
Dissertation
submitted to the

Combined Faculties for the Natural Sciences and for Mathematics
of the Ruperto-Carola University of Heidelberg, Germany

for the degree of
Doctor of Natural Sciences

presented by

Diplom-..

born in:...

Oral-examination:................................

Diagnosing Software Configuration

Errors via Static Analysis

Adviser: Prof. Dr. Artur Andrzejak

Abstract

Software misconfiguration is responsible for a substantial part of today’s system fail-
ures, causing about one quarter of all user-reported issues. Identifying their root
causes can be costly in terms of time and human resources. To reduce the effort,
researchers from industry and academia have developed many techniques to assist
software engineers in troubleshooting software configuration.

Unfortunately, there exist some challenges in applying these techniques to diag-
nose software misconfigurations considering that data or operations they require are
difficult to achieve in practice. For instance, some techniques rely on a data base of
configuration data, which is often not publicly available for reasons of data privacy.
Some techniques heavily rely on runtime information of a failure run, which requires
to reproduce a configuration error and rerun misconfigured systems. Reproducing
a configuration error is costly since misconfiguration is highly relevant to operating
environment. Some other techniques need testing oracles, which challenges ordinary
end users.

This thesis explores techniques for diagnosing configuration errors which can be
deployed in practice. We develop techniques for troubleshooting software configura-
tion, which rely on static analysis of a software system and do not need to execute
the application. The source code and configuration documents of a system required
by the techniques are often available, especially for open source software programs.
Our techniques can be deployed as third-party services.

The first technique addresses configuration errors due to erroneous option values.
Our technique analyzes software programs and infer whether there exists an possible
execution path from where an option value is loaded to the code location where the
failure becomes visible. Options whose values might flow into such a crashing site
are considered possible root causes of the error. Finally, we compute the correlation
degrees of these options with the error using stack traces information of the error and
rank them. The top-ranked options are more likely to be the root cause of the error.
Our evaluation shows the technique is highly effective in diagnosing the root causes
of configuration errors.

The second technique automatically extracts names of options read by a program
and their read points in the source code. We first identify statements loading option
values, then infer which options are read by each statement, and finally output a map
of these options and their read points. With the map, we are able to detect options
in the documents which are not read by the corresponding version of the program.
This allows locating configuration errors due to inconsistencies between configuration
documents and source code. Our evaluation shows that the technique can precisely
identify option read points and infer option names, and discovers multiple previously
unknown inconsistencies between documented options and source code.

v

Zusammenfassung

Konfigurationsfehler sind für einen erheblichen Teil heutiger Systemfehler verant-
wortlich und verursachen etwa ein Viertel aller von Nutzern gemeldeten Probleme.
Ihre Ursachen zu bestimmen kann sehr teuer sein, gemessen in Zeit und menschlichen
Ressourcen. Um den Aufwand zu reduzieren, haben Forscher aus der Industrie und
Akademia viele Techniken entwickelt, um den Software-Ingenieuren beim Beheben
von Problemen mit Softwarekonfigurationen zu helfen.

Dennoch bleibt es eine Herausforderung, diese Techniken anzuwenden, um Kon-
figurationsfehler zu erkennen, da die Daten und Eingriffe, die für deren Anwendung
notwendig sind, in der Praxis schwer zu beschaffen bzw. durchzuführen sind. Zum
Beispiel benötigen manche Techniken Datenbanken mit Konfigurationsdaten, die auf-
grund von Datenschutzbedenken oftmals nicht frei verfügbar sind. Manche Techniken
hängen stark von Laufzeitinformation fehlgeschlagener Programmläufe ab, was deren
Reproduktion durch wiederholtes Ausführen nötig macht. Das Reproduzieren von
Fehlern durch Miskonfiguration ist teuer, da Miskonfigurationen stark von der Umge-
bung bei der Ausführung abhängen. Manche anderen Techniken verwenden Test-
Orakel, deren Einsatz gewöhnliche Nutzer überfordert.

Diese Arbeit untersucht praktisch anwendbare Techniken zur Diagnose von
Fehlern durch Miskonfigurationen. In dieser Dissertation wurden Techniken zur Di-
agnose von Konfigurationsfehler entwickelt, die auf statischer Analyse von Software-
Systemen beruhen und keine Ausführung des Systems benötigen. Unsere Techniken
setzen nur voraus, dass der Quelltext der Anwendung und die Dokumentation der
Konfigurationen verfügbar sind. Dies ist heutzutage oft der Fall, insbesondere im
Fall von Open-Source-Software. Unsere Techniken können als Dienste angeboten
werden.

Die erste Technik behandelt Fehler durch fehlerhafte Werte von Konfigura-
tionsoptionen. Sie analysiert Softwareprogramme und errechnet, ob ein möglicher
Ausführungspfad besteht zwischen den Orten, an denen der Wert der Option einge-
lesen wird, und dem Ort des Auftretens des Programmabsturzes bei der Ausführung.
Konfigurationsoptionen, deren Wert Einfluss auf diesen Absturzort haben könnten,
werden als mögliche Ursachen in Betracht gezogen. Schließlich werden die Ko-
rrelationsgrade dieser Optionen mit den durch die Stacktraces aufgezeichneten
Absturzorten ermittelt und die Optionen danach in eine Rangfolge gebracht. Die
ranghöchsten Optionen haben die höchste Wahrscheinlichkeit, eine Ursache des
Absturzes zu sein. Unsere Auswertung zeigt, dass diese Technik sehr effektiv dabei
ist, die Ursache von Miskonfigurationsfehlern zu identifizieren.

Die zweite Technik extrahiert Konfigurationsoptionen, die ein Programm ein-
liest, inklusive der Orte im Programmquellcode, an denen diese eingelesen werden.
Wir identifizieren zunächst Anweisungen, die Konfigurationsoptionen laden, ermitteln
dann, welche Optionen durch diese Anweisungen gelesen werden, und geben schließlich
eine Zuordnung der Optionen zu den Einleseorten aus. Diese Zuordnung erlaubt uns,

vi

Optionen zu finden, die dokumentiert sind, aber tatsächlich nicht vom Programm der
zugehörigen Version eingelesen werden. So können Konfigurationsfehler vermieden
werden, die auf Inkonsistenz zwischen Dokumentation der Konfigurationsoptionen
und dem Quellcode beruhen. Unsere Auswertung zeigt, dass diese Technik Einlese-
orte von Optionen präzise bestimmen und Optionsnamen erkennen kann. Sie konnte
auch mehrere zuvor unbekannte Inkonsistenzen zwischen Dokumentation von Konfig-
urationen und Quellcode in einer großen Anwendung aufzeigen.

vii

Acknowledgements

I owe deep thanks to my advisor Artur Andrzejak, for giving me the chance to step
into the world of software engineering. I am profoundly grateful to Artur, for giving
me the freedom to explore and trusting me to tackle real-world software issues. He has
taught me a great deal over last 4 years in research, working on real world problems,
developing practical solutions, and being simple and specific. His tireless feedback on
ideas, paper drafts, and talks vastly increase the quality of my work. Re-reading my
old papers, I am struck how very much his advice has improved my scientific writing.
His many suggestions on life and career will influence me in my future pursuits.

Thanks to all my colleagues and friends, Mohammadreza Ghanavati, Lutz Büch,
Diego Costa, and Kai Chen. Over years, they have been so friendly and patient to
give advice on my projects and review my manuscripts over and over again before
deadlines. Of course, thanks to them for all the fun time and discussion we had.
Special thanks to Lutz Büch for the help in my life in Germany. I cannot speak
German and have got a lot of help from him. I cannot remember how many letters
he has read and how many calls he has made for me. Without his help, I would have
had a lot of troubles.

Thanks to the institute of Computer Science, Heidelberg University for providing
a great research environment. The two rows of cherry trees near my old office (Im
Neuenheimer Feld 348), so beautiful for all seasons, had accompanied me for 4 years
and made my life so enjoyable.

ix

To my wife and parents.

x

Contents

1 Introduction 1

1.1 Configurable Software Maintenance 1

1.1.1 Software Misconfiguration . 2

1.1.2 Configuration Options Documentation 3

1.2 Our Approaches for Troubleshooting Software Configuration 4

1.2.1 ConfDoctor: Automated Diagnosis of Configuration Errors . . 4

1.2.2 ORPLocator: Identifying Read Points of Configuration Options 6

1.3 Design Principles . 7

1.4 Contributions . 8

1.5 Outline . 10

2 Foundations 13

2.1 Configurable Software Systems . 13

2.1.1 Configurable Code Base . 14

2.1.2 Configuration Setting . 16

2.1.3 Mapping . 18

2.2 Static Program Analysis . 22

2.2.1 Program Slicing . 23

2.2.2 Thin Slicing . 31

2.2.3 Call Graph . 33

2.2.4 srcML-based Analysis . 35

3 Related Work 37

3.1 Misconfiguration Prevention . 37

3.1.1 Alerting on Mistakes in Configuration Setting 37

xi

3.1.2 Detecting Inconsistencies Due to Option Changes 39

3.1.3 Detecting Vulnerability in Handling Misconfigurations 39

3.2 Misconfiguration Diagnosis . 40

3.2.1 Program Analysis Approaches 40

3.2.2 Comparison-based Approaches 42

3.2.3 Replay-based Approaches . 43

3.2.4 Knowledge-based Approaches 43

4 ConfDoctor: Automated Diagnosis of Software Misconfiguration 45

4.1 Introduction . 45

4.1.1 Motivation . 45

4.1.2 Core Idea . 46

4.1.3 Challenges and Solutions . 48

4.2 Problem Statement . 49

4.3 ConfDoctor Approach . 50

4.3.1 Overview . 50

4.3.2 Configuration Propagation Analysis 50

4.3.3 Stack Trace Analysis . 51

4.3.4 Chopping Analysis . 52

4.3.5 Correlation Degrees . 53

4.3.6 Ranking Configuration Options 57

4.4 Implementation . 58

4.5 Evaluation . 59

4.5.1 Experimental Setup . 59

4.5.2 Overall Accuracy . 61

4.5.3 Comparison of Accuracy of Cor and Cor st 63

4.5.4 Impact of Variants of the Dependence Analysis on Accuracy . 66

4.5.5 Comparison with Our Previous Work 69

4.5.6 Time Overhead of Diagnosis 70

4.5.7 Discussion . 70

4.6 Summary . 72

xii

5 ORPLocator: Locating Option Read Points 75

5.1 Introduction . 75

5.1.1 Motivation . 76

5.1.2 Idea . 78

5.1.3 A Challenge and Solution . 80

5.2 Problem Statement . 80

5.3 ORPLocator . 82

5.3.1 Overview . 83

5.3.2 Identifying Subclasses of the Configuration Class 83

5.3.3 Identifying the Get-Methods 84

5.3.4 Locating Call Sites of Get-Methods 84

5.3.5 Inferring Option Names . 86

5.3.6 An Example . 91

5.4 Implementation . 92

5.5 Evaluation . 92

5.5.1 Experimental Setup . 93

5.5.2 RQ1: Effectiveness . 94

5.5.3 RQ2: Option Inconsistencies 98

5.5.4 RQ3: Comparison with a Previous Technique 99

5.5.5 RQ4: Time Cost . 101

5.5.6 Discussion . 101

5.6 Summary . 102

6 Conclusion 105

6.1 Summary . 105

6.2 Future Directions . 106

6.2.1 Generalizing the Problem . 106

6.2.2 Misconfiguration Repair . 107

6.2.3 Applying Precise Analysis to Large Scale Programs 107

Bibliography 109

xiii

List of Tables

4.1 Benchmark applications. 59

4.2 Configuration errors used in our evaluation. 60

4.3 Experimental results. The two columns under ”Rank of the root cause”
show the rank of the actual root cause for each error by the two pro-
posed metrics. Columns under ”Statistics for rank” show the minimal
method distance and the key frame in diagnosing an error. 62

4.4 The diagnosis results with different variants of dependency and
ConfDebugger’s diagnosis results. Pairs R/S indicate the ranks of
root causes in diagnosis, where R is the rank of the actual root cause
in a ranked list of suspects of size S (highest rank is 1). 67

4.5 The time overhead of diagnosing a misconfiguration. Column ”FS &
Improting” indicates the time of forward slicing and importing state-
ments into database for an application. Column ”BS & Importing”
represents the time of backward slicing and importing statements into
database for each error. Column ”Analysis” indicates the analysis time
for each error. The time unit is the second. 71

5.1 Subject programs. 93

5.2 The results of ORPLocator. 94

5.3 Categories of options whose read points are located. 96

5.4 Bugs detected by ORPLocator . 96

5.5 The number of entry points for each module. 99

5.6 The analysis time and file sizes of srcML output. 101

xiv

List of Figures

2.1 The configuration mechanism in a configurable system 13

2.2 Implementation of a bicycle including a feature Motor 16

2.3 Implementation of a bicycle including a feature Motor 17

2.4 A code snippet in PostgreSQL-9.5.4 19

2.5 A code snippet in Log4J-configuration-converter 20

2.6 A code snippet in Hadoop 2.7.1 . 20

2.7 (a) An example program (b) A forward slice of the program the crite-
rion (3, sum). 22

2.8 (a) An example program (b) A backward slice of the program the
criterion (11, i). 23

2.9 CFG of the example program of Figure 2.7 (a). 25

2.10 PDG of the example program of Figure 2.7 (a) 26

2.11 The backward slice of the example program in Figure 2.8 (a). 27

2.12 An example multi-procedural program. 29

2.13 The SDG of the example prograom in Figure 2.12. 30

2.14 The backward slice of the example program in Figure 2.12. 32

2.15 An example program to illustrate thin slicing. 33

2.16 A example call chain of procedures and its context-insensitive and
context-sensitive call graphs. 34

2.17 A example code in Java and its srcML representation. 36

4.1 Example showing how developers diagnose a configuration error based
on the stack trace. The statements in bold are program points refer-
enced by the stack trace entries. The statement underlined is a read
point of a configuration option. 47

4.2 The scenario of the configuration error we address. 49

xv

4.3 An example illustrates how the option read points ORPs of configura-
tion options c1 and c2 and frame execution FEPs of an exception give
rise to the merged forward slice MFS(c1) of c1, the merged backward
slice MBS, and the merged chop MCh(c1). 53

4.4 A fragment of a call graph with call paths from the method containing
Sf to the method containing Sb . 54

4.5 Code excerpt from Hadoop: the value of the configuration option
”fs.default.name” is passed through 5 methods until it is checked . . . 65

4.6 Excerpt of the Randoop related to error #10 68

5.1 HDFS-8274: A real configuration issue in Apache Hadoop Distributed
File System 2.7.0. 76

5.2 A real case of how an option is used in Hadoop 2.7.1. Variable names
are replaced by capitalized letters to improve readability. 77

5.3 An example for illustrating our idea. 79

5.4 An example scenario of the key-value configuration schema 81

5.5 The workflow of our technique . 82

5.6 A segment of Backus-Naur Form (BNF) grammar specification for a
method call . 85

5.7 A segment of Backus-Naur Form (BNF) grammar specifying the use
of a variable . 87

5.8 A segment of Backus-Naur Form (BNF) grammar specification for ex-
pressions of generating an option name 89

5.9 The distribution of read points of documented options for each module 98

5.10 The comparison on the number of documented options 100

5.11 The comparison on the number of read points of documented options 100

xvi

Chapter 1

Introduction

Nowadays most software systems are designed to be configurable for handling vari-

ations in user and target-platform requirements. By configuration setting, various

instances of a configurable software system can be generated for different scenar-

ios and use cases. The preferred method of providing configurability for software

programs is to expose a series of configuration options, also known as parameters.

Specifying different values for a configuration option can activate or inactivate the

software functionality associated with the option. This brings a lot of convenience for

users to customize software systems based on their requirements.

Due to the growing functionality and size of today’s software, the number of

configuration options in a software system increases at a rapid rate. The number

of configuration options in a highly-configurable system can reach thousands. For

instance, Mozilla Firefox 43.0, an open source web browser, has over 2000 configura-

tion options available to users [1]. Apache Hadoop 2.7.1., a software framework, has

more than 800 configuration options [34]. MySQL database server 5.6 has more than

461 configuration options controlling different features and adjusting the performance

at runtime [5]. Apache HTTP server 2.4 has 550+ configuration options across all

modules [2].

1.1 Configurable Software Maintenance

Configurable software systems require costly maintenance. Meanwhile, mistakes can

be easily introduced from users during configuration setting and lead to system fail-

ures. Diagnosing these failures takes a huge amount of human effort. On the other

1

hand, additional effort is needed to document configuration options and maintain

them as configurable software evolves. We further discuss it in these two aspects.

1.1.1 Software Misconfiguration

Configuration options bring much flexibility in customizing an application. On the

other hand, configuration options give users choices to determine option values. Users

can easily make mistakes in configuration setting due to the following factors.

First, little guidance is provided for configuration setting. The survey by Hubaux

et al. shows 56% of Linux and eCos users complained about the lack of guidance for

making configuration decisions [38]. Documents searched over the Internet are often

out of date, i.e., do not match with the system a user is working on [46].

Second, users are typically not well trained. Misunderstanding documents or

ignorance of instructions introduces errors in configuration setting. For instance,

Rabkin and Katz report that memory mismanagement causes approximately one-

third of all misconfiguration problems in Hadoop systems [62]. The major reason is

that users do not have a deep understanding of how Hadoop manages the memory.

Finally, the design and implementation of configuration mechanisms are not user-

friendly. Despite the emergence of configuration wizards and graphical user interfaces,

configuration files still represent the primary means of storing option data. Errors can

be easily introduced in the configuration file due to typos, structural mistakes and

semantic mistakes. These errors are often difficult to be realized by a user without

the aid of functionality that validates option values in a system.

Due to these factors, misconfigurations frequently occur in the administration of

software systems. Studies show software misconfigurations are one of the major causes

of today’s system failures [32, 53, 54, 87, 59]. The investigation in [88] shows that

around 27% of the issues in one company’s costumer-support database are labeled as

configuration-related.

Diagnosing configuration errors is difficult for end users. Diagnostic messages in

a configuration error are often inadequate and do not provide a clear hint for solving

the error. According to studies [38, 88], a diagnostic message is often cryptic, hard

to understand, or even misleading. Another investigation [13] also indicates that up

to 25% of a software maintainer’s time is spent on following blind alleys suggested

by poorly constructed and unclear messages. Users cannot easily solve configuration

errors with limited domain knowledge.

2

Eventually, a large number of configuration errors are reported to developers or

technical support. Remotely diagnosing these configuration errors for users requires

tremendous efforts, which significantly increases the cost of software administration

[43].

1.1.2 Configuration Options Documentation

Software projects often adopt a distributed configuration management model, which

does not have a centralized module for dealing with all configuration data in a software

system [60]. Instead, each module in the system has its own configuration file for users

setting option values and loads the file at runtime. If a predefined option is given a

value in the file, the value will be loaded and create the corresponding effect on the

system at runtime. Otherwise, the default value of this option will be used.

This configuration management model allows developers to freely add, remove,

and modify options without accessing any global module in the software development.

But it brings challenges for configuration option documentation.

Documenting configuration options requires a huge amount of manual effort. Doc-

umentation is often separated from code development. Without a centralized option

management module, option documentation for a software system needs communica-

tion with developers of each module. Otherwise, a documentation writer has to man-

ually inspect code and extract options based on convention, which is time-consuming

and requires a deep understanding of how options are used in the program.

Besides, configuration options change as software evolves [93]. For instance, the

number of configuration options in Apache Hadoop [34] increased to over 800 in

version 2.7.1 from 141 in version 0.20.2. Maintaining configuration options requires

human effort as well.

In practice, human resource for documentation is limited in a project. Documen-

tation only comes after a major release and cannot stay in step with code evolution.

This lag can lead to inconsistencies between documentation and source code, i.e.,

option changes in source code are not timely updated in documentation as software

evolves. These inconsistencies can bring tricky misconfiguration issues. For instance,

in the guidance of documentation, users could use a removed option in the system,

which brings frustrating experience that the setting stated in documentation cannot

create expected behavior on the system.

3

1.2 Our Approaches for Troubleshooting Software

Configuration

Automated diagnosis of such configuration errors can significantly decrease the cost of

maintaining configurable software systems and has been attracting a lot of attention

from academia and industry [61, 91, 87, 52, 85, 89, 60, 12, 10, 84, 72, 76, 90, 28, 63,

35, 49, 80]. Many techniques in prior work have a good performance in diagnosing

configuration errors, i.e., precisely pinpointing root causes of software misconfigura-

tions. However, applying those techniques in practice still faces challenges such as

collecting user configuration data, changing the executing environment, heavily rely-

ing on run time information. We will discuss those approaches and their challenges

in Chapter 3.

In this thesis, we explore using static program analysis techniques to develop

approaches of diagnosing configuration errors. The proposed approaches can be de-

ployed in practice without challenges previous techniques have. Our work mainly

consists of two parts. First, we develop an approach capable of diagnosing configu-

ration errors due to mistakes in setting configuration values. Second, we propose an

approach for identifying statements loading configuration option values in the source

code, which can be used to diagnose configuration errors due to inconsistencies be-

tween source code and documentation. Both approaches are implemented as tools,

namely ConfDoctor and ORPLocator. Next, we briefly introduce the two approaches.

1.2.1 ConfDoctor: Automated Diagnosis of Configuration

Errors

Parameter-related misconfigurations are a major part of user configuration errors

according to studies [88, 60, 9]. These configuration errors are mainly caused by

mistakes from users at setting option values. Pinpointing the incorrectly-configured

option from hundreds, even thousands of options in a system is difficult for a user

with limited domain knowledge.

ConfDoctor addresses this types of configuration errors. The core idea of Conf-

Doctor is to use static analysis to track down data flow of each option value in the

program and infer whether the data flow goes to the crashing site of an error. Op-

tions whose data flow goes to the crashing site are considered relevant to the error.

Then we further compute correlation degrees of each relevant option with the error

4

by analyzing how possible its data flow occurs prior to a failure. Finally ConfDoctor

outputs a ranked list of options based on their correlation degrees. Options at the

top of the list are considered as potential root causes of the error.

Relying on static analysis, ConfDoctor requires the program of a being diagnosed

system, all option names of the system (not option values), and the stack traces of

a configuration error. The program and option names of a system are often publicly

available. Stack traces are assumed in the error message. ConfDoctor can be deployed

as a third-party service for diagnosing configuration errors since our analysis is fully

automated. Compared to prior work, ConfDoctor has advantages in several aspects.

End-users Oriented. ConfDoctor can be deployed as a service to diagnose

configuration errors for users as we stated. Users do not need to report them to

developers. This solves two major problems of diagnosing configuration errors at

developers site.

First, reproducing errors is needed at developers or technical support site. This can

be hard and costly. In the real world, reproducing classical (i.e. code) errors is quite

difficult. Errors often occur during production runs. Users prefer not to report all

essential information to reproduce an error because of privacy and economic concerns.

Research [67] has shown that there is a strong mismatch between what developers

need to reproduce and fix a bug and what users tend to provide. Another study [16]

has shown that bug reports lack information needed for bug reproduction. For some

cases, reproducing configuration errors can be more costly and critical in terms of

data privacy than reproducing classical errors. One reason is that a misconfiguration

might manifest only with specific settings or a state of the runtime environment.

This environment information needs to be collected for error reproduction, and the

environment needs to be replicated as well.

Second, users cannot get a response from developers in short time. Research

[87] finds that developers take laid-back roles in handling misconfiguration problems.

Configuration errors are considered user’s faults instead of bugs in software. It takes

a long time getting answers from developers for configuration errors.

Reducing Necessity for Runtime Information. Our diagnosis targets crash-

ing failures due to misconfiguration. The main required information from the failure

run of a system is stack traces. There is no need to for program re-execution, code

instrumentation such as profiling information during runtime. Reproducing errors is

not needed.

5

Requiring No Sensitive Data from Users. The diagnosis does not require

configuration data of a user and information of runtime environment. The program

of being analyzed and its list of configuration options required by our analysis are

often publicly available, especially for open source software.

1.2.2 ORPLocator: Identifying Read Points of Configuration

Options

Configuration options documentation requires tremendous human effort as we stated.

The major part of the effort is spent on acquiring where options are used in code,

ensuring documented options are used and used options are documented. Automat-

ically identifying where options are used in source code would significantly reduce

human effort in maintaining configuration options documentation.

ORPLocator addresses this issue by identifying where an option value is loaded

in the source code and guaranteeing consistency of options between source code and

documentation. Given a program, ORPLocator is capable of extracting all options

read in the program and identifying where these options are read. One can easily

finds inconsistent options by comparing extracted options with documented options.

The core idea of ORPLocator is to mark the methods of loading configuration

option values, locate the call sites of these methods by analyzing the program, finally

infer which option is read at each call site. Then a map is built between names of

options read by the program and their locations of being read in the source code. OR-

Plocator can significantly reduce human effort in multiple aspects for the maintenance

of configurable software systems.

Configuration Options Documentation. ORPLocator can assist a documen-

tation writer by producing a first draft of configuration options documentation. More

importantly, it can extract configuration options for a subsequent version and easily

identify changes of configuration options. This saves the effort of acquiring options

changes during software evolution by manual code inspection or communication with

related developers.

Options Inconsistencies Detection. As we stated above, inconsistencies be-

tween documentation and source code can lead to tricky software misconfigurations.

ORPLocator can help detect these inconsistent options by extracting configuration

options in the present version of a program. Ineffective options for the version can be

detected by comparing extracted options against documentation. Analogously, it also

6

effectively detects inconsistent options between configuration files and source code of

a program.

Automated Misconfiguration Diagnosis. A large body of research [60, 87,

92, 12, 91, 25, 26] has attempted to automatically diagnose software configuration

errors. The approaches here include tracing the data flow of option values using

program analysis techniques such as program slicing and taint analysis. A prerequisite

for almost all of these works is a list of (typically manually specified) option read

points. Thus, our approach and tool can further automate these approaches and save

considerable manual efforts.

Extraction of Configuration Option Constraints. Another branch of work

[87, 91, 51, 52] attempts to prevent configuration errors by telling users whether given

option values violate pre-defined rules or a set of constraints. Also in this case the

identification of option read points is a requirement for using such techniques.

1.3 Design Principles

The large amount of configuration options in highly configurable systems is one of ma-

jor challenges for diagnosing a configuration error and makes it difficult to manually

check the values of all options. Those highly configurable software systems often have

large scales. This thesis attempts to develop practical techniques for solving these

issues. Our techniques should scale to large software systems and can be deployed in

practice.

Embracing imprecise Program Analysis. Program analysis has been devel-

oped for several decades and can apply to industrial-level software systems. But it is

still challenging to apply program analysis to large-scale software systems. In order

to analyze large-scale software systems, we have to make tradeoffs between scalability

and precision of program analysis techniques.

We embrace the imprecise program analysis on large-scale software systems.

Sound analysis is expensive and not feasible for large-scale software systems. We

give up analyzing certain behavior of systems on a fine-grained level. For instance,

heap dependence has to be ignored in the analysis of diagnosing configuration errors.

Control dependence is not considered for some analyses as well. Our goal is to suf-

ficiently solve targeted problems based on feasible program analysis, i.e., diagnosing

the root cause of a configuration error. Guaranteeing theoretical soundness and

completeness of program analysis is not our priority.

7

Our evaluation does not rely on formal proofs. We conduct experiments to demon-

strate that our techniques are sufficiently effective. To make our empirical claims

convincing, we used 29 configuration errors across 4 subject applications to validate

ConfDoctor’s effectiveness. For the evaluation of ORPLocator, we chose the latest

version of Apache Hadoop (version 2.7.1 before Jan. 2016) as our subject application,

which scales to over 1 million lines of code.

Being Deployable. Our analysis techniques target end users and cannot rely

on some assumptions which are difficult to achieve in practice. For instance, users

are willing to share configuration data and parameters of runtime environment for

diagnosing misconfiguration. Users accept versions of a program with significantly

low performance in practice, i.e., code-instrumented version of an application for

obtaining behavior data at runtime. Or users have enough domain knowledge to

get testing oracles when errors occur. Our analysis should not base this type of

assumptions.

Our analyses require source code being analyzed programs and its list of config-

uration options. We argue this requirement is reasonable in the age of open-source

software flourishing. In addition, the diagnosis of configuration errors needs the in-

formation of stack traces of a crashing failure, which is available in the occurrence of

a crashing error.

A major cause of static analysis techniques not being widely used in practice is the

high rate of false-positives in analysis results [56]. Our analyses needs to achieve high

accuracy and low false-positives in solving targeted problems. In our approaches,

we develop models and adopt heuristics to achieve high accuracy and precision of

diagnosis results.

1.4 Contributions

The thesis makes the following contributions in the field of software engineering. The

unique contributions are as follows:

� We propose an automated approach for diagnosing configuration errors which

relies on only static analysis. Compared to prior work, the approach does not

require reproducing errors and OS-level support. After a one-time preprocessing

of the source code and configuration options, it needs as only runtime input the

stack trace of the current error. It can be deployed as a third-party service for

end users.

8

� We develop a model to compute the correlation degree of each option with a

configuration error. Addressing the imprecise results from static analysis tech-

niques, a traditional problem for static analysis, we propose multiple heuristics

to improve the model of computing correlation degrees and make our approach

capable of precisely pinpointing the root cause of a configuration error.

� We implement the proposed approach, ConfDoctor, and evaluate the accuracy of

the approach on 29 configuration errors from 4 open source application programs

- JChord, Randoop, Hadoop, and HBase. ConfDoctor can successfully diagnose

27 out of 29 errors. For 20 errors, the root cause configuration option is the first-

ranked suggestion. For the other 7 diagnosed errors, the root cause is ranked

in the top four.

� We develop an approach for automatically extracting names of options read

in a program and locating where these options are read. Different from prior

work, our approach only scans source code of an application program and does

not have the issue that partial code is not analyzed due to imprecise reflection

analysis. ORPLocator can achieve more precise results than prior approaches.

� We implement our approach, ORPLocator, and conduct an empirical study

on the latest version (2.7.1) of Apache Hadoop, a widely popular framework

for distributed data processing with more than 1.3 million lines of source code

and 800+ configuration options. Results show that our approach is effective

in identifying option read points in source code. Besides, our study discovers

multiple previously unknown inconsistencies between documented options and

source code.

In summary, this thesis takes a solid step towards automated diagnosis of software

configuration issues. Our techniques are able to diagnose root causes of configuration

errors in a fully automated way and can be deployed in practice without obstacles

which existing techniques face. Our approaches and implementations incorporate

empirical observations on usage of configuration options for diagnosing software mis-

configurations. This significantly improves the scalability of the analysis on large-scale

software systems. Our techniques can facilitate and enhance a variety of research ef-

forts which require tracing configuration data in the software systems, e.g., extraction

of configuration rules and validation of software configuration.

9

Our work has been published in top-ranked venues in the domain of software

engineering.

� Zhen Dong, Artur Andrzejak, David Lo, and Diego Elias Costa. Orploca-

tor: Identifying reading points of configuration options via static analysis. In

IEEE 27th International Symposium on Software Reliability Engineering, IS-

SRE 2016, Ottawa, Canada, 23-27 October, 2016

� Zhen Dong, Artur Andrzejak, and Kun Shao. Practical and accurate pinpoint-

ing of configuration errors using static analysis. In 2015 IEEE International

Conference on Software Maintenance and Evolution, ICSME 2015, Bremen,

Germany, September 29 - October 1, 2015, pages 171–180, 2015

� Zhen Dong, Mohammadreza Ghanavati, and Artur Andrzejak. Automated

diagnosis of software misconfigurations based on static analysis. In IEEE 24th

International Symposium on Software Reliability Engineering, ISSRE 2013,

Pasadena, CA, USA, November 4-7, 2013 - Supplemental Proceedings, pages

162–168, 2013

The following publication is related to a broader field of automated software de-

bugging.

� Mohammadreza Ghanavati, Artur Andrzejak, and Zhen Dong. Scalable isolation

of failure-inducing changes via version comparison. In IEEE 24th International

Symposium on Software Reliability Engineering, ISSRE 2013, Pasadena, CA,

USA, November 4-7, 2013 - Supplemental Proceedings, pages 150–156, 2013

1.5 Outline

This thesis is organized into six chapters. The next Chapter 2 introduces foundations

of our work. First, we present a configurable software system architecture and com-

mon implementation mechanisms. Second, we introduce concepts of static analysis

techniques used in the thesis and briefly explain how they work.

Chapter 3 presents related work. In this chapter, we summarize prior techniques

of software configuration troubleshooting and group them into two parts: misconfig-

uration prevention and misconfiguration diagnosis. Then we briefly introduce how

these techniques work and discuss their limitations. The purpose of summaries is to

provide the background of our work.

10

Chapter 4 presents the approach of automated diagnosis of software configuration

errors. In this chapter, we describe addressed configuration errors, explain details

of our approach, and present its evaluation. Finally, we discuss its limitations and

threats to validity.

Chapter 5 presents our work of automatically identifying option read points for

configurable software systems. We first describe addressed configuration issues, then

explains how our approach works, and present its evaluation. Finally, we discuss its

limitations and threats to validity.

Chapter 6 presents conclusions drawn from our work and discusses possible direc-

tions for future work.

11

Chapter 2

Foundations

This chapter introduces configurable software systems and static analysis techniques

we used in this thesis. For configurable systems, we focus on the configuration mech-

anism implementations in today’s software systems and provide the context of con-

figuration issues we work on. For static analysis techniques, we mainly introduce

concepts and briefly explain how these techniques work, which helps understand our

approaches.

2.1 Configurable Software Systems

Configurable
Code Base

Conf. Data

Users
Option

Documentation

Mapping

Configuration
setting

Figure 2.1: The configuration mechanism in a configurable system

A configurable software system is a configurable code base and a set of mechanisms

for implementing predefined variations in the system’s structure and behavior [65, 22].

13

These variations can satisfy customer individuality requirements and deal with the

diversity of computing platforms, e.g., Windows and Linux.

Figure 2.1 shows the configuration mechanism in a configurable system, which

mainly is composed by three components: configuration setting, mapping, and a con-

figurable code base. The configuration setting component allows a user to specify

different values for configuration options. The specified option values, also called

configuration data, are put into predefined places. Then mapping component is in

charge of loading these option values by dedicated interfaces in the system and map-

ping them into the configurable code base. The configurable code base generates a

specific variant of the system based on option values, which runs as required by a

user.

Next, we further present the implementations of each component in the configura-

tion mechanism. We first introduce configurable code base, then configuration setting

and mapping.

2.1.1 Configurable Code Base

The configurable code base consists of all code of functional modules as designed and

implemented in a system. For configurability, there exist many preset points in code

base, which allow multiple changes. These variations can inactivate or activate code

of a fragment, component, module, or library, making the system run differently.

Each preset point normally corresponds to a knob which controls all variations of the

preset point. The knob is called a configuration option, also known as a parameter, a

preference . These configuration options and their usages are typically documented

and released to users. With guidance of the documentation, a user can set different

values for configuration options as needed and make the system run as required.

There are many techniques for making code changeable or configurable. Among

all techniques, annotative approaches and compositional approaches are typically used

in modern software systems. Here we briefly introduce how they work in configurable

software systems.

Annotative Approaches

Software variability in annotative approaches comes from the selection of annotated

code fragments at compile time. A code base is composed of common code and

variable code, which are not separated and mixed together. Common code is shared

14

by all instances of a configurable software system. Variable code is annotated code

with presence conditions. A presence condition is a propositional formula representing

a set of valid configurations. Given a configuration, some annotated code fragments

can be included or excluded based on the evaluated results of presence conditions,

which forms individual variants of the configurable software system.

This kind of configuration options can be defined using #define macro in the source

code directly, or externally in MAKE-FILEs, configuration files, configuration tools,

or in the form of compiler parameters. Developers can use tools to generate complex

configuration setting by combining configuration options using different operators

such as logical reasoning and bit manipulations.

We use an example to illustrate the work mechanism of annotative approaches.

Figure 2.2 shows an implementation of a bicycle. The method drive is common code

including lines 7 to 10. All code between keywords #ifdef and #endif is annotated

code. The annotated code is controlled by #ifdef conditions in lines 3 and 12. If the

configuration option Motor is specified, the bicycle will equipped with an engine and

become a motorbicycle.

Compositional Approaches

Software variability in compositional approaches comes from the selection of code

units. Rather than being mixed together with common code as in annotative ap-

proaches, variable code is separated into code units. A code unit represents a feature

of a configurable system and can be configured by the corresponding configuration

option. A unit can be a line of code, a method, and a modular of implementing

a specified functionality. These units of variable code are combined together with

common code under different composition mechanisms [58, 30] such as extension and

adapter patterns. Based on composition mechanisms, code units can be activated or

inactivated by setting corresponding configuration options.

Analogously, we employ the bicycle example above to illustrate how compositional

approaches work to make code configurable. In the example (see Figure 2.3), common

code is class Bicycle. Configurable or variable code is class MotorBicycle. They are

separated from each other and exist in different modules. The common code and

configurable code are combined by extension, i.e., class MotorBicycle extends class

Bicycle. Configurable code can be activated by selecting feature MotorBicycle in

configuration setting of a system. A specific system variant can be generated by a

selected set of feature modules.

15

1. class Bicycle{

2.

3. #ifdef Motor

4. Engine engine

5. #endif

6.

7. void drive()

8. {

9. ...//driving a bicycle

10. }

11.

12. #ifdef Motor

13. void startEngine()

14. {

15. ...// starting a motor engine

16. }

17.

18. void stopEngine()

19. {

20. ...// stoping a motor engine

21. }

22. #endif

23. }

Figure 2.2: Implementation of a bicycle including a feature Motor

2.1.2 Configuration Setting

Configuration setting is a process of determining option values following documen-

tation. There exist three configuration user interfaces: command-line, configuration

files, and configuration GUI.

Command-line is a powerful way for users to interact programs. Command line

parameters can be used to set option values and alter the behavior of a program with-

out having to modify and recompile its source code. But it normally applies to small

program with a well defined behavior. For larger and more complex applications, the

command line parameters are not sufficient to manage a large amount of configura-

tions and behaviors in a system. In addition, command line interface is difficult for

beginners.

16

1. class Bicycle{

2. void drive()

3. {

4. ...//driving a bicycle

5. }

6. }

7.

8. class MotorBicycle extends Bicycle{

9.

10. void startEngine()

11. {

12. ...// starting a motor engine

13. }

14.

15. void stopEngine()

16. {

17. ...// stoping a motor engine

18. }

19.

20. }

Figure 2.3: Implementation of a bicycle including a feature Motor

Configuration files are widely used to control the behavior of application programs.

With user guidance documentation, users are allowed to specify values of configura-

tion options in a configuration file which they are interested in. Users also can add

comments for an option such as optional values and descriptions. For a large-scale

application, each component or module is allowed to have its own configuration file,

which can be loaded in different orders at initialization time or runtime. They also

can be independently accessed at runtime. This flexibility gives users more choices

to customize behavior of applications. Nowadays, configuration files represent the

primary means of configuration setting.

The configuration files have some limitations as well though they are the primary

configuration means in today’s software systems. Configuring via a file, users are

assumed to know what and how to configure, e.g., predefined syntactic structures,

valid option values and their formats. In other words, configuration files cannot

provide guidance and feedback on specifying the value of an option. They can be

silent when users introduce some errors, e.g., typos in a option name or value.

17

GUI is a user-friendly way for configuration setting. Configuration GUI often pro-

vides wizard to guide users to identify and configure desired options. For introduced

errors from users such as typos, violating formats, and invalid values, GUI is able to

give response in time and offer suggestion for correct configuration. This brings a lot

of convenience to users. Many applications, e.g., Windows operating systems, Firefox

browsers, and various kinds of web services, adopt configuration GUI by offering op-

tion menus or wizards. However, this convenience comes at a large cost. Maintaining

options is very expensive as software evolves because option menus or wizards need

to be changed or reset if some options are added or removed.

Configuration data normally exists in two ways: ad-hoc configuration files and

central databases. In the ad-hoc representation, there is no single configuration data

format. An application has its own configuration data format such as XML, INI, and

JSON. Linux is a representative system of using ad-hoc representation for configura-

tion data, where there exist hundreds of configuration-specific data formats.

Central databases are used to store configuration data. For instance, Windows

operating systems organize configuration data into a hierarchical database of key-

value pairs, called registry. Relational databases are proposed to store configuration

data as well in [77]. Configuration databases normally are used in large-scale applica-

tions which consists many modulars and have considerable amount of configuration

options. A single configuration service is easier manage a large amount of options.

However, in the database model, additional information for administrators such as

default values, schema, and comments are not available. Besides, the maintenance of

configuration options is costly due to the central control when software evolves.

2.1.3 Mapping

Mapping Time

Configuration data needs to be mapped to variable points in code base by predefined

mechanisms, altering the behavior of a software system. Technically, the mapping

happens at three points in time.

Compile time. Compile is the process of creating an executable program from

source code. In the first stage of compilation, preprocessing replaces certain pieces

of text by other text or conditionally omit some text in the source code according

to system macros. This stage allows users to control variability of a configurable

software system by setting variable points. Via these variable points, configuration

18

static struct config_int ConfigureNamesInt[] =

{

...

{

{ "temp_buffers", PGC_USERSET, RESOURCES_MEM,

gettext_noop("Sets the maximum number..."),

NULL,

GUC_UNIT_BLOCKS

},

&num_temp_buffers,

1024, 100, INT_MAX / 2,

check_temp_buffers, NULL, NULL

},

...

}

Figure 2.4: A code snippet in PostgreSQL-9.5.4

is able to determine which portions of source code of a configurable software system

are translated into assembly instructions and converted into an executable program.

Initialization time. Initialization is the preparation of a program at program start-

up, where predefined variable points in the code are initialized according to system

environment and user preferences. Configuration at initialization time determines

certain aspects of how the system or program is to function. Typically, these con-

figuration option values are stored in initialization files or passed to a system via

command line parameters.

Run time. Many configurable software systems provide interfaces to alter their

behavior at runtime. By changing values of variable points in the code during soft-

ware execution, a configurable system can be adapted to a dynamically changing

environment or new user preferences. Runtime options are often more expensive in

terms of maintenance costs than compile time or initialization time options. Chang-

ing an option value at runtime might require modifying values of dependent options

in different layers.

Mapping Mechanisms

The mechanisms of mapping configuration data to variable points in code base vary in

different software projects. For compile time options, option names are often defined

19

...

if(arg.equals("input") && i < args.length)

{

inputFile = args[i++];

}

else if(arg.equals("output") && i < args.length)

{

outputFile = args[i++];

}

else if(arg.equals("output-type") && i < args.length)

{

outputType = parseType(args[i++]);

}

...

Figure 2.5: A code snippet in Log4J-configuration-converter

...

if (i % 2 == 0)

{

reader = new SequenceFile.Reader(fs, path, conf);

}

else

{

final FSDataInputStream in = fs.open(path);

final long length = fs.getFileStatus(path).getLen();

final int buffersize = conf.getInt("io.file.buffer.size", 4096);

reader = new SequenceFile.Reader(in, buffersize, 0L, length, conf);

}

...

Figure 2.6: A code snippet in Hadoop 2.7.1

20

as macro variables in dedicated files. These macro variables are directly included

in the source code. The preprocessing at compile time evaluates values of these

macro variables to determine whether associated code is converted into an executable

program. As shown in Figure 2.2, the macro variable Motor is an option. The variable

can be directly defined in the source code or a dedicated file like #define Motor. If

this option is set in the example, all code will be compiled.

For initialization and runtime options, developers often use clean interfaces to

manage mapping information [87]. Typically there exist three interfaces of mapping

configuration option values to program variables.

Structure-based. Structure-based mapping mechanisms often adopt data struc-

tures to directly bind configuration option names, option values, and the correspond-

ing variables in the source code. The example shown in Figure 2.4 is used to illustrate

how structure-based mechanisms work. The code snippet in the example is from Post-

greSQL [6], an open source object-relational database system. As we see, the name of

option temp buffers and the corresponding variable num temp buffers are stored in

the data structure ConfigureNamesInt and binded together. The program can obtain

the value of option temp buffers by accessing the variable num temp buffers.

Comparison-based. Instead of using data structures, comparison-based mecha-

nisms identify an option by comparing its predefined option name in the program

and option names in configuration data. If matched, the option value is mapped into

the corresponding program variable. This mapping is typically used in command-

line configuration mechanisms. The code snippet in Figure 2.5 shows how option

values, under comparison-based mechanisms, are mapped to program variables in an

open source project Log4J-configuration-converter [4]. If the option input is set in

configuration data, the corresponding value is stored in variable inputFile.

Container-based. In container-based mechanisms, programs normally load all con-

figuration data (all option names and values) and store it in a container like a hash

table and provide a set of common getter methods which retrieve the corresponding

option value by inputing the name of an option. By invoking such getter methods,

option values can be mapped to the corresponding program variables. Container-

based mechanisms are widely used in large software projects. For instance, Apache

Hadoop [34] adopts this mechanism as well as its ecosystems. Figure 2.6 shows the

code snippet from Hadoop 2.7.1. In the code snippet, the common getter method

conf.getInt returns the value of option io.file.buffer.size and stores it into the variable

buffersize.

21

Summary. This section presents configuration mechanisms in software sys-

tems, which consists of a configurable code base, configuration setting, and mapping.

There mainly exist two kind of approaches for implementing configurable code base,

annotative-based and compositional-based. Main manners of configuration setting are

command-line, configuration files, and GUI. For configuration data mapping mecha-

nisms, macro variables is the main manner at compile time. At initialization and run

time, there are three kinds of approaches: structure-based, comparison-based, and

container-based.

2.2 Static Program Analysis

1. int main()

2. {

3. int sum = 0;

4. int i = 1;

5. while (i<=100)

6. {

7. sum = sum+i;

8. i = i + 1;

9. }

10. printf("%d \n", sum);

11. printf("%d \n", i);

12. }

(a)

1. int main()

2. {

3. int sum = 0;

4.

5.

6.

7. sum = sum+i;

8.

9.

10. printf("%d \n", sum);

11.

12. }

(b)

Figure 2.7: (a) An example program (b) A forward slice of the program the criterion
(3, sum).

Static program analysis is the process of extracting facts about programs without

the actually executing them. The application of static program analysis has spread

into a variety of software engineering tasks such as software fault localization, test-

ing and maintenance. In this thesis, we also use static analysis techniques to solve

software configuration issues. Next, we introduce static analysis techniques applied

in our work.

22

1. int main()

2. {

3. int sum = 0;

4. int i = 1;

5. while (i<100)

6. {

7. sum = sum+i;

8. i = i + 1;

9. }

10. printf("%d \n", sum);

11. printf("%d \n", i);

12. }

(a)

1. int main()

2. {

3.

4. int i = 0;

5. while (i<100)

6. {

7. sum = sum+i;

8. i = i + 1;

9. }

10.

11. printf("%d \n", i);

12. }

(b)

Figure 2.8: (a) An example program (b) A backward slice of the program the criterion
(11, i).

2.2.1 Program Slicing

A program slice consists of the parts of a program which affect the values computed

at some point of interest with respect to a slicing criterion. A slicing criterion often is

a pair consisting of a line number and a variable in the line. The parts of a program

which have a direct or indirect effect on the values computed at the slicing criterion

are called the program slice of the slicing criterion. The process of computing program

slices is called program slicing [75].

The conception of program slicing is first proposed by Weiser in 1979 [83, 82, 81,

15]. Weiser defines a slice as a reduced and executable program extracted from an

original program by removing some statements, such that the extracted program can

replicate part of the behavior of the original program.

The definition of a slice has been developed after decades. Nowadays a slice is

defined as a subset of statements and control predicates of a program which contribute

to the computed values at some point with respect to a slicing criterion, but which

do not necessarily constitute an executable program. According to construction of a

slice, there are two forms of slice: a forward slice and a backward slice. A forward

slice contains the statements of a program which are potentially affected by the value

of interest computed at a slicing criterion at runtime. A backward slice contains

the statements of a program which can might have effect on the value of interest

23

computed at slicing criterion at runtime. The processes of computing a forward slice

and backward slice are called forward slicing and backward slicing, respectively.

In order to understand the definition of a slice, we use an example to show which

statements in a program are taken into a slice given a slicing criterion. Figure 2.7 (a)

shows a program which calculates the sum of natural numbers from 1 to 100. Figure

2.7 (b) shows a forward slice of this program with respect to criterion (3, sum), where

3 represents the line number and sum indicates the variable of interest in the line.

As we can see, all statements in the forward slice are affected by the value of variable

sum. Whereas, all computations involving variable i are ”sliced away”.

Figure 2.8 shows a backward slice of the example program above. The criterion

of the backward slicing is (11, i) and the backward slice is shown in Figure 2.8 (b).

As we can see, all statements in the slice contribute to the value of variable i at the

criterion.

Next we will introduce how to compute a slice given a specific criterion and in-

volving conceptions.

Intraprocedural Slicing

Before presenting slice algorithms, we first introduce some basic conceptions used in

the slicing.

Control Flow Graph (CFG). A CFG is a program representation which models

all executions of a method by describing control structures. Specifically, a CFG of

program P is a graph in which each node represents a statement from P and the

edges indicate the flow of control in P . Each node n has two sets: DEF (n) and

REF (n). DEF (n) is the set of variables whose values are defined at the statement

associated with node n. REF (n) is the set of variables whose values are referenced

at the statement associated with node n.

As an example, Figure 2.9 shows the CFG of the example program in Figure

2.7 (a). The graph shows all possible executions of the example program. Each

node corresponds to a statement of the program, e.g. node 2 is associated with the

statement at line 3 in Figure 2.7 (a). Node Entry corresponds to the beginning of

the program. Node 4 represents a predicate, i.e., while statement at line 5, which

controls the flow of execution. As we see, this node has two outgoing edges, one of

which goes to node 5 and the other goes to node 7. Each node has two variable sets,

e.g., DEF (2) = {sum} and REF (2) = ∅ while DEF (5) = {sum} and REF{i}.
24

sum := 0Entry while i <= 100i := 1 output (sum) output (i)

sum:= sum + i i := i +1

1 2 3 4 7 8

5 6

Figure 2.9: CFG of the example program of Figure 2.7 (a).

Data Flow Dependence. Data flow dependence (also called data dependence) is

defined in terms of the CFG of a program. A node j is data flow dependent on node

i if there exists a variable x such that:

� x ∈ DEF (i),

� x ∈ REF (j),

� there exists a path from i to j without intervening definition of x.

Back to the CFG of the example program in Figure 2.9, node 5 is data flow dependent

on node 2 because (a) node 2 defines variable sum, (b) node 5 references variable sum,

and (c) there exists a path 2 �3 �4 �5 without intervening definition of variable

sum.

Control Dependence. Control dependence is defined in terms of the CFG of a

program as well. Node j is control dependent on node i if:

� there exists a path from i to j such that any u 6= i, j in the path is post-

dominated by j and

� i is not post-dominated by j.

where post-dominated is defined as following. A nodem in the CFG is post-dominated

by a node n if all paths from m to the end of the program pass through node n.

Typically the statements in the branches of an if or while are control dependent

on the control predicate. In the CFG of the example program (see Figure 2.9), node

6 is control dependent on node 4 because there exists a path 4 �5 �6 such that: (a)

node 5 is post-dominated by node 6, and (b) node 4 is not post-dominate by node

25

sum := 0

Entry

while i <= 100i := 1 output (sum) output (i)

sum:= sum + i i := i +1

1

2 3 4 7 8

5 6

Data dependence

Control dependence

Figure 2.10: PDG of the example program of Figure 2.7 (a) .

6 since there is another path 4 �7 which goes to the end of the program without

passing through node 6.

Program Dependence Graph (PDG). A PDG is an intermediate representation of

making explicit both the data and control dependences for each statement in a pro-

gram [29]. Given a single procedure program, the PDG of the program is represented

as a graph whose nodes correspond to program statements and whose edges model

dependences in the program. There is a directed edge between node v1 and v2 if

the statement associated with v2 is data flow dependent or control dependent on the

statement corresponding to v1 in the program.

Figure 2.10 shows the PDG of the example program in Figure 2.7 (a). Dashed

arrows represent control dependence and solid arrows represent data dependence.

All statements which are not in nested loop or conditional in the program are control

dependent on Entry node. The statements in a nested loop or conditional are control

dependent on the predicates of the loop or conditional. The statement associated with

node 4 is control dependent on itself because the while loop could be executed more

than one time.

Data dependences exist between statements of defining a variable and statements

referencing the variable. The statement in node 8 is data dependent on the statement

associated with node 6 because there exists an execution path from node 6 to node

26

sum := 0

Entry

while i <= 100i := 1 output (sum) output (i)

sum:= sum + i i := i +1

1

2 3 4 7 8

5 6

Data dependence

Control dependence

Figure 2.11: The backward slice of the example program in Figure 2.8 (a).

8 if the predicate in node 4 is satisfied. Meanwhile, the statement in node 8 is also

dependent on the statement associated with node 3 if the predicate in node 4 is not

satisfied. Consequently, the statement in node 8 is data dependent on the statements

associated with node 3 and 6. The statements in node 5 and 6 are data dependent

on themselves due to the multiple execution of the while loop.

Intraprocedural Slicing. Intraprocedural slicing is defined over the PDG of a pro-

gram. The idea of using PDG to construct program slices was first proposed by Ot-

tenstein and Ottenstein [55]. Horwitz et al. presented an approach of intraprocedural

slicing based on a modified version of the program dependence graph of Ottenstein

and Ottenstein [29, 8].

In dependence-graph-based approaches, the slicing criterion is converted to a node

in the PDG from a pair of a line number and a variable in the line. For instance, the

criterion (11, i) in backward slicing in Figure 2.8 (a) corresponds to the node 8 in the

PDG shown in Figure 2.10.

Given a slicing criterion, denoted by node v of a PDG , the slice of the PDG with

respect to v is a graph containing nodes on which v has a transitive data flow or

control dependence. In other words, all nodes can reach v via data flow or control

dependence edges.

27

Figure 2.11 shows the computation of the backward slice of the example program

in Figure 2.8 (a). Nodes and edges in bold are the backward slice with respect to

the criterion (8, i). Node 8 corresponds to the criterion in the PDG of the program.

Nodes 3 and 6 directly reach node 8 via data dependence edges while node 1 directly

reaches node 8 via the control dependence edge. Node 4 transitively reaches node 8

via control and data dependence edges, and node 6. Meanwhile, node 1 and 3 also

transitively reach node 8 via other paths. All nodes which directly or transitively

reach node 8 constitute the sub graph of the PDG, i.e., the backward slice with

respect to criterion (8, i) in the program. Other nodes and edges not in bold are

sliced away.

Interprocedural Slicing

Intraprocedural slicing does not consider facts that the value of interest at a criterion

crosses the boundaries of procedure calls. It cannot be applied into multi-procedural

programs. Addressing this issue, Horwitz, Reps, and Binkley proposed a new depen-

dence graph representation of programs called system dependence graph which can be

used to perform interprocdural slicing [37].

System Dependence Graph (SDG). SDG is an interprocdural extension of the pro-

gram dependence graph representing multi-procedural programs. A multi-procedural

program is considered as a single main procedure and a collection of auxiliary pro-

cedures. Parameters are passed by value-result among procedures. A SDG can be

constructed by connecting PDGs of procedures in a multi-program based on param-

eters passing models.

In approach [37], parameter passing by value-result is modeled as follows. For a

method call, the calling procedure first copies the values of actual parameters of the

call site to temporary variables before the call. Then the called procedure initializes

formal parameters by the corresponding temporary variables. In the called procedure,

the final values of formal parameters are first copied to temporary variables before

returning. The actual parameters in the calling procedure are updated by there tem-

porary variables from the called procedure. Based on this model, PDGs of procedures

in a multi-program are connected together and form the SDG of the program.

The SDG adds five different types of nodes to deal with a method call in the

multi-procedural program. A call site in the procedure is represented by a call node.

The operations which store the values of the actual parameters to the temporary

variables in the calling procedure are indicated by actual-in nodes. Updating values

28

1. int main()

2. {

3. int sum = 0;

4. int i = 1;

5. while (i<100)

6. {

7. add(sum, i);

8. add(i, 1);

9. }

10. printf("%d \n", sum);

11. printf("%d \n", i);

12. }

13. int add(int x, int y)

14. {

15. return x+y;

16. }

Figure 2.12: An example multi-procedural program.

of temporary variables from the called procedure to actual parameters in the calling

procedure is represented by an actual-out node. The actual-in and actual-out nodes

are control dependent on the corresponding call node.

In the called procedure, loading values of temporary variables from the calling

procedure to formal parameters in the called procedure is indicated by a formal-in

node. The operations which store returning values into temporary variable in the

called procedure are presented by formal-out nodes. Formal-in and formal-out nodes

are control dependent on the entry node of the called procedure.

In addition, the SDG adds interprocedural dependence edges due to parameter

passing between procedures. A parameter-in edge is used to connect corresponding

actual-in and formal-in nodes. A parameter-out edge exists between corresponding

formal-out and actual-out nodes.

Figure 2.12 shows an interprocedural program which computes the sum of natural

numbers from 1 to 100. Different from the example program shown in Figure 2.7 (a),

the addition operator is implemented in another procedure add. The main procedure

calls the add procedure to get the sum of two numbers.

Figure 2.13 shows the SDG of the example program above. The SDG consists of

two parts, calling procedure and called procedure, which are connected by additional

nodes and edges stated above. Each call in the main procedure corresponds a call

node in the SDG. The call node is control dependent on the while node, at the same

time, the entry node of the called procedure is control dependent on the call node.

The passing of a parameter between procedures is represented multiple nodes. For

29

sum := 0

Entry

while i <= 100i := 1 output (sum) output (i)

Data dependence Control dependence

call add

xa_in:= sum ya_in := i sum := xa_out

call add

xa_in := i ya_in := 1 iin :=xa_out

Entry add

x := xf_in y:= yf_in x:= x+ y xf_out := x

Parameter-in
Parameter-out

Calling
procedure

Called
procedure

Figure 2.13: The SDG of the example prograom in Figure 2.12.

instance, the node xa in represents the operation of copying the value of variable sum

to a temporary variable in the first procedure call. The xa in node is control dependent

on the call node and data dependent on the node associated with initialization of the

variable sum. In the called procedure, node xf in indicates loading the temporary

variable to the corresponding formal variable x. There exists a parameter-in control

dependence edge between nodes xa in and xf in. For the return of variable x, the

node xf out indicates the copying operation from the formal variable x to a temporary

variable in the called procedure. The node xa out presents the updating of actual

variable sum by the returned value from the called procedure. The nodes xf out and

xa out are connected by a parameter-out edge. Similarly, other parameters are handled

in the same way.

Interprocedural Slicing. Interprocedural slicing is defined as a reachability problem

using the SDG, just as intraprocedural slicing is defined over the PDG. The slices

can be obtained by the improved Weiser’s interprocedural-slicing method [81]. In the

30

improved approach, an additional process is needed before performing slicing, namely

computing summary edges.

Summary edges. A summary edge is a transitive dependence edge, which connects

an actual-in node with an actual-out node. The summary edge represents the depen-

dence between the connected nodes which may be created in the called procedure

or through other called procedures. A summary edge is added between an actual-in

node and an actual-out if there exists a direct or transitive dependence between their

corresponding formal-in and formal-out nodes in the called procedure. The algorithm

of computing summary edges was presented by Reps et. al. [66].

After computing summary edges, the improved approach performs interprocedural

slicing in two phases. In the first phase, the algorithm goes backwards along data

dependence edges, call edges, summary edges, and parameter-in edges (no parameter-

out edges) from the node associated with a slicing criterion. This phase the algorithm

does not descend into the called procedures. In the second phase, the algorithm

starts from all nodes reached in the first phase and goes backwards along data flow

dependence edges, control edges, summary edges, and all parameter-out edges (no

call edges and parameter-in edges). All nodes and edges visited in these two phases

form the interprocedural slice of SDG with respect to a slicing criterion. The details

of the algorithm was presented in [37]. Figure 2.14 shows the backward slice of the

example program in Figure 2.12.

Forward intra-procedural and inter-procedural forward slicing is computed in the

similar way. The slices are computed by tracing dependencies in the forward direction.

We do not introduce detailed algorithms of forward slicing.

2.2.2 Thin Slicing

Large-scale object-oriented programs intensively use heap-allocated data and com-

plex data structures. Slices of these programs include many internal implementation

details of those data structures which are rarely useful to end programmers. The

irrelevant statements make it difficult to trace the flow of data through the heap. To

exclude the statements which are not useful for program testing. Manu Sridharan el

at. [70] propose thin slicing.

A thin slice consists only of statements which contribute to compute and copy a

value to a statement of interest. Statements that explain why these statements affect

the statement of interest are excluded. For instance, with respect to a statement that

31

Entry

while i <= 100i := 1 output (i)

1

3 4 8

Data dependence Control dependence

call add

xin := i yin := 1 iin :=xout

Entry add

X := Xin y:= yin x:= x+ y xout := x

Parameter-in
Parameter-out

Figure 2.14: The backward slice of the example program in Figure 2.12.

32

1. x = new A();

2. z = x;

3. y = new B();

4. w = x;

5. w.f = y;

6 if (w==z){

7. v=z.f; // the statement of interest

8. }

Figure 2.15: An example program to illustrate thin slicing.

reads a value from a container object, a thin slice includes statements that store the

value into the container, but excludes statements that manipulate pointers to the

container.

In thin slicing, statements helping compute and copy a value of interest are called

producer statements and non-producer statements in the traditional slice are called

explainer statements. Producer statements are defined in terms of direct uses of

memory locations, i.e., variables and object fields. A statement s directly uses a

location l iff s uses l for some computation other a pointer dereference. For instance,

the statement y = x.f does not directly use x, but it does directly use o.f , where x

points to o. A statement t is a producer statement for a statement s of interest iff

(1) s = t or (2) t writes a value to a location directly used by some other producer

statements.

We use the example shown in Figure 2.15 to illustrate thin slicing. Line 7 is the

statement of interest and directly uses field f of object z. Since w and z are aliased,

line 5 writes a value into the field of interest. Line 5 is considered as a producer

statement. Similarly, line 5 directly uses y, which is written at line 3, making line 3 a

producer statement as well. Consequently, line 7, 5 and 3 are comprised of thin slice

for a line 7. In contrast, the traditional slice for line 7 is the entire example program.

2.2.3 Call Graph

An important data structure in program analysis is call graph. The construction of a

call graph often is a prerequisite of many inter-procedural analysis including program

slicing, data flow analysis, and so on.

33

Main

p

q

Main

p

q

p

q

Context 1 Context 2

Context 3 Context 4

(b) (c)

int main()
{

p();
p();

}

int p()
{

q();
}

int q()
{

…
}

(a)

Figure 2.16: A example call chain of procedures and its context-insensitive and
context-sensitive call graphs.

The call graph of a program is a directed graph that represents the calling rela-

tionships between the program’s procedures. Each node in the call graph indicates a

procedure and has an indexed set of call sites. Each call site is the source of zero or

more edges to other nodes, representing possible called procedures of that site. A call

site might points to multiple procedures for a dynamically dispatched message send

or an invoked application[33, 29].

A call graph can be context-insensitive or context-sensitive. In a context-

insensitive call graph, each procedure is represented by a single node. In a program,

a procedure might be called at multiple places. All these call sites point to the node

associated with the procedure. There is no distinction for these different call sties.

In a context-sensitive call graph, a procedure is analyzed separately for different

calling contexts. For each calling context, a different node represents the procedure.

A procedure might have multiple context-sensitive versions which are represented by

difference node in the call graph. The construction and analysis of context-sensitive

call graphs are normally more expensive than that of context-insensitive call graphs,

but analyses on context-sensitive call graphs are more accurate.

Figure 2.16 show a example call chain of procedures and its context-insensitive

and context-sensitive call graphs. In the context-insensitive call graph, two call sites

of procedure p in procedure main are treated in the same way and both are linked to

node q. In the context-sensitive call graph, two call sites of procedure p are identified

differently. Each call site corresponds to its own version of procedure p.

34

2.2.4 srcML-based Analysis

SrcML is an XML representation of source code for the efficient exploration, analysis,

and manipulation of large software projects [20]. In the representation, source code

is wrapped with information from AST (tags) [42] to form a single XML document.

This representation provides full access to the source code at the lexical, structural,

and syntactic levels. The facts about a program can be extracted by querying its the

srcML representation. Figure 2.17 shows a while statement in Java and its srcML

representation.

Summary. We introduce the definition of program slicing and related concepts

including control flow graphs, data flow dependence, control dependence, program

dependence graphs, and system dependence graphs. Program slicing can be intrapro-

cedural and interprocedural. Intraprocedural slicing is based on program dependence

graphs and interprocedural slicing is based on system dependence graphs. The slicing

is defined as a reachability problem in a graph. We also use examples to illustrate

how to compute a slice in a program graph and system graph. To improve the prob-

lem that a slice includes too many statements for human consumption, thin slicing is

proposed to focus on the data flow of a value of interest. A thin slice consists only of

producer statements without explainer statements. We briefly introduce analyses of

call graph and srcML-based.

35

C:\Users\zhen\Downloads\codebeautify.xml Sunday, September 25, 2016 3:56 PM

while (i >= 0)
{
 string1[i] = string2[i]; source code
 i--;
}
--
<while>while

<condition>(
<expr>

<name>i</name>
<operator>>=</operator>
<literal type="number">0</literal>

</expr>)
</condition>
<block>{

<expr_stmt>
<expr>

<name>
<name>string1</name>
<index>[

<expr>
<name>i</name>

</expr>]
</index>

</name> srcML format
<operator>=</operator>
<name>

<name>string2</name>
<index>[

<expr>
<name>i</name>

</expr>]
</index>

</name>
</expr>;

</expr_stmt>
<expr_stmt>

<expr>
<name>i</name>
<operator>--</operator>

</expr>;
</expr_stmt>

}</block>
</while>

-1-

Figure 2.17: A example code in Java and its srcML representation.

36

Chapter 3

Related Work

There have been a good deal of work on software configuration errors, in which prac-

titioners and researchers attempt to solve software misconfiguration issues in various

perspectives. Generally speaking, these works can be divided into two categories,

namely misconfiguration prevention and automated diagnosis of misconfiguration. Re-

search on misconfiguration prevention focuses on reducing possible factors of causing

configuration errors before they occur in the real world. Research on automated diag-

nosis of misconfiguration attempts to identify the root cause of a configuration error

occurred in practice without manual effort or less. Next, we introduce the two kinds

of research works.

3.1 Misconfiguration Prevention

Many factors might cause configuration errors such as defects in the design and im-

plementation of configuration mechanisms in a software system and users’ lack of

experience. By taking measurements on these factors, configuration errors associated

with these factors can be avoided or occur less in practice. These works are organized

by the factors they address.

3.1.1 Alerting on Mistakes in Configuration Setting

Study [88] shows that a majority of misconfigurations (70-86% out of investigated 546

real world cases) are due to mistakes in setting configuration parameters. Brown et al.

37

suggest typos are omnipresent and a major problem [17]. Hence, alerting users when

a mistake is introduced can avoid a large fraction of real world misconfigurations.

ConfAlyzer [61], Encore [91], SPEX [87], and works of Nadi et al. [52] and Xiong

et al. [85] fall into this category and attempt to extract constraints over options from

source code or configuration data. When these constraints are violated in configura-

tion setting, users will get an alert and correct introduced mistakes.

ConfAlyzer focuses on extracting configuration option types such as String,

Boolean, Numeric. The approach obtains option types by identifying data types

of variables storing option values in the source code. These types are bonded to

corresponding options in configuration setting environment. Mistakes on an option

type will trigger an alert.

SPEX and the work of Nadi et al. not only extract option types but also infer

constraints among multiple options by tracking down data flow of option values.

Constraints can be high-level semantic types like an IP address format, the value

range of an option, and the control dependency among multiple configuration options.

These constraints are obtained by analyzing predicates associated with an option

value in the source code.

Xiong et al. define a range mode which is capable of specifying constraints over

options including the correlation among multiple options. At the same time, they

propose an algorithm to automatically generate these constraints.

Encore goes further and considers the correlations between options of a program

and parameters of its execution environment aside from constraints on option types

and among multiple options. The core idea of Encore is to adopt predefined rule

templates to learn constraints on options from a given set of sample configuration

data including information of the execution environment.

The constraints extracted by this kind of approaches can be also used to detect

potential misconfiguration by applying them to the configuration data of existing

systems. Giving an alert on violating option constraints in configuration setting is a

more efficient way to reduce software configuration errors.

A major challenge for these approaches of extracting constraints on options is the

low accuracy of analyzed results. Many constraints are application-specific without

common and concrete patterns. Some logics for complicated string manipulations are

really difficult to be inferred as well as high-level semantics constraints. In addition,

scalability is a major challenge. Most of those approaches use program analysis

techniques like data flow analysis to extract such constraints. The value of an option

38

might go through multiple third-party libraries. The analyses considering all involved

libraries have scalability issues in program analysis techniques.

3.1.2 Detecting Inconsistencies Due to Option Changes

Misconfigurations can be also caused by mistakes of developers. During software

evolving, configuration options are often changed, removed, and added. These

changes result in modification of code associated with these options. Incomplete

modification of relevant code would cause inconsistencies on these options implemen-

tations, which will lead to configuration errors in the system execution.

LOTRACK [47] works on this issue by creating a map between options and their

affecting code fragments in the program. With the map, developers are able to locate

which code fragments should be improved when an option is changed. LOTRACK

uses static taint analysis to track down the value of a configuration option from

the site the value is loaded to the point where the value may influence control flow

decision. Eventually these code fragments identified by taint analysis are mapped to

the corresponding options.

SCIC [14] directly detects inconsistencies on accessing option values in multiple

layers of a program. In many software programs, a configuration option can be spec-

ified or accessed in different layers, e.g., by a user interface menu and by application

code. Inconsistencies on option operations in multiple layers could lead to configu-

ration errors. SCIC uses crossing-languages static analysis to automatically identify

such inconsistencies in the program and avoid these kind of configuration errors after

the software release.

These approaches focus on misconfiguration caused by changes on code of imple-

menting options. Those misconfiguration are often tricky because the code associated

options could partially function, e.g., work in one layer but not in other layers. One of

challenges for this kind of approaches is that program analysis has to cross program

languages because implementations of options in different layers often adopt different

program languages.

3.1.3 Detecting Vulnerability in Handling Misconfigurations

Normally software systems have the functionality of handling configuration errors. Ef-

fective implementations of handling misconfiguration are able to detect configuration

errors and pinpoint root causes in the error message. Poorly implementations cause

39

systems to misbehave in a mysterious way such as crashing and hanging. Proac-

tive detection of configuration errors can expose bad implementations of handling

misconfigurations in the system.

ConfErr [44] automatically generates and injects realistic errors in a system con-

figuration file, assesses the target’s resilience, and reports the output of a system

failure due to configuration errors. The reports help developers identify and improve

the poorly implementation of handling misconfiguration.

ConfDiagDetector [94] detects inadequate diagnostic messages for software con-

figuration errors. Similarly, ConfDiagDetector injects configuration errors into the

software under test, monitors and reports outcomes under injected configuration er-

rors. Moreover, ConfDiagDetector employs nature language process techniques to

assess whether diagnostic messages are adequate.

Proactive detection is an effective way to improve reaction of systems to configu-

ration errors, i.e., pinpointing root causes in the error message. A major challenge for

these approaches is to generate system tests to trigger injected configuration errors.

3.2 Misconfiguration Diagnosis

Instead of preventing software configuration errors, this branch of work attempts to

diagnose the root causes of software misconfigurations, i.e., incorrect configuration

options for system failures due to misconfiguration. Approaches of this type can be

classified into three broad areas: program analysis, comparison-based, and replay-

based.

3.2.1 Program Analysis Approaches

Program analysis approaches often employ program analysis techniques to extract

facts of interest from a program which imply the linkage between one or more options

and symptoms of a configuration error of the program. Based on types of program

analysis techniques, these approaches can be grouped into two categories.

40

Static-analysis-based

Static analysis extracts facts from a program without running the program. These

facts are used to infer which options likely lead to a configuration error. The repre-

sentative works in this type of research are Sherlog [89] and ConfAnalyzer [60].

Sherlog analyzes the program of a problematic system by leveraging information

provided at runtime logs to infer the execution path of the program prior to failure.

The execution path might be incomplete but contains information which must have

happened during failed execution. The must-have-happened information guides a

developer to locate the root cause of a configuration error.

ConfAnalyzer uses data flow analysis to track down values of all options in a

program and compute all statements in the program which are possibly affected by the

value of each option. Then the affected statements are mapped to the corresponding

options. With this map, a user is able to query the statements in the error message

of a system failure and obtain options which might lead to the configuration error.

Approaches of this type do not require re-execution of a program but take as input

the program and symptom information of a configuration error to infer options of

possible incorrect setting. They are more acceptable in practice compared to dynamic

analysis approaches because re-executing the program is not required. Re-executing

the program requires specific input and environment information, which is expensive

to be collected in practice. The major challenge of static analysis approaches is the

high rate of false positives in diagnosis results. The false positives are mostly caused

by the imprecise static analysis.

Dynamic-analysis-based

Addressing the low precision of static analysis, some approaches adopt dynamic analy-

sis techniques which yield more precise results. They use dynamic analysis techniques

to analyze the behavior of a system in question and infer the root causes of config-

uration errors. Two instances of prior work, ConfAid [12] and X-Ray [10], fall into

this category.

ConfAid uses dynamic taint analysis to track down tokens from specified config-

uration option values through data and control flow dependencies as the program in

question executes. Based on the tracked data, ConfAid pinpoints the configuration

tokens most likely to have caused the exhibited problem. Similarly, X-Ray employs

the dynamic information flow tracking technique to estimate the likelihood that a

41

specific part code is executed due to potential root causes. X-Ray focuses more on

performance issues of software systems.

Compared to approaches of using static analysis, this type of approaches could ob-

tain more precise diagnosis results because dynamic analysis provides accurate insight

on the behavior of being analyzed systems. However, they require the reproduction

of an error and the profile of a system behavior prior to failure. This can be costly

in practice.

3.2.2 Comparison-based Approaches

Another family of approaches diagnose configuration errors across computers. They

compare configuration data or behavior of a non-working system with that of a work-

ing system. Based on differences among them, options which likely lead to failures

are identified.

Strider [50] and PeerPressure [79] diagnose configuration errors by comparing

configuration data in a non-working system with that in a working system in other

computers. Strider constructs the set of configuration differences and selects options

out of them which are read during failing executions, and considers these options

likely to lead to failures of the system. PeerPressure goes a further step. Instead of

requiring configuration data of a working system, PeerPressure takes a set of sam-

ple machines and collects configuration data of a system on these machines. With

statistics model, PeerPressure computes the relative frequency of various configura-

tion settings. The unusual configuration settings which are read during the failing

execution are identified as likely root causes of the system failures.

ConfDiagnoser [92], ConfSuggester [93] and the work of Attariyan et al. [11] detect

configuration errors by comparing the behavior of a non-working system with that of

working systems. ConfDiagnoser instruments code into the system and profiles the

behavior relevant to configuration setting of the system. Meanwhile, ConfDiagnoser

collects similar behavior data from a set of working systems. With the comparison

among them, the abnormal behavior from a non-working system is identified and

options associated with abnormal behavior are taken as likely root causes of the con-

figuration errors. ConfSuggester uses similar approaches but focuses on configuration

errors caused by software evolving. By comparing behavior between different versions

systems, the options which are changed and relevant to the distinguished behavior in

the later version are considered as likely root causes of misconfigurations. Attariyan

et al. obtain the behavior of a system by running predicates for testing and com-

42

pare behaviors between the working system and the non-working system to diagnose

configuration errors.

Comparing configuration data or behavior of a non-working system with that of

working systems is an effective way to diagnose software configuration errors since it

can significantly narrow down suspect configuration options. The challenge for this

type of approaches is to collect a large amount of configuration data or behavior of

working systems.

3.2.3 Replay-based Approaches

One branch of research on misconfiguration diagnosis is replay-based. Replay-based

approaches automatically try possible configuration changes in a sandbox and observe

whether one system recovers from a configuration error. In order to narrow down

the space of configuration changes, those approaches often take some prior correct

configuration data as a base for possible changes. Chronus [84], AutoBash [72], and

Triage [76] are all systems of this type.

Chronus uses snapshot techniques to collect and store configuration data of a

system at each checkpoint. When a configuration error occurs, Chronus employs

binary search to locate which configuration change caused the system to stop working.

AutoBash uses OS-level speculative execution to test the behavior of a system when

various configuration changes are set. AutoBash can potentially fix configuration

errors in the background by applying correct value changes of configuration options.

If necessary, changes can be rolled back until problems are solved. Triage leverages

checkpoint and re-execution techniques to repeatedly replay the moment of a failure

and capture the failure environment. With rolling back events prior to the failure,

Triage can pinpoint the root cause of th failure by analyzing the relevant events.

Replay-based approaches diagnose software errors at user’s site, being able to ob-

tain state data of a system at failure moment as well as environment data. Moreover,

they are allowed to re-execute the system with various changes to fix these errors. The

major challenge for using them in practice is that these approaches require changing

execution environment of a system.

3.2.4 Knowledge-based Approaches

Another important branch of research on diagnosing configuration errors is

knowledge-based. Knowledge-based approaches build a set of configuration knowl-

43

edge for a system by mining configuration data or events associated with configuration

of the system. With these knowledge, they are able to pinpoint the root cause of a

configuration error, even suggest a solution by inputing its symptom data.

Knowledge on Relevant Events. One typical event associated with configuration is

the configuration data access. Rules mined from events accessing configuration data

can be used to diagnose a configuration error. CODE [90] monitors configuration-

accessing events of a system and mines invariant rules. With these rules, CODE can

detect deviant program executions by sifting through a voluminous number of events.

Similarly, Bauer et al. detect access-control misconfiguration by mining historical

data of accessing related resource in the log. With mined rules, they can eliminate a

large percentage of such misconfigurations interfering with legitimate accesses.

Knowledge on Previous Misconfiguration Cases. Many research works [57, 28, 63,

35, 49, 80] attempt to learn knowledge such as features of a specific type of miscon-

figurations, from historical misconfiguration cases. This type of approaches often use

machine learning or other statistical models to obtain the association between symp-

toms and the root cause of a configuration error from historical cases data. With this

knowledge, they can suggest one or more root cause by querying symptoms of a con-

figuration error. ConfSeer [57] is a representative of this type of techniques. ConfSeer

maintains a database of articles about technical misconfiguration solutions. With this

database, ConfSeer combines interactive learning, information retrieval, and natural

language processing techniques to suggest solutions by taking configuration files in

question as input.

This type of techniques obtain knowledge about configuration from historical data.

Collecting configuration data requires a substantial effort and is difficult concerning

data privacy.

44

Chapter 4

ConfDoctor: Automated Diagnosis

of Software Misconfiguration

This chapter addresses software configuration errors due to mistakes in option values.

Existing approaches for this problem face several challenges like constructing data

bases of configuration data and requiring statues of working systems, to be deployed

in practice. We explore using static analysis to solve this problem without challenges

faced by existing approaches.

The remainder of this chapter explains configuration errors we address, presents

our approach of automated diagnosis of configuration errors, describes the empirical

evaluation of the approach, and discuss its limitations.

4.1 Introduction

This section explains the motivation of this work and our core idea for troubleshooting

software configuration. Then, we pinpoint challenges in implementing the idea and

offer the solutions for those challenges.

4.1.1 Motivation

Software configuration errors are one of the major causes of today’s system failures

[32, 53, 54, 87, 59, 40, 18, 27]. For instance, recently misconfiguration-induced out-

ages have been reported from major IT companies, including Microsoft, Amazon and

Facebook [73, 74, 41]. Moreover, end-users also suffer from various configuration er-

45

rors of software. The investigation in [88] shows that around 27% of the issues in one

company’s costumer-support database are labeled as configuration-related.

Many groups from industry and academia have been working on the automated

diagnosis of software configuration errors. As stated in Section 3.2, those existing ap-

proaches require crucial data or operations, which are difficult to achieve in practice.

Comparison-based approaches like Strider [50] and PeerPressure [79] collect a large

amount of configuration data from different working instances of a system and diag-

nose a configuration error by comparing their distinct configuration data. Similarly,

ConfDiagnoser [92], ConfSuggester [93] and the work of Attariyan et al. [11] diagnose

a configuration error by using the execution profile data of many working systems.

Knowledge-based approaches [90, 57, 28, 63, 35, 49, 80] attempt to learn configura-

tion rules from historical data and use these rules to diagnose configuration errors.

For these approaches, it is challenging to build data bases such as configuration and

execution profile data since configuration from users are sensitive in terms of data

privacy. Replay-based approaches like Chronus [84], AutoBash [72], and Triage [76]

base the prior working state of a system and try all possible configuration changes

to locate the root cause of a configuration error or even correct it. These approaches

require changing the execution environment of a system.

Addressing challenges in prior work, the construction of a configuration data base

and changes of the execution environment, we attempt to develop an approach of

diagnosing configuration errors which does not require user configuration data and

execution environment information so that we can deploy it in practice.

4.1.2 Core Idea

Our idea is inspired by the way how developers typically debug erroneous configura-

tion settings using stack traces of an error. As shown in Figure 4.1, the first step is

usually to check the top frame of the stack traces. The program site referenced by this

frame is investigated whether it is ”close” to a statement reading the value of some

configuration option. If this is the case, the next step is to analyze the dependency

between the program site and the read point of the option. If the analysis on the

top frame of the stack trace does not pinpoint any root cause candidate, it will be

repeated for each of the subsequent stack frames.

For the example in Figure 4.1, the top frame of the stack traces is indexed by t.

The corresponding program site is line 24. There is not any statement loading an

option value after inspecting code around the line 24 in the method. The analysis

46

java.lang.Error: Failed to load relation notexist Index

at chord.project.Messages.fatal(Messages.java:24) t

at chord.project.Main.run(Main.java:82) t-1

... ...

at chord.project.Main.main(Main.java:50) 1

...

23 String msg = String.format(format, args);

24 Error ex = new Error(msg);

25 ex.printStackTrace();

...

...

80 String[] relNames = Utils.toArray(Config.printRels);

81 if (relNames.length > 0) {

82 project.printRels(relNames);

...

...

50 run();

...

...

Figure 4.1: Example showing how developers diagnose a configuration error based on
the stack trace. The statements in bold are program points referenced by the stack
trace entries. The statement underlined is a read point of a configuration option.

goes to the second top frame t − 1. The corresponding program site is line 82. The

statement at line 80, near by the line 82, loads the value of option ”Config.printRels”.

Further analysis shows the option value loaded at line 80 goes into the statement at

the line 82. Consequently option ”Config.printRels” is considered the potential root

cause of the configuration error.

Given a configuration error, our idea is to identify whether there exists an possible

execution path from where an option value is read to the point of an error raising

by using static analysis. The options whose values go to the error raising site via a

possible execution path are considered the root cause candidates of the configuration

error. Then we analyze how likely these possible execution paths to the site of error

raising are executed in the failing run and rank the corresponding options based on

the possibility that their values go to the site of error raising. The ranked options are

reported to users. The top options are more likely to be wrongly set and lead to the

configuration error.

47

4.1.3 Challenges and Solutions

Our idea is to use static analysis to analyze the possible execution paths of an option

value flowing to the site of error raising. There are two challenges for implementing

our idea.

Scalability of Static Analysis

We target software systems which have a large amount of configuration options. These

software systems usually are large scale. For instance, Apache Hadoop and HBase

have over million of lines code and rely on dozens of libraries. Analyzing such systems

raises scalability problems. Precise analysis on those systems cannot be completed

because the amount of computation and memory required by analysis exponentially

increases.

To deal with this challenge, we give up precise analysis and adopt coarse-grain

analysis. We do not observe some behavior of software systems in static analysis.

For data in a container like Array and List, we treat the container as a unit instead

of distinguishing each element in the container. Such measurements can improve

scalability of static analysis.

Precisely Identifying Possible Execution Paths

Static analysis observes the behavior of a software system, considering all possible

executions. A phenomenon would happen that there exist many options whose values

flow to the site of error raising in static analysis. This analysis leads to inaccurate

diagnosis results, i.e., providing too many options to users as potential the root cause

of a configuration error.

To solve this issue, we use chopping analysis. Specifically, we first use forward slic-

ing to analyze all statements which might be affected by an option value. Meanwhile,

we use backward slicing to identify all statements which have affected the statements

referenced by stack traces of an error. Then we take the intersection of this two sets

of statements to infer a possible execution path.

Moreover, we adopt a model to compute the correlation degree of each option with

a configuration error. The core idea of the model is that an option is more likely to

be the root cause if its value flow into the site of error raising through less methods.

For instance, if the statement loading the value of option C1 and the site of error

48

raising are in a method. The value of option C2 goes through multiple methods via

method calls and flows to the site of error raising. The option C1 is more likely to be

the root cause of the error than option C2.

4.2 Problem Statement

Our work addresses one type of parameter-related misconfigurations, i.e., a crashing

error caused by the incorrect value of a single configuration option. This type of

configuration errors are a major part of misconfigurations from users according to a

recent study [88].

Configurable
software

...

A list of options

Inputs

!

One option is wrongly set

Correct

Correct

3

Outputs

Figure 4.2: The scenario of the configuration error we address.

This type of configuration errors are described in Figure 4.2. Specifically, we work

on the released software systems. The software systems are assumed to be well tested

and rarely fail due to software bugs. Given that the input is correct, the system

crashed with the incorrect results and the error message due to the wrong value of

a configuration option. Our aim to identify which option is wrongly set from a large

amount of options, e.g., hundreds or even thousands.

49

4.3 ConfDoctor Approach

Our approach considers the source code of a program as a set of statements S1, S2,

Each statement is identified by a unique program point, also called a (program) site;

thus, two println-statements at different sites are seen as different.

We consider configurations as a set of key-value pairs, where the keys are strings

and the values have arbitrary type. This schema is supported by POSIX, Java Prop-

erties and Windows Registry, and is used in a range of projects [60].

For a program, we denote n configuration options of a debugged application by

c1, . . . , cn. For option ci, we call a statement (program point) which reads-in value of

ci an option read point and denote it by ORP(ci). Note that for each ci they might

exist multiple option read points.

In the following, non-capitalized letters (e.g. i, j, n, t) represent integers or

configuration options (c1, c2, . . .), letters P, R, S, Q denote statements, M , N are

methods, and X, Y, Z are sets.

4.3.1 Overview

Our approach, called ConfDoctor, implies a following diagnosis workflow. For a tar-

geted application we first perform a one-time configuration propagation analysis (Sec-

tion 4.3.2) to identify statements possibly affected by the value of each configuration

option. Given a crashing error and its error stack traces (Figure 4.1) we conduct a

backward slicing analysis (Section 4.3.3) to identify statements which impact program

points referenced by this trace. As next, an intersection of both sets of statements

is computed (Section4.3.4). We use this result to correlate each configuration option

with a given error with stack traces (Section 4.3.5). Finally, a list of configuration

options ranked by the correlation degree is reported to users.

4.3.2 Configuration Propagation Analysis

This section describes how ConfDoctor analyzes the propagation of each option value

in the program. ConfDoctor uses forward slicing techniques to track down the data

flow of an option value and identifies all statements affected by the option value. The

propagation analysis mainly consists of two steps.

50

Searching Option Read Points. We assume that configuration options of a software

program are published. According to the configuration option list, our approach

locates all option read points by searching configuration option names in the source

code of the corresponding version.

Propagation Analysis. As stated in Section 2.2.1, program slicing allows to track

down the data flow of a value of interest by identifying the data dependencies in

the dependence graph. To identify all statements affected by a configuration option

we use a static technique called forward slicing [82]. For a seed statement S, it

attempts to identify the set of all statements (called forward slice FS(S)) affected by

the execution of S.

We deploy a variant of forward slicing which considers data dependence without

control dependence (Section 4.4). The reason is that considering control dependence

includes in slices FS(S) too many statements which are only indirectly affected by a

configuration option. This might lead to a decreased accuracy of the diagnosis, which

was confirmed by our evaluation.

For a particular configuration option ci, the forward slicing analysis is conducted

by using all option read points of the option ci as seeds. Consequently, we define the

merged forward slice MFS(ci) as the union of all forward slices over all option read

points of ci:

MFS(ci) =
⋃

S is ORP(ci)

FS(S).

4.3.3 Stack Trace Analysis

In this section, we describe how to analyze parts of the program associated with

a single execution using static analysis. The stack traces of an error record called

methods in the execution before crashing. Using the stack traces, static analysis is

able to identify the parts of being possibly executed in the program. Specifically,

ConfDoctor adopts program slicing techniques to analyze all statements which have

affected the statements referenced by the stack traces.

A typical stack trace is an ordered list of size t pointing to statements in nested

methods called up to the point of failure. Each such referenced statement is called

a frame execution point and is denoted by FEP(j), for j = 1, . . . , t. We index stack

trace entries from bottom to top, i.e. from the main method to the method where

51

an exception occurs (see Figure 4.1). Thus, FEP(t) is the program site where an

exception has been raised, and FEP(1) is in the main-method.

To identify statements which have influenced program points referenced by a stack

trace, we use backward slicing [82], a static analysis technique analogous to forward

slicing. For a seed statement S, the backward slice BS(S) is a set of all statements

whose execution might have influenced S.

Our stack trace analysis considers all frame execution points, not just the (top)

FEP where the exception is raised. Consequently, we treat each FEP as a seed and

compute its backward slice. The results are used to obtain a merged backward slice

MBS which is a union of all backward slices:

MBS =
t⋃

j=1

BS(FEP(j)).

Our stack trace analysis focuses on analysis in the application program and does

not consider tools or third-party libraries. If a frame execution point does not reside

in the source code of the application program, our technique is able to automatically

exclude it using the package name.

Contrary to forward slicing, our implementation of backward slicing considers both

data dependence and control dependence. The primary reason is that a stack trace

records the execution path before an error occurs. It reflects the program’s flow of

execution. Without considering control dependence, the stack trace analysis would

miss statements affecting FEPs.

4.3.4 Chopping Analysis

Configuration propagation analysis tracks down the data flow of each option value

and identifies statements affected by the values of all options. Stack trace analysis

identifies parts of possibly being executed in the program in a failure run of a system.

We infer whether an option is correlated to a configuration error by checking if there is

an overlap between statements affected by the option values and statements possibly

be executed prior to the error.

The core idea of ConfDoctor is to identify configuration options ci for which there

exists an execution path between some ORP(ci) and some FEP(j). As illustrated

in Figure 4.3, if an intersection of forward slice of ORP(ci) and a backward slice

FEP(j) is not empty, such execution path might exist. Since we have multiple ORPs

52

FS

FS

FS

BS

BS

BS

Source codeBCh(c1)BBSBFS(c1)

ORP(c1)

ORP(c1)

FEP(3)

ORP(c1)

ORP(c2)

FEP(2)

FEP(1)

Figure 4.3: An example illustrates how the option read points ORPs of configuration
options c1 and c2 and frame execution FEPs of an exception give rise to the merged
forward slice MFS(c1) of c1, the merged backward slice MBS, and the merged chop
MCh(c1).

(per option) and multiple FEPs, the following definition is needed. For a given

configuration option ci the merged chop MCh(ci) is the intersection of the merged

forward slice MFS(ci) and the merged backward slice MBS:

MCh(ci) = MFS(ci)
⋂

MBS.

4.3.5 Correlation Degrees

In the chop analysis above, there might exist multiple configuration options which

are correlated to an error. Which option of them is more likely to be the root cause

of the error? This section describes two variants of metrics used for ranking of con-

figuration options based on the results of the chopping analysis. We first introduce

some definitions.

Method Distance. As stated in Section 2.2.1, a static call graph CG of a program

is a directed graph where each node represents a method and a directed edge (M, N)

stands for method M calling method N . In CG, the method distance dmeth(Sp, Sq)

of two statements Sp and Sq is 1 plus the length of the shortest undirected path in

53

S2

S1

Sb

...
i+1 ...
i+2 ...
i+3 ...

...

The method
containing S1 and Sb

S3

Sf

Figure 4.4: A fragment of a call graph with call paths from the method containing
Sf to the method containing Sb

CG between a method containing Sp and a method containing Sq. dmeth(Sp, Sq) = 1

if both Sp and Sq are within the same method.

Method distance is used to estimate the ”closeness” of any statement in a merged

chop MCh(ci) from an ORP or a FEP. We illustrate this in Figure 4.4 showing a

partial call graph (each node represents a method). Let statement Sf be one of the

ORP(ci) and statement Sb one of the FEPs for a fixed configuration option ci. In

Figure 4.4 the top node labeled by Sf represents the method containing the statement

Sf (analogously, statement Sb is in a method represented by the bottom node).

Furthermore, assume that S1, S2, S3 are statements in the intersection

FS(Sf)
⋂

BS(Sb). Thus, dmeth(Sf , S1) = 3, dmeth(Sb, S1) = 1, dmeth(Sf , S2) = 4,

dmeth(Sb, S2) = 2, dmeth(Sf , S3) = 3 and dmeth(Sb, S3) = 2. Obviously these

statements differ by their distance to Sf and to Sb.

Forward Dependency Degree. Let ci be a configuration option with a non-empty

merged chop. Furthermore, let Sf be an option read point ORP(ci) and Sb be a frame

execution point FEP such that the forward slice of Sf has a non-empty intersection

with the backward slice of Sb. We define a forward dependency degree Dfw(Sf , Sb)

as follows. Let S be a statement in FS(Sf) ∩ BS(Sb) with the smallest method dis-

tance dmeth(Sb, S) to Sb, and in case of ambiguity with the smallest method distance

54

dmeth(Sf , S) to Sf . Then Dfw(Sf , Sb) is

Dfw(Sf , Sb) = (1/dmeth(Sf , S) + 1/dmeth(Sb, S)) ∗ (1 + w)

where w is set to 1 if S and Sb are in the same source line (and so same method),

and w = 0 otherwise.

In the example in Figure 4.4, S1 is closest to Sb among statements S1, S2 and

S3. Further, S1 and Sb are in same source line. Consequently, w is set to 1 and so

Dfw(Sf , Sb) = (1/3 + 1) ∗ (1 + 1) = 8/3.

Backward Dependency Degree. With the meaning of ci, Sf and Sb as above, we

define a backward dependency degree Dbw(Sf , Sb) as follows. Let S be a statement in

FS(Sf) ∩ BS(Sb) with a smallest method distance dmeth(Sf , S) to Sf , and in case of

ambiguity with a smallest method distance dmeth(Sb, S) to Sb. Then Dbw(Sf , Sb) is

Dbw(Sf , Sb) = (1/dmeth(Sf , S) + 1/dmeth(Sb, S)) ∗ (1 + w)

where w is set to 1 if S and Sf are in the same source line, and w = 0 otherwise.

The intuition behind forward (and analogously backward) dependency degree is

the following one. Value of Dfw(Sf , Sb) is larger if the method distances of statements

”affected by Sf” (i.e. in FS(Sf)) to Sb can be small. Furthermore, if S and Sb are in

same source line (i.e. w = 1), then Sf can directly reach Sb, i.e., Sb is contained in the

forward slice of Sf . All these cases indicate a higher probability that the particular

option ci (giving rise to Sf and Sb) can be responsible for the fault.

Simple Correlation Degree

We introduce a metric for ranking configuration options which is based on a sum of

a largest forward dependency degree and a largest backward dependency degree.

For a fixed configuration option ci let X be the set of all ORPs of ci and Y be

the set of all FEPs. For such a ci the largest possible value Dfw(Sf , Sb) of a forward

dependency degree can be found by considering all combinations of Sf and Sb. This

gives rise to a definition of a forward correlation degree Corfw(ci):

Corfw(ci) = max (Dfw(Sf , Sb) |Sf ∈ X, Sb ∈ Y) .

We set Corfw(ci) = 0 if there is no pair Sf ∈ X, Sb ∈ Y with FS(Sf) ∩ BS(Sb) 6= ∅
(and so no Dfw(Sf , Sb) is defined).

55

Analogously, we define a backward correlation degree Corbw(ci) as

Corbw(ci) = max (Dbw(Sf , Sb) |Sf ∈ X, Sb ∈ Y) .

Again we set Corbw(ci) = 0 if there is no pair Sf ∈ X, Sb ∈ Y with FS(Sf)∩BS(Sb) 6=
∅ for ci.

Our first metric for ranking configuration options called simple correlation degree

Cor is the sum of the forward and backward correlation degrees:

Cor(ci) = Corfw(ci) + Corbw(ci).

For evaluation purposes we also collect data about a pair Sf (a ORP)

and Sb (a FEP) which maximizes Corfw(ci) or Corbw(ci). For a fixed ci, let

(Sfw
f , Sfw

b) = argmaxSf ,Sb
Dfw(Sf , Sb) and let (Sbw

f , S
bw
b) = argmaxSf ,Sb

Dbw(Sf , Sb).

Then the minimal ORP to FEP distance dmin(ci) is a smaller one of the method

distances dmeth(Sfw
f , Sfw

b) and dmeth(Sbw
f , S

bw
b). The index of the stack trace entry

corresponding to Sfw
b (or to Sbw

b if dmeth(Sbw
f , S

bw
b) is used) is called the key frame for

ci.

Correlation Degrees with Stack Order

The above-defined correlation degree does not consider the order of stack frames.

However, the order of stack frames is significant for diagnosing the root cause of an

error. A stack trace records the execution path in reverse ”chronological” order from

the most recent execution to the earliest execution. Paper [68] investigates 2,321 bugs

from the eclipse project which are fixed in the method referenced by one of the stack

frames. The result shows the number of bugs fixed in the recently executed methods

is larger than that of ones fixed in the early executed methods.

f(j) = 1− 1/j

To consider the impact of stack frame ordering we introduce an stack order factor

f , where f is a weight function for each stack frame and j is the index of a stack

frame (see Figure 4.1). The index j of the stack frame referencing the main method

of a program is 1, yielding value f(1) = 0. We use the stack order factor to refine the

definitions of the forward and backward correlation degree.

56

For the configuration option ci the forward correlation degree with stack order is

defined as:

Corstfw(ci) = max (Dfw(Sf , Sb) ∗ f(j) |Sf ∈ X, Sb ∈ Y)

where j is the index of the stack frame corresponding to Sb (while setting Corstfw(ci) =

0 if there is no pair Sf , Sb with FS(Sf) ∩ BS(Sb) 6= ∅).

Analogously, the backward correlation degree with stack order is defined as:

Corstbw(ci) = max (Dbw(Sf , Sb) ∗ f(j) |Sf ∈ X, Sb ∈ Y)

where j is the index of the stack frame corresponding to Sb (with Corstbw(ci) = 0 if no

Dbw(Sf , Sb) is defined).

We are ready to define the main metric used for ranking of options, namely the

correlation degree with stack order :

Corst(ci) = Corstfw(ci) + Corstbw(ci) .

4.3.6 Ranking Configuration Options

As noted in Section 4.3.1, after the error stack trace is available, we compute the

correlation degrees for all configuration options as described in Section 4.3.5. We can

do this either using the simple correlation degree Cor or the correlation degree with

stack order Corst. Since the latter choice produces better results, we consider it as

the ”final” metric of our approach (results for Cor are still shown in the evaluation).

A ranked list of configuration options obtained in this way is reported to users,

with top entries (highest values of Corst) indicating the most likely root causes of a

failure.

Summary. ConfDoctor mainly consists of two parts for diagnosing a configura-

tion error: extracting statements from programs and computing correlation degrees

of each option with the error. For the statement extraction, ConfDoctor identifies

statements from programs which might be affected by an option value and statements

which might have affected statements referenced by the stack traces of the error. The

intersections of these two sets of statements are computed.

57

For the computation of correlation degrees, there are two models to computing

correlation degrees of an option, Cor and Corst. Model corst considers the order of

stack traces of an error. ConfDoctor adopts model Corst since our evaluation shows

diagnosis results are more accurate with Corst than with Cor. Finally, ConfDoctor

outputs a list of options ranked by their correlation degrees with a configuration error.

The options ranked top are more likely to be the root cause of the error.

4.4 Implementation

We implemented a Java-based prototype, called ConfDoctor, on top of the WALA

library [78]. WALA is a static analyzer tool developed by IBM. WALA provides static

analysis libraries for Java bytecode and related languages and for JavaScript including

pointer analysis, call graph construction, inter-procedural data flow analysis, context-

sensitive tabulation-based slicer, and so forth.

ConfDoctor uses the slicer in WALA to perform forward slicing and backward

slicing analyses. In the forward slicing analysis, the heap dependence is ignored for

improving the scalability of the slicer. Meanwhile, the control dependence is ignored

as well because we focus the data flow analysis of option values in the configuration

propagation analysis. For backward slicing, we consider the control dependence to use

the order information provided by stack traces. Specifically, in the implementation,

the DataDependence parameter is set as NO BASE NO HEAP NO EXCEPTIONS

for both slice types. For the ControlDependence parameter we use NONE for forward

slicing, and FULL for backward slicing.

We also use WALA to compute the (static) call graph needed for the method

distance dmeth computation. To achieve higher precision, we use here a more expensive

algorithm, the Control Flow Analysis 0-CFA [33]. While our analysis focuses on the

code in the application program, WALA needs to take into consideration Java libraries

for building the call graph. Without considering e.g. callback methods, the call graph

can be incomplete or imprecise.

Finally, we employ a database management system (specifically, MySQL) to store

data about statements. Such data includes (among others) the fully-qualified class

name, line number in the class file, and the method distance of each statement.

58

Table 4.1: Benchmark applications.

Program (version) Lines of Code #Options
JChord (2.1) 23.4 k 79
Randoop (1.3.2) 18.6 k 57
Hadoop (0.20.2) 103.6 k 141
HBase (0.92.2) 187.4 k 91

4.5 Evaluation

In this section we evaluate our approach and its implementation named ConfDoctor

under the following aspects. First, we evaluate the effectiveness of the whole approach

by investigating the rank of the actual root cause in the diagnosis results. Second, we

evaluate the precision of both ranking metrics: the simple correlation degree Cor and

the correlation degree with stack order Corst. Third, we explore the impact of static

analysis with different types of dependence analyses on the accuracy of diagnosis

results. Finally, we make a comparison with our previous work ConfDebugger [26].

4.5.1 Experimental Setup

Subject Applications

We evaluated ConfDoctor on four Java programs shown in Table 4.1. Column ”Lines

of Code” is the number of lines of code counted by CLOC [19]. For Hadoop and HBase,

it is the number of lines of Java source code. The code in other program languages is

not considered. Column ”#Options” is the number of available configuration options.

JChord [39] is a program analysis platform for Java byte code initiated by Mayur

Naik and Alex Aiken at Stanford University [60]. Randoop [64] is an automatic

unit test generator for Java maintained by a product group at Microsoft. Apache

Hadoop [34] comprises a distributed file system, a MapReduce implementation, and

a job scheduling/cluster management framework. Apache Hbase [36] is a distributed,

scalable, big data store which runs on top of Apache Hadoop’s file system.

Configuration Errors

We collected 29 configuration errors 1 listed in Table 4.2. We evaluated all the con-

figuration errors we found. The errors for JChord are taken from [60], and also used

1Their detailed description can be downloaded from the web site http://goo.gl/npOCVC.

59

http://goo.gl/npOCVC

Table 4.2: Configuration errors used in our evaluation.

Application Id Error description

JChord

1 No main class is specified
2 No main method in the specified class
3 Running a nonexistent analysis
4 Invalid context-sensitive analysis time
5 Printing nonexistent relations
6 Disassembling nonexistent classes
7 Invalid type of reflection
8 Wrong classpath

Randoop

9 No testclass is specified
10 Invalid type of output cases
11 The value of alias-ration is out of bounds
12 No method list is specified
13 The tested method has missing arguments
14 Incorrect name of the tested method
15 Invalid symbols in name of output dir
16 File name contains invalid symbols

Hadoop

17 Carriage return at the end of URL
18 Old data dir after formatting namenode
19 Wrong host name of master node
20 Usage of http instead of hdfs in URL
21 The storage dir of namenode not readable
22 Missing the ¡property¿ tags
23 Info port is in use by other process
24 Missing port in the URL

HBase

25 Wrong port of the rootdir URL
26 Wrong host name of the rootdir URL
27 No permission of the data directory
28 HMaster port is occupied
29 Wrong port of ZooKeeper

in [92]. The data set contains 9 crashing errors. Since one of these errors is without

a stack trace, we use the remaining 8 errors to evaluate our technique.

Randoop errors are injected by the tool ConfErr [44]. For a working configuration

of Randoop, we use ConfErr to insert some typographic errors into the value of one

of the configuration options. If the program crashes and produces a stack trace for

the erroneous configuration, we use the error in our evaluation.

Hadoop errors are real world misconfigurations which are collected by us from

the web and our own experiences of using Hadoop. Most of them can be found

60

on the website Stack Overflow [71]. Among these, three are tricky configuration

errors. Error #18 occurs due to the incompatible namespaceID. After formatting the

namenode, the directory specified by ”dfs.data.dir” should be removed. Presence of

this directory triggers the failure. Error #21 occurs if Hadoop has no permission to

access the storage directory. Error #23 is caused by a port being used by another

application.

All HBase errors are from the website Stack Overflow [71]. Some of the collected

misconfigurations belong to the same type. For instance, there exist multiple errors

caused by an incorrect host name. We use only one per type in this work.

4.5.2 Overall Accuracy

We measure the accuracy of ConfDoctor by the rank of the (unique) defective con-

figuration option (i.e. option with an incorrect value, the root cause of a failure) in a

ranked list of suspects. Rank 1 is the best possible result. We consider a configura-

tion option ci a suspect if its merged chop MCh(ci) is not empty (or equivalently, by

definitions in Section 4.3.5, if Corst(ci) > 0).

The main results are shown in Table 4.3. The two columns under ”Rank of the

root cause” contain pairs R/S where R is the rank of the actual root cause in a ranked

list of suspects of size S (highest rank is 1). Column Corst shows results obtained by

the correlation degree with stack order (main output of ConfDoctor). Column Cor

shows the ranking by the simple correlation degree. If the value of the correlation

degree is the same for a defective option and for some other options, we report the

worst ranking for ConfDoctor and mark this by ”*”. ”N” indicates that the list of

suspects does not include the defective option. For computation of averages, each

”N” is treated as half of the number of available configuration options. Columns

under ”Statistics for rank” show the minimal ORP to FEP distance dmin(ci) and the

key frame (Section4.3.5) for the configuration option ci ranked as first. In the column

”key frame” we use notation K/F to indicate that the key frame value is K and the

total length of the error stack trace is F . A ”-” indicates that dmin and key frame are

not defined.

Column Corst in Table 4.3 shows the final output of ConfDoctor. Overall, Conf-

Doctor is highly effective in diagnosing misconfigurations. It successfully pinpoints

the root cause for 27 out of 29 errors. For 20 errors, the defective option has rank 1.

For other 7 errors, root causes are ranked in the top four places.

61

Table 4.3: Experimental results. The two columns under ”Rank of the root cause”
show the rank of the actual root cause for each error by the two proposed metrics.
Columns under ”Statistics for rank” show the minimal method distance and the key
frame in diagnosing an error.

Id
Rank of the Root Cause Statistics for Rank
Corst Cor dmin Key frame

JChord

1 2/47 2/47 1 18/19
2 1 /53 2/53 1 18/19
3 1 /45 1/45 1 3/6
4 1/57 2/57 1 6/8
5 1/42 1/42 1 2/4
6 1/37 1/37 1 3/4
7 1/48 2/48 1 3/4
8 * 22/47 30/47 3 16/19

Average 3.8/47 5.1/47 1.3 8.6/10.4

Radoop

9 1/37 1/37 1 4/6
10 1/35 13/35 1 4/4
11 1/47 2/47 1 7/8
12 1/39 1/39 1 3/5
13 1/41 1/41 1 3/11
14 1/41 1/41 1 3/13
15 4/43 2/43 1 4/6
16 1/38 1/38 1 3/5

Average 1.4/40.1 2.8/40.1 1.0 3.9/7.2

Hadoop

17 1/7 1/7 1 6/8
18 1/11 1/11 1 3/8
19 2/7 2/7 2 4/9
20 1/18 2/18 2 6/9
21 2/16 2/16 2 6/8
22 1/11 1/11 1 5/7
23 3/6 3/6 2 4/9
24 1/11 1/11 1 5/7

Average 1.5/10.9 1.6/10.9 1.5 4.9/8.1

HBase

25 1/17 1/17 1 4/4
26 1/17 1/17 1 4/4
27 3/20 8/20 8 9/9
28 N N - -
29 3/5 3/5 1 3/5

Average 10.8/30 11.8/30 2.2 4/4.4

62

In the case of JChord, ConfDoctor succeeds to pinpoint the root cause with high

accuracy for 7 errors. The rank of the root cause for error #8 is 22. Code inspection

shows that the configuration option is used to set up the command line for a child

process. The value of the configuration option directly flows into a system process.

Our static analysis cannot capture the dependency between command line arguments

and configuration options. Consequently, our tool is not able to discover a connection

between the defective option and the exception and fails in diagnosing error #8.

For Randoop, ConfDoctor ranks the defective option as the first for all cases

except for error #15. For error #15 (ranked 4th), our investigation reveals that two

of the three configuration options ranked higher than #15 are related to the defective

option: they determine the subpath of a path described by option #15. Consequently,

we conclude that ConfDoctor pinpoints the root cause of this error effectively.

The average ranking of Hadoop is 1.5. Among the 8 errors, 5 are ranked first.

The rankings for errors #19, #21 and #23 are 2, 2 and 3, respectively.

The accuracy of our tool is slightly worse for HBase. ConfDoctor diagnoses root

causes of 4 out of 5 errors. Two defective options are ranked as first, and other two

receive rank 3. For error #28, the defective option is not in the list of suspects. A

manual analysis shows that error #28 is caused by an incorrect port of HMaster (a

master server for HBase). After the option value is read it is immediately forwarded

to Java library class without any processing. Since ConfDoctor does not analyze the

JDK library, the root cause of this failure is not included in the list of suspects.

Summary. The evaluation shows ConfDoctor is effective in diagnose configura-

tion errors. ConfDoctor can successfully diagnose 27 out of 29 errors from JChord,

Randoop, Hadoop, and HBase. For 20 errors, the failure-inducing configuration op-

tion is ranked first.

4.5.3 Comparison of Accuracy of Cor and Cor st

In this section we contrast and analyse the accuracy of the simple correlation degree

Cor against the correlation degree with stack order Corst.

Effectiveness of Cor. Recall that this metric is solely based on the method

distance involving option read points ORP and frame execution points FEP. Contrary

to Corst, it does not consider the order of FEPs. Note that the ranking is based the

sum of the forward and backward correlation degrees (Section 4.3.5).

63

The diagnosis results are shown in column Cor of Table 4.3. For most of the

errors, the ranking of the root cause is in the top three of diagnosis results. The

average ranks of the root cause are 5.1, 2.8 and 1.6 for JChord, Randoop and Hadoop

respectively. The average rank of the root cause for HBase is very high (11.8) since

error #28 could not be pinpointed.

As the metric is based only on the method distance, it is informative to consider

the minimal ORP to FEP distance dmin defined in Section 4.3.5. As shown in Table

4.3, for all errors of JChord and Randdop the value of dmin is 1 except for error #8.

As explained in Section 4.5.2, ConfDoctor cannot successfully diagnose error #8. For

Hadoop and HBase, the value of dmin is larger, especially for error #27.

The primary reason is that an error stack trace contains only partial information

and does not contain the data on complete past execution traces. Hadoop and HBase

are complex distributed programs. An option value might be passed along many

methods from being read to being used. The method reading the incorrect value of

the option might not appear in the stack traces. For instance,the value of the op-

tion ”fs.default.name” is passed through 5 methods from being read to being checked

(see Figure 4.5). The method getDefaultUri takes responsibility for reading the con-

figuration option. The get methods with different arguments perform intermediate

processing of it. After multiple intermediate processing, it is checked in the method

createFileSystem. This creates a situation that methods specified by the stack trace

are far away from the method for reading configuration options.

Effectiveness of Corst . ConfDoctor uses Corst to produce its final ranking.

This metric assigns a higher ”importance” to FEPs pointing to methods executed

more recently before a failure (or equivalently, to FEPs with smaller method distance

to the actual program site which rised an exception).

Data in column Corst in Table 4.3 indicates that the considering this factor im-

proves precision of diagnosis results, but the improvement varies among the applica-

tions. The average rank of the root cause improves from 5.1 to 3.8 for JChord, from

2.8 to 1.4 for Randoop, from 1.6 to 1.5 for Hadoop, and from 11.8 to 10.8 for HBase.

To understand these differences, we analysed the usage and programming patterns in

regard to the configuration options in all four applications.

JChord and Randoop adopt a mechanism of centrally initializing configuration

options. Especially for Randoop, the randoop.main.GenTests.handle method contains

45 ORPs. Most configuration options are initialized in this method when the program

starts. The method appears in stack traces of all 8 errors. In this case, the most

64

public static URI getDefaultUri(Configuration conf) {

return URI.create(

fixName(conf.get(FS_DEFAULT_NAME_KEY,"file:///")));

}

...

public static FileSystem get(Configuration conf)

throws IOException {

return get(getDefaultUri(conf), conf);

}

...

public static FileSystem get(URI uri, Configuration conf)

throws IOException {

...

return CACHE. get(uri, conf);

}

...

synchronized FileSystem get(URI uri, Configuration conf)

throws IOException{

...

fs = createFileSystem(uri, conf);

...

}

...

private static FileSystem createFileSystem(URI uri,

Configuration conf) throws IOException {

Class<?> clazz = conf.getClass("fs." +

uri.getScheme() + ".impl", null);

...

}

Figure 4.5: Code excerpt from Hadoop: the value of the configuration option
”fs.default.name” is passed through 5 methods until it is checked

65

recent operation indicates the configuration option last processed. Consequently,

considering the order of stack traces in Corst significantly improves the precision of

diagnosis results.

Hadoop and HBase initialize a configuration option only when the module associ-

ated with the configuration option is loaded. Initializations of configuration options

are scattered in the program and not concentrated in one or few methods. When

a misconfiguration occurs, it does not involve many configuration options. For all

errors, there are few configuration options which have the same or higher correlation

degree with the root cause before applying the model. We conclude that the order of

the stack trace does not improve the precision of the diagnosis results a lot.

The statistic key frame defined in Section 4.3.5 is also shown in Table 4.3. Notation

K/F indicates that the key frame value is K and the total length of the error stack

trace is F . Data shows that for the top ranked configuration option the key frame

is within the ”top” half of the error stack trace, i.e. closer to the method where an

exception is thrown than to the ”main” method.

Summary. With model Corst, ConfDoctor achieves more accurate diagnosis

results than using model Cor. For JChord and Randoop, the average rank of the

root cause is improved from 5.1 to 3.8 and from 2.8 to 1.4, respectively. For Hadoop

and HBase, the average rank of the root cause is improved from 1.6 to 1.5 and

from 11.8 to 10.8, respectively. With model Corst, the precision improvement on the

diagnosis results varies on applications. For applications which centrally use option

values, Corst can significantly improve the precision of diagnosis results but improve

less for applications which sparsely use option values in the program.

4.5.4 Impact of Variants of the Dependence Analysis on Ac-

curacy

ConfDoctor mainly relies on static analysis technique to diagnose the root cause of

a configuration error. The accuracy of diagnosis results depends on whether the

program slicing technique can precisely identify statements relevant for error propa-

gation. The type of dependence analyses has a significant impact on the accuracy of

diagnosis results.

In this section we evaluate the implementation choices stated in Section 4.4 by

comparing the precision of ConfDoctor under different types of dependence analyses.

We use a tuple (F,B) to indicate a type of dependence analyses. If the forward

66

Table 4.4: The diagnosis results with different variants of dependency and ConfDe-
bugger’s diagnosis results. Pairs R/S indicate the ranks of root causes in diagnosis,
where R is the rank of the actual root cause in a ranked list of suspects of size S
(highest rank is 1).

Id
Variants of Dependency Analysis Conf-

ConfDoctor (Ctr, Ctr) (Ctr, NCtr) (NCtr, NCtr) Debugger
1 2/47 4/64 2/57 2/8 2/2

J 2 1/53 1/66 1/57 1/8 2/2
C 3 1/45 5/65 9/19 2/6 1/1
h 4 1/57 1/69 1/26 1/11 1/1
o 5 1/42 1/65 2/19 2/6 1/1
r 6 1/37 2/65 2/8 1/1 1/1
d 7 1/48 3/69 4/6 4/6 1/1

8 22/47 28/64 28/57 N N
Average 3.8/47 5.6/65.9 6.1/31.1 6.6/15.6 6.1/13.2

9 1/37 3/53 2/11 1/3 2/2
R 10 1/35 1/54 1/8 N N
a 11 1/47 3/55 1/20 1/5 2/3
n 12 1/39 4/54 1/7 1/3 1/1
d 13 1/41 4/54 1/12 1/3 1/1
o 14 1/41 4/54 1/13 1/5 1/1
o 15 4/43 17/53 4/18 4/7 2/4
p 16 1/38 1/54 1/2 1/1 1/1

Average 1.4/40.1 4.6/53.9 1.5/11.4 4.9 /10.8 4.9/8.8
17 1/7 1/32 1/32 1/2 1/1

H 18 1/11 1/29 1/3 1/1 1/1
a 19 2/7 9/30 9/21 2/3 N
d 20 1/18 1/36 1/31 1/1 N
o 21 2/16 2/38 2/2 2/2 N
o 22 1/11 1/34 1/29 1/5 1/1
p 23 3/6 16/31 16/20 2/5 N

24 1/11 1/34 1/29 1/5 1/1
Average 1.5/10.9 4.0/33 4.0/20.9 1.4/3 36.1/36.1

25 1/17 1/33 1/1 1/1 1/17
H 26 1/17 1/33 1/1 1/1 1/17
B 27 3/20 3/33 N N 16/20
a 28 N 15/32 N N N
s 29 3/5 3/32 N N 3/5
e Average 10.8/30 4.6/32.6 28/55 28/55 13.4/30

67

475. if ((!output_tests.equals("all"))

&& (!output_tests.equals("pass"))

&& (!output_tests.equals("fail")))

{

476. StringBuilder = new StringBuilder();

477. localStringBuilder.append("Option output-tests

must be one of ");

478. localStringBuilder.append("all");

479. localStringBuilder.append(", ");

480. localStringBuilder.append("pass");

481. localStringBuilder.append(", or ");

482. localStringBuilder.append("fail");

483. localStringBuilder.append(".");

484. throw new RuntimeException(localStringBuilder.toString());

485. }

Figure 4.6: Excerpt of the Randoop related to error #10

slicing considers control dependence, F is Ctr, and NCtr otherwise. Analogously, if

the backward slicing considers control dependence, B is Ctr, and NCtr otherwise. In

this notation, the default type of dependence analyses used in ConfDoctor is written

as (NCtr, Ctr). Similarly, other three dependence analyses are indicated as (Ctr,

Ctr), (Ctr, NCtr) and (NCtr, NCtr).

The diagnosis results under other dependence analyses are shown in Table 4.4.

Column ”Variants of dependency analysis” shows the ranks of root causes obtained

by Corst produced by variants of the dependence analysis types. It uses analogous

notation as columns for Corst and for Cor. Finally, column ”ConfDebugger” reports

results for our previous work.

ConfDoctor achieves the most accurate results for JChord (3.8) and Randoop

(1.4) when using the default dependence type (NCtr, Ctr). The accuracy of using the

dependence type (NCtr, Ctr) is similar to that of using the dependence type (NCtr,

NCtr) for Hadoop. But ConfDoctor totally fails to diagnose errors #10, #27, and

#29 when using the dependence type (NCtr, NCtr), though it achieves a little more

accurate results than using (NCtr, Ctr) for Hadoop. For Hbase, using the dependence

type (Ctr, Ctr) obtains the most accurate results because it can diagnose the root

cause of error #28. But the root cause of error #28 ranks very low (15/32), which is

not useful in the real world.

68

The explanation is that forward slicing considering control dependence introduces

too many statements which are only indirectly affected by a configuration option.

On the other hand, for backward slicing, ignoring control dependence can miss the

execution information contained by a stack trace. The example in Figure 4.6 illus-

trates this. Line 484 is the program point referred by stack trace frame closest to the

exception of error #10. Line 475 is the initialization statement of the configuration

option output tests. Obviously lines 476 to 484 have control dependencies with line

475. If we use line 484 to perform a backward slicing without considering control

dependencies, none of lines in the excerpt is contained in the slice except for line

484 because they have data dependencies with line 484. This analysis misses line 475

which directly affects line 484. The accuracy of diagnosis result significantly decrease.

instead, ConfDoctor is able to pinpoint the root cause of error #10 by considering

control dependencies.

Summary. The types of program analysis for extracting statements from pro-

grams have significant impact on the precision of diagnosis results. The comparison

indicates ConfDoctor achieves more accurate results when using the dependence type

(NCtr, Ctr). There are two major reasons. First, forward slicing without considering

control dependence excludes less-relevant statements with an option value. Second,

backward slicing with considering control dependence uses control flow information

contained in stack traces.

4.5.5 Comparison with Our Previous Work

ConfDebugger [26] is our preliminary work to diagnose software misconfigurations

by using static analysis. If one FEP of a stack trace is contained in the forward

slice of an ORP of a configuration option, or an ORP of the configuration option is

included in the backward slice of an FEP of the stack trace, ConfDebugger considers

the configuration option as the root cause candidate. Contrary to ConfDebugger,

ConfDoctor applies a systematic approach presented in Section 4.3.5 to compute the

dependency between one configuration option and an error.

As shown in Table 4.4 (Column ConfDebugger), ConfDebugger achieves a similar

accuracy for JChord. But for Randoop, Hadoop, and HBase it fails in many cases.

The reason is that ConfDebugger does not consider incompleteness of a stack trace.

For many cases, the statements reached by the ORP of a configuration option do

not appear in stack traces (see Section 4.3.5) . In Hadoop and HBase, the depth of

method calls is relatively large. A stack trace misses some executed program points

69

when an error occurs. Consequently, ConfDebugger has a very low success rate for

these cases.

Summary. ConfDoctor achieves more accurate diagnosis results than our previ-

ous work ConfDebugger. The primary reason is that stack trace of an error could be

incomplete. The statements affected by an option value might not appear in stack

traces but exist in methods which are close to stack trace methods in the call graph.

ConfDoctor considers these statements for computing correlation degrees of an option.

ConfDebugger does not consider them.

4.5.6 Time Overhead of Diagnosis

Our experiments were conducted on a laptop with Intel i7-2760QM CPU (2.40GHz)

and 8 GB physical memory, running Windows 7.

The time cost is shown in Table 4.5. Column ”FS&Importing” shows time of

forward slicing and importing into the database (in seconds; one-time effort per pro-

gram). Column ”BS&Importing” states time of forward slicing and importing into

the database (in seconds). Column ”Analysis” gives time of final analysis.

The forward slicing does not consider control dependence and is relatively fast.

The maximum time is 357 seconds for Hadoop. The forward slicing is a one-time effort

per program. The computed slices can be used for the diagnoses of other errors.

The backward slicing considers control dependence and needs more time. For an

error, time for the backward slicing varies on the size of the stack trace. The maximum

time is 978 seconds for error #27. The time of computing correlation degree is just

several seconds. The total of diagnosing an error is less than 20 minutes.

Summary. Considering the cost of manually diagnosing configuration errors,

ConfDoctor takes less than 20 minutes to diagnose an error. Given diagnosing a

configuration error requires much longer in practice, we believe that our time overhead

is acceptable.

4.5.7 Discussion

Limitations

Our technique has several limitations. First, we focus on a subset of configuration

errors, where the incorrect setting of an option causes a program to fail in a determin-

70

Table 4.5: The time overhead of diagnosing a misconfiguration. Column ”FS & Im-
proting” indicates the time of forward slicing and importing statements into database
for an application. Column ”BS & Importing” represents the time of backward slicing
and importing statements into database for each error. Column ”Analysis” indicates
the analysis time for each error. The time unit is the second.

Apps Id FS&Importing BS&Importing Analysis

JChord

1 102 692 2
2 102 605 2
3 102 150 <1
4 102 258 <1
5 102 33 <1
6 102 30 <1
7 102 60 <1
8 102 628 2

Randoop

9 169 412 <1
10 169 241 <1
11 169 565 1
12 169 821 <1
13 169 752 2
14 169 957 2
15 169 431 <1
16 169 202 <1

Hadoop

17 357 65 <1
18 357 76 <1
19 357 59 <1
20 357 641 1
21 357 90 <1
22 357 32 <1
23 357 115 <1
24 357 35 <1

HBase

25 87 453 2
26 87 467 2
27 87 978 3
28 87 114 <1
29 87 119 <1

71

istic way and produce a stack trace. Second, the accuracy of our technique depends

on the availability of a stack trace. The lack of stack traces decreases the accuracy.

Third, our technique just provides suspects and cannot tell a user why and how the

configuration option is incorrect. Besides, our approach cannot distinguish configura-

tion errors from bugs in the source code. ConfDoctor still produces a ranking list for

failures caused by a bug in the source code, which can be misleading. Fourth, some

misconfigurations are caused by the incorrect setting of a combination of multiple

configuration options, our approach cannot pinpoint how many configuration options

lead to a error. Finally, our implementation and experiments are restricted to Java

and cannot cross components written by different languages.

Threats to validity

There are two threats to validity in our evaluation. First, configuration errors for

JChord and Randoop are created by using ConfErr [44] as typographic mistakes

inserted into the value of a configuration option. Real configuration errors collected

from websites cover several misconfiguration types such as numerical parameters and

system paths. Such errors might be not representative. Second, the number of subject

application programs is small, though the programs we used in the evaluation are

created by developers from different organizations and institutions. Thus, we cannot

affirm that the results can be generalized to an arbitrary program.

4.6 Summary

This chapter presents a practical technique, ConfDoctor, to diagnose software config-

uration errors. It first analyzes the program in question to characterize statements

affected by reading the values of configuration options. In the case of a failure, the

stack trace is investigated in order to find a potential link between the option read

points and the program sites listed in the stack trace. The suspicious configuration

options are reported after being ranked according to the ”strength” of such links.

ConfDoctor does not require users to reproduce errors. The only data needed from

a failed execution is the error stack trace. This facilitates deploying our approach as

a third-party service and is an essential advantage compared to existing approaches

which require to reproduce errors or to provide testing oracles.

We collect 29 configuration errors on 4 applications (JChord, Randoop, Hadoop,

and HBase) to evaluate ConfDoctor in several aspects. First, we evaluate the effective-

72

ness of our approach in diagnosing configuration errors. The results show ConfDoctor

is highly effective in troubleshooting configuration. It successfully diagnoses the root

causes of 27 errors, for 20 of which the root cause is ranked first in the output.

Second, we evaluate two proposed models for computing correlation degrees with

an error, Cor and Corst. The model Corst considers the order information of stack

traces of an error and considers options more likely to be root causes which might

affect statements near to the crashing site at run time. Results show that ConfDoctor

with model Corst achieves more accurate results.

Third, we evaluate the impact of different variants of dependence analysis on

the accuracy of diagnosis results. Results show the combination of forward slicing

with considering control dependence and backward slicing without considering control

dependence obtains the most accurate results.

Fourth, we compare ConfDoctor with our previous work, ConfDebugger. Results

show ConfDoctor achieve much more accurate results than ConfDebugger does. The

primary reason is that ConfDoctor considers all possible relevant statements with an

option value and adopts a model to systematically compute the correlation degree of

an option with a configuration error. ConfDebugger only considers whether an option

value affects statements referenced by stack traces instead.

Finally, we evaluate ConfDoctor on the time overhead of diagnosing a config-

uration error. For 29 errors, the diagnosis time is less than 20 minutes, which is

reasonable for diagnosing a configuration error.

73

Chapter 5

ORPLocator: Locating Option

Read Points

This chapter addresses software misconfigurations due to inconsistencies between con-

figuration documents and the corresponding version of a software system. These

inconsistencies usually occur as software evolves. Changes like the removing some

options are not updated to documents in time. The setting of such removed options

cannot create effects on the system as documents state. This kind of misconfiguration

leads to the frustrated experience for a user.

We present an approach, called ORPLocator, for detection of these inconsistencies

between source code and documentation based on static analysis. Our approach

automatically identifies source code locations where options are read, and for each

such location retrieves the name of the option. Inconsistencies are then detected by

comparing the results against the option names listed in documentation.

The remainder of this chapter first briefly introduces our work, then presents

details of ORPLocator and its evaluation, and finally discusses its limitations.

5.1 Introduction

This section first introduces the motivation of our work using a real world configura-

tion error. Then we present our idea to detect inconsistencies between documentation

and source code. Next, we pinpoint a challenge in implementing the idea and our

solution for the challenge.

75

Figure 5.1: HDFS-8274: A real configuration issue in Apache Hadoop Distributed
File System 2.7.0.

5.1.1 Motivation

Highly configurable software systems often provide documents for guiding users to

configure them. With the documents, users are able to customize an application

by setting some configuration options. One of the most frustrating things in the

configuration setting is that the setting suggested by a document does not work, i.e.,

the setting of an option does not create the effect as the document states. A common

reason for this is the specified option value is never read by the program.

Let us see a real world bug in Apache Hadoop Distributed File System (HDFS)

2.7.0 shown in Figure 5.1. The configuration document of HDFS 2.7.0 shows option

”nsf.dump.dir” allows to set the dump directory of a Network File System (NFS)

client for saving temporary data. However, after setting the option, HDSF still uses

the directory under the default path instead of the path specified by this option. The

root cause of the bug is that the option name is changed to ”nsf.file.dump.dir” in the

source code. The value specified by users is not read by HDFS.

Configuration issues of this type are common because the update of software doc-

umentation is slower than software evolution as stated in Section 1.2.2. The changed

options in the source code are not updated to documents in time. These inconsisten-

76

CommonConfigurationKeysPublic.java

...

249: public static final String A =

250: "hadoop.security.service.user.name.key";

...

GroupMappingServiceProvider.java

...

34: public static final String B =

CommonConfigurationKeysPublic.A;

...

CompositeGroupMapping.java

...

47: public static final String C = B + ".providers";

48: public static final String D = C + ".combined";

...

public synchronized void setConf(Configuration conf) {

...

116: this.combined = conf.getBoolean(D,true);

...

}

...

Figure 5.2: A real case of how an option is used in Hadoop 2.7.1. Variable names are
replaced by capitalized letters to improve readability.

cies between documents and source code lead to that a user configures configuration

options of not being used in the software system. This type of configuration issues

can frustrate users.

A straightforward approach for detecting inconsistencies between documented

(i.e., ”official”) options and the corresponding version of source code is to check

whether an option is used in the source code. An indication of this fact is that at

least one code statement accesses (reads) the option value in the source code. We call

such a code statement an option read point (ORP). To simplify, we do not consider

whether the statement is dead code. Given a list of (automatically detected) ORPs

together with corresponding option names, we can compare it against the documen-

tation in order to detect the above-mentioned inconsistencies.

77

A common way for developers to locate option read points is to search the calls

of the methods for reading options and infer option names directly from the string

parameters used in a method call. This approach is not sufficient for complex appli-

cations. In the application we studied, the calls of option-reading methods usually

take a variable as a parameter. Using existing approaches, detecting the name of the

option in such cases requires to investigate many methods or classes.

A real example is shown in Figure 5.2. Line 116 in the class file Composite-

GroupsMapping.java is an option read point in Apache Hadoop, which takes the

class variable D as a parameter. The variable D is initialized by an expression of

combining a string constant and another class variable C. Similarly, variable C is

initialized by an expression of combining variable B and a string constant. However,

variable B is declared in the super class GroupMappingServiceProvider of class Com-

positeGroupsMapping. Again, variable B is initialized by the variable A in a dedicated

class for storing option names or their prefixes. In this dedicated class, variable A is

initialized via a string. Finally, the value of variable D, the option name, is obtained

as ”hadoop.security.service.user.name.key.providers.combined”. This analysis spans

3 classes and 2 packages. Such coding patterns are quite common in the applications

which we studied.

Manually identifying option read points of a large amount of configuration options,

e.g. thousands, takes a huge amount of human effort and is error-prone. Addressing

this issue, we attempt to develop an approach for automatically identifying option

read options for highly-configurable and large-scale software systems.

5.1.2 Idea

Given the name of a class C for handling (reading) configuration options and the

source code of a program, we first mark the methods which fetch option values in

the class. Then we identify all instances of the class in the program. All call sites of

marked methods on these instances are located, i.e., all statements of reading option

values are located. Finally, we infer which option each of these statements reads and

output a map of option names and their read points. With this map, we identify

inconsistencies between documents and source code by comparing identified options

with documented options.

We use the example in Figure 5.3 to illustrate the idea. The class C manages the

configuration data. The method getString fetches values of String-type options in

the class. We first mark this method as an API of getting option values. Then all

78

A configuration class

1. class C {

2. ...

3. //fetch an option value

4. String getString(String key){

5. ...

6. }

7. }

Two classes of reading option values

1. class P1 {

2. private String exampleOption="p.example.path";

3. ...

4. void e1(C c){

5. String path=c.getString(exampleOption);

6. ...

7. }

8. }

9. class P2{

10. C config = new C();

11. ...

12. void test(){

13. String version= config.getString("p.example.version");

14. ...

15. }

16.}

Figure 5.3: An example for illustrating our idea.

79

instances of class C are identified, i.e., instance c in the class P1 and config in the

class P2 respectively. The all sites of getString on these instances are located. The

statements where these call sites are identified as ORPs. In the example, they are

statements at line 5 in the class P1 and at line 13 in the class P2. Finally, we infer

which option each ORP reads. The ORP at line 13 reads a string constant, which is

directly identified as the name of option being read, i.e., ”p.example.version”. For the

ORP at line 5 in the class P1, variable exampleOption is passed as an argument. We

infer the value of exampleOption, the option name ”p.example.path”, by checking

the initialization statement at line 2.

5.1.3 A Challenge and Solution

The idea of identifying option read points is straightforward. We use static analysis

techniques to identify call sites of marked methods and infer names of option values.

The identification of call sites of marked methods relies on the usages of instances of

a configuration class. An instance can be declared in a method, in a class but outside

a method, or globally. The usages of an instance can span multiple methods, classes,

or packages. Similarly, in the inference of an option name, a variable passed to an

option read point can be declared in different methods, classes, or packages. How to

identify the scope of a variable in static analysis is a major challenge for implementing

our idea.

We develop an algorithm for identifying the scope of a variable. The algorithm

identifies the scope of a variable based on the location of the declaration statement

of the variable. For a local variable, the algorithm considers the smallest block as

its scope. For an instance variable, our algorithm considers the class and its all

descendant classes. For a class variable, the whole program is its scope.

5.2 Problem Statement

There are multiple configuration models used in configurable software systems in

practice. According to the study [61], the key-value configuration is a common and

widespread approach for users to configure applications. The configuration model

is supported by the POSIX system environment, the Java Properties API, and the

Window Registry. Our work targets applications with the key-value configuration

model.

80

A configuration file

...

key_1 := value_1

key_2 := value_2

key_3 := value_3

...

A configuration class

...

boolean LoadFile(String Path){...}

int getInt(String keyName){...}

String getString(String keyName){...}

...

A class where a statement reads the value of an option

...

Configuraion conf=new Configuration();

String keyName = "key_1";

String var_1=conf.getString(keyName);

...

Figure 5.4: An example scenario of the key-value configuration schema

Key-value Configuration. The key-value configuration model can be illustrated

by the example shown in Figure 5.4. Configuration options are designed as a set of

key-value pairs and stored in a configuration file. The keys are strings and the values

have arbitrary type. Each pair corresponds to an application attribute. Users are able

to control features of applications by setting attribute values in the configuration file.

Meanwhile, application programs have a dedicated class for managing these config-

uration options, called a configuration class. The class takes responsibility of loading

key-value pairs in the configuration file to a map, and offers a set of methods like getInt

and getString, each of which takes one option name as a parameter and returns the

value of the option. We call methods of reading option values in a configuration class

as get-methods.

Programs read option values by calling these get-methods. In the example,

conf.getString(keyName) returns the value of the option with name key 1. This

statement is called as an option read point of the option named key 1.

81

Identifying sub configuration classes

Selecting get-Methods

Locating call sites of get-Methods

Inferring loaded options

A configuration class

A map of read points and options

Figure 5.5: The workflow of our technique

Problem Formulation. We target programs using the key-value configuration

model. Given the source code of a program and the class name of its configuration

class, we attempt to automatically identify option read points, i.e., call sites of get-

methods in the program and infer which option is loaded at each call site, finally

outputting a map of option names and their read points in the source code.

5.3 ORPLocator

Our technique targets applications written in object oriented languages such as Java,

C++, and C#. We abstract the source code as a set ψ of entities of classes, interfaces,

and enums, which are distributed in different class files. Each entity e has a simple

name and a fully-qualified name. The fully-qualified name consists of the package

name and the simple name. An entity is retrieved by its fully-qualified name from ψ.

Statements in classes are denoted by a tuple <f , l>where f represents the name of its

class file; l represents the line number of the statement in the class file.

82

5.3.1 Overview

Our technique requires the source code of a program and specifying its configuration

class name. Its workflow is illustrated in Figure 5.5. The first step identifies sub-

classes of the given configuration class. The second step selects get-methods in the

configuration classes. Then, all call sites of these get-methods, i.e. option read points,

are located in the source code. Finally, names of the options read by each call site

are inferred and a map between these option names and their read points is reported

to users.

5.3.2 Identifying Subclasses of the Configuration Class

Algorithm 1 Finding subclasses of a base configuration class

Input: the source code ψ and a name of a base configuration class C
Output: S = the set of names of subclasses of C
1. workList ← {C}
2. while (workList 6= ∅){
3. o ← remove the first node of workList
4. foreach (entity e ε ψ){
5. if (e inherits class o){
6. name ← get the fully-qualified name of e
7. add name in workList in the end
8. add name to S
9. }
10. }
11. }
12. return S

Modern, non-trivial applications typically have a base configuration class C dedi-

cated to deal with configuration options. Furthermore, different components or sub-

programs of the application have its own configuration classes obtained by extending

or inheriting from C. In order to obtain all call sites of get-methods in the program,

we need to find all such subclasses and store them in a set S.

Given a base configuration class with a fully-qualified name C, we identify all its

subclasses by Algorithm 1. In this algorithm, the simple name of a class is extracted

by removing its package name from the fully-qualified name. If the declaration of an

entity in ψ uses the keyword extends, which is followed by the simple name of the

class, the entity is considered as a subclass of the class. Its fully-qualified name is

computed by combining the simple name and the package name of the entity.

83

5.3.3 Identifying the Get-Methods

Obviously, not all methods in a configuration class are get-methods, and distinguish-

ing get-methods from other methods is necessary. Rabkin and Katz observe that

methods for accessing option values usually have a common characteristic: their

names obey a naming convention, starting with the same prefix like get [61]. For

particular types of option values, method names which reveal the returning types are

given such as getBoolean, getInt, and so forth. This naming convention for configura-

tion APIs holds in many programs. In our prototype, we adopt this convention and

consider the methods in the configuration class whose names start with prefix get as

get-methods.

The naming convention of methods accessing option values may not hold in some

programs. In these cases, we need to manually check each method in the configuration

class and select get-methods.

5.3.4 Locating Call Sites of Get-Methods

Intuitively, one can obtain call sites of a method from a specified class by directly

searching the method name in the source code. These search results are inaccurate and

would contain call sites of methods which have the same name from different classes.

In order to accurately locate call sites of get-methods, we first identify instances of

configuration classes (Section 5.3.4) and then locate call sites of get-methods of these

instances (Section 5.3.4).

Identifying Instances of a Configuration Class

We identify instances of a configuration class by variables declared with the type of

the configuration class as well as scopes of these variables. An instance is represented

by a tuple <v, s>, where v is the name of a variable and s is the scope of the variable.

All instance variables of configuration classes are stored into a set V .

For any entity e ε ψ, we check each statement in e. If a statement is a declaration

statement and the declared type is one of configuration classes in the set S, the

declared variable v is considered a variable of configuration classes.

The scope of a variable is determined based on three cases. First, the scope of an

instance variable or class variable is identified as the largest block of the class. Second,

if the variable is a formal parameter of a method, its scope is the corresponding

84

method. Last, the variable is declared locally. We consider the smallest block which

contains the declaration statement of the variable as its scope.For the case that the

variable is defined in the condition statement of a loop statement, the block of the

loop statement is considered as the scope of the variable. For instance, for(inti =

0; i < 10; i+ +){...}, the scope of variable i is the loop body.

Searching Call Sites of Get-Methods

<methodCall> → <methodName >(<argumentList >) |
<reference><selectionOperator><methodName>(<argumentList>)

<selectionOperator>→ <Operator>
<reference> → <expression>
<methodName> → <identifier>
...

Figure 5.6: A segment of Backus-Naur Form (BNF) grammar specification for a
method call

Once the configuration class instances and the corresponding scopes are identified

(Section 5.3.4), we locate call sites of get-methods referenced by these variables in

their scopes.

The grammar of a method call is shown in Figure 5.6. Based on this grammar, we

classify method calls of get-methods into three categories. First, the <reference> in

the grammar refers to an instance variable of a configuration class. For any variable

<v, s>ε V , we search all statements in the scope s of the variable and identify method

calls which have the pattern <v><selectionOperator><methodName>, where the method

name can be any one of the get-method names. These call sites are stored in a set Ω.

Second, the <reference> refers to an instance returned by another method call.

We adopt a conservative solution to deal with this case. All methods which return

configuration class types are identified. By these names, we search the whole program

and obtain call sites of these methods. If these call sites are followed by <selection-

Operator><methodName>, where the method name can be any one of the get-method

names, we consider them as call sites of the get-methods and add them to Ω.

Last, inside configuration class, the <reference> can be implicit. For instance, the

keyword this is used to reference to the object typed as the current class in Java.

Even some get-methods are called without the reference. In order not to miss such

85

call sites, we identify all call sites of get-methods in a configuration class and append

them to the set Ω.

5.3.5 Inferring Option Names

This section describes how we infer the name of an option read at a specific option

read point. Based on this knowledge, a map between option names and their read

points can be created.

In key-value configuration model, a specific option name is passed to a get-method

through its call site and this site returns the value of this option. As stated in Section

5.1.1, call sites of get-methods usually take a variable storing an option name as a

parameter instead of a string constant. We have to track down the value of the actual

variable in a call site and obtain the option name.

Our investigation shows that variables storing the option names have character-

istics which distinguish them from variables carrying other values. Variables with

option names are typically initialized when they are declared and not reassigned by

new values before being read. Values of such variables can be obtained by searching

their declaration statements and scanning their initial values. This heuristic was used

in several past papers [61, 14]. Besides, their initial values are often not string con-

stants yet expressions combining a variable and a string constant or other variables.

In the example in Figure 5.2, variable D is initialized by variable C and a string

constant ”.combined” and variable C is initialized by variable B and a string con-

stant ”.providers”. This usage creates convenience for managing options for different

components of a program.

For this complex usage of configuration options, we implement two distinct ap-

proaches to track down which option (identified by name) is read at a call site: iden-

tifying declaration statements of variables (Section 5.3.5) and computing variable

values (Section 5.3.5).

Identifying Declaration Statements of Variables

The usage of variables is represented by the grammar in Figure 5.7. As the grammar

shows, variables can be accessed in two ways.

Direct variable names. A variable which can be accessed directly by its name

could be a local variable, an instance variable, a class variable, or a parameter variable.

86

<variableUse> → <variableName> | <reference><selectionOperator><variableName>
<selectionOperator>→ <Operator>
<reference> →<expression>
<variableName> → <identifier>
...

Figure 5.7: A segment of Backus-Naur Form (BNF) grammar specifying the use of a
variable

Algorithm 2 Finding the declaration statement of a variable without a reference

Auxiliary functions:
searchDeclAsClassFields(var, o) : search the declaration statement of variable var
among the declaration statements in the field of class o and superclasses of class o

Input: the statement of accessing a variable var and the current class o ε ψ
Output: the declaration statement of the variable

locateDeclNoReference(var, o)
1. if(searchDeclInLocal (var))
2. return the matched statement
3. if(searchDeclAsParameters(var))
4. return null
5. if(searchDeclAsClassFields(var))
6. return the matched statement
7. if(searchDeclAsImportedVars(var)){
8. locate the class o′ where the variable is declared
9. if(o′ not in ψ)
10. return null
11. if(searchDeclAsClassFields(var, o′))
12. return the matched statement
13.}

We locate variable’s declaration statements based on this type of the declaration

statement in the class.

First, the variable is considered as a local variable. We search the declaration

statement of this variable in the block where the variable is used. If this is not

successful, the search is extended to the outer block until the largest block of the

method is reached.

If the declaration statement of the variable is not found in the method, the variable

is considered as an instance variable or class variable. We search its declaration

statement in the class where the variable is used but outside of any methods in the

class. A variable in a class might come from its super classes. If we fail to obtain

87

the declaration statement in the current class, we repeat the search on field members

of its super classes (if they are defined in the program, i.e. not from the library or

third-party packages).

If the declaration statement still is not located, the variable is considered imported

from other classes. The imported variable can be used without specifying the class

in which the variable is defined. For instances, the keywords import static is used to

import a class variable in Java. Our technique also considers this usage of a variable by

matching the imported class variables. If the variable is imported, the fully-qualified

name of the class where the variable is defined is extracted from the full name of the

imported variable. The entity of the class can be selected by retrieving its name from

ψ if the class is not from the library or the third-party packages. Then we search the

declaration statement of the variable in this class.

The algorithm for extracting the declaration statement of a variable without a

reference is shown in Algorithm 2.

Variable names with references. An instance or class variable can be

accessed with a reference. The syntax of accessing those variables is like <refer-

ence><selectionOperator> <variableName>. Our static analysis considers three cases

of this usage. First, the reference is keyword this referencing the current instance or

class. We search the declaration statement of the variable in the field of the current

class. Second, the reference is a class name and the variable is a class variable. We

locate the class this reference represents, in which the declaration statement of the

variable is searched. Last, the reference is a variable name and the variable is a

class member. For this case, the declaration statement of the reference variable is

first located and the data type of the reference variable is obtained. If the data type

is defined in the application, we select the entity of this data type and search the

declaration statement of the class member in this entity.

We designed Algorithm 3 for both usage cases: direct variable names and variable

names with references. If a variable is accessed directly by its name, we invoke

Algorithm 2. For the usage of a variable with a reference, the algorithm considers

the reference of the variable as an instance or class variable. If the reference is other

expression like the call site of a method, null is returned. In the case where the type

of the object of the reference is not defined in the application, null is returned too.

Similarly, Algorithm 2 searches super classes of a class for locating the declaration

statement of an instance or class variable.

88

Algorithm 3 Locating the declaration statement of a variable

Input: the statement with access to a variable var and the class o ε ψ
Output: the declaration statement of the variable

locateDecl(var, o)
1.if(var without reference)
2. return locateDeclNoReference(var, o)
3. else{
4. reference ← getReference(var)
5. if(reference is a key word this)
6. return searchDeclAsClassFields(var, o)
7. o′ ←locateClassEntity(reference)
8. if(o′ is not null)
9. return searchDeclAsClassFields(var, o′)
10. declStat ← locateDeclNoReference(reference, o)
11. if(declStat is not null){
12. type ← getType(declStat)
13. o′ = locateClassEntity(type)
14. if(o′ is in ψ)
15. return searchDeclAsClassFields(var, o′)
16. }
16. return null
17. }

Computing Values of Actual Parameters

As stated above, in many cases parameters of an option read point are initialized by

an expression combining a variable and a string constant or a variable expression.

These expressions can be modeled by the grammar shown in Figure 5.8.

<expression> → <S>| <S>+ <S>
<S> → <variable> | <stringLiteral>
...

Figure 5.8: A segment of Backus-Naur Form (BNF) grammar specification for ex-
pressions of generating an option name

In order to infer which option name is used by an option read point, we propose

Algorithm 4. First, the algorithm obtains operands and operators of an expression

expr. There are two cases for an operand in this model. If the operand is a string

literal, its value is stored into str. If the operand is a variable, we call Algorithm 3

to locate the declaration statement of the variable and obtain its initial expression

expr′. Then we recursively call Algorithm 4 to compute the value of expr′ until the

89

Algorithm 4 Inferring values of actual parameters at a call site
Input: an expression expr
Output: a string literal str

inferValue(expr)
1. optionName ← null
2. elements ←getElements(expr)
3. for (element element in elements){
4. if(element is an operand){
5. if(element is a string literal)
6. optionName← element
7. if(element is a variable){
8. currentClass ←getCurrentClass(expr)
9. declStat ←locateDecl(element, currentClass)
10. expr′ ← getInitializedExpression(declStat)
11. optionName ← optionName + inferValue(expr′)
12. }
13. else
14. return null
15. }
16. else if(element is an operator ”+”)
17. continue:
18. else
19. return null
20. }
21. return optionName

initial expression of a variable is a string literal. If the values of all operands are

successfully inferred, the combination of values of all operands is returned. Note that

our technique does not consider expressions which do not follow the model in Figure

5.8. Our evaluation shows that this algorithm can infer values of most variables except

when the value of a variable is generated by another method.

According to our experience, most of the time, option names are concatenated

by using the operator ”+” instead of calling APIs for concatenating strings. Conse-

quently, in Figure 5.8, we only consider the operator ”+”.

In the end, a map is built between option names and the corresponding option

read points. By searching for option names in the documentation we can obtain the

map between documented options and their read points in the program.

90

5.3.6 An Example

We use the example in Figure 5.2 to illustrate how our technique infers the option

names used by option read points. Here a call site conf.getBoolean(D, true) is located

at line 116 in the class file CompositeGroupMapping.java. The call site takes variable

D storing an option name as a parameter. The goal of our technique is to infer the

value of variable D.

Algorithm 4 takes variable D as input and considers it as a variable instead of

a string constant. Then Algorithm 3 is called to identify the declaration statement

of variable D. Since variable D is accessed directly by variable name, Algorithm 2 is

called to identify its statement at line 48 in the class file CompositeGroupMapping.java

and returns the initial expression of the statement C + ”.combined”. Algorithm 4

parses the expression. The string constant ”.combined” is stored in a variable option-

Name. Then Algorithm 4 starts to infer the value of variable C in the expression.

Similarly, Algorithm 4 obtains B + ”.providers”, the initial expression of variable C.

Then the string ”.providers” and ”.combined” is combined to ”.providers.combined”

and stored in variable optionName. Inference of the value of variable B is started.

When locating the declaration statement of variable B, Algorithm 3 finds out

that variable B is not defined in the class CompositeGroupMapping. Then the algo-

rithm identifies the super class of class CompositeGroupMapping, i.e. GroupMap-

pingServiceProvider, where the declaration statement of variable B is found and

its initial expression CommonConfigurationKeysPublic.A is returned to Algorithm

4. Algorithm 4 continues to infer the value of variable A. While locating the

declaration statement of variable A, Algorithm 3 finds variable A is accessed with

a reference CommonConfigurationKeysPublic which is a class name. Algorithm 3

locates class CommonConfigurationKeysPublic, where the declaration statement of

variable A is found and its initial expression hadoop.security.service.user.name.key is

returned to Algorithm 4. Algorithm 4 finally outputs the value of variable D, i.e.,

hadoop.security.service.user.name.key. providers.combined.

Summary. This section presents our approach, ORPLocator. Given source code

of a program and its configuration class, ORPLocator first identifies all classes which

extends the input configuration class and marks methods fetching option values. Then

ORPLocator identifies instances of all configuration classes and locates the call sites

of marked methods on these instances. These call sites are option read points in

the source code. For each call site, we infer which option is loaded by computing

the values of parameters passed into the call site. Finally, ORPLocator outputs a

91

map between names of all options which are used by the program and their read

points in the source code. With this map, inconsistencies between source code and

configuration documents can be detected.

5.4 Implementation

We implemented our technique as a prototype, called Option Read Points Locator

(ORPLocator), which is restricted to applications in Java. The tool relies on the sr-

cML library [69]. The library computes an XML representation for source code, where

the markup tags identify elements of the abstract syntax for the language. Currently

srcML supports mainstream programming languages such as Java, C++, C#, and

C. Our analysis targets applications in written multiple languages. Consequently we

choose srcML instead of Java analysis tools such as JDT [3] and Spoon [7].

In the srcML format, all elements in the source code are wrapped with XML

elements, which allows leveraging XML tools to extract various information by textual

search using regular expressions. By employing XPath [86] in ORPLocator, we are

able to query all entities, i.e. , classes, interfaces and enums, retrieve an entity by its

fully-qualified name, and so on.

srcML creates a high-level intermediate program representation. Operations on

data in this format cost a lot in terms of time and space. In order to optimize

performance, ORPLocator builds a map between XML nodes of all entities and their

corresponding fully-qualified names. The retrieval of an entity by its fully-qualified

name does not require scanning the whole srcML representation of a program.

ORPLocator adopts Dom4J [23] as a parser which allows flexible queries on XML

nodes in the srcML representation.

5.5 Evaluation

We conducted an empirical study to evaluate the effectiveness and usefulness of OR-

PLocator and attempted to answer the following research questions.

� RQ1: How effective is ORPLocator in locating option read points and identify-

ing option names?

� RQ2: Are options in the document of a module read by the module?

92

Table 5.1: Subject programs.

Modules #Java Files #LOC #Options
Common (2.7.1) 1,495 294,898 127
HDFS (2.7.1) 1,380 400,353 216
MapReduce (2.7.1) 1,275 255,670 172
YARN (2.7.1) 1,612 354,901 197
Summary 5,762 1,305,822 712

� RQ3: How does ORPLocator’s effectiveness compare to existing techniques?

� RQ4: What is the time cost of locating option read points by ORPLocator?

5.5.1 Experimental Setup

Subject Programs

We evaluated ORPLocator on the Apache Hadoop framework [34] for scalable and

distributed computing, which mainly consists of four modules shown in Table 5.1. In

the table, Column ”#Java Files” is the number of Java files. Column ”#LOC” is

the number of lines of code. They are counted by CLOC [19]. Column ”#Options”

is the number of documented options for each module. Aside from these 4 modules,

Hadoop consists of more than 10 tools. In the evaluation, we do not consider these

tools because they have few configuration options.

There are considerations for choosing the latest version of Hadoop (version 2.7.1)

as the subject program. First, Hadoop is currently widely used to store, analyze and

access large amount of data and has evolved into a complex ecosystem with more

than 100 related systems. The configuration mechanism in Hadoop has matured

through the evolution across a number of versions from 0.14.1 to 2.7.1. Choosing

Hadoop as the subject program is representative. Second, Hadoop has an abundance

of configuration options.

Evaluation Procedure

The four modules are independently implemented and each of them has a configura-

tion file which contains its own options. In order to accurately evaluate our technique,

we consider each module as a single program.

93

Table 5.2: The results of ORPLocator.

Modules
get-Method Detected by ORPLocator Documented

Callsites #Options #ORPs #Options’ #ORPs’
Common 352 210 261 109 147
HDFS 586 367 524 206 335
MapReduce 909 423 631 162 259
YARN 701 300 445 181 322
Summary 2548 1300 1861 658 1063

For each module its source code (excluding the test code) is converted into the

srcML format by using the tool srcML [69]. Then we provide the resulting srcML

file as well as the name of the configuration class as input to our tool ORPLocator.

Finally, the ORPLocator outputs a map between option names and their read points

for each module.

5.5.2 RQ1: Effectiveness

We evaluate the effectiveness of ORPLocator by computing the number of identified

options out of documented options and checking if a located option read point does

read an option value in the program. The correctness of a located option read point is

manually checked by inspecting source code. In the evaluation, two people performed

the manual check and resolved discrepancies. Although this is not a guarantee of

correctness, it excludes the presence of obvious issues with the manual check.

Results

The results obtained by ORPLocator are shown in Table 5.2. Column ”Modules” lists

modules of Hadoop we studied. Column ”get-method Callsites” shows the number of

call sites of get-methods located by ORPLocator. Column ”Detected by ORPLoca-

tor” provides the output of ORPLocator. Column ”#Options” and ”#ORPs” show

the number of detected options and the number of their read points, respectively.

Column ”Documented” reports how many of the detected options are documented.

Column ”#Options” displays the number of options which are detected by ORPLo-

cator and Column ”#ORPs” shows the number of their read points.

As shown in Table 5.2, ORPLocator successfully locates 1861 read points for 1300

options (i.e., distinct option names) in the source code of the 4 modules. From these

94

options, 658 are documented. The number of option read points is larger than the

number of options because one option might have multiple read points in the program.

Not all call sites of get-methods are option read points (as we can see in Table

5.2). We manually checked these call sites which are not treated as option read points

by ORPLocator. They can be divided into two cases.

First, the get-methods of these call sites are not methods which load values of con-

figuration options from configuration files. For instance, the class JobConf in MapRe-

duce extending the configuration class have many get-methods which are not for pro-

ducing option values such as getKeepTaskFilesPattern(), getNumReduceTasks(), and

so on.

Second, the get-methods of these call sites are methods loading option values from

configuration files. But the names of options loaded by these call sites are generated

by methods. They cannot be inferred by our technique. For instance, in the call site

conf.get(hadoop.rpc.socket. factory.class. + clazz.getSimpleName()), a part of the

option name is generated by another method. The statistic of our result data shows

that luckily this kind of option usages is quite rare.

Third, the call sites do not call get-methods. They are introduced by the conser-

vative solution we take in Section 5.3.4. In the conservative solution, for a method

returning a configuration class type, we search its method name in the whole program

and get call sites. Some of these call sites do not return an instance of a configuration

class because they invoke different methods which have the same method names but

do not return a configuration class type. These call sites do not load the values of

configuration options.

From the data in Table 5.2 we can see the number of options detected by OR-

PLocator is larger than that of documented options. Manual checking shows they

are indeed used to control the behavior of the programs by changing values of these

options. Part of them are documented for end users. As for options missed by OR-

PLocator, we conduct a further investigation in the following section.

Options Whose Read Points Are Not Located

In this section, we conduct an study on documented options whose read points are

not located by ORPLocator. We break down these options into 6 categories by

investigating how the options are used in the source code (see Table 5.3).

95

T
ab

le
5.3:

C
ategories

of
op

tion
s

w
h
ose

read
p

oin
ts

are
lo

cated
.

C
ategories

D
escrip

tion
C

o
m

m
o
n

H
D

F
S

M
ap

R
ed

u
ce

Y
arn

S
u

m
1

T
h

eir
rea

d
p

oin
ts

are
lo

ca
ted

in
o
th

er
m

o
d

u
les

1
1

0
0

2
13

2
O

p
tio

n
n

a
m

es
a
re

d
ep

reca
ted

in
th

e
versio

n
0

1
1

0
2

3
O

p
tio

n
valu

es
a
re

lo
ad

ed
b
y

o
th

er
co

n
fi

g
u

ra
tio

n
cla

sses
4

0
0

0
4

4
O

p
tio

n
n

a
m

es
a
re

m
istaken

ly
d

o
cu

m
en

ted
1

1
2

0
4

5
O

p
tio

n
n

a
m

es
a
re

d
eterm

in
ed

in
ru

n
tim

e
2

7
7

13
29

6
C

a
ll

sites
read

in
g

valu
es

o
f

th
ese

o
p

tio
n

s
a
re

m
issed

0
1

0
1

2
T

h
e

n
u

m
b

er
o
f

u
n

-lo
ca

ted
d

o
cu

m
en

ted
o
p

tio
n
s

fo
r

ea
ch

m
o
d

u
le

1
8

1
0

10
16

54

T
ab

le
5.4:

B
u
gs

d
etected

b
y

O
R

P
L

o
cator

Issu
e

T
y
p

e
S

tatu
s

D
o
cu

m
en

ted
o
p

tio
n

n
a
m

es
O

p
tion

n
am

es
read

in
th

e
sou

rce
co

d
e

H
A

D
O

O
P

-12
7
04

1
B

u
g

R
esolved

h
ad

o
o
p

.w
o
rk

.a
ro

u
n

d
.n

o
n

.th
rea

d
sa

fe.g
etp

w
u

id
h

a
d

o
op

.w
o
rk

a
ro

u
n

d
.n

on
.th

read
safe.getp

w
u

id

M
A

P
R

E
D

U
C

E
-660

5
2

B
u

g
R

esolved
m

a
p

red
u

ce.m
a
p

.sk
ip

.p
ro

c
.c

o
u

n
t.a

u
to

in
c
r

m
ap

red
u

ce.m
ap

.sk
ip

.p
ro

c
-c

o
u

n
t.a

u
to

-in
c
r

m
a
p

red
u

ce.red
u

ce.sk
ip

.p
ro

c
.c

o
u

n
t.a

u
to

in
c
r

m
a
p

red
u

ce.red
u

ce.sk
ip

.p
ro

c
-c

o
u

n
t.a

u
to

-in
c
r

H
D

F
S

-8
2
74

B
u

g
R

esolved
n

fs.d
u

m
p

.d
ir

n
fs.fi

le
.d

u
m

p
.d

ir

1
h
ttp

s:/
/
issu

es.a
p

ach
e.org/

jira
/
b

row
se/

H
A

D
O

O
P

-1
2
7
0
4

2
h
ttp

s:/
/
issu

es.a
p

ach
e.org/

jira
/
b

row
se/

M
A

P
R

E
D

U
C

E
-6

6
0
5

96

Each module in Hadoop has its own configuration file. An option of a module

might be inserted into configuration files of other modules. Also a read point of an

option in a module may exist in other modules. Category 1 indicates options of a

module whose read points are located in other modules. For Hadoop Common, there

are 11 documented options which are unread by Common but read by HDFS or Yarn.

Similarly, 2 of options in Yarn are only read by MapReduce.

Category 2 represents options which are deprecated in the current version, but

are still not removed from the list of documented options. There are two deprecated

options: ”nfs.allow.insecure.ports” for HDFS and ”mapreduce.job.counters.limit” for

MapReduce. The read points of their corresponding new options are successfully

located by ORPLocator.

Category 3 indicates options which are loaded by other configuration classes in-

stead of the main configuration class of Hadoop. There are 4 options for Common

loaded by the Properties class in Java.

Category 4 shows options whose names are erroneously documented. We have

reported these bugs to developers, which are confirmed and fixed. The reported bugs

are shown in Table 5.4.

Category 5 represents options whose names or part of names are generated by

another method. For instance, in the call site conf.get(hadoop.rpc.socket.factory.class.

+ clazz.getSimpleName()), the last part of the option name is generated by the

method getSimpleName(). ORPLocator failed to infer names of these options based

on their read points. This is one of the limitations of ORPLocator.

Category 6 displays options which are read in the program but whose read points

were not located by ORPLocator. The reason is that ORPLocator failed to identify

call sites of get-methods which read values of these options. We further discuss it in

Section 5.5.6.

Summary of RQ1. Although our technique bases findings from empirical studies

[61, 14], the evaluation shows that ORPLocator is effective in locating option read

points. It successfully detects 1861 read points of 1300 distinct options for 4 modules

we studied. For documented options, it locates at least one read point for 120 (109

+ 11) out of 127 (94%) options in Common, 206 out of 216 (95%) options in HDFS,

164 (162+2) out of 172 (95%) options in MapReduce, 181 out of 197 (93%) options

in Yarn. Note we consider options whose read points are located in other modules.

97

57% (116)
38% (77)

5% (11)

Common

Read in the module Unread Read in other modules

97% (216)

3% (7)

HDFS

79% (172)

21%
(47)

MapReduce

97% (195)

1% (2) 2% (4)

Yarn

Figure 5.9: The distribution of read points of documented options for each module

5.5.3 RQ2: Option Inconsistencies

Hadoop consists of four main modules, which have their own documents of con-

figuration options. Over the recent years, each module has undergone a significant

development. The number of configuration options for each module increased to more

than 200. Are all options in the document of a module read by the module?

The study assumes that the value of an option is read by a program if the option

has at least one read points using option’s name. For the options on which OR-

PLocator failed, we inspected the source code to check whether they are read by the

program.

The result is shown in Figure 5.9. For each module, the options are broken into

three categories: read in the module, not read in the 4 modules we studied, and read

in other modules. As we can see, for Common and MapReduce a significant part

of options in the default configuration file are not read by the module itself. The

primary reason is that options of many Hadoop ecosystems or components are put in

the documents of these two modules.

Some names of documented options are not correct. As shown in Table 5.3, we

found that 4 option names are wrongly documented in the released configuration

files and 2 option names are deprecated in the current version. We submitted the 4

98

Table 5.5: The number of entry points for each module.

Modules Common HDFS MapReduce Yarn
Entry points 22 25 8 13

wrongly documented options to Hadoop developers. They confirmed these issues and

will release patches in the next version.

Summary of RQ2. Not all options in the document of a module are read by

the module. Within options in the document of Common, only 57% are read by

Common. MapReduce reads 79% of documented options. Additionally, 4 incorrect

option names are found among the documented options; also 2 deprecated option

names were found. HDFS and Yarn nearly read 97% of their documented options.

5.5.4 RQ3: Comparison with a Previous Technique

This section compares our technique with a previous technique, called Confalyzer [61],

which is recently used by SCIC [14] to check software configuration inconsistencies.

Within our best knowledge, Confalyzer is the most precise technique of locating option

read points known in the literature.

Confalyzer, proposed by Rabkin and Katz [61], is a tool of extracting program

configuration options assuming the key-value model. The core idea of Confalyzer is

similar to ours and considers methods starting with get in the configuration class as

APIs accessing option values. Then it identifies where these methods are called in

the program by building a call graph and finds string parameters at these call sites,

taking these parameters as options and call sites as option read points.

Running Confalyzer. The tool is published on GitHub3. For running it one

needs to specify the entry points of analyzed programs. Missing entry points would

decrease accuracy of detected results. To make an end-to-end comparison, we identi-

fied all possible entry points of each module by searching main methods in the source

code (see Table 5.5). Confalyzer also takes the Properties class in Java as a configu-

ration class of Hadoop, which is not considered by ORPLocator. The options loaded

by the Properties class are not considered.

Results. We collected all distinct options and their read points reported by

Confalyzer and selected options which are documented (as well as corresponding read

points). The results are shown in Figures 5.10 and 5.11. We can see that ORPLocator

3https://github.com/asrabkin/Confalyzer

99

0

200

400

Common HDFS MapReduce Yarn

ORPLocator Confalyzer

Figure 5.10: The comparison on the number of documented options

0

200

400

Common HDFS MapReduce Yarn

ORPLocator Confalyzer

Figure 5.11: The comparison on the number of read points of documented options

detects significantly more documented options and corresponding option read points

than Confalyzer.

ORPLocator is more accurate than Confalyzer primarily for three reasons. First,

ORPLocator detects option read points by scanning the whole source code to match

call sites of configuration APIs. Contrary to this, Confalyzer identifies option read

points by constructing a call graph using static analysis. Hadoop heavily uses re-

flection and this may cause incompleteness in the inferred call graph [48, 60]. Some

methods containing option read points might not be included in the call graph. Sec-

ond, ORPLocator considers subclasses of the base configuration class, which helps

identify get-methods added in the configuration class for sub programs. Third, Con-

falyzer acquires option names by reading the value of actual parameters at call sites

if the actual parameters are compile-time constants. Its accuracy depends on com-

piler optimization. ORPLocator implements a simple parser to infer values of actual

parameters at call sites without this limitation.

Compared to Confalyzer, ORPLocator has another two significant advantages.

First, Confalyzer requires a complete application program. Otherwise, the error due

100

to missing classes propagates during building a call graph. We encountered this error

many times when running experiments. Second, Confalyzer needs all entry points of

a program. ORPLocator has none of these issues.

Summary of RQ3. ORPLocator produces more accurate results in locating

option read points and does not require entry points of analyzed programs.

5.5.5 RQ4: Time Cost

Table 5.6: The analysis time and file sizes of srcML output.

Modules Common HDFS MapReduce Yarn
File size (mb) 65.6 86.9 57.8 90.7
Time (min) 69.9 135.7 90.0 172.2

ORPLocator uses srcML output as the intermediate representation, which is a

high-level and expensive representation compared to low-level representations such

as SSA [21] or LLVM [45]. The performance is a crucial issue for ORPLocator. This

section evaluates the time overhead of locating option read points.

Our experiments were conducted on a laptop with Intel i7-2760QM CPU

(2.40GHz) and 8 GB physical memory, running Windows 10. The analysis time and

the size of srcML files for each module are shown in Table 5.6.

Summary of RQ4. As we can see, our analysis needs 1 to 3 hours for each

module. This is substantial yet acceptable considering that the scale of each module

is quite large, and an analysis is performed infrequently.

5.5.6 Discussion

Limitations

Our technique of locating option read points has some limitations. First, as we

explained in Section 5.3, ORPLocator focuses on configuration of the key-value style,

with methods accessing option values have names starting with get, otherwise we have

to manually select them. Second, the accuracy of the identification of option read

points relies on the patterns how the get-methods are called in the program. The

implicit invocation of get-methods will be missed by our technique, for instances, if

get-methods are called by a complex call chain. Instances of configuration classes are

stored in the complex data structures like a array list. Last, our technique assumes

101

most of the option names are not generated by a method. Otherwise, the option

names fail to be inferred.

Threats to Validity

The primary threat to external validity of this work concerns whether or not our

results will generalize. The access techniques to configuration option values varies in

different programs. This include the construction of option names and the invocation

patterns of configuration APIs. This variation may affect effectiveness of our tech-

nique. To mitigate this threat, we used Apache Hadoop, a Java program with one of

the largest number of configuration options of the open-source projects. Moreover, it

is a program which is developed by a variety of developers and widely used in both

academy and industry. Although we need to conduct more evaluations on different

programs, we believe that our results can generalize to other programs in Java which

uses key-value style configuration. In the future work, we plan to instantiate our

technique for other programs.

One internal validity threat regards the identification of option read points. In our

technique, all call sites of get-methods in configuration classes are considered possible

option read points. Some call sites of methods which are not configuration APIs are

interpreted as option read points. To mitigate this threat, we manually check all

read points of documented options in Hadoop Common. The results show all of them

are option read points without false positives. Sure, our manual inspection of code

inspection might be error-prone. Finally, the data of option read points produced by

ORPLocator and Confalyzer is all available online4.

5.6 Summary

This chapter addresses configuration errors due to inconsistencies between configura-

tion documentation and source code. We present a practical technique, ORPLocator,

which is capable of building a map between names of configuration options and their

read points in the source code. ORPLocator adopts a static analysis technique to

identify option read points in the program and infer the names of the options read

there. Compared to existing techniques, our analysis computes dependency informa-

tion as needed without building a program dependency graph or system dependency

graph.

4https://goo.gl/7uVzYZ

102

We conduct an empirical study on the latest version (2.7.1) of Apache Hadoop, a

widely popular framework for distributed data processing with more than 1.3 million

lines of source code and 800+ configuration options. Results show that ORPLocator

is effective in identifying option read points in source code. ORPLocator is able to

successfully locate at least one read point for 93% to 96% of documented options

within four Hadoop components. We compare ORPLocator with a previous state-of-

the-art technique. The experiment shows that ORPLocator produces more accurate

results. Our analysis needs 1 to 3 hours for each module.

By comparing extracted options with documented options for each module, we

find that a significant part of documented options are not read by the module. Be-

sides, our experimental study discovers 4 previously unknown inconsistencies between

documented options and source code.

103

Chapter 6

Conclusion

This thesis has presented two applications of static program analysis to debug software

configuration errors. One application addresses misconfigurations due to mistakes in

option values. The other addresses misconfigurations due to inconsistencies between

configuration documentation and source code. In the next sections, we summarize the

major technical contributions of our work. Following that, we outline some possible

avenues for future work.

6.1 Summary

Chapter 4 presents a technique, automated diagnosis of software misconfigurations

via static analysis, and evaluates the technique on 29 configuration errors from 4

real-world applications. From this work, we can draw the following conclusions.

Static analysis can infer whether an option value flows to the crashing

site of an error at runtime. Our experimental evaluation shows that there are

dependencies between the values of root-cause configuration options and the crashing

sites for almost configuration errors we collected. The data flow of an option value to

the crashing site can be inferred via static analysis.

The heuristic recently-options-read can be used for misconfiguration

debugging. We believe the recently read options before failing are highly likely the

root cause of the error. Based on this heuristic, we propose a model for computing

the correlation degree of an option with a configuration error. Experimental results

show that, under this model, the root cause is ranked first in the diagnosis results for

most of configuration errors.

105

Chapter 5 presents a static analysis technique of identifying option read points

and extracting option names, which is capable of diagnosing inconsistencies between

configuration documentation and source code. We evaluate the technique on 4 mod-

ules of the latest version of Apache Hadoop (2.7.1). Some conclusions are drawn from

this work.

Extraction of options from programs is an effective way to diagnose in-

consistencies between source code and configuration documentation. Our

analysis shows a significant part of documented options are not read by the corre-

sponding version of programs, at least for applications we evaluated in the experi-

ment. We also find several options which are mistakenly documented and confirmed

by developers after reporting these issues to them.

SrcML-based analysis is effective in identifying option read points.

Based on the srcML representative, our analysis locates instances of a class and call

sites of methods on a specific instance by searching their names in the corresponding

scopes. Compared to the techniques based on Points-to and call graphs, our analysis

achieves a significantly improvement on the accuracy of diagnosis results.

Configuration option names are available statically. Our analysis extracts

option names by computing the values of parameters passed to option read points.

The computation assumes variables storing option names are initialized in their dec-

laration statements and not changed any more. The high accuracy of our analysis

shows option names are available statically.

6.2 Future Directions

6.2.1 Generalizing the Problem

Our work addresses crashing errors due to mistakes in option values. A potential topic

for future work would be generalizing the problem. The problem can be generalized

in two aspects. First, configuration errors due to violating constraints among multiple

options will be explored. The setting of an option might be dependent on one another.

Violating constraints between multiple options can lead to a configuration error. For

this kind of configuration errors, the root cause is not a unique option and could be a

set of options. Such configuration errors can be diagnosed by extending our analysis

since our current work can identify options which have data dependence with the

crashing site of an error.

106

Second, our current analysis focuses on crashing errors due to misconfiguration.

There exist many other kinds of errors due to misconfiguration, e.g., performance

problems, silent failures, and memory leaks. In these cases, there is no crashing sites

available. Our analysis needs to be redesigned to address these kinds of problems.

Dynamic analysis is a better option since these problems are workload-dependent.

6.2.2 Misconfiguration Repair

Configuration errors have been increasing in the share of user reports. Solving these

issues is costly in the administration of software systems. Automated repair of con-

figuration errors will attract attentions in the future.

Misconfiguration repair is typically instance-specific and environment-specific.

The repair of a configuration error properly works in a single instance and cannot be

applied to the configuration error in different instances. The repair of a configuration

error varies in different instances since the system environment or configuration

setting is instance-specific.

Misconfiguration can be mitigated by improving the reaction of systems to miscon-

figuration. Here, reaction means how systems behave when misconfiguration occurs.

Silence, hanging, or crashing without proper hint messages are bad reactions of a sys-

tem to misconfiguration. Pinpointing possible root causes, i.e., wrongly-set options,

would be a user-friendly reaction to misconfiguration for a system. With explicit

messages, users can possibly repair configuration errors themselves without reporting

them.

We believe that improving the reaction of a system to misconfiguration is an effec-

tive way to repair configuration errors. By testing systems with various configuration

setting, the ”bad reactions” can be triggered. For these cases, automated repair

can make systems pinpoint possible root causes for a configuration error. Improving

reactions of a system to misconfiguration will be an interesting direction.

6.2.3 Applying Precise Analysis to Large Scale Programs

One of the challenges for troubleshooting configuration is the huge number of options

of a system. The scale of such systems is usually large. In thesis, we embrace

imprecise analysis for large-scale systems. By using heuristics, our analysis achieves a

high precision in the diagnosis of configuration errors. But precise analysis is able to

obtain more accurate facts that how an option value has influence in the behavior of

107

a system. Accurate facts are the foundation to infer the root cause of a configuration

error.

Path-sensitive data flow analysis on large-scale software systems is worth being

explored for misconfiguration diagnosis. This analysis extracts the data flow of an

option value in possible execution paths and can precisely explain how the value leads

to an error.

Exploiting models for heap dependence analysis can help produce the complete

data flow of an option value. Option values can flow into various collections, which can

terminate the data flow if the analysis does not consider heap dependence. Analysis

considering heap dependence is very expensive and cannot scale to large programs. An

appropriate model for heap analysis needs to be exploited for diagnosing configuration

errors in large-scale systems.

108

Bibliography

[1] Firefox. https://www.mozilla.org.

[2] http. https://httpd.apache.org/.

[3] Jdt. http://www.eclipse.org/jdt/.

[4] log4jcon. https://github.com/janinko/Log4J-configuration-converter.

[5] mysql. https://www.mysql.com/.

[6] Postgresql. https://www.postgresql.org/.

[7] Spoon. http://spoon.gforge.inria.fr/.

[8] D.C. Arnold, D.H. Ahn, B.R. De Supinski, G.L. Lee, B.P. Miller, and M. Schulz.
Stack trace analysis for large scale debugging. In Parallel and Distributed Pro-
cessing Symposium, 2007. IPDPS 2007. IEEE International, pages 1–10, 2007.

[9] F. A. Arshad, R. J. Krause, and S. Bagchi. Characterizing configuration problems
in java ee application servers: An empirical study with glassfish and jboss. In
2013 IEEE 24th International Symposium on Software Reliability Engineering
(ISSRE), pages 198–207, Nov 2013.

[10] Mona Attariyan, Michael Chow, and Jason Flinn. X-ray: Automating root-cause
diagnosis of performance anomalies in production software. In Proceedings of the
10th USENIX Conference on Operating Systems Design and Implementation,
OSDI’12, pages 307–320, Berkeley, CA, USA, 2012. USENIX Association.

[11] Mona Attariyan and Jason Flinn. Using causality to diagnose configuration bugs.
In USENIX 2008 Annual Technical Conference on Annual Technical Conference,
ATC’08, pages 281–286, Berkeley, CA, USA, 2008. USENIX Association.

[12] Mona Attariyan and Jason Flinn. Automating configuration troubleshooting
with dynamic information flow analysis. In Proceedings of the 9th USENIX
Conference on Operating Systems Design and Implementation, OSDI’10, pages
1–11, Berkeley, CA, USA, 2010. USENIX Association.

109

[13] Rob Barrett, Eser Kandogan, Paul P. Maglio, Eben M. Haber, Leila A.
Takayama, and Madhu Prabaker. Field studies of computer system adminis-
trators: Analysis of system management tools and practices. In Proceedings of
the 2004 ACM Conference on Computer Supported Cooperative Work, CSCW
’04, pages 388–395, New York, NY, USA, 2004. ACM.

[14] Farnaz Behrang, Myra B. Cohen, and Alessandro Orso. Users beware: Preference
inconsistencies ahead. In Proceedings of the 2015 10th Joint Meeting on Founda-
tions of Software Engineering, ESEC/FSE 2015, pages 295–306, New York, NY,
USA, 2015. ACM.

[15] David Binkley. Source code analysis: A road map. In 2007 Future of Software
Engineering, FOSE ’07, pages 104–119, Washington, DC, USA, 2007. IEEE Com-
puter Society.

[16] Silvia Breu, Rahul Premraj, Jonathan Sillito, and Thomas Zimmermann. In-
formation needs in bug reports: Improving cooperation between developers and
users. In Proceedings of the 2010 ACM Conference on Computer Supported Co-
operative Work, CSCW ’10, pages 301–310, 2010.

[17] Aaron B. Brown and David A. Patterson. To err is human. In Proceedings of
the First Workshop on Evaluating and Architecting System dependabilitY (EASY
’01, 2001.

[18] M. Chen, A.X. Zheng, J. Lloyd, M.I. Jordan, and E. Brewer. Failure diagnosis
using decision trees. In Autonomic Computing, 2004. Proceedings. International
Conference on, pages 36–43, 2004.

[19] CLOC. http://cloc.sourceforge.net/.

[20] Michael L. Collard, Michael John Decker, and Jonathan I. Maletic. srcml: An
infrastructure for the exploration, analysis, and manipulation of source code a
tool demonstration.

[21] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Ken-
neth Zadeck. Efficiently computing static single assignment form and the control
dependence graph. ACM Trans. Program. Lang. Syst., 13(4):451–490, October
1991.

[22] Susan Dart. Concepts in configuration management systems. In Proceedings of
the 3rd International Workshop on Software Configuration Management, SCM
’91, pages 1–18, 1991.

[23] Dom4J. https://dom4j.github.io/.

[24] Zhen Dong, Artur Andrzejak, David Lo, and Diego Elias Costa. Orplocator:
Identifying reading points of configuration options via static analysis. In IEEE
27th International Symposium on Software Reliability Engineering, ISSRE 2016,
Ottawa, Canada, 23-27 October, 2016.

110

[25] Zhen Dong, Artur Andrzejak, and Kun Shao. Practical and accurate pinpointing
of configuration errors using static analysis. In 2015 IEEE International Confer-
ence on Software Maintenance and Evolution, ICSME 2015, Bremen, Germany,
September 29 - October 1, 2015, pages 171–180, 2015.

[26] Zhen Dong, Mohammadreza Ghanavati, and Artur Andrzejak. Automated di-
agnosis of software misconfigurations based on static analysis. In IEEE 24th
International Symposium on Software Reliability Engineering, ISSRE 2013,
Pasadena, CA, USA, November 4-7, 2013 - Supplemental Proceedings, pages
162–168, 2013.

[27] S. Duan and S. Babu. Automated diagnosis of system failures with fa. In Data
Engineering, 2009. ICDE ’09. IEEE 25th International Conference on, pages
1499–1502, 2009.

[28] Alexander Felfernig, Gerhard Friedrich, Dietmar Jannach, and Markus Stumpt-
ner. Consistency-based diagnosis of configuration knowledge bases. In ECAI
2000, Proceedings of the 14th European Conference on Artificial Intelligence,
Berlin, Germany, August 20-25, 2000, pages 146–150, 2000.

[29] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program depen-
dence graph and its use in optimization. ACM Trans. Program. Lang. Syst.,
9(3):319–349, July 1987.

[30] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: Elements
of reusable object oriented software, 1995.

[31] Mohammadreza Ghanavati, Artur Andrzejak, and Zhen Dong. Scalable isolation
of failure-inducing changes via version comparison. In IEEE 24th International
Symposium on Software Reliability Engineering, ISSRE 2013, Pasadena, CA,
USA, November 4-7, 2013 - Supplemental Proceedings, pages 150–156, 2013.

[32] Jim Gray. Why do computers stop and what can be done about it, 1985.

[33] David Grove, Greg DeFouw, Jeffrey Dean, and Craig Chambers. Call graph
construction in object-oriented languages. In Proceedings of the 12th ACM SIG-
PLAN Conference on Object-oriented Programming, Systems, Languages, and
Applications, OOPSLA ’97, pages 108–124, New York, NY, USA, 1997. ACM.

[34] Hadoop. http://hadoop.apache.org/.

[35] Chung hao Tan. Failure diagnosis for configuration prob-
lem in storage system. http://cs229.stanford.edu/proj2005/Tan-
FailureDiagnosisForConfigurationProblemInStorageSystem.pdf.

[36] HBase. http://hbase.apache.org/.

111

[37] Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural slicing using
dependence graphs. ACM Trans. Program. Lang. Syst., 12(1):26–60, January
1990.

[38] Arnaud Hubaux, Yingfei Xiong, and Krzysztof Czarnecki. A user survey of con-
figuration challenges in linux and ecos. In Proceedings of the Sixth International
Workshop on Variability Modeling of Software-Intensive Systems, VaMoS ’12,
pages 149–155, New York, NY, USA, 2012. ACM.

[39] JChord. http://pag.gatech.edu/chord.

[40] Dongpu Jin, Xiao Qu, Myra B. Cohen, and Brian Robinson. Configurations
everywhere: Implications for testing and debugging in practice. In Companion
Proceedings of the 36th International Conference on Software Engineering, ICSE
Companion 2014, pages 215–224, New York, NY, USA, 2014. ACM.

[41] Robert Johnson. More details on today’s outage. http://cc4.co/CGL, September
2010.

[42] Joel Jones. Abstract syntax tree implementation idioms. In Proceedings of the
10th Conference on Pattern Languages of Programs (PLoP2003), 2003.

[43] A. Kapoor. Web-to-host: Reducing total cost of ownership. Technical report,
Technical Report 200503, The Tolly Group, May 2000.

[44] L. Keller, P. Upadhyaya, and G. Candea. Conferr: A tool for assessing resilience
to human configuration errors. In Dependable Systems and Networks With FTCS
and DCC, 2008. DSN 2008. IEEE International Conference on, pages 157–166,
June 2008.

[45] Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong
program analysis & transformation. In Proceedings of the International Sym-
posium on Code Generation and Optimization: Feedback-directed and Runtime
Optimization, CGO ’04, pages 75–, Washington, DC, USA, 2004. IEEE Com-
puter Society.

[46] Michelle Levesque. Fundamental issues with open source software development.
First Monday, vol. Special Issue 2: Open Source, 2005.

[47] Max Lillack, Christian Kästner, and Eric Bodden. Tracking load-time configu-
ration options. In Proceedings of the 29th ACM/IEEE International Conference
on Automated Software Engineering, ASE ’14, pages 445–456, New York, NY,
USA, 2014. ACM.

[48] Benjamin Livshits, John Whaley, and Monica S. Lam. Reflection analysis for
java. In Proceedings of the Third Asian Conference on Programming Languages
and Systems, APLAS’05, pages 139–160, Berlin, Heidelberg, 2005. Springer-
Verlag.

112

[49] James Mickens, Martin Szummer, and Dushyanth Narayanan. Snitch: Inter-
active decision trees for troubleshooting misconfigurations. In Proceedings of
the 2Nd USENIX Workshop on Tackling Computer Systems Problems with Ma-
chine Learning Techniques, SYSML’07, pages 8:1–8:6, Berkeley, CA, USA, 2007.
USENIX Association.

[50] Yi min Wang, Chad Verbowski, John Dunagan, Yu Chen, Helen J. Wang, and
Chun Yuan. Strider: A black-box, state-based approach to change and configu-
ration management and support. In In Usenix LISA, pages 159–172, 2003.

[51] S. Nadi, T. Berger, C. Kastner, and K. Czarnecki. Where do configuration
constraints stem from? an extraction approach and an empirical study. Software
Engineering, IEEE Transactions on, 41(8):820–841, Aug 2015.

[52] Sarah Nadi, Thorsten Berger, Christian Kästner, and Krzysztof Czarnecki. Min-
ing configuration constraints: Static analyses and empirical results. In Proceed-
ings of the 36th International Conference on Software Engineering, ICSE 2014,
pages 140–151, New York, NY, USA, 2014. ACM.

[53] Kiran Nagaraja, Fábio Oliveira, Ricardo Bianchini, Richard P. Martin, and
Thu D. Nguyen. Understanding and dealing with operator mistakes in inter-
net services. In Proceedings of the 6th Conference on Symposium on Opearting
Systems Design & Implementation - Volume 6, OSDI’04, pages 5–5, Berkeley,
CA, USA, 2004. USENIX Association.

[54] David Oppenheimer, Archana Ganapathi, and David A. Patterson. Why do
internet services fail, and what can be done about it? In Proceedings of the
4th Conference on USENIX Symposium on Internet Technologies and Systems -
Volume 4, USITS’03, pages 1–1, Berkeley, CA, USA, 2003. USENIX Association.

[55] Karl J. Ottenstein and Linda M. Ottenstein. The program dependence graph
in a software development environment. SIGPLAN Not., 19(5):177–184, April
1984.

[56] Chris Parnin and Alessandro Orso. Are automated debugging techniques actually
helping programmers? In Proceedings of the 2011 International Symposium on
Software Testing and Analysis, ISSTA ’11, pages 199–209, New York, NY, USA,
2011. ACM.

[57] Rahul Potharaju, Joseph Chan, Luhui Hu, Cristina Nita-Rotaru, Mingshi Wang,
Liyuan Zhang, and Navendu Jain. Confseer: Leveraging customer support knowl-
edge bases for automated misconfiguration detection. PVLDB, 8(12):1828–1839,
2015.

[58] Christian Prehofer. Feature-oriented programming: A fresh look at objects.
pages 419–443. Springer, 1997.

113

[59] A. Rabkin and R.H. Katz. How hadoop clusters break. Software, IEEE, 30(4):88–
94, July 2013.

[60] Ariel Rabkin and Randy Katz. Precomputing possible configuration error di-
agnoses. In Proceedings of the 2011 26th IEEE/ACM International Conference
on Automated Software Engineering, ASE ’11, pages 193–202, Washington, DC,
USA, 2011. IEEE Computer Society.

[61] Ariel Rabkin and Randy Katz. Static extraction of program configuration op-
tions. In Proceedings of the 33rd International Conference on Software Engineer-
ing, ICSE ’11, pages 131–140, 2011.

[62] Ariel Rabkin and Randy Katz. How hadoop clusters break. IEEE Softw.,
30(4):88–94, July 2013.

[63] Vinod Ramachandran, Manish Gupta, Manish Sethi, and Soudip Roy Chowd-
hury. Determining configuration parameter dependencies via analysis of config-
uration data from multi-tiered enterprise applications. In Proceedings of the 6th
International Conference on Autonomic Computing, ICAC ’09, pages 169–178,
New York, NY, USA, 2009. ACM.

[64] Randoop. https://code.google.com/p/randoop/.

[65] Elnatan Reisner, Charles Song, Kin-Keung Ma, Jeffrey S. Foster, and Adam
Porter. Using Symbolic Evaluation to Understand Behavior in Configurable Soft-
ware Systems. In Proceedings of the 32nd International Conference on Software
Engineering (ICSE), pages 445–454, Cape Town, South Africa, May 2010.

[66] Thomas Reps, Susan Horwitz, Mooly Sagiv, and Genevieve Rosay. Speeding up
slicing. In Proceedings of the 2Nd ACM SIGSOFT Symposium on Foundations
of Software Engineering, SIGSOFT ’94, pages 11–20, New York, NY, USA, 1994.
ACM.

[67] Cindy Rubio-González and Ben Liblit. Expect the unexpected: Error code mis-
matches between documentation and the real world. In Proceedings of the 9th
ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools
and Engineering, PASTE ’10, pages 73–80, New York, NY, USA, 2010. ACM.

[68] A. Schroter, N. Bettenburg, and R. Premraj. Do stack traces help developers
fix bugs? In Mining Software Repositories (MSR), 2010 7th IEEE Working
Conference on, pages 118–121, 2010.

[69] srcML. http://www.srcml.org/index.html.

[70] Manu Sridharan, Stephen J. Fink, and Rastislav Bodik. Thin slicing. SIGPLAN
Not., 42(6):112–122, June 2007.

[71] Stack Overflow. http://stackoverflow.com/.

114

[72] Ya-Yunn Su and Jason Flinn. Automatically generating predicates and solutions
for configuration troubleshooting. In Proceedings of the 2009 Conference on
USENIX Annual Technical Conference, USENIX’09, pages 17–17, Berkeley, CA,
USA, 2009. USENIX Association.

[73] Yevgeniy Sverdlik. Microsoft: 10 things you can do to improve your data centers.
http://cc4.co/USWU, August 2012.

[74] Amazon Web Services Team. Summary of the amazon ec2 and amazon rds service
disruption in the us east region. http://aws.amazon.com/message/65648/, 2011.

[75] Frank Tip. A survey of program slicing techniques. Technical report, Amsterdam,
The Netherlands, The Netherlands, 1994.

[76] Joseph Tucek, Shan Lu, Chengdu Huang, Spiros Xanthos, and Yuanyuan Zhou.
Triage: Diagnosing production run failures at the user’s site. In Proceedings of
Twenty-first ACM SIGOPS Symposium on Operating Systems Principles, SOSP
’07, pages 131–144, New York, NY, USA, 2007. ACM.

[77] Adwait Tumbde, Matthew J. Renzelmann, and Michael M. Swift. Abstract
configuration data deserves a database.

[78] WALA. http://sourceforge.net/projects/wala/.

[79] Helen J. Wang, John C. Platt, Yu Chen, Ruyun Zhang, and Yi min Wang.
Automatic misconfiguration troubleshooting with peerpressure. In In OSDI,
pages 245–258, 2004.

[80] M. Wang, X. Shi, and K. Wong. Capturing expert knowledge for automated
configuration fault diagnosis. In Program Comprehension (ICPC), 2011 IEEE
19th International Conference on, pages 205–208, June 2011.

[81] M. Weiser. Program slicing. IEEE Transactions on Software Engineering, SE-
10(4):352–357, July 1984.

[82] Mark Weiser. Program slicing. In Proceedings of the 5th International Conference
on Software Engineering, ICSE ’81, pages 439–449, Piscataway, NJ, USA, 1981.
IEEE Press.

[83] Mark David Weiser. Program Slices: Formal, Psychological, and Practical Inves-
tigations of an Automatic Program Abstraction Method. PhD thesis, Ann Arbor,
MI, USA, 1979. AAI8007856.

[84] Andrew Whitaker, Richard S. Cox, and Steven D. Gribble. Configuration de-
bugging as search: Finding the needle in the haystack. In Proceedings of the
6th Conference on Symposium on Opearting Systems Design & Implementation
- Volume 6, OSDI’04, pages 6–6, Berkeley, CA, USA, 2004. USENIX Association.

115

[85] Yingfei Xiong, Arnaud Hubaux, Steven She, and Krzysztof Czarnecki. Gener-
ating range fixes for software configuration. In Proceedings of the 34th Interna-
tional Conference on Software Engineering, ICSE ’12, pages 58–68, Piscataway,
NJ, USA, 2012. IEEE Press.

[86] XPath. http://www.w3.org/TR/xpath-30/.

[87] Tianyin Xu, Jiaqi Zhang, Peng Huang, Jing Zheng, Tianwei Sheng, Ding Yuan,
Yuanyuan Zhou, and Shankar Pasupathy. Do not blame users for misconfig-
urations. In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, SOSP ’13, pages 244–259, 2013.

[88] Zuoning Yin, Xiao Ma, Jing Zheng, Yuanyuan Zhou, Lakshmi N. Bairavasun-
daram, and Shankar Pasupathy. An empirical study on configuration errors in
commercial and open source systems. In Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles, SOSP ’11, pages 159–172, 2011.

[89] Ding Yuan, Haohui Mai, Weiwei Xiong, Lin Tan, Yuanyuan Zhou, and Shankar
Pasupathy. Sherlog: Error diagnosis by connecting clues from run-time logs.
SIGARCH Comput. Archit. News, 38(1):143–154, March 2010.

[90] Ding Yuan, Yinglian Xie, Rina Panigrahy, Junfeng Yang, Chad Verbowski, and
Arunvijay Kumar. Context-based online configuration-error detection. In Pro-
ceedings of the 2011 USENIX Conference on USENIX Annual Technical Con-
ference, USENIXATC’11, pages 28–28, Berkeley, CA, USA, 2011. USENIX As-
sociation.

[91] Jiaqi Zhang, Lakshminarayanan Renganarayana, Xiaolan Zhang, Niyu Ge, Vas-
anth Bala, Tianyin Xu, and Yuanyuan Zhou. Encore: Exploiting system environ-
ment and correlation information for misconfiguration detection. In Proceedings
of the 19th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’14, pages 687–700, 2014.

[92] Sai Zhang and Michael D. Ernst. Automated diagnosis of software configura-
tion errors. In Proceedings of the 34th International Conference on Software
Engineering, San Francisco, CA, USA, May 22–24, 2013.

[93] Sai Zhang and Michael D. Ernst. Which configuration option should i change?
In Proceedings of the 36th International Conference on Software Engineering,
ICSE 2014, pages 152–163, New York, NY, USA, 2014. ACM.

[94] Sai Zhang and Michael D. Ernst. Proactive detection of inadequate diagnostic
messages for software configuration errors. In ISSTA 2015, Proceedings of the
2015 International Symposium on Software Testing and Analysis, pages 12–23,
Baltimore, MD, USA, July 15–17, 2015.

116

	Contents
	1 Introduction
	1.1 Configurable Software Maintenance
	1.1.1 Software Misconfiguration
	1.1.2 Configuration Options Documentation

	1.2 Our Approaches for Troubleshooting Software Configuration
	1.2.1 ConfDoctor: Automated Diagnosis of Configuration Errors
	1.2.2 ORPLocator: Identifying Read Points of Configuration Options

	1.3 Design Principles
	1.4 Contributions
	1.5 Outline

	2 Foundations
	2.1 Configurable Software Systems
	2.1.1 Configurable Code Base
	2.1.2 Configuration Setting
	2.1.3 Mapping

	2.2 Static Program Analysis
	2.2.1 Program Slicing
	2.2.2 Thin Slicing
	2.2.3 Call Graph
	2.2.4 srcML-based Analysis

	3 Related Work
	3.1 Misconfiguration Prevention
	3.1.1 Alerting on Mistakes in Configuration Setting
	3.1.2 Detecting Inconsistencies Due to Option Changes
	3.1.3 Detecting Vulnerability in Handling Misconfigurations

	3.2 Misconfiguration Diagnosis
	3.2.1 Program Analysis Approaches
	3.2.2 Comparison-based Approaches
	3.2.3 Replay-based Approaches
	3.2.4 Knowledge-based Approaches

	4 ConfDoctor: Automated Diagnosis of Software Misconfiguration
	4.1 Introduction
	4.1.1 Motivation
	4.1.2 Core Idea
	4.1.3 Challenges and Solutions

	4.2 Problem Statement
	4.3 ConfDoctor Approach
	4.3.1 Overview
	4.3.2 Configuration Propagation Analysis
	4.3.3 Stack Trace Analysis
	4.3.4 Chopping Analysis
	4.3.5 Correlation Degrees
	4.3.6 Ranking Configuration Options

	4.4 Implementation
	4.5 Evaluation
	4.5.1 Experimental Setup
	4.5.2 Overall Accuracy
	4.5.3 Comparison of Accuracy of Cor and Corst
	4.5.4 Impact of Variants of the Dependence Analysis on Accuracy
	4.5.5 Comparison with Our Previous Work
	4.5.6 Time Overhead of Diagnosis
	4.5.7 Discussion

	4.6 Summary

	5 ORPLocator: Locating Option Read Points
	5.1 Introduction
	5.1.1 Motivation
	5.1.2 Idea
	5.1.3 A Challenge and Solution

	5.2 Problem Statement
	5.3 ORPLocator
	5.3.1 Overview
	5.3.2 Identifying Subclasses of the Configuration Class
	5.3.3 Identifying the Get-Methods
	5.3.4 Locating Call Sites of Get-Methods
	5.3.5 Inferring Option Names
	5.3.6 An Example

	5.4 Implementation
	5.5 Evaluation
	5.5.1 Experimental Setup
	5.5.2 RQ1: Effectiveness
	5.5.3 RQ2: Option Inconsistencies
	5.5.4 RQ3: Comparison with a Previous Technique
	5.5.5 RQ4: Time Cost
	5.5.6 Discussion

	5.6 Summary

	6 Conclusion
	6.1 Summary
	6.2 Future Directions
	6.2.1 Generalizing the Problem
	6.2.2 Misconfiguration Repair
	6.2.3 Applying Precise Analysis to Large Scale Programs

	Bibliography

