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CHAPTER 1. SUMMARY          

Abstract 

Genome-wide profiling for genetic alterations in cancer has identified mutations in genes that are 

associated with epigenetic programming of genomes for DNA methylation patterns, histone 

modifications patterns and the positioning of nucleosomes. Here a systematic evaluation of the 

available cancer genome profiling data established by large international consortia, in order to 

identify recurrently mutated genes or pathways was described. Using curated list of 

approximately 700 epigenetic regulators and currently available genome-wide datasets on 

genetic and epigenetic alterations in cancers, the distribution of alterations in epigenetic 

regulators was described. Epigenetic genes were classified as potential oncogenic or those with 

tumor-suppressor function based on the location of mutations relative to functional domains and 

their frequencies. A panel of 50 epigenetic genes, including: DNMTs, histones (H3F3A, 

HIST1H3B), histone editors (KDM5C, KDM6A) and writers (MLLs, SETD2, EZH2, ATM) that 

can promote epigenetic changes in cancer was identified. Using correlative analysis of publicly 

available methylation data with information on deregulated epigenetic driver genes, many 

identified subtype-specific methylation clusters were correlated with groups of up to 3 epigenetic 

regulators. This analysis provides a source for the identification and link between methylation 

groups and deregulated epigenetic genes.  

Major cancer specific methylation changes have been observed in promoters and gene bodies. 

Tissue-specific cancer methylation differences have been located in enhancers and regulatory 

regions of non-coding RNAs. Based on identified results, the major mechanism of non-coding 

RNA deregulation in cancer has been investigated on independent data cohort. Using integrative 

analysis of non-coding RNA in early-onset prostate cancer, non-coding RNAs were classified as 

tumor-suppressive and oncogenic. About 120 novel prostate cancer specific non-coding RNAs 

that have been epigenetically deregulated have been identified.    

Our study on the defects in regulators of the epigenome will help to understand mechanisms 

leading to distinct epigenetic patterns and will allow the molecular validation of defined 

correlations in experimental settings. 
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Zusammenfassung 

Genom-weite Studien nach genetischen Veränderungen in Krebs haben Mutationen in Genen 

gefunden, die für die epigenetische Programmierung von DNA-Methylierungsmustern, 

Histonmodifikationen und die Positionierung von Nukleosomen verantwortlich sind. Hier wird 

systematisch auf die existierenden Daten der großen, internationalen Konsortien zurückgeblickt, 

um rekurrent-mutierte Gene oder Signalwege zu identifizieren. Durch die Nutzung einer 

kuratierten Liste von etwa 700 epigenetischen Regulatoren und den zurzeit verfügbaren genom-

weiten Datensätze der genetischen und epigenetischen Veränderungen in Krebs, wurde die 

Verteilung der mutierten epigenetischen Regulatoren beschrieben. Epigenetische Gene wurden 

als potenzielle Onkogene oder Tumorsupressoren klassifiziert, je nach Frequenz und 

Lokalisation der Mutationen relativ zu funktionellen Proteindomänen. Eine Palette von 50 

epigenetischen Genen wurde identifiziert, die epigenetische Veränderungen in Krebs 

hervorrufen können, inklusive DNMTs, Histonen (H3F3A, HIST1H3B), Histonmodifikatoren 

(KDM5C, KDM6A) und Histonbeschrifter (MLLs, SETD2, EZH2, ATM). Mittels 

Korrelationsanalysen zwischen öffentlich zugänglichen Methylierungsdaten und der Information 

über deregulierte epigenetische Krebsgene, konnten subtyp-spezifische Methylierungsmuster 

mit Gruppen von bis zu 3 epigenetischen Regulatoren assoziiert werden. Diese Analyse bietet 

eine  

Quelle für die Identifizierung zwischen Methylierungsgruppen und deregulierten, epigenetischen 

Genen. Wesentliche Krebsspezifische Methylierungsveränderungen wurden in Promotoren und 

Genkörpern beobachtet. Gewebsspezifische Krebsmethylierungsunterschiede wurden in 

Enhancern und regulatorischen Regionen für nicht-kodierende RNAs lokalisiert. Basierend auf 

den identifizieren Ergebnissen wurden die wesentlichen Mechanismen der nicht-kodierenden 

RNA-deregulierung in Krebs in einem unabhängigen Datensatz untersucht. Durch eine 

integrative Analyse der nicht-kodierenden RNA in früh-auftretendem Prostatakrebs wurden 

nicht-kodierende RNAs als Tumorsupressoren und Onkogene klassifiziert.  Hierdurch wurden 

etwa 120 neue, prostataspezifische nicht-kodierende RNAs, welche epigenetisch dereguliert 

sind, beschrieben.  

Diese Studie über die Defekte in epigenetischen Regulatoren wird dabei helfen, die 

Mechanismen, die zu veränderten epigenetischen Mustern führen, zu verstehen und wird die 

molekulare Validierung von definierten Korrelationen erlauben.  
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CHAPTER 2. LIST OF ABBREVIATIONS       

Abbreviation Full text 
3´UTR 3´untranslated regions 
5caC 5-carboxycytosine 
5fC 5-formylcytosine 

5hmC 5-hydroxymethylcytosine 
5mC 5-methylcytosine 
ACC Adrenocortical carcinoma 
Ago Argonaute protein 

AKT1 V-Akt Murine Thymoma Viral Oncogene Homolog 1 
ALT alternative lengthening of telomeres 

ANRIL antisense non-coding RNA in the INK4 locus 
BCL2 B-cell CLL/lymphoma 2 

Bp base pair 
BRCA Breast invasive carcinoma 

CBR3-AS1 carbonyl reductase 3 antisense RNA 1 
CDH1 Cadherin-1 
CDH1 Cadherin-1 

CDKN2A cyclin-dependent kinase inhibitor 2A 
CGIs CpG islands 
CIMP CpG island methylator phenotype 
CNA copy-number alterations 
CNV copy-number variation 

COAD Colon adenocarcinoma 
CpGs cytosine-guanine dinucleotides 

crasiRNAs Centrosome-associated RNAs 
CTBP1-AS C-terminal binding protein 1 antisense RNA 

DAPK1 death-associated protein kinase 1 
DICER1 dicer 1, ribonuclease type III 
DICER1 dicer 1, ribonuclease type III 

DMP Differently methylated probe 
DMR Differently methylated region 
DMRs differently methylated regions 

DNMT1 DNA methyltrasnferase 1 
DNMT3a DNA methyltrasnferase 3A 
DNMT3b DNA methyltrasnferase 3B 
DNMTs DNA methyltransferases 

EMT epithelial mesenchymal transition 
ENCODE Encyclopedia of DNA Elements 
EO-PCA early onset prostate cancer 

ETS erythroblast transformation-specific gene family 
ETS E26 transformation-specific 

EZH2 Enhancer of zeste homolog 2 
EZH2 Enhancer of zeste homolog 2 
GBM Glioblastoma multiforme 
GEM genetically engineered mouse model 
GEO Gene Expression Omnibus 

GSEA Gene-set enrichment analysis 
H3K27ac acetylation of lysine 27 of histone 3 



 

H3K4me3 trimethylation of lysine 4 of histone 3 
H3K4me3 histone 3 lysine 4 trimethylation 
H3K9me3 trimethylation of lysine 9 of histone 3 

HCA Hierarchical cluster analysis 
HMM Hidden Markov Model 
HRG high rearrangement group 
HSCs hematopoietic stem cells 

HUZAR Heidelberg Unix Sequence Analysis Resources 
ICGC International Cancer Genome Consortium 
IDH1 isocitrate dehydrogenase 1 

IntOGene Integrative Onco Genomics 
IPA Ingenuity Pathway Analysis 
Jak1 janus kinase 1 

Kdm6a lysine-specific demethylase 6A 
KICH Kidney Chromophobe 
LAML Acute Myeloid Leukemia 

Linc00963 long intergenic non-proteincoding RNA 963 
LINEs long interspersed elements 

lncRNA long non-coding RNAs 
LRG low rearrangement group 
LTR long terminal repeat 

LUAD Lung adenocarcinoma 
LUSC Lung squamous cell carcinom 

MAGE-1 melanoma antigen family A1 
MCIp Methyl-CpG immunoprecipitation 

miRNA micro RNAs 
MITF microphthlmia-associated transcriptional factor 
MLH1 MutL Homolog 1, Colon Cancer, Nonpolyposis Type 2 (E. Coli) 

moRNAs microRNA-offset RNAs 
mRNAs messenger RNAs 

MSY-RNAs MSY2-associated RNAs 
ncRNAs non-coding RNAs 

O/E observed over expected CpG ratio 
p15AS p15 antisense lncRNA 
PAAD Pancreatic adenocarcinoma 
PAM Partitioning Around Medoids 
PARs Promoter-associated RNAs 

PASRs promoter-associated small RNAs 
PCA Prostate cancer 
PCA principal component analysis 
PCA3 prostate cancer antigen 3 

PCAT1 prostate cancer-associated transcript-1 
PCAT29 prostate cancer-associated transcript-29 
PCGEM1 prostate cancer gene expression marker 1 

PIN intraepithelial neoplasia 
piRNAs piwi-interacting RNAs 

Pol II RNA-polymerase II 
PRAD Prostate adenocarcinoma 
PRC2 Polycomb Repressive Complex 2 
PRC2 polycomb repressor complex 2 
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pre-miRNA precursor miRNA 
pri-miRNAs primary miRNA transcript 

PRNCR1 prostate cancer non-coding RNA 1 
PROMPTs promoter upstream transcripts 

PTEN phosphatase and tensin homolog 
PTEN Phosphatase and tensin homolog 
qPCR Quantitative PCR 
RAS Rat sarcoma 

READ Rectum adenocarcinoma 
RISC RNA-induced silencing complex 
rRNA ribosomal RNA 
SAM S-adenosyl methionine 

SChLAP1 second chromosome locus associated with prostate 
SCNA Somatic copy number alteration 
SCNA somatic copy number alteration 

sdRNAs Sno-derived RNAs 
SFEs selected functional events 
SFEs selected functional events 
SINEs short interspersed elements 

siRNAs Small interfering RNAs 
SKCM Skin Cutaneous Melanoma 

snoRNAs Small nucleolar RNAs 
SNV single-nucleotide variation 

sRNAs small RNAs 
SRs structural rearrangement 

STAD Stomach adenocarcinoma 
TARBP2 TAR (HIV-1) RNA Binding Protein 2 
TARBP2 TAR (HIV-1) RNA Binding Protein 2 

TCGA The Cancer Genome Atlas 
tel-sRNAs Telomere small RNAs 
TERRAs telomeric repeat-containing RNAs 

THCA Thyroid carcinoma 
TSGs tumor suppressor genes 

TSSa-RNAs TSS-associated RNAs 
TSSs transcriptional start sites 

T-UCRs Tissue-specific ultraconserved regions 
UCRs ultraconserved regions 
UCSC University of California Santa Cruz 
VHL von Hippel-Lindau tumor suppressor 
WGS whole-genome sequencing  

xiRNAs X-inactivation RNAs 
XPO5 exportin 5 
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CHAPTER 3. INTRODUCTION         

 
3.1. Epigenetics 

3.1.1. Epigenetics and epigenetic alterations 

 

The term epigenetics is derived from the Greek “epi”, meaning “above, over”, and defines its 

function in executing and regulating information encoded in the DNA sequence. The term 

“epigenotype” was initially coined by Conrad Waddington in 1942, when he described the 

“epigenetic landscape” as the gene expression control that results in differentiation of cells 

leading to a variety of different tissues [2]. In 1996, Riggs and colleagues referred to epigenetics 

as “mitotically and/or miotically heritable changes in gene function that cannot be explained by 

changes in the DNA sequence” [3]. Nowadays, the term “epigenetics” is defined as heritable 

changes in gene regulation that occur without alterations in the DNA sequence [4] and covers 

DNA and histone modifications, chromatin remodeling changes, transcription factor activity as 

well as non-coding RNAs: micro RNAs(miRNA) and long non-coding RNAs (lncRNA) regulating 

gene activities [5],[6]. In combination with genetic alterations, the patterns of epigenetic 

modifications serve as epigenetic markers to represent gene expression and chromatin states. A 

tight regulation of epigenetic patterns is required during normal developmental processes and 

epigenetic modifications are crucial for packaging and interpreting the genome under the 

influence of physiological factors [7],[8]. Through aberrant promoter DNA methylation, opening of 

the chromatin, and non-coding RNA regulation, epigenetics is involved in altered gene regulation 

and chromosomal breaks leading to deletions, translocations and other rearrangements of the 

chromosome during disease development like cancer.  

3.1.2. DNA modifications 

DNA modifications have been recognized as key epigenetic marks for the maintenance of 

cellular states. Such modifications include canonical 5-methylcytosine (5mC), 5-

hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxycytosine (5caC). DNA 

modifications are established and maintained by enzymes, involved in adding modifications 

(“writers”), modifying these marks (“editors”), or translating a mark for other molecules 

(“readers”). Canonical DNA-modification, 5mC, is established by “writers”, DNA 
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methyltransferases (DNMTs), using S-adenosyl methionine (SAM) as the methyl group donor. 

DNMT3a and DNMT3b are de novo methyltransferases, preferentially targeting unmethylated 

cytosines in the context of a cytosine-guanine dinucleotides (CpGs) to initiate methylation which 

can occur in early embryonic stem cells and developmental processes or in abnormal processes 

in cancer cells [9]. In contrast, DNMT1 acts as a maintenance methyltransferase predominantly 

recognizing and methylating hemimethylated DNA by copying methylation patterns from the 

parental strand onto the newly synthesized strand [10].  DNA methylation is important for early 

development of mammalians as confirmed by embryonically or postnatal lethality in mouse 

models with knockout of single DNMTs [11]. 

  

Methylated cytosines are generally present in a CpG dinucleotide context. The human genome 

consists of about 2.7x107  CpGs, mostly occurring within repeat sequences (>90 %), or intronic 

regions (<10 %) and 1-2 % in CpG dense regions like CpG islands (CGIs). About 80-90% of all 

CpGs are usually methylated in the mammalian genome [12]. CGIs were defined as regions of 

DNA of at least 200 base pair (bp) length with the proportion of Gs or Cs, referred to as “GC 

content,” greater than 50%, and observed to expected CpG ratio (O/E) greater than 0.6 [12]. The 

observed to expected ratio is calculated by dividing the proportion of CpG dinucleotides in the 

region by what is expected by chance when bases are assumed to be independent outcomes of 

a multinomial distribution. The formula to calculate the O/E ratio is 
𝑂
𝐸

=
#𝐶𝐶𝐶
𝑁

#𝐶
𝑁 ∗

#𝐶
𝑁

  where N is the 

number of bp in the segment under consideration. Various computer algorithms have been 

developed to create CGI lists satisfying the definition, however, this definition is somewhat 

arbitrary because the choice of the cutoffs has a great influence on what is considered an island.  

Alternatively, a Hidden Markov Model (HMM) based method was used to create a list of CGIs, 

detected by jointly thresholding the result posterior probabilities and is available in UCSC 

(genome.ucsc.edu) [13]. CGIs are enriched around  transcriptional start sites and serve as 

regulatory regions for genes often overlapping with gene promoters [14] and often found in 

constitutively active and highly expressed genes [15]. The majority of CGIs are unmethylated in 

normal adult cells, while repetitive sequences are highly methylated. [16] 

 

In healthy development, DNA methylation is associated with tissue specific gene regulation [17], 

silencing of repetitive elements [18] and genomic stability [19]. It plays an important role in 

developmental processes like X chromosome inactivation by silencing genes on the inactive X, 

or genomic imprinting in repressing either paternally or maternally derived genes [20]. 
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Impairment of DNA methylation during early embryonic development results in early 

developmental death, which demonstrates the essential role of DNA methylation in 

embryogenesis and development [21]. The important role of DNMT activity in development was 

demonstrated in hematopoietic stem cells (HSCs) in which the DNA methylation machinery was 

disrupted. These cells are defective in self-renewal and lose their ability to give rise to 

multilineage hematopoiesis [22]. 

 

Also about one-quarter of all methylated Cs in embryonic stem cells is found in non-CG context, 

suggesting that embryonic stem cells may use different methylation mechanisms to affect gene 

regulation[23]. Such methylation showed enrichment in gene bodies and depletion in protein 

binding sites and enhancers, disappeared upon induced differentiation of the embryonic stem 

cells, and was restored in induced pluripotent stem cells.  
 

During the last years, the field gained interest in the role of aberrant methylation in regions 

outside of promoters, like in CGI “shores” (regions up to 2 kb adjacent to CGIs), enhancers, 

intragenic CGIs and gene bodies. For CGI shores and enhancers, high methylation variability in 

different cell types was observed [24]. Nevertheless the main reason why these regions are so 

hypervariable remains unclear. There are proposed hypothesis either explaining that these 

regions are functionally unimportant or alternatively suggesting that these regions are needed for 

regulation and differentiation of distinct cell types and therefore are hypervariable. Intragenic 

CGIs can be methylated in a tissue-specific fashion and regulate expression of alternative 

transcripts [25] and they are highly affected by aberrant methylation in cancer [26].Methylation in 

gene bodies can be in a tissue-specific manner [27], is normally associated with active 

transcription and influences the regulation of RNA splicing [28]. 

3.1.3. Histone modifications 

In eukaryotes the genomic DNA is packaged into higher chromatin structures in order to reduce 

the size, to create transcriptionally active and silent regions, to support DNA replication and to 

coordinate proper separation of genetic material to daughter cells. Chromatin is a complex of 

DNA and proteins structured in nucleosomes that consists of a 147bp DNA strand wrapped 

around a histone octamer composed by two histones of variant H2A, H2B, H3 and H4. . Histone 

octamers can be modified by a variety of modifications that preferentially are found at the 

histone tails, which extend out of the octamer. Modifications include mono-, di-, trimethylation, 

acetylation, phosphorylation or ubiquitination at defined positions. Histone modifications lead to 
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differences in the chromatin structure and, as a consequence, changes in gene expression. The 

best studied modifications are located on histones 3 and 4 and have been linked to certain 

functional states exerted by the genes nearby. Modifications determine if a chromosomal region 

is accessible for the binding of transcription factors or other regulatory molecules or if the gene 

loci are active or silent. For example active chromatin is characterized by trimethylation of lysine 

4 of histone 3 (H3K4me3). Inactive promoter regions are marked by acetylation of lysine 27 of 

histone 3 (H3K27ac) or trimethylation of lysine 9 of histone 3 (H3K9me3) [29]. Histone 

acetylation represents usually an activating mark, whereas histone methylation can be activating 

or repressive depending on the modified amino acid.  

3.2. Major regulators of the epigenome 

Epigenetic modifications of DNA and histones, and/or alterations in chromatin-remodeling 

processes, determine active and repressive chromatin states of genes and of chromosomal 

regions. Such modifications can regulate the fine tuning of gene expression via promoter or 

enhancer methylation.  

Enzymes that establish a mark on either DNA or the histone tail are termed 'writers'. These 

modifications can be removed or modified by 'editing' enzymes. The third class of enzymes 

includes the 'readers' of an epigenetic mark, which mediate the interaction of the mark with a 

transcriptional protein complex (Figure 3-1).  
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Figure 3-1: Enzymes involved in DNA and histone modification pathways. The top panel depicts DNA modifications, such as 

DNA methylation and demethylation, and the enzymes involved; the bottom panel shows histone modifications and the enzymes 

involved. Examples for each class of enzyme are given. 5hmC, 5-hydroxymethylcytosine; 5mC, 5-methylcytosine. A – active histone 

marks, IA- inactive marks. 

3.2.1 Complexes of epigenetic regulators in cancer 

Epigenetic gene regulation depends on the interplay of DNA methylation, histone marks and 

nucleosome positioning. Epigenetic marks are catalyzed by different epigenetic complexes. 

Such complexes consist of major core factors and axillary components. Polycomb group (PcG) 

complexes are epigenetic regulatory complexes that conduct transcriptional repression of target 

genes via modifying the chromatin. The two best characterized forms of PcG complexes, 

polycomb repressive complexes 1 and 2 (PRC1 and PRC2), are required for maintaining the 

stemness of embryonic stem cells and many types of adult stem cells. Target genes for PRCs 

are numerous and are changing with cell differentiation and during developmental processes. 

The major core component of PRC2 is EZH2 which is responsible for catalyzing di- and tri-

methylation of Lys27 on histone H3 (H3K27me2/3) [30]. The other core PRC2 components are 

necessary for complex assembly and for proper enzymatic activity [31]  [32].  

3.3. Non-coding RNAs 
 

Increasing evidence is showing that most epigenetic mechanisms of gene expression control 

include regulation by non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), small RNAs 

(sRNAs) and long or large RNAs (lncRNAs) and other classes (Table 3-1). ncRNAs with different 

regulatory functions are recognized as common features of mammalian transcriptomes, 

especially after the discovery that most of the eukaryotic genomes are transcribed into RNAs 

that have no protein-coding potential [33, 34]. ncRNAs are able to direct the cytosine methylation 

and histone modifications for gene expression regulation. These molecules are very important in 

various epigenetic modification mechanisms such as transposon activity and silencing, position 

effect variegation, X-chromosome inactivation and paramutation, and will be explained in more 

details by each class.  
 
microRNAs (miRNAs) 
As best described class of ncRNAs, miRNAs, are small non-coding RNAs (about 

~22 nucleotides in length) that mediate post-transcriptional gene silencing by controlling the 

translation or transcript stability of messenger RNAs (mRNAs). The majority of miRNAs are 
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transcribed by RNA-polymerase II (Pol II) as a primary miRNA transcript (pri-miRNAs) and 

further processed by the RNase ‘Drosha’ into the precursor miRNA (pre-miRNA). After active 

export to the cytoplasm, Dicer cleaves the pre-miRNAs into short mature miRNA fragments. The 

mature miRNA is loaded into the RNA-induced silencing complex (RISC), containing the single-

stranded miRNA and Argonaute (Ago) proteins. By base-pairing of the miRNA to the 

3´untranslated regions (3´UTR) of target mRNAs, RISC can inhibit the expression of the target 

mRNA through mRNA degradation and blockade of translation [35]. Computational prediction 

reveals several hundred mRNA targets for each miRNA [36]. miRNAs are estimated to regulate 

translation over 60% of protein-coding genes. They are involved in the regulation of many 

processes including proliferation, differentiation, apoptosis and development. Whereas some 

miRNAs regulate specific individual targets, others can function as “master” regulators of a 

process, so key miRNAs regulate expression levels of hundreds of genes simultaneously. Many 

types of miRNAs regulate theirs targets cooperatively [37], [38].  
 

PIWI-interacting RNAs (piRNAs) 
buduThe newly identified small RNAs class of piwi-interacting RNAs (piRNAs) are Dicer-

independent ncRNAs of 26-30bp in length which bind the PIWI subfamily of Argonaute family 

proteins that are involved in maintaining genome stability in germline cells. They are mapped 

mostly to repetitive elements, are important for transposon control in flies [39] and in silencing 

mechanisms of repetitive elements in vertebrates [40].  piRNAs are mapped to repeats in the 

genome, with most of them matching short interspersed elements (SINEs), long interspersed 

elements (LINEs) and  long terminal repeat (LTR) retrotransposons  [41].  
 
Table 3-1. Major classes of non-coding RNAs in mammals 

ncRNA class Description  

Long (regulatory) non-
coding RNAs 
(lncRNAs) 

The broadest class, lncRNAs, encompasses all non-protein-coding RNA species > 

∼200 nt, including mRNA-like ncRNAs. Their functions include epigenetic 

regulation, acting as sequence-specific tethers for protein complexes and 

specifying subcellular compartments or localization 

Small interfering RNAs 
(siRNAs) 

Small RNAs ∼21–22 nt long, produced by Dicer cleavage of complementary 

dsRNA duplexes. siRNAs form complexes with Argonaute proteins and are 

involved in gene regulation, transposon control and viral defense 

microRNAs (miRNAs) Small RNAs ∼22 nt long, produced by Dicer cleavage of imperfect RNA hairpins 

encoded in long primary transcripts or short introns. They associate with 

Argonaute proteins and are primarily involved in post-transcriptional gene 

regulation 
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PIWI-interacting RNAs 
(piRNAs) 

Dicer-independent small RNAs ∼26–30 nt long, principally restricted to the 

germline and somatic cells bordering the germline. They associate with PIWI-clade 

Argonaute proteins and regulate transposon activity and chromatin state 

Promoter-associated 
RNAs (PARs) 

A general term encompassing a suite of long and short RNAs, including promoter-

associated RNAs (PASRs) and transcription initiation RNAs (tiRNAs) that overlap 

promoters and TSSs. These transcripts may regulate gene expression 

Small nucleolar RNAs 
(snoRNAs) 

Small RNAs (60–300 bp),traditionally viewed as guides of rRNA methylation and 

pseudouridylation. However, there is emerging evidence that they also have gene-

regulatory roles 

X-inactivation RNAs 
(xiRNAs) 

Dicer-dependent small RNAs processed from duplexes of two lncRNAs, XIST and 

TSIX, which are responsible for X-chromosome inactivation in placental mammals 

Sno-derived RNAs 
(sdRNAs) 

Small RNA), some of which are Dicer-dependent, which are processed from small 

nucleolar RNAs (snoRNAs). Some sdRNAs have been shown to function as 

miRNA-like regulators of translation 

microRNA-offset RNAs 
(moRNAs) 

Small RNAs ∼20 nt long, derived from the regions adjacent to pre-miRNAs. Their 

function is unknown 

tRNA-derived RNAs tRNAs can be processed into small RNA species by a conserved RNase 

(angiogenin). They are able to induce translational repression 

MSY2-associated RNAs 
(MSY-RNAs) 

MSY-RNAs are associated with the germ cell-specific DNA/RNA binding protein 

MSY2. Like piRNAs, they are largely restricted to the germline and are ∼26–30 nt 

long. Their function is unknown 

Telomere small RNAs 
(tel-sRNAs) 

Dicer-independent ∼24 nt RNAs principally derived from the G-rich strand of 

telomeric repeats. It has been suggested a role in telomere maintenance 

Centrosome-
associated RNAs 
(crasiRNAs) 

A class of ∼34–42 nt small RNAs, derived from centrosomes that show evidence 

of guiding local chromatin modifications 

 

Sno-derived RNAs (snoRNAs) 
snoRNAs are intermediate-sized ncRNAs (60–300 bp). They are components of small nucleolar 

ribonucleoproteins (snoRNPs), which are complexes that are responsible for sequence-specific 

post-transcriptional modification of ribosomal RNA (rRNA) to facilitate rRNA folding and stability 

[42]. The sequences of snoRNAs are responsible for targeting the assembled snoRNPs to a 

specific target. 

Long-noncoding RNAs (lncRNAs)  
As biggest class of ncRNAs, lncRNAs are a heterogeneous group of non-coding transcripts 

more than 200 nt long that are involved in many biological processes. This class of ncRNA 

makes up the largest portion of the mammalian non-coding transcriptome. Various mechanisms 

of transcriptional regulation of gene expression by lncRNAs have been proposed. Among these, 
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lncRNAs are known to mediate epigenetic modifications of DNA that act by recruiting chromatin 

remodeling complexes to specific loci [43].  

Moreover, growing evidence indicates that lncRNAs are always transcribed from an imprinted 

region of mammalian genomes, which is very similar to the mechanisms used by the large 

ncRNA XIST in the X-chromosome inactivation in female cells, suggesting that they are also key 

players in this type of silencing process in autosome chromosomes [44]. ncRNAs are also 

involved in silencing of repeats in the genome mediated by small RNAs. Another function of 

ncRNAs was described by identification of XIST ncRNA. XIST is a very long ncRNA, 17 kb in 

length, that is able to physically bind and form complexes with the chromatin that is surrounding 

one of the X-chromosomes in females (for review see [45]). It was also shown that XIST 

expression can be controlled by epigenetic mechanisms such as DNA methylation and normal 

patterns of methylation are disrupted in cancer cells [46]. X-chromosome inactivation is a 

mechanism used by mammals for dosage compensation in female genomes: one copy of their 

sexual chromosome is inactivated by DNA methylation. ncRNA XIST was reported to be a major 

regulator of this process in association with proteins of the chromatin. Another long non-coding 

transcript termed TSIX is expressed from the strand opposite to XIST and is able to control its 

levels in the inactivation process by epigenetic mechanisms [43]. Both transcripts can directly 

influence the chromatin modifications and thereby alter the levels of proteins that bind to the 

DNA in the X-chromosome [47].  

 

ncRNAs were also reported to be involved in expression control of imprinted regions. DNA 

imprinting is an epigenetic mechanism of regulation of monoallelic expression in autosome 

chromosomes of mammals. Generally, imprinting involves DNA methylation of one allele and it 

was reported that such regions have ncRNAs mapped or nearby and they are implicated in the 

silencing process. Deletion or knockdown of ncRNA transcripts in imprinted regions can have 

deleterious effects [48]. Imprinting clusters, such as Igf2r, Kcnq1, Gnas, and Pws, contain 

ncRNA in the anti-sense orientation of one of the silenced genes [49].  

 

Recently, a long anti-sense ncRNA named HOTAIR was identified illuminating new mechanisms 

whereby transcription of ncRNAs dictates transcriptional silencing of a distant chromosomal 

region [50]. HOTAIR was implicated in mediating epigenetic silencing of a chromosomal domain 

in trans by guiding specific histone modifications [50]. There are still many questions about the 

mechanism of acting of such large ncRNAs in affecting the expression of genes in other loci, but 

this study suggests that ncRNAs might be essential epigenetic regulators and the same type of 

regulation may be occurring in other regions of the human genome.  
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Another class of lncRNAs are lincRNAs, which are transcribed from intergenic regions. These 

transcripts are identified by searching for chromatin signatures that are associated with active 

transcription in the regions across which transcriptional elongation takes place [51]. lincRNAs are 

found to regulate both the expression of neighboring genes and distant genomic sequences [52], 

[53].  

A final class of lncRNAs is those that are transcribed from ultraconserved regions (UCRs). UCRs 

are conserved DNA segments that are longer than 200 bp [54]. There are ~ 500 described 

UCRs, some of which overlap with coding exons, although it is believed that more than half of 

them do not encode any protein [55]. T-UCRs are a subclass of UCRs, that are transcribed and 

expressed in normal tissues either ubiquitously or in a specific pattern [56]. The functions of T-

UCRs are remains unknown, but it has been shown that some of them bind to miRNAs [56]. 

Other types of ncRNAs  

Many classes of ncRNA have been described that are associated with the transcriptional start 

sites (TSSs) of genes: for example, promoter-associated small RNAs (PASRs), TSS-associated 

RNAs (TSSa-RNAs), promoter upstream transcripts (PROMPTs) and transcription initiation 

RNAs (tiRNAs) (Table 3-1). Their biological functions remain unknown, but it is hypothesized 

that they are involved in transcription regulation. Another type of lncRNA, known as telomeric 

repeat-containing RNAs (TERRAs), is transcribed from telomeres. TERRAs help to maintain the 

integrity of telomeric heterochromatin by regulating telomerase activity and are involved in the 

mechanism called alternative lengthening of telomeres (ALT) [57]. 

 

3.4. Epigenetic alterations in cancer 
 

Epigenetic aberrations have been well established in cancer and occur in several other 

diseases, including diabetes, lupus, asthma and a variety of neurological disorders [58]. 

Feinberg and Vogelstein already in 1983 discovered that one major difference between cancer 

cells and healthy counterparts was the aberrant substantial DNA hypomethylation of genes in 

cancer patients with progressive hypomethylation in metastasis [59]. Epigenetic alterations in 

cancer have been investigated for more than 25 years, both on the single-gene level and on the 

genome-wide level. It was shown that both genetics and epigenetics cooperate during 

tumorigenesis and especially DNA methylation changes within CGIs have been described to 

occur frequently in cancer (Figure 3-2). 
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Figure 3-2: Main events during cancerogenesis. Schematic overview of steps during tumorigenesis from normal cell, passing 

cancer specific and tissue specific events (upper part). Cancerogenesis is characterized by loss of global DNA methylation and 

increase of genomic instability and epigenomic variability and promoter methylation (lower part).     

3.4.1. Global DNA methylation alterations in cancer 

Hypermethylation of a GCI promoter is associated with gene silencing, which has been 

demonstrated for numerous tumor suppressor genes (TSGs). However, cancer genomes are 

also characterized by global loss of 5mC (hypomethylation), which mainly occurs at 

pericentromeric satellite DNA or other repetitive elements, including gene regulatory sequences. 

In normal cells, repetitive elements are highly methylated in the genome, which ensures integrity 

and stability of the genome. In addition, hypomethylation loosens the chromatin structure, 

leading to chromosomal instability such as translocations or deletions [1]  

 

A gain of methylation is detected at the promoters of cancer related genes e.g. tumor 

suppressor genes and can lead to silencing of the respective gene (Figure 3-3). The first 

cancer-associated hypermethylation of a CGI of a TSG was reported in 1989 for the well-known 

retinoblastoma gene RB1 [60, 61] and shortly after causally linked to TSG silencing in 1993 [62]. 

In the mid-90s, the importance of epigenetics in cancer development was further strengthened 

by the finding that known TSGs are preferentially or even exclusively silenced by DNA 

hypermethylation. Early examples of silenced TSGs were CDKN2A (cyclin-dependent kinase 
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inhibitor 2A) [63-65], VHL (von Hippel-Lindau Tumor Suppressor) [66], MLH1 (MutL Homolog 1, 

Colon Cancer, Nonpolyposis Type 2 (E. Coli)) [67], and DAPK1 (death-associated protein kinase 

1)  – a list of genes that has expanded ever since  [68]. With the advent of genome profiling 

technologies, there are a lot more genes known to be aberrantly methylated in different tumor 

types.  

 

Loss of DNA methylation was described already in 1982 and affects mainly regions that are 

highly methylated in normal tissue such as repetitive sequences or pericentromeric regions. 

Consequently this can lead to a more open chromatin structure, which might cause 

chromosomal breakage, aberrant rejoining or rearrangements [69]. Furthermore, loss of 

methylation in gene bodies could result as well in deregulation of gene expression, thereby 

contributing to tumorigenesis (Figure 3-2-2). Examples for hypomethylation of oncogenes 

include RAS (Rat sarcoma) in colonic adenocarcinomas and small cell lung cancer [70], MAGE-

1 (melanoma antigen family A1) [71] and BCL2 (B-cell CLL/lymphoma 2) in B-cell chronic 

leukemia [72]. 

 

 
Figure 3-3: Epigenetic regulation in cancer on gene-level. A schematic view of epigenetic regulation of a gene in cancer vs. 

normal tissue represents exemplary “gene” with all regulatory elements like enhancers, promoters and transcribed regions, marked 

by different colors (lower part). Epigenetic changes in tumor vs. normal are plotted separately for DNA methylation as well as for 

chromatin marks (blue color denotes normal, red color – tumor). In DNA methylation plot depicts DNA hypermethylation of gene 

promoter and DNA hypomethylation of gene body in cancer.   

 

Similar patterns of DNA methylation were observed across tumors from the same tissue types 

that indicated for specific mechanism, which causes such nonrandom pattern of methylation. 

These patterns can either be a reflection of the methylome seen in the cell of origin of a given 

tumor type or could be a result of evolving cancer cells further modifying the epigenome as a 

consequence of mutations in epigenetic enzymes [73]. Tumor methylome profiles have been 

used to subdivide tumors on tumor subgroups in order to better understand the tumor biology 

and mechanisms leading to tumor development. Medulloblastoma is a great example, where 
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four methylation patterns reflect differences in the cell of origin as well as in the mechanism of 

methylation deregulation [74]. DNA hypermethylation of a distinct set of genes was first 

described in colon cancer and designated as CpG island methylator phenotype (CIMP) [75]. This 

separation of CIMP positive and CIMP negative tumors is in the meantime also described in 

several other cancers including glioblastoma [76], gastric cancer [77], pancreatic 

adenocarcinoma [78], hepatocarcinoma [79],  and in acute lymphocytic leukemia [80] and 

prostate [81].  The CIMP phenotype could reflect the differential activities of epigenetic enzymes 

in these subgroups shaping the epigenome in different ways. 

 

3.4.2. Cancer drivers vs. passengers 

Recent genome sequencing activities by international consortia identified more somatic 

abnormalities in the cancer genome, but it is becoming clear that a fair amount have made no 

contribution in carcinogenesis. To address this phenomenon, the terminology that groups 

somatic mutations into two categories, drivers and passengers was developed. Stratton et al. 

described 'driver' mutations as those that confer growth advantage on the cells carrying them 

and have been positively selected during the evolution of the cancer. Remaining mutation were 

assigned as 'passengers' that do not confer growth advantage, but happened to be present in an 

ancestor of the cancer cell when it acquired one of its drivers [82].  Passenger mutations are 

found within the cancer genome since somatic mutations often occur during cell division without 

functional consequences. Hence, a cell that contains a passenger mutation will clonally expand 

carrying the mutation within all of the cells from that point forward.  

The ability to discern between the two types of mutations can lead to a deeper understanding of 

cancer biology and empower the development of cancer therapeutics. But a complexity of 

cancer genomes makes it a key challenge nowadays. There are different tools/strategies used 

for investigation driver mutations. For example, one strategy exploits a number of structural 

signatures associated with mutations that are under positive selection. Such approach was 

fruitfully adopted in the past to identify most somatic cancer genes in studies of selected genome 

regions. Another way to find drivers is leveraging large cohorts of samples and using recurrence 

as an indicator of selection and to look for these signals of positive selection in the pattern of 

somatic mutations in genes across different tumors (relevant methods: MuSiC [83] or MutSig 

[84], InVex algorithm [85]). An alternative approach is to use functional annotation to infer driver 

status (relevant methods: IntOGen, OncodriveFM and OncodriveCLUST). There are around 100 

genes that are known cancer drivers in literature, mostly assigned based on frequency, like 
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TP53, the gene encoding tumor protein p53 [86] or Kirsten rat sarcoma viral oncogene homolog 

(KRAS) [87].   

3.4.3. Cancer driver mutations in the epigenome 

Recent genome sequencing activities by international consortia identified defects in epigenetic 

enzymes that are responsible for the establishment of global epigenetic patterns, involving DNA 

methylation, histone modifications and chromatin remodeling [5, 29, 88]. Frequent and recurrent 

mutations have been described as the K27M and G34R/V mutations in the histone H3.3 variant 

H3.3A (encoded by H3F3A) in pediatric glioblastoma or chondrosarcomas [89, 90], isocitrate 

dehydrogenase 1 (IDH1) mutations in gliomas [91, 92], or de novo DNA methyltrasnferase 3A 

(DNMT3a) mutations in acute myeloid leukemia and glioblastoma [93, 94]. Recent studies 

revealed 125 pan-cancer driver genes recurrently mutated which are acting in epigenetic 

pathways [95]. Some of these mutations associate with distinct subgroups of tumors 

characterized by defined epigenetic patterns and clinical phenotypes. A different study identified 

102 pan-cancer recurrent focal amplified/deleted regions, for which currently no known 

oncogenes/tumor suppressor genes have been identified. Interestingly these regions are 

enriched for genes involved in regulation of  epigenetic patterns [96]. It was suggested that 

candidate driver mutations acting through global reprogramming of epigenetic patterns [1].  

3.4.4. Integrative analysis of cancer genomes and epigenomes 
 

In the past, a tumor genome study mainly focused on either genetic or epigenetic events. 

Nowadays this strategy was changed to a more comprehensive analysis of cancer genomes that 

includes different data types, like: gene mutations, copy-number aberrations, structural 

variations, epigenetic patterns and expression profiles of non-coding RNAs. But there is a huge 

lack of unified bioinformatic tools for such integrative analysis due to different approaches for 

performing the integration of data. Some tools are available to support visualization and pathway 

analysis of preselected cancer genes; however, a tool that encompasses all analyses is still 

needed. Table 3-2 provides a list of selected bioinformatic tools which allows the integration of at 

least two types of data sets.  
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Table 3-2. Selected web-based bioinformatic tools and web services for integrative cancer genome analysis 
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cBioPortal for 
Cancer 
Genomics 

TCGA Webservice – ✓ – ✓ ✓ ✓ – – ✓ ✓ 

PARADIGM,Br
oad GDAC 
Firehose 

TCGA Webservice ✓ ✓ – ✓ ✓ ✓ ✓ – – ✓ 

WashU 
Epigenome 
Browser 

ENCODE Webservice ✓ ✓ ✓ ✓ ✓ ✓ ✓ – – ✓ 

UCSC Cancer 
Genomics 
Browser 

UCSC Webservice ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – – 

The Cancer 
Genome 
Workbench 

TCGA Webservice – ✓ ✓ ✓ ✓ ✓ ✓ – – – 

EpiExplorer ENCODE 
and 
ROADMAP 

Webservice ✓ ✓ ✓ ✓ ✓ ✓ ✓ – – – 

EpiGRAPH ENCODE Webservice ✓ ✓ ✓ ✓ ✓ ✓ ✓ – – – 

Catalogue of 
Somatic 
Mutations in 
Cancer 
(COSMIC) 

TCGA and 
ICGC 

Webservice – ✓ – – ✓ ✓ – – – – 

PCmtI, MAGIA, 
miRvar, 
CoMeTa etc* 

GEO and 
TCGA 

Webservice ✓ ✓ – ✓ – – – ✓ – ✓ 

             
ICGC ICGC Webservice – ✓ – ✓ ✓ ✓ – – – – 

Genomatix User defined Tool – ✓ – ✓ ✓ ✓ ✓ – – ✓ 
Caleydo TCGA Tool – ✓ ✓ ✓ ✓ ✓ ✓ ✓ – ✓ 
Integrative 
Genomics 
Viewer (IGV) 

ENCODE Tool – ✓ ✓ ✓ ✓ ✓ ✓ – – – 

iCluster and 
iClusterPlus 

User defined Tool – ✓ – ✓   ✓ – – – – 

CNV, copy-number variation; ENCODE, Encyclopedia of DNA Elements; ICGC, the International Cancer Genome Consortium; 

GDAC, Genomic Data Analysis Center; GEO, Gene Expression Omnibus; miRNA, microRNA; SNV, single-nucleotide variation; 

TCGA, The Cancer Genome Atlas; UCSC, University of California Santa Cruz. 

Website with links for integrated analysis of microRNA and mRNA expression.      
       

 

3.4.5. Disruption of ncRNAs in cancer 
miRNAs in cancer 
The roles of ncRNAs in tumorigenesis have most thoroughly been studied with respect to 

miRNAs [97]. Deregulated miRNAs multiply their influence on thousands of target genes many 

of them with cancer relevant functions. miRNA expression profiles differ between normal tissues 

and the tumors that are derived from them and also between tumor types [97],[98] . miRNAs can 

act as oncogenes or as tumor suppressors and can have key functions in tumorigenesis. 

Recently, by efforts of TCGA (The Cancer Genome Atlas) and ICGC (International Cancer 

http://www.cbioportal.org/public-portal/index.do
http://www.cbioportal.org/public-portal/index.do
http://www.cbioportal.org/public-portal/index.do
https://confluence.broadinstitute.org/display/GDAC/Home
https://confluence.broadinstitute.org/display/GDAC/Home
https://confluence.broadinstitute.org/display/GDAC/Home
http://epigenomegateway.wustl.edu/browser/
http://epigenomegateway.wustl.edu/browser/
http://epigenomegateway.wustl.edu/browser/
https://genome-cancer.ucsc.edu/
https://genome-cancer.ucsc.edu/
https://genome-cancer.ucsc.edu/
https://cgwb.nci.nih.gov/
https://cgwb.nci.nih.gov/
https://cgwb.nci.nih.gov/
http://epiexplorer.mpi-inf.mpg.de/
http://epigraph.mpi-inf.mpg.de/WebGRAPH/
http://www.sanger.ac.uk/genetics/CGP/cosmic/
http://www.sanger.ac.uk/genetics/CGP/cosmic/
http://www.sanger.ac.uk/genetics/CGP/cosmic/
http://www.sanger.ac.uk/genetics/CGP/cosmic/
http://www.sanger.ac.uk/genetics/CGP/cosmic/
http://www.icgc.org/
http://www.genomatix.de/
http://www.icg.tugraz.at/project/caleydo/
http://www.broadinstitute.org/software/igv/
http://www.broadinstitute.org/software/igv/
http://www.broadinstitute.org/software/igv/
http://www.mskcc.org/research/epidemiology-biostatistics/biostatistics/icluster
http://www.mskcc.org/research/epidemiology-biostatistics/biostatistics/icluster
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Genome Consortium) consortia, the miRNA profiles of different cancer types were revealed. 

There are few reports on the mechanisms that lead to miRNA deregulation [16],[99] e.g. genetic 

(such as somatic mutations or deletions/amplifications) or epigenetic events (changes in 

promoter methylation. Most of the previous studies were based on single (or a few) candidate 

miRNAs. Examples include promoter methylation for miR-23b, which results in activation of the 

proto-oncogenes [100] or hypermethylation of the miR-26a leading to activation of the histone 

modifier EZH2 (Enhancer of zeste homolog 2) [101] in prostate cancer (PCA) or promoter 

hypermethylation of miR-200 family, that leads to reduction of CDH1 (Cadherin-1) in cancer (see 

full list of epigenetically disrupted miRNAs in Table 3-3) [102]. One of the first associations of 

miRNA deregulation due to a genetic event was reduced miR-15 and miR-16 expression in more 

than 50% of B cell chronic lymphocytic leukemia as a result of chromosome 13q14 deletion 

[103].  Interestingly, miRNAs are frequently located in fragile sites (heritable chromosomal sites 

which tend to form a gap or constriction and may tend to break) that are involved in ovarian and 

breast carcinomas and melanomas [104].  

Even though there are reports on mechanisms that can lead to specific miRNA deregulation, it 

remains unclear what the major mechanisms of miRNAs deregulation in cancer are. Global 

genome wide data sets from ICGC or TCGA now allow new integrative approaches to decipher 

the mechanisms for each miRNA in different tumor entities. Such integrative analysis will need to 

cover all different data level and allow clarifying all mechanisms of miRNAs deregulation and/or 

finding the unique one.  

Table 3-3. Examples of miRNAs disrupted by genetic or epigenetic means in cancer 

miRNA name Disruption Consequence Cancer type 

miR-124a CGI hypermethylation CDK6 overexpression Colon, gastric, 

haematological 

miR-34b and miR-
34c 

CGI hypermethylation Metastasis Many different tumor 

types 

miR-148a CGI hypermethylation Metastasis Colon, melanoma, 

breast 

miR-9 CGI hypermethylation Metastasis Colon, melanoma, head 

and neck 

miR-200c CGI hypermethylation EMT Colon, breast, lung 

miR-141 CGI hypermethylation EMT Colon, breast, lung 

miR-205 CGI hypermethylation EMT Bladder 

miR-196b CGI hypermethylation Unknown Gastric 

miR-129-2 CGI hypermethylation SOX2 overexpression Colon, endometrial, 
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gastric 

miR-137 CGI hypermethylation CDC42 overexpression Colon, head and neck 

miR-151 Genomic gain Metastasis Hepatocellular 

carcinoma 

miR-517c and miR-
520g 

Genomic gain WNT upregulation Neuroectodermal brain 

tumors 

miR-106b-25 Genomic gain p21 and BIM depletion Oesophageal 

adenocarcinoma 

miR-15 and miR-16 Genomic deletion BCL2 overexpression Haematological 

EMT, epithelial-to-mesenchymal transition, table was modified from [105].   

 

The recent tumor-specific genetic defects in the miRNA-processing machinery, such as in the 

genes that encode TARBP2 (TAR (HIV-1) RNA Binding Protein 2) [106], DICER1 (dicer 1, 

ribonuclease type III) [107] and XPO5 (exportin 5) [108] was highlighted the relevance of these 

pathways in cellular transformation, in which such defects contribute to explain miRNA 

dysregulation in cancer. The miRNA expression profile of human tumors was characterized by a 

general defect in miRNA production that results in global miRNA downregulation. Such study 

indicated an alternative mechanism of miRNA deregulation in cancer.  

 

lncRNAs in cancer 
Among various examples of the involvement of lncRNAs in cancer, the role of HOTAIR in human 

cancer is the best studied [109]. In epithelial cancer cells, HOTAIR overexpression causes 

genome-wide redistribution of promoter occupancy by Polycomb Repressive Complex 2 (PRC2) 

and H3K27me3. HOTAIR binds to the PRC2 thus preventing the repression of polycomb-

targeted genes leading to changes in their expression across the genome. Cancer invasiveness 

is decreased when HOTAIR expression is lost, showing opposite effect compare to cells with 

higher than usual levels of PRC2 activity. Potentially HOTAIR might have an active role in 

modulating the cancer epigenome and mediating cell transformation. A similar function has been 

postulated for some other lincRNAs, such as lincRNA-p21, which functions as a repressor in 

p53-dependent transcriptional responses [52]. The p15 antisense lncRNA, p15AS, which was 

first identified in human leukemia, has also been shown to induce the silencing of the p15 tumor 

suppressor gene locus by inducing the formation of heterochromatin [110]. Recently, 121 

prostate cancer associated intergentic non-coding RNA transcripts (termed the PCAT family) 

was identified, by novel tools for de novo identification of ncRNA transcripts from RNA-seq data 

(will be discussed in more details in chapter 3.4.1) [111]. 

  
  



  INTRODUCTION | 41 

3.5. PanCancer studies 
In the last 10 years, the high increase in cancer data collection was leaded by the efforts of two 

major cancer consortia: TCGA and ICGC. Their major goal is to obtain a comprehensive 
description of genomic, transcriptomic and epigenomic changes in more than 50 different 
tumor types and/or subtypes which are of clinical and societal importance across the globe. 

Recently, both consortia have raised their interest to perform comparisons between different 

tissue types to identify similarities and differences. PanCancer or PANCAN initiatives seek to 

combine analysis across tumor types in order to identify both similarities and differences in 

genomic/epigenenomic/trancsriptomic alterations. By combined efforts and expertise of different 

groups PANCAN initiative will also develop new bioinformatics tools and platforms, providing a 

foundation that should prove useful in future large-scale analysis projects. There are different 

threads for PANCAN analysis, such as identification of mutational drivers, network models, 

exposures and pathogens, data discovery and future directions.  

 

The TCGA PanCancer initiative examines the similarities and differences among the genomic 

and cellular alterations found in the first dozen tumor types to be profiled by TCGA. The 

hierarchical classification of ~500 selected functional events (SFEs) of 3,299 TCGA tumors from 

12 cancer types had shown two classes of tumors: either characterized by mutations (M class) 

or by copy number changes (C class) [112]. This distinction was clearest at the extremes of 

genomic instability, indicating the presence of different oncogenic processes. In another study, 

somatic copy number alteration (SCNA) patterns in 4,934 cancers from TCGA were 

characterized. In 37% of cancer samples, whole-genome doubling, associated with genetic 

alterations (such as TP53 mutations, CCNE1 amplifications and alterations of the PPP2R 

complex) was observed [96].  SCNAs that were internal to chromosomes tended to be shorter 

than telomere-bounded SCNAs, suggesting different mechanisms underlying their generation. 

Also recurrent focal SCNAs were observed in 140 regions, including 102 without known 

oncogene or tumor suppressor gene targets and 50 with significantly mutated genes. Amplified 

regions without known oncogenes were enriched for genes involved in epigenetic regulation 

[96]. In a different PANCAN TCGA study, 127 significantly mutated genes from well-known (for 

example, mitogen-activated protein kinase, phosphatidylinositol-3-OH kinase, Wnt/β-catenin and 

receptor tyrosine kinase signaling pathways, and cell cycle control) and emerging (for example, 

histone, histone modification, splicing, metabolism and proteolysis) cellular processes in cancer 

were identified [113]. The average number of mutations in these significantly mutated genes 

varies across tumor types; most tumors have two to six, indicating that the number of driver 

mutations required during oncogenesis is relatively small. Mutations in transcriptional 
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factors/regulators show tissue specificity, whereas histone modifiers are often mutated across 

several cancer types [113]. The results were also confirmed by recently identified 291 high-

confidence cancer driver genes [114]. Such driver list was generated based on 3,205 tumors 

from 12 different cancer types. Among those genes, some have not been previously identified as 

cancer drivers and 16 have clear preference to sustain mutations in one specific tumor type.  

 

Using molecular profiles of >3,000 tumors from 11 human cancer types in TCGA, systematically 

analyzed expression of miRNAs and mRNAs across cancer types to infer recurrent cancer-

associated miRNA-target relationships was performed. miRNAs with recurrent target 

relationships were frequently regulated by genetic and epigenetic alterations across the studied 

cancer types [115]. Novel cancer specific miRNAs and miRNA families were identified, including 

miR-29 family, which recurrently regulates active DNA demethylation pathway 

members TET1 and TDG.  

 

3.6. Prostate cancer 
 

Prostate cancer (PCA) is the most common type of cancer in males and the second leading 

cause of death from cancer among men [116]. PCA has a rather slow progression and is 

generally considered characteristic for elderly males. Nonetheless, approximately 2% of tumors 

are diagnosed in men of 50 years or less [117]. This is referred to as early onset prostate cancer 

(EO-PCA). EO-PCA is analyzed as a separate entity by the German ICGC and should help to 

better understand PCA biology. The comparison analysis of age-related differences of structural 

rearrangement (SRs) has reported that EO-PCAs harbored androgen-regulated ETS 

(erythroblast transformation-specific gene family) gene fusions including TMPRSS2:ERG in 

prevalence, whereas elderly PCA carried  primarily non-androgen SRs [118].   

 

PCA genome-wide methylation studies have identified large numbers of differently methylated 

regions (DMRs) [119] [120], but the mechanism that lead to aberrant DNA methylation patterns 

remains unknown.  

 

The clinical spectrum of PCA ranges from indolent tumors requiring no therapy to highly 

aggressive and often metastatic disease [121]. This clinical heterogeneity is caused by a 

complex pattern of genetic and epigenetic alterations, which are currently being uncovered by 

the ICGC and other projects. These alterations include the disruption of the chromatin modifier 

CHD1 and the tumor suppressor gene PTEN (phosphatase and tensin homolog) by complex 
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mutational processes including deletions, mutations, translocations, microRNAs [118, 119, 122], 

or the activation of ETS transcription factors through structural rearrangements [119, 123].  

 

It is well accepted that epigenetic alterations including histone modifications and DNA 

methylation participate in creating altered gene expression patterns [124]. In PCA, epigenetic 

aberrations are widespread and contribute to the deregulation of cellular processes, e.g. 

hormonal response, cell cycle or DNA damage repair [125, 126]. Epigenetic silencing of target 

genes by promoter hypermethylation is detected in more than 90% of PCA early during 

tumorigenesis. These include GSTP1, which is involved in the detoxification of potential 

carcinogens, and the tumor suppressors RASSF1A and APC [125, 127]. In addition, histone-

modifying enzymes like HDAC1, EZH2 or LSD1 are upregulated in PCA [126]. Genome-wide 

methylation studies have identified large numbers of aberrantly methylated regions in PCA, 

demonstrating the complexity of epigenetic alterations and supporting their important role in 

PCA. Börno et al. have reported more than 147,000 cancer-associated epigenetic alterations 

[101] and Kim et al. have identified 2,481 promoter regions differentially methylated in PCA 

[120].  

 
3.6.1. Deregulation of ncRNA in prostate cancer 
 
By large-scale RNA-sequencing efforts of TCGA and ICGC, hundreds of novel cancer 

associated ncRNAs were identified. A set of 121 PCA-associated intergenic non-coding RNA 

transcripts were found, and termed due to PCA relevance as PCAT family [111]. PCATs have 

different role in prostate cancer development and can be oncogenic (like PCAT1, PCAT3, 

PCAT8) or have tumor-suppressor role (like PCAT29) (Table 3-4). One of the first described 

lncRNA in PCA is PCA3, originally described in 1999 [128] as up-regulated in PCA as compared 

to normal and benign prostate hyperplasia. This lncRNAs was used to develop a biomarker for 

early detection of PCA. The best studied examples of lncRNAs with androgene receptor (AR) 

co-activator functions are PCGEM1 (prostate cancer gene expression marker 1) and PRNCR1 

(prostate cancer non-coding RNA 1), both overexpressed in PCA [129]. PRNCR1 binds to AR 

and recruits DOT1L methyltransferase, which methylates AR and allows the interaction of 

PCGEM1 and methylated AR that leads to activation of AR-regulated genes.  
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Table 3-4. Summary of studies on aberrant ncRNAs expression in prostate cancer 

ncRNA name AR-
regulated 

Expressio
n in PCA 

Related functions Roles in PCA 

miRNAs 

miR-21 + ↑ Motility, invasion, 
apoptosis 
resistance 

Oncomir 

miR-125b + ↑ Apoptosis 
proliferation 

Oncomir 

miR-220/-221   ↑   Oncomir 

miR-101   ↓ Metastasis Tumor suppressor 

miR-34 family + ↓ Apoptosis Tumor suppressor 

miR-126   ↓ Motility, invasion Tumor suppressor 

miR-146a   ↓ Motility Tumor suppressor 

miR-200c   ↓ EMT Tumor suppressor 

miR-200b   ↓ EMT Tumor suppressor 

miR-141   ↑↓ EMT Tumor suppressor 

miR-330   ↓ Apoptosis Tumor suppressor 

lncRNAs 

Linc00963 (long intergenic non-
proteincoding RNA 963) 

  ↑ cell viability, 
migration, 
invasion, apoptosis 

  

PCGEM1 (LINC00071) (prostate 
cancer gene expression marker 
1) 

+ ↑ cell proliferation, 
apoptosis 

Oncogene 

PRNCR1 (PCAT8) (prostate 
cancer noncoding RNA 1) 

 ↑ cell variability Oncogene 

CBR3-AS1 (PlncRNA-1) (carbonyl 
reductase 3 antisense RNA 1) 

+ ↑ cell variability, 
apoptosis 

 

PCA3 (DD3) (prostate cancer 
antigen 3)  

+ ↑ cell survival, cell 
growth 

 

CTBP1-AS (PCAT10) (C-terminal 
binding protein 1 antisense RNA) 

+ ↑ cell cycle 
progression, 
proliferation 

Oncogene 

ANRIL (p15AS) (antisense non-
coding RNA in the INK4 locus) 

 ↑ cell proliferation, 
senescence 

 

PCAT1 (prostate cancer-
associated transcript-1) 

 ↑ cell proliferation Oncogene 

SChLAP1 (PCAT114) (second 
chromosome locus associated 
with prostate 1) 

  ↑ cell invasiveness, 
metastasis 

Oncogene 

PCAT29 (prostate cancer-
associated transcript-29) 

+ ↓ cell migration, 
proliferation 

Tumor suppressor 

↑, up-regulated; ↓, down-regulated;  
EMT, epithelial mesenchymal transition; PCA prostate 
cancer. 
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CHAPTER 4.  AIMS OF THE THESIS        

Global reprogramming of epigenetic patterns, including gains or losses in DNA methylation and 

changes to histone marks has been observed in cancer. Furthermore, novel sequencing 

technologies are now enabling the resequencing of thousands of cancer genomes and produce 

a huge amount of cancer data. Such data reveals a wealth of mutations in genes encoding 

epigenetic regulators that are involved in DNA methylation and/or chromatin states. But there is 

a lack of understanding how these mutations have the potential to deregulate hundreds of 

targeted genes genome wide. A genome-wide unbiased approach to investigate the role of 

candidate driver mutations leading to epigenetic changes involved in the regulation of cancer in 

a systematic manner is required. The genome-wide identification of candidate driver mutations 

as well as their genome-wide methylation analysis would provide insight in an underlying 

mechanism of carcinogenesis and will help to understand the methylation subgroups of tumors.  

 

The aim of this thesis is to identify epigenetic driver mutations and the mechanism of their 

deregulation in cancer. In addition to correlate defects in them with differently methylated 

patterns in cancer epigenome and also with clinical features of the disease. Taken together 

identification of candidate driver mutations and link to epigenetic patters will help to understand 

the interconnection between genetic and epigenetic alterations in cancer. 

 
Thesis goals:   
1. Creation of a list of candidate cancer driver genes/pathways for epigenetic alterations  

2. Classification of epigenetic regulators as potential oncogenic or those with tumor-

suppressor function based on the location of mutations relative to functional domains and their 

frequency to define driver epigenetic regulators.  

• identified alterations in epigenetic regulators were analyzed to assign epigenetic 

regulators with oncogenic or tumor-suppressor functions  

3. Identification of the major mechanisms of deregulation of epigenetic genes/pathways 

occurs in a non-random and tumor-type specific manner.  

4. Identification of driver epigenetic regulators in cancer 

• To achieve this aim an integrative analysis was applied to identify putative driver 

epigenetic regulators and driver epigenetic pathways 

5. Correlation of analysis of affected genes or groups of genes with tumor subtypes based 

on methylation profiling data (450K Illumina arrays) to defects in regulators of the epigenome to 

understand mechanisms leading to distinct epigenetic patterns. 
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• Different cluster algorithms were used to identify methylation patterns/cluster  

• Correlation analysis of up to 3 epigenetic regulators at the same type was 

performed to identify link between defined methylation patterns and putative 

driver epigenetic genes/pathways 

6. Identification of PANCAN and tissue-specific events 

7. Identification of main mechanisms of deregulation of non-coding RNAs in cancer. 

• using independent data cohort from early-onset prostate cancer a systematic 

genome-wide evaluation of non-coding RNA deregulation was performed to 

identify a major mechanism of non-coding RNA deregulation in prostate cancer 
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CHAPTER 5.  MATERIAL AND METHODS       

5.1. General equipment, disposables and chemical substances 

Standard and interchangeable laboratory instruments, disposables and chemical substances 

were used for all experiments in this thesis. Special and not interchangeable equipment or 

reagents are mentioned directly in the corresponding methods sections. If not explicitly stated 

otherwise, described reagents and kits were used according to the manufacturers’ protocols. 

5.2. Primers 

Primer sequences for the indicated methods are listed in the appendix. All primers were 

synthesized by Sigma-Aldrich (Taufkirchen, Germany) using DESALT purification. 

5.3. Tissue samples 

All prostate tissue samples used in this study were obtained by radical prostatectomy at the 

University Medical Center Hamburg Eppendorf as described previously [118]. Written informed 

consent was obtained from each patient. Clinical data for all patients are presented in Suppl. 

Table S1. 

 

Nucleic acid extraction 
DNA and RNA including miRNA were isolated using the AllPrep DNA/RNA Mini kit (Qiagen, 

Hilden, Germany) as described previously [130]. 
 
Table 5-1: Material used for DNA isolation 
Material Manufacturer 
QIAamp DNA Mini Kit Qiagen, Hilden, Germany 
AllPrep DNA/RNA Mini Kit Qiagen, Hilden, Germany 
Nanodrop ND-1000 Thermo Scientific, Rockford, USA  
ZR-96 Quick-gDNA Kit Zymo Research, Irvine, USA 

 

Briefly, DNA from human cell lines was isolated using the QIAamp DNA Mini Kit (Table 5-1) 

according to the manufacturer’s protocol. If co-purification of RNA and DNA from the same 

sample was required, the Qiagen AllPrep DNA/RNA Mini Kit was utilized as the supplier 

suggests.  
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Table 5-2: Material used for RNA isolation 
Material Manufacturer 
RNeasy Mini Kit Qiagen, Hilden, Germany 
AllPrep RNA/DNA Mini Kit Qiagen, Hilden, Germany 
RNase-free DNase Set Qiagen, Hilden, Germany 
Nanodrop ND-1000 Thermo Scientific, Rockford, USA  

 

Isolation of RNA from cell culture samples was achieved using the Qiagen RNeasy columns or 

the Qiagen AllPrep RNA/DNA Mini Kit (Table 5-2) according to the manufacturer’s protocol. 

Additionally, RNA was on-column digested with DNase for 15 min to remove contaminating 

residual DNA as suggested in the manual. Nucleic acid concentration and purity was quantified 

with the Nanodrop system 

. 

5.4. Data sets 

This thesis represents analysis of from several separate data sets. In order to skip the 

description of each data set in each chapter and for easy understanding, we assigned following 

abbreviations and used them during all results and discussion chapters.  

1. TCGA PANCAN data set – currently available genome-wide datasets on genetic and 

epigenetic alterations in cancers from TCGA (https://tcga-data.nci.nih.gov/tcga/) from 14 

cancer subtypes, covering 5738 samples (Table 5-3, Figure 5-1). TCGA PANCAN data 

set consist of methylation data (Illumina 450K arrays), mutations data (analyzed from 

whole genome-sequencing data), copy-number alterations (CNAs). 
 
Table 5-3: TCGA PANCAN data set description 
TCGA Cancer Types TCGA study code # Cases 

Acute Myeloid Leukemia LAML 200 

Adrenocortical carcinoma ACC 80 

Breast invasive carcinoma BRCA 1098 

Colon adenocarcinoma COAD 461 

Glioblastoma multiforme GBM 528 

Kidney Chromophobe KICH 66 

Lung adenocarcinoma LUAD 521 

Pancreatic adenocarcinoma PAAD 185 

Prostate adenocarcinoma PRAD 498 

Rectum adenocarcinoma READ 171 

Skin Cutaneous Melanoma SKCM 470 

Stomach adenocarcinoma STAD 443 

Thyroid carcinoma THCA 507 

Lung squamous cell carcinoma LUSC 510 
 

https://tcga-data.nci.nih.gov/tcga/
http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm?mode=ApplyFilter&showMatrix=true&diseaseType=LAML&tumorNormal=TN&tumorNormal=T&tumorNormal=NT
http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm?mode=ApplyFilter&showMatrix=true&diseaseType=ACC&tumorNormal=TN&tumorNormal=T&tumorNormal=NT
http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm?mode=ApplyFilter&showMatrix=true&diseaseType=BRCA&tumorNormal=TN&tumorNormal=T&tumorNormal=NT
http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm?mode=ApplyFilter&showMatrix=true&diseaseType=COAD&tumorNormal=TN&tumorNormal=T&tumorNormal=NT
http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm?mode=ApplyFilter&showMatrix=true&diseaseType=GBM&tumorNormal=TN&tumorNormal=T&tumorNormal=NT
http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm?mode=ApplyFilter&showMatrix=true&diseaseType=KICH&tumorNormal=TN&tumorNormal=T&tumorNormal=NT
http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm?mode=ApplyFilter&showMatrix=true&diseaseType=LUAD&tumorNormal=TN&tumorNormal=T&tumorNormal=NT
http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm?mode=ApplyFilter&showMatrix=true&diseaseType=PAAD&tumorNormal=TN&tumorNormal=T&tumorNormal=NT
http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm?mode=ApplyFilter&showMatrix=true&diseaseType=PRAD&tumorNormal=TN&tumorNormal=T&tumorNormal=NT
http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm?mode=ApplyFilter&showMatrix=true&diseaseType=READ&tumorNormal=TN&tumorNormal=T&tumorNormal=NT
http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm?mode=ApplyFilter&showMatrix=true&diseaseType=SKCM&tumorNormal=TN&tumorNormal=T&tumorNormal=NT
http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm?mode=ApplyFilter&showMatrix=true&diseaseType=STAD&tumorNormal=TN&tumorNormal=T&tumorNormal=NT
http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm?mode=ApplyFilter&showMatrix=true&diseaseType=THCA&tumorNormal=TN&tumorNormal=T&tumorNormal=NT
https://tcga-data.nci.nih.gov/tcga/tcgaCancerDetails.jsp?diseaseType=LUSC&diseaseName=Lung%20squamous%20cell%20carcinoma


50 | INTRODUCTION   

 

Figure 5-1: Histogram plot of total number of samples for each cancer data set used in this study. Red color denotes primary 

tumors, blue – metastatic tumors, green – normal tissue. Cancer types were listed using cancer code form TCGA portal (see Table 

5-3). 

 

2.  EO-PCA data set – data cohort from early-onset prostate cancer generated within the 

German ICGC project (ICGC EO-PCA dataset) [118] [Weischenfeldt et al., manuscript in 

preparation]. Data cohort consist of  

miRNome – miRNA expression profile from 66 EO-PCAs specimens and 8 normals, 

generated from small RNA sequencing 

transcriptome – expression profile from 89 EO-PCAs specimens and 11 normals, 

generated from RNA sequencing data and consists coding and non-coding gene expression 

profiles.  

methylome – methylation data for 155 EO-PCAs specimens and 15 normals, generated 

from MCIp-seq and Illumina 450K arrays.  

CNA – copy-number alterations from 66 EO-PCAs specimens and 8 normals, generated 

from whole-genome sequencing (WGS).  
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3. COMBINED PCA data set – data cohort from prostate cancer with classical age distribution 

that includes 10 prostatic intraepithelial neoplasia samples (PINs), 342 primary tumors, and 19 

metastatic samples, and 60 normal prostate epithelial samples. Data set covers methylation data 

only from Illumina 450K arrays. It was generated using publically available data from TCGA 

(tcga-data.nci.nih.gov/tcga/) and Aryee [131] as well as our own data from early onset prostate 

cancer (ICGC1-EOPCA) [Feuerbach et al., manuscript in preparation] and from late onset 

(ICGC004) [Bogatyrova et al., manuscript in preparation] and from heterogeneity study 

(ICGC007) [132].  

 

Figure 5-2: Histogram depicting the sample numbers from COMBINED prostate cancer data set. Name of sample study is 

indicated on right axis. Color denotes sample type.  

5.5. DNA methylation analysis 

EpiTYPER MassARRAY quantitative DNA methylation analysis 
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Table 5-3: Material used for EpiTYPER MassARRAY methylation analysis 
Material Manufacturer 
EZ DNA methylation kit Zymo Research, Irvine, USA 
HotStarTaq DNA Polymerase kit Qiagen, Hilden, Germany 
dATP, dCTP, dGTP, dTTP Fermentas, St. Leon-Rot, Germany 
“T” Cleavage MassCLEAVE reagent kit Sequenom, San Diego, USA 
RNase A Sequenom, San Diego, USA 
MassARRAY Nanodispenser Sequenom, San Diego, USA 
Sequenom MassARRAY MALDI-TOF Mass 
Spectrometer 

Sequenom, San Diego, USA 

QIAamp DNA Mini Kit Qiagen, Hilden, Germany 
Sequenome EpiTYPER software 1.2 Sequenom, San Diego, USA 
Mastercycler 384 Eppendorf, Hamburg, Germany 
Shrimp Alkaline Phosphatase (SAP) Sequenom, San Diego, USA 

 

1µg genomic DNA was chemically modified with sodium bisulfite and subsequent quantitative 

DNA methylation analysis was performed by MassARRAY technique as described [133]. 

MassARRAY primers are listed in Suppl. Table S1. For each MassARRAY amplicon, the median 

of all methylation values of its single CpGs was used for further calculations. Methylation 

differences between sample groups are presented as ∆𝛽 values. DMRs were identified by the 

Mann Whitney U test and subsequent Bonferroni correction of p values. Regions showing 

corrected p values < 0.05 were considered differentially methylated. Hierarchical clustering of 

MassARRAY methylation data was performed by the Multiple Experiment Viewer software v4.3. 

Correlation analyses were done by the Spearman method using IBM SPSS Statistics 19 (IBM 

Deutschland GmbH, Ehningen, Germany). 

llumina HumanMethylation450 BeadChip 

Table 5-4: Material used for Illumina 450k BeadChip 
Material Manufacturer 
Infinium HumanMethylation450 BeadChip Kit Illumina Inc., San Diego, CA, USA 
RnBeads R-Package [134] www.rnbeads.mpi-inf.mpg.de 

 

For a representative, genome-wide analysis of DNA methylation in cancer samples, the Illumina 

HumanMethylation450 BeadChip (450k Chip) was employed by the DKFZ Genomics and 

Proteomics Core Facility according to the manufacturer’s instructions using up to 500 ng of DNA. 

Such array covers 483,854 probes addressing the methylation state of CpG sites located in CpG 

islands (CGIs), CGI shores, CGI shelves and open sea regions. Methylation of individual sites is 

calculated as beta-value (β-value) ranging from 0% (not methylated) to 100% (fully methylated). 



  INTRODUCTION | 53 

For inter- and intra-sample data normalization, raw data was BMIQ-normalized using the 

RnBeads R-Package (http://rnbeads.mpi-inf.mpg.de/). For quality filtering, the single-nucleotide  

polymorphism (SNP)-calling probes (dbSNP132 Common, n=92428) and probes that had 

detection p-values value below 0.01 in at least one sample were excluded as well as probes 

missing information for a single sample per cancer study. Probes measuring methylation in a 

non CpG context (n=3156) were removed. No strong batch effects were identified.  

DNA methylome deep sequencing and analysis 

Methyl-CpG immunoprecipitation (MCIp) for enrichment of highly methylated tumor and normal 

DNA and subsequent deep sequencing (MCIp-seq) was carried out as described previously 

[118]. Libraries were sequenced with single-end 50bp reads using the SOLiD 4 (Applied 

Biosystems, Life Technologies Corporation, Carlsbad, CA, USA) or the HiSeq2000 platform. 

Reads were mapped to the human genome and differential methylation was detected as 

described previously [118]. The seven tumor samples sequenced on the SOLID 4 platform were 

compared to one normal control sequenced on the same platform [118], whereas the six tumors 

sequenced on the HiSeq2000 were compared to eight controls analyzed on the same platform.  

DNA deep sequencing and analyses 

DNA library preparation and whole genome sequencing was performed on Illumina sequencers 

as described [118] with two complementary insert size libraries. Short insert size libraries were 

prepared with two 101bp reads spanning 187-301bp (paired-end), and large insert-size libraries 

with two 36bp reads spanning between 3,578-5,403bp (mate-pairs). Sequencing was performed 

on Illumina HiSeq to a minimum 30x whole-genome coverage for paired-end libraries. 

Single nucleotide variants (SNVs) were called as described previously [135]. Structural 

rearrangements 200bp to Mb in size were detected as previously described [118]. Copy-number 

alterations were detected using BIC-seq [136]. Somatic structural rearrangements were filtered 

for lack of corresponding variant support in the germline control sample as described recently 

[118].  

Detection of differentially methylated regions in the genome-wide validation dataset 

MeDIP seq data for all samples of the validation dataset were recently published [101]. 

Methylation data for all 500bp bins overlapping to miRNA regulatory regions [16] were extracted, 

http://rnbeads.mpi-inf.mpg.de/
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and tested for differential methylation by the Mann Whitney U test and FDR correction of p 

values using R Bioconductor. A regulatory region was considered differentially methylated if at 

least one included 500bp bin showed a FDR < 0.05. 

5-aza-2´-deoxycytidine treatment of PCA cells 

Human PCA cell lines LNCaP and PC3 were obtained from ATCC (Manassas, VA) and 

authenticated by the Genomics and Proteomics Core Facility at the German Cancer Research 

Center in month year using a 24-plex SNP profiling assay. Cells were cultured in high level 

glucose RPMI 1640 medium (PAA, Coelbe, Germany), supplemental with 10% FCS. DNA 

demethylation treatment was performed with 0 (PBS), 1, 2.5 or 5 µmol/l 5-aza-2’-deoxycytidine 

(Sigma-Aldrich, St. Louis, MO) for 24, 48, 72, 96 and 120h hours by replacing the drug and 

medium every 24 hours. DNA demethylation efficiency was evaluated by quantitative DNA 

methylation analysis of repetitive elements (LINE-1) using MassARRAY. For each cell line, 5-

aza-2´-deoxycytidine concentration and incubation time that showed the strongest demethylation 

effect was used for further analyses.  

5.6. miRNA expression analysis 

miRNA deep sequencing and analysis 
Small RNA libraries were prepared with singleplex or custom multiplex adaptors and primers 

(kindly provided by NEB, Suppl. Table S12), and subsequently sequenced on an Illumina 

HiSeq2000 instrument (San Diego, CA) [118]. Raw sequencing reads were mapped to known 

human miRNAs (miRBase18.0) and normalized as described [118]. For the ICGC EO-PCA 

dataset, analyses were done on each tumor separately: all miRNAs with less than five reads in 

the relevant tumor or the mean of the four normal tissues were filtered out. MiRNAs showing a 

fold-change of at least 1.5 compared to the mean of the normal samples were considered as 

deregulated. In the validation dataset, differentially expressed miRNAs were identified using 

DESeq [137] after filtering out all miRNAs that had less than five reads in less than 50% of the 

samples. p values were corrected for multiple testing and miRNAs showing a FDR < 0.05 were 

considered as differentially expressed. Hierarchical clustering was performed using Genesis 

[138] according to Euclidean distance and average linkage algorithm, after data had been 

normalized by DESeq. 

Quantitative PCR arrays and analysis 
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Quantitative PCR (qPCR) screening of miRNAs was performed using the Array Human 

MicroRNA Set Cards v2.0 (Life Technologies, Darmstadt, Germany) as described previously 

[135, 139] with 100ng total RNA input. Raw data were obtained using automatic baseline 

calculation and a threshold of 0.15. Data was median-normalized plate-wise [135, 139]. 

Differentially expressed miRNAs were identified by LIMMA and subsequent FDR correction of p 

values, after miRNAs with CT values >35 in more than 70% of the samples had been filtered out 

[135, 139]. MiRNAs showing a FDR < 0.05 were considered differentially expressed. Normalized 

data were linearized using the Delta CT method [136]. Hierarchical clustering was performed on 

log2 transformed data using Genesis according to Euclidean distance and average linkage 

algorithm. 

Quantification of pri-miRNA expression by qPCR 
500ng total RNA was reverse transcribed using Superscript II (Invitrogen, Life Technologies) and 

random primers. qPCR was performed using TaqMan pri-miR assays (Applied Biosystems, 

Suppl. Table S13) and the Absolute QPCR Mastermix (Thermo Fisher Scientific, Schwerte, 

Germany) on the LightCycler 480 (Roche, Grenzach-Wyhlen, Germany). Expression levels were 

calculated with the DeltaDelta CT method [140] using the TATA box binding protein (TBP) for 

normalization. 

5.7. Data analysis 

For routine statistical analysis, GraphPad Prism 5 (GraphPad Software, La Jolla, USA) was 

applied. For group-wise comparison of two distributions from different samples/treatments, the 

two-tailed non-parametric Mann-Whitney-U test was used (not assuming Gaussian distributions). 

For experimental settings with replicates of paired treatments/samples, a two-tailed student’s t 

test was applied. In all cases, significance levels were depicted as follows: * = p<0.05; ** = 

p<0.01; *** = p<0.001.   

 

Prediction of functional domains 
Program package HUZAR (Heidelberg Unix Sequence Analysis Resources) was used for 

domain prediction. The in silico functional domain prediction algorithms such as: pirsf, pfam,  

superfam,  seg, smart, prints, ncoils, pfscan, signal, tigrfam were selected to identify domain in 

genes. Only domains, identified by at least 2 algorithms were selected as positive prediction.  

 

Identification of driver genes 
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List of tool, used for identification potential driver genes with short description: 

OncodriveFM: Identifies genes with a bias towards high functional mutations. 

OncodriveCLUST: Identifies genes with a significant regional clustering of mutations.  

MutSigCV: Identifies genes mutated more frequently than background mutation rate. 

OncodriveROLE: Classifies driver genes according to its mode of action in Activation or Loss of 

Function.  

IntOGen: Combined tool of all listed above methods (www.intogen.org).  

 

Differently methylated analysis of sample groups 
Differential methylation analysis was conducted on site and region level according to the sample 

groups specified in the analysis. In the following analyses, p-values on the site level were 

computed using the limma method. I.e. hierarchical linear models from the R limma package 

were employed and fitted using an empirical Bayes approach on derived M-values. Differently 

methylated probes (DMPs) and regions (DMRs) were computed for tumor samples as 

in/decrease of methylation compare to normal per each cancer study individually, using 

differently methylated module from RnBead R package, as described in package vignette 

(http://rnbeads.mpi-inf.mpg.de/data/RnBeads.pdf). Differential methylation on the site level was 

computed based on a variety of metrics. Each site was assigned a rank based on three criteria:  

1) the difference in mean methylation levels of the two groups being compared,  

2) the quotient in mean methylation and 3) a statistical test (t-test or limma depending on the 

settings) assessing whether the methylation values in the two groups originate from distinct 

distributions. A combined rank is computed as the maximum (i.e. worst) rank among the three 

ranks. The smaller the combined rank for a site, the more evidence for differential methylation it 

exhibits. Only significant sites/regions were taken for further analysis.  

 
Selection of probes for clustering algorithms 
We have used two strategies for probe selection: 

V50: only probes that represent 50% of variability of the data were selected 

T10: only 10 000 (10K) most variable probes were selected.  

 
Clustering approaches for identification methylation patterns/subgroups 
Unsupervised clustering analysis using 3 major approaches: Partitioning Around Medoids 

(PAM), K-means and Hierarchical cluster analysis (HCA) were used.  

PAM, most common realization of k-medoids algorithm:  classical partitioning technique of 

clustering that clusters the data set of n objects into k clusters known a priori.   

http://bg.upf.edu/oncodrivefm
http://bg.upf.edu/oncodriveclust
http://www.broadinstitute.org/cancer/cga/mutsig
http://bg.upf.edu/oncodrive-role/
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k-means:  algorithm of partition n observations into k clusters in which each observation belongs 

to the cluster with the nearest mean, serving as a prototype of the cluster. 

Both the k-means and k-medoids algorithms are partitional (breaking the dataset up into groups) 

and both attempt to minimize the distance between points labeled to be in a cluster and a point 

designated as the center of that cluster. In contrast to the k-means algorithm, k-medoids 

chooses datapoints as centers (medoids or exemplars) and works with an arbitrary matrix of 

distances between datapoints.  

HCA is a method of cluster analysis which seeks to build a hierarchy of clusters.  

Data was represented using principal component analysis (PCA). Comparison of the 

performance of different methods was done using average silhouette value. 

 
Gene-set enrichment analysis (GSEA) 
GSEA was used to determine whether an a priori defined set of genes (protein coding or non-

coding) shows statistically significant, concordant differences between two biological states  

(tumors vs. normals, different tumor groups). Analysis was done using GSEA v2.1.0 Release 

(http://www.broadinstitute.org/gsea/).  

http://www.broadinstitute.org/cancer/software/gsea/wiki/index.php/GSEA_v2.1.0._Release_Notes
http://www.broadinstitute.org/gsea/
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RESULTS             

CHAPTER 6. MUTATIONS IN REGULATORS OF THE EPIGENOME AND THEIR 
EFFECTS ON THE DNA METHYLOME 

Genetic mutations have been described in enzymes that regulate epigenetic patterns. For 

example, frequent and recurrent mutations have been found in H3F3A, the gene encoding for 

histone variant H3.3A in pediatric glioblastoma [89] [90], chondrosarcoma and giant cell tumors 

of the bone [141]. There were also found mutations in isocitrate dehydrogenase 1 (IDH1) in 

gliomas [91, 92], or the de novo DNA methyltrasnferase 3A (DNMT3a) in acute myeloid 

leukemia or glioblastoma [93] [94]. Based on the known functions of these genes one could 

predict that the observed mutations have the potential to deregulate, hundreds of direct and 

indirect targets genome-wide.  

 

A genome-wide unbiased approach is required tn order to further investigate, in a systematic 

manner, the role of candidate driver mutations for epigenetic changes in tumorigenesis. The 

genome-wide identification of candidate driver mutations as well as a global analysis of DNA 

methylation changes affecting expression of these genes would provide insights into an 

underlying mechanism of carcinogenesis and will help to identify the subgroups of tumors. In this 

chapter the role of specific genetic mutations will be correlated with associated DNA methylation 

patterns in the genome and also with clinical features of the disease subgroups. Functional 

characterization of the identified driver mutations will be carried out. Taken together identification 

of candidate driver mutations and the link to epigenetic patterns will help to understand the 

interplay between genetic and epigenetic alterations in cancer. 

 

Utilizing the large amount of available cancer genome data obtained in international consortia 

such as TCGA and ICGC, we performed the studies on different cancer types in order to 

investigate similarities and differences in the mechanisms between different cancers. Such an 

approach, termed pan-cancer analysis (PANCAN), was initially introduced by the TCGA 

consortium. Recently, PANCAN mutation profiling revealed a list of 125 driver genes recurrently 

mutated which are acting in epigenetic pathways [95]. Some of these mutations associate with 

distinct subgroups of tumors characterized by defined epigenetic patterns and clinical 

phenotypes. A different study identified 102 PANCAN recurrent focal amplified/deleted regions, 

for which currently no known oncogenes/tumor suppressor genes were identified. Interestingly, 

these regions are enriched for genes involved in regulation of epigenetic patterns [96]. Based on 
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these data, we formulated and test the hypothesis that mutations in the three epigenetic 

pathways (DNA methylation, chromatin modification and chromatin remodeling) represent 

candidate driver mutations acting through global reprogramming of epigenetic patterns.  

 

A systematic, integrative approach to the identification of candidate epigenetic driver genes and 

investigation of their link to epigenetic patters with the goal to understand the interconnection 

between genetic and epigenetic alterations in cancer was created and is described in Figure 6-
1. Briefly, the workflow consists of four major steps:  

1) creation of a list of epigenetic regulators in order to identify potential driver genes; 

2) identification of the major mechanism of deregulation of driver epigenetic regulators;  

3) using methylation profiling (Illumina 450K arrays) for identification DNA methylation 

clusters/patterns in the analyzed cancers; 

4) performing a correlation analysis between defined methylation patterns and altered driver 

epigenetic regulators or a group of them to identify the link between deregulation of 

epigenetic drivers and methylation profiles. 

 
Figure 6-1: Schematic workflow of integrative analysis of mutations in regulators of epigenome with DNA methylome. (A) 
The workflow of integrative analysis step by step. (B) Zoom in step 3-4 for explanations: a) Principle component analysis (PCA) like 

example to present workflow from step 3. PCA of methylation data of thyroid cancer (THCA) was used to visualize 4 cancer 

subtypes. b) Exemplary alteration profile of each cancer subtype identified by methylation profiles.  
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6.1. Alterations of epigenetic regulators in cancer 

As a first step into the investigations a list of about 700 candidate driver mutations for genes 

involved in establishing, maintaining and reading epigenetic patterns was created using 

available publications and web-browsers. This included the following web sites: Amigo 

(http://amigo.geneontology.org/), Cosmic (http://www.sanger.ac.uk/), PubMed, Pubmeth 

(http://www.pubmeth.org/), Mutation list (http://www.cbioportal.org/) and the UCSC Genome 

Browser (https://genome.ucsc.edu/). Genes were categorized into three major groups: histone 

modification, DNA methylation and chromatin remodeling. Each group was further divided into 

subclasses such as writers, editors and readers (Figure 6-2, Supplemental Table S1).   

 
Figure 6-2: List of groups and subgroups of epigenetic regulators with number of genes in brackets. Gene names 

characteristic information is in Supplemental Table 6-2. 

 

This list consists of Ensembl gene names and gene symbols, name of epigenetic group and 

subgroup, bioinformatical prediction of functional domains and a brief description of the 

functional role as inferred from the literature. For each epigenetic regulator bioinformatical 

prediction of functional domains was done as described in chapter 5 to identify the most 

functionally relevant locations of mutations. Epigenetic regulators with predicted domains have 

been ranked based on known domain functions, as more prone to be potentially drivers in 

http://amigo.geneontology.org/
http://www.sanger.ac.uk/perl/genetics/CGP/cosmic?action=byhist&ss=NS&sn=prostate&s=3
http://www.pubmeth.org/
http://www.cbioportal.org/public-portal/?cancer_type_id=Sarc
https://genome.ucsc.edu/
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cancer. The complete list of epigenetic drivers with function domain prediction is available in 

Supplemental Table S2. 

 

Using currently available TCGA PANCAN data set (description in chapter 5) the different 

alterations in regulators of the epigenome by genetic mutations, copy number alterations (CNA), 

promoter methylation were analyzed. Significantly high enrichment of epigenetic regulators 

among the mutated genes (Fisher’s exact test p-value p<0.001) and the genes with copy 

number alternations (p<0.01) indicate potential functional impact of defects in epigenetic 

regulators on a cancer genome. Up to 85% of the epigenetic regulators were found affected in 

cancer by either mutation and/or CNA (Figure 6-4). This finding suggests that there is not a 

unique mechanism of deregulation of epigenetic regulators in cancer and a systematic 

integrative approach is needed in order to determine driver regulators and major mechanism of 

their alterations 

.   
Figure 6-4 Comparison of different identified alterations per group of epigenetic regulators. The upper part of the figure 

indicates the total number of 709 epigenetic regulators. Each pie chart lists the frequency of genes that were found to be mutated or 

altered by CNA or by promoter methylation in at least two tumor samples and the numbers of unmutated genes (marked as wild type 

- wt) for each group of epigenetic enzymes. Black color denotes unmutated genes, orange for DNA modification, blue for histone 

modification, dark green for chromatin remodeling. 

 

We analyzed the mutation distribution per sample in order to find out how many epigenetic 

regulators are affected per sample (Figure 6-5). A range from 2 (PRAD) up to 30 (LUAD) 

5 56 
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average mutations per sample was identified in epigenetic regulators in the investigated tumor 

samples. Lung adenocarcinoma was showing the highest number of mutation that reflects high 

total mutation frequency. THCA and PRAD are showing the lowest frequency of mutations in 

epigenetic enzymes. The number of mutations is not significantly correlated to overall frequency 

of mutations in epigenetic key players.   

 
 
Figure 6-5: Distributions of number of non-synonymous somatic mutations in epigenetic regulators per sample in 
investigated PANCAN data cohort.     

6.1.1. Putative driver epigenetic regulators 
 
To select putative driver epigenetic regulators and identify major mechanism of their regulation, 

we performed a systematic integrative approach as outlined in Figure 6-5. Briefly, the workflow 

consists of five major steps. The first two steps are the identification PANCAN and tissue 

specific epigenetic regulators based on mutation frequency per cancer. Initially, the mutation 

profile of epigenetic regulators was established to determine recurrent mutations. Frequently 

mutated regulators were divided in two groups: either cancer-type specific events (PANCAN 

epigenetic regulator group), as those affected in >50% of investigated cancer types or tissue-
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specific epigenetic regulator group, as those affected frequently in one cancer type but not in 

others. Step 3 was used to determine oncogenic and tumor-suppressor genes, based on 

alteration types. Genes that are commonly mutated in the same amino acid position and located 

in gained genomic locations were assigned as putative oncogenic. Alternatively, genes 

exhibiting a mutation spectrum throughout the gene body and located in deleted genomic 

locations were assigned as tumor-suppressor epigenetic regulators.  

 

Figure 6-5: Workflow of integrative approach of identification driver epigenetic regulators.  

 

PANCAN and tissue-specific epigenetic regulators 
Next, we classified epigenetic regulators into two groups: PANCAN and tissue-specific. To 

assign PANCAN mutated epigenetic regulators, 13 subtype specific frequently mutated genes 

were merged to select the ones mutated in more than of 50% of the tumor subtypes. In total 78 

PANCAN epigenetic regulators were identified to be mutated across tumor types, including 

previously published ARID1A/B [142], TETs [143], DNMT3A [144] as top hits in the list (Figure 
6-5).  

 

Frequently mutated epigenetic regulators, which were not assigned to be PANCAN regulators, 

were examined for tissue-specific ones. In total, 156 epigenetic regulators were assigned to be 

tissue-specific, as frequently mutated in a unique cancer type (Supplemental Table S4).  
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Figure 6-5 Mutation distribution of PANCAN epigenetic regulators (frequently affected in >50% cancer subtypes). Each bar chart represents cancer subtypes with mutation of 

epigenetic regulator.  
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Oncogenic and tumor-suppressor epigenetic regulators 

Next, mutations in epigenetic regulators have been evaluated for either gain-of-function or loss-

of-function. For this, the location distribution throughout the genes and frequency of mutations 

has been evaluated. Mutations located in predicted functional domains were classified as being 

of high functional impact. Genes with up to 5 HotSpots (frequently mutated region that causes 

the same amino acid change) were evaluated as potential oncogenic. Regulators with more than 

5 mutations spread throughout the coding region of a gene were classified as potential tumor 

suppressors. The lists of all identified HotSpots are provided in Supplemental table S5.  

 

 
Figure 6-6: Diagrams showing the location of mutations in protein coding regions of ARID1A, ASXL2 and PBRM1 genes. 
Mutation needle plot represents all synonymous mutations found in the analyzed TCGA data set and plotted on protein annotation 

using MutationMapper (cbioportal.org). Protein domains –DUF3518-, HAR-, Bro-, BAH- and others – are marked by different colors 

and highlighted with box-shape according to the location in the protein. Mutation diagram circles are colored with respect to the 

corresponding mutation types (missense - green, truncating- red, in frame mutations – grey, residues affected by different types of 

mutations are colored by purple). The X-axis represents amino acids of the protein and schematic protein structure with colored 

domain prediction. The Y-axis represents number of mutations per amino acid. 
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In order to improve the assignment of genes to potential oncogenic or tumor-suppressive, 

additional alterations like CNA and promoter methylation of epigenetic regulators were added to 

the analysis. The simplified definitions used for our analysis, where: 

oncogene is a gene that is frequently altered in different cancer types either by the same 

mutations  or by allelic gains;  

tumor-suppressor is a gene frequently altered in different cancer types either by different 

mutations spread over the entire gene or by allelic loss coupled with promoter hypermethylation. 

We generated CNA profiles using the TCGA PANCAN data set to interrogate for frequently 

deleted and amplified epigenetic regulators. Level 2 provides all identified deleted and amplified 

regions per cancer sample in comparison to a pool of normal tissues. These profiles were used 

to identify highly deleted and amplified epigenetic regulators per caner study. Firstly, tissue-

specific frequently deleted (87 genes) and amplified (56 genes) regulators were identified. Using 

the same cut-off as in the mutation screen described above (>50% of the tumor subtypes), 59 

PANCAN epigenetic regulators deregulated by CNA were identified in TCGA cancer cohort (top 

listed in Supplemental Table S6). 

The mutation and CNA profiles were used to classify some of the epigenetic regulators as 

potential oncogenes or tumor-suppressors. More precisely, genes with HOTSPOT mutations or 

with mutations in predominantly functional domains and also located in commonly gained 

regions in cancer were defined as oncogenic regulators. Genes with mutations equally 

distributed over the gene sequence and in highly deleted regions were assigned to the group of 

tumor-suppressor regulators (both conditions should be positive). In total, 76 genes with 

potentially oncogenic function and 45 genes with potential tumor-suppressor function among the 

PANCAN epigenetic regulators were identified.  

  

Epigenetic regulators, deregulated by promoter methylation 
In order to unravel if promoter methylation may play a role in deregulation of epigenetic players, 

we performed an integrative analysis using methylome data. 58% of the epigenetic genes 

possess a DMR in the promoter region in at least 1 investigated cancer subtype. Moreover, 32% 

of the epigenetic regulators have hypermethylation of promoter in more than 50% of the cancers. 

These are potential tumor-suppressors and include many genes that have been reported before 

(e.g. DNMT1, DNMT3A, IDH1), as well as newly identified ones. In conclusion the genetic and 

epigenetic data gave strong evidence that genetic alterations, such as mutations and CNA is a 

major mechanism of deregulation for epigenetic genes (Figure 6-8). This observation could be 

further strengthened by examining additional lines of evidence, such as data on deregulation by 

non-coding RNAs. 
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Figure 6-8: Genetic and epigenetic events in the deregulation of 
epigenetic regulators in cancer. Venn diagram showing the number of 

epigenetic regulators deregulated by a genetic mechanism (orange circle: 

mutations and CNAs), an epigenetic mechanism (green circle: promoter 

methylation), or both (red circle, not necessarily in the same cancer type).  

 

 

 
 

Potential driver epigenetic regulators in cancer 
Since there are different approaches to identify driver cancer genes, we used a combination of 

multiple tools to obtain a list of driver genes that is both comprehensive and reliable. Briefly, the 

sets of 76 genes with potentially oncogenic function and 45 potential tumor-suppressors 

discussed above were combined with drivers defined by IntOGene (Integrative Onco Genomics, 

www.intogen.org). IntOgene was used to select driver genes based on protein affecting 

mutations. In total, 459 genes were defined as drivers in our sample cohort (Figure 6-9). Only 

~23% (105 genes) of them were epigenetic regulators. The intersection of the 2 approaches 

produces a list of 84 reliable driver genes that were used for further analysis (Figure 6-10). 

 
 Figure 6-9: Driver cloud plot represents the most recurrently mutated cancer driver genes generated by IntOGene. The size 

of the gene symbol is relative to the number of samples with protein affecting mutations. 

  

37 drivers 
(TSGs&oncogene 

approach) 
 

21 drivers 
(IntOGene) 84 

http://www.intogen.org/
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Figure 6-10: Venn diagram represents overlap of results between two approaches. Violet circus represents 121 drivers, 

identified by TSG&oncogene approach, described below and blue circus - 105 drivers, defined by IntOGene). 

6.1.2. Alterations in complexes of epigenetic regulators in cancer 

Alterations in different components have been identified by an integrative approach, indicating 

the complexity of regulation of epigenetic machinery in carcinogenesis. A novel systematic 

approach should involve the investigation of alterations in epigenetic regulators not alone but 

also consider other genes that are acting in the same epigenetic pathway or execute similar 

functions. To systematically screen alterations in different components of epigenetic complexes, 

cross-cancer analysis of defect of PRC2 genes (n=18) was performed using the cbio platform 

(cbio.org), which consists of genome-wide alterations data from different cancer types.   

Up to 55% of the samples have defects in at least one component of the PRC2 complex in 

prostate cancer. Ovarian and lung cancers also show high percentage of affected samples, 

indicating that PRC2 is frequently altered and important for cancerogenesis (Figure 6-11).   

In order to understand which alteration of component of the PRC2 complex might be a driver 

event, mutation distribution of each gene was further investigated using the TCGA data. 

Previously published driver genes were confirmed, including EZH2 [145], EED [145] and SUZ12 

[145] in addition to novel putative drivers JARID2 and VAV1 (Figure 6-12).  
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Figure 6-11: Cross-cancer alteration summary for PRC2 genes in different cancer types. Histogram represents proportion of 

samples with alterations in any component of PRC2 genes. The vertical measures alteration frequency in percentage and the 

horizontal axis lists TCGA cancer studies. Bar color denote type of alterations.  

 

Figure 6-12: Mutation distribution of PRC2 genes in different cancer types. Histogram represents number of samples with 

mutations in each cancer study per PRC2 genes. Genes are listed on vertical axis; sample number is plotted on horizontal axis. 

Colors denote TCGA cancer studies.  

6.2. Identification of patterns/clusters of DNA methylation in cancer 
 

To determine the subgroups of DNA methylation clusters associating with mutation spectra, data 

from TCGA PANCAN data set of 450K Illumina arrays was used. All available raw (IDAT) files 

were downloaded from the TCGA data matrix and only samples for which genetic data is also 

available were used for further analysis. Raw data was preprocessed using the RnBeads 

analysis pipeline as described in the methods section. Briefly, raw files were loaded, low-quality 

probes as well as probes overlapping with known SNPs were filtered out, and then samples 

were normalized using the BMIQ algorithm.  
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Figure 6-13: A schematic workflow of identification patterns/clusters of DNA methylation data in a cancer cohort. 

 

Workflow of identification of DNA methylation data patterns/clusters consists of 3 major steps: 

selection of probes for clustering, clustering of data and comparison of the performance of 

applied clustering algorithms. Two strategies for probe selection based on variability were used 

in order to reduce the dimensionality of the methylation data. In the first strategy, the most 

variable probes that represent 50% of the total variability of the data were selected. This resulted 

in using between 20 thousand and 100 thousand (K) probes in the different cancer studies. The 

number of selected probes was not correlated to the total number of patients taken for analysis 

per cancer study (Figure 6-13).  

 
Figure 6-13: Correlation plot between size (number of samples) and dimensionality (number of selected probes) in the 
datasets. The X axis represents number of patients, and the Y axis – g number of selected probes.  
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 The second strategy unifies the number of probes per cancer study. It selects the top 10K most 

variable probes for further analysis. Each cancer study was analyzed using 3 different cluster 

algorithms: PAM, K-means and Hierarchical (using both Ward and complete linkage) as 

described in detail in the chapter 5.7. Data was represented using principal component analysis 

(PCA). Comparison of performance of different clustering algorithm for breast cancer data set is 

plotted in Figure 6-14.  As an example, the BRCA study contains 457 primary tumor samples 

and five different methylation patterns/subtypes have been identified in this dataset. 

Performance of the different clustering strategies was evaluated using average silhouette value, 

as shown in Figure 6-15. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
Figure 6-14: Comparison of outcome of different cluster procedures of selected probes (10K) for breast cancer data set 
using principal component analysis (PCA). This plot represents comparison of 4 main cluster algorithms used for analysis on the 

same data set (top 10K most variable probes). For each algorithm PCA1 vs PCA2 are represented. Colors denote the 5 different 

methylation patterns/subtype identified in breast cancer patients.   

PAM 

K-means 

Hierarchal complete 

Hierarchal ward 
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Figure 6-15: Comparison of performance of studied clustering algorithms of selected probes (10K) for breast cancer data 
set using the average silhouette value as a grading scheme. Every clustering method is denoted by a different color. The X axis 

represents number of clusters, and the Y axis – silhouette value.   

 

We decided to use a “gold standard” for the validation of the described approach to clustering 

and the selection of a single strategy. We focused on the glioblastoma data set, for which there 

are published well defined methylation clusters and identified epigenetic regulators that can 

explain methylation patterns [88]. In the glioblastoma data set consisting of 98 tumors, 6 major 

clusters have been previously identified. Knowing the number of identified clusters and using 

different clustering procedures, each of our clustering strategies was examined. In order to test 

which cluster algorithm fits best the published methylation patterns, the Rand index was 

computed. Adjusted Rand index values (calculated between the six subgroups of glioblastoma 

and identified clusters by our approach) rank K-means as the most appropriate clustering 

algorithm (Figure 6-16) and it was selected for further analysis. Figures 6-17 and 6-18 confirm 

the identified clustering approach as well suited to the glioblastoma data set.  
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Figure 6-16: Performance of all applied clustering algorithms of selected probes (10K) for glioblastoma published cancer 
data set using adjusted Rand index values as a grading scheme. Each row represents different clustering method. Different 

values for number of clusters are denoted by columns. 

 
Figure 6-17: Heatmap of selected probes (10K) for glioblastoma published cancer data set. K-means clustering algorithm was 

used for analysis. Different colors  in the column header denote previously identified methylation groups. Methylation degree is 

presented by grading schema: dark blue (no methylation) to orange (highly methylated). Each row denotes an Infinium 450k probe, 

and each column – a sample. 
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Figure 6-18: Principal component analysis of selected probes (10K) for glioblastoma published cancer data set. Different 

colors denote for 6 major methylation patterns/clusters. Shapes indicate the different sources that were used for obtaining the data.  

 

6.3. Correlative analysis of methylome data with defects in epigenetic regulators 
 
Since, different pattern/clusters of methylation data have been obtained (described in chapter 
6), as well as putative driver epigenetic regulators (described in chapter 6) have been identified, 

correlative analysis of two data levels: methylation and defects in driver genes, was performed. 

For each cancer study independently, the samples have been grouped according to their 

clusters and for each group a list of alterations of epigenetic regulators were analyzed. 

Association between sample cluster and defects in the epigenetic regulators was quantified 

using Fisher’s exact test. Since not all identified methylation patterns had any significant 

epigenetic regulator, this analysis was also conducted using all altered genes in genome. 

Including other genes could potentially lead to novel epigenetic regulators or can give a better 

understanding how previously published cancer drivers could be involved in deregulation of 

cancer methylomes. Up to 30 % of the identified methylation subgroups were found to be 

strongly correlated an alteration in the cancer genome, and 9% of the subgroups are associated 

with alterations in epigenetic regulators. The breast cancer data set is used to present an 

example outcome of this analysis (Figure 6-19).     
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Figure 6-19: Correlative analysis of selected probes (10K) for breast cancer data set. Top panel presents PCA plot for K-

means clustering of methylation data of breast cancer samples. Low panel presents mutation distribution of top 10 genes that have 

the highest association.   

 

6.4. Differently methylated regions in cancer 

Differently methylated CpG sites and annotated in RnBeads regions (promoters, gene bodies, 

tilling 5kb regions) were identified using tumor vs. normal comparison per cancer study. Briefly, 

each cancer study was separated analyzed using the RnBeads pipeline for differently 

methylation sites and regions as described in methods in details. Only positive (significantly 

differently methylated in tumor vs. normal samples) sites/regions were taken for further analysis. 

Using the approach for identification PANCAN driver regulators, described in chapter 6-3, the 

positive sites/regions were combined and analyzed for identification PANCAN and tissue-

specific events. In total 105 PANCAN promoter DMRs were identified in the investigated cancer 

Mutation distribution of top 10 genes, that have the highest correlation score 

Selection strategy: T010 
Distance metric: Euclidean 
Clustering algorithm: K 
means 
Clusters: 5 
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cohort. 72% of DMRs were consistently hypermethylated and 28% were hypomethylated in gene 

promoters (Figure 6-20). Such hypermethylated promoter DMRs represent putative tumor-

suppressor genes. 87 PANCAN DMRs in gene bodies were identified in the data with almost 

equal distribution of hypo- and hypermethylated DMRs (Figure 6-21).   

 
Figure 6-20: Promoter differentially methylated regions (DMRs) in PANCAN. Heatmap representing PANCAN DMRs in 

promoter regions of genes (>50% tumors) per TCGA cancer study. Color schema denotes methylation state of DMR. The vertical 

axis lists genes, and the horizontal one –  cancer studies. 
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Figure 6-21: PANCAN differentially methylated regions (DMRs), identified in gene bodies. Heatmap represents PANCAN 

DMRs in gene bodies (>50% tumors) in TCGA cancer study. The color schema denotes methylation state of a DMR. The vertical 

axis lists genes, and the horizontal one –  cancer studies 
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6.5. Discussion of results and deliverables 
 
Driver epigenetic regulators  

Due to a big spectrum of tools for the identification of driver mutations, there is not a consensus 

in the field regarding which tool shows the most comprehensive and the most reliable results. 

One way is to use only one approach during analysis, another way is to combine multiple tools 

as the best approach to obtain a more “comprehensive and reliable” list of driver genes. This 

thesis develops a strategy to combine different tools with the goal of identifying putative 

epigenetic driver genes. The obtained list of genes could be further refined using novel tools and 

larger sample cohorts. The development of a unified method aims at avoiding false signals and 

allows comparing results obtained in different laboratories. An upcoming tool, The Cancer 

Genome Interpreter (developed by the Lopez-Bigas group in Barcelona), will also include drug 

information to already developed driver searcher that will help to interpret which mutations in a 

given tumor are important in cancer development and whether options for target therapies exist 

that are directed toward those driver events. Such new tool will provide a platform for clinicians 

to start a proper treatment just based on patient mutation profiling.    

 
Validation of identified drivers 
Although using different approaches can provide quit reliable list of drivers, the validation of 

finding is required using additional data cohort, but more important in the laboratory. Validation 

of putative driver events requires equal consideration in the selection and interpretation of 

biological assays used to determine their relevance to cancer is required. Crucial steps for 

validation are the selection of the proper biological assay, since it is not entirely clear in what 

stage of the tumorigenic process the driver has a role; and relevant cell lines are [146]. The 

example of the NOTCH1 gene, which acts as oncogene in leukemia and as tumor suppressor 

gene in head and neck and lung cancers presents a challenge in the functional validation of 

driver genes [146]. In some cases, cooperation with additional cancer-relevant genes to affect 

tumorigenesis or bypass oncogene-induced senescence is required. For example, the 

melanoma-associated oncogene MITF (microphthlmia-associated transcriptional factor) affects 

the proliferation of immortalized melanocytes only when co-expressed with a BRAF V600E mutant 

[147]. To confirm a driver mutation for a given gene genetically engineered mouse models 

(GEM) is currently used approach. Sequencing a mouse acute promyelocytic leukemia genome 

reveals a deletion in Kdm6a (lysine-specific demethylase 6A) and recurrent Jak1 (janus kinase 

1) V657F mutation. Human JAK1 B658F mutation has been reported in acute promyelocytic 
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leukaemia, demonstrating relevance to use GEM models for the validation of driver mutations 

[148].  

Integrative analysis of cancer genomes and epigenomes 
One of the biggest challenges in interpreting data from TCGA and ICGC is the lack of 

comprehensive unified integrative analyses. Several research groups have created their own 

pipelines and tools for integrating 2 or more data types. In this thesis own pipeline was used for 

data integration simply by adding extra data level: mutation -> CNA -> promoter methylation -> 

identification of drivers. There are other important genomic data types which are not addressed 

in this Chapter. Examples include non-coding mutations and regulation of genes by ncRNAs. 

These mechanisms were largely ignored due to very limited knowledge of their action on coding 

genes and will be discussed in depth in chapter 9.  

 
Further validation and usage of obtained results 
This work provides a big spectrum of deliverables for follow-up investigations and in-depth 

studies. Such type of data can help to validate our findings on independent data cohort or 

compare findings in one cancer to other cancer types.   

Deliverables:  

• List of driver epigenetic regulators  

• Methylome clusters per each cancer study  

• Correlation matrix of epigenetic regulators and their complexes with methylation clusters 

• Tissue-specific and cancer-specific differently methylation regions (DMRs) 

 

Inclusion of data into Epigenome browser  
One of the benefits of obtained data is the possibility to include methylomes for cancers to 

available cancer genome browsers, like the Epigenome browser 

(http://epigenomegateway.wustl.edu/), the UCSC Genome Browser (https://genome.ucsc.edu/) 

or to IGV (https://www.broadinstitute.org/igv/). Such data can be used for visualization of the 

regions of interest per sample as well as for sample cohort.  

 

 

  

http://epigenomegateway.wustl.edu/
https://genome.ucsc.edu/
https://www.broadinstitute.org/igv/
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CHAPTER 7.              

GLOBAL INTEGRATIVE ANALYSES OF DEREGULATED MIRNAS IN PROSTATE CANCER  

In the previous chapter, 80% of tissue-specific DMRs were identified in regulated regions of 

miRNAs and lncRNAs. To assign functional relevance to identified DMRs in regulatory regions of 

miRNAS, a global integrative analysis was conducted in comprehensive data cohort of early-

onset prostate cancer released by Germany ICGC consortium. Such systematic genome-wide 

evaluation of miRNA deregulation will allow identifying the mechanism of miRNA deregulation in 

PCA and will open a question of miRNAs role in prostate cancerogenesis.  

 

In this chapter we work on the hypothesis that in addition to genetic events, epigenetic 

alterations lead to deregulation of miRNA transcription. In order to unravel the molecular 

alterations leading to miRNA deregulation in PCA we performed the first genome-wide 

integrative analysis of expression, DNA methylation and genetic alterations of miRNAs of 66 EO-

PCAs specimens generated within the German ICGC project (ICGC EO-PCA dataset) [118] 

[Weischenfeldt et al., manuscript in preparation]. The workflow of the integrative analysis 

consists of five steps of data integration, starting with the analysis of expression profiles of 

miRNAs in EO-PCA, followed by the analysis of copy number alterations, integration with DNA 

methylation profiles (Figure 7-1).  
 

 
Figure 7-1: Schematic workflow for the integrative analysis of mechanisms leading to miRNAs deregulation in EO-PCA.  

 

Step 1: identify differently expressed miRNAs in EO-PCA using miRNA-seq data of 66 EO-PCAs 

samples and 8 normals as controls.  

1. Identification deregulated miRNAs in earyl-onset prostate 
cancer (EO-PCA) 

2. Identification of miRNAs, deregulated by genetics in EO-
PCA 

3. Identifcation of miRNAs, deregulated by promoter 
methylation in EO-PCA 

4.Tumor-superessive and oncogenic miRNAs in EO-PCA 

5. Comparison of miRNA profiles in EO-PCA vs. LO-PCA 
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Step 2: identify commonly genetically altered miRNAs in EO-PCAs using copy number alteration 

(CNA) profiles of 66 EO-PCAs samples. 

 Step 3: Identify miRNAs with promoter/regulatory regions DNA methylation using MCip-seq 

data from 33 EO-PCA and 1 normal and extend analysis using Illumina 450K arrays from 155 

EO-PCAs and 44 normals.   

Step 4: Identify miRNAs, which are deregulated in EO-PCAs by two hits: promoter methylation 

and CNA. Based on data assign miRNAs to tumor-suppressive and oncogenic miRNAs in EP-

PCAs.   

Step 5: Compare miRNAs profile of EO-PCA vs. LO-PCA, identify major mechanism of 

deregulation of miRNAs in PCA.  

7.1. Global deregulation of miRNA expression in early-onset prostate cancer (EO-PCA) 
 

In order to comprehensively define molecular alterations leading to miRNA deregulation in 

prostate cancer, deep sequencing data on genome-wide miRNA expression, global DNA 

methylation, structural variations and single nucleotide variants (SNVs) of 66 EO-PCA 

specimens generated within the German ICGC project (ICGC EOPC dataset) [118], Feuerbach 

et al., manuscript in preparation] were utilized. Using a read-counts cutoff of >100 reads, a total 

of 911 miRNAs were expressed in at least one sample. Using DeSeq algorithm to identify 

differently expressed miRNAs, pool of 66 tumors and 8 normal controls were used for 

comparison and in total 174 miRNAs were significantly downregulated and 213 miRNAs were 

upregulated sample cohort (top deregulated miRNA are shown in Figure 7-1). These 

deregulated miRNAs were distributed over the entire genome, and no apparent clustering at 

certain chromosomal regions was detectable (Figure 7-1). Notably only 57% of identified 

miRNAs were reported to be differently expressed in PCA before [145], providing 43% novel 

miRNAs, important for EO-PCA cancerogenesis and can be potentially early events in prostate 

cancer development. 
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Figure 7-1: Heatmap of expression profile of miRNAs in 66 early-onset PCA cases (ICGC EO-PCA dataset). Unsupervised 

clustering analysis of top 100 most variable miRNAs. Columns represent samples and rows represent corresponding miRNAs. 

Columns heading denotes for sample type: yellow- normal, blue –small tumors (d <= 3 sm), dark blue – large tumors (d >3sm). 

Expression level is presented as log10 (normalized read counts). Bright green denotes 2 (low expression level), bright red denotes 2 

(high expression level). Hierarchical clustering was performed using Euclidian distance and complete linkage using Qlucore software 

3.1.  
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Figure 7-2: Genome-wide genetic and epigenetic miRNA deregulation in 66 early-onset PCA cases (ICGC EO-PCA dataset). 
(A) Genome-wide representation of miRNA downregulation (green bars), hypermethylation of miRNA promoters (blue bars), deleted 

miRNA precursors (dark red bars) and one translocation directly affecting a miRNA precursor. Bar height indicates the number of 

affected PCA samples. The detailed views show examples of miRNAs/miRNA clusters likely downregulated by translocation, 

deletion or hypermethylation (arrows indicate direction of transcription). (B) Venn diagram showing the overlap of mature miRNAs 

that are downregulated and affected by promoter hypermethylation, deletion and translocation in any of the 66 patients. Only 
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expressed miRNAs with mapped regulatory regions were considered. (C) Genome-wide representation of miRNA upregulation (red 

bars), promoter hypomethylation (orange bars) and amplified miRNA precursors. Bar height indicates the number of affected tumor 

samples. The detailed view shows a miRNA cluster likely upregulated by promoter hypomethylation (arrow indicates direction of 

transcription). (D) Venn diagram showing the overlap of mature miRNAs that are downregulated and affected by promoter 

hypermethylation, deletion and translocation in any of the 66 patients. Only expressed miRNAs with mapped regulatory regions were 

considered. 

 

7.2. Genetic and epigenetic alterations associated with miRNA downregulation in EO-
PCA 

In order to unravel the molecular mechanisms leading to miRNA downregulation miRNA 

precursors which either carried single nucleotide variants (SNVs) or which were affected by 

deletions or promoter hypermethylation were searched. No SNVs were detected, suggesting that 

SNVs play only a minor role in miRNA deregulation. However, a total of 605 miRNA precursors 

were deleted in at least one tumor sample (Figure 7-3), and 100 of those overlapped with the 

174 downregulated miRNAs (58%; see previous chapter, Figure 7-2), suggesting a causal link 

between deletion and downregulation in these cases. Notably, the most frequently deleted 

miRNA precursors were located in regions commonly deleted in PCA such as 8q, 13q and 17q 

[145, 149-152], also including miR-15a∼16-1 (13q14; Figure 7-3), which is frequently deleted in 

PCA [145]. In total, two times more miRNAs were observed to be affected by CNA losses 

compare to CNA gains. EO-PCA samples were separated in two distinguish classes using 

miRNA profile of genetically altered miRNAs. Identified clusters reflect the number of total 

genetic rearrangements and were named: high and low rearrangement groups (HRG and LRG 

respectively) (see Figure 7-4). 

 

Figure 7-3: Copy number genome-wide profile of miRNAs in 66 early-onset PCA cases (ICGC EO-PCA dataset). Red/blue 

bars indicate the location on chromosome maps of miRNAs with CNA gains/loss respectively in PCAs. High of bar represents 

number of altered EO-PCA cases. The most frequently genetically altered miRNAs are named.   
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Figure 7-4: Heatmap of genetically gained/loss miRNAs in 66 early-onset PCA cases (ICGC EO-PCA dataset). Columns 

represent samples, rows represent frequently altered miRNAs. With blue/red color marked miRNAs, altered by CNA losses/gains 

respectively.  

 

Since, not all downregulated miRNAs could be explained by genetic alterations, miRNAs 

associated with promoter methylation were screened using ICGC EO-PCA methylomes (MCIp-

seq data). Using previously defined 1374 regulatory regions from Baer et al. [16] covering 329 

annotated miRNAs and newly annotated miRNAs by miRBase (mirbase.org), a list of putative 

promoter regions was generated by overlapping with active promoter marks as annotated by 

ENCODE (Figure 7-4). ENCODE tracks were obtained by merging active histone marks (such 

as H3K4me3) of six published cell lines (http://genome.ucsc.edu/ENCODE/). MiRNAs putative 

promoter regions have been annotated by regions length and number of CG sites that are 

present in 450K arrays. In average, about 30% of all miRNAs predicted promoter regions are 

covered by 450K arrays with 10 probes per region (range 1 to 65 CpGs). Regulatory regions and 

coverage by 450K Illumina arrays are described in Figure 7-5. 

http://genome.ucsc.edu/ENCODE/
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Figure 7-5: Workflow of identification of putative promoter regions of miRNAs. 1374 regulatory regions from C.Baer (Baer C et 

al. Cancer Res. 2012) and newly annotated miRNAs with 35kb upstream transcription start sites were overlapped with promoter 

active tracks annotated by ENCODE.  

 
Figure 7-5: Annotation of putative promoter regions of miRNAs. Left density plot represetns promoter region length distributions.  

Right density plot represents distribution of number of sites per region of miRNA promoters. 

 

Using ICGC EO-PCA MCIp-seq data to analyze methylation of miRNA promoters, 237 miRNA 

precursors with hypermethylated promoter regions were identified (Figure 7-2 A). Of these, 109 

miRNA precursors were recurrently in PCA cases (13%) and 163 of the 676 downregulated 

miRNAs (24%) were hypermethylated in at least one tumor. Downregulation of these 163 

miRNAs, including cluster miR-193b∼365a previously described to be epigenetically regulated in 

PCA cells [145] (Figure 7-2 A), might have been caused by promoter hypermethylation.  

In order to compare the results of MCIP-seq data, we used independent TCGA published data 

cohort of prostate cancer samples (450K Illumina arrays). Since 450K arrays were not designed 
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to cover all promoter regions for miRNAs, only 34% of identified DMRs have at least 1CpG 

probe on 450K and were taken for comparison. 67% of regions, covered by both methods have 

shown correlation of methylation data (example in Figure 7-6).  

 

 
Figure 7-6: Comparison of methylation degree of promoter of miRNA-124-2 obtained by MCIP-seq and using pulished TCGA 
PRAD data set. Upper part represetns data obtained by TCGA PRAD data set: each plot shows methylation degree of CpG unit 

from 450K arrays. Blue color denotes primary tumors, red color – normal. Lower part presresents data obtained by MCIP-seq arrays 

from ICGC EO-PCA data cohort. Each dot represents normalized read counts with a link to corresponding 450K array prob. 

Green/blue color denote large/small tumors, red color – normal. 

 

The respective contribution of deletions and promoter hypermethylations to the downregulation 

of those miRNAs with annotated regulatory regions (n = 492) was assessed. Both types of 

aberrations appeared to be considerably involved in miRNA downregulation (Figure 7-2 C): 

126/492 (26%) miRNAs were deleted and 161/492 (33%) showed promoter hypermethylation in 

at least one PCA sample. This indicates that, besides miRNA deletion, promoter 

hypermethylation may considerably contribute to miRNA downregulation on a genome-wide 

scale. 
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7.3. Genetic and epigenetic aberrations associated with miRNA upregulation in EO-
PCA  

Upregulation of miRNA expression could be the result of copy number gains or hypomethylation 

of promoter regions. Only a single copy number gain (Figure 7-1 A, C) was detected in 

screened ICGC EO-PCA cohort, yet the affected miR-4307 was not expressed, precluding 

upregulation by this amplification. In contrast, 180 miRNA precursors displayed promoter 

hypomethylation, 50 of which were frequently affected PCA cases. Of the 897 upregulated 

miRNAs, 156 (17%) showed promoter hypomethylation in at least one tumor including the 

recently described miR-106b∼93∼25 cluster [145] (Figure 7-1 A, C) suggesting epigenetic 

activation as the most likely cause for upregulation. Among the 578 upregulated miRNAs with 

annotated regulatory regions, 133 (23%) had a hypomethylated promoter in at least one tumor 

sample (Figure 7-1 A, C). Taken all observations together, epigenetic alterations seem to be a 

major mechanism for miRNA activation in EO-PCA. 

 

7.4. Translocations associated with miRNAs deregulation in EO-PCA 
 

Using genomic breakpoints in EO-PCA data cohort, we searched for miRNAs, located in 

regions +/-10kb. In total 25 translocation events leading to the disruption miRNAs were 

observed. However no frequent events were identified. In order to examine the relevance of 

translocations on deregulation of miRNAs, bigger data cohort should be examined.  

7.5. Tumor-suppressive and oncogenic miRNAs in EO-PCA 
Next, deregulated in EO-PCA miRNAs have been evaluated for either oncogenic or tumor-

suppressive function. For this, the mechanism of deregulation has been evaluated.  

The simplified definitions for two groups used for our analysis, where: 

Oncogenic miRNA is a miRNA that is frequently altered in EO-PCA either by promoter 

hypomethylation and/or by allelic gains;  

Tumor-suppressive miRNA is a miRNA frequently altered in EO-PCA either by promoter 

hypermethylation and/or by allelic loss. 

In total, a list of 213 miRNAs were assigned to be tumor-suppressive (Figure 7-8) and 141 

miRNAs were assigned to be oncogenic (Figure 7-7) for EO-PCAs. 57 (27%) of tumor-

suppressive and 13 (9%) of oncogenic miRNAs were altered by two mechanisms at the same 

time. In order to examine, the role of alteration on expression of miRNAs, we compared the 

expression level of miRNAs in samples with no alterations to samples with one or two 
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alterations. For tumor-suppressive/oncogenic miRNAs the decrease/increase of expression of 

miRNAs with one or two alterations suggested the functional impact of alterations on miRNAs 

transcription. The highest difference of expression was observed in samples with two alterations 

(miRNA-195 and 200b were used like examples in Figure 7-9,10).  

 

Figure 7-7: Oncogenic miRNAs in EO-PCA cohort. Venn diagram represents number of miRNAs, deregulated by genetic gains or 

hypomethylation of promoter. Top frequently altered miRNA per each of the group presented below diagram in table manner. Such 

tables describe name of miRNA and frequency of alterations in ICGC EO-PCA sample cohort. Red color denotes genetically gained 

miRNAs. Yellow color denotes hypomethylated miRNAs. 
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Figure 7-8: Tumor-suppressive miRNAs in EO-PCA cohort. Venn diagram represents number of miRNAs, deregulated by  

deletions or hypermethylated of promoter. Top frequently altered miRNA per each of the group presented below diagram in table 

manner. Such tables describe name of miRNA and frequency of alterations in ICGC EO-PCA sample cohort. Blue color denotes 

deleted miRNAs. Orange color denotes hypermethylated miRNAs. 
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Figure 7-8: Comparison of expression level of tumor-suppressive miRNA-195 in EO-PCA cohort. Expression level of genes, 

using normalized read counts is visualized by box plots. Comparison between expression level of miRNA-195 in normals, tumors 

with no alteration, tumors with two HITs (alterations), tumors with one alteration (deletion/hypermethylation of promoter) in miRNA-

195 is plotted.  

 

Figure 7-10: Comparison of expression level of oncogenic miRNA-200b in EO-PCA cohort. Expression level of genes, using 

normalized read counts is visualized by box plots. Comparison between expression level of miRNA-200b in normals, tumors with no 

alteration, tumors with two HITs (alterations), tumors with one alteration (deletion/hypomethylation of promoter) in miRNA-200b is 

plotted.  
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7.6. Expression profile of miRNAs in different groups of EO-PCA 
Our sample cohort has two major groups of samples: 23 small tumors (diameter < 3 sm) and 35 

large tumors (diameter >= 3sm). We asked a question, if the expression profile of miRNAs in 

EO-PCA between analyzed groups is different. Using DeSeq R package we performed large vs. 

small group comparison of miRNA expression profile. 32 miRNAs were significantly differently 

expressed between selected groups (Figure 7-11).  

Next we address the question, whether promoter methylation is a major mechanism of 

deregulation of differently expressed miRNAs between two groups. Using RnBeads R package, 

we compared methylation degree of all annotated miRNA promoters, covered by 450K arrays. In 

total 84 differently methylated miRNAs between large vs. small tumors in EO-PCA with at least 1 

DMR in promoter/regulatory region were identified (Figure 7-12). 

 

 
Figure 7-11: Comparison of expression level of miRNAs in large vs. small tumors in EO-PCA data set. Heatmap represents 

unsupervised clustering of sample of identified 31 miRNAs. Columns represent sample names, rows – miRNA names.  
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Figure 7-12: Comparison of promoter methylation of miRNAs in large vs. small tumors in EO-PCA data set. Heatmap 

represents unsupervised clustering of sample of identified 84 miRNAs. Columns represent sample names, rows – miRNA names.  

 

7.7. Promoter DNA-methylation associated with miRNA deregulation in LO-PCA 
We used an independent validation dataset of 51 PCA samples with a classical age distribution 

and 48 normal prostate tissues to validate our findings on miRNA deregulation and its frequent 

association to aberrant promoter methylation in the EO-PCA samples. Genome-wide miRNA 

expression data were generated by quantitative PCR (qPCR) arrays by Ruprecht Kuner from 

Prof.Dr.Holger Sültmann group (http://www.dkfz.de/en/krebsgenomforschung/). In addition, 

miRNA deep sequencing was performed by them on a sample subset in order to extend the 

panel of miRNAs. In total 311 miRNAs (142 up- and 169 downregulated) were differentially 

expressed. To identify differentially methylated regions (DMRs) in miRNA promoters we used 

the recently published genome-wide methylation profiles of all 51 PCA and 48 normal samples 

[145]. Significant deregulation of miRNA expression accompanied by differential promoter 

methylation throughout the genome was observed in concordant to previously observed results 

(see chapter 7.1) (Figure 7-6 A). 76/149 (51%) significantly downregulated miRNAs with 

annotated regulatory regions revealed promoter hypermethylation (Figure 7-13 B). Promoter 
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hypomethylation was observed for 32/115 (28%) upregulated miRNAs with annotated regulatory 

regions (Figure 7-13 B).  

 
Figure 7-13: Genome-wide miRNA deregulation and aberrant promoter methylation in a PCA validation dataset. (A) Upper 
panel, genome-wide view on significantly downregulated miRNAs (green bars) and significantly hypermethylated regulatory regions 

(blue bars). Lower panel, significantly upregulated miRNAs (red bars) and significantly hypomethylated promoter regions (orange 

bars). Bar height indicates statistical significance (-log10p-value) (B) Overlap between significantly deregulated miRNAs and 

differentially methylated promoter regions. Only miRNAs with annotated regulatory regions were considered.  

 

Hypomethylation of promoter regions of downregulated miRNAs and hypermethylation of  

upregulated miRNAs were also observed in investigated data cohort. This points into the lack of 

knowledge of annotation of miRNA promoter regions. Such identified regions could be potentially 

enhancers or insulators and further functional investigation is required.  

 

In summary, genome-wide analysis of an independent validation dataset of classical PCA cases 

supported that hyper- and hypomethylation of regulatory regions frequently contribute to miRNA 

deregulation in PCA as well as EO-PCA. 

 

7.7.1. Validation of promoter DNA-methylation associated with miRNAs deregulation in 
PCA 
Methylation levels of 15 selected miRNAs/miRNA clusters were used for technical validation by 

MassARRAY. Four of them were commonly upregulated and eleven downregulated in several 
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independent studies on PCA and hence, may act as key regulators in PCA. Eleven miRNA 

clusters became upregulated upon DNA demethylation by 5-Aza-2´-deoxycytidine treatment of 

PCA cells and the miR-183∼96∼182 cluster, which is upregulated and hypermethylated in PCA, 

was downregulated by the treatment (Supplemental Figure S2). Thus, these 12 miRNA 

clusters are indeed epigenetically regulated. Their regulatory sequences carried 33 DMRs, 32 

hyper- and one hypomethylated, in both the ICGC EO-PCA and the validation dataset.  

 

MassARRAY analysis of 34 tumors and 35 normal samples of the validation dataset confirmed 

27/32 (84%) hypermethylated and 1/1 (100%) hypomethylated DMRs. Methylation levels of 22 of 

these 28 validated DMRs (79%), corresponding to ten miRNA clusters, were correlated with the 

expression of the corresponding miRNAs including miR-181c∼181d (Figure 7-14). 

 
Figure 7-14: Confirmation of differentially methylated regions (DMRs) in PCA tissues and their correlation with expression. 

Representative results for the downregulated miRNA cluster miR-181c∼181d with hypermethylated DMRs, and the upregulated miR-

183∼96∼182 and miRNA-375 with hypermethylated and hypomethylated DMRs, respectively. (A) Schematic representation of the 

chromosomal location of miRNAs and DMRs analyzed by MassARRAY. Red arrows indicate direction of transcription. (B) 
Methylation levels of DMRs quantified by MassARRAY in normal prostate tissues (n=35) and PCA (n=34). Red lines indicate 

medians. (* p < 0.05, *** p < 0.001). 
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These 22 DMRs and the hypomethylated miR-106b∼93∼25 promoter described recently [145] 

separated tumor from normal samples in a hierarchical cluster analysis (Figure 7-15). Only three 

tumor samples were assigned incorrectly, a fact that might be explained by their low GSTP1 

methylation levels indicating a high content of stromal cells.  

 
 
Figure 7-15: Heatmap of differentially methylated regions (DMRs) in PCA validation cohort. Methylation levels of all validated 

DMRs that are inversely (miR-183∼96∼182: directly) correlated to miRNA expression, including one hypomethylated DMR regulating 

miR-106b∼93∼25 and recently described as in [118]. Color denotes methylation degree (blue denotes 100% methylation and yellow 

– no methylation of investigated regions) Below the heatmap, the methylation differences between PCA and normal prostate tissues 

(∆𝛽[%]) and their statistical significances are shown (* p < 0.05, *** p < 0.001). 

 

Methylation levels of validated DMRs were able to separate PCA from normal prostate tissues in 

hierarchical clustering. Taken together, 10 of 15 selected miRNA clusters (67%) commonly 

deregulated in PCA were validated by independent method and sample cohort. This finding 

supports global observation that aberrant promoter DNA-methylation of miRNAs represents an 

important mechanism of deregulation of miRNA expression in PCA.  

 
7.7.2. Epigenetically regulated miRNAs activate key oncogenic pathways in PCA 
Screening both the ICGC EO-PCA and the validation dataset, we identified 37 miRNAs 

consistently downregulated and ten miRNAs consistently upregulated by promoter hyper- or 

hypomethylation, respectively. To identify gene regulatory networks possibly impaired in PCA by 
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these epigenetically deregulated miRNAs on a global level, all experimentally observed target 

genes of these 48 miRNAs were assigned using Ingenuity Pathway Analysis (IPA) assuming 

gene upregulation upon miRNA downregulation and vice versa. Mapping these target genes to 

molecular pathways by IPA the top five oncogenic pathways were: PI3K/AKT signaling, G1/S 

checkpoint, RAS, TGF𝛽 and JAK/STAT signaling (Figure 7-16).  

 
Figure 7-16: Epigenetically regulated miRNAs activate key oncogenic pathways. Left panel, 37 and 10 miRNAs displayed an 

inverse association between expression and promoter methylation in both the ICGC EO-PCA and the validation dataset (green/blue 

= down regulation + hypermethylation; red/orange = upregulation + hypomethylation). Their experimentally observed target genes 

were extracted from Ingenuity Pathway Analysis (IPA) and assumed to be upregulated (denotes by red) by downregulated miRNAs 

and downregulated (denotes by green) by upregulated miRNAs. Right panel, the top five pathways to which these target genes 

were assigned to by IPA are tumor-promoting. Four of these five pathways are clearly activated by the observed miRNA deregulation 

(TF: transcription factors).  

 

Based on the miRNA deregulation in our datasets, the majority of the genes activating these 

pathways were upregulated, thereby leading to the activation of four pathways. Focusing on the 

experimentally verified target genes extracted from the literature of eleven miRNA clusters: the 

ten being validated to be epigenetically deregulated as described in the previous chapter and the 

miR-106b~93~25 cluster which epigenetic upregulation was recently reported in PCA [145]. IPA 

revealed that 9/11 (82%) miRNA clusters regulate genes of PI3K/AKT/PTEN signaling pathway 

(Figure 7-17), eight of which could lead to activation of this pathway. As examples, the pathway-

activation of AKT1 gene (V-Akt Murine Thymoma Viral Oncogene Homolog 1) is activated by 

downregulated miRNAs, whereas the pathway-inhibiting PTEN gene (Phosphatase and tensin 

homolog) is downregulated by upregulated miRNAs. 
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Figure 7-17: Activation of PI3K/AKT/PTEN signaling by eleven confirmed epigenetically regulated miRNA clusters (see text 
for description). Experimentally verified target genes were extracted from literature. miRNAs printed in green are consistently 

downregulated in PCA resulting in upregulation of their target genes (red). miRNAs printed in red are consistently upregulated in 

PCA resulting in downregulation of their target genes (green). 

 
7.8. PTEN inactivation by miRNAs in PCA 
Famous tumor-suppressor gene PTEN has different mechanisms of inactivation in prostate 

cancer such as complex mutational processes including deletions, mutations, translocations or 

the activation of ETS (E26 transformation-specific) transcription factors through structural 

rearrangements [145]. But regulation of PTEN expression by miRNAs remains unclear in 

prostate cancer. In order to understand alternative mechanisms of PTEN deregulation, 16 

functional proved PTEN-targeting miRNA profiling was examined. Multiple upregulating of 

PTEN-targeting miRNAs indicated the alternative mechanism of deregulation of PTEN in PCA. 2 

of investigated clusters of miRNAs had hypomethylated promoter regions correlating with 

miRNA expression (Figure 7-18, Supplemental Figure S3). PTEN-targeting miR-106b-5p that 

displays oncogenic activity in a PCA model [145] was upregulated 2.4x-4.6x in all seven EO-

PCA samples. Obtained data indicates miRNAs contribution to PTEN inactivation in prostate 
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cancer. Due to the lack of a sample cohort with PTEN genetic data, mutually exclusivity of each 

inactivation mechanisms was not analyzed.  

 

Figure 7-18: Hypomethylation and upregulation of two PTEN-targeting miRNA cluster. MassARRAY results represented by 

dot-plots (left panel) revealed promoter hypomethylation of 2 PTEN-targeting miRNA clusters (cluster on chr7 and chr12). Right 

panel displays correlations between miRNA expression and average methylation levels across the promoter regions (R corresponds 

to Spearman rank correlation values). Horizontal lines depict median values. Black dots denotes elderly-onset prostate cancer, grey 

and green dots denotes for normal prostate epithelium (>50years old and <=50 years), red dots denotes for EO-PCAs.  

 

7.9. miRNAs promoter DNA-methylation in cancer  
 

In order to further investigate the role of promoter methylation of miRNAs in cancer in a 

systematic manner, a PANCAN approach is required. PANCAN is an approach analyzing 

differences between cancer types that allows identifying cancer- as well as tissue- specific 

features. Such approach allows unraveling whether observed promoter methylation of miRNAs 

in PCA is also present in other cancer subtypes. In order to perform comprehensive screen of 

DMRs in promoters of miRNAs we used TCGA available resources. Using TCGA PANCAN data 
set (described in chapter 5.4), DMR search in promoter/regulatory regions of miRNAs was 

performed. In total 127 DMRs (~15%) in promoter/regulatory regions of miRNAs were present in 

>50% of investigated studies and assigned as PANCAN DMRs. Where 875 DMRs (~85%) 

DMRs were unique per study and were assigned as tissue-specific DMRs. Obtained results 

supported the hypothesis that DNA-methylation of promoter regions is one of major mechanisms 

of deregulation of miRNAs in cancer.  
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7.10. Discussion of results 

Next generation profiling data for cancer genomes allows an integrated analysis of genetic and 

epigenetic alterations. In the majority of the studies the power of an integrative analysis is not 

used to its full potential and focus is either on genetic or epigenetic alterations. In this study we 

investigated the potential of integrative genome analysis on the regulation of miRNAs in EO-

PCA. We utilized a comprehensive dataset of 66 EO-PCA and demonstrated on the genome-

wide level that - besides miRNA deletion - epigenetic alterations, namely differential methylation 

of regulatory regions, represent a major mechanism for miRNA deregulation in PCA.  

 

Strikingly, we did not only uncover promoter hypermethylation for up to half (33% and 51%) of all 

downregulated miRNAs in the 66 EO-PCA and an independent validation dataset of 51 PCA, but 

as a novel mechanism also promoter hypomethylation was detected for one fourth (23% and 

28%) of the upregulated miRNAs. The former included known epigenetically regulated miRNAs 

like miR-205 [153, 154], miR-34c [155] and miR-193b [156]. The frequent co-occurrence of 

hypomethylation and miRNA activation detected in our genome-wide analyses is in agreement 

with recent data in chronic lymphocytic leukemia [16]. The lack of genetic aberrations that could 

cause miRNA upregulation in the 66 EO-PCA further indicates that epigenetic mechanisms like 

DNA hypomethylation are essential for miRNA activation in (early-onset) PCA. We confirmed the 

epigenetic regulation for ten of 15 selected miRNA clusters that are commonly deregulated in 

PCA using the MassARRAY technology. Furthermore, we demonstrated that epigenetically 

deregulated miRNAs contribute to the activation of key oncogenic signaling pathways in PCA. A 

large fraction of the validated epigenetically regulated miRNAs activates AKT/PTEN signaling by 

targeting diverse genes within this pathway. Thus, providing a novel mechanism of deregulation 

besides known genetic alterations of PTEN [118, 119, 122, 151]. This also supports the view 

that individual tumors, despite bearing different miRNA expression patterns, are able to activate 

the same pathway by targeting different genes. 

 

In several cancer types, including colorectal [157] and breast cancer [155, 158], melanoma [159] 

and leukemia [16] aberrant promoter methylation has been extensively described to be an 

important source for deregulation of miRNA expression. In PCA, large-scale studies on 

epigenetically regulated miRNAs were mainly performed by 5-aza-2´-deoxycytidine-mediated 
inhibition of DNA methyltransferases in PCA cells leading to global DNA demethylation and 

reactivated expression of epigenetically regulated miRNAs [153, 156]. In PCA tissues, the global 

picture was lacking so far, and aberrant methylation of miRNA promoters associated with 

deregulated expression was demonstrated only for single miRNA candidates including the 
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tumor-suppressive miR-205 [154] and miR-31 [160]. The hypermethylated DMRs for both 

miRNAs identified in our study overlap to the promoter regions described in other studies on 

PCA [154, 160], providing independent support for our results. Several other epigenetically 

regulated miRNAs validated in this study have also been described to be epigenetically 

controlled in PCA or other human tumor cells: these include miR-133a [161], miR-181c [162], 

miR-23b [100], miR-27a [156], miR-27b [163], miR-375 [156] and miR-378a [163, 164]. We add 

here the exact localizations of the differentially methylated regulatory regions for these miRNAs 

in PCA tissues. The activation of miR-375 by hypomethylation has previously been described in 

breast cancer for a DMR upstream [165] of the DMR identified by us, which is almost 

unmethylated in PCA. This cell type-specific shift of regulatory regions has previously been 

described for miR-21 [166].  

 

In addition to the classical view of an inverse correlation between aberrant promoter methylation 

and differential expression, we observed a number of downregulated miRNAs with 

hypomethylated regulatory regions and upregulated miRNAs with hypermethylated regions. This 

could be explained by the fact that the investigated regulatory regions carrying the chromatin 

mark histone 3 lysine 4 trimethylation (H3K4me3) [16] does not necessarily represent promoter 

regions but could also function as enhancers [167]. Furthermore, other suppressive (H3K9me3, 

H3K27me3) or activating chromatin marks (H3K36me3, H3K27 acetylation) may overrule the 

regulatory effect of promoter methylation in certain genomic contexts [124]. For example, the 

regulatory region of the oncogenic miR-183∼96∼182 cluster [168, 169], which is commonly 

upregulated in PCA, was significantly hypermethylated. This regulatory region might function as 

a silencer that becomes inhibited by hypermethylation. Interestingly, the region is a target of 

polycomb-repressive complexes based on the ENCODE chromatin data and thus, might be 

hypermethylated by the polycomb repressor complex 2 (PRC2) member EZH2, whose 

expression is highly correlated to the methylation level of this regulatory region. Therefore, our 

data indicates that the prevailing hypothesis of “promoter hypermethylation causes inactivation” 

is not sufficient to explain all alterations of miRNA expression in PCA tissues.  

 

The mechanisms leading to epigenetic reprogramming in miRNA promoter sequences are 

unknown. The currently uncovered mutation spectrum in PCA [119, 170] might shed some light 

on this question. In these data sets we found several genes involved in epigenetic pathways 

including DNA methylation, histone modifications and chromatin remodeling (e.g. CHD1, HDAC9 

and MLL2) [119, 170]. It is intriguing to speculate that these defects lead to global alterations of 
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epigenetic patterns including the regulatory regions of miRNAs. Alternative mechanism may 

include environmental or tumor micro-environmental stimuli that influence epigenetic patterns. 

In conclusion, our study shows that aberrant DNA hyper- and hypomethylation of miRNA 

regulatory regions is a frequent event and represents a major process directed towards 

transcriptional deregulation of miRNAs in PCA, thereby effectively activating key oncogenic 

pathways. However, a large fraction of deregulated miRNAs could not be explained by genetic 

alterations or aberrant DNA methylation indicating that additional mechanisms including other 

epigenetic mechanisms like histone modifications, aberrant transcription factor activity or 

posttranscriptional regulation are involved in miRNA deregulation. 

 

In the chapter 7-8 of the thesis, we focused on the identification major mechanisms of deregulation of 

non-coding RNAs (miRNAs and lncRNAs correspondently), by using independent comprehensive data 

cohort of early-onset prostate cancer. We observed 35 translocations that could potentially lead to 

deregulation of miRNAs, but due to a small sample size, we were not able to estimate the functional 

impact of them. Testing bigger sample cohorts as well as verifying identified novel rearragemnets in 

another cancer types would provide novel mechanism of deregulation of ncRNAs.   

In this thesis we followed two major approaches: identification differences between tumor and 

normal or the comparison within tumor samples to identify novel subtypes. Both approaches 

have benefits but also some limitations. The tumor vs. normal approach was used to identify 

major differences in tumor cells compare to normal controls. The biggest advantage is to be able 

to statistically distinguish major differences. However, one of the limitations of this approach is 

the assumption that all tumors have the same cell composition and tumor content. This is not 

problematic for the genetic datasets, however due to tissue-specific DNA methylation and 

expression patterns this represents a major problem since the cell or cell-type of tumor origin is 

often unknown. There are different methods described in the field already to evaluate tumor 

purity, based on genetic events (ABSOLUTE) or expression profiles (ESTIMATE) or methylation 

events (GSTP1 for prostate cancer). All methods were showing different results and can be 

implemented only to specific data level. But universal tool for simple reliable estimation tumor 

purity is still missing.   

We also used to approach to compare tumors only. This approach operates under the 

assumption that all tumors have similar tumor content and were raised from the same cell of 

origin cell. There is, however, a lack of knowledge in the field for proper normal control or for 

methods for the identification from already existing ICGC and TCGA data cell of origin of tumor. 

Identification of the cellular origins of cancer is also crucial in enhancing our understanding of 

the mechanisms regulating the different steps of tumor initiation and progression.  
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CHAPTER 8.              

MECHANISMS LEADING TO DEREGULATION OF LNCRNA IN PROSTATE CANCER   

Long non-coding RNAs (lncRNAs) represent a class of molecules that exert regulatory functions 

to their target genes by recruitment of chromatin modifying protein complexes [171]. 

Deregulation of lncRNAs results in altered expression of target genes. An additional level of 

epigenetic deregulation in cancer genomes comes from deregulation of lncRNAs, which are 

reported to act as regulators of tumorigenic pathways [172]. Deregulated lncRNAs multiply their 

influence on thousands of target genes, many of them with cancer relevant functions as for 

example HOTAIR, XIST etc. [173]. Recent studies provided lists of cancer-specific and tumor 

type-specific deregulated lncRNAs. Although the contribution of deregulated lncRNA expression 

to cancer pathogenesis is evident, it is still not clear which mechanisms lead to aberrant 

expression of lncRNAs.  

 

For a long time, the systematic genome-wide evaluation of mechanisms leading to lncRNA 

deregulation was not performed due to the lack of data and comprehensive promoter annotation 

for lncRNAs. This has recently changed due to the utilization of RNA-seq data for cancer 

patients by efforts of big cancer genome consortia, better annotation of lncRNA genes in entire 

genome [16] and large scale profiling activities in the ENCODE projects for annotation of 

regulatory regions [174]. Large cancer genome characterization consortia (e.g. TCGA and 

ICGC) have released comprehensive datasets on genetic, transcriptomic and epigenetic levels 

that will now allow an integrative analysis to identify the mechanism of lncRNA deregulation. In 

PCA datasets are available that foster a comparison of early-onset (EO-PCA data set) with late 

onset prostate cancer (ICGC, TCGA and others).  

 
In this chapter we work on the hypothesis that in addition to genetic events, epigenetic 

alterations lead to deregulation of lncRNA transcription. In order to unravel the molecular 

alterations leading to lncRNA deregulation in PCA we performed the first genome-wide 

integrative analysis of expression, DNA methylation and genetic alterations of lncRNAs of 89 

EO-PCAs specimens generated within the German ICGC project (ICGC EO-PCA dataset) [118] 

[Feuerbach et al., manuscript in preparation]. The workflow of the integrative analysis consists of 

six steps of data integration starting with the analysis of expression profiles of lncRNAs in EO-

PCA, followed by the analysis of copy number alterations, integration with DNA methylation 

profiles and subsequent addition of non-coding mutations (Figure 8-1).  
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Figure 8-1: Schematic workflow for the integrative analysis of mechanisms leading to lncRNAs deregulation in EO-PCA.  

 

Step 1: Identify differently expressed lncRNAs in EO-PCA using RNA-seq data of 78 EO-PCAs 

samples and 11 normals as controls  

Step 2: Identify commonly genetically altered lncRNAs in EO-PCAs using copy number 

alteration (CNA) profiles of 66 EO-PCAs samples 

 Step 3: Identify lncRNAs with promoter/regulatory regions DNA methylation using MCip-seq 

data from 33 EO-PCA and 1 normal and extend analysis using Illumina 450K arrays from 155 

EO-PCAs and 44 normals.   

Step 4: Identify lncRNAs, which are deregulated in EO-PCAs by two hits: promoter methylation 

and CNA. Based on data assign miRNAs to tumor-suppressive and oncogenic lncRNAs in EP-

PCAs.   

Step 5: Compare lncRNAs profile of EO-PCA vs. LO-PCA, identify major mechanism of 

deregulation of lncRNAs in PCA.  

8.1. Expression profile of lncRNAs in EO-PCA 

We started our analysis with the evaluation of differently expressed lncRNAs in EO-PCA 
transcriptom data set (described in details in chapter 5.4). Using RNA-seq data of 78 EO-

PCAs samples and 11 normals as controls, 12045 lncRNAs were quantified with more than 10 

reads in samples cohort. Using DeSeq R package to identify differently expressed miRNAs, pool 

of 78 tumors and 11 normal controls were used for comparison and in total 76 lncRNAs were 

significantly downregulated and 57 lncRNAs were upregulated in EO-PCA samples (top 

deregulated lncRNAs are shown in Figure 8-2).  

 

1. Identification deregulated lncRNAs in earyl-onset prostate 
cancer (EO-PCA) 

2. Identification of lncRNAs, deregulated by genetics in EO-
PCA 

3. Identifcation of lncRNAs, deregulated by promoter 
methylation in EO-PCA 

4.Tumor-superessive and oncogenic lncRNAs in EO-PCA 

5. Comparison of lncRNA profiles in EO-PCA vs. LO-PCA 
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Within the list of deregulated lncRNAs of EO-PCA (see Table 8-1) are published lncRNAs 

PCAT1 [111], PCA3 [128] known from previous publications on late onset prostate cancer. 

However, they were not within the top 10 lncRNAs, suggesting that in EO-PCA additional 

lncRNAs participates in tumorigenesis. Similar to miRNAs (chapter 7) the deregulated lncRNAs 

were distributed over the entire genome and no apparent clustering at certain chromosomal 

regions was detectable which would suggest a chromosome loci specific mechanism. This 

indicates that deregulation of lncRNAs underlies individual events for each gene.  

 
Table 8-1. Top 20 up-regulated lncRNAs in EO-PCA 

lncRNA name group log2FC p-value adjusted p-value 

RP5-1092A3.4 antisense 2.274551 0.001715 0.072588 

RP11-457M11.5 lincRNA 2.380836 0.001501 0.067332 

RP1-80N2.3 lincRNA 2.610246 0.000626 0.039055 

CTD-3060P21.1 antisense 2.613297 0.001153 0.057306 

RP11-299G20.2 antisense 2.884136 0.002739 0.097687 

RP11-368I7.2 antisense 2.885027 0.000451 0.032183 

DLX6-AS1 antisense 3.125954 0.000312 0.02469 

CTD-2265M8.2 antisense 3.020961 0.000223 0.019667 

AC116614.1 antisense 3.075482 0.001166 0.057548 

CTD-3064H18.4 antisense 3.406407 0.000118 0.013134 

AP006748.1 lincRNA 4.040963 0.000583 0.03786 

AC002511.2 antisense 3.986033 1.33E-05 0.002741 

AC073133.2 lincRNA 3.94981 4.70E-05 0.006875 

CTC-523E23.5 lincRNA 3.940505 0.000106 0.012331 

AC002511.3 lincRNA 3.967112 1.06E-05 0.002416 

PCAT1 lincRNA 4.042015 0.000174 0.016953 

CTD-2126E3.3 antisense 4.021008 2.26E-05 0.004057 

AC144450.2 lincRNA 5.606544 6.36E-06 0.001692 

ERVH48-1 antisense 5.834426 0.000225 0.01971 

PCA3 antisense 6.47371 9.05E-11 3.44E-07 

AC144450.1 Antisense 6.534477 3.36E-10 8.52E-07 

AC074389.9 lincRNA 6.861704 9.12E-06 0.002174 

 
Unsupervised clustering of the top 100 differently expressed lncRNAs identified 3 tumor 

subgroups but they did not associate with any clinical feature (such as stage, age, Gleason 

score) or genetic alterations (PTEN, ERG status) of the samples (Figure 8-2). Suggesting 

prostate cancer progression is different between samples rather than cancer subgroup specific 

lncRNAs expression. Another explanation can be a different tumor content or cell of origin of the 
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samples. These different hypotheses will be addressed in detail in the discussion section 

(chapter 9).   

  

Figure 8-2: Heatmap of top 100 differently expressed lncRNAs in EO-PCA samples and normal. Every row represent lncRNA, 

columns indicate samples (yellow – tumors, blue - normals). In the color palette used to represent expression normalized read 

counts from RNA-seq data, bright green denotes high expression (high number of reads) of lncRNAs,  dark red denotes lowly 

expressed lnRNAs. Hierarchical clustering was performed using Manhattan distance and complete linkage using DESeq R package.    
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8.2. Genetic aberrations associated with lncRNA deregulation in EO-PCA  
 

In order to identify the molecular mechanisms leading to lncRNA downregulation we searched 

for lncRNAs which either carried single nucleotide variants (SNVs) or which were affected by 

deletions. No SNVs were detected in the lncRNA sequences suggesting that SNVs do not play a 

role in the deregulation of lncRNAs. Next we addressed if mutations in regulatory sequences 

(promoter sequences) of lncRNAs could be identified. Using available ENCODE data 

(ROADMAP, histone marks from prostate cancer cell lines) we created a list of regulatory 

regions/potential promoters for lncRNAs and used this list to search for SNVs in the EO-PCA 

data set. We found that 10% of the deregulated lncRNAs have SNVs in potential promoter 

regions, suggesting the novel mechanism of lncRNAs deregulation. The effects of these SVNs 

should be further investigated in experimental settings and their importance further validated in 

larger sample cohorts. Next we assessed if larger genetic alterations such as deletions could 

have an effect on lncRNAs expression. Interestingly, a total of 102 lncRNAs were deleted in 

tumor samples and 56 of those overlapped with the 76 downregulated lncRNAs (27%) 

suggesting a causal link between deletion and downregulation.  

 

Notably, the most frequently deleted lncRNAs were located in regions commonly deleted in PCA 

such as 3p14 [145]. Upregulation of lncRNAs expression could be the result of copy number 

gains or SNVs in their sequence or in their promoter region. 76 lncRNAs were found amplified in 

tumor samples and 45 of those overlap with upregulated lncRNAs. Only 3% of upregulated 

lncRNAs have SNV in potential promoter regions with no significant correlation to expression. 

This can be due to the lack of promoter regions description or the small number of samples 

analyzed for mutations. Such novel mechanism of lncRNAs deregulation by promoter SNV 

should be deeply investigated using bigger sample cohorts, what will be possible within an ICGC 

PanCancer project.   

8.3. Promoter DNA-methylation associated with lncRNA deregulation in EO-PCA  
Since, not all downregulated lncRNAs could be explained by genetic alterations, we searched for 

lncRNAs associated with promoter methylation using ICGC EO-PCA methylomes (450K Illumina 

data). Using GENOCODE17 (www.gencodegenes.org), 12060 newly annotated lncRNAs were 

extracted. A list of promoters for these lncRNAs was generated by overlapping regions 

expanding from 2kb upstream to 500bp downstream of the transcription start sites (TSS) with 

active promoter marks as annotated by ENCODE. ENCODE tracks were obtained by merging 

active histone marks (such as H3K4me3) of six published cell lines 

(www.genome.ucsc.edu/ENCODE/). lncRNAs promoter/regulatory regions have been 

http://www.genome.ucsc.edu/ENCODE/
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annotated by regions length and number of CG sites that are present in 450K arrays. In average, 

about 60% of all lncRNA predicted promoter regions are covered by 450K arrays with a mean 10 

probes per region (range 1 to 60 CpGs). Description of regulatory regions and coverage by 450K 

Illumina arrays are described in Figure 8-3. 

Figure 8-3: Annotation of putative promoter regions of 
lncRNAs. Left density plot represetns promoter region length distributions.  Right density plot represents distribution of number of 

sites per region of miRNA promoters. 

 

Using ICGC EO-PCA MCIp-seq data to analyze methylation of lncRNA promoters, 137 lncRNA 

with DMR in promoter regions were identified.  

In order to compare the results of MCIp-seq data, we used independent TCGA published data 

cohort of prostate cancer samples (450K Illumina arrays). Since 450K arrays were not designed 

to cover all promoter regions for miRNAs, only 42% of identified DMRs have at least 1 CpG 

probe on 450K and were taken for comparison. 67% of regions, covered by both methods have 

shown correlation of methylation data (example in Figure 8-4).  
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Figure 8-4: Comparison of methylation degree of promoter of lncRNA obtained by MCIp-seq and using pulished TCGA 
PRAD data set. Upper part represetns data obtained by TCGA PRAD data set: each plot shows methylation degree of CpG unit 

from 450K arrays. Blue color denotes primary tumors, red color – normal. Lower part presresents data obtained by MCIP-seq arrays 

from ICGC EO-PCA data cohort. Each dot represents normalized read counts with a link to corresponding 450K array prob. 

Green/blue color denote large/small tumors, red color – normal. 

Using methylation data from 66 EO-PCA samples and 120 normals, 177 hyper- and 128 

hypomethylated regions (DMRs) in promoter/regulatory regions covering 254 lncRNAs were 

detected. No specific methylated samples subgroup was identified by unsupervised clustering of 

1000 most differently methylated promoter/regulatory regions of lncRNAs. The respective 

contribution of deletions and promoter hypermethylations to the downregulation of those 

lncRNAs with annotated regulatory regions was assessed.  
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8.4. Correlation of DNA methylation and expression deregulation of lncRNAs in EO-
PCA 

To confirm a functional impact of promoter DMRs on expression of lncRNAs, gene-set 

enrichment analysis (GSEA) was performed. Significant hyper and hypo methylated DMRs in 

promoter/regulatory regions of lncRNAs and expression of all expressed lncRNAs were used for 

unbiased correlation. GSEA has shown a significant enrichment for hyper and hypo DMRs with 

deregulated lncRNAs (Figure 8-5), suggesting that promoter methylation of lncRNAs is one of 

mechanisms of lncRNA regulation.  

 

Figure 8-5: Schematic representation of GSEA of hyper/hypo DMRs in promoter/regulatory regions of deregulated lncRNAs 
and expression of lncRNAs in EO-PCA data cohort. Segmented cycle plot on left side represents total no of methylated DMRs. 

Color denotes for gain (red) and loss (blue) of methylation in EO-PCA vs. normal control samples. Right panel represents results of 

GSEA analysis.      
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8.5. Promoter DNA-methylation associated with lncRNAs deregulation in different 

stages PCA 
 

Dysregulation of lncRNAs has been associated with the multistep progression of PCA from 

prostatic intraepithelial neoplasia (PIN), localized adenocarcinoma to metastatic castration-

resistance PCA (CRPC). There are few studies with identified unique broad spectrum of both 

tumor suppressive and oncogenic miRNAs and non-coding RNA deregulated in different stages 

and contributing to prostate carcinogenesis. In this chapter, we asked the question, whether 

promoter methylation associated with lncRNA deregulation is associated with different stages of 

prostate cancer development.   

Using extended sample cohort COMBINED PCA data set (description in chapter 5.4), classical 

age distribution and includes PINs and metastasis from published data, firstly we asked the 

question, whether there are differences in DNA methylation of lncRNA promoters between 

different stages of prostate cancer. We checked the distribution of methylation in all annotated 

promoter/regulatory regions of lncRNAs and observed a shift towards 50% methylation peak in 

tumor, PIN and metastasis samples compare to normal samples. Such redistribution of 

methylation values indicates global methylated differences in these regulator regions between 

different sample types of prostate cancer (Figure 8-6). 

.  
Figure 8-6: Density plots depicting frequency (X-axis) of methylation 𝜷-values (Y-axis) for each of sample group (primary 
tumor-green, normal – yellow, PIN - blue, and metastasis - red).  
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Next we performed unsupervised cluster analysis of all annotated promoter regions for lncRNAs 

using data cohort. We were able to separate normal samples to separate cluster, but have not 

observed a complete separation of different tumor stages (Figure 8-10). This indicates that there 

are more geterogineity in samples as well as highlight a possible influence of cell of origin.  

 

 
Figure 8-7: Heatmap of 1000 differently methylated DMRs, covering promoter/regulatory regions of lncRNAs in EO-PCA 
samples and normal. Every row denotes one of 1000 selected lnRNAs, and columns are samples (color denotes sample type as 

explained in color legend). In the color palette used to represent methylated degree, blue denotes 1 (high methylation level), dark red 

denotes 0 (no methylation). Hierarchical clustering is performed using Euclidian distance and complete linkage using RnBeads  R 

package.   

 

Although we were not able based on methylation profile of lncRNAs separate different stages of 

prostate cancer, we have identified a list of 56 lncRNAs with methylation increase from low 

methylated in normal to high methylated in metastasis samples. Examples of progressive DMRs 
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in promoter/regulatory region of lincRNA CTC-523E23.14 and antisente AC079630.4 are plotted 

in Figure 8-8. Such promoter DMRs after further validation can be used for diagnosis or survival 

of prostate cancer. Performing functional assays to characterize lncRNAs with progressive 

DMRs can help to find new mechanisms of prostate cancer progression and explain the role of 

lncRNAs in prostate tumorigenesis.   

 

  
 
 
Figure 8-8: Methylation data on promoters of lincRNA CTC-523E23.14 and antisente AC079630.4. Box-plot of methylation 

values of selected CpG, covering promoter/regulatory regions of lncRNA. Methylation degree (X-axis), different CpGs with CG id 

from 450K array (Y-axis). Different colors denotes for different sample type: green-normal, blue – PIN, red – primary tumor and 

orange – metastasis.  

8.6. DNA methylation of promoter/regulatory regions of lncRNAs in PANCAN  
 
The same approach as for miRNA (described in chapter 7.9) was used to in order to further 

investigate the role of promoter methylation of lncRNAs for changes in the regulation of lncRNAs 

expression in cancer. Using promoter/regulatory regions, DMR search was performed in TCGA 
PANCAN data set (description in chapeter 5.4).  88 DMRs (~10%) in promoter/regulatory 

regions of lncRNAs were pan-cancer specific, compare to 987 DMRs (~90%) DMRs were tissue 

specific. This may reflect recently published tissue-specific expression of lncRNAs in cancer 

[175].  
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8.7. Discussion of results 

Next generation profiling data for cancer genomes allows an integrated analysis of genetic and 

epigenetic alterations, such as DNA methylation. In the majority of studies the power of an 

integrative analysis is not used to its full potential and focus is either on genetic or epigenetic 

alterations. The molecular mechanism of lncRNA deregulation in prostate cancer as well as in 

PANCAN to some extend was investigated. Based on our data we were able to identify 3 major 

mechanisms of lncRNA deregulation: non-coding mutation in promoter/regulatory region of 

lncRNA, promoter methylation of lncRNAs and loss/gain of alleles, carrying lncRNA gene 

(Figure 8-9). Further investigations are needed to unravel it with increased sample cohort and 

improved technique, that can allow distinguish allele specific events.

 
Figure 8-9. Schematic representation of major mechanisms of lncRNA deregulation in cancer.  

Obtained data is a great resource and can be used in further studies for validation differently-

regulated lncRNAs. Such resource will allow pick up interesting candidates for prostate cancer, 

as well as for other cancer types for functional studies to understand the mechanism and role of 

specific lncRNA in cancerogenesis.  

Summarizing all results and discussion, the future directions of the thesis are quit broad and can 
be continued by: 

1. Improving of integrative analysis by adding comprehensive non-coding RNA data 

2. Adding non-coding mutations that can lead to deregulation of epigenetic regulators 

3. Searching for novel cancer drivers and validating of defined  epigenetic drivers 

4. Creating a comprehensive ‘validation of drivers’ approach  

5. Developing new drugs targeting specific driver mutation in epigenetic regulators 

6. Investigation of functional relevance of translocation on deregulation of non-coding 

RNAs. 

7. Identification the cell of origin of all tumor type  
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Supplemental Tables 

Supplemental Table S1: Primers used for MassARRAY analyses (capital letters represent 

sequences that are complementary to DNA, lowercase letters represent tags for MassARRAY 

analyses). Y = C/T, R = G/A 

miRNA cluster_DMR Forward primer Reverse primer 

miR-23b~27b~24-1_i 
aggaagagagTAGAAGAAAGGATTGAAG

ATGGG 

cagtaatacgactcactatagggagaaggctCCTCCCCAC

CCTTCAATATTC 

miR-23b~27b~24-1_ii aggaagagagGGGATGGTYGTTAGGATT

TTG 

cagtaatacgactcactatagggagaaggctTACTCTATTA

TCATAACCAAATCC 

miR-23b~27b~24-1_iii aggaagagagGTATAATGTGTTGTAGAA

AGGAAG 

cagtaatacgactcactatagggagaaggctTAAACAAAAA

ACTTCATTCTCCTAC 

miR-23b~27b~24-1_iv aggaagagagGATAGATTGGAGAGGGG

GAG 

cagtaatacgactcactatagggagaaggctAATAAACCTA

AAACTAATACAACC 

miR-23b~27b~24-1_v aggaagagagGGAAGTGGAGTGGTTTAT

ATAG 

cagtaatacgactcactatagggagaaggctATCTTTATAA

AATAAACATTTACTCC 

miR-23b~27b~24-1_vi aggaagagagTTAGGTATTGAGGGAATT

AGTTAG 

cagtaatacgactcactatagggagaaggctATTACCCCT

CACCCTAAAAACC 

miR-23b~27b~24-1_vii aggaagagagGATGAGTTTAGATTAGTT

ATTTTTAG 

cagtaatacgactcactatagggagaaggctCTCCCAATT

CTCTACACAAACTC 

miR-23b~27b~24-1_viii aggaagagagGAGTATATGTGGTATATA

TAGTG 

cagtaatacgactcactatagggagaaggctAAATAATTTA

AATAATCTAAAACTCC 

miR-23a~27a~24-2_i aggaagagagGTTAAGTTTTGTTTTTTAG

GTTAGG 

cagtaatacgactcactatagggagaaggctTCCAAATAC

CAACCTCTAACCC 

miR-23a~27a~24-2_ii aggaagagagGGTGGGTAYGATAYGGG

GG 

cagtaatacgactcactatagggagaaggctAACAAACAA

ACCTTACCTATAAATC 

miR-23a~27a~24-2_iii aggaagagagGGTAGTAAGTTTGGGATA

TTTAG 

cagtaatacgactcactatagggagaaggctCTCCTACAT

CCCRTCCCTC 

miR-29b-1~29a_i aggaagagagAGTAGTTTTTAYGGAAGA

TATAG 

cagtaatacgactcactatagggagaaggctAATTCAATAA

CAAACACTTTAATTC 

miR-29b-1~29a_iii aggaagagagTGAATAAATAGTTTTAGTT

TGTTTG 

cagtaatacgactcactatagggagaaggctCCTCAAATTA

TAATCTTCATTATTC 

miR-31_i aggaagagagTAAAGTGATAGTAATTTTA

GGTGG 

cagtaatacgactcactatagggagaaggctCCTCCTCTTA

TCCAAATCTCAA 

miR-31_ii aggaagagagGAAAGGAGGGGGAGGGA

AG 

cagtaatacgactcactatagggagaaggctTCCCTCTCC

CTTAACTCTAAC 

miR-133a-2_i aggaagagagGTTTTATTAGATGTYGATT

TGGG 

cagtaatacgactcactatagggagaaggctAAACCCCTC

CTACCTTTAATAAA 

miR-149_ii aggaagagagGTAATAAGTGTATAGGTT

TGAGTG 

cagtaatacgactcactatagggagaaggctATAAACAATA

ACCRACTAAATAACC 
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miR-149_iii aggaagagagAGGGATAGTGTGAGTTTG

TGG 

cagtaatacgactcactatagggagaaggctCAAACACCC

ACTAAACTCTCC 

miR-149_iv aggaagagagAGGAGGAATAGAATTTAT

AGATAG 

cagtaatacgactcactatagggagaaggctCCTTACAAAA

ACCTCAAACTAATA 

miR-149_v aggaagagagTGGTGATAGTGTGAGGGA

GTG 

cagtaatacgactcactatagggagaaggctCCTAAATAAC

CCRACCCTACC 

miR-149_vi aggaagagagGGTAYGTAGGTGTGTATA

TATTG 

cagtaatacgactcactatagggagaaggctCAACAAATTA

ACTTTAACTTCTCTC 

miR-149_vii aggaagagagGGGTGTGGGGAGGGGAG

G 

cagtaatacgactcactatagggagaaggctCAATCCCTAT

CCRCCTAAACTC 

miR-181c~181d_i aggaagagagTTTAGGTTTGTGGATATTT

TAGTG 

cagtaatacgactcactatagggagaaggctAAATACACAA

ACACACCACATTC 

miR-181c~181d_ii aggaagagagGATTGTTTATAGATGTATT

AAGTTAG 

cagtaatacgactcactatagggagaaggctTCAATAAACA

CTATCCCTAAATATC 

miR-181c~181d_iii aggaagagagGTGGAGGTGGYGGATAA

AGAG 

cagtaatacgactcactatagggagaaggctCACCTTCTAA

AACCCTTTCCCC 

miR-205_ii aggaagagagGGTATGGAGTTGATAATT

ATGAG 

cagtaatacgactcactatagggagaaggctTCTAACTATC

TCTATTCCTAAATC 

miR-452~224_i aggaagagagAGGATTTYGGGAGTTTAT

TTTATAG 

cagtaatacgactcactatagggagaaggctCTCCAATCR

AAATAAATCTCCATC 

miR-1250~338~657_i aggaagagagTGTGTTGGGGTTTAGGGT

TTG 

cagtaatacgactcactatagggagaaggctAACCCCAAC

TTCRCCTTCAAC 

miR-378a_i aggaagagagGAGGGGTAGAGTTATTTT

TGGG 

cagtaatacgactcactatagggagaaggctATAATTAATT

ATTACTAAACCAAACAC 

miR-183~96~182_i aggaagagagTAGTATGGGTTTATTATGA

GTAGG 

cagtaatacgactcactatagggagaaggctCATCCCATC

TCACTCCACCC 

miR-183~96~182_ii aggaagagagTATTTAGATAGGTTAAGTA

AGGTG 

cagtaatacgactcactatagggagaaggctTATCCAATAA

TATCCAATATCAAAC 

miR-183~96~182_iii aggaagagagTTAGGGATTTATAGGGTG

TGTG 

cagtaatacgactcactatagggagaaggctCCCTTTACAT

TAAACACCAATAC 

miR-183~96~182_iv aggaagagagAGGGGGTGAGGTAGTGG

AAG 

cagtaatacgactcactatagggagaaggctCTAAAACTC

RTCCAATTATCCAC 

miR-100~let-7a-2_i aggaagagagAAGGGGAAGAGAAGGAG

AATG 

cagtaatacgactcactatagggagaaggctTATTAAAACC

TATTACCACAAACC 

miR-100~let-7a-2_ii aggaagagagGTTAAATGATTTAGGAGT

TATTATT 

cagtaatacgactcactatagggagaaggctCTACACTATA

AATTCRCCTTCC 

miR-7-1_i aggaagagagAGATAATGGAATTGTGGA

GTAG 

cagtaatacgactcactatagggagaaggctTTTCAATCAA

CCTCATATATTCC 

miR-375_i aggaagagagATTAAGGGAGTGTTAGGG

AGTG 

cagtaatacgactcactatagggagaaggctACCCTCCCC

AACCTCCTATC 

LINE-1 aggaagagagTTTATATTTTGGTATGATT

TTGTAG 

cagtaatacgactcactatagggagaaggctACCCAAAAT

CAACTATCCACCCCTT 
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Supplemental Table S2. List of epigenetic regulators 
G

ro
up
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H3F3A,HIST2H2AA3,HIST2H2AB,HIST2H2AC,HIST2H2BE,HIST2H2BF,HIST2H3C,HIST
2H3D,HIST3H2A,HIST3H2BB,HIST3H3,H1FOO,H1FX,H2AFZ,H2AFY,HIST1H1A,HIST1
H1B,HIST1H1C,HIST1H1D,HIST1H1E,HIST1H1T,HIST1H2AA,HIST1H2AB,HIST1H2AC,
HIST1H2AD,HIST1H2AE,HIST1H2AG,HIST1H2AH,HIST1H2AI,HIST1H2AJ,HIST1H2AK,
HIST1H2AL,HIST1H2AM,HIST1H2BA,HIST1H2BB,HIST1H2BC,HIST1H2BD,HIST1H2BE
,HIST1H2BF,HIST1H2BG,HIST1H2BH,HIST1H2BI,HIST1H2BJ,HIST1H2BK,HIST1H2BL,
HIST1H2BM,HIST1H2BN,HIST1H2BO,HIST1H3A,HIST1H3B,HIST1H3C,HIST1H3D,HIS
T1H3E,HIST1H3F,HIST1H3G,HIST1H3H,HIST1H3I,HIST1H3J,HIST1H4A,HIST1H4B,HIS
T1H4C,HIST1H4D,HIST1H4E,HIST1H4F,HIST1H4G,HIST1H4H,HIST1H4I,HIST1H4J,HI
ST1H4K,HIST1H4L,H2AFV,H2AFY2,H2AFX,H1FNT,H2AFJ,H3F3C,HIST4H4,H3F3B,H1F
0,H2AFB1,H2AFB2,H2AFB3,H2BFM,H2BFWT 

E
di

to
rs

 

EYA3,HDAC1,KDM1A,KDM4A,MYSM1,PPP2R5A,USP21,ANKRD44,HDAC4,KDM3A,PP
P1CB,SMEK2,ANKRD28,BAP1,HDAC11,PPP2R3A,PPP4R2,PPP2R2C,PPP3CA,DUSP
1,HDAC3,KDM3B,PPP2CA,PPP2R2B,EYA4,HDAC2,KDM1B,PPP2R5D,SIRT5,HDAC9,
EYA1,PPP2CB,PPP2R2A,PPP3CC,KDM4C,PPP2R4,PPP6C,JMJD1C,PARG,PPP2R2D,
PPP3CB,SIRT1,KDM4D,PPP1CA,PPP2R1B,PPP2R5B,PPP6R3,SIRT3,ANKRD52,HDA
C7,KDM2B,KDM5A,PPP1CC,SIRT4,PPP2R3C,PPP2R5C,PPP2R5E,PPP4R4,SMEK1,U
SP3,KDM8,PPP4C,USP7,HDAC5,JMJD6,PPM1D,SIRT7,USP36,PPP4R1,KDM4B,PPP2
R1A,PPP5C,PPP6R1,SIRT2,SIRT6,EYA2,USP16,USP25,HDAC10,PPP6R2,BRCC3,HD
AC6,HDAC8,KDM5C,KDM6A,PHF8,PPP2R3B,KDM5D,UTY 

R
ea

de
rs

 

AHDC1,ARID4B,ATXN7L2,CHD5,DMAP1,GATAD2B,KDM5B,LRIF1,MEAF6,MIER1,POG
Z,RBBP4,RBBP5,RLF,RNF2,TADA1,TAF12,TAF13,TAF5L,TRIM33,VPS72,ZMYM4,ZMY
M6,ZNF687,ZZZ3,EPC2,MTA3,MYT1L,ORC2,PPIG,SAP130,SUPT7L,ATXN7,DHX30,FA
M208A,RUVBL1,TADA3,UBXN7,YEATS2,GABRG1,ING2,SMARCA5,TADA2B,ZNF518B,
CHD1,NIPBL,PWWP2A,SAP30L,TAF7,TAF9,BRPF3,PHF1,RPS10,SUPT3H,TAF11,TAF8
,TBP,ATXN7L1,CRCP,GATAD1,ING3,JAZF1,LRWD1,MGAM,PHF14,TAF6,TRIM24,TRR
AP,ASH2L,TAF2,ZFPM2,ZBTB43,ZNF462,EPC1,PCGF6,SMC3,TAF3,TAF5,C11orf30,CF
L1,EED,KDM2A,MEN1,MTA2,PRDM10,TAF10,TAF6L,TRIM66,BCL7A,CDK2AP1,CHD4,
EP400,HCFC2,PPHLN1,SETD1B,SUDS3,YEATS4,KBTBD7,KPNA3,ZMYM2,ZMYM5,ARI
D4A,BRMS1L,CHD8,GTF2A1,HOMEZ,MAX,MBIP,MTA1,UBR7,MGA,MORF4L1,SIN3A,Z
NF592,FLYWCH1,KLHL36,PRR14,SETD1A,SF3B3,ATXN7L3,CBX4,CHD3,DGKE,KAT2A
,KDM6B,MBTD1,PHF12,RAI1,SRSF2,SUZ12,TADA2A,USP22,ADNP2,CXXC1,MBD2,SM
CHD1,ZNF532,GATAD2A,MIER2,RUVBL2,SIN3B,TRIM28,ZNF428,ADNP,CHD6,CSRP2
BP,MRGBP,TAF4,ZMYND8,BRWD1,WRB,BRD1,L3MBTL2,TCF20,HCFC1,MORF4L2,RB
BP7,SMC1A,TAF1,ZMYM3 

W
rit

er
s 

ASH1L,PADI4,PARP1,PRDM2,PRKAA2,PRKAB2,PRMT6,SETDB1,SMYD3,ANTXR1,BA
RD1,BUB1,HAT1,NCOA1,PRKAG3,SMYD1,SMYD5,TLK1,ATR,BTD,DTX3L,DZIP3,GSK3
B,KAT2B,PAK2,PARP3,RNF168,SETD2,SETD5,SETMAR,UBE2E1,CLOCK,PRMT10,SE
TD7,NSD1,PRDM6,PRDM9,PRKAA1,STK10,UBE2B,CDYL,EHMT2,FYN,HSD17B8,RING
1,RNF8,UBR2,BAZ1B,CDK5,EZH2,PRKAG2,UBE2H,ELP3,KAT6A,NCOA2,PBK,PRKDC,
EHMT1,GTF3C4,JAK2,RNF20,CHUK,KAT6B,MAP3K8,MASTL,ATM,CHEK1,DDB1,DDB2
,KAT5,NAT10,PAK1,PRMT3,RAG1,RPS6KA4,SUV420H1,ASCL1,CDK17,CDK2,MAP3K1
2,PRKAB1,PRKAG1,PRMT8,SETD8,BRCA2,CDK8,SETDB2,PARP2,PRMT5,RPS6KA5,S
ETD3,VRK1,CREBBP,KAT8,PRDM7,PRKCB,PRMT7,RNF40,UBE2I,AURKB,CDK3,EZH1
,GSG2,KAT7,PRKCA,SMYD4,MALT1,AURKC,CARM1,DAPK3,DOT1L,GSK3A,PKN1,PR
MT1,SAE1,SUV420H2,UBA2,NCOA3,STK4,HLCS,PRMT2,EP300,LIMK2,RBX1,HUWE1,
OGT,OPN1LW,RPS6KA3,UBA1,UBE2A,CDY1,CDY2A 

C
hr

om
at

in
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m

od
el
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g 

C
hr
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at
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re
m
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g 
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BRDT,HIST2H4A,ITGB3BP,NASP,RERE,CENPA,CENPO,FSHR,HJURP,KANSL3,SATB2
,TNP1,PBRM1,SMARCC1,TP63,WDR82,CENPH,CENPK,NPM1,NR3C1,CENPQ,HMGA1
,MYB,PHF10,ACTL6B,CBX3,SMARCD3,CHRAC1,MYC,NPM2,TOP1MT,CDKN2A,CENP
P,TTF1,BNIP3,ELP4,RSF1,BAZ2A,HNF1A,KANSL2,SMARCC2,SMARCD1,SYCP3,RB1,
FOXA1,MIS18BP1,NKX2-
1,BAHD1,CASC5,OIP5,CENPN,SALL1,CENPV,KANSL1,SMARCD2,SMARCE1,SOX9,S
UPT4H1,SUPT6H,KLF1,SUPT5H,PHF20,TOP1,MIS18A,CENPI 
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C
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CHD1L,RAD54L,TTF2,SMARCAL1,SMARCAD1,CHD7,RAD54B,SMARCA2,BTAF1,ERC
C6,HELLS,CHD2,INO80,CHD9,SRCAP,SMARCA4,ATRX,SMARCA1 

nu
cl

eo
so

m
e 

re
m

od
el

in
g 

fa
ct

or
s 

 

UCHL5,ACTL6A,HLTF,DPF2,NAP1L4,NFRKB,MCRS1,YY1,BPTF,DPF1,NAP1L3 

D
N

A
 m

od
ifi

ca
tio

n 

E
di

to
rs

 

GADD45A,TET3,TET2,TET1,ALKBH3,AICDA,APOBEC1,TDG,ALKBH1,FTO, GADD45B 

R
ea

de
rs

 

MBD4,MBD1,MBD3,UHRF1,PCNA 

W
rit

er
s MAEL,DNMT3A,IDH1,ZFP57,ASZ1,MGMT,TRDMT1,HINFP,SPI1,FOS,IDH2,DNMT1,DN

MT3B,GNAS,DNMT3L 

   
 
Supplemental Table S3. Predicted functional domains in epigenetic regulators  

group Gene names 
Bromodomain-containing 
proteins 

ASH1L, ATAD2, ATAD2B, BAZ1A, BAZ1B, BAZ2A, BAZ2B, BPTF, 
BRD1, BRD2.1, BRD2.2, BRD3.1, BRD3.2, BRD4.1, BRD4.2, BRD7, 
BRD8.1, BRD8.2, BRD9, BRDT.1, BRDT.2, BRPF1, BRPF1, BRPF3, 
BRWD1.1, BRWD1.2, BRWD3.1, BRWD3.2, CECR2, CREBBP, 
EP300, KAT2A, KAT2B, KIAA2026, MLL, PBRM1.1, PBRM1.2, 
PBRM1.3, PBRM1.4, PBRM1.5, PBRM1.6, PHIP.1, PHIP.2, 
SMARCA2, SMARCA2, SMARCA4, SP100, SP110, SP110, SP140, 
SP140L, TAF1.1, TAF1.2, TAF1L.1, TAF1L.2, TRIM24, TRIM28, 
TRIM33, TRIM33, TRIM66, ZMYND11, ZMYND8 

CHROMOdomain-
containing proteins 

ARID4A, ARID4B, CBX1, CBX2, CBX3, CBX4, CBX5, CBX6, CBX7, 
CBX8, CDY1, CDY1B, CDY2A, CDY2B, CDYL, CDYL2, CHD1.1, 
CHD1.2, CHD2.1, CHD2.2, CHD3.1, CHD3.2, CHD4.1, CHD4.2, 
CHD5.1, CHD5.2, CHD6.1, CHD6.2, CHD7.1, CHD7.2, CHD8.1, 
CHD8.2, CHD9.1, CHD9.2, KAT5, MORF4L1, MPHOSPH8, MSL3L1, 
MYST1, SMARCC1, SMARCC2, SUV39H1, SUV39H2 

HATdomain-
containing proteins 

ATAT1, CLOCK, CREBBP, ELP3, EP300, GTF3C4, HAT1, 
KAT2A/GCN5L2, KAT2B/PCAF, KAT5/TIP60, MYST1, MYST2, 
MYST3, MYST4, NCOA1, NCOA3, TAF1, TAF1L 

HDAC,SIRTdomain-
containing proteins 

HDAC1, HDAC10.1, HDAC10.2, HDAC10.1, HDAC10, HDAC11, 
HDAC2, HDAC3, HDAC4, HDAC5, HDAC6.1, HDAC6.2, HDAC7, 
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HDAC8, HDAC9, SIRT1, SIRT2, SIRT3, SIRT4, SIRT5, SIRT6, 
SIRT6, SIRT6, SIRT7 

KDMdomain-
containing proteins 

JARID2, JHDM1D, JMJD1C, JMJD5, KDM1A, KDM1B, KDM1B, 
KDM2A, KDM2B, KDM3A, KDM3B, KDM4A, KDM4B, KDM4C, 
KDM4D, KDM4DL, KDM5A, KDM5B, KDM5C, KDM5D, KDM6A, 
KDM6B, MINA, NO66, PHF2, PHF8, UTY 

MBTdomain-
containing proteins 

L3MBTL.1, L3MBTL.2, L3MBTL.3, L3MBTL2.1, L3MBTL2.2, 
L3MBTL2.3, L3MBTL2.4, L3MBTL3.1, L3MBTL3.2, L3MBTL3.3, 
L3MBTL4.1, L3MBTL4.2, L3MBTL4.3, MBTD1.1, MBTD1.2, 
MBTD1.3, MBTD1.4, SCMH1.1, SCMH1.2, SCML2.1, SCML2.2, 
SFMBT1.1, SFMBT1.2, SFMBT1.3, SFMBT1.4, SFMBT2.1, 
SFMBT2.2, SFMBT2.3, SFMBT2.4 

PHDdomain-
containing proteins 

AIRE.1, AIRE.2, ASH1L, ASXL1, ASXL2, ASXL3, BAZ1A, BAZ1B, 
BAZ2A, BAZ2B, BPTF.1, BPTF.2, BRD1.1, BRD1.2, BRPF1.1, 
BRPF1.2, BRPF3.1, BRPF3.2, CHD3.1, CHD3.2, CHD4.1, CHD4.2, 
CHD5.1, CHD5.2, CXXC1, DIDO1, DNMT3A, DPF1.1, DPF1.2, 
DPF1.2, DPF2.1, DPF2.2, DPF3.1, DPF3.2, G2E3.1, G2E3.2, ING1, 
ING2, ING3, ING4, ING5, INTS12, JHDM1D, KDM2A, KDM2B, 
KDM4A.1, KDM4A.2, KDM4B.1, KDM4B.2, KDM4C.1, KDM4C.2, 
KDM5A.1, KDM5A.2, KDM5A.3, KDM5B.1, KDM5B.2, KDM5B.3, 
KDM5C.1, KDM5C.2, KDM5D.1, KDM5D.2, MLL.1, MLL.2, MLL.3, 
MLL.4, MLL2.1, MLL2.2, MLL2.3, MLL2.4, MLL2.5, MLL2.6, MLL2.7, 
MLL3.1, MLL3.2, MLL3.3, MLL3.4, MLL3.5, MLL3.6, MLL3.7, MLL3.8, 
MLL4.1, MLL4.2, MLL4.3, MLL4.4, MLL5, MLLT10.1, MLLT10.2, 
MLLT6.1, MLLT6.2, MTF2.1, MTF2.2, MYST3.1, MYST3.2, MYST4.1, 
MYST4.2, NSD1.1, NSD1.2, NSD1.3, NSD1.4, NSD1.5, PHF1.1, 
PHF1.2, PHF10.1, PHF10.2, PHF11, PHF12.1, PHF12.2, PHF12.1, 
PHF13, PHF14.1, PHF14.2, PHF14.3, PHF14.4, PHF15.1, PHF15.2, 
PHF16.1, PHF16.2, PHF17.1, PHF17.2, PHF19.1, PHF19.2, PHF2, 
PHF20, PHF20L1, PHF21A, PHF21B, PHF23, PHF3, PHF5A, 
PHF6.1, PHF6.2, PHF7.1, PHF7.2, PHF8, PHRF1, PYGO1, PYGO2, 
RAG2, RAI1, RPH3A, RSF1, SHPRH, SP100, SP110, SP140, 
SP140L, TAF3, TCF19, TCF20, TRIM24, TRIM28.1, TRIM28.2, 
TRIM33.2, TRIM66.1, TRIM66.2, UBR7, UHRF1, UHRF2, WHSC1.1, 
WHSC1.2, WHSC1.3, WHSC1.4, WHSC1L1.1, WHSC1L1.2, 
WHSC1L1.3, WHSC1L1.4, WHSC1L1.5, ZMYND11, ZMYND8 

PMTdomain-
containing proteins 

ASH1L, CARM1, DOT1L, EHMT1, EHMT2, EZH1, EZH2, EZH2, 
MDS1, MLL, MLL2, MLL3, MLL4, MLL5, NSD1, PRDM1, PRDM10, 
PRDM11, PRDM12, PRDM13, PRDM14, PRDM15, PRDM16, 
PRDM2, PRDM4, PRDM5, PRDM6, PRDM7, PRDM8, PRDM9, 
PRMT1, PRMT2, PRMT3, PRMT5, PRMT6, PRMT7.1, PRMT7.2, 
PRMT8, SETD1A, SETD1B, SETD2, SETD3, SETD4, SETD5, 
SETD6, SETD6, SETD7, SETD8, SETDB1, SETDB2, SETMAR, 
SMYD1, SMYD2, SMYD3, SMYD4, SMYD5, SUV39H1, SUV39H2, 
SUV420H1, SUV420H2, WHSC1, WHSC1L1 

PWWPdomain-
containing proteins 

BRD1, BRPF1, BRPF3, DNMT3A, DNMT3B, GLYR1, GLYR1, HDGF, 
HDGFL1, HDGFRP2, HDGFRP3, MBD5, MSH6, MUM1, NSD1.1, 
NSD1.2, PSIP1, PWWP2B, WHSC1.1, WHSC1.2, WHSC1L1.1, 
WHSC1L1.2, ZCWPW1, ZCWPW2, ZMYND11, ZMYND8 

TUDORdomain-
containing proteins 

AKAP1, ARID4A, ARID4B, CCDC101.1, CCDC101.2, FMR1.1, 
FMR1.2, FXR1.1, FXR1.2, FXR2.1, FXR2.2, JMJD2A, JMJD2B, 
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JMJD2C, LBR, MTF2, PHF1, PHF19, PHF20.1, PHF20.2, PHF20L1.1, 
PHF20L1.2, RNF17.1, RNF17.2, RNF17.3, RNF17.4, RNF17.5, 
SETDB1.1, SETDB1.2, SETDB1.3, SMN1, SMN2, SMNDC1, SND1, 
STK31, TDRD1.1, TDRD1.2, TDRD1.3, TDRD1.4, TDRD10, 
TDRD12.1, TDRD12.2, TDRD3, TDRD5, TDRD6.1, TDRD6.2, 
TDRD6.3, TDRD6.4, TDRD6.5, TDRD6.6, TDRD6.7, TDRD7.1, 
TDRD7.2, TDRD7.3, TDRD9, TDRKH, TP53BP1.1, TP53BP1.2, 
UHRF1.1, UHRF1.2, UHRF2.1, UHRF2.2, ZGPAT, LOC100129278.1, 
LOC100129278.2, LOC100129278.3, LOC100129278.4, 
LOC100129278.5, LOC100129278.6, LOC100129278.7, 
LOC100129278.8 
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Supplemental Table S4. PANCAN and tissue-specific mutated epigenetic regulators  
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Supplemental Table S5. Epigenetic regulators with identified HOTPOST mutations 
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Supplemental Table S6. PANCAN deleted/amplified epigenetic regulators 

Group Subgroup gene name # affected 
cancers 

DNA 
modifications 

Writers 
DNMT3A 8 
DNMT1 7 

editors 
TET1 8 
TET2 7 

Histone 
modification 

Writers 

MLL3 9 
OGT 9 
ATM 9 

CREBBP 8 
MLL2 8 
SETD2 8 

ATR 8 
BRCA2 8 
NCOA2 7 
NCOA3 7 
ASH1L 7 
CARM1 7 

MLL 7 
SETD5 7 
BAZ1B 7 
PRKCB 7 

RPS6KA3 7 
HUWE1 7 
MDM2 7 
UBA1 7 

Readers 

MGA 9 
CHD4 8 
CHD5 8 
TAF1 8 

ZNF462 8 
ADNP 7 
ATXN7 7 
CHD1 7 
CHD3 7 
CHD8 7 

DHX30 7 
EP400 7 

GABRG1 7 
HCFC1 7 
NIPBL 7 
POGZ 7 
RAI1 7 

SMC1A 7 
SMCHD1 7 

TAF6 7 
TRIM33 7 
TRRAP 7 

ZMYM3 7 
ZMYND8 7 
ZNF687 7 

Editors 

KDM6A 9 
HDAC6 8 
HDAC9 8 
KDM3B 8 
HDAC4 7 
KDM2A 7 
KDM5A 7 

PHF8 7 
EYA4 7 

PPP6R3 7 
USP36 7 

Chromatin 
remodeling 

nucleosome 
remodeling 

factors  

BPTF 8 
HLTF 7 

NFRKB 7 

Chromatin 
remodeling 

helicase 

ATRX 9 
SMARCA2 8 

CHD2 7 
CHD7 7 

SMARCA1 7 
SRCAP 7 
ERCC6 7 

chromatin 
remodeling 

factors 

MYB 8 
SMARCC2 8 
SUPT5H 8 
PBRM1 7 

RB1 7 
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Supplemental Figures 

 

Supplemental Figure S1: Genome-wide genetic and epigenetic miRNA deregulation in 13 early-onset PCA cases (ICGC 
EOPC dataset). (A) For each single patient, the numbers of downregulated miRNAs without any detected genetic or epigenetic 

aberration and downregulated miRNAs whose precursors are deleted, whose promoters are significantly hypermethylated or that 

exhibit both aberrations in exactly the same tumor are shown. Only miRNAs with mapped regulatory regions were considered. (B) 
For each single patient, the numbers of upregulated miRNAs without any detected genetic or epigenetic aberration and 

upregulated miRNAs whose promoters are significantly hypomethylated in exactly the same tumor are shown. Only miRNAs with 

mapped regulatory regions were considered. 
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Supplemental Figure S2: Pri-miR expression and methylation levels of the corresponding differentially methylated regions 
(DMRs) upon 5-aza-2´-deoxycytidine treatment of PCA cells. Results are shown for the 12 miRNA clusters that were 

upregulated (miR-183∼96∼182 downregulated) accompanied by demethylation of their DMRs upon treatment. Optimal treatment 

concentrations and time periods were determined by analysis of LINE-1 methylation levels. Pri-miR expression was determined by 

quantitative PCR, methylation levels were quantified by MassARRAY. Methylation levels are shown for each DMR analyzed (i, ii, 

…) after 48h (LNCaP, blue) or 96h (PC3, red) of treatment. Expression levels are normalized to the PBS control (Ctr) and are 

shown for the respective treatment time (48 or 96h) and onwards. Bold solid lines represent no expression change compared to the 

PBS-treated control.  
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Supplemental Figure S3: Genome-wide genetic and epigenetic miRNA deregulation in 13 early-onset PCA cases (ICGC 
EOPC dataset). (A) For each single patient, the numbers of downregulated miRNAs without any detected genetic or epigenetic 

aberration and downregulated miRNAs whose precursors are deleted, whose promoters are significantly hypermethylated or that 

exhibit both aberrations in exactly the same tumor are shown. Only miRNAs with mapped regulatory regions were considered. (B) 
For each single patient, the numbers of upregulated miRNAs without any detected genetic or epigenetic aberration and 

upregulated miRNAs whose promoters are significantly hypomethylated in exactly the same tumor are shown. Only miRNAs with 

mapped regulatory regions were considered. 
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