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Imprints of Quantum Gravity on Large Field Inflation and Reheating

In this thesis we investigate the feasibility and phenomenology of transplanckian field displace-
ments during Inflation as well as the production of very light fields during Reheating.

We begin by focusing on realisations of axion inflation in the complex structure moduli
sector of Type IIB String Theory (ST) flux compactifications. Firstly, we analyse the problem
of backreaction of complex structure moduli on the inflationary trajectory in a concrete model
of axion monodromy inflation. Secondly, we propose a realisation of natural inflation where the
inflaton arises as a combination of two axions. In both cases we find sufficiently flat inflationary
potentials over a limited, but transplanckian field range. However, our realisation of axion
monodromy inflation requires a potentially large, though realisable, number of tunings to ensure
that the inflationary shift symmetry is only weakly broken.

The consequences of the Weak Gravity Conjecture (WGC) for axion monodromy inflation
are then explored. We find that the conjecture provides a bound on the inflationary field range,
but does not forbid transplanckian displacements. Moreover, we provide a strategy to generalise
the WGC to general p-form gauge theories in ST.

Finally, we focus on the physics of the early post-inflationary phase. We show that axion
monodromy inflation can lead to a phase decomposition, followed by the radiation of potentially
detectable gravitational waves. We also propose a strategy to evade the overproduction of Dark
Radiation in the Large Volume Scenario of moduli stabilisation, by means of flavour branes
wrapping the bulk cycle of the compactification manifold.

Spuren von Quantengravitation in Large-Field Inflation und Reheating

In dieser Doktorarbeit untersuchen wir sowohl die Realisierbarkeit und Phänomenologie von
transplanckschen Feldauslenkungen wärend der Inflation als auch die Produktion sehr leichter
Felder in der Reheating-Phase.

Zunächst konzentrieren wir uns auf Realisierungen von Axion-Inflation im Moduli-Sektor der
komplexen Struktur von Fluss-Kompaktifizierungen in Typ-IIB-Stringtheorie (ST) auf Calabi-
Yau-Mannigfaltigkeiten. Als Erstes analysieren wir in einem konkreten Modell für Axion-
Monodromie das Problem der Rückkopplung von Moduli der komplexen Struktur auf die in-
flationäre Trajektorie. Danach schlagen wir eine Realisierung von natürlicher Inflation vor, in
dem das Inflaton aus einer Kombination von zwei Axionen hervorgeht. In beiden Fällen finden
wir ausreichend flache inflationäre Potenziale über einen begrenzten aber transplanckschen
Feldbereich. Allerdings setzt unsere Realisierung von Axion-Monodromie eine möglicherweise
große, aber realisierbare, Anzahl an Feinabstimmungen voraus, welche sicherstellen, dass die
inflationä re Shift-Symmetrie lediglich schwach gebrochen wird.

Anschließend untersuchen wir die Konsequenzen der Weak Gravity Conjecture (WGC) für
Axion-Monodromie-Inflation. Wir schlussfolgern, dass transplancksche Feldbereiche beschränkt
aber nicht verboten sind. Außerdem beschreiben wir eine Strategie zur Verallgemeinerung der
WGC in ST.

Zum Schluss betrachten wir die Physik der post-inflationären Phase. Wir zeigen, dass
Axion-Monodromie-Inflation zu einer Phasentrennung führen kann, auf die die Ausstrahlung von
potenziell nachweisbaren Gravitationswellen folgt. Zudem schlagen wir eine Strategie zur Umge-
hung der generischen Überproduktion von dunkler Strahlung im Large Volume-Szenario vor, in
der flavour-Branes, die auf den Bulk-Zykel der kompaktifizierten Mannigfaltigkeit gewickelt
sind, eine zentrale Rolle spielen.



Navegar é Preciso
Fernando Pessoa
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Introduction 3

The inflationary Universe

Very much like sailors of ancient times, cosmologists today direct their gaze to the
sky in search of a guiding light to the understanding of the physics of fundamental
interactions. Their North Star is the Cosmic Microwave Background (CMB), accidentally
discovered more than fifty years ago and more recently mapped by the WMAP [1] and
Planck [2] satellites. The CMB is the first of all possible snapshots of our Universe:
taken approximately when the latter had cooled sufficiently to make it favourable for
electrons to be bound in hydrogen atoms, so that photons could stream freely instead of
scattering continuously off electrons. Planck and WMAP measured the temperature of
CMB photons across the sky, finding that it is homogeneous up to fluctuations of one
part in one hundred-thousand!

A lot about the history of the Universe was of course known before the era of CMB
precision measurements. In particular, only three fundamental observations are needed
to reconstruct most of its evolution: it is flat, currently expanding and contains (dark)
matter and radiation. The theory of General Relativity then implies that the Hubble
radius, the size of the observable Universe, is increasing with time. Measurements of the
redshifts and distances of galaxies by means of Type Ia supernovae revealed an unex-
pected addition to these basic ingredients: the Universe today is accelerating [3,4]. This
observation provides evidence for a tiny and positive constant energy density, referred
to as the cosmological constant or dark energy, whose origin is arguably the greatest
conundrum of contemporary physics. Overall this picture is known as the ΛCDM model
and it is confirmed by the Planck satellite to a very high accuracy: the Universe is
composed by roughly 69% dark energy, 26% dark matter and 5% ordinary baryons [2],
while the contribution of radiation today is negligible.

Despite its outstanding success, such a standard cosmological model leaves essential
questions unanswered: Why is the Universe so flat? Why is the temperature of the CMB
so homogeneous? Why does it exhibit such tiny fluctuations? Very special initial values
of curvature and temperature seem to be required to produce the best of all possible
worlds we live in.

This rather unsatisfactory situation can be partially ameliorated by postulating an
initial phase of accelerating expansion, during which the Hubble sphere shrinks. Similarly
to its old self, the young Universe would then be filled with a source of constant energy
density. This is, in short, the answer given by the theory of Inflation [5,6]: the Universe
is flat and homogeneous because its ripples and anisotropies were stretched and flattened
early on. Crucially, extremely tiny quantum fluctuations in the early Universe were also
stretched during inflation, in such a way that they induced measurable inhomogeneities
in the temperature of the CMB.

So far observations have confirmed that the language of the primordial Universe is
that of quantum field theory. A constant energy density can thus be provided by a
light scalar field with an almost constant potential and negligible kinetic energy. The
expansion of the Universe helps in achieving the latter condition, as it damps the motion
of the inflaton field along its potential. So-called slow-roll inflation [7, 8] occurs if the
dynamics of the inflaton is dominated by friction. In this picture the scalar field is
almost perfectly homogeneous and anisotropies arise from space-dependent (quantum)
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field fluctuations [9–12]. In particular, the power spectrum of such scalar fluctuations
(i.e. the Fourier-expanded correlations between the fluctuations at two different locations)
is directly related to the observed CMB temperature power spectrum. This elegant
scenario predicts an almost scale-invariant (meaning that its amplitude does not depend
on the particular Fourier mode) and gaussian (implying that the n-point correlations,
with n odd, are vanishing) spectrum of fluctuations.

The most spectacular prediction of the inflationary Universe is however the existence
of primordial gravitational waves, also referred to as tensor modes. These are perturba-
tions in the geometry of spacetime which propagate similarly to electromagnetic waves.
Despite being fundamentally the same as the gravitational waves emitted by binary
systems of neutron stars and/or black holes, recently detected by the interferometer
aLIGO [13], observable inflationary tensor modes would have much smaller amplitude
and frequencies. Thus they are not detectable by means of interferometry, at least at
the time of writing. Rather, they are indirectly accessible through measurements of
the polarisation of CMB photons: tensor modes are indeed the only primordial source
of B-mode (divergence-free) polarisation (see e.g. [14] and refs. therein), while scalar
fluctuations induce purely E-modes (curl-free).

The Universe of the ΛCDM model is then finally produced during reheating: after
inflation the energy density residing in the scalar field is distributed to matter and
radiation by the decay of the inflaton field. Furthermore, scalar field fluctuations translate
into density perturbations, which are responsible for the large-scale structures of the
observed Universe.

Planck provided further convincing support to the inflationary picture by measuring
the deviation of the scalar power spectrum from scale invariance, expressed by its so-called
tilt ns = 0.9677±0.0060 (68% CL) [15] (with ns = 1 corresponding to perfect scale invari-
ance, see the caption of figure 1) and by strongly constraining non-gaussianities. However
a detection of primordial tensor modes still eludes us, with Planck and BICEP2-Keck
Array (BKP) setting only an upper bound on the ratio of tensor-to-scalar fluctuations,
r ≤ 0.08 (95% CL) [15]. Nevertheless in the near future several ground- and space-based
experiments will be able to probe smaller values of the tensor-to-scalar ratio, realistically
down to r & 2 · 10−3 [16].

With regard to inflationary model building, two classes of concrete realisations exist:
firstly, non-generic inflaton potentials with very flat regions can be employed; alterna-
tively, generic power-like potentials can be considered. In the former case, the inflaton
only needs to traverse small field distances in order for the Universe to undergo sufficient
exponential expansion. In the latter case instead, the inflaton has to be displaced across
large field intervals, since power-like potentials are generically not flat enough. This
option is known as Large Field Inflation (LFI) and is particularly attractive for two
reasons: first of all, it can be realised by means of simpler, arguably more natural,
inflationary models, with possibly only one parameter governing the potential. Secondly
and perhaps most importantly, it leads to observable values of r (as shown in figure 1). In
fact, a detection of B-modes in the near future would make a strong case for transplanckian
field displacements [17], meaning that the inflaton traverses distances in field space which
are larger than the (reduced) Planck scale MP ' 1018 GeV. Not surprisingly, the Large
Field Inflation scenario would add an intriguing twist to the inflationary picture.
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Figure 1: Planck/BKP 2015 constraints on slow-roll inflationary models with potential
V (φ). On the horizontal axis: the tilt ns of the power spectrum of scalar fluctuations,
defined by k3Ps(k) = As

(
k
k?

)ns−1
. Here k? = 0.05 Mpc−1 is a reference pivot scale. On

the vertical axis: the ratio of the amplitudes of the tensor and scalar power spectra,
r ≡ Ps(k?)

Pt(k?) . In this case, k? = 0.002 Mpc−1. The predictions of several models are plotted
as coloured segments, whose points correspond to different values of the number of efolds
N?, which parametrises the duration of inflation. The black straight line separates concave
from convex potentials. 68% and 95% CL regions are shown. This plot is taken from [15],
which should be consulted for more details on the various inflationary potentials.

Inflation and the Planck Scale
The Planck scale is to high energy physics what the Pillars of Hercules were to ancient
Mediterranean sailors: the ultimate boundary of the known world. The current under-
standing of Nature is via quantum field theories (QFT), with fundamental interactions
being mediated by gauge fields. The modern point of view is that a given QFT should
be interpreted as an effective field theory (EFT): that is, a description valid only up to
a certain energy cutoff scale. Above the latter, new ultraviolet (UV) degrees of freedom
become dynamical and thus a new theory is needed. The Standard Model (SM) of
Particle Physics, which describes the strong and electroweak forces, fits into this scheme.
The Large Hadron Collider (LHC) is currently seeking evidence for physics Beyond the
Standard Model (BSM) at the TeV scale but so far it appears that the SM remains a
valid description of Nature at these energies. Nonetheless, its cutoff scale is necessarily
smaller than the Planck scale, where degrees of freedom associated to Quantum Gravity
(QG) are expected to become relevant.1 It is, however, not clear what these degrees of

1In fact, there already exists evidence (such as neutrino masses, dark matter, possibly instability
of the Higgs vacuum) that the cutoff of the SM is much lower than the Planck scale. However, such
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freedom are nor which theory could possibly describe them. While it is true that General
Relativity can be used to compute amplitudes of gravitational processes in perturbation
theory, at energies close toMP its predictions for such amplitudes violate basic principles
of quantum mechanics; specifically unitarity. Thus, it is one of the main open problems
of particle physics to understand how gravity behaves at such high energies and how it
is reconciled with quantum mechanics.

In this regard, the desire to describe all interactions in a unified framework motivates
an alternative perspective on effective field theories, and in particular on the SM. Namely,
above a certain energy cutoff Ms < MP the fundamental constituents of Nature may be
one-dimensional strings, rather than point-like particles. This is the proposal of String
Theory (ST), which unifies gravity with the strong and electroweak interactions in a
framework which is consistent with special relativity and quantum mechanics. Unfortu-
nately, this comes at a price: namely, (super)String Theory is consistent only in ten
dimensional spacetime. As astonishing as it sounds, if the six extra-dimensions are
extremely small and “curled up” (that is, compact) there is no way to experience them in
everyday life and very likely even at high energy particle colliders, such as the LHC.2 In
fact, so far there is no experimental nor observational evidence for String Theory. This
should not be seen as a verdict on the proposal itself, as, in principle, its consequences
may be visible only at very high energies, possibly close to the Planck scale. Rather,
the current situation adds motivation to the interest in primordial cosmology, where the
highest energies currently accessible are involved. This leads to the foundational question
of string cosmology: what are the predictions of String Theory on phenomena taking place
in the very early Universe?

This thesis presents some answers to this question, in the context of physics which
is directly and indirectly observable in the CMB. In particular, the focus will be on
understanding the effects of stringy (and more generally gravitational) degrees of freedom
on the effective field theory of inflation and on reheating.

The inflationary mechanism may be particularly concerned with Quantum Gravity.
Elementary scalar fields like the inflaton and the Higgs boson are known to pose concep-
tual challenges to the effective field theory ideology. Their masses and interactions are
indeed very finely sensitive to UV physics. In particle physics, this feature translates into
the well known hierarchy problem: why is the Higgs boson mass so small compared to the
Planck scale? Concerning inflation, its UV sensitivity is expressed by the eta problem:
why is the inflaton field light compared to the Hubble scale? Models of Large Field
Inflation are even more problematic: how can the inflaton potential remain sufficiently
well-behaved over transplanckian field ranges? Answers to the latter question might shed
light on the rather intriguing observational status of LFI: while several of its realisations
are compatible with current data, the simplest model, quadratic inflation [19], is very
strongly constrained.

Reheating has instead the potential to probe and possibly falsify what is considered
a general characteristic of the stringy Universe: namely the existence of a multitude of
light pseudoscalar fields beyond the particle content of the SM [20]. The CMB power
spectrum can indeed be sensitive to the presence of very light species beyond the three

phenomena might turn out to be described by rather minimal extensions of the SM.
2See however e.g. [18] for possible signatures of ST at the LHC.
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families of neutrinos predicted by the SM. Are then current observations already casting
doubts on our understanding of effective theories descending from ST?

Troubles and Opportunities from Large Field Inflation
Since most of the content of this thesis is concerned with conceptual and phenomenological
aspects of LFI, let us provide a slightly more technical introduction to its realisations and
open questions in the context of ST and effective field theory. This will also give us the
opportunity to review recent progress.

Let us thus go back to the friction-dominated inflationary dynamics. The latter occurs
if the inflaton mass is small compared to the rate of expansion of the Universe during
inflation, the Hubble rate H [21]. In order to understand the problems related to this
requirement in EFT, it is useful to consider a general effective Lagrangian, featuring
operators which can be built using powers of the scalar field and of is derivatives:

L ⊃ 1
2∂µφ∂

µφ− 1
2
m2

Λ2 Λ2φ2 − λ

4!φ
4 +

∑
n

cn
On[φ]
Λpn−4 , (1)

where terms with odd powers of φ have not been written explicitly for simplicity. Here
On[φ] are operators of dimension pn, ci are dimensionless Wilson coefficients and Λ is the
energy cutoff of the EFT. In the case of inflation, the lowest possible value of this cutoff
corresponds to the Hubble scale H. Thus, following the discussion above, H . Λ .MP .
Notice that we normalised the inflaton mass by the cutoff, so that the mass term is
multiplied by the dimensionless coefficient a = m2/Λ2. According to (1), contributions
to physical amplitudes induced by the operators On[φ] are suppressed at energies below
the cutoff.

The theoretical problems of inflation are now apparent. Effective field theories are
based on the naturalness criterion [22], which dictates that all the dimensionless parame-
ters appearing in the Lagrangian should beO(1). A given coefficient is allowed to be small
only if the Lagrangian enjoys a larger symmetry, in the limit in which that coefficient
vanishes. The first and most important dimensionless coefficient in (1) is the mass squared
a = m2/Λ2. In the absence of symmetry, the natural expectation is m2 ∼ Λ2 & H2. Thus
slow-roll inflation cannot occur.

The problem is only more acute for Large Field models, where the inflaton field
necessarily takes values larger than the Planck scale. Since Λ < MP , higher-dimensional
operators in (1) are not suppressed and the effective description of (1) breaks down, since
in principle an infinite number of higher-dimensional operators becomes relevant for the
low-energy inflaton dynamics.3

However, small dimensionless coefficients in (1) are technically natural in the sense
that a symmetry under continuous shifts of the inflaton φ → φ + c, with c constant,
is recovered in the limit (m/Λ) → 0, λ → 0 (assuming for the moment that we can
neglect higher-dimensional operators). This motivates the interest in axions as inflaton

3Notice however that the energy density during inflation is constant and well below the Planck scale:
in particular Vinf ∼ H2M2

P . Thus it is not a priori clear that Quantum Gravity should have anything to
do with LFI.
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candidates. The latter are fields which take values on a circle. More precisely, they are
(pseudo)scalar fields that enjoy a continuous shift-symmetry at all orders in perturbation
theory. However, non-perturbative gauge theory effects (that is, instantons) can generate
a periodic potential for the axion and thus only a discrete shift symmetry is left. Axions
have been originally investigated in relation to the strong CP problem of QCD [23–26]
and as Cold Dark Matter candidates [27–29]. Moreover, a plethora of models of axion
inflation have been proposed. Among them, the simplest is Natural Inflation [30], where
the inflaton has an instanton-induced periodic potential

V (φ) = Λ4
[
1− cos

(
φ

f

)]
(2)

and the axion decay constant f measures the periodicity of the field φ. Such a model is
compatible with the latest Planck data if f & 7 MP [15], so that the inflaton rolls down
one of the cosine wells along a transplanckian field range. Generalisations of this simple
model identify the inflaton with a linear combination of multiple axions with subplanckian
periodicities (see [31,32] for the original proposals).

The dimensionless parameters ci in (1) are also naturally suppressed in the presence
of a shift symmetry. It thus seems to be rather easy to present a model of LFI which is
protected against UV corrections. However, the interpretation of higher order operators
is that they originate from integrating out the UV degrees of freedom which live above
the cutoff Λ. From this perspective the problems of LFI reappear: does the UV theory
respect the (discrete or continuous) inflationary shift symmetry? If not, what are the
degrees of freedom that are responsible for its violation?

Very interestingly, important hints exist that the answer to the latter question involves
Quantum Gravity. More specifically, it is expected that UV degrees of freedom associated
to QG interfere with continuous global symmetries [33]. Arguments in favour of this
statement are often based on the observation that evaporating black holes can potentially
violate charge conservation. Further evidence is provided by perturbative String Theory,
in which a theorem holds that forbids continuous global internal symmetries [34] (see
also [35] for a recent review). Nevertheless, it is not clear whether black hole arguments
extend to (discrete) shift symmetries, which do not have a conserved charge, nor how
badly would the symmetry be violated. Furthermore, the role of non-perturbative gravi-
tational effects is also not fully understood (see [36,37] for recent progress).

Thus the fundamental problem of (Large Field) Inflation can be rephrased as a
single question: to what extent does Quantum Gravity respect/violate inflationary shift
symmetries?

There exists at least two complementary strategies to look for an answer. First of
all, by direct inspection of the higher-order operators. Since the latter are induced by
UV degrees of freedom, this option requires knowledge of the UV completion of the
inflationary model. Secondly, by indirect knowledge of the properties of such higher-
order operators. This can be obtained by effective field theory arguments about what the
fundamental properties of QG should be.
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String Inflation

The first strategy naturally leads to String Theory, more specifically to effective theories
descending from string compactifications. Quantisation of the string leads to a massless
spectrum and a tower of massive string modes, whose characteristic energy scale is the
string scale Ms. At energies belowMs, one can obtain an effective action for the massless
modes only. Very importantly, the resulting effective theory is an N = 2 supergravity
(SUGRA) in 10D. Effective 4D N = 1 supergravity theories can then be obtained by
dimensional reduction on certain six-dimensional compact manifolds, known as Calabi-
Yau (CY) orientifolds (see [38]).4 This is essentially an extension of the old proposal of
Kaluza-Klein compactification of five-dimensional theories on a circle (see for instance [39]
and refs. therein). A further crucial ingredient of 10D String Theory is the existence of
D-branes [40], which are higher dimensional dynamical surfaces on which open strings can
end. The task of string inflation is to embed inflationary models either in string-derived
4D supergravities or directly in 10D setups with D-branes.

An essential feature of string compactifications is the existence of a multitude of
scalar fields which are massless in perturbation theory and couple to Standard Model
fields only through Planck-suppressed operators. They are referred to as moduli and can
be related to geometric features of the compactification. A useful and simple example
for this relation is provided by the familiar case of five-dimensional spacetime, with the
fifth dimension being a circle.5 The extra-dimension can be “integrated out” by Fourier
expanding every field in terms of the coordinate on the circle. In particular, fluctuations
of the 5D metric along the extra-dimension generate a massless scalar field in 4D, which
is referred to as the radion (see e.g. [43]). As its name suggests, the vacuum expectation
value (VEV) of this field characterises the size of the fifth dimension. The radion is thus an
example of a modulus, since its VEV is not automatically fixed by the compactification.

Six dimensional Calabi-Yau manifolds are more complicated than the simple circle
discussed above. In particular, their moduli spaces are much richer. Once again, a simpler
example might be useful. A rectangular torus can be cut symmetrically by means of a
horizontal (vertical) plane. The circle arising at the intersection between the torus and
the plane is called a 1-cycle of the torus. Therefore, there are two such cycles in this
case. Correspondingly, the shape of a rectangular torus is characterised by the ratio
between the radii of these two circles, which is parametrised by its so-called complex
structure modulus. For a general torus, i.e. not necessarily rectangular, the complex
structure modulus is actually complex and its phase corresponds to the angle between
the two fundamental cycles. The overall volume of a torus is instead described by a so-
called Kähler modulus. More in general, cycles can be defined as submanifolds without
boundaries. On Calabi-Yau manifolds there are 2−, 3− and 4-dimensional cycles and two
types of moduli which are related to fluctuations of the 10D metric along the compact
dimensions (see chapter 1 for a technical introduction to moduli of CYs). In close analogy
with the torus, complex structure moduli parametrise perturbations of the shape of the
manifold. Kähler moduli are instead related to fluctuations of the overall volume of the

4A basic review of these concepts is provided in chapter 1.
5Slightly more complicated setups are employed for instance in the popular Randall-Sundrum proposal

to solve the electroweak hierarchy problem [41,42].
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CY, as well as of two- and four-cycles.
Massless scalar fields are generically incompatible with observations, as they would for

instance lead to measurable deviations from General Relativity (see e.g. the discussion
in [44]). Furthermore the size of the extra-dimensions fixes the values of the couplings
of the 4D theory. Therefore it is imperative to generate a potential for the moduli:
this is referred to as moduli stabilisation and has been the main technical task of string
phenomenology since its birth (see chapter 1 for a basic introduction). Even when their
VEVs and masses are fixed, moduli can still pose a serious threat to late cosmology.
Since their interactions are Planck-suppressed, moduli generically decay very late to SM
fields. This may have several catastrophic consequences, among them: photodissociation
of 4He and D, in such a way that the abundances of these elements would deviate from
observations; washout of the baryon asymmetry due to the late release of entropy. These
issues are usually referred to as the Cosmological Moduli Problem (CMP) [45–47] and
can be evaded if moduli are heavier than ∼ 30 TeV.

Moduli stabilisation can be partially achieved by means of higher dimensional gauge
fluxes, which can be thought of as the generalisation of the familiar electromagnetic field
strength to an antisymmetric tensor with more than two indices. Such fluxes can be
used to stabilise complex structure moduli [48]. Kähler moduli can be fixed by means
of non-perturbative effects only, as in the KKLT scenario [49], or via an interplay of
non-perturbative effects and stringy corrections, as in the Large Volume Scenario (LVS)
[50, 51]. Both setups can accommodate low-energy supersymmetry without necessarily
facing the CMP.

This illustrates the interplay between supersymmetry as a solution to the hierarchy
problem and moduli stabilisation. Crucially, the latter is also very closely tied to what
might be considered the most revolutionary implication of String Theory. Compactifi-
cations of 10D ST on Calabi Yau manifolds with different choices of higher dimensional
fluxes leads to a vast landscape of possible 4D vacua [52,53], each of which is characterised
by different physics (that is, different 4D parameters). Since the estimated number of
such vacua is & 10500 [52], a rather large number of Universes might have a cosmological
constant with its observed value. At the time of writing, the paradigm of the string land-
scape is arguably the most promising solution to the cosmological constant problem. It
is also very closely tied to (eternal) inflation, since the latter is responsible for populating
the different vacua (see [54] and refs. therein).

With regard to axion inflation, setups of string compactifications offer a plenitude
of fields which enjoy (discrete) shift-symmetries [20, 55]. In the simplest case, axions
may descend from dimensional reduction of the aforementioned higher-dimensional gauge
potentials. Their low-energy shift-symmetry is thus the relic of a gauge symmetry in
the UV theory. After including non-perturbative effects, a discrete shift symmetry
is left, which has the potential to evade the arguments against global symmetries in
QG. Nevertheless, the existence of a single elementary axion with transplanckian decay
constant is severely constrained at the level of explicit string constructions [55,56], where
field spaces are limited by the compactness of the extra-dimensions. However, there are at
least two ways to obtain larger field ranges. Firstly, by considering two [31] or more [32]
axions with subplanckian periodicities, an appropriate combination of them can exhibit
a transplanckian decay constant (see subsection 1.2.4).
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Secondly, the compact field space of a single axion can be unfolded by weakly breaking
the associated shift symmetry. This is the basic idea of axion monodromy inflation [57,58],
whose inflationary potential is of the type

V (φ) ∼ µ4−pφp + Λ4 cos
(
φ

f

)
, (3)

where the first term breaks the axionic shift symmetry respected by the second term
and f is meant to be subplanckian. Thus the original circular field space is effectively
transformed into a helix and a transplanckian trajectory can be achieved. Models based
on the potential (3) are in principle compatible with current data, for certain values of
p and f . For instance, the original model [57] uses p = 1 and predicts r ≈ 0.07. Other
powers may also be considered, as we will do in chapters 4 and 5.

Finally, other moduli may also exhibit shift symmetries. For instance, in this thesis
we shall be particularly concerned with axions that arise from complex structure moduli.
In the simple case of a torus, the discrete shift symmetry of its complex structure is
part of the well-known symmetry group of global diffeomorphisms of the torus. In the
more relevant case of Calabi-Yau manifolds, complex structure moduli can enjoy shift
symmetries in certain geometric limits [59–61] (see also [62] for a recent discussion).
However, the understanding of these invariances is not as straightforward as in the toroidal
case, thus a specific analysis is particularly important.

Effective Field Theory Constraints
The effects of Quantum Gravity can also be inferred indirectly, via EFT expectations
concerning its behaviour. This strategy has been intensively employed in the last two
years. A first argument which might be used to constrain LFI is known as the Weak
Gravity Conjecture (WGC) [63]. Heuristically, the WGC states that gravity is the weakest
force. More specifically, the (electric) WGC requires that the spectrum of a U(1) gauge
theory coupled to gravity should contain a particle of mass m and charge q whose electric
interaction is stronger than its gravitational one, namely such that

m

qeMP

. 1, (4)

where e is the gauge coupling. Furthermore, the (magnetic) conjecture states that the
cutoff of the EFT is parametrically smaller than MP at weak coupling, contrary to the
effective field theory expectation. In particular,

Λ . eMP . (5)

Notice that both statements of the conjecture forbid the limit e → 0, in which the
gauge symmetry would be essentially indistinguishable from a global symmetry. The
motivations for the electric WGC are indeed very closely related to the “no-go” argu-
ments against global symmetries in QG, while the magnetic statement descends from
the expectation that the minimally charged monopole in the effective theory should not
be a black hole (see section 1.2 for more details). Applications to inflationary models
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actually employ a generalised version of the WGC, which concerns gauge theories with
potentials that have a generic number of indices.6 In particular, a “gauge” boson with
no indices is a (pseudo)scalar and its gauge invariance is just a shift symmetry: in other
words it is an axion. The role of the particle is played by the instanton which generates
a periodic potential for the axion (exactly as in QCD). The particle “mass” corresponds
to the instanton action S: the dilute gas approximation, usually necessary to perform
computations, requires S & 1 (see e.g. [64]). The “charge” is the inverse of the axion
decay constant f . The dimensionless “mass-to-charge” ratio for instantons and axions is
thus given by (S · f)/MP . The electric WGC requires that the latter should be smaller
than unity, which implies that the axion decay constant is subplanckian, thereby ruling
out Natural Inflation and related scenarios [63]. Recent development focused both on the
implications for multi-field models as well as on the refinement of the statement of the
conjecture (see [36, 65–84] for a non-exhaustive list of recent work).

A second argument against LFI is based on the existence of non-perturbative effects
(analogous to instantons in QCD) associated to gravity [36, 37]. The claim is that such
gravitational instantons induce terms in the inflationary potential, which may spoil the
required flatness if the field traverses transplanckian distances. Yet another argument
against LFI exists, based on well-known bounds on the entropy of black holes [85, 86]
extended to other systems (such as de Sitter spacetime), where it is known as the covariant
entropy bound (CEB) [87]. In this case the claim is that large field models may violate
the CEB [88] (see however [73,89]).

So much for the recent conceptual progress on Large Field Inflation. A third route,
which is in a sense orthogonal to the previous two, is purely phenomenological. Namely,
models realising LFI may exhibit peculiar signatures which affect the CMB power spec-
trum and/or reheating. Detection of such signatures may potentially help in validat-
ing LFI, especially if associated with a measurement of primordial gravitational waves
(see [90–98] for a partial list of recent work on the signatures of axion inflation).

The Contribution of this Thesis
This thesis investigates the interplay between String Theory, Large Field Inflation and Re-
heating, along the three directions outlined above. Accordingly, it is divided in two parts,
separated by an Intermezzo. Part I is devoted to the realisation of certain inflationary
models in the framework of compactifications of 10D string theory to 4D. On the contrary,
Part II concerns the physics of the early post-inflationary era. While the content of Part
I is mainly theoretical, Part II adopts a phenomenological perspective. The Intermezzo
discusses the Weak Gravity Conjecture, both from a conceptual and phenomenological
point of view. The reader who is not familiar with string compactifications can find a
basic technical introduction to the topic in chapter 1, where we also review the WGC and
its application to models of axion inflation. Furthermore, this thesis is supplemented with
three appendices: appendix A reviews the language of differential forms and the essential
definitions relevant for complex manifolds; appendix B complements the discussion of

6In the language of differential forms, these are called p-form gauge theories. We review them in
appendix A, while the WGC is technically introduced in section 1.2.
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scalar field fluctuations after inflation given in chapter 5, while appendix C presents a
scenario of small field inflation which is again related to the content of chapter 5. Given
the length of this thesis, we find it convenient to provide now a summary of its main
contents and results.

Part I: Large Field Inflation in String Compactifications

The aim of Part I is to present new implementations of certain models of axion inflation
with large field displacements in setups of Type IIB ST/F-theory compactified on a CY
manifold.7 In particular, in chapter 2 we focus on axion monodromy inflation. Our main
aim is to study the limitations of large field displacements due to backreaction of the
compactification geometry. This is indeed one of the ways in which stringy UV degrees
of freedom can spoil the approximate inflationary shift symmetry. The problem can be
understood as follows. In setups based on compactifications there are many fields beyond
the inflaton: the inflationary potential thus generically depends on other moduli. The
latter are initially all stabilised. As the inflaton is displaced, the other moduli readjust
to maintain a configuration of minimal energy. In other words, they are also displaced
from their initial values. The danger then is that, when the inflaton moves along a long
trajectory, the displacements of other moduli are large. The effect on the inflationary
trajectory can be taken into account by integrating them out, i.e. by minimising the
potential with respect to the other moduli beside the inflaton. The result of this procedure
is a backreacted potential, which can exhibit dangerous regions of non-monotonicity and
even local minima.8

Inspired by [101], we thus investigate the problem of backreaction in a N = 1
supergravity setup where the inflaton potential is induced by supersymmetric F-terms:
this general framework is known as F-term axion monodromy inflation [101–103]. This
is one of the few settings where explicit computations can be done. In particular, we
consider the inflaton to be the axionic component of a complex structure modulus of
a CY manifold. In a certain limit of the CY geometry, known as the Large Complex
Structure (LCS) limit [104, 105], this field enjoys a shift symmetry at the level of the
Kähler potential. The source of symmetry breaking (monodromy) is provided by the
superpotential, which features a linear term induced by higher-dimensional gauge fluxes.
In order to make sure that the shift symmetry is only weakly broken, we need to impose
a tuning condition on these coefficients and their derivatives with respect to the moduli
fields. It is crucial that we keep all the other moduli of the compactification dynamical
and perform the analysis of backreaction outlined above. Our conclusions are positive:
the displacements of other moduli, while being non-negligible, do not spoil the flatness
of the inflationary potential across a limited, but transplanckian, field range, which is
in principle suitable for LFI. However, the potentially large number of required tunings

7A very brief introduction to F-theory [99] is postponed to chapter 1.1.3. For the time being, it
suffices to say that F-theory provides a useful and complementary description of Type IIB orientifolds in
terms of a twelve-dimensional theory, where two dimensions are non-physical and used for mathematical
convenience. Thus compactifications are performed on eight-dimensional Calabi-Yau manifolds. In this
case, complex structure moduli describe also the positions of Type IIB D7-branes.

8See instead [100] for positive effects of backreaction on the inflationary potential.
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represents a severe downside of our construction, which we believe extends also to similar
realisations of axion monodromy inflation.

In chapter 3 we present a new model of LFI with two complex structure axions with
subplanckian periodicities, inspired by the proposal of Kim, Nilles and Peloso (KNP) [31]
(see also [106,107]), which we call F-term winding inflation. The framework is again that
of 4D SUGRA, but the aim is to analyse a different source of shift-symmetry breaking:
namely deviations from the LCS geometry, which manifest themselves as exponentially
suppressed corrections to the Kähler and superpotential. We use a flux-induced F-term
scalar potential to enforce a flat direction which effectively “winds” multiple times around
the compact field space of two axions and is thus in principle suitable to realise LFI. The
aforementioned instanton-like corrections generate a periodic potential, which realises
natural inflation [30] with a transplanckian effective decay constant. We point out that
our model is the first in realising a known loophole [68, 69] of the WGC in a setup
of string compactifications, thereby evading its constraints (see subsection 1.2.4 for a
description of the WGC and its loopholes). In particular, while our flat direction develops
a periodic potential with a transplanckian periodicity which violates the WGC, there exist
also superimposed oscillations with subplanckian periodicity. The latter are strongly
suppressed in our model but are crucial in ensuring that the mild form of the WGC is
satisfied.

Intermezzo: Axion Monodromy Inflation and the Weak Gravity
Conjecture
Chapter 4 features two of the main actors of Part I. We explore the relation between
the WGC and axion monodromy inflation. The latter is not constrained by the WGC
for axions and instantons: after all, there is really no true axion in this mechanism, as
its would-be shift symmetry is explicitly broken. It is thus the main aim of this chapter
to show how the generalised WGC can be applied to constrain models of monodromy.
We adopt a purely low-energy perspective (see [69, 108] for a previous, different point of
view): our axion monodromy setup is defined by a quadratic potential (generated by a
shift-symmetry breaking effect) with superimposed periodic “wiggles” as in (3), which
can induce the existence of local minima. Such a setup can be effectively described
in terms of domain walls separating the latter “vacua”. Exactly as particles can be
charged under gauge fields, domain walls can be charged under gauge potentials with
three antisymmetric indices (3-forms). Thus, we propose to constrain axion monodromy
inflation by applying the WGC to 3-form gauge fields and the associated domain walls.9
In particular, the magnetic WGC translates into an upper bound on the inflationary field
range, as desired. Nevertheless, we find that the maximal allowed field displacement can
easily accommodate transplanckian inflation.

The second part of chapter 4 aims at providing evidence for the generalised WGC.
We do so by presenting a geometric interpretation of the WGC in the framework of string
compactifications. In particular, we show that the electric WGC for particles and gauge
fields translates into a requirement on the geometry of the compactification manifold

9Notice however that these are not the monodromy domain walls described by [109, 110] (see
also [111]).
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(specifically, on the volumes of 3-cycles) and can thus be straightforwardly generalised to
generic (p+ 1)-form gauge theories with p-dimensional charged objects.

Part II: Reheating
Part II is devoted to the phenomenological consequences of string-motivated scenarios
for reheating. In chapter 5 we continue our exploration of axion monodromy inflation.
We describe a very exciting observational feature of this model (see [90–93,96] for other
possible signatures of axion monodromy inflation): namely, the possibility of radiating
gravitational waves after inflation. Such waves are very different in both frequency and
strength from the tensor modes that can be observed by studying the polarisation of the
CMB. In particular, they are potentially detectable by future ground- and space-based
interferometers.

The phenomenon responsible for the generation of such gravitational waves is a post-
inflationary phase decomposition of the Universe. Indeed, as we have already mentioned,
axion monodromy potentials can exhibit local minima for post-inflationary field values.10

Due to the expansion of the Universe, the inflaton gets eventually stuck in one of these
“vacua”, before reheating occurs. Crucially, due to field fluctuations, the inflaton can
end up in different minima in different regions of the same Hubble patch. This happens
for reasonable values of parameters. Such a “dynamical phase decomposition” is then
followed by a phase transition, after which only the vacuum of lowest energy survives.
The latter process occurs through collisions of cosmic bubbles containing the true vacuum:
this violent event sources gravitational radiation [114–116] (see also [117–123] for related
contexts in which the same phenomenon can occur). In this sense, the situation is
quite analogous to the electroweak phase transition in and beyond the SM (see for
instance [124]). In particular, also in our setup collisions may take place in a relativistic
bath because of the very large release of energy.

Chapter 6 investigates the production of very light fields belonging to dark sectors dur-
ing reheating. This so-called Dark Radiation (DR) can be indirectly detected in the CMB,
whose temperature power spectrum depends on the effective number of neutrino species
at CMB time, commonly denoted by Neff . Most recent observations are in very good
agreement with the SM prediction, Neff = 3.04± 0.18 (Planck TT,TE,EE+lowP+BAO,
68% C.L.) [2]. This observation is potentially very dangerous for setups of string com-
pactifications, which are generically characterised by a plethora of light fields belonging
to dark sectors. In order to concretely assess the impact of observations on ST, we
focus on the aforementioned Large Volume Scenario (LVS) [50, 51]. Crucially, the
latter exhibits at least one DR candidate: an essentially massless axion associated to
the largest cycle of the compactification manifold. This axion is copiously produced
during reheating, which happens through the decay of the so-called bulk modulus of the
compactification [125–128]. Thus Dark Radiation represents a serious problem for the
LVS.

Motivated by the severe constraints of DR on the LVS, we propose strategies to
boost the production of (MS)SM fields during reheating. In particular, we focus on

10The same can occur with other inflationary and non-inflationary mechanisms involving axions (see
e.g. [112,113]).



16

a setup where reheating occurs via the decay of massive gauge bosons belonging to a
dark sector and realising global flavour-like symmetries of the visible sector. In order
to avoid the observational constraint, non-minimal values of the couplings or of the
number of gauge bosons have to be considered. Our work can thus be considered as
a demonstration of the constraining power of cosmological observations on string model
building, in stark contrast with the common lore that ST scenarios cannot be tested by
current and forthcoming measurements.

∗ ∗ ∗

This thesis is based on the publications [129–133]. I maintained involvement in all aspects
of the preparations of these publications. Here I wish to point out my main contributions,
referring to the chapters of this thesis.

• Chapter 1 as well as appendix A are reviews of well-known results on string
compactifications and the Weak Gravity Conjecture.

• Chapter 2 is based on [130]. I have performed the quantitative analysis of back-
reaction of complex structure and Kähler moduli in CY orientifolds in a model of
F-term axion monodromy inflation, contained in sections 2.4 and 2.5. Other sections
of this chapter are summaries of parts of [130], included here for completeness.

• Chapter 3 is based on [131]. I am responsible for the description of the inflation-
ary winding trajectory as well as for the computation of the effective inflationary
potential, reported in section 3.2.2 and 3.3 respectively. Furthermore, I contributed
an interpretation of previous work in the context of the Weak Gravity Conjecture,
contained in section 3.4. Other aspects of [131] are summarised here for complete-
ness.

• Chapter 4 is based on [132]. My collaborators have provided important ideas on
the topics discussed in this publication, but all the computations contained in it as
well as the writing are the result of my own work.

• Chapter 5, appendices B and C are based on [133]. My collaborators have provided
important ideas on the topics discussed in this publication, but all the computations
contained in it as well as the writing are the result of my own work.

• Chapter 6 is based on [129]. The analysis of Dark Radiation in the Large Volume
Scenario with flavour branes is my main contribution to this publication and is
contained in section 6.4. Furthermore, all the plots contained in [129] and updated
for this thesis are the result of my own work. Other aspects of [129] are summarised
here for completeness.



Chapter 1

Preliminaries

In Part I of this thesis we will discuss inflationary scenarios in the framework
of string compactifications. In this chapter we thus aim at introducing the
essential ingredients of Type IIB String Theory (ST) and especially of its
compactifications on Calabi-Yau manifolds. Furthermore, we introduce the
Weak Gravity Conjecture (WGC) and discuss its applications to models of
axion inflation, to prepare the reader for the material presented in chapters 3
and 4. The content of this chapter is by no means original, as its aim is
to collect well-known results that are relevant to set the stage for the work
presented in this thesis. We will often use the language of differential forms
and p-form gauge theories, which we briefly review in Appendix A. We will
also often set MP ≡

√
1

8πGN ≡ 1.
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18 1. Preliminaries

1.1 String compactifications

An excellent presentation of the basic concepts of string theory and string compactifica-
tions for the study of inflationary models is provided in [134], which we follow closely in
some parts of this section. Further references that we follow closely here are [38,135,136].
In particular, we adopt the standard notation of [38, 135,136], which differs from [134].

1.1.1 Type IIB Effective Action

As discussed in the introduction, String Theory postulates that the fundamental con-
stituents of Nature are one-dimensional strings, instead of point-like particles. Quan-
tisation of the string leads to a spectrum of massless modes and a tower of massive
excitations. The characteristic energy scale of a given massive mode is the string scale
Ms = 1/ls. We also often express the string scale in terms of the Regge slope (α′)2 ≡ 2πls.

At energies below Ms we can then consider the effective field theory of the massless
string modes: as usual, higher order operators in this theory are induced by the UV de-
grees of freedom, i.e. by the string massive modes, and are therefore suppressed by powers
of Ms. In 10D there are five kinds of supersymmetric string theories. Correspondingly,
five different effective field theories in 10D can be obtained by integrating out the massive
string modes. Crucially, these effective theories are nothing else than well-known 10D
supergravities (SUGRA). The most important ones for inflationary model building are
known as Type IIA and Type IIB SUGRA and have N = 2 supercharges. In particular,
in this chapter we focus on the Type IIB theory, since it is the one that is relevant to
understand the content of this thesis.

The massless bosonic spectrum of Type IIB ST splits into two branches. On one hand,
the so-called NS-NS sector contains the 10D metric GMN , the antisymmetric 2-form BMN

and the dilaton Φ. The string coupling gs is defined as: gs = e〈Φ〉. As its name suggests,
gs controls the strength of string interactions; in particular loop amplitudes are obviously
accompanied by higher power of the string coupling. For the time being we will assume
gs � 1, i.e. we will work at weak coupling. On the other hand, the R-R sector contains
the 10D p-form potentials (see section A.4 for a review of p-form gauge theories). In
Type IIB only potentials with p even are present, i.e. C0, C2, C4. We will not discuss the
fermionic sector, which contains two gravitini and two dilatini. The Type IIB bosonic
action is:

SIIB = 1
2κ2

10

∫
d10x
√
−G

[
e−2Φ

(
R + 4(∇Φ)2 − 1

2 |H3|2
)
− 1

2 |F1|2 −
1
2 |F3|2 −

1
4 |F5|2

]
− 1

4κ2
10

∫
C4 ∧H3 ∧ F3, (1.1)

where κ2
10 is the 10D Newton constant, related to α′ by

κ2
10 = 1

4π (4πα′)4. (1.2)
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The gauge invariant field strengths Fp+1, H3 in (1.1) are defined as:

F1 = dC0, F3 = dC2 − C0H3 (1.3)

F5 = dC4 −
1
2C2 ∧H3 + 1

2B2 ∧ dC2, H3 = dB2. (1.4)

A further self-duality constraint on F5 has to be imposed at the level of the equations
of motion, i.e. ?10F5 = F5 (see Appendix A.4).1 The action (1.1) is presented in the
so-called string frame: the Ricci scalar is thus explicitly coupled to the dilaton. In order
to decouple them, one can perform a rescaling of the 10D metric: G̃MN = e−Φ/2GMN and
obtain the action in the so-called Einstein frame.

The Type IIB action (1.1) enjoys an SL(2,R) invariance. In order to make it manifest,
it is convenient to define the axio-dilaton S and the 3-form flux G3

S = C0 + ie−Φ, G3 = F3 − ie−ΦH3. (1.5)

The type IIB action in the Einstein frame, in terms of the field S and G3, reads:

SIIB = 1
2κ2

10

∫
d10x
√
−G

[
R− ∂MS∂

M S̄

2(ImS)2 −
1
2
|G3|2

ImS −
1
4 |F5|2

]

+ 1
8iκ2

10

∫ 1
ImSC4 ∧G3 ∧ Ḡ3, (1.6)

and is thus manifestly invariant under the SL(2,R) transformations:

S → aS + b

cS + d
,

(
C2
B2

)
→
(
a b
c d

)(
C2
B2

)
, (1.7)

with ad− bc = 1 and a, b, c, d ∈ R.

1.1.2 D-brane action
ST is not only a theory of strings, but also of higher-dimensional dynamical surfaces,
known as D-branes. In fact, these objects are crucial in describing the dynamics of the
massless modes of open strings. In particular, very much like the motion of particles
is characterised by a worldline (i.e. the one-dimensional curve describing the motion of
the particle as a function of its proper time), Dp-branes are characterised by a (p+1)-
dimensional worldvolume Σp+1. The subject of D-branes is enormous. Here we will only
recall the action of these objects, which is a direct non-linear generalisation of the action
of particles coupled to gauge fields in 4D (see Appendix A.4). An excellent introduction
to D-branes is provided in [139].

The action of Dp-branes is made by two terms: the Dirac-Born-Infeld (DBI) action
describes the coupling of the open string modes to the NS-NS sector, while the Chern-
Simons (CS) action describes the coupling to the R-R sector. Let us then consider

1As explained in Appendix A.4, the field strength F7, F9 are dual to F3, F1 respectively and are thus
not included in (1.1). However, there exists another formulation of the Type IIB SUGRA, known as
democratic, where all the p-form field strengths (with p odd) are included [137, 138], together with the
corresponding duality constraints.
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a Dp-brane spanning its (p+1)-dimensional worldvolume and let us choose coordinates
ξα, α = 0, · · · , p on Σp+1. In terms of 10D coordinates, the worldvolume Σp+1 is described
by the embedding functions XM ≡ XM(ξ),M = 0, . . . , 9. The brane action in the string
frame is then given by

SDp−brane = SDBI + SCS

SDBI = −Tp
∫

Σ
dp+1ξe−Φ(X)

√
−det (gαβ(X) + 2πα′Fαβ(X)) (1.8)

SCS = µp

∫
Σ
Tr
(
e2πα′F

)
∧
∑
n

Cn. (1.9)

Here gαβ is the induced metric on the worldvolume Σp+1, which can be explicitly computed
by pulling-back the 10D metric GMN on Σp+1, i.e. gαβ = GMN∂αX

M∂βX
N . Furthermore,

2πα′Fαβ = B2 + 2πα′F2, where F2 is the field strength of the worldvolume gauge theory
(thus, it is not one of the bulk fluxes). All the forms appearing in (1.8) are evaluated on
the brane worldvolume, meaning that they are obtained by pulling back the corresponding
10D forms on Σp+1. Notice that the sum over n in the CS action runs over even values
of n in the Type IIB theory and such that the total integrand is a (p + 1)-form. The
Dp-brane tension and charge coincide in the string frame, i.e. Tp = µp, and their value is
related to the string scale by

Tp = µp = 2πMp+1
s . (1.10)

The DBI action provides a coupling between the D-brane and the 10D metric tensor.
Crucially, such interactions, as well as the one described by the CS action, are plagued
by divergences, which are referred to as tadpoles. They are related to the radiation of
quanta from the vacuum. In order for the theory to be consistent, these divergences
have to be absent. This can be achieved by engineering tadpole cancellations, i.e. by
including objects which induce the same tadpole amplitude, but with opposite sign. In
this specific case, the gravitational tadpole associated to the positive tension of a Dp-brane
can be cancelled by an orientifold plane (O-plane), i.e. a non dynamical hypersurface with
negative tension. The DBI action of an Op-plane is similar to (1.8) (without the coupling
to F) with its tension being TOp = −2p−4Tp. We will comment more on these objects
when describing compactification on CY orientifolds, see below.

1.1.3 Compactification to 4D
The supergravities discussed in the previous subsections are quantum field theories de-
fined on a 10D spacetime M10. In order to extract 4D physics we need to dimensionally
reduce the actions (1.1), (1.8) and (1.9). This can be done by considering the following
compactification ansatz:

M10 =M4 ×M6, (1.11)

whereM4 is the ordinary four-dimensional spacetime andM6 is a compact six-dimensional
Riemannian manifold. Given this product structure, the 10D metric GMN splits into a
4D metric onM4 and a 6D metric on M6. A natural ansatz for the metric would then
be

GMNdX
MdXN = ηµνdx

µdxν + g̃mndy
mdyn, (1.12)
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where ym,m = 1, . . . , 6 are coordinates on M6. This is a solution of the 10D Einstein
equations in the absence of sources if and only if g̃mn is Ricci-flat, meaning that R̃mn = 0.
This motivates the interest in Calabi-Yau (CY) manifolds, which are precisely compact
Kähler manifolds admitting a Ricci-flat metric (see section A.3 for a review of complex
manifolds). However, we are generically interested in solutions of the 10D Einstein
equations in the presence of branes and orientifold planes, which act as sources. We
will thus consider a more general ansatz with warping:

GMNdX
MdXN = e2A(y)gµνdx

µdxν + e−2A(y)g̃mndy
mdyn, (1.13)

where gµν is the metric of a maximally symmetric 4D spacetime (e.g. de Sitter spacetime
for the study of inflationary models) and A(y) is a warping factor. Crucially, Einstein
equations in the presence of sources do not require g̃mn to be Ricci-flat. Thus, it appears
that the motivation for CY manifolds is lost. Nevertheless, compactifications where M6
is a CY 3-folds are the most studied and the best-understood. This is due to the fact
that CY manifolds preserve a certain amount of the original 10D N = 2 supersymmetry
(due to the fact that their holonomy group is SU(m), where m is the complex dimension
of the compact manifold). In turn, this is important both at the theoretical level, as
the resulting 4D effective field theory enjoys the important and simplifying structure of
a supergravity theory, and at the phenomenological level, as N = 1 supersymmetry
may help in solving the electroweak hierarchy problem. In this thesis, we shall be
concerned only with compactification on CY manifolds, whose basic concepts are reviewed
in Appendix A.3.

Dimensional Reduction

The strategy to obtain an effective 4D theory now proceeds through dimensional reduction
of the actions (1.1), (1.8) and (1.9). For definiteness, let us illustrate this procedure by
focusing on the effective action for 4D scalar fields.

Consider a generic p-form Ap defined onM10 =M4 ×M6. We make the ansatz

Ap = ai(x)ωp,i(y), (1.14)

where ai(x) are 4D scalar fields and {ωp,i(y), i = 0, . . . , bp} is an harmonic basis of the
cohomology group Hp(M6). As explained in Appendix A.2, Hodge’s theorem relates the
basis {ωp,i(y)} to a basis {Σi

p} of the homology group Hp(M6), such that∫
Σip
ωp,j = δij. (1.15)

The next step is to integrate (1.1) and (1.8) on M6. Some integrals can be performed
explicitly, by means of (1.14) and (1.15), others are left implicit at this stage. For
instance, the kinetic term for C2 = ci ∧ ω2,i, i = 0, . . . , b2 becomes (we set the warping
factor A(y) = 0 for convenience):

S ⊃ − 1
2κ2

10

∫
d10x
√
−G

(1
2 |dC2|2

)
= −1

2
1

2κ2
10

∫
d4x
√
−gkij(∂µci∂µcj), (1.16)
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where kij =
∫
M6
ωi ∧ ?6ω

j is a metric on Hp. Notice that dimensional reduction of the
Einstein-Hilbert term defines the 4D reduced Planck mass in terms of α′ and gs, as follows:

M2
P = VM6

κ2
10g

2
s

= 2VM6

(2π)7α′4g2
s

, (1.17)

where VM6 is the volume of M6.
The same strategy that led to (1.16) can be followed to obtain vector and more general

n-form fields an in 4D. In other words, one starts from the ansatz Ap = ain∧ωi,p−n(y) and
integrates the corresponding terms in the action on M6. The reader who is interested in
a concrete computation for this latter case can find one in section 4.3.

Moduli of CY compactifications

String compactifications are characterised by moduli, i.e. massless scalar fields which arise
from dimensional reduction of: p-forms in the the 10D theory, positions of D-branes and
deformations of the hermitian metric. In this subsection we focus on the latter, following
closely the review given in [38] (see [60] for the original presentation). So-called Kähler
and complex structure moduli are precisely associated to fluctuations δg of the CY metric
which preserve the Ricci-flatness of g, i.e. such that R(g + δg) = 0. The latter equation
translates into a differential equation for δg, whose solutions are associated to (1, 1)- and
(2, 1)-forms on the CY M6.

As their name suggests, Kähler moduli arise from those fluctuations of the CY metric
that also deform the (1, 1) Kähler form J = igij̄dy

i ∧ dyj. There are therefore h1,1 real
scalar fields vα defined by

− iJij̄ = −ivα(x)(ωα(y))ij̄, (1.18)
where ωα, α = 1, . . . , h1,1 is a basis of H1,1 (and of H2,2). Similarly, by expanding B2 in
the basis ωα of 2-forms, we obtain h1,1 further scalar fields bα. The Kähler moduli are
the complex scalar fields Tα defined by

Tα = vα + ibα. (1.19)

As we will discuss after introducing orientifolds, the real part of a Kähler modulus is
associated to the volume of the corresponding 4(2)-cycle.

Complex structure moduli are instead associated to fluctuations of the metric which
also deform the complex structure J of M6. In particular, they are h2,1 complex scalar
fields zI , I = 1, . . . , h2,1 defined by

δgīj̄ = ic zI(x)(χI)kl̄iΩ̄kl
j̄ , (1.20)

where c is a prefactor which depends on the normalisation of the holomorphic 3-form
Ω of M6. Furthermore χI , I = 1, . . . , h2,1 is a basis of the cohomology group H2,1(M6).
Complex structure moduli are the crucial ingredient of the inflationary models discussed
in chapters 2, 3.

The moduli space M of geometric deformations of a CY manifold can be locally
written asM =Mcs×Mk, whereMcs is the complex structure moduli space andMk is
the Kähler moduli space. We now wish to introduce metrics on these spaces. Crucially,
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these spaces are both Kähler manifolds. A general result is that the hermitian metric of a
Kähler manifold can be locally derived from a scalar function, which is referred to as the
Kähler potential. In the next subsection we will see that this function indeed corresponds
to the Kähler potential of a N = 1 supergravity theory.

Let us then start with complex structure moduli. It can be shown that the metric
and Kähler potential onMcs are given by [60]

GIJ̄ = ∂zI∂z̄J̄Kcs, Kcs = − ln
[
i
∫
M6

Ω ∧ Ω̄
]
, (1.21)

where Ω is the holomorphic 3-form on M6. On H3 there exists a real symplectic basis
(αI , βL) of harmonic 3-forms, meaning that∫

M6
αI ∧ βL = δLI , (1.22)

while all the other wedge products vanish. Correspondingly, there exists a dual basis of
3-cycles (AI , BL), such that ∫

AL
αI = −

∫
BI
βL = δLI . (1.23)

We can thus decompose Ω as follows:

Ω(z) = ZIαI −FLβL, (1.24)

where ZI ,FL are holomorphic functions, knowns as periods of M6. Therefore the Kähler
potential can be written as

Kcs = − ln
[
i(Z̄IFI − ZIF̄I)

]
. (1.25)

In chapters 2 and 3 we will also use the so-called period vector whose components Πi are
defined by

Πi ≡
∫

Σi3
Ω =

∫
M6
σi ∧ Ω, (1.26)

where Σi
3 = (AI , BL), i = 0, . . . , h3,0 is a basis of 3-cycles of M6 and σi = (αI , βL) is

the dual basis of 3-forms on M6. In terms of the periods defined in (1.24), we have
Π = (FL, ZI).

Let us now turn to Kähler moduli and define the intersection numbers

καβγ =
∫
M6
ωα ∧ ωβ ∧ ωγ, κ = καβγv

αvβvγ. (1.27)

It can then be shown that the metric and Kähler potential onMk are given by

Gαβ = ∂sα∂sβKk (1.28)

Kk = − ln
[
i

6καβγ(s− s̄
α)(s− s̄β)(s− s̄γ)

]
= − ln 4

3κ. (1.29)

Finally, let us briefly discuss an important duality between Kähler and complex structure
moduli. Mirror symmetry (see [61]) and refs. therein) states that for every CY M with
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Hodge numbers h1,1 and h2,1 there exist a dual CY M̃ with Hodge numbers h̃1,1 = h2,1

and h̃2,1 = h1,1. It is conjectured that this exchange of Hodge numbers extends to the
entire geometric moduli spaces of M and M̃ . In particular, mirror symmetry conjectures
that the Kähler moduli of M correspond to the complex structure moduli of M̃ and that
the complex structure moduli of M correspond to the Kähler moduli of M̃ . Thus, the
Kähler potential for complex structure moduli of M6 can be obtained in terms of the
Kähler moduli Kähler potential on the mirror dual M̃6. In terms of effective theories,
mirror symmetry conjectures a duality between Type IIB ST compactified on M and
Type IIA ST compactified on M̃ .

Calabi-Yau orientifolds

Compactifications of type IIB N = 2 10D SUGRA on CY manifolds lead to 4D N = 2
SUGRAs. Such theories do not have fermions in chiral representations of the gauge
groups, which is a crucial feature of the SM. Thus, they are not phenomenologically
appealing. However, N = 1 SUGRA IN 4D can be achieved if M6 is a CY orientifold,
i.e. by modding out the spectrum of the compactified theory by a certain symmetry
transformation. Namely, for type IIB, we consider the following two options for such
transformations:

T 1 = (−1)FLΩpσ, T 2 = Ωpσ, (1.30)

Here FL is the space-time number of left-moving fermions and Ωp is the parity trans-
formation on the string world-sheet theory. While the latter concepts have not been
reviewed in this chapter (see e.g. [136] for details), for our purposes only the action of
these symmetries on the type IIB bosonic spectrum is important. In particular, fields are
either even or odd under (−1)FL and Ωp, as follows

Ωp φ, g, C2 are even C0, B2, C4 are odd (1.31)
(−1)FL φ, g, B2 are even C0, C2, C4 are odd (1.32)

Furthermore, σ is an isometric and holomorphic involution (meaning σ2 = 1) acting
solely on M6. The Kähler form J is left invariant by σ. The two possibilities in (1.30)
arise from the sign of the holomorphic 3-form under σ, i.e. P (σ)Ω = −Ω or P (σ)Ω = +Ω
respectively, where P denotes the pull-back of σ.

The transformations (1.30) are crucially related to the O(rientifold)-planes allowed in
the 10D theory. Those objects are the fix-point sets of σ. In particular, the transformation
T 1 correspond to compactifications with O3 and O7 planes, while T 2 to compactifications
with O5 and O9 planes. Due to the necessity of tadpole cancellation, only D3/D7
(D5/D9) branes are allowed in a compactification with O3/O7 (O5/O9) planes. Both
compactifications lead separately to 4D N = 1 SUGRA, but the simultaneous presence
of e.g. O3 (D3) and O5 (D5) planes generically breaks supersymmetry completely.

Another important aspects of orientifolds for the content of this thesis is the action
of the involution on the cohomology groups H(p,q). The latter split under the action of
P (σ) (since the latter is holomorphic, it respects Hodge decomposition), i.e. H(p,q) =
H

(p,q)
+ ⊕H(p,q)

− , where ± denote forms that are even or odd under σ respectively. One can
then define the orientifold Hodge numbers as h(p,q)

± as the dimensions ofH(p,q)
± respectively.
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Crucially, only those fields that are left invariant by T 1 or T 2 survive in the low-energy
spectrum. Here, we report only the scalar spectrum of Type IIB compactifications with
O3/O7 planes (see e.g. [38] and refs. therein for details):

• Axio-dilaton: C0 and Φ combine in a complex 4D scalar

S = C0 + ie−Φ. (1.33)

• p-form axions:

→ 2h1,1
− real scalars bα, cα associated to the decomposition ofB2 = bα(x)ωα(y), C2 =

cα(x)ωα(y), α = 1, . . . , h1,1
− . They can be combined in complex fields

Gα ≡ cα − Sbα. (1.34)

→ h
(1,1)
+ real scalars ϑi associated to the decomposition of

C4 = ϑi(x)ω̃i(y), i = 1, . . . , h2,2
+ . (1.35)

• Kähler moduli: only the moduli associated to H1,1
+ survive in the 4D theory.

Therefore, there are h1,1
+ real Kähler moduli ti in 4D. Their correct complexification

(such that they can be interpreted as Kähler coordinates, see e.g. [38]) is not
straightforward and involves the fields ϑi and Gα as follows:

Ti ≡
1
2κijkt

jtk + iϑi + 1
4e

ΦκiαβG
α(G− Ḡ)β. (1.36)

• Complex structure moduli: only the moduli associated to H2,1
− survive. There-

fore, there are h2,1
− complex structure moduli in 4D zI , I = 1, . . . , h2,1

− .

In total, there are therefore h2,1
− + h1,1

+ + h1,1
− + 1 moduli in the 4D spectrum.

Before moving to the 4D effective action, we would like to make two important
comments. Firstly, notice that we have called axions the scalar fields descending from
the p-form potentials B2, C2 and C4. In fact, also C0 should be considered an axion. This
naming is justified: fields descending from dimensional reduction of p-forms on q-cycles
enjoy the remnants of the higher-dimensional gauge invariance. In this specific case, q = p
and the leftover invariance is simply a continuous shift symmetry, e.g. bα → bα+c. It turns
out that this symmetry remains valid at all orders in α′ and gs [140], but it is broken by
non-perturbative effects to a familiar axionic discrete shift symmetry, e.g. bα → bα+2πf ,
where f is the axion decay constant. The latter can be determined in terms of α′ and gs
by dimensional reduction. However, in this thesis we shall not be concerned with axions
descending from p-forms, therefore we do not discuss them any longer (see e.g. [134] for
a detailed discussion).

Secondly, let us discuss the geometric interpretation of Kähler moduli. Thanks to de
Rham’s theorem (see Appendix A.2) we can associate to every p-form on M6 a dual p-
cycle. On a six-dimensional manifold 2- and 4-cycles are dual, in the sense that H2(M6) '
H4(M6). Thus a p-form can be associated to a p-cycle, or equivalently to a (d− p)-cycle.
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In particular, the real part of the Kähler modulus Ti has the interpretation of describing
the volume of the 4-cycle Σi which is dual to ωi of (1.35). We will thus often refer to the
real part of Ti as a 4-cycle volume modulus and denote it by τi. The latter is then related
to the 2-cycle volumes ti by means of

τi = 1
2κijkt

jtk, (1.37)

where κijk are the triple intersection numbers defined in (1.27).

4D Effective Theory

We are now ready to describe the effective theories resulting from compactifications of
10D Type IIB ST on CY orientifolds with O3/O7 planes. In the absence of further
sources of supersymmetry breaking, these theories are 4D N = 1 supergravities. Their
scalar spectrum was given in the previous subsection. Additionally, there is a metric field
gµν and gauge potentials Aaµ. The full effective action of type IIB CY orientifolds was
derived in [141] (see also [38] for a detailed review).

The Lagrangian of a 4D SUGRA theory is expressed in terms of three functions of
the moduli fields, which we collectively denote by ϕA: the Kähler potential K(ϕA, ϕ̄Ā),
the holomorphic superpotential W (ϕA) and the holomorphic gauge kinetic functions fab.
Using subscripts to denote derivatives with respect to fields, i.e. KA = ∂ϕAK and ignoring
D-terms, we have:

L ⊃ −KAB̄D
µϕADµϕ̄

Ā + VF + 1
2RefabF

a
µνF

µν,b + 1
2ImfabF

a
µνF̃

µν,b, (1.38)

where Dµ here denotes the gauge covariant derivative, F a
µν is the field strength of Aaµ,

F̃µν ≡ 1
2εµνγδF

γδ and VF is the F-term scalar potential, given by

VF = eK(KAB̄DAWDB̄W̄ − 3|W |2), (1.39)

where DAW = ∂AW + KAW is the Kähler covariant derivative. As anticipated in
the previous subsections, the Kähler potential appearing in (1.38) is related to the
“geometric” Kähler potentials of (1.21), (1.28). In particular, we have

K = Kcs(z, z̄) +KQ(S, T,G) (1.40)

Kcs = − ln
[
−i
∫
Y

Ω ∧ Ω̄
]

(1.41)

KQ = − ln
[
−i(S − S̄)

]
− 2 ln [Vol(S, T,G)] , (1.42)

where Vol = 1
6e
− 3

2 Φκαβγv
αvβvγ is the volume ofM6. Unfortunately the latter is in general

only implicitly defined as a function of S, T and G. For the simple case of only one real
Kähler modulus v, we have KQ = −3 ln(T + T̄ ). Notice that, in terms of the period
vector defined in (1.26) the complex structure moduli Kähler potential can be written as
(here we follow [142])

Kcs = − ln
[
−iΠ† · Σ · Π

]
, (1.43)
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where Π† is the hermitian conjugate of Π and

Σ =
(

0 1

−1 0

)
. (1.44)

We shall make use of (1.43) in chap. 2.
A comment is in order before moving to the next section. The aforementioned mirror

symmetry relates complex structure moduli descending from a Type IIB compactification
onM6 to Kähler moduli descending from a Type IIA compactification on the mirror dual
CY M̃6. Thus, while we do not discuss the Type IIA theory and its compactification in
this chapter, it is important to report the associated Kähler moduli Kähler potential:

KIIA = − ln
[
i

6 κ̃αβγ(t̃−
¯̃t)α(t̃− ¯̃t)β(t̃− ¯̃t)γ

]
, (1.45)

where t̃α, α = 1, . . . , h̃1,1
− are the Kähler moduli of M̃6.

1.1.4 Flux compactifications
In the previous section we described how moduli arise from a compactification of Type
IIB ST on Calabi-Yau 3-folds. In particular, we derived the 4D effective theory, which
is a N = 1 SUGRA. From (1.38), it is clear that the couplings of such effective theory
are moduli-dependent functions. Therefore, in order to obtain physical predictions, we
need to stabilise them, i.e. to give them a VEV. For inflationary purposes, it is moreover
important that moduli acquire and mantain a positive mass-squared during inflation,
otherwise dangerous instabilities arise in the theory. The aim of this section is thus to
review the strategy and the main results on moduli stabilisation in type IIB orientifolds.

Before moving to the details, let us remind the reader that fluxes Fp+1 = dCp,
satisfying the Bianchi identity dF = 0, obey certain quantisation conditions. Namely,
the flux through a (p+ 1)-dimensional surface Sp+1 without boundary is quantised. Our
convention is that

1
(2π)pα′p

∫
Sp+1

Fp+1 ∈ Z. (1.46)

Stabilisation of complex structure moduli

Let us begin by describing how the axio-dilaton and complex structure moduli can be
stabilised at the classical supergravity level, by solving 10D Einstein equations, following
[48]. We will be concerned with compactifications of Type IIB ST on CY 3-folds with
O3/O7 planes, with background 3-form fluxes F3 and H3. Namely, we add fluxes which
are not induced by local sources, such as D-branes, but rather live in the “bulk” of the
compactification. We anticipate that their effect for the 4D effective SUGRA is to induce
the so-called Gukov-Vafa-Witten (GVW) superpotential:

W (S, zI) =
∫
M6

Ω ∧G3, (1.47)

where G3 = F3−SH3. Crucially, since G3 and Ω depend on S and the complex structure
moduli, the GVW superpotential generates a scalar potential for these fields, which can
thus be stabilised.
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At leading order in α′ and gs, the action of the 10D theory is the one given in
subsection 1.1.1. We now consider warped compactifications with metric ansatz

GMNdX
MdXN = e2A(y)ηµνdx

µdxν + e−2A(y)g̃mndy
mdyn. (1.48)

Poincaré invariance in 4D requires G3 to have components solely on M6. The self-dual
flux F5 is instead taken to be

F5 = (1 + ?10)dα(y) ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3. (1.49)
The next step is to look for solutions of the 10D Einstein equations and the 10D Bianchi
identity for F5. Here we report only the results of such analysis.

First of all, the integrated (over M6) Bianchi identity for F5 (i.e. Gauss’ law) leads to
the tadpole-cancellation condition:

1
2κ2

10T3

∫
M6

H3 ∧ F3 +Qloc
3 = 0, (1.50)

where T3 and Q3 are respectively the tension and the total charge associated to D3-branes
which act as local sources.

Secondly, the 10D Einstein equations require the presence of objects with negative
tension if G3 is not vanishing. This is yet another piece of evidence for the presence of
O-planes, in particular O3 and O7 planes. Furthermore, by combining Einstein equations
with the Bianchi identity for F5 and using (1.49), one finds the following conditions on
G3, α(y) and A(y), assuming that only O3/O7 planes are present:

?6 G3 = iG3, e4A(y) = α. (1.51)
Therefore, G3 is imaginary self dual (ISD). In what follows we shall therefore focus only
on so-called ISD solutions with O3/O7 planes (and D3/D7 branes).

Finally, the stabilising potential for the complex structure moduli and the axio-dilaton
is just the F-term scalar potential, computed according to (1.39) and by means of (1.47)
and (1.40). In particular, the SUSY VEVs of these moduli are determined by imposing
the F-term conditions DAW = 0, where A runs over all moduli Ti, Gα, S, z

I . In chapters
2, 3 we will compute the F-term scalar potential for certain inflationary models using the
GVW superpotential (1.47). Notice in particular that, after imposing flux quantisation
on F3 and H3 according to (1.46), the superpotential reads

W =
∫
M6

(F3 − SH3) ∧ Ω = (NF − SNH)iΠi, (1.52)

where NF , NH ∈ Z are the so-called flux numbers and Πi is the period vector, defined via
the decomposition of Ω in terms of the symplectic basis of H3(M6), see (1.26).

Let us understand why Kähler moduli are not stabilised by the F-term potential
(1.39). The Kähler moduli Kähler potential (1.40) is of no-scale type, meaning that

KAB̄∂AK∂B̄K = 3, (1.53)
where A,B run over T i, Gα. In this case, since the superpotential (1.47) does not depend
on the Kähler moduli, the F-term scalar potential (1.39) reduces to

VF = eKKIJ̄DIWDJ̄W̄ , (1.54)
where I, J run over the complex structure moduli zI . Thus there is simply no potential
for Kähler moduli at leading order in α′ and gs.



1.1. String compactifications 29

Generalisation to F-theory

So far we have described compactifications of Type IIB String Theory on CY orientifolds
with D3/D7 branes and O3/O7 planes. We have done so under the implicit assumption
that the backreaction of the latter objects on the geometry of the background can be
neglected. In particular, this implies that the axio-dilaton S does not vary strongly
across the manifold. However, it turns out that this assumption is not fully justified,
in that e.g. D7 brane and O7 planes do induce a non-negligible backreaction on the
background geometry. In particular, close to a D7 brane the string coupling gs diverges
(see e.g. [143] and refs therein).

Thus, a study of compactifications with varying axio-dilaton profile is required. This
can be very elegantly addressed in F-theory [99]. In this framework, the axio-dilaton
of Type IIB is interpreted as the complex structure modulus of a fictitious (i.e. non-
physical) torus. Therefore, F-theory is a twelve-dimensional theory, without D-branes.
In particular, brane position moduli of Type IIB belong to the complex structure moduli
sector of F-theory on Calabi-Yau fourfolds (i.e. eight-dimensional manifolds). The weak
coupling limit of F-theory reproduces Type IIB ST, and can be obtained by compactifying
on elliptic fibrations.

A presentation of F-theory goes beyond the aim of this preliminary chapter. Here we
limit ourselves to provide formulae which are relevant for moduli stabilisation, since they
will be used in chapter 2. The reader who is interested in understanding the subject can
consult the excellent introductions given in [144] and [143].

F-theory exhibits a unique 4-form “bulk” flux G4. Complex structure moduli can be
stabilised by means of the generalised Gukov-Vafa-Witten superpotential

W4 =
∫
X
G4 ∧ Ω4, (1.55)

where Ω4 is the holomorphic 4-form on the fourfold X. The period vector Πα of the
fourfold can be defined in analogy with (1.26). Thus, after quantisation of G4, the
superpotential can be written as

W4 = NαΠα. (1.56)
Similarly, the complex structure moduli Kähler potential can be obtained by direct
generalisation of (1.43)

Kcs = − ln
[
−i
∫
X

Ω4 ∧ Ω4

]
= − ln

(
Πα(z, u)Qαβ̄Πβ(z̄, ū)

)
, (1.57)

where Qαβ̄ is an intersection matrix which generalises the matrix Σ defined in (1.44). We
shall make use of these formulae in chapter 2.

Stabilisation of Kähler moduli

Let us now continue on moduli stabilisation in Type IIB CY orientifolds. The no-scale
structure of the Kähler potential can be broken at higher order in α′ and/or gs or by
non-perturbative contributions to the Kähler potential. Here we only give a lightning
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review of those terms which are important for the content of this thesis. More details
can be found in any review on moduli stabilisation, e.g. [134,145]. The most well-known
and studied options are:

• Perturbative corrections to K: in particular those induced by α′ curvature
corrections in 10D. Taking them into account, the Kähler moduli Kähler potential
becomes [146]

K = −2 ln
[
V + ξ

2g3/2
s

]
, (1.58)

where ξ = −χ(M6)ζ(3)
2(2π)3 and ζ(3) ≈ 1.202.

• Non-perturbative corrections to K: in particular those related to

1 Gaugino condensation, induced by e.g. stacks of Nc D7-branes wrapping
a four cycle (see [147]). The gauge theory living on the branes can induce
a SUSY-QCD-like non-perturbative contribution to the superpotential, of the
form: Wnp1 = A(zI , S)e−

2πT
Nc , where T is the Kähler modulus corresponding to

the volume of the four cycle wrapped by the branes.
2 Euclidean D3-branes (E3-branes), which are generalisations of 4D instan-
tons (see [148]). By wrapping a given four cycle, they induce a superpotential
of the form: W = A(zI , S)e−2πT , where T is the Kähler modulus corresponding
to the volume of the four cycle wrapped by the E3-brane.

Both terms have the same dependence on T .

Stabilisation of Kähler moduli, among which the modulus related to the overall volume
of the CY, is a notoriously difficult task. There currently exists two main proposals to
achieve it: the so-called KKLT [49] setup uses a standard flux superpotential with the
addition of non-perturbative corrections, as described above. Since the latter are small, it
requires a tuning of the leading order superpotential, such that the two contributions are
comparable and a SUSY AdS minimum exists. The Large Volume Scenario (LVS) [50,51]
(see also [142]) uses instead the interplay between non-perturbative corrections to the
superpotential and α′-corrections to the Kähler potential to achieve a non-SUSY AdS
minimum at large volume of the compactification manifold. In this thesis we shall only
be concerned with the latter setup, of which we now review the basic formulae.

The Large Volume Scenario (LVS)

Here we follow the review of the LVS given in [149]. The strategy to stabilise Kähler
moduli á la LVS is as follows. First of all, bulk fluxes fix the complex structure moduli
and the dilaton, via the F-term scalar potential (1.39). For the time being, we assume
that this moduli are stabilised at a high scale, such that they can be integrated out,
yielding a constant flux superpotential W0.2 Secondly, non-perturbative corrections to

2However, in chapter 2 we will see that during inflation this assumption may not be completely valid,
i.e. complex structure moduli may be displaced from their value at the minimum.
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the superpotential are included. As explained above, they can descend from E3 branes
wrapping internal four-cycles of M6. Therefore, the superpotential in the LVS is given by

W = W0 +
∑
i

Ape
−aiTi , (1.59)

where Ti, i = 1, . . . , h1,1
+ are the Kähler moduli describing the volume of the associated

four-cycles. Furthermore, the Kähler potential in the LVS contains α′-corrections of the
type mentioned above (1.58), i.e. it is given by

K = Kcs − ln
[
−i(S − S̄)

]
− 2 ln

(
V + ξ

2g3/2
s

)
. (1.60)

As explained above, both non-perturbative and α′-corrections induce a potential for
Kähler moduli. In particular, it can be shown that (1.60) induces a term ∼ 1/V3, while
(1.59) induces a correction ∼ e−aiTi/V2. A minimum of the F-term potential can be found
if those terms are comparable, which can happen if the volume of one of the four-cycles
is much smaller than the overall volume of the CY. We assume that this is the case,
and denote by Ts the corresponding Kähler modulus, and by τs ≡ (1/2)(Ts + T̄s)� τi 6=s
its real part, describing the volume of the small cycle. We also assume that the only
non-vanishing intersection number involving Ts is its own triple-intersection κsss. In this
case, the volume V takes the form V = Ṽ − cτ 3/2

s , where Ṽ does not depend on τs and
c is a prefactor which depends on κsss. In particular, the compactification manifold is
usually taken to be a so-called Swiss-Cheese Calabi-Yau with a volume given by

V = η

(
τb −

∑
i

γiτ
3/2
s,i

)
, (1.61)

where τs are small-cycle volume moduli and τb is the so-called “bulk”-volume modulus,
such that at the minimum V ≈ ητ

3/2
b . In chapter 6 we will also consider compactification

manifolds of slightly different type.
The F-term scalar potential derived from (1.59) and (1.60) is then given by

VF (V , τs) = Vnp,1 + Vnp,2 + Vα′

= V0,F

(
α
√
τse
−2asτs

cV
− β|W0|τse−asτs

V2 + ξγ|W0|2

g
3/2
s V3

)
, (1.62)

where α, β and γ are positive constants and V0,F is an overall gs-dependent prefactor.
The next step is to minimise the potential (1.62) with respect to V and τs. For asτs � 1,
one obtains the following values for V and τs at the minimum of VF :

τs = 1
gs

(
ξ

2c

)3/2

, V = β|W0|c
2αg1/2

s

(
ξ

2c

)1/3

e
as
gs

( ξ
2c)

2/3

. (1.63)

Therefore we see that the overall volume is fixed at an exponentially large value. Finally,
the value of the potential at the minimum is

VF = −
3M4

p

√
gse

Kcs

128π2
c|W0|2

V3

(
ξ

2c

)1/3

. (1.64)



32 1. Preliminaries

We shall make use of the formulae provided in this subsection in chapters 2, 3 and 6.
Finally, let us provide the scaling of the relevant mass scales with respect to the

volume of the compactification manifold. We focus on the case of a Swiss-Cheese CY
with volume given by (1.61). We then have

mτb ∼
g2
s |W0|
V3/2 MP , mτs,i ∼

gs|W0|
V

MP

m3/2 ∼
g2
s |W0|2

V
, mKK ∼

gs
V2/3MP

mzI ∼
g2
s

V
MP , mab ∼ exp(−V2/3)MP ≈ 0, (1.65)

wherem3/2 is the gravitino mass, mab is the mass of the imaginary part of the bulk Kähler
modulus and mKK is the mass of the first massive Kaluza-Klein mode, which should be
interpreted as the cutoff of the effective 4D effective theory. It is thus apparent that
the lightest modulus in the LVS is the bulk modulus τb. Correspondingly, the imaginary
partner ab is essentially massless. Therefore the existence of an almost massless (pseudo)-
scalar field is a generic prediction of the LVS. Chapter 6 is devoted precisely to the
phenomenological implications of such an ultra-light field.

Supersymmetric models of particle physics, such as the MSSM, can be embedded in
the LVS. However, the mass spectrum depends on the specific way in which the visible
sector is realised. Therefore, we provide more details direcly in chapter 6, where we
investigate explicit realisations of the visible sector. Let us just notice that the most
studied embeddings of the MSSM in the LVS are characterised by soft susy-breaking
masses

msoft ∼
MP

V2 . (1.66)

Therefore TeV scale SUSY is achievable for V ≈ 3 · 107 in units of the string length.
Furthermore, the gravitino mass remains high enough to avoid the Cosmological Moduli
Problem (CMP) [45–47].

Let us conclude this section on string compactifications by mentioning the last crucial
step of moduli stabilisation: the so-called uplifting to de-Sitter (dS) spacetime. Indeed, as
mentioned above, both the Large Volume and the KKLT scenarios lead to a negative en-
ergy density at the minimum, meaning that moduli are stabilised in a AdS background. In
order to produce the observed Universe, in particular its inflationary phase, we obviously
need to add a positive contribution to the energy density, such that the final minimum
corresponds to 4D dS spacetime. This is a highly non-trivial task and, while several
proposals exist in the literature, a lot of work remains to be done to solidly establish a
go-to mechanism to achieve dS vacua in string theory. We discuss some possibilities in
chapter 2 (see e.g. [134] and refs. therein for further details).

1.2 The Weak Gravity Conjecture
In the previous section we set the ground for the study of inflationary models in setups of
string compactifications. We saw that ST explicitly provides the UV degrees of freedom
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which may affect the flatness of the inflationary trajectory, i.e. the moduli and the other
fields characterising a given compactification. In such setups it is thus possible to directly
address the compatibility between LFI and Quantum Gravity/String Theory. We will do
so in chapters 2 and 3.

This section is instead devoted to certain effective field theory expectations about
QG. These may be used to constrain LFI as well. In particular, here we introduce
the Weak Gravity Conjecture (WGC) [63] for particles and gauge fields, and describe
its generalisation to p-form gauge theories. We will explore its implications for axion
monodromy inflation in chapter 4.

1.2.1 The single-particle case
Consider a 4D U(1) gauge theory coupled to gravity, with gauge coupling e. The WGC
imposes the following constraints on its spectrum and cutoff:

• Electric WGC: the spectrum of the theory should exhibit a charged particle with
charge q and mass m, such that

m

qeMP

. 1. (1.67)

In other words, there should exist a particle for which gravity is the weakest force.
Notice that a charged Black Hole (BH) in GR satisfies the Reissner-Nordstrom
bound M ≥ QMP and in particular a so-called extremal BH saturates this bound
as well as (1.67).

• Magnetic WGC: the effective field theory is valid up to a cutoff scale Λ which
satisfies the bound

Λ . eMP . (1.68)
At weak coupling, i.e. for e < 1, Λ is thus parametrically smaller than the naively
expected cutoff MP .

A U(1) theory coupled to gravity which does not satisfy (1.67) and (1.68) is claimed to
be inconsistent. This is a highly non-trivial statement. Indeed, from the point of view of
effective field theory, Lagrangians (and thus models) can be built by simply considering
operators that are consistent with Poincaré invariance and gauge symmetry. The situation
is believed to be quite different in a UV complete theory of Quantum Gravity (and in
particular in String Theory). In particular, out of all the effective field theories which can
be written down, only some of them are believed to belong to the so-called Landscape of
theories which admit a UV completion which is consistent with QG. In the framework of
ST, this means that not every effective theory can arise from a string compactification.
The effective theories that do not enjoy a consistent UV completion including QG are
said to belong to the Swampland [63, 150,151] (see also [152]).

Several motivations have been invoked for this conjecture, though none of them might
be considered completely convincing (see [79] for a brief critical review of the arguments
in favour of the WGC). As mentioned in the introduction, QG is expected to violate
explicitly global symmetries [33]. In the limit e → 0, a U(1) gauge symmetry cannot
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be distinguished from a global symmetry, therefore it should be constrained by the same
arguments against global symmetries in QG. Indeed the original argument in favour of the
WGC is that, in a U(1) theory coupled to gravity which does not satisfy the WGC, a large
number of stable planckian extremal black holes can be produced. This is believed to be
problematic [153–155] (see however [79]). The electric WGC thus states that extremal
black holes should be allowed to completely decay into light charged particles. Another
argument is based on ST: namely, it is argued that there exists no example of effective
theories derived from ST which violate the conjecture. Despite its current status, in this
thesis we shall assume that the WGC applies and find its implication for models of axion
monodromy.

There exist several different versions of the electric WGC, some of which specify which
particle in the spectrum should satisfy the bound (1.67) [63, 69, 73, 75, 78, 156]. In this
thesis we shall be concerned only with the following two versions of the electric WGC

• Strong form of the WGC: the lightest charged particle in the spectrum of the
effective field theory should satisfy the bound (1.67).

• Mild form of the WGC: no condition is imposed on the particle which should
satisfy the bound (1.67).

We will later describe how certain inflationary models violate the strong form but are
compatible with the mild form of the WGG.

The magnetic WGC is instead motivated by the rather natural expectation that the
minimally charge magnetic monopole in the theory should not be a black hole. The
existence of a magnetic monopole is in turn motivated by the requirement that U(1)
gauge fields should be compact in QG [33]: thus magnetically charged BH solutions
exist. Since the entropy of such configurations is large, it is natural to assume that there
exists fundamental magnetically charged objects such that the charge of the BH arise
from the charge of these elementary objects [63,67,79]. Demanding that the radius of the
magnetic monopole (∼ 1/Λ) is larger than its Schwarzschild radius leads to the bound
(1.68). In chapter 4 we will provide further motivation for the magnetic WGC, based on
String Theory.

1.2.2 The Convex Hull Condition
The electric WGC can be extended to gauge theories with multiple U(1) factors [65]. In
this case, we associate a charge-to-mass-ratio vector zi = qiMP/mi to every particle i in
the theory. The components of the charge vector qi are the charges of the i-th particle
with respect to the various U(1) factors. An extremal black hole has |ZBH | = 1. Such an
object can decay kinematically if the following Convex Hull condition is satisfied:

Convex Hull Condition (CHC): the unit ball is contained in the convex hull spanned
by the vectors ±zi.

The CHC condition is best understood pictorially, at least for theories with only two
U(1) factors. Let us then consider two such theories with the same gauge group G =
U(1)a × U(1)b but with different spectra. Therefore the charge-to-mass-ratio vector of
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a

b

a

b

Figure 1.1: The convex hull in two theories with different spectra but same gauge group
G = U(1)a×U(1)b: (a) there are three particles in the spectrum. The convex hull spanned
by their charge-to-mass-ratio vectors contains the unit ball, thus the CHC is satisfied.
(b) there are two particles in the spectrum. The convex hull does not contain the unit
ball, thus the CHC is not fulfilled.

each particle in the spectrum of theory has two components. In figure 1.1 we show
the convex hull for the two theories. The first theory, whose convex hull is shown in
figure 1.1 (a), fulfils the CHC, while the second theory, whose convex hull is shown in
figure 1.1 (b), does not. Therefore, the second theory is claimed to be incompatible with
Quantum Gravity. Notice that the CHC is not just a trivial generalisation of the WGC:
in particular, it is not sufficient that all the charge-to-mass-ratio vectors lie outside the
unit ball to ensure that the condition is satisfied, as the example in figure 1.1 (b) shows.

1.2.3 Generalisation to (p+1)-form gauge theories
The electric WGC was extended to gauge theories with p-form gauge potentials (reviewed
in Appendix A.4) already in the original proposal [63].3 The objects charged under
a (p + 1)-form gauge field are p-dimensional membranes (or simply branes), exactly as
point-like particles can be charged under 1-form gauge fields (see section A.4. The tension
Tp of a brane is analogous to the mass of a particle. Notice that the charge ep of a p-
brane in d dimensions is generically dimensionful. In particular, its energy dimension is
[ep] = [E](p+2)−d/2. The WGC then states that

Electric WGC: the spectrum of a (p + 1)-form gauge theory with gauge coupling ep
coupled to gravity should exhibit an electrically charged p-brane with charge qel and tension

3See however [75] for subtleties concerning the cases p = d− 1, d− 2. Furthermore, in section 4.3 we
will present a strategy to justify the generalisation of the electric WGC for effective theories descending
from dimensional reduction of 10D ST.
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Tp,el such that
Tp,el

epqelMP

. 1 (1.69)

Similarly, also the existence of a dual magnetically charged d− (p+ 4) brane is required,
with tension Td−(p+4) and magnetic coupling emag ∼ 1/ep,el satisfying the same bound as
in (1.69). The extension of the magnetic WGC (1.68) to p-branes (and in particular to
2-branes in 4D) will be discussed in chapter 4 and will play a key role in constraining
models based on axion monodromy.

The generalised WGC is in particular assumed to be valid for the case p = −1. 4 A
0-form gauge field is a (pseudo)scalar field φ which is invariant under continuous shifts. In
other words, it is an axion. The corresponding “−1-dimensional” object is the instanton
coupled to the axion via the term φ

f

∫
FF̃ , where F is the field strength of some QCD-like

gauge theory. The charge of the instanton is simply 1/f , i.e. the inverse of the axion
decay constant, while its “mass” is its action S. Therefore, the WGC for axions and
instantons reads

S
f

MP

. 1. (1.70)

Instantons induce a potential for the axion which is generically computable only in the
dilute gas approximation [64], i.e. for S > 1. Therefore the electric WGC (1.70) requires
f .MP .

The generalisation to a theory with multiple axions a = (a1, . . . , an) and instantons
is straightforward and results in a Convex Hull Condition which is very similar to the one
that we already discussed. In particular, the charge-to-mass-ratio-vectors are replaced by
the vectors zi = 1

Sifi , where the Si and fi appear in the axion potential as follows

V ∼
∑
i

Aie−Si cos
( 1

2πqi · a
)
, (1.71)

where qi = (1/f1, . . . , 1/fn)i. The CHC then requires the unit ball to be contained in
the convex hull spanned by the vectors zi.

1.2.4 Constraints on axion inflation
The electric WGC (1.70) turns out to be a fatal constraint on models of LFI based on a
single axion, such as Natural Inflation [30]. In the latter, the inflaton is an axion φ with
the usual instanton-induced potential

V (φ)
∑

Λ4
[
1± cos

(
φ

f

)]
. (1.72)

Such a model is compatible with current Planck data (and realises LFI) only if f > MP

[15]. The electric WGC (1.70) thus casts serious doubts on its feasibility.
4The extension of the WGC to axions and instantons descending from dimensional reduction of gauge

potentials and D-branes in ST can be justified by means of string dualities [69] or by constraining the
geometry of the compactification manifold, as we will do in section 4.3.
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Figure 1.2: Winding inflationary trajectory in the field space of two axions, as can be
obtained from (1.73).

Inflationary models employing a single axion descending from dimensional reduction of
a higher dimensional gauge potential, such as Extranatural Inflation [157] are also severely
constrained by the WGC, more specifically by the magnetic statement (as pointed out
in [67]).

Concerning multi-field models, it has been argued that the CHC constrains, and may
even rule out, models of decay constant alignment, in the spirit of the proposal by Kim,
Nilles and Peloso (KNP) [31] (see also [106,158,159]). The latter is based on the following
idea. Consider a 4D theory with two axions a, b and potential (w.l.o.g.):

VKNP = V1

(
1− cos b

f1

)
+ V2

(
1− cos a−Nb

f2

)
.

In particular, let us assume that V1 ∼ e−S1 � V2 and f1 ∼ f2 < MP . At energies below
V1, the second term in (1.73) fixes the combination (a − Nb)/f2 ≈ 0. Integrating out b
we obtain an effective potential for a:

Veff ≈ V1

[
1− cos

(
a

feff

)]
,

with feff = Nf1/f2. Thus, if N � 1, the effective axion decay constant can be
made transplanckian. Pictorially, this corresponds to realising inflation along a winding
trajectory in the field space of the axions a and b, as shown in figure 1.2. Let us now
rephrase the model of (1.73) in the appropriate language to apply the CHC. To this
aim, let us define vectors z1 = q1MP/S1 and z2 = q2MP/S2, with q1 = (0, 1/f1),
q2 = (1/f2,−N/f2). Let us take S1 . S2. The CHC for two axions can be written as

(|z1|2 − 1)(|z2|2 − 1) ≥ (1 + |z1 · z2|)2. (1.73)

It can be shown that, for N � 1, the latter condition is violated. The problem is best
understood pictorially: for large N the vectors z1 and z2 are almost aligned, while their
moduli are not large enough to enclose the unit ball. This is shown in figure 1.3. Let
us now discuss a strategy to achieve decay constant alignement, without violating the
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z2 z1

a

b

Figure 1.3: Convex Hull spanned by the aligned vectors z1 and z2. The unit ball is not
contained in the convex hull, therefore the CHC is violated.

WGC. This is referred to as the spectator loophole and was pointed out in [68,69]. Let us
add to the potential (1.73) another instanton-induced term with S3 � S1, S2, f3 < MP

VLoophole ∼ e−S1

(
1− cos b

f1

)
+ e−S2

(
1− cos a−Nb

f2

)
+ e−S3

(
1− cos a

f3

)
. (1.74)

After integrating b out, the potential for a becomes:

VLoophole ∼ e−S1

(
1− cos a

feff

)
+ e−S3

(
1− cos a

f3

)
, (1.75)

with feff ∼ Nf1/f2. As before, by taking N � 1, feff can be made transplanckian.
The first term in (1.75) can then be used to realise LFI. The second term is of crucial
importance: it is induced by an instanton which has f3 < MP and S3 > 1. Thus,
this objects fulfils the electric WGC. Furthermore, since S3 � S1, the second term is
suppressed compared to the first one and does not spoil inflation. In other words, it
generates oscillations with a small period and a small amplitude on the flat inflationary
trajectory, which arises from the large-period oscillations induced by the first term in
(1.75). In the language of the CHC, the situation is shown in figure 1.4, where we
introduced the vector z3 = q3MP/S3. Since the unit ball is contained in the convex hull
spanned by the three vectors, the CHC is fulfilled.

It thus appears that aligned models can be easily made compatible with the WGC.
Indeed, instantons with larger actions (“heavier”) are generically present in models of
axion inflation, since the instanton-induced potential is of the form

V (φ) ∼
∑
n

Ane−nS cos (nφ/f) .

However, we would like to remark that the model in (1.75) fulfils only the mild form of
the WGC. Indeed, while it is true that the bound (1.70) is satisfied by one instanton in
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z3

z1
z2

a

b

Figure 1.4: Convex Hull spanned by the vectors z1, z2 and z3. The unit ball is contained
in the convex hull, therefore the CHC is satisfied.

the theory, the latter is not the object with the smallest action (the “lightest”). Thus, the
spectator loophole does not evade the strong form of the WGC. The discussion that we
presented is particularly relevant for chapter 3, where we will propose a model of decay
constant alignement in a setup of string compactifications, which realises the spectator
loophole.

At this point, it is important to notice that there exists yet another loophole in the no-
go arguments based on the WGC [67,68]. This loophole exploits the fact that the WGC
for electrically charged objects can be satisfied for f > 1 if S is taken to be sufficiently
small, i.e. S � 1. However, for S < 1 we can in general not calculate the instanton
induced potential and it hence remains unclear whether inflation can be realized. In
concrete models, the potential can be calculable in spite of S < 1 and inflation might
still work. Such a possibility was suggested in [67] (see also [68]), based on the model
of [160].5

Before moving to the next chapter of this thesis, a final comment on the WGC is
in order. At the time of writing, it is not clear which version, if any, of the conjecture
should be used to constrain models of LFI at the level of effective field theory, nor which
version holds in String Theory (see [36, 65–79,84, 131] for the various proposals). In this
thesis, we will apply the WGC mostly in its mild form. It remains a very interesting and
important task to assess whether there exists a convincing a constraining formulation of
the WGC.

5Consistency with the magnetic form of the WGC constrains models exploiting the loophole of [67,68]
even further. As was pointed out in [67] a transplanckian field range can only be achieved in a field space
of two or more axions, e.g. by employing a mechanism like alignment [160].
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Large Field Inflation in String
Compactifications
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Chapter 2

Moduli backreaction in axion
monodromy inflation

Compactifications of 10D String Theory are characterised by the presence of
moduli fields. Some of them enjoy (approximate) shift symmetries and can
thus be used as inflaton candidates. However, the flatness of the inflationary
potential might be spoiled by the presence of many other moduli fields, which
can affect the dynamics of the inflaton field. In this chapter we investigate
the backreaction of moduli on a transplanckian trajectory, in a string-derived
SUGRA setting known as F-term axion monodromy [101–103]. In particular,
we focus on complex structure moduli of a Type IIB/F-theory Calabi-Yau
orientifold. In this chapter, we set MP ≡ 1, unless otherwise stated.
This chapter is based on the publication [130].
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2.1 Introduction
In the previous chapter we introduced the essentials of string compactifications. In partic-
ular, we showed that dimensional reduction of the Type IIB action leads to the presence of
moduli fields in 4D. These massless scalar fields can correspond to geometric deformations
of the six-dimensional compactification manifold, to generalised gauge potentials in 10D
or to the positions of D-branes. Here we will focus on the effects of geometric moduli on
the feasibility of Large Field Inflation.

Inspired by [101], we propose a realisation of LFI in the complex structure moduli
sector of a Type IIB/F-theory CY orientifold, meaning that the inflaton field is identified
with the imaginary (so-called axionic) part of a complex structure modulus. In certain
limits of the geometry of the extra-dimensions, complex structure can indeed exhibit a
shift symmetry at the level of the Kähler potential. One such limit is known as Large
Complex Structure (LCS) limit [104, 105] and is realised when the real partner (saxion)
of the complex structure axion is stabilised at large values, i.e. Re(z0) � 1. This limit
does not need to be imposed on every complex structure modulus of the compactification.
Rather, one can consider a so-called partial LCS regime in which only some moduli are
stabilised in the LCS limit.

Throughout this chapter, we will work in a specific class of supergravity implementa-
tions of Axion Monodromy Inflation, known as F-term axion monodromy [101–103]. The
basic underlying idea of all these constructions is as follows. One considers settings where
at least one modulus enjoys a shift-symmetric Kähler potential. This shift symmetry as
well as the related periodicity of the axionic part of the modulus is then weakly broken by
the superpotential, e.g. due to an appropriate flux choice. This gives rise to an enlarged
axion field range with a slowly rising potential, suitable for large-field inflation.

As usual in string inflation, moduli stabilisation is a critical issue. This problem
was analysed in some detail in [101] concerning Kähler moduli while, concerning complex
structure moduli, high-scale flux-stabilisation was assumed in a somewhat simple-minded
way. The crucial aspect that will be investigated in this chapter is that of backreaction of
complex structure moduli during inflation. Indeed, as the inflaton rolls along its potential,
its motion can be affected by the dynamics of other moduli fields.

The content of this chapter is organised as follows: in section 2.2 we provide a technical
introduction to the problem of backreaction in a generalisation of the model of [101]. In
section 2.3 we briefly review how to realise the model in a F-theory setup. The main
results of this chapter are obtained in sections 2.4.2-2.5, where we analytically quantify
backreaction and compute its effects on the inflationary potential. In section 2.6 we
provide a numerical analysis in support of our analytical findings. In section 2.7 we
report an estimate of the number of string vacua which can accommodate our model.
Finally, we summarise our findings in section 2.8 and discuss possible future directions
of research.

2.2 The problem of backreaction
The aim of this section is to briefly introduce the problems of backreaction and tuning in
models of F-term axion monodromy inflation. In particular, we will discuss setups where
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the inflaton is the imaginary part of a complex structure modulus u in the LCS limit, in
the spirit of [101] (see also [161–163]). As we have already mentioned, we do not require
the other complex structure moduli z ≡ zi to be in the LCS regime. The moduli z and u
can be complex structure moduli (or D7-brane position moduli) of type IIB orientifolds,
or complex structure moduli of F-theory fourfolds. In the threefold case we consider the
axio-dilaton as a component of z. As we will see in more detail later, the “partial large
complex structure regime” which we adopt in this chapter is sufficient to ensure that the
complex structure modulus u enjoys a shift symmetry at the level of the Kähler potential,
which takes the form

Kcs = Kcs(z, z̄, u+ ū). (2.1)
The source of symmetry breaking is provided instead by the superpotential, which we
take to be linear in u:

W = w(z) + a(z)u (2.2)
In section 2.3 we will explain why such an assumption can be made without loss of
generality. The linear term in (2.2) lifts the otherwise flat direction y ≡ Im(u). In
order for inflation to be viable and not to interfere with moduli stabilisation, the shift
symmetry must be only weakly broken. This condition translates into the requirement
that the term a(z)u be small along the inflationary trajectory. At the SUSY locus z = z?,
this can be achieved by a tuning of the coefficient a(z). Specifically, the function a(z)
is a sum of many terms, each depending on several other moduli. Their SUSY vacuum
expectation values depend on a high-dimensional integral flux vector. The coefficient
a(z) can therefore be small as a consequence of a fine cancellation between these various
terms, as it is customary in the landscape paradigm.

Inflation and moduli stabilisation are obtained via the F-term supergravity scalar
potential

V = eK(KIJ̄DIWDJW +KTγ T̄δDTγWDTδW − 3|W |2) , (2.3)
where K = −2 lnV +Kcs(z, z̄, u+ ū) and the capital indices run over all moduli z and u.
Notice the crucial presence of the Kähler moduli Tγ. In studying the potential (2.3) we will
assume that the latter moduli are stabilised according to the Large Volume Scenario [50].
In this framework the Kähler potential for the Kähler moduli enjoys a well-known no-
scale structure, meaning that the last two terms in (2.3) cancel at leading order (see the
discussion in subsection 1.1.3). Therefore from now on we will consider only the scalar
potential

V = eK(KIJ̄DIWDJW ) . (2.4)
Most importantly, we consider all fields as dynamical, i.e. we do not integrate out all z
at this stage. To simplify the argument, we continue our analysis for only two fields,
labelled by z and u. The two F -terms entering (2.4) are then given by

DuW = Duw + a+Kuau , (2.5)
DzW = Dzw + (∂za+Kza)u . (2.6)

The values of u and z at the minimum of the F-term potential are obtained by solving
the equations

DuW = 0, DzW = 0. (2.7)
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Figure 2.1: ‘Naive’ inflaton potential (dashed red line) and a possible effective inflaton
potential after backreaction is taken into account (solid blue line). Note that the effective
inflaton potential is not automatically sufficiently flat over transplanckian regions to
realise large field inflation. This picture is taken from [130] and was prepared by my
collaborators.

The latter can be interpreted as conditions on the derivatives of the Kähler potential at
the minimum:

DuW = 0⇒ Ku|min = − a

w + au

∣∣∣∣
min

(2.8)

DzW = 0⇒ Kz|min = −∂zw + ∂za · u
w + au

∣∣∣∣
min

. (2.9)

The inflaton potential will get contributions from both F -terms and takes the form:

V = eK
[
Kuū|Kua|2+Kzz̄|∂za+Kza|2+Kuz̄(Kua)(∂za+Kza)+h.c.)

]
min

∆y2+. . . , (2.10)

where we expanded around the SUSY minimum {u = u?, z = z?} and ∆y ≡ y − y?.
The ellipses stand for terms due to backreaction of z , which will be studied in detail in
section 2.4.1.

The result (2.10) reveals one of the main insights of this chapter. In order to ensure
that the shift symmetry of y is only weakly broken, one needs to tune small not only
the coefficient a(z), but its derivatives ∂za as well. Indeed the second term in the square
brackets in (2.10) contains terms which are proportional to |∂za| only. Notice that these
terms are obviously not automatically small when a(z) is small. Therefore an additional
amount of tuning is required. In particular, for every modulus zj we will require |∂zja|
to be small. This implies that for n moduli we have to require (n+ 1) tunings.

It is easy to see that one cannot get away with fewer tunings. The argument is
as follows. Find the basis in which the Kähler metric is diagonal. In this basis the
inflationary potential is a sum of positive terms (in essence, the mixed terms ∼ Kzz̄,Kzū
in (2.10) disappear). Each of these terms is a combination of a and ∂zia, i = 1, . . . , n.
Therefore, (n + 1) different terms have to be tuned small to ensure the flatness of the
inflationary direction. These combinations of a and ∂zia involve elements of the original
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inverse Kähler metric as coefficients. It is conceivable that these terms could take small
values in some region of the moduli space. This corresponds to special geometries of
moduli space where, at particular points, certain elements of the metric blow up. Since
we do not know whether such situations can occur, in particular given that one complex
structure modulus (the inflaton) must be stabilised in the large complex structure limit,
we choose not to consider this option in the following. Thus, for the case of n moduli zi,
we fine tune the quantities |a|, |∂z1a|, |∂z2a|, . . . |∂zna|.

The rest of this chapter is devoted to two important problems related to the potential
(2.10) and to the associated tunings:

1 Backreaction: the term a(z)u ⊂ W , while lifting the otherwise flat inflationary
direction, also induces a cross-coupling between the moduli z and u. This feature of
the F -term potential can have dramatic consequences on the inflationary potential.
This can be understood as follows: The moduli zi and u are originally fixed at
values u?, zi? at the SUSY locus. Now consider a variation ∆y of the imaginary part
of u. Since we keep the moduli zi dynamical, a variation in the value of y induces
a deviation δzi in the values of the moduli zi. In turn, the displacements δzi lead
to additional terms in (2.10), which are generically not quadratic in ∆y. If these
contributions are large, the inflationary direction can be spoiled. In the worst-case
scenario, the effective inflationary potential may not even be monotonic, especially
over a large (transplanckian) field range. This is illustrated in figure 2.1.
The main aim of this chapter is therefore to assess whether the tuning of a and
∂za is sufficient to control the backreaction of the complex structure moduli z on
the inflationary potential. This can be done analytically, as we will describe in
detail in subsection 2.4.2. As further evidence for our results, we will also provide
a numerical example in section 2.6.

2 Feasibility of tuning: A secondary aim of this chapter is to understand whether
the tuning of a and ∂za is realisable in the string landscape. In section 2.7 we
will therefore briefly review the strategy to compute how many string vacua are
compatible with such a tuning. While we will discuss the important conclusions
of this analysis, we will not provide detailed computations, which can be found
in [130] and in [164].

Before moving on to the detailed analysis of backreaction, let us briefly review the
origins of the linear symmetry-breaking term in the superpotential (2.2) both from a
Type IIB and from an F-theory perspective.

2.3 Structure of the model from F-theory
In the previous section we introduced the basic ingredients of a model of axion monodromy
in the complex structure moduli sector of type IIB orientifolds or F-theory fourfolds. In
particular, we considered a modulus u which enjoys a shift-symmetry at the level of the
Kähler potential (2.1) and appears linearly in the superpotential (2.2). In this section
we will take a step backward and ask whether this structure can be obtained in a type
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IIB/F-theory framework. This will serve as a motivation for the model (2.2). While we
will discuss the main results of this investigation, we will not provide a detailed analysis.
The latter can be found in [130] and in [164].

Let us then start by considering the implementation of our model in a type IIB Calabi-
Yau (CY) orientifold X. As in the previous section, we denote by zI , I = 0, . . . , n the
n + 1 complex structure moduli of X. In particular, we take z0 ≡ iu, with u in the
LCS regime. In type IIB threefolds with quantised three-form fluxes F3 and H3 and
holomorphic three-form Ω3 , the superpotential is obtained via the Gukov-Vafa-Witten
formula [48]

W = (NF − SNH)αΠα, (2.11)

where NF and NH are the flux numbers of F3 and H3 respectively. Here S = i/gs + C0
is the axio-dilaton and Π is the so-called period vector of X, given by [105,165]

Πα =


1
zI

1
2κIJKz

JzK + fIJz
J + fI +∑

pAIpe
−
∑

J
bpJz

J

− 1
3!κIJKz

IzJzK + fIz
I + g +∑

pBpe
−
∑

J
b̃pJz

J

 . (2.12)

The geometric data of the CY X enter the superpotential via the triple intersection
numbers κIJK of the 4-cycles of the mirror dual CY threefold X̃. Due to the LCS
regime in u, the non-perturbative terms e−2πu are suppressed in (2.12). Under reasonable
assumptions, the terms fIJ , fI and g can be neglected. It is then apparent that W is
generically a polynomial of degree three in u. In particular, the superpotential exhibits
the following structure:

W = w(S, z) + a(S, z)u+ 1
2b(S, z)u2 + 1

3!c(S)u3. (2.13)

Notice that we do not require the other moduli zi, i = 1, . . . , n and S to be in the LCS
regime.

Since the shift symmetry of u is broken by the coefficients a, b and c, we must require
that they are all small. However, on any type IIB CY orientifold at weak coupling (i.e.
gs � 1) with at least one modulus u in the LCS regime the following two conditions
cannot be simultaneously satisfied:

1. The coefficients a, b, c and their derivatives with respect to z and S are tuned
sufficiently small to allow for inflation.

2. Re(u) can be stabilised using the classical supergravity F -term scalar potential.

In particular, it is not possible to set b and c to zero and obtain a linear superpotential,
as in (2.2).1

1Loopholes to this statement may exist, see [130] for details.
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The consequences of this no-go result can be evaded by considering F-theory fourfolds
with quantised four-form flux G4. In this case, the following straightforward generalisa-
tion of (2.11) holds:

W = NαΠfourfold
α , (2.14)

where α = 1, . . . , b4(X) and N is the flux number of G4. We assume again z0 ≡ u to be
in the LCS regime. Crucially, the period vector is now quartic in the complex structure
moduli zI , I = 0, . . . , h3,1 − 1. Therefore, W will generically be a polynomial of order
four in u. It can now be shown that, by an appropriate choice of intersection numbers, a
linear superpotential in u can be consistently obtained.

Furthermore, the Kähler potential for the complex structure moduli of an F-theory
fourfold is given by

Kcs = − ln
(
Πα(z, u)Qαβ̄Πβ(z̄, ū)

)
, (2.15)

whereQαβ̄ is the intersection matrix. If u is in the LCS regime, the non-perturbative terms
in the period vector are suppressed and consequently Kcs is invariant under u→ u+ ia,
i.e. Kcs = Kcs(z, z̄, u+ ū).

The important conclusion of this section is that the model with Kähler potential
(2.1) and superpotential (2.2) can be consistently obtained in the framework of F-theory
fourfolds. Reassured by this statement, we can now proceed to the analysis of backre-
action in this model. From now on, in order to simplify the notation, we abbreviate
fI ≡ ∂zIf, I = 0, . . . , n and fi ≡ ∂zif, i = 1, . . . , n for any function f .

2.4 Backreaction and the effective inflaton potential
In this section we will study the backreaction on the complex structure moduli zi, z̄i as
well as on x ≡ Re(u), if we displace y ≡ Im(u) by some finite distance ∆y from the
minimum. In particular, we will derive the effective inflaton potential once backreaction
is taken into account.

2.4.1 Analytical formulation
The starting point are a Kähler potential and a superpotential of the form

W = w(z) + a(z)u, K ≡ K(z, z̄, u+ ū) , (2.16)

from which we can determine the F -term scalar potential

V = eK(KIJ̄DIWDJW ) . (2.17)

Most importantly, we do not assume that any of the zi are integrated out. On the
contrary, we take all zi as well as u to be dynamical. To quantify backreaction the
strategy is as follows. We expand the potential in δzi, δz̄i and δx to quadratic order
about the minimum. As long as the displacements δzi, δz̄i and δx remain small during
inflation this expansion is a good approximation to the full potential and higher order
terms can be ignored. For every value of ∆y the potential is then a quadratic form in
the displacements of the remaining fields. As such, it admits a global minimum at each
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value of ∆y for some δzi(∆y), δz̄i(∆y) and δx(∆y), which we calculate explicitly. In the
following we will show that the displacements δzi(∆y), δz̄i(∆y) and δx(∆y) are indeed
small for a wide range in ∆y such that our analysis is self-consistent. By substituting these
solutions into the expression for the potential we can then derive the effective inflaton
potential.

We now perform the steps outlined above explicitly. To begin, we wish to expand
the scalar potential (2.17) to quadratic order in x, zj and z̄j about their values at the
minimum. For this, it will be sufficient to expand the covariant derivatives DIW to first
order. Indeed the inverse Kähler metric and the exponential prefactor do not contribute
at quadratic order, as shown by varying the F -term potential twice:

δ2VF = δ2
(
eKKIJ̄

)[
DIWDJW

]
min

+ δ
(
eKKIJ̄

)
δ
(
DIW

)[
DJW

]
min

+ δ
(
eKKIJ̄

)
δ
(
DJW

)[
DIW

]
min

+
[
eKKIJ̄

]
min

δ2
(
DIWDJW

)
, (2.18)

and imposing the minimum condition DIW = 0.
The covariant derivatives are given by:

DuW = a+Ku(w + ax+ iay),
DziW = wi + ai(x+ iy) +Ki(w + ax+ iay). (2.19)

Recall that a subscript i corresponds to a derivative w.r.t. zi: fi ≡ ∂zif . The values u?, z?
of the complex structure moduli at the minimum are found by imposing the conditions:

DuW = 0, DziW = 0. (2.20)

The latter can be solved in terms of the derivatives of the Kähler potential at the
minimum:

DuW = 0⇒ Ku|? = − a

w + au

∣∣∣∣
?

DziW = 0⇒ Ki|? = −wi + aiu

w + au

∣∣∣∣
?

. (2.21)

We now write zj = zj? + δzj and u = u? + δx + i∆y and expand (2.19) to linear order
in δx, δzj and δz̄j. Note that we will not perform an expansion in ∆y. On the contrary,
our result will be exact in ∆y. This is absolutely crucial as ∆y will take transplanckian
values during inflation and is not a small quantity. In the following it will also be useful
to absorb the term au? into a quantity w∗:

w∗ ≡ W (z, u?) = w(z) + a(z)u? . (2.22)
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Expanding (2.19) to linear order in δx, δzj and δz̄j we find:

DuW =
[
aj +Kujw∗ +Kuw∗j + i(Kuja+Kuaj)∆y

]
?
δzj

+
[
Kuj̄w∗ + iaKuj̄∆y

]
?
δz̄j

+
[
Kua+Kuxw∗ + iKuxa∆y

]
?
δx+ i

[
Kua

]
?
∆y +O(δ2), (2.23)

DziW =
[
w∗ij +Kijw∗ +Kiw∗j + i(aij +Kija+Kiaj)∆y

]
?
δzj

+
[
Kij̄w∗ + iKij̄a∆y

]
?
δz̄j

+
[
ai +Kixw∗ +Kia+ iKixa∆y

]
?
δx+ i

[
ai +Kia

]
?
∆y +O(δ2). (2.24)

Here we used the subscript ? to make it explicit that the quantities in square brackets
are evaluated at the minimum, but we will suppress it in what follows.

If the displacements δz, δz̄, δx are small, the leading term in the potential is quadratic
in ∆y. This term is therefore the naive inflationary potential and reads:

Vnaive ∼
[
Kuū|Kua|2 +Kij̄(ai +Kia)(aj +Kja) + (Kuj̄(Kua)(aj +Kja) + h.c.)

]
(∆y)2

(2.25)
In order for ∆y to be a suitable direction for inflation, we require that the naive potential
is almost flat. From (2.25), this requirement is satisfied if |Kua| and |aj +Kja| are small.
This can be achieved by tuning all the parameters |a|, |aj| � 1.2 In order to obtain
compact expressions, we introduce the following quantities:

ηu = iKua
ηj = i(aj +Kja). (2.26)

At this point, it is important to notice that (2.21) imposes Ku ∼ a. The latter implies
that Ku is as small as a at the minimum, while Ki and the elements of the Kähler metric
are not parametrically small. Introducing the small parameter

ε ≡ |a| , (2.27)

it follows that ηu ∼ ε2 while the second term in ηj is only proportional to ε. In this and
the following subsection we assume that ai is tuned in such a way that ηi ∼ ε2 as well.
Under these assumptions ηu and ηi are parametrically of the same size. This turns out
to be useful for our explicit computations. We discuss the generic case of hierarchical η’s
in section 2.4.3.

We can now simplify our expressions (2.23). We will later show that the displacements
δx, δzj, δz̄j are small to the extent that ηu, ηj are small. In particular, when ηu ∼ ηj ∼ ε2

we will find that δx ∼ δzj ∼ δz̄j ∼ ε2. It follows that e.g. ajδzj ∼ ε3 while Kujw∗δzj ∼ ε2.
To simplify further, we can then neglect those terms in (2.23) that are smaller than O(ε2).

2In the case of k complex structure moduli entering a, these are k+ 1 tunings. As we have discussed
in section (2.2), one cannot get away with fewer tunings.
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Let us be more precise about the latter statement. In (2.23) and (2.24) there are terms
of the form O(ε3)∆y. Those terms are negligible compared to those of O(ε) as long as
∆y � ε−1. We shall therefore restrict the field displacement to 0 < ∆y � ε−1. This is
also motivated by the following argument. In order not to interfere with Kähler moduli
stabilisation we need to impose au ∼ εu� w in (2.16). This constraint then implies the
same restriction on the field range. We thus arrive at:

DuW '
[
Kujw∗

]
δzj +

[
Kuj̄w∗

]
δz̄j +

[
Kuxw∗

]
δx+ ηu∆y, (2.28)

DziW '
[
w∗ij +Kijw∗ +Kiw∗j + i(aij)∆y

]
δzj +

[
Kij̄w∗

]
δz̄j (2.29)

+
[
Kixw∗

]
δx+ ηi∆y .

Note that at leading order DuW ∼ DziW ∼ ε2 and V ∼ ε4. We can now understand
why it was sufficient to expand the covariant derivatives to first order in δx, δzj and δz̄j.
It is easy to check that higher order terms would be subleading both in the covariant
derivatives as well as in V . For what follows it will be useful to write the expressions
(2.28) and (2.29) more compactly using the notation:

DIW = (AIj +BIj∆y)δzj + CIjδz̄
j +GIδx+ ηI∆y. (2.30)

Here the index I runs over u and all zi, where I = 0 is identified with u and I = i with
i = 1, . . . , n corresponds to zi. A summation over the index j is implied. While being
simple, the notation (2.30) obscures some of the structure evident in (2.28) and (2.29).
In particular, note that

B0i = ∂u∂zia = 0 for i = 1, . . . , n , (2.31)
Bij = Bji = ∂zi∂zja for i, j = 1, . . . , n , (2.32)
Gi = 2A0i for i = 1, . . . , n . (2.33)

In the following, it will be convenient to work with real fields only. Writing zi = vi + iwi

and z̄i = vi − iwi we can rewrite (2.30) in terms of the displacements δvj and δwj:

DIW = (AIj + CIj +BIj∆y)δvj + i(AIj − CIj +BIj∆y)δwj +GIδx+ ηI∆y . (2.34)

We are now in a position to write down the F -term potential at quadratic order in
the displacements, starting from its definition,

VF = eKKIJ̄DIWDJW, (2.35)

and insert our expressions (2.34). The resulting potential can be written as a quadratic
form:

VF = 1
2∆TD(∆y)∆ + [b(∆y, ηI)]T∆ + µ2(∆y)2 , (2.36)

whose individual terms we will now explain. For one, ∆ is a vector with (2n + 1)
entries containing the displacements ∆ = (δx, δvi, δwi)T . Also, µ2 = eKKIJ̄ηI η̄J̄ is the
squared mass of the naive inflaton potential. Furthermore, D is the real symmetric
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(2n + 1)× (2n + 1) matrix of the second derivatives of the scalar potential with respect
to the displacements δx, δvi, δwi. Explicitly, it is given by

D =

Dxx Dxvj Dxwj
Dvix Dvivj Dviwj
Dwix Dwivj Dwiwj

 , (2.37)

with:

Dxx = 2 eKKIJ̄GIGJ , (2.38)
Dxvi = Dvix = eKKIJ̄

[
GI(AJi + CJi +BJi∆y) + (AIi + CIi +BIi∆y)GJ

]
,

Dxwi = Dwix = eKKIJ̄
[
−iGI(AJi − CJi +BJi∆y) + i(AIi − CIi +BIi∆y)GJ

]
,

Dvivj = Dvjvi = eKKIJ̄
[
(AIi + CIi +BIi∆y)(AJj + CJj +BJj∆y)+

+(AIj + CIj +BIj∆y)(AJi + CJi +BJi∆y)
]
,

Dviwj = Dwjvi = eKKIJ̄
[
−i(AIi + CIi +BIi∆y)(AJj − CJj +BJj∆y)+

+i(AIj − CIj +BIj∆y)(AJi + CJi +BJi∆y)
]
,

Dwiwj = Dwjwi = eKKIJ̄
[
(AIi − CIi +BIi∆y)(AJj − CJj +BJj∆y)+

+(AIj − CIj +BIj∆y)(AJi − CJi +BJi∆y)
]
.

The elements of the vector b = (bx, bvi , bwi)T are given by the first derivatives of the
F -term potential (evaluated at the minimum, i.e. at ∆ = 0). Explicitly, we have

bx = [∂(δx)V ]
?

= eKKIJ̄
[
GIηJ + ηIGJ

]
∆y , (2.39)

bvi = [∂(δvi)V ]
?

= eKKIJ̄
[
(AIi + CIi +BIi∆y)ηJ + ηI(AJi + CJi +BJi∆y)

]
∆y ,

bwi = [∂(δwi)V ]
?

= eKKIJ̄
[
i(AIi − CIi +BIi∆y)ηJ − iηI(AJi − CJi +BJi∆y)

]
∆y .

We can now determine the displacements δx, δvi and δwi as functions of ∆y by minimising
the potential (2.36). The unique minimum at each value of ∆y is found by solving

D∆min = −b . (2.40)

We find
⇒ ∆min = −D−1b = −adj[D]

det[D] b, (2.41)

where adj[D] is the adjugate matrix of D. By substituting the solution ∆min back into
(2.36) we arrive at the effective potential

Veff (∆y) = −1
2bT (∆y)D−1(∆y)b(∆y) + µ2∆y2. (2.42)

This is the main result of this section. We have derived an expression for the effective
potential with backreaction taken into account, i.e. Veff is the potential along the flattest
trajectory away from the SUSY minimum. Note that it still remains to be checked
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whether this potential is suitable for inflation. Further, recall that the above is only valid
as long as backreaction of complex structure moduli is weak, such that terms cubic in δx
etc. can be ignored. In the following section we will show that this can be achieved by
tuning all ηI small.

However, before analysing (2.42) further we can already make the following observa-
tion: even if backreaction is under control (i.e. the displacements δx etc. are small) the
effect of backreaction onto the inflaton potential is not negligible. Without backreaction
the potential would be just given by µ2(∆y)2 = eKKIJ̄ηIηJ(∆y)2, which is quadratic in
the small quantities ηI . Note that all entries of the vector b (2.39) are linear in the
small quantities ηI , while D does not depend on ηI at all. As a result, the first term
in (2.42) containing the effects of backreaction is quadratic in ηI . As there are no other
small parameters in our setup we find that the first term in (2.42) is not parametrically
suppressed w.r.t. the naive inflaton potential. On the contrary, both terms in (2.42)
are equally important and the effective potential can differ significantly from the naive
inflaton potential.

In the next section, we will analyse the effective potential in more detail. In particular,
we will find:

• For small and intermediate ∆y the effective potential does in general not behave
like a simple monomial in ∆y. While the naive inflaton potential is quadratic by
construction, backreaction will change this behaviour for intermediate ∆y.

• However, for large enough ∆y the effective potential can again be approximated by
a parabola Veff = µ2

eff (∆y)2. We are thus left with a sizable interval in field space
where the effective potential is essentially quadratic. Thus it is in principle suitable
for realising quadratic large field inflation.

2.4.2 Quantifying backreaction
In this section we wish to determine ∆min(∆y) and check that backreaction can indeed
be controlled. By substituting ∆min(∆y) into (2.36) we will also be able to study the
effective potential as a function of ∆y.

To perform the next steps analytically and in full generality is not practical. The
inverse matrix D−1 and thus ∆min will typically be complicated expressions in the
parameters AIi, BIi, CIi, GI and ηI , which will obscure the points we wish to make
in this section.

To circumvent these complications, one can study backreaction and the effective
potential numerically, and we will do so in section 2.6. Here we adopt a different approach.
In particular, we wish to show that by tuning ηI small backreaction of complex structure
moduli can be controlled. For this analysis the exact numerical values of the parameters
AIi, BIi, CIi and GI as well as KIJ̄ are not important; all we need to know is that they
are not tuned small. Thus, to simplify the following calculations, we assume

|AIi| ∼ |BIi| ∼ |CIi| ∼ |GI | ∼ KIJ̄ ∼ O(1) , (2.43)
|ηI | ∼ ε2 � 1 . (2.44)
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Then the matrix D and the vector b are given by:

D = eK


O(1) O(1) +O(1)∆y . . . O(1) +O(1)∆y

O(1) +O(1)∆y (O(1) +O(1)∆y)2 . . . (O(1) +O(1)∆y)2

... ... . . . ...
O(1) +O(1)∆y (O(1) +O(1)∆y)2 . . . (O(1) +O(1)∆y)2

 , (2.45)

b = eK


O(1)

O(1) +O(1)∆y
...

O(1) +O(1)∆y

 ε2 ∆y. (2.46)

It is now straightforward to determine the dependence of D−1 on ∆y. Recall that for a
geometry with n+ 1 complex structure moduli D is a (2n+ 1)× (2n+ 1) matrix. Then
one obtains:

D−1 = e−K

pol4n(∆y)


pol4n(∆y) pol4n−1(∆y) . . . pol4n−1(∆y)

pol4n−1(∆y) pol4n−2(∆y) . . . pol4n−2(∆y)
... ... . . . ...

pol4n−1(∆y) pol4n−2(∆y) . . . pol4n−2(∆y)

 , (2.47)

where pold(∆y) symbolises a polynomial of degree d in ∆y. More precisely, pold(∆y) =∑d
m=0 pm(∆y)m with coefficients pm which depend on AIi, BIi, CIi, GI and KIJ̄ .
To arrive at (2.47) we had to rely on several assumptions. For one, to be able to

invert D it has to be non-degenerate. In addition, if D has a non-trivial substructure, it
is certainly possible that there are cancellations when calculating the determinant and
adjugate of D. Then the polynomials appearing in D−1 would be of a lower degree than
naively expected. We checked numerically that cancellations typically do not occur and
hence it is justified to write D−1 as in (2.47).

We are now in a position to determine the displacements δx, δvi and δwi as functions
of ∆y:

∆min =

 δxδvi
δwi


min

=

 pol4n(∆y)
pol4n−1(∆y)
pol4n−1(∆y)

 ε2 ∆y
pol4n(∆y)

, (2.48)

where in the above δvi and δwi represent all moduli of this type.
We can make the following observations. For one, the displacements δx, δvi and δwi

are proportional to the small parameter ε2. Thus they are in principle small to the extent
that ε2 is small. We used this fact in the previous section to neglect terms of the form
εδx etc. in DIW . However, given the expression (2.48) we can say much more about the
dependence of δx, δvi and δwi on ∆y. In particular, we can identify three regimes where
the displacements behave differently:

1. ∆y � 1: In this regime the polynomials in (2.48) will be dominated by their
constant terms. It is then easy to see that δx ∼ δvi ∼ δwi ∼ ε2∆y. The
displacements increase linearly with ∆y, but they remain small in this regime.
Backreaction is under control.
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2. ∆y ∼ O(1): no term in particular is expected to dominate in the polynomials of
(2.48). The displacements then behave as generic functions of ∆y, possibly with
regions of positive and negative slope. While the displacements are still suppressed
by ε2, they can get enhanced in this regime if the term in the denominator of
(2.48) (i.e. the determinant of D) becomes small. In this case backreaction is not
completely under control and higher order terms in δx etc. cannot always be ignored.

3. ∆y � 1: here the polynomials are dominated by the monomial with the highest
degree: pold(∆y) ∼ (∆y)d. We then find the following: δvi, δwi approach a
constant, while δx increases linearly with ∆y. In particular, δvi ∼ δwi ∼ O(1)ε2
while δx ∼ O(1)ε2∆y. The most dangerous modulus in this regime is then δx,
as it increases linearly with ∆y. We can ignore higher order corrections in δx to
the potential as long as δx � 1, which requires ∆y � 1/ε2. This condition is
automatically satisfied as we are working under the assumption 0 < ∆y � 1/ε.
Therefore in this regime higher order corrections in δx are negligible.

In quadratic inflation one is interested in the regime of large displacements along the
inflationary direction. As we have just shown, in this particular regime backreaction is
completely under control up to maximal distances ∼ O(1/ε). The parameter ε cannot be
set to any arbitrary value, as this will affect both the phenomenology of inflation as well
as the severity of tuning in the landscape. We will discuss this briefly in section 2.7. Let
us here anticipate that it is feasible to have (∆y)max ∼ O(102) in units of the Planck mass.
The important point is that there exist a regime of large field displacements where our
assumptions about backreaction are justified. Therefore in this regime the approximation
of the potential to quadratic order in δx, δzi and δz̄i is valid.

We now turn to the effective potential, which we already encountered in (2.42):

Veff = −1
2bTD−1b + µ2∆y2 .

In the previous section we already observed that both terms scale as ε4 and thus backre-
action is not negligible. Here we will study its dependence on ∆y.

Many observations from our analysis of the ∆y-dependence of ∆min also apply here.
We will be particularly interested in the regime 1 � ∆y � 1/ε. As we just argued, our
expansion of the potential to second order is a good approximation of the F -term scalar
potential (2.35) in this regime. In this region of field space, the inverse matrix D−1 and
the vector b are easy to write down:

D−1 ' e−K


O(1) O(1)∆y−1 . . . O(1)∆y−1

O(1)∆y−1 O(1)∆y−2 . . . O(1)∆y−2

... ... . . . ...
O(1)∆y−1 O(1)∆y−2 . . . O(1)∆y−2

 , (2.49)

b ' eK


O(1) ε2 ∆y
O(1) ε2 ∆y2

...
O(1) ε2 ∆y2

 . (2.50)
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In the regime of large ∆y the effective potential is then given by inserting the two above
expressions (2.49) and (2.50) into (2.42):

Veff '
(
−O(1)eKε4 + µ2

)
∆y2 ≡ µ2

eff∆y2, (2.51)

where µ2 = eKKIJ̄ηIηJ ∼ eKε4. Some comments are in order. First, we find that for large
∆y the effective potential is a sum of two terms quadratic in ∆y. The first one is due
to backreaction on δx, δzi, δz̄i as one moves along ∆y. The second term is the naive ∆y
potential. The computation that we performed shows that those two contributions are
of the same order of magnitude. Therefore we observe that, even though backreaction is
under control in the regime under consideration, its effect on the potential is certainly
not negligible.

Secondly and most importantly, in the regime 1 � ∆y � 1/ε the potential is well
approximated by a positive quadratic function. It is therefore in principle suitable for
realising quadratic inflation. Notice however that the effective mass µeff is numerically
smaller than the naive mass µ.

Our result can be compared to previous studies of backreaction in axion monodromy
inflation. In [100,161] it was found that backreaction of the inflaton potential on heavier
moduli can flatten the inflaton potential at large field values. To be specific, for models
of inflation with ϕp-potentials this can manifest itself in the reduction of the power p
at large field values. In our case we do not observe a reduction in the power p: our
inflaton potential is quadratic for both small and large inflaton field values and flattening
reduces the inflaton mass instead. This particular manifestation of flattening is a direct
consequence of the mathematical structure of the supergravity scalar potential once we
implement all the tuning conditions. Most importantly, the flattening we observe has the
same physical origin as the effect described by [100, 161]: it arises from integrating out
heavier moduli.

By canonically normalising the inflaton we can then also determine the physical
inflaton mass. Note that the inflaton direction is mainly given by y: at large ∆y the
moduli zi are essentially fixed and δx ∼ ε∆y only varies weakly with y. Thus, to leading
order we can identify the inflaton with ∆y. The effective Lagrangian for ∆y reads:

Leff = Kuu(∂∆y)2 − Veff (∆y) = Kuu(∂∆y)2 − µ2
eff (∆y)2. (2.52)

Therefore, at leading order the inflaton is simply obtained via the rescaling ϕ =
√

2Kuu∆y
and the inflaton mass is given by m2

θ = µ2
eff/Kuu. The constraint ∆y � 1/ε can now be

translated into a constraint on the maximal initial displacement of ϕ. The field range of
the inflaton is limited to ϕ�

√
2Kuu/ε.

This section can thus be summarised as follows: by tuning small n + 1 parameters
a, ∂z1a, . . . , ∂zna, we can ensure that there exists a large range in field space in which
backreaction is under control and the inflationary potential is in principle suitable for
quadratic inflation.

2.4.3 Backreaction for less severe tuning
In the previous section we imposed the tuning |ai + Kia| ∼ ε2 (recall that ε ≡ |a|) to
ensure that the symmetry-breaking terms in the effective lagrangian for ∆y are small
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enough to allow for inflation. However in principle the possibility of a less severe tuning
exists. Namely, one can require only |ai| ∼ |a| = ε, such that now |ai + Kia| ∼ ε. In
order to establish whether such a tuning is sufficient to allow for inflation, an analysis of
backreaction has to be performed. The strategy is exactly the same as in the previous
sections.

In this section, in order not to disturb the flow of the presentation, we will only
highlight the differences with respect to the analysis already performed in the previous
sections. The detailed computations can be found in [130]. Here we focus on the regime
∆y � 1/ε. One can check a posteriori that backreaction of complex structure moduli is
under control only in this regime, thereby justifying our assumption. The analysis then
reveals the following features:

1 Assuming δz ∼ δx ∼ ε, we find that the F-term scalar potential (2.17) vanishes at
order ε2 (and, automatically, also at order ε3). Therefore, we need to go beyond
leading order and consider δz = δz1 + δz2 with δz1 ∼ ε and δz2 ∼ ε2.

2 In this case, the potential does not vanish at order ε4. By minimising it, one finds
that for ∆y � 1/ε backreaction is under control and in particular

δz1 ∼ ε , δz2 ∼ ε2 , δx ∼ ε , (2.53)

thereby justifying a posteriori our assumptions.

3 In the regime ∆y � 1/ε, the leading contribution to the effective inflationary
potential including backreactions is quadratic in ∆y. In particular

Veff = µ2
eff (∆y)2 ∼ eK|ε|4(∆y)2 . (2.54)

Therefore, in the regime ∆y � 1/ε, inflation can in principle be achieved with the
less severe tuning |ai +Kia| ∼ ε. However, in this regime the superpotential W = w+ au
is dominated by the linear term, in contrast with the case |ai +Kia| ∼ ε2. Therefore W
changes significantly with ∆y. In the Large Volume Scenario, the overall volume of the
compactification scales as V ∝ |W |. Thus, it is clear that backreaction of Kähler moduli
cannot be neglected in this case. In particular, the inflationary direction will arise as
an admixture of ∆y and of the volume modulus. The danger is thus that for large field
displacements Kähler moduli may be destabilised. We comment on this important issue
in the next section.

2.5 Kähler moduli and backreaction
In this section we briefly comment on the consequences of large displacements of ∆y for
Kähler moduli stabilisation. The discussion is based on moduli stabilisation according
to the LVS [50], which was reviewed in chapter 1. In this framework, complex structures
moduli are integrated out and give rise to a constant tree level superpotential W . The
scalar potential for the Kähler moduli arises through the interplay of α′-corrections in the
Kähler potential and non-perturbative corrections in the superpotential. This effective
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potential for Kähler moduli admits a non-supersymmetric AdS minimum at exponentially
large volume:

V ∝ |W |e2πτs , (2.55)

where τs is the real part of the Kähler modulus of the small cycle. After minimisation,
the LVS scalar potential behaves as VLV S ∼ −|W |2/V3.

In our setup the tree level superpotential is linear in one of the complex structure
moduli, i.e. W = w + au. As long as au � w, the superpotential is approximately
constant and the modulus u does not play any role in the stabilisation of the volume.
However, large ∆y displacements can make the linear term dominant with respect to
w. In this case W , hence the volume according to (2.55), runs with ∆y. Thus the
complex structure modulus u can potentially interfere with the Kähler moduli, through
the volume of the Calabi-Yau manifold.3 Moreover in this case, as we will show, the
dominant contribution to the potential for ∆y comes from the LVS potential. Then our
study of the complex structure F-term potential is not sufficient to establish whether the
∆y direction is suitable for realising quadratic inflation.

In what follows we do not wish to perform a complete analysis of the issue that we
have just presented. Rather, we would like to describe more specifically how this problem
affects our work and suggest that inflation might nevertheless work.

Let us then separately discuss the two setups that were presented in subsections 2.4.1
and 2.4.3 respectively. The first case, where |a| ∼ ε, |ai+Kia| ∼ ε2, is not affected by the
discussion above. Indeed, it was assumed that the inflaton displacement is restricted to
the region ∆y � 1/ε. In this regime we have a∆y � w ∼ O(1) and the superpotential
is always dominated by the constant term.

The second setup requires more attention. The complex structure moduli scalar
potential is under explicit control only for ∆y � 1/ε. In this regime a∆y ∼ ε∆y � w,
when w ∼ O(1). As we argued above, Kähler moduli stabilisation is certainly an
important issue in this case. We focus on the relevance of the LVS potential for the
candidate inflationary direction ∆y. The starting point is the potential

Vtot(∆y) = Veff (∆y) + VLV S(∆y) + Vuplift(∆y), (2.56)

where Veff ∼ |ε|4(∆y)2/V2 is the effective potential computed in section 2.4.3 and
VLV S ∼ |W |2/V3. We have also included a term to uplift to a dS vacuum. Notice
that VLV S and Vuplift depend on ∆y through W and the volume, according to (2.55).
In particular, the effective potential Veff is suppressed with respect to VLV S by ε2V ,
because VLV S ∼ |W |2/V3 ∼ ε2(∆y)2/V3 in the regime ∆y � 1/ε. In order to remain in
the LVS framework, we tune ε such that ε2V � 1. 4 It is therefore clear that in this
setup the relevant potential for ∆y comes from the interplay of the LVS and the uplift

3The interplay between Kähler and complex structure moduli in complex structure moduli inflation
has been also recently studied in [163]. The authors consider a somewhat different scenario, based on
a racetrack scalar potential for the Kähler moduli. They obtain constraints on the running of W from
the destabilisation of the volume. Given these conditions, they point out the difficulties associated with
large field inflation in a model with one complex structure modulus.

4Given a certain size of ε, this bounds the volume V. The limited size of V in large field models of
this type has also been discussed in [101]. A more general study of bounds on the volume can be found
in [166].
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Figure 2.2: Total potential (2.58) as a function of the volume V ∼ eA|a|∆y. The dashed
line intersects the potential at its maximum. Inflation could take place in the region on
the left of the extremum. We normalised the x-axis such that 〈V〉 = 1.

potentials, i.e. Vtot(∆y) ' VLV S(∆y) + Vuplift(∆y). One can now perform a study of this
potential, which necessarily depends on the functional form of the desired uplift. We focus
on a scenario where the latter is provided by some hidden matter fields which develop
non-vanishing VEVs through minimisation of their F- and D-term potentials [167] (see
also [168] for a recent discussion). In this case the total scalar potential (2.56), neglecting
Veff , is given by [168]:

Vtot(V) ∝ e−4πτs

V

V1/3δ −
√

ln
( V
W

), (2.57)

where δ is a numerical factor depending on the U(1) charges of the big cycle modulus
and the matter fields and (2.55) was used. At the minimum one imposes 〈Vtot〉 = 0 to
achieve a Minkowski vacuum. Therefore at the minimum 〈V〉1/3δ = ln

(
〈V〉/|W |

)
. The

total potential (2.57) can thus be rewritten as

Vtot(V) ∝ e−4πτs

V

[
V1/3 − 〈V〉1/3

]
. (2.58)

This potential is monotonically rising from 0 to Vmax = (3/2)3〈V〉, then decreases and
vanishes asymptotically (see figure 2.2).

Since V ∼ e2πτs|a|∆y, the total potential rises monotonically as a function of ∆y up
to (∆ymax/y?) ' 3.4/|a|, where y? is the value of the y at the minimum. The inflationary
range can be now found by canonically normalising ∆y, i.e. by defining ϕ =

√
Kuu∆y.

We conclude that for ϕ ≤ 3.4/(|a|x?) the potential (2.58) is monotonically rising. Notice
that generically this is a sizable range, despite the fact that x is stabilised in the LCS
regime, as we have tuned |a| small.

The results of this section can be summarised as follows. We found that in the setup
described in subsection 2.4.1 the complex structure moduli do not affect Kähler moduli
stabilisation. On the contrary, the setup described in subsection 2.4.3 implies an interplay
between the volume modulus and the inflationary direction ∆y in the regime of large field
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displacements. We found that in this case the LVS and uplift potentials give the dominant
contribution to the total potential for ∆y. By focusing on D-term uplifting from hidden
sector matter fields, we showed that the total potential (2.58) is still monotonically rising
throughout a sizable range for ∆y. As such, it might be suitable for realising large field
inflation. Rather than focusing on a more detailed analysis of the potential, which is left
for future work, we now provide some numerical examples of the effective inflationary
potential including backreaction.

2.6 A numerical example
The aim of this section is to provide numerical support for the findings of subsections 2.4.2
and 2.4.1. We focus on a setup with only four complex structure moduli (i.e. with
u and three more moduli z1, z2 and z3). In particular, by assuming random values
for the coefficients in the scalar potential expanded to second order in δzi, δz̄i and δx,
we determine numerically the displacements δzi, δz̄i and δx by minimising the scalar
potential as a function of ∆y. Furthermore, we compute the effective potential for ∆y
including backreaction.

Before presenting our findings, two comments on the validity of our example are in
order. First of all, since we generate the coefficients of the scalar potential randomly,
we cannot be sure that our results can be reproduced by means of an explicit choice of
geometry and flux numbers (for a study along these lines see e.g. [162]). Secondly, our
example is particularly simple, in that we consider a small number of complex structure
moduli, which in turn implies that the number of available fluxes is also low. Therefore,
the possibility of tuning parameters may be severely constrained in such a setup. Despite
this warnings, we believe that our numerical analysis, while not completely realistic, is
useful in that its qualitative features are not significantly affected by the precise numerical
input. Another numerical example with similar findings is presented in [130].

In order to understand the behaviour of the displacements δzi, δz̄i and δx, we assign
values O(10−4) to all quantities which need to be tuned small. The remaining quantities
are assigned values O(1).

In figure 2.3 we display the real and imaginary parts of the displacements δzi = δvi +
iδwi, as well as the behaviour of δx. We find that for large ∆y & 5 the displacements δv1,
δw1, δv2 and δw2 approach a small constant value of order ∼ 10−4. Also, δx asymptotes
towards a linear function of ∆y with slope and offset of order ∼ 10−4.

The result for the effective inflaton potential (figure 2.4) exhibits the expected be-
havior for large ∆y: For ∆y & 5 the potential approximates a parabola of the form
1.65 · 10−9(∆y)2. However, we find an interesting behaviour for intermediate ∆y: the
potential exhibits a local minimum with non-zero V for ∆y ≈ 3. By adding terms of
the form O(1)(δx)3 etc. to V we can also check explicitly that in the region of interest
(∆y < 100) higher order terms in the expansion of V can be ignored. Interestingly we
find that higher order terms do not destroy the local minimum at ∆y ' 3.

We conclude that inflation could in principle be realised in this model. For ∆y & 5 the
potential is essentially quadratic and can support chaotic inflation. The inflaton would
roll down the potential until it reached the local minimum at ∆y ' 3 where inflation
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Figure 2.3: Plots of the displacements δx (blue), δv1 (red), δw1 (ochre), δv2 (green), δw2

(brown), δv3 (orange) and δw3 (cyan) vs. ∆y. This picture is taken from [130] and was
prepared by my collaborators.
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Figure 2.4: Plots of the effective inflaton potential (blue, solid) and the ‘naive’ inflaton
potential (red, dashed) vs. ∆y. This picture is taken from [130] and was prepared by my
collaborators.

would end.
We can now make an interesting observation based on the fact that the local minimum

has a positive vacuum energy. Recall that Kähler moduli stabilisation following the Large
Volume Scenario leads to an AdS minimum, which needs to be uplifted to give a dS
vacuum. If our analysis in this chapter can be successfully combined with Kähler moduli
stabilisation à la LVS, the positive vacuum energy of the local minimum could provide
the necessary uplift. Our vacuum would then be identified with the minimum we observe
at ∆y ' 3. We take this finding as a hint that the sector of complex structure moduli as
studied in this chapter can in principle give rise to metastable dS vacua.

2.7 Feasibility of tuning in the string landscape
In the previous sections of this chapter, we focused on the backreaction of the complex
structure moduli of F-theory fourfolds on the inflationary trajectory. In particular, we
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understood that the breaking of the shift symmetry of y ≡ Im(u) can be in principle
controlled. More specifically, we started by tuning the coefficient of the quadratic term in
the F-term scalar potential. We then established the existence of a large (transplanckian)
field range along which this coefficient remains small, thereby allowing for slow-roll
inflation.

In this section we will briefly discuss whether the tunings of |a| and its derivatives
are feasible from the point of view of the string landscape. In other words, we will
provide the number of string vacua which are compatible with the requirements |a| � 1,
|ai + Kia| � 1. We will not review in detail how to compute the number of susy flux
vacua in type IIB orientifolds and F-theory fourfolds. Rather, we will only report the
final results of such a computation, whose details for our specific setup can be found
in [130] and in [164].

The computation is based on the following formula derived in [169]:

N (L ≤ L?) = (2πL?)2m

(2m)!
√

det η

∫
M
d2mz det(g) ρ(z), (2.59)

which counts the number of supersymmetric flux vacua compatible with the tadpole
condition L ≤ L? ≡ χ(X)/24 on a CY fourfold X = (T 2 × Y )/Z2. Here ρ is the density
of supersymmetric vacua per unit volume of the moduli spaceM and η is the so-called
intersection form on X (see [169] for details). Furthermore, m = h2,1

− (Y ) + 1.
In our case, the number of supersymmetric flux vacua N which satisfy our tuning

requirements will depend on: the number Jt/2− 1 of complex structure moduli which a
depends on; the number Jf of components of the flux vector Nα that we set to zero in
order to achieve a linear superpotential in u in the F-theory limit; the Betti number b4
of X. The appropriate generalisation of (2.59), described in [130], leads to the following
results for N :

1 Less severe tuning described in section 2.4.3, i.e. |a| ∼ ε, |ai +Kia| ∼ ε:

N (L ≤ L?, |aI | . ε) ∼ (2πL?)b4/2−(Jf+Jt)/2

(b4/2− (Jf + Jt)/2)! · (πε
2)Jt/2, (2.60)

2 More severe tuning described in section 2.4.2, i.e. |a| ∼ ε, |ai +Kia| ∼ ε2:

N (L ≤ L?, |a| . ε, |Dia| . ε2) ∼ (2πL?)b4/2−(Jf+Jt)/2

(b4/2− (Jf + Jt)/2)! · π
Jt/2ε2Jt−2. (2.61)

Let us focus on case 2, since it is more constraining in terms of remaining flux vacua.
In order to understand the magnitude of (2.61), we now specify numerical values for
the parameters ε, Jt, Jf and b4. In subsection 2.4.2 we have seen that backreaction is
under control only for ∆y < 1/ε. Quadratic inflation requires a field range O(15) for the
canonically normalised inflaton field φ =

√
2Kuū∆y. This implies

ε .
1

15
√

2Re(u)
. (2.62)
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Let us then assume Re(u) ∼ O(1), which is enough to suppress the non-perturbative
contributions in u to the Kähler potential. Furthermore, let us take L? = 972, b4 = 23320,
h3,1(X) = 3878 (see [144]). This choice leads to ∼ 101700 F-theory flux vacua, without
any further tuning requirement. Let us now take Jt = 600, Jf � b4. Then approximately
N ∼ 10350 out of the original 101700 vacua are left after imposing our tunings. Notice
that larger values of Jt exponentially suppress this value of N .

The conclusion of this section is as follows: while the tunings of subsection 2.4.2
greatly reduce the available F-theory landscape, for Jt . 600 the latter is still large
enough to allow for a multiverse solution to the cosmological constant problem.

2.8 Summary and conclusions
Let us conclude this chapter by summarising our findings and by providing possible
directions for future research.

We aimed at assessing backreaction of complex structure moduli in one specific
realisation of F-term axion monodromy inflation [101]. In this particular setup, the
inflaton candidate is the imaginary part of a complex structure modulus in the Large
Complex Structure regime (i.e. Re(u) > 1). We considered both type IIB CY orientifolds
and F-theory CY fourfolds. In the type IIB case, y ≡ Im(u) corresponds to the axionic
part of the Kähler modulus of the mirror-dual type-IIA model. We do not require the
other moduli z ≡ zi, i = 0 . . . n to be in the LCS regime as well: we therefore adopt a
so-called “partial large complex structure limit”.

As a consequence of the LCS regime, non-perturbative contribution in u to the
complex-structure-moduli Kähler potential are suppressed. Therefore, Im(u) enjoys the
required shift symmetry at the level of the Kähler potential. For inflationary purposes,
this flat direction has to be lifted. We did so by introducing a linear symmetry breaking
term in the superpotential, i.e. by considering W = w + au. While realisations of
such a model are highly constrained in a type IIB framework, we showed that they can
arise in F-theory fourfolds. Large field slow roll inflation requires the potential for y
to be sufficiently flat over transplanckian field ranges, i.e. for ∆y & 1. A necessary
condition to ensure this feature is clearly a ∼ ε � 1. From a stringy point of view, this
can be achieved by a flux-tuning, i.e. by a delicate cancellation between several larger
contributions to a. Obviously this necessarily implies that a is a function of other fields
of the compactification, in particular a ≡ a(z).

Starting from the model just described we obtained the following results:

1 The model requires additional tunings. In other words, the tuning of a is not
sufficient to guarantee a weak breaking of the original shift-symmetry. In particular,
also the derivatives ∂zia have to be tuned small. The reason of this requirement is
as follows: In a realistic compactification all the complex structure moduli remain
dynamical during inflation, therefore they can be displaced from their values at
the supersymmetric minimum. Thus, the variation of a with respect to z becomes
relevant. More technically, the mass terms in the F-term scalar potential all have
to be tuned small. There are two possibilities to do so:



2.8. Summary and conclusions 65

– Case 1: We impose |a| ∼ ε� 1 and |ai +Kia| ∼ ε2 � 1.
– Case 2: We impose |a| ∼ ε� 1 and |ai +Kia| ∼ ε� 1.

We believe that the need of additional tunings is a general feature of models of
F-term axion monodromy inflation, although not all of them are easy to analyse
due to lack of a complete analytical presentation.

2 Backreaction of complex structure moduli cannot be neglected. In other
words, the displacements δz, δz̄, δx of other complex structure moduli from their
vacuum expectation values lead to significant contributions to the inflationary
potential. Crucially, the displacements can themselves be small and their effects
computable. While this happens only in a restricted range of field displacement ∆y,
the latter is transplanckian, thus in principle suitable for large field inflation. More
technically, we reached this conclusion by expanding the F-term scalar potential to
quadratic order in the displacements and to order ε4. We then found the values
of δz, δz̄, δx which minimise the potential for each value of ∆y. The result of this
procedure is:

– Case 1: Backreaction is under control in the regime 1� ∆y � 1/ε.
– Case 2: Backreaction is under control in the regime 1/ε� ∆y � 1/ε2.

Furthermore, by “integrating out” the displacements δz, δz̄, δx we provided an
expression for the effective inflationary potential including backreaction. In both
cases, such a potential is quadratic in ∆y in the ranges where backreaction is under
control and is thus in principle suitable to realise chaotic inflation. A peculiarity of
case 2 is that backreaction of Kähler moduli cannot be neglected. While inflation
is still in principle possible in this case, the inflationary potential is subdominant
with respect to the effects descending from the backreaction od Kähler moduli, thus
the phenomenology is more complicated in this case. In support of our analytical
analyses, we provided an agreeing numerical example.

3 The required tuning is in principle realisable in the F-theory landscape.
We briefly reviewed how to estimate the number N of supersymmetric F-theory
vacua which are compatible with the tuning of a and its derivatives. As expected, we
found that the latter greatly reduces the available landscape of vacua. In particular,
in case 1, N is suppressed by a factor ε2Jt−2, where Jt/2 is the number of required
tunings. Nevertheless, if such a number is not too large (i.e. . 600) then N is still
large enough to allow for a landscape-type solution of the cosmological constant
problem. Therefore our highly tuned setup is feasible in the framework of type
IIB/F-theory compactifications.

Despite the positive conclusions of our investigation, it is clear that more work is
necessary in order to assess the effects of backreaction of the geometry on inflation. In
particular, the 4D supergravity language that we used throughout the chapter does not
capture certain stringy effects which may significantly affect our findings. Specifically,
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we have in mind α′-corrections to the Kähler potential arising from 7-branes.5 In this
direction, the authors of [170] showed that on CY fourfolds a certain class of F-theory
α′-corrections does not modify the functional form of the Kähler potential (see also [171]).
In addition, in [102] and [172] it was argued that a more complete analysis of large-field
inflation with D7-branes requires the incorporation of higher-derivative corrections to
the 4d supergravity description coming from DBI terms. Unfortunately at the moment it
is not completely understood how these α′-corrections should be included in the Kähler
potential and we are therefore unable to assess their relevance for our work. We hope that,
as in [102, 172], these corrections will lead to an important but not dangerous flattening
of the inflationary potential at large field values.

A more thorough understanding of the backreaction of Kähler moduli in models of
axion monodromy deserves further study as well.

Finally, we noticed an interesting feature of the backreacted potential which deserves
further study. Namely, at small field values, close to the supersymmetric minimum, the
effective potential may exhibit local minima, providing an opportunity for dS uplifting.
These wells may also lead to extremely interesting deviations from the standard phe-
nomenology of chaotic inflation. In particular, the reheating phase may be particularly
rich in these models, similarly to scenarios that will be discussed in chapter 5.

5See [130] for further comments on α
′ -corrections at the N = 2 level on the type IIA dual of our

setup.



Chapter 3

Winding Inflation and deviations
from the Large Complex Structure

regime

Models where the inflaton is identified with a combination of two axions
with subplanckian decay constants represent a possibility to achieve trans-
planckian inflation [31]. In this chapter, we present an implementation of
this strategy in the complex structure moduli sector of Type IIB Calabi-Yau
orientifold compactifications. The flatness of the inflaton potential can be
spoiled by instanton-like oscillations which correspond to deviations from the
shift-symmetric geometry (Large Complex Structure). We focus precisely
on these corrections and elucidate the relation of our model with the Weak
Gravity Conjecture. We set MP ≡ 1, unless otherwise stated.
This chapter is based on the publication [131].

67
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3.1 Introduction

Inflationary model building in string compactifications can shed light on the compatibility
between shift symmetries and Quantum Gravity (QG). On one hand, in string compacti-
fications it is possible to explicitly take into account various sources of symmetry breaking
and assess their effect on the inflationary potential. One such effect is backreaction of
other moduli of the compactification, which was studied in the previous chapter. The
severe tuning of fluxes which we had to require to keep backreaction under control can be
interpreted as evidence for the difficulty of realising LFI compatibly with quantum gravity.
As mentioned in the introduction of this thesis, such difficulties may also be expressed
by certain effective field theory arguments against the robustness of shift symmetries
in quantum gravity [63, 88]. Among them, the Weak Gravity Conjecture (WGC) [63],
reviewed in section 1.2 is arguably the most promising in terms of constraints on large
field axion inflation. Despite important progress (see [36, 65–79, 84, 131] for a partial
collection of relevant results), at the time of writing it is not clear which version, if any,
of the WGC should be used to constrain models where a transplanckian trajectory arises
in the field space of two or more axions [31,32].

This conundrum represents another opportunity for inflationary model building in
string compactifications: that is, to present counterexamples to one or the other version
of the WGC. In this sense, model building becomes a tool to select and refine certain
low-energy expectations on the behaviour of Quantum Gravity, rather than an explicit
description of the UV problems of large field inflation.

According to the discussion above, in this chapter we adopt two attitudes: on one
hand, we investigate the consequences of deviations from the LCS regime for inflation.
On the other hand, we comment on the relation between those deviations and the WGC.
We propose a model where large field inflation occurs along a winding trajectory in
the field space of two axions, in the spirit of the KNP proposal [31] and [106, 107] (see
also chapter 1.2.4 for a review of the basic idea). In particular, we will consider axions
arising from complex structure moduli in the Large Complex Structure (LCS) regime,
as in chapter 2. However in this particular case we will not focus on monomial inflaton
potentials. Rather, the phenomenology of our model is that of natural inflation (see [173]
for a previous realisation of natural inflation in the complex structure moduli sector).
Very interestingly, our model implements a loophole of the WGC pointed out in [68, 69]
(see chapter 1.2.4 for a description of such loophole) and may thus suggest that only the
so-called mild form of the conjecture is respected by string theory.

This chapter is structured as follows: in subsection 3.2.1 we introduce the basic
ingredients of our model. In subsection 3.2.2 we discuss in detail the stabilisation of
complex structure moduli in our setup. In section 3.3 we compute the effective inflaton
potential, including the backreaction of other complex structure moduli. In section 3.4
we explain how our model realises a loophole of the WGC and discuss relation to previous
work. Finally, we summarise the results of the chapter in section 3.5.
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3.2 The model
In this section we introduce a model which realises a winding trajectory in the field space
of two axions. The latter are identified with the axionic components of two complex
structure moduli u and v. Here we find it convenient to define the axionic component as
the real part of the corresponding complex structure modulus, rather than the imaginary
part as in chapter 2. After introducing the ingredients of the model, we describe how the
inflationary trajectory arises from moduli stabilisation.

3.2.1 Kähler potential and superpotential
As already described in chapter 2, complex structure axions enjoy a shift symmetry when
the corresponding saxions are stabilised in the Large Complex Structure (LCS) regime.
Here we consider two complex structure moduli u and v in the LCS regime, while the
other complex structure moduli need not be in the same geometric limit. Thus the Kähler
potential is at leading order invariant under shifts of Re(u) and Re(v), while it generically
does not exhibit any flat direction with respect to other complex structure moduli. The
latter, as well as the axio-dilaton, will be collectively denoted by z. More explicitly:

KLCScs = − log [A(z, z̄, u− ū, v − v̄)] (3.1)

The crucial difference with respect to the model of chapter 2 is that we now add to
(3.1) corrections the LCS geometry. These come in the form of exponentially suppressed
terms in the Kähler potential, in a sense analogous to non-perturbative corrections. In
this specific instance, we only retain the leading “instantonic” terms, which can be taken
to behave as e−2πiu and e−2πiv (see [131] for details). We also assume that the F-term
conditions stabilise u and v such that

e−2πIm(u) � e−2πIm(v) � 1 . (3.2)

As we will show later, inflation proceeds along a direction in which the condition (3.2)
remains true. Therefore, it is consistent to include the corrections to the LCS regime for
v only. The terms of the form e2πiu will instead be neglected. As a result, we will consider
the following Kähler potential for complex structure moduli:1

K = − log
(
A(z, z̄, u− ū, v − v̄) +

[
B(z, z̄, v − v̄)e2πiv + c.c.

])
. (3.3)

At the level of the Kähler potential (3.3), only one shift-symmetric direction remains, i.e.
Im(u).

The second ingredient of our model is the following flux-induced superpotential:

W = w(z) + f(z)(u−Nv) + g(z)e2πiv , (3.4)

where N ∈ Z and we consider N � 1. Notice that, in agreement with our discussion
around (3.2), the superpotential (3.4) includes exponentially suppressed terms in v, but

1Further details about the structure of the quantum-corrected Kähler potential are given in [131],
based on [105,174].
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not in u. Notice that u and v appear only linearly in (3.4). The absence of quadratic
and cubic terms can be achieved by setting to zero some three-form flux numbers. The
discussion is very similar to the one provided in chapter 2.3, therefore we do not repeat it
here (see also [131]). Similarly, N � 1 can be ensured by choosing certain flux numbers
large. From (3.3) and (3.4), we can already anticipate the existence of a flat direction,
which is closely aligned with Re(u).

3.2.2 The inflationary winding trajectory
In this section, we show in detail how the inflationary trajectory arises from the Kähler
potential (3.3) and the superpotential (3.4). We start by discussing moduli stabilisation
in our setup. First of all, we stabilise Kähler moduli according to the Large Volume
Scenario (LVS) [50]. As reviewed in subsection 1.1.4, at leading order the theory for
Kähler moduli is of no-scale type. which implies:

V = eK
(
KIJ̄DIWDJW +KTρT̄σDTρWDTσW − 3|W|2

)
(3.5)

= eKKIJ̄DIWDJW , (3.6)

with I, J = 0, . . . , n− 1 running over all complex structure moduli and the axio-dilaton.
The potential is thus minimised for DIW = 0 for all I. Subleading terms due to α′ and
non-perturbative corrections stabilise the Kähler moduli. We will comment again on the
stabilisation of Kähler moduli at the end of section 3.3, after we compute the effective
inflationary potential.

We now focus on the complex structure moduli u and v, in particular on their
axionic directions Re(u), Re(v). Ignoring the exponential terms in (3.3) and (3.4),
only the combination Re(u)−NRe(v) appears in the scalar potential (3.5), i.e. V ≡
f [Re(u)−NRe(v)]. Furthermore, the function f is minimised at some argument x0,
i.e. at Re(u)−NRe(v) = x0. The latter equation defines a flat direction or “valley” on
the plane parameterised by Re(u) and Re(v). This flat direction is independent of the
metric on field space, i.e. K. It can be parameterised by any combination of Re(u) and
Re(v), except the fixed combination Re(u)−NRe(v). In particular, we find it convenient
to define the fields ψ and φ by:

φ ≡ u , ψ ≡ u−Nv . (3.7)

With respect to these new variables, the flat direction is parameterised by Re(φ) with
Re(ψ) being fixed. Note that varying Re(φ) at fixed Re(ψ) is not the same as varying
Re(u) at fixed Re(v), i.e. the valley is not identical to the coordinate axis Re(u).

Definitions of φ which differ from the one in (3.7) are equally valid. One could
e.g. choose the new variable such that it describes a direction which is orthogonal to ψ
in field space. However, this is a metric dependent statement. Therefore, the definition
of such orthogonal variables would involve elements of the Kähler metric and complicate
the following computations. We prefer to redefine variables according to (3.7).

After the change of variables, the exponential term reads:

e−2πIm(v) = e−2π Im(φ)−Im(ψ)
N ≡ ε� 1, (3.8)
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Re(u)

Re(v)

Figure 3.1: Inflaton trajectory in Re(v)-Re(u)-plane. The winding trajectory is a result of
stabilising one direction in Re(v)-Re(u)-space by an F -term potential due to bulk fluxes.
This picture is taken from [131] and was prepared by my collaborators.

where we defined the small parameter ε for notational convenience. To be precise, ε ≡
e−2πIm(v0), where Im(v0) is the value stabilised by the leading order (non-exponential)
potential. As we will see, shifts in v or, in the new variables, in ψ, φ, will be small enough
during inflation. Thus, ε is now a parameter.

In terms of our new variables the leading parts of K and W are

K = K(z, z̄, Im(φ), Im(ψ)) +O(ε) , (3.9)
W = w(z) + f(z)ψ +O(ε) . (3.10)

The conditions DIW = 0 will in general stabilise all of the moduli z, both Im(φ) and
Im(ψ) as well as the combination Re(ψ).2 In other words, the appearance of ψ inW leads
to the breakdown of the two shift symmetries in u and v to one remaining shift symmetry.
This shift-symmetric direction is parametrised by Re(φ), which does not appear in K and
W . It is our inflaton candidate, which has a flat potential at this stage.

It is easy to see from (3.7) that, at fixed Re(ψ), the field Re(φ) parametrizes a direction
that is nearly aligned with Re(u). Indeed, we have δRe(u) = NδRe(v) such that, at large
N , u changes much more strongly than v. Such a flat direction thus corresponds to a
winding trajectory shown in figure 3.1 and can be very long.

The idea of achieving a long direction due to winding trajectories in the field space
of two axions was proposed in [31] and subsequently many large-field inflation models
in string theory have employed this mechanism [106,107,175–179]. However, in contrast
to previous proposals the winding trajectory in our case arises from an F -term potential
due to fluxes. For example, in [107] non-perturbative contributions to the potential
were employed to realise a winding trajectory similar to ours (see also the discussion in
section 3.4).

2Here DIW = 0 for all I gives rise to 2n + 1 real equations for 2n + 2 real moduli. Note that
DφW = KφW = 0 gives rise to only one real equation Kφ = 0.
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3.3 Effective inflationary potential

We now include the subleading terms ∼ e2πiv = e2πiφ−ψ
N = ε e2πiRe(φ)−Re(ψ)

N and determine
the inflaton potential to order ε2. We also include the backreaction on the remaining
moduli in our analysis (see chapter 2 for an introduction to the problem of backreaction
in string inflation).

We can write K and W of (3.3) and (3.4) as

K = K + δK +O(ε2) (3.11)
W = W + δW +O(ε2) , (3.12)

where δK ∼ δW ∼ ε. We thus have

DIW = (∂IW +KIW ) + (∂IδW +KIδW + δKIW ) +O(ε2) , (3.13)

where the index I runs over all superfields z, ψ and φ. Given our specific structure for K
and W from (3.3) and (3.4) we find that all covariant derivatives can always be brought
into the form

DIW = AI(z, z̄, ψ, ψ̄, φ− φ̄)

+ ε
[
BI(z, z̄, ψ, ψ̄, φ− φ̄)e

2πiφ1
N + CI(z, z̄, ψ, ψ̄, φ− φ̄)e−

2πiφ1
N

]
+O(ε2) , (3.14)

where φ1 ≡ Re(φ) and AI , BI , CI are complex functions of z, z̄, ψ, ψ̄ and Im(φ) which can
be easily calculated for a specific example. Notice that we have reabsorbed the phases
e−2πiψ1/N and e2πiψ1/N in the complex prefactors BI and CI respectively.

The potential is given by

V = eK+δK(KIJ̄ + δKIJ̄)DIWDJW + . . . . (3.15)

However, we will find that during inflation DIW ∼ ε. Thus, to determine V at order ε2
we can ignore δK and δKIJ̄ in the prefactor and only work with

V = eKKIJ̄DIWDJW +O(ε3) . (3.16)

Without loss of generality we can use an orthogonal transformation OJ
I to diagonalise the

Kähler metric. Its eigenvalues λI can then be reabsorbed in a redefinition of the rotated
vectors OJ

I (DJW). The potential becomes

V = eK
n+1∑
I=1
|vI |2 , with vI =

√
λI

∑
J

O J
I (DJW) , (3.17)

where λI are the eigenvalues of the original Kähler metric and O is an orthogonal matrix
which diagonalises the Kähler metric. Most importantly, vI will still have the same
structure as DIW :

vI = ÃI + ε
[
B̃Ie

2πiφ1
N + C̃Ie

− 2πiφ1
N

]
. (3.18)
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We then split vI into real and imaginary parts to write the potential as

V = eK
2n+2∑
α=1

w2
α , (3.19)

where
wα =

{
Re(vα) α = 1, . . . , n+ 1
Im(vα−(n+1)) α = n+ 2, . . . , 2n+ 2 (3.20)

In particular, the wα now have the structure

wα = aα + ε

[
bα cos

(
2πφ1

N

)
+ cα sin

(
2πφ1

N

)]
, (3.21)

where aα, bα and cα are functions of the (2n+1) moduli Re(zi), Im(zi),Re(ψ), Im(ψ), Im(φ),
which we will denote by {ξi}.

We now determine the inflaton potential including backreaction on the moduli {ξi}.
At leading order we found that the minimum of the potential was at DIW = 0 for all
I. In terms of the real parameters this corresponds to aα = 0 for all α. Including the
O(ε) corrections giving rise to the inflaton potential, the minimum of the potential will
now be shifted. The moduli {ξi} will be displaced from their values at the original SUSY
minimum by a small amount δξi. We will find that this displacement is as small as
δξi ∼ ε. To determine the potential up to order ε2 it will thus be sufficient to expand the
parameter aα in δξi about the SUSY minimum:

aα = 0 +Mαiδξ
i +O(ε2) . (3.22)

We only need to keep the leading terms of bα and cα as any further expansion would only
produce subleading terms.

Note that aα is a vector with (2n+2) entries which are linear combinations of (2n+1)
variables. This has the following consequences: we can always perform a rotation on
wα → w′α = Rwα such that a′α = Raα is a vector whose last component is zero: a′2n+2 = 0.
We also change coordinates δξi → (δξi)′ ≡ a′i. The potential becomes

V = eK
2n+1∑
i=1

{
(δξi)′ + ε

[
b′i cos

(
2πφ1

N

)
+ c′i sin

(
2πφ1

N

)]}2

+ eKε2
(
b′2n+2 cos

(
2πφ1

N

)
+ c′2n+2 sin

(
2πφ1

N

))2

. (3.23)

The effect of backreaction can be read off from the above expression. The moduli adjust
such that (δξi)′ cancel the first (2n + 1) contributions to the potential completely. The
effective inflaton potential is then given by the last term alone. Dropping the indices on
b′2n+2 and c′2n+2 we find:

Vinf = eKε2
(
b′ cos

(
2πφ1

N

)
+ c′ sin

(
2πφ1

N

))2

, (3.24)
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which one can rewrite as

Vinf = eKε2λ2
{

sin
(

2πφ1

N
+ θ

)}2

. (3.25)

The effective potential (3.25) realises natural inflation. In order to determine the associ-
ated effective axion decay constant, let us canonically normalise the inflaton. In terms of
φ and ψ, the kinetic terms of u and v read:

L ⊃ Kuū(∂φ1)2 +Kvv̄(∂φ1)2/N2 +Kuv̄(∂φ1)2/N + c.c. (3.26)

Therefore, for large N , we have Kφφ̄ = Kuū + O(1/N) and the canonically normalised
inflaton field is defined by: ϕ =

√
2Kuūφ1 +O(1/N). By means of the latter relation, we

determine the effective potential for ϕ:

Vinf(ϕ) ∼ eKε2λ2
[
1− cos

(
ϕ

f
+ 2θ

)]
, (3.27)

where we have used a trigonometric identity to bring (3.25) to the standard form of
natural inflation. The axion decay constant in (3.27) is given by

f ∼ N

4πIm(u) . (3.28)

The most recent CMB observations [15] require f > 6.8 (at 95% CL), which according
to (3.28) implies the following requirement on the stabilisation of the saxion Im(u):

N

Im(u) > 85. (3.29)

3.3.1 Comments on Kähler moduli stabilisation
As mentioned in subsection 3.2.2, Kähler moduli are stabilised à la LVS in our setup. It
remains to be checked that the inflationary potential (3.27) is always subleading compared
to the LVS potential (1.62). If this were not the case, then Kähler moduli would probably
be destabilised, thereby affecting the inflationary trajectory in a potentially catastrophic
way.3 A detailed analysis of this aspect of our model can be found in [131] and in [164].
Here we just point out that the stabilisation requirements can be met in our setup for
reasonable vales of parameters and allowing a mild tuning of the coefficient f(z) (to one
part in ten) in (3.4).

3.4 Relation to the WGC
In this section, we wish to show that the model developed in this chapter realises a known
loophole of the mild form of the WGC.4

3See instead [100, 130] and in particular [180] for a discussion of Kähler moduli backreaction on the
inflationary trajectory, leading to a flattening of the potential.

4For a discussion of the relation of our model to other effective field theory expectations on QG (e.g.
arguments based on gravitational instantons), see [131] and [164].
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Our focus in this section is the extension of the WGC to axions which descend from
dimensional reduction of gauge potentials and associated instantons, discussed already
in [63] and in a stringy setup in [69], and reviewed in subsection 1.2.3. Unfortunately,
our setup is rather different. Our axion is the real part of a 10D metric fluctuation in
the LCS regime, while the instanton arises as a correction to the LCS geometry, and is
therefore a purely geometric effect. There is no gauge potential associated to ϕ, therefore
it is not clear to us how to extend the results of [69] to this specific setup (see [131] for a
more detailed discussion on this point).

Nevertheless, we will assume that the WGC for axions and instantons applies to our
case as well and discuss how our model evades its constraints. Let us therefore begin by
recalling the loophole of the WGC pointed out in [68, 69]. Consider an axion φ with the
following instanton-induced potential:

V = Λ4
1e
−m

[
1− cos

(
φ

f

)]
+ Λ4

2e
−M

[
1− cos

(
kφ

f

)]
, (3.30)

where k ∈ Z. Here m and M are the actions of two instantons. The potential in (3.30)
is a sum of two periodic terms: the first one with periodicity f and instanton action
m and the second one with a smaller periodicity f/k and instanton action M . Let us
then assume M � m, which implies that the first term dominates with respect to the
second contribution. If we take f > 1 the first term realises a realistic model of natural
inflation but violates the WGC. The second term does not violate the WGC as long as
f/k < 1. The first term describes long oscillations, upon which there are short oscillations
induced by the second term. These “fast” wiggles are potentially dangerous for slow-roll
inflation, in that they can spoil the flatness of the trajectory. However, since M � m,
they are completely suppressed and do not affect the inflationary potential. As argued
in [68, 69], the model in (3.30) is compatible with the mild form of the WGC for axions
and instantons. The latter requires the existence of an instanton with action S and an
axion with decay constant f , such that f . 1/S < 1. Crucially, this instanton does not
have to be the lightest one, as the strong form would require. This is precisely the case
of the potential (3.30).

Very interestingly, this is also the case for the model considered in this chapter.
Indeed our setup features two axions Re(u) and Re(v) with two associated instanton
induced terms e2πiu and e2πiv. We then assumed that the saxions can be stabilised
such that e−2πIm(u) � e−2πIm(v). Our inflationary axion is given by φ = Re(u) at fixed
Re(ψ) = Re(u) − NRe(v). The canonically normalised field is given by ϕ =

√
2Kφφ̄φ1

and couples to the instantons as follows:

A1e
−2πv2e

2πi ϕ
feff and A2e

−2πu2e
2πi Nϕ

feff , (3.31)

where feff = N
√

2Kφφ̄. When feff > 1 (which can be achieved by taking N � 1),
this realises the loophole described below (3.30). In particular, the first term in (3.31) is
responsible for large field inflation but violates the WGC, while the second term satisfies
the WGC and does not affect the inflationary potential.

This feature distinguishes our model from previous proposals, such as [107]. The
latter model realises axion alignment with two periodic terms and two axions. Therefore,
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as explained in [68], it violates the WGC. Moreover, the authors employ a superpotential
of the form:

Winf = A1e
− 2πψ

f1 e
− 2πφ

f2 + A2e
− 2πψ

f3 , (3.32)
with f2 superplanckian and f1, f3 subplanckian. In their model, the imaginary part of
φ is the inflaton candidate. It appears only in one term in the superpotential, with a
large decay constant. Therefore, there seems to be no other term in φ1 which satisfies
the WGC and which is more suppressed than the inflationary one. Note that in principle
one can enforce the WGC by adding other non-perturbative terms in φ, and making sure
that a hierarchy in the decay constants can still be realised.

3.5 Summary and conclusions
Inflationary model building in string theory can help understand which effective field
theory argument, if any, can be used to constrain large field inflation.

In this chapter, we presented a new model which realises natural inflation along a
winding trajectory in the field space of two axions. The basic ingredients of the model
are the following:

• Axions: the real parts of two complex structure moduli u and v of a CY threefold
in the LCS regime. Other complex structure moduli do not need to be in the LCS
regime.

• “Instantons”: exponentially suppressed corrections to the LCS geometry. We
assumed that the imaginary parts (saxions) of u and v are stabilised such that
e−2πIm(u) � e−2πIm(v). Accordingly, only the instanton-like terms in v were included
in the Kähler potential and in the superpotential.

• Stabilisation: occurs via minimisation of a flux-induced F-term scalar potential.
Neglecting exponentially-suppressed effects, the saxions Im(u) and Im(v), as well
as the combination Re(u)−NRe(v) are fixed at the minimum.

• Winding trajectory: at leading order the scalar potential features a flat direction
which is closely aligned to Re(u). This represents a winding trajectory in the field
space of Re(u) and Re(v).

• Inflationary potential: exponentially suppressed terms in Im(v) were employed
to lift the flat direction. In particular, the induced potential realises natural
inflation. By an appropriate choice of fluxes, the inflaton decay constant can be
made transplanckian.

Crucially, our model evades the constraints coming from the Weak Gravity Conjecture
(WGC) by realising a well-known loophole of the conjecture. More precisely, the model
satisfies the mild form of the WGC, but violates the strong form. The crucial assumption
that allowed us to evade the WGC is that a certain hierarchy between instanton-like
corrections to the LCS geometry can ensured by means of moduli stabilisation. While we
do not see any fundamental obstruction, it remains to be checked that this scheme can
be implemented in an explicit setup.



3.5. Summary and conclusions 77

Very interestingly, the model presented in this chapter may be considered as evidence
that only the mild form of the conjecture is respected by string theory.





Intermezzo
Constraints on Large Field Inflation

from Effective Field Theory
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Chapter 4

Axion Monodromy and the Weak
Gravity Conjecture

Transplanckian field displacements might be constrained by means of effective
field theory expectations about the behaviour of Quantum Gravity. Among
these “folk theorems”, the Weak Gravity Conjecture (WGC) [63] has recently
played a central role. In this chapter, we apply the generalised version of the
conjecture to models of axion monodromy inflation. Furthermore, we provide
a stringy strategy to extend the electric WGC for particles and gauge fields
to any (p + 1)-form gauge potential with associated p-dimensional charged
objects.
This chapter is based on the publication [132].

81
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4.1 Introduction
So far we have analysed the problem of Large Field Inflation from a stringy model building
perspective. In doing so, we adopted the following attitude: by studying realisations
of inflationary models in a UV-complete setup, we aim at understanding the effects of
certain UV degrees of freedom on a transplanckian trajectory. In particular, in chapter 2
we investigated limitations due to backreaction of the compactification geometry. In
chapter 3 we instead noticed that corrections to the geometry of the compactification
manifold induce instanton-like terms in the inflationary potential, thereby realising nat-
ural inflation. In this latter case the UV degrees of freedom may play a positive role,
by providing opportunities to evade the consequences of the Weak Gravity Conjecture
(WGC).

The latter has been used in the literature to constrain models of axion inflation from
an effective field theory perspective. While it is not clear yet which version, if any, of the
WGC should hold, several constraints have been derived for models of N-flation [32] and
decay constant alignment [31] (see subsection 1.2.4 for a brief review and [36,65–79,84,131]
for a partial list of such constraints).1 The implications of the WGC for models of axion
monodromy inflation are less clear (see however [69]).

This chapter consists roughly speaking of two parts. In the first part we aim at
deriving constraints on axion monodromy inflation from the WGC. Our attitude will
be quite different from the one adopted in the previous chapters. Here we will use
the language of effective field theory, rather than analyse explicit string constructions.
Our analysis is also relevant for the recently proposed relaxion solution to the hierarchy
problem [181] (see also [182–189]), which also requires transplanckian field displacements.

In this regard, developing an idea of [69], the authors of [108] have applied theWGC for
domain walls to relaxion monodromy. Their analysis rests on interpreting the monodromy
as being due to the gauging of the discrete shift symmetry of an axion by a 3-form
potential à la Kaloper-Sorbo (KS) [109, 110] (see also [111]). The WGC for the original
3-form gauge theory says that this system comes with light domain walls which, in turn,
threaten the slow-roll field evolution in the resulting monodromy model. In what follows,
we will advocate a different point of view on constraints coming from 4D membranes in
models of axion monodromy (inflation and relaxation).

In the second part of this chapter we aim at making progress in a more conceptual
direction. Namely, we will describe some insight concerning extensions of the WGC to
generic p-dimensional object in d-dimensions (see [69,73,75,108] for previous work in this
direction).

This chapter is structured as follows. Section 4.2 is devoted to phenomenological
considerations. In particular, in subsection 4.2.1 we describe the presence of domain walls
in 4D effective field theory models of axion monodromy and deduce the constraints coming
from the electric WGC. In subsection 4.2.2 we assume the magnetic WGC for domain
walls and extract the consequences for Axion Monodromy Inflation. In subsection 4.2.3
we motivate the extension of the magnetic WGC to domain walls and in subsection 4.2.4
we comment on the relation to KS membranes. Section 4.3 is devoted to a geometric

1Other effective field theory arguments may or may not constrain large field inflation: in particular
see [36,37] for gravitational instantons and [88,89] for arguments based on entropy.
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interpretation of the WGC. Finally, we offer our conclusions in section 4.4.

4.2 Axion monodromy and Domain Walls
In this section we aim at obtaining constraints on models based on axion monodromy
(inflation or relaxation). We begin by pointing out the existence of light domain walls in
those models. Interestingly, these are different from the membranes inherent to the KS
approach to axion monodromy. They belong purely to the effective field theory regime
and do not descend from a higher dimensional gauge theory. We apply the WGC to these
low energy domain walls and then discuss the relation of our result to the recent analysis
of [108].

4.2.1 Light domain walls
We start by adopting a naive 4D effective field theory point of view of axion monodromy
models. The Lagrangian of such a model is given by:

L = (∂φ)2 − V (φ/f), (4.1)

and the inflationary (or relaxion) potential generically consists of a polynomial part and
an oscillatory term, e.g.:

V (φ) = 1
2m

2φ2 + α cos
(
φ

f

)
(4.2)

In writing a cosine term in (4.2), we are assuming that the axion φ couples to instantons.2
The results that we will derive in the following subsections rely on the presence of
this oscillatory term. Let us remark that, in models of cosmological relaxation, such
a contribution is crucial. Furthermore, in models of axion monodromy and relaxation
one typically has (and for relaxation actually needs) α ≡ α(φ), see e.g. [93,190,191].

The cosine term generates ‘wiggles’ on top of the quadratic potential. For suitable
values of m,α and f , namely for α/(m2f 2) > 1, the potential is characterised by the
presence of local minima, see figure (4.1). In this chapter we focus precisely on this case.
Slow-roll inflation starts at large values of φ, where the quadratic potential is dominant
and there are no local minima. Eventually, the field reaches the region where the wells
become relevant and minima appear. We wish to constrain the model with potential (4.2)
by focusing on this latter region. ‘Wiggles’ are related to the existence of domain walls:
once the inflaton (relaxion) gets stuck in one of the cosine wells, there is a nonvanishing
probability to tunnel to the next well, which is characterised by a smaller value of the
potential. This happens by the nucleation of a cosmic bubble created by a Coleman-De
Luccia instanton, containing the state of lower energy and its rapid expansion.

In order to understand this point, let us adopt a coarse-grained approach: namely,
let us consider a model with V (φ) as in figure (4.1) at spatial distances which are larger
than the inverse “mass” V ′′(φ)−1. At these distances, φ is non-dynamical. The “wiggles”

2Even if axions without coupling to gauge theory or stringy instantons exist, the presence of
gravitational instantons (see [36] and references therein) appears unavoidable.
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Φ

V

Figure 4.1: Monodromy potential, as in
(4.2). Here α/(m2f 2) ' 50.

Φ

V

Figure 4.2: Monodromy potential, as in
(4.2). Here α/(m2f 2) ' 25.

are therefore invisible, and what remains is a set of points, corresponding to the local
minima of the original potential. These points are naturally labelled by an integer index
n. Therefore the energy of the corresponding configurations is just:

E ' (1/2)m2φ2
min '

1
2m

2(2πf)2n2, n ∈ Z. (4.3)

Such a discrete set of vacua can be described in terms of a four-form field strength
F4 = dA3.3 Indeed, due to gauge symmetry, the theory of a free 3-form potential in
4D has no dynamics (as e.g. in [52, 192–194]). The points corresponding to the local
minima of the original potential for φ are separated by domain walls. Therefore, the
3-form lagrangian which provides an effective description of the axion system is:

L = 1
2e2

∫
F 2

4 +
∫
DW

A3, (4.4)

where we have included a phenomenological coupling of A3 to domain walls. It is easy
to see that F4 changes by e2 across a membrane, such that F 2

4 /(2e2) ≡ (1/2)e2n2. By
comparison with (4.3), we find: e = 2πmf .

The tension of the domain wall, i.e. the surface tension of the bubble containing the
state of lower energy, can be estimated as the product of the characteristic thickness
b ∼ ∆φ/

√
V and height of the domain wall V ∼ α (see e.g. [64]). One obtains: TDW ∼√

V∆φ ∼ α1/2f . As we make the domain walls lighter, i.e. as we lower the value of α,
the wiggles become less pronounced, see figure (4.2).

In order to ensure that the inflaton (or relaxion) can slowly-roll for a sufficiently large
distance, one needs to make sure that the height of the wiggles, i.e. the tension of the
domain walls, is small enough.4

The crucial point is that lowering the tension of these domain walls goes precisely in
the same direction as required by the WGC. Let us recall that, in its original form [63], the

3Jumping ahead, we note that our use of a four-form flux is therefore different from the approach
of [109, 111], where F4 is introduced as the field strength of a 3-form which gauges the shift symmetry
of the 4D dual of φ. This will be discussed in subsection 4.2.4.

4Nevertheless, the last stages of inflation (or relaxation) may arise as continuous nucleation of cosmic
bubbles.
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conjecture concerns 4D U(1) gauge theories with coupling e and gravity. The electric side
of the conjecture requires that a particle of mass me exists such that: eMP/me & 1. The
statement can in principle be extended to any (p+ 1)-form gauge theory in d dimensions,
with p-dimensional electrically charged objects. The generalisation to domain walls, i.e.
p = 2 in 4D, is actually not straightforward and may present subtleties (see [75, 108]).
For the moment, we assume that the conjecture is valid for domain walls; we motivate
our assumption in detail in section (4.3). Therefore, we have the following constraint on
the tension and coupling of the domain wall:

WGC: T . eMP . (4.5)

Applied to inflationary (relaxion) models, this condition leads to T . mfMP . The
conjecture requires a small tension, which is what is needed to have slow-roll inflation (or
relaxation).

Therefore, we are unable to constrain Inflation/Relaxation models by this logic.

4.2.2 Constraints from the magnetic WGC
In the previous subsection we have seen that the electric side of the WGC, as applied
to light domain walls, does not constrain models based on axion monodromy. However,
there exist two versions of the conjecture.5 The aim of this subsection is to show that
the magnetic side imposes a non-trivial constraint on the field range in models of Axion
Monodromy (inflation or relaxation).

We start by providing a statement of the magnetic WGC in the form of a constraint
on the cutoff Λ of a gauge theory. To this aim, let us proceed by dimensional analysis. We
consider a (p+ 1)-form gauge theory with coupling ep,d in d dimensions with electrically
charged Dp-branes and magnetically charged D(d− (p+ 4)) branes. The magnetic WGC
simply states that the minimally charged magnetic brane should not be a black brane.
The tension of a black brane is TBHd−(p+4) ∼ Md−2

d Rp+1, where R is the Schwarzschild
radius of the black brane and Md is the Planck scale in d dimensions. The tension of
a magnetically charged brane can be estimated by integrating the field strength outside
the core, as in the familiar case of the magnetic monopole. In d dimensions and for a
p+ 1-form, the coupling has dimensions [E](p+2)−d/2. Therefore:

Td−(p+4) ∼
Λp+1

e2
p,d

. (4.6)

The magnetic WGC then requires:

magnetic WGC: T . TBH ⇒ Λ2(p+1) . e2
p,dM

d−2
d . (4.7)

Although this derivation does not go through in 4D for p = 2 (since we cannot make sense
of D(−2) branes), we conjecture “by analytical continuation” in (p, d) that the constraint
applies. We therefore obtain:

Λ . e1/3M
1/3
P . (4.8)

5There exists yet another version of the conjecture, demanding that the states satisfying the WGC
are within the validity range of the effective field theory [73]. In this chapter, we do not consider it,
since, in string models, this appears not to hold if one identifies the KK scale with the cutoff. Also, there
are further variants of the electric version (“strong”,“mild”,“lattice”), which we do not discuss.
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This is the constraint we were after. We will provide more support for it later on.
We now apply (4.8) to axion monodromy models. As we have seen in the previous

subsection, the coupling e is related to the axion parameters by: e = 2πmf . Therefore, we
get the condition Λ . (2πmfMP )1/3. The relevant constraint is now obtained by requiring
that the Hubble scale is below the EFT cutoff, i.e. H = (V/3M2

P )1/2 = 1/
√

6·(m/MP )φ .
Λ. This gives an upper bound on the field range:

φ

MP

.
(
MP

m

)2/3 (2πf
MP

)1/3

. (4.9)

As it stands, the constraint (4.9), although non-trivial, represent only a mild bound on
the field range. With m/MP ∼ 10−5, and 2πf/MP ' 1 one gets φ/MP . 103, which
safely allows large field inflation. We expect that our dimensional analysis estimate is
modified only by O(1) factors (see section 4.3). However for models with small f the
constraint (4.9) may become relevant.

It is a generic expectation that, in models of large field inflation, the field range cannot
be parametrically large. The discussion of this section confirms this expectation: In the
case of axion monodromy, the magnetic side of the WGC limits the field excursions.
However, phenomenologically relevant field ranges are allowed.

Let us now very briefly discuss the corresponding constraint for models of cosmological
relaxation [181] based on monodromy [108]. In this case, we take our axion φ to be the
relaxion, and couple it to the Higgs field of the standard model. Therefore, the relaxion
potential is:

Vφ = 1
2m

2φ2 + αv cos
(
φ

f

)
+ (−M2 + gφ)|h|2, (4.10)

where M is the cutoff scale and αv ≡ α(h = v). As discussed in [181], the following
constraints apply to this class of models:

∆φ &M2/g to scan the entire range of values of the higgs mass. (4.11)
H . α1/4

v to form the low energy barriers. (4.12)
H > M2/MP for the energy density to be inflaton dominated. (4.13)

Furthermore, the slow roll of φ ends when the slopes of the perturbative and non-
perturbative potential terms are equal, i.e.: m2φ ∼ αv/f . This should happen at a
generic point in the range of φ. Hence, from (4.11), φ ∼M2/g and thus:

m2M2

g
∼ αv

f
. (4.14)

We can now find the consequences of the magnetic WGC for this class of models. We
apply (4.8) and require, as in the inflationary case, H . Λ . (2πmf)1/3M

1/3
P . We express

f in terms of αv by means of (4.14). By also imposing (4.13), we are able to constrain
the cutoff M as follows:

M .
(2πg
m

)1/8
α1/8
v M

1/2
P . (4.15)
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A similar constraint was given in [108] (we review this approach in section 4.2.4), where
a more detailed discussion can also be found. Even if αv is as low as f 2

πm
2
π this constraint

is not fatal.
Before moving on to the next subsection, we would like to remark on a well-known

problem of all the axion models, which also affects our setup. In these models there are
always instantons associated to the slowly-rolling axion. If they all contribute to the
axion potential, there is no flat direction on which to inflate (relax). It is a non-trivial
task to suppress the higher order instantons (our ‘wiggles’), and strategies to do so and
evade the WGC have been an important focus of recent work (see [131] for a proposal
which realises a loophole of the WGC [68,69]).

Let us now motivate, as promised, our extension of the magnetic WGC to generic
p-dimensional objects.

4.2.3 String Theory and the WGC
It has been suggested in [108] that there is no magnetic side of the conjecture for domain
walls, a statement which conflicts with our previous discussion. Here we would therefore
like to motivate our use of the magnetic WGC. From now on, we work in units where
MP ≡ 1.

From the point of view of string theory, there are two possible ways of satisfying
the electric WGC. On the one hand, string compactifications may provide light objects
whose tension and coupling satisfy the inequality T . e. However, Dp-branes in 10D
are extremal, i.e. they marginally fulfil the WGC. Under compactifications, the resulting
objects are not guaranteed to be extremal, unless SUSY is preserved. Therefore, it is not
clear whether objects arising from string compactifications could violate the WGC.

On the other hand, there exists another mechanism by which the conjecture can be
satisfied in string compactifications: It is the presence of a maximal scale up to which a
4D effective field theory description is valid. In many cases such a cutoff is set by the KK
scale MKK ∼ 1/R, where R is the typical length scale of the compactification manifold.
Above MKK , one has to work with the full 10D theory. In particular, if the tension of
the objects descending from string theory is larger than MKK , then these objects simply
do not exist in the low energy effective field theory. Therefore, by lowering the KK scale,
one can ensure that the WGC is not violated, by simply removing the dangerous objects
from the spectrum of the low energy theory. A low cutoff is precisely what is required by
the magnetic side of the WGC for a weakly coupled theory.

Explicitly, consider a q-dimensional object descending upon compactification from a
p-dimensional brane in 10D. The ratio between its tension and the appropriate power of
the KK scale is given by: τq/M q+1

KK ∼ Mp+1
s Rp+1/gs. We are assuming that we are in

a controlled regime, i.e. either gs < 1 or R > 1 or both. Therefore as R increases the
corresponding object simply disappears from the 4D theory.

The bottomline of this discussion is that, in many cases, string theory satisfies the
WGC by imposing a low cutoff to the 4D effective field theory, not by providing objects
which are light enough. In other words, setups of string compactifications satisfy the
magnetic side of the WGC and, as a consequence, the electric side as well.

This is the reason why we think that the magnetic constraint is the more fundamental
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conjecture among the two version of the WGC. Therefore, we assume that the magnetic
WGC is valid for any p-form, and in particular for domain walls.

Recently, the electric WGC has been applied to another class of membranes in the
context of realisations of axion monodromy models à la Kaloper-Sorbo (KS) (see [109] for
the KS proposal, [108] for the recent developments) . In the next subsection we describe
the relation of this work to our findings.

4.2.4 Relation to domain walls à la Kaloper-Sorbo
We begin by reviewing the strategy of [69, 108] to constrain nucleation rates in models
based on axion monodromy. In this subsection, we follow the notation of [108], which
differs from the one used in the previous subsections.

The KS proposal [109] to implement monodromy models in a 4D setup is to introduce
a 3-form gauge potential A3 and to couple the corresponding 4-form field strength to the
axion:

L = −1
2 (∂µφ)2 − 1

2 |F4|2 + gφF4, (4.16)

where |Fp|2 ≡ 1
p!Fµ1...µpF

µ1...µp . Notice that this setup is different from the dual picture
that we have described in section (4.2.1). We used just one scalar field theory with a
discretuum of vacua, which corresponds to a gauge theory with the same discretuum
of vacua. By contrast, the lagrangian in (4.16) consists of a scalar field theory (first
term) and a gauge theory (second term), each with its own set of vacua. The third term
couples these two theories. The potential A3 couples to fundamental 4D domain walls via
S ∼ q

∫
2−branesA3. The field strength F4 varies across the membranes and is quantised in

units of the membrane charge, i.e. F4 = nq (?1). A shift in the value of F4 is a part of
the residual gauge symmetry of the KS lagrangian. Under this symmetry, also the scalar
field shifts:

φ→ φ+ 2πf, nq → (n− k)q, n, k ∈ Z, (4.17)

with the consistency condition 2πfg = kq, and f being the axion periodicity. Due to this
residual gauge symmetry, we are left with only one set of vacua, labeled by one integer.

The quadratic potential for φ arises from integrating out the field strength F4:

VKS = 1
2(nq + gφ)2. (4.18)

The crucial point is that each value of n corresponds to a different branch of the potential.
The gauge symmetry (4.17) provides a way to identify these branches. In this sense,
crossing a membrane corresponds to an alternative way to move one step down in
the potential. This is different from rolling over or tunneling through a “wiggle” of
figure (4.1). The KS membranes can potentially spoil the slow-roll behavior allowed by
small “instanton-induced wiggles”. As usual, the probability for such tunneling events is
described in terms of a nucleation rate for the corresponding bubbles.

Since this probability is exponentially suppressed, one might wonder whether this
effect represents a concern for Axion Inflation. The nucleation rate Γ is given by e−B,
where B ∼ T/H3 in the relaxion regime (see [195]).
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In [69], the authors show that a strong suppression of the nucleation rate requires a
violation of the WGC. More recently, in [108], the authors follow the same direction to
constrain models of relaxion monodromy. In this case, the WGC requires T . 2πfg. By
requiring B > 1, the authors obtain a constraint which is similar to (4.15). In particular,
the parametric dependence on αv is the same. Furthermore, the authors of [108] obtain
a stronger constraint by requiring that B > N , where N is the number of e-folds. This
requirement arises from demanding that there are no domain walls in the part of the
universe created during the above N e-folds. Such a constraint cannot be obtained by
using our low energy wiggles, because the latter arise only much later, when inflation is
in its last stages.

Applied to inflationary models, T . eMP and T � H3 lead to the same constraint
that we have found in (4.9). However, we have obtained it by using a different, arguably
simpler, effective field theory point of view, based on the magnetic, rather than the
electric WGC. Notice also that the objects that we have described in section (4.2.1) can
be naturally lighter than the KS membranes.

We have seen that the Kaloper-Sorbo procedure consists in gauging an axionic theory
by a 3-form potential. The original theory of a free 3-form potential has domain walls
to which the WGC can be applied. However, gauging corresponds to a discontinuous,
qualitative change of the model.6

It is hence not clear whether the relevant parameters, i.e. the tension and the coupling,
and therefore the consequences of the WGC, remain unchanged. In particular, it may
be hard to check the changes of the coupling and tension of the domain walls, since the
dualisation procedure described in [111] does not always lead to an explicit determination
of the F4 lagrangian. Therefore, it is desirable to work with constraints which do not
appeal to the situation before gauging. Crucially, after the gauging both the fundamental
KS domain walls and the ‘wiggle-induced’ effective domain walls are present.

We are then left with two possibilities: The first is that the electric WGC has to be
separately satisfied by both the KS and by the effective domain walls described in this
chapter. In this case the constraint given in [108] and based on the electric WGC for the
(heavier) KS domain walls applies. The same constraint arises as a consequence of the
magnetic WGC. Everything is consistent and the present chapter provides an alternative
derivation of the same constraint.

The other possibility is that the electric WGC needs to be satisfied only by the
lightest domain walls. These are the effective domain walls, but due to their lightness no
interesting constraint arises. The heavier KS domain walls provide no further constraints.
Thus, the magnetic WGC provides the only useful constraint, as described in this chapter.

Our conclusion is that in both cases the field range is constrained according to (4.9).
In the first case the latter comes from the electric side applied to KS membranes, as
explained in [69, 108], and from the magnetic side applied to “wiggles” membranes. In
the second point of view, which we adopt in this chapter, no UV information on the origin
of the gauge theory is required and (4.9) follows only from the magnetic WGC.

6In particular, the conceivable limiting procedure of taking the gauge coupling to zero and hence going
from the gauged to the ungauged case is forbidden by the WGC itself. Also, in string constructions
gauging often corresponds to (necessarily discrete) changes in the flux configuration or even in the
geometry of the compact space.
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4.3 The WGC as a geometric constraint
In this section we want to address the extension of the WGC to domain walls. We will
do so in the framework of 10D string theory compactified on a CY manifold.

4.3.1 Previous approaches and our perspective
In [75], the authors provide the following statement of the WGC for any p-form in d
dimensions: [

α2

2 + p(d− p− 2)
d− 2

]
T 2
p ≤ e2

p,dq
2Md−2

d . (4.19)

In the absence of a dilaton background, the inequality is degenerate for p = 0 (axions)
and p = d − 2 (strings). Moreover, for p = d − 1, i.e. for domain walls, the inequality
cannot be satisfied, as already pointed out in [75]. Therefore, one may worry that there
is no statement of the electric WGC for domain walls.

An idea to extend the WGC to generic p-dimensional objects, as noticed in [108], is
to use string dualities. This follows very closely the strategy of [69], where the conjecture
is extended to axions and instantons. In that case, the authors consider type IIB on
a CY 3-fold with D1 branes and their associated C2 gauge potential. Wrapping the
branes on 2-cycles and compactifying to 4D, one obtains a theory of C2 axions and D1
instantons. This type IIB theory is then T-dualised to type IIA with D2 branes and their
associated C3 potential. Since this theory is strongly coupled, one actually uses the M -
theory picture, introducing a further compact dimension. Again, by wrapping the branes
around 2-cycles and compactifying, one obtains a 5D theory with a U(1) gauge field and
M2 particles. This is the original content of the WGC, which can therefore be applied
to this particular 5D setting. Finally, one can translate the constraints obtained on the
particles/vector fields side to the axion/instanton side, by using the T-duality relations
between IIA and IIB couplings and mass scales.

In [108], the authors propose to implement the very same idea to constrain domain
walls. Starting with a 10D theory with p = d−1 objects, they propose to T-dualise twice
along directions transverse to the branes, so that the dual theory is of the same type but
with p = d− 3 branes. One can then apply (4.19) to the latter setup, then translate the
constraints to the domain walls side.

We agree with the authors of [108] that the apparent problems of the WGC for
domain walls disappear when considering them in a string theory setup. Notice that
the dualisation procedure works for any p-dimensional object in 10 dimensions reduced
to a q dimensional object in d dimensions. Indeed the moduli of the theory, i.e. the
compactification radius and the string coupling, disappear from the charge-to-tension
ratio on both sides of the duality. Were this not the case, we would not be able to extract
a sensible constraint on the objects in the 4D theory.

This property suggests that the WGC in 10D string theory can be phrased as a
constraint on some geometrical data of the particular compactification manifold, inde-
pendently of the specific p-dimensional object. Once the geometry of the compactification
manifold is constrained, one can extract the consequences for any other q-dimensional
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object in the theory. This is the novel point of this section. Our focus in this section is
the electric statement.

Our approach implies that there is no need of T-dualising in order to extend the WGC
to objects other than 4D particles. In the next subsection, we will verify this statement
focusing on the case of domain walls. Let us therefore outline the strategy to extend
the conjecture to any p-dimensional object, without using dualities. One starts with a
type IIB setting with Dp branes wrapped on p-cycles of the internal manifold X. Upon
compactification, this leads to a 4D theory of particles and gauge fields. One then applies
the standard WGC to this setting: the result is a constraint on the metric on the space of
p-cycles in X. For example, in [69] the authors obtain a constraint on Kab ∼

∫
wa ∧ ?wb,

where wa is a basis of H2(X,Z). Once this constraint is obtained, it is valid for any
brane setup on the same CY. One can then consider Dq branes, with p 6= q wrapped on
the same p cycles and obtain inequalities for the tension and couplings of the 4D theory
derived by compactification on X.

4.3.2 Computation
Following our discussion, we now perform an explicit computation to prove our claim.
We first focus on obtaining particles in d = 4. As a starting configuration we choose type
IIB with D3 branes compactified on a CY 3-fold X. Other choices are equally valid. We
work in the conventions of [135]. The relevant 10d action reads:

S10 ⊃
1

2κ2
10

∫
M10

[
1
g2
s

R10 ? 1− 1
4F5 ∧ ?F5

]
+ µ3

∫
D3
C4 (4.20)

where κ2
10 = (1/2)(2π)7α′4 and µ3 = 2π(4π2α′)−2. Now let us perform dimensional

reduction, by wrapping the D3 on 3-cycles of X. We focus on the gauge kinetic term.
We consider a symplectic basis wi = (αa, βb) of H3(X,Z), i.e. s.t.:∫

X
αa ∧ βb = δba, (4.21)

and the other intersection numbers vanish. By Poincaré duality, one can define the
integral charges:

qki =
∫

Σk
wi =

∫
X
wi ∧ wk, (4.22)

where Σk is a 3-cycle in X and wk is its dual form. By (4.21), these charges are either
vanishing or unit.

The 4D action is obtained by expanding the five-form flux and the four-form potential
in terms of the symplectic basis of H3(X,Z):

F5 =
N∑
i=1

F i
2(x) ∧ wi(y), C4 =

N∑
i=1

Ai1(x) ∧ wi(y), (4.23)

then integrating over X. Here N is the number of 3 cycles of X. D3-branes wrapping a
3-cycle Σ generate particles in the 4D theory. For the moment being, let us focus on one
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such cycle. We will later extend our results to particles descending from different cycles.
Let us introduce the metric on the space of 3-forms:

Kij ≡
∫
X
wi ∧ ?wj. (4.24)

Before moving to the 4D theory, an important remark is in order. This concerns the
self-duality of F5, i.e. ?F5 = F5. This constraint cannot be implemented at the level of
the 10d action (4.20). Therefore one actually starts with a more general theory where
F5 6= ?F5. Nevertheless, the kinetic term in (4.20) is normalised with a prefactor 1/4
instead of 1/2, as will be appropriate after self-duality is imposed. To obtain consistent
10d equations of motion, the coupling in (4.20) should actually read:

S10 ⊃
µ3

2

∫
D3
C4 + µ3

2

∫
D̃3
C̃4, (4.25)

where at the moment different branes source the dual potentials (see also [196], footnote
n. 6). Self-duality can then be consistently imposed at the level of the 10d equations of
motion, derived from this action. This goes together with identifying D3 and D̃3.

We now consider the 4D theory descending from dimensional reduction. In 4D there
are certain constraints on the field strengths F i

2 and F̃ i
2 = ?F i

2 descending from self-duality
of F5 in 10d. For the sake of our analysis, we first focus on the set of unconstrained F i

2,
exactly as we we did with F5 in 10d. The 4D action then reads:

S4 ⊃
M2

P

2 · 4

∫
M4

g2
s

VX
KijF

i
2 ∧ ?F

j
2 + qΣ

i

µ3

2

∫
0−brane

Ai1. (4.26)

HereM2
P = VX/κ

2
10g

2
s is the 4D Planck mass. The equations of motion arising from (4.26)

read
d ? F iKij = 2VX

M2
Pg

2
s

µ3q
Σ
i dj0-brane. (4.27)

From the latter, it is clear that only a certain linear combination of gauge fields is sourced
by the particle with charge qΣ

i . To make this visible in the 4D action, we define the field
A1 and its field strength F2 = dA1 by

Ai1 ≡ A1K
ijqΣ

j . (4.28)

In terms of A1 and F2 the 4D action reads

S4 ⊃
M2

P

2 · 4 |q
Σ|2 g

2
s

VX

∫
M4

F2 ∧ ?F2 + |qΣ|2µ3

2

∫
0−brane

A1, (4.29)

where |qΣ|2 ≡ KijqΣ
i q

Σ
j . Now we consider the realistic setup where the dual field strength

F̃2 and its associated Ã1 are also included. Therefore we add to (4.26) the action:

S̃4 ⊃
M2

P

2 · 4

∫
M4

g2
s

VX
KijF̃

i
2 ∧ ?F̃

j
2 + q̃Σ

i

µ3

2

∫
˜0−brane

Ãi1 (4.30)

where Ã1 and q̃Σ
i are analogous to Ai1 and qiΣ. The coupling term can be obtained from

dimensionally reducing (4.25). Finally we relate F i
2 and F̃ i

2 by dimensionally reducing
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10d self-duality of F5. In particular, 10d self-duality implies F J
2 = ?4F

K
2 H

J
K , where the

matrix HJ
K is defined by ?6wK = HJ

KwJ . In imposing this constraint, we also identify the
branes sourcing Ai1 and Ãi1. Thus, adding (4.29) and (4.30) corresponds to a doubling of
the action (4.29). Therefore, the final theory which we will constrain via the WGC has
action

S4 ⊃
M2

P

2 · 2 |q
Σ|2 g

2
s

VX

∫
M4

F2 ∧ ?F2 + |qΣ|2µ3

∫
0−brane

A1. (4.31)

In order to extract the 4D gauge coupling, we normalise the gauge potential. Finally, we
obtain:

S4 ⊃
1

2e2

∫
M4

F2 ∧ ?F2 +
∫

0−brane
A1, (4.32)

where we have kept the same notation for the normalised fields and the 4D gauge coupling
is defined as:

e2 = 2VXµ2
3|qΣ|2

M2
Pg

2
s

. (4.33)

The result of this procedure is therefore a 4D theory of a U(1) gauge field with coupling
(4.33). The particle descending from the D3 brane wrapped on Σ has mass MΣ =
(T3/gs)

∫
Σ ?1 = (T3/gs)V Σ, and T3 = µ3.

We are now ready to apply the WGC to the 4D theory defined by (4.32) with particles
of mass MΣ:

eMP

MΣ ≥
√

2
2 ⇒

V
1/2
X |qΣ|
V Σ ≥ 1

2 . (4.34)

Before moving to the case of domain walls, let us pause to extract the full meaning of
(4.34). The WGC for particles arising from a string compactification translates into a
purely geometric constraint on the size and intersections of the cycles of the manifold, in
this case 3-cycles. Crucially, all couplings and 4D scales have disappeared from the
final statement. Despite the presence of volume factors, the charge-to-mass ratio is
independent on any rescaling of the 6d metric g̃mn. This statement is actually true
for any p-cycle: indeed the metric Kij on the dual space of p-forms contains (3 − p)
powers of the 6d metric, so the numerator scales as g̃p/2mn , but so does the denominator.

The conclusion is as follows: the procedure that we have followed works for any
p-dimensional object and associated field strength defined on a chosen manifold X and
dimensionally reduced to a q dimensional object in 4D. In particular, (4.34) is a constraint
on the 3-cycles of X. As such, it can be applied applied to any other 4D object descending
from any p-brane on X wrapped on the same 3-cycles.

We are particularly interested in constraining 4D domain walls. In order to apply our
previous result, we study the case in which the membranes arise from compactifications
of type IIB string theory with D5 branes wrapped on 3-cycles. The action is obtained
by simply replacing the D3 branes with D5 branes in (4.20):

S10 ⊃
1

2κ2
10

∫
M10

[
−1

2F7 ∧ ?F7

]
+ µ5

∫
D5
C6 + SDBI , (4.35)

with µ5 = µ3/(2πα′). Dimensional reduction to 4D goes as in the previous case, therefore
we do not repeat the computation. The 4D action reads:

S4 ⊃
1

2e2
DW

∫
M4

F4 ∧ ?F4 +
∫
D2
A3 (4.36)
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with:
e2
DW = 2VXµ2

5|qΣ|2

M2
Pg

2
s

. (4.37)

The tension of the 4D domain wall is: TDW = T5/gsV
Σ. The charge-to-tension ratio is:

eDWMP

TDW
= (2VX)1/2|qΣ|

V Σ . (4.38)

As expected, (4.38) is the same as (4.34). Therefore the WGC constraint on particles
translates into the following inequality for the charge-to-tension ratio of domain walls:

WGC: eDWMP

TDW
≥
√

2
2 . (4.39)

This is the result we were after, namely a WGC for domain walls.
One can give a general inequality for a (q + 1)-dimensional object in d dimensions

descending from a s-brane wrapped on a (s− q) cycle of a CY X, by relating its charge-
to-mass ratio to that of particle descending from a p-brane wrapped on the same (s− q)
cycle. For consistency s− q = p. The WGC then states that the charge-to-tension ratio
of the D(q)-brane must satisfy the condition:

epMP

Tp
≥
√
d− 3
d− 2 . (4.40)

Finally, let us generalise our results to the case of N cycles Σk, k = 1, . . . , N . Correspond-
ingly, we have a set of charge vectors qΣk . These vectors belong to RN equipped with
metric Kij defined as in (4.24). With the same notation as above, consider Dp-branes
wrapped on p-cycles of a CY manifold. These lead to particles in d dimensions with mass
Mk. The Convex Hull Condition (CHC) for the p-cycles reads:

The convex hull spanned by the vectors zk ≡ V
1/2
X qΣk

V Σk , must contain the ball of radius
r =

√
d−3
d−2 .

Now consider a q-brane in d dimensions obtained by wrapping a D(s)-brane on p-cycles
of the same CY. The tension and the charge vectors of the (q+1)-dimensional objects are
respectively T kq and eqqΣk , where eq is the prefactor in (1/2)(1/e2

q)
∫
KijF

i
q+2 ∧ ?F

j
q+2 +

qΣ
i

∫
Σk A

i
q+1 in the effective theory. Assuming the CHC for particles, we obtain the

following statement for the q-branes:

The convex hull spanned by the vectors Zk ≡ eqqΣkMd

Tkq
must contain the ball of radius

rq =
√

d−3
d−2 .

It is important to remark that (4.39) has been obtained without using any string
duality: the WGC for particles imposes a constraint on the geometry of CY three cycles.
This constraint, applied to objects derived from any p-brane in the 10d setup, translates to
a corresponding WGC for these particular objects. This line of reasoning can be applied
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also to the case of axions and instantons. In that case one starts from aDp brane wrapped
on p cycles, then considers D(p− 1) branes wrapped on the same cycles. Obviously this
requires a change in the theory, e.g. from type IIB to type IIA/M-theory on the same CY.
However, the constraints obtained in the IIB setting are still just geometric constraints
on p-cycles of the CY, therefore there is no need of performing a duality between the
two theories. It is sufficient to consider a type IIA/M-theory setup with the appropriate
branes, and impose on this setup the previously determined geometric constraint. It
would be interesting to think about manifolds with backreaction and fluxes. In this case,
the transition from IIA and IIB (or other setups) would not be so straightforward.

4.4 Summary and Conclusions
In this chapter we have investigated two different aspects of the Weak Gravity Conjecture.
Firstly, we have discussed its consequences for models based on Axion Monodromy
(Inflation and Relaxation). Secondly, we have provided a geometric interpretation of
the conjecture in the framework of string compactification. We now provide a detailed
summary of our results.

In the first part of this chapter, we have adopted an effective field theory point of
view. Namely, given a certain scalar potential, we have tried to constrain its use in
models of monodromy inflation. In particular, inflaton (relaxion) potentials in models of
Axion Monodromy are characterised by the presence of ‘wiggles’ on top of a polynomial
potential. The resulting local minima imply the existence of 4D domain walls. This is
more evident by using an effective description in terms of a four-form flux, whose value
changes across these membranes.

We assumed that the WGC can be extended to domain walls. In our setup, its
electric version gives an upper bound on the tension of the 4D membranes. Crucially,
this condition agrees with what is required to realise slow-roll: as the tension decreases,
the height of the ‘wiggles’ decreases and slow roll can be seen as a continuous nucleation
of cosmic bubbles. Therefore, we conclude that, in this logic, the electric WGC does not
constrain models of axion monodromy (Inflation and Relaxation).

For this reason, we focused on the constraints imposed by the magnetic side of the
WGC, which we stated as an upper bound on the cutoff of a generic (p + 1)-form
gauge theory (in the spirit of [63]). We then applied the condition to inflationary
models, i.e. we required H � Λ. This gives a non-trivial constraint on the field range:
φ . m−2/3f 1/3M

4/3
P . The latter however allows for large field displacements, but forbids

models with a small decay constant.
We then discussed our extension of the magnetic WGC. We argued that string theory

lowers the KK scale to fulfil the WGC for objects which descend from compactifications of
string theory with Dp-branes, rather than making them light enough. As a consequence,
heavy “stringy” objects, which could potentially violate the WGC are confined above the
cutoff MKK . Therefore they do not exist from an effective field theory point of view.
Of course, low energy light objects are allowed, as is the case for our domain walls.
Consequently, the electric side is automatically satisfied. We suggest that the magnetic
WGC should be seen as the fundamental constraint among the different versions of the
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WGC.
Recently, the electric WGC has been applied to membranes arising from the realisation

of Axion Monodromy á la Kaloper-Sorbo (KS), in the context of new realisations of
relaxion models [108]. When the tension of these membranes decreases, the probability
of tunneling to another branch of the potential increases. Such a transition can spoil
slow-roll, as it corresponds to discrete “jumps” in the axion trajectory. The requirement
that the tunneling rate is suppressed parametrically leads to the same constraint on the
field range that we obtained by studying the domain walls arising from ‘wiggles’ in the
axion potential.

However, KS membranes are different from the low energy domain walls described in
this chapter. This may have implications for the various constraints.

There are, in fact, two possibilities. On the one hand, one could impose the WGC
separately on the two classes of membranes. In this case, the constraints given in [108]
for relaxion models apply and can be extended to inflationary models. The magnetic
WGC applied to the low energy domain walls gives the same constraint.

On the other hand, it is possible that only the lightest domain walls have to satisfy
the WGC. In this case, the electric WGC applied to the low energy domain walls does
not give any constraint. By contrast, the magnetic side gives a bound on the field range,
hence playing a central role. As discussed in this chapter, there are reasons related to
the KS gauging which make this second possibility relevant.

In the second part of this chapter, we worked in the framework of string compact-
ifications. We started with 10D type IIB with D3 branes and compactified to 4D by
wrapping the branes around 3-cycles of a CY manifold. Therefore, we obtained particles
and gauge fields in 4D. We applied the original WGC to this setup. Very interestingly,
the final constraint does not depend on the couplings and moduli of the 10D setup. The
electric WGC translates into a purely geometric constraint on the size and intersection
of the 3-cycles of the CY. Explicitly:

V
1/2
X |qΣ|
V Σ ≥ Ad,

where VX is the volume of the compactification manifold, V Σ is the volume of the 3-cycle
Σ, |qΣ| is the norm of the harmonic form related to Σ using the metric X, and Ad is a
O(1) number given in subsection 4.3.2. The charge-to-tension ratio of any p-dimensional
object wrapped on the same 3-cycles is the same as in the left hand side of the inequality
above. Therefore, by constraining the geometry of 3-cycles through theD3/particles case,
we obtain a WGC for any p− 3-dimensional object in 4D arising from compactification
of type IIB with Dp-branes wrapped on the same cycles. In particular, by taking p = 5
we obtain the WGC for 4D domain walls. Crucially, we do so without the use of string
dualities.

The same procedure applies to any p-dimensional object wrapped on some q-cycle of
a CY, to obtain a p− q-dimensional object in 4D. In particular, in the general case the
WGC still translates into the inequality above, with Σ being a q-cycle. Therefore, our
approach provides a simple strategy to extend the electric WGC to any q-dimensional
object, without the use of string dualities.
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Let us close our discussion with observing two further consequences implied by the
constraint on the tension of the low-energy domain walls from the WGC. 7 We note
firstly, that we get a fundamental upper bound on the size of resonant oscillating non-
Gaussianity induced by the ‘wiggles’ in the scalar potential. Following the analyses
of [191,197], the magnitude f res.NL of this type of non-Gaussianity with an oscillating shape
in k-space is approximately given by f res.NL ∼ bM3

P/(fφ)3/2. Here, b = α/(m2fφ) denotes
the ‘monotonicity’ parameter of the scalar potential with ‘wiggles’ (b < 1 corresponds
to V ′ > 0 for φ > 0). We can rewrite this as b = αf 2/(m2f 3φ) ∼ T 2

DW/(m2f 3φ) <
m2f 2M2

P/(m2f 3φ) = M2
P/(fφ) where the inequality arises from the WGC TDW < eMP =

mfMP . Hence, we get a bound f res.NL .M5
P/(fφ)5/2, to be evaluated at φ = φ60 ∼ 10MP

for the observable CMB scales. The bound thus finally reads f res.NL . 3× 10−3 (MP/f)5/2.
The typical range for the axion decay constant is 10−4MP . f . 0.1MP (see e.g. [191]).
Consequently, for f & 5 × 10−2MP this fundamental upper bound on f res.NL becomes
stronger, f res.NL . O(1) for f & 5× 10−2MP , than the current observational bounds [198].

Secondly, we observe that in a quadratic potential the boundary to slow-roll eternal
inflation (defined as the value of φ = φ? where ε ∼ V ) φ? ∼ M

3/2
P m−1/2 can be higher

than our magnetic WGC field range bound φ < m−2/3f 1/3M
4/3
P for values of f . 10−3MP ,

because COBE normalization of the CMB fluctuations fixes m ∼ 10−5MP . Intriguingly,
recent analyses such as [2, 93] (see also e.g. [90] for earlier work on the WMAP 9-
year data) of the PLANCK data searching for oscillating contributions to the CMB
power spectrum and the 3-point-function hint with the highest significance at very-high-
frequency oscillating patterns with f ∼ 10−4MP . If this were corroborated in the future,
then jointly with the magnetic WGC this would rule out slow-roll eternal inflation in
quadratic axion monodromy inflation potentials in the past of our part of the universe.

The generalization of both of these observations to more general axion monodromy
potentials V ∼ φp with ‘wiggles’ is an interesting problem for the future.

7We would like to thank Alexander Westphal for discussions on these points.
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Chapter 5

Gravitational Waves from Axion
Monodromy

Models of Large Field Inflation might exhibit peculiar phenomenological sig-
natures during and after inflation. These may become very important to
select a specific model of LFI, in case of detection of primordial tensor modes.
In this chapter we describe how the Universe might be decomposed into
different phases after axion monodromy inflation. Such a phenomenon would
be followed by collisions of cosmic bubbles, associated with the emission of
gravitational radiation. Very interestingly, the signal of such an exotic post-
inflationary dynamics might be detectable by future space- and ground-based
interferometers.
This chapter is based on the publication [133].
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5.1 Introduction

The central predictions allowing us to discriminate between inflationary models are the
slow roll parameters, most prominently the tilt of the scalar power spectrum ns ' 0.96
and the tensor-to-scalar ratio r . 0.08 [2, 199]. However, even with growing precision
many models are expected to remain consistent with this limited set of data. Hence it
is of great importance to identify additional predictions characterizing specific classes of
models.

So far we have extensively focused on one such class: axion monodromy inflation
[57, 58]. In chapter 2 we studied certain stringy realisations of this mechanism, while
in chapter 4 we focused on its relation with effective field theory arguments about
Quantum Gravity. Here we adopt yet another perspective: namely, we focus on its
phenomenology. In particular, the aim of this chapter is to describe a new and potentially
striking observational signature which is peculiar to axion monodromy inflation. For
previous work on the phenomenology of such inflationary models see [90–93,96,200] (see
also [112, 113] for closely related potentials) and, in particular, [201–203] for preheating
and [204] for oscillon dynamics in this context (see in particular [118] for gravitational
radiation from preheating in oscillon models).

In short, our message is the following. Due to the typical instantonic modulations of
the potential, first order phase-transition-like, violent dynamics may occur after the end
of inflation and before reheating. This leads to additional gravitational waves, which are
of course very different in frequency from those studied in the CMB. Thus, monodromy
models may (in addition to or independently of their prediction of r) be established by
future ground- or space-based interferometers. The final word would thus come from the
new field of gravitational-wave astronomy [13] (for a recent review see e.g. [205]).

Of course, gravitational waves are a well-known signature of cosmic strings, including
axionic strings. For recent work on the non-trival late-time dynamics of axionic models
and gravitational waves which is closer in spirit to our proposal see, e.g. [117, 119–123].
Emission of gravitational waves from axionic couplings in inflationary setups has recently
been considered in [97, 98] (see also [94, 95] for constraints). Independently of the grav-
itational wave signal, related dynamical phenomena may also occur in the dark matter
context [206,207].

Let us now explain the physics underlying our scenario in more detail. The basic
building block of monodromy inflation is an axion with sub-planckian decay constant
f . Non-perturbative effects induce the familiar cos(φ/f)-type potential. When the
monodromy effect is included, this cosine-potential shows up in the form of modulations
of the long-range, polynomial term. Even if the relative size of these modulations is small
at large field values, where slow-roll inflation is realized, they can become dominant
near the minimum of the polynomial potential. After inflation, the field oscillates with
decreasing amplitude such that its motion eventually becomes confined to the vicinity of
one of these local minima. However, due to field fluctuations, different local minima may
be chosen in different regions of the same Hubble patch. In other words, the Universe is
decomposed into phases.

Two comments are in order. First, the field fluctuations inducing the above phe-
nomenon can have different origin. On the one hand, there are inflationary super-horizon
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fluctuations which have become classical at the time when they re-enter the horizon. On
the other hand, the field is subject to an intrinsic quantum uncertainty at any given time.
As we will see, this second type of uncertainty is, after parametric amplification [207],
more likely to source the desired phase decomposition.

Second, while we for definiteness identify the monodromic axion with the inflaton,
the phenomenon can occur also in different contexts. In particular, similar physics may
arise in any non-inflationary axion model with a monodromy (the relaxion being one
recent popular example [181], see also [108]). Moreover, even within the inflationary
context, our proposal of ‘dynamical phase decomposition’ is not restricted to monodromy
models. Indeed, models of ‘aligned’ or ‘winding’ inflation [31, 106, 159] can naturally
exhibit short-range modulations on top of a long-range periodic potential. The Weak
Gravity Conjecture for instantons may in fact demand such modulations [68, 69] and
the simple string construction presented in chapter 3 may naturally provide them. As
discussed in chapter 4, the Weak Gravity Conjecture for domain walls also constrains
models based on monodromy. In particular, the size of the wiggles is bounded.

Let us now complete the discussion of the cosmological dynamics: After a phase
decomposition has occurred, the regions with the lowest-lying populated minimum will
expand. This is very similar to the way in which a strong first-order phase transition is
completed through the collision of cosmic bubbles of true vacuum. However, in our case
the transition occurs before reheating and very far from thermal equilibrium. It may thus
be more appropriate to talk about ‘dynamical phase decomposition’ rather than about
a phase transition in the usual sense. Nevertheless, the concept of bubble formation and
collision is still appropriate in our setting.

Thermodynamic cosmological phase transitions have been widely explored in various
contexts (see [114–116] for early seminal work and [124] and refs. therein for the case
of the electroweak phase transition). In particular, it is well known that they source
gravitational radiation (see [208–210] for recent reviews and e.g. [211] for radiation from
other cosmological sources such as cosmic strings and preheating). We will rely on these
results.

This chapter is structured as follows: section 5.2 provides the basic setup. More specif-
ically, subsection 5.2.1 introduces our axion monodromy setting with dominant quadratic
potential and a series of local minima, subsection 5.2.2 briefly discusses reheating, and
subsection 5.2.3 explains the post-inflationary dynamics, which may be characterised
by what we call a “dynamical phase decomposition”. In section 5.3 we estimate the
probability that such a decomposition occurs as a consequence of field fluctuations.
In particular, we treat inflationary fluctuations in subsection 5.3.1 and the intrinsic
quantum uncertainty in subsection 5.3.2. In section 5.4 we address the crucial issue
of the possible enhancements of fluctuations due to background-field-oscillations in the
modulated potential. Ultimately, in section 5.5 we estimate the spectrum and abundance
of the gravitational radiation produced during the phase transition before we conclude in
section 5.6. Additionally, we devote appendix B to a more detailed discussion of scalar
field fluctuations after inflation. Appendix C provides some details of an inflection point
model of inflation in which our gravitational wave signal may also arise.
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5.2 Phases from axion monodromy
In this section we introduce a string-motivated scenario of the inflationary universe.
It is based on the framework of Axion Monodromy Inflation, which we have already
extensively discussed. We begin by explaining the basic features of the axion potential
and the possibility of having coexisting populated axionic vacua.

5.2.1 Local minima in axion monodromy
The inflaton potential of a model of axion monodromy inflation contains an oscillatory
term, which respects a discrete shift symmetry, and a polynomial term, which breaks it
explicitly. In this work we will take the polynomial term to be quadratic, as this will be
sufficient to demonstrate the effect we wish to study:

V (φ) = 1
2m

2φ2 + Λ4 cos
(
φ

f
+ γ

)
. (5.1)

The potential (5.1), plotted in figure 5.1, can have local minima, whose existence depends
on the values of the prefactor Λ4, the so-called axion decay constant f and the inflaton
mass m. Although we have in mind the specific case in which φ is the inflaton, many of
our considerations apply to the case of a generic axion-like field with potential (5.1).1

We begin with an analysis of the classical evolution of φ. The equation of motion of
φ reads:

φ̈+ 3Hφ̇+ V ′(φ) = 0, (5.2)
where the prime denotes a derivative with respect to φ. For constant Hubble rate H and
temporarily neglecting the cosine term in (5.1), the solution of (5.2) is

φ ∼ e−
3
2Ht cos(mt). (5.3)

Therefore, the amplitude of φ decreases. This conclusion remains valid even for time-
varying H. In fact, since H(t) ∼ ρ

1/2
φ /Mp, the Hubble rate decreases as the amplitude of

φ falls. Once the amplitude is sufficiently small, the cosine oscillations in (5.1) cannot be
neglected any longer. Eventually, the field is caught in one of the cosine wells. One can
observe that the field is more likely to get trapped in one of the lowest-lying minima. This
can be understood as follows: the friction term in (5.2) becomes less and less relevant
as H(t) falls. This implies that the fractional energy loss per oscillation also decreases.
Therefore, even though the field can in principle get stuck at any time, it is more likely
to do so late in its evolution, when it is oscillating near the bottom of the well containing
the lowest-lying minima.2 For this reason, we will mostly focus on the last two wells.

The existence of different local minima implies that the universe is potentially decom-
posed into several phases. This happens if the field settles in different minima in different
parts of the universe. Due to fluctuations, the scalar φ can end up in one or the other

1While we expect a similar qualitative behaviour the numerical results may depart significantly from
the values we find here.

2The actual argument to show that wells at the bottom of the potential are more likely to host the
inflaton requires more care. In section 5.4 we provide numerical examples that support this statement.
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Φ

V

Figure 5.1: Monodromy potential, as in (5.1) with γ = 0. The parameter κ/π
approximately measures the number of local minima. Here κ ' 50.

minimum in different regions of the same Hubble patch. In this chapter, we are interested
in studying the conditions under which such a phase decomposition can take place.

If such a phenomenon occurs, eventually the field will settle in the state of lower
energy as a consequence of the expansion of bubbles containing the true vacuum. This
corresponds to a phase transition, which can in principle have strong cosmological signa-
tures, above all the radiation of gravitational waves. We would like to provide an estimate
for the spectrum of gravitational waves produced in such an event (see also [117,119–122]
for related work, but in different contexts).

Before moving on to study the details of this scenario, let us determine the condition
on the parameters Λ, f,m for the potential to exhibit local minima. In order to have local
minima, the equation V ′ = 0 must have non-vanishing solutions. Let us, for a moment,
simplify by setting γ = 0. We then have:

V ′ = 0 ⇒ m2φ = Λ4

f
sin

(
φ

f

)
. (5.4)

Graphically, it is clear that this equation has non-vanishing solutions only if

κ ≡ Λ4

f 2m2 ≥ 1. (5.5)

Here we have used γ = 0, but the equation remains parametrically valid even for γ 6= 0.
Under this condition the potential has the form represented in figure 5.1. Practically
however, as we have already remarked, we will focus only on the two lowest local minima,
which are in general non-degenerate for γ 6= 0 (see figure 5.2).3

We are now ready to move on to a detailed discussion of phase decomposition in our
scenario. However, before doing so, a few comments about reheating are in order.

5.2.2 Reheating
Typically, after inflation the Universe undergoes a so-called reheating phase, where the
energy density in the inflaton sector is transferred to standard model degrees of freedom,

3The choice γ = 0 may lead to stable domain walls, which are generically problematic.
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Φ

V

Figure 5.2: Non-degenerate two-well potential, as it can be obtained from (5.1) by
focusing on the two wells closest to the origin.

and possibly to dark sectors. Our analysis of the dynamics of the inflaton after inflation
needs to take this into account. We therefore first focus on the following question: does
reheating happen before or after the inflaton field is caught in one of the cosine wells?

In order to answer this question, we need to specify the interactions of the inflaton
with matter and/or radiation. Here let us consider the example of a Planck-suppressed
modulus-like coupling to a scalar field χ. The largest decay rate, barring the possibility
of parametric resonances, is obtained if χ enjoys a coupling (1/Mp)χ2�φ, leading to

Γφ→χχ ∼
m3
φ

M2
P

. (5.6)

This can arise if χ is a Higgs boson (see e.g. [125,126]). Decay rates to gauge bosons may
also be of this type. The inflaton may also couple to scalar matter as (1/MP )φχ̄�χ+c.c.,
but this leads to even smaller decay rates.

The strategy is now as follows: we assume that the field is trapped in one of the cosine
wells, and compare the perturbative decay rate (5.6) with the Hubble rate H2 ∼ Λ4/M2

P ,
as we are assuming that the field is oscillating in the last wells. For the same reason, we
should take m2

φ = V
′′|min ' Λ4/f 2 in (5.6). As usual in cosmology, the condition for the

decay to be efficient is Γ & H. If we find Γ < H, then we will be consistent with our
assumption that the field is first caught in one of the wells and decays only later. Now,

Γφ < H ⇒ κ

(
m

f

)(
m

Mp

)
< 1. (5.7)

The inequality (5.7) is easily satisfied in our setup, as in quadratic inflation m ∼ 10−5MP

and f may be only slightly smaller than MP , while κ & O(1). Therefore the field
generically decays perturbatively only after getting caught in one of the cosine wells. In
what follows, we will therefore not consider the decay of φ any longer.

5.2.3 Field oscillations and damping
We first focus on how the Hubble parameter changes after inflation. The energy density
of the universe is a sum of three terms: ρ = Vφ + Tφ− Vλ, where Vλ is the energy density



5.2. Phases from axion monodromy 107

5 10 15 20
m t

-20

20

40

60

80

100

Φ

f

5 10 15 20
m t

0.1

0.2

0.3

0.4

H

m

Figure 5.3: Evolution of: (a) the scalar field φ and (b) the Hubble rate H according
to (5.9) and (5.8). Vφ is as in (5.1) and Vλ = 0. The initial condition is φ(t0) = MP .
Furthermore we have chosen κ = 60, f = 10−2MP . The scalar field oscillates around
φ = 0 over a wide field range crossing several wells, before getting caught in one of the
local minima at t ≈ 11/m.

due to the cosmological constant. We absorb Vλ in Vφ and define Vφ such that the global
minimum has vanishing potential energy. The evolution of the Hubble parameter and of
the scalar field φ is dictated by the Friedmann equation, together with the equation of
motion of φ:

3H2 = 1
2m

2φ̇2 + Vφ (5.8)

φ̈+ 3Hφ̇ = −V ′φ. (5.9)

Since the energy density is decreasing due to friction, it is clear that alsoH(t) will decrease
with t. However, whenever φ̇ = 0, φ is undamped and the energy density is constant. In
consequence H(t) is stationary as well. The typical behaviour of φ(t) and H(t) is shown
in figure 5.3.

Let us now examine the energy density in the inflaton field in more detail. Its
amplitude decreases after each oscillation due to Hubble friction. At some point the
energy density ρφ is comparable to the height of the last cosine wells. The field is then
caught in one of the local minima, depending on the initial conditions. In the absence
of spatial field inhomogeneities, the inflaton will populate only one of these two minima.
This situation is shown in figure 5.4.

The conclusions can radically change in the presence of field fluctuations δφ(t,x). In
this case, the field may end up in one or the other minimum in different regions belonging
to the same Hubble patch. The lines drawn in figure 5.4 become bands of a certain width,
corresponding to the uncertainty δρ in the energy density induced by δφ (see figure 5.5).
Now suppose that, as a consequence of friction, the energy density has decreased to a
value close to the height of the barrier separating the two last minima in figure 5.4.
During the next oscillation, the field will start rolling inside one of the two wells, say
the one on the left of figure 5.5. At the end of the oscillation, since its energy density is
smaller than the height of the barrier separating the two minima, the field is very likely
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Φ

V

Figure 5.4: Monodromy potential, as in (5.1), with γ 6= 0. The axes are chosen such that
the local maximum between the last two wells sits at φ = 0 and the lowest minimum has
V = 0. Here κ ≈ 12. The turning points in the field trajectory are shown. The amplitude
of the oscillations decreases as a consequence of Hubble friction.

to remain confined in the left well. However, due to the field fluctuations, there is a non-
vanishing probability that the field actually reaches the other well on the right hand side
and remains there in some regions of the Universe. If this is the case, at different point
in the same Hubble patch the field lives in different minima. Therefore, the Universe
decomposes into two phases. This is precisely the situation we are interested in.

Quantitatively, let us compute the energy density lost during one oscillation, as a
consequence of Hubble friction. In general this is not an easy task given the complicated
shape of the potential in figure 5.4. However, it is greatly simplified by focusing only
on the last cosine wells. In this case, the loss of energy during a half oscillation inside a
single well can be estimated by a quadratic approximation of the potential:

Vapprox = 1
2M

2φ2, (5.10)

with M2 = |V ′′|min, i.e. the curvature of the potential (5.1) around the minimum of the
well, where cos(φ/f) ≈ −1. We obtain

M2 = m2 + Λ4

f 2 = (1 + κ)m2 (5.11)

since we are interested in the regime κ > 1, we can take M2 ≈ Λ4/f 2. Immediately after
inflation the Hubble rate evolves approximately as during matter domination, i.e.

H = 2
3t ; ρ ∼ a−3 ∼ t−2, (5.12)

so that the relative decrease in energy density in one half period ∆t ∼M−1/2 is given by
∆ρ
ρ
∼ 2∆t

t
= 3H∆t ∼ 3

2
H

M
, (5.13)

where ∆ρ ≡ |ρf − ρi|. We now focus on the last two wells, such that ρ ∼ Λ4. Using
Friedmann’s equation, 3H2M2

P = ρ, and M2 ≈ Λ4

f2 we find

∆ρ ∼ ρ · ρ1/2

MPM
∼ Λ4 f

MP

= κ
m2f 3

MP

. (5.14)
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Figure 5.5: Same as figure 5.4, but now only the last two wells are shown. The width
of the shaded bands represent the uncertainty of the scalar field energy density δρ, due
to field fluctuations. The distance between the two bands corresponds to the energy loss
∆ρ due to friction.

We can now quantitatively discuss the probability of having a phase decomposition. To
this end we have to compare the decrease in energy density due to friction ∆ρ and the
uncertainty due to field fluctuations δρ. If we have δρ ∼ ∆ρ, the field will populate more
than one vacuum with O(1) probability, as should be clear from figure 5.5. The term
probability here refers to the exact choice of model parameters which, at that level of
precision, appears arbitrary to the low-energy effective field theorist.

The task of the next section is therefore to present two possible origins of the fluc-
tuations δρ. These are respectively classical inflationary inhomogeneities and quantum
uncertainties of the scalar field φ.

5.3 Fluctuations and phase decomposition

In this section we will analyse two sources of fluctuations of the inflaton field. In
subsection 5.3.1 we focus on (classical) inflationary fluctuations. Those originate as
sub-horizon size quantum fluctuations, but are then stretched to super-horizon size and
become classical. After inflation, they re-enter the horizon and may lead to the phase
decomposition described above. In subsection 5.3.2 we focus instead on the intrinsic
quantum uncertainty which characterizes a quantum field at any given time. Indepen-
dently of any inflationary pre-history of our field, this effect is present directly during the
oscillatory stage and may also lead to phase decomposition. In fact, the estimates that
we obtain in this section imply a small probability of phase decomposition. However, in
section 5.4 we will see that the probability can be much larger because fluctuations may
be enhanced after inflation.



110 5. Gravitational Waves from Axion Monodromy

5.3.1 Inflationary fluctuations

The evolution of inflationary fluctuations on sub- and super-horizon scales is well-known
(see e.g. [212, 213]). For us the only crucial point is that, once a certain inflationary
mode re-enters the horizon it behaves like a dark matter fluctuation, i.e. it is a decaying
oscillation (see [214, 215] for a detailed study of scalar field fluctuations after inflation).
From now on we focus on the amplitude of such an oscillation, which we denote by δφinfk .
The background is denoted by φ0 and satisfies the equation of motion (5.2).

The initial conditions on δφinfk are determined by matching with the power spectrum of
the gauge-invariant curvature perturbationR. This quantity is conserved on superhorizon
scales and is given by

∆2
R(k) = 1

8π2

[
1
ε

H2

M2
P

]
exit

, (5.15)

where the right hand side is evaluated at horizon exit, i.e. for k ∼ H. In the slow-roll
regime the quantity ε in (5.15) coincides with the familiar expression ε = 1

2M
2
P (V ′/V )2.

To determine the probability of phase decomposition we need to understand how field
fluctuations δφinfk , once they re-enter the horizon, give rise to density fluctuations δρinfk .
More specifically, we wish to determine δρinfk at time tΛ. This is the time at which the
amplitude of the background φ0 has decreased to values comparable to the width of the
last wells, and it is given by

tΛ ∼ H−1
Λ ∼ 1

κ1/2(f/MP )m . (5.16)

Let us now consider a mode which exits the horizon just before the end of inflation, i.e.
when H ∼ m. Such a mode re-enters the horizon shortly afterwards, at time t0 ∼ m−1 <
tΛ and has therefore momentum k(t0) ∼ m. At t0 we can determine the size of δφinfk
by matching with the curvature perturbation. However, the field fluctuation δφinfk thus
obtained will be out of phase with the oscillation of the background φ0. It is maximal
when φ̇0 is maximal and vanishes when φ0 is at a turning point. If this remained the
case for the subsequent evolution until tΛ, the fluctuation could not give rise to a phase
decomposition. This can only occur if we have a sizable fluctuation at a turning point of
φ0.

However, we expect decoherence between δφinfk and φ0 after only a few oscillations.
The reason is that φ0 oscillates with frequency m while a mode with k ∼ m will oscillate
with frequency

√
k2 +m2 ∼

√
2m. Thus, at some time after t0 the field fluctuation

δφinfk will be an admixture of out-of-phase but also in-phase-oscillations w.r.t. to φ0. It
is exactly the in-phase-oscillations which do not vanish at turning points and it is these
fluctuations which give rise to density perturbations δρinfk . In the following we will thus
assume that once a mode enters the horizon, while initially out of phase with φ0, it will
give an O(1) contribution to an in-phase oscillation with corresponding δρinfk after only
a few periods.4

4As we cannot quantify this effect exactly, we will now drop exact numerical prefactors in all following
expressions.



5.3. Fluctuations and phase decomposition 111

To estimate the size of fluctuation at time tΛ given a fluctuation at t0 we need to take
the expansion of the universe into account. In particular, the energy density scales as

ρ ∼ a−3 ,
δρ

ρ
∼ a ⇒ δρ ∼ a−2 . (5.17)

Thus, for a density fluctuation with k ∼ m there is a dilution in the time span between
t0 and tΛ.

Let us now determine the probability of phase decomposition due to a mode with
k ∼ m at the time t0 of horizon re-entry. As argued before, the field fluctuation will
quickly give rise to a density fluctuation. Instead of taking the intermediate step via field
fluctuations, let us match the density fluctuations directly to the curvature fluctuations
at re-entry:

∆2
R ∼

∆2
δρ

ρ2 ⇒ δρinfk (t0) ∼ ρ(t0)
√

∆2
R ∼

ρ(t0)
Mp

[
H

ε1/2

]
exit

. (5.18)

Now, using

ρ(t0) ∼ m2M2
p ,

[
H

ε1/2

]
exit
∼ m ,

a−2(tΛ)
a−2(t0) ∼ κ2/3(f/Mp)4/3, (5.19)

where the second equation follows from H ∼ m, ε ∼ 1 at the end of inflation, we obtain

δρinf

∆ρ ∼ κ−1/3
(
m

MP

)(
MP

f

)5/3

. (5.20)

The above probability was derived for modes with k ∼ m at horizon re-entry. However,
we are interested in the situations when the above probability is largest. Thus let us
consider how this result is modified if we consider modes that re-enter the horizon later.
Such modes have k < m at re-entry and they spend less time inside the horizon before
the moment tΛ. Hence they would in principle give rise to a larger probability than
(5.20). However, they cannot enter too late as they need to have enough time to decohere
w.r.t. φ0. A more detailed analysis would be needed to determine how late a mode can
enter the horizon and nevertheless give rise to a sizable density fluctuation. Thus, (5.20)
should be seen as a reasonable estimate. We shall comment more on the size of this
probability at the end of subsection 5.3.2.

5.3.2 Quantum fluctuations
There is another potentially relevant source of fluctuations of the field φ. This is the
intrinsic uncertainty due to the quantum nature of our scalar. It can be simply written
as

δφqk ∼ k. (5.21)
In order to estimate the maximal effect of these fluctuations, let us consider the following
setting: consider a scalar field φ with fluctuations δφqk approaching the local maximum of
some potential. This is basically as in figure 5.2, with the field approaching the maximum
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from the left side. We then ask the following question: what is the field distance from the
local maximum which the background field has to reach such that its fluctuations can lift
it over the potential barrier? The relevant energy scale around the maximum is O(M),
where M2 is the curvature of the potential at the maximum. One can convince oneself
that only fluctuations of the order δφ ∼M are relevant for overcoming the barrier: modes
with k � M have an effective non-tachyonic mass and are insensitive to the instability.
In contrast, modes with k � M are sensitive to the tachyonic instability, but their
fluctuations are smaller than those of modes with k ∼M .

Alternatively, we can understand this point by considering tunnelling. Hence we take
a homogeneous scalar field approaching the maximum and study the conditions under
which quantum tunnelling to the other side of the barrier becomes efficient. In order to
answer this question, let us use the following standard tunnelling formulae: the tunnelling
rate is given by e−S0 , where S0 is the action of critical bubble formation. When the thin
wall approximation is applicable, this reads (see e.g. [64])

S0 = 27π2σ4

2(∆V )3 = 27π2δφ2

2M2 , (5.22)

where σ ∼ Mδφ2 is the bubble wall tension and ∆V can be estimated with a quadratic
approximation, ∆V ∼M2δφ2. However, in most of the cases the thin-wall calculation is
not appropriate. Nevertheless, we still expect S0 ∼ δφ2/M2, with a different prefactor.5
According to (5.22) the tunnelling rate is unsuppressed when δφ & 10−1M , which is the
same condition we found with the previous approach up to a numerical prefactor. Given
the uncertainty in the prefactor, for the time being we use the parametric dependence
δφ ∼M .

Following these two arguments the uncertainty in the energy density induced by such
field fluctuations is

δρq ∼M2δφq2k ∼M4. (5.23)

If quantum fluctuations induce an energy gain which is larger than the loss due friction
one expects phase decomposition. Therefore, we compare (5.23) with (5.14), using also
M2 ' Λ4/f 2. We obtain

δρq

∆ρ ∼ κ
(
m

MP

)2
(
MP

f

)3

. (5.24)

Comparing (5.20) and (5.24) we conclude that the probability of a phase decomposition
due to inflationary fluctuations is larger than the one due to quantum ones by at least a
factor (f/MPκ)4/3(MP/m).

Let us now discuss the size of the probabilities (5.20), (5.24). In quadratic inflation,
m ∼ 10−5MP . For κ ∼ O(10) and f ∼ 10−13/5Mp the probability (5.20) is of the
order of 0.1. This implies that a phase decomposition is rather likely for these values
of parameters. For the same choices, the probability (5.24) is only slightly smaller, i.e.
Pq ∼ 10−6/5. However, further numerical suppression is expected in (5.24). Therefore we
conclude that in the regime κ ∼ O(10), f . 0.3 · 10−2MP phase decomposition is likely

5We have checked the behaviour for an inverted parabola. In the vicinity of the maximum this is a
reasonable approximation, with a prefactor of the order of 104.
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to happen as a consequence of inflationary fluctuations. If f grows above 10−2 phase
decomposition quickly becomes improbable. Whether such small values of f are natural
depends on the details of the model leading to (5.1). We will comment more on the size
of f at the end of section 5.4.

Further, in chapter 4 we presented arguments based on the Weak Gravity Conjecture
(WGC) which constrain the size of modulations of the potential in axion monodromy
inflation (for an earlier somewhat different perspective see [108]). It is thus important
to check whether the region of parameter space considered in this work is consistent
with these bounds. Given a domain wall with tension T and charge e the electric WGC
demands T . eMp. In our case we have T = Λ2f and e = 2πmf (see subsection 4.2.1 for
details). Using our definition Λ2 =

√
κmf the WGC bound reads

√
κ .

Mp

f
. (5.25)

As a result, while κ is bounded from above, our preferred parameter region for phase
decomposition (κ ∼ O(10), f . 10−2Mp) is consistent with the WGC. Interestingly, let
us notice that the region of parameter space which is ruled out by the WGC is also
constrained by current observations, which require Λ4/(m2φ2) . (10−3 − 10−2) during
inflation [90,216], where φ &MP .

To close this section let us make two important remarks. First, note that phase
decomposition can still occur even if the probability is small. In this case we only
expect very few bubbles per Hubble patch. The second comment concerns once again
the distinction between classical and quantum fluctuations. These two sources can also
be distinguished based on the length scale R at which their effect is strongest. As we
explained, classical inhomogeneities are most relevant at R ∼ H−1

Λ ∼ Mp/Λ2 while the
quantum effect is strongest for R ∼M−1 ∼ f/Λ2. Since f < MP , the size R of the latter
inhomogeneities is parametrically smaller than that of the inflationary ones.

5.4 Enhancement of fluctuations
Until now we have assumed that fluctuations, whether they are of classical or quantum
nature, remain small during the evolution of the universe after inflation. The aim of this
section is to discuss a possible enhancement of the fluctuations δφk due to the functional
form of the potential (5.1). Before going into details, let us summarise the main result.
In this section we are mainly interested in fluctuations with k ∼ m at time tΛ. When
the field oscillates at the bottom of the potential containing only the last few well, these
fluctuations can be enhanced for certain values of f and κ. Crucially, these modes never
exit the horizon during inflation, because at t < tΛ their wavelength is smaller than
the Hubble radius. Therefore, these modes are never classicalised. Nevertheless, in this
section we study their enhancement treating them as classical. We expect that our
analysis will still capture the main effect. We provide a more detailed discussion at the
end of this section.

A large growth of fluctuations can severely affect our conclusions. On the one hand,
large fluctuations of the inflaton field may be desirable to some degree in our setup: the
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larger δφk, the easier it is to cross the barrier between two local minima. Furthermore,
if a mode with k � m has a large amplitude, it may induce a phase decomposition
independently of the modes with k ∼ m that we have studied in the previous section. If
this is the case (5.20) underestimates the probability for phase decomposition.

On the other hand, large fluctuations with k � m can lead to short-range violent
dynamics rather than to the formation of well defined bubbles (which need a length scale
& 1/M). As we will describe in more detail in section 5.5, this can negatively affect the
strength of the gravitational wave signal related to our setting.

For these reasons, it is crucial to assess if any large growth of fluctuations occurs in
our setting. As we have already mentioned, we focus on the enhancement of classical
fluctuations and comment later on the applicability of the results for quantum modes.
Such an analysis involves solving the coupled equations of motion for the background field
and for the fluctuation in an expanding background and in the presence of a non-zero
gravitational field. In appendix B.3 we present a first step towards this goal by providing
the relevant equations of motion.

Here we will perform a somewhat different, simplified analysis, assuming that the
gravitational field is negligible for the following reason. As we describe in appendix B,
the addition of a gravitational field leads to a dark matter-like growth of fluctuations,
which is negligible compared to the exponential growth that we are seeking in this section.
Let us rewrite the equations of motion in a way that is more suitable for a numerical
analysis. Namely, we define t′ = mt and ϕ0 = φ0/f . Then the linearised equations of
motion without gravity read:

ϕ′′0 + 2
t′
ϕ′0 + ϕ0 − κ sin (ϕ0 (t′)) = 0 (5.26)

δφ′′k + 2
t′
δφ′k +

[
1 + k2

m2a2(t′) − κ cos (ϕ0 (t′))
]
δφk (t′) = 0, (5.27)

where ‘prime’ now denotes a derivative w.r.t. t′ and where we have used a′

a
= 2

3t′ during
matter domination.

In the absence of friction, the background solution ϕ0 is periodic and the equation
of motion for δφk is a Hill’s equation. Solutions to such an equation exhibit a resonant
behaviour for certain values of k [207, 217]. This is similar to the resonances encoun-
tered in the context of preheating (for a review see [218]). However, the inclusion of a
time-dependent background as well as friction, may affect the growth of the solution.
Generically, one expects that modes with k & m may experience exponential growth for
certain values of f and κ. We investigated the behaviour of φ0 and δφ numerically, for
certain values of the parameters. In figure 5.6 the background φ0 is plotted as a function
of t for f = 10−2MP , κ = 60. For this parameter choice the field is caught near one of
the local minima after only one oscillation.

For the same values of f and κ we study the evolution of the mode δφ5m. In particular,
we distinguish two regimes. Firstly, we focus on the behaviour of δφ5m until the time
at which the field is caught in one of the local minima. This is the interesting regime
for the mechanism of phase decomposition that we have presented in section 5.2.3. As
shown in figure 5.7, the mode does not grow in this time interval. Note that our equations
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Figure 5.6: Evolution of the background φ0 (t′), according to (5.26). The initial conditions
φ0 (t′i) = MP and ti = 2

√
2/(
√

3m) are determined by violation of the slow roll condition.
Furthermore φ′0 (t′i) = 0, Here f = 10−2MP , κ = 60. The field is caught in one of the
cosine wells around t = 8/m.

are homogeneous in δφk. Hence our numerical determination of the enhancement is not
affected by the initial value of δφk.

Secondly, we show the behaviour of the fluctuations after the field is caught around one
of the local minima in figure 5.8. We observe that the mode grows after the background
settles in one of the wells and decays again at late times. In particular, the field is caught
around t1 ≈ 8/m and by the time t2 ≈ 13/m the size of its fluctuation δφ5m has grown
by roughly one order of magnitude with respect to its initial value δφ|initial ≈ 10−5MP .
6 Meanwhile, the amplitude of the background field φ keeps decreasing between t1 and
t2, as shown in figure 5.6: in particular |φ(t1)| − |φ(t2)| ≈ 1.5f . The mild growth of δφ
described in this particular example is therefore not likely to induce a late-time phase
decomposition.

Other modes may nevertheless experience a stronger growth after the field settles
in one of the local minimum. However, as our previous example shows, a fluctuation
δφ & f is generically needed to overcome the decay of the background amplitude. This
possibility clearly cannot be studied by means of linearised equations of motion for δφ.
Therefore, in what follows we will focus purely on the growth of fluctuations before the
field is caught in one of the cosine wells. We leave the interesting possibility of a late-time
phase decomposition before reheating for future study.

Focusing on the first regime, the situation can be radically different from the previous
example, depending on the values of the parameters appearing in the potential. In
figure 5.9 we plot the background scalar field for f = MP/300, κ = 20. The field gets
stuck in one of the cosine wells after six oscillations. As a consequence of the longer time
that the field spends oscillating across several cosine wells, fluctuations can now grow
significantly. In figure 5.10, we plot the logarithm of the absolute value of δφk, again for
k = 5m, f = MP/300, κ = 20. We see that the amplitude of this mode grows by three

6This growth is nevertheless small compared to the growth by several orders of magnitude that we
find below for the case where the field performs several oscillations before being caught in one of the
minima.
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Figure 5.7: Evolution of the fluctuations δφk (t′), according to (5.27). We have chosen:
k = 5m, δφ′k (t′i) = 0, and ti = 2
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3m). Furthermore f = 10−2MP , κ = 60. After
t ≈ 8/m, φ0 is stuck in one of the cosine wells.
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Figure 5.8: Logarithmic evolution of the fluctuations δφk (t′), including the late-time
regime, after the background field is caught in one of cosine wells. We have chosen:
k = 5m, δφ′k (t′i) = 0, and ti = 2

√
2/(
√

3m). Furthermore f = 10−2MP , κ = 60.



5.4. Enhancement of fluctuations 117

10 20 30 40 50
m t

-100

100

200

300

Φ0

f

Figure 5.9: Evolution of the background φ0 (t′), according to (5.26). The initial conditions
φ0 (t′i) = MP and ti = 2

√
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3m) are determined by violation of the slow roll condition.
Furthermore φ′0 (t′i) = 0. Here f = MP/300, κ = 20. The field is caught in one of the
cosine wells around t = 40/m.
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Figure 5.10: Logarithmic evolution of the absolute value of δφk (t′), according to
(5.27). We have chosen: k = 5m, δφ′k (ti) = 0, and ti = 2

√
2/(
√

3m). Furthermore
f = MP/300, κ = 20. After t ≈ 40/m, φ0 is stuck in one of the cosine wells.

orders of magnitude before the background field settles in one of the local minima. In
fact, such strong growth takes us out of the regime of validity of the linearized equation
of motion (as δφk becomes comparable to f).

Recently, the growth of fluctuations in a potential with cosine modulations was studied
in [207]. The authors argue that, for a relatively small Hubble scale and neglecting gravity,
the fluctuations for k ∼ m can grow as eNk , where Nk is roughly given by

Nk ∼
m

Hk∼m
F (κ). (5.28)

Here F (κ) is a function of the order up to a few whose value depends on the initial
amplitude of φ. In our case, since Hk∼m ∼ Λ2/MP ∼ κ1/2m(f/MP ), we conclude that
fluctuations should grow with exponent:

Nk&m ∼
MP

f
, (5.29)
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Figure 5.11: Grid showing for which values of κ and f resonance occurs. Grey points
correspond to the case of no (or too small) enhancement. Red points correspond to large
enhancement. By the latter we mean that fluctuations grow by at least two orders of
magnitude before getting caught near a local minimum. The equations of motion are
solved for k = M = κ1/2m at the time when H ∼ O(Λ2/MP ).

where we have dropped any κ-dependence due to our ignorance regarding F (κ). Our
numerical examples, which take Hubble expansion into account explicitly, confirm that
for small f such an exponential growth does happen for most values of κ & 10. In
contrast, we do not observe enhancement if the value of f is chosen too large.

Apart from this qualitative discussion, we are unfortunately unable to provide an
analytical understanding of the dependence of the enhancement on the parameters κ and
f . This is partly due to the fact that the phenomenon strongly depends on the precise
minimum the field ultimately settles in. The latter question can only be addressed in a
probabilistic approach, i.e. we can only say where the field is more likely to get trapped.
Therefore, we do not have a precisely monotonic dependence of the enhancement in terms
of f and κ.

In the absence of an analytical treatment, we performed a numerical search for
enhanced fluctuations, focusing on modes with k & m at the time when H ∼ O(Λ2/MP ).
The results are reported in figure 5.11 in the form of a grid of points. Each point
corresponds to a value of κ and f . We observe that in the region of interest fluctuations
tend to be enhanced whenever f . MP/200. Here, we define ‘enhancement’ as follows:
we will refer to a mode to be enhanced if its original amplitude has grown by roughly two
orders of magnitude before getting caught. The enhanced δφk is comparable to f and we
are therefore at the boundary between the linear and non-linear regime. Interestingly,
this boundary corresponds to parameter values such that the probability (5.20) is of the
order 10−1. However, note that the probability in (5.20) was determined for modes which
will exhibit k < m at tΛ. While such fluctuations may experience growth, the generic
expectation is that enhancement does not occur for modes with k < m.

Let us now briefly discuss enhancement of quantum fluctuations. This is in principle
a complicated issue: we cannot use the classical equations of motions to analyse the
behaviour of the quantum system. However, it is important to notice that, if quantum
fluctuations are initially enhanced, they quickly become classical. Here by “classical” we
mean that their occupation number becomes large, such that (5.27) can be used to study
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their evolution. Parametric resonance in quantum mechanics and quantum field theory
has been studied analytically and numerically: the conclusion is that quantum modes
do experience exponential growth (see e.g. [219, 220]). We expect that the same effect
will occur also in the system analysed here. Therefore, our study of classical fluctuations
should extend, at least partially, to quantum fluctuations. If more enhancement occurs
in the quantum case, then phase decomposition is even more likely. We leave a more
detailed study of this effect for future work.

Finally, let us summarise our findings concerning the probability of phase decompo-
sition:

1. For f & 0.5 · 10−2MP enhancement is generically not observed. The probabilities
(5.20) and (5.24) are small, so that a phase decomposition is unlikely. Nevertheless,
it is still possible that very few bubbles of tiny size containing the state of lower
energy are nucleated. As we describe in the next section, observational signatures
from such a situation may be quite strong. Classical inflationary fluctuations are
the dominant cause of phase decomposition in this regime.

2. For f . 0.5·10−2MP we have the following situation. On the one hand, fluctuations
with k ∼ m at t = tΛ are generically enhanced. These modes are genuinely quantum
modes, since they never exited the horizon. In this region, the enhancement may be
just large enough to give rise to a probability of phase decomposition of order O(1).
Furthermore, we observe numerically that, at fixed f and κ, modes with k � m
do not experience the same exponential growth. This will turn out to be a useful
observation when examining the gravitational wave signal from the associated phase
transition.

On the other hand, according to (5.20) and (5.24), classical and quantum modes
with k . m can lead to a phase decomposition, even if they are not enhanced.
Therefore we conclude that a phase decomposition is very likely to be induced. As-
suming that our analysis of enhanced classical fluctuations extends to the quantum
ones, the dominant cause of phase decomposition are quantum modes with k ∼ m
at tΛ.

3. For f � 10−2MP fluctuations with k ∼ m are strongly enhanced. In this region
phase decomposition is very likely to occur. However, it is hard to provide any
description of such a highly non-linear regime. Classical and quantum fluctuations
with k . m are generically not enhanced, but would also lead to phase decomposi-
tion according to (5.20) and (5.24).

One more comment is in order before moving on to the phenomenological signatures
of our setup. Phase decomposition happens generically for rather small axion decay
constants. One may question whether such values of f are plausible in the spirit of axion
monodromy. The answer depends very much on the framework in which monodromy is
implemented. In a stringy setup it is a question of moduli stabilisation: e.g. in the Large
Volume Scenario (LVS) [50,51] decay constants are generically suppressed by the volume
of the compactification manifold and are therefore naturally small.
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5.5 Gravitational radiation from Phase Transitions
In the previous sections, we have described a mechanism which can potentially lead to
phase decomposition in the early universe after inflation. In this section, we will assume
that such phase decomposition indeed occurs. In the presence of different populated
vacua, bubbles containing the state of lowest energy can form and expand. Their collisions
are a very interesting and well-known source of gravitational radiation. This has been
studied in detail in the literature in various contexts and regimes (see [209] and references
therein).

The aim of this section is twofold. First of all, we would like to elucidate the
peculiarities of our setup concerning the energy released into gravitational waves during
the collision of bubbles. Rather than focusing on precise calculations, we will give
a qualitative discussion and provide formulae analogous to the more familiar case of
bubbles colliding in a relativistic plasma. In this case, there are three possible sources of
gravitational radiation: the collision of bubble walls, sound waves in the plasma and its
turbulent motion. The second goal of this section is to give estimates of the relic density
and frequency of the gravitational wave signal which can be obtained in our setup.

5.5.1 Gravitational waves from bubble collision
The focus of this subsection is the collision of bubbles and the possible shocks in the
fluid surrounding them. These phenomena are usually studied in the so-called envelope
approximation [116]. The latter consists in assuming that the energy liberated in grav-
itational waves resides only in the bubble walls before the collision. Furthermore, it is
assumed that only the uncollided region of those walls contributes to the production
of gravitational waves, i.e. the interacting region is neglected. Such an approximation
has been initially applied to the case of vacuum-to-vacuum transitions [115] and later to
collisions in a radiation bath.

In a thermal phase transition, the energy released into gravitational waves depends
on four parameters. First of all, there is the time scale of the phase transition δ−1 or,
equivalently, the initial separation between two bubbles d ∼ δ−1. Secondly, there is the
ratio η of the vacuum energy density ε released in the transition to that of the thermal
bath, i.e.

η ≡ ε

ρ?rad
, (5.30)

where ? specifies that the quantity is evaluated at the time of completion of the phase
transition. Thirdly, the efficiency factor λ characterizes the fraction of the energy density
ε which is converted into the motion of the colliding walls. Finally, the bubble velocity vb
is not necessarily luminal, as the walls have to first displace the fluid around them. The
energy released into gravitational waves of peak frequency is then given by [124]:

ρGW
ρtot

∼ θ
(
H?

δ

)2
λ2 η2

(1 + η)2v
3
b , (5.31)

where ρtot is the background energy density at completion of the phase transition. The
parameters vb and λ are actually expected to be functions of η, in such a way that for
η ∼ O(1), also λ, vb ∼ O(1).
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In our case, bubbles collide before reheating, therefore there is no radiation bath
around them. However, as we describe in appendix B, an oscillating scalar field corre-
sponds to the presence of a matter fluid. Crucially, the time scale of the field oscillations
is set by m−1, and may be smaller than the time of collision. Therefore, oscillations of
the scalar field cannot be generically neglected. Unfortunately, we do not have specific
formulae for this case. Since we are interested only in an order of magnitude estimate for
the spectrum of gravitational waves, it seems reasonable to extend (5.31) to our setup,
with the obvious modification

η ≡ ε

ρ?matter
. (5.32)

Furthermore, we shall hide our ignorance about the dependence of λ and vb on η by
defining θ0 = θλ2v3

b and leave the determination of these parameters for future work.
Therefore, we base our estimates on the following formula for the energy released in
gravitational waves from the collision of bubbles and shocks in the matter fluid:

ρGW
ρtot

≈ θ0

(
H?

δ

)2 η2

(1 + η)2 , (5.33)

where in our case ρtot ∼ Λ4. In addition, the peak frequency of gravitational waves in the
envelope approximation is given by

ωpeak ' σδ, (5.34)

where σ . O(0.1) should be fixed numerically and includes effects due to subluminal
bubble walls velocity.

The next task is to estimate δ and η. Let us start with the ratio H?/δ. The
energy density at the time of the phase transition corresponds to the height of the
barrier separating the two minima, therefore H? ∼ ρ1/2/MP ∼ Λ2/MP . We expect
the typical frequency of the phase transition to be set by the momentum k of the spatial
inhomogeneities of the field φ. The phase transition can be induced by any mode which
is present at t = tΛ. The largest frequency that one can take is set by k ∼ M , as we
have already discussed in subsection 5.3.2. This corresponds to a scenario where phase
decomposition is likely. However, bubble collisions are most violent when the field makes
it over the barrier separating the two minima only very rarely. In this case there are
only few bubbles per Hubble patch. This latter scenario gives the strongest signal as it
corresponds roughly to

H?

δ
∼ O(1). (5.35)

In order to understand how strong can the signal be in our setup, we assume (5.35) in
what follows, but one should keep in mind that this is optimistic.

The estimate of η is less straightforward, at least conceptually. If we adopt the
envelope approximation, then we need to compute the vacuum energy density released
in the phase transition. This is simply the difference ε between the energy density of the
two minima in figure 5.12. Using a quadratic approximation, we find

ε ∼ m2∆φ2 ∼ m2f 2, (5.36)
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Figure 5.12: Two-well potential. In the picture ε is the energy difference between the two
minima, while Λ4 is the value of the potential at the local maximum.

where ∆φ ∼ f is the approximate field separation between the two minima. The energy in
the matter fluid ρ?matter is roughly given by the height of the deepest well, i.e. ρ?matter ' Λ4.
This is because at completion of the phase transition the oscillations of the scalar field
span almost the whole well. Therefore, in the envelope approximation we obtain

η ∼ κ−1. (5.37)

As we have mentioned, deviations from this simple picture may arise in our case. On the
one hand, a certain fraction of the energy of the walls might for example be dissipated
into the matter fluid. In this case, only a fraction of ε would lead to production of
gravitational waves. This effect might be captured by the efficiency prefactor λ.7 On the
other hand, the energy released into the fluid while the bubbles expand and collide might
also contribute to the production of gravitational waves. Namely, this energy might be
converted into bulk motion of the fluid. In this case, the energy released in gravitational
radiation should be larger than ε, and could possibly be as large as Λ4. This effect is
captured by studying the fluid as a source of gravitational waves. We comment very
briefly on this topic in the next subsection.

5.5.2 Gravitational waves from the matter fluid
In analogy with the case of radiation there are at least two effects which can further con-
tribute to the total energy released in gravitational radiation during the phase transition.
Here we just provide the formulae given in [209] for the thermal case, keeping in mind
that they may not straightforwardly extend to our setup:

1. Sound waves in the fluid: this arises because a certain fraction λv of the energy
of the walls is converted after the collision into motion of the fluid (and is only later
dissipated). In the case of radiation this gives a contribution

ρGW,sw
ρtot

∼ θsw

(
H?

δ

)
λ2
v

(
η2

(1 + η)2

)
(5.38)

7Let us also notice that bubble walls may also be generically crossed by the fluid. We neglect this
effect in our discussion.
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The prefactor θsw is expected to be smaller than θ in (5.31).

2. Turbulence in the fluid: one expects further contributions as a certain fraction
λturb of the energy of the walls is converted into turbulence. In the case of radiation
one obtains:

ρGW,turb
ρtot

∼ θturb

(
H?

δ

)
λ

3/2
turb

(
η3/2

(1 + η)3/2

)
. (5.39)

The prefactor is expected to be larger than θ in (5.31). Note, that for these two
mechanism the dependence on H/δ is only linear.

In certain regimes, these two effects may be larger than the one due to bubble collisions
and shocks in the fluid. However, they are not fully understood, even in the case of
radiation. Therefore, in the next subsection we will neglect them, and obtain only a
lower bound on the relic abundance of gravitational waves. This should still be useful to
understand the approximate size and frequency of the signal. Nevertheless, the reader
should keep in mind that there are other possible contributions even beyond the ones
mentioned in this subsection (see e.g. [221] for recent progress).

5.5.3 Frequency and signal strength of gravitational waves

In order to compute the relic abundance and frequency of gravitational waves emitted dur-
ing the phase transition, we need to know the equation of state of the background energy
density from the end of the phase transition to today. Assuming standard evolution after
reheating the behaviour of the scale factor until today is essentially fixed8. Furthermore,
the inflaton field generically behaves as non-relativistic matter after inflation. It remains
to be addressed whether deviations from the equation of state w ≈ 0 might occur
immediately after the phase transition, before reheating.

Due to the very large release of energy during the collision of bubble walls, it is
conceivable that the fluid initially behaves relativistically. This would correspond to
an early phase of radiation domination, i.e. w = 1/3, in a similar fashion to some
preheating scenarios. Eventually, the fluid cools down and its non-relativistic behaviour
is restored. Depending on the reheating temperature, this may or may not happen before
the inflaton decays. If the system were in a thermal ensemble, the fluid would behave non-
relativistically after T ∼ mφ ∼ M . For the time being, we allow for a general equation
of state parameter w after the phase transition and before T ∼M .

Therefore the background energy density at reheating is given by

ρRH = Λ4
(
a?
aNR

)3(1+w) (aNR
aRH

)3
, (5.40)

where from now on the subscript NR denotes that a certain quantity is evaluated at the

8It is characterized by the effective number of degrees of freedom.
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time when the fluid becomes non-relativistic. Let us define the prefactors

νw ≡
(
a?
aNR

)
∼
(
ρNR
ρ?

) 1
3(1+w)

, (5.41)

νnr ≡
(
aNR
aRH

)
∼
(
ρRH
ρNR

)1/3

. (5.42)

The prefactor νw quantifies the duration of a period of matter domination before reheat-
ing, while νnr quantifies the duration of an early epoch of matter domination. Obviously
0 < νw, νnr ≤ 1.

The energy density in gravitational waves scales as a−4. According to (5.33), at
reheating we have

ρGW (tRH) ≈ Λ4ν4
wν

4
nr

[
θ0

(
H?

δ

)2 η2

(1 + η)2

]
= ν−3(w−1/3)

w · νnr
[
θ0

(
H?

δ

)2 η2

(1 + η)2

]
ρRH ,

(5.43)
where in the last step we have used (5.40). The relic energy density of gravitational waves
is then

ρGW (t0) ≈ ν−3(w−1/3)
w · νnr

[
θ0

(
H?

δ

)2 η2

(1 + η)2

] (
aRH
a0

)4
ρRH , (5.44)

where t0 is the current age of the Universe. The ratio aRH/a0 can be determined by
imposing entropy conservation. Furthermore, ρRH can be computed using the standard
formula for the energy density of radiation

ρRH = π2g?(TRH)
30 T 4

RH . (5.45)

Finally, the density parameter today ΩGW (t0) ≡ ρGW (t0)
ρcrit

= ρGW (t0)
8πGN
3H2

0
today is given by

ΩGW (t0) ' 10−5ν−3(w−1/3)
w νnr
h2 · θ0

[
102

g∗(TRH)

]1/3

·
[
H?

δ

]2
· η2

(1 + η)2 , (5.46)

where h ≡ H0/(100 km · s−1 ·Mpc−1).
Let us now estimate the peak frequency of the emitted radiation. For this quantity

the only relevant parameter is δ. Frequencies scale as ∼ a−1, therefore we have:

ω0 ∼ ωpeak

(
a?
aNR

)(
aNR
aRH

)(
aRH
a0

)
∼ ωpeak · νw · νnr ·

(
aRH
a0

)
. (5.47)

By combining (5.47), (5.34), H2 ∼ ρ/M2
P and (5.45) one obtains

ω0 ∼ 108Hz · σ · νw · νnr
(
δ

H∗

)(
g∗(TRH)

102

)1/6 [
TRH

1015GeV

]
. (5.48)

We have therefore determined the relevant parameters of the emitted radiation as function
of δ and η. Now we can plug in (5.35) and (5.37), to obtain final formulae. Then we
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have:

ΩGW (t0)h2 ' 10−5ν
−3(w− 1

3 )
w · νnr · θ0

[
102

g∗(TRH)

]1/3

κ−2 (5.49)

ω0 ' 108Hz · σ · νw · νnr ·
(
g∗(TRH)

102

)1/6 [
TRH

1015GeV

]
. (5.50)

In the envelope approximation, it is also possible to compute the full spectrum of the
gravitational radiation emitted from the collision of the bubble walls. This reads [209]:

ΩGW (t0)h2 ' 10−5ν−3(w−1/3)
w νnr · θ0 · κ−2

[
102

g∗(TRH)

]1/3

Senv(ω) (5.51)

with Senv(ω) = 3.8(ω/ω0)2.8

1 + 2.8(ω/ω0)3.8 .

In order to estimate the maximal possible size of our signal, let us now specify to the
case in which the energy present after the bubble collisions is converted into radiation.
This corresponds to setting w = 1/3 in (5.51). At T ∼ M the inflaton goes back to a
non-relativistic behaviour. The prefactors νw and νnr can now be explicitly computed,
using ρNR ∼ T 4

NR ∼M4, ρRH ∼ T 4
RH . We obtain

νw =
(
ρNR
ρ?

)1/4

∼ M

Λ ∼
κ1/4m1/2

f 1/2 (5.52)

νnr =
(
ρRH
ρNR

)1/3

∼
(
TRH
mκ1/2

)4/3
. (5.53)

From (5.53), it is clear that the largest signal is obtained for TRH ∼ TNR ∼ M . In this
case νnr ∼ 1 and the signal is completely unsuppressed. For completeness, let us mention
that the largest suppression of the signal occurs for w ≈ 0. In this case, as should be
clear from (5.40), the background energy density scales as matter from completion of the
phase transition until reheating.

In figure 5.13 we plot the spectrum (5.51) for three different choices of parameters,
using w = 1/3. We fix m ' 10−5MP as required by observations. We have chosen
parameters in such a way as to maximize the overlap with sensitivity regions of current
and future space- and ground-based detectors, which are bounded by dashed lines in the
plot. We have also fixed θ0 = 10−2, σ = 10−1. Our plot provides examples of the wide
range of frequencies that can be obtained in our setting, simply varying the axion decay
constant, the reheating temperature and the number of local minima. Interestingly, for
reasonable choices of parameters the signals are in the reach of future detectors.

5.6 Summary and Conclusions
In this chapter we investigated the production of gravitational waves from post-inflationary
dynamics in models of Axion Monodromy inflation. We expect such phenomena to
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Figure 5.13: Gravitational wave spectra as in (5.51) with w = 1/3. The inflaton mass is
fixed tom ∼ 10−5MP . Spectra are shown as solid lines for different values of κ, f and TRH :
the blue curve is obtained for κ = 5, f = 0.1MP , TRH ∼ 1012 GeV; the brown curve for
κ = 10, f = 0.01MP , TRH ∼ 1011 GeV; the red one for κ = 70, f = 0.001MP , TRH ∼ 1011

GeV. We have also taken w = 1/3, θ0 = 10−2, σ = 10−1 in (5.51). For the values of
the reheating temperature considered here, we have g∗(TRH) ∼ 102. Sensitivity curves of
some ground- and space-based interferometers are shown for comparison as dashed curves
(data taken from [222]).

also occur for generic axionic fields with potentials with sizable modulations, albeit the
numerical results may differ significantly in these cases.

The main observation is that in models of axion monodromy inflation, the inflaton
potential consists of a monotonic polynomial with superimposed cosine-modulations.
While these modulations have to be small to allow for successful inflation, they tend
to dominate near the bottom of the potential. In fact, these cosine ‘wiggles’ can be large
enough such that the potential exhibits a series of local minima.

After inflation ends, the inflaton is exploring this wiggly part of the potential. As a
consequence of Hubble friction, the rolling axion can get stuck in one of the wells. This
may happen well before the inflaton reheats the standard model degrees of freedom. Since
the energy density in the axion field decreases together with H, the field is more likely to
get caught in one of the last minima. We therefore focused on a two-well setting, which
is obtained by “zooming” into the full monodromy potential.

Taking fluctuations of the inflaton field into account, the inflaton field does not
necessarily get caught in one unique local minimum in the entire Hubble patch. If field
fluctuations are sufficiently large, a phase decomposition occurs such that at least two
different vacua are populated after inflation. The probability of this occurring is given
by P ∼ δρ/∆ρ, where δρ is the uncertainty in the axion energy density induced by the
field fluctuations and ∆ρ is the frictional loss of energy in one oscillation.

We can distinguish two sources of field fluctuations which may lead to a phase
decomposition. Firstly, there are the classical inhomogeneities naturally inherited from
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inflation. Secondly, there are the intrinsic quantum uncertainties characterising any
quantum field. These two sources are essentially indistinguishable at very early and
late times. However they are in principle of different size in the intermediate regime
that we are interested in. In particular, we have found that inflationary fluctuations
are more likely to induce a phase decomposition: the probability that they do so is
P ∼ κ−1/3(m/MP )(MP/f)5/3. Herem is the mass of the inflaton-axion, f the axion decay
constant which defines the axion periodicity 2πf and κ/π roughly counts the number of
local minima of the potential. Therefore, we observe that a phase decomposition is likely
for κ ∼ O(10) and f . 0.3 · 10−2MP . The probability that quantum fluctuations induce
a phase decomposition is smaller by a factor (f/(MPκ))−4/3m/MP .

Furthermore, due to the oscillatory term in the axion potential, fluctuations can
experience exponential growth. This effect arises generically for modes with k ∼ m at
the time when the field is rolling over the last wells. These fluctuations never exited
the horizon, therefore they are effectively quantum modes. We extended the study of
enhancement in [207] to the case with varying H, but still neglecting the gravitational
field in the equations of motion. Numerically and using a classical approximation, we
observe the existence of a region of parameter space where a phase decomposition is likely
to occur. This happens roughly in the same regime where inflationary classical fluctu-
ations are also likely to induce a phase decomposition. However, given the exponential
enhancement of quantum modes, the latter are more likely to be the dominant cause
of phase decomposition. Enhanced quantum modes quickly become classical, therefore
we expect our main results to hold even after a more detailed analysis, which we leave
for future work. For larger values of f modes are not enhanced. Phase decomposition,
although unlikely, might still occur as a result of quantum or classical fluctuations. For
smaller decay constants fluctuations are very strongly enhanced. Phase decomposition
occurs but it is hard to understand the physics in such a highly non-linear regime.

If a phase decomposition occurs, bubbles containing minima of lowest energy expand.
Collisions of these bubbles source gravitational waves. We estimated the energy density
and frequency of the emitted radiation in terms of the axion parameters, in the envelope
approximation. Furthermore, we note that the matter fluid associated to the oscillating
inflaton may also radiate gravitational waves. This is similar to the case of a thermal
phase transition. The spectrum of the emitted radiation can peak in a wide range of
frequencies (from mHz to GHz), depending on the reheating temperature and on the
time of the phase transition. In this sense, our source is similar to other post-inflationary
phenomena, such as preheating and cosmic strings. However, it is interesting to observe
that the frequency may be lowered in our case since a matter dominated phase can follow
the phase transition. The spectrum is at least partially in the ballpark of future space-
and ground-based detectors. Thus, we can hope that axion monodromy may one day be
investigated by means of gravitational wave astronomy.





Chapter 6

Dark Radiation in the Large Volume
Scenario

Reheating can be importantly affected by degrees of freedom belonging to
hidden sectors. In particular, the existence of Dark Radiation can be obser-
vationally investigated in the CMB power spectrum, which depends on Neff ,
the effective number of relativistic species at CMB time. In this chapter,
we analyse the implications of the current observational bound on Neff for a
popular string-derived framework of physics beyond the Standard Model, the
Large Volume Scenario (LVS) [50]. The latter is indeed characterised by the
existence of at least one Dark Radiation candidate, associated to the volume
of the compactification manifold. A basic review of the LVS is provided in
subsection 1.1.4.
This chapter is based on the publication [129].

129
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6.1 Introduction
In Part I and in the Intermezzo of this thesis we studied certain consequences of String
Theory and more in general of Quantum Gravity for Large Field Inflation. In the previous
chapter we focused instead on a phenomenological signature of the pre-reheating epoch
after inflation. The relation to Quantum Gravity in this latter case is indirect, in that it is
mediated by axion monodromy, which is a string-motivated model of LFI. In this chapter
we focus on the effects of certain hidden sectors on reheating. The relation to Quantum
Gravity is again indirect: hidden sectors arise naturally in string-derived scenarios beyond
the Standard Model, in particular in the Large Volume Scenario (LVS).

Observationally, two quantities may help shed light on them. On one hand, hidden
matter fields would contribute to the observed abundance of Dark Matter. On the other
hand, hidden radiation would affect the value of Neff , i.e. the effective number of
relativistic species at CMB temperature, photons excluded. In the Standard Model,
only the three species of neutrinos are light enough to contribute to Neff at CMB
temperatures. More precisely, one has Neff,SM = 3.046. Any deviation ∆Neff from this
value should be considered as evidence for Dark Radiation (DR). Practically, this quantity
can be inferred from the CMB temperature map. The most recent measurement from the
Planck collaboration is consistent with the Standard Model prediction, though a small
amount of Dark Radiation cannot be completely excluded: Neff = 3.04±0.18 [2] (Planck
TT,TE,EE+lowP+BAO, 68% C.L.). Slightly less stringent constraints are obtained if
only the PlanckTT+lowP+BAO data are considered, i.e. Neff = 3.15 ± 0.23 (68%
C.L.) [2].

It is intuitively clear that this observation represents a potential clash with one
of the few generic predictions of String Theory. Namely, string compactifications are
characterised by a plenitude of very light fields. The lightest among them may contribute
to Neff . The impact of a measurement of Neff in agreement with the Standard Model to
a very high precision is therefore potentially dramatic for String Theory and in general
for physics beyond the Standard Model.

In this chapter, we assess concretely the consequences of the current measurement of
Neff . We focus on the framework of moduli stabilisation known as the Large Volume
Scenario (LVS) [50]. In models which make use of the LVS to stabilise moduli, the lightest
modulus τb is responsible for reheating. Crucially, it also decays to hidden sectors, in
particular to a very light axion-like particle [125–128], which we will denote by a. The
latter is light enough to be relativistic at CMB temperature. The current measurement
of Neff constrains the abundance of this axion-like particle, thereby bounding the decay
rate of τb into a compared to the decay rate into SM degrees of freedom. In particular,
we have:

∆Neff = 43
7

(
10.75
g∗(Td)

) 1
3 ρDR
ρSM

∣∣∣∣∣
T=Td

= 43
7

(
10.75
g∗(Td)

) 1
3 Γτb→DR

Γτb→SM
. (6.1)

Here Td is the decay temperature of the modulus τb, which effectively coincide with the
reheating temperature. The effective number of particle species at temperature T is
denoted by g?(Td). In the LVS, the decay rates into a and into Standard Model fields
depends on important features of the compactification, such as the amount of Higgs-like
fields. It is therefore possible to find important constraints on compactifications setups
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based on the LVS.
This chapter is structured as follows: In section 6.2 we review the existing constraints

on a particular realisation of the LVS which allows for TeV-scale soft terms. This also gives
us the opportunity to collect some relevant formulae. In section 6.3 we list possibilities
to suppress the amount of DR, focusing on the decay of the lightest modulus into gauge
bosons. In section 6.4 we focus on one such possibility, where the bulk modulus reheats
the SM indirectly, via gauge bosons belonging to an approximate global symmetry of the
SM. In section 6.5 we briefly discuss two possibilities to evade the DR bound beyond the
sequestered LVS, in setups with high-scale supersymmetry. Finally, we summarise the
content of the chapter in section 6.6.

6.2 Dark Radiation in the Large Volume Scenario
The aim of this section is to briefly review predictions for Dark Radiation in the one
popular set of realisations of the LVS: the so-called sequestered scenario (cf. [125,126] for
description of the setup, [125–127,223] for predictions of DR).

In the sequestered LVS, the visible sector lives on stack of D3-branes at a singularity.
This choice is motivated by the resulting supersymmetric spectrum in the visible sector:
while the superpartners acquire TeV-scale masses, the gravitino and the moduli remain
heavy enough to evade the Cosmological Constant Problem (CMP) [45–47]. In particular,
at lowest order in string perturbation theory the following hierarchy of masses arises:

m1/2 ∼ msoft ∼
MP

V2 � m3/2 ∼
MP

V3/2 , (6.2)

Since all the scales are set by V , we will discuss the prediction for DR in terms of V .
Notice that TeV-scale soft terms are achieved for V ≈ 3 ·107 (here we measure the volume
in string units).

As it is customary in the LVS, let us consider compactification of 10D string theory
on a Swiss-Cheese CY with volume given by:

V = α

(
τ

3/2
b −

∑
i

γiτ
3/2
s,i

)
. (6.3)

Here τb and τi,s are the real components of the Kähler moduli Tb = τb + iab and Ti,s =
τi,s+iai,s, describing the volume of the bulk and of the small cycles of the CY respectively.
Thanks to an interplay of non-perturbative effects and α′ corrections [50], the volume of
the compactification as well as at least one of the τi,s are stabilised. Crucially, the
minimum of the F-term scalar potential for the Kähler moduli occurs at an exponentially
large value of V .

We will be mostly concerned about the decay rate of the real part of the bulk modulus
τb into its axionic partner ab. While the former is parametrically as heavy as the gravitino,
the latter is for all purposes massless:

mτb ∼
MP

V3/2 , mab ∼MP e−2πV2/3
. (6.4)
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The decay rates are determined once the Kähler potential and the gauge kinetic functions
of the N = 1 effective theory are specified. In particular, we have:

K = − 3 ln
(
Tb + T̄b −

1
3
[
CiC̄i +HuH̄u +HdH̄d + {zHuHd + h.c.}

])
+ . . . (6.5)

= − 3 ln(Tb + T̄b) + CiC̄i

Tb + T̄b
+ HuH̄u +HdH̄d

Tb + T̄b
+ zHuHd + h.c.

Tb + T̄b
+ . . . ,

fa = S + ha,kTsa,k , (6.6)
where Ci are chiral matter superfields, Hu and Hd are the MSSM Higgs doublets and
Tsa,k are blow-up modes. As long as the Giudice-Masiero coupling z ∼ O(1), decay into
the visible sector is dominated by τb → HuHd.1 In particular, using (6.5) one finds:

Dark Radiation: Γτb→abab = 1
48π

m3
τb

M2
P

, (6.7)

Visible Sector: Γτb→HuHd = 2z2

48π
m3
τb

M2
P

. (6.8)

If we extend the field content beyond the MSSM, we can allow for a generic number nH
of Higgs doublets. According to (6.1), (6.7), (6.8), we then find

∆Neff = 43
7

(
10.75
g∗(Td)

) 1
3 Γτb→DR

Γτb→SM
= 43

7

(
10.75
g∗(Td)

) 1
3 1
nHz2 . (6.9)

The reheating temperature is given by Td ∼
√

ΓτbMP ' O(0.1)MP/V−9/4. For TeV
scale SUSY, we find Td . 1 GeV. The effective number of particle species at this
temperature is g∗ is g∗ = 247/4. The observational constraint ∆Neff < 0.17 (from
Planck TT,TE,EE+lowP+BAO) requires: nH > 20 for z = 1 and z > 3 for only one pair
of Higgs doublets. Alternatively, for ∆Neff < 0.33 (fromPlanck TT+lowP+BAO) one
needs nH > 10 for z = 1 and again z > 2 for only one pair of Higgs doublets. Allowing
for soft terms msoft & 10 TeV, which may be more natural given the current absence of
supersymmetry at the LHC, relaxes these constraints only very mildly.

It is therefore clear that the current measurement of Neff already leads to dramatic
constraints on the sequestered LVS.2 In particular, it remains an open question whether
z > 1 occurs naturally in the string landscape. Notice that z = 1 can be derived from a
shift symmetry in the Higgs sector, therefore it may be considered a motivated natural
value for z.3

6.3 Reheating through gauge bosons
The aim of this section is to investigate different possibilities beyond the sequestered LVS
to improve the rather unsatisfactory situation presented in the previous section.

1See e.g. [129] for a review of decays into other visible sector fields
2See however [224], where the authors argue that string loop corrections to the Kähler potential can

relax the constraints presented in this section.
3 In type IIB/F-theory such a symmetry can arise if the Higgs is contained in brane deformation

moduli [225–228]. However, in this case the decay channel τb → HuHd is closed, because the Kähler
metric is independent of Kähler moduli.
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In order to relax the constraints on z and nH we need to boost the decay rate of τb
into visible sector fields. There are in principle three possibilities to do so:

• Matter scalars: let us consider one such matter field C. The relevant term in the
Kähler potential is of the form K ⊃ τbCC̄. The decay rate is therefore given by
Γ ∼ m2

softmτb
M2
P

. Clearly, this rate is comparable to (6.8) only if the scalar mass is close
to threshold, i.e. msoft . mτb/2. While the precise determination of msoft requires
knowledge of yet undetermined corrections to the Kähler potential, the hierarchy
(6.2) seems difficult to evade in the sequestered LVS. In setups with high-scale
supersymmetry breaking, one typically has msoft � mτb [51,229,230], therefore the
decay to matter scalars is kinematically forbidden. As a consequence, we will not
discuss the decay to matter scalars any longer.

• Matter fermions: the decay rate into matter fermions is chirality suppressed. This
is a model independent statement [125] and the reason why we will not consider
this decay channel any longer.

• Gauge bosons: let us consider one such gauge boson with field strength Fµν
coupled to τb via the interaction term τbFµνF

µν . The latter induces a decay rate:

Γτb→AA ∼
1
96
mτ3

b

M2
P

. (6.10)

Notice that this rate is parametrically comparable to the decay rate into axions
(6.7) or Higgs fields (6.8). However, in the sequestered LVS τb does not couple at
tree level to visible sector gauge bosons. At loop level, the decay channel is open
but obviously suppressed with respect to the decay into Dark Radiation. Crucially,
the decay into gauge bosons can occur at tree level only if the associated gauge
kinetic function depends on the modulus τb.

The most optimistic channels among the ones we have listed is the one into gauge bosons.
We can envision to possibilities to overcome the difficulties of the sequestered LVS:

1 Coupling to visible sector gauge fields: a tree-level decay into (MS)SM gauge
bosons can occur if the visible sector arises from D7-branes wrapping 4-cycles in the
geometric regime. This general setup, referred to as non-sequestered (in the sense
of supersymmetry breaking) LVS, is characterised by msoft ∼ m3/2. Notice that
m3/2 & O(10) TeV to evade the CMP, therefore this setup is crucially accompanied
by high-scale supersymmetry.4 This possibility may then be particularly motivated
by the absence of supersymmetric partners at the LHC at the time of writing.

2 Coupling to hidden sector gauge fields: alternatively, one can remain in the
framework of the sequestered LVS with the possibility of low-scale supersymmetry.
In this case, we can introduce so-called flavour branes [233]. The gauge theories
living on these branes do not belong to the SM gauge group. Nevertheless, the

4For example, this situation arises in F-theory GUTs (for reviews see e.g. [231, 232]) with high-scale
SUSY [226].
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SM fields can be charged under such gauge symmetries. Crucially, the associated
gauge fields can be massive if the gauge symmetry is broken at some sub-stringy
scale. They then serve as intermediate states during reheating: namely, the bulk
modulus decays to hidden gauge bosons, which subsequently decay to the MS(SM).
Similarly to the non-sequestered case, flavour branes are 7-branes wrapping cycles
in the geometric regime.

In the next section, we will analyse the second option in detail. We will then discuss
more briefly some models in the framework of the non-sequestered LVS, mainly aiming
at the predictions for the amount of Dark Radiation in those setups.

6.4 Dark Radiation in the LVS with flavour branes
Here we will examine the situation where the lightest modulus reheats the visible sector
fields via intermediate states. We will argue that gauge bosons arising from the world-
volume theory of so-called flavour branes are ideal candidates for such intermediaries.

Flavour branes are (stacks of) 7-branes in the geometric regime going through the
singularity at which the SM is geometrically engineered. They are known since the very
early days of ‘model building at a singularity’ [234] and can also be viewed as a tool
for generating (approximate) global flavour symmetries of the SM.5 Flavour branes wrap
bulk cycles such that for a large bulk volume the gauge theory on their worldvolume is
extremely weakly coupled. There will be visible sector states charged under the flavour
brane gauge group. This gauge theory has to be spontaneously broken such that, at
low scales, a global symmetry of visible sector states emerges. For state-of-the-art string
model building employing flavour branes see [233].

The setup which we are considering in this case is as follows. The Calabi-Yau exhibits
a large bulk cycle and a small blow-up cycle giving rise to a non-perturbative effect.
These cycles are stabilised by the standard LVS procedure. The visible sector is realised
by D3-branes at a singularity as in the sequestered case. However, in addition there are
flavour branes, which wrap the bulk cycle but also intersect the singularity. A globally
consistent realisation of such a setup in Calabi-Yau orientifolds is described in [233]. As
we model the visible sector by D3-branes at a singularity, supersymmetry breaking is
sequestered and gravity-mediated soft terms are suppressed w.r.t. the gravitino mass:
msoft ∼MP/V2 ∼ m3/2/V . However, flavour branes may affect these soft terms.

Reheating in LVS models with flavour branes

We now review the important steps in the cosmological history of the universe, which
lead to the reheating of the SM in our setup.

1. As in the previous scenarios, the energy density of the universe after inflation is
dominated by the lightest modulus, which is the volume modulus τb in LVS models6.

5Approximate global symmetries in string theory can also arise from approximate isometries of the
compactification space. See [35] for more details.

6We do not consider fibred Calabi-Yau manifolds here, where the lightest modulus can be given by a
mode orthogonal to the volume.
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In the following, we wish to reheat the visible sector fields via gauge bosons Aµ on
flavour branes. If this scenario is to reheat the visible sector more efficiently (and
thus lead to a lower ∆Neff ) than in the sequestered setup without flavour branes,
the decay of τb into pairs of Aµ should be the dominant decay channel of τb. In
the following we will proceed under this assumption. The decay rate Γτb→AµAµ can
be determined from the tree-level interaction between τb and Aµ captured by the
supersymmetric Lagrangian term fflWαW

α, where the gauge kinetic function for
flavour branes wrapping a bulk cycle is given by ffl = Tb.7 The resulting decay rate
is given by

Γτb→AµAµ = Nf

96π
m3
τb

M2
P

, (6.11)

where Nf is the number of generators of the flavour brane gauge theory. After
τb has decayed the energy density of the universe is then dominated by the gauge
bosons Aµ and the axions.

2. The subsequent evolution of the universe then crucially depends on the mass mA

of the flavour brane gauge bosons. Hence we will now examine the bounds on mA.

(a) The upper bound on the flavour brane gauge boson mass is given by mA =
mτb/2, as Aµ are then produced at threshold. To determine the subsequent
development of the universe, we determine the decay rate of Aµ into SM
particles. In particular, there are SM fermions which are charged under the
flavour brane gauge group and the decay rate of Aµ into these fermions is given
by

ΓAµ→ff̄ ∼ αfmA , (6.12)

where αf ∼ 1/τb ∼ V−2/3. One can now easily check that for a wide range
of masses mA below threshold the flavour brane gauge bosons decay into SM
fields as soon as they are produced by decays of τb:

ΓAµ→ff̄ ∼ α′fmA′ ∼ V−2/3mA′ , (6.13)

Γτb→AµAµ = Nf

96π
m3
τb

M2
P

∼ V−3mτb . (6.14)

It follows that ΓAµ→ff̄ > Γτb→AµAµ if mA > V−7/3mτb . The flavour brane gauge
bosons then decay into SM fields instantaneously.

(b) If mA . V−7/3mτb , the flavour brane gauge bosons will not decay instan-
taneously, but form a population of highly relativistic particles carrying a
significant fraction of the energy density of the universe. In the end these
particles still have to reheat the SM. An interesting question for the following
evolution of the universe is whether the flavour brane gauge bosons become
non-relativistic before they decay into SM degrees of freedom. If they become
non-relativistic, their energy density will scale as matter with time, while any

7The decay rate Γτb→AµAµ depends on Re(ffl) = τb ∼ V2/3. While there are corrections to the gauge
kinetic function due to fluxes such that ffl = Tb +hS, these corrections are negligible in here, as V � 1.
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DR produced by the decay of τb earlier will scale as radiation. Consequently,
the fraction of the energy density in Aµ over the energy density in DR would
grow. As the flavour brane gauge bosons would eventually decay into SM
fields, the relic abundance of SM fields would be enhanced with respect to the
relic abundance of the axionic Dark Radiation. Correspondingly ∆Neff could
be further suppressed.
However, one can show that the population of Aµ will always remain relativistic
until they decay. Initially the population of flavour brane gauge bosons is
relativistic with energy density ρA = π2

30g∗,A(T )T 4. If the temperature falls to
T ∼ mA the gauge bosons become non-relativistic. One can now check that
Td at which the gauge bosons decay into SM fields is always higher than mA.
To determine Td we note that Aµ will decay when ΓAµ→ff̄ = H. As the gauge
bosons are highly relativistic initially, we need to correct the decay rate into
SM fermions by multiplying by a time-dilation factor for relativistic particles.
This can be justified a posteriori, as we will show that Aµ stay relativistic until
they decay. The decay rate (6.12) is modified as

ΓAµ→ff̄ ∼rel.
αf
m2
A

T
, (6.15)

The decay temperature Td can then be determined using the following equa-
tions:

3H2M2
P = ρA = π2

30g∗,A(Td)T 4
d , H = ΓAµ→ff̄ ∼rel.

αf
m2
A

Td
, (6.16)

leading to

Td =
(

90
π2g∗,A

) 1
6(MP

mA

αf

) 1
3
mA . (6.17)

We recall that for the gauge bosons not to decay instantly when produced
their mass had to be small: mA . V−7/3mτb ∼ V−23/6MP . It then follows that
Td > mA and flavour brane gauge bosons always remain relativistic.

(c) While the upper bound on the gauge boson mass mA is set by the kinematics
of the decay of τb we want to examine whether there is a cosmological lower
bound on mA. In particular, we will require that when reheating the SM
through the decay of flavour brane gauge bosons, the reheating temperature
of the SM is TSM & O(1) MeV to allow for standard BBN. To determine the
decay temperature of the SM we recall that Aµ will decay into SM fields when
ΓAµ→ff̄ = H. We have

3H2M2
P = ρSM = π2

30g∗,SM(Td,SM)T 4
d,SM , (6.18)

H = ΓAµ→ff̄ ∼rel.
αf

m2
A

Td,A
. (6.19)
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To relate Td,A to Td,SM we recall that the comoving entropy density s = g∗a
3T 3

is conserved when Aµ decays:

Td,A =
(
g∗,SM(Td,SM)
g∗,A(Td,A)

) 1
3

Td,SM . (6.20)

Putting (6.18) and (6.19) together one finds

mA =
(
π2g∗,SM

90

) 1
3
(
g∗,SM
g∗,A

) 1
6

α
−1/2
f

√
Td,SM
MP

Td . (6.21)

Standard BBN requires Td & O(1) MeV and thus we find the following lower
bound on mA:

mA & V1/3

√
1 MeV
MP

MeV . (6.22)

Given that we require V . 1014 to evade the Cosmological Moduli Problem,
it is clear that the cosmological lower bound on mA is very low. As a result,
our setup can successfully reheat the SM – for a wide range of masses from
threshold to the lower limit shown above.
While constraints from reheating allow very light weakly coupled vector bosons
there will be further constraints on the parameter space of such particles from
collider experiments and precision measurements.

Beyond cosmological constraints, there are also consistency conditions on the string
construction. The setup of visible sector and flavour branes has to satisfy local tadpole
cancellation conditions. In addition, the local D-brane charges of the flavour branes at
the intersection locus with the visible sector have to originate from restrictions of charges
of globally well-defined D7-branes. While these consistency conditions do not determine
a unique setup of allowed flavour branes, they constrain the number of flavour branes
allowed given a particular visible sector [233].

Predictions for Dark Radiation

Here we determine the decay rates of the lightest modulus into Dark Radiation and
Standard Model fields. The lightest modulus is the bulk volume modulus as in the
sequestered case. The rate of decays of τb into its associated axion can be determined
from K = −3 ln(Tb + T̄b) and gives the familiar result obtained before (6.7).

As argued before, decays of τb into gauge bosons on flavour branes lead to a direct
reheating of the Standard Model. As flavour branes wrap bulk cycles, there is a tree-
level coupling between τb and the gauge bosons on the flavour brane through the kinetic
term fflWαW

α. For flavour branes on the bulk cycle ffl = Tb, where we ignore any
flux-induced corrections. Alternatively, we can locate flavour branes on other large cycles
τi which intersect the visible sector. The ratio τi/τb is then stabilised by D-terms leading
to ffl = Ti = cTb with c ∼ O(1).

Last, there can also be direct decays of the volume modulus into visible sector matter
fields. As described in section 6.2 the dominating decay channel is given by the interaction
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Figure 6.1: Contour plot of ∆Neff vs. z and the number of gauge bosons Nf of the
gauge theory living on the stack of flavour branes wrapping the bulk cycle. The plot was
produced for g∗ = 75.75, corresponding to a reheating temperature Td ' 1 GeV.

of τb with Higgs fields, which arises from the Giudice-Masiero term (zHuHd +h.c.) in the
Kähler potential. In contrast to the non-sequestered setups studied before, here both
Higgs scalars are light enough to be produced by decays of τb leading to a decay rate
(6.8).

Overall, we find the following decay rates for the volume modulus:

Decays into DR: Γτb→ab,ab = 1
48π

m3
τb

M2
P

, (6.23)

Decays into SM: Γτb→Aflavourµ Aflavourµ
= Nf

96π
m3
τb

M2
P

, (6.24)

Γτb→HuHd = 2z2

48π
m3
τb

M2
P

, (6.25)

where Nf is the number of generators of the flavour brane gauge group.
Thus we find the following expression for the effective number of neutrino species:

∆Neff = 43
7

(
10.75
g∗(Td)

) 1
3 1
Nf
2 + 2z2

. (6.26)

We plot ∆Neff as a function of z and Nf , with g∗ = 75.75, in figure 6.1. One finds that
the bound ∆Neff < 0.17 can be achieved without any restrictions on the Higgs sector as
long as Nf > 38. For z = 1 the DR bound ∆Neff < 0.17 requires at least Nf > 35 gauge
bosons. For ∆Neff < 0.33 one needs Nf > 19 for z = 0 and Nf > 17 for z = 1. Thus for
a number of flavour branes as small as 10 current bounds on DR can be easily met.
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∆Neff Nf

z = 0 z = 1
< 0.40 > 16 > 12
< 0.33 > 19 > 17
< 0.17 > 38 > 35
< 0.10 > 65 > 61
< 0.05 > 128 > 124

Table 6.1: Minimum number of gauge bosons Nf on flavour branes needed to evade upper
bound on ∆Neff for z = 0 and z = 1

If bounds on ∆Neff become more restrictive, we have the following options. If we
do not wish to impose constraints on the Higgs sector of the model, we require a larger
number of generators on flavour branes. A table of the minimum numbers of gauge bosons
needed for fixed z given an upper bound on ∆Neff is shown in 6.1. However, conditions
for globally consistent models restrict the maximum number of flavour branes for a given
visible sector [233] and thus place an upper limit on the allowed number of gauge bosons.
The exact constraints on the numbers of flavour branes will depend on the details of
the individual model. While we cannot be more specific it follows that lower bounds on
∆Neff cannot necessarily be evaded by simply introducing more flavour branes.

6.5 Dark Radiation in the non-sequestered LVS

In the previous section we studied how to boost the decay rate into SM fields by coupling
the bulk modulus τb to gauge bosons which do not belong to the SM gauge group. In
this section instead we will focus on setups where τb decays at tree level to visible sector
gauge fields. As we already mentioned in section 6.3, this can be achieved by realising
the visible sectors on D7-branes wrapping 4-cycles in the geometric regime.

We will discuss three options to stabilise such 4-cycles: through a flux-induced D-term
potential, through string loop corrections and through non-perturbative effects. Here, we
do not aim at a detailed description of the necessary model building, which can be found
in [129]. Rather, our aim is to derive predictions for the amount of Dark Radiation in
these setups. Comparison with results from other realisations of non-sequestered LVS
[235], [236] can be found in [129] and in [164].

6.5.1 Stabilisation through D-terms

Let us consider a CY X, exhibiting several 4-cycles as well as 2-cycles. We use standard
notations τi and ti for the volume moduli of the 4- and 2-cycles respectively. In this
subsection we wish to stabilise all but two 4-cycles in a geometric regime using a D-term
potential. The remaining two 4-cycles are then identified with the “small” cycle τs and
the bulk cycle τb stabilised à la LVS. In particular, we will focus on geometries which lead
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to the usual Swiss-Cheese-type volume:

V = α(τ 3/2
b − γτ 3/2

s ). (6.27)

A D-term potential can arise from a anomalous U(1) symmetries living on D7-branes
wrapping the 4-cycles of X. In this case, it takes the form:

VD =
∑
i

g2
i

2

∑
j

cij|φj|2 − ξi

2

. (6.28)

Here φj are open string states charged under the U(1) symmetry and ξi are FI-terms,
given by

ξi = 1
4πV qijt

j, (6.29)

where qij are the charges of the Kähler superfields Ti under the anomalous U(1) [237,238].
Notice the double sum in (6.28): the index i runs over all 7-branes, while j specifies a
given open string state. Stabilisation proceeds by imposing ξi = 0 for all i.8

We now briefly outline the strategy to stabilise the visible sector cycle, whose volume
modulus will be denoted by τa, in terms of the bulk cycle. In particular, we will be able
to achieve τa = caτb, where ca is a numerical prefactor.

1 First, we fix all but two 2-cycles by imposing ξi = 0 for all i. In order to do so,
we assume that one 2-cycle t1 does not appear in the FI terms (6.29) and is left
unstabilised at this point. Then the D-term condition generically leaves one other
2-cycle t2 unfixed.

2 Correspondingly, two 4-cycles are left unfixed. This can be shown by means of the
following important relation between 4- and 2-cycles, valid for CY threefolds:

τi = ∂V
∂ti

= 1
2kijkt

jtk, (6.30)

where kijk are the triple intersection numbers of X. By an appropriate choice of
geometries, one can ensure w.l.o.g. that all the 4-cycles, except for τs are fixed in
terms of the bulk cycle τb. In particular, τa = caτb, as desired.

A complete description of our stabilisation procedure is described in [129] (see also [238]
for an explicit example of such a construction). The crucial feature of this model is the
desired coupling between the bulk modulus and the SM gauge bosons, which now arises
from the supersymmetric Lagrangian of the visible sector gauge theory:

L ⊃
∫

d2θ TaWαW
α =

∫
d2θ caTbWαW

α = caτbFµνF
µν + caabFµνF̃

µν . (6.31)

As usual, ab is almost massless and therefore contributes to Neff . Let us now pause to
make a comment on the value of the coefficient ca. Notice that the VEV of τa has to be
fixed small in order to produce the Standard Model gauge coupling, i.e. α−1

SM = 〈τa〉 ≈ 25
(neglecting flux contributions so far). Since in the LVS 〈τb〉 � 1, a potentially severe
tuning of ca is required.

8That is, we do not appeal to VEVs of charged fields.
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Predictions for Dark Radiation

We now compute the relevant decay rates and obtain prediction for Dark Radiation in
this setup. The Kähler potential (see [239], [226] and [129] for more details) and gauge
kinetic functions appropriate for our setup are

K = − 3 ln(Tb + T̄b)+ (6.32)

+ (Ta + T̄a)
1/2

Tb + T̄b

(
HuH̄u +HdH̄d

)
+ (Ta + T̄a)

1/2

Tb + T̄b
(zHuHd + h.c.) + . . . ,

fa = Ta + hS . (6.33)

As shown above, D-term stabilisation imposes Ta = caTb. The decay of τb into the
heavy Higgs is kinematically forbidden, because msoft � mτb in the non-sequestered
LVS. Therefore the remaining decay channels with their associated rates are:

Decays into DR: Γτb→abab = 1
48π

m3
τb

M2
P

, (6.34)

Decays into SM: Γτb→hh = z2

96π
sin2(2β)

2
m3
τb

M2
P

, (6.35)

Γτb→AA = Ng

96π γ2 m
3
τb

M2
P

. (6.36)

Here Ng is the number of gauge bosons, tan β is the ratio of Higgs VEVs and

γ ≡ τa
τa + h Re(S) . (6.37)

Notice that h quantifies the effect of fluxes on the gauge kinetic function fa. Finally,
using (6.34), (6.35) and (6.36) we obtain:

∆Neff = 43
7

(
10.75
g∗(Td)

)1/3 Γτb→DR
Γτb→SM

= 43
7

(
10.75
g∗(Td)

)1/3 1
sin2(2β)

4 z2 + Ng
2 γ

2
. (6.38)

We will consider the minimal (MS)SM field content, with Ng = 12 and only one light
Higgs. Furthermore, motivated by high-scale supersymmetry, we take sin(2β) = 1 [225,
240–242]. Notice that this choice also minimises ∆Neff , which exhibits a mild dependence
on g∗. In table 6.2 we provide examples of values of g∗ with the corresponding values of
Td and mτb .

Predictions for Dark Radiation are shown in figure 6.2 (a) and (b) for g∗ = 10.75 and
g∗ = 106.75 respectively, as a function of the parameters z and γ. The crucial difference
with respect to the situation presented in section 6.2 is that the current observational
bound ∆Neff < 0.17 (∆Neff < 0.33) can be satisfied with z . 1, as long as γ & 2.4
(γ & 1.7) for g∗ = 10.75 or γ & 1.6 (γ & 1.2) for g∗ = 106.75. According to (6.37) the
most stringent bound requires a mild fine-tuning (to 1 part in 2) between τb and hRe(S).
Future observations may increase the delicacy of this cancellation as shown in figure 6.2.
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mτb [GeV] Td g∗
5 · 105 50 MeV 10.75
2 · 106 300 MeV 61.75

107 3 GeV 75.75
≥ 2 · 108 ≥ 200 GeV 106.75

Table 6.2: Number of degrees of freedom corresponding to different reheating temper-
atures obtained for different masses of the modulus τb. The reheating temperature is
determined as Td = (1 − Ba)1/4(π2g∗/90)−1/4√Γτb,totalMP , where Ba is the branching
ratio for decays of τb into axions. The values of Td are obtained by considering the very
conservative branching ratio Ba ' 0.1.

The bulk axion as Dark Matter

So far we have considered the axionic partner of the bulk modulus τb as Dark Radiation.
However, a natural the supersymmetric interaction (6.31) includes a topological coupling
between ab and the SM gauge fields. In particular, ab couples to QCD gluons. Thus,
after moduli stabilisation, non-perturbative QCD effects will generate a potential for ab,
which essentially takes the rôle of a QCD axion. The consequences are as follows: ab
is produced both as Dark Radiation via the decay of τb and as Dark Matter through
the axion misalignment mechanism. In particular, the abundance of axion Dark Matter
is determined by the coupling of ab to QCD gluons. More specifically, the full effective
lagrangian for ab is (see e.g. [243,244]):

L ⊃ KTbT̄b
∂µab∂

µab + caτb
4π FµνF

µν + caab
4π FµνF̃

µν . (6.39)

The axion decay constant can be found by canonically normalisingab and Aµ. The
coupling between ab and Aµ then reads

L ⊃ g2

32π2
caab
fab

FµνF̃
µν , (6.40)

where g−2 = caτb/4π and fab =
√
KTbT̄b/2π. Observationally, the effective decay constant

fa/ca should lie in the window:

109GeV <
fab
ca

< 1012GeV, (6.41)

to avoid overcooling of stars and overproduction of dark matter [245]. The upper bound
in (6.41) can be evaded if the PQ symmetry is broken before inflation. In this case indeed
the axion relic density is given by (see e.g. [245]):

Ωah
2 ∼ 3× 103

(
fa/ca

1016GeV

)7/6

θ2
i , (6.42)

where θi = ab,initial
fab/ca

∈ [−π, π). Imposing Ωa . ΩDMh
2 = 0.1199 [2] we obtain the upper

bound of (6.41) for θi ∼ O(1). Alternatively, by tuning the initial misalignment angle θi
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Figure 6.2: Contour plot of ∆Neff vs. z and γ (defined in (6.37)), with (a) g∗ = 10.75 and
(b) g∗ = 106.75. While the predictions are valid for sin(2β) = 1, they can be reinterpreted
for general values of sin(2β). To this end we define an effective parameter z̃2 = sin2(2β)z2

and relabel z → z̃ on the horizontal axis.

we can allow fa > 1012 GeV.9 Notice that (6.42) is valid only if the axion starts oscillating
before the QCD phase transition. This requires fa . 1016 GeV.

Unfortunately, we indeed have to require such a tuning of θa. Indeed the effective
axion decay constant in our setup will violate the upper bound in(6.41), as the following
computation shows:

fab
ca

=

√
KTbT̄b

MP

2πca
=
√

3MP

4πcaτb
∼ 1016 GeV for caτb = α−1

vis ∼ 25 . (6.43)

Therefore, we need to impose θi ∼ 10−2 to evade overproduction of DM.

6.5.2 Further constructions
In this subsection we will briefly discuss two other options to stabilise the visible sector
cycle in the non-sequestered LVS.

Stabilisation by string loop corrections

As an alternative to stabilisation by D-terms, we can employ string loop effects. The
advantage with respect to the case discussed in the previous section is that the flux
tuning required to have a small ca can be avoided. Stabilisation by string loop effects

9See [246] for an anthropic justification of such a tuning.
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is better understood for fibred Calabi-Yau manifolds, whose volume is generically of the
form

V = α
(√

τ1τ2 − γnpτ 3/2
np

)
. (6.44)

The overall volume V and the modulus τnp are stabilised à la LVS, such that V ≈ √τ1τ2.
The remaining flat direction χ, corresponding to simultaneous changes in τ1 and τ2 that
leave the overall volume invariant, will be stabilised by string loop corrections as in [247].
The moduli χ and V can have comparable masses. Here we will consider the simpler case
when τ1 is not fixed too small and χ is the lightest modulus, so that V can be integrated
out.

We realise the visible sector by means of D7 branes on the fiber τ1. As discussed in
[129] and [238,248], this choice leads to the so-called “anisotropic limit” τ2 � τ1 � τnp.10

As in the previous section, the following coupling between τ1 and the visible sector gauge
fields arises:

L ⊃ τ1FµνF
µν + a1FµνF

µν . (6.45)

In this setup there are at least (if only one cycle is stabilised via string loop effects) two
light axions to which χ can decay: the axionic partners of τ1 and τ2 respectively. After
integrating out V , we have τ2 = α−1Vτ−1/2

1 and χ is defined by canonically normalising
τ1 (see also [249])

τ1 = e
2√
3
χ
. (6.46)

The effective Lagrangian for the canonically normalised χ is

L ⊃ 1
2∂µχ∂

µχ+ 1
2e
− 4√

3
χ
∂µa

′
1∂

µa′1 + 1
2e

2√
3
χ
∂µa

′
2∂

µa′2 . (6.47)

The Kähler potential for the Higgs fields and the gauge kinetic function are given by

K ⊃ (T1 + T̄1)1/2

V2/3

(
HuH̄u +HdH̄d

)
+ (T1 + T̄1)1/2

V2/3 (zHuHd + h.c.) + . . . (6.48)

fvis = T1 + hS . (6.49)

The modulus χ decays to the light Higgs, gauge fields and Dark Radiation due to (6.46),
(6.48), (6.49) and (6.47). The corresponding rates are

Decays into DR: Γχ→a1,a1 = 1
24π

m3
χ

M2
P

(6.50)

Γχ→a2,a2 = 1
96π

m3
χ

M2
P

(6.51)

Decays into SM: Γχ→h1,h1 = z2 sin2(2β)
96π

m3
χ

M2
P

(6.52)

Γχ→A1,A1 = Ng

48πγ
2 m

3
χ

M2
P

, (6.53)

10Alternatively, as discussed in [129], one can wrap the D7 branes on another cycle τa, whose size is
then set by τ1 via D-terms, as in the previous section.
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Figure 6.3: Contour plot of ∆Neff vs. z and γ (defined in (6.37)) for an LVS model
with cycles stabilised by string loop corrections and D-terms, for (a) g∗ = 10.75 and (b)
g∗ = 106.75. As before, the plots have been produced choosing sin(2β) = 1, but they
can be reinterpreted for general values of sin(2β). To this end we define an effective
parameter z̃2 = sin2(2β)z2 and relabel z → z̃ on the horizontal axis.

where γ is defined as in (6.37). Finally, for Ng = 12 and sin(2β) = 1, ∆Neff is given by

∆Neff = 43
7

(
10.75
g∗(Td)

)1/3 Γχ→DR
Γχ→SM

= 43
7

(
10.75
g∗(Td)

)1/3 5
z2 + 24γ2 . (6.54)

Predictions for Dark Radiation according to (6.54) are shown in figure 6.3 (a) and (b)
for g∗ = 10.75 and g∗ = 106.75 respectively. The situation is very similar to the case of
stabilisation by D-terms. In order to satisfy the current observational bound ∆Neff <
0.17, we need γ > 2.7(1.8) for g∗ = 10.75(106.75) and z = 0. For ∆Neff < 0.33, we need
γ > 1.9(1.3) for g∗ = 10.75(106.75). Therefore once again a mild cancellation between τ1
and hRe(S) is required. Furthermore, due to the topological coupling to QCD in (6.45),
the axion a1 will be produced also as Dark Matter. As in the previous section, a tuning
of the initial misalignment angle is required to avoid overproduction of Dark Matter. To
summarise, stabilisation via string loop effects is useful to avoid some potentially severe
tunings which characterise stabilisation via D-terms. Predictions for Dark Radiation are
instead essentially unchanged with respect to the previous section.

Stabilisation by non-perturbative effects

In principle there exists yet another option to stabilise the visible sector cycle: that is,
to use non-perturbative terms in the superpotential (see [250], [251] for a discussion of
possible complications associated to this procedure). Sources of such terms can be e.g.
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D-brane instantons or gaugino condensates . If the non-perturbative effects depend on
the visible sector modulus τvis, minimisation of the F-term scalar potential fixes the latter
in terms of τb, thereby providing the desired coupling between the bulk modulus and the
visible sector gauge bosons. However, this construction is more heavily constrained by
the bound on Dark Radiation than the other options presented in this chapter. This
option is explored in [129] and reviewed in [164].

6.6 Summary and Conclusions
Current CMB bounds on the presence of Dark Radiation (DR) can have an important
impact on physics Beyond the Standard Model. In this chapter, we focused on the
implications on the framework of moduli stabilisation in string compactifications, known
as the Large Volume Scenario (LVS). Some amount of Dark Radiation is a generic
prediction of this setup.

More specifically, the lightest modulus τb, associated to the volume of the bulk cycle
of the compactification manifold, is generically responsible for reheating of SM degrees
of freedom. Crucially, it can decay to its axionic partner ab, which is almost massless
and therefore constitutes Dark Radiation. Thus the deviation ∆Neff from the Standard
Model effective number of relativistic species at CMB temperature, Neff = 3.046, is
proportional to the ratio between the rates of the decays of τb into ab and into SM
particles.

We started by reviewing constraints on the so-called sequestered LVS, where the
visible sector is realised by D3 branes at a singularity. This setup is phenomenologically
interesting because it allows for TeV-scale superpartners. The modulus τb reheats the SM
by decaying mainly to Higgs doublets. The coupling between τb and the Higgs fields is
set by a Giudice-Masiero term with coefficient z. The current bound ∆Neff < 0.17 then
requires: to extend the MSSM field content by allowing for nH > 20 Higgs doublets if
z = 1; alternatively z > 3 for nH = 2. For ∆Neff < 0.33 one needs nH > 10 if z = 1 and
z > 2 for nH = 2. While these values of nH and z may be realisable in this framework,
it is not clear whether they occur naturally in the string landscape.

Obviously, the amount of DR can be suppressed by boosting the decay rate of τb
into SM particles. In particular, we showed that the decay rate into gauge bosons is
parametrically comparable to the decay into DR and Higgs fields. In this chapter we
proposed the following options to alleviate the constraints on the LVS via decay into
gauge bosons:

• Couple the bulk modulus to non-SM gauge bosons: this can be done in the
sequestered LVS by introducing flavour branes. These are stacks of 7-branes in the
geometric regime which wrap the bulk cycle and cross the singularity where the
SM leaves. The gauge symmetry associated to the flavour branes is spontaneously
broken and the corresponding gauge bosons become massive. The bulk modulus
can decay into these gauge bosons if they are light enough. The latter then decay
into SM particles and reheating takes place. The most stringent bound on DR with
the MSSM field content in the visible sector is satisfied for Nf = 35 − 38 flavour
gauge bosons.
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• Couple the bulk modulus to SM gauge bosons: in the sequestered case such a
coupling is loop-suppressed. We therefore considered non-sequestered constructions,
where the visible sector arises from 7-branes wrapping a cycle in a geometric regime.
We argued that this setup requires high-scale supersymmetry. While the bulk cycle
and another small cycle of the compactification manifold are stabilised à la LVS, we
examined two possibilities to stabilise the visible sector cycle, with volume modulus
τvis:

1 D-terms: in this case the visible sector cycle is stabilised by means of a D-
term potential induced by fluxes on the D7-branes. The gauge kinetic function
of the visible sector gauge theory is given by fvis ⊃ τvis + hRe(S), where S
is the axio-dilaton and h is a flux-dependent parameter. Stabilisation fixes
τvis = cτb. Therefore the bulk modulus is coupled to visible sector gauge
bosons. The most stringent DR bound can be evaded if we allow for a very
mild fine-tuning between τvis and hReS to 1 part in 2-3. However, two further
tunings are required. Firstly, c has to be taken small to reproduce the correct
SM gauge coupling: this amounts to a potentially severe tuning of fluxes, since
τb � τvis. Secondly, in this setup ab couples topologically to QCD and takes
the rôle of the QCD axion. Therefore it is also produced as Dark Matter by
the misalignment mechanism. In order to avoid DM overproduction, the initial
misalignment angle has to be tuned θi ∼ 10−2.

2 String-loop corrections: in this case the visible sector cycle is stabilised by
string loop effects. In fibred CY threefolds with LVS stabilisation, there can
be a flat direction which is lighter than the bulk volume. The visible sector
cycle modulus τvis can be then fixed by string-loop effects in terms of this light
modulus. Therefore, the latter couples to visible sector gauge bosons. The
constraints imposed by the DR bound are very similar to the case of D-term
stabilisation, but the tuning of c is avoided.

Yet another possibility, which we did not discuss in this chapter, is to consider the decay
of the bulk modulus into non-MSSM singlets, mediated by Giudice-Masiero couplings.

The constructions that we proposed in this chapter all exhibits a certain amount of
complexity (large number of gauge bosons for flavour branes, tunings of parameters for
the non-sequestered LVS). This can in turn be interpreted as a proof of the constraining
power of the measurement of Neff on string constructions based on the LVS.
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Summary and outlook

In this thesis we explored consequences of quantum gravity and string-motivated scenarios
of physics beyond the Standard Model for large field inflation and reheating. Concerning
inflation, we used both compactifications of Type IIB String Theory and effective field
theory arguments to assess the effects of UV degrees of freedom on the flatness of the
inflationary trajectory. With regard to reheating, we investigated exotic signatures of
models of axion monodromy inflation and CMB constraints on stringy dark sectors.

We began with an introductory chapter, which set the stage for the work presented
in the rest of the thesis. In particular, we described the most important features of
Type IIB string compactifications, with special attention to geometric moduli and their
stabilisation. We also reviewed the statement of the Weak Gravity Conjecture (WGC)
and its applications to models of axion inflation.

Part I was devoted to the effects of stringy degrees of freedom on Large Field Infla-
tion (LFI). The general framework is that of compactifications of 10D Type IIB String
Theory on six-dimensional Calabi-Yau orientifolds. More specifically, the focus is on
models where inflation is realised in the complex structure moduli sector of 4D string-
derived N = 1 supergravities with F-term potential, in the spirit of [101–103]. The
axionic (i.e. imaginary) parts of these moduli enjoy shift-symmetries at the level of the
Kähler potential, whenever the corresponding real partners (saxions) are fixed at Large
Complex Structure (LCS). We examined two sources of limitations on transplanckian
field displacements in this setup: namely, backreaction of other geometric moduli and
non-perturbative corrections to the shift-symmetric geometry.

In order to study backreaction, in chapter 2 we identified the inflaton with a complex
structure axion y ≡ Im(u) in the LCS regime. We considered the F-term scalar potential
generated by a linear flux-induced superpotential W ⊃ a(z)u, where z are other complex
structure moduli, which do not need to be in the LCS regime. Rather than as a fully
realistic model of inflation, this construction should be considered as a setup where to
assess the feasibility of transplanckian displacements. We noticed the necessity of tuning
both a(z) and its derivatives ∂za small to ensure that the shift symmetry is only weakly
broken. We noticed that there exist two options to tune the coefficients of the quadratic
term of the inflaton potential. We then investigated the effects of backreaction of the other
complex structure moduli on the inflationary trajectory, by expanding the potential at
leading order in the moduli displacements δz and in a set of fine-tuned small parameters ε.
In both tuning scenarios we found a transplanckian region in field space (∆y ∼ O(10)MP

can be easily accommodated in both cases) where the displacements remain small, in
particular δz ∼ ε2 or δz ∼ ε depending on the specific choice of tuning. Nonetheless,
in this regime they induce a non-negligible correction to the inflationary potential. In
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particular, the backreacted potential is still quadratic but the inflaton mass is smaller
than its original value. Moreover, local minima with positive energy density can appear
in the post-inflationary region of the potential, which may thus also offer new possibilities
for uplifting to de Sitter space. Kähler moduli backreaction was also briefly studied in
one of the two tuning scenarios. In this latter case, it seems possible to achieve a flat
direction, but the detailed phenomenology of the resulting inflationary model might be
different from the quadratic case.

In chapter 3 we considered a setup with two complex structure axions. By means of a
flux-induced F-term scalar potential, we fixed a flat trajectory which winds multiple times
around the compact field space of the two axions, á la Kim-Nilles-Peloso (KNP) [31]. De-
viations from the LCS regime manifest themselves as exponentially suppressed, instanton-
like, oscillations in the Kähler potential and in the superpotential. They generate a scalar
potential on the flat winding trajectory, which is of cosine type. Its periodicity can be
made transplanckian (in particular larger than ≈ 7MP , as required by observations [15])
by an appropriate choice of fluxes, but is limited by tadpole cancellation.

Perhaps the most interesting aspect of our proposal is that it realises a well-known
loophole of the WGC. More precisely, in our model there are two type of instanton-like
oscillations, associated to the original two complex structure axion. We assumed that
moduli can be stabilised such that the term with a short, subplanckian, periodicity is
negligible and does do not endanger the flatness of the inflationary trajectory. However,
it is precisely this term that satisfies the WGC, which is thus overall fulfilled only in its
mild version: i.e. not by the “lightest” instanton (i.e. the one with smallest action). In
this sense, our model suggests that only the mild form of the conjecture is respected by
ST.

Overall, in Part I we did not find fundamental obstructions to large field inflation:
backreaction and exponentially suppressed deviations from the LCS do not spoil the
flatness of the inflationary potential in the models that we considered. This is true across
a limited but transplanckian field range. Nevertheless, we also found that our model of
axion monodromy inflation requires a potentially very severe, albeit realisable, tuning
of parameters. We believe that this cumbersomeness concerns, at least partially, other
realisations of axion monodromy as well.

The WGC was the main focus of chapter 4, where we applied it to models of axion
monodromy inflation. We proposed an effective description of its potential (in the case
in which monodromy induces a mass term) in terms of a 3-form gauge potential coupled
to domain walls. The latter separate the axionic wells which are characteristic of this
class of models. We showed that an upper bound on the inflationary field range can
be obtained by means of the magnetic WGC applied to domain walls and 3-form gauge
fields: φ . m−2/3f 1/3M

4/3
P . While conceptually important, this bound can accommodate

transplanckian inflation for not too small axion decay constants, since m ∼ 10−5MP .
Though obtained following a different strategy, our result agrees with the analysis of [108].
Our extension of the magnetic WGC to domain walls in 4D is justified from a stringy
perspective, as extensively discussed.

We supplemented the qualitative justification with a 10D computation which provides
a strategy to generalise the WGC for particle and gauge fields to any (p+ 1)-form gauge
theory with electrically charged p-branes. Essentially, in ST 4D particles and gauge
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fields descend from dimensional reduction of p-form potentials on certain cycles of the
compactification manifold. Thus we showed that the standard WGC translates into a
bound on the volumes and intersections of such cycles. In formulae:

V
1/2
X |qΣ|
V Σ ≥ Ad,

where VX is the volume of the compactification manifold, V Σ is the volume of the
cycle Σ on which dimensional reduction is performed, |qΣ| is the norm of the harmonic
form related to Σ using the metric on X, and Ad is a O(1) number given explicitly in
subsection 4.3.2. The conjecture can thus be automatically extended to any object of
the 4D theory descending from dimensional reduction on the same cycles. Moreover, the
charge-to-tension ratio of any p-dimensional object wrapped on some q-cycle Σ of a CY
is always given by the left hand side of the inequality above. Thus the conjecture can be
extended to any object descending from dimensional reduction of some gauge potential
on a given cycle. In particular, the numerical prefactor Ad does not depend on p and q.
Our purely geometric approach improves on previous strategies to generalise the WGC,
which rely on string dualities [69].

As in the case of Part I, the conclusions of this Intermezzo are also positive: we did
not find fatal constraints on axion monodromy inflation from the WGC.

Part II of this thesis was devoted to the post-inflationary phase of certain string-
derived setups. In chapter 5 we showed that after axion monodromy inflation the inflaton
might populate more than one local minimum of the potential, as a consequence of field
fluctuations. We determined analytically the probability that inflationary fluctuations
induce a phase decomposition, as a function of the number of local minima κ and the
axion parametersm, f : P ∼ κ−1/3(m/MP )(MP/f)5/3. Thus, for κ ∼ O(10),m ∼ 10−5MP

a dynamical phase decomposition is likely to occur if f . 0.3 · 10−2MP . Quantum
uncertainties of the inflaton field (among them, modes with k & m which never exited
the horizon during inflation) are also present after inflation and their effects were inves-
tigated both analytically and numerically, by means of the linearised inflaton equations
of motion. The probability that they induce a phase decomposition is smaller by a factor
(f/(MPκ))−4/3m/MP . However, we showed numerically that modes with k & m can
exhibit a resonant enhancement and are thus likely to be the dominant cause of phase
decomposition for approximately the same values of parameters above. For larger values
of f , a phase decomposition is less likely but the following phase transition is more violent.
We computed the spectrum of the gravitational radiation emitted in the violent collision
of cosmic bubbles containing the true vacuum, following the phase decomposition. We
found that the signal can peak in a wide range of frequencies (mHz to GHz). If the
collision is followed by phases of radiation and matter domination before reheating, the
spectrum can at least partially lie in the ballpark of future space- and ground-based
interferometers.

Chapter 6 investigated the tension between the prediction for dark radiation in the
Large Volume Scenario (LVS) and the latest Planck data on Neff . The current ob-
servational bound on ∆Neff heavily constraints the most popular realisations of the
LVS, since the latter is characterised by an essentially massless axion produced copiously
during reheating [125]. Therefore, we proposed several strategies to boost the decay rate
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of the bulk LVS modulus into SM fields. Among them, the most promising involves
the addition of dark massive gauge bosons living on flavour branes, to which the bulk
modulus can decay. We showed that, when these flavour bosons couple to the SM, the
current constraints from Planck can be evaded for . O(10) flavour branes (more precisely,
Nf & 35 gauge bosons are needed to satisfy the most stringent observational bound). We
also proposed other more tuned possibilities where the bulk modulus couples directly
to SM gauge bosons, under the requirement of high-scale supersymmetry. We consider
our results an example of how cosmological observations can already strongly constrain
known setups of moduli stabilisation in ST.

Given the diverse content of this thesis, there are multiple directions in which more
progress can (should) be made. Concerning more phenomenological perspectives, we
plan to understand whether the gravitational wave signal that was described in chapter 5
can be associated with other peculiar signatures of axion monodromy. In this regard, a
possibility may be offered by oscillations in the CMB power spectrum [93]. A correlation
between these two signatures would allow to select axion monodromy in case of new CMB
and interferometric observations.

Our analysis of gravitational waves signals during reheating might also be applied to
other models of axion inflation, in particular to scenarios with two or more “aligned”
fields. In this regard, it might be especially interesting to study the relation between the
requirements of the WGC and the possibility of phase decomposition. We believe that
an improvement of our analysis of resonant quantum fluctuations might also reveal new
possibilities for exotic signatures from the (p)reheating epoch.

Concerning Large Field Inflation, recently the authors of [252] have pointed out
that effective theories of axion monodromy inflation are affected by higher-dimensional
operators which are not suppressed in the limit of weak breaking of the shift symmetry,
for large field displacements. Starting from this observation, they cast serious doubts
on models of relaxion monodromy [108]. It is a very interesting task to understand the
implications of their analysis for inflationary models, such as the ones investigated in this
thesis.

The refinement and the applications of the WGC are currently widely discussed in
the community. In particular, in chapter 4 we considered an effective description of axion
monodromy inflation by means of one 3-form field. Yet another effective theory of axion
monodromy exists, also using a 3-form field to describe the quadratic part of the potential.
However, following the strategy of [111], another 3-form can be considered to effectively
describe also the oscillatory part of the potential. It thus seems that a complete effective
description of axion monodromy may be obtained by means of more than one 3-form
field. In the near future, we thus plan to understand whether such a formulation of axion
monodromy can be useful, with particular attention to further constraints which may
come from the generalised multi-field electric WGC.

From a stringy perspective, it would be interesting to understand explicitly how the
well-known incompatibility between global symmetries and the string worldsheet theory
[34] translates in the language of compactifications.

Axion monodromy inflation (or similar scenarios [194]) may represent the appropriate
framework to investigate which mechanism sets the initial conditions for inflation. In the
paradigm of the string landscape, this should be a tunnelling process from a metastable
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vacuum to a region where slow-roll inflation can be realised (see e.g. [54]). We plan to
study concrete realisations of such tunnelling in a setup of string compactifications.

Overall, we believe that more work needs to be done to extract stronger constraints on
transplanckian trajectories both from string compactifications and at the level of EFT.
However, while there is currently consensus that very large field displacements (such
as the ones needed in the mechanism of relaxation of the electroweak scale [181]) are
heavily constrained by quantum gravity, it is not clear that similarly strong constraints
can be imposed on slightly transplanckian inflationary field ranges. From the point of
view of EFT expectations about Quantum Gravity, O(1) (and even larger) uncertainties
are inherent in these arguments and may after all allow for phenomenologically relevant
scenarios of LFI.

Future observation of CMB polarisation may favour models with less generic potentials
and possibly remove the necessity of transplanckian field displacements. Nevertheless,
the study of the interplay between UV degrees of freedom and effective field theories of
elementary scalars (inflation, electroweak symmetry breaking) still promises to guide our
journey towards an understanding of the physics of the Planck scale.
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Appendix A

Differential forms and complex
geometry

In this appendix we collect the basic definitions concerning differential forms and gener-
alised p-form gauge theories, which are essential ingredients of string compactifications.
We do not aim at mathematical rigour. An excellent introduction to these topics can be
found in e.g. [253]. Here we follow closely the presentation given in [135] and [136].

A.1 Differential forms
A differential form ω of rank p, or a p-form, is a totally antisymmetric covariant tensor
with p indices. The vector space of p-forms on a manifold X is denoted by Tp(X). A
basis of Tp(M) is provided by

dx1 ∧ · · · ∧ dxp =
∑
P∈Sp

sgn(P )dxµP (1) ⊗ . . . dxµP (p) , (A.1)

where P is a permutation belonging to the symmetric group of rank p, Sp. Therefore, a
p-form can be expanded in the basis (A.1), as follows

ω = 1
p!ωµ1...µpdx

µ1 ∧ · · · ∧ dxµp . (A.2)

The wedge product between two differential forms ωp and ηq results in a (p+ q)-form with
components

(ωp ∧ ηq)µ1...µp+q = (p+ q)!
p!q! ω[µ1...µpηµp+1...µp+q ], (A.3)

where [. . . ] denotes antisymmetrisation (including the factorial prefactor). Notice that
ωp ∧ ηq = (−1)pqηq ∧ ωp.

The exterior derivative of ωp is the (p+ 1)-form defined by

ηp+1 = dωp = 1
p!∂µ1ηµ1...µpdx

µ1 ∧ · · · ∧ dxµp+1 . (A.4)
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Notice that d2 = 0 and d(ωp ∧ ηq) = dωp ∧ ηq + (−1)pηq ∧ ωp. A p-form can be integrated
on an orientable p-dimensional manifold, using its decomposition (A.2). In particular,
Stokes’s theorem holds, i.e. ∫

Σp+1
dωp =

∫
∂Σp

ωp, (A.5)

where Σp+1 is a manifold whose boundary is the (p− 1)-manifold ∂Σp+1.
The Hodge star operator ? on a d dimensional manifold X is defined via its action on

a p-form
? ωp = 1

p!ε
ν1...νp
µ1...µd−p

ων1...νp , (A.6)

where εµ1...µn is the totally anti-symmetric Levi-Civita tensor (i.e. its non-vanishing com-
ponents are equal to ±g1/2, not to ±1). Notice that ? ? ωp = (−1)p(d−p) on a Riemannian
manifold of dimension d, while ? ? ωp = (−1)p(d−p)+1 on a Lorentzian manifold. The
Hodge star can be used to define a symmetric inner product in the space of p-forms, as
follows:

(ωp, ηp) ≡
∫
X
ωp ∧ ?ηq = 1

p!

∫
ddx

√
|g|ωµ1...µpη

µ1...µp . (A.7)

We can now define the adjoint operator d† as follows: (dωp, ηp+1) = (ωp, d†ηp+1). The
Laplace-Beltrami operator is then defined as ∆ = dd† + d†d.

A.2 Homology and cohomology
Let us begin by introducing de Rham cohomology. We say that a p-form is closed if dωp =
0 and exact if ωp = dηp−1. Obviously an exact form is also closed. Let Zp(X), Bp(X)
be the sets of closed and exact p-forms on X respectively. Then the cohomology group
Hp(X) is defined as the quotient of Zp by Bp, i.e.

Hp(X) = Zp(X)/Bp(X). (A.8)

In other words, the elements of Hp(X) are the equivalence classes of closed forms. The
equivalence relation is obviously ωp ' ωp + dηp−1 and the class is denoted by [ωp]. The
Betti number bp is the dimensions of Hp. According to the Hodge decomposition theorem,
every form ωp on a compact orientable Riemannian manifold X can be written as

ωp = hp + dηp−1 + d†γp+1. (A.9)

Therefore every equivalence class [ωp] has a unique harmonic representative hp.
Now let us move to homology. On a differentiable connected manifoldX, a real p-chain

A is the linear combination of p-dimensional oriented submanifolds Mi, i.e. A = ∑
i aiAi,

where ai ∈ R. A p-cycle is a p-chain without boundaries. Consider the operation ∂ of
taking the boundaries (with the induced orientation) of a p-chain. Then for a p-cycle M ,
∂M = 0. We can then define the set Zp(X), Bp(X) of p-chains which are closed (∂M = 0)
and exact (M = ∂N) respectively. The homology group Hp(X) is defined as

Hp(X) = Zp(X)/Bp(X), (A.10)
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and its elements are the equivalence classes [Mp] defined by the relationMp 'Mp+∂Np+1.
Furthermore the following relation in a d-dimensional manifold holds: Hp(X) ' Hd−p(X).

We are finally ready to introduce the duality between Hp(X) and Hp(X). The duality
map is provided by the inner product between Mp ∈ Hp and ωp ∈ Hp:

(Mp, ωp) ≡
∫
Mp

ωp. (A.11)

Notice that the inner product is independent of the particular element of an equivalence
class, thanks to Stokes’s theorem. The product (A.11) is sometimes referred to as the
period of ωp over the cycle Mp. De Rham’s theorem states precisely that Hp and Hp

are dual vector spaces on a compact manifold and that they are finite dimensional. In
particular, given a basis {[Mi]} of Hp(X), there exists a basis {[ωi]} of Hp(X) such that∫

Mi

ωj = δij. (A.12)

This formula is particularly useful when performing dimensional reduction.
Furthermore, given a p-cycleMp on a compact manifold X of dimension d, there exist

a d− p-form ωd−p ∈ Hd−p(X) such that, for any p-form ηp ∈ Hp(X)∫
Mp

ηp =
∫
X
ωd−p ∧ ηp. (A.13)

Then we say that ωd−p is the Poincaré dual of Mp.

A.3 Complex manifolds
Here we review the extension of the concepts introduced in the previous subsections to
complex manifolds.

A complex manifold N is a real manifold of even dimension 2n that locally looks
like Cn. In more technical words, its atlas {Uα, φα} is made of charts φα : Uα → Cn.
Furthermore, the transition maps τα,β = φβ ◦ φ−1

α are holomorphic. It is thus natural to
introduce complex coordinates zn = xn + iyn, z̄ = xn − iyn, n = 0, . . . , n− 1 on N .

If A,B are tangent vectors of N as a real manifold, the complexified tangent space
at a point p of N is defined as: T pNC = {A + iB|A,B ∈ TpN}. A basis of T pNC is
obviously provided by ∂/∂zn, ∂/∂z̄n. The complexified cotangent space ΩC

p , is similarly
defined starting from its real counterpart Tp. A basis of ΩC

p is thus dzn, dz̄n. We will
often drop the C. The generalisation to forms of higher degree is straightforward. In
particular, a generic element of Ω(p,q)(N), i.e. a (p, q) form can be written as:

ω = 1
p!q!ωi1...ip,j̄1...j̄qdz

i1 ∧ · · · ∧ dzip ∧ dz̄ ī1 ∧ dz̄ īq . (A.14)

In particular, we say that a (p, q)-form has p holomorphic indices and q anti-holomorphic
indices.

Let us now discuss cohomology. Consider the Dolbeault operators

∂ : Ω(p,q) → Ω(p+1,q) (A.15)
∂̄ : Ω(p,q) → Ω(p,q+1), (A.16)
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which act as the standard exterior derivative on the holomorphic and anti-holomorphic
indices respectively. Then the action of the exterior derivative d on a (p, q)-form is defined
by d = ∂ + ∂̄. The concept of cohomology can now be straightforwardly generalised to
complex differential forms. In particular, we say that a (p, q)-form is ∂̄-closed if ∂̄ω = 0
and ∂̄-exact if ω = ∂̄η, with η ∈ Ωp,q−1. The set of (p, q)-forms that are ∂̄-closed but not
∂̄-exact is called the Dolbeault cohomology group H(p,q)(N,C). The complex dimensions
of these groups are called Hodge numbers, i.e. hp,q = dimH(p,q)(N,C).

The Hodge-?̄ operator is defined in analogy with the real case, i.e. ?Ωp,q(N) →
Ωn−q,n−p(N). An inner product on Ωp,q(N) is provided by:

(ω, η) ≡
∫
N
ω ∧ ?η̄, (A.17)

with ω, η ∈ Ωp,q(N). The adjoints ∂† and ∂̄† of the Dolbeault operators are defined
with respect to the inner product (A.17). The laplacians ∆∂,∆∂ are thus defined as
∆∂ = ∂∂† + ∂†∂, ∆∂ = ∂̄∂̄† + ∂̄†∂̄. The set of (p, q)-forms that are harmonic with respect
to ∆∂̄, i.e. such that ∆∂̄ω = 0, is denoted by Hp,q(N). The Hodge theorem then states
that

Hp,q(N) ∼= Hp,q(N). (A.18)
De Rham’s theorem automatically extends to complex manifolds, seen as real manifolds,
and complex differential forms, expanded in their real components.

Now let us provide definitions which are relevant for Calabi-Yau (CY) manifolds.
An almost complex structure J on N is a (1, 1) tensor J : T (N) → T (N), such that
J 2 = −1. In particular, in local coordinates we have

J n
p = iδnp ,J n̄

p̄ = −iδn̄p̄ . (A.19)

A Hermitian metric is a real, positive definite, covariant tensor field

g = gij̄dz
i ⊗ dz̄ j̄ + gījdz̄

ī ⊗ dzj. (A.20)

A complex manifold equipped with an Hermitian metric is called an Hermitian manifold.
The Kähler form of an Hermitian manifold with hermitian metric g is the (1, 1)-form
defined by:

J = igij̄dz
i ∧ dz̄ j̄. (A.21)

A Kähler manifold is an Hermitian manifold with closed Kähler form, i.e. dJ = 0. The
hodge numbers of a Kähler manifold are not all independent. In particular hp,q = hq,p

and hp,q = hn−p,n−q. The Betti numbers bk are defined as bk = ∑
p+q=k h

p,q. The Euler
characteristic is given in terms of the Betti numbers by

χ(N) =
∑
p,q

(−1)p+qhp,q. (A.22)

The Ricci form on a Kähler manifold is defined as: R = iRij̄dz
i ∧ dz̄ j̄, where Rij̄ is the

Ricci tensor obtained from the hermitian metric g. Crucially, on a Kähler manifold R
is closed but not necessarily exact: it is thus the representative of a cohomology class,
which is referred to as first Chern class

c1 ≡
1

2π [R] . (A.23)
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A Calabi-Yau (CY) manifold is a Kähler manifold with vanishing first Chern class.
Equivalently, a CY is a Kähler manifold which admits a Ricci-flat hermitian metric.
There exists a unique (n, 0) form on a CY of complex dimension n. Locally at a point p,
it can be written as

Ωp = f(z)εi1...indzi1 ∧ · · · ∧ dzin , (A.24)

where f(z) is a holomorphic function, εi1...in = ±1 and zi1 , . . . , zin are local coordinates.
Therefore, in a CY manifold h3,0 = h0,3 = 1. The forms Ω∧Ω̄ ∼ J∧J∧J are proportional
to the volume form of the CY manifold.

The only non-vanishing hodge numbers on a CY 3-fold are h3,0 = h0,3 = h0,0 = h3,3 =
1, h1,1 and h2,1 = h1,2. Thus the Euler characteristic of a CY 3-fold is simply given by
χ = 2(h1,1 − h2,1). Furthermore, in a CY of complex dimension n, hr,0 = 0, for all r < n.

A.4 P-form gauge theories
Here we briefly recap the basics of generalised gauge theories, following [135]. In the
language of differential forms, standard electrodynamics is described by a 1-form gauge
potential A1. The associated field strength is the two-form defined by F2 = dA1 and is
obviously invariant under the gauge transformation A1 → A1 + dα, where α is a 0-form.

Now consider a (p + 1)-form potential Ap+1 and define its field strength and its
associated gauge transformation as

Fp+2 = dAp+1, Ap+1 → Ap+1 + dαp. (A.25)

In terms of differential forms, the kinetic term of such gauge field can be written as

S ⊃ −1
2

∫
ddxFp+2 ∧ ?Fp+2 = −1

2

∫
ddx

√
−g

(p+ 2)!Fµ1...µp+1F
µ1...µp+2 . (A.26)

We also use the notation

|Fp+2|2 ≡
1

(p+ 2)!Fµ1...µp+1F
µ1...µp+2 . (A.27)

The equations of motion derived from (A.26) and the Bianchi identity in the absence of
sources are

d ? Fp+2 = 0, dFp+2 = 0. (A.28)

Notice that this set of equations is invariant under the dualisation Fd−(p+2) = ?Fp+2.
Therefore the theories of Ap+1 and Bd−p−3 defined by dBd−p−3 = Fd−p−2 are equivalent.
In particular, Bd−p−3 has the same number of dynamical degrees of freedom as Ap+1.
This is the reason why only potentials up to F5 are included in the Type IIB action (1.1).
A peculiar case is that of a d/2-form field strength in d = 2 mod 4 dimensions: in this
case Fd/2 is either self- or anti-self-dual, i.e. Fd/2 = ± ? Fd/2. However, this constraint
cannot be implemented at the level of the action, which would then be vanishing. Thus,
self (anti) duality is to be imposed directly on the equations of motions. For instance,
this is the case for the field strength F5 in Type IIB ST.
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A (p+1)-form potential couples to p-dimensional objects (p-branes). In particular, a 1-
form gauge potential couples to a particle in 4D. We define the one-dimensional worldline
of the particle as its path in space, i.e. the curve whose points are the locations of the
particle at each moment in time. We can parametrise this curve by means of e.g. the
proper time τ , such that the 4D coordinates at each instant are given by xµ ≡ xµ(τ).

Similarly, the same can be done to describe the history of a p-brane. Let ξi, i = 0, . . . , p
be the coordinates of its (p + 1)-dimensional worldvolume Wp+1, and Xµ ≡ Xµ(ξi), µ =
0, . . . , d − 1 the embedding of such worldvolume in d-dimensional spacetime. Then the
coupling between a (p+ 1)-form gauge field and a p-brane is described by the action

S ⊃ ep

∫
Wp+1

Ap+1 = ep
(p+ 1)!

∫
dp+1ξAµ0...µp

[
∂Xµ0

∂ξi0
. . .

∂Xµp

∂ξip

]
εi0...ip , (A.29)

where εi0...ip is the Levi-Civita tensor defined in Sec. A.1. Notice that the coupling ep is
dimensionful, in particular [ep] = [E](p+2)−d/2.



Appendix B

Scalar field fluctuations after
inflation

In this appendix, we provide a detailed analysis of the evolution of scalar field fluctuations
after inflation. We begin by deriving the Klein-Gordon equations for a scalar field and
its fluctuations with potential (4.2), including the gravitational field. We then focus on
the simple case of a purely quadratic potential. This gives us the opportunity to review
why scalar field fluctuations behave like dark matter perturbations. We then provide
equations to study the fluctuations in the full potential containing the ‘wiggles’.

B.1 Equations of motion
Let us begin with the equations of motion of a scalar field in the post-inflationary universe.
The starting point is the Klein-Gordon equation:

1√
−g

∂µ
[
gµν
√
−g∂νφ

]
+ V

′(φ) = 0. (B.1)

The metric appearing in (B.1) is the perturbed FRW metric (here we follow [212]):

ds2 = a2(τ)
[
(1 + 2A)dτ 2 − 2Bidx

idτ − (δij + hij)dxidxj
]
, (B.2)

where Bi = ∂iB + B̂i and the hat denotes divergenceless vectors and traceless tensors.
In particular, we can consistently focus only on scalar modes, since the vectors can be
gauged away and the tensors are not sourced by δφ. We therefore have

hscalarij = 2Cδij + 2∂<i∂j>E, (B.3)

where ∂<i∂j>E ≡ [∂i∂j − (1/3)δij∇2]E. Perturbations defined by φ(t,x) = φ0(t) +
δφ(t,x) and (B.2) are not gauge invariant. However, the following quantities are gauge
invariant:

Ψ ≡ A+H(B − E ′) + (B − E ′)′

Φ ≡ −C −H(B − E ′) + 1
3∇

2E

δφ ≡ δφ− φ′0(B − E ′).
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In what follows we will perform our computation in the Newtonian gauge, defined by:

B = E = 0, C = −Φ. (B.4)

In the latter, the perturbed metric reads:

ds2 = [(1 + 2Ψ)dt2 − (1− 2Φ)a2δijdx
idxj]. (B.5)

The components Φ and Ψ are related by the perturbed Einstein equations. In the absence
of off-diagonal terms in the spatial components of the perturbed stress-energy tensor the
Einstein equations impose Φ = Ψ. With this constraint, the metric (B.5) provides the
newtonian limit of general relativity.

We are now in a position to write down the Klein-Gordon equation (B.1), expanding
the scalar field as φ = φ0 + δφ and keeping only the leading order terms in the perturbed
quantities δφ,Φ. Then the background φ0 obeys:

φ̈0 + 3 ȧ
a
φ̇0 + V

′(φ0) = 0, (B.6)

while the inhomogeneous δφ(t,x) satisfies:

δ̈φ+ 3 ȧ
a

˙δφ+
(
V
′′(φ0)− ∇

2

a2

)
δφ− 4φ̇0Φ̇ + 2V ′(φ0)Φ = 0. (B.7)

Furthermore, there are three Einstein equations relating the gravitational field Φ to the
fluctuation δφ:

Φ̇ + ȧ

a
Φ = 4πGφ̇0δφ (B.8)

∆Φ
a2 − 3 ȧ

a
Φ̇− 3 ä

2

a2 = 4πGδρ (B.9)

Φ̈ + 4 ȧ
a

Φ̇ + (2H2 +H2)Φ = 4πG
(
φ̇0 ˙δφ+ V

′(φ0)
)
δφ, (B.10)

where δρ = φ̇0 ˙δφ+ V
′(φ0) is the perturbed energy density. The Einstein equations (B.8)

and (B.9) lead to a Poisson equation with a gauge invariant energy density on the right
hand side. In total, we have five equations for three quantities and therefore it is enough
to consider only one of the Einstein equations.

B.2 Scalar field as Dark Matter
In order to understand why perturbations of a scalar field behave like dark matter
fluctuations, we now focus on the case of a purely quadratic potential V (φ) = 1

2m
2φ2. In

this case it can be shown that fluctuations obeying (B.7) behave like an ideal pressureless
fluid [214,254]. The strategy is as follows [254]: by using a WKB ansatz for φ0 and δφ one
can define three fluid quantities for a scalar field: energy density, velocity potential and
pressure. One then performs an expansion of (B.7) in powers of (m−1). The leading
order in this expansion corresponds to the Euler equation for a perfect pressureless
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fluid. The subleading order gives the continuity equation. This establishes a dictionary
between scalar field and fluid quantities. More precisely, the correspondence involves field
quantities which are averaged over one period T ∼ m−1. One can then use the standard
fluid approach to prove that scalar field energy fluctuations grow like a on subhorizon
scales.

We now briefly review the approach of [254]: the aim is to provide equations which
can be extended to include non-linearities. The following analysis is valid in the regime
m � H, k/a � H, k2/(a2H) � m. The first two conditions are satisfied in our setup.
However, this is not necessarily the case for the third one. Indeed, as explained in Sec.
5.3, we are mainly interested in modes with k & m at horizon re-entry, as these are
most efficiently leading to a phase decomposition. However, due to the expansion of the
universe k2/(a2H) decreases as a−1/2. Therefore, even if the condition k2/(a2H)� m is
originally not satisfied, it rapidly becomes fulfilled.

The starting point of the analysis is a WKB ansatz for the background and for the
fluctuations (see also [255,256] for related discussions):

φ0 = u(t) cos(mt) + w(t) sin(mt) (B.11)
δφ = B (t,x) sin(mt) + A (t,x) cos(mt). (B.12)

The crucial point is that u,w,B and A vary on time scales which are much longer than
m−1. Using (B.11) in (B.6) and the Friedmann equation, we find u ∼ (mt)−1. One can
then check that w represents a subleading correction, of O(m−2). Assuming Φ ∼ O(m0),
the choice consistent with Einstein equations is B ∼ O(m0) and A ∼ O(m−1). At leading
order in m−1, i.e. at O(m1), (B.12) reads:

Ḃ + 3
2
ȧ

a
B +muΦ = 0. (B.13)

Let us now write down the relevant fluid quantities. In analogy with the stress-energy
tensor of a perfect fluid, they are defined as:

δρ = δT00 (B.14)

vi = − 1
(ρ+ p)

δT 0
i (B.15)

δp = −δT ij , (B.16)

where the overlines denote an average over a period m−1. In what follows we will use
the velocity potential v, defined as vi = ∂iv. Computing explicitly the components of
the perturbed stress energy tensor, using (B.11),(B.12),(B.13) one finds the leading order
expressions for the fluid quantities (B.14):

δρ = m2 [uA+ wB] (B.17)

v = B

mua
(B.18)

δp = 0. (B.19)

As expected, we see that the effective pressure of the fluctuations vanishes at leading
order.
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A perfect pressureless newtonian fluid in an expanding background is subject to the
familiar continuity and Euler equations (see e.g. [212]):

δ̇ = −1
a
∇ · v (B.20)

v̇ +Hv = −1
a
∇Φ, (B.21)

where δ ≡ δρ/ρ and vi ≡ ∂iv. According to (B.18), v ∼ B. We see therefore that
(B.13) closely resembles the Euler equation (B.21). In fact, it can be shown that (B.13),
rewritten in terms of v, is equivalent to the relativistic generalisation of (B.21).

The next-to-leading order of (B.12), i.e. the O(m0), is obtained by taking into account
that both the scale factor and the gravitational potential have oscillatory subleading
terms, Φosc ∼ O(m−1) and aosc ∼ O(m−2). The details can be found in [254]. Here we
report only the final result:

B̈ + 3 ȧ
a
Ḃ − ∇

2

a2 B − 2mȦ− 3mȧ

a
A+ 4muΦ̇ + 2m2wΦ− 3π

2 Gm2u2B = 0. (B.22)

Since A,B and Φ vary on time scales which are larger than m−1, the first two terms in
(B.22) are subleading compared to the other terms in the equation. The last two terms
come from the subleading parts of the background and the scale factor. Neglecting them,
we see that (B.22) closely resembles (B.20). More precisely, it can be shown that the
full (B.22), rewritten in terms of v and δρ, reproduces the relativistic generalisation of
(B.20).

The discussion of this section therefore proves that scalar field fluctuations behave like
an ideal pressureless fluid after inflation. Having established this equivalence, one can
show that δρ/ρ ∼ a on subhorizon scales, using (B.20), (B.21) and the Poisson equation
for the gravitational field (see e.g. [212]).

B.3 Equation including non-linearities
The next goal is to write down the analogue of (B.13) and (B.22) for the axion monodromy
potential (4.2). This amounts to including non-linearities in the fluid equations. It turns
out that in this case the scalar field perturbations do not behave like a pressureless
fluid. Rather, the pressure is small but non-vanishing, and correspondingly the fluid
is characterised by a small sound speed. In our setup we have κ & O(1), therefore
Λ4/f 2 ∼ O(m2) and the O(m2) expansion of (B.7) is not necessarily trivially satisfied.
One would therefore have to assign a certain order to the new terms involving the fast
oscillations with argument φ0/f , such that a consistent solution to Einstein equations
and the equations of motion can be found.

In this subsection, we take a different approach. Namely, we derive two equations from
(B.7) by splitting the sine and cosine oscillations. We then obtain equations that involve
terms of different orders in m−1. The three relevant orders are O(m2), O(m1), O(m0).
At these orders there is no need to consider higher harmonics in mt, therefore we only
keep terms in (B.7) that are either non-oscillating or oscillating with frequency m−1. The
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result of such a computation is the following system of equations for A and B:

B̈ − 2mȦ+ 3 ȧ
a
B −BΛ4

f 2 cos
(
φ0

f

)
− ∇

2

a2 B + 4Φ̇mu− 4
[
−ẇ2 +m2πGu2B

]
(B.23)

+ 2
[
m2w − Λ4

f
sin

(
φ0

f

)]
Φ− 3

4mπGAu̇
2 − 2m3πGwuB = 0.

Ä+ 2mḂ + 3 ȧ
a
A− AΛ4

f 2 cos
(
φ0

f

)
− ∇

2

a2 A− 4Φ̇mw − 4
[
u̇

2 +m2πGuwB
]

(B.24)

+ 2
[
m2u− Λ4

f
sin

(
φ0

f

)]
Φ− 3

4πGmBu̇
2 + 2m3πGu2B = 0.

The next step to analyse these equations is to expand A and B in Fourier modes in
k. Notice that (B.23) and (B.24) contain oscillatory terms with argument φ0/f . Those
terms are the cause of potential resonant behaviour of the modes Bk and Ak. Solutions to
(B.23), (B.24) should be sought numerically. While we leave a detailed study for future
work, let us notice that before performing this numerical study one has to properly
average and Fourier expand the functions cos(φ0/f), sin(φ0/f).





Appendix C

Tuned small field inflation

In this appendix we would like to briefly address an issue related to our setup. In
principle, while oscillating along the full potential (4.2), the inflaton may come close to
a local maximum, without being able to actually reach it as a consequence of friction.
In this case, the field motion may satisfy the slow roll conditions, therefore leading to a
further inflationary phase. If the local maximum is flat enough, we might be in a scenario
which closely resemble that of inflation at an inflection point (see [134] and references
therein, see also [92], [257], [112, 113] for related previous work). If inflation is viable
in this setup, then current observational constraints on m may be relaxed. Indeed in
this case the axion mass would not necessarily be proportional to the inflationary power
spectrum. This may turn out to be particularly relevant for the signatures that we
described in this paper, as the probability of having a phase decomposition is suppressed
by the smallness of m. Let us also remark that the potentials that we will consider in
this Appendix may be relevant also for non-monodromic scenarios with more than one
axion, such as alignment and winding models [31,106,159].

Let us then start by assuming that the inflaton slowly approaches a stationary inflec-
tion point φ∗ of the potential. We first estimate how many e-foldings would be generated
as the field comes close to φ∗. In this Appendix we work in Planck units, i.e. we set
Mp ≡ 1.

Around an inflection point, the potential can be approximated as

V = V0

(
1 + γ

φ3

3

)
. (C.1)

The slow roll parameters are therefore given by

ε = 1
2γ

2φ4, η = 2γφ. (C.2)

The number of e-foldings can be estimated as:

N =
∫ dφ√

2ε
= 1
γ

∫ φ∗

φe

dφ

φ2 (C.3)

' 1
γφ∗
' 2
|η|
. (C.4)

171



172 C. Tuned small field inflation

The latter equation may represent a conflict with observations: indeed in this model ε
is very small, i.e. ε � 10−2, therefore we need η ∼ 10−2 to satisfy the observational
constraint on ns − 1 = 2ε− 6η ' 3 · 10−2. From (C.3), we obtain N ∼ 102. Therefore it
seems that in this simple case we obtain too many e-foldings.

However it is very unlikely that the field gets caught around such an inflection point.
Indeed, the latter is the point after which there are no more local minima of the potential
(4.2), and therefore sits far from the minimum of the parabola. As we have already
remarked, the field is more likely to get caught in one of the minima at the bottom of
the potential. Therefore, we now consider a more generic stationary point and modify
the potential (C.1) by including also a small quadratic contribution.

We focus on the following expansion around a stationary point φ0:

V = V0

[
1 + α

2 (φ− φ0)2 + β

3!(φ− φ0)3
]
, (C.5)

Here we take α and β to be positive without loss of generality. We want to assess the
feasibility of such an inflationary potential (see [257] for the case in which a linear term is
included, instead of a quadratic term). We take α� β, and focus on small field ranges,
so that |φ− φ0| < 1 all along the inflationary trajectory.

The slow roll parameters are:

ε ≡ 1
2

[
V ′

V

]2

' 1
2

[
α(φ− φ0) + β

2 (φ− φ0)2
]2

η ≡ V
′′

V
' α + β(φ− φ0)⇒ φ− φ0 = η − α

β
. (C.6)

The number of efoldings is given by:

N? =
∫ φ?

φe

dφ√
2ε

= 1
α

ln
[

(η? − α)(α + ηe−α
2 )

(ηe − α)(α + η?−α
2 )

]
, (C.7)

where φ? is the field value at the beginning of inflation. It is convenient to express η? in
terms of N?, by inverting (C.7):

η? = eαN?α(ηe − α)
2
[
α + ηe−α

2 (1− eαN?)
] ' − ηe

−2 +N?ηe
− α

2 , (C.8)

where in the last step we have kept only the first order in α. Similarly, we can express ε?
in terms of η?, then in terms of N? by means of (C.8):

ε? '
η3
e

4β2(−2 + ηeN?)3

[
α + ηe

2(−2 + ηeN?)

]
. (C.9)

The end of inflation is determined either by the condition εe = 1 or by ηe = −1. In our
case, we find:

εe = 1⇒ |φεe − φ0| =
23/4

β1/2 + α

β

ηe = −1⇒ |φηe − φ0| =
α

β
, (C.10)
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therefore, under the assumption α� β, ηe = −1 determines the end of inflation. Notice
also that the ratio α/β sets precisely the inflationary range. Now we can write down the
spectral index and the tensor-to-scalar ratio in terms of α, β,N?:

ns = 1− 6ε? + 2η? ' 1− 1
2 +N?

[
2 + 3

4β2(2 +N?)3

]
− α

[
1 + 2

3β2(2 +N?)3

]
(C.11)

r = 16ε? '
4

β2(2 +N?)3

[
α + 1

2(2 +N?)

]
. (C.12)

We are therefore ready to study the parameter space of the model described by (C.5).
First, we fix N? = 50 and plot the constraints on the parameters α and β obtained by
imposing the observed values for ns and r: ns = 0.9652 ± 0.0047 at 68% C.L., r < 0.10
at 95% C.L. (Planck TT,TE,EE+lowP) [15].1 We then repeat the analysis for N? = 60.

We present the results in Fig. C.1 and C.2. We see that a model based on (C.5) is
still a viable candidate to explain the CMB observables.
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Figure C.1: Constraints on the parame-
ters α and β for N? = 50.
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Figure C.2: Constraints on the parame-
ters α and β for N? = 60.

1Here we are using the bounds on ns and r from Planck only, i.e. not combined with data from
BICEP2/Keck-Array.
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