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ZUSAMMENFASSUNG

Biofilme sind mehrzellige Zusammenschlüsse von Bakterien, die häufig auf Oberflächen
wachsen. Bakterien in Biofilmen sind nicht motil und sind von einem komplexen Geflecht
umgeben, der sogenannten Biofilmmatrix, welche Proteine, Polysaccharide und DNA enthält.
Die Matrix verleiht dem Biofilm Stabilität und Festigkeit und ist für das gegenseitige An-
kleben der Zellen sowie das Anheften an die Oberfläche wichtig. Der Übergang von der
motilen planktonischen Wachstumsphase in den sesshaften Biofilmzustand erfordert eine
strenge Regulierung von Motilität und Matrixproduktion.
In meiner Arbeit habe ich die verschiedenen Beiträge sowie die Regulierung der Motilität
während der Biofilmbildung des Bakteriums Escherichia coli untersucht. Ich konnte dabei
zeigen, dass Flagellen in verschiedenen Stadien der Biofilmbildung eine Rolle spielen, da
sie eine Fortbewegung durch Schwimmen zu Beginn der Biofilmbildung erlauben und zur
strukturellen Integrität der reifen Biofilme beitragen. Fortbewegung durch Schwimmen ist
zum einen wichtig für das anfängliche Ankleben der Bakterien an die Oberfläche und hilft
zum anderen, die reifen Biofilmstrukturen zu formen. Meine Ergebnisse zeigen, dass zu
Beginn der Biofilmbildung gleichmäßiges Schwimmen an der Oberfläche zu einem hydro-
dynamischen Einfangen der Zellen führt, was das Ankleben der Zellen begünstigt.
Des weiteren beeinflusst die Schwimmgeschwindigkeit das Ankleben, wobei schnelleres
Schwimmen das Ankleben verbessert. Schwimmgeschwindigkeit wird durch den sekundären
Botensto↵ bis-(3’-5’)-zyklischem di-Guanosinmonophosphat (c-di-GMP) reguliert, der eine
Schlüsselrolle im Übergang von der motilen zur sessilen Phase spielt. C-di-GMP hemmt
auf der einen Seite Motilität, was durch das Motor-Bindeprotein YcgR vermittelt wird,
und fördert auf der anderen Seite die Synthese von Biofilmmatrixkomponenten. Dadurch,
dass in meinen Experimenten Schwimmen für das Ankleben der Zellen benötigt wurde,
konnte ich zeigen, dass c-di-GMP eine duale Rolle während der Biofilmbildung spielt,
und zwar inhibiert es den Anfang der Biofilmbildung durch Hemmung der Motilität und
fördert die Reifung des Biofilms durch Hochregulierung von Adhäsionsfaktoren. Zellen, die
einen dauerhaft erniedrigten c-di-GMP-Spiegel haben, zeigen besseres Ankleben, haben
jedoch Störungen in der Biofilmreifung und -architektur. Im Gegensatz dazu zeigen
Zellen mit dauerhaft erhöhtem c-di-GMP-Spiegel schlechteres Ankleben, können aber
strukturierte dreidimensionale Anordnungen in reifen Biofilmen bilden. Die Auswirkung
auf das Ankleben wird durch das Motorbindeprotein YcgR vermittelt, was die Schwim-
mgeschwindigkeit reguliert.
Mit Hilfe der oben beschriebenen Ergebnisse konnte ich des Weiteren einen neuen Regler
des c-di-GMP-Signalsystems in Escherichia coli beschreiben. Meine Ergebnisse deuten
darauf hin, dass das bakterielle Dynamin YjdA zusammen mit dem kleinen Protein YjcZ
die c-di-GMP-Produktion durch die di-Guanylat-Zyklase YegE reguliert. Das konnte ich
phänotypisch durch verändertes Schwimmverhalten, Ankleben der Zellen und Biofilmrei-
fung einer yjdA-Deletion zeigen. Damit kopiert diese Deletion das phänotypische Ver-
halten einer Deletion der Zyklase YegE. Außerdem ist die c-di-GMP-abhängige Wechsel-
wirkung zwischen YcgR und dem Flagellenmotor in beiden Deletionsstämmen gleicher-
maßen beeinträchtigt. Zudem habe ich mit Hilfe des Bakterien-Zwei-Hybrid-Systems eine
Interaktion zwischen YjdA und YegE gezeigt. Meine Ergebnisse deuten außerdem darauf
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hin, dass die bakteriellen Flotilline HflK/C auch eine Rolle in der Regulierung von YegE
durch YjdA spielen.
Zusammenfassend ergeben die Ergebnisse dieser Arbeit einen Überblick über die Rollen
der Flagellen und der Motilität während der Biofilmbildung in Escherichia coli, zum
einen gezeigt durch die Notwendigkeit des Schwimmens zu Beginn der Biofilmbildung,
wodurch auch eine genaue Regulierung des c-di-GMP-Signalwegs während der Biofilmbil-
dung wichtig ist, und zum anderen durch eine strukturelle Rolle der Flagellen in späteren
Biofilmstadien.



SUMMARY

Biofilms are multicellular communities of bacterial cells that usually grow on surfaces.
Bacteria in biofilms are non-motile and are surrounded by a complex meshwork contain-
ing proteins, polysaccharides and DNA, the so-called biofilm matrix. The matrix provides
stability and rigidity to the biofilm and is important for sticking cells to the surface and
towards each other. The transition from the motile planktonic growth state to the sessile
biofilm state requires therefore tight regulation of motility and matrix synthesis. In this
work, I have investigated the roles and regulation of motility during biofilm formation of
Escherichia coli. I could show that flagella play roles at di↵erent stages of biofilm forma-
tion, providing swimming motility at biofilm initiation and structural integrity in mature
biofilms. Swimming motility is required for initial cell attachment to the surface and helps
to shape mature biofilm structures. My results show that during biofilm initiation, smooth
swimming at the surface leads to hydrodynamic entrapment, thereby promoting cell at-
tachment.
Additionally, swimming speed seems to influence surface attachment with enhanced swim-
ming speed increasing attachment. Swimming speed is regulated by the second messenger
bis-(3’-5’)-cyclic dimeric guanosine monophosphate (c-di-GMP), which is a key factor in
the transition from motility to sessility. C-di-GMP on the one hand inhibits motility via
the motor binding protein YcgR and on the other hand promotes the synthesis of biofilm
matrix factors. With the requirement of swimming for cell attachment, I could show that
c-di-GMP plays a dual role during the course of biofilm formation, inhibiting biofilm initi-
ation through motility inhibition and promoting biofilm maturation through upregulation
of adhesion factors. Cells with permanently decreased c-di-GMP levels show increased cell
attachment, however, have defects in biofilm maturation and architecture. In contrast,
cells with permanently increased c-di-GMP levels show decreased cell attachment, but
are able to form elaborate three-dimensional structures in mature biofilms. The e↵ect on
attachment is mediated by the motor binding protein YcgR, which regulates swimming
speed.
Based on the above described results, I could characterize a new regulator of c-di-GMP
signaling in Escherichia coli. My results suggest that the bacterial dynamin YjdA, to-
gether with the small protein YjcZ, regulates c-di-GMP production by the diguanylate
cyclase YegE. This is represented on the phenotypic level by changes in swimming motil-
ity, cell attachment and biofilm maturation in the yjdA deletion. It thereby phenotypically
copies the deletion of the cyclase YegE. Additionally, the c-di-GMP dependent interaction
of YcgR with the flagellar motor is decreased similarly in both yjdA and yegE deletion
strains. Last but not least, bacterial two-hybrid experiments show an interaction between
YjdA and YegE. My results further suggest the aid of the bacterial flotillins HflK/C in
the regulation of YegE by the dynamin YjdA.
Altogether, the results in this thesis provide an overview of the roles of flagella and motility
during biofilm formation of Escherichia coli, which includes a requirement of swimming
during biofilm initiation, thereby tight regulation of c-di-GMP during the course of biofilm
formation, and a structural role of flagella at the later biofilm stage.
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Part I

INTRODUCTION





1. BIOFILMS

The discovery of biofilms dates back to the late 1600s when the Dutch scientist Antonie

van Leeuwenhoek described ’animalcules’, aggregated microorganisms, that he observed in

his dental plaque [1, 2]. Since then, hundreds of groups have studied biofilm formation in

many di↵erent bacterial species. It has become clear that the planktonic mode of growth

as studied in agitated cultures in the laboratory does not provide a su�cient picture

about bacteria in natural settings but rather an incomplete one. In natural settings,

especially in aquatic settings, most microorganisms exist in multicellular communities,

often as submerged biofilms on surfaces [3, 4].

Biofilms are defined as multicellular communities of microorganisms that are embedded in

a self-produced matrix and often grow on surfaces. Through the matrix, biofilm cells stick

to each other and, in the case of surface-attached biofilms, to the surface. In addition, the

matrix provides protection against environmental cues, such as predation by protozoans or

bacteriophages in nature and the host immune defence in medical settings. Especially the

occurrence of biofilms in medical settings makes it important to analyze and study biofilm

formation. The probably most studied organism in biofilm research is the opportunistic

pathogen Pseudomonas aeruginosa (P. aeruginosa), which for example forms biofilms in

the lungs of cystic fibrosis (CF) patients. These biofilm infections are di�cult to treat with

antibiotics and many CF patients die of lung failure as a consequence of multiresistant P.

aeruginosa infections.[5].

Despite the pivotal role of P. aeruginosa in biofilms, many genetic analyses in biofilms

have been performed with Escherichia coli (E. coli) because it can be handled in the

laboratory with relative ease and its genetic background has been extensively studied in

the past decades. Besides the harmless gut commensal E. coli serotypes, there are many

pathogenic E. coli strains that can cause severe infections in humans that include biofilm

formation. Pathogenic E. coli can cause intestinal infections, such as enteropathogenic E.

coli (EPEC) and enterohaemorrhagic E. coli (EHEC), or extra-intestinal infections. Extra-

intestinal E. coli are a common cause of urinary tract infections (uropathogenic E. coli

(UPEC)), sepsis or meningitis (meningitis-associated E. coli (MNEC)) [6]. Furthermore,

E. coli has also been found in medical device related infections, such as urinary cathether

cystitis [2].

Altogether, understanding E. coli biofilms might help to find new strategies to combat

many biofilm-related infections.



4 1. Biofilms

1.1 Phases of biofilm formation

Many naturally occurring biofilms exist as submerged biofilms, i. e. growing on liquid-

surrounded surfaces [7]. Biofilm formation of E. coli and other motile bacteria on a surface

has been described to involve several stages [8, 9] (see figure 1.1). The main developmental

step in biofilm formation is the transition from a planktonic, often motile stage, to a sessile

stage. Bacteria from the motile planktonic phase attach to the surface, where the pro-

duction of biofilm matrix factors is increased. Attached cells aggregate into microcolonies,

which are held together by the matrix. In E. coli, the matrix includes proteinaceous curli

fibers on the cell surface and exopolysaccharides (Poly-N-acetylglucosamine (PGA) and

colanic acid). The microcolonies mature into macrocolonies and finally develop into a

biofilm. The mature biofilm can subsequently dissolve in a phase called dispersion.

One of the most important regulatory steps in biofilm formation is the transition from

motility to sessility. This involves downregulation of motility when cells attach and up-

regulation of matrix factors during biofilm maturation. A central player in this transition

is the second messenger bis-(3’-5’)-cyclic dimeric guanosine monophosphate (c-di-GMP),

which negatively regulates motility and positively regulates the production of matrix factor

in many bacterial species [10, 11, 12]. In the following, I will discuss the aspects of biofilm

formation in E. coli, especially with regards to the role of motility, c-di-GMP signaling

and the biofilm matrix.

The E. coli Biofilm Matrix

Attachment Maturation Dispersion

PGA

Curli

Flagella

Colanic Acid

Fig. 1.1. Phases of biofilm formation in E. coli.
Submerged biofilm formation on a surface involves the attachment of planktonic cells at the
surface (attachment phase), where the cells aggregate into microcolonies. These microcolonies
mature into a biofilm, which contains characteristic biofilm matrix (maturation phase). The
biofilm can dissolve again (dispersion), where cells are released from the biofilm.



2. MOTILITY AND ITS REGULATION IN BIOFILM FORMATION

2.1 Bacterial motility and surface attachment

Bacterial cells exhibit several ways of motility ranging from swimming in liquid to swarm-

ing and gliding on surfaces. Many bacteria, including E. coli, move by means of flagella

that propel the cells forward in aqueous environments (swimming) or on surfaces (swarm-

ing). In a di↵erent mechanism, P. aeruginosa use Type IV pili for twitching motility

whereas others, such as Myxococcus xanthus, glide on surfaces with a focal adhesion-based

mechanism [13, 14, 15, 16].

Flagella-mediated motility is the most studied form of motility in bacteria and many

biofilm-forming cells swim in their planctonic state. Nevertheless, in their biofilm state,

bacteria are usually non-motile [9]. Hence, one of the main cellular processes during biofilm

formation is the regulation of motility to allow a transition from the motile to the sessile

state. A key player in this regulation is the second-messenger c-di-GMP. In E. coli and

Salmonella, c-di-GMP negatively controls flagellar motility via motor curbing ([10, 11, 12];

see section 2.3 and chapter 3). Additionally, c-di-GMP is a positive regulator of biofilm

matrix production, which is required for biofilm maturation (see section 3.4). Another

pathway regulating flagella-mediated motility is the bacterial chemotaxis pathway, which

is probably the most studied two-component signaling system in bacteria ([17], see section

2.2). Bacterial chemotaxis allows cells to reorient in gradients of attractants and repel-

lents by changing the rotation direction of the flagellum in response to stimuli. In contrast

to the generally accepted view of c-di-GMP as a biofilm promoting factor, the contribu-

tion of the chemotaxis pathway to biofilm formation has not been clarified yet. There

are studies supporting the idea that chemotaxis might be important in biofilms, whereas

others neglect that hypothesis (see section 2.2.1). Irrespective of the exact contribution

of chemotaxis, the transition from the motile to the sessile state requires tight regulation

of motility, especially regarding the possible roles motility might play at several biofilm

stages, which excludes a simple shut-o↵ of motility. First of all, motility may be important

during attachment for bacteria to reach surfaces and secondly to overcome repulsive forces

at the surface. Additionally, moving along the surface may be an important step before

attachment and later during biofilm expansion [18]. Indeed, interfering with motility and

its regulation has been reported to result in changes in biofilm formation in several bacte-

rial species, such as E. coli or P. aeruginosa (e. g. [19, 18, 20, 21, 22, 23, 24, 25, 26]). E.

coli strains with impaired motility show reduced surface attachment and fail to develop

biofilms [19, 18, 25]. Furthermore, biofilm initiation is defective in P. aeruginosa strains



6 2. Motility and its regulation in biofilm formation

that carry mutations interfering with flagellar and twitching motility [20]. Later stud-

ies, however, suggest that initial microcolonies of P. aeruginosa develop by clonal growth

rather by motility-driven cell aggregation. Nevertheless, twitching motility has been shown

to be required for the formation of the mushroom-like structures in mature biofilms of P.

aeruginosa [22, 23]. Similarly, studies in E. coli suggest a contribution of motility and

/ or flagella to mature biofilm architecture [24, 27]. Altogether, these studies indicate

that motility might a↵ect biofilm formation in multiple ways and requires di↵erentiated

regulation at the respective biofilm stages. However, the timing of the motility regulation

and the exact contribution of motility during the di↵erent biofilm stages remain to be

elucidated.

2.2 Chemotaxis

Bacteria can sense and respond to environmental signals, such as nutrient availability, pH,

or temperature (for reviews see [28, 17, 29]). The chemotaxis signaling pathway is the

two-component-like system that is responsible for coupling sensing of environmental cues

to bacterial motility (see figure 2.1) [30, 31, 32]. In E. coli, chemotaxis governs the rotation

direction of the flagellum, thereby controlling whether the cell swims forward (counter-

clockwise rotation) or reorients in a tumble (clockwise rotation) [33]. E. coli possesses six

to eight flagella that are randomly distributed over the cell. Flagella rotation is driven by

ion motive force that is generated by the flagellar motor. The motor consists of the rotor

and stator complexes that interact for flagella rotation [34]. Rotational direction of the

flagellum is regulated by the interaction of the response regulator CheY and the switch

protein FliM at the motor [35, 36]. CheY activity in turn is regulated by the histidine

kinase CheA [37, 38].

Gradients of nutrients or repellents are sensed by periplasmic domains of chemotaxis re-

ceptors, the methyl-accepting chemotaxis proteins (MCPs). E. coli possesses five di↵erent

receptors, Tar, Tsr, Trg, Tap and Aer, which are responsible for sensing di↵erent signals.

The receptors together with the kinase CheA and the small adaptor protein CheW cluster

in chemoreceptor signaling complexes at the cell poles [39]. CheA activity depends on

the activation state of the receptors, which is modulated by ligand binding and receptor

methylation. In the absence of attractant, CheA is autophosphorylated and in turn phos-

phorylates the response regulator CheY. Phospho-CheY interacts with FliM at the motor

and induces clockwise rotation. The signal is terminated by dephosphorylation of CheY

by the phosphatase CheZ [40, 41].

Apart from CheY, there is a second response regulator of the kinase CheA, which is

the methylesterase CheB [42]. CheB, together with the S-adenosyl methionine-dependent

methyltransferase CheR constitute the adaptation system of chemotaxis providing a short-

term memory of gradient sensing. CheR and CheB methylate and demethylate the recep-

tors at specific glutamate residues thereby modulating their activation state. Methylation

of the receptors increases receptor activity, which in turn increases CheA activity. This
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CheW
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P

P-CH3

+CH3

CheB

CheY

CheZ

CheR

Fig. 2.1. Schematic representation of the chemotaxis signaling pathway.
Using chemotaxis, E. coli and other bacteria respond to environmental gradients of attractants
(green) and repellents (red). Binding of ligands to the receptors (MCPs; methyl-accepting
chemotaxis proteins) regulates autophosphorylation of the kinase CheA, which in turn regu-
lates phosphorylation of the response regulator CheY. CheY binds to the flagellar motor where
it changes flagella rotation from counter-clockwise to clockwise rotation, inducing tumbling and
thereby reorientation of the cell. The sensing of attractants leads to dephosphorylation of CheY
by the phosphatase CheZ and thereby counter-clockwise rotation of flagella and smooth swim-
ming. Methylation and demethylation of MCPs by CheR and CheB influences their activation
state and in turn CheA activity thereby balancing the chemotactic response.

allows to adapt to present concentrations of attractants since activity of CheA is shifted

back to a pre-stimulus level, allowing sensing of new changes in attractant concentrations

[43, 29].

2.2.1 Chemotaxis in biofilms

Biofilm growth is a common way of bacterial growth in nature and constitutes an im-

portant part of bacterial survival strategies. Therefore, it seems logical that the decision

where to form biofilms in an ever changing environment takes an important role. Chemo-

taxis could help to coordinate behavior of bacterial communities in a way that biofilms

form in response to environmental changes. One possibility is that bacteria could sense

attractants, which are in proximity to a surface, and as a response colonize this surface.

Another possible role of chemotaxis could be the sensing of attractants present in an al-

ready forming biofilm to sample more bacteria into that biofilm. Unpublished results from
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our laboratory (Lagonenko et al.) show that E. coli can aggregate via chemotaxis to the

quorum sensing molecule autoinducer 2 (AI-2) and the aggregates can continue to form a

biofilm when settling on a surface. Last but not least, during dispersal, repellents in the

biofilm or attractants in the surrounding environment could elicit a chemotactic response

and directed movement out of the biofilm.

The role of chemotaxis in biofilms has been studied in di↵erent organisms. For E. coli, it

was shown by Pratt and Kolter that chemotaxis per se is not essential for E. coli biofilm for-

mation [18, 21]. They demonstrated normal biofilm formation of the chemotaxis knockout

strain �cheA-Z in microtiter dishes. However, other studies showed later that mutations

in the chemotaxis system a↵ect biofilm formation in E. coli and several other species

[25, 44, 45, 26, 46]. Niba and colleagues for instance showed a defect in E. coli biofilm

formation if the chemotaxis phosphatase CheZ was deleted [25]. Two other studies in

P. aeruginosa suggested that chemotaxis was required for surface sampling in microtiter

dish biofilms [26] and for cap formation in the typical mushroom-like flow-chamber biofilms

[45]. Yet another study claims a role of aerotaxis in pellicle bioiflm formation of Shewanella

oneidensis [46]. Hence, it remains to be elucidated if and to what extent chemotaxis is

needed for biofilm formation in E. coli.

2.3 YcgR: A breaking mechanism to reduce flagellar motility

The first connection between c-di-GMP and motility has been discovered by Ko and Park

in 2000, where they used an hns deletion strain [47]. H-NS (Histone-like nucleoid structur-

ing protein) is a DNA-binding protein that amongst other genes regulates the expression

of the flagella master regulator genes flhDC. A hns deletion strain is therefore unflagellated

and non-motile. Ko and Park found that expression of FlhDC in �hns restores flagella-

tion, however motility is still reduced. If they in addition introduced a mutation in ycgR

or overexpressed the phosphodiesterase YhjH, an enzyme that degrades c-di-GMP (see

chapter 3), the motility defect of �hns was suppressed. Later, it was found that deletion

of yhjH reduces motility in Salmonella [48, 49]. In a motility screen [50], Girgis and col-

leagues observed in agreement with the previous studies in Salmonella that deletion of the

phosphodiesterase YhjH in E. coli leads to inhibition of swimming motility on soft agar

plates. They could suppress this motility defect by additionally deleting the diguanylate

cyclase YegE, an enzyme that generates c-di-GMP (see chapter 3). Furthermore, deletion

of the ycgR gene restored motility in �yhjH. YcgR contains a PilZ domain, a domain

that at that time was already known to bind c-di-GMP [51]. Binding of c-di-GMP to the

PilZ domain in YcgR introduces a significant conformational change of the protein that

stabilizes c-di-GMP binding [52]. The idea that c-di-GMP regulates flagellar motility via

YcgR has been suggested in reviews [53, 54] and led to a series of new studies, where the

functional mechanism was investigated.

The c-di-GMP pool that locally acts on the flagella via YcgR is supposedly controlled by

a subset of four diguanylate cyclases - YegE, YedQ, YfiN and DosC - and the phosphodi-
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YhjH
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YcgR

YedQYfiN

DosP

DosC

Flagellum

Fig. 2.2. Model of regulation of flagellar motility by c-di-GMP in E. coli.
The local pool of c-di-GMP, which controls flagellar motility in E. coli is balanced by the actions
of the diguanylate cyclases YegE, YedQ, YfiN and DosC and the phosphodiesterase YhjH. C-
di-GMP binds to YcgR, which in turn interacts with the motor.

esterase YhjH [55, 56] (see also figure 2.2). Two models about YcgR action at the flagellar

motor have been proposed. In the first, which is based on studies in Salmonella and E.

coli, YcgR supposedly interacts with the switch complex proteins FliG and FliM [57, 58],

which are responsible for setting the rotation direction of the flagellum. In the presence

of c-di-GMP, this interaction is strengthened and induces a counter-clockwise bias of flag-

ellar rotation. Consistently, c-di-GMP was shown to induce a counter-clockwise bias in

the above described screen from Girgis et al [50]. Additionally, Paul and colleagues [58]

showed that c-di-GMP binding to YcgR leads to a reduction of flagella rotation speed.

The second model, which is based on experimental work in E. coli, has been suggested

by Boehm and colleagues [56]. They showed that YcgR interacts with the flagellar motor

protein MotA thereby inactivating individual stator units. This leads to curbing of the

motor and reduction in swimming speed.

2.4 Regulation of motility gene expression in biofilms

Apart from post-translational mechanisms, such as c-di-GMP mediated adjustment of

swimming, there are multiple transcriptional events that control motility during biofilm

formation [59]. Many of the transcriptional regulators of motility inversely regulate the

synthesis of adhesion factors. In this way, the cascades controlling motility and adhesion

are strongly interconnected allowing the establishment of a delicate balance between the

two lifestyles.
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Motility gene expression in biofilms is mainly regulated on the level of the flagella mas-

ter regulator FlhDC. The Rcs (Regulator of capsule synthesis) phosphorelay system is a

potential candidate for this transcriptional regulation [60]. In the Rcs system, a sensor

kinase RcsC autophosphorylates and the phosphate is transferred via RcsC to the response

regulator RcsB. Phospho-RcsB together with the protein RcsA regulates the expression

of diverse genes, amongst which are the flagella master regulator genes flhDC. FlhDC and

thereby motility are downregulated by the Rcs system and disruptions in Rcs signaling

on the one hand enhance motility and on the other hand impair biofilm formation. This

inhibition of biofilm formation in Rcs mutants is explained by the fact that Rcs positively

regulates the synthesis of colanic acid, which constitutes part of the E. coli biofilm matrix.

Thus, Rcs inversely coordinates motility and biofilm formation.

FlhDC expression is further negatively controlled through the regulatory protein FliZ, a

repressor of �S regulated genes, which is part of the inverse regulatory control of motility

and curli-mediated adhesion in E. coli [55, 61]. Curli are amyloid fibers on the cell surface

and require the transcription factor CsgD for expression, which in turn is controlled by

a cascade of �S regulated genes. FliZ itself is expressed under the control of FlhDC and

thereby constitutes a negative feedback loop on FlhDC. This inhibition of motility in the

context of the inhibitory role of FliZ on the curli (sessility) cascade might help to balance

the switch from motility to sessility [61]. CsgD, the transcription factor for curli expres-

sion, is a major player in this switch. Its expression is c-di-GMP dependent and raises

with cells entering the stationary phase and with the onset of biofilm formation (see also

chapter 3). Consistently, CsgD inhibits the expression of flagella genes thereby balancing

the motility versus adhesion decision towards sessility [62].

Another important regulator during biofilm formation is the RNA-binding protein CsrA

[63, 64]. CsrA is a master regulator that in addition to regulating motility and biofilm

formation regulates several other pathways, such as glycolysis or gluconeogenesis. Motility

is positively regulated by CsrA on the level of FlhDC [65]. Additionally, CsrA decreases

expression of the diguanlate cyclases YdeH and YcdT [66] and the pgaABCD genes [67]

that encode enzymes for the synthesis of PGA (Poly-N-acetylglucosamine), another com-

ponent of the E. coli biofilm matrix. Thereby, CsrA positively regulates motility and

negatively regulates biofilm formation by inhibiting PGA synthesis.

In summary, the transcriptional events regulated by the Rcs system, FliZ, CsgD and CsrA

inversely coordinate the expression of motility genes and the biofilm matrix factors colanic

acid, curli and PGA synthesis, constituting an important role in the transition from the

motile to sessile lifestyle.

In addition to the transcriptional control of motility, there is also a network of small regu-

latory RNAs (sRNAs), regulating motility and biofilm formation on the mRNA level (for

a review see [68]). Most of the sRNAs that a↵ect motility control FlhDC expression by

directly binding to flhDC mRNA. Some of these sRNAs have additional impact on the

expression on biofilm genes and thereby motility and biofilm formation are linked on yet

another level.



3. C-DI-GMP SIGNALING

The second messenger bis-(3’-5’)-cyclic dimeric guanosine monophosphate (c-di-GMP) has

been discovered in 1987 by Ross and colleagues as cellulose synthase activator (CSA) in

Acetobacter xylinum, now Gluconacetobacter xylinus [69]. Since then, hundreds of stud-

ies about this bacterial second messenger have been published and numerous reviews have

summarized the actions of c-di-GMP (for references see e. g. [70, 10, 71, 11, 72, 73, 74, 12]).

Today, c-di-GMP is recognized as a universal bacterial second messenger and has estab-

lished a huge new field of research. C-di-GMP controls a vast variety of cellular functions

including cell cycle, virulence, cell morphogenesis and most importantly for this work,

motility and biofilm formation. It is a key factor in the transition from the motile to the

sessile lifestyle inversely regulating motility and the synthesis of biofilm matrix factors.

3.1 Synthesis and degradation of c-di-GMP

C-di-GMP is synthesized by GGDEF (Gly-Gly-Asp-Glu-Phe) domain containing diguany-

late cyclases (DGCs) from two guanosine triphosphates (GTPs) [69, 75]. Degradation of

c-di-GMP into phosphoguanylyl-guanosine (pGpG) and guanosine monophosphate (GMP)

is performed by EAL (Glu-Ala-Leu) or HD-GYP (His-Asp, Gly-Tyr-Pro) domain contain-

ing phosphodiesterases (PDEs) [76, 77, 78]. In many cases, these enzymes contain both

GGDEF and EAL domains, however, possess only one of the enzymatic functions. There-

fore, in addition to the active GGDEF and EAL domains that confer DGC or PDE activity,

there are also degenerate, inactive GGDEF and EAL domains. These degenerate domains

can have structural or regulatory roles, such as constituting c-di-GMP receptors that or-

chestrate downstream processes [79]. For example, the LapD protein of Pseudomonas

fluorescens (P. fluorescens) contains a functionally inactive GGDEF and EAL domain.

C-di-GMP binds to the EAL domain of LapD. LapD regulates secretion and surface re-

tention of the adhesin LapA, which is required for P. fluorescens surface attachment.

Thereby, c-di-GMP binding to LapD controls adhesin secretion and biofilm formation of

P. fluorescens [80, 81, 74].

Most of the DGCs and PDEs contain one or more sensory domains that allow control of

enzymatic activity through environmental and cellular signals, such as PAS (Per-ARNT-

Sim), MASE (membrane-associated sensor), REC (Receiver domain) or BLUF (blue light

sensing; sensors of blue-light using FAD) domains. In many cases, DGCs and PDEs are

membrane-standing and have periplasmic loops that can have roles in ligand binding (see
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e. g. [11, 71, 12]).

3.2 Sensing of c-di-GMP

The integration of c-di-GMP into the cellular signaling network needs sensing of distinct

c-di-GMP concentrations. In the cell, there are di↵erent types of c-di-GMP receptors,

such as diverse protein receptors and riboswitches [79]. The first type of c-di-GMP sensors

has been named after the PilZ protein in P. aeruginosa [82]. The discovery that the PilZ

domain (Pfam: PF07238) is a c-di-GMP receptor is based on a bioinformatical study that

predicted this function for the PilZ domain in the cellulose synthase BcsA from G. xylinus

[51] and was confirmed experimentally for the PilZ of BcsA and YcgR [83]. YcgR, as

described previously (see section 2.3), is the c-di-GMP receptor in E. coli that controls

swimming motility through interacting with the flagellum.

As mentioned above in section 3.1, there are GGDEF and EAL domain containing proteins

that have lost there enzymatic activities. However, degenerate GGDEF domain proteins

often retain there so-called I-site, which is the site where c-di-GMP can allosterically bind.

In many cases, the I-sites of degenerate GGDEF proteins can serve as c-di-GMP receptors,

as e. g. in PopA, a cell cycle regulator in Caulobacter crescentus [84]. Degenerate EAL

domains can also serve as c-di-GMP receptor domains, such as in LapD in P. fluorescens

[80, 81, 74].

Last but not least, c-di-GMP responsive riboswitches have been discovered [85, 79]. Ri-

boswitches are domains in mRNAs that respond to binding of ligands by changing gene

expression on the level of transcription, mRNA stability or translation.

3.3 Physiological relevance of c-di-GMP in biofilms

Biofilm formation in many bacterial species coincides with c-di-GMP production. In gen-

eral, c-di-GMP is viewed as a biofilm-promoting factor that drives the transition from a

motile to a sessile lifestyle. C-di-GMP has been recognized as an inhibitor of swimming,

swarming, twitching and gliding motility and can therefore be considered a global motil-

ity suppressor. The transition from motility to sessility not only requires shut down of

motility, but also the production of biofilm matrix. This is the second role c-di-GMP plays

during biofilm formation: it is a positive regulator of biofilm matrix synthesis.

3.3.1 The motility-to-sessility transition in E. coli

In E. coli, the motility-to-sessility transition involves inhibition of motility by c-di-GMP

through the e↵ector protein YcgR (see chapter 2.3). As c-di-GMP levels rise, c-di-GMP

loaded YcgR interacts with the flagellar motor and induces motor curbing resulting in a

decrease of swimming speed, driving the bacteria from motility into sessility. With the

increase in intracellular c-di-GMP levels, the synthesis of the E. coli matrix components

is induced (see figure 3.1). In general, the biofilm matrix provides stability to the biofilm,
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helping cells to adhere to each other and the surface, on which the biofilm forms. The c-di-

GMP dependent matrix of E. coli includes the polysaccharides Poly-N-acetylglucosamine

(PGA) and Cellulose and the amyloid curli fibers. In contrast to curli and PGA, cellulose

is not produced by the commonly used E. coli K-12 lab strains due to a premature STOP

codon in one of the bcs (bacteral cellulose synthesis) genes [86]. Thus, caution has to

be taken if experimental results from the laboratory are transposed to the environmental

setting.

3.4 Regulation of matrix components

PGA

The polysaccharide Poly-N-acetylglucosamine is produced by several bacterial species in-

cluding Staphylococcus epidermidis (PIA; polysaccharide intercellular adhesin), Staphy-

lococcus aureus (PNAG; Poly-N-acetyl-glucosamine) and E. coli (PGA; Poly-N-acetly-

glucosamine). The di↵erences between PNAG, PIA and PGA lie in the chain length and

modifications of linked glucosamine (for a review see [87]).

In E. coli, the genes for the PGA synthesis apparatus lie on the pgaABCD operon [88].

C-di-GMP regulates PGA production both on a transcriptional and posttranscriptional

level (see figure 3.1). C-di-GMP produced by the DGC DosC controls the expression from

the pgaABCD locus [89]. Posttrancriptional control is driven by the activity of the DGCs

YdeH and YcdT [90, 91]. C-di-GMP binds to PgaC and PgaD increasing PgaD stability

and promoting the PgaC-D interaction. The net result of increased c-di-GMP production

by DosC, YdeH and YcdT is thereby stimulating PGA synthesis.

Curli

Curli are amyloid protein fibers on the cell surface that are part of the biofilm matrix

in enterobacteria (for curli reviews see [92, 93, 94]). The genes for curli synthesis lie on

the curli structural operon csgBAC and the csgDEFG operon (csg for curli-specific genes)

[95]. While CsgD is the master regulator for curli production, CsgB and CsgA make up

the structural components. Soluble curlin subunits of CsgA are produced in the cytoplasm

and secreted through SecYEG into the periplasm (see figure 3.1). Further transport to

the cell surface is facilitated via the CsgG channel. Nucleation into curli fibers occurs at

the cell surface and requires the nucleator protein CsgB [92, 96, 93, 94].

C-di-GMP regulates curli biogenesis both on the transcriptional and posttranscriptional

levels (see figure 3.1). CsgD transcription is controlled by the DGC-PDE modules made up

by YegE and YhjH and YdaM and YciR [97, 55, 11, 98]. YdaM and YciR form a complex

with the transcription factor MlrA with YciR both inhibiting YdaM and MlrA. When c-di-

GMP produced by the YegE/YhjH module increases, YciR binds c-di-GMP, which results

in a relieve of its inhibitory role on YdaM. As a consequence, c-di-GMP levels made by

YdaM raise. MlrA activity is stimulated by YdaM and activates CsgD transcription [98].
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CsgD in turn regulates transcription from the curli operons csgDEFG-csgBAC. Apart from

this indirect control via CsgD, there is also direct control of csgBAC expression, which

is exerted through the activity of the DGC/PDE pair DosC/DosP, [99, 100]. A third

DGC, YeaP has also been shown to be involved in csgBAC expression, however whether

it controls CsgBA synthesis on a transcriptional or post-transcriptional level has to be

unravelled [99].

Cellulose

Regulation of bacterial cellulose production by c-di-GMP has been originally described

by Ross and colleagues in the 1980s in G. xylinus [69]. Cellulose is comprised of �-1,4-

linked D-Glucose that arranges in microfibrils, which in turn form a mesh-like structure

in the matrix of several bacterial species, including E. coli strains, Salmonella and P.

fluorescence [101, 102, 103, 104, 87]. As mentioned above, E. coli K-12 laboratory strains

do not produce cellulose, however, a W3110 derivative, in which cellulose synthesis was

restored by Serra and colleagues [86] was used in this thesis. This strain forms highly

structured biofilm macrocolonies on agar plates with cellulose making the colonies more

elastic and stable [86]. In E. coli, genes for cellulose synthesis lie on the bcs locus (yhjR-

bcsQABZC and bcsEFG ; bcs for bacterial cellulose synthesis) [103, 105, 106]. BcsA is

the cellulose synthase, which together with BcsB foms a complex in the inner membrane

(see figure 3.1). BcsA contains the PilZ domain required for c-di-GMP regulation [51, 83].

BcsC is thought to form a channel in the outer membrane through which the nascent

chains of linked D-Glucose are transported into the extracellular space [106]. Cellulose

synthesis in E. coli is regulated by c-di-GMP on several levels. First of all, similar to curli

synthesis, the expression of the master regulator CsgD is a prerequisite for the synthesis

of cellulose. As described previously (section 3.4), CsgD transcription is controlled by

two DGC-PDE modules (YegE-YhjH and YdaM-YciR) [97, 55, 11, 98]. CsgD drives the

expression of the adrA gene encoding a DGC required for cellulose synthase activity and

of the PDE YoaD, which has the opposing activity to AdrA, namely degrading c-di-GMP

[107]. C-di-GMP in turn binds to the PilZ domain of BcsA [51, 83].
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4. A NEW REGULATOR OF C-DI-GMP SIGNALING IN E. COLI

The second messenger c-di-GMP regulates a variety of cellular processes including biofilm

formation. Even within its role as a biofilm promoting factor, c-di-GMP regulates several

aspects of biofilm formation, such as synthesis of curli fibers, synthesis of PGA or inhibition

of motility in E. coli. This raises the question how specificity is achieved with one molecule

regulating such diverse signaling processes? How are environmental signals or signals from

the inside of the cell integrated into the c-di-GMP network resulting in specific outputs?

Especially the question of how specificity of c-di-GMP signaling is achieved is a pending

question in the field. Possible solutions would be di↵erent specificities of c-di-GMP re-

ceptors or regulation of the expression or activity of specific DGC/PDE modules [73]. E.

coli expresses more than twenty GGDEF and EAL domain proteins that are specifically

expressed depending on growth phase and temperature [99]. Apart from the establishment

of di↵erent expression patterns of DGCs and PDEs to time c-d-GMP production, another

intriguing idea would be the generation of local c-di-GMP peaks. This could be achieved

by restricting individual DGC/PDE modules to specific locations in the cell. This sce-

nario is however di�cult to imagine due to the lack of compartmentalization in bacteria.

With the ubiquitous nature of c-di-GMP in bacteria and its importance in biofilm-related

processes, it is important to understand the regulation of c-di-GMP signaling and identify

new regulators of c-di-GMP signaling.

In their screen for motility mutants, Girgis and colleagues observed that the deletion of

a so far uncharacterized ORF, yjdA, complemented the motility defect of a strain, which

lacks the PDE YhjH [50]. The gene product of yjdA is a homologue to eukaryotic dy-

namin containing a dynamin-like GTPase sequence, which might have similar functions as

eukaryotic dynamins [108]. How the dynamin YjdA is related to regulation of c-di-GMP

signaling has not been investigated so far. Nevertheless, the involvement of a dynamin in

c-di-GMP signaling might provide a new interesting mechanism of how this second mes-

senger is regulated. The dynamin could impose local membrane curvature a↵ecting the

activity of membrane-bound DGCs or EALs. However, this idea is mere speculation at

this point and needs thorough investigation.

Apart from its obvious involvement in c-di-GMP dependent regulation of motility [50], a

role of YjdA in chromosome segregation has been suggested [109]. The authors describe

that YjdA, which they renamed to CrfC (colocalization of the replication fork DNA by

the clamp), forms homomultimers as has been described for dynamins. However, they do

not refer to the involvement of YjdA in c-di-GMP signaling.
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Fig. 4.1. Schematic drawing of YjdA and human Dynamin 1 structures.
(A) The bacterial DLP YjdA contains a G1 domain, two G2 domains, a G3 domain, Switch I
and Switch II regions, and two P-loop NTPase domains.
(B) The human dynamin 1 contains G1-G5 domains, Switch I and Switch II domains, a P-loop
NTPase domain, the dynamin M (central region) domain, a PH (Pleckstrin homology) domain,
and a GED (GTPase e↵ector domain).
Drawings of YjdA and dynamin 1 domain architecture were created after similarity search
using the Conserved Domain Architecture Retrieval Tool (CDART) [110], which is available on
http://www.ncbi.nlm.nih.gov/Structure/lexington/lexington.cgi

4.1 Dynamins and dynamin-like proteins

The discovery of dynamins dates back to the early 1970s when the Drosophila temperature-

sensitive shibire mutant was described, which resulted in a paralytic phenotype [111]. Some

years later, dynamin was discovered in a preparation of microtubules from calf brain as

a nucleotide triphosphatase and its similarity to Mx proteins and yeast vacuolar protein

sorting gene VPS1 suggested that they were a new family of GTPases [112, 113]. Finally,

the shibire mutant phenotype was described to result from a defect in endocytosis and the

shibire gene was mapped to dynamin [114, 115].

Today, we know that dynamin is a member of a large family of proteins - the dynamin

superfamily. Dynamins are generally implicated in membrane scission events, which are

e. g. required for vesicular tra�cking. In eukaryotes, the dynamin superfamily includes

the classical dynamins, the interferon-induced Mx-proteins, dynamin-like proteins (DLPs),

optic atrophy 1 (OPA1), mitofusins and guanylate binding proteins / atlastins. The mem-

bers of this superfamily are e. g. involved in the budding of vesicles (classical dynamins),

RNA virus defense (Mx proteins), division of organelles (DLPs) and mitochondrial fusion

(mitofusins and OPA1) (for reviews see [108, 116, 117]). The typical domain structure of

dynamins comprises a large GTPase domain (around 300 amino acids), a middle domain

(M domain), and a GTPase e↵ector domain (GED) (see figure 4.1 B). The M domain

and GED are responsible for oligomerization and thereby regulation of GTPase activity,

which is dependent on and increases with the level of oligomerization [118, 119, 120, 116].

The GTPase domain comprises the G1-G4 regions (see figure 4.1), which contain the

http://www.ncbi.nlm.nih.gov/Structure/lexington/lexington.cgi
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GTP binding motif. Mutations in these regions have been described to e. g. block GT-

Pase activity or leave the dynamin in a nucleotide-free state (GTPase domain website:

http://www2.mrc-lmb.cam.ac.uk/Dynamin/GTPase.html, [121, 122]). In addition to the

GTPase, the M domain and the GED, many dynamins contain targeting domains, such

as a Pleckstrin homology (PH) domain or a proline-rich domain (PRD). The PH domain

in the classical dynamin for example is responsible for interaction with lipid membranes

[123].

In addition to eukaryotic dynamins, there is also a family of bacterial dynamin-like pro-

teins (BDLPs), which comprises GTPases with a domain architecture that is similar to

eukaryotic dynamins [108]. These BDLPs include BDLP of the cyanobacterium Nostoc

punctiforme (N. punctiforme) and YjdA in E. coli [108, 124, 125, 126].

4.2 Bacterial dynamin-like proteins

In 2006, the structure of the bacterial dynamin-like protein BDLP from N. punctiforme

has been dissolved by Low and colleagues [124]. The domain architecture of BDLP com-

prises a GTPase domain, a GED and M domain. The GED and M domain, however, are

not separate domain entities as in classical dynamins but run in parallel. In the presence

of a non-hydrolysable GTP analogue, BDLP shows self-assembling properties and binds

to lipid bilayers. Lipid binding is mediated by a mobile paddle domain and induces mem-

brane curvature [124, 125]. Low and Löwe have provided a model how BDLP and other

DLPs might a↵ect membrane topology [125]. They predict that upon GTP binding BDLP

undergoes conformational changes that allow binding to the lipid bilayer. There, coopera-

tive polymerization occurs, which leads to coating of the membrane with BDLP molecules

inducing membrane curvature. When GTP is hydrolyzed, the BDLP-GDP coat on the

membrane becomes unstable and disassembles. Disassembly is supposed to either cause

relaxation of the membrane curvature back to the previous state or to induce membrane

fission or fusion events (see reference [125] for details). The E. coli DLP YjdA (see figure

4.1 A) is a structural homologue to BDLP and has a GTPase sequence that is charac-

teristic for dynamin family members [108]. YjdA, however, lacks the membrane-binding

paddle domain that is present in BDLP [109]. It therefore remains to be elucidated how

and whether YjdA might be involved in rearrangements of membrane topology and if this

potential function is reated to its role in c-di-GMP signaling [50].

http://www2.mrc-lmb.cam.ac.uk/Dynamin/GTPase.html
http://www2.mrc-lmb.cam.ac.uk/Dynamin/GTPase.html
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5. AIMS OF THIS THESIS

The formation of sessile biofilm communities from motile planktonic bacteria requires a

balanced regulation of motility throughout several phases of biofilm formation. Although

E. coli biofilm cells are immotile, previous research suggested multiple roles of flagella

and flagella-regulated motility in E. coli biofilm formation. E. coli strains that either lack

flagella or are flagellated but non-motile have a severely reduced ability to form biofilms

[19, 18, 21, 25]. Flagella and motility could influence biofilm formation at di↵erent stages.

During the early phase, swimming motility might enhance attachment, either by bringing

bacteria to the surface [18, 21] or by flagella functioning as adhesins [127, 128, 129]. Flag-

ella may further mediate surface sensing to trigger expression of biofilm-specific genes, such

as those involved in matrix production [130, 131, 132, 133]. At the later biofilm stages,

flagella may fulfil a structural role within the matrix, thereby contributing to the overall

biofilm architecture [24, 27].

Regulation of flagella-mediated motility is mediated by the chemotaxis signaling pathway

as well as by the second messenger c-di-GMP. Although chemotaxis per se is not essential

for E. coli biofilm formation [18, 21], mutations in the chemotaxis system a↵ect biofilm

formation in E. coli and in several other species [25, 44, 45, 26, 46].

The goal of our study was to comprehensively analyse the functions of motility and flagella,

both during early stages of E. coli submerged biofilm formation and in three-dimensional

structures of mature biofilms.

Therefore, motility and chemotaxis genes were systematically deleted in the E. coli K-12

strain W3110. The mutants were screened for biofilm defects in a microtiter dish biofilm

assay using crystal violet staining to quantify biomass. In our assay, flagella and motility

were absolutely required for biofilm formation. Deletions that render E. coli immotile or

severely impaired its motility were unable to form biofilms. Considering that biofilm for-

mation is a dynamic process, we wanted to find out whether motility might a↵ect biofilm

formation di↵erently depending on the biofilm stage. The e↵ect of the respective gene

deletions was therefore characterized in time-resolved biofilm formation assays using both

crystal violet and microscopy as a readout.

In addition to chemotaxis deletion mutants, we further analyzed the e↵ect of c-di-GMP

signaling mutant strains that are supposed to have deregulated flagellar motility. For this

purpose, we additionally used a second W3110 strain, which in contrast to our laboratory

strain expresses a functional RpoS, the stationary phase � factor. �S regulates many

biofilm-related genes, among which are genes required for c-di-GMP signaling.

Besides their role in attachment, we investigated the involvement of flagella and motility
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on three-dimensional structure formation in submerged biofilms. For this purpose, mature

biofilms were grown and analyzed by confocal microscopy. We aimed to characterize the

role of motility in biofilm architecture in two W3110 strain backgrounds, W3110RH and

AR3110. Both strains are RpoS-positive, however, their di↵erence lies in the expression

of biofilm matrix. The AR3110 matrix contains both curli fibers and cellulose, whereas

in W3110RH , cellulose synthesis is absent due to a mutation in the cellulose biosynthesis

apparatus genes. Therefore, biofilm properties and overall architecture di↵er between the

two strains and it is unclear whether motility might have similar e↵ects in both strains.

Considering our results about the role of motility during attachment and in biofilm archi-

tecture, we next aimed to investigate the impact of the bacterial dynamin YjdA. YjdA

has been shown to be involved in c-di-GMP regulated motility in E. coli [50]. We aimed

to find out by which means YjdA a↵ects c-di-GMP signaling and thereby motility reg-

ulation. We hypothesized that YjdA, considering known functions of dynamins, might

modulate the plasma membrane in a way that c-di-GMP metabolizing enzymes in the

membrane are a↵ected in their activity. In this way, YjdA would enable the formation of

local c-di-GMP pools. For this purpose, we investigated the role of YjdA in biofilm forma-

tion during attachment when swimming motility was required. Additionally, the e↵ects

of YjdA on biofilm architecture were analyzed. The search for potential interactors of

YjdA that place the dynamin within the c-di-GMP signaling pathway included swimming

assays, microscopy, fluorescence resonance energy transfer (FRET), bacterial two-hybrid

assays and mass spectrometry.

Altogether, in this thesis we present multiple roles of flagella and motility throughout dif-

ferent stages of biofilm formation. Additionally, we describe a new regulator of c-di-GMP

signaling, which influences both attachment and biofilm maturation.



Part II

ATTACHMENT OF E. COLI W3110 AND W3110RH

DURING BIOFILM FORMATION





6. ROLE OF MOTILITY DURING ATTACHMENT IN E. COLI

BIOFILM FORMATION

Biofilms are usually considered as the immotile state of bacterial growth. However, most

biofilm-forming bacteria are motile in their planktonic state and their biofilm formation

involves the transition from motility to sessility. Therefore, regulation of motility during

the process of biofilm formation is of utmost importance and exact contributions of motil-

ity during the di↵erent phases of biofilm formation have not been fully understood yet.

During the formation of submerged biofilms at a surface, motile planktonic cells have to

swim to the surface, start to attach and grow at the surface. Therefore, the first step

of submerged biofilm formation is attachment at the surface, which can be quantified in

the laboratory by di↵erent methods (see figure 6.1). I established and used two main

di↵erent ways of quantification - staining of the whole biomass and imaging of attached

bofilm cells. In general, biofilm precultures are grown in 24-well plates and subcultured

into 96-well plates, where biofilm formation is monitored (figure 6.1 A, B). Non-attached

cells are removed by washing and attached cells are quantified. The most common method

is to stain attached biomass with crystal violet (CV) [134, 135, 136, 137], which basically

stains cells and matrix components at the bottom and the wall of the microtiter dish well.

The drawback of this method is, that it is not sensitive enough to monitor the very early

phases of attachment, where single cells adhere to the surface. To do so, I established a

microscopy assay, where I mix wild type with mutant cells labeled with di↵erent fluores-

cent proteins at similar ratio. This allows for a direct comparison between the number of

attached wild type and mutant cells at the bottom of imaging plates (figure 6.1 B). Alter-

native methods to quantify biomass are shown in figure 6.1 C. To correlate biomass stained

with CV with the actual amount of living cells, I used the commercial BacTiter-GloTM

assay from Promega, which relatively quantifies the amount of metabolically active cells

by measuring the ATP content of cells with a luciferase assay. The carbohydrate part of

biomass can be stained with fluorescently labeled wheat-germ agglutinin. The di↵erence

in quantified biomass for �fliC in figure 6.1 C arise most probably through di↵erences in

the sensitivity of the staining methods. However, due to its fast and easy application, I

chose to use the crystal violet assay for quantification of biomass in the results shown in

this thesis.

The role of motility during attachment of E. coli cells was studied with two di↵erent

wild type strains. From our laboratory strain collection, I chose the E. coli K-12 strain

W3110, which showed highest biofilm forming capacity among our wild type strains. The

major drawback of this strain however is, that it carries the rpoS396(Amber) (Am) allele
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Fig. 6.1. Overview of assays to assess attachment in biofilms:
(A) Biofilm precultures are grown in 24-well plates for 48 h and diluted into fresh medium in
96-well plates. Attached cells can be stained, which is most commonly done with crystal violet
(CV). Absorbance of CV staining can be measured in a plate reader.
(B) Attached cells of biofilm cultures can also be visualized by fluorescence microscopy in
imaging plates.
(C) Three di↵erent methods can be used to quantify biofilm formation. The graph shows relative
biofilm formation of W3110 wild type and �fliC. Attached cells were stained with crystal violet
(CV), assessed for their viability with the BacTiter-GloTM assay (Promega), which measures
the relative ATP content of cells corresponding to cell viability, or stained with fluorescently
labeled wheat-germ agglutinin (WGA), which stains carbohydrates.
(D) Relative biofilm formation of W3110 and W3110RH wild type and biofilm matrix mutants
showing the relative importance of Curli and PGA in the respective strain background. Mean
and standard error of three replicates are shown.
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[138, 139]. This means that a functional RpoS is not expressed, which renders this strain

unable to turn on many biofilm-related signals. The absence of a functional RpoS makes

the strain a suitable model for early biofilm stages before activation of RpoS. To correlate

results obtained with our W3110 with a RpoS-positive strain, I received another W3110

strain, which I label W3110RH throughout this thesis, from Prof. Dr. Regine Hengge from

the Humboldt University, Berlin. This W3110RH strain contains a functional rpoS gene.

Figure 6.1 D shows the impact of the biofilm matrix mutants �csgA (negative for curli)

and �pgaC (negative for PGA) on attachment of both strains. For both, W3110 and

W3110RH , curli are the major component of the matrix that is required for attachment.

In the following chapter, I will discuss the impact of flagella-driven motility on attachment,

which in addition to biofilm matrix, influences surface attachment massively.

6.1 Attachment of E. coli W3110

Flagella-driven motility is required for static biofilm formation

I systematically tested the e↵ect of motility on attachment in W3110. Therefore, knock-

outs of motility and chemotaxis genes were created. Figure 6.2 shows the e↵ect of motility

on swimming in soft agar (A) and attachment, as quantified by CV staining after 24 h (B).

As published previously [140], the chemotaxis mutants �cheZ, �cheA and �cheY and the

non-motile flagella-less �fliC and stator mutant �motA are unable to perform in a gra-
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Fig. 6.2. E↵ect of motility KOs on W3110 biofilm formation:
(A) Swimming of W3110 wild type and motility mutant strains on soft agar plates.
(B) Biofilm formation of W3110 wild type, �fliC, �motA, �cheZ, �cheA and �cheY after
24 h in M9 medium at 30�C. Biofilms were formed on 96-well Corning R� Costar R�plates and
stained with crystal violet (CV). Shown are mean and standard error of three to eight replicates.



28 6. Role of motility during attachment in E. coli biofilm formation

A

0

10

20

30

40

50

60

70

wt ∆fliC

Biofilm
SN

Fluorescence Intensity

B

0

0.2

0.4

0.6

0.8

1

1.2

wt ∆fliC

FI Biofilm / FI SN

W3110 PcsgD W3110 PcsgD

C D
W3110 PpgaA W3110 PpgaA

0

5

10

15

20

25

30

35

wt ∆fliC

Biofilm
SN

Fluorescence Intensity

0

0.2

0.4

0.6

0.8

1

1.2

wt ∆fliC

FI Biofilm / FI SN

Fig. 6.3. In W3110 early biofilm formation, surface sensing by flagella does not
seem to play a role:
GFP-Reporter activity was quantified in 7 h old biofilms of W3110 wild type and �fliC grown
in M9 medium at 30�C on ibidi R� imaging plates. Fluorescence intensity (FI) was quantified
in attached (biofilm) and supernatant (SN) cells.
(A) Activity of the csgD promoter expressed from plasmid pVM49. Shown are mean and
standard error of three replicates.
(C) Activity of the pgaA promoter expressed from plasmid pVM53. Shown are mean and
standard error of three replicates.
(B, D) Ratios of GFP expression in biofilm and SN cells were determined for the csgD (B) and
the pgaA promoter.

dient of a soft agar plate. Additionally, the non-motile mutants are also not able to form

static biofilms (figure 6.2 B). Similarly, the chemotaxis phosphatase mutant �cheZ, which

has a strong bias towards tumbling and thereby can be considered as less motile, cannot

form biofilms. In contrast, the biomass of the smooth swimming mutants �cheA and

�cheY is indistinguishable from the wild type biomass. These results show in consistence

with previous publications [18, 25] that flagella are clearly required for static biofilm forma-

tion. In contrast to the requirement of flagella-driven motility for attachment, chemotaxis

per se does not seem to be a prerequisite, as shown by the biofilm formation of �cheA

and �cheY.

Flagella are no major adhesins or surface sensors

In addition to the prerequisite of flagella-driven motility for surface attachment, flagella
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Fig. 6.4. Flagella in W3110 are no major adhesins:
(A-C) W3110 wild type and mutant cells labeled with di↵erent fluorescent proteins were mixed
1:1 in M9 medium and centrifuged on BD FalconTM imaging plates. Wild type cells labeled
with two di↵erent fluorescent proteins served as a control. Non-attached cells were removed by
washing.
(A) Attached cells were identified and segmented in brightfield images and the number of
attached cells in each fluorescent channel was determined. The number of mutant cells was
normalized to the number of wild type cells in the same image series and the mutant/wild type
ratio was further normalized to the wild type/wild type control. Shown are mean and standard
error of four to five replicates.
(B) Exemplary images showing attached cells after washing. Wild type (magenta) cells were
mixed 1:1 with wild type, �fliC and �motA cells (green). Scalebar: 25 µm.
(C) Exemplary images showing surface growth of attached cells after centrifugation. Cells were
washed as in (B) and grown for 24 h at 30�C in M9 medium. Unattached cells were removed
again. Colors are as in (B). Scalebar: 100 µm.
(D) Mixed biofilm of wild type (magenta) and �fliC (green). Cells were prepared as for (A-C),
however, incubated at 30�C for 24 h in M9 medium without centrifugation. Scalebar: 100 µm.

could have additional roles during biofilm formation, such as a role as adhesins [127, 128,

129] when the initial surface contact is established or as surface sensors [130, 131, 132, 133].

I tested both possibilities as shown in figures 6.3 and 6.4. To check for surface sensing by

flagella, GFP-reporters to monitor expression of the major curli regulator CsgD and of the

outer membrane protein PgaA were cloned and used as reporters for curli (figure 6.3 A,

B) and PGA (figure 6.3 C, D) , respectively. Expression was monitored at early biofilm

formation (7 h) in unattached (supernatant, SN) and attached (biofilm) cells. Overall,

expression of matrix reporters was slightly reduced in flagella-less cells. However, with

wild-type biofilm/SN ratios of roughly 0.8-1.1, even in wild-type there was no sign of ap-

parent surface sensing, which would lead to increased matrix gene expression in biofilm

cells. I therefore conclude that for the genes monitored, surface sensing by flagella does not

seem to play a role. The observed reduced expression of matrix genes in the �fliC strain,

however, has no e↵ect on the stickiness of the mutant (see figure 6.4). Here, I tested the

possible role of flagella as adhesins during attachment. This was done by artificially forc-
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ing the bacteria to the surface of microtiter dishes by centrifugation to avoid the necessity

of swimming for attachment. Wild type and mutant cells were labeled with two di↵erent

fluorescent proteins and mixed at 1:1 ratios. Wild type mixed with wild type served as a

control. Figures 6.4 A and B show that similar numbers of wild type and �fliC cells at-

tached to the surface after centrifugation, meaning that stickiness of the strains is similar.

The stability of attachment was also similar, as shown in figure 6.4 C, where cell attach-

ment 24 h after centrifugation is shown. Once at the surface, flagella-less cells formed

microcolonies that resembled wild type colonies. In contrast, without centrifugation no

microcolonies were observed (figure 6.4 D). Attachment of�motA cells after centrifugation

was slightly increased in comparison to the wild type attachment (figures 6.4 A and B).

This might indicate that flagella can increase surface adhesion. However, since the e↵ect

was modest, a specific function of flagella as surface adhesins seems unlikely. Together, the

results in figures 6.3 and 6.4 show that the primary role of flagella during attachment lies

in their motility function and that flagella function neither as major adhesins nor surface

sensors during W3110 attachment.

Chemotaxis is not required for static biofilm formation

Based on the first observation that motility but not chemotaxis is required for attachment

(figure 6.2), I suspected that deletion of other chemotaxis genes would also not a↵ect

biofilm formation of W3110. To investigate this, I constructed chemotaxis gene knockouts

in W3110 and tested their behavior on soft agar plates and during biofilm formation (figure

6.5). Swimming on soft agar plates was as expected for all strains except for �tar. A �tar

strain is unable to perform chemotaxis towards aspartate, which is shown by the inner ring

of the wild type strain [141, 140]. However, chemotaxis to serine should be una↵ected,

which is why a swarm ring with the size of the wild type outer ring would be expected.

This means that in the W3110 �tar strain, motility is reduced, which might be due to a

secondary mutation transferred by P1 transduction from the Keio collection [142] during

the strain construction. This might also explain the e↵ect of the tar knockout on biofilm

formation (figure 6.5 B), which I could not complement with expression of wild type Tar

from a plasmid (not shown). In contrast, knockouts of the other chemotaxis receptors did

not reduce biofilm formation. Deletion of tsr showed even a slight increase in biomass.

Knockout of the chemotaxis adaptation system containing of the methyltransferase CheR

and the methylesterase CheB resulted in no e↵ect for �cheR and slightly decreased biofilm

formation of �cheB. �cheB has a bias towards tumbling, which might explain the e↵ect

on biofilm formation. Knockout of the adaptor protein CheW abolished biofilm formation,

which was not expected, since knockout of cheA had no e↵ect. However, it is important

to mention that the �cheA strain used in figures 6.2 and 6.5 A, B is a self-made strain, i.

e. was made by replacing the cheA gene with a PCR-amplified PCR cassette, whereas the

�cheW strain was constructed by P1 transduction from the Keio collection [142]. If cheA

is deleted in W3110 by transfer from the Keio collection, biofilm formation is also strongly

decreased (figure 6.5 C). This was tested with a subset of more than ten clones received by
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Fig. 6.5. E↵ect of chemotaxis KOs on W3110 biofilm formation:
(A) Swimming of W3110 wild type and chemotaxis mutant strains on soft agar plates.
(B) Biofilm formation of W3110 wild type, �aer, �tar, �tsr, �trg, �cheA, �cheY, �cheB,
�cheR, �cheW and �cheZ after 24 h in M9 medium at 30�C. The �cheA strain in (B)
was constructed by genomic integration of a PCR cassette. Biofilms were formed on 96-well
Corning R� Costar R�plates and stained with crystal violet (CV). Shown are mean and standard
error of three to eight replicates.
(C) Biofilm formation of W3110 wild type and �cheA after 24 h in M9 medium at 30�C. The
�cheA strain in (C) was constructed by P1 transduction from the Keio collection. Biofilms
were and stained as in (B). Shown are mean and standard error of six replicates.

P1 transduction (not shown). Similarly to the �tar strain, this defect of the P1-�cheA

strain in biofilm formation could not be rescued by expression of CheA from a plasmid

(not shown). In contrast, the defect in swimming in soft agar plate of the P1-�cheA strain

could be rescued (not shown). The results of the �tar, �cheW and �cheA strains that

were constructed by P1 transduction indicate that there might be a secondary mutation

in the Keio strains that can be co-transferred by P1 transduction and impairs biofilm

formation. However, altogether, results of figure 6.5 confirm the results from figure 6.2

that in E. coli, motility but not chemotaxis is required for attachment, which is consistent

with previously published results [18].

Smooth swimming promotes attachment to surfaces

So far, I only monitored attachment after 24 h of biofilm formation (figures 6.2 and 6.5).

To gain insight into the timing of the requirement of motility for attachment, I performed
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Fig. 6.6. Smooth swimming promotes attachment during early biofilm formation:
Early biofilm formation of mixed cultures of W3110 wild type, �fliC, �motA, �cheZ, �cheA
and �cheY on BD FalconTM imaging plates. Wild type cells were mixed with wild type or
mutant cells 1:1 and mixed biofilm cultures were grown in M9 at 30�C for the indicated time.
Non-attached cells were removed and attached cells were imaged. Attached cells were quantified
as in 6.4.
(A) Exemplary images of mixed cultures of wild type (magenta) and mutant (green) cells.
Control: wild type mixed with wild-type. Scalebar 25 µm.
(B) Cell numbers per image of W3110 wild type and �fliC. Shown are mean and standard error
of three replicates.
(C) Quantified relative attachment of W3110 wild type, �fliC, �motA, �cheZ, �cheA and
�cheY. Shown are mean and standard error of three replicates.
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Fig. 6.7. Smooth swimming leads to surface trapping:
Surface swimming of W3110 cells grown in planktonic cultures.
(A) Exemplary images showing tracks of W3110 wild type and �cheY cells swimming at the
surface. Experiment was performed by Dr. Remy Colin.
(B) Trajectory duration and lengths of W3110 wild type and �cheY swimming at the surface.
Cells were grown in planktonic cultures to postexponential phase. Shown are mean and standard
error of three replicates. Experiment was performed by Dr. Remy Colin.

a time-resolved analysis of attachment using the motility mutants �fliC, �motA, �cheZ,

�cheA and �cheY (figure 6.6). For this, wild type and mutant cells labeled with di↵erent

fluorescent proteins were mixed at 1:1 ratio and biofilms were grown on BD falconTM

imaging plates. Attached cells were imaged (figure 6.6 A), the number of cells per image

was quantified (figure 6.6 B) and ratios of mutant to wild type cells were determined and

normalized to the wild type/wild type control (figure 6.6 C). The number of wild type cells

that are attached to the surface steadily increased during the first 12 h of biofilm formation

whereas flagella-less cells clearly could not attach from the beginning (figure 6.6 A-C and

figure A.1). Similarly, I could observe almost no attached �motA and �cheZ cells. In

contrast to previous results based on CV staining [18], I observed increased attachment of

the smooth swimming mutants �cheA and �cheY during the first 7 h of biofilm formation

(figure 6.6 A, C and A.1). In consistence with results after 24 h in figures 6.2 and 6.5, the

e↵ect was gone after 12 h, suggesting that smooth swimming promotes attachment during

the very initial phases of attachment.

To understand the advantage of smooth swimming during the initial attachment phase,

swimming behavior of wild type and �cheY was analyzed. These tracking experiments
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Fig. 6.8. Smooth swimming promotes attachment through surface trapping:
Surface attachment of W3110 cells grown in planktonic cultures.
(A) Surface attachment of W3110 wild type, �cheY, �cheA, �fliC and �fliC�cheY. Cells
were grown to OD600 0.5, prepared for surface attachment in motility bu↵er and allowed to
attach for 1 h. Unattached cells were removed. Shown are mean and standard error of two to
seven replicates.
(B) Surface attachment of W3110 wild type, �cheY and �cheA. Cells were grown to OD600 1,
prepared for surface attachment in motility bu↵er and allowed to attach for 1 h. Unattached
cells were removed. Shown are mean and standard error of two to five replicates.
(C) Surface attachment after centrifugation of W3110 wild type, �cheY, �cheA, �fliC and
�fliC�cheY. Cells were grown to OD600 0.5 and forced onto the surface by mild centrifugation
in motility bu↵er. Shown are mean and standard error of two to four replicates.

were performed by Dr. Remy Colin from our group. Figure 6.7 shows trajectories of

planktonic wild type and �cheY cells swimming at a glass surface (A) and quantification

of trajectory duration (B, blue bars) and length (B, red bars). In consistence with previous

results [143], wild type cells that reach the surface can swim at the surface but can also

e�ciently escape by tumbling (see figure 6.7 A, upper panel). In contrast, �cheY cells

get entrapped at the surface, where they swim in a circular path (see figure 6.7 A, lower

panel). Quantification in B reflects this behavior with �cheY cells showing both longer

trajectory duration (blue bars) and longer tracks (red bars).

To correlate the results obtained with planktonic cultures (figure 6.7) to the attachment

results in biofilms (figure 6.6), I tested attachment of planktonic cells to the surface of

imaging plates, preparing the cultures in the same way as it was done for the tracking

experiments (see figure 6.8). Attachment was performed at two optical densities, OD600

0.5 (A) and OD600 1 (B). Consistent with the biofilm results, attachment of the smooth

swimming mutants �cheY and �cheA was approx. 2-3 higher than attachment of wild

type cells. �fliC and �fliC�cheY served as negative controls. To rule out the possibility

that deletion of cheA or cheY increases stickiness of bacteria, I performed the centrifuga-

tion experiment described in figure 6.4. Again, �fliC and �fliC�cheY served as negative

controls. Indeed, more �cheY and �cheA cells attached to the surface after centrifuga-

tion, suggesting a higher stickiness of those cells in comparison to wild type. However,

calculations including centrifugation force, swimming speed and tumbling rate performed

by Dr. Remy Colin (data not shown), argue against such an interpretation since at the
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mild centrifugation used in the experiment, a larger number of smooth swimming than

wild type cells would get entrapped at the surface. Altogether, results in figures 6.6-6.8

show that smooth swimming promotes surface attachment through hydrodynamic entrap-

ment.

C-di-GMP inhibits motility and thereby attachment during early biofilm for-

mation

Apart from the chemotaxis system, signaling by c-di-GMP regulates motility in E. coli

in a way that high c-di-GMP levels inhibit motility. The observed strong dependence of

attachment during biofilm formation on motility suggests that modulation of c-di-GMP

would also influence cell attachment. I therefore tested the e↵ect of di↵erent deletion

strains a↵ected in c-di-GMP signaling on attachment (see figure 6.9). YhjH is the main

phosphodiesterase regulating the c-di-GMP pool for the motility control and its deletion

impairs motility (see figure 6.9 A), as was described previously [144, 145]. Deletion of

ycgR or yegE in the �yhjH background suppress the motility phenotype (see figure 6.9

A, [145]), whereas deletion of ycgR or yegE in the wild type background leads to swarm

rings comparable to the wild type. In contrast to its generally assumed role as a biofilm-

promoting factor, c-di-GMP seems to inhibit attachment during biofilm formation (see

figure 6.9 B-E). CV staining after 24 h gave us the first hint that high levels of c-di-GMP,

as assumed for �yhjH, inhibit attachment whereas deletion of the diguanylate cyclase

YegE increased attachment to a similar level as deletion of the motor-binding protein

YcgR. Double knockouts of yegE and yhjH with ycgR show that the e↵ects of the single

knockouts are mediated by the motility control, since �yegE�ycgR showed similar in-

creased biofilm formation in comparison to the single knockout and the inhibitory e↵ect

of the yhjH deletion was abolished in �yhjH�ycgR. Time-resolved analysis of biofilm for-

mation of the c-di-GMP mutants, as performed with CV staining (figures 6.9 C and A.2)

and microscopy (figure 6.9 D-E) shows that these di↵erence in the amount of biofilm stem

from initial di↵erences in attachment developing between 3-6 h of attachment (figure 6.9

E).

The di↵erence in the motility control between strains �ycgR, �yegE and �yhjH is the

swimming speed (see figure 6.10 A), which is regulated by c-di-GMP-loaded YcgR binding

to the motor [146, 58, 147]. �ycgR and �yegE show higher swimming speeds whereas

speed is reduced in �yhjH. The di↵erences, however, are rather small. Nevertheless, we

speculated that an increased swimming speed could influence surface trapping and thereby

trajectory length (figure 6.10 B) and duration (figure A.3). However, no significant di↵er-

ences in trajectory length were observed (figure 6.10 B). Due to its lower swimming speed

(figure 6.10 A) but una↵ected trajectory length (figure 6.10 B), �yhjH cells stay longer

at the surface than wild type cells (figure A.3). However, these results cannot explain

the e↵ect on biofilm formation in figure 6.9. Analysis of tumbling rates (figure 6.10 C)

also did not clarify the observations, since no significant di↵erences between strains were

observed. To correlate the tracking data from planktonic cultures with the biofilm results
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Fig. 6.9. Motility regulation by c-di-GMP alters biofilm formation in W3110:
(A) Swimming on soft agar plates of W3110 wild type, �yegE, �yhjH, �ycgR, �yegE�ycgR
and �yhjH�ycgR.
(B) Biofilm formation of W3110 wild type, �ycgR, �yegE, �yhjH, �yegE�ycgR and
�yhjH�ycgR after 24 h in M9 medium at 30�C. Biofilms were formed on 96-well
Corning R� Costar R�plates and stained with crystal violet (CV). Shown are mean and stan-
dard error of eight to twenty-one replicates.
(C) Early biofilm formation of W3110 wild type, �yhjH, �yegE and �ycgR in M9 medium
at 30�C. Biofilms were formed on 96-well Corning R� Costar R�plates and stained with crystal
violet (CV). Shown are mean and standard error of three replicates.
(D) Exemplary images of early biofilm formation of mixed cultures of W3110 wild type and
�ycgR cells. Wild type and mutant cells were labeled with di↵erent fluorescent proteins and
mixed 1:1 for biofilm growth on BD FalconTM imaging plates in M9 medium at 30�C. Scalebar:
25 µm.
(E) Quantification of surface attachment during early biofilm formation of mixed cultures of
W3110. Cells and cell clumps were identified in the fluorescence images and area covered by
the cells was quantified. Area of mutant cells was normalized to the area of wild type cells in
the same image series and the mutant/wild type ratio was normalized to the wild type/wild
type control. Shown are mean and standard error of five to eight replicates.
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Fig. 6.10. Swimming behavior and attachment of planktonic W3110 cells with de-
fects in c-di-GMP signaling:
(A) Swimming speed (µm/s) of W3110 wild-type, �ycgR, �yegE and �yhjH grown in plank-
tonic culture until OD600 0.6 and 1. Shown are mean and standard error of three replicates.
Experiment was performed by Dr. Remy Colin.
(B) Trajectory lengths of W3110 wild-type, �ycgR, �yegE and �yhjH grown in planktonic
culture until OD600 0.6 and 1. Shown are mean and standard error of three replicates. Experi-
ment was performed by Dr. Remy Colin.
(C) Tumbling rates of of W3110 wild-type, �ycgR, �yegE and �yhjH grown in planktonic cul-
ture until OD600 0.6 and 1. Shown are mean and standard error of three replicates. Experiment
was performed by Dr. Remy Colin.
(D-F): Surface attachment of W3110 wild-type, �yegE, �yhjH and �ycgR on ibidi R� imaging
plates. Mixed cultures of wild type and mutant cells at 1:1 ratio and labeled with di↵erent fluo-
rescent proteins were prepared for attachment. Cells were identified and segmented in brightfield
images and the ratio of mutant to wild type cells was determined and further normalized to the
wild type/wild type control in each experimental series.
(D) Cells were grown to OD600 0.5, prepared for surface attachment in motility bu↵er and
allowed to attach for 1 h. Unattached cells were removed. Shown are mean and standard error
of six replicates.
(E) Cells were grown to OD600 1, prepared for surface attachment in motility bu↵er and allowed
to attach for 1 h. Unattached cells were removed. Shown are mean and standard error of five
replicates.
(F) Surface attachment after centrifugation. Cells were grown to OD600 0.5 and forced onto the
surface by mild centrifugation in motility bu↵er. Shown are mean and standard error of four
replicates.
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in figure 6.9, attachment experiments with planktonic c-di-GMP mutants were performed

at OD600 0.6 and 1 (figure 6.10 D, E). I could confirm the results obtained for the faster

swimming mutants �ycgR and �yegE, which showed around 3-fold increased attachment

in comparison to wild type cells. Attachment after centrifugation (figure 6.10 F) confirmed

that the increased attachment stems from the di↵erence in swimming speed rather than

from a di↵erence in stickiness. The opposite was observed for �yhjH. Despite its decreased

attachment in biofilms (figure 6.9), several fold more �yhjH cells attached to the surface

in comparison to wild type. However, centrifugation experiments showed that these e↵ects

are a result of increased stickiness of the �yhjH strain (figure 6.10 F).

With no e↵ect on trajectory length and duration, another possibility is that swimming

speed could influence the strength of attachment. For the attachment experiments so far,

loosely attached cells were washed away and only cells that stayed attached to the sur-

face after washing were considered for quantification of attachment. I therefore compared

attachment of wild type and �ycgR cells before and after washing (see figure 6.11). I

could observe a tendency that indeed the ratio of �ycgR to wild type cells was higher in

washed samples than in unwashed samples, however, these results need more replicates for

confirmation.

6.2 Attachment of E. coli W3110RH

Smooth swimming promotes attachment in the RpoS-positive W3110RH

Since the expression of many genes relevant for biofilm formation depends on the station-

ary phase sigma factor RpoS ([148, 97, 99], we performed attachment experiments addi-

tionally with the RpoS-positive W3110RH strain. We could confirm the results obtained

with W3110 from figure 6.2 showing that flagella-driven motility is absolutely required for

attachment (see figure 6.12 A-C). As in W3110, I could not observe a major surface-sensing

function of flagella (see figure A.4). As in W3110, overall expression of csgD and pgaA

was slightly reduced in �fliC and also in �motA. However, surface-induced expression of

csgD and pgaA was neither observed in wild type nor mutant strains. In fact csgD and

pgaA expression seems to be higher in supernatant cells (figure A.4). We further checked

expression from a third promoter, PwzxC, as a reporter for colanic acid. However, this

reporter was inactive for W3110 (not shown) and W3110RH (figure A.4 E, F). Together,

the results in figures 6.12 and A.4 confirm that the main function of flagella during at-

tachment at the early stages of biofilm growth is driving motility and not surface sensing.

Similar to e↵ects in W3110, chemotaxis was not required for attachment in W3110RH ,

although a mild reduction in biomass was measured for the W3110RH �cheY strain (fig-

ure 6.12 B). However, analysis of planktonic cultures could still confirm the theory that

smooth swimming promotes surface attachment through hydrodynamic entrapment since

planktonic W3110RH �cheY cells showed approx. 2.5-fold more attachment than wild

type cells (figure 6.12 D). Supporting those data, tracking of cells confirmed longer tracks
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Fig. 6.11. YcgR might influence the strength of surface attachment:
(A) Surface attachment of planktonic W3110 wild type and �ycgR on ibidi R� imaging plates.
Exemplary images of mixed cultures of W3110 wild type and �ycgR are shown. Cells were
grown to OD600 0.5, prepared for surface attachment in motility bu↵er and allowed to attach
for 1 h. Cells at the surface were imaged before and after washing. Scalebar: 25 µm.
(B) Quantification of the number of cells at the surface in unwashed and washed samples. Cells
were identified and segmented in the fluorescence images and ratios of �ycgR to wild type cell
numbers were calculated for each image series and further normalized to the wild type/wild
type control. Shown are mean and standard error of three replicates.

and longer trajectory duration for W3110RH �cheY (figure 6.12 E).

A dual role of c-di-GMP?

With W3110, I could show that low c-di-GMP promotes attachment during biofilm for-

mation, supposedly through higher motility (figure 6.9). Since c-di-GMP is crucial for the

upregulation of biofilm matrix factors, such as curli fibers in E. coli [55, 99, 149], which

are required both for attachment (see figure 6.1 D) and for three-dimensional structure

formation (see references [150], [27] and figure 7.2), we analyzed the e↵ect of c-di-GMP

on attachment in W3110RH (see figure 6.13). Indeed, time-resolved analysis of biofilm

formation of W3110RH showed a dual role of c-di-GMP (see figure 6.13 A, B). During the

first 14 h, c-di-GMP clearly inhibits attachment with deletion strains of ycgR and yegE

showing increased and �yhjH showing decreased attachment. The di↵erences between the

strains reduce with time and at 48 h, attachment of yegE is significantly reduced in com-

parison to the other strains. The e↵ect of �ycgR vanishes at later timepoints, suggesting

that the reduction in biofilm levels of the �yegE strain at the late timepoints is not me-
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Fig. 6.12. E↵ect of motility KOs on W3110RH biofilm formation:
(A) Swimming of W3110RH wild type and motility mutant strains on soft agar plates.
(B) Biofilm formation of W3110RH wild type, �fliC, �motA, �cheZ and �cheY after 24 h in
TB medium at 30�C. Biofilms were formed on 96-well Corning R� Costar R�plates and stained
with crystal violet (CV). Shown are mean and standard error of two to six replicates.
(C) Biofilm formation of W3110RH wild type and �fliC after 24 h in TB medium at 26�C.
Biofilms were formed on 96-well Corning R� Costar R�plates and stained with crystal violet (CV).
Shown are mean and standard error of three replicates.
(D) Surface attachment of W3110RH wild type and �cheY on ibidi R� imaging plates. Cells
were grown to OD600 0.5 and 1, prepared for surface attachment in motility bu↵er and allowed
to attach for 1 h. Unattached cells were removed. For quantification, cells were identified and
segmented in brightfield images and the ratio of mutant to wild type cells was determined and
further normalized to the wild type/wild type control in each experimental series. Shown are
mean and standard error of two to three replicates.
(E) Trajectory lengths and duration of W3110RH wild type and �cheY swimming at the
surface. Cells were grown in planktonic cultures to OD600 0.5. Trajectory length and duration
were plotted against the average cell number per image. Shown are three independent replicates
per strain. Experiment was performed by Dr. Remy Colin.

diated by the motility control but rather through c-di-GMP-dependent e↵ects on matrix

production. Similarly, the attachment defect of �yhjH diminishes with time and at 48 h,

�yhjH attachment reaches almost wild type levels. During the time course, �fliC served

as a negative control and showed almost no surface attachment until the 48 h timepoint,

where levels of �fliC attachment are almost similar to wild type levels. Time-resolved

microscopy was performed to gain more insight into the early events of surface attachment

(figure 6.13 C). However, only faint di↵erences between strains could be observed, which
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Fig. 6.13. Motility regulation by c-di-GMP alters biofilm formation in W3110RH :
(A) Early biofilm formation of W3110RH wild type, �fliC, �yhjH, �yegE and �ycgR in TB
medium at 30�C. Biofilms were formed on 96-well Corning R� Costar R�plates and stained with
crystal violet (CV). Shown are mean and standard error of three to six replicates.
(B) Same experiment as in (A). Values from CV staining were first normalized to the OD600 of
the culture and further to the wild type CV/OD values.
(C) Surface attachment during early biofilm formation of mixed cultures of W3110RH wild type,
�yegE, �yhjH and �ycgR. Cultures of wild type and mutant strains with di↵erent fluorescent
labels were mixed 1:1 and biofilms were grown at in TB medium at 30�C on BD falconTM

imaging plates. Unattached cells were removed an attached cells were quantified as in figure
6.9 (E). Mean and standard error of four to five replicates are shown.
(D-E) Surface attachment of biofilm precultures of W3110RH wild type, �ycgR, �fliC,
�ycgR�fliC, �motA, �csgA and �pgaC after centrifugation. W3110RH wild type and mutant
cells labeled with di↵erent fluorescent proteins were mixed 1:1 in TB medium and centrifuged
on imaging plates. (Continued on the following page.)
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Fig. 6.13. (Continued from previous page.)
Wild type cells labeled with two di↵erent fluorescent proteins served as a control. Non-attached
cells were removed by washing. Attachment was quantified as in figure 6.4. Mean and standard
error of two to five replicates are shown.
(D) Cells were centrifuged on ibidi R� imaging plates.
(E) Cells were centrifuged on BD falconTM imaging plates.
(F) Surface attachment of W3110RH wild type and�ycgR on ibidi R� imaging plates. W3110RH

wild type and mutant cells labeled with di↵erent fluorescent proteins were grown in biofilm cul-
tures on Corning R� Costar R�plates for 6 h at 30�C. Biofilm supernatant cells (i. e. unattached
cells) were removed, washed in motility bu↵er, mixed 1:1, and incubated on ibidi R� imaging
plates for 2-30 min. Unattached cells were removed and attachment was quantified as in (D-E).
Shown are mean and standard deviation of two replicates.
(G) Surface attachment of W3110RH wild type and �ycgR on imaging plates. W3110RH wild
type and mutant cells labeled with di↵erent fluorescent proteins were grown in biofilm cultures
on Corning R� Costar R�plates for 6 h at 30�C. Biofilm supernatant cells (i. e. unattached
cells) were removed, mixed 1:1, and centrifuged on ibidi R� and BD falconTM imaging plates.
Unattached cells were removed and attachment was quantified as in (D-E). Shown are mean
and standard error of two to six replicates.
(H) Biofilm formation of W3110RH wild type and �ycgR on Corning R� Costar R�and
ibidi R� plates stained with CV. Biofilms were grown in TB medium at 30�C for 6 h. Unattached
cells were removed and attached cells were stained with CV. Shown are mean and standard de-
viation of two replicates.

are hardly significant. These discrepancies to results observed in figures 6.13 A, B could

stem from the fact that with CV staining, cells at the surface of the bottom and of the

wall of the well are taken into account, whereas for the microscopy experiments, only cells

at the bottom of the well are counted. To gain deeper insights into what happens on the

imaging plates, I performed a more thorough analysis of attachment using a combination

of centrifugation and attachment experiments in di↵erent imaging plates (see figure 6.13

D-H and 6.14 D). First of all, stickiness of biofilm precultures was investigated (figure 6.13

D, E). Cultures were prepared as for biofilm growth and centrifuged onto two di↵erent

imaging plates (from ibidi R� and BD falconTM ). Attachment was quantified after wash-

ing o↵ non-attached cells. Knockouts of csgA and pgaC show the requirement of curli

and PGA on both plate types. Therefore, I speculate that if stickiness of a strain is af-

fected, this might result from decreased expression of these matrix components. Deletion

of ycgR did not change attachment on both surfaces, suggesting that su�cient biofilm ma-

trix is produced. In contrast to the W3110 background (figure 6.4), deletion of fliC and

motA seems to a↵ect adhesion of W3110RH . Similarly, deletion of fliC in the W3110RH

�ycgR mutant reduces attachment after centrifugation. These defects might indeed be

mediated by decreased matrix production, as decreased csgBA expression was observed

in W3110RH �fliC and �motA (see figure A.12). However, to solve the fact that dele-

tion of ycgR resulted in increased CV staining but not increased attachment in biofilm

microscopy experiments, further analyses of attachment and stickiness of biofilm cultures

were performed (see figure 6.13 F-H). For the attachment experiment in figure 6.13 F,

I chose to take samples at 6 h of biofilm growth, which is the earliest time point in the
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Fig. 6.14. Swimming behavior and attachment of W3110RH strains with altered
c-di-GMP signaling:
(A) Swimming speed of W3110RH wild type, �ycgR, �yegE and �yhjH swimming grown in
planktonic culture until OD600 0.5. Shown are mean and standard error of three replicates.
Experiment was performed by Dr. Remy Colin.
B) Trajectory lengths of W3110RH wild-type, �ycgR, �yegE and �yhjH grown in planktonic
culture until OD600 0.5. Trajectory length and duration were plotted against the average
cell number per image. Shown are three independent replicates per strain. Experiment was
performed by Dr. Remy Colin.
(C) Tumbling rates of of W3110RH wild-type, �ycgR, �yegE and �yhjH grown in planktonic
culture until OD600 0.5. Shown are mean and standard error of three replicates. Experiment
was performed by Dr. Remy Colin.
(D) Surface attachment of W3110RH wild-type, �yegE, �ycgR and �yhjH grown in planktonic
culture until OD600 0.5 and 1. Cells were prepared for surface attachment in motility bu↵er on
ibidi R� imaging plates and allowed to attach for 1 h. Unattached cells were removed. Surface
attachment was quantified as in figure 6.4. Shown are mean and standard deviation of two
replicates.

CV staining experiment (figure 6.13 A). Therefore, biofilms with fluorescently labeled cells

were grown for 6 h in Corning R� Costar R� plates (same plates as used in figures 6.13 A, B),

unattached cells were removed and wild type and �ycgR cells were mixed at 1:1 ratio for

attachment on ibidi R� plates. At 6 h, �ycgR shows increased attachment with CV stain-

ing and therefore, increased attachment on microscopy plates was expected. In contrast,

attachment of �ycgR was reduced in comparison to wild type (figure 6.13 F). This reduced

attachment seems to stem from reduced stickiness of �ycgR (figure 6.13 G). In contrast,
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�yhjH seems to be stickier than the wild type, as was observed for planktonic W3110

�yhjH (figure 6.10). One possibility to explain the discrepancies between attachment on

imaging plates in figures 6.13 C, F to the attachment on Corning R� Costar R� plates in

figures 6.13 A, B would be that the surface of the plates influences the attachment behav-

ior. Therefore, a comparison of CV staining of wild type and �ycgR biofilms at 6 h on

Corning R� Costar R� and ibidi R� plates was performed. Indeed, the di↵erence in attach-

ment between wild type and �ycgR is less pronounced on the imaging plates, however,

this does not explain why attachment of �ycgR was reduced in figure 6.13 F.

Regardless of the ambiguity of the �ycgR attachment results, tracking experiments with

planktonic cells showed that e↵ects of c-di-GMP on swimming speed are similar between

W3110 and W3110RH (figures 6.10 A and 6.14 A). Similarly, analysis of W3110RH tra-

jectories at the surface gave no di↵erence in trajectory lengths between the strains but

longer trajectory duration for �yhjH, which again can be explained by its lower swim-

ming speed (figure 6.14 B). Importantly, tumbling rates were also similar between wild

type and c-di-GMP mutant strains (figure 6.14 C). To correlate the tracking data (figure

6.14 A-C) to the biofilm attachment data (figure 6.13 A, B), attachment with planktonic

cultures were performed at OD600 0.5 and 1 (figure 6.14 D). In contrast to the increased

attachment of �ycgR and �yegE in the CV-stained biofilms, these strains showed similar

(�ycgR) or even reduced (�yegE ) attachment in comparison to the wild type. �yhjH

on the contrary showed increased attachment, as was also observed for planktonic W3110

cultures (figure 6.10 D, E). Altogether, I was not able to explain the attachment data for

�ycgR in the W3110RH background, although CV staining data (figure 6.13 A, B) suggest

a dual role of c-di-GMP, inhibiting early attachment and promoting biofilm maturation.

Further experiments regarding c-di-GMP-dependence of mature biofilms will be discussed

in the following chapter.



Part III

THREE-DIMENSIONAL STRUCTURE FORMATION IN

STATIC SUBMERGED BIOFILMS





7. DETERMINANTS OF 3-D STRUCTURE IN E. COLI W3110RH

BIOFILM FORMATION

Three-dimensional (3-D) structure formation in biofilms can be analyzed with di↵erent

methods, such as in dynamic flow systems [151, 152, 153], on agar surfaces (e. g. [150, 27])

or in static cultures [136]. In this thesis, static biofilms were grown on 8-well slides from

ibidi R� (see figure 7.1 A). The RpoS-deficient W3110 strain is not able to form elaborate

three-dimensional structures as the RpoS-positive W3110RH (figure 7.1 B). In W3110RH

wild type, the 3-D structures consist of large clumps of cells that are loosely attached

to each other and to the surface of the wells (figure 7.1 C). A third strain used in this

work is the cellulose-producing E. coli K-12 strain AR3110. AR3110 is a cured W3110RH

derivative, in which an SNP in the bcsQ gene that creates a STOP codon was repaired

[86]. The cellulose-positive AR3110 is able to form 3-D structures that are flatter and

more compact than the structures observed for W3110RH (see figure 7.1 D).

A

Biofilm preculture

Biofilm culture:
ibidi 8-well slide

B

Confocal
Microscopy

48h 24-

48h

C D
W3110 W3110RH AR3110

Fig. 7.1. Overview of static submerged biofilm formation:
(A) Biofilm precultures were grown at 30�C for 48 h in TB. Biofilm cultures were prepared
in ibidi R� 8-well slides and grown for additional 24-48 h in TB at 30�C. Three-dimensional
structure formation was visualized by confocal microscopy.
(B-D) Confocal images showing the structures formed by W3110, W3110RH and AR3110. Cells
were labeled with GFP and biofilms were grown for 48 h. Dimensions of bounding box (x:y:z):
142:142:80 µm.
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7.1 Role of cell surface structures in 3-D biofilms

I aimed to investigate the role of flagella and motility in the formation of 3-D structures

in W3110RH . Therefore, the first step was to understand and characterize the structures

that the strain forms. For this, I grew biofilms of strains lacking the main biofilm matrix

components of E. coli, curli (�csgA), PGA (�pgaC ) and colanic acid (�wcaF ) ([154,

9, 1]; see figure 7.2 and figures A.5 and A.6 in the Appendix). Out of the main matrix

components, only curli seems to abolish 3-D structure formation with �csgA cells growing

as a flat biofilm (figure 7.2 B and figures A.5 B, A.6 B). In contrast, structures of �pgaC

(figure 7.2 C and figures A.5 C, A.6 C) and �wcaF (figure 7.2 D and figures A.5 D, A.6

D) resemble wild type. The importance of curli as part of the matrix in our static biofilm

model is in consistence with its role in shaping biofilm macrocolonies, as was published

previously [27]. In addition to these matrix components, cell surface structures, such as

fimbriae, autoaggregative proteins or other adhesins can alter the adhesive and aggregative

properties of cells and might therefore play a role in biofilm formation [1, 155, 156, 157, 158]

. We therefore aimed to understand the role of di↵erent adhesins in our static W3110RH

biofilm model. I chose a subset of mutants that showed defects in attachment in the CV

assay (unpublished results from O. Besharova) and analyzed their potential to form 3-D

structures (see figure 7.3 and figures A.7 and A.8 in the Appendix). fimA, sfmA, ybgP,

yraH and yehB are part of putative chaperone-usher fimbriae operons [155], yfaL and ycgV

are potential adhesin genes [159] and flu encodes the autotransporter Ag43 [160, 161]. All

of the knockouts were able to form 3-D structures except yfaL and ycgV (figures 7.3,

A.7 F, G), which formed flat biofilms. Strikingly, �yfaL and �ycgV both did not swim

on soft agar plates, whereas swimming behavior of the other knockouts was similar to

wild type (see figure A.9). The results of the matrix and cell surface structure knockouts

therefore suggest that curli are the main cell surface structures that help to shape the

3-D structures. YfaL and YcgV are apparently important as well, however, it is unclear

whether their contribution is to support structure formation via their potential adhesin

function or because they a↵ect swimming motility.
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Fig. 7.2. Curli is the main structural part of the W3110RH biofilm matrix:
Confocal images of 48 h old biofilms of W3110RH wild type (A), �csgA (B), �pgaC (C) and
�wcaF (D). Images of two biological replicates are shown. Dimensions of bounding box (x:y:z):
142:142:80 µm.
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Fig. 7.3. Role of E. coli adhesins in three-dimensional structure formation:
Confocal images of 48 h old biofilms of W3110RH wild type (A), �sfmA (B), �ybgP (C), �yraH
(D), �yehB (E), �yfaL (F), �ycgV (G), �fimA (H) and �flu (I). Images of two biological
replicates are shown. Dimensions of bounding box (x:y:z): 142:142:80 µm.
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7.2 Role of motility in 3-D biofilms

In chapter 6, I could show that flagella-driven motility is a requirement for attachment

during static submerged biofilm formation. The logical question to ask was whether flag-

ella and motility play a role in later, mature biofilm stages. We therefore checked the

motility mutants from chapter 6 for their ability to form 3-D structures (see figure 7.4).

As described above, W3110RH wild type formed elaborate 3-D structures that consisted of

large clumps of cells that are loosely associated with the surface-attached cells (see figure

7.4 A and figures A.10 A and A.11 A in the Appendix). These structures were abolished

when flagella were deleted (see figure 7.4 B and figures A.10 B and A.11 B in the Ap-

pendix). This defect was not primarily due to the lack of motility since 3-D structures

were observed for the non-motile �motA strain that has paralyzed flagella (see figure 7.4

C and figures A.10 C and A.11 C in the Appendix), and for the tumbly �cheZ (see figure

7.4 D and figures A.10 D and A.11 D in the Appendix). However, the overall structure

was a↵ected in these mutants, meaning that motility might contribute to the exact 3-D

shape of the structures. A structural role of flagella has been suggested in a previous

publication, where the authors speculate that intertwined flagella form a meshwork that

stabilizes structures of bacterial macrocolony biofilms [27]. This intertwining of flagella

apparently requires flagellar motor function. Since in our biofilm model, �motA is able

to form 3-D structures, albeit with di↵erent shape, I speculate that flagellar rotation is

dispensable for structure formation. With the flat biofilm structure of �fliC and the ir-

regular structures of �motA with large clumps of cells being surrounded by flat layers,

the mutants might be a↵ected in matrix production. I therefore checked expression of

the main biofilm matrix component curli using a genomic csgBA::gfp-reporter and flow

cytometry (see figure A.12). Indeed, overall expression was reduced in the mutant strains.

If however expression on single-cell level and not population-level is considered (not shown;

and unpublished data from O. Besharova), it becomes clear that heterogeneity of gene ex-

pression is a↵ected. �motA cells for example show high curli expression in the clump-like

structure in biofilms, whereas expression is low in the surrounding flat layers (unpublished

data from O. Besharova).

Mixing of wild type with �fliC cells gave some hints about a possible structural role of

flagella. If wild type cells are mixed with di↵erently labeled wild type cells at 1:1 ratio,

the structures are usually dominated by one of the strains, suggesting a microcolony-like

growth of the biofilm (see figure 7.5 A and figures A.13 A and A.14 A). In mixing exper-

iments with wild type and �fliC strains, �fliC cells could integrate into 3-D structures

formed by wild type whereas �fliC mixed with �fliC resulted in flat biofilms (see figure

7.5 C-E and figures A.13 C-E and A.14 C-E). �fliC cells alone seem to be able to form

microcolony-like structures at the bottom of the well (see figure 7.5 C and figures A.13

C and A.14 C), however cannot arrange in 3-D structures. In mixtures with wild type,

these microcolonies seem to get entrapped into wild type structures, and the degree of

integration seems to depend on the ratio at which wild type and �fliC cells are mixed
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(see figure 7.5 D, E and figures A.13 D, E and A.14 D, E). Altogether, the results in figures

7.2-7.5 suggest a requirement of curli, the adhesins YfaL and YcgV, as well as flagella for

3-D structure formation.
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Fig. 7.4. Role of motility in three-dimensional structure formation:
Confocal images of 48 h old biofilms of W3110RH wild type (A), �fliC (B), �motA (C) and
�cheZ (D). Images of two biological replicates are shown. Dimensions of bounding box (x:y:z):
142:142:80 µm.
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Fig. 7.5. Flagella-less cells can partially integrate into three-dimensional structures
of W3110RH wild type:
(Continued on the following page.)
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Fig. 7.5. (Continued from previous page.)
Confocal images of 48 h old biofilms of di↵erent mixtures of W3110RH wild type and �fliC.
Wild type and �fliC cells labeled with di↵erent fluorescent proteins were mixed as indicated
and biofilms of mixed cultures were grown.
(A) Wild type cells labeled with mCherry (magenta) and GFP (green) were mixed 1:1.
(B) Wild type cells labeled with mCherry (magenta) and GFP (green) were mixed 1:4.
(C) �fliC cells labeled with mCherry (magenta) and GFP (green) were mixed 1:1.
(D) �fliC cells labeled with mCherry (magenta) and wild type cells labeled with GFP (green)
were mixed 1:1.
(E) �fliC cells labeled with GFP (green) and wild type cells labeled with mCherry (magenta)
were mixed 4:1.
Images of two biological replicates are shown. Dimensions of bounding box (x:y:z): 142:142:80
µm.

7.3 Role of c-di-GMP in 3-D biofilms

In chapter 6, I suggested a dual role for c-di-GMP, inhibiting early attachment through

inhibition of motility and promoting later biofilm stages through upregulation of matrix

factors. This would mean that deletion of c-di-GMP modulating enzymes would lead to

changes in mature biofilm formation, not only in attachment, as shown e. g. for �yegE in

figure 6.13 A, B, but also in the formation of 3-D structures. Indeed, deletion of yegE leads

to the formation of flat biofilms with little clump formation (see figure 7.6 and figures A.15

A and A.16 A in the Appendix) at 48 h, the timepoints at which also attachment of yegE

was markedly reduced in comparison to wild type (figure 6.13 A, B). However, this defect

becomes already very clear at 24 h (see figure A.17 A and A.18 A), when attachment was

still almost similar to wild type (figure 6.13 A, B). The 3-D structures formed by �ycgR

resemble those of wild type wild type, confirming that the e↵ect of yegE in later biofilm

stages is not mediated by the motility control but through e↵ects of c-di-GMP on matrix

production (see figures 7.6 C and A.15 - A.18 C). Therefore, I expected that deletion of

yhjH, which should lead to higher c-di-GMP production, does not a↵ect 3-D structure

formation despite its defect in attachment at earlier stages (figure 6.13 A, B). Indeed, the

phenotype of �yhjH is similar to wild type at both 24 h and 48 h (see figures 7.6 B and

A.15 - A.18 B).

7.4 Role of motility and c-di-GMP in AR3110 3-D biofilms

Both curli and cellulose production depend on c-di-GMP (see e. g. references [150, 10, 11,

12]). Thereby, defects in c-di-GMP signaling could also a↵ect 3-D structures in AR3110.

Additionally, I aimed to investigate whether the e↵ect of motility mutants was similar

between W3110RH and AR3110. As described above, biofilms formed by AR3110 are

flatter than W3110RH (figure 7.1 C, D), which is why I chose to show a di↵erent projection

for the AR3110 strain (see figures 7.7 and figures A.19, A.20 in the Appendix). Similar to

the defect in W3110RH (see figures 7.4, A.10 and A.11 for comparison), deletion of flagella

in AR3110 abolishes 3-D structure formation with �fliC growing in a flat layer of cells
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Fig. 7.6. Role of c-di-GMP in three-dimensional structure formation:
Confocal images of 48 h old biofilms of W3110RH �yegE (A), �yhjH (B) and �ycgR (C).
Images of two biological replicates are shown. Dimensions of bounding box (x:y:z): 142:142:80
µm.

(see figures 7.7 B and figures A.19 B, A.20 B). Also in agreement with W3110RH data,

flagella rotation is dispensable for structure formation (see figures 7.7 C and figures A.19

C, A.20 C). However, the shape of �motA structures di↵ers from wild type in a way, that

thick clumps of cells form within a flat and unstructured layer of cells, a phenotype that

is similar in W3110RH �motA. Furthermore, the e↵ects of c-di-GMP on mature biofilm

formation seem to be conserved between W3110RH and AR3110 (see figures 7.6, A.15

and A.16 for comparison). Deletion of the cyclase yegE considerably reduces structure

formation in AR3110 (see figures 7.7 D and figures A.19 D, A.20 D), whereas deletion

of the PDE YhjH yields structures similar to AR3110 wild type (see figures 7.7 E and

figures A.19 E, A.20 E). In summary, the e↵ects of motility and c-di-GMP mutants on

3-D structures seem to be conserved between W3110RH and AR3110.
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Fig. 7.7. Role of motility and c-di-GMP in AR3110 three-dimensional structure
formation:
(Continued on the following page.)
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Fig. 7.7. (Continued from previous page.)
Confocal images of 48 h old biofilms of AR3110 wild type (A), �fliC (B), �motA (C), �yegE
(D) and �yhjH (E). Images of two biological replicates are shown. Dimensions of bounding
box (x:y:z): 142:142:80 µm.
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Part IV

A NEW REGULATOR OF C-DI-GMP SIGNALING





8. THE DYNAMIN-LIKE PROTEIN YJDA REGULATES

MOTILITY AND BIOFILM FORMATION IN E. COLI

8.1 YjdA inhibits motility

In a previous screen for motility mutants, deletion of genes yegE, yjdA and yjcZ were

identified to suppress the c-di-GMP-mediated �yhjH motility defect on soft agar plates

[145]. YegE today is known to be one of the main cyclases that synthesize c-di-GMP for the

pool regulating motor curbing through YcgR (see references [10, 11, 12] and [146, 58, 147]).

YjdA and YjcZ are expressed from the same operon, supposedly through the flagellar sigma

factor FliA (ecocyc.org and unpublished data from Y. Rudenko). YjcZ is a small protein of

unknown function whereas YjdA is a bacterial dynamin-like protein [124, 125]. YjdA has

been previously published to help in chromosomal replication and has been termed CrfC

(colocalization of the replication fork DNA by the clamp) by the authors [109]. Since my

data do not relate to the theory of Ozaki et al [109], I will continue to use the name YjdA

in this thesis. If deletion of yjdA and yjcZ in the �yhjH background partially suppresses

its motility defect, YjdA and YjcZ must regulate c-di-GMP levels in a so far unknown way.

We therefore aimed to figure out, on which level YjdA or YjcZ a↵ect c-di-GMP signaling.

According to Boehm et al. [146], YhjH diminishes the c-di-GMP pool created by the

activity of the four cyclases YegE, YddV, YfiN and YedQ. This c-di-GMP pool is sensed

by the motor-binding protein YcgR. It is therefore plausible that YjdA and YjcZ regulate

one of those main cyclases. To answer this question, an epistasis experiment on soft agar

plates was performed (see figure 8.1). Deletion of all cyclases in the �yhjH background

results in relieve of the motility defect (figure 8.1 A, B). Deletion of yjdA or yjcZ in the

�yhjH�cyclase background however, only results in additive e↵ects in combination with

�yddV, �yfiN and �yedQ. Swimming of �yhjH�yegE�yjdA and �yhjH�yegE�yjcZ is

similar to swimming of �yhjH�yegE (figure 8.1 A). Together with previous results from

Dr. Hui Li in the E. coli K-12 strain MG1655, my data in W3110RH (figure 8.1) and

W3110 (not shown) show that YjdA and YjcZ regulate motility and c-di-GMP production

via YegE.

8.2 YjdA reduces attachment and increases 3-D structure formation in

biofilms

With my results from chapter 6 showing that c-di-GMP inhibits attachment in early biofilm

formation, it was plausible to test the e↵ects of YjdA and YjcZ on biofilm formation.
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Fig. 8.1. YjdA regulates c-di-GMP production via YegE:
Swimming of W3110RH mutant strains on soft agar plates. The swimming defect of W3110RH

�yhjH can be partially rescued by knockout of the cyclases YegE, YddV, YfiN and YedQ.
(A) Additional knockout of YjdA or YjcZ in the�yhjH�yegE strain does not lead to an additive
e↵ect, whereas knockout of YjdA or YjcZ in the �yhjH�yddV, �yhjH�yfiN, �yhjH�yedQ
strains does increase the rescue of the yhjH knockout.
(B) Same as in the two lower panels in (A), only cells were allowed to swarm for a more prolonged
time to illustrate rescue of �yhjH by �yfiN and �yedQ.

Figure 8.2 A, B shows surface attachment of W3110, figure 8.2 C, D of W3110RH . After

24 h, biofilm formation of both�yjdA and�yjcZ is similarly increased as biofilm formation

of �yegE (figure 8.2 A). As shown for �yegE and �yhjH in figure 6.9 B, the e↵ect of

YjdA and YjcZ was mediated by the motility control through YcgR, since �yjdA�ycgR

and �yjcZ�ycgR double knockouts had similar e↵ects as the single knockouts. Analysis

of very early attachment by microscopy confirmed that YjdA and YjcZ a↵ect biofilm

formation similarly to YegE, with similar level of attachment between the strains (figure

8.2 B). Biofilm formation in W3110RH supports the data from W3110 with again same

e↵ects of �yegE, �yjdA and �yjcZ (figure 8.2 C, D). To support the theory that YjdA and

YjcZ regulate c-di-GMP signaling through YegE, we exploited the c-di-GMP-dependent

interaction between YcgR and the stator protein MotA [146] as a tool to relatively assess

c-di-GMP levels (see figure 8.2 E-G). FRET between YFP-YcgR and MotA-CFP can be

measured at su�cient c-di-GMP levels and decreases if less c-di-GMP is present, as shown

by decreased (W3110, see figure 8.2 F) or absent (W3110RH , see figure 8.2 G) FRET

in �yegE. In contrast, at high c-di-GMP as in the deletion of the PDE yhjH, FRET is

increased (W3110RH , see figure 8.2 G). In both wild type backgrounds, deletion of yjdA

and yjcZ results in similar FRET as measured for �yegE, supporting the theory that

YjdA and YjcZ together regulate c-di-GMP production by YegE.
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Fig. 8.2. YjdA and YjcZ a↵ect biofilm formation and cdG levels similarly to YegE:
(A) Biofilm formation of W3110 wild type, �yegE, �yhjH, �yjdA, �yjcZ, �yegE�ycgR,
�yhjH�ycgR, �yjdA�ycgR and �yjcZ�ycgR on Corning R� Costar R� plates in M9 medium
at 30�C. Biofilms were grown for 24 h and stained with crystal violet. Shown are mean and
standard error of CV values of eight to twenty-one replicates.
(B) Surface attachment of W3110 wild type, �yegE, �yhjH, �ycgR, �yjdA and �yjcZ on BD
FalconTM plates in M9 medium at 30�C. Relative numbers of attached cells in mixed-culture
experiments were determined. Wild type cells labeled with one fluorophore (CFP or mCherry)
were mixed 1:1 with wt, �yegE, �yhjH, �ycgR, �yjdA and �yjcZ cells labeled with another
fluorophore (YFP or GFP). (Continued on the following page.)
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Fig. 8.2. (Continued from previous page.)
The number of attached cells in each image was normalized to the number of wild type cells,
and the values were normalized again to the wild type/wild type ratio in the same experimental
series. Shown are mean and standard error of three to eight replicates.
(C), (D): Biofilm formation of W3110RH wild type, �yjdA, �yjcZ and �yegE on
Corning R� Costar R� plates in TB medium at 30�C.
(C) Biofilms were grown for the indicated times and stained with crystal violet. Shown are
mean and standard error of CV values of three to eleven replicates.
(D) CV values of (C) were normalized first to the OD600 of the culture (CV/OD) and then to
the wild-type CV/OD at each time point. n=2 for �yjdA and �yjcZ at 8 h timepoint.
(E) The cdG-dependent interaction between YcgR and MotA was used as a FRET-biosensor
for cdG levels.
(F) FRET measurements between YcgR and MotA in planktonic cultures of W3110 wild type,
�yegE and �yjdA at OD600 0.6 and 1.5. Shown are mean and standard deviation of two (OD600

0.6) and three (OD600 01.5) replicates. Inductions were 0.001 % arabinose and 10 µM IPTG.
(G) FRET measurements between YcgR and MotA in planktonic cultures of W3110RH wild
type, �yegE, �yhjH, �yjdA and �yjcZ strains at OD600 0.6. Shown are mean and standard
error of three replicates. Inductions were 0.001 % arabinose and 20 µM IPTG.

If the dynamin YjdA together with YjcZ regulates c-di-GMP production by YegE, then

they must also a↵ect 3-D structure formation in mature submerged biofilms. I therefore

grew static biofilms of yjdA and yjcZ deletion strains in W3110RH (see figure 8.3 and

figures A.21, A.22 in the Appendix) and AR3110 (see figure 8.4 and figures A.23, A.24 in

the Appendix) backgrounds in ibidi R� 8-well slides. In W3110RH , YjdA and YjcZ clearly

a↵ect 3-D structure formation similarly to YegE (figures 8.3 B-D, A.21 B-D, A.22 B-D)

with flat biofilms and little clump formation in the deletion strains. E↵ects in AR3110 are

less pronounced but still visible (figures 8.4 B-D, A.23 B-D, A.24 B-D). I can therefore

conclude that the dynamin YjdA together with the small protein YjcZ regulates motility,

attachment and 3-D structure formation via control of the cyclase YegE.



8.2. YjdA reduces attachment and increases 3-D structure formation in biofilms 67

A

B

wild type wild type

∆yegE

C
∆yjdA

D
∆yjcZ

∆yegE

∆yjdA

∆yjcZ

Fig. 8.3. YjdA and YjcZ a↵ect 3D-structure formation in static W3110RH biofilms
similarly to YegE:
Confocal images of two biological replicates of static submerged biofilms of W3110RH cells
labeled with GFP and grown in TB on ibidi R� 8-well slides at 30�C for 24 h, for wild type (A),
�yegE (B), �yjdA (C), �yjcZ (D). Dimensions of bounding box (x:y:z) are 142:142:80 µm.
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Fig. 8.4. YjdA and YjcZ a↵ect 3D-structure formation in static AR3110 biofilms
similarly to YegE:
Confocal images of two biological replicates of static submerged biofilms of AR3110 cells labeled
with GFP and grown in TB on ibidi R� 8-well slides at 30�C for 48 h, for wild type (A), �yegE
(B), �yjdA (C), �yjcZ (D). Dimensions of bounding box (x:y:z) are 142:142:80 µm.



9. THE DYNAMIN-LIKE PROTEIN YJDA LOCALIZES TO THE

PLASMA MEMBRANE AND INTERACTS WITH YJCZ

With the phenotypic evidence that the dynamin YjdA regulates YegE and thereby c-di-

GMP signaling, I aimed to figure out its mechanism of action. I chose to investigate

localization together with YegE and YjcZ as well as to test the interaction between the

proteins by FRET. Fusions to YjdA, YjcZ and YegE were cloned on plasmids and tested

for their functionality complementing deletion strains in soft agar and biofilm assays (see

figures 9.1 and 9.2). In addition to the fluorescent fusions to wild type YjdA, two mu-

tant dynamin fusions were cloned - YjdAT103D and YjdAK72A (see also figure 9.8 B).

These mutants were created based on known mutations on human Dynamin 1 (see the

GTPase domain website: http://www2.mrc-lmb.cam.ac.uk/Dynamin/GTPase.html and

[121, 122]). YjdAT103D has a mutation in the G2 domain and is supposed to be GTPase

defective, i. e. is locked in the GTP-bound state. YjdAK72A has a mutation in the G4

domain and should be nucleotide-free. As described above, deletion of yjdA, yjcZ and

yegE in the �yhjH background complement the motility defect (see figure 9.1 A-D vec-

tor). Fluorescent fusions to YjdA (see green boxes), YjcZ (orange boxes) and YegE (rose

boxes) were induced at di↵erent concentrations of IPTG (A: 0 µM, B: 5 µM, C: 20 µM,

D: 50 µM). All wild type fusions were functional at all concentrations, with none or only

very little complementation (YFP-YjdA at all concentrations, YjdA-YFP at 0 and 5 µM

and YjdA-YFP at 0 µM) of the �yhjH phenotype. Similarly, the YjdAK72A mutant was

able to suppress motility in �yhjH�yjdA, suggesting that this mutation does not a↵ect

activity of YjdA. In contrast, the YjdAT103D mutant was non-functional. I therefore

conclude that GTPase activity of YjdA is required to regulate YegE.

In agreement with swimming on soft agar plates, complementation of mutants with fluo-

rescent YjdA, YjcZ and YegE fusions in biofilm assays after 48 h (see figure 9.2) showed

that all wild type fusions were fully (YegE and YjcZ, figure 9.2 B, C) or at least partially

(YjdA, figure 9.2 A) functional. YjdAK72A was again functional, whereas YjdAT103D

was not, supporting the idea that GTPase activity of YjdA is required to regulate YegE

and thereby motility and biofilm formation.

http://www2.mrc-lmb.cam.ac.uk/Dynamin/GTPase.html
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Fig. 9.1. Functionality test of YegE, YjcZ, YjdA and YjdA mutant fluorescent
fusion proteins on swarm plates:
Swimming of W3110RH �yhjH, �yhjH�yjdA, �yhjH�yjcZ and �yhjH�yegE. Cells were
transformed with the empty vector control (pVS198) and with fluorescent fusions.
(A) Induction with 0 µM IPTG.
(B) Induction with 5 µM IPTG.
(C) Induction with 20 µM IPTG.
(D) Induction with 50 µM IPTG.
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Fig. 9.2. Functionality test of YegE, YjcZ, YjdA and YjdA mutant fluorescent
fusion proteins in biofilms:
Biofilm formation of W3110RH �yjdA, �yegE and �yjcZ on Corning R� Costar R� plates in
TB medium at 30�C for 48 h. Cells were transformed with the vector control (pVM42; GFP-
expression vector) and with fluorescent fusions. Inductions were 0 µM IPTG and 0,001 %
arabinose. Shown are mean and standard error of two replicates. Normalized CV staining
before and after (B, D, F) normalization to the OD600 of the culture is shown.
(A, B): Expression of YjdA-YFP, YjdA K72A-YFP, and CFP-YjdA rescue �yjdA, whereas
YjdA T103D-YFP is non-functional.
(C, D): Expression of YegE-YFP rescues �yegE.
(E, F): Expression of YFP-YjcZ and CFP-YjcZ rescue �yjcZ.
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Fig. 9.3. Localization of YjdA in W3110 and W3110RH :
(A, B) Localization of YjdA-YFP and YjdAT103D-YFP (GTPase mutant) in the W3110 and
W3110RH �yjdA background in widefield and TIRF microscopy. Cells were grown in planktonic
cultures in TB medium at 30�C until OD600 0.6 (A) or for 24 hours (B). Scalebar: 5 µm.
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Fig. 9.4. Localization of YjdA, YegE and YjcZ in W3110:
Localization of YFP- and CFP-fusions of YjdA, YegE and YjcZ in the W3110 wild-type back-
ground. Inductions were 0.005 % arabinose for CFP-YjdA, 0.0001 % arabinose for YjcZ-CFP,
and 1 µM IPTG for YegE-YFP. Scalebar: 10 µm.

If the T103D mutation renders YjdA inactive, I suspected that the mutant might as

well be a↵ected in its localization. I therefore checked localization of YjdA-YFP and

YjdAT103D-YFP in W3110 and W3110RH (see figure 9.3) in widefield and TIRF mi-

croscopy at two di↵erent growth stages, in the logarithmic (OD600 0.6) and stationary

(after 24 h) phase, and at two di↵erent induction levels (0 µM IPTG and 5 µM IPTG).

At all conditions, YjdA localized to the plasma membrane. At OD600 0.6 and 5 µM in

W3110RH and after 24 h in both strains, localization of wild type YjdA at the poles

was visible. At the higher induction after 24 h, large clusters at the poles were visible,

which probably reflect aggregation due to high expression levels. The GTPase mutant

YjdAT103D localized as well to membrane. However, in W3110, already at OD600 0.6 the

membrane localization was less regular with small clusters. In W3110, after 24 h and at

5 µM, the mutant localized in elongated clusters, resembling chains of proteins that were

associated with the membrane. This localization was never observed in W3110RH . On

the contrary, in W3110RH , the GTPase mutant did not even form the small clusters that

were observed for the wild type protein.

In summary, YjdA showed association to the plasma membrane, however, no consistent

pattern of its specific localization could be observed in the strain backgrounds.

To test the theory that YjdA and YjcZ together regulate YegE activity (see chapter 8.1),

I checked colocalization and interaction of these proteins with each other in W3110 (see

figure 9.4) and W3110RH (see figure 9.5). In W3110, no interaction could be measured

between YjdA and YegE, and YjcZ and YegE. Similarly, no colocalization was observed

(see figure 9.4). In contrast, in W3110RH , colocalization of YjdA with YegE could be

seen in some cells (see figure 9.5 A, upper panel), but FRET measurements showed no

interaction (see figure 9.5 B). YjcZ did also neither colocalize with YegE (figure 9.5 A,
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lower panel) nor interact with it (see figure 9.5 D). In contrast, YjdA clearly colocalized

and interacted with YjcZ (see figures 9.5 A, middle panel and C). Together, these results

suggest that YjdA and YjcZ do not directly interact with YegE, but might regulate its

activity via some other mechanism.
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Fig. 9.5. Localization and interactions between YjdA and YjcZ, YjdA and YegE
and YegE and YjcZ by FRET in W3110RH :
(A) Localization of YFP- (green) and CFP- (red) fusions of YjdA, YegE and YjcZ in the
W3110RH wild-type background. Inductions were 0.005 % arabinose for CFP-YjdA and CFP-
YjcZ, 1 µM IPTG for YegE-YFP and 15 µM IPTG for YjcZ-YFP. Scalebar: 5 µm.
(B)-(D): FRET was measured in planktonic cultures at OD600 0.6.
YjdA and YjcZ interact (C) while FRET was negative for YjdA and YegE (B) and YegE and
YjcZ (D). Shown are exemplary FRET measurements and FRET mean e�ciency with standard
error of three replicates. Inductions were as in (A).
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9.1 A connection between flotillins and c-di-GMP signaling

The previous results showed that the cyclase YegE might be regulated by the dynamin

YjdA together with the small protein YjcZ. Since we could not observe a direct interaction

as measured by FRET (see figure 9.5), we suspected that there might be another protein

that acts between YegE and YjdA/YjcZ. To solve this question, a pull-down of fluores-

cently labeled YjdA, YegE and YjcZ with GFP-Trap R� A beads was performed by Dr.

Hui Li from our laboratory (see figure 9.6 and tables 9.1 and A.1). Samples were taken at

two growth stages, at 5 h and 14 h, and analyzed by mass spectrometry at the ZMBH MS

core facility. Pull-downs of YcgR and FliF served as cytoplasmic (YcgR) and a membrane

protein (FliF) control. Table A.1 in the appendix shows an extended list of identified

proteins for the respective fluorescent fusions in two biological replicates. All proteins,

which were detected with at least two peptides in either the YjdA or the YegE pull-down

are shown in the list. The color shadings reflect hits probably specific to YjdA (yellow),

YegE (light blue), YjcZ (green), YjdA and YegE (blue), YjdA and YcgR (orange), and

FliF (grey). Hits for YjdA and YegE are again shown in figure 9.6 A and table 9.1. YjdA

and YegE both pulled down the protease FtsH and the flotillin proteins HflK and HflC

as well as chemotaxis receptors (MCPs) (green shading). In contrast, proteins specific for

replication or secretion were only pulled down by YjdA (blue shading). Only one YegE

peptide was pulled down by YjdA, which might be due to the fact that endogenous YegE

is present at only very few copies per cell. Conversely, no YjdA peptides were detected

in the YegE pull-down. Figures 9.6 B-E show correlations between the two pull-down

replicates with peptide counts of replicate 1 plotted against peptide counts of replicate 2.

Correlations between the replicates were strong with R values between 0.7 and 0.9. The

most abundant proteins from the hit list in table 9.1 are shown in green.

HflKC form a complex that interacts with the ATP-dependent protease FtsH [162]. HflKC

belong to the SPFH (stomatin, prohibitin, flotillin, and HflK/C) superfamily that is found

in prokaryotes and eukaryotes [163]. SPFH domain proteins are membrane-anchored and

associate in lipid rafts. Previous research has shown that prokaryotes contain functional

membrane microdomains (FMMs) that are related to eukaryotic lipid rafts [164]. With

YjdA being a prokaryotic dynamin and dynamins being involved in membrane organi-

zation, we speculated based on the pull-down data that there might be a connection

between membrane organization by the E. coli flotillins and the dynamin YjdA that af-

fects activity of the cyclase YegE. To verify interactions between YjdA and YegE as well

as YjdA/YegE with HflKC, I performed a bacterial two hybrid assay using the Bacterial

Adenylate Cyclase-based Two-Hybrid (BACTH) system [165]. The system is based on the

reconstruction of the catalytic domain of adenylate cyclase (CyaA) from Bordetella per-

tussis consisting of two adenylate cyclase fragments (T18 and T25) [165, 166] (see section

14.7). I performed the assay at 26�C (figure 9.7 A) and 30�C (figure 9.7 B) using combi-

nations of both C- and N-terminal fusions of YjdA and YegE to the T18 or T25 fragment.

With the N-terminal fusions to YjdA and YegE, I observed an interaction between the pro-
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Fig. 9.6. Pull-Downs of YjdA, YegE, YjcZ, YcgR and FliF:
Fluorescent fusions to YjdA, YegE, YjcZ, YcgR and FliF were pulled down using GFP-Trap R� A
beads (performed by Dr. Hui Li) and proteins were analyzed by mass spectrometry.
(A) Hits for YjdA and YegE. Shown are mean peptide counts and standard deviation of two
replicates. Blue shading: Hits for YjdA; red shading: hits for YegE; green shading: hits for
both YjdA and YegE.
(B, C) Correlation between the two replicates of YjdA after 5 h (B) and 14 h (C) growth.
(D, E) Correlation between the two replicates of YegE after 5 h (D) and 14 h (E) growth.
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teins at both temperatures. Similarly, the N-terminal YegE fusion interacted with HflKC.

The interaction between YjdA and HflKC could also be confirmed, with the C-terminal

YjdA-T25 fusion complementing T18-HflKC. Since the GTPase mutant YjdA-T103D was

not functional in swarm and biofilm assays (see figures 9.1 and 9.2), I checked its interac-

tion with YegE and HflKC (see figure 9.8). As expected, the interaction between HflKC

and YjdA was abolished when the GTPase domain was mutated. However, YjdAT103D

still showed an interaction with YegE, which does not match the complementation data

in swarm plates and biofilms, where GTPase activity was required. Nevertheless, together

with the localization, FRET and pull-down data, I propose a possible model, in which the

YjdA-YjcZ complex regulates YegE activity via the flotillins HflKC in a so far unknown

manner (see figure 9.7 C).
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Fig. 9.7. Bacterial Adenylate Cyclase-based Two-Hybrid (BACTH) assay to test
interactions between YegE and YjdA, YjdA and HflKC and YegE and HflKC:
(Continued on the following page.)
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Fig. 9.7. (Continued from previous page.)
Cya� E. coli BTH101 were transformed with plasmids encoding the T25 (pKT25 or pKNT25)
or T18 (pUT18 or pUT18C) adenylate cyclase fragment and tested on LB-X-Gal-IPTG-Strp-
Amp-Kan plates for the Cya+ or Cya� phenotype.
(A, B) BACTH assay was performed at 26�C (A) and 30�C (B). Positive (T25-Zip/T18-Zip)
and negative (pKT25/pUT18, pKT25/pUT18C, pKNT25/pUT18, pKNT25/pUT18C) controls
indicate Cya+ (blue) and Cya� (white) phenotypes. YjdA and YegE interaction was tested
with C- and N-terminal fusions to the proteins with T18-YjdA and T25-YegE resulting in the
Cya+ phenotype. N- and C-terminal T25 fusions to YjdA and YegE were tested for interaction
with T18-HflKC with positive interactions for YjdA-T25 and T25-YegE.
(C) Model showing the interactions between YegE, HflKC and YjdA, potentially including the
small protein YjcZ, which interacts with YjdA.

9.2 Characterization of the flotillin-cyclase-dynamin interaction

Speculating that HflKC interact with YjdA and YegE, I checked colocalization of plasmid-

encoded fluorescent fusions to these proteins (see figure 9.9 A). All three protein fusions,

YegE-CFP, mCherry-HflKC and CFP-YjdA, localized to the plasma membrane. I spec-

ulated that if YjdA and YegE are part of HflKC-dependent membrane domains, HflKC

might be required for their correct localization. Therefore, I checked localization of YjdA

and YegE in the absence of HflK and HflC (see figures 9.9 B, 9.10 B, A.25 A, B and A.26

B). YegE localized at the cell membrane forming small clusters that were present in both

wild-type and hflK/hflC deletion strains. This was true for both the plasmid-encoded

(figure 9.9 B) and a genomic YegE-YFP fusion (figure 9.10 B). Functionality of the ge-

nomic YegE-YFP fusion was verified in a swarm plate assay (see figure 9.10 A). The YegE

clusters were dynamic and dynamics were similar in the wild-type and hflK/hflC deletion

strains (see time-lapse pictures in figures A.25 A, B and A.26 B). The same was true if

yjdA was deleted in the strain with the genomic YegE-YFP fusion (figures 9.10 A and

A.26 A). Similarly, HflKC were not required for YjdA localization (see figures 9.9 B and

A.25 B). Consistently, deletion of yjdA and yegE did not abolish HflKC localization no

change its dynamics (see figures 9.9 C and A.25 C).

Although the localization data do not support the theory that HflKC is the link between

YjdA and YegE, I checked whether HflKC might influence the c-di-GMP dependent inter-

action between MotA and YcgR, which would mean a change in YegE diguanylate cyclase

activity (see figure 9.11 A). Deletion of the PDE YhjH served as a control. In the yhjH

deletion strain, c-di-GMP levels are increased in comparison to wild type, which is re-

flected by the increased FRET (1.8 % in wild type and 6 % in �yhjH ). Deletion of hflK

and hflC in contrast seems to decrease FRET between YcgR and MotA, which means that

c-di-GMP production by YegE might indeed depend on HflKC (see figure 9.11 B).
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Fig. 9.8. Bacterial Adenylate Cyclase-based Two-Hybrid (BACTH) assay to test
the interaction of YjdA-GTP with YegE and YjdA-GTP with HflKC:
Similar to figure 9.7, Cya� E. coli BTH101 were transformed with plasmids encoding the T25
(pKT25 or pKNT25) or T18 (pUT18 or pUT18C) adenylate cyclase fragment and tested on
LB-X-Gal-IPTG-Strp-Amp-Kan plates for the Cya+ or Cya� phenotype.
(A) BACTH assay was performed at 26�C and 30�C. Positive (T25-Zip/T18-Zip) and nega-
tive (pKT25/pUT18, pKT25/pUT18C, pKNT25/pUT18, pKNT25/pUT18C) controls indicate
Cya+ (blue) and Cya� (white) phenotypes. The GTPase mutant YjdA T103D interacts with
YegE, whereas the interaction between YjdA and HflKC is abolished in the YjdA T103D mu-
tant.
(B) Schematic drawing showing the mutation site in the G2 region in YjdA.
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Fig. 9.9. Localization of YegE, YjdA and HflKC:
Widefield and TIRF images of a W3110RH wild-type strain expressing YegE-YFP, YjdA-YFP
or mCherry-HflKC from plasmids at OD600 0.6.
(A) Localization of plasmid-encoded YFP- and CFP-fusions of YegE and YjdA with mCherry-
HflKC in the W3110RH wild-type background by widefield microscopy.
(B) Localization of plasmid-encoded YFP-fusions of YegE and YjdA in W3110RH wild-type,
�hflK and �hflC by TIRF microscopy.
(C) Localization of mCherry-HflKC in W3110RH wild-type and �yjdA�yegE by TIRF mi-
croscopy.
Scalebar: 5 µm.
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Fig. 9.10. YjdA, YjcZ and HflKC do not influence YegE localization:
Widefield and TIRF images of a W3110RH strain expressing a genomic YegE-YFP fusion from
the native locus at OD600 1.7. Wild-type, �yjdA, �yjcZ, �hflK and �hflC strains were im-
aged.
(A) Soft agar plate showing functionality of the genomic YegE-YFP fusion. Swimming of
W3110RH wild-type, �yhjH, �yhjH�yegE and �yhjH in the YegE-YFP background was as-
sayed on TB soft agar plates at 34�C.
(B) Localization of YegE-YFP in W3110RH wild-type, �yjdA and �yjcZ.
(C) Localization of YegE-YFP in W3110RH wild-type, �hflK and �hflC.
Scalebar: 5 µm.
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Fig. 9.11. HflKC influences c-di-GMP levels:
FRET between YFP-YcgR and MotA-CFP was measured as a read-out of relative c-di-GMP
levels in W3110RH wild-type, �yhjH, �hflK and �hflC strains.
(A) FRET e�ciency of the interaction between YcgR and MotA. Mean and standard error of
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(B) Model showing decreased c-di-GMP production by YegE in the absence of HflKC, which
can be detected as a decrease in FRET between YcgR and MotA.
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10. WHAT ARE THE ROLES OF MOTILITY IN E. COLI

BIOFILMS?

The discovery of multicellular bacterial growth in biofilms has brought about many chal-

lenges and open questions. Biofilms constitute a severe problem in both healthcare and

industrial settings. Biofilm-related diseases are di�cult to treat and are a major cause of

morbidity of hospital-acquired diseases. Examples for biofilms in industrial settings are

biofilm formation on manufacturing plants, e. g. in food industry, and biofilms in water

systems, both causing hygienic problems. A major challenge in basic research lies in un-

derstanding the way biofilms form and the physiological processes required for successful

biofilm formation. In their planktonic state, most bacteria are motile and move forward

using di↵erent types of motility systems, with flagella-driven swimming motility being the

most common. This raises the question of how the transition from a motile planktonic

state to a sessile biofilm state is achieved and what the key signaling events are that lead

to this drastic lifestyle switch. A major player in this process is the second messenger

c-di-GMP that acts as a biofilm-promoting signal juggling between inhibition of motility

and upregulation of biofilm matrix production.

In my PhD thesis, I aimed to get a deeper insight into the roles of flagella-driven motility

during biofilm formation of E. coli by investigating how chemotaxis as well as c-di-GMP

signaling orchestrate motility during the di↵erent stages of biofilm formation.

10.1 Motility during attachment in E. coli biofilms

To analyze motility in E. coli biofilms, I used submerged biofilms as a model system since

their biomass can be easily quantified with the fast crystal violet staining method. The first

step was to systematically delete motility and chemotaxis genes in the two E. coli W3110

strains, W3110 and W3110RH , and to test the mutant strains for their biofilm formation

capacity. The di↵erence between the two W3110 strains lies in the expression of RpoS, the

stationary phase �-factor. �S regulates many biofilm-relates genes, especially during the

later stages, when biofilm matrix becomes important for 3-D structure formation. W3110

does not have a functional �S and is thereby a good model for early biofilm formation. In

contrast, W3110RH expresses �S and, to gain a more complete picture of the role of motil-

ity in biofilms, was used to analyze the e↵ect of motility both on attachment and on 3-D

structure formation. In both strains, my results show that flagella-driven motility is an

absolute requirement for successful submerged biofilm formation (see figures 6.2 and 6.12).

Deletion of flagella abolishes surface attachment, suggesting the requirement of flagella for
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biofilm formation, either due to their function in motility or because of additional roles

in biofilms. To prove motility is required for biofilm formation, I deleted the motor gene

motA and the phosphatase gene cheZ to receive flagellated strains with impaired motility,

and tested their e↵ect on biofilm formation. Both, motA and cheZ deletion strains, could

not form biofilms. This was true for both W3110 strains used in this work and could

be shown throughout di↵erent stages of biofilm formation (see figures 6.2, 6.6 and 6.12).

Thereby, I concluded that the motility function of flagella strongly promotes biofilm for-

mation. A requirement for flagellar motility in E. coli as well as in P. aeruginosa, together

with twitching motility, for submerged biofilm formation has been published in previous

literature [18, 21, 20]. Furthermore, previous literature suggests that flagella might have

additional roles during biofilm formation, such as functioning as adhesins, e. g. in E.

coli or Salmonella [167, 127, 128, 129] or as surface sensors that trigger expression of

biofilm-specific genes [130, 131, 132, 133]. Although previous work [167, 127, 128, 129]

reported that flagella function as adhesins in biofilm formation, my data showed contra-

dictory results, as I could show in figure 6.4 and I concluded that in W3110, flagella are no

major adhesins during submerged biofilm formation. When circumventing the necessity

of swimming for attachment by centrifuging the bacteria to the surface, flagella-less cells

can attach, meaning that flagella per se are not required to adhere to a surface ruling out

flagella-mediated adhesion [128]. Furthermore, I could not find any evidence for a spe-

cific surface sensing function of flagella in W3110, that would regulate synthesis of surface

structures, which mediate cell attachment. Even in the wild type, I could not observe any

surface sensing (see figures 6.3 and A.4), which argues against a specific surface sensing

role of flagella. Instead, my results suggest that the main factor for attachment is smooth

swimming at a surface. Smooth swimming mutants cannot perform tumbles to change

their swimming direction and are obtained by deletion of the chemotaxis kinase CheA or

the response regulator CheY. With both smooth swimming mutants I observed increased

attachment at early biofilm stages (figure 6.6). A clear advantage of smooth swimming

for attachment could be demonstrated with planktonic cells of both W3110 and W3110RH

(figures and 6.8, 6.12). When cells approach a surface for attachment, they swim for some

time along this surface. Surface swimming ends when cells either attach to the surface or

change their swimming direction with a tumble in a way, which leads their swimming path

away from the surface. Therefore, smooth swimming cells might spend a prolonged time

swimming at the surface, since they cannot escape with a tumble. This prolonged time at

the surface might increase the chance to attach. Indeed, previous studies have suggested

that smooth swimming bacteria become trapped at the surface by hydrodynamic forces

and can only e�ciently escape by tumbles [168, 143, 169]. It can hence be proposed that

such hydrodynamic entrapment may be a general mechanism promoting bacterial attach-

ment at abiotic and biotic surfaces [168, 170]. By measurement of trajectory length and

duration of planktonic cells at the surface, we could show this entrapment for the smooth

swimming cheY deletion strain in W3110 and W3110RH strains (figures 6.7 and 6.12).

If entrapment can be regulated by chemotaxis, attachment could be modulated by the
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presence of attractants on or near a surface. Chemotactic stimulation at the surface would

promote smooth swimming and thereby could enhance attachment. However, in concor-

dance with previous results [18], we could not demonstrate a requirement of chemotaxis

in biofilm formation (see figures 6.5 and 6.6).

Hydrodynamic entrapment might as well be influenced by swimming speed [168]. This

opens the questions whether modulating swimming speed might change attachment and

biofilm formation in E. coli. One way how swimming speed is controlled is through the

bacterial brake YcgR. YcgR, in response to c-di-GMP, interacts with the flagellar motor

[51, 52, 57, 58, 56] (see also figures 6.10 A and 6.14 A) and reduces swimming speed of

the cells [58, 56]. With c-di-GMP being a key player in the transition from a motile to

a sessile lifestyle, I aimed to identify a causal relationship between its role in regulating

swimming speed and the attachment during biofilm formation. Since c-di-GMP produc-

tion is largely influenced by �S-dependent processes, using only W3110 as a model strain

for attachment would not have revealed a satisfying insight into the influence of c-di-GMP

in early biofilms. Therefore, relating results obtained with both W3110 and W3110RH

was crucial for this part of the thesis. I observed that in contrast to its generally assumed

role as a biofilm-promoting factor, c-di-GMP inhibits attachment during W3110 biofilm

formation and this inhibition was mediated by YcgR (figure 6.9 B-E). This observation

is not entirely new though, since low levels of c-di-GMP have been reported to enhance

early biofilm formation [171]. I also observed increased attachment at lowered c-di-GMP

levels in the �S-positive W3110RH strain. However, in contrast to W3110, this advan-

tage of lowered c-di-GMP was only observed during early stages of biofilm formation. At

later stages, the e↵ect was even reversed, with strains having lower c-di-GMP forming less

biofilm (figure 6.13 A, B), as would be expected considering the general view of c-di-GMP

as a biofilm promoting factor (see e. g. [12]). This phenomenon can be explained by the

fact that the enhanced initial cell attachment subsequently becomes outweighed by the

reduced production of the biofilm matrix (curli), which prevents formation of structured

biofilms. This hypothesis is supported by my data in chapter 7, where lowered c-di-GMP

levels decrease 3D-structure formation, which depends on biofilm matrix (see also section

10.2). I therefore suggest a dual role of c-di-GMP during biofilm formation, inhibiting

initial cell attachment in early biofilm phases by negatively influencing motility and pro-

moting later biofilm stages through positive regulation of biofilm matrix production (see

figure 10.1). Thus, c-di-GMP levels need to be tightly regulated over the course of biofilm

formation, being low during biofilm initiation and high at the later stage to allow for

biofilm maturation.

In my thesis, I further aimed to elucidate why increased motility would increase initial

cell attachment. I hypothesized that if hydrodynamic entrapment supports attachment,

and entrapment is influenced by swimming speed, cells with lowered c-di-GMP levels and

increased swimming speed would get entrapped at the surface. Trajectories of planktonic

cells swimming at the surface, however, were not significantly di↵erent if c-di-GMP levels
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c-di-GMP Motility initial attachment

c-di-GMP Curli 3D structure

Fig. 10.1. A dual role of c-di-GMP:
Model of the e↵ects of c-di-GMP during submerged biofilm formation in the E. coli strain
W3110RH . C-di-GMP inhibits motility through the PilZ-domain protein YcgR and thereby
negatively interferes with initial attachment. Curli production and thereby 3D-structure for-
mation is positively regulated by c-di-GMP, meaning that c-di-GMP levels need to raise in the
course of biofilm formation. Thereby, c-di-GMP levels need to be tightly regulated throughout
biofilm formation, being low for e�cient initial attachment and being high for biofilm matura-
tion.

were changed (see figures 6.10 B and 6.14 B) and I was not able to explain the changes

in cell attachment that I observed in the biofilm assays. Thus, a simple model, where at-

tachment is solely dependent on hydrodynamic entrapment regulated by c-di-GMP levels

has to be neglected. An alternative explanation to why increased swimming speed might

enhance attachment in our assays is that swimming speed could influence the strength

of attachment. In the standard attachment experiments, non-attached and supposedly

loosely attached cells are washed away and thereby not taken into account. To investigate

this hypothesis I performed an experiment, where I compared attachment before and after

washing. Primary data in figure 6.11 show a trend that attachment strength is indeed

influenced by swimming speed.

The above described theory of the dual role of c-di-GMP with a requirement for low c-

di-GMP levels during initial attachment coincides well with the commonly described two
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phases of attachment - reversible and irreversible attachment. In literature, reversible at-

tachment is usually described to require motility, whereas irreversible attachment requires

the production of cell surface molecules that stick to the substratum [9]. Therefore, re-

versible attachment would require low c-di-GMP levels for cell motility and irreversible

attachment would require high c-di-GMP levels for the production of biofilm matrix. For

E. coli submerged biofilm formation, this is shown in the model in figure 10.1. Low

c-di-GMP levels promote swimming motility, which is required for e�cient initial cell at-

tachment (figure 10.1, upper panel). When attachment becomes irreversible, adhesion

factors need to be synthesized. W3110 requires the production of curli fibers to form

a mature biofilm with elaborate 3D-structures, which depends on high c-di-GMP levels

(figure 10.1, lower panel). The model of the dual role of c-di-GMP can be transferred to

other bacterial species, such as P. aeruginosa. In P. aeruginosa, for example, motility is

required to overcome surface repulsion [20, 172, 173] in the reversible attachment phase.

Later, during the transition from reversible to irreversible attachment, c-di-GMP produc-

tion is induced and motility is inhibited [172]. An important player in this transition is

the c-di-GMP binding transcription factor FleQ, which causes downregulation of flagellar

genes and upregulation of EPS at rising c-di-GMP [174, 175, 176, 177]. The transition

from reversible to irreversible attachment and the coinciding requirement of downregula-

tion of flagellar motility and upregulation of adhesion factors is also described in a recent

review from Ha and O’Toole [173]. This model of reversible and irreversible attachment

can thereby be used to refine the commonly described phenomenon of the motile-to sessile

transition in E. coli, which is regulated by c-di-GMP. This means that the dual role of

c-di-GMP in the motile-to-sessile transition is inhibition of reversible and promotion of

irreversible attachment.

10.2 3D-structure formation

In the first part of my thesis, I concentrated on the early phases of biofilm formation when

initial cell attachment occurs. There, I observed that flagella are required for attachment

because of their motility function and not because of additional roles as surface sensors

or adhesins. In the following part, I observed that beyond attachment, flagella are also

required for formation of the 3D-structure in static submerged biofilms of the �S-positive

strain W3110RH (see figure 10.2). Flagella-less cells could form microcolonies on the sur-

face when surface attachment was established by centrifugation (see figure 6.4), however,

they were not able to arrange the microcolonies 3-dimensionally (see figures 7.4, A.10

and A.11). A structural role of flagella within the matrix and a contribution to the overall

biofilm architecture, has been suggested in previous publications in other types of biofilms,

such as flow cell biofilms and biofilm macrocolonies on agar plates [24, 27, 178]. In the sub-

merged biofilms studied in my thesis, this structural role appears to be indispensable (see

figures 7.4, A.10 and A.11). With the use of the flagellar motor mutant �motA, I could

show that rotation of flagella is not a requirement of biofilm formation (see figures 7.4,
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A.10 and A.11). However motility does have an e↵ect on the overall shape of the biofilm

as motA and cheZ (reduced motility, but flagellated) deletion strains showed an impaired

biofilm structure compared the the wild type strain. This findings are in agreement with

a previous publication, in which 3D-structures of flow cell biofilms depended on motility

[24] and could be shown for both the curli+ strain W3110RH and the curli+/cellulose+

strain AR3110 (see figures 7.4, 7.7, A.10, A.11, A.19 and A.20).

Biofilms are a dynamic environment, in which many bacterial communities may inter-

act with each other. I hence tested the hypothesis if a subpopulation of flagellated cells

may be su�cient to rescue overall 3D-structure by providing a sca↵old for the mutant

macrocolonies. To elucidate this idea, flagellated cells were co-cultured with flagella-less

cells. I could observe that microcolonies of flagella-less cells were incorporated into the

structures formed by the wild type cells, confirming our hypothesis that expression of

flagella by only one of the microcolonies is su�cient to establish the connection (see fig-

ures 7.5, A.13 and A.14). This further suggests that connections within the structure are

mediated through attachment of microcolonies to flagella protruding from other micro-

colonies, rather than through intertwining of flagella, as has been proposed in reference

[27]. However, which structure on the cell surface binds to the flagella remains to be eluci-

dated. Preliminary results using mass spectrometry to identify potential binding partners

on sheared flagella from biofilm structures (not shown in this thesis) did not answer that

question and more experiments need to be conducted. If flagella-less cells are not able

to arrange microcolonies on their own, but only when in co-culture with wild type cells,

there is a possibility that wild type cells induce the production of surface molecules making

the flagella-less cells stickier. Transcriptomic analyses of wild type and flagella-less cells

from mixed biofilm cultures could be performed to test that hypothesis. Another possi-

bility is that it is pure chance that microcolonies of flagella-less cells get entrapped by

growing microcolonies of wild-type cells while the wild type microcolonies start to arrange

3-dimensionally. This would also explain why the 3-dimensional distribution of flagella-

less microcolonies in mixed biofilm cultures remains more or less restricted to the lower

part of the biofilm. Importantly, I observed that expression of the curlin genes csgBA on

population level was lower in the fliC and motA deletion strains than in wild type (see

figure A.12) and unpublished data from our laboratory (O. Besharova) suggest that het-

erogeneity of curli gene expression is a↵ected in the mutant strains. For the �motA strain,

high curli expression is observed in the 3-D clumps, however, low or none expression is

observed in the non-arranged cells. Thereby, transcriptomic analyses of wild type, �fliC

and �motA might indeed be useful to elucidate the matrix expression patterns and to be

able to solve the contribution of flagella to the biofilm structure.

Apart from flagella, the major structural component of the W3110RH submerged biofilms

seems to be curli (see figures 7.2, A.5, A.6 and 10.2). This might explain the attachment

experiments from figure 6.13, where I demonstrated a possible dual role of c-di-GMP.

The cyclase deletion strain �yegE, which has decreased c-di-GMP levels, initially had an

advantage attaching e�ciently to the surface due to its increased motility, but showed im-
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The E. coli Biofilm Matrix

Attachment Maturation Dispersion

PGA

Curli

Flagella

Colanic Acid

Fig. 10.2. The players for 3D-structure formation:
Phases of biofilm formation in E. coli are shown. In submerged biofilm formation of the E.
coli strain W3110RH , curli and flagella appear to be the major players for shaping biofilm
architecture whereas PGA and colanic acid were dispensable.

paired biofilm formation at the later time-points. Curli expression depends on c-di-GMP

(see chapter 3.4) and if curli is the main matrix determinant, decreased mature biofilm

formation is expected at lowered c-di-GMP levels. Indeed, my analyses of 3-D structures

in the c-di-GMP mutant strains confirmed this hypothesis (see figures 7.6, A.15, A.16,

A.17 and A.18). If c-di-GMP is lowered, 3D-structure formation is impaired. This was

independent of YcgR, since the structures of the ycgR deletion strain were similar to wild

type structures, meaning that c-di-GMP dependent e↵ects on structures are uncoupled

from the motility control. These results are in agreement with studies in other types of

biofilms that depend on curli and/or cellulose [27, 86]. If c-di-GMP levels are permanently

increased, I observed decreased initial attachment, but no defects in 3D-structures. This

can be explained as well by the dual role of c-di-GMP, inhibiting initial cell attachment

and promoting matrix production for biofilm maturation. Thus, c-di-GMP levels need to

be tightly regulated over the course of biofilm formation, establishing low levels during

initiation and high levels during maturation. This could as well explain why the PDE

YhjH is expressed in E. coli as a part of the flagellar regulon whereas the cyclase YegE is

positively regulated by the stationary phase � factor RpoS.

In addition to the requirement of the c-di-GMP dependent matrix component curli, the E.

coli adhesins yfaL and ycgV play a role in 3D-structure formation in submerged biofilms

(figures 7.3, A.7). In contrast to biofilms of MG1655 [159], deletions of the two adhesins

in W3110RH impaired attachment, as shown by CV staining (unpublished results from O.
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Besharova). However, overexpression of yfaL and ycgV genes has been shown to increase

MG1655 attachment and mature biofilm formation in microfermenters [159]. Importantly,

in my work, I showed that �yfaL and �ycgV have impaired swimming motility (see figure

A.9). The authors of the reference above [159] did not look into motility of their strains

and propose a possible adhesin function for YfaL and YcgV based on their overexpression

data. It therefore remains to be shown in future work whether these adhesins are actually

required for biofilm initiation and maturation because of a structural function or whether

the impaired motility of the deletion strains is the reason for the defect in biofilm initiation

and architecture. Altogether, my results on 3D-structure formation propose that curli and

flagella are the main cell surface structures that help to shape the 3-D structures (see

figure 10.2).
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C-di-GMP signaling has been studied very extensively in the past years and the molecules

that make and break this second messenger have been identified in many bacterial species.

Commonly, a whole set of cyclases and diesterases are responsible for the production

and turnover of c-di-GMP, which in turn regulates a vast variety of processes, including

motility and biofilm formation. In my thesis, I adressed one of the remaining questions,

namely, in which ways signal specificity of c-di-GMP signaling is achieved. One possibility

of generating specific responses to c-di-GMP levels is a dose-dependent regulation of down-

stream processes by sensing of distinct c-di-GMP concentrations through di↵erent types of

c-di-GMP receptors, such as protein receptors or riboswitches [79] (see also introduction,

section 3.2). Another possibility is the regulation of c-di-GMP production by diguanylate

cyclases, which I considered in my thesis. Based on results from a previous publication, I

looked into the e↵ects of a potential new regulator of c-di-GMP production, YjdA.

As described in the introduction and results section, YjdA together with the small protein

YjcZ were discovered in a motility screen as suppressors of the YhjH-mediated motility

regulation [50]. A strain deleted for the major PDE YhjH has elevated c-di-GMP levels,

which results in inhibition of swimming motility. Additional deletion of the DGC YegE

suppresses this motility defect, since YegE is one of the major cyclases contributing to

the c-di-GMP pool sensed by the motility regulator YcgR and degraded by YhjH (for an

overview of the mechanism refer to figure 3.1). Similarly to the yegE deletion, the yjdA

and yjcZ deletions are able to suppress this defect in the �yhjH background, suggesting

that YjdA regulates c-di-GMP production (see also figure 8.1). YjdA is a homolog to the

eukaryotic dynamin and is expressed together with the uncharacterized protein YjcZ from

one operon, which supposedly is regulated by the flagellar � factor FliA. The regulation

by FliA may also hint towards a role of YjdA and YjcZ in motility control.

In an epistasis experiment, I could confirm the action of YjdA and YjcZ on swimming

motility and my data suggest that they act via the cyclase YegE (see figure 8.1). Based on

those results, I aimed to investigate the e↵ects of YjdA on YegE and to put the regulation

in the physiological context.

11.1 YjdA regulates motility and biofilm formation via the c-di-GMP

signaling pathway

Based on the confirmation of the published results that YjdA and YjcZ a↵ect motility

and the observation that this might be due to an impact on c-di-GMP production by the
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diguanylate cyclase YegE (see figure 8.1), I speculated that YjdA and YjcZ would play a

role in biofilm formation. Hence, I tested the regulation of biofilm formation by YjdA and

YjcZ during attachment and 3D-structure formation. YjdA and YjcZ both a↵ect biofilm

formation in a similar way as YegE, meaning inhibiting initial attachment and promoting

biofilm maturation, as shown in my attachment experiments (see figure 8.2 A-D) and 3D-

structure experiments (see figures 8.3, 8.4, A.21, A.22, A.23 and A.24). These e↵ects are

indeed apparently mediated by changes in c-di-GMP production by YegE, as shown by

the decrease of the c-di-GMP dependent interaction between YcgR and MotA (see figure

8.2 E-G).

With the membrane modulating function of dynamins and the apparent regulatory e↵ect

of YjdA on the membrane protein YegE, I expected the bacterial dynamin YjdA to localize

at the plasma membrane. Although Ozaki and colleagues [109] describe a localization of

YjdA (or CrfC, as they renamed it) in foci at the midcell and quarter cell positions, I mainly

observed localization at the plasma membrane (see figure 9.3). Localization was influenced

by the growth phase with more homogeneous distribution at lower optical density and

localization in foci close to the poles at higher optical density. Notably, this localization on

foci depends on the GTPase function of YjdA. In the W3110 strain, a GTPase defective

YjdA localizes in elongated clusters that resembled chains of proteins being associated

with the membrane. This might reflect membrane decoration by YjdA oligomers and

might allow speculations for a membrane-remodeling function of the bacterial dynamin.

Possibly, this would a↵ect activity of YegE, meaning an indirect regulation of YegE by

YjdA. This would also explain, why I could not observe clear colocalization of YjdA/YjcZ

with YegE and why no interaction with the cyclase was measured with FRET (see figures

9.4 and 9.5). YjdA seems to act in complex with YjcZ, as suggested by the colocalization

and FRET data and the e↵ects of YjcZ on biofilms (figures 9.5, 8.2 - 8.4 and A.21 -

A.24). The question is, whether there is a third protein or a protein complex connecting

YjcZ/YjdA with YegE and thereby allowing for an indirect regulation of the cyclase by

YegE.

11.2 A regulation of c-di-GMP signaling by flotillins?

In the course of trying to elucidate the mechanism by which YjdA regulates the cyclase

YegE, potential interactors that might connect YjdA and YegE were searched for in a mass

spectrometry approach. We could identify the flotillin pair HflK/C in the mass spectrom-

etry data and confirm the interaction with YjdA and YegE in BACTH assays (see figures

9.6 and 9.7). In general, flotillins are associated with a variety of membrane dynamics

and thus, a link to dynamins does seem plausible. Flotillins have indeed been implicated

in functioning with bacterial dynamins in previous work in B. subtilis [179], though in a

di↵erent cellular setting, namely cell division and cell shape maintenance. The authors,

however, report a synthetic e↵ect on motility on soft agar plates in a flotillin/dynamin

double mutant, which they did not investigate further. In my work, I did not include
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swimming assays of flotillin mutants, but FRET data with the c-di-GMP dependent inter-

action of MotA and YcgR point towards a reduction of c-di-GMP levels in the absence of

flotillins, which in turn would increase swimming speed (see figure 9.11). However, since

I did not measure swimming speeds, this is speculation and needs to be confirmed. Nev-

ertheless, the results would support the idea that HflK/C influence the activity of YegE

in a similar way as the dynamin YjdA. With microscopy experiments, I was not able to

detect colocalization of YegE with the flotillins, neither did I observe a dependence of

YjdA or YegE localization and dynamics on flotillins nor vice versa. It therefore remains

to be elucidated, with which mechanism the regulation of YegE by YjdA works and which

contributions the flotillins have. A plausible idea is that flotillins change the lipid compo-

sition in membranes, thereby changing membrane fluidity [179]. The cyclase YegE might

reside in membrane regions that due to the action of the flotillins HflK/C contains lipids

that allow for easier membrane bending and the dynamin YjdA might be responsible for

changing membrane curvature. This would be a new phenomenon in bacteria, however, is

well established in eukaryotic cells, where induction of membrane curvature is an impor-

tant process, e.g. in the formation of vesicles in the secretory pathway. In turn, activity of

YegE could be regulated by the changes in the membrane rather than by direct interactions

with the dynamin or the flotillins. Speculatively, the membrane bending implemented by

the dynamin and facilitated through adapted lipid composition in the membrane by the

flotillins, could create microcompartments in the cell, to which YegE-dependent c-di-GMP

processes are located, thereby ensuring signal specificity.
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12. CONCLUSION AND OUTLOOK

The transition from a motile planktonic to a sessile biofilm lifestyle includes many regu-

latory processes, including the downregulation of bacterial motility and the upregulation

of adhesion factors by the second messenger c-di-GMP. In my thesis, I have investigated

roles of flagellar motility in the formation of submerged biofilm formation of E. coli and

described multiple roles of flagella in biofilms. First and foremost, flagella are required

for initial attachment due to their motility function. I could show that smooth swimming

leads to surface trapping of cells and promotes initial cell attachment. This requirement

of swimming motility in early biofilm formation is reflected by a dual role of c-di-GMP

inhibiting early attachment and promoting biofilm maturation. Thus, my results suggest

that c-di-GMP levels need to be tightly regulated throughout the course of biofilm for-

mation, being low at biofilm initiation and being high in mature biofilms. The observed

advantage for attachment at lower c-di-GMP, causing elevated swimming speed, requires

further investigation since I could not explain why faster swimming causes increased cell

attachment. My hypothesis that enhanced swimming speed might strengthen the initial

attachment could be investigated in microfluidics systems where already attached cells are

subjected to a flow of medium or bu↵er. Alternatively, attachment under flow conditions

could be investigated.

In addition to the requirement of flagellar motility for attachment, flagella appear to play

a structural role in shaping the architecture of mature submerged biofilms. I could show

that flagella-less cells fail to arrange 3-dimensionally and thereby cannot form elaborate

biofilm structures. In mixed cultures with wild type cells, flagella-less cells are able to

partially integrate into the wild type structures by a so far unknown manner. Possibly,

flagella from wild type microcolonies attach to the surface of cells in the flagella-less mi-

crocolonies, which allows incorporation of the flagella-less microcolonies into the biofilm.

In future experiments, we could investigate the structural role of flagella further in an

experiment where flagella synthesis is stopped in a wild type biofilm. Additionally, flag-

ella on the cell surface containing a protease recognition site could be cleaved of and the

following events could be monitored by live-cell imaging.

In the last part of the thesis, I describe a new regulator of c-di-GMP, the bacterial dy-

namin YjdA. YjdA together with the small protein YjcZ positively regulates c-di-GMP

production by the diguanylate cyclase YegE, a↵ecting swimming motility, cell attachment

and biofilm maturation. This regulation includes interaction with the flotillins HflK/C in

a so far unknown mechanism. Speculatively, the dynamin alters membrane curvature of

membrane regions containing flotillins, which in turn a↵ects the activity of the membrane
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protein YegE. The role of flotillins in this regulation might be altering lipid composition of

the membrane in a way that facilitates membrane deformation. In future work, membrane

fractions containing YegE could be purified and c-di-GMP production could be monitored

with increasing concentrations of titrated YjdA. Since c-di-GMP is produced from GTP,

c-di-GMP production could be quantified with a spectroscopic assay detecting GTP. This

experiment could prove that c-di-GMP production by YegE is indeed influenced by YjdA,

as I concluded from my biofilm phenotypes and FRET of the c-di-GMP dependent MotA-

YcgR interaction. Additionally, electron microscopy of YjdA-decorated membranes could

shed light into the actions of the dynamins, hopefully showing membrane deformation.



Part VI

MATERIALS AND METHODS





13. MATERIALS

13.1 Chemicals and consumables

Chemicals used in this work are listed in the appendix in table B.1.

13.2 Reaction kits

Tab. 13.1. Reaction kits

Kit Company

NucleoSpin R� Gel and PCR Clean-up kit: Macherey-Nagel

GenEluteTM HP Plasmid Miniprep Kit: Sigma-Aldrich

13.3 Well plates

Tab. 13.2. Well plates

Plate Order number Company

24-Well Clear TC-Treated Multiple

Well Plates, Sterile Product 3527 Corning R� Costar R� (Corning Inc.)

96-Well Clear Flat Bottom

TC-Treated Microplate, Sterile Product 3585 Corning R� Costar R� (Corning Inc.)

µ-Slide 8 Well, Uncoated,

1.5 polymer coverslip, hydrophobic, sterilized Product 80821 ibidi R� (ibidi GmbH)

µ-Plate 96 Well Uncoated,

1.5 polymer coverslip, hydrophobic, sterilized Product 89621 ibidi R� (ibidi GmbH)

96-Well Tissue Culture

Black/Clear Flat-bottom Plates Product 353219 BD FalconTM (Becton, Dickinson and Co.)
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13.4 Media

Tab. 13.3. Media for bacteria

LB (Luria broth) medium: 10 g bacto tryptone

5 g bacto yeast extract

5 g NaCl

H2O ad 1 l; pH 7 with NaOH

autoclaved

LB agar plates: 1.5 % agar in LB medium

autoclaved

TB (Tryptone broth): 10 g bacto tryptone

5 g NaCl

H2O ad 1 l; pH 7 with NaOH

autoclaved

M9 minimal medium: 47.7 mM Na2HPO4x7H2O

22 mM KH2PO4

8.55 mM NaCl

18.7 mM NH4Cl

2 mM MgSO4

0.1 mM CaCl2

0.4 % ribose

Congo red plates: 10 g bacto tryptone

5 g yeast extract

2 % agar

900 ml H2O

autoclave, then add:

80 ml congo red/coomassie solution

20 ml H2O

(c [congo red]= 40 µg/ml; c [coomassie]= 20 µg/ml)
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13.5 Bu↵ers

Tab. 13.4. Bu↵ers for bacteria

Tethering bu↵er: 10 mM KPO4

0.1 mM EDTA

1 µM methionine

10 mM lactic Acid

pH 7.0

sterile filtered

Motility bu↵er: 10 mM KPO4

0.1 mM EDTA

67 mM NaCl

0.5 % glucose

pH 7.0

sterile filtered

P1 bu↵er: 10 mM MgSO4

5 mM CaCl2

sterile filtered

Tss solution: 5 g polyethyleneglycol (PEG) 8000

0.3 g MgCl2x6H2O

2.5 ml DMSO

LB ad 50 ml

sterile filtered
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Tab. 13.5. Bu↵ers for agarose gel electrophoresis

TAE bu↵er: 242 g Tris base

100 ml 0.5 M EDTA (pH 8)

57.1 ml glacial acetic acid

H2O ad 1 l

6x DNA loading dye: 30 % glycerol

0.25 % bromphenol blue

0.25 % xylene cyanol

Tab. 13.6. Bu↵ers for Pull-Down and SDS PAGE

3x SDS Laemmli bu↵er: 6 % SDS

30 % glycerol

15 % �-mercaptoethanol

0.006 % bromphenol blue

0.25 M Tris

pH 6.8

10X SDS running bu↵er: 144.2 g glycine

30.3 g Tris base

10 g SDS

H2O ad 1 l

10 ml 10 % SDS resolving gel: 4 ml H2O

3.3 ml 30 % acrylamide mix

2.5 ml 1.5 M Tris, pH 8.8

100 µl 10 % SDS

100 µl 10 % APS

10 µl TEMED

6 ml 5 % SDS stacking gel: 4.2 ml H2O

1 ml 30 % acrylamide mix

760 µl 1 M Tris, pH 6.8
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60 µl 10 % SDS

60 µl 10 % APS

6 µl TEMED

Blue Silver staining [180]: 100 ml H2O

117 ml H3PO4

100 g (NH4)2SO4

1.2 g coomassie Brilliant Blue G-250

H2O ad 800 ml

200 ml methanol

Bu↵er TN: 20 mM Tris-HCl, pH 8.0

NaCl 0.2 M

Tab. 13.7. Antibiotic stock solutions

ampicillin: 100 mg/ml in H2O

kanamycin: 50 mg/ml in H2O

chloramphenicol: 34 mg/ml in H2O

streptomycin: 100 mg/ml in H2O

Tab. 13.8. Inducers and other stock solutions

IPTG: 0.1 M in H2O

arabinose: 10 % in H2O

X-Gal: 40 mg/ml in DMF

lysozym: 50 mg/ml in H2O

congo red/coomassie solution: 200 mg congo red

100 mg coomassie Brilliant Blue

70 % ethanol ad 100 ml

DNase: 100 µg/ml
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14. METHODS

14.1 Molecular Cloning

14.1.1 Polymerase chain reaction

Genes for cloning were amplified by Polymerase chain reaction (PCR) using either Taq

polymerase or Phusion polymerase (ThermoFisher) according to the reaction setup in

tables 14.1 and 14.2 and the PCR program shown in tables 14.3 and 14.4. For the amplifi-

cation of wild type genes, freshly grown colonies of strains W3110 or W3110RH were used.

PCR primers were ordered from Eurofins Genomics or from Sigma-Aldrich, and used at

concentrations of 10 pmol/µl. PCR products were analyzed by agarose gel electrophoresis

on a 1 % agarose gel in TAE and purified using the Macherey-Nagel NucleoSpin R� Gel

and PCR Clean-up kit according to the manufacturer’s instructions.

Tab. 14.1. PCR reaction set-up for amplification using Taq polymerase

DreamTaq Green forward reverse H2O

PCR Master Mix (2x) primer primer

25 µl 2.5 µl 2.5 µl 20 µl

Tab. 14.2. PCR reaction set-up for amplification using Phusion polymerase

Phusion HF forward reverse dNTPs DMSO Phusion template H2O

bu↵er (5x) primer primer (1.25 mM) Polymerase

10 µl 2.5 µl 2.5 µl 8 µl 2.5 µl 0.5 µl 1 µl 23 µl
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Tab. 14.3. PCR program for Taq polymerase

Step Temperature Time Cycle(s)

Precycle 95�C 10 min 1

Denaturation 95�C 30 sec )
25Annealing 55� 57�C 30 sec

Extension 72�C 60 sec/bp

Post-Extension 72�C 10 min 1

Cooling 16�C forever 1

Tab. 14.4. PCR program for Phusion polymerase

Step Temperature Time Cycle(s)

Precycle 98�C 5 min 1

Denaturation 98�C 20 sec )
25Annealing 55� 57�C 30 sec

Extension 72�C 30 sec/bp

Post-Extension 72�C 10 min 1

Cooling 16�C forever 1

14.1.2 Restriction digest

PCR products and vectors for cloning were digested with restriction enzymes from New

England Biolabs Inc. or Thermo ScientificTM . Preparative digests were performed in 30-40

µl reaction volumes for 2-4 h at 37�C and purified with the Macherey-Nagel NucleoSpinr
Gel and PCR Clean-up kit. Analytic digests were performed in 20 µl reaction volumes for

1 h at 37�C. Reaction set-ups were as described in table 14.5.

Tab. 14.5. Restriction digest reaction set-up

Preparative digest Analytical digest

DNA 10-15 µl 5 µl

Enzyme 1 1 µl 0.3 µl

Enzyme 2 1 µl 0.3 µl

10x reaction bu↵er 3 µl 2 µl

H2O ad 30 µl ad 20 µl

14.1.3 Ligation

For ligation, 1 µl vector was ligated with 3 µl insert DNA using 0.5 µl Thermo ScientificTM

DNA ligase and 1.5 µl 5xligation bu↵er in a 15 µl reaction volume. Ligations were per-
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formed at RT for 30 min or at 16�C ON.

14.1.4 Competent cells and transformations

Cells were made competent for transformations using either the chemical approach with

CaCl2 or the one-step TSS-method [181]. For chemically competent cells, an overnight

culture was grown in 5 ml LB at 37�C. 3 ml overnight culture were diluted in 300 ml

fresh LB medium and cells were grown to an OD600 of 0.5-0.7. The following steps were

performed on ice or at 4�C using ice-cold bu↵ers. Cells were pelleted at 3,200 g for 10 min

and resuspended in 100 ml 0.1 M MgCl2. After 30-45 min incubation on ice, cells were

pelleted at 1,800 g for 10 min and pellets were resuspended in 50 ml 0.1 M CaCl2. After

10 min centrifugation at 1,800 g, pellets were resuspended in 1.5 ml 0.1 M CalCl2/18 %

glycerol, aliquoted in 100 µl portions, frozen in liquid nitrogen and stored at �80�C. For

transformations, 30-50 µl cells were mixed with 0.3 µl DNA and transformed as described

below. For the TSS-method, overnight cultures in 5 ml LB were grown at 37�C, diluted

1:100 in fresh LB and grown for 3-4 h at 37�C. 1 ml culture was centrifuged at 13,000 rpm

in a tabletop centrifuge and resuspended in 50 µl ice-cold TSS solution. Cells were mixed

with 0.5-1 µl DNA and transformations were performed as described below.

14.1.5 Transformation of ligation mixtures

5 µl Ligation mixture were transformed into 50 µl chemically competent E. coli DH5↵.

For that, cells and DNA were mixed and incubated on ice for 15 min followed by a 1 min

heatshock at 42�C. After additional 15 min incubation on ice, 1 ml LB medium was added

to the cells and they were incubated for 1 h at 37�C on a rotary shaker at 450 rpm. After

1 min centrifugation at 11,000 rpm, transformed cells were plated on LB plates containing

appropriate antibiotics for selection and incubated ON at 37�C.

14.1.6 Screening for positive clones and DNA isolation

Clones obtained after transformation were screened for correct inserts by PCR using vector-

specific primers. DNA of positive clones was isolated using the Sigma-Aldrich GenEluteTM

HP Plasmid Miniprep Kit according to the manufacturer’s instructions. Alternatively,

clones were screened for correct inserts by analytical digestions (see table 14.5).

14.1.7 Sequencing

Positive clones were confirmed by sequencing at GATC Biotech, Konstanz or Eurofins

Genomics, Ebersberg. Primers for sequencing were designed as recommended by the

companies. The obtained sequences were analyzed using Serial Cloner 2.1.
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14.2 Biochemical methods

14.2.1 Immunoprecipitation

Pull-down experiments were performed by Hui Li. Strains were grown as described in

section 14.4.1 at 200 rpm and 30�C for 5 h and 14 h. 10 ml culture were harvested

for 5 min at 3,200 g and washed once in 10 ml bu↵er TN. Pellets were resuspended in

800 µl bu↵er TN supplemented with 100 µg/ml DNase, 50 µg/ml lysozyme and 32 µl 25x

protease inhibitors cocktail. Cells were lysed by four times sonication on ice for 10 s and 50

% power. 0.2 % Nonidet P-40 was added to the lysate, which subsequently was incubated

at 4�C for 18 h. The lysate was centrifuged for 15 min at 14,000 g and the supernatant

was transferred into a pre-cooled tube. 25 µl GFP-Trap R� A beads were washed three

times with ice-cold TN bu↵er to equilibrate. The beads were mixed with the cell lysate

and incubated at 4 � C for 1 h gently rotating. The beads were washed three times with

ice-cold TN bu↵er and were transferred into a clean tube. The beads were resuspended in

70 µl 1x Laemmli bu↵er (4x Laemmli diluted in TN bu↵er) and the samples were boiled

at 98 � C for 20 min.

14.2.2 SDS-PAGE (Sodiumdodecylsulfate polyacrylamide gel

electrophoresis)

Proteins were separated by SDS-PAGE using the discontinuous bu↵er system according to

Laemmli [182]. Therefore, protein samples in Laemmli sample bu↵er were boiled at 70�C -

98 � C for 5 -20 min and separated on a SDS-polyacrylamide gel at 70 V (stacking gel) and

at 120 V (separating gel). 5 µl molecular weight marker (PageRulerTM Plus Prestained

Protein Ladder, 10 to 250 kDa, ThermoScientific) were loaded as a standard. Gels were

stained with Blue Silver [180].

14.2.3 Mass spectrometry

Mass spectrometry was performed at the ZMBH Core facility for mass spectrometry and

proteomics. Data were analyzed using softwares Sca↵old 4.4.1 (Proteome Software Inc.),

Microsoft R� Excel R� 2008 for Mac (version 12.3.6), KaleidaGraph (version 4.0.3) and R

(version 2.15.2 GUI 1.53 Leopard build 32-bit).

14.3 E. coli strains

All strains used in this work are listed in table B.4. E. coli strains used in this work

were derived from W3110 or W3110RH . Knockout strains were made either following the

one-step method for inactivation of genes ([183]; see section 14.3.2) or by P1 transduction

(see section 14.3.3) using strains of the Keio collection [142] as donors. FLP recombi-

nase expressed from the plasmid pCP20 [184] (see section 14.3.5) was used to excise the

kanamycin cassette.
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Fig. 14.1. Schematic overview of the one-step method for inactivation of genes
according to Datsenko and Wanner [183]:
1.) Kanamycin resistance cassette from plasmid pKD13 was amplified with primers containing
overhangs that are homologous to flanking sequences of the target gene (H1, H2).
2.) PCR products were introduced in the receptor strain expressing � Red recombinase.
3.) Kanamycin cassette was excised expressing FLP recombinase from plasmid pCP20.
H1/H2: homology regions; P1/P2: priming sites.

14.3.1 Freezing and storage of bacterial strains

5 ml overnight cultures of strains were pelleted and resuspended in ice-cold 1 ml LB/18

% glycerol. Cells were frozen and stored at �80�C.

14.3.2 One-step method for inactivation of genes

For the indicated strains in table B.4, gene deletions were made using the one-step method

for inactivation of genes developed by Datsenko and Wanner [183] (see Figure 14.1).

Briefly, the gene on the chromosome was replaced with a kanamycin resistance cassette

that was amplified by PCR from plasmid pVS906 using primers with homology extensions

(H1 and H2; for primers see Appendix, table B.2). The PCR product was purified via gel

extraction and electroporated into electrocompetent W3110RH cells expressing phage �

Red recombinase. For that, W3110RH cells transformed with plasmid pKD46 were grown

ON at 30�C in LB medium containing 100 µg/ml ampicillin. 3 ml ON culture were diluted

in 300 ml fresh LB medium supplemented with 100 µg/ml ampicillin and 1 mM arabinose.

The culture was grown at 30�C and 200 rpm until an OD600 of approx. 0.7, incubated on

ice for 20 min and harvested at 3,200 g for 10 min at 4�C. The pellet was washed four times

with 1.) 150 ml, 2.) 150 ml, 3.) 150 ml and 4.) 60 ml 10 % glycerol by resuspension fol-
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lowed by centrifugation at 3,200 g for 10 min at 4�C. The resulting pellet was resuspended

in 1.8 ml 10 % glycerol, frozen in liquid nitrogen and either stored at �80�C or used for

electroporation immediately. For electroporation, 75 µl competent cells were mixed with

10 µl purified PCR product and incubated on ice for 20 min. Electroporation was perfomed

with a Biorad MicropulserTM using program Ec1 (gap width 1 mm, approx 2 kV and 5.2

ms). Directly after electroporation, 1 ml pre-warmed LB medium was added and the cells

were incubated at 37�C and 450 rpm. Cells were pelleted, plated on LB plates containing

50 µg/ml kanamycin and incubated at 37�C ON. Received clones were restreaked on LB

plates containing 50 µg/ml kanamycin and incubated at 37�C ON. Correct clones were

verified by PCR and kanamycin cassette was excised using FLP recombinase ([184]; see

section 14.3.5).

14.3.3 P1 transduction

P1 transductions were performed to transfer knockouts from the Keio collection [142] into

W3110 and W3110RH , or to transfer self-made knockouts or genomically tagged genes

within a strain background. Donor and acceptor strains were grown overnight in 5 ml

LB supplied with 50 µg/ml kanamycin (for donor strains). 1 ml of acceptor culture was

centrifuged at 2700 rpm for 5 min in a tabletop centrifuge and the pellet was resuspended

in 500 µl P1 bu↵er. Overnight cultures of donor strains were diluted 1:100 in two cultures

with 5 ml fresh LB supplied with 50 µg/ml kanamycin, 5 mM CaCl2 and 0.2 % glucose and

grown at 37�C in a rotary shaker. After 30 min, one donor culture was mixed with 100 µl

P1 lysate from a previous P1 transduction. After additional 3 h at 37�C, the lyzed donor

culture was sterile-filtered. 100 µl lysate were mixed with 100 µl pre-treated acceptor cell

suspension and incubated at 37�C and 250 rpm. After 30 min, 1 ml LB containing 10

mM sodium citrate were added to the cell suspension and cells were incubated at 37�C

and 250 rpm for additional 30-60 min. Cells were pelleted at 13,000 rpm in a tabletop

centrifuge, resuspended in 50-100 µl 1 M sodium citrate, plated on LB plates containing

50 µg/ml kanamycin and incubated at 37�C overnight. Received clones were restreaked

on LB plates containing 50 µg/ml kanamycin and incubated at 37�C ON. Correct clones

were verified by PCR and kanamycin cassette was excised using FLP recombinase ([184];

see section 14.3.5).

14.3.4 Genomic tagging

Genomic fusions of YjdA and YegE to YFP were made using plasmids pKD13-YjdA-YFP

and pKD13-YegE-YFP from H. Li according to a protocol derived from [185]. Briefly,

receiver strains were co-transformed with the pKD13-derivative plasmids and the helper

plasmid pACBSR using the TSS method. Transformants were selected at 37�C ON on

LB plates containing 50 µg/ml kanamycin, 100 µg/ml ampicillin and 34 µg/ml chloram-

phenicol. One colony was resuspended in 1 ml LB containing 0.2 % arabinose, 50 µg/ml

kanamycin and 34 µg/ml chloramphenicol. The cell suspension was incubated at 37�C on



14.4. Growth conditions 117

a rotating wheel for 8-10 h. Cells were pelleted by centrifugation at 13,000 rpm in a table-

top centrifuge and plated on LB plates containing 0.01 % arabinose, 50 µg/ml kanamycin

and 13.3 µg/ml chloramphenicol. Recombinants were selected at 37�C ON, restreaked on

LB plates containing 50 µg/ml kanamycin and incubated at 37�C ON. Correct clones were

verified by PCR and kanamycin cassette was excised using FLP recombinase ([184]; see

section 14.3.5). pACBSR was lost during sequential growth under non-selective conditions

at 42�C. Loss of resistances was confirmed by growth at 30�C.

14.3.5 Cross-out of kanamycin resistance cassette

To cross out the kanamycin resistance cassette introduced by the one-step method for

inactivation of genes or by P1 transduction, KanR-strains were transformed with plasmid

pCP20 [184] and grown at 30�C. pCP20 was lost during sequential growth under non-

selective conditions at 42�C. Loss of resistances was confirmed by growth at 30�C.

14.4 Growth conditions

14.4.1 Planktonic cultures

For experiments with planktonic cultures, overnight cultures of W3110 and W3110RH were

grown at 30�C and 200 rpm in 10 ml TB or in on a rotary wheel in 5 ml TB supplemented

with appropriate antibiotics, if required. Overnight cultures were diluted 1:50 or 1:100 in

10 ml fresh TB supplemented with appropriate antibiotics and indicated IPTG or arabinose

concentrations for induction, if required. Cells were grown at 30�C and 200 rpm until they

reached the indicated OD600. Cells were harvested at 3,200 g for 5 min, washed once in

Tethering bu↵er by resuspension in bu↵er followed by centrifugation, and incubated for 20

min at 4�C in Tethering bu↵er. Alternatively, cells were harvested as described above and

resuspended in Motility bu↵er (for attachment experiments) and incubated for 20 min at

4�C.

14.4.2 Static biofilm growth

For biofilms of W3110 and W3110RH , precultures were grown in 1 ml TB / well in 24-well

plates from Corning R� Costar R� (Corning Inc.) at 30�C or 26�C for 48 h under static

conditions. OD600 of precultures was determined and cultures were diluted to an OD600 of

1 in TB. W3110 cultures were further diluted to an OD600 of 0.1 in M9 medium, W3110RH

cultures to an OD600 of 0.05 in TB. For mixed culture experiments, di↵erently labeled

strains were mixed at indicated ratios. 125 µl cells were seeded per well in 96-well plates

from Corning R� Costar R� (Corning Inc.), ibidi R� (ibidi GmbH) or BD FalconTM (Becton,

Dickinson and Co.). For confocal imaging, 125 µl cells were seeded into wells of 8-well

slides from ibidi R� (ibidi GmbH), which were placed into sterile petridishes containing

moist tissue. On plates / slides used for imaging, additional 175 µl medium were added to

the cells. On plates used for CV staining, outer wells of plates were filled with 200 µl sterile
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H2O. 96-well plates and petridishes were sealed with parafilm and biofilms were grown at

30�C or 26�C for the indicated time. Media were supplied with appropriate antibiotics

and/or IPTG or arabinose.

14.4.3 Attachment of planktonic cells

Cells were grown and harvested as described in section 14.4.1. OD600 of cells in Motility

bu↵er was adjusted to 0.4 and di↵erently labeled wild type and mutant cells (or wild type

control) were mixed 1:1. 200 µl cells were seeded in 96-well plates from ibidi R� (ibidi

GmbH) and cells were allowed to attach to the surface of the well for the indicated time

(2 min - 1 h). Unattached cells were removed by washing three times with Motility bu↵er.

Attached cells were imaged in 200 µl Motility bu↵er and the number of attached cells was

quantified as described in 14.5.4.

14.4.4 Centrifugation-enforced cell attachment

Both, cells of mixed cultures labeled with di↵erent fluorophores prepared as for biofilm

experiments (see section 14.4.2) and 1:1 mixtures of cells from planktonic cultures, grown

as described in section 14.4.1 were centrifuged on 96-well plates from ibidi R� (ibidi GmbH)

or BD FalconTM (Becton, Dickinson and Co.) for 2 min at 650 g. For centrifugation, OD600

of planktonic cells in motility bu↵er was adjusted to 0.1. After centrifugation, cells were

either washed with tethering bu↵er (biofilm cells) or motility bu↵er (planktonic cells),

and imaged directly. Alternatively, biofilm culture cells were washed with the respective

medium and incubated for 24 h at 30�C in medium supplied with ampicillin and IPTG

before being washed and imaged in tethering bu↵er.

14.4.5 Soft agar plates

To analyze swimming of cells in soft agar, 3 µl overnight culture grown in LB at 37�C were

spotted on plates containing TB with 0.3 % agar. If required, soft agar was supplied with

100 µg/ml ampicillin and IPTG as indicated. Plates were incubated at 34�C for 6-8 h.

14.5 Quantification of biofilm growth and surface attachment

14.5.1 Crystal violet staining of biofilms

Biofilms were washed three times with 200 µl sterile H2O and stained with 200 µl 1

% crystal violet (CV) for 20 min at RT. CV was removed and biofilms were washed

sequentially with with 200 µl sterile H2O until no further destaining was visible. Plates

were dried ON at RT and CV was dissolved in 200 µl 96 % ethanol for 1 h at 150 rpm.

Absorption was measured in a plate reader (Appliskan R�, Thermo Scientific; Omega, BMG

LABTECH; Tecan infinite R� M1000 or Tecan infinite R� M1000PRO, Tecan) at 600 nm.

Blank values were obtained from wells with an empty medium control, which was treated

the same way as the samples. Blank values were subtracted from the raw values of the
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samples, which were then normalized to the wild-type control. For normalization of CV

values to the OD600 of the biofilm culture, OD600 was measured before washing and staining

with CV. Blank OD600 values were subtracted and CV�blank
OD600�blank were calculated.

14.5.2 Staining with wheat-germ agglutinin (WGA)

The protocol for biofilm staining with fluorescently labeled WGA was adapted from ref-

erences [186, 187]. Biofilms grown in 96-well plates were washed three times with PBS.

200 µl WGA-Alexa488 conjugate (Molecular Probes; 5 µg/ml in PBS) were added to the

attached cells and plates were incubated at 2 h and 4�C in darkness. Unbound dye was

removed by pipetting and three times washing with PBS. Plates were air-dried for 15 min

at RT and the probe was solubilized with 200 µl 33 % acetic acid. Plates were thoroughly

sealed with parafilm and sonicated for 30 sec in a waterbath. Plates were incubated for 1

h at 37�C followed by a second 30 sec sonication step. 150 µl were transferred in a black

glass bottom plate (Matrical Bioscience) and fluorescence was measured at Ex495/Em520

in a plate reader.

14.5.3 BacTiter Glo

Cell viability was assessed using the Promega BacTiter-GloTM Microbial Cell Viability

Assay. With this assay, relative ATP content of cells is measured with a luminescent

signal. BacTiter-GloTM bu↵er and substrate were thawed and equilibrated to RT. Bu↵er

was mixed with substrate and vortexed gently to mix reagents homogeneously. Biofilms

were grown in white 96-well plates (Greiner) and washed three times with PBS. 100 µl

fresh growth medium and 100 µl BacTiterGlo solution were added. Plates were incubated

shortly on an orbital shaker to mix the solutions and incubated at RT for 5 min in darkness.

Luminescence was measured in a plate reader.

14.5.4 Quantification of attached cells by microscopy

Attachment to the surface of microscopy plates was quantified both for biofilms and for

attachment experiments with planktonic cultures. For that, wild-type and mutant strains

were labeled with two di↵erent fluorescence proteins and mixed 1:1. As a control, wild

type cells with one label and wild type cells with the other label were used. Two di↵erent

methods were applied for quantification: Quantification of cell numbers and quantification

of the area covered by attached cells (see also Fig. 14.2).

For quantification of cell numbers, cells were identified in brightfield images using a self-

written macro in ImageJ (http://imagej.nih.gov/ij/). Briefly, brightfield images were tran-

formed to 8-bit images, smoothed with a mean filter, and thresholded with Otsu’s threshold

clustering algorithm [188]. Cells were identified in the thresholded image with the Ana-

lyze particle-function using the following settings: size = 30 � 170 pixel circularity =

0.40�1.00. Selections were checked in the brightfield images and, if required, faulty struc-

tures were excluded from the analysis. ROIs (regions of interest, i. e. the segmented
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cells) were overlaid on the fluorescence images and fluorescence intensities were measured.

Additionally, background fluorescence in all channels was measured. Further analysis was

performed in Microsoft R� Excel R� 2008 for Mac (version 12.3.6) and KaleidaGraph (ver-

sion 4.0.3). Background fluorescence was subtracted and ratios of fluorescence intensities

in the two channels corresponding to mutant (or wild type control) in channel 1 and the

wild type in channel 2 were calculated. Based on the ratios, segmented cells could be

assigned to either one of the channels: channel1
channel2>1 and channel1

channel2<� 1 =) cell belongs to

channel 1; 1> channel1
channel2> � 1 =) cell belongs to channel 2. Values >0 occur, when the

background value of the selected ROI used for background measurement is below the mean

fluorescence value of a segmented cell in that channel. Ratios of mutant
wildtype were further nor-

malized to the ratio of wildtype
wildtype , meaning that in the quantification, wild type corresponds

to 1.

For quantification of the area covered by attached cells, a threshold was computed for

fluorescence images. For that, either the Otsu’s method for thresholding [188] or the

Minimum white-method [189] were used. Cells were identified in the thresholded im-

age with the Analyze particle-function using the following settings: size = 0 � Infinity

circularity = 0.00 � 1.00. In this way, all structures, including single cells and cell ag-

gregates, were identified and their total area was measured. The selections were checked

in the fluorescence images. Further analysis was performed in Microsoft R� Excel R� 2008

for Mac (version 12.3.6) and KaleidaGraph (version 4.0.3). Ratios of the area covered by

cells to the total area of the image were calculated and area fractions of mutants to wild

type were calculated. As above, mutant
wildtype were further normalized to the ratio of wildtype

wildtype ,

meaning that in quantification, wild type corresponds to 1.

Exception: In figure 6.11, attached cells were identified and segmented in the fluores-

cence channels as described above, however, identification of single cells with the Analyze

particle-function was performed with settings similar to the identification of cells in the

brightfield image.

14.6 Measurements of swimming speeds and tracking

14.6.1 Tracking experiments

All tracking experiments were performed and analyzed by Remy Colin according to his

protocol, as follows: Cells were grown as described in section 14.4.1 and harvested at OD600

of approx. 0.6 and 1.0 by centrifugation at 1,300 rcf for 5 min. Cells were resuspended in

motility bu↵er and stored at 4�C for 20 min. Cell suspensions were diluted to OD600 of

0.02 and 0.005. A small droplet of 4 µl cell suspension was trapped between a slide and

a coverslip sealed with grease in a way, that su�cient air was between the slide and the

coverslip. Swimming bacteria were observed and recorded at the bottom surface of the

sample, which is hydrophilic, using a phase contrast microscope at 10x magnification (NA

0.3) and a Mikrotron Eosens camera (1 px = 0.7 µm) running at 100 frames per seconds

(fps) for 30 seconds. Tracking was done with the Mosaic analysis program [190] running as
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Fig. 14.2. Image analysis to quantify cell attachment:
(A) Exemplary images to demonstrate segmentation of single cells. Cells were identified in
brightfield images and cell outlines were overlaid on fluorescence channels. Fluorescence inten-
sities of selected cells were measured in each channel.
(B) Exemplary images demonstrating segmentation of cells and cell aggregates. Cells and aggre-
gates were identified in each fluorescence channel and area of segmented objects was measured.
Segmented areas were overlaid on fluorescence images.

an ImageJ plugin, trajectories were extracted and analyzed using custom-made algorithms

running as ImageJ plugins, to evaluate tumbling rate, run speeds, trajectory duration and

lengths.

14.7 Bacterial Two-Hybrid Assay

Bacterial two-hybrid assays were performed with the adenylate cyclase deficient E. coli

strain BTH101 from the Euromedex bacterial two-hybrid (Bacterial Adenylate Cyclase-

based Two-Hybrid, BACTH) system. The system is based on the reconstruction of the

catalytic domain of adenylate cyclase (CyaA) from Bordetella pertussis consisting of two

adenylate cyclase fragments (T18 and T25) [165, 166]. These fragments are fused to two

proteins of interest. If the proteins interact, adenylate cyclase activity can be detected. If

the two proteins do not interact, the T18 and T25 fragments are physically separated and

adenylate cyclase activity cannot be reconstructed (see Figure 14.3). In case of positive

interactions, cAMP is produced and binds to the catabolite gene activator protein (CAP).

The cAMP-CAP complex leads to the transcription of cAMP-CAP-dependent genes, such

as lacZ in E. coli. Therefore, �-Galactosidase expression is dependent on the interaction

of the two proteins of interest and can be used as a reporter.

Plasmids pKT25-zip and pUT18C-zip, in which the leucine zipper of GCN4 is fused to

the T25- and T18-fragments, were used as positive controls. To test the interactions

between YjdA and YegE, YjdA and HflKC, YegE and HflKC, YjdA and YcgR, and YegE

and FliF, the genes were cloned into pKT25, pKNT25, pUT18 and pUT18C vectors,

respectively (pVM65-pVM79, for details see Appendix, table B.3 for plasmids). T25-

and T18-plasmids were co-transformed into strain BTH101 and grown ON at 37�C on LB-

plates containing 100 µg/ml ampicillin and 50 µg/ml kanamycin. Empty vectors were used

as negative controls, pKT25-zip and pUT18C-zip as positive controls. Transformants were
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restreaked on LB-plates containing 100 µg/ml ampicillin, 50 µg/ml kanamycin, 100 µg/ml

streptomycin, 40 µg/ml X-Gal (5-bromo-4-chloro-3-indolyl-�-D-galacto-pyranoside) and

500 µM IPTG in a way, that 1 strain covered a quarter of an agar plate. After growth ON

at 30�C, cells were scratched from agar plates and resuspended in 1 ml LB-medium. Cell

suspensions were diluted to an OD of 0.1 and 10 µl were spotted on LB-plates containing

100 µg/ml ampicillin, 50 µg/ml kanamycin, 100 µg/ml streptomycin, 4 µg/ml X-Gal and

500 µM IPTG. Plates were incubated at 30�C and 26�C for 48h. Plates were imaged using

a Nikon 5300d camera.

T25
T18

A B

T18T25

x y

ATP cAMP

C cAMP

CAP CAP

cAMP-CAP promotor

CAP CAP
lacZ

β-Galactosidase

Fig. 14.3. Overview of the principle of the BACTH-assay:
(A) If the two domains T25 and T18 of the Bordetella pertussis adenylate cyclase CyaA are
expressed as separate polypeptides in a cya deficient E. coli strain, no cAMP can be produced.
(B) If the T25 and T18 domains are fused to two interacting proteins x and y, CyaA activity is
reconstructed and cAMP is produced.
(C) cAMP binds to the catabolite gene activator protein (CAP) and the cAMP-CAP complex
binds to cAMP-CAP-dependent promoters. Amongst other genes, lacZ in E. coli is under the
control of cAMP-CAP complex, which allows the use of �-Galactosidase activity as a readout
for protein interactions.

14.8 Microscopy

14.8.1 Widefield microscopy

Widefield microscopy was used to investigate expression and localization of fluorescent

fusion proteins, to monitor promoter activation, and to quantify surface attachment.

Widefield microscopy experiments were performed on a Zeiss Observer Z1 microscope

equipped with an ORCA CCD camera (Hamamatsu) and 40x NA 0.75 and 100x NA 1.46

objectives, using mCherry (Ex572/25, Em645/90), GFP (Ex470/40, Em525/50), YFP

(Ex500/25, Em535/30) and CFP (Ex436/25, Em480/40) filter sets. Images were taken

with the AxioVision software. Alternatively, an IX81 microscope equipped with an EM-
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CCD camera (Hamamatsu C9100), 20x (Olympus UPLSAPO NA 0.75) or 40x (Olympus

UPLSAPO NA 0.95) objectives, and mCherry (Ex562/40, Em641/75), GFP (Ex474/23,

Em525/45), YFP (Ex504/12, Em535/22) and CFP (Ex434/17, Em479/40) filters, or on an

Olympus IX81 microscope equipped with an ORCA-R2 camera (Hamamatsu), a 40x (UP-

LSAPO NA 0.95) objective, and mCherry (Ex572/35, Em641/75) and GFP (Ex470/40,

Em520/35) filters was used. For Olympus microscopes, the Xcellence rt software (Olym-

pus) was used. Images were analyzed using ImageJ (http://imagej.nih.gov/ij/).

Quantification of expression levels of CFP fusions: Fluorescence microscopy was

used to quantify expression levels of protein fusions to CFP. Briefly, cells were grown as

described in section 14.4.1 until OD600 0.6 and 1 ml culture was washed three times in

tethering bu↵er and resuspended in 1 ml bu↵er. After 20 min in the fridge, 2-5 µl cells were

imaged on a 1 % agar pad (prepared in tethering bu↵er) on a microscopy slide. A strain

with known CFP levels at given induction (HCB33 with plasmid pDK2, [191]) was used as

a positive control, the wild type strain as a negative control. To quantify expression levels,

cells were segmented in the brightfield image as described in section 14.5.4. Masks were

overlaid on fluorescence images and mean fluorescence of cells was measured. Following

analyses were carried out in Microsoft R� Excel R� 2008 for Mac (version 12.3.6). Expression

levels were chosen to have between 4000 and 9000 fusions per cell, if possible (see table

14.6). At least two biological replicates were used to determine induction conditions.

Tab. 14.6. Quantification of CFP-fusion expression levels

Plasmid Strain Fusion protein Arabinose Mean fusion

number ± StDev

CFP-YjdA-pDK6 W3110RH CFP-YjdA 0.005 % 6287 ± 380

pVM15 W3110RH CFP-YjcZ 0.005 % 5385 ± 1370

pVM18 W3110RH YjcZ-CFP 0.001 % 4424 ± 823

pHL14 W3110RH MotA-CFP 0.001 % 8926 ± 480

pVM41 W3110RH YegE-CFP 0.01 % 8267 ± 1378

Imaging of planktonic cells: Planktonic cultures were grown as described in 14.4.1.

1 ml planktonic culture was washed three times in tethering bu↵er, resuspended in 1 ml

bu↵er and 2-5 µl imaged on a 1 % agar pad (prepared in tethering bu↵er) on a microscopy

slide.

Imaging of attached cells: Biofilms were grown in 96-well plates from BD FalconTM or

ibidi R� as described in section 14.4.2. Biofilms were washed three times in 200 µl tethering

bu↵er and imaged in 200 µl fresh tethering bu↵er. Cells for attachment of planktonic

cultures were prepared as described in 14.4.3.
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Promotor activation assays: Biofilms were grown in 96-well plates from ibidi R� as

described in section 14.4.2. Biofilm supernatant cells were removed and washed in tethering

bu↵er. SN cells were imaged on on a 1 % agar pad (prepared in tethering bu↵er) on a

microscopy slide. Biofilms were washed three times in 200 µl tethering bu↵er and imaged

in 200 µl fresh tethering bu↵er.

14.8.2 Confocal microscopy

Confocal microscopy was used to investigate the three-dimensional structure of static

biofilms.

Biofilms for confocal imaging were grown as described in section 14.4.2 in 8-well slides

from ibidi R� for 48 h. Unwashed biofilm cultures were imaged directly. Confocal imaging

was performed on a Zeiss LSM 780 confocal microscope using a C-Apochromat 40x/1.2 W

Korr-UV-VIS-IR objective and the Zeiss ZEN2012 software. Biofilms labeled with GFP

or mCherry were recorded as z-stacks with dimensions of x=142 µm, y=142 µm and z=80

µm using a 561 nm and a 488 nm laser and 493-556 and 578-696 filters. Images were

analyzed using the Zeiss ZEN2010 software.

14.8.3 TIRF microscopy

TIRF (Total internal reflection fluorescence microscopy) was used to analyze the interac-

tions between YegE, HflKC and YjdA in more detail.

For TIRF, cells were grown in planktonic cultures as described in section 14.4.1 and

washed three times with tethering bu↵er. 2-5 µl cell suspension were imaged on a 1

% agar pad (prepared in tethering bu↵er) on a microscopy slide. TIRF imaging was

performed on a Olympus IX81 inverted microscope equipped with an Olympus cellTIRF

4-Line Motorized TIRF Combiner, an Olympus XM10 camera, a Cell⇤ 488 nm/100 mW

laser controlled by the Xcellence rt software (Olympus) and a 561 nm Lambda 1 100

mW laser controlled by Omicron Control Center, and a PLAPO 100x/1.45 Oil DIC

objective using a TIRF Quadband filter. Images were acquired with the Xcellence rt

software (Olympus) and analyzed using ImageJ (http://imagej.nih.gov/ij/). Bleaching

during time-lapse movies was corrected with the Histogram matching method from the

Bleach corrector-ImageJ plugin developed by Kota Miura from the EMBL, Heidelberg

(http://cmci.embl.de/downloads/bleach corrector).

14.8.4 FRET

Acceptor photobleaching Fluorescence resonance energy transfer (FRET) was used to in-

vestigate protein interactions (see figure 14.4).

Cells were grown as described in section 14.4.1 until OD600 0.6 and 10 ml culture were

washed and resuspended twice in 10 ml tethering bu↵er. After 20 min in the fridge, 1
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Fig. 14.4. Overview of acceptor photobleaching FRET:
(A) FRET occurs upon CFP excitation between CFP and YFP if the distance between the
fusion proteins is <10 nm. In acceptor photobleaching FRET, the YFP is bleached with a
laser, which leads to dequenching of the CFP resulting in an increase in CFP emission.
(B) Example of a typical FRET measurement showing CFP emission before and after bleaching
of YFP.
(C) Set-up of the used microscope. In black, settings of the Zeiss Axiovert setup are shown, in
red settings of the Olympus IX81 microscope (Image was adapted from [193]).

ml cell suspension was concentrated and applied on a thin 1 % agarose pad prepared in

tethering bu↵er. FRET of a monolayer of cells was measured on a Zeiss Axiovert 200

microscope equipped with a 532 nm diode laser (Rapp OptoElectronic) and a H7421-40

photomultiplier (Hamamatsu) and on an Olympus IX81 microscope equipped with an with

a 515 nm laser (Cobolt Fandango 100) and a two-photon counter (Hamamatsu) using the

Xcellence rt software (Olympus) and LabView 7.1 (National Instruments) as described

previously [192]. CFP emission was measured with 1 sec integration time before and after

bleaching of YFP for 20 sec with a 515 nm or 532 nm laser and FRET e�ciency was

calculated as the increase in CFP signal divided by the CFP signal after bleaching (see

equation 14.4).
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14.9 FACS

Flow cytometry was used to quantify YFP expression levels of protein fusions to YFP or

to monitor activity of promoters using GFP-reporters.

14.9.1 Quantification of expression levels of YFP fusions

YFP fluorescence of protein fusions was measured either on a FACScan (BD Biosciences)

or on a BD FACS Canto R� II equipped with a 488 nm laser. For FACS, strains with

YFP-fusions were grown as described in section 14.4.1 until OD600 0.6 and 1 ml culture

was washed three times in tethering bu↵er and resuspended in 1 ml bu↵er. The cell

suspension was incubated at 4�C for 20 min and diluted 1:20 in 2 ml tethering bu↵er.

Fluorescence of 55,000 counts was measured on the FACScan using the CellQuestTM Pro

4.0.1 software (BD Biosciences) or 10,000 counts on the BD FACS Canto R� II using the

FACSDiva R� Software. To quantify YFP levels, a strain with known fusion levels was used

as a positive control (HCB33 with plasmid pVS18) and the wild type strain served as a

negative control. For all plasmids, at least two independent biological replicates were used

for quantification. Subsequently, inductions for microscopy were chosen in a way that the

number of fusions per cell was approx. between 4000 and 9000 (see table 14.7).

Tab. 14.7. Quantification of YFP-fusion expression levels

Plasmid Strain Fusion protein IPTG Mean fusion

number ± StDev

pVM13 W3110 YegE-YFP 1 µM 5975 ± 371

pVM13 W3110RH YegE-YFP 1 µM 4165 ± 247

YFP-YjdA-pDK4 W3110RH YFP-YjdA 15 µM 7093 ± 515

YjdA-YFP-pDK66 W3110RH YjdA-YFP 0 µM 9321 ± 1387

YjdA-YFP-pDK66 W3110RH �yjdA YjdA-YFP 0 µM 9263 ± 2656

pVM38 W3110RH �yjdA YjdAT103D-YFP 0 µM 7447 ± 1475

pVM39 W3110RH �yjdA YjdAK72A-YFP 0 µM 7093 ± 1113

YjcZ-YFP-pDK66 W3110RH YjcZ-YFP 15 µM 5505 ± 687

pHL55 W3110RH YFP-YcgR 20 µM 6539 ± 1520

14.9.2 Promotor activation assays

To quantify expression of biofilm matrix genes, promotor activity was measured using

GFP reporters on the BD FACS Canto R� II using the FACSDiva R� Software. Planktonic

cultures were grown as described in section 14.4.1 until OD600 0.6, 1 or 2. Planktonic

cultures were washed and samples were prepared as described above, except that cells at

OD600 1 and 2 were diluted 1:40 and 1:80. Biofilms were grown as described in 14.4.2 on

ibidi R� 96-well plates. Biofilm cells were collected (supernatant and attached cells) and
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washed three times in Tethering bu↵er. After 20 min at 4�C, cells were diluted 1:20 and

fluorescence was measured on the BD FACS Canto R� II using the FACSDiva R� Software.

14.10 Data analysis

All experiments were performed in at least two biological replicates. Mean values of repli-

cates were calculated with Eq. 14.1.

x̄ =
1

n

nX

i=1

xi (14.1)

The di↵erences between replicates were calculated with the standard deviation (see

Eq. 14.2) or the standard error (see Eq. 14.3).

The standard deviation is defined as:

s =
p
s2 =

vuut 1

n� 1

nX

i=1

(xi � x̄)2 (14.2)

The standard error is defined as:

sx̄ =
sp
n

(14.3)

FRET e�ciency in acceptor photobleaching experiments was calculated as follows:

EFRET =
�C

C0
(14.4)

with �C being defined as

�C = C0 � C (14.5)

with C0 being the CFP signal after bleaching (=CFP without FRET) and C the CFP

signal before bleaching. For more detail about FRET e�ciencies see reference [194].
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Fig. A.1. Smooth swimming promotes early biofilm formation:
Early biofilm formation of mixed cultures of W3110 wild type, �cheA and �cheY on ibidi
imaging plates. Wild type cells were mixed with wild type or mutant cells 1:1 and mixed biofilm
cultures were grown in M9 at 30�C for the indicated time. Non-attached cells were removed
and attached cells were imaged. Experiment is the same as in figure 6.6 C, but attached cells
were quantified as in figure 6.9 E.
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Fig. A.2. Motility regulation by c-di-GMP alters biofilm formation in W3110:
Early biofilm formation of W3110 wild type, �yhjH, �yegE and �ycgR in M9 medium at 30�C.
Biofilms were formed on 96-well Corning R� Costar R�plates and stained with crystal violet (CV).
CV was normalized to the OD600 of the culture before washing and CV/OD ratios were further
normalized to the CV/OD of the wild type. Experiment is the same as in figure 6.9 C.
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Fig. A.3. Swimming behavior of planktonic W3110 cells with defects in c-di-GMP
signaling:
Trajectory duration of W3110 wild-type, �ycgR,�yegE and�yhjH grown in planktonic culture
until OD600 0.6 and 1. Shown are mean and standard error of three replicates. Experiment was
performed by Dr. Remy Colin.
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Fig. A.4. In W3110RH early biofilm formation, surface sensing of flagella does not
seem to play a role:
(Continued on the following page.)
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Fig. A.4. (Continued from previous page.)
GFP-Reporter activity was quantified in 7 h old biofilms of W3110RH grown in TB medium at
30�C on ibidi imaging plates. Fluorescence intensity (FI) was quantified in attached (biofilm)
and supernatant (SN) cells.
(A-B) Activity of the csgD promoter expressed from plasmid pVM49. Shown are mean and
standard error of three replicates.
(C-D) Activity of the pgaA promoter expressed from plasmid pVM53. Shown are mean and
standard error of three replicates.
(E-F) Activity of the csgD, pgaA and wzxC (expressed from plasmid pVM55) promoters in 24
h (E) and 48 h (F) old biofilms. Unattached biofilm cells were removed and attached cells were
imaged. Control: empty reporter plasmid.
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Fig. A.5. Curli is the main structural part of the W3110RH biofilm matrix (addi-
tional replicates):
Confocal images of 48 h old biofilms of W3110RH wild type (A), �csgA (B), �pgaC (C) and
�wcaF (D). Images of additional biological replicates to replicates in figure 7.2 are shown. Di-
mensions of bounding box (x:y:z): 142:142:80 µm.
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Fig. A.6. Curli is the main structural part of the W3110RH biofilm matrix (orthog-
onal views):
Confocal images of 48 h old biofilms of W3110RH wild type (A), �csgA (B), �pgaC (C) and
�wcaF (D). Orthogonal views of images shown in figures 7.2 and A.5 are shown. Dimensions
(x:y:z): 142:142:80 µm.
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Fig. A.7. Role of E. coli adhesins in three-dimensional structure formation (addi-
tional replicates):
(Continued on the following page.)
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Fig. A.7. (Continued from previous page.)
Confocal images of 48 h old biofilms of W3110RH wild type (A), �sfmA (B), �ybgP (C),
�yraH (D), �yehB (E), �yfaL (F), �ycgV (G), �fimA (H) and �flu (I). Images of additional
biological replicates to replicates in figure 7.3 are shown. Dimensions of bounding box (x:y:z):
142:142:80 µm.

A
∆sfmA

B
∆ybgP

C
∆yraH

xz xz xz

yz yz yzxy xy xy

xz xz xz

yzxy xy xy

xz xz xz

yzxy xy xy

∆yraH∆yraH

∆ybgP∆ybgP

∆sfmA∆sfmA

D
∆yehBxz xz xz

yzxy xy xy

∆yehB∆yehB



139

E
∆yfaL

F

∆ycgV

G

∆fimA

xz xz xz

yz yz yzxy xy xy

xz xz xz

yzxy xy xy

xz xz xz

yzxy xy xy

∆fimA∆fimA

∆ycgV∆ycgV

∆yfaL∆yfaL

H

∆fluxz xz xz

yzxy xy xy

∆flu∆flu

Fig. A.8. Role of E. coli adhesins in three-dimensional structure formation (or-
thogonal views):
Confocal images of 48 h old biofilms of W3110RH �sfmA (A), �ybgP (B), �yraH (C), �yehB
(D), �yfaL (E), �ycgV (F), �fimA (G) and �flu (H). Orthogonal views of images shown in
figures 7.3 and A.7 are shown. Dimensions (x:y:z): 142:142:80 µm. Images of additional bi-
ological replicates to replicates in figure 7.3 are shown. Dimensions of bounding box (x:y:z):
142:142:80 µm.
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Fig. A.9. Motility of E. coli adhesins knockouts:
Swimming of the E. coli adhesins knockouts �fimA, �sfmA, �ybgP, �yraH, �yehB, �yfaL,
�ycgV and �flu on soft agar plates.
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Fig. A.10. Role of motility in three-dimensional structure formation (additional
replicates):
Confocal images of 48 h old biofilms of W3110RH wild type (A), �fliC (B), �motA (C) and
�cheZ (D). Images of additional biological replicates to replicates in figure 7.4 are shown.
Dimensions of bounding box (x:y:z): 142:142:80 µm.
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Fig. A.11. Role of motility in three-dimensional structure formation (orthogonal
views):
Confocal images of 48 h old biofilms of W3110RH wild type (A), �fliC (B), �motA (C) and
�cheZ (D). Orthogonal views of images shown in figures 7.4 and A.10 are shown. Dimensions
(x:y:z): 142:142:80 µm.
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Fig. A.12. Curli expression levels change in W3110RH �fliC and �motA:
Relative Curli expression was determined with a genomic csgBA::STOP::sfgfp-reporter using
flow cytometry. Cells were either grown in planktonic cultures to OD600 1 and 2 or in biofilm
cultures for 48 h. Fluorescence was measured in tethering bu↵er. For biofilms, both surface-
attached and unattached cells were measured. Shown are mean and standard error of two
(planktonic cultures) and four (biofilm) biological replicates.
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Fig. A.13. Flagella-less cells can partially integrate into three-dimensional struc-
tures of W3110RH wild type (additional replicates):
Confocal images of 48 h old biofilms of di↵erent mixtures of W3110RH wild type and �fliC.
Wild type and �fliC cells labeled with di↵erent fluorescent proteins were mixed as indicated
and biofilms of mixed cultures were grown. Additional replicates to the images shown in figure
7.5 are shown. For (B), only a technical replicate is shown.
(A) Wild type cells labeled with mCherry (magenta) and GFP (green) were mixed 1:1.
(B) Wild type cells labeled with mCherry (magenta) and GFP (green) were mixed 1:4.
(C) �fliC cells labeled with mCherry (magenta) and GFP (green) were mixed 1:1.
(D) �fliC cells labeled with mCherry (magenta) and wild type cells labeled with GFP (green)
were mixed 1:1.
(E) �fliC cells labeled with GFP (green) and wild type cells labeled with mCherry (magenta)
were mixed 4:1.
Dimensions of bounding box (x:y:z): 142:142:80 µm.
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Fig. A.14. Flagella-less cells can partially integrate into three-dimensional struc-
tures of W3110RH wild type (orthogonal views):
(Continued on the following page.)
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Fig. A.14. (Continued from previous page.)
Confocal images of 48 h old biofilms of di↵erent mixtures of W3110RH wild type and �fliC.
Wild type and �fliC cells labeled with di↵erent fluorescent proteins were mixed as indicated
and biofilms of mixed cultures were grown. Orthogonal views of images shown in figures 7.5
and A.13 are shown.
(A) Wild type cells labeled with mCherry (magenta) and GFP (green) were mixed 1:1.
(B) Wild type cells labeled with mCherry (magenta) and GFP (green) were mixed 1:4.
(C) �fliC cells labeled with mCherry (magenta) and GFP (green) were mixed 1:1.
(D) �fliC cells labeled with mCherry (magenta) and wild type cells labeled with GFP (green)
were mixed 1:1.
(E) �fliC cells labeled with GFP (green) and wild type cells labeled with mCherry (magenta)
were mixed 4:1.
Dimensions (x:y:z): 142:142:80 µm.
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Fig. A.15. Role of c-di-GMP in three-dimensional structure formation (additional
replicates):
Confocal images of 48 h old biofilms of W3110RH �yegE (A), �yhjH (B) and �ycgR (C).
Additional replicates to images in figure 7.6 are shown. Dimensions of bounding box (x:y:z):
142:142:80 µm.
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Fig. A.16. Role of c-di-GMP in three-dimensional structure formation (orthogonal
views):
Confocal images of 48 h old biofilms of W3110RH �yegE (A), �yhjH (B) and �ycgR (C).
Orthogonal views of images shown in figures 7.6 and A.15 are shown. Dimensions (x:y:z):
142:142:80 µm.
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Fig. A.17. Role of c-di-GMP in three-dimensional structure formation (24 h):
Confocal images of 24 h old biofilms of W3110RH wild type (A), �yegE (B), �yhjH (C) and
�ycgR (D). Images of two biological replicates are shown. Dimensions of bounding box (x:y:z):
142:142:80 µm.
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Fig. A.18. Role of c-di-GMP in three-dimensional structure formation (24 h, or-
thogonal views):
Confocal images of 24 h old biofilms of W3110RH wild type (A), �yegE (B), �yhjH (C) and
�ycgR (D). Orthogonal views of images shown in figure A.17 are shown. Dimensions (x:y:z):
142:142:80 µm.
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Fig. A.19. Role of motility and c-di-GMP in AR3110 three-dimensional structure
formation (additional replicates):
Confocal images of 48 h old biofilms of AR3110 wild type (A), �fliC (B), �motA (C), �yegE
(D) and �yhjH (E). Additional replicates to the images shown in figure 7.7 are shown. Dimen-
sions of bounding box (x:y:z): 142:142:80 µm.
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Fig. A.20. Role of motility and c-di-GMP in AR3110 three-dimensional structure
formation (orthogonal views):
(Continued on the following page.)
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Fig. A.20. (Continued from previous page.)
Confocal images of 48 h old biofilms of AR3110 wild type (A), �fliC (B), �motA (C), �yegE
(D) and �yhjH (E). Orthogonal views of images shown in figures 7.7 and A.19 are shown.
Dimensions (x:y:z): 142:142:80 µm.
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Fig. A.21. YjdA and YjcZ a↵ect 3D-structure formation in static W3110RH biofilms
similarly to YegE (additional replicates):
Confocal images of an additional biological replicate to the images in figure 8.3. Static sub-
merged biofilms of W3110RH cells labeled with GFP were grown for 24 h.
(A) wild type, (B) �yegE, (C) �yjdA, (D) �yjcZ. Dimensions of bounding box (x:y:z):
142:142:80 µm.
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Fig. A.22. YjdA and YjcZ a↵ect 3D-structure formation in static W3110RH biofilms
similarly to YegE (orthogonal views):
Orthogonal views (xz-, xy-, yz-planes) of the biofilms shown in Figures 8.3 and A.21. Static
submerged biofilms of W3110RH cells labeled with GFP were grown for 24 h.
(A) wild type, (B) �yegE, (C) �yjdA, (D) �yjcZ.
Dimensions (x:y:z): 142:142:80 µm.
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Fig. A.23. YjdA and YjcZ a↵ect 3D-structure formation in static AR3110 biofilms
similarly to YegE (additional replicates):
Confocal images of an additional biological replicate to the images in Figure 8.4. Static sub-
merged biofilms of AR3110 cells labeled with GFP were grown for 48 h.
(A) wild type, (B) �yegE, (C) �yjdA, (D) �yjcZ. Dimensions of bounding box (x:y:z):
142:142:80 µm.
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Fig. A.24. YjdA and YjcZ a↵ect 3D-structure formation in static AR3110 biofilms
similarly to YegE (orthogonal views):
Orthogonal views (xz-, xy-, yz-planes) of the biofilms shown in Figures 8.4 and A.23. Static
submerged biofilms of AR3110 cells labeled with GFP for 48 h.
(A) wild type, (B) �yegE, (C) �yjdA, (D) �yjcZ.
Dimensions (x:y:z): 142:142:80 µm.
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Tab. A.1. Extended hit-list for Pull-Downs of YjdA, YegE, YjcZ, YcgR and FliF:

YjdA YjdA YjdA YjdA YegE YegE YegE YegE YjcZ YjcZ YjcZ YjcZ YcgR YcgR YcgR YcgR FliF FliF FliF FliF 

5 h 5 h 14 h 14 h 5 h 5 h 14 h 14 h 5 h 5 h 14 h 14 h 5 h 5 h 14 h 14 h 5 h 5 h 14 h 14 h

Accession Number - 01 - 02 - 01 - 02 - 01 - 02 - 01 - 02 - 01 - 02 - 01 - 02 - 01 - 02 - 01 - 02 - 01 - 02 - 01 - 02
EFTU1_ECO24 (+6) 23 17 19 22 20 11 13 12 16 18 19 14 23 22 23 15 17 17 17 13
CRFC_ECOLI 58 37 48 61 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ATPB_ECO24 (+19) 20 18 15 24 17 7 10 7 15 5 13 3 28 24 25 22 17 17 17 11
ACEA_ECOL6 (+1) 11 14 19 19 11 13 13 6 16 18 13 5 15 15 12 17 16 17 11 5

CATE_ECOLI 18 15 15 14 12 8 7 4 15 23 25 8 20 20 18 15 17 18 18 7
FLIF_ECOLI 0 0 0 0 4 1 7 1 0 0 0 0 0 1 0 0 27 28 25 27
YEGE_ECOLI 0 0 1 1 54 30 36 25 0 0 0 0 0 0 0 0 0 0 0 0
TNAA_ECO24 (+14) 22 7 12 16 17 3 9 4 16 10 16 7 23 21 10 5 17 10 8 5

RL5_ECO24 (+20) 15 11 6 9 8 3 1 4 8 7 5 0 17 11 11 11 7 5 6 5
GLPK_ECO24 (+12) 27 10 7 9 13 5 2 4 8 6 5 2 30 20 17 12 12 9 5 4
RL6_ECO24 (+20) 13 12 9 10 9 4 4 6 11 9 6 4 12 11 10 8 8 8 5 4
LACI_ECOLI 12 12 8 9 15 9 12 4 10 7 9 6 14 15 12 7 10 11 8 8
FTSH_ECOLI 2 7 11 6 27 20 20 21 1 0 0 0 9 10 7 8 4 5 8 7
FLIC_ECOLI 8 6 6 5 9 5 4 4 14 19 18 16 14 14 8 5 13 9 10 9
OMPA_ECO57 (+1) 5 13 5 7 18 9 12 14 4 6 10 9 12 9 4 7 6 7 4 10
AHPC_ECO57 (+2) 8 10 0 0 7 4 0 2 9 7 3 3 9 8 4 1 8 7 1 1
SDHA_ECO57 (+2) 8 8 5 5 8 8 2 4 17 15 12 9 16 14 7 6 13 14 7 6
RS5_ECO24 (+8) 10 10 7 7 7 6 5 5 5 4 5 2 8 7 9 9 3 4 4 3
LPP_ECO57 (+2) 3 3 4 4 3 3 3 4 3 4 4 4 4 3 3 3 3 3 4 4
ACSA_ECOLI 13 8 12 12 3 6 3 0 9 6 7 0 16 17 14 13 6 6 6 2
HFLK_ECO57 (+1) 1 6 7 3 18 16 17 20 1 0 0 0 2 5 3 6 6 4 7 10
PFLB_ECOLI 2 5 12 13 0 3 4 4 1 2 9 1 11 9 21 20 1 2 6 5
YCGR_ECOLI 3 0 0 0 0 0 0 0 0 0 0 0 15 13 14 7 0 0 0 0
PPSA_ECOLI 23 4 10 18 6 0 0 0 0 0 1 0 27 13 25 18 1 0 3 0
IDH_ECOLI 15 2 8 10 4 0 0 0 5 0 7 0 18 13 14 8 6 3 3 1
YEAG_ECO57 (+2) 5 1 15 21 1 0 0 0 2 0 0 0 16 6 27 21 0 0 2 0
ENO_ECO24 (+20) 5 4 6 10 2 0 1 4 5 6 7 4 10 9 13 7 5 5 6 7
PT1_ECOLI 18 3 11 15 4 0 0 0 2 0 3 0 19 11 22 14 3 1 6 2

PUTA_ECOLI 29 2 2 5 11 0 0 0 3 0 0 0 42 5 16 6 5 0 0 0
CH601_ECOK1 (+19) 10 6 9 7 0 0 7 5 10 5 9 4 10 5 15 20 0 1 4 5
ALDB_ECOLI 10 3 12 14 2 0 4 0 0 0 2 0 15 12 13 9 0 0 1 1
TPX_ECO57 (+2) 7 8 2 3 3 1 2 7 7 7 7 6 6 8 4 6 4 3 6 7
ALDA_ECOLI 6 6 9 8 4 4 5 5 8 9 9 4 13 13 15 7 4 8 6 6
G3P1_ECO57 (+2) 6 16 1 0 6 5 0 0 6 10 2 0 9 11 1 0 5 8 2 0
ADHE_ECO57 (+1) 4 5 5 9 3 2 4 1 5 5 9 7 18 8 10 6 3 2 2 1
MREB_ECOL6 (+1) 8 3 4 11 4 0 1 0 1 0 1 0 11 6 13 13 1 1 2 1
PURA_ECO24 (+20) 19 2 1 3 6 0 0 0 10 0 8 1 19 9 7 2 9 2 1 1
DPS_ECO24 (+18) 5 9 1 3 4 2 3 3 9 8 4 1 9 10 4 3 6 8 1 1
FADB_ECOHS 13 3 2 7 1 0 0 0 0 0 1 0 18 5 21 8 3 2 4 2
HFLC_ECO57 (+2) 1 9 2 4 14 2 5 8 0 0 1 0 2 3 0 2 2 4 2 4
RL11_ECO24 (+19) 5 5 3 2 3 2 3 3 4 4 4 2 4 4 4 4 4 4 4 4
PTA_ECOLI 12 4 10 12 4 1 1 1 1 0 0 0 15 6 19 6 0 1 3 0
SDHB_ECOLI 4 6 0 1 1 0 1 6 6 6 4 4 9 5 7 4 6 2 4 4
ATPA_ECO24 (+19) 8 9 5 4 12 3 6 4 3 0 1 0 8 21 3 2 2 4 1 3
RPOB_ECO24 (+18) 17 3 2 3 1 0 0 1 1 1 1 0 41 8 9 9 1 2 0 0
RS10_ECO24 (+20) 7 5 0 4 5 0 0 3 4 3 1 2 5 4 9 5 3 3 4 1
DNAK_ECO24 (+7) 2 1 2 9 0 2 3 7 4 2 6 4 3 2 5 4 3 4 5 5
RL14_ECO24 (+20) 7 3 2 6 2 1 0 0 2 0 0 0 4 4 6 4 2 1 2 0
RS2_ECO27 (+15) 9 4 5 2 4 1 0 0 1 1 3 0 10 6 4 6 1 0 0 0
TIG_ECO24 (+15) 2 1 1 2 1 2 1 2 4 9 11 6 7 8 2 4 3 4 6 6
OSME_ECO57 (+1) 4 4 3 3 3 0 3 4 4 2 5 5 3 3 4 3 2 2 4 4
RL10_ECO24 (+20) 5 4 2 6 1 0 1 3 2 1 3 1 7 3 4 4 2 3 4 3
DLDH_ECO57 (+2) 4 1 14 12 1 0 3 0 1 0 6 0 11 3 15 9 0 0 3 1

DPPF_ECOLI 3 2 5 6 4 0 3 2 3 0 8 4 3 2 3 4 4 2 5 7
SYGB_ECOBW (+4) 17 1 2 2 5 0 0 0 0 0 0 0 31 6 5 5 0 0 1 0
NUOG_ECOLI 8 2 5 5 4 2 2 0 1 2 11 0 12 5 9 8 4 1 5 3
RHO_ECO57 (+2) 14 7 2 1 7 0 0 0 0 0 2 0 14 10 4 2 4 3 0 0
RECA_ECO24 (+18) 11 0 8 6 4 0 0 0 0 0 1 0 12 7 13 7 1 0 1 0
ARCA_ECO57 (+2) 6 3 0 0 0 0 0 0 3 0 0 0 12 8 4 0 1 0 1 0
RS3_ECO24 (+19) 3 5 3 2 3 1 0 2 1 0 0 0 7 9 5 3 1 1 2 0
MIND_ECO57 (+2) 12 3 2 4 3 0 0 0 1 0 3 0 11 1 10 3 2 1 1 0
ODO2_ECO57 (+1) 10 2 8 11 1 1 0 1 1 1 2 0 5 3 9 6 1 0 2 2
EFG_ECO24 (+20) 2 7 4 1 1 3 5 4 0 2 4 2 4 8 8 5 1 1 1 1
CRP_ECO57 (+2) 10 3 1 1 4 0 0 0 4 0 0 0 9 6 4 3 3 2 3 1
RL4_ECO24 (+20) 6 4 1 1 1 0 0 4 0 1 2 0 5 5 4 4 0 1 2 0
RS11_ECO24 (+20) 7 5 4 3 4 1 1 1 1 1 4 0 6 4 5 4 3 2 3 0
RPOA_ECO24 (+7) 3 3 2 3 2 1 3 1 3 4 4 2 10 5 5 2 4 3 3 1
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RL1_ECO24 (+19) 5 5 3 4 3 3 4 5 1 2 2 4 5 3 5 4 3 2 3 2
USPF_ECOLI 3 2 2 2 2 0 2 3 3 2 3 3 3 3 3 3 3 2 2 2
OMPF_ECOLI 1 6 2 2 8 3 5 3 1 3 2 3 7 2 1 1 4 3 5 3
PAL_ECO57 (+1) 6 3 2 3 4 0 1 6 6 3 2 4 5 4 4 2 2 2 3 3
ODP1_ECO57 (+1) 5 5 4 2 2 1 3 0 2 1 2 0 13 9 5 4 2 2 2 2
NQOR_ECO24 (+17) 8 11 2 2 2 3 1 0 1 2 2 2 9 9 3 2 1 6 1 0
GCST_ECO27 (+4) 3 4 1 1 3 3 2 2 4 6 2 1 5 5 0 1 5 4 1 1
RS17_ECO24 (+20) 5 6 1 3 3 1 0 2 2 2 2 2 2 3 3 3 3 1 3 2
DEOB_ECO24 (+20) 4 3 2 5 2 2 1 0 5 1 2 0 8 7 8 6 2 3 2 0
SPEA_ECOLI 6 2 3 6 0 0 0 0 0 0 1 0 18 3 10 4 0 1 1 0
RS7_ECOBW (+2) 5 3 4 5 1 1 2 2 0 0 1 0 7 6 4 4 0 3 2 1
ACCC_ECO57 (+1) 7 2 0 2 2 0 1 0 5 0 2 0 13 7 5 0 3 0 4 1
YGAU_ECOL6 (+1) 1 1 3 2 1 0 2 8 2 2 8 7 2 2 5 7 1 1 6 4
YGAU_ECOL6 (+1) 1 1 3 2 1 0 2 8 2 2 8 7 2 2 5 7 1 1 6 4
KPRS_ECO57 (+2) 8 3 1 3 1 0 0 0 0 0 0 0 10 4 9 6 1 0 1 0
SUCC_ECO24 (+13) 9 2 1 2 4 1 1 1 3 6 1 0 13 5 6 2 5 3 1 0
OMPR_ECO57 (+2) 9 2 0 1 2 0 0 0 5 0 0 0 11 5 6 3 0 0 0 0
FABI_ECO57 (+1) 6 2 2 2 2 1 1 0 1 1 1 0 9 5 3 1 1 1 2 2
MCP2_ECOLI 1 1 2 2 6 3 6 9 0 1 0 1 4 4 3 1 0 0 2 2
DPPD_ECO57 (+1) 0 1 1 4 0 0 4 3 0 0 8 5 0 0 6 6 1 0 2 3
GYRB_ECO57 (+1) 11 0 3 6 1 0 0 0 0 0 0 0 18 1 13 4 0 0 0 0
PHNB_ECOLI 2 2 2 4 0 0 2 3 0 0 4 3 0 1 3 2 1 0 3 3
HSLU_ECO27 (+9) 4 2 4 3 1 0 0 0 0 0 0 0 11 5 10 6 0 0 1 0
EFTU2_ECO24 2 2 2 1 2 1 2 2 0 0 0 0 1 1 1 1 1 2 2 1
PTW3C_ECOLI 7 5 2 4 9 5 2 2 0 0 0 0 5 2 4 2 0 1 1 1
ETTA_ECO57 (+1) 9 1 4 2 2 0 0 0 0 0 0 0 14 6 5 8 0 0 0 0
FTSZ_ECO57 (+2) 5 1 1 1 1 1 2 1 1 0 0 0 13 4 7 4 3 1 3 2
GATZ_ECO24 (+2) 11 3 2 3 5 0 0 0 3 0 2 0 12 2 9 3 2 0 2 0
GLYA_ECO24 (+19) 3 3 2 1 2 3 0 1 4 3 4 1 5 5 1 1 3 2 1 3
FLGI_ECOSE 0 1 0 0 2 1 1 0 0 0 0 0 1 1 0 0 10 10 5 5
GATY_ECOL6 5 2 1 3 1 0 0 0 0 0 0 0 4 1 5 2 1 1 0 0
YBAY_ECOLI 1 1 0 2 0 0 2 6 2 1 2 3 3 2 0 2 0 0 3 6
RL2_ECO24 (+20) 3 2 2 2 3 0 0 1 0 0 0 1 0 4 4 3 3 2 3 1
NUOCD_ECODH 1 0 0 2 2 0 1 0 2 0 1 0 13 7 6 4 0 0 1 2
CSGD_ECOLI 0 0 1 2 0 0 0 0 0 0 0 0 6 0 11 6 0 0 1 0
PFKA_ECO24 (+16) 3 8 1 1 1 2 0 0 1 4 1 0 4 2 0 0 3 3 1 0
OMPC_ECOLI 0 5 0 1 7 0 4 4 1 1 4 4 2 2 1 2 0 0 6 7
RS4_ECO24 (+20) 5 3 3 2 0 0 0 0 0 0 0 0 3 3 1 3 1 1 1 1
FADH_ECOLI 8 1 3 6 1 0 0 0 1 0 1 0 8 3 7 4 0 0 2 0
ODP2_ECOLI 1 1 12 5 0 0 3 0 0 0 0 0 3 0 15 7 0 0 2 1
LOIP_ECOLI 1 1 2 3 0 0 2 3 2 1 1 3 1 1 5 3 0 1 4 1
CHEA_ECOLI 6 2 0 0 2 1 0 0 0 0 0 0 16 9 0 0 0 0 0 0
RL13_ECO24 (+20) 4 3 3 1 3 0 0 2 0 0 2 1 5 2 3 2 0 0 3 0
DADA_ECO24 (+13) 10 0 0 0 2 0 0 0 2 0 0 0 12 2 5 0 2 0 0 0
YGFZ_ECOSE 1 1 2 5 2 0 1 0 2 0 8 0 1 2 4 4 2 0 3 3
PHOL_ECO57 (+2) 6 2 4 8 2 1 0 0 1 0 1 0 1 5 6 5 0 0 1 0
STHA_ECO24 (+12) 8 0 4 4 1 0 2 0 0 0 1 0 13 1 4 0 1 0 2 0
SYGA_ECOLI 5 2 2 4 1 0 0 0 0 0 0 0 9 2 7 4 0 1 1 0
RL9_ECO24 (+20) 3 3 2 1 0 0 2 5 3 2 2 3 4 3 4 4 2 2 4 3
QUEF_ECOBW (+4) 2 4 0 1 0 0 0 0 2 3 3 0 1 1 0 3 1 2 0 0
RS12_ECO24 (+18) 5 3 3 3 2 2 0 0 0 0 0 0 4 3 4 3 2 2 1 0
KBL_ECO57 (+1) 9 2 3 3 1 0 0 0 0 0 0 0 11 7 3 1 2 1 1 0
FABG_ECOLI 7 5 0 0 2 1 2 1 0 0 1 0 8 7 0 1 0 1 0 0
RL19_ECO24 (+20) 3 3 2 2 2 0 0 1 0 0 1 0 1 2 2 2 1 1 1 0
DNAJ_ECODH (+1) 5 1 2 3 2 0 0 0 2 0 0 0 8 5 6 2 3 1 1 0
RPOC_ECOK1 (+2) 3 3 1 1 2 1 1 0 0 1 0 0 11 2 2 1 1 0 1 0
GALF_ECO57 (+1) 6 1 1 1 2 0 1 0 2 0 1 0 6 2 1 1 1 1 1 1
FABH_ECO24 (+6) 2 2 0 2 1 0 0 1 1 0 4 0 9 1 2 4 1 0 0 1
SYN_ECO24 (+6) 2 3 1 1 5 0 1 0 7 0 0 0 11 5 1 0 5 2 0 0
FABB_ECOL6 (+1) 1 0 2 3 2 0 2 0 0 0 6 0 5 0 5 3 1 0 5 3
NANE_ECO45 (+12) 6 0 1 1 2 0 1 0 4 1 3 0 4 2 4 1 3 2 2 1

RS8_ECO24 (+20) 2 3 2 1 1 1 1 3 2 3 0 0 2 4 2 3 0 3 1 1
YRAP_ECO57 (+2) 3 2 2 3 4 1 2 3 2 0 1 0 1 2 2 2 2 1 1 1
ACRA_ECO57 (+1) 1 2 0 1 3 2 3 3 1 0 0 0 0 0 0 0 0 0 0 1
FKBB_ECOLI 4 5 1 0 1 1 2 1 4 2 1 0 4 4 3 3 3 4 0 0
CARB_ECOLI 1 0 1 4 0 0 0 0 0 0 0 0 6 0 20 8 0 0 0 0
SEQA_ECOL6 (+1) 3 6 0 0 1 2 0 1 5 3 0 0 4 5 0 0 1 2 0 0
NUOB_ECO24 (+20) 2 3 1 2 3 2 3 2 3 1 1 0 3 2 0 0 0 0 0 0
RS9_ECO24 (+20) 4 2 4 3 1 0 0 2 0 0 2 0 1 2 3 3 0 2 2 1
MURA_ECO24 (+16) 3 1 1 2 0 0 0 0 0 0 0 0 6 3 7 1 0 1 0 0
GLMS_ECO57 (+2) 6 0 0 0 0 0 0 0 1 0 0 0 15 1 4 1 0 0 0 0
FUR_ECO57 (+2) 1 3 1 2 2 1 0 3 2 1 3 2 2 1 1 2 2 2 2 1
FADL_ECOLI 1 1 1 3 1 1 2 1 1 2 4 3 1 1 1 0 2 2 4 4
EFTS_ECO24 (+19) 0 5 0 0 0 1 1 2 0 1 2 0 4 5 1 2 0 1 0 0
HNS_ECO57 (+2) 0 2 0 0 1 0 0 4 3 3 3 2 3 0 2 1 0 1 1 2
CISY_ECOL6 (+1) 1 0 2 1 0 0 3 3 0 0 3 2 1 0 2 2 0 0 3 1
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PYRG_ECO24 (+19) 10 0 1 0 1 0 0 0 5 0 0 0 16 2 4 1 1 0 0 0
IADA_ECOLI 0 1 2 1 1 2 2 1 2 3 3 2 0 1 0 0 3 3 2 2
HLDE_ECO24 (+17) 5 1 2 2 1 0 0 0 0 0 0 0 8 2 8 2 0 0 0 0
IF2_ECOSM 6 0 0 0 0 0 0 0 0 0 0 0 16 2 1 0 0 0 0 0
DHG_ECOLI 0 0 3 1 0 0 0 3 0 0 0 0 0 0 3 3 0 0 5 6
RL3_ECO24 (+20) 2 4 2 2 1 1 1 2 1 1 2 0 4 2 2 1 1 1 2 1
USPA_ECO57 (+2) 3 0 0 0 0 0 0 1 1 0 0 0 4 3 1 1 1 0 1 0
BGAL_ECOLX 2 2 4 7 0 0 0 0 1 4 2 0 0 0 2 0 0 0 0 0
LOLB_ECO24 (+11) 1 0 1 1 1 0 1 5 1 0 1 3 1 0 5 0 1 1 1 1
BLC_ECO57 (+1) 2 0 1 4 0 0 1 2 0 0 1 0 1 1 5 3 0 0 2 0
YAJC_ECO57 (+2) 1 2 0 0 3 0 2 3 0 0 0 0 1 2 2 1 3 3 1 1
RS1_ECO57 (+2) 0 3 2 1 0 0 0 0 0 0 3 0 2 5 2 1 0 2 0 0
YGAM_ECO57 (+2) 2 0 3 3 2 1 3 1 0 0 1 1 0 0 1 1 0 0 1 0
UPP_ECO24 (+19) 4 1 0 0 0 0 1 1 0 0 0 0 7 3 4 1 1 1 2 0
CLPB_ECO57 (+2) 7 0 0 0 0 0 0 0 0 0 0 0 10 6 0 0 0 0 1 0
GLRX3_ECO57 (+2) 2 3 0 0 1 0 0 2 3 3 3 3 3 4 0 0 2 2 0 0
GSA_ECOBW (+2) 4 1 2 2 0 0 0 0 1 0 1 0 7 1 7 3 0 0 1 0
RPOD_ECOLI 5 0 0 0 0 0 0 0 0 0 0 0 8 1 0 0 0 0 0 0
ELAB_ECO57 (+2) 2 0 3 3 1 0 0 3 0 1 1 1 1 1 2 1 1 1 2 1
ACCA_ECO24 (+11) 4 0 0 0 0 0 0 0 2 0 0 0 7 1 1 0 2 1 0 0
NUOE_ECOL6 (+1) 1 1 0 1 0 0 1 4 1 1 1 2 0 1 3 1 1 0 2 0
ATPF_ECO24 (+11) 1 0 0 0 0 0 0 3 0 0 2 0 1 1 3 0 2 0 3 2
KPYK2_ECOLI 6 1 0 0 1 0 0 0 1 0 0 0 6 6 2 0 0 0 0 0
MDH_ECO7I (+2) 4 1 1 1 1 1 1 1 0 0 0 0 6 4 1 0 0 1 0 0
MCP3_ECOLI 2 3 1 1 4 4 3 4 0 0 0 0 2 1 0 0 0 0 0 0
NUSG_ECOLI (+1) 7 2 0 1 2 0 0 0 0 0 0 0 8 4 2 1 0 0 0 0
FLGH_ECO27 (+1) 2 1 1 0 1 0 1 1 1 1 2 0 5 4 3 1 5 5 2 1
LEPA_ECO27 (+4) 3 0 0 0 1 0 0 0 1 0 0 0 13 0 1 0 0 0 0 0
BTUE_ECOLI 1 1 1 2 0 0 1 0 0 0 0 0 2 1 3 1 0 0 0 0
YEDD_ECOLI 2 2 1 3 1 0 1 3 2 0 1 1 2 1 2 2 2 0 2 2
GLNQ_ECOLI 2 0 0 2 0 0 0 0 2 1 0 0 3 0 3 2 1 1 0 0
CYOA_ECOL6 (+1) 1 1 0 1 3 1 1 3 0 0 1 0 2 0 2 1 0 0 2 1
GSH1_ECO7I (+1) 0 1 0 4 1 0 1 0 2 2 7 0 0 2 0 0 2 0 2 0
GYRA_ECOLI 6 2 3 5 0 0 0 0 0 0 0 0 2 0 4 0 0 0 0 0
SECB_ECO24 (+20) 2 2 1 1 1 1 1 1 2 1 1 1 2 2 2 1 1 1 0 0
SLYB_ECO57 (+1) 1 2 1 1 3 1 2 3 1 0 0 1 2 2 1 1 2 1 1 0
POXB_ECOLI 3 0 1 1 0 0 0 0 0 0 1 0 11 1 5 0 0 0 0 0
NDK_ECO24 (+11) 2 4 0 0 0 0 0 1 4 3 0 0 4 4 0 1 2 1 0 0
LUXS_ECO24 (+10) 1 1 0 1 0 0 0 3 0 3 2 1 1 2 3 2 1 0 1 0
FUMA_ECO57 1 2 0 0 0 3 0 0 4 3 0 0 2 4 0 1 3 3 1 0
NUSA_ECO57 (+2) 2 1 0 0 0 0 0 0 3 1 0 0 4 3 2 1 0 0 0 0
ATPG_ECO24 (+20) 2 1 0 1 3 1 0 0 3 1 0 0 3 1 1 1 1 1 0 0
SLYA_ECO27 (+6) 1 1 2 2 1 0 2 3 0 0 2 2 0 1 2 3 1 1 3 1
SELD_ECOHS (+1) 4 0 0 2 0 0 0 0 0 0 0 0 7 1 7 2 0 0 0 0
SUBI_ECOLI 1 0 1 0 1 0 2 1 0 1 0 1 0 0 1 0 0 0 0 0
ACTP_ECO24 (+19) 3 1 2 3 4 1 3 1 1 0 1 0 2 2 1 2 1 1 3 1
SLP_ECOLI 1 2 2 1 1 0 2 3 0 0 3 0 2 0 2 2 0 0 2 2
GALU_ECO57 (+2) 4 0 0 0 1 0 0 0 1 0 0 0 6 4 1 1 1 0 0 1
CHEW_ECO57 (+2) 7 3 0 0 1 0 0 0 1 0 0 0 3 3 2 1 0 1 0 0
CRA_ECO57 (+2) 4 0 0 0 0 0 0 0 0 0 0 0 4 0 4 1 0 0 0 0
RIR1_ECOLI 2 1 1 3 0 0 0 0 0 0 0 0 6 1 2 2 0 0 0 0
YIAF_ECO57 (+2) 2 1 1 1 1 0 1 3 2 0 1 1 1 1 2 2 1 1 2 2
PUR7_ECO24 (+18) 3 0 0 0 0 0 0 0 1 0 2 0 5 0 6 2 0 0 1 1
GUAC_ECO24 4 1 1 2 1 0 0 0 1 0 1 0 3 1 1 1 1 1 1 1
YCFP_ECO24 (+18) 3 1 1 1 1 0 0 0 5 0 1 0 2 1 2 2 3 0 0 0
LAMB_ECOSE 0 0 1 1 1 0 2 0 0 0 4 4 1 1 0 0 1 0 1 3
DOSC_ECO57 (+1) 0 0 1 3 0 0 0 0 0 0 0 0 2 0 9 1 0 0 0 0
YQJD_ECO57 (+2) 2 1 1 0 0 0 2 1 1 0 2 2 0 0 1 2 0 0 2 2
ISCU_ECO57 (+2) 1 1 0 0 1 0 0 3 2 3 0 1 2 1 1 1 2 1 0 0
MAP1_ECO57 (+2) 1 5 0 0 1 1 0 0 2 1 1 0 1 1 0 0 1 1 0 0
YBJP_ECOLI 0 0 0 1 0 0 1 2 0 0 1 4 0 0 2 0 0 0 2 1
YADG_ECOLI 2 0 0 0 0 0 0 0 0 0 0 0 3 0 5 1 0 1 0 0
LPOB_ECO57 (+1) 1 2 2 3 2 0 1 2 2 1 1 1 2 1 2 1 1 0 1 1
SYT_ECO27 (+12) 2 1 2 1 2 0 0 0 1 1 1 0 2 2 2 0 1 1 1 1
LPTB_ECO57 (+2) 3 0 0 2 0 0 0 0 1 0 0 0 2 0 4 2 0 0 2 0
RL15_ECOBW (+4) 2 0 1 1 0 0 0 1 0 0 0 0 2 2 5 3 1 1 1 0
DCRB_ECOLI 1 1 1 2 0 0 0 2 2 0 1 0 0 1 1 1 0 0 2 1
CLPX_ECO24 (+20) 3 0 1 1 1 0 0 0 0 0 0 0 10 2 1 3 0 0 0 0
RL7_ECO24 (+19) 3 2 1 2 0 0 1 2 0 1 2 2 3 1 3 1 0 0 2 2
ASTE_ECOLU 2 1 0 0 0 0 0 0 2 0 0 0 1 1 2 2 1 0 0 0
FABZ_ECO24 (+17) 0 2 0 0 0 0 0 0 1 3 0 2 3 3 0 0 1 1 0 0
GLRX4_ECO57 (+2) 1 1 0 0 0 0 0 4 2 1 3 3 2 1 1 1 1 0 1 0
TYPA_ECO27 (+3) 1 2 2 0 0 0 0 0 0 0 0 0 4 2 0 1 0 0 0 0
MUKB_ECOHS 3 0 0 0 0 0 0 0 0 0 0 0 4 1 0 0 0 0 0 0
NUOA_ECO24 (+10) 2 2 0 2 2 0 1 1 1 1 1 0 2 1 0 0 1 0 1 1
ABDH_ECO24 (+3) 0 1 2 0 0 1 2 1 0 0 1 0 1 3 2 1 0 1 1 1
NFUA_ECO7I 1 0 2 0 0 0 0 2 0 1 2 2 2 0 2 3 0 1 0 0
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GLK_ECO24 (+19) 3 2 0 0 2 0 0 0 3 0 0 0 3 2 0 0 2 1 0 0
F16PA_ECO24 (+9) 3 1 0 0 0 0 0 0 0 0 0 0 2 2 2 1 0 0 1 0
DAPA_ECO24 (+12) 1 4 0 0 0 0 0 0 1 2 0 0 2 1 0 0 0 0 0 0
RL17_ECO24 (+20) 0 0 0 1 1 0 1 2 0 0 0 2 0 0 1 1 1 0 0 1
YGDI_ECOL6 (+1) 0 0 0 2 0 0 1 2 0 0 2 1 0 0 2 2 0 0 2 2
SECA_ECO27 2 1 3 0 0 0 0 0 0 0 0 0 1 2 0 1 0 0 0 1
MGLA_ECOLI 3 0 1 0 0 0 0 0 0 0 0 0 6 0 1 0 0 0 0 0
MCP1_ECOLI 1 1 1 1 0 3 2 4 0 0 0 0 1 1 1 1 0 1 1 1
YAJG_ECOL6 (+1) 3 0 1 2 0 0 0 1 2 0 1 1 1 1 3 1 0 0 0 1
MENB_ECOL6 (+1) 0 2 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 3 0 0
SECD_ECO57 (+1) 8 2 1 1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RS14_ECO24 (+15) 2 0 1 0 1 0 0 1 0 1 2 1 2 2 1 1 1 1 1 0
ERPA_ECO24 (+20) 0 0 0 2 0 0 0 1 1 0 0 1 0 1 3 2 2 0 2 1
YAEH_ECO24 (+20) 1 2 0 0 0 0 0 2 3 3 1 1 2 1 2 0 0 0 1 1
KATG_ECOUT (+4) 1 1 1 3 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1
NIFJ_ECOLI 1 0 2 1 0 0 0 0 0 0 0 0 5 0 8 2 0 0 0 0
RCSB_ECO57 (+3) 3 1 0 0 0 0 0 0 0 0 0 0 6 1 0 0 0 0 0 0
PUR8_ECOLI (+1) 4 0 0 0 0 0 0 0 0 0 0 0 10 1 0 0 0 0 0 0
GCSP_ECOSM 2 3 0 0 1 1 0 0 0 0 0 0 2 1 0 0 1 0 0 0
CSGG_ECO57 (+2) 0 0 0 0 0 0 0 4 0 0 0 0 2 1 1 1 0 0 0 0
RRAA_ECO24 (+19) 1 0 0 2 1 0 0 1 1 1 0 0 2 1 3 1 0 2 0 0
GABD_ECOLI 2 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0
BAMA_ECO24 (+19) 0 0 0 0 0 0 2 0 0 0 2 0 0 0 0 1 0 0 2 2
ALF1_ECOL6 (+1) 0 3 1 5 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 1
CYCA_ECO57 (+1) 0 0 0 0 2 0 2 3 0 1 0 0 0 0 0 0 0 0 0 1
MAO1_ECO57 (+6) 2 0 0 0 0 0 0 0 1 0 0 0 6 2 0 0 1 0 0 0
ACCD_ECOUT (+9) 3 2 0 0 0 0 0 0 0 0 0 0 4 3 0 0 0 0 0 0
FLII_ECOLI 2 1 1 0 0 0 0 0 0 0 0 0 6 0 1 0 0 0 0 0
ASSY_ECO45 (+2) 2 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0
CARA_ECO57 (+1) 0 0 0 2 0 0 0 0 0 0 0 0 0 0 7 1 0 0 0 0
MINE_ECO24 (+20) 2 2 0 1 1 0 0 1 1 1 1 0 2 1 2 2 2 1 1 1
AROB_ECO81 1 1 0 2 1 0 1 1 0 0 0 0 2 2 1 1 1 2 2 2
OPPF_ECOLI 4 0 0 0 0 0 0 0 0 0 0 0 3 0 7 1 0 0 0 0
GPMA_ECO24 0 1 1 0 0 0 0 3 0 1 1 0 0 1 1 2 0 1 0 0
FLAV_ECO57 (+2) 0 2 0 0 1 0 0 1 2 3 0 0 1 1 0 0 1 1 0 0
FADA_ECO24 2 0 0 0 0 0 0 0 1 0 0 0 5 2 0 0 0 0 0 0
YQEF_ECOLI 2 0 0 0 0 0 0 0 0 0 0 0 3 0 1 0 0 0 0 0
KDPD_ECOLI 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
OMPX_ECO57 (+2) 0 0 0 0 1 0 1 4 0 0 0 1 2 0 1 0 0 0 0 0
RODZ_ECO24 0 0 0 1 2 1 3 1 0 0 0 0 1 0 0 0 0 0 1 0
AK1H_ECOLI 3 1 0 0 0 0 0 0 0 0 0 0 3 0 7 1 0 0 0 0
HTPG_ECOK1 (+1) 2 1 0 0 1 0 0 0 0 0 0 0 4 3 0 0 0 0 0 0
YIDC_ECOUT (+19) 0 0 0 0 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
CLPA_ECO57 (+2) 3 0 0 0 1 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0
MALT_ECOBW (+4) 4 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0
BAMB_ECOLI 0 2 1 1 0 0 1 0 1 1 2 0 0 0 0 0 1 1 1 2
YCIO_ECOLI (+1) 2 0 1 1 0 0 0 0 1 0 0 0 3 1 3 0 1 0 0 0
PHOP_ECOLI (+2) 3 1 0 1 0 0 0 0 0 0 0 0 3 2 2 1 0 0 1 1
YAJO_ECOLI 2 0 1 3 0 0 0 0 0 0 0 0 5 0 3 2 0 0 0 0
ALKH_ECO57 (+2) 0 2 0 0 1 1 0 0 2 3 0 0 1 1 0 0 0 1 0 0
UVRY_ECO57 (+1) 3 0 0 0 0 0 0 0 0 0 0 0 3 0 2 0 0 0 0 0
SUCD_ECOLI (+2) 0 4 0 0 0 0 0 0 0 1 0 0 3 1 0 0 0 0 0 0
YIBN_ECO57 (+2) 1 1 0 1 1 0 0 2 0 0 0 1 0 0 1 1 0 0 1 0
ATPD_ECO24 (+17) 2 1 0 1 2 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0
PTGA_ECOL6 (+1) 0 0 0 0 0 0 1 2 0 0 1 1 0 0 0 0 0 0 1 0
BLAT_ECOLX 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1 5 4 2 0
SDHL_ECOLI 2 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
YRAR_ECOLI 0 0 2 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0
RS20_ECO24 (+19) 1 2 0 0 0 0 0 0 0 1 0 0 2 1 1 0 0 2 0 0
CHEB_ECO57 (+1) 4 1 0 0 0 0 0 0 1 0 0 0 2 0 0 0 0 0 0 0
HEMX_ECOLI 0 0 0 0 2 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0
RISB_ECO24 (+17) 2 1 0 0 0 0 0 0 0 0 0 0 6 3 0 0 0 0 0 0
ACRB_ECOLI 0 0 0 0 4 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0
FLIM_ECOLI 2 0 0 0 0 0 0 0 0 0 0 0 6 0 1 0 0 0 1 0
YDAM_ECOLI 2 0 0 0 0 0 0 0 0 0 0 0 5 0 3 0 0 0 0 0
TYRB_ECOLI 4 0 0 0 0 0 0 0 0 0 0 0 8 0 1 0 0 0 0 0
ENTB_ECO57 (+1) 0 2 1 1 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0 0
PGK_ECO24 (+6) 0 0 0 0 0 0 2 0 1 1 0 0 0 1 0 0 0 0 1 1
PTM3C_ECOLI 0 1 0 0 3 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
YHCB_ECO57 (+2) 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
BAMC_ECOLI 0 1 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0
ASNA_ECOSM 2 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0
PTKC_ECO57 (+1) 0 0 0 0 3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
IMDH_ECO57 (+1) 1 1 2 2 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0
QMCA_ECO57 (+2) 0 0 0 0 3 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0
GMHA_ECOSM (+16) 2 0 0 1 0 0 0 0 0 0 0 0 0 1 3 1 0 0 0 0
LPTE_ECO24 (+14) 0 0 1 1 1 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0
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WZZE_ECO57 (+1) 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PDXJ_ECO57 (+1) 0 2 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 2 0 0
FDOH_ECOL6 (+1) 0 0 0 0 0 0 0 2 0 0 0 1 1 0 1 1 0 0 0 0
PHSG_ECOLI 2 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0
FUCM_ECO24 (+20) 0 2 0 0 0 0 0 0 0 3 0 0 0 0 0 0 1 0 0 0
SUFC_ECOLI 3 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
PNTA_ECOLI 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SYW_ECOLI 3 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0
HFLX_ECOLI 2 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
OSMC_ECOLI 0 0 0 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0
NANT_ECOSM (+8) 0 0 0 0 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
CSIE_ECOLI 2 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0
RBFA_ECO24 (+20) 2 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0
FADE_ECOLI 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SPEB_ECO24 (+10) 0 0 0 0 0 0 0 2 0 0 0 1 0 0 0 0 0 0 0 0
PROB_ECO24 (+20) 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
YCAP_ECOLI 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0
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A

B

wt ∆hflK ∆hflC

wt ∆hflK ∆hflC

C wt ∆yjdA∆yegE

Fig. A.25. Localization of YegE, YjdA and HflKC over time:
TIRF microscopy time-lapse of plasmid-encoded YFP-fusions of YegE and YjdA and mCherry-
HflKC W3110RH . Cultures were sampled at OD600 0.6 and images were taken at 2 fps for 20
sec.
(A) Localization of YegE-YFP in W3110RH wild-type, �hflK and �hflC.
(B) Localization of YjdA-YFP in W3110RH wild-type, �hflK and �hflC.
(C) Localization of mCherry-HflKC in W3110RH wild-type and �yjdA�yegE.
Scalebar: 2 µm.



161

A wt ∆yjdA ∆yjcZ

B wt ∆hflK ∆hflK

Fig. A.26. Localization of YegE over time:
TIRF microscopy time-lapse of genomic YFP-fusions of YegE in W3110RH . Cultures were
sampled at OD600 1.7 and images were taken at 2 fps.
(A) Localization of YegE-YFP in W3110RH wild-type, �yjdA and �yjcZ. Exposure time was
200 msec.
(B) Localization of YegE-YFP in W3110RH wild-type, �hflK and �hflC. Exposure time was
500 msec.
Scalebar: 2 µm.
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B. SUPPLEMENTARY MATERIAL

B.1 Chemicals and consumables

Tab. B.1. Chemicals

Name Company

1 Kb Plus DNA Ladder Invitrogen

↵-methyl-DL-aspartic acid (MeAsp) Sigma-Aldrich

Acetic acid Merck

Agar bacteriology Applichem

Agarose electrophoresis grade Invitrogen

Ammoniumpersulfate Roth

Ammonium sulphate Applichem

Ampicillin Applichem

�-mercaptoethanol Applichem

Bacto tryptone Difco

Bacto yeast extract Difco

Bromphenol blue Applichem

Calcium chloride Roth

Casein hydrolysate (acid) Oxoid Microbiology products (Thermo Fisher)

Chloramphenicol Applichem

Coomassie Brilliant Blue F-250 Applichem

Coomassie R250 Applichem

Congo red Sigma-Aldrich

Cover slips 46x24 mm, 1.5 Assistent, Glaswarenfabrik

Karl Hecht GmbH & Co KG

Crystal violet Merck

Cuvettes for spectrometry Sarstedt

D-(+)glucose Sigma-Aldrich

D-ribose Sigma-Aldrich

di-Potassium hydrophosphate Roth

di-Sodium hydrophosphate Roth

DMF (Dimethylformamid) Sigma

dNTPs Invitrogen

EDTA Merck

Ethanol Applichem

GenEluteTM HP Plasmid Miniprep Kit Sigma-Aldrich

GFP-Trap R� A beads Chromotek

Glycerol Roth

Glycine Applichem

Hydrochloric acid Applichem

IPTG Roth

Continued on next page
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continued from previous page

Name Company

Isopropanol J.T. Baker

Kanamycin sulphate Applichem

Lactic acid Sigma-Aldrich

L-arabinose Sigma-Aldrich

L-methionine Sigma-Aldrich

L-serine Sigma-Aldrich

Lysozyme Sigma-Aldrich

Magnesium chloride Merck

Magnesium sulfate Merck

Microscopy slides 76x26 mm Thermo Scientific

Midori Green Advanced strain Nippon Genetics Europe GmbH & Biozym

Methanol J.T. Baker

↵-methyl-D,L-aspartic acid Sigma

Milk powder, non fat Applichem

Na-Salicylate Sigma-Aldrich

Nitrocellulose Hybond-ECL. 0.2 µm GE Healthcare

Nonidet P-40 Sigma

NucleoSpin R�Gel and PCR Clean-up kit Macherey-Nagel

Pageruler Prestained Protein Ladder Fermentas

Poly-L-lysine Sigma-Aldrich

Polyethylenglycol Sigma-Aldrich

Potassium chloride Applichem

Potassium di-hydrogen phosphate Applichem

Di-potassium hydrogen phosphate Applichem

Protease-inhibitor cocktail complete EDTA-free Roche

Rotiphorese Gel 30 (Acrylamide mix) Roth

SDS (Sodium dodecylsulfate) Applichem

Sodium citrate Applichem

Sodium chloride Applichem

Sodium hydroxide Applichem

Streptomycin sulphate Applichem

Sulfuric acid Sigma

TEMED Applichem

Tris Roth

Tween 20 Roth

Whatman paper Whatman GmbH

X-gal (5-bromo-4-chloro-3-indolyl- Bioline

�-D-galacto-pyranoside)

Xylene cyanol Applichem
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B.2 Oligonucleotides

All oligonucleotides used in this work are listed in table B.2. If not otherwise stated,
reference of oligonucleotides is this work.

Tab. B.2. Primer

Name Description Restriction Sequence

site

VM15 yjcZ upstream NcoI gagagaCCATGGtgACCAAGACGTTACTTGAC

VM16 yjcZ downstream Bgl II gagagaAGATCTCGCCAAATTTACAGA

GAAGAT

VM17 yjcZ upstream Bgl II gagagaAGATCTatgACCAAGACGTTACTTG

VM18 yjcZ downstream XbaI gagagaTCTAGATTACGCCAAATTTAC

AGAGAAG

VM19 yjdA upstream NcoI gagagaCCATGGTGTACACACAGACC

CTGTATG

VM20 yjda downstream BamHI gagagaGGATCCATATCGTTCTGCCGT

GAAAAGT

VM33 trg upstream to check KO GAGAGACCATGGTGAATACAACTC

CCTCACAG

VM34 trg downstream to check KO GAGAGAGGATCCCACCGTAGC

GAAACTAACTG

VM78 yegE upstream, to check GTAGCTTCAGCGATC

genomic yegE-yfp fusion

VM79 yjdA upstream, to check GCTGGTTGAATCAGC

genomic yjdA-yfp fusion

VM84 ycgR upstream to check KO GTTAACTGTGACCGATAAACC

VM85 ycgR downstream to check KO GATGCTGACGAGTTCCTCGA

VM91 yjdA upstream for CGTAATCGCCCAATGgacGCGCTG

YjdA T103D mutation

VM92 yjdA downstream for TAAGCGTCGGCAGCGCgtcCATTG

YjdA T103D mutation

VM93 yegE upstream to check KO gagagaGATGTTAGGAAGGGGGCGACGAAGC

VM94 yegE downstream to check KO gagagaGCTTTGCGTGGCTGGCAGGCGAAAG

VM95 yjdA upstream to check KO gagagaGACGACGATCGTTTTCATTTG

VM96 yjdA downstream to check KO gagagaGATCTGCGTCAGTGCCAGATGAC

VM97 yjcZ upstream to check KO gagagaGAGCATTAAGCGCAGAAGTCG

VM98 yjcZ downstream to check KO gagagaCAGCATAGCTTTCCTCGCAGAG

VM99 yhjH upstream to check KO gagagaGACATAGTCGTGAACCTGATC

VM100 yhjH downstream to check KO gagagaCAGATCGCCACGGATAGCGAAC

VM103 csgA upstream to check KO gagagaGGTTGTTGCGCAAGAAGGTAG

VM104 csgA downstream to check KO gagagaCAAAGCAATGGGTTGATTAGCAG

VM105 pgaA upstream to check KO gagagaGATCCTCATCATTGGAATGG

VM106 pgaA downstream to check KO gagagaGCTTCACGAATTTGAGCAATAC

VM107 wcaF upstream to check KO gagagaCGTTATGACCTGGAATATAAAG

VM109 fliC upstream to check KO gagagaGACCCGACTCCCAGCGATG

VM110 fliC downstream to check KO gagagaGAGTTATCGGCATGATTATCC

VM115 cheA upstream to check KO gagagaCTGCCGATCGGGCCAATGCATC

VM116 cheA downstream to check KO gagagaCGAGATTCAGGACGATAACTAC

VM117 cheB upstream to check KO gagagaCATGAAGGGCTGGTACGCGTGC

VM118 cheB downstream to check KO gagagaCGCTTCTGCAGTCACCATTAAC

VM119 cheR upstream to check KO gagagaCGTGAACGACATTATGGGAG

VM120 cheR downstream to check KO gagagaCAGCTCCAGCGCGCGCAGCGTG

VM121 chew upstream to check KO gagagaCTGTGGAAAGTGTTCAACGTC

VM122 chew downstream to check KO gagagaGCTCTTCTGGCTATGGTGAAGG

Continued on next page
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Name Description Restriction Sequence

site

VM123 cheY upstream to check KO gagagaCATCGGCCTTCGGTAGATGTG

VM124 cheY downstream to check KO gagagaCAGTCATCCCAACGTTGGGTTAAC

VM125 cheZ upstream to check KO gagagaGGCGTCGACGCTCTCAATAAG

VM126 cheZ downstream to check KO gagagaGGTGAGGTGTGGGGGCTTCTG

VM127 cheA upstream with P1 ACCGGTCATATTGTTACCTTTTTA

for gene deletion CTCATTCAGGCGGCGGTGTTC

GCCATATTCCGGGGATCCGTCGACC

VM128 cheA downstream with P2 ACAGGTCAGTGTTCCCACAATG

for gene deletion CCATCAGCCGAACCGAGGTGACAGC

GTGTGTAGGCTGGAGCTGCTTCG

VM129 yjdA upstream for YjdA K82A ACCATGAAAGCAGGGgcaTCAACC

mutation

VM130 yjdA downstream for YjdA K82A CATTAATGGTGGTTGAtgcCCCTG

mutation

VM165 yegE downstream, complementary tccgcctccgcctccGTTAATCGCGAAATAACTAC

to Vic21 (5x linker)

VM166 cfp downstream HindIII gagagaaagcttTTACTTGTACAGCTCGTCC

VM169 yddV upstream to check KO CAGTTGAAGAGTGCGATGG

VM170 yddV downstream to check KO CATCGGTTAGCTTCATGATTAC

VM181 yedQ upstream to check KO GGATCACATCCGGCCTGGTG

VM182 yedQ downstream to check KO GATTGTGAAAGGGCTAAATC

VM185 yfiN upstream to check KO CCGAACAAAATACCGAGTGC

VM186 yfiN downstream to check KO CAGTAAATCCATAAGATTGC

VM201 yjdA upstream with P1 ATCTGGCTAAATAAAATAACAAAAT

for gene deletion TTGCTTTAAGGAAGAATTTTCTatgA

TTCCGGGGATCCGTCGACC

VM202 yjdA downstream with P2 GCGACCGGGGCCGTCAAGTAAC

for gene deletion GTCTTGGtcaATATCGTTCTGCCGT

GAATGTAGGCTGGAGCTGCTTCG

VM203 yjcZ upstream with P1 CAGCTGTTACGCGATGATATTC

for gene deletion AAACACTTTTCACGGCAGAACGAT

AttgATTCCGGGGATCCGTCGACC

VM204 yjcZ downstream with P2 GTTTAGGACTCATTGATGTAAC

for gene deletion TGATTATttaCGCCAAATTTACAG

AGAATGTAGGCTGGAGCTGCTTCG

VM205 yegE upstream with P1 AACACAGAAACGAATACTGGCGA

for gene deletion CCAGGTCTTGCGGATAAAGCGGTA

atgATTCCGGGGATCCGTCGACC

VM206 yegE downstream with P2 CGTCGCATCAGGCGATGGGGAAGCA

for gene deletion CGCCtcaGTTAATCGCGAAATAA

CTTGTAGGCTGGAGCTGCTTCG

VM207 ycgR upstream with P1 ACTTGAGCAGGCACTGGACGC

for gene deletion GATGTAAAtcaATTCCGGGGA

TCCGTCGACC

VM208 ycgR downstream with P2 TGTGACCGATAAACCAAAGAC

for gene deletion AGTTTGTCAGTCAGGAGTTTTTGC

gtgTGTAGGCTGGAGCTGCTTCGCC

VM209 yhjH upstream with P1 TAGTCCAGCCAGGCGGAAAATGA

for gene deletion GGCAGCttaTAGCGCCAGAACCG

CCGTATTCCGGGGATCCGTCGACC

VM210 yhjH downstream with P2 CTTTGTCGAGTCCGGGCAGCAT

for gene deletion CACTTTTAAACACAGGACATCTTTG

atgTGTAGGCTGGAGCTGCTTCG

VM211 fliC upstream with P1 GTCAGTCTCAGTTAATCAGGTTA

for gene deletion CAACGAttaACCCTGCAGCAGAG

Continued on next page
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Name Description Restriction Sequence

site

ACAGATTCCGGGGATCCGTCGACC

VM212 fliC downstream with P2 GGAAACCCAATACGTAATCAACGA

for gene deletion CTTGCAATATAGGATAACGAATC

atgTGTAGGCTGGAGCTGCTTCG

VM213 motA upstream with P1 GACGACAATAATCGGATGCGCTT

for gene deletion GATTCTtcaTGCTTCCTCGGTTGT

CGTATTCCGGGGATCCGTCGACC

VM214 motA downstream with P2 CTGACGACTGAACATCCTGTCAT

for gene deletion GGTCAACAGTGGAAGGATGATGTC

gtgTGTAGGCTGGAGCTGCTTCG

VM215 cheZ upstream with P1 CGTGGTCACGCCACATCAGGCAA

for gene deletion TACAAAtcaAAATCCAAGACTATCC

AAATTCCGGGGATCCGTCGACC

VM216 cheZ downstream with P2 AAAACTCAACAAAATCTTTGAGA

for gene deletion AACTGGGCATGTGAGGATGCGACT

atgTGTAGGCTGGAGCTGCTTCG

VM239 upstream for wzxc promoter XhoI GAGAGActcgagAGTTTATCAATGT

GCTGACC

VM240 downstream for wzxc promoter BamHI GAGAGAggatccACCAGCCCGAGG

CCGATGATG

VM241 upstream for pga promoter XhoI GAGAGActcgagTAGTCTTTTTCCA

TAAAGCTACAC

VM242 downstream for pga promoter BamHI GAGAGAggatccCAATTTGGTTA

TTGCTGAGTGCTG

VM245 upstream for csgD promoter XhoI GAGAGActcgagGCGTTACGATGG

AAAGTATGTC

VM246 downstream for csgD promoter BamHI GAGAGAggatccGATACGCAG

CTTATTCAGGATC

VM250 upstream for amplification of BamHI gagagaGGATCCACAACTTAAGGAG

synthetically synthesized RBS-sfgfp GTATTCATGTC 1

VM251 sfgfp downstream SbfI GAGAGAcctgcaggTTAAGAACCTT

TGTACAGTTCG

VM259 yjdA upstream with ATG as start PstI GAGAGActgcagcGTGTACACACA

for BACTH (pKNT25 and pUT18) GACCCTGTATG

VM260 yjdA downstream without STOP, BamHI GAGAGAggatccccATATCGTTCTGCCG

with 5xGlx linker TGAAAAGT

for BACTH (pKNT25 and pUT18)

VM261 yjdA upstream with linker PstI GAGAGActgcagGAGGAGGAGGAGGA

and GTG as start for BACTH gTGTACACACAGACCCTGTATG

(pKT25 and pKT25)

VM262 yjdA upstream with linker and PstI GAGAGActgcagGGGAGGAGGAGG

GTG as start for BACTH (pUT18C) AGGAgTGTACACACAGACCCTGTATG

VM263 yjdA downstream with stop BamHI gagagaGGATCCtcaATATCGTTCTGCCGT

for BACTH (pUT18C) GAAAAGT

VM264 yegE upstream with GTG PstI GAGAGActgcagcGTGAGCAAACAATCA

as start for BACTH (pKTN25) CAGCATG

VM265 yegE downstream, no Stop, KpnI GAGAGAggtaccctGTTAATCGCGAAAT

for BACTH (pKTN25) AACTAC

VM266 yegE upstream with 5x Gly linker PstI GAGAGActgcagGAGGAGGAGG

for BACTH (pKT25) AGGAgTGAGCAAACAATCACAGCATG

VM267 yegE downstream with STOP KpnI GAGAGAggtaccTCAGTTAATCGC

for BACTH (pKT25) GAAATAACTAC

VM268 hflK upstream with 5x Gly linker PstI GAGAGActgcagGGGAGGAGGAGGAGGA

for BACTH (pUT18C) gtgGCGTGGAATCAGCCCGGTAATAAC

Continued on next page

1 ACAACTTAAGGAGGTATTC is strong RBS [195]
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VM269 hflC downstream with STOP BamHI gagagaGGATCCttaACGCGTTGCGGA

for BACTH (pUT18C) AGTCGGCGTCAAGTCGGCGTC

VM272 hflK upstream to check KO gagagaGGTGGCGCAGCATACATTGCGTC

VM273 hflK downstream to check KO gagagaAATCGCTGATGCGCCATTTGATG

VM274 hflC upstream to check KO gagagaTACTCGCGAGCGTCTGTATATCG

VM275 hflC downstream to check KO gagagaCAATCGTTTTCCTCAACATGTAG

VM276 aer upstream to check KO gagagaGCTATCTGTTAACATTTGTTG

VM277 aer downstream to check KO gagagaGGATTTACGCGTCAACCAGAGC

VMseq1 yegE sense sequencing primer, ATGATGCACTGACGCATC

binds at pos. 2051

VMseq2 yegE antisense sequencing primer, TGTCGCTGATGTGTACTG

binds at pos. 2141

VMseq3 yegE antisense sequencing primer, CCTGCCAGTTCGGTTTGAT

binds at pos. 1420

VMseq4 yegE sense sequencing primer CCTGCACATTACGCTTGA

VMseq8 pUA66 antisense sequencing primer CAAACTAGCAACACCAGAAC

VMseq9 yegE sense sequencing primer CGTGGTCTGTATTGATATG

binds at pos. 1701

VMseq10 yjdA sense sequencing primer, CGCTTGTGAACAATTGCG

binds at pos. 1338

VMseq11 yjdA sense sequencing primer, CAGATATTTCCGGTGTCGTCG

binds at pos. 985

VMseq12 yjdA sense sequencing primer, CAACAGCGCCTGCGTGATTGC

binds at pos. 406

hflKC hflKC sequencing primer, GGTAAATACACCATGGACCG

binds approx. at pos 580

pUT18 fw pUT18 and pKNT25 CAGCTGGCACGACAGGTTTC

sequencing primer

pUT18 rev pUT18 sequencing primer GTCGCCGTCGTAGCGGAACTG

pUT18C fw pUT18C sequencing primer CTACGAGAACCGTGCATACG

pUT18C rev pUT18C sequencing primer ACAGCTTGTCTGTAAGCGGATG

pKT fw pKT25 sequencing primer GCAATGCCGCCGGTATTCCAC

pKT rev pKT25 sequencing primer GATCGGTGCGGGCCTCTTCG

pKNT rev pKNT25 sequencing primer GTGGAATGGGGGTTGACCAG

OB14 2 gfp upstream from O. Besharova KpnI TGAGGTACCACAACTTAAGGAGGTATTC

ATGGTGAGCAAGGGCGAGGAG 1

MF30d gfp downstream from M. Fischer HindIII GAGAAAGCTTTTACTTGTACAGCTCGT

Linda10a motA upstream from L. Lovdok CGCGCGTCTAGACCTGACGACTGAACATCCT

to check KO

DK5a tar upstream from D. Kentner ATGCCATGGGTATGATTAACCGTATCCGCG

to check KO

DK6a tsr upstream from D. Kentner ATGCCATGGGTATGTTAAAACGTAT

to check KO CAAAATTG

Eri121 K1 primer from E. Sommer2 CAGTCATAGCCGAATAGCCT

Eri122 K2 primer from E. Sommer2 CGGTGCCCTGAATGAACTGC

yegE- yegE upstream from H. Li SpeI ACTAGTGAAGGAGTGTGCCAT

RBS- GAGCAAACAATCACAGCATG

pDK66-f

yegE- yegE downstream from H. Li SacI aagcacGAGCTCGTTAATC

pDK66-r GCGAAATAACTACTATTC

Vic213 yfp/cfp fw primer with 5x Gly linker GGAGGCGGAGGCG

GAGTGGTGAGCAAGGGCGAGGAG

Vic66 cfp/yfp antisense sequencing primer GGTCAGCTTGCCGTAGGTGGC

Continued on next page

2 sequence from [183]
3 all Vic-primer are from V. Sourjik
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Vic121 sense for pBAD sequencing TTTATCGCAACTCTCTACTG

Vic122 sense for pBAD sequencing CTGATTTAATCTGTATCAGG

Vic131a sense for pTrc sequencing CGCACTCCCGTTCTGGATAA

Vic131 sense for pTrc sequencing ATGTGTGGAATTGTGAGCGG

Vic132 antisense for pTrc sequencing CTGATTTAATCTGTATCAGG
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B.3 Plasmids

All plasmids used in this work are listed in table B.3. If not otherwise stated, reference of
plasmids is this work.

Tab. B.3. Plasmids

Name Res. Vector Insert Comment

pVM13 Amp pTrc99a-RBS yegE-yfp PCR yegE with SacI and SpeI sites,

cloning into pDK66; primer

yegE-RBS-pDK66-f and yegE-pDK66-r

pVM14 Amp pTrc99a cfp-yjcZ PCR yjcZ with BglII/XbaI into pDK2,

PCR with primer VM17/VM18

pVM15 Kan pBAD-DK-Kan cfp-yjcZ Subloned cfp-yjcZ from pVM14

into pDK6 with NcoI/XbaI

pVM17 Amp pTrc99a-RBS yjcZ-cfp PCR yjcZ with NcoI/BglII sites,

cloning into pDK113; primer VM15/VM16

pVM18 Kan pBAD-DK-Kan yjcZ-cfp Subcloned yjcZ-cfp from pVM17

into pDK6 with NcoI/XbaI

pVM38 Amp pTrc99a-RBS yjdA T103D-yfp PCR 1 with VM19 and VM92,

PCR 2 with VM91 and VM20, then fusion

PCR of 1 and 2 with VM19, 20; cloning into

pDK112 with NcoI/BamHI

pVM39 Amp pTrc99a-RBS yjdA K82A-yfp PCR 1 with VM19 and VM130,

PCR 2 with VM129 and VM20, then fusion

PCR of 1 and 2 with VM19, 20; cloning into

pDK112 with NcoI/BamHI

pVM41 Cam pBAD33 yegE-cfp PCR of yegE with RBS-pDK66-yegE-f

and VM165, PCR of CFP with Vic121,

VM166; then fusion PCR of yegE and cfp

with RBS-pDK66-yegE-f and VM166, cloned

into pBAD33 with SpeI (XbaI) and HindIII

pVM42 Amp pTrc99a RBS2-gfp PCR with primer OB14 and MF30;new

cloning vector with strong RBS 4,

has GFPA206K

pVM47 Kan pUA66 Promotor wzxc PCR with VM239, VM240, digest with

XhoI and BamHI

pVM48 Kan pUA66 Promotor pgaA PCR with VM241, VM242, digest with

XhoI and BamHI

pVM49 Kan pUA66 Promotor csgD PCR with VM245, VM246, digest with

XhoI and BamHI

pVM53 Kan pUA66 Promotor pgaA cut out RBS and GFPmut2 from pVM48 and

inserted RBS2-sfGFP with E.coli codon

usage with BamHI/SbfI

pVM55 Kan pUA66 Promoter wzxc cut out promoter from pVM47 with BamHI/

XhoI and cloned into pVM54

pVM65 Kan pKNT25 yjdA-T25 PCR with VM259 and VM260, digest with

PstI, BamHI

pVM66 Kan pKT25 T25-yjdA PCR with VM261 and VM20, digest with

PstI, BamHI

pVM67 Amp pUT18 yjdA-T18 PCR with VM259 and VM260, digest with

PstI and BamHI

pVM68 Amp pUT18C T18-yjdA PCR with VM262, VM263, digest with

PstI and BamHI

pVM69 Kan pKNT25 yegE-T25 PCR with VM264, VM265, digest with

Continued on next page

4 ACAACTTAAGGAGGTATTC, RBS from [195]
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PstI, KpnI

pVM70 Kan pKT25 T25-yegE PCR with VM266, VM267,digest with

PstI, KpnI

pVM71 Amp pUT18C T18-hflK-hflC PCR with VM268, VM269, digest with

PstI, BamHI

pVM76 Kan pKNT25 yjdA T103D-T25 PCR with VM259 and VM260 (template

pVM38), digest with PstI, BamHI

pVM77 Kan pUT18C T18-yjdA T103D PCR with VM262 and VM263 (template

pVM38), digest with PstI, BamHI

pKT25-zip Kan pKT25 leucine zipper received from E. Lacanna, MPI Marburg;

REF: EUROMEDEX EUP-25Z

pUT18C-zip Amp pUT18C leucine zipper received from E. Lacanna, MPI Marburg;

REF: EUROMEDEX EUP-18Z

pKNT25 Kan pKNT25 received from E. Lacanna, MPI Marburg;

REF: EUROMEDEX EUP-25N

pKT25 Kan pKT25 received from E. Lacanna, MPI Marburg;

REF: EUROMEDEX EUP-25C

pUT18 Amp pUT18 received from E. Lacanna, MPI Marburg;

REF: EUROMEDEX EUP-18N

pUT18C Amp pUT18C received from E. Lacanna, MPI Marburg;

REF: EUROMEDEX EUP-18C

pKD13- Kan pKD13 derivative received from H. Li; for recombination

YjdA-YFP of yjdA-yfp

pKD13- Kan pKD13 derivative received from H. Li; for recombination

YegE-YFP of yegE-yfp

pVS910 Kan, pKD13 derivative received from J. Winkler, ZMBH Heidelberg

Amp

pVS942 Cam pKD46 � Red genes; [183]

pVS456 Cam pACBSR � Red genes, I-SceI; [185]

pVS473 Amp pCP20 FLP recombinase; [184]

pVS197 Cam pBAD33 [196]

pVS198 Amp pTrc99a [197]

166-mCh- Amp pTrc99a mCherry-hflk-hflC received from A. Pollard

hflKC

pVS130 Amp pTrc99a ecfpA206K received from V. Sourjik

pVS147 Amp pTrc99a eyfpA206K received from V. Sourjik

pUA66 Kan pUA66 gfpmut2 [198]

pOB2 Amp pTrc99a mCherry strong RBS 3

received from O. Besharova

pHL14 Kan pBAD-DK-Kan motA-cfp received from H. Li, [146]

pHL55 Amp pDK4 [191] yfp-ycgR received from H. Li, [146]

pHL18 Amp pDK66 fliF-yfp received from H. Li

pDK2 Amp pTrc99a ecfpA206K eCFP-backlinker; [191]

pDK6 Kan pBD-DK-Kan ecfpA206K eCFP-backlinker; received from D. Kentner

pDK66 Amp pTrc99a-RBS eyfpA206K pTrc-RBS-linker-YFP; received

from D. Kentner; [191]

pDK112 Amp pTrc99a-RBS cheB(1-134)-GTG-yfp received from D. Kentner

pDK113 Amp pTrc99a-RBS cheB(1-134)-GTG-cfp received from D. Kentner

pVS18 Amp pTrc99a cheY-eyfp received from V. Sourjik

YFP- Amp pDK4 yfp-yjdA received from H. Li

YjdA-pDK4

YjdA- Amp pDK66 yjdA-yfp received from H. Li

YFP-pDK66

YjcZ- Amp pDK66 yjcZ-yfp received from H. Li

YFP-pDK66
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B.4 Strains

Tab. B.4. Strains

Name Background Relevant genotype Comment Reference

W3110 wild type, rpoS396(Am) from G. Kramer,

ZMBH Heidelberg; [138]

W3110RH wild type from R. Hengge,

HU Berlin; [138]

AR3110 bcsQ(TTG) cellulose producing from R. Hengge,

HU Berlin; [27]

HCB33 RP437 wild type from V. Sourjik; [199]

BTH101 F�, cya-99, StrpR strain for EUROMEDEX from E. Lacanna

BACTH assay MPI Marburg

DH5↵ F� Invitrogen, Karlsruhe; [200]

VM5 W3110 �yjda::Kan P1 from Keio this work

VM6 W3110 �yegE ::Kan P1 from Keio this work

VM8 W3110 �yhjH ::Kan P1 from Keio this work

VM21 W3110 �cheY ::Kan P1 from Keio this work

VM22 W3110 �yjcZ ::Kan P1 from Keio this work

VM24 W3110 �fliC ::Kan P1 from Keio this work

VM28 W3110 �yegE ::Frt VM6 KanS this work

VM35 W3110 �fliC ::Frt VM24 KanS this work

VM37 W3110 �yjcZ ::Frt VM22 KanS this work

VM38 W3110 �yhjH ::Frt VM8 KanS this work

VM39 W3110 �yjdA::Frt VM5 KanS this work

VM76 W3110 �trg::Kan P1 from Keio this work

VM89 W3110 �cheA::Kan P1 from Keio this work

VM94 W3110 �yjcZ ::Kan P1 from Keio this work

VM100 W3110 �cheB ::Kan P1 from Keio this work

VM101 W3110 �cheR::Kan P1 from Keio this work

VM102 W3110 �cheW ::Kan P1 from Keio this work

VM103 W3110 �cheZ ::Kan P1 from Keio this work

VM108 W3110 �cheY ::Frt VM21 KanS this work

VM109 W3110 �trg::Frt VM76 KanS this work

VM110 W3110 �cheA::Frt VM89 KanS this work

VM111 W3110 �cheB ::Frt VM100 KanS this work

VM112 W3110 �cheR::Frt VM101 KanS this work

VM113 W3110 �cheW::Frt VM102 KanS this work

VM114 W3110 �cheZ ::Frt VM103 KanS this work

VM124 W3110 �csgA::Kan P1 from Keio this work

VM125 W3110 �csgA::Frt VM124 KanS this work

VM153 W3110 �aer ::Kan P1 from Keio this work

VM154 W3110 �tar ::Kan P1 from Keio this work

VM155 W3110 �tsr ::Kan P1 from Keio this work

VM174 W3110 �aer ::Frt VM153 KanS this work

VM175 W3110 �tar ::Frt VM154 KanS this work

VM176 W3110 �tsr ::Frt VM155 KanS this work

VM194 W3110 �ycgR::Kan P1 from Keio this work

VM195 W3110 �yjdA::Frt �ycgR::Kan P1 from Keio in VM39 this work

VM196 W3110 �yegE ::Frt �ycgR::Kan P1 from Keio in VM28 this work

VM197 W3110 �yjcZ ::Frt �ycgR::Kan P1 from Keio in VM37 this work

VM198 W3110 �yhjH ::Frt �ycgR::Kan P1 from Keio in VM38 this work

VM262 W3110 �cheA::Kan KO made with PCR product this work

clone 1

VM263 W3110 �cheA::Kan KO made with PCR product this work

clone 2

Continued on next page
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VM265 W3110 �motA::Kan P1 from Keio this work

VM270 W3110 �cheA::Frt VM262 KanS this work

VM271 W3110 �cheA::Frt VM263 KanS this work

VM321 W3110 �motA::Frt VM265 KanS this work

VM322 W3110RH �yjdA::Kan KO made with PCR product this work

VM323 W3110RH �yegE ::Kan KO made with PCR product this work

VM325 W3110RH �yjcZ ::Kan KO made with PCR product this work

VM326 W3110RH �ycgR::Kan KO made with PCR product this work

VM327 W3110RH �fliC ::Kan KO made with PCR product this work

VM328 W3110RH �cheZ ::Kan KO made with PCR product this work

VM329 W3110RH �motA::Kan KO made with PCR product this work

VM330 AR3110 �yjdA::Kan KO made with PCR product this work

VM331 AR3110 �yegE ::Kan KO made with PCR product this work

VM332 AR3110 �yhjH ::Kan KO made with PCR product this work

VM333 AR3110 �yjcZ ::Kan KO made with PCR product this work

VM335 AR3110 �fliC ::Kan KO made with PCR product this work

VM336 AR3110 �cheZ ::Kan KO made with PCR product this work

VM337 AR3110 �motA::Kan KO made with PCR product this work

VM348 W3110RH �yjdA::Frt VM322 KanS this work

VM349 W3110RH �yegE ::Frt VM323 KanS this work

VM351 W3110RH �yjcZ ::Frt VM325 KanS this work

VM352 W3110RH �ycgR::Frt VM326 KanS this work

VM354 W3110RH �cheZ ::Frt VM328 KanS this work

VM355 W3110RH �fliC ::Kan P1 from VM24 this work

VM360 W3110RH �yhjH ::Kan P1 from VM8 this work

VM376 W3110RH �cheY ::Kan P1 VM21 this work

VM383 W3110RH �cheY ::Frt VM376 KanS this work

VM384 W3110RH �pgaC ::Kan P1 from Keio this work

VM387 W3110RH �motA::Frt VM329 KanS this work

VM388 W3110RH �fliC ::Frt VM355 KanS this work

VM389 W3110RH �yhjH ::Frt VM360 KanS this work

VM390 W3110 �pgaC ::Kan P1 from Keio this work

VM391 W3110RH �pgaC ::Frt VM384 KanS this work

VM392 W3110RH �csgA::Kan P1 from Keio this work

VM425 W3110 �wcaF ::Kan KO made with PCR product this work

VM482 W3110RH �wcaF ::Kan P1 from VM425 this work

VM536 W3110RH yegE-yfp-Kan yegE-yfp genomic fusion clone 1 this work

made by recombination

VM537 W3110RH yegE-yfp-Kan yegE-yfp genomic fusion clone 2 this work

made by recombination

VM538 W3110RH �yjdA::Frt yegE-yfp genomic fusion clone 1 this work

yegE-yfp-Kan made by recombination

VM539 W3110RH �yjdA::Frt yegE-yfp genomic fusion clone 2 this work

yegE-yfp-Kan made by recombination

VM540 W3110RH �yjcZ ::Frt yegE-yfp genomic fusion clone 1 this work

yegE-yfp-Kan made by recombination

VM541 W3110RH �yjcZ ::Frt yegE-yfp genomic fusion clone 2 this work

yegE-yfp-Kan made by recombination

VM563 W3110RH �yegE ::Frt�yjdA::Kan P1 from VM323 in VM348 this work

VM564 W3110RH �yegE ::Frt�yjcZ ::Kan P1 from VM323 in VM351 this work

VM565 W3110RH �yegE ::Frt�yhjH ::Kan P1 from VM323 in VM389 this work

VM566 W3110RH �yegE ::Frt�yjdA::Frt VM563 KanS this work

VM567 W3110RH �yegE ::Frt�yjcZ ::Frt VM564 KanS this work

VM568 W3110RH �yegE ::Frt�yhjH ::Frt VM565 KanS this work

VM569 W3110RH �yhjH ::Frt�yegE ::Frt�yjdA::Kan P1 from VM360 in VM566 this work

VM570 W3110RH �yhjH ::Frt�yegE ::Frt�yjcZ ::Kan P1 from VM360 in VM567 this work

Continued on next page
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VM599 W3110RH �yhjH ::Frt�yegE ::Frt�yjdA::Frt VM569 KanS this work

VM600 W3110RH �yhjH ::Frt�yegE ::Frt�yjcZ ::Frt VM570 KanS this work

VM606 W3110RH �yjdA::Frt�yhjH ::Kan P1 from VM360 in VM348 this work

VM607 W3110RH �yjcZ ::Frt�yhjH ::Kan P1 from VM360 in VM351 this work

VM608 W3110RH �yjdA::Frt�yhjH ::Frt VM606 KanS this work

VM609 W3110RH �yjcZ ::Frt�yhjH ::Frt VM607 KanS this work

VM616 W3110RH yegE-yfp-Frt yegE-yfp genomic fusion this work

(VM536 KanS)

VM617 W3110RH �yjdA::Frt yegE-yfp genomic fusion this work

yegE-yfp-Frt (VM538 KanS)

VM618 W3110RH �yjcZ ::Frt yegE-yfp genomic fusion this work

yegE-yfp-Frt (VM540 KanS)

VM620 W3110RH �yhjH ::Kan yegE-yfp genomic fusion; P1 this work

yegE-yfp-Frt from VM360 in VM616

VM623 W3110RH �yhjH ::Frt�yddV ::Kan P1 from VM295 into VM389 this work

VM625 W3110RH �yjdA::Frt�yhjH ::Frt�yddV ::Kan P1 from VM295 into VM608 this work

VM626 W3110RH �yjcZ ::Frt�yhjH ::Frt�yddV ::Kan P1 from VM295 into VM609 this work

VM627 W3110RH �yhjH ::Frt�yfiN ::Kan P1 from VM301 into VM389 this work

VM629 W3110RH �yjdA::Frt�yhjH ::Frt�yfiN ::Kan P1 from VM301 into VM608) this work

VM630 W3110RH �yjcZ ::Frt�yhjH ::Frt�yfiN ::Kan P1 from VM301 into VM609 this work

VM631 W3110RH �yhjH ::Frt�yedQ ::Kan P1 from VM276 into VM389 this work

VM633 W3110RH �yjdA::Frt�yhjH ::Frt�yedQ ::Kan P1 from VM276 into VM608 this work

VM634 W3110RH �yjcZ ::Frt�yhjH ::Frt�yedQ ::Kan P1 from VM276 into VM609 this work

VM687 W3110RH �ycgR::Frt�fliC ::Kan P1 from VM355 into VM352 this work

VM695 W3110RH �hflC ::Kan P1 from Keio this work

VM697 W3110RH �hflK ::Kan P1 from Keio this work

VM701 W3110RH �hflC ::Frt VM695 KanS this work

VM703 W3110RH �hflK ::Frt VM697 KanS this work

VM709 W3110RH �fliC ::Frt VM327 KanS this work

VM716 W3110RH �fliC ::Kan P1 from VM355 in OB37 this work

csgBA-STOP-sfgfp dest

VM717 W3110RH �motA::Kan P1 from VM329 in OB37 this work

csgBA-STOP-sfgfp dest

VM719 W3110RH �fliC ::Frt VM716 KanS this work

csgBA-STOP-sfgfp dest

VM720 W3110RH �motA::Frt VM717 KanS this work

csgBA-STOP-sfgfp dest

VM735 W3110RH �hflK ::Kan P1 from Keio in yegE-yfp (VM616) this work

genomic fusion

VM736 W3110RH �hflC ::Kan P1 from Keio in yegE-yfp (VM616) this work

genomic fusion

VM737 W3110RH �hflC ::Frt VM736 KanS this work

OB37 W3110RH csgBA-STOP-sfgfp dest ::Kan from O. Besharova

LL108 W3110RH �fimA::Kan from L. Lagonenko

OB147 W3110RH �sfmA::Kan from O. Besharova

OB153 W3110RH �ybgP ::Kan from O. Besharova

OB154 W3110RH �yraH ::Kan from O. Besharova

OB155 W3110RH �yehB ::Kan from O. Besharova

OB167 W3110RH �yfaL::Kan from O. Besharova

OB168 W3110RH �ycgV ::Kan from O. Besharova

flu KanR W3110RH �flu::Kan from L. Lagonenko

flu KanS W3110RH �flu::Frt flu KanS from L. Lagonenko
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J Maxwell Dow. Cell-cell signaling in Xanthomonas campestris
involves an HD-GYP domain protein that functions in cyclic di-GMP turnover.
Proceedings of the National Academy of Sciences of the United States of America,
103(17):6712–7, apr 2006.

[79] Robert P Ryan, Tim Tolker-Nielsen, and J Maxwell Dow. When the PilZ don’t work:
e↵ectors for cyclic di-GMP action in bacteria. Trends in microbiology, 20(5):235–42,
may 2012.

[80] P. D. Newell, R. D. Monds, and G. A. O’Toole. LapD is a bis-(3’,5’)-cyclic dimeric
GMP-binding protein that regulates surface attachment by Pseudomonas fluorescens
Pf0-1. Proceedings of the National Academy of Sciences, 106(9):3461–3466, mar 2009.

[81] Peter D Newell, Chelsea D Boyd, Holger Sondermann, and George A O’Toole. A
c-di-GMP e↵ector system controls cell adhesion by inside-out signaling and surface
protein cleavage. PLoS biology, 9(2):e1000587, 2011.



BIBLIOGRAPHY 181

[82] Richard A Alm, Amanda J Bodero, Patricia D Free, and John S Mattick. Identifi-
cation of a novel gene, pilZ, essential for type 4 fimbrial biogenesis in Pseudomonas
aeruginosa. Journal of Bacteriology, 178(1):46–53, 1996.

[83] Dmitri a Ryjenkov, Roger Simm, Ute Römling, and Mark Gomelsky. The PilZ
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[124] Harry H Low and Jan Löwe. A bacterial dynamin-like protein. Nature,
444(7120):766–9, dec 2006.

[125] Harry H Low, Carsten Sachse, Linda a Amos, and Jan Löwe. Structure of a bacterial
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