Y* shrinked) to (Y recovered), we can replace
the copy operation by a Fourier transformation resp. its inverse (usually something which can
be taken off the shelf in a statistical system). In a component system the links should stay

intact. Replacing the copy operation from (Y transformed) to (Y* shrinked) by a variant of
Stein shrinkage (e.g. Dümbgen’s isotonic shrinkage), we get a full simulation environment for
REACT estimators.
As a convenience, we can add a control panel to select or replace components by button control
(Figure 4).

- 7 -
Components Sat, Nov 13, 1999 00:07

Figure 4: Simulation for REACT. Only minimal custom components need to be added.
Re-usable components for display …for control: just re-used
Plugged-in generic ON transformation software components !
Plugged-in custom Stein shrinkage (Dümbgen, 1998)

Instead of relying on ad hoc solutions, this example makes use of integration and modification
of pre-existing re-usable software components. Given the speed and interactivity of the
Voyager environment (Sawitzki, 1996) used here this is an effective tool for Experimental
Statistics in the sense of (Beran, 2000).

4. Making Documents

What does it take to make a document2? Documents seem so familiar to everyone, but we do
not know if we have a common understanding of what we mean by a document. Here are some
features which we will assume in our discussion:

• Documents are self contained
• Documents may be

stored & retrieved in a reliable way
passed to others, or possibly shared
authorized and authentificated

• Documents may be
structured internally

2 from docere, “to teach”.

- 8 -
Components Sat, Nov 13, 1999 00:07

linked externally
• Documents can be built re-using components

The first properties will be generally accepted. The last one is a late addition, coming with
nowadays Taylorization. Documents have lost their originality. We will use text fragments and
pre-defined clauses to write a text in an office, and we will expect the same to hold more
generally. Tools to generate and manage integrated texts should support the possibilities to
manage and reuse text fragments for integrated documents as for plain texts.

We will come back to these key features of documents freely as we discuss selected aspects of
document production.

4.1 Persistence

Documents are self contained and documents may be stored & retrieved in a reliable way. In
technical terms, this means that the document information is persistent. To understand the im-
plications, we need some case studies and must try to understand the specific needs of users.

In our first example, the diagnostic plots paper, the user may be a reader. The “document” is
the paper and all components are contained in the document; it can be stored by “dumping” all
information. Components may be changed, e.g. when the reader chooses a different distri-
bution. The appropriate action is not obvious if components are changed. In the paper, a way
out was to provide different modes of usage. If the document is read in browser mode, the
original version is restored. If opened in editor mode, the most recent state is stored, and the
document will open as the user left it.

For the same example, the user may be a client, for example someone using the plots to gene-
rate a report. The scope of the document is now user defined; components may be extracted
and/or data may be used which are external. A poor way out to cache the data with the display
and to restore the cached information when the document is reopened. In general this way out
will not be acceptable since it duplicates information but does not guarantee consistency. A
better solution will be discussed later on (section 4.3).

The second example, the REACT plot, with the author being the user, reveals more
difficulties.Displays and controls may be separate documents; components may be extracted
and controls may be extracted or removed. Status information may or may not be adapted to the
recent state. A way out may be to store all critical information with controls. When reopening,
a control script can run to recover the documents. Sometimes this may be sufficient, but it is a
poor way our and is not generally acceptable.

The dilemma is that storing too much information is uneconomical, may reveal critical
information which is not public and may lead to inconsistency due to duplicate information

- 9 -
Components Sat, Nov 13, 1999 00:07

while storing too little information may omit critical information and may lead to inconsistency
due to lack of information. Unfortunately finding the right amount of information is not trivial.

From a general point of view, the system state is defined by the state of its objects and the
dependencies between these. This can be represented by a graph with the objects as nodes and
the dependencies as links. The document state is defined by the visible objects in the document.
So the abstract task is to find a minimal subgraph to reconstruct the document and to store the
state of this subgraph.

Unfortunately there is more than one source for dependencies and the system graph is not
evident. We can study this in the REACT example. Starting with the visible objects, the view-
model-controller design lets us ask additional invisible objects for the models and an implicit
dependency between view and underlaying model. But in this example, we change or redefine
the transformations which act as pipelines between models, thus leading to more “hidden”
dependencies.

signa
l

noise
factor

signal +
noise

nois
e

transforme
d

shrunke
n

recovere
d

residu
al

Views Models

data
flow

model-view-controller
dependency

..othe
r

Figure 5: Dependency Graph for REACT (partial)

The dependency graph is not explicit and contains contributions from various sources. Each of
these sources has its ways to recover the contributed dependencies. The main contributions
come from these sources:

• Control flow. For example, a new signal or a new noise sample triggers evaluation of new

- 10 -
Components Sat, Nov 13, 1999 00:07

input in REACT which propagates until finally a new estimator triggers evaluation of new
residuals. Control flow dependencies can be recovered by classical control flow analysis.

• Data flow. For example, residuals depend directly on input and estimator. Data flow de-
pendencies can be recovered by classical data flow analysis (at least as long as aliasing
problem do not interfere).

From the design we get
• Model-View-Controller dependencies. These are explicit (at least if the system is well-

designed). For example, the random graph of then random noise gives a view on a
simulation sample model, the sample size being controlled by a slider.

• Transformation dependencies. May be inferred from the syntax tree (if available). For
example, the modulation in our example gives an additional dependency on the choice of
the modulation type.

In an object oriented system we have additionally
• Object inheritance. May be inferred from symbol table (if available). For example the

editable function plots for signal and noise factor are descendants from a general plot class
used in the other displays, adding additional support for free and drawing.

If a message passing system is used we have to add
• Message dependencies. These need to be traced dynamically (sometimes). For example a

change of the entry field for the sample size must be signaled to the underlying model,
passed on to the sampling model where it triggers a new sample, leading to a new message
which must be propagated until ultimately all affected graphs are updated.

In total, to allow reconstruction of the dependency graph needs careful design and careful
choice of development environment to keep the task feasible. Once the graph is reconstructed,
finding a sufficient subgraph to recover the model and can be done by standard algorithms and
storage and recovery of graph can use standard computing techniques (e.g. pointer swizzling,
see Griesemer et al. 1991).

4.2 Context Sensitive Re-Use of Components

Reusing components is straightforward if the components are self contained. Managing com-
ponent dependencies is related to the problems discussed above, although in general much
simpler than the persistency problem.

The main challenge is to to take into account context information. As all graphical environ-
ments, documents have a context structure. In graphical environment, this is of main im-
portance, while in classical environment (as a result of much work) it has been largely elimi-
nated or formalized in scope constraints. This context sensitivity is one of the main differences
between graphical user interfaces and command line interfaces. In command line interfaces, we
can avoid context sensitivity or restrict it by formal rules. In graphical interface we do want to

- 11 -
Components Sat, Nov 13, 1999 00:07

support the context sensitivity, and this support becomes a central design feature.

As an example (Figure 6), take an excerpt from an introductory course on statistics, imple-
mented using Voyager (Sawitzki, 1996).

Figure 6: Generic “Sample” button with context-defined action. Two context groups are
outlined in this figure for illustration.

In this example, a pre-defined button labelled “Sample” is used. Sample should activate
drawing a new random sample. From the author’s perspective “Sample” is a generic action. It
should get its specific meaning from context. The problem is to determine the context. In a
classical environment, we use unique identifications for a target (e.g. by names or access
paths), or we use rules of scope. For document construction with graphical environments, we
have to introduce context sensitivity.

A practical way out which has proved sufficient so far is to introduce invisible structuring
elements to define scopes (two examples are outlined in grey in figure 6). The “Sample” button
uses a local broadcast to call for a new sample; this will affect all components in the button’s
context, marked here be the enclosing dotted line, but no components outside. If moved to a
different context, the action will change correspondingly, without re-programming.

In rare cases where this is not sufficient, we fall back to classical implementations and use
(unique) names and references by name.

- 12 -
Components Sat, Nov 13, 1999 00:07

4.3 Sharing Documents and Data

Sharing documents and data goes beyond transporting documents or data. We have to ask:
What does the recipient need to make use of the document or data? Among others, we have to
ask what we assume about availability of

• Computing resources
• Additional software
• Network facilities
• Data access

In an ideal world, no precautions are needed. But if the recipient has poor connectivity, or
access is critical, we should avoid network access as far as possible. In some cases, data may
even be unavailable. We should use fall back solutions for these cases. We give some details of
solutions which have been helpful to meet unfriendly conditions.

4.3.1 Implementation Details: Caching Data Structure

We use it for example to implement a vector data structure
Vector = RECORD

cache: cache list
buffers: access paths, with buffer cache

END;

So we use a two level caching. Besides the vector cache, the vector is composed of buffer, and
each buffer has its own cache. For a date element of vector type we calculate the mean

Y : Vector;
.

.

.

y:= Mean(Y)

we calculate e.g. the mean by an implementation which follows these steps:
try to find mean in vector cache
on failure: add mean to vector cache from buffer caches

…try to find mean in buffer caches
…on failure: add mean to buffer caches

For details, see the documentation in <http://statlab.uni-heidelberg.de/projects/voyager/>.
Using this caching data structure with buffers is a very helpful implementation if we go to
where communication may be most critical: to distributed computing. All buffer specific
calculations can be distributed in a natural way, and only the derived (possibly cached)
summary statistics need to be exchanged.

4.3.2 Implementation Details: Object Stamping

For example, using
Object = RECORD

- 13 -
Components Sat, Nov 13, 1999 00:07

http://statlab.uni-heidelberg.de/projects/voyager/

modtime: a time key
key: a checksum, for example
.

.

.

END;

obj: Object;

To re-access data on an expensive channel, use
Get(obj.modtime); Get(obj.key);
IF (obj.modtime ≠ savedmodtime) OR ((obj.key ≠ savedkey) THEN

Get(obj.data)
ELSE

obj.data:=saveddata
END;

Again, for details, see the documentation in <http://statlab.uni-
heidelberg.de/projects/voyager/>.

4.3.3 Implementation Details: Hot and Warm Links

If we do not have a guaranteed environment on the recipient’s side, or access is not guaranteed,
we have to prepare for outdated objects/displays. A convenient way to handle these can be seen
in Paul Velleman’s DataDesk (Velleman 1984, Figure 7). A plot which is not consistent with
the current data state is marked, and alternative actions are offered.

Figure 7: Handling of loose links in Data Desk. Outdated plots are marked. The visual mark
acts as a hyperlink to a selection menu offering appropriate actions.

Out-of-date is an object attribute in DataDesk. But different links may have differing relia-
bilities, and the appropriate action upon an update event may differ. So in a more general

- 14 -
Components Sat, Nov 13, 1999 00:07

http://statlab.uni-heidelberg.de/projects/voyager/

context, it should be a link attribute
Link = POINTER TO RECORD

obj: link target
link: Link chain
status: SET disposition and status flags

END;

5. User Environment

Each user has his or her preferred environment, including printed copy to read and scribble on
while travelling lightly. As developers, we have to accept these choices and accept user prefer-
ences. Software should be adapted to the working environment in which it is used. There are
several levels of merging with the user environment. The main examples illustrate these. Both
examples in fact make use of a new operating system to provide their base, the Oberon
operating system (Wirth, N. and Gutknecht, J. 1992). In the REACT example, the screen
shots are taken from an Oberon implementation which runs on top of a Macintosh operating
system. The screenshots will look nearly identical when taken from a Windows machine, or
from UNIX, or from a native Oberon machine.

The diagnostic plots example is taken using a different implementation of Oberon. Again, this
implementation can run on top of other operating systems, such as Mac or Windows. But this
one has the specific look and feel of the host operating system: it looks like a Macintosh
program on the Mac, and has the Windows look and feel on a Windows machine. For details,
see (Sawitzki, 1996).

The next step is true integration. One way would be to port the software, the other is to use a
portable base and kept the software unchanged. Using recent developments (Zeller, 1999) the
components can run truly integrated in a Windows environment (as ActiveX elements), and can
thus be integrated in software like Excel, Word, or any software that supports ActiveX, or in a
browser like Netscape (supported by a plug in)

The implementation uses three layers

Voyager

Oberon System

Host operating system

(or two, if native Oberon is used). The host operating system is what the user has chosen.
Oberon is the operating system we are actually working with, and Voyager provides the
component for statistical computing.

In detail, there is a long list of implementations, as for example

- 15 -
Components Sat, Nov 13, 1999 00:07

Voyager

Oberon system System 3
or BlackBox

System 3
or BlackBox

System 3 -
PlugIn

System 3

Host operating
system

Macintosh Windows Windows &
Netscape

Linux

In our example, we used BlackBox for the diagnostic example, and System 3 for the REACT
plots.

6. From Legacy Texts to Integrated Documents

The core of our considerations are a matter of architecture, not necessarily of implementation.
Similar considerations apply, whatever technology is used for implementation. Of course im-
plementation is simple if a component based technology is used, like Oberon. But similar
results can be achieved with other technologies (although slightly more work may be
necessary).

We did already discuss editor extensions using ActiveX or OpenDoc to imbed dynamic
elements in “classical” text documents, and dynamic link libraries (DLLs) allow to do this in a
flexible way. This is actually the way which is used to imbed the Oberon components seem-
lessly in a Windows, as discussed in section 5. Using Plug-In-Oberon allows to run Oberon
components as ActiveX elements in WORD, say - no changes nor re-compilation being
needed. Other systems, like e.g. XploRe, are actively supporting this path to provide services
via DLLs (XploRe 1999). DLLs however have the drawback that they are not portable. Even if
you stay on the same machine and switch from Windows to Linux, say, they may become
unusable.

PDF with active links or HTML in combination with applets are a related possibility. This
approach lacks editor support, but gains from access to JavaScript (for PDF) or even Java
applets (for HTML), for example, which provide a base for modular, platform independent
programming. A collection of statistical applets is available from (Heinecke & Köpcke, 1998).

On the software bottom line, DLLs and Java applets are two technologies which can help
developing integrated documents. Of course the details, as discussed in section 4,have to taken
care of by the programmer if these technologies are used.

Another question is how to move form legacy texts to integrated documents. This is related to
the problems of multi-media production for statistical texts. A particular challenge is to take up
the TeX legacy. While still not matching the quality achievable in traditional typesetting, it is

- 16 -
Components Sat, Nov 13, 1999 00:07

marking a level of mathematical typesetting which we do not want to miss. Starting from
legacy texts in TeX-format for example, part of this process can be automized via tagging TeX
files. An intermediate step is to supply hot links, which actually serve as command buttons to
call additional software (Müller 1998)

While DLL or applets are ways to provide a computational base, and tagging and preprocessing
can help paving the path for lagacy material. The issues discussed above show how to handle
other problems related to integrated documents. The main work still is the design of integrated
documents. Making proper use of these technologies requires investigation, critical discussion,
and imagination.

Literature:
Beran, R.; Dümbgen, L. (1998):Modulation of Estimators and Confidence Sets. Ann Statist.

26, 1826-1856..
Beran, R. (2000): The Rise of Experimental Statistics. To appear in: Festschrift for D. Fraser
Dümbgen, L.(1998): Isotonic shrinkage. Personal Communicatgion.
Griesemer,R.; C. Pfister (ed.), B. Heeb, and J. Templ. On the Linearization of Graphs and

Writing Symbol Files. Technical Report 156, ETH Zürich, Institute of Computer
Systems, March 1991.

Heinecke, A; Wolfgang Köpcke, W. (1998±): JUMBO: Java enhanced material for biometry.
Münster.
<http://medweb.uni–muenster.de/institute/imib/lehre/skripte/biomathe/jumbo.html>

Müller, M.: Computer-assisted Statistics Teaching in Network Environments. COMPSTAT'98
Proceedings, Bristol, UK.

Sawitzki, G. (1994). Diagnostic Plots for One-Dimensional Data. in: P.Dirschedl & R.Oster-
mann (eds.) Computational Statistics. Heidelberg: Physica, ISBN 3-7908-0813-X,
234–258.
<http://statlab.uni–heidelberg.de/projects/onedim/>

Sawitzki, G. (1996). Extensible Statistical Software: On a Voyage to Oberon. Journal of Com-
putational and Graphical Statistics Vol. 5, 263–283.
<http://statlab.uni–heidelberg.de/ projects/voyager/>.

Velleman, P. et al. (1996±): ActivStats. Addison Wesley Longman.
<http://www.datadesk.com/ActivStats/>

Velleman, P. (1984).: Data Desk. Data Descriptions Inc.
 <http://www.datadesk.com/>

Wirth, N. and Gutknecht, J. (1992), Project Oberon. Reading: Addison-Wesley. ISBN
XploRe (1999):

 <http://www.xplore-stat.de/tutorial/programming/dll>
Zeller, E. (1999). Fine-grain Integration of Oberon into Windows using Pluggable Objects.

<http://www.cs.inf.ethz.ch/~zeller/plugin.html>.

Figure 7 has been prepared using DataDesk (Velleman 1984). All other screen images have

- 17 -
Components Sat, Nov 13, 1999 00:07

http://medweb.uni�muenster.de/institute/imib/lehre/skripte/biomathe/jumbo.html
http://statlab.uni�heidelberg.de/projects/onedim/
http://statlab.uni�heidelberg.de/
http://www.datadesk.com/ActivStats/
http://www.datadesk.com/
http://www.xplore-stat.de/tutorial/programming/dll
http://www.cs.inf.ethz.ch/~zeller/plugin.html

been prepared using Voyager (Sawitzki 1996).

- 18 -
Components Sat, Nov 13, 1999 00:07

