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Chapter 1

Introduction

1.1 General remarks

Market-based instruments have become an important cornerstone of European climate

policy. In 2005, the European Union (EU) established the worldwide largest multinational

cap-and-trade system in order to limit industrial greenhouse gas emissions. Today, the

EU Emissions Trading System (ETS) covers about 45 percent of the EU’s greenhouse gas

emissions and regulates more than 11,000 installations in 31 countries. On the national

level, other market-based instruments have been implemented, too. Several European

countries including Sweden, Denmark, Norway, and Germany have initiated environmental

tax reforms in the last decades. Germany introduced a new electricity tax in 1999 and

raised both electricity and existing fuel tax rates during the subsequent years in order to

internalize the social cost of carbon.

Market-based instruments have been internationally endorsed and widely implemented

in order to reduce greenhouse gas emissions from industrial sources. Nevertheless, the em-

pirical evidence on their functioning and their causal effects on regulated firms is still

scarce. This thesis contributes to two different strands of empirical literature examin-

ing market-based instruments. First, it sheds light onto the causal effects of emissions

trading and energy taxation on the economic performance of regulated manufacturing

firms. Exploiting official and administrative firm-level micro data from Germany, quasi-

experimental approaches are employed to identify and quantify the impact of the EU ETS

and the German electricity tax on the productivity, technical efficiency, and competitive-

ness of regulated firms. Second, it extends the literature on the price formation process

1



2 CHAPTER 1. INTRODUCTION

on the European carbon market.

The first paper investigates the impact of the EU ETS on the productivity of German

manufacturing firms. The firm-level productivity is estimated based on an empirical pro-

duction function that allows for an endogenous dynamic productivity process influenced

by the EU ETS. The second paper examines the effect of the EU ETS on the technical

efficiency of German manufacturing firms. The third paper provides an ex-post evalua-

tion of the German electricity tax with a focus on its effects on firm performance in the

manufacturing sector. Finally, the fourth paper investigates the non-linear relationship

between the EU Allowance (EUA) price and its influencing factors.

The remainder of the introduction is structured as follows. Section 1.2 gives back-

ground information on market-based instruments and the application of this intervention

class in environmental policy. Section 1.3 describes recent advances in the literature on the

ex-post evaluation of policy interventions. Section 1.4 summarizes the existing empirical

literature on the causal effects of environmental regulation on firms. Section 1.5 provides

an overview of the empirical research on the price formation process on the European

carbon market. Section 1.6 outlines each of the four papers and its contribution to the

literature. Finally, Section 1.7 concludes with avenues for future research.

1.2 Market-based instruments - a brief overview

Climate change poses major risks to mankind and is one of the greatest environmental

challenges ever faced. In the framework of the Paris Agreement under the United Nations

Framework Convention on Climate Change (UNFCCC), 191 countries signed a climate

treaty that governs efforts for the achievement of a global global temperature target. The

rise of the average global temperature should not exceed two degrees during the current

century. Although the ratification process of the treaty is still ongoing, it is likely that

the Paris Agreement will strengthen the mitigation of greenhouse gas emissions.

The need for effective and economically efficient policy instruments is strong. First,

the ambitious global temperature target requires immediate and effective mitigation of

greenhouse gas emissions. Second, from a welfare economic point of view, the mitigation

should be achieved at the lowest possible cost. Minimizing the cost of regulation also

facilitates the political feasibility of implementing mitigation measures.
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The theoretical economic literature has been concerned with the market failure of

negative externalities since the early 20th century. Pigou (1920) formalized the underlying

principles of externalities. He suggested to implement a tax to price activities associated

with negative externalities. In his theoretical framework, the optimal tax rate corresponds

to the marginal external cost.

About forty years later, Coase (1960) made a seminal contribution that prepared the

ground for cap-and-trade systems. He proposed that the allocation of property rights

associated with the externality could be the basis for a bargain among the involved parties.

Then the optimal level of pollution would be achieved through exchange without further

intervention. Crocker (1966) and Dales (1968) promoted the concept of tradable pollution

rights pointing out its advantages in comparison to the Pigouvian tax. Originating from an

optimal level of environmental quality - or level of pollution - the regulating entity needs

less information about polluters’ abatement costs in order to achieve the optimal solution.

In the framework of tradable pollution rights, the market mechanism will enable the

formation of a price that equates the marginal external cost provided that the total amount

of pollution rights corresponds to the targeted level of pollution. For a solution according

to the principles of the Pigouvian tax, the regulating entity would need information on

the marginal external cost in order to set the optimal tax rate. An additional favorable

trait of cap-and-trade systems is that, from a theoretical perspective, the overall economic

outcome is independent from the initial allocation or distribution of the pollution rights

(Montgomery, 1972). In other words, no matter whether polluters receive pollution rights

for free or have to buy them, the aggregate emissions target is achieved at lowest cost.

The properties of the alternative policy instruments are mostly derived in a static con-

text relying on assumptions regarding the cost of information, uncertainty, and transaction

costs. In the following decades, the theoretical literature has explored the properties of

these instruments under alternative assumptions. Weitzman (1974), for instance, exam-

ined the differences between the two concepts taking into account uncertainty. Roberts and

Spence (1976) investigated the properties of a hybrid system of tradable emission rights

with minimum and maximum prices. Milliman and Prince (1989) analyze the dynamic

efficiency of market-based instruments and command-and-control regulation showing that

environmental taxation and emissions trading provide the highest incentives for regulated

firms to invest in technological change. A survey of the theoretical literature on the design



4 CHAPTER 1. INTRODUCTION

of interventions can be found in Cropper and Oates (1992) and Aldy, Krupnick, Newell,

Parry, and Pizer (2010).

Although in theory market-based instruments are capable of achieving a socially de-

sired environmental target at least cost, large environmental programs regulating air and

water pollution were primarily build on command-and-control approaches until the late

1980s. The United States (US) adopted a pioneer role in environmental protection imple-

menting initiatives dedicated to monitor and regulate pollution, such as the 1963 and 1970

Clean Air Act, the 1972 Clean Water Act and the 1977 Amendments to the 1970 Clean

Air Act. The instruments that were implemented in the context of these programs to im-

prove environmental quality were mainly technology-based standards. The 1978 Energy

Act introduced a tax - however, it was not congruent with the Pigouvian line of thought.

Instead of taxing the pollutant or a good closely related to the pollutant, the Gas Guzzler

Tax focuses on technology adoption and thus applies to the sale of cars with a low mileage

per gallon.

Taxes on energy use had been introduced in the US and many European countries

during the first half of the 20th century. However, the incentive effect of these excise

taxes on fuel use was not the impetus for their implementation. The main purpose was

to generate tax revenues inter alia used to fund the infrastructure for the emerging traffic

flows of motorized vehicles. In the 1970s, under the Nixon administration, a tax on sulfur

dioxide was proposed to curb emissions, but these efforts were not successful (Milne, 2011).

Market-based instruments became more popular in the late 1980s and early 1990s. In

1989, the US implemented an excise tax on the sale of chlorofluorocarbons (CFCs) and

other ozone-depleting chemicals in order to meet its obligations under the Montreal Proto-

col. In the framework of the 1990 Amendments of the 1970 Clean Air Act, the US decided

to introduce the Acid Rain Program - the first large-scale cap-and-trade system to be im-

plemented in 1995 to regulate sulfur dioxide emissions. Ellerman, Joskow, Schmalensee,

Montero, and Baily (2000, p. 5) review the first years of the Acid Rain Program and come

to the conclusion that it has ” [...] performed well and has thereby proven that emissions

trading has considerable potential in practice, [...] ”. In addition, the 1990 Amendments

of the 1970 Clean Air Act encouraged the implementation of market-based instruments

on state level, for instance, to regulate also other local pollutants such as nitrogen oxides

emissions.
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At the same time, several European countries introduced environmental tax reforms

in order to improve environmental quality. The reforms mainly aimed at reducing sulfur

dioxide and greenhouse gas emissions (Bosquet, 2000). The enacted taxes either directly

price the emission of pollutants or indirectly punish emissions by increasing the price of

energy. In contrast to the early adopted fuel taxes, now, policy makers put emphasis on

the incentive effects of energy and emission taxes. Germany enacted its environmental

tax reform in 1999 by increasing the existing fuel taxes and introducing a new excise tax

on electricity use. The EU initiated the attempt to implement a European carbon energy

tax in 1992. However, the plan was abandoned in 1997, due to political reasons, such as

the opinion that a European wide tax would interfere with the member states’ autonomy

in taxation (Ellerman, Convery, and De Perthuis, 2010).

Similarly, market-based instruments were increasingly endorsed at the international

level - especially in the context of the emerging efforts of the United Nations (UN) to com-

bat anthropogenic climate change. The UN Framework Convention on Climate Change

(UNFCCC) established in 1992 was the first international treaty that recognized anthro-

pogenic climate change and the necessity to take measures to reduce greenhouse gas emis-

sions. It laid the ground for international negotiations on binding emission targets that

were achieved in the framework of Kyoto Protocol passed in 1997. The Kyoto Protocol

embraced the principles of tradable emission rights considering emissions trading a way to

achieve the greenhouse gas reduction target at lowest cost and to strengthen the treaty by

easing the political feasibility. It included three flexibility mechanisms that enabled par-

ties to offset emissions, namely International Emissions Trading, the Clean Development

Mechanism (CDM), and Joint Implementation (JI).

In the framework of the Kyoto Protocol, the fifteen member states of the EU committed

themselves to jointly reduce greenhouse gas emissions by 8 percent in comparison to 1990

levels during the 2008-2012 Kyoto Protocol period. Soon after the Kyoto Protocol had

been negotiated, the EU decided to set up its own emissions trading system among the

member states in order achieve the emissions target at least cost. According to Ellerman,

Convery, and De Perthuis (2010, p.16), the EU ETS was the product of two failures: ”[...]

the Commission’s failure to win pan-European support for the introduction of a carbon

tax, and the failure to insert their desired policy initiatives in the Kyoto Protocol.” In

2003, the EU decided to launch the EU ETS by enacting the Emissions Trading Directive.
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Furthermore, it was subsequently decided to link the EU ETS with the flexible mechanisms

of the Kyoto Protocol CDM and JI. Finally, the EU ETS was launched in 2005 regulating

more than 11,000 industrial installations in the back then 27 member states covering about

45 percent of their total emissions. It is the cornerstone of the EU’s climate policy that has

set ambitious emission reduction targets in the context of the 2020 Climate and Energy

Package, the 2030 Climate and Energy Framework, and the 2050 Low-carbon Economy

Roadmap. Apart from its importance for the European climate policy agenda, the EU

ETS has adopted an exemplary character for other schemes that have already come into

existence or will be launched in the future, such as the Regional Greenhouse Gas Initiative

in the US or the Chinese emissions trading initiative.

Lately the parties of the UNFCCC have agreed on a new climate treaty succeeding

the Kyoto Protocol. The Paris Agreement aims at keeping the rise of the average global

temperature below two degrees during the current century. Vast emission reductions will

be necessary to achieve this ambitious objective intensifying the need for effective and

efficient climate policy instruments.

While the functioning of market-based instruments is well understood from a theoret-

ical point of view, empirical evidence on the causal effects of the described interventions

is still scarce. In practice, the interventions to price the externalities of greenhouse gas

emissions are the outcome of political bargaining processes. Furthermore, their implemen-

tation faces issues, such as costly information, transaction costs, uncertainty, and other

barriers. An ex-post evaluation of the introduced interventions is necessary to improve

the design of existing as well as planned interventions.

1.3 Recent advances in the evaluation of policy interven-

tions

Research on the evaluation of policy and programs has made significant progress dur-

ing the last decades. As a result, contemporary studies focus on the identification and

quantification of causal effects induced by the intervention under examination. Several

methods have been developed and refined to study the impact of interventions before and

after their implementation - a development that also has been pushed by the improved

access to micro-level data (Imbens and Wooldridge, 2009; Angrist and Pischke (2010)).
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An important factor for the evolution of this literature was the formulation of an

universal concept, that could be employed to describe causal inference in very different

settings (Imbens and Wooldridge, 2009): The seminal work of Rubin (1974, 1977) led to the

approach that is now commonly used to describe empirical strategies for the identification

of causal effects. The potential outcome framework or Rubin causal model (Holland, 1986)

differentiates between the two potential outcomes that could materialize depending the

participation in the intervention:

Yi =


Yi(0) if Di = 0

Yi(1) if Di = 1 ,

(1.1)

where i indexes the subjects, Y denotes the outcome variable, D is an indicator variable

that takes the value one if subject i is treated and zero otherwise. In consequence of the

intervention, only one of the two potential outcomes materializes and is observable at the

individual level.

There are different concepts to measure the impact of an intervention (Imbens and

Wooldridge, 2009; Pearl, 2000). Most commonly used in the policy and program evalu-

ation literature is the average treatment effect on the subjects that participated in the

intervention, i.e. the average treatment effect on the treated (ATT):

ATT = E[Y (1)i|Di = 1]− E[Y (0)i|Di = 1]. (1.2)

The ATT is the expected difference between the two potential outcomes conditional on

the participation in the intervention. This hypothetical concept measures the average

difference between the materialized - or factual - outcome and the counterfactual outcome.

Only the former is realized and can be observed. This dilemma is solved by comparing the

average outcome of the group of treated subjects with the average outcome of a group of

similar subjects that are not treated - the control group. The selection into both groups

should be independent from the outcome as well as from other factors influencing the

outcome - otherwise, the expected difference between the outcomes of the two groups is

not equivalent to the ATT (Angrist and Pischke, 2009).

By design, the randomized controlled trial solves this problem based on randomiza-

tion: A group of randomly selected subjects participates in the intervention of interest

and a disjunct group of randomly selected subjects does not participate. The comparison



8 CHAPTER 1. INTRODUCTION

of the mean outcomes of the two groups yields the ATT of the policy intervention. Ran-

domized controlled trials have been successfully implemented to study the causal effects of

interventions ex-ante in different areas of economics - especially in development economics.

In addition, several methods have been developed that enable the identification of

causal effects after the implementation of interventions using observational data. The

adopted identification strategies rely on variation in treatment or treatment intensity,

that might occur over time, over groups of subjects, or spatially. In contrast to the

randomized controlled trial, the treatment variation, i.e. the selection into treatment and

control group, is not random. In many cases, the variation is due to exemption schemes

that exclude subjects from the intervention. The methods used for the empirical ex-post

evaluation of policies address the aforementioned selection problem and other challenges

that might impede the identification of the causal effect. Among the prominently used

statistical and econometric tools are panel regression models, the difference-in-differences

approach, the regression discontinuity and kink design, as well as instrumental variable

and matching approaches.

Although the randomized controlled trial is considered the gold standard for isolating

and quantifying the causal effect of a policy intervention, barriers such as high cost, ethical

controversy, and a lack of acceptance among policy makers hinder the extensive use of

this policy evaluation tool. This especially holds for environmental and climate policy

interventions that aim at reducing industrial emissions or energy use. Therefore, this

strand of literature focuses on the ex-post evaluation of already implemented interventions.

1.4 The impact of environmental regulation on firms

The recent advances in the policy and program evaluation literature have also influenced

the evaluation of environmental regulation that addresses industrial pollution. The re-

search design of empirical studies in this area increasingly emphasizes causal inference by

carefully comparing groups of regulated firms with adequate groups of control firms.

Command-and-control regulation The intensive implementation of command-and-

control regulation to regulate pollution of industrial installations lends plenty of variation

that can be exploited to study its causal effects. A particularly fruitful setting has been
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provided by the 1970 Clean Air Act and its 1977 Amendment that created spatial variation

in environmental regulation across the US. The key instrument of this legislation was

the assignment of a county-level ambient air quality status. The nonattainment of the

environmental target induced the implementation of regional technology standards.

Empirical investigations of the effects of the Clean Air Act on the behavior of plants

show, that industries affected by the regulation moved their activities to counties with

lower regulatory burdens (Henderson, 1996; Becker and Henderson, 2000). Greenstone

(2002) provides evidence that higher regulatory burdens also decreased employment, cap-

ital stock, and output of pollution intensive industries. List, Millimet, Fredriksson, and

McHone (2003) support these findings by showing that plant births, closures, and invest-

ment patterns have been adversely affected by the Clean Air Act. Hanna (2010) investi-

gates the effect of environmental regulation on outbound foreign direct investments. The

results indicate that the Clean Air Act caused regulated multinational firms to increase

their foreign assets and their foreign output. Greenstone, List, and Syverson (2012) in-

vestigate the effects of the different components of the Clean Air Act on the total factor

productivity of firms from the manufacturing industry. They show that air quality reg-

ulations in the US significantly decreased the total factor productivity of manufacturing

plants in regulated areas.

Walker (2011) and Walker (2013) investigate the effect of the Clean Air Act on employ-

ment and labor reallocation. The evidence presented in these studies points to negative

effects on employment growth, job creation rate, and a positive effect on job destruction

rates. According to Walker (2013), the Clean Air Act caused large transitional costs due

to the reallocation of workers.

While the policy evaluation literature provides profound evidence on the negative ef-

fect of the nonattainment status and the associated technology standards on the economic

performance of regulated firms, its effect on ambient air quality is controversial. Green-

stone (2004) shows that the attainment and nonattainment categories in the framework

of the Clean Air Act can only explain a small fraction of the improvements of ambient

sulfur dioxide concentrations.

Apart from the Clean Air Act, also other environmental command-and-control pro-

grams have been under investigation. Berman and Bui (2001) analyze the effect of

command-and-control regulation on plant entry and exit exploiting variation in nitrous ox-
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ides regulation caused by the South Coast Air Quality Management District (SCAQMD).

They show that there is no evidence of an adverse impact of the implemented regulation

on firms in the Los Angeles area. Gray, Shadbegian, Wang, and Meral (2014) investigate

the effect of multi media regulation for the pulp and paper industry on labor demand. The

regulation under investigation has been implemented in the framework of the Clean Water

Act and the Clean Air Act. Different kinds of technology standards have been imposed

to regulate plants’ air and water pollution. The results indicate that the regulation had

only a limited effect on employment.

Causal effects of environmental taxation on manufacturing firms Empirical ev-

idence allowing causal inference with regard to the effects of environmental or energy

taxation on industrial installations is still scarce. Existing studies exploit exogenous vari-

ation in energy or electricity prices in order to isolate the the effect from confounding

factors.

Kahn and Mansur (2013) exploit county-level spatial variation in electricity prices and

labor and environmental regulation to study the impact of these factors on US manufac-

turing. Using industry-level data, they find that energy-intensive industries are mainly

located in counties with low electricity prices.

Martin, de Preux, Wagner (2014) investigate the effect of a carbon tax - the Climate

Change Levy - on manufacturing plants in the UK. The underlying identification strategy

relies on variation in the tax liability. A subset of plants from energy intensive industries

was granted tax reductions. The employed instrumental variable approach shows that the

carbon tax had a strong negative effect on energy intensity and electricity use, while it

did not affect employment, revenue, or plant exit.

Harrison, Hyman, Martin, and Nataraj (2015) exploit regional variation in environ-

mental command-and-control regulation and coal prices in India investigating the effect

of both instruments on industrial installations. They show that higher coal prices reduced

coal use and improved the environmental performance of plants while the command-and-

control regulation did not affect the use of coal on the intensive margin. However, the

regulation increased the share of large plants that are more likely to invest in pollution

control. In comparison to command-and-control regulation, higher coal prices are more

effective in reducing ambient sulfur dioxide concentration.
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Gerster (2015) examines the effect of electricity prices on German manufacturing

plants. The German government imposed a levy on electricity use to finance the feed-

in tariff system for renewable energy. The levy is not applied to electricity intensive plants

creating discontinuities in the price-quantity relationship of electricity. Gerster (2015)

employs a regression discontinuity design to identify the effect of electricity price on elec-

tricity use and economic performance. He shows that electricity use reacts to prices,

however there is no evidence of a negative effect on gross output, exports, or employment.

The forth chapter of this thesis contributes to this literature by examining the effect of

the German electricity tax on the competitiveness of manufacturing firms. The analysis of

the impact of the electricity tax focuses on firms that use less than one gigawatt hour, while

Gerster (2015) addresses firms that use more than ten gigawatt hours of electricity. The

results of the forth chapter are in line with Gerster (2015). The empirical analysis based

on the regression discontinuity design provides no evidence for a statistically significant

effect of the electricity tax on revenues, value added, exports, or employment.

Causal effects of emissions trading systems on firms In order to curb sulfur dioxide

and nitrous oxides, several regional emissions trading systems have been implemented in

the US. In addition, the EU ETS offers the possibility to investigate the causal effects of

emissions trading on regulated firms. Despite these settings akin to natural experiments,

the empirical literature on the causal effects of cap-and-trade systems is still scarce.

Fowlie, Holland, and Mansur (2012) investigate the causal effect of the Californian

REgional CLean Air Incentives Market (RECLAIM) on the emissions of regulated instal-

lations. RECLAIM is a regional cap-and-trade system regulating nitrogen oxides emissions

of installations in southern California. The identification strategy relies on treatment varia-

tion due to the design of the regulation: only a subset of industrial installations is regulated

by RECLAIM, the remaining installations are regulated based on command-and-control

regulation. Fowlie, Holland, and Mansur (2012) compare the average emissions of the

RECLAIM installations with the average emissions of an adequate control group that is

constructed using semiparametric matching. The results suggest that installations under

emissions trading reduced their emissions significantly in comparison to the installations

regulated by command-and-control regulation. Furthermore, they show that emissions

reductions are equally distributed over areas with different socioeconomic backgrounds
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resolving doubts that RECLAIM led to environmental injustice. Fowlie and Perloff (2013)

empirically investigate whether the economic outcome of emissions trading is independent

from the mode of allowance allocation. In the framework of RECLAIM, the timing of the

permit allocation offers exogenous variation that can be exploited to identify the effect of

the mode of allocation on nitrogen oxide emissions. The results indicate that the emissions

reductions do not depend on how the permits were allocated to firms..

Linn (2011) analyzes the effect of the nitrogen oxides budget trading program on

firm profits. The program covers the eastern US regulating emissions of plants from the

electricity sector. The results indicate a negative impact of the program on expected

profits of regulated firms.

Ferris, Shadbegian, and Wolverton (2014) analyze the effect of the sulfur dioxide trad-

ing program on electricity utility employment. The program has been enacted in the

framework of the 1990 Clean Air Act Amendments. The effect of the trading program on

employment is not statistically significant at the utility level.

Most recently, a growing literature on the evaluation of the EU ETS has emerged. The

source of variation to identify the causal effects of the EU ETS is its inclusion restrictions.

The European Commission granted exemption from the scheme for small emitters in order

to balance transaction costs. The inclusion into the scheme is therefore a function of

installation-level capacity. Within narrowly defined industries, the EU ETS leaves a subset

of firms unregulated that may serve as control group provided that the research design

takes into account that the capacity and thus the treatment is correlated with the outcomes

of interest.

With regard to carbon dioxide emissions the empirical evidence is rather clear: Inves-

tigating firm- and plant-level data for different European countries, a number of studies

show that the EU ETS significantly reduced the emissions or the emissions intensity of

regulated entities (Petrick and Wagner, 2014; Wagner, Muûls, Martin, and Colmer, 2014;

Klemetsen, Rosendahl, and Jakobsen, 2016; Jaraitė and Di Maria, 2016).

The empirical evidence on the effect of the EU ETS on employment points in different

directions depending on the data examined. Petrick and Wagner (2014) do not find a

statistically significant effect of the EU ETS on employment using firm-level data from

the German manufacturing sector. The companion study by Wagner, Muûls, Martin, and

Colmer (2014) exploiting plant-level data from the French manufacturing sector, however,
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finds a significant negative impact of the EU ETS on employment of regulated plants.

Abrell, Ndoye Faye, and Zachmann (2011) do not find a statistically significant effect of

the EU ETS on employment analyzing European commercial firm-level data.

Empirical evidence also suggests that the EU ETS did not have a negative effect on

economic performance measured by output, exports, labor productivity or value added.

Abrell, Ndoye Faye, and Zachmann (2011) are not able to reject the null hypothesis that

the EU ETS had no effect on output and value added of regulated firms. Petrick and

Wagner (2014) find that the EU ETS had a positive effect on the gross output of German

manufacturing firms while it did not affect exports. Jaraitė and Di Maria (2016) do not

find a significant effect of the EU ETS on profitability of Lithuanian firms. Klemetsen,

Rosendahl, and Jakobsen, 2016 find a positive effect of the EU ETS on value added and

labor productivity.

Calel and Dechezleprêtre, 2016 investigate the impact of the EU ETS on low carbon

innovation by analyzing patenting activities of European firms. They find that the EU

ETS increased the number of successful low carbon patent applications of regulated firms.

The second and third chapter of this thesis contribute to this literature by investigating

the causal effect of the EU ETS on the economic performance of German manufacturing

firms. Two different comprehensive measures for firm-level economic performance are esti-

mated. The second chapter employs a structural production function model by Ackerberg,

Caves, and Frazer (2015) and De Loecker (2013) in order to estimate the firm-level total

factor productivity. The empirical analysis in the third chapter is based on the stochastic

frontier approach by Aigner, Lovell, and Schmidt (1977) that is used to derive firm-level

technical efficiencies. The results of both chapters suggest no statistically significant im-

pact of the EU ETS on economic performance.

All in all, the evaluation literature predominantly provides empirical evidence for a

significant positive effect of market-based instruments on the reduction of emissions and

energy use, while the effect of command-and-control regulation seems to be controversial,

at least with regard to parts of the Clean Air Act legislation (Greenstone, 2004). On the

other hand, so far, there is little evidence of negative effects of market-based instruments

on economic performance of regulated firms, while command-and-control regulation has

been found to have negative effects on output, employment, and total factor productivity

in several cases.
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1.5 Price formation on the European allowance market

The efficient formation of the allowance price is an important prerequisite for a function-

ing cap-and-trade system. According to the price, regulated firms decide whether they

individually abate emissions or buy allowances. For regulating entities, the price is an im-

portant signal giving information about the stringency of the scheme. Optimal decisions

can only be taken by the market participants if the allowance price reflects all available in-

formation on the cost of abatement to achieve the emissions target (Hintermann, Peterson,

and Rickels 2016).

During the last years, a large body of empirical literature has formed that investigates

the price formation process on the market for allowances traded in the framework of the EU

ETS: European Union Allowances (EUAs). The early studies employed univariate time

series models in order to investigate the characteristics of the EUA price. Autoregressive -

generalized autoregressive conditional heteroscedasticity (AR-GARCH) models that take

into account autocorrelation and conditional heteroscedasticity have played a prominent

role in this literature (Paolella and Taschini, 2008; Benz and Trück, 2009).

In addition several studies analyze the relationship between the EUA spot and deriva-

tive markets. Option pricing models have been used to examine the price formation on

different EUA futures markets and their relationship to the spot market (Chevallier, Ielpo,

and Mercier; 2009; Daskalakis, Psychoyios, and Markellos, 2009). These studies empha-

size the importance of the futures markets for the processing of information in the price

formation process. Chevallier, Le Pen, and Sévi (2011) show that the introduction of an

EUA options market decreased the volatility of the EUA prices on other markets.

A further topic under investigation has been the relationship between the EUA price

time series and its determinants. Empirical evidence for the first years after the imple-

mentation of the EU ETS points to a strong relationship between the EUA price and

energy commodity prices, such as the prices for crude oil, gas, and coal while the influ-

ence of temperature plays only a minor role (Mansanet-Bataller, Pardo, and Valor, 2007;

Alberola, Chevallier, and Chèze, 2008). Chevallier (2009) shows that also financial and

macroeconomic risk factors influence the EUA price. While the results of these studies

are mainly based on linear regression models, Hintermann (2010) employs a structural

approach that takes into account the specific characteristics of the demand side of the Eu-
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ropean allowance market. His results support the strong influence of energy prices on the

EUA price. Creti, Jouvet, Mignon (2012) study the longterm relationship of the EUA price

and its determinants employing a cointegration approach. They show that according to

the equilibrium relationship between the time series the EUA price has been undervalued

since 2009. Aatola, Ollikainen, and Toppinen (2013) also investigate the determinants of

the EUA price. Employing different linear regression models, they show that the difference

between gas and coal prices, as well as electricity prices influence the EUA price. Koch,

Fuss, Grosjean, and Edenhofer (2014) shed light onto abatement-related determinants of

the EUA price. They find that the influence of the deployment of renewables and the use

of offset credits is only moderate in comparison to the influence of economic activity.

These results are mostly based on linear regression models that consider structural

breaks in the EUA price time series by analyzing subsamples. Structural breaks in the

data generating process are an important feature of the EUA price time series. Chevallier

(2011a, 2011b) and Peri and Baldi (2011) explore the nonlinear relationship of the EUA

price time series and its fundamentals using regime-switching models. Their results cor-

roborate the strong influence of economic activity and energy prices on the EU ETS. Koch

(2014) examines the time varying relationship between the EUA price and its fundamen-

tals by estimating a econometric model with different regimes. It allows the relationship to

smoothly change across regimes. His results show, that the relationship between the EUA

price and the energy prices became stronger in the years from 2008 to 2012 in comparison

to the years directly after the implementation of the EU ETS.

The fifth chapter of thesis contributes to the literature on the nonlinear relationship be-

tween the EUA price and its fundamentals. A Markov regime-switching GARCH model is

implemented in order to endogenously account for structural breaks in the price formation

process. A low and a high volatility regime are identified showing a changing relationship

between the EUA price and its fundamentals. Within this empirical framework, the most

important price determinants are the stock market and energy prices.

While the former studies are based on daily or even higher aggregated price and return

series, Rittler (2012) and Conrad, Rittler, and Rotfuß (2012) exploit intraday data to

study the EUA price formation process. Rittler (2012) analyzes the relationship between

EUA spot and futures prices, in particular, the transmission of information in the first

and second conditional moments. The results indicate that the futures market takes up
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information first and then passes it on to the spot market. Conrad, Rittler, and Rotfuß

(2012) investigate the impact of information disclosure on the EUA price formation. They

show that the information on allowance allocation, cap, and future economic development

are immediately processed and reflected by the EUA price. The impact of regulatory

announcements on the EUA price is supported by the findings of Koch, Grosjean, Fuss,

and Edenhofer (2016). They apply an event study method to examine the impact of

information disclosure on allowance supply schedules as well as European climate policy

targets. Mizrach and Otsubo (2014) examine the market microstructure of the largest

European carbon trading platform, the European Climate Exchange. Their analysis of

the realized volatility, bid-ask spreads and adverse selection costs reveals imbalances in

the order book that can be exploited for a profitable trading strategy. Medina, Pardo, and

Pascual (2014) also investigate the microstructure of the EUA market. They show that

trading frictions measured by relative spreads, information-asymmetry risk, and market-

making profits decreased during the years from 2008 to 2012.

Reboredo (2013) and Balcilar, Demirer, Hammoudeh, and Nguyen (2016) take the

point of view of institutional investors and analyze the interdependency of the carbon and

energy markets. They come to the conclusion that the carbon market can help to diversify

portfolio risk.

Altogether, the empirical literature on the price formation on the European carbon

market points to three important insights. First, economic activity, energy prices, and

regulatory announcements are the most important drivers of the EUA price. Second, the

price formation process is characterized by breaks that also translate into the relationship

between the EUA price and its fundamentals. Third, the market for EUAs became more

mature during the years from 2008 onwards.

1.6 Outline and findings of the thesis

This thesis is based on four independent research papers that contribute to the two strands

of literature on market-based instruments depicted above. The second and the third

chapter investigate the effects of the EU ETS on the economic performance of regulated

manufacturing firms in Germany. The fourth chapter analyzes the impact of the German

electricity tax on the competitiveness of manufacturing firms. The fifth chapter analyzes
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the non-linear relationship between the EUA price and its fundamentals. The following

sections briefly outline each of the four chapters.

1.6.1 Emissions trading and productivity: firm-level evidence from Ger-

man manufacturing

Author: Benjamin Johannes Lutz

Other versions: Published as ZEW Discussion Paper No. 16-067

In the second chapter, I study the causal effect of the EU ETS on the productivity of Ger-

man manufacturing firms. The existing empirical literature employing quasi-experimental

approaches to investigate the impact of the EU ETS has focussed on the effects on emis-

sions and other observable firm characteristics. So far, there is no study investigating the

causal impact of the EU ETS - or any other emissions trading system - on a comprehensive

and robust measure of economic performance.1

Addressing this gap in the literature, I estimate robust production functions for nar-

rowly defined industries using administrative firm-level data from the German manufac-

turing sector. The underlying econometric model is based on the work by Ackerberg,

Caves, and Frazer (2015) and De Loecker (2013). It allows for an endogenous dynamic

productivity process and corrects for simultaneous changes in input use or productivity

after a firm is regulated by the EU ETS.

After estimating the firm specific total factor productivity, I use different strategies

to identify the causal effect of the EU ETS on the estimated productivity. Following the

existing ex-post evaluation literature that is concerned with the EU ETS (Petrick and

Wagner, 2014; Wagner, Muûls, Martin, and Colmer, 2014; Klemetsen, Rosendahl, and

Jakobsen, 2016; Jaraitė and Di Maria, 2016; Calel and Dechezleprêtre, 2016), I exploit

treatment variation created by the inclusion criteria of the EU ETS in order to isolate the

causal effect of the EU ETS. In particular, I employ a difference-in-differences framework

in order to identify and quantify the average treatment effect of the EU ETS on the

productivity of regulated firms.

I exploit annual data from the German production census (Amtliche Firmendaten für

Deutschland, AFiD) and the Cost Structure Survey for the period from 1999 to 2012

1See Section 1.4 for a detailed description of the literature.
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gathered by the German statistical offices. The comprehensive firm-level information on

inputs and output is merged with data from the EU Transaction Log, the official register

of the EU ETS.

The results of the parametric difference-in-differences models suggest no significant

negative effect of the EU ETS on productivity. In contrast, the EU ETS had a positive

effect on productivity during the first compliance period. An alternative identification

strategy based on a combination of the difference-in-differences framework and nonpara-

metric nearest neighbor matching suggests that the EU ETS also had a positive effect on

productivity during the second compliance period. A subsample analysis provides evidence

that the effect of the EU ETS is heterogeneous across industries.

1.6.2 The impact of the EU ETS on economic performance of German

manufacturing firms

Authors: Andreas Löschel, Benjamin Johannes Lutz, and Shunsuke Managi

In the third chapter, we investigate the effect of the EU ETS on the technical efficiency of

manufacturing firms in Germany. First, we estimate a measure for economic performance

that relates input use and produced output. In a subsequent step, we analyze the causal

effect of the EU ETS on the economic performance.

The basic idea of this chapter is similar to how I proceed in the second chapter. The

innovation lies in the alternative measure of economic performance. We depart from the

concept of the mean production function. Instead, we estimate a stochastic production

frontier for each two-digit industry following Aigner, Lovell, and Schmidt (1977). The

frontier corresponds to the boundary of the production set of the industry that is deter-

mined by the most efficient firms. Based on the stochastic frontier, we compute firm-level

technical efficiencies, i.e. the individual distance to the most efficient firms. The stochas-

tic frontier approach relies on less stringent structural assumptions in comparison to the

approach chosen in the second chapter. Instead, it is assumed that technical efficiency fol-

lows a certain type of distribution, in our case a half-normal distribution. After we obtain

the firm-level technical efficiency, we employ a set of difference-in-differences models and

nearest neighbor matching in order to identify the effect of the EU ETS on the regulated

firms.
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The data used in this chapter is different from the data used in the second chapter.

The data requirements of the stochastic frontier model allow us to exclusively rely on

the German production census (AFiD). In contrast to the Cost Structure Survey, AFiD

comprises the universe of German manufacturing firms with more than twenty employees

and thus provides more comprehensive picture of the German manufacturing sector.

None of our identification strategies provide evidence of a statistically significant neg-

ative effect of emissions trading on economic performance. In contrast, the results of the

nearest neighbor matching suggest that the EU ETS had a positive impact on the eco-

nomic performance of the regulated firms, especially during the first compliance period.

A subsample analysis indicates that EU ETS increased the performance of treated firms

in some two-digit industries while others remain unaffected.

1.6.3 The effect of electricity taxation on German manufacturing: a

regression discontinuity approach

Authors: Florens Flues and Benjamin Johannes Lutz

Other versions: Published as ZEW Discussion Paper No. 15-013 and as OECD Envi-

ronment Working Paper No. 88

Germany has taxed electricity use since 1999. In this chapter, we exploit discontinuities

in the marginal tax rate in order to investigate the impact of electricity taxation on the

competitiveness of manufacturing firms.

The German government granted reduced rates to energy intensive firms in the indus-

trial sector to address potentially adverse effects on firms’ competitiveness. Firms that use

more electricity than certain thresholds established by legislation, pay reduced marginal

tax rates. As a consequence, the marginal tax rate is a deterministic and discontinuous

function of electricity use.

We identify and estimate the causal effects of these reduced marginal tax rates on

the economic performance of firms using a sharp regression discontinuity design (Lee and

Lemieux, 2010). In particular, we investigate how firms’ turnover, exports, value added,

investment, and employment responded to different marginal tax rates.

So far there is only one other study investigating the effect of the electricity price

on German manufacturing. Gerster (2015) investigates the effect of a levy that is used
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to finance the feed-in tariff system for renewable energy. The levy is not applied to

electricity intensive plants creating a discontinuity in the electricity price. Gerster (2015)

employs a regression discontinuity design to identify the effect of the electricity price on

electricity use and economic performance. He shows that the electricity use reacts to prices,

however there is no evidence of a negative effect on economic performance. The analysis

of Gerster (2015) is complementary to our work. The threshold of the discontinuity that

he investigates applies for very large industrial electricity users, while the discontinuities

created by the electricity tax are only relevant for small and medium-sized industrial

electricity users.

Our econometric analysis relies on official micro-data at the plant and firm level (AFiD)

collected by the German Federal Statistical Office that cover the entire manufacturing

sector. We do not find any systematic, statistically significant effects of the electricity

tax on firms’ turnover, exports, value added, investment, or employment. We conduct

several robustness checks to relax underlying assumptions and implement an alternative

identification strategy. The results, however, remain unchanged. The findings suggest that

gradually shifting the thresholds from which reduced tax rates apply may increase revenues

for the government without adversely affecting the economic performance of firms.

1.6.4 Nonlinearity in cap-and-trade systems: the EUA price and its

fundamentals

Authors: Benjamin Johannes Lutz, Uta Pigorsch, and Waldemar Rotfuß

Other versions: Published as ZEW Discussion Paper No. 13-001 and in Energy Eco-

nomics Vol. 40 pp. 222-232

In the fourth chapter, we examine the nonlinear relation between the EUA price and its

fundamentals, such as energy prices, macroeconomic risk factors and weather conditions.

When the underlying research strategy of this chapter was developed, the existing

literature pointed to two facts. First, the EUA price time series is influenced by funda-

mentals. Second, the EUA price formation process is characterized by structural breaks

that translate into this relationship. The paper was among the first to employ a nonlinear

time series model that endogenously incorporates this changing nature of the EUA price

formation process.
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By estimating a Markov regime-switching model, we find that the relation between the

EUA price and its fundamentals varies over time. In particular, we are able to identify

a low and a high volatility regime, both showing a strong impact of the fundamentals on

the EUA price. The most important EUA price drivers are changes on the stock market

and energy prices. The gas price and a broad European equity index affect the EUA price

positively in both regimes, while the coal price and the oil price have a significant, but

also positive impact only during the high and the low volatility regime, respectively.

The high volatility regime is predominant in phases when economic activities are on

a decrease or when institutional changes harm the confidence in the stringency of the EU

ETS. This holds during the recession of 2008 and 2009, as well as during 2011 and 2012

when the debt crisis impaired the European economic outlook.

1.7 Avenues for future research

The German production census for manufacturing (AFiD) and the Cost Structure Survey

offer a tremendous potential for empirical research - in particular with regard to topics

related to energy and the environment. Apart from its manifold data on general firm and

plant characteristics, AFiD contains very detailed information on energy and electricity

use. This section of AFiD is far more detailed than production census data from other

countries. It sheds light on topics such as fuel use, employment of renewables, and the

generation of electricity through different kinds of technologies. Our work with this rich

data set points to two directions for future research, that are briefly described in the

following.

First, one of the advantages of AFiD is that it can be merged with external data at

the plant and firm level. AFiD contains several unique identifiers, such as the commer-

cial register number and the VAT number that can be used to match external firm-level

data. Subsequently, data on the plant location can be used to match external plant-level

data. The former procedure has been applied to create the combined data set that is the

foundation for the second and the third chapter of this thesis. I merged AFiD with the

EU Transaction Log, the official register of the EU ETS in order to obtain information on

which firms are regulated. Gerster (2015) merges AFiD with data on the German feed-

in-tariff levy. There are plenty of other external data sources that provide information on
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energy prices or environmental regulation faced by manufacturing firms. In combination

with AFiD, these could be used to improve the understanding on how market-based in-

struments affect manufacturing firms. For instance, the European Pollutant Release and

Transfer Register might be matched with AFiD in order to study its effects on the included

firms.

Second, structural econometric models have scarcely been used to investigate the ef-

fects of energy prices and environmental regulation on manufacturing firms. The second

chapter of this thesis is among the first using AFiD in order to estimate a structural

econometric model. Based on the combination of a structural production function estima-

tion and a set of difference-in-differences models, I find that the EU ETS had a positive

effect on a revenue-based productivity measure. It is likely that firms increased product

prices as reaction to the regulation by the EU ETS. The cost pass-through that might

be reflected by the revenue-based productivity measure could be examined for at least

some industries using a structural econometric model along similar lines to De Loecker,

Goldberg, Khandelwal, and Pavcnik (2016). This is only one example of how the data

set could be used for the estimation of structural econometric models and how they can

contribute to the understanding of market-based instruments.



Chapter 2

Emissions trading and productivity: firm-level

evidence from German manufacturing

2.1 Introduction

The increased likelihood of disasters linked to climate change, such as floodings, droughts,

and forest fires, has put greenhouse gas reduction targets on policy agendas worldwide.

The European Union (EU) acknowledged the importance of this endeavor by committing

itself to cut greenhouse gas emissions by 20 percent until 2020 compared to 1990 figures.

In 2005, the EU introduced the EU Emissions Trading System (EU ETS), a multinational

cap-and-trade system, in order to regulate emissions from stationary industrial installa-

tions. The need for effective and efficient policy instruments to mitigate greenhouse gas

emissions requires a thorough ex-post evaluation of existing policies. The analysis of the

EU ETS and its impact on regulated firms offers the opportunity to better understand

the mechanisms and consequences of market-based policy instruments.

First studies investigating the causal effects of the EU ETS show that it significantly

reduced carbon dioxide emissions of regulated firms in many countries and spurred the

development of new low carbon technologies throughout Europe (Petrick and Wagner,

2014; Wagner, Muûls, Martin, and Colmer, 2014; Klemetsen, Rosendahl, and Jakobsen,

2016; Calel and Dechezleprêtre, 2016). Despite its positive short and long term effects, the

EU ETS has been the subject of significant political debate due to its potential adverse

impact on the economic performance and competitiveness of regulated firms that compete

on global markets.

23
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From a theoretical point of view, it is not clear whether the EU ETS has an overall

negative effect on the economic performance of regulated firms. The cost of complying

with the EU ETS might decrease revenues and profits. However, according to the induced

innovation hypothesis postulated by Hicks (1932), a relative change in input prices might

create incentives to invest in new technology in order to reduce the use of the increasingly

expensive input. In which way these adjustments affect economic performance depends

on the production technology, input and output markets, and other factors that differ

across firms. Porter (1991) and Porter and van der Linde (1995) put forward a stronger

hypothesis specifically addressing the effects of environmental policy. They argue that

properly designed regulation might not only increase the incentives to develop and adopt

environmentally friendly technology but also consequently might affect competitiveness in

a favorable manner.

Calel and Dechezleprêtre (2016) empirically investigate the induced innovation hypoth-

esis and show that the EU ETS has a positive causal impact on low carbon innovation

measured by patenting activities. These inventions, but also operational changes or in-

vestments in existing more efficient technologies might increase economic performance and

create an advantage for regulated firms over competitors.

The aim of this study is to analyze the causal effect of the EU ETS on the economic

performance of regulated firms. First, I estimate a structural production function model

in order to obtain the total factor productivity as a robust and comprehensive measure

of economic performance. Second, I isolate and quantify the effect of the EU ETS on

the productivity of regulated firms by exploiting treatment variation that results from the

design of the scheme.

The dispersion in productivity levels across firms and plants has been under inves-

tigation in many areas of economic research, such as industrial organization, labor, and

trade (Syverson, 2011). Internal factors, such as input quality (Van Biesebroeck, 2003),

managerial practice (Bloom and Van Reenen, 2007), or R&D activity (Doraszelski and

Jaumandreu (2013)), but also external factors, such as trade competition (De Loecker,

2007) or market regulation (Knittel, 2002) drive firm-level productivity.1

Furthermore, environmental regulation has been identified as a driver of firm-level

productivity. Greenstone, List, and Syverson (2012) investigate the impact of air quality

1See Syverson (2011) for a comprehensive survey on the productivity dispersion literature.
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regulation on the productivity of U.S. plants. Regulations governing ozone, particulates,

and sulfur dioxide decreased productivity, while regulations limiting carbon monoxide

increased productivity. On average, the productivity of polluting plants decreased by

4.8 percent in regulated areas. Commins, Lyons, Schiffbauer, and Tol (2011) investigate

the correlation between energy taxation and productivity during the period from 1997 to

2007. They use balance sheet data of European firms from the sectors manufacturing,

energy, and transport. Exploiting industry-level variation in energy taxation, they find

a positive correlation between taxation and firm-level productivity. In addition, they

report a negative correlation between EU ETS participation and productivity for the first

compliance period.

The origins of production function estimation date far back in economic literature.

Marschak and Andrews (1944) investigate the challenges of estimating production func-

tions using OLS. The observed input factors that enter the production function are chosen

by firms. Therefore, unobserved firm specific determinants of production that are corre-

lated with the choice of inputs are likely to bias OLS estimates. Recent advances have been

made by Olley and Pakes (1996) (henceforth OP) who develop a structural econometric

model of production that corrects for the described simultaneity bias using investments to

proxy unobserved firm specific productivity shocks. Levinsohn and Petrin (2003) (hence-

forth LP) show that also static inputs can be used as proxies in the framework of the

control function approach. Ackerberg, Caves, and Frazer (2015) (henceforth ACF) build

on the basic idea to use observed firm characteristics to proxy the unobserved productiv-

ity, but suggest a more general and more robust estimation procedure. De Loecker (2013)

enhances the ACF model by allowing for an endogenous productivity process.

The empirical strategy of this paper consists of two steps. First, I follow ACF and

De Loecker (2013) and estimate a robust production function that allows the EU ETS

to simultaneously influence input choice and productivity process in order to obtain an

estimate for firm-level productivity. Secondly, I employ an identification strategy that

relies on treatment variation caused by the design of the EU ETS in order to estimate

the average treatment effect of the EU ETS on the productivity of regulated firms. In

order to balance administrative cost, the EU exempts small and medium sized emitters

from regulation by the EU ETS. As a consequence, there are regulated and unregulated

firms within narrowly defined industries. I exploit this variation by estimating a variety
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of difference-in-differences models that isolate the effect of the EU ETS from confounding

factors.

The empirical analysis is based on administrative firm data from Germany. I observe

detailed annual firm-level information for the period from 1999 to 2012. The core of the

dataset is the Cost Structure Survey (henceforth CSS) carried out by the German sta-

tistical offices. The CSS contains comprehensive annual information on output produced

and inputs used by firms that operate in the manufacturing sector. It is the foundation of

many governmental statistics and reports on the activities of the manufacturing sector.

The average treatment effect of the EU ETS on the productivity of regulated firms is

statistically significant and ranges between 0.5 and 0.7 percent during the first compliance

period depending on the set of control variables. The estimated treatment effect for

the second compliance period is negative, but economically and statistically insignificant.

Moreover, annual average treatment effects support the finding that the EU ETS had an

impact during the first compliance period, while the estimated effects are not significantly

different from zero for years of the second compliance period. In order to investigate

the heterogeneity of the treatment effect across industries, I additionally estimate the

difference-in-differences model for energy intensive two-digit industries with a sufficient

number of regulated firms. The effect of the EU ETS on the productivity of firms from

the food, paper, and chemical industry are not significantly different from zero. When

estimating the model based on data for the industry producing basic metals, I find a

significant positive effect for the first compliance period ranging between 2.4 and 2.9

percent.

In order to relax the parametric assumption of the difference-in-differences model, I

follow Fowlie, Holland, and Mansur (2012) and combine the difference-in-differences frame-

work with nonparametric nearest neighbor matching. The estimated treatment effects are

statistically significant and positive for the first compliance period. In contrast to the

parametric approach, the difference-in-differences matching model also provides evidence

for a positive effect of the EU ETS during the second compliance period. The estimated

treatment effects are slightly higher in comparison to the parametric approach and range

between 1.5 and 2.7 percent for the first compliance period and 1.2 and 1.4 percent for

the second compliance period, respectively. Annual treatment effect estimates based on

the difference-in-differences matching model support the result that the EU ETS had a
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stronger effect during the first compliance period. For all models and specifications, I in-

vestigate pretreatment years and show that the productivity evolves in a parallel fashion

across groups.

The structure of this paper is as follows: Section 2.2 describes the regulatory framework

of the EU ETS and gives an overview of the empirical literature concerned with the

causal effects of the EU ETS on firms’ production and investment decisions. Section 2.3

describes the empirical production function estimation and the difference-in-differences

model employed to identify the causal effect of the EU ETS. Section 2.4 describes the

underlying official firm data and some descriptive statistics. Section 2.5 contains the

parameter estimates of the empirical production functions and reports the results of the

difference-in-differences model. Section 2.6 provides robustness checks with regard to

heterogeneous treatment effects and functional assumptions. Section 2.7 discusses the

results and concludes.

2.2 The EU ETS as a natural experiment

In order to achieve its emission targets in the framework of the Kyoto Protocol, the

EU decided in 2003 to regulate greenhouse gas emissions from industrial installations by

building an EU wide emissions trading system (European Parliament and Council, 2003).

The resulting EU ETS was finally introduced in 2005 and currently regulates about 45

percent of the EU’s greenhouse gas emissions caused by more than 11,000 installations in

31 countries.2

The EU ETS covers emissions from combustion installations and installations that

run energy intensive production processes, such as oil refining, the production of metals,

cement, lime, ceramics, bricks, glass, or paper. The design of the EU ETS excludes

small and medium sized installations. For each of the listed processes, the European

Commission (EC) defined specific capacity thresholds that determine the inclusion into the

EU ETS.3 The regulated installations have to undergo a continuous monitoring, reporting,

and verification process. Once a year, they surrender allowances equivalent to their verified

emissions.

2The EU ETS operates in the 28 member states of the EU as well as in Iceland, Liechtenstein, and

Norway.
3See European Parliament and Council (2003) Annex I for details on the inclusion criteria.
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The first compliance period of the EU ETS lasted from 2005 to 2007. It served as

a pilot phase and was completely decoupled from the following compliance periods. As

a consequence, allowances from the pilot phase were not eligible for surrender in later

years. In 2005, the allowance price ranged between 20 and 30 euros. The price dropped

and finally approached zero in 2007, when market participants realized that there was a

massive oversupply on the market. The pilot phase was followed by second compliance

period that coincided with the first commitment period of the Kyoto Protocol from 2008

to 2012. After the start of the second compliance period, the prices ranged between 20

and 30 euros, however a massive oversupply of allowances resulted in another price drop

during the second half of 2008. As in previous years, the allowances were mostly allocated

for free based on historic emissions. The plummeting demand due to the economic crisis

and the massive use of project-based emission credits from the flexible mechanisms of the

Kyoto Protocol did not meet the rather inelastic supply of allowances. The allowance

price remained at a level of around 15 euros until a further shift in the second half of 2011

when the allowance price dropped below 10 euros. In contrast to 2007, the price did not

converge toward zero since the allowances could also be used for compliance in subsequent

years.4

Regulated firms can comply with the EU ETS in different ways. First, a regulated firm

can surrender allowances to legitimate its emissions. This strategy is dominant as long

as the allowance price is lower than the cost of abatement. Regardless of how the firm

obtains the required allowances, the surrender of allowances negatively affects its economic

performance. Alternatively, a regulated firm can abate greenhouse gas emissions through

a change in input choice, an adjustment of the production technology, or the development

of less emission intensive products. The effect of these abatement options on the firm’s

economic performance is less clear. A change in input choice, such as a fuel switch, comes

at relatively low cost and might not have any additional effects on the firm. An adjustment

of the production technology for example through investments in energy efficiency however

might not only reduce the use of fuel but could also increase the overall efficiency of the

firm. The development of new products also requires investments, but might create an

advantage over competitors. From a theoretical perspective, it is not clear whether the

EU ETS had a significant negative effect on firm performance or whether secondary effects

4See Figure 2.A.1 in Appendix 2.A for details.
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of abatement measures increased economic performance.

A few very recent studies aim to contribute empirical evidence to the academic and

public debates by investigating the causal effects of the EU ETS on the emissions and

the economic performance of regulated firms. These studies exploit treatment variation

that results from the inclusion criteria of the EU ETS. Since only large emitters are

regulated, there are regulated and unregulated firms within narrowly defined industries

that can be compared. The empirical evidence on the impact of the EU ETS on firm-level

emissions and emission intensity is mixed. Studies using data from Germany, France, and

Norway suggest that the EU ETS significantly reduced greenhouse gas emission (Petrick

and Wagner, 2014; Wagner, Muûls, Martin, and Colmer, 2014; Klemetsen, Rosendahl, and

Jakobsen (2016)).5 Jaraitė and Di Maria (2016) do not find that the EU ETS significantly

decreased firm-level emissions in Lithuania, but they find a significant negative effect on

emission intensity. So far, there is no evidence that the EU ETS had a significant negative

effect on indicators of economic performance. In contrast, Petrick and Wagner (2014) find

a positive effect of the EU ETS on the revenues of regulated firms in Germany. Klemetsen,

Rosendahl, and Jakobsen, 2016 find a positive effect on value added and labor productivity

of regulated firms in Norway. Calel and Dechezleprêtre (2016) investigate the effect of the

EU ETS on patenting. Their findings support that the EU ETS increased the number of

low carbon patents developed by regulated firms. Bushnell, Chong, and Mansur (2013)

examine how the EU ETS affects daily stock returns of European firms. They show that

low allowance prices are associated with low stock prices for firms in both carbon and

electricity intensive industries. Their results indicate that regulated firms profit from free

allocation of allowances and a potential pass-through of environmental cost. Fabra and

Reguant (2014) employ reduced-form and structural estimations in order to measure the

pass-through of costs related to the EU ETS. Using Spanish electricity market data, they

show that the environmental costs are almost completely passed through to electricity

prices.

The aim of this study is to further investigate the impact of the EU ETS on the

economic performance of regulated firms. Debates on potential detrimental effects of

emissions trading on economic performance have accompanied the first two compliance

5Most of the studies investigating the causal effects of the EU ETS are still work under progress and

thus not yet peer reviewed.
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periods of the EU ETS. Large lobby groups such as the Federation of German Industries

frequently point out that the EU ETS imposes high costs on regulated firms and thus

threatens the competitiveness of European industries (The Federation of German Indus-

tries, 2016).6 This paper gives nuance to these debates with sound empirical evidence on

the causal effects of the EU ETS.

The existing ex-post evaluations investigate the effect of the EU ETS on revenues, value

added, and labor productivity. These indicators do not provide a comprehensive picture

of the firm specific economic performance. I employ a structural production function

model in order to obtain a robust estimate of the firm-level total factor productivity. This

measure for economic performance has been prominently used in the economic literature

to investigate the origins of productivity dispersion.

Following the literature on the ex-post evaluation of the EU ETS, I exploit the inclusion

criteria of the EU ETS to develop a sound identification strategy. I compare the firm

specific productivity of firms that are regulated, i.e. belong to the treatment group, with

the productivity of firms that are unregulated, i.e. belong to the control group, before

and after the implementation of the EU ETS. I estimate the treatment effect employing

parametric and nonparametric difference-in-differences models.

6The Federation of German Industries is an umbrella association representing the interests of more than

100,000 firms with about eight million employees.
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2.3 Empirical strategy

The empirical analysis consists of two subsequent steps.7 First, I estimate a robust pro-

duction function that allows for an endogenous productivity process. It corrects for simul-

taneous changes in productivity and input use after a firm is regulated by the EU ETS.

The resulting production function is used to recover a firm specific measure of produc-

tivity. Secondly, I assess the causal effect of the EU ETS on firm-level productivity by

employing the difference-in-differences framework.

2.3.1 Production function estimation

Since the seminal paper of Marschak and Andrews (1944), it has been known that the

estimation of a production function using OLS most likely leads to biased coefficients. The

observed input factors that enter the production function - here, capital and labor - are

chosen by the firm. If there is a firm specific determinant of production, that influences

the input choice and is only visible to the firm itself, the OLS estimates will be biased.

OP develop a structural econometric model of production that corrects for the de-

scribed simultaneity bias by using investments to proxy unobserved firm specific produc-

tivity shocks. LP enhance this approach and show that also static inputs, such as materials

or energy use, can be used as proxy variables to control for productivity.8 ACF build on

the basic idea that underlies OP and LP, namely using observed firm characteristics to

proxy the unobserved productivity, but suggest a more general and more robust estimation

procedure. I estimate the production function following the approach proposed by ACF.

I assume a Cobb-Douglas production function that takes the following empirical log

linear form for firm i at time t:

yit = βkkit + βllit + ωit + εit, (2.1)

where yit is the logarithm of gross value added, kit and lit denote the observable inputs

capital and labor expressed in logs, and ωit is the unobservable Hicks neutral productivity

7I follow the procedure applied by Braguinsky, Ohyama, Okazaki, and Syverson (2015) and employ a

two-step approach in order to investigate the effect of the EU ETS on firm specific productivity changes.

This procedure enables me to control for a large set of confounding factor in a difference-in-differences

framework.
8Ackerberg, Benkard, Berry, and Pakes (2007) offer a more detailed technical description of the differ-

ences between these approaches.
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term. The error term εit accounts for random shocks and measurement error and is

assumed to be identically and independently distributed.

I assume, that the capital stock k at time t is determined by the investment i and

the capital stock depreciation in t − 1. The labor market regulation is quite strict in

Germany by granting employees a period of notice that can last several months depending

on employment relationship and industry. Therefore, I also treat labor as a dynamic

input and assume that it is chosen between t − 1 and t. OP, LP, and ACF assume the

dynamics of productivity to evolve according to an exogenous first order Markov process. I

follow De Loecker (2013) and consider a more general model, where I allow determinants of

production to influence future productivity.9 Accordingly, the evolution of the productivity

dynamics is described by

ωit+1 = f(ωit, zit) + ξit, (2.2)

where the vector z collects determinants of production. The EU ETS might influence the

production and investment decisions of a regulated firm and thus affect future productivity.

Therefore, the effect of the EU ETS on productivity dynamics should be taken into account

in order to prevent potential bias. I include a dummy variable indicating if a firm is

regulated at time t. Furthermore, I add dummies for exports and R&D, since it has already

been shown by De Loecker (2013), Doraszelski and Jaumandreu (2013), and Aw, Roberts,

and Xu (2011) that both factors are important drivers of productivity. Accordingly, the

functional relationship between ωit and the determinants of production is governed by

f(ωit, zit) =

3∑
j

θjω
j
it + γ1etsit + γ2rndit + γ3expit, (2.3)

where etsit, rndit, and expit denote dummy variables, that indicate if a firm is regulated

9De Loecker (2013) includes exports into the first order Markov process in order to investigate the

learning by exporting hypothesis. The idea to allow for endogenous productivity has been implemented in

several structural econometric production models. Criscuolo and Martin (2009) examine the productivity

of foreign owned plants in the United Kingdom, Doraszelski and Jaumandreu (2013) study the impact

of R&D on productivity and Aw, Roberts, and Xu (2011) develop a structural model to shed light onto

the joint impact of investments in R&D and exporting on productivity dynamics. Collard-Wexler and

De Loecker (2015) measure the impact of technology choice on industry wide productivity in the U.S.

steel industry. Braguinski, Ohyama, Okazaki, and Syverson (2015) investigate the effect of merger on

productivity. All these studies feature the inclusion of additional production determinants into the first

order Markov process that governs the productivity dynamics.
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by the EU ETS, invests in R&D, or exports, respectively.

In order to deal with correlation between the observed inputs and productivity, I follow

LP and rely on a firm’s use of intermediate inputs m to control for unobserved productivity

shocks that are captured by ωit. I assume, that a firm’s demand for the intermediate input

is given by

mit = gt(kit, lit, ωit, zit). (2.4)

I assume monotonicity of intermediate inputs in productivity and thus invert gt(·) to

obtain ωit = ht(kit, lit,mit, zit), the proxy for productivity in the empirical production

function, i.e.

yit = βkkit + βllit + ht(kit, lit,mit, zit) + εit. (2.5)

The parameters βk and βl are not identified in this equation, since they are both included

in ht(·). Following ACF, I nonparametrically estimate this equation to obtain the expected

output E[yit|kit, lit,mit, zit]. As shown in Equation (2.6), the disposal of εit enables me to

compute the productivity for any possible combination of βk and βl:

ωit(βk, βl) = E[yit|kit, lit,mit, zit]− βkkit − βllit. (2.6)

As in the ACF approach, I plug ωit(βk, βl) into the law of motion of productivity in

Equation (2.2) in order to obtain the error term given βk and βl, ξit(βk, βl). The consequent

moment conditions I employ to identify the parameters of the production function are

described by

E

[
ξit(βk, βl)

∣∣∣∣∣kitlit
]

= 0. (2.7)

As explained above, I assume both capital and labor to be dynamic inputs and thus to

be mean independent of ξit. I employ the generalized method of moments to estimate the

parameters. Finally, I use the estimates for βk and βl to recover the implied productivity:

ω̂it = y − β̂kkit − β̂llit. (2.8)
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2.3.2 Disentangling the effect of the EU ETS

The second step of my empirical analysis is to identify and quantify the causal effect of the

EU ETS by comparing changes in productivity across German manufacturing firms that

are differentially affected by the EU ETS. Due to the inclusion criteria of the EU ETS,

there are regulated and unregulated firms within narrowly defined industries allowing for

a natural experiment framework. The baseline specification of the employed difference-in-

differences model I estimate for the time period from 1999 to 2012 is

ln(Productivityit) = α0 + α1ETSi + α2ETSi × PhaseIt

+ α3ETSi × PhaseIIt + ϕs + δt + λst + uit,
(2.9)

where ETSi indicates if a firm is regulated by the EU ETS, PhaseIt is equal to one for

years during the first compliance period (2005-2007) and zero otherwise, and PhaseIIt

(2008-2012) is equal to one for years during the second compliance period (2008-2012).

The inclusion of industry fixed effects ϕs adjusts for all constant unobserved determinants

of productivity across industries. The year fixed effects δt control for superior trends in

productivity in German manufacturing. λst denotes the full interaction terms between the

industry and year fixed effects and nonparametrically absorbs within industry productivity

trends. The error term uit is assumed to be mean zero.

The parameters α2 and α3 on the interaction terms between ETSi and the indicators

for the two compliance periods PhaseIt and PhaseIIt are the estimated effect of the EU

ETS during Phase I and Phase II, respectively. In order to take into account observed and

unobserved heterogeneity across regulated and unregulated firms, I enhance the baseline

specification (Specification I) gradually. First, I add additional control variables, namely

capital stock, employment, energy use, and material use (Specification II). Then, I add

lagged indicators for export and R&D experience (Specification III) and firm fixed ef-

fects that adjust for all constant unobserved determinants of productivity across firms

(Specification IV).

Key to the described identification strategy is the parallel trend assumption: I assume

that in the absence of regulation by the EU ETS, trends in productivity evolve in a

parallel fashion across groups conditional on the included control variables. In order to

motivate this assumption, I investigate the development of productivity across treatment

and control groups during pretreatment years. In particular, I estimate the following
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difference-in-differences model for the years before the announcement of the EU ETS, i.e.

the period between 1999 and 2002:

ln(Productivityit) = α0 + α1ETSit + α2ETSit × I(t > 2000)

+ ϕs + δt + λst + uit,
(2.10)

where I(t > 2000) equals one for the years 2001 and 2002. Therefore, the parameter α2

is a placebo treatment effect. The parallel trend assumption would be violated, if α2 is

significantly different from zero. I apply this procedure to all aforementioned specifications

of the difference-in-differences model.

The model described in Equation 2.9 provides the average treatment effects of the EU

ETS on firm specific productivity for the first and the second compliance period. Within

the two compliance periods, there was a high variation in the EUA price. High prices

might have provoked stronger reactions by regulated firms and thus might have caused a

heterogeneous treatment effect over time. In order to examine, if the effect of the EU ETS

on productivity changes over time within the compliance periods, I estimate a modified

difference-in-differences model that provides annual treatment effects:

ln(Productivityit) = α0 + α1ETSit +
2012∑

k=2000

αkETSit × I(t = k)

+ ϕs + δt + λst + uit,

(2.11)

where I(t=k) is an indicator function associated with the year t. The estimated parameters

for the years from 2000 to 2004 can be interpreted as placebo treatment effects. They will

shed light onto the validity of the underlying assumptions of the difference-in-differences

model. If these are significantly different from zero, the model fails to identify the effect of

the EU ETS. The estimated parameters for the years from 2005 to 2012 will provide annual

average treatment effects. I estimate this modified model applying the same specifications

as described above (Specification I - IV).
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2.4 Data and preliminary analysis

This study is based on official firm data from Germany. Combining different administrative

data sources, I observe detailed annual firm-level information on general characteristics,

cost structure, energy use, and EU ETS obligations for the time period from 1999 to 2012.

The core of the dataset is the Cost Structure Survey (CSS) carried out by the Federal

Statistical Office and the Statistical Offices of the German Federal States. The CSS con-

tains comprehensive annual information on output produced and inputs employed by firms

that operate in the manufacturing sector. The CSS includes all German manufacturing

firms with more than 500 employees. For firms with at least 20 and less than 500 employ-

ees, the statistical offices collect data from a large random sample. 10The participation in

the CSS is mandatory by law and results are checked for consistency and verified by the

statistical offices. It is the foundation for many governmental statistics and reports on the

activities of the manufacturing sector.

The random sample of firms with more than 20 and less than 500 employees is renewed

once every few years - in the sample period at hand, the random sample has been drawn in

1999, 2003, 2008, and 2012. The random sample is stratified by the number of employees

and industry affiliation. Firms with more than 20 and less than 500 employees are always

surveyed if they belong to concentrated industries.

In order to add information on employment, exports, investments, and entry and exit to

the CSS, I link the CSS with data from the German production census Official Firm Data

for Germany (Amtliche Firmendaten für Deutschland - AFiD). The production census is

also maintained by the German statistical offices and is obligatory for all manufacturing

firms with more than 20 employees. Furthermore, I merge the CSS with the European

Union Transaction Log (EUTL) in order to identify firms that are regulated by the EU

ETS.11 The resulting unbalanced panel comprises annual data of about 15,000 firms for

the years from 1999 to 2012. Due to the dynamic structure of the model, I only consider

firms that reported in at least two consecutive years. The industry classification system

corresponds to ISIC Revision 4.

10Similar data sets from other countries have been used in the productivity dispersion literature. Do-

raszelski and Jaumandreu (2013) for example employ the Spanish equivalent in order to examine the effect

of R&D on firm-level productivity
11See Appendix 2.A for more information on the merger of CSS, AFiD, and EUTL.
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The measure for output is the firm’s gross value added which is obtained from the

CSS and deflated using two-digit ISIC deflators.12 The labor input is constructed by

taking the annual average of the number of employees reported monthly in the production

census. The annual average offers a more detailed view on employment in comparison

to the number of employees collected at the reporting date of the CSS. I use detailed

investment data contained in the production census in order to compute the capital stock

for each firm based on the perpetual inventory method.13 The material expenditures stem

from the CSS and are deflated by type using deflators for the manufacturing sector.14

In addition, the firms participating in the CSS are asked to report R&D expenditures.

These comprise the cost of internal R&D activities, but also joint activities with external

research centers and laboratories. I consider a firm to conduct R&D activities, if the

total R&D expenditures are positive. The production census provides export revenues on

the firm-level. Analogously I consider a firm to be exporting if it reports positive export

revenues.

In Table 2.1, I report descriptive statistics to characterize the group of firms regulated

by the EU ETS and the group of unregulated firms. Firms regulated by the EU ETS are

on average larger in terms of output produced and inputs used. This is due to the design

of the EU ETS that only regulates large emitters. There is a relatively high number of

small and medium sized firms in the data set. Therefore, statistics on the control group

and the entire data set show positively skewed distributions on the main characteristics.15

On average, the firms of the manufacturing sector were expanding until the economic crisis

led to decreasing demand and contractions in 2009. From 2010 to 2012, the firms rapidly

recovered and continued to grow on average.

Table 2.2 shows the distribution of regulated and unregulated firms across two-digit

industries in the merged data set. While combustion installations that generate heat or

power can be found in most industries, the firms that operate process regulated installa-

12The data on price indices can be retrieved from the web portal of the Federal Statistical Office:

https://www-genesis.destatis.de/genesis/online Producer Price Index 61241-0004.
13This procedure has been used by many other papers estimating production functions, as for instance

Olley and Pakes (1996). See Appendix 2.B for details on the computation of the capital stock.
14See footnote 11.
15Table 2.9 in Appendix 2.A reports detailed descriptive statistics on the entire data set showing per-

centiles and higher moments of the distributions.
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tions are mainly concentrated in the industries manufacturing food (10), beverages (11),

paper (17), coke and refined petroleum products (19), chemicals (20), pharmaceutical

products (21), rubber and plastic (22), other nonmetallic mineral products (23), and basic

metals (24).

Table 2.1: Descriptive statistics

EU ETS firms Unregulated firms

Mean SD N Mean SD N

2000

Gross value added (EUR 1,000) 270,956 930,476 339 19,323 186,228 14,768

Output (EUR 1,000) 623,951 2,348,248 338 45,760 415,962 14,660

Capital stock (EUR 1,000) 277,470 851,531 339 15,825 117,142 14,700

Energy use (MWh) 1,139,299 4,880,839 339 21,816 293,735 14,767

Number of employees 2,339 8,429 339 248 1,661 14,767

R&D expenditure (EUR 1,000) 35,334 215,372 339 1,636 41,329 14,768

Exports (EUR 1,000) 417,213 2,165,096 339 21,343 324,984 14,767

2005

Gross value added (EUR 1,000) 296,848 1,173,846 383 19,685 178,177 13,475

Output (EUR 1,000) 711,907 2,778,015 381 50,103 443,246 13,223

Capital stock (EUR 1,000) 278,734 930,450 383 16,143 117,655 13,389

Energy use (MWh) 1,291,501 4,469,597 383 19,937 169,754 13,286

Number of employees 2,260 8,013 383 241 1,622 13,474

R&D expenditure (EUR 1,000) 44,205 253,976 383 1,913 45,681 13,475

Exports (EUR 1,000) 503,908 2,511,781 383 26,790 370,656 13,474

2010

Gross value added (EUR 1,000) 270,600 1,050,857 440 18,274 201,533 14,959

Output (EUR 1,000) 696,410 3,015,317 438 47,815 487,422 14,812

Capital stock (EUR 1,000) 254,298 814,679 440 14,310 109,372 14,884

Energy use (MWh) 1,595,464 6,518,306 440 17,217 131,277 14,818

Number of employees 1,936 7,032 440 220 1,460 14,944

R&D expenditure (EUR 1,000) 42,431 258,910 440 1,715 41,345 14,959

Exports (EUR 1,000) 540,497 3,056,996 440 26,037 372,078 14,945

Notes: Gross value added, output (production value), wages and salaries, R&D expenditure, exports and capital stock are denoted in

EUR 1,000. Energy use is denoted in MWh. Source: Research Data Centres of the Statistical Offices Germany (2014): Official Firm

Data for Germany (AFiD) - Cost Structure Survey, AFiD-Panel Industrial Units, and AFiD-Module Use of Energy, own calculations.
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Table 2.2: Number of observations by industry - the Cost Structure Survey

2005 2008 2012

NACE Industry Total Regulated Total Regulated Total Regulated

10 Food products 1,528 44 1,903 52 1,888 53

11 Beverages 285 8 260 10 245 11

12 Tobacco products 22 1 21 2 21 2

13 Textiles 424 5 414 7 333 4

14 Wearing apparel 268 0 215 0 185 0

15 Leather and related products 118 0 103 0 84 0

16 Wood and products of wood and cork 361 11 458 19 377 16

17 Paper and paper products 359 63 435 72 435 78

18 Printing and reproduction of recorded media 330 2 359 1 329 3

19 Coke and refined petroleum products 44 15 47 17 45 16

20 Chemicals and chemical products 729 49 854 56 846 54

21 Pharmaceutical products 184 8 201 8 185 6

22 Rubber and plastic products 806 10 978 9 812 14

23 Other nonmetallic mineral products 733 100 792 117 687 119

24 Basic metals 545 32 642 32 646 35

25 Fabricated metal products 1,522 2 2,149 4 1,907 2

26 Computer, electronic and optical products 694 5 831 4 694 4

27 Electrical equipment 808 4 970 4 980 4

28 Machinery and equipment n.e.c. 2,226 6 2,585 8 2,138 7

29 Motor vehicles, trailers, and semitrailers 663 10 701 9 541 9

30 Other transport equipment 257 5 238 5 212 5

31 Furniture 382 0 397 0 351 0

32 Other manufacturing 452 3 587 3 547 2

33 Repair and installation of mach. and equip. 118 0 108 0 623 1

– Total 13,858 383 16,248 439 15,111 445

Notes: Number of firms for the first year of Phase I of the EU ETS (2005), the first year of Phase II (2008) and the last year of Phase

II (2012) that is also the last year I observe. Source: Research Data Centres of the Statistical Offices Germany (2014): Official Firm

Data for Germany (AFiD) - Cost Structure Survey and AFiD-Panel Industrial Units, own calculations.
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2.5 Results

In this section, I first report the production function estimates based on the ACF approach

I described in Section 2.3.1. Secondly, I will show the results of the difference-in-differences

model I outlined in Section 2.3.2 in order to shed light onto the causal effect of the EU

ETS on firm-level productivity.

2.5.1 Production function estimates

I estimate value added production functions for two-digit industries within manufacturing

using data for the time period from 1999 to 2012. Table 2.3 reports the results of the ACF

model along with estimates based on standard OLS regressions, the total number of firms

and the total number of observations for the entire sample period.

The ACF model is implemented employing the general method of moments procedure

shown in Section 2.3.1. The standard errors are clustered at the firm-level and obtained

by applying the block bootstrap algorithm treating each set of firm observations together

as an independent and identical draw from the population of firms.16 The block bootstrap

algorithm takes into account that the multiple observations of a firm are correlated over

time in some unknown way and corrects for the two-step nature of the general method of

moments estimator.

The number of firms within the industries ranges between 253 (leather and related

products) and 6,760 (machinery and equipment) firms during the sample period from

1999 to 2012, while the total number of observations ranges between 1,582 (leather and

related products) and 31,085 (machinery and equipment). The precision of the estimates

tends to increase with the number of observations. All estimated coefficients of the ACF

model are statistically significant at conventional levels.

The production functions vary significantly across industries reflecting the heterogene-

ity within the manufacturing sector. All industries have in common that the coefficient

on labor is larger than the coefficient on capital. A comparison of the ACF and the OLS

parameters shows that for most industries, the ACF coefficient on capital is larger, while

16This approach has been first proposed by LP in this context. Subsequent studies that apply LP or ACF

follow this strategy, see e.g. De Loecker and Warzinski (2012), De Loecker (2013), and Collard-Wexler and

De Loecker (2015). More information on the bootstrap can be found in Horowitz (2001).
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Table 2.3: Output elasticities

OLS estimates ACF estimates

NACE Industry # Firms # Observ. Capital Labor Capital Labor

10 Food products 4,342 22,981 0.349
(0.004)

0.643
(0.005)

0.369
(0.024)

0.541
(0.015)

11 Beverages 664 3,889 0.137
(0.013)

0.985
(0.020)

0.181
(0.065)

0.949
(0.044)

13 Textile 1,089 6,030 0.183
(0.006)

0.885
(0.010)

0.195
(0.022)

0.867
(0.038)

15 Leather and related
products

253 1,582 0.249
(0.012)

0.834
(0.019)

0.237
(0.035)

0.839
(0.055)

16 Wood and products of
wood and cork

1,261 5,640 0.175
(0.006)

0.884
(0.010)

0.180
(0.028)

0.844
(0.038)

17 Paper and paper products 1,017 5,532 0.214
(0.007)

0.867
(0.010)

0.289
(0.034)

0.788
(0.052)

18 Printing and reproduction of
recorded media

1,207 4,704 0.152
(0.007)

0.900
(0.010)

0.257
(0.087)

0.613
(0.196)

20 Chemicals and chemical
products

1,707 10,311 0.241
(0.006)

0.820
(0.008)

0.258
(0.024)

0.779
(0.039)

22 Rubber and plastic products 2,652 11,864 0.183
(0.004)

0.881
(0.006)

0.198
(0.014)

0.865
(0.020)

23 Other nonmetallic
mineral products

2,061 10,836 0.249
(0.005)

0.792
(0.007)

0.225
(0.016)

0.820
(0.019)

24 Basic metals 1,269 8,088 0.176
(0.006)

0.868
(0.009)

0.190
(0.026)

0.855
(0.036)

25 Fabricated metal
products

5,791 24,835 0.148
(0.003)

0.926
(0.004)

0.144
(0.008)

0.925
(0.013)

27 Electrical equipment 2,610 11,807 0.161
(0.005)

0.909
(0.007)

0.209
(0.054)

0.834
(0.079)

28 Machinery and
equipment n.e.c.

6,760 31,085 0.092
(0.003)

0.994
(0.004)

0.091
(0.007)

0.988
(0.010)

29 Motor vehicles, trailers,
and semitrailers

1,553 8,451 0.164
(0.006)

0.897
(0.008)

0.164
(0.006)

0.886
(0.023)

31 Furniture 1,256 5,544 0.156
(0.006)

0.927
(0.009)

0.168
(0.050)

0.853
(0.089)

Notes: All parameter estimates are significant at the 5 percent level. Standard errors are computed by employing the block bootstrap
algorithm with 500 replications. I employ cluster bootstrap to obtain standard errors. Source: Research Data Centres of the
Statistical Offices Germany (2014): Official Firm Data for Germany (AFiD) - Cost Structure Survey and AFiD-Panel Industrial Units
own calculations.
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the ACF coefficient on labor is smaller. This is in line with the findings of OP and LP.

They show that the endogeneity of the input choice results in an upward or downward

bias depending on how fast a firm can adjust the input use. OLS coefficients on relatively

inflexible inputs such as capital tend to be biased towards zero, while coefficients on rela-

tively flexible inputs are positively biased. The returns to scale range from 0.87 (printing

and reproduction of recorded media) to 1.13 (beverages).

I compute the firm-level productivity as the residual from the production function as

described in Equation 2.8. Figure 2.1 shows the indexed mean productivity for two-digit

industries within manufacturing. The mean productivity evolves quite differently over

time across two-digit industries again reflecting the heterogeneity across industries within

manufacturing. While some industries record increasing mean productivity (e.g. food

products, electrical equipment, machinery and equipment, and motor vehicles, trailers, and

semitrailers), others show decreasing mean productivity (e.g. printing and reproduction

of recorded media and basic metals, and furniture).

The economic crisis did not affect manufacturing in Germany as seriously as in other

European countries. However, demand for German goods decreased significantly in 2009.

This development is also reflected in a drop in productivity of most two-digit industries.

Firms cannot smoothly adapt their input choice to demand shocks. Therefore, a rapid

decline in demand decreases capacity utilization and consequently productivity.

The different developments in productivity across industries are taken into account in

the second stage of my empirical analysis. The various specifications of the difference-

in-differences model always include industry and year fixed effects as well as a full set

of interaction terms. In this way, the model nonparametrically captures heterogeneous

developments in productivity across industries and over time.
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Figure 2.1: Indexed mean productivity (base year 1999)
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Notes: Source: Research Data Centres of the Statistical Offices Germany (2014): Official Firm Data for Germany (AFiD) - Cost

Structure Survey and AFiD-Panel Industrial Units, own calculations.
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2.5.2 Estimated treatment effects

Table 2.4 reports the results of the difference-in-differences model described in Section

2.3.2. The first column shows the estimates of Specification I that includes fixed effects

and full interaction terms on industry and year. Columns two and three report the results

for Specification II and Specification III that include an enhanced set of control variables.

The results of Specification IV that adds firm fixed effects are shown in the last column.

The displayed treatment effects can be interpreted as semi-elasticities.

Bertrand, Duflo, and Mullainathan (2004) point out that conventional standard errors

for difference-in-differences applications with long time series and a high serial correlation

in the outcome variable are inconsistent. Since the considered time series is rather long (14

years) and productivity is highly persistent, I refrain from applying conventional standard

errors. According to Bertrand, Duflo, and Mullainathan (2004) the bootstrap performs

well if the cross section is sufficiently large and the serial correlation in the data is taken

into account. I follow their recommendation and employ the block bootstrap algorithm in

order to obtain adequate standard errors for the estimated treatment effects clustered at

the firm-level.

Specifications I, II, and IV show a significant positive effect of the EU ETS on firm-

level productivity ranging between 0.5 and 0.7 percent during the first compliance period.

The estimated treatment effects for the second compliance periods are negative, but rather

small and statistically insignificant. In order to examine the parallel trend assumption,

I estimate the four specifications for the pretreatment time period from 1999 to 2002

treating 2001 as the implementation year of the EU ETS. The results of the pretreatment

analysis are report in the third row of Table 2.4. None of the estimated placebo effects

is statistically significant. Consequently, I fail to reject the hypothesis that the key iden-

tifying assumption holds strongly supporting the validity of the difference-in-differences

approach in this setting.

In addition to the average treatment effect for the entire compliance period, I also

estimate the annual effects of the EU ETS as shown in Equation 2.11 in order to investigate

variations in the impact over time. Figure 2.2 displays the results of the annual treatment

effects model. The horizontal line denotes the treatment effect while the horizontal bar

denotes the twofold standard deviation. Per year, four bars are shown corresponding to



2.5. RESULTS 45

the four specifications outlined above. Most estimated treatment effects are statistically

insignificant. However, the annual treatment effects of Phase I are slightly higher in

comparison to the pretreatment and Phase II years.

Table 2.4: Difference-in-differences treatment effects

I II III IV

Phase I 0.007∗∗

(0.003)
0.005∗

(0.003)
0.005

(0.003)
0.007∗∗

(0.003)

Phase II -0.000
(0.003)

-0.002
(0.003)

-0.001
(0.003)

-0.001
(0.003)

Pretreatment
analysis

0.005
(0.003)

0.004
(0.003)

0.005
(0.003)

(0.004)
(0.003

Fixed effects

Industry × × ×

Year × × × ×

Industry year inter-
action terms

× × × ×

Firm ×

Additional controls

Capital, labor, en-
ergy use, and materials

× × ×

Indicator for export
and RnD experience

× ×

# Firms
(1999-2012)

34,373 34,215 32,302 32,302

# Observations
(1999-2012)

173,178 172,065 153,823 153,823

Notes: Standard errors are computed by employing the block bootstrap algorithm with 500 replications. *** denotes significance at
the 99 percent level. ** denotes significance at the 95 percent level. * denotes significance at the 90 percent level. Source: Research
Data Centres of the Statistical Offices Germany (2014): Official Firm Data for Germany (AFiD) - Cost Structure Survey, AFiD-Panel
Industrial Units, and AFiD-Module Use of Energy, own calculations.
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Figure 2.2: Annual treatment effects
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Notes: Annual treatment effects and confidence bands (2 times standard error) for Specification I - Specification IV. Specification

III and Specification IV can only be estimated for the period from 2000 to 2012. I employ the block bootstrap algorithm with 500

replications to obtain robust standard errors. Source: Research Data Centres of the Statistical Offices Germany (2014): Official Firm

Data for Germany (AFiD) - Cost Structure Survey and AFiD-Panel Industrial Units, own calculations.
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2.6 Robustness checks

2.6.1 Heterogeneous treatment effects

The industries within the manufacturing sector differ with regard to many aspects. They

produce very different goods, face different market conditions on input and output markets

and face different kinds of regulation. As a consequence, the effect of the EU ETS on

the regulated firms might vary across industries. The average treatment effect over all

industries therefore does not provide the full picture of the impact of the EU ETS.

For this reason, I analyze the effect of the EU ETS at the two-digit industry level. I

focus on the industries manufacturing food products (10), paper and paper products (17),

chemicals and chemical products (20), rubber and plastic products (22), other nonmetallic

mineral products (23) as well as basic metals (24). These industries provide a sufficient

number of observations in the group of the regulated firms (see Table 2.2). I estimate

the difference-in-differences model depicted in Equation 2.9 and further investigate the

validity of the parallel trend assumption by estimating a placebo treatment effect during

the pretreatment period from 1999 to 2002 as described by Equation 2.10. The standard

errors are again obtained by applying the block bootstrap algorithm.

Table 2.5 reports the results for Specification I and II and Table 2.6 shows the results

for Specification III and IV, respectively. Considering the first compliance period, the

estimated treatment effects for the industries manufacturing food (10), paper (17), and

chemicals (20) are mostly positive, but statistically insignificant. During the second com-

pliance period, the effect of the EU ETS was statistically insignificant, but the signs varied

across the three industries. The estimated treatment effect was positive for the industries

producing food (10) and chemicals (20), while the effect was negative for the paper in-

dustry (17). The results for the industries producing rubber and plastic (22) and other

nonmetallic mineral products (23) indicate that the parallel trend assumption is violated

for some specifications. Therefore, I refrain from interpreting the results for these indus-

tries. The EU ETS had a significant positive effect on the firms of the industry producing

basic metals (24) during the first compliance period. The effect ranges between 2.4 and

2.9 percent. During the second compliance period, the EU ETS did not significantly influ-

ence the productivity of the regulated firms. For this industry, the pretreatment analysis

supports the parallel trend assumption.
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The subsample analysis sheds light on the heterogeneity of the treatment effect, how-

ever, this empirical strategy comes along with a reduction of the sample size. The number

of firms ranges from 1,707 (paper industry, 17) to 4,342 (food industry, 10) in the period

from 1999 to 2012, while the total number of observation ranges from 10,310 (paper in-

dustry, 17) to 22,981 (food industry, 10). As a consequence, the precision of the estimates

decreases in comparison to the analysis using the full sample.

The results of the subsample analysis support the hypothesis that the effect of the EU

ETS is not homogeneous across industries.

Table 2.5: Difference-in-differences treatment effects - subsample analysis (I/II)

I II

NACE Industry Pre-
treatment

Phase I Phase II Pre-
treatment

Phase I Phase II

10 Food prod-
ucts

0.019
(0.017)

0.002
(0.009)

0.002
(0.010)

0.019
(0.018)

0.001
(0.009)

0.003
(0.010)

17 Paper and pa-
per products

0.013
(0.010)

0.009
(0.012)

-0.004
(0.013)

0.014
(0.010)

0.008
(0.012)

-0.005
(0.013)

20 Chemicals and
chemical
products

-0.001
(0.005)

0.002
(0.007)

0.007
(0.007)

-0.001
(0.005)

0.002
(0.006)

0.005
(0.006)

22 Rubber and
plastic prod-
ucts

0.002
(0.007)

0.005
(0.005)

0.011∗

(0.006)
0.014

(0.010)
0.001

(0.006)
0.007

(0.005)

23 Other non-
metallic min-
eral products

-0.004
(0.004)

-0.002
(0.005)

-0.001
(0.004)

-0.006
(0.004)

-0.004
(0.004)

-0.003
(0.004)

24 Basic metals 0.001
(0.004)

0.029∗∗∗

(0.007)
-0.005
(0.010)

-0.001
(0.004)

0.026∗∗∗

(0.007)
-0.009
(0.010)

Notes: Standard errors are computed by employing the block bootstrap algorithm with 500 replications. *** denotes significance at
the 99 percent level. ** denotes significance at the 95 percent level. * denotes significance at the 90 percent level. Source: Research
Data Centres of the Statistical Offices Germany (2014): Official Firm Data for Germany (AFiD) - Cost Structure Survey, AFiD-Panel
Industrial Units, and AFiD-Module Use of Energy, own calculations.
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Table 2.6: Difference-in-differences treatment effects - subsample analysis (II/II)

III IV

NACE Industry Pre-
treatment

Phase I Phase II Pre-
treatment

Phase I Phase II

10 Food prod-
ucts

0.022
(0.018)

0.004
(0.010)

0.006
(0.011)

0.021
(0.017)

0.012
(0.009)

0.008
(0.010)

17 Paper and pa-
per products

0.012
(0.009)

0.008
(0.013)

-0.006
(0.014)

0.013
(0.009)

0.012
(0.013)

-0.005
(0.007)

20 Chemicals and
chemical prod-
ucts

0.002
(0.004)

-0.001
(0.006)

0.003
(0.006)

0.001
(0.004)

0.001
(0.006)

0.005
(0.007)

22 Rubber and
plastic prod-
ucts

0.026∗∗

(0.012)
-0.002
(0.007)

0.004
(0.006)

0.020∗

(0.010)
0.002

(0.006)
0.008

(0.006)

23 Other non-
metallic min-
eral products

-0.007
(0.004)

-0.004
(0.005)

-0.001
(0.004)

-0.007∗∗

(0.004)
0.002

(0.004)
-0.002
(0.004)

24 Basic metals 0.002
(0.004)

0.025∗∗∗

(0.007)
-0.011
(0.010)

-0.002
(0.004)

0.024∗∗∗

(0.008)
-0.013
(0.010)

Notes: Standard errors are computed by employing the block bootstrap algorithm with 500 replications. *** denotes significance at
the 99 percent level. ** denotes significance at the 95 percent level. * denotes significance at the 90 percent level. Source: Research
Data Centres of the Statistical Offices Germany (2014): Official Firm Data for Germany (AFiD) - Cost Structure Survey, AFiD-Panel
Industrial Units, and AFiD-Module Use of Energy, own calculations.
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2.6.2 Relaxing functional form assumptions

The parametric difference-in-differences model described in Section 2.3.2 relies on func-

tional form assumptions on the treatment and outcome model that might affect the esti-

mated treatment effect. When including observable firm characteristics into the difference-

in-differences model, I implicitly assume a linear relationship between the control variables,

the treatment, and the outcome. In order to relax this assumption, I follow Fowlie, Hol-

land, and Mansur (2012) and combine the difference-in-differences framework with non-

parametric nearest neighbor matching. Based on the firm characteristics I observe, I match

treated firms with similar untreated firms. The resulting control group only contains firms

that are similar to the firms of the treatment group.

Following Heckman, Ichimura, and Todd (1997) and Heckman, Ichimura, Smith, and

Todd (1998) the difference-in-differences matching estimator is described by

τ̂ =
1

N

∑
j∈I1

{
(ln(Productivity)jt′(1)− ln(Productivity)jt0(0))

−
∑
k∈I0

wjk(ln(Productivity)kt′(0)− ln(Productivity)kt0(0))
}
.

(2.12)

The set of firms regulated by the EU ETS is defined as I1, while the unregulated firms are

collected in set I0. There are N regulated firms indexed by j, the unregulated firms are

indexed by k. The weight wjk takes the value one, if a firm of the control has been matched

and zero otherwise. Following Fowlie, Holland, and Mansur (2012), I identify the nearest

neighbor using the Mahalanobis distance to measure similarity between firms. I perform

matching with replacement linking each treated firm with one and five similar firms of the

control group. Similar firms are identified using information of the pretreatment year 2000

on output, capital stock, labor, energy use, material use as well as indicators for export

and R&D experience. Due to the strong heterogeneity across industries, I exactly match

on the two-digit industry classification.

Similarly to the parametric difference-in-differences approach, I assume that the mean

productivities of treatment and control group evolve in a parallel fashion over time in

the absence of the regulation by the EU ETS. In order to investigate the validity of this

assumption, I conduct a pretreatment analysis using data from 1999 to 2002 with a placebo

treatment in 2001.

Table 2.7 reports the results of the pretreatment analysis and the estimated treatment
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effects based on the difference-in-differences matching estimator. The estimates are based

on a comparison between the pretreatment period from 2001 to 2002 with each compli-

ance period of the EU ETS. I compute standard errors that are robust with respect to

autocorrelation and heteroscedasticity following Abadie and Imbens (2006). The placebo

treatment effects estimated for the year 2001 are close to zero and statistically insignificant.

The treatment effect estimated for the first compliance period is statistically different from

zero. When matching with the nearest neighbor, I obtain an average treatment effect of

2.7 percent. The preferred specification of the parametric difference-in-differences model

provides a productivity increasing effect of 0.7 percent. Adding the five closest neighbors

to the control group reduces the treatment effect to 1.5 percent. Also for the second com-

pliance period, the nearest neighbor matching shows significantly positive estimates. The

treatment effect ranges between 1.2 percent (one neighbor) and 1.4 (five neighbors). These

results differ from the results of my main model that does not provide any evidence for

a significant effect of the EU ETS during the second compliance period. These differing

outcomes might be explained by the different designs of the two identification strategies.

Applying the matching algorithm, I avoid the functional assumptions of the parametric

difference-in-differences model and I only compare the regulated firms with very similar

unregulated firms. Furthermore, I am only able to compare firms that stay in the sample

during the considered time periods from 1999 to 2008 and from 1999 to 2012, respectively.

Apart from the average treatment effect for each compliance period, I also estimate

annual treatment effects in order to investigate the development of the treatment effect

over time. The pretreatment year 2000 serves as the base year for this approach. For the

pretreatment years from 2001 to 2004, I expect the estimated treatment effects not to be

statistically different from zero. Figure 2.3 shows the annual treatment effects and the

corresponding confidence bands. From 2001 to 2004, the estimated treatment effect is not

significantly different from zero. During the first compliance period, the confidence bands

slightly widen, however the estimated treatment effects are statistically different from

zero. During the first compliance period, the estimated treatment effect ranges between

1.4 percent (2006) and 3.8 percent (2007) when matching with the nearest neighbor and

between 1.1 percent (2006) and 1.8 percent (2008) when matching with the five nearest

neighbors. The estimated treatment effects for the second compliance period are closer to

zero and statistically insignificant.
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The results of the difference-in-differences nearest neighbor matching approach support

the results of the parametric difference-in-differences model.

Table 2.7: Nonparametric difference-in-differences treatment effects

Pretreatment
analysis

Phase I Phase II

One neighbor 0.006
(0.004)

0.027∗∗∗

(0.009)
0.012∗

(0.006)

Five neighbors 0.004
(0.003)

0.015∗∗∗

(0.005)
0.014∗∗∗

(0.005)

# Observations 11,609 3,212 6,757

Notes: The computed standard errors are based on Abadie and Imbens (2006). *** denotes significance at the 99 percent level. **
denotes significance at the 95 percent level. * denotes significance at the 90 percent level. Source: Research Data Centres of the
Statistical Offices Germany (2014): Official Firm Data for Germany (AFiD) - Cost Structure Survey, AFiD-Panel Industrial Units,
and AFiD-Module Use of Energy, own calculations.

Figure 2.3: Annual treatment effects - NN matching
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2.7 Concluding discussion

Debates on potential detrimental effects of emissions trading on economic performance

have accompanied the first two compliance periods of the EU ETS. This paper investi-

gated the causal effect of the EU ETS on the total factor productivity of regulated firms.

The productivity is measured as the residual from a structural production function esti-

mate that is robust with regard to endogeneity and allows the EU ETS to simultaneously

influence input choice and the dynamic productivity process. I identify the effect of the

EU ETS on firm-level productivity by exploiting treatment variation that occurs due to

the design of the EU ETS. In order to release small and medium sized emitters of car-

bon dioxide from the regulatory burden, only large emitters have been included into the

EU ETS. I examine changes in the firm-level productivity by comparing regulated and

unregulated firms before and after the implementation of the EU ETS. In particular, I

estimate a variety of parametric difference-in-differences models including different sets

of explanatory variables and fixed effects in order to eliminate the influence of potential

confounding factors.

The estimated treatment effects for the first compliance period of the EU ETS are

mostly statistically significant and positive. No effect of the EU ETS could be observed

for the second compliance period using the parametric difference-in-differences model.

Estimated treatment effects based on a combination of the difference-in-differences frame-

work and nearest neighbor matching support the findings for the first compliance period,

but also show a significant positive effect of the EU ETS on productivity during the second

compliance period.

So far, there is no scientific study investigating the effect of the EU ETS on the total

factor productivity of regulated firms. The very recent ex-post evaluations of the EU ETS

mostly find a significant reduction of carbon dioxide emissions (Petrick and Wagner, 2014;

Wagner, Muûls, Martin, and Colmer, 2014; Klemetsen, Rosendahl, and Jakobsen, 2016)

and emission intensity (Petrick and Wagner, 2014; Jaraitė and Di Maria, 2016) caused by

the EU ETS. With regard to other firm characteristics, Petrick and Wagner, 2014 find a

positive of the EU ETS on the revenue of German firms and Klemetsen, Rosendahl, and

Jakobsen, 2016 find a positive effect on value added and labor productivity. Jaraitė and

Di Maria (2016) provide empirical evidence for a positive effect of the EU ETS on the
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renewal of installed capital stock. Wagner, Muûls, Martin, and Colmer, 2014 find that the

EU ETS had a negative effect on employment. Calel and Dechezleprêtre (2016) investigate

the effect of the EU ETS on patenting and find that it spurred low-carbon patents.

The results of this study are basically in line with these findings that are based on data

from different European countries. Investments in more efficient capital stock triggered

by the EU ETS could have reduced the use of static inputs such as energy and labor and

thus might have increased the overall productivity. Innovative new products that require

less energy use in the production process might have increased productivity and output

as well.

There are several factors that might have influenced the analysis and should be kept

in mind when discussing the results and their implications. First, I would like to point

to the fact that the productivity measure employed in this study is revenue based. I

use specific two-digit price indicators to deflate outputs produced and inputs employed,

however there might be still changes driven by price developments. This has implications

for the interpretation of the causal effect of the EU ETS. If firms are able to pass additional

cost on to customers, then the higher output price due to a cost pass-through could be

reflected as a productivity gain. As shown by Bushnell, Chong, and Mansur (2012) and

Fabra and Reguant (2014), emissions costs are passed through to electricity prices by

utilities. It is likely that at least in some industries of the manufacturing sector firms are

also able to pass through costs to product prices. A solution to this problem would be

to estimate a quantity based productivity measure based on physical units of inputs and

outputs. The estimation of a quantity based production function for multi-product firms

is in general feasible (De Loecker, Goldberg, Khandelwal, and Pavcnik, 2016). However,

this approach requires a sufficient number of single-product firms within narrowly defined

industries. Using only German data, I do not observe enough single-product firms in order

to estimate such a model.

A further issue that might influence the results of my analysis is the exit of firms caused

by the EU ETS. If the EU ETS forced unproductive regulated firms out of the market,

then the average productivity would increase in the group of the regulated firms even

if the active firms remained on the same productivity level. Regrettably, the CSS is an

unbalanced panel similar to the data sets used in many other studies of the productivity

dispersion literature, such as Doraszelski and Jaumandreu (2013). The design of the
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CSS impedes a clear distinction between the exit from the market and the end of the

obligation to participate in the survey. However, examining the EUTL data I do not

observe significant attrition among the EU ETS regulated firms.

The second compliance period of the EU ETS coincides with the world economic crisis.

In 2009, output produced and inputs employed decreased in the German manufacturing

sector. Firms recovered quickly in the subsequent years, however consequences of the

crisis might conflate with the effect of the EU ETS during the second compliance period.

I assume that the crisis did not affect firms from the treatment and control group differently

conditional on fixed effects and firm characteristics. Among other control variables, I

include capital stock, employment, energy use, and material use into the difference-in-

differences model in order to capture the variation caused by the crisis.

In this study, I focus on the direct effect of the EU ETS. I abstract from any indirect

effects, e.g. through equilibrium effects or the increase of electricity prices due to the EU

ETS.

Future research could tackle some of these issues. For example, one could investigate

the effects of the EU ETS on industry dynamics by employing structural approaches to

ideally European firm-level data.
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I thank Andreas Löschel, Ulrich Wagner, Kathrine von Graevenitz, Claudio Baccianti,

Maximilian Auffhammer and Sofia Berto Villas-Boas for suggestions and insightful com-

ments. I am indebted to the Research Data Centre (FDZ) of the Federal Statistical Office

and the Statistical Offices of the German Länder for granting me access to the AFiD data

and for the use of their research facilities, in particular Michael Rößner for his advice and
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2.9 Appendices

Appendix 2.A. Additional information on data and descrip-

tive statistics

2.A.1. EUA price development

Appendix A.1. provides additional information on the EUA price development. Figure 2.4

shows the price series of the ICE-ECX EUA front year futures with the closest maturity.

Figure 2.4: EUA prices 2005 - 2013 (in EUR)
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2.A.2. Free allocation and verified emissions

Appendix A.2. provides information on the free allocation and the verified emissions of

firms in the dataset. Table 2.8 shows the total amount of grandfathered EUAs and the

total amount of verified emissions for two digit industries.

Table 2.8: Free allocation and verified emissions (in t CO2)

Phase I Phase II

NACE Industry Free al-
location

Verified
emis-
sions

Balance Free al-
location

Verified
emis-
sions

Balance

10 Food products 10,730.32 9,695.56 1,034.76 21,471.65 18037.63 3434.02

11 Beverages 448.38 446.22 2.16 862.98 718.35 144.63

12 Tobacco products � � � � � �

13 Textiles � � � � � �

14 Wearing apparel 0 0 0 0 0 0

15 Leather and
related products

0 0 0 0 0 0

16 Wood and prod-
ucts of wood and
cork

1,805.56 575.27 1,230.29 5,320.81 1,029.93 4,290.88

17 Paper and paper
products

21,398.24 17,597.27 3,800.97 36,300.12 26,661.00 9,638.12

18 Printing and
reproduction of
recorded media

� � � � � �

19 Coke and refined
petroleum prod-
ucts

77,947.19 77,925.31 21.88 134,922.3 124,959.69 9,962.61

20 Chemicals and
chemical prod-
ucts

38,861.04 30,589.69 8,271.35 10,1483.09 87,533.43 13,949.66

21 Pharmaceutical
products

2,276.38 1,390.66 885.73 3,108.41 2,040.37 1,068.03

22 Rubber and plas-
tic products

1,130.28 1,000.44 129.85 1,775.60 1,463.27 312.34

23 Other non-
metallic mineral
products

90,831.29 79,230.95 11,600.34 156,617.63 137,016.66 19,600.97

24 Basic metals 112,048.83 101,291.07 10,757.76 264,550.73 164,814.81 99,735.92

25 Fabricated metal
products

� � � � � �

26 Computer, elec-
tronic and optical
products

� � � � � �

27 Electrical equip-
ment

� � � � � �

28 Machinery and
equipment n.e.c.

� � � � � �

29 Motor vehicles,
trailers, and
semi-trailers

8,853.423 8,154.973 698.45 12,476.513 14,623.63 -2,147.117

30 Other transport
equipment

� � � � � �

31 Furniture 0 0 0 0 0 0

32 Other manufac-
turing

� � � � � �

33 Repair and instal-
lation of mach.
and equip.

� � � � � �

Notes: � marks statistics that have not been released by the statistical offices due to the low number of observations. Source:
Research Data Centres of the Statistical Offices Germany (2014): Official Firm Data for Germany (AFiD) - Cost Structure Survey
and AFiD-Panel Industrial Units, own calculations.
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2.A.3. Matching AFiD, CSS, and EUTL

The different internal data sets of the Statistical Offices Germany, such as AFiD and

CSS, can be easily merged via plant and firm-level identifiers. However, it requires some

effort to match external data to AFiD and CSS, since the information on firm identifiers

and names is not accessible for researchers. I match AFiD data on the firm-level with

aggregated firm-level data from the EU Transaction Log for the years from 2005 to 2012

using the commercial register number and the value added tax number. I am able to

match 77 percent (813 firms) of the firms in the EUTL with AFiD. The 238 firms that

are not matched mainly belong to the energy, public, or service sector and thus are not

contained in the production census for manufacturing.
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2.A.4. Descriptive statistics - full sample

Table 2.9 reports additional descriptive statistics on the full sample.

Table 2.9: Additional descriptive statistics

Mean SD Skewn Kurtosis p10 p50 p90 N

2000

Gross value added 24,969.77 233,803.09 34.88 1,436.37 1,111.46 4,473.50 36,967.21 15,107

Output 58,790.54 548,088.98 48.64 3,017.09 2,077.68 10,260.49 96,753.55 14,998

Capital stock 21,722.82 176,689.16 33.88 1,380.38 455.93 3,545.52 34,412.70 15,039

Wages and salaries 12,995.41 116,283.62 47.35 2,665.08 797.66 2,868.15 22,520.11 15,106

Energy use 46,893.63 803,001.62 60.14 4,767.93 164.10 1,660.84 30,951.67 15,106

Number of employees 294.68 2,093.58 45.16 2,458.74 27.75 85.67 547.83 15,106

R&D expenditure 2,392.66 52,273.32 48.67 2,686.61 0 0 975.5043 15,107

Exports 30,226.70 459,974.70 49.82 2,919.78 0 1,111.121 35,350.72 15,106

2005

Gross value added 27,345.33 266,307.21 39.93 2,011.60 1,173.94 4,987.07 39,760.41 13,858

Output 68,637.96 646,894.49 49.06 2,956.55 2,287.86 11,930.16 110,994.73 13,604

Capital stock 23,445.80 198,335.76 38.00 1,769.07 480.71 3,605.26 36,694.26 13,772

Wages and salaries 13,293.17 118,987.17 46.27 2,522.02 771.88 2,957.47 22,089.02 13,857

Energy use 55,565.39 793,966.15 42.11 2,313.17 275.40 2,135.74 36,675.84 13,669

Number of employees 296.61 2,106.77 44.87 2,419.63 28.25 88.92 531.25 13,857

R&D expenditure 3,082.25 62,091.20 44.90 2,293.96 0 0 1,541.87 13,858

Exports 39,977.06 560,038.10 46.71 2,517.40 0 2,106.06 48,757.09 13,857

2010

Gross value added 25,483.97 269,640.70 39.65 1,836.76 1,149.20 4,582.03 34,591.33 15,399

Output 66,443.37 709,260.71 57.04 3,867.12 2,309.90 11,687.90 106,083.33 15,250

Capital stock 21,201.18 179,555.17 39.14 1,909.50 451.18 3,404.83 33,839.90 15,324

Wages and salaries 11,785.77 105,233.78 47.18 2,613.07 749.72 2,679.64 19,384.89 15,385

Energy use 62,728.99 1,144,134.97 51.02 3,124.93 294.94 2,136.16 35,485.39 15,258

Number of employees 269.29 1,887.62 46.79 2,628.07 30.00 85.08 479.58 15,384

R&D expenditure 2,878.184 60,147.87 46.24 2,480.41 0 0 1,389.11 15,399

Exports 40,749.75 639149.50 50.55 2918.14 0 2,050.15 48,962.84 15,385

Notes: Gross value added, output (production value), wages and salaries, R&D expenditure, exports and capital stock are denoted in

EUR 1,000. Energy use is denoted in MWh. Source: Research Data Centres of the Statistical Offices Germany (2014): Official Firm

Data for Germany (AFiD) - Cost Structure Survey, AFiD-Panel Industrial Units, and AFiD-Module Use of Energy, own calculations.
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Appendix 2.B. Capital stocks for the German production

census

Information on capital stocks is an important ingredient for several applications in em-

pirical economic research - especially productivity analysis. The official production cen-

sus of the German manufacturing sector (Amtliche Firmendaten für Deutschland; AFiD)

comprises rich information on investments on the plant and the firm-level, but does not

include information on capital stocks. In order to remedy this shortcoming, I compute

capital stocks employing the perpetual inventory method (PIM).

The basic formula of the perpetual inventory method is

Kt = Kt−1(1− δ) + It, (2.13)

where K denotes capital stock, δ the geometric depreciation rate and I the investment.

From the basic formula one can derive the initial capital stock K1.

K1 = I0 + I−1(1− δ) + I−2(1− δ)2 + ... (2.14)

K1 =
∞∑
s=0

Is(1− δ)s (2.15)

I follow a notation that has been also used by earlier empirical studies as for instance Hall

and Mairesse (1995). I assume the real investments to grow by the rate g.

K1 = I0

∞∑
s=0

[
(1− δ)
(1 + g)

]s
(2.16)

K1 = I0
(1 + g)

(g + δ)
(2.17)

Hence, the capital at the beginning of the first period is defined by

K1 = I1
1

(g + δ)
(2.18)

The PIM has been extensively used in studies that analyze sector and country level data.

In principle, it also can be applied for the computation of capital stocks based on micro

level data. However, turning from aggregate data toward micro data creates some issues

that have to be considered: First, investments are lumpy, i.e. investments highly fluctuate

over time. This property of investments at the plant and firm level creates difficulties to
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compute the initial capital stocks. Considering this, I compute the average of It over all

time periods available in order to estimate I1.

Î1 =

∑n
t=0

It+1

(1+i)t

n
(2.19)

This leads us to the second issue that has to be considered when applying the PIM on

micro data: It requires the observation of single agents (plants, firms, etc) over several

time periods. For AFiD this issue is not a problem, since the investment data is census

data. The resulting data set is a panel giving information for each year from 1995 to 2012.

Otherwise it would be problematic to compute the initial capital stock. The growth rate

of capital g and the depreciation rate δ can either be assumed to take a certain value or it

can be estimated for each industry based on aggregate data. I follow the latter approach

and use aggregated data at the two-digit industry level and compute industry specific

average growth rates and depreciation rates.

In order to estimate the capital stock I use the firm-level investment data from the

AFiD-Panel Industrial Units comprising investment in machinery and equipment, invest-

ment in buildings, and investment in property without buildings. I deflate the investments

using two-digit industry-level deflators for machinery and equipment as well as general de-

flators for buildings and property without buildings. Starting from K1 I plug the firm

specific investments and the industry specific time-varying depreciation rates into Equa-

tion 2.13 in order to compute the entire time series of the firm’s capital stock.

Apart from the AFiD-Panel Industrial Units, I exploit aggregate data at the two-digit

industry level. These aggregate data can be retrieved via the Destatis portal GENESIS.17

In particular I used the tables 81000-0107 National Accounts Depreciation, 81000-0115

Gross Investment, 81000-0116 Gross Capital Stock, 81000-0117 Net Capital Stock, and

61262-0001 Price Index Property in order to compute the growth rates, the depreciation

rates and the deflators.

Since the focus of this study lies on the firm-level, I compute the capital stocks for

firms. The method can be also employed to estimate capital stocks at the plant level.

Table 2.10 reports descriptive statistics of the capital stock for firms in my sample.

17https://www-genesis.destatis.de/genesis/online
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Table 2.10: Descriptive statistics capital stock

Mean SD Skewn Kurtosis p10 p50 p90 N

1999 21,146.23 172,173.5 34.12 1,386.98 445.00 3,496.39 33,492.84 15,125

2000 21,722.82 176,689.2 33.88 1,380.38 455.93 3,545.52 34,412.70 15,039

2001 23,070.89 183,951.9 32.97 1,307.05 483.09 3,742.21 36,520.37 14,193

2002 23,910.89 190,909.2 32.59 1,269.70 498.21 3,867.37 37,574.70 13,603

2003 23,476.19 191,567.4 34.13 1,401.42 474.83 3,648.04 36,643.93 14,460

2004 23,071.02 191,259.8 37.10 1,684.88 472.18 3,574.86 36,549.22 14,270

2005 23,445.8 198,335.8 38.00 1,769.07 480.71 3,605.26 36,694.26 13,772

2006 23,777.36 197,148.1 37.34 1,719.16 484.33 3,666.73 37,776.86 13,405

2007 23,906.36 194,193.5 36.75 1,676.67 484.88 3,725.18 38,495.00 13,161

2008 20,665.96 174,540.6 40.26 2,021.59 450.68 3,340.48 33,742.33 16,088

2009 21,412.52 180,442.9 40.08 2,011.87 454.33 3,440.60 34,780.25 15,714

2010 21,201.18 179,555.2 39.14 1,909.50 451.18 3,404.83 33,839.90 15,324

2011 21,480.04 184,980.6 37.12 1,736.09 448.65 3,402.04 32,790.13 14,965

2012 21,393.36 189,500.1 37.90 1,795.70 433.42 3,146.24 33,135.09 14,926

Notes: Gross value added, output (production value), wages and salaries, R&D expenditure, exports and capital stock are denoted in

EUR 1,000. Energy use is denoted in MWh. Source: Research Data Centres of the Statistical Offices Germany (2014): Official Firm

Data for Germany (AFiD) - Cost Structure Survey, AFiD-Panel Industrial Units, and AFiD-Module Use of Energy, own calculations.
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Chapter 3

The impact of the EU ETS on economic

performance of German manufacturing firms

3.1 Introduction

The European Union (EU) aims at steering the European economy toward a competitive

low-carbon pathway by 2050. Key to the EU’s strategy is the EU Emissions Trading

System (EU ETS) which was established in 2005 in order to cost-effectively curb green-

house gas emissions from industrial installations. It is the world’s largest international

cap-and-trade system encompassing about 45 percent of the total European greenhouse

gas emissions by regulating more than 11,000 installations in 31 countries. Despite the

importance of the EU ETS, empirical evidence on its causal effects on the behavior of

regulated firms is still scarce.

The EU ETS puts a price on greenhouse gas emissions from regulated installations

and thus influences the production and investment decisions of regulated firms. There is

concern that the EU ETS creates disadvantages for regulated firms exposed to competition

from outside the EU ETS countries. In particular, firms from the manufacturing sector

that sell their goods and services on global markets might be vulnerable due to additional

cost imposed through the EU ETS. In this paper, we study the causal effect of the EU

ETS on the economic performance of regulated firms from German manufacturing using

official firm-level data.

For the evaluation of the EU ETS, the German manufacturing sector is a case of

particular interest for two reasons. First, Germany is the largest economy and the largest

65
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emitter of greenhouse gas in the EU. In 2013, Germany emitted about 21 percent of the

EU’s total greenhouse gas emissions amounting to 976.3 million tonnes of CO2 equivalent

(Eurostat, 2016). Second, German manufacturing is export oriented and therefore may

be especially affected by putting a price on carbon. In 2013, the German manufacturing

sector exported almost 50 percent of the produced goods and services (Destatis, 2015).

A few very recent and mostly unpublished papers shed light on the causal effects of

the EU ETS on regulated firms. Petrick and Wagner (2014) investigate the impact of

the EU ETS on emissions, output, employment, and exports of manufacturing firms in

Germany. They combine a difference-in-differences approach with semiparametric match-

ing and weighted regressions in order to isolate the effect of the EU ETS. They show

that the EU ETS reduced emissions of regulated firms by 20 percent during the years

from 2007 to 2010. They do not find a significant negative effect of the EU ETS on em-

ployment, output, and exports. Following a similar approach, Wagner, Muûls, Martin,

and Colmer (2014) show that the EU ETS reduced emissions of French manufacturing

plants, by 15 to 20 percent on average between 2007 and 2010. They also find a signif-

icant decrease in employment in regulated plants of about 7 percent during the second

compliance period of the EU ETS. Jaraitė and Di Maria (2016) investigate the impact

of the EU ETS on Lithuanian firms employing nearest neighbor and kernel matching.

They find that the EU ETS did not reduce CO2 emissions, but improved CO2 intensity.

They do not find a significant effect on profits. However, regulated firms in Lithuania

retired parts of their less efficient capital stock and made additional investments in the

end of the second compliance period. Klemetsen, Rosendahl, and Jakobsen (2016) use

a parametric difference-in-differences approach in order to isolate and quantify the effect

of the EU ETS on emissions, emission intensity, value added, and labor productivity of

Norwegian plants. They find that the EU ETS decreased emissions and at the same

time increased value added and labor productivity during the second compliance period.

Calel and Dechezleprêtre (2016) examine the effect of the EU ETS on on technological

change, in particular patenting. They combine patent and commercial firm-level data for

Europe with data from the EU ETS. Using a matching approach, they find that the EU

ETS increased the number of low-carbon patents among regulated firms by 10 percent

between 2005 and 2010 while not crowding out patenting for other technologies. Lutz

(2016) estimates a structural production function that allows for endogenous productivity
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and employs a parametric difference-in-differences approach in order to quantify the effect

of the EU ETS on firm-level productivity. He shows that the EU ETS had a significant

positive impact on productivity during the first compliance period. 1

We aim to contribute to the literature investigating the effect of the EU ETS on the

economic performance of German manufacturing firms. So far, the literature examines

the impact of emissions trading on output and the use of inputs separately or assesses

firm performance relative to the mean production function of an industry. In contrast, we

use a measure of economic performance that relates input use and produced output and

assesses performance relative to the most efficient firms of the industry: We estimate firm-

level technical efficiencies based on the stochastic production frontier approach by Aigner,

Lovell, and Schmidt (1977).2 The technical efficiency can be interpreted as distance to the

frontier of the production set that is determined by the efficient firms of the corresponding

industry. Subsequently, we employ different identification strategies in order to identify

and estimate the effect of the EU ETS on the technical efficiency of regulated firms.

Following the studies depicted above, we exploit the installation-level inclusion criteria

of the EU ETS that create variation in treatment. The EU ETS only covers emissions of

installations with a capacity that exceeds thresholds determined by legislation. As a conse-

quence, only firms operating large installations are covered by the EU ETS. The inclusion

criteria open the avenue for identifying the effects of the EU ETS based on an array of

suitable identification strategies. We use a difference-in-differences framework combined

with an array of parametric conditioning strategies and nearest neighbor matching in or-

der to identify and estimate the effect of the EU ETS on the economic performance of the

regulated firms.

We use official firm-level data that is collected by the German statistical offices. It

comprises general characteristics, such as revenues, value added, employment, and invest-

ment and is particularly detailed with regard to fuel and electricity use. The data serves

as a basis for many official German governmental statistics and includes all manufacturing

firms with more than 20 employees. Our panel covers two pretreatment years (2003-2004)

1Our review of the recent literature focuses on studies that aim to investigate the causal effect of the

EU ETS on regulated firms. For a comprehensive overview of the literature on the EU ETS, we refer to

Martin, Muûls, and Wagner (2016)
2This approach has been used in several studies that evaluate regulatory intervention, such as Knittel

(2002).
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as well as the first (2005-2007) and the second compliance period (2008-2012) of the EU

ETS.

Applying a difference-in-differences approach combined with parametric conditioning

strategies to the full census, we do not find a significant effect of the EU ETS on the

performance of regulated firms. In order to investigate potential heterogeneous treatment

effects across industries, we conduct a subsample analysis following the same design. We

estimate the treatment effect on the two-digit level for the industries manufacture of food

products (10), manufacture of paper and paper products (17), manufacture of chemicals

and chemical products (20), and manufacture non-metallic mineral products (23). We find

that some industries remain unaffected, while others display economically and statistically

significant impact of the EU ETS on technical efficiency. The EU ETS had a significant

negative impact on the technical efficiency of the regulated firms. In other words, the EU

ETS decreased the average distance to the frontier or increased the economic performance

of regulated firms.

In addition, we employ nearest neighbor matching to account for observable differences

between treated and untreated firms. This alternative identification strategies allows us

to relax the parametric assumptions of the standard difference-and-differences approach

that are applied to the treatment and outcome model. The results of nearest neighbor

matching indicate a statistically and economically significant negative effect of the EU

ETS on the technical efficiency of the regulated firms during the first compliance period.

The remainder of our paper is organized as follows. In Section 3.2, we describe the

regulatory framework of the EU ETS. Section 3.3 outlines the identification strategy em-

ployed to isolate the effect of the EU ETS on technical efficiency. Section 3.4 describes the

German production census and additional data sources. Section 3.5 reports the results

and Section 3.6 concludes.



3.2. THE EU ETS 69

3.2 The EU ETS

The EU ETS is the largest multinational cap-and-trade system covering around 45 percent

of the EU’s greenhouse gas emissions. As core instrument of EU climate policy, it was

enacted by Directive 2003/87/EC in October 2003 and finally implemented in January

2005 (European Parliament and Council, 2003). The EU ETS regulates the emissions of

more than 11,000 energy-intensive industrial installations across the 31 countries of the

European Economic Area (EEA)3.

The EU ETS is organized in temporally separated compliance periods. Phase I (2005

- 2007) is marked as pilot or introductory phase. Since only few member states had expe-

riences with emissions trading, the European Commission accorded regulators and firms

time to adapt to this new instrument.4 Phase II (2008 - 2012) of the EU ETS corresponds

to the commitment period of the Kyoto Protocol and was linked to the flexible mecha-

nisms that certified project-based emission reductions, the Clean Development Mechanism

(CDM) and Joint Implementation (JI) (European Parliament and Council, 2004). The

following Phases III (2013 - 2020) and IV (2021 - 2030) are linked to the emission targets

in the 2020 Climate and Energy Package and the 2030 Climate and Energy Framework,

respectively (European Parliament and Council, 2009).

According to the milestones of the EU climate policy, the cap of the EU ETS is annually

lowered by 1.74 percent during Phase III. This corresponds a reduction of emissions by 21

percent relative to 2005 in 2020. From 2021 onwards, the cap will be anually decreased

by 2.2 percent (European Council, 2014). The emission rights that are traded in the

framework of the EU ETS are referred to as European Union Allowances (EUAs). One

EUA corresponds to one metric tonne of CO2 equivalent. Each year, firms that are

regulated by the EU ETS must surrender EUAs according to their verified emissions. Since

January 2012, the EU organizes an allowance market specifically for aviation operators

active in the EEA.

During the first two compliance periods, the main mode of allocation was grandfather-

ing. The allocation of allowances was governed decentralized at the member state level by

the National Allocation Plans. Furthermore, member states were responsible for setting

3The EEA includes the 28 EU member states as well as in Iceland, Liechtenstein, and Norway.
4Only UK and Denmark had experiences with national greenhouse gas emissions trading systems when

the EU ETS was established in 2005.
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up national registries to record the issuance, transfer, and surrender of EUAs. The EC

supervised the national emission registries by maintaining the Community Independent

Transaction Log (CITL). Emissions of regulated installations are monitored and reported

annually by the firm and verified by independent referees. The penalty for non-compliance

with the EU ETS was 40 euros per EUA in Phase I and 100 euros in Phase II. From the

beginning of Phase III, the allowance allocation was centralized and the main mode of

allocation started to gradually shift from grandfathering to auctioning.

Our analysis focuses on the first two compliance periods of the EU ETS. Phase I was

completely decoupled from Phase II. Banking and borrowing was allowed across years

within each compliance period, but not between Phase I and II. As a consequence, a

tremendous over-allocation of free EUAs during Phase I led to a decline in EUA prices

from above 25 euros to zero in 2007. In Phase II, the EU ETS also suffered from massive

over-allocation. Due to the decline in economic activity and thus CO2 emissions in the

wake of the economic crisis, the unadjusted supply of free allowances led to an oversupply

of allowances. This development was enhanced by the heavy use of certificates issued by

CDM and JI projects. In contrast to Phase I, however, it was possible to bank EUAs

for future use in the following compliance periods. As a result of these developments, the

EUA price decreased from more than 25 euros at the beginning of Phase II to less than

10 euros in the second half of Phase II.5

In the manufacturing sector, combustion installations for the generation of electric

power and heat with a rated thermal input in excess of 20 megawatts as well as energy

intensive production processes are regulated. These processes include oil refining, the pro-

duction and processing of ferrous metals, the manufacture of cement, the manufacture of

lime, ceramics including bricks, glass, and the production and processing of pulp and paper

are regulated. The EU ETS only regulates large installations with capacities in excess of

process-specific thresholds determined by regulation.6 Table 3.1 shows the total number

of firms and the number of regulated firms in our data set of the German manufacturing

sector across two-digit industries classified by the NACE code. The regulated processes

are concentrated in a few energy intensive industries.

5More details on the EUA price development can be found in Appendix 3.B.
6More details on the inclusion criteria of the EU ETS can be found in European Parliament and Council,

2003).
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There exist firms both regulated and unregulated in the same industries. The inclu-

sion criteria therefore create variation in the treatment status and enable us to identify

the causal effects of the EU ETS. We will take into account the structural differences

across regulated and unregulated firms by using different parametric and nonparametric

strategies explained in the following section.

Table 3.1: Number of observations by industry - German production census

2005 2008 2012

NACE Industry Total Regulated Total Regulated Total Regulated

10 Food products 4,653 50 4,680 53 4,831 54

11 Beverages 601 11 534 13 483 15

12 Tobacco products 23 1 22 2 21 2

13 Textiles 809 7 734 7 654 7

14 Wearing apparel 470 - 383 - 277 0

15 Leather and related products 180 - 160 - 123 0

16 Wood and products of wood and cork 1,317 14 1,195 21 1,124 19

17 Paper and paper products 829 89 809 97 789 100

18 Printing and reproduction of recorded media 1,608 2 1,543 2 1,335 3

19 Coke and refined petroleum products 48 16 48 17 47 16

20 Chemicals and chemical products 1,140 56 1,166 58 1,194 55

21 Pharmaceutical products 273 8 261 8 255 7

22 Rubber and plastic products 2,698 12 2,730 12 2,765 14

23 Other non-metallic mineral products 1,789 162 1,635 159 1,570 155

24 Basic metals 903 33 923 34 915 35

25 Fabricated metal products 6,111 3 6,410 5 6,820 4

26 Computer, electronic and optical products 1,677 5 1,687 4 1,637 4

27 Electrical equipment 1,975 5 2,015 5 1,914 5

28 Machinery and equipment n.e.c. 5,919 6 6,134 8 5,296 8

29 Motor vehicles, trailers, and semi-trailers 1,127 10 1,130 9 1,015 9

30 Other transport equipment 319 5 329 5 251 5

31 Furniture 1,041 - 1,005 - 971 -

32 Other manufacturing 1,560 3 1,472 3 1,432 2

33 Repair and installation of machinery and equipment 295 - 289 - 1,482 1

– Total 37,365 498 37,294 522 37,201 520

Notes: Number of firms for the first year of Phase I of the EU ETS (2005), the first year of Phase II (2008) and the last year of Phase

II (2012) that is also the last year we observe. Source: Research Data Centres of the Statistical Offices Germany (2014): Official

Firm Data for Germany (AFiD) - AFiD-Panel Industrial Units and AFiD-Module Use of Energy, own calculations.
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3.3 Empirical strategy

The measure of economic performance analyzed in this study is based on the technical

efficiency of the firm. We rely on the stochastic production frontier concept introduced

by Aigner, Lovell, and Schmidt (1977) and Meeusen and van den Broeck (1977) in order

to quantify the technical efficiency. In contrast to the estimation of average production

functions, the stochastic frontier analysis enables the estimation of a production frontier.

This function expresses the maximum amount of output that can be produced from a given

set of inputs with a fixed technology. We use the firm specific distance to the frontier -

the technical efficiency - as measure of economic performance.7

In order to account for industry specific technologies, we estimate the stochastic frontier

model for each two-digit industry within the manufacturing sector. The implied technical

efficiency refers to a frontier that is estimated using data from 2003 to 2012. In this

way, the estimated technical efficiency also captures dynamic factors that might drive

firm’s efficiency, such as technological change. Our identification strategy will take these

characteristics of the technical efficiency into account.

3.3.1 Identifying the effect of the EU ETS

The EU ETS only covers CO2 emissions of installations with a capacity that exceeds

thresholds determined by the regulatory authorities.8 We exploit this variation created

by the inclusion criteria of the EU ETS in order to isolate the effect of the EU ETS on

the technical efficiency of regulated firms. We follow the literature on program evaluation

and employ the potential outcome framework introduced by Rubin (1974, 1977).9 We

differentiate between treatment and control group depending on whether a firm has to

comply with the regulation by the EU ETS or not. Let the binary variable ETSi ∈ {0, 1}

be an indicator that describes the treatment status of firm i. Let ETSi be equal 1 if

the firm operates installations that are regulated by the EU ETS and 0 if the firm is not

7In Appendix 3.C, we describe the estimation of the production frontier and the recovery of the technical

efficiencies in more detail.
8See Section 3.2 for details.
9The potential outcome framework has become a common way to describe an identification strategy in

policy evaluation literature. Also, studies investigating the effects of emission trading schemes frequently

rely on the potential outcome framework, see for instance Fowlie, Holland, and Mansur (2012).
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required to participate in the EU ETS. Accordingly, we describe the potential outcomes

by Yi(1) and Yi(0) for treatment and control group, respectively. Our aim is to estimate

the sample average treatment effect on the treated (SATT):

τ = E[Yit(1)− Yit(0)|ETSi = 1], (3.1)

where τ is the average effect of the EU ETS on the technical efficiency of regulated firms

after the implementation of the EU ETS. While we are able to observe Yit(1) for regulated

firms, the outcome Yit(0) is not realized in the case of regulated firms. Therefore, we will

use information on the outcome Yit(0) collected from the firms that belong to the control

group in order to form an adequate counterfactual. The comparison of the two groups will

only lead to robust results, if factors that are correlated with technical efficiency dynamics

do not differ across treatment and control group. In the following sections, we will present

strategies that take this potential source of bias into account.

3.3.2 Difference-in-differences

We start from a baseline difference-in-differences specification. In order to control for

observed and constant unobserved confounding factors, we gradually enhance the model by

including explanatory variables and firm-level fixed effects into the estimation equation.10

The key identifying assumption of our baseline difference-in-differences specification

is, that the technical efficiency trends would be the same in the treatment and control

group in the absence of the EU ETS. We will investigate the validity of the common

trend assumption by analyzing pretreatment developments of technical efficiency across

treatment and control group in Section 3.5.2. In addition, we assume that the EU ETS

only has an effect on regulated entities. This assumption is often referred to as stable unit

treatment value assumption (SUTVA) and basically excludes general equilibrium effects

and spillover effects.

Our baseline specification of the difference-in-differences model takes the form

lnYit = β0 + β1ETSi + τ ETSi × I(t ≥ 2005) + ϕt + γs + ηst + εit, (3.2)

10The procedure to start from a baseline difference-in-differences approach and then to enhance it grad-

ually is quite common in the program evaluation literature. Gray, Shadbegian, Wang, and Meral (2014)

employ a similar approach to investigate the effects of environmental regulation on employment of the U.S.

paper industry. Lutz (2016) and Klemetsen, Rosendahl, and Jakobsen (2016) choose this strategy in order

to identify the effect of the EU ETS on German firms and Norwegian plants, respectively.
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where Yit denotes the outcome variable technical efficiency of firm i in year t, as described

above. ETSi is a dummy that indicates if the firm must comply with the EU ETS,

I(t ≥ 2005) is a dummy that indicates if the year t lies in the treatment period, ϕt is

a year fixed effect, γs is an industry fixed effect, ηst is the interaction term of year and

industry fixed effect, and εit is a zero mean error term. Our interest lies in the coefficient

τ that measures the average treatment effect of the EU ETS on the technical efficiency of

the regulated firms.

For our baseline specification, we assume that the counterfactual technical efficiency

is equally distributed across treatment and control group conditional on group, two-digit

industry, and year fixed effects and a full set of interaction terms. We relax this conditional

unconfoundedness assumption by controlling for additional confounding factors that might

be correlated with both the treatment and the technical efficiency. Since the compliance

with the EU ETS depends on the capacity of the installation, especially factors related

to the scale of the production and the size of the firm might impede the estimation of

the average treatment effect. Regrettably, we do not observe the capacity, but we include

among other controls the value of the physical capital stock in order to take scale effects

into account. We consider the following specification of the difference-in-differences model

that includes additional explanatory variables:

lnYit = β0 + β1ETSi + τ ETSi × I(t ≥ 2005) + zitΨ + ϕt + γs + ηst + εit, (3.3)

where zit denotes a vector of firm characteristics and Ψ is the vector with the corresponding

coefficients. We now further relax the assumption of conditional unconfoundedness by

allowing for unobserved constant factors. In particular, we estimate a specification of the

difference-in-differences model that includes a firm-level fixed effect:

lnYit = β1ETSi + τ ETSi × I(t ≥ 2005) + zitΨ + αi + ϕt + ηst + εit, (3.4)

where αi denotes the firm-level fixed effect that captures constant characteristics of the

firm, such as average capacity and location. 11

11Industry fixed effects drop out, since these are constant over time.
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3.3.3 Nearest neighbor matching

In addition to the parametric difference-in-differences model, we estimate a model based on

nearest neighbor matching in order to relax the assumptions on the functional form of the

treatment and outcome model. In the program evaluation literature on emission trading

schemes, matching has become quite popular in recent years. Fowlie, Holland, and Mansur

(2012) employ a nonparametric matching strategy in order investigate the effectivity of

the Californian RECLAIM program. Petrick and Wagner (2014), Wagner, Muuls, Martin,

and Colmer(2014), Jaraitė and Di Maria (2016), and Calel and Dechezlepretre (2016)

implement different matching approaches in order to investigate the impact of the EU

ETS on emissions, competitiveness, and R&D activities of regulated firms. Our matching

approach is closely related to the one employed by Fowlie, Holland, and Mansur (2012),

since we use nonparametric nearest neighbor matching in order to form an adequate control

group. The matching approach enables us to relax some of the assumptions we have to

make in the framework of the difference-in-differences approach described above. We do

not pose any parametric assumptions on the relationship between technical efficiency and

the explanatory variables zit. However, we still rely on the conditional unconfoundedness

and SUTVA. For the matching approach, the common support assumption is of particular

importance, i.e. we assume the conditional probability to be treated is larger than 0 and

smaller than 1: 0 < P [ETSi = 1|X] < 1. In accordance with Heckman, Ichimura, and

Todd (1997) and Heckman, Ichimura, Smith, and Todd (1998), we estimate the average

treatment effect using the following difference-in-differences matching estimator

τ̂ =
1

N

∑
j∈I1

{
(Yjt′(1)− Yjt0(0))−

∑
k∈I0

wjk(Ykt′(0)− Ykt0(0))
}
, (3.5)

where I1 denotes the set of regulated firms, I0 denotes the set of the unregulated firms,

N is the number of firms in the treatment group. The regulated firms are indexed by

j, whereas the unregulated firms are indexed by k. Let wjk denote the weight placed on

firm k when constructing the counterfactual estimated for the treated firms. We employ

matching on firm characteristics within two-digit industries in order to form an adequate

control group.
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3.4 Data

We employ official firm-level data collected by the German Federal Statistical Office and

the Statistical Offices of the German Federal States. The Official Firm Data for Germany

(Amtliche Firmendaten für Deutschland - AFiD) is a highly reliable data source that

forms the basis of many official German governmental statistics. The participation in

the underlying production census is mandatory by law and the results of the conducted

surveys are validated by the statistical offices.

We have remote access to annual data from 2003 to 2012.12 AFiD is of modular nature,

i.e. the statistical offices conduct annual surveys on different topics and combine the

collected data to thematic modules. We use the longitudinal census database AFiD-Panel

Industrial Units that contains annual data from the Monthly Report on Plant Operation,

the Census on Production, and the Census on Investment. This module contains detailed

information on inputs and outputs that describe the production process. In addition, we

use the AFiD-Module Use of Energy. It is a longitudinal census that combines results

from the Census on Energy Use and the Monthly Report on Plant Operation. It includes

comprehensive data on electricity and fuel purchase, sale, and use. The AFiD-Panel

Industrial Units and the AFiD-Module Use of Energy have the same group of respondents:

All German plants that are active in manufacturing and belong to firms that employ more

than 20 persons must participate in the underlying surveys. We aggregate plant-level data

to the firm level using the firm affiliation provided by the AFiD-Panel Industrial Units.

The firms are classified according to ISIC rev. 4.13

As output variable for our stochastic production frontier model, we employ the value

of production in the corresponding year denoted in EUR. The output variable has been

deflated using two-digit industry specific price indices. The capital stock is computed by

applying the perpetual inventory method to the investment data contained in the AFiD-

Panel Industrial Units and is denoted in EUR. A detailed description of the methodology

and its application to AFiD data can be found in Lutz (2016). The number of employees

in the firm indicates the use of labor. The aggregated energy use is computed based on the

12We also have access to data for the years from 1995 to 2002. However, the statistical offices changed

the survey gathering the information on energy use in 2003 making it difficult to include the data before

2003 into our investigation.
13In Appendix 3.A, we present more information on the industry classification.
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electricity and fuel use information contained in the AFiD-Module Use of Energy Use and

is measured in MWh. We compute the CO2 emissions from the fuel use and the net use of

electricity contained in the AFiD-Module Use of energy using data on CO2 content in fuels

and electricity from the German statistical offices and the Federal Environmental Agency.14

The computation of the emissions as well as the emission coefficients are described in

Appendix 3.A. The CO2 emissions are measured in t CO2 equivalent.

In order to identify firms that are regulated by the EU ETS, we match the production

census with data of the European Union Transaction Log (EUTL) from the years 2005 to

2012 using the commercial register number and the VAT number. During the period from

2005 to 2012, a total of 1051 German firms was regulated by the EU ETS. We are able

to match 77 percent (813 firms) of the firms in the EUTL with AFiD. The remaining 238

firms mainly belong to the energy sector, the public sector (hospitals and universities), or

the service sector (e.g. airports and exhibition centers) and thus could not be matched

with a production census that only contains information of manufacturing firms.

Table 3.2 shows descriptive statistics of the variables used in the study for the entire

manufacturing sector. The output as well as the use of inputs increase over time. However,

the economic crisis is reflected in the descriptive statistics for the year 2009. In particular,

output, emissions, and energy use declined. The number of employees remained quite

stable due to the support programs and the strict labor market regulation. The capital

stock also remained quite stable, however it has slightly decreased in the aftermath of

the crisis due to low investments during the crisis. The number of observations vary

across variables within years, since the information is collected through different surveys

as explained above.15

Figure 3.1 sheds some light onto the development of the employed variables over time

across two-digit industries within manufacturing. We plot the development of the indexed

median (base year 2003) of each variable for the food industry (10), the paper industry

(17), the chemical industry (20), and manufacture of non-metallic mineral products (23,

comprises for example the glass and cement industry).16 These four sectors cover more

than half of the German manufacturing firms regulated by the EU ETS. While the de-

14We describe the computation of the CO2 emissions in Appendix 3.A.
15The surveys are not conducted at the exact same date and thus the number of firms might vary to a

minor degree.
16Appendix 3.B contains the graphs for each two-digit industry in manufacturing.
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velopment of output as well as input use in the food industry was barely affected by the

economic crisis, the other graphs for these industries show a strong impact on output,

emissions, and energy use in 2009. As we will learn in Section 3.5.1, this will be also

reflected in the technical efficiencies, since firms produced less in the crisis year while they

were not able to adjust their capital stock and their use of labor in the short term. The

former has a strong dynamic character and can only be adjusted through investment or

the disposal of physical capital. The latter also has a dynamic character in Germany. Due

to strong labor market regulation and collective labor agreements, long periods of notice

prevent short-term adaption of the labor force. Figure 3.1 also suggest a strong relation

between output and energy use.

Table 3.2: Descriptive statistics German production census

Mean SD Skewness Kurtosis P10 P50 P90 N

2003

Output (in EUR 1,000) 28,699.22 360,632.64 81.42 8,262.81 1,324.71 5,276.71 42,903.50 37,888

Emissions (in t CO2) 7,343.68 119,327.97 49.20 2,996.19 64.39 374.07 5,236.04 36,985

Capitalstock (in EUR 1,000) 11,322.21 120,382.53 53.92 3,524.23 256.28 1,838.52 16,220.64 37,099

Number of employees 153.06 1,292.85 71.69 6,278.85 22.58 50.00 254.00 38,319

Energy use (in MWh) 21,418.67 376,270.67 49.81 2,991.01 161.79 911.97 12,979.47 36,949

2006

Output (in EUR 1,000) 33,903.31 417,111.75 77.80 7,509.40 1,483.30 6,201.49 49,867.54 36,162

Emissions (in t CO2) 8,978.83 193,026.98 69.25 6,186.59 72.56 412.27 5,742.81 35,654

Capitalstock (in EUR 1,000) 11,097.78 121,072.64 60.25 4,516.43 248.68 1,774.37 15,880.93 36,073

Number of employees 154.01 1,313.92 73.58 6,446.77 23.90 52.92 254.75 36,632

Energy use (in MWh) 27,200.64 618,927.15 64.61 5,055.30 186.25 994.59 14,296.39 35,631

2009

Output (in EUR 1,000) 29,257.35 345,810.11 77.27 7,309.36 1,295.66 5,346.61 44,534.20 36,703

Emissions (in t CO2) 7,989.21 179,143.00 69.44 5,857.38 66.90 362.56 5,017.29 36,100

Capitalstock (in EUR 1,000) 11,148.64 119,355.75 60.18 4,565.63 234.60 1,785.08 16,464.80 36,335

Number of employees 152.47 1,219.86 70.98 6,127.83 24.00 53.00 254.50 36,982

Energy use (in MWh) 26,043.38 627,994.42 70.33 5,934.58 179.39 920.20 13,337.29 36,074

2012

Output (in EUR 1,000) 35,194.48 514,872.08 89.04 9,350.33 1,431.54 6,184.66 51,415.54 36,882

Emissions (in t CO2) 9,012.12 211,455.53 71.14 6,276.90 68.58 385.09 5,489.93 36,435

Capitalstock (in EUR 1,000) 10,641.92 122,387.63 58.11 4,256.77 240.51 1,611.20 14,924.90 36,380

Number of employees 157.09 1,300.76 69.85 5,901.93 25.00 54.83 260.33 37,130

Energy use (in MWh) 29,383.97 745,139.74 73.12 6,467.69 183.05 951.67 14,134.01 36,421

Notes: Output (production value), and capital stock are denoted in EUR 1,000. Energy use is denoted in MWh and CO2 emissions

in t CO2. Source: Research Data Centres of the Statistical Offices Germany (2014): Official Firm Data for Germany (AFiD) -

AFiD-Panel Industrial Units and AFiD-Module Use of Energy, own calculations.
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Figure 3.1: Descriptive statistics: development across industries
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3.5 Results

In this section, we present the parameter estimates of the stochastic production fron-

tier model and shed light onto the development of technical efficiency across treatment

and control group. We then empirically examine the core assumptions of our identifi-

cation strategies and finally show the estimated treatment effects based on the different

approaches.

3.5.1 Stochastic production frontiers and technical efficiencies

The industries within the manufacturing sector differ considerably with respect to pro-

duced goods, production processes, and market structures. We take this heterogeneity

into account and estimate separate Cobb-Douglas production frontiers for each two-digit

industry providing a common point of reference for the entire time period from 2003 to

2012. Table 3.3 shows the parameter estimates of the stochastic production frontier model.

The estimated parameters of the stochastic production frontier vary across indus-

tries reflecting the strong heterogeneity within the manufacturing sector. The economies

of scale also vary across industries and range between 0.93 (manufacture of other non-

metallic mineral products; 23) and 1.20 (manufacture of beverages; 11). For the majority

of industries, we observe statistically significant increasing economies of scale. Table 3.3

also shows the parameter estimates that characterize the distributions of the composite

error term. The parameter σ̂u denotes the estimated standard deviation of the mean

zero normal distribution of the noise component uit. The parameters µ̂ν and σ̂ν denote

the estimated mean and standard deviation of the truncated normal distribution of the

technical efficiency component. The estimates for µ̂ν are comparatively large, since we

estimate a joint frontier for the entire time span from 2003 to 2012. This is necessary in

order to obtain a single point of reference that allows for comparisons across years. As a

robustness check, we also estimate the stochastic production frontiers using a value added

representation. The results are similar to the results of the gross output representation

and are reported in Appendix 3.D.

Now we turn toward the development of technical efficiency over time and examine

differences across treatment and control group. We focus on the four industries manufac-

ture of food products (10), manufacture of paper and paper products (17), manufacture
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Table 3.3: Parameter estimates: production frontier

Industry (NACE) # Firms Capital Labor Energy Constant σ̂u µ̂ν σ̂ν

Food products
(10)

6935 0.265
(0.010)

0.323
(0.016)

0.481
(0.014)

2.047
(0.042)

0.609
(0.010)

-443.728
(6.786)

11.969
(0.384)

Beverages (11) 703 0.223
(0.032)

0.725
(0.050)

0.257
(0.036)

2.252
(0.188)

0.549
(0.023)

-365.726
(119.853)

9.839
(2.725)

Textiles (13) 1103 0.199
(0.020)

0.738
(0.037)

0.117
(0.016)

3.652
(0.104)

0.507
(0.019)

-512.914
(19.645)

13.732
(0.832)

Leather and
related products
(15)

231 0.203
(0.050)

0.742
(0.081)

0.177
(0.045)

3.308
(0.251)

0.514
(0.041)

-908.894
(27.054)

24.299
(1.631)

Wood and pro-
ducts of wood
and cork (16)

1587 0.186
(0.017)

0.794
(0.029)

0.146
(0.012)

3.507
(0.079)

0.498
(0.016)

-513.569
(16.601)

13.775
(0.552)

Paper and
paper products
(17)

1104 0.178
(0.021)

0.677
(0.031)

0.183
(0.012)

3.720
(0.089)

0.389
(0.017)

-360.647
(15.225)

9.668
(0.581)

Printing and
reproduction of
recorded media
(18)

2255 0.115
(0.013)

0.689
(0.026)

0.250
(0.014)

3.580
(0.061)

0.367
(0.011)

-363.949
(73.232)

9.821
(1.284)

Chemicals and
chemical pro-
ducts (20)

1722 0.205
(0.024)

0.596
(0.029)

0.173
(0.014)

4.372
(0.092)

0.522
(0.016)

-607.081
(40.582)

16.373
(0.883)

Rubber and
plastic products
(22)

3935 0.155
(0.011)

0.726
(0.017)

0.178
(0.010)

3.645
(0.047)

0.416
(0.008)

-385.313
(44.152)

10.408
(0.750)

Other non-
metallic mineral
products (23)

2446 0.206
(0.014)

0.612
(0.020)

0.111
(0.009)

4.229
(0.070)

0.501
(0.013)

-471.085
(5.073)

12.644
(0.427)

Basic metals (24) 1274 0.241
(0.024)

0.637
(0.040)

0.163
(0.019)

3.617
(0.096)

0.610
(0.019)

-300.333
(11.398)

8.107
(0.761)

Fabricated metal
products (25)

9676 0.103
(0.006)

0.896
(0.011)

0.112
(0.006)

3.791
(0.030)

0.458
(0.006)

-372.983
(1.690)

10.107
(0.190)

Electrical equip-
ment (27)

3077 0.170
(0.011)

0.834
(0.021)

0.071
(0.011)

4.088
(0.049)

0.449
(0.010)

-501.796
(6.310)

13.482
(0.360)

Machinery and
equipment n.e.c.
(28)

8620 0.071
(0.006)

1.066
(0.011)

0.027
(0.007)

4.092
(0.032)

0.453
(0.006)

-404.643
(2.223)

10.965
(0.204)

Motor vehicles,
trailers, and
semi-trailers (29)

1681 0.167
(0.017)

0.893
(0.029)

0.067
(0.019)

3.840
(0.072)

0.589
(0.020)

-405.271
( 53.125)

10.924
(1.072)

Furniture (31) 1532 0.133
(0.013)

1.034
(0.026)

0.036
(0.016)

3.599
(0.071)

0.433
(0.014)

-409.503
(7.892)

11.030
(0.481)

Notes: The number of observations includes all firms that were active during the period from 2003 to 2012. We do not consider the
industries manufacture of tobacco products (12), manufacture of wearing apparel (14), manufacture of pharmaceutical products (21),
manufacture of computer, electronic and optical products (26), manufacture of other transport equipment (30), other manufacturing
(32), and repair and installation of machinery and equipment (33). For more information see Appendix 3.C. Source: Research
Data Centres of the Statistical Offices Germany (2014): Official Firm Data for Germany (AFiD) - AFiD-Panel Industrial Units and
AFiD-Module Use of Energy, own calculations.
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of chemicals and chemical products (20), and manufacture non-metallic mineral products

(23). These industries contain a sufficiently high number of regulated firms and thus

enable adequate statistical inference.17 Figure 3.2 consists of four graphs showing the

development of the median technical efficiency over time within the four industries.

Since we estimate one stochastic frontier per industry that serves as reference point

for the entire time period from 2003 to 2012, the dynamics of the technical efficiency re-

flect two developments. First, we observe that in all four industries, the median technical

efficiency decreases during the early 2000s, i.e. the median firm becomes more efficient

relative to the firms operating on the frontier. This negative trend in technical efficiency

is driven by technical progress. We observe that the estimated stochastic frontier is deter-

mined by observations during the more recent years. Over time, the technical efficiency

decreases, since technical progress gradually pushes the firms toward the frontier. Sec-

ondly, we observe increases in technical efficiency from 2006 onwards coinciding with the

economic crisis. The technical efficiency peaks in 2009, the year when the crisis hit Ger-

man manufacturing hardest. While demand and thus the production of goods rapidly

decrease, firms do not adjust their capacity at the same speed. Therefore, low utilization

rates increase the distance to the frontier during the economic crisis (see Section 3.4 for

details on input use). Our empirical strategy is not impaired by these developments as

long as treatment and control group are equally affected conditional on observable firm

characteristics and an array of fixed effects that depend on the estimated specification.

The median technical efficiency of the treated firms is portrayed by the dotted line.

It is higher than the median technical efficiency of the control group indicating that the

treated median firm operates less efficiently in these industries. The dashed line displays

the development of the median technical efficiency in the control group. It is close to

the line of the overall median technical efficiency reflecting that the share of control firms

is high. For the food industry (10), the paper industry (17), and the chemical industry

(20), the distance between the median technical efficiency of treatment and control group

decreases over time. In particular during the years from 2005 to 2007, the median technical

efficiency of the treated firms declines and thus converges toward the median technical

efficiency of the control group. The non-metallic mineral industry (23) does not show

such a development.

17For the subsample analysis, we only consider two-digit industries with at least 50 regulated firms.
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Figure 3.2: Comparison of treatment and control groups: technical efficiencies
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3.5.2 Empirical evidence on identifying assumptions

In this section, we assess the validity of our key identifying assumptions that are described

in Section 3.3 and derive strategies for our main analysis in order to take potential issues

into account.

Common support: Table 3.4 shows descriptive statistics of the outcome variable tech-

nical efficiency and the observable covariates for the pretreatment year 2003. The upper

panel refers to the treated firms, i.e. the firms regulated by the EU ETS, whereas the

lower panel refers to the control firms. A comparison of the percentiles across groups

indicates, that the common support assumption is reasonable for the outcome variable

technical efficiency. The same comparison for the observable covariates reflects, however,

the structural differences between treated and control firms. These differences occur due

to the design of the EU ETS, that only regulates large emitters of CO2.

In order to check the robustness of our difference-in-differences approach with regard to

the common support assumption, we estimate a specification that includes firm-level fixed

effects. This specification primarily relies on the within variation and thus is less prone to

violations of the common support assumption. In the framework of our nearest neighbor

matching approach, we take this issue into account by only considering observations that

fulfill the common support assumption.

Unconfoundedness: For our baseline difference-in-differences specification, we assume

that the counterfactual technical efficiency is equally distributed across treatment and

control group conditional on the group, industry, and year fixed effects as well as in-

teraction terms. We relax this assumption gradually by including additional observable

firm characteristics and then firm-level fixed effects. We are able to investigate the va-

lidity of this assumption by analyzing differences in pretreatment trends of the outcome

variable across groups. In particular, we apply our identification strategies to the pre-

treatment years assuming that the EU ETS was already introduced in 2004. The upper

panel in Table 3.5 shows the resulting placebo treatment effects for our baseline difference-

in-differences specification (Specification A) and the difference-in-differences specification

including observable firm characteristics as covariates (Specification B). While our assump-

tion of parallel trends in the absence of treatment holds for our subsample analysis, we

see that for the full sample, there might be differences across treatment and control group
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Table 3.4: Comparison of treated and control firms in 2003

Mean SD P5 P50 P95 N

ETS firms

Technical efficiency 0.416 0.324 0.177 0.335 0.861 473

Output (in EUR 1,000) 502,169.00 2,175,880.00 2,967.29 85,086.38 1,598,206.00 476

Emissions (in t CO2) 266,627.70 845,970.20 2,697.63 53,453.96 1,018,856.00 475

Capital stock (in EUR 1,000) 223,274.10 785,493.00 1,548.98 40,658.98 807,826.10 477

Number of employees 1,844.19 7,239.40 28.83 352.33 7,512.33 477

Energy use (in MWh) 859,570.40 2,757,099.00 8,246.018 160,961.90 3,231,146.00 475

Non-ETS firms

Technical efficiency 0.342 0.322 0.145 0.272 0.725 35,122

Output (in EUR 1,000) 22,675.17 262,125.30 912.28 5,187.19 76,554.40 37,412

Emissions (in t CO2) 3,970.36 65,167.58 39.81 363.49 9,820.83 36,510

Capital stock (in EUR 1,000) 8,561.55 77,898.59 144.87 1,797.59 28,903.38 36,622

Number of employees 131.75 998.39 19.50 49.50 421.25 37,842

Energy Use (in MWh) 10,503.44 188,057.90 93.48 887.83 25,274.52 36,474

Notes: Output (production value), and capital stock are denoted in EUR 1,000. Energy use is denoted in MWh and CO2 emissions

in t CO2. Source: Research Data Centres of the Statistical Offices Germany (2014): Official Firm Data for Germany (AFiD) -

AFiD-Panel Industrial Units and AFiD-Module Use of Energy, own calculations.

that are not captured by the fixed effects and the observational covariates. The placebo

effect is economically small, but statistically significant. When interpreting the results of

Specification B for the full sample, we have to take this into account. Furthermore, we add

a specification with firm-level fixed effects to better control for differences across groups.

The lower panel in Table 3.5 shows the placebo treatment effects based on our matching

approach for different numbers of nearest neighbors chosen by the Mahalanobis distance.

None of the estimates is statistically significant indicating that the our conditional uncon-

foundedness assumption holds for the matching approach.

SUTVA: Our identification strategy relies on the assumption of stability of unit treat-

ment values. It requires that the regulation by the EU ETS only affects regulated firms

excluding spillover and equilibrium effects. This assumption cannot be directly tested.

However, it is possible to estimate alternative specifications taking potential equilibrium

effects into account. For our examination of the effects of the EU ETS, we differentiate

between two cases: SUTVA could be either violated by equilibrium effects across or within

industries.
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Table 3.5: Pretreatment analysis

Parametric difference-in-differences model

Specification A Specification B

Manufacturing -0.0186
(0.0098)

-0.0095*
(0.0038)

Food products (10) 0.0034
(0.0178)

-0.0057
(0.0072)

Paper and paper
products (17)

-0.0178
(0.0275)

-0.0058
(0.0034)

Chemicals and
chemical products (20)

-0.0376
(0.0259)

-0.0032
(0.0034)

Other non-metallic
mineral products (23)

-0.0090
(0.0193)

-0.0018
(0.0031)

Nearest neighbor matching difference-in-differences

one neighbor five neighbors twenty neighbors

Manufacturing 0.0168
(0.0168)

0.0010
(0.0116)

0.0012
(0.0090)

Notes: Standard errors are computed by using the block bootstrap algorithm with 500 replications - robust with regard to het-
eroscedasticity and intra-firm correlation. * significant at the 5 percent level. A denotes the baseline specification, B includes
explanatory variables. Source: Research Data Centres of the Statistical Offices Germany (2014): Official Firm Data for Germany
(AFiD) - AFiD-Panel Industrial Units and AFiD-Module Use of Energy, own calculations.

For the first case, consider for example a situation, where the EU ETS creates incentives

for regulated firms to invest in abatement technology or new, more efficient machinery.

As a consequence, the EU ETS does not only affect treated firms, for example in the

cement or glass industry, but also indirectly potential control firms in other industries,

such as manufacturing machinery and equipment. A similar line of thought is applicable

to unregulated firms in the coking and refining industries, if regulated firms switch from

carbon intensive to less carbon intensive fuels or energy (e.g. renewable energy sources).

We aim to overcome this violation of SUTVA by examining the effect of the EU ETS

within subsamples, in particular two-digit industries.

For the second case, the SUTVA violation within industries, consider for example a

situation, where production is shifted from regulated to unregulated facilities. Fowlie,

Holland, and Mansur (2012) use spatial variation in stringency of regulation. For our

application, this is regrettably not feasible, since the EU ETS is uniformly applied to the

regulated firms. We will discuss potential consequences of this kind of SUTVA violation

for our results in Section 3.6
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3.5.3 Difference-in-differences

The estimated treatment effects based on our three parametric difference-in-differences

specifications are reported in Table 3.6. Specification A, B, and C refer to the baseline

specification described in Equation 3.3, the specification including explanatory variables

described in Equation 3.4, and the specification including explanatory variables and firm-

level fixed effects described in Equation 3.5, respectively. All specifications include two-

digit industry fixed effects, year fixed effects and complete interaction terms. The technical

efficiency is computed as difference between the output predicted by the stochastic pro-

duction frontier and the actual output of the firm. This distance to the frontier is positive

for all firms. We take the natural logarithm of outcome variable and explanatory variables,

the estimated treatment effects thus can be interpreted as semi-elasticities.

Table 3.6: Difference-in-differences treatment effects

Specification A Specification B Specification C

03-07 03-12 03-07 03-12 03-07 03-12

Manufacturing -0.0382*
(0.0102)

-0.0510*
(0.0130)

0.0003
(0.0054)

-0.0003
(0.0066)

-0.0052
(0.0029)

-0.0042
(0.0039)

Food products (10) -0.0284
(0.0274)

-0.0667
(0.0353)

-0.0058
(0.0039)

-0.0066
(0.0057)

-0.0036
(0.0035)

0.0003
(0.0056)

Paper and paper
products (17)

-0.0137
(0.0252)

-0.0872*
(0.0299)

-0.0139*
(0.0038)

-0.0210*
(0.0047)

-0.0134*
(0.0039)

-0.0167*
(0.0044)

Chemicals and
chemical products (20)

-0.0176
(0.0309)

-0.0440
(0.0426)

-0.0010
(0.0049)

0.0009
(0.0057)

-0.0074
(0.0041)

-0.0048
(0.0056)

Other non-metallic
mineral products (23)

0.0009
(0.0161)

-0.0185
(0.0210)

-0.0036
(0.0025)

-0.0045
(0.0029)

-0.0043
(0.0024)

-0.0040
(0.0026)

Notes: Standard errors are computed by using the block bootstrap algorithm with 500 replications - robust with regard to het-
eroscedasticity and intra-firm correlation. * significant at the 5 percent level. A denotes the baseline specification, B includes
explanatory variables, and C includes explanatory variables and firm-level fixed effects. All specifications include industry and time
fixed effects and the full set of interaction terms. Source: Research Data Centres of the Statistical Offices Germany (2014): Official
Firm Data for Germany (AFiD) - AFiD-Panel Industrial Units and AFiD-Module Use of Energy, own calculations.

The first row of Table 3.6 shows the results for the entire manufacturing sector. The

estimated treatment effects of Specification A indicate an economically and statistically

significant negative impact of the EU ETS on technical efficiency. However, when we

include addtional observable explanatory variables (Specification B) and firm-level fixed

effects (Specification C), then the effect diminishes and becomes statistically insignificant.

These results suggest, that the estimated treatment effects based on Specification A are

biased due to confounding factors, which we are able to control for in the Specifications

B and C.
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Heterogeneity across industries within the manufacturing sector, for example with

regard to abatement options and free allocation, might lead to insignificant treatment

effects for the manufacturing sector as a whole. We therefore examine the estimated

treatment effects for two-digit industries with sufficient observations in the treatment

group. For the industries manufacture of food products, chemicals and chemical products,

and other non-metallic mineral products (cement, glass, etc.), we do not find a significant

effect of the EU ETS on technical efficiency of treated firms. Similar to the results based on

the entire manufacturing sample, the estimates diminish, when controlling for confounding

factors.

For the paper industry, however, we find statistically and economically significant

treatment effects for all specifications and time periods considered. The size of the es-

timated treatment effects also decreases when controlling for confounding factors. Our

preferred difference-in-differences model is Specification C indicating a -1.34 percent de-

crease in technical efficiency of regulated firms due to the EU ETS when considering only

data until the end of Phase I and a -1.67 percent decrease when considering the data

for both trading periods. In order to further investigate the better performance of EU

ETS regulated firms in the paper industry, we show in Figure 3.3 the development of

the indexed median of the output and inputs for treatment and control group separately.

Figure 3.3 indicates, that the output of the treatment group increased more strongly in

comparison to the control group during Phase I and Phase II. Furthermore, the treatment

group conducted higher investments during the years 2007 and 2009 leading to a slightly

higher capital stock during Phase II in comparison to the control group. The firms of

the treatment group decreased employment after the investments in new capital stock.

The energy use follows a similar trend across groups. This investigation of the descriptive

statistics suggests that the difference in technical efficiency across groups mostly evolved

due to increased output and investments in capital that is more efficient with regard to

the use of employment.

3.5.4 Nearest neighbor matching

Table 3.7 shows the result of our nearest neighbor matching approach. Following Fowlie,

Holland, and Mansur (2012), we implement a combination of nearest neighbor matching

and difference-in-differences. Instead of parametrically accounting for observable con-
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Figure 3.3: Comparison of treatment and control groups - the paper industry
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Notes: Source: Research Data Centres of the Statistical Offices Germany (2014): Official Firm Data for Germany (AFiD) - AFiD-Panel

Industrial Units and AFiD-Module Use of Energy, own calculations.

founding factors, we identify an adequate control group using the Mahalanobis distance

that determines similarity between firms by a weighted function of observable covariates for

each firm. The weight is based on the inverse of the covariates’ variance-covariance-matrix.

This approach is nonparametric and does not assume a functional form for the outcome-

or the treatment-model. The intuition behind this approach is to form a control group

using unregulated firms that resemble the firms in the treatment group and thus might

be affected by unobservable confounding factors in the same way. In line with Fowlie,

Holland, and Mansur (2012), we apply nearest neighbor matching with replacement, i.e.

unregulated firms can be used multiple times as a match.

We match on the firms’ output, emissions, deployed capital stock, number of employ-

ees, and energy use in 2003 and match exactly on two-digit industries.18 Table 3.7 shows

estimated treatment effects for matching with the nearest neighbor, the five nearest neigh-

bors, and the 20 nearest neighbors, respectively. The results should be interpreted jointly,

18Two-digit industries without treated firms are not considered in the estimation.
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since a higher number of matched control firms improves the efficiency of the estimate, but

at the same time introduces potential bias (Smith, 1997). The upper panel in Table 3.7

shows estimated treatment effects for year by year comparisons (base year is 2003). The

lower panel shows estimated treatment effects for Phase I and Phase II. Apart from 2012,

the estimated treatment effects are mostly negative. Only the year 2005 shows statistically

significant effects that range between -2.77 and -3.43 percent. Pooling the data for the

compliance periods, we find a significant negative effect of the EU ETS on firm specific

technical efficiency during Phase I. The parameter estimates for the treatment effect in

Phase II are of the same magnitude but statistically insignificant.

Table 3.7: Nearest neighbor matching treatment effects

one neighbor five neighbors twenty neighbors

Year by year comparison (base year 2003)

2005 -0.0158
(0.0149)

-0.0343*
(0.0134)

-0.0277*
(0.0120)

2006 -0.0169
(0.0153)

-0.0121
(0.0133)

-0.0087
(0.0134)

2007 -0.0152
(0.0224)

0.0015
(0.0167)

-0.0080
(0.0154)

2008 -0.0171
(0.0247)

-0.0001
(0.0172)

0.0013
(0.0288)

2009 0.0013
(0.0288 )

0.0069
(0.0222)

-0.0018
(0.0193)

2010 -0.0226
(0.0293)

-0.0038
(0.0228)

-0.0066
(0.0200)

2011 -0.0021
(0.0318)

-0.0129
(0.0295)

-0.0082
(0.0202)

2012 0.0190
(0.0316)

0.0029
(0.0334)

0.0122
(0.0215)

Comparison trading periods with pretreatment period

Phase I -0.0289*
(0.0124)

-0.0280*
(0.0119)

-0.0265*
(0.0108)

Phase II -0.0294
(0.0222)

-0.0097
(0.0181)

-0.0164
(0.0166)

Notes: Standard errors are robust with regard to heteroscedasticity and intra-firm correlation. * significant at the 5 percent level.
Source: Research Data Centres of the Statistical Offices Germany (2014): Official Firm Data for Germany (AFiD) - AFiD-Panel
Industrial Units and AFiD-Module Use of Energy, own calculations.
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3.6 Concluding Discussion

In this study, we investigate the effect of the EU ETS on the economic performance of

regulated German manufacturing firms. We estimate a stochastic production frontier to

recover the technical efficiency as firm specific measure for economic performance. Com-

bining the difference-in-differences framework with parametric conditioning strategies and

nonparametric nearest neighbor matching, we isolate the effect of the EU ETS on technical

efficiency.

The results of the parametric difference-in-differences approach suggest that the EU

ETS does not homogeneously affect firms in the manufacturing sector. We do not find a

statistically significant effect of the EU ETS using data for the entire manufacturing sector.

A subsample analysis at the two-digit industry level, however, shows that the EU ETS

has a stronger influence on firms in particular industries. The industries manufacture

of food products (10), manufacture of paper and paper products (17), manufacture of

chemicals and chemical products (20), and manufacture of non-metallic mineral products

(23) contain a sufficiently high number of regulated firms and enable us to examine the

effect of the EU ETS on firms within narrowly defined industries. While we do not find

a statistically significant effect of the EU ETS on the industries 10, 20, and 23, we find

that the EU ETS significantly increased the economic performance of regulated firms in

the paper industry.

The results based on the nonparametric nearest neighbor matching suggest a statisti-

cally significant positive effect of the EU ETS on the economic performance of the regulated

firms during the Phase I of the EU ETS. A year-by-year analysis shows that the effect was

only significant during the first year of Phase I. The EU ETS therefore had a particular

strong effect when it was introduced.

Our results are in line with the results of the studies investigating the effect of the EU

ETS on firms from the German manufacturing sector. Petrick and Wagner (2014) and

Lutz (2016) do not find a statistically negative significant effect of the EU ETS on output,

input use, and productivity. In contrast, Petrick and Wagner (2014) find a positive effect

of the EU ETS on output while the inputs remain unaffected and Lutz (2016) finds a

positive effect on productivity.

The results could be consistent with the following line of thought. The EU ETS might
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have incentivized investments in more efficient capital stock that allowed the firms to

produce more output with less inputs. Alternatively, firms might have profited from free

allocation and might have used the free resources to invest in more efficient capital stock.

When interpreting the results of our empirical analysis, it is important to bear in

mind that we assume the EU ETS only to influence the treated firms. However, through

spillover and equilibrium, effects the EU ETS might also have an impact on the economic

performance of untreated firms. Conducting a subsample analysis, we can take into ac-

count equilibrium effects across industries, but we are not able to control for equilibrium

effects within industries.

Furthermore, the design of our empirical strategy focuses on the identification of the

EU ETS. We do not consider other regulatory instruments, such as energy taxes, that

might interact with the effects of the EU ETS.

In order to overcome these caveats, it would be necessary to choose a different empirical

strategy with additional assumptions on the underlying economic structure. This endeavor

is left for future research. In addition, it would be interesting to apply our empirical

strategy to production census data from other countries in order to assess the generality

of our results.
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3.8 Appendices

Appendix 3.A. Data description

Industry classification: The underlying industry classification NACE rev. 2 (Statis-

tical Classification of Economic Activities in the European Community) is the European

implementation of the UN classification ISIC rev. 4. From 2003 to 2008 the data set con-

tains the industry classification based on NACE rev. 1.1. For these years, we use the four

digit industry codes and the official reclassification guide of the statistical offices (Quelle)

in order to transfer NACE rev. 1.1 code to NACE rev 2.

CO2 emissions: The Official Firm Data for Germany (Amtliche Firmendaten für Deutsch-

land - AFiD) is a highly detailed data source with regard to energy use. The Energy Use

Module contains information on the purchase, storage, sale, and use of 33 different fuels.

We have access to slightly aggregated version of the Energy Use Module that contains

information on 9 different fuels: natural gas, light fuel oil and heating oil, district heat,

liquid gas, coal products, other mineral oil products, other gases, biomass, and other fuels.

The Energy Use Module further includes information on the purchase, generation, sale,

and use of electricity.

Following Petrick, Rehdanz, and Wagner (2011), we combine the energy use data from

AFiD with data on CO2 content in fuels and electricity. Table 3.8 shows the emissions

coefficients we use in order to compute plant and firm-level CO2 emissions. The coefficients

for natural gas, light fuel oil, and liquid gas are directly taken from the official statistics

of the Federal Environmental Agency (2012). The Federal Environmental Agency (2008)

computes CO2 emission coefficients for Germany in the years 2000 and 2005. We use

the average coefficient over the two years. For the categories coal products, mineral oil

products and other gases, we compute annual weighted averages in order to approximate

adequate coefficients. The weights are determined by the sectoral use of the different fuels

in the respective category and year (AG Energie Bilanz e.V., 2014). Our source for the

electricity CO2 coefficients is the official report Federal Environmental Agency (2014).
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Table 3.8: CO2 content of electricity and fuel use (g CO2/kwh)

03 - 12 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Natural gas 201.6

Light fuel oil 266.4

District heat 219.5

Liquid gas 230.4

Coal products 362.1 362.2 359.9 359.6 358.7 357.4 360.0 358.7 355.7 355.6

Mineral oil products 279.2 278.8 278.6 278.9 279.5 278.8 278.1 276.9 276.3 275.8

Other gases 195.9 195.9 195.9 195.9 195.8 195.9 195.9 195.8 195.5 195.6

Electricity 629 608 605 609 623 588 573 559 564 586

Notes: Sources: Federal Environmental Agency (2008), Federal Environmental Agency (2012), Federal Environmental Agency (2014),

and AG Energie Bilanz e.V. (2014) , own calculations.
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Appendix 3.B. Descriptive statistics

In Appendix 3.B, we show additional descriptive statistics. Figure 3.4 displays the price

time series of the EUA futures traded at ICE. Figure 3.5 sheds some light onto the de-

velopment of the firm characteristics over time. Each plot shows indexed medians for the

according two-digit industry.

Figure 3.4: Price development of EUA futures
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Figure 3.5: Indexed medians for two-digit industries (I/II)
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Figure 3.6: Indexed medians for two-digit industries (II/II)
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Appendix 3.C. Recovery of technical efficiencies

In this appendix, we give a short description of the stochastic production frontier approach

used to recover the technical effciencies.

According to Aigner, Lovell, and Schmidt (1977), the production process is influenced

by a composite error term that consists of two economically distinguishable unknown

random variables. The first component of the error term characterizes deviations from the

optimal production frontier that result from decisions by the firm, e.g. mismanagement

or suboptimal use of inputs. This random variable can be interpreted as a non-positive

indicator for inefficiency. The second component of the error term captures noise and

takes into account random factors that are not controlled by the firm, such as weather

or unpredicted changes in the performance of machinery and employees, for example due

to malfunction or illness. We follow Aigner, Lovell, and Schmidt (1977) and estimate the

stochastic production frontier

ln yit = ln f(xit) + νit + uit, (3.6)

where yit denotes the output of firm i at year t, f(xit) is the deterministic production fron-

tier, xit is a vector of inputs, νit is a nonpositive random variable depicting inefficiency, and

uit is a indpendently and identically distributed error term with zero mean and constant

variance. We assume the deterministic frontier f(xit) to take the form of a Cobb-Douglas

function. The vector of inputs xit includes capital stock, labor and energy use. We assume

the efficiency component νit to be drawn from a truncated normal distribution N+(µν , σ
2
ν)

and the noise component uit to be drawn from a symmetric normal distribution N(0, σ2
u).

We implement the model using maximum likelihood estimation. In order to account for

industry specific technologies, we estimate the stochastic frontier model for each two-digit

industry within the manufacturing sector. The implied technical efficiency refers to a joint

frontier for the years from 2003 to 2012.
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Appendix 3.D. Alternative approach: value added stochastic

production frontier

As a robustness check, we show results of an alternative stochastic production frontier.

Instead of estimating a gross output production frontier, here, we estimate a value added

production frontier. In addition, we show the results of the subsequent difference-in-

differences analysis.

Table 3.9: Stochastic production frontier: value added specification

NACE Industry # Firms Capital Labor Constant σu µν σν

10 Food products 3687 0.313
(0.010)

0.661
(0.016)

3.052
(0.051)

0.513
(0.013)

-338.702
(4.423)

9.163
(0.315)

11 Beverages 536 0.162
(0.039)

0.936
(0.058)

3.255
(0.209)

0.715
(0.050)

-3.463
(0.120)

0.093
(0.003)

13 Textiles 905 0.171
(0.019)

0.903
(0.029)

3.067
(0.088)

0.366
(0.018)

-388.038
(81.580)

10.431
(1.388)

15 Leather and
related products

205 0.241
(0.032)

0.851
(0.055)

2.704
(0.145)

0.417
(0.037)

-229.526
(13.599)

6.167
(1.001)

16 Wood and pro-
ducts of wood
and cork

987 0.164
(0.016)

0.894
(0.024)

3.263
(0.063)

0.341
(0.013)

-367.242
(8.899)

9.846
(0.397)

17 Paper and
paper products

878 0.223
(0.018)

0.844
(0.029)

3.061
(0.075)

0.338
(0.015)

-352.371
(13.586)

9.547
(0.566)

18 Printing and
reproduction of
recorded media

978 0.112
(0.021)

0.947
(0.035)

3.441
(0.084)

0.401
(0.034)

-266.503
(5.343)

7.135
(0.825)

20 Chemicals and
chemical pro-
ducts

1494 0.259
(0.024)

0.802
(0.032)

3.320
(0.087)

0.444
(0.015)

-401.639
(10.496)

10.788
(0.410)

22 Rubber and
plastic products

2228 0.187
(0.012)

0.876
(0.016)

3.143
(0.050)

0.339
(0.009)

-284.896
(13.465)

7.695
(0.379)

23 Other non-
metallic mineral
products

1601 0.237
(0.011)

0.795
(0.016)

3.239
(0.060)

0.361
(0.012)

-388.428
(15.707)

10.507
(0.486)

24 Basic metals 1098 0.187
(0.018)

0.865
(0.025)

3.488
(0.066)

0.370
(0.011)

-386.221
(8.959)

10.393
(0.368)

25 Fabricated metal
products

4934 0.125
(0.007)

0.958
(0.010)

3.340
(0.031)

0.352
(0.007)

-264.760
(18.406)

7.150
(0.388)

27 Electrical equipment 2294 0.162
(0.016

0.903
(0.023)

3.388
(0.047)

0.379
(0.019)

-318.548
(7.684)

8.576
(0.405)

28 Machinery and
equipment n.e.c.

5821 0.083
(0.006)

1.009
(0.009)

3.614
(0.027)

0.353
(0.007)

-317.811
(4.628)

8.588
(0.204)

29 Motor vehicles,
trailers, and
semi-trailers

1401 0.157
(0.015)

0.908
(0.021)

3.374
(0.052)

0.439
(0.021)

-335.859
(4.972)

9.031
(0.377)

31 Furniture 940 0.140
(0.014)

0.943
(0.020)

3.2079
(0.064)

0.328
(0.018)

-304.466
(6.713)

8.198
(0.436)

Notes: Number of firms for the first year of Phase I of the EU ETS (2005), the first year of Phase II (2008) and the last year of Phase
II (2012) that is also the last year we observe. Source: Research Data Centres of the Statistical Offices Germany (2014): Official
Firm Data for Germany (AFiD) - AFiD-Panel Industrial Units and AFiD-Module Use of Energy, own calculations.
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Table 3.10: Pretreatment: value added specification

Specification A Specification B

Manufacturing -0.0186
(0.0098)

-0.0095*
(0.0038)

Food products (10) 0.0034
(0.0178)

-0.0057
(0.0072)

Paper and
paper pro-
ducts (17)

-0.0178
(0.0275)

-0.0058
(0.0034)

Chemicals and
chemical pro-
ducts (20)

-0.0376
(0.0259)

-0.0032
(0.0034)

Other non-
metallic mineral
products (23)

-0.0090
(0.0193)

-0.0018
(0.0031)

Notes: Standard errors are computed by using the block bootstrap algorithm with 500 replications - robust with regard to het-
eroscedasticity and intra-firm correlation. * significant at the 5 percent level. Source: Research Data Centres of the Statistical
Offices Germany (2014): Official Firm Data for Germany (AFiD) - AFiD-Panel Industrial Units and AFiD-Module Use of Energy,
own calculations.

Table 3.11: Treatment effect: value added specification

2004 2005 - 2007 2005 - 2012

Specification A -0.0471*
(0.0206)

-0.0464*
(0.0155)

-0.0048
(0.0194)

Specification B -0.0429*
(0.0191)

-0.0306*
(0.0151)

0.0099
(0.0171)

Specification C - -0.0334*
(0.0155)

-0.0528*
(0.0145)

Notes: Standard errors are computed by using the block bootstrap algorithm with 500 replications - robust with regard to het-
eroscedasticity and intra-firm correlation. * significant at the 5 percent level. A denotes the baseline specification, B includes
explanatory variables, C includes firm-level fixed effects. All specifications include industry and time fixed effects and the full set of
interaction terms. Source: Research Data Centres of the Statistical Offices Germany (2014): Official Firm Data for Germany (AFiD)
- AFiD-Panel Industrial Units and AFiD-Module Use of Energy, own calculations.



Chapter 4

The effect of electricity taxation on German

manufacturing: a regression discontinuity

approach

4.1 Introduction

Many countries recognize that the use of energy is associated with negative environmental

externalities and apply market-based policy instruments for internalizing social costs. For

industrial energy users, countries often provide exemptions or compensation in order to

prevent potentially adverse effects on firms’ competitiveness. Despite the widespread use

of market-based policy instruments, causal empirical evidence on their effects on firms’

competitiveness is still scarce.

Germany established an ad-quantum excise tax, a market-based instrument, on elec-

tricity use in 1999. In this paper, we evaluate the causal effects of this electricity tax

on the economic performance of firms in the manufacturing sector. The government was

concerned that the new electricity tax might harm the competitiveness of German man-

ufacturing firms. Therefore, it provided relief to firms in the form of reduced marginal

tax rates. Without an international harmonization of energy taxes, increasing electricity

prices in Germany might have encouraged a relocation of electricity intensive production

to countries with less stringent regulation. In fact, the Federation of German Industries

has campaigned for low electricity prices over the last two decades: “Energy policy should

not become a risk factor for Germany as a location for business and investment. Policy

makers have to change the current course and must recognize electricity as an important

101
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factor of competitiveness.” 1 While many German manufacturing firms are export-oriented

and thus face strong international competition, energy costs are only a small share of the

total costs for them, apart from few very energy intensive industries. Despite an ongo-

ing public debate about potential competitiveness impacts of taxes on electricity use, the

causal effects of the electricity tax on economic firm performance have not been evaluated

so far.

The electricity tax varies in marginal tax rates allowing us to identify and estimate the

causal effects of the electricity tax on the economic performance of German manufacturing

firms. Using a sharp regression discontinuity design (Lee and Lemieux, 2010), we inves-

tigate how firms’ turnover, exports, value added, investment, and employment responded

to different marginal tax rates. The marginal electricity tax rates are a deterministic and

discontinuous function of firms’ electricity use. Firms that use more electricity than cer-

tain thresholds established by legislation pay reduced marginal tax rates. These reduced

marginal rates generate local random experiments at the thresholds from which they ap-

ply. The sharp nonparametric regression discontinuity design exploits the quasi-random

variation in marginal electricity tax rates around the thresholds and allows us to identify

and estimate the causal effects of the differential tax rates. Thereby we can evaluate the

effectiveness of the compensation scheme, i.e., the reduced marginal tax rates. The dif-

ference between marginal tax rates in some years is larger than the full tax rate in other

years, so we can also infer the effect of the electricity tax itself.

We make use of official micro-data on the activities of the German manufacturing at

the plant and firm level. The data is collected by the German Federal Statistical Office

through a rigorous census of firms on production, costs, and energy use. Participation in

the surveys is mandatory by law for all plants with more than 20 employees. The surveys

include detailed information about electricity use at the plant and firm level. Given that

the electricity tax law specifies the marginal tax rate to be a deterministic function of

electricity use, this allows us to calculate for each firm the electricity tax rate that applies.

The results suggest that the effects of the electricity tax on firms’ turnover, exports,

1The Federation of German Industries represents industrial firms in Germany. It communicates to

political decision-makers and the public on behalf of its 36 sector associations, acting for over 100,000

firms with eight million employees. The cited statement can be found in the official publication Federal

Association of German Industry (2008).
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value added, investment, and employment are neither systematic nor statistically signifi-

cant. Gradually shifting the thresholds from which reduced tax rates apply may increase

revenues for the government without adversely affecting the economic performance of

firms. The additional tax revenues could be used to lower taxes that are widely regarded

as particularly harmful to economic efficiency and growth such as taxes and social security

contributions on labor, to consolidate budgets, or to finance new investments.

Our study contributes to an emerging literature on the causal effects of market-based

environmental policy regulation by examining the case of the German electricity tax. De-

spite widespread regulatory intervention, there are so far only few studies that investigate

the causal impact of market-based environmental regulation on environmental and eco-

nomic performance of manufacturing firms. Using a quasi-experimental research design

with a generalized matching estimator, Fowlie, Holland, and Mansur (2012) examine the

effectiveness of Southern California’s NOx trading program that has been introduced in

the framework of the Clean Air Act Amendments of 1990. They show that the tradable

permit system yielded emission reductions of 20 percent in comparison to the counter-

factual, where facilities were regulated by command-and-control regulation. Martin, de

Preux, and Wagner (2014) evaluate the impact of a carbon tax on the manufacturing in-

dustry in the UK using an instrumental variable approach. They provide robust evidence

that the Climate Change Levy significantly decreased energy intensity and electricity use,

while the economic performance of the firms remained unaffected. Petrick and Wagner

(2014) investigate the effect of the EU Emissions Trading System (EU ETS) on German

manufacturing firms with the help of semi-parametric matching estimators. They find that

the scheme curbed the CO2 emissions by improving energy efficiency and fuel switching.

According to their results, the scheme had no impact on economic performance of the

regulated firms. Wagner, Muûls, Martin, and Colmer (2014) investigate the economic and

environmental impact of the EU ETS on French manufacturing plants. Their results sug-

gest a significant negative causal effect of the EU ETS on emissions of 15-20 percent. With

regard to its effect on economic outcomes, they find a significant reduction of employment

by 7 percent in regulated plants.2

In the following, we first explain how the design of the German electricity tax leads to

2For a survey of the literature on the effectiveness and efficiency of pricing carbon and in particular the

EU ETS see Arlinghaus (2015) and Martin, Muûls, and Wagner (2016).
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variation in firms’ marginal electricity tax rate. Second, we discuss how we can identify

and estimate the effects of the German electricity tax using a regression discontinuity

design. Third, we describe the official data used in our analysis, which is collected by the

German Statistical Office. Fourth, we present the results of our analysis and examine the

robustness of our findings. We briefly discuss the implications of our results before we

conclude.

4.2 The German electricity tax and variation in the marginal

tax rate

The German electricity tax was introduced in 1999 aiming at improving energy efficiency

and lowering labor costs. The new electricity tax increased the price on electricity incen-

tivizing firms to reduce electricity use. The revenues lower social security contributions

uniformly across firms and thereby, overall labor costs. We aim to assess how differences

in marginal electricity tax rates affected firms’ economic performance.

The electricity tax is levied on electricity use as an ad-quantum excise duty with a

full rate of 20.5 euros per MWh at present. This implies an effective tax on the carbon

content in the average unit of electricity of 44.4 euros per tonne of carbon dioxide (CO2).

Although this calculation assumes that the generation mix of electricity would not change,

if the tax was levied on CO2 instead of on electricity, it indicates the significance of the

electricity tax.

A comparison of the retail prices and the full rate shows that the tax significantly

increases the retail price, between 27.1 percent in 2002 and 15.2 percent in 2005. Figure 4.1

shows the development of retail prices for electricity use and the full tax rate for the period

from 1995 - 2005. The average price faced by a firm that consumes 2,000 MWh per annum

ranged between 65 and 100 euros during this time period (Eurostat, 2014), which we take

as the lower bound of the electricity price. As the upper bound of the electricity price, we

show the price for a household that consumes 3.5 MWh per annum, which ranged between

115 and 135 euros (Eurostat, 2014).

The government was concerned that the electricity tax may harm the competitiveness

of German firms that are subject to competition from abroad. For that reason, the govern-

ment took at least two measures. First, it introduced the electricity tax in several steps
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Figure 4.1: Retail prices for electricity 1995 - 2005
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Notes: The price for domestic electricity use relates to a reference household that annually consumes 3.5 MWh of which 1.3 MWh

are consumed at night. The price for industrial electricity use relates to a reference firm that annually consumes 2,000 MWh (max.

demand 0.5 MW; annual load 4,000 hours). Prices are denoted in EUR per MWh, include transmission, system services, meter rental,

distribution and other services and exclude taxes and levies. Source: Eurostat (2014), own calculations.

until the full rate was reached in 2003 giving firms time to adjust to higher electricity

prices. Second, it provided relief to manufacturing sectors through reduced tax rates.

The reduced tax rates apply from certain thresholds of electricity use onwards and are

key to our identification strategy as subsequently outlined and described more formally in

Section 4.3.1. While every user has to pay the same marginal tax rate for any use below

the threshold, firms in the manufacturing sector are eligible for a reduced marginal tax

rate for any use above the threshold. Table 4.1 shows that the tax is a piecewise linear

function of electricity use X, that can be characterized as a set of two linear taxes, each

relevant to only a particular range of X. Let t(0) stand for the regular marginal tax rate

and t(1) for the reduced marginal tax rate. The known threshold, from which the reduced

marginal tax rate applies, is denoted by c. Then, the tax function can be written as

T (X) =


t(0)X if X ≤ c

t(1)(X − c) + t(0)c if X > c .

(4.1)

The thresholds of 50 MWh or lower for a reduced marginal electricity tax rate may seem

low; nevertheless many firms in the manufacturing sector consume about that much elec-

tricity. In 1999, when the electricity tax was introduced, about 25.2 percent of the firms in

the data set used less than 100 MWh electricity per annum and about 13.1 percent of the

firms used less than 50 MWh electricity per annum (see also Figure 4.2 in Section 4.4.3).
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Thus, many firms in the manufacturing sector consume about that much electricity, and

are therefore directly affected by either having to pay the reduced or the full marginal

electricity tax rate.

The reduced marginal tax rate for any electricity use above the threshold in a given

year generates random variation in firms’ marginal electricity tax rates. Whether firms face

the full or reduced marginal tax rate is essentially chance due to arbitrarily set thresholds.

We use this random assignment to identify the effects of the reduced marginal tax rates

on firms’ economic performance with a regression discontinuity design as explained in the

following section.

Another type of electricity tax reduction is the so-called Spitzenausgleich. Recall that

the revenues from the electricity tax are used to lower social security contributions on labor

uniformly across firms. While firms benefit from reduced social security contributions, they

may eventually face overall higher costs due the new electricity tax. The Spitzenausgleich

reimburses a certain percentage of the potential additional burden from the new electricity

tax net of the savings on social security contributions. The reimbursement rule and also

the reduction in social security contributions have changed several times.

Table 4.1: Marginal electricity tax rate

Marginal electricity tax rate in EUR per MWh

Electricity use threshold Until 1999 1999 2000 2001 2002 2003 Until 2010

below 25 MWh 0 10 12.5 15 17.9 20.5 20.5

above 25 MWh 0 10 12.5 15 17.9 12.3 12.3

above 28.6 MWh 0 10 12.5 15 3.6 12.3 12.3

above 33 MWh 0 10 12.5 3 3.6 12.3 12.3

above 40 MWh 0 10 2.5 3 3.6 12.3 12.3

above 50 MWh 0 2 2.5 3 3.6 12.3 12.3

The Spitzenausgleich applies only for electricity use above the same thresholds from

which the reduced marginal electricity tax rate is granted. Thereby it may add to the po-

tential effects of the reduced marginal tax rates. We expect that the effects of the reduced

tax rate dominate around the thresholds given non-negligible administrative procedures

for receiving the Spitzenausgleich. In the following, we will therefore refer to the effects

of the reduced tax rate, bearing in mind that some of effects may have been reinforced by
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the Spitzenausgleich.

In August 2006, exemptions to the electricity tax were granted for firms in the manufac-

turing sectors for the electricity consumed in various production processes. In particular,

electricity used for electrolysis, production of glass, ceramics, fertilizers, metal production

and processing, as well as chemical reduction processes was exempted from the electricity

tax. The tax exemptions apply for all electricity consumed and thus not only from above

certain threshold onwards. We do not have any information on how much electricity is

used for these processes. From 2006 onwards, a clean identification of firms that benefit

from the reduced marginal electricity tax rate is not possible any more. We therefore

analyze the effects of the reduced marginal electricity tax rate only until 2005.

As mentioned, the revenues from the electricity tax are used to lower social security

contributions. Given that the reduction of social security contributions applies to all firms

uniformly, we cannot measure the effect of the reduction in social security contributions.

Neither can we assess the overall effect of the reform package, i.e., the introduction of a

new electricity tax combined with the use of its revenues to lower social security contribu-

tions. What we aim to assess is how different marginal electricity tax rates affected firms’

economic performance.

4.3 Research design

4.3.1 Empirical approach

Our goal is to identify the causal effect of the electricity tax on the economic performance

of firms in the manufacturing sector. As ad-quantum excise duty, the electricity tax

increases the price per unit of consumed electricity by the marginal tax rate t. We build

our identification strategy on variations in the marginal tax rate. Firms that are energy

intensive in terms of individual electricity use face a lower marginal tax rate in comparison

to less energy intensive firms. In particular, the reduced tax rate applies, if the electricity

use Xi of firm i exceeds the known threshold c that is set by the regulatory authorities:

ti =


ti(0) if Xi ≤ c

ti(1) if Xi > c ,

(4.2)
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where ti(0) denotes the regular marginal tax rate and ti(1) the reduced marginal tax rate,

respectively. Hence, the tax reduction scheme creates a sharp discontinuity in the marginal

tax rate as a function of the individual electricity use. This feature of the electricity tax

allows us to identify and estimate the effect of the electricity tax for any given year by

employing a sharp regression discontinuity design.

The profit maximizing firm equalizes marginal costs and marginal revenues by choosing

the level of output and the combination of inputs subject to technological constraints. The

discontinuity in the marginal tax rate and the resulting scheme of two different marginal

tax rates creates variation across firms regarding the marginal costs associated with the

use of electricity. We expect that firms react to the regular and reduced marginal tax rate

differently by adjusting the level of output and combination of inputs according to the

marginal tax rate they face.

More specifically, we hypothesize that firms that face higher marginal taxes will have

lower output relative to firms with low marginal costs. Two observations lead to this

hypothesis. First, firms that have to pay the full tax rate face higher marginal costs for

electricity use and thus, overall higher marginal costs than firms that only need to pay the

reduced tax rate. For minimizing costs, a firm equates the ratio of marginal costs of inputs

to the ratio of the marginal products of input factors. A higher marginal cost for electricity

use translates into higher overall costs for producing the same level of output. Thereby,

overall marginal costs are also higher for firms with higher marginal costs for electricity

use. Second, if there are two types of firms in the market, those with low marginal costs

are expected to produce a higher output than those with high marginal costs all else equal.

The economic outcomes we can observe with our dataset are firms’ turnover, exports,

value added, investment and employment. We expect that the turnover and exports of

firms with the reduced tax rate will be higher than for those that face the full marginal tax

rate. The intuition is that lower marginal costs allow the former firms to produce more.

For the same reason, we also expect that the value added, which is revenue minus costs,

of firms with the reduced tax rate is higher than for firms with the full marginal tax rate.

The total effects of the reduced marginal tax rate on investment and employment can

have either sign. With regard to investment, there is a direct effect, namely that higher

production causes more investment. Yet, there is also an indirect effect in the opposite

direction. Firms that face high marginal costs due to paying the full tax rate have an
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incentive to invest in new, more energy-efficient production technology to mitigate their

cost disadvantage. Thus, the total effects may have either sign. Regarding employment

there is, first, a direct effect from lower marginal costs to higher production and thus, more

employment. Second, there are indirect effects in addition, if firms with high marginal

costs invest in new, more energy efficient technology. This new technology could either

be less or more labor intensive than the old one. If it is less labor intensive, the indirect

effect goes in the same direction as the direct effect and we thus expect firms with the

reduced tax rate to employ more labor. If the technology is, however, more labor intensive

than the old one, the indirect effect goes in the opposite direction, i.e. firms that pay the

full tax rate employ more labor. In total, we cannot hypothesize unambiguously what the

effect of reduced tax rate on labor is.

Our identification strategy can be formalized using the potential outcomes framework

introduced by the seminal work of Rubin (1974, 1977). The firms of the German manu-

facturing industry are assigned to two different groups. The binary variable Di ∈ {0, 1}

describes the treatment status of firm i. Let Di = 1 if the firm’ s electricity use Xi ex-

ceeds the threshold c. Then, the firm is subject to the reduced marginal tax rate ti(1)

and is considered as treated. Let Di = 0 if the firm’s electricity use Xi is lower than the

threshold c. In this case, the full marginal tax rate ti(0) applies and the firm is assigned

to the control group. Consequently, we denote the potential outcomes by

Yi =


Yi(0) if Xi ≤ c

Yi(1) if Xi > c .

(4.3)

As shown in Equation 4.1, the assignment to the treatment group is a deterministic func-

tion of the electricity use Xi. Since we observe the electricity use Xi, we are able to

identify if firm i belongs to the treatment or the control group. Following the sharp re-

gression discontinuity design framework outlined by Imbens and Lemieux (2008) and Lee

and Lemieux (2010), we analyze the sharp discontinuity in the conditional expectation of

the outcome given electricity use Xi to unveil an average causal effect of the treatment:

τ = lim
x↓c

E[Yi | Xi = x]− lim
x↑c

E[Yi | Xi = x]. (4.4)

In the literature, this term is interpreted as the local average treatment effect at the
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threshold (Imbens and Lemieux, 2008):

τ = E[Yi(1)− Yi(0) | Xi = c]. (4.5)

Making use of assumptions we describe in Section 4.3.2, the treatment variation close

to the threshold c is considered as good as random. The random assignment implies

that the discontinuity at the arbitrarily set threshold c identifies the treatment effect of

interest. Consequently, we are able to identify the effect of the electricity tax reduction

by comparing firms of the treatment and control group that are in the neighborhood of

the threshold.

We assume the annual electricity use of a firm to be mainly determined by its physical

capital stock and the utilization of the installed capacities. The size of the capital stock

and the deployed technologies are highly path dependent, i.e. the current state is the result

of past investment decisions. The capital stock can only be changed through investment

or disinvestment. Thus, it is fixed in the short run.

While the utilization of the installed capacities can be manipulated by the firm in

the short run, utilization is also driven by stochastic shocks that cannot be controlled by

the firm. These shocks might be of external origin, as for instance the effect of weather

on heating or cooling processes, or of internal origin, as for instance the breakdown of a

machine. The effect of these stochastic shocks might be small, but prevent firms from

precisely manipulating electricity use.

We assume initially that firms make accurate production decisions based on the correct

marginal costs associated with electricity use, and later relax this assumption. As long

as the stochastic component in electricity use is fairly small, i.e. the error with regard

to their estimate of the annual electricity use is small, a violation of this assumption is

not severe for our identification strategy. Unfortunately, we do not have the possibility

to empirically investigate whether firms are able to correctly predict their electricity use

for the year ahead. In Section 4.5.7, we suggest an alternative model specification that

relaxes the assumptions described here.

The tax reduction scheme is implemented through reimbursement, i.e. firms whose

electricity use exceeds the threshold may request reimbursement from the local tax and

custom agency. We do not observe whether firms that were assigned to the treatment group

received the treatment. While the reimbursement procedure creates imperfect compliance,
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inference is still possible. We account for this case of encouraged treatment by performing

an intent to treat analysis. We compare control and treatment group without regards to

whether the tax reduction was actually claimed. Accordingly, the local average treatment

effect measures in our case how the treatment assignment affected the firm’s activities, as

opposed to the desired measure of how the treatment itself affected the firm’s activities

(Pearl, 2000). For simplicity, we will stick with the term local average treatment effect.

Yet, one should bear in mind that the estimated treatment effect measures the intend to

treat, i.e. the effect of the eligibility for the electricity tax reduction.

4.3.2 Identifying assumptions

The regression discontinuity design allows us to identify local treatment effects under

comparatively lax assumptions. Following Hahn, Todd and van der Klaauw (2001) and

Lee and Lemieux (2010), we unfold the assumptions that underlie the approach and discuss

them in light of the German electricity tax.

Assignment to the treatment group

First, the treatment assignment must be a monotone deterministic function of the

assignment variable. This holds in our case, as firms that consume more electricity Xi

than the known threshold c benefit from the tax reduction and are considered as treated,

while firms that consume less face the full marginal tax rate (see Equation 4.2) and are

considered as untreated. Second, the probability of treatment has to be a discontinuous

function of the assignment variable. The probability to be treated, i.e. to benefit from the

tax reduction, changes discontinuously at the threshold c, particularly P [Di = 1 | Xi = x]

is 0 for x ≤ c and 1 for x > c.

Inability to precisely control the assignment variable

The central assumption that underlies our identification strategy is that firms cannot

precisely manipulate their individual electricity use. Lee (2008) shows that the treatment

in the regression discontinuity design is random, if the assignment variable has a continu-

ously distributed stochastic component, i.e. firms cannot precisely control their electricity

use. We argue that this assumption is plausible in our setting for two reasons: First,

complex production processes and path dependencies in the manufacturing industry make

precise manipulation of a firm’s electricity use difficult. Second, exogenous factors that

drive electricity use lead to stochastic variation in electricity use. For example, weather
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conditions or the breakdown of a machine might impact a firm’s energy use. We will test

this assumption in Section 4.5.1 by examining the empirical distribution of the assignment

variable. No evidence for precisely controlling the assignment variable is found.

Local continuity restriction

In absence of treatment, the outcome variable has to evolve continuously with the

assignment variable in the neighborhood of the threshold. If other factors create disconti-

nuities in this relationship, a clear identification of the local treatment effect is not possible.

In Section 4.5.1, we empirically investigate the evolution of each outcome variable as a

function of the assignment variable electricity use for the years before the implementation

of the electricity tax. In this way, we aim to detect other sources that create discontinuities

in the relationships under investigation and thus might affect identification. No evidence

for any prior discontinuities is found.

Stable unit treatment value assumption

The stable unit treatment value assumption (SUTVA) assumes, that the treatment

status of a firm does not affect the outcomes for other firms. Hence, SUTVA excludes spill

overs and general equilibrium effects across firms. This assumption cannot be directly

tested. However, in Section 4.6, we will discuss the robustness of our results with regard

to a potential violation of this assumption.

4.3.3 Estimation

The estimation of the local average treatment effect τ requires an estimator that shows

good small sample properties and is suitable for inference at the boundary of the support

of the regression function (here threshold c). Addressing these obstacles, Hahn, Todd,

and van der Klaauw (2001) and Porter (2003) propose a nonparametric approach based

on weighted local linear or polynomial regressions at both sides of the threshold. This

estimator has become the standard choice for the estimation of local average treatment

effects in the regression discontinuity literature. Yet, the estimator requires the selection

of a bandwidth that determines the range around the threshold that is exploited for the

estimation of the local regressions. We use a fully data-driven bandwidth algorithm devel-

oped by Imbens and Kalyanaraman (2012) in order to select the asymptotically optimal

bandwidth.

We formalize the estimator of the local average treatment effect τ̂ at the threshold c
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as described in Imbens and Kalyanaraman (2012):

τ̂ = α̂+ − α̂− (4.6)

where α̂+ and α̂− denote the constants of a weighted local linear regression. The weights

are computed by applying a kernel function K(·) on the distance of each observation’s

score to the threshold c. The parameters are obtained by estimating two equations within

two narrow windows left and right of the threshold that yield in the estimator α̂+ for only

treated and the estimator α̂− for only control firms:

(α̂+, β̂+) = argmin
α,β

N∑
i=1

1Xi>c(Yi − α− β(Xi − c))K
(
Xi − c
h

)
, (4.7)

(α̂−, β̂−) = argmin
α,β

N∑
i=1

1Xi<c(Yi − α− β(Xi − c))K
(
Xi − c
h

)
, (4.8)

where 1u is an indicator function taking the value 1 if condition u is fulfilled. In

order to select the optimal bandwidth h for the two windows, we employ the algorithm

developed by Imbens and Kalyanaraman (2012). The default form of the kernel function

K(·) in our set up is triangular. The computed standard errors are robust with respect

to heteroscedasticity and show good finite sample properties.3 Unless otherwise stated,

the results that are presented in the remainder of this paper are estimated based on the

procedure shown in Imbens and Kalyanaraman (2012).

4.4 Data

4.4.1 Official Firm Data for Germany

Our empirical analysis exploits official census micro-data of firms collected by the German

Federal Statistical Office and the Statistical Offices of the German Federal States. The

data are confidential but the German statistical offices provide remote data access to

researchers for scientific purposes. Participation in surveys conducted by the German

statistical offices is mandatory by law and many official German government statistics

build on this data.
3The estimator of the local average treatment effect shown here is implemented using the STATA

package developed by Calonico et al. (2014a). For the computation of the standard errors, we choose the

conventional fixed-matches variance estimator proposed in Calonico, Cattaneo, and Rocio (2014a, 2014b).
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The dataset, called Amtliche Firmendaten für Deutschland - AFiD (Official Firm Data

for Germany), records activities of the industrial sector at the plant and firm level. It

consists of several modules, which can be combined. In particular, we use two modules

that capture activities of the German manufacturing industry.

The core of our dataset is the module AFiD-Panel Industrial Units. This longitudinal

census combines annual results from the Monthly Report on Plant Operation, the Census

on Production, and the Census on Investment. The AFiD-Panel Industrial Units is a

census of all establishments - physical buildings or structures, i.e., plants. It provides

detailed information on turnover, exports, employment, investment, and firm affiliation.

This database is extended by the AFiD-Module Use of Energy. The AFiD-Module

Use of Energy is a longitudinal census that comprises results from the Monthly Report

on Plant Operation and the Census on Energy Use. It contains information about sale,

purchase, generation, use, and distribution of electricity and fuels. Both the AFiD-Panel

Industrial Units and the AFiD-Module Use of Energy have the same group of respondents:

All German plants that operate in the manufacturing industry and belong to firms that

employ more than 20 persons must participate in the census.

Merging the AFiD-Panel Industrial Units with the module AFiD-Module Use of En-

ergy, we construct a data set comprising longitudinal census data at the firm level covering

a time span from 1995 to 2005. This data cover pre-reform, reform, and post-reform pe-

riods. Where necessary, we aggregate plant-level data to the firm level using the firm

affiliation provided within the AFiD-Panel Industrial Units.

4.4.2 The Cost Structure Survey

We link the AFiD-Panel Industrial Units and the AFiD-Module Use of Energy with data

from the Cost Structure Survey (CSS) to obtain information on the value added at the

firm level.4

The CSS also conducted by the German Federal Statistical Office and the Statistical

Offices of the German Federal States gives detailed information on the costs from capital,

labor as well as value added of firms on an annual basis from 1999 - 2005.

In contrast to the AFiD-Panel Industrial Units and the AFiD-Module Use of Energy,

4In particular, we use the variable gross value added - for practical purposes referred to as value added

throughout the paper.
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the CSS collects data directly at the firm level. It includes all firms with more than

500 employees. For firms with at least 20 and less than 500 employees, the statistical

offices collect a random sample that is stratified by the number of employees and industry

affiliation. These firms remain four years in the panel and are replaced by a new random

sample afterwards. For the CSS, the same participation rules apply as for AFiD. The

provision of the requested information is mandatory by law.

4.4.3 Descriptive statistics

In our analysis, we focus on German firms that belong to the sectors mining and quarry-

ing (ISIC 1010-1429) and manufacturing (ISIC 1511-3720).5 The data set comprises the

assignment variable electricity use that determines if firms belong to treatment or control

group, and five outcome variables. The outcome variables of our analysis are turnover,

exports, investment, employment as measured by number of employees, and value added.

Turnover, exports, investment, and value added are denoted in 1,000 euros. In addition, we

show electricity intensity as descriptive statistic that is computed by dividing the amount

of electricity use by turnover. The resulting index is denoted in KWh per euro.6

In Table 4.2, we present descriptive statistics for the original sample for the years

1995, 2000, and 2005.7 Our data set includes close to 40,000 observations per year. As

explained in Section 4.4.1, AFiD is a modular data set based on several different mandatory

censuses and surveys. Hence, the sample size varies depending on the variable under

investigation and the associated census or survey.8 We have information on turnover,

5Regarding the classification by economic activity, we refer to the International Standard Industrial

Classification of all economic activities (ISIC) Rev. 3.1, as adopted by the Statistical Commission of the

United Nations.
6Electricity intensity may also be of interest as an outcome variable. Given its construction as electricity

use over turnover and with electricity use being the assignment variable, it does, however, not provide any

additional information to simply analyzing turnover. Figure 4.9 and Figure 4.10 in Appendix 4.A show

the electricity intensity as function of electricity use for given years in order to shed some light on the

previously described relationship.
7For all considered variables, outliers have been removed outside the 1st and 99th percentile.
8The characteristics turnover, exports, and employment are gathered monthly by the same census, the

Monthly Report on Plant Operation. Investment and electricity use stem from different censuses, namely

the Census on Investment, the Monthly Report on Plant Operation, and the Census on Energy Use. The

Census on Investment is conducted yearly. While information on energy use was collected by the Monthly

Report on a monthly basis from 1995 - 2002, an independent census on energy use was established in 2003.
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Table 4.2: Descriptive statistics

Mean St. dev. P10 P 50 P90 N

1995

Electricity use (in MWh) 1,346.66 3,474.06 37.40 284.92 3,170.90 38,470

Turnover (in EUR 1,000) 13,155.15 23,575.62 1,423.09 5,134.15 31,759.60 38,579

Exports (in EUR 1,000) 2,622.11 7,802.80 0 93.01 6,559.38 38,579

Investment (in EUR 1,000) 594.14 1,378.32 0 136.67 1,490.43 32,975

Employment 104.56 154.27 22.50 51.00 235.67 38,579

Electricity intensity (in KWh per EUR) 0.1003 0.1247 0.0110 0.0577 0.2414 38,470

Value added (in EUR 1,000) - - - - - -

2000

Electricity use (in MWh) 1,509.58 3,968.69 41.47 304.95 3,541.74 38,784

Turnover (in EUR 1,000) 14,855.25 27,579.86 1,520.13 5,462.99 36,230.26 38,873

Exports (in EUR 1,000) 3,726.30 11,062.76 0 129.68 9,378.87 38,873

Investment (in EUR 1,000) 603.73 1,423.36 0 135.71 1,518.55 36,493

Employment 99.81 141.20 22.75 49.5 228 38,873

Electricity intensity (in KWh per EUR) 0.1020 0.1262 0.0108 0.0599 0.2397 38,784

Value added (in EUR 1,000) 8,945.63 13,821.24 1,036.60 3,778.24 22,868.13 15,152

2005

Electricity use (in MWh) 1,888.30 4,938.04 60.51 400.43 4,437.14 36,158

Turnover (in EUR 1,000) 16,183.06 30,413.63 1,483.17 5,740.41 39,668.39 37,329

Exports (in EUR 1,000) 4,950.96 13,909.35 0 302.92 12,822.16 37,329

Investment (in EUR 1,000) 477.57 1,192.87 0 90.62 1,192.46 35,111

Employment 97.78 137.62 22.75 49.50 217.67 37,329

Electricity intensity (in KWh per EUR) 0.1201 0.1431 0.0144 0.0732 0.2773 35,897

Value added (in EUR 1,000) 9,502.641 14,542.27 1,039.019 4,089.146 24,673.86 13,997

Notes: Turnover, investment, and exports are denoted in EUR 1,000. Electricity use relates to the taxable electricity use in MWh

(not including self-generated electricity). Electricity intensity is denoted by electricity use divided by turnover. Source: Research

Data Centres of the Statistical Offices Germany (2014): Official Firm Data for Germany (AFiD) - AFiD-Panel Industrial Units,

AFiD-Module Use of Energy, and Cost Structure Survey, own calculations.
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exports, investment, employment, and electricity use for all firms of the manufacturing

sector with more than 20 employees summing up to about 40,000 observations on an

annual basis from 1995 - 2005. For value added, we have only information from a random

sample of about 15,000 firms on an annual basis from 1999 - 2005.

A comparison of the 10th and 90th percentile of the outcome variables and electricity

use (Table 4.2) shows that the firms highly differ in their characteristics leading to high

dispersion in the corresponding distributions. The percentiles as well as a comparison of

mean and median show that the distributions of firms over the considered variables are

positively skewed. This reflects the high fraction of small and medium sized firms and

their importance for the German economy. About 90 percent of the firms in the census

operate only a single plant.

Many firms operate around the thresholds for the reduced electricity rate, i.e., 50

MWh from 1999 to 25 MWh from 2003 onwards. Figure 4.2 shows histograms of the

distribution of firms in the manufacturing sector ordered across their electricity use for

the years 1995, 2000, and 2005. Each bin shows the absolute frequency of firms within the

considered range. In the first row, we show histograms for the full support of electricity

use, while the second row shows histograms with a trimmed support of 0 - 1,000 GWh.

A bin corresponds to a 200 MWh range in the first row and a 20 MWh range in the

second row. The histograms in the first row show very few firms with electricity use above

2,000 MWh while many more firms consume less than 2,000 MWh. The lowest bin in

terms of electricity use, which corresponds to an electricity use of 0 to 200 MWh, contains

close to 39.9 percent of all firms included in the data set in 2000. The histograms in the

second row illustrate that there are more firms in the bins close to thresholds for a reduced

electricity tax rate, i.e., around 50 MWh to 25 MWh, than in bins with higher electricity

use. The high number of firms that consume less than 100 MWh enables us to perform

the regression discontinuity analysis also for subpopulations, i.e. subsectors such as the

manufacture of basic metal and metal products.

The corresponding Census on Energy Use collects information on energy use on a yearly basis from 2003

- 2005. Information about value added is collected by the annual Cost Structure Survey on a yearly basis

from 1999 - 2005.
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Figure 4.2: Histograms of electricity use in 1995, 2000, and 2005
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B: Trimmed support of electricity use 0 - 1,000 GWh
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Notes: Source: Research Data Centres of the Statistical Offices Germany (2014): Official Firm Data for Germany (AFiD) - AFiD-Panel

Industrial Units and AFiD-Module Use of Energy, own calculations.

4.5 Empirical evidence

4.5.1 Testing for identifying assumptions

In this section, we investigate the validity of our identification strategy. Applying the

guideline set out by Lee and Lemieux (2010), we aim to confirm the assumptions that

underlie the regression discontinuity design.

First, we examine the assumption that firms are unable to precisely control the assign-

ment variable, i.e., electricity use. If this assumption holds, assignment to the treatment

group is as good as locally random. According to Lee and Lemieux (2010) the incentive for

sorting around the threshold is unproblematic, as long as the assignment variable contains

a stochastic error component. In this case, optimizing firms do not have precise control

over the assignment variable resulting into local random assignment to the treatment.

The assumption of imprecise control of the assignment variable cannot be directly

tested. Nevertheless, by examining first the aggregate empirical distribution of the assign-

ment variable and then applying a more formal test on the continuity of the distribution

developed by McCrary (2008), we are able to shed light on the validity of this assumption.

In Figure 4.3, we present histograms that illustrate the distribution of the assignment
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variable electricity use for the pre-treatment year 1995 and the treatment years 1999 - 2005.

The support of each distribution is trimmed to a range of 100 MWh. The graphs show the

absolute frequencies of firms computed over non-overlapping bins with a bandwidth of 1

MWh. Following Lee and Lemieux (2010), we choose binwidths as small as possible, that

still allow us to see the shape of the distribution. The vertical black line in each graph

denotes the threshold at which the marginal tax rate changes in that year (the graph

illustrating the pre-treatment year 1995 shows the threshold of 1999).

The bin-to-bin jumps in the frequencies enable us to identify exceptional jumps at the

threshold c that indicate a discontinuity in the density. If firms could precisely manipulate

their electricity use and thereby select themselves into the treatment group, we would

expect a significant upward jump in the bins located directly right of the threshold.

The histograms do not provide any evidence that firms manipulated their electricity

use. Figure 4.3 shows several upward jumps that are located far from the thresholds.

However, directly right of the thresholds there are no unusual jumps that would indicate

manipulation of electricity use.

Figure 4.4 shows a visualization of the discontinuity test developed by McCrary (2008)

for the pre-treatment year 1995 and the treatment years 1999 - 2005. Each graph exhibits

an estimate of the density function of the assignment variable electricity use and the

corresponding 95 percent confidence interval. The density function is estimated using the

local linear density estimation technique proposed by McCrary (2008). The dots represent

local densities for bins with a width between 0.50 and 0.75 MWh. The binwidths are

calculated following the procedure in McCrary (2008).

Examining the point cloud, which gives a good visual impression of the empirical

density function of the assignment variable, we do not see clear evidence for a discontinuity

at the threshold in the pre-treatment year 1995 and in the treatment years 1999 - 2004. An

inspection of the plotted density function and the corresponding confidence intervals lead

to the same result. Only for the year 2005, the test shows that the density is significantly

higher close to the right of the threshold suggesting a discontinuity at the threshold. Yet,

looking at the absolute frequencies for the same year in Figure 4.3 also reveals excess mass

close to the left of the threshold. In particular, the number of firms increases sharply at

24 MWh electricity use. In comparison to the jumps and irregularities in the absolute

frequencies further away from the threshold, there is a slight unsystematic jump in the
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Figure 4.3: Distribution of electricity use near the threshold in 1995 and 1999 - 2005
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Notes: Source: Research Data Centres of the Statistical Offices Germany (2014): Official Firm Data for Germany (AFiD) - AFiD-Panel

Industrial Units and AFiD-Module Use of Energy, own calculations.
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Figure 4.4: Visualization of the McCrary discontinuity test
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frequencies between 24 and 27 MWh electricity use. The rejection of the null hypothesis

of continuity in the framework of the test developed by McCrary (2008) may therefore be

due to an unsystematic jump in the density rather than a systematic break in the density

function. Also, the graphs in Figure 4.4 show jumps in the local densities for all years,

even at locations far away from the thresholds.

An alternative approach for investigating a potential sorting into the treatment group

would be to examine, if continuous baseline covariates show discontinuities at the thresh-

old. However, for firm data, this approach is barely feasible, since one would need firm

characteristics that are (i) continuous and (ii) unaffected by the treatment. A change in

the relative input prices - e.g. through a tax - potentially leads to a change in input use

as well as output production. All continuous variables in our data set hence might be

affected by the electricity tax.

From 2003 onwards, the histograms as well as the density estimates show fewer firms

in comparison to the years before. This phenomenon emerges mostly due to two method-

ological changes. First, due to a switch from the monthly to the yearly census, some firms

were not surveyed in the years 2003 and 2004. Second, the classification by economic

activity changed in 2003. Firms may have ascertained, whether they were correctly classi-

fied. Consequently, some firms that actually were not in the manufacturing sector might

have been reclassified and disappeared from the data set.

The second assumption, we investigate is the assumption of local continuity. In par-

ticular, we assume that the outcome variables evolve as continuous functions of electricity

use around the threshold when the intervention is absent. Since we do not observe the

counterfactual - i.e. firms that lie above the threshold and are not treated - we analyze the

relationship of outcome and assignment variable before the intervention started. Figure

4.5 contains four scatter plots showing the outcome variables turnover, exports, invest-

ment, and employment as second order global polynomial functions of electricity use for

the pre-treatment year 1995. The dots denote non-overlapping binned local means of the

corresponding outcome variable. The local means are computed for 1 MWh bandwidths

in the area of 25 - 75 MWh, the c± 25 MWh neighborhood of the 50 MWh threshold that

applies for the first year of the treatment 1999. Neither the point cloud of binned local

means, nor the second order polynomial give rise to concern that a discontinuity and thus

a violation of the local continuity restriction is present.
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Figure 4.5: Outcomes in the pre-treatment year 1995
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Notes: Source: Research Data Centres of the Statistical Offices Germany (2014): Official Firm Data for Germany (AFiD) - AFiD-Panel

Industrial Units and AFiD-Module Use of Energy, own calculations.
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4.5.2 Graphical analysis

We start our analysis by showing graphical evidence on the relationship between the out-

come variables and the assignment variable electricity use. We compute local conditional

sample averages for 1 MWh non-overlapping bins of electricity use and also show estimates

of second order global polynomial regression functions for either side of the threshold sep-

arately. The graphs in the first column in Figure 4.6 show the results for four outcome

variables: turnover, exports, investment, and employment in 2000. The graphs in the

second column show the results for the same variables in 2005. The vertical black lines at

40 MWh and 25 MWh denote the thresholds for tax reductions. The plots are trimmed

to the electricity use c± 25 MWh around the threshold.

Our aim is to discover discontinuities (or in other words shifts) in the local conditional

sample averages. A shift at the threshold would indicate an effect of the tax reduction

on the outcome variables. Shifts in regions away from the threshold would highlight the

presence of other discontinuities and would question the applicability of the regression

discontinuity design in this context. Note that the cloud of local conditional sample

averages indicates the level of dispersion of the data.

The graphs depicted in Figure 4.6 do not show evidence of an obvious discontinuity at

the threshold. A positive effect of the reduced tax rate on one of the outcome variables

would be indicated by an upward shift to the right of the thresholds of both the binned

averages and the regression lines. A negative effect on one of the outcome variables

would be indicated by a downward shift to the right of the threshold of both the binned

averages and the regression lines. Regarding the global polynomial functions, one should

bear in mind that the estimates are less precise close to the thresholds than further away

from them. A point estimated further away from the threshold can draw on additional

information toward its right and left for estimation, while a point close to the threshold can

only draw on additional information on one side. The small discontinuities in regression

lines are thus likely due to less precise estimation at the thresholds than further away.9

9For the estimation of the local average treatment effect, in the following section, we rely on the

nonparametric approach based on weighted local linear regressions on both sides of the threshold proposed

by Hahn, Todd, and van der Klaauw (2001) and Porter (2003) in order to mitigate this problem. The

estimator shows good small sample properties and is suitable for inference at the boundary of the support

of the regression function.
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Figure 4.6: Effects caused by the discontinuity (I/II)
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Notes: Assignment variable: electricity use. Outcome variables: turnover, exports, investment, and employment. Source: Research

Data Centres of the Statistical Offices Germany (2014): Official Firm Data for Germany (AFiD) - AFiD-Panel Industrial Units and

AFiD-Module Use of Energy, own calculations.
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A systematic shift of the regression lines or the cloud of binned local means indicating a

discontinuity at the threshold is not observed.

For both turnover and investment, substantial heterogeneity is observed between the

local sample averages reflecting the high degree of variance discussed in Section 4.4.3.

However, no discontinuity is found at the threshold. Also for exports, the local sample

averages do not indicate a discontinuity at the threshold. However, the global polynomial

function indicates a slight upward shift to the right of the threshold. This is seemingly

driven by the four bins to the left of the threshold for the reduced tax rate at 25 MWh

and the five bins to the right of the threshold. Bins further away from the threshold do

not show a consistent difference in average exports. No indication for a discontinuity at

the threshold is found for employment, neither by the local sample averages nor by the

global polynomial functions.10

Figure 4.7 shows the impact of the reduced electricity tax on value added. Information

on value added is only available from a mandatory survey of a subset of firms. Therefore

there are less observations than for the outcome variables above that originate from the

census of firms. The dispersion of value added is lower than that of turnover or exports

as also shown in the descriptive statistics in Section 4.4.3. This translates into a fairly

smooth relationship between value added and electricity use and may help to detect a

potential discontinuity at the threshold. However, neither the binned conditional sample

averages nor the global polynomial regression functions indicate an effect of the reduced

electricity tax on value added.

In addition, the plots do not provide evidence for discontinuities away from the thresh-

old. Hence there is no indication of other sources that may cause discontinuities in the

relationships between outcome variables and assignment variable.

10The observed pattern for the years 2000 and 2005 also holds for other years in which the reduced tax

rate applied. Results are available upon request.
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Figure 4.7: Effects caused by the discontinuity (II/II)
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Notes: Assignment variable: electricity use. Outcome variable: value added. Source: Research Data Centres of the Statistical Offices

Germany (2014): Official Firm Data for Germany (AFiD) - AFiD-Panel Industrial Units, AFiD-Module Use of Energy, and Cost

Structure Survey, own calculations.

4.5.3 Local average treatment effects

In this section we present the estimated local average treatment effects of the tax reduction

scheme on the outcome variables turnover, exports, investment, employment, and value

added. Being precise, we estimate the effect of the difference between the full and the

reduced marginal tax rate - i.e. the reduction of the marginal tax rate. The firms that

consume more electricity than the threshold c benefit from a lower marginal tax rate and

form the treatment group. The firms that consume less electricity than the threshold c face

the full marginal tax rate and thus denote the control group. A year by year evaluation

leads to seven experiments and 35 treatment effects of interest in the years 1999-2005.

The estimators of the local average treatment effects presented in the following are

computed as described in Section 4.3.3. Recall, that the estimators of the local average

treatment effects are computed as the difference of the constants of two weighted linear

regressions for narrow bandwidths left and right of the threshold. Here, the weights for

linear regression are computed based on a triangular kernel function.11 The bandwidths are

computed based on the data-driven bandwidth selection procedure developed by Imbens

and Kalyanaraman (2012).

In Table 4.3, we show the estimated effects of the tax reduction for each year in the

11The results do not systematically change when using alternative kernel functions. Table 4.9 and 4.10

in Appendix 4.B report the results of the local average treatment effect estimation considering uniform

and Epanechnikov kernel functions.)
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Table 4.3: Local average treatment effects

Tax reduction scheme Effect of reduced marginal tax rate

Year Threshold

(MWh)

Full

tax rate

(EUR/MWh)

Tax re-

duction

(EUR/MWh)

Turnover Exports Invest-

ment

Employ-

ment

Value

added

1999 50 10 8 95.40 2.01 -10.50 -0.39 -83.75

(169.85) (108.37) (11.24) (0.99) (199.12)

2000 40 12.5 10 -166.78 -36.53 -1.73 -0.12 -18.67

(180.53) (108.98) (11.54) (1.17) (200.28)

2001 33 15 12 440.78* -180.18 9.36 -0.62 183.14

(216.96) (121.50) (9.80) (0.96) (208.51)

2002 28.6 17.9 14.6 -379.65 -47.27 -20.65* 0.16 -492.54

(238.68) (108.33) (10.29) (1.13) (299.71)

2003 25 20.5 8.2 -136.42 -232.44 -4.18 -0.49 -177.09

(221.77) (156.74) (8.43) (1.33) (181.25)

2004 25 20.5 8.2 254.35 -48.75 -4.41 0.72 83.51

(216.70) (157.89) (9.00) (1.04) (203.20)

2005 25 20.5 8.2 -106.73 335.86* 14.48 0.59 -35.59

(268.37) (164.23) (7.88) (1.32) (213.67)

Notes: * indicates significance at the 5 percent level. Standard errors are shown in parentheses. Analysis covers firms in the ± 25

MWh region around the threshold. The order of the polynomial function is set to 1. Source: Research Data Centres of the Statistical

Offices Germany (2014): Official Firm Data for Germany (AFiD) - AFiD-Panel Industrial Units, AFiD-Module Use of Energy, and

Cost Structure Survey, own calculations.
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period 1999 - 2005 along with the characteristics of the prevailing tax scheme. In each

experiment we consider observations in the neighborhood c± 25 MWh around the thresh-

old. Outliers of the outcome variables are removed outside the 1st and 99th percentile.

The columns on the left side of Table 4.3 summarize the information on the electricity

tax. They show for each year the full tax rate as well as the thresholds from which the

reduced marginal tax rate applies and the difference between the full marginal tax rate.

The columns on the right side of the table show the point estimates of the regression

discontinuity analysis and the corresponding standard errors.

The thirty-two statistically insignificant effects in Table 4.3 clearly outweigh the three

statistically significant effects. These statistically significant effects indicate a positive

impact of the tax reduction on turnover in 2001 and exports in 2005 as well as a negative

effect on investment in 2002.

Table 4.4 shows the bandwidth choice for each experiment as well as the number of

observations that lie within the bandwidths right and left of the threshold. The selected

bandwidths lie in a range between 15 and 25 MWh. The selected bandwidths for ex-

ports are typically smaller and thereby have fewer observations than those for turnover,

investment, and employment.

The results from the regression discontinuity analysis indicate hardly any evidence for a

consistent effect of the reduced marginal electricity tax on turnover, exports, investment,

employment, or gross value added. First, there is only a low number of statistically

significant treatment effects (only three out of thirty-five) that might result from statistical

error. Second, there is no consistent pattern of negative or positive signs for the local

treatment effects. Neither do the three statistically significant effects have the same sign

nor do the five dependent variables show a particular pattern or trend.12

12To investigate robustness with regard to distributional assumptions and outliers, we estimated a log

specification of our model. The qualitative findings do not change. Detailed results are available upon

request.



130 CHAPTER 4. ELECTRICITY TAXATION AND COMPETITIVENESS

Table 4.4: Imbens and Kalyanaraman (2012) bandwidths and number of observations

Outcome variable Bandwidth Number of observations

c ± 25 MWh Control group Treatment group

A: 1999

Turnover 24.15 5,289 2,671 2,442

Exports 16.11 2,330 755 793

Investment 22.89 3,873 1,848 1,739

Employment 23.42 5,289 2,615 2,377

Value added 21.30 1,452 661 600

B: 2000

Turnover 22.38 5,017 2,306 2,263

Exports 18.47 2,137 772 815

Investment 19.07 3,691 1,487 1,397

Employment 19.34 5,014 2,023 1,877

Value added 20.17 1,301 536 546

C: 2001

Turnover 16.61 4,862 1,557 1,769

Exports 18.03 2,041 647 842

Investment 17.48 3,338 1,095 1,302

Employment 25.00 4,859 2,339 2,520

Value added 20.35 1,119 413 495

D: 2002

Turnover 14.01 5,072 1,323 1,511

Exports 18.07 2,114 758 819

Investment 20.85 3,360 1,316 1,572

Employment 20.32 5,063 2,047 2,216

Value added 22.37 985 377 510

E: 2003

Turnover 16.28 3,052 891 1,294

Exports 12.74 1,290 278 407

Investment 18.35 2,175 650 1,076

Employment 18.97 3,052 964 1,537

Value added 16.36 851 249 362

F: 2004

Turnover 14.08 2,779 657 1,079

Exports 14.44 1,138 236 466

Investment 17.44 1,979 553 960

Employment 18.44 2,778 798 1,414

Value added 15.82 704 172 319

G: 2005

Turnover 12.22 2,654 535 843

Exports 17.12 1,068 266 479

Investment 17.36 1,856 495 870

Employment 12.78 2,654 559 886

Value added 23.17 621 177 408

Notes: Turnover, investment, and exports are denoted in EUR 1,000. The number of observations refers to the ± 25 MWh region

around the threshold c. The bandwidth is selected based on Imbens and Kalyanaraman (2012). Source: Research Data Centres of

the Statistical Offices Germany (2014): Official Firm Data for Germany (AFiD) - AFiD-Panel Industrial Units, AFiD-Module Use of

Energy, and Cost Structure Survey, own calculations.
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4.5.4 Sensitivity toward bandwidth choice

In this section, we investigate the sensitivity of our findings toward different bandwidths.

The results in the previous section do not show any systematic significant effects of the

reduced tax rates on economic outcomes. The question in the following paragraphs is

whether these results are robust for various choices of bandwidth.

Bandwidth choice is a choice between precision and bias. Larger bandwidths offer more

precise estimates as they can rely on a larger number of observations. At the same time,

larger bandwidths may generate bias, in particular, when using a linear estimator for data

that is inherently nonlinear. The optimal bandwidth that minimizes the mean squared

error decreases with the number of observations. In the previous section, we selected

bandwidths according to a fully data driven and asymptotically optimal bandwidth choice

algorithm developed by Imbens and Kalyanamaran (2012).

Given the above mentioned tradeoffs between precision and bias, we present results

across different integer bandwidth choices ranging from 5 to 25 MWh in Figure 4.8 for

the years 2000 and 2005. The solid black line in each graph denotes point estimates

and the dashed lines are corresponding 95 percent confidence intervals. The standard

errors decrease with increasing bandwidths as expected. In most cases, also the estimates

become smaller in absolute terms and approach zero with increasing bandwidths, without

becoming statistically significant. This confirms our previous findings that do not indicate

any effects of the reduced tax rates on economic outcomes. Smaller bandwidths tend

to have larger point estimates. Given the higher imprecision of the estimates, no point

estimate is significant for bandwidths below 16 MWh, adding to the evidence that there

is no significant effect.

In addition, we note that the observed patterns for 2000 and 2005 hold for the other

years too. Table 4.11 in Appendix 4.C reports the results of the local average treatment

estimation for the bandwidths 5, 10, 15, 20, and 25 in 1999-2005. The significant positive

local average treatment effect on turnover in 2001 does not seem to depend on bandwidth

choice. Yet, the significant negative estimate for investment in 2002 is not robust to

bandwidth choice. It is only significant for a bandwidth between 10 and 20 MWh. Figure

4.11 in Appendix 4.C shows the point estimates and 95 percent confidence intervals across

different integer bandwidth choices for turnover in 2001 and investment in 2002.
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Figure 4.8: The effects of bandwidth choice on point estimates and confidence intervals
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Notes: The solid black line in each graph denotes point estimates and the dashed lines are corresponding 95 percent confidence

intervals. Source: Research Data Centres of the Statistical Offices Germany (2014): Official Firm Data for Germany (AFiD) -

AFiD-Panel Industrial Units, AFiD-Module Use of Energy, and Cost Structure Survey, own calculations.
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4.5.5 Sensitivity toward polynomial choice

In addition to selecting the bandwidth, the choice of the polynomial order may also affect

results. Choosing a local linear estimator for data that is inherently non-linear may bias

results, in particular when the bandwidth is large. While Figure 4.6 in Section 4.5.2 might

suggest that higher order global polynomial estimators fit best for some outcome variables

in some years, it also does not point toward strong local non-linearities in the data. This

visual inspection may therefore suggest that the previously chosen local linear regressions

should not suffer from substantial bias.

An additional robustness check with a higher order polynomial does not change the

previous findings, further confirming that the local linear regressions are not substantially

biased. Table 4.5 shows the results for the effect of the reduced tax rate on economic

outcomes applying local quadratic polynomial regressions. The bandwidths are optimally

selected using the algorithm developed by applying Imbens and Kalyanamaran (2012)

as previously. While many point estimates increase somewhat confidence intervals also

increase substantially. This results in only three out of 35 estimates becoming statistically

significant. No pattern regarding the signs of the effects is observed, confirming that there

are no consistent effects of the reduced tax rates on economic outcomes.

Given the fairly linear underlying data close to the threshold, results would unlikely

change with higher polynomial orders. The underlying data nevertheless reveals a fair

amount of heterogeneity as both shown in Figure 4.6 and the descriptive statistics. The

following section therefore investigates how this heterogeneity may impact our results.
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Table 4.5: The effects of an alternative polynomial order

Outcome variable Estimator Bandwidth Number of observations

c ± 25 MWh Control group Treatment group

A: 1999

Turnover 163.50 (238.29) 23.43 5,289 2,606 2,387

Exports -77.66 (144.47) 19.93 2,330 901 965

Investment -9.45 (15.91) 23.41 3,873 1,883 1,770

Employment -0.62 (1.41) 21.19 5,289 2,375 2,124

Value added -157.62 (291.27) 18.83 1,452 589 540

B: 2000

Turnover -241.09 (282.45) 20.39 5,017 2,118 2,069

Exports -196.71 (153.00) 21.03 2,137 854 972

Investment -0.93 (17.01) 21.72 3,691 1,615 1,636

Employment -1.72 (1.86) 18.75 5,014 1,976 1,834

Value added -331.80 (272.04) 21.07 1,301 550 568

C: 2001

Turnover 580.77* (286.41) 21.22 4,862 1,915 2,197

Exports -182.94 (177.07) 17.71 2,041 639 825

Investment 7.76 (12.49) 21.91 3,338 1,437 1,607

Employment 0.30 (1.49) 22.27 4,859 2,164 2,294

Value added -368.42 (272.01) 21.87 1,119 466 532

D: 2002

Turnover -430.40 (266.11) 24.35 5,072 2,335 2,628

Exports -65.91 (135.57) 29.34 2,114 910 1,204

Investment -27.84* (13.49) 28.42 3,360 1,514 1,846

Employment -0.63 (1.58) 23.32 5,063 2,264 2,535

Value added -911.67* (448.78) 21.69 985 367 495

E: 2003

Turnover 41.90 (323.79) 16.66 3,052 899 1,329

Exports -357.13 (215.91) 15.66 1,290 333 529

Investment 2.08 (11.82) 19.23 2,175 664 1,136

Employment 1.16 (2.12) 16.60 3,052 888 1,330

Value added -134.90 (269.32) 14.58 851 232 318

F: 2004

Turnover 420.63 (274.62) 17.46 2,779 776 1,345

Exports -112.14 (231.50) 15.07 1,138 251 490

Investment -1.15 (12.77) 20.36 1,979 600 1,120

Employment 2.81 (1.46) 18.53 2,778 802 1,420

Value added 107.21 (292.40) 21.79 704 202 441

G: 2005

Turnover -29.45 (319.81) 17.54 2,654 718 1,256

Exports 334.83 (224.97) 17.00 1,068 264 473

Investment 11.09 (10.77) 17.80 1,856 498 891

Employment 0.33 (1.47) 21.73 2,654 808 1,566

Value added -167.17 (355.19) 20.39 621 170 354

Notes: * indicates significance at the 5 percent level. Standard errors are shown in parentheses. Turnover, investment, and exports

are denoted in EUR 1,000. The number of observations refers to the ± 25 MWh region around the threshold c. The bandwidth

is selected based on Imbens and Kalyanaraman (2012). Source: Research Data Centres of the Statistical Offices Germany (2014):

Official Firm Data for Germany (AFiD) - AFiD-Panel Industrial Units, AFiD-Module Use of Energy, and Cost Structure Survey own

calculations.
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4.5.6 Treatment effects across industries

The aim of looking at treatment effects across industries is twofold. First, we shed light

onto the robustness of our results with respect to heterogeneity across industries within

the manufacturing sector. For this purpose, we analyze the effect of the electricity tax

reduction on firms of different subpopulations. Second, we aim to examine the effect of the

electricity tax reduction on an energy intensive industry. If the electricity tax reduction

has no impact on firms of an industry that is particularly affected by higher electricity

prices, this would add additional support to the findings in the previous sections.

Industries within manufacturing differ along many dimensions. These differences con-

cern - among other things - the output they produce, the technologies they deploy, or the

market and industry structures they face. As a consequence, the treatment effect of the

electricity tax reduction may vary across industries or subsectors. If effects have different

signs for different subpopulations, this might lead to an insignificant average treatment

effect for the whole population. In addition, if effects are only significant for a small sub-

population that is very energy intensive, this might not show up in the average treatment

effect for the whole population of firms.

The first subpopulation are firms that manufacture machinery, electronic devices, and

vehicles.13 This subpopulation is chosen, first, as it consist of more homogenous firms

compared to firms that produce all other types of goods and second, it still comprises a

sufficient number of firms to conduct a regression discontinuity analysis. On average, this

group shows higher turnover and exports and is less energy intensive in comparison to the

full population.14

Table 4.6 shows the estimated effects of the tax reduction on the outcome variables

turnover, exports, investment, and employment for each year in the period 1999-2005. We

cannot estimate the effects on value added given too few observations from the sampled

Cost Structure Survey. We apply local linear regressions and choose bandwidths optimally

13According to ISIC Rev. 3.1: manufacture of machinery and equipment n.e.c. (29), manufacture of

office, accounting, and computing machinery (30), manufacture of electrical machinery and apparatus n.e.c.

(31), manufacture of radio, television, and communication equipment and apparatus (32), manufacture of

medical, precision and optical instruments, watches and clocks (33), manufacture of motor vehicles, trailers,

and semi-trailers (34), manufacture of other transport equipment (35)
14In Appendix 4.E, Table 4.13 and 4.14 show detailed descriptive statistics of the two sub populations

under investigation.
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selected by applying Imbens and Kalyanamaran (2012) as in Section 4.5.3. The results do

not provide evidence for a significant and systematic effect of the electricity tax reduction

on the outcome variables. Only one out of thirty-five treatment effects is statistically

significant. As for the whole population, the results show a significant effect on exports

in 2005.

The second subpopulation are firms that manufacture basic metals and fabricated

metal products.15 The manufacturing of metals is a very energy-intensive manufacturing

sector. This group should therefore be more sensitive with regard to changes in electricity

prices. On average, firms of this group use higher amounts of electricity per unit of output,

produce less output in terms of turnover and export less than the average firm of the full

population. Table 4.7 shows the treatment effect for manufacture of basic metals and

fabricated metal products. The local treatment effect of the electricity tax reduction on

turnover is significantly positive in 2005. All other effects are statistically insignificant.

Even for this more homogenous and energy intensive sector, we do not find evidence for a

significant and systematic effect of the electricity tax reduction.

The point estimates in both subpopulation analyses do not differ systematically from

the point estimates of the analysis on the whole population. Hence, we do not observe any

trend in the size of effects within the subpopulations, as may have been expected for the

more energy-intensive manufacturing of metals. The standard errors of the subpopulation

analyses are larger compared to whole population. This decrease in precision can be

explained by the lower number of observations.

15According to ISIC Rev. 3.1: manufacture of basic metals (27) and manufacture of fabricated metal

products, except machinery and equipment (28)



4.5. EMPIRICAL EVIDENCE 137

Table 4.6: Subsample analysis: manufacture of machinery, electronic devices, and vehicles

Outcome variable Estimator Bandwidth Number of observations

c ± 25 MWh Control group Treatment group

A: 1999

Turnover 31.18 (348.01) 16.60 2,078 740 666

Exports -38.12 (162.85) 24.40 1,139 538 584

Investment -0.47 (18.36) 19.71 1,628 669 613

Employment -0.84 (1.73) 16.31 2,078 727 645

B: 2000

Turnover -203.59 (293.47) 23.29 1,986 925 956

Exports -254.12 (191.07) 18.74 1,067 372 423

Investment -15.14 (26.36) 13.51 1,570 447 446

Employment -2.77 (2.04) 17.85 1,986 742 703

C: 2001

Turnover -69.31 (354.97) 15.47 1,939 590 699

Exports -292.90 (229.47) 14.99 997 264 364

Investment -3.04 (15.82) 15.35 1,473 447 534

Employment -2.89 (2.46) 14.02 1,939 532 616

D: 2002

Turnover -496.64 (332.78) 18.16 2,095 749 847

Exports -220.27 (224.59) 14.61 1,061 269 348

Investment -25.61 (16.73) 16.29 1,522 425 571

Employment 1.14 (2.27) 20.07 2,094 794 960

E: 2003

Turnover -267.88 (413.95) 13.38 1,342 328 443

Exports -68.16 (264.04) 15.50 677 176 260

Investment 7.37 (13.05) 15.45 1,008 274 391

Employment 1.50 (3.14) 12.02 1,341 292 393

F: 2004

Turnover 255.51 (318.39) 15.64 1,273 319 554

Exports 32.12 (336.48) 14.92 611 130 242

Investment -6.62 (11.40) 14.92 981 222 404

Employment 0.31 (1.79) 20.15 1,273 362 718

G: 2005

Turnover 684.84 (423.16) 9.13 1,253 193 312

Exports 682.02* (307.40) 16.47 566 129 237

Investment 8.81 (10.94) 20.00 947 269 504

Employment 1.62 (2.20) 15.36 1,253 300 518

Notes: * indicates significance at the 5 percent level. Standard errors are shown in parentheses. Turnover, investment, and exports

are denoted in EUR 1,000. The number of observations refer to the ± 25 MWh region around the threshold c. The bandwidth

is selected based on the procedure in Imbens and Kalyanaraman (2012). Source: Research Data Centres of the Statistical Offices

Germany (2014): Official Firm Data for Germany (AFiD) - AFiD-Panel Industrial Units, AFiD-Module Use of Energy, and Cost

Structure Survey, own calculations.
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Table 4.7: Subsample analysis: manufacture of basic metal and fabricated metal poducts

Outcome variable Estimator Bandwidth Number of observations

c ± 25 MWh Control group Treatment group

A: 1999

Turnover -49.29 (381.28) 13.26 885 248 227

Exports -69.52 (137.62) 23.06 260 109 135

Investment 2.42 (22.57) 25.50 707 381 326

Employment -1.72 (3.11) 18.05 885 365 291

B: 2000

Turnover -792.25 (420.74) 14.46 919 293 244

Exports -66.03 (166.28) 12.57 234 47 71

Investment -18.87 (23.33) 14.87 701 240 187

Employment -2.85 (3.58) 16.55 919 348 278

C: 2001

Turnover 81.81 (447.33) 13.73 932 265 264

Exports -75.62 (110.28) 15.33 226 55 79

Investment -6.67 (18.90) 15.85 642 206 214

Employment -3.75 (3.50) 9.36 932 195 190

D: 2002

Turnover 97.90 (378.42) 22.94 956 450 438

Exports 41.45 (157.28) 16.23 226 64 80

Investment -9.11 (14.20) 19.69 632 241 278

Employment 1.99 (2.35) 19.46 955 385 386

E: 2003

Turnover 332.94 (445.92) 12.78 577 138 192

Exports -260.35 (415.11) 15.42 130 35 54

Investment -7.78 (19.83) 13.00 433 94 148

Employment -0.12 (2.49) 17.09 577 176 272

F: 2004

Turnover 367.21 (295.79) 19.59 528 164 295

Exports 180.58 (253.08) 12.80 108 19 41

Investment -17.15 (16.48) 11.67 357 72 118

Employment 1.71 (2.54) 14.06 528 126 208

G: 2005

Turnover 825.30* (382.53) 14.23 498 107 189

Exports 402.82 (228.55) 16.12 109 24 45

Investment -10.67 (10.59) 13.90 330 76 109

Employment -0.31 (2.14) 22.87 498 146 321

Notes: * indicates significance at the 5 percent level. Standard errors are shown in parentheses. Turnover, investment and exports

are denoted in EUR 1,000. The number of observations refer to the ± 25 MWh region around the threshold c. The bandwidth is

selected based on the procedure in The bandwidth is selected based on the procedure in Imbens and Kalyanaraman (2012). Source:

Research Data Centres of the Statistical Offices Germany (2014): Official Firm Data for Germany (AFiD) - AFiD-Panel Industrial

Units, AFiD-Module Use of Energy, and Cost Structure Survey, own calculations.
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4.5.7 Updated decision making

In this section, we relax the assumption that firms make accurate production decisions

based on a marginal cost function that is constructed at the beginning of each year given

the available information. Instead of assuming that firms correctly predict their electricity

use for the coming year, we assume firms to frequently update (e.g. quarterly or monthly)

their production decisions based on newly available information. In this case, a firm would

change its production decision as soon as it exceeds the threshold for the electricity tax

reduction.

Assuming that firms update their production decisions modifies our identification strat-

egy. The discontinuity in the marginal tax rate does not translate anymore into a disconti-

nuity in the conditional expectation of the outcome variable given electricity use. Instead,

updated decision making causes a change in the slope of the functional relationship be-

tween the outcome variable and electricity use. We expect a potential change in the slope

to be particularly strong for value added, because marginal production costs decrease once

a firm exceeds the energy use threshold for the reduced electricity tax rate. To see this,

suppose that a firm uses 50 MWh electricity in 2003. Given our assumption, the firm

adjusts its production decision as soon as its electricity use exceeds the threshold of 25

MWh. As a consequence, costs related to the use of energy decrease for every unit that is

additionally used. Examining the data on annual base, the discontinuity in the marginal

tax rate then translates into a kink in the conditional expectation of value added given

electricity use.

We estimate an alternative specification of our model taking updated decision making

into account. Instead of investigating whether there is a discontinuity in the conditional

expectation of value added given electricity use, we examine whether the slope of this

functional relationship changes in the neighborhood of the thresholds. In particular, we

take the difference of the slope parameters β̂+ and β̂− as an estimate for the local average

treatment effect (LATE). These parameters are obtained by estimating two weighted local

linear regression as described in Section 4.3.3.

In Table 4.8, we show the estimates and robust standard errors for the kink LATE

estimates for the bandwidths 5, 10, 15, 20, and 25 MWh, since standard IK bandwidths do
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not apply for this model specification (Card, Lee, Pei, and Weber, 2015).16 The estimated

parameters reflect how much more (or less) value added (in 1,000 euros) is generated by

the treatment group when using one additional unit of electricity (in MWh).

We do not find any statistically significant effects of the electricity tax reduction on

value added under updated decision making. The standard errors decrease with increasing

bandwidth, while the estimates tend to converge to zero. This can be partly explained by

the number of observations, that lies between 50 and 100 for the 5 MWh bandwidth and

is thus rather low. For the 25 MWh bandwidth, the number of observations lies between

150 and 700 depending on the year (and threshold) under investigation. Also following

this approach, we do not find a consistent pattern of negative or positive effects.

Table 4.8: Kink LATE estimates for value added

Value added Bandwidth (in MWh)

Year 5 10 15 20 25

1999 525.25 (644.58) 297.77 (206.46) -25.92 (104.14) -42.54 (68.78) -21.993 (50.789)

2000 -622.74 (583.59) -78.54 (218.79) -7.22 (118.42) -2.20 (73.27) -0.06 (52.07)

2001 450.37 (483.67) 124.35 (208.35) -40.52 (123.27) -25.34 (78.65) 29.68 (57.99)

2002 929.33 (1146.80) 223.81 (253.71) 77.205 (165.03) 56.836 (112.71) 75.873 (83.89)

2003 48.45 (477.20) -8.23 (167.27) 12.27 (91.66) 24.54 (64.63) 54.65 (52.31)

2004 873.93 (407.65) 47.81 (187.29) -35.77 (118.74) -56.29 (79.56) -20.90 (64.10)

2005 -378.62 (918.29) -143.88 (282.37) -104.13 (160.25) -53.378 (105.37) -14.003 (75.35)

Notes: * indicates significance at the 5 percent level. Standard errors are shown in parentheses. Value added is denoted in EUR

1,000. Source: Research Data Centres of the Statistical Offices Germany (2014): Official Firm Data for Germany (AFiD) - AFiD-Panel

Industrial Units, AFiD-Module Use of Energy, and Cost Structure Survey own calculations.

16With regard to this specification, we expect the strongest effect for value added. For this reason, we

focus on the impact of the change in marginal tax rates on value added.
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4.6 Discussion

In this section, we discuss several factors that may have influenced our findings. Thereby

we also draw attention to related and future research. First, we discuss the statistical power

of our analysis. Then, we assess the likelihood and implications of a possible violation of

the Stable Unit Treatment Value Assumption (SUTVA). Finally, we debate how our local

results may relate to a wider set of firms.

Several factors influence the power of a statistical analysis, i.e., the correct rejection

of the null hypothesis of no effects, when it is false. While some factors suggest that

the power of our analysis is high, others suggest the opposite, with neither side clearly

dominating.

First, we discuss the magnitude of the effect. If the size of effects is small, statistical

power tends to be low. In our case, the electricity tax strongly changes the price of

electricity. During the period under investigation, it increases the pre-tax electricity price

by 15 to 27 percent on average as shown in Section 4.2. This is a large change suggesting an

effect of significant magnitude. The change in electricity price is also large in comparison

to the Climate Change Levy (CCL) in the United Kingdom, for which Martin, de Preux,

and Wagner (2014) did neither find any negative effects on economic outcomes. At its

introduction in 2001, the CCL amounted to GPB 4.35 per MWh, or 7 to 11 percent of the

pre-tax electricity price (Eurostat, 2014, own calculations).

Electricity is only one of many inputs to production. Even a strong change in the

electricity price may thereby have a limited impact on firms suggesting a small magnitude

of the effect. For this reason we estimate our model for the steel sector in Section 4.5.6,

which is electricity intensive and thereby particularly exposed to changes in electricity

prices. Nevertheless, we do not find evidence for a causal effect of the electricity tax

reduction in the steel sector.

Second, our data is fairly heterogeneous. This leads to a risk of not rejecting the

null hypothesis although the null hypothesis is false for at least some firms. To account

for such a possibility, we analyzed different homogenous subpopulations in Section 4.5.6.

While the precision of the estimates tends to increase, we do not find robust evidence of

significant effects in the subpopulations.

Third, we draw our attention to sample size and measurement error. Low sample size
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and high measurement error would suggest low statistical power. Except for value added,

our data are based on censuses. While also data collected by mandatory census can exhibit

measurement error, we are provided with data for all firms with more than 20 employees,

i.e. sampling errors do not affect our results. In addition, the number of observations is

typically large.

We have not yet discussed to what extent effects on the treated firms may induce ad-

ditional effects on untreated firms. If such effects would occur, SUTVA would be violated.

In the following paragraphs we discuss a likely violation of SUTVA, what its effect would

be, and if we can find any evidence for such a violation.

The interaction of treated and untreated firms in common markets may violate SUTVA.

Let us assume that there was a positive direct effect of the reduced tax rate on turnover for

a treated firm, as marginal production costs have decreased compared to the level of the

full tax rate, and lower production costs enable higher production levels. If this treated

firm is in competition with another untreated firm in the same market, the treatment

may have spill-over effects to the untreated firm. In particular, the treated firm may gain

additional market share by lowering the product price to a level where the untreated firm

that has higher marginal costs cannot compete. In such a situation, the positive spill-over

effect would add to the positive direct effect of the tax reduction.

While we are not able to distinguish for a single year what part of the total effect

consists of the direct effect of the reduced tax rate or the spill-over effects from being able

to gain market share through altering prices, we can assess whether hypothesized effects

are particularly strong for the year when the treatment was strongest. Going back to

Table 4.3 in Section 4.5.3 we do not observe particularly strong effects for the year 2002

when the difference between the full and the reduced tax rate was highest, in particular

when dividing total effects by the size of the tax reduction. Furthermore, effect signs

are mostly negative, which is not in line with a positive spill-over effect due to reduced

marginal costs. In addition estimates are statistically insignificant except for a negative

coefficient for investments. Taken together, we do not observe strong evidence that SUTVA

is violated due to spill-over effects.

Last but not least, we debate how our local results may relate to a wider set of firms.

Looking back at Table 4.2 and Figure 4.2 in Section 4.4.3, the analyzed firms fall within

the lower quintile of energy use. While small, energy-intensive firms as well as larger,
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less energy-intensive firms are covered by our analysis, large energy-intensive firms are

hardly covered. This raises the question whether our results would also apply to large,

energy-intensive firms. It is not unlikely that larger electricity intensive firms differ from

the firms under investigation, for example, with respect to own electricity generation. The

best way forward may be to look out for similar experiments in tax rates or levies that do

apply to larger firms.

A related question is in how far our results are relevant for policy, given that we assessed

the effects of a tax reduction for relatively small firms in terms of electricity use. It should

be noted that the tax reduction was granted precisely in order to mitigate any negative

impacts on firm’s performance and particularly exports. Given that we do not find any

positive effects of a reduced tax rate on firm’s performance, or in other words, any negative

effects of higher electricity taxes, this puts doubts on the necessity of the tax reduction for

domestic economic reasons. While we cannot rule out that large, energy-intensive firms

may be affected differently than smaller firms by the electricity tax, we can say at least

that the tax reduction is not well targeted for its purpose. Tax revenues are forgone by

providing relief to firms that are not found to be vulnerable to higher electricity taxes.

4.7 Conclusion

This paper analyzed the causal impacts of the German electricity tax on the economic

performance of firms in the manufacturing sector. The tax was implemented in 1999 and

firms with electricity use above a certain threshold were eligible for a reduced electricity

tax rate. We evaluated the effects of the reduced marginal electricity tax rate on five

variables of economic performance, namely, turnover, exports, investment, employment,

and value added with a regression discontinuity analysis. No robust positive or negative

impact of the reduced marginal electricity tax rate was found. Hence, our results indicate

that firms forced to pay the full electricity tax rate did not suffer from deterioration in

their economic performance.

Our findings suggest that the reduced electricity tax rate may not be needed for se-

curing the competitiveness of firms in the manufacturing sector. Firms that had to pay

the higher electricity tax did not perform worse than firms that only had to pay the re-

duced electricity tax rate. It can thus be expected that firms that have had to pay the
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reduced electricity tax would also adjust smoothly, if the tax reduction was removed. If

there are doubts about the ability of firms with substantially higher electricity-use than

investigated to adjust to the higher electricity tax rate, the electricity tax rate they pay

could be increased stepwise. The threshold for eligibility of the reduced tax rate could be

increased, accompanied by a causal evaluation of its impacts on the economic performance

of firms. Removing the reduced tax rate would raise revenues for the government that

could be used to decrease more distorting taxes, to consolidate budgets, or to finance new

investments.
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4.9 Appendices

The following appendices provide additional information on electricity intensity, calculated

as the ratio of electricity use and turnover, the effects of kernel and bandwidth choices,

lagged treatment effects as well as descriptive statistics for the subpopulation analysis.

Appendix 4.A Additional information on electricity intensity

Below, we depict the relationship between electricity intensity and total electricity use

showing scatter plots of non-overlapping binned local means and second order global

polynomial functions of electricity intensity in Figures 4.9 and 4.10. The local means

are computed for 1 MWh bandwidths in the area of 25 - 75 MWh, the c ± 25 MWh

neighborhood surrounding the prevailing threshold. Given that electricity intensity is

computed as the ratio of electricity use and turnover, these relationships do not have any

causal interpretation.

In order to depict the relationship between electricity intensity and total electricity

use, we show scatter plots of non-overlapping binned local means and second order global

polynomial functions of the variable electricity intensity in Figures 4.9 and 4.10. The local

means are computed for 1 MWh bandwidths in the area of 25 - 75 MWh, the c±25 MWh

neighborhood surrounding the prevailing threshold.

Figure 4.9: Outcomes in year 1995
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Figure 4.10: Electricity use and intensity
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Appendix 4.B The effect of alternative kernel choices

In this section, we provide evidence for the robustness of our findings with regard to

the kernel choice. We show local average treatment effects using uniform (Table 4.9) and

Epanechnikov kernel functions (Table 4.10) for the local linear regressions. The alternative

kernel choice does not change qualitative results.

Table 4.9: Uniform kernel function

Outcome variable Estimator Bandwidth Number of observations

c ± 25 MWh Control group Treatment group

A: 1999

Turnover 139.38 (186.33) 17.43 5,289 1,953 1,807

Exports -85.83 (122.87) 10.96 2,330 489 554

Investment -5.75 (15.91) 12.11 3,873 1,342 1,277

Employment -0.42 (1.06) 17.82 5,289 2,002 1,835

Value added -125.60 (213.34) 15.41 1,452 488 456

B: 2000

Turnover -157.45 (193.11) 16.27 5,017 1,743 1,615

Exports -32.13 (121.35) 12.90 2,137 539 562

Investment -1.55 (12.60) 12.87 3,691 1,001 950

Employment -0.05 (1.24 ) 13.72 5,014 1,434 1,338

Value added -93.90 (219.98) 21.07 1,301 387 382

C: 2001

Turnover 443.39* (286.44) 12.75 4,862 1,242 1,347

Exports -145.09 (133.01) 12.29 2,041 478 540

Investment 7.56 (10.74) 12.30 3,338 842 898

Employment 0.50 (1.03) 20.10 4,859 1,829 2,077

Value added 148.56 (235.13) 14.89 1,119 312 369

D: 2002

Turnover -520.72* (265.37) 9.51 5,072 937 1,021

Exports -97.99 (114.00) 13.93 2,114 536 630

Investment -20.82 (10.78) 16.13 3,360 970 1,197

Employment 0.46 (1.26) 14.73 5,063 1,390 1,584

Value added -297.42 (303.96) 16.82 985 310 356

E: 2003

Turnover -205.82 (227.5) 12.74 3,052 730 964

Exports -237.33 (215.91) 9.52 1,290 230 290

Investment -3.69 (9.22) 12.89 2,175 502 708

Employment -0.83 (1.41) 13.89 3,052 780 1,066

Value added -142.88 (206.11) 11.32 851 190 239

F: 2004

Turnover 278.38 (233.69) 10.42 2,779 527 776

Exports -136.71 (160.78) 11.10 1,138 198 354

Investment -1.66 (9.14) 13.20 1,979 452 706

Employment 0.50 (1.13) 13.19 2,778 621 994

Value added 102.98 (237.72) 11.18 704 138 226

G: 2005

Turnover -172.18 (275.96) 9.73 2,654 450 680

Exports 306.72 (181.43) 12.28 1,068 211 314

Investment 17.17* (8.39) 13.30 1,856 412 629

Employment 0.52 (1.41) 9.29 2,654 431 649

Value added -46.01 (215.49) 17.48 621 157 303

Notes: * indicates significance at the 5 percent level. Standard errors are shown in parentheses. Turnover, investment, and exports
are denoted in EUR 1,000. The number of observations refer to the ± 25 MWh region around the threshold c. The bandwidth
is selected based on the procedure in Imbens and Kalyanaraman (2012). Source: Research Data Centres of the Statistical Offices
Germany (2014): Official Firm Data for Germany (AFiD) - AFiD-Panel Industrial Units, AFiD-Module Use of Energy, and Cost
Structure Survey own calculations.
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Table 4.10: Epanechnikov kernel function

Outcome variable Estimator Bandwidth Number of observations

c ± 25 MWh Control group Treatment group

A: 1999

Turnover 99.96 (174.23) 22.00 5,289 2,463 2,192

Exports -15.30 (112.03) 14.41 2,330 680 707

Investment -8.84 (11.45) 20.79 3,873 1,682 1,557

Employment -0.45 (1.01) 21.63 5,289 2,431 2,156

Value added -73.72 (202.47) 19.42 1,452 598 556

B: 2000

Turnover -162.95 (182.63) 20.43 5,017 2,121 2,076

Exports -29.86 (110.36) 16.80 2,137 706 752

Investment -3.48 (11.44) 17.35 3,691 1,372 1,280

Employment -0.06 (1.17) 17.58 5,014 1,867 1,731

Value added 1.98 (204.78) 18.37 1,301 499 477

C: 2001

Turnover 436.22* (218.88) 15.37 4,862 1,473 1,651

Exports -160.35 (124.85) 16.02 2,041 591 742

Investment 9.58 (10.10) 15.59 3,338 1,003 1,175

Employment 0.64 (0.97) 24.41 4,859 2,300 2,485

Value added 165.92 (215.22) 18.61 1,119 383 460

D: 2002

Turnover -394.9 (239.91) 13.20 5,072 1,259 1,412

Exports -70.82 (111.38) 16.56 2,114 612 757

Investment -19.48 (10.283) 19.33 3,360 1,264 1,419

Employment 0.09 (1.14) 18.49 5,063 1,925 1,973

Value added -446.43 (301.25) 20.60 985 354 469

E: 2003

Turnover -161.33 (222.86) 15.13 3,052 861 1,193

Exports -234.40 (152.83) 11.90 1,290 265 376

Investment -4.24 (8.56) 16.69 2,175 618 979

Employment -0.63 (1.33) 17.35 3,052 917 1,399

Value added -182.57 (186.50) 14.75 851 232 320

F: 2004

Turnover 235.80 (219.85) 13.03 2,779 620 978

Exports -65.13 (156.85) 13.36 1,138 222 431

Investment -3.53 (8.91) 16.09 1,979 527 882

Employment 0.54 (1.06) 16.70 2,778 743 1,276

Value added 90.30 (229.36) 14.59 704 164 296

G: 2005

Turnover -125.48 (270.40) 11.33 2,654 502 781

Exports 328.80* (166.92) 15.86 1,068 256 438

Investment 14.96 (7.97) 16.06 1,856 479 798

Employment 0.50 (1.34) 11.52 2,654 505 790

Value added -18.37 (211.83) 21.35 621 175 373

Notes: * indicates significance at the 5 percent level. Standard errors are shown in parentheses. Turnover, investment, and exports
are denoted in EUR 1,000. The number of observations refer to the ± 25 MWh region around the threshold c. The bandwidth
is selected based on the procedure in Imbens and Kalyanaraman (2012). Source: Research Data Centres of the Statistical Offices
Germany (2014): Official Firm Data for Germany (AFiD) - AFiD-Panel Industrial Units, AFiD-Module Use of Energy, and Cost
Structure Survey own calculations.
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Appendix 4.C The effects of bandwidth choice

In order to examine the sensitivity of results to different bandwidth choices, we estimate

the local average treatment effect for 5, 10, 15, 20, and 25 MWh bandwidths. Figure 4.11

shows the local average treatment effects of the tax reduction on turnover in 2001 and

investment in 2002 as a function of bandwidth choice. Table 4.11 shows the results for the

treatment years 1999 - 2005.

Figure 4.11: The effect of bandwidth choice on point estimates and confidence intervals

-2
0

0
0

-1
5

0
0

-1
0

0
0

-5
0

0
0

5
0

0
1
0

0
0

1
5

0
0

2
0

0
0

5 10 15 20 25

T
u

rn
o

v
e

r 
(i
n

 1
,0

0
0

 E
U

R
) 

Bandwidth (in MWh) 

Turnover  2001 

-1
0

0
-5

0
0

5
0

1
0

0

5 10 15 20 25

In
v
e

s
tm

e
n

t 
(i
n

 1
,0

0
0

 E
U

R
) 

Bandwidth (in MWh) 

Investment 2002 

Notes: The solid black line in each graph denotes point estimates and the dashed lines are corresponding 95 percent confidence

intervals. Source: Research Data Centres of the Statistical Offices Germany (2014): Official Firm Data for Germany (AFiD) -

AFiD-Panel Industrial Units, AFiD-Module Use of Energy, and Cost Structure Survey, own calculations.



150 CHAPTER 4. ELECTRICITY TAXATION AND COMPETITIVENESS

Table 4.11: LATE estimates for 5, 10, 15, 20, and 25 MWh bandwidths

Outcome variable Bandwidth (in MWh)

5 10 15 20 25

A: 1999

Turnover 117.48 (317.93) 239.87 (244.65) 110.45 (207.22) 119.26 (185.22) 96.74 (167.17)

Exports -42.64 (205.45) -70.05 (137.65) -18.05 (112.55) 26.74 (97.59) 24.70 (86.83)

Investment -25.07 (24.10) -15.78 (16.53) -10.43 (13.66) -9.00 (12.02) -10.84 (10.73)

Employment 0.96 (1.74) -0.49 (1.37) -0.68 (1.18) -0.50 (1.06) -0.31 (0.96)

Value added -393.99 (366.91) -127.31 (272.50) -101.02 (231.67) -82.34 (205.11) -63.02 (183.16)

B: 2000

Turnover -450.60 (407.13) -261.96 (276.13) -189.04 (221.20) -168.92 (191.06) -154.24 (171.41)

Exports -278.31 (219.16) -215.61 (151.92) -95.03 (122.01) -17.12 (104.62) -0.34 (92.90)

Investment 26.53 (27.68) 5.31 (17.51) -0.36 (13.47) -1.07 (11.24) 1.27 (9.87)

Employment -1.68 (2.71) -1.59 (1.75) -0.65 (1.35) -0.07 (1.15) 0.10 (1.02)

Value added -649.01 (370.99) -377.52 (267.74) -161.32 (225.62) -20.71 (201.03) 44.75 (183.63)

C: 2001

Turnover 862.92* (410.84) 585.95* (282.79) 479.47* (229.00) 401.60* (198.85) 365.53* (177.81)

Exports -447.05* (221.06) -196.72 (159.24) -163.59 (132.39) -203.16 (115.62) -198.11 (103.18)

Investment -8.46 (16.92) 5.71 (12.526) 8.26 (10.46) 8.55 (9.28) 8.62 (8.41)

Employment 0.31 (2.10) 0.25 (1.51) 0.51 (1.25) 0.41 (1.10) 0.59 (0.98)

Value added 512.99 (361.72) 410.13 (261.56) 251.77 (231.15) 187.23 (209.65) 140.40 (192.57)

D: 2002

Turnover -582.48 (369.92) -458.00 (278.24) -347.30 (231.72) -109.13 (199.41) -20.128 (182.54)

Exports 144.04 (247.47) 6.66 (152.31) -46.47 (121.53) -42.79 (102.78) -28.10 (93.50)

Investment -36.21 (19.31) -31.75* (14.97) -26.53* (12.33) -21.04* (10.47) -18.90* (9.57)

Employment 1.55 (2.18) -0.49 (1.62) -0.45 (1.34) 0.126 (1.14) 0.20 (1.03)

Value added -972.51* (495.41) -874.32* (444.76) -746.64* (367.99) -528.14 (313.00) -481.94 (285.39)

E: 2003

Turnover 33.23 (401.90) 23.86 (286.46) -125.67 (231.83) -186.62 (201.78) -215.76 (185.30)

Exports -436.06 (266.66) -265.37 (182.88) -181.41 (139.74) -68.66 (117.95) -32.77 (108.96)

Investment 12.59 (14.15) -0.67 (11.10) -2.31 (9.28) -4.73 (8.15) -4.02 (7.58)

Employment 1.92 (2.66) 0.80 (1.87) -0.26 (1.50) -0.53 (1.30) -0.55 (1.19)

Value added -80.35 (307.41) -173.59 (226.77) -175.64 (189.31) -202.80 (166.43) -185.66 (53.37)

F: 2004

Turnover 711.13* (322.74) 332.62 (250.54) 236.29 (210.94) 125.90 (186.67) 63.04 (172.21)

Exports 15.37 (269.11) -87.37 (193.97) -39.11 (154.74) 39.89 (132.73) 98.11 (121.01)

Investment 4.19 (17.16) -4.57 (12.48) -2.48 (9.83) -5.42 (8.40) -6.07 (7.69)

Employment 5.03* (1.77) 2.72* (1.36) 1.15 (1.13) 0.64 (1.01) 0.63 (0.94)

Value added 137.17 (392.29) 135.98 (292.62) 93.51 (237.09) 52.87 (204.60) 56.77 (186.15)

G: 2005

Turnover 137.01 (378.05) -79.77 (290.82) -149.71 (244.83) -216.97 (216.96) -309.6 (198.33)

Exports 448.81 (267.83) 362.2 (203.21) 323.35 (174.51) 345.12* (154.47) 327.60* (140.93)

Investment 17.57 (12.47) 10.28 (9.83) 14.21 (8.41) 13.70 (7.48) 10.88 (6.86)

Employment 3.02 (1.95) 1.10 ( 1.45) 0.31 (1.23) 0.39 (1.10) 0.52 (1.02)

Value added -569.45 (552.83) -189.10 (337.20) -56.01 (262.19) -35.54 (228.33) -42.74 (208.33)

Notes: * indicates significance at the 5 percent level. Standard errors are shown in parentheses. Turnover, exports, investments, and

value added are denoted in EUR 1,000. Source: Research Data Centres of the Statistical Offices Germany (2014): Official Firm Data

for Germany (AFiD) - AFiD-Panel Industrial Units, AFiD-Module Use of Energy, and Cost Structure Survey own calculations.
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Appendix 4.D Dynamic local average treatment effects

Table 4.12 shows lagged local average treatment effects. The estimators indicate that the

results of our analysis are robust with respect to potential adjustment processes that might

lead to delayed effects of the tax reduction.

Table 4.12: Dynamic local average treatment effects

Outcome variable Estimator Bandwidth Number of observations

c ± 25 MWh Control group Treatment group

A: Effect of the discontinuity in 1999 on outcome in 2000

Turnover 7.47 (217.70) 21.07 4,672 2,053 1,893

Exports -73.96 (114.51) 22.39 2,107 919 997

Investment 8.75 (12.92) 21.41 3,575 1,595 1,477

Employment -1.35 (1.12) 21.09 4,665 2,052 1,896

Value added -133.27 (208.29) 19.05 1,375 559 527

B: Effect of the discontinuity in 2000 on outcome in 2001

Turnover 68.76 (189.15) 30.97 4,403 2,179 2,224

Exports -156.23 (146.81) 16.98 1,900 633 663

Investment 7.24 (12.40) 19.13 3,215 1,270 1,245

Employment 0.47 (1.11) 28.057 4,403 2,185 2,218

Value added -137.59 (250.69) 14.55 1,151 333 344

C: Effect of the discontinuity in 2001 on outcome in 2002

Turnover 524.44* (259.06) 16.93 4,148 1,312 1,578

Exports -66.78 (137.73) 19.96 1,749 580 811

Investment 2.52 (10.44) 21.30 2,891 1,223 1,369

Employment 0.30 (1.18) 22.13 4,148 1,794 1,997

Value added 420.40 (308.58) 15.02 1,020 284 337

D: Effect of the discontinuity in 2002 on outcome in 2003

Turnover -240.08 (235.97) 17.929 4,255 1,574 1,631

Exports 29.96 (143.29) 18.77 1,862 672 774

Investment -3.41 (9.29) 19.86 2,983 1,145 1,324

Employment -0.28 (1.33) 19.53 4,255 1,649 1,830

Value added -159.47 (337.57) 19.67 1,149 452 497

E: Effect of the discontinuity in 2003 on outcome in 2004

Turnover -235.37 (224.35) 16.97 2,842 853 1,271

Exports -259.18 (217.54) 10.56 1,195 234 315

Investment 3.55 (10.53) 19.23 1,986 518 759

Employment -2.26 (1.34) 18.80 2,842 891 1,421

Value added -320.15 (241.86) 15.02 780 213 304

F: Effect of the discontinuity in 2004 on outcome in 2005

Turnover 440.04 (279.36) 12.60 2,572 564 864

Exports 164.28 (173.88) 20.92 1,067 287 643

Investment 15.18 (12.22) 13.52 1,749 410 621

Employment 2.15 (1.19) 16.25 2,571 682 1,144

Value added 179.16 (311.78) 11.08 645 125 198

G: Effect of the discontinuity in 2005 on outcome in 2006

Turnover -274.6 (279.77) 14.07 2,393 546 868

Exports 383.38 (208.65) 14.79 993 220 358

Investment 9.41 (12.10) 14.33 1,729 396 638

Employment 1.12 (1.47) 13.74 2,392 527 853

Value added -9.16 (267.04) 17.31 577 149 279

Notes: * indicates significance at the 5 percent level. Standard errors are shown in parentheses. Turnover, investment, and exports
are denoted in EUR 1,000. The number of observations refer to the ± 25 MWh region around the threshold c. The bandwidth
is selected based on the procedure in Imbens and Kalyanaraman (2012). Source: Research Data Centres of the Statistical Offices
Germany (2014): Official Firm Data for Germany (AFiD) - AFiD-Panel Industrial Units, AFiD-Module Use of Energy, and Cost
Structure Survey own calculations.
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Appendix 4.E Subpopulation analysis: descriptive statistics

The subpopulation manufacture of machinery, electronic devices, and vehicles covers the

industries 29 - 35 according to the ISIC Rev. 3.1 classification. In Table 4.13, we present

the descriptive statistics of the assignment variable electricity use, electricity intensity,

and the outcome variables considered in Section 4.5.6. Firms that manufacture machinery,

electronic devices, and vehicles show on average higher turnovers and exports and are less

electricity intensive in comparison to the full population. In terms of turnover and number

of employees, the subpopulation is less heterogeneous.

The subpopulation manufacture of basic metal and fabricated metal products com-

prises the industries 27 and 28 according to the ISIC Rev. 3.1 classification. The descrip-

tive statistics in Table 4.14 show, that firms of this subpopulation produce less output

in terms of turnover and export less than the average firm of the full population. Fur-

thermore, when comparing average electricity intensities, we see that this industry is on

average more energy intensive than the full population. With regard to turnover, number

of employees, and electricity intensity, the subpopulation is less heterogenous.
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Table 4.13: Descriptive statistics: manufacture of machinery, electronic devices, and vehi-

cles.

Mean St. dev. P10 P 50 P90 N

A: 1999

Electricity use (in MWh) 972.99 2,716.51 32.8 206.78 2188.13 10,758

Turnover (in EUR 1,000) 14,400.29 24,750.78 1,561.58 5,644.63 35,646.88 10,769

Exports (in EUR 1,000) 2,622.11 4,407.23 0 606.87 12,316.20 10,769

Investment (in EUR 1,000) 538.261 1,378.32 0 120.45 1,326.61 9,429

Employment 126.72 184.55 25.08 58.75 296.42 10,769

Electricity intensity (in EUR per KWh) 0.0615 0.0764 0.0087 0.0379 0.1385 10,758

B: 2000

Electricity use (in MWh) 1,028.71 2,978.79 33.30 216.10 2,283.79 11,319

Turnover (in EUR 1,000) 16,973.42 29,564.06 1,745.99 6,376.33 42,803.77 11,324

Exports (in EUR 1,000) 6,104.53 14,432.49 0 877.08 16,644.36 11,324

Investment (in EUR 1,000) 591.60 1,381.61 0.21 137.20 1,483.91 10,914

Employment 117.48 161.77 24.83 56.21 277.58 11,324

Electricity intensity (in EUR per KWh) 0.0573 0.0713 0.0077 0.0345 0.1290 11,319

C: 2005

Electricity use (in MWh) 1,189.87 3,438.61 45.44 262.49 2,603.56 11,334

Turnover (in EUR 1,000) 18,332.25 32,909.89 1,671.67 6,660.25 45,592.08 11,750

Exports (in EUR 1,000) 7,581.08 17,913.27 0 1,209.86 20,499.69 11,750

Investment (in EUR 1,000) 465.87 1169.16 0 94.88 1,143.12 11,287

Employment 112.81 155.22 24.67 55.00 263.42 11,750

Electricity intensity (in EUR per KWh) 0.0653 0.0847 0.0104 0.0383 0.1488 11,259

Notes: Turnover, investment, and exports are denoted in EUR 1,000. Electricity use relates to the taxable electricity use in MWh

(not including self-generated electricity). Electricity intensity is denoted by electricity use divided by turnover. Source: Research

Data Centres of the Statistical Offices Germany (2014): Official Firm Data for Germany (AFiD) - AFiD-Panel Industrial Units,

AFiD-Module Use of Energy, and Cost Structure Survey, own calculations.
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Table 4.14: Descriptive statistics: manufacture of basic metal and fabricated metal prod-

ucts.

Mean St. dev. P10 P 50 P90 N

A: 1999

Electricity use (in MWh) 1,541.63 4,020.85 35.05 317.32 3,512.14 6,477

Turnover (in EUR 1,000) 11,596.03 20,565.58 1,640.40 4,873.48 26,272.04 6,482

Exports (in EUR 1,000) 2,122.57 6,644.29 0 68.06 5,098.35 6,482

Investment (in EUR 1,000) 485.21 1,131.52 0 121.79 1,191.25 5,810

Employment 99.90 143.96 24.58 51.92 215 6,482

Electricity intensity (in EUR per KWh) 0.1165 0.1417 0.0103 0.0687 0.2857 6,477

B: 2000

Electricity use (in MWh) 1,686.35 4,518.33 36.00 347.90 3844.52 6,986

Turnover (in EUR 1,000) 12,415.21 22,695.61 1,730.20 5,018.85 28,806.22 6,994

Exports (in EUR 1,000) 2,843.71 9,110.51 0 98.87 6,826.69 6,994

Investment (in EUR 1,000) 559.73 1,343.42 0 125.13 1,341.16 6,752

Employment 91.65 127.76 24.08 48 197.75 6,994

Electricity intensity (in EUR per KWh) 0.1167 0.1397 0.0105 0.0709 0.2794 6,986

C: 2005

Electricity use (in MWh) 2,090.48 5,228.09 62.16 480 4,826.61 6,783

Turnover (in EUR 1,000) 13,319.77 24,694.88 1,709.18 5,102.57 31,850.46 6,963

Exports (in EUR 1,000) 3,680.77 10,802.40 0 190.61 9,462.13 6,963

Investment (in EUR 1,000) 428.52 1,060.49 0 83.61 1,078.46 6,668

Employment 88.19 121.65 24 47.17 189.67 6,963

Electricity intensity (in EUR per KWh) 0.1428 0.1614 0.0180 0.0922 0.3239 6,737

Notes: Turnover, investment, and exports are denoted in EUR 1,000. Electricity use relates to the taxable electricity use in MWh

(not including self-generated electricity). Electricity intensity is denoted by electricity use divided by turnover. Source: Research

Data Centres of the Statistical Offices Germany (2014): Official Firm Data for Germany (AFiD) - AFiD-Panel Industrial Units,

AFiD-Module Use of Energy, and Cost Structure Survey, own calculations.



Chapter 5

Nonlinearity in cap-and-trade systems: the EUA

price and its fundamentals

5.1 Introduction

The EUA price dynamics and its driving factors have been of great importance for practi-

tioners, politicians, and scientists since the introduction of the European Union Emissions

Trading Scheme (EU ETS) in 2005. The reasons for the interest are manifold. First,

carbon prices introduce an additional cost component affecting day-to-day and long-term

operations of regulated installations. Understanding this cost component is a key strategic

element for many regulated installations to achieve long-term cost efficiency. Second, the

scheme is a market-based policy instrument. Its success heavily depends on its ability to

generate correct price signals that fully account for the underlying fundamentals. Thus,

the relation between the EUA price and its driving factors is crucial for the understanding

of the effectiveness of the scheme.

We argue that the varying relation between the EUA price and its fundamentals is a

consequence of the design of the EU ETS. In cap-and-trade systems, as in the case of the

EU ETS, the regulatory authority determines the total number of allowances for a certain

period of time. In other words, the aggregated supply of allowances is fixed and therefore

inelastic. In contrast, the demand varies due to various shocks, for example positive and

negative shocks to the macroeconomic activity. Such shocks shift the production of goods

to higher or lower levels, which increases or decreases the aggregated level of emissions and,

thus, the demand for allowances. As a result, market participants adjust their expectations

155
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about the overall stringency of the scheme. We hypothesize, that this situation translates

into a higher volatility and a varying relation between the EUA price and its fundamentals.

The recent literature provides empirical evidence on structural changes in the data

generating process of the EUA prices. Alberola, Chevallier, and Chèze (2008), Chevallier

(2009), Keppler and Mansanet-Bataller (2010), and Hintermann (2010) devote their re-

search to the detection of price determinants affecting the European carbon market. In

particular, they quantify the linear impact of fundamentals such as commodity prices,

weather conditions, and economic fluctuations on the EUA price. To account for poten-

tially time-changing influences of the fundamentals, they conduct an analysis over different

subsamples. In doing so, they assume that the timing of the structural breaks is known.

The authors trace these structural changes back to different factors: Alberola, Cheval-

lier, and Chèze (2008) refer to the information disclosure on the actual emissions in 2006

as a reason for structural changes, whereas Chevallier (2009) sees the aftermath of the

financial crisis as a factor causing breaks. These potential sources for breaks seem to

have one characteristic in common: They alter the expectations about the overall demand

of allowances during the prevailing compliance period and, thus, affect the expectations

about the overall stringency of the EU ETS. Therefore, these changes are inherent in the

cap-and-trade system and should be endogenized.

In contrast to these earlier studies, we therefore do not assume the changes in the

regimes to be deterministic. Instead, we consider a Markov regime-switching model and

simultaneously allow for both: time-variation in the effects of the fundamentals as well as

in the volatility of the EUA prices, as changes in expectations about the overall stringency

of the EU ETS are likely to be associated with periods of higher uncertainty and, thus, with

higher volatility in the EUA prices. Moreover, we focus on the short-term fluctuations and

consider the entire Kyoto commitment period, i.e. Phase II, which ranges from 1 January

2008 until 31 December 2012.

In doing so, we contribute to the more recent literature employing nonlinear models

to examine the relationship between the EUA price and its determinants. Recent findings

of Chevallier (2011a), Chevallier (2011b) and Peri and Baldi (2011) support the hypoth-

esis of a nonlinear relationship between the EUA price and its fundamentals. While they

focus on the long-term equilibrium relationship, we turn our attention to the short-term

consequences of structural changes in the data-generating process by analyzing data at
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a daily frequency. This allows for a more profound analysis of short-term fluctuations

in expectations and for a more precise estimation. Moreover, we additionally account for

potential changes in the volatility of the EUA prices and analyze the entire Kyoto commit-

ment period.1 Previous literature examining daily data only takes into account selected

characteristics of the data or constrains the modeling of structural changes. Alberola,

Chevallier, and Chèze (2008) and Chevallier (2009), for example, consider breaks to be

deterministic, neglecting the permanently changing nature of the relationship between the

EUA price and its fundamentals. Peri and Baldi (2011) consider a fixed threshold that de-

termines the changing impact of crude oil on EUA prices. Benz and Trück (2009), instead,

also consider a Markov regime-switching model, but they do not consider the effects of

fundamentals on the EUA returns and solely focus on modeling changes in the mean and

in the volatility of the EUA price. In this paper, instead, we conduct a combined analysis

of the changing nature of the daily price formation process, i.e. we examine the varying

relationship between the daily EUA price and its fundamentals and simultaneously allow

for changes in volatility. To this end, we estimate Hamilton’s (1989) very flexible Markov

regime-switching model that is extended by a GARCH structure following Gray (1996)

and Klaassen (2002).

In our empirical analysis, we identify two volatility regimes, in which the impacts of

the fundamentals differ significantly. Moreover, the probability that the system is in the

high volatility regime coincides approximately with the economic recession of 2008 and

2009 and the debt crisis that darkened the economic outlook for Europe in 2011 and 2012.

In both periods, economic perspectives and activities were on a decline, leading to a higher

uncertainty about the overall stringency of the cap set by European regulators.

The remainder of the paper is organized as follows. Section 5.2 gives a brief overview of

1The trial period, i.e. Phase I, is considered as learning period for market participants and the new

institutions that frame the EU ETS (Ellerman, Convery, and De Perthuis 2010). The development of

trading in Phase I was characterized by periods of low liquidity (Rotfuß 2011). Furthermore, the variation

of the price was very low after the price breakdown in 2006. Studies on information processing and market

efficiency show that the market was immature during Phase I (e.g. Montagnoli and de Vries, 2010 ). Since

our goal is to analyze the changing nature of the EUA price formation in a mature market environment

with well established institutions and experienced market participants, we direct our attention to Phase

II. This period is characterized by economic and institutional developments, as for instance the European

debt crisis, that enable new insights into the relationship between the EUA price and its fundamentals.
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the regulatory design of the EU ETS. Section 5.3 discusses former research on the relation

between EUA prices and its fundamentals. Section 5.4 describes the data and Section 5.5

provides the econometric models used in the analysis. Section 5.6 presents the empirical

results and Section 5.7 concludes.

5.2 The European carbon market

The EU ETS is one of the key instruments in European climate policy encompassing

approximately 50 percent of the total European carbon dioxide emissions. Based on the

Directive 2003/87/EC, it was launched in 2005 as the first multinational carbon trading

scheme (European Parliament and Council 2003). Designed as cap-and-trade system,

it directs pollutant emissions via tradable permits in order to achieve emission reduction

targets in a cost-effective and economically efficient way. The regulating institutions set an

emission cap for a certain time period - the compliance period - and accordingly allocate

a fixed amount of tradable permits among the market participants. Thus, the overall

supply of permits is fixed for the considered compliance period. The EU ETS is temporally

separated by three compliance periods (Phase I: 2005-2007; Phase II: 2008-2012; Phase

III: 2013-2020). Currently, the scheme regulates installations from the power sector and

emission-intensive industry sectors such as oil refinement, production and processing of

metals, lime, cement, glass, ceramics, chemicals, pulp and paper. In addition to carbon

dioxide (CO2) emissions, the EU ETS covers the greenhouse gases nitrous oxide (N2O) and

perfluorocarbons (PFCs). In 2004, the EU enacted the Linking Directive 2004/101/EC

in order to establish a connection between the EU ETS and the project-based mechanisms

of the Kyoto protocol (European Parliament and Council 2004): Joint Implementation

(JI) and Clean Development Mechanism (CDM). The basic concept is to allow companies

to use credits from JI as well as CDM projects, to fulfill their obligations under the EU

ETS regulation. The issuance of EUAs takes place gradually, while monitoring, reporting,

and verification of the actual emissions as well as the delivery of the equivalent amount

of EUAs or credits from project-based mechanisms are executed annually. While the use

of EUAs is restricted across compliance periods, banking and borrowing is in principle

feasible within each compliance period. This is due to the structure of the yearly iterative

time schedule for the allocation and submission of allowances (Ellerman, Convery, and De
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Perthuis 2010). The allocation phase for each year ceases in the end of February, while

the deadline for the submission of allowances for the previous year is in the end of April,

i.e. firms can use permits issued in the current year to comply with the arisen obligations

of the previous year.

Phase I is widely seen as the pilot period for newly established institutions and market

participants. For Phase I and Phase II, the overall emission cap is defined by the National

Allocation Plans (NAPs). The NAPs are determined by each member state and define the

national total of permits and the mode of allocation. By approving the NAPs, the Euro-

pean Commission (EC) settles the overall cap. When in April 2006 the information about

the actual emissions was released, the market participants began to realize that the overall

emission cap for Phase I was not restrictive. Moreover, as neither borrowing nor banking

of allowances was allowed between Phase I and Phase II, the price for EUAs issued for

Phase I collapsed. The subsequent Phases II and III are connected via banking. Banking

of spare allowances extends the time span that is considered by market participants when

forming expectations about the overall stringency of the scheme. Thus, banking reduces

the exposure and risk of dramatic price drops. Nevertheless, shocks still lead to price

adjustments and affect the volatility.

During Phase I and Phase II, the main allocation mechanism was ”grandfathering” -

the allocation for free, based on historical emissions. In Phase III the EC directly fixes the

EU-wide cap without the indirect way of approving NAPs. The allocation mode gradually

switches to auctioning as the main allocation mechanism. The cap-setting is stricter

(the total amount of 2,04 bn tonnes of carbon dioxide equivalent in 2013 is lowered by

1.74 percent annually until 2020) and more sectors (e.g. production and processing of

non-ferrous metals) are regulated since January 2013. For a more detailed description

of the changes in Phase III, refer to Directive 2009/29/EC (European Parliament and

Council 2009).

Since the introduction of the scheme in 2005, highly efficient EUA spot and derivative

markets have evolved. In 2011, the total transaction value in the EU ETS was 122.3

bn euros including credits from the project-based mechanisms (World Bank 2012). The

market has been growing rapidly during the first two commitment periods and is now the

largest emission market in the world. Several types of transactions and trading products

have evolved: EUAs can be traded via bilateral, over-the-counter, or organized markets.
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Figure 5.1: EUA price development during Phase II
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In addition to the spot market, there is a lively exchange of futures, options, and swaps

between the interest groups. Bilateral and over-the-counter transactions dominated trad-

ing at exchanges during the first compliance period. Therefore, liquidity at exchanges was

low leading to a highly volatile starting of the market (Rotfuß 2011). However, volumes

traded on exchanges increased heavily since the beginning of the Phase II. The most liq-

uid derivatives market is situated at the European Climate Exchange (ICE/ECX; London)

where approximately 90 percent of the futures contracts are traded. Before its closure in

December 2012, the most liquid spot market was Bluenext (Paris). About 70 percent of

the daily spot transactions were settled at this exchange.

Figure 5.1 shows the EUA price development during Phase II. After increasing to a

peak of about 30 euros in July 2008, the EUA price fell by February 2009 to about 8 euros.

This period was characterized by the aftermath of the Lehman Brothers collapse and the

subsequent financial turmoils which also caused a slow down of the economic growth in

Europe. After a short recovery phase by April 2009, the price followed a lateral movement

around 15 euros until June 2011. The following decrease transitioned into a volatile lateral

movement during 2012. During this period, again, a weakening economic outlook but also

institutional obstacles, such as expected overlapping regulation by the Energy Efficiency

Directive (European Commission 2011), hampered the confidence in a restrictive EU ETS

cap.
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5.3 Related literature

There are several studies that focus on the relation between EUA prices and its deter-

minants. Most of this research is primarily concerned with the existence of various fun-

damentals and their effects on the EUA price, such as the effects of energy prices, risk

factors, or weather conditions. Mansanet-Bataller, Pardo, and Valor (2007), Alberola,

Chevallier, and Chèze (2008), and Hintermann (2010) provide evidence for a strong im-

pact of energy prices and extreme temperatures, while Alberola, Chevallier, and Chèze

(2009a) and Alberola, Chevallier, and Chèze (2009b) show that also the industrial produc-

tion of emission intensive sectors affect the EUA price development. Directing the view

towards the influence of macroeconomic fluctuations, Chevallier (2009) considers macroe-

conomic risk factors, which reflect short- and medium-term sentiments in the financial

markets about the macroeconomic development. Although macroeconomic risk factors

are important determinants for energy commodity futures, their impact on EUA futures

appears to be weak. Conrad, Rittler, and Rotfuß (2012) provide evidence that information

shocks on regulatory issues and the macroeconomic activity clearly impact EUA prices.

According to Anger and Oberndorfer (2008), Oberndorfer and Rennings (2007), Klepper

and Peterson (2004), and Demailly and Quirion (2008), the reverse effects of the EU ETS

on macroeconomic activity are very weak. The studies of Keppler and Mansanet-Bataller

(2010) and Bredin and Muckley (2011) place emphasis on the causal relationships between

EUA prices and its fundamentals or their long-term equilibrium relationship. Creti, Jou-

vet, and Mignon (2012) also contribute to this strand of research. They show, that the

equilibrium during Phase II is characterized by an increasing impact of fundamentals on

the EUA price in comparison to Phase I.

Overall, the effects of the fundamentals such as energy prices, the weather, the current

and future macroeconomic activity, and selected macroeconomic risk factors on carbon

prices are clearly evident. The extent and direction of the impact of these fundamentals

is, however, not constant over time and highly depends on the sample under consideration.

Moreover, structural changes are an important feature of the EUA price generating process.

While Alberola, Chevallier, and Chèze (2008) see regulatory announcements as the main

reason for those breaks, Chevallier (2009) argues that structural breaks are primarily due

to changes in expectations. Recently, Chevallier (2011a), Chevallier (2011b) and Peri and
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Baldi (2011) adopt nonlinear models to analyze the long-term equilibrium relationship

between the EUA price and its determinants. Their empirical evidence suggests that the

European industrial production index and oil prices are likely to influence (eventually

asymmetrically and depending on the regime) the EUA price, while reverse effects are not

present.

In contrast to Chevallier (2011a) and Chevallier (2011b), we do not rely on monthly

data, but exploit daily data of the EUA price and its fundamentals. In doing so, we devote

our attention to the short-term consequences of structural changes in the data-generating

process. Furthermore, we circumvent the natural loss of information when using aggre-

gated figures or too large intervals between time series observations in order to avoid

higher parameter uncertainty, see e.g. Engle (2000). However, daily data exhibits addi-

tional features that have to be taken into account, such as conditional heteroscedasticity.

Previous studies examining daily data only consider isolated characteristics of the data

or impose stark restrictions on structural changes in the relationship between the EUA

return series and its fundamentals. Alberola, Chevallier, and Chèze (2008) or Chevallier

(2009), for instance, carry out a comprehensive analysis of the relationship between the

EUA price and its fundamentals, but they assume breaks to be deterministic and thus

do not consider the permanently changing nature of the relationship under investigation.

Endogenizing structural changes and allowing for a more flexible approach shall give more

robust results. Benz and Trück (2009) adopt such a flexible model by considering a Markov

regime-switching model, but they do not include any EUA price determinants into their

analysis. We, thus, contribute to the existing literature by simultaneously (i) focusing

on the short-term dynamics of the EUA price process, by (ii) modeling changes in the

effects of the EUA determinants and in the volatility of the EUA returns via a very flexi-

ble Markov regime-switching model that is extended by a GARCH structure, and by (iii)

analyzing the entire Kyoto commitment period, i.e. Phase II of the EU ETS.

5.4 Data

Based on the previous studies, we consider several different fundamentals of EUA prices.

In the following, we present these fundamentals, the construction of the corresponding

series, and provide an analysis of their empirical properties.
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5.4.1 EUA prices and their fundamentals

Our empirical analysis exploits data on carbon and energy commodity prices, indicators

for macroeconomic risk as well as deviations from the mean temperature in Europe. Our

sample period ranges from 1 January 2008 until 31 December 2012, resulting in 1286 daily

observations. To obtain a representative carbon price, we follow Chevallier (2009) and

use data from the ICE Futures/European Climate Exchange (ECX) which is the most

liquid market for carbon derivatives in Europe. We consider annual futures, which expire

in December, for the years 2008 up to 2013 and construct the EUA price series based

on the daily closing EUA futures prices (EUR/tCO2e) of the contract with the closest

maturity. The prices are used to construct the series of daily continuously compounded

returns.2 The same procedure is applied to energy commodity futures mentioned below.

Throughout the paper, we use continuously compounded returns expressed in percentage

points.

The link between EUA prices and prices for steam coal, gas, and oil exists mainly

because some industries covered by the EU ETS have the ability to switch among various

fuels in their production process, see e.g. Mansanet-Bataller, Pardo, and Valor (2007), Al-

berola, Chevallier, and Chèze (2008), Hintermann (2010) and Creti, Jouvet, and Mignon

(2012). Based on different emission and energy intensities, alterations in the price ratio of

coal, gas, and oil affect the demand for EUAs and therefore, their price. The fuel switch

behavior might cause a reciprocal relationship between carbon and energy commodity

prices. However, we assume that the influence of the regionally limited EU ETS on the

price formation of the global market for fossil fuels is negligible. In the recent study by

Peri and Baldi (2011), this argument finds empirical support. A reliable reference price

for European steam coal is the API2 index published by Argus/McCloskey’s Coal Price

Service. For our investigations, we therefore follow Chevallier (2011b) and employ corre-

sponding API2 index futures prices (USD/t) of annual contracts traded at the European

Energy Exchange (EEX). The liquidity of these futures is low due to the fact that a large

2This procedure of constructing a price series of a financial asset based on futures contracts with closest

maturity is quite common in the literature, see e.g. Bredin and Muckley (2011) and Chevallier (2011b)

within the context of EUA prices. It is due to the fact that the contract with the closest maturity date is

the most liquid one, such that the construction of the time series is based on the most informative price

records.
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part of the coal is directly traded via brokers whose transactions are in turn the basis of

the API2. Nevertheless, the futures prices are representative, because they are calculated

based on fair values enquired from trading members and brokers. Thus, we consider for

“Gas” the gas price series (EUR/MWh) based on annual futures contracts traded at the

European Energy Derivatives Exchange (ENDEX), which is the largest gas exchange in

Europe. Further, we employ the closing prices of the Crude Oil-Brent Current Month Free

On Board. Like for the steam coal futures, the price of the crude oil futures is quoted

in USD. We use the EUR/USD reference rate published by the European Central Bank

(ECB) to convert the coal and oil price series into EUR.

Fama and French (1989) and Sadorsky (2002) have shown the importance of macroe-

conomic risk factors for the formation of expectations on the equity, bond, and commodity

markets. Following Chevallier (2009), we also assume macroeconomic risk factors to in-

fluence carbon markets. We expect the EUA price to fall, when the macroeconomic risk

measures indicate a prospective economic slow down. This relationship is based on the as-

sumption that adverse business conditions lower aggregated demand and therefore reduce

the demand for EUAs. We therefore consider a stock index, a commodity index, and a

yield spread as measures for macroeconomic and financial risks. The stock index measures

the development of the financial markets and serves as predictor for fluctuations of the

overall economic environment. Stock prices reflect expectations about future dividends

and can be interpreted as leading indicators for the development of business conditions.3

We include into our analysis the Dow Jones EURO STOXX 50 (DJES50) which represents

50 European companies that are leading in their industries.4 The index includes different

branches such as energy generation, manufacturing, and financial institutions. We further

consider an indicator capturing risk related to fluctuations at the global commodity mar-

kets, i.e. the Thomson Reuters/Jeffries Commodity Research Bureau Index (CRBI), which

3Fama and French (1987), Sadorsky (2002) and Chevallier (2009) exploit dividend yields as leading

indicator for economic activities. Following Bredin and Muckley (2011), we consider the stock index itself

instead of including dividend yields. Based on the dividend discount model, the stock index itself can also

be interpreted as a leading indicator.
4Note that the empirical literature does not provide clear evidence on the lead-lag relationship of futures

versus spot prices for the DJES50 index. Robles-Fernandez, Nieto, and Fernandez (2004), for example,

show that the information flow between the DJES50 futures and spot prices is bidirectional. We have

therefore decided to use the spot prices as this is a highly liquid market.



5.4. DATA 165

reflects the price development of several commodity classes. The prices of commodities

are expected to decrease in times of lowering economic activity induced by decreasing

aggregated demand (Chevallier 2009).

To account for default risks in credit markets, we include the default spread defined

as the difference between two yields to maturity of two fixed income portfolios which

represents the premium required to compensate a lender for investing in the riskier asset.

In our case, we use data of average annual yields of U.S. corporate long-term bonds rated

AAA and BAA, that are published by Moody’s. Empirical findings by Fama and French

(1989) provide evidence that the default spread rises in times of high economic uncertainty.

The findings are congruent with the development of the default spread in our data set.

Thus, we expect the EUA price to decline, when the default spread increases.

Similar to Mansanet-Bataller, Pardo, and Valor (2007) and Hintermann (2010), we also

include variables reflecting extreme weather conditions into our analysis. In particular, we

consider deviations from average temperatures. The deviation is computed as difference

between the daily measured temperature and the mean of the monthly temperature av-

erages over the years from 2005 up to 2012. The basis for the series, to which we simply

refer as “Temperature”, is the Tendances Carbone European Temperature Index, which

is obtained as the weighted average of the daily European temperatures.5 The weights

are the shares of the NAPs in the considered countries. Extremely high or low tempera-

tures increase the demand for heating or cooling and raise therefore emissions as well as

EUA prices. For our empirical analysis, we consider values of the deviations from average

temperatures.

5.4.2 Empirical analysis

Table 5.1 highlights the empirical properties of the employed data by presenting the de-

scriptive statistics of the continuously compounded return series and of the deviations

from average temperature. Obviously, the mean and median values of all return series are

5The Tendances Carbone European Temperature Index is computed as NAP weighted average of the

daily temperature of the Metnext Weather Indices of 4 countries (German, Italy, France, and UK) from

January 2005 to September 2009 and of temperature data of 18 countries since October 2009. The Metnext

Weather Indices are intra-country temperature averages weighted by population. We are grateful to CDC

Climat research, Climpact Metnext for kindly providing us with this data.
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Table 5.1: Descriptive statistics

Variable Mean Median St. Dev. Skewness Kurtosis Min Max Jarque-Bera

EUA -0.1132 0.0000 2.6400 -0.2414 4.8933 -11.6029 11.3659 204

Oil 0.0155 0.0662 2.0587 -0.0473 5.6069 -8.4875 9.3543 364

Coal -0.0136 -0.0194 1.5748 -0.3514 8.7243 -10.1216 8.5801 1782

Gas -0.0291 -0.0255 1.4831 0.3999 6.4272 -7.4032 9.2129 663

DJES50 -0.0407 -0.0352 1.8027 0.1061 7.3007 -8.2078 10.4376 993

CRBI 0.0103 0.0356 0.5977 -0.7415 7.2826 -3.5645 2.3149 1101

Default Spread -0.0123 0.0000 1.8034 -0.0557 13.2895 -13.3532 14.1078 5674

Temperature 0.0120 0.1049 2.5507 -0.3755 3.2681 -9.7159 7.1599 34

Notes: Reported are the descriptive statistics of the daily return series and of the daily deviations from average temperature.

All returns are continuously compounded and expressed in percentage points. For further information on the variables and their

construction, we refer to Section 5.4.1. We also report the individual Jarque-Bera test statistics on normality of each series (last

column). The corresponding critical value at the 5 percent significance level is 5.99.

very small. The same is true for the temperature deviations. The mean is in all cases

not significantly different from zero. All time series clearly exhibit excess kurtosis. The

Jarque-Bera test rejects the null hypothesis of zero skewness and excess kurtosis for all

return series as well as for the deviations from average temperature. According to the test

statistics of the Augmented Dickey-Fuller (ADF) test and the Phillips-Perron test (PP),

which are reported in Table 5.2, the logarithms of energy prices and the prices of the

macroeconomic and financial risk factors are nonstationary, while the test results indicate

that the corresponding continuously compounded returns are stationary.6 Applying the

tests to the deviations from average temperatures shows, that these are stationary and we

therefore do not compute unit root tests on the first differences of this series.

In the remainder of the paper, we consider for our empirical analysis the stationary

time series, i.e. the continuously compounded returns of futures prices and risk factors

as well as deviations from average temperatures. Figure 5.2 depicts the time evolvement

of the employed series. All return series show the well-known phenomena of volatility

6Using prices constructed from rolling over between futures contracts may induce jumps, which in turn

may affect inference based on unit root tests. We do not explicitly account for these jumps when conducting

the unit root tests on the price series, but we expect that the jumps do not affect our results. The study of

Medina and Pardo (2012) supports this. In particular, analyzing separately the price series of individual

futures contracts, they find that the EUA prices are integrated of order one, which is consistent with our

unit-root test results.
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Figure 5.2: Return series
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Notes: Time evolvement of the daily returns, and of the daily deviations from average temperature (bottom right panel). All returns

are continuously compounded and expressed in percentage points. For further information on the variables and their construction,

we refer to Section 5.4.1.
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Table 5.2: Unit root tests

Augmented Dickey-Fuller test Phillips-Perron test

pt rt pt rt

Variable test statistic p-value test statistic p-value test statistic p-value test statistic p-value

EUA -1.550 0.5089 -33.382 0.0000 -1.462 0.5521 -33.318 0.0000

Oil -1.102 0.7144 -36.585 0.0000 -1.088 0.7199 -36.578 0.0000

Coal -1.724 0.4188 -24.070 0.0000 -1.818 0.3713 -32.996 0.0000

Gas -1.343 0.6095 -23.710 0.0000 -1.353 0.6046 -31.403 0.0000

DJES50 -3.191 0.0862 -36.797 0.0000 -3.128 0.0997 -37.043 0.0000

CRBI -0.977 0.7614 -12.199 0.0000 -0.859 0.8011 -32.628 0.0000

Default

Spread

-1.501 0.5332 -11.120 0.0000 -1.043 0.7372 -36.471 0.0000

Temperature -11.927 0.0000 - - -11.662 0.0000 - -

Notes: Reported are the test statistics and the corresponding p-values of the Augmented Dickey-Fuller test and the Phillips-Perron

test on the null of a unit root in the logarithmic price series (columns 2-3 and 6-7), in the corresponding continuously compounded

returns (columns 4-5 and 8-9), as well as in the daily deviations from average temperature (last row). Note, as the null of a unit root

is rejected for the deviations from average temperature, we do not report unit root tests for the first differences of this series. The

variables are defined in Section 5.4.1.

clusters. Moreover, during the financial crisis or more precisely during the aftermath of

the Lehman Brothers bankruptcy in September 2008, all return series exhibit high levels

of volatility. The sample autocorrelation function of the squared EUA returns is depicted

in Figure 5.3 along with the corresponding 95 percent Bartlett confidence intervals. The

sample autocorrelation function of the squared returns is slowly decaying, which is typical

for daily returns exhibiting volatility clustering.7 This pattern has also already been

observed for emission allowance returns by Paolella and Taschini (2008), and Medina and

Pardo (2012). The presented empirical properties of EUA returns are thus in line with the

stylized facts of financial asset returns. This is also reported in Medina and Pardo (2012),

who conduct a more detailed analysis of the properties of the EUA returns and find that

the EUA returns additionally exhibit features that are common to commodity futures.8

7In the levels, the EUA returns exhibit significant autocorrelation only at the first lag. The first order

autocorrelation is 0.0706.
8An extensive empirical analysis of our data with respect to these features is out of the scope of the

present paper.
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Figure 5.3: Sample autocorrelation function of the EUA returns
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Notes: Sample autocorrelation function of the daily squared continuously compounded EUA returns (expressed in percentage points).

5.5 Methodology

We model the changing nature of the relation between the EUA return and its fundamen-

tals via a Markov regime-switching model (Hamilton 1989). The model is very flexible and,

thus, able to describe quite complex dynamics of the considered time series. The model

used in this paper is based on Gray (1996) and Klaassen (2002), who extend Hamilton’s

original approach by including a generalized autoregressive conditional heteroscedasticity

(GARCH) structure into the Markov regime-switching model. The model thus allows for

structural changes in financial volatility, which may generate the observed persistence in

volatility, see e.g. Diebold and Inoue (2001), Granger and Hyung (2004) and Mikosch and

Stărică (2004). Furthermore, Paolella and Taschini (2008), Chevallier (2009), and Medina

and Pardo (2012) find, that EUA return series based on daily data show characteristics

such as volatility clustering and fat tails. They therefore advocate the use of GARCH-type

models in order to take these stylized facts of asset returns into account when considering

EUA return series.

The model is based on the assumption that the data generating process shifts at

different points of time and that these discrete aperiodic shifts between a finite number

of states or regimes are driven by a hidden Markov chain. In the following, we briefly

explain the model structure in more detail. To this end, let rt denote the daily continuously

compounded EUA return at time period t (t = 1, 2, . . . , T ) and let st ∈ {0, 1} be a

latent state-variable that governs the switch between two possible regimes. The EUA
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returns are assumed to be affected by k fundamentals, which are subsumed in the vector

x′t = (1, x1t, x2t, . . . , xkt). The influence of these fundamentals on the EUA returns is

allowed to vary over time, which is highlighted by the superscript st on the parameter

vector γ(st). In particular, we assume that the impact depends on the current state st.

The mean equation of our model is therefore given by

rt = x′tγ
(st) + at. (5.1)

where the parameter vector γ(st) = (γ
(st)
0 , γ

(st)
1 , γ

(st)
2 , . . . , γ

(st)
k )′ with st ∈ {0, 1} measures

the influence of the risk factors on EUA returns in the two regimes.

To account for the possibility of structural changes in the volatility process, we follow

Klaassen (2002) and assume that the innovation at is normally distributed with zero

mean and variance V ar(at|s̃t, It−1) conditional on the regime path s̃t = (st, st−1...) and

the information set It−1 containing the information available at time t− 1:

at|s̃t, It−1 ∼ N(0, V ar(at|s̃t, It−1)). (5.2)

The dynamics of the conditional variance V ar(at|s̃t, It−1) is based on a GARCH(1,1)

model, where, however, the parameters of the conditional variance equation are also al-

lowed to be state dependent, i.e. the conditional variance is given by

V ar(at|s̃t, It−1) = ω(st) + α(st)a2
t−1 + β(st)E[V ar(at−1|s̃t−1, It−2)|s̃t, It−1]. (5.3)

That is, in each regime the conditional variance is given by a regime-specific GARCH(1,1)

model. Similarly to the single-regime GARCH(1,1) model, the regime-specific uncondi-

tional variance is then given by σ2(st) =
(
1− α(st) − β(st)

)−1
ω(st) for st = 0, 1.9

The development of st and therefore, the switching in regimes is governed by a homoge-

nous first order Markov chain and can be fully described by the transition probabilities

p and q which refer to the probabilities of being in the same state st as in the previous

period, i.e.

P [st = 1|st−1 = 1] = p, P [st = 0|st−1 = 0] = q. (5.4)

9Note that in our empirical analysis we have also experimented with alternative lag orders of the

GARCH(p, q) model, but the GARCH(1,1) model is preferred by both, the Akaike and the Bayesian

information criteria. So we consider here the GARCH(1,1) model, i.e. a lag order specification that is also

standard in the GARCH literature, see e.g. Medina and Pardo (2012) and Paolella and Taschini (2008)

within the context of EUA returns. The results of this preliminary analysis are available upon request.
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Within each regime the relationship between the EUA return and its fundamentals is

linear (see Equation 5.1) and the state variable st, thus, governs the shift between these

two linear relationships. The transition probabilities characterize the switching in regimes

and therefore the evolvement of the system over time. In order to draw inference on st,

we calculate the smoothed probabilities P [st = j|IT ], j = 0, 1 based on the algorithm

provided by Kim (1994). The smoothed probabilities are conditional on the information

set IT that comprises the entire information contained in the data set.

5.6 Empirical results

5.6.1 Non-switching GARCH model

In accordance to former research on the relation between the EUA return and its fun-

damentals, we begin our empirical analysis by estimating a GARCH(1,1) model without

regime-switching. This allows us to compare our empirical findings to the existing empiri-

cal literature and to highlight special features. To this end, we regress the EUA returns on

selected energy variables, a stock index, a commodity index, a default spread and a tem-

perature variable reflecting extreme weather conditions in Europe. The model, to which

we simply refer to as the “non-switching GARCH model”, takes the following form

EUAt = γ0 + γ1Oilt + γ2Coalt + γ3Gast (5.5)

+ γ4DJES50t + γ5CRBIt + γ6Default Spreadt

+ γ7Temperaturet + at, where

at|It−1 ∼ N(0, V ar(at|It−1)) and

V ar(at|It−1) = ω + αa2
t−1 + βV ar(at−1|It−2),

i.e. we account for conditional heteroscedasticity by specifying a GARCH(1,1) model.10

We estimate this model for the data analyzed in Section 5.4.2. In particular, we use

10Note that we have estimated a linear regression model without allowing for GARCH effects as a

first step. However, the Lagrange multiplier test rejects the null hypothesis of no ARCH effects in the

innovations of this specification. This supports once more the necessity to account for volatility clustering

when modeling daily EUA returns, see also our results in the empirical data analysis of Section 5.4.2. The

results of this preliminary analysis are available upon request.
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Table 5.3: Estimation results of non-switching GARCH(1,1) model

Variable Parameter Std. error

Constant −0.0235 (0.0548)

Oil 0.0946∗∗∗ (0.0318)

Coal 0.0739∗∗ (0.0373)

Gas 0.3536∗∗∗ (0.0374)

DJES50 0.2202∗∗∗ (0.0300)

CRBI 0.2115∗∗ (0.1051)

Default Spread 0.0068 (0.0300)

Temperature 0.0183 (0.0205)

ω 0.1553∗∗∗ (0.0369)

α 0.1437∗∗∗ (0.0164)

β 0.8365∗∗∗ (0.0169)

Notes: The table presents the estimation results of the GARCH(1,1) model without regime-switching as given in Equation (5.5). ∗∗∗

indicates significance at 1 percent, ∗∗ at 5 percent, ∗ at 10 percent.

the daily continuously compounded returns (expressed in percentage points) of the EUA

price and of its fundamentals, with the exception of the extreme weather variable, which

is measured as daily deviations from average temperature. The specific variables are

explained in detail in Section 5.4.1.

The estimation results of the non-switching GARCH(1,1) model are reported in Table

5.3. With respect to the energy variables, our results are primarily in line with the

existing literature summarized in Section 5.3. More specifically, just like in the existing

literature, we find a significant and positive impact of crude oil and natural gas on the

EUA returns. We further observe a positive and significant effect of coal, which has

recently also been documented in Chevallier (2011b) using data on Phase I and part of

Phase II. In contrast, Alberola, Chevallier, and Chèze (2008) and Aatola, Ollikainen, and

Toppinen (2013) report a significant, but negative influence on the EUA returns based on

samples starting in January 2005 and lasting until December 2008, and December 2010,

respectively. Focusing exclusively on Phase I, Hintermann (2010) finds no significant effect

of coal. Thus, the empirical evidence on the effect of coal on EUA returns is mixed, which

may be due to two, potentially offsetting, effects that determine the relationship between

coal and EUA prices. First, it is widely accepted that aggregated economic activity can
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drive the demand for commodities and raw materials and, thus, their prices. Increasing or

decreasing aggregated demand might effect commodity and EUA prices in the same way,

leading to a positive relationship also in the returns. Second, some sectors might have the

possibility to substitute coal by combusting gas or other fuels. This fuel-switch behavior

implies that in a situation of increasing coal prices, a company will ceteris paribus switch to

less expensive fuels and in the case of oil and gas, less emission-intensive fuels, leading to a

negative relationship between coal and EUA returns. Our finding of a significant, positive

effect of coal suggests that the aggregated demand effect overweighs the substitution effect

during Phase II.

Our estimation results also suggest that the EUA returns are affected by macroeco-

nomic and financial risk factors. In particluar, the stock index and the commodity index

have a positive and significant effect at the 5 percent significance level. The positive im-

pacts of the stock index and the commodity index are consistent with our expectations:

Market participants associate a positive development of stock index values or commodity

prices with rising economic activity, which leads to increasing EUA prices. The positive

impact of the stock index is also in line with the empirical results of Chevallier (2009)

and Medina and Pardo (2012).11 Using a different dataset, Hintermann (2010) finds in-

stead no significant impact. The insignificance of the default spread is also documented

in Chevallier (2009).

The coefficient of the temperature variable is not statistically different from zero. The

parameter estimates of the volatility equation are consistent with those that are commonly

observed when fitting a GARCH(1,1) model to daily financial return series indicating a

highly persistent volatility of the EUA returns.

The comparison of the results of the existing literature suggests, that the relation

between the EUA price and its fundamentals is time-varying. Even within comparable

model classes, the impacts heavily depend on the time periods considered. We therefore

explicitly take into account the changing nature of this relationship by estimating a Markov

regime-switching model.

11Moreover, Chevallier (2009) reports a negative impact of dividend yields on EUA prices, which is also

in accordance with our positive impact of the stock index, as dividend yields are reciprocal to the values

of the corresponding stock index.



174 CHAPTER 5. NONLINEARITY IN CAP-AND-TRADE SYSTEMS

5.6.2 Markov regime-switching GARCH model

We now turn our attention to the empirical analysis of the Markov regime-switching model

discussed in Section 5.5, in which, both, the effects of the fundamental factors on EUA

returns and the volatility dynamics are allowed to depend on two regimes. Preliminary

estimation results of this model (not reported here), however, show that a GARCH(1,1)

specification is not needed in the second regime. In particular, the GARCH parameters α(1)

and β(1) are insignificant, implying that the second regime is characterized by a constant

volatility. We therefore exclude the GARCH(1,1) specification from the second regime

by restricting α(1) and β(1) to zero, such that, in the second regime, the unconditional

variance of the shocks to the EUA returns is given by σ2(1) = ω(1). For the first regime,

instead, we keep the GARCH(1,1) specification, as α(0) and β(0) are both significant at

the 5 percent significance level. The unconditional variance of the first regime is therefore

still given by σ2(0) =
(
1− α(0) − β(0)

)−1
ω(0).12 The estimation results of this restricted

Markov regime-switching model are presented in Table 5.4. The smoothed probabilities

of being in Regime 1 are depicted in Figure 5.4.

Both regimes are characterized by no clear price trend. However, the first regime

depicts a high unconditional variance of the shocks to the EUA returns, σ2(0), and can

be related to phases of higher uncertainty. In both regimes, the gas and the equity in-

dex returns individually have a significant impact on EUA returns, while the parameters

associated with extreme temperatures and with the commodity index are insignificant.

Overall, we do not observe huge differences in the estimates of the parameters in the mean

equations of the two regimes. Thus, in order to rule out, that regime switches are only

relevant for the volatility dynamics of EUA returns, we conduct a Likelihood-ratio test on

the null hypothesis, that the parameters of the mean equation are identical across the two

regimes, i.e. we test H0: γ(0) = γ(1) against the alternative H1: γ(0) 6= γ(1). According

to the test statistic, which is also reported in Table 5.4, the null hypothesis is rejected at

the 5 percent significance level. Thus, we conclude that the impact of fundamentals on

the EUA price is state dependent. In the first regime, the most important drivers of the

EUA returns are the returns of the equity index and of gas. The returns of coal have a

weaker, but significant, impact which is insignificant in the second regime (at the 5 percent

12The results of this preliminary analysis are available upon request.
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Table 5.4: Estimation results of the Markov regime-switching GARCH model

Regime 1 (st = 0) Regime 2 (st = 1)

Variable Parameter Std. error Parameter Std. error

Constant −0.1285 (0.0934) 0.0737 (0.0632)

Oil 0.0846∗ (0.0509) 0.1205∗∗∗ (0.0428)

Coal 0.1645∗∗ (0.0693) −0.0955∗ (0.0514)

Gas 0.3098∗∗∗ (0.0748) 0.3794∗∗∗ (0.0440)

DJES50 0.2657∗∗∗ (0.0559) 0.1538∗∗∗ (0.0446)

CRBI 0.2999 (0.1869) 0.1293 (0.1285)

Default Spread −0.0380 (0.0511) 0.0473 (0.0345)

Temperature 0.0243 (0.0388) 0.0122 (0.0273)

ω 1.0923∗∗∗ (0.3221) - -

α 0.1463∗∗∗ (0.0361) - -

β 0.7251∗∗∗ (0.0645) - -

Uncond. variance of EUA return shocks σ2(0)=8.4920 σ2(1)=1.1516

Transition probabilities P[st = 0|st−1 = 0]=0.9837 P[st = 1|st−1 = 1]=0.9676

LR testa Test statistic Crit. value

H0: γ(0) = γ(1) H1: γ(0) 6= γ(1) 15.821 15.507

Notes: The table shows the estimation results of the Markov regime-switching GARCH model. ∗∗∗ indicates significance at 1

percent, ∗∗ at 5 percent, ∗ at 10 percent. The lower panels of the table report the estimates of the transition probabilities, the

unconditional variance of the shocks to the EUA returns in both regimes, and the result of a Likelihood Ratio test for the H0

hypothesis, that the parameters of the mean equation are identical across the regimes.

a The likelihood ratio test statistic is χ2 distributed with 8 degrees of freedom. The reported critical value corresponds to the 5

percent significance level.
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significance level). In the second regime, the oil and the equity index returns each have

modest impacts on the EUA return, while the strongest impact is again observed for gas.

The significant effects of the energy variables (coal, gas, and oil) are positive. Moreover,

the equity index has a significant and positive impact on EUA returns in both regimes.

These findings are in line with our results based on the non-switching GARCH model and

with the economic intuition and the literature discussed in Section 5.6.1. Moreover, the

strong impact of the equity index reflects its importance as a predictor for the general eco-

nomic development and, thus, for the aggregated demand for allowances. In accordance

with the results of Chevallier (2009), we find no significant impact of the commodity index

nor of the interest rate spread on the EUA returns. The coefficient of the temperature

variable, which reflects extreme weather conditions, is also statistically insignificant. The

existing literature, that studies the impact of extreme temperatures and weather events

on EUA returns, provides mixed evidence and the results heavily depend on the consid-

ered sample periods. E.g., while Hintermann (2010) does not find a significant impact of

extreme temperatures either, Alberola, Chevallier, and Chèze (2008) report that extreme

temperatures had a significant impact during the strong winter seasons in 2006 and 2007

depending on the underlying subsample analysis.

Furthermore, according to the estimation results reported in Table 5.4, the conditional

volatility in the first regime is persistent, as measured by α(0) +β(0) = 0.8714, but smaller

than the estimated persistence for the non-switching GARCH model, which is 0.9802. This

is consistent with the observation that persistence in volatility may be generated by less

persistent processes with structural breaks or regime switches, see e.g. Chen, Härdle, and

Pigorsch (2010), Diebold and Inoue (2001) and Granger and Hyung (2004).13 Moreover,

the transition probabilities from the first to the second regime and vice versa are very

small. In other words, switching from one regime to the other is not very likely and

13Recall that based on our preliminary estimation results, we model the volatility in the second regime as

a constant. As such, there is no specification for the persistence of the volatility in this regime. Comparing

the time evolvement of the EUA returns with the smoothed probabilities, both depicted in Figure 5.4,

further indicates, that the volatility in the second regime indeed seems to stay at the same level and

that there is no indication of volatility clustering. This is also observed for the smoothed probabilities of

the Markov regime-switching-GARCH model without restricting the volatility of the second regime to be

constant (the figure is not presented here, but available upon request), which is in line with the observation

of the insignificant parameter estimates α(1) and β(1).
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changes in the relation between the EUA returns and the considered fundamentals do not

occur very frequently.

Figure 5.4 depicts the EUA price and its continuously compounded return series along

with the time evolvement of the conditional variance of the first regime and the smoothed

probabilities of being in the first regime. The figure illustrates, that after a short consoli-

dation phase in January 2008, the carbon price series shows an upward trend during the

first half of the year 2008. Except for the consolidation phase, the smoothed probabilities

presented in the bottom panel of Figure 5.4 indicate the system to be with high proba-

bility in the second regime that is characterized by a low and constant volatility. This is

also in line with the behavior of the carbon return series during this year. The smoothed

probabilities suggest that the occurrence of the first regime coincides approximately with

the economic recession of 2008 and 2009. In this period, economic activity slowed down

and lowered the demand for commodities and EUAs. As a consequence, commodity and

allowance prices decreased dramatically. The return series rt and the conditional volatility

V ar(at|st = 0, It−1) in Figure 5.4 show that the uncertainty in the market increased in

the second half of 2008 and the first half of 2009. In the time period from early 2009

to August 2010, the carbon price is at a level of around 15 euros. During this phase of

lateral movement, the smoothed probabilities still indicate that the first regime prevails.

The conditional volatility is still on higher levels in comparison to the phase of the upward

trend in the first half year of 2008. Also, the second half year of 2010 is characterized by

a lateral movement ending up in a slight upward movement during the first half year of

2011. The smoothed probabilities indicate the model to be in the second regime during

this period, this coincides with a phase of economic recovery. Our results indicate, that

the recovery after the economic cool down stabilized the expectations about the stringency

of the EU ETS leading to slightly increasing prices and a decreasing level of uncertainty.

In June 2011, there is a sharp drop in EUA prices, followed by a downward movement

until early 2012. The tremendous fall in June occurred directly after the announcement

of the Energy Efficiency Directive (European Commission 2011). The proposed directive

includes energy efficiency goals, which imply decreasing emissions that were not taken into

account by the cap setting of the EU ETS. From this date onwards, the smoothed prob-

abilities suggest the first regime to be dominant until the end of 2012 accompanied with

high levels of volatility. There are several reasons that caused this downward movement
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Figure 5.4: Inference about the latent state variable: smoothed probabilities
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and the high uncertainty in the market. First, the full extent of the economic slowdown

due to the financial crisis and the subsequent European debt crisis became clearer after

the data on historic verified emissions discharged in 2010 were published in 2011. The

data show that the short economic recovery after the slowdown of the financial crisis did

not reduce the oversupply of EUAs significantly. In contrast, the emissions data provided

evidence that huge amounts of EUAs are banked to Phase III also due to the subsequent

European debt crisis and the associated decrease in economic activities in Europe (World

Bank 2012). Second, the expectation among market participants arose, that the weaken-

ing growth outlook for the EU in the early Phase III might hamper the stringency of the

system even further.14 Third, on the regulatory side, overlapping regulation, the lack of

adjustment of the 20 percent reduction goal for 2020, and the weakness in international

ambition for reducing greenhouse gases supported the expectation of the market partici-

pants that the cap set for Phase II and Phase III will not be restrictive. During 2012, the

price moves laterally around a level of 7 euros, while the volatility stays on high levels.

Our findings suggest, that the strong economic slowdown during the aftermath of

the financial crisis, the weakening growth outlook due to the European debt crisis and

regulatory obstacles coincide with the state at highly volatile EUA prices. In this kind

of situation, the market participants are uncertain about the overall supply and demand

ratio. They fear the market condition of an oversupply of allowances, where the overall

cap for the second and third trading period is not binding anymore resulting in a sharp

price drop. This uncertainty seems to increase in times, when the expectations about the

general economic development deteriorates or information is released that indicates less

stringency for the EU ETS.

5.7 Conclusions

This paper is concerned with the nonlinear relationship between the EUA price and its

fundamentals. We argue that changes in the data generating process of the EUA price are a

consequence of the design of the EU ETS. In particular, since the EU ETS runs on the basis

of a cap-and-trade system, the supply of allowances is fixed over a certain period of time,

14Indicators of the current and expected economic development, e.g. the CESifo World Economic Survey,

clearly display the weakening economic outlook back in July 2011 (Plenk, Nerb, Wohlrabe, and Berg 2013).
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while the demand may be affected by both positive and negative economic shocks. When

negative shocks reduce current emissions and, thus, the current demand for allowances,

uncertainty about the overall stringency of the scheme increases and market participants

adjust their expectations. The associated EUA trading translates into higher volatility

and a varying relation between the EUA price and its fundamentals. Our empirical results

support such a nonlinearity in the dynamics of the EUA price. We estimate a Markov

regime-switching GARCH model, accounting for changing states in the mean and variance

of the EUA returns. Our model is able to identify a low and a high volatility regime and

shows significant differences in the impact of the fundamentals across states. The high

volatility regime largely coincides with phases when weakening economic conditions or

institutional changes impair the confidence in the stringency of the cap set in accordance

with the EU emission targets. In 2008 and 2009, when the overall actual emissions were on

a decline due to the economic recession caused by the financial crisis, our model indicates

the high volatility regime to be predominant. This also applies for the time period from

July 2011 until December 2012, when the debt crisis weakened the economic outlook for

Europe and institutional announcements hampered the confidence in a stringent EU ETS

cap.
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Martin, R., M. Muûls, and U. J. Wagner (2016): “The Impact of the EU ETS on

Regulated Firms: What is the Evidence After Ten Years?,” Review of Environmental

Economics and Policy, 10, 129–148.



192 BIBLIOGRAPHY

McCrary, J. (2008): “Manipulation of the Running Variable in the Regression Disconti-

nuity Design: A Density Test,” Journal of Econometrics, 142, 698 – 714, The regression

discontinuity design: Theory and applications.

Medina, V., and A. Pardo (2012): “Is the EUA a New Asset Class?,” Quantitative

Finance, 13, 637–653.
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