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Über den Einfluss pionischer Fluktuationen auf die Dynamik des Ord-

nungsparameters am chiralen Phasenübergang

Auf der Suche nach möglichen Signaturen des chiralen Phasenübergangs in Schwerionenkollisio-

nen kommt den Pionen vermutlich eine entscheidende Rolle zu. Wir untersuchen den Einfluss

pionischer Fluktuationen auf die Relaxationsdynamik des chiralen Ordnungsparameters im

Rahmen eines Langevinansatzes für das Quark-Meson Modell.

Von der effektiven Wirkung ausgehend leiten wir, motiviert durch den Formalismus des

”Influence”-Funktionals, eine Bewegungsgleichung für die chiralen Felder her, welche eine

Ankopplung an ein Wärmebad bestehend aus Quarks und harten mesonischem Moden bein-

haltet.

In diesem Zuge erweitern wir bestehende Studien, in welchen die Pionen vernachlässigt wurden.

Als Ergebnis erhalten wir, dass pionische Fluktuationen am chiralen Phasenübergang spürbare

Auswirkungen auf die Dynamik des sigma-Feldes haben. Bei einem Phasenübergang erster

Ordnung können sich die pionischen Fluktuationen entweder beschleunigend oder bremsend auf

die Relaxation des Systems auswirken, je nach gewählten Anfangsbedingungen. Am kritischen

Punkt eines Phasenübergangs zweiter Ordnung erwirken die pionischen Fluktuationen eine

Verschiebung des Gleichgewichtserwartungswertes des sigma-Feldes.

Desweiteren testen wir unser Modell im Kontext einer Schwerionenkollision, indem wir das

Temperaturprofil eines expandierenden Plasmas für das Wärmebad annehmen. In dieser

Näherung zeigen die pionischen Fluktuationen jedoch keinen merklichen Effekt.





On the Impact of Pion Fluctuations on the Dynamics of the Order Parameter

at the Chiral Phase Transition

In the search for possible signatures of the chiral phase transition in heavy ion collisions, pions

are expected to play an important role. We investigate the impact of pion fluctuations on the

relaxation of the chiral order parameter in the framework of nonequilibrium Langevin dynamics

in the quark-meson model.

Starting from the effective action and motivated by the influence functional formalism, we

derive an equation of motion for the chiral fields coupled to a heat bath of quarks and hard

meson modes.

Thereby, we extend existing studies in which the pions have been neglected.

We find that at the chiral phase transition the pion fluctuations have a noticeable effect on the

dynamics of the sigma field. For a first order phase transition, the pion fluctuations can speed

up or delay relaxation of the system, depending on the initial conditions. For a critical point

scenario, the pion fluctuations shift the equilibrium expectation value of the order parameter

at the phase transition.

Further, we test our model in the context of a heavy ion collision by imposing the temperature

profile for an expanding plasma on the heat bath. We find that within this approximation the

model shows no effect from pion fluctuations.
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Chapter 1.

Introduction

One of the four fundemental interactions known today is the so-called strong interac-

tion. It acts between quarks and gluons as well as between all kinds of hadrons, which

are particles composed of quarks. Since nearly all of the visible matter in the universe

belongs to this category, understanding the strong interaction is of great interest.

The most easily accessible pieces of strongly interacting matter are atomic nuclei. How-

ever, the information we gain from these nuclei at ”normal” conditions are hard to

extrapolate to high temperatures and densities. Unfortunately, natural environments

for very hot or dense strongly interacting matter as e.g. the early universe, supernova

explosions and neutron stars are far less accessible for observations and often require

indirect measurements.

With the advent of accellerator experiments in the second half of the last century,

strongly interacting matter at high temperatures and densities could be created and

closely observed. Apart from the discovery of the quarks as constituent particles of the

baryons, it was found, that the strength of the interaction between the quarks decreases

with higher energy. This effect is known as asymptotic freedom. In combination with

the lack of observing lumps of quarks that consist of less than either three quarks, re-

spectively antiquarks, or a quark-antiquark pair, which is known as confinement, the

question arises whether there will be a phase transition to a plasma of quarks (and glu-

ons), and if so, where precicely does it occur and of what type is it? To answer these

questions, we need a theory on the quark level.

To this day, the best and most widely accepted candidate for a theory of strongly inter-

acting matter is quantum chromodynamcis (QCD). Besides incorporating confinement
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Chapter 1. Introduction

and asymptotic freedom, QCD is approximately symmetric under chiral transformations

at low energies. However, this symmetry is broken in the vacuum, but can it be restored

at finite temperature?

The great interest in this particular symmetry of QCD is that we have probably al-

ready found the possible quasi-Goldstone bosons in the chirally broken vacuum, the

pions. Moreover, the breaking, respectively restoration of the symmetry may explain

the difference between the current and constituent quark masses of the two lightest quark

flavors. What we still lack is the (experimental) finding of some characteristic signature

of the phase transition for a proof of its existence.

The strength and so the experimental recognizability of such a signature depends on

the order of the phase transition. If it is of second order, the correlation length of the

thermal fluctuations diverges at the critical point and the microscopic properties of the

system become unimportant which leads to universal scaling. If the phase transition

is of first order, the formation of disoriented chiral condensates (DCC) is considered a

possible footprint of the phase transition1. DCCs arise when the chiral quark conden-

sate is driven out of its equilibrium direction and acquires a finite component in pion

direction. During the decay of the DCCs, soft pion modes are enhanced. DCCs can

form by spinodal decomposition or from tachyonic instabilities of the order parameter.

However, no traces of DCC formation and decay have yet been found in experiment.

Nevertheless, we can expect pion fluctuations to become important at the chiral phase

transition.

The main goal of this work is to study the impact of pionic fluctuations on the dy-

namics of the chiral fields near and at the chiral phase transition. The dynamics of

the fields are governed by a Langevin equation which is obtained from the quark-meson

model in the framework of the closed time path effective action and motivated by the

influence functional formalism.

In the present work, we build upon existing studies in which the role of dissipation

and noise on the dynamics of the chiral order parameter has been investigated [Nah11,

1There exist many studies of DCC formation and their signatures, see e.g. [Bjo92, RW93, SD99, XG00]
to name just a few amongst many. An extensive review is provided in [MS05] and a short overview
is found in [Nah11]
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NLHB11, NLB12, NHL+13]. Therein, the dynamics of the sigma mean field is described

by a Langevin equation which is obtained from the quark-meson model in the framework

of the influence functional formalism and the closed time path effective action. From

the effective interaction of the sigma field and the quarks which serve as a heat bath,

dissipative terms and noise enter the equation of motion. In the cited works, pions have

not been taken into account. However, at the chiral phase transition they are expected

to become important.

In this work, we extend the model of [Nah11] by including the pions. This is done

in two steps: In a first approach, we allow for a finite pion field, and then we also ac-

count for the contributions of hard meson modes to the heat bath in terms of disspation

and noise2. We then investigate the impact of pionic fluctuations on the dynamics of

the sigma field close and at the chiral phase transition.

This thesis is organized as follows: in chapter 2, we will go into more detail about

chiral symmetry as an approximate symmetry of QCD. Then, we will motivate and dis-

cuss the quark-meson model. In chapter 3 we will collect the various concepts that we

need to derive a Langevin equation of motion which is at the heart of our numerical

studies. These concepts include the imaginary as well as the closed time path formal-

ism (section 3.1), but also basic Langevin theory and the influence functional formalism

(section 3.2). At the end of the chapter, the 1PI and 2PI effective action on the closed

time path are presented. The whole of chapter 4 is devoted to the derivation of the

equations of motion. The first part of the chapter contains our first extenstion to the

model of [Nah11] by including explicitly propagated pion mean fields. In the second

part, we extend the model further by accounting for the dissipative effects from inter-

actions of the mean fields with the hard meson modes. Then we finally present our

numerical results in chapters 5-7. While in chapter 5 we restrict calculations to the case

where we propagate the pion mean fields alongside the sigma field, chapter 6 contains

the corresponding results for the case of additional hard meson modes in the heat bath.

Both chapters 5 and 6 are of identical structure: first, thermal equilibrium is discussed

and the model parameters chosen for the different types of phase transition. Second, for

the case of a static heat bath the nonequilibrium dynamics of the sigma field is exam-

ined in the presence of the pion fluctuations. And finally, the energy dissipation of the

2This can be considered as combining our first upgrade to the model of [Nah11] with parts of the
model of [Ris98] in a (slightly) different framework.
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Chapter 1. Introduction

chiral fields to the heat bath is taken into account. In chapter 7, we apply our model in

the context of a heavy ion collision and investigate relaxation and particle production

in the soft meson modes. In chapter 8, we summarize our results and present an outlook.

Throughout this work, we use natural units ~ = c = kB = 1.
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Chapter 2.

QCD, Chiral Symmetry and the

Quark-Meson Model

In this chapter, we will very briefly review the history of QCD. Thereafter, we shortly

discuss chiral symmetry and introduce the quark-meson model as the basis upon which

we build our studies.

2.1. Quantum Chromodynamics

Today’s state of the art description for the physics of strong interactions is the theory

of quantum chromodyamics (QCD). It is very successful in describing many of the ob-

served features of strong interactions. Historically, the evolution of QCD followed the

enormous progress in collider experiments which began in the late 1940s and revealed

the existence of many formerly unknown particles.1

Amongst these particles, the large variety of observed hadrons could successfully be

explained by assuming hadrons to be composed of other particles, the quarks and anti-

quarks [Ne’61, GM62, GM64, Zwe64a, Zwe64b]. Furthermore, the observed existence of

certain hadrons made it necessary for the quarks to be given a new degree of freedom:

otherwise, e.g. the nucleonic resonance ∆++ which consists of three up-quarks with

zero orbital angular momentum and all three spins aligned in the same direction could

not be explained to exist as a consequence of the Pauli principle. The new degree of

freedom was introduced via an additional SU(3) symmetry and the quarks were given

1Introductions to QCD, its historical development and key concepts can be found in many textbooks,
as e.g. [Gri08, Col11], but also in countless works. The presentation in this section is strongly
influenced by [Sti14] where also many of the references cited here are found.
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Chapter 2. QCD, Chiral Symmetry and the Quark-Meson Model

a corresponding charge, the color [Gre64, HN65, FGM72].

Apart from explaining the patterns in the quantum numbers and masses of the different

hadrons found in experiments, the assumption of quarks as constituents of baryons and

mesons was successfully applied to describe the outcome of deep inelastic scattering ex-

periments [Tay, BEF+68, B+69, Fey69b, Fey69a, BP69]. However, with these findings

new questions arose: at low energies quarks only appear in their hadronic bound states

and no isolated free quark has ever been detected. Instead, only composite particles

have been found and all of them can be described as singlets of color SU(3). This is

known as confinement. Moreover, the quarks tend to behave more and more like free

particles at higher energies. This effect is called asymptotic freedom. Both these prop-

erties of quarks were successfully incorporated into a theory by coupling the quarks to a

massless, non-abelian gauge field [YM54, GW73b, GW73a, GW74, Pol73, Pol74]. The

corresponding gauge group is elegantly identified with the color SU(3) symmetry group.

The outcome is the theory governed by the Lagrangian:

LQCD =
∑

flavor

ψ
(

i /D −m
)

ψ − 1

4
F a
µνF

µν
a (2.1)

with the gauge covariant derivative

Dµ = ∂µ − igtaAa
µ (2.2)

and field strength tensor

F a
µν = ∂µA

a
ν − ∂νA

a
µ − gfabcAb

µA
c
ν (2.3)

The particles associated with the eight gauge vector fields Aa
µ are named gluons and

ta denote the corresponding generators of the SU(3) gauge group. They satisfy the

relations:
[

ta, tb
]

= ifabctc (2.4)

with SU(3) structure constants fabc. The sum in (2.1) runs over the six known quark

flavors (u,d,s,c,b,t).

With properties such as confinement and asymptotic freedom one might ask if at suf-

ficiently high temperatures or densities there is a phase transition to a quark-gluon
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2.1. Quantum Chromodynamics

plasma, i.e. a state of strongly interacting matter, where the quarks behave like free

particles (see e.g. [Hag65, CP75a, Ito70, CP75b] amongst many others). Firm and clear

evidence for such a phase transition has not yet been found experimentally despite good

hints for successful creation of a quark-gluon plasma (see for instance [A+05]). While

collider experiments keep on probing the QCD phase diagram for signs of a phase transi-

ton, it is also difficult to make theoretical predictions, because of the non-abelian nature

of the gluon fields: an exact analytic solution to QCD at finite temperature is not at

hand and standard perturbative techniques which rely on a sufficiently small coupling

constant are only valid at high enough energy scales where the quarks are asymptoti-

cally free. At the QCD phase transition however, these methods are no longer applicable.

In order to treat QCD at the phase transition non-perturbative approaches are needed.

Probably the most prominent example is lattice QCD where the partition function is

solved on a discrete space-time lattice2. The corresponding calculations are compu-

tationally very expensive. This is why they are usually performed on big computer

clusters. At zero quark-chemical potential, lattice QCD predicts a crossover at the QCD

phas transition [BFH+10, BP10, B+12]. For finite quark chemical potential, lattice QCD

faces the famous sign problem.

If one does not wish to employ a non-perturbative method for practical reasons, but

nevertheless wishes to explore the QCD phase diagram at low temperatures and ener-

gies, it is customary to choose an effective model of QCD [FS13]. Such a model cannot

of course fully reproduce QCD in its full glory. Instead, such models are designed so that

they are of simpler structure and feature only certain desired properties. The property

we are interested in is chiral symmetry, which we discuss in the following section.

2 The field of lattice QCD is very wide (and deep). An introduction to the subject is e.g. given in
[Cre83, DH09, Phi10].
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Chapter 2. QCD, Chiral Symmetry and the Quark-Meson Model

2.2. Chiral Symmetry

3 Apart from its color SU(3) symmetry, the QCD Lagrangian (2.1) features several

other symmetries, probably the most obvious one being invariance under global U(1)V

transformations, given by:

ψ(x) → e−iθψ(x) (2.5)

with real valued parameter θ. The conserved Noether charge associated with this sym-

metry is the baryon number. Further, the Lagrangian (2.1) is also invariant under global

U(1)A transformations,

ψ(x) → e−iγ5θψ(x) . (2.6)

However, during the quantization of the theory this symmetry is explicitly broken which

gives rise to the mass splitting in the meson multiplets [DGH14]. If we restrict to two

flavor QCD, i.e. if we only consider up and down quark flavors which share the same

mass, mu = md, we find another symmetry of (2.1), namely SU(2)V with corresponding

transformations

ψ(x) → e−i~τ
2
~θψ(x) (2.7)

where ψ = (ψu, ψd)
t and τj , (j = 1, 2, 3) are the Pauli matrices acting on flavor space.

The associated conserved quantity is the isospin current. Finally, in the limit of vanishing

quark masses (2.1) is invariant under so called chiral transformations, which in the case

of two quark flavors read

ψ(x) → e−iγ5
~τ
2
~θψ(x) (2.8)

and belong to the group SU(2)A. The axial vector current

~Aµ(x) = ψ(x)γµγ5
~τ

2
ψ(x) (2.9)

is conserved if the symmetry is exact. The combined group SU(2)V × SU(2)A is iso-

morphic to SU(2)L × SU(2)R, the chiral symmetry group, which seperately transforms

spinors of left (L) and right (R) handed chirality, ψR/L = 1
2
(1± γ5)ψ. In real two flavor

QCD, whith up and down quark masses nonzero but very small compared to e.g. the

hadron masses, we can expect that the violation of axial vector current conservation is

only small. However, this approximate symmetry would require a corresponding degen-

3The symmetries of QCD and in particular chiral symmetry are discussed in various books and articles
(see e.g. [Mos89, Koc97]). Our presentation of the subject has been greatly inspired by [Mal12,
Nah11].
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2.3. The Quark-Meson Model

eracy of hadronic states with nearly the same mass which is not observed. Therefore,

if chiral symmetry is an approximate symmetry of QCD, it must be broken in the vac-

uum. But if a symmetry is spontaneously broken, the Goldstone theorem predicts the

existence of massless particles. For an approximate, but not exact, symmetry which

is broken, these Goldstone bosons acquire a small but finite mass. In nature, suitable

candidates are found in shape of the pions: with a vacuum mass of mπ = 138 MeV, they

are much lighter than any other observed hadrons. As for the order parameter of the

broken chiral symmetry, the scalar quark condensate 〈ψψ〉 is identified with the sigma

meson.

2.3. The Quark-Meson Model

In order to explore the QCD phase diagram near the chiral phase transition we choose an

effective model4 of QCD which contains the necessary ingredients for chiral symmetry

breaking. A simple model which meets this requirement is the (chiral) quark-meson

model or linear sigma model with constituent quarks which is obtained from the original

linear sigma model with nucleons [GML60] by using light quarks instead of nucleons.

Collecting the up and down quarks into ψ = (ψu, ψd)
t the Lagrangian of the quark meson

model is given by

LQM = ψ
[

i/∂ − g (σ + iγ5~τ~π)ψ
]

+
1

2
∂µσ∂

µσ +
1

2
∂µ~π∂

µ~π − Vcl(σ, ~π) (2.10)

with the scalar isoscalar field σ and the pseudoscalar isovector field ~π. The bosonic

potential reads

Vcl(σ, ~π) =
λ

4N

(

σ2 + ~π2 − v2
)2 − hσ . (2.11)

The potential reflects the kind of symmetry breaking in the model: for the choice h = 0

the potential is invariant under chiral transformations, but in the ground state, the

vacuum expectation value of the vector ~ϕ = (σ, ~π) has finite length ~ϕ2 = v2 and there-

fore, the quarks acquire a mass term which breaks chiral symmetry. The breakdown of

symmetry occurs spontaneously, since the vector ~ϕ may point in any direction, i.e. the

ground state is degenerate. By defining the σ direction to coincide with the direction of

4A review on chiral effective models of QCD is found in [FS13]. Our presentation of the subject is
guided by [Sti14, Nah11].
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Chapter 2. QCD, Chiral Symmetry and the Quark-Meson Model

the ground state vector, i.e. ~ϕ = (v,~0) we see that the pions are indeed massless

m2
π =

∂2Vcl
∂π2

j

∣

∣

∣

∣

σ=v
~π=0

= 0 (2.12)

in agreement with the Goldstone theorem. However, the choice h > 0 tilts the potenial

in the σ direction and explicitly breaks chiral symmetry, thus leading to a finite pion

mass

m2
π =

h

〈σ〉 (2.13)

with vacuum expectation value 〈σ〉 > 0 while 〈~π〉 is forced to zero. The vacuum ex-

pectation value 〈σ〉 then serves as order parameter for chiral symmetry breaking and

generates a finite quark mass in the broken phase, mq = g〈σ〉. The parameters of the

model are fixed to reproduce the phenomenological values [O+14]

〈σ〉 = fπ = 93 MeV (2.14)

mπ = 138 MeV (2.15)

m2
σ =

∂2Vcl
∂σ2

∣

∣

∣

∣

σ=fπ
~π=0

=
2λ

N
f 2
π +m2

π ≈ (600MeV )2 (2.16)

which suggests

λ

N
= 20 (2.17)

h = fπm
2
π (2.18)

v2 = f 2
π − N

λ
m2

π (2.19)

For later convenience, it should be noted that in the absence of the explicit symmetry

breaking term the purely mesonic part of the Lagrangian (2.10) coincides with more

general O(N) invariant

Lϕ =
1

2
∂µϕa∂

µϕa −
λ

4N

(

ϕaϕa − v2
)2

(2.20)

for a N -component scalar field ~ϕ in the special case of N = 4 meson flavors.

The quark-meson model is widely used for studies of chiral symmetry breaking (see
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2.3. The Quark-Meson Model

for instance [JW96, SP99, LRSB00, BJW03, BK09]), but it is of course not the only

suitable model. Another important chiral effective model is the Nambu-Jona-Lasinio

model [NJL61a, NJL61b] which in contrast to the quark-meson model is however not

renormalizable.
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Chapter 3.

The Tool Box

In the previous chapter we have discussed the quark-meson model as the basis upon

which we want to build our studies of mesonic fluctuations in the context of the chiral

phase transition. What we need now is a way to get from the Lagrangian (2.10) to

an equation of motion which explicitly reflects the impact of these fluctuations on the

dynamics of the meson fields in a way that we can handle numerically. Furthermore, the

desired equation of motion should allow for nonequilibrium meson field configurations

to first relax to and then remain in thermal equilibrium. This means, that we require an

irreversible (partial) conversion of the potential and kinetic energy of the meson fields

into thermal energy. In other words, we want dissipation in our equation of motion.

In this chapter, we present the concepts neccessary for the derivation of such an equation

of motion. These are the real-time contour formalism, the influence functional and its

relation to Langevin dynamics and the (2PI) effective action formalism.

3.1. Time Paths in Finite Temperature Field Theory

A discussion of the following can be found in many textbooks on finite temeperature

field theory, as e.g. [Das97] which has influenced our presentation of the subject most,

but also [KG06, Bel11].
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Chapter 3. The Tool Box

3.1.1. Imaginary time formalism

Probably the most widely used concept in finite temperature field theory is the Matsub-

ara formalism [Mat55]. It is based on the idea that the density matrix,

ρ = e−βH (3.1)

of a statistical ensemble with Hamiltonian H and inverse temperature β = 1/T may be

regarded as a quantum mechanical time evolution operator in imaginary time, t→ −iτ ,
with τ ranging from 0 to β. For the ensemble averages of quantum mechanical operator

products this ansatz leads to periodicity conditions in imaginary time direction1, known

as Kubo-Martin-Schwinger relations [Kub57, MS59]:

〈A(t)B(t′)〉 = 〈B(t′)A(t+ iβ)〉 (3.2)

where the ensemble average is defined in the standard way

〈A〉 = (Tr ρ)−1 Tr ρA (3.3)

For the two point functions G(τ, τ ′) of boson respectively fermion fields, relation (3.2)

implies

G(0, τ) = ±G(β, τ) (3.4)

where the minus sign corresponds to the fermionic case. This (anti)periodicity leads to

a discrete Fourier spectrum, the so-called Matsubara frequencies:

ωn,b =
2πn

β

ωn,f =
(2n+ 1)π

β

(3.5)

for bosons (b) and fermions (f) with n ∈ Z. The Matsubara formalism allows to rather

intuitively apply zero temperature field theory techniques as e.g. diagrammatic expan-

sions to the finite temperature case and has been very successfully used to study systems

in thermal equilibrium on countless occasions.

1This requires time dependence of the operators and so a treatment e.g. in the Heisenber picture
[Das97].
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3.1. Time Paths in Finite Temperature Field Theory

3.1.2. Closed real time path formalism

However, if one is interested in dynamic aspects as e.g. the behaviour of a system evolv-

ing through a phase transition, the imaginary time formalism is not well suited, since

it gives up the time variable in favour of introducing temperature. In order to obtain

thermal n-point functions defined for real time arguments, one can search for analytic

continuation of the imaginary time Green’s functions in the complex time plane (see e.g.

[BM61, DJ74]). However, a more convenient apporoach (in our case) follows from the

basic observation that the time evolution of an ensemble average of an operator 〈A(t)〉β
can be rewritten as tracing over time evolution operators from initial time t0 to t > t0

where A(t) is inserted, then on to some t′ > t and somehow back to t0 − iβ. A special

case of this is the so-called closed time path, where time is evolved back along the real

axis from t′ to t0 and then in negative imaginary direction from t0 to t0 − iβ. The three

parts of the time contour C are usually denoted as C+, C− for the paths along the real

axis in positive (+) respectively negative (-) direction, and C3 for the remaining part in

imaginary direction. The closed time path formalism goes back to Schwinger [Sch61]

and Keldysh [Kel64] and is designed to treat nonequilbrium dynamics from the start.

The partition function, given by the trace over the time evolution operators along the

contour, can be generalized by adding sources on the contour which allows for the def-

inition of a generating functional for correlation functions in the standard fashion. In

the limit of t0 → −∞, t′ → +∞, the partition function factorizes into one partition

function for the real time paths and another for the path in imaginary direction. Thus,

we need not worry about the path C3 when considering correlation functions with real

time arguments and may neglect C3 in the derivations in the next chapter. However, it

should be noted, that C3 still has an impact on the real time correlation functions in

the sense that they have to fulfill the according (anti)periodicity conditions in imaginary

time2. Furthermore, if one is interested in equilibrium properties as e.g. pressure, the

partition function of C3 must be taken into account.

The time integration along the contour C in the limits t0 → −∞, t′ → +∞ and ne-

2This means, the notion of temperature is still implemented in the formalism. This is in contrast to
a ”full” nonequilibrium treatment which does not know about temperature [Ber04].
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glecting C3 is given by:

∫

C

ϕ(t)dt =

∫ +∞

−∞

ϕ(t+)dt+ −
∫ +∞

−∞

ϕ(t−)dt− (3.6)

for some field ϕ, where the first integral on the right hand side is along the path C+ and

the other integral along C−. Accordingly, the delta function on the contour is defined

via
∫

C

ϕ(t′)δC(t− t′)dt′ = ϕ(t′) (3.7)

and thus δC(t − t′) = ±δ(t − t′) for t, t′ both on C±. If t, t′ lie on different branches of

the contour, the delta function equates to zero of course. It is customary, to view ϕ(t+)

and ϕ(t−) as two separate variables ϕ+(t), ϕ−(t) with t on the standard real time axis:

∫

C

ϕ(t) =

∫ +∞

−∞

(

ϕ+(t)− ϕ−(t)
)

dt (3.8)

Accordingly, the sources in the generating functional are also split into independent

sources for fields on the different time branches. The propagators which require time

ordering along the contour C take on a matrix form:

Gab =

(

G++ G+−

G−+ G−−

)

(3.9)

with
G++(t, t′) = 〈Tϕ+(t)ϕ+(t′)〉
G+−(t, t′) = 〈ϕ−(t′)ϕ+(t)〉
G−+(t, t′) = 〈ϕ−(t)ϕ+(t′)〉
G−−(t, t′) = 〈T ∗ϕ−(t)ϕ−(t′)〉

(3.10)

with T denoting the standard time ordering and T ∗ anti time ordering. In the case of

fermion fields, G+− gets a minus sign on the right hand side. Of the four propagator

components, only three are independent, since G++ and G−− can be expressed as

G++(t, t′) = Θ(t− t′)G−+(t, t′) + Θ(t′ − t)G+−(t, t′)

G−−(t, t′) = Θ(t− t′)G+−(t, t′) + Θ(t′ − t)G−+(t, t′)
(3.11)
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3.2. Influence functional and Langevin Dynamics

which allows to eliminate one of the components. For a real scalar field of mass m, the

propagator in momentum space reads:

G++(p) =
i

p2 −m2 + iǫ
+ 2π nB

(

|p0|
)

δ
(

p2 −m2
)

(3.12)

G−−(p) =
−i

p2 −m2 − iǫ
+ 2π nB

(

|p0|
)

δ
(

p2 −m2
)

(3.13)

G+−(p) = 2π
(

nB

(

|p0|
)

+Θ
(

−p0
))

δ
(

p2 −m2
)

(3.14)

G−+(p) = 2π
(

nB

(

|p0|
)

+Θ
(

p0
))

δ
(

p2 −m2
)

(3.15)

and for a fermion field of mass m:

S++(p) = (/p+m)

(

i

p2 −m2 + iǫ
− 2πnF (|p0|)δ(p2 −m2)

)

(3.16)

S−−(p) = (/p+m)

( −i
p2 −m2 − iǫ

− 2πnF (|p0|)δ(p2 −m2)

)

(3.17)

S+−(p) = −2π(/p+m)
[

nF (|p0|)−Θ(−p0)
]

δ(p2 −m2) (3.18)

S−+(p) = −2π(/p+m)
[

nF (|p0|)−Θ(p0)
]

δ(p2 −m2) (3.19)

where nB and nF denote the boson (B) and fermion (F) distribution functions. Often,

the off-diagonal propagator components are also denoted as G+− = G< and G−+ = G>.

3.2. Influence functional and Langevin Dynamics

3.2.1. Classical Langevin equation

What we are still missing in our tool box for crafting a suitable equation of motion is a

way to incorporate dissipation. A good candidate for this is the Langevin [Lan08, LG97]

equation which historically was introduced in the context of Brownian motion: a test

particle of mass m moving with velocity v in a liquid of light particles gets random

kicks in any direction by colliding with the particles of the liquid which is modelled by

a stochastic force ξ. On average, these collisions slow down the test particle, i.e. they

effectively exert a frictional force, ∼ −v. The equation of motion for the test particle

17



Chapter 3. The Tool Box

may thus be written as (see e.g. [Sch06]):

mv̇(t) = −ηv(t) + ξ(t) (3.20)

The light particles are usually assumed to equilibrize on a time scale much shorter than

the time scale for the evolution of the test particle, meaning that the random kicks by

the stochastic force are uncorrelated for different times, i.e. it is of Markovian type. The

first two moments of ξ are then

〈ξ(t)〉 = 0 (3.21)

〈ξ(t)ξ(t′)〉 = λδ(t− t′) (3.22)

where the average over an ensemble of configurations of the stochastic force is considered.

For the sake of simplification, it is customary to assume that the distribution of ξ is

Gaussian and thus no higher moments are needed for a full characterization of the

stochastic force. Demanding that the test particle is in thermal equilibrium with the

liquid for large times t≫ m/η leads for the average kinetic energy for each spatial degree

of freedom to the condition
1

2
m〈v2(t)〉 = 1

2
kBT (3.23)

due to the equipartition theorem. This allows to connect the variance of the stochastic

field to the damping coefficient:

λ = 2ηkBT (3.24)

which is known as the fluctuation-dissipation theorem.

In principle, on the classical level, the motion of the test particle as well as of every

light particle is fully deterministic, given full knowledge of the position and momentum

of all particles involved and keeping track of every single one of them during the time

evolution. Apart from being highly impractical for even the simplest applications, such

a description is also invariant under time reversal3, i.e. the system is not dissipative.

However, the Langevin ansatz focuses only on the evolution of those degrees of freedom

which are of interest, namely the movement of the test particle. The light particles of

the liquid act as a heat bath and we only consider their average effect (plus stochastic

fluctuations) on the relevant part of the system. And it is at this point where dissipation

3This statement assumes of course interactions modelled as elastic two-body scattering.
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enters. In our case, the relevant degrees of freedom are the meson soft modes and the

irrelevant part of the system is a heat bath of quarks (and hard meson modes). Thus,

we might look for a (quantum)field theoretical technique which helps in averageing over

the irrelevant degrees of freedom in order to obtain a Langevin-like equation of motion

for the relevant part of the system. This leads us directly to the influence functional

formalism. Its presentation in the following section is based on [GL98, Nah11, Ris98].

3.2.2. Influence functional formalism

The idea of the influence functional goes back to Feyman and Vernon [FV63] and starts

with a system governed by the action S[x, q] where all relevant field variables, i.e. the

ones whose dynamics we are interested in, are collected in x, while all other variables of

the system are considered irrelevant and collectively denoted by q. The latter constitute

a background for the dynamics of the relevant variables and serve as a heat bath if one

assumes the fields q to be thermalized. At initial time ti the entire system is described

by the density matrix ρi with matrix elements ρi(xi, qi, x
′
i, q

′
i). At time tf , the density

matrix ρf = ρ(tf ) is obtained from ρi via

ρf (xf , qf , x
′
f , q

′
f , tf) =

∫

dxi

∫

dx′i

∫

dqi

∫

dq′i U(xf , qf , tf , xi, qi, ti)×

× ρi(xi, qi, x
′
i, q

′
i) U

†(x′f , q
′
f , tf , x

′
i, q

′
i, ti)

(3.25)

where the time evolution operator, expressed as a path integral, reads

U(xf , qf , tf , xi, qi, ti) =

∫

Dx
∫

Dq exp(iS[x, q]) (3.26)

with boundary conditions x(ti) = xi, x(tf ) = xf and likewise for q. With this, there

appears a term

∼ exp(iS[x, q]− iS[x′, q′]) (3.27)

under the functional integral in expression (3.25). This term is rewritten by splitting

the action S[x, q] into three parts,

S[x, q] = S0[x] + S0[q] + Sint[x, q] (3.28)

with S0[x], S0[q] containing only terms involving x, respectively q, and Sint[x, q] consist-

ing of the remaining interaction terms between the two sectors. To simplify matters,
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Chapter 3. The Tool Box

it is convenient to assume Bogoliubov initial conditions, i.e. that the relevant and the

irrelevant sectors are initially uncorrelated which leads to a factorization of the initial

density matrix:

ρi(xi, qi, x
′
i, q

′
i) = ρSi (xi, x

′
i)⊗ ρEi (qi, q

′
i) (3.29)

where we adopted the notation of [Nah11] for the density matrix of the system (S) of

relevant degrees of freedom, and the environment (E) constituted by the irrelevant fields.

Integrating out the environment then leads to a reduced density matrix ρr of the relevant

fields:

ρr(xf , x
′
f , tf) =

∫

dxi

∫

dx′i ρ
S
i (xi, x

′
i)

∫

Dx
∫

Dx′ exp(iS0[x]− iS0[x
′] + iSIF [x, x

′])

(3.30)

with the influence functional SIF defined by

exp(iSIF [x, x
′]) =

∫

dqi

∫

dq′i ρ
E
i (qi, q

′
i)

∫

Dq
∫

Dq′

×exp(iS0[q] + iSint[x, q]− iS0[q
′]− iSint[x

′, q′])

(3.31)

The influence functional contains all information about the (ensemble averaged) interac-

tions of the relevant variables x with the environment. From its definition, the influence

functional fulfills the relations:

SIF [x, x
′] = 0 (3.32)

SIF [x, x
′] = −S∗

IF [x, x
′] (3.33)

For practical use, it is convenient to approximate the term exp(iSIF ) so that ρr can be

computed. Often, one expands the interaction part:

exp(iS0[q]+iSint[x, q]−iS0[q
′]−iSint[x

′, q′]) = exp(iS0[q]−iS0[q
′])

∞
∑

n=0

in

n!
(Sint[x, q]−Sint[x

′, q′])n

(3.34)

and truncates the series at the desired order which corresponds to a perturbative expan-

sion in the coupling between the system and the heat bath. By virtue of the expansion

it becomes clear that equation (3.31) can be viewed as a sum of correlation functions in

x and q which are ensemble averages with respect to the environment. Expanding also

log(1 + a) = a − a2/2 + ... we can express the influence functional itself in terms of n-
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3.2. Influence functional and Langevin Dynamics

point functions which can be reduced to products of two point functions in the standard

way (e.g. by explicitly constructing the partition function and generating functional and

successive functional differentiation with respect to the source).

In the limit ti → −∞, tf → ∞ and with an equilibrium density matrix ρEi it is nat-

ural to identify x → x+ and x′ → x− as fields on different branches of the closed real

time contour. The aforementioned two-point functions are then given by the real-time

contour propagators. Trading the varibles x± for center and relative variables on the

contour,

x =
1

2
(x+ + x−) (3.35)

∆x = x+ − x− (3.36)

allows to identify effects from fluctuations off equilibrium, since in thermal equilibrium

∆x = 0. An equation of motion for x is then obtained from equation (3.30) by the

stationary phase condition:

δ(S0[x
+]− S0[x

−] + SIF [x,∆x])

δ(∆x)

∣

∣

∣

∣

∆x=0

(3.37)

As we will later see in our model, the influence functional SIF can have a term linear in

∆x (in the next chapter, x will be the replaced by the chiral fields),

∫

d4z D(z)∆x(z) (3.38)

with standard space-time integration. This will lead to a damping term in the equation

of motion. Real valued terms at O(∆x2) vanish of course as do terms of any higher order.

However, the influence functional might come with an imaginary part of the form:

Im(SIF [x,∆x]) =
i

2

∫

d4z

∫

d4z′ ∆x(z)N (z, z′)∆x(z′) (3.39)

which is not neccessarily suppressed for large ∆x. To get the influence functional (and

thus the action) real, a stochastic field ξ is introduced and the term in question is
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expressed as an average over the stochastic field [Sch82]

exp(i Im(SIF [x,∆x])) =

∫

Dξ P [ξ] exp
(

i

∫

d4zξ(z)∆x(z)

)

(3.40)

where the factor

P [ξ] = Ñ exp

(

−1

2

∫

d4z d4z′ξ(z)N−1(z, z′)ξ(z′)

)

(3.41)

is a Gaussian weight and Ñ an appropriate normalization constant. Due to the Gaussian

distribution of the field ξ, it is characterized by its first and second moment:

〈ξ(z)〉ξ = 0 (3.42)

〈ξ(z)ξ(z′)〉ξ = N (z, z′) (3.43)

Finally, the semi classical equation of motion for x is

δS0[x]

δx(z)
+D(z) + ξ(z) = 0 (3.44)

We have obtained a Langevin equation with the stochastic field ξ acting as a random

force. Assuming that D acts as a damping term (which we will se in the next chapter)

we have now a tool for obtaining an equation of motion for the relevant fields which

incorporates dissipation and noise as an averaged effect from the interaction with a

thermal heat bath. However, equation (3.44) does not account for thermal mass shifts:

apart from damping and noise terms the equation of motion only features the field

derivative of the classical action, but there is no thermal contribution to the potential.

For such an upgrade in our equation of motion, we will consider the effective action

formalism in the following section.
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3.3. The nPI effective action

3.3. The nPI effective action

3.3.1. 1PI effective action

A great tool for studying symmetry breaking in quantum field theory is the one-particle-

irreducible (1PI) effective action.4 In quantum field theory, the generating functional of

connected n-point functions, W [J ], in the presence of a linear source J is defined as:

Z[J ] = exp(iW [J ]) =

∫

Dϕ exp
(

iScl[ϕ] +

∫

Jϕ

)

(3.45)

where we consider for simplicity the case of a neutral scalar field ϕ governed by the

classical action Scl. The mean field π in the presence of the source J is then obtained

via functional differentiation as

φ =
δW [J ]

δJ
= 〈ϕ〉J (3.46)

and the effective action, Γ[φ], is defined as the Legendre transform of W [J ]:

Γ[φ] =W [J ]−
∫

Jφ (3.47)

and the equation of motion for the mean field is given by:

δΓ[φ]

δφ
= J (3.48)

Considering the full field shifted to the mean field plus fluctuations, ϕ → φ + ϕ allows

to write Γ as the sum of the classical action of the mean field plus quantum corrections.

The latter allow for a diagrammatic expansion,

Γ[φ] = Scl[φ] +
i

2
Tr log G−1

0 + Γ1 (3.49)

with the trace-log term resumming the one-loop contributions of the ”classical” propa-

gator,

iG−1
0 (x, y) =

δ2Scl[φ]

δφ(x)δφ(y)
(3.50)

4Introductions to the 1PI effective action at zero temperature can be found in almost every book on
quantum field theory, e.g. [PS95, Wei95, Sre07]. For our discussion at finite temperatures and also
for the 2PI effective action, we rely on [Ber04, Nah11].
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and the term Γ1 containing only connected 1PI-diagrams (i.e. diagrams which are still

connected if a single line is removed) beginning at two-loop order. Finite temperature

physics enter the formalism when specifying the time integration contour accordingly,

as e.g. the closed real time path.

3.3.2. 2PI effective action

To go beyond mean field dynamics, one might add a bilocal source term

∫

ϕ(x)R(x, y)ϕ(y) (3.51)

in the exponential on the right hand side of equation (3.45) and perform a second

Legendre transform, trading the source R for the connected two-point function G. The

expansion of the effective action (3.49) then takes the form:

Γ[φ,G] = Scl[φ] +
i

2
Tr log G−1 +

i

2
Tr G−1

0 G+ Γ2[φ,G] (3.52)

where at one loop order, i.e. in the trace-log term, the self-consistent propagator G

enters. The latter satisfies the stationarity condition:

δΓ

δG
= −1

2
R (3.53)

and Γ2 is given by the sum of all two-particle irreducible diagrams (i.e. diagrams which

cannot be separated by the removal of two lines). The equations of motion in the absence

of sources are:

δΓ

δφ
= 0

δΓ

δG
= 0 (3.54)

For the propagator, this is a Schwinger-Dyson equation:

G−1
0 G− ΣG = 1 (3.55)

with the proper self energy Σ defined as

Σ(x, y, φ,G) = 2i
δΓ2[φ,G]

δG(x, y)
(3.56)
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where we have restored the various dependencies for now. The Schwinger-Dyson equa-

tion ensures that 1PI self-energy contributions are automatically and self-consistently

resummed in the propagator.

This is a welcome feature and it may be extended to the description of n-point functions

by successively introducing 3-point sources, 4-point sources and so on with subsequenct

Legendre transformations. At the n-th step, this leads to the n-particle-irreducible ef-

fective action with a self-consistent (up to n-th loop order) set of equations of motion

for all n′-point functions with n′ ≤ n.

For fermion fields, the 2PI effective action also depends on the fermion propagator S

which appears in the expansion in equation (3.52) as:

− i T r log S−1 − i T r S−1
0 S (3.57)

as well as in the 2PI diagrams entering Γ2 which determine the fermion self-energy

Σf = −iδΓ2/δS.

In order to solve the equations of motion, one needs to truncate Γ2, e.g. at a given order

in loops or in the coupling constant. Despite such approximations, the self-consistency

of the 2PI ansatz is still given within the limits of the truncation. While the afore-

mentioned examples provide a finite number of diagrams contributing to Γ2, there are

also ways to resum an infinite number of diagrams. A prominent example is provided

by a an expansion in powers of 1/N in O(N) symmetric models (see e.g. [Ber02, Ber04]).

Choosing the closed real time contour for the time integration (as introduced above),

the 2PI effective action is capable of describing dynamics in a thermodynamic context,

where temperature has a meaning. However, for ”true” nonequilbrium dynamics the

time path from initial time to present time t and back to initial time is chosen. The

system is then evolved in time by increasing t and at each point in time the current evo-

lution is determined by the full past of the fields and correlators. The boundary problem

from the (anti)periodicity conditions in imaginary time are not present in this apporach

(nor is temperature), instead it is an initial value problem. If in the nonequilbrium 2PI

effective action ansatz the system relaxes to a stable state which can be identified as

thermal equilibrium, then it is an outcome of the theory which has not been put in by
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hand [Ber04]. In our studies, however, we would like to have more control over the final

state of the system which is why we stick to the Schwinger-Keldysh contour.
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Chapter 4.

Mesonic Fluctuations and Langevin

Dynamics

In this section we will derive a Langevin equation for the σ mean field taking into ac-

count dissipative and noise terms originating from mesonic fluctuations. Starting from

the effective action for the quark meson model, we will extend the approach of Nahrgang

([NLHB11, Nah11]) by including pionic degrees of freedom. Before we continue, it should

be stressed that in [NLHB11, Nah11] the notion of the 2PI effective action differs from

the one delineated e.g. in [Ber04]. We shall adopt the latter notion and emphasize

differences to [NLHB11, Nah11] whenever neccessary.

Probably the most appealing property of the 2PI effective action formalism is that

it automatically leads to a self-consistent quantum theory which also featueres thermo-

dynamic consistency. However, in the notion of [Ber04] and as opposed to the claim

in [NLHB11, Nah11], we will sacrifice the self-consistency in favor of obtaining a semi-

classical equation of motion. Nevertheless the 2PI formalism will help us in deriving self

consistent thermal meson propagators in section 4.2. But first, we will restrict to the

case of a pure quark heat bath during the derivations in section 4.1. We will work at

vanishing quark chemical potential.

4.1. Dissipation and noise for pure quark heat bath

In order to find a semi-classical equation of motion for the meson fields we follow

[Nah11, NLHB11] and (at least formally) start with the 2PI effective action for the

quark-meson model. As outlined in the previous chapter, the first step in the derivation

of the 2PI effective action is to split the quantum fields into their ensemble averages (i.e.
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the ”classical” or ”mean” fields) plus fluctuations.

Likewise, the Lagrangian splits into a part consisting only of classical fields and a fluctu-

ation part. The classical part constitutes the so-called classical action Scl which enters

into the loop expansion of the 2PI effective action, equation (3.52), while the fluctuation

part provides the vertices needed for the construction of the 2PI diagrams entering Γ2.

The classical Lagrangian is given by equation (2.10) with classical instead of full fields.

From Scl the inverse classical propagators for the quarks (S0) and mesons (G0) can be

read off immediately as (~ϕ = (σ, ~π)):

iS−1
0 (x, y) = (i/∂x − g[σ(x) + iγ5~τ~π(x)])δ(x− y) (4.1)

iG−1
ab,0(x, y) = −

(

[�x +
λ

N
ϕc(x)ϕ

c(x)− v2]δab − 2
λ

N
ϕa(x)ϕb(x)

)

δ(x− y) (4.2)

From the above one sees that in general both propagators could have non-zero off-

diagonal elements in quark respectively meson flavor space. However, for vanishing pion

mean field and thus especially in thermal equilibrium the structure of the propagators

reduces to flavor-diagonal form.

Next, we need to specify how to truncate Γ2. In the spirit of Nahrgang [NLHB11],

we will for now fully neglect the meson propagators, i.e. we choose

G = 0 (4.3)

=⇒ Γ = Γ[σ, ~π, S] . (4.4)

This choice however makes it impossible to draw any 2PI diagrams containing quark

propagators, since the quark-meson model lacks a quark-quark self-interaction term.

Thus, the current approximation results in

Γ2 = 0 (4.5)

and therefore causes a vanishing quark self-energy:

Σq = −iδΓ2[σ, ~π, S]

δS
= 0 (4.6)
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4.1. Dissipation and noise for pure quark heat bath

As a consequence, the equation of motion for the quark propagator also becomes trivial:

δΓ

δS
= 0 =⇒ S−1

0 S = 1 ⇐⇒ S = S0 (4.7)

i.e., the full propagator is just given by the classical one. Further, the Tr(S−1
0 S) term in

the loop expansion of the 2PI effective action is reduced to an (infinite) constant which

may be dropped. The ansatz for the effective action melts down to the simple form:

Γ[σ, ~π, S0] = Scl[σ0, ~π] + i T r ln S0(σ, ~π) (4.8)

This is just the standard (1PI) effective action with the quark one-loop potential in

meson mean-field approximation. In other words, within the chosen approximation we

would not have needed the full 2PI effective action ansatz. However, as soon as we

include the meson propagator, we will need the 2PI formalism (see section 4.2).

At this point it is important to note that the previous statements follow from using

the 2PI framework in the sense of e.g. [Ber04]. In [NLHB11, Nah11] on the other hand

a different definition of the classical propagator is used which leads to Γ2 consisting of

a quark loop with a mean field insertion. However, following [Ber04], the contributions

from any one-loop diagrams are already accounted for by the one-loop part of the 2PI

effecitve action, i.e. the trace terms. Of course, within the current approximations both

points of view will finally result in the same equations of motion.

It is clear that by assuming a vanishing meson propagator we loose all information

about mesonic quantum fluctuations, which are hidden in the n point correlation func-

tions of the meson fields [Ber04]. The only degrees of freedom left are the macroscopic

meson fields and the fermion propagator as a function of these fields. In order to rein-

troduce mesonic fluctuations into the model we follow Nahrgang et al. and allow for a

(microscopic) spatial variation of the (macroscopic) meson mean fields [NLHB11]. These

meson fields are then split into a slowly varying part and a fluctuating rest:

σ(x) −→ σ0(x) + δσ(x) (4.9)

~π(x) −→ ~π(x) + δ~π(x) (4.10)
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where we adopt the notation of [NLHB11] by assigning a ”δ” to the fluctuations and

using the index ”0” for the slowly varying fields. Similarly to the meson fields, the quark

propagator is replaced by a sum of a thermal propagator Sth plus fluctuations [NLHB11]:

S0(x, y) −→ S(x, y) = Sth(x, y) + δS(x, y) + δ2S(x, y) (4.11)

The splitting of the meson fields is chosen such that the ”slowly” varying part depends

only weakly on space-time coordinate compared to the quark propagator. Further, it

is assumed that the fluctuations in the propagator and the fields are small. Therefore,

the above replacements allow to solve the equation of motion for the quark propagator,

equation (4.7), order by order in the fluctuations, i.e. the following three equations:

O(δ0) : (i/∂x − g[σa
0(x) + iγ5~τ~π

a
0(x)])S

ab
th (x, y) = iδabC (x− y) (4.12)

O(δ1) : (i/∂x − g[σa
0(x) + iγ5~τ~π

a
0(x)])δS

ab(x, y)− g[δσa(x) + iγ5~τδ~π
a(x)]Sab

th (x, y)

= 0 (4.13)

O(δ2) : (i/∂x − g[σa
0(x) + iγ5~τ~π

a
0(x)])δ

2Sab(x, y)− g[δσa(x) + iγ5~τδ~π
a(x)]δSab(x, y)

= 0 (4.14)

Here we have restored the real-time contour indices. Since we require a much weaker

space-time dependence of σ0, ~π0 than Sth,the solution to the lowest order equation is

given by the thermal fermion propagator on the real time contour. The propagators mass

matrix features off-diagonal elements due to the pseudo-scalar coupling of the pions and

quarks. In momentum space, the four components of Sth on the real-time contour read:

S++
th (p) = (/p+ g(σ0 − iγ5~τ~π0))

(

i

p2 −m2
q + iǫ

− 2πnF (|p0|)δ(p2 −m2
q)

)

(4.15)

S−−
th (p) = (/p+ g(σ0 − iγ5~τ~π0))

( −i
p2 −m2

q − iǫ
− 2πnF (|p0|)δ(p2 −m2

q)

)

(4.16)

S+−
th (p) = −2π(/p+ g(σ0 − iγ5~τ~π0))

[

nF (|p0|)−Θ(−p0)
]

δ(p2 −m2
q) (4.17)

S−+
th (p) = −2π(/p+ g(σ0 − iγ5~τ~π0))

[

nF (|p0|)−Θ(p0)
]

δ(p2 −m2
q) (4.18)
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with the dynamic quark mass mq = g
√

σ2
0 + ~π2

0 . Now that we have the solution of

equation (4.12), we note that we can solve equation (4.13) by a Green’s function ansatz:

δSab(x, y) = −ig
∫

C

d4zSac
th (x, z) [δσ

c(z) + iγ5~τδ~π
c(z)] Scb

th(z, y) (4.19)

Similarly, one finds for the solution of equation (4.14):

δ2Sab(x, y) = −g2
∫

C

d4zd4z′ Sac
th (x, z) [δσ

c(z) + iγ5~τδ~π
c(z)]Scd

th(z, z
′)

[

δσd(z′) + iγ5~τδ~π
d(z′)

]

Sdb
th(z

′, y) (4.20)

Plugging the quark propagator into the effective action, we find up to an infinite constant

Γ = Scl[σ0 + δσ, ~π0 + δ~π] + i T r ln (Sth + δS + δ2S) (4.21)

and expand in orders of fluctuations. For this purpose, we write the trace-log term as:

i T r ln S = i T r ln Sth + i T r ln (1+ S−1
th (δS + δ2S)) (4.22)

with all indices suppressed. Using

ln(1 + x) = x− x2

2
+ ... (4.23)

we obtain:

i T r ln S = i T r ln Sth + g Tr (δφ Sth)

−ig
2

2
Tr (δφ Sth δφ Sth) +O(δ3) (4.24)

where we inserted the solutions for δS, δ2S, i.e. equations (4.19), (4.20), and introduced

the shorthand notation:

δφ = δσ + iγ5~τδ~π . (4.25)
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Following [NLHB11, Nah11], we combine the fields on the two time branches of the

Keldysh contour into center and relative variables:

δσ =
1

2
(δσ+ + δσ−) (4.26)

∆δσ = δσ+ − δσ− (4.27)

δπj =
1

2
(δπ+

j + δπ−
j ), (j = 1, 2, 3) (4.28)

∆δ~π = δ~π+ − δ~π− (4.29)

As in equation (4.28), we will always write the pion center field with an isospin index

such that it cannot be confused with the vector notation. To ensure better readability,

we further define

δφ =
1

2
(δφ+ + δφ−) = δσ + iγ5τjδπj (4.30)

∆δφ = δφ+ − δφ− = ∆δσ + iγ5~τ∆δ~π . (4.31)

which has a non-trivial structure in Dirac and quark flavor spaces due to the pion

contribution. With the replacements of equations (4.24) and (4.26)-(4.31) we rewrite the

effective action, equation (4.21). Further, we switch to the common notation S< = S+−,

S> = S−+. Finally, the effective action takes the following form (see appendix A.2 for

computational details):

Γ[σ0, ~π0, δσ, δ~π, S] =

Scl[σ0 + δσ, ~π0 + δ~π] + i T r ln Sth + g

∫

d4x tr
(

∆δφ(x)S++
th (x, x)

)

+ig2
∫

d4xd4yΘ(x0−y0)tr
(

∆δφ(x)S<
th(x, y)δφ(y)S

>
th(y, x)−∆δφ(x)S>

th(x, y)δφ(y)S
<
th(y, x)

)

− ig2

4

∫

d4xd4y tr (∆δφ(x)S<
th(x, y)∆δφ(y)S

>
th(y, x) + ∆δφ(x)S>

th(x, y)∆δφ(y)S
<
th(y, x))

+O(δ3) (4.32)
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4.1. Dissipation and noise for pure quark heat bath

This is the one loop effective action plus corrections linear and quadratic in the meson

fluctuations. Also, for all pion contributions set to zero, we almost recover the result

presented in [NLHB11, Nah11]. The only difference lies in the presence of the one loop

mean field quark potential, i.e. the trace-log term, which will drop out in the equation

of motion. Moreover, comparing our equation (4.32) to the corresponding equation (48)

in [NLHB11], respectively equation (5.42) in [Nah11], we note that in the cited work the

term with the theta-function carries an additional factor 1/2. However, since we cannot

reproduce this factor even by precisely following the derivations in [NLHB11, Nah11],

we assume that it must be a typo.

From equation (4.32) the equation of motion for the meson center fields is obtained

by:

δΓ

δ(∆δσ)

∣

∣

∣

∣

∆δσ=∆σ0=0

∆δ~π=∆~π0=0

= 0 (4.33)

δΓ

δ(∆δπj)

∣

∣

∣

∣

∆δσ=∆σ0=0

∆δ~π=∆~π0=0

= 0 (j = 1, 2, 3) (4.34)

In equation (4.32) we recognize the structure of the damping and noise kernels as moti-

vated by the influence functional in the previous chapter1. Denoting the damping kernel

as Da and introducing the stochastic force as in the influence functional approach, equa-

tions (4.33), (4.34) turn into (j=1,2,3):

0 =
δScl[σ, ~π]

δ(∆δσ(x))

∣

∣

∣

∣

∆δσ=∆σ0=0

∆δ~π=∆~π0=0

+ g tr S++
th (x, x) +Dσ(x) + ξσ(x) (4.35)

0 =
δScl[σ, ~π]

δ(∆δπj(x))

∣

∣

∣

∣

∆δσ=∆σ0=0

∆δ~π=∆~π0=0

+ ig tr
(

γ5 τj S
++
th (x, x)

)

+Dπj
(x) + ξπj

(x) (4.36)

1Explicitly evaluating the influence functional for the quark-meson model at the meson mean field
level, indeed leads to the very same expressions at O(g2) (see [Nah11, NLHB11] for the case of
~π = 0)
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4.1.1. Classical action and (pseudo)scalar density

For the classical action on the real time contour we have:

δScl[σ, ~π]

δ(∆δσ)

∣

∣

∣

∣

∆δσ=∆σ0=0

∆δ~π=∆~π0=0

=

(

δSQM [σ+, ~π+]

δ(∆δσ)
− δSQM [σ−, ~π−]

δ(∆δσ)

)
∣

∣

∣

∣

∆δσ=∆σ0=0

∆δ~π=∆~π0=0

(4.37)

(4.38)

and similarly for δScl/δ(∆δπj), (j=1,2,3). Since σ± = σ0 ± 1
2
∆σ0 + δσ ± 1

2
∆δσ (and

likewise for the pions), we obtain:

δScl[σ, ~π]

δ(∆δσ)

∣

∣

∣

∣

∆δσ=∆σ0=0

∆δ~π=∆~π0=0

=
δSQM [σ0, π0,j (j = 1, 2, 3)]

δ(σ0)
(4.39)

δScl[σ, ~π]

δ(∆δπk)

∣

∣

∣

∣

∆δσ=∆σ0=0

∆δ~π=∆~π0=0

=
δSQM [σ0, π0,j (j = 1, 2, 3)]

δ(π0,k)
(k = 1, 2, 3) (4.40)

where we have already applied a further approximation which causes the fluctuating

fields δσ, δπj (j=1,2,3) to vanish from the above expressions. This approximation will

be introduced during the computation of the damping kernel later on (see equation

(4.74)).

From now on we are always dealing with expressions in which only the meson center

variables appear. Therefore, we can savely drop the bar in the notation and write e.g.

σ0, δσ instead of σ0, δσ and so on.

Let us turn towards the computation of the tr S++ terms in the equations of motion.

These terms are of zeroth order in meson fluctuations, since we found the solution to Sth

by treating σ0, ~π0 as quasi mean fields. Thus, the thermal propagator is approximately

translation invariant, Sth(x, y) ≈ Sth(x − y). However, this is indeed not an exact

relation which is especially noticeable in the case of Sth(x, x) ≈ Sth(0) which still carries

an implicit x-dependence through σ0(x), ~π0(x). Bearing this in mind and neglecting the

propagator’s vacuum contribution, we find using

δ(p2 −m2
q) = δ((p0)2 − (~p2 +m2

q)) =
1

2Ep

[

δ(p0 −Ep) + δ(p0 + Ep)
]

(4.41)
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4.1. Dissipation and noise for pure quark heat bath

and the eplicit form of S++
th , i.e. equation (4.15):

g tr S++
th (x, x) ≈ g tr

∫

d4p

(2π)4
S++
th (p)

= −2πg

∫

d4p

(2π)4
tr
(

/p+ g(σ0 − iγ5~τ~π0)
)

nF (|p0|)δ(p2 −m2
q)

= −2nqg
2σ0

∫

d3p

(2π)3
nF (Ep)

Ep

= −gρs(x) (4.42)

Here, nq = 12 is the quark degeneracy factor and Ep =
√

~p2 +m2
q the quark energy with

dynamic mass mq = g
√

σ2
0 + ~π2

0. In the last line of equation (4.42) we have restored

the x-dependency omitted in the intermediate steps. Further, we identify the one-loop

scalar density ρs. Equation (4.42) is in agreement with [NLHB11, Nah11].

Similarly to equation (4.42), for the j-th pion component, using γ5γ5 = 1 and tr(τiτj) =

dflavorδij , we arrive at:

ig tr
(

γ5τjS
++
th (x, x)

)

≈ −2nqg
2π0,j

∫

d3p

(2π)3
nF (Ep)

Ep

= −gρps,j(x) (4.43)

i.e. the according component of the one-loop pseudo-scalar density, ~ρps.

In the following, it will be convenient to group the mesons into the four vector ~ϕ = (σ, ~π).

In this sense, we collect the scalar and pseudo-scalar densities, into the four vector ~ρ

with components:

ρa(x) = 2nqgϕa(x)

∫

d3p

(2π)3
nF (Ep)

Ep
(4.44)

4.1.2. The damping kernel

In order to evaluate the damping kernels Dσ(x), Dπj
(x) in equations (4.35), (4.36) we

will first clean up our notation: we group the mesons into the four vector ~ϕ = (σ, ~π)

with component index running from a = 0 (σ) to 3. Further, we will drop any index 0

in the mean fields and also omit the index th in the thermal quark propagator. Just like
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the mesons, we can collect the damping kernels into a vector and write

Da(x) = ig2
∫

d4y Θ(x0 − y0) δϕb(y)Mab(x− y) (4.45)

with summation over repeated indices. Hereby, we have defined Mab(x− y), which is a

matrix in meson flavor space. Its components read (j, k = 1, 2, 3):

M00(x− y) = tr (S<(x− y)S>(y − x)− S>(x− y)S<(y − x)) (4.46)

M0j(x− y) = tr (S<(x− y)iγ5τjS
>(y − x)− S>(x− y)iγ5τjS

<(y − x)) (4.47)

Mj0(x− y) = tr (iγ5τjS
<(x− y)S>(y − x)− iγ5τjS

>(x− y)S<(y − x)) (4.48)

Mjk(x− y) = tr (iγ5τjS
<(x− y)iγ5τkS

>(y − x))

−tr (iγ5τjS>(x− y)iγ5τkS
<(y − x)) (4.49)

By neglecting the pion contributions, the only surviving component of M would be the

00 (i.e. σσ) component, which is in agreement with [NLHB11, Nah11]. The Fourier

transform of M is given by:

M00(k) =

∫

d4p

(2π)4
tr (S<(p+ k)S>(p)− S>(p+ k)S < (p)) (4.50)

and likewise for the other components. Inserting the parts of the propagator relevant

for the evaluation of the trace we have for the 00 component:

tr
[(

/p+ /k + gσ − igγ5~τ~π
) (

/p+ gσ − igγ5~τ~π
)]

= 2 nq

(

(p + k)p+ g2σ2 − g2~π2
)

(4.51)

The 0j and j0 components (j = 1, 2, 3) evaluate to:

tr
[(

/p+ /k + gσ − igγ5~τ~π
)

iγ5τj
(

/p+ gσ − igγ5~τ~π
)]

= tr
[

iγ5τj
(

/p+ /k + gσ − igγ5~τ~π
) (

/p+ gσ − igγ5~τ~π
)]

= 4 nq g
2σπj (4.52)

and the jl (j, l = 1, 2, 3) component is given by:

tr
[

iγ5τj
(

/p+ /k + gσ − igγ5~τ~π
)

iγ5τk
(

/p+ gσ − igγ5~τ~π
)]

= 2 nq

(

(p+ k)p δjl + 2g2πjπl − g2 ~ϕ2 δjl
)

(4.53)
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Obviously, the terms (4.51)-(4.53) can be collected into the single expression

Aab(p, k) = 2 nq

(

(p+ k)p δab + 2g2ϕaϕb −m2
q δab

)

(4.54)

where we identified the dynamic quark mass mq = g
√

~ϕ2 = g
√
σ2 + ~π2. We note, that

in comparison to [NLHB11, Nah11], our σσ component A00 is altered by contributions

from the pions. Only in the case of a vanishing pion mean field and thus especially

in thermal equilibrium the quark mass reduces to mq = gσ and we recover for A00

the corresponding results of [NLHB11, Nah11]. However, since we allow for a nonzero

pion mean field off equilibrium this corresponds to a rotation of the meson mean field

vector ~ϕ away from the pure σ-direction. Thus, the σ field is no longer the longitudinal

component of ~ϕ. Only in the defining (thermal) ground state we have ~ϕ = (σ,~0) due

to the explicit symmetry breaking. Therefore, it is convenient to split all quantities in

meson flavor space into longitudinal (L) and transversal (T) components with respect

to the mean field vector. For this purpose, we introduce the projection operators

PL
ab =

ϕaϕb

ϕ2
(4.55)

P T
ab = δab −

ϕaϕb

ϕ2
(4.56)

and rewrite

Aab(p, k) = AL(p, k)P
L
ab + AT (p, k)P

T
ab (4.57)

with components:

AL(p, k) = 2nq(p+ k)p+m2
q (4.58)

AT (p, k) = 2nq(p+ k)p−m2
q (4.59)

and we can identify the longitudinal component AL(p, k) with the σ-component A00

in thermal equilibrium. It should be noted, that such splitting into longitudinal and

transversal parts with respect to the mean field vector is most commonly used in O(N)

symmetric models with spontaneous symmetry breaking (see e.g. [Ber04, vHK02a]).
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Including all parts of the thermal propagator, we find:

Mab(k) =
1

4π2

∫

d4p Aab(p, k) δ
(

(p+ k)2 −m2
q

)

δ
(

p2 −m2
q

)

×

×
{

(

nf (|p0 + k0|)−Θ(−p0 − k0)
)(

nf (|p0|)−Θ(p0)
)

−
(

nf(|p0 + k0|)−Θ(p0 + k0)
) (

nf (|p0|)−Θ(−p0)
)

}

(4.60)

which can be split into longitudinal ML and transversal MT parts as well:

Mab(k) = ML(k)P
L
ab +MT (k)P

T
ab (4.61)

Recalling the definition of the quark energy Ep =
√

~p2 +m2
q (and likewise Ep+k) we can

perform the p0 integration and evaluate the theta functions. The result is:

ML(ω,~k) =
nq

8π2

∫

d3p
1

EpEp+k

{

[

−Ep(Ep + Ep+k)− ~k~p+ 2m2
q

]

×

×
(

δ(ω −Ep − Ep+k) [nf(Ep)nf (Ep+k)− (1− nf (Ep)) (1− nf(Ep+k))]

+δ(ω + Ep + Ep+k) [(1− nf (Ep)) (1− nf(Ep+k)− nf (Ep)nf(Ep+k))]
)

+
[

−Ep(Ep − Ep+k)− ~k~p+ 2m2
q

]

×

×
(

δ(ω + Ep −Ep+k) [nf (Ep) (1− nf(Ep+k))− (1− nf(Ep))nf(Ep+k)]

+δ(ω − Ep + Ep+k)
[

(1− nf (Ep))nf (Ep+k)− nf(Ep) (1− nf (Ep+k))
]

)

}

(4.62)

For MT , replace:

[

−Ep(Ep ±Ep+k)− ~k~p+ 2m2
q

]

−→
[

−Ep(Ep ± Ep+k)− ~k~p
]

(4.63)

Here, we have followed [NLHB11, Nah11] and chosen the notation k0 = ω as well as

sorted the the various terms according to their energy balance. The reason for this is

that we more easily recognize the phyical meaning of the different terms. Since the

structure for longitudinal and transversal components of M is exactly the same as in
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4.1. Dissipation and noise for pure quark heat bath

[NLHB11, Nah11], we may closely follow the discussion in the cited references which

is in turn based on [Wel83]: While nf (Ep)nf(Ep+k) equals the probability of a quark-

antiquark pair to decay into a certain meson mode, the decay of a meson mode into

a quark-antiquark pair comes with the probability (1 − nf(Ep))(1 − nf (Ep+k)). The

decay of a quark into a meson and a quark (and likewise for antiquark decay) as well as

the respective inverse processes come with terms like nf (Ep)(1− nf(Ep+k)). Each delta

function in M is accompanied by the difference of the probabilities of two mutually

inverse processes, i.e. it can be viewed as a gain minus a loss term for each type of

process. For each delta function, the loss and gain terms fulfill the universal relation

Γloss

Γgain
= exp

(ω

T

)

(4.64)

which is typical for the interaction of test particles with a heat bath in equilibrium

[Wel83, NLHB11].

For our further calculations it is important to note that from the structure of Mab(ω,~k)

in its explicit form (4.61)-(4.63) we can infer that substituting ω −→ −ω simply leads

to a pairwise swapping of the delta functions and thus to an overall change of sign:

Mab(−ω,~k) = −Mab(ω,~k) (4.65)

This antisymmetry in ω will be useful in evaluating the damping kernel. We write:

Da(x) = ig2
∫

d4y Θ(x0 − y0)δϕb(y)Mab(x− y)

= ig2
∫

d4y Θ(x0 − y0)δϕb(y)

∫

d4k

(2π)4
exp(−ik(x − y))Mab(ω,~k) (4.66)

Performing the spatial y integration leads to the spatial Fourier transform of the meson

fluctuations:

δϕb(y
0, ~k) =

∫

d3y exp(−i~k~y) δϕb(y) (4.67)

Additionaly, we introduce the time variable t′ = y0 − x0 and denote x0 = t. Then, we

change the time integration variable from y0 = t − t′ to t′ which allows for a simple

evaluation of the Theta function and yields for the damping kernel (see also [NLHB11,
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Nah11] for a = b = 0):

Da(x) = ig2
∫

d3k

(2π)3
exp(i~k~x)

∫ ∞

0

dt′
∫

dω

2π
exp(−iωt′)Mab(ω,~k) δϕb(t− t′, ~k) (4.68)

It is t − t′ < t = x0 within the above integration region and thus at each point in

time fluctuations from the past contribute to the damping kernel and therefore to the

evolution of the meson fields themselves. The trouble is, that for every infinitesimal step

in time t → t + dt not just some ”local” past but the full past of the field evolution is

contributing to the present evolution. This means that in principle we have to keep track

of all field configurations ϕa(t, ~k) from the very start of the evolution at t = t0. For this

reason, numerical studies including the full history of the fields become very memory

and time consuming with increasing number of time steps. This is a known problem,

especially for self-consistent frameworks as e.g. the nonequilibrium 2PI effective action

formalism. To simplify our computations we approximate the memory effects so as to

get an analytic expression for the damping kernel. For this purpose, we choose a linear

harmonic approximation to the meson fields. But first, let us reinstate the index 0 for

the mean fields. The full field is then given by:

ϕa = (PL
ab + P T

ab)(ϕ0,b + δϕb) = ϕ0,a + PL
abδϕb + P T

abδϕb (4.69)

(Note, that since the the mean field ϕ0,a defines the longitudinal direction, it does not

have a transversal part.) Assume now a linear harmonic approximation with different

frequencies for the longitudinal and transversal parts:

PL
abϕb(t− t′, ~k) = aLa (t)cos(E

L
k t

′) + bLa (t)sin(E
L
k t

′) (4.70)

P T
abϕb(t− t′, ~k) = aTa (t)cos(E

T
k t

′) + bTa (t)sin(E
T
k t

′) (4.71)

Since (PL)2 = PL and (P T )2 = P T as well as PLP T = P TPL = 0 it follows that the

coefficients obey:

PL
aba

L
b (t) = aLa (t) P T

aba
L
b (t) = 0 (4.72)

P T
abb

T
b (t) = bTa (t) PL

abb
T
b (t) = 0 (4.73)
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4.1. Dissipation and noise for pure quark heat bath

In the above ansatz, the coefficients aLa (t), a
T
a (t), b

L
a (t), b

T
a (t) are fixed by the constraints:

ϕa(t− t′, ~k)
∣

∣

∣

t′=0
= ϕ0,a(t, ~k) (4.74)

∂ϕa(t− t′, ~k)

∂t′

∣

∣

∣

∣

t′=0

= −∂ϕa(t, ~k)

∂t
(4.75)

The first requirement leads to

aLa (t) + aTa (t) = ϕ0,a(t, ~k) (4.76)

which is purely longitudinal and thus:

aLa (t) = ϕ0,a aTa (t) = 0 (4.77)

The second constraint corresponds to

bLa (t)E
L
k + bTa (t)E

T
k = −∂tϕa(t, ~k) (4.78)

After multiplying this line with PL respectively P T one finds:

bLa (t) = − 1

EL
k

PL
ab∂tϕb(t, ~k) (4.79)

bTa (t) = − 1

ET
k

P T
ab∂tϕb(t, ~k) (4.80)

Applying again (4.74), we arrive at the expression

ϕa(t− t′, ~k) = ϕ0,a(t, ~k)cos(E
L
k t

′)− 1

EL
k

sin(EL
k t

′)PL
ab∂tϕ0,b(t, ~k)

− 1

ET
k

sin(ET
k t

′)P T
ab∂tϕ0,b(t, ~k)

(4.81)

for the full field. Comparing this result to equation (4.69), we see that the fluctuations
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are

PL
abδϕb(t− t′, ~k) =

(

ϕ0,a(t, ~k)cos(E
L
k t

′)− ϕ0,a(t− t′, ~k)
)

− 1

EL
k

sin(EL
k t

′)PL
ab∂tϕ0,b(t, ~k)

(4.82)

P T
abδϕb(t− t′, ~k) = − 1

ET
k

sin(ET
k t

′)P T
ab∂tϕ0,b(t, ~k) (4.83)

If we expand the dynamical quark mass mq = g
√
σ2 + ~π2 in fluctuations, we see that the

first term in equation (4.82) causes a correction at lowest order (∼ ϕ0). This correction

is assumed to be small [NLHB11, Nah11], i.e.:

ϕ0,a(t, ~k)cos(E
L
k t

′)− ϕ0,a(t− t′, ~k) ≈ 0 (4.84)

and so the remaining part of the fluctuations is the term proportional to the time-

derivative of the mean field itself. From now on, we will again omit the index 0 for the

mean fields. With the approximated fluctuations, the damping kernel becomes:

Da(x) = − ig2
∫

d3k

(2π)3
1

EL
k

exp(i~k~x)PL
ab∂tϕb(t, ~k)×

×
∫ ∞

0

dt′
∫

dω

2π
exp(−iωt′)ML(ω,~k) sin(E

L
k t

′)

− ig2
∫

d3k

(2π)3
1

ET
k

exp(i~k~x)P T
ab∂tϕb(t, ~k)×

×
∫ ∞

0

dt′
∫

dω

2π
exp(−iωt′)MT (ω,~k) sin(E

T
k t

′) (4.85)

Using

sin(Ekt
′) = − i

2
(exp(iEkt

′)− exp(−iEkt
′)) (4.86)

we perform the integrations in the second line (and analogously in the fourth line) of
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4.1. Dissipation and noise for pure quark heat bath

equation (4.85):

− i

2

∫

dω

2π

∫ ∞

0

dt′
{

exp
(

i(EL
k − ω)t′

)

− exp
(

−i(EL
k + ω)t′

)}

ML(ω,~k)

= − i

2

∫

dω

2π

{
∫ ∞

−∞

dt′ exp
(

i(EL
k − ω)t′

)

−
∫ 0

−∞

dt′ exp
(

i(EL
k − ω)t′

)

+

∫ −∞

0

dt′exp
(

i(EL
k + ω)t′

)

}

ML(ω,~k)

= − i

2

∫

dω

2π
ML(ω,~k)

{

2π δ(ω − EL
k ) +

∫ −∞

0

dt′ exp
(

i(EL
k − ω)t′

)

−
∫ −∞

0

dt′exp
(

i(EL
k − ω)t′

)

}

(4.87)

where in the first step we ”added a zero” to the first term and in the second term we

changed the integration variable from t′ to −t′. Then, in the second step we evaluated the

first t′ integral and swapped integration limits in the second term. For the last term we

substituted ω → −ω and used the antisymmetry property Mab(−ω,~k) = −Mab(ω,~k).

The last two terms in the last line of equation (4.87) cancel and the omega integration

can easily be carried out. Thus, we arrie at:

Da(x) = −1

2
g2
∫

d3k

(2π)3
exp(i~k~x)

(

1

EL
k

ML(E
L
k ,
~k) PL

ab +
1

ET
k

MT (E
T
k ,
~k) P T

ab

)

∂tϕb(t, ~k)

(4.88)

which is in agreement with [NLHB11, Nah11] for the longitudinal component. Our inter-

est lies in the behaviour of the long range oscillations of the meson fields. Therefore, we

evaluate Mab within a zero mode approximation, i.e. we assume Mab(ω,~k) ≈ Mab(ω,~0)

[NLHB11, Nah11]. With ω = E
L/T
k =

√

m2
L/T + ~k2 this corresponds to the replacement

ML/T (E
L/T
k , ~k) → ML/T (mL/T ,~0) in equation (4.88). Further, due to the zero mode

approximation, in equation (4.62) only the term including

δ(ω − Ep −Ep+k) −→ δ(ω − 2Ep) (4.89)
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survives, while the other delta functions all equate to zero. We obtain:

ML(mL,~0) =
nq

π

∫ ∞

0

dp
p2

E2
p

(

−E2
p +m2

q

)

(2nf (Ep)− 1) δ(mL − 2Ep)

= − nq

π mL

(

m2
L

4
−m2

q

)3/2
(

2nf(
mL

2
)− 1

)

(4.90)

MT (mT ,~0) = −nq

π

∫ ∞

0

dp p2 (2nf(Ep)− 1) δ(mT − 2Ep)

= −nq

4π
mT

(

m2
T

4
−m2

q

)1/2
(

2nf(
mT

2
)− 1

)

(4.91)

for mL/T > 2mq and ML/T = 0 otherwise. We apply the same approximation, E
L/T
k ≈

mL/T , also to the damping kernel, which allows us to perform the integration over spatial

momenta:

Da(x) ≈ −1

2
g2
(

1

mL
ML(mL,~0)P

L
ab +

1

mL
MT (mT ,~0)P

T
ab

)(
∫

d3k

(2π)3
exp(i~k~x) ∂tϕb(t, ~k)

)

= −ηab ∂tϕb(x) = −
(

ηLP
L
ab + ηTP

T
ab

)

∂tϕb(x) (4.92)

with the components of the damping coefficient ηab given by:

ηL = g2
nq

2π m2
L

(

m2
L

4
−m2

q

)3/2(

1− 2nf

(mL

2

)

)

(4.93)

ηT = g2
nq

8π

(

m2
T

4
−m2

q

)1/2(

1− 2nf

(mT

2

)

)

(4.94)

In comparison to [NLHB11, Nah11] we find an additional factor 1/2 in the longitudi-

nal component of the damping coefficien, ηT . This difference is independent of the one

discussed after equation (4.32). Instead, we assume that in equation (54) of [NLHB11]

(respectively equation (5.50) of [Nah11]) a factor of 1/2 is missing in the derivation of

M(ω,~k) which then remains absent in η.
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4.1. Dissipation and noise for pure quark heat bath

4.1.3. The noise kernel

The noise kernel is defined as:

Nab(x− y) = −1

2
g2 tr (χaS

<
th(x− y)χbS

>
th(y − x) + χaS

>
th(x− y)χbS

<
th(y − x)) (4.95)

with ~χ = (1, iγ5~τ ). Just as for the damping kernel, we take the Fourier transform of

Nab(x − y). Since the traces are the same as calculated before in equation (4.54), we

find:

Nab(ω,~k) = − nq

16π2
g2
∫

d3p
1

EpEp+k
×

×
{

([

−Ep(Ep + Ep+k)− ~k~p
]

δab + 2g2ϕaϕb

)

×

×
(

δ(ω − Ep −Ep+k) [nf (Ep)nf(Ep+k) + (1− nf (Ep)) (1− nf (Ep+k))]

+δ(ω + Ep + Ep+k) [(1− nf(Ep)) (1− nf (Ep+k) + nf(Ep)nf (Ep+k))]
)

+
([

Ep(−Ep + Ep+k)− ~k~p
]

δab + 2g2ϕaϕb

)

×

×
(

δ(ω + Ep − Ep+k) [nf(Ep) (1− nf (Ep+k)) + (1− nf (Ep))nf (Ep+k)]

+δ(ω − Ep + Ep+k)
[

(1− nf(Ep))nf(Ep+k) + nf(Ep) (1− nf (Ep+k))
]

)

}

(4.96)

The noise kernel equals the variance of the stochastic fields:

Nab(x− y) = 〈ξa(t, ~x)ξb(t′, ~x′)〉ξ (4.97)

with the expectation value 〈.〉ξ defined with respect to the Gaussian distribution of

the ξ field [NLHB11, Nah11]. We approximate the noise kernel in the same way as we

approximated the damping kernel, i.e. we project it onto its longitudinal and transversal

components with respect to the mean field,

Nab = NLP
L
ab +NTP

T
ab (4.98)
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and assume for the Fourier transform NL/T (ω,~k):

NL/T (ω,~k) ≈ NL/T (mL/T ,~0) (4.99)

where mL, mT are the masses of the longitudinal and transversal meson mean field

modes. Then we find (k0 = ω):

〈ξa(t, ~x)ξb(t′, ~x′)〉ξ =

∫

d4k

(2π)4
Nab(ω,~k) exp(−iω(t− t′)) exp(i~k(~x− ~x′))

≈
∫

dω

2π

(

NL(mL,~0)P
L
ab +NT (mT ,~0)P

T
ab

)

exp(−iω(t− t′)) δ(~x− ~x′)

=
(

NL(mL,~0)P
L
ab +NT (mT ,~0)P

T
ab

)

δ(t− t′)δ(~x− ~x′) (4.100)

In this approximation, again only one of the delta functions in equation (4.96) survives.

The corresponding factor with the fermion distribution functions can be rewritten as

[NLHB11, Nah11]:

2nf(Ep)− 2nf(Ep) + 1 =
(

1− 2nf (Ep)
)

coth

(

Ep

T

)

(4.101)

which allows to express NL/T via ηL/T :

NL(mL,~0) =
1

2
g2ML(mL,~0) coth

(mL

2T

)

= mL ηL coth
(mL

2T

)

(4.102)

NT (mT ,~0) =
1

2
g2MT (mT ,~0) coth

(mT

2T

)

= mT ηT coth
(mT

2T

)

(4.103)

and thus, we finally obtain for the correlation of the noise fields:

〈ξa(t, ~x)ξb(t′, ~x′)〉ξ =
(

mL ηL coth
(mL

2T

)

PL
ab +mT ηT coth

(mT

2T

)

P T
ab

)

δ(t− t′) δ(~x− ~x′)

(4.104)

For vanishing pions we obtain for the correlation of the σ component of the noise fields,

i.e. a = b = 0, structurally the same result as in [NLHB11, Nah11]. The only difference

is the factor of 1/2 hidden in η which we adressed earlier.

Finally, we have determined all quantities necessary for evolving the chiral mean fields
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4.2. Including the meson propagator

ϕa with the semi-classical Langevin equation,

∂µ∂
µϕa + gρa +

∂Vcl
∂ϕa

+ ηab∂tϕb = ξa (4.105)

except for the quark-meson coupling constant g. The particular choice of g determines

the order of the phase transition in the model and will be fixed in the next chapters.

4.2. Including the meson propagator

In this section, we will derive the damping and noise kernels originating from a non-

vanishing meson propagator. From the influence functional perspective, this corresponds

to splitting the meson fields into two parts, containing only the soft and hard modes

respectively [Ris98]. We begin again by employing an effective action ansatz and even-

tually identify the damping and noise kernels as motivated by the influence functional

approach.

At one-loop mean field level, for Γ2 = 0, the meson propagator equals the free propaga-

tor, given by:

iG−1
ab (x, y) = −([�x +

λ

N
ϕcϕ

c − v2]δab − 2
λ

N
ϕaϕb)δ(x− y) (4.106)

Even in thermal equilibrium its dynamic mass

M2
ab =

λ

N
(~ϕ2δab + 2ϕaϕb − v2δab) (4.107)

becomes tachyonic in the symmetric phase as well as near the phase transition. This is

a known problem for the thermal field theory of O(N) symmetric scalar fields. In order

to obtain physical masses, we need to go beyond the one loop approximation. One way

to do this is to choose the simplest nontrivial truncation of Γ2:

Γ2 = =
a

b

a

b
+

a

b

b

a

where we have drawn the two distinct diagrams coming from the placement of the meson

fields at the vertex. The first diagram has a combinatorical factor of one and the second
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carries a factor two. The vertex adds a factor of
(

−i λ
4N

)

and the definition of the effective

action introduces another overall (−i):

Γ2 = − λ

4N

∫

C

d4x
(

Gaa(x, x)Gbb(x, x) + 2Gab(x, x)Gba(x, x)
)

(4.108)

Therefore, the meson self energy is given by:

Σab(x, y) = 2i
δΓ2

δGab(x, y)
= −i λ

N
(Gcc(x, x)δab + 2Gab(x, x))δ(x− y) (4.109)

and so the equation of motion for the meson propagator,

iG−1
0 G− iΣG = i (4.110)

takes the form:

[

−(�x +
λ

N
~ϕ 2 − v2)δab −

2λ

N
ϕaϕb −

λ

N
(Gcc(x, x)δab + 2Gab(x, x))

]

Gbc(x, y) = iδacδ(x−y)
(4.111)

Before we continue, it is again useful to introduce longitudinal and transversal meson

propagators:

Gab = PL
abGL + P T

abGT (4.112)

with projection operators onto longitudinal (respectively transversal) parts with respect

to the mean-field. Then, equation (4.111) splits into two coupled equations of motion:

{

−(�x +
λ

N
(3~ϕ 2 − v2))− λ

N
(3GL(x, x) + (N − 1)GT (x, x))

}

GL(x, y) = iδ(x− y)

{

−(�x +
λ

N
(~ϕ 2 − v2))− λ

N
(GL(x, x) + (N + 1)GT (x, x))

}

GT (x, y) = iδ(x− y)

(4.113)

The masses of the self-consistent propagators fulfill the gap equations

M2
L =

λ

N
(3~ϕ 2 − v2) +

λ

N
(3GL(x, x) + (N − 1)GT (x, x))

M2
T =

λ

N
(~ϕ 2 − v2) +

λ

N
(GL(x, x) + (N + 1)GT (x, x))

(4.114)
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which need to be solved simultaneously for given mean fields ~ϕ. With equations (4.112),

(4.114) the meson equations of motion read (without quark contributions for now):

[

�x +
λ

N
(~ϕ 2 − v2) +

λ

N
(3GL(x, x) + (N − 1)GT (x, x))

]

ϕa − hδa,0 = 0

⇐⇒
[

�x +M2
L − 2

λ

N
~ϕ 2

]

ϕa − hδa,0 = 0

(4.115)

As in the derivations from the previous sections, we split the mean field into a slowly

varying part ~ϕ0 and a fluctuation part δ~ϕ and expand the propagator in fluctuations:

ϕa = ϕ0,a + δϕa (4.116)

G = (GL,th + δGL + δ2GL)P
L + (GT,th + δGT + δ2GT )P

T (4.117)

However, we additionally approximate Γ2 ≈ Γ2[~ϕ0, Gth(~ϕ0)] and therefore the self energy

as

Σab(x, y) ≈ −i λ
N

(Gth,cc(x, x)δab + 2Gth,ab(x, x))δC(x− y) (4.118)

i.e., we consider only the lowest order contribution in fluctuations. The reason is, that

without this assumption, we would have to solve coupled gap equations at each order

in fluctuations. However, the solutions would then contain contributions from the me-

son fluctuations implicit to the solutions, i.e. hidden in the numerical values of the

propagator masses. Thus, we could no longer find analytic expressions for the damping

coefficients and noise correlators. Instead, we would have to think about how to con-

struct observables for comparison and how to extract them from the numerical studies.

With our approximation however, we only need to solve gap equations at lowest order

and can build up the higher order corrections via the Green’s function method which

allows to derive damping and noise kernels analogously to the previous sections. At

lowest order, we have to solve:

(

�x +M2
L/T (x)

)

GL/T,th(x, y) = −iδC(x− y) (4.119)

where ML, MT fulfill equations (4.114) with ~ϕ0, GL,th, GT,th. We require again that

the splitting, equation (4.116), ensures a weak x-dependence of ~ϕ0 and thus of ML/T in

comparison to the meson propagator. Therefore, the solution to equation (4.119) on the
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real time contour is approximately given by:

G++
L/T,th(p) =

i

p2 −M2
L/T + iǫ

+ 2π nB(|p0|) δ(p2 −M2
L/T ) (4.120)

G−−
L/T,th(p) =

−i
p2 −M2

L/T − iǫ
+ 2π nB(|p0|) δ(p2 −M2

L/T ) (4.121)

G+−
L/T,th(p) = 2π

(

nB(|p0|) + Θ(−p0)
)

δ(p2 −M2
L/T ) (4.122)

G−+
L/T,th(p) = 2π

(

nB(|p0|) + Θ(p0)
)

δ(p2 −M2
L/T ) (4.123)

with suppressed (weak) spacetime dependence of ML/T . Due to (4.118), the corrections

to the thermal propagators obey:

O(δ1) : −
(

�x +M2
L/T (x)

)

δGL/T (x, y) =
2λαL/T

N
ϕ0,a(x)δϕa(x)GL/T,th(x, y)(4.124)

O(δ2) : −
(

�x +M2
L/T (x)

)

δ2GL/T (x, y) =
2λαL/T

N
ϕ0,a(x)δϕa(x)δGL/T (x, y)

+
λαL/T

N
δϕa(x)δϕa(x)GL/T,th(x, y) (4.125)

with αL = 3 and αT = 1. Suppressing the indices L, T , th and 0, the solutions read:

δG(x, y) = −i2αλ
N

∫

C

d4z G(x, z)ϕa(z)δϕa(z)G(z, y) (4.126)

δ2G(x, y) = −4α2λ2

N2

∫

C

d4z d4z′ G(x, z)ϕa(z)δϕa(z)G(z, z
′)ϕb(z

′)δϕb(z
′)G(z′, y)

−iαλ
N

∫

C

d4z G(x, z)δϕa(z)δϕa(z)G(z, y) (4.127)

Now we can turn towards an expansion of the effective action in powers of fluctuations.

In the current approximation,
i

2
Tr(G−1

0 G) + Γ2 (4.128)

contains terms at various orders in fluctuations. At O(δ1) it provides corrections to the

mean field equation of motion which are inconsistent with our current approximations.

This is a direct consequence of our approach, sacrificing the self-consistenty of the 2PI

effective action ansatz beyond the level of constant mean field in order to extract damping

and noise kernels for the off equilibrium dynamics. We will therefore neglect (4.128) for
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4.2. Including the meson propagator

the mean field equation of motion. To the pressure in thermal equilibrium, however

(4.128) provides consistent contributions at O(δ0) which have to be taken into account

(see chapter 6.1). For the n-th power of G it can be proved by induction that

Gn = PLGn
L + P TGn

T (4.129)

and thus by viewing the logarithm as a power series:

Tr ln G = Tr PL ln GL + Tr P T ln GT

= Tr ln GL + (N − 1) Tr ln GT (4.130)

where in the last step the trace over meson space is performed. Analogously to the

quark propagator in the previous section, each of the the log-G terms can separately

be expanded in fluctuations. Suppressing again the indices L, T , and the spacetime

dependencies, we find:

i

2
Tr ln G−1 =

i

2
Tr ln G−1

th − αλ

N
Tr(ϕaδϕaGth)

−αλ

2N
Tr(δϕaδϕaGth) +

iα2λ2

N2
Tr(ϕaδϕaGthϕbδϕbGth)

(4.131)

The equation of motion is obtained from variation of Γ with respect to the relative

fluctuations at vanishing relative variables (with center and relative variables on the

time contour as defined above, (4.26)-(4.29)). Thus, the first term on the right hand

side of equation (4.131) will drop out in the equation of motion for the meson field and

the second term will provide the derivative of the one-loop mean field potential. In the

second line we have a term at O(λδ2) which will also drop out as soon as we perform

the linear harmonic approximation to the meson field. The last term in equation (4.131)

will provide us with the damping and noise kernels originating from the interaction of

the meson mean fields with the mesonic part of the heat bath. Dropping the indices

”th”, ”0” as well as the bar for the center variables, we obtain for the trace-log term of
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Chapter 4. Mesonic Fluctuations and Langevin Dynamics

the full meson propagator the expression (see appendix A.1 for details)

− λ

N

∫

d4x
(

3G++
L (x, x) + (N − 1)G++

T (x, x)
)

(

ϕa(x) +
1

2
∆ϕa(x)

)

∆δϕa(x)

−i2λ
2

N2

∫

d4xd4y Θ(x0 − y0)ϕa(x)ϕb(y)∆δϕa(x)δϕb(y)×
(

9
[

G<
L(x− y)G>

L(y − x)−G>
L(x− y)G<

L(y − x)
]

+(N − 1)
[

G<
T (x− y)G>

T (y − x)−G>
T (x− y)G<

T (y − x)
]

)

+
iλ2

2N2

∫

d4xd4y ϕa(x)ϕb(y)∆δϕa(x)∆δϕb(y)×
(

9
[

G<
L(x− y)G>

L(y − x) +G>
L(x− y)G<

L(y − x)
]

+(N − 1)
[

G<
T (x− y)G>

T (y − x) +G>
T (x− y)G<

T (y − x)
]

)

(4.132)

where we already ignored terms that drop out of the equation of motion for the meson

fields. The first line, in combination with the classical action, leads to the mean field

equation of motion (4.115), whereas dissipation and noise enter through the terms ∼
(λ/N)2. From these latter terms in equation (4.132), we can read off the damping and

noise kernels as suggested by the influence functional method.

4.2.1. The damping kernel

The damping kernel is given by:

Fa(x) = −2iλ2

N2

∫

d4y Θ(x0 − y0)Qab(x− y)δϕb(y) (4.133)

with

Qab(x− y) = ϕaϕb

(

9
[

G<
L(x− y)G>

L(y − x)−G>
L(x− y)G<

L(y − x)
]

+(N − 1)
[

G<
T (x− y)G>

T (y − x)−G>
T (x− y)G<

T (y − x)
]

)

(4.134)
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4.2. Including the meson propagator

with suppressed (weak) spacetime dependence of ~ϕ. We note that formally the meson

flavor space structure of Qab is purely longitudinal:

Qab ∼ PL
ab (4.135)

but contributions from both, longitudinal and transversal modes enter via the factor in

parentheses. In contrast to the previous sections we can thus now introduce QL, QT

without confusion as:

QL/T (x− y) = G<
L/T (x− y)G>

L/T (y − x)−G>
L/T (x− y)G<

L/T (y − x) (4.136)

and write Qab as:

Qab(x− y) = PL
ab ~ϕ

2
(

9QL(x− y) + (N − 1)QT (x− y)
)

(4.137)

In momentum space, QL is given by:

QL(ω,~k) =
1

16π2

∫

d3p
1

EpEp+k
×

×
{

[

nB(Ep+k)(nB(Ep) + 1)− (nB(Ep+k) + 1)nB(Ep)

]

δ(ω + Ep − Ep+k)

+

[

nB((Ep+k) + 1)nB(Ep)− nB(Ep+k)(nB(Ep) + 1)

]

δ(ω − Ep + Ep+k)

+

[

(nB(Ep+k) + 1)(nB(Ep) + 1)− nB(Ep+k)nB(Ep)

]

δ(ω + Ep + Ep+k)

+

[

nB(Ep+k)nB(Ep)− (nB(Ep+k) + 1)(nB(Ep) + 1)

]

δ(ω − Ep − Ep+k)

}

(4.138)

with energies Ep =
√

M2
L + ~p2 (and likewise Ep+k) and an analogous expression for QT .

Just as for the quark induced damping kernel from the previous sections, we have sorted

the different terms in QL/T according to their energy balance. Again, this sorting reflects

the structure of gain minus loss terms for various processes involving interactions of the

mean field with the heat bath of meson fluctuations. The gain and loss terms also fulfill

the relation (4.64) which is in line with [Wel83]. Since QL/T (ω,~k) is antisymmetric in ω,

the derivations from the previous sections, equations (4.66)-(4.87), can easily be applied
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Chapter 4. Mesonic Fluctuations and Langevin Dynamics

to the present case. The result is:

Fa(x) ≈
λ2

N2

[

1

mL

Qab(mL,~0)P
L
bc +

1

mT

Qab(mT ,~0)P
T
bc

]

∂tϕc(x) (4.139)

with mL, mT the masses of the longitudinal and transversal mean field modes. Inserting

equation (4.137) and using

QL/T (mL,~0) = − 1

4π

∫ ∞

0

dp
p2

E2
p

(

2nB(Ep) + 1
)

δ(mL − 2Ep)

= − 1

4π mL

(

(mL)
2

4
−M2

L/T

)1/2
(

2nB

(mL

2

)

+ 1
)

(4.140)

we find that

Fa(x) = −ζ PL
ab∂tϕb(x) (4.141)

with damping coefficient ζ defined as:

ζ =
λ2~ϕ 2

4πN2(mL)2

[

2nB

(mL

2

)

+ 1
]

×

×
{

9

(

(mL)
2

4
−M2

L

)1/2

+ (N − 1)

(

(mL)
2

4
−M2

T

)1/2
} (4.142)

If mL < 2ML or mL < 2MT , the respective term is set to zero due to the integration

over the delta function in equation (4.140).

4.2.2. The noise kernel

From equation (4.132), we see that the mesonic contribution to the noise kernel reads:

Rab(x− y) =
λ2

N2
ϕaϕb

(

9
[

G<
L(x− y)G>

L(y − x) +G>
L(x− y)G<

L(y − x)
]

+(N − 1)
[

G<
T (x− y)G>

T (y − x) +G>
T (x− y)G<

T (y − x)
]

)

(4.143)

with suppressed weak spacetime dependence of ~ϕ. As for the damping kernel, the struc-

ture in meson flavor space is purely longitudinal, but contributions from longitudinal

and transversal fluctuations enter through the terms in parentheses. We define RL, RT
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4.2. Including the meson propagator

as

RL/T (x− y) = G<
L/T (x− y)G>

L/T (y − x) +G>
L/T (x− y)G<

L/T (y − x) (4.144)

and consider the corresponding fourier transform (Ep =
√

M2
L/T + ~p 2):

RL/T (ω,~k) =
1

16π2

∫

d3p
1

EpEp+k

×

×
{

[

nB(Ep+k)(nB(Ep) + 1) + (nB(Ep+k) + 1)nB(Ep)

]

δ(ω + Ep − Ep+k)

+

[

nB((Ep+k) + 1)nB(Ep) + nB(Ep+k)(nB(Ep) + 1)

]

δ(ω − Ep + Ep+k)

+

[

(nB(Ep+k) + 1)(nB(Ep) + 1) +−nB(Ep+k)nB(Ep)

]

δ(ω + Ep + Ep+k)

+

[

nB(Ep+k)nB(Ep) + (nB(Ep+k) + 1)(nB(Ep) + 1)

]

δ(ω −Ep − Ep+k)

}

(4.145)

which features the same gain and loss terms as the damping kernel, but summed instead

of mutually subtracted. Applying the zero mode approximation,

Rab(ω,~k) ≈ Rac(mL,~0)P
L
cb +Rac(mT ,~0)P

T
cb

=
λ2~ϕ2

N2
PL
ab

[

9RL(mL,~0) + (N − 1)RT (mL,~0)
]

(4.146)

From equation (4.145) we find

RL/T (mL,~0) =
1

4π mL

(

(mL)2

4
−M2

L/T

)1/2
[

2n2
B

(mL

2

)

+ 2nB

(mL

2

)

+ 1
]

(4.147)

and since

2n2
B(ω) + 2nB(ω) + 1 = [2nB(ω) + 1] coth

(ω

T

)

(4.148)

we find for the contribution of the mesonic heat bath to the noise correlator:

〈ξa(x)ξb(y)〉ξ = Rab(x− y) ≈ PL
ab δ(x− y)mL ζ coth

(mL

2T

)

(4.149)
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with the damping coefficient ζ from equation (4.142). The full equation of motion,

including the quark contributions, is:

∂µ∂
µϕa + gρa +

(

M2
L − 2

λ

N
~ϕ2

)

ϕa − hδa,σ + (η + ζ)ab ∂tϕb = ξa (4.150)

where the noise correlators from the quarks and mesons add up to the correlator of the

effective stochastic field ~ξ. The damping coefficients in thermal equilibrium are discussed

in sections 5.1 and 6.1. Plots on the full dependence of mean field masses, propagator

masses and damping coefficients on the mean field and temperature are collected in

appendix B.
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Chapter 5.

Results I - Fluctuations and Relaxation

for a Pure Quark Heat Bath

In this chapter we will investigate the impact of pionic fluctuations on the dymanics of

a system of sigma and pion fields coupled to a heat bath of quarks. For the whole chap-

ter, the equation of motion governing the dynamics of the meson fields is the Langevin

equation (4.105), i.e. we neglect contributions from the meson propagator.

5.1. Thermal equilibrium

Before we turn towards the investigations of the nonequilibrium dynamics, we must

choose a particular value for the quark-meson coupling constant g. For this purpose, we

note that the term

gρa +
∂Vcl(ϕ)

∂ϕa
(5.1)

in the equation of motion (4.105) is the field derivative of the effective one-loop potential,

Veff(ϕ) = − i

βV
Γ(1−loop) = Vcl(ϕ)−

1

βV
Tr log S−1 (5.2)

in meson mean field approximation and for a finite spatial volume V. The effective

potential evaluates as (see e.g. [KG06] for a computation of the trace-log term and

reacall that in our case µq = 0):

Veff(ϕ) =
λ

4N
(ϕ2 − v2)2 − hσ − nq

β

∫

d3k

(2π)3
(

βE + 2 log
(

1 + eβE
))

(5.3)
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with energy E =
√

m2
q +

~k2 and quark mass mq = g
√

ϕ2. The equilibrium values for

the fields fulfill
∂Veff
∂ϕa

∣

∣

∣

∣

ϕeq

= 0 (5.4)

Due to the explicit symmetry breaking, the pion fields vanish in equilibrium and ~ϕeq =

(σeq,~0) depends on temperature. Thus, also the dynamic quark mass is medium de-

pendent, and the divergent term ∼
∫

d3k E cannot simply be subtracted but should

in principle be carefully renormalized. Many investigations showed that neglecting the

divergent term has significant consequences on thermodynamic observables, the type of

phase transitions encountered and the phase structure (see e.g. [MME04, PF08, FPP09,

PF10, SFN+10]]. However, we will neglect the divergent term completely, since we will

anyway tune the coupling constant g so that the model features the various types of

phase transition. Furthermore, this ensures for a better comparability to the results in

[Nah11, NLB12].

In this spirit, we choose as coupling constants g = 5.5, g = 3.63 and g = 3.3 as in

[NLHB11, NLB12]. For the following discussion of the resulting types of phase transi-

tions, see also [Nah11, SMMR01].

With the first choice, g = 5.5, the model features a first order phase transition as is

shown in figure 5.1 where we plot Veff up to a (temperature dependent) constant for

three different temperatures at ~π = 0. At low temperatures below T = 108 MeV, the

only minimum of the potential is at values σ ≈ fπ = 93 MeV and so the system is in the

chirally broken phase. Above the spinodal temperature T = 108 MeV, a second mini-

mum appears corresponding to the chirally restored phase. Since this minimum is less

deep its associated phase is unstable. With increasing temperatures this minimum gets

deeper until at T = 123.27 MeV both minima are equally deep. It is at this temperature,

that the phase transition occurs and the two phases can coexist. Towards even higher

temperatures, the minimum corresponding to the broken phase becomes less deep and

thus unstable. Above the upper spinodal temperature there is then only one minimum

left. Since the ground state is at the minimum with lowest energy, the σ field jumps at

phase transition (see figure 5.4) as is the characteristic behaviour of the order parameter

at a first order phase transition.

Lowering g leads to a decreasing barrier at the phase transition until for g = 3.63
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Figure 5.1.: Effective σ field potential (up to a temperature dependent constant) for
vanishing pion mean fields and different temperatures. Contributions from
the meson propagator are neglected. The quark-meson coupling constant
is g = 5.5 leading to a first order phase transition at T = 123.27 MeV
[NLHB11].

we encounter a second order phase transition. The potential for g = 3.63 is plotted

in figure 5.2 for various temperatures: at the critical temperature Tc = 139.88 MeV

the potential becomes (nearly) flat between the two phases and so the mass of the σ

field drops drastically. This is demonstrated in figure 5.5. Above and below the critical

temperature, there are no unstable phases.

For values of g < 3.63 the potential shows only one minimum at each temperature as is

illustrated in figure 5.3. This minimum moves smoothly from the broken phase to the

restored phase for increasing temperature and the model describes a crossover scenario.

Since we work with zero quark chemical potential for which lattice QCD predicts a chiral

crossover, it is worth noting that for low temperatures the choice of g = 3.3 yields a re-

alistic quark constituent mass of about one third of the nucleon mass, mq = gfπ ≈ mN/3.

In figure 5.4 we plot the equilibrium values of the σ field and see that it jumps at

the first order phase transition while it smoothly changes along crossover transition.

The second order scenario is at the boarder between these two cases: The transition

is continuous, however, dσeq/dT → −∞ at the critical temperature. Similarly, the
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Figure 5.2.: Effective σ field potential (up to a temperature dependent constant) for
vanishing pion mean fields and different temperatures. Contributions from
the meson propagator are neglected. The quark-meson coupling constant is
g = 3.63 and the phase transition is of second order. The critical tempera-
ture is given by TC = 139.88 MeV [Nah11].
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Figure 5.3.: Effective σ field potential (up to a temperature dependent constant) for
vanishing pion mean fields and different temperatures. Contributions from
the meson propagator are neglected. The quark-meson coupling constant is
g = 3.3 corresponding to a crossover.
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Figure 5.4.: Equilibrium values of the σ field as a function of temperature for different
values of the quark-meson coupling constant g. Contributions from the
meson propagator are neglected.

equilibrium meson masses, determined by

m2
σ =

∂2Veff
∂σ2

∣

∣

∣

∣

ϕeq

m2
π =

∂2Veff
∂π2

j

∣

∣

∣

∣

ϕeq

(j = 1, 2, 3) (5.5)

which we plot in figure 5.5, show an according behaviour at the first order and crossover

transition. At the critical point of the second order phase transition, the σ mass drops

very low due to the flat shape of the potential discussed above. However, we see that the

mass does not fully drop to zero which means that our choice of g = 3.63 is not exactly,

but still very close to the case of a second order phase transition. This is appreciated

for the numerical implementation of the noise correlator.

Utilizing the equilibrium masses and field values, we can give in figure 5.6 the tem-

perature dependence of the longitudinal and transversal damping coefficients, formulae

(4.93),(4.94), in thermal equilibrium. Since in equilibrium the meson four vector points

in σ-direction, we can identify the longitudinal damping coefficient ηL with the damping

coefficient for the σ and the transversal one with that for the pions. In the broken phase,

the decay of zero mode mesons into quark anti-quark pairs and vice versa is kinemati-

cally fobidden, since mπ/2 < mσ/2 < mq ≈ gfπ and so the damping coefficient derived
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Figure 5.5.: Equilibrium values of the external masses for longitudinal and transver-
sal modes as a function of temperature for different values of the quark-
meson coupling constant g. Contributions from the meson propagator are
neglected.
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coefficient η as a function of temperature for different values of the quark-
meson coupling constant g. Contributions from the meson propagator are
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in the previous chapter vanishes. In the symmetric phase, mq ≈ 0 and mπ ≈ mσ and

so we find ηL ≈ ηT from equations (4.93), (4.94) which is also observed in figure 5.6.

Thus, the overall deviation between the two damping coefficients is very small. The only

noticeable difference occurs in the symmetric phase close to the phase transition where

the pion mass exceeds the σ mass. Hence, on the level of the damping coefficient and

the noise correlator, we expect the pionic degrees of freedom to have only a small impact

on the field dynamics and the effect is best looked for at temperatures just above the

phase transition.

5.2. On the Numerical Implementation of the Langevin

Equation

We will perform our numerical calculations on a space-time lattice with three spatial

dimensions in a cubic volume. We choose N = 32 lattice sites in each spatial direction

and a lattice spacing of ∆x = 0.2 fm. For the time evolution the Langevin equation is

integrated in time steps of ∆t = 0.02 fm using the algorithm presented in [CSFF+12].

At the boundary of the volume, we require the derivatives of the fields normal to the

surface to vanish. For the discretized noise field, we follow [NLB12] and choose (with

lattice site indices i,j and time step indices n, n′)

δ(~x− ~x′)δ(t− t′) → 1

V
δij

1

∆t
δnn′ (5.6)

with a factor of 1/V = 1/(N∆x)3 rather than 1/(∆x)3. By this, we heavily suppress

the amplitude of the noise fields. However, if we did not do so, the small spatial lattice

spacing which is required for most simulations of heavy ion collisions and especially such

which incorporate hydrodynamic models as used in [Nah11, NHL+13] gives rise to very

large noise amplitudes which completely dominate the evolution of the meson fields in

an unphysical way. As a remedy one could devise some suitable local spatial averaging

which would tame the effect of the noise field to a numerically and physically bearable

level. Apart from this, there is also the problem of the field expectation value to depend

on the lattice spacing which occurs whenever we treat a field equation with a stochas-

tic force on on a lattice. In order to remove such an unphysical dependence on the

lattice spacing one has to identify and subtract the responsible terms [CSFF+12]. By

choosing to suppress the noise field in the aforementioned way, we evade both problems.
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But we should keep in mind that we will probably underestimate the magnitude of the

meson fluctuations. For the damping coefficient and the correlation of the noise fields,

equilibrium values (which were given in the previous section) are used for the sake of

computational simiplicity. Below the phase transition, η vanishes since the meson masses

are too small to allow for the dissipative interactions with the heat bath. However, with

η = 0 we have ξ = 0 and thus the equation of motion reduces to that of meson fields

oscillating freely in the effective potential. This situation is of course unphysical and we

still want nonequilibrium field configurations to relax to an equilibrium state. Therefore,

we choose ησ/π = 3 fm for mσ/π < 2mq based on [Ris98] and used in [NLHB11] which

estimates the effects from the interaction of soft and hard meson modes, the latter acting

as part of the heat bath.

When presenting the results for the time evolution of the fields we will mostly be inter-

ested in the field values averaged over the volume and over different noise configurations.

For a given configuration of the noise field ξijk, the volume average of the σ field with

spatial lattice site indices i,j,k is defined as [CSFF+12, NLB12]:

〈σ〉n =
1

N3

N
∑

i,j,k=1

σijk,n (5.7)

The noise average is then obtained by summing over the volume averages for Nξ different

configurations of the noise field:

〈σ〉ξ =
1

Nξ

Nξ
∑

n=1

〈σ〉n (5.8)

Further, we define the spatial variance of the sigma field as

〈σ2〉n =
1

N3

N
∑

i,j,k=1

(σijk,n − 〈σ〉n)2 (5.9)

Accordingly, the corresponding noise average is defined as well as the volume and noise

averages for the pion fields.
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Figure 5.7.: Time evolution of the noise averaged σ field relaxing in a first order phase
transition scenario for different temperatures.

5.3. Dynamics With Pionic Degrees of Freedom and a

Static Heat Bath

To begin our investiagtions on the impact of pionic degrees of freedom on the relaxation

dynamics near the chiral phase transition we assume a static heat bath, i.e. we keep the

temperature fixed during the time evolution of the meson fields. Our results for the case

of vanishing pion mean field agree with [Nah11, NLB12].

5.3.1. First Order Phase Transition

With the choice g = 5.5 the model features a first order phase transition as discussed

in the previous sections. We start with temperatures above the phase transition and

initialize the field to its zero temperature vacuum expectation value ~ϕ = (σ, ~π) = (fπ,~0).

For high temperatures, the system then relaxes to thermal equilibrium as can be seen

from figure 5.7 showing the time evolution of the sigma field averaged over Nξ = 20

noise configurations. At T = 180 MeV we see the exponentially damped relaxation to

thermal equilibrium and find that adding the explicit propagation of pionic degrees of

freedom has no noticeable effect on the dynamics of the order parameter. For T = 150

MeV the effective potential in sigma direction is not entirely convex and less steep. It
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Figure 5.8.: Time evolution of the noise averaged σ fluctuations for relaxation in a first
order phase transition scenario for different temperatures.

therefore takes more time for the field to fully relax. The case of T = 135 MeV is closer

to the upper spinodal temperature but still above it. Thus, there is a larger region

σ ≈ 60 − 80 MeV where the potential is less steep compared to smaller (σ ≈ 20 − 50

MeV) or larger (σ ≈ 80− 100 MeV) field values and so the relaxation process is slowed

down while passing through this intermediate region, corresonding to σ/σeq ≈ 13 − 17.

For the final part of the relaxation, i.e. at times t ≈ 20−40 fm we see a small effect from

the inclusion of pionic degrees of freedom: it seems that including the pion fields leads

to a slightly slower relaxation during this time interval. Such an effect is to be exptected

since the pions enter the sigma equation of motion only through the absolute value of

the chiral field vector, |~ϕ| =
√
σ2 + ~π2 in the field derivative of the effective potential.

So, the sigma field feels the same potential as if the pions were zero and the sigma field

correspondingly larger. As a consequence, it takes the sigma field a little longer to drop

below σ/σeq ≈ 13 from where the fast relaxation sets in again. The transition from the

region of less steep to steeper potential also causes a significant increase in the variance

of the sigma field since due to the stochastic force in the equation of motion the tranis-

tion occurs at some lattice sites earlier than at others. The onset of faster relaxation

then results in a wider spread of the field values. This is supported by figure 5.8 which

for T = 135 MeV also shows that the relaxation dynamics including pionic degrees of

freedom is slightly slower than without. Very close to the phase transition the field is
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Figure 5.9.: Time evolution of the noise averaged σ field for a quenched system passing
a first order phase transition.

trapped in the wrong minimum. Without pionic degrees of freedom the sigma field shows

an incresing variance for times t > 50 fm indicating that at least at some lattice sites

the field approaches the true minimum of the effective potential. Since we are just above

the phase transition, this global minimum corresponds to the (approximately) chirally

symmetric phase, i.e. low equilibrium values of the sigma field. On inclusion of the pion

fields there is no such increase in sigma variance up to t = 100 fm which is due the pions

causing the sigma field to feel a slightly altered potential as discussed above. This makes

it more difficult for the stochastic force to finally push the sigma field over the potential

barrier. Applying different initial conditions as for instance a linear distribution for the

sigma field as in [Nah11] will cause the system to split into larger regions with different

phases. However, the pionic degrees of freedom will eventually drive the system towards

the broken phase due to their effect on the sigma potential.

When we quench the system from the symmetric to the broken phase we find a differ-

ent behaviour for the dynamics of the chiral fields (figure 5.9) and the corresponding

fluctuations (figure 5.10): for T = 95 MeV and T = 105 MeV which are below the

lower spinodal temperature the system relaxes rather quickly. Since the damping coeffi-

cient is smaller than at temperatures above the phase transition we now see a damped

oscillation around the equilibrium configuration (cf also [NLHB11, NLB12]). In these
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Figure 5.10.: Time evolution of the noise averaged σ fluctuations for a quenched system
passing a first order phase transition.
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Figure 5.11.: Time evolution of the noise averaged pion mean field and fluctuations for
g = 5.5. The system is quenched to T = 115 MeV and contributions from
the meson propagator are neglected.
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two cases, explicitly propagating the pion mean fields alongside the sigma field does

not significantly alter the dynamics of the latter. However, at T = 115 MeV which is

above the spinodal temperature we have two minima in the potential which drastically

slows down the relaxation. Here, we find that the fluctuating pion fields severely speed

up the relaxation process. The time it takes for the sigma average to reach 95% of its

equilibrium value is reduced by about ∼ 30% (figure 5.9) and for the full relaxation of

the system the effect is even larger (& 35%) which we see from figure 5.10. The mecha-

nism behind this is the same as before: the nonzero pion fields cause the sigma field to

encounter a slightly shifted potential, as if the value of the sigma field was a little larger.

Since relaxation requires the sigma field to be pushed over the potential barrier towards

larger field values, the pions now help in achieving this. In order to visualize the pion

fluctuations which we refer to so often, we plot in figure 5.11 the noise averages of the

single pion field components and the corresponding fluctuations. Since in the vicinity of

thermal equilibrium, the potential in pion direction is less steep than in sigma direction,

the former are less confined and the magnitude of pion fluctuations
√

〈π2
j 〉ξ is larger

than the sigma fluctuations by a factor of ∼ 1.5. Back to the relaxation of the sigma

field we find again that very close to the phase transition at t = 122 MeV the system is

(almost) trapped in the wrong minimum with a potential barrier too large to overcome

quickly. However, since we now want to cross the barrier in the opposite direction as in

the high temperature cases of figure 5.7 the pions help: on average the relaxation starts

around t ≈ 20− 40 MeV. It should be mentioned that also without pions the relaxation

sets in at times smaller than 100 fm, as can be seen from the fluctuations in figure 5.10.

5.3.2. Second Order Phase Transition

With the choice g = 3.63 the model features a second order phase transition at the

critical temperature T = 139.88 MeV. We start again with investigating the relaxation

dynamics at temperatures above the phase transition. As initial conditions we choose

a linear random distribution of the fields in the range −10MeV < σ < 110MeV and

−20 MeV < πj < 20 MeV . Since the potential does not allow for different phases

separated by a potential barrier the dynamics are very similar to the case of choosing

initially constant field values. The only difference is for times t . 0.1 fm: for initially

constant field values the field distribution immediately spreads to gaussian shape. With

a random distribution the field fluctuations are so strong that the laplacian operator in

the equation of motion dominates and causes the field distribution to relax very fast into
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Figure 5.12.: Relaxation of the noise averaged σ mean field for g = 3.63, starting with a
random field distribution for different temperatures.

same gaussian shape. Thereafter, in both cases the gaussian distribution slides down

the potential which is the actual relaxation process we are interested in.

In figures 5.12 and 5.13 we plot the time evolution of the noise averaged sigma field and

fluctuations for relaxation at high temperatures. For T ≥ 145 MeV the sigma relaxes

quickly to thermal equilibrium and relaxation occurs faster with increasing temperature.

Similar to our previous findings, we see no significant difference in the dynamics of the

order parameter when pions are included. However, at the critical point, T = 139.88

MeV, there is a noticeable difference: first of all, relaxation is very slow since the po-

tential is (almost) flat in sigma direction. But while without the explicit propagation of

pion fields the sigma field relaxes to the correct value, i.e. the minimum of the potential,

the system does not seem to fully relax when pions are included. However, in meson

space the potential at the critical temperature in the vicinity of thermal equilibrium

has an interesting shape: in figure 5.14 we plot the derivative of the potential in sigma

direction as a function of the sigma field and the length of the pion mean field vector.

In thermal equilibrium, the average squared length of the pion vector may be inferred

from the variance of pion fluctuations in figure 5.17 as approximately ∼ 3 × 1.7MeV 2,

so we may look for the equilibrium σ position in figure 5.14 at |~π| ≈ 3 MeV for which

the sigma value is about 9% larger than the equilibrium postition at π = 0. Since we
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Figure 5.13.: Noise averaged σ fluctuations for g = 3.63 during relaxation.
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Figure 5.15.: Time evolution of noise averaged σ field for system quenched to different
temperatures at g = 3.63.

scale the sigma average in figure 5.12 with σeq at π = 0 we find our rough estimate to

be in good agreement with our observed results.

For a system quenched from the symmetric into the broken phase we find anlaogous

results for the time evolution of the noise averaged sigma field and variance which are

displayed in figures 5.15 and 5.19 respectively for various temperatures T ≤ Tcrit. With

a temperature well below the phase transition (e.g. T = 110 MeV) we see a damped

oscillation around equilibrium and as the critical temperature is approached, the system

relaxes more slowly without such oscillations (T = 125 MeV and T = 135 MeV). While

the dynamics of the average sigma field show no significant change on including the

pion fields, the fluctuations (figure 5.16) at T = 135 MeV reveal that the pions slightly

decrease the relaxation time in this case since the peak in the variance typical for re-

laxation in this model drops a little earlier than without the pions. As reasoned before,

at the critical point the pion fluctuations tend to push the sigma field to larger values.

At T = 135 MeV this effect is too small to be confirmed by figure 5.15, but it helps

to minimally speed up the relaxation in our quench scenario where relaxation requires

an increase in the sigma value. At the critical point, T = 139.88 MeV, we see that

relaxation is overall very slow and that the pion fields shorten the relaxation process.

However, in line with our previous findings, on inclusion of the pions, the average sigma
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Figure 5.16.: Time evolution of σ fluctuations for system quenched to different temper-
atures at g = 3.63.
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Figure 5.17.: Time evolution of pion mean field and fluctuations at the critical point.
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Figure 5.18.: Time evolution of noise averaged σ field for system with crossover (g = 3.3)
and different temperature quenches.

field exceeds the minimium of the potential an settles down at a value exceeding the

(π = 0)-minimum position of the potential by about 10%, whereas the average sigma

fluctuations are reduced. In comparison to the sigma fluctuations at the critical point

(figure 5.16) we display the noise averaged pion fields and fluctuations at T = Tcrit

in figure 5.17. Due to the flat potential in sigma direction at ϕ = (σeq,~0) the sigma

fluctuations exceed the pion fluctuations in magnitude by a factor of about ∼ 1.8.

5.3.3. Crossover

For the sake of completeness we also investigate the crossover scenario, corresponding to

a choice of g = 3.3. The findings are very similar to the case of the second order phase

transition although the effects from the pion fields are less prominent and the relaxation

occurs faster. In figure 5.18 we plot the time evolution of the noise averaged sigma field

for a system quenched to different temperatures and in figure 5.19 the corresponding

sigma fluctuations are displayed. The system relaxes faster for temperatures further

away from the phase transition and pions have only a negligible effect on the dynamics

of the sigma field. Only at the phase transition (T ≈ 150 MeV) we see a slight shift of

the sigma field to values larger than the actual minimum of the potential for the same

reason as in the critical point scenario, only that this time the shift is rather small.

74



5.4. Dynamics Including Reheating

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  20  40  60  80  100

(<
σ2 >

ξ)
1/

2   [
M

eV
]

t  [fm]

T = 130 MeV
T = 140 MeV
T = 150 MeV

w/o pions
with pions

Figure 5.19.: Time evolution of σ fluctuations for system quenched with a crossover, i.e.
g = 3.3. The system is quenched to different temperatures.

5.4. Dynamics Including Reheating

During relaxation the chiral fields lose energy which is absorbed by the heat bath. In the

previous section, this energy transfer has been neglected, but we will now take it into

account. For this purpose, we follow [Nah11, NLB12] and identify the energy density of

the chiral fields as:

ǫϕ(~ϕ) =
1

2
(∂tϕa)

2 +
1

2

(

~▽ϕa

)2

+ Vcl(ϕ) (5.10)

with summation over repeated indices. The first term is the kinetic energy density and

the second term quantifies the fluctuation energy density of the chiral fields. The last

term reflects the potential energy density of course. For the locally equilibrized heat

bath of quarks, the energy density fulfills the thermodynamic relation:

ǫ = T
∂p

∂T
− p (5.11)

where p = −Ωq is given by

Ωq = Vq = − 1

βV
Tr log S−1 (5.12)
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and therefore, with Eq =

√

g2ϕ2 + ~k2, and since we neglect the divegent contributions

to the potential:

ǫq = 2nq

∫

d3k

(2π)3
Eq nF (Eq) (5.13)

In the following calculations, after each temporal iteration we add the current change in

the energy density of the chiral fields to the energy density of the heat bath. The new

energy density of the heat bath is then solved for the new temperature. We compute this

change in temperature seperately at each spatial lattice site. Consequently, we define

the volume and noise averaged temperatures analogously to the corresponding quantities

of the chiral fields.

5.4.1. First Order Phase Transition

We begin with a system initialized at σeq(T = 160MeV ) to different temperatures T0

below a first order phase transition. While the sigma field relaxes, the energy transferred

to the heat bath causes an increase in temperature. In figure 5.20 we plot the time

evolution of the noise averaged sigma field, in figure 5.21 the sigma fluctuations and

in figure 5.22 the average temperature as a function of time. For quench temperatures

T = 80 MeV and T = 100 MeV we find that the system relaxes faster when the pion

mean fields as explicitly propagated degrees of freedom are included. While the effect is

minute in the case of T0 = 80 MeV, the time it takes for the system to reach the phase

transition temperature T = 123.27 MeV for T0 = 100 MeV is decreased by about ∼ 5%.

In both cases, T0 = 80 MeV and T0 = 100 MeV the system passes from the hot into

the cold phase minimum of the potential while the environment heats up and passes

the phase transition temperature in the opposite direction. Finally, the sigma field is

trapped in the wrong minimum. In the case of T0 = 100 MeV the system has not yet

relaxed while passing the phase transition, i.e. a considerable part of the sigma field still

needs to overcome the potential barrier. Here, the pion fluctuations help again which is

why we see an effect. With T0 = 80 MeV instead the sigma field has already crossed the

potential barrier before it even appears at the spinodal temperature of T = 108 MeV.

For T0 = 110 MeV the system struggles to relax (and the pions are of little help as seen

from the sigma fluctuations), but compared to the case of an isothermal heat bath (figure

5.9) one might expect relaxation to set in somewhen between 5 fm < t < 15 fm. Why

there is so little happening for the system with reheating is because of the local energy

transfer between mean fields and environment. If at a single lattice site the field crosses
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Figure 5.20.: Noise averaged σ field relaxing after a quench in a first order phase tran-
sition scenario including reheating.

the potential barrier and reaches values associated with the chirally broken phase, it

has caused a local increase in temperature well above the transition temperature and

so, locally, the potential pushes the field back to the hot phase minimum (which causes

local cooling), and so on. To illustrate this situation, we plot in figure 5.23 the local

temperature vs sigma value for each lattice site at t = 50 fm.

5.4.2. Second Order Phase Transition

In a critical point scenario the results for relaxation of quenched systems with reheating

differ from the case of a first order phase transition mainly because of the missing po-

tential barrier at the phase transition. While the sigma field slides down the potential,

the environment heats up and the potential smoothly changes shape until the current

temperature and sigma value meet at equilibrium configuration σ(t) = σeq(T (t)). This is

seen in figures 5.24, 5.25 where time evolution of noise averaged sigma field and temper-

ature are displayed for various quench temperatures. (The sigma field was initialized at

σeq(T = 180MeV ).) The closer we get to the critical point, the slower the relaxation oc-

curs, and for low quench temperatures (as e.g.) T0 = 90 MeV we the system overshoots

equilibrium and relaxes performing damped oscillations about the final configuration.

On inclusion of the pion fluctuations we find no significant difference. We recognize

a slightly smaller final temperature (∆T < 0.1 MeV) which is most likely caused by
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Figure 5.21.: Noise averaged σ fluctuations for a system quenched to different tempera-
tures evolving through a first order phase transition with reheating.

 70

 80

 90

 100

 110

 120

 130

 140

 0  5  10  15  20

<
T

>
ξ 

 [M
eV

]

t  [fm]

T0 = 80 MeV
T0 = 100 MeV
T0 = 110 MeV

w/o π
with π

Figure 5.22.: Noise averaged temperature of the heat bath for various quench tempera-
tures in a system with a first order phase transition and reheating.
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Figure 5.23.: Local temperature vs sigma field value at each lattice site at t = 50 fm
for a system quenched to T0 = 110 MeV in a first order phase transition
scenario including reheating.

the chosen initial conditions (constant field values): immediately after the start of the

time evolution, the fields assume the the gaussian distribution from the noise field which

means that the mean fields gain energy which is subtracted from the environment and

causes a little cooling at t . 0.1 fm. With pions as three additional degrees of freedom

the system is thus cooled more (which is also seen in the figure for t < 0.1 fm). We

could evade this situation by evolving the system in equilibrium in the hot phase for

some time and then quench it below the phase transition temperature. However, the

overall effect is really small (< 1%), but nevertheless, it helps to explain why we find

final sigma values a tiny bit larger when including pions. However, at the critical point,

we also found pion fluctuations pushing the sigma field to larger values in case of the

isothermal heat bath and in that setup the effect the shift was about 10%. With re-

heating, the effect is only abuot 2− 3%: if the sigma field is pushed to higher values by

means of the pions, the temperature increases and the equilibrium postition is corrected

towards lower sigma value which reduces the observed shift in the final sigma average.

(Of course, this mechanism also counteracts the small temperature reduction from our

choice of initial conditions.)
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Figure 5.24.: Noise averaged σ field relaxing after a quench including reheating. The
case of a second order phase transition is considered (g=3.63).
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Chapter 6.

Results II - Fluctuations and

Relaxation for a Heat Bath with

Quarks and Hard Meson Modes

In this chapter we investigate the impact of pionic fluctuations on the dynamics of a

system of meson mean fields coupled to a static heat bath of quarks and hard meson

modes. The interactions in the mesonic sector are accounted for by including the meson

propagator in the derivation of the damping coefficient and the correlation of the noise

fields in the last section of chapter 4. The equation of motion for the meson fields is

(

∂µ∂
µ +M2

L − 2
λ

N
~ϕ2

)

ϕa + gρa − hδa,σ + (η + ζ)ab∂tϕb = ξa (6.1)

As in the beginning of the previous chapter, we first need to fix the quark-meson coupling

constant g. In order to find suitable values we must again take the detour and discuss

the thermal equilibrium properties of the model.

6.1. Thermal Equilibrium

In the Langevin equation of motion, (6.1), we recognise the field derivative of the effective

potential,
∂Veff
∂ϕa

=

(

M2
L − 2

λ

N
~ϕ2

)

ϕa + gρa − hδa,σ (6.2)
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which originates from the full effective potential

Veff (ϕ) = − i

βV
Γ[ϕ, S,G]

∣

∣

∣

∣

ϕ=const

= Vcl(ϕ)−
1

βV
Tr log S−1 +

1

2βV
Tr log G−1 +

1

2βV
Tr G−1

0 G− i

βV
Γ2(6.3)

in thermal equilibrium and with a finite spatial volume V. The first two terms are the

classical meson potential and the quark one-loop potential Vq which for G = 0 are the

only contributions to Veff as was the case in the previous chapter. Now however, we

additionally have the trace-log term for the meson propagator which gives the corre-

sponding mesonic one loop potential Vϕ, and two remaining terms which we collect into

Vϕϕ and which result from the nontrivial choice of Γ2. The one loop meson potential

evaluates to (see e.g. [KG06]):

Vϕ =
1

2βV
Tr log G−1

L +
N − 1

2βV
Tr log G−1

T

=

∫

d3k

(2π)3

(

EL

2
+ (N − 1)

ET

2
+

1

β
log
(

1− e−βEL
)

+
(N − 1)

β
log
(

1− e−βET
)

)

(6.4)

In the following, we will omit the divergent terms ∼
∫

d3kE as we did for the quark

potential. The last two terms in equation (6.3) can be simplified using the explicit

expression for the truncated Γ2 and the meson self-energy, equations (4.108), (4.109). If

we neglect again divergent contributions, we find up to an infinite constant:

Vϕϕ = − λ

4N

(

3G
2
(ML) + (N2 − 1)G

2
(MT ) + (2N − 2)G(ML)G(MT )

)

(6.5)

with

G(M) =

∫

d3k

(2π)3
1

E

1

eβE − 1
(6.6)

where EL/T =
√

M2
L/T + ~k2.

Within our approximations, at T = 0 the effecteve potential is given only by the classical

potential. In order to obtain the same vacuum properties as before, we keep λ/N = 20

fixed and also stick to the values of the symmetry breaking constants v2, h which we al-

ready used in the previous chapter. At finite temperature, we find lower phase transition
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temperatures when including the contributions from the meson propagator. However, if

we want to investigate systems passing through a phase transition, the transitions should

occur at temperatures T & 97 MeV because otherwise the effective potential would only

be defined within the sigma range for which the gap equations can be solved. As we

saw in the previous chapter, lower values of the quark-meson coupling constant g shift

the phase transition to larger temperatures. A suitable value for which we still find a

well developed first order phase transition at a high enough temperature is e.g. g = 3.7.

We plot the effective potential in figure 6.1 up to a temperature dependent constant for

three temperatures: the lower spinodal temperature T = 97 MeV, the critical tempera-

ture Tcrit = 103.43 MeV for which the system’s ground state is degenerate, and T = 110

MeV which is above the upper spinodal temperature of T = 106.5 MeV. We also note,

that the height of the potential barrier is smaller than in the case with a pure heat bath

(g = 5.5), so we can expect faster relaxation near the phase transition.

Decreasing the quark-meson coupling constant, we eventually find a second order phase

transition for g = 2.4 with a critical temperature Tcrit ≈ 117.5 MeV. In figure 6.2 we plot

the potential for three different cases, corresponding to a system in the chirally sym-

metric phase (T = 130 MeV), the broken phase (T = 110 MeV) and at the critical point.

Lastly, we choose g = 2.0 for studying the model with a crossover which occurs at

about T ≈ 120 − 130 MeV. The effective potential for three different temperatures is

given in figure 6.3.

In figures 6.4 and 6.5 we plot the sigma field and the meson masses in thermal equilib-

rium for the three choices of g: for g = 3.7 the sigma field and the pion mass jump at

the first order phase transition. In principle, the sigma mass is also discontinuous, but

it appears that at the two different minima of the potential the curvature is (almost)

the same. With g = 2.4 we see a vertical drop of the sigma field and a drastic decrease

in the sigma mass at the critical temperature of the second order phase transition while

for the model with a crossover, g = 2.0, the fields and masses smoothly pass from one

phase to the other.

The equilibrium propagator masses are plotted in figure 6.6, i.e. the temperature de-

pendence of the solutions of the gap equations (4.114) for the equilibrium sigma values

of figure 6.4. At the phase tranistion both, longitudinal and transversal propagator
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Figure 6.1.: Effective σ field potential (up to a temperature dependent constant) for
zero pion mean field and including contributions from the meson propagator.
The quark-meson coupling constant is g = 3.7 leading to a first order phase
transition at T ≈ 103.43 MeV.
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Figure 6.2.: Effective σ field potential (up to a temperature dependent constant) for zero
pion mean field and including contributions from the meson propagator The
quark-meson coupling constant is g = 2.4. The critical temperature for the
corresponding second order phase transition is TC = 117.5 MeV.
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Figure 6.5.: Equilibrium masses of the mean fields as a function of temperature. Con-
tributions from the meson propagator are included in the effective potential.

masses drop, before increasing again towards high temperatures. The way the masses

drop, i.e. (dis)continuously respectively smoothly, reflects the type of phase transition.

Within the chosen approximations, the gap equations are not explicitly dependent on

the quark-meson coupling constant. Only through the particular equilibrium sigma val-

ues an implicit g-dependence enters. Since for temperatures sufficiently low or large the

equilibrium values of the sigma field are not or at least only weakly dependent on g (cf.

figure 6.4) we thus find that the propagator masses in equilibrium are almost indepen-

dent of g for T < 50 MeV and T > 200 MeV.

With all equilibrium masses and field values we calculate the damping coefficients: in

figure 6.7 we plot the full longitudinal and transversal damping coefficients and in figure

6.8 separately the quark and meson contributions to the longitudinal damping coeffi-

cient. In equilibrium , the damping coefficient of the transversal modes gets only the

quark contribution. At low temperatures, we find a nonzero damping coefficient which

contains contributions from the mesonic sector of the heat bath as well as from the

quark sector. To be precise, the latter is only the case for the choices of g with a second

order phase transition and crossover, since the small values of g lead to sufficiently small

quark masses at low temperatures. At high temperatures the mesonic contribution to

the damping coefficients tends to zero and we are left with just the damping from the
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Figure 6.6.: Equilibrium masses of the meson propagator as a function of temperature
for different types of phase transitions.

heat bath of quarks. In the vicinity of the phase transition, the damping coefficients

vanish in case of the crossover and second order transition. For temperatures just above

the critical point, the sigma mass grows fast with increasing T . Together with the

drop of the propagator masses and the sigma field at the critical point we thus find for

T > Tcrit two successive bumps in the longitudinal damping coefficient originating from

the heat bath of transversal and longitudinal meson modes respectively. In case of a first

order phase transition the sudden change in the propagator masses accompanied with

the jump in the pion mean field mass leads to a drastic increase in the damping coeffi-

cient from the meson heat bath, especially around 103.43 MeV< T . 110 MeV. At high

temperatures however, the damping coefficient is again dominated by the quark sector

of the heat bath. Further, it should be remarked that the damping coefficient is still

finite at the first order phase transition. Also, we see that for the crossover scenario,

there is no meson contribution to the damping coefficient in the hot phase since the

mean field masses are too small compared to the propagator masses (mL/2 < ML/T ).

In contrast to the previous chapter, the longitudinal damping coefficient is nonzero at

low temperatures and only vanishes close to the phase transition temperature. Since

we require damping for the relaxation but still wish to (at least somehow) respect the

temperature dependence of the damping coefficients, we artificially assume a minimum

value of 1fm−1 for both, longitudinal and transversal damping coefficients. A minimum
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of 3fm−1 as was chosen at low temperatures in the previous chapter would now be too

large at high temperatures, since with the smaller choices of g the high temperature

damping coefficients are corrspondingly smaller.

However, we confirm that the previous assumption of η = 3 fm−1 was a good esti-

mate at low temperatures. This is not surprising since this value is based on [Ris98],

where for a chiral O(N) model the damping coefficient was determined from a 1PI ansatz

in almost the same fashion as in our case. For the small coupling constants g, we find

an additional quark contribution at low temperatures, but for the larger values of g as

used in the previous chapter, there is no quark contribution to the damping coefficient

in the broken phase and what remains is the meson contribution of about ∼ 3 fm−1. In

the hot symmetric phase, it was found in [Nah11] that the quark contribution results in

much larger damping coefficients than for a pure meson heat bath. The latter was calcu-

lated in the linear sigma model without constituent quarks to be 2.2fm−1 at the critical

point [BG97]. In our approximation, we find a smaller meson contribution ζ < 1.5fm−1

above the critical point (and ζ = 0 at Tcrit). In line with [Nah11], the damping in the

symmetric phase is thus dominated by the quark contributions (at least for physically

reasonable choices of g & 3).

6.2. Nonequilibrium Langevin Dynamics With Static

Heat Bath

In this section, we investigate the impact of pionic fluctuations on the relaxation dy-

namics of a system passing various types of phase transitions with a static background

heat bath of quarks and hard meson modes. Apart from propagting the pion mean field

explicitly, the meson contribution to the heat bath can also be regarded as ”fluctuations”

influencing the mean field dynamics. However, we needed to retune the quark-meson

coupling constant in order to find the desired types of phase transition which severely

affects the transition temperatures as well as the damping coefficients. Therefore, it is

difficult to compare the results of the current chapter with those of the previous one and

even more difficult to compare to [Nah11, NLB12, NHL+13].
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6.2.1. First Order Phase Transition

In figure 6.9 we plot the time evolution of the sigma mean field for g = 3.7 and a system

initialized at the constant value ~ϕ = (fπ,~0). For T = 130 MeV and T = 150 MeV,

which is well above the phase transition, the system relaxes very quickly. Since the

damping coefficient is smaller (by a factor of roughly 1/2) than for the corresponding

first order phase transition setup from the previous chapter the relaxation now occurs

faster. Propagting the pion mean field explicitly does not alter the dynamics of the

sigma field. This may also be inferred from figure 6.10 where the time evolution of

the sigma fluctuations is given. At T = 110 MeV which is close but still above the

upper spinodal temperature of T = 106.5 MeV, we find that the relaxation takes very

long. On the one hand, the shape of the potential is of course partially responsible for

the slow relaxation. On the other hand, this effect is enhanced by the large damping

at temperatures 104MeV . T . 110MeV . Similarly to our previous findings, we see

that the explicit propagation of the pion mean fields slightly slows down relaxation for

the current setup. For T = 104 MeV which is very close to the transition temperature

T = 103.43 MeV the system is trapped in the wrong minimum due to the large potential

barrier. However, the time evolution of the mean field fluctuations indicate that the

system might eventually relax on time scales larger than investigated here.

Quenching the system from the symmetric into the broken phase our findings are very

similar to the corresponding ones from the previous chapter: As seen in figures 6.11 and

6.12, the sigma mean field relaxes faster if the system is quenched to a lower temperature.

Further, since the field now relaxes in the opposite direction, i.e. towards larger field

values, the explicit propagation of the pion fields speeds up the relaxation process. This

effect becomes more pronounced as we approach the phase transition. Especially at

T = 102 MeV the pionic degrees of freedom in the equation of motion ensure relaxation

while without them the system does not entirely reach thermal equilibrium but remains

partially trapped in the wrong minimum. However, as opposed to the case without the

meson contributions to the potential and heat bath (see previous chapter), the system

(almost) relaxes on a comparably short time scale t ≈ 40 − 60 fm. In contrast to the

previous chapter, we now also see a small oscillation at times 0 < t < 10 fm when the

sigma field is temporarily trapped in the wrong minimum. For T = 97 MeV, which is

the lower spinodal temperature, there is just a short delay in the relaxation instead of

such an oscillation.

90



6.2. Nonequilibrium Langevin Dynamics With Static Heat Bath

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0  20  40  60  80  100

<
σ>

ξ 
/ σ

eq
  [

M
eV

]

t  [fm]

T = 150 MeV
T = 130 MeV
T = 110 MeV
T = 104 MeV

w/o pions
with pions

Figure 6.9.: Time evolution of the noise averaged sigma field for different temperatures
in a model with first order phase transition, g = 3.7. Contribution from the
meson propagator to the potential and the heat bath are included.
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Figure 6.12.: Noise averaged sigma fluctuations for the mean field dynamics of figure
6.11.
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6.2.2. Second Order Phase Transition

For the case of a second order phase transition, g = 2.4, the time evolution of the sigma

field is given in figure 6.13 for a system initialized at the T = 0 vacuum expectation

value. The corresponding mean field fluctuations are plotted in figure 6.14. For tem-

peratures above as well as at the critical point, the system relaxes quickly (t < 5 − 10

fm) and shows damped oscillations around the thermal equilibrium. As the damping

coefficients are smaller than those used in the previous chapter, the relaxation times are

now much shorter which is especially noticeable at the critical point (T = 117.5 MeV).

For temperatures above the phase transition, the explicitly propagated pionic degrees

of freedom are of no (T = 130 MeV) or at least of minor (T = 120 MeV) importance

for the dynamics of the sigma field. In the latter case, we observe that even without the

fluctuating pion mean fields the sigma expectation value is shifted to a value slightly

larger than the location of the minimum of the potential: T = 120 MeV is just above the

critical point where the potential is flat in sigma direction over a wider range. Thus, for

temperatures a little above the critical point the flat part of the potential is tilted a bit

such that the minimum is in the symmetric phase, i.e. small sigma values. Therefore,

in the vicinity of the minimum, the potential grows weaker with increasing than for

decreasing sigma. As a consequence, the noise term in the sigma equation of motion

then effectively causes the shift of the field expectation value. As we have discussed

before, the pion mean fields - if included in the dynamics - tend to push the sigma field

in the same direction and so the effect is more pronounced (but still very small) which

is accompanied by an increase in the sigma fluctuations. At the critical point, the sigma

expectation value is somewhere in the middle of the flat region of the potential and

so the sigma fluctuations cancel on average. Thus, for T = Tcrit = 117.7 MeV, in the

absence of nonzero pion mean fields, the sigma field relaxes to the correct value while

in the precence of the pion mean field dynamics it is again shifted to a higher value.

The magnitude of the sigma fluctuations at the critical point is however reduced if pion

mean fields are included (see discussion in previous chapter). Overall, the fluctuations

become stronger towards the critical point at which we also plot the pion mean fields

and fluctuations in figure 6.15. In comparison to the critical point scenario in the pre-

vious chapter, the pion mean fields still evolve noisy but they now also show more of an

oscillating behaviour. This is basically due to this chapter’s damping coefficients being

generally smaller than their counterparts from chapter 5.

From what we observed so far, the following findings, for a system quenched from the
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Figure 6.13.: Relaxation of the noise averaged sigma field for g = 2.4 for temperatures
above and at the critical point of the second order phase transition.
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Figure 6.14.: Noise averaged sigma fluctuations for the mean field dynamics of figure
6.13.
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Figure 6.15.: Time evolution of the noise averaged pion mean fields and fluctuations at
the critical point, T = 117.5 MeV.

hot into the cold phase are straightforward: Relaxation occurs much faster (and with

damped oscillation around equilibrium) than for the case where we neglected the meson

sector of the heat bath which is due to the smaller damping coefficients. This is seen in

figures 6.16, 6.17 where the time evolution of the sigma field and fluctuations are given.

For T = 105 MeV and T = 110 MeV, i.e. well below the critical point the system relaxes

to the correct minimum and explicit propagation of the pion mean fields does not alter

the dynamics of the chiral order parameter. Just below the critical point, namely at

T = 115 MeV, we find that the expectation value of the sigma mean field is a little

below the minimum of the potential, since now the flat part of the potential is slightly

tilted in opposite direction compared to the case of T = 120 MeV discussed in figure

6.13 before.

6.3. Dynamics Including Reheating

In this section, we investigate relaxation dynamics of the mean fields coupled to an

environment including reheating. The implementation of the energy transfer between

mean fields and heat bath follows section 5.4. However, the energy density of the heat

bath is now given by

ǫ = ǫq + ǫϕ + ǫϕϕ (6.7)
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Figure 6.16.: Noise averaged sigma field for g = 2.4 after quench to temperatures below
and at the critical point.
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with ǫq from equation (5.13) and

ǫϕ + ǫϕϕ = Vϕ + Vϕϕ − T∂T (Vϕ + Vϕϕ) (6.8)

the contributions from the hard meson modes. Since we neglect divergent contributions

in the potential, these evaluate to

ǫϕ =

∫

d3k

(2π)3

(

EL nB(EL) + (N − 1) ET nB(ET )
)

(6.9)

and

ǫϕϕ = − λ

4N

(

3G
2
(ML) + (N2 − 1)G

2
(MT ) + (2N − 2)G(ML)G(MT )

)

(6.10)

with G(M) defined in equation (6.6). With reheating implemented locally as in section

5.3, the temperature could drop below T < 97 MeV at single lattice sites, where for

small sigma values the gap equations for the meson propagator have no solutions. To

avoid such a situation, we now average the temperature after each time step and thus

work with a global but time-dependent temperature.

6.3.1. First Order Phase Transition

In figure 6.18 we plot the time evolution of the sigma field for a system initialized at

σeq(T = 180MeV ) and quenched to different temperatures below the first order phase

transition. The energy dissipated from the meson fields causes changes in the tem-

perature of the heat bath as depicted in figure 6.19. Due to the limited temperature

range available in our model below the phase transition (T=103.43 MeV) all considered

quenches are above the lower spinodal temperature. In the previous chapter with local

temperature fluctuations, we have seen a slow relaxation (if any) in this case. Now,

however, things are different since we average the temperature after each time step:

in the case of local temperature fluctuations, when the field at a given lattice point

takes an increased value, the temperature rises accordingly until above the phase tran-

sition temperature the effective potential pushes the sigma field back to lower values.

At surrounding lattice sites, the fields do not explicitly notice this particular change of

temperature. On the other hand, using a global temperature as in the present case,

the field may take large values at few lattice sites without being pushed back by the

local potential, since this potential corresponds to the average temperature, which is
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lower. At the lower end of the field distribution, the potential reflects a correspondingly

higher temperature. Still, while the field relaxes, the environment heats up and the

potential barrier grows. However, we now have more collective dynamics and so we see

the system running up the potential barrier (t < 1− 2 fm) and partially oscillating back

once (T0 = 100 MeV and T0 = 97.5 MeV), accompanied by a global cooling. There-

after (t > 5 − 6 fm), a considerable part of the sigma field relaxes to the cold phase

(accompanied by renewed heating) and the system shows the extremely slow relaxation

close to the first order phase transition which was also observed for the cases of a static

heat bath. In the case of T0 = 102.5 MeV this final stage of the relaxation (the slow

part) sets in earlier, at t ≈ 0.5 − 1.0 fm, without initial oscillation, since the transition

temperature is reached. The collective character of the dynamics with a global temper-

ature is also evident in the almost identical field values at early times. Only when the

system hits the potential barrier for the first time the lines for the average sigma field

start to differ (this effect can also be nicely observed for an isothermal heat bath, see

e.g. figure 6.11). In the framework with local temperature fluctations the sigma field

evolved differently for different quench temperatures from the start (see e.g. figure 5.20).

On inclusion of the pionic degrees of freedom, we see that during the first oscillation

(T0 ≤ 100 MeV) the temperature is smaller (∆T ≈ 0.2 MeV at the peak), since at the

”inner” side of the potential wall, the nonzero pion fields mean a higher meson field en-

ergy (due to the classical potential) and so a lower temperature. When the system starts

to creep over the potential barrier, we find that the pion fluctuations help in relaxing

the sigma field which is in line with our previous findings. In the cases of T0 ≤ 100 MeV

this leads to a higher global temperature. For T0 = 102.5 MeV however, the majority of

the system remains in the hot phase, where the nonzero pion fields raise the meson field

energy and lower the temperature which on average leads to lower temperatures despite

faster relaxation (as compared to the case without pion fields).

6.3.2. Second Order Phase Transition

Removing the potential barrier by considering a second order phase transition, g =

2.4, our findings are analogous to the critical point scenario with a pure quark heat

bath. In figures 6.20 and 6.21 we give the time evolution of average sigma field and

temperature respectively, for a system quenched to temperatures below the critical point

and including reheating. During the relaxation the system heats up until the current
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Figure 6.18.: Noise averaged sigma field as a function of time after a quench below the
phase transition. The case of a first order phase transition is considered
(g=3.7) and reheating of the environment is included.
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Figure 6.20.: Noise averaged sigma field as a function of time during relaxatin including
reheating after a quench below the critical point of a second order phase
transition (g=2.4).

field value and the temperature match for equilibrium conditions. Since in the present

model the damping coefficient is lower in the corresponding case of the pure quark heat

bath, the system exceeds its equilibrium configuration and performs damped oscillations

around the thermal configuration. Another difference to the case presented in chapter 5

is that for early times the sigma field evolves almost identically for the various quench

temperatures which is again caused by the global temperature treatment. The pionic

degress of freedom have nearly no effect on the dynamics of the sigma field, except

for small average shifts of sigma above equilibrium value for temperatures close to the

critical point (Tcrit = 117.5 MeV), which is the case for T0 = 115 MeV and T0 = 110

MeV.
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Chapter 7.

Results III - Meson Fluctuations With

Expanding Background Medium

In this chapter, we want to see how the pionic fluctuations influence the dynamics of

the sigma field in a more realistic setup as compared to the previous chapters. Such

settings are provided in heavy ion collisions where a quark-gluon plasma is formed. The

expansion and concurrent cooling of the hot fireball is often described by hydrodynamic

models1.

In [Nah11, NHL+13], the basic model, which we have extended in chaper 4, has been

applied to the scenario of heavy ion collisions by evolving the heat bath in the frame-

work of relativistic hydrodynamics. To see how our inclusion of pion fluctuations alters

the dynamics of the sigma field during the expansion of a cooling background medium

composed of quarks (and hard meson modes), it would thus be nice to perform calcula-

tions similar to those in [Nah11, NHL+13]. Unfortunately, we do not have access to a

program code for performing such extensive numerical calculations. Instead, we rely on

the simulations of heavy ion collisions performed in [Bet09] for central Au-Au collisions

at a center of mass energy per nucleon of
√
sNN = 200 GeV as seen at RHIC. In the cited

reference, an ideal gas equation of state was assumed for the quark-gluon plasma and the

simulation was performed in (2+1)-dimensions. The hydrodynamic evolution was incor-

porated by means of the so-called SHarp and Smooth Transport Algorithm (SHASTA)

[BB73, BBH75, RBM95, RPM95]. We have been provided with two-dimensional tem-

1 Introductions to relativistic hydrodynamic modelling of heavy ion collisions can be found in many
works and textbooks. The idea of applying hydrodynamics to describe the outcome of collider
experiments dates back to Landau [Lan53]. Since then, the field has seen great development. For
an older review article on the subject, see e.g. [SG86], while a more recent review is given by
[DdSKK16].
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Figure 7.1.: Temperature profiles used as input for expanding background medium. The
data is the outcome of numerical simulations peformed in (2+1) dimensions
for central Au-Au collisions [Bet09], and has been provided by the cited
author.

perature profiles for different times during the expansion of the plasma. They describe

the temperature distribution in the plane transversal to the collision axis. We use these

temperature profiles as input for the heat bath. They are plotted in figure 7.1 along

the radial coordinate in the transversal plane. Since a central collision is assumed, the

profiles are radially symmetric.

7.1. Pure quark heat bath

We initialize the meson fields at their local thermal equilibrium values corresponding to

the temperature profile at t = 0 in figure 7.1. With the time evolution of the tempera-

ture, the effective potential as well as the damping coefficient and the noise correlators
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also change. For the latter two we use equilibrium values determined by the current

temperature at each lattice site respectively. In our first set of runs we neglect meson

contributions to the heat bath and the potential, i.e. we use the same model as in

chapter 5.

7.1.1. First order phase transition

To begin with, we investigate how the meson fields behave during the expansion and

cooling of the heat bath if the system passes a first order phase transition, i.e. we choose

g = 5.5. In figures 7.2, 7.3 the deviation of the sigma field from its local equilibrium

value is given at different times. Whether we include the pion mean fields in the equation

of motion or not has no effect on the dynamics of the sigma field in this case. At early

times, the laplacian operator in the equation of motion dominates at the phase transition

and the field distribution is smoothed out. This is why we find a sudden sharp increase

followed by a jump to large negative values which quickly decays for increasing radius.

An effect of the expanding medium is however seen in the different magnitude of the

peaks: for succeding time steps the radial coordinate where the phase transition occurs

decreases and so the smoothed out field configuration follows. However, due to the

damping and the potential barrier which the sigma field has to overcome at the first

order phase transition the sigma field lags behind the thermal equilibrium value leading

to a slightly decreased inner peak and a more pronounced increase in the outer peak.

During further time evolution, this effect becomes even stronger until the inner peak

vanishes between 7 fm < t < 8 fm and we have a ring in the x-y plane, where the

system sits in the wrong minimum. This ring then becomes broader (up to a thickness

of about 1 fm at t = 9 fm) until at t = 10 fm the whole of the background heat bath

has passed to the chirally broken phase. In the central area with radius r . 2.5 fm this

transition is like a sudden quench and in this domain the system remains temporarily

trapped in the wrong phase. Although this area shrinks from t = 10 fm to t = 12 fm we

cannot continue the time evolution any further for lack of input data.

At this point, we could start to think about possible signatures of the meson fluctuations

at the phase transition to be tested by collider experiments. This would lead us straight

to the topic of particle production. However, we will first have a closer look at the

spatial fourier modes of the chiral fields. For this purpose, we extend the spatial field

distribution by placing it in the middle of a larger lattice with N = 256 lattice sites
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Figure 7.2.: Deviation of the sigma field from its equilibrium value along the spatial x-
axis for a system with an expanding background medium at different times.
The mesonic sector of the heat bath is neglected and the pion mean fields
are kept fixed at zero.
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Figure 7.3.: Same as in figure 7.2 but for later times.
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in each direction (i.e. L = 51.2 fm for a lattice spacing of ∆x = 0.2 fm) and apply a

fast fourier transorm [PTVF02]. At the additional lattice points we assume T = 0 and

σ − σeq = 0. Due to the radial symmetry of the system we expect the fourier transform

of σ − σeq to be real valued. Of course, with the noise field in the equation of motion

this symmetry is not exact, but we can expect it to have negligible influence on the

low momentum modes while it will eventually become important with increasing radial

momentum. So let us assume that σ − σeq is radially symmetric and let us further

assume, that we can approximate the shape of σ − σeq e.g. at t ≈ 4− 5 fm in figure 7.2

by a superposition of gaussian curves:

f(x) = a
(

e−α(x−x0)2 + e−α(x+x0)2
)

− b
(

e−β(x−x′

0
)2 + e−β(x+x′

0
)2
)

(7.1)

with a, b, α, β > 0. The fourier transform fulfills then

f(k) ∝ a e−k2/4α
(

eix0k + e−ix0k
)

− b e−k2/4β
(

eix
′

0
k + e−ix′

0
k
)

(7.2)

and thus for α ≈ β

f(k) ∝ e−k2/4α (2a cos(x0k)− 2b cos(x′0k)) (7.3)

Using

cos2(x) =
1

2
(1 + cos(2x)) (7.4)

cos(x)cos(y) =
1

2
(cos(x+ y) + cos(x− y)) (7.5)

and assuming x0 ≈ x′0 we find for the squared absolute value of f(k):

|f(k)|2 ∝ e−k2/2α (a− b)2

2
(1 + cos(2x0k)) (7.6)

Thus, we expect the squared amplitude of the fourier transform of σ − σeq to be expo-

nentially suppressed and to vanish periodically. For t ≈ 4− 5 fm it is x0 ≈ 5.5 fm (from

figure 7.2) and so this period is approximately

∆k = 2π/2x0 ≈ 113MeV (7.7)
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In figure 7.4 we plot the absolute value of the fourier transform of σ − σeq at t = 4.8

fm which confirms our expectations: the modes are periodically damped and we find

e.g. approximately 13.5 full periods between 0 < |k| < 1.5 GeV in agreement to our

rough estimate, 1.5GeV/113MeV ≈ 13.3. Further, the modes decrease linearly on the

logscale plot for about 100MeV . |k| . 1500MeV . Below and above these values, our

approximations x0 ≈ x′0 and α ≈ β are not good enough as exp(−k2/4α) 6= exp(−k2/4β)
for small (but finite) k respectively k(x0 − x′0) & 1 for large k in the argument of the

cosine. Further, for momenta k > 1.5 GeV the noise induced sigma fluctuations lead

to a correspondingly noisy spectrum. What we also infer from figure 7.4 is that the

explicit propagation of the pion mean fields does not change the spectrum of the sigma

deviations. For times 1 fm < t < 6 fm, x0 and x′0 decrease slightly over time (cf figure

7.2) and so the period in the mode spectrum grows accordingly.

At t = 8 fm we see from figure 7.3 that we can approximately describe the mode spec-

trum with equation (7.6) in the limit a = 0. Since the width of the peak has increased

compared to times t < 6 fm, we expect a stronger suppression of modes for increasing

momentum. Further, the period in the spectrum is supposed to be larger than at lower

times due to the reduced radial coordinate of the phase boundary. This is exactly what

we find for the spectrum at t = 8.0 fm, plotted in figure 7.5. When the heat bath

has passed through the phase transition everywhere and at the center the sigma field

is trapped in the wrong minimum, we obatin even stronger exponential suppresion of

the modes, because we might think of the coordinate space distribution (see figure 7.3)

as consisting of two very broad gaussian curves which overlap. From figure 7.6 we see

that at t = 9.6 fm the exponential suppression of the modes is so strong that already

above |k| ≈ 1.3 GeV we find only a white noise spectrum from the stochastic force in

the langevin equation of motion. At smaller momenta we still find the periodic structure

of the spectrum. The corresponding period increases further for later times as the area

with the sigma field in the wrong phase becomes smaller.

The total number of sigma particles2 produced in the x-y-plane is given by [ACBL97,

2To be precise, dN/ddk is the intensity of fluctuations. At later times during relaxation, when the
evolution of the system can be approximated by a linearized equation of motion, N can be interpreted
as the number of particles emitted. However, we will mostly refer to N as the number of particles
straight away.
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Figure 7.4.: Absolute value of the fourier transformed sigma field deviations σ−σeq from
thermal equilibrium for a system with an expanding background medium at
t = 4.8 fm and with g = 5.5.
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Figure 7.5.: Absolute value of the fourier transformed sigma field deviations σ−σeq from
thermal equilibrium for a system with an expanding background medium at
t = 8.0 fm and with g = 5.5.
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Figure 7.6.: Absolute value of the fourier transformed sigma field deviations σ−σeq from
thermal equilibrium for a system with an expanding background medium at
t = 9.6 fm and with g = 5.5.
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AB97]:
dNσ

dz
(z = 0) =

∫

d2k

(2π)2 2ωk

(

ω2
k|(σ − σeq)k|2 + |∂tσk|2

)

(7.8)

and correspondingly for the pions. ωk =
√
k2 +m2 is the energy of the modes. In figure

7.7 we plot the number of sigma particles produced for different momenta during the

expansion of the heat bath. In figure 7.8 the corresponding number of pions, summed

over the three species, is given. We see at first glance that the total number of pions

produced directly is negligible compared to the number of sigma particles. At early

times, t ≈ 1−3 fm the the number of sigma particles drops slightly which coincides with

the decrease in the negative valued peaks in figure 7.2 where the smoothing out of the

sigma field by means of the laplacian operator in the equation of motion is important.

Then, during further expansion and cooling the particle numbers grow throughout all

low momentum modes until they peak at 9 fm < t < 10 fm when at the central area

the field gets trapped in the wrong phase. Afterwards while the this part of the system

melts (or better: cools) away the particle numbers decrease again. In the time evolution

of the produced particles we see a signature of the periodic spectrum, most prominently

for 8 fm < t < 1 fm when the line for 150MeV < |k| < 200MeV rises while the line

for the neighbouring modes, 100MeV < |k| < 150MeV , drops before quickly swapping

their order of magnitude. This happens when the periodic suppression of modes passes

from one momentum range to the other, as the period increases with time. While on

the log-scale plot we can see better what is happening during relaxation, we give the

same plot again on a linear scale in figure 7.9, which is a more familiar form and allows

for a comparsion to [Nah11, NHL+13]. In agreement to the cited works, we also find a

drastic increase in particle numbers produced in the soft mode fluctuations the moment

the heat bath cools below the phase transition in the central area while the sigma field

is trapped in the wrong minimum. Since our number of particles calculated in two di-

mensions is actually a line density in three dimensions, we can obtain a dimensionless

number, by multiplying with a length. Choosing e.g. dz ∼ 1− 2 fm, we obtain particle

numbers of the same order of magnitude as for instance in [Nah11, NHL+13] for the case

of temperature dependent damping coefficients. In contrast to the cited works, the ma-

jor increase in the particle numbers arises at later times, in [Nah11] the phase transition

of the heat bath occurs already at 2 fm < t < 6 depending on the particular scenario

under consideration. This could result from the fact that we impose the time evolution

of the heat bath externally. Thus, we do not account for possible backreactions of the

sigma field on the heat bath which as we saw in the previous chapter, may cause serious
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increase in temperature and would therefore probably drive the expansion of the heat

bath instead of lagging behind. Another difference to the findings in the cited works is

the relative height of the particle numbers for |k| > 100 MeV. Especially a swapping of

the lines such as seen at t = 9 fm in figure 7.9 is not found in [Nah11, NHL+13]. How-

ever, in the cited works an elliptic initial temperature profile in the x-y-plane is chosen

corresponding to an off-center collision. In our case of a central collision we obtain the

periodic suppression in the mode spectrum.

Finally, we note that figure 7.9 does not change if we include or neglect the pion mean

fields as explicitly propagated degrees of freedom. However, this could as well be a con-

sequence of the externally imposed temperature of the heat bath, i.e. the time evolution

of the fields is driven by the expansion and cooling of the background. If the meson

fields had an impact on the time evolution of the heat bath by means of local reheating,

the pionic degrees could be expected to show a noticeable effect on the relaxation of the

entire system.

7.1.2. Second order phase transition

If we switch to a model with a second order phase transition, g = 3.63, the time evolution

of σ − σeq is quite different from the findings of the previous section. At earlier times,

0 < t < 6 fm we find in figure 7.10 a partially familiar profile of σ − σeq along the

x-axis. The continuous but nevertheless rather sharp change in sigma values at the

phase transition is smoothed out by the laplacian operator in the equation of motion.

This causes the sigma field to exceed the equilibrium value when approaching the phase

transition from the hot phase (i.e. from a lower radial coordinate) and falling below

equilibrium value when approaching the transition from the cold phase. However, in

contrast to the dynamics with a first order phase transition there is no potential barrier

between the two phases. Thus, in the vicinity of the critical point the sigma field is less

confined along the flat bottom of the potential and can fluctuate more. Furthermore,

the field cannot be trapped in a wrong position and so the peaks of σ−σeq at both sides

of the phase transition tend to be about equally large for t ≤ 4 fm (and also coincide

roughly with the height of the hot phase peak of the first order scenario). However,

when the expansion driven dynamics begin to dominate, i.e. for t ≥ 5 fm, we find again

that the peak in the hot phase shrinks while in the cold phase it grows accordingly. Due

to lack of the potential barrier, the cold phase peak remains at about half the magnitude
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Figure 7.7.: Number of sigma particles produced in the x-y-plane within different mo-
mentum ranges for g = 5.5 on a logarithmic scale.
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Figure 7.10.: Deviation of the sigma field from thermal equilibrium along the x-axis
at different times during the expansion of the pure quark heat bath in a
model with a second order phase transition, g = 3.63.

of the corresponding first order case for t < 6 fm. Since for g = 3.63 the phase transition

occurs at a higher temperature than for the model with g = 5.5, the expanding heat

bath drives the chiral fields through the phase transition a little earlier and the phase

boundary is at a smaller radial coordinate. In the center of the x-y-plane, the phase

transition now occurs between 8 fm < t < 9 fm as can be seen from figure 7.11 where

the profile of σ − σeq along the x-axis is plotted for later times. Because of the missing

potential barrier the transition between hot and cold phase is not as sharp (t = 7 − 8

fm) and the central area where the sigma field is quenched into the cold phase (t = 9

fm) shrinks quickly as the field relaxes. At t = 12 fm we see that the system overshoots

thermal equilibrium. Thereafter, the system would perform damped oscillations around

the equilibrium values.
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Figure 7.11.: Same as in figure 7.10 but for later times.
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In figure 7.12 we plot the absolute value of the spatial Fourier modes of σ−σeq for time

t = 1.6 fm. We see again the periodic structure of the mode spectrum which we can

roughly describe by our previously discussed approximation of the fields in coordinate

space by gaussian curves. This also explains the (approximately) exponential suppression

of the modes. What is new in figure 7.12 is that the low momentum modes are heavily

suppressed. This is because the peaks in figure 7.10 on both sides of the phase boundary

are of comparable magnitude but of opposite sign. Therefore, the overall offset of the

field distribution (or better, its spatial average) is very small and so are the modes for

k → 0. When the inner peak in the coordinate space distribution of σ − σeq vanishes

during the expansion and cooling of the heat bath and the expansion of the heat bath

dominates the meson field dynamics, the spatial average of the σ−σeq distribution has a

significantly larger absolute value than at early times and so, the low momentum modes

are no longer suppressed. This can be seen e.g. at t = 6.4 fm in figure 7.13. Also, since

the radial coordinate corresponding to the phase transition temperature has decreased

we find an accordingly larger perdiod in the mode spectrum at t = 6.4 fm as compared

to the case of t = 1.6 fm from figure 7.12. For t = 9.6 fm, the heat bath is in the chirally

broken phase and in the central area of the x-y-plane the system has only just started

to relax and follow the heat bath into the cold phase. In the corresponding spectrum

of σ − σeq, figure 7.14 we see an according enhancement of the low momentum modes.

We also infer from the figure, that the distribution in coordinate space may still be

approximated by two partially overlapping gaussian curves which leads to the seemingly

periodic structure in the spectrum fo |k| < 700 MeV. However, these two gaussian

curves are wider than in approximations at earlier times leading to a heavy exponential

suppression of the modes such that for k > 700 MeV the spectrum corresponds to white

noise. For later times, i.e. while the field in the central area of the x-y-plane relaxes

further, the period in the spectrum increases as well as the exponential suppression.

With the system slightly overshooting equilibrium and then oscillating around it only

the softest modes k < 50 − 100 MeV are enhanced enough to be discernible from the

noise.

The number of particles produced by the sigma fluctuations within different ranges of

(low) momentum during the expansion are plotted in figure 7.15. Overall, the number

of particles produced in each momentum range is smaller than its counterpart from the

first order scenario by a factor of ≈ 3 at early times and ≈ 10 later. Similarities to

the case with a first order phase transition are the temporary decrease in the particle
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Figure 7.12.: Spatial Fourier modes of σ−σeq for a model with an expanding heat bath
of quarks at t = 1.6 fm and g = 3.63.
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Figure 7.13.: Spatial Fourier modes of σ−σeq for a model with an expanding heat bath
of quarks at t = 6.4 fm and g = 3.63.
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Figure 7.14.: Spatial Fourier modes of σ−σeq for a model with an expanding heat bath
of quarks at t = 9.6 fm and g = 3.63.
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number at 1 fm < t < 3 fm while the smoothing of the field distribution dominates

the sigma dynamics and then for t > 3 fm an increase for all momenta ranges while

the sigma field is driven by the expanding medium, until between t = 8 fm and t = 9

fm the number of produced particles peaks which coincides with the heat bath just

having passed through the phase transition also in the central area in coordinate space.

Then, during the relaxation, 10 fm < t < 12 fm the number of particles produced in

each momentum range drops quickly. Since the phase transition in the model with the

second order phase transition occurs at higher temperature than for the model with a

first order transition, the system passes the critical point earlier at each lattice point

during the cooling. As a consequence, the periodic suppression in the mode spectrum

passes earlier from |k| < 150 MeV to |k| > 150 MeV and so the sudden swap in the

corresponding lines of figure 7.15 occurs already around t ≈ 8 fm. Since in the setup

with a second order phase transition the system relaxes (more or less) fully after cooling

below the critical point and exceeds the equilibrium configuration at about t = 12 fm

and then relaxes further by damped oscillations. This might be the reason for the two

kinks in both lines for |k| > 100 MeV between 12 fm < t < 12.8 fm. In comparison

to [Nah11, NHL+13], our findings are similar to the previous case: the overall reduction

in the particle numbers for a second order phase transition as compared to a first order

case is also found in [Nah11] although in our case the effect is a little larger. Apart from

that, the dominant part of the particle production sets in at later times in our case as

compared to the cited work, which might be a consequence of the externally imposed

temperature evolution of the heat bath in our case. Moreover, we have the swapping of

the lines for two neighbouring mode bins as an imprint of the radial symmetry in the

central collision as opposed to the off-center collision regarded in [Nah11, NHL+13].

Let us remark that also for the results presented in the current section the explicit

propagation of the pion mean fields is unimportant for the dynamics and spectrum of

the sigma field as well as for the particles produced.

7.1.3. Crossover

To complete the investigations of meson fluctuations interacting with an expanding

background medium consisting only of quarks we shortly summarize here, without plots,

what happens for a model with a chiral crossover, g = 3.3. In comparison to the case of

the second order phase transition the transition itself occurs a little more smoothly and at
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a higher temperature (cf chapter 5). Thus, the σ−σeq profiles in coordinate space are like

the ones from the previous section but with the transition occuring at earlier times and

the relaxation occuring faster. The mode spectra for the two cases are not too different,

the most prominent difference being that the period in the spectrum increases slightly

for the crossover due to the transition occuring at smaller radial (spatial) coordinate

because of the higher transition temperature. However, for the particles produced by

the low momentum fluctuations, this plays no role. Here, again, the main difference to

the case with a second order phase transition is that the large peak at the advent of

the final relaxation occurs slightly earlier and thereafter the faster relaxation leads to a

deeper drop in the particle numbers. Furthermore, on inclusion of the pion mean fields

as additional degrees of freedom, the results do not change significantly.

7.2. Heat bath with quarks and mesons

In the previous section we have seen that the explicit propagation of the pion mean

fields has no impact on the dynamics of the chiral order parameter interacting with an

expanding and cooling external background medium. Now we turn to investigate how

meson fluctuations in terms of hard meson modes contributing to dissipation and noise

affect the sigma mean field dynamics. Thus, we employ the model derived in chapter

4.2 where the quark and meson propagators are included. The temperature profiles we

use as input remain the same.

7.2.1. First Order Phase Transition

For a model with a first order phase transition we choose g = 3.7. As discussed in section

6.1, the transition occurs at T = 103.43 MeV. From figure 7.1 we see that the compa-

rably low transition temperature leads to an interesting effect: the radial coordinate

of the phase transition increases for times t ≤ 8 fm as the hot medium expands. Only

thereafter the cooling leads to a decrease in the radial coordinate of the phase transition.

While for early times the peaks in the coordinate space distribution of σ−σeq are still at
roughly the same radial coordinate as in the previous sections, now the initial expansion

of the phase transition radius leads to an increase of the peak in the hot phase (and not

in the cold phase as previously), where the system is trapped in the wrong minimum

(see figure 7.16). Especially at t = 6 fm we see that the magnitude in the peaks is

basically interchanged as compared to the case of g = 5.5 from section 7.1.1. However,
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the absolute value of the large peaks in the two cases differs by about 15 − 20%: it is

smaller for the present case, since we now have a smaller potential barrier seperating

the two phases. At later times (see figure 7.17) the radius corresonding to the phase

transition temperature decreases and the peak structure changes to the familiar one

from the previous sections. Between t = 11 fm and t = 12 fm the background medium

completely cools down below the phase transition and in the center the sigma field is

trapped in the wrong phase. The diameter of this circular region is about the same as

in the case of g = 5.5, where, however this quench in the center occurs at earlier times

(t ≈ 8 fm). This deviation is of course a direct consequence of the comparably lower

transition temperature at g = 3.7. The area with sigma in the wrong phase will surely

decay eventually, however, we cannot evolve the heat bath much further due to lack of

input data beyond t = 12.8 fm.

Concerning the fourier components of σ− σeq we expect to see a nice periodic structure

in the radial direction as predicted by our approximations in section 7.1.1. Further, since

the smoothing of the initial spatial field configuration by means of the laplacian operator

in the equation of motion (which favors sigma deviations in the cold phase, i.e. at larger

radii) is at some point overcompensated by the expansion of the radial coordinate of the

phase transition, we expect a drop in the low momentum modes at around t ≈ 2 fm.

Then, around t ≈ 8 fm we expect another drop in the soft modes because the area of the

hot phase shrinks and the sizes of inner and outer peaks in the spatial field distribution

interchange (and thus lead to a vanishing volume average σ−σeq at some point in time).

For 2 fm < t < 8 fm the mode spectrum should display the familiar exponential and

periodic suppression. This behaviour can indeed be seen at t = 3.2 fm in figure 7.18 and

t = 8.0 fm in figure 7.19.

From the above discussion of the fourier mode spectrium it is clear that the number

of particles produced in the soft modes from sigma fluctuations shows a sudden drop at

t ≈ 2 fm and at t = 8 fm which is observed in figure 7.20 for |k| < 150 MeV. Due to the

initial increase and subsequent decrease in the spatial radius of the hot phase, leading

to the two drops in dNσ/dz, the particle numbers in the soft modes are are smaller for

intermediate times 2 fm < t < 8 fm as compared to the case of a pure quark heat bath

(g = 5.5), where the expansion of the heat bath causes steady growth in the intensity of

fluctuations from t & 2.5 fm on. Finally, for t > 8 fm when the ”standard” cooling of the

system (as in the cases discussed in the previous sections) sets in, the particle numbers
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Figure 7.16.: σ − σeq along x-axis for different times during expansion of heat bath
containing contributions from quarks and hard meson modes. The case of
a first order phase transition is considered (g = 3.7).

increase until they peak when the central area (in coordinate space) is quenched from

the hot into the cold phase. This is again accompanied with a swap in the particle

numbers for different momentum ranges, where the periodic mode suppression in the

spectrum passes by (see also discussion in section 7.1.1). While for the modes |k| < 50

MeV the order of magnitude at peak value is the same as for the case of g = 5.5, it is

smaller by about 20− 35% at 50MeV < |k| < 100MeV .

Also in the current model, explicit propagation of the pion mean fields does not change

the dynamics of the sigma field whose dynamics is completely driven by the expansion

and cooling of the heat bath.
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Figure 7.17.: σ − σeq along x-axis as in figure 7.16 but for later times.
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Figure 7.18.: Fourier modes of σ − σeq at t = 3.2 fm during the expansion of the heat
bath which includes contributions from the hard meson modes. The quark-
meson coupling constant is chosen as g = 3.7 corresponding to a first order
phase transition.
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Figure 7.19.: Fourier modes of σ−σeq during the expansion of the heat bath as in figure
7.18 but at time t = 8.0 fm.
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Figure 7.20.: Number of particles produced in low momentum σ modes in x − y plane
during expansion of the heat bath consisting of quarks and hard meson
modes. It is g = 3.7, i.e. a first order phase transition scenario.
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7.2.2. Second Order Phase Transition

When including the hard meson modes in the heat bath, the choice of g = 2.4 yields

a model with a second order phase transition at a critical temperature of Tcrit = 117.5

MeV. At early times, the dynamics of the sigma field during the expansion of the back-

ground medium is dominated by the smoothing of the initial field distribution. However,

because of the flat potential in sigma direction at the critical point and because of the

comparably low damping coefficient, this smoothing process of the initial field config-

uration overshoots and oscillates around a stable configuration, i.e. the peaks in the

distribution of σ − σeq in both phases grow and shrink for t < 2 fm. In figure 7.21 we

only see an intermediate configuration at t = 1 fm. Additionally, the damping in the

cold phase is larger by a factor of roughly ≈ 2 which means that the stable smooth field

configuration in the presence of a heat bath with the given temperature profiles features

a larger peak in the hot phase (about 4 to 5 times larger than the cold phase peak at

2 fm < t < 3 fm). For t & 3 fm, the cooling of the heat bath leads to a decrease in the

radius corresponding to the critical temperature and we see a growing peak in the cold

phase accompanied by a shrinking peak in the hot phase. This continues for t > 7 fm

as seen in figure 7.22. Between t = 9 fm and t = 11 fm the central area is cooled below

the critical point. From the intermediate t = 10 fm we find that the transition occurs

smoothly. At t = 12 fm the field in the central area already relaxes towards thermal

equilibrium.

During the early stage of expansion, the peaks of σ − σeq at both sides of the phase

transition are positioned at clearly seperate radii (x0, x
′
0 in the notation of section 7.1.1).

Therefore, we find the fourier spectrum at e.g. t = 0.8 fm in figure 7.23 modulated by

a period of about k0 ≈ 2π/(x0 − x′0) & 1.55 GeV (inferred from a value of x0 − x′0 ≈ 0.8

fm at t = 1 fm in figure 7.21). During the cooling of the central area below the critical

temperature, we can describe σ−σeq in coordinate space (figure 7.22) by a superposition

of two overlapping and rather broad gaussian curves. For t = 9.6 fm, they are centered

at radius r ≈ 2.5− 3.0 fm. In figure 7.24 we find the periodic suppression of the fourier

modes with a period of about k0 ≈ 222 MeV corresponding to r ≈ 2.8 fm from equation

(7.6).

In figure 7.25 we plot the number of particles produced from the sigma fluctuations

in the low momentum modes. At around t = 2 fm we find a drop in the particle num-

bers in the modes |k| < 150 MeV when the process of smoothing out the initial field
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distribution abates. Therafter, the cooling of the heat bath leads to a decrease in the

radial coordinate at which the system passes the critical point. As in the the previ-

ous section, 7.2.1, we find a second drop at t ≈ 5.5 fm in the zero mode of the sigma

fluctuations coinciding with an approximate volume average of σ − σeq = 0. However,

in contrast to the first order scenario where the low transition temperature meant first

a growth and then a decrease of the hot phase region, the second drop in the particle

number is now due to the smaller damping in the symmetric phase (in combination

with a shrinking of that phase). As seen before, during the cooling through the phase

transition in the central area the fluctuations intensify to their maximum values. The

magnitude of the particle numbers within different momenum ranges is the same as if

we neglect the hard meson mode contribution to the heat bath (g = 3.63, section 7.1.2),

except for 0 < |k| < 50 MeV where values as for 50MeV < |k| < 100 MeV are reached.

7.2.3. Crossover

In the crossover scenario with g = 2.0 the potential is no longer flat at the phase

transition as opposed to the case of a second order phase transition (g = 2.4) considered

before. Therefore, the sigma field is pushed (at least slightly) towards its equilibrium

value in the vicinity of the phase transition which reduces the effect of the smoothing of

the initial field distribution: the height of the inner peak in the distribution of σ−σeq for
t < 2 fm in figure 7.26 is about ∼ 85% than compared to the second order case. However,

the damping in the hot phase at g = 2.0 is even lower than in the previous case. The

overshooting of the stable configuration (balancing the thermal equilibrium from the

temperature profiles versus the smoothing of the fields) leads thus to a distortion with

an amplitude of about 2 − 3 MeV in the hot phase which propagates inwards until it

vanishes for 7 fm < t < 8 fm as seen in figure 7.27. Actually, such a distortion is also

observed in the case of g = 2.4 in figure 7.21, however, due to the larger damping at

g = 2.4 the effect is less obvious (amplitude < 0.5 − 1 fm) and subsides faster (t . 6

fm). Also, due to the small relative size of the distortion (. 15 − 30%) the effect on

the fourier spectrum is not clearly visible. Apart from this propagating distortion, the

time evolution of σ − σeq is similar to the second order case, except that now the phase

transition occurs at a larger temperature and so the central area is cooled to below the

transition temperature at an earlier time 9 fm < t < 10 fm and the field distribution

has relaxed correspondingly further at the end of the time evolution which is enhanced
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Figure 7.21.: σ − σeq along x-axis for different (earlier) times during expansion of heat
bath in a critical point scenario. Contributions hard meson modes to the
heat bath are taken into account. The quark-meson coupling constant is
g = 2.4.
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Figure 7.22.: σ − σeq along x-axis as in figure 7.21 but for later times.
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Figure 7.23.: Fourier modes of σ−σeq at t = 0.8 fm during the expansion of the heat bath
including contributions from the meson propagator. The system passes a
critical point, g = 2.4.
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Figure 7.24.: Fourier modes of σ − σeq for a system as in figure 7.23 but at t = 9.6 fm.
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Figure 7.25.: Number of particles produced in low momentum σ modes in x− y plane
during expansion of the heat bath. The quark-meson coupling constant is
g = 2.4 yielding a model with a second order phase transition. Contribu-
tions from the hard meson modes are included.
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Figure 7.26.: σ− σeq along x-axis for an expanding background medium including con-
tributions from the meson propagator. The system passes a crossover tran-
sition, g = 2.0. The various distributions correspond to early times during
expansion.

by the decrease in the damping coefficient. Correspondingly, we find a similar evolution

of the particle numbers associated with the soft modes of the sigma fluctuations (figure

7.28) as compared to the critical point scenario in the previous section. The major

difference is that the second drop in the particle numbers of the zero mode discussed

before, now occurs about ∆t ≈ 2 fm earlier at t ≈ 4 fm. This is an effect of the

higher transition temperature meaning an earlier transition at fixed spatial coordinate.

Additionally, the drops in the particle numbers are washed out because the transition

occurs more smoothly in the crossover scenario.
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Figure 7.27.: σ − σeq along x-axis as in figure 7.26 but for later times.
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Figure 7.28.: Number of particles produced in soft σ modes during expansion of the
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The system passes a crossover transition, g = 2.0.
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Chapter 8.

Summary, Conclusions and Outlook

In this thesis, we have investigated the impact of pionic fluctuations on the dynamics of

the chiral order parameter. For this purpose, we have derived a Langevin equation of

motion for the chiral fields. Starting point of the derviation was the 1PI effective action

for the chiral quark meson model. Motivated by the influence functional formalism, the

quarks were considered as a heat bath and an effective description for the interaction of

the meson fields with quark environment was obtained. The resulting Langevin equation

of motion, in the absence of pion fields, has originally been derived in [Nah11, NLHB11].

In this work we have achieved an extension of this model by including the pion mean

fields as explicitly propagated degrees of freedom.

In a second step, we have further extended the model by including pion fluctuations

beyond the mean field dynamics. For this purpose, we have included the meson prop-

agator in the effective action. In order to obtain self-consistent propagator masses, we

have employed a 2PI effective action ansatz. However, the self-consistency could only

be retained at lowest order in mean field fluctuations, a concession we had to make for

identifying the dissipation and noise kernels as suggested by the influence functional. In

terms of the influence functional, our inclusion of the meson propagator corresponds to

accounting for the interaction of the (soft mode) mean meson fields with the hard meson

modes as part of the heat bath and resembles the model of [Ris98], where damping and

noise kernels have been derived from a 1PI effective action ansatz for an chiral O(N)

without quarks.

Our first set of numerical studies concerned the model with a pure quark heat bath.

In the case of constant vanishing pion mean field, we could reproduce the results found

in [Nah11, NLB12]: For an isothermal heat bath, starting from a non-equilibrium con-
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figuration, the system relaxes to the thermal equilbrium. During the relaxation process,

the mean field lose energy by dissipation. On the other hand, the thermal fluctuations

from the heat bath, encoded in a stochastic force providing the fields with random kicks,

ensures a finite spread in the field distribution. In the course of the relaxation process

the mean field fluctuations increase temporarily. Close to the phase transition, the re-

laxation times are generally longer. While at a first order phase transition this is a direct

cause of the potential barrier that needs to be overcome for relaxation, at the critical

point of a second order phase transition the potential in sigma-direction is flat and so

there is no slope for the field to slide down.

Including the pion mean fields as dynamic degrees of freedom we found for the most

cases, that they may have a significant effect on the dynamics of the chiral order pa-

rameter, but only close to the chiral phase transition: for relaxation in a first order

phase transition scenario, we saw that the pion fluctuaions speed up or slow down the

relaxation process, depending on the direction in which the phase transition is passed

through. On the level of the equation of motion, the pions enter the sigma dynamics by

causing the sigma to see the potential slightly shifted, as if the sigma was a bit larger.

While the sigma field relaxes along the concave parts of the potential, it is either held

back or pushed forward by the pion fluctuations.

There are some cases where the pion degrees of freedom show a considerable effect

on the sigma dynamics, such as e.g. quenches from the hot phase to temperatures below

the phase transition but above the lower spinodal temperature, where for some cases

the relaxation process is drastically shortened by the pionic fluctuations. For quenches

to temperatures very closely below the first order phase transition, the effect is most

dramatic: where the sigma field without pion fluctuations is trapped in the wrong mini-

mum for extremely long times, the pion fluctuations help overcome the potential barrier

comparably quickly. If a system is quenched from the cold to the hot phase, just above

the phase transition, the effect is opposite: without pion fluctuations the system shows

vague signs of relaxation, but on inclusion of pion fluctuations the sigma field is pushed

back while climbing the potential barrier.

For relaxation in a model with a second order phase transition we found the pion

fluctuations to have a small effect except at temperatures close to the critical point.

Here, the pions push the sigma to value larger than thermal mean field equilibrium
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value: while in meson space the potential along the sigma axis is flat, off the axis it has

a slope in sigma direction which vanishes at a shifted sigma value for nonzero pion fields.

When we added the energy lost by the chiral fields during relaxation to the thermal

energy of the heat bath, we observed that again the pion fluctuations are of little im-

portance for the dynamics of the sigma field away from the phase transition. Only if the

reheating increases temperature, such that the relaxation occurs at the first order phase

transition, we find again that pion fluctuations speed up relaxation. In case of a second

order phase transition, relaxation times are only little shorter on inlcusion of the pions

than without.

In a second set of calculations we treated the relaxation dynamics of the chiral fields

coupled to a heat bath of quarks and hard meson modes. This model required to readjust

the quark-meson coupling constant in order to find the desired type of phase transition.

Thus, we first investigated the thermal equilibrium properties. The quark-meosn cou-

pling constants had to be chosen smaller than for the previous model and the phase

transitions were found at lower temperatures. Apart from this direct consequence of the

inclusion of the hard meson modes into the heat bath, we found similar results from

the explicit propagation of the pion mean fields as for the other model: Mostly, the

effect is negligible. Only close to the phase transition the pions cause faster or slower

relaxation, depending on the direction in which the system passes the phase transition.

Especially at a first order phase transition the pion fluctuations might thus either help to

push the sigma field over the potential barrier or prevent the relaxation of the sigma field.

In a last set of calculations we tested our model in the more realistic context of a heavy

ion collision. We imposed the temperature profiles from hydrodynamic evolution of a

plasma computed in [Bet09] for central Au-Au-collisions with an ideal gas equation of

state onto the heat bath in our model. As a consequence, we found the dynamics of the

meson fields being driven by the evolution of the background medium, which - because

of the radial symmetry of the system - resulted in a perdiodic suppression of the fourier

modes of the sigma fluctuations. This periodic mode structure translated to the particle

numbers produced in the soft momentum modes by the fluctuations. The particle num-

bers peaked, when the heat bath cools below the phase transition temperature in the

(spatial) center of the system. For a first order phase transition the number of produced

particles is significantly larger than for a critical point scenario (by a factor > 10). While
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the rough shape and order of magnitude of the number of particles produced in the soft

modes is comparable to the findings in [Nah11, NLB12], in our case the main relaxation

occured at later times (∆t & 4 fm). We assume that this is an effect of not having a

backreaction of the meson fields onto the evolution of the heat bath in our setup. For

the same reason it might be that we found no impact of an explicit propagation of the

pion mean fields on the sigma field dynamics, mode spectrum and particle numbers.

Outlook

Our studies may be carried further in many ways. Apart from a general extension to

finite quark chemical potential, especially the model with hard meson modes contribut-

ing to the heat bath in addition to the quarks is well suited for various upgrades. In the

2PI effective action ansatz, more diagrams may be included. This could be done e.g.

by resumming an infinite number of diagrams up to a given order in a 1/N expansion,

but it would also be interesting to couple the quark and meson sectors of the heat bath

which happens at O(g2), respectively at two-loop order. However, if we are to obain a

Langevin equation of the likes derived in our work, these upgrades are only at the level

of thermal equilibrium.

Another important improvement would be to self-consistently renormalize the diver-

gent terms in the 2PI effective action [vHK01, vHK02b, vHK02a] instead of neglecting

them. This would alter the phase structure and we would obtain larger phase transi-

tion temperatures as compared to the extremely low values found in chapter 6 (see for

instance [PF08, FPP09, PF10]).

In chapter 4, we derived the damping and noise kernels for arbitrary directions of the

chiral mean field vector. However, for the numerical simulations in the subsequent chap-

ters, we restricted to equilibrium values of the damping coefficients and noise correlators.

In order to further approach full nonequilibrium dynamics, we could use the local field

values and temperatures to determine the damping coefficients (see appendix B for plots

in the T-ϕ-plane) and noise correlators1

1The noise correlators for the mean field components at nonvanishing pion mean field mix longitudinal
and transversal noise correlators. In practice, the stochastic fields for the sigma and pion equations
of motion can be obtained by drawing random numbers with longitudinal respectively transversal
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However, despite all such possible improvements, the Langevin equation is still an ap-

proximation to the quantum theory and is obtained by expanding the effective action in

mean field fluctuations. It would be great to compare our model to studies performed

with a full nonequilibrium 2PI effective action ansatz (see e.g. [BPR09, BGP11] for

studies in the quark-meson model) with initial conditions close to equilibrium. Unfortu-

nately, this will not be an easy task since the required framework is very different from

the one applied in this work. This includes, that we cannot readily exract damping and

noise kernels as in the influence functional setting. Instead, one would have to think

about how to construct observables for comparison of the different methods.

Apart from improving the level of approximation on the methodical side, the physi-

cal content at the basis can also be upgraded. The starting point for our investigations

was the quark-meson model which is designed for describing chiral symmetry breaking.

It may be extended to studies of the deconfinement phase transition if gluonic effects,

e.g. by means of the Polyakov-loop are taken into account. In [HNB12, HNMB13], this

was done for the Langevin framework of [NLHB11]. Combining this Polyakov-loop ex-

tended model with our extention by pionic fluctuations would naturally be the next step.

Furthermore, the model we have extended in this work is well suited for the simula-

tion of heavy ion collisions when the heat bath is evolved in a hydrodynamic setting. To

perform such calculations self-consistently instead of superimposing temperature pro-

files from other simulations, would be most desirable, especially since this could lead to

noticeable effects on inclusion of the pion fluctuations. Alternatively, instead of a fluid

dynamic treatment of the heat bath, one could use a kinetic approach as e.g. on the basis

of a Boltzmann-Vlasov equation [vHWMG14, MWvHG14, WvHMG15, GWvHM15].

correlation, ξ = (ξL, ξT,1, ξT,2, ξT,3) and then applying a O(4) rotation to ξ which rotates the vector

(ϕ,~0) into (σ, ~π).
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Appendix A.

Details of Calculations

A.1. Evalutation of the term ∼ λ2 in equation (4.131)

The term

Tr(ϕaδϕaGϕbδϕbG) (A.1)

reads with G the thermal propagator on the real time contour:

∫

d4x d4y ϕ+
a (x)δϕ

+
a (x)G

++(x, y)ϕ+
b (y)δϕ

+
b (y)G

++(y, x)

+

∫

d4x d4y ϕ−
a (x)δϕ

−
a (x)G

−−(x, y)ϕ−
b (y)δϕ

−
b (y)G

−−(y, x)

−
∫

d4x d4y ϕ+
a (x)δϕ

+
a (x)G

+−(x, y)ϕ−
b (y)δϕ

−
b (y)G

−+(y, x)

−
∫

d4x d4y ϕ−
a (x)δϕ

−
a (x)G

−+(x, y)ϕ+
b (y)δϕ

+
b (y)G

+−(y, x)

(A.2)

In section 4.1 we introduce center and relative variables,

ϕa =
1

2
(ϕ+

a + ϕ−
a ) (A.3)

∆ϕa = ϕ+
a − ϕ−

a (A.4)

and similarly for δϕa. In the following we omit the bar in the notation of the center

variables, equation (A.3). In section 4.1 we take the derivative of the effective action

with respect to ∆δϕ in order to obtain the equation of motion for the meson fields.

Thus, we can drop all terms in expression (A.2) which are not linear or quadratic in
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∆δϕ. Furthermore, said derivative is taken at ∆ϕ = 0, so we may drop these terms as

well. This leaves us with:

1

2

∫

d4x d4y ϕa(x)ϕb(y)δϕa(x)∆δϕb(y)×

×
(

G++(x, y)G++(y, x)−G−−(x, y)G−−(y, x) +G+−(x, y)G−+(y, x)−G−+(x, y)G+−(y, x)
)

+
1

2

∫

d4x d4y ϕa(x)ϕb(y)δϕb(y)∆δϕa(x)×

×
(

G++(x, y)G++(y, x)−G−−(x, y)G−−(y, x)−G+−(x, y)G−+(y, x) +G−+(x, y)G+−(y, x)
)

+
1

4

∫

d4x d4y ϕa(x)ϕb(y)∆δϕa(x)∆δϕb(y)×

×
(

G++(x, y)G++(y, x) +G−−(x, y)G−−(y, x) +G+−(x, y)G−+(y, x) +G−+(x, y)G+−(y, x)
)

(A.5)

Interchanging the integration variables and the summation index in the first term, we

can collect the first and second term into:

∫

d4x d4y ϕa(x)ϕb(y)δϕb(y)∆δϕa(x)×

×
(

G++(x, y)G++(y, x)−G−−(x, y)G−−(y, x)−G+−(x, y)G−+(y, x) +G−+(x, y)G+−(y, x)
)

(A.6)

By definition of the thermal propagator on the real time contour, it is with G+− = G<,

G−+ = G>:

G++(x, y) = G>(x, y)Θ(x0 − y0) +G<(x, y)Θ(y0 − x0) (A.7)

G−−(x, y) = G<(x, y)Θ(x0 − y0) +G>(x, y)Θ(y0 − x0) (A.8)

Thus, we have

G++(x, y)G++(y, x)−G−−(x, y)G−−(y, x)−G+−(x, y)G−+(y, x) +G−+(x, y)G+−(y, x)
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A.1. Evalutation of the term ∼ λ2 in equation (4.131)

= Θ(x0 − y0)G>(x, y)G<(y, x) + Θ(y0 − x0)G<(x, y)G>(y, x)

− Θ(x0 − y0)G<(x, y)G>(y, x)−Θ(y0 − x0)G>(x, y)G<(y, x)

− G<(x, y)G>(y, x) +G>(x, y)G<(y, x)

= −
(

Θ(x0 − y0)−Θ(y0 − x0) + 1
)

(G<(x, y)G>(y, x)−G>(x, y)G<(y, x))

= − 2 Θ(x0 − y0) (G<(x− y)G>(y − x)−G>(x− y)G<(y − x))

(A.9)

In the last line we have additionally used that G(x, y) = G(x− y) for the thermal prop-

agator due to translation invariance of thermodynamic equilibrium [Ber04]. Similarly,

we find for the third term in (A.5)

G++(x, y)G++(y, x) +G−−(x, y)G−−(y, x) +G+−(x, y)G−+(y, x) +G−+(x, y)G+−(y, x)

= Θ(x0 − y0)G>(x, y)G<(y, x) + Θ(y0 − x0)G<(x, y)G>(y, x)

+ Θ(x0 − y0)G<(x, y)G>(y, x) + Θ(y0 − x0)G>(x, y)G<(y, x)

+ G<(x, y)G>(y, x) +G>(x, y)G<(y, x)

=
(

Θ(x0 − y0) + Θ(y0 − x0) + 1
)

(G<(x, y)G>(y, x) +G>(x, y)G<(y, x))

= 2 (G<(x− y)G>(y − x) +G>(x− y)G<(y − x))

(A.10)

Finally, we can write the term (A.1) as

−2

∫

d4x d4y ϕa(x)ϕb(y)δϕb(y)∆δϕa(x)×

× Θ(x0 − y0) (G<(x− y)G>(y − x)−G>(x− y)G<(y − x))

+
1

2

∫

d4x d4y ϕa(x)ϕb(y)∆δϕa(x)∆δϕb(y)×

× (G<(x− y)G>(y − x) +G>(x− y)G<(y − x))

(A.11)

up to terms irrelevant for the final equation of motion.
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Appendix A. Details of Calculations

A.2. Explicit calculation of the term ∼ g2 in equation

(4.32)

Analogously to the previous section, we now turn to the explicit evaluation of the term

− ig2

2
Tr(δφSthδφSth) (A.12)

with the thermal quark propagator Sth and the meson fluctuations

δφ = δσ + iγ5~τδ~π (A.13)

On the closed real time contour, the term (A.12) becomes:

−ig
2

2

∫

d4x d4y tr
(

δφ+(x)S++(x, y)δφ+(y)S++(y, x)

+ δφ−(x)S−−(x, y)δφ−(y)S−−(y, x)

− δφ+(x)S+−(x, y)δφ−(y)S−+(y, x)

− δφ−(x)S−+(x, y)δφ+(y)S+−(y, x)
)

(A.14)

where the index ”th” has been suppressed. Now we switch again to center and relative

variables on the contour,

δφ+ = δφ+
1

2
∆δφ

δφ− = δφ− 1

2
∆δφ

(A.15)

The equation of motion is obtained by variation of the effective action with respect to the

relative flucutations, so we may omit terms independent of ∆δφ. Dropping the ”bar”

in the notation of the center variables, we find at O(∆δφ) (by swapping integration

variables where necessary such that ∆δφ(x) depends on x and exploiting the cyclicity
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A.2. Explicit calculation of the term ∼ g2 in equation (4.32)

of the trace):

−ig
2

2

∫

d4x d4y tr
{

∆δφ(x)
(

S++(x, y)δφ(y)S++(y, x)− S−−(x, y)δφ(y)S−−(y, x)

+ S+−(x, y)δφ(y)S−+(y, x)− S−+(x, y)δφ(y)S+−(y, x)
)}

(A.16)

Just as in the bosonic case in the previous section, we insert the defining property for

the real time contour propagators:

S++(x, y) = S>(x, y)Θ(x0 − y0) + S<(x, y)Θ(y0 − x0) (A.17)

S++(x, y) = S<(x, y)Θ(x0 − y0) + S>(x, y)Θ(y0 − x0) (A.18)

as well as S+− = S<, S−+ = S>, to obtain:

ig2
∫

d4x d4y Θ(x0 − y0) tr
{

∆δφ(x)
(

S<(x, y)δφ(y)S>(y, x)− S>(x, y)δφ(y)S<(y, x)
)}

(A.19)

At quadratic order in ∆δφ, we find from (A.14):

−ig
2

8

∫

d4x d4y tr
{

∆δφ(x)
(

S++(x, y)∆δφ(y)S++(y, x) + S−−(x, y)∆δφ(y)S−−(y, x)

− S+−(x, y)∆δφ(y)S−+(y, x)− S−+(x, y)∆δφ(y)S+−(y, x)
)}

(A.20)

Expressing the propagators again via S>, S< and utilizing the cyclicity of the trace in

combination with suitable swapping of integration variables, we arrive at:

−ig
2

4

∫

d4x d4y tr
{

∆δφ(x)
(

S<(x, y)∆δφ(y)S>(y, x) + S>(x, y)δφ(y)S<(y, x)
)}

(A.21)
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Appendix B.

Masses and damping coefficients in

T-ϕ plane

Here we list plots of the full temperature and mean field dependence of the various masses

(mean field and propagator) as well as of the damping coefficients. We begin with the

mean field masses and damping coefficients in the case of a pure quark heat bath and

a first order phase transition (g = 5.5). This is followed by the mean field masses and

damping coefficients for the corresonding model with a critical point (g = 3.63) and a

crossover (g = 3.3). Thereafter, we turn to the models incorporating contributions of the

hard meson modes in the heat bath in addtition to the quarks. Here, we begin with the

longitudinal and transversal propagator masses which are solutions of the gap equations

(4.114). Then we present mean field masses and damping coefficients for the case of

a first order phase transition (g = 3.7), followed by the second order phase transition

(g = 2.4) and finally the crossover (g = 2.0).
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Appendix B. Masses and damping coefficients in T-ϕ plane

Figure B.1.: Longitudinal (upper figure) and transversal (lower figure) mean field masses
mL/T for a model with pure quark heat bath and a first order phase tran-
sition (g=5.5). The green line corresponds to thermal equilibrium. In the
white area the mass is tachyonic. The scale is given in MeV.
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Figure B.2.: Longitudinal (upper figure) and transversal (lower figure) components of
the damping coefficient ηL/T for a model with pure quark heat bath and a
first order phase transition (g=5.5). The red line corresponds to thermal
equilibrium. In the white area the damping coefficients vanish. All values
are given in fm−1.
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Appendix B. Masses and damping coefficients in T-ϕ plane

Figure B.3.: Longitudinal (upper figure) and transversal (lower figure) mean field masses
mL/T for a model with pure quark heat bath and a second order phase
transition (g=3.63). The green line corresponds to thermal equilibrium. In
the white area the mass is tachyonic. The scale is given in MeV.
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Figure B.4.: Longitudinal (upper figure) and transversal (lower figure) components of
the damping coefficient ηL/T for a model with pure quark heat bath and a
second order phase transition (g=3.63). The red line corresponds to thermal
equilibrium. In the white area the damping coefficients vanish. All values
are given in fm−1.
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Appendix B. Masses and damping coefficients in T-ϕ plane

Figure B.5.: Longitudinal (upper figure) and transversal (lower figure) mean field masses
mL/T for a model with pure quark heat bath and a crossover phase transition
(g=3.3). The green line corresponds to thermal equilibrium. In the white
area the mass is tachyonic. The scale is given in MeV.
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Figure B.6.: Longitudinal (upper figure) and transversal (lower figure) components of
the damping coefficient ηL/T for a model with pure quark heat bath and
a crossover phase transition (g=3.3). The red line corresponds to thermal
equilibrium. In the white area the damping coefficients vanish. All values
are given in fm−1.
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Appendix B. Masses and damping coefficients in T-ϕ plane

Figure B.7.: Longitudinal propagator mass ML as solution to the gap equation (4.114).
In the white area no solution exists. The scale is given in MeV. The lines
correspond to thermal equilibrium in the case of a first order (g=3.7, white
line), second order (g=2.4, yellow line) and crossover (g=2.0, green line)
phase transition.
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Figure B.8.: Transversal propagator mass MT as solution to the gap equation (4.114).
In the white area no solution exists. The scale is given in MeV. The lines
correspond to thermal equilibrium in the case of a first order (g=3.7, white
line), second order (g=2.4, yellow line) and crossover (g=2.0, green line)
phase transition.
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Appendix B. Masses and damping coefficients in T-ϕ plane

Figure B.9.: Longitudinal (upper figure) and transversal (lower figure) mean field masses
mL/T for a model with a heat bath of quarks and hard meson modes and a
first order phase transition (g=3.7). The green line corresponds to thermal
equilibrium. In the white area the mass is tachyonic. The scale is given in
MeV.
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Figure B.10.: Longitudinal (upper figure) and transversal (lower figure) components of
the damping coefficient (η + ζ)L/T for a model with a heat bath of quarks
and hard meson modes and a first order phase transition (g=3.7). The red
line corresponds to thermal equilibrium. In the white area the damping
coefficients vanish. All values are given in fm−1.
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Appendix B. Masses and damping coefficients in T-ϕ plane

Figure B.11.: Longitudinal (upper figure) and transversal (lower figure) mean field
masses mL/T for a model with a heat bath of quarks and hard meson
modes and a second order phase transition (g=2.4). The green line corre-
sponds to thermal equilibrium. In the white area the mass is tachyonic.
The scale is given in MeV.
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Figure B.12.: Longitudinal (upper figure) and transversal (lower figure) components of
the damping coefficient (η + ζ)L/T for a model with a heat bath of quarks
and hard meson modes and a second order phase transition (g=2.4). The
red line corresponds to thermal equilibrium. In the white area the damping
coefficients vanish. All values are given in fm−1.
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Appendix B. Masses and damping coefficients in T-ϕ plane

Figure B.13.: Longitudinal (upper figure) and transversal (lower figure) mean field
masses mL/T for a model with a heat bath of quarks and hard meson
modes and a crossover phase transition (g=2.0). The green line corre-
sponds to thermal equilibrium. In the white area the mass is tachyonic.
The scale is given in MeV.
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Figure B.14.: Longitudinal (upper figure) and transversal (lower figure) components of
the damping coefficient (η + ζ)L/T for a model with a heat bath of quarks
and hard meson modes and a crossover phase transition (g=2.0). The red
line corresponds to thermal equilibrium. In the white area the damping
coefficients vanish. All values are given in fm−1.
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zulässigen Hilfe Dritter bedient. Insbesondere habe ich wörtlich oder sinngemäß aus
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