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Competing Orders in Dirac Materials and Iron-Based Superconductors

In this work we address the collective phenomena appearing in interacting fermion systems
due to the competition of distinct orders at the example of Dirac materials and iron-based
superconductors. On the one hand we determine leading ordering tendencies in an unbiased
way, when Fermi liquid instabilities are expected simultaneously in the particle-particle and
particle-hole channel. In this context we analyze the impact of electron-phonon interactions on
the many-body instabilities of electrons on the honeycomb lattice. Furthermore we investigate
the interplay between superconductivity, magnetism and orbital order in five-pocket iron-based
superconductors including the full orbital composition of low-energy excitations. On the other
hand we study how the close proximity of different phases affects the structure of the phase
diagram and the nature of transitions, as well as the corresponding quantum multicritical
behavior. To this end we consider the semimetal-insulator transitions to an antiferromagnetic
and a staggered-density state of low-energy Dirac fermions. To account for the decisive role
of interactions and the various degrees of freedom in these models, modern renormalization
group techniques are applied.

Konkurrierende Ordnungen in Dirac Materialien und eisenbasierten Supraleitern

Diese Arbeit befasset sich mit den kollektiven Phidnomenen, die in wechselwirkenden Fermion-
systemen aufgrund des Wettstreits zwischen verschiedenen Ordnungen auftreten, am Beispiel
von Dirac Materialien und eisenbasierten Supraleitern. Einerseits werden die fithrenden Ord-
nungstendenzen vorurteilsfrei bestimmt, wenn Instabilitdten der Fermifliissigkeit gleichzeitig
im Teilchen-Teilchen und Teilchen-Loch Kanal erwartet werden. In diesem Zusammenhang
wird der Einfluss von Elektron-Phonon Wechselwirkungen auf die Vielteilchen-Instabilitdten
der Elektronen des Honigwabengitters analysiert. Aulerdem wird das Wechselspiel zwischen
Supraleitung, Magnetismus und orbitaler Ordnung in eisenbasierten Supraleitern mit fiinf
Pockets unter Beriicksichtigung der vollen orbitalen Zusammensetzung der Anregungen bei
niedriger Energie untersucht. Andererseits wird erforscht, wie die Nahe verschiedener Phasen
sowohl die Struktur des Phasendiagramms und die Natur der Ubergiinge, als auch das entspre-
chende quanten-multikritische Verhalten beeinflusst. Dafiir werden die Uberginge zwischen
Halbmetall und Isolator zu einem antiferromagnetischem und einem Ladungsdichtezustand
von niedrigenergetischen Diracfermionen betrachtet. Um die entscheidende Rolle von Wechsel-
wirkungen und der verschiedenartigen Freiheitsgerade in diesen Modellen zu beriicksichtigen,
werden moderne Renormierungsgruppentechniken angewandt.
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CHAPTER 1

Introduction

1.1. Competing Orders

In quantum many-body systems fascinating collective phenomena appear, which cannot be
explained by considering simply the sum of single-particle properties. Especially in the context
of symmetry-breaking phase transitions in interacting condensed matter systems novel phases
of matter are frequently discovered. They include e. g. very different kinds of magnetic order,
BCS-type and unconventional superconductivity, or diverse topological phases. Hence the
question arises, which mechanisms and circumstances lead to the large variety of intriguing
states. The competition between various types of order is inherently related to this question.
The possibility to induce superconductivity due to magnetic correlations in copper- or iron-
based superconductors is a prevailing example [ 1-4]. However, the close proximity of several
distinct phases appears in the phase diagram of many materials, and promises an equally rich
behavior for the interplay of orders. Given the large variety of possible ordering patterns, it is
generally challenging to identify the leading ordering tendencies in strongly correlated systems.
Additionally, novel states of matter can arise in coexistence phases, where different ordering
types occur simultaneously. One of many interesting examples for this is given by the possible
existence of a supersolid between the solid and superfluid phase in “He [5-7].

In the study of (competing) ordering tendencies interactions often play a decisive role and
besides external tuning parameters, such as temperature or pressure, it depends on their
structure and properties which states prevail. Related to this are quantum phase transitions,
which clearly reveal the impact of microscopic parameters on macroscopic states. Thereby
physical systems close to continuous transitions show the surprising phenomenon of universality,
i. e. the critical behavior in the vicinity of the transition is the same for classes of models that
can be very different in their microscopic details. On the contrary, only the system’s symmetry
and dimensionality determine its universal behavior. Furthermore fluctuations on all scales
play a crucial role, particularly in low dimensions. They can drastically change the critical
behavior as compared to mean-field expectations. In this context it is interesting how the
presence of two or more types of order affects the critical behavior. A second order parameter
field influences the symmetry considerations and provides a further source of fluctuations so
that we cannot expect to rediscover the critical behavior of the separate phase transitions in
this case (see e. g. [8-12] for a related discussion in O(N) & O(M) models).
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In summary the following key questions arise and serve as motivation to study the competition
of orders

1. What are the leading correlations in the system under consideration and how can we
approach their determination in an unbiased way?

2. If distinct phases meet, what is the resulting phase structure? Do mixed phases occur?

3. What is the nature of the phase transitions? What is the impact on the (multi-)critical
behavior regarding continuous transitions?

In this thesis we consider two different model systems and reveal different aspects of the
phenomena described above. With regard to Dirac materials, we determine the leading ordering
tendencies of electrons on the honeycomb lattice in interplay with phonon degrees of freedom.
Furthermore, we examine more closely the competition of different density waves and the
corresponding multicritical point in the phase diagram of Dirac materials. In iron-based
superconductors we investigate the interplay between distinct types of superconductivity,
magnetism and orbital order for the material class with five Fermi pockets.

For our study we will employ different approaches of the renormalization group (RG)
method [13-17]. The RG is particularly suited for the study of phase transitions and competing
orders. The reason is twofold and demonstrates the versatility of the RG framework. On the
one hand the renormalization group incorporates the idea of scale dependence. Consequently,
it allows to monitor the evolution of a system to low energies and the build-up of the leading
correlations. This, in turn, provides the possibility to detect scale-free points, related to
continuous phase transitions, and determine the corresponding critical behavior. On the other
hand the renormalization group formalism is not restricted to special channels or setups and
can deal with many coupled degrees of freedom without favoring one and quenching another.
This unbiased structure is especially advantageous in the context of competing orders.

1.2. Investigated Materials

1.2.1. 2D Dirac Materials

A growing number of related materials display low-energy Dirac-like excitations (cf. Fig. 1.1),
which lead to universal properties in seemingly different samples [19]. In transport proper-
ties, for example, impurity scattering or screening effects exhibit common features [20] as a
consequence of the Dirac spectrum. Interestingly these materials also relate high-energy and
condensed matter systems. A prominent example for such a Dirac material is graphene [21-23],
with a number of new relatives, such as silicene [24-27] and germanene [28-30]. Layered
heterostructures [31-36], bosonic Dirac materials [37-39] and artifical graphenes [40-42], as
well as 3D Dirac and Weyl semimetals [43-46] would also fall into the same class. The large
number of examples demonstrates the great current interest in this novel type of materials,
which has motivated a lot of studies of their fascinating properties, and led to the ambition to
design and control their features in potential applications.

Several unconventional electronic properties of these materials can to a large extent be
captured by means of a description in terms of free Dirac fermions [23,47]. The experimental
findings in graphene, such as, for example, the half-integer quantum Hall effect [48] or the
Klein paradox [49], suggest that this single-particle picture provides a very good starting
point for the theoretical description of the material. Electron-electron interactions therefore
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Figure 1.1.: The band structure of graphene near the Fermi level measured by ARPES. The Dirac cone
is clearly visible. Figs. (a-d) and (e-h) show the experimental energy bands for different
directions through the Dirac cone, respectively. The doping is increased from left to right.
In Figs. (e-h) one of the bands is suppressed. (i) The simulated spectral function with data
from (h) [18]

are often expected to play only a quantitative and not a qualitative role. In fact, due to the
linear Dirac dispersion, in 2D the density of states vanishes linearly at charge neutrality for
energies close to the Fermi level, and an interaction-induced transition toward an ordered —
possibly Mott insulating — state appears only when a minimal critical value of the interaction
strength is exceeded [50-55]. Depending on the interaction profile, such as the precise ratios
of onsite, nearest-neighbor, and further interaction parameters, a great variety of different
spontaneously broken symmetries has been proposed [56-63]. The symmetry breaking patterns,
most prominently, include chiral symmetry breaking phases, such as the antiferromagnetic spin
density wave (SDW) or a charge density wave (CDW) [58,64-66]. Furthermore, modulated and
incommensurate charge density waves haven been suggested, and more exotic states of matter
such as the quantum spin Hall phase [59-61,67-69], or the existence of a quantum spin liquid
have been discussed [70,71]. Additionally at finite doping, unconventional superconducting
states can occur [57,63,72,73]. In this regard, the investigation of interaction-induced phase
transitions may yield an important contribution to an improved understanding and the possible
manipulation of different states of matter in this class of materials. Thereby the coexistence of
orders resulting in novel states has explicitly been considered in Ref. [74-76].

Current experimental data, however, suggest that e. g. free-standing graphene is in the
semimetallic (SM) phase [77,78]. From the theoretical side, calculations based on the con-
strained Random Phase Approximation (cRPA) and beyond provide values for the interaction
parameters of the Coulomb repulsion for graphene and its few-layer relatives [79,80]. Quantum
Monte Carlo (QMC) studies for these parameters confirm the semimetallic behavior of physical
graphene in agreement with the experimental findings [81,82]. At the same time, these results
sugggest that the material may be not too far from a possible transition into an ordered state.
Other QMC calculations also find sizable charge-density and spin-current correlations, although
they do not become long-ranged within the accessible parameter region [83]. Furthermore, a
uniform and isotropic strain of about 15% can be expected to induce an interaction-driven metal-
insulator transition in graphene [84]. It is therefore not inconceivable that physical graphene
could possibly be tuned through a symmetry-breaking quantum phase transition [51,55,85,86].
Similar conclusions may be expected to hold for other Dirac materials [19,24-30] and should
also be relevant for “artificial graphene” [40-42]. Breaking the chiral symmetry through a
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Figure 1.2.: The phase diagram for Ba(Fe,_, Co,),As, as function of temperature T and doping x
[87]. The paramagnetic tetragonal phase (Tet) for T > Tg or T > T, either undergoes a
superconducting (SC) or a structural, orthorombic transition (Ort). For T < Ty long-range
antiferromagnetic order (AFM) appears.

substrate can likewise induce a gap and enable to control the phase transition by varying the
crystallographic alignment in layered heterostructures [31-36]. The multitude of suggestions
and the vicinity of ordered states motivates our following studies of interaction-induced phase
transitions and the interplay of different ordering tendencies in Dirac materials.

1.2.2. Iron-Based Superconductors

Superconductivity belongs to the most fascinating phenomena in interacting quantum systems
and naturally attracts much interest. It occurs with many different faces regarding the mech-
anisms to induce an attractive pairing interaction, as well as the form and symmetry of the
Cooper pairs. The corresponding exciting question, how the generally repulsive electronic
interaction is turned into an attractive coupling, strongly depends on material properties and is
often related to the interplay between different electronic correlations.

This is also the case in iron-based superconductors (FeSC)(e. g. [88-92]). These materials
belong to a large family of different chemical compounds that possess a common iron-pnictogen
or iron-chalgogen plane, which is responsible for the superconducting properties. In this plane
the iron atoms are arranged on a simple square lattice, yet, due to the electronic configuration
of the iron atoms one has to account for additional orbital degrees of freedom. This multi-
orbital nature in turn leads to multiple Fermi surfaces and is responsible for characteristic
properties of FeSCs [93]. In the phase diagram of most FeSCs, the superconducting state is
located in the vicinity of a magnetic and a nematic phase. At the example of BaFe,As, this
can be seen in Fig. 1.2. The magnetic phase is often of stripe type, where neighboring spins
are ferromagnetically aligned in one and antiferromagnetically aligned in the other direction.
However, also more complex spin configurations due to multiple nesting vectors have been
discussed [94-99]. In the nematic phase the fourfold lattice rotation symmetry is broken down
to a twofold one. While its origin remains controversial, it is often related to spontaneous orbital
order or to a concomitant of the magnetic phase called Ising-nematic spin order [100-111].
Fluctuations of both, magnetic and orbital type, have been suggested as driving force for
the pairing instability in FeSCs and, depending on the mechanism, result in different pairing
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symmetries [112,113].

The interplay between superconductivity, magnetism, and spontaneous orbital order in FeScs
remains at the forefront of the analysis in this field [111,114]. It has been argued by several
groups [ 115-123] that the most unbiased way to analyze the competing orders is not to focus
on a particular channel but rather follow the evolution of the interactions in all channels as
temperature is lowered. This analysis can be rigorously justified in FeSCs becasue there are other
channels, besides the superconducting (SC) one, in which interactions evolve logarithmically
upon the lowering of temperature/energy: (i) the interaction in the particle-hole channel at
momenta Q, separating hole and electron pockets, evolves logarithmically due to opposite sign
of fermionic dispersions [95,124] and leads to the magnetic instability in the phase diagram.
(i) The composite effect of two scatterings by Q in the particle-hole channel gives rise to
logarithmical variation of the interaction in the Pomeranchuk channel, relevant to orbital
ordering [122]. It is therefore desirable to study the complex interplay of orders in FeSCs
including the full orbital content in an unbiased way.

1.3. OQOutline of the Thesis

In this work we present the results on the interplay of orders in two different material families,
two-dimensional Dirac materials with an eye on graphene and 5-pocket iron-based supercon-
ductors. We start with a collection of the basic concepts appearing during the study of phase
transitions and competing orders in Chap. 2. First, we recall the instabilities of Fermi liquids as
revealed by specific ladder summations in Sec. 2.1 and briefly connect them to possible ordering
patterns, which they hint at. Ginzburg-Landau-Wilson theory is presented as an alternative
description in these cases. In Sec. 2.2 we explain the different RG techniques that we employ in
this thesis to study the aforementioned Fermi liquid instabilities. These in include perturbative
one-loop approaches in the spirit of the “original” Wilson RG and functional RG (fRG) methods
based on exact, but necessarily truncated equations. We thereby compare their advantages
and disadvantages and give an example fRG calculation for the Hubbard model on the bilayer
square lattice. As a last step in Sec. 2.3, we relate the RG framework to the universal critical
behavior occuring in the vicinity of second order phase transitions and discuss the stability
properties of multicritical points.

In the following chapters, we report three analyses about the interplay of ordering tendencies
in different setups. In Chap. 3, we discuss the impact of electron-phonon interactions on the
many-body instabilities of electrons on the honeycomb lattice and their interplay with repulsive
local and non-local Coulomb interactions at charge neutrality. After a short motivation of
the subject in Sec. 3.1, we introduce the tight-binding description of the honeycomb lattice
and its distortions by in-plane optical phonon modes in Sec. 3.2. In Sec. 3.3 we calculate the
instabilities due to the effective phonon-mediated electron-electron interaction, as well as its
influence on electronically-driven instabilities due to further ranged density-density interactions.
We also present the resulting phase diagram, which shows an extension of the spin-density
wave regime and a suppression of competing orders.

In Chap.4 we study the competition of spin- and charge-density waves and their quantum
multicritical behavior for the semimetal-insulator transitions of low-dimensional Dirac fermions.
We start with an introduction to the considered problem and an overview of the results (Sec. 4.1).
We then motivate the effective Dirac description by deriving it from the honeycomb lattice
of graphene in Sec. 4.2 and present the effective Gross-Neveu-Yukawa theory with two order
parameters that allows us to study the multicritical point at which the semimetallic and the spin-



16 1. Introduction

and charge-density-wave phases meet. In the subsequent sections we perform a fixed-point
analysis in terms of two different methods, the one-loop RG approach in combination with
an expansion close to the upper critical dimension of the model (Sec. 4.4) and the functional
RG techniques (Sec. 4.5). We calculate the critical exponents and determine the structure of
the phase diagram, including the nature of transition lines, in the vicinity of the intersection
between the semimetal, antiferromagnetic and staggered density phases. Depending on the
number of fermion flavors, we find qualitatively the same behavior with both methods. However,
the clear picture drawn by the analytical considerations within the expanded one-loop analysis
obtains crucial quantitative corrections from the fRG calculation.

We turn to the second class of investigated materials in Chap. 5, where we investigate the
interplay of superconductivity, magnetism and orbital order for FeSCs with five Fermi pockets.
We motivate the description that accounts for the orbital content of excitations close the the
Fermi energies in Sec. 5.1 and explain the resulting, effective model containing five pockets
made out of three orbitals in Sec. 5.2. Due to the complexity of the full model, we additionally
consider a toy model, which captures already a large extent of the complete description. In
Sec. 5.3 we determine the parquet RG flow of all the symmetry-allowed interactions, which we
use as an input to calculate susceptibilities for the different orders. We find that the 5-pocket
model effectively reduces either to a 3-pocket or a 4-pocket one and discuss consequences for
the ordering tendencies.

We finally summarize and draw conclusion in Chap. 6. The appendix contains technical details
regarding the RG flow. App. A supplements the calculations for the study of the multicritical
point between density waves in Dirac materials. In App. B we list additional specifications for
the analysis of the 3-pocket, 5-band model of FeSCs.
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The compilation of this thesis is solely to the author. The results and presentations are largely
based on work with my collaborators. The related publications are [125-128]:

o [nstabilities on graphene’s honeycomb lattice with electron-phonon inter- actions
Laura Classen, Michael M. Scherer, Carsten Honerkamp
Physical Review B 90, 035122 (2014)

e Ground state phase diagram of the half-filled bilayer Hubbard model
Michael Golor, Timo Reckling, Laura Classen, Michael M. Scherer, Stefan Wessel
Physical Review B 90, 195131 (2014)

e Mott multicriticality of Dirac electrons in graphene
Laura Classen, Igor E Herbut, Lukas Janssen, Michael M. Scherer
Physical Review B 92, 035429 (2015)

e Competition of density waves and quantum multicritical behavior in Dirac materials from
functional renormalization
Laura Classen, Igor E Herbut, Lukas Janssen, Michael M. Scherer
Physical Review B 93, 125119 (2016)

o Interplay between magnetism, superconductivity, and orbital order in 5-pocket model for
iron-based superconductors — a parquet renormalization group study
Laura Classen, Ruigi Xing, Maxim Khodas, Andrey V. Chubukov
Submitted to Physical Review Letters (Aug. 2016)

The foundations for [125] have already been established during my Master’s thesis and have
then been extended during my doctoral research’.

Electrons on the honeycomb lattice couple primarily to optical phonons with wavevectors close to T and K, K’
points in the Brillouin zone. The couplings to I' phonons has been studied in my Master’s thesis. The more
dominant K, K’ phonons have been included during my doctoral research.






CHAPTER 2

Phase Transitions — Signals, Investigation Methods and
Characteristics

2.1. Interaction-Induced Fermi Liquid Instabilities

Fermi liquid theory has been very successful to describe the behavior of metallic systems at low
temperatures. It claims that an interacting fermion system is adiabatically connected to the
state without interaction so that basic properties show qualitatively the same behavior as the
non-interacting Fermi gas. Nevertheless many materials exist whose ground state qualitatively
changes when the temperature is lowered. In other words the interactions between the fermions
lead to an instability of the Fermi liquid in these cases. The criteria for the development of such
an instability and its consequences will be discussed in the following.

2.1.1. Divergent Channels and Spontaneous Order

Let us consider an interacting system of many fermions 1", 1) with spin o that exhibits transla-
tion invariance and can be described by the Hamiltonian

H=Y el hro+V. (2.1)

k,o

The free part is determined by the dispersion e(k) and the interaction is further specified by

V== > Vlkak kWl WL oot (2.2)
kl’k2>k3’
o,0’

Such a bare interaction also gives rise to an effective interaction due to multiple scattering
events. Within perturbation theory, we can obtain a first estimate for the effect of several
scattering processes by calculating the 1-loop correction to the bare interaction. For the general
spin-rotation invariant interaction above, it is given by the three contributions

Tpp = J V(ky, ko, q)G(q)G(ky + ko — @)V (q, k1 + ky —q, k3) (2.3)
q
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'
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Figure 2.1.: The 1-loop contributions coming from the particle-particle channel T
hole channel 7, .. and the direct particle-hole channel 7, 4.

pp» the crossed particle-

Tpher = f V(k1,ky +q—k3,q)G(q)G(ky +q —k3)V(q, ko, k3) (2.4)
q

Tphd = J —2V(k1,q,k3)G(q)G(ky +q—k3)V(ky +q— ks, kz,q) (2.5)
q

+ f V(ki,q,ky +q—k3)G(q)G(ky +q —k3)V(ky +q— ks, ko, q) (2.6)
q

+ f V(k1,q,k3)G(q)G(ky +q—k3)V(ky, ky +q—k3,q) (2.7)

q (2.8)

according to the particle-particle, crossed particle-hole and direct particle-hole diagrams in
Fig. 2.1. Here q = (qq,q) collects the Matsubara frequencies and spatial momenta, and
f .= (2m)™ f d4q involves both of them, i. e. for simplicity we consider zero temperature. The
three contributions differ by the combination of momenta in the interaction V and especially
in the free propagator G(k) = (iw — €;)~!. In many physical systems specific momentum
combinations exist that lead to divergences of the effective interaction at low energies. To see
this, we choose a simple Hubbard-type interaction as example

u Tt
V= N Z ¢k3,0¢k1+k2—k3,o"wk2’0/wkl’("' 2.9)
ky,ka,ks,

/
0,0

In this case the three diagrams of the direct particle-hole channel cancel and only the particle-
particle and crossed particle-hole contributions remain. After performing the integration over
Matsubara frequencies at zero temperature and relabeling k, = —k; + Q in the particle-particle
and k, — ks = Q in the particle-hole channel, we obtain

1
G(q)G(—q +Q) = : (2.10)
(@)G(—q+Q) L—1Q0+eq+e_q+q

Top = UPLpp(@),  Lpy(q) = f
q

G(q)G(q+Q)=f ;. (2.11)

q Qo+ €5—€g1q

Tpher = Uszh(q): Lph(Q) = J

q

In these expressions, we directly see that for zero external frequency Q, = O, the particle-
particle diagram develops a logarithmic divergence if €, = €_g,, which is often the case for
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zero external momentum Q = 0. In turn the particle-hole contribution diverges logarithmically
if the nesting condition €,,, = —¢, is satisfied. Then the integrals can be approximated as

w
Top R —Tpher N U?pyln A (2.12)

IR
where we have introduced the density of states at the Fermi surface p,, the bandwidth W and
the infrared cutoff A;p. If we now sum separately the particle-particle and particle-hole ladder
we obtain

Upp/ph—tadder = U — ULpppn(Q)Upp /ph—iadder (2.13)

U U
Upp/ph—ladder = - ) (2.14)
pp/ph-ladder 1+ ULpp/ph(Q) 1+ UPO In Aﬁm

Already within this simple approximation, we can make several fundamental observations. First
of all, we find that potential instabilities arise in our description because the effective interaction
may diverge when 1+ Upgln )\’V—m = 0. This can be interpreted as the formation of bound states
or the emergence of new degrees of freedom such as the Cooper pairs in a superconductor. In
other words these instabilities signal the possibility of spontaneous symmetry breaking. On its
own, the particle-particle channel can only develop such an instability if the bare interaction
is attractive. For the particle-hole channel to diverge a nesting condition must be satisfied.
Furthermore the corrections contain the density of states, which means the number of available
particles can promote or suppress interaction effects.

Superconductivity

We have seen that an instability in the particle-particle channel can arise for an attractive bare
interaction. The corresponding characteristic momentum structure of the singular part of the

effective interaction with opposite momentum of incoming particles (k, = —k;) suggest the
well-known Cooper pair, which is related to the superconducting gap, as order parameter
Dioor = (i1 ) (2.15)

Its symmetry properties depend on the pairing mechanism, which has to circumvent the usually
repulsive, direct electronic coupling, and the symmetry of the considered material. Within BCS
theory, it is shown that phonons can mediate an attractive interaction between the electrons,
which then leads to a pairing instability in the spin singlet s-wave channel. The effect of
phonon-mediated interactions on ordering tendencies in graphene will be studied in Chap. 3.
However for example in strongly correlated materials the electron-phonon coupling can be too
small to overcome the Coulomb repulsion, but superconductivity still occurs. To explain this
we must consider the coupling between particle-particle and particle-hole channels. Then the
Kohn-Luttinger mechanism can give rise to a pairing instability when singular particle-hole
corrections are included in the interaction used to sum the particle-particle channel. Typically
this will alter the momentum and/or spin dependence of the Cooper pair so that the pairing
will develop in another channel than the conventional s-wave. Lots of examples exist for this
unconventional superconductivity [129], e. g. d-wave pairing in the cuprates (e. g. [130-132]),
spin-triplet p-wave pairing in >He (e. g. [133,134]) and SroRuO,(e. g. [135]), or chiral d +id
in doped graphene [72,73]. The interplay between instabilities in the particle-particle and
particle-hole channels in iron-based superconductors will be subject of Chap. 5. Finally, let us
mention that superconductivity can also occur with a finite pairing momentum [136-139].
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disordered disordered

H H

Figure 2.2.: A general phasediagram with two competing orders can have a phase of coexistence with a
tetracritical point (left) or a direct transition between both orders with a bicritical point
(right). Solid (dashed) lines denote (dis-)continuous phase transitions.

Spontaneous Order from Particle-Hole Instabilities

An instability in the particle-hole channel can generally involve charge or spin degrees of
freedom with the order parameters

— T — il
mg = Z <ck+q’sos’s/ck,5/> or nyg= Z(ck+q’5ck,s>, (2.16)

k,s,s’ k,s

because we can always decompose even a SU(2) spin-symmetric interaction into a charge and
spin part in terms of the completeness relation ), OO,y = 2056y — 6350 Since the
instability in the effective interaction occurs for those transfer momenta that fulfill the nesting
condition g = Qp,y,, the configuration my—,  orng_q  issingled out, respectively. This will

lead to a periodic structure in real space

mi/ni & exp(iQnestri) (2~17)

corresponding to a charge or spin density wave. It can also be energetically favorable to form
the particle-hole pair with a slightly different transfer momentum, leading to incommensurate
density waves [69, 140]. Furthermore more exotic types of order might develop in the particle-
hole channel. For example on the honeycomb lattice the topological quantum anomalous Hall
and quantum spin Hall states have been suggested to be induced by a next-to-nearest neighbor
repulsion [59, 60].

2.1.2. Ginzburg-Landau-Wilson Action

In the case that the description in terms of Fermi liquid theory breaks down, alternative
approaches to study the related phenomena are required. Ginzburg-Landau-Wilson theory has
been established as a model to describe systems in the vicinity of a phase transition with an
action of the form

The field ¢ plays the role of the order parameter and the parameters are functions of external
quantities, such as temperature, pressure or magnetic field. In particular, u changes sign at
the transition temperature u ~ (T — T,). The form of the action is obtained from symmetry
consideration and has first been introduced as a phenomenological model. But the parameters
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of the action can be derived microscopically within quantum field theory with the help of a
Hubbard-Stratonovich transformation and integrating out the fermion degrees of freedom.
Depending on the physical problem, the exact expressions for the parameters will differ, yet
the general form of the action does not change demonstrating universality close to phase
transitions. Since we will be concerned mainly with the competition of orders in the following,
we generalize the Ginzburg-Landau-Wilson action so that it contains two oder parameter fields

1 1
Seiwl9. 1] =f (5 (3,9 + 5 (ux) + 190> + 1 2” + 29 (67 + 2, () + 9\¢x¢2?€2)-
(2.19)

There are four configurations (¢, o) that potentially minimize the corresponding free energy
F =kgTS[¢o, xo] and determine the state of the system. For ug,u, > 0, the symmetric phase
is stable and ¢y = yo = 0. Further only one of the symmetries can be broken with ¢, = 0 and
Xo # 0 when uy > 0 and u, <0 (or vice versa). But the most interesting situation arises if
both sectors become critical ug, 1, < 0. In this case there are two general, very different phase
diagrams as sketched in Fig. 2.2. Their form is determined by the sign of 4444, — A4, , which
has been used as a criterion in a variety of studies that investigate the competition between
different order parameters [11,141-143]. For positive 4A4A, — A4, > O there is a phase of
coexistence with ¢ # 0, yo 7 0. In this case the multicritical point, where all phases meet, is
governed by a tetracritical point. For the opposite sign both orders exclude each other leading
to a bicritical structure.

2.1.3. What is missing in this picture?

So far we have ignored three important factors. First, when we investigate potential instabilities
of the Fermi liquid, instead of summing single channels separately, we would like to include
the mutual feedback of different channels into the consideration. This interplay is especially
important when we study competing orders, where more than one channel develops an insta-
bility. For instance in iron-based superconductors, magnetic correlations in the particle-hole
channel are crucial to induce an attractive pairing interaction and the resulting instability in
the superconducting channel. A possibility to account for these relations is, amongst others,
given by the so called parquet RG or the patching FRG scheme, which both will be introduced
in Sec. 2.2.

Furthermore fluctuations of the order parameter around its expectation value play an im-
portant role when we consider possible phase transitions. They tend to reduce the ordering
attempts of a system or even prevent the appearance of order at all, as e.g. when the Memin-
Wagner theorem applies. Furthermore fluctuations influence the universal critical behavior at a
continuous phase transition or can induce a first order transition. Consequently in order to
properly characterize a system at a phase transition, fluctuations have to be included. This
means we have to include effects beyond the consideration of the minima of the Ginzburg-
Landau-Wilson action and determine arising corrections of the parameters. A suitable method
to do so is again provided by the RG framework. The universal critical behavior at continuous
phase transitions and the scaling of correlations and susceptibilities will be explained in Sec.2.3.

Eventually, we will discuss systems, where both of the above descriptions turn out to be
insufficient. In these models the order parameter related to the phase transition couples to
other massless modes so that the integrals that determine microscopically the Ginzburg-Landau-
Wilson action do not exist. In other words the construction of the aforementioned purely
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bosonic action is not possible and we need an extended description to study the properties of
the phase transition [144]. In this work this will be the case for the (multi-)critical behavior in
Dirac materials, where we consider the coupling of theories that separately lie in the chiral
Ising and chiral Heisenberg universality class [145]. The corresponding models, which are
assumed to correctly capture the critical behavior, incorporates massless Dirac fermions and
bosonic order parameter fields at the same time.

2.2. Renormalization Group Methods

The introduction of renormalization group techniques has led to very successful developments
in theoretical physics, thereby establishing the concept of understanding a physical system to be
dependent on the energy scale where it is probed. In this way the RG provides insights about the
validity of fundamental theories in high-energy as well as condensed matter physics and explains
relations between different physical systems exhibiting universal behavior close to phase
transitions [13-17]. Here we will first focus on the idea introduced by K. G. Wilson [146, 147]
and subsequently explain the different formulations we employ in later chapters.

2.2.1. Wilsonian Renormalization Group

Typically we are interested in low energy, long-wavelength properties of interacting many-body
systems. In the functional integral formalism, they are encoded in the partition function

Z= f 29 exp(—Sle]), (2.20)

where ¢ can contain several different fields. In the previous section we have seen that we
encounter the problem of infrared singularities, when we approach the calculation of the
full partition function. The Wilsonian idea is now to integrate out the degrees of freedom in
Eq. (2.20) successively, because only the low-energy modes are responsible for the divergence.
Thus we perform the integral merely over a suitable subset of fields, determine the corresponding
change of the effective action and reiterate this procedure. Thereby we not only avoid the
singularities, but typically the relevant processes in the coupled set of diagrams will also become
clear. To implement this strategy, we divide the fields into slow and fast degrees of freedom

=0 +¢ (2.21)

corresponding to the high- and low-energy modes. For instance if energy is directly related to
the absolute value of the momentum as in a quadratic dispersion relation, we can integrate out
the modes within a momentum shell Ay, /b < p < Ayy, where Ay is the ultraviolet cutoff
of our theory and b defines the flow parameter characterizing the change in energy. Then
¢ = includes all the Fourier components with p < Ayy /b and ¢~ with p > Ay, /b. After the
integration over ~

Z:f@¢<9¢>exp(—8[w<+¢>]) (2.22)

=J@<p<eXp(—Seff[cp<]), (2.23)



2.2 Renormalization Group Methods 25

the action S,¢ can again be written in the same form as the bare action by rescaling the
momenta and fields, which, in turn, leads to a rescaling of the parameters. Unfortunately we
cannot perform the integration exactly due to the presence of interactions, so the strategy will
be to do perturbation theory. We will then recover the conventional diagrams from a loop
expansion with the difference that internal integrations only involve fast modes, i. e. they
are cut in the infrared. Furthermore it turns out that only one-particle irreducible diagrams
contribute due to the constraint that internal lines have to carry high-energy modes, while
external legs correspond to low-energy modes. The goal of the RG is now to study the evolution
or the flow of the parameters in the action, when we iterate this process of eliminating fast
modes and rescaling. Thereby it is convenient to formulate the change in a differential form
resulting in flow equations for the parameters of our theory. In practice there are many different
formulations how to perform the RG mechanism, in particular how to introduce the running
energy scale and how to separate slow and fast modes. In the following we will introduce three
approaches based on the Wilsonian idea: the momentum-shell RG combined with an expansion
around the upper critical dimension of a theory, the parquet RG based on the simultaneous
development of logarithmic instabilities at lower scales and the functional RG, which in principle
does not rely on a perturbative treatment.

As there are commonly used notations for the different formulations of the RG, we will adapt
these notations depending on the RG setting we employ. For clarity we summarize them in the
following table.

Table 2.1.: Notation of flow parameters in different RG formulations. The UV cutoff A, labels the
range of validity of the considered model and is of the order of the bandwidth Ay, S W.

Flow parameter Meaning
e-expansion b Momentum shell
Ayy/b <p <Ayy
PRG [ =In(Ayy/E) Logarithmic polarization bubble
with infrared cutoff E
fRG “Wetterich formulation” k and t =In(k/Ayy) Infrared cutoff k and
renormalization “time” t
fRG patching scheme A Infrared cutoff

e-Expansion

The e-expansion provides a useful tool when we study critical phenomena close to phase
transitions (see e. g. [16]). Typically in this case, we implement the separation between low- and
high-energy modes in terms of the already mentioned momentum-shell RG, where we constrain
integrations to momenta that lie within Ay /b < p < Ayy with the ultraviolet cutoff Ay and
the flow parameter b. The name e-expansion comes from the following consideration. In the
study of critical physics, the upper critical dimension d,, is an important quantity. It separates
the regimes, where mean-field theory correctly describes the critical behavior from where
non-trivial corrections to scaling occur. We are interested in these non-trivial modifications and
it turns out that below the upper critical dimension, the small parameter that controls the size
of corrections to the mean-field behavior is the dimensionality difference € = d, —d. Thus for a
controlled approach to critical behavior within in the RG, we should expand the loop integrals
of the perturbation series in €. Unfortunately we are often interested in systems, where € is not



26 2. Phase Transitions — Signals, Investigation Methods and Characteristics

small and the e-expansion is an asymptotic series, i. e. Borel summation techniques are needed
to extract accurate results from the e-expansion under these circumstances. Nevertheless a
first-order e-expansion can still be fruitful, because it reveals the qualitative structure of the
flow and classifies the relevancy of couplings.

Parquet Renormalization Group

The parquet RG (pRG) is a controlled weak coupling approach away from criticality with the
goal to monitor the buildup of fluctuations, which are small at high energies comparable to the
bandwidth W of the considered material, and increase when lowering the energy. In particular
the pRG allows to study correlations that simultaneously develop in the particle-particle and
particle-hole channel, thereby treating the competition of orders on equal footing. It is therefore
convenient to take the identical logarithm of the particle-particle and particle-hole bubble as
flow parameter L = In(Ayy/E), where E is the flowing energy scale and the UV-cutoff is of
the order of the bandwidth Ay ~ W. An instability in a particular ordering channel is then
signaled by the divergence of specific couplings at a scale L.,. An educational description of the
procedure to derive the pRG equations is given e.g. in Ref. [148] and the appendix of Ref. [122].
The pRG analysis works when E is larger than the Fermi energy, i.e., when L < Ly =log A/Ey
(see, e.g., Ref. [149]). If L., < L, the pRG analysis is valid all the way to the leading instability.
If L., > Ly, pRG analysis allows one to determine the largest susceptibility at L = L. It is
likely (although not guaranteed) that this susceptibility will diverge first at a lower energy.

A second energy scale that cuts the pRG flow is associated to deviations from perfect nesting.
In principle non-perfect nesting, which is probably more realistic to assume, destroys the
equality between particle-particle and particle-hole singularities. Small imperfections are still
treatable though, in the sense that both bubbles are approximately the same over a large
energy range before the logarithmic singularity in the particle-hole channel is cut. The effect of
deviations from perfect nesting then depends again on the hierarchy of scales. If the leading
instability occurs at a larger energy scale than the discrepancy between particle-particle and
particle-hole channel, non-perfect nesting is an irrelevant perturbation. Otherwise only the
pairing instability will continue growing, while the particle-hole instability does not develop.

2.2.2. Functional Renormalization Group

In a sense the functional RG formalizes the Wilsonian idea and at the same time leads to a
generalization that opens further application possibilities. The advantage of this formulation is
that its starting point relies on a universal, exact flow equation for the effective action, i. e . in
principle we are not restricted to perturbation theory. The draw-back may be that some control
is sacrificed, because a small expansion parameter can be lost. The FRG method provides a
unified framework to access universal as well as nonuniversal properties of physical systems.
It may be employed to describe the critical behavior in the vicinity of continuous classical or
quantum phase transitions and is also applicable to systems away from criticality. By means of
suitable expansion schemes it has also been used to study first-order phase transitions. The
FRG can be applied in arbitrary (fractional) dimension, and even low-order truncations already
appear to give reasonably accurate results in both purely bosonic as well as coupled boson-
fermion systems. For reviews related to condensed matter physics see e. g. [14,15,17,117,150].
We will explain two approaches in terms of the Wetterich equation here, which we eventually
employ to study (multi-)critical phenomena in Dirac materials and the interplay of phonon and
electron interactions on the honeycomb lattice, respectively.
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The Effective Action

The central object of the fRG is the scale-dependent effective action, which is the generating
functional of one-particle irreducible (1PI) correlation functions. Therefore let us briefly remind
of the formalities regarding correlation functions and their generating functionals. We can
conveniently extract all information about a physical system from the Schwinger functional
with a source term J ¢

W[J]=1nZ[J]=1nJ@(pexp(—s[np]+JJ(p), (2.24)

which is defined in terms of the partition function Z[J]. Then the correlation functions can
simply be obtained by differentiation
61‘1

(o(p1)...0(py)) = 5J(p1)_“5J(pn)W[J]

But the Schwinger functional contains redundant information in the form of reducible correla-
tion functions and as we have seen above only the 1PI diagrams contribute to the RG equations.
These can be obtained via the Legendre transform of W[J], which is the effective action

(2.25)

J=0

I‘[q&]:sup(JJqS—W[J]) . (2.26)
J

The scale-k-dependent or flowing action T} is then defined in such a way that it interpolates
between the microscopic action at the UV cutoff Ay, where no fluctuations have been included,
and the full quantum effective action in the infrared, which accounts for fluctuations on all
scales, i. e.

Tior, =S and To=T. (2.27)

The exact incorporation of the scale dependence of Tj, slightly differs between both formulations
of the fRG and will be presented below.

Wetterich Equation

For the following formulation see the aforementioned reviews [14,17,150]. To implement
Wilson’s idea of successively performing the integration over degrees of freedom in the fRG
formalism, a so-called regulator R; is introduced that modifies the microscopic action by
replacing

L R P (). 2.28)

S—S+AS, with ASk[cp]zf 2

(g:p)

The flowing action is then defined as the Legendre transform of the regularized Schwinger
functional Wi [J] = lnf P exp (—S[(,o] —ASi[e]+ fJgo)

Fk[¢]=SIJ1pUJ¢—Wk[J])—ASk[¢>]. (2.29)

On the one hand the regulator function R induces the iterative integration procedure and
ensures that only modes with high momentum |q| 2 k give a contribution to the integral in
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I}, i. e. Ry(q) =0 for |q| > k and R;(q) = k? for |q| < k. Thereby infrared singularities are
avoided. On the other hand it ensures the interpolation between the microscopic and the full
quantum action. Therefore it has to satisfy the requirements R;(q) — oo for k — Ayy — o0
and R, (q) — O for k/|g| — 0. Calculating the scale-derivative of the regulated effective action
then yields the exact functional differential equation [151]

1
T, = ESTr[(Flgz) +R)TIOR, ], (2.30)

which is also called Wetterich equation. We have abbreviated &, = kJ, using the renormaliza-
tion group time t = In(k/Ayy ). The Hessian F]EZ) is given by

@ 5 5
(57),, 00 = 55 o B @30

Let us again note that ¢ can represent a collective field variable for all fermionic and bosonic
degrees of freedom of our model. In this case in the Wetterich equation, the regulators for this
model are combined to

L )
Re=| 0 o RrRP, (2.32)
o —RIT o

if we separate the boson regulator RE{B) and the fermion regulator R&(F). The notation STr sums
over all degrees of freedom including a minus sign in the fermionic sector as well as a loop
integration over momenta. Graphically the flow equation for the effective action can therefore
be depicted as a 1-loop diagram (see Fig. 2.3) with a regulator insertion J,R;. However the
propagator and vertices have to be understood as fully dressed n-point functions. Of course we
still cannot solve this equation exactly and have to rely on suitable approximations as will be
discussed in the next sections. The advantage is though that the flow equation allows to obtain
improved results on a one-loop level compared to pure perturbation theory.

Conventional RG from Functional RG

The relation between the conventional Wilson RG and the fRG becomes intuitively very clear
when we sketch a typical regulator and its derivative as in Fig. 2.3. We can see that J,R;(q),
which appears on the right side of the flow equation, is peaked around |q| ~ k and we can
directly connect this to the momentum shell of the Wilsonian picture. However we have a
freedom in choosing an appropriate ansatz for the effective action together with a regulator
individually tailored to the problem we address. For example to recover perturbation theory, we
can adopt the loop expansion I}, =S + hl“k“ + 0(h?), which leads to the free propagator on the

right hand side of the flow equation FIEZ) = S®). This also means that only the microscopic bare
values of the parameters appear on the right hand side. The flow equation for the one-loop
action can then be integrated to the standard one-loop effective action

1
=5+ 5 STrin (5@ +Ry.) + const. (2.33)

The standard renormalization-group improved, one-loop flow equations can be obtained from
the Wetterich equation Eq. (2.30) by replacing all propagators and vertices on the right side
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o' =

D[

Figure 2.3.: (Left) Diagrammatic representation of the flow equation for the effective action Eq. (2.30).
Despite of the one-loop structure the equation is exact due to the presence of the full
propagator (F,EZ) +R,;)~!, which is represented by the double line. The crossed circle denotes
the regulator insertion J,Ry.

(Right) A regulator of the form R, = L@/

<z and its scale derivative (n = 3 in the plot).

The additive regulator in the propagator (Flgz) + Ry)! suppresses slow modes because
Ri(q) = k? for |q| < k so that infrared regularity is ensured. The derivative J,R; appearing
in the numerator of the flow equation is responsible for the shell-wise integration.

through the bare ones, but with running couplings. Additionally we have to impose a regulator
that corresponds to the sharp momentum-shell, which is therefore also called sharp regulator.
If we deal with critical phenomena, we further have to expand the resulting flow equations
for the parameters in the difference to the upper critical dimension € = d, —d to obtain the
perturbative expression.

Truncations

Besides the approximation that reproduces the conventional RG equations, we will employ the
following two truncation schemes.

One possibility is to expand the effective action in powers of the fields resulting in a vertex
expansion

n¢)= = f f 5Pyt + P (1 P)Pa(PL) - $ulpa). (234)
n Y Pn

Inserting this ansatz into the Wetterich equation yields a coupled set of differential equations
for the vertex functions I‘lgn),which we have to truncate after a specific n. The solution for the
remaining vertex functions then interpolates between the bare and effective vertices and allows
to follow their individual development with energy scale. We also note that this formulation
accounts for the mutual feedback of different channels since we did not make any assumption
about the form of I‘,En).

An alternative expansion scheme is the derivative expansion, where we classify the terms by
the number of derivatives

)= J (3PS +UP) + 31PXGP? +0(0Y)  (235)

!When we use another regulator, we have to ensure that we include only 1-loop contributions on the right side in
the coupling constants
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with the symmetry invariant p = %(bz. We usually truncate this expansion to only include the
effective potential U(p) and a running wave function renormalization Z; that is independent
of p. This scheme is often called “improved local potential approximation” (LPA). The effective
potential itself can again be expanded in a Taylor series in p around its minimum, which is
related to the expectation value of the field. It then may be that we have to include couplings
that would be irrelevant in the standard RG sense. The reason being that although they
eventually flow to zero, the intermediate evolution is non-universal and can be influenced by
these couplings. An interesting option to overcome the limitations of local expansions in field
space, for e.g. U(p), is to use a grid. This has recently been put forward with the help of
pseudo-spectral methods to access fixed points and critical exponents, see Ref. [152]. We will,
however, employ the Taylor expansion of the effective potential below.

In every truncation scheme that we use, we are supposed check the results for consistency,
because we lack a small parameter that controls our expansion. This can be approached by
varying the ansatz and determining the effect on the results, which should converge at some
level of truncation extensions. Furthermore we have to be careful when choosing a regulator.
In principle different choices of regulators only represent different paths in theory space from
the bare to the full effective action, i. e they all give the same result in the infrared. But in
practice we cannot integrate out all modes completely so that the results will depend on our
choice and we will typically utilize optimized regulators [ 153-158].

Patching Scheme

The patching scheme is designed to determine the low-energy instabilities of a (semi-)metal
based on its band structure. It has been proven to be a suitable tool for the study of a large
range of two-dimensional solid state systems with strongly-correlated phases, e.g. high-T.
superconductors, such as cuprates, pnictides and investigations on the honeycomb lattice, see
Refs. [15,117] for recent reviews of this approach. We consider the fermion action

S[w,¢]=—f Y Gyl + VY, Pl (2.36)
q

In this specific fRG scheme, the bare propagator G, in the effective action is modified by a
multiplicative regulator C*

A
Go (p,n) = Gy (p,n) = ﬂ (2.37)
1Ppo— gn,p

with the single-particle energy &, , = €, , —u in band n and the chemical potential u. The
regulator is chosen as a momentum cutoff, which suppresses the modes with energy less than
A and reads C* (5 n’p) =0 ({5 n’p| —A). For numerical stability, we slightly soften the step
function in the actual implementation. The flow equation for the scale-dependent effective
action T’y then obtains the form

fn=— | g 5n{a (12)], 2:38)

where QQ = (Gé\)_1 and Qy(p,q) =diag (Q’(}(p,q), —Qg(q,p)) and I‘S\z) is the matrix of second
derivatives. We recognize an equivalent structure as in Eq. (2.30) with the additional, trivial
term f wQ{)‘"gb due to the multiplicative regulator implementation. As an ansatz for the effective
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action, we employ the aforementioned expansion in powers of the fields to obtain flow equations
for the momentum dependent vertices.

In the calculations performed in this study, several approximations are employed to numeri-
cally integrate the resulting RG flow equations for the 1PI vertices efficiently: We truncate after
the two-particle interaction vertex V", which means that the results are of second order in the
interaction. The flow of V/ provides the essential information about the leading instabilities
and we further neglect the effect of self-energy corrections as they couple to the flow of the
interaction vertex only at third order, see e.g. Ref. [159]. In addition, we do not account
for the frequency dependence of the vertex V/ and set the external frequencies to zero to
single out the most singular contribution of the flow for the determination of the ground state
properties of the system. This strategy has proven to provide reliable results in a large number
of different two-dimensional fermionic solid state systems, cf. Refs. [15,117]. Despite these
approximations, one obtains an infinite-order summation of second order diagrams, which,
importantly, accounts for the competition between different channels. The flow equation for a
SU(2)-spin-symmetric coupling function V4 (pl, D2, P35 n4)2, then reads

d A _ A A A
HV (p1;p2>P3: n4) - Tpp + Tph,d + Tph,cr (239)

with p; = (pg ;, P;, 11;) labeling not only the Matsubara frequencies and wave vectors, but also
the bands. We again find the three contributions from particle-particle, direct and crossed
particel-hole diagrams as in Fig. 2.1, but here one of the internal lines denotes the scale-
derivative of the propagator rather than the propagator itself. The particle-particle channel is
given as

T;)\pzf VA(pl>p25p;n/)LA(p,ppp)VA(p’ppp’p3’n4),
p

and fq =AE§T Zpo f d?p Zn’n,. The direct and the crossed particle-hole channels are given by

Tﬁh,d:f [_ZVA(Pl,P,PB’n/)LA(P:Qd)VA(pdspz,P,TM)
p

+ VA (p’pl)p?)’ n/)LA (p:pd)VA (pd:p2>pa n4)
+ VA(plip’pB:n/)LA(p:pd)VA(pZ:pd)p)n4):| 5

and
T;\h,cr = f VA (P,Pz,Ps: Tl/) LA (p:pcr) VA (plapcr:p: Tl4) >
p

respectively, and we define the wave vectors p,, = —p + p; +ps, pg =p + p1 —p3 and p., =
D + Py — p3. Apz denotes the area of the first Brillouin zone. The loop kernel reads

/ d /
L (p,p’) = o [Grp)Ga(DN], (2.40)

with the free propagator G(/)‘ due to the neglect of the self-energy.

2see e. g. [67,160] for spin-resolved discussions
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To solve the flow equations numerically, the wave vector dependence of the interaction vertex
is discretized with a patching scheme that divides the Brillouin zone into N patches, in which
the vertex is approximated to be constant. The representative momentum for each patch is
placed close to the Fermi level, see Figs. 2.4 and 3.1 for examples on the bilayer square and the
honeycomb lattice. This procedure has been established in Ref. [159] and successfully applied
in a large number of works, cf. Ref. [15]. We also note at this point that in the meantime
the patching scheme has been extended to achieve a better radial resolution, i. e. within one
angular patch several ring patches in some distance from the Fermi surface have been included.
It has been shown that this improvement is crucial on the honeycomb lattice to correctly identify
the leading ordering tendency induced by a next-to-nearest-neighbor interaction.

During the lowering of the energy scale, some components of the effective two-particle
interaction V* typically grow large and diverge at a critical scale A, > 0 indicating an instability
towards an ordered state. The pronounced momentum structure of the critical interaction
vertex then allows to extract an effective Hamiltonian for the low-energy degrees of freedom
and determines the leading order parameter. In this way the approach is unbiased because
the structure of the effective low energy theory is not anticipated. In the actual numerical
evaluation of a diverging interaction vertex, we stop the flow at a scale Ajg where the largest
component of V, is of the order of several times the bandwith and use this Az as an estimate for
the critical scale A.. The critical scale A, can be interpreted as an estimate for the temperature
below which ordering occurs or correlations of the order parameter become important. The
procedure described here is well-controlled for small interactions and can be expected to be
reliable also in the regime of intermediate interaction strengths [15,117,161].

2.2.3. Example: The Ground State Phase Diagram of the Half-Filled Bilayer
Hubbard Model

As an example for the appearance of an instability we present a study of the bilayer Hubbard
model at half-filling in terms of the patching fRG scheme. It demonstrates the application of
this scheme and also establishes a connection to the role of nesting and the density of states,
which we have seen in Sec. 2.1.1. While the Hubbard model in general provides a fundamental
description of correlation effects in many-body condensed matter systems, the bilayer Hubbard
model additionally serves as a simple model with multiple Fermi surfaces and electron and
hole pockets, cf. e. g. Ref. [162]. Such a Fermi surface composition with pockets of different
nature is in particular important in the study of iron-based superconductors as we will see
in Chap. 5. A related phenomenon in the bilayer Hubbard model is the transition between
different pairing symmetries by tuning the interlayer hopping, cf. e.g. Ref. [163]. But in this
section we would like to concentrate on the effect of the onsite interaction, which is expected
to induce an antiferromagnetic instability due to the perfect-nesting property of the model at
half filling [126] °.

The Model

The Hubbard model on the square lattice bilayer with intra-layer nearest-neighbor hopping ¢,
inter-layer hopping t | and a local Coulomb repulsion U, is described by the Hamiltonian

H=—t Z (CLLSCJ-M + h.c.) —t; Z (CiTlsCiZ.s + h.c.) + UZ MMl (2.41)
(ij)sA is i

3See however [164,165] for the prediction of an extended paramagnetic metallic phase at small onsite interactions
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where the cl(;rg denote annihilation (creation) operators for electrons of spin s € {1, |} on site i in
layer A € {1,2}, and the n;;, denote local occupation number operators. For U = 0, Eq. (2.41)
reduces to a tight-binding model, which can be solved by exact diagonalization and exhibits
the single-particle dispersion

eé(k, t))=-2t (cos(kx) + cos(ky)) +t. (2.42)

This corresponds to two copies of the square lattice single-layer dispersion (t; = 0), shifted
with respect to each other linearly in t | . Since for the single-layer lattice the energies lie within
the range —4t < € < 4t, a band gap opens for ¢t ;| > 4t and the system becomes band-insulating
at half filling. Both bands remain perfectly nested for all values t | /t, with a nesting vector
Q= (m,m),i.e.

eg(k+Q,t)=—€y(k,t). (2.43)

The Fermi surface for t | /t = 2 and the nesting vector are shown in Fig. 2.4. As a consequence of
Eq. (2.42), the density of states (DOS) of the bilayer lattice, p (e, t | ), is the sum of two displaced
single-layer DOS contributions, see Fig. 2.4. This causes the logarithmic van Hove singularity of
the single-layer square lattice to be shifted away from the Fermi level to energies &t | . Therefore
one expects a suppression of interaction effects in the bilayer system. However, for t| < 4t,
the DOS stays finite at the Fermi surface. This, combined with the nesting property, leads to
a divergence of the zero-temperature static spin-spin susceptibility given by the particle-hole
bubble, as we have seen in Sec. 2.1. From the particle-hole ladder U,j_jaqder ~ TUpn I we
can then extract an estimate for the scale where the instability occurs by setting the denominator
to zero. Thereby we have to account for the different behavior of the DOS. For the bilayer with
finite DOS pg ~ t, this yields

A, oce U, (2.44)

whereas the van Hove singularity of the single layer p, ~ t In(W /A) leads to
A, o< e VU, (2.45)

Effect of Onsite Interaction from FRG

In the following, we employ the fRG approach with the patching scheme that shows in an unbi-
ased way how the antiferromagnetic instability indeed emerges in the weak-interaction regime
from the noninteracting metallic state. As described in Sec. 2.2.2 the vertex V, is discretized
by dividing the Brillouin zone into N, patches with a constant wavevector dependence within
each patch, as shown in Fig. 3.1. Representative momenta for these patches are chosen to
reside at the Fermi level. In the following, we employ a wavevector resolution with a patch
number of N, = 32 and N,, = 48. We have also checked our results to be stable towards higher
resolutions with up to N, = 96 patches. In summary, we obtain a vertex function V, with
Np3 -Ng' components, where N, = 2 is the number of energy bands, and a set of Np3 'N;' coupled
differential equations that has to be integrated.

As explained above we will observe a singularity in specific components of the effective
interaction if ordering tendencies become relevant. In this case we can take the corresponding
energy scale A, as a reasonable estimate for the critical scale. In the fRG data at half filling and
for arbitrary onsite repulsion, we observe as the prevailing divergence an antiferromagnetic
spin density wave (AF-SDW) with momentum transfer Q = (7, 7t), see Fig. 2.5 for a snapshot of
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Figure 2.4.: (Top) The Fermi surface for t | = 2t and the nesting vector Q. The upper band is colored in
red, the lower in blue. We also show the patching scheme of the Brillouin zone for a total
of N, = 32 patches. Depending on the energy band the coupling function is evaluated on a
wave vector at the Fermi level indicated by the dots.
(Bottom) The U = 0 bilayer density of states (DOS) p(e, t ) for t| = 2t (solid red line) in
comparison with the single-layer DOS (dashed black line). The dotted vertical line marks
the position of the Fermi level.

the four-Fermi vertex close to the critical scale. This behavior clearly reflects the perfect nesting
of the Fermi surface. If we insert the momentum structure extracted from Fig. 2.5 into the
general form of the spin-symmetric interaction Eq. (2.2), the leading part close to the critical
scale can be expressed in terms of an effective interaction Hamiltonian

Hgpw =—J Z €iQ.(ri_rj)(Si/1 “Sia—Six- Sji): (2.46)
i

where J > 0, and A denotes the layer opposite to A. The spin operator S;, is given by the
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Figure 2.5.: Effective interaction vertex near the critical scale for the AF-SDW in units of ¢, exhibiting a
sharply pronounced momentum structure. The axes are numbered according to the number
of the patch, cf. Fig. 3.1, where wavevectors k; are depicted vertically and k, are depicted
horizontally. We fix k5 to be on patch 1. Left Panel: Effective vertex or a combination of

layer indices A; where A; = A, = A3 = A,. Middle Panel: A; = 45,1, = A,. Right panel:
A’l == 2.4, 2,2 == 13.
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Figure 2.6.: (Left) fRG critical scale A, as a function of t/U for the single-layer case (solid line) and the
bilayer case with t, = 1t,2t,3t (from top to bottom) using N, = 48 patches, exhibiting

exponential decrease of A, ~ e~*"**/U_This functional dependence suggests an instability
for any value of U > 0 in accord with mean-field theory.

(Right) The fRG critical scale A, decreases by several orders of magnitude when ¢t /t is
increased from 0O to 4. We show this behavior for three choices of U/t =3,U/t = 2 and
U/t =1 by the solid, dashed and dotted lines, respectively.

relation S;; =1/2). czh 0 ./C;)s in terms of the Pauli matrices. As a result of the sharpness
in momentum space the interaction becomes long-ranged in position space. With this effective
Hamiltonian, we can thus perform a controlled mean-field decoupling. For the resulting

effective Hamiltonian, the spins are aligned antiferromagnetically within each layer and also
between the layers.
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In Fig. 2.6, we compare the critical scales for several cases, namely the situation with vanishing
perpendicular hopping amplitude t; = 0 which is equivalent to the one-band Hubbard model
as well as for perpendicular hoppings of t| /t = 1,2, 3. For the single-layer case, we observe
that in agreement with the expectations from a ladder resummation Eq. (2.45), the functional

dependence of the critical scale on the onsite interaction U/t is an exponential ~ g—const-+/t/U ,
cf. Fig. 2.6. In contrast, the critical scales for the bilayer case are considerably lower, which
can be understood given the reduced density of states at the Fermi level. Furthermore, the
functional dependence on U/t is different and rather follows a behavior ~ e~™tt/U which is
in accordance with the mean-field expectation (cf. Eq. 2.44). Using the fRG approach, treating
all the fluctuation channels on equal footing, we can also check whether competing instabilities
are present for this choice of parameters. Here, we do not observe the appearance of any
other strong correlation effects apart from the AF-SDW instability. In the right panel of Fig. 2.6
we compare the t | -dependence of the critical scale A, for different values of U/t € {1,2,3}.
We observe a continuous decrease of A, as a function of increasing interlayer hopping, i. e. a
growing interlayer hopping reduces the gap size or the critical temperature.

2.3. Critical Phenomena

2.3.1. Scaling from RG B Functions and Fixed Points

Close to continuous transitions, thermodynamic properties behave in a universal way, charac-
terized by power laws with specific critical exponents. This phenomenon can be described by a
scaling ansatz for the free energy, which not only allows to derive the symptomatic power laws
for quantities as specific heat and susceptibility, but also gives scaling relations connecting the
critical exponents. However, the microscopic explanation for the scaling ansatz has only been
provided by the renormalization group. In this section we will briefly explain the connection
(cf. e. g. [16,17]).

We have seen that renormalization group theory describes the scale dependence of a physical
system by providing flow equations for the different couplings of a theory. These flow equations,
also called f8 functions, are differential equations encoding the evolution of the system with
respect to the energy (or momentum) scale k. Starting from a “microscopic” model for a
system at some ultraviolet cutoff scale k = Ay, one can then infer the low-energy, or infrared,
characteristics in terms of the solution of the 8 functions. More explicitly, we introduce the
generalized set of dimensionless couplings for the theory by a;, i € {1,2,...}. The 8 functions
can be written in the form d,a; = B;(a1, a5, ...), where the change in scale is written in terms
of the renormalization group time t = In(k/Ayy) < 0. A fixed point a* of these equations is
given by

Bi(aj,as,...)=0 Vi, (2.47)

and can be viewed as a scale-invariant point. Scale-invariance in turn is associated to continuous
phase transitions. The critical properties and scaling behavior near such a transition are encoded
in the RG flow in the vicinity of the fixed point a*,

oca; =Bi,j(aj—a;f)+ ﬁ((a}f—aj)z) , (2.48)

where B; ; = (8;/0a;)|q=q+- The eigenvalues 6; of the so-called stability matrix (—B; ;)
(“critical exponents”) are universal quantities that characterize the scaling laws at the putative
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continuous phase transition. All positive critical exponents 6; correspond to RG-relevant
directions, i.e., the fixed point repels the flow in that direction. Negative 6; are RG irrelevant
and correspond to attractive directions. Finally 6; = O determines marginal directions, where
corrections of quadratic order have to be taken into account to determine if the flow approaches
to or departs from the fixed point.

From the RG critical exponents we now would like to recover the phenomenological scaling
ansatz that has been used to describe the universal power laws of thermodynamic quantities
close to a phase transition. But let us consider the generalization to quantum critical points
at zero temperature, where the imaginary time leads to an extra dimension. Then not only
fluctuations in space but also in (imaginary) time have to be taken into account. This is
done in terms of the dynamical critical exponent z, which describes the rescaling of temporal
quantities as Matsubara frequencies or temperature, i. e while we rescale momenta like p’ = p/k,
frequencies are rescaled with «w’ = w/k*. We need the extra critical exponent because time
and space coordinates need not to be related by any symmetry, but after rescaling of momenta
and frequencies, it must be possible to rescale the field and bring the action into the old form.
Let us further consider that the fixed point corresponding to the quantum phase transition is
characterized by two relevant couplings. We denote the corresponding deviations to the fixed
point as g and h and assume that they diagonalize the linearized flow equations, i.e.

0,8 =—0,g and Jh=—06,h. (2.49)

The solution of these flow equations reads
g =goe %t =gok % and hy =hoe Ot =hok (2.50)
with gg = goAffV, hy = }_loAzhv. The singular part of the free energy density then transforms

under the RG as

£ (80,ho) = k™ (g1, bye) = kU4 £ (gok ™%, hok ™), (2.51)

where we used that the volume (including the time dimension) changes according to V — Vk4*2.

This expression is exactly the conventional scaling hypothesis. Similarly we obtain the scaling
form of the two-point correlation function

G(w,p, 80, ho) = Z2kIT2G(w’, ', g1, i) = Z2k 2 G(w /P, p [k, gok %, hok ™), (2.52)

where Z defines the wavefunction renormalization ¢’(p”) = Z'¢(p) and itself is a function of
the flow parameter k. The prefactor in Eq. (2.52) comes from the requirement that the form of

the action does not change, [, ¢(p)G (@, p, 80, ho)9(P)= [, (P )G (', ', 8k, i) ¢’ (P) =

fp k=42 7725 (p)G  (w/K?, p/k, g, hi)@(p). If we now choose for example k = gé/eg as

scaling factor and consider a trajectory with hy = 0, the two point function becomes

G(w,p,8,0) = 22g[ /% ( e ) (2.53)
> gz/ 0, gl/ 0,

with ®(x, y) = G(x,y,1,0) and g, — g for notational simplicity. Away from the critical point

g # 0, we expect the two-point function to decay like G(r) o< exp(r/&) with the correlation

length &, which means that its Fourier transform is a function of p&. We can thus extract that

the correlation length scales scales as

Eocg Vo= v=1/0, (2.54)
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Figure 2.7.: A phase diagram in with a quantum critical point at (T, g) = (0, g*) at the end of the ordered

phase, which appears for small temperature T and coupling g. Above the quantum critical
point a quantum critical region emerges with crossover lines at T = |g — g*|"*.

so that the correlation length exponent v is the inverse from the critical exponent 6,. Additional
to the correlation length exponent, we typically compute the anomalous dimension 1) from
the flow of the wave function renormalization n = —d,Z/Z. We can then determine the other
conventional critical exponents (for the specific heat, the susceptibility, the magnetization or
order parameter) due to various scaling relations that make only two of them independent.

We have discarded any irrelevant coupling in this example because they flow exactly to
their fixed point values as the RG is iterated. However their bare values will determine the
starting point of the flow and in general we cannot perform a calculation of the RG flow without
approximation so that irrelevant couplings can play a role.

Furthermore analogous to the scaling for the correlation length, we obtain that the correlation
time 7, behaves like 7, o< g7 o< £% and is thus related to the correlation length. The energy
associated to the correlation time is E, ~ 1/7,, from which we can estimate the impact of the
quantum critical point for non-zero, but still low temperature. It will play a role in the regime,
where temperature can excite the quantum critical ground state T > 1/7, = g"*. This defines
the borders of a quantum critical region at nonzero temperature (see Fig. 2.7), which spreads
from the quantum critical point [17,166].

2.3.2. Multicritical Behavior

We speak of multicritical phenomena when the lines of continuous phase transitions meet at one
point in the phase diagram [5,8-12]. The structure of the phase diagram in the vicinity of such
a point is a priori not clear, e. g. it can be bicritical or tetracritical (cf. Sec. 2.1.2). Furthermore,
the multicritical behavior can differ from the one of the separate transitions. In the following
we will be concerned with a (quantum) multicritical point of Dirac fermions, where a charge
and spin density wave meet. To determine its nature regarding the previously mentioned issues,
we will perform a fixed point analysis of a theory that incorporates the coupling between the
two density waves. We then also have to account for the following stability considerations.
Since deviations from the fixed point grow exponentially for relevant couplings, we have to
fine-tune their bare values to reach the fixed point during the flow. In other words we cannot
advance to a fixed point if there are more relevant couplings than parameters to fine-tune.
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Therefore in our case, fixed points with no more than two relevant directions (corresponding
to no more than two positive critical exponents, 6; and 6,) can be accessed. This is related
to the tuning of two microscopic parameters, e.g., onsite interaction U and nearest-neighbor
interaction V for a microscopic theory (Chap. 4, Eq. (3.3)) or two masses m? and m? in an
effective model (Chap. 4, Eq. (4.7). We will call such fixed points “stable”. The third largest
critical exponent 65 then decides over the stability of a fixed point. If it is negative the fixed
point is stable and accessible through fine-tuning of two parameters, i. e. it will control the
physics of our model. In contrast for positive 05, the flow might come close to the corresponding
fixed point but will eventually be repelled. The crossover exponent ¢ = 65/6; quantifies this
behavior [167]. It determines how fast or slow the crossover from one fixed point to the other,
possibly stable fixed point occurs. If ¢ is small the change will be very slow so that it could
be hard to detect experimentally the critical behavior of other fixed points. That is although
unstable, the considered fixed point can influence the observations. If a stable fixed point with
only two relevant directions does not exist, the flow will eventually leave the vicinity to any
unstable fixed point and flow away. We interpret this absence of scaling as indication for a
discontinuous phase transition.






CHAPTER 3

Interplay of Phonon and Electron Interactions in Graphene

3.1. Electronic Correlations on the Dynamically Distorted Honeycomb
Lattice

As mentioned in the introduction, on the charge neutral honeycomb lattice, due to the vanishing
density of states for energies close to the Fermi level, qualitative changes from interactions
such as strongly correlated electronic phases can only appear beyond a critical interaction
strength [50,51,55]. In this case, however, depending on the type of the interaction, different
spontaneously broken symmetries, as e. g. charge and spin density waves, can occur [56—
63,68-71]. Doped graphene features a non-vanishing density of states at the Fermi level
which enhances the role of electronic interactions as compared to the charge neutral situation
and can give rise to, possibly unconventional superconductivity [57,63]. A supercurrent in
graphene has already been induced [168] by means of a contact of a graphene sample to
superconducting electrodes. Furthermore the intercalation of bilayer graphene with Calcium
has led to a superconducting transition at 4K [169,170].

This raises the question under which circumstances graphene can give rise to intrinsic
superconductivity. In this context, the role of electron-phonon interactions for different types of
superconducting states has been investigated [171-174] with a focus on the effects of in-plane
phonons that were identified in the Raman spectra of graphene [175]. Further ordering patterns
as, e.g., a Kekulé order due to the electron-phonon coupling have been considered [176,177].
However an unbiased approach that additionally accounts for competing effects from repulsive
electronic interactions is missing.

In this chapter, we investigate the ordering tendencies of electrons on the honeycomb lattice
when electron-phonon mediated electronic interactions from in-plane optical phonons as
well as short-ranged Coulomb interactions are present. Therefore, we employ the functional
renormalization group approach in the momentum-resolved patching scheme for the vertex
function (cf. Sec. 2.2.2), allowing us to extract an effective Hamiltonian and determine the
leading order parameters.

As a result of this investigation, we find that the leading correlations due to the phonon-
mediated electronic interaction are not of superconducting type but rather form a bond order.
The superconducting instability is only subleading. In addition, we observe a competition
between two different kinds of bond orders depending on the relative strength of phonon
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modes with different wavevectors coming from the center of the Brillouin zone (BZ), T, or
from the corners of the BZ (the £K-points). The I'-modes induce a nematic state whereas the
+K-phonons support a Kekulé ordering pattern. By means of the fRG approach we resolve this
competition.

By including short-ranged Coulomb interactions, we furthermore study the effects of phonons
in a more realistic setup. In preceding RG investigations [55,57,59] antiferromagnetic spin
density waves and charge density waves as well as topological quantum Hall states have been
considered as relevant ground state candidates for the half-filled honeycomb lattice depending
on the interactions. However it has been shown that the topological quantum Hall states
are most likely suppressed by the appearance of density wave instabilities [67-69,178-181].
In this chapter we show that the phonons affect the phase diagram in such a way that the
antiferromagnetic regime benefits whereas the occurrence of the topological quantum Hall
phase is reduced. This could also be relevant for bilayer graphene whose interaction parameters
place it at the phase boundary between an antiferromagnetic spin density wave and a quantum
spin Hall state [182,183].

This chapter is organized as follows. In Sec. 3.2, we introduce our model in terms of a
tight-binding Hamiltonian with nearest-neighbor hopping and density-density interactions.
Phonon-modes are included upon expansion of the hopping amplitude in the displacements
and integrated out to give a contribution to the electron-electron interaction. In Sec. 3.2.3, we
briefly remind of the N-patch scheme of the functional renormalization group method, as well
as the employed approximations. We present results on the ordering tendencies in Sec. 3.3, first
by discussing exclusive in-plane optical phonons to analyze their isolated effect in Sec. 3.3.1.
Then the interplay with short-ranged Coulomb interactions is studied and the impact of the
electron-phonon coupling is discussed in Sec. 3.3.2. We draw conclusions in Sec. 3.4.

3.2. The Honeycomb Lattice

3.2.1. Extended Hubbard Model on the Honeycomb Lattice
Kinetic Hamiltonian

We consider a tight-binding model of electrons on the bipartite two-dimensional honeycomb
lattice with nearest-neighbor hopping

_ T
H=—t Z (CA’i,SCB’j,s +h.c.) , 3.1
(i,7).
where cgi‘i)s annihilates (creates) an electron in unit cell i on sublattice A with spin s and

analogous for sublattice B. The first sum includes all neighboring sites denoted by (i, j).
They are connected by the nearest-neighbor hopping amplitude which in graphene has been
estimated to be t ~ 2.8 eV. After Fourier transformation with ¢, ; ; = > exp(ik - r;)c, i s/ VN
and o € {A, B}, the tight-binding Hamiltonian reads

H=-—t Z (Akc;’k,scB’k’s + h.c.) (3.2)
k,s

with A, = Y. exp(—ik- a;), where a; labels the primitive lattice vectors together with zero,

i.e. i €{1,2,3}. Explicitly, the a; are given by a; = 0, a, = v/3ae, and a; = @ex + %aey,

where a is the lattice constant. Diagonalization of H gives two bands e = %t |Ay| with two
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inequivalent, linear band crossing points at the Brillouin zone corners, the Dirac cones at K and
—K as depicted in Fig. 3.1. This linear dispersion leads in two dimensions to the simple form
of the density of states p(E) o< E and its previously described vanishing at the Fermi level.

Repulsive Electronic Interactions

Although the effect of interactions is reduced at half-filling due to the vanishing density of
states, interactions on the honeycomb lattice induce instabilities beyond a critical strength. We
here account for repulsive onsite, nearest and next-nearest neighbor interactions

HI = UZ ni,Tni,l + VlZ ni’snj’s/ + VZ Z ni’snj’s/ N (33)
i (L), (@),
.S $,S

with the spin resolved density operator n; ; = =c! 0.isCo,i,s AN estimate for the interaction parame-
ters can be obtained from constrained random phase approximations [79]. Diagonalizing the
single-particle Hamiltonian provides an orbital makeup for the interaction terms, i.e. we obtain
a momentum-dependent vertex in the band representation V. — V(ky,nq,ky, ny, ks, n3,ny4)
determined by four band indices n;, and three independent momenta k;.

3.2.2. Inclusion of Phonon Modes

To determine the coupling of electrons and lattice displacements, we expand the hopping
amplitude in the displacement fields u, based on the assumption that it depends on the distance
between neighboring sites, i.e.

A

t—>t—a||(ui—uj)-5ij. (3.4)

The expansion depends on the bond direction 5Ai ;j pointing along one of the three nearest
neighbor vectors. The expansion parameter is determined by ab initio calculations to be
|a||{ ~ 4.4eV/A —5.3eV/A with a) < 0[175,184,185]. We introduce the phonons by the
usual quantization of the Fourier transformed displacement fields using the explicit expressions
u; = D, exp(iq-1)ug/vN and u; = 3, exp(iq- (r; —a;))ug p/ VN for site i in sublattice A
and its nearest neighbor j in sublattice B. Further,

(3.5)

Ugo = Z qqo Z\/m(p“l pl—q) €40

The carbon mass is denoted by M and pm

is the annihilation (creation) operator of a phonon
in mode A with momentum q. Corresponding dispersions and polarizations are given by Qg

and e* . This inclusion of lattice distortions in terms of the phonon operators leads to the
followmg electron-phonon coupling in orbital momentum space

_ o
kzq; /2MQZ

’

[ Q(Q)Cz,k,sCB,k—q,s (p,l’q + p;,_q) + h.c.] , (3.6)

where g;; HOED ( iq-a; gl a4~ €q eA ) -6,¢7™% _ Similar couplings were obtained for Carbon
nanotubes [186] and by a fit to ab initio values in graphene [175].
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k

Figure 3.1.: (Left) Discretization of the momentum dependence (patching) in the Brillouin zone. Each
patch is represented by a wave vector near the Fermi level as indicated by the dots.
(Right) The energy bands €, = +|A| along the path K’ — T —K in the Brillouin zone. They
touch at K, K’ = —K, where the dispersion can be approximated to be linear in momentum.

Integrating out the phonons in the functional integral representation gives an effective
electronic interaction

th—med 2 + QAZ [ (q)g_k/(q) Ak,s Ak’ S/CB k'+q, s'CB ,k—q,s

2MN " ks

+gk (Q)gk/(Q)* Ak,s B k’—q S/CA k’,s'CB,k—q,s +c.c ] (3.7)

mediated by the phonons. As before the multiindex k = (kg, k) collects the fermionic or bosonic
Matsubara frequency and the wave vector.

In the following, we will need expressions for the phonon dispersion and polarization.
In principle, a calculation of the phonon spectrum would give eigenvectors with x- and y-
components of the displacements for a given lattice site that vary with the phonon-wavector
g. In this two dimensional, bipartite system, the eigenvectors correspond to four possible
polarizations A being orthogonal to each other. In DFT calculations it was shown that the
optical modes with wavevector close to I' and the highest-energy modes close to K,—K give
the main contributions to the electron-phonon coupling strength [187]. This is why, we will
concentrate on them and use only their energy and polarization in the phonon-mediated
interaction, see Sec. 3.3. This approximation simplifies the study a lot, but should not affect the
qualitative results, as the smaller variation of the phonon energy due to the dispersion of the
opctial modes in the denominator of Eq. (3.7) does not have a strong impact on the effective
interaction.

3.2.3. Patching Scheme on the Honeycomb Lattice

We employ the patching scheme of the functional renormalization group approach described
in Sec. 2.2.2. As a reminder we briefly list its advantages and the important approximations
again. The patching scheme allows to monitor the evolution from the bare action to an effective
action at low energy as a function of the energy scale in an unbiased way and accounts for
effects beyond mean field and RPA as it also includes the interplay between different ordering
tendencies. We only consider the two-particle interaction vertex VA i. e. the results are of
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second order in the interaction, and we neglect the frequency dependence of the vertex V2.
This still leads to an infinite summation of coupled particle-particle and particle-hole diagrams.
For the numerical treatment, the Brillouin zone is divided into N patches as as shown in Fig. 3.1.
Each patch is then represented by one momentum close to the Fermi level. Thereby the angular
dependence of the interaction on the wavevectors is taken into account. We choose N = 24 or
N = 48 patches to check that our findings do not depend on this choice.

3.3. Instabilities and Phase Diagram

In this section, we analyze the phases of the honeycomb lattice system at temperature T = 0 as
a function of the bare interaction parameters U, V; and V, and the electron-phonon couplings
ay, ag that determine the impact of the phonons with wavevector close to T’ and K,—K,
respectively.

3.3.1. Purely Phonon-Mediated Interaction

We start with the study of the isolated effect of the phonon-mediated electron-electron coupling.
As mentioned in the beginning, we focus on the phonons at I' and K, —K. This means that we set
QA = Qr = const if q is close to I and A corresponds to the optical branches. For q in the vicinity

of the Dirac points and A labeling the three highest-energy phonons QA Qg = Q_g = const.
The analogous approximation is used for the polarization vectors eg ., €4 ; and all other modes
are neglected. This ansatz accounts for the phonons that have been identified in the Raman
spectrum of graphene and in DFT calculations to give the strongest electron-phonon coupling
[175,187]. They are often referred to as E, and A} or A;, B; phonons, respectively. It has been
shown in Refs. [176,177] that the latter modes can give rise to a an instability corresponding to
Kekulé ordering. We also find this to be the dominating instability for equally strong coupling
of both modes, whereas for an enhanced coupling of the E, phonons, a nematic bond order is
induced.

With these preliminaries and comments, we choose to parametrize the phonon-mediated
contribution to the electron-electron interaction as

1 ) L
_ 1 E : AABB ABAB T i
Hpn-mea = N [Vkl Ky ks “A kg5 Ak4 o B ko B s T Vkl Ko ks A s OB ey, A2 5 CB K s + h.C.]

kKo ks
5,8’
(3.8)
VAABB an ZA 1 {Qi}z gk (k3 kl)g (k3 kl)* . k3 _kl closeto T
kukoks ™ g S {Qj 58 (ks —kl)gA (kg —ky)*  : kg—Icloseto £K
(3.9
s _ [ Yoo @i (ks — kg (kg —ky)* : ky—kyclosetoT
ky kg kg (0574 lel {QilK}z glésiK( kl)gA iK( 3 — kl)* . k3 — kl CIOSG to £ K
(3.10)

with k4 = k; + ky —ks due to momentum conservation and fixed polarization in gi’Q(q) =

D ( iqa; eé AT €0, B) 6 .e7™%% a5 motivated before. {Q } labels the value of the phonon energy,
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Figure 3.2.: Bare and effective phonon-mediated interaction in units of the hopping amplitude t. The
numbers on the axes correspond to the patches of Fig. 3.1. The horizontal axes shows k,,
the vertical k; and k; is fixed on the first patch. Orbital combinations are for all subfigures
(a), (b) and (c), 07 = 04 # 0, = 05 (left panel) and o0, = 0, # 03 = 0,4 (right panel).

so that the interaction parameter ay /x has units of energy’. Asis well known and also discussed
in the context of RG e.g. in Ref. [188], the phonon-mediated interaction is suppressed for
frequencies larger than the phonon frequency Q. Resolving this frequency dependence of the
interactions in the RG flow with frequency-independent interactions requires some physical
insights, at least if one wants to reduce the numerical effort?. Usually one tries to replace the
frequency dependence with a dependence on the electronic excitation energy. One reasonable
choice for studying the phonon-mediated interaction case separately would then be to only
include interactions of electrons with excitation energies below Q. This would correspond
to start the RG flow only at RG scale Ay = Q. In this work, however, we chose to start the
flow already at the bandwidth Ay = 3t. This can be viewed as ignoring the retardation and

'ay and ay should not be confused with a, from the expansion of the hopping amplitude ay /x = aﬁ /2M[9*, 1%).

T/K

With the ab-initio values for ;, from above, the interaction parameter is of the order ay  ~ 0.12t —0.17t.
2Note that in some recent fRG works [189-191], the frequency dependence of the interactions have been taken

into account.
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artificially enhances the impact of electron-phonon interactions and makes its effects clearly
visible.

We address several scenarios for the electron-phonon coupling by different choices for the
interaction parameters ay and ay. We study the cases where only phonons from the vicinity
of the T point (ax = 0), or only phonons close to the Dirac points (ay = 0), contribute.
Moreover, we include their mutual influence on each other by tuning through different ratios
of ay /ag with the most physical case around ay/ag ~ 1. The investigated parameter range
spans from ay/x = 0 to ay/x = t. In these flows, divergences develop only if the interaction
parameter ay k is large enough, otherwise the system is a stable semimetal. This phenomenon
is clearly related to the vanishing density of states at the Fermi level and has been seen for
many other types of interaction-driven instabilities for fermions with this spectrum before
(e.g. Refs. [55,57,59]). First, we discuss the results for ay = ag. The discretized, bare
interaction, which is the initial value of the flow equation, is shown in Fig. 3.2(a). Here, the
critical parameter value for an instability to occur at half filling is aj &~ 0.28 t, cf. Fig. 3.3(a).
The momentum structure of the effective interaction close to the critical scale is presented in
Fig. 3.2(b). It has the same structure as the bare phonon-mediated interaction, however, only
for momentum transfer with kg —k; = K and k3 —k; = —K. Using this relation in the coupling
function V (k;, ks, k3) gives the effective low-energy Hamiltonian

Vesr Arger Tt A t
HK = ]:f Z Z (gk (K)CA’k’scB,k—K,s + gk (_K)*Cig’k+K’scA,k,s)
A ks

A T A i
X Z (gk/ (_K)ng,k/,sl CB,k/"rK,S/ + gk/(K)*C;,k/_K,S/CA,k/,SI) (3.1 1)
K,s'

with Vg > 0. For this expression, we perform a mean-field decoupling with the molecular field
Vest i i
Agh(Q) = ﬁ Z <g1%(K)C;Lk,SCB,k—K,s + gé(_K)*C;,k+K’SCA,k,s> ’ (3.12)
k,s

which also serves as order parameter field, e.g. in a mean-field approach. This yields

Hem— ) [ A4 (K (100 o + 8K Caks)
k,s,A

+ ALK (gHKICh  a s + 8 1y Cates) ] (3.13)

ignoring the constant term.

If we compare this expression to the coupling Hamiltonian, Eq. (3.6), we recover the contri-
bution of the £K-phonons from the beginning with the identification Agh(iK) = |a|| \ uiK. But
in order to get a diverging phonon-mediated interaction parameter ag, the phonon frequency
must tend to zero. Thus the observed instability results in a static lattice distortion formed by
the modes from £K, which modulates the hopping strength acoording to Eq. (3.4) by 6t;; =
u exp(iKr;) exp(—iKa;)A(r;) + c.c., with amplitude u and A(r;) = (exp(iKaj)eﬁA — eﬁ,B) . 3i]-.
Hence the hopping is non-uniform in the three bond directions resulting in a tripled unit
cell. This distortion is also known as Kekulé order and is depicted in the inset of Fig. 3.3(b).
Correspondingly, close to the Dirac points, the eigenenergies extracted from Eq. (3.13) coincide
with previous investigations of the Kekulé phase [192,193] and show the opening of a gap.

Now we tune the interaction to both extreme cases where one of the parameters is zero. For
ay = 0, we again find the Kekulé distortion as leading instability. The only difference is that
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scenarios.

Figure 3.3.: (a) Critical scale as function of the phonon-mediated interaction parameter. For ay = ay
(dashed) and ay = 0 (solid) the Kekulé state is induced, whereas for ay = 0 (dot-dashed)
a nematic bond order develops. With particle-particle contributions only and ay = ag
(dotted) a conventional superconducting ground state is favoured.
(b) Critical scale as function of the ratio ax/ay at fixed ay = 0.8t. Insets show the nematic
(ag/ay <0.15) and the Kekulé (ay/ay = 0.3) state, respectively.

the critical ax needed to induce the ordering is slightly decreased to a; =~ 0.26t, as visible
in Fig. 3.3(a). This already shows that the small-wavector phonons controlled by ay have a
destructive influence on the large-wavevector phonons controlled by ay, i.e. there is some
degree of phonon-phonon interaction.

For ay = 0, the behavior is qualitatively different. As shown in Fig. 3.3(a), the instability
does not occur until a threshold value aj, &~ 0.78t is reached and cannot be due to =K-phonons
because they are not included in this case. Instead we find the momentum structure at low
energies of Fig. 3.2(c), which mirrors the bare phonon-mediated interaction for zero momentum

transfer kg = k;. The extracted, low-energy Hamiltonian is
Vet + AL 4 ohret
gk Aks CBks gk 5 ksCAks 8w lak s BK.s T 8 Cp i o/ CAK s/
A ks k/7s/
(3.14)

with V. > 0 and the abbreviation i Mq=0)= gk The corresponding mean-field Hamiltonian
results in

HNN_ZZAph(gk Aksch5+gk Bks Aks) (3.15)
ks,A
where
Vest ¥
e Z(gk Gk + 827 1 Caks) (3.16)

is the order parameter. Comparison to the coupling Hamiltonian, Eq. (3.6) now gives the
static lattice distortion due to the zone center E, phonons with 2A7L = |a||| ué For q =0, the

A _
0A = eo B

sub-lattices are moved in opposite directions in this state changing the hopping to 6t;; = +u- 6 ij
with constant displacement vector u and sign modulation between sublattices. The sixfold
symmetry of the original lattice is reduced to a twofold one, the translational symmetry of

displacement of neighboring sites has different signs e This means that the two
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the underlying Bravais lattice, however, is maintained, corresponding to a nematic ordering
pattern. The best energy gain is a distortion along the bonds between two sites. As a result, we
obtain the configuration shown in the inset of Fig. 3.3(b), where the hopping along one bond
direction is enhanced and the Dirac points are shifted away from the Brillouin zone corners.
Such a state was studied in Ref. [192].

In Fig. 3.3(b), we also show the evolution of the critical scale for fixed supercritical ay when
ag is increased. We clearly see that the 'Kekulé phonons’ with large wavevector transfer reduce
the scale for the nematic instability and push it to zero already for ay ~ 0.2ay. This exhibits
a clear ’anharmonic’ interaction between phonon modes with different wavevectors that is
revealed by the fRG treatment. When ay is increased further, one reaches the Kekulé-ordered
phase again. Note that the rather high critical scales found here are not to be taken literally,
due to the mentioned overestimation of the phonon effects when the retardation is ignored.

Usually, in more than one dimension, an important property of the electron-phonon interac-
tion is to induce Cooper pairing, which seems to be suppressed here. We can indeed recover
a conventional phonon-mediated superconducting state, but only if the RG flow equation for
the interaction is reduced to the particle-particle term and all particle-hole terms are switched
off. Through this the integration of the fRG equations is identical to a ladder summation in the
particle-particle channel. However, the critical interaction strength needed to observe a flow to
strong coupling for such an undisturbed Cooper instability is larger than in the bond-odering
case. Here, without the particle-hole term, we find a°¢ ~ 0.58t for ay = ay. This shows that
phonon-mediated superconductivity arises in the particle-particle channel as one would expect,
however only when the competing contributions from the particle-hole channels are completely
neglected.

3.3.2. Inclusion of Density-Density Interactions

We now also include the Coulomb-induced repulsive density-density interactions U, V; and V,
as given in Eq. (3.3). First, we consider, in addition to the phonon-mediated interaction, each
one of the three short-ranged interactions U, V; and V, separately. This shows if the phonon-
mediated interaction amplifies or weakens the effect of the respective electronic interaction.
The results are compared to the case without the consideration of phonons.

Running the fRG flow with a fixed, supercritical on-site interaction for different phonon-
mediated interaction strengths leads to an antiferromagnetic spin density wave as in the case
without phonons. But with increasing phonon-mediated interactions, the critical scale of
the flow is enhanced. This amplifying tendency is also observed if we determine the critical
on-site interaction needed to induce an instability. It reduces from U® = 2.6t to U = 1.3t if
a phonon-mediated interaction of, e.g. a = 0.2t, is turned on, cf. Fig. 3.4. For the nearest-
neighbor interaction, we obtain qualitatively the same behavior. As without phonons, the
nearest-neighbor interaction triggers a charge density wave whose critical scale is increased
with increasing phonon mediated interaction. However, this effect is not as large as in the case
of the on-site interaction. Nevertheless, the critical V; changes from Vi’ = 0.4t for a = 0 to
V{ = 0.25t for a = 0.2t. The situation is different if we consider only a next-nearest-neighbor
interaction, which induces in our truncation a quantum spin Hall state (QSH). Including an
electron-phonon coupling suppresses the tendency for the formation of a QSH state as shown
in the lower panel of Fig. 3.4.

These tendencies are confirmed when we run the fRG flow with all interactions, i.e. density-
density repulsion up to the second nearest neighbor and the phonon-mediated interaction,
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Figure 3.4.: Critical scale as function of the density-density interaction U,V; and V, (from top
left to top right to bottom panel) for different values of the ph-med interaction a €
{0.28t,0.24t,0.20t,0} (solid, dashed, dotted, dot-dashed). For small density-density inter-
actions the gray-shaded area shows the appearance of the Kekulé ordering tendency (K).
For larger density-density interaction we recover SDW (onsite interaction, top panel), CDW
(nearset-neighbor i.a., middle panel) and QSH (next-to-nearest neighbor i.a., bottom panel)

included. The parameter range which we account for extends from zero through the cRPA
values from Ref. [79]. They are taken as upper bounds because the fRG tends to overestimate
the critical scales. A summary of this investigation is given by Fig. 3.5.

3.4. Conclusions

In this chapter we have analyzed the impact of in-plane phonons on possible ground state
orderings in a simple theoretical model for monolayer graphene. We focused on phonon
eigenmodes arising from the modulation of nearest-neighbor bonds between the carbon -
orbitals on the honeycomb lattice with wave vectors near I' and K/ —K. These modes, classified
as E, for small wavevector and A7, A;, B; for large wavevector transfer, are known from DFT
calculations to couple most strongly to the electrons.

The electron-phonon coupling and the phonon dynamics for these modes was transformed
into an effective electron-electron interaction, with some idealizations. Studying the effects of
the phonon-mediated interaction without including Coulomb interactions between the electrons
we find the following results. Near charge neutrality (i.e. for the undoped system) the dominant
instability is in the particle-hole channel, and not in the pairing channel as is usually the case in
non-nested systems. While our study may not be fully quantitative, the picture we find is that
the phonons with large momentum transfer dominate in the low-energy effective interactions
and that the predominant instability is towards Kekulé bond order, where the unit cell is tripled
by a pattern of strengthened and weakened bonds. This state opens a gap at the Dirac points,
i.e. is an insulator. Various works have argued for the existence of this state due to Coulomb
interactions [176,177]. Previous RG studies of the same model [55,57,182,183] did not find
the Kekulé order for Coulomb interactions of density-density type in the effective model, but it



3.4 Conclusions 51

0.30;-‘ | T At
0.252
020"

T 015

PR Y

0.10"

0.05"

OOk .o v . I
00 02 04 06 08 1.0
(o

Figure 3.5.: Phase diagram for the rescaled ab initio density-density interaction profile in graphene
from Ref. [79] with rescaling parameter ¢ and the electron-phonon coupling strength
a = ay = ag. The density-density interactions are rescaled according to {U/t, V,/t,V,/t} ~
{3.3,2.0,1.5} — c{U/t,V;/t,V,/t}. In case without electron-phonon coupling we find a
Quantum Spin Hall state being favored for this interaction profile, cf. Ref. [182,183]. In
agreement with the previous observations the EPC supports the tendency towards the SDW
phase.

now occurs due to the bond-bond interactions mediated by the phonons. We can also weaken
the influence of the large-wavevector phonons in the effective electron-electron interaction,
emphasizing the small-q phonons. In this case, a nematic instability becomes dominant where
one of the three bond directions is enhanced with respect to the other two directions. The
resulting spectrum features shifted Dirac points. Considering the competition between the
different phonon channels, we found that the large-wavevector Kekulé phonons considerably
weaken the tendencies towards nematic order driven by the small-wavevector phonons. This
means that there is a significant amount of non-RPA or anharmonic physics at low energy scales,
where phonons with different wavevectors interact destructively.

More realistically, the phonon-mediated interaction should be considered together with
the Coulomb interaction between the electrons. The Coulomb interactions alone have been
studied with RG and many other methods on honeycomb lattices in a number of works (e.g.
Refs. [55,57,59,68,69,194]). In particular, quantum Monte Carlo calculations [50,70,71] have
firmly established that the ground state for pure onsite repulsions becomes an antiferromagnetic
spin-density-wave state when the Hubbard-U exceeds a threshold value. For interactions that
extend further in space, only less controlled techniques are applicable. RG and saddle-point
calculations [59] found that charge-density wave states and interaction-induced quantum spin
Hall states are relevant competitors, depending on the profile of the effective interaction and
the employed truncation scheme [68,69]. Adding phonons to this interplay of the electronic
ordering tendencies shifts the balance toward the SDW, while the competing QSH channel gets
weakened. Interestingly, the bond phonons considered in the work actually increase the SDW
and also potential CDW ordering tendencies. This can be seen most clearly in the lowering of
the threshold value for the Hubbard interaction U to change the semi-metal into the SDW state
when the electron-phonon interaction is turned on. For the QSH state we found the reversed
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trend, indicating a destructive interplay with the phonons. Furthermore recent fRG studies with
improved momentum resolution showed that the QSH is also suppressed by the appearance of
more complex charge density wave states [68,69]. These works imply that our results might not
have been converged yet. In this context it would be interesting to reinvestigate the interplay
of the newly appearing charge density waves with phonon degrees of freedom and see if the
trend that density waves are supported is confirmed.

Hence, one important upshot of our study is the identification of the most relevant phonon-
mediated effects on the ground state. Based on our study, we do not expect that the nature of
potential ground state ordering or, more realistically according to the experimental state in
single-layer graphene, the nature of the leading correlations if the overall interaction strength is
insufficient to gap the semimetal, is determined by a phonon-mediated instability. However, we
have shown that the phonon sector may actually shift the phase boundaries between different
electronically-driven ordering tendencies. Hence, phonon effects may yet play an important
role in deciding which of these channels wins. We can also try to extrapolate our results for the
single-layer honeycomb lattice to multi-layer graphene, where experiments indeed show that
the semimetal gives way to an ordered state at low temperatures which is gapped [195, 196]
or shows a non-gapped spectrum reconstruction [197]. Previous RG studies for electronic
interactions in bilayer graphene in fact find a nematic state as leading instability [198-203].
From our theoretical experience with multi-layer honeycomb systems [ 182, 183] we can state
that the main ordering tendencies are still the ones of the single layer, while the stacking
only modifies the available density of states at low scales. Then, we should expect that in the
multi-layer system, the phonon degrees of freedom have a similar influence in modifying the
interplay of the electronic ordering tendencies as we find here. This makes the SDW state
a more robust candidate to explain the observed gaps. Notably, even though the SDW state
does not feature spin-resolved edge states like the QSH state, it may still be useful resource for
nano-spintronic devices when the multilayer system is slightly doped and gated [204].



CHAPTER 4

Competition of Density Waves and Quantum Multicritical
Behavior in Dirac Materials

4.1. The Multicritical Point Between Charge and Spin Density Waves in
Dirac Materials

The honeycomb lattice of graphene, studied in the previous chapter, belongs to a larger class
of related materials in which low-energy Dirac-like excitations are responsible for common
properties. As in graphene by inreasing repulsive onsite or nearest-neighbor density-density
interactions, these systems are expected to exhibit a continuous quantum phase transition from
the semimetallic phase into spin-density-wave and charge-density-wave phases, respectively [58,
64—-66]. In the general introduction, we pointed out that the experimental findings together with
the ab initio parameters suggest that graphene is close, but somewhat below the critical values
for the formation of one of these ordered states, cf. Fig. 4.1. This motivates a consideration
of circumstances under which Dirac materials in general could be driven through a quantum
phase transition by tuning of external parameters.

Despite the great progress in the last years, our theoretical understanding of the role of
interactions in Dirac materials is far from being complete. In fact, QMC simulations typically
suffer from a sign problem when nonlocal interaction parameters grow large, inducing a strong
bias toward the antiferromagnetic state [205]. Fermionic renormalization group approaches
have provided important contributions to the understanding of interacting electrons in Dirac
materials accounting for further-ranged interactions on equal footing [55-57,67,125]. These
approaches are well-suited for the identification of the ordering tendencies and their classi-
fication by symmetries. However, the purely fermionic approach typically misses important
order-parameter fluctuations and the description of symmetry-broken regimes in the phase
diagram is intricate'. An inclusion of order-parameter fluctuations aiming at more quantitative
studies of the phase transitions and their critical behavior in Dirac materials can be achieved
within bosonized approaches [207, 208] that also allow to describe the symmetry-broken
regime. In this spirit, the SDW and CDW transitions have been investigated, however, only as
completely separate transitions [58, 66, 145,209-213].

Here, we take the vicinity of graphene and related materials to both the SDW and the CDW

1See, however, [15,206] for recent developments
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Figure 4.1.: (a) Schematic phase diagram of the extended Hubbard model on the honeycomb lattice
with onsite interaction U and nearest-neighbor interaction V. Neutral suspended graphene
is found to be in the semimetallic state indicated by the star. Solid lines denote second-order
and dashed lines first-order transitions. The neighborhood of the multicritical point (gray
shaded area) may be governed by either a (I) second-order tetracritical point or a (III)
second-order bicritical point with first-order transition between the ordered states or by
a (ID) first-order triple point. (b) Sketch of stability ranges of fixed points for generalized
fermion flavor number N;. Two different fixed points FP1 and FP2 dominate for small and
large Ny, respectively. Graphene lies in the hatched region, where no admissible fixed point
exists. This leads to a first-order triple point in the phase diagram [situation (II)]. The
critical flavor numbers N change considerably when including nonperturbative effects. In
our approximation we find N, =1.6 and N, = 3.6.

ordered states as a motivation to study the nature of the quantum multicritical point connected
to the intersection of the different phase transition lines. As we have seen in Sec. 2.1.2 and
Sec. 2.3.2, the study of the multicritical point can be expected to reveal fascinating details of
the phase diagram of Dirac materials, in particular, whether first-order or continuous phase
transitions appear as a result of the competition of order parameters and whether there can be a
coexistence of two ordered phases. In principle, we can distinguish three different possibilities
for the multicritical point: we can have either (I) a second-order tetracritical point, allowing
for the coexistence of the two ordered states, or (II) a triple point at which all transitions
become first order, or (III) a second-order bicritical point with first-order transitions between
the ordered states. A sketch of the phase diagram together with the three possible behaviors
near the multicritical point is depicted in Fig. 4.1(a).

For graphene and related materials multicritical behavior has previously been studied in
different contexts using the e expansion to first order, with € being the distance from the
upper critical space-time dimension of four [75,76]. Concerning the multicritical behavior and
competition of CDW and SDW orders, we perform a corresponding study using an effective
Gross-Neveu-Yukawa model with two coupled order parameters. We consider a generalized
theory of this type with an arbitrary number of fermion flavors Ny. The SO(3) order parameter
describes the antiferromagnetic transition and the Z, order parameter describes the transition
to a staggered density state. Their coupling induces multicritical behavior which determines
the structure of the phase diagram close to the multicritical point [8]. To first order in €, we
find that a rather complex picture emerges as a function of the fermion “flavor” number Ny,
i.e. the number of Dirac fermions. The graphene case, Ny = 2, appears to be dominated
by a second-order tetracritical point [situation (I) in Fig. 4.1] with the universal behavior
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being in the same universality class as the SM-SDW transition, i.e., the “chiral Heisenberg”
universality class [145]. The first-order € expansion is a formidable tool to detect and discover
the qualitative aspects of these systems. It may, however, be subject to considerable quantitative
corrections when including higher orders [214,215]. Furthermore, the convergence properties
of the asymptotic series related to this type of expansion are a priori not clear, in particular
when € becomes of order one.

Therefore we improve the precision of the qualitative investigation in terms of the e-expansion
by employing the functional renormalization group. In the context of multicritical behavior of
bosonic systems with O(N;) ® O(N,) symmetry, the significant quantitative improvement of the
FRG approach as compared to the first-order € expansion has been explicitly demonstrated [11,
12].

Employing the FRG, we are able to confirm the qualitative picture from the e-expansion
results. However, large quantitative modifications appear concerning the stability of the various
fixed points as a function of N¢, with severe implications for the phase diagram in the graphene
case, Ny = 2. Here the notion stability refers to the number of tuning parameters needed to
access a fixed point. In the considered case of competing CDW and SDW order, two such tuning
parameters are available: the strength of on-site and nearest-neighbor interaction. We find
that:

(1) For small number of fermion flavors, Ny < 1.6, the decoupled fixed point related to the
antiferromagnetic transition (“chiral Heisenberg” universality class) is stable.

(2) For intermediate fermion flavor numbers, 1.6 < N¢ < 3.6, including the graphene case
Ny =2, there is no admissible stable fixed point, suggesting a triple point and corresponding
first-order transitions.

(3) For large number of flavors, Ny > 3.6, we rediscover a novel stable fixed point with
nontrivial interactions between the different sectors, found previously in the € expansion.

Our results concerning the ranges of stable fixed points are sketched in Fig. 4.1(b). In the
case where stable fixed points exist, we furthermore study the critical behavior in detail by
investigating critical exponents and anomalous dimensions.

The rest of the chapter is organized as follows: In the next section we introduce our effective
model, which couples the fermionic and bosonic degrees of freedom that become dominant
in the vicinity of the multicritical point. We start the investigation by analyzing the inherited
fixed points that we expect from the separate transitions in Sec. 4.3. We then compute the
fixed-point structure as a function of Ny within first-order € expansion in Sec. 4.4. We discuss
the resulting phase diagram and briefly give concluding remarks. In Sec. 4.5 we present the
FRG truncation that we use to subsequently determine the more precise fixed-point structure
and the concomitant critical behavior as function of space-time dimension and fermion flavor
number N¢. We also compare various limits to literature results. In the limit of large Ny we
are able to present an analytic solution of the flow equations, including the full form of the
fixed-point potential. The implications from the fRG calculation for the nature of the phase
diagram are studied in Sec. 4.5.5 and we draw our conclusions in Sec. 4.6.
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4.2. Effective Dirac Description

Free Theory

From the lattice description above we can derive an effective description in terms of Dirac
fermions. Retaining the Fourier modes near K, K’ only, the low-energy model of the free electrons
at temperature T = 0 can be written as a relativistic Dirac field theory in the continuum [55]

SF=dedXD_1 [F(1,87,)0,7], (4.1)

with space-time index yu = 0,...,D — 1 and the D-dimensional derivative J, = (J;, V). The
(4 x 4) gamma matrices obey the Euclidian Clifford algebra {y,,y,} =26,,. In D =2+1
dimensions they are explicitly represented by yo =1, ®0,, y,=0,®0,, y,=1,80,.
In this frame the spin-% electrons and holes are described by an 8-component Dirac fermion

U= (\IJT, g l)T and its conjugate ¥ = W'(1,®y,). The Dirac field ¥ is related to the Grassmann
fields ca/p ks = ca/ps(k) (cf. Eq. (3.2)) by

dewdP!

vi(x,7) = 2P qei"’”iq'x[cZS(K +q,0),c) (K+q w),c (—K+q,w),cf (—K+q,w)]
o , , , ,

4.2)

We can define two additional (4 x 4) matrices that anticommute with all y,: y3 =0, ® 0, and
Y5 =0y ® 0. Their product y35 = —iy3ys commutes with all y,,, while it anticommutes with
v3 and vs.

Although we started here from the graphene case, the low-energy Dirac description Eq. (4.1)
is valid for a broader class of materials as it represents general Dirac excitations and is not
reminiscent of its microscopic origin.

Bosozined Interactions in Effective Dirac Description

To describe the multicritical point in the phase diagram we introduce bosonic degrees of freedom
related to the SDW and CDW fluctuations. These can be written in terms of the order-parameter
fields [47,55]

o= y,¢)=((I0), (¥(o®1,)¥)), (4.3)

which can also be understood as order parameters for the various possible chiral symme-
tries [216].

Another very interesting set of order parameters, with possibly the same quantum critical
behavior [58], is given by

$=(7,0)=((Tyss?), (¥(0 ®35)0)) . (4.4)

These can be related to the much-discussed Quantum Anomalous and Quantum Spin Hall
states [217], and may also be relevant in the phase diagram of Dirac materials [59]. Note
that &’s zeroth component j breaks the time-reversal symmetry, defined by the time-reversal
operator [56]

T =(o,®ir17s5)K, (4.5)
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where K denotes complex conjugation, while its spatial part ¢ breaks the SU(2) spin-rotational
symmetry but respects time-reversal symmetry. In the following, we will focus on a condensation
of the chiral order parameters y and ¢ only, cf. Eq. (4.3), and assume that the fields 7 and ¢
are sufficiently massive so that their fluctuations become subdominant.

The spin-singlet Ising field y o< c;; $Cas— cg’ Cp s characterizes the staggered density phase,
i.e., the CDW state, whereas the Heisenberg triplet ¢ o< CZ,SO'SS/CA,S/ - c;, O sy Cp ¢ corresponds
to the antiferromagnetic SDW state. Near the putative transitions into the CDW and SDW states
the fluctuations of the corresponding order parameters play a decisive role. We incorporate
their dynamics in the bosonic action

_ir1 1 2
sB:dede 1[51(—aj+m§)x+§¢(—aj+m;)¢+ A+ 2y(92) +AX¢12¢2],
(4.6)

where we also allow for a coupling A, 4 between the two order parameters.” This semi-phe-
nomenological ansatz is crucial to capture the critical behavior of the low-energy fermions
interacting with self-generated charge- and spin-density-waves. The dynamical parts and the
couplings 4, ;, initially absent after a Hubbard-Stratonovich decoupling, will develop below
some energy scale, indicating that the fluctuations in the corresponding particle-hole channel
become relevant degrees of freedom. Finally, fermions and composite bosons are coupled in
terms of the Yukawa interactions

Sy = J drdxP~1 [gxx\i/(]lz Q@ 1,)¥ + g¢¢\i/(0 Q@ 1,)¥ ] .

The complete action S is then given by
S=Sy+Sg+Sy, 4.7)

which respects Lorentz, spin-rotational, time-reversal and sublattice-exchange symmetry. The
ordered phases are characterized by a finite expectation value of one or both bosonic fields,
leading to the spontaneous breaking of the spin-rotational or sublattice-exchange symmetry.

Generalized Fermion Flavors

In the following, it will prove useful to consider an arbitrary number N of Dirac points in the
spectrum, implemented by the replacement

‘i’(]lz ® I[4)‘~I/ — @(]12 ® ]12Nf )\I/, (4.9)

where ¥ and ¥ now have 2Ny components for each spin projection. We will refer to N as the
fermion “flavor” number, with Ny = 2 for graphene. Let us note that the explicit implementation
of the flavor number is not important. To derive the results, only the Clifford algebra and the
product d, Ny is needed, where d, denotes the dimension of the gamma matrices. We will also
consider general space-time dimension 2 < D < 4, with an eye on the physical D =2+ 1.

2In Sec. 4.5.1 we will slightly change the notation for the truncation of the fRG calculation. The bosonic self-
interaction terms will then be of the form S{” = FAg0xt+ %AO,Z(¢2)2+ TA1x2¢? (cf. Eq. (4.44))
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4.3. Classification of Fixed Points

As pointed out above, we are interested in the stable fixed points of the system, governing
the quantum multicritical behavior of its phase diagram. We call a fixed point stable if it has
only two relevant directions, i.e. not more than two positive critical exponents (cf. Sec. 2.3.2).
In this case, we can reach the fixed point by tuning two parameters corresponding to the
interactions U and V in Eq. (3.3), or the masses m? and m?2 in the bosonized description,
Eq. (4.7). In addition, unitarity requires real Yukawa couplings g, ,, 84 . € R, and the action
has to be bounded from below, i.e., )\’;{, A’(; > 0 and W;{ 6 > —2 Aj‘( A;. Here and below we
denote the fixed point values with asterisks.

The model incorporates the separate SM-to-SDW and the SM-to-CDW transitions described
by the chiral Ising and chiral Heisenberg universality classes, respectively, as well as a purely
bosonic model with a O(1) @ O(3). Just as in such bosonic models, we can deduce the existence
of some of the appearing fixed points and critical properties from symmetry considerations and
from the limiting cases of the separate models [11,66]:

(1) The bosonic system, when the fermions completely decouple, i.e., g)zt,* =0and gi’* =0,
which puts the fermionic sector at its Gaussian fixed point. For the remaining bosonic
sector there are three possible fixed points of the O(1) & O(3) model: the decoupled, the
isotropic and the biconical one.

(2) The chiral Ising sector with the Ising field y at its nontrivial fermionic fixed point g}zf L 70,

and with the fermions decoupled from the Heisenberg field ¢, g2 oa = = 0, which is then
either at its bosonic Gaussian or Wilson-Fisher (Heisenberg) fixed point. The latter will be
called “chiral Ising plus Heisenberg” (cI+H) fixed point in the following.

(3) The chiral Heisenberg sector with the Heisenberg field ¢ at its nontrivial fermionic fixed
point g;’* # 0, and with the fermions decoupled from the Ising field y, g)zwk = 0, which is
then either at its bosonic Gaussian or Wilson-Fisher (Ising) fixed point. The latter will be
called “chiral Heisenberg plus Ising” (cH+I) fixed point.

Regarding the stability of these fixed points, we can infer the following: Every fixed point
of the separate sectors will have one relevant direction related to its mass parameter. The
chiral Heisenberg and the chiral Ising fixed point do not show further relevant directions
in the individual, uncoupled systems [66]. In contrast, the Wilson-Fisher fixed point of the
uncoupled sectori (i € {y, ¢}), specified by gl.z* = 0, features one additional relevant direction
corresponding to the Yukawa coupling. But upon coupling this sector to the second bosonic
field, this direction may or may not become irrelevant. Thus, the cI+H and the cH+I are the
most promising candidates for stable fixed points. Due to the Yukawa couplings being relevant
below four space-time dimensions, the purely bosonic fixed points are unlikely to become stable
by the coupling of both systems.

This general expectation will indeed be confirmed in the first-order e-expansion study of
the coupled model, in which the cH+I fixed point will appear stable in the case of graphene
(N f =2). On the other hand, for large N ra novel fixed point with both Yukawa interactions
g2 e # 0 and g2 o # 0 will become stable. A third option, which we will also encounter, is
that there is no stable fixed point at all. In this case the flow does not exhibit scale-invariant
behavior and the phase diagram close to the intersection of the various phases (SM, SDW and
CDW) is goverened by a triple point with first-order transitions.
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4.4. Multicritical Behavior from the e-Expansion

4.4.1. Flow Equations and Fixed Points

For the above action S and at zero temperature we can calculate the renormalization group
equations in the Wilsonian scheme explained in Sec. 2.2. We simultaneously integrate out the
fermionic as well as the bosonic modes within the narrow momentum shell A/b < (w?+3?) < A.
At one-loop order in D = 4 — e dimensions we find the following equations for the two Yukawa
couplings

dg?
X _ .2 4 0n2,2
Tnp -~ €8 (3+2Nf)gx 98,8% > (4.10)
dgi 2 4 2,2
Ting — 8o — (1 T2Np)gg —38,85, (4.11)

where we have rescaled gi2 — gl.z/ (872 A€). Additionally, in the e expansion we obtain RG flow
equations for the bosonic masses m2,m? and the bosonic couplings AysAgs A, g that will be
displayed below. The fixed points of this set of equations and their surrounding will determine
the properties of the multicritical point.

The flow in the gi-gj plane decouples from the bosonic flow equations, and analytical
solutions of the zeros of the Yukawa-coupling beta functions { ﬁg% , ﬁgi } can be readily displayed.

We find the values

2,
A: g2 =0, g, =0, (4.12)
B:g2*=0, g2 = —< 4.13
S0 7% 8 T11on 19
€ 2%
C: g2* = . 85 =0, 4.14
1 1
D g2t 2N =He 5. aNge 4.15)
. g)( B R — — g¢ =TS a2 - .
N7 +2Nj —6 N7 + 2Ny —6

We illustrate the flow and fixed-point structure in the g;-gi plane for different values of N¢
in Fig. 4.2. Let us emphasize, however, that the zeros A, B, C, and D, in order to represent
true fixed points of the full system, need to be supplemented with suitable (and physically
admissible) fixed-point values in the bosonic sector. In terms of the rescaled bosonic couplings
P S e {Ax/(Sner),A¢/(8n2A6), )\,X¢/(8ﬂ2AE)} the B functions in the bosonic
sector read

dA,

_ 2 2 2 4
W edy— A2 22 4N A,g% +Nyg 417
dinb e T T ey T N a8y TN 8y (4.17)
Dot ery — 822 — 20040y, — 124, Ay, —2N: Ay, g% —2N; Ay g + 6N, g2g?
dlnp _ ox T %Ny TP ooy T Ly oy T AN Lo 8y T AIVS ¢x8y TON£E, 84>

(4.18)
and
dmi o o , , ,
dlnb 2(1_Nfgx)mx + 12%1(1—m1)+67t¢x(1—m¢)—4Nng, (4.19)
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Figure 4.2.: RG flow and fixed-point structure in the Yukawa-coupling subsector for different values
of N below, at, and above the critical value of Ny = 4. For Ny < 4 fixed point B is stable
within this subsector, while fixed point D is located in the unphysical domain gf{ < 0 (top
left). At Ny = 4, D becomes physical and collides with B (top right), and subsequently
exchanges stability with the latter for N >4 (bottom left). For N r — 00 the stable fixed
point D is located at g;;z = gj;z (bottom right). Note that A, B, C, and D may be true (and

possibly stable) fixed points of the full system only if suitable corresponding zeros of the
bosonic beta functions can be found, see text.

dm?
ﬁ =2(1—N;g2)m? +2044(1—m2) +244, (1—m2) —4N; g2 (4.20)
For a fixed point A, B, C or D to be physically admissible it has to satisfy the conditions
explained in Sec. 4.3. We hence classify the fixed points according to their number of relevant
directions, i.e., their number of positive eigenvalues of the stability matrix. For the fully
Gaussian fixed point A, we find that the Yukawa couplings already provide two additional
relevant directions with eigenvalues € for any N¢. Thus in the following it will be discarded in
our discussion.
Fixed point B leads to the least number of relevant directions in the full system when
supplemented with the bosonic couplings

A =— AqbX:O, (4.21)

. 12Np V/1+4N;(43 +Nf)€
¢ 88(2N; +1) ’

(4.22)
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which, in fact, means that the order parameters ¢ and y decouple at B, with the Heisenberg
field at its fermionic chiral fixed point, and the Ising field at the purely bosonic (standard) Ising
fixed point. We thus denote fixed point B also as “chiral Heisenberg plus Ising” (cH+I) fixed
point. Its critical exponents are

0, =2— g (4.23)
B 5+34N; +5,/1+4N;(43 +Ny)
0, =2— €, (4.24)
22(2Ny +1)
Ny —4
93 = 1 € (4.25)
Ny +3
For the physical situation with Ny = 2 we obtain {0, 0,03} = {2 — 52— %, —%‘f}, rendering

the cH+I fixed point stable as 65 < 0. The situation changes upon increasing the value of Ny,
cf. Fig. 4.2. For Ny = 4, B collides with another fixed point D, with which it exchanges stability
for Ny > 4. For Ny > 4 the cH+I fixed point thus becomes unstable. The scenario is similar to
the well-known situation in the purely bosonic O(N) models, in which the Wilson-Fisher fixed
point approaches the Gaussian fixed point when the dimension is increased towards the upper
critical dimension, and subsequently exchanges stability with the latter.

Fixed point C, when completed with the bosonic fixed-point values

_ 32N+ \/9+4Nf(33+Nf)6

A R 4.26
x 72(3 + 2Ny) ( )
x € * —_

Ay = v Ay, =0, (4.27)

could then, within our nomenclature, be termed “chiral Ising plus Heisenberg” (cI+H) fixed
point. It has three relevant directions for all admissible choices of Ny and e,

5¢
0, =2——, 4.28
1 1 (4.28)

_ . 3+10N; +/9+4N;(33+Ny)
0, =2— €, (4.29)
6(3 + 2Ny)

2Ny

03 = €, (430)
3+ 2N;

and is thus never stable. Its critical exponents and anomalous dimensions for the physical case
N¢ = 2 are listed together with the those of fixed point B in Table 4.1.

For the mixed fixed point D the computation of the bosonic fixed-point values A is slightly
more involved, but can readily be done numerically. The bosonic fixed-point couplings lead to
a quite intriguing behavior as a function of N, as displayed in Fig. 4.3. First, we observe that
there are two ranges of N i where no real fixed-point values in the bosonic sector can be found
for the given values of g** and g;Z [Eq. (4.15)]. The first range covers small Ny < 3.8 and the
second range is Ny € [4.7,15.7]. These intervals are indicated in Fig. 4.3 by the gray-shaded
areas. In the narrow range Ny € [3.8,4.7] the solution for fixed point D is physically admissible
only for Ny > 4, since g?( < 0 for Ny < 4. For Ny = 4 the fixed points B and D collide and
exchange stability, so that for 4.7 > N, > 4 the fixed point D is stable. For 15.7 < Ny < 16.6,
while corresponding real fixed-point values can now be found, the solution for fixed point
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Table 4.1.: The largest three critical exponents and anomalous dimensions for fixed points B and C in
first order € expansion for the physical choice Ny = 2. Here, fixed point B (“chiral Heisenberg
plus Ising” fixed point) is stable and thus governs the multicritical behavior. In the decoupled
bosonic sector the anomalous dimension vanishes as it is of @(e2).

91 92 03 77¢ n}( 7711)
B (cH+D) 2—ze 2— e —Ze Ze 0 €
C (cI+H) 2—15—16 —%6 ée 0 ;e %46

D remains unphysical, since A, < 0 (see Fig. 4.3). Finally, for Ny X 16.6 the fixed point D
constitutes a physically admissible solution with negative exponent 65, i.e., it is the stable fixed
point. We have checked that between Ny =4 and Ny = 16 no other real and stable solution
exists in our approximation scheme. In the limit of large Ny, we find

¥ =gl = (4.31)

2Ny
and we obtain a stable fixed point in agreement with the large-N; calculation [55]. It has the
bosonic coupling coordinates

€ 3e
A =A% = — o= 4.32
x 79 aNg’ T9X T 2Ng (4.32)

4.4.2. Phase Diagram

We have seen in Sec. 2.1.2 that an important quantity to classify the critical behavior of a
multicritical point is the parameter A,

A=4x,hp =25, (4.33)
with A,,A4 and A, being the boson couplings of the effective infrared theory. The sign of
A determines the nature of the multicritical point, i.e., whether it is bicritical or tetracritical.
When A < 0 the transition line between the two ordered phases is expected to be of first order,
whereas for A > 0 coexistence of the two orders is expected with second order transitions
between the four different regimes. We expect that the presence of Dirac fermions does not
affect this argument, since the it relies only on the consideration of the boson effective potential.
If we start the RG flow near the stable fixed point, it remains in its vicinity for a long RG “time”.
In this way, the direct neighborhood of the multicritical point in the phase diagram should
depend only on the properties of the effective potential at the fixed point. To determine the
behavior near the multicritical point, it then suffices to compute the value for A using the
fixed-point values for the quartic couplings. Eventually, of course, the system will flow away
from the critical surface and the argument breaks down far from the multicritical point.

We identify three different regimes if we classify the nature of the multicritical point in terms
of A, cf. Fig. 4.4. For small fermion flavor number Ny < 4.64, including the graphene case
Ny =2, we find a positive A at the stable fixed point. Here, tetracritical behavior dominates
the phase transitions and a mixed phase appears with a coexistence of SDW and CDW order.
In a large range of this regime 1 < N; < 4, the cH+I fixed point B with vanishing g2 is stable
indicating that the properties at the multicritical point are dominated by the chiral Heisenberg



4.4 Multicritical Behavior from the e-Expansion 63

0.03 L i
: i Aoy
0.02 ¢ ::'“ “’\‘
[ oy ..
r ' hEN
< 0.01F ;
i ; Ay.D
[ ; A D——-x"'
0.00 | : e~
_0017 | | : | | | |
2 3 45 10 20 50 100
N ¢
100 T -
____________ 03,8
0.5 e
<L 00 s
~05 \9
3,
106 | | P —
2 3 45 10 20 50 100
N ¢

Figure 4.3.: (Top) Coordinates of the bosonic couplings at the fixed point D as a function of N;. The
gray areas indicate the ranges of N; where fixed point D does not exist and no other stable
fixed point exists. (Bottom) Third critical exponent as function of Ny for the two possible
stable fixed points B and D.

universality class. This universality class also describes the transition from the semimetal to the
antiferromagnetic state for increasing nearest-neighbor interaction. The stability suggests the
continuation of this behavior up to the multicritical point. On the bosonic side of the transition
the order parameters decouple, whereas they interact with each other if fixed point D becomes
stable. The stability of fixed point D is accompanied by a negative A for Ny € (4.64,4.7)
and Ny > 16.6. In this regime the phase diagram exhibits bicritical behavior with continuous
transitions between SM and SDW or CDW, respectively, and a first order line between SDW and
CDW. The large-N; behavior is thus consistent with the previous 1/N; approaches [55]. The
intermediate regime Ny € (4.7, 16.6) is characterized by the absence of any stable fixed point.
Here, the second order lines of the separate transitions from SM to SDW and CDW end in a
discontinuous point and the transition from SDW to CDW is also of first order.

4.4.3. Conclusion on e-Expansion

In conclusion, we presented an effective description of the multicritical point between the
semimetallic, the CDW and the SDW state on the honeycomb lattice that becomes exact near
three spatial dimensions. A rather complex picture emerges as a function of the fermion flavor
number, in which the graphene case appears dominated by the chiral Heisenberg universality
class, at least to the present order of the € expansion. A tetracritical phase diagram with
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Figure 4.4.: Value of the parameter A as a function of N; for the stable fixed point, which governs the
multicritical behavior in the phase diagram of Fig. 4.1(a). For Ny < 4 the multicritical
point is given by the chiral Heisenberg plus Ising fixed point (B) and it has positive A > 0,
corresponding to tetracritical behavior with a mixed CDW and SDW phase, as indicated in
Fig. 4.1(b). For 4 < N; < 4.64 the multicritical point is still tetracritical, but its long-range
behavior defines a new universality class governed by fixed point D. For 4.64 < Ny < 4.7 the
multicritical point is bicritical (see Fig. 4.1(c)). For 4.7 < N; < 16.6 there is no physically
admissible stable fixed point in the system and we expect the multicritical point to become
discontinuous. For Ny > 16.6 the multicritical behavior is again bicritical.

a coexistence phase of SDW and CDW is the consequence. In purely bosonic multicritical
systems [8,142], as well as in the separate Gross-Neveu-Yukawa models [66], the leading-order
€ expansion captures well the qualitative behavior of the systems. We expect this to hold
for our model as well and, at the very least, our results should qualitatively correct describe
the Ny dependence of the fixed-point structure in two spatial dimensions as appropriate for
the description of graphene. However, the bare numbers of the critical Ny values at which
the multicritical behavior of the system changes can possibly be reduced substantially if one
went beyond the leading-order e expansion [214,215] and more elaborate investigations may
be needed to settle the true nature of the multicritical point in graphene’s phase diagram.
A promising complimentary approach to the critical Ny values is provided by a functional
renormalization group study [11,66] which allows to work directly in two spatial dimensions.
This will be discussed in the next section.

4.5. FRG-Improved Calculation

4.5.1. Truncation and Flow Equations

We have seen in Sec. 2.2.2 that, while the Wetterich equation itself is an exact identity, it
can usually not be solved exactly. In this section, we therefore use a scheme inspired by the
derivative expansion, which we truncate after the leading order. Explicitly, we employ the
following ansatz (the LPA ansatz, cf. Sec. 2.2.2) for Iy,

_ 1 1 o
Ty Zf dPx (Zw,k‘P(]lz ®y,)0,¥ — sz,kxaix - §Z¢,k¢3i¢ +Ui(py, )
+ 2,0 ¥, ® L)Y + 24 k(0 @ 1)), (4.34)

which is a direct generalization of the quantitatively successful truncation used for the separate
chiral Heisenberg and chiral Ising universality classes [66,207,208]. In the first line of Eq. (4.34),
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we have introduced the kinetic part of the fermion fields, followed by the kinetic parts of the
order-parameter fields. We assume scale-dependent, but field-independent wave-function
renormalizations Zy x, Z, , and Z . In the second line, the Yukawa couplings also become
scale-dependent quantities. The scale-dependent effective bosonic potential Uy, also appearing
in the first line, only depends on the invariants p,, = %apz, ¢ € {x,¢}, as imposed by the
symmetry of the original action, Eq. (4.7). For most purposes, we will in the following expand
the effective potential about its scale-dependent minimum (0, min, O min)> the latter being
either zero or positive, then describing a regime of spontaneously broken symmetry. In case a
nonvanishing (0, i, survives the integration towards the IR, k — 0, it corresponds to a finite
vacuum expectation value for the order-parameter fields y and/or ¢, i.e., an ordered phase.

Flow Equations

Effective Potential In order to determine the scaling behavior of the effective action, we
will consider dimensionless quantities in the following. Therefore, we define the dimensionless
version of the effective potential

p kD—Z kD—2
u(p,,py) =k~ U(Z—ﬁx,z—ﬁq)) ) (4.35)
2k ¢,k
and the corresponding Yukawa couplings
2, =g (4.36)
/ -_ 2 / ’k . .
KO ZyygnZy H?
We also define the anomalous dimensions
0,7 0,7
Nyl = Lok and mg =— (Evk (4.37)
Zy/ék Zy k

To obtain the flow equation for the dimensionless scale-dependent effective potential u,
Eq. (2.30) is evaluated for constant bosonic fields y, ¢ and vanishing fermion fields ¥. The
resulting flow equation can be compactly written as

du=(D—2+n,)p,u?+(D—2+n4)psu®)—Du
+ Ip(w,y, w4, 02 )+ 206 ®D) = 2N Iy (w}) + Iy(w})], (4.38)

where we have defined the following quantities

ai+j

u®D = —u(p,,py), (4.39)
dpidp’
e
w, = u10) 4 ZpXu(z’O) , (4.40)
wp = u®V42p,u02) (4.41)
2
wix = 4pypy, (u(l’l)) , (4.42)
£ _ 2 2
w, = Zngl+2p¢g¢:|:4,/pxp¢gxg¢. (4.43)

The threshold functions Iy, I ;, and Iy involve the loop integrations and the regulator dependence.
For a suitable choice of the regulator functions for the bosons and fermions, these integrations
can be performed analytically and the result can be given in a closed form, see Appendix A.2.



66 4. Competition of Density Waves and Quantum Multicritical Behavior in Dirac Materials

The effective dimensionless potential u is expanded about its scale-dependent dimensionless
minimum at (k&) = (k°2/Z,)p ; min» (k®2/Z)P 4 min)- Its IR limit corresponds to the
vacuum expectation values of y and ¢, lim;_ox, = (%(pz), ¢ €{x,¢}. We may distinguish
four qualitatively different combinations for the location of the minimum of u:

(i) Both sectors remain in the symmetric regime (SYM-SYM) with (x,,x4) = (0,0), or

(ii) either of the symmetries is spontaneously broken x p #0, Ky =0 (SSB-SYM) or vice versa
(SYM-SSB), or

(iii) both order parameters attain a nonzero vacuum expectation value 1.¢ # 0 (SSB-SBB).

The following parameterization of the effective potential in terms of a two-dimensional Taylor
expansion accounts for all of these scenarios

m+n=N
n,m
ulpy,py) = E (o, —x,) (pg =)™, (4.44)
m+n>1 nim:

with A, 5 = m)zf if k, =0and A, o = 0if k,, # 0. Analogous definitions are used for A1, and
mé. The 3 functions for the expansion parameters in the different regimes are then obtained
by the projections:

(i) SYM-SYM regime:

By My =(8,)™™]5 =0 . (4.45)
pyp=0
(i) SSB-SYM regime:
atmé = (8u)®V +7Ll’18t1<x|pl:;<x , (4.46)
pe=0
(zytll)(l’o)

ok, =————0 .

LKy PPN PR (4.47)
0o
O hym = (8,u)™m + Ans1,mOeK y |py=ry - (4.48)
Py=0

The projections of the SYM-SSB regime can be obtained accordingly by exchanging y and
¢ in Eq. (4.46) - (4.48).

(iii) SSB-SSB regime:

. = 31,1(@”)(0’1) - Ao,z(acu)(l’o) (4.49)
o A’202’02_2’%1 Py=Ky ’ ’
o ’ Pp=Kp
D, = 31,1(@11)(1’0) - A’Z,O(atu)(o’l) (4.50)
e A’2,02’0,2 - A‘i] Py=Ky ’
Py=Kg
B hm = [ (B ™™ + A1 By + A 8K ]|, =r, - (4.51)

Py=Ke

For our numerical results we expand the effective potential up to order x8, ¢® (LPA 8) and
check the convergence of critical quantities with respect to the inclusion of higher orders in the
fields up to order y'2, ¢'2 (LPA 12).
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Yukawa Couplings For the projection of the flow of the Yukawa couplings we split the
two-point function into its fluctuation dependent and independent parts I‘,Ezo) = 1“152) om0’
5 r=p=V¥=

and AF,EZ) = FIEZ) — I‘,E’ZO) . Then we expand the Wetterich equation in the following way

Q)z

3T == 8,STr[In(T? +Ry) | (4.52)

senfctd s 0 S D [0y tar]

Nlr—l [\Jli—l

155
2°

Here, the scale derivative ét acts only on the t-dependence of the regulator. The fields are
divided into their vacuum expectation value and a fluctuating part, y = yo + Ay, ¢3 =
¢30+ A¢s, and ¢ » = A, 5. This allows us to devise suitable projection rules to extract the
flow of Yukawa couplings

— — @ \3 —
1 o 6 = ATy o
0,8, = Tr - 0,STr » (4.53)
‘°% T 6Ned, | 5Ax(p) 8¥(p) (F,E,Z(3+Rk) 6¥(q) p'=p=q=0
- T U=U=Ay=A¢=0
p— 3-
; . I P ? g) 5o AF(Z) ‘g
g =—TIr o —_— r
‘S0 7 6N, d, P Y6010 59(p) r+r,) | S¥@ |, __
I=U=Ay=A¢p=0

The resulting -functions can again be calculated analytically and presented in a closed form.
For these Yukawa couplings, the expressions, however, are rather lengthy and are therefore
deferred to Appendix A.1.1.

Anomalous Dimensions We finally need a projection prescription for 6,Z;, i € {y, ¢,y }.
To this end, the expansion of the Wetterich equation, Eq. (4.52), is evaluated for momentum-
dependent fields to calculate the anomalous dimensions according to Eq. (4.37). Here, we
choose to project onto the Goldstone modes. Note that a projection onto the radial mode would
provide admixtures of additional terms. Details on this choice are presented in Appendix A.1.3.
For the anomalous dimension of the Heisenberg field we can arbitrarily select one of the two
Goldstone modes in order to determine J,Zy. For the Ising field, however, there is no Goldstone.
Here, we define 7, as the limiting case N — 1 of N copies of the Ising field, see Appendix A.1.3
for details. In summary, we use the following prescriptions:

. (2) <
872, = —Tr|(1,® ) 9 i 3,STr Al o
““ = 4DN,d, 2215, ) 2n)P 59(p) f4R, ) | 5@ | |p=gmo
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and

= @ )2 <
dP . AT,
8.2, = lim | —12° J q 5 st ( k ) 0 ,

r N-o1| 40p% ) (2m)P 5Ax61(—p) F]£20)+R 0A%6,1(q) |p=g=0
’ U=0=0
Ay=A¢p=0
(4.56)
- @ \? <
10 qu o = Ark o
0,2y =—— 0,STr 5 (4.57)
e 40p2 J 2m)P 58¢,(—p) " (r,£23+Rk 621(9) |p=¢=0
’ T=0=0
Ay=A¢p=0

with ¥ = (yg + Axr1,2%6,1,--->»AXcn—1)- The full analytical expressions for the anoma-
lous dimensions in terms of threshold functions are given in Appendix A.1.2. Further, in
Appendix A.2, the corresponding threshold functions are listed for general regulator, as well as
explicit expressions for the linear and sharp regulators are given.

In this study, we use the optimized linear regulator [153-157, 218] to calculate critical
exponents and the sharp regulator to determine the perturbative limit of the above flow
equations. We use this as a crosscheck in the following way: The upper critical space-time
dimension of the theory is four. Consequently, in D = 4 — e dimensions, perturbation theory
becomes reliable. The one-loop flow equations obtained in a standard Wilsonian approach
can be reproduced from the FRG approach as a limiting case (cf. Sec. 2.2.2). To this end, we
consider the symmetric regime and neglect all perturbatively irrelevant operators in the ansatz
for the effective action. Then, expanding the flow equations in € = 4 — D yields exactly the
1-loop results of the e-expansion in the previous section.

4.5.2. Chiral Ising and Chiral Heisenberg Universality Class for N; =2

Using the FRG flow equations, we can now search for fixed points and study their evolution
as a function of space-time dimension D and number of fermion flavors Ny. We start with
benchmarking by comparing to the results on the separate chiral Ising and the chiral Heisenberg
universality classes from Ref. [66,127].°

In Tables 4.2 and 4.3, we give our best estimates for the critical exponents of the chiral Ising
plus Heisenberg (cI+H) and the chiral Heisenberg plus Ising (cH+1I) fixed points, respectively,
for Ny =2 and D = 3. As an important result, we find that both of these fixed points exhibit
three relevant directions and are therefore unstable. This finding is different from the leading-
order e-expansion, in which the cH+I fixed point appeared stable, featuring only two relevant
directions. Since these fixed points are composites from a chiral and a purely bosonic model, we
can compare several quantities with previous fRG calculations and results from other methods.
The exponent 0, is given by the correlation length exponent in a O(1) or a O(3) model for
the cH+I and the cI+H fixed point, respectively. The second critical exponent 6, is inherited
from the chiral Heisenberg (chiral Ising) model. Additionally, the values of the anomalous
dimensions are inherited from the separate models, cf. Table 4.2. In the case of the cI+H fixed
point, the anomalous dimensions 7, and 7, come from the chiral Ising model, and 1y from

3We have also checked the existence and properties of the purely bosonic fixed points, which can be compared
with Ref. [11]—however, since these fixed points turn out to have more than three relevant directions when
fermions are present (as expected), they will not play a role in the remainder of this study.
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Table 4.2.: Anomalous dimensions and largest critical exponents from this work (first line) in comparison
with different methods and models for the chiral Ising universality class, Ny =2 and D = 3.
The boldface numbers show the values of the decisive third critical exponent, exhibiting that
this multicritical fixed point is unstable.

model method 0, 0, 03 My ur UM
cl+H FRG 1.359 0.983 0.719 0.760 0.041 0.032
el exp [127] 1.545 1.048 0.571 0.571 0 0.071
cl FRG [66] 0.982 0.760 0.032
FRG [211] 0.996 0.789 0.031
€2 exp [145] 1.055 0.695 0.065
MC [212] 1.00 0.754
0(3) € exp [219] 1.419 0.037
MC [220] 1.406 0.038

Table 4.3.: Anomalous dimensions and largest critical exponents from this work (first line) in comparison
with different methods and models for the chiral Heisenberg universality class, Ny = 2 and
D = 3. The boldface numbers show the values of the decisive third critical exponent. Note
the dramatic change in 65 for the cH+I when going from the € expansion to the FRG results,
rendering the cH+I fixed point unstable.

model method 0, 0, 0, UM ur UM
cH+I FRG 1.564 0.773 0.241 0.044 1.015 0.084
el exp [127] 1.667 0.473 -0.8 0 0.8 0.3
cH FRG [66] 0.772 1.015 0.084
€2 exp [145] 0.834 0.959 0.242
MC [213] 0.98 0.70
o(1) € exp [219] 1.590 0.036
MC [221] 1.587 0.036

the bosonic O(3) (Heisenberg) model. For the cH+I fixed point, up and M, can be inferred
from the chiral Heisenberg system, while 7 X is adopted from the bosonic O(1) (Ising) model.
Although the central question of this paper is concerned with the coupled model, i.e. 65 for
these fixed points, we briefly discuss the inherited critical exponents 6,, 6, and 1,14, 1y, for
a complete presentation. Our estimates for the well-known results of the bosonic Heisenberg
(bosonic Ising) universality class show less than 5% deviation from fifth order e—expansion
and Monte Carlo calculations when comparing the first critical exponent 6;. The anomalous
dimension lies within a 10% (Heisenberg) and 18% (Ising) error range as expected from an
FRG calculation in this truncation scheme. For the chiral Ising (chiral Heisenberg) universality
class, the exponents [0, and 1, (n4)] are not precisely known. In any case, different FRG
computations [66,211] coincide within 1% with our estimate, and agree inside an 8% error
with the second-order e-expansion results [145]. When comparing our estimates with the
Monte-Carlo results, we find an agreement within 2% in the case of the chiral Ising universality
class [212], whereas in the case of the chiral Heisenberg universality class we observe significant
discrepancies to the newest Monte-Carlo estimates [71,209,213,222], see Ref. [66,213] for a
discussion.
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Figure 4.5.: Three largest critical exponents 6,, 0, (left), and 05 (right) at the cH+I fixed point from
FRG and € expansion [127] as function of the space-time dimensions, for Ny = 2. The cH+1
fixed point is stable close to four dimensions. In the FRG approach, however, it bends to
positive values below D = 3.17 and renders the cH+I fixed point unstable in D = 3.
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Figure 4.6.: Three largest critical exponents 0, 6, (left), and 65 (right) at large-N; fixed point from
FRG and e expansion [127] as function of the space-time dimensions, for N; = 20. Here,
the large-N; fixed point is stable in both approaches for all 3 <D < 4.

4.5.3. From 4—¢ to 3 Space-Time Dimensions

Using the FRG equations, we can directly evaluate the fixed points in arbitrary space-time
dimensions 2 < D < 4. This allows us to systematically compare to the fixed-point solutions of
the e-expansion and track deviations when approaching D = 3, i.e., for large values of €. As
explained in Sec. 4.4.1, the study of the quantum multicritical point in first-order e-expansion
has revealed two fixed points, which became stable at different ranges of the fermion flavor
number N;. For the graphene case, Ny = 2, the e-expansion renders the cH+1I fixed point stable,
whereas a novel interacting fixed point that couples both chiral sectors of the theory became
stable at large N;. We will refer to this fixed point as “large-N; fixed point” in the following.
We can identify both fixed points within the FRG approach close to four space-time dimensions
and then investigate their stability, as determined by the third-largest critical exponent 65, as
function of dimension D. The evolution of all three largest critical exponents upon varying the
dimension is depicted in Fig. 4.5 for the cH+1I fixed point and in Fig. 4.6 for the large-N; fixed
point.

In contrast to the first two critical exponents, the decisive third exponent shows large devia-
tions in comparison to the leading-order e-expansion results in three space-time dimensions.
Regarding the cH+I fixed point, this effect can be traced back to the propagators in the loop
contributions, which to first order in €, are accounted for only in the flow equations of the
masses. However, for this fixed point 05 is predominantly determined by ﬂg)z{. Dimensional

analysis shows that g2 scales like (4 — D), which is corrected by the loop contributions and
the anomalous dimensions. These are much smaller in the FRG compared to the first order



4.5 FRG-Improved Calculation 71

N ——
05 ”’,,—
0.0 ‘_/’, — O3,N;>>1 E-€XP.
. Re - O3, c1y 41 €—€XP.
’
-0.5 Pid
7/
/
-1.0 il
2 3 45 10 20 50 100
Ny

Figure 4.7.: Third largest critical exponent 65 as function of the fermion flavor number N, of cH+1I fixed
point (dashed/black) and large-N; fixed point (solid/red), from € expansion [127] (left)
in comparison to FRG (right). We also show 1 —n, for the cH+I fixed point in the FRG
(bottom), note the offset from 1 for large N;.

in € due to the threshold effects of the propagators. Thus, while to first order in € the loop
contributions reduce 65 below zero, the reduction is not as large in the nonperturbative setting.
In contrast, main contributions to 6; and 6, come from the mass flow equations so that the
e-expansion captures their behavior already quite well to first order. For larger values of N¢,
loop contributions become less important and the critical exponents are mainly fixed by the
canonical scaling. Here, the first order e-expansion underestimates the anomalous dimensions,
so that the exponents tend faster to the final values of £1 within the FRG approach. The
effect is larger for 65 because the anomalous dimension enters it twice, both directly as well as
through the derivative with respect to g)zt. Such significant quantitative improvement of the
FRG approach as compared to the first-order e-expansion is well-known from the corresponding
multicritical bosonic systems with O(N;) @ O(N,) symmetry [11], for which the true regions of
stability of the different fixed points are by now well established [16].

Eventually, the difference in 65 leads to an important change of the stability analysis in three
space-time dimensions for Ny = 2 because the cH+I fixed point looses its stability at about
D = 3.17. At this point it collides with a new fixed point that couples both sectors. However, the
new fixed point is unphysical for D < 3.17 as it has a negative square of the Yukawa coupling
gf( < 0. Therefore, in D = 3 no stable and physically admissible fixed point is found for the
graphene case, i.e., all allowed fixed points have more than two relevant directions for Ny = 2.

4.5.4. Fixed Points as Function of Fermion Flavor Number
Dependence on Ny in D=3

In this section, we study the fixed-point structure as function of the fermion flavor number N
in three space-time dimensions. We find several regimes exhibiting the qualitative behavior
known from first-order e-expansion: (1) For small N [ the cH+I fixed point is stable, followed
by a regime of (2) intermediate Ny where no stable and physically admissible fixed point exists.
(3) For large Ny, a novel fixed point with a coupling between the different sectors is stable.
On the other hand, the values of Ny marking the borders change considerably when going
from the first order e-expansion to the FRG approach. We again investigate the sign of 65 to
analyze the stability and determine the critical flavor numbers for the different regimes. The
result is depicted in Fig. 4.7, where for comparison we also show the e-expansion results from
the previous section. One can explicitly see that the qualitative behavior is the same within
both approaches, but the different regimes are shifted and shrunk. Within the FRG, the first
regime at small flavor numbers Ny < 1.6 is characterized by the cH+1 fixed point. At Ny = 1.6



72 4. Competition of Density Waves and Quantum Multicritical Behavior in Dirac Materials

Table 4.4.: LPA 8 results of the stable fixed point for Ny =1 and Ny =20 in D =3.

N; stable FP 0, 0, 0, U Ny Ny
1 cH+I  1.564 0.558 -0.703 1.003 0.044 0.207
20 large-N; 1.085 0.969 -0.883 0.980 0.913 0.010

it collides with another fixed point and looses stability. As pointed out before, the other fixed
point is unphysical due to a negative g)zt for Ny > 1.6. Hence, for Ny € (1.6,3.6) no stable and
physically admissible fixed point is found. Finally, for Ny > 3.6 the large-N; fixed point known
from the e expansion becomes stable.

For numerical comparison, we give the three largest critical exponents and the anomalous
dimensions for two examples of N, for which a stable fixed point is found, in Table 4.4.

Large N; Behavior

To complete the stability analysis for the cH+1I and the large-N; fixed points, we finally study
the limit Ny — oo, for which we can calculate the exponents analytically. To this end, we
rescale the potential and the bosonic wave function renormalization by suitable factors of Ny,
U—U/N¢, Z,1¢ = Z,,4/Ng, ensuring that g, and g4 remain positive. After this rescaling,
the boson loops become of order &(1/N;) and the flow equations to leading order read

1
duu=—Du+(D—-2+ 'r)x)pxu(l’o) +(D—-2+ n¢)p¢u(0’1) -2 [Iw(wi) + Iw(w;)]—kﬁ (N_) ,
f

(4.58)
and

2 2 1

atgxM)=(D—4+T)X/¢)gx/¢+ﬁ(N—f), (4.59)
32vp () 1
Nylp = s (0)gy 4+ (Ff) (4.60)
1

=0| — .61
Ny (Nf ) 5 (4.61)

with the threshold functions as given in Appendix A.2 and vp = (I'(D/2)2P+1z4/2)~1,
The problem becomes symmetric with respect to y and ¢ and can be solved exactly. In the

sector of the Yukawa couplings, the fixed-point solutions are

) 2 (4—D)D
g s =0 or g, =— (4.62)
x/¢ x/é 32vagF)(0)

Further, the partial differential equation for the effective potential is solved by

8VD 2Fl(2’2172’1$w) 2F1(2’2’Tz’1fc3+)_2 +pp/2 (p¢)

u(py,p )—
e (1+w )2 (1+ w, )P o,
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) 4vp  (4—3D) -2
with wy = ?Dm (m:l: \/p_l) , (463)

and ,F;(a, b; c;2) denotes the Gaussian hypergeometric function (see, e.g., [223]). For any
smooth function c(p4/p, ) that depends only on the ratio of the invariants py4/p, the corre-
sponding u(p,,py) solves the fixed-point equation (4.58). We can restrict ¢ by the physical
requirement that the effective potential should be bounded from below and finite for p, — 0
and py — 0. Alternatively, it can be determined so that u equals the large-N; limit of the
Taylor-expanded effective potential.

Regarding the stability analysis, we find that in this limit the entries J 8 I /0 g)zt and 23 e /0 gi
in the stability matrix fix 63 = 6,. As can be seen in Eq. (4.59), 65 is then determined by the
canonical scaling only

aﬂgz an 1
Oy=———=—|D—4+n,+g>2—2+0(—||.

For the stable large-N; fixed point both Yukawa couplings are nonzero and uniquely deter-
mined by the requirements 7, = ng =4 — D. We furthermore have gic’in /9 g)z( =, and
gia Mg/0 gi = ng [Eq. (4.60)]. This requires that the third (and fourth) largest critical
exponent f; must tend to minus one in D = 3,

large-N; fixed point: lim 6;=-1. (4.64)
Ny—oo
To investigate the cH+I fixed point in the limit of Ny — o0, we scale only the Heisenberg sector
with the factor 1/Ny, since the Ising sector completely decouples and becomes purely bosonic.
Again the third critical exponent is determined by ﬁg%. But now only loops including gi are
suppressed by 1/N¢, such that 05 is given by

2Py

an 0 1
0y =— =—|D—4+n,+g?—2L+-—2@EH+o| =) 4.65

where & (g;) denotes loops that are at least proportional to g;. With g}zf = 0 this reduces to

cH+I: lim 6;=1 =1, (4.66)

Nf—>oo

in D = 3 space-time dimensions. We therefore see that the third critical exponent for the cH+I
fixed point computed within the FRG does not coincide with the one from e-expansion. This
is due to the contribution from the anomalous dimension in the Ising sector, which becomes
nonvanishing only to second order in €. In our approximation we have 7, = 0.044, such that
n, = 1 for large N;. The large-N; behavior of both fixed points is exhibited in Fig. 4.7.

4.5.5. FRG Phase Diagram
Phase Diagram from Fixed Points

In the case that a stable, physical fixed point is found, the structure of the phase diagram near
the multicritical point is again extracted from the sign of

Afpg = Az,oko,z - Aip (4.67)
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Figure 4.8.: A = 2,402 — Ail at the stable fixed point for different fermion flavor numbers. Each A is
scaled with vj,_5. For small Ny < 1.6, A is positive at the stable (cH+I) fixed point, whereas
for large Ny > 3.6, A is negative at the stable (large-Ny) fixed point. For intermediate Ny
(gray shaded region), there is no stable and physically admissible fixed point.

where the infrared values of 4, o, ¢ » and A, ; are estimated through the expansion coefficients
of the fixed point effective potential.* Fig. 4.8 shows the value for Agpg at the cH+I fixed
point for Ny < 1.6 and the large-N; fixed point for Ny > 3.6. Agpg is positive at the cH+1,
so that the phase diagram exhibits tetracritical behavior and a coexistence phase [situation I
in Fig. 4.1(a)] for small N¢. On the other hand, Asp. is negative at the large-N; fixed point,
leading to bicritical behavior with a first-order transition between the ordered states for large
N¢. The transition across the multicritical point, however, remains continuous [situation IIT
in Fig. 4.1(a)]. This is in qualitative, however not quantitative, agreement with the previous
result of the e-expansion.

When a stable and physically admissible fixed point does not exist, the phase diagram close
to the intersection of SM, SDW, and CDW is governed by a triple point, with all transitions
in its vicinity appearing first order [situation II in Fig. 4.1(a)]. As an important observation
within the FRG approach, we in fact find the scenario with the triple point to be realized for
the physical case of graphene, Ny = 2 (gray shaded region in Fig. 4.8).

Phase Digram from Flow

Additionally to the fixed point analysis, we can extract the structure of the phase diagram close
to the multicritical point from the flow of the parameters in the action Eq. (4.34). The form
of the boson potential in the infrared then determines if one or both of the symmetries are
spontaneously broken: an infrared value lim;_,, x, # O signals the CDW phase, and the SDW
state is characterized by limy_,o x4 # 0. In turn, if lim;_,o x, # 0 and lim;_,o x4 # O at the end
of the flow, there is a phase of coexistence. We calculate the flow in the LPA 8 truncation in
2+ 1 space-time dimensions for different values of the fermion flavor number N;. To examine
the phase diagram we choose to scan either different bare values for the Yukawa couplings or
for the boson masses, while setting the remaining parameters to the values of the stable fixed
point, respectively.

For Ny = 20 we therefore start the flow in the symmetric regime, i. e. at the UV cutoff
we have k, = k4 = 0. The resulting phase diagram is shown in Fig. 4.9. It confirms the
expectation from the fixed point consideration; within the applied numerical precision we find

“Note that the other conventions regarding the factors in the action in Eq. (4.6) and Eq. (4.44) leads to a different
factor in the definition of A.
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Figure 4.9.: (Left) The infrared limit of the scale dependent minimum of the boson potential lim;._,, &,
(red) and lim;_,o k o (gray) as function of the bare, dimensionfull Yukawa couplings g'j and
gi at the UV scale A for Ny = 20. The infrared limits lim;_,, x, and lim;_,q x,, correspond
to the vacuum expectation values of the fields y and ¢, i. e. a finite value of x, (x4)
represents the CDW (SDW) phase. We fix the remaining bare parameters to the values
of the stable fixed point (large-Nf fixed point). (Right) lim;_,q i p and lim,_, Kg for fixed
gf( = 0.31A and different bare g"i. Within the numerical precision, the transition from CDW
to SDW is discontinuous.
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Figure 4.10.: (Left) The infrared limit of the scale dependent minimum of the boson potential
limy_,o & x/ 5 (red) and lim;_,, Ky (gray) as function of the bare, dimensionfull Yukawa
couplings gf( and g; at the UV scale A for Ny = 1. A finite value of x, (k) represents the
CDW (SDW) phase. We fix the remaining bare parameters to the values of the stable fixed
point (cH+I); in particular in this case lim;_,, x, # 0. (Right) lim;_,, &, and lim;_,, &,
for fixed g; = 0.29A and different bare g;. There is a mixed phase with lim;_,, x4 7# 0
and limy_,gx, # 0.

a discontinuous transition between CDW and SDW phases. In the case Ny = 1, the stable fixed
point is located in the regime where the CDW sector is spontaneously broken, i. e. we start
the flow with finite x, # 0. The corresponding phase diagram is presented in Fig. 4.10 and
exhibits, as expected, a regime of coexistence between the different phases. When we start at
the cH+1I fixed point, but with Ny = 2, we obtain an analogous phase diagram as for Ny =1,
i. e. we cannot observe the appearance of a first-order multicritical point. We relate this to the
small crossover exponent 05/6; = 0.154 and the proximity of the initial values to the fixed
point.

We also begin the flow in the symmetric regime for Ny =1 and choose the bare values at the
chiral Ising and chiral Heisenberg fixed points from the separate models (note that this is not
a fixed point of the coupled theory). We obtain the phase diagram shown in Fig. 4.11 when
we vary the bare masses. In this case there is no mixed phase because we did not fine-tune to
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Figure 4.11.: (Left) The phase diagram for N; = 1 with regimes of finite lim;_,; x, and lim;_,; k4 as
function of the bare,dimensionfull boson masses m? and m2 at the UV scale A. A finite
value of x p (K¢) represents the CDW (SDW) phase. We fix the remaining bare parameters
to the values of separate chiral Ising and chiral Heisenberg fixed points, which is not a
fixed point of the coupled theory. Pre-condensation appears in the red shaded area (Right)
Flow of rﬁi P and K, j for bare values in the pre-condensation regime (ﬁlj /A =0.015 and
my /A = 1), the remaining bare couplings are the same as in the left figure. We see the
appearance of a finite «, for intermediate scales.

the multicritical point. Instead a regime of pre-condensation appears, where we observe the
development of a non-zero minimum of the potential at intermediate scales, which vanishes
again when further lowering the scale (Fig. 4.11). The phenomenon is known from fRG
calculations at finite temperatures e. g. in ultra cold atoms [150] and QC,D [224]. However
in our case the role of the temperature is played by the presence of the additional fluctuating
field.

Finally for intermediate Ny the fixed point analysis revealed a first-order triple point. At
the same time, the separate phase transitions from semimetal to CDW/SDW lie in the chiral
Ising/Heisenberg universality class and are of second order. We note that, although we did not
focus on this case here, the regime of the critical endpoint marking the change from first to
second order transition can in principle be assessed within our approach. However, this may
require a more suitable ansatz for the effective potential to detect the first order transitions
(see e. g.[152,225,226]).

4.6. Conclusion

We have studied a multicritical point in the phase diagram of electrons on the honeycomb
lattice using an effective field theory as low-energy theory of an extended Hubbard model with
onsite and nearest-neighbor interaction. Our theory accounts for the universal behavior in the
regime where the semimetallic phase, the charge density wave phase, and the spin density
wave phase meet. Within a nonperturbative FRG approach we were able to investigate the
dependence on space-time dimension 2 < D < 4 and flavor number Ny in Sec. 4.5, thereby
extending the study close to four space-time dimensions of Sec. 4.4.

We have calculated the fixed-point structure and its stability ranges to describe the competition
of the different phases. This enables us to determine the nature of the transition lines and
the possibility of a CDW-SDW coexistence phase, as function of the number of fermion flavors.
Besides, we provide a quantitative description of the critical behavior in the cases when the
transitions are continuous. We have followed the two fixed points that are stable (at different
ranges of N¢) from the upper critical space-time dimension D =4 down to D = 3. While our
results agree near D = 4 both qualitatively and quantitatively with the e-expansion results , we
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have found significant quantitative changes in the decisive third critical exponent and anomalous
dimensions in D = 3. This leads to modified stability ranges, although the qualitative picture
remains the same as in the e-expansion. The borders of the different stability regimes are
determined by the collision of fixed points. They move in theory space as function of dimension
and fermion flavor number and exchange stability when they meet.

Explicitly, we have found three different regimes for varying fermion flavor number. For small
number of flavors the cH+I fixed point determines the physical properties at the multicritical
point. In other words, the semimetal-to-antiferromagnet transition determines also the universal
behavior at the multicritical point. Beyond this point, our results suggests a mixed phase in
which both SDW and CDW orders coexist (tetracritical point). For large Ny a new fixed point
of the coupled system emerges and becomes stable. The transition between both ordered states
now is first order, whereas directly at the multicritical point the transition is continuous and
defines a novel universality class (bicritical point), in agreement with the large-N; calculations
within the fermionic description [55]. Within the fRG calculation, the graphene case is placed
in a third regime that occurs for intermediate N¢. Here we do not find any stable fixed point,
leading us to the prediction that a triple point appears with first-order transitions only. The
investigation of the phase diagram in terms of the actual flow confirms the fixed point analysis
in the regimes where stable fixed points are found. In addition it would be interesting to
compute the global behavior of the fixed-point potential at intermediate N, in light of the
first-order phase transitions we predict. This could be done, for instance, along the lines
suggested in Ref. [152,225,226]. While in our description the number of fermion flavors
has been introduced merely as a theoretical control parameter, a similar deformation of the
honeycomb lattice system should be relevant for the novel systems with a large number of
Dirac cones [227].

We have employed the FRG in terms of a local potential approximation within the derivative
expansion including anomalous dimensions. As a crosscheck, we have compared our results
with known limits from, on the one hand, the separate universality classes [66], and, on
the other hand, the e-expansion results near the upper critical dimension [127]. In both
limits we find perfect agreement, as it should be. We have also compared our predictions for
D = 3 with various literature results. As shown in [66], the FRG critical exponents in the
Gross-Neveu-Yukawa model of the separate transitions also become exact close to the lower
critical dimension of the corresponding, purely fermionic Gross-Neveu model, and the FRG
interpolates continuously in between both exact limits. We expect this also to hold for the
additional critical exponents arising from the coupling of both the chiral Ising and the chiral
Heisenberg sectors. Concerning the convergence of our polynomial truncation we have verfied
the convergence of the critical exponents upon inclusion of higher polynomial orders within our
potential expansion, see Appendix A.3. However, in order to resolve the discrepancy between
FRG and Monte Carlo results [71,209,222] for the critical exponents of the chiral Heisenberg
universality class it may be necessary to go beyond our approximation. This could be done, for
instance, by accounting for field-dependent Yukawa couplings [211] and/or field-dependent
wave function renormalizations.






CHAPTER b

Interplay between Magnetism, Superconductivity and
Orbital Order in 5-Pocket Iron-Based Superconductors

5.1. The Multiorbital Nature of Low-Energy Excitations

As we pointed out in the introduction, the interplay between superconducting, magnetic, and
orbital order provides an active field in the research of Fe-based superconductors [111,114]. The
problem of competing orders in many-fermion systems is inherently complex and is even more
complicated in these materials due to the multi-orbital nature of their low-energy excitations.
A controllable way to analyze the interplay between these different ordering tendencies in
an unbiased way is to use the machinery of parquet renormalization group as explained in
Sec. 2.2.1. The pRG has been applied to FeSCs before, but earlier works either neglected
the orbital content of the Fermi pockets [119-121, 149] or analyzed simplified models with
reduced number of pockets [122]. As a consequence it was not properly accounted for orbital
order [100-110] and the orbital dependence of different symmetry-breaking patterns could not
be resolved. It, however, can play a crucial role, as for example in the orbital-antiphase s™~ state
suggested to explain the gap structure of LiFeAs [228]. In this chapter we perform the complete
analytical pRG analysis of the most generic five-pocket model for FeSCs with full orbital content
of low-energy excitations. The goal is to understand how the orbital composition of low-energy
excitations affects the interplay between magnetism, orbital order, and superconductivity.
The five-pocket model contains three hole pockets, and two electron pockets (see Fig. 5.1).
Two hole pockets are made out of d,, and d,, orbitals and symmetry requires that d,, and d,
contents interchange under the rotation by 7/2. The third hole pocket consists merely of the
d,, orbital. The electron pockets contain d,,(d,,) and d,, orbitals (see e. g. Ref. [229,230]).
We argue that the number of symmetry allowed 4-fermion terms, which describe interactions
between low-energy fermions, is 40 in the generic 5-band model in the absence of spin-orbit
coupling (for a 4-band model this number equals 30 [231]). The bare values of these couplings
are linear combinations of on-site inter-orbital and intra-orbital Hubbard interactions U and U’,
and Hund interactions J and J’. But during the pRG procedure, all 40 couplings flow differently.
Because the full analysis of the set of 40 pRG equations is quite involved, we first analyze a toy
model in which we approximate the orbital composition of the two electron pockets as pure

dy, and then extend the analysis to the full 5-pocket model.
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For both models, we find the low-energy behavior amazingly simple. Namely, the renormal-
ization group flow brings the system to one of the two regimes. In one regime, the system
effectively becomes a 4-pocket model with two hole pockets and two electron pockets, in the
other it becomes a 3-pocket model with two electron pockets and one hole pocket. In both cases,
superconductivity eventually wins over magnetism, although magnetic correlations are larger
at high energies. The superconductivity is of s~ type, with sign change between the gaps on
hole and electron pockets. The aforementioned orbital-antiphase gap structure only comes as
subleading s-wave superconducting state. The distinction between the effective 3-pocket and 4-
pocket model is in the magnitude of the gap on the M pocket compared to that on the I'-centered
hole pockets — their ratio is larger in the 3-pocket case. Furthermore a non-equal density on
dy, and d, orbitals, a nematic order likely occurring in FeSe [232-237], may first develop in
the 4-pocket case. For the 3-pocket case with dominant d,, interactions, orbital order does not
develop as independent instability, but can be induced by a composite Ising-nematic spin order.
SDW magnetism develops if the Fermi energy Ey cuts the pRG flow (cf. 2.2.1) and the type of
SDW order is different for the effective 3-pocket and 4-pocket model. In the first case, SDW
order is of stripe type, while for the second case it is a checkerboard [95, 238]. Interestingly,
stripe order for the 3-pocket case correlates with the absence of spontaneous orbital order in
the pRG formalism and points towards a magnetic origin of the nematic phase above stripe
SDW magnetism [239]. This is consistent with the behavior observed in Fe-pnictides [240].

5.2. 3-Orbital, 5-Band Model

5.2.1. Kinetic Part of the Hamiltonian

We use as an input the fact that the low-energy excitations near all 5 Fermi surfaces are
composed out of three orbitals - d,,,d,,, and d,,. We perform calculations in the 1-Fe unit cell
and neglect the dispersion in the third direction and processes, which hybridize the pockets.

One way to obtain the dispersion of low-energy excitations is to use the tight-binding
model in the orbital basis, restrict to d,,,d,,, and d,, orbitals, and expand around the high-
symmetry points in the Brillouin zone, where different electron and hole pockets are located [93]
(cf. Fig. 5.1). Another way to obtain low-energy dispersions is to identify the symmetry
properties around the Fermi level and construct the invariants to leading order in the deviations
from the symmetry points [231]. The two approaches are equivalent to quadratic order in the
deviations near the centers of the pockets. Explicitly, two hole pockets are located at I' = (0, 0)
and one at M = (7, 1), the electron pockets are at X = (7,0) and Y = (0, 7). The effective
low-energy Hamiltonian reads

Ho= > [¥] e o hr W rieo+ % o o hx (R ko ) o oy Ry g0+, o ha (Y ar o]

k,o
(5.1)
with
ho (k) = er+ % + ak?cos 26, ck sin 20,
me ck sin 20, er+ % + ak? cos 20,
e+ % + a,k? cos 26, —ivgy (k) (5.2)
hy v (k) = ! K ) :
ivyy (k) €3+ 5,7 T azk® cos 26,
k2
hy(k) =€y — 2
My
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Figure 5.1.: The two 5-pocket models that we consider. The toy and the full model differ in the orbital
content of electron pockets. For the full model, the electron pocket at X has contributions
from d,, and d,, orbitals and the one at Y has contributions from d,, and d,, orbitals. For
the toy model, we approximated these pockets as consisting exclusively from d,., orbital.

where vy (k) = 2vkssin 6, vy (k) = 2vk cos ), and 6;, = arctan :—y The spinors in Eq. (5.1) are

defined as wr‘,k,a = (dyz,k,cr: dxz,k,a)T’ wX,k,a = (dyz,X+k,o> dxy,X+k,cr)T:
Vyko = (dxz,y+k’o-,dxy’y+k’o-)T and Yy p4k,c = dyyk,o- Below we shorten notations to
dyz,k,cr = dl,k,a> dxz,k,o = d2,k,0: dyz,X+k,a = fl,k,O” dxz,Y+k,a = f2,k,o’ dxy,X+k,cr = f31,k,a:
dyyyiko = fazkor» and dyyxos = d3xo. In these notations, the spinors are
'(/)F,k,a = (d1,k,m d2,k,0)T> ¢x/y,k,a = (fl/Z,k,o:fBl/BZ,k,cr)T and 1/)M,M+k,a = ds,k,o~

To make the RG analysis more tractable, we make several simplifications in Eq. (5.2). For
the I'-centered hole pockets we set a = c. Then the transformation from orbital to band basis is

. k . . .
a rotation around the angle ) = arctan ;> and the dispersions of band fermions ¢ , and d ,
are isotropic in k:

kZ
€c/d ko = _2mc/d (5.3)

where m, = m;l +2a. The two hole Fermi surfaces are obviously circular. A third hole pocket

-1
arises aréﬁind the M-point in the Brillouin zone. Here the transformation from orbital to band
basis is trivial, because the spectral weight comes entirely from the d,,, orbital. The dispersion
is given in Eq. (5.2). The presence of this hole pocket is material dependent and relatively
small changes in the system parameters may sink this pocket below the Fermi level (at least at
k, = 0, when the k, dispersion is included). However, such a pocket is definitely present in,
e.g., hole-doped K, Ba;_, Fe,As, and LiFeAs, which motivates to include it into our model.
Regarding the electron pockets, the diagonalization of hy (hy) gives two bands, of which
only one crosses the Fermi level and forms the electron pocket around X (Y). The electron
pockets at X and Y are related by C, symmetry, i.e. they map onto each other under a rotation
by 7/2. Due to the non-diagonal hybridization vy /y(k), the transformation from orbital to
band basis is not a simple rotation, see App. B.1 for details. The dispersion of these fermions is

gel = ki/(2mex) + k)z,/(zmey) — Ue (5.4)
_ 12 2
€e2 - kx/(zmey)'i'ky/(zmex)_.u'e- (5.5)
For simplicity we assume m,, = m,, = m,, i.e,, set £, = &, = &, = k*/(2m,) — y,. We

checked that keeping m,, and m,, different will not change the pRG equations, once we
properly rescale the couplings.
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5.2.2. The Toy Model

In the toy model, which we analyze prior to the full one, we approximate the orbital content
of the two electron pockets as pure d,,. In this case, the electron dispersions are already
diagonal in the orbital basis, i.e. orbital and band representations are identical. Our notation
for the electron operators is in this approximation Yx /y k o = f1/2,k» where 1/2 just labels the
pockets. This toy model allows us to study the impact of the fifth pocket in a transparent way.
Furthermore, we expect that the toy model already captures a substantial part of the physics of
the full model ,because adiabatically changing the tight-binding parameters of the underlying
lattice model, one can move the spectral weight from d,,(d,,) to d,, orbital everywhere on
the electron pockets [230]. There are, however, several features of the full model, which are
not captured by the toy model. These are caused by the interactions which involve both xz/yz
and xy-orbital states on the electron pockets.

5.2.3. Interactions
Toy Model

The toy model contains 14 couplings within the subset of the two electron and the two T-
centered hole pockets [122], and 7 couplings involving fermions near the M-hole pocket, so
the total number of couplings is 21. In terms of the spinor components defined above, the 14
interaction terms are

4ps / + s ), _ / B}
H]p = UIZ [f]afladIU/dlal +f2To'f2(T zg/dZU :| + UlZ [szngU 1g/d10’ +f10'f10' 20'/d20' :|
/ s s - — / .. "
+ U [F diodl o fron + £ daodly foo )+ 0n ) [fi daodly fron + fi diod) foor]

SV diof5 dior + £ oo f dagr +

+ 2 |:f10- loflg/ 10’+f20- 20f20-/ 207 T 'C']
U3 / ) . . .

+5 (£ doo £l door + £, dio fy dior +huc. ]

ﬂZ’ [di diod] dyo+d] dzOdz'U,dZO,]+%Z/ [d] dood]! dyo+d] diod] dio]
+ U4Z i dyed) dyor + U4Z i dyed) ,dygr
Z L frofi fror + Fas Foofao oot )+ —Z L5 foo bl Faor + Fa Fro s fror]
+ USZ I Frofh oo + s> i Faofih from (5.6)

where the sum Z/ denotes the summation over spin o,c’, momenta k; + ko —k;—k, =0
and includes the normalization factor 1/N. The other 7 couplings are

/ - - . . / a . . s
HISP = Ulnz I:d?Iod3Gf1ra/f10’ + d;crdBon]a’fZU’] + UZ”Z [d?ioflaffa’d30/ + d;afZUfZTa’d3U':|
U. n /e . - "
2 [déafmdégfflo/ + i, f20 035 f20 +h.] 4"2 Q35 g 3, a0
U [dl, dagdl dyor +dl, dagdly dagr |+ Up D [l drodly dagr +dl, dogdl, dag:]

+?Z [di diod] dio+d] dped) dyg: +hec.]

+

(5.7)
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Figure 5.2.: Diagrammatic representation of the 21 interaction terms in the toy model. Each interaction
term is invariant under C, rotations. We also show the notation for the different propagators.

The interactions of the toy model are sketched in Fig. 5.2. Each single interaction term in
Eq. (5.6) and Eq. (5.7) obeys the C, symmetry separately, which is why they do not need to
flow equally under the RG.

The bare values of the 21 couplings are expressed in terms of the parameters of the microscopic
model for intra-orbital and inter-orbital interactions between fermions. The commonly used
model approximates all interactions as local in real space:

Hy= Uzni,u,T”i,u,l + %/ Z M, pThi Z Z d; i,u,0 lu oriw,ordipo
iu

i uFu luaéu 0,0’

EDIP IR

i,uFu o,0’

(5.8)

Here the sums run over the sites i, the spin components o, and the three orbitals u = xy, xz, yz.
The density operator on site i in orbital u is labeled by n; , = >, n; , » and n; ,, , = d. r i o dipmo
The interactions in Eq. (5.8) involve the Hubbard interaction U between electrons on the same
orbital, the onsite repulsion U’ between electrons in different orbitals, the Hund’s rule coupling
J and the pair-hopping term J’. By comparing with Eq. (5.8), we obtain the bare values of the

21 couplings
U=Uy=Us=Us=Us=Us =Uy, = Uy, =Us, = Usy
U=U=0,=0,=U, J=U=0,=U,=U, J =Us=Us=0,="0,

Full Model

In the full model with d,,/d,, and d,,/d,, orbital content of fermions near the electron
pockets, 19 more couplings are allowed by symmetry. This increases the total number of the
C4-symmetric interaction terms to 40. Of 19 new couplings, 13 are obtained by substituting f;
and f, by f3; and f3, in Egs. (5.6) and (5.7)

2 T et
H§ )= Vlz [f3r10f31a 1g/dla’ +f320f320d20/d20 ]
_ /e + T
n Vlz [f3'2gf320d1'o’d10' +f3‘wf310 zgxdzo :|
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Figure 5.3.: Additional interactions allowed by C, symmetry in the full model. The double (dashed)

wavy line represents fermions with xy orbital index on the electron pocket at Y (X).
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+

The remaining six come from interactions involving x y and xz/yz orbital states on the electron

pockets
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Figure 5.4.: Diagrammatic representation of the 1-loop renormalizations of the interactions U, and U,.
They decouple from the remaining interactions and are representative for the subgroup of
interactions flowing to zero.

We show these additional interactions graphically in Fig. 5.3. Note that, in contrast to the
simplified model, f;/, now labels fermions with yz/xz orbital content, whereas f3; 3, labels
fermions with xy orbital content. The bare values of the 40 couplings are again expressed in
terms of U, U’, J, J/, and are given by

U=U =Uy=Us=Uy=Us=Us=Uy, =Vs =V = Vs = Vs Vi =Von = V3,

U=0,=0,=0;=0U,,=U,=V, =V, =V, =V 5.12)
J=U,=U,=Us=Up=Up=V, =V, =V =7

J=U,=U0,=U0s=Us, =U, =V, =V, = V3 = 1.

5.3. Analytic Parqut RG for the 5-Pocket Model

We employ the pRG approach introduced in Sec. 2.2.1 to study the hierarchy of the orders that
the system develops at low energies. The pRG procedure allows us to see how the susceptibilities
in different ordering channels evolve as the system flows to low energies, including their mutual
feedback. As explained earlier, we describe the flow of interactions in terms of the RG scale
L = logAyy/E, where Ayy is the UV-cutoff, generally of the order of the bandwidth. The
logarithmic energy scale L appears due to the fact that the polarization bubbles in the particle-
particle channel at zero total momentum and the particle-hole channel at momenta (7, 0) and
(0, ) are logarithmic. As a result of the integration procedure, we obtain coupled differential
equations -the flow equations- for all the interactions, describing their evolution with L. We
solve for the running couplings U;(L), which typically flow to strong coupling. But thereby
they approach so-called fixed trajectories (FTs) along which their ratios become constant. We
use these solution for the couplings as inputs to calculate susceptibilities in different ordering
channels (SDW, CDW, superconducting and Pomeranchuk channels). For an instability to occur
the corresponding susceptibility must diverge. We recall that it depends on the hierarchy
between the scale of divergence L., and the scale of the Fermi energy Ly, which instability
actually develops. Below we show the pRG analysis for the toy model and the full model.

5.3.1. PRG for the Toy Model

PRG Equations and Fixed Trajectories

We derive the pRG equations by collecting all possible one-loop diagrams that contribute to the
logarithmic renormalization of each of the interactions. The procedure has been described in
Ref. [122] for a simplified 4-pocket, 2-orbital model and in Ref. [149] for a 3-pocket, 1-orbital
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Figure 5.5.: Diagrammatic representation of the 1-loop renormalization of the interactions U;,, and Us,,.

model. We obtain the pRG equations for our 5-pocket model by combining and modifying the
PRG equations from these two models. Similar to Ref. [~122], we find that the pRG equations
for six combinations of the couplings (U, + U,), (Us + Us) and (U, + U,) decouple from the
other RG equations. These combinations all flow to zero if their bare values are positive, which
is the case for U’ > J (see App. B.2). We assume that this inequality holds. If it does not hold,
the system may develop a superconducting instability in the spin-triplet A, channel [241]. We
show examples for the one-loop diagrams that renormalize representative couplings for this set
in Fig. 5.4.

Furthermore we find that the system always flows to U; = U; so that we set them equal in
the following. The pRG flow of the remaining ten couplings determines the FTs. Exemplary
one-loop renormalizations are presented in Fig. 5.5. Upon rescaling to dimensionless couplings,
the flow equations read

u? u3
u1=u%+a_§ aln_u%n_i_ai%n
Uy = 2uy(uy —uy) Uy = 2Ugp (U1, — Ugy)
Ug = 2u3(2u; —uy — us) — 2buguy —uzau, Uz = 2U3,(2U1, — Ugy — Us) — Uspllg, — 2buzu,
i, = —2bu? — 2u2 — 2u> gy = —us, —2u5 —2bu?
s = —2ui — 2buj —ul, Ue = —2bugle — UgnUe — 2UzUsz,

(5.13)
The derivatives are with respect to L and a > 1,a,, > 1, and b are parameters, which depend
on the ratio of quasiparticle masses near each of the Fermi pockets. When the masses on the
two I'-centered hole pockets are equal, as we assume below for simplicity, b = 1 (reasonable
b # 1 do not change the results). We give the full set of pRG equations and the definitions of
the parameters in App. B.2. From an RG point of view, we will take the parameters as free
quantities and study their influence on the flow.

The Solution of PRG Equations

The solution of Eq. (5.13) reveals a flow to strong coupling and thus signals potential instabilities
of the Fermi liquid (Fig. 5.6). These instabilities are represented by different fixed trajectories
along which the couplings diverge and their ratios tend to fixed values. This can be seen in
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Figure 5.6.: (Left) Flow to the 4pFT for representative couplings u; and u,,. Bare values and parameters
are U'/U=1.5,J =J' withJ/U =0.3 and a = a, = b = 1. (Right) Flow of the SDW and
SC st~ vertices for the same flow. Note the crossing at the end of the flow.
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Figure 5.7.: Ratios of couplings for the flow to the 3-pocket fixed trajectory (3pFT) in the toy model for
bare values U = U’, J =J’ and a = a,, = 1. All ratios tend to zero (left), except for those
within the triad of electron pockets and the M—centered hole pocket (right).

Fig. 5.6 and Fig. 5.7. Accordingly, we single out one of the coupling, say u, and write all other
couplings as

U = 7,1, (5.14)

where we choose 1, to be one of the leading divergent, positive couplings. Solving for the fixed
trajectory of the set of coupled pRG equations, Eq. (5.13), then reduces to finding the fixed
point solution of

1
Bi:=0yi= ;(aLui —7i0Lug) = 0. (5.15)

The fixed trajectory is stable if small perturbations around the fixed point do not grow, i.e. the
stability matrix 0 3;/97 |+, which describes the linearized flow around the fixed point, should
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have only negative eigenvalues. For the toy model we find two stable fixed trajectories

4pFT 3pFT
u; =y Ui =Yl
1 1 1 1
uq Ui

T 1+y3/a?Lo—L C1+y2 /a2 Lo—L

Y2=Y1n=Y2n = Y3 =Y4n =7V =0 Yon=Yc=Y1=Y2=Y3=74=0
Y3=:|:a\/8a2—1+4v 1—a? +4a* an=:|:an\/4a,21—1+2\/4—2a%+4a3
Ya=7vs=1—2a*—V1—a?+4a* Yan =275 =2—2a%— 1/4—2a2 + 4d}

For the first stable FT (4pFT) all y;, involving the M pocket vanish, so the 5-pocket model
effectively reduces to the four-pocket model. This does not mean that the interactions u;,
vanish, only the ratios u;,/u; tend to zero. On a more careful look we find that the couplings
u;, still grow, but with smaller exponents, i.e. as u;,, o< 1/(Ly— L)%, a; < 1. These subleading
terms are not essential for the interplay between superconductivity and other orders, but they
are important for the structure of the SC gap. For the second stable FT (3pFT) the situation is
the opposite — interactions involving the two I'-centered hole pockets grow more slowly than the
interactions involving the other three pockets, i.e., along the FT the five-pocket model effectively
reduces to the three-pocket model consisting of two electron pockets and the M-hole pocket.
We checked the stability of the 4pFT and the 3pFT by expanding around them and verified that
all eigenvalues are negative. Whether the system flows to one FT or the other is determined
by the bare values U,U’,J,J’ and the parameters a and a,,. We show the phase diagram for
different bare interactions in Fig. 5.8. The result of our study of the stability regimes of the
4pFT and the 3pFT at various a,/a is presented in Fig. 5.9. We also find a symmetry-enhanced
fixed trajectory in the sense that u; = u;,,us/a = us,/a,, etc (see App. B.2.2 for details).
However, performing the linear stability analysis, we find one positive eigenvalue, implying
that this FT is unstable. On the phase diagram in Fig. 5.8 the symmetric FT determines the
separatrix between the basins of attraction of the two stable FTs.

Susceptibilities

The next step in the pRG analysis is to use the couplings along the FTs as inputs and compute
the susceptibilities in different channels, y;, to decide which order wins and develops at low
energies. We introduce vertices I} that describe the coupling between fermions and order
parameters. The vertices in turn determine the susceptibilities in the corresponding ordering
channel, whose divergence would signal a phase transition. Here we focus on SDW, CDW,
and SC channels. The analysis of the susceptibilities in the Pomeranchuk channel is discussed
afterwards. The susceptibilities in SC, SDW and CDW channels are given by

¥ o< f dL'TA(L"), (5.16)
L

where the vertices renormalize according to the one-loop diagrams shown in Fig. 5.10. In
analytic form, the pRG equations for the vertices in the SDW and CDW channels are

Uz Us
L FgDW = (ul + ;) FSFDW L FgDW = (”1 —2uy — ;) FEDW
M Usp \ v M Usn \ -y (5.17)
aLFSDW = (u1n+a—) FSDW aLFCDW = (uln—2u2n—a—)FCDW.
n n
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Figure 5.8.: Fixed trajectories of the pRG flow for different values of U, U’ for fixed a = a, = 1 and
J =J’ =0.3/m. The interactions are measured in terms of the quasiparticle mass m. Mass
ratios are all set to one. 3pFT denotes the FT along which interactions involving fermions
near the I'-centered hole pockets become weaker compared to the interactions within the
subset of the two electron pockets and the M = (7, )-hole pocket, and 4pFT is the FT
along which interactions involving fermions near the M-hole pocket get weaker.
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Figure 5.9.: Fixed trajectory at the end of the flow for different values of a,/a. Bare values are U =
U',J=J and J/U =0.3.

Here FSF i%[v are SDW vertices between fermions near one of the electron pockets and either the

I'-centered or the M-hole pocket (and analogously for FSF bl\fv). The pRG flow of the vertices in
the particle-particle channel obeys

FSeC —2u5 _2113 _ZUBn F;C
9, FSFAg =|—2u; —2uy; —2u, rSF]\g , (5.18)
FSC —Usp —U. _U4n FSC
I‘SECr M are SC vertices for fermions near one of these sets of pockets. By inserting the values

for u; along the FTs and solving Eqgs. (5.17) and (5.18), we obtain I} o< (Lo — L)P and
% o< (Lo — L)*P~1. Thus in order to diverge the vertex exponent must satisfy 8 > 1/2. Along
the 4pFT and 3pFT, the exponents of the density waves are

(4p) _ 1+7rs/a @p) _ 1=7rs/a

SPW 1 4+ 42 /a2 oW 1+492/a2 (5.19)
Bp) _ 1 +Y3n/an (Bp) _ 1_Y3n/an ’
spw = cow =

1+72 /a2 1+73,/a2

Note that y3, 73, also depend on a, a,, in these expressions. The exponents attain their maximal

values at a = 1,a, = 1 with S2) ~0.30, fP) ~ —0.18 and BF) ~ 0.43, BEE) ~ —0.20.

These values do not lead to a divergent susceptibility, i.e. the corresponding order does
not develop if the normal state becomes unstable before the Fermi energy is reached. The
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diagonalization of Eq. (5.18) yields for the 3pFT and the 4pFT

oo —r4—71s+q/ (Y42— YZS)Z +4y3/a?

, 1+y3/a : _ (5.20)
ﬂs(.zé.p_)‘__/++ _ Y4n 2Y5 + \/(Y4r; 2Y5) + 8Y3n/an '

’ 1+y3,/a?

The largest eigenvalues correspond to the st~ superconducting state, where the SC vertices have
opposite sign on electron and hole pockets. The corresponding exponents satisfy Bsc > 1/2.

For a = a,, =1 they are ﬁs(épl_ = 0.86, and ﬂéipi_ =0.72. For all a and a,,, Bsc > 1/2 while
Bspw < 1/2,1i.e. ysc diverges at L = L, while yspy, remains finite, despite that it is the largest
at the beginning of pRG flow. This implies that the system develops SC order but not SDW or

CDW order. We show the flow of FSF pw and Fs+c_ along the 4pFT in Fig. 5.6.

To determine the sign of the superconducting gap on the remaining hole pocket(s), we must
include the residual interactions (the once which diverge with smaller exponents). To do this
and to verify our analytical reasoning, we solved the set of pRG equations for the couplings and
the set of the vertices in the SC channel, Eq. (5.18), numerically. We find two positive (attractive)
and one negative eigenvalue in the SC channel. The negative one corresponds to a repulsive
interaction in the s** channel. The positive eigenvalues correspond to s™~ gap structure. For
the largest positive eigenvalue along the 3pFT or the 4pFT the gap(s) on the remaining hole
pocket(s) align such that the sign of the gap on all three hole pockets is the same (and opposite
to the gap sign on the two electron pockets). This is the "conventional” st~ gap structure.
The smaller positive eigenvalue along the 3pFT or the 4pFT actually starts negative at small L
and then changes the sign in the process of the RG flow. For the 4pFT, the gap structure that
corresponds to this eigenvalue has the same sign of the gap on the M—centered hole pocket as
on the electron pockets, i.e., there is one sign of the gap on the two '—centered hole pockets
and another sign on the other three pockets. For the 3pFT and for this eigenvalue, the sign of
the gap on the I'—centered hole pockets and on the electron pockets is the same, and opposite
to that on the M— hole pocket. A gap structure of this kind was proposed in Ref. [228] and
termed as "orbital anti-phase”. Our RG analysis shows that along the fixed trajectory such
a state is subleadng to a conventional s*~. Finally, we compute the gap structure along the
weakly unstable FT (Eq. (B.7)) and find that it is also a conventional s*~. The analysis of the
magnitudes of the superconducting gaps on different pockets in the SC phase requires one to
solve the non-linear gap equations and is beyond the scope of the pRG analysis. Still, the pRG
flow points out that the gap on the M pocket should be larger for the 3pFT than for the 4pFT.

To analyze orbital ordering, we calculate the vertices and susceptibilities in the Pomer-
anchuk channel with the orbital densities n, = d;du as order parameters. The analysis is
somewhat different than before because the polarization bubbles that renormalize the Pomer-
anchuk vertices are not logarithmically divergent, as can be seen in Fig. 5.11 . However,
the scale-dependence of the interaction provides a logarithmic renormalization. Summing
only logarithmic terms then leads to pRG equations in the Pomeranchuk channel of the form
oL, o< 1“3 opu,ie. I, oc Fﬁ(l +u) with initial Fﬁ (see App. B.3 for details). Since the couplings
flow as u o< (Lo—L) ™}, the Pomeranchuk vertex grows with exponent B, = 1 and overtakes the
SC vertex at the end of the flow. Note, however, that the renormalization of the Pomeranchuk
vertex develops when the couplings become of order one so that corrections to 1-loop RG may
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Figure 5.10.: Diagrammatic representation of the 1-loop renormalization of representative SDW, CDW,
and SC Vertlces In the RG equations of the superconducting vertices, only the combinations
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Figure 5.11.: Diagrammatic representation of the 1-loop renormalization of a representative Pomer-
anchuk vertex corresponding to the orbital density n,,. The polarization bubbles are
not logarithmic as they involve two identical propagators. Propagator lines are define in
Fig. 5.2.

contribute. Explicitly the pRG equation of the Pomeranchuk channel for the toy model reads

F}Ez Uy 0 %(2111 —uy) %(2111 —uy) 0 FXFZ

p Fyrz il 0 . u, %(Zul —u,) %(Zul —u,) . 0 F;Z

L F);, =—2—| 7 (Q2u —uy) 7 (2u; —uy) Us 0 A (2uy, —ug,) F;;y

L FJIC\% dlL %(2111 —u) %(2111 —u) 0 Us Iz_lf(zuln — U,) FJJC\%

Loy 0 0 %(Zuln —Uyp) ,’}—j(Zum —Usp) Usn Loy
(5.21)

where we have omitted the irrelevant couplings and set m. = m,;. As has been already
obtained in Ref. [122], the largest eigenvalue of Eq. (5.21) along the 4pFT corresponds to
st~ Pomeranchuk order, where electron and hole densities change in opposite directions. This
does not break any symmetry, while it may indicate temperature dependent relative chemical
potentials u;, — u,. We obtain the analogous order also along the 3pFT. However the true
instability has to occur in a different channel, which breaks a symmetry. Along the 4pFT we
reproduce the result of Ref. [122] that this instability develops in the d—wave Pomeranchuk
channel. An instability in this channel leads to a spontaneous orbital order [100-110,122],
i.e., to non-equal densities of fermions on d,, and d,, orbitals. We find that no orbital order
develops along the 3pFT because the electron and the M pocket have d,., character. However,
the system still breaks C, symmetry by developing an order with (dIydxy) of opposite signs on
the two electron pockets (cf. [242]).

Finally, we comment on the behavior in a situation when the system does not reach a
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fixed trajectory before the RG scale L becomes comparable to Ly = log A/Er. Because the
susceptibility in the SDW channel is the largest over a wide range of L (Fig. 5.6), it is most
likely that in this situation the system develops an SDW order. We compare the behavior of the
SDW vertices involving fermions from one of the electron pockets and either fermions from the
I'—centered hole pockets (T3 ,,,) or from the M—pocket (I2],). We find that Tp5 > T3 . if
the flow is towards the 3pFT, and Fg ow > FSJ%W if the flow is towards the 4pFT. This implies that
in the first case SDW order predominantly involves the triad of two electron pockets and the M
hole pockets, while in the second case it involves two electron pockets and two I'-centered hole
pockets. For the 4-pocket model the SDW order is a checkerboard (Ref. [243]), while for the
3-pocket model SDW order is a stripe. [ 244-246]. In this respect, our pRG results imply that if
the pRG flow is towards the 4pFT, the system may develop a spontaneous orbital order, but
there is no spin Ising-nematic order, while if the flow is towards the 3pFT, the system develops
an Ising-nematic spin order, but no spontaneous orbital order.

5.3.2. PRG For the Full Model
PRG Equations and Fixed Trajectories

The analysis of the full 5-pocket model with d,/d,, and d,,/d,, orbital content of the electron
pockets is more involved as one has to analyze the set of 40 equations for the coupling constants.
We find that now 12 couplings decouple and flow to zero. Furthermore we make the same
conjecture as for the toy model, i.e., assume that for stable and weakly unstable fixed trajectories
U; = U;. This reduces the number of couplings further by 10 and leads to 18 remaining couplings.
We present the full set of pRG equations in App. B.4.1. We search for FTs by varying the initial
values of the couplings and the ratios of masses of the dispersions. Interestingly, we find much
the same behavior as in the toy model. Namely, the five-pocket model effectively becomes either
a 4-pocket model (interactions involving the M pocket get weaker in the process of the pRG
flow), or a 3-pocket model (interactions involving the two I'-centered pockets get weaker). The
new feature, not present in the toy model, is that each of these effective models now has two
FTs (4pFT; , and 3pFT, ), along which interactions involving fermions from either d,, (d,,)
or d,, regions on the electron pockets become dominant. We verified that the FTs 4pFT, , and
3pFT, , remain stable in the full five-pocket model. That is, at the end of the flow, the electron
pockets can be approximated as pure d,,(d,,) or pure d,,, respectively. There are several
“symmetric” FTs, along which a larger subset of couplings remains of the same order. These
FTs are again unstable and act as separatrices between the basins of attractions of effective
4-pocket and 3-pocket models. These symmetry-enhanced fixed trajectories possess one or two
unstable directions. One of them corresponds to the weakly unstable fixed trajectories that
we found in the toy model and separates 4pFT; and 3pFT,. Further three FTs with only one
unstable direction analogously divide the other stable FTs from each other. Additionally there
is a high-symmetry FT with two unstable directions, along which all related couplings from
the four stable FTs become the same. The explicit solution for the four stable and five weakly
unstable fixed trajectories are given in App. B.4.2. We show the phase diagram for different
bare interactions in Fig. 5.12.

Susceptibilities

As in the toy model, we introduce vertices that couple to different order parameter fields to
determine which order develops first at low energies. In the SDW channel, we now have four
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Figure 5.12.: Fixed trajectories of the pRG flow of the full model for different values of U, U’ and fixed
J =J’ = 0.3m. The interactions are measured in terms of the quasiparticle mass m.
Mass ratios are all set to one. 3pFT; , denotes the FT along which interactions involving
fermions near the I'-centered hole pockets become weaker compared to the interactions
within the subset of the two electron pockets and the M = (7, 7r)-hole pocket, and 4pFT; ,
is the FT along which interactions involving fermions near the M-hole pocket get weaker.
The index 1, 2 distinguishes if contributions of the d,,/d,, or d,, character of the electron
pockets are dominant.

vertices, where either fermions on electron pockets with d,., and d,, or d,, orbital content,
and fermions from either the hole pockets at I' or M are involved. Similarly we have to account
for four superconducting vertices in the full model. They can be grouped into pairing vertices
involving fermions near the I'-centered (FSFC) or M-centered (I“é‘é) hole pockets, and fermions

in the vicinity of the electron pockets with either d,., / dyZ (I‘;"’Cx 21y *) or dxy (FE’CX ¥) orbital index.
The interplay between SDW and SC susceptibilities is qualitatively the same for all four stable
FTs — SDW susceptibility is larger at intermediate scales, but does not diverge, i. e. if Ey is
small enough, the system develops st~ SC order but no SDW order. The exponents f3; are the
same as in the toy model for parameter settings equivalent to a = a,,. We show the detailed
calculation in App. B.4.3.

To determine the SC gap structure on all pockets, we need to include the residual interactions
besides the dominant ones from the stable fixed trajectories. We do this numerically. We
find that, like in the toy model, the largest eigenvalue in the SC channel corresponds to a
“conventional” st~ gap structure, although the magnitude of the gap on the “secondary” pockets
is small. Specifically, this means that for the 4pFT; the gap magnitude is relatively small
on the M—centered hole pocket and the xy—part of the electron pockets, for the 4pFT, it
is small on the M—centered hole pocket and the xz/yz—parts of the electron pockets. In
the 3p case, the gap almost vanishes on both I'—centered hole pockets, and the two 3pFTs
differ in the gap magnitude on the xz/yz and xy portions of the electron pockets. For the
second largest eigenvalue the gap structure for the FTs, where the dominant interactions are
within the same orbitals (i.e. 4pFT; and 3pFT,) is the orbital-antiphase s™~ state, Ref. [228]
(sign(l“se’cxz/yz, F;’gy, Tgc, l“slvé) = (+,—,—,+)). For the FTs with dominant couplings between
different orbitals (4pFT, and 3pFT;) the sign structure corresponds to an “orbital-antiphase
st state (sign(Fg’CJ(Z/yz, l“se’cxy, Fgc, FSIVé) = (+,—,+,—)). When the pRG flow is towards 4pFT1 ,,
the system may also develop a spontaneous orbital order prior to SC.



94 5. Interplay of SDW, SC and Orbital Order in 5-Pocket FeSCs

5.4. Conclusion

In this chapter we analyzed the pRG flow of the couplings and susceptibilities in different
channels in the full 5-pocket model for FeSCs. We included into consideration the orbital
composition of hole and electron pockets in terms of d,,,d,,, and d,, orbitals. Therefore
we could analyze how the orbital composition of low-energy fermions affects the interplay
between magnetism, orbital order and superconductivity. The total number of symmetry-
allowed couplings between low-energy fermions in the considered model is 40, but the behavior
along stable FTs of the pRG flow is amazingly simple — depending on initial values of the
interactions and quasiparticle masses the system flows to one of four stable FTs. For two of
these FTs, the interactions involving the M-hole pocket become weaker than the rest, and
the system flows to a 4-pocket model at low energies. For the other two FTs, the interactions
involving the I'-centered hole pockets become subleading, and the system behavior becomes
the same as in a 3-pocket model consisting of two electron pockets and the M hole pocket.
This behavior was already captured in a toy model with electron pockets only made out of d,,
orbitals, which we analyzed prior to the full model.

In the full model we found for both 4-pocket and 3-pocket models two stable FTs with larger
interactions involving either d,, (d,,) or d,., states on the two electron pockets. In all four cases
st~ SC wins over SDW if Ej is small enough, and SDW wins if Ej is larger. We also analyzed
the structure of the superconducting gap and, in particular, found that the orbital-aniphase
gap structure, proposed in several recent semi-phenomenological studies, comes as subleading
s-wave superconducting state. In the parameter range, where the pRG flow is towards a 4pFT,
the system develops a spontaneous orbital order with unequal densities between fermions
on d,, and d,, orbitals close to the Brillouin zone origin. When the pRG flow is towards a
3pFT, the system does not develop a spontaneous orbital order, but may develop a vestigial
Ising-nematic order and unequal densities of d,., orbitals on the two electron pockets.



CHAPTER O

Concluding Remarks

We have presented a collection of RG studies with focus on different aspects of the interplay
between several types of order so that, as a result, we obtain a comprehensive picture of the
fascinating phenomena appearing when strong correlations from different ordering channels
compete with each other.

We have demonstrated that it is crucial in this case to account for the mutual feedback
between particle-hole and pairing channels. One reason is that destructive interactions may
occur such as the suppression of phonon-mediated superconductivity by bond order in the
analysis of the electron-phonon coupling in Sec. 3.3.1. At the same time, ordering tendencies
can profit from the presence of further correlations, which we have seen at the example of the
extended spin density wave regime for the dynamically distorted honeycomb lattice (Sec. 3.3.2),
or the inducing of an attractive pairing interaction by magnetic fluctuations in the study of
FeSCs (Chap. 5). In both investigations the parquet RG approach and the patching formalism
of functional RG have proven beneficial for the unbiased consideration of the various ordering
channels.

The next step after having established the leading ordering tendency is to resolve the structure
of the phase diagram in more detail. Typically, order parameter fluctuations therefore have to
be taken into account in addition to the fermion degrees of freedom. We have put forward one
possibility to do so in Chap. 4 in the context of the meeting of the antiferromagnetic and the
staggered density phase in Dirac materials. There we have set up a semi-phenomenological
Gross-Neveu-Yukawa model with two coupled oder parameters. The bosonized description
is crucial to investigate symmetry-broken regimes of the phase diagram and hence necessary
to determine whether orders can coexist. Depending on the number of fermion flavors, we
indeed found different phase structures with and without a phase of coexistence (Sec. 4.4.2
and Sec. 4.5.5). Another way to account for the effect that fluctuations of the order parameter
tend to reduce the formation of exactly the corresponding order has been presented in Chap. 5
with application to FeSCs. In this case we have introduced vertices for the different bilinears
representing the order parameters and calculated their RG flow using the scale-dependent
four-Fermi couplings as input (Sec. 5.3). This allowed us to study the susceptibilities of various
orders, and even though the divergence of specific couplings pointed at an instability, the
susceptibilities did not need to confirm the occurrence of an ordered phase. For instance, we
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argued that the spin density wave state does not develop if Fermi energies are small.

When a transition to a symmetry-broken state occurs, we aimed at determining its properties.
Again order parameter fluctuations play a crucial role in the analysis of this issue, in particular if
two or more orders are present. In addition, multicritical behavior can occur at the intersection
of different transition lines. In this context we have determined the nature of transition lines
and the (multi-)critical exponents for the point in the phase diagram of Dirac materials where
charge and spin density waves meet in Sec. 4.4.1 and Sec. 4.5.4.

Eventually we note that our results can only be as good as the ansatz that we use and several
direct extensions of the presented discussions can be made. On the one hand it would be
desirable to improve the precision of the fRG calculations. For the patching scheme this can
for example be achieved in the spirit of [68,69]. Regarding the Gross-Neveu-Yukawa model,
improved truncation schemes could be useful to obtain more precise critical exponents [211]
and to resolve the form of the effective potential in particular with respect to the predicted
first order transitions [152,225,226]. On the other hand we can extend the models that we
have used to describe the different physical situations. Regarding the competition of orders
in Dirac materials, the variety of proposed symmetry-broken states suggest the incorporation
of further composite oder parameters. We have already mentioned the quantum anomalous
and quantum spin Hall state (see Eq. (4.4)) with possibly the same quantum critical behavior
as the combination of charge and spin density wave. Furthermore, the inclusion of a finite
chemical potential together with superconducting phases promises interesting findings [247].
Regarding the 3-orbital, 5-band model for FeSCs, depending on the initial setup, the system
can remain close to the weakly unstable trajectories. A more detailed study of their ordering
properties can clarify their relevance for observations. For the 3-pocket, 4-orbital model this is
under way [248]. Furthermore we have neglected the spin-orbit coupling, which, however, can
be straightforwardly included [93,242].



APPENDIX A

Competition of Density Waves and Quantum Multicritical
Behavior in Dirac Materials — Flow Equations and
Convergence

A.1. Explicit FRG Flow Equations

A.1.1. Flow Equations for the Yukawa Couplings

Here, we explicitly display the full analytical expressions for the flow of the two Yukawa
couplings in terms of threshold functions, which contain the loop integration and regulator
dependence. The definitions for the threshold functions and explicit expressions for the case of
particular regulator choices can be found in Appendix A.2. Note that the threshold functions
are defined such that they also depend on the Yukawa couplings. Then they reduce to familiar
expressions in the uncoupled limit (w4, = 0). First, we display the flow equation of the Yukawa
coupling to the Ising field y:

FB),
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Analogously, the Yukawa coupling to the Heisenberg field ¢ is given by
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.85 =(D—4+ny+2ny)g;
(FB),o . 2 (FB),o .
+4VD Z { g¢l(11)R¢(g¢’gX’w‘f)’w}(’wlﬁl’wg)-i_gd)gxl(ll)R (gx)gqbawx,wgbyw(j)x:wi)
o=%1

2.2 (FFB),0, ) + - (FFB),0,
_4g¢gx’<x[gxl(111)}z (gx’g¢’°’x’w¢’w¢x’w¢>w¢)_g¢l(111)R (84830 @y,0 5,0 e w)]

(1,1) (FBB),o 0,1)
—2g u 2k, (y/2K, 8, 04 /2Ky g¢)l(111)G¢ (gx,gd,, s Wy W, Wehy s 1!))
2. (0,2) (FBB),o 0,1)
—2g5u' /24 (/2K 84 + 0 /26, 8, 1 i, (890 813U, g, 0, 04, w)}
(A.2)

We have abbreviated the volume factor by v, = zvol(SP™1)/(2n)P = (I'(D/2)2P*1x/2)71,
The threshold functions are listed in Appendix A.2 and we have defined

Dyxx =V ZKX(SM(Z’O) + 21<xu(3’°)), @rxd =V 2K¢(U(1’1) +2Kxu(2’1))
Wypp = /26, @D + 21 u?). A3)

W, Wyy Weys and cofp are defined in the main text, see Sec. 4.5.1.

A.1.2. Anomalous Dimensions

The expressions for the anomalous dimensions can also be given as a closed algebraic system
of equations. Note that—although not exlicitly displayed—the threshold functions also depend
on the anomalous dimensions. First, we list the expressions for the anomalous dimension of
the Heisenberg field 1, and the one for the Dirac fermions 71,

4y
N = DD {2 2K, (LD (B)Do 2K, u® 1) 2K, u(0.2). (0,1))

(22)R Gy

(02) (B)D,o (02) (1,1). (0,1)
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4vp (FB)D,o . (FB) 0,1
My ="~ {Xm(lz)RZ (gl,gqs,wx,wd,,w¢l,w$)+2g¢m(12)%(u( ) 5)
g
(FB)D,o .
+g¢m(12)R¢ (g(ﬁ;gx:wd);wx;wqu,w;)}. (AS)

The expression for the anomalous dimension of the Ising field n, depends on the projection
prescription. Here, we distinguish between the projections onto the radial mode or onto an
auxiliary Goldstone mode (see Appendix A.1.3 for technical details). Both ways are given in
the following and are denoted as n, z and 7, g, respectively

_4vp { (B)D0 . (B)D,0 .
MR~ (40R, \Crxr> Caxd> P> P> Wey)+ M40)R, (@Wygp>Wyygs Wps @y Wey)
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For our results as displayed in the main text, we use the latter definition, which in the case of
the purely bosonic systems is known to yield more accurate results, cf. Appendix A.1.3.

A.1.3. Projection Prescriptions for Anomalous Dimensions

Let us consider an N-component bosonic field ¢, which we divide into one radial and N —1
Goldstone modes ¢ = (¢r, 9;). In the following discussion, we will suppress the bosonic
potential, since it plays no role for the argument. Therefore, we use the truncation

| (1 2,1 2
F_L[zz(a“qb) +37(@up) ] (A.8)

where we account for the first correction to the kinetic term in a derivative expansion and have
defined p = %d)z. The second functional derivative of T gives

62 2 2
5955, ~75,82— (51] 920 +¢,32¢:) (A.9)

where the derivative has to be understood as momentum squared in momentum representation.

This shows that the projection

ap2 5 ¢2 yields an expression proportional to 8,Z + 2k0,Y

with k = 2¢R On the other hand really projects onto ;7.

apz 5¢2 3 F
To circumvent the projection onto the radlal mode in the case of the one-component Ising
field, we choose a truncation with N copies of it

_ 1, 1
[ = J dPx (Zq/,k‘l’(]lz ®Y,)Y—=Z,, k)(aa Xa— qu k¢32¢
+ &,k (Z xa) B(1, 8 1)V + 24,9 T(0 ® 1)V + Up(5,, 54))- (A.10)
a

The field is divided into its vacuum expectation value and the fluctuations
X =r+AxR1,AXG1,--->AXcN-1) and we project onto one of the Goldstone modes accord-
ing to Eq. (4.56). In the end of the procedure we again set N = 1.

A.2. Threshold Functions

The threshold functions encode the loop integrations and the regulator dependences. Here,
for convenience, we define the threshold functions such that a dependence on the Yukawa
couplings is included as well. In the following, we will first list the expressions for general
regulator functions.
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A.2.1. General Expressions

We write the regulators in the form Rgi)(q) = Z;xq’rix(q*) with i € {y,¢} and R%F) =

iZy 0y (12 ® v,) 7y k(q). Further, we define p;(q) = ¢*(1+7;x(¢)) and pr(q) = q*(1+ry x(q))*
The derivative acting only on the regulator’s t-dependence then reads

5
qu 2q Zq> ke k(Q)] 5rar(@) (A.11)
oely. .4} 2.k\d

For the threshold functions appearing in the flow equations for the Yukawa couplings, we then
obtain
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The threshold functions appearing in the anomalous dimensions can be distinguished by their
internal lines. First, we have threshold functions corresponding to purely fermionic loops

mgF)D(w)z—%k‘*_DétJq4(aiq2pl++—;p)2, (A.17)
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Then, we have purely bosonic contributions
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Finally, there are also threshold functions with mixed fermion-boson loops
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A.2.2. Linear Cutoff
The regulator functions for the linear cutoff are explicitly given by
k 2 2 k2 2 2
ry(q) = 5—1 0(k*—q°), ry/ek(@) = q—2—1 0(k*—q°), (A.27)

with the step function 6(x) =1 if x > 0 and 6(x) = 0 if x < 0. Then, the threshold functions
for the linear cutoff relevant to the flow equation for the effective potential, Eq. (4.38), read
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For the contributions to the Yukawa couplings we obtain the following threshold functions
when evaluated with the linear cutoff
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The threshold functions for linear cutoff contributing with pure fermion loops to the anomalous
dimensions are
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The bosonic threshold functions are given by
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1
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And finally, the mixed threshold functions read
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A.2.3. Sharp Cutoff

We can use the threshold functions for the sharp cutoff to conveniently extract the e-expansion
equations from the FRG f3-functions. The sharp cutoff is given by [249]

. k? a-—1 . k>
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where the limit has to be taken after the integration over the loop momentum q. This gives the
following explicit expressions. The contribution to the flow of the effective potential from the
radial modes reads

In(w,, w4, w3 ) =12(0,0,0)—2vp log (1 + wy)(1 + w,) — w3 ). (A.47)
Accordingly, the expressions for the Goldstone and the fermionic contributions become
Ig(w) =—2vplog(1l+ w)+ Ig(O), and Iy(w)=-2vplog(1+w)+ 13(0). (A.48)

Since we want to extract the e-expansion limit, we have to work in the SYM-SYM regime, which
yields a large simplification in the 8 functions for the Yukawa couplings and the anomalous
dimensions. For the flow equations of the Yukawa couplings, we only need the threshold
function
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For the anomalous dimensions, we use
™Ry v L
(22) D1, ;) m, (w) = o)’ (A.50)
1 (B, FB)D 1
_mglz))R (84,805 @y, @, © we’ww) mElZ))G (g, wy) = . (A51)

(14 wy)(1+w,)?



A.3 Check of Convergence 105

A.3. Check of Convergence

We have checked the convergence of our polynomial expansion of the effective potential by
extending our truncation up to 12th order in both fields y and ¢. In most cases the critical
exponents are sufficiently convergent already at LPA8’ level, with the remaining truncation error
from the polynomial expansion being much smaller than the uncertainty due to the neglected
higher-derivative operators. The largest deviations occur for the third-largest critical exponent
05 of the large-N; fixed point, as displayed in Fig. A.1. Still, already from LPA8’ to LPA12’ only
minor improvements appear and we do not expect stronger deviations at even higher orders.

0.0
-0.2;
-0.4;

<
-0.6;
-0.8;
-10

2 3 45 10 20 50 100
Ny

Figure A.1.: Third critical exponent in D = 3 for large-N; fixed point as function of the fermion flavor
number for different orders of polynomial truncation.






APPENDIX B

Interplay between Magnetism, Superconductivity and
Orbital Order in Iron-Based Superconductors — Orbital
Makeup and PRG Equations

B.1. Orbital Makeup

The 3-orbital, 5-band model accounts for contributions from the d,,,d,, and d,,, iron orbitals
to the low-energy excitations described by the effective Hamiltonian Eq. (5.2) in Chap. 5.
The transformation from orbital to band basis then leads to so-called orbital makeup in the
interaction terms, i. e. additional momentum dependences of the couplings due to the trans-
formation. Alternatively, if we work with couplings in the orbital basis, we have to consider
non-diagonal contributions of the Green’s functions in the diagrams. Here we list the orbital to
band transformations which we use in the pRG calculations below. For our choice of parameters,

the transformation for fermions in the vicinity of the I'—centered hole pockets is a rotation
. k
around the coordinate angle 6, = arctan ¢*
X

digo\_ [ cosO sinby ([ cko
(dz,k,a ~ \—sinb; cosb J\dy, )’ (B.1)
where d; /5 label fermions in the orbital and ¢ ,/dy , fermions in the band representation.
The fermionic Green’s functions in the orbital basis are related to G, /4(iw, k) = (iw —€./q x —
)"t in the band representation as
Gy, q4,(iw, k) = G (iw, k)cos? 0, + G4(iw, k)sin? 6
Gy, a,(iew, k) = G (iw, k) sin® O + Gy(iw, k) cos® O (B.2)
Gdl’dz(io), k) = Gdz’dl(io), k) = [Gd(la), k) — Gc(io), k)] sin Gk COos Qk
The Green’s function of fermions around the M-hole pocket is Gy, (iw, bsk) = (iw+k?/(2my;)—
€y)"L. For the electron pockets, the transformation from orbital to band degrees of freedom is

more involved and in general it does not correspond to a rotation around the coordinate angle
0,. Nevertheless, it can be expressed through

(?1/2) — it ( el<¢>'1 COS Y1/ elfi’z sin P1/2 )( f1/2 )’ (B.3)

€12 —e %2 sin P1/2 e %1 cos ®1/72 ) \S31/32
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where e/, and e, , are operators for band fermions near the electron pockets, and the functions
¢1/2 and ¢/, depend on the angle ) and system parameters. They determine the relative
spectral weight of xz/yz and xy orbitals. We set e; /, to describe the electrons in the band
that crosses the Fermi level and consistently neglect contributions from é;,,. The electron
propagator in orbital representation is expressed in terms of low energy fermions as
Gy oty (L0, k) = Gy ea(i, k) cos® pq 5
Gf31/32:f31/32(iw’ k)= Gel/ez(iw’ k) sin” $1/2 (B.4)

Gfl/z,f31/32(iw’ k) = Gf31/32,f1/2(iw’ k)* = G€1/€2 (iw’ k)ei(¢1_¢2) Cos (P1/2, sin @1/2,

where G, /p(iw, k) = (iw — £,)! (k is counted from X in G,; and from Y in G,,).

B.2. PRG for the Toy Model

B.2.1. PRG Equations for the 21 Couplings

Here, we list the explicit pRG equations obtained for the couplings of the toy model. As
described in the main text, a subgroup of the 21 interactions decouples and flows to zero for
bare values U’ > J. Representative diagrams for the renormalizations of this group of six
irrelevant couplings are shown in Fig. 5.4 in Chap. 5. The six pRG equations are:

om0 0) =~ (0, 8,)
A (0 05) =~ (05 £ 05 ®.5)

d
an—— (U2 Up) = — (U, U, ),

m_1 memg  (me—mg)®  (2) _ (3) — Mmum. . mymg
where Cop = g(m.+my + L2 £ ammg > Gy = Me and Cop = morFe T iy g The pRG

equations for the other remaining 15 couplings are

d d - - d
4n—U, =AU + U3) 4n—U, =AU +U3) 4n—Uy, =A,(U? +U2)

dL dL dL
d d - - - - d
47TEU2 = 2AU,(U; — Uy) 47THU2 = 2AU,(U;, — Uy) 47—CHUZH = 2A, U, (Uy, — Uyp)

d . o
4TEEU3 = 2AU3(2U, — Uy) — A (UsUs + UsUs) — Ap(UsUy + UsUy) — A} (U3 U, + UsUy)

_AMU3HUC
d - o ] ) ) o .
4TEEU3 = 2AU3(2U; — Uy) —A,(UsUs + UsUs) — Ay (UsUy + UsUy) — Ay (UsUy + UsUsy)
_AMU3T1UC

d _ _ -
47THU3n = 2AnU3n(2Uln - U2n) _AeUBn(US + US) _AMUBnU4n - (Ah +Ah )(U3 + U3)Uc

d _ B} 3
4nEU4 = —Ay(UZ + U2) — 24, U,U, — A, (U2 + U2) — Ay U?

i- _ T A= (T12 L T2y g 2
4n——Uy = —24,U,04 — A, (U} + U3) — 24.Us Uy — Ay U
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d -
4n—Usn = —Ay Uz —2A,U2 —2(A, + A, )U?

d _ _ -
4m——Us = —A (U2 + U2) —Ay(U3 + U3) — 24, UsUs — Ay, U3,

d - _ _ _
4rrd—LU5 = —2A,UsUs — 2A,U3Us — A, (U3 + U2) — Ay U3,

d _ - -
47Td_LUC = —(Ah +Ah )(U4 + U4)UC _AMU4nUC —Ag(Ug + U3)U3n. (B6)

As an example, the one-loop diagrams that renormalize U;, and Us,, are presented in Fig. 5.5

in Chap. 5. The numerical prefactors in the r.h.s. of the pRG equations are A = nz 1":;0 r:: frl,fd ,

l m.mgy
2me+mg?

A, = %% and A,; = my,. Note that the
contribution A, = (m.—mgy )?/(8(m.+mg)) comes from the non-diagonal part of the propagator
for fermions near the I'—centered hole pockets G4, 4, (see Eq.(B.2)). To proceed, we note that,
if U; = U, then d; U; = d; U;. We have checked that the trajectory with this property is a stable
one. We searched for other potential stable fixed trajectories, but did not find one. Hence we
set U; = U;. Introducing the dimensionless couplings u; , = A/(4m)U; 5, us =A/(4m)aUs, uy =
Ap/(41)Us, us = A, [(47)Us, Uinon = An/(470)Urn on, Usn = Ap/(47)a,Usp, Usy = Ay /(470)Usp
and u, = /AyAy/(41)U,, we obtain the pRG equations which we presented in the main text
in Chap. 5. We also defined there a = 1/A;A, /A and a,, = \/AyA./A, and b =1+A, /A .

mym, 3
A, = mNIIVIH;e:Ae =m,, Ay = §(mc+md)+

B.2.2. Weakly Unstable Fixed Trajectory of the Toy Model

As described in the main text, the two stable fixed trajectories of the effective three (3pFT) and
four (4pFT) pocket model are separated by a “symmetric” fixed trajectory with one unstable
direction. Specifically, we obtain along this weakly unstable fixed trajectory

1 1
u; =7vu U, =
i Yilq 1 1+}/§/a2L0—L
Y3 Y3
Yin=Y1=1 —==%= y3=75,=0
a, a

Y3 = \/8a4—a2 +4a2a? +a2\/15 +(8a% +4a2 —1)2

1
y5=1—ar21—2a2—\J1+af{—a2+4a4+a§(4a2—§)

2a— \/Z}f%a% +4a2(1+73

=4+
Ve Gn a2 + 2a?
2
a Yg 3 2a
Va=E g Vetga—7 Tam=F PRARRE (B.7)

For a = a, =1, the y; in (B.7) reduce to

Y3 =EY3n Y4 =7Yan =LY,

1 17
ra=V1142v34 y,=—(4+V34) rs=-2-\ - (B.8)
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B.3. Pomerachuk Channel

The renormalization in the Pomeranchuk channel is not equivalent to the consideration for
density waves and SC instabilities. The reason is that the polarization operator is obtained from
a particle-hole bubble with zero momentum transfer, i. e. alone it does not lead to a logarithmic
divergence. The Pomeranchuk vertex still flows logarithmically due to the appearance of the
scale-dependent interactions in the one-loop diagrams (cf. Fig. 5.11 in Chap.5). For an explicit
calculation let us label the coupling in the Pomeranchuk channel as Up,,, and the vertex I'p,,,.
Furthermore we consider the propagator G(w, k) = (iw — ;) with €, = k?/(2m) and set the
external frequencies to zero. We obtain

k
d’k dw 1
dFPom = f f ( o 7 UPom(k)FPom(k)
k—dk

21)2 27 (iw —€)?

42k Ydo 1
=1 —U k)T, k —
Ql)n:)loJ (2 )2 Pom( ) Pom( ) ek J o o iw—ek

eme
= lim Jdkkupom(k)rpom(k)zm g (—L)lnl.—ek
oo

- k dk\ 2rn —iQ—e€;

. . k k .
im 1N—e€; iNl—e

=———1i In——U k) k — dkln ——— Upom I
272 Ql,ngo|: n_‘Q_ek Pom( ) Pom( ) o dk J;{_dk n—lQ— € 3](( Pom Pom)
im . d

N _2_(_”[) |:UPomrPomdk - _(UPomFPom)dk]

=5 |:__ v2mWe™ L/2 UPomFPom (UPomFPom)i| dL (B9)
27 dL

with the logarithmic energy scale L = In(2mW /k?) and the bandwidth W. To consistently sum
only logarithmic terms we need to neglect the first term in the last line and set the vertex to its
initial value Ip,,,(k) — Fgom on the right hand side. This leads to

d_. o d
Erpom - mFPom dL Upom> (B.10)

which we cited in the main text.

B.4. PRG for the Full 5-Pocket Model

B.4.1. PRG Equations for the 40 Couplings

We now move to the full 5-band model with xz/yz orbital content on the electron pockets.
Like we said, in this case we have 19 more couplings (the total number of the couplings is 40).

The couplings 174, l:J4, fl5, ffs, U,, U, do not couple to additional terms and continue to flow to

zero under the pRG. We find six additional couplings Vs, \75, V,, Vy, V,, V, that flow to zero. The
corresponding pRG equations are

d ~ = ~ N2
4 — @
4n— (Vs = Vs) == (75 Vs)
d
4n—— (V,£V) = —cl()?i (V, £ V})? (B.11)

d o .- .
an— (Vo V) =~ (e £ %),
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4 — 5)+ 2
where Cpp 1/Lfdwfd kGf31 f31Gf32 f32’c( - 1/Lfdwfd k(Gf31:f31GflsflinBIsflelsfﬂ)’
and cg’)) =1/L f da)fd kGy,, 1., Gy, s,- For the other couplings we make the same conjec-
ture as for the toy model, i.e., assume that for stable and weakly unstable fixed trajectories
U; = U;, V; = V. The one-loop RG equations for the remaining dimensionless couplings are

u
3
u; = u% + E
2
u
1,2 3n
Up uln + _a2

Uy = 2up(uy —uy)

Upp = 2uUpp (U1, — Usy)
Ug = 2u3(2u; —uy —us) — 2busuy —ugyu. — 2v4v, — 2H(u3v, + vaus)

Usp = 2Uz,(2Uy, — Ugp — Us) — UspUg, — 2buzu, — 2v3, v, — 2H (us,ve + v3pUs)
Uy = —2bui — 2u§ - 2u2 - 2v§ —4Husvs

Uyy = —u4 2u3n - 2bu - 2v3n —4Hus,v3,

Us = —2u5 - 2bu3 - u3n 2v —4Husv,
i, = —2bugu, — UgnU, — 2uzlis, — 2V3V3, — 2H (Vaus, + v3aus)
2
v =v2+ e
= 3
1 c2
2
v
.2 3n
Vip = Vi, + yey

Vg = 2v5(v; — V)
Van = 2V2n(Vip — Van)
V3 = 2v3(2v] — Vg — V5) — 2bvauy — v3,u, — 2uzv, — 2H (V3. + ugVs)
V3 = 2V3,(2V1, — Vo — Vs5) — Vallgn — 2bvau, — 2uz, v, — 2H (V3 v, + Uz, Vs)
Vs = —21/52 — 2bv§ — Vgn - 2vc2 —4Hvsv,
Ve = —2bVv3us — 2vs v, — 2usV,. — 2V3, Uz, — 2H(vc2 + vsus), (B.12)
where the additional parameters are

VAR AnA A

c= Cp = H=

A A’n / A, A/e

11 [, 40
A= Z(ZTC)ZJ de d°kGy, 1, G, 5, = J cos® ¢,
, 11 [, -
Ae - E(ZTC)Z J de d kGfBl:fg] Gf3l’f31 — _Sln Qpl
, 11 [ 2 m.m, 9 mgm, .
A _Z(ZR)ZJ de kG fy Cayar = —sm %1 TmeCOS 9+—md — sin® 6
1 1 [ mym,
A=7 dw | d%kG;, . Gy =2—M—¢ | ==
n L(ZTC)Zf wJ fa1:f31 M mM+m f sin? ©1
o 1 1 [
A= f(zn)z de d? kGfl S O = Me o 5111 Y1 cos? Y. (B.13)
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B.4.2. Fixed Trajectories

Interestingly, we find that the stable fixed trajectories of the full model lead to the same
decoupling at low-energies into effective three or four pocket model, as in the toy model. In
distinction to the toy model, however, now there are two 3pFT and two 4pFT (3pFT;, 3pFT,,
4pFT,, 4pFT,). These four stable fixed trajectories are specified by

(4pFT) (4pFTy)
U =viup v =8y Ui =viv1 vi=38"1
1 1 1 1
U V1

1473/ Lo—L
y3=:|:a\/8a2—1+4\/1—a2+4a4
Y4=7ys=1—2a*—V1—a2+4a*

(3pFTy)
U =Yl Vi = &illin
1 1
Up

1 +Y§n/a,21 Ly—1L

Yan = ian\/4ag—1 +24/4—2a2 + 4a;

C1+g2/2Lo—L
g3=:|:c\/8c2—1+4\/1—c2+4c4
ra=85=1—2c*—V1—c2+4c*

(B.14)

(3pFTy)

Ui =YiVin Vi = &iV1in
B 1 1
1—|—g§n/c§ Lo—L
gon = ey 42 — 14 2,/4—2c2 + 4c?
Qan =285 =2—2c. —1/4—2c2 +4c;)

Vin

Yan = 2y5 =2—2a> — /4 —2a2 + 4a;
(B.15)

All couplings not presented in the above formulas evolve with smaller exponents. Note that the
ratios of the couplings in Egs. (B.14), (B.15) do not depend of the hybridization parameter H.

We see from Eq. (B.14) that for 4pFT; and 4pFT, all interactions involving the M-centered
hole pocket become subleading, like in the toy model. For 4pFT;, the interactions involving
xz/yz orbital components on the electron pockets become subleading compared to the interac-
tions involving xy orbital component, i. e. to a first approximation the two electron pockets
can be approximated as xy-pockets. For 4pFT,, the situation is opposite — the interactions
involving xy orbital components on the electron pockets become subleading compared to the
interactions involving xz/yz orbital components, i. e. to a first approximation the two electron
pockets can be approximated as xz and yz pockets. These two fixed trajectories have been
analyzed in Ref. [122]. The situation is equivalent for 3pFT; and 3pFT, in Eq. (B.15). In
the first case, the interactions involving xz/yz orbital components on the electron pockets
become subleading, and in the second the interactions involving xy orbital components on the
electron pockets become subleading. These different effective low-energy models are sketched
in Fig. 5.12 in the main text. We also note that the behavior of the different couplings along
4pFT, and 4pFT, are quite similar, see Eq. (B.14), and the same is true for the couplings along
3pFT; and 3pFTy, Eq. (B.15). Whether the system flows to 4pFT, ;, or 3pFT;, depends on the
initial values of the couplings.

The stable FT’s are separated by several weakly unstable ones with only a single direction
along which perturbations grow. For general a,a,,c,c,, and H we determined these FT’s and
checked their stability numerically. For a = a,, = ¢ = ¢,, = 1 these weakly unstable FT’s can be
analyzed analytically. The FT’s with only one unstable direction are (notations are self-evident):
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(4pFT;+4pFT,)
U =vyiuy Vv, =gty
Uy ="V, Uz3=V3 Us=V5=1V,
1 1
u, =
1 1+ }/%/az Lo —L
ys= +1/15 + 16H + 4v/15 + 30H + 16H?
)/4=2(H+1)}f5=—3—4H\/15+30H+16H2 (B.16)
(3pFT;+3pFT5,)
Ui =Yilip Vi = &illin
Ujp =Vin U3p=V3p U5 =V5=17
1 1
Uip = 2
1+y3,/a?2Lo—L
Y3n = i\/7+8H+4\/4+7H+4H2
Yan = 4(H +1)ys = —2—4H — 2V 4+ 7H + 4H? (B.17)
(3pFT;+4pFT;)
U =viy Vi =8y
Uy =Up, Uz =FUz, Uy = Uy, = U
1 1
M e~
1+v5/a? Lo—
1
Y3=V11+2v34 vy, =—§(4+ v/ 34)
1
ro=—2—\ ¥ (B.18)
2
(3pFT,5+4pFT,)
U=Yyivi vi=8"M
VI =Vip V3=V, Uy = Ugp = tu,
1
g3 =V11+2v34 1y, =—§(4+ vV 34)
(|17
gs =—2— 5 (B.19)

Again all couplings not listed in the formulas above have smaller exponents. A detailed analysis
of the structure of weakly unstable FT’s in the full 4-pocket model is presented in Ref. [248].

Finally there is a high-symmetry FT with two unstable directions. Along this FT all couplings
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are non-zero:
U =viuy v =8l
Uy =Ujp =V1 =Vip U3 =U3, =V3=7V3y
u4:h4n:uc Us =Vs =V,
1 1
1+ Y%/az LO —L

U = (B.20)

vs =%V 23+ 24H + 4v/34 + 69H + 36H2

10
= —(H+1)}f5 ——?—4H——\/34+69H+36H2

B.4.3. Susceptibilities

Here we present the detailed calculation of the pRG equations for the susceptibilities in the full
model. The four SDW vertices flow according to

r,1 1
Alspw = (ul +— )FSDW

r,2 r2
Alspw = (Vl + )FSDW

M,1 Usn \ .M,1
A Lspw = (u1n+ a )FSDW

n

M,2 Vin \ M2

A Lspw = (V1n+ c )FSDW
n

where indices 1,2 mean that the order parameters involve fermions on electron pockets with
either xz(yz) or xy orbital content, and indices I' and M mean that the SDW order parameter
involves fermions from either I'—centered or M —centered hole pockets. Using the values of

the couplings along the FT’s as inputs and solving these differential equations, we obtain
TDw ~ 1/(Lo—L)Pow, with B, = (1+75:/a)/(1+73,/a?), where i = (T, 1;T,2; M, 1; M, 2)
and v3; € {r3, 83,730 &3n}> @ € {a,ay,c,c,}. We verified that all B¢, are smaller than 1/2, so

that SDW order does not develop (if Ly < Lg). The largest values are fora =a, =c=c, =1:

ri1 _ _ M2 _
Shw = SDW =0.3 and ﬂSDW spw = 0-43. These are the same values as in the toy model.

. peX2/yz e,Xy I M
There are also four superconducting vertices: I, """, I~ , I, and Ty.. The RG equations

for these vertices can be cast into the matrix equation

(B.21)

us+Hv, v.+Hus uz ug,
v.+Hvs vs+Hv., vy v3,

O Tgr=—2 r B.22
Ltsc us+Hvs v3+Hus u, u, | 5¢ (B.22)
us,+Hvs, vy, +Hus, Ue Ugpn
2 2 2 2

where we introduced I's; = (Fe xz/yz, Secxy, Fgc, C)T Along each FT the solution of Eq. (B.22)

gives rise to a sT~ gap structure on the contributing pockets. The exponents are

py  —Ta—Ys+ 4/ (ra—7s)> + 47
s¢ 1+73/a?

(4py) Va8t V(ra—gs)*+4g3
5¢ 1+g2/c2
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Gpyy_ ~Tan =275+ (ran—275)? + 873,
s¢ 1+y3 /a2

(py  —Tan— 285+ 1/ (an —285)* +8g3,
s¢ 1+ g2 /c2 '

(B.23)

For a = a,, = ¢ = ¢, we have /5(4p1) (4p2) = 0.86 and /3(3[’1) (3p2) = 0.72, again as in the

toy model. We checked that ﬂég >1/2 for all a,a,,c,c,, i.e., the superconductmg susceptibility
does diverge at L = L.
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