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Quantenfeldtheorie der Materialeigenschaften – Anwendung auf Modelle
der Rashba-Spin-Aufspaltung. Das Ziel dieser Arbeit ist es, mikroskopische Feld-
theorien – die als solche bereits wissenschaftlich etabliert sind – als ein neues Paradigma
der Materialphysik einzuführen. Hierzu entwickeln wir einerseits diejenigen Feldtheorien
weiter, auf denen moderne Ab-initio-Rechnungen basieren, und betrachten andererseits
deren Anwendung auf die Bismut-Tellur-Halogenide (BiTeX mit X = I, Br, Cl), welche
eine prototypische Klasse von Spin-basierten Materialien darstellen. Dazu beginnen wir
zunächst mit der Konstruktion von Tight-Binding-Modellen, die zur Approximation der
Spin-aufgespaltenen Leitungsbänder von BiTeI verwendet werden können. Danach leiten
wir die Theorie der Greens-Funktionen bei endlicher Temperatur systematisch aus deren
fundamentalen Bewegungsgleichungen her. Dies ermöglicht es uns ferner, eine kombinier-
te Methode aus funktionaler Renormierung und Molekularfeldtheorie zu beschreiben,
welche allgemein auf Modelle mit mehreren Bändern angewandt werden kann. Spezi-
ell für das Rashba-Modell mit einer attraktiven, lokalen Wechselwirkung liefert diese
Methode eine unkonventionelle supraleitende Phase: während die Gap-Funktion Singlet-
artig ist, hat der Ordnungsparameter gemischte Singlet- und Triplet-Anteile. Weiterhin
untersuchen wir die außerordentlichen elektromagnetischen Response-Eigenschaften von
BiTeI, die sich aus der Rashba-Spinaufspaltung ergeben, und sagen insbesondere einen
Bahn-Paramagnetismus vorher. Schließlich fassen wir den

”
Functional Approach“ als

eine mikroskopische Feldtheorie elektromagnetischer Materialeigenschaften zusammen,
die im Einklang mit Ab-initio-Methoden steht.

Quantum Field Theory of Material Properties: Its Application to Models of
Rashba Spin Splitting. In this thesis, we argue that microscopic field theories—which
as such are already scientifically established—have emerged as a new paradigm in mate-
rials physics. We hence seek to elaborate on such field theories which underlie modern
ab initio calculations, and we apply them to the bismuth tellurohalides (BiTeX with X =
I, Br, Cl) as a prototypical class of spin-based materials. For this purpose, we begin by
constructing tight-binding models which approximately describe the spin-split conduc-
tion bands of BiTeI. Following this, we derive the theory of temperature Green functions
systematically from their fundamental equations of motion. This in turn enables us to
develop a combined functional renormalization and mean-field approach which is suit-
able for application to multiband models. For the Rashba model including an attractive,
local interaction, this approach yields an unconventional superconducting phase with a
singlet gap function and a mixed singlet-triplet order parameter. We further inves-
tigate the unusual electromagnetic response of BiTeI, which is caused by the Rashba
spin splitting and which includes, in particular, an orbital paramagnetism. Finally, we
conclude by summarizing the Functional Approach to electrodynamics of media as a
microscopic field theory of electromagnetic material properties which sits in accordance
with ab initio physics.
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Introduction

In constructing a new theory, we shall be careful to insist that they should
be precise theories, giving a description from which definite conclusions can
be drawn. We do not want to proceed in a fashion that would allow us to
change the details of the theory at every place that we find it in conflict
with experiment, or with our initial postulates. Any vague theory that is not
completely absurd can be patched up by more vague talk at every point that
brings up inconsistencies—and if we begin to believe in the talk rather than
in the evidence we will be in a sorry state.

R. P. Feynman [FMW95, p. 22]

Classical and quantum field theory form the basis of modern materials physics. From a
purely conceptual point of view, they have together replaced the traditional picture of
materials as being composed of point particles, elementary electric or magnetic dipoles,
microscopic elastic springs, etc. Such simplified models were easily accepted even after
quantum mechanics had been firmly established, mainly because they can be visualized
similarly as the macroscopic objects which surround us in everyday life. By contrast,
with the advent of ab initio materials physics, the starting point of realistic material
descriptions became the many-body Schrödinger (or Dirac) equation and the microscopic
Maxwell equations. These fundamental equations define the Schrödinger (or Dirac) field
and the electromagnetic field, respectively. As such, these microscopic field theories
do not contain any “objects” or “particles”, and hence they are abstract by their very
nature. Even the electrons and photons, which are often cited in this context, are the
elementary excitations of the corresponding quantized fields (just as “phonons” are the
elementary excitations of the quantized displacement field [SS16b]). Here, “elementary
excitation” refers to an excited state of the system which exhibits a certain energy
difference to the ground state, but does not imply any particle-like nature of these
excitations (see Ref. [PG15]). In particular, this implies a strict rejection of the so-
called “philosophical realism”. Consequently, field theories can be thought of only in
terms of the differential equations which govern the time evolution of the fields from
some given initial conditions, as well as in terms of a quantization procedure which
promotes the real- or complex-valued classical fields to operator-valued fields satisfying
certain (anti)commutation relations. Under this new paradigm, all deductions should
be drawn as a matter of principle from the microscopic field equations (in addition,
perhaps, to some empirically motivated assumptions, such as the high degree of nuclear
localization in the case of a crystalline solid [SS16b]).
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However, it is not a priori clear how the observable properties of materials such as their
solidity, their electric and magnetic response, or their optical behavior can be explained
by such abstract field theories. In fact, it is precisely the aim of materials physics to
deduce such material characteristics from the known microscopic physical laws. Again
based on principle, the coupled field theory as defined by the many-body Schrödinger
or Dirac equation and by the microscopic Maxwell equations cannot be solved exactly,
and even if it were able to be solved, it would not be clear how to extract from the
solution statements about the macroscopic behavior of materials. On the practical side,
however, several methods have been established which allow for approximate solutions
and quantitative predictions of material properties. Above all, Green function theory
allows one to work with functions of only a few arguments instead of the many-body
wave function whose number of arguments equals the particle number [SK12]. (Note
that the latter does not count the number of real “particles”, but instead refers to the
eigenvalue of the abstract “particle-number operator” or to the corresponding sector of
the abstract Fock space.) Already the simplest Green function, the two-point Green
function, allows for the calculation of expectation values of all “one-particle operators”
such as the charge or the current density in the case of the matter fields [SK12]. Fur-
thermore, as one of the most successful approaches in materials science, response theory
is concerned with the reaction of a material to an applied (typically electromagnetic)
external perturbation. The Kubo formalism [Kub57], which gives the concrete formulae
for the respective linear response functions, already leads to quantitative predictions of
electromagnetic properties for an amazing variety of materials, and it is therefore imple-
mented in any modern ab initio computer code (such as [Bla+01; Gia+09; KF96]). The
success of these theoretical approaches has brought field theories to wide acceptance in
spite of their abstract nature.

Apart from the response theory, which mostly deals with time-dependent perturbations
of a system that is originally prepared in its ground state, one is also often interested in
thermal equilibrium properties and especially in the low-temperature phases of a given
material, description of which constitutes a branch of statistical physics. Correspond-
ingly, response theory relies on the real-time Green functions (which are typically defined
as expectation values of the field operators with respect to the ground state), whereas in
statistical physics one deals with the so-called temperature Green functions. The latter
are defined as expectation values of the field operators with respect to a thermodynamic
ensemble as represented by a density matrix. To simplify the perturbation theory, one
then usually performs the transition to Green functions in imaginary time, also called
Schwinger functions. The resulting quantum field theory is also called statistical field
theory [ID89], and we will be mainly concerned in this thesis with the latter type of
Green functions. A main pillar of statistical field theory is the functional renormal-
ization group (fRG), which has been developed in recent decades into a versatile and
unbiased methodology for investigating correlated electron systems [BTW02; Met+12;
SH01]. It enables one to study (possibly competing) Fermi liquid instabilities without
making potentially restrictive a priori assumptions with regard to the ordered phases,
and it yields the low-energy effective interactions after integrating out the high-energy
degrees of freedom in the functional integral formalism. In combination with a Fermi
surface patching approximation, this procedure has been applied successfully to models
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relevant for the high-temperature superconducting cuprates and iron pnictides, stron-
tium ruthenate, graphene, and many other correlated electron systems (for a recent
review of these, see Ref. [Met+12]).

This thesis aims at further developing and improving (quantum) field theoretical tech-
niques as they are presently used in materials physics. Moreover, it seeks to apply these
techniques to a special class of materials whose properties are dominated by the spin
degree of freedom (for this reason they are sometimes called spin-based materials). In ac-
cordance with the above remarks about field theories, the spin is also an abstract concept
which cannot be visualized as a concrete object. In particular, one cannot generally view
the spin as an arrow pointing in a certain direction (or in a superposition of directions),
and physical reasoning based on such an idea is necessarily met with skepticism. On a
fundamental level, the spin is just an additional index which labels the matter fields (i.e.,
the Dirac or Schrödinger fields). Within response theory, it makes its effect through an
additional, transverse contribution to the electromagnetic current [SS16c, Sct. 3.2.5]. In
the work presented here, we restrict ourselves to the non-relativistic Schrödinger equa-
tion, where the spin is taken into account by the Pauli spin-orbit term. In particular,
we investigate the recently discovered semiconductor BiTeI, which displays Rashba spin
splitting (RSS) of the energy bands [Ish+11]. Concretely, this means that near the A
point of the Brillouin zone, the lowest conduction bands of this material can be described
approximately by the Rashba Hamiltonian [BR60; Ras60], which reads

HR(k) =
~2

2m∗
(k2
x + k2

y) + α(kxσy − kyσx) ,

where m∗ denotes the effective electron mass, α the Rashba parameter, and σx, σy the
Pauli matrices. The spin splitting is extraordinarily large in BiTeI, with the Rashba
parameter being approximately α = 3.8 eVÅ [Ish+11] (compared to α = 0.33 eVÅ for
the Au(111) surface [LMJ96]). Moreover, in contrast to the traditional two-dimensional
systems showing RSS [Ast+07; Nit+97], it is a property of the bulk energy bands of
this material, which results from the large atomic spin-orbit coupling of the Bi atoms
and the non-centrosymmetric crystal structure [BAN11; Ish+11]. This giant bulk RSS
produces as a result several unconventional electromagnetic properties of this material,
which will be discussed in greater detail below. A similar (but smaller) spin splitting
has been reported more recently also in the related compounds BiTeBr and BiTeCl
[Akr+14; Che+13; Sch+16b]. Due to their unique electronic structure and properties,
these bismuth tellurohalides are considered promising candidates [Ras12] for spintronics
applications such as the Datta-Das spin transistor [DD90; Koo+09].

In concrete terms, an outline of this thesis can be given as follows. The first Part I is ded-
icated to the construction of tight-binding models which approximate the band structure
of BiTeI and can thus be used as an input for numerical simulations of this material’s
properties. These tight-binding models are conventionally defined by a Hamiltonian ma-
trix H(R) which depends on the site R of the crystal lattice. It must be emphasized,
however, that such a description does not imply that the electrons would “live” on the
lattice (and “hop” from one site to the other). Instead, we aim at describing electrons
in the periodic potential of the nuclei, where the latter are assumed to be fixed at the
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lattice sites. For this purpose, it is simply convenient to work in a certain basis of the
state space L2(R3), which is given by the Wannier functions ΦnR(x) labeled by the
lattice vector R and an additional band index n. The Hamiltonian matrix must then be
identified with the matrix elements of a fundamental Hamiltonian Ĥ (acting on L2(R3))
with respect to these Wannier functions, i.e., Hnn′(R −R′) = 〈ΦnR |Ĥ |Φn′R′〉. Thus,
the electrons still “live”, as it were, in the whole three-dimensional space, which means
that their wave function is defined on R3. In this context, it is also important to dis-
tinguish between the Bloch wavevector k0 , which is restricted to the first Brillouin zone
and which labels the Bloch eigenfunctions ψnk0(x) of the fundamental Hamiltonian, and
the true wavevector k, which still ranges over the three-dimensional space (usually, both
are denoted by the same symbol k). In particular, after Fourier’s transformation of the
Bloch eigenfunctions, one obtains a set of functions ψnk0(k) of the true wavevector k,
which are labeled by the Bloch wavevector k0 . Another related issue is the transfor-
mation between the “band basis” and the “orbital basis”, which is commonly employed
in fRG applications. Here, the question arises how a Hamiltonian matrix Hµµ′(R) de-
pending on the lattice site R and two orbital (or spin) indices µ, µ′ can be interpreted,
and how in turn this relates to the fundamental Hamiltonian. To clarify these issues, we
first discuss in Ch. 1 the relations between plane-wave functions, Bloch-functions, Bloch-
like functions, Wannier functions and atomic orbitals. Following this discussion, we next
show how a Hamiltonian matrix Hss′(k0) depending on two spin indices s, s′ and a Bloch
wavevector k0 (as used e.g. in Ref. [Sch+16a]) can be derived in a certain approximation
from the fundamental Hamiltonian. In Ch. 2, we investigate the symmetry constraints
on this Hamiltonian matrix and show that in the case of small wavevectors, this matrix
has to coincide with the Rashba Hamiltonian if one only requires time-reversal symme-
try and the crystals symmetries of BiTeI. This further allows us to construct a minimal
tight-binding model on the hexagonal lattice which reproduces the RSS near the center
of the Brillouin zone. Finally, in Ch. 3 we describe in further detail the crystal and
band structure of the material BiTeI and, as the most important result of this first part,
derive a two-band tight-binding model which accurately reproduces the dispersion of the
lowest conduction bands of BiTeI.

In the following Part II, we systematically develop the theory of temperature Green func-
tions in imaginary time, which make up the central elements of statistical field theory. In
accordance with our analysis in the first part, we distinguish between fundamental Green
functions which depend on the position x (or the true wavevector k), and lattice Green
functions which depend on both the lattice siteR and an additional band index n (or the
Bloch wavevector k0 and n). Strictly speaking, only the former Green functions can be
used to calculate directly typical observables such as the charge or the current densities.
In Ch. 4, we first prove the fundamental equations of motion of the temperature Green
functions, and then derive from these the ordinary Green function perturbation theory.
In particular, we provide explicit proofs of the Gell-Mann–Low theorem, the Wick theo-
rem and the cancellation theorem, which together imply the Feynman graph expansion
of the temperature Green functions. Here, we remark that these considerations can be
transferred to the ordinary (real-time) Green functions, and that in fact even the Gell-
Mann–Low theorem can be proven from the equations of motion as will be shown in
Ref. [SS17a]. This in turn implies a certain conceptual simplification, since the usual
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derivation of the Gell-Mann–Low theorem for real-time Green functions relies on the
adiabatic assumption, by which the interacting ground state is adiabatically connected
to the non-interacting ground-state [FW71]. In the subsequent Ch. 5, we prove the
representation of the partition function and the fermionic temperature Green functions
in the Grassmann functional integral formalism. The latter is useful for organizing the
Feynman graph expansion in an efficient way, and it also allows for a straightforward
definition of the connected and the one-line-irreducible Green functions. We will also
provide in this chapter detailed proofs of their mutual relations as well as their respective
Feynman graph expansions. Finally, in Appendix A, we will explain the Nambu formal-
ism, which has already been used in the original article [SH01] and which will greatly
simplify our derivations in Part II and Part III.

Next, in Part III, we derive the renormalization group equations (RGE) for the different
types of Green functions as defined in Part II. Here, we follow the lines of the seminal ar-
ticle [SH01] with only very slight simplifications. In particular, we find it helpful to define
the Legendre transformation as a relation between different elements of the Grassmann
algebra of the sources, as this does not require the inversion of any functional. Generally,
in order to solve these RGE numerically, it is necessary to employ a number of approx-
imations. We therefore offer a summary description of the standard approximations
of the level-two truncation, neglecting the self-energy, the static-vertex approximation,
and the Fermi surface patching approximation. In particular, we provide the explicit
RGE for the momentum-discretized interaction vertex in the refined projection scheme
proposed in Ref. [Sch+16a]. This allows for projections to be made irrespectively of the
band index and hence removes a systematic error in deriving effective interactions for
multiband models. Following this, we investigate in Ch. 8 the mean-field theory for a
time-reversal-invariant Hamiltonian Hss′(k) with a singlet superconducting interaction,
thereby generalizing results of Ref. [SU91] to the non-SU(2)-symmetric case. Finally, in
Ch. 9, we apply our combined functional renormalization and mean-field approach to
the tight-binding Rashba model of Ch. 2 with an attractive, local interaction. While the
fRG allows us to predict the superconducting interaction for the electrons near the Fermi
energy, mean-field theory itself enables us to predict from this the superconducting gap
function and the order parameter, thereby providing a more detailed characterization
of the low-temperature phases of the model under consideration. The main results of
Part II and Part III have already been published in Ref. [Sch+16a] (albeit without the
detailed derivations).

The final Part IV briefly summarizes further work which, owing to time and space, we
were unable to describe in further detail here. Nevertheless, this work also represents a
major part of the total work performed for this thesis, which has been described in detail
in previous publications (see p. xi). The first Ch. 10 summarizes the results concern-
ing the electromagnetic properties of the Rashba semiconductor BiTeI. This work was
mainly done in the group of Naoto Nagaosa at the University of Tokyo. In particular,
having investigated the optical conductivity, the magneto-optical response and the mag-
netic susceptibility of this material, we have discovered unconventional effects caused by
the giant bulk RSS [Dem+12; Lee+11; Sch+12]. In the more recent work [Sch+16b],
we have extended the optical conductivity calculations to the whole class of bismuth
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tellurohalides BiTeX (X = I, Br, Cl). Our last Ch. 11 consists of a very short summary
of the Functional Approach to electrodynamics of media, which has been developed in
collaboration with Ronald Starke at TU Bergakademie Freiberg [SS15a; SS15b; SS16a;
SS16b; SS16c]. The Functional Approach denotes a microscopic field theory of electro-
magnetic material properties which operates in accordance with the common practice
in ab initio physics. It resolves several conceptual and practical problems of the Stan-
dard Approach to electrodynamics in media, and it yields analytical formulae for the
calculation of all linear electromagnetic response functions from the microscopic conduc-
tivity tensor. Moreover, it provides a new perspective on microscopic wave equations in
materials as well as the refractive index.

Throughout this thesis, we pay special attention in adhering consistently to what are
established conventions. In particular, we always keep to SI units [BIPM06], except
on occasions when we compare our theoretical results to experimental data as they are
given in other units.



Part I.

Models of Rashba spin splitting





1. Electrons in periodic potentials

1.1. Position and momentum space

We begin by defining the position and momentum eigenvectors through their real-space
wave functions on the three-dimensional space R3 (see Ref. [Dir47]):

〈x′ |x〉 = δ3(x′ − x) , (1.1)

〈x′ |k〉 =
1

(2π)3/2
eik·x′ . (1.2)

The position eigenvectors are orthonormal and complete in the sense that

〈x |x′〉 = δ3(x− x′) , (1.3)∫
d3x |x〉〈x| = 1 . (1.4)

Analogous equations hold for the momentum eigenvectors (plane-wave functions),

〈k |k′〉 = δ3(k − k′) , (1.5)∫
d3k |k〉〈k| = 1 . (1.6)

Hence, in particular, the position and momentum eigenvectors are related by

|k〉 =

∫
d3x |x〉〈x |k〉 , (1.7)

|x〉 =

∫
d3k |k〉〈k |x〉 . (1.8)

For any state vector |ψ〉, the wave functions in position/momentum space are defined by

〈x |ψ〉 = ψ(x) , (1.9)

〈k |ψ〉 = ψ(k) . (1.10)

Multiplying Eqs. (1.7)–(1.8) with 〈ψ| and taking the complex conjugate, we obtain

ψ(k) =
1

(2π)3/2

∫
d3x ψ(x) e−ik·x , (1.11)

ψ(x) =
1

(2π)3/2

∫
d3k ψ(k) eik·x . (1.12)
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These equations define the (inverse) Fourier transformation of the real- and momentum-
space wave functions ψ(x) and ψ(k), respectively.

The dimension of the Dirac delta distribution follows from the condition∫
d3x′ δ3(x− x′) = 1 . (1.13)

Since the three-dimensional volume element has the unit[
d3x

]
= m3 , (1.14)

it follows that [
δ3(x− x′)

]
= m−3 . (1.15)

Similarly, the momentum-space volume element has the unit[
d3k

]
= m−3 , (1.16)

and thus, we obtain [
δ3(k − k′)

]
= m3 . (1.17)

The dimensions of the position and momentum eigenvectors can be deduced from the
defining equations (1.1)–(1.2): we find[

|x〉
]

= m−
3/2 , (1.18)[

|k〉
]

= m
3/2 . (1.19)

On the other hand, any state vector |ψ〉, which is normalized such that

〈ψ |ψ〉 = 1 , (1.20)

necessarily has to be dimensionless, i.e.,[
|ψ〉
]

= 1 . (1.21)

The corresponding wave functions have the units[
ψ(x)

]
=
[
〈x |ψ〉

]
= m−

3/2 , (1.22)[
ψ(k)

]
=
[
〈k |ψ〉

]
= m

3/2 . (1.23)

These are consistent with the normalization conditions∫
d3x |ψ(x)|2 = 1 , (1.24)∫
d3k |ψ(k)|2 = 1 , (1.25)

and with the units of the volume elements given by Eqs. (1.14) and (1.16).
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1.2. Bravais lattice and Brillouin zone

Generally, the direct lattice Γ in three dimensions is defined as a Bravais lattice,

Γ =
{
R(n1,n2,n3) = n1a1 + n2a2 + n3a3 ; (n1, n2, n3) ∈ Z3

}
, (1.26)

where a1,a2,a3 are three linearly independent primitive vectors in R3. The reciprocal
lattice Γ−1 consists of all vectors K with the property that

eiK·R = 1 for all R ∈ Γ . (1.27)

Explicitly, the reciprocal lattice is given by

Γ−1 =
{
K(n1,n2,n3) = n1b1 + n2b2 + n3b3 ; (n1, n2, n3) ∈ Z3

}
, (1.28)

where the primitive vectors b1, b2, b3 of the reciprocal lattice are given by

bi = π εijk
aj × ak

|a1 · (a2 × a3)|
. (1.29)

These are uniquely determined by the condition

ai · bj = 2πδij , (1.30)

where δij denotes the Kronecker delta. The Brillouin zone (or dual space) B ⊂ R3 is
typically defined as the region of the three-dimensional space which is closer to the origin
(K = 0) than to any other reciprocal lattice vector. More generally, it can be defined
as any finite region which has the property that for all K,K ′ ∈ Γ−1 with K 6= K ′, the
following conditions are fulfilled:

BK ∩ BK′ = ∅ , (1.31)⋃
K∈Γ−1

BK = R3 . (1.32)

Here, we have defined BK =
{
k + K ; k ∈ B

}
, i.e., BK coincides with the Brillouin

zone B shifted by the reciprocal lattice vector K (such that in particular, B0 ≡ B).

We now come to the Fourier transformation, which we define directly in the thermody-
namic limit corresponding to the idealization of an infinite crystal.1 For any function

1The technical advantages of working directly in the thermodynamic limit (instead of imposing Born–
von-Karman boundary conditions) are that the crystal symmetries are automatically respected, and
that the total potential as produced by the nuclei residing at the sites of an infinite lattice is truly
periodic. The disadvantages, however, are that an infinite lattice implies also an infinite number of
nuclei, and that the thermodynamic limit leads to more singular expressions (such as the Dirac delta
distribution in Eq. (1.36)). For a detailed discussion of the Born–von-Karman boundary conditions,
see Ref. [SS16b, Appendix A.5].
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x

y

a1

a2

(a) Two-dimensional projection on the x-y plane. The
z axis and the primitive vector a3 are perpendicular to
the paper plane.

x
y

z

a3

(b) Lattice points in the
a3 direction.

Figure 1.1: Hexagonal Bravais lattice with primitive vectors a1,a2,a3.

f : Γ→ C, the Fourier transform is defined as a function f̂ : B → C given by

f̂(k) =
∑
R

f(R) e−ik·R . (1.33)

The inverse Fourier transform is then given by

f(R) =
1

|B|

∫
B

d3k f̂(k) eik·R . (1.34)

Here, we have used the following identities, which hold for R,R′ ∈ Γ and k, k′ ∈ B:

δR,R′ =
1

|B|

∫
B

d3k eik·(R−R′) , (1.35)

|B| δ3(k − k′) =
∑
R

ei(k−k′)·R . (1.36)

Note that δR,R′ denotes the Kronecker delta,

δR,R′ =

{
1 if R = R′ ,

0 otherwise ,
(1.37)

whereas δ3(k − k′) is the Dirac delta distribution, which has the property that for any
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(a) Plane defined by kz = π/c0 .
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b3

Γ

A

K

H

M

L

(b) Three-dimensional representation.

Figure 1.2: Hexagonal Brillouin zone with high-symmetry points, and primitive vectors of the
reciprocal lattice b1, b2, b3.

function f̂ defined on B,

f̂(k) =

∫
B

d3k δ3(k − k′) f̂(k′) . (1.38)

In the following, we will omit the “hat” symbol, and hence denote any function on Γ
and its Fourier transform on B by the same symbol, i.e., f̂(k) ≡ f(k).

Let us consider, in particular, the hexagonal Bravais lattice in three dimensions, which
describes the crystal structure of the Rashba semiconductor BiTeI (see Sct. 3). In this
case, the primitive vectors of the direct lattice are

a1 = a0


√

3/2

−1/2

0

 , a2 = a0

0

1

0

 , a3 = c0

0

0

1

 , (1.39)

where a0, c0 denote the lattice constants, which are given for BiTeI by [BAN11]

a0 = 4.339 Å , c0 = 6.854 Å . (1.40)

The primitive vectors of the reciprocal lattice are then given by

b1 =
2π

a0

2/
√

3

0

0

 , b2 =
2π

a0

1/
√

3

1

0

 , b3 =
2π

c0

0

0

1

 . (1.41)

The hexagonal Bravais lattice and the corresponding Brillouin zone are shown in Figs.
1.1 and 1.2. In particular, in Fig. 1.2 we have also indicated the high-symmetry points
Γ, M, K, A, L, H of the Brillouin zone (we will refer to these in Ch. 3).
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1.3. Bloch and Wannier vectors

We consider an electron in the periodic potential V of the nuclei, which is given by

V (x) =
∑
R∈Γ

vR(x) . (1.42)

In the simplest case, vR(x) ≡ v(x−R) denotes the Coulomb potential generated by a
single nucleus with the charge Ze located at the lattice site R, i.e.,

vR(x) =
Ze2

4πε0

1

|x−R|
. (1.43)

More generally, the lattice may consist of two or more nuclei per unit cell, such that

vR(x) =
e2

4πε0

∑
j

Zj
|x−R− dj |

, (1.44)

where j labels the nuclei in the unit cell, which are located at the respective positions
(R + dj) and which have the respective charges (Zj e). For an infinite lattice (i.e., in
the thermodynamic limit), the total potential V is lattice-periodic in the sense that

V (x+R) = V (x) ∀R ∈ Γ . (1.45)

The electron is described by the Hamiltonian

Ĥ =
|p̂|2

2m
+ V̂ + V̂so , (1.46)

where p̂ denotes the momentum operator, m the electron mass, and V̂ the multiplication
operator corresponding to the periodic potential given by Eq. (1.42). Furthermore, V̂so

denotes the Pauli spin-orbit term (see e.g. Refs. [Mes62, Ch. XX, §33] and [Win03,
Eq. (1.1)]),

V̂so =
~

4m2c2
σ · (∇V̂ × p̂) , (1.47)

where σ is the vector of the Pauli matrices. The Hamiltonian (1.46) acts on the one-
particle state space

H = L2(R3 × {↑, ↓}, C) , (1.48)

which consists of all normalizable, complex-valued wave functions ψ(x, s) which depend
on the position x ∈ R3 and the spin s ∈ {↑, ↓}.

In order to diagonalize the above Hamiltonian, we first define for R ∈ Γ the lattice
translation operators T̂R by their action on wave functions ψ ∈ H,

(T̂Rψ)(x, s) = ψ(x−R, s) . (1.49)
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These operators have the property that

T̂R T̂R′ = T̂R+R′ , (1.50)

which implies in particular that they are mutually commuting, i.e.,[
T̂R , T̂R′

]
= 0 . (1.51)

The lattice periodicity of V , Eq. (1.45), implies that Ĥ also commutes with all lattice
translation operators, [

T̂R , Ĥ
]

= 0 . (1.52)

Consequently, Ĥ and all operators T̂R , R ∈ Γ, can be diagonalized simultaneously.

Hence, let us first diagonalize the lattice translation operators. Clearly, the plane-wave
functions defined in Sct. 1.1,

|k, s〉(x, s′) =
1

(2π)3/2
eik·x δss′ , (1.53)

are simultaneous eigenvectors of all operators T̂R , since

T̂R |k, s〉 =
1

(2π)3/2
eik·(x−R) δss′ = e−ik·R |k, s〉 . (1.54)

However, if we are given two plane-wave functions with the momenta k and k′, which
differ by a reciprocal lattice vector K, i.e.,

k′ = k +K , K ∈ Γ−1 , (1.55)

then these plane-wave functions necessarily share the same eigenvalue of any translation
operator T̂R . This is because

e−ik′·R = e−ik·R e−iK·R = e−ik·R , (1.56)

which follows from the defining property (1.27) of the reciprocal lattice vectors. There-
fore, it is natural to define for each Bloch wavevector (or Bloch momentum) k in the
first Brillouin zone the Bloch subspace as the common eigenspace of all lattice transla-
tion operators TR with their corresponding eigenvalues e−ik·R. Mathematically, we can
characterize these Bloch subspaces as

Hk = P̂kH (1.57)

in terms of the projection operators2

P̂k = |B|
∑

K∈Γ−1

∑
s

|k +K, s〉〈k +K, s| . (1.58)

2Strictly speaking, one has to integrate these operators over finite volumes of the Brillouin zone,

P̂K =
1

|B|

∫
K

d3k P̂k , K ⊆ B ,

to obtain genuine projection operators which fulfill the conditions P̂ †K = P̂K = P̂ 2
K.
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Here, the normalization factor |B|, which denotes the volume of the Brillouin zone, has
been inserted in order to make the projection operators dimensionless (see Sct. 1.1). By
definition, these projection operators have the property

T̂R P̂k = e−ik·R P̂k , (1.59)

and hence Hk can be characterized equivalently as

Hk =
{
ψ ∈ H : ψ(x−R, s) = e−ik·R ψ(x, s)

}
. (1.60)

Furthermore, the subspaces Hk are orthogonal and complete in the sense that

P̂k P̂k′ = |B| δ3(k − k′)P̂k , (1.61)

1

|B|

∫
B

d3k P̂k = 1 . (1.62)

These equations follow directly from the corresponding properties of the momentum
eigenvectors (see Eqs. (1.5) and (1.6)).

We can now diagonalize the Hamiltonian (1.46) separately for each k ∈ B in the sub-
space Hk . In fact, Eq. (1.52) implies that Ĥ maps each subspace Hk into itself, i.e.,

Ĥ |k +K ′, s′〉 =
∑
K, s

|k +K, s〉HKs,K′s′(k) , (1.63)

which is equivalent to

〈k +K, s |Ĥ |k′ +K ′, s′〉 = δ3(k − k′)HKs,K′s′(k) . (1.64)

Consequently, there is an orthonormal basis of eigenvectors |Ψnk〉 ∈ Hk satisfying

Ĥ |Ψnk〉 = Enk |Ψnk〉 , (1.65)

or equivalently,

〈Ψnk |Ĥ |Ψn′k′〉 = δnn′ |B| δ3(k − k′)Enk . (1.66)

Each vector |Ψnk〉 is called a Bloch vector, which is labeled by the Bloch momentum
k ∈ B and the band index n. The corresponding eigenvalues Enk as a function of n
and k form the band structure of the material. The Bloch vectors are orthonormal and
complete in the sense that

〈Ψnk |Ψn′k′〉 = δnn′ |B| δ3(k − k′) , (1.67)

1

|B|

∫
B

d3k
∑
n

|Ψnk〉〈Ψnk| = 1 . (1.68)
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We further note that the Bloch vectors are dimensionless,[
|Ψnk〉

]
= 1 , (1.69)

which follows from the condition (1.67).

In order to construct the Bloch vectors |Ψnk〉 explicitly, we write them as linear combi-
nations of the plane-wave basis vectors of the Bloch subspace Hk , i.e.,

|Ψnk〉 = |B|1/2
∑
K, s

|k +K, s〉CKs,n(k) , (1.70)

or equivalently,

〈k +K, s |Ψnk′〉 = |B|1/2 δ3(k − k′)CKs,n(k) , (1.71)

with a complex-valued transformation matrix CKs,n(k). Here, the prefactor |B|1/2 was
inserted in order to make this transformation matrix dimensionless. The orthonormality
of the momentum eigenvectors and of the Bloch vectors imply that the transformation
matrix has to be unitary, i.e.,∑

K, s

C∗Ks,n(k)CKs,n′(k) = δnn′ . (1.72)

Furthermore, by inserting the representation (1.70) into the Schrödinger equation (1.65),
we see that this eigenvalue problem is equivalent to (with En(k) ≡ Enk):∑

K′, s′

HKs,K′s′(k)CK′s′,n(k) = En(k)CKs,n(k) . (1.73)

Thus, the matrix CKs,n(k) represents a unitary transformation which diagonalizes the
Hamiltonian matrix, such that∑

K, s

∑
K′, s′

C∗Ks,n(k)HKs,K′s′(k)CK′s′,n′(k) = δnn′ En(k) . (1.74)

Given this matrix, the Bloch vectors |Ψnk〉 can be constructed explicitly in terms of the
plane-wave vectors |k +K, s〉 by means of Eq. (1.70).

Next, we define the Wannier vectors |ΦnR〉 in terms of the Bloch vectors as

|ΦnR〉 =
1

|B|

∫
B

d3k |Ψnk〉 e−ik·R , (1.75)

or conversely,

|Ψnk〉 =
∑
R

|ΦnR〉 eik·R . (1.76)
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The Wannier vectors are orthonormal and complete in the sense that

〈ΦnR |Φn′R′〉 = δn,n′ δR,R′ , (1.77)∑
n

∑
R

|ΦnR〉〈ΦnR| = 1 . (1.78)

This follows directly from the properties (1.67)–(1.68) for the Bloch vectors and, in
particular, implies that the Wannier vectors are also dimensionless,[

|ΨnR〉
]

= 1 . (1.79)

Under lattice translations, the Wannier vectors transform according to

T̂R′ |ΦnR〉 = |Φn,R+R′〉 , (1.80)

as can be shown easily using the definition (1.75) and the property (1.60) of the Bloch
vectors. The transformations defined by Eqs. (1.75)–(1.76) are equivalent to

|ΦnR〉 =
1

|B|

∫
B

d3k |Ψnk〉〈Ψnk |ΦnR〉 , (1.81)

|Ψnk〉 =
∑
R

|ΦnR〉〈ΦnR |Ψnk〉 , (1.82)

with the dimensionless matrix element

〈Ψnk |ΦnR〉 = e−ik·R . (1.83)

Furthermore, the matrix elements of the Hamiltonian in the Wannier basis are given by

Hnn′(R−R′) ≡ 〈ΦnR |Ĥ |Φn′R′〉 = δnn′
1

|B|

∫
B

d3k eik·(R−R′)Enk , (1.84)

which follows directly from Eq. (1.66).

Finally, we calculate the matrix elements of the concrete Hamiltonian (1.46) in the
plane-wave basis. First, the kinetic term acts on a momentum eigenvector by

− ~2

2m
∆ ei(k+K′)·x =

~2|k +K ′|2

2m
ei(k+K′)·x . (1.85)

The potential V (x) has the lattice periodicity and can therefore be expanded as

V (x) =
∑

K∈Γ−1

VK eiK·x , (1.86)

with complex coefficients VK . Hence, when the potential term acts on a momentum
eigenstate, it gives

V (x) ei(k+K′)·x =
∑
K

VK ei(k+K+K′)·x . (1.87)
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Similarly, using that

∇V (x) =
∑
K

VK iK eiK·x , (1.88)

we find for the Pauli spin-orbit term

~
4m2c2

σss′ ·
(
∇V (x)× ~

i
∇
)

ei(k+K′)·x =

i~2

4m2c2

∑
K

VK σss′ · (K × (k +K ′)) ei(k+K+K′)·x .

(1.89)

Equations (1.85), (1.87) and (1.89) can be combined into

Ĥ |k +K ′, s′〉 =
∑
K, s

|k +K +K ′, s〉
(
δss′ δK,0

~2|k +K ′|2

2m
+ δss′ VK

+
i~2

4m2c2
VK σss′ · (K × (k +K ′))

)
.

(1.90)

By substituting K 7→K −K ′, this is equivalent to

Ĥ |k +K ′, s′〉 =
∑
K, s

|k +K, s〉
(
δss′ δK−K′,0

~2|k +K ′|2

2m
+ δss′ VK−K′

+
i~2

4m2c2
VK−K′ σss′ · ((K −K ′)× (k +K ′))

)
.

(1.91)

By comparing this with Eq. (1.63), we read off the matrix elements of the Hamiltonian
in the plane-wave basis:

HKs,K′s′(k) = δss′

(
δK,K′

~2|k +K|2

2m
+ VK−K′

)

+
i~2

4m2c2
VK−K′ σss′ · ((K −K ′)× (k +K ′)) .

(1.92)

Therefore, the Schrödinger equation (1.65) is equivalent to (see Eq. (1.73))

~2|k +K|2

2m
CKs,n(k) +

∑
K′

VK−K′CK′s,n(k) (1.93)

+
i~2

4m2c2

∑
K′, s′

VK−K′ σss′ · ((K −K ′)× (k +K ′))CK′s′,n(k) = En(k)CKs,n(k) .

For each k ∈ B, this is a system of coupled linear equations for the coefficients CKs,n(k)
(where K ∈ Γ−1 and s ∈ {↑, ↓}). Given the solutions of these equations (which are
labeled by the band index n), we can construct the Bloch vectors in terms of the plane-
wave vectors by means of Eq. (1.70). Finally, we remark that by neglecting the spin-orbit
term, Eq. (1.93) agrees with Ref. [AM76, Eq. (8.41)].
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1.4. Bloch-like vectors and atomic orbitals

We now rewrite the Hamiltonian (1.46) as

Ĥ =
|p̂|2

2m
+ v̂ + ∆V̂ + V̂so (1.94)

≡ ĥ+ ∆V̂ + V̂so , (1.95)

where v̂ ≡ v̂0 denotes the Coulomb potential generated by the nuclei within one unit
cell which is labeled by R = 0, and where

∆V̂ = V̂ − v̂0 =
∑
R 6=0

v̂R (1.96)

is the potential generated by all remaining nuclei. The Hamiltonian

ĥ =
|p̂|2

2m
+ v̂ (1.97)

describes an electron in the potential of a single or a few nuclei which are concentrated
around the origin, disregarding the atomic spin-orbit coupling V̂so (which we will later
treat as a perturbation analogously to the term ∆V̂ .) We assume that the eigenvalues
of ĥ as well as the corresponding eigenfunctions are known (in the case of a monatomic
lattice, they coincide with the energy levels and atomic orbitals of the hydrogen atom).
Thus, we have

ĥ |ϕµs〉 = eµ |ϕµs〉 , (1.98)

where µ is an orbital index and s the spin index. As we have not included the spin-orbit
coupling in ĥ, each eigenvalue is at least two-fold degenerate, and the eigenvectors can
be chosen to be simultaneous spin eigenvectors, i.e.,

ϕµs(x, s
′) = ϕµ(x) δss′ . (1.99)

Note that the index µ labels the eigenvectors and not the eigenenergies, which means
that there are in general several orbitals, ϕµ1 , . . . , ϕµd , sharing the same eigenvalue, i.e.,
eµ1 = . . . = eµd . In the following, we will often refer to ϕµ as atomic orbitals (or atomic
eigenvectors), although strictly speaking, this labeling is only justified in the case of a
monatomic lattice.

Given the atomic eigenvectors |ϕµs〉, whose position-space wave functions are concen-
trated around the origin, we further define for each R ∈ Γ the vectors |ϕµsR〉 whose
wave functions are shifted by the lattice vector R, i.e.,

ϕµsR(x, s′) := ϕµs(x−R, s′) . (1.100)

Thus, the wave function of |ϕµsR〉 is concentrated around the site R. Furthermore, we
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introduce the Bloch-like vectors (also called Bloch sums) by the definition [SK54]

|ψµsk〉 :=
1

Nµk

∑
R

|ϕµsR〉 eik·R , (1.101)

which is similar to the relation (1.76) between Bloch and Wannier vectors. Here, Nµk
is a normalization constant, which will be fixed later. The Bloch-like vectors have the
same property (1.60) as the Bloch vectors themselves, i.e.,

ψµsk(x−R, s′) = e−ik·R ψµsk(x, s′) , (1.102)

which implies that the Bloch-like vectors |ψµsk〉 also lie in the Bloch subspace Hk .
However, in contrast to the Bloch vectors, the Bloch-like vectors are not orthogonal.
This was pointed out already by P.-O. Löwdin [Löw50], and can be confirmed easily by
the following calculation:

〈ψµsk |ψµ′s′k′〉 =
1

Nµk
1

Nµ′k′
∑
R,R′

e−ik·R eik′·R′ 〈ϕµsR |ϕµ′s′R′〉 (1.103)

=
1

Nµk
1

Nµ′k′
∑
R,R′

e−ik·(R−R′) ei(k′−k)·R′ 〈ϕµs,R−R′ |ϕµ′s′0〉 (1.104)

= |B| δ3(k − k′) 1

Nµk
1

Nµ′k

∑
R

e−ik·R 〈ϕµsR |ϕµ′s′0〉 . (1.105)

While for R = 0, the matrix element in Eq. (1.105) diagonalizes as

〈ϕµs |ϕµ′s′〉 = δµµ′ δss′ , (1.106)

the same is in general not true for R 6= 0, and therefore,

〈ψµsk |ψµ′s′k′〉 6= |B| δ3(k − k′) δµµ′ δss′ . (1.107)

In particular, this implies that there is no unitary matrix Uµs,n(k) which mediates be-
tween the Bloch vectors (“band basis”) and the Bloch-like vectors (“orbital basis”):

|Ψnk〉 6=
∑
µ,s

|ψµsk〉Uµs,n(k) . (1.108)

In actual fact, by Eq. (1.99), the matrix element in Eq. (1.105) only diagonalizes partly
with respect to the spin indices, i.e.,

〈ϕµsR |ϕµ′s′0〉 = δss′ 〈ϕµR |ϕµ′0〉 . (1.109)

This asymmetry between the orbital and spin indices comes from the fact that we have
not included V̂so in the unperturbed Hamiltonian ĥ. From this, it follows that

〈ψµsk |ψµ′s′k′〉 = |B| δ3(k − k′) δss′ Sµµ′(k) , (1.110)
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where we have introduced the overlap matrix

Sµµ′(k) =
1

Nµk
1

Nµ′k

(
δµµ′ +

∑
R 6=0

e−ik·R 〈ϕµR |ϕµ′0〉
)
. (1.111)

The normalization constant Nµk is now determined from the condition

Sµµ(k)
!

= 1 , (1.112)

which yields

Nµk =

(
1 +

∑
R 6=0

e−ik·R 〈ϕµR |ϕµ0〉
)1/2

. (1.113)

Note that Nk is real-valued and Sµµ′(k) is hermitean, as can be shown by substituting
R 7→ −R in the summations over direct lattice vectors.

Consider now again the Schrödinger equation (1.65), which constitutes an eigenvalue
problem for the Bloch vectors. Let us assume that each Bloch vector can be expanded
in terms of the Bloch-like vectors as follows (the following presentation closely follows
Ref. [Pic12]):

|Ψnk〉 =
∑
µ,s

|ψµsk〉Bµs,n(k) , (1.114)

or equivalently,

〈ψµsk |Ψnk′〉 = |B| δ3(k − k′)Bµs,n(k) , (1.115)

where Bµs,n(k) is a complex-valued transformation matrix. Then, the Schrödinger equa-
tion (1.65) is equivalent to∑

µ′, s′

〈ψµsk |Ĥ |ψµ′s′k′〉Bµ′s′,n(k) = En(k)
∑
µ′, s′

〈ψµsk |ψµ′s′k′〉Bµ′s′,n(k) . (1.116)

Next, let us calculate the matrix elements of the Hamiltonian with respect to the Bloch-
like vectors, which appear on the left-hand side of this equation. By performing the
same steps as in Eqs. (1.103)–(1.105), we obtain

〈ψµsk |Ĥ |ψµ′s′k′〉 = |B| δ3(k − k′)Hµs,µ′s′(k) , (1.117)

with

Hµs,µ′s′(k) =
1

Nµk
1

Nµ′k

∑
R

e−ik·R 〈ϕµsR |Ĥ |ϕµ′s′0〉 . (1.118)

The matrix element with R = 0 can be expressed even more explicitly: we have

Ĥ |ϕµs0〉 = (eµ + ∆V̂ + V̂so) |ϕµs0〉 , (1.119)
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and consequently,

〈ϕµs0 |Ĥ |ϕµ′s′0〉 = δµµ′ δss′ eµ + 〈ϕµs0 |(∆V̂ + V̂so) |ϕµ′s′0〉 . (1.120)

Thus, we obtain

Hµs, µ′s′(k) =
1

Nµk
1

Nµ′k

(
eµ δµµ′ δss′ + 〈ϕµs0 |(∆V̂ + V̂so) |ϕµ′s′0〉

+
∑
R 6=0

e−ik·R 〈ϕµsR |Ĥ |ϕµ′s′0〉
)
.

(1.121)

Using the result (1.117) together with Eq. (1.110), the Schrödinger equation (1.116)
turns into ∑

µ′, s′

Hµs,µ′s′(k)Bµ′s′,n(k) = En(k)
∑
µ′

Sµµ′(k)Bµ′s,n(k) . (1.122)

Hence, in contrast to the representation (1.73) of the Schrödinger equation in terms of
orthogonal plane-wave functions, its representation in terms of non-orthogonal Bloch-
like functions leads to a generalized eigenvalue problem (see Ref. [Löw50]). Its solution
yields the energy bands En(k) and the coefficient functions Bµ′s,n(k), by which one can
construct the Bloch vectors in terms of the Bloch-like vectors via Eq. (1.114).

With this, we now go on to express the Wannier vectors in terms of the atomic orbitals.
Using the definition (1.75) as well as Eqs. (1.101) and (1.114), we obtain

|ΦnR〉 =
1

|B|

∫
B

d3k |Ψnk〉 e−ik·R (1.123)

=
∑
µ,s

1

|B|

∫
B

d3k |ψµsk〉Bµs,n(k) e−ik·R (1.124)

=
∑
µ,s

∑
R′

|ϕµsR′〉
1

|B|

∫
B

d3k
1

Nµk
Bµs,n(k) eik·(R′−R) . (1.125)

This equation shows that in general, each Wannier vector |ΦnR〉 is a linear combination
of all kinds of atomic orbitals centered at all possible lattice sites. Only if we assume
that the overlap between orbitals at different lattice sites is completely negligible, such
that Nµk ≈ 1 and Bµs,n(k) ≈ Bµs,n(0), then Eq. (1.125) reduces to

|ΦnR〉 ≈
∑
µ,s

|ϕµsR〉Bµs,n(0) . (1.126)

In this case, the Wannier vector |ΦnR〉 is obviously concentrated around the lattice
site R, and it is a linear combination of atomic orbitals centered at the same lattice site
(cf. [AM76, Ch. 10]).
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Finally, we define the tight-binding limit, in which the energy bands of the crystal reduce
to the atomic energy levels. Intuitively, this limit is reached when the distance between
the nuclei forming the lattice is sufficiently large, such that each electron is bound to
its respective nucleus and not delocalized in the crystal. More precisely, if the following
matrix elements are negligible:

〈ϕµs0 |ϕµ′s′R〉 → 0 , (1.127)

〈ϕµs0 |Ĥ |ϕµ′s′R〉 → 0 , (1.128)

〈ϕµs0 |(∆V̂ + V̂so) |ϕµ′s′0〉 → 0 , (1.129)

then we obtain from Eq. (1.113) that

Nµk = 1 , (1.130)

from Eq. (1.111) that

Sµµ′(k) = δµµ′ , (1.131)

and from Eq. (1.121) that

Hµs, µ′s′(k) = eµ δµµ′ δss′ , (1.132)

which implies that the energy bands coincide with the atomic energy levels, Eµ(k) = eµ .
In the next section, we will consider the case where the above matrix elements are not
completely negligible but assumed to be small (compared to the distance of the atomic
energy levels). Under this assumption, we will then derive an approximate expression
for the energy bands of the crystal.

1.5. Single-orbital model

1.5.1. Quasi-degenerate perturbation theory

We now restrict ourselves to the simplest case of a single orbital |ϕ0〉, which is an eigen-
vector of the Hamiltonian ĥ given by Eq. (1.97) with the corresponding eigenvalue e0 .
We assume that this eigenvalue is separated from all other eigenvalues of ĥ by a certain
energy difference ∆e0 , and that this eigenvalue has no further degeneracy besides the
two-fold spin degeneracy. Thus, we have

ĥ |ϕ0s〉 = e0 |ϕ0s〉 , (1.133)

and the corresponding wave function is diagonal in spin space,

ϕ0s(x, s
′) = ϕ0(x) δss′ . (1.134)

We further assume that the following conditions are fulfilled:
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(i) The orbitals ϕµs are sufficiently concentrated around the origin, i.e., within the
region where ∆V is small. More precisely, we assume that

|〈ϕµs |∆V̂ |ϕµ′s′〉| � ∆e0 . (1.135)

(ii) The overlap between orbitals at different lattice sites is small, hence for R 6= 0,

|〈ϕµsR |ϕµ′s′〉| � 1 , (1.136)

|〈ϕµsR |Ĥ |ϕµ′s′〉| � ∆e0 . (1.137)

(iii) The spin-orbit coupling is small, such that

|〈ϕµs | V̂so |ϕµ′s′〉| � ∆e0 . (1.138)

If these conditions are fulfilled, then we can derive an effective Hamiltonian Hss′(k) de-
scribing a “spin-split energy band”, which approaches the atomic energy e0 in the tight-
binding limit. For this purpose, we split off the atomic eigenvalues from the Hamiltonian
(1.121), such that

Hµs, µ′s′(k) =
1

N 2
nk

eµ δµµ′ δss′ +H ′µs, µ′s′(k) , (1.139)

where

H ′µs, µ′s′(k) =
1

Nµk
1

Nµ′k

(
〈ϕµs |(∆V̂ + V̂so) |ϕµ′s′〉

+
∑
R 6=0

e−ik·R 〈ϕµsR |Ĥ |ϕµ′s′〉
)
.

(1.140)

Now, the conditions (i)–(iii) imply that

|H ′µs, µ′s′(k)| � ∆e0 , (1.141)

and hence we can apply quasi-degenerate perturbation theory (see Ref. [Win03, Appen-
dix B]) to bring the Hamiltonian (1.139) into an approximate block-diagonal form. The
resulting effective Hamiltonian for the relevant energy bands reads

Hss′(k) =
1

N 2
0k

e0 δss′ +H ′0s, 0s′(k)

+
∑
µ 6=0

∑
t

H ′0s, µt(k)H ′µt, 0s′(k)
1

e0 − eµ
+ O( |H ′(k)/∆e0|2 ) .

(1.142)

Thus, we have shown how one can derive—by starting from the fundamental Hamiltonian
(1.46) and applying a number of approximations to it—a Hamiltonian matrix Hss′(k)
which depends on two spin indices and one Bloch momentum. The derivation presented
here is valid if the conditions described at the beginning of this section are fulfilled.
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We now further restrict ourselves to the zero-order terms in the expansion (1.142), i.e.,

Hss′(k) =
1

N 2
0k

e0 δss′ +H ′0s, 0s′(k) (1.143)

=
1

N 2
0k

(
e0 δss′ + 〈ϕ0s |∆V̂ + V̂so |ϕ0s′〉+

∑
R 6=0

e−ik·R 〈ϕ0sR |Ĥ |ϕ0s′〉
)
, (1.144)

where the normalization constant is given by (see Eq. (1.113))

N0k =

(
1 +

∑
R 6=0

e−ik·R 〈ϕ0R |ϕ0〉
)1/2

. (1.145)

This approximation simply means that all matrix elements Hµs, µ′s′(k) with µ = 0 and
µ′ 6= 0 (or vice versa) are neglected, and thus the Hamiltonian matrix becomes trivially
block-diagonal: from Eq. (1.118), we obtain directly

Hss′(k) ≡ H0s, 0s′(k) =
1

N 2
0k

∑
R

e−ik·R 〈ϕ0sR |Ĥ |ϕ0s′〉 . (1.146)

By further applying the same approximation to the overlap matrix, i.e., by assuming
that Sµµ′(k) = δµµ′ , the generalized eigenvalue problem (1.122) reduces to an ordinary
eigenvalue problem, which reads∑

s′

Hss′(k)Us′n(k) = En(k)Usn(k) . (1.147)

The solution of this eigenvalue problem yields two energy bands, E±(k), which approach
the atomic energy e0 in the tight-binding limit (the latter was defined in the previous
section). Furthermore, the solution yields the unitary matrix Usn(k) by which one can
construct the Bloch vectors in terms of the Bloch-like vectors, i.e.,

|Ψnk〉 =
∑
s

|ψ0sk〉Usn(k) . (1.148)

In particular, in this approximation the Bloch-like vectors are indeed orthonormal. The
hermitean matrix Hss′(k) is called the Hamiltonian matrix in the spin basis, and the
unitary matrix Usn(k) mediates between the band basis (Bloch vectors) and the spin
basis (Bloch-like vectors). We stress again, however, that this is possible only in the
zero-order approximation described above, because in general the Bloch-like vectors are
not orthogonal.

For later purposes, we further define the inverse Fourier transform of the above Hamil-
tonian matrix as

Hss′(R−R′) :=
1

|B|

∫
B

d3k Hss′(k) eik·(R−R′) . (1.149)
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By Eq. (1.146), this is equivalent to

Hss′(R−R′) =
∑
R′′6=0

〈ϕ0sR′′ |Ĥ |ϕ0s′〉
1

|B|

∫
B

d3k eik·(R−R′−R′′) 1

N 2
0k

. (1.150)

By substituting R−R′ −R′′ 7→ R′′ and using the translation invariance of Ĥ, we thus
arrive at the expression

Hss′(R−R′) =
∑
R′′6=0

〈ϕ0s,R−R′′ |Ĥ |ϕ0s′,R′〉
1

|B|

∫
B

d3k eik·R′′ 1

N 2
0k

. (1.151)

From this, we conclude that the “Hamiltonian matrix in direct space” Hss′(R −R′) is
in general given by a complicated convolution; only if we assume that N0k = 1, the
above expression simplifies to

Hss′(R−R′) = 〈ϕ0s,R |Ĥ |ϕ0s′,R′〉 , (1.152)

which means that Hss′(R − R′) is given by the matrix elements of the fundamental
Hamiltonian Ĥ with respect to atomic orbitals with the distance vector (R−R′).

Finally, if we neglect the spin-orbit coupling V̂so , then the effective Hamiltonian (1.144)
becomes diagonal in the spin basis,

Hss′(k) = δss′E(k) , (1.153)

and the dispersion of the two-fold degenerate band is given by

E(k) =
1

N 2
0k

(
e0 + 〈ϕ0 |∆V̂ |ϕ0〉+

∑
R 6=0

e−ik·R 〈ϕ0R |Ĥ |ϕ0〉
)
. (1.154)

Using that Ĥ = ĥ+ ∆V̂ and ĥϕ0 = e0, this is equivalent to

E(k) = e0 +

(
1 +

∑
R 6=0

e−ik·R 〈ϕ0R |ϕ0〉
)−1

×
(
〈ϕ0 |∆V̂ |ϕ0〉+

∑
R 6=0

e−ik·R 〈ϕ0R |∆V̂ |ϕ0〉
)
,

(1.155)

which in turn agrees precisely with Ref. [AM76, Eqs. (10.15)–(10.18)].

1.5.2. Pauli matrix representation

Any complex (2× 2) matrix can be expanded in terms of the identity matrix 1 ≡ 12×2

and the three Pauli matrices,

σx =

(
0 1

1 0

)
, σy =

(
0 −i

i 0

)
, σz =

(
1 0

0 −1

)
. (1.156)
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In particular, the Hamiltonian matrix in the spin basis (defined by Eq. (1.146)) can be
expanded for each k ∈ B as

Hss′(k) = f(k)δss′ + g(k) · σss′ . (1.157)

We call this the Pauli matrix representation of the Hamiltonian matrix. For a general
(2 × 2) matrix, the coefficient functions f and g = (gx, gy, gz)

T are complex-valued,
but the hermiticity of the Hamiltonian matrix enforces them to be real-valued (see Sct.
2.1.1). In components, the Pauli matrix representation reads as

H =

(
f + gz gx − igy

gx + igy f − gz

)
, (1.158)

where we have suppressed the momentum dependencies. The Hamiltonian matrix in
direct space (given by Eq. (1.149)) can be expanded analogously as

Hss′(R) = f(R)δss′ + g(R) · σss′ . (1.159)

The functions f(R), g(R) are related to f(k), g(k) by Fourier’s transformation, which
is precisely analogous to Eq. (1.149).

Next, the (2× 2) matrix (1.158) can be diagonalized as∑
s,s′

U∗nsHss′ Us′n′ = δnn′ En′ , (1.160)

or in matrix notation as

U †HU = E ≡
(
E− 0
0 E+

)
. (1.161)

The eigenvalues are given explicitly by

E∓ = f ∓ |g| , (1.162)

and the unitary matrix U reads

U =
1√
2|g|

 √
|g| − gz

√
|g|+ gz

−
√
|g|+ gz eiϕ

√
|g| − gz eiϕ

 . (1.163)

Here, ϕ ≡ ϕ(g) ∈ [0, 2π) denotes the polar angle of the two-dimensional vector (gx, gy)
T,

which is defined such that

eiϕ(g) =
gx + igy√
g2
x + g2

y

=
gx + igy√

(|g| − gz)(|g|+ gz)
. (1.164)

The matrix U contains the eigenvectors ψ∓ of the Hamiltonian matrix (1.158) as column
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vectors, hence

ψ− =
1√
2|g|

( √
|g| − gz

−
√
|g|+ gz eiϕ

)
, ψ+ =

1√
2|g|

( √
|g|+ gz√
|g| − gz eiϕ

)
(1.165)

These eigenvectors correspond to the lower (E−) and to the upper (E+) energy level,
respectively. An important property of the Pauli matrix representation is that the spin
expectation value in each eigenstate can be expressed directly in terms of the function g:

〈s〉∓ ≡ ~
2

∑
s,s′

[ψ∓s ]∗ σss′ ψ
∓
s′ =

~
2

(
∓ g
|g|

)
. (1.166)

Thus, the spin polarization of the upper energy level is given by the normalized vector
g/|g|, and it is opposite to the spin polarization of the lower energy level.

For later purposes, we further derive two properties of the matrix U = U(k) which
diagonalizes the Hamiltonian matrix (1.157). The first one follows directly from Eq.
(1.161), which is equivalent to

H(k) = U(k)E(k)U †(k) . (1.167)

Putting in the representation (1.157) and the eigenvalues (1.162) yields

f(k)1+ g(k) · σ = U(k)
(
f(k)1− |g(k)|σz

)
U †(k) (1.168)

= f(k)1− |g(k)|U(k)σz U
†(k) . (1.169)

Therefore, the following identity holds:

U(k)σz U
†(k) = − g(k)

|g(k)|
· σ . (1.170)

The second property holds under the assumption of time-reversal symmetry, which re-
quires that (see Sct. 2.1.2, Eq. (2.43))

H(k) = [iσy]
†H∗(−k) iσy . (1.171)

By using this assumption, we obtain from Eq. (1.161) that

E(k) = U †(k) [iσy]
†H∗(−k)[iσy]U(k) (1.172)

= [iσyU(k)]†H∗(−k) [iσyU(k)] , (1.173)

and further, by complex conjugation,

[iσyU
∗(k)]†H(−k) [iσyU

∗(k)] = E(k) . (1.174)

This implies that H(−k) has the same eigenvalues as H(k), i.e.,

E(−k) = E(k) , (1.175)
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and that the unitary matrix [iσyU
∗(k)] diagonalizes H(−k). Indeed, from the explicit

form of U(k) given by Eq. (1.163), we find by a straightforward calculation that

iσyU
∗(k) = U(−k)

(
e−iϕ(−k) 0

0 −e−iϕ(−k)

)
= U(−k) e−iϕ(−k)σz . (1.176)

This shows that the column vectors of the matrix [iσyU
∗(k)] coincide with the column

vectors of U(−k) up to the phase factors.



2. Tight-binding Rashba model

2.1. Symmetries

We now assume that the nuclear potential (1.42), and hence also the fundamental Hamil-
tonian Ĥ given by Eq. (1.46), have the following symmetries (besides the invariance un-
der lattice translations): time-reversal symmetry, and the symmetries of the point group
C3v of BiTeI (which contains the three-fold rotation C3 and the mirror reflection σv , see
Sct. 3.1). In addition, we assume that the orbital |ϕ0s〉, which is the eigenvector of the
atomic Hamiltonian (1.97), is invariant under these very symmetries. Based on these
assumptions, we will in the following derive the transformation behavior of the atomic
orbitals |ϕ0sR〉 centered at arbitrary lattice sites, and of the corresponding Bloch-like
vectors |ψ0sk〉. Moreover, we will derive the corresponding symmetry constraints on the
effective Hamiltonian matrix Hss′(k) as defined in the previous chapter.

2.1.1. Hermiticity

The fundamental Hamiltonian equals its hermitean conjugate,

Ĥ = Ĥ† . (2.1)

Although this is actually not a symmetry of the Hamiltonian but a general postulate
of quantum mechanics, it will be convenient to consider the consequences of this con-
dition together with those of the genuine symmetries. We denote the atomic orbital in
terms of which the single-orbital model was defined in Sct. 1.5 by ϕs ≡ ϕ0s (omitting
the subscript “0” to lighten the notation). Then, the hermiticity of the fundamental
Hamiltonian implies that

〈ϕsR |Ĥ |ϕs′〉 = 〈ϕsR |Ĥ† |ϕs′〉 (2.2)

= 〈ϕs′ |Ĥ |ϕsR〉∗ (2.3)

= 〈ϕs′,−R |Ĥ |ϕs〉∗ , (2.4)

where in the last step we have used the lattice translation invariance of Ĥ. For the



32 2. Tight-binding Rashba model

Hamiltonian matrix (1.146), this implies (using that Nk = N ∗k)

Hss′(k) =
1

N 2
k

∑
R

e−ik·R 〈ϕsR |Ĥ |ϕs′〉 (2.5)

=
1

N 2
k

∑
R

e−ik·R 〈ϕs′,−R |Ĥ |ϕs〉∗ (2.6)

=
1

N 2
k

∑
R

eik·R 〈ϕs′R |Ĥ |ϕs〉∗ (2.7)

=

(
1

N 2
k

∑
R

e−ik·R 〈ϕs′R |Ĥ |ϕs〉
)∗

(2.8)

= H∗s′s(k) . (2.9)

In matrix notation, this can be written equivalently as

H(k) = H†(k) . (2.10)

Thus, for each k, the Hamiltonian matrix H(k) is a hermitean (2× 2) matrix. Further-
more, by using the Pauli matrix expansion (1.157), we obtain

f(k)1+ g(k) · σ = f∗(k)1+ g∗(k) · σ , (2.11)

where we have used the hermiticity of the Pauli matrices. We therefore find

f(k) = f∗(k) , (2.12)

g(k) = g∗(k) , (2.13)

meaning that f(k) and gx(k), gy(k), gz(k) are real-valued functions. By Fourier trans-
formation (see Eq. (1.149)), the above conditions translate into

H(R) = H†(−R) , (2.14)

and respectively

f(R) = f∗(−R) , (2.15)

g(R) = g∗(−R) , (2.16)

for the corresponding functions in direct space.

2.1.2. Time-reversal symmetry

The time-reversal operator Θ̂ (see Ref. [Mes62, Ch. XV, §17–18]) is characterized by its
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action on the position, momentum and spin operators:

Θ̂† x̂ Θ̂ = x̂ , (2.17)

Θ̂† p̂ Θ̂ = −p̂ , (2.18)

Θ̂† σ̂ Θ̂ = −σ̂ . (2.19)

It is antiunitary, hence Θ̂−1 = Θ̂†, and

〈φ |Θ̂ |ψ〉 = 〈ψ |Θ̂† |φ〉 , for φ, ψ ∈ H . (2.20)

Furthermore, it can be defined through its action on wave functions ψ ∈ H as

(Θ̂ψ)(x, s) =
∑
s′

[−iσy]ss′ ψ
∗(x, s′) . (2.21)

We assume that the atomic wave function ϕ(x) ≡ ϕ0(x) (which is defined by Eqs.
(1.133)–(1.134)) is real-valued, i.e.,

ϕ(x) = ϕ∗(x) . (2.22)

This implies that

(Θ̂ϕs)(x, s
′) =

∑
t′

[−iσy]s′t′ ϕs(x, t
′) =

∑
t′

[−iσy]s′t′ ϕ(x)δst′ = [−iσy]s′s ϕ(x) (2.23)

=
∑
t

ϕ(x)δs′t [−iσy]ts =
∑
t

ϕt(x, s
′)[−iσy]ts , (2.24)

and consequently,

Θ̂ |ϕs〉 =
∑
t

|ϕt〉 [−iσy]ts . (2.25)

From this, we further obtain

Θ̂ |ϕsR〉 = Θ̂ T̂R |ϕs〉 = T̂R Θ̂ |ϕs〉 =
∑
t

T̂R |ϕt〉 [−iσy]ts =
∑
t

|ϕtR〉 [−iσy]ts , (2.26)

where we have used that the time reversal operator commutes with the lattice transla-
tions. The above equation gives the transformation behavior of the vectors |ϕsR〉 under
time reversal. Next, consider the Bloch-like vectors defined by Eqs. (1.101) and (1.113),
i.e.,

|ψsk〉 =
1

Nk

∑
R

|ϕsR〉 eik·R , (2.27)

with the (spin-independent) normalization constant

Nk =

(∑
R

e−ik·R 〈ϕsR |ϕs〉
)1/2

. (2.28)
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Using that Nk is real-valued, we can calculate as

Θ̂ |ψsk〉 =
1

Nk

∑
R

e−ik·R Θ̂ |ϕsR〉 (2.29)

=
1

Nk

∑
R

e−ik·R
∑
t

|ϕtR〉 [−iσy]ts (2.30)

=
∑
t

|ψt,−k〉 [−iσy]ts , (2.31)

which gives the transformation law of the Bloch-like vectors under time reversal.

Now, the fundamental Hamiltonian (1.46) is invariant under time reversal provided that
the nuclear potential V is real-valued. Hence, we may assume that[

Θ̂, Ĥ
]

= 0 , (2.32)

which is equivalent to

Ĥ = Θ̂−1Ĥ Θ̂ = Θ̂†Ĥ Θ̂ . (2.33)

For the matrix elements of the Hamiltonian, it follows that

〈ϕsR |Ĥ |ϕs′〉 = 〈ϕsR |Θ̂†Ĥ Θ̂ |ϕs′〉 (2.34)

=
∑
t′

[−iσy] t′s′ 〈ϕsR |Θ̂†Ĥ |ϕt′〉 (2.35)

=
∑
t′

[−iσy] t′s′ 〈ϕt′ |Ĥ Θ̂ |ϕsR〉 (2.36)

=
∑
t, t′

[−iσy]ts [−iσy] t′s′ 〈ϕt′ |Ĥ |ϕtR〉 (2.37)

=
∑
t, t′

[iσy]ts [iσy] t′s′ 〈ϕtR |Ĥ |ϕt′〉∗ (2.38)

=
∑
t, t′

[iσy]
†
st 〈ϕtR |Ĥ |ϕt′〉∗ [iσy] t′s′ . (2.39)

For the Hamiltonian matrix, this further implies

Hss′(k) =
1

N 2
k

∑
R

e−ik·R 〈ϕsR |Ĥ |ϕs′〉 (2.40)

=
∑
t, t′

[iσy]
†
st

(
1

N 2
k

∑
R

eik·R 〈ϕtR |Ĥ |ϕt′〉
)∗

[iσy]t′s′ (2.41)

=
∑
t, t′

[iσy]
†
st H

∗
tt′(−k) [iσy]t′s′ . (2.42)
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Here, we have used that Nk = N−k , which follows from Eq. (2.22). In matrix notation,
we can write the above condition as

H(k) = [iσy]
†H∗(−k) iσy . (2.43)

In the Pauli matrix representation, we further obtain

f(k) + g(k) · σ = f∗(−k)− g∗(−k) · σ , (2.44)

where we have used that

[iσy]
†σ∗ [iσy] = −σ . (2.45)

Hence, time-reversal symmetry yields the conditions

f(k) = f∗(−k) , (2.46)

g(k) = −g∗(−k) . (2.47)

By Fourier transformation, we obtain the equivalent conditions

H(R) = [iσy]
†H∗(R) iσy , (2.48)

as well as

f(R) = f∗(R) , (2.49)

g(R) = −g∗(R) , (2.50)

for the corresponding functions in direct space.

2.1.3. Spatial inversion symmetry

For the sake of completeness, we also study in this subsection the consequences of the
spatial inversion symmetry, although we do not assume that the Hamiltonian (1.46) has
this symmetry. In fact, the crystal structure of BiTeI (and hence the nuclear poten-
tial V acting on the electrons) is not invariant under spatial inversion, and this is one
main reason—besides the large atomic spin-orbit coupling of the bismuth atoms—for the
Rashba spin splitting of the electronic energy states in this material (see Refs. [Ish+11],
[DDJ08, Sct. 16.4], and the discussion in Sct. 2.2).

The operator P̂ representing a spatial inversion (see Ref. [Mes62, Ch. XV, §10]) has the
properties that

P̂ † x̂P̂ = −x̂ , (2.51)

P̂ † p̂P̂ = −p̂ , (2.52)

P̂ †σ P̂ = σ . (2.53)
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It is unitary and self-inverse, i.e.,

P̂ † = P̂ = P̂−1 , (2.54)

and it can be defined through its action on ψ ∈ H as

(P̂ψ)(x, s) = ψ(−x, s) . (2.55)

We assume that the orbital ϕ ≡ ϕ0 is invariant under spatial inversion, such that

ϕ(x) = ϕ(−x) . (2.56)

This implies the following transformation behavior of the atomic orbitals:

P̂ |ϕsR〉 = P̂ T̂R |ϕs〉 = T̂−R P̂ |ϕs〉 = T̂−R |ϕs〉 = |ϕs,−R〉 . (2.57)

For the Bloch-like functions, we then obtain

P̂ |ψsk〉 =
1

Nk

∑
R

e−ik·R |ϕs,−R〉 =
1

Nk

∑
R

eik·R |ϕsR〉 = |ψs,−k〉 . (2.58)

Here, we have used the condition Nk = N−k, which also follows from Eq. (2.56).

Now, assume that the system is invariant under spatial inversion, i.e.,[
P̂ , Ĥ

]
= 0 . (2.59)

This implies for the matrix elements of the fundamental Hamiltonian that

〈ϕsR |Ĥ |ϕs′〉 = 〈ϕsR |P̂ †Ĥ P̂ |ϕs′〉 = 〈ϕs,−R |Ĥ |ϕs′〉 , (2.60)

and hence for the Hamiltonian matrix that

Hss′(k) =
1

N 2
k

∑
R

e−ik·R 〈ϕs,−R |Ĥ |ϕs′〉 (2.61)

=
1

N 2
k

∑
R

eik·R 〈ϕsR |Ĥ |ϕs′〉 = Hss′(−k) , (2.62)

which can be written equivalently as

H(k) = H(−k) . (2.63)

From the Pauli matrix representation, we thus obtain

f(k) = f(−k) , (2.64)

g(k) = g(−k) . (2.65)
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In direct space, the equivalent conditions read

H(R) = H(−R) , (2.66)

as well as

f(R) = f(−R) , (2.67)

g(R) = g(−R) , (2.68)

which can be shown by substituting k 7→ −k in Eq. (1.149) for the Fourier transform.

2.1.4. Point-group symmetries

Finally, we consider the symmetries of the group C3v , which is the point group of BiTeI.
These are the rotation by 2π/3 around the z-axis, C3, and the reflection through the
vertical xz-plane, σv (see Refs. [BAN11; Ish+11] and Sct. 3.1).

Three-fold rotation.—The operator Ĉ3 implementing a rotation by 2π/3 around the z-
axis has the following properties (see Ref. [Mes62, Ch. XIII, §11 and §19]):

Ĉ†3 x̂ Ĉ3 = C3 x̂ , (2.69)

Ĉ†3 p̂ Ĉ3 = C3 p̂ , (2.70)

Ĉ†3 σ Ĉ3 = C3σ , (2.71)

where on the right hand side, C3 denotes the (3× 3) matrix

C3 =

cos 2π
3 − sin 2π

3 0

sin 2π
3 cos 2π

3 0

0 0 1

 =


−1

2 −
√

3
2 0

√
3

2 −1
2 0

0 0 1

 . (2.72)

The operator Ĉ3 is unitary and can be defined through its action on ψ ∈ H as

(Ĉ3ψ)(x, s) =
∑
s′

[
e−iπ

3
σz
]
ss′
ψ(C−1

3 x, s′) . (2.73)

If we identify the spin indices as ↑ ≡ +1 , ↓ ≡ −1 , such that formally

[σz]ss′ = s δss′ , (2.74)

we can write Eq. (2.73) shorthand as

(Ĉ3ψ)(x, s) = e−iπ
3
s ψ(C−1

3 x, s) . (2.75)

We assume that the atomic orbital ϕ ≡ ϕ0 (which is concentrated around the origin) is
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invariant under this transformation, i.e.,

ϕ(x) = ϕ(C−1
3 x) . (2.76)

This then implies

Ĉ3 |ϕsR〉 = Ĉ3 T̂R |ϕs〉 = T̂C3R Ĉ3 |ϕs〉 = T̂C3R |ϕs〉 e−iπ
3
s = |ϕs,C3R〉 e−iπ

3
s . (2.77)

From this, we obtain the invariance of the normalization constant,

N 2
k =

∑
R

e−ik·R 〈ϕsR |ϕs〉 (2.78)

=
∑
R

e−ik·R 〈ϕsR |Ĉ†3 Ĉ3 |ϕs〉 (2.79)

=
∑
R

e−ik·R 〈ϕs,C3R |ϕs〉 (2.80)

=
∑
R

e−ik·C−1
3 R 〈ϕsR |ϕs〉 (2.81)

=
∑
R

e−i(C3k)·R 〈ϕsR |ϕs〉 (2.82)

= (NC3k)2 , (2.83)

and subsequently the transformation law of the Bloch-like vectors,

Ĉ3 |ψsk〉 = |ψs,C3k〉 e−iπ
3
s . (2.84)

A similar calculation using the invariance of the fundamental Hamiltonian, Ĥ = Ĉ†3Ĥ Ĉ3 ,
further yields the constraint on the Hamiltonian matrix,

Hss′(k) = eiπ
3
sHss′(C3k) e−iπ

3
s′ , (2.85)

which in matrix notation reads

H(k) = eiπ
3
σzH(C3k) e−iπ

3
σz . (2.86)

The Pauli matrix representation then yields

f(k) + g(k) · σ = f(C3k) + g(C3k) · [C3σ] , (2.87)

where we have used that

eiπ
3
σzσ e−iπ

3
σz = C3σ . (2.88)

Equation (2.87) can be written equivalently as

f(k) + g(k) · σ = f(C3k) + [C−1
3 g](C3k) · σ , (2.89)
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from which we obtain directly

f(k) = f(C3k) , (2.90)

g(k) = [C−1
3 g](C3k) , (2.91)

where the second condition can be written equivalently as

[C3g](k) = g(C3k) . (2.92)

The corresponding conditions in direct space look precisely the same (thus, they are
obtained by simply substituting k 7→ R in Eqs. (2.86) and (2.90)–(2.91)).

Mirror reflection.—A reflection through the vertical xz-plane can be defined as the
product of a spatial inversion and a rotation around the y axis by an angle of π (see
Ref. [Mes62, Ch. XV, §10]). The corresponding operator M̂y has the properties

M̂ †y x̂ M̂y = My x̂ , (2.93)

M̂ †y p̂ M̂y = My p̂ , (2.94)

M̂ †y σM̂y = −My σ , (2.95)

where on the right hand side, My denotes the (3× 3) matrix

My =

1 0 0

0 −1 0

0 0 1

 . (2.96)

Note in particular the sign change in Eq. (2.95), which comes from the fact that a spatial
inversion leaves the spin invariant (see Eq. (2.53)). The reflection operator is unitary
and self-inverse, i.e.,

M̂ †y = M̂y = M̂−1
y , (2.97)

and its explicit action on ψ ∈ H reads as

(M̂yψ)(x, s) =
∑
s′

[σy]ss′ ψ(Myx, s
′) . (2.98)

The transformation properties of the basis functions and of the Hamiltonian matrix can
be derived analogously as in the case of the three-fold rotation symmetry, with the only
difference being the additional sign factor in Eq. (2.95). Thus, assuming that

ϕ(x) = ϕ(Myx) , (2.99)

we obtain

M̂y |ϕsR〉 =
∑
t

|ϕt,MyR〉 [σy]ts , (2.100)
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as well as

M̂y |ψsk〉 =
∑
t

|ψt,Myk〉 [σy]ts . (2.101)

The invariance of the fundamental Hamiltonian under mirror reflection, [M̂y , Ĥ ] = 0,
then translates into the condition on the Hamiltonian matrix

H(k) = σyH(Myk)σy . (2.102)

From the Pauli matrix representation, we further obtain

f(k) = f(Myk) , (2.103)

[Myg](k) = −g(Myk) , (2.104)

where the additional sign in the last equation comes from Eq. (2.95). The corresponding
conditions in direct space are again completely analogous (i.e., they are obtained by
simply substituting k 7→ R). The following Tables 2.1, 2.2 and 2.3 summarize the
transformation properties of the basis functions as well as of the Hamiltonian matrices
in dual and in direct space, for all the symmetries considered in this section.
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Possible symmetry Transformation of Transformation of

of the Hamiltonian atomic orbitals Bloch-like vectors

Hermiticity Ĥ = Ĥ† — —

Time-reversal
[
Θ̂, Ĥ

]
= 0 Θ̂ |ϕs,R〉 =

∑
s′ |ϕs′,R〉 [−iσy]s′s Θ̂ |ψs,k〉 =

∑
s′ |ψs′,−k〉 [−iσy]s′s

(Spatial inversion)
[
P̂ , Ĥ

]
= 0 P̂ |ϕs,R〉 = |ϕs,−R〉 P̂ |ψs,k〉 = |ψs,−k〉

Three-fold rotation
[
Ĉ3 , Ĥ

]
= 0 Ĉ3 |ϕs,R〉 = |ϕs,C3R〉e−iπ

3
s Ĉ3 |ψs,k〉 = |ψs,C3k〉e−iπ

3
s

Mirror reflection
[
M̂y , Ĥ

]
= 0 M̂y |ϕs,R〉 =

∑
s′ |ϕs′,MyR〉 [σy]s′s M̂y |ψs,k〉 =

∑
s′ |ψs′,Myk〉 [σy]s′s

Table 2.1: Possible symmetries of the fundamental Hamiltonian (1.46) and their action on basis functions.
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Hamiltonian matrix Pauli matrix representation

Hermiticity H(k) = H†(k) f(k) = f∗(k) g(k) = g∗(k)

Time-reversal H(k) = [iσy]
†H∗(−k) iσy f(k) = f∗(−k) g(k) = −g∗(−k)

(Spatial inversion) H(k) = H(−k) f(k) = f(−k) g(k) = g(−k)

Three-fold rotation H(k) = eiπ
3
σzH(C3k) e−iπ

3
σz f(k) = f(C3k) [C3g](k) = g(C3k)

Mirror reflection H(k) = σyH(Myk)σy f(k) = f(Myk) [Myg](k) = −g(Myk)

Table 2.2: Symmetries of the Hamiltonian matrix in dual space (defined by Eq. (1.146)).
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Hamiltonian matrix Pauli matrix representation

Hermiticity H(R) = H†(−R) f(R) = f∗(−R) g(R) = g∗(−R)

Time-reversal H(R) = [iσy]
†H∗(R) iσy f(R) = f∗(R) g(R) = −g∗(R)

(Spatial inversion) H(R) = H(−R) f(R) = f(−R) g(R) = g(−R)

Three-fold rotation H(R) = eiπ
3
σzH(C3R) e−iπ

3
σz f(R) = f(C3R) [C3g](R) = g(C3R)

Mirror reflection H(R) = σyH(MyR)σy f(R) = f(MyR) [Myg](R) = −g(MyR)

Table 2.3: Symmetries of the Hamiltonian matrix in direct space (defined by Eq. (1.149)).
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2.2. Derivation of Rashba spin splitting

In this section, we investigate in more detail the implications of the hermiticity, the
time-reversal symmetry and the symmetries of the point group C3v for the Hamiltonian
matrix. Concretely, we will show that by requiring these symmetries, Hss′(k) necessarily
coincides near k = 0 with the Rashba Hamiltonian.

Consider again the Hamiltonian matrix (1.146) in the Pauli matrix representation, i.e.,

H(k) = f(k)1+ g(k) · σ . (2.105)

First, the hermiticity implies that f(k) and g(k) are real-valued functions. Furthermore,
by the time-reversal symmetry, f is an even function, while g is an odd function of the
Bloch momentum k, i.e.,

f(k) = f(−k) , (2.106)

g(k) = −g(−k) . (2.107)

If the Hamiltonian was also invariant under spatial inversion symmetry, hence if

f(k) = f(−k) , (2.108)

g(k) = g(k) , (2.109)

then these equations would together imply that

g(k) = 0 for all k . (2.110)

Thus, the Hamiltonian matrix Hss′(k) = f(k)δss′ would be spin independent and there-
fore lead to a single spin-degenerate energy band. From this, we conclude that a spin
splitting is only possible if either time-reversal symmetry or inversion symmetry is not
preserved. In this thesis, we are concerned with a class of models which are invariant
under time-reversal, but which lack inversion symmetry.1

We now come back to the case of a hermitean and time-reversal invariant Hamiltonian:
by expanding the corresponding functions f(k) and g(k) up to quadratic order in k, we
obtain (with i, j ∈ {x, y, z})

f(k) = f(0) +
∑
i, j

Fij kikj , (2.111)

gi(k) =
∑
j

Gij kj . (2.112)

1The simplest model which does not preserve time-reversal symmetry is obtained for a constant func-
tion g(k) = −µB. The resulting Hamiltonian H(k) = −µB ·σ can be used to describe the Zeeman
effect, i.e., the splitting of electronic energy levels under an applied magnetic field B.
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By the hermiticity, Fij and Gij are real matrices. The linear term of f as well as the
constant and the quadratic terms of g vanish by the time-reversal symmetry. Without
loss of generality, we can further set f(0) = 0, which just corresponds to a constant
energy shift. In matrix notation, Eqs. (2.111)–(2.112) are equivalent to

f(k) = kTF k =
(
kx , ky , kz

)Fxx Fxy Fxz

Fyx Fyy Fyz

Fzx Fzy Fzz


kxky
kz

 , (2.113)

and respectively

g(k) = Gk =

Gxx Gxy Gxz

Gyx Gyy Gyz

Gzx Gzy Gzz


kxky
kz

 . (2.114)

Next, let us study the consequences of the point-group symmetries. The three-fold
rotation symmetry implies that

f(k) = f(C3k) = (C3k)TF (C3k) = kT(CT
3 F C3)k (2.115)

for all k ∈ B, and hence

F = CT
3 F C3 . (2.116)

One can convince oneself that for the components this implies

Fxx = Fyy , (2.117)

Fxy = −Fyx , (2.118)

Fxz = Fzx = Fyz = Fzy = 0 . (2.119)

Thus, the matrix F is of the form

F =

 Fxx Fxy 0

−Fxy Fxx 0

0 0 Fzz

 . (2.120)

Similarly, from the condition

g(k) = (CT
3 g)(C3k) = CT

3 G(C3k) = (CT
3 GC3)k , (2.121)

we obtain

G = CT
3 GC3 , (2.122)

and thus G is of the same form as F , i.e.,

G =

 Gxx Gxy 0

−Gxy Gxx 0

0 0 Gzz

 . (2.123)
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The consequences of the mirror reflection symmetry can be deduced analogously: from
the condition f(k) = f(Myk), we obtain

F = MT
y FMy , (2.124)

which in turn implies that

Fxy = Fyx = Fxz = Fzx = 0 . (2.125)

On the other hand, the condition g(k) = −(Myg)(Myk) yields

G = −MT
y GMy , (2.126)

and hence, taking into account the additional minus sign,

Gxx = Gyy = Gzz = Gxz = Gzx = 0 . (2.127)

By combining the three-fold rotation and the mirror reflection symmetries, we conclude
that the matrices F and G must be of the following form:

F =

Fxx 0 0

0 Fxx 0

0 0 Fzz

 , G =

 0 Gxy 0

−Gxy 0 0

0 0 0

 . (2.128)

Correspondingly, the Hamiltonian matrix is given up to quadratic order in k by

H(k) = kTF k + (Gk) · σ (2.129)

= Fxx (k2
x + k2

y) + Fzz k
2
z +Gxy (kyσx − kxσy) . (2.130)

Thus, we have shown that this general form of the Hamiltonian matrix near k = 0 can
be deduced directly from the time-reversal symmetry and the symmetries of the point
group C3v of the BiTeI crystal.

By further neglecting the kz dependence, i.e., by setting fzz = 0, the above Hamiltonian
matrix further reduces to

H(k) = Fxx (k2
x + k2

y)−Gxy (kxσy − kyσx) . (2.131)

This expression coincides precisely with the (two-dimensional) Rashba Hamiltonian,
which will be described in more detail in Sct. 3.2. The parameters Fxx and Gxy are
related to the Rashba energy ER and the Rashba wavevector kR (see Eq. (3.16)) by

Fxx =
ER

k2
R

, Gxy = −2ER

kR
, (2.132)
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or conversely by

ER =
G2
xy

4Fxx
, kR = − Gxy

2Fxx
. (2.133)

In Sct. 3.2, we will see that the Rashba Hamiltonian can be used to approximately
describe the dispersion of the lowest conduction bands of BiTeI.

2.3. Minimal tight-binding model

In this section, we construct a tight-binding model which approximately coincides near
k = 0 with the Rashba Hamiltonian. In general, a tight-binding model is characterized
by the condition that the Hamiltonian matrix in direct space, H(R −R′), vanishes if
the distance vector (R −R′) exceeds a few lattice sites. Here, we even assume that it
vanishes unless R and R′ are nearest-neighbor vectors. By further restricting ourselves
to a single plane of the hexagonal Bravais lattice (i.e., to the sites R = (Rx, Ry, Rz)

T

with Rz = 0), each lattice site has only six nearest neighbors (see Fig. 1.1a), and the
corresponding distance vectors are given in terms of the primitive vectors a1 and a2 by

R1 = a2 , (2.134)

R2 = a1 + a2 , (2.135)

R3 = a1 , (2.136)

R4 = −a2 , (2.137)

R5 = −a1 − a2 , (2.138)

R6 = −a1 . (2.139)

Thus, we consider a model Hamiltonian matrix in direct space, which is of the form

Hss′(R) =
6∑
i=1

Hss′(Ri) δR,Ri . (2.140)

By Fourier transformation, we obtain from this the Hamiltonian matrix in dual space as

Hss′(k) =
6∑
i=1

Hss′(Ri) e−ik ·Ri . (2.141)

In the following, we will choose the parameters Hss′(Ri) in such a way that the resulting
Hamiltonian matrix is invariant under time-reversal symmetry and the symmetries of
the point group C3v . By the argument of the preceding section, this implies that the
Hamiltonian matrix in dual space coincides near k = 0 with the Rashba Hamiltonian.

We start again from the Pauli matrix representation of the Hamiltonian matrix as given
by Eq. (1.157). The above expansion (2.140) of the Hamiltonian matrix implies an
analogous expansion of the functions f(R) and g(R). Hence, it remains to specify the
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parameters f(Ri) and g(Ri) (i = 1, . . . , 6) in accordance with the symmetry constraints
derived in the previous section (see Table 2.3). First, the hermiticity, the time-reversal
symmetry and the point-group symmetries imply that f(R) is real-valued and satisfies

f(−R) = f(R) , (2.142)

f(C3R) = f(R) , (2.143)

f(MyR) = f(R) . (2.144)

Therefore, if f(R) is restricted to nearest-neighbor vectors within a plane of the hexag-
onal lattice, it is completely determined by a single real parameter

f(R1) ≡ −t ∈ R . (2.145)

By Eqs. (2.142)–(2.144), we then have

f(Ri) = −t ∀ i ∈ {1, . . . , 6} . (2.146)

Thus, f is given in direct space by

f(R) =
6∑
i=1

f(Ri) δR,Ri = −t
6∑
i=1

δR,Ri , (2.147)

and in dual space by

f(k) = −t
6∑
i=1

e−ik ·Ri = −2t
{

cos(k ·R1) + cos(k ·R2) + cos(k ·R3)
}
. (2.148)

In terms of the dimensionless quantity

κ = a0k , (2.149)

were a0 denotes the lattice constant, we obtain the explicit expression

f(k) = −2t

{
cos(κy) + cos

(√
3

2
κx +

1

2
κy

)
+ cos

(√
3

2
κx −

1

2
κy

)}
(2.150)

= −2t

{
cos(κy) + 2 cos

(√
3

2
κx

)
cos

(
1

2
κy

)}
. (2.151)

Similarly, the symmetries imply that g(R) is purely imaginary, and

g(−R) = −g(R) , (2.152)

g(C3R) = (C3g)(R) , (2.153)

g(MyR) = −(Myg)(R) . (2.154)

In particular, using that MyR1 = −R1, we find that

(Myg)(R1) = −g(MyR1) = −g(−R1) = g(R1) , (2.155)
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which in turn implies that

gy(R1) = 0 . (2.156)

As g(R) is restricted to nearest-neighbor vectors, it is therefore completely determined
by only two real parameters α, γ ∈ R defined as

gx(R1) ≡ −iα , gz(R1) ≡ iγ . (2.157)

Explicitly, the three components of g are then given by(
gx(R)

gy(R)

)
= −iα

{(
1

0

)
δ−R,R1

+

(
−1/2
√

3/2

)
δ−R,C3R1

+

(
−1/2

−
√

3/2

)
δ−
R,C−1

3 R1

}
, (2.158)

as well as by

gz(R) = iγ
{
δ−R,R1

+ δ−R,C3R1
+ δ−

R,C−1
3 R1

}
, (2.159)

where we have abbreviated

δ−
R,R′

= δR,R′ − δR,−R′ . (2.160)

By Fourier transformation (see Eq. (2.141)), this is equivalent to(
gx(k)

gy(k)

)
= −2α

{(
1

0

)
sin(k·R1)+

(
−1/2
√

3/2

)
sin(k·R5)+

(
−1/2

−
√

3/2

)
sin(k·R3)

}
(2.161)

and respectively

gz(R) = 2γ
{

sin(k ·R1) + sin(k ·R5) + sin(k ·R3)
}
. (2.162)

With κ defined by Eq. (2.149), we further obtain the explicit expressions

gx(k) = −2α

{
sin(κy)−

1

2
sin

(
−
√

3

2
κx −

1

2
κy

)
− 1

2
sin

(√
3

2
κx −

1

2
κy

)}
(2.163)

= −2α

{
sin(κy) + cos

(√
3

2
κx

)
sin

(
1

2
κy

)}
, (2.164)

as well as

gy(k) = −2α

{√
3

2
sin

(
−
√

3

2
κx −

1

2
κy

)
−
√

3

2
sin

(√
3

2
κx −

1

2
κy

)}
(2.165)

= 2α
√

3 sin

(√
3

2
κx

)
cos

(
1

2
κy

)
, (2.166)
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Figure 2.1: Energy bands of the minimal tight-binding model for α/t = 2.

and finally also

gz(k) = 2γ

{
sin(κy) + sin

(
−
√

3

2
κx −

1

2
κy

)
+ sin

(√
3

2
κx −

1

2
κy

)}
(2.167)

= 2γ

{
sin(κy)− 2 cos

(√
3

2
κx

)
sin

(
1

2
κy

)}
. (2.168)

In summary, the minimal tight-binding model is defined in dual space by Eq. (2.105),
where f(k) and g(k) are given in terms of the real hopping parameters t, α and γ by
Eqs. (2.151) and (2.163)–(2.168), respectively.

The two energy bands of the model are given by (see Eq. (1.162))

E∓(k) = f(k)∓ |g(k)| , (2.169)

and they are shown in Fig. 2.1 for the parameter values

α/t = 2 , γ/t = 0 . (2.170)

Furthermore, Fig. 2.2 shows the density of states of the tight-binding model, which is
defined as

D(E) =
1

|B|

∫
B

d2k
[
δ(E − E−(k)) + δ(E − E+(k))

]
. (2.171)
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Figure 2.2: Density of states of the minimal tight-binding model for α/t = 2. The vertical line
marks the position of the band crossing at the center of the Brillouin zone.

From this, we read off the bandwidth (i.e., the difference between the maximum and the
minimum energy) of the model as

(∆E)max/t ≈ 16.5 . (2.172)

Finally, for small wavevectors satisfying

|κ| ≡ a0 |k| � 1 , (2.173)

we can expand the functions f(k) and g(k) around k = 0. Approximating

sinx ≈ x , cosx ≈ 1− x2

2
(2.174)

in Eqs. (2.151) and (2.163)–(2.168), we obtain to second order in κ the expansions

f(κ) = −6t+
3t

2
(κ2
x + κ2

y) , (2.175)

gx(κ) = −3ακy , (2.176)

gy(κ) = 3ακx , (2.177)

gz(κ) = 0 . (2.178)

Thus, the Hamiltonian matrix in dual space reads to second order in κ as

H(k) =
3t

2
a2

0 (k2
x + k2

y) + 3αa0 (kxσy − kyσx) , (2.179)

where we have neglected the constant energy shift (−6t) in Eq. (2.175). As expected,
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this expression coincides again precisely with the Rashba Hamiltonian (see Sct. 3.2).
The parameters t and α are related to ER and kR (see Eq. (3.16)) by

t =
2ER

3(a0kR)2
, α =

2ER

3a0kR
, (2.180)

or conversely by

ER =
3α2

2t
, kR =

α

a0 t
. (2.181)

The Rashba-type dispersion of the bands near k = 0 can be clearly seen in Fig. 2.1.



3. Rashba semiconductor BiTeI

3.1. Crystal and band structure

The crystal structure of BiTeI can be characterized as follows [BAN11; Ish+11] (see
[IUCr05; Wik16] for the general crystallographic classification):

Lattice system: hexagonal,

Lattice type: primitive,

Bravais lattice: hexagonal (hP ),

Point group: C3v,

Space group: P3m1 (No. 156),

Crystal system: trigonal,

Crystal family: hexagonal.

The crystal structure of BiTeI is shown schematically in Fig. 3.1. It has a three-fold
principal axis C3 (which defines the z-axis) and three vertical mirror planes σv . Cor-
respondingly, the point group of BiTeI is C3v (Schoenflies notation). Each unit cell of
BiTeI has a basis consisting of three atoms, bismuth (Bi), tellurium (Te) and iodine (I).
These different atom species form layers stacking along the z-axis. Due to the particular
arrangement of the Te and I atoms, the crystal structure lacks inversion symmetry.

The strong spin-orbit coupling of the Bi atoms together with the inversion-asymmetric
crystal structure of BiTeI leads to a spin splitting of the bulk energy bands of this ma-
terial [BAN11; Ish+11; Lee+11]. The band structure of BiTeI is shown in Fig. 3.2 in
the plane defined by kz = π/c0 (where c0 denotes the lattice constant in the z-direction;
see Fig. 1.2). This band structure is particularly simple, as only two bands are inter-
sected by the Fermi energy. (In the undoped samples considered in Ref. [Dem+12], the
Fermi energy lies slightly above the band crossing at the A point.) Near the A point
of the Brillouin zone, the two lowest conduction bands can be described by the two-
dimensional Rashba Hamiltonian, which will be explained in more detail in the next
section. Remarkably, the energy difference between these two bands reaches ' 400 meV
at the minimum of the lower band. In addition, there is a rather mild dispersion of the
bands along the Γ–A direction, which is due to a weak interaction between the consec-
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Figure 3.1: Crystal structure of BiTeI.

utive Te–Bi–I layers along the z-axis [Lee+11]. The 12 valence and 6 conduction bands
below and above the Fermi energy were derived from the 18-band tight-binding model
of Ref. [Ish+11]. This model takes into account Bi-6p, Te-5p and I-5p orbitals and was
constructed using maximally localized Wannier functions [Kun+10; Mos+08; SMV01].

3.2. Two-dimensional Rashba model

Near the A point of the Brillouin zone and within the kz = π/c0 plane (see Fig. 1.2),
the dispersion of the two lowest conduction bands of BiTeI can be described by the
two-dimensional Rashba model [BR60; Ras60]. This is defined by the Hamiltonian

ĤR =
p̂2

2m∗
+
α

~
ez · (p̂× σ) ≡ p̂2

2m∗
+
α

~
(
p̂xσy − p̂yσx

)
, (3.1)

where m∗ denotes the effective electron mass and α the Rashba parameter [Bor+13].
The above Hamiltonian acts on wave functions in L2(R2,C2), and it can be diagonalized
in terms of the momentum eigenvectors (see Sct. 1.1), which are defined by their wave
functions as

〈x, s′ |k, s〉 =
1

(2π)3/2
eik·x δss′ . (3.2)

Note that in this section, k ∈ R2 denotes a two-dimensional wavevector. For each k, the
Hamiltonian matrix (HR)ss′(k) is defined by

ĤR |k, s′〉 =
∑
s

|k, s〉 (HR)ss′(k) , (3.3)
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Figure 3.2: Dispersion of the bulk energy bands of BiTeI along the special directions H–A–
L–H (see Fig. 1.2). The energy is measured relative to the conduction band crossing at the A
point. The 12 valence and 6 conduction bands (green color) have been derived from the 18-band
model of Ref. [Ish+11]. The red bands, which accurately reproduce the dispersion of the two
lowest conduction bands, have been obtained from the effective single-orbital model of Sct. 3.3
(including up to 10th-nearest-neighbor hopping).

or equivalently by

〈k, s |ĤR |k′, s′〉 = δ2(k − k′) (HR)ss′(k) . (3.4)

From Eq. (3.1), we obtain the explicit form of this Hamiltonian matrix as

HR(k) =
~2|k|2

2m∗
+ α(kxσy − kyσx) . (3.5)

Furthermore, this hermitean (2 × 2) matrix can be represented for each k in terms of
the Pauli matrices as in Eq. (1.157), where the coefficient functions are given by

f(k) =
~2|k|2

2m∗
, gx(k) = −αky , gy(k) = αkx , gz(k) = 0 . (3.6)

In particular, the Hamiltonian matrix can be diagonalized for each k exactly as de-
scribed in Sct. 1.5.2. We thus obtain the eigenvectors of the Rashba Hamiltonian (3.1)
by a unitary transformation,

|k, n〉 =
∑
s

|k, s〉Usn(k) , (3.7)
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where the matrix U(k) ≡ Usn(k) is given by Eq. (1.163). For the concrete coefficient
functions specified in Eq. (3.6), this matrix simplifies to

U(k) =
1√
2

(
1 1

−ieiϕ(k) ieiϕ(k)

)
, (3.8)

where ϕ(k) ∈ [0, 2π) denotes the polar angle of the two-dimensional vector (kx, ky)
T,

eiϕ(k) =
kx + iky√
k2
x + k2

y

=
kx + iky√

(|k| − kz)(|k|+ kz)
. (3.9)

In particular, by Eq. (3.6), ϕ(k) it is related to ϕ(g) (as defined in Eq. (1.164)) by

ϕ(g) = ϕ(k) +
π

2
. (3.10)

The real-space wave functions of the so-defined eigenvectors are given by

〈x, s |k, n〉 =
1

(2π)3/2
eik·x Usn(k) . (3.11)

They diagonalize the Hamiltonian (3.1) in the sense that

Ĥ |k, n〉 = En(k) |k, n〉 , (3.12)

or equivalently,

〈k, n |Ĥ |k′, n′〉 = δ2(k − k′)En(k) , (3.13)

where the eigenvalues are given by

E∓(k) =
~2|k|2

2m∗
∓ α |k| . (3.14)

Hence, n = − labels the lower, and n = + the upper branch of the Rashba dispersion.
By further introducing the Rashba wavevector kR and the Rashba energy ER as

kR =
m∗α

~2
, ER =

~2k2
R

2m∗
, (3.15)

the eigenenergies (3.14) can be written equivalently as

E∓(k) = ER

[(
|k|
k0

)2

∓ 2

(
|k|
k0

)]
. (3.16)

As explained in Ref. [Sch+16a], the characteristics of the Rashba model dispersion are:
(i) the band crossing at k = 0, (ii) the approximately linear dispersion for small wave
vectors, and (iii) the band minimum which is attained on the circle |k| = kR . The
Rashba energy ER , which equals the energy difference between the band crossing and
the minimum of the lower band, is often used to quantify the Rashba spin splitting of
the energy bands in real materials [Ish+11].
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Figure 3.3: Band structure of BiTeI in the 18-band model, and Rashba model dispersion ap-
proximating the lowest conduction bands near the A point. The dispersion is shown along the
special directions A–H and A–L (see Fig. 1.2).

As mentioned above, the Rashba model can be used to approximately describe the
dispersion of the lowest conduction bands of BiTeI near the A point. For this purpose,
we choose the parameters from Ref. [BAN11]:

ER = 113 meV , kR = 0.05 Å
−1
, (3.17)

or correspondingly,

m∗ = 0.084me , α = 4.52 eVÅ , (3.18)

where me denotes the electron mass. The resulting dispersion of the Rashba model is
shown in Fig. 3.3 in comparison with the band structure of BiTeI as calculated from the
18-band model. Note, however, that the Rashba model neglects the dispersion in the kz
direction, which is also present in BiTeI (see Sct. 3.1).

3.3. Effective single-orbital model

The 18-band model of Ref. [Ish+11] is an effective tight-binding model, which is given
in the form of an (18× 18) Hamiltonian matrix Hij(R). Here, R ∈ Γ labels the Bravais
lattice vector, while i = (A,µ, s) and j = (B, ν, s′) are multi-indices labeling atom
species A,B ∈ {Bi,Te, I}, orbitals µ, ν ∈ {px, py, pz} and spins s, s′ ∈ {↑, ↓}. Note,
however, that these indices do not actually refer to atomic orbitals, but to the so-called
maximally localized Wannier functions [Kun+10; Mos+08; SMV01]. However, as the
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atomic orbitals serve as an “initial guess” for constructing these maximally localized
Wannier functions [SMV01], the latter are still labeled by “orbital” indices. The 18-
band model contains only up to 6th-nearest-neighbor hoppings, which means that the
matrix Hij(R) can be non-zero only for those vectors R of the hexagonal lattice which
can be reached from the origin by six times “hopping” from one site to one of its nearest
neighbors. By Fourier transforming the Hamiltonian matrix,

Hij(k) =
∑
R

Hij(R) e−ikR , (3.19)

and subsequently diagonalizing the resulting matrix in dual space,∑
j

Hij(k)Ψn
j (k) = En(k)Ψn

i (k) , (3.20)

we obtain the energy bands En(k) and the corresponding eigenvectors Ψn(k) of the 18-
band model (see Fig. 3.2). These are labeled by a band index n ∈ {1, . . . , 18} in such a
way that for any k,

En(k) ≤ Em(k) , if n < m . (3.21)

As mentioned above, only two bands (with the indices n = 13 and n = 14) are inter-
sected by the Fermi energy. These are the lowest conduction bands, which are expected
to be dominant in determining the low-temperature properties of the material. There-
fore, a natural question is whether one can construct a simplified tight-binding model
which reproduces only these two conduction bands. In particular, this would be use-
ful for numerical simulations, where the CPU time often scales polynomially with the
number of bands. For answering this question, it would at first sight be tempting to
simply select the two bands E13(k) and E14(k), and to define the tight-binding model
in direct space by taking their inverse Fourier transforms. This procedure, however,
does not lead to a Hamiltonian matrix which decays sufficiently fast on the direct lat-
tice, because the energy bands are not analytic functions of the Bloch momentum (see
Ref. [Kat04, Sct. VI.7] for general relations between the analyticity of a function and
the decay of its Fourier transform). In particular, due to the band crossing at the A
point, the two lowest conduction bands are not even differentiable at this point. In the
following, we will therefore describe an alternative route to this problem, which allows
us to construct a two-band tight-binding model that in fact reproduces accurately the
two lowest conduction bands of BiTeI.

For simplicity, we neglect again the kz dispersion of the energy bands (however, this
approximation is not essential for our general procedure). Thus, we assume that k is
restricted to the hexagonal face of the Brillouin zone which contains the A point (see
Fig. 1.2a), and R labels the sites of the two-dimensional lattice as shown in Fig. 1.1a.
Furthermore, we denote the two lowest conduction bands (with n = 13 and n = 14) by
E−(k) and E+(k), respectively. For the following discussion, it will be important to note
that the (18 × 18) Hamiltonian matrix H(k) as given by Eq. (3.19) is in fact analytic
in the wavevector k (although the energy bands E−(k) and E+(k) are not analytic).
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Moreover, the spin expectation values in the corresponding eigenstates Ψ±(k) can be
calculated as

〈S〉±(k) =
~
2

∑
A,µ

∑
s,s′

[Ψ±Aµs(k)]∗ σss′ Ψ
±
Aµs′(k) . (3.22)

However, in contrast to the single-orbital model of Sct. 1.5.2—where the spin expectation
values are given by Eq. (1.166)—the vectors 〈S〉±(k) as calculated from the 18-band
model by means of Eq. (3.22) are not normalized. In fact, for general k, we even have

|〈S〉+(k)| 6= |〈S〉−(k)| . (3.23)

Nevertheless, the following relation holds in the 18-band model for any k:

〈S〉+(k)

|〈S〉+(k)|
= − 〈S〉

−(k)

|〈S〉−(k)|
, (3.24)

hence the upper and the lower conduction bands have opposite spin orientations.

We can now construct an effective single-orbital model Hss′(k), which reproduces the
two lowest conduction bands of BiTeI, in three steps as follows:

(i) First, we identify for each k the eigenvalues e±(k) and the spin expectation values
〈s〉±(k) of the single-orbital model with the corresponding (normalized) quantities
of the 18-band model. This means, we set

e±(k) := E±(k) , (3.25)

〈s〉±(k) :=
~
2

〈S〉±(k)

|〈S〉±(k)|
. (3.26)

By Eqs. (1.162) and (1.166), these conditions are equivalent to

f(k)± |g(k)| = E±(k) , (3.27)

± g(k)

|g(k)|
=
〈S〉±(k)

|〈S〉±(k)|
, (3.28)

where f(k) and g(k) are the coefficient functions in the Pauli matrix representa-
tion (see Eq. (1.157)). The above equalities determine these coefficient functions
uniquely: by Eq. (3.27), we have

f(k) =
1

2

(
E+(k) + E−(k)

)
, (3.29)

|g(k)| = 1

2

(
E+(k)− E−(k)

)
, (3.30)

and from Eq. (3.28), we obtain

g(k) = |g(k)| 〈S〉
+(k)

|〈S〉+(k)|
=

1

2

(
E+(k)− E−(k)

) 〈S〉+(k)

|〈S〉+(k)|
. (3.31)
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Figure 3.4: Lowest conduction bands E±(k) of BiTeI along the special directions L̄–A–L (kx
direction) and H̄–A–H (ky direction), and corresponding functions f(k), g(k) of the effective
single-orbital model. Apart from the A point, the bands also cross at the L points and at
additional k points (which are called “accidental” band crossings [Sch+12]).

We remark that by the identity (3.24), we can define g equivalently as

g(k) = −1

2

(
E+(k)− E−(k)

) 〈S〉−(k)

|〈S〉−(k)|
. (3.32)

Thus, we have defined an the effective single-orbital model with the Hamiltonian
matrix in dual space

Heff(k) = f(k)1+ g(k) · σ , (3.33)

where the functions f(k) and g(k) are given by Eqs. (3.29) and (3.31), respectively.
The crucial point is now that these functions are analytic in the whole Brillouin
zone, and hence the so-defined Hamiltonian matrix Heff(k) is analytic in k, too. In
fact, this can be seen from Fig. 3.4, which shows f(k) and g(k) along the special
directions L̄–A–L and H̄–A–H (see Fig. 1.2a). Despite the fact that the two lowest
conduction bands cross at various k points, these functions are analytic in the whole
Brillouin zone. We further remark that the effective single-orbital model inherits
all the symmetries of the 18-band model, hence it is invariant under time-reversal
and the C3v point group operations as described in Sct. 2.1.

(ii) Next, we define the effective Hamiltonian matrix direct space, Heff(R), by taking
the inverse Fourier transform of Eq. (3.33) (analogously to Eq. (1.149)). The matrix
Heff(R) can then again be expanded in terms of the identity matrix and the Pauli
matrices as in Eq. (1.159), where the coefficient functions f(R) and g(R) are the
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Figure 3.5: Functions f(R) and g(R) along the y direction of the hexagonal Bravais lattice.
The distance vector is given in integer multiples of the primitive vector a2 (see Fig. 1.1a). The
value of f at R = 0 corresponds to a constant energy shift and can therefore be neglected.

inverse Fourier transforms of Eqs. (3.29) and (3.31), respectively. By the analyticity
of f(k) and g(k), these Fourier transforms decay rapidly with the distance vector
R. This is indeed clearly seen in Fig. 3.5, which shows f(R) and g(R) along the
y direction of the Bravais lattice (see Fig. 1.1a). Furthermore, by the hermiticity
and the time-reversal symmetry, f(R) is real-valued and even, while g(R) is purely
imaginary and odd under R 7→ −R (see Table 2.3 in Sct. 2.1).

(iii) Finally, we construct a tight-binding model by neglecting the entries of Heff(R) for
large distance vectors R. Due to the rapid decay property of the Hamiltonian ma-
trix, this is indeed a reasonable approximation. For example, let H≤10(R) be the
Hamiltonian matrix which is (i) equal to Heff(R) if R is an nth-nearest-neighbor
vector with n ≤ 10, and (ii) zero otherwise. The Fourier transformation and subse-
quent diagonalization of this reduced Hamiltonian matrix yields the energy bands
of the tight-binding model. As seen in Fig. 3.2, these energy bands agree almost
perfectly with the original energy bands of the 18-band model.

In summary, we have derived an effective tight-binding model H≤10(R) on the hexagonal
Bravais lattice, which takes into account hoppings between up to 10th-nearest-neighbor
vectors and which accurately reproduces the dispersion of the two lowest conduction
bands of BiTeI.
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Before closing this chapter, let us take a closer look at Fig. 3.4, which reveals detailed
information about the spin polarization of the lowest conduction bands of BiTeI. In the kx
direction, we have gx = gz = 0, hence all spins point in the σy direction (see Eq. (1.166)).
Furthermore, in the vicinity of the A point, gy depends linearly on the wavevector, i.e.,
gy(k) ∝ kx . On the other hand, in the ky direction near the A point, the spins point in
the σx direction, and gx(k) ∝ −ky . These properties are precisely in accordance with the
Rashba Hamiltonian (see Eq. (3.6)). At larger wavevectors, there appears an additional
out-of-plane spin component (σz), which is characteristic of the C3v symmetry and which
is described by the effective Hamiltonian (3k2

x − k2
y)kyσz [Bah+12].

Finally, for a more comprehensive view of the band structure of BiTeI, we have also
plotted the energy bands E±(k) of the 18-band model as well as the functions f(k)
and g(k) on the whole hexagonal face of the Brillouin zone defined by kz = π/c0 , see
Figs. 3.6–3.11. Clearly, the function g(k) vanishes wherever the two conduction bands
cross. As seen in Figs. 3.11, this does not only happen at the A point in the center of
the hexagonal face of the Brillouin zone, but also at the three inequivalent L points at
the zone boundaries (see Fig. 1.2). In fact, these are all high-symmetry points with the
property that k = −k, and hence the band crossing at these points is enforced by the
time-reversal symmetry. Apart from these points, however, there are additional “acci-
dental” band crossings in the midway between A and L (see Ref. [Sch+12, Supplemental
Material]). The time-reversal symmetry and the threefold rotation symmetry imply that
these accidental band crossings appear simultaneously at six symmetric positions in the
Brillouin zone. Near these points, the two conduction bands form tilted Dirac cones,
which are characterized by a Fermi surface which consists of two lines instead of a single
point (if the Fermi energy is exactly at the band crossings). In Ref. [Sch+12], we have
predicted that these tilted Dirac cones may lead to novel phenomena such as a diverging
orbital paramagnetism. Finally, we remark that similar features (“type-II Dirac cones”)
have been found more recently in the band structure of WTe2 monolayers [Mue+16].
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Figure 3.6: Dispersion of the two lowest conduction bands of BiTeI in the hexagonal face of the
Brillouin zone which is defined by kz = π/c0 (see Fig. 1.2).

Figure 3.7: Function f(k) of the effective single-orbital model.
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Figure 3.8: Function gx(k).

Figure 3.9: Function gy(k).
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Figure 3.10: Function gz(k).

Figure 3.11: Absolute value |g(k)|, which equals the energy difference between the spin-split
lowest conduction bands of BiTeI.





Part II.

Statistical field theory





4. Green function perturbation theory

4.1. Basics of second quantization

We begin this chapter with a brief introduction of the most important notions of sta-
tistical field theory, i.e., field operators (this Sct. 4.1) and temperature Green functions
(next Sct. 4.2). Our presentation is partly based on Ref. [FW71, Ch. 7]. We start from
the second-quantized electronic Hamiltonian

Ĥ = Ĥ0 + V̂ (4.1)

which acts on the fermionic Fock space (see e.g. Refs. [Sal99, Appendix B.1] or [SS16b,
Appendix B]). The Hamiltonian consists of a free part H0 and an interaction part V .
The free part describes (non-interacting) electrons in the external periodic potential Vext

of the nuclei and is given by the second-quantized form of Eq. (1.46) [note the change
in notation: H 7→ H0 and V 7→ Vext ]. Hence,

Ĥ0 =

∫
d3x

∑
s,s′

ψ̂†(x, s)

(
δss′

(
− ~2

2m
∆ + Vext(x)

)
(4.2)

+
i~2

4m2c2
σss′ ·

(
(−∇Vext)(x)×∇

))
ψ̂(x, s′) .

Furthermore, we assume an electron-electron interaction of the form

V̂ =
1

2

∫
d3x

∫
d3x′

∑
s,s′

ψ†(x, s) ψ̂†(x′, s′) v(x,x′) ψ̂(x′, s′) ψ̂(x, s) . (4.3)

Here, the field operators in position/spin space are defined by

ψ̂(x, s) = â(|x, s〉) , (4.4)

ψ̂†(x, s) = â†(|x, s〉) , (4.5)

where â(|ϕ〉) and â†(|ϕ〉) are the fermionic annihilation and creation operators (which can
be defined for any one-particle state |ϕ〉). In Eqs. (4.4)–(4.5), these operators annihilate
and create, respectively, a position and spin eigenvector |x, s〉, which is defined by its
wave function (see Sct. 1.1)

〈y, s′ |x, s〉 = δ3(x− y) δs,s′ . (4.6)
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In particular, the above field operators satisfy the canonical anticommutation relations[
ψ̂(x, s), ψ̂(x′, s′)

]
+

= 0 , (4.7)[
ψ̂†(x, s), ψ̂†(x′, s′)

]
+

= 0 , (4.8)[
ψ̂(x, s), ψ̂†(x′, s′)

]
+

= 〈x, s |x′, s′〉 = δ3(x− x′) δs,s′ , (4.9)

where for any two operators Â and B̂,[
Â, B̂

]
+

= ÂB̂ + B̂Â (4.10)

denotes the anticommutator. In general, we assume that the interaction kernel in Eq.
(4.3) depends only on the distance of the two spatial arguments,

v(x,x′) ≡ v(|x− x′|) , (4.11)

which implies in particular the symmetry v(x,x′) = v(x′,x). This assumption is in
particular fulfilled for the Coulomb interaction kernel,

v(x,x′) =
e2

4πε0

1

|x− x′|
. (4.12)

Next, we introduce the particle-number operator in second quantization,

N̂ =

∫
d3x

∑
s

ψ̂†(x, s)ψ̂(x, s) . (4.13)

Subtracting this from the Hamiltonian (4.1) yields

K̂ = Ĥ − µN̂ , (4.14)

where µ denotes the chemical potential. The grand-canonical partition function at the
inverse temperature β = 1/(kBT ) is now defined in terms of these operators as

Z = Tr
(
e−β(Ĥ−µN̂)

)
≡ Tr

(
e−βK̂

)
. (4.15)

Furthermore, for any operator Ô and for τ ∈ R we define the operator

Ô(τ) = eK̂τ/~ Ô e−K̂τ/~ , (4.16)

which is analogous to the time evolution in the Heisenberg picture under the identification

τ = it . (4.17)

Therefore, τ is usually called “imaginary time”. In the following, we will often suppress
the spin index s and write, for example,

ψ̂(x) ≡ ψ̂(x, s) . (4.18)

It is then obvious how to restore the spin dependencies: one simply has to replace x by
(x, s) and complement all integrations over x by summations over s.
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Finally, let us analyze the units of the various quantities introduced above (see also
Sct. 1.1). Any Fock-space vector |Φ〉 is dimensionless,[

|Φ〉
]

= 1 , (4.19)

which is required by the normalization condition 〈Φ |Φ〉 = 1. On the other hand, an
N -particle wave function in position space has the dimension (see Eq. (1.22) for N = 1)[

Φ(x1, . . . ,xN )
]

= m−3N/2 , (4.20)

which is consistent with the normalization condition∫
d3x1 . . .

∫
d3xN |Φ(x1, . . . ,xN )|2 = 1 . (4.21)

Next, the annihilation and creation operators â(†)(|ϕ〉) of any one-particle state |ϕ〉 act
on the dimensionless Fock-space vectors and can therefore be regarded as dimensionless
operators themselves. On the other hand, the field operators in position space are defined
by Eqs. (4.4)–(4.5). Using that the map |ϕ〉 7→ â(|ϕ〉) is antilinear and |ϕ〉 7→ â†(|ϕ〉) is
linear, one shows directly the relations

â(|ϕ〉) =

∫
d3x ϕ∗(x)ψ̂(x) , (4.22)

â†(|ϕ〉) =

∫
d3x ϕ(x)ψ̂†(x) . (4.23)

These imply that the field operators in position space have the dimension[
ψ̂(x)

]
=
[
ψ̂†(x)

]
= m−3/2 , (4.24)

which is consistent with the anticommutation relation (4.9). Note that the time depen-
dence of the field operators as defined by Eq. (4.16) does not change their dimensions.

4.2. Temperature Green functions

In this thesis, we consider only temperature Green functions in imaginary time, also
called Schwinger functions (see Refs. [BF04; FW71]). These are analogous to the ordi-
nary (real-time) temperature Green functions under the identification (4.17).

Definition 4.1. For n ≥ 1 and for τ1, . . . , τ2n ∈ [0, ~β], the 2n-point temperature Green
function G2n is defined as

G2n(x1, τ1; . . . ;x2n, τ2n) = (4.25)

1

Z
Tr
(
e−βK̂ T

[
ψ̂(x1, τ1) . . . ψ̂(xn, τn)ψ̂†(x2n, τ2n) . . . ψ̂†(xn+1, τn+1)

])
,

where Z is the grand-canonical partition function given by Eq. (4.15).
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In the above expression, the time-ordering operator T is defined with respect to the
imaginary-time arguments. Thus, for any m operators Ô1(x1, τ1), . . . , Ôm(xm, τm), the
time-ordered product is given explicitly by

T
[
Ô1(x1, τ1) . . . Ôm(xm, τm)

]
=
∑
π∈Sm

sgn(π)

×Θ(τπ(1) − τπ(2)) . . . Θ(τπ(m−1) − τπ(m)) Ô(xπ(1), τπ(1)) . . . Ô(xπ(m), τπ(m)) .

(4.26)

Here, Sm denotes the symmetric group of m elements, i.e., the group of all permutations
of the set {1, . . . ,m}, and sgn(π) is the sign of the permutation π. Furthermore, Θ
denotes the Heaviside step function, which is defined as

Θ(τ1 − τ2) =

{
1 , if τ1 > τ2 ,

0 , if τ1 < τ2 .
(4.27)

By construction, the Green function G2n is antisymmetric with respect to its first n and
with respect to its last n arguments. Furthermore, the temperature Green functions are
“antiperiodic” in the following sense:

Proposition 4.2. For each i ∈ {1, . . . , 2n}, the boundary conditions of the temperature
Green function G2n at τi = 0 and at τi = ~β are related by

G2n(x1, τ1; . . . ;xi, τi = 0; . . . ;x2n, τ2n) =

−G2n(x1, τ1; . . . ;xi, τi = ~β ; . . . ;x2n, τ2n) .
(4.28)

This equality holds for any values of the spatial variables x1, . . . ,x2n ∈ R3 and for any
values of the other time variables τ1, . . . , τi−1, τi+1, . . . , τ2n ∈ [0, ~β].

Proof. Consider first the case where i = n+ 1, hence we compare the boundary condi-
tions at τn+1 = 0 and at τn+1 = ~β. Using the cyclicity of the trace and the definition
(4.16), we can calculate as

G2n(x1, τ1; . . . ;xn+1, τn+1 = 0; . . .x2n, τ2n)

=
1

Z
Tr
(
e−βK̂ T

[
ψ̂(x1, τ1) . . . ψ̂†(xn+1, 0)

])
(4.29)

=
1

Z
Tr
(
e−βK̂ T

[
ψ̂(x1, τ1) . . . ψ̂†(xn+2, τn+2)

]
ψ̂†(xn+1, 0)

)
(4.30)

=
1

Z
Tr
(
ψ̂†(xn+1, 0) e−βK̂ T

[
ψ̂(x1, τ1) . . . ψ̂†(xn+2, τn+2)

])
(4.31)

=
1

Z
Tr
(
e−βK̂ ψ̂†(xn+1, ~β) T

[
ψ̂(x1, τ1) . . . ψ̂†(xn+2, τn+2)

])
(4.32)

= − 1

Z
Tr
(
e−βK̂ T

[
ψ̂(x1, τ1) . . . ψ̂†(xn+2, τn+2)ψ̂†(xn+1, ~β)

])
(4.33)

= −G2n(x1, τ1; . . . ;xn+1, τn+1 = ~β ; . . .x2n, τ2n) , (4.34)
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which proves the antiperiodicity in τn+1. Using the antisymmetry of G2n in its last n
arguments, this implies also the antiperiodicity in τn+2, . . . , τ2n. By a similar calculation
one shows that G2n fulfills antiperiodic boundary conditions with respect to the first n
arguments τ1, . . . , τn.

We remark that the temperature Green functions were originally defined by Eq. (4.25)
only for τi in the interval [0, ~β]. Using the boundary condition (4.28), however, G2n can
be continued to an antiperiodic function which is defined for all τi ∈ R: for example, if

τmi = τ0
i +m(~β) (4.35)

with τ0
i ∈ [0, ~β] and m ∈ Z, we define

G2n(x1, τ1; . . . ;xi, τ
m
i ; . . . ;x2n, τ2n) :=

(−1)mG2n(x1, τ1; . . . ;xi, τ
0
i ; . . . ;x2n, τ2n) .

(4.36)

The resulting function G2n is antiperiodic in the sense that for all τi ∈ R,

G2n(x1, τ1; . . . ;xi, τi + ~β ; . . . ;x2n, τ2n) =

−G2n(x1, τ1; . . . ;xi, τi ; . . . ;x2n, τ2n) .
(4.37)

Note, however, that this antiperiodic function G2n is in general not given by Eq. (4.25)
anymore, which in fact holds only for τi ∈ [0, ~β]. This is because the right-hand side of
Eq. (4.25) is not antiperiodic for general τi ∈ R, which becomes immediately clear from
the proof of Proposition 4.2, for which the condition τi ∈ [0, ~β] is essential. We further
mention that the temperature Green functions are generally invariant under translations
with respect to the time variables, i.e.,

G2n(x1, τ1; . . . ;x2n, τ2n) = G2n(x1, τ1 + a; . . . ;x2n, τ2n + a) (4.38)

for any a ∈ R. This can be shown directly from the definition (4.25) by using again the
cyclicity of the trace. The analogous property does in general not hold for the spatial
variables (see, however, the property (4.64) of the lattice Green functions).

Our next remark concerns the conventions we choose for the temperature Green func-
tions. First, while the partition function given by Eq. (4.15) is dimensionless, the 2n-
point Green function defined by Eq. (4.25) has the unit[

G2n(x1, τ1; . . . ;x2n, τ2n)
]

= m−3n , (4.39)

which follows from the corresponding dimension (4.24) of the field operators. Further-
more, we define the Fourier transforms of the temperature Green functions as

G2n(k1, ω1; . . . ;k2n, ω2n) = (4.40)

1

(2π)3n/2

∫
d3x1 . . .

∫
d3x2n

1

(~β)2n

∫ ~β

0
dτ1 . . .

∫ ~β

0
dτ2nG

2n(x1, τ1; . . . ;x2n, τ2n)

× e−ik1·x1+iω1τ1 . . . e−ikn·xn+iωnτn eikn+1·xn+1−iωn+1τn+1 . . . eik2n·x2n−iω2nτ2n ,
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or conversely,

G2n(x1, τ1; . . . ;x2n, τ2n) = (4.41)

1

(2π)3n/2

∫
d3k1 . . .

∫
d3k2n

∑
ω1

. . .
∑
ω2n

G2n(k1, ω1; . . . ;k2n, ω2n)

× eik1·x1−iω1τ1 . . . eikn·xn−iωnτn e−ikn+1·xn+1+iωn+1τn+1 . . . e−ik2n·x2n+iω2nτ2n ,

Here, we sum over fermionic Matsubara frequencies,

ω1, . . . , ω2n ∈M =

{
(2`+ 1)π

~β
; ` ∈ N

}
, (4.42)

which is due to the antiperiodicity of the temperature Green functions with respect to
their time variables. Note that our convention for the Fourier transform with respect
to the time variables differs from the usual convention, where the factor 1/(~β) is put
in front of the sum over the Matsubara frequencies. The advantage of our convention
is that the temperature Green functions in the momentum/frequency domain have the
same dimensions as their respective counterparts in the position/time domain, hence[

G2n(k1, ω1; . . . ;k2n, ω2n)
]

= m−3n . (4.43)

Finally, if we re-introduce the spin indices by substituting xi 7→ (xi, si), we will usually
denote the spin indices as subscripts, i.e.,

G2n
s1...s2n(x1, τ1; . . . ;x2n, τ2n) ≡ G2n(x1, s1, τ1; . . . ;x2n, τ2n, s2n) . (4.44)

Before closing this section, let us point out the particular relevance of the two-point
Green function, which is defined as

G2(x1, τ1;x2, τ2) =
1

Z
Tr
(
e−βK̂T

[
ψ(x1, τ1)ψ̂†(x2, τ2)

])
. (4.45)

This simplest Green function already allows us to calculate the thermal expectation value
of any “one-particle” operator which is quadratic in the field operators. For example,
the thermal expectation value of the charge density operator,

ρ̂(x) = (−e)ψ̂†(x)ψ̂(x) , (4.46)

is given by the following equal-time limit of the two-point Green function:

〈ρ̂(x)〉 ≡ 1

Z
Tr
(
e−βĤ ρ̂(x)

)
= e lim

τ→0+
G2(x, 0; x, τ) . (4.47)

Similarly, one can calculate the thermal expectation value of any “n-particle” operator
(which is of the order 2n in the field operators) from a suitable equal-time limit of the
2n-point temperature Green function.
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4.3. Green functions on the lattice

In many applications, one does not deal directly with the fundamental Green functions
which depend on the position x ∈ R3 or on the momentum k ∈ R3 (and from which one
can deduce typical observables such as the charge density as explained in the preceding
section). Instead, one considers another type of Green functions which depend on the
Bravais lattice vector R ∈ Γ or on the Bloch momentum k ∈ B. (Note that we use
the same symbol k for Bloch momenta and ordinary momenta, although they should be
strictly distinguished.) In this section, we will give a precise meaning to these “lattice
Green functions” and clarify their relations to the fundamental Green functions.

Definition 4.3. The lattice Green functions in the Wannier basis are defined for n ≥ 1
as follows:

G2n
`1...`2n(R1, τ1; . . . ;R2n, τ2n) = (4.48)

1

Z
Tr
(
e−βK̂ T

[
â( |Φ`1R1〉, τ1) . . . â( |Φ`nRn〉, τn)

× â†( |Φ`2nR2n〉, τ2n) . . . â†( |Φ`n+1Rn+1〉, τn+1)
])
,

where |Φ`R〉 denotes a Wannier vector which is labeled by the band index ` and the
Bravais lattice vector R (see Sct. 1.3). Correspondingly, the operators â( |Φ`R〉) and
â†( |Φ`R〉) annihilate and create this very Wannier vector, and their time evolution is
determined by Eq. (4.16).

We first note that in contrast to the fundamental Green functions (cf. Eq. (4.39)), the
lattice Green functions are dimensionless,[

G2n
`1...`2n(R1, τ1; . . . ;R2n, τ2n)

]
= 1 . (4.49)

Furthermore, with Φ`R(x, s) ≡ 〈x, s |Φ`R〉, the basis transformations between the Wan-
nier vectors and the position/spin eigenvectors read

|Φ`R〉 =

∫
d3x

∑
s

|x, s〉Φ`R(x, s) , (4.50)

|x, s〉 =
∑
`,R

|Φ`R〉Φ∗`R(x, s) . (4.51)

Therefore, we can express the above annihilation and creation operators of Wannier
vectors in terms of the fundamental field operators (4.4)–(4.5) as

â( |Φ`R〉) =

∫
d3x

∑
s

Φ∗`R(x, s) ψ̂(x, s) , (4.52)

â†( |Φ`R〉) =

∫
d3x

∑
s

Φ`R(x, s) ψ̂†(x, s) , (4.53)
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or conversely as

ψ̂(x, s) =
∑
`,R

Φ`R(x, s) â( |Φ`R〉) , (4.54)

ψ̂†(x, s) =
∑
`,R

Φ∗`R(x, s) â†( |Φ`R〉) . (4.55)

Here, we have used again the antilinearity and linearity, respectively, of the maps |ϕ〉 7→
â(|ϕ〉) and |ϕ〉 7→ â†(|ϕ〉). As a consequence, the lattice Green functions in the Wannier
basis are related to the fundamental Green functions (see Definition 4.1) by

G2n
`1...`2n(R1, τ1; . . . ;R2n, τ2n) = (4.56)∫
d3x1 . . .

∫
d3x2n

∑
s1, ..., s2n

G2n
s1...s2n(x1, τ1; . . .x2n, τ2n)

× Φ∗`1R1
(x1, s1) . . .Φ∗`nRn(xn, sn) Φ`n+1Rn+1(xn+1, sn+1) . . .Φ`2nR2n(x2n, s2n) ,

or conversely, by

G2n
s1...s2n(x1, τ1; . . . ;x2n, τ2n) = (4.57)∑

`1,R1

. . .
∑

`2n,R2n

G2n
`1...`2n(R1, τ1; . . .R2n, τ2n)

× Φ`1R1(x1, s1) . . .Φ`nRn(xn, sn) Φ∗`n+1Rn+1
(xn+1, sn+1) . . .Φ∗`2nR2n

(x2n, s2n) .

Thus, in order to reconstruct the fundamental Green functions from the lattice Green
functions, one needs to know the Wannier functions to which the latter refer.

Definition 4.4. The lattice Green functions in the Bloch basis (or band basis) are defined
for n ≥ 1 as

G2n
`1...`2n(k1, τ1; . . . ;k2n, τ2n) = (4.58)

1

Z
Tr
(
e−βK̂ T

[
â( |Ψ`1k1〉, τ1) . . . â( |Ψ`nkn〉, τn)

× â†( |Ψ`2nk2n〉, τ2n) . . . â†( |Ψ`n+1kn+1〉, τn+1)
])
,

where |Ψ`k〉 denotes a Bloch vector which is labeled by the band index ` and the Bloch
momentum k (the latter ranges over the first Brillouin zone B).

Precisely as their counterparts in the Wannier basis, the lattice Green functions in the
Bloch basis are also dimensionless,[

G2n
`1...`2n(k1, τ1; . . . ;k2n, τ2n)

]
= 1 . (4.59)
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Using the transformations between Bloch and Wannier vectors, Eqs. (1.75)–(1.76), we
obtain the following relations between the lattice Green functions in different bases:

G2n
`1...`2n(k1, τ1; . . . ;k2n, τ2n) =

∑
R1

. . .
∑
R2n

G2n
`1...`2n(R1, τ1; . . . ;R2n, τ2n) (4.60)

× e−ik1·R1 . . . e−ikn·Rn eikn+1·Rn+1 . . . eik2n·R2n ,

and conversely,

G2n
`1...`2n(R1, τ1; . . . ;R2n, τ2n) = (4.61)

1

|B|2n

∫
B

d3k1 . . .

∫
B

d3k2nG
2n
`1...`2n(k1, τ1; . . . ;k2n, τ2n)

× eik1·R1 . . . eikn·Rn e−ikn+1·Rn+1 . . . e−ik2n·R2n .

Furthermore, the lattice Green functions in the Bloch basis are related to the fundamen-
tal Green functions in the position/spin domain by

G2n
`1...`2n(k1, τ1; . . . ;k2n, τ2n) = (4.62)∫
d3x1 . . .

∫
d3x2n

∑
s1,...,s2n

G2n
s1...s2n(x1, τ1; . . . ;x2n, τ2n)

×Ψ∗`1k1
(x1, s1) . . .Ψ∗`nkn(xn, sn) Ψ`n+1kn+1(xn+1, sn+1) . . .Ψ`2nk2n(x2n, s2n) ,

and conversely, by

G2n
s1...s2n(x1, τ1; . . .x2n, τ2n) = (4.63)∑

`1,..., `2n

1

|B|2n

∫
B

d3k1 . . .

∫
B

d3k2n G
2n
`1...`2n(k1, τ1; . . . ;k2n, τ2n)

×Ψ`1k1(x1, s1) . . .Ψ`nkn(xn, sn) Ψ∗`n+1kn+1
(xn+1, sn+1) . . .Ψ∗`2nk2n

(x2n, s2n) .

Note that this is not simply a Fourier transformation, but a complicated transformation
involving the Bloch functions. Hence, we stress again that the lattice Green functions
alone are not sufficient for constructing the fundamental Green functions: in addition,
one needs to know the Bloch (or Wannier) functions to which these lattice Green func-
tions refer.

In Sct. 4.2, we mentioned that the temperature Green functions are generally invari-
ant under temporal translations (see Eqs. (4.38)). On the other hand, as a crystalline
system is not spatially homogeneous, the corresponding Green functions are generally
not invariant under arbitrary spatial translations. They are, however, invariant under
the subset of translations which leave the Bravais lattice invariant. The corresponding
property of the lattice Green functions is expressed by the following proposition.
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Proposition 4.5. The lattice Green functions are invariant under lattice translations
in the following sense:

G2n
`1...`2n(R1, τ1 ; . . . ;R2n, τ2n) = G2n

`1...`2n(R1 +R′, τ1 ; . . . ;R2n +R′, τ2n) . (4.64)

for any vector R′ ∈ Γ of the direct lattice.

Proof. This follows directly from the definition (4.48) of the lattice Green functions, if
we use the transformation property (1.80) of Wannier vectors under lattice translations,
the corresponding transformation property of the annihilation and creation operators,

â(†)(|Φ`,R+R′〉) = â(†)(TR′ |Φ`,R〉) = T̂R′ â
(†)(|Φ`,R〉) T̂−1

R′
, (4.65)

as well as the invariance of the Hamiltonian under lattice translations, Eq. (1.52).

The invariance under lattice translations and under temporal translations implies that
the 2n-point lattice Green function essentially depends on only (2n − 1) lattice vectors
and time variables. This means, we can write

G2n
`1...`2n(R1, τ1 ; . . . ;R2n, τ2n)

= G2n
`1...`2n(R1 −R2n, τ1 − τ2n ; . . . ;R2n−1 −R2n, τ2n−1 − τ2n ; 0, 0) (4.66)

≡ G̃2n
`1...`2n(R1 −R2n, τ1 − τ2n ; . . . ;R2n−1 −R2n, τ2n−1 − τ2n) , (4.67)

where in the last step we have defined a new function of only (2n− 1) variables (Ri, τi).
By performing the transition to the corresponding Green functions in the Bloch basis
(see Eq. (4.60)) and by Fourier’s transformation with respect to the time variables (see
Eq. (4.40)), we further obtain

G2n
`1...`2n(k1, ω1 ; . . . ; k2n, ω2n) = G̃2n

`1...`2n(k1, ω1 ; . . . ; k2n−1, ω2n−1)

×
∑
K

|B| δ3(K + k1 + . . .+ kn, kn+1 + . . .+ k2n ) δω1+...+ωn, ωn+1+...+ω2n ,
(4.68)

where the Fourier transform of the reduced function G̃2n is defined as

G̃2n
`1...`2n(k1, ω1; . . . ;k2n−1, ω2n−1) = (4.69)∑
R1

. . .
∑
R2n−1

1

(~β)2n−1

∫ ~β

0
dτ1 . . .

∫ ~β

0
dτ2n−1 G̃

2n
`1...`2n(R1, τ1; . . . ;R2n−1, τ2n−1)

× e−ik1·R1+iω1τ1 . . . e−ikn·Rn+iωnτn eikn+1·Rn+1−iωn+1τn+1 . . . eik2n−1·R2n−1−iω2n−1τ2n−1 .
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In particular, the condition (4.68) implies that for Bloch momenta, the “momentum
conservation” holds only up to a reciprocal lattice vector K. The latter is fixed by
the condition that all Bloch momenta k1, . . . ,k2n lie in the first Brillouin zone. In the
following, we will not distinguish explicitly between G2n and G̃2n, and instead denote
both functions for simplicity with the same symbol G2n.

Finally, we come back to the single-orbital model of Sct. 1.5, for which yet another class
of Green functions can be defined: In this case, there is a unitary matrix Us`(k) which
mediates between the band basis (Bloch vectors) and the spin basis (Bloch-like vectors),
see Eq. (1.148). Therefore, one can define the Green functions in the Bloch momentum/
spin basis (as used e.g. in Ref. [Sch+16a]) as follows:

G2n
s1...s2n(k1, τ1; . . . ;k2n, τ2n) = (4.70)

1

Z
Tr
(
e−βK̂ T

[
â( |ψ0s1,k1〉, τ1) . . . â( |ψ0sn,kn〉, τn)

× â†( |ψ0s2n,k2n〉, τ2n) . . . â†( |ψ0sn+1,kn+1〉, τn+1)
])
.

These are related to the lattice Green functions in the Bloch basis (or band basis) by
the well-known equations

G2n
s1...s2n(k1, τ1; . . . ;k2n, τ2n) =

∑
`1,...,`2n

G2n
`1...`2n(k1, τ1; . . .k2n, τ2n)

× Us1`1(k1) . . . Usn`n(kn)U∗sn+1,`n+1
(kn+1) . . . U∗s2n,`2n(k2n) ,

(4.71)

and conversely,

G2n
`1...`2n(k1, τ1; . . . ;k2n, τ2n) =

∑
s1,...,s2n

G2n
s1...s2n(k1, τ1; . . .k2n, τ2n)

× U∗s1`1(k1) . . . U∗sn`n(kn)Usn+1,`n+1(kn+1) . . . Us2n,`2n(k2n) .

(4.72)

We remark that one can also define the lattice analoga of the so-called connected and
one-line-irreducible Green functions, which will be introduced later in Scts. 5.3 and 5.5.
Moreover, the Green function perturbation theory as derived in the next section holds
analogously also for the lattice Green functions.

4.4. Perturbative expansion

The Green function perturbation theory allows one to express all Green functions G2n

of the interacting many-body system in terms of the free (or non-interacting) two-point
Green function G2

0 as well as the interaction kernel v. Here, the non-interacting tem-
perature Green functions G2n

0 are defined analogously to Eq. (4.25), but with the full
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Hamiltonian (4.1) replaced by the free Hamiltonian (4.2). In concrete terms, we define
(analogously to Eq. (4.14))

K̂0 = Ĥ0 − µN̂ . (4.73)

Furthermore, for any operator Ô and for τ ∈ R, we define the “time evolution in the
interaction picture” as (cf. Eq. (4.16))

ÔI(τ) = eK̂0τ/~ Ô e−K̂0τ/~ . (4.74)

With this, the partition function of the non-interacting system is defined as

Z0 = Tr
(
e−βK̂0

)
, (4.75)

and for n ≥ 1, the non-interacting temperature Green function G2n
0 is defined as

G2n
0 (x1, τ1; . . . ;x2n, τ2n)

=
1

Z0
Tr
(
e−βK̂0 T

[
ψ̂I(x1, τ1) . . . ψ̂I(xn, τn)ψ̂†I (x2n, τ2n) . . . ψ̂†I (xn+1, τn+1)

])
.

(4.76)

In particular, the free two-point Green function is also called covariance and denoted by

C(x1,x2 ; τ1 − τ2) ≡ G2
0(x1,x2 ; τ1 − τ2) . (4.77)

The perturbative expansion of the full Green functions G2n in terms of the covariance C
and the interaction kernel v is based on three fundamental theorems: the Gell-Mann–Low
theorem, the Wick theorem, and the cancellation theorem (or their respective analoga
for temperature Green functions). For the convenience of the reader, we will explicitly
state and prove these three theorems in the following.

4.4.1. Gell-Mann–Low theorem

Theorem 4.6 (Gell-Mann–Low theorem for temperature Green functions).
The partition function of the interacting electron system has the following representation
as a formal power series:

Z =
∞∑
k=0

(−~)−k

k!

∫ ~β

0
dλ1 . . .

∫ ~β

0
dλk Tr

(
e−βK̂0 T

[
V̂I(λ1) . . . V̂I(λk)

])
. (4.78)

Furthermore, the interacting temperature Green functions are represented by the Gell-
Mann–Low formula as follows:

G2n(x1, τ1; . . . ;x2n, τ2n) =

1

Z

∞∑
k=0

(−~)−k

k!

∫ ~β

0
dλ1 . . .

∫ ~β

0
dλk Tr

(
e−βK̂0 T

[
V̂I(λ1) . . . V̂I(λk)

× ψ̂I(x1, τ1) . . . ψ̂I(xn, τn)ψ̂†I (x2n, τ2n) . . . ψ̂†I (xn+1, τn+1)
])
.

(4.79)
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On the right-hand side of these equations, the interaction operator V̂I(λ) is given in the
interaction picture by

V̂I(λ) = eK̂0τ/~ V̂ e−K̂0τ/~ (4.80)

=
1

2

∫
d3x

∫
d3x′ ψ̂†I (x, λ)ψ̂†I (x′, λ)v(x,x′)ψ̂I(x

′, λ)ψ̂I(x, λ) , (4.81)

and the thermal expectation values are taken with respect to the free Hamiltonian.

Proof. In contrast to the case of real-time Green functions (see Ref. [SS17a]), the
proof of the Gell-Mann–Low theorem for temperature Green functions in imaginary time
(i.e., Schwinger functions) is rather elementary. Here, we generalize the proof as given
for the two-point Green function in Ref. [FW71, Ch. 7]. We begin by noting that the
operators Ô(τ) in the Heisenberg picture and ÔI(τ) in the interaction picture (see Eqs.
(4.16) and (4.74)) are related by

Ô(τ,x) = eK̂τ/~ e−K̂0τ/~ ÔI(τ,x) eK̂0τ/~ e−K̂τ/~ . (4.82)

Equivalently, we can write this as

Ô(τ,x) = Û(0, τ) ÔI(τ,x) Û(τ, 0) , (4.83)

where the (imaginary-time) evolution operator is defined for τ, τ ′ ∈ R by

Û(τ, τ ′) = eK̂0τ/~ e−K̂(τ−τ ′)/~ e−K̂0τ ′/~ . (4.84)

This operator is not unitary, but it satisfies the group property

Û(τ, τ ′) Û(τ ′, τ ′′) = Û(τ, τ ′′) . (4.85)

Furthermore, the evolution operator fulfills the equation of motion

(−~)
∂

∂τ
Û(τ, τ0) = V̂I(τ)Û(τ, τ0) . (4.86)

For τ > τ0, it follows that Û(τ, τ0) is the unique solution of the initial value problem
defined by Eq. (4.86) and the initial condition

Û(τ0, τ0) = 1̂ . (4.87)

The formal solution of this initial value problem is given by

Û(τ1, τ0) = 1 +
∞∑
k=1

(−~)−k
∫ τ1

τ0

dλ1

∫ λ1

τ0

dλ2 . . .

∫ λk−1

τ0

dλk V̂I(λ1) . . . V̂I(λk) (4.88)

≡
∞∑
k=0

(−~)−k
∫ τ1

τ0

dλ1

∫ λ1

τ0

dλ2 . . .

∫ λk−1

τ0

dλk V̂I(λ1) . . . V̂I(λk) . (4.89)
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Using the time-ordering operator as defined by Eq. (4.26), the above expression can be
rewritten in an equivalent but more symmetric form as

Û(τ1, τ0) =

∞∑
k=0

(−~)−k

k!

∫ τ1

τ0

dλ1 . . .

∫ τ1

τ0

dλk T
[
V̂I(λ1) . . . V̂I(λk)

]
. (4.90)

With these results, we go on to prove the assertion as follows: First, the partition function
is given by

Z = Tr
(
e−βK̂

)
= Tr

(
e−βK̂0 Û(~β, 0)

)
. (4.91)

Putting the expansion (4.90) into this formula yields directly the desired Eq. (4.78).
Next, consider the 2n-point Green function. Let us assume, for the moment, that

τ1 > . . . > τn > τn+1 > . . . > τ2n . (4.92)

Then, we obtain

G2n(x1, τ1; . . . ;x2n, τ2n) = (−1)n(n−1)/2 1

Z
Tr
(
e−βK̂ ψ̂(x1, τ1) . . . ψ̂†(x2n, τ2n)

)
, (4.93)

where the sign factor comes from bringing the fermionic field operators into the correct
time order. Using Eq. (4.83), we can further transform this expression into

G2n(x1, τ1; . . . ;x2n, τ2n) (4.94)

= (−1)n(n−1)/2 1

Z
Tr
(
e−βK̂0 Û(~β, 0)

[
Û(0, τ1)ψ̂I(x1, τ1)Û(τ1, 0)

]
. . .

×
[
Û(0, τ2n)ψ̂†I (x2n, τ2n)Û(τ2n, 0)

])
(4.95)

= (−1)n(n−1)/2 1

Z
Tr
(
e−βK̂0 Û(~β, τ1)ψ̂I(x1, τ1)Û(τ1, τ2) . . .

× Û(τ2n−1, τ2n)ψ̂†I (x2n, τ2n)Û(τ2n, 0)
)
. (4.96)

The expansion (4.90) of Û(τ1, τ2) contains only field operators ψ̂(λ) with τ1 ≥ λ ≥ τ2 .
Therefore, if we expand all operators Û(τj , τj+1) in Eq. (4.96), then all fields operators
will already be in the correct time order, and hence we obtain

G2n(x1, τ1; . . . ;x2n, τ2n) = (4.97)

(−1)n(n−1)/2 1

Z
Tr
(
e−βK̂0 T

[
Û(~β, τ1)ψ̂I(x1, τ1)Û(τ1, τ2) . . .

× Û(τ2n−1, τ2n)ψ̂†I (x2n, τ2n)Û(τ2n, 0)
])
. (4.98)

Under the time ordering operator, we may change the order of the field operators and
move all evolution operators Û(τj , τj+1) to the left, which further yields

G2n(x1, τ1; . . . ;x2n, τ2n) = (4.99)

(−1)n(n−1)/2 1

Z
Tr
(
e−βK̂0 T

[
Û(~β, 0)ψ̂I(x1, τ1) . . . ψ̂†I (x2n, τ2n)

])
.
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Finally, by re-arranging again the field operators, we arrive at

G2n(x1, τ1; . . . ;x2n, τ2n) = (4.100)

1

Z
Tr
(
e−βK̂0 T

[
Û(~β, 0)ψ̂I(x1, τ1) . . . ψ̂I(xn, τn)ψ̂†I (x2n, τ2n) . . . ψ̂†I (xn+1, τn+1)

])
,

which is equivalent to the Gell-Mann–Low formula. For any other order of the time argu-
ments τ1, . . . , τ2n than the one assumed in Eq. (4.92), the calculation can be performed
analogously and in fact leads to the same result (4.100). This concludes our proof of the
Gell-Mann–Low theorem for temperature Green functions.

We now introduce some notations by which the Gell-Mann–Low formula can be written
in a more compact and symmetric form (for the sake of clarity, we also re-introduce the
spin indices): From Eq. (4.81), we obtain∫ ~β

0
dλ V̂I(λ) =

1

2

∫
d3x

∫
d3x′

∑
s

∑
s′

∫ ~β

0
dλ

∫ ~β

0
dλ′ (4.101)

× ψ̂†I (x, s, λ) ψ̂†I (x′, s′, λ′) v(x,x′)δ(λ− λ′) ψ̂I(x
′, s′, λ′) ψ̂I(x, s, λ) .

We combine the spatial variable x, the spin index s and the imaginary-time variable τ
into one multi-variable

x = (x, s, τ) . (4.102)

Correspondingly, we introduce the shorthand notations∫
dx =

∫
d3x

∑
s

1

~β

∫ ~β

0
dτ , (4.103)

as well as

δ(x, x′) = δ3(x− x′) δss′ ~β δ(τ − τ ′) , (4.104)

and furthermore,

v(x, x′) = v(x,x′) ~β δ(τ − τ ′) . (4.105)

Then, Eq. (4.101) can be written compactly as∫ ~β

0
dλ V̂I(λ) =

~β
2

∫
dx

∫
dx′ ψ̂†I (x)ψ̂†I (x′)v(x, x′)ψ̂I(x

′)ψ̂I(x) . (4.106)

Next, we define the four-point interaction kernel as introduced in Ref. [SK12], i.e.,

V (x1, x2, x3, x4) ≡ v(x2, x3) δ(x1, x3) δ(x2, x4) . (4.107)

This allows us to write Eq. (4.106) more symmetrically as∫ ~β

0
dλ V̂I(λ) =

~β
2

∫
dx1

∫
dx2

∫
dx3

∫
dx4 V (x1, x2, x3, x4) ψ̂†I (x1)ψ̂†I (x2)ψ̂I(x

4)ψ̂I(x
3) .

(4.108)
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With these notations, the Gell-Mann–Low formula (4.79) can be written as

G2n(x1, . . . , x2n) = (4.109)

1

Z

∞∑
k=0

(−β)k

k! 2k

( k∏
i=1

∫
dy1

i

∫
dy2

i

∫
dy3

i

∫
dy4

i V (y1
i , y

2
i , y

3
i , y

4
i )

)
× Tr

(
e−βK̂0 T

[
ψ̂†I (y1

1) ψ̂†I (y2
1) ψ̂I(y

4
1) ψ̂I(y

3
1) . . . ψ̂†I (y1

k) ψ̂
†
I (y2

k) ψ̂I(y
4
k) ψ̂I(y

3
k)

× ψ̂I(x1) . . . ψ̂I(xn) ψ̂†I (x2n) . . . ψ̂†I (xn+1)
])
.

Finally, the trace in the last line can be rewritten in terms of the free (2n+4k)-point
Green functions as

G2n(x1, . . . , x2n) = (4.110)

1

Z

∞∑
k=0

(−β)k

k! 2k

( k∏
i=1

∫
dy1

i

∫
dy2

i

∫
dy3

i

∫
dy4

i V (y1
i , y

2
i , y

3
i , y

4
i )

)

×G2n+4k
0

(
x1, . . . , xn, y

3
1, y

4
1, . . . , y

3
k, y

4
k ; xn+1, . . . , x2n, y

1
1, y

2
1, . . . y

1
k, y

2
k

)
.

Similarly, the partition function can be expressed as

Z =

∞∑
k=0

(−β)k

k! 2k

( k∏
i=1

∫
dy1

i

∫
dy2

i

∫
dy3

i

∫
dy4

i V (y1
i , y

2
i , y

3
i , y

4
i )

)
×G4k

0

(
y3

1, y
4
1, . . . , y

3
k, y

4
k ; y1

1, y
2
1, . . . y

1
k, y

2
k

)
.

(4.111)

These formulae relate the interacting Green functions G2n to the four-point interaction
kernel V and the non-interacting Green functions G2n+4k

0 . In the next step, the Wick
theorem will allow to derive from this a formal expression of all interacting Green func-
tions in terms of the interaction kernel V and the free two-point Green function G2

0 .
As the Wick theorem is a direct consequence of the equations of motion for the non-
interacting temperature Green functions, we will first derive these equations of motion
in the following subsection.

4.4.2. Equations of motion

We begin by introducing yet another notation, which will be useful to simplify compli-
cated expressions involving higher 2n-point Green functions: we abbreviate

G2n
0 (1, . . . , 2n) ≡ G2n

0 (x1, . . . x2n) , (4.112)

as well as

δ(1, 2) ≡ δ(x1, x2) , (4.113)
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and furthermore, ∫
d1 f(1) ≡

∫
dx1 f(x1) , (4.114)

for any function f depending on the multi-variable x1 = (x1, s1, τ1). In order to keep
the notation simple, we will in the following neglect the spin-orbit coupling in the free
Hamiltonian (4.2) and correspondingly suppress all the spin indices. All results of this
Chapter 4 and the following Chapters 5–7 will, however, hold analogously in the pres-
ence of the spin-orbit coupling.

Theorem 4.7 (Equations of motion for non-interacting temperature Green
functions). The free two-point Green function C ≡ G2

0 satisfies the equation of motion

1

~

(
~
∂

∂τ
− ~2

2m
∆x + Vext(x)− µ

)
C(x, τ ; x′, τ ′) = δ3(x− x′)δ(τ − τ ′) , (4.115)

or equivalently,

β

(
~
∂

∂τ1
− ~2

2m
∆x1 + Vext(x)− µ

)
C(1, 2) = δ(1, 2) . (4.116)

For n ≥ 2, the equation of motion for the free 2n-point Green function reads

β

(
~
∂

∂τ1
− ~2

2m
∆x1 + Vext(x)− µ

)
G2n

0 (1, . . . , 2n) = (4.117)

2n∑
`=n+1

(−1)`−n−1 δ(1, `)G2n−2
0 (2, . . . , n;n+ 1, . . . , q`, . . . , 2n) ,

where the notation q` means that the index ` is omitted.

Remarks. i) Equation (4.115) shows that C is indeed a Green function in the math-
ematical sense, i.e., the inverse of a differential operator. By defining the integral
kernel Q of this differential operator such that∫

d3x′
1

~β

∫ ~β

0
dτ ′Q(x, τ ;x′, τ ′) f(x′, τ ′) := (4.118)

β

(
~
∂

∂τ
− ~2

2m
∆x + Vext(x)− µ

)
f(x, τ) ,

we can write Eq. (4.116) equivalently as∫
d3 Q(1, 3)C(3, 2) = δ(1, 2) , (4.119)

hence C is the inverse integral kernel of Q.
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ii) Similar equations can be derived for the derivatives of the Green functions with
respect to the other arguments. In particular, the covariance also satisfies

1

~

(
−~ ∂

∂τ ′
− ~2

2m
∆x′ + Vext(x)− µ

)
C(x, τ ; x′, τ ′) = δ3(x− x′)δ(τ − τ ′) ,

(4.120)
which can be shown analogously as Eq. (4.115).

Proof. First, we consider the covariance as defined by

C(x, τ ;x′, τ ′) = (4.121)

Θ(τ − τ ′)
〈
ψ̂(x, τ)ψ̂†(x′, τ ′)

〉
0
−Θ(τ ′ − τ)

〈
ψ̂†(x′, τ ′)ψ(x, τ)

〉
0
.

Here and in the following, we denote the thermal expectation value with respect to the
non-interacting Hamiltonian by

〈Ô〉0 ≡ Tr
(
e−βK̂0 Ô

)
. (4.122)

Moreover, we suppress the index I of the field operators, which indicates their time
evolution in the interaction picture. Hence, it is always understood that

ψ̂(†)(x, τ) ≡ ψ̂
(†)
I (x, τ) = eK̂0τ/~ ψ̂(†)(x) e−K̂0τ/~ , (4.123)

with the non-interacting Hamiltonian

K̂0 = Ĥ0 − µN̂ =

∫
d3y ψ̂†(y)

(
− ~2

2m
∆y + Vext(y)− µ

)
ψ̂(y) . (4.124)

By differentiating Eq. (4.121) with respect to the imaginary-time argument τ and using
the distributional identity

∂τΘ(τ − τ ′) = δ(τ − τ ′) , (4.125)

we obtain the following four terms:

∂τ C(x, τ ;x′, τ ′) = (4.126)

δ(τ − τ ′)
〈
ψ̂(x, τ)ψ̂†(x′, τ ′)

〉
0

+ δ(τ ′ − τ)
〈
ψ̂†(x′, τ ′)ψ(x, τ)

〉
0

+Θ(τ − τ ′)
〈
∂τ ψ̂(x, τ)ψ̂†(x′, τ ′)

〉
0
−Θ(τ ′ − τ)

〈
ψ̂†(x′, τ ′)∂τ ψ̂(x, τ)

〉
0
.

The first two terms can be combined into

δ(τ − τ ′)
〈
ψ̂(x, τ)ψ̂†(x′, τ) + ψ̂†(x′, τ)ψ̂(x, τ)

〉
0

= δ(τ − τ ′)δ3(x− x′) , (4.127)

where we have used the canonical anticommutation relations (4.7)–(4.9), which generally
hold for the field operators at equal times. The last two terms in Eq. (4.126) can be
recombined again by means of the time-ordering operator, thus giving

∂τ C(x, τ ;x′, τ ′) = δ3(x− x′)δ(τ − τ ′) +
〈
T ∂τ ψ̂(x, τ)ψ̂†(x′, τ ′)

〉
0
. (4.128)



4.4 Perturbative expansion 87

Furthermore, the equation of motion for the field operator follows from Eq. (4.123):

∂τ ψ̂(x, τ) = −1

~
eK̂0τ/~

[
ψ̂(x), K̂0

]
− e−K̂0τ/~ , (4.129)

where [
Â, B̂

]
− ≡

[
Â, B̂

]
= ÂB̂ − B̂Â (4.130)

denotes the ordinary commutator (cf. Eq. (4.10)). Using the canonical anticommutation
relations (4.7)–(4.9), one can show the identity[

ψ̂(x), ψ̂†(y)ψ̂(y)
]
− = δ3(x− y)ψ̂(x) , (4.131)

which in turn implies

[
ψ̂(x), K̂0

]
− =

(
− ~2

2m
∆x + Vext(x)− µ

)
ψ̂(x) . (4.132)

Therefore, the equation of motion for the field operator reads explicitly as

∂τ ψ̂(x, τ) =
1

~

(
~2

2m
∆x − Vext(x) + µ

)
ψ̂(x, τ) . (4.133)

Putting this result into Eq. (4.128) leads to

∂τ C(x, τ ;x′, τ ′) = δ3(x− x′)δ(τ − τ ′) +
1

~

(
~2

2m
∆x − Vext(x) + µ

)
C(x, τ ;x′, τ ′) ,

(4.134)
which is equivalent to the assertion (4.115).

Next, consider the non-interacting 2n-point Green function as defined by

G2n
0 (x1, τ1; . . .x2n, τ2n) = (4.135)〈
T
[
ψ̂(x1, τ1) . . . ψ̂(xn, τn)ψ̂†(x2n, τ2n) . . . ψ̂†(xn+1, τn+1)

]〉
0
.

By permuting the fermionic creation operators and using the notation introduced at the
beginning of this subsection, we can write this equivalently as

G2n
0 (1, . . . , 2n) = (−1)n(n−1)/2

〈
T
[
ψ̂(1) . . . ψ̂(n)ψ̂†(n+ 1) . . . ψ̂†(2n)

]〉
0
. (4.136)

In order to write out the time ordering explicitly, we abbreviate the Heaviside step
function depending on two imaginary-time arguments as

Θi, j ≡ Θ(τi − τj) , (4.137)
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and similarly, we abbreviate the (normalized) Dirac delta distribution as

δi, j ≡ ~β δ(τi − τj) . (4.138)

Note that this last function depends only on the time variables—in contrast to the
function δ(i, j) defined by Eq. (4.113), which also depends on the spatial variables.
With the above notations, we can write Eq. (4.136) explicitly as

G2n
0 (1, . . . , 2n) = (4.139)

(−1)n(n−1)/2
∑
π∈S2n

sgn(π)Θπ(1),π(2) . . . Θπ(2n−1),π(2n)

〈
ψ̂(†)(π(1)) . . . ψ(†)(π(2n))

〉
0
,

where it is understood that

ψ̂(†)(i) =

{
ψ̂(i) , if 1 ≤ i ≤ n ,

ψ̂†(i) , if n+ 1 ≤ i ≤ 2n .
(4.140)

Before applying the derivative with respect to the τ1 variable, we split the sum in Eq.
(4.139) into those terms where π(1) = 1, those where π(2) = 1, . . . , and those where
π(2n) = 1. Each term can then be rewritten as a sum over all permutations σ ∈ S2n−1

of the set {2, . . . , 2n}, as follows:

G2n
0 (1, . . . , 2n) = (−1)n(n−1)/2

∑
σ∈S2n−1

sgn(σ)

×
(
Θ1,σ(2)Θσ(2),σ(3) . . . Θσ(2n−1),σ(2n)

〈
ψ̂(1) ψ̂(†)(σ(2)) . . . ψ(†)(σ(2n))

〉
0

−Θσ(2),1Θ1,σ(3) . . . Θσ(2n−1),σ(2n)

〈
ψ̂(†)(σ(2)) ψ̂(1) . . . ψ(†)(σ(2n))

〉
0

+ . . .

+Θσ(2),σ(3) . . . Θσ(2n−1),1Θ1,σ(2n)

〈
ψ̂(†)(σ(2)) . . . ψ̂(1) ψ̂(†)(σ(2n))

〉
0

−Θσ(2),σ(3) . . . Θσ(2n−1),σ(2n)Θσ(2n),1

〈
ψ̂(†)(σ(2)) . . . ψ̂(†)(σ(2n)) ψ̂(1)

〉
0

)
.

(4.141)

Similarly as in the case of the two-point Green function, the derivative ∂τ1 can act either
on one of the Θ functions, or on the field operator ψ̂(1) inside the thermal expectation
value. The latter case yields again

(−1)n(n−1)/2
〈
T
[
∂τ1ψ̂(1) . . . ψ̂(n)ψ̂†(n+ 1) . . . ψ̂†(2n)

]〉
0

=
1

~

(
~2

2m
∆x1 − Vext(x1) + µ

)
G2n

0 (1, . . . , 2n) .
(4.142)

On the other hand, the terms where the derivative acts on one the Θ functions can be
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combined pairwise to give an anticommutator of the field operators. Thus, we obtain

β

(
~
∂

∂τ1
− ~2

2m
∆x1 + Vext(x1)− µ

)
G2n

0 (1, . . . , 2n) =

(−1)n(n−1)/2
∑

σ∈S2n−1

sgn(σ)

×
(
δ1,σ(2)Θ1,σ(3) . . . Θσ(2n−1),σ(2n)

×
〈[
ψ̂(1), ψ̂(†)(σ(2))

]
+
ψ̂(†)(σ(3)) . . . ψ̂(†)(σ(2n))

〉
0

− δ1,σ(3)Θσ(2),1Θ1,σ(4) . . . Θσ(2n−1),σ(2n)

×
〈
ψ̂(†)(σ(2))

[
ψ̂(1), ψ̂(†)(σ(3))

]
+
. . . ψ̂(†)(σ(2n))

〉
0

+ . . .

+ δ1,σ(2n)Θσ(2),σ(3) . . . Θσ(2n−1),1

×
〈
ψ̂(†)(σ(2))ψ̂(†)(σ(3)) . . .

[
ψ̂(1), ψ̂(†)(σ(2n))

]
+

〉
0

)
.

(4.143)

Consider the first term of the sum in brackets: by the canonical anticommutation rela-
tions, this vanishes if σ(2) ≤ n. On the other hand, if σ(2) = ` with n + 1 ≤ ` ≤ 2n,
we can use that

δ1, `

[
ψ̂(1), ψ̂†(`)

]
+
≡ ~β δ(τ1 − τ`)

[
ψ̂(x1, τ1), ψ̂†(x`, τ`)

]
+

(4.144)

= ~β δ(τ1 − τ`) δ3(x1 − x`) ≡ δ(1, `) . (4.145)

Hence, in this latter case, the first term in brackets equals

δ(1, `)Θ1,σ(3) . . . Θσ(2n−1),σ(2n)

〈
ψ̂(†)(σ(3)) . . . ψ̂(†)(σ(2n))

〉
0
. (4.146)

Performing the sum over all permutations σ ∈ S2n−1 yields for this term

2n∑
`=n+1

δ(1, `)
∑

σ∈S2n−1

σ(2)=`

sgn(σ)Θ1,σ(3) . . . Θσ(2n−1),σ(2n)

〈
ψ̂(†)(σ(3)) . . . ψ̂(†)(σ(2n))

〉
0
.

(4.147)
Here, we sum over all permutations of the set {2, . . . , 2n} which obey the constraint
that σ(2) = `. Our aim, however, is to rewrite this expression in terms of a sum over all
permutations of the reduced set

{2, 3, . . . , q`, . . . , 2n} ≡ {2, 3, . . . , `− 1, `+ 1, . . . , 2n} . (4.148)

For this purpose, we decompose each permutation σ ∈ S2n−1 into a product

σ = σ′ ◦ σ` , (4.149)



90 4. Green function perturbation theory

where σ` ∈ S2n−1 cyclically permutes the variables (2, . . . , `), i.e.,(
σ`(2), . . . , σ`(2n)

)
=
(
`, 2, . . . , q`, . . . , 2n

)
, (4.150)

and hence we can write(
σ(2), . . . , σ(2n)

)
=
(
σ′(`), σ′(2), . . . , σ′(`− 1), σ′(`+ 1), . . . , σ′(2n)

)
. (4.151)

Then, we can replace in Eq. (4.147) the sum over σ ∈ S2n−1 by the sum over σ′ ∈ S2n−1,
and the constraint σ(2) = ` by σ′(`) = `. Further using that

sgn(σ) = sgn(σ′)sgn(σ`) = sgn(σ′)(−1)` , (4.152)

we see that Eq. (4.147) is equivalent to

2n∑
`=n+1

δ(1, `) (−1)`
∑

σ′∈S2n−1

σ′(`)=`

sgn(σ′)Θ1,σ′(2) . . . Θσ′(`−1),σ′(`+1) . . . Θσ′(2n−1),σ′(2n)

×
〈
ψ̂(†)(σ′(2)) . . . ψ̂(†)(σ′(`− 1)) ψ̂(†)(σ′(`+ 1)) . . . ψ̂(†)(σ′(2n))

〉
0
. (4.153)

Now, this sum over permutations σ′ is obviously equivalent to the sum over all permu-
tations π ∈ S2n−2 of the reduced set (4.148), i.e.,

2n∑
`=n+1

δ(1, `) (−1)`
∑

π∈S2n−2

sgn(π)Θ1,π(2) . . . Θπ(`−1),π(`+1) . . . Θπ(2n−1),π(2n)

×
〈
ψ̂(†)(π(2)) . . . ψ̂(†)(π(`− 1)) ψ̂(†)(π(`+ 1)) . . . ψ̂(†)(π(2n))

〉
0
.

(4.154)

The remaining terms in the sum of Eq. (4.143) can be evaluated analogously, and thus
we arrive at

β

(
~
∂

∂τ1
− ~2

2m
∆x1 + Vext(x1)− µ

)
G2n

0 (1, . . . , 2n) =

(−1)n(n−1)/2
2n∑

`=n+1

δ(1, `) (−1)`
∑

π∈S2n−2

sgn(π)

×
(
Θ1,π(2) . . . Θπ(`−1),π(`+1) . . . Θπ(2n−1),π(2n)

+Θπ(2),1Θ1,π(3), . . . Θπ(`−1),π(`+1) . . . Θπ(2n−1),π(2n)

+ . . .

+Θπ(2),π(3) . . . Θπ(`−1),π(`+1) . . . Θπ(2n),1

)
×
〈
ψ̂(†)(π(2)) . . . ψ̂(†)(π(`− 1)) ψ̂(†)(π(`+ 1)) . . . ψ̂(†)(π(2n))

〉
0
.

(4.155)
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In the sum over products of Θ functions, the index 1 appears at all possible positions,
and hence this sum simply yields

Θπ(2),π(3) . . . Θπ(`−1),π(`+1) . . . Θπ(2n−1),π(2n) . (4.156)

By resubstituting the non-interacting (2n− 2)-point Green function,∑
π∈S2n−2

sgn(π)Θπ(2),π(3) . . . Θπ(`−1),π(`+1) . . . Θπ(2n−1),π(2n)

×
〈
ψ̂(†)(π(2)) . . . ψ̂(†)(π(`− 1)) ψ̂(†)(π(`+ 1)) . . . ψ̂(†)(π(2n))

〉
0

= (−1)(n−1)(n−2)/2 G2n−2
0 (2, . . . , n;n+ 1, . . . , q`, . . . , 2n) ,

(4.157)

and using that

(−1)n(n−1)/2 (−1)(n−1)(n−2)/2 = (−1)(n−1)2
= (−1)n−1 = (−1)−n−1 , (4.158)

we finally obtain

β

(
~
∂

∂τ1
− ~2

2m
∆x1 + Vext(x)− µ

)
G2n

0 (1, . . . , 2n) =

2n∑
`=n+1

(−1)`−n−1 δ(1, `)G2n−2
0 (2, . . . , n;n+ 1, . . . , q`, . . . , 2n) ,

(4.159)

which was the assertion.

4.4.3. Wick theorem

Theorem 4.8 (Wick theorem for non-interacting temperature Green func-
tions). All non-interacting 2n-point Green functions factorize into products of two-point
Green functions C ≡ G2

0, i.e., for n ≥ 1,

G2n
0 (x1, . . . , x2n) =

∑
π∈Sn

sgn(π)C(x1, π(xn+1)) . . . C(xn, π(x2n)) . (4.160)

This formula can be written equivalently as

G2n
0 (x1, . . . , x2n) = det

([
C(xi, xn+j)

]
i,j=1,...,n

)
(4.161)

in terms of a determinant.

Proof. This follows directly from the equations of motion for the non-interacting Green
functions, Theorem 4.7 (see Ref. [SS17a]). We multiply both sides of Eq. (4.117) by the
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non-interacting two-point Green function and integrate over the internal variable. Using
partial integration and Eq. (4.120), the left-hand side of the equation yields∫

d1 C(1′, 1)

(
β

(
~
∂

∂τ1
− ~2

2m
∆x1 + Vext(x1)− µ

)
G2n

0 (1, . . . , 2n)

)

=

∫
d1

(
β

(
−~ ∂

∂τ1
− ~2

2m
∆x1 + Vext(x1)− µ

)
C(1′, 1)

)
G2n

0 (1, . . . , 2n) (4.162)

=

∫
d1 δ(1′, 1)G2n

0 (1, . . . , 2n) (4.163)

= G2n
0 (1′, . . . , 2n) . (4.164)

The evaluation of the right-hand side is even more straightforward, and thus we obtain

G2n
0 (1′, . . . , 2n) = (4.165)

2n∑
`=n+1

(−1)`−n−1C(1′, `)G2n−2
0 (2, . . . , n ; n+ 1, . . . , q`, . . . , 2n) ,

which is equivalent to

G2n
0 (1, . . . , 2n) = (4.166)

n∑
k=1

(−1)1+k C(1, n+ k)G2n−2
0 (2, . . . , n ; n+ 1, . . . ,n+ k, . . . , 2n) .

Now, the assertion follows by induction in n: For n = 1, Eq. (4.161) is trivially fulfilled.
Assume that it is fulfilled for (n− 1), hence

G2n−2
0 (2, . . . , n; n+ 1, . . . ,n+ k, . . . , 2n) = (4.167)

det
([
C(i, n+ j)

]
i=2,...,n; j=1,...,qk,...,n

)
.

By putting this into Eq. (4.166), the equation of motion turns into the Laplace expansion
for the determinant, which shows that the assertion (4.161) holds for n as well. This
completes the induction and thus our proof of the Wick theorem.

We now come back to the Gell-Mann–Low formula (4.110), which expresses the interact-
ing Green functions in terms of the non-interacting Green functions and the interaction
kernel. For the convenience of the reader, we reproduce this formula again here:

G2n(x1, . . . , x2n) = (4.168)

1

Z

∞∑
k=0

(−β)k

k! 2k

( k∏
i=1

∫
dy1

i

∫
dy2

i

∫
dy3

i

∫
dy4

i V (y1
i , y

2
i , y

3
i , y

4
i )

)
×G2n+4k

0

(
x1, . . . , xn, y

3
1, y

4
1, . . . , y

3
k, y

4
k ; xn+1, . . . , x2n, y

1
1, y

2
1, . . . y

1
k, y

2
k

)
.
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By the Wick theorem, the non-interacting Green functions factorize into products of
two-point functions, i.e.,

G2n+4k
0

(
x1, . . . , xn, y

3
1, y

4
1, . . . , y

3
k, y

4
k ; xn+1, . . . , x2n, y

1
1, y

2
1, . . . y

1
k, y

2
k

)
= (4.169)∑

π∈Sn+2k

sgn(π)C(x1, π(xn+1)) . . . C(xn, π(x2n))

× C(y3
1, π(y1

1))C(y4
1, π(y2

1)) . . . C(y3
k, π(y1

k))C(y4
k, π(y2

k)) .

Here, we interpret the permutation π to act directly on the set (or more precisely, the
tuple) of the (n+ 2k) arguments, i.e.,

π :
(
xn+1, . . . , x2n, y

1
1, y

2
1 . . . , y

1
k, y

2
k

)
7→ (4.170)(

π(xn+1), . . . , π(x2n), π(y1
1), π(y2

1) . . . , π(y1
k), π(y2

k)
)
.

By putting Eq. (4.169) into Eq. (4.168), we obtain a formal expression of the interacting
Green functions in terms of the covariance C and the interaction kernel V :

G2n(x1, . . . , x2n) =
1

Z

∞∑
k=0

1

k!2k

∑
π∈Sn+2k

Val[n, k, π] , (4.171)

where we have defined

Val[n, k, π] ≡ Val[n, k, π](x1, . . . , x2n) (4.172)

:= (−β)k
( k∏

i=1

∫
dy1

i

∫
dy2

i

∫
dy3

i

∫
dy4

i V (y1
i , y

2
i , y

3
i , y

4
i )

)
(4.173)

× sgn(π) C(x1, π(xn+1)) . . . C(xn, π(x2n))

× C(y3
1, π(y1

1))C(y4
1, π(y2

1)) . . . C(y3
k, π(y1

k))C(y4
k, π(y2

k)) .

This last expression is called the value of the Feynman graph corresponding to the permu-
tation π, where the arguments n and k indicate that the Feynman graph has 2n external
slots and k interaction vertices (see Sct. 4.5). Similarly, one can show the formula for
the partition function (which appears in the denominator of Eq. (4.171)):

Z =
∞∑
k=0

1

k!2k

∑
π∈S2k

Val[0, k, π] , (4.174)

where

Val[0, k, π] = (−β)k
( k∏

i=1

∫
dy1

i

∫
dy2

i

∫
dy3

i

∫
dy4

i V (y1
i , y

2
i , y

3
i , y

4
i )

)
× sgn(π) C(y3

1, π(y1
1))C(y4

1, π(y2
1)) . . . C(y3

k, π(y1
k))C(y4

k, π(y2
k)) .

(4.175)
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Hence, the Feynman graphs appearing in Eq. (4.174) have no external slots and are
therefore called vacuum bubbles. We will see below (Theorem 4.19) that these terms
can be canceled against certain terms in the numerator of Eq. (4.171), which leads to a
perturbative expansion of the Green functions in terms of bubble-free Feynman graphs.

4.5. Universal Feynman Graphs

4.5.1. Definition

We now come to the graphical representation of the terms Val[n, k, π] which appear in
the formal expression (4.171). As mentioned above, we associate with every permutation
π ∈ Sn+2k a Feynman graph, which is constructed as follows (see Table 4.1; cf. [SK12]):

(i) Each interaction kernel V (y1
i , y

2
i , y

3
i , y

4
i ) is represented by a square with two inter-

nal, outgoing slots y3
i , y

4
i and two internal, ingoing slots y1

i , y
2
i . These squares are

also called “interaction vertices”.

(ii) We interpret the variables x1, . . . , xn as external, outgoing slots, and the variables
xn+1, . . . , x2n as external, ingoing slots.

(iii) Each covariance C( . , . ) is represented by an arrow, which connects an (internal
or external) outgoing slot with an (internal or external) ingoing slot. These arrows
are also called “covariance lines”. Here, the permutation π determines to which
ingoing slot each outgoing slot is connected.

Let us illustrate this correspondence between permutations and Feynman graphs by a
concrete example. We choose n = 1 and k = 2, hence we consider Feynman graphs with
two external slots (one ingoing, one outgoing) and two interaction vertices. Furthermore,
we choose two particular permutations π1 and π2 ∈ S5 . The first one is the identity
permutation,

π1 :
(
x2, y

1
1, y

2
1, y

1
2, y

2
2

)
7→
(
x2, y

1
1, y

2
1, y

1
2, y

2
2

)
, (4.176)

for which sgn(π1) = 1. This yields the value

Val[1, 2, π1] = (−β)2

∫
dy1

1

∫
dy2

1

∫
dy3

1

∫
dy4

1 V (y1
1, y

2
1, y

3
1, y

4
1) (4.177)

×
∫

dy1
2

∫
dy2

2

∫
dy3

2

∫
dy4

2 V (y1
2, y

2
2, y

3
2, y

4
2) (4.178)

× C(x1, x2)C(y3
1, y

1
1)C(y4

1, y
2
1)C(y3

2, y
1
2)C(y4

2, y
2
2) ,

which corresponds to the Feynman graph shown in Fig. 4.1a. The covariance lines
connect the external slots x1 → x2 , as well as the internal slots y3

i → y1
i and y4

i → y2
i

(for i = 1, 2). The second permutation which we consider is defined by

π2 :
(
x2, y

1
1, y

2
1, y

1
2, y

2
2

)
7→
(
y1

1, x2, y
2
1, y

2
2, y

1
2

)
, (4.179)
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and it differs from π1 by the interchange of the first two and the last two arguments. In
particular, we also have sgn(π2) = 1. The value of this second permutation is

Val[1, 2, π2] = (−β)2

∫
dy1

1

∫
dy2

1

∫
dy3

1

∫
dy4

1 V (y1
1, y

2
1, y

3
1, y

4
1) (4.180)

×
∫

dy1
2

∫
dy2

2

∫
dy3

2

∫
dy4

2 V (y1
2, y

2
2, y

3
2, y

4
2) (4.181)

× C(x1, y
1
1)C(y3

1, x2)C(y4
1, y

2
1)C(y3

2, y
2
2)C(y4

2, y
1
2) ,

which corresponds to the Feynman graph shown in Fig. 4.1b. This latter Feynman graph
differs from the former one in that the outgoing slots x1 and y3

1 are respectively connected
with the ingoing slots y1

1 and x2 (instead of the other way around), and similarly, the
outgoing slots y3

2 and y4
2 are respectively connected with the ingoing slots y2

2 and y1
2 .

Finally, we generalize the graphical representation of the four-point interaction kernel V
and the covariance C to all Green functions by means of the following prescription: any
2n-point Green function G2n(x1, . . . , xn;xn+1, . . . , x2n) shall be represented by a rect-
angle with n ingoing slots x1, . . . , xn and n outgoing slots xn+1, . . . , x2n , as shown in
Table 4.1. We call the graphs defined in this way “Universal Feynman Graphs”, because
they can be universally used to represent various Green function equations, which we will
demonstrate in the following. Thus, the Universal Feynman Graphs may facilitate the
communication between different physics communities, where at present different types
of graphs are used to represent different Green function equations (such as the ordinary
perturbation theory [FW71, Ch. 3, Sct. 9], the relations between ordinary, connected
and one-line-irreducible Green functions [NO98, pp. 116ff.], self-consistent Green func-
tion equations [Hel+11], or the functional renormalization group equations [Met+12]).

V

V

x1 x2

y11
y21

y31
y41

y12
y22

y32
y42

(a) Permutation π1 (see Eq. (4.176)).

V

V

x1 x2

y21

y11 y31

y41

y12
y22

y42
y32

(b) Permutation π2 (see Eq. (4.179)).

Figure 4.1: Examples of Universal Feynman Graphs and corresponding permutations.
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V (1, 2, 3, 4) V
1

2

3

4

V (1, 2, 4, 3) V
1

2

3

4

δ(1, 2) 1 2

C(1, 2) 1 2

G2(1, 2) G21 2

G4(1, 2, 3, 4) G4
1

2

3

4

G2n(1, . . . , n ; n+ 1, . . . , 2n) G2n
...

...

1

2

n

n+ 1

n+ 2

2n

Table 4.1: Representation of interaction kernels, covariances and interacting Green functions
by means of Universal Feynman Graphs.
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4.5.2. Classification

Before deriving the perturbative expansion of the interacting Green functions by cancel-
ing the denominator in Eq. (4.171) against certain terms in the numerator, we introduce
some general notions to classify Feynman graphs.

Definition 4.9. A Feynman graph is called bubble-free, if every interaction vertex is
connected (through a series of covariance lines and interaction vertices) to at least one
external slot.

Definition 4.10. A Feynman graph is called connected, if it has at least one interac-
tion vertex, and if every interaction vertex is connected (through a series of covariance
lines and interaction vertices) to every external slot.

Obviously, every connected Feynman graph is bubble-free, but not every bubble-free
Feynman graph is connected. Note that in the literature, the term “connected” is usu-
ally used for both types of graphs.

Definition 4.11. Consider a connected Feynman graph with k ≥ 1 interaction vertices.
A covariance line of this graph is called

(i) internal, if it connects two internal slots;

(ii) external, if it connects an external slot with an internal slot (or vice versa).

Since a connected Feynman graph does not contain any covariance line which connects
two external slots with each other, the above classification is exhaustive, i.e., any covari-
ance line of a connected Feynman graph is either internal or external.

Next, we define the operation of “cutting” an internal covariance line. Consider a con-
nected Feynman graph with k ≥ 1 interaction vertices and 2n external slots, which
yields a contribution to the Green function

G2n(x1, . . . , xn ; xn+1, . . . , x2n) . (4.182)

Let C(y1, y2) be an internal covariance line of this graph (connecting the internal, out-
going slot y1 with the internal, ingoing slot y2). The operation of cutting the internal
covariance line is defined by replacing

C(y1, y2) 7→ (−1)C(y1, z2)C(z1, y2) , (4.183)

where z1 is a new external, outgoing slot and z2 a new external, ingoing slot. The result-
ing Feynman graph (which is not necessarily connected anymore) yields a contribution
to (the denominator of) the (2n+ 2)-point Green function

G2n+2(x1, . . . , xn, z1 ; xn+1, . . . , x2n, z2) . (4.184)
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The necessity of including a sign factor in Eq. (4.183) becomes clear if we interpret the
operation of cutting a Green function line as a concatenation of two simpler operations
(see Fig. 4.2): Assume that the originally given, connected Feynman graph corresponds
to a permutation π ∈ Sn+2k (Subfigure (a), where we have chosen n = 1 and k = 2). In
the first step, we multiply this Feynman graph by C(z1, z2) (Subfigure (b)). Thereby,
we obtain a new Feynman graph, which corresponds to a permutation σ ∈ Sn+1+2k

given explicitly by (
σ(xn+1), . . . , σ(x2n), σ(z2), σ(y1

1), . . . , σ(y2
k)
)

=(
π(xn+1), . . . , π(x2n), z2, π(y1

1), . . . , π(y2
k)
)
.

(4.185)

This permutation σ has the same sign as π, and hence the multiplication of the orig-
inal Feynman graph by C(z1, z2) yields indeed the value of a Feynman graph which
contributes to the Green function (4.184). In the next step (Subfigures (c)–(d)), we
permute two ingoing slots, namely, we replace

C(y1, y2)C(z1, z2) 7→ (−1)C(y1, z2)C(z1, y2) . (4.186)

The resulting Feynman graph corresponds to another permutation σ′ ∈ Sn+1+2k , which
differs from σ by a single transposition:(

. . . , σ′(y2), . . . , σ′(z2), . . .
)

=
(
. . . , σ(z2), . . . , σ(y2), . . .

)
. (4.187)

Correspondingly, we have sgn(σ′) = (−1) sgn(σ), and the replacement (4.186) indeed
yields the value of a Feynman graph which contributes to the Green function (4.184).
The concatenation of these two operations (the multiplication with C(z1, z2) and the
replacement (4.186)) exactly coincides with the operation (4.183) of cutting the internal
covariance line. Thus, we have shown that the operation (4.183) indeed transforms
any connected Feynman graph which contributes to the 2n-point function (4.182) to
another Feynman graph which contributes to (the denominator of) the (2n + 2)-point
function (4.184).

The operation of cutting internal Green function lines lends itself to another classifica-
tion of connected Feynman graphs, which we will explain in the following.
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V V
x1 x2

y1 y2

(a) Connected Feynman graph corresponding to a permutation π ∈ S5.

V V
x1 x2

z1 z2

y1 y2

(b) Feynman graph corresponding to σ ∈ S6 , where sgn(σ) = sgn(π).

V V
x1 x2

z1 z2

y1 y2

(c) Feynman graph corresponding to σ′ ∈ S6 , where sgn(σ′) = (−1) sgn(σ).

V
x1 z2

V
z1 x2

y1 y2

(d) Same Feynman graph as in Subfigure (c).

Figure 4.2: Cutting an internal covariance line.

V VV V

V

Figure 4.3: Classification of the covariance lines of a connected Feynman graph (which con-
tributes to the six-point function): orange = external; blue = internal and non-essential; green =
internal extremity line; red = internal torso line.



100 4. Green function perturbation theory

Definition 4.12. Consider a connected Feynman graph with 2n external slots. An in-
ternal covariance line of this graph is called

(i) non-essential, if by cutting this line the resulting graph remains connected;

(ii) essential, otherwise.

Furthermore, an essential covariance line is called

(ii.a) extremity line, if by cutting this line the graph is separated into two parts with
2n1 and 2n2 external slots, where n1 = 1 and/or n2 = 1 (i.e., at least one part
has only two external slots, one ingoing and one outgoing);

(ii.b) torso line, otherwise, i.e., if by cutting this line the graph is separated into two
parts with 2n1 and 2n2 external slots, where n1 ≥ 2 and n2 ≥ 2.

This classification of internal covariance lines is illustrated for an example Feynman
graph in Fig. 4.3. Next, the following simple observation follows directly from the above
definitions:

Lemma 4.13. Consider a connected Feynman graph with 2n external slots, where n = 1
or n = 2. Then every essential line is an extremity line.

Proof. The original connected Feynman graph has 2n ≤ 4 external slots. By cutting
one essential covariance line, we obtain two Feynman graphs with 2n1 and 2n2 external
slots, respectively, where

2n1 + 2n2 = 2n+ 2 ≤ 6 . (4.188)

This implies that n1 = 1 or n2 = 1, hence the cut line was an extremity line.

The above classification of internal covariance lines leads to the following classification
of connected Feynman graphs:

Definition 4.14. A connected Feynman graph is called one-line-reducible, if it has at
least one essential line, and one-line-irreducible otherwise.

In the following, we will sometimes omit the “one-line” and simply speak of reducible or
irreducible Feynman graphs. In addition to these already well-established notions, we
introduce yet another classification that will prove useful in the following:

Definition 4.15. A connected Feynman graph is called amputable, if it has at least one
extremity line, and non-amputable otherwise.

Obviously, every amputable Feynman graph is reducible (and hence every irreducible
graph is non-amputable), but not every reducible Feynman graph is also amputable.
However, for n = 1 or n = 2 these two notions actually coincide:
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Lemma 4.16. Consider a connected Feynman graph with 2n external slots, where n = 1
or n = 2. Then the Feynman graph is reducible if and only if it is amputable.

Proof. This follows immediately from Lemma 4.13.

Finally, we introduce yet another class of graphs, which are called “amputated” (and
which are, strictly speaking, not Feynman graphs in the sense of Sct. 4.5.1):

Definition 4.17. Consider a connected Feynman graph with k ≥ 1 interaction vertices
and 2n external slots. The value of the corresponding amputated graph,

Valamp[n, k, π] ≡ Valamp[n, k, π](y1, . . . , y2n) , (4.189)

is defined such that

Val[n, k, π](x1, . . . , x2n) =

∫
dy1 . . .

∫
dy2n C(x1, y1) . . . C(xn, yn)

×Valamp[n, k, π](y1, . . . , yn ; yn+1, . . . , y2n)

× C(yn+1, xn+1) . . . C(y2n, x2n) .

(4.190)

Hence, the amputated graph is obtained from the given Feynman graph by removing all
external covariance lines.

We remark that this notion of amputated graphs is not directly related to the above
notion of amputable graphs, as the latter refers only to internal covariance lines. How-
ever, the notion of amputable graphs can be used to define the following subclass of
amputated graphs:

Definition 4.18. A fully amputated graph is an amputated graph which has no am-
putable covariance line (i.e., it is non-amputable in the sense of Definition 4.15).

This last notion will be used later to define the so-called fully amputated, connected
Green functions (see Sct. 5.4).

4.5.3. Cancellation theorem

We now come back to the formal expression (4.171) of the interacting Green functions in
terms of Feynman graphs. As of yet, this formula does not constitute a power series in
the interaction, because both the numerator and the denominator (which is the partition
function Z) are represented separately as power series (see Eq. (4.174)). It turns out,
however, that the numerator can be rewritten as a product of two formal power series,
one of which cancels precisely against the denominator, thus giving rise to a formal
power series of the interacting Green functions in terms of bubble-free Feynman graphs.
This statement is made precise by the following theorem.



102 4. Green function perturbation theory

Theorem 4.19 (Cancellation theorem). For each n ≥ 1, the interacting temperature
Green function G2n can be formally expanded as

G2n(x1, . . . , x2n) =

∞∑
k=0

1

k!2k

∑
π∈Sn+2k ,

π bubble-free

Val[n, k, π] , (4.191)

where for each k, the sum is over all bubble-free Feynman graphs with 2n external slots
and k interaction vertices.

Remark. If we replace the interaction kernel by

V 7→ λV (4.192)

with a dimensionless parameter λ called interaction strength, then each term Val[n, k, π]
is of the order k in the interaction strength, and hence Eq. (4.191) can be regarded as a
formal power series in the interaction strength.

Proof. Every Feynman graph π ∈ Sn+2k can be uniquely decomposed into a bubble-free
graph π′ ∈ Sn+2` and a vacuum bubble σ ∈ S2(k−`) , where ` ∈ {0, . . . , k}. Assume, for
example, that the first ` vertices are connected to the external slots, while the last (k−`)
vertices form a vacuum bubble, i.e.,(

π(xn+1), . . . , π(x2n), π(y1
1), π(y2

1), . . . , π(y1
k), π(y2

k)
)

=(
π′(xn+1), . . . , π′(x2n), π′(y1

1), π′(y2
1), . . . , π′(y1

` ), π
′(y2

` ),

σ(y1
`+1), σ(y2

`+1), . . . , σ(y1
k), σ(y2

k)
)
.

(4.193)

Then, the sign of the permutation π equals

sgn(π) = sgn(π′) sgn(σ) , (4.194)

and from the definition (4.173) we obtain

Val[n, k, π] = Val[n, `, π′] Val[0, k − `, σ] . (4.195)

These equations remain valid if ` arbitrary vertices (instead of the first ` vertices) are
connected to the external slots. Thus, we can write

∑
π∈Sn+2k

Val[n, k, π] =

k∑
`=0

k!

`!(k − `)!
∑

π′∈Sn+2` ,

π′ bubble-free

Val[n, `, π′]
∑

σ∈S2(k−`)

Val[0, k − `, σ] ,

(4.196)
where the factor k!/`!(k − `)! counts the number of possibilities by which the k vertices
of a given graph can be partitioned into ` vertices of a bubble-free graph and (k − `)
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vertices of a vacuum bubble. By putting this result into Eq. (4.171), we find

G2n(x1, . . . , x2n) =
1

Z

∞∑
k=0

k∑
`=0

1

`!2`

∑
π′∈Sn+2` ,

π′ bubble-free

Val[n, `, π′]

× 1

(k − `)! 2k−`

∑
σ∈S2(k−`)

Val[0, k − `, σ] .

(4.197)

Finally, by re-arranging the summations according to

∞∑
k=0

k∑
`=0

f(`)g(k − `) =
∞∑
`=0

∞∑
`′=0

f(`)g(`′) =
∞∑
`=0

f(`)
∞∑
`′=0

g(`′) , (4.198)

the second factor in Eq. (4.197) precisely reverts to the expression (4.174) of the partition
function and thereby cancels the prefactor 1/Z, which proves the assertion.

The perturbative expansion (4.191) can be further simplified by noting that in each or-
der k, there are several Feynman graphs which have exactly the same value. Concretely,
two Feynman graphs have the same value if they can be transformed into each other by
(i) simultaneously interchanging the two ingoing and the two outgoing slots of one or
more interaction vertices, and/or (ii) interchanging different interaction vertices. The
first equality follows from the symmetry

V (y1, y2, y3, y4) = V (y2, y1, y4, y3) (4.199)

of the four-point interaction kernel given by Eq. (4.107). The second equality can be
shown from the definition (4.173) by relabeling the integration variables (for i 6= j)

(y1
i , y

2
i , y

3
i , y

4
i )↔ (y1

j , y
2
j , y

3
j , y

4
j ) . (4.200)

In the kth order, there are precisely 2kk! such topologically equivalent Feynman graphs,
i.e., graphs which can be transformed into each other by means of the operations (i)
and/or (ii), and which therefore have exactly the same value. Consequently, we can
simplify Eq. (4.191) by counting each of these equivalent Feynman graphs only once and
cancel the prefactor 1/(2kk!) for it. This statement is made precise by the following
theorem.
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V

V

V V

V V

V V

V V

Table 4.2: First- and second-order perturbation theory. Left column: Universal Feynman
Graphs. Right column: traditional Feynman graphs.
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V V

V V

V V

V V

V V

V V

Table 4.2: First- and second-order perturbation theory (continued).
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Theorem 4.20 (Feynman graph expansion of temperature Green functions).
For each n ≥ 1, the interacting temperature Green function G2n can be formally expanded
in terms of the interaction kernel V and the covariance C ≡ G2

0 as

G2n(x1, . . . , x2n) =
∞∑
k=0

∑′

π∈Sn+2k ,
π bubble-free

Val[n, k, π] . (4.201)

Here, for each k, the primed sum is over all topologically distinct bubble-free Feynman
graphs with 2n external slots and k interaction vertices, and Val[n, k, π] denotes the value
of the Feynman graph corresponding to the permutation π as defined by Eq. (4.173).

We remark that in the first order (k = 1), there are exactly two topologically dis-
tinct bubble-free Feynman graphs, while in the second order (k = 2), there are ex-
actly ten such graphs. These first- and second-order Feynman graphs are shown in
Table 4.2—both in the Universal Feynman Graph representation (see Sct. 4.5.1) and in
the traditional representation (see e.g. Ref. [FW71]).

Finally, let us summarize the advantages of the Universal Feynman Graphs (for the
reason of this labeling, see p. 95): (i) they can be universally used for representing
various Green function equations, such as the ordinary perturbation theory (this chap-
ter), the relations between ordinary, connected and one-line-irreducible Green functions
(next chapter), the equations of motion and self-consistent Green function equations
(see Ref. [SK12]), or the functional renormalization group equations (Ch. 6), (ii) they
are more clearly arranged than the traditional Feynman graphs, and hence they also
reveal certain similarities between different Feynman graphs (see Table 4.2), (iii) they
make the correspondence between Feynman graphs and permutations more obvious (see
Sct. 4.5.1), and (iv) the value of a given Universal Feynman Graph can be read off easily
and without ambiguity (see Eq. (4.173)). Finally, (v) the Universal Feynman Graphs
may prevent from the outset any possible misinterpretation of the traditional Feynman
graphs in terms of (possibly “virtual”) particle trajectories, and thus they contribute to
the overcoming of the physically flawed philosophical realism.



5. Grassmann field integral

5.1. Grassmann algebra

5.1.1. Basic definitions

We consider the Grassmann algebra A generated by the Grassmann field variables

ψ(x) , ψ̄(x) , (5.1)

where x = (x, s, τ) ∈ R3 × {↑, ↓} × [0, ~β), and we identify

ψ(x, s, ~β) ≡ −ψ(x, s, 0) , (5.2)

ψ̄(x, s, ~β) ≡ −ψ̄(x, s, 0) . (5.3)

The generators of the Grassmann algebra have the same dimensions as the field opera-
tors introduced in the previous chapter (see Eq. (4.24)), i.e.,[

ψ(x)
]

=
[
ψ̄(x)

]
= m−3/2 . (5.4)

Any element A ∈ A is called a Grassmann variable and can be uniquely expanded in
terms of the generators as

A =
∞∑
n=0

∞∑
m=0

∫
dx1 . . .

∫
dxn

∫
dy1 . . .

∫
dym

× fn,m(x1, . . . , xn; y1, . . . , ym) ψ̄(x1) . . . ψ̄(xn)ψ(y1) . . . ψ(ym) ,

(5.5)

where the complex coefficient functions fn,m are assumed to be totally antisymmetric
with respect to their first n arguments and their last m arguments. In particular, f0,0

is called the constant term (or field-independent term) of the Grassmann variable A.

Let us briefly summarize the most important properties of the Grassmann algebra, which
will be used in the following (for details, see Ref. [Sal99, Appendix B.2]). First, the
generators of the Grassmann algebra anticommute,

ψ(x)ψ(x′) = −ψ(x′)ψ(x) , (5.6)

ψ̄(x)ψ̄(x′) = −ψ̄(x′)ψ̄(x) , (5.7)

ψ(x)ψ̄(x′) = −ψ̄(x′)ψ(x) . (5.8)
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Next, the differentiation with respect to these generators is defined for monomials as

δ

δψ̄(x)
ψ̄(x1) . . . ψ̄(xn)ψ(y1) . . . ψ(ym) = (5.9)

n∑
i=1

(−1)i−1 δ(x− xi) ψ̄(x1) . . . ψ̄(xi−1)ψ̄(xi+1) . . . ψ̄(xn)ψ(y1) . . . ψ(ym) ,

and respectively,

δ

δψ(y)
ψ̄(x1) . . . ψ̄(xn)ψ(y1) . . . ψ(ym) = (5.10)

m∑
j=1

(−1)n+j−1 δ(y − yj) ψ̄(x1) . . . ψ̄(xn)ψ(y1) . . . ψ(yj−1)ψ(yj+1) . . . ψ(ym) .

For an arbitrary Grassmann variable A ∈ A , the corresponding derivatives are defined
by expanding A as in Eq. (5.5) and differentiating each monomial separately, i.e., by
stipulating the linearity of the Grassmann derivatives. Furthermore, the Grassmann
integration is defined identically as the differentiation, i.e.,∫

dψ(x)A =
δ

δψ(x)
A ,

∫
dψ̄(x)A =

δ

δψ̄(x)
A . (5.11)

Finally, the Grassmann field integral is defined as∫
dψ̄dψ =

∏
x

( ∫
dψ̄(x)

∫
dψ(x)

)
, (5.12)

where the formal product ranges over all x ∈ R3 × {↑, ↓} × [0, ~β). We remark that in
this thesis, we use the Grassmann field integral as a heuristic tool, and hence we do not
seek to define it as a mathematical object. In fact, the only property of the field integral
which we will use is the standard result for Gaussian integrals, which will be explained
in the following subsection (see Ref. [SS16b]).

5.1.2. Grassmann–Gaussian integral

Let Q be the inverse integral kernel of the covariance C as defined by Eq. (4.118). We
first define the formal product

〈ψ̄, Qψ〉 =

∫
dx

∫
dx′ ψ̄(x)Q(x, x′)ψ(x′) , (5.13)

which is equivalent to

〈ψ̄, Qψ〉 =

∫
d3x

∑
s

∫
dτ ψ̄(x, s, τ)

(
∂

∂τ
− ~

2m
∆x −

µ

~

)
ψ(x, s, τ) . (5.14)
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With this, we define a Grassmann–Gaussian integral as an expression of the form

1

N

∫
dψ̄dψ e−〈ψ̄,Qψ〉A , (5.15)

with the normalization constant

N =

∫
dψ̄dψ e−〈ψ̄,Qψ〉 , (5.16)

where A ∈ A may denote any Grassmann variable. The following lemma concerns the
fundamental property of such Gaussian integrals (see Ref. [Sal99, Lemma B.7]).

Lemma 5.1 (Factorization property of the Grassmann–Gaussian integral).
The Gaussian integral over a monomial with an equal number of ψ̄ and ψ generators
yields an antisymmetrized product of covariances, i.e.,

1

N

∫
dψ̄dψ e−〈ψ̄,Qψ〉 ψ(x1) . . . ψ(xn)ψ̄(x2n) . . . ψ̄(xn+1) = (5.17)∑

π∈Sn

sgn(π)C(x1, π(xn+1)) . . . C(xn, π(x2n)) .

This formula can be written equivalently in terms of a determinant as

1

N

∫
dψ̄dψ e−〈ψ̄,Qψ〉 ψ(x1) . . . ψ(xn)ψ̄(x2n) . . . ψ̄(xn+1) = (5.18)

det
([
C(xi, xn+j)

]
i,j=1,...,n

)
.

Furthermore, all Gaussian integrals over monomials with a different number of ψ̄ and ψ
generators vanish.

Before proceeding with the proof, we introduce an additional Grassmann algebra S
(besides A ), which is generated by the elements (also called sources or source fields)

η(x) , η̄(x) , (5.19)

where again, we identify

η(x, s, ~β) ≡ −η(x, s, 0) , (5.20)

η̄(x, s, ~β) ≡ −η̄(x, s, 0) . (5.21)

The elements of S have the same units as the elements of A (see Eq. (5.4)), hence[
η(x)

]
=
[
η̄(x)

]
= m−3/2 . (5.22)

We further allow for formal multiplications between elements of A and S , and we
require this multiplication to be anticommutative as well, e.g.,

ψ̄(x)η(x) = −η(x)ψ̄(x) . (5.23)
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In particular, we define the formal inner product

〈ψ̄, η〉 ≡
∫

dx ψ̄(x) η(x) , (5.24)

which is a dimensionless quantity. We now proceed with the proof of Lemma 5.1.

Proof. We begin by rewriting the Grassmann–Gaussian integral of Eq. (5.17) using the
source fields as follows:

1

N

∫
dψ̄dψ e−〈ψ̄,Qψ〉 ψ(x1) . . . ψ(xn)ψ̄(x2n) . . . ψ̄(xn+1) = (5.25)

1

N

(
δ

δη̄(x1)
. . .

δ

δη̄(xn)

δ

δη(x2n)
. . .

δ

δη(xn+1)

)∫
dψ̄dψ e−〈ψ̄,Qψ〉+〈η̄,ψ〉+〈η,ψ̄〉

∣∣∣∣
η= η̄=0

.

Here, the expression on the right-hand side is an element of the Grassmann algebra S ,
and the notation η = η̄ = 0 indicates that the constant term of this Grassmann variable
should be evaluated (see the remark on p. 112). The field integral on the right-hand side
can be calculated explicitly by completing the square in the exponent (see Ref. [Sal99,
Lemma B.6]). For this purpose, we write

〈η̄, ψ〉 =
〈
η̄, CQψ

〉
=
〈
CT η̄, Qψ

〉
, (5.26)

where we have generalized the notation (5.13) in an obvious way, and where we have
defined the transpose of the integral kernel C as

CT(x, x′) = C(x′, x) . (5.27)

Similarly, we rewrite the last term in the exponent as

〈η, ψ̄〉 = −〈ψ̄, η〉 = −
〈
ψ̄, QCη

〉
. (5.28)

Thus, we obtain (using [Sal99, Corollary B.2])∫
dψ̄dψ e−〈ψ̄,Qψ〉+〈η̄,ψ〉+〈η,ψ̄〉 = e−〈η̄,C η〉

∫
dψ̄dψ e−〈ψ̄−C

Tη̄, Q(ψ+Cη)〉 (5.29)

= e−〈η̄,C η〉
∫

dψ̄dψ e−〈ψ̄,Qψ〉 (5.30)

= e−〈η̄,C η〉N . (5.31)

Putting this result into Eq. (5.25) yields

1

N

∫
dψ̄dψ e−〈ψ̄,Qψ〉ψ(x1) . . . ψ(xn)ψ̄(x2n) . . . ψ̄(xn+1)

=

(
δ

δη̄(x1)
. . .

δ

δη̄(xn)

δ

δη(x2n)
. . .

δ

δη(xn+1)

)
e−〈η̄,Cη〉

∣∣∣∣
η= η̄=0

.

(5.32)
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Next, we evaluate the derivatives with respect to the η sources: for j = 1, . . . , n, we have

δ

δη(xn+j)
e−〈η̄,Cη〉 =

(
− δ

δη(xn+j)
〈η̄, C η〉

)
e−〈η̄,C η〉 (5.33)

=

(∫
dyj η̄(yj)C(yj , xn+j)

)
e−〈η̄,Cη〉 . (5.34)

Since the factor in front of the exponential does not depend on η anymore, we can
successively evaluate all the η derivatives, and thus we obtain(

δ

δη(x2n)
. . .

δ

δη(xn+1)

)
e−〈η̄,Cη〉 = (5.35)(∫

dyn η̄(yn)C(yn, x2n)

)
. . .

(∫
dy1 η̄(y1)C(y1, xn+1)

)
e−〈η̄,Cη〉 .

By further evaluating the η̄ derivatives and keeping only the constant term of the result-
ing expression, we arrive at(

δ

δη̄(x1)
. . .

δ

δη̄(xn)

δ

δη(x2n)
. . .

δ

δη(xn+1)

)
e〈η̄,Cη〉

∣∣∣∣
η= η̄=0

=

∫
dy1 . . .

∫
dynC(y1, xn+1) . . . C(yn, x2n)

(
δ

δη̄(x1)
. . .

δ

δη̄(xn)
η̄(yn) . . . η̄(y1)

)
=

∫
dy1 . . .

∫
dynC(y1, xn+1) . . . C(yn, x2n)

∑
π∈Sn

sgn(π) δ(y1, π(x1)) . . . δ(yn, π(xn))

=
∑
π∈Sn

sgn(π)C(π(x1), xn+1) . . . C(π(xn), x2n) , (5.36)

which is equivalent to the assertion (5.17). Finally, the fact that Gaussian integrals
over monomials with a different number of ψ̄ and ψ generators vanish becomes almost
obvious if we consider Eq. (5.32): There, the exponential can be expanded into a sum
of monomials which all have an equal number of η̄ and η sources. If we then take a
different number of η̄ and η derivatives, all resulting terms will be of a different order in
η and η̄, which implies in particular that the constant term vanishes.

5.2. Green function generator

In this section, we will prove the Grassmann field integral representation of the tem-
perature Green functions. This result establishes the equivalence between the operator
formalism (as described in Ch. 4) and the field integral (or functional integral, path
integral) formalism of fermionic quantum field theory.
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Definition 5.2. The Green function generator Z ≡ Z[η̄, η] is an element of the Grass-
mann algebra S defined as

Z =
1

N

∫
dψ̄dψ e−〈ψ̄,Qψ〉 e−βV [ψ̄,ψ]+〈η̄,ψ〉+〈η,ψ̄〉 , (5.37)

with the normalization constant

N =

∫
dψ̄dψ e−〈ψ̄,Qψ〉 . (5.38)

Here, Q = C−1 is the inverse of the covariance (see Eq. (5.14)), and

V [ψ̄, ψ] ≡ 1

2

∫
dx1

∫
dx2

∫
dx3

∫
dx4 V (x1, x2, x3, x4) ψ̄(x1)ψ̄(x2)ψ(x4)ψ(x3) , (5.39)

with the four-point interaction kernel V given by Eq. (4.107).

Remark. The notation Z ≡ Z[η̄, η] can be used to indicate that Z is an element of the
Grassmann algebra S generated by η̄(x) and η(x). In particular, the Green function
generator can be expanded (as every element of S ) in terms of the sources as

Z[η̄, η] = Z +

∫
dx1

∫
dx2 f(x1, x2) η̄(x1)η(x2) + . . . , (5.40)

with a constant term Z ∈ C, a complex function f(x1, x2) ∈ C, etc. (see Theorem 5.3
for the concrete form of this expansion). In particular, we denote the constant term of
this expansion by

Z ≡ Z[0, 0] ≡ Z[η̄, η]
∣∣
η= η̄=0

. (5.41)

However, the notation Z ≡ Z[η̄, η] does not imply that Z is a functional of the sources.
In fact, it is not a functional, because η is not an arbitrary function mapping each x to
some arbitrary “value” η(x). To the contrary, we had defined η(x) from the beginning
as a fixed element (namely, as one of the generators) of the Grassmann algebra S .
Therefore, one cannot “set η(x) to zero” either, and the notation (5.41) for the constant
term in the expansion (5.40) is only formal.1

1This is in contrast to the bosonic case, where the generating functional Z[φ∗, φ] is defined analogously
to Eq. (5.37) in terms of arbitrary functions φ and φ∗ [NO98]. These functions map each x to some
arbitrary complex values φ(x) and φ∗(x), where φ∗(x) is the complex conjugate of φ(x). In particular,
Z[0, 0] is defined by evaluating the functional Z at the identically vanishing function φ(x) ≡ 0. Hence,
only in the bosonic case the term “generating functional” is actually justified. In the fermionic case
treated in this thesis, we have therefore replaced it by “Green function generator”. A similar remark
applies to the term “functional integral”, which we have replaced here by “Grassmann field integral”.
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Theorem 5.3 (Grassmann field integral representation of temperature Green
functions). The constant term of the Green function generator coincides with the grand
canonical partition function (4.15), i.e.,

Z = Z[0, 0] . (5.42)

Furthermore, the temperature Green functions (see Definition 4.1) can be represented as
Grassmann derivatives of the Green function generator Z with respect to the sources:
for n ≥ 1,

G2n(x1, . . . , x2n) = (5.43)

1

Z[0, 0]

(
δ

δη̄(x1)
. . .

δ

δη̄(xn)

δ

δη(x2n)
. . .

δ

δη(xn+1)

)
Z[η̄, η]

∣∣∣∣
η= η̄=0

.

All analogous expressions with a different number of η̄ and η derivatives vanish, and
hence the Green function generator has the formal expansion

Z[η̄, η]

Z[0, 0]
= 1 +

∞∑
n=1

(−1)n

(n!)2

∫
dx1 . . .

∫
dx2nG

2n(x1, . . . , x2n)

× η̄(x1) . . . η̄(xn)η(x2n) . . . η(xn+1)

(5.44)

in terms of the source fields.

Remark. By using the Definition 5.2 of the Green function generator, Eq. (5.43) can
be written equivalently as

G2n(x1, . . . , x2n) =

(∫
dψ̄dψ e−〈ψ̄,Qψ〉 e−βV [ψ̄,ψ]

)−1 ∫
dψ̄dψ e−〈ψ̄,Qψ〉

× ψ(x1) . . . ψ(xn)ψ̄(x2n) . . . ψ̄(xn+1) e−βV [ψ̄,ψ] ,

(5.45)

where we have canceled the normalization factor N in the numerator and in the denom-
inator of Eq. (5.43). In particular, the anticommutativity of the Grassmann variables,
Eqs. (5.6) and (5.7), now translates into the antisymmetry of the fermionic Green func-
tions G2n with respect to their first n and their last n arguments. Furthermore, by the
identifications (5.2)–(5.3), we recover from Eq. (5.45) the antiperiodicity of the temper-
ature Green functions (Proposition 4.2). In fact, these fundamental properties of the
temperature Green functions—which can be proven in the operator formalism—actually
necessitate the anticommutativity of the Grassmann variables as well as the identifica-
tions (5.2)–(5.3) in the field integral formalism.

Proof. To prove the above representation of the temperature Green functions (see Ref.
[SS17a]), we first define the functions F 2n by Eq. (5.45), i.e.,

F 2n(x1, . . . , x2n) :=
1

Z[0, 0]

1

N

∫
dψ̄dψ e−〈ψ̄,Qψ〉

× ψ(x1) . . . ψ(xn)ψ̄(x2n) . . . ψ̄(xn+1) e−βV [ψ̄,ψ] .

(5.46)
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We then show for all n ≥ 1 that F 2n coincides with G2n, where the latter was defined
by Eq. (4.25). For this purpose, we expand the exponential in Eq. (5.46) and use the
linearity of the Grassmann integral, which yields

F 2n(x1, . . . , x2n) = (5.47)

1

Z[0, 0]

∞∑
k=0

(−β)k

k!2k

( k∏
i=1

∫
dy1

i

∫
dy2

i

∫
dy3

i

∫
dy4

i V (y1
i , y

2
i , y

3
i , y

4
i )

)

× 1

N

∫
dψ̄dψ e−〈ψ̄,Qψ〉

× ψ(x1) . . . ψ(xn)ψ̄(x2n) . . . ψ̄(xn+1)

( k∏
j=1

ψ̄(y1
j )ψ̄(y2

j )ψ(y4
j )ψ(y3

j )

)
. (5.48)

After re-arranging the Grassmann generators in the last line, we can perform the Gaus-
sian integral by means of Lemma 5.1, i.e.,

1

N

∫
dψ̄dψ e−〈ψ̄,Qψ〉 ψ(x1) . . . ψ(xn)ψ(y3

1)ψ(y4
1) . . . ψ(y3

k)ψ(y4
k)

× ψ̄(y2
k) ψ̄(y1

k) . . . ψ̄(y2
1) ψ̄(y1

1) ψ̄(x2n) . . . ψ̄(xn+1)

=
∑

π∈Sn+2k

sgn(π)C(x1, π(xn+1)) . . . C(xn, π(x2n))

× C(y3
1, π(y1

1))C(y4
1, π(y2

1)) . . . C(y3
k, π(y1

k)C(y4
k, π(y2

k)) .

(5.49)

Thus, we obtain

F 2n(x1, . . . , x2n) = (5.50)

1

Z[0, 0]

∞∑
k=0

(−β)k

k!2k

( k∏
i=1

∫
dy1

i

∫
dy2

i

∫
dy3

i

∫
dy4

i V (y1
i , y

2
i , y

3
i , y

4
i )

)
×

∑
π∈Sn+2k

sgn(π)C(x1, π(xn+1)) . . . C(xn, π(x2n))

× C(y3
1, π(y1

1))C(y4
1, π(y2

1)) . . . C(y3
k, π(y1

k))C(y4
k, π(y2

k)) .

This expression is equivalent to

F 2n(x1, . . . , x2n) =
1

Z[0, 0]

∞∑
k=0

1

k!2k

∑
π∈Sn+2k

Val[n, k, π] , (5.51)

where Val[n, k, π] was defined by Eq. (4.173). The constant term of the Green function
generator can be calculated analogously, and hence we obtain

Z[0, 0] =
∞∑
k=0

1

k!2k

∑
π∈S2k

Val[0, k, π] . (5.52)
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The comparison of Eqs. (5.51) and (5.52) with Eqs. (4.171) and (4.174), respectively,
shows that Z[0, 0] coincides with the partition function,

Z[0, 0] = Z , (5.53)

and that F 2n coincides with the temperature Green function,

F 2n(x1, . . . , x2n) = G2n(x1, . . . , x2n) . (5.54)

Thus, we have proven the Grassmann field integral representation of the temperature
Green functions by showing that this leads precisely to the same Feynman graph expan-
sion as the ordinary Green function perturbation theory.

It remains to provet the vanishing of all expressions which are analogous to Eq. (5.43),
but which contain a different number of η̄ and η derivatives. Indeed, this follows from
an analogous calculation as presented above, using the fact that Grassmann–Gaussian
integrals over monomials with a different number of ψ̄ and ψ generators vanish (see
Lemma 5.1). Taken together, these results imply the expansion (5.44) of the Green
function generator. The prefactors be checked by conversely deducing Eq. (5.43) from
Eq. (5.44), using the identity(

δ

δη̄(x1)
. . .

δ

δη̄(xn)

δ

δη(x2n)
. . .

δ

δη(xn+1)

)
η̄(y1) . . . η̄(yn)η(y2n) . . . η(yn+1)

= (−1)n
(

δ

δη̄(x1)
. . .

δ

δη̄(xn)

δ

δη(x2n)
. . .

δ

δη(xn+1)

)
η(yn+1) . . . η(y2n) η̄(yn) . . . η̄(y1)

= (−1)n
∑
π∈Sn

sgn(π) δ(x1, π(y1)) . . . δ(xn, π(yn))

×
∑
π′∈Sn

sgn(π′) δ(xn+1, π
′(yn+1)) . . . δ(x2n, π

′(y2n)) , (5.55)

as well as the antisymmetry of the Green functions.

5.3. Connected Green functions

In contrast to the (ordinary) temperature Green functions, which were in the first place
defined in the operator formalism (Definition 4.1) and only afterwards shown to have
an equivalent representation in the field integral formalism (Theorem 5.3), the so-called
connected Green functions will now be defined directly in the field integral formalism.

Definition 5.4. The connected Green function generator W ≡ W[η̄, η] is an element
of the Grassmann algebra S , which is defined as the natural logarithm of the Green
function generator Z divided by its constant term (see Definition 5.2), i.e.,

W[η̄, η] = ln
Z[η̄, η]

Z[0, 0]
= lnZ[η̄, η]− lnZ[0, 0] . (5.56)

In particular, by our convention, the field-independent term W[0, 0] vanishes.
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Definition 5.5. For n ≥ 1, the connected temperature Green functions G2n
c are defined

by taking the Grassmann derivatives of the above generator,

G2n
c (x1, . . . , x2n) = (5.57)(

δ

δη̄(x1)
. . .

δ

δη̄(xn)

δ

δη(x2n)
. . .

δ

δη(xn+1)

)
W[η̄, η]

∣∣∣∣
η= η̄=0

,

and subsequently evaluating the field-independent terms.

We remark that in expanding the Green function generator Z, only monomials with an
equal number of η̄ and η fields appear (see Eq. (5.44)), and hence the same applies to
the connected Green function generator W. Therefore, Eq. (5.57) is equivalent to

W[η̄, η] =
∞∑
n=1

(−1)n

(n!)2

∫
dx1 . . .

∫
dx2nG

2n
c (x1, . . . , x2n)

× η̄(x1) . . . η̄(xn)η(x2n) . . . η(xn+1) .

(5.58)

Furthermore, the connected temperature Green functions G2n
c have similar properties as

the temperature Green functions G2n themselves: in fact, the former are also antisym-
metric with respect to their first n arguments as well as their last n arguments, they
satisfy antiperiodic boundary conditions at τi = 0 and τi = ~β, and they have the same
dimensions as the ordinary Green functions, e.g.,[

G2n
c (x1, . . . , x2n)

]
= m−3n . (5.59)

Before deriving the relations between the connected and the ordinary Green functions
as well as the Feynman graph expansion of the connected Green functions, we introduce
the following notation: for any function f(x1, . . . , xn), the antisymmetrization with re-
spect to any subset of arguments, say x1, . . . , xm (where m ≤ n), is denoted as

A(x1,...,xm) f(x1, . . . , xm, xm+1, . . . , xn) ≡ (5.60)

1

m!

∑
π∈Sm

sgn(π) f(xπ(1), . . . , xπ(m), xm+1, . . . , xn) .

Hence, the subscripts of A denote the variables with respect to which the function f is
antisymmetrized.

Theorem 5.6 (Relations between Green functions and connected Green func-
tions). The following relations hold between the (ordinary) Green functions G2n and the
connected Green functions G2n

c : for n = 1,

G2(x1, x2) = G2
c(x1, x2) ; (5.61)
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for n = 2,

G4(x1, x2, x3, x4) = G4
c(x1, x2, x3, x4) +G2

c(x1, x3)G2
c(x2, x4)−G2

c(x1, x4)Gc(x2, x3)

≡ G4
c(x1, x2, x3, x4) + 2A(x3,x4)

{
G2

c(x1, x3)G4
c(x2, x4)

}
; (5.62)

for n = 3,

G6(x1, x2, x3, x4, x5, x6) = (5.63)

G6
c(x1, x2, x3, x4, x5, x6) + 9A(x1,x2,x3) A(x4,x5,x6)

{
G4

c(x1, x2, x4, x5)G2
c(x3, x6)

}
+ 6A(x4,x5,x6)

{
G2

c(x1, x4)G2
c(x2, x5)G2

c(x3, x6)
}

;

and similar equations hold for n > 3. These relations can be represented graphically by
means of Universal Feynman Graphs as shown in Table 5.1.

Proof. We explicitly derive these equations only for n = 1 and for n = 2; the analogous
equations for n > 2 can be deduced similarly. Consider first the two-point Green func-
tion G2, which can be represented in the field integral formalism by Eq. (5.43). Using the
relation (5.56) between the Green function generator and the connected Green function
generator, we obtain

G2(x1, x2) =
1

Z[0, 0]

δ

δη̄(x1)

δ

δη(x2)
Z[η̄, η]

∣∣∣∣
η= η̄=0

(5.64)

=
δ

δη̄(x1)

δ

δη(x2)
eW[η̄,η]

∣∣∣∣
η= η̄=0

(5.65)

=

(
δ2W

δη̄(x1)δη(x2)
+

δW
δη̄(x1)

δW
δη(x2)

)
eW[η̄,η]

∣∣∣∣
η= η̄=0

(5.66)

= G2
c(x1, x2) . (5.67)

In the last step, we have used that only terms with an equal number of η̄ and η fields
appear in the expansion of W[η̄, η] (see Eq. (5.58)), and hence the second term in Eq.
(5.66) vanishes by “evaluating” it at η = η̄ = 0. Similarly, we obtain

G4(x1, x2, x3, x4) (5.68)

=
δ

δη(x1)

δ

δη(x2)

δ

δη̄(x4)

δ

δη̄(x3)
eW[η̄,η]

∣∣∣∣
η= η̄=0

(5.69)

=
δ

δη(x1)

δ

δη(x2)

(
δ2W

δη̄(x4)δη̄(x3)
+

δW
δη̄(x4)

δW
δη̄(x3)

) ∣∣∣∣
η= η̄=0

(5.70)

= G4
c(x1, x2, x3, x4) +G2

c(x1, x3)G2
c(x2, x4)−G2

c(x1, x4)G2
c(x2, x3) , (5.71)

where in the last step, we have neglected again the derivatives of W with respect to
unequal numbers of η and η̄ fields.
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G2 = G2
c

G4 = G4
c +

G2
c

G2
c

−
G2

c

G2
c

G6 = G6
c +

G2
c

G4
c

+ 6

G2
c

G2
c

G2
c

9 A A

A

Table 5.1: Relations between Green functions and connected Green functions: representation
by means of Universal Feynman Graphs.

In Ch. 4, we have shown that the (ordinary) Green functions have a formal perturbative
expansion in terms of bubble-free Feynman graphs (Theorem 4.19 and Theorem 4.20). In
the remainder of this section, we will prove a similar expansion of the connected Green
functions in terms of connected Feynman graphs (see Definitions 4.9 and 4.10).
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Theorem 5.7 (Feynman graph expansion of connected Green functions). The
natural logarithm of the partition function has the following formal expansion in terms
of connected vacuum bubbles,

lnZ =
∞∑
k=0

1

k!2k

∑
π∈S2k ,

π connected

Val[0, k, π] . (5.72)

Furthermore, the connected temperature Green functions can be expanded in terms of
connected Feynman graphs as

G2n
c (x1, . . . , x2n) =

∞∑
k=0

1

k!2k

∑
π∈Sn+2k ,
π connected

Val[n, k, π] , (5.73)

where Val[n, k, π] is given explicitly by Eq. (4.173).

Proof. We build on the proof given in Ref. [NO98, pp. 96f. and pp. 106f.], using the
so-called replica technique: We define for each P ∈ N the auxiliary Green functions

GP,2n(x1, . . . , x2n) = (5.74)

1

ZP [0, 0]

(
δ

δη̄(x1)
. . .

δ

δη̄(xn)

δ

δη(x2n)
. . .

δ

δη(xn+1)

)
ZP [η̄, η]

∣∣∣∣
η= η̄=0

,

where ZP [η̄, η] is the Green function generator (5.37) taken to the power of P . In par-
ticular, by Theorem 5.3, we recover the ordinary Green functions for P = 1,

G1,2n(x1, . . . , x2n) = G2n(x1, . . . , x2n) . (5.75)

Since the expansion of Z contains only monomials with an equal number of η̄ and η
fields (see Eq. (5.44)), the same applies to ZP , and hence Eq. (5.74) is equivalent to

ZP [η̄, η]

ZP [0, 0]
= 1 +

∞∑
n=1

(−1)n

(n!)2

∫
dx1 . . .

∫
dx2nG

P,2n(x1, . . . , x2n)

× η̄(x1) . . . η̄(xn)η(x2n) . . . η(xn+1) .

(5.76)

In a first step, we will now derive the perturbative expansion of these auxiliary Green
functions, thus generalizing the result of Theorem 4.19 to P > 1: From the definition
(5.37) of the Green function generator, we obtain

ZP [η̄, η] =
1

NP

(∏
p

∫
dψ̄pdψp

)
exp

(
−
∑
p

〈ψ̄p, Qψp〉
)

× exp

(
−β

∑
p

V [ψ̄p, ψp] +
∑
p

〈η̄, ψp〉+
∑
p

〈η, ψ̄p〉
)
,

(5.77)
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where we have introduced P copies ψ1, . . . , ψP of the Grassmann fields, and where all
summations and products range over p ∈ {1, . . . , P}. In particular, the normalization
constant NP is given by

NP =

(∏
p

∫
dψ̄pdψp

)
exp

(
−
∑
p

〈ψ̄p, Qψp〉
)
. (5.78)

By putting Eq. (5.77) into Eq. (5.74), performing the η and η̄ derivatives and evaluating
the field-independent term of the resulting expression, we obtain (using Eq. (5.42))

GP,2n(x1, . . . , x2n) = (5.79)

1

ZP
1

NP

(∏
p

∫
dψ̄pdψp

)
exp

(
−
∑
p

〈ψ̄p, Qψp〉
)

×
(∑

p

ψp(x1)

)
. . .

(∑
p

ψp(xn)

)(∑
p

ψ̄p(x2n)

)
. . .

(∑
p

ψ̄p(xn+1)

)

× exp

(
−β

∑
p

V [ψ̄p, ψp]

)
.

Further expanding the exponential of the interaction term,

exp

(
−β

∑
q

V [ψ̄q, ψq]

)
= (5.80)

exp

(
−β

2

∫
dy1

∫
dy2

∫
dy3

∫
dy4 V (y1, y2, y3, y4)

∑
q

ψ̄q(y
1)ψ̄q(y

2)ψq(y
4)ψq(y

3)

)
,

into a formal power series leads to the expansion

GP,2n(x1, . . . , x2n) = (5.81)

1

ZP

∞∑
k=0

(−β)k

k!2k

( k∏
i=1

∫
dy1

i

∫
dy2

i

∫
dy3

i

∫
dy4

i V (y1
i , y

2
i , y

3
i , y

4
i )

)

× 1

NP

(∏
p

∫
dψ̄pdψp

)
exp

(
−
∑
p

〈ψ̄p, Qψp〉
)

×
(∑

p

ψp(x1)

)
. . .

(∑
p

ψp(xn)

)(∑
p

ψ̄p(x2n)

)
. . .

(∑
p

ψ̄p(xn+1)

)

×
( k∏

j=1

(∑
q

ψ̄q(y
1
j ) ψ̄q(y

2
j )ψq(y

4
j )ψq(y

3
j )

))
.

of the auxiliary Green functions. By the linearity of the Grassmann field integral, this
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expansion is equivalent to

GP,2n(x1, . . . , x2n) = (5.82)

1

ZP

∞∑
k=0

(−β)k

k!2k

∑
p1, ..., p2n

∑
q1,...,qk

( k∏
i=1

∫
dy1

i

∫
dy2

i

∫
dy3

i

∫
dy4

i V (y1
i , y

2
i , y

3
i , y

4
i )

)

× 1

NP

(∏
p

∫
dψ̄pdψp

)
exp

(
−
∑
p

〈ψ̄p, Qψp〉
)

× ψp1(x1) . . . ψpn(xn)ψ̄p2n(x2n) . . . ψ̄pn+1(xn+1)

×
( k∏

j=1

ψ̄qj (y
1
j ) ψ̄qj (y

2
j )ψqj (y

4
j )ψqj (y

3
j )

)
.

We now define a modified covariance C, which depends not only on two space-time
variables x and x′, but also on two field indices p, p′ ∈ {1, . . . , P}, as follows:

Cpp′(x, x′) =

{
C(x, x′), if p = p′ ,

0, otherwise .
(5.83)

Its inverse, Q = C−1, is given by

Qpp′(x, x′) =

{
Q(x, x′), if p = p′ ,

0, otherwise .
(5.84)

Furthermore, we define a modified interaction kernel V as

Vq1q2q3q4(y1, y2, y3, y4) =

{
V (y1, y2, y3, y4), if q1 = q2 = q3 = q4 ,

0, otherwise .
(5.85)

With these definitions, Eq. (5.82) can be written equivalently as

GP,2n(x1, . . . , x2n) = (5.86)

1

ZP

∞∑
k=0

(−β)k

k!2k

∑
p1, ..., p2n

( k∏
i=1

(∫
dy1

i . . .

∫
dy4

i

∑
q1
i , ..., q

4
i

Vq1
i ... q

4
i
(y1
i , . . . , y

4
i )

))

× 1

NP

(∏
p

∫
dψ̄pdψp

)
exp

(
−
∑
p,p′

〈ψ̄p, Qpp′ψp′〉
)

× ψp1(x1) . . . ψpn(xn)ψ̄p2n(x2n) . . . ψ̄pn+1(xn+1)

×
( k∏

j=1

ψ̄q1
j
(y1
j ) ψ̄q2

j
(y2
j )ψq4

j
(y4
j )ψq3

j
(y3
j )

)
.
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To simplify this expression, we define the “external” multi-variables (for r = 1, . . . , 2n)

Xr ≡ (xr, pr) , (5.87)

as well as the “internal” multi-variables (for ` = 1, . . . , 4 and i = 1, . . . , k)

Y `
i ≡ (y`i , q

`
i ) . (5.88)

Correspondingly, we combine the integrations over y`i and the summations over q`i into
integrations over the multi-variables Y `

i ,∫
dy`i

∑
q`i

≡
∫

dY `
i . (5.89)

Furthermore, the modified interaction kernels can be interpreted as functions of these
multi-variables,

Vq1
i ... q

4
i
(y1
i , . . . , y

4
i ) ≡ V(Y 1

i , . . . , Y
4
i ) , (5.90)

and similarly the covariances,

Cpp′(x, x′) ≡ C(X,X ′) . (5.91)

In addition, we introduce the Grassmann fields

ψpr(xr) ≡ Ψ(Xr) , (5.92)

such that the Grassmann field integral can be written as∏
p

∫
dψ̄pdψp ≡

∫
dΨ̄ dΨ , (5.93)

and the formal inner product as∑
p,p′

〈ψ̄p, Qpp′ψp′〉 ≡ 〈Ψ̄, QΨ〉 . (5.94)

With these notations, Eq. (5.86) can be written compactly as

GP,2n(x1, . . . , x2n) = (5.95)

1

ZP

∞∑
k=0

(−β)k

k!2k

∑
p1,..., p2n

( k∏
i=1

∫
dY 1

i . . .

∫
dY 4

i V(Y 1
i , . . . , Y

4
i )

)

× 1

NP

∫
dΨ̄ dΨ exp

(
−〈Ψ̄, QΨ〉

)
× Ψ(X1) . . . Ψ(Xn)Ψ̄(X2n) . . . Ψ̄(Xn+1)

( k∏
j=1

Ψ̄(Y 1
j ) Ψ̄(Y 2

j )Ψ(Y 4
j )Ψ(Y 3

j )

)
.
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Next, we perform the Grassmann–Gaussian integral by means of Lemma 5.1. After re-
arranging the Grassmann generators, we thus obtain

GP,2n(x1, . . . , x2n) =
1

ZP

∞∑
k=0

1

k!2k

∑
π∈Sn+2k

ValP [n, k, π] , (5.96)

where we have defined

ValP [n, k, π] =
∑

p1,..., p2n

(−β)k
( k∏

i=1

∫
dY 1

i . . .

∫
dY 4

i V(Y 1
i , . . . , Y

4
i )

)
× sgn(π) C(X1, π(Xn+1)) . . . C(Xn, π(X2n))

× C(Y 3
1 , π(Y 1

1 ))C(Y 4
1 , π(Y 2

1 )) . . . C(Y 3
k , π(Y 1

k )) C(Y 4
k , π(Y 2

k )) ,

(5.97)

This expression is analogous to—and in fact coincides for P = 1 with—the formula
(4.173). Similarly, one can show that

ZP =
∞∑
k=0

1

k!2k

∑
π∈S2k

ValP [0, k, π] . (5.98)

Consequently, by canceling the denominator in Eq. (5.96) analogously as in Theorem
4.19, we arrive at

GP,2n(x1, . . . , x2n) =
∞∑
k=0

1

k!2k

∑
π∈Sn+2k ,

π bubble-free

ValP [n, k, π] . (5.99)

Hence, we conclude that the auxiliary Green functions GP,2n have a perturbative ex-
pansion in terms of bubble-free Feynman graphs, which is analogous to the expansion
of the ordinary Green functions G2n. However, in evaluating the Feynman graphs of
GP,2n, the following modifications have to be taken into account (compare Eqs. (5.97)
and (4.173)):

(i) All external (position, spin and imaginary time) variables xr are replaced by Xr =
(xr, pr), and all internal variables y`i are replaced by Y `

i = (y`i , q
`
i ), where the

additional field indices pi and q`i range over the set {1, . . . , P}.

(ii) The covariances C(x1, x2) are replaced by

C(X1, X2) = δp1p2C(x1, x2) , (5.100)

and the interaction kernels V (y1, . . . , y4) are replaced by

V(Y 1, Y 2, Y 3, Y 4) = δq1q2 δq2q3 δq3q4 V (y1, y2, y3, y4) . (5.101)
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(iii) The integrations over the internal variables y`i are complemented by summations
over the internal indices q`i ,

k∏
i=1

∫
dY 1

i . . .

∫
dY 4

i =
k∏
i=1

∫
dy1

i . . .

∫
dy4

i

∑
q1
i , ... q

4
i

. (5.102)

(iv) Finally, we have to perform the sum over the external field indices p1, . . . , p2n

in Eq. (5.97). Note, however, that this formula does not imply an analogous
integration over the external space-time variables x1, . . . , x2n .

As a consequence of these modifications, the value of any Feynman graph (which corre-
sponds to a permutation π) of the auxiliary Green function GP,2n is related to the value
of the corresponding Feynman graph of the ordinary Green function G2n by

ValP [n, k, π] = Val[n, k, π]PNc[n,k,π] , (5.103)

where Nc[n, k, π] denotes the number of connected subgraphs of the Feynman graph π.
By putting this result into Eq. (5.98), we obtain

ZP =

∞∑
k=0

1

k!2k

∑
π∈S2k

Val[0, k, π]PNc[0,k,π] , (5.104)

Similarly, putting Eq. (5.103) into Eq. (5.99) yields

GP,2n(x1, . . . , x2n) =

∞∑
k=0

1

k!2k

∑
π∈Sn+2k ,

π bubble-free

Val[n, k, π]PNc[n,k,π] , (5.105)

and thus, by Eq. (5.76),

ZP [η̄, η]

ZP [0, 0]
= 1 +

∞∑
n=1

(−1)n

(n!)2

∫
dx1 . . .

∫
dx2n η̄(x1) . . . η̄(xn)η(x2n) . . . η(xn+1)

×
∞∑
k=0

1

k!2k

∑
π∈Sn+2k ,

π bubble-free

Val[n, k, π] PNc[n,k,π] .

(5.106)

Consider now the expansion

ZP = eP lnZ = 1 + P lnZ +O(P 2) , (5.107)

in which the natural logarithm of the partition function appears as the P -linear term.
From Eq. (5.104), it follows that this P -linear term is given by

lnZ =
∞∑
k=1

1

k!2k

∑
π∈S2k ,

Nc(0,k,π)=1

Val[0, k, π] . (5.108)
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Here, the condition Nc(0, k, π) = 1 implies that the Feynman graph corresponding to
the permutation π has only one connected subgraph and is therefore connected itself.
Hence, Eq. (5.108) is equivalent to the assertion (5.72). Next, consider the analogous
expansion

ZP [η̄, η]

ZP [0, 0]
= exp

(
PW[η̄, η]

)
= 1 + PW[η̄, η] +O(P 2) , (5.109)

in which the connected Green function generator (5.56) appears as the P -linear term.
From Eq. (5.106), it follows that

W[η̄, η] =
∞∑
n=1

(−1)n

(n!)2

∫
dx1 . . .

∫
dx2n η̄(x1) . . . η̄(xn)η(x2n) . . . η(xn+1)

×
∞∑
k=0

1

k!2k

∑
π∈Sn+2k ,

Nc(n,k,π)=1

Val[n, k, π] .
(5.110)

Comparing this formula with Eq. (5.58) shows the assertion (5.73), and this concludes
the proof.

5.4. Fully amputated, connected Green functions

In this section, we briefly introduce another class of Green functions, which in this the-
sis do not play an important role by themselves, but which will be needed in the next
section for proving the Feynman graph expansion of the so-called one-line-irreducible
Green functions. The Green functions of this section are defined in terms of their Feyn-
man graph expansions:

Definition 5.8. For n ≥ 1, the fully amputated, connected 2n-point Green function Σ2n

is defined by its expansion in terms of fully amputated graphs (see Definitions 4.18) as

Σ2n(x1, . . . , x2n) =

∞∑
k=1

1

k!2k

∑
π∈Sn+2k ,

π non-amputable

Valamp[n, k, π] , (5.111)

where Valamp[n, k, π] is given explicitly by Eqs. (4.173) and (4.190).

We remark that for n = 1 and for n = 2, we can equivalently sum in Eq. (5.111) over all
irreducible Feynman graphs. This follows directly from Lemma 4.16, which states that for
n ≤ 2, the notions of non-amputable and (one-line-)irreducible graphs coincide. Hence,
in particular, Σ2 coincides with the so-called irreducible self-energy [NO98, p. 113],

Σ2(x1, x2) =

∞∑
k=1

1

k!2k

∑
π∈S1+2k ,

π one-line-irreducible

Valamp[1, k, π] . (5.112)
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Similarly, the fully amputated, connected four-point function can be characterized as

Σ4(x1, x2) =
∞∑
k=1

1

k!2k

∑
π∈S2+2k ,

π one-line-irreducible

Valamp[2, k, π] . (5.113)

As we will see later, these two equations imply directly the corresponding Feynman
graph expansions of the one-line-irreducible two- and four-point Green functions.

Theorem 5.9 (Relations between connected Green functions and fully am-
putated, connected Green functions). The following relations hold between the
connected Green functions G2n

c and the fully amputated, connected Green functions Σ2n:
for n = 1,

G2
c(x1, x2) = C(x1, x2) +

∫
dy1

∫
dy2 C(x1, y1)Σ2(y1, y2)G2

c(y2, x2) ; (5.114)

and for n ≥ 2,

G2n
c (x1, . . . , x2n) =

∫
dy1 . . .

∫
dy2n G

2
c(x1, y1) . . . G2

c(xn, yn)

×Σ2n(y1, . . . , y2n)G2
c(yn+1, xn+1) . . . G2

c(y2n, x2n) .

(5.115)

While Eq. (5.114) is an implicit equation for G2
c , an explicit equation can be obtained as

well by iterating this equation (see proof).

Proof. We first rewrite Eq. (5.114) in a shorthand notation as

G2
c = C + CΣ2G2

c . (5.116)

By iterating this equation as in Ref. [NO98, p. 113], we obtain

C2
c = C + CΣ2C + CΣ2CΣ2C + . . . . (5.117)

By putting the definition (5.111) of Σ2 into this expansion and using Eq. (4.190), we
see that the right-hand side exactly reproduces the Feynman graph expansion (5.73) of
the connected two-point Green function. Similarly, for n ≥ 2, one can convince oneself
that by expanding all Green functions in Eq. (5.115), both sides of the equation produce
exactly the same Feynman graphs, and this shows the assertion.

5.5. One-line-irreducible Green functions

In this last section, we will define and study the properties of yet another class of Green
functions, which will play a central role in the following Part III of this thesis.
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We begin by introducing further elements ϕ̄(x), ϕ(x) of the Grassmann algebra S of
the sources as

ϕ̄(x) =
δW
δη(x)

, (5.118)

ϕ(x) =
δW
δη̄(x)

, (5.119)

where W = W[η̄, η] is the connected Green function generator. In the following, we
will refer to these particular Grassmann variables as the new sources (as opposed to
the “old” sources η(x) and η̄(x)). They satisfy again antiperiodic boundary conditions
analogously to Eqs. (5.20)–(5.21). Furthermore, the dimensions of the new sources can
be deduced from the property

δη(x)

δη(x′)
= δ(x, x′) , (5.120)

which together with Eq. (4.104) implies that[
δ

δη(x)

]
=
[
η(x)

]
= m−3/2 . (5.121)

Using that W is dimensionless, we thus find that[
ϕ̄(x)

]
=
[
ϕ(x)

]
= m−3/2 , (5.122)

hence the new sources have the same dimensions as the “old” sources.

Definition 5.10. The one-line-irreducible Green function generator Γ is an element of
the Grassmann algebra S , which is defined as the Legendre transform of the connected
Green function generator W, i.e.,

Γ =W + 〈ϕ̄, η〉+ 〈ϕ, η̄〉 , (5.123)

where the Grassmann fields ϕ(x) and ϕ̄(x) are defined by Eqs. (5.118)–(5.119).

Definition 5.11. For n ≥ 1, the one-line-irreducible temperature Green functions Γ 2n

are defined by taking the Grassmann derivatives of the above generator,

Γ 2n(x1, . . . , x2n) = (5.124)(
δ

δϕ̄(x1)
. . .

δ

δϕ̄(xn)

δ

δϕ(x2n)
. . .

δ

δϕ(xn+1)

)
Γ[ϕ̄, ϕ]

∣∣∣∣
ϕ= ϕ̄=0

,

and subsequently evaluating the field-independent terms.

We assume that the new sources {ϕ̄(x), ϕ(x)}, where x ∈ R3 × {↑, ↓} × [0, β), generate
again the Grassmann algebra S , such that every Grassmann variable in S can be
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expanded in terms of these new sources. The derivatives δ/δϕ̄(x) and δ/δϕ(x) of any
element of S are then well-defined, and they can be evaluated analogously as in Eqs.
(5.9)–(5.10). In particular, we can expand Γ in terms of the new sources as

Γ[ϕ̄, ϕ] =

∞∑
n=1

(−1)n

(n!)2

∫
dx1 . . .

∫
dx2n Γ

2n(x1, . . . , x2n)

× ϕ̄(x1) . . . ϕ̄(xn)ϕ(x2n) . . . ϕ(xn+1) .

(5.125)

Note that the expansion (5.58) of W contains only monomials with an equal number
of η̄ and η fields, and this implies by Eqs. (5.118)–(5.119) and (5.123) that the above
expansion of Γ also contains only monomials with an equal number of ϕ̄ and ϕ fields.
Furthermore, the one-line-irreducible Green functions Γ 2n have similar properties as the
(ordinary) Green functions and the connected Green functions: they are antisymmet-
ric with respect to their first n and their last n arguments, they satisfy antiperiodic
boundary conditions, and they have the dimensions[

Γ 2n(x1, . . . , x2n)
]

= m−3n . (5.126)

Before studying the one-line-irreducible Green functions in more detail, we will now
prove two important properties of the Legendre transformation.

Proposition 5.12 (Involution property of the Legendre transformation). The
old sources coincide with the derivatives of the one-line-irreducible Green function gen-
erator Γ with respect to the new sources, i.e.,

η̄(x) =
δΓ

δϕ(x)
, (5.127)

η(x) =
δΓ

δϕ̄(x)
. (5.128)

Furthermore, since

W = Γ + 〈η̄, ϕ〉+ 〈η, ϕ̄〉 , (5.129)

the Legendre transform of Γ is again the connected Green function generator W.

Proof. First, Eq. (5.127) follows from the definition (5.123) by the product rule,

δΓ

δϕ(x)
=

δW
δϕ(x)

−
〈

δη

δϕ(x)
, ϕ̄

〉
−
〈

δη̄

δϕ(x)
, ϕ

〉
+ η̄(x) , (5.130)

together with the chain rule,

δW
δϕ(x)

=

∫
dx′

δη(x′)

δϕ(x)

δW
δη(x′)

+

∫
dx′

δη̄(x′)

δϕ(x)

δW
δη̄(x′)

(5.131)

=

〈
δη

δϕ(x)
, ϕ̄

〉
+

〈
δη̄

δϕ(x)
, ϕ

〉
. (5.132)



5.5 One-line-irreducible Green functions 129

Next, Eq. (5.128) can be shown analogously. Finally, since W is an even element of S
(i.e., it contains only monomials with an even number of Grassmann generators), the
new sources are odd elements of S . Therefore, Eq. (5.123) is equivalent to

Γ =W − 〈η, ϕ̄〉 − 〈η̄, ϕ〉 , (5.133)

and this in turn is equivalent to the assertion (5.129).

Proposition 5.13. The matrices of the second derivatives of the generators Γ and W
are inverse to each other in the sense that(

δ(x, z) 0

0 δ(x, z)

)

=

∫
dy


δ2Γ

δϕ̄(x)δϕ̄(y)

δ2Γ

δϕ̄(x)δϕ(y)

δ2Γ

δϕ(x)δϕ̄(y)

δ2Γ

δϕ(x)δϕ(y)




δ2W
δη(y)δη(z)

δ2W
δη(y)δη̄(z)

δ2W
δη̄(y)δη(z)

δ2W
δη̄(y)δη̄(z)

 .

(5.134)

This identity can be written equivalently as

δ(X,Z) =

∫
dY

δ2Γ

δΦ(X)δΦ(Y )

δ2W
δH(Y )δH(Z)

(5.135)

in the Nambu formalism of Appendix A.

Proof. The derivation is particularly simple in the Nambu formalism (see Appendix A):
using a functional chain rule, we obtain

δ(X,Z) =
δΦ(Z)

δΦ(X)
=

δ

δΦ(X)

δW
δH(Z)

=

∫
dY

δH(Y )

δΦ(X)

δ2W
δH(Y )δH(Z)

(5.136)

=

∫
dY

δ2Γ

δΦ(X)δΦ(Y )

δ2W
δH(Y )δH(Z)

, (5.137)

which coincides with the assertion (5.135). By Eqs. (A.3)–(A.4) and (A.39)–(A.40), this
is equivalent to Eq. (5.134).

We remark that the involution property of the Legendre transformation (Proposition
5.12) implies also the converse relation, i.e.,

δ(X,Z) =

∫
dY

δ2W
δH(X)δH(Y )

δ2Γ

δΦ(Y )δΦ(Z)
. (5.138)

These two identities can be written in a shorthand notation as

1 =
δ2Γ

δΦ2

δ2W
δH2

=
δ2W
δH2

δ2Γ

δΦ2
, (5.139)
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or equivalently as

δ2W
δH2

=

(
δ2Γ

δΦ2

)−1

. (5.140)

By taking the field-independent terms of both sides of this equation, we further obtain

δ2W
δH2

∣∣∣∣
H=0

=

(
δ2Γ

δΦ2

)−1 ∣∣∣∣
Φ=0

=

(
δ2Γ

δΦ2

∣∣∣∣
Φ=0

)−1

, (5.141)

where we have used that the field-independent term of the inverse equals the inverse of
the field-independent term.

Next, we will derive the relations between the connected and the one-line-irreducible
Green functions. Our calculations will be facilitated by first deriving the corresponding
relations between the Nambu-type Green functions (see Appendix A), and then deducing
from these the desired relations between the (usual) Green functions.

Theorem 5.14 (Relations between connected and one-line-irreducible Green
functions in the Nambu formalism). The following relations hold between the con-
nected Green functions G2n

c and the one-line-irreducible Green functions Γ 2n in the
Nambu formalism: for n = 1,

δ(X1, X2) =

∫
dY1 G

2
c(X1, Y1)Γ 2(Y1, X2) ; (5.142)

for n = 2,

G4
c(X1, X2, X3, X4) = (5.143)∫
dY1 . . .

∫
dY4 G

2
c(X1, Y1)G2

c(X2, Y2)G2
c(X3, Y3)G2

c(X4, Y4)Γ 4(Y1, Y2, Y3, Y4) ;

for n = 3,

G6
c(X1, X2, X3, X4, X5, X6) = (5.144)∫
dY1 . . .

∫
dY6 G

2
c(X1, Y1)G2

c(X2, Y2)G2
c(X3, Y3)G2

c(X4, Y4)

×G2
c(X5, Y5)G2

c(X6, Y6)Γ 6(Y1, Y2, Y3, Y4, Y5, Y6)

+ 10A(X1, ...,X6)

{∫
dY1 . . .

∫
dY6 G

2
c(X1, Y1)G2

c(X2, Y2)G2
c(X3, Y3)

× Γ 4(Y1, Y2, Y3, Z)G2
c(Z,Z ′)Γ 4(Z ′, Y4, Y5, Y6)

×G2
c(Y4, X4)G2

c(Y5, X5)G2
c(Y6, X6)

}
.
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In general, for n ≥ 2, we have

G2n
c (X1, . . . , X2n) = (5.145)∫
dY1 . . .

∫
dY2n G

2
c(X1, Y1) . . .G2

c(X2n, Y2n)Γ 2n(Y1, . . . , Y2n) + R ,

where the remainder terms denoted by R have the property that each Feynman graph in
their respective expansions contains at least one torso line (see Definition 4.12).

Proof. Our proof is based on Refs. [NO98, pp. 115ff.] and [Zin02, Sct. 7.5]. To simplify
the derivations, we first introduce some shorthand notations: we write the Grassmann
derivatives of the connected Green function generator as

W(Y1, . . . , Ym) ≡ δmW
δH(Y1) . . . δH(Ym)

, (5.146)

and the corresponding derivatives of the one-line-irreducible generator as

Γ(Y1, . . . , Ym) ≡ δmΓ

δΦ(Y1) . . . δΦ(Ym)
. (5.147)

Moreover, we use the convention of integrating over all doubly appearing multi-indices.
We now start from the identity

Φ(X1) =
δW

δH(X1)
≡ W(X1) , (5.148)

and successively evaluate the nth order Grassmann derivatives of this quantity with
respect to the fields Φ(X). For the first derivative, we thereby obtain

δ(X2, X1) =
δΦ(X1)

δΦ(X2)
= Γ(X2, Y2)W(Y2, X1) , (5.149)

as shown already above by Eqs. (5.136)–(5.137). The second derivative yields

0 =
δ2Φ(X1)

δΦ(X3)δΦ(X2)
= Γ(X3, X2, Y2) W(Y2, X1) + Γ(X3, Y3) Γ(X2, Y2) W(Y3, Y2, X1) ,

(5.150)
where the two terms are respectively produced when the derivative acts on the first
factor or on the second factor in Eq. (5.149). Note that both terms are already anti-
symmetric with respect to X2 and X3 . Applying another derivative yields

0 =
δ3Φ(X1)

Φ(X4)Φ(X3)Φ(X2)
= Γ(X4, X3, X2, Y2) W(Y2, X1) (5.151)

− Γ(X3, X2, Y2) Γ(X4, Y4) W(Y4, Y2, X1)

+ Γ(X4, X3, Y3) Γ(X2, Y2) W(Y3, Y2, X1)

+ Γ(X4, X2, Y2) Γ(X3, Y3) W(Y3, Y2, X1)

+ Γ(X4, Y4) Γ(X3, Y3) Γ(X2, Y2) W(Y4, Y3, Y2, X1) .
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Since the third derivative is antisymmetric in (X2, X3, X4),

δ3Φ(X1)

Φ(X4)Φ(X3)Φ(X2)
= A(X2,X3,X4)

δ3Φ(X1)

Φ(X4)Φ(X3)Φ(X2)
, (5.152)

the same applies to the right-hand side of Eq. (5.151). Therefore, we may apply the
antisymmetrization operator to the right-hand side of Eq. (5.151) without changing this
expression. By antisymmetrizing each term in the sum separately, we thus obtain

0 = A(X2,X3,X4)

{
Γ(X4, X3, X2, Y2) W(Y2, X1) (5.153)

+ 3 Γ(X4, X3, Y3) Γ(X2, Y2) W(Y3, Y2, X1)

+ Γ(X4, Y4) Γ(X3, Y3) Γ(X2, Y2) W(Y4, Y3, Y2, X1)
}
.

By proceeding further in this way, we obtain after a lengthy calculation

0 = A(X2, ...,X5)

{
Γ(X5, X4, X3, X2, Y2) W(Y2, X1) (5.154)

+ 4 Γ(X5, X4, X3, Y3) Γ(X2, Y2) W(Y3, Y2, X1)

− 3 Γ(X5, X4, Y3) Γ(X3, X2, Y2) W(Y3, Y2, X1)

+ 6 Γ(X5, X4, Y4) Γ(X3, Y3) Γ(X2, Y2) W(Y4, Y3, Y2, X1)

+ Γ(X5, Y5) Γ(X4, Y4) Γ(X3, Y3) Γ(X2, Y2) W(Y5, Y4, Y3, Y2, X1)
}
,

and finally,

0 = A(X2, ...,X6)

{
Γ(X6, X5, X4, X3, X2, Y2) W(Y2, X1) (5.155)

+ 5 Γ(X6, X5, X4, X3, Y3) Γ(X2, Y2) W(Y3, Y2, X1)

− 10 Γ(X6, X5, X4, Y3) Γ(X3, X2, Y2) W(Y3, Y2, X1)

+ 10 Γ(X6, X5, X4, Y4) Γ(X3, Y3) Γ(X2, Y2) W(Y4, Y3, Y2, X1)

− 15 Γ(X6, X5, Y4) Γ(X4, X3, Y3) Γ(X2, Y2) W(Y4, Y3, Y2, X1)

+ 10 Γ(X6, X5, Y5) Γ(X4, Y4) Γ(X3, Y3) Γ(X2, Y2)

×W(Y5, Y4, Y3, Y2, X1)

+ Γ(X6, Y6) Γ(X5, Y5) Γ(X4, Y4) Γ(X3, Y3) Γ(X2, Y2)

×W(Y6, Y5, Y4, Y3, Y2, X1)
}
.

Our assertions (5.142)–(5.144) now follow by evaluating the field-independent terms of
these equations and using Eqs. (A.30) and (A.48):
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(i) Two-point function. Evaluating the field-independent terms of Eq. (5.149) yields

δ(X2, X1) = Γ 2(X2, Y2)G2
c(Y2, X1) , (5.156)

which is equivalent to the assertion (5.142). In the following, we will also need the con-
verse relation,

δ(Z, Y ) = G2
c(Z,X)Γ 2(X,Y ) , (5.157)

which can be shown analogously from Eq. (5.138).

(ii) Four-point function. Evaluating the field-independent terms of Eq. (5.153) yields

0 = Γ 4(X4, X3, X2, Y2)G2
c(Y2, X1) (5.158)

+ Γ 2(X4, Y4)Γ 2(X3, Y3)Γ 2(X2, Y2)G4
c(Y4, Y3, Y2, X1) .

Here, we have omitted the antisymmetrization operator because both terms on the right-
hand side are already antisymmetric in (X2, X3, X4). By multiplying this equation
through with the connected Green functions, integrating over the internal variables and
using Eq. (5.157), we further obtain

G4
c(Z4, Z3, Z2, X1) = (5.159)

−G2
c(Z4, X4)G2

c(Z3, X3)G2
c(Z2, X2)Γ 4(X4, X3, X2, Y2)G2

c(Y2, X1) .

Finally, renaming variables (X1 7→ Z1, Y2 7→ X1) and using the antisymmetry of the
two-point function G2

c leads to

G4
c(Z4, Z3, Z2, Z1) = (5.160)

G2
c(Z4, X4)G2

c(Z3, X3)Gc(Z2, X2)Gc(Z1, X1)Γ 4(X4, X3, X2, X1) ,

which is equivalent to the assertion (5.143).

(iii) Six-point function. From Eq. (5.155), we obtain by evaluating the constant terms,

0 = Γ 6(X6, X5, X4, X3, X2, Y2)G2
c(Y2, X1) (5.161)

+ 10A(X2, ...,X6)

{
Γ 4(X6, X5, X4, Y4)Γ 2(X3, Y3)Γ 2(X2, Y2)

×G4
c(Y4, Y3, Y2, X1)

}
+ Γ 2(X6, Y6)Γ 2(X5, Y5)Γ 2(X4, Y4)Γ 2(X3, Y3)Γ 2(X2, Y2)

×G6
c(Y6, Y5, Y4, Y3, Y2, X1) .
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Using Eq. (5.157), this further yields

G6
c(Z6, Z5, Z4, Z3, Z2, X1) (5.162)

= −G2
c(Z6, X6)G2

c(Z5, X5)G2
c(Z4, X4)G2

c(Z3, X3)G2
c(Z2, X2)

× Γ 6(X6, X5, X4, X3, X2, Y2)G2
c(Y2, X1)

− 10A(Z2, ...,Z6)

{
G2

c(Z6, X6)G2
c(Z5, X5)G2

c(Z4, X4)

× Γ 4(X6, X5, X4, Y4)G4
c(Y4, Z3, Z2, X1)

}
.

Putting Eq. (5.159) into this formula then leads to

G6
c(Z6, Z5, Z4, Z3, Z2, X1) (5.163)

= −G2
c(Z6, X6)G2

c(Z5, X5)G2
c(Z4, X4)G2

c(Z3, X3)G2
c(Z2, X2)

× Γ 6(X6, X5, X4, X3, X2, Y2)G2
c(Y2, X1)

+ 10A(Z2, ...,Z6)

{
G2

c(Z6, X6)G2
c(Z5, X5)G2

c(Z4, X4)Γ 4(X6, X5, X4, Y4)

×G2
c(Y4, A4)G2

c(Z3, A3)G2
c(Z2, A2)Γ 4(A4, A3, A2, A1)G2

c(A1, X1)
}
.

By renaming variables (X1 7→ Z1, Y2 7→ X1, A4 7→ Y3, A3 7→ X3, A2 7→ X2, A1 7→ X1)
and using the antisymmetry of G2

c , we can write this equivalently as

G6
c(Z6, Z5, Z4, Z3, Z2, Z1) = (5.164)

G2
c(Z6, X6)G2

c(Z5, X5)G2
c(Z4, X4)G2

c(Z3, X3)G2
c(Z2, X2)

×G2
c(Z1, X1)Γ 6(X6, X5, X4, X3, X2, X1)

+ 10A(Z2, ...,Z6)

{
G2

c(Z6, X6)G2
c(Z5, X5)G2

c(Z4, X4)Γ 4(X6, X5, X4, Y4)

×G2
c(Y4, Y3)Γ 4(Y3, X3, X2, X1)G2

c(X3, Z3)G2
c(X2, Z2)G2

c(X1, Z1)
}
.

One can convince oneself that the last term is already antisymmetric in all six variables
(Z1, . . . , Z6), and hence Eq. (5.164) is equivalent to the assertion (5.144). Finally, for
n ≥ 2, Eq. (5.145) follows analogously by iterating the above procedure.

Theorem 5.15 (Relations between connected and one-line-irreducible Green
functions). The following relations hold between the connected Green functions G2n

and the one-line-irreducible Green functions Γ 2n: for n = 1,

δ(x1, x2) =

∫
dy1G

2
c(x1, y1)Γ 2(y1, x2) ; (5.165)
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for n = 2,

G4
c(x1, x2, x3, x4) = (5.166)∫
dy1 . . .

∫
dy4G

2
c(x1, y1)G2

c(x2, y2)Γ 4(y1, y2, y3, y4)G2
c(y3, x3)G2

c(y4, x4) ;

for n = 3,

G6
c(x1, x2, x3, x4, x5, x6) = (5.167)

−
∫

dy1 . . .

∫
dy6G

2
c(x1, y1)G2

c(x2, y2)G2
c(x3, y3)

× Γ 6(y1, y2, y3, y4, y5, y6) G2
c(y4, x4)G2

c(y5, x5)G2
c(y6, x6)

− 9A(x1,x2,x3) A(x4,x5,x6)

{∫
dy1 . . .

∫
dy6G

2
c(x1, y1)G2

c(x2, y2)Γ 4(y1, y2, z, y6)

×G2
c(z, z′)G2

c(y6, x6)G2
c(x3, y3)Γ 4(z′, y3, y4, y5)G2

c(y4, x4)G2
c(y5, x5)

}
.

In general, for n ≥ 2, we have

G2n
c (x1, . . . , x2n) = (5.168)

(−1)n
∫

dy1 . . .

∫
dy2n G

2
c(x1, y1) . . . G2

c(xn, yn)

× Γ 2n(y1, . . . , yn, yn+1, . . . , y2n)G2
c(yn+1, xn+1) . . . G2

c(y2n, x2n)

+ R ,

where again, the remainder terms denoted by R have the property that each Feyn-
man graph in their respective expansions contains at least one torso line (see Definition
4.12). The above relations can be represented graphically by means of Universal Feynman
Graphs as shown in Table 5.2.

Proof. We derive these relations from the corresponding equalities for the Nambu-type
Green functions (Theorem 5.14). For this purpose, we use the relations (see Appendix A)

G2
c(x1,+; x2,−) = G2

c(x1, x2) , (5.169)

G4
c(x1,+; x2,+; x3,− ; x4,−) = −G4

c(x1, x2, x3, x4) , (5.170)

G6
c(x1,+; x2,+; x3,+; x4,− ; x5,− ; x6,−) = −G6

c(x1, x2, x3, x4, x5, x6) , (5.171)

etc., as well as the analogous relations for the one-line-irreducible Green functions (for
which the Nambu indices + and − must be interchanged).

(i) Two-point function. From Eq. (5.142), we obtain

δ(x1,+; x2,+) =

∫
dy1

∑
c1

G2
c(x1,+; y1, c1)Γ 2(y1, c1 ; x2,+) . (5.172)
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In the sum over Nambu indices, only c1 = − gives a nonvanishing contribution. Thus,

δ(x1, x2) =

∫
dy1G

2
c(x1,+; y1,−)Γ 2(y1,− ; x2,+) (5.173)

=

∫
dy1G

2
c(x1, y1)Γ 2(y1, x2) , (5.174)

which coincides with the first identity (5.165).

(ii) Four-point function. Equation (5.143) can be written equivalently as

G4
c(X1, X2, X3, X4) = (5.175)∫
dY1 . . .

∫
dY4G

2
c(X1, Y1)G2

c(X2, Y2)Γ 4(Y1, Y2, Y3, Y4)G2
c(Y3, X3)G2

c(Y4, X4) ,

where we have used the antisymmetry of the Nambu-type two-point function. In partic-
ular, this implies

G4
c(x1,+; x2,+; x3,− ; x4,−) = (5.176)∫
dy1 . . .

∫
dy4

∑
c1, ..., c4

G2
c(x1,+; y1, c1)G2

c(x2,+; y2, c2)

Γ 4(y1, c1 ; y2, c2 ; y3, c3 ; y4, c4)G2
c(y3, c3 ; x3,−)G2

c(y4, c4 ; x4,−) .

Here, only the combination of Nambu indices

(c1, c2, c3, c4) = (−,−,+,+) (5.177)

gives a nonvanishing contribution to the sum, and this yields

G4
c(x1, x2, x3, x4) =

∫
dy1 . . .

∫
dy4 (5.178)

×G2
c(x1, y1)G2

c(x2, y2)Γ 4(y1, y2, y3, y4)G2
c(y3, x3)G2

c(y4, x4) ,

which coincides with the assertion.

(iii) Six-point function. We start from Eq. (5.164) in the proof of Theorem 5.14. By
using the antisymmetry of G2

c and by renaming the variables, this is equivalent to

G6
c(X1, X2, X3, X4, X5, X6) = (5.179)

−
∫

dY1 . . .

∫
dY6 G

2
c(X1, Y1)G2

c(X2, Y2)G2
c(X3, Y3)

× Γ 6(Y1, Y2, Y3, Y4, Y5, Y6)G2
c(Y4, X4)G2

c(Y5, X5)G2
c(Y6, X6)

+ 10A(X1, ...,X5)

{∫
dY1 . . .

∫
dY6 G

2
c(X1, Y1)G2

c(X2, Y2)G2
c(X3, Y3)Γ 4(Y1, Y2, Y3, Z)

×G2
c(Z,Z ′)Γ 4(Z ′, Y4, Y5, Y6)G2

c(Y4, X4)G2
c(Y5, X5)G2

c(Y6, X6)

}
.
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= G2
c Γ 2

G4
c =

G2
c

G2
c

Γ 4
G2

c

G2
c

G6
c = −

G2
c

G2
c

G2
c

Γ 6

G2
c

G2
c

G2
c

−

G2
c

G2
c

G2
c

Γ 4
G2

c
Γ 4

G2
c

G2
c

G2
c

9 A A

Table 5.2: Relations between connected Green functions and one-line-irreducible Green func-
tions: Universal Feynman Graph representation.

We evaluate this equation for

X1 = (x1,+) , X2 = (x2,+) , X3 = (x3,+) , (5.180)

X4 = (x4,−) , X5 = (x5,−) , X6 = (x6,−) ,

such that the left-hand side of the equation reverts to (−1)G6
c(x1, x2, x3, x4, x5, x6). The

first term on the right-hand side can be evaluated analogously as in the case of the
four-point function, which yields∫

dy1 . . .

∫
dy6G

2
c(x1, y1)G2

c(x2, y2)G2
c(x3, y3) (5.181)

× Γ 6(y1, y2, y3, y4, y5, y6) G2
c(y4, x4)G2

c(y5, x5)G2
c(y6, x6) .
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Next, consider the second term on the right-hand side of Eq. (5.179), which reads

10

5!

∑
π∈S5

sgn(π)

∫
dY1 . . .

∫
dY6 (5.182)

×G2
c(Xπ(1), Y1)G2

c(Xπ(2), Y2)G2
c(Xπ(3), Y3)Γ 4(Y1, Y2, Y3, Z)

×G2
c(Z,Z ′)Γ 4(Z ′, Y4, Y5, Y6)G2

c(Y4, Xπ(4))G
2
c(Y5, Xπ(5))G

2
c(Y6, X6) .

By the antisymmetry of the two four-point functions in (Y1, Y2, Y3) and respectively in
(Y4, Y5), there are always 3! 2! = 12 permutations which give the same contribution.
Thus, we need to consider only

5!

3! 2!
= 10 (5.183)

representative permutations, provided that we count each of them 12 times. Concretely,
we choose the 10 representative permutations π0, . . . , π9 which are shown in Table 5.3.
Further using that 12× 10 / 5! = 1, we see that the prefactor in Eq. (5.182) cancels out,
and hence we are left with the sum

9∑
j=0

sgn(πj)

∫
dY1 . . .

∫
dY6 (5.184)

×G2
c(Xπj(1), Y1)G2

c(Xπj(2), Y2)G2
c(Xπj(3), Y3)Γ 4(Y1, Y2, Y3, Z)

×G2
c(Z,Z ′)Γ 4(Z ′, Y4, Y5, Y6)G2

c(Y4, Xπj(4))G
2
c(Y5, Xπj(5))G

2
c(Y6, X6) .

Consider the first summand with j = 0, which corresponds to the identity permutation:∫
dY1 . . .

∫
dY6 G

2
c(X1, Y1)G2

c(X2, Y2)G2
c(X3, Y3)Γ 4(Y1, Y2, Y3, Z) (5.185)

×G2
c(Z,Z ′)Γ 4(Z ′, Y4, Y5, Y6)G2

c(Y4, X4)G2
c(Y5, X5)G2

c(Y6, X6) .

By choosing the external Nambu indices as in Eq. (5.180), the product of the connected
Green functions G2

c vanishes unless

Y1 = (y1,−) , Y2 = (y2,−) , Y3 = (y3,−) , (5.186)

Y4 = (y4,+) , Y5 = (y5,+) , Y6 = (y6,+) .

For this combination of the internal Nambu indices, however, the four-point functions Γ 4

vanish. Therefore, the first summand in Eq. (5.184) is zero.

Next, consider the second summand in Eq. (5.184) with j = 1 (see Table 5.3): By re-
naming the variables Y3 ↔ Y4, this term equals

−
∫

dY1 . . .

∫
dY6 G

2
c(X1, Y1)G2

c(X2, Y2)G2
c(X4, Y4)Γ 4(Y1, Y2, Y4, Z) (5.187)

×G2
c(Z,Z ′)Γ 4(Z ′, Y3, Y5, Y6)G2

c(Y3, X3)G2
c(Y5, X5)G2

c(Y6, X6) .
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In this case, our choice (5.180) of the external Nambu indices implies that

Y1 = (y1,−) , Y2 = (y2,−) , Y3 = (y3,−) , (5.188)

Y4 = (y4,+) , Y5 = (y5,+) , Y6 = (y6,+) ,

Z = (z,+) , Z ′ = (z′,−) ,

and thus, Eq. (5.187) yields

−
∫

dy1 . . .

∫
dy6 G

2
c(x1, y1)G2

c(x2, y2)G2
c(y4, x4)Γ 4(y1, y2, y4, z) (5.189)

×G2
c(z, z′)Γ 4(z′, y3, y5, y6)G2

c(x3, y3)G2
c(y5, x5)G2

c(y6, x6) .

By the antisymmetry of Γ 4 with respect to its last two arguments, this expression equals∫
dy1 . . .

∫
dy6 G

2
c(x1, y1)G2

c(x2, y2)Γ 4(y1, y2, z, y4)G2
c(z, z′)G2

c(y4, x4) (5.190)

× G2
c(x3, y3)Γ 4(z′, y3, y5, y6)G2

c(y5, x5)G2
c(y6, x6) .

Furthermore, the remaining terms in Eq. (5.184)—i.e., those with j = 2, . . . , 9—can be
evaluated analogously. Taking into account also Eq. (5.181), we arrive at

(−1)G6
c(x1, x2, x3, x4, x5, x6) = (5.191)∫

dy1 . . .

∫
dy6 G

2
c(x1, y1)G2

c(x2, y2)G2
c(x3, y3)

× Γ 6(y1, y2, y3, y4, y5, y6) G2
c(y4, x4)G2

c(y5, x5)G2
c(y6, x6)

+
∑
π∈S3

sgn(π)
∑
π′∈S3

sgn(π′)

∫
dy1 . . .

∫
dy6

×G2
c(xπ(1), y1)G2

c(xπ(2), y2)Γ 4(y1, y2, z, y4)G2
c(z, z′)G2

c(y4, xπ′(4))

×G2
c(xπ(3), y3)Γ 4(z′, y3, y5, y6)G2

c(y5, xπ′(5))G
2
c(y6, xπ′(6)) ,

which is equivalent to the assertion (5.167).

Finally, consider the general case where n ≥ 2. We can write Eq. (5.145) of Theorem
5.14 equivalently as

G2n
c (X1, . . . , X2n) = (5.192)

(−1)n
∫

dY1 . . .

∫
dY2n G

2
c(X1, Y1) . . .G2

c(Xn, Yn)

× Γ 2n(Y1, . . . , Yn, Yn+1, . . . , Y2n)G2
c(Yn+1, Xn+1) . . .G2

c(Y2n, X2n)

+ R ,
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j sgn(πj) πj(1) πj(2) πj(3) πj(4) πj(5)

0 +1 1 2 3 4 5

1 −1 1 2 4 3 5

2 +1 1 2 5 3 4

3 +1 1 3 4 2 5

4 −1 1 3 5 2 4

5 +1 1 4 5 2 3

6 −1 2 3 4 1 5

7 +1 2 3 5 1 4

8 −1 2 4 5 1 3

9 +1 3 4 5 1 2

Table 5.3: Representative permutations used for evaluating Eq. (5.182).

where the sign (−1)n comes from interchanging the arguments of the last n connected
Green functions. By choosing the external Nambu indices as

Xi =

{
(xi,+) , if i = 1, . . . , n ,

(xi,−) , if i = n+ 1, . . . , 2n ,
(5.193)

we see that only the combination of internal Nambu indices given by

Yi =

{
(yi,−) , if i = 1, . . . , n ,

(yi,+) , if i = n+ 1, . . . , 2n ,
(5.194)

contributes to the sum, and this implies the assertion (5.168).

Corollary 5.16. The relations (5.165)–(5.168) of Theorem 5.15 can be inverted by sim-
ply interchanging the connected and the one-line-irreducible Green functions.

Proof. This follows from the involution property of the Legendre transformation (The-
orem 5.12). In concrete terms, the inverse Green function relations can be proven along
the lines of Theorem 5.14 and Theorem 5.15 by only interchanging from the beginning
the Green function generators W and Γ (see [Zin02, Sct. 7.5]).

Finally, we are in a position to prove the following theorem, which constitutes the main
conclusion of this section.
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Theorem 5.17 (Feynman graph expansion of one-line-irreducible Green func-
tions). The one-line-irreducible two-point Green function Γ 2 is related to the irreducible
self-energy Σ2 (see Sct. 5.4) by

Γ 2 = C−1 −Σ2 . (5.195)

Furthermore, for n ≥ 2, the one-line-irreducible Green function Γ 2n is given by (−1)n

times the sum of all amputated, one-line-irreducible graphs (see Definition 4.14), i.e.,

Γ 2n = (−1)n
∞∑
k=1

1

k!2k

∑
π∈Sn+2k ,

π one-line-irreducible

Valamp[n, k, π] , (5.196)

where Valamp[n, k, π] is given explicitly by Eqs. (4.173) and (4.190).

Proof. For n = 1 and for n = 2, the assertion follows immediately from Theorem 5.9
and Theorem 5.15: On the one hand, Eq. (5.116) implies that

G2
c = (1− CΣ2)−1C , (5.197)

and by inverting this equation, we obtain

(G2
c)−1 = C−1 (1− CΣ2) = C−1 −Σ2 . (5.198)

On the other hand, Eq. (5.165) can be written as

(G2
c)−1 = Γ 2 . (5.199)

Taken together, these two identities imply Eq. (5.195). Similarly, for n = 2, the com-
parison of Eqs. (5.115) and (5.166) shows that

Γ 4 = Σ4 , (5.200)

which by Eq. (5.113) is equivalent to the assertion (5.196).

For general n ≥ 2, the proof is more complicated. We build on the proof given in Ref.
[Zin02, Sct. 7.8], however, employing here the explicit renormalization group equations
(RGE) for the one-line-irreducible Green functions, which are derived in Sct. 6.3 below.
First, Theorem 5.9, Eq. (5.115), and Theorem 5.15, Eq. (5.168), together imply that

Σ2n = (−1)nΓ 2n + R′ , (5.201)

where the remainder terms denoted by R′ can be expanded in terms of fully amputated
Feynman graphs which each contain at least one torso line. In particular, this means
that all graphs contained in the second term R′ are (one-line-)reducible. On the other
hand, by Eq. (5.111), Σ2n is given by the sum of all non-amputable graphs, which
contain as a subset all irreducible graphs. By the above characterization of R′, all
these irreducible graphs must be contained in the first term (−1)nΓ 2n. Now, if we can
show that conversely, all graphs appearing in the expansion of Γ 2n are irreducible, then
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it follows that the splitting of Eq. (5.201) coincides precisely with the splitting of all
non-amputable graphs into those which are irreducible and those which are reducible,
respectively, and this would prove the assertion.

Thus, it remains to show that all Feynman graphs appearing in the expansion of Γ 2n are
one-line-irreducible. For this purpose, we define for each ε > 0 the modified covariance

Cε(y1, y2) = C(y1, y2)− ε
∫

dz1

∫
dz2 C(y1, z2)C(z1, y2) . (5.202)

First, we show that the inverse of Cε is given by

Qε(y1, y2) = Q(y1, y2) + ε+O(ε2) . (5.203)

In fact, this can be verified as follows:∫
dy2 Cε(y1, y2)Qε(y2, y3) = δ(y1, y3) + ε

∫
dy2 C(y1, y2) (5.204)

− ε
∫

dy2

∫
dz1

∫
dz2 C(y1, z2)C(z1, y2)Q(y2, y3) .

In the last term, we first perform the integral over y2 and then over z1, hence∫
dz1

∫
dy2 C(z1, y2)Q(y2, y3) =

∫
dz1 δ(z1, y3) = 1 . (5.205)

This shows that the third term on the right-hand side of Eq. (5.204) cancels against the
second term, and thus we obtain the desired identity∫

dy2Cε(y1, y2)Qε(y2, y3) = δ(y1, y3) . (5.206)

Next, consider the ε-dependent connected Green functions G2n
c, ε as well as the one-line-

irreducible Green functions Γ 2n
ε , which are obtained by replacing in their respective

Feynman graph expansions all covariance lines by C 7→ Cε . We are interested in the
derivatives

Ġ2n
c, ε

∣∣∣
ε=0
≡ d

dε
G2n

c, ε

∣∣∣∣
ε=0

, (5.207)

and respectively

Γ̇ 2n
ε

∣∣∣
ε=0
≡ d

dε
Γ 2n
ε

∣∣∣∣
ε=0

. (5.208)

By the linearity of the derivative and by the product rule, these ε derivatives can act
on any modified covariance line Cε of any Feynman graph. Thereby, they produce all
possible graphs in which a single covariance line is replaced by

C(y1, y2) 7→ Ċε(y1, y2)
∣∣∣
ε=0

= −
∫

dz1

∫
dz2 C(y1, z2)C(z1, y2) , (5.209)
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G2
c Q

G4
c

Q̇ = 1

G2
c G4

c

Figure 5.1: Setting Q̇ = 1 on the right-hand side of the RGE for the connected four-point func-
tion produces disconnected graphs.

while all other covariance lines remain unchanged,

Cε(y1, y2)
∣∣∣
ε=0

= C(y1, y2) . (5.210)

Now, the replacement (5.209) corresponds precisely to the operation of cutting the co-
variance line C(y1, y2) (see Sct. 4.5.2) and integrating over the new external arguments
z1 and z2 . This means, the derivatives (5.207) and (5.208) yield the sums of all (orig-
inally connected and respectively one-line-irreducible) Feynman graphs in which one
covariance line is cut and the new external arguments are integrated over.

We will now show that all Feynman graphs representing the derivative (5.208) are still
connected, which implies that all Feynman graphs representing the original Green func-
tion Γ 2n are one-line-irreducible. This is in contrast to the Feynman graph expansion of
the derivative (5.207), which in fact contains also disconnected graphs. In order to see
this explicitly, we will make use of the RGE for the respective Green functions, which
are derived in detail in the next chapter 6.

For the sake of understanding, we first consider the connected Green functions (although
this theorem is actually only concerned with the one-line-irreducible Green functions):
For example, the connected four-point function satisfies the following differential equa-
tion (Theorem 6.3, Eq. (6.55) with Λ replaced by ε):

Ġ4
c, ε(x1, x2, x3, x4) =

− A(x1,x2)

∫
dy1

∫
dy2 G

2
c, ε(x1, y1) Q̇ε(y1, y2)G4

c, ε(y2, x2, x3, x4)

− A(x3,x4)

∫
dy1

∫
dy2 G

4
c, ε(x1, x2, y1, x4) Q̇ε(y1, y2)G2

c, ε(y2, x3)

+

∫
dy1

∫
dy2 G

6
c, ε(x1, x2, y1, x3, x4, y2) Q̇ε(y2, y1) .

(5.211)

By evaluating this equation at ε = 0 and using that Q̇ε(x, y)|ε=0 = 1, we obtain (re-
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stricting us for simplicity to the first term)

Ġ4
c, ε(x1, x2, x3, x4)

∣∣
ε=0

= −
∫

dy1G
2
c(x1, y1)

∫
dy2G

4
c(y2, x2, x3, x4) + . . . (5.212)

Hence, by expanding the Green functions on the right-hand side of this equation, we see
that already the first term produces disconnected graphs contributing to the derivative
of the connected four-point function (see Fig. 5.1).

Next, we will show that the situation is different for the one-line-irreducible Green func-
tions. To begin with, the one-line-irreducible two-point function satisfies the following
differential equation (Theorem 6.6):

Γ̇ 4
ε (x1, x2, x3, x4) = (5.213)∫
dy1

∫
dy2 Γ

6
ε (x1, x2, y1, x3, x4, y2)Sε(y2, y1)

+
1

2

∫
dy1 . . .

∫
dy4 Lε(y1, y2, y3, y4)Γ 4

ε (x1, x2, y1, y2)Γ 4
ε (y3, y4, x3, x4)

− 2A(x3,x4)

∫
dy1 . . .

∫
dy4 Lε(y3, y4, y2, y1)Γ 4

ε (y1, x1, y3, x3)Γ 4
ε (x2, y2, x4, y4) .

Here, we have defined the single-scale Green function

Sε(y2, y1) = −
∫

dz1

∫
dz2 G

2
c, ε(y2, z2) Q̇ε(z2, z1)G2

c, ε(z1, y1) , (5.214)

as well as the loop term

Lε(y1, y2, y3, y4) = Sε(y1, y3)G2
c, ε(y2, y4) +G2

c, ε(y1, y3)Sε(y2, y4) . (5.215)

Let us consider the first term on the right-hand side of Eq. (5.213), i.e.,

Γ̇ 4
ε (x1, x2, x3, x4) = −

∫
dy1

∫
dy2

∫
dz1

∫
dz2 Γ

6
ε (x1, x2, y1, x3, x4, y2)

×G2
c, ε(y2, z2) Q̇ε(z2, z1)G2

c, ε(z1, y1)

+ . . .

(5.216)

For ε = 0, the single-scale Green function becomes disconnected, meaning that

Sε(y2, y1)
∣∣
ε=0

= −
∫

dz2G
2
c(y2, z2)

∫
dz1G

2
c(z1, y1) . (5.217)

For the first term on the right-hand side of Eq. (5.213), this implies

Γ̇ 4
ε (x1, x2, x3, x4)

∣∣
ε=0

= (5.218)

−
∫

dz1

∫
dz2

∫
dy1

∫
dy2 G

2
c(z1, y1)Γ 6(x1, x2, y1, x3, x4, y2)G2

c(y2, z2) + . . .
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Furthermore, by expanding the connected and the one-line-irreducible Gren functions on
the right-hand side of this equation, only connected graphs will be produced. (For the
connected Green functions, this property was shown by Theorem 5.7; for the one-line-
irreducible Green functions Γ 2n, it can be shown by induction in n using their relations
to the connected Green functions, see Theorem 5.15.) Therefore, all Feynman graphs
contributing to the term (5.218) are connected (see Fig. 5.2). One can convince oneself
that the same also applies to all other terms on the right-hand side of Eq. (5.213): since
the two four-point functions Γ 4

ε in this equation are connected by Sε and by G2
c,ε , all

Feynman graphs will remain connected even if Sε becomes disconnected.

More generally, this argument also applies to all higher 2n-point Green functions (n ≥ 2),
which follows from the general structure of the RGE (6.69): even if the single-scale Green
function becomes disconnected, the resulting graphs on the right-hand side will remain
connected. Thus, we have shown that only connected graphs contribute to the derivative
(5.208), and hence only one-line-irreducible graphs contribute to Γ 2n. This concludes our
proof of the Feynman graph expansion of the one-line-irreducible Green functions.

Γ 6

G2
c Q G2

c

Q̇ = 1

G2
c

Γ 6

G2
c

Figure 5.2: Setting Q̇ = 1 on the right-hand side of the RGE for the one-line-irreducible four-
point function produces only connected graphs.





A. Nambu formalism

In this appendix, we describe the Nambu formalism, which allows us to treat the source
fields η̄ and η (as well as ϕ̄ and ϕ) on an equal footing, and thus to simplify several
derivations. This formalism has already been used in the seminal work [SH01] for deriv-
ing functional renormalization group equations (cf. also [NO98, pp. 116ff.]).

The Nambu formalism is based on the following notations of the Grassmann field vari-
ables (i.e., the generators of the original Grassmann algebra A ),

Ψ(x,−) = ψ̄(x) , (A.1)

Ψ(x,+) = ψ(x) , (A.2)

as well as of the source fields (i.e., the generators of the Grassmann algebra S ),

H(x,−) = η(x) , (A.3)

H(x,+) = η̄(x) . (A.4)

Note that the order of “−” and “+” is different in the first two and in the last two
equations. Moreover, we define the multi-indices

X = (x, c) , (A.5)

which are composed of the spatial, spin and imaginary time variables x = (x, s, τ) as
well as the additional Nambu index

c ∈ {−,+} . (A.6)

Correspondingly, we define the integration over such multi-indices as∫
dXf(X) =

∫
dx
∑
c

f(x, c) , (A.7)

and the delta distribution as (see also Eqs. (4.103) and (4.104))

δ(X,X ′) = δ(x, x′) δcc′ . (A.8)

With these notations, the Green function generator (5.37) can be written in a compact
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form, as we will now demonstrate. First, we have

〈η, ψ̄〉+ 〈η̄, ψ〉 =

∫
dx η(x)ψ̄(x) +

∫
dx η̄(x)ψ(x) (A.9)

=

∫
dx
(

H(x,−)Ψ(x,−) + H(x,+)Ψ(x,+)
)

(A.10)

=

∫
dX H(X)Ψ(X) (A.11)

≡ 〈H,Ψ〉 . (A.12)

Furthermore, the quadratic term in the exponent can be written as

〈ψ̄, Qψ〉 =

∫
dx1

∫
dx2 ψ̄(x1)Q(x1, x2)ψ(x2) (A.13)

=
1

2

∫
dX1

∫
dX2 Ψ(X1)Q(X1, X2)Ψ(X2) (A.14)

≡ 1

2
〈Ψ,QΨ〉 , (A.15)

where we have defined the integral kernel

Q(x1, c1 ; x2, c2) =

{
Q(x1, x2) if (c1, c2) = (−,+) ,

−Q(x2, x1) if (c1, c2) = (+,−) .
(A.16)

This integral kernel is antisymmetric in the sense that

Q(X1, X2) = −Q(X2, X1) , (A.17)

and it can be interpreted as a (2× 2) matrix with the indices c1 and c2 as

Q(X1, X2) ≡

(
Q(x1,− ; x2,−) Q(x1,− ; x2,+)

Q(x1,+; x2,−) Q(x1,+; x2,+)

)
(A.18)

=

(
0 Q(x1, x2)

−Q(x2, x1) 0

)
. (A.19)

By further denoting the Grassmann field integral as∫
dΨ ≡

∫
dψ̄dψ , (A.20)

we can write the Green function generator (5.37) in the Nambu formalism as

Z[H] =
1

N

∫
dΨ e−

1
2
〈Ψ,QΨ〉 e−βV [Ψ]+〈H,Ψ〉 , (A.21)

with the normalization constant

N =

∫
dΨ e−

1
2
〈Ψ,QΨ〉 . (A.22)
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Next, we consider the expansion (5.58) of the connected Green function generator,

W[H] = lnZ[H]− lnZ[0] , (A.23)

in terms of the connected Green functions. This expansion is obviously equivalent to

W[H] =
∞∑
n=1

(−1)n

(n!)2

∫
dX1 . . .

∫
dX2n G̃

2n
c (X1, . . . , X2n)

×H(X1) . . .H(Xn)H(X2n) . . .H(Xn+1) ,

(A.24)

provided that we define the coefficient functions as

G̃2n
c (x1, c1 ; . . . ; x2n, c2n) =


G2n

c (x1, . . . , x2n) , if c1 = . . . = cn = + and

cn+1 = . . . = c2n = − ,

0 , otherwise .

(A.25)

By antisymmetrizing these coefficient functions, we obtain the equivalent expression

W[H] =
∞∑
n=1

(−1)n

(n!)2
(−1)n(n−1)/2

∫
dX1 . . .

∫
dX2n

×
(
A(X1, ...,X2n) G̃

2n
c (X1, . . . , X2n)

)
H(X1) . . .H(X2n) ,

(A.26)

where the additional sign factor comes from bringing the anticommuting source fields
in Eq. (A.24) into their natural order. For n ≥ 1, the connected Green functions in the
Nambu formalism G2n

c are now defined as

G2n
c (X1, . . . , X2n) := (−1)n(n−1)/2 (2n)!

(n!)2
A(X1, ...,Xm) G̃

2n
c (X1, . . . , X2n) (A.27)

=
(−1)n(n−1)/2

(n!)2

∑
π∈S2n

sgn(π) G̃2n
c

(
Xπ(1), . . . , Xπ(2n)

)
. (A.28)

These “Nambu-type” Green functions are totally antisymmetric, i.e., they change sign
under the permutation of any two arguments. In terms of these functions, the connected
Green function generator can be expanded as

W[H] =

∞∑
n=1

(−1)n

(2n)!

∫
dX1 . . .

∫
dX2nG

2n
c (X1, . . . , X2n) H(X1) . . .H(X2n) . (A.29)

In particular, the connected Green functions in the Nambu formalism can be gained
back from the connected Green function generator by taking the Grassmann derivatives

G2n
c (X1, . . . , X2n) =

(
δ

δH(X1)
. . .

δ

δH(X2n)

)
W[H]

∣∣∣∣
H=0

. (A.30)
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Next, we express the “Nambu-type” connected Green functions in terms of the (usual)
connected Green functions. For n = 1, Eqs. (A.25) and (A.27) imply that

G2
c(x1,+; x2,−) = G̃2

c(x1,+; x2,−) − G̃2
c(x2,− ; x1,+) = G2

c(x1, x2) , (A.31)

and similarly,

G2
c(x1,− ; x2,+) = G̃2

c(x1,− ; x2,+) − G̃2
c(x2,+; x1,−) = −G2

c(x2, x1) . (A.32)

Moreover, if both Nambu indices are equal, the result vanishes. Thus, we arrive at

G2
c(x1, c1 ; x2, c2) =


−G2

c(x2, x1) , if (c1, c2) = (−,+) ,

G2
c(x1, x2) , if (c1, c2) = (+,−) ,

0 , otherwise .

(A.33)

In matrix notation, these relations can be summarized as

G2
c(X1, X2) =

(
0 −G2

c(x2, x1)

G2
c(x1, x2) 0

)
. (A.34)

Similarly, for n = 2, we can calculate as

G4
c(x1,+; x2,+; x3,− ; x4,−)

= −1

4

(
G̃4

c(x1,+; x2,+; x3,− ; x4,−) − G̃4
c(x2,+; x1,+; x3,− ; x4,−) (A.35)

− G̃4
c(x1,+; x2,+; x4,− ; x3,−) + G̃4

c(x2,+; x1,+; x4,− ; x3,−)
)

= −1

4

(
G4

c(x1, x2, x3, x4) − G4
c(x2, x1, x3, x4) (A.36)

− G4
c(x1, x2, x4, x3) + G4

c(x2, x1, x4, x3)
)

= −G4
c(x1, x2, x3, x4) , (A.37)

where we have used the antisymmetry of G4
c under the permutation of its first two and

its last two arguments. All other combinations of the Nambu indices can be evaluated
analogously, and thus we arrive at

G4
c(x1, c1 ; x2, c2 ; x3, c3 ; x4, c4) = (A.38)

−G4
c(x3, x4, x1, x2) , if (c1, c2, c3, c4) = (−,−,+,+)

G4
c(x2, x4, x1, x3) , if (c1, c2, c3, c4) = (−,+,−,+) ,

−G4
c(x2, x3, x1, x4) , if (c1, c2, c3, c4) = (−,+,+,−) ,

−G4
c(x1, x4, x2, x3) , if (c1, c2, c3, c4) = (+,−,−,+) ,

G4
c(x1, x3, x2, x4) , if (c1, c2, c3, c4) = (+,−,+,−) ,

−G4
c(x1, x2, x3, x4) , if (c1, c2, c3, c4) = (+,+,−,−) ,

0 , otherwise .
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We go on to rewrite also the Legendre transform in the Nambu formalism. For this
purpose, we denote the new source fields (defined by Eqs. (5.118)–(5.119)) as

Φ(x,−) = ϕ̄(x) , (A.39)

Φ(x,+) = ϕ(x) . (A.40)

Then, Eqs. (5.118)–(5.119) translate into

Φ(X) =
δW

δH(X)
, (A.41)

and the Legendre transform (5.123) can be written compactly as

Γ =W + 〈Φ,H〉 . (A.42)

Similarly, Eqs. (5.127)–(5.128) are equivalent to

H(X) =
δΓ

δΦ(X)
. (A.43)

It remains to consider the expansion (5.125) of the one-line-irreducible Green function
generator. In fact, this can be rewritten in the Nambu formalism (analogously to the
connected Green function generator) as

Γ[Φ] =

∞∑
n=1

(−1)n

(n!)2

∫
dX1 . . .

∫
dX2n Γ̃

2n(X1, . . . , X2n)

× Φ(X1) . . .Φ(Xn)Φ(X2n) . . .Φ(Xn+1) .

(A.44)

In this case, the coefficient functions are defined as (cf. Eq. (A.25))

Γ̃ 2n(x1, c1 ; . . . ; x2n, c2n) =


Γ 2n(x1, . . . , x2n) , if c1 = . . . = cn = − and

cn+1 = . . . = c2n = + ,

0 , otherwise .

(A.45)

Again, an equivalent expansion is obtained by antisymmetrizing these coefficient func-
tions: defining the one-line-irreducible Green functions in the Nambu formalism as

Γ 2n(X1, . . . , X2n) :=
(−1)(n−1)n/2

(n!)2

∑
π∈S2n

sgn(π) Γ̃ 2n
(
Xπ(1), . . . , Xπ(2n)

)
, (A.46)

the expression (A.44) can be transformed into

Γ[Φ] =
∞∑
n=1

(−1)n

(2n)!

∫
dX1 . . .

∫
dX2n Γ

2n(X1, . . . , X2n)Φ(X1) . . .Φ(X2n) . (A.47)

In particular, the one-line-irreducible Green functions in the Nambu formalism can be
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represented as the Grassmann derivatives

Γ 2n(X1, . . . , X2n) =

(
δ

δΦ(X1)
. . .

δ

δΦ(X2n)

)
Γ[Φ]

∣∣∣∣
Φ=0

. (A.48)

Finally, we can express these “Nambu-type” one-line-irreducible Green functions in terms
of the (usual) one-line-irreducible Green functions as follows: for n = 1,

Γ 2(x1, c1 ; x2, c2) =


Γ 2(x1, x2) if (c1, c2) = (−,+) ,

−Γ 2(x2, x1) if (c1, c2) = (+,−) ,

0 otherwise ,

(A.49)

and for n = 2,

Γ 4(x1, c1 ; x2, c2 ; x3, c3 ; x4, c4) = (A.50)

−Γ 4(x1, x2, x3, x4) , if (c1, c2, c3, c4) = (−,−,+,+) ,

Γ 4(x1, x3, x2, x4) , if (c1, c2, c3, c4) = (−,+,−,+) ,

−Γ 4(x1, x4, x2, x3) , if (c1, c2, c3, c4) = (−,+,+,−) ,

−Γ 4(x2, x3, x1, x4) , if (c1, c2, c3, c4) = (+,−,−,+) ,

Γ 4(x2, x4, x1, x3) , if (c1, c2, c3, c4) = (+,−,+,−) ,

−Γ 4(x3, x4, x1, x2) , if (c1, c2, c3, c4) = (+,+,−,−) ,

0 , otherwise .

These above equalities may be compared to the respective Eqs. (A.33) and (A.38) for
the connected Green functions. The corresponding differences stem from the different
definitions of the old and the new sources in the Nambu formalism, Eqs. (A.3)–(A.4)
and Eqs. (A.39)–(A.40), respectively.
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Functional renormalization and
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6. Renormalization group equations

In this chapter, we derive the renormalization group equations (RGE) for the connected
and for the one-line-irreducible Green functions. These have already been used in the
proof of the Feynman graph expansion of the one-line-irreducible Green functions (The-
orem 5.17). Since the solution of the RGE is not just a function of some continuous pa-
rameter Λ (i.e., a single number f(Λ) for each Λ), but a whole set of Green functions for
each Λ, the corresponding differential equations are also referred to as functional RGE.
These form the basis of the functional renormalization group (fRG) method, which we
will use in the following chapters to study the low-temperature phases of the Rashba
model with an attractive interaction. The derivations in this chapter follow closely the
seminal article [SH01] with only very slight modifications.

6.1. Scale dependence

We introduce a scale-dependent covariance CΛ for each Λ > 0 in such a way that it
satisfies the initial condition

lim
Λ→∞

CΛ(x1, x2) = 0 , (6.1)

as well as the final condition

lim
Λ→0

CΛ(x1, x2) = C(x1, x2) . (6.2)

In typical fRG applications, Λ is associated with an energy scale, and hence the above
limits are referred to as the ultraviolet limit and the infrared limit, respectively (see
Ch. 7). The inverse of the scale-dependent covariance is denoted by QΛ = C−1

Λ . Fur-
thermore, the Green function generator at the scale Λ is defined as (see Definition 5.2)

ZΛ[η̄, η] =
1

NΛ

∫
dψ̄dψ e−〈ψ̄,QΛψ〉 e−βV [ψ̄,ψ]+〈η̄,ψ〉+〈η,ψ̄〉 , (6.3)

with the normalization constant

NΛ =

∫
dψ̄dψ e−〈ψ̄,QΛψ〉 . (6.4)

The logarithm of ZΛ divided by its field-independent term yields the connected Green
function generator at the scale Λ (see Definition 5.4),

WΛ[η̄, η] = lnZΛ[η̄, η]− lnZΛ[0, 0] . (6.5)
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Moreover, the scale dependence of the covariance induces a scale dependence of all in-
teracting Green functions through their respective Feynman graph expansions. In par-
ticular, the connected Green functions at the scale Λ are the coefficient functions of the
connected Green function generator at the same scale, i.e.,

WΛ =
∞∑
n=1

(−1)n

(n!)2

∫
dx1 . . .

∫
dx2nG

2n
c,Λ(x1, . . . , x2n)

× η̄(x1) . . . η̄(xn)η(x2n) . . . η(xn+1) .

(6.6)

Concretely, these scale-dependent connected Green functions can be represented as the
sums of all connected Feynman graphs, in which all covariance lines attain a scale
dependence, i.e., C 7→ CΛ . Thus, one can convince oneself that the connected Green
functions satisfy the initial conditions

lim
Λ→∞

G2n
c,Λ(x1, . . . , x2n) = 0 , (6.7)

as well as the final conditions

lim
Λ→0

G2n
c,Λ(x1, . . . , x2n) = G2n

c (x1, . . . , x2n) . (6.8)

Next, the Legendre transform at the scale Λ is defined as (see Definition 5.10)

ΓΛ =WΛ + 〈ϕ̄Λ, η〉+ 〈ϕΛ, η̄〉 , (6.9)

where the new source fields are given by

ϕ̄Λ(x) =
δWΛ

δη(x)
, (6.10)

ϕΛ(x) =
δWΛ

δη̄(x)
. (6.11)

Note, in particular, that these Grassmann variables are scale dependent, too. Corre-
spondingly, the one-line-irreducible Green functions at the scale Λ are defined such that

ΓΛ =

∞∑
n=1

(−1)n

(n!)2

∫
dx1 . . .

∫
dx2n Γ

2n
Λ (x1, . . . , x2n)

× ϕ̄Λ(x1) . . . ϕ̄Λ(xn)ϕΛ(x2n) . . . ϕΛ(xn+1) .

(6.12)

In perturbation theory, these Green functions are represented as the sums of all one-
line-irreducible Feynman graphs with scale-dependent covariance lines. However, as ex-
plained in Ref. [Sch+16a], the above definitions are only formal: since CΛ is in general
not invertible, the Legendre transform and in particular the two-point function

Γ 2
Λ = (G2

c,Λ)−1 (6.13)

are actually not well-defined. This becomes particularly obvious in the limit Λ → ∞,
where CΛ and consequently also G2

c,Λ vanish identically. Nevertheless, for n ≥ 2, the
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Γ 4 = −β V + β V

Table 6.1: Two first-order Feynman graphs contributing to the one-line-irreducible four-point
Green function Γ 4. Only these first-order graphs are relevant for evaluating the initial condi-
tion of Γ 4, because all higher-order Feynman graphs contain at least one covariance line which
vanishes in the ultraviolet limit.

one-line-irreducible Green functions Γ 2n
Λ can be defined even in the ultraviolet limit,

because the inverse of CΛ does not appear in their Feynman graph expansions (see
Theorem 5.17). Concretely, the one-line-irreducible four-point function (n = 2) satisfies
the initial condition (see Table 6.1)

lim
Λ→∞

Γ 4
Λ(x1, x2, x3, x4) = −β

(
V (x1, x2, x3, x4)− V (x1, x2, x4, x3)

)
, (6.14)

where V denotes the four-point interaction kernel as given by Eq. (4.107). If we assume
that the latter is antisymmetric with respect to its last two arguments, then Eq. (6.14)
further simplifies to

lim
Λ→∞

Γ 4
Λ(x1, x2, x3, x4) = −2βV (x1, x2, x3, x4) . (6.15)

Note the prefactor (−β) in the above equations, which is contained in any first-order
Feynman graph (see Eq. (4.173)), and which is consistent with the different dimensions
of the quantities Γ 4 and V (see Eqs. (5.126) and (4.107), which respectively imply that
[Γ 4(x1, . . . , x4)] = m−6 and [V (x1, . . . , x4)] = J m−6). For n ≥ 3, the corresponding
initial conditions read

lim
Λ→∞

Γ 2n
Λ (x1, . . . , x2n) = 0 (n ≥ 3) , (6.16)

because all Feynman graphs contributing to these Green functions contain at least one
covariance line. By contrast, the limit Λ→ 0 is well-defined for all n, and simply yields
back the original one-line-irreducible Green functions:

lim
Λ→0

Γ 2n
Λ (x1, . . . , x2n) = Γ 2n(x1, . . . , x2n) (n ≥ 1) . (6.17)

We will come back to these limits in Sct. 6.4, where we will formulate an initial-value
problem for the scale-dependent (one-line-irreducible) four-point function.
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6.2. Connected Green function flow

In this section, we derive the RGE for the scale-dependent connected Green functions
G2n

c,Λ (see Sct. 5.3). These RGE form an infinite hierarchy of coupled differential equa-
tions, one for each n. Instead of deriving them one after the other, however, we will
start directly from the connected Green function generator WΛ and derive a differen-
tial equation for it. Afterwards, we will perform an expansion in the source fields, and
thereby simultaneously obtain the corresponding differential equations for all the coeffi-
cient functions of WΛ, which coincide with the scale-dependent connected Green func-
tions. Furthermore, analogously as in Ch. 5, our calculations will be facilitated by first
deriving the RGE for the Nambu-type Green functions, and then deducing from these
the desired equations for the connected Green functions themselves (see Ref. [SH01]).

In the Nambu formalism (see Appendix A of Part II), the scale-dependent Green function
generator (6.3) can be written as

ZΛ =
1

NΛ

∫
dΨ e−

1
2
〈Ψ,QΛΨ〉 e−βV [Ψ]+〈H,Ψ〉 . (6.18)

The connected Green function generator is defined by Eq. (6.5), which is equivalent to

eWΛ =
ZΛ

ZΛ[0]
, (6.19)

where ZΛ[0] denotes the field-independent term of ZΛ . Let us introduce some further
notations, which will be needed in the following. First, we define the matrix

W̃Λ(X,Y ) =
δ2WΛ

δH(X)δH(Y )
− δ2WΛ

δH(X)δH(Y )

∣∣∣∣
H=0

(6.20)

as the second Grassmann derivative of WΛ subtracted by the field-independent terms.
More compactly, we can write this as

W̃Λ =
δ2WΛ

δH2
− δ2WΛ

δH2

∣∣∣∣
H=0

. (6.21)

Next, for any two two-point quantities (i.e., quantities depending on two arguments)
A ≡ A(X,Y ) and B ≡ B(X,Y ), we define their product as

(AB)(X,Y ) :=

∫
dZ A(X,Z)B(Z, Y ) , (6.22)

and the trace as

Tr
[
A
]

:=

∫
dX A(X,X) , (6.23)

such that in particular,

Tr
[
AB

]
=

∫
dX

∫
dY A(X,Y )B(Y,X) . (6.24)
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Finally, we denote the derivative of any quantity with respect to the scale parameter Λ
by a dot, for example,

ẆΛ ≡
d

dΛ
WΛ , (6.25)

in the case of the connected Green function generator.

Theorem 6.1 (RGE for connected Green function generator). The scale-dependent
connected Green function generator WΛ satisfies the following differential equation:

ẆΛ = −1

2

〈
δWΛ

δH
, Q̇Λ

δWΛ

δH

〉
+

1

2
Tr
[
Q̇ΛW̃Λ

]
, (6.26)

where W̃Λ is defined by Eq. (6.20). By expanding WΛ into a sum of monomials of the
order 2n in the source fields,

WΛ =
∞∑
n=1

W(2n)
Λ , (6.27)

and similarly its derivatives,

W̃Λ(X,Y ) =
∞∑
n=1

W̃(2n)
Λ (X,Y ) , (6.28)

the RGE is equivalent to

Ẇ(2n)
Λ = −1

2

n∑
k=1

〈
δW(2k)

Λ

δH
, Q̇Λ

δW(2n+2−2k)
Λ

δH

〉
+

1

2
Tr
[
Q̇ΛW̃

(2n)
Λ

]
, (6.29)

which constitutes an infinite hierarchy of coupled differential equations for the monomi-
als in the source fields.

Proof. First, we note that by Definition 5.4, the generator WΛ does not contain any
field-independent term. Since WΛ is an even element of the Grassmann algebra S , the
right-hand side of Eq. (6.26) does not contain any field-independent term either. Thus,
we do not have to consider any constant terms at all, which in fact slightly simplifies the
derivation. Taking the scale derivative of both sides of Eq. (6.19) yields

ẆΛ eWΛ =
ŻΛZΛ[0]−ZΛ ŻΛ[0]

ZΛ[0]2
(6.30)

=
ŻΛ

ZΛ[0]
− ZΛ ŻΛ[0]

ZΛ[0]2
(6.31)

The Green function generator (6.18) depends on the scale parameter Λ through the
normalization constant NΛ and through the inverse covariance QΛ. Hence, in principle,
the scale derivative can act on each of these two quantities, and therefore generates two
different types of terms. However, the two terms in the numerator of Eq. (6.30) which
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are produced when the scale derivative acts on the respective normalization constant
NΛ (in ŻΛ or in ŻΛ[0]) cancel each other. Therefore, we only need to consider the terms
where the scale derivative acts on QΛ. For the first term in Eq. (6.31), we thus obtain

1

ZΛ[0]

1

NΛ

d

dΛ

∫
dΨ e−

1
2
〈Ψ,QΛΨ〉 e−βV [Ψ]+〈H,Ψ〉

=
1

ZΛ[0]

1

NΛ

(
−1

2

)∫
dΨ 〈Ψ, Q̇ΛΨ〉 e−

1
2
〈Ψ,QΛΨ〉 e−βV [Ψ]+〈H,Ψ〉 (6.32)

=
1

ZΛ[0]

(
−1

2

)〈
δ

δH
, Q̇Λ

δ

δH

〉
ZΛ (6.33)

= −1

2

〈
δ

δH
, Q̇Λ

δ

δH

〉
eWΛ . (6.34)

We can further transform this expression as follows:

(6.34) = −1

2

∫
dX

∫
dY Q̇Λ(X,Y )

δ

δH(X)

δ

δH(Y )
eWΛ (6.35)

= −1

2

∫
dX

∫
dY Q̇Λ(X,Y )

(
δWΛ

δH(X)

δWΛ

δH(Y )
+

δ2WΛ

δH(X)δH(Y )

)
eWΛ (6.36)

= −1

2

〈
δWΛ

δH
, Q̇Λ

δWΛ

δH

〉
eWΛ +

1

2
Tr

[
Q̇Λ

δ2WΛ

δH2

]
eWΛ . (6.37)

Next, consider the second term in Eq. (6.31):

− ZΛ ŻΛ[0]

ZΛ[0]2
= −ŻΛ[0]

ZΛ[0]
eWΛ = − ŻΛ

ZΛ[0]

∣∣∣∣
H=0

eWΛ . (6.38)

The first factor on the right-hand side of this equation is just the constant part of the
first term in Eq. (6.31) (with the opposite sign), and hence by Eq. (6.37) equals

− 1

2
Tr

[
Q̇Λ

δ2WΛ

δH2

∣∣∣∣
H=0

]
. (6.39)

(Here, we have used that the first term in Eq. (6.37) has no constant part, because WΛ

is an even element of S .) By putting Eqs. (6.37) and (6.39) into Eq. (6.31) as well as
by canceling the overall factor eWΛ , we arrive at

ẆΛ = −1

2

〈
δWΛ

δH
, Q̇Λ

δWΛ

δH

〉
+

1

2
Tr

[
Q̇Λ

(
δ2WΛ

δH2
− δ2WΛ

δH2

∣∣∣∣
H=0

)]
, (6.40)

which is equivalent to the assertion (6.26). Finally, by expanding WΛ and W̃Λ in the
source fields and equating the terms on both sides of Eq. (6.26) which are of the same
order in the fields, we obtain the hierarchy of equations (6.29).
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Theorem 6.2 (RGE for connected Green functions in the Nambu formal-
ism). The Nambu-type connected Green functions G2n

c,Λ satisfy the following hierarchy
of coupled differential equations (for n ≥ 1):

Ġ2n
c,Λ(X1, . . . , X2n) = (6.41)

1

2
A(X1, ...,X2n)

∑
k,`≥1 ,

k+`−1=n

(
2n

2k − 1

)∫
dY1

∫
dY2 Q̇Λ(Y1, Y2)

×G2k
c,Λ(Y1, X1, . . . , X2k−1)G2`

c,Λ(Y2, X2k, . . . , X2n)

− 1

2

∫
dY1

∫
dY2 Q̇Λ(Y1, Y2)G2n+2

c,Λ (Y1, Y2, X1, . . . , X2n) .

In particular, for n = 1, this implies

Ġ2
c,Λ(X1, X2) =

∫
dY1

∫
dY2 Q̇Λ(Y1, Y2)G2

c,Λ(Y1, X1)G2
c,Λ(Y2, X2)

− 1

2

∫
dY1

∫
dY2 Q̇Λ(Y1, Y2)G4

c,Λ(Y1, Y2, X1, X2) ;

(6.42)

and for n = 2,

Ġ4
c,Λ(X1, X2, X3, X4) = (6.43)

4A(X1, ...,X4)

∫
dY1

∫
dY2 Q̇Λ(Y1, Y2)G2

c,Λ(Y1, X1)G4
c,Λ(Y2, X2, X3, X4)

− 1

2

∫
dY1

∫
dY2 Q̇Λ(Y1, Y2)G6

c,Λ(Y1, Y2, X1, X2, X3, X4) .

In these equations, A denotes the antisymmetrization operator as defined by Eq. (5.60).

Proof. We begin by expanding the right-hand sides of Eqs. (6.27) and (6.28) in terms
of the source fields. By Eq. (A.29), we have

W(2n)
Λ =

(−1)n

(2n)!

∫
dX1 . . .

∫
dX2nG

2n
c,Λ(X1, . . . , X2n) H(X1) . . .H(X2n) . (6.44)

Furthermore, from Eq. (6.20), we obtain

W̃(2n)
Λ (X,Y ) =

δ2

δH(X)δH(Y )
W(2n+2)

Λ (6.45)

=
(−1)n+1

(2n+ 2)!

∫
dX1 . . .

∫
dX2n+2 G

2n+2
c,Λ (X1, . . . , X2n+2) (6.46)

× δ2

δH(X)δH(Y )

(
H(X1) . . .H(X2n+2)

)
.
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Here, the derivative with respect to H(Y ) can act on each of the (2n + 2) fields in
brackets, and after that, the derivative with respect to H(X) can act on each of the
remaining (2n+ 1) fields. By the antisymmetry of the Nambu-type Green function, all
(2n+ 2)× (2n+ 1) resulting terms are equal, and thus we find

W̃(2n)
Λ (X,Y ) =

(−1)n+1

(2n)!

∫
dX1 . . .

∫
dX2n

×G2n+2
c,Λ (Y,X,X1, . . . , X2n) H(X1) . . .H(X2n) .

(6.47)

Next, we put the above expansions (6.44) and (6.47) into the RGE hierarchy as given
by Eq. (6.29). Then, the second term on the right-hand side yields

1

2
Tr
[
Q̇ΛW̃

(2n)
Λ

]
=

1

2

∫
dY1

∫
dY2 Q̇Λ(Y1, Y2) W̃(2n)

Λ (Y2, Y1) (6.48)

= −1

2

(−1)n

(2n)!

∫
dX1 . . .

∫
dX2n (6.49)

×
(∫

dY1

∫
dY2 Q̇Λ(Y1, Y2)G2n+2

c,Λ (Y1, Y2, X1, . . . , X2n)

)
H(X1) . . .H(X2n) .

Furthermore, the first term on the right-hand side of Eq. (6.29) is equivalent to

− 1

2

∑
k,`≥1 ,

k+`−1=n

〈
δW(2k)

Λ

δH
, Q̇Λ

δW(2`)
Λ

δH

〉
. (6.50)

Similarly as Eq. (6.47), one shows that

δW(2k)
Λ

δH(X)
=

(−1)k

(2k − 1)!

∫
dX1 . . .

∫
dX2k−1

×G2k
c,Λ(X,X1, . . . , X2k−1)H(X1) . . . H(X2k−1) ,

(6.51)

and hence we obtain

−1

2

〈
δW(2k)

Λ

δH
, Q̇Λ

δW(2`)
Λ

δH

〉
= (6.52)

1

2

(−1)n

(2n)!

(
2n

2k − 1

)∫
dX1 . . .

∫
dX2n

∫
dY1

∫
dY2 Q̇Λ(Y1, Y2)

×G2k
c,Λ(Y1, X1, . . . , X2k−1)G2`

c,Λ(Y2, X2k, . . . , X2n)H(X1) . . . H(X2n) .

Here, we have used the condition 2k + 2`− 2 = 2n, which implies in particular that

(2n)!

(2k − 1)!(2`− 1)!
=

(
2n

2k − 1

)
. (6.53)
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By putting all these results (Eqs. (6.44), (6.49) and (6.52)) into Eq. (6.29) and equating
the antisymmetrized coefficient functions for each n, we arrive at the RGE (6.41). For
n = 1, this in turn implies immediately Eq. (6.42). (There, the antisymmetrization
operator has been omitted because the right-hand side is already antisymmetric.) For
n = 2, one only has to convince oneself that the two terms with k = 1 and k = 2 are
equal, which then implies Eq. (6.43).

From the above RGE for the Nambu-type connected Green functions, one can derive the
corresponding hierarchy of RGE for the connected Green functions themselves. Here,
we explicitly state these equations only for n = 1 and for n = 2:

Theorem 6.3 (RGE for connected Green functions). The connected two- and
four-point Green functions satisfy the following differential equations:

Ġ2
c,Λ(x1, x2) = −

∫
dy1

∫
dy2 G

2
c,Λ(x1, y1) Q̇Λ(y1, y2)G2

c,Λ(y2, x2)

+

∫
dy1

∫
dy2 G

4
c,Λ(x1, y1, x2, y2) Q̇Λ(y2, y1) ,

(6.54)

and respectively,

Ġ4
c,Λ(x1, x2, x3, x4) = (6.55)

− A(x1,x2)

∫
dy1

∫
dy2 G

2
c,Λ(x1, y1) Q̇Λ(y1, y2)G4

c,Λ(y2, x2, x3, x4)

− A(x3,x4)

∫
dy1

∫
dy2 G

4
c,Λ(x1, x2, y1, x4) Q̇Λ(y1, y2)G2

c,Λ(y2, x3)

+

∫
dy1

∫
dy2 G

6
c,Λ(x1, x2, y1, x3, x4, y2) Q̇Λ(y2, y1) .

The graphical representation of these equations by means of Universal Feynman Graphs
(see Sct. 4.5) is shown in Table 6.3.

Proof. We derive these equations from Theorem 6.2, using the relations (A.16) as well
as (5.169)–(5.171) between the Nambu-type and the usual connected Green functions.

(i) Two-point function. From Eq. (6.42), we obtain

Ġ2
c,Λ(x1,+; x2,−) = (6.56)∫
dy1

∫
dy2

∑
c1, c2

Q̇Λ(y1, c1 ; y2, c2)G2
c,Λ(y1, c1 ; x1,+)G2

c,Λ(y2, c2 ; x2,−)

− 1

2

∫
dy1

∫
dy2

∑
c1, c2

Q̇Λ(y1, c1 ; y2, c2)G4
c,Λ(y1, c1 ; y2, c2 ; x1,+; x2,−) .
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j sgn(πj) πj(1) πj(2) πj(3) πj(4)

0 +1 1 2 3 4

1 −1 2 1 3 4

2 +1 3 1 2 4

3 −1 4 1 2 3

Table 6.2: Representative permutations used for evaluating Eq. (6.60).

In the first term on the right-hand side, only the combination of Nambu indices (c1, c2)
= (−,+) gives a nonvanishing contribution, whereas in the second term, the two contri-
butions from (c1, c2) = (+,−) and (c1, c2) = (−,+) are equal. It follows that

Ġ2
c,Λ(x1, x2) = −

∫
dy1

∫
dy2 Q̇Λ(y1, y2)G2

c,Λ(x1, y1)G2
c,Λ(y2, x2)

+

∫
dy1

∫
dy2 Q̇Λ(y2, y1)G4

c,Λ(y1, x1, y2, x2) ,

(6.57)

which is equivalent to the assertion (6.54).

(ii) Four-point function. We evaluate Eq. (6.43) for

X1 = (x1,+) , X2 = (x2,+) , X3 = (x3,−) , X4 = (x4,−) , (6.58)

such that the left-hand side reverts to (−1)Ġ4
c,Λ(x1, x2, x3, x4). The second term on the

right-hand side can be evaluated analogously as in the case n = 1 and yields

−
∫

dy1

∫
dy2 Q̇Λ(y2, y1)G6

c,Λ(y1, x1, x2, y2, x3, x4) . (6.59)

Next, consider the first term on the right-hand side of Eq. (6.43), which reads explicitly

4

4!

∑
π∈S4

sgn(π)

∫
dY1

∫
dY2

× Q̇Λ(Y1, Y2)G2
c,Λ(Y1, Xπ(1))G

4
c,Λ(Y2, Xπ(2), Xπ(3), Xπ(4)) .

(6.60)

By the antisymmetry of the Nambu-type four-point function, there are always 3! = 6
permutations which give the same contribution. Therefore, only

4!

3!
= 4 (6.61)

representative permutations need to be considered, provided that we count each of them
six times. We choose the four representative permutations π0, . . . , π3 which are shown
in Table 6.2. Using that 6 × 4 / 4! = 1, we see that the prefactor in Eq. (6.60) cancels
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out, and thus we are left with the sum

3∑
j=0

sgn(πj)

∫
dY1

∫
dY2

× Q̇Λ(Y1, Y2)G2
c,Λ(Y1, Xπj(1))G

4
c,Λ(Y2, Xπj(2), Xπj(3), Xπj(4)) .

(6.62)

Consider the first summand with j = 0, which corresponds to the identity permutation:∫
dY1

∫
dY2 Q̇Λ(Y1, Y2)G2

c,Λ(Y1, X1)G4
c,Λ(Y2, X2, X3, X4) . (6.63)

By choosing the external Nambu indices as in Eq. (6.58), this yields∫
dy1

∫
dy2 Q̇Λ(y1, y2)G2

c,Λ(x1, y1)G4
c,Λ(y2, x2, x3, x4) . (6.64)

The remaining terms in Eq. (6.62)—i.e., those with j = 1, 2, 3—can be evaluated analo-
gously. Taking into account also Eq. (6.59), we arrive at

(−1) Ġ4
c,Λ(x1, x2, x3, x4) = (6.65)

−
∫

dy1

∫
dy2 Q̇Λ(y2, y1)G6

c,Λ(y1, x1, x2, y2, x3, x4)

+
∑
π∈S2

sgn(π)

∫
dy1

∫
dy2 Q̇Λ(y1, y2)G2

c,Λ(xπ(1), y1)G4
c,Λ(y2, xπ(2), x3, x4)

+
∑
π∈S2

sgn(π)

∫
dy1

∫
dy2 Q̇Λ(y2, y1)G2

c,Λ(y1, xπ(3))G
4
c,Λ(x1, x2, y2, xπ(4)) ,

which is equivalent to the assertion (6.55).
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G2
c = − G2

c Q G2
c

+ G4
c Q

G4
c = − G2

c Q
G4

c

−
G2

c Q
G4

c

− G4
c

Q G2
c

− G4
c Q G2

c

+ G6
c

Q

Table 6.3: RGE for the connected two- and four-point Green functions (Theorem 6.3): repre-
sentation by means of Universal Feynman Graphs (see Sct. 4.5).
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6.3. One-line irreducible Green function flow

In this section, we will derive the RGE for the one-line-irreducible Green functions Γ 2n

(see Sct. 5.5), which in principle also constitute an infinite hierarchy of coupled differ-
ential equations. For the sake of brevity, however, we will restrict ourselves to n = 1
and n = 2, i.e., we will only derive the RGE for the one-line-irreducible two- and four-
point functions. Our procedure is analogous as in the previous section: we will first
derive a differential equation for the one-line-irreducible generator ΓΛ , subsequently de-
duce the RGE for the Nambu-type Green functions, and finally derive the RGE for the
one-line-irreducible Green functions themselves (see Ref. [SH01]).

The scale-dependent one-line-irreducible Green function generator ΓΛ is defined as the
Legendre transform of the connected Green function generatorWΛ (see Eqs. (6.9)–(6.11),
and Appendix A of Part II):

ΓΛ =WΛ − 〈H,ΦΛ〉 , (6.66)

where the new sources ΦΛ are defined as

ΦΛ(x) =
δWΛ

δH(x)
. (6.67)

We stress again that by this definition, the source fields ΦΛ themselves are scale depen-
dent. Furthermore, in analogy to Eq. (6.20), we define the matrix

Γ̃Λ(X,Y ) =
δ2ΓΛ

δΦΛ(X)δΦΛ(Y )
− δ2ΓΛ

δΦΛ(X)δΦΛ(Y )

∣∣∣∣
ΦΛ =0

, (6.68)

which is the second Grassmann derivative of ΓΛ subtracted by the constant terms.

Theorem 6.4 (RGE for one-line-irreducible Green function generator). The
scale-dependent one-line-irreducible Green function generator ΓΛ satisfies the following
differential equation:

Γ̇Λ +

〈
δΓΛ

δΦΛ
, Φ̇Λ

〉
= −1

2

〈
ΦΛ, Q̇Λ ΦΛ

〉
+

1

2

∞∑
p=0

(−1)p Tr
[
SΛ Γ̃Λ (G2

Λ Γ̃Λ)p
]
, (6.69)

where Γ̃Λ is defined by Eq. (6.68), and where SΛ denotes the single-scale Green function
in the Nambu formalism, which is defined as

SΛ = −G2
Λ Q̇ΛG

2
Λ . (6.70)

By expanding ΓΛ into a sum of monomials of the order 2n in the fields,

ΓΛ =
∞∑
n=1

Γ
(2n)
Λ , (6.71)
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and similarly its derivatives,

Γ̃Λ(X,Y ) =

∞∑
n=1

Γ̃
(2n)
Λ (X,Y ) , (6.72)

the RGE (6.69) is equivalent to a hierarchy of coupled differential equations for these
monomials, which is given by

Γ̇
(2)
Λ +

〈
δΓ

(2)
Λ

δΦΛ
, Φ̇Λ

〉
= −1

2
〈ΦΛ, Q̇Λ ΦΛ〉+

1

2
Tr
[
SΛ Γ̃

(2)
Λ

]
, (6.73)

Γ̇
(4)
Λ +

〈
δΓ

(4)
Λ

δΦΛ
, Φ̇Λ

〉
=

1

2
Tr
[
SΛ Γ̃

(4)
Λ

]
− 1

2
Tr
[
SΛ Γ̃

(2)
Λ G2

Λ Γ̃
(2)
Λ

]
, (6.74)

and by similar equations for n ≥ 3.

Remark. Before proceeding with the proof, we compare our RGE (6.69) with the corre-
sponding equation in the original article [SH01, Eq. (48)]. First, since we had defined
bothWΛ and ΓΛ as elements of the Grassmann algebra S of the sources, we did not need
to invert any functional for defining the (scale-dependent) Legendre transform (see the
remark on p. 112). This difference in the definition of the Legendre transform accounts
for the additional term on the left-hand side of our RGE (6.69). On the other hand, by
our Definitions 5.4 and 5.10, neither WΛ nor ΓΛ has any field-independent term, and
this explains the missing constant term on the right-hand side of Eq. (6.69). Despite
these differences, the resulting RGE for the one-line-irreducible Green functions (which
are stated in Theorem 6.5 and Theorem 6.6) will agree again with the corresponding
equations in Ref. [SH01].

Proof. The scale derivative of the Legendre transform (6.66) contains two terms, be-
cause both WΛ and the source fields ΦΛ are scale dependent:

Γ̇Λ = ẆΛ − 〈H, Φ̇Λ〉 = ẆΛ −
〈
δΓΛ

δΦΛ
, Φ̇Λ

〉
. (6.75)

By using the RGE (6.26) for WΛ, the definition (6.67) of the source fields ΦΛ , and Eqs.
(5.140)–(5.141), we obtain the following RGE for ΓΛ:

Γ̇Λ +

〈
δΓΛ

δΦΛ
, Φ̇Λ

〉
= (6.76)

− 1

2

〈
ΦΛ, Q̇Λ ΦΛ

〉
+

1

2
Tr

[
Q̇Λ

((
δ2ΓΛ

δΦ 2
Λ

)−1

−
(
δ2ΓΛ

δΦ 2
Λ

)−1 ∣∣∣∣
ΦΛ=0

)]
.

In order to evaluate the right-hand side of this equation, we have to calculate the inverse
of the second derivative of ΓΛ . First, we note that the field-independent term,(

δ2ΓΛ

δΦ 2
Λ

)−1 ∣∣∣∣
ΦΛ=0

=
δ2WΛ

δH2

∣∣∣∣
H=0

= G2
c,Λ = G2

Λ , (6.77)
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coincides with the (connected) two-point Green function in the Nambu formalism (see
Eq. (5.61)). Furthermore, Eq. (6.68) can be written in matrix form as

Γ̃Λ =
δ2ΓΛ

δΦ 2
Λ

− Γ 2
Λ . (6.78)

By Theorem 5.14, Eq. (5.142), we have

Γ 2
Λ = (G2

Λ)−1 , (6.79)

and hence, Eq. (6.78) is equivalent to

δ2ΓΛ

δΦ 2
Λ

= (G2
Λ)−1 + Γ̃Λ = (G2

Λ)−1
(
1 +G2

Λ Γ̃Λ

)
. (6.80)

Now, the inverse of this second derivative can be expressed as a geometric series:(
δ2ΓΛ

δΦ 2
Λ

)−1

=
(
1 +G2

Λ Γ̃Λ

)−1
G2

Λ =

∞∑
p=0

(−1)p (G2
Λ Γ̃Λ)pG2

Λ . (6.81)

Taking into account also Eq. (6.77), we find that(
δ2ΓΛ

δΦ 2
Λ

)−1

−
(
δ2ΓΛ

δΦ 2
Λ

)−1 ∣∣∣∣
ΦΛ=0

=

∞∑
p=1

(−1)p (G2
Λ Γ̃Λ)pG2

Λ . (6.82)

Thus, the RGE (6.76) is equivalent to

Γ̇Λ +

〈
δΓΛ

δΦΛ
, Φ̇Λ

〉
= −1

2

〈
ΦΛ, Q̇Λ ΦΛ

〉
+

1

2

∞∑
p=1

(−1)p Tr
[
Q̇Λ (G2

Λ Γ̃Λ)pG2
Λ

]
. (6.83)

By the cyclicity of the trace and by the definition (6.70), the last term is equivalent to

1

2

∞∑
p=1

(−1)p Tr
[
G2

Λ Q̇Λ (G2
Λ Γ̃Λ)p

]
= −1

2

∞∑
p=1

(−1)p Tr
[
SΛ Γ̃Λ (G2

Λ Γ̃Λ)p−1
]

(6.84)

=
1

2

∞∑
p=0

(−1)p Tr
[
SΛ Γ̃Λ (G2

Λ Γ̃Λ)p
]
, (6.85)

which yields the RGE (6.69). Finally, by expanding ΓΛ and Γ̃Λ into monomials and
equating the terms on both sides of Eq. (6.69) which are of the order two (n = 1) and
respectively four (n = 2) in the fields, we obtain Eqs. (6.73) and (6.74).

Theorem 6.5 (RGE for one-line-irreducible Green functions in the Nambu
formalism). The Nambu-type one-line-irreducible Green functions Γ 2n satisfy the fol-
lowing differential equations: for n = 1,

Γ̇ 2
Λ(X1, X2) = Q̇Λ(X1, X2)− 1

2

∫
dY1

∫
dY2 SΛ(Y1, Y2)Γ 4

Λ(Y1, Y2, X1, X2) , (6.86)
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and for n = 2,

Γ̇ 4
Λ(X1, . . . , X4) = (6.87)

− 1

2

∫
dY1

∫
dY2 SΛ(Y1, Y2)Γ 6

Λ(Y1, Y2, X1, X2, X3, X4)

− 1

2

∫
dY1 . . .

∫
dY4 LΛ(Y1, . . . , Y4)BΛ(Y1, . . . , Y4 ; X1, . . . , X4) .

In these equations, the single-scale Green function SΛ is given by Eq. (6.70). Further-
more, we have defined the loop term in the Nambu formalism LΛ as

LΛ(Y1, . . . , Y4) = SΛ(Y1, Y3)G2
Λ(Y2, Y4) +G2

Λ(Y1, Y3)SΛ(Y2, Y4) , (6.88)

and the vertex bilinear BΛ as

BΛ(Y1, . . . , Y4 ; X1, . . . X4) = Γ 4
Λ(Y2, Y3, X1, X2)Γ 4

Λ(Y1, Y4, X3, X4)

− Γ 4
Λ(Y2, Y3, X1, X3)Γ 4

Λ(Y1, Y4, X2, X4)

+ Γ 4
Λ(Y2, Y3, X1, X4)Γ 4

Λ(Y1, Y4, X2, X3) .

(6.89)

Similar equations can be derived for n ≥ 3.

Proof. We first expand the right-hand sides of Eqs. (6.71) and (6.72) in terms of the
source fields: By Eq. (A.47), we have

Γ
(2n)
Λ =

(−1)n

(2n)!

∫
dX1 . . .

∫
dX2n Γ

2n
Λ (X1, . . . , X2n)ΦΛ(X1) . . .ΦΛ(X2n) . (6.90)

The corresponding expression of the second derivative can be derived analogously as
Eq. (6.47) and is given by

Γ̃
(2n)
Λ (X,Y ) =

(−1)n+1

(2n)!

∫
dX1 . . .

∫
dX2n

× Γ 2n+2
Λ (Y,X,X1, . . . , X2n) ΦΛ(X1) . . .ΦΛ(X2n) .

(6.91)

Next, we expand the left-hand side of the RGE (6.69), i.e.,

Γ̇Λ +

〈
δΓΛ

δΦΛ
, Φ̇Λ

〉
=

∞∑
n=1

(
Γ̇

(2n)
Λ +

〈
δΓ

(2n)
Λ

δΦΛ
, Φ̇Λ

〉)
. (6.92)

When a scale derivative is applied to Eq. (6.90), it can act either on the coefficient func-
tion or on the source fields. Thus, we obtain

Γ̇
(2n)
Λ =

(−1)n

(2n)!

∫
dX1 . . .

∫
dX2n Γ̇

2n
Λ (X1, . . . , X2n) ΦΛ(X1) . . .ΦΛ(X2n)

+
(−1)n

(2n)!

∫
dX1 . . .

∫
dX2n Γ

2n
Λ (X1, . . . , X2n)

d

dΛ

(
ΦΛ(X1) . . .ΦΛ(X2n)

)
.

(6.93)
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Furthermore, since Γ
(2n)
Λ is an even element of the Grassmann algebra S , we have

〈
δΓ

(2n)
Λ

δΦΛ
, Φ̇Λ

〉
= −

〈
Φ̇Λ,

δΓ
(2n)
Λ

δΦΛ

〉
= −

∫
dY Φ̇Λ(Y )

δΓ
(2n)
Λ

δΦΛ(Y )
. (6.94)

Plugging the expansion (6.90) into this equation yields〈
δΓ

(2n)
Λ

δΦΛ
, Φ̇Λ

〉
= −(−1)n

(2n)!

∫
dX1 . . .

∫
dX2n Γ

2n
Λ (X1, . . . , X2n)

×
∫

dY Φ̇Λ(Y )
δ

δΦΛ(Y )

(
ΦΛ(X1) . . .ΦΛ(X2n)

)
.

(6.95)

Now, the important observation is that∫
dY Φ̇Λ(Y )

δ

δΦΛ(Y )

(
ΦΛ(X1) . . .ΦΛ(X2n)

)
=

d

dΛ

(
ΦΛ(X1) . . .ΦΛ(X2n)

)
. (6.96)

In fact, this identity is almost obvious, as both sides of it are equal to

2n∑
i=1

ΦΛ(X1) . . .ΦΛ(Xi−1) Φ̇Λ(Xi) ΦΛ(Xi+1) . . .ΦΛ(X2n) . (6.97)

Therefore, Eq. (6.95) precisely cancels the second term on the right-hand side of Eq.
(6.93), and we obtain the desired identity

Γ̇
(2n)
Λ +

〈
δΓ

(2n)
Λ

δΦΛ
, Φ̇Λ

〉
=

(−1)n

(2n)!

∫
dX1 . . .

∫
dX2n Γ̇

2n
Λ (X1, . . . , X2n) ΦΛ(X1) . . .ΦΛ(X2n) ,

(6.98)

where the scale derivative on the right-hand side acts only on the coefficient function
but not on the source fields.

With these prerequisites, we now derive the RGE (6.86)–(6.87) for the two- and four-
point functions starting from Eqs. (6.73)–(6.74) of Theorem 6.4:

(i) Two-point function. By Eq. (6.98), the left-hand side of Eq. (6.73) is given by

Γ̇
(2)
Λ +

〈
δΓ

(2)
Λ

δΦΛ
, Φ̇Λ

〉
= −1

2

∫
dX1

∫
dX2 Γ̇

2
Λ(X1, X2) ΦΛ(X1)ΦΛ(X2) . (6.99)

The first term on the right-hand side of Eq. (6.73) reads

− 1

2
〈ΦΛ, Q̇Λ ΦΛ〉 = −1

2

∫
dX1

∫
dX2 Q̇Λ(X1, X2) ΦΛ(X1)ΦΛ(X2) , (6.100)
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and for the second term, we obtain from Eq. (6.91),

1

2
Tr
[
SΛ Γ̃

(2)
Λ

]
=

1

2

∫
dY1

∫
dY2 SΛ(Y1, Y2) Γ̃

(2)
Λ (Y2, Y1) (6.101)

=
1

4

∫
dX1

∫
dX2

(∫
dY1

∫
dY2 SΛ(Y1, Y2)Γ 4

Λ(Y1, Y2, X1, X2)

)
ΦΛ(X1)ΦΛ(X2) .

Equating the antisymmetric coefficient functions on both sides of the equation yields

Γ̇ 2
Λ(X1, X2) = Q̇Λ(X1, X2)− 1

2

∫
dY1

∫
dY2 SΛ(Y1, Y2)Γ 4

Λ(Y1, Y2, X1, X2) , (6.102)

which coincides with the assertion (6.86).

(ii) Four-point function. By Eq. (6.98), the left-hand side of Eq. (6.74) is given by

Γ̇
(4)
Λ +

〈
δΓ

(4)
Λ

δΦΛ
, Φ̇Λ

〉
=

1

4!

∫
dX1 . . .

∫
dX4 Γ̇

4
Λ(X1, . . . , X4) ΦΛ(X1) . . .ΦΛ(X4) . (6.103)

The first term on the right-hand side of Eq. (6.74) can be expressed analogously to
Eq. (6.101) as

1

2
Tr
[
SΛ Γ̃

(4)
Λ

]
= −1

2

1

4!

∫
dX1 . . .

∫
dX4 ΦΛ(X1) . . .ΦΛ(X4)

×
(∫

dY1

∫
dY2 SΛ(Y1, Y2)Γ 6

Λ(Y1, Y2, X1, . . . , X4)

)
.

(6.104)

For the second term, we obtain from Eq. (6.91),

− 1

2
Tr
[
SΛ Γ̃

(2)
Λ G2

Λ Γ̃
(2)
Λ

]
= −1

2

∫
dY1 . . .

∫
dY4 SΛ(Y1, Y3) Γ̃

(2)
Λ (Y3, Y2)G2

Λ(Y2, Y4) Γ̃
(2)
Λ (Y4, Y1) (6.105)

= −1

2

∫
dX1 . . .

∫
dX4 T

4
Λ(X1, . . . , X4) ΦΛ(X1) . . .ΦΛ(X4) , (6.106)

where we have defined

T 4
Λ(X1, X2, X3, X4) =

1

4

∫
dY1 . . .

∫
dY4 SΛ(Y1, Y3)G2

Λ(Y2, Y4)

× Γ 4
Λ(Y2, Y3, X1, X2)Γ 4

Λ(Y1, Y4, X3, X4) .

(6.107)

Equating the antisymmetrized coefficient functions on both sides of Eq. (6.74) yields

Γ̇ 4
Λ(X1, X2, X3, X4) = −1

2

∫
dY1

∫
dY2 SΛ(Y1, Y2)Γ 6

Λ(Y1, Y2, X1, X2, X3, X4)

− 4!

2
A(X1,X2,X3,X4) T

4
Λ(X1, X2, X3, X4) . (6.108)
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In order to derive a more explicit expression for the second term on the right-hand side
of this equation, we introduce some abbreviations: for k, ` ∈ {1, . . . , 4}, let

Ak,` ≡ Γ 4
Λ(Y2, Y3, Xk, X`) , (6.109)

Bk,` ≡ Γ 4
Λ(Y1, Y4, Xk, X`) . (6.110)

Then, we can write

A(X1, ...,X4) T
4
Λ(X1, . . . , X4) = (6.111)

1

4

∫
dY1 . . . dY4 SΛ(Y1, Y3)G2

Λ(Y2, Y4) A(X1, ...,X4)

{
A1,2B3,4

}
,

and it remains to evaluate

A(X1, ...,X4)

{
A1,2B3,4

}
=

1

4!

∑
π∈S4

sgn(π)Aπ(1),π(2)Bπ(3),π(4) . (6.112)

The antisymmetry of Γ 4
Λ implies the conditions

Ak,` = −A`,k , (6.113)

Bk,` = −B`,k . (6.114)

Consequently, there are always four permutations in the sum of Eq. (6.112) which yield
the same contribution, e.g.,

A1,2B3,4 = −A2,1B3,4 = −A1,2B4,3 = A2,1B4,3 . (6.115)

Thus, we are left with only six different terms:

A(X1, ...,X4)

{
A1,2B3,4

}
= (6.116)

4

4!

(
A1,2B3,4 +A3,4B1,2 −A1,3B2,4 −A2,4B1,3 +A1,4B2,3 +A2,3B1,4

)
.

By putting this result into Eq. (6.111) and by renaming in every second term the inte-
gration variables as Y1 ↔ Y2 and Y3 ↔ Y4 , we arrive at

A(X1, ...,X4) T
4
Λ(X1, . . . , X4) = (6.117)

1

4!

∫
dY1 . . . dY4

(
SΛ(Y1, Y3)G2

Λ(Y2, Y4) +G2
Λ(Y1, Y3)SΛ(Y2, Y4)

)
×
(
A1,2B3,4 −A1,3B2,4 +A1,4B2,3

)
.

This is equivalent to

A(X1, ...,X4) T
4
Λ(X1, . . . , X4)

=
1

4!

∫
dY1 . . . dY4 LΛ(Y1, . . . , Y4)BΛ(Y1, . . . , Y4 ; X1, . . . , X4) ,

(6.118)
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with LΛ and BΛ defined by Eqs. (6.88) and (6.89), respectively. Combining this result
with Eq. (6.108) shows the assertion (6.87).

Theorem 6.6 (RGE for one-line-irreducible Green functions). The one-line-
irreducible two- and four-point functions satisfy the following differential equations:

Γ̇ 2
Λ(x1, x2) = Q̇Λ(x1, x2) +

∫
dy1

∫
dy2 Γ

4
Λ(x1, y1, x2, y2)SΛ(y2, y1) , (6.119)

and respectively,

Γ̇ 4
Λ(x1, . . . , x4) =

∫
dy1

∫
dy2 Γ

6
Λ(x1, x2, y1, x3, x4, y2)SΛ(y2, y1)

+ Φpp
Λ (x1, . . . , x4) + Φph,c

Λ (x1, . . . , x4) + Φph,d
Λ (x1, . . . , x4) .

(6.120)

Here, the last three terms on the right-hand side are called the particle-particle term, the
crossed particle-hole term and the direct particle-hole term, and they are given by

Φpp
Λ (x1, x2, x3, x4) =

1

2

∫
dy1 . . .

∫
dy4 LΛ(y1, y2, y3, y4) (6.121)

× Γ 4
Λ(x1, x2, y1, y2)Γ 4

Λ(y3, y4, x3, x4) ,

Φph,c
Λ (x1, x2, x3, x4) = −

∫
dy1 . . .

∫
dy4 LΛ(y3, y4, y2, y1) (6.122)

× Γ 4
Λ(y1, x1, y3, x3)Γ 4

Λ(x2, y2, x4, y4) ,

Φph,d
Λ (x1, x2, x3, x4) = −Φph,c

Λ (x1, x2, x4, x3) . (6.123)

Furthermore, we have defined the single-scale Green function SΛ as

SΛ = −G2
Λ Q̇ΛG

2
Λ , (6.124)

and the loop term LΛ as

LΛ(y1, y2, y3, y4) = SΛ(y1, y3)G2
Λ(y2, y4) +G2

Λ(y1, y3)SΛ(y2, y4) . (6.125)

The graphical representation of these equations in terms of Universal Feynman Graphs
(see Sct. 4.5) is shown in Table 6.4.

Proof. We derive these equations from Theorem 6.5 by using the following relations
between Nambu-type Green functions and usual Green functions: Eq. (A.16) for the in-
verse covariance, Eq. (5.169) for the (connected) two-point Green function, and

Γ 2
Λ(x1,− ; x2,+) = Γ 2

Λ(x1, x2) , (6.126)

Γ 4
Λ(x1,− ; x2,− ; x3,+; x4,+) = −Γ 4

Λ(x1, x2, x3, x4) , (6.127)

Γ 6
Λ(x1,− ; x2,− ; x3,− ; x4,+; x5,+; x6,+) = −Γ 6

Λ(x1, x2, x3, x4, x5, x6) (6.128)
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for the one-line-irreducible Green functions (relations which follow from Eqs. (A.45) and
(A.46)). Furthermore, regarding the single-scale Green function, Eqs. (6.70) and (6.124)
together imply that

SΛ(x1,+; x2,−)

= −
∫

dy1

∫
dy2

∑
c1, c2

G2
Λ(x1,+; y1, c1) Q̇Λ(y1, c1 ; y2, c2)G2

Λ(y2, c2 ; x2,−) (6.129)

= −
∫

dy1

∫
dy2 G

2
Λ(x1,+; y1,−) Q̇Λ(y1,− ; y2,+)G2

Λ(y2,+; x2,−) (6.130)

= −
∫

dy1

∫
dy2 G

2
Λ(x1, y1)QΛ(y1, y2)G2

Λ(y2, x2) (6.131)

= SΛ(x1, x2) . (6.132)

Similarly, for the loop term we obtain from Eqs. (6.88) and (6.125) that

LΛ(x1,+; x2,+; x3,− ; x4,−) (6.133)

= SΛ(x1,+; x3,−)G2
Λ(x2,+; x4,−) + G2

Λ(x1,+; x3,−)SΛ(x2,+; x4,−) (6.134)

= SΛ(x1, x3)G2
Λ(x2, x4) + G2

Λ(x1, x3)SΛ(x2, x4) (6.135)

= LΛ(x1, x2, x3, x4) . (6.136)

For all other combinations of Nambu indices, the corresponding relations can be derived
analogously by using the antisymmetry of SΛ and of G2

Λ (see Appendix A of Part II).
We now go on to evaluate Eqs. (6.86) and (6.87) for particular combinations of the
external Nambu indices.

(i) Two-point function. First, Eq. (6.86) yields

Γ̇ 2
Λ(x1,− ; x2,+) = Q̇Λ(x1,− ; x2,+)

− 1

2

∫
dy1

∫
dy2

∑
c1, c2

SΛ(y1, c1 ; y2, c2)Γ 4
Λ(y1, c1 ; y2, c2 ; x1,− ; x2,+) .

(6.137)

In the second term, both (c1, c2) = (−,+) and (c1, c2) = (+,−) give the same contribu-
tion, and thus we obtain

Γ̇ 2
Λ(x1, x2) = Q̇Λ(x1, x2) +

∫
dy1

∫
dy2 SΛ(y2, y1)Γ 4

Λ(y1, x1, y2, x2) , (6.138)

which is equivalent to the assertion (6.119).

(ii) Four-point function. Next, we evaluate Eq. (6.87) for

X1 = (x1,−) , X2 = (x2,−) , X3 = (x3,+) , X4 = (x4,+) , (6.139)
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such that the left-hand side reverts to (−1)Γ̇ 4
Λ(x1, x2, x3, x4). The first term on the

right-hand side can be evaluated analogously as in the case of the two-point function,
and hence we obtain

Γ̇ 4
Λ(x1, x2, x3, x4) =

∫
dy1

∫
dy2 SΛ(y2, y1)Γ 4

Λ(y1, x1, x2, y2, x3, x4)

+
1

2

∫
dy1 . . .

∫
dy4

∑
c1, ..., c4

LΛ(y1, c1 ; . . . ; y4, c4)

×BΛ(y1, c1 ; . . . ; y4, c4 ; x1,− ; x2,− ; x3,+; x4,+) .

(6.140)

The vertex bilinear BΛ as defined by Eq. (6.89) consists of three terms, whose respective
contributions to the right-hand side of the above RGE are called the particle-particle
term, the crossed particle-hole term and the direct particle-hole term. It remains to show
that these terms coincide with Eqs. (6.121), (6.122) and (6.123), respectively.

(ii.a) Particle-particle term. Putting the first term of Eq. (6.89) into Eq. (6.140) yields
the particle-particle term:

Φpp
Λ (x1, x2, x3, x4) =

1

2

∫
dy1 . . .

∫
dy4

∑
c1, ..., c4

LΛ(y1, c1 ; y2, c2 ; y3, c3 ; y4, c4)

× Γ 4
Λ(y2, c2 ; y3, c3 ; x1,− ; x2,−)Γ 4

Λ(y1, c1 ; y4, c4 ; x3,+; x4,+) .

(6.141)

The product of the two Γ 4
Λ functions vanishes unless (c1, c2, c3, c4) = (−,+,+,−), from

which we obtain

Φpp
Λ (x1, x2, x3, x4) = −1

2

∫
dy1 . . .

∫
dy4 LΛ(y3, y2, y1, y4)

× Γ 4
Λ(x1, x2, y2, y3)Γ 4

Λ(y1, y4, x3, x4) .

(6.142)

By renaming the integration variables and using the antisymmetry of ΓΛ in its last two
arguments, this implies Eq. (6.121).

(ii.b) Crossed particle-hole term. This term is obtained by putting the second line of
Eq. (6.89) into Eq. (6.140), i.e.,

Φph,c
Λ (x1, x2, x3, x4) = −1

2

∫
dy1 . . .

∫
dy4

∑
c1, ..., c4

LΛ(y1, c1 ; y2, c2 ; y3, c3 ; y4, c4)

× Γ 4
Λ(y2, c2 ; y3, c3 ; x1,− ; x3,+)Γ 4

Λ(y1, c1 ; y4, c4 ; x2,− ; x4,+) . (6.143)

The loop term LΛ vanishes unless c1 6= c3 and c2 6= c4 , while the product of the two
functions Γ 4

Λ vanishes unless c2 6= c3 and c1 6= c4 . This implies that c1 = c2 as well
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as c3 = c4 , and hence only two terms contribute to the sum:

Φph,c
Λ (x1, x2, x3, x4) = (6.144)

− 1

2

∫
dy1 . . .

∫
dy4 LΛ(y1,− ; y2,− ; y3,+; y4,+)

× Γ 4
Λ(y2,− ; y3,+; x1,− ; x3,+)Γ 4

Λ(y1,− ; y4,+; x2,− ; x4,+)

− 1

2

∫
dy1 . . .

∫
dy4 LΛ(y1,+; y2,+; y3,− ; y4,−)

× Γ 4
Λ(y2,+; y3,− ; x1,− ; x3,+)Γ 4

Λ(y1,+; y4,− ; x2,− ; x4,+) .

One can convince oneself that both terms are in fact equal, and thus we obtain

Φph,c
Λ (x1, x2, x3, x4) = −

∫
dy1 . . .

∫
dy4 LΛ(y3, y4, y1, y2)

× Γ 4
Λ(y2, x1, y3, x3)Γ 4

Λ(y1, x2, y4, x4) ,

(6.145)

which is equivalent to Eq. (6.122).

(ii.c) Direct particle-hole term. Finally, putting the third line of Eq. (6.89) into Eq.
(6.140) yields

Φph,d
Λ (x1, x2, x3, x4) =

1

2

∫
dy1 . . .

∫
dy4

∑
c1, ..., c4

LΛ(y1, c1 ; y2, c2 ; y3, c3 ; y4, c4)

× ΓΛ(y2, c2 ; y3, c3 ; x1,− ; x4,+)ΓΛ(y1, c1 ; y4, c4 ; x2,− ; x3,+) . (6.146)

By comparing this expression with Eq. (6.143), we see that

Φph,d
Λ (x1, x2, x3, x4) = −Φph,c

Λ (x1, x2, x4, x3) , (6.147)

which completes the proof.
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Γ 2 = Q + Γ 4

S

Γ 4 =
1

2
Γ 4 L Γ 4

−

Γ 4

Γ 4

L

+

Γ 4

Γ 4

L

L =
S

G2

+
G2

S

S = − G2 Q G2

Table 6.4: RGE for the one-line-irreducible Green functions (Theorem 6.6). Here, we have omit-
ted the term with the six-point function on the right-hand side of Eq. (6.120), which corresponds
to the level-two truncation of Sct. 6.4. The three terms on the right-hand side of the second
equation are the particle-particle term, the crossed particle-hole term and the direct particle-hole
term (in this order).
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6.4. Level-two truncation and initial-value problem

In the previous two sections, we have derived the RGE for the connected and for the one-
line-irreducible Green functions, respectively. In this section, we will first comment on
the consistency of these two schemes and, after that, introduce the level-two truncation
as a standard approximation to these equations, which allows us to reduce the infinite
hierarchy of RGE to a closed system of finitely many coupled differential equations. To
this, we will add appropriate initial conditions, and thereby formulate an initial-value
problem for the scale-dependent interacting Green functions.

First, we remark that it is even a priori clear that the two RGE hierarchies for the con-
nected and for the one-line-irreducible Green functions (Theorems 6.3 and 6.6) are con-
sistent with each other, as both have been derived analytically starting from the re-
spective Definitions 5.4 and 5.10 of the generators WΛ and ΓΛ . On the other hand,
one can also convince oneself directly that each of these two hierarchies can be derived
from the respective other one by using the relations between the connected and the
one-line-irreducible Green functions (Theorem 5.15). For the sake of understanding, we
now demonstrate this by deriving the RGE for Γ 2

Λ (given by Eq. (6.119)) directly from
the RGE for G2

c,Λ (given by Eq. (6.54)). For this purpose, we introduce the following
notations (see also Eqs. (6.22)–(6.23)): Let A and B be two-point quantities, and let C
and D be four-point quantities. Then, we define the two-point quantity AB as

(AB)(x1, x2) =

∫
dy A(x1, y)B(y, x2) , (6.148)

the four-point quantity A⊗B as

(A⊗B)(x1, x2, x3, x4) = A(x1, x3)B(x2, x4) , (6.149)

the two-point quantity Tr[CA] as

Tr[CA](x1, x2) =

∫
dy1

∫
dy2C(x1, y1, x2, y2)A(y2, y1) , (6.150)

and the four-point quantity CD as

(CD)(x1, x2, x3, x4) =

∫
dy1

∫
dy2 C(x1, x2, y1, y2)D(y1, y2, x3, x4) . (6.151)

Each of these operations has a straightforward graphical representation in terms of Uni-
versal Feynman graphs (see Sct. 4.5). With these notations, we can write the relations
(5.165)–(5.166) between the connected and the one-line-irreducible Green functions as

1 = G2
cΓ

2 = G2Γ 2 , (6.152)

and respectively,

G4
c = (G2⊗G2)Γ 4 (G2⊗G2) , (6.153)

where we have used Eq. (5.61). Since Eq. (6.152) holds at any scale Λ, we can also take
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the Λ derivative to obtain

0 = Ġ2
ΛΓ

2
Λ +G2

Λ Γ̇
2
Λ , (6.154)

from which we further deduce

Γ̇ 2
Λ = −Γ 2

Λ Ġ
2
ΛΓ

2
Λ . (6.155)

Now, the RGE (6.54) for the (connected) two-point function can be written compactly
as (suppressing the Λ dependencies in the notation)

Ġ2 = −G2 Q̇G2 + Tr
[
G4

c Q̇
]
. (6.156)

Multiplying this equation from left and from right with Γ 2 and using Eq. (6.155) yields

−Γ̇ 2 = −Q̇+ Γ 2 Tr
[
G4

c Q̇
]
Γ 2 . (6.157)

The last term can be transformed as follows (see Table 6.5):

Γ 2 Tr
[
G4

c Q̇
]
Γ 2 = Γ 2 Tr

[(
(G2⊗G2)Γ 4 (G2⊗G2)

)
Q̇
]
Γ 2 (6.158)

= Γ 2G2 Tr
[
Γ 4(G2 Q̇G2)

]
G2Γ 2 (6.159)

= −Tr
[
Γ 4S

]
, (6.160)

where in the last line, we have substituted the single-scale Green function as given by
Eq. (6.124). By putting Eq. (6.160) into Eq. (6.157), we arrive at

Γ̇ 2 = Q̇+ Tr
[
Γ 4S

]
, (6.161)

which is precisely the RGE (6.119) for the one-line-irreducible two-point function Γ 2.
Similarly, it would be possible to derive all RGE for the one-line-irreducible Green func-
tions Γ 2n from the corresponding RGE for the connected Green functions G2n

c , and vice
versa (although for larger n, such a derivation would be very cumbersome).

Thus, we have shown that the two infinite hierarchies for G2n
c and for Γ 2n are completely

equivalent. In practice, however, one usually does not deal with such infinite hierarchies
of differential equations, but with certain approximations applied to them. Typically, one
truncates these hierarchies at some particular n0 , which means that one neglects all 2n-
point functions with n > n0 . In this way, one can obtain a finite, closed set of differential
equations, which one may then seek to solve numerically. However, we remark that on
the level of such approximations, the truncated hierarchies of the connected and of the
one-line-irreducible Green functions are not equivalent anymore.

We now introduce a standard truncation for the one-line-irreducible Green functions,
which is called the level-two truncation. In this approximation, one neglects all 2n-point
functions with n ≥ 3, i.e., one sets

Γ 2n
Λ (x1, . . . , x2n) ≡ 0 for n ≥ 3 . (6.162)
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Thereby, one obtains two coupled differential equations for the one-line-irreducible two-
and four-point functions, which are represented graphically in Table 6.4. However, the
disadvantage of the RGE for the one-line-irreducible two-point function Γ 2

Λ is that it
holds only formally, because for Λ > 0 the covariance CΛ is in general not invertible.
Hence, in particular, it is not possible to define an initial value for Γ 2

Λ (see the discussion
in Sct. 6.1). In order to cure this problem, we now replace the RGE for Γ 2

Λ with the
equivalent equation for the (connected) two-point Green function G2

Λ . Thereby, we
obtain a closed system of coupled differential equations for G2

Λ and Γ 4
Λ , which lends

itself to a well-defined initial-value problem.

Theorem 6.7 (Initial-value problem in the level-two truncation). Consider the
coupled differential equations for the (connected) two-point Green function G2

Λ and the
one-line-irreducible four-point function Γ 4

Λ given by

Ġ2
Λ(x1, x2) = (6.163)

SΛ(x1, x2)−
∫

dy1 . . .

∫
dy4 G

2
Λ(x1, y1)Γ 4(y1, y3, y2, y4)SΛ(y4, y3)G2

Λ(y2, x2) ,

and respectively

Γ̇ 4
Λ(x1, . . . , x4) = (6.164)

1

2

∫
dy1 . . .

∫
dy4 LΛ(y1, y2, y3, y4)Γ 4

Λ(x1, x2, y1, y2)Γ 4
Λ(y3, y4, x3, x4) ,

− 2A(x3,x4)

∫
dy1 . . .

∫
dy4 LΛ(y3, y4, y2, y1)Γ 4

Λ(y1, x1, y3, x3)Γ 4
Λ(x2, y2, x4, y4) .

Here, the loop term is defined as

LΛ = SΛ ⊗G2
Λ +G2

Λ ⊗ SΛ , (6.165)

the single-scale Green function as

SΛ = −G2
Λ Q̇ΛG

2
Λ , (6.166)

and QΛ = C−1
Λ denotes the inverse covariance. Together, these equations constitute a

closed system of coupled differential equations for G2
Λ and Γ 4

Λ. Furthermore, the respec-
tive initial conditions of these functions read as

lim
Λ→∞

G2
Λ(x1, x2) = 0 , (6.167)

lim
Λ→∞

Γ 4
Λ(x1, x2, x3, x4) = −2βV (x1, x2, x3, x4) , (6.168)

where β denotes the inverse temperature and V the four-point interaction kernel as de-
fined by Eq. (4.107). Now, let G2

Λ and Γ 4
Λ be the uniquely determined functions which
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solve this initial-value problem. If the limiting functions

lim
Λ→0

G2
Λ(x1, x2) , (6.169)

lim
Λ→0

Γ 4
Λ(x1, . . . , x4) (6.170)

exist, then they can be regarded as approximations to the two-point Green function G2

and to the one-line-irreducible four-point function Γ 4 of the interacting electron system.

Proof. First, Eq. (6.163) can be shown from the RGE (6.54) for G2
Λ by identifying the

first term on the right-hand side with the single-scale Green function, and by replacing
in the second term G4

c,Λ by Γ 4
Λ as in Eqs. (6.158)–(6.160). Next, Eq. (6.164) follows

from the RGE (6.120) for Γ 4
Λ by neglecting the term with the six-point function. Finally,

the initial conditions (6.167)–(6.168) have already been shown before in Eqs. (6.7) and
(6.15), respectively.

In the following, we will consider an even stricter approximation to the RGE hierarchy,
which is obtained by neglecting the self-energy. Recall that the (irreducible) self-energy
Σ2

Λ at the scale Λ satisfies the equation (which follows from Eqs. (5.165) and (5.195))

(G2
Λ)−1 = (CΛ)−1 −Σ2

Λ . (6.171)

Hence, neglecting the self-energy is equivalent to identifying the (connected) two-point
Green function with the covariance,

G2
Λ ≡ CΛ . (6.172)

The above initial-value problem then further simplifies as follows.

Theorem 6.8 (Initial-value problem in the level-two truncation without self-
energy). Consider the differential equation for the one-line-irreducible four-point func-
tion given by

Γ̇ 4
Λ(x1, . . . , x4) = (6.173)

1

2

∫
dy1 . . .

∫
dy4 LΛ(y1, y2, y3, y4)Γ 4

Λ(x1, x2, y1, y2)Γ 4
Λ(y3, y4, x3, x4) ,

− 2A(x3,x4)

∫
dy1 . . .

∫
dy4 LΛ(y3, y4, y2, y1)Γ 4

Λ(y1, x1, y3, x3)Γ 4
Λ(x2, y2, x4, y4) ,

where the loop term is given by

LΛ = SΛ ⊗ CΛ + CΛ ⊗ SΛ , (6.174)

and the single-scale Green function equals

SΛ = −CΛ Q̇ΛCΛ = ĊΛ . (6.175)
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Furthermore, let Γ 4
Λ be the unique solution of this differential equation which satisfies

the initial condition

lim
Λ→∞

Γ 4
Λ(x1, x2, x3, x4) = −2βV (x1, x2, x3, x4) (6.176)

in terms of the four-point interaction kernel. If the limit

lim
Λ→0

Γ 4
Λ(x1, . . . , x4) (6.177)

exists, then it can be regarded as an approximation to the one-line-irreducible four-point
Green function of the interacting electron system.

Proof. All these equation follow directly from Theorem 6.7 by setting the self-energy
to zero and replacing the two-point function by the covariance as in Eq. (6.172).
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Γ 2

G4
c

Γ 2

Q

=
Γ 2 G2

G2

Γ 4

G2

G2

Γ 2

Q

= Γ 4

G2 Q G2

= − Γ 4

S

Table 6.5: Calculating with Universal Feynman Graphs: Eqs. (6.158)–(6.160).



7. Functional renormalization for multiband
systems

7.1. Flow equations on the lattice

We now come back to the lattice Green functions as defined in Sct. 4.3. Our aim in
this chapter is to derive the RGE for these lattice Green functions, and to bring these
RGE—by a number of suitable approximations—into a form which allows us to solve
them numerically. Later, in Ch. 9, we will apply these approximate RGE for the lattice
Green functions to the Rashba tight-binding model as defined in Sct. 2.3.

First, the lattice covariance in the Bloch basis (or band basis) is defined as

Cnn′(k,k
′; τ − τ ′) =

1

Z0
Tr
(
e−βK̂0 T

[
ân(k, τ) â†n′(k

′, τ ′)
])
, (7.1)

where K̂0 = Ĥ0 − µN̂ is given in terms of the non-interacting Hamiltonian (4.2) and
the particle-number operator (4.13), and where Z0 denotes the partition function of the
non-interacting system (see Eq. (4.75)). Furthermore, we have abbreviated the annihi-
lation and creation operators of Bloch vectors as

ân(k, τ) = â( |Ψnk〉, τ) , (7.2)

â†n(k, τ) = â†( |Ψnk〉, τ) , (7.3)

where the time evolution of these operators is defined in the interaction picture by
Eq. (4.74). Next, we derive an explicit expression for this lattice covariance: The free
Hamiltonian subtracted by the particle-number operator can be expressed in the Bloch
basis of Sct. 1.3 as

K̂0 =
1

|B|

∫
B

d3k
∑
n

en(k) â†n(k) ân(k) , (7.4)

where we have defined

en(k) := En(k)− µ (7.5)

as the Bloch eigenenergies measured relatively to the chemical potential. By using Eq.
(7.4), one can show that the time evolution of the Bloch annihilators and creators is
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given explicitly by

ân(k, τ) = ân(k) e−τen(k)/~ , (7.6)

â†n(k, τ) = â†n(k) eτen(k)/~ . (7.7)

Furthermore, by putting this into Eq. (7.1), we find after a short calculation

Cnn′(k,k
′; τ − τ ′) = δnn′ |B| δ3(k − k′)Cn(k, τ − τ ′) , (7.8)

where the reduced covariance (which depends on only one Bloch momentum) is given
explicitly by (see Ref. [Mah90, Eq. (3.2.9)])

Cn(k, τ − τ ′) = e−(τ−τ ′)en(k)/~ (Θ(τ − τ ′)− fn(k)
)
, (7.9)

with the Heaviside step function Θ and the Fermi distribution function

fn(k) ≡ f(en(k)) =
(

eβen(k) + 1
)−1

. (7.10)

By Fourier transforming Eq. (7.9) with respect to the time variables (in accordance with
Eq. (4.69)), we then arrive at (see Ref. [Mah90, Eq. (3.2.11)])

Cn(k, ω) =
1

~β

∫ ~β

0
dτ Cn(k, τ) eiωτ = − 1

β

1

i~ω − en(k)
, (7.11)

where ω labels the fermionic Matsubara frequencies. We remark that this result can be
derived even more straightforwardly from the equation of motion (4.115) of the covari-
ance (see Ref. [Sch+16a, Eqs. (41)–(47)]).

In order to set up the renormalization group flow, we now introduce a scale-dependent
covariance (see Sct. 6.1) by means of a regulator function χΛ (defined for Λ > 0), which
appears in the denominator of the above expression:

(CΛ)n(k, ω) := − 1

β

χΛ(en(k))

i~ω − en(k)
. (7.12)

This particular regulator function depends only on the Bloch momentum k, not on the
Matsubara frequency ω. As explained in Ref. [Sch+16a], the regulator function can be
chosen as a strict cut-off function, which is a smooth function with the properties that

χΛ(e) =

{
0 , if |e| < 0.5Λ ,

1 , if |e| > 1.5Λ .
(7.13)

For this choice, the numerator of Eq. (7.12) vanishes if

|en(k)| ≡ |En(k)− µ| < 0.5Λ , (7.14)

which means that all momenta inside a shell of thickness Λ around the Fermi lines are
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cut off. (For the concrete implementation of the RG equations, we will use instead a
non-strict regulator function; see Eq. (9.7) below). In the case of a strict cut-off function,
the scale-dependent covariance (7.12) approaches the original covariance (7.11) in the
infrared limit Λ → 0. Moreover, by defining the ultraviolet scale Λ0 much larger than
the bandwidth of the model, such that

|En(k)− µ| < 0.5Λ0 for all n and k , (7.15)

the covariance vanishes identically at this scale, i.e., CΛ0 = 0. Thus, the scale-dependent
covariance has precisely the properties (6.1) and (6.2) as required in Sct. 6.1. Further-
more, as explained in Sct. 6.1, the scale-dependence of the covariance induces a scale
dependence of all interacting Green functions, which then satisfy the hierarchy of RGE
derived in the previous chapter.

As a matter of principle, the lattice Green functions satisfy RGE which are formally
identical to the RGE of the fundamental Green functions. However, the RGE of the
lattice Green functions can be further simplified by employing the invariance of the
lattice Green functions under lattice translations (see Proposition 4.5). Concretely, this
implies that the lattice covariance depends on only one Bloch momentum, and similarly,
every 2n-point lattice Green function depends on only (2n − 1) Bloch momenta (see
Eq. (4.68)). In particular, the lattice version of the one-line-irreducible four-point Green
function in the Bloch basis is of the form

(Γ 4
Λ)n1n2n3n4(k1, k2, k3, k4) = (Γ 4

Λ)n1n2n3n4(k1, k2, k3) δ(k1 + k2, k3 + k4) , (7.16)

where we have introduced the multi-variable

k = (k, ω) , (7.17)

which consists of a Bloch momentum k and a fermionic Matsubara frequency ω. Corre-
spondingly, we define the integration over such multi-variables as∫

dk =
1

|B|

∫
B

d3k
∑
ω∈M

, (7.18)

and we define the multi-variable delta distribution as

δ(k, k′) = |B| δ3(k − k′) δω,ω′ . (7.19)

Furthermore, we introduce the lattice version of the four-point interaction kernel (in the
Bloch basis) as

Vn1...n4(k1, ω1; . . . ;k4, ω4) = (7.20)∫
d3x1 . . .

∫
d3x4

∑
s1,...,s4

Vs1...s4(x1, ω1; . . . ;x4, ω4)

×Ψ∗n1k1
(x1, s1) Ψ∗n2k2

(x2, s2) Ψn3k3(x3, s3) Ψn4k4(x4, s4) ,
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which is analogous to Eq. (4.62). This lattice interaction kernel also has the property
(7.16) and, moreover, it provides the initial condition for the lattice version of the one-
line-irreducible four-point function (cf. Eq. (6.15)), i.e.,

lim
Λ→∞

(Γ 4
Λ)n1...n4(k1, . . . , k4) = −2βVn1...n4(k1, . . . , k4) . (7.21)

In the following, it will be convenient to rescale the four-point function in such a way
that its initial condition is precisely given by the four-point interaction kernel. Hence,
we define the interaction vertex (or effective interaction) at the scale Λ as

VΛ := − 1

2β
Γ 4

Λ , (7.22)

such that its initial condition is given by

lim
Λ→∞

(VΛ)n1...n4(k1, . . . , k4) = Vn1...n4(k1, . . . , k4) . (7.23)

Correspondingly, we reformulate the RGE (6.173) in terms of this interaction vertex as

V̇Λ(x1, . . . , x4) = (7.24)

− β
∫

dy1 . . .

∫
dy4 LΛ(y1, y2, y3, y4)VΛ(x1, x2, y1, y2)VΛ(y3, y4, x3, x4) ,

+ 4β A(x3,x4)

∫
dy1 . . .

∫
dy4 LΛ(y3, y4, y2, y1)VΛ(y1, x1, y3, x3)VΛ(x2, y2, x4, y4) ,

Next, we will use the lattice translation invariance to simplify this equation.

Theorem 7.1 (RGE for lattice interaction vertex). In the level-two truncation
and by neglecting the self-energy, the lattice interaction vertex in the Bloch basis satisfies
the following differential equation:

(V̇Λ)n1n2n3n4(p1, p2, p3) =
[
Φpp

Λ + Φph,c
Λ + Φph,d

Λ

]
n1n2n3n4

(p1, p2, p3) , (7.25)

where the three terms on the right-hand side are given by

(Φpp
Λ )n1n2n3n4(p1, p2, p3) = −β

∑
`1, `2

∫
dk1

∫
dk2 δ(p1 + p2 − k1, k2) (LΛ)`1`2(k1, k2)

× (VΛ)n1n2`1`2(p1, p2, k1) (VΛ)`1`2n3n4(k1, k2, p3) , (7.26)

(Φph,c
Λ )n1n2n3n4(p1, p2, p3) = −2β

∑
`1, `2

∫
dk1

∫
dk2 δ(p1 − p3 + k1, k2) (LΛ)`2`1(k2, k1)

× (VΛ)`1n1`2n3(k1, p1, k2) (VΛ)n2`2`1n4(p2, k2, k1) , (7.27)

(Φph,d
Λ )n1n2n3n4(p1, p2, p3) = −(Φph,c

Λ )n2n1n3n4(p2, p1, p3) , (7.28)
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with the single-scale Green function

(SΛ)`(k) = (ĊΛ)`(k) , (7.29)

and the loop term

(LΛ)`1`2(k1, k2) = (SΛ)`1(k1) (CΛ)`2(k2) + (CΛ)`1(k1) (SΛ)`2(k2) (7.30)

=
d

dΛ

(
(CΛ)`1(k1) (CΛ)`2(k2)

)
. (7.31)

In particular, since k2 = (k2, ω2) is fixed in each term in Eqs. (7.26)–(7.27) by momen-
tum conservation, the right-hand side of the RGE effectively requires only a summation
over two band indices `1, `2 and an integration over one multi-variable k1 = (k1, ω1).

Proof. By performing a “basis transformation” using Eqs. (4.62)–(4.63), we obtain from
Eq. (7.24) the RGE for the lattice interaction kernel:

(V̇Λ)n1n2n3n4(p1, p2, p3, p4) =
[
Φpp

Λ + Φph,c
Λ + Φph,d

Λ

]
n1n2n3n4

(p1, p2, p3, p4) , (7.32)

where the particle-particle term, the crossed particle-hole term and the direct particle-
hole term are given respectively by

(Φpp
Λ )n1n2n3n4(p1, p2, p3, p4) = −β

∑
`1,...,`4

∫
dk1 . . .

∫
dk4 (LΛ)`1`2`3`4(k1, k2, k3, k4)

× (VΛ)n1n2`1`2(p1, p2, k1, k2) (VΛ)`3`4n3n4(k3, k4, p3, p4) , (7.33)

(Φph,c
Λ )n1n2n3n4(p1, p2, p3, p4) = 2β

∑
`1,...,`4

∫
dk1 . . .

∫
dk4 (LΛ)`3`4`2`1(k3, k4, k2, k1)

× (VΛ)`1n1`3n3(k1, p1, k3, p3) (VΛ)n2`2n4`4(p2, k2, p4, k4) , (7.34)

(Φph,d
Λ )n1n2n3n4(p1, p2, p3, p4) = −(Φph,c

Λ )n1n2n4n3(p1, p2, p4, p3) . (7.35)

Furthermore, the property (7.8) of the lattice covariance implies the corresponding prop-
erty of the single-scale Green function,

(SΛ)`1`2(k1, k2) = δ`1`2 δ(k1, k2) (SΛ)`1(k1) , (7.36)

as well as of the loop term,

(LΛ)`1`2`3`4(k1, k2, k3, k4) = δ`1`3 δ(k1, k3) δ`2`4 δ(k2, k4) (LΛ)`1`2(k1, k2) . (7.37)

We now put these results together with Eq. (7.16) into the above RGE (7.32). Then,
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the left-hand side of the RGE turns into

(V̇Λ)n1...n4(p1, p2, p3, p4) = (V̇Λ)n1...n4(p1, p2, p3) δ(p1 + p2, p3 + p4) , (7.38)

whereas the three terms on the right-hand side have to be evaluated separately.

(i) Particle-particle term. For the first term, Eq. (7.33), we obtain

Φpp
Λ (p1, p2, p3, p4)n1n2n3n4 = −β

∑
`1, `2

∫
dk1

∫
dk2 (LΛ)`1`2(k1, k2) (7.39)

× (VΛ)n1n2`1`2(p1, p2, k1) δ(p1 + p2, k1 + k2) (VΛ)`1`2n3n4(k1, k2, p3) δ(k1 + k2, p3 + p4) .

The product of the two delta distributions equals

δ(p1 + p2 − k1, k2) δ(p1 + p2, p3 + p4) , (7.40)

and thus we obtain

(Φpp
Λ )n1n2n3n4(p1, p2, p3, p4) = (Φpp

Λ )n1n2n3n4(p1, p2, p3) δ(p1 + p2, p3 + p4) , (7.41)

with the function Φpp
Λ on the right-hand side given by Eq. (7.26).

(ii) Crossed particle-hole term. First, by using the antisymmetry of VΛ under the ex-
change of its last two arguments, Eq. (7.34) can be written equivalently as

(Φph,c
Λ )n1n2n3n4(p1, p2, p3, p4) = −2β

∑
`1,...,`4

∫
dk1 . . .

∫
dk4 (LΛ)`3`4`2`1(k3, k4, k2, k1)

× (VΛ)`1n1`3n3(k1, p1, k3, p3) (VΛ)n2`2`4n4(p2, k2, k4, p4) . (7.42)

This formula turns out to be more useful than Eq. (7.34), because the external momen-
tum p4 appears as the last argument of VΛ, which can be eliminated by the momentum
conservation. Next, by using Eqs. (7.16) and (7.36)–(7.37), we obtain

(Φph,c
Λ )n1n2n3n4(p1, p2, p3, p4) = −2β

∑
`1, `2

∫
dk1

∫
dk2 (LΛ)`2`1(k2, k1) (7.43)

× (VΛ)`1n1`2n3(k1, p1, k2) δ(k1 + p1, k2 + p3) (VΛ)n2`2`1n4(p2, k2, k1) δ(p2 + k2, k1 + p4) .

The product of the two delta distributions equals

δ(p1 − p3 + k1, k2) δ(p1 + p2, p3 + p4) , (7.44)
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which in turn leads to

(Φph,c
Λ )n1n2n3n4(p1, p2, p3, p4) = (Φph,c

Λ )n1n2n3n4(p1, p2, p3) δ(p1 + p2, p3 + p4) , (7.45)

where Φph,c
Λ on the right-hand side is given by Eq. (7.27).

(iii) Direct particle-hole term. Since VΛ and LΛ are invariant under the simultaneous
exchange of their first two and their last two arguments, the same applies to the crossed
particle hole term (7.34). Therefore, Eq. (7.35) is equivalent to

(Φph,d
Λ )n1n2n3n4(p1, p2, p3, p4) = −(Φph,c

Λ )n2n1n3n4(p2, p1, p3, p4) . (7.46)

By combining this with Eq. (7.45), we obtain

(Φph,d
Λ )n1n2n3n4(p1, p2, p3, p4) = (Φph,d

Λ )n1n2n3n4(p1, p2, p3) δ(p1 + p2, p3 + p4) , (7.47)

where Φph,c
Λ on the right-hand side is given by Eq. (7.28). Finally, by combining all

results derived in (i)–(iii) together with Eq. (7.38) and by canceling the delta distribution
δ(p1 + p2, p3 + p4) from both sides of the RGE, we arrive at the assertion (7.25).

7.2. Static-vertex approximation

To further simplify the RGE, we now employ the static-vertex approximation, by which
the frequency dependencies of the interaction vertex are entirely neglected. This means,
we replace

(VΛ)n1...n4(p1, ω1; p2, ω2 ; p3, ω3) 7→ (VΛ)n1...n4(p1, 0; p2, 0; p3, 0) (7.48)

≡ (VΛ)n1...n4(p1,p2,p3) . (7.49)

After this replacement, we can perform the remaining frequency summations on the
right-hand side of the RGE analytically, and thereby derive the approximate RGE for
the static interaction vertex.

Theorem 7.2 (RGE for static interaction vertex). In the static-vertex approxima-
tion, the RGE for the lattice interaction vertex reduces to

(V̇Λ)n1n2n3n4(p1,p2,p3) =
[
Φpp

Λ + Φph,c
Λ + Φph,d

Λ

]
n1n2n3n4

(p1,p2,p3) , (7.50)
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where the three terms on the right-hand side are given by

(Φpp
Λ )n1n2n3n4(p1,p2,p3) = (7.51)

−
∑
`1, `2

1

|B|

∫
B

d3k1

∫
B

d3k2

∑
K

δ3(K + p1 + p2 − k1, k2)

× (L−Λ)`1`2(k1,k2) (VΛ)n1n2`1`2(p1,p2,k1) (VΛ)`1`2n3n4(k1,k2,p3) ,

(Φph,c
Λ )n1n2n3n4(p1,p2,p3) = (7.52)

− 2
∑
`1, `2

1

|B|

∫
B

d3k1

∫
B

d3k2

∑
K

δ3(K + p1 − p3 + k1, k2)

× (L+
Λ)`2`1(k2,k1) (VΛ)`1n1`2n3(k1,p1,k2) (VΛ)n2`2`1n4(p2,k2,k1) .

(Φph,d
Λ )n1n2n3n4(p1,p2,p3) = −(Φph,c

Λ )n2n1n3n4(p2,p1,p3) . (7.53)

Here, the particle-particle loop L−Λ and the particle-hole loop L+
Λ are given by

(L∓Λ)`1`2(k1,k2) =
d

dΛ

(
χΛ(e`1(k1)) χΛ(e`2(k2))

)
(F∓Λ )`1`2(k1,k2) , (7.54)

in terms of the functions F∓Λ as defined by

F−`1`2(k1,k2) =
1− f(e`1(k1))− f(e`2(k2))

e`1(k1) + e`2(k2)
, (7.55)

and by

F+
`1`2

(k1,k2) =
f(e`1(k1))− f(e`2(k2))

e`1(k1)− e`2(k2)
. (7.56)

Furthermore, e`(k) = E`(k) − µ are the Bloch energies subtracted by the chemical po-
tential, and f(e) = (eβe + 1)−1 denotes the Fermi distribution function. The reciprocal
lattice vector K is fixed in each term in Eqs. (7.51)–(7.52) by the condition that all ex-
ternal Bloch momenta p1, p2, p3 and all internal Bloch momenta k1,k2 must lie in the
first Brillouin zone.

Proof. The RGE (7.50) follows directly from the more general Eq. (7.25) by employ-
ing the static-vertex approximation. Hence, it only remains to evaluate the internal
frequency summations in Eqs. (7.26)–(7.28), and to show that they produce the expres-
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sions (7.54)–(7.56) for the loop terms:

(L∓Λ)`1`2(k1,k2) = β
∑

ω1,ω2∈M
δ∓ω1,ω2 (LΛ)`1`2(k1, ω1 ; k2, ω2) (7.57)

= β
∑
ω∈M

(LΛ)`1`2(k1, ω ; k2,∓ω) (7.58)

= β
∑
ω∈M

d

dΛ

(
(CΛ)`1(k1, ω) (CΛ)`2(k2,∓ω)

)
(7.59)

=
d

dΛ

(
χΛ(e`1(k1))χΛ(e`2(k2))

) 1

β

∑
ω∈M

1

i~ω − e`1(k1)

1

∓ i~ω − e`2(k2)
, (7.60)

where in the last step, we have used the explicit expression (7.11) of the covariance.
Now, the frequency summations can be evaluated by means of the residue theorem (see
Ref. [Mah90, Sct. 3.5]) as

∓ 1

β

∑
ω∈M

1

i~ω − e`1(k1)

1

i~ω ± e`2(k2)
= ∓ f(e`1(k1))− f(∓e`2(k2))

e`1(k1)± e`2(k2)
. (7.61)

Taking into account the property

f(−e) = 1− f(e) (7.62)

of the Fermi distribution function, this shows the assertion.

7.3. Fermi surface patching

Finally, in order to make the RGE amenable to a numerical solution for the Rashba tight-
binding model (see Ch. 9), we employ yet another approximation, namely, we discretize
the Bloch momentum dependencies of the interaction vertex. In concrete terms, we
employ the so-called Fermi surface patching approximation, which we will now briefly
explain (for details, see Ref. [Sch+16a, Sct. III.B and Appendix C]). First, we divide
the Brillouin zone B into N disjoint patches,

B =
N⋃
i=1

Bi , (7.63)

and we choose one representative momentum for each patch,

πi ∈ Bi , (7.64)

which typically lies on a Fermi surface within that patch. Then, we assume the effective
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interaction to be constant on each patch, such that

(VΛ)n1...n4(p1,p2,p3) =

N∑
i1=1

N∑
i2=1

N∑
i3=1

(VΛ)n1...n4(i1, i2, i3) 1(p1 ∈ Bi1)1(p2 ∈ Bi2)1(p3 ∈ Bi3) ,
(7.65)

where we denote by

(VΛ)`1...`4(i1, i2, i3) ≡ (VΛ)`1...`4(πi1 ,πi2 ,πi3) (7.66)

the values of the interaction vertex at each combination of the three representative
momenta. Note, in particular, that the representative momentum πi1 may lie on any
Fermi surface—of any band, not necessarily only of the band labeled by n1—and the
same applies to πi2 and πi3 as well. Hence, if L denotes the number of bands, there
are in total N3 × L4 complex numbers which parametrize the interaction vertex. We
call our ansatz (7.65)–(7.66) the refined projection scheme (for a comparison with other
projection schemes, see Ref. [Sch+16a, Sct. III]). Next, we state the RGE which the
finitely many parameters (7.66) fulfill within the refined projection scheme.

Theorem 7.3 (RGE for discretized interaction vertex). Under the discretization
(7.65)–(7.66), the RGE for the static interaction vertex approximately reduces to

d

dΛ
(VΛ)n1n2n3n4(i1, i2, i3) =

[
Φpp

Λ + Φph,c
Λ + Φph,d

Λ

]
n1n2n3n4

(i1, i2, i3) , (7.67)

where the three terms on the right-hand side are given by [Sch+16a]

(Φpp
Λ )n1n2n3n4(i1, i2, i3) = (7.68)

−
∑
`1, `2

N∑
j1=1

N∑
j2=1

∑
K

1(K + πi1 + πi2 − πj1 ∈ Bj2) (L−Λ)`1`2(i1, i2, j1)

×
[

(VΛ)n1n2`1`2(i1, i2, j1) (VΛ)`1`2n3n4(j1, j2, i3) + (j1, `1) ↔ (j2, `2)
]
,

(Φph,c
Λ )n1n2n3n4(i1, i2, i3) = (7.69)

−2
∑
`1, `2

N∑
j1=1

N∑
j2=1

∑
K

1(K + πi1 − πi3 + πj1 ∈ Bj2)

× (L+
Λ)`1`2(i1, i3, j1) (VΛ)`1n1`2n3(j1, i1, j2) (VΛ)n2`2`1n4(i2, j2, j1)

−2
∑
`1, `2

N∑
j1=1

N∑
j2=1

∑
K

1(K + πi3 − πi1 + πj1 ∈ Bj2)

× (L+
Λ)`1`2(i3, i1, j1) (VΛ)`2n1`1n3(j2, i1, j1) (VΛ)n2`1`2n4(i2, j1, j2) ,

(Φph,d
Λ )n1n2n3n4(i1, i2, i3) = −(Φph,c

Λ )n2n1n3n4(i2, i1, i3) . (7.70)
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Here, we have defined the loop terms

(L∓Λ)`1`2(i1, i2, j1) = (7.71)

1

|B|

∫
Bj1

d3k χ̇Λ(e`1(k)) χΛ(e`2(K + πi1 ± πi2 ∓ k))F∓`1`2(k,K + πi1 ± πi2 ∓ k) ,

with the functions F∓ given by Eqs. (7.55) and (7.56), respectively.

Remark. In the particle-particle term (7.68), the reciprocal lattice vector K is fixed by
the condition

K + πi1 + πi2 − πj1 ∈ B , (7.72)

and hence, K depends on only three patch indices i1, i2, and j1. The stricter condition

K + πi1 + πi2 − πj1 ∈ Bj2 (7.73)

then also fixes the patch index j2 . Therefore, the right-hand side of Eq. (7.68) effectively
requires only a summation over two band indices `1, `2 and over one patch index j1 , and
the same applies also to the particle-hole terms.

Proof. See [Sch+16a, Appendix C.1].





8. Mean-field theory without SU(2)
symmetry

While the RGE derived in the previous chapter can in principle be applied to any model
with one or several energy bands, our main focus in this thesis is on the tight-binding
Rashba model of Sct. 2.3. This model is given by a (2× 2) Hamiltonian matrix Hss′(k),
which corresponds to one spin-split energy band. In the next Ch. 9, we will use the fRG
to study the superconducting phases and, in particular, to predict the effective inter-
actions in this model (starting from an attractive, local initial interaction). After that,
we will use mean-field theory to predict the gap function as well as the superconducting
order parameter, and thereby obtain a more detailed characterization of these supercon-
ducting phases. The purpose of this chapter is therefore to explain mean-field theory and
to derive the Bogoliubov transformation in a general setting without SU(2) spin rota-
tion invariance. Our analysis is not restricted to the concrete Rashba model, but applies
to any time-reversal invariant Hamiltonian Hss′(k) describing a spin-split energy band.
Concretely, we proceed analogously to Ref. [SU91] and generalize the results presented
there to the non-SU(2)-symmetric case.

8.1. Definitions

We consider an (effective) single-orbital model as described in Sct. 1.5, whose Hamilto-
nian is given by its matrix elements in a Bloch-like spin basis,

〈ψs,k |Ĥ0 |ψs′,k′〉 = |B| δ3(k − k′)H0
ss′(k) . (8.1)

For technical reasons, we switch to the description of a finite crystal, where the allowed
Bloch wavevectors k are discrete owing to the Born–von-Karman boundary conditions,
and the above equation turns into (see Ref. [SS16b, Appendix A.2])

〈ψs,k |Ĥ0 |ψs′,k′〉 = δk,k′ H
0
ss′(k) . (8.2)

In particular, as the Dirac delta distribution is replaced by the Kronecker delta, we can
evaluate this equation at k = k′ to obtain the simpler relation

H0
ss′(k) = 〈ψs,k |Ĥ0 |ψs′,k〉 . (8.3)
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In first quantization, the free Hamiltonian can now be written as

Ĥ0 =
∑
k

∑
s,s′

H0
ss′(k) |ψs,k〉〈ψs′,k| , (8.4)

where the sum is over all allowed Bloch wavevectors. In second quantization, this oper-
ator translates into

Ĥ0 =
∑
k

∑
s,s′

H0
ss′(k) â†s(k) âs′(k) , (8.5)

where the operators âs(k) ≡ â( |ψs,k〉) and â†s(k) ≡ â†( |ψs,k〉) annihilate and create,
respectively, a Bloch-like vector. In addition to this free Hamiltonian, we consider a
superconducting interaction, which is defined as a two-particle interaction of the form

V̂ =
1

2

∑
k,k′

∑
s1,...,s4

Vs1s2s3s4(k,k′) â†s1(−k) â†s2(k) âs3(k
′) âs4(−k′) , (8.6)

with an interaction kernel depending on four spin indices but only two Bloch momenta.

Now, the mean-field ansatz consists in replacing the above quartic interaction operator
by the quadratic mean-field interaction, which is given by

V̂ mf =
1

2

∑
k,k′

∑
s1,...,s4

Vs1s2s3s4(k,k′) (8.7)

×
(
â†s1(−k) â†s2(k)

〈
âs3(k′) âs4(−k′)

〉
+
〈
â†s1(−k) â†s2(k)

〉
âs3(k′) âs4(−k′)

)
.

Consequently, the interacting Hamiltonian is replaced by the mean-field Hamiltonian,

Ĥ = Ĥ0 + V̂ 7→ Ĥmf = Ĥ0 + V̂ mf , (8.8)

which is quadratic and can therefore be solved exactly. However, the expectation values
in Eq. (8.7) are to be evaluated with respect to the mean-field Hamiltonian itself, i.e.,

〈Â〉 =
1

Zmf
Tr
(
e−β(Ĥmf−µN̂)Â

)
, (8.9)

with

Zmf = Tr
(
e−β(Ĥmf−µN̂)

)
, (8.10)

where µ denotes the chemical potential and β the inverse temperature. The self-consis-
tent solution of Eqs. (8.7)–(8.10) is referred to as mean-field theory. Furthermore, the
expectation value

Ψss′(k) =
〈
âs(k) âs′(−k)

〉
(8.11)

is called the order parameter, whereas the product

∆ss′(k) = −
∑
k′

∑
s3, s4

Vs′ss3s4(k,k′)
〈
âs3(k′) âs4(−k′)

〉
(8.12)
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is called the gap function. In the following, we will first study the general symmetries
of these two (2× 2) matrices, and then calculate them explicitly in the case of a singlet
superconducting interaction (see Sct. 8.4).

8.2. Symmetries

We assume that the Hamiltonian Ĥ = Ĥ0 + V̂ is hermitean and invariant under time-
reversal symmetry. The consequences of these symmetries for the free Hamiltonian ma-
trix H0

ss′(k) have already been studied in Sct. 2.1 (see Table 2.2). In this section, we
will derive the corresponding conditions on the interaction kernel, the gap function and
the order parameter.

Superconducting interaction.—Without loss of generality, we may assume that the coef-
ficient function Vs1...s4(k,k′) in Eq. (8.6) is antisymmetric under the exchange of its first
two and its last two arguments, i.e.,

Vs1s2s3s4(k,k′) = −Vs2s1s3s4(−k,k′) = −Vs1s2s4s3(k,−k′) . (8.13)

The reason for this is that any symmetric contribution to the coefficient function would
automatically cancel out in Eq. (8.6) due to the anticommutativity of the fermionic
creation and annihilation operators. In addition, we assume that the interaction operator
V̂ is hermitean,

V̂ = V̂ † , (8.14)

and time-reversal invariant,

V̂ = Θ̂−1 V̂ Θ̂ . (8.15)

These conditions on the interaction operator translate into the following constraints on
the interaction kernel: hermiticity,

Vs1s2s3s4(k,k′) = V ∗s4s3s2s1(k′,k) , (8.16)

and time-reversal symmetry,

Vs1s2s3s4(k,k′) =
∑
t1,...t4

[iσy]
†
s1t1

[iσy]
†
s2t2

V ∗t1t2t3t4(−k,−k′) [iσy]t3s3 [iσy]t4s4 . (8.17)

In fact, these constraints can be derived similarly as the corresponding constraints on the
free Hamiltonian matrix (see Sct. 2.1, and Ref. [Sch+16a, Appendix A.4]). In particular,
the derivation of these constraints requires again the assumption (2.22) that the orbital
ϕs(x)—with respect to which the single-orbital model is defined—is real-valued.

Gap function.—The hermiticity of the mean-field Hamiltonian,

Ĥmf = (Ĥmf)† , (8.18)



200 8. Mean-field theory without SU(2) symmetry

implies by Eq. (8.9)–(8.10) the following property of the thermal expectation values,〈
âs3(k′) âs4(−k′)

〉
=
〈
â†s4(−k′) â†s3(k′)

〉∗
. (8.19)

By using this property as well as Eq. (8.16), we can transform Eq. (8.12) into

∆ss′(k) = −
∑
k′

∑
s3, s4

V ∗s4s3ss′(k
′,k)

〈
â†s4(−k′) â†s3(k′)

〉∗
, (8.20)

and further, by taking the complex conjugate and substituting k 7→ −k, into

∆∗ss′(−k) = −
∑
k′

∑
s3, s4

Vs4s3ss′(k
′,−k)

〈
â†s4(−k′) â†s3(k′)

〉
, (8.21)

which agrees with Ref. [SU91, Eq. (2.2)]. Moreover, one can show that the antisymmetry
(8.13) of the interaction kernel implies the antisymmetry of the gap function,

∆(k) = −∆T(−k) , (8.22)

while the time-reversal symmetry (8.17) leads to

∆(k) = [iσy]
†∆∗(−k) [iσy] . (8.23)

If we define the matrix ∆̃(k) by

∆(k) = ∆̃(k) iσy , (8.24)

then the above conditions on the gap function translate into the following conditions on
this transformed matrix: hermiticity,

∆̃(k) = ∆̃†(k) , (8.25)

and time-reversal symmetry,

∆̃(k) = [iσy]
† ∆̃∗(−k) [iσy] . (8.26)

Thus, we conclude that the matrix ∆̃(k) has exactly the same symmetries as the free
Hamiltonian matrix H(k). In particular, we can also expand the former in terms of the
Pauli matrices as

∆̃(k) = ψ(k)1+ d(k) · σ , (8.27)

where the functions ψ(k) and d(k) have the same symmetries as the functions f(k) and
g(k) (see Table 2.2). We hence obtain the representation

∆(k) = [ψ(k)1+ d(k) · σ] iσy (8.28)

of the gap function, which is standard in the literature (see Ref. [SU91]).
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Order parameter.—Similarly as for the gap function, one can derive the following con-
straints on the order parameter matrix: antisymmetry,

Ψ(k) = −ΨT(−k) , (8.29)

and time-reversal symmetry,

Ψ(k) = [iσy]
†Ψ∗(−k)[iσy] . (8.30)

Thus, the order parameter has the same symmetries as the gap function, which is indeed
well-known [Poo+07]. In particular, we can expand also the order parameter as

Ψ(k) = [χ(k) + c(k) · σ] iσy , (8.31)

where the functions χ(k) and c(k) have the same symmetries as the functions f(k) and
g(k). Of course, the fact that the matrices ∆(k) and Ψ(k) have the same symmetries
does not imply that they are of the same form, because the functions χ(k) and c(k) may
be different from ψ(k) and d(k).

8.3. Mean-field Hamiltonian

We now rewrite the mean-field Hamiltonian (8.8) in a form which will allow for its
straightforward diagonalization. For this purpose, consider first the mean-field interac-
tion in Eq. (8.7). In the second term, we interchange the integration variables k ↔ k′

and relabel the spin variables as (s1, s2, s3, s4) 7→ (s4, s3, s1, s2). Then, we obtain

V̂ =
1

2

∑
k,k′

∑
s1,...,s4

Vs1s2s3s4(k,k′)
〈
âs3(k′) âs4(−k′)

〉
â†s1(−k) â†s2(k)

+
1

2

∑
k,k′

∑
s1,...,s4

Vs4s3s1s2(k′,k)
〈
â†s4(−k′) â†s3(k′)

〉
âs1(k) âs2(−k) .

(8.32)

By substituting k 7→ −k and using the antisymmetry of the interaction kernel, we can
further write this in terms of the gap function (see Eqs. (8.12) and (8.21)) as

V̂ =
1

2

∑
k

∑
s1, s2

(
∆s1s2(k) â†s1(k) â†s2(−k)−∆∗s1s2(−k) âs1(−k) âs2(k)

)
. (8.33)

Next, we bring also the free part of the Hamiltonian as given by Eq. (8.5) into a more
symmetric form: Its hermiticity implies that

Ĥ0 = (Ĥ0)† =
∑
k

∑
s1, s2

(H0
s1s2)∗(k) â†s2(k) âs1(k) . (8.34)

Furthermore, by employing the anticommutation relation[
âs1(k), â†s2(k′)

]
+

= δs1s2 δk,k′ , (8.35)
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and by dropping the constant term of the Hamiltonian, we obtain

Ĥ0 = −
∑
k

∑
s1, s2

(H0
s1s2)∗(k) âs1(k) â†s2(k) . (8.36)

By combining this formula with Eq. (8.5), we can write the Hamiltonian as

Ĥ0 =
1

2

(
Ĥ0 + (Ĥ0)†

)
(8.37)

=
1

2

∑
k

∑
s1, s2

(
H0
s1s2(k) â†s1(k) âs2(k)− (H0

s1s2)∗(−k) âs1(−k) â†s2(−k)
)
, (8.38)

where in the second term, we have substituted k 7→ −k. Taking into account also the
particle number operator

N̂ =
∑
k

∑
s

â†s(k) âs(k) =
1

2

∑
k

∑
s

(
â†s(k) âs(k)− âs(−k) â†s(−k)

)
, (8.39)

the mean-field Hamiltonian (8.8) can finally be written in matrix form as

Ĥmf − µN̂ =
1

2

∑
k

∑
s1, s2

(
â†s1(k), âs1(−k)

)
(8.40)

×

(
H0
s1s2(k)− µδs1s2 ∆s1s2(k)

−∆∗s1s2(−k) −(H0
s1s2)∗(−k) + µδs1s2

)(
âs2(k)

â†s2(−k)

)
.

In the next section, we will explicitly diagonalize this operator for a special form of the
superconducting interaction.

8.4. Solution for singlet interaction

A superconducting interaction of singlet form is defined by Eq. (8.6) together with the
particular form of the interaction kernel

Vs1s2s3s4(k,k′) =
g

2

(
δs1s3 δs2s4 − δs1s4 δs2s3

)
. (8.41)

This can be written equivalently as (see Ref. [Ede89, Eq. (10)])

Vs1s2s3s4(k,k′) =
g

2
[iσy]s1s2 [iσy]s3s4 = −g

2
[iσy]s2s1 [iσy]s3s4 (8.42)

in terms of the Pauli matrix σy . As we will see in Ch. 9, this form of the interaction
comes indeed out as the effective interaction at the critical scale in the two-dimensional
Rashba model with an onsite attractive interaction [Sch+16a]. Note that mean-field
theory itself cannot be used predict the form of the superconducting interaction, but
requires this to be given as an input. However, given the superconducting interaction,
mean-field theory allows one to predict the gap function and the order parameter.
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8.4.1. Gap function

By assuming a superconducting interaction of singlet form, the gap function can be
inferred immediately from its defining equation (8.12): we find

∆ss′(k) =
g

2
[iσy]ss′

∑
k′

∑
s3, s4

[iσy]s3s4
〈
âs3(k′)âs4(−k′)

〉
. (8.43)

In matrix form, this can be written as

∆(k) = ∆0 [iσy] , (8.44)

where we have defined the scalar gap parameter

∆0 =
g

2

∑
k

∑
s3, s4

[iσy]s3s4
〈
âs3(k) âs4(−k)

〉
. (8.45)

In order to determine this parameter, we first have to calculate the order parameter,
which in turn depends on the gap function. Therefore, ∆0 must be determined self-
consistently as the solution of the gap equation (see Sct. 8.4.5). Up to this parameter,
however, the form of the gap function is already fixed by Eq. (8.44): it is independent
of the Bloch momentum k and of the chemical potential µ, and it is of a purely singlet
form (see Sct. 8.4.4).

8.4.2. Bogoliubov transformation

In order to calculate the order parameter, we have to diagonalize the mean-field Hamil-
tonian (8.40). For this purpose, we proceed analogously as in Ref. [SU91] by introducing
the (4× 4) matrix

Hk =

(
h0
k ∆k

−∆∗−k −(h0
−k)∗

)
, (8.46)

where we have defined (similarly as in Eq. (7.5))

h0
k := H0

k − µ . (8.47)

Here and in the following, we denote the momentum dependencies as subscripts in order
to lighten the notation. Note that by Eq. (8.22), we have

−∆∗−k = ∆†k , (8.48)

and hence Hk is a hermitean matrix. The diagonalization of the mean-field Hamiltonian
is performed by means of a Bogoliubov transformation, which reads

âs(k) = Xsn(k) b̂n(k) + Ysn(k) b̂†n(−k) , (8.49)

â†s(−k) = Y ∗sn(−k) b̂n(k) +X∗sn(−k) b̂†n(−k) . (8.50)
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We seek Xk ≡ X(k) and Yk ≡ Y (k) such that the 4× 4 matrix

Uk =

(
Xk Yk

Y ∗−k X∗−k

)
(8.51)

has the following properties: (i) it is unitary, i.e.,

U†k Uk = 1 , (8.52)

and (ii) it diagonalizes Hk , i.e.,

U†kHk Uk = Ek , (8.53)

where Ek is the diagonal matrix of eigenvalues, which turns out to be of the form

Ek =

(
εk 0

0 −ε−k

)
≡


ε−(k) 0 0 0

0 ε+(k) 0 0

0 0 −ε−(−k) 0

0 0 0 −ε+(−k)

 . (8.54)

With this, the mean-field Hamiltonian (8.40) is diagonalized as

Ĥmf − µN̂ =
1

2

∑
k

∑
n

(
b̂†n(k) , b̂n(−k)

)(εn(k) 0

0 −εn(−k)

)(
b̂n(k)

b̂†n(−k)

)
, (8.55)

or equivalently, by substituting k 7→ −k,

Ĥmf − µN̂ =
∑
k

∑
n

εn(k) b̂†n(k) b̂n(k) . (8.56)

In order to find the eigenvalues εk and the unitary matrix Uk, we first note that Eq.
(8.53) can be written equivalently as

Hk Uk = Uk Ek , (8.57)

or more explicitly as(
h0
k ∆k

∆†k −(h0
−k)∗

)(
Xk Yk

Y ∗−k X∗−k

)
=

(
Xk Yk

Y ∗−k X∗−k

)(
εk 0

0 −ε−k

)
. (8.58)

This yields the conditions

h0
kXk + ∆k Y

∗
−k = Xk εk , (8.59)

∆†kXk − (h0
−k)∗ Y ∗−k = Y ∗−k εk , (8.60)

as well as

h0
k Yk + ∆kX

∗
−k = −Yk ε−k , (8.61)

∆†k Yk − (h0
−k)∗X∗−k = −X∗−k ε−k . (8.62)
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By substituting k 7→ −k and by complex conjugation, one can convince oneself that
Eqs. (8.59) and (8.60) are actually equivalent to Eqs. (8.62) and (8.61), respectively.
Thus, we only have to consider two equations, say, Eqs. (8.59) and (8.60). Next, we
choose Xk such that it diagonalizes the free Hamiltonian,

h0
kXk = Xk ek , (8.63)

with ek = Ek − µ. Then, Eq. (8.59) yields

Xk (εk − ek) = ∆k Y
∗
−k . (8.64)

Multiplying both sides of this equation with ∆†k and using that by Eq. (8.44),

∆†k∆k = ∆2
0 , (8.65)

we obtain the explicit expression of Y ∗−k in terms of Xk:

Y ∗−k =
1

∆2
0

∆†kXk (εk − ek) . (8.66)

Furthermore, putting this result into Eq. (8.60) and applying ∆k on both sides of the
equation yields

− 1

∆2
0

∆k (h0
−k)∗∆†kXk (εk − ek) = Xk

(
(εk − ek) εk −∆2

0

)
. (8.67)

The time-reversal symmetry of h0
k (see Eq. (2.43)) implies that

1

∆2
0

∆k (h0
−k)∗∆†k = [iσy] (h0

−k)∗ [iσy]
† = h0

k , (8.68)

and hence, Eq. (8.67) simplifies to

− h0
kXk (εk − ek) = Xk

(
(εk − ek) εk −∆2

0

)
. (8.69)

Now, a comparison with Eq. (8.63) yields the condition

− Ek (εk − ek) = (εk − ek) εk −∆2
0 , (8.70)

from which we obtain the eigenvalue matrix as

ε2
k = e2

k + ∆2
0 . (8.71)

We shall employ a convention by which for ∆0 → 0, the mean-field eigenvalues ε∓(k)
approach the respective eigenvalues e∓(k) of the non-interacting system. Thus, we define

εk = sgn(ek)
√
e2
k + ∆2

0 , (8.72)

where sgn(x) = x/|x| denotes the sign function. Note that this is an identity between
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two diagonal matrices. In particular, using Eq. (1.175), we also obtain the condition

ε−k = εk (8.73)

as a consequence of the time reversal-symmetry.

It remains to calculate the matrices Xk and Yk . By Eq. (8.63), the column vectors of
Xk are the eigenvectors of the free Hamiltonian h0

k , hence each of them coincides up
to a constant factor with the respective column vector of the matrix Uk as given by
Eq. (1.163). Thus, we may write

Xk = Uk (εk + ek)Nk , (8.74)

with a yet to be determined diagonal matrix

Nk =

(
Nk− 0

0 Nk+

)
. (8.75)

Next, by putting Eq. (8.74) into Eq. (8.66) and using that

(εk + ek)(εk − ek) = ε2
k − e2

k = ∆2
0 , (8.76)

we also obtain

Y ∗−k = ∆†k UkNk . (8.77)

Now, the matrix Nk is determined from the condition that Uk is unitary: in fact,
Eq. (8.52) is equivalent to the two identities

X†kXk + Y T
−k Y

∗
−k = 1 , (8.78)

X†k Yk + Y T
−kX

∗
−k = 0 . (8.79)

Using Eqs. (8.74) and (8.77), we find

X†kXk = N †k (εk + ek)U †k Uk (εk + ek)Nk = N †kNk (εk + ek)2 , (8.80)

and respectively,

Y T
−k Y

∗
−k = N †k U

†
k ∆k ∆†k UkNk = N †kNk ∆2

0 . (8.81)

Therefore, Eq. (8.78) yields the condition

N †kNk ((εk + ek)2 + ∆2
0 ) = 1 , (8.82)

which in turn implies (by choosing Nk real-valued)

Nk =
1√

(εk + ek)2 + ∆2
0

. (8.83)
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Hence, it remains to check that Eq. (8.79) is also fulfilled:

X†k Yk + Y T
−kX

∗
−k = N †k

(
−(εk + ek)U †k ∆k U

∗
−k + U †k ∆k U

∗
−k (εk + ek)

)
N∗−k , (8.84)

where we have used that ∆T
−k = −∆k , while ek and εk are even in k. Furthermore, the

property (1.176) implies that

∆k U
∗
−k = ∆0 [iσy]U

∗
−k = ∆0 Uk e−iϕk σz , (8.85)

and hence the above expression simplifies to

X†k Yk + Y T
−kX

∗
−k = N †k

(
−∆0 (εk + ek) e−iϕk σz + ∆0 e−iϕk σz (εk + ek)

)
N∗−k , (8.86)

which vanishes because any two diagonal matrices commute with each other. In sum-
mary, the (4× 4) Hamiltonian matrix Hk as defined in Eq. (8.46) is diagonalized by the
unitary matrix Uk in Eq. (8.51), where Xk and Yk are given explicitly by

Xk = Uk (εk + ek)
1√

(εk + ek)2 + ∆2
0

, (8.87)

Yk = −∆k U
∗
−k

1√
(εk + ek)2 + ∆2

0

. (8.88)

These formulae generalize the results presented in Ref. [SU91, Eq. (2.13)] to the case
without SU(2) spin rotation invariance. Note, in particular, that ek and εk are diago-
nal matrices, which contain the eigenvalues of the free Hamiltonian (subtracted by the
chemical potential) and respectively of the mean-field Hamiltonian, where the latter
eigenvalues are given by Eq. (8.72).

8.4.3. Order parameter

Having diagonalized the mean-field Hamiltonian, it is no more difficult to calculate the
order parameter (8.11). In terms of the new annihilation and creation operators b̂n(k)

and b̂†n(k), we can write this as

Ψss′(k) =
∑
n,n′

〈(
Xsn(k) b̂n(k) + Ysn(k) b̂†n(−k)

)
×
(
Xs′n′(−k) b̂n′(−k) + Ys′n′(−k) b̂†n′(k)

)〉
.

(8.89)

Using the anticommutation relation between these operators,[
b̂n1(k), b̂†n2

(k′)
]
+

= δn1n2 δk,k′ , (8.90)



208 8. Mean-field theory without SU(2) symmetry

we obtain the identities 〈
b̂n(k) b̂†n′(k)

〉
= δnn′ (1− fn(k)) , (8.91)〈

b̂†n(−k) b̂n′(−k)
〉

= δnn′ fn(−k) = δnn′ fn(k) , (8.92)

with the Fermi distribution function fn(k) ≡ f(en(k)) given by Eq. (7.10). With these
relations, Eq. (8.89) simplifies to

Ψss′(k) =
∑
n

Xsn(k)Ys′n(−k) (1− fn(k)) +
∑
n

Ysn(k)Xs′n(−k) fn(k) , (8.93)

which can be written more compactly in matrix form as

Ψk = Xk (1− fk)Y T
−k + Yk fkX

T
−k . (8.94)

We now put the matrices Xk and Yk as given by Eqs. (8.87)–(8.88) into this formula.
Then, we obtain for the first term,

Xk (1− fk)Y T
−k = Uk (εk + Ek)Nk (1− fk)Nk U

†
k ∆k , (8.95)

where we have used again Eq. (8.22). Furthermore, by Eqs. (8.72) and (8.83), we have

N2
k =

1

(εk + ek)2 + ∆2
0

=
1

2εk (εk + ek)
, (8.96)

and consequently,

Xk (1− fk)Y T
−k = Uk

1− fk
2 εk

U †k ∆k . (8.97)

Similarly, we obtain for the second term in Eq. (8.94),

Yk fkX
T
−k = −∆k U

∗
−k

fk
2 εk

UT
−k = −Uk

fk
2 εk

U †k ∆k , (8.98)

where we have used the explicit form of ∆k , Eq. (8.44), and the property (1.176) of Uk .
By combining Eqs. (8.97) and (8.98), we arrive at

Ψk = Uk
1− 2fk

2εk
U †k ∆k . (8.99)

To obtain an even more concrete expression for the order parameter, let us define the
function

γ(ε) =
1− 2f(ε)

2ε
=

1

2ε
tanh

(
βε

2

)
, (8.100)

which in the zero-temperature limit reduces to

lim
β→∞

γ(ε) =
1

2 |ε|
. (8.101)
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With this, we can write Eq. (8.99) as

Ψk = Uk γ(εk)U †k ∆0 [iσy] . (8.102)

Next, we split the diagonal matrix into two terms,

γ(εk) ≡

(
γ(ε−(k)) 0

0 γ(ε+(k))

)
(8.103)

=
γ(ε−(k)) + γ(ε+(k))

2
1+

γ(ε−(k))− γ(ε+(k))

2
σz . (8.104)

Using the unitarity as well as the property (1.170) of Uk , this yields

Ψk = ∆0
γ(ε−(k)) + γ(ε+(k))

2
iσy −∆0

γ(ε−(k))− γ(ε+(k))

2
[−ĝ(k) · σ] iσy ,

(8.105)
where we have introduced the notation

ĝ(k) =
g(k)

|g(k)|
(8.106)

for the normalized vector g(k), which appears in the free Hamiltonian (1.157). The
above Eq. (8.105) is our general result for the order parameter matrix Ψk ≡ Ψss′(k).
In contrast to the gap function (8.44), the order parameter depends nontrivially on the
Bloch momentum k and on the chemical potential µ, and it is not of a pure singlet form.

8.4.4. Singlet and triplet amplitudes

Next, we define the (spin) singlet and triplet amplitudes Ψs(k) and Ψt(k) of the order
parameter through the expansion

Ψ(k) = Ψs(k) iσy + Ψt(k) [ ĝ(k) · σ] iσy . (8.107)

In fact, we can compare this expansion with Eq. (8.31), which was deduced from sym-
metry considerations only. Obviously, the singlet and triplet amplitudes are related to
the functions χ(k) and c(k) in the latter expansion by

χ(k) = Ψs(k) , (8.108)

c(k) = Ψt(k) ĝ(k) . (8.109)

Concretely, from our result (8.105), we read off the singlet and triplet amplitudes as

Ψs(k) = ∆0
γ(ε+(k)) + γ(ε−(k))

2
, (8.110)

Ψt(k) = ∆0
γ(ε+(k))− γ(ε−(k))

2
. (8.111)



210 8. Mean-field theory without SU(2) symmetry

In the zero-temperature limit, these formulae reduce to

Ψs(k) =
∆0

4

(
1

|ε+(k)|
+

1

|ε−(k)|

)
, (8.112)

Ψt(k) =
∆0

4

(
1

|ε+(k)|
− 1

|ε−(k)|

)
. (8.113)

For comparison, consider the corresponding singlet and triplet amplitudes of the gap
function, which can be defined analogously through

∆(k) = ∆s(k) iσy + ∆t(k) [ ĝ(k) · σ] iσy . (8.114)

In fact, the result (8.44) for the gap function is equivalent to

∆s(k) = ∆0 , ∆t(k) = 0 , (8.115)

and for this reason, we have called Eq. (8.44) a purely singlet-type gap function.

8.4.5. Gap equation and critical temperature

So far, we have calculated the gap function ∆ss′(k) and the order parameter Ψss′(k)
up to the scalar gap parameter ∆0 . The latter was defined in Eq. (8.45), which can be
written equivalently in terms of the order parameter and a trace over the spin indices as

∆0 =
g

2

∑
k

Tr
(
Ψ(k)[iσy]

†) . (8.116)

By inserting our result for the order parameter, Eqs. (8.107) and (8.110)–(8.111), and
by using that the Pauli matrices are traceless,

Tr
(
ĝ(k) · σ

)
= 0 , (8.117)

we obtain immediately

∆0 =
g

2

∑
k

2Ψs(k) =
g

2
∆0

∑
k

(
γ(ε+(k)) + γ(ε−(k))

)
, (8.118)

which is equivalent to the scalar gap equation

1 =
g

2

∑
k

∑
n

1

2εn(k)
tanh

(
βεn(k)

2

)
. (8.119)

Note that this agrees with the standard form of the gap equation in the SU(2)-symmetric
case (see Ref. [VW90]). If combined with the expression (8.72) for the mean-field en-
ergies εn(k), the gap equation constitutes an implicit equation for determining the gap
parameter ∆0 as a function of the inverse temperature β, the chemical potential µ and
the coupling constant g. Furthermore, the gap equation allows one to estimate the crit-
ical temperature for the onset of superconductivity, which is defined as the temperature
where the gap vanishes (for a short discussion, see Ref. [Sch+16a, Sct. IV.D]).



9. Application to the Rashba model

In this chapter, we apply the combined fRG and mean-field approach described in the
previous chapters to the tight-binding Rashba model of Sct. 2.3. We first specify the
model parameters and briefly explain our numerical implementation, and after that
summarize our results for the effective interaction, the order parameter and the gap
function. For a more detailed discussion, we refer the interested reader to the original
publication [Sch+16a] (parts of which are reproduced in this chapter).

9.1. Model parameters and numerical implementation

We start from the two-dimensional tight-binding Rashba model as described by the
Hamiltonian matrix Hss′(k) given by Eq. (2.105), where the functions f(k) and g(k)
are defined in Eqs. (2.151) and (2.163)–(2.168), respectively, and where the parameters
α/t and γ/t are specified in Eq. (2.170). The corresponding Hamiltonian operator is
given in second quantization by Eq. (8.5). To this quadratic part of the Hamiltonian,
we now add a quartic (two-body) interaction term of the general form

V̂ = −1

2

∑
k1,k2,k3

∑
s1,...,s4

Vs1...s4(k1,k2,k3) â†s1(k1) â†s2(k2) âs3(k3) âs4(k4) . (9.1)

In this expression, k4 is fixed by the “Bloch momentum conservation”, i.e.,

k4 = K + k1 + k2 − k3 , (9.2)

where the reciprocal lattice vector K ensures that k4 lies in the first Brillouin zone
(see Ref. [Sch+16a, Eq. (A147)]). Concretely, we choose a momentum-independent
interaction kernel given by

Vs1...s4(k1,k2,k3) =
U

2
(δs1s3 δs2s4 − δs1s4 δs2s3) , (9.3)

such that Eq. (9.1) coincides with the normal-ordered operator

V̂ = U
∑
R

: n̂↑(R) n̂↓(R) : ≡ U
∑
R

â†↑(R) â†↓(R) â↓(R) â↑(R) , (9.4)

where the spin-resolved density operator is defined as

n̂s(R) = â†s(R) âs(R) . (9.5)
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Figure 9.1: Division of the Brillouin zone into 48 patches and representative momenta on the
two Fermi lines. The latter are only schematically represented here as perfect circles, which is
indeed a good approximation for small Fermi energies (near the band crossing, see Fig. 2.1). The
patches are labeled counterclockwise, with patches on the outer Fermi line having smaller indices
than those on the inner Fermi line.

An interaction of this form is called local, because it contains only products of electronic
density operators at the same lattice site. Furthermore, we define the parameter

U/t = −2 , (9.6)

which, by its negative sign, implies an attractive interaction between electrons. In the
framework of the fRG, the electron-electron interaction determines the initial condition
for the one-line-irreducible four-point function (see Eqs. (7.21)–(7.23)).

For the concrete implementation of the RGE, we use the non-strict regulator function

χΛ(e) =
(

10(Λ−|e|)/(0.05Λ) + 1
)−1

(9.7)

in the denominator of the scale-dependent covariance (7.12). This regulator function
is always greater than zero and smaller than one, hence all momenta inside a shell of
thickness Λ around the Fermi lines are suppressed (but not cut off). However, we per-
form our calculations at a tiny positive temperature (such that βt = 1010), where χΛ

can be used down to scales Λ ≈ 10−10 t. Next, we choose the initial scale Λ0 much larger
than the bandwidth of the model (given by Eq. (2.172)), i.e.,

Λ0/t = 40 . (9.8)

Thus, the condition (7.15) is approximately fulfilled for any band index n and any Bloch
momentum k, which implies that the covariance essentially vanishes at the initial scale.
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Figure 9.2: Double-logarithmic plot of the scale-dependent vertex supremum V sup(Λ) as ob-
tained for a chemical potential of µ/t = −2. The RG flow is stopped at the scale Λ∗ where
V sup exceeds the threshold parameter S.

Furthermore, the RG flow is stopped at the stopping scale Λ∗ defined by

V sup(Λ∗) = S , (9.9)

with the scale-dependent vertex supremum

V sup(Λ) := sup{|(VΛ)n1...n4(k1,k2,k3) |} . (9.10)

The threshold parameter S is chosen more than an order of magnitude larger than the
initial interaction (9.6), i.e.,

S/t = 40 . (9.11)

By this choice, the stopping scale Λ∗ is always close to, but slightly above the critical
scale Λc where the interaction vertex diverges (see Ref. [Sch+16a]). In the following, we
will not distinguish explicitly between these two scales.

In our numerical implementation, we solve directly the RGE for the discretized interac-
tion vertex as given by Theorem 7.3. For this purpose, we divide the Brillouin zone into
48 patches, which are shown schematically in Fig. 9.1. The solution VΛ with the given
initial interaction VΛ0 ≡ V can be written formally as

VΛ = VΛ0 +

∫ Λ

Λ0

dΛ
d

dΛ
VΛ = VΛ0 +

∫ Λ

Λ0

dΛ
[
Φpp

Λ + Φph,c
Λ + Φph,d

Λ

]
. (9.12)

This scale integral can be performed numerically by starting at the initial scale Λ0 , and
by stepwise determining VΛ+dΛ from the previously calculated VΛ. Here, we dynamically
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Figure 9.3: Real part of the interaction vertex in the band basis, Re (VΛ)n1n2n3n4
(i1, i2, i3)/t,

after following the RG flow down to the stopping scale Λ = Λ∗ (for µ/t = −2). Shown are the
four non-vanishing contributions with band indices n1n2n3n4 and the dependence on two patch
indices i1 and i2 (while the third patch index is fixed as i3 = 1). The patches are labeled as
shown in Fig. 9.1.

adjust the integration steps dΛ depending on how fast the interaction vertex changes in
the flow. In this way, the divergence at the critical scale can be approached numerically
by gradually decreasing the step size.

9.2. Effective interaction and critical scale

Our numerical result for the vertex supremum V sup(Λ) as a function of the scale pa-
rameter Λ is shown in Fig. 9.2. One clearly sees that the interaction vertex grows with
decreasing Λ and eventually approaches a divergence at the critical scale. This is in-
terpreted as a signal for “an instability leading to an ordered phase via spontaneous
symmetry breaking” [RRM07] (see also Ref. [KL65, footnote 2]). The divergence of
the effective interaction is due to the truncation, which in particular restricts to the
symmetric phase. It has been shown [Ger+05; Sal+04] that the flow can be continued
into the symmetry-broken phase and down to Λ = 0 if the symmetry-breaking terms
indicated by the effective interaction above Λc are included. The numerical result for
the effective interaction at the stopping scale is shown in the band basis in Fig. 9.3 and
in the spin basis in Fig. 9.4. We have fixed the third patch index as i3 = 1 and analyzed
the dependence of the effective interaction on i1 and i2 for all possible band and spin
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Figure 9.4: Interaction vertex (VΛ)s1s2s3s4(i1, i2, i3)/t in the spin basis at the stopping scale
Λ = Λ∗ (for µ/t = −2). Shown are four representative spin configurations s1s2s3s4 and the
dependence on two patch indices i1 and i2 (while i3 = 1). The patches are labeled again as
shown in Fig. 9.1.

combinations (of which four representative ones are shown in Figs. 9.3 and 9.4, respec-
tively). The result clearly signals a superconducting instability, where pairing occurs
between opposite momenta on the same Fermi line. The discretized effective interaction
at the stopping scale is well represented in the band basis by

(VΛ∗)n1...n4(i1, i2, i3) = 1(πi1 =−πi2)Sδn1n2 δn3n4 n2n3 eiϕ(πi3 )−iϕ(πi2 ) , (9.13)

and in the spin basis by

(VΛ∗)s1...s4(i1, i2, i3) = 1(πi1 =−πi2) (−S)(δs1s3δs2s4 − δs1s4δs2s3) , (9.14)

where S is the threshold parameter (see Eq. (9.11)). The corresponding interaction
operator (which is obtained by first putting Eq. (9.14) into the projection ansatz (7.65)
and then inserting the resulting interaction kernel into Eq. (9.1)) is approximately given
by

V̂Λ∗ =
S

2N

∑
k2,k3

∑
s1,...,s4

(δs1s3δs2s4 − δs1s4δs2s3) â†s1(−k2) â†s2(k2) âs3(k3) âs4(−k3) ,

(9.15)
where N is the number of patches (in our case, N = 48). The factor 1/N corresponds to
the area of a single k-space patch, which arises because our effective interaction (9.14)
turns out to have a k1 = −k2 restriction on the level of patches (see the derivation in
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Ref. [Sch+16a, Appendix C.2]). By explicitly performing the spin sums and using the
canonical anticommutation relations, we further obtain the equivalent expression

V̂Λ∗ = −g
∑
k,k′

â†↑(−k) â†↓(k) â↓(k
′) â↑(−k′) , (9.16)

where we have defined the coupling constant

g :=
2S

N
> 0 . (9.17)

An interaction of the form (9.16) is called singlet superconducting interaction (see
Sct. 8.4). We have obtained this result for the effective interaction independently of
the chemical potential µ, whether it is above (µ > 0) or below (µ < 0) the band crossing
of the Rashba dispersion.

We stress here that the form of the effective interaction depends crucially on the projec-
tion scheme used to discretize the scale-dependent interaction vertex. Our result given
by Eqs. (9.13)–(9.14) is obtained by using the refined projection scheme (see Sct. 7.3),
whereas a qualitatively different result would be obtained in the projection scheme of
Ref. [PHT13] (see the discussion in Ref. [Sch+16a]). In particular, our numerical imple-
mentation of the RGE shows that the scale-dependent interaction vertex VΛ has relevant
contributions from both bands of the model at any scale Λ, even if the Fermi level lies in
the lower band (such that the upper band is empty at zero temperature). This is most
clearly seen in Fig. 9.3, which shows the four contributions

(VΛ)−−−− , (VΛ)−−++ , (VΛ)++−− , (VΛ)++++ (9.18)

of the interaction vertex in the band basis at the stopping scale Λ = Λ∗ (for µ < 0, where
the Fermi level lies in the lower band). The four contributions are of equal magnitude,
and the momentum dependence is well described by Eq. (9.13). The unexpected result
that even in this case, contributions to the interaction vertex with an upper band index
cannot be neglected in RG flow, has been explained further by means of an analytical
resummation of the particle-particle ladder in Ref. [Sch+16a, Sct. III.E]. In fact, we
have provided there a general, analytical solution of the particle-particle flow in the
spin basis, which applies to the case where the single-particle Hamiltonian is not SU(2)
invariant. This analytical solution is completely consistent with our numerical results.

Next, we show our results for the critical scale as well as the phase diagram: The RG
flow is stopped at the scale Λ∗ , where the interaction vertex exceeds the threshold S
and hence a divergence is approached, which signals the breakdown of the Fermi liquid
description. Figure 9.5 shows Λ∗ as a function of the chemical potential µ. The numerical
data turn out to be well represented by the formula

Λ∗/t = 5.0 exp

(
− 2

|U |D(µ)

)
, (9.19)

where U is the initial interaction strength (given by Eq. (9.6)), and D(µ) is the density
of states of the minimal tight-binding model (see Fig. 2.2). The exponent in the above
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Figure 9.5: Logarithmic plot of the stopping scale Λ∗ as a function of the chemical potential µ,
for an initial interaction of U/t = −2. The vertical line (where µ = 0) marks the position of the
band crossing of the Rashba dispersion. The red points show the stopping scales obtained from
the numerical implementation of the RG flow. The blue curve corresponds to Eq. (9.19), which
can be motivated by an analytical resummation of the particle-particle ladder.

formula can in fact be motivated by an analytical resummation of the particle-particle
ladder, as we have shown in Ref. [Sch+16a, Sct. III.E]. In particular, the sharp increase
of Λ∗ for small µ reflects the diverging density of states at the band minimum of the
Rashba dispersion, and the kink at µ = 0 corresponds to the kink in the density of
states at the band crossing. Finally, concerning the interpretation of Fig. 9.5 as a
“phase diagram” (in particular in relation to the Mermin–Wagner theorem), we refer
the interested reader to the discussion in Ref. [Sch+16a, Sct. III.D].

9.3. Solving the gap equation

Our result for the effective interaction at the critical scale, Eq. (9.15), represents a super-
conducting interaction of the form (8.6), with a singlet interaction kernel as defined in
Eq. (8.41). Therefore, we can employ the mean-field solution derived in Sct. 8.4 for the
general case of a time-reversal invariant Hamiltonian Hss′(k) (where here, we specialize
to the tight-binding Rashba Hamiltonian defined in Sct. 2.3). In particular, we thus
obtain the order parameter in terms of the singlet and triplet amplitudes, Eqs. (8.110)–
(8.111), or Eqs. (8.112)–(8.113) in the zero-temperature limit.

For small energies, i.e., in the vicinity of the band crossing, the dispersion of our tight-
binding model is approximately described by the ideal Rashba model (see Sct. 3.2).
Therefore, near µ = 0, the singlet and triplet amplitudes of the order parameter essen-
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tially depend only on the modulus |k|. Figure 9.6 shows these amplitudes as a function
of kx for three different values of the chemical potential µ (above, at, and below the
band crossing), where we assume a small value of the scalar gap parameter, ∆0/t = 0.1.
We can qualitatively understand these results as follows: First, we restrict ourselves to
such momenta k which satisfy the condition |en(k)| ≡ |En(k) − µ| < Λ∗ . For small
enough ∆0 , we may then estimate using Eq. (8.72),{

|ε−(k)| � |ε+(k)| , if |e−(k)| < Λ∗ ,

|ε+(k)| � |ε−(k)| , if |e+(k)| < Λ∗ .
(9.20)

From Eqs. (8.112)–(8.113), we therefore obtain
Ψs(k) ≈ ∆0

4 |ε−(k)|
≈ −Ψt(k) , if |e−(k)| < Λ∗ ,

Ψs(k) ≈ ∆0

4 |ε+(k)|
≈ Ψt(k) , if |e+(k)| < Λ∗ .

(9.21)

This means, if k is close to the Fermi line of the lower or the upper band, then the
singlet and triplet amplitudes are of equal magnitude, and they have the opposite or
the same sign, respectively. In particular, if the Fermi level is above the band crossing
(µ > 0), then there is one Fermi line for each band, and hence the ratio between Ψs and
Ψt changes sign in the Brillouin zone as seen in the uppermost panel of Fig. 9.6.

Furthermore, we have solved the scalar gap equation (8.119) both analytically (in the
asymptotic regime) and numerically. For β →∞, this gap equation reduces to

1 =
g

4

∑
k

∑
n

1√
(En(k)− µ)2 + ∆2

0

. (9.22)

In terms of the density of states (2.171), we can write this equivalently as

1 =
g

4

∫ µ+Λ∗

µ−Λ∗

dE
D(E)√

(E − µ)2 + ∆2
0

. (9.23)

For E < 0 (i.e., below the band crossing), the dispersion of the tight-binding model can
be approximated by the ideal Rashba model, whose density of states can be calculated
explicitly (see Ref. [Sch+16a, Eq. (29)]). By putting the result for D(E) into Eq. (9.23),
we obtain

1 = g

√
3

16π

(a0kR)2

ER

∫ µ+Λ∗

µ−Λ∗

dE
1√

1 + E/ER

1√
(E − µ)2 + ∆2

0

, (9.24)

where a0 denotes the lattice constant, while kR and ER denote the Rashba wavevector
and the Rashba energy, respectively (see Sct. 3.2). Note that µ and E are measured rel-
atively to the band crossing, and hence the minimum of the lower band has the negative
energy E = −ER . For simplicity, we now ignore the integration boundaries depending
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Figure 9.6: Spin singlet and triplet amplitudes of the order parameter, for ∆0/t = 0.1. Vertical
lines mark the positions of the two Fermi lines for the respective values of µ.

on Λ∗ and instead integrate over the whole interval −ER ≤ E ≤ 0. Furthermore, as we
are interested in the case where µ ≈ −ER , we define the dimensionless variables

µ̄ ≡ µ+ ER

ER
, Ē ≡ E + ER

ER
, ∆̄ ≡ ∆0

ER
, (9.25)

as well as the dimensionless coupling constant

ḡ ≡ g

√
3

16π

(a0kR)2

ER
. (9.26)

In terms of these new variables, we can write the gap equation (9.24) compactly as

1 = ḡ

∫ 1

0
dĒ

1√
Ē

1√
(Ē − µ̄)2 + ∆̄2

. (9.27)
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Figure 9.7: Numerical solution of the scalar gap equation (9.27) for ḡ = 0.02, and comparison
with the analytical results for the asymptotics, Eqs. (9.28) and (9.32).

Next, we summarize our analytical results for the asymptotics of the solution: On the
one hand, for 1 � µ̄ � ḡ2, we find

∆̄ = 8 µ̄ exp

(
−
√
µ̄

2ḡ

)
. (9.28)

Using that the density of states [Sch+16a, Eq. (29)] is given for µ̄ < 1 by

DR(µ̄) =
4 ḡ

g

1√
µ̄
, (9.29)

the above result is equivalent to

∆̄ = 8 µ̄ exp

(
− 2

gDR(µ̄)

)
, (9.30)

or in terms of the original parameters,

∆0 = 8 (µ+ ER) exp

(
− 2

gDR(µ)

)
. (9.31)

Note in particular the exponent, which coincides with the usual exponent in the SU(2)-
symmetric case. On the other hand, for µ̄ = 0, we find

∆̄ = (ḡC)2 , (9.32)

or in terms of the original parameters,

∆0 =
g2

ER

(√
3C

16π

)2

(a0kR)4 . (9.33)

This solution is valid for sufficiently small coupling parameters, i.e., for ḡ � 1.
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Figure 9.8: Numerical solution of the scalar gap equation (9.27) for µ̄ = 0.001, and comparison
with the analytical result for µ̄ = 0, Eq. (9.32).

Finally, for the numerical solution of Eq. (9.27), we have used the function fzero from
GNU Octave [Eat+14]. We have fixed the coupling parameter to a small value, ḡ =
0.02, and solved the implicit equation for the gap parameter ∆̄. Fig. 9.7 shows the
resulting dependence of ∆̄ on the chemical potential µ̄. The characteristic features of
the asymptotic solution are clearly reproduced in the numerical result: (i) the positive
value of ∆̄(µ̄ = 0), (ii) the maximum of ∆̄(µ̄) at small µ̄, and (iii) the exponential decay
for large µ̄. Even quantitatively, there is a good agreement between the numerical data
and the analytical results as given by Eqs. (9.28) and (9.32). Finally, we have fixed the
chemical potential to a tiny value (µ̄ = 0.001) and plotted the dependence of the gap
parameter ∆̄ on the coupling constant ḡ. The result is shown in Fig. 9.8. One clearly
sees the quadratic dependence on ḡ, and the agreement with the analytical result (9.32)
becomes perfect for small coupling constants.





Part IV.

Summary of further work





10. Electrodynamic properties of BiTeI

In this chapter, we briefly summarize the theoretical results published in Refs. [Dem+12;
Lee+11; Sch+12; Sch+16b], which concern the electrodynamic and optical properties
of the Rashba semiconductor BiTeI as well as related bismuth tellurohalides. (Parts of
these publications are reproduced in this chapter.)

10.1. Optical conductivity

First, in Ref. [Lee+11], we have calculated the optical conductivity of BiTeI from the
18-band model of Ref. [Ish+11] (see Sct. 3.1). For this purpose, we have employed the
Kubo formula [Kub57] (see also Refs. [GV05; Mah90]), which implies in particular that
the conductivity tensor can be written as a sum of two contributions,

↔
σ (ω) =

↔
σ inter(ω) +

↔
σ intra(ω) , (10.1)

an interband and an intraband contribution. The former is given by [Lee+11]

σinter
ij (ω) =

e2~
iV

∑
k

∑
n6=m

f(Enk)− f(Emk)

Emk − Enk
vi,nm(k)vj,mn(k)

Emk − Enk − (~ω + iΓ )
, (10.2)

where Enk is the eigenenergy corresponding to the nth eigenstate |nk〉, and the velocity
matrix elements are defined as [Wan+06]

vi,nm(k) =
1

~

〈
nk

∣∣∣∣ ∂Ĥ(k)

∂ki

∣∣∣∣mk〉 . (10.3)

Furthermore, f(E) = (eβ(E−µ) +1)−1 denotes the Fermi distribution function, and Γ the
“carrier damping” constant. On the other hand, the intraband contribution is formally
obtained by setting n = m in Eq. (10.2), hence it is given by [All06]

σintra
ij (ω) =

1

~ω + iΓ

e2~
iV

∑
k

∑
n

f ′(Enk) vi,nn(k)vj,nn(k) , (10.4)

where f ′(E) denotes the derivative of the Fermi distribution function. As the 18-band
model is given in the basis of maximally localized Wannier functions, special care is
required for evaluating the velocity matrix elements. In this respect, we have followed
the procedure described in Ref. [Wan+06] (see, in particular, Eq. (31) therein).
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Figure 10.1: Longitudinal conductivity of BiTeI. The characteristic energies α, β and γ can be
assigned to the interband transitions as shown in Fig. 10.2.

The result for the longitudinal optical conductivity σxx is shown in Fig. 10.1 for the
following parameters: chemical potential µ = 90 meV (above the crossing of the lowest
conduction bands), temperature T = 10 K, and carrier damping Γ = 5 meV. (The
last parameter can be chosen such as to optimally fit the experimental data, see Ref.
[Lee+11]). Apart from the Drude-Lorentz part at low frequencies, which results from
the intraband contribution, one can clearly see the onset of the interband contribution
at ∼ 0.6 eV, which corresponds to the optical gap γ (see Fig. 10.2). In addition, there is a
contribution below the optical gap, which can be attributed to optical transitions within
the Rashba spin-split conduction bands, and whose lower and upper edges correspond to
the transitions α and β indicated by arrows in Fig. 10.2. Note that at zero temperature,
optical transitions can occur only between occupied states (below the Fermi energy)
and empty states (above the Fermi energy). We also remark that optical transitions
between bands with different spin polarizations are theoretically expected to occur as a
consequence of the spin-orbit coupling [Sch+16b] (see also Refs. [Lee+11; Sak+13]).

Furthermore, we have investigated in Ref. [Lee+11] the systematic change of the charac-
teristic transition energies by varying the chemical potential (which corresponds to the
carrier density). Experimentally, the carrier density could be controlled by doping Ag,
Cu and Mn, as well as by changing the composition ratio between Te and I. Overall, the
conductivity spectra obtained theoretically show an excellent agreement with the exper-
imental results. Thus, the optical transitions within the spin-split energy bands confirm
the bulk nature of the Rashba spin splitting (the skin depth of the midinfrared light is
around 10–30 µm), and they manifest the relativistic nature of the electron dynamics in
the semiconductor BiTeI [Lee+11].
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Figure 10.2: Band structure of BiTeI near the A point of the Brillouin zone (cf. Fig. 3.2; here,
the two highest valence and two lowest conduction bands are shown). The arrows indicate tran-
sitions between these bands which correspond to characteristic features in the optical spectrum
(see Figs. 10.1 and 10.4).

Finally, in the more recent work [Sch+16b], we have extended the optical conductivity
calculations to the whole class of bismuth tellurohalides (BiTeX with X = I, Br, Cl). In
particular, we have computed the entire conductivity tensor from first-principles density
functional theory, and we have thus obtained the conductivity spectra for a wide energy
range up to 12 eV. Furthermore, we have compared our theoretical results systemati-
cally with the recent measurements of Akrap et al. [Akr+14], Makhnev et al. [Mak+14]
and Rusinov et al. [Rus+15], whereby we have found an excellent agreement. Moreover,
we have calculated the dielectric constants and refractive indices, which in turn agree
well with the experimental values as reported by Rusinov et al. [Rus+15].

10.2. Magneto-optical conductivity

Next, in Ref. [Dem+12], we have calculated the magneto-optical conductivity of BiTeI,
i.e., the transverse conductivity σxy in the presence of a perpendicular magnetic field Bz
(parallel to the crystal’s principal axis). For this purpose, we have employed Fukuyama’s
formula [FFK10; Fuk69a; Fuk69b], which can be written in SI units as

σxy(ω) =
e3~Bz

2ω

1

V

∑
k

1

β

∑
`

S(k, i~ωn, i~ε`)
∣∣∣∣
iωn 7→ω

. (10.5)

Here, we sum over all fermionic Matsubara frequencies, ε` = (2`+1)π/(~β), ` ∈ Z, while
ωn = 2nπ/(~β), n ∈ Z, denotes a bosonic Matsubara frequency (see Ref. [Mah90]). The
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Figure 10.3: Contour integral used to evaluate the Matsubara frequency sum in Fukuyama’s
formula for the Hall conductivity (see Ref. [Fuk69a]).

function S is given explicitly by

Sk, i~ωn(i~ε`) =
1

m
Tr
[
F vxGvxG− F vxF vxG

]
+ Tr

[
F vxGvxGvyGvy − F vxGvyGvxGvy

]
+ Tr

[
F vyF vxGvxGvy − F vxF vxGvyGvy

]
+ Tr

[
F vxF vyF vxGvy − F vyF vxF vxGvy

]
,

(10.6)

where G denotes the thermal Green function

G ≡ Gk(i~ε`) =
(
i~ε` + iΓ sgn(ε`)−Hk + µ

)−1
(10.7)

with the “spectrum broadening” Γ [FFK10], and F is defined as

F ≡ Fk, i~ωn(i~ε`) = Gk(i~ε` − i~ωn) . (10.8)

Furthermore, the prefactor 1/m in Eq. (10.12) denotes the inverse electron mass, and vi
the velocity matrix as given by Eq. (10.3). After evaluating the Matsubara frequency
sum in Eq. (10.5), the result should be analytically continued to the real axis.

Before proceeding with the evaluation of Eq. (10.5), we note that the analytic continu-
ation of the Green function G has a branch cut at Im z = 0,

Gk(z) =

{ (
z + iΓ −Hk + µ

)−1
, if Im z > 0 ,(

z − iΓ −Hk + µ
)−1

, if Im z < 0 ,
(10.9)
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Figure 10.4: Transverse conductivity of BiTeI in the presence of a perpendicular magnetic field
of Bz = 3 T. The characteristic energies α and β can be assigned to the interband transitions
indicated in Fig. 10.2.

whereas F has a branch cut at Im z = ~ωn,

Fk, i~ωn(z) =

{ (
z − i~ωn + iΓ −Hk + µ

)−1
, if Im z > ~ωn ,(

z − i~ωn − iΓ −Hk + µ
)−1

, if Im z < ~ωn .
(10.10)

Therefore, the analytic continuation of the function S is given by

Sk, i~ωn(z) =


Tk(z − i~ωn + iΓ, z + iΓ ) , if Im z > ~ωn ,

Tk(z − i~ωn − iΓ, z + iΓ ) , if ~ωn > Im z > 0 ,

Tk(z − i~ωn − iΓ, z − iΓ ) , if Im z < 0 ,

(10.11)

where we have defined

Tk(z1, z0) =
1

m
Tr
[
G1vxG0vxG0 −G1vxG1vxG0

]
+ Tr

[
G1vxG0vxG0vyG0vy −G1vxG0vyG0vxG0vy

]
+ Tr

[
G1vyG1vxG0vxG0vy −G1vxG1vxG0vyG0vy

]
+ Tr

[
G1vxG1vyG1vxG0vy −G1vyG1vxG1vxG0vy

]
,

(10.12)

in terms of the analytic function (i = 0, 1)

Gi ≡
(
zi −Hk + µ

)−1
. (10.13)
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Next, we perform the frequency sum in Eq. (10.5) by means of the residue theorem (see
Ref. [Fuk69a]). By integrating over the contour shown schematically in Fig. 10.3, we
obtain the identity

− 1

β

∑
`

Sk, i~ωn(i~ε`) =

∫
Γ

dz

2πi
f(z)Sk, i~ωn(z) +

4∑
`=1

∫
C`

dz

2πi
f(z)Sk, i~ωn(z) , (10.14)

where f(z) = (eβz + 1)−1 denotes the analytic continuation of the Fermi distribution
function. The first term on the right-hand side of this equation vanishes as the radius of
the circle Γ goes to infinity. Furthermore, by using Eq. (10.12), the four integrals over
C1, . . . , C4 can be transformed into integrals over the real axis as

− 1

β

∑
`

Sk, i~ωn(i~ε`) =
1

2πi

∫ ∞
−∞

dE f(E)
{
Tk(E + iΓ, E + i~ωn + iΓ )

− Tk(E − iΓ, E + i~ωn + iΓ )

+ Tk(E − i~ωn − iΓ, E + iΓ )

− Tk(E − i~ωn − iΓ, E − iΓ )
}
.

(10.15)

After performing the analytic continuation (iωn 7→ ω) in Eq. (10.5), we thus arrive at

σxy(ω) =
e3~Bz

2ω

i

2π

1

V

∑
k

∫ ∞
−∞

dE f(E)
{
Tk(E + iΓ, E + ~ω + iΓ )

− Tk(E − iΓ, E + ~ω + iΓ )

+ Tk(E − ~ω − iΓ, E + iΓ )

− Tk(E − ~ω − iΓ, E − iΓ )
}
.

(10.16)

Finally, the sum over Bloch wavevectors k can be approximated by an integral over the
Brillouin zone, which together with the integral over E can be evaluated numerically.

The result for the transverse optical conductivity is shown in Fig. 10.4 for the following
parameters: chemical potential µ = 90 meV (above the conduction band crossing), tem-
perature T = 10 K, carrier damping Γ = 6.5 meV, and magnetic field B = 3 T. The
interpretation of this spectrum is similar as in the case of the longitudinal conductiv-
ity: Apart from the Drude-Lorentz contribution (which is only indicated in Fig. 10.4
by the sharp increase at low frequencies), one can clearly see a contribution resulting
from optical transitions within the spin-split conduction bands. In particular, the char-
acteristic energies α and β correspond again to the transitions shown in Fig. 10.2. In
Ref. [Dem+12], we have also studied the systematic change of these characteristic ener-
gies by varying the chemical potential, and our results are again in excellent agreement
with the experimental data. We further remark that the magneto-optical response of
BiTeI in the infrared region is extraordinarily large for a non-ferromagnetic material,
and this is a direct consequence of the giant Rashba spin splitting of the bulk energy
bands [Dem+12].
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10.3. Magnetic susceptibility

Finally, we have investigated the magnetic susceptibility of BiTeI in Ref. [Sch+12]. Usu-
ally, one distinguishes between the orbital and the spin contribution to the magnetic
susceptibility, although cross contributions are generally also possible (see Ref. [SS16c,
Sct. 3.2.5]). The orbital magnetic susceptibility can be calculated in at least three dif-
ferent ways: (i) from its thermodynamic definition as the second derivative of the free
energy, (ii) from the Kubo formalism, and (iii) from Fukuyama’s formula. In the fol-
lowing, we will briefly explain these three methods and show that they yield exactly
the same result for the Rashba model of Sct. 3.2. For a general statement about the
equivalence of these approaches, we refer the interested reader to Ref. [SS16c, Sct. 4.4].
Furthermore, we remark that in Ref. [Sch+12], we have also calculated the orbital mag-
netic susceptibility in the 18-band model of Ref. [Ish+11] and thereby obtained a good
agreement with the experimental results for BiTeI.

10.3.1. Thermodynamic calculation

In the presence of a perpendicular magnetic field B = −Bez , the Rashba Hamiltonian
(3.1) is modified as [She+04]

Ĥ =
1

2m∗
(p̂+ eA)2 +

α

~
ez · ((p̂+ eA)× σ)− 1

2
gsµBBσz , (10.17)

where A = yBex is the vector potential in the Landau gauge, gs the electron’s Landé
g-factor, and µB = e~/2me the Bohr magneton (with me the electron mass). The eigen-
values of this Hamiltonian—i.e., the Landau levels of the two-dimensional electron gas
in the presence of the spin-orbit coupling—can be calculated explicitly [She+04]. They
are labeled by N ∈ N0 and s ∈ {−1,+1}, and they are given as follows: for N = 0,

E0 = ~ωB
1

2
(1− g) , (10.18)

and for N ≥ 1,

ENs = ~ωB
(
N +

s

2

√
(1− g)2 + 8Nη2

)
. (10.19)

Here, we have defined the cyclotron frequency

ωB =
eB

m∗
, (10.20)

the effective g-factor

g = gs
m∗

2me
, (10.21)

the magnetic length

`B =

√
~
eB

, (10.22)
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and the dimensionless constant (with kR the Rashba wavevector)

η = `B kR =
`Bm

∗α

~2
, (10.23)

whose square equals the quotient (with ER the Rashba energy)

η2 =
2ER

~ωB
. (10.24)

The corresponding eigenvectors can also be calculated explicitly (see Ref. [She+04]). In
particular, due to the invariance of the Hamiltonian (10.17) under translations in the x
direction, each eigenvalue has a degeneracy of L2/(2π`2

B), where L denotes the linear
dimension of the sample (hence L2 is the area of the two-dimensional sample).

Having diagonalized the Rashba Hamiltonian in the presence of the magnetic field, we
can compute the thermodynamic grand potential as [Sch06, Eq. (4.1.7)]

Φ = − 1

β
lnZ = − 1

β

L2

2π`2
B

∑
N,s

ln
(

1 + e−β(ENs−µ)
)
, (10.25)

where β = 1/kBT denotes the inverse temperature and µ the chemical potential. From
this, we obtain the magnetic susceptibility as

χm = −µ0
1

L2

∂2Φ

∂B2
. (10.26)

For a strictly two-dimensional system, this quantity has the unit of a length (m). In
order to compare our results to the measured magnetic susceptibility of BiTeI, however,
we multiply it by Amol , the surface area per mol of one BiTeI layer. This is given by

Amol = NA det(a1,a2) ≈ 9.82× 104 m2 mol−1 , (10.27)

where NA denotes Avogadro’s constant, and a1,a2 are the primitive vectors of the two-
dimensional hexagonal lattice (see Sct. 1.2). The resulting molar magnetic susceptibility

χm,mol = Amol χm (10.28)

has the unit m3/mol (SI units), or emu/mol (Gaussian units), where [IEEE16]

1
emu

mol
= 4π × 10−6 m3

mol
. (10.29)

We have chosen the parameters of the Rashba model as in Eqs. (3.17)–(3.18) and per-
formed the calculation at a temperature of T = 30 K. Our result for the orbital mag-
netic susceptibility is shown in Fig. 10.5 as a function of the chemical potential µ. We
see that (i) if the chemical potential is above the band crossing (µ > 0), χm approaches
the Landau diamagnetism of free electrons with the effective mass m∗ (see the original
article [Lan30], or [GV05, Sct. 4.5]), i.e.,

χm,Landau = − µ0e
2

12πm∗
. (10.30)
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Figure 10.5: Orbital magnetic susceptibility of the Rashba model (see Sct. 3.2). The vertical
lines mark the band minimum (E = −ER) and the band crossing (E = 0), respectively. Our
results obtained from the thermodynamic calculation, the Kubo formalism and Fukuyama’s
formula coincide exactly.

Furthermore, (ii) near the band crossing (µ ' 0), the orbital diamagnetism is enhanced
and in fact diverges as −1/T for the temperature T → 0. Finally, (iii) below the band
crossing (µ < 0), an orbital paramagnetism (i.e., χm > 0) occurs as a consequence of the
Rashba spin-orbit coupling [Sch+12]. Such an effect had been considered before by only
a few theoretical studies [BI98; BR60; KO56; Pri+10; Vig91]. In Ref. [Sch+12], we have
also predicted this effect to occur in BiTeI based on a calculation in the 18-band model
of Ref. [Ish+11]. In fact, after subtracting the Larmor diamagnetism originating from
the ionic cores, the orbital paramagnetism of the conduction electrons has been observed
experimentally for the first time in this material [Sch+12].

10.3.2. Calculation in the Kubo formalism

We start again from the Rashba Hamiltonian (3.1), which reads in second quantization

Ĥ =
∑
k

∑
s,s′

Hss′(k) â†k,s âk,s′ , (10.31)

where the (2× 2) Hamiltonian matrix Hss′(k) is given by Eq. (3.5). To diagonalize this
Hamiltonian, we define the new annihilation and creation operators (cf. Eq. (3.7))

âk,n =
∑
s

U∗sn(k) âk,s , (10.32)

â†k,n =
∑
s

Usn(k) â†k,s , (10.33)
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where n ∈ {+,−} labels the two branches of the Rashba dispersion, and U(k) ≡ Usn(k)
is the unitary matrix given by Eq. (3.8). Thus, we obtain the representation

Ĥ =
∑
k

∑
n

En(k) â†k,n âk,n , (10.34)

where the eigenvalues En(k) are given by Eq. (3.14). Next, the velocity operator is
obtained from the classical relation vi = ∂H/∂pi (i = x, y), which yields for the Rashba
model (3.1) the first-quantized expressions

v̂x =
1

m∗
p̂x +

α

~
σy , v̂y =

1

m∗
p̂y −

α

~
σx . (10.35)

From this, we deduce the paramagnetic current density operator [GV05, Appendix 2],

ĵp(q) = −e
2

(
v̂ e−iq·r̂ + e−iq·r̂ v̂

)
, (10.36)

where r̂ = (x̂, ŷ) denotes the two-dimensional position operator. Restricting ourselves
to the x component, we obtain

ĵp,x(q) = e−iq·r̂
{
− e

m∗

(
p̂x −

~qx
2

)
− eα

~
σy

}
. (10.37)

In second quantization, this operator turns into

ĵp,x(q) =
∑
k

∑
s,s′

{
− e~
m∗

(
kx −

qx
2

)
δss′ −

eα

~
(σy)ss′

}
â†k−q, s âk, s′ . (10.38)

In the following, we will consider only the case where q ≡ qey (with ey the unit vector
in the y direction). Then, we can write

ĵp,x(qey) =
∑
k

∑
s,s′

(jp,x)ss′(k) â†k−q, s âk, s′ , (10.39)

with the q-independent (2× 2) matrix

jp,x(k) = − e~
m∗

kx1−
eα

~
σy = −eα

~

(
kx/kR −i

i kx/kR

)
, (10.40)

where kR = m∗α/~2 denotes the Rashba wavevector. In the basis of the energy eigen-
vectors, the same operator can be written as

ĵp,x(qey) =
∑
k

∑
n,n′

(jp,x)nn′(k − q, k) â†k−q,n âk,n′ , (10.41)

where we have defined the matrix elements

(jp,x)nn′(k − q, k) =
∑
s,s′

(jp,x)ss′(k)U∗sn(k − q)Us′n′(k) (10.42)

=
[
U †(k − q) jp,x(k)U(k)

]
nn′

. (10.43)
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Now, for a magnetic field applied in the z direction (perpendicular to the two-dimen-
sional electron gas), the orbital magnetic susceptibility χm can be calculated from linear
response theory as (see Refs. [GV05, Eq. (3.183)] or [SS15a, Eq. (7.38)])

χm ≡ (χm)zz = µ0 lim
q→0

χxx(qey, ω = 0)

q2
, (10.44)

where the current response function χxx is given by the Kubo formula (see Refs. [GV05,
Eq. (4.46)] or [SS16c, Appendix C]), which reads

χxx(qey, ω) = −e
2ne

m∗
+

i

~L2

∫ ∞
0

dt eiωt e−ηt
〈[
ĵp,x(qey, t), ĵp,x(−qey)

]〉
. (10.45)

Here, the first term comes from the diamagnetic current density [GV05, Appendix 2],
which is proportional to the electron density

ne =
Ne

L2
=

1

L2

∑
k

∑
n

f(En(k)) , (10.46)

where f denotes the Fermi distribution function. The second term in Eq. (10.45) involves
the commutator of the paramagnetic current operators, whose time evolution is given
in the interaction picture, and the expectation value is taken with respect to the grand
canonical ensemble. By neglecting electron-electron interactions, this expression can be
evaluated as follows (using Eq. (10.41), and abbreviating q ≡ qey):〈[

ĵp,x(q, t), ĵp,x(−q)
]〉

=
∑
k

∑
n,n′

∑
k′

∑
`, `′

(jp,x)nn′(k − q, k) (jp,x)``′(k
′ + q, k′)

×
〈[
â†k−q,n(t) âk,n′(t), â

†
k′+q, `

âk′, `′
]〉
. (10.47)

Here, the time dependence of the annihilation and creation operators is given by

âk,n(t) = âk,n e
−it(Ek,n−µ)/~ , (10.48)

â†k,n(t) = â†k,n e
it(Ek,n−µ)/~ , (10.49)

and hence, the expectation value of the commutator yields [GV05, Eq. (4.7)]〈[
â†k−q,n âk,n′ , â

†
k′+q, `

âk′, `′
]〉

= δk−q,k′ δn`′ δn′`
(
f(Ek−q,n)− f(Ek,n′)

)
. (10.50)

Thus, we obtain from Eq. (10.47),〈[
ĵp,x(q, t), ĵp,x(−q)

]〉
=
∑
k

∑
n,n′

(jp,x)nn′(k − q, k) (jp,x)n′n(k, k − q)

×
(
f(Ek−q,n)− f(Ek,n′)

)
eit(Ek−q,n−Ek,n′ )/~ .

(10.51)
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From the definition (10.43), we further deduce that

(jp,x)n′n(k, k − q) = (jp,x)∗nn′(k − q, k) , (10.52)

where we have used that jp,x(k) is hermitean and that jp,x(k − q) = jp,x(k) holds for
qx = 0. Therefore, the product of the two matrix elements in Eq. (10.51) can be replaced
by the squared absolute value of the first matrix element. By putting this result into
the Kubo formula (10.45) and by performing the frequency integral explicitly, we obtain
the (non-interacting) current response function as

χxx(qey, ω) = −e
2ne

m∗
− 1

L2

∑
k

∑
n,n′

f(Ek−q,n)− f(Ek,n′)

~(ω + iη) + Ek−q,n − Ek,n′
|(jp,x)nn′(k − q, k)|2 .

(10.53)
Furthermore, by evaluating this expression at zero frequency and taking into account
also Eq. (10.46), we arrive at the following formula for the orbital magnetic susceptibility
(in the non-interacting case; with q ≡ qey):

χm = −µ0 lim
q→0

1

q2

{
e2

m∗
1

L2

∑
k

∑
n

f(Ek,n)

+
1

L2

∑
k

∑
n,n′

f(Ek−q,n)− f(Ek,n′)

Ek−q,n − Ek,n′
|(jp,x)nn′(k − q, k)|2

}
.

(10.54)

This formula can be evaluated numerically for the Rashba model. The resulting magnetic
susceptibility as a function of the chemical potential coincides precisely with the result
obtained from the thermodynamic calculation, which is shown in Fig. 10.5.

We remark that the advantages of calculating the magnetic susceptibility in the Kubo
formalism are that this method does not require knowledge of the precise form of the
Landau levels, and that it can be generalized straightforwardly to take into account
electron-electron interaction effects (see Ref. [Pri+10]). In fact, following a suggestion of
Giovanni Vignale, we have also calculated the first-order interaction contribution to the
orbital magnetic susceptibility in the Rashba model. For this purpose, we have assumed
a local density-density interaction as given by the normal-ordered operator

V̂ =
U

2

∑
q 6=0

: n̂q n̂−q : , (10.55)

where U > 0 (corresponding to a repulsive interaction), and where the density operator
reads in the spin or in the energy eigenbasis as

n̂q =
∑
k

∑
s

â†k−q, s âk, s =
∑
k

∑
n,n′

[
U †(k − q)U(k)

]
nn′

â†k−q,n âk,n′ . (10.56)

Our result for the interaction correction to the orbital magnetic susceptibility is shown
in Fig. 10.6 for U = 5 eV. We see that for µ < 0, the orbital paramagnetism is further
enhanced, and the first-order contribution grows linearly with the energy difference to
the band minimum. On the other hand, for µ > 0, the magnetic susceptibility remains
unaffected by the electron-electron interaction.
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Figure 10.6: First-order contribution to the orbital magnetic susceptibility at T = 30 K, as-
suming a repulsive contact interaction of U = 5 eV. The vertical lines mark the band minimum
and respectively the crossing point of the Rashba model dispersion.

10.3.3. Calculation from Fukuyama’s formula

Finally, we have calculated the orbital magnetic susceptibility in the Rashba model from
Fukuyama’s formula [FFK10; Fuk70], which reads in SI units

χm =
µ0e

2~2

2

1

V

∑
k

1

β

∑
`

Tr
[
GvxGvyGvxGvy

]
, (10.57)

where

G ≡ G(k, ε`) =
(
i~ε` + µ−H0(k)

)−1
(10.58)

is the thermal Green function depending on the momentum k and the fermionic Mat-
subara frequency ε` . Furthermore, vi(k) = ∂H(k)/(~ki) denotes the velocity matrix,
which is given for the Rashba model (3.5) by

vx =
~kx
m∗

1+
α

~
σy , vy =

~ky
m∗

1− α

~
σx . (10.59)

The advantage of using Fukuyama’s formula for evaluating the orbital magnetic suscep-
tibility is that this formula does not require us to perform the q → 0 limit numerically
as in Eq. (10.54). Our result obtained from Fukuyama’s formula agrees again precisely
with the one obtained before from the thermodynamic calculation and from the Kubo
formalism, as can be seen in Fig. 10.5 (see also Ref. [Sch+12]).





11. Functional Approach to
electrodynamics of media

In this last chapter, we describe in desperate brevity the Functional Approach to elec-
trodynamics of media, which has been developed systematically in Refs. [SS15a; SS15b;
SS16a; SS16b; SS16c] (parts of these publications are reproduced in this chapter).

11.1. Introduction

The Functional Approach [SS15a; SS15b; SS16a; SS16b; SS16c] denotes a microscopic
field theory of electromagnetic material properties, which operates in accordance with the
common practice in ab initio physics. In particular, it resolves the following conceptual
problems of the Standard Approach (where the latter is described in the traditional
textbook literature, such as [Gri99; Jac99; LL84])—for a more detailed discussion, see
Ref. [SS16c]:

(i) Incomplete field equations: The well-established equation ∇ · P = ρb for the po-
larization in terms of the “bound” charge density determines only the longitudinal
part of the polarization, but leaves its transverse part undefined. Correspondingly,
the equation ∇ ·D = ρf for the displacement field in terms of the “free” charge
density leaves the transverse part of the displacement field undefined. In particular,
this implies that even electromagnetic response functions—such as the (relative)

dielectric tensor
↔
ε r , which should be defined through the relation D = ε0

↔
ε rE—

are underdetermined in the Standard Approach.

(ii) Ambiguous source splitting: At present, there is no consensus about the precise
meaning of “bound” and “free” charges or currents. In particular, this distinction is
usually based on a priori assumptions about the material, which cannot be upheld
microscopically. In other words, this traditional splitting cannot be justified on the
level of the many-body Schrödinger equation, which (together with the microscopic
Maxwell equations) forms the basis of modern ab initio calculations.

Apart from this, the Standard Approach also leads to practical problems, which regard
in particular the description of bianisotropic materials (Sct. 11.2) and the relativistic
covariance (Sct. 11.3). Moreover, the Standard Approach implies a wrong formula for
the refractive index (Sct. 11.4).
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Figure 11.1: Definition of internal, external, induced and total fields (see Ref. [SS15a, Fig. 2]).

By contrast, the Functional Approach to electrodynamics of materials is conceptually
based on the following fundamental principles [SS15a; SS16c]:

(i) Splitting into internal and external contributions: on a microscopic level, all field
quantities (i.e., electric and magnetic fields, potentials, charges and currents) are
split into internal and external contributions. The former correspond to the de-
grees of freedom which constitute the medium, whereas the latter correspond to
an external perturbation. The internal quantities are further split into their val-
ues in the absence of the perturbation and the induced contributions (i.e., induced
under the action of the external perturbation). Finally, the total fields are defined
as the respective sums of the external and the induced quantities (see Fig. 11.1).
The so-defined external and induced fields are related to their counterparts in the
Standard Approach by the Fundamental Field Identifications:

P (x, t) = −ε0Eind(x, t) , (11.1)

D(x, t) = ε0Eext(x, t) , (11.2)

E(x, t) = Etot(x, t) , (11.3)

and

M(x, t) = Bind(x, t)/µ0 , (11.4)

H(x, t) = Bext(x, t)/µ0 , (11.5)

B(x, t) = Btot(x, t) . (11.6)

In particular, in the Functional Approach, all electric and magnetic fields are
uniquely defined by the microscopic Maxwell equations in terms of their respective
charge and current densities (compare [SS16c, Table 1 and Table 3]).
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(ii) Functional dependence of induced on external fields: The Functional Approach
postulates a functional dependence of the induced fields on the external perturba-
tion, where the concrete form of this functional characterizes the material under
consideration. In particular, the functional dependence of the induced four-current
on the external four-potential,

jµind = jµind

[
Aνext

]
, (11.7)

completely determines the electromagnetic response of any material. The reason
for this is that the external four-potential contains the whole information about the
applied electromagnetic perturbation, and the induced four-current contains the
whole information about the induced electromagnetic fields. Furthermore, linear
response theory corresponds to the first-order expansion of this functional,

jµind(x) =

∫
d4x′ χµν(x, x′)Aνext(x

′) , (11.8)

where x = (x, t) and d4x = d3x cdt, and where the integral kernel χµν is called
fundamental response tensor. The above equation constitutes the most general
first-order response relation, which incorporates all effects of inhomogeneity, aniso-
tropy and relativistic retardation [SS15a].

On the other hand, the practical basis of the Functional Approach is the Kubo formalism,
which gives the concrete formulae for the actual calculation of linear response functions
(in particular of the fundamental response tensor, see Ref. [SS16c, Sct. 3.2.4]).

11.2. Universal Response Relations

By the continuity equation and the gauge invariance of the induced current, the funda-
mental response tensor of any physical system has to obey the following constraints (see
Refs. [AS10] or [SS15a, Eqs. (5.5)–(5.6)]):

∂µχ
µ
ν(x, x′) = 0 , (11.9)

∂′νχµν(x, x′) = 0 . (11.10)

These can be used to deduce the general form of the Lorentz-covariant response tensor,
which is given in Fourier space by [SS15a, Eq. (5.12)]

χµν(k,k′;ω) =

 − c2

ω2 k
T↔χ k′ c

ω
kT↔χ

− c
ω

↔
χ k′

↔
χ

 . (11.11)

Therefore, there are at most 9 independent linear electromagnetic response functions
for any material, and the (3 × 3) current response tensor

↔
χ already describes the lin-

ear response of any material completely. Furthermore, by the universal relation (for its



242 11. Functional Approach to electrodynamics of media

derivation, see Ref. [SS16c, Sct. 3.2.3])

↔
σ (k,k′;ω) = iω

↔
χ(k,k′;ω) , (11.12)

it follows that the conductivity tensor also contains the complete information about the
linear response of any material. Consequently, all linear electromagnetic response func-
tions (including magneto-electric cross couplings) can be expressed analytically in terms
of the conductivity tensor by means of universal (i.e., material-independent) relations.
These Universal Response Relations have been derived explicitly in Ref. [SS15a]. In the
Fourier domain, they read as follows:

dEiind(k, ω)

dEjext(k
′, ω)

= − 1

ε0ω2

ω2δim − c2kikm
ω2 − c2|k|2

iωσmj(k,k
′;ω) , (11.13)

1

c

dEiind(k, ω)

dBj
ext(k

′, ω)
= − 1

ε0ω2

ω2δim − c2kikm
ω2 − c2|k|2

iωσmn(k,k′;ω)
εn`j ω ck

′
`

−c2|k′|2
, (11.14)

c
dBi

ind(k, ω)

dEjext(k
′, ω)

= − 1

ε0ω2

εikm ω ckk
ω2 − c2|k|2

iωσmj(k,k
′;ω) , (11.15)

dBi
ind(k, ω)

dBj
ext(k

′, ω)
= − 1

ε0ω2

εikm ω ckk
ω2 − c2|k|2

iωσmn(k,k′;ω)
εn`j ω ck

′
`

−c2|k′|2
. (11.16)

where εijk is the Levi-Civita symbol, and we sum over all doubly appearing indices.
Importantly, in the above formulae (using a symbolic vector notation),

↔
χEE(k,k′;ω) ≡ dEind(k, ω)

dEext(k
′, ω)

(11.17)

=
δEind(k, ω)

δEext(k
′, ω)

+
δEind(k, ω)

δBext(k
′, ω)

δBext(k
′, ω)

δEext(k
′, ω)

(11.18)

denotes the total functional derivative [SS15a, Sct. 4.2] of the induced electric field with
respect to the external electric field. Similarly,

↔
χEB(k,k′;ω) ≡ 1

c

dEind(k, ω)

dBext(k
′, ω)

(11.19)

=
1

c

δEind(k, ω)

δBext(k
′, ω)

+
1

c

δEind(k, ω)

δEext(k
′, ω)

δEext(k
′, ω)

δBext(k
′, ω)

(11.20)

denotes the total functional derivative with respect to the external magnetic field, etc.
These total functional derivatives directly correspond to the physical response functions
(see the discussion in Ref. [SS15a, Sct. 6.1]). For example, the dielectric tensor and the
(relative) magnetic permeability can be expressed in terms of these as

(
↔
ε r)
−1 =

↔
1 +

↔
χ
EE

, (11.21)

↔
µr =

↔
1 +

↔
χ
BB

. (11.22)
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We stress again that the above relations between linear electromagnetic response func-
tions are valid for any material, and they include all possible effects of inhomogene-
ity, anisotropy, relativistic retardation and magneto-electric cross coupling. On the
other hand, all standard relations between linear electromagnetic response functions can
be rederived in special cases from the Universal Response Relations (see Ref. [SS15a,
Sct. 7]). Hence, if combined with the Kubo formalism, the Universal Response Rela-
tions lend themselves to the ab initio calculation of all linear electromagnetic response
functions.

We close this section with the following remark [SS16c]: As the physical response func-
tions necessarily correspond to total functional derivatives, part of the magnetic reaction
is already contained in the electric response function, and vice versa. A naive expression
of the induced electric and magnetic fields in terms of the external fields, as often used
in the context of bianisotropic media, therefore leads to an overcounting. This raises
the delicate question of how the induced electric and magnetic fields can actually be
expanded in terms of the physical response functions. For the answer to this question,
the interested reader is referred to Ref. [SS15a, Sct. 6.6], where it is shown that there
exist three different but equivalent field expansions on the fundamental level.

11.3. Relativistic covariance

On a macroscopic scale, Ohm’s law relates the induced electric current density through
the direct conductivity σ to an externally applied electric field by

jind = σEext , (11.23)

or through the proper conductivity σ̃ to the total electric field by

jind = σ̃Etot . (11.24)

In the following, this difference does not play any role, because the transformation
properties of the direct and the proper conductivities coincide (for a comparison between
direct and proper response functions, see [SS15b, Sct. 2.3]). Microscopically, however,
Ohm’s law has to be interpreted as a non-local convolution (see e.g. [GV05, Eqs. (3.167)
and (3.185)]), i.e.,

jiind(x) =

∫
d4x′ σij(x, x

′)Ejext(x
′) . (11.25)

From the relativistic point of view, the problem with Ohm’s law apparently is that it
relates the spatial part j of the four-vector jµ = (cρ, j) to the spatial three vector Ei =
cF 0i, which is part of the second-rank field strength tensor Fµν = ∂µAν −∂νAµ. Hence,
it is not obvious how Eq. (11.25) squares with the usual relativistic transformation laws.

To clarify this issue on a fundamental level, we start from the linear relation (11.8)
in terms of the fundamental response tensor. This relation is relativistically covariant



244 11. Functional Approach to electrodynamics of media

χµν(k, ω) χ′µ
ν(k

′, ω′)

σij(k, ω) σ′
ij(k

′, ω′)

(11.11), (11.12) (11.12)

(11.25)

(11.28)

Figure 11.2: Universal relations and transformation laws. The arrow labels refer to equation
numbers in the text.

per constructionem, because it relates the relativistic four-vectors jµ and Aν . In Ref.
[SS16a], we have shown that Ohm’s law in the form (11.25) can be derived covari-
antly from Eq. (11.8) and, consequently, Ohm’s law holds in every inertial frame.
Thereby it is understood that σij (just as χµν) obeys a relativistic transformation law
itself. This transformation law of the conductivity tensor has been derived explicitly in
Ref. [SS16a] from the procedure shown in Fig. 11.2 (assuming homogeneity in space and
time): (i) By means of Eq. (11.12), one obtains the spatial part of the fundamental re-
sponse tensor from the conductivity tensor σij(k, ω) in the unprimed coordinate system,
and by Eq. (11.11) one reconstructs from this the whole fundamental response tensor
χµν(k, ω) ≡ χ(k, ω). (ii) The fundamental response tensor transforms under a general
Lorentz transformation Λ ≡ Λµν ∈ O(1, 3) according to

χ′(k′, ω′) = Λχ(k, ω) Λ−1 , k′ = Λk , (11.26)

where k ≡ kµ = (ω/c,k)T denotes the relativistic four-momentum. (iii) In the primed
coordinate system, one invokes again Eq. (11.12) to read out the conductivity tensor
σ′ij(k

′, ω′). The concatenation of these operations leads to a complicated (i.e., non-
tensorial) transformation law for the microscopic conductivity tensor under general
Lorentz transformations. In particular, for a boost of the form

Λ(v) =

 γ −γvT/c

−γv/c
↔
Λ

 , (11.27)

where v is the velocity of the primed coordinate frame relative to the unprimed frame,
γ = 1/

√
1− |v|2/c2, and

↔
Λ =

↔
1 + (γ − 1)

vvT

|v|2
, (11.28)

this transformation law reads as follows:

↔
σ ′(k′, ω′) =

1

γ

(
1− v ·k

ω

)−1 ↔
Λ

(
↔
1 − vk

T

ω

)
↔
σ (k, ω)

(
↔
1 − kv

T

ω

)
↔
Λ . (11.29)
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This is the most general transformation law for the conductivity tensor, which incor-
porates all effects of anisotropy and relativistic retardation. In Ref. [SS16a], we have
shown that in the special case of a constant, scalar conductivity, this transformation
law can be used to rederive the standard textbook generalization of Ohm’s law (see
e.g. Refs. [Reb12, Sct. 5.3], [Jac99, Problem 11.16], or [Tsa97, Problem 9-15]). Finally,
we remark that by a similar logic, one can also derive the relativistic transformation
behavior of all other linear electromagnetic response functions (see Ref. [SS17b]).

11.4. Refractive index

Within an ab initio context, the standard formula for the refractive index n in terms
of the relative permittivity εr and the relative permeability µr (see e.g. Refs. [BW99;
Gri99; Hec02; LL84])

n2 ?
= εrµr , (11.30)

cannot be upheld. This formula is usually deduced from the alleged wave equation for
the electric field in the medium (see Refs. [Fox10, Appendix A.2] or [Nol07, Sct. 4.3.1]),(

ε0εr µ0µr
∂2

∂t2
−∆

)
E(x, t)

?
= 0 . (11.31)

However, both this wave equation and the ensuing standard formula for the refractive
index have been refuted in Ref. [SS15b]. Instead, it turns out that the fundamental,
Lorentz-covariant wave equation for the electromagnetic four-potential as used in plasma
physics (see Refs. [Mel08; MM91], and [SS15b, Eq. (4.7)]),((

−ω
2

c2
+ |k|2

)
ηµν − kµkν − µ0 χ̃

µ
ν(k, ω)

)
Aν(k, ω) = 0 , (11.32)

is equivalent [SS15b] to the simple condition

↔
ε r(k, ω)E(k, ω) = 0 , (11.33)

which means that the electric field component of the wave in the medium lies in the
kernel (null-space) of the dielectric tensor. (Note that in Eq. (11.32), χ̃µν denotes the
proper fundamental response tensor, which relates the induced four-current to the total
four-potential; see [SS15b, Eq. (2.50)].) In the isotropic limit, the longitudinal and
transverse oscillations decouple, and hence we obtain

εr,L(k, ω)EL(k, ω) = 0 , (11.34)

εr,T(k, ω)ET(k, ω) = 0 . (11.35)

Here, the longitudinal and transverse dielectric functions are defined by the equality

↔
ε r(k, ω) = εr,L(k, ω)

↔
PL(k) + εr,T(k, ω)

↔
PT(k) , (11.36)
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x

y

x′

y′

v v

k

Figure 11.3: Schematic representation of the Fizeau experiment, which established that the
speed of light u′ in a moving medium is related to the speed u in the medium at rest by u′ =
u− v(1− 1/n2). Here, v denotes the speed of the medium and n its refractive index.

where PL(k) and PT(k) denote the longitudinal and transverse projection operators,
respectively (see [SS15a, Sct. 2.1]). While Eq. (11.34) describes transverse light waves in
the medium, Eq. (11.35) describes the so-called plasmons (see Ref. [MR02, Eq. (4.92)]).
Thus, the theory of plasmons combines with the theory of transverse electromagnetic
waves in media into one unified wave equation in materials, which is given by Eq. (11.33).

Furthermore, in an ab initio context the refractive index is defined from the dispersion
relation ω = ωkλ of the medium. The latter is obtained from the condition

det
↔
ε r(k, ωkλ) = 0 , (11.37)

which is necessary for having a nontrivial solution of Eq. (11.33). Concretely, the speed
of light in materials, u = ukλ , is defined as

ukλ =
ωkλ
|k|

, (11.38)

which generalizes the vacuum relation c = ω/|k|, and the refractive index is given by

nkλ =
c

ukλ
=
c|k|
ωkλ

. (11.39)

In particular, we have shown in Ref. [SS15b, Appendix A] that this definition allows
for a straightforward rederivation of the Fizeau result for the refractive index of moving
media (see Fig. 11.3).
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Thus the Coulomb correlation energy is too big, and can therefore be ne-
glected. If this reason for neglecting Coulomb effects seems odd, remember
that we are not trying to explain and predict everything about the solid. We
are just trying to understand superconductivity.

R. P. Feynman [Fey72, p. 269]

In this thesis, we have further developed and improved (quantum) field theoretical tech-
niques as they are presently used in materials physics, and we have applied them to
models describing the Rashba spin splitting of the bismuth tellurohalides. We consider
the main achievements of this thesis—for the articles on which this thesis is based,
see p. xi—to be the following:

Part I (Chapters 1–3).

1. The systematic derivation of the relations between plane-wave functions, Bloch
functions, Bloch-like functions, Wannier functions and atomic orbitals in the gen-
eral case including the spin-orbit coupling (Scts. 1.3–1.4).

2. The straightforward derivation of the Rashba Hamiltonian from symmetry condi-
tions (Sct. 2.2, which is in accordance with Ref. [BAN11]), and the construction
of a minimal tight-binding model on the hexagonal lattice which reproduces the
Rashba spin splitting near the center of the Brillouin zone (Sct. 2.3).

3. The construction of the “effective single-orbital model” in Sct. 3.3, which as a two-
band tight-binding model accurately reproduces the spin-split lowest conduction
bands of BiTeI.

Part II (Chapters 4–5).

4. The definition of lattice Green functions and the clarification of their relation to
the fundamental Green functions (Sct. 4.3).

5. The derivation of the Green function perturbation theory (for temperature Green
functions in imaginary time) from their fundamental equations of motion, in par-
ticular the straightforward proof of Wick’s theorem (Theorem 4.8; Ref. [SS17a]).
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6. The development of Universal Feynman Graphs as a simple and efficient graphical
representation which can be universally used for various Green function techniques
(Sct. 4.5; for the advantages of these graphs, see p. 106).

7. The simple proof of the Grassmann field integral representation of fermionic Green
functions, which uses only the factorization property of the Grassmann–Gaussian
integral (Theorem 5.3; Ref. [SS17a]).

8. The detailed and transparent proofs of the Feynman graph expansion of the con-
nected and the one-line-irreducible temperature Green functions, i.e., Theorem 5.7
and Theorem 5.17 (building on the proofs given in Refs. [NO98] and [Zin02]).

Part III (Chapters 6–9).

9. The detailed derivation of the renormalization group equations for the connected
and the one-line-irreducible Green functions in Scts. 6.2–6.3 (following the lines of
Ref. [SH01] with only very slight simplifications, see the remark on p. 168).

10. The derivation of the explicit renormalization group equations for the momentum-
discretized interaction vertex in the refined projection scheme (see the projection
ansatz (7.65) and Theorem 7.3, as well as the discussion in Ref. [Sch+16a]).

11. The general solution of the mean-field theory for a time-reversal invariant Hamilto-
nian Hss′(k) with a singlet superconducting interaction, which generalizes results
of Ref. [SU91] to the non-SU(2)-symmetric case (see Sct. 8.4, in particular the
Bogoliubov transformation defined by Eqs. (8.87)–(8.88)).

12. The application of the combined functional renormalization and mean-field ap-
proach to the Rashba model with an attractive local interaction, and the ensuing
prediction of the superconducting interaction, the gap function and the order pa-
rameter (Ch. 9 and Ref. [Sch+16a]).

Part IV, Chapter 10. The theoretical description of the following effects in the Rashba
semiconductor BiTeI:

13. Optical transitions within the spin-split conduction bands, which are allowed due
to the spin-orbit coupling (Sct. 10.1 and Ref. [Lee+11]).

14. The enhanced infrared magneto-optical response, which also results from transi-
tions within the spin-split conduction bands (Sct. 10.2 and Ref. [Dem+12]).

15. The orbital paramagnetic response, which has been predicted in the Rashba model
already in Ref. [BR60] and which has been observed experimentally for the first
time in BiTeI (Sct. 10.3 and Ref. [Sch+12]).

Part IV, Chapter 11. The systematic development of the Functional Approach to
electrodynamics of media in Refs. [SS15a; SS15b; SS16a; SS16b; SS16c]. This approach
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constitutes a microscopic field theory of electromagnetic material properties which sits
in accordance with ab initio physics. In particular, this approach comprises:

16. The Universal Response Relations, which constitute model- and material-indepen-
dent relations between linear electromagnetic response functions (Sct. 11.2).

17. The proof that Ohm’s law is Lorentz covariant, and the ensuing relativistic trans-
formation law for the conductivity tensor (Sct. 11.3).

18. The refutation of the standard formula for the refractive index, n2 = εrµr , and its
replacement by a microscopic theory of the refractive index, which is based on the
dispersion relation as derived from microscopic wave equations for the electromag-
netic field in materials (Sct. 11.4).

Finally, we provide a view of a possible first-principles study of the low-temperature
properties of BiTeI, which combines several techniques developed in this thesis. One
may start from the effective single-orbital model of Sct. 3.3, which accurately describes
the dispersion of the two lowest conduction bands of BiTeI. One may add to this an
electron-electron interaction obtained from the cRPA method [Ari12; Ary+04] and/or
a phonon-mediated interaction as derived in Ref. [SS16b]. This model may be investi-
gated using the combined functional renormalization and mean-field approach developed
in Ref. [Sch+16a], which allows one in particular to predict the low-temperature phase
diagram and (for a superconducting phase) the gap function as well as the order pa-
rameter. Furthermore, from the resulting effective Hamiltonian one may deduce the
(wavevector- and frequency-dependent) conductivity tensor by employing the Kubo for-
malism. This quantity can in turn be used to compute all other linear electromagnetic
response properties via the Universal Response Relations [SS15a; SS16c], and in this
way to characterize in detail the (possibly superconducting) phases of the material. In
summary, we expect the field theoretical techniques developed in this thesis to be useful
for an unbiased theoretical description of the low-temperature properties of spin-based
correlated materials.
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[ID89] C. Itzykson and J.-M. Drouffe, Statistical field theory, vol. 1: From Brownian
motion to renormalization and lattice gauge theory, Cambridge University
Press, Cambridge, 1989.

[IEEE16] IEEE Magnetics Society, Magnetic units, url: http://www.ieeemagnetic
s.org/index.php?option=com_content&view=article&id=118&Itemid=

107 (visited on 2016-08-27).

[Ish+11] K. Ishizaka et al., Giant Rashba-type spin splitting in bulk BiTeI, Nat. Mater.
10, 521 (2011).

http://dx.doi.org/10.1143/PTP.42.494
http://dx.doi.org/10.1143/PTP.42.494
http://dx.doi.org/10.1143/PTP.42.1284
http://dx.doi.org/10.1143/PTP.42.1284
http://dx.doi.org/10.1016/0375-9601(70)90117-9
http://dx.doi.org/10.1140/epjb/e2005-00416-8
http://dx.doi.org/10.1140/epjb/e2005-00416-8
http://dx.doi.org/10.1088/0953-8984/21/39/395502
http://dx.doi.org/10.1088/0953-8984/21/39/395502
http://www.ieeemagnetics.org/index.php?option=com_content&view=article&id=118&Itemid=107
http://www.ieeemagnetics.org/index.php?option=com_content&view=article&id=118&Itemid=107
http://www.ieeemagnetics.org/index.php?option=com_content&view=article&id=118&Itemid=107
http://dx.doi.org/10.1038/nmat3051
http://dx.doi.org/10.1038/nmat3051


254 References

[IUCr05] International Union of Crystallography, International tables for crystallog-
raphy, vol. A: Space-group symmetry, Springer, Dordrecht, 2005.

[Jac99] J. D. Jackson, Classical electrodynamics, 3rd ed., John Wiley & Sons, Inc.,
Hoboken, 1999.

[Kat04] Y. Katznelson, An introduction to harmonic analysis, 3rd ed., Cambridge
University Press, 2004.

[KF96] G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-
energy calculations using a plane-wave basis set, Phys. Rev. B 54, 11169
(1996).

[KL65] W. Kohn and J. M. Luttinger, New mechanism for superconductivity, Phys.
Rev. Lett. 15, 524 (1965).

[KO56] R. Kubo and Y. Obata, Note on the paramagnetic susceptibility and the
gyromagnetic ratio in metals, J. Phys. Soc. Jpn. 11, 547 (1956).

[Koo+09] H. C. Koo et al., Control of spin precession in a spin-injected field effect
transistor, Science 325, 1515 (2009).

[Kub57] R. Kubo, Statistical-mechanical theory of irreversible processes. I. General
theory and simple applications to magnetic and conduction problems, J.
Phys. Soc. Jpn. 12, 570 (1957).
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