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Abstract

This thesis deals with various problems regarding automorphic forms

of small weight. We study the continuation of Poincaré and Eisenstein se-

ries, as well as more abstract construction principles for harmonic Maass

forms. Further, we show by using Riemann-Roch that the automorphic

forms we constructed provide us with a basis for the weakly harmonic

Maass forms. The di�culties encountered are solved by the introduction

of a new type of vector space for square integrable automorphic forms, the

Petersson-Sobolev spaces, which are de�ned in analogy to functional ana-

lytic Sobolev spaces. We show that these spaces provide us with a notion

of invertibility of the Laplace operator as well as regularity theorems for

the Petersson-Sobolev spaces, which are similar to the Sobolev imbedding

theorems of functional analysis. The properties of the Petersson-Sobolev

spaces then provide us with the tools required to solve the problems stud-

ied.

Diese Arbeit behandelt verschiedene Probleme in der Theorie automor-

pher Formen, unter anderen betrachten wir die Fortsetzung von Poincaré-

und Eisensteinreihen und weitere Konstruktionsmethoden harmonischer

Maassformen. Mit Hilfe von Riemann-Roch zeigen wir, dass die so kon-

struierten automorphen Formen ein Erzeugendensystem des Raumes der

schwach harmonischen Maassformen bilden. Hierbei ergeben sich einige

Schwierigkeiten die wir durch Einführung einer neuen Art von Vektorräu-

men für quadratintegrierbare automorphe Formen lösen, der sogenannten

Petersson-Sobolev Räume, in Analogie zur De�nition der funktionalan-

alytischen Sobolevräume. Wir zeigen dann, dass diese Räume es uns

erlauben, den Laplaceoperator zu invertieren und uns zusätzlich mit Reg-

ularitätsaussagen, ähnlich der Sobolevschen Einbettungssätze, ausstatten

die wir dann als Werkzeuge nutzen um die analysierten Probleme zu lösen.

6



Introduction

In this thesis, we study the vector space of automorphic forms Ak,L(Γ) with
respect to some congruence subgroup Γ ⊆ Mp2(Z) for intergal or half integral
weight k and a lattice L. Then, if we denote the dual lattice by L′, the discrim-
inant group L′/L is �nite. For us, an element of Ak,L is a smooth function

f : H→ C[L′/L],

that for all M ∈ Γ is invariant under the Petersson slash operator |k,LM .
There are two important operators de�ned on spaces of automorphic forms, the
Laplace operator

∆k = −4
∂

∂τ

∂

∂τ̄
− 2ik

∂

∂τ̄
,

which is an endomorphism of Ak,L and the ξ-operator, given by

ξk = −2iyk
∂

∂τ̄
.

Let L− denote the lattice L with the conjugated Weil representation on C[L′/L].
Then the operator ξk maps Ak,L to A2−k,L− and satis�es

∆k = ξ2−kξk.

To each of these operators a sub vector space of Ak,L is associated. The �rst
vector space is the space of weakly harmonic Maass forms Hk,L, which are all
elements of Ak,L that are of at most exponential growth at each cusp and are
annihilated by ∆k. The second vector space is the space of weakly holomorphic
modular forms M !

k,L, i.e. those elements of Hk,L that are holomorphic as a
function on H. Equivalently they are the elements of Hk,L that are annihilated
by ξk. From these de�nitions it follows that the operator ξk maps Hk,L to
M2−k,L− , the proof of which, however, involves some calculations.

These de�nitions give rise to several questions. The �rst one that arises is
the one of examples of weakly holomorphic modular forms, or, alternatively,
weakly harmonic Maass forms. If the weight is su�ciently big, namely k > 2,
examples of weakly holomorphic modular forms are readily constructed. If one
considers the stabilizer subgroup Γ∞ of Γ that stabilizes the cusp i∞, one knows
that it is of the form

Γ∞ =

{(
±1 Nx
0 ±1

)
| x ∈ Z

}
for a suitable N ∈ N. If m ∈ 1

NZ and eγ is a basis vector of C[L′/L], one
can give standard examples of weakly holomorphic modular forms, the so called
Poincaré series

Pk(m, τ, γ) =
∑

M∈Γ∞\Γ

(e2πimτ eγ) |k M,

7



which converge absolutely for k > 2 and as such, are holomorphic. One can use
a trick and de�ne Poincaré series that analytically depend on some parameter
s ∈ C via

Pk(m, τ, s, γ) =
∑

M∈Γ∞\Γ

(yse2πimτ eγ) |k M.

These series converge absolutely as long as the real part σ of s satis�es 2σ+k > 2.
If k > 2, the holomorphic Poincaré series are obtained by evaluating the series
at s = 0. For k ≤ 2, the question arises whether these series have a contin-
uation to 2σ + k ≤ 2 and hence can be evaluated in s = 0. We will show
that analytic continuation to the set 2σ + k > 1 is indeed possible, as long as
k 6= 1. The problem that arises in the case k = 1 is that the continuation
involves inverting the Laplace operator ∆k, which we will see is only possible if
k 6= 1. We will further see that there is a way to extend the de�nition to the
set {s ∈ C| 2σ+ k /∈ 1− 2N0}, however, the extension to this set is not analytic
as the set is not connected.

After �nishing this thesis, the author was kindly informed by Kathrin Mau-
rischat that similar methods are used in the as of yet unpublished paper [7] to
study the continuation of scalar valued Poincaré series of weight k = 2 form > 0.

One requires however a di�erent approach to continue Eisenstein series, i.e.
Poincaré series for m = 0. The question of their continuation was �rst answered
positively in [8, 12]. In this thesis we use an innate connection between the
Fourier coe�cients of Eisenstein series and the constant coe�cients of the series
for m 6= 0 to prove this result.

Another question one can ask is whether the map ξk is surjective. If 2− k > 2,
it is well known that the Poincaré series P2−k(m, τ, γ) generate a basis of the
weakly holomorphic modular forms and in a recent preprint of Andersen, Bring-
mann and Rolen titled �Images of Maass-Poincaré Series in the Lower Half
Plane�, preimages of P2−k(m, τ, γ) under ξk were constructed for unimodular
lattices by continuing Fourier coe�cients to the lower half plane, hence proving
the surjectivity in that case. In a similar manner to Poincaré series, one can
construct Maass forms for weights k > 2. The challenges of construction using
these methods thus only arise for small weights, i.e. k ∈ {0, 1/2, 3/2, 2}, hence
the title of this thesis. Note that regardless of this fact, our methods of con-
struction work for all weights k 6= 1.

The most general result pertaining to the surjectivity of ξk was already de-
rived in the paper �On two geometric theta lifts� by Bruinier and Funke (see
[4]), where they prove the surjectivity of ξk for arbitrary half integral weight
and all lattices. The method employed in this paper relies on the theory of
logarithmic sheaves on analytic curves.

Encouraged by their result, it is the aim of this thesis to provide a proof of
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the surjectivity of ξk by means of explicitly constructing a generating system
for the weakly holomorphic modular forms. We will see that not only we can
construct such a generating system, but also can extend it to a generating system
of the weakly harmonic Maass forms for arbitrary lattices and all half integral
weights k 6= 1.

The method of construction primarily relies on a theorem by Roelcke, as found
in [9, 10]. In the two papers, Roelcke shows that, when one considers unimodular
lattices (and so C[L′/L] = C) and the space of square integrable automorphic
forms of weight k with respect to the Petersson scalar product

〈f, g〉k =

ˆ

F

fg yk
dx dy

y2
,

the operator ∆k−λ is, essentially, invertible if λ /∈ [(k−1)2/4,∞). Note that one
needs to take some more care regarding the notion of invertibility, which will be
discussed in detail in this thesis. We generalize this result to arbitrary integral
lattices, as long as k 6= 1. This then allows us to invert ∆k. The problem that
arises in weight one is that ∆0 is not invertible as 0 is in its continuous spectrum,
as already indicated above. Hence, we only consider weights k 6= 1 in this thesis.

Another problem one encounters when inverting ∆k is that one needs to es-
timate the cuspidal growth of ∆−1

k f , for a suitable square integrable automor-
phic form f of weight k, as we de�ned Maass forms to be of at most exponential
growth.

The central input of this thesis is the introduction of the Petersson-Sobolev
spaces, which can be seen as a generalization of square integrable automorphic
forms. They are an inductively de�ned family of vector spaces Hnk,L such that

H0
k,L is the space of square integrable automorphic forms and Hnk,L consists of

the elements f of H0
k,L such that ξkf is in Hn−1

2−k,L− . Their most important prop-
erty is that they provide us with bounds for the cuspidal growth of elements
therein. The main results can be brie�y summarized as follows. First, we show
that for any Fourier coe�cient

fn(y) :=

N̂

0

f(x+ iy)e−2πinx dx

of an element f of H1
k,L, one has

fn(y) = O(y(3−k)/2)

at every cusp. For elements of H2
k,L, we have a stronger result, namely that

f(y) = O(y(1−k)/2)
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at every cusp. Further, for suitable square integrable f , the element ∆−1
k f is

in H2
k,L. This provides us with the desired growth estimates at each cusp and

allow us to prove that the automorphic forms we construct are indeed weakly
holomorphic modular forms, respectively weakly harmonic Maass forms.

Last, we show using Riemann-Roch that the set of weakly holomorphic modular
forms we construct are indeed a generating system for the space M !

k,L, in the
sense that any weakly holomorphic modular form is a �nite linear combination
of elements in the generating system. We proceed to construct preimages under
ξ2−k for those, where again we need our theory of Petersson-Sobolev spaces to
prove that the preimages are indeed weakly harmonic Maass forms. This method
of construction then proves the surjectivity of ξk for all weights k 6= 1. As a
consequence of this proof, we will also see that we obtain a natural generating
system for the weakly harmonic Maass forms.
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1 Maass Forms on Lattices

1.1 Introduction and Notation

1.1.1 Complex Variables and Functions

In the following, we will be considering Maass forms and as such, functions
fs : M×H→ V with M being some discrete parameter space and V a suitable
vector space, that analytically depend on some parameter s. We will denote the
argument of fs in H by τ ∈ H and decompose it into real and imaginary part,
denoted by x and y, i.e.

τ = x+ iy.

Here, s will be an element of C such that

σ := Re(s) > Const..

Another thing we will commonly need is a concept of a square root. By the
square root

√
, we always mean the principal part, such that for z ∈ C\{0}

−π/2 < Arg(
√
z) ≤ π/2.

Lastly, we abbreviate
e(x) := e2πix. (1.1)

1.1.2 The Metaplectic Group, Lattices and Weil Representations

The �rst object we need to de�ne is the metaplectic group.

De�nition 1.1. The metaplectic group Mp2(Z) is the set of pairs (M,φ) where

M =

(
a b
c d

)
∈ SL2(Z) and φ : H → C such that φ is holomorphic and

φ2(τ) = cτ + d. The multiplication is de�ned via (M,φ) · (M ′, φ′) := (M ·
M ′, (φ ◦M ′) · φ′) where (φ ◦M ′) · φ′(τ) = φ(M ′τ) · φ′(τ).

Is is easy to see that this is indeed a group; as for (M,φ) and (M ′, φ′)

in Mp2(Z) we denote M =

(
a b
c d

)
, M ′ =

(
a′ b′

c′ d′

)
and then quickly

calculate

(φ(M ′τ) · φ′(τ))2 = (c(
a′τ + b′

c′τ + d′
) + d) · (c′τ + d′)

= (ca′ + dc′)τ + (cb′ + dd′),

as well as

M ·M ′ =

(
aa′ + bc′ ab′ + bd′

ca′ + dc′ cb′ + dd′

)
.
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Remark 1.2. The canonical projection π : Mp2(Z)→ SL2(Z), de�ned via

π((M,φ)) = M,

is a twofold cover as there are precisely two square roots of any function cτ + d.

Lemma 1.3. The metaplectic group Mp2(Z) is generated by the elements S =((
0 −1
1 0

)
,
√
τ

)
and T =

((
1 1
0 1

)
, 1

)
.

Proof. We use the generally known fact that SL2(Z) is generated by S′ =(
0 −1
1 0

)
and T ′ =

(
1 1
0 1

)
. Let G be the subgroup of Mp2(Z) gener-

ated by S and T . Thus π|G : G → SL2(Z) is surjective as π(S) = S′ and

π(T ) = T ′. Further, S4 =

((
1 0
0 1

)
,−1

)
is in G, hence for any (M,φ) ∈ G,

so is (M,φ) · (id,−1) = (M,−φ). Since for any M ∈ SL2(Z), there are exactly
two preimages under π, we must have G = Mp2(Z).

Next, consider an integral lattice L of signature (b+, b−) and scalar product
(·, ·). For us, an integral lattice L is a Z-submodule of rank n in Rn such that
〈RL〉 = Rn. The scalar product on L is the one induced by the euclidean scalar
product on Rn. By denoting its dual lattice by L′, it is well known that L′/L is a
�nite abelian group. We can next consider the associated monoid ring C[L/L′],
whose base elements we denote by eγ , γ ∈ L′/L, and de�ne a representation of
Mp2(Z) thereon. As Mp2(Z) is generated by S and T , it is su�cient to de�ne
it on those two elements.

De�nition 1.4. The Weil representation of Mp2(Z). Let eγ ∈ C[L′/L]. We
de�ne

ρL(S)eγ :=

√
i
b+−b−√
|L′/L|

∑
δ∈L′/L

e(−(γ, δ))eδ,

ρL(T )eγ := e(
1

2
(γ, γ))eγ

and extend ρL to a representation of the full metaplectic group using these
relations. The extension is outlined, for example, in [14, Lemma 1.3]. We use
this opportunity to point out the e(·) notation as de�ned in (1.1).

If L is unimodular, and hence C[L′/L] = C , the representation on elements
of

Γ(4) := ker(Mp2(Z)→ SL2(Z/4Z))

is given via

ρ0

((
a b
c d

))
:=

{ (
c
d

)
ε−1
d

1
if 2k is odd,
otherwise,

where
( ·
·
)
denotes the Kronecker symbol (as de�ned in [13]) and

εd :=

{
1
i

if d ≡ 1 mod 4,
if d ≡ 3 mod 4.
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We also expand our previous shorthand

eγ(x) := e(x) · eγ ,

where eγ ∈ C[L′/L] is one of the generators. Lastly, we consider the conjugated
representation, i.e. conjugation of the matrix entries, with respect to L as the
one given by ρL. We denote this representation by L−.

1.2 Maass Forms

When considering Maass forms for lattices apart from the trivial lattice 0, it
is important to note note that there are no non zero Maass forms unless 2k =
b+−b− mod 2. This statement will only be marginally relevant later, speci�cally
for deriving (2.4) by using the explicit representations. To see that there are no
Maass forms if 2k 6= b+ − b− mod 2, let us �rst give the following

De�nition 1.5. The Petersson slash operator. Let f be some function that
takes its values on the upper half plane H. Let M be an element of the meta-
plectic group Mp2(Z). Then we de�ne the Petersson slash operator |k,L M
by

(f |k,L M)(τ) :=
1

√
cτ + d

2k
ρL(M)−1f(Mτ).

Further, we need the notion of a congruence subgroup, which is given by

De�nition 1.6. Congruence subgroups of Mp2(Z). Let Γ be a subgroup of
Mp2(Z). We say Γ is a congruence subgroup if it contains contains the preim-
age π−1(Γ′) for some congruence subgroup Γ′ of SL2(Z) under the canonical
projection π : Mp2(Z)→ SL2(Z).

De�nition 1.7. An automorphic form of half integer weight k w.r.t. a lattice

L and some congruence subgroup Γ ⊆ Mp2(Z) is a smooth function f : H →

C[L′/L] such that for M =

((
a b
c d

)
, φ

)
∈ Γ, we have

(f |k,L M)(τ) = f(τ).

We denote by Ak,L(Γ) the space of all automorphic forms of weight k for
L and Γ. Note that our de�nition of automorphic form slightly deviates from
the convention as we require only invariance under the group action and no
restriction on growth in the cusps. If L is unimodular, we further allow dropping
the subscript L and just write Ak(Γ) instead. Now, to prove the claim that there
are no non vanishing automorphic forms if 2k 6= b+ − b− mod 2, consider the

element S4 =

((
1 0
0 1

)
,−1

)
. It is contained in any congruence subgroup,

and by de�nition, we have for any base vector eγ of C[L′/L]

ρL(S)2eγ =
ib+−b−

|L′/L|
∑
δ,δ′

e(−(γ, δ)− (δ, δ′))eδ′

14



=
ib+−b−

|L′/L|
∑
δ,δ′

e(−(δ, δ′))eδ′−γ .

Next, note that ∑
δ

e(−(δ, δ′)) =

{
|L′/L|

0
if δ′ = 0,
otherwise,

and thus
ρL(S)2eγ = ib+−b−e−γ

and
ρL(S)4=(−1)b+−b− .

Thus for any f ∈ Ak,L(Γ)

f = f |k S4

= (−1)2k+b+−b−f,

i.e. f = 0 unless 2k + b+ − b− ≡ 0 mod 2.

There are two important operators de�ned on automorphic forms, the Maass
lowering operator (see [4],[5])

lk : Ak,L(Γ) → Ak−2,L(Γ)

lkf := −2iy2 ∂f

∂τ̄

where

∂

∂τ
:=

1

2
(
∂

∂x
− i ∂

∂y
),

∂

∂τ̄
:=

1

2
(
∂

∂x
+ i

∂

∂y
),

as well as the conjugation

∗k : Ak,L(Γ) → A−k,L−(Γ)

∗kf := ykf̄ .

We will see that all these are well de�ned. These further de�ne the Maass raising
operator

rk : Ak,L(Γ) → Ak+2,L(Γ)

rk := ∗−k−2l−k ∗k .

To give a coordinate representation, note that

rkf = y−k−2(−2iy2
∂

∂τ̄
(ykf̄))

15



= 2iy−k
∂

∂τ
(ykf)

= 2i
∂f

∂τ
+
k

y
f

Next we de�ne ξ-operator

ξk : Ak,L(Γ) → A2−k,L−(Γ)

ξk := ∗k−2lk,

for which we have the coordinate representation

ξkf = 2iyk
∂f̄

∂τ
.

The last operator we need is the Laplace operator

∆k : Ak,L(Γ) → Ak,L(Γ)

∆k := −ξ2−kξk
= −rk−2lk

= −lk+2rk − k. (1.2)

To prove the last line and derive a coordinate representation, observe that

∆kf = −rk−2lkf

= −4y−k+2 ∂

∂τ
(yk

∂f

∂τ̄
)

= −4y2−k ∂

∂τ
(yk

∂f

∂τ̄
)

= −4y2 ∂2f

∂τ̄∂τ
+ 2ik

∂f

∂τ̄

= 2iy2 ∂

∂τ̄
(2i

∂f

∂τ
+
k

y
f)− kf

= −lk+2rkf − kf.

The well-de�nedness of all of these operations follows from the commutation
relations for arbitrary M ∈ Mp2(Z)

(lk·)|k−2,LM = lk((·)|k,LM),

(∗k·)|−k,L−M = ∗−k((·)|k,LM).

Proof. Let f : H→ C[L′/L] be a smooth function. LetM =

((
a b
c d

)
,±1

)
∈

Mp2(Z). By using the chain rule we obtain

lk(f |k,LM)(τ) = −2iy2 ∂

∂τ̄

(
1

√
cτ + d

2k
ρL(M)−1f(Mτ)

)

16



=
−2iy2

√
cτ + d

2k
ρL(M)−1 1

(cτ̄ + d)
2

∂f

∂τ̄
(Mτ)

=
−2iy2

|cτ + d|4
ρL(M)−1 1

√
cτ + d

2(k−2)

∂f

∂τ̄
(Mτ)

=

{(
−2iy2 ∂f

∂τ̄

)
|k−2,LM

}
(τ)

= ((lkf)|k−2,LM)(τ).

Now, let f ∈ Ak,L(Γ). Let M ′ ∈ Γ. Then, by de�nition, f |kM ′ = f and

(lkf)|k−2,LM
′ = lk(f |k,LM ′)

= lkf,

hence lkf ∈ Ak−2,L(Γ).

As to ∗k, let again f be smooth (but not necessarily invariant under |k,L) and

M =

((
a b
c d

)
,±1

)
∈ Mp2(Z) as above. Then

(∗k(f |k,LM))(τ) = yk(f |k,LM)(τ)

= yk
1

√
cτ̄ + d

2k
ρL(M)−1f̄(Mτ)

=
1

√
cτ + d

−2k
ρL−(M)−1 yk

|cτ + d|2k
f̄(Mτ)

= ((ykf̄)|−k,L−M)(τ)

= ((∗kf)|−k,L−M)(τ),

and, for f ∈ Ak,L(Γ) and M ′ ∈ Γ,

(∗kf)|−k,L−M ′ = ∗k(f |k,LM ′)
= ∗kf,

hence f ∈ A−k,L−(Γ).

Note that in the progress of this thesis, when applying |k,L it will always be
to elements of a certain Ak,L, which is known beforehand. Thus, we can drop
the subscript L of |k,L and simply write |k instead for easier reading. The next
important space are the harmonic Maass forms, which we de�ne via

De�nition 1.8. The harmonic Maass forms Hk,L(Γ) are the subspace of f ∈
Ak,L(Γ) that, for arbitrary M ∈ Mp2(Z), satisfy

|(f |kM)(τ)| ≤ O(eCy),

as well as
∆kf = 0.
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Harmonic Maass forms have been discussed to great extent in the literature. At
this point, we would like to give a review of some structural results, all of which
are found in [4]. Note that by de�nition of congruence subgroups, there is some
N such that, for

Γ̃(N) := ker(Mp2(Z)→ SL2(Z/NZ)),

Γ̃(N) ≤ Γ. Thus, TN =

((
1 N
0 1

)
, 1

)
∈ Γ. And therefore, for any f ∈

Hk,L(Γ),

f(τ +N) = f |k TN

= f,

i.e. f has period N . Since f is smooth, it has an absolutely converging Fourier
expansion

f(τ) =
∑
n∈ 1

N Z

c(n, y)e(nx).

Note that in contrast to, e.g. [4], we do not expand our constants c(n, y) with
respect to the basis {eh} of C[L′/L]. Instead, we just take them as constant
vectors in C[L′/L] . Further

c(n, y) =
1

N

N̂

0

f(x+ iy)e(−nx) dx,

where n ∈ 1
NZ. Applying ∆k yields

−∆kc(n, y)e(nx) = y2 ∂
2c(n, y)

∂y2
+ ky

∂c(n, y)

∂y

+ (−(2πyn)2 + 2πkyn)c(n, y)

=
1

N

N̂

0

(−∆kf(x+ iy))e(−nx) dx

= 0.

If n = 0, this implies that

c(0, y) = c+0 + c−0 y
1−k

for some constants c±0 ∈ C[L′/L]. If n 6= 0, we set w = 2πny and set c(n, y) =
b(n,w). Inserting this into above equation yields

0 =

(
∂2b(n,w)

∂w2
+
k

w

∂b(n,w)

∂w
− b(n,w) +

k

w
b(n,w)

)
.
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One solution to this is e−w. The other solution is given by the Whittaker
function

H(w) := Msgn(n)k/2,(k−1)/2(|w|),
which is in great detail discussed in [1]. It contains the estimates

H(w) ≈
{
|2w|−k e−|w|
(−2w)−ke|w|

as w → −∞,
as w → +∞.

[4] also gives the integral representation

H(w) = ew
∞̂

−2w

e−tt−k dt, (1.3)

where one needs to take appropriate values of w and k for convergence and
eventually continue analytically in k and w. Hence we can uniquely decompose

c(n, y) = c+n e
−2πny + c−nH(2πny).

Now, note that, by de�nition of harmonic Maass forms,

|c(n, y)| =

∣∣∣∣∣∣ 1

N

N̂

0

f(x+ iy)e(−nx) dx

∣∣∣∣∣∣
≤ eCy

for some constant C > 0. By above estimates, we further have

c(n, y) ≈
{

c+n e
−2πny

(−4πny)−kc−n e
2πny

for n < 0 as y →∞,
for n > 0 as y →∞.

Thus, c+n = 0 for n�∞ and c−n = 0 for n� −∞. We can then de�ne

f+(τ) :=
∑
n∈ 1

N Z

c+n e(nτ),

f−(τ) := c−0 y
1−k +

∑
n∈ 1

N Z\{0}

c−nH(2πny)e(nx),

which implies
f = f+ + f−. (1.4)

As each sum has only �nitely many positive resp. negative coe�cients, they
both converge absolutely. We say f+ is the holomorphic part of f .

A second subspace of importance are

De�nition 1.9. The weakly holomorphic Maass forms M !
k,L(Γ) are the sub-

space of f ∈ Hk,L(Γ) such that

lkf = 0.
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Note that this is equivalent to saying that f is holomorphic on H with poles
of �nite order at the cusps.

Lemma 1.10. The restriction of ξk as an operator

ξk : Hk,L(Γ)→M !
2−k,L−(Γ) (1.5)

is well de�ned.

Proof. We only need to consider k 6= 1 as the weight k = 1 is not studied in this
thesis. Let f ∈ Hk,L(Γ). We can then decompose

f = f+ + f−

as in (1.4). Then, by holomorphy of f+ and absolute convergence of the series
of f−,

ξkf = ξkf
−

= 2(1− k)c−o

+ yk
∑

n∈ 1
N Z\{0}

c−n (
∂

∂y
+ 2πn)H(2πny)e(−nx).

Now, by the integral representation (1.3), it becomes obvious that

∂H

∂w
+H = (−2w)−ke(−w),

and thus
ξkf = 2(1− k)c−o + 2

∑
n∈ 1

N Z\{0}

c−n (−4πn)1−ke(−nτ).

Since the Fourier series has only �nitely many non vanishing coe�cients for
n > 0, it is of at most polynomial growth in i∞. Since for any harmonic Maass
form f , for any M ∈ Mp2(Z), f |kM is a harmonic Maass form as well, f must
be of at most exponential growth at the other cusps too.

As part of this thesis, we will prove surjectivity of ξk by constructing a
suitable basis. For an alternative proof of this, see e.g. [4], where the mentioned
result is derived using complex analysis of �ber bundles.

1.3 The Petersson Inner Product

We let F denote a fundamental domain for Γ. For f, g ∈ Ak,L(Γ, L) we de�ne
the scalar product to be

〈f, g〉k :=

ˆ

F

ykfḡ
dx · dy
y2

, (1.6)

where fḡ is the scalar product of two vectors in C[L′/L]. This enables us to
de�ne the space of square integrable automorphic forms.
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De�nition 1.11. We denote by L2
k,L(Γ) the vector space of square integrable

automorphic forms, which is the completion of the pre-Hilbert space X :=
{f ∈ Ak,L(Γ)|〈f, f〉k <∞} with respect to the scalar product 〈, 〉k.

As we will see a later, this space will play a crucial role in continuing the
soon to be de�ned Poincaré series and �nding a basis of the harmonic Maass
forms.

1.4 Congruence Subgroups, Inclusions and Traces

Let in the following denote B an element of the set {L2,A, H,M !}. For two
congruence subgroups Γ′ ≤ Γ there exists a natural inclusion

ι : Bk,L(Γ) ↪→ Bk,L(Γ′)

f 7→ f

and trace, which is de�ned via a set of representatives {αi} of Γ′\Γ by

π : Bk,L(Γ′) � Bk,L(Γ)

f 7→ 1

[Γ′ : Γ′′]

∑
i

f |k αi. (1.7)

It is easy to see that
π ◦ ι = idBk,L(Γ).

We can use this in the following way: when we want to show that a Maass form
is well de�ned, it will su�ce to do so for a perhaps smaller subgroup. We de�ne

Γ̃(N) := ker(Mp2(Z)→ SL2(Z/NZ)).

Since for any congruence subgroup Γ, by de�nition, there is an N such that

Γ̃(MN) ≤ Γ̃(N) ≤ Γ, (1.8)

it will su�ce to show our continuation theorems for a certain suitable subgroup
Γ̃(MN), which will allow us to assume without loss of generality 8|N , simplifying
our notation.
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2 Petersson-Sobolev Spaces

2.1 Introduction and De�nition

2.1.1 De�nition

In this section, we would like to introduce the Petersson-Sobolev spacesHnk (Γ\H, L).
At �rst, recall the de�nition of L2

k(Γ\H, L), which denotes the space of square
integrable, vector valued, modular forms of weight k with respect to the Peters-
son scalar product as in De�nition (1.11).

De�nition 2.1. De�ne H0
k(Γ\H, L) = L2

k(Γ\H, L). Let Xk,n+1(Γ\H, L) :={
f ∈ Ak,L(Γ\H) | f ∈ L2

k, lkf ∈ Hnk (Γ\H, L)
}
. Further, de�ne the scalar prod-

uct 〈f, g〉k,l := 〈f, g〉k + 〈lkf, lkg〉k−2,n−1 with 〈f, g〉k,0 := 〈f, g〉k. Clearly,
Xk,n(Γ\H, L) together with the scalar product 〈, 〉k,n is a pre-Hilbert space.
We denote the completion of the Xk,n(Γ\H, L) with respect to the scalar prod-
uct by Hnk (Γ\H, L) and call them Petersson-Sobolev spaces. If the lattice L and
congruence subgroup Γ are �xed, we allow dropping the indices Γ\H and L and
just write Hnk instead.

Remark 2.2. Note that this de�nition is perfectly natural as we could replace lk
with rk as by (2.3) they would generate equivalent norms on the Xk,n(Γ\H, L).

The importance of the Petersson-Sobolev spaces follows from (3.3) as by this
all the integrable Poincaré series Pk de�ned in the next section (see Theorem
(3.1)) lie in Hnk (Γ\H, L). Moreover, we will see that these spaces allows us to
make two fundamental estimates, one on the asymptotics at the cusp and on
the Fourier coe�cients of elements therein.

The reason for our choice of name is simple. The spaces just constructed have a
striking similarity in manner of construction and behavior to the Sobolev spaces
of functional analysis, as we will see in the next section. However, Petersson-
Sobolev spaces are not truly Sobolev spaces; one can, however, consider them
as a generalization of Sobolev spaces to complex analysis, i.e. they deal with
manifolds over complex variables instead of real analytic manifolds.

2.1.2 A Note on Classical Sobolev Spaces

The reason we speak of Sobolev spaces is a fundamental one that directly relates
to the Sobolev spaces from functional analysis, which we will relate our de�ni-
tion to for a better understanding of the intuition behind the just introduced
spaces.

All of the following is found in any book on functional analysis dealing with
Sobolev spaces, for example [2].

In functional analysis on a manifold, let us say R, the Sobolev spaces arise
in a similar manner. Our notion of Petersson-Sobolev spaces for automorphic
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forms is a generalization of this concept: Consider the space of square integrable
(complex valued functions) L2(R). One de�nes the scalar product

〈f, g〉 :=

ˆ
dx fḡ.

Next, one considers the set

Y0 = {f ∈ C∞(R)| 〈f, f〉 <∞}.

The space L2(R) then is the completion of the pre-Hilbert space Y0 with respect
to the scalar product. To de�ne the Sobolev spaces, one proceeds inductively:
We de�ne H0(R) := L2(R) and de�nes the pre-Hilbert spaces Yn

Yn := {f ∈ C∞(R)| f ∈ L2,
∂f

∂x
∈ Hn−1}

with the scalar product

〈f, g〉n = 〈f, g〉+ 〈∂f
∂x
,
∂g

∂x
〉n−1

and sets the Sobolev spaces Hn to be the completion of Yn with respect to the
scalar product 〈, 〉n. Our de�nition for Petersson-Sobolev spaces of automorphic
forms is directly analogous. The statement of smoothness is equivalent to our
concept of automorphic forms, and the role of the derivative in complex coordi-
nates is taken by lk (or, as we have seen, equivalently rk). The classical Sobolev
spaces satisfy various well known embedding theorems, the so called Sobolev
inequalities, which yield inclusions, for example

H1(R) ⊆ C0(R),

i.e. all elements of H1 are, up to de�nition on a set of measure zero, continuous
functions. The notion of continuity for Fréchet spaces implies that for each
compact set K and x ∈ K there is some C(K) such that

|f(x)| ≤ C(K)
√
〈f, f〉1.

To see why being in a Sobolev spaces of higher degree imposes regularity, con-
sider a function that has compact support, is smooth everywhere except in x = 0
and in some small neighborhood of zero is given by

fα(x) = |x|α . (2.1)

Clearly, we see that fα ∈ L2 whenever α > −1/2. However, while−1/2 < α < 0,
fα is not smooth. Evidently, in a small neighborhood of zero,

∂fα
∂x

(x) = ±α |x|α−1
,

which is in L2 while α > 1/2. Hence, ∂fα
∂x ∈ L2 imposes continuity on fα.

The lemmas in the next section will be in the spirit of the Sobolev inequalities,
providing us with estimates on the growth of functions in our Sobolev spaces
of automorphic forms. The more derivatives are integrable, the more regularity
we can impose on the functions.
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2.2 Density of Petersson-Sobolev spaces

To simplify the discussion in the following chapters, it becomes necessary to
classify dense subspaces of the Petersson-Sobolev spaces. De�nition (2.1) implies
the obvious inclusion

Hn+1
k (Γ\H, L) ⊆ Hnk (Γ\H, L).

As this inclusion is dense in the case of classical Sobolev spaces, a natural
question to ask is whether the respective generalizes, i.e. we have

Lemma 2.3. The inclusion Hn+1
k (Γ\H, L) ⊆ Hnk (Γ\H, L) is dense.

Following the analogy to classical Sobolev spaces, one state a stronger density
lemma which has the previous one as a direct corollary.

Lemma 2.4. The compactly supported automorphic forms Ack,L(Γ\H) := {f ∈
Ak,L(Γ\H) | f has compact support on Γ\H} are a dense subspace of Hnk (Γ\H, L).

Proof. By compactness of the support, it is clear thatAck,L(Γ\H) ⊆ Hnk (Γ\H, L).
For φ ∈ Ack′(Γ\H) de�ne

|φ|2k′,n :=
∑
r≤n

sup
τ∈Γ\H

∣∣∣∣yk′/2(y( ∂

∂τ̄

))r
φ(τ)

∣∣∣∣2 .
The proof now proceeds by twofold induction in n. At �rst, let φ be as above.
Then there is some constant C(k, k′, n) such that for any f ∈ Ak,L(Γ\H) ∩
Hnk (Γ\H, L)

‖fφ‖Hn
k+k′
≤ C(k, k′, n) |φ|k′,n ‖f‖Hnk .

The induction start is clear for n = 0 as fφ is in Ack+k′,L(Γ\H). If f is in

Ak ∩Hn+1
k then, by Cauchy-Schwartz

‖fφ‖2Hn
k+k′

= 〈fφ, fφ〉k+k′ + 〈(lkf)φ, (lkf)φ〉k+k′−2,n−1

+ 〈f(lk′φ), f(lk′φ)〉k+k′−2,n−1

+ 2Re(〈f(lk′φ), (lkf)φ〉k+k′−2,n−1)

≤ 〈fφ, fφ〉k+k′ + 2〈(lkf)φ, (lkf)φ〉k+k′−2,n−1

+ 2〈f(lk′φ), f(lk′φ)〉k+k′−2,n−1

≤ C(k, k′, 0) |φ|2k′,0 ‖f‖
2
H0
k

+ 2C(k, k′, n− 1) |φ|2k′,n−1 ‖lkf‖
2
Hn−1
k−2

+ 2C(k, k′, n− 1) |lk′φ|2k′−2,n−1 ‖f‖
2
Hn−1
k

≤ (C(k, k′, 0) + 4C(k, k′, n− 1)) |φ|2k′,n ‖f‖
2
Hnk

.

Next, let m0 be big enough such that for y > 2m0 there are only two equivalent
points on the fundamental domain. Let ϕ(y) be a smooth function satisfying

ϕ(y) :=

{
0
1

if y < 2,
if y > 3.
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De�ne
ϕm(y) := ϕ(y1/m).

Then, if m > m0, ϕm is in A0(Γ\H). Let {Mi} ⊆ Mp2(Z) be such that
{M−1

i i∞} is the set of cusps. Then

ψm(τ) := 1−
∑
i

ϕm(y)|kMi

vanishes in a neighborhood of any cusp, hence is inAc0(Γ\H). Let f ∈ Ak,L(Γ\H)∩
Hnk (Γ\H, L). We claim that fψm converges to f in Hnk (Γ\H, L), hence proving
the lemma, as, by construction, Ak,L(Γ\H) ∩ Hnk (Γ\H, L) is a dense subspace
of Hnk (Γ\H, L). The proof of this is again done by induction. If n = 0, we have

|fψm(τ)| ≤ |f(τ)|

and fψm converges pointwise to f . Hence, by the dominated convergence the-
orem, fψm → f in H0

k . Now, for f ∈ Ak ∩Hn+1
k

‖f(1− ψm)‖2Hn+1
k

= ‖f(1− ψm)‖2H0
k

+ ‖lk(f(1− ψm))‖2Hnk−2

≤ ‖f(1− ψm)‖2H0
k

+ 2 ‖(lkf)(1− ψm)‖2Hnk−2

+ 2 ‖f(l0(1− ψm))‖2Hnk−2
.

By the induction hypothesis, fψm → f in H0
k−2 and (lkf)ψm → lkf in Hnk−2,

hence the �rst two terms vanish as m→∞. By the previous induction,

‖f(l0(1− ψm))‖2Hnk−2
≤ C(n) ‖f‖2Hnk |(l0(1− ψm))|2−2,n .

Since
l0(1− ψm) =

∑
i

(l0ϕm)|−2Mi

it is in Ac−2(Γ\H) and further

|l0(1− ψm)(τ)|2−2,n ≤ Const · |l0ϕm|2−2,n .

Note that by de�nition

|l0ϕm|2−2,n ≤ Const ·
∑

0<r≤n

sup
τ∈−\H

∣∣∣∣ ∂r

∂ln(y)r
ϕm(y)

∣∣∣∣2 .
= Const ·

∑
0<r≤n

m−r sup
τ∈−\H

∣∣∣∣ ∂rϕ

∂ln(y)r
(y1/m)

∣∣∣∣2
≤ Const

m
.

Thus

‖f(l0(1− ψm))‖2Hnk−2
≤ Const

m
.

and hence f(1− ψm)→ 0 in Hn+1
k (Γ\H, L).
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2.3 Estimates on Cuspidal Growth

In the following section, we �x some lattice L. For any topological space U , we
denote the space of continuous, C[L′/L] valued functions on U by C0(U). We
equip this space with the topology of uniform convergence on compact subsets.
Thus, C0(U) is a Fréchet space. As previously discussed, we will show that the
concept of Petersson-Sobolev spaces provides us with estimates on the cuspidal
growth of elements therein. The �rst estimate we have on Petersson-Sobolev
spaces is the one pertaining to the Fourier coe�cients.

Lemma 2.5. The Fourier coe�cients as a map between topological vector spaces

ψm : H1
k → C0(R>0)

f 7→ y
k−3
2

N̂

0

f(x, y)e(−mx) dx

are continuous and bounded as y →∞.

Proof. Let k be �xed. Suppose f is in the space of compactly supported au-
tomorphic forms Ack. As, by Lemma (2.4), the space Ack is dense in H1

k we
only need to consider such elements, as it su�ces to show that the Fourier
coe�cients de�ne smooth maps on a dense subset. It is evident that ψm(f)
is indeed continuous, i.e. an element of C0(R>0). All that is left to show
is that the map ψm(f) is bounded by ‖f‖k,1. Take c andy0 ≥ c such that
Fy0 := F ∩ {τ | Im(τ) ≥ y0} = {τ | Im(τ) ≥ y0, 0 ≤ Re(τ) ≤ N} for all such y0.
Then, for ε > 0, since f has compact support on the fundamental domain,

y
k−3
2 −ε

0

N̂

0

f(x, y0)e(−mx) dx = i

N̂

0

∞̂

y0

∂

∂τ̄
(y

k−3
2 −εf(x, y)

· e(−mx)) dy dx

= i

ˆ

Fy0

y
k−3
2 −ε

∂f

∂τ̄
e(−mx) dy dx

+ 2πm

ˆ

Fy0

y
k−3
2 −εf(x, y)e(−mx) dy dx

+
k − 3− 2ε

2

·
ˆ

Fy0

y
k−5
2 −εf(x, y)e(−mx) dy dx.

Further, Cauchy-Schwarz implies

∞̂

y0

dy y
k−3
2 −ε

N̂

0

| f(x, y) | dx
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≤
√√√√ ˆ
Fy0

yk−2 | f |2 dy dx ·
ˆ

Fy0

y−1−2ε dy dx

≤ 1√
2ε
‖ f ‖k,1 y−ε0 .

Using Cauchy-Schwarz again for the di�erent terms allows us to estimate

|
ˆ

Fy0

y
k−3
2 −ε

∂f

∂τ̄
e(−mx) dy dx |

≤ 1√
2 + 2ε

‖ f ‖k,1 y−1−ε
0 ,

|
ˆ

Fy0

y
k−3
2 −εf(x, y)e(−mx) dy dx |

≤ 1√
2ε
‖ f ‖k,1 y−ε0 ,

|
ˆ

Fy0

y
k−5
2 −εf(x, y)e(−mx) dy dx |

≤ 1√
2 + 2ε

‖ f ‖k,1 y−1−ε
0 .

Hence
|ψm(f)(y0)| ≤ C(m, ε) ‖ f ‖k,1, (2.2)

for y0 ≥ c. For arbitrary y > 0, Now �x arbitrary c > 0. For c ≤ y <
y0, note that �nitely many copies of the fundamental domain cover the set
{τ | Im(τ) ≥ c, 0 ≤ Re(x) ≤ N}. The proof proceeds analogously, albeit with
some prefactor relating to the number of these copies. This proves the continuity
of the map ψm and moreover

N̂

0

f(x, y)e(−mx) dx = O(y(3−k)/2).

Remark 2.6. If m = 0, we can improve the estimate to

N̂

0

f(x, y) dx = O(y(1−k)/2)

as we can set ε = −1 + ε′ in above equations.
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Secondly, we want to obtain an estimate on the growth of functions f for
y →∞. Fourier coe�cients, with one integral in their de�nition, admit a bound
in H1

k and we will see that the limit y → ∞ is nice for elements of H2
k. Let us

state

Lemma 2.7. There is a continuous inclusion of Fréchet spaces H2
k ↪→ C0(H).

Moreover, any f ∈ H2
k is O(y

1−k
2 ) at each cusp.

Proof. Take an arbitrary f ∈ Ack. Clearly, f is continuous, i.e. in C0(H). To
prove the continuity of the inclusion, �rst, note that

2y2 ∂

∂y
= lk + y2rk − ky,

2iy2 ∂

∂x
= y2rk − lk − ky.

It su�ces to assume that y0 ≥ c such that there are only two equivalent points
on the fundamental domain, as in the previous Lemma. Now set

g(x, y) := (
∂

∂y
y
k+1
2 −εf − 1

N

N̂

0

∂

∂y
y
k+1
2 −εf dx).

Then ∣∣∣∣∣∣
∞̂

y0

g(x, y) dy

∣∣∣∣∣∣ ≤
∞̂

y0

|g(x, y)| dy

≤ 2

ˆ

Fy0

∣∣∣∣ ∂∂xg(x, y)

∣∣∣∣ dy dx
= 2

ˆ

Fy0

y−1/2−εyk/2−3

∣∣∣∣y2 ∂

∂x
(y2 ∂

∂y
f)

∣∣∣∣ dy dx
+ |k + 1− 2ε|

·
ˆ

Fy0

y−1/2−εyk/2−2

∣∣∣∣y2 ∂

∂x
(f)

∣∣∣∣ dy dx.
For the �rst inequality, we used that

N̂

0

g(x, y) dx = 0,

hence there exist x0(y), x1(y) such that Re(g(x0(y), y) = Im(g(x1(y), y) = 0 and
hence we can bound g by the integral over the absolute value of its derivative.
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Now, applying Cauchy Schwartz yields:

2

∣∣∣∣∣∣∣
ˆ

Fy0

y−1/2−εyk/2−2

∣∣∣∣y2 ∂

∂x
(f)

∣∣∣∣ dy dx
∣∣∣∣∣∣∣
2

≤ y−2ε
0

ε

ˆ

Fy0

y(k−2)−2

∣∣∣∣y2 ∂

∂x
(f)

∣∣∣∣2 dy dx
≤ y−2ε

0

ε

ˆ

Fy0

y(k−2)−2
∣∣(y2rk − lk − ky)(f)

∣∣2 dy dx
≤ C

y−2ε
0

ε
(‖lkf‖2k−2 + ‖rkf‖2k+2 + ‖f‖2k)

≤ C ′
y−2ε

0

ε
‖f‖2k,2

and in a similar manner we �nd

2

∣∣∣∣∣∣∣
ˆ

Fy0

y−1/2−εyk/2−3

∣∣∣∣y2 ∂

∂x
(y2 ∂

∂y
f)

∣∣∣∣ dy dx
∣∣∣∣∣∣∣
2

≤ y−2ε
0

ε

ˆ

Fy0

yk−6

∣∣∣∣y2 ∂

∂x
y2(

∂

∂y
f)

∣∣∣∣2 dy dx
≤ y−2ε

0

ε

ˆ

Fy0

yk−6

∣∣∣∣y2 ∂

∂x
(lk + y2rk − ky)f

∣∣∣∣2 dy dx
≤ C(k)

y−2ε
0

ε
(

ˆ

Fy0

yk−6

∣∣∣∣y2 ∂

∂x
lkf

∣∣∣∣2 dy dx
+

ˆ

Fy0

yk−2

∣∣∣∣y2 ∂

∂x
rkf

∣∣∣∣2 dy dx
+

ˆ

Fy0

yk−4

∣∣∣∣y2 ∂

∂x
f

∣∣∣∣2 dy dx)

≤ C(k)
y−2ε

0

ε

· (

ˆ

Fy0

yk−6
∣∣(y2rk−2 − lk−2 − (k − 2)y)lkf

∣∣2 dy dx
+

ˆ

Fy0

yk−2
∣∣(y2rk+2 − lk+2 − (k + 2)y)rkf

∣∣2 dy dx
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+

ˆ

Fy0

yk−4
∣∣(y2rk − lk − ky)f

∣∣2 dy dx
≤ C(k)

y−2ε
0

ε
‖f‖2k,2 .

By applying Cauchy-Schwarz su�ciently often, we see that the right hand side
is bounded by expressions of types ‖ rk+2rkf ‖k+4, ‖ rk−2lkf ‖k etc., all of
which are bounded by ‖f‖k,2 yielding the estimate

∞̂

y0

|g(x, y)| dy ≤ C · y
−ε
0√
ε
‖f‖k,2 .

Now, we recall the previous lemma, (2.2), and continue by considering∣∣∣y k+1
2 −ε

0 f(x, y0)
∣∣∣

= |
∞̂

y0

g(x, y) dy

+
1

N

∞̂

y0

N̂

0

∂

∂y
y
k+1
2 −εf dx dy|

≤
∞̂

y0

|g(x, y)| dy

+

∣∣∣∣∣∣ 1

N

N̂

0

y
k+1
2 −ε

0 f(x, y0) dx

∣∣∣∣∣∣
≤ Const. · ‖f‖k,2 · y

1−ε
0 .

If, for y0 < c, we need more than a single copy of the fundamental domain to
cover the set {τ | Im(τ) ≥ c, 0 ≤ Re(x) ≤ N}, the proof proceeds analogously
noting that we again obtain a prefactor relating to the �nite number of such
copies. Thus the inclusion Ack ↪→ C0(H) is continuous in the norm on H2

k,
hence extends to an inclusion of H2

k, i.e. any element of H2
k is continuous, up

to rede�nition on a set of measure zero. The growth estimate for the cusp
i∞ follows directly from the proof. It holds on the other cusps as well as the
Petersson-Slash operator de�nes an isometry on H2

k.

Remark 2.8. One can interpret the lemmas in the sense of Petersson-Sobolev
spaces. Elements of L2

k are limits of sequences of integrable smooth functions,
however, they might not be smooth themselves, similar to the �classical� example
(2.1) discussed in the previous section. However, as we consider elements of H1

k,
their Fourier coe�cients satisfy certain regularity conditions, the function itself
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may not be smooth enough to allow estimates on its growth, i.e. its Fourier
expansion might not su�ciently converge. Only once we consider elements of
H2
k we have su�cient regularity to allow estimates on the function itself.

2.4 The Laplace Operator

By de�nition, the map

lk : H1
k → L2

k−2

is continuous as for any f ∈ H1
k(Γ\H, L),

〈lkf, lkf〉k−2 ≤ 〈f, f〉k,1.

Recall (see (1.2))

lk+2rk = −∆k − k,
rk−2lk = −∆k,

l†k = −rk−2, (2.3)

where by † we denote the adjoint operator. In the following, we will denote the
fundamental domain for a congruence subgroup Γ by Γ\H to signify the depen-
dence of the fundamental domain on Γ. This contrasts the previous sections
where the fundamental domain and subgroup were �xed, hence we used F to
denote the fundamental domain therein. As for all f, g ∈ H1

k su�ciently smooth
we have, by partial integration,

〈∆kf, f〉k = 〈lkf, lkf〉k−2

= 4

ˆ

Γ\H

∂f

∂τ̄

∂f̄

∂τ
· y−k · dx · dy

=

ˆ

Γ\H

((∆kf)f̄ · yk dx · dy
y2

= 〈rkf, rkf〉k+2 − k〈f, f〉k,

∆k is a positive operator and hence Spec(∆k) ⊆ [max{0,−k},∞). As a direct
consequence, there are no integrable modular forms of weight k < 0. Further-
more, ∆k as a map

∆k : H2
k → L2

k

is evidently continuous. Note that the adjoint of this yields a map (which we
denote by ∆∗k)

∆∗k : L2
k → H2

k

f 7→ {h 7→ 〈f,∆kh〉k}.
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We thus have a notion of applying ∆k to elements of L2
k. Let f be in L2

k. We
say that ∆kf is in L2

k if there is some g in L2
k such that for all h ∈ H2

k

〈f,∆kh〉k = 〈g, h〉k.

We then write
∆kf := g.

By Lemma (2.4), H2
k is dense inH0

k, hence, if it exists, g is unique. This provides
an alternative de�nition of H2

k:

Lemma 2.9. We have H2
k =

{
f ∈ L2

k|∆kf ∈ L2
k

}
.

Proof. The inclusion �⊆� follows directly from the de�nition. First of all, note
that the right hand side is a Hilbert space with respect to the scalar product

〈f, g〉′k,2 = 〈f, g〉k + 〈∆kf,∆kg〉k.

To prove this, we have to show that it is complete with respect to the norm.
Suppose that {va}a∈N is a Cauchy sequence in the set

{
f ∈ L2

k|∆kf ∈ L2
k

}
=:

H̃2
k. Then , by de�nition, both va and ∆kva are Cauchy sequences in L2

k. Hence
there exists a v and w in L2

k such that va converges to v and ∆kva converges to
w in L2

k. As
〈va,∆kh〉k = 〈∆kva, h〉k

for all a and h ∈ H2
k, we must have

〈v,∆kh〉k = 〈w, h〉k

and thus v ∈ H̃2
k. Hence, it is complete with respect to the norm and as such,

a Hilbert space. Note that this is also an equivalent scalar product on H2
k as

〈lkf, lkf〉k−2 = 〈f,∆kf〉k.

Now let f ∈ H̃2
k be in the orthogonal complement of H2

k as a subspace of H̃2
k. It

su�ces to show that f = 0. As H2
k is dense in L2

k, there is a sequence fa ∈ H2
k

such that fa → f in L2
k. Since

〈∆kfa, h〉k = 〈fa,∆kh〉k → 〈f,∆kh〉k = 〈∆kf, h〉k

for all h ∈ H2
k, ∆kfa weakly converges to ∆kf . Now, by orthogonality of f

〈f, f〉′k,2 + 〈fa, fa〉′k,2 = 〈f − fa, f − fa〉′k,2
= 〈f − fa, f − fa〉k + 〈∆k(f − fa),∆k(f − fa)〉k
= 〈f − fa, f − fa〉k + 〈∆kf,∆kf〉k + 〈∆kfa,∆kfa〉k
− 2Re(〈∆kfa,∆kf〉k).

Rearranging the terms yields

〈f, f〉k + 〈fa, fa〉k = 〈f − fa, f − fa〉k − 2Re(〈∆kfa,∆kf〉k).

Since ∆kfa converges weakly to ∆kf in L2
k, the right hand side is non positive

as a→∞, hence we have a contradiction unless f = 0.

32



Thus, H2
k is the maximal space which maps subsets of L2

k into L2
k by ∆k,

hence we can consider its spectrum as de�ned via the map ∆k : H2
k → L2

k and
view H2

k as the natural domain of ∆k.

2.4.1 The Scalar Spectrum of ∆k

The spectrum of ∆k in L2
k(Γ\H), i.e. the space of scalar integrable automorphic

forms, has been analyzed in great detail in [9] and [10, Satz 12.3], however,
as far as we can say, the result has not been generalized to L2

k(Γ\H, L), i.e.
vector valued integrable automorphic forms, yet. However, the Hilbert space
and Laplace operator treated therein are not quite the one we study, yet they
are related by a simple transformation. We de�ne

−∆̃k = 4y2 ∂

∂τ

∂

∂τ̄
− iky ∂

∂x
.

It is densely de�ned on the Hilbert space

˜L2
k(Γ\H, L) := yk/2L2

k(Γ\H, L)

with the scalar product chosen such that the relation is an isometry. We further
have

yk/2∆ky
−k/2 = ∆̃k −

k

2
(1− k

2
)

as

yk/2[−y2 ∂
2

∂y2
− ky ∂

∂y
, y−k/2] = −k

2
(1− k

2
) + ky

∂

∂y

where [·, ·] is the commutator bracket for two operators. Thus,

Spec(∆k) = Spec(∆̃k) +
k

2
(1− k

2
).

The full result of [9, 10] pertains to Spec(∆̃k), but since both Hilbert spaces are
isometric, it is readily adapted as follows.

Theorem 2.10. Let L2,dis.
k (Γ\H) be the subspace of L2

k(Γ\H) spanned by the
eigenfunctions of ∆k. The spectrum of ∆k in its orthogonal complement,
L2,cont.
k (Γ\H), which is closed under the operation of ∆k, is continuous and

contained in [(k − 1)2/4,∞).

We now want to generalize this to lattices.

2.4.2 The Vector-valued Case

We prove this by reducing the vector to the scalar case. Let

Γ′ = Γ̃(N) := ker(Mp2(Z))→ SL2(Z/NZ)
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such that N < γ, γ >∈ 2Z∀γ ∈ L′ and 8|N . If 2k is odd, the Weil representation
on Γ′ is inferred from [14, Proposition 1.6]. If 2k is even, we have a stronger
result available; the Weil representation is known for arbitrary matrices. The
full representation in the even case was �rst derived in [11]. Using both, for

M =

((
a b
c d

)
,±1

)
∈ Γ′′ if 2k + b+ − b− ≡ 0 mod 2, we �nd

feγ |kM =
( c
d

)2k 1
√
cτ + d

2k
f(Mτ)eγ .

Here
( ·
·
)
denotes the Kronecker symbol as de�ned in [13]. Without loss of

generality we choose N such that Γ̃(N) ⊆ Γ. If we denote by Ak,L(Γ) the space
of C[L′/L]- valued modular forms with respect to Γ and by Ak(Γ) the space of
C- valued modular forms, this implies an isomorphism

Ak,L(Γ̃(N)) ∼= Ak(Γ̃(N))|L
′/L|. (2.4)

As we further have the inclusion

Ak,L(Γ) ↪→ Ak,L(Γ̃(N))

and the trace
Ak,L(Γ̃(N)) � Ak,L(Γ)

we have the following

Lemma 2.11. The maps above induce continuous maps

Hlk(Γ̃(N)\H, L) ∼= Hlk(Γ̃(N)\H)|L
′/L|, (2.5)

ι : Hlk(Γ\H, L) ↪→ Hlk(Γ̃(N)\H, L),

π : Hlk(Γ̃(N)\H, L) � Hlk(Γ\H, L).

Proof. Note that it su�ces to prove the statements for l = 0 by the usual
commutation rules for lk. To prove the �rst isomorphy, note that for f =∑
h

fheh ∈ Hk0,2(Γ̃(N)\H, L), the isomorphy is simply given by

f → (fh)h

which is an isometry of Hilbert spaces as

〈f, f〉k,Γ =
∑
h

ˆ

Γ\H

fhf̄h · yk
dx · dy
y2

.

The inclusion ι is evidently injective and continuous as, by choosing a system
of representatives {γi} of Γ̃(N)\Γ,

〈f, f〉k,Γ̃(N) =

ˆ

Γ̃(N)\H

ff̄ · yk dx · dy
y2

34



=
∑
i

ˆ

γi(Γ\H)

ff̄ · yk dx · dy
y2

=
∑
i

ˆ

Γ\H

ff̄ · yk dx · dy
y2

=
∣∣∣[Γ : Γ̃(N)]

∣∣∣ ˆ
Γ\H

ff̄ · yk dx · dy
y2

=
∣∣∣[Γ : Γ̃(N)]

∣∣∣ 〈f, f〉k,Γ.
The continuity of the trace follows from (where we use Cauchy-Schwarz)

〈πf, πf〉k,Γ =

ˆ

Γ\H

πfπf · yk dx · dy
y2

≤
ˆ

Γ̃(N)\H

πfπf · yk dx · dy
y2

=
1∣∣∣[Γ : Γ̃(N)]

∣∣∣2
·
∑
i,j

ˆ

Γ̃(N)\H

f |k γi · f |k γj · yk
dx · dy
y2

≤ 1∣∣∣[Γ : Γ̃(N)]
∣∣∣2
∑
i,j

√
〈f |k γi, f |k γi〉k,Γ̃(N)

·
√
〈f |k γj , f |k γj〉k,Γ̃(N)

=
1∣∣∣[Γ : Γ̃(N)]

∣∣∣2
∑
i,j

〈f, f〉k,Γ̃(N)

= 〈f, f〉k,Γ̃(N).

Having proven this, we can show

Theorem 2.12. (Generalization of Theorem (2.10) to lattices.) The continuous
spectrum of ∆k in L2

k(Γ\H, L) is contained in [(k−1)2/4,∞). Furthermore, the
discrete spectrum is spanned by eigenvalues of ∆k, which form a discrete subset
of [0,∞).

Proof. Now, as ∆kπ = π∆k, we must have

π(L2,dis.
k (Γ̃(N)\H, L)) = L2,dis.

k (Γ\H, L)
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and
π(L2,cont.

k (Γ̃(N)\H, L)) = L2,cont.
k (Γ\H, L),

To see this, suppose g is an eigenfunction in L2,dis.
k (Γ\H, L) ,

h ∈ L2,cont.
k (Γ̃(N)\H, L) and {γi} is our usual system of representatives. Then

〈g, πh〉L2
k(Γ\H,L) =

1∣∣∣[Γ : Γ̃(N)]
∣∣∣
∑
i

ˆ

(Γ\H)

g · f |k γi · yk
dx · dy
y2

=
1∣∣∣[Γ : Γ̃(N)]

∣∣∣
∑
i

ˆ

γi(Γ\H)

g · f · yk dx · dy
y2

=
1∣∣∣[Γ : Γ̃(N)]

∣∣∣ 〈g, h〉L2
k(Γ̃(N)\H,L)

= 0.

Now further suppose that λ is not in the spectrum of ∆k as an operator on
L2,cont.
k (Γ̃(N)\H, L). Then

((∆k − λ) |L2,cont.
k (Γ\H,L))

−1

= π(∆k − λ)−1ι,

i.e. λ is not in the spectrum of ∆k as an operator on L2,cont.
k (Γ\H, L) , i.e.

Spec(∆k|L2,cont.
k (Γ\H,L)) ⊆ Spec(∆k|L2,cont.

k (Γ̃(N)\H,L))

⊆ [(k − 1)2/4,∞),

proving the theorem.

This allows us to invert expressions involving the Laplace operator in the
next section.

2.4.3 The Meromorphic Operator (∆k − s(1− s− k))−1

At �rst, we brie�y recapitulate the concept of a meromorphic operator in a
Hilbert space.

De�nition 2.13. Let U ⊆ C be an open set and H a Hilbert space. Let S ⊆ U
be discrete and T : U\S × H → H be a continuous map. T is meromorphic

if for any holomorphic function f : U → H and any g ∈ H the function
〈T (s, f(s)), g〉H : U\S → C is meromorphic.

Now, set U =
{
s ∈ C|Re(s) > (k−1)2

4

}
and S = {s ∈ U | s(1 − s − k) ∈

Spec(∆k)}. By the previous section, S is a �nite subset of U and entirely on
the real axis as

s(1− s− k) ∈ R ⇔ (Re(s) =
(1− k)2

4
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or Im(s) = 0)

Thus, (∆k − s(1 − s − k))−1 is well de�ned and continuous as a map from
U \ S × L2

k into L2
k. Now, take f : U → L2

k be holomorphic. Let L2,cont.
k again

be the orthogonal complement of the eigenfunctions in L2
k. We further set L2,dis.

k

to be the space spanned by the eigenfunctions. As the continuous spectrum is
contained in [(k − 1)2/4,∞), for any g ∈ L2,cont.

k , (∆k − s̄(1− s̄− k))−1g ∈ L2
k

is anti-holomorphic while s ∈ U . Thus

〈(∆k − s(1− s− k))−1f(s), g〉k
= 〈f(s), (∆k − s̄(1− s̄− k))−1g〉k

for all s ∈ U\S and the meromorphicity is obvious. Now, suppose that g ∈ Lk2,dis.

. We may further suppose that it is an eigenfunction, i.e. ∆kg = λg. Then

(∆k − s̄(1− s̄− k))−1g =
1

λ− s̄(1− s̄− k)
g

and hence

〈(∆k − s(1− s− k))−1f(s), g〉k
= 〈f(s), (∆k − s̄(1− s̄− k))−1g〉k

=
1

λ− s(1− s− k)
〈f(s), g〉k,

which is meromorphic in U as well. Hence, (∆k − s(1 − s − k))−1 is a well
de�ned meromorphic operator mapping L2

k onto itself. However, we could, by
the same principles, also regard it as a meromorphic operator mapping L2

k onto
H2
k, simply by noting that

∆k(∆k − s(1− s− k))−1

= id + s(1− s− k)(∆k − s(1− s− k))−1,

the proof of which is analogous to the above.
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3 Poincaré Series

3.1 Continuation of Poincaré Series

We formulate our �rst theorem pertaining to Poincaré series, but �rst we need
to introduce a little more notation. If Γ is some congruence subgroup, we de�ne

Γ∞ = {M ∈ Γ|Mi∞ = i∞} .

This allows us to formulate our �rst

Theorem 3.1. For any smooth function f : R → C real-analytic around zero
and any congruence subgroup

Γ ≤ Mp2(Z)

of level N and any lattice L, the related Poincaré series for m ∈ 1
NZ\{0}, given

by

Pk(f,m, τ, s, γ) :=
∑

M∈Γ∞\Γ

(ysf(y)eγ(mx)) |k M,

converges absolutely for 2σ + k > 2. It has a meromorphic continuation to
2σ + k > 1 with at most �nitely many simple poles on the real axis for both
σ(1− σ − k) ≥ max{0,−k} and 2σ + k ≤ 2.

3.1.1 Equivalent Statements to Theorem (3.1).

Since f as in the statement of the theorem above is analytic around zero, we
can expand it

f(y) = C + yrf (y)

such that
|r(y)| ≤ D

for some positive constants C,D while y is su�ciently small. Hence

Pk(f,m, τ, s, γ) = C
∑

M∈Γ∞\Γ

(yseγ(mx)) |k M

+
∑

M∈Γ∞\Γ

(ys+1rf (y)eγ(mx)) |k M.

We do note the absolute convergence of the �rst term for 2σ+k > 2. Moreover,
the second term converges absolutely while 2σ + k > 0 as rf is bounded as
y → 0. As the analytic properties of the �rst term do not depend on f and
the holomorphicity of the second term is guaranteed by absolute convergence,
Pk has a meromorphic continuation if and only if it the theorem holds for one
arbitrary but �xed f(y). An ideal candidate is f(y) = e(i |m| y), where we refer
the reader to equation (1.1) for notation. Thus we have shown that Theorem
(3.1) is equivalent to
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Theorem 3.2. For any congruence subgroup Γ ≤ Mp2(Z) and any lattice L,
the related Poincaré series form ∈ 1

NZ\{0}, given by

Pk(m, τ, s, γ) :=
∑

M∈Γ∞\Γ

(yseγ(mx+ i |m| y)) |k M

has a meromorphic continuation to 2σ+k > 1 with at most �nitely many simple
poles on the real axis for σ(1− σ − k) ≥ max{0,−k} and 2σ + k ≤ 2.

Furthermore, note that while m 6= 0 we estimate

|Pk(m, τ, s, γ)|kM | ≤ C(M) y1−σ−k

as y →∞ for allM∈Mp2(Z) and 2σ+k > 2. This estimate is crucial! If m = 0,
the case of Eisenstein series, the best estimate is

|Pk(0, τ, s, γ)|kM | ≤ C(M) max{y1−σ−k, yσ}

which will make it far more di�cult to employ spectral theory as the Eisenstein
series are not square integrable.

Remark 3.3. To prove the estimate for m 6= 0 and M such that Mi∞ 6= i∞
note that we can write

yk/2 |Pk(m, τ, s, γ)|kM | ≤ {
∑

M∈Mp2(Z)

Im(My)σ+k/2 − yσ+k/2}. (3.1)

If however Mi∞ = i∞ we can bound the sum by

yk/2 |Pk(m, τ, s, γ)|kM | ≤ yσ+k/2e−|m|y

+
∑

M∈Mp2(Z)

Im(My)σ+k/2 − yσ+k/2. (3.2)

3.1.2 Continuing Poincaré Series

Recall
Pk(m, τ, s, γ) =

∑
M

(yseγ(mx+ i |m| y))|kM,

where m 6= 0. By the equations (3.1) and (3.2), we have the estimate

|Pk(m, τ, s, γ)|kM | ≤ C(M)y1−k−σ

for all M ∈ Mp2(Z). Next, let us momentarily denote by

θ(x) =

{
0
1

if x < 0,
if x ≥ 0,

the heavyside step function. A straightforward calculation shows

lkPk(m, τ, s, γ) = sPk−2(m, τ, s+ 1, γ)
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− 4π | m | (1− θ(m))Pk−2(m, τ, s+ 2, γ), (3.3)

rkPk(m, τ, s, γ) = (s+ k)Pk+2(m, τ, s− 1, γ)

− 4π | m | θ(m)Pk+2(m, τ, s, γ).

Thus, Pk is in the Petersson-Sobolev space H2
k for 2σ + k > 2 since

yk−2 |Pk(m, τ, s, γ)|kM |2 = O(y−2σ−k)

in all cusps. Lastly (by using equation (1.2)), we have

−∆kPk(m, τ, s, γ) = s(s+ k − 1)Pk(m, τ, s, γ)

− 4π | m | (s+ k(1− θ(m)))

· Pk(m, τ, s+ 1, γ). (3.4)

Let us de�ne

Qk(m, τ, s, γ) = 4π | m | (s+ k(1− θ(m))) · Pk(m, τ, s+ 1, γ),

which by the previous arguments again must be in H2
k for 2σ + k > 1. This

allows us to state the

Proof. (Of Theorem (3.1)) As Qk(m, τ, s, γ) is square integrable, it satis�es

Pk(m, τ, s, γ) = (∆k − s(1− k − s))−1Qk(m, τ, s, γ).

The right hand side is holomorphic while s(1 − s − k) is not in Spec(∆k) ⊆
[max{0,−k},∞) and 2σ+k > 0. This can happen at most if s = σ or 2σ+k = 1.
Hence, the right hand side and thus the left hand side has a continuation to
2σ + k > 1. Furthermore, it is obvious that, by de�nition, the Poincaré series
are holomorphic in s while 2σ+ k > 2. To see that the continuation indeed has
poles, by discreteness of the spectrum, we can expand Pk

Pk(m, τ, s, γ) = P ′k(m, τ, s, γ)

+
∑
l

αk,l(m, s, γ)fk,l(τ)

such that the fk,l are an orthonormal basis for the eigenvalues < (k−1)2/4 and
P ′k lies in the orthogonal complement. As (∆k − s(1− s− k))−1 is holomorphic
on the orthogonal complement, since 2σ + k > 1, and by the uniqueness of the
decomposition, P ′k(m, τ, s) must be holomorphic for 2σ + k > 1. Now,

(∆k − s(1− s− k))fk,l = (λl − s(1− s− k))fk,l.

The decomposition then implies

(λl − s(1− s− k))αk,l(m, s, γ) = 4π | m | (s+ k(1− θ(m)))
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· αk,l(m, s+ 1, γ).

Since
d

ds
(λl − s(1− s− k)) = 2s+ k − 1

we see that the αkl (m, s, γ) can have at most simple poles at λl−s(1−s−k) = 0,
and hence the same is valid for Pk proving our theorem.

3.2 The Case of Small k

Since one of our goals is constructing holomorphic Poincaré series, we will ex-
perience some di�culties de�ning them whenever 0 ≤ k ≤ 2. To deal with this,
we will show

Theorem 3.4. If 3/2 ≤ k ≤ 2, there is no pole at s = 0. If 0 ≤ k ≤ 1/2, there
is a simple pole at s = 1− k only if m > 0.

Proof. The proof is rather straightforward. At �rst, we recall isometry ∗ and
the ξ-operator

∗k : L2
k → L2

−k

ξk(f) := ykf̄ ,

ξk : H1
2 → L2

2−k

f → ∗k−2(lkf).

This induces a map
ξk : H1

k → L2
2−k.

Since
∗k(Pk(m, τ, s, γ)) = P−k(−m, τ, s̄+ k, γ),

we have

(ξkPk)(m, τ, s, γ) = s̄P2−k(−m, τ, s̄+ k − 1, γ)

− 4π | m | (1− θ(m))

· P2−k(−m, τ, s̄+ k, γ). (3.5)

If 2 ≥ k ≥ 3/2, as s→ 0, the right hand side has no pole (since the poles of P2−k
are all simple). Since [10] implies invertibility of ∆k on the subspace orthogonal
to ker ξk, we have that

ξ−1
k = ξ2−k∆−1

2−k.

Thus, ξk is invertible on the same subspace and Pk can have poles only parallel
to its holomorphic coe�cients. We decompose

Pk(m, τ, s, γ) = P ′′k (m, τ, s, γ)

+
∑
l

γk,l(m, s, γ)fk,l(τ)
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such that the fk,lare an orthonormal basis of the zero eigenvalues, i.e. integrable
holomorphic modular forms. We know that P ′′k (m, τ, s, γ) can not have a pole
in s = 0, thus all poles in that point must be poles of the γkl (m, s, γ). However,
the relation

γkl (m, s, γ) = 〈Pk(m, ·, s, γ), fkl 〉

=

ˆ

F

∑
M

(yseγ(mx+ i |m| y))|kM · fkl dx dy

=

∞̂

0

N̂

0

eγ(mx+ i |m| y)fkl
dx dy

y2−k−s

= fkl,m,γ

∞̂

0

e(2i |m| y)
dy

y2−k =

= fkl,m,γΓ(s+ k − 1)(4π |m|)1−s−k (3.6)

for the Fourier coe�cients fkl,m,γ of fkl holds. We also note that the integral
vanishes if m < 0, since there are no non trivial holomorphic modular forms.
The coe�cients are thus obviously holomorphic for σ > 1−k and hence P3/2 has
no pole in s = 0. We also see that there is a pole if s = 1−k if 0 ≤ k ≤ 1/2 and
m > 0 if there are non vanishing integrable holomorphic modular forms.

Corollary 3.5. If 3/2 ≤ k ≤ 2 the Poincaré series {Pk(m, τ, 0, γ) |m > 0}
generate ker(∆3/2) = ker(l3/2), i.e. they are a generating system for the holo-
morphic integrable modular forms. If k = 1/2, the same holds true for the
holomorphic Poincaré series { Res

s=1/2
P1/2(m, τ, s, γ)|m > 0}. If k = 0, the set

{1} ∪ { Res
s=1/2

P1/2(m, τ, s, γ)|m > 0} provides a basis.

Proof. If m > 0 and 3/2 ≤ k ≤ 2, by (3.5), the Pk(m, τ, 0, γ) are certainly
holomorphic as P2−k(−m, τ, k − 1, γ) has no pole. For 0 ≤ k ≤ 1/2, the holo-
morphicity of Res

s=1−k
Pk(m, τ, s, γ) is obtained by applying the residue to (3.4)

and noting the simplicity of the pole. (3.6) implies that the space generated by
them is dense in ker(∆k) as a holomorphic modular form vanishes i� all non
constant Fourier coe�cients vanish, unless k = 0, in which case the modular
form must be a constant.

3.3 Further Continuation in 2σ + k < 1

The continuation theorem in the penultimate section is not yet the best we can
do. Consider the equation (3.4) once more:

Pk,L(m, τ, s, γ) = 4π |m| (s+ k(1− θ(m)))

· (∆k − s(1− s− k))−1
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· Pk,L(m, τ, s+ 1, γ). (3.7)

We have just shown that Pk,L has a natural extension to 1 < 2σ + k, hence
Pk,L(m, τ, s+ 1, γ) is well de�ned for −1 < 2σ + k. On the other hand, (∆k −
s(1−s−k))−1 is well de�ned for 2σ+k 6= 1, hence the left side is well de�ned for
−1 < 2σ+ k < 1. By induction, this yields a continuation to 2σ+ k /∈ 1− 2N0.
This allows us to state

Lemma 3.6. The Poincaré series Pk,L(m, τ, s, γ) has a natural extension to
{z∈C| 2σ + k /∈ 1− 2N0}, given by (3.4) satisfying (3.3).

Proof. We use (3.4) to de�ne Pk,L(m, τ, s, γ). In the next step, we need to show
that (3.3) is compatible with the extension. The reason for this is that the set
2σ + k�∈1 − 2Z is not path connected and hence the uniqueness principles of
the holomorphic extension do not apply, hence the equation might be violated.
However, note that

lk∆k = ∆k−2lk − (k − 2)lk.

And hence

(∆k−2 − (s+ 1)(2− s− k))lk = lk(∆k − s(1− s− k)).

Hence, for 2σ + k�∈1− 2Z,

lkPk,L(m, τ, s, γ) = 4π |m| (s+ k(1− θ(m)))

· (∆k−2 − (s+ 1)(2− s− k))−1

· lkPk,L(m, τ, s+ 1, γ)

= 4π |m| (s+ k(1− θ(m)))

(∆k−2 − (s+ 1)(2− s− k))−1

· ((s+ 1)Pk−2(m, τ, s+ 2, γ)

− 4π | m | (1− θ(m))Pk−2(m, τ, s+ 3, γ))
!
= sPk−2(m, τ, s+ 1, γ)

− 4π |m| (1− θ(m))Pk−2(m, τ, s+ 2). (3.8)

To check this, apply (∆k−2 − (s+ 1)(2− s− k))−1 to both sides and note that

(∆k−2 − (s+ 1)(2− s− k))

· Pk−2(m, τ, s+ 1, γ)

= 4π |m| (s+ 1 + (k − 2)(1− θ(m)))

· Pk−2(m, τ, s+ 2, γ)

on −1 < 2σ + k < 1 by de�nition. Next,

(∆k−2 − (s+ 1)(2− s− k))Pk−2(m, τ, s+ 2, γ)

= (∆k−2 − (s+ 2)(1− s− k))Pk−2(m, τ, s+ 2, γ)
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− (2s+ k)Pk−2(m, τ, s+ 2, γ)

= 4π |m| ((s+ 2) + (k − 2)(1− θ(m))

· Pk,L(m, τ, s+ 3, γ)

− (2s+ k)Pk−2(m, τ, s+ 2, γ).

Lastly, we note that

4π |m| (1− θ(m))

· 4π |m| ((s+ 2) + (k − 2)(1− θ(m))

= (4π |m|)2(1− θ(m))((s+ k))

= (4π |m|)2((s+ k(1− θ(m))(1− θ(m))

and

4π |m| (s+ k(1− θ(m)))(s+ 1)

= s(s+ 1 + (k − 2)(1− θ(m)))

+ (2s+ k)(1− θ(m)),

hence all the terms in (3.8) match up, �nishing the proof.

Remark 3.7. The continuation is not an analytic one in the classical sense since
the continued function is not de�ned in a domain, as there is no de�nition on
the lines where 2σ + k ∈ 1 − 2Z. However, the de�nition �leaks� through the
lines and has a continuation beyond.
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4 Analytic Continuation of Eisenstein Series

In this section, we will discuss the analytic continuation of Eisenstein series. The
issue has been treated in the literature before, in [8] or [12], who also employ
spectral theoretic proofs. In this section, we will o�er a new method to prove
the continuation while outlining a close connection between Eisenstein series
and Poincaré series. We will see that the Fourier coe�cients of Eisenstein series
correspond to the constant coe�cients of Poincaré series. To show this, let us
note that Eisenstein series are essentially Poincaré series for m = 0. Let us
brie�y de�ne the Poincaré series

Pk(m, τ, s, γ) =
∑

M∈Γ̃(N)∞\Γ̃(N)

(yseγ(mτ))|kM

where we allow m ∈ 1
NZ. By Theorem (3.1), the series have a meromorphic

continuation to 2s+ k > 1 if m 6= 0. Since Eisenstein series are the case m = 0,
we want to show that the continuation theorems hold for them as well. To prove
this, we need to examine their Fourier coe�cients.

4.1 Fourier Coe�cients of Poincaré Series

Let α ∈ Mp2(Z) and cn,αk (m, y, s, γ) denote the n−th Fourier coe�cient of

Pk(m, τ, s, γ)|k α where n ∈ 1
NZ. Denoting by

(
aM bM
cM dM

)
the matrix com-

ponents of M ∈ Mp2(Z)) and de�ning

δ(M) =

{
1
0

if Mi∞ = i∞,
otherwise,

(4.1)

we compute

Ncn,αk (m, y, s, γ)

=
∑

M∈Γ̃(N)∞\Γ̃(N)α

N̂

0

(yseγ(mτ))|kM e(−nx) dx

=
∑

M∈Γ̃(N)∞\Γ̃(N)α/Γ̃(N)∞
M�∈Γ̃(N)∞

·
+∞̂

−∞

(yseγ(mτ))|kM e(−nx) dx

+ δ(α)δm,ny
seγ(imy)

=
∑

M∈Γ(N)∞\Γ(N)α/Γ(N)∞
M�∈Γ(N)∞

e(
ndM +maM

cM
)(ρL(M)−1eγ)
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·
+∞̂

−∞

1
√
cMτ

2k

1

|cMτ |2s
e(−nx)e(

−m
c2Mτ

) dx

+ δ(α)δm,ny
seγ(imy)

= y1−s−k
∑

M∈Γ(N)∞\Γ(N)α/Γ(N)∞

· e(
ndM +maM

cM
)(ρL(M)−1eγ)

i−k(1−sgn(cM ))

|cM |2s+k

·
+∞̂

−∞

1
√
x+ i

2k

1

|x+ i|2s
e(−nyx)e(

−m
c2My(x+ i)

) dx

+ δ(α)δm,ny
seγ(imy).

Note that

e(
−m

c2My(x+ i)
) =: 1 +

1

c2My(x+ i)
fm(

1

c2My(x+ i)
),

where we de�ne fm such that the equation holds. It is analytic and globally
bounded in x. We abbreviate

Kk(α, s,m, n, γ)

:=
∑

M∈Γ(N)∞\Γ(N)α/Γ(N)∞

e(
ndM +maM

cM
)

· (ρL(M)−1eγ)
i−k(1−sgn(cM ))

|cM |2s+k
.

The K here stands for Kloosterman as the sum is indeed a Kloosterman sum in
the classical sense. This allows us to write

Ncn,αk (m, y, s, γ)

= δ(α)δm,ny
seγ(imy)

+ y1−s−kKk(α, s,m, n, γ)

·
+∞̂

−∞

1
√
x+ i

2k

1

|x+ i|2s
e(−nyx) dx

+ y−s−kKk(α, s+ 1,m, n, γ)

·
+∞̂

−∞

1
√
x+ i

2k+2

1

|x+ i|2s

· e(−nyx)fm(
1

c2My(x+ i)
) dx.

The de�nition also implies

Kk(α, s,m, n, γ) = Kk+2(α, s− 1,m, n, γ), (4.2)
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as well as

〈eγ′ ,Kk(α, s,m, n, γ)〉

=
∑

M∈Γ(N)∞\Γ(N)α/Γ(N)∞

e(
ndM +maM
−cM

)

· ik(1−sgn(cM ))

|cM |2s+k
〈eγ′ ,ρL(M)−1eγ〉

= i2k
∑

M∈Γ(N)∞\Γ(N)α/Γ(N)∞

e(
ndM +maM
−cM

)

· i−k(1−sgn(−cM ))

|cM |2s+k
〈ρL(M−1)−1eγ′ ,eγ〉

= i2k〈Kk(α−1, s, n,m, γ′), eγ′〉. (4.3)

Here, we used that the mapping M 7→M−1 is a bijection of the residue classes
in Γ(N)∞\Γ(N)α/Γ(N)∞ to those of Γ(N)∞\Γ(N)α−1/Γ(N)∞. To further
simplify the expressions for the Fourier coe�cients, let us de�ne

εk(s, y, n, f) :=

+∞̂

−∞

1
√
x+ i

2k

1

|x+ i|2s

· e(−nyx)f(
1

c2My(x+ i)
) dx

for an arbitrary f which is globally smooth and analytic at 0. Then, we can
further simplify to

Ncn,αk (m, y, s, γ) = δ(α)δm,ny
seγ(imy)

+ y1−s−kKk(α, s,m, n, γ)εk(s, y, n, 1)

+ y−s−kKk(α, s+ 1,m, n, γ)

· εk+1(s, y, n, fm). (4.4)

Ideally, we want a result about the absolute convergence of the Fourier series.
To prove this, we need some results that bound each term independently of n,
which will be partly done in the next subsection. However, the bounds for the
function ε are easily derived.

Lemma 4.1. There is some constant C(ε, δ, l, f) > 0 such that for 2σ + k ≥ ε,
y ≥ δ and n 6= 0 the estimate

εk(s, y, n, f) ≤ C(k, ε, δ, l, f)(|n| y)−l (4.5)

holds.
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Proof. We show this by induction on l. The hypothesis holds for l = 0 and
2σ + k > 2 by boundedness of the integral. The induction step follows by
partial integration:

εk(s, y, n, f)

=
1

(2πiny)

+∞̂

−∞

e(−nyx)

· ∂

∂x

{
1

√
x+ i

2k

1

|x+ i|2s
f(

1

c2My(x+ i)
)

}
dx

=
1

(2πiny)
{−kεk+1(s, y, n, f)

− 2s(εk−1(s+ 1, y, n, f)− iεk(s+ 1, y, n, f))

− 1

c2My
εk+2(s, n, y, f ′)}.

Since all the arguments on the right hand side converge uniformly for 2σ+k > 1
and satisfy a su�cient estimate therein as f ′ is also globally smooth and analytic
in zero, we are done.

4.2 Continuation theorems for Eisenstein series

This analysis now allows us to construct analytic Eisenstein series. To do that,
at �rst we apply (4.4) to m = 0, i.e. the n−th coe�cient of the Eisenstein series

Ek(τ, s, γ)|k α =
∑

M∈Γ(N)∞\Γ(N)

(yseγ)|kMα,

which is given by

Ncn,αk (0, y, s, γ) = δ(α)δ0,ny
seγ

+ y1−s−kKk(α, s, 0, n, γ)εk(s, y, n, 1)

+ y−s−kKk(α, s+ 1, 0, n, γ)

· εk+1(s, y, n, 1).

By equation (4.3), the function Kk(α, s, 0, n, γ) is bounded by Kk(α, s, n, 0, γ),
which is a term appearing in the constant coe�cient of the Fourier series
Pk(m, τ, s, γ)|k α. Hence, we can relate the Fourier coe�cients of the Eisen-
stein series to the constant coe�cients of Poincaré series. By de�nition

Kk(α, s, 0, n, γ) ≤ C(ε)

while 2σ + k ≥ 2 + ε as the sum absolutely converges. Hence

|Kk(α, s+ 1, 0, n, γ) · εk+1(s, y, n, 1)| ≤ C(k, ε, δ, l)(|ny|)−l
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by (4.5) while 2σ + k ≥ 1 + ε, y ≥ δ. If we can now bound Kk(α, s, 0, n, γ)
uniformly for 2σ+ k ≥ 1 + ε, (4.5) also implies convergence of the sum over the
non constant Fourier coe�cients of the Eisenstein series. We can now bound
the Kloosterman sum Kk(α, s, 0, n, γ) in 2σ+ k > 1 by our theory of Petersson-
Sobolev spaces. The bound is given by the following

Lemma 4.2. The Kloosterman sums are bounded in compact subsets s ∈ D of
2σ + k > 1 via

|Kk(α, s, n, 0, γ)| ≤ C

∥∥(∆k′ − s′(1− s′ − k′))−1
∥∥

|εk′(s′, 1, 0, 1)|
(4.6)

where k′ denotes the unique element in {−1,−1/2, 0, 1/2} such that k ≡ k′ mod
2 and s′ = s+ (k− k′)/2. Moreover, the constant C only depends on k and the
subset D.

We brie�y remark that our choice of k′ will make the following proof easier
as it is short to argue that the factor εk′(s

′, 1, 0, 1) is meromorphic and not zero
if k′ ∈ {−1,−1/2, 0, 1/2}.

Proof. We know that by (4.2), |Kk(α, s, n, 0, γ)| = |Kk±2(α, s∓ 1, n, 0, γ)|. Hence
we can replace k by k′, s by s′ and for simplicity assume that k = k′ as well
as s = s′. Next, (4.3) it is su�cient to bound the constant coe�cient of the
Poincaré series, Kk(α, s, n, 0, γ), for 2σ + k ≥ 1 + ε, as it implies that

|Kk(α, s, 0, n, γ)| ≤ Const. ·
∣∣Kk(α−1, s, n, 0, γ)

∣∣ .
Let n 6= 0. Then, by (4.4),

Kk(α, s, n, 0, γ)

=
1

εk(s, y, 0, 1)
(

1̂

0

P(n, x+ iy, s, γ)|k αdx

− 1

y
Kk(α, s+ 1, n, 0, γ)εk+1(s, y, 0, fm)). (4.7)

To show that this is indeed well de�ned, we need to show that the factor
1

εk(s,y,0,1) is de�ned. We can divide by εk(s, y, 0, 1) if it is not identically zero

as it is meromorphic. To see this observe that εk(s, y, 0, 1) is constant in y and
has no zeroes for −1 ≤ k ≤ 1/2 on the real axis, as by de�nition

εk(s, 1, 0, 1) :=

+∞̂

−∞

1
√
x+ i

2k

1

|x+ i|2s
dx.

Hence,
√
x+ i

2k
is always in some half plane and hence the integral converges

absolutely while 2σ + k > 1 and does not vanish for real valued s, hence it
is meromorphic and non vanishing, and so 1

εk(s,y,0,1) is well de�ned. Now, we
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focus our attention on the above sum (4.7). The second term in it is obviously
uniformly bounded while 2σ + k ≥ 1 + ε as the Kloosterman sum absolutely
converges, thus we can simply ignore it. To show that

1̂

0

Pk(n, x+ iy, s, γ)|k αdx

is su�ciently bounded requires arguments from the previous section. First, let
n > 0. Then

Pk(n, x+ iy, s, γ)|k α ∈ H1
k

and

Pk(n, x+ iy, s, γ)|k α
= (∆k − s(1− s− k))−1

· (4πsnPk(n, x+ iy, s+ 1, γ)|k α).

Which, by (2.2), yields ∣∣∣∣∣∣
1̂

0

Pk(n, x+ iy, s, γ)|k αdx

∣∣∣∣∣∣
≤

∥∥(∆k − s(1− s− k))−1
∥∥

· Const. · ‖Pk(n, ·, s+ 1, γ)‖1,2 . (4.8)

The function norm ‖Pk(n, ·, s+ 1, γ)‖1,2 is uniformly bounded (independently
of n) while 2s+k ≥ ε by absolute convergence of the Poincaré series. Note that
the constant in this equation only depends on D and k. To summarize, if n > 0∣∣∣∣∣∣

1̂

0

Pk(n, x+ iy, s, γ)|k αdx

∣∣∣∣∣∣ ≤ Const. ·
∥∥(∆k − s(1− s− k))−1

∥∥
and thus

|Kk(α, s, n, 0, γ)| ≤ Const. ·

∣∣∣∣∣
∥∥(∆k − s(1− s− k))−1

∥∥
εk(s, y, 0, 1)

∣∣∣∣∣ . (4.9)

Now, for n < 0, we can write, by recalling the notion of integrable Poincaré
series Pk (see (3.4)),

Pk(n, τ, s, γ)|k α
= (∆k − s(1− s− k))−1

· (4πn(s+ k))Pk(n, τ, s+ 1, γ)|k α
−

∑
M∈Γ(N)∞\Γ(N)

(ys(eγ(nx)(e(−iny)− 1))|kM |k α
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+
∑

M∈Γ(N)∞\Γ(N)

(ys(eγ(nx)(e(+iny)− 1))|kM |k α.

The last two terms admit an absolute estimate for 2σ + k ≥ ε, the �rst one
an integral estimate similar to the previous one and hence (4.9) holds for all
n 6= 0.

Using this lemma, we can bound the Fourier coe�cients using (4.5) and
(4.6) (recall that k′ ≡ k mod 2 such that k′ ∈ {−1,−1/2, 0, 1/2} and s′ =
s+ (k − k′)/2)

|cn,αk (n, y, s, γ)| ≤ (|n|)−l C(ε, k, l)

|εk′(s′, 1, 0, 1)|
y1−σ−k

·
∥∥(∆k′ − s′(1− s′ − k))−1

∥∥ ,
which means that the sum comprising

Ek(τ, s, γ)|k α− c0,αk (0, y, s, γ) =: Ẽk(τ, s, γ)|k α

converges absolutely except for a discrete subset in 2s + k > 1, which corre-

sponds to the poles of
‖(∆k′−s

′(1−s′−k))−1‖
|εk′ (s′,1,0,1)| . As such, above equation de�nes a

meromorphic function that is bounded by∣∣∣Ek(τ, s, γ)|k α− c0,αk (0, y, s, γ)
∣∣∣

≤ C ′(ε, k)

|εk′(s′, 1, 0, 1)|
y1−σ−k

·
∥∥(∆k′ − s′(1− s′ − k))−1

∥∥ . (4.10)

To fully prove the continuation of Ek, we still need to examine the constant
coe�cient for one such α. The ideal candidate is the natural choice α = id. It
is well known that the set Γ̃(N)∞\Γ̃(N) has representatives uniquely classi�ed
by their second line, i.e. the map(

a b
c d

)
→ (c, d)

By this, it trivially follows that we obtain the representatives

Γ̃(N)∞\Γ̃(N)/Γ̃(N)∞
∼= {(0, 1)}
∪̇ {(c, d)|gcd(c, d) = 1, 0 ≤ d < N |c| , d ≡ 1(N), c ≡ 0(N)}.

As such, if N is su�ciently big (i.e. using the argumentation presented in (1.8))
we obtain by again considering (2.4)

Kk(id, s, 0, 0, γ) = 1 + C
∑

0≤d<N |c|,d≡1(N),c≡0(N)
c>0

(
d

c

)2k
1

c2s+k
.
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If 2k is even, this simpli�es to

Kk(id, s, 0, 0, γ) = 1 +
C ′

N2s+k

∑
c>0

ϕ(N2c)
1

(Nc)2s+k
,

whose meromorphy is easily derived from the Euler product of the sum (such
that N =

∏
paii for pairwise distinct primes pi with ai > 0)

1

Ns

∑
c>0

ϕ(N2c)
1

cs
= 1

Ns

∑
c>0

ϕ(c)
1

cs

·
∏
i

(pi + (pi − 1)p2ai
i

ps−1
i

ps−1
i −1

)

(pi + (pi − 1)
ps−1
i

ps−1
i −1

)
.

Now, if 2k is odd, we need some more work. Notice that∑
d≡1(N)
0≤d<Nc

(
d

c

)
=

1

ϕ(N)

∑
χN

∑
0≤d<Nc

χN (d)

(
d

c

)
,

where we sum over all characters χN modulo N . Hence, the sum vanishes unless
there is some character mod N such that χN (·)

( ·
c

)
is the trivial character mod

Nc. This happens if and only if c = pb11 · ... · pbnn r2 such that gcd(r,N) = 1 and
pi de�ned as above with bi ≥ 0, in which case we have∑

d≡1(N)
0≤d<Nc

(
d

c

)
=

1

ϕ(N)
ϕ(Npb11 · ... · pbnn r2).

Hence ∑
0≤d<N |c|,d≡1(N)c≡0(N)

c>0

(
d

c

)
1

cs

=
1

Nsϕ(N)

∑
bi≥0,c>0

gcd(N,c)=1

ϕ(N2pb11 · ... · pbnn c2)

· 1

(pb11 · ... · p
bn
n c2)s

=
1

Nsϕ(N)

∑
c>0

ϕ(c)
1

c2s−1

·
∏
i

(1− pi)p2ai
i

ps−1
i

1−ps−1
i

(pi + (1− pi)
p
2(s−1)
i

1−p2(s−1)
i

)
,
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which is globally meromorphic as∑
c>0

ϕ(c)
1

cs
=
ζ(s− 1)

ζ(s)

thus �nishing the proof of analytic continuation for the constant coe�cient, and
hence the Eisenstein series can be continued as well.
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5 The ξ-Operator and Harmonic Maass Forms

5.1 Integrable Holomorphic Modular Forms and Poincaré

Series

In this section, we would like to explicitly construct integrable holomorphic
modular forms, i.e. cusp forms if k > 1 and holomorphic modular forms for k <
1. While the construction could be done, in general, as in the next subsection, in
this subsection we would like to outline an approach that focuses on the analytic
continuation of Poincaré series.

M int
k,L := ker(ξk) ∩ L2

k. (5.1)

Recall the notion of weakly holomorphic modular formsM !
k,L in De�nition (1.9).

By Lemma (2.7)
M int
k,L ⊆M !

k,L.

Further recall the de�nition of weakly harmonic Maass forms Hk,L as in De�-
nition (1.8). We want to prove

Theorem 5.1. If k 6= 1, M int
2−k,L− ⊆ Im(ξk|Hk,L)

Note that we have nothing to prove if k > 2 as there are no integrable
holomorphic modular forms of weight 2− k. Else, for m > 0, de�ne the series

Rk,L(m, τ, s, γ) =
∑

M∈Γ′∞\Γ′
(ysfm,s(y)eγ(−mτ̄)) |k,L M,

Pk,L(m, τ, sγ) =
∑

M∈Γ′∞\Γ′
(yseγ(mτ)) |k,L M.

Proof. Let fm,s solve the di�erential equation

sfm,s + yf ′m,s − 4πmyfm,s = 1.

Then fm,s is analytic in y with its coe�cients given by

fm,s(y) =
∑
n

any
n

where

an =
(4πm)n

s

Γ(s+ 1)

Γ(s+ n+ 1)
.

The equation is obtained by noting that for n > 0

0 = san + nan − 4πman−1.

Note that
fm,s(y) = (4πmy)−se4πmyγ(s, 4πmy),
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where γ(·, ·) denotes the lower partial gamma function. Now

ξk(ysfm,s(y)eγ(−mτ̄))

= ys̄+k−1(sfm,s + yf ′m,s − 4πmyfm,s)eγ(mτ)

= ys̄+k−1eγ(mτ).

Hence

(ξkRk,L)(m, τ, s, γ) = P2−k,L−(m, τ, s̄+ k − 1, γ),

(ξkPk,L)(m, τ, s, γ) = s̄P2−k,L−(−m, τ̄ , s̄+ k − 1, γ). (5.2)

Notice that since fm,s is analytic and exponentially bounded, both Rk,L
and Pk,L are well de�ned. For 3/2 ≤ k ≤ 2, we de�ne the functions (where p.p.
denotes the Cauchy principal value)

rLk (m, τ, γ) = Res
s=0
Rk,L(m, τ, s, γ),

pL
−

2−k(m, τ, γ) = Res
s=1−k

Pk,L−(m, τ, s, γ),

whereas for k ≤ 1/2 we de�ne

rLk (m, τ, γ) = p.p.
s=1−k

Rk,L(m, τ, s, γ),

pL
−

2−k(m, τ, γ) = p.p.
s=0
P2−k,L−(m, τ, s, γ).

These are well de�ned for all m 6= 0 as 2s + k > 1. Then, by construction (as
taking the residue in s commutes with ξk, as the integral over a circle and the
derivative commute)

ξkr
L
k (m, τ, γ) = pL

−

2−k(m, τ, γ).

Note that we could extend these constructions to all k 6= 1. If k < 0, the non-
holomorphic Poincaré series rLk would correspond to those in [3]. By Theorem
(3.1), however, the series in [3] must have an analytic continuation to s = 0 for
all k < 1, yet we can say little about the nature of the continuation and possible
poles as their construction di�ers from ours.

Now, we have three lemmas �nishing the proof of the theorem.

Lemma 5.2. The estimate rLk (m, τ, γ) = O(eCy) holds at each cusp.

Proof. By de�nition

Rk,L(m, τ, s, γ) =
∑

M∈Γ′∞\Γ′
(ys(fm,s(y)− 1

s
)eγ(mτ̄)) |k,L M
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+
1

s
Pk,L(−m, τ, s̄, γ).

Let α be an element of Mp2(Z). Note that as the �rst term converges absolutely
for 2σ + k > 0, it grows as δ(α)O(ys(fs(y) − 1

s ) + O(y1−s−k) at the cusp αi∞
per the usual estimate. Furthermore, again by de�nition,

Pk,L(m, τ, s, γ) = Pk,L(m, τ, s, γ)

− (1− θ(m)) ·
∑

M∈Γ′∞\Γ′
(yseγ(mx)(e(−imy)− 1)) |k,L M

+ (1− θ(m)) ·
∑

M∈Γ′∞\Γ′
(yseγ(mx)(e(imy)− 1)) |k,L M.

By Lemma (2.5), the �rst term is at most polynomial at every cusp while the
second and third term are absolutely converging sums for 2σ+ k > 0 and grows
like δ(α)O(yse(mτ) + e(mτ̄)) + O(y1−s−k) at each cusp αi∞ and hence all
rLk (m, τ, γ) are harmonic Maass forms if we prove the following:

Lemma 5.3. ξkp
L
k (m, τ, γ) = 0 if m > 0.

Proof. Consider (5.2). If 3/2 ≤ k ≤ 2, it implies

ξkp
L
k (m, τ, γ) = p.p.

s=0
s̄P1/2,L−(−m, τ̄ , s̄+ k − 1, γ)

= p.p.
s=0

s̄P2−k,L−(−m, τ, s̄+ k − 1, γ)

= 0

as P2−k,L−(−m, τ, s̄+ 1/2, γ) has no pole for m > 0 by (3.6) as 2− k ≤ 1/2. If
k ≤ 1/2,

ξkp
L
k (m, τ, γ) = Res

s=1−k
s̄P2−k,L−(−m, τ̄ , s̄+ k − 1, γ)

= Res
s=1−k

s̄P2−k,L−(−m, τ, s̄+ k − 1, γ)

= 0

which has no pole and hence vanishes by (3.6).

To �nish the proof, we show two more lemmas. The �rst one is

Lemma 5.4. The {pLk (m, τ, γ)|m > 0} form a generating set ofM int
k,L if k 6= 0, 1.

If k = 0, {fγ} ∪ {pLk (m, τ, γ)|m > 0} is a generating set of M int
k,L, where fγ are

suitable constant functions.

Proof. This is a direct corollary of (3.6) as any integrable holomorphic modular
form that is orthogonal to all pLk (m, τ, γ) must be constant, hence vanishes unless
k = 0.

All that remains now is to show that all constant elements of M int
0,L are in

the image of ξ2. We state this as
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Lemma 5.5. Let f ∈M int
0,L(Γ) be constant. Then f is in the image of ξ2.

Proof. Consider the non holomorphic Eisenstein series

G2(τ) := 2ζ(2) + 4
ζ(2)

ζ(−1)

∑
n≥1

σ1(n)e(nτ) +
1

8πy

and via, (2.4), its lifts to Eisenstein series G2,γ(τ) by means of the trace formula
as follows: We chooseN big enough (recall (1.7)) such that (2.5) holds and hence
G2(τ)eγ is an element of the automorphic forms A2,L−(Γ̃(N)). Now, consider
the trace map

π2,L− : A2,L−(Γ̃(N))→ A0,L(Γ).

We de�ne
G2,γ := G2(τ)eγ .

which is H2,L−(Γ̃(N)). Then

ξ2G2,γ = ξ2G2(τ)eγ

= ξ2(
1

8πy
)eγ

= − 1

8π
eγ .

Now, since f is constant, we can write

f =
∑
γ

−αγ
8π

eγ .

Hence
ξ2(
∑
γ

αγG2,γ) = f.

Composing this with the projection π2,L− yields

ξ2π2,L−(
∑
γ

αγG2,γ) = π0,L(ξ2(
∑
γ

αγG2,γ))

= π0,L(f)

= f,

�nishing the proof as π2,L−(
∑
γ
αγG2,γ) is in H2,L−(Γ).

5.2 More on Weakly Harmonic Maass Forms

Lastly, we want to investigate the construction of weakly harmonic Maass forms,
which is a somewhat more challenging task. This section will at �rst deal with
the construction of weakly holomorphic modular forms, then we will show that
all those lie in the image of ξk, which will then allow us to prove the surjectivity
of the latter operator.
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5.2.1 Weakly Holomorphic Modular Forms

To simplify notation, let us introduce the notion of quasi analytic functions. We
say a function f is quasi-analytic in zero if

f(y) = yαg(y)

for some α ∈ R such that g is real analytic in zero. Notice that for any f
quasi-analytic at zero such that f = O(yl) at zero, 2l + k > 2 and m > 0 the
series

Rk,L(f,m, τ, γ) =
∑

M∈Γ∞\Γ

(f(y)eγ(mτ)) |k,L M

converges absolutely. Moreover, we have seen that (with the δ-notation and
estimates as in (4.1)

Rk,L(f,m, τ, γ)|kM = δ(M)f(y)eγ(mτ) +O(y1−l−k)

at each cusp Mi∞. Furthermore

ξkRk,L(f,m, τ, γ) = ξk
∑

M∈Γ∞\Γ

(f(y)eγ(mτ)) |k,L M

=
∑

M∈Γ∞\Γ

ξk(f(y)eγ(mτ)) |2−k,L− M

=
∑

M∈Γ∞\Γ

(yk · f ′(y) · eγ(−mτ̄)) |2−k,L− M

= R2−k.L−(ykf ′(y),−m, τ̄ , γ),

which is in L2
2−k if ykf ′(y)e−2πmy vanishes su�ciently fast as y → ∞. Note

that for any g ∈M int
2−k,L− , we have

〈R2−k,L−(ykf ′(y),−m, τ̄ , γ), g〉 =

ˆ

F

∑
M∈Γ∞\Γ

(yk(f ′(y)eγ(−mτ̄))) |k,L M

· ḡ(τ)y2−k dx dy

y2

=
∑

M∈Γ∞\Γ

ˆ

M−1F

f ′(y)eγ(−mτ̄)

· ḡ(τ) dx dy

=

∞̂

0

f ′(y)(

N̂

0

eγ(−mτ̄) · ḡ(, τ)dx)dy

= g−m,γ

∞̂

0

f ′(y)dy (5.3)
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where, as previously, gm,γ denotes the m-th Fourier coe�cient w.r.t. the base
vector eγ . We now choose some constant c > 0 and some smooth ϕk

ϕk(y) =

{
y2+|k|

1
if 0 < y < c/2,
if y > c.

The idea behind is that the Poincaré series de�ned by ϕk will absolutely con-
verge. By de�nition, ϕk is quasi-analytic. Since ϕ′k(y) = 0 for y > c,
R2−k,L−(ykϕ′k(y),−m, τ̄ , γ) is square integrable. Further, by (5.3), we have

〈R2−k,L−(ykf ′(y),−m, τ̄ , γ), g〉 = g−m,γ

∞̂

0

f ′(y)dy

= g−m,γ . (5.4)

This suggests the following lemma.

Lemma 5.6. The series ξkRk,L(ϕk,m, τ, γ) is in H1
2−k.

Proof. We know that

ξkRk,L(ϕk,m, τ, γ) = R2−k,L−(ykϕk(y)′,−m, τ̄ , γ)

= δ(M)ykϕ′k(y)eγ(−mτ̄) +O(y−2−|k|)

= O(y−2−|k|)

as y →∞, hence ξkRk,L(ϕk,m, τ, γ) is in L2
2−k. Now,

∆kRk,L(ϕk,m, τ, γ) =
∑

M∈Γ∞\Γ

∆k(ϕk(y)eγ(mτ)) |k,L M

=
∑

M∈Γ∞\Γ

ψk(y)eγ(mτ) |k,L M

with
ψk(y) := −y2ϕk(y)′′ − kyϕk(y)′ + 4πmy2ϕk(y)′.

Clearly, ψk(y) = 0 for y > c and ψk(y) = O(y2+|k|) as y → 0. Hence, for
the same reasons as before, ∆kRk,L is in L2

k and thus ξkRk,L(ϕk,m, τ, γ) is in
H1

2−k.

Now, consider the space of square integrable holomorphic modular forms,
M int

2−k,L− ⊆ H
1
2−k. Denote by

Π2−k : H2−k
1,2 → (M int

2−k,L−)⊥

the projection operator. By Theorem (2.10), we can apply the inverse Laplace
operator ∆−1

2−k to Π2−kξkRk,L(ϕα,m, τ, γ). (Note that here we use k 6= 1. If
k = 1, the continuous spectrum includes 0 and we can not invert ∆k) and de�ne

R̃k,L(m, τ, γ) = Rk,L(ϕk,m, τ, γ)
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− ξ2−k∆−1
2−kΠ2−kξkRk,L(ϕk,m, τ, γ), (5.5)

which, since ξkξ2−k∆−1
2−k = id, satis�es

ξkR̃k,L(m, τ, γ) = (id−Π2−k)ξkRk,L(ϕk,m, τ, γ),

thus is an element of M int
2−k,L− . We see that the R̃k,L are not weakly holomor-

phic.

Remark 5.7. Since ξ2−k∆−1
2−kΠ2−kξkRk,L(ϕk,m, τ, γ) is in H2−k

2,2 , by Lemma
(2.7), at each cusp Mi∞ as y →∞:

R̃k,L(m, τ, γ)|kM = δ(M)eγ(mτ) +O(y(1−k)/2). (5.6)

One might now wonder what use the R̃k,L are if they are not weakly holo-
morphic The answer to this is given by the following

Theorem 5.8. For k 6= 1, any element of M !
k,L is a �nite linear combination

of elements in

Tk,L := {ξ2−kR̃2−k,L(m, τ, γ)|kM, R̃k,L(m, τ, γ)|kM

| m ∈ 1

N
Z, m ≤ 0, M ∈ Mp2(Z)}.

Proof. At �rst let us remark that by (5.4), all non constant elements in M int
k,L

are a �nite linear combination of elements in the set {ξ2−kR̃2−k,L(m, τ, γ)|m ∈
1
NZ, m ≤ 0}. To obtain estimates on the dimensions involved and prove our
theorem, we will need to employ Riemann-Roch, for which we need to assume
that Γ operates freely on H. This, however can be achieved by passing to a
suitable Γ̃(N), the results of this theorem then hold by surjectivity of the trace
map. We split the proof into two cases, the �rst one being k > 1. For n ∈ 1

NZ,
let Tk,n,L denote the set {R̃k,L(m, τ, γ)|kM |M ∈ Mp2(Z),−n ≤ m ≤ 0} and
V (Tk,n,L) the �nite vector space generated by it. Let d denote the number of
cusps. By (5.6), we have

dim(V (Tk,n,L)) = d(nN + 1) |L′/L| ,

since, at the cusp M−1i∞, the de�nition implies

R̃k,L(m, τ, γ)|kM ≈ eγ(mτ) +O(y(1−k)/2),

and, by (5.6), at all other cusps,

R̃k,L(m, τ, γ)|kM ≈ O(y(1−k)/2),

i.e. R̃k,L(m, τ, γ)|kM vanishes therein. Since (1 − k) < 0, and all eγ(mτ) are

linearly independent for m ≤ 0, the R̃k,L(m, τ, γ)|kM are linearly independent
for di�erent cusps M−1i∞. Clearly, ξk de�nes a map

ξk : V (Tk,n,L)→M int
2−k,L− .
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The analysis that follows is certainly inspired from [4]. Consider the compact
closure of the fundamental domain F as a complex manifold X. Denote by
D =

∑
i

si the divisor that is 1 at each cusp si, OD the sheaf associated to the

divisor and Ok,L the sheaf of holomorphic modular forms of weight k. Then,
since 2− k < 1 and any holomorphic modular form of that weight is integrable
and vice versa

M int
2−k,L− = H0(X,O2−k,L−).

Denote by K(Tk,n,L) the kernel of ξk in V (Tk,n,L). By (5.6),

K(Tk,n,L)\{0}
⊆ H0(X,O(Nn+1)D ⊗OD ⊗Ok,L)\H0(X,OD ⊗Ok,L), (5.7)

i.e. any non zero element in K(Tk,n,L) does non vanish in at least one cusp.
Now, let Ω denote the principal bundle of X. We then have

Ω ∼= O2 ⊗ (−D),

i.e. the principal bundle on X are the cusp forms of weight 2. Next, let us
state Riemann-Roch for holomorphic vector bundles. If X is an algebraic curve
of genus g and A,B are complex vector bundles of dimension a resp. b on X,
A−1, B−1 the corresponding dual bundles and h0 the dimension of the cohomol-
ogy groups and c1 the Chern class. Then (see [6, Thm. 21.1.2])

h0(X,A⊗B−1)− h0(h,A−1 ⊗B ⊗ Ω)

= bc1(A)− ac1(B) + ab(1− g).

Hence, for a third bundle C of dimension b,

h0(X,A⊗B−1)− h0(X,A⊗ C−1) = h0(h,A−1 ⊗B ⊗ Ω)

− h0(h,A−1 ⊗ C ⊗ Ω)

+ a(c1(C)− c1(B)).

Now, we set A = Ok,L, B−1 = O(Nn+1)D ⊗O−D = ONnD, C−1 = OD. As for
any divisor Y , c1(OY ) = deg(Y ), hence deg(D) = d, the number of cusps, and
by (5.7) and Riemann-Roch,

dim(K(Tk,n,L)) ≤ h0(X,O(Nn+1)D ⊗O−D ⊗Ok,L)

− h0(X,O−D ⊗Ok,L)

= |L′/L| (Nn+ 1)d

+ h0(X, (O(Nn+1)D ⊗ (−D)⊗Ok,L)−1 ⊗ Ω)

− h0(X, ((−D)⊗Ok,L)−1 ⊗ Ω)

= |L′/L| (Nn+ 1)d

+ h0(X,O−(Nn+1)D ⊗O2−k,L−)

− h0(X,O2−k,L−)
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since k > 1, for n big enough,

h0(X,O−(Nn+1)D ⊗O2−k,L−) = 0

as the number of zeroes of globally holomorphic modular forms is bounded.
Further, as any holomorphic modular form of weight 2−k is integrable and vice
versa

h0(X,O2−k,L−) = dim(M int
2−k,L−)

= dim(ξk(V (Tk,n,L)).

And hence

dim(K(Tk,n,L)) + dim(ξk(V (Tk,n,L)) ≤ |L′/L| (Nn+ 1)d

= dim(V (Tk,n,L)).

By the usual kernel and image formula for �nite dimensional vector spaces, the
inequality must already be an equality. Thus

dim(K(Tk,n,L)) + dim(M int
k,L) = h0(X,ONnD ⊗Ok,L).

Since K(Tk,n,L) ∩M int
k,L = 0, linear algebra implies that

H0(X,ONnD ⊗Ok,L) = K(Tk,n,L)⊕M int
k,L,

i.e. for k > 1 any element ofM !
k,L that has has at most a pole of order n in each

cusp is a linear combination of elements in Tk,n,L. Now, consider the case k < 1.
We need a slight variation of above as all holomorphic forms are integrable, i.e.

M int
k,L = H0(X,Ok,L).

We proceed analogously and de�ne the set Tk,n,L := {R̃k,L(m, τ, γ)| − n ≤
m < 0} and the vector spaces V (Tk,n,L) and K(Tk,n,L) in an analogous fashion.
Analogously to the previous section one argues that

dim(L(Tk,n,L)) = d |L′/L|Nn,

since again all elements of Tk,n,L are linearly independent. Further, as before,

K(Tk,n,L)\{0} ⊆ H0(X,ONnD ⊗Ok,L)\H0(X,Ok,L),

i.e. all non zero elements of K(Tk,n,L) are not integrable and have a pole in i∞
of at most order n, Riemann-Roch again implies

dim(K(Tk,n,L)) ≤ h0(X,ONnD ⊗Ok,L)− h0(X,Ok,L)

= |L′/L|Nnd+ h0(X, (O−NnD ⊗Ok,L)−1 ⊗ Ω)
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− h0(X, (Ok,L)−1 ⊗ Ω)

= |L′/L|Nnd+ h0(X,O−NnD ⊗O−D ⊗O2−k,L−)

− h0(X,O−D ⊗O2−k,L−).

Now, since k < 1, the integrable holomorphic modular forms of weight 2−k are
precisely the cusp forms, we have

h0(X,O−D ⊗O2−k,L−) = dim(M int
2−k,L−)

= dim(ξk(V (Tk,n,L)).

And thus for n big enough

dim(K(Tk,n,L)) + dim(ξk(V (Tk,n,L)) ≤ |L′/L|Nnd
= dim(V (Tk,n,L)).

And once again equality must hold and we have

H0(X,ONnD ⊗Ok,L) = K(Tk,n,L)⊕M int
k,L.

proving the statement for k < 1 as well.

5.2.2 Harmonic Maass Forms

To construct a preimage under ξk of the R̃k,L, for f quasi-analytic, de�ne the
operator

Bk,m(f)(y) := e−4πmy

ŷ

0

e4πmxf(x)x−kdx.

By assuming y to be su�ciently small, we see that Bk,m(f) is quasi-analytic, as
for f = O(yα) as y → 0

Bk,m(f) = O(yα+1−k).

We also note that the integral operator Bk,m(f) is only de�ned if α+ 1−k > 0,
whereas otherwise we have divergences of the integral. We will ensure this to
hold later on, assume it holds in the following. Further

ξk(Bk,m(f)(y)e(mτ̄)) = f(y)e(−mτ),

and thus, if 2α+ (2− k) > 2,

ξkRk,L(Bk,m(f),−m, τ̄ , γ)

=
∑

M∈Γ∞\Γ

ξk(Bk,m(f)(y)eγ(−mτ̄)) |2−k,L− M

= R2−k,L−(f,m, τ, γ)
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for all such quasi analytic f as then the series converges absolutely and Bk(f)
is well de�ned. Now, we set

Sk,L(m, τ, γ) := Rk,L(Bk,m(ϕ2−k),−m, τ̄ , γ)

− ∆−1
k Πkξ2−kR2−k,L(ϕ2−k,m, τ, γ),

which satis�es (we recall (5.5)):

ξkSk,L(m, τ, γ) = ξkRk,L(Bk,m(ϕ2−k),m, τ, γ)

− ξk∆−1
k ξ2−kR2−k,L−(ϕk,m, τ, γ)

= R2−k,L−(ϕ2−k,m, τ, γ)

− ξk∆−1
k Πkξ2−kR2−k,L−(ϕ2−k,m, τ, γ)

= R̃2−k,L−(m, τ, γ).

To construct Maass forms from the Sk,L, we must �rst prove:

Lemma 5.9. Sk,L is of at most exponential growth at any cusp.

Proof. By de�nition, Bk,m(ϕ2−k) = O(y3+|k|−k) as y → 0. By de�nition,
Bk,m(ϕ2−k) = O(y1−ke4π|m|y) as y →∞. Hence

Sk,L(m, τ, γ)|kM = δ(M)O(eCy) +O(y−2−|k|)

at each cusp Mi∞.

A direct consequence of this lemma is (where ξk is an operator as in Lemma
(1.10))

Corollary 5.10. For k 6= 1, ξk is surjective.

Proof. Consider the set Tk,L as in Theorem (5.8). De�ne the set

T̃k,L := {R̃k,L(m, τ, γ)|kM, Sk,L(m, τ, γ)|kM

| m ∈ 1

N
Z, m ≤ 0, M ∈ Mp2(Z)}.

Consider the vector spaces spanned by �nite linear combinations of those sets,
denoted Vk,L = V (T̃k,L) and W2−k,L− = V (T2−k,L−). Then, ξk de�nes a se-
quence

Vk,L
ξk
�W2−k,L−

ξ2−k
� M int

k,L (5.8)

as ξk(T̃k,L−) = T2−k,L− . Since, by Theorem (5.8), M !
2−k,L− = ker(ξ2−k :

W2−k,L− →M int
k,L) and above lemma, we see that the vector space ξ−1

k (M !
2−k,L−) ⊆

Vk,L consists only of harmonic Maass forms.

Furthermore, another corollary is
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Corollary 5.11. Every harmonic Maass form of weight k is a �nite linear
combination of elements of the set

T̂k,L := Tk,L ∪ T̃k,L.

Proof. Consider a harmonic Maass form f of weight k. Now, by the �rst corol-
lary and using the sequence (5.8) , we know there is a �nite linear combination
of elements in T̃k,L, which we denote by f0 such that ξkf = ξkf0. Hence f − f0

must be inM !
k,L, i.e. f−f0 = f1, which is a �nite linear combination of elements

in Tk,L by Theorem (5.8). Hence f = f0 + f1 and the corollary is proven.
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