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Abstract. Let Φ = (φij)1≤i,j≤n be a random matrix whose components φij are inde-

pendent stochastic processes on some index set T . Let S =
∑n

i=1 φiΠ(i), where Π is

a random permutation of {1, 2, . . . , n}, independent from Φ. This random element is

compared with its symmetrized version So :=
∑n

i=1 ξiφiΠ(i) and its decoupled version

S̃ :=
∑n

i=1 φiΠ̃(i)
. Here ξ = (ξi)1≤i≤n is a Rademacher sequence and Π̃ is uniformly dis-

tributed on {1, 2, . . . , n}n such that Φ, Π, Π̃ and ξ are independent. It is shown that for

a broad class of convex functions Ψ on RT the following symmetrization and decoupling

inequalities hold:

IE Ψ(S − IES) ≤
{

IE Ψ(κSo),

IE Ψ(γ(S̃ − IES)),

where κ, γ > 0 are universal constants.
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1 Introduction and statement of results

Symmetrization and decoupling are a powerful tool in order to obtain moment and tail

inequalities for certain stochastic processes. Very informative references for the merits

of symmetrizing empirical processes or, more generally, sums of independent processes

are Pollard (1990) and van der Vaart and Wellner (1996). Another important applica-

tion of such tools are U-processes. We refer to Arcones and Giné (1993) who utilized

symmetrization and decoupling inequalities of de la Peña (1992).

The present note treats stochastic processes of the following form: Let Φ = (φij)1≤i,j≤n

be a random matrix whose components φij are independent stochastic processes on some

set T (or just real random variables), where n ≥ 2. Let S =
∑n

i=1 φiΠ(i), where Π

is a random permutation of {1, 2, . . . , n}, independent from Φ. Processes of this type

appear in different statistical applications involving randomization. An early reference

is Hoeffding (1951) who considered a fixed matrix Φ ∈ Rn×n and proved a central limit

theorem for S. General processes and examples are treated in Dümbgen (1994). We

mention just three:

Example 1 (Sampling without replacement from a finite population). For 1 ≤ m < n

let G1, G2, . . . , Gm be a random sample without replacement from a fixed finite collection

f1, f2, . . . , fn of functions on T . If we define φij := 1{i ≤ m}fj , then the sum
∑m

i=1Gi is

distributed as S. For this special case Hoeffding (1963) obtained the following decoupling

inequality (see also LeCam 1986, Lemma 16.7.2): Let G̃1, G̃2, . . . , G̃m be a random sample

with replacement from f1, f2, . . . , fn. Then for any convex function Ψ : RT → R,

IE Ψ
( m∑
i=1

Gi

)
≤ IE Ψ

( m∑
i=1

G̃i

)
.(1)

Example 2 (Linear rank statistics). In order to test exchangeability of a random vector

X ∈ Rn one may employ a linear rank statistic
∑n

i=1 aibR(i) with fixed vectors a, b ∈ Rn,

where R(i) is the rank of Xi in the sample X. Under the hypothesis of exchangeability

of X, the rank statistic is distributed as S if φij := aibj . It will be shown below that this

random variable S satisfies a sub-Gaussian tail inequality involving only

‖a‖2 :=
( n∑
i=1

a2
i

)1/2
and ‖b‖∞ := max

1≤i≤n
|bi|.

Such an inequality has applications in nonparametric regression; cf. Dümbgen (1998).
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Example 3 (“Permutation bridges”). Let a ∈ Rn be a fixed vector such that

a+ :=

n∑
i=1

ai = 0 and ‖a‖2 = 1.(2)

For t ∈ [0, 1] define

B(t) :=
n∑
i=1

1{i ≤ nt}aΠ(i).

For large n this process has approximately the same covariance function as a Brownian

bridge. In fact, Theorem 24.1 of Billingsley (1968) states that B converges in distribution

in D[0, 1] to a Brownian bridge as ‖a‖∞ → 0. It will be shown below that the supremum-

norm of B has sub-Gaussian tails, uniformly for all a satisfying Condition (??).

The random element S is compared with its symmetrized version So :=
∑n

i=1 ξiφiΠ(i)

and its decoupled version S̃ :=
∑n

i=1 φiΠ̃(i)
. Here ξ = (ξi)1≤i≤n is a Rademacher sequence,

i.e. uniformly distributed on {−1, 1}n, and Π̃ is uniformly distributed on {1, 2, . . . , n}n.

Moreover, Φ, Π, Π̃ and ξ are independent. Throughout we assume that

µij := IEφij

exists in RT for all i, j. Then

IES = IE S̃ =
1

n

n∑
i,j=1

µij and IESo ≡ 0.

The goal is to compare moments of ‖S − IES‖ with moments of ‖So‖ and ‖S̃ − IES‖,

where

‖x‖ := sup
t∈To
|x(t)|

for any x : T → R with some countable subset To of T . More generally, in what follows

let Ψ : RT → ]−∞,∞] be a convex function of the form

Ψ(x) := sup
t∈To

ψt(x(t))

with convex functions ψt : R → ] −∞,∞]. A special example is given by Ψ(x) = ψ(‖x‖)

with a convex, nondecreasing function ψ on [0,∞[. Here is our symmetrization inequality

for S:

Theorem 1.

IE Ψ(S − IES) ≤ IE Ψ(κSo),

where 8 ≥ κ := 2(n/bn/2c+ 1)→ 6 as n→∞.
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Here brc denotes the largest integer not exceeding r. The proof of Theorem ?? is an

extension of a symmetrization argument introduced in Dümbgen (1994). In fact, Theo-

rem ?? can be used to derive the main results of the latter paper under slightly stronger

moment conditions. Other applications are sub-Gaussian inequalities for Examples 2 and

3.

Corollary 1. (a) Let a, b ∈ Rn such that a+ = 0 or b+ = 0. Then for all η > 0,

IP
{ n∑
i=1

aibΠ(i) ≥ η
}
≤ exp

(
− η2

2κ2‖a‖22‖b‖2∞

)
.

(b) Let B = B(· | a) be defined as in Example 3, where a ∈ Rn satisfies Condition (??).

Then for all η > 0,

IP
{

sup
t∈[0,1]

|B(t)| ≥ η
}
≤ 4 exp

(
− η2

2κ2

)
.

Example 1 and intuition suggest that ‖S − IES‖ is dominated in some sense by ‖S̃ −

IES‖. Starting from Theorem ?? we shall deduce the following decoupling inequality:

Theorem 2.

IE Ψ(S − IES) ≤ IE Ψs(γ(S̃ − IES)),

where Ψs(x) := (Ψ(x) + Ψ(−x))/2 and 16/(1 − e−1) ≥ γ := 2κ/(1 − (1 − 1/n)n) →

12/(1− e−1) as n→∞.

Presumably the constant γ is suboptimal. In view of (??) we conjecture that Theo-

rem ?? is true with γ = 1.

2 Proofs

In what follows we’ll frequently use a classical symmetrization inequality which is essen-

tially an application of Jensen’s inequality; see the derivation of Pollard (1990, Theo-

rem 2.2).

Lemma 1. Let Z and Z ′ be independent stochastic processes on T such that IEZ ′ is

well-defined in RT . Then

IE Ψ(Z − IEZ ′) ≤ IE Ψ(Z − Z ′). 2

Proof of Theorem ??. First step: In order to get the Rademacher variables ξi into

play we replace the whole sum S with SJ :=
∑

i∈J φiΠ(i), where J := {1, 2, . . . ,m} and
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m := bn/2c. The latter sum is compared with

S∗J :=
∑
i∈J

φiΠ(m+i).

These processes SJ and S∗J are identically distributed but possibly dependent. Condition-

ally on Π(J) they are independent but may have different distributions. Note that

SJ − S∗J =
∑
i∈J

(φiΠ(i) − φiΠ(m+i)) =L
∑
i∈J

ξi(φiΠ(i) − φiΠ(m+i)),

which is easily verified by conditioning on the two-point sets {Π(i),Π(m+ i)}, 1 ≤ i ≤ m.

Hence with IEo := IE(· |Φ,Π) one can deduce that for arbitrary c > 0,

IE Ψ(c(SJ − S∗J)) ≤ IE
(

2−1Ψ
(

2c
∑
i∈J

ξiφiΠ(i)

)
+ 2−1Ψ

(
−2c

∑
i∈J

ξiφiΠ(m+i)

))
= IE Ψ

(
2c
∑
i∈J

ξiφiΠ(i)

)
= IE IEo Ψ

(
2c
∑
i∈J

ξiφiΠ(i) + IEo
∑
i 6∈J

ξiφiΠ(i)

)
≤ IE IEo Ψ

(
2c

n∑
i=1

ξiφiΠ(i)

)
[Lemma ??]

= IE Ψ(2cSo).(3)

Second step: Now we compare SJ − IESJ with SJ −S∗J . Letting IEo := IE(· |Π(J)) one

may write

IEo SJ =
1

m

∑
i∈J

∑
j∈Π(J)

µij ,

IEo S
∗
J =

1

n−m
∑
i∈J

∑
j 6∈Π(J)

µij ,

IESJ =
1

n

∑
i∈J

n∑
j=1

µij =
m

n
IEo SJ +

n−m
n

IEo S
∗
J .

If we define Z := SJ − IESJ and Z∗ := S∗J − IESJ it follows that

IEo Z
∗ = −γ IEo Z with γ :=

m

n−m
∈ ]0, 1].

Given Π(J), the processes Z and Z∗ are independent. Hence for arbitrary d > 0 and

λ ∈ ]0, 1[,

IEo Ψ(d(SJ − IESJ)) = IEo Ψ(dZ)

= IEo Ψ(d(Z − IEo Z
∗ − γ IEo Z))
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≤ IEo Ψ(d(Z − Z∗)− dγ IEo Z)) [Lemma ??]

= IEo Ψ
(
d(Z − Z∗) + d(m/n) IEo(Z

∗ − Z)
)

≤ λ IEo Ψ
(d
λ

(Z − Z∗)
)

+ (1− λ)Ψ
(d(m/n)

1− λ
IEo(Z

∗ − Z)
)

≤ λ IEo Ψ
(d
λ

(Z − Z∗)
)

+ (1− λ) IEo Ψ
(d(m/n)

1− λ
(Z∗ − Z)

)
[Lemma ??]

=
n

n+m
IEo Ψ

(
d(1 +m/n)(SJ − S∗J)

)
+

m

n+m
IEo Ψ

(
d(1 +m/n)(S∗J − SJ)

)
if λ := n/(n + m). Integrating both sides with respect to the distribution of Π(J) and

plugging in (??) yields

IE Ψ(d(SJ − IESJ)) ≤ IE Ψ(2d(1 +m/n)So).(4)

Third and final step: Inequality (??) remains valid if SJ is replaced with SL :=∑
i∈L φiΠ(i), where L is an arbitrary subset of {1, 2, . . . , n} containing m points. One

may write

S =

n∑
i=1

φiΠ(i)

(
n− 1

m− 1

)−1 ∑
L:#L=m

1{i ∈ L} =

(
n

m

)−1 ∑
L:#L=m

(n/m)SL.

Consequently, by convexity of Ψ and (??),

IE Ψ(S − IES) ≤
(
n

m

)−1 ∑
L:#L=m

IE Ψ
(

(n/m)(SL − IESL)
)
≤ IE Ψ(2(n/m+ 1)So). 2

Proof of Corollary ??. As for part (a), Theorem ?? entails that

IE exp
(
λ

n∑
i=1

aibΠ(i)

)
≤ IE exp

(
λκ

n∑
i=1

ξiaibΠ(i)

)
= IE IE

(
exp
(
λκ

n∑
i=1

ξiaibΠ(i)

) ∣∣∣Π)
= IE

n∏
i=1

cosh(λκaibΠ(i))

≤ IE exp
(
λ2κ2

n∑
i=1

a2
i b

2
Π(i)/2

)
≤ exp

(
λ2κ2‖a‖22‖b‖2∞/2

)
.

Thus, by Tshebyshev’s inequality, IP
{∑n

i=1 aibΠ(i) ≥ η
}

is not greater than

inf
λ>0

IE exp
(
λ

n∑
i=1

aibΠ(i)

)
exp(−λη) ≤ exp

(
−η2/(2κ2‖a‖22‖b‖2∞)

)
.
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Part (b) is proved similarly: By Theorem ??, IE exp(λ‖B‖) ≤ IE exp(λκ‖Bo‖) for any

λ > 0, where Bo(t) =
∑n

i=1 1{i ≤ nt}ξiaΠ(i). Conditional on Π, the process Bo has

independent, symmetrically distributed increments. Consequently,

IE exp(λκ‖Bo‖) =

∫ ∞
0

IP
{
‖Bo‖ > log(r)/(λκ)

}
dr

≤ 2

∫ ∞
0

IP
{
|Bo(1)| > log(r)/(λκ)

}
dr [Lévy’s inequality]

≤ 4

∫ ∞
0

IP
{
Bo(1) > log(r)/(λκ)

}
dr

= 4 IE exp(λκBo(1))

≤ 4 exp(λ2κ2/2),

see also the proof of part (a). Again this inequality yields the assertion via Tshebyshev’s

inequality. 2

Proof of Theorem ??. Since

S − IES =

n∑
i=1

(
φiΠ(i) −

1

n

n∑
j=1

µij

)
and S̃ − IES =

n∑
i=1

(
φ
iΠ̃(i)
− 1

n

n∑
j=1

µij

)
,

we may and do assume that
∑n

j=1 µij ≡ 0 for 1 ≤ i ≤ n, so that IES ≡ 0. Let K be a

random subset of {1, 2, . . . , n} such that Φ, Π, (Π̃,K) and ξ are independent. Namely, let

L(K | Π̃) be the uniform distribution on the set of all L ⊂ {1, 2, . . . , n} such that

{Π̃(i) : 1 ≤ i ≤ n} = {Π̃(i) : i ∈ L} and #{Π̃(i) : 1 ≤ i ≤ n} = #L.

Symmetry considerations show that

IP{i ∈ K} = IE #{Π̃(j) : 1 ≤ j ≤ n}/n

= 1− IP
{

1 6∈ {Π̃(j) : 1 ≤ j ≤ n}
}

= 1− (1− 1/n)n.

Hence

So = λ IE(SoK |Φ,Π, ξ),

where λ := (1− (1− 1/n)n)−1 and SoK :=
∑

i∈K ξiφiΠ(i). Consequently,

IE Ψ(S) ≤ IE Ψ(κSo) [Theorem ??]

= IE Ψ
(
κλ IE(SoK |Φ,Π, ξ)

)
≤ IE Ψ(κλSoK) [Lemma ??].
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But one easily verifies that (Π(i))i∈K =L (Π̃(i))i∈K , whence

SoK =L S̃oK :=
∑
i∈K

ξiφiΠ̃(i)
.

Moreover,

S̃oK = IE
(
S̃o
∣∣∣Φ, Π̃,K, (ξi)i∈K) with S̃o :=

n∑
i=1

ξiφiΠ̃(i)
.

Therefore another application of Lemma ??, this time to the conditional distribution given

(Φ, Π̃,K, (ξi)i∈K), yields

IE Ψ(S) ≤ IE Ψ(κλS̃o).

The final step is standard: If we define D(s) := {i : ξi = s} and S̃L :=
∑

i∈L φiΠ̃(i)
, then

IE Ψ(κλS̃o) = IE Ψ(κλ(S̃D(1) − S̃D(−1)))

≤ IE
(

2−1Ψ(2κλS̃D(1)) + 2−1Ψ(−2κλS̃D(−1))
)

= IE Ψs(2κλS̃D(1))

= IE Ψs

(
2κλ IE(S̃ | ξ, S̃D(1))

)
≤ IE Ψs(γS̃) [Lemma ??]. 2
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