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Unwversality classes far from equilibrium:

From heavy-ion collisions to superfluid Bose systems

Abstract

Quantum many-body systems far from equilibrium can approach a nonthermal fixed point
during their real-time evolution. One example is scalar field theory, which occurs in models
of cosmological inflation, and similar examples are found for non-Abelian plasmas relevant
for heavy-ion collisions and for ultracold Bose gases. Investigating nonthermal fixed points
of different microscopic theories, we present two novel universality classes that provide links

between these systems.

One of them involves nonrelativistic, N-component relativistic and expanding scalar systems.
It occurs in the deep infrared regime of very high occupancies and is governed by a self-similar
evolution. Its nonequilibrium dynamics leads to the formation of a Bose-Einstein condensate.
The scaling properties of this region can be described by a vertex-resummed kinetic theory

that is based on a systematic large-N expansion at next-to-leading order.

The other novel universality class encompasses scalar field theories and non-Abelian plasmas in
a longitudinally expanding background and corresponds to an early dynamical stage of heavy-
ion collisions in the high-energy limit. We show that these systems share the same self-similar
scaling properties for a wide range of momenta in a limit where particles are weakly coupled

but their occupancy is high.

Both universality classes are found in separate momentum regions in a longitudinally ex-
panding N-component scalar field theory. We argue that the important role of the infrared
dynamics ensures that key features of our results for scalar and gauge theories cannot be
reproduced consistently in conventional kinetic theory frameworks. Moreover, the observed
universality connects different physics disciplines from heavy-ion collisions to ultracold atoms,

making a remarkable link between the world’s hottest and coldest matter.
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Unwversalitatsklassen fern des Gleichgewichts:

Von Schwerionenkollisionen bis zu superfluiden bosonischen Systemen
Zusammenfassung

Quantenvielteilchensysteme fern des Gleichgewichts konnen sich wéhrend ihrer Realzeit-
entwicklung einem nichtthermischen Fixpunkt ndhern. Ein Beispiel dafiir ist die skalare
Feldtheorie, die in Modellen zur kosmologischen Inflation auftritt, und dhnliche Beispiele wer-
den fiir Schwerionenkollisionen-relevante nicht-Abelsche Plasmen und ultrakalte Bosegase ge-
funden. Wir untersuchen nichtthermische Fixpunkte verschiedener mikroskopischer Theorien
und stellen zwei neue Universalitatsklassen vor, die Verbindungen zwischen den verschiedenen

Systemen herstellen.

Eine von ihnen beinhaltet nichtrelativistische, N-komponentige relativistische und sogar ex-
pandierende skalare Systeme. Sie befindet sich im tiefen Infrarotbereich mit sehr hohen Be-
setzungszahlen und folgt einer selbstédhnlichen Zeitentwicklung. Ihre Nichtgleichgewichtsdy-
namik fithrt zur Entstehung eines Bose-Einstein-Kondensats. Die Skalierungseigenschaften
dieses Bereichs lassen sich mit einer Vertex-resummierten kinetischen Theorie beschreiben, die

auf einer systematischen groB-/N Entwicklung zu néchstfiihrender Ordnung basiert.

Die andere neue Universalitdtsklasse umfasst skalare Systeme und nicht-Abelsche Plasmen
in einem longitudinal expandierenden Hintergrund und entspricht einem frithen Stadium der
Dynamik von Schwerionenkollisionen im Hochenergielimes. Wir zeigen, dass diese Systeme in
einem weiten Impulsbereich dieselben selbstiahnlichen Skalierungseigenschaften haben, wenn

sie schwach gekoppelt aber hoch besetzt sind.

Beide Universalitatsklassen werden in separaten Impulsbereichen einer N-komponentigen
longitudinal expandierenden skalaren Feldtheorie gefunden.  Wir argumentieren, dass
durch die wichtige Rolle des Infrarotbereichs wesentliche Merkmale unserer Resultate fiir
skalare und Eichtheorien nicht konsistent innerhalb einer herkémmlichen kinetischen Theo-
rie wiedergegeben werden kénnen. Auflerdem verbindet die beobachtete Universalitéit ver-
schiedene Disziplinen der Physik miteinander, von Schwerionenkollisionen bis zu ultrakalten
Quantengasen, und erstellt damit eine bemerkenswerte Verbindung zwischen der heiflesten

und der kaltesten Materie der Welt.
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Chapter 1

Introduction

“Dream no small dreams for they have no power to stir the hearts of men.”
Johann Wolfgang von Goethe

Generations of physicists have sought and studied similarities among different physics dis-
ciplines and phenomena. Such universality provides new links between seemingly disparate
physical systems and may allow for unified descriptions of the observations. In particular,
the systems can be grouped into universality classes according to their shared behavior. This
opens intriguing theoretical and experimental possibilities to access their properties by study-
ing the simplest or the experimentally best accessible representative of a universality class [1}2].
Prominent examples for universality are critical phenomena in or close to thermal equilibrium.
These occur for instance close to the critical point in phase diagrams and have been extensively

studied in the literature over the past decades [3H6].

In contrast, we consider here isolated quantum systems in far-from-equilibrium conditions
that can exhibit unusually large occupancies per mode. Important examples include the initial
stages in collisions of ultra-relativistic nuclei at large laboratory facilities, the reheating process
in the early universe after inflation as well as table-top experiments with ultracold quantum
gases. Even though the typical energy scales of these systems vastly differ, they can show very
similar dynamical properties at weak couplings. In recent years there have been important
advances in understanding them at weak couplings, which led to the concept of nonthermal
fixed points [7HI0].

A generic thermalization process of such systems is illustrated in Fig. Starting far from
equilibrium with a high over-population of soft modes, the system can approach a nonthermal
fixed point during its space-time evolution. The dynamics is then governed by a self-similar

evolution of the underlying correlation or distribution functions and is specified by scaling
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Nonthermal

fixed point

Far from

equilibriu ,

Initial
conditions

Thermal
Close to equilibrium
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FIGURE 1.1: Visualization of different ways to approach thermal equilibrium. Starting
with initial conditions close to equilibrium, the system relaxes to the thermal state. In
contrast, far-from-equilibrium initial conditions may lead to a nonthermal fixed point
where the dynamics slows down considerably and the memory of details of the initial
state gets lost. Eventually, the system thermalizes, leaving the fixed point solution.

exponents and scaling functions. The same scaling properties occur for a wide range of initial
conditions, which implies an emergent effective memory loss close to the nonthermal fixed
point. If the same scaling properties can be observed for different field theories, with differ-
ent microscopic interactions, then the scaling regions can even be grouped into universality

classes[l

In the considered highly occupied systems at weak couplings, the nonequilibrium quantum
dynamics can be accurately mapped onto a classical-statistical problem [IIHI3]. The latter
can be solved using real-time lattice simulation techniques, where the system is initialized
with the full quantum initial conditions and the dynamics are approximated by a classical
evolution for the fields. Numerical simulations in this context reveal that different physics
disciplines spanning heavy-ion collisions [14-19], inflationary cosmology [8 20} 21] and ultra-
cold atoms [10}, 22H24] exhibit nonthermal fixed points. These different physical systems are
illustrated in Fig. and are discussed in the following.

!To better compare different physical systems, three spatial dimensions are considered and natural units will
be employed in the entire thesis, where the reduced Planck constant (%), the speed of light (¢) and Boltzmann’s
constant (kB) are set to one.
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Heavy-ion collisions Inflationary cosmology Ultracold atoms

Longitudinally expanding
non-Abelian plasmas

Relativistic scalar systems Nonrelativistic scalar systems

FIGURE 1.2: Ilustration of different physics disciplines where highly populated sys-
tems far from thermal equilibrium may be encountered. The upper descriptions denote
to which disciplines the figures are related, while the lower labels name the underlying
quantum systems. The images are from (left to right): ALICE collaboration, CERN;
NASA/WMAP Science Team; Vienna University of Technology.

Heavy-ion collisions

A major motivation for the studies of universal behavior far from equilibrium are experiments
with colliding heavy nuclei in the ultrarelativistic high energy limit. Such experiments are
currently carried out at the “Large Hadron Collider” (LHC) at CERN and at the “Relativistic
Heavy Ion Collider” (RHIC) at Brookhaven National Lab. One important goal of such ul-
trarelativistic heavy-ion collision experiments is to study properties of the strong interaction
under similar extreme conditions as are expected in early stages of the Big Bang. The strong
interaction is described by the theory of Quantum Chromodynamics (QCD) and is one of
the four fundamental forces of the standard model of particle physics. The theory involves
matter fields, the quarks, and exchange bosons of the interaction, the gluons, all of which
have a color charge. Quarks and gluons are coupled by the gauge coupling ay. Different
from photons, which are the exchange bosons of the electromagnetic interaction, gluons are
also self-interacting due to their color charge. An important property of QCD is asymptotic
freedom. It constitutes that the gauge coupling as decreases with increasing energies, which

leads to a weakly interacting theory at high energies [25] 26].

At high enough temperatures, quarks and gluons are therefore expected to form the quark
gluon plasma (QGP), a plasma of deconfined quarks and gluons. In contrast, the coupling
constant becomes large at low energies and quarks and gluons are confined to hadrons, such
as protons, neutrons or pions, for a sufficiently small quark chemical potential. While for the
weakly coupled asymptotically free theory perturbative techniques can be used for theoretical

calculations [27, 28], the strongly coupled system at low energies requires non-perturbative
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methods. In particular, the physically important transition between the confined and decon-
fined phases of QCD is a difficult theoretical problem. However, at vanishing quark chemical
potential, it is amenable to Lattice Quantum Chromodynamics, where QCD is simulated in
large scale numerical studies on a lattice [29]. Using these techniques, it has been established
that QCD possesses a cross-over transition between the QGP and the hadronic phase around
the temperature scale of 150 — 170 MeV [30].

For collider experiments of LHC and RHIC, even higher temperatures have been estimated with
200 — 300 MeV, which correspond to extreme conditions of about 10'? K. Therefore, a QGP is
expected to be formed shortly after the collision, which subsequently undergoes the (cross-over)
transition to the hadronic phase before it can be detected. Experimental observations have
indeed provided strong evidence for the existence of the quark gluon plasma phase (see e.g. [31-
33]). Hydrodynamic flow studies were able to describe such experimental measurements. They
indicated that the emergent matter created in the collisions quickly thermalizes on time scales
of only few fm/c and subsequently acts like a nearly ideal fluid [34H38]. To understand these
properties from first principles, it is important to study the nonequilibrium evolution prior to

the formation of the equilibrated QGP. This has been a long-standing theoretical challenge [39].

In theoretical descriptions of the initial stages, one usually changes coordinates to take account
for the high velocities of the colliding nuclei, which results in an effectively longitudinally
expanding metric. Since the gauge coupling a; =~ 0.3 at typical LHC energies is neither
very small nor very large, the nonequilibrium evolution is investigated in two limiting cases.
Strong coupling thermalization of a supersymmetric Yang-Mills theory is studied based on a

gauge/gravity duality conjecture [40H44] and indicates quick thermalization.

In the weak coupling limit, large gluon fields with typical momentum () are expected to be
formed in the early stages of a collision and become the dominating constituents of the far-
from-equilibrium matter [45H59]. These initial ‘Glasma’ fields are unstable and lead to a rapid
growth of fluctuations via plasma instabilities [60H66]. As a consequence, a highly occupied
non-Abelian plasma emerges. Because of its large occupation numbers f ~ 1/as(Q) > 1 of
its single-particle distribution function, the plasma can be strongly correlated even for small

gauge coupling a,(Q) < 1.

With these far-from-equilibrium initial conditions, we demonstrated the existence of a non-
thermal fixed point in longitudinally expanding non-Abelian plasmas using classical-statistical
lattice simulations [I4]. Its scaling properties allowed us to distinguish between kinetic ther-
malization scenarios in the literature [39, 67-72]. Our results favored the ‘bottom-up’ ther-
malization scenario of Ref. [67], where elastic and inelastic scattering processes are responsible

for the dynamics.

This nonthermal fixed point emerging in heavy-ion collisions in the high-energy limit is a

promising starting point to find universality classes between heavy-ion collisions and other
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systems. In particular, universality provides new insights on the dynamics in heavy-ion colli-

sions and opens new theoretical and experimental possibilities, as mentioned above.

Inflationary cosmology & ultracold atoms

Similar over-occupied systems can also be found in inflationary cosmology and in ultracold

atomic gases.

Inflation was suggested to model an early stage of our Universe after the Big Bang [73, [74]. Tt
solves the horizon and the flatness problems which were deduced from the cosmic microwave
background (CMB) and in other cosmological observations [75H77]. These problems constitute
that the early universe must be approximately homogeneous, isotropic and flat, which is
achieved by an exponential expansion of the universe during the inflation epoch. This stage is
usually modeled by a classical homogeneous scalar field ¢(t) that is called the inflaton. Since
the universe becomes very dilute due to its expansion, most of its energy density is contained
in the inflaton field at the end of the inflation stage. In the subsequent reheating process of
the universe, the classical inflaton decays into elementary particles, which eventually come to

a state of thermal equilibrium due to their interactions [74].

In a significant range of parameters of many models for reheating, one encounters an early stage
called preheating. There the inflaton decays into its scalar fluctuations and into other bosonic
and fermionic particles [20, [78-86]. While different mechanisms describing this stage are
considered in the literature [78-81], they often involve instabilities that lead to an exponential
growth of long wavelength fluctuations. This also implies a rapid energy transport from the
classical inflaton field to particle excitations. The situation is very similar to the decay of
the initial ‘Glasma’ fields in heavy-ion collisions discussed above. Similar to that case, the
instabilities lead to the emergence of a highly populated system with typical occupancies
f~1/A>1

This over-occupied scalar system approaches a nonthermal fixed point [8, 21]. Its distribu-
tion exhibits a rich structure of different scaling regions [7, 87, 88]. As will be discussed in
detail later in this work, it involves a dual cascade: there, energy is transferred to higher
momenta driving the thermalization process while particles are pumped to lower momenta,
occupying the zero momentum mode and thus leading to Bose-Einstein condensation far from

equilibrium [89].

A similar situation may be prepared in table-top experiments using atomic gases at extremely
low energies. These ultracold quantum gases can be largely isolated in experimental setups,
such that they follow a unitary time evolution. They are known to exhibit universal properties

near unitarity in the presence of a large s-wave scattering length a [90]. As for heavy-ion
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collisions and cosmology, we are interested in a different form of universality that occurs far

from equilibrium and is associated with nonthermal fixed points [10], 2224 [89] [9TH93].

More specifically, we consider a nonrelativistic atomic gas of interacting bosons with density
n and scattering length a. With these quantities, we can define the dimensionless ‘diluteness
parameter’ ( = Vna3 and a characteristic ‘coherence length’ whose inverse is given by the
momentum scale Q = v/16man. In the dilute regime ¢ < 1, the system can exhibit an unusually
large mode occupancy f(Q) ~ 1/¢ > 1. The average particle density n = [ d®p/(27)f(p) ~
Q3 /¢ becomes parametrically large, reflecting the underlying nonequilibrium distribution f(p)

of modes.

This is the analogous situation of an over-occupied system in heavy-ion collisions and infla-
tionary cosmology with f(Q) > 1, which we discussed above. In the subsequent far-from-
equilibrium evolution, the system approaches a nonthermal fixed point that can be described
in terms of scaling exponents and scaling functions [7, 9] 10, 22} [89,02]. Similarly to relativistic
scalars, Bose condensation occurs out of equilibrium also for these nonrelativistic systems, as
a consequence of a particle transport to lower momenta [89) [92) [94H96]. It is interesting to
study whether these similarities between the relativistic and nonrelativistic scalar systems can
be made quantitative. Clearly, there are important differences and one has to specify which

properties can be universal.

Content of this work

As we discussed above, a strong over-occupation of modes f > 1 can be found in a variety of
nonequilibrium systems in extreme conditions, some of which we illustrated in Fig. Here
the question arises whether relativistic scalar systems, used for instance to model the infla-
ton, exhibit similar scaling behavior as non-Abelian plasmas employed for heavy-ion collision
studies or as nonrelativistic scalar fields used to model the dynamics of ultracold quantum

gases.

One of our main objectives is to establish links between these different physics disciplines
in terms of far-from-equilibrium universality classes. We study nonthermal fixed points of
these systems in different geometries and compare their scaling properties. Our results open
interesting theoretical and experimental perspectives, especially for heavy-ion collisions and

ultracold atoms, which will be discussed in the end of this work.

We now present the outline of the thesis. Chapters of the main body start with a short

presentation of the objectives and an outline of their sections and conclude with a summary.

The theoretical background for our studies is presented in Chapter There we give an

introduction to the considered scalar and gauge field theories in static and longitudinally
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expanding backgrounds, to some principles of nonequilibrium quantum field theory and to our

computational methods used in this work.

Nonthermal fixed points are introduced in Chapter They are discussed at the example
of scalar and gauge theories in Minkowski space-time using classical-statistical methods nu-
merically and kinetic techniques analytically. This chapter provides a systematic overview of
nonthermal fixed points in non-expanding scalar and gauge theories and includes recent liter-
ature results. It also provides an important starting point to extensions that will be discussed

in the remaining chapters.

In Chapter [f] we study the dynamics of Bose-Einstein condensation in relativistic and non-
relativistic scalar systems. We will find a broad universality class involving these systems
whose scaling properties will be described by a vertex-resummed kinetic theory. This new

universality class directly connects inflationary cosmology with ultracold Bose gases.

We extend our discussion of nonthermal fixed points to longitudinally expanding media in
Chapter [5] where the expansion is reminiscent of the geometry apparent in heavy-ion collisions.
We will find a new universality class that includes non-Abelian plasmas and scalar systems
over a broad momentum region, providing a link between heavy-ion collisions and the inflaton
in a special geometry. We also further analyze the nonthermal fixed point of longitudinally
expanding non-Abelian plasmas and discuss, including recent literature, the emergent picture

of the thermalization process in heavy-ion collisions at weak couplings.

In Chapter [6] we study the nonthermal fixed point of longitudinally expanding scalar systems
in more detail. We further analyze the scaling properties in the universal scaling regime of
non-Abelian plasmas and we delineate two further scaling regions. One of them is located at
low momenta and leads to the formation of a Bose-Einstein condensate. Its scaling properties
are very similar to those in non-expanding systems of Chapter [4] and can be understood in

terms of the same vertex-resummed kinetic theory.

Moreover, we will argue in Chapter [6] that the important role of the infrared dynamics ensures
that key features of our results for scalar and gauge theories cannot be reproduced consistently
in conventional kinetic theory frameworks, which has consequences for our understanding
of initial stages in heavy-ion collisions. These studies also extend the universality obtained
between inflationary cosmology and ultracold Bose gases to expanding systems, and link these

disciplines to heavy-ion collisions.

The thesis concludes with Chapter [7] where we discuss our results and give an outlook to

possible future studies.

In the Appendices we provide details on some of our studies as well as further supplementary

material.






Chapter 2

Theoretical background

While in the main part of this work, we discuss the nonequilibrium space-time evolution of
different many-body systems, this chapter provides the theoretical background for our studies.
Here we introduce the quantum field theories that are considered in this work (Sec. [2.1),
we discuss important ingredients of a nonequilibrium evolution and how these are connected
to the underlying quantum field theory (Sec. and we describe the numerical method of
classical-statistical simulations that is employed in this work (Sec. . Some technical parts
are moved to Apps. [A] and [B] to simplify the presentation.

2.1 Considered field theories

In this section, we introduce relativistic and nonrelativistic scalar field theories as well as non-
Abelian gauge theories. Their connections to physics disciplines have been pointed out in the

introduction (Chapter [1)).

We consider relativistic O(N)-symmetric scalar and non-Abelian gauge theories in (non-
expanding) Minkowski as well as in a longitudinally expanding space-time. The latter is
well suited to discuss heavy-ion collisions. Taking account of the high velocities of the collid-
ing nuclei, physics is described in terms of proper time 7 and rapidity 7. In these coordinates,
the metric tensor becomes longitudinally expanding. To consider both metric tensors, we use
a general time-dependent metric tensor g, for our equations. On the other hand, we consider

nonrelativistic scalar theory only with the Minkowski metric.

We start with discussing the metric tensor in Sec. and we define the field theories by
specifying their classical actions S afterwards. Further details on these theories can be found

in the literature, as for instance in [27 [97].
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2.1.1 Coordinates and longitudinal expansion

The metric tensor in (non-expanding) Minkowski space-time is given by

g = diag(1,-1,-1,-1). (2.1)

In the context of heavy-ion collisions, one performs coordinate transformation from time ¢ and

spatial coordinate z to Bjorken space-time coordinates
z
T=\t2— 22, n = atanh <¥> , (2.2)

with the (longitudinal) proper time 7, longitudinal (spatial) rapidity n and transverse coor-
dinates x7 = (x!,2%). Since a coordinate transformation implies the transformation of all
Lorentz vectors and tensors [98], also the space-time metric needs to be transformed. In
Bjorken coordinates, the metric takes the form

9 (1) = diag(1, -1,-1,-77), (2.3)
which characterizes one dimensional expansion in the longitudinal direction. To account for
both coordinate systems, we use a general diagonal time-dependent metric gw,(xo) with ggg = 1
in the following and we imply 2° — ¢, 23 — z for the Minkowski and 20 — 7, 23 — 1 for the

Bjorken case. The inverse of the metric tensor g"* is defined such that it satisfies
gu’yg’w = 55 ) (2'4)

where 4}, is the usual Kronecker delta function with 8, = 1 for 4 = v and 0 otherwise. The

inverse of the Bjorken metric then reads
nz BT 1
gBjork(T) - dlag 17 _1> _13 _ﬁ . (25)

The metric determinant is denoted by g(z°) = det(g,, (z°)). It corresponds to 1/—g(z0) = 1
for the non-expanding and y/—g(z°) = 7 for the expanding cases.

The longitudinally expanding system describes the same physics as the original one in Minkowski
space-time. The coordinate transformation to Bjorken coordinates merely changes the frame
for our studies. Bjorken coordinates are beneficial if we want to describe ultra-relativistic
heavy-ion collisions because in the limit of high velocities of the colliding nuclei, approximate
longitudinal boost invariance implies 1 independence. The initial state can then be formulated
at fixed proper time 7 = 79. Moreover, in the limit of large nuclei, the system can be approx-

imated as being homogeneous in transverse directionsE Therefore, a system homogeneous in

!Physical initial conditions in heavy-ion collisions incorporate a nontrivial spatial structure of the colliding
nuclei in the transverse plane as well as an impact parameter that characterizes the non-centrality of the collision.
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x7 and 7 can be considered to describe central collisions of large nuclei at mid-rapidity in the
limit of high velocities. A non-expanding homogeneous system implies independence of the
spatial coordinate x. Such a description can be used for the (early) universe on sufficiently
large length scales and for experiments with ultracold atoms where uniform potentials can be
used to form a homogeneous state [99]. In this work we only discuss homogeneous systems,

where Bjorken or Minkowski coordinates allow a suitable description of the dynamics.

2.1.2 Relativistic scalar field theory

We consider a massless N-component scalar field theory with real-valued scalar fields o, (x, 2°)

and a quartic interaction with coupling A. It is defined by the classical action

Sscalar[®] = d'z Vv —g(2?) (;gﬂy(xo) (0ppa)(Ovpa) — 227\7(('0@('0‘1)2) ) (2.6)

where summation over the a = 1,2, ... , N scalar field components is implied. The classical

equation of motion &Sscatar/d¢a (X, 2°) = 0 then reads

3
<1 90/ —g(x0) 8 = > (—g"(2")) 8} + A‘Pb@b) ¢a =0, (2.7)
N o
with an explicit summation over index ¢. For the static case, the two terms involving the metric
reduce to the usual kinetic expression 9,0 p,(x,t) = (92 — 8?) pa(x,t). For the longitudinally
expanding system one finds instead (02+71 8, — 9> —772 8% ) pa(x1,7m, 7). The first difference
to the evolution in Minkowski space-time is the term 771 0, ¢, that is a dissipative term and

that dilutes the system with the expansion rate ~ 771,

The second difference is the term
—772 8% pq that leads to a red shift of longitudinal momenta. Alternatively, one can formulate

the classical Hamilton equations of motion

3
) A
Boma = /—g(0) (Z(—g“(fco)) ;7 — 6N<pb<pb> ©a
=1
T,
Do = ——22—, (2.8)
—g(2")

with the canonical momentum field 74(x, %) = 6 Sscatar/0 (Goa(x, 2°)).

The traceless (Hilbert) stress-energy tensor (also known as the energy-momentum tensor) is

defined via a functional derivative with respect to the metric tensor

2 5Sscalar
TMV(Xa xO) = ﬁ 59/“/ = (a/ﬁpa)(augpa) - guu(xo) Lgcalar » (2-9)

Such modifications lead to elliptic flow and other collective phenomena. While ab initio gauge simulations exist
incorporating these effects [37, 38], we simplify the initial conditions and assume homogeneity in the transverse
plane. This assumption corresponds to central collisions in the limit of large nuclei.
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where the scalar Lagrangian density Lgcaar is the kernel of the classical action Sgcalar =
f d'z (_g($0))1/2 £sca1ar(xa $0)-

2.1.3 Nonrelativistic scalar field theory

The (classical) action defining the single-component nonrelativistic scalar field theory takes
the form [100]

Snonrel [1/}7 w*] = /d4$ |:; ('L/}*(X7 t)atw(xa t) - Tﬁ(X, t)atw* (Xv t))

1
2m

(VY (x, 1)) (VY (x,1)) — % (B, 1) 07 (x,1)*| (2.10)

for a nonrelativistic complex Bose field . The coupling g is not dimensionless and is de-
termined from the mass m and scattering length a as g = 4wa/m. We have employed the
Minkowski metric for the action (2.10]) since we only consider nonrelativistic systems in a

static background. The classical evolution is given by the Gross-Pitaevskii equation

. V2
0u0(0,1) = (=50 + 0D ) wlx.0). (.11)
The total number of particles in a nonrelativistic theory, given by Nyt = [ d3xp(x,t)]?, is

strictly conserved, as well as the total energy density.

2.1.4 Non-Abelian gauge theory

Let us now proceed with non-Abelian SU(N,)-symmetric gauge field theories. These consist
of fermionic matter fields that are coupled to gauge bosons. For instance, in Quantum Chro-
modynamics (QCD) each matter field carries one of the N, = 3 color charges. Similarly, a
gauge (gluonic) field carries an adjoint color charge a = 1,..., N2 — 1, which constitutes that
the pure gauge part of the theory is self-interacting. Since these gluons are bosonic, they can
become highly occupied, as we noted in the introduction. In particular, their single particle
distribution f; oc d*N/d3p d®z can be very large fg > 1 in far-from-equilibrium situations.
In contrast, quarks are fermions and due to the Pauli exclusion principle, they can only have
small occupancies fy, < 1. Therefore, at early times of heavy-ion collisions where one finds
large gluonic fields, quarks are often neglected in theoretical descriptions [67] since their effects
on the dynamics of gluons are small [I0I]. Therefore, we only consider the pure gauge sector

of a non-Abelian gauge theory, which is also known as the Yang-Mills sector.

We discuss here non-Abelian gauge theories for a general N.. While QCD implies N, = 3
as we noted above, we employ the SU(2) gauge group in our numerical simulations, which is

numerically less expensive. This approximation is motivated by studies of far-from-equilibrium
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phenomena using classical-statistical lattice simulations [102] and simulations in the hard
thermal loop (HTL) framework [I03]. No qualitative differences of the results between different
gauge groups have been found in these studies. This is confirmed within kinetic descriptions
of non-Abelian plasmas, where in the limit of high occupation numbers and weak couplings,

the number N, can be entirely scaled out of the kinetic equation [104].

After these remarks, we present important properties of gauge theories. Gauge bosons can be
described in terms of bosonic gauge fields A, (x) with z = (x,2") that transform as covariant
four-vectors under Lorentz transformations. Under the coordinate transformation Bjorken

coordinates in Eq. (2.2)), gauge are transformed as

A;(z) = cosh(n) Ay (x) + sinh(n)A,(z),
Ay (x) = 7sinh(n)A¢(x) + Tcosh(n) A () . (2.12)

To account for both coordinate systems, we will use gauge fields A, with Ag — A;, A3 — A,
for the static and Ag — A;, A3 — A, for the Bjorken expanding case. Non-Abelian gauge

fields are defined as elements of the su(N,) algebra. They can be decomposed as
Ay(x) = A/‘j(m) t*, (2.13)

where AZ(IL’) are real-valued fields in adjoint representation with color componentsa = 1,..., N2—

1. The traceless Hermitian t* € su(N,) are the generators of the SU(N,) group and satisfy

the Lie bracket relation and normalization condition
a 4b - rabe 4c a 4b 1 ab
[t,t}:zf £, tr(tt>:§5 . (2.14)

In fundamental representation, the generators t* are N, x N, matrices and the first equation
of becomes a commutation relation. The structure constants fo¢ are real and totally
anti-symmetric color tensors. For N, = 3 the Gell-Mann matrices )\, are a common choice
for the generators t* = A*/2. Similarly, for N, = 2 components one usually employs the
Pauli-matrices o, for the generators t* = ¢/2 together with fo¢ = €% that is the totally

anti-symmetric Levi-Civita symbol with the convention €!?3 = 1.

In gauge theories, fields can be characterized by their transformation properties under a (local)
gauge transformation G(x) € SU(N,). Matter fields in the fundamental representation of the
SU(N,) group ¥(x) = (1;)(x) have components i = 1,..., N, and transform as

() = G(x)p(x), (2.15)
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where the gauge transformation becomes a N, x N, matrix G(z) = (G;j)(x). In contrast,

gauge fields transform differently

i

Ay (z) = G(x)A,(2)GT(2) p (8,G(2))G (), (2.16)

where ¢ is the gauge coupling. We will also use the coupling as = ¢*/(47) of the strong

interaction in the following.

A crucial concept in gauge theories is gauge-invariance. All physical observables O(z) are
required to transform such that they are gauge-invariant under the trace over gauge compo-
nents tr (O(x)). Regarding the transformation properties of gauge fields in Eq. , one
thus finds that gauge fields A,(x) are not directly observable. Instead, one considers the

(anti-symmetric) field strength tensor

Fu = 0,A, —0,A, —iglA,, A)]
Ff, = 0,A% — 0,A% + g fabe Ab AL (2.17)

where we used Eq. (2.14) for the second line. One can easily check that the field strength

tensor transforms as
Fou (@) > G(2) Fu (2) G (@), (2.18)

and is thus a physical observable. In analogy to Quantum Electrodynamics (QED), where the
last term in Eq. (2.17)) is missing due to the Abelian nature of the electromagnetic gauge fields,
the components of the field strength tensor are called chromo-electric and chromo-magnetic
fields

. A . 1
Fi(z) = —/—g(20) FY (z), Bl(z) = —v/—g(20) §€j Fi(z), (2.19)
with FiY = gtog"SF g With this tensor, we can write a gauge-invariant classical action for
the pure gauge (Yang-Mills) sector of gauge theories

1 1

Svald] = — / A /=gt (P Fu) = — / dix =g FFe, (2.20)

Because of the non-linear gauge term in the field strength tensor (2.17)), the Yang-Mills action
defines a self-interacting theory for the N2 — 1 gauge fields.

The (classical) equations of motion follow from §Sym[A]/d A} (z) = 0 and read

DI () \/—g(a0) Ff (z) = 0. (2.21)
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Here we have introduced the covariant derivative
D, (z) =0, —igAu(x). (2.22)

In the adjoint representation, the generators are (ta)gfij = —if%¢ and the covariant derivative
of Eq. 1' can be thus written as Dzb(x) = §% 9, — g fb° Af(z). The covariant derivative
extends the usual spatial derivative to additionally preserve gauge transformation properties.
To illustrate this, let us again consider a matter field ¢ (z) that transforms in fundamental
representation according to Eq. (2.15). Then its covariant derivative transforms in the same

representation according to

Dy(x)p(z) = G(x)Dy(x)(x), (2.23)
as can be checked directly.

For the numerical simulations of classical gauge fields in real-time, it turns out to be of ad-
vantage to partially fix the gauge. We will employ the temporal gauge condition (called
Fock-Schwinger or axial gauge in the expanding case) Ag = 0, which leads to the effective

action

Swaald = [ dte V=g (—y AEO@AD @AY - [ FEEL) (220

with summation over spatial indexes j,k = 1,2,3. With the conjugate momentum fields
identified as the chromo-electric fields Eg(x, 20) = Sy M eff /O ((%A?(x, 20)) of Eq. 1D the

Hamiltonian reads

1 . ) 1 .
Hyne|A, E] = / Br | — ——— ¢* () B EF + - FIFFS | . (2.25)
’ 21/—g(x9) 4 !

This leads to the classical Hamilton equations of motion

: 0 Hyie
OBl (x) = — M‘;Mff V/—g(2%) Dgt ()

a O Hy i eff
() = —"—

Ek
T L)
SEL ()

—g(29)

These are equivalent to the classical equations §Synm/0A = 0 in (2.21)) for Ag = 0. Since the

= —g;1(z°) (2.26)

original equations of motion also involved the Gauss law dSynm/dAS = 0, we have to take this

equation
D% (z) B} (z) =0 (2.27)

as an additional constraint at each space-time point. The Gauss law constraint has to be

satisfied at initial time. Since it is preserved by the equations of motion (2.26)), the constraint
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FIGURE 2.1: Illustration of the closed time path inherent to quantum theory.

is also fixed at subsequent times.

In analogy to scalars in Eq. (2.9)), the traceless energy-momentum tensor for Yang-Mills theory

can be computed to

1
Ty (x,2°) = —g*P F2 Fly + 2 9w FigFgP. (2.28)

2.2 Nonequilibrium quantum field theory

Introductions to nonequilibrium quantum field theory can be found for instance in Refs. [97,
105, [106]. Based on these references, we give a brief introduction where we discuss important
concepts of the underlying framework in this section. To simplify the discussion, we use a
scalar field theory. For non-Abelian gauge theories, most of the concepts can be similarly

applied and we refer to Ref. [106] for further details.

2.2.1 Quantum field theory on a closed time path

In the Schrédinger picture of quantum theory, a system with the Hamilton operator H(t)
can be fully described by the time evolution of its density operator pp(t) that follows the

Liouville-von-Neumann equation
O pp(t) = —i[H(t), pp(t)] - (2:29)
Its solution can be written as

pp(t) = U(t, to)polU (to, 1), (2.30)
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with the unitary time-evolution operator U(¢,t') = T exp (—i ftt; dt" H(t" )) The initial den-
sity matrix pg = pp(to) is normalized to Tr(pg) = 1, which also holds at later times due to
the unitary evolution. In this picture, the evolution of the expectation value of an observable

O can be computed as

=Tr (,00 U(to,t)OU(t,t())) . (2.31)

Equivalently, the system can be studied in the Heisenberg picture with time dependent Heisen-
berg operators O(t) = U(ty,t) OU(t,tp) and the initial density matrix. The second line of
Eq. shows that the real-time evolution of the expectation value can be described by a
closed time path that starts and ends at ¢y, which is also illustrated in Fig. This time path
is called the Schwinger-Keldysh time contour C [107, 108]. It proceeds from tg until ¢ in real
time forming the positive direction branch C*. Subsequently, it goes into the reverse direction

back to tg, which indicates the negative direction branch C~, closing the time contour.

These concepts can be extended to quantum field theory, where one can define the generating

functional
Z[J7 R, po} _ TI‘ (po TC ei (f:c,C Ja(l')q)a(x)""% fzy,c Rab(x7y)q)a(l')¢'b(y)>> , (232)

with Z[J, R = 0;pp] = 1 due to the normalization of pp. We included here external sources
J, R multiplied by scalar field operators ®,(x) and integrated over d spatial dimensions and
over the closed time path [, , = [, dz” v/—g(x9) [ d%x. The time ordering operator Tc orders
all operators to its right along the time contour, with usual time ordering along the positive
branch C*, reversed ordering along C~, and with any time on C~ considered later than any time
on CT. The time ordering becomes essential when we consider n-point correlation functions.

For instance, with (-) = Tr (po -), the connected 1- and 2-point functions are defined as

1 07
Pa(@) = (La()) = in/—g(x0) 0Ja(®) ] peg’
Gab(7,y) + ¢a(7) Pp(y) = (Tc Pa(z) Pp(y))
1 82z

(2.33)

in/—g(20) i\/—g(y°) 6Ja(x)dJa(y)

The function ¢,(z) is the macroscopic field (also called coherent field or, sometimes, con-

J,R=0

densate) while Gyp(x,y) is the propagator. The latter can be further decomposed into the

2The time ordering operator T is defined such that for two operators A(t1) and B(t2) formulated at times
t1 > to, the time-ordering of their product is T"A(t1) B(t2) = T B(t2) A(t1) = A(t1) B(t2).
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real-valued statistical and spectral correlation functions

Fup(z,y) = % ({@a(), @6(¥)}) — Ga(®) oo(y) »  par(z,y) =i ([@a(2), Po(y)]) ,  (2.34)

according to

i
Gab(,y) = Fap(w,y) = 5 pan(,y) sgne (2% —4°) . (2.35)

Since Fup(z,y) and pep(x,y) are not time-ordered correlation functions, their time arguments
do not need to be distinguished between the C* and C~ time branches. Moreover, the statis-
tical function is symmetric Fyp(z,y) = Fpe(y, ) and the spectral function is anti-symmetric

pab(T,y) = —ppa(y, 7). In Eq. (2.35) we used the signum function sgn,(z° — 3°) that equals

= 1 when 2V is later on the closed time path than 3 and = —1 when it is earlierﬂ

The spectral function p determines the structure of excitations of the system, very similar to
the Kallén-Lehmann spectral representation of the (full) propagator in vacuum quantum field
theory [T09HITI]. In contrast, the statistical function F' provides the information about how

often states are occupied in the quantum system. This can be visualized by the decompositionlﬂ

1T\ .
F(p',p,t) = (f(po, p.t) + 2> P’ p,t), (2.36)
where we have introduced the real-valued spectral function p(p°, p,t) = —ip(p°, p,t) in Fourier

space. Out of equilibrium, there are exactly two independent two-point correlation functions,
which may be chosen as F' and p. However, in thermal equilibrium, they are no longer
independent, and related by the Kubo-Martin-Schwinger (KMS) condition [112] [113] (also
known as the fluctuation-dissipation relation), where f(p°,p,t) — fe(p") = (epo/ 1t
is the Bose-Einstein distribution with temperature 7. We can thus interpret f(p°,p,t) as a

generalized (off-shell) occupation number that is able to describe thermalization.

The generating functional in Eq. (2.32) can also be used to derive the equations of motion
for the correlation functions. Let us first identify the eigenstates and eigenvectors of the field

operators at initial time ®¥(¢y) on the branches C*

DE(to) |9™) = ¢g (%) [0 . (2.37)

3Since the spectral function is odd in its arguments, it vanishes at z° = y° and we do not need to define the
signum function there.

4The correlation functions F = Foo/N and p = pao/N have been written in Wigner coordinates t = (xo +
y9)/2, s =2° —y°, X = (x+y)/2 and s = x —y, and have been subsequently Fourier transformed with respect
to the relative coordinates s° and s. Since we consider spatially homogeneous systems, the correlation functions
do not depend on X. We therefore write F(p°, p,t, X) — F(p°, p,t) and —ip(p°, p,t,X) — —ip(p°, p, t).
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With this, it is possible to separate the initial conditions from the rest of the evolution [97] by

expressing the generating functional Z as a path integral

Z1J, R; po] =/ [ded ] [deg ] (@™ lpole™) x

initial conditions
Yo D'y & (Sc [P+, ¢ Ja(@)pa(@)+5 [oy 0 Rab(w,y)wa(@%(y)) (2.38)

o5

quantum dynamics

with integration measure [[dpg] = [ T, T, dcpfio(x) for the initial conditions. The inte-
gration measure of the residual path integral f;? D' excludes the end points of the time
contour C and is further restricted by the requirements o (t = ti) = ¢ for the fields at initial
time of both branches. One observes in Eq. that the initial density operator py only
enters the initial conditions while the subsequent evolution is governed by the classical action
Sclp]. Note that all integrals involve the closed time path, which characterizes the quantum

nature of the dynamics.

In analogy to quantum field theory in vacuum or in equilibrium, we can define the nonequi-

librium generating functional for connected correlation functionﬁ
WI[J,R| = —ilnZ[J,R]. (2.39)

From derivatives with respect to the sources, we obtain the correlation functions introduced

in Eq. (2:33)

SWJ, R]
0Jq ()

SWJ, R]

= %a(@), ORap(,y)

= 5 Gafe.y) +6u@(y) . (240)

Since the functional W depends on the sources instead of the correlation functions, we can

use Eq. (2.40) to perform a Legendre transform with respect to the sources

SWJ, R SW|J, R]

Plo. Gl =WIL R = | =550 @ = | SRoty)

Rap(z,y) - (2.41)
This functional is called the two-particle irreducible (2PI) effective action. As the original
generating functional, it encodes the complete information about the system. It leads to the

quantum equations of motion of the coherent field and the propagator

oT
Spa(x) ~Ja(z) = /yﬂ Rav (2, y)on(y)
or 1

Gy ~ 2@ y) (2.42)

®The dependence on the initial density operator po can be absorbed in the sources for Gaussian initial
conditions [97].
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To understand its importance, we state that the 2PI effective action can be brought into the

form [97, [106]
T[o, G] = Seld] + % Treln G~ + % Tre Gy '[¢] G + T'a[¢, G] + const (2.43)

with the classical inverse propagator iG(, L (@, y)[8] = 6Sc[¢]/6ba(x)dd(y). The residual term
I's[¢, G] can be expanded in an infinite series of two-particle irreducible (2PI) Feynman dia-
grams, where every line corresponds to the full propagator G while vertices are taken from the
classical action. The 2PI property means that the diagrams are not allowed to become discon-
nected after cutting two propagator lines. This constraint considerably reduces the number of
possible diagrams that I'y[¢, G] involves at each order of a loop expansion. The 2PI quantum
equations of motion are self-consistent equations that can be brought into an explicit
form, i.e. formulated as coupled integro-differential equations for the correlation functions ¢,
F and p [97, 106]. With the expansion , approximations for the equations typically fol-
low from choosing a truncation of the I's[¢, G] functional, by taking only a subset of possible

Feynman diagrams, for instance.

Typically one employs perturbative truncations as in a loop expansion or non-perturbative
truncations where an infinite subset of Feynman diagrams is taken into account. An example
for the latter is the 1/N expansion to next-to-leading order [I14]. The classical-statistical
approximation that is discussed in Sec. can also be considered as a non-perturbative
truncation of the effective action. However, in that case, one usually employs the framework
of classical-statistical field theory in explicit lattice simulations instead of the 2PI equations

for the correlation functions.

2.2.2 Distribution function in homogeneous systems

Here we reconsider the correlation functions of Eqs. and and use them to define
the single-particle distribution function in Fourier space. First we note that for homogeneous
systems, the expectation values of the Heisenberg field operator ®,(x,2") and its canonical
momentum operator IT,(x,2%) = 1/—g(20) Gy®4(x, 2°) become

ba(z?) = (®4(x, 20)) 7o (20) = (4 (x, 2°)) . (2.44)
The statistical operator in (2.34]) then reduces to

Fab(x - le :L‘Oa xO/) = %<{<I)a(x, :EO)’ (I)b(xla :‘CO/)}> - ¢a($0)¢b(x0,) : (245)
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The distribution function can be defined using the spatial Fourier transformlﬂ of the equal time

statistical correlation function and its derivatives

N
- 1 -
F(p,2%) = =) Faa (B, 2, 2°)
a=1

B(p, ") = /=90 /o) o0 oy F (p,2%")|
F(p,2°) = % (x/—g(wo) o +1/—g(z") 80/) F (f),mo,xol) o (2.46)
according to [106]
o 1 - . -
faer1(0,2%) + 5 = \/F(B,20)F(p, 20) — F2(p,0) . (2.47)

This definition is employed in our numerical simulations for relativistic scalars, and we will

often drop the subscript ‘def 1’. Similarly, we can define an effective dispersion relation by

w .%'0 — F(f),{]}o)
(p,2”) \/(_g( e (2.48)

For the longitudinally expanding case, the longitudinal momentum variable is identified as
p, = v/7. This choice of variable is motivated by the form of the longitudinal kinetic term
(172 8% ©q) in the (classical) field equation . The definitions in Egs. and are
motivated by quasiparticle definitions in free theory, and we note that the distribution f(p, x°)
has also been shown to thermalize to a Bose-Einstein distribution in the interacting case with

a spectral function rather peaked around its quasiparticle dispersion relation w(p,x°) [I11].

In fact, the definition of the occupation number (2.47)) is based on effective creation and
annihilation operators in the interacting theory. Following Refs. [I15], [116] for our geometries,

we may also define the distribution function in the convenient way

Jaera(,2) = g 3ol 5a") o)
N WLN ({a] 5(a°), app(a”)}) - % (2.49)
b

5More specifically, the Fourier transformation is part of a Wigner transformation with spatial central coor-
dinates X = (x + x’)/2 and relative coordinate s = x — x’ given by

o diX . ' ips
Foup(p,2%,2%) = T/ddsFab(x,x/,zo,:ro Ye 'P%

where we have considered a final volume V of the system and where we have introduced the conjugate momenta p
of the spatial coordinates. In Minkowski space, these are the same as the usual momenta p. For the expanding
case, transverse momenta are the same pr = pr while the rapidity wave number p, = v is the conjugate
momentum variable to 7.
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where V' is the spatial volume of the considered system, and we already anticipated the usual

commutation relations in the second line. The annihilation operator can be defined as
. . > .
(@) = iv/=g(@) [ & () B (@) = 6,a)) P, (250)

<
with adyb = adyb — bdya, and correspondingly the creation operator is defined as aZ IE)(:150) =

(ap.5(z°))T. The mode functions &5 (2%) have to satisfy (0p&p(z°))* = 005;5)(300) as well as the
normalization condition
S ?
&p(a°) O &(a°) = ——— (2.51)

V—g(@%)

As a consequence of this condition and of the equal-time canonical commutation relations

&
»
8
\_9
=

(%, xo)] =id(x —x),

[®(x,2°), ®(x,2%)] = [(x,2"), O(x',2°)] =0, (2.52)

the creation and annihilation operators indeed satisfy the usual commutation relations

5@, af f)/(xo)] =0. (2.53)

The definition of these operators in Eq. (2.50)) is equivalent to the mode expansion of the scalar

field operator and its canonical momentum operator

dsﬁ ipX * _—ipX
Dy (x) = dp + /(277)3 (ab,f, Ep P + az’f’ se P ) ,
dBﬁ iPpxX t * _—ipX
IMy(x) =7+ vV—g (2r)? (abi, Ooép €™ + ay 5 Doép € ) , (2.54)

where each of the terms depends on time z2°. Assuming that the anomalous occupation num-
bers ({app(2°), app (2°)})/(2N V) and ({a} 5 (2°), af 5, (2°)})/(2 N V) vanish identically, the
mode decomposition in Eq. (2.54)) leads for the statistical correlation function to

F@) = (fura®)+ 5 ) 268 . FB) = (fuaalp) + 3 ) 27300651

F®) = (Jarzlh) + 5 ) V70 (6 05 + 60 0065) (2.55)

where we used point symmetry under p — —p. Using these expressions and Eq. (2.51]) in the
definition of the distribution function (2.47]), one obtains the equivalence

f(p,2%) = faer1(p,2°) = facr2(p, 2°) (2.56)
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for both definitions in (2.47)) and (2.49). We emphasize that this equivalence is based on the
assumption of vanishing anomalous expectation values, as we pointed out in this derivation.
Therefore, this may be considered as a condition for a reasonable interpretation of the system

in terms of quasiparticles.

We show in App. [A] that for a quasi-free non-expanding system or a longitudinally expanding
system at sufficiently late times, the mode functions can be expressed as

€12 = 1/(20(p) v/=g(@), [V=g05I> = v/—g(@®) w(p)/2 and (€7 00€ + € Dp€") = 0. Tn-
serting these expressions into Egs. (2.55)) leads to

f(p,2°%) +1/2

V9@ w(p)

which is consistent with the definition of the dispersion relation in Eq. (2.48)).

F(p) = FP) =g w(p) (f(p,2") +1/2), F(B)=0, (2.57)

Moreover, we have introduced in Sec. a generalized distribution function f(p°, p,z°) that
results from the relation in Eq. (2.36)) of the correlation functions F' and p. For a free spectral

function

prree(P’, P, 2") = 2msgn(p”) 6 ((0°)* — w?(p)) (2.58)

one has a Delta-peak at the on-shell condition p° = w(p). Integrating Eq. (2.36] with the free
spectral function along 2 fooo dp® and using the point symmetry of the statistical correlator,

one arrives at the equal time relation

f(po = w(p),p,mo) + 1/2

Fptt) = ()

: (2.59)

which is the same relation as in Eq. (2.57) if one identifies f(w(p),p,z") — f(p,2°). This
motivates a third definition for the distribution function [117, [118]

00 d 0
faet3(p,2°) + = = /0 % 2p” F(p°, p,2"). (2.60)

We have now discussed three definitions of the distribution function (2.47)), (2.49) and (2.60)).
They are equivalent if a quasi-free spectral function is assumed (2.58). The definitions are

also applicable for a general spectral function, however, then the interpretation in terms of
quasiparticles may be problematic. Our second definition has been frequently used in
the literature, as for instance in Refs. [8, [I19]. The third definition has been mostly
used in the derivation of transport or kinetic equations from nonequilibrium quantum evolution

equations [117, T18] and it is less practicable in lattice computations.

Instead, we will use our primary definition (2.47)) for scalars that has the important advantages

that we do not need to know the specific form of the mode functions £ or of the spectral
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function p to describe the distribution. Since we employ classical-statistical lattice simulations

numerically, we provide the corresponding definitions in Sec. [2.3.3

For gauge theories, we also define a distribution function in App. [B] directly in the classical-
statistical approximation that is used for our numerics. This requires to fix the gauge at
read-out time, which we discuss in that appendix. We use a variation of the second definition

(2.49) to define the corresponding distribution function for gauge theories.

2.2.3 Initial conditions

We employ Gaussian initial conditions, where we have to specify the one- and two-point
correlation functions , . Moreover, we choose the statistical correlation functions
at initial time such that they satisfy the quasi-free relations of Eq. . Therefore, we only
have to initialize the coherent field and its derivative ¢q(70), da(70) as well as the single particle
distribution f(pr,p.,70) at the starting time T().m We will write our initial conditions for the
longitudinally expanding cases while the corresponding initial conditions for the non-expanding

theories are simply deduced by substituting p% +p2—pand T t.

The first set of initial conditions is chosen to exhibit a large characteristic occupancy with

f(pr,pz,10) = % S <Q —\/P3+ (fopz)2> , (2.61)

and vanishing coherent field ¢,(79) = 0-¢4(79) = 0. Here the parameters describe the initial
occupancy ng, initial anisotropy &y and the characteristic momentum scale ) of the distribution
at initial time. In a static background, we choose an isotropic distribution & = 1, and hence
f(p,to) = (no/A) &XQ — p). For gauge theories, we choose the same initial conditions with
the substitution A — 2¢?. We will refer to these initial conditions as ‘over-occupation’ initial
conditions. As we discussed in the introduction (Sec. [1f), such a state can be found in a
variety of nonequilibrium disciplines including heavy-ion collisions, inflationary cosmology and

ultracold atoms.
Our second set of initial conditions is characterized by a large coherent field,

ON sty Ordalro) =0, (2.62)

$a(10) = 00 3

and vanishing occupancy f(pr,p.,70) = 0. The amplitude parameter oy is the only dimension-

ful scale in such a state. These initial conditions will be called coherent field initial conditions.

"The initial conditions for the spectral function

Pab(T, )| oy =0,  V/=g(@°) po pab(@, y)|,0_y0 = dab 6(x —y)

follow directly from the Heisenberg field commutation relations (2.52)) and do not need to be specified separately.
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The latter conditions lead to instabilities and thus to an exponential growth of occupation
numbers within a resonant momentum region. Eventually, an over-occupied system emerges
while the coherent field decays. Therefore a systems with over-occupation initial conditions
can be considered as starting at a later time subsequent to coherent field initial conditions.
We will discuss this transition in Secs. 3.2.2] and [5.2.4] in more detail.

Note that these sets of initial conditions describe large occupation numbers (large fluctuations)
or a large coherent field, respectively, since we consider only weak couplings A < 1. Therefore,
both sets of initial conditions admit a rigorous description of the dynamics in terms of classical-
statistical field theory to leading order in the coupling A [TTHI3, 20], 82 88| [I00]. Since we
are interested in the weak coupling limit, with A — 0% but \f finite for typical momenta, the
mapping from a quantum to a classical system is valid at all simulation times. We will discuss

this classical-statistical approximation in more detail in Sec. [2.3.1]

In particular, we will omit the ‘quantum-1/2’ in Egs. and for over-occupation
initial conditions. At weak couplings, this classical approximation does not change the sub-
sequent evolution of the system to good accuracy while it prevents spurious Rayleigh-Jeans
divergences [120]. For coherent field initial conditions, the quantum vacuum should not be
omitted if one intends to describe the instabilities at early times. Instead, we employ an inter-
mediate cutoff such that the quantum vacuum involves the whole primary resonance band. We
only show simulation results that do not change under variation of this intermediate cutoff.
In practice, it is sufficient to capture this primary resonance band since secondary instabilities
quickly emerge from nonlinear interactions with the primary instabilities. Therefore, they do

not require the quantum vacuum as an initial ‘seed’ to grow [87, [121].
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2.3 Classical-statistical lattice simulations

In this section we discuss classical-statistical lattice simulations that will be used throughout
this thesis to achieve numerical results. This technique is commonly used in the literature (see

e.g. [97]) and we provide some important aspects here.

In Sec. we discuss the range of validity of the classical-statistical approximation. We
describe the lattice algorithm and the numerical setup in Sec. Specific setup details for
O(N)-symmetric relativistic and nonrelativistic scalar field theories are provided in Secs.
and [2.3.4] respectively. Setup details for simulations in non-Abelian gauge theory are moved

to App. [Bto ease the presentation in this section.

We note that all equations in Sec. [2.3.3] and App. [B] are provided for a general diagonal time-
dependent metric g, (z°) to account for both the Minkowski and Bjorken metric, and the
same equations can thus be used for a more general space-time. Moreover, the presentation
in App. [B|is valid for Yang-Mills theories with N, > 2 of the underlying gauge group SU(N,).
For our numerical simulations, we use the SU(2) gauge theory, where powerful optimizations
exist that considerably reduce the required computational resources as compared to the cases

with larger N, [15, [122].

2.3.1 Classical-statistical approximation

We will now discuss the classical-statistical field theory approximation of full quantum dynam-
ics and state its range of validity. This was studied in Refs. [IT}, 13} [I00] for relativistic and
nonrelativistic scalar field theories from a two-particle irreducible (2PI) approach and from a
kinetic framework. Similarly, the classical approximation in thermal equilibrium was investi-
gated in Ref. [123]. We will mostly discuss scalar field theory based on Ref. [97]. In gauge
theories, one has a very similar ‘classicality’ condition that states when the classical-statistical
approximation can provide accurate results. The arguments are also similar to those in scalar
field theory and we refer to Ref. [124] for further details.

We start with the generating functional Z[J, R; pg] of Eq. (2.38)). It involves the integration
over the closed time path C with the positive and negative time branches C*. We denote fields

on each of the branches as ¢* and we rewrite the classical action over this time path as
Scle] = S[e™] = Sle7], (2.63)

where S = Sgcalar is the classical action given by Eq. (2.6) with only the forward time path.

A similar decomposition can be made for the source terms entering the generating functional
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in Eq. (2.38). Next we introduce the scalar fields

_l’_
i - _
b= P9 e, (2.64)
which lead to the action
S[Lp, 95] = SO [(pv ()5] + Sint,cl [‘107 95] + Sint,qu[S07 ()5] . (265)

The different parts of the action read

Solip, @] = / 04 03, () Bypa(z)

Sl &) = / 'z =2 Go(@)a(@)on(@) ()

to 6N
_ A _ _
Suranle 8l = [ do o Gu@ga(e)pr()n(o), (266)
to

where we chose the Minkowski metric for brevity but the proceeding arguments can be similarly
employed for a more general metric. The integration fto d*x proceeds on a single forward time

branch starting from z° = to. From integration by parts we get

Solipr @] = — / 02 0,0 (X) B0 (X) + / 04 Ga(r) (—0"0,) a(x) (2.67)

to

We can now define a classical action S¢[¢, @]

Scl[@, 85] = d'z Séa(l') <_8u8,u90a($) - % @a(x)@b(in)@b(x))

to 6
- oo T
= /de 71'07@()()@07@()() + S() [80, 95] + Sint,cl[‘pa 95] (268)

where S[p] is the classical action of Eq. (2.6). Let us also consider the integration over the
initial conditions in the generating functional (2.38))

/ [deg] [deg] (0T lpole™) = / [deo] [d@o] (w0 + $o/2]polpo — Po/2)
— [ ool [4g0] dmo) Wlpo, o] ] 2 70x 30009, (2,60
where we have introduced the (Wigner) distribution functional Wipg, mo] of fields at initial

time tg, which is the Fourier transform of the original initial density. With these ingredients,
the generating functional (2.38)) reads

3S[p

] D KEIC/N i D sources
Z[J, R; po] = / [dipo] [dmo] W [i20, o] / D'pDp o @0 200) soaliy TSl Pl ¥ somees -y 7))
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with source terms@

sources = z/ d*x (goa(x)ja(a?) + cﬁa(x)Ja(:ﬂ)> + bilinear source terms. (2.71)
to

One observes that if the quantum vertex Sint,qu[®, ] were absent, one could analytically inte-

grate

/Dgf) ot i 'z Pa(@) Tont) — 5 5e] ’ (2.72)
op

which yields a Delta-functional with the classical equation of motion §5/d¢ = 0 in Eq. (2.7)).

Leaving the quantum vertex out is essentially the classical approximation. Up to a Jacobian

that plays the role of an irrelevant normalization constant [97], one can rewrite the Delta

functional to § [np — god]. This leads to the classical generating functional

23 = | ldeu] ldme] Wloo, moll,_pe (273)

Then one can compute the classical-statistical average of an observable O[y, 7] as a phase-space

average over field trajectories given by solutions of the classical field equation

Olp,ml)a = /[d%] [dmo] W [po, 0] Ol (o, 0), 7 (00, m0)] - (2.74)

Finally we want to understand the range of validity of this approximation. The classical and
quantum vertices of Eq. are illustrated in Fig. a). While the full quantum theory has
both vertices, the quantum vertex is absent in the classical-statistical approximation, which
implies that also some Feynman diagrams are missing. Since the vertices mainly differ in their
types of legs, we need to obtain the correlation functions connecting these legs. They can
be obtained by functional derivatives of the generating functional for connected correlation
functions W[J, R] = —iln Z[J, R] with respect to the sources in Eq.

§%WIJ, R _ 5%WJ, R
Fap(z,y) = 6~[~] B —iGly(z,y) = ~—[] B
iJa () 6iJy(y) J=J=0 dido(x) 0idy(y) J=J=0
52%W1J, R] _ §%W1[J, R]
—iGA )= —————— . Fulr,y) = ——7— =0. 2.75
Cal®y) = o 517 i W@ Y) = S @ i) |, (2.75)

Here F,(z,y) is the statistical correlation function of Eq. (2.34), the anomalous propagator
Fup(,y) is zero for vanishing sources, G (z,y) = 0(2° — 4°) pap(,y) is the retarded propa-

gator, GA (z,y) = GE (y,) is the advanced propagator and pu(z,y) = GE (v,vy) — G4 (z,y)

8While source terms are important for computations of correlation functions via functional derivatives, we
consider only closed systems with vanishing external sources in this work. Therefore, we neglect them in the
following presentation for simplicity but include the sources when taking functional derivatives with respect to
them.
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FIGURE 2.2: a) Illustration of the classical and quantum vertices Sint,c1 and Sing,qu
as defined in Eq. (2.66). b) Possible sub-diagrams (of Feynman diagrams) with full
propagators and identical external legs. The classical-statistical approximation only
involves the classical sub-diagram while the quantum sub-diagrams are missing.

b)

is the spectral function of Eq. (2.34). Hence, F connects to ¢ legs while G® and G4 connect
a ¢ leg with a ¢ leg.

Some typical sub-diagrams that involve two vertices are shown in Fig. b) together with the
connecting correlation functions. These are all existing one-loop sub-diagrams with these
external legs and they all have to be summed over when entering a Feynman diagram.
The quantum diagrams involve one quantum vertex and are therefore absent in the clas-
sical approximation. Hence, one condition for the validity of the classical approximation
is F2(z,y) > (GF)%(x,y) + (GM?(z,y), with F%(x,y) = Fu(x,y)Fa(r,y). Because of

GE (z,y)G (v,y) = 0, this ‘classicality’ condition can be stated as
F(z,y) > p*(z,y) . (2.76)

We can restate this condition also for the distribution function as defined in Eq. from the
statistical propagator in Fourier space F(p°, p,z%). As we showed, this definition is equivalent
to the other definitions of the distribution function of Sec. for a quasi-free spectral
function (2.58). We find from the ‘classicality’ condition (2.76|) with an isotropy assumption

Fop = Fdap and pgp =~ p dgp the corresponding condition for the distribution function
0 1

The classical-statistical approximation is only valid at weak couplings A < 1 since otherwise
occupancies become quickly of order unity, violating the ‘classicality’ condition [120]. This
condition has been verified in detail by comparing quantum to classical-statistical results in

the context of scalar quantum field dynamics [7, [IT], 88, [100] and coupled to fermions [85], 86].
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2.3.2 Numerical algorithm and lattice setup

In classical-statistical simulations, one discretizes the fields ¢4 (x, 2°) and their conjugate mo-
mentum fields 7, (x, 2°) on a spatial lattice, and similarly for gauge fields (see App. |B|for more

details). The algorithm we use proceeds along the following steps:

1. The fields and conjugate momenta are randomly initialized at time ty according to the

(Gaussian) Wigner distribution functional W g, mo].

2. Solve the classical equations of motion to get classical fields ¢S (x,2°) and 7¢l(x, 2°) at

later times 20 > t,.

3. Repeat steps 1 and 2 to get an ensemble of classical fields ¢S (g, ), 75 (@0, ™) dis-

tributed according to the initial field distribution W{gg, mo].

Observables can be determined at any time of interest by performing the classical-statistical

averaging in Eq. (2.74)). It can be computed by a classical-statistical ensemble average

1

<O[Q077T]>Cl ~ N. Z O[‘PCI(¢0>7T0)’7TCI(SOO>7TO)]7 (2'78)

samp ((,00 771_0)

where Ngamp is the number of samples in the ensemble.

Apart from the sample average, one can also use symmetries of the system for the averaging
procedure. For instance, spatial homogeneity can be employed to compute the stress energy

tensor by additionally averaging over the volume

(T )a(2°) = (T (%, 2°))v )t - (2.79)

Similarly, we can use isotropy in momentum space to average over the directions of momenta
p/p. In the expanding case, we then average over transverse directions pr/p and over the sign

of v. This can be applied for the computation of correlation functions

F(p,t) = <F(p,t)>p/p static

F(pr,v,7) = (F(pr,V, t)>pT/pT,sgn(V) expanding , (2.80)

and from them for the distribution functions f(p,t) or f(pr,p.,7), respectively. Averaging
over symmetries considerably reduces the number of samples needed to get results with high
accuracy. Even single-run simulations on large lattices can yield accurate results for many
observables. The reason is that the system exhibits self-averaging, where the relative variance
of an observable decreases with growing volume [I16], which has been previously discussed
in condensed matter systems [125H129]. The concept of ergodicity is closely related to self-

averaging, with the difference that observables are averaged over some extended time window
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instead of the volume. If not stated otherwise, we show simulation results obtained from
Ngamp = 1,2 samples on large lattices. To simplify the notation, we will drop the index cl and

we will imply with (-) both a classical ensemble average and an average over symmetries.

Our real-time simulations are performed on three-dimensional spatial lattices of the size
N1 X Ny x N3 with lattice spacings a;, ¢ = 1,2,3 and periodic boundary conditions. Spa-
tial coordinates are given by z! = a;n; with numbers n; = 0,...,N; — 1. We stick to the
coordinate mapping of Sec. with 20 — ¢, 23 — z for the Minkowski and z° — 7, 23 — 7
for the Bjorken expanding case. To account for the different geometry of the latter, we distin-
guish between transverse and longitudinal directions N1 = No = Np with a1 = a3 = ap and
N3 = N,, with a3 = a,;, while we use cubic lattices N3 with spacings a; = a, in the static case.
In addition, we parallelize our computations by splitting the lattice along the N3 direction.
We have explicitly checked that our results are insensitive to changes of the discretization

parameters.

2.3.3 Scalar fields on a lattice
We provide here details of our numerical implementation of scalar field theory on a real-time
lattice. Similar implementations have been used in the literature [8, [106] 119, [121].

We initialize the scalar fields at initial time ¢y (or 7p9) according to their mode expansion in
analogy to the quantum case in Eq. (2.54))

d3p - .
¢o(x,t0) = Pv(to) + / ﬁ (w5 & (to) € + a5 &5 (to) e P%)

3.5 . .
(%, to) = m(to) + v/ —9g(to) / (‘2175’3 (awp Qoép(to) €P* + aj 5 D&5(to) e PX),  (2.81)

where p are the conjugate momenta of the spatial coordinates (see footnote |§| in Sec. [2.2.2)) E|
As discussed in App. we take the initial mode functions &5(tp) as solutions of the free

equations of motion.

The functions oy 3 and oy p are the classical-statistical versions of the quantum ladder opera-

tors at initial time ap 5 (to) and aZ 5(to). Since in the classical approximation the corresponding

9To stay close to the continuum expressions, we will stick to the continuum notation for the integrals in the
discretized theory. Since we have a finite volume and finite lattice spacings, spatial coordinates and Fourier
modes are discrete, and the integrals and Delta functions are mapped to

/d3w»—>a3¥, /

with a® = a; a2 a3 and volume V = N3 a3,

d’p 1 1
(27r)3 = V Z ’ 6(X - y) = E 5x,y ’ (2#)3(5([) - q) — Vép»q ’ (282)
p
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functions commute, the anti-commutators of the ladder operators are mapped to simple prod-

ucts. We demand that these functions satisfy the relation["]

(o W) = (f (. to) + ;) (27)*0as8(P — P') » (2.83)

which is the classical analogy of Eq. (2.49)), and additionally spatial homogeneity has been

used. We also demand that the anomalous occupation numbers vanish

(aapanp) = (agpapp) =0, (2.84)
such that the definitions of the distribution function and become equivalent
at initial time (see Eq. (2.56)) to get a reasonable quasi-particle definition. To satisfy the
conditions and , we use Gaussian distributed random numbers multiplied by a
random complex phase of unitary norm. The complex phase factors allow us to implement
the 0(p —p’) conditions in Eq. and the conditions of Eq. correctly. The Gaussian
distributed random numbers ensure that all higher order n-point correlation functions at initial

time are consistent with our Gaussian initial conditions.

For our simulations, we use the leapfrog algorithm where the classical fields ¢,(x) and 74(x)
are alternately updated according to a discretized version of the Hamilton equations of motion
in Eq. . The coupling dependence can be conveniently scaled out of the equations with
© — /v and m — 7/v/), thus entering only the initial conditions. We discretize the second

spatial derivative according to the second-order central difference scheme

A~

8i2g0a(x) — az-_2 (gpa(x + aﬂ) + Ya(x — at) — 2<pa(x)) , (2.85)

with the unit step 7 into the i-direction. This leads to the discrete lattice moment ﬁ%’latt =

4 sin? (7n; /N;) / a?. For the time derivatives of the fields we employ a forward Euler-scheme
80gpa(x,a:0) — agl ((pa(x,xo + ag) — @a(x, a:o)) ) (2.86)

We note that the conjugate momentum fields are shifted by ag/2 with respect to the scalar
fields. This, together with a small time step ag < +/—g;; a; for each spatial i, ensure the
stability of the leapfrog algorithm. We use an adaptive time step with up to ag/(v/—gii a;) <
7%.

OWhen considering over-occupation initial conditions in Eq. (2.61]), we drop the quantum 1/2 as discussed
in Sec.
"The discrete Fourier transform is given by

va(P) = a’ Z Pa (x)e_iXﬁdiSC ,

with the discrete momenta p; qisc = 27 ni/(a; N;).
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The statistical equal-time correlation function and its derivatives (2.46|) can be computed in

the classical approximation as

F(p,2%) = (NV) Hpa(d,2°) ¢5(D,2°)),  Fap(B,2°) = (NV) ™ ma(P, ") m5 (P, 2°))

The distribution function is computed with the same formula as in Eq. (2.47)) in the quantum
theory.

From the classical stress-energy tensor 7}, in Eq. (2.9)), we can compute the energy density e

and the transverse and longitudinal pressures Pr, Pj, as

@)= (T, Pr(e®) = L (T +T%), P =—(T%).  (289)

2.3.4 Nonrelativistic scalars on a lattice

Following a very similar argumentation as in Sec. [2.3.1] the nonequilibrium quantum dynamics
of the highly occupied system can be accurately mapped onto a classical-statistical field theory
evolution also for nonrelativistic scalar theories as long as f > 1 for typical momenta [100HE|
The numerical simulations are performed as discussed in Sec. The classical equation of
motion of Sec. is solved on a three-dimensional grid using a split-step method, and
we refer to Refs. [23, [89)] for further details.

Similarly to the relativistic case, we can define a distribution function f(p,t) with the help of

the two-point correlation function for spatially homogeneous ensembles
1
Flx =x',t,1) = S (x, 09" (<, 1) + o (x, )07 (x,1)) (2.89)

Evaluated at equal times ¢t = t/, we can define the distribution function for non-vanishing

momenta [100]

f(p,t) = /dgx e Px F(x,t,t). (2.90)

As for scalar and gauge theories in Minkowski space-time, we consider spatially isotropic

systems, which allows us to additionally average over the direction of the momentum.

12This approximation is also known 