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Zusammenfassung

Die vorliegende Arbeit handelt von statistischer Inferenz für Modelle von Warteschlan-
gen. Dabei bedienen sich die statistischen Ansätze der Bayesianischen Methodik. Die
Arbeit gliedert sich in drei Hauptteile, die über das zugrunde liegende Wartschlangen-
modell miteinander verbunden sind. Die Gemeinsamkeit aller Teile besteht darin, dass
durchweg Warteschlangen in stetiger Zeit betrachtet werden, die von einem Kunden-
strom in Form eines homogenen Poisson Prozesses gespeist werden. Außerdem wird
durchweg keine endlich-dimensionale, parametrische Form der Bedienzeit-Verteilung an-
genommen. Letzteres führt zu sogenannter nichtparametrischer Bayes Statistik. Der Un-
terschied zwischen den einzelnen Teilen ergibt sich zum einen daraus, dass die beiden
ersten Teile den Fall eines einzelnen Bedieners behandeln, während der dritte Teil den
Fall von unendlich vielen Bedienern abdeckt. Zum anderen unterscheiden sich alle Tei-
le bezüglich der Annahmen an die Beobachtungen des jeweiligen Systems. Im ersten
Teil dienen Ankunfts- und Bedienprozess als Beobachtungsgrundlage. Dabei wird sta-
tistische Inferenz für die Verteilungen der Wartezeit und der Systemgröße entwickelt.
Die weitere Untersuchung dieser Methoden führt neben dem Herausarbeiten ihrer wich-
tigsten Eigenschaften zu neuen theoretischen Resultaten der Bayes Statistik selbst. Teil
zwei ist dem gleichen Warteschlangenmodell gewidmet, nun allerdings bezüglich an-
derer Beobachtungen. Dabei entfällt die Annahme, dass Ankunfts- und Bedienprozess
beobachtbar sind, sodass die einzig mögliche Beobachtung im Abgangsprozess der Kun-
den besteht. In diesem Rahmen wird Inferenz für die Bedienzeit-Verteilung entwickelt.
Dabei liegt das Augenmerk vor allem auf der probabilistischen Struktur des Systems.
Die daraus entstehenden theoretischen Resultate über die zugrunde liegende suffizien-
te Statistik erlauben es anschließend Mischungen solcher Systeme zu betrachten, die
das Fundament für Bayesianische Inferenz innerhalb dieses Modellrahmens bilden. Der
letzte Teil unterscheidet sich von den beiden vorangegangenen insofern, dass nun die
Warteschlange mit unendlich vielen Bedienern betrachtet wird, d.h. es wird angenom-
men, dass jedem Kunden sein eigener Bediener zugewiesen wird und sich somit keine
Warteschlange im eigentlichen Sinn bildet. Das statistische Interesse liegt dabei wieder-
um auf der Bedienzeit-Verteilung und die Beobachtungen sind von indirekter Natur.
Letzteres bedeutet, dass lediglich die Zeiten zu denen Kunden das System betreten bzw.
verlassen aufgezeichnet werden. Die Verteilung der daraus resultierenden Rohdaten be-
sitzt einen bekannten Zusammenhang zur Bedienzeit-Verteilung. Dieser Zusammenhang
wurde in der Vergangenheit ausgenutzt, um Statistik für die Bedienzeit-Verteilung im
frequentistischen Sinne zu betreiben. Allerdings wurden dabei bislang ungeklärte Fragen
aufgeworfen, deren Klärung Voraussetzung ist für eine Bayesianische Behandlung des
Problems. Da die Rohdaten einen allgemeinen stationären Prozess bilden, besteht das
zentrale Problem in einer geeigneten Parametrisierung der stationär-ergodischen Maße,
deren Mischung das datengenerierende Maß bildet. Eine solche Parametrisierung wird
entwickelt und anschließend benutzt um Bayesianische Inferenz für stationäre Daten zu
betreiben.



Abstract

The present thesis deals with statistical inference for queueing models. Thereby, the
considered approaches follow the Bayesian methodology. The work divides into three
main parts which are related to each other by the underlying queueing model. The
similarity lies in the assumption of continuous-time systems which are fed by a homoge-
nous Poisson arrival stream of customers. Moreover, throughout the thesis no finite-
dimensional parametric constraint is placed on the distribution of the service times.
The latter leads to Bayesian nonparametric statistics. The distinction among the parts
arise from the assumed number of servers as well as from the observational setups. The
first two parts are about the single server queue while the last part deals with infinitely
many servers. In the first part the arrival and service processes are taken as observations.
Thereby, the main interest is in inference for the distributions of the waiting times of
the customers and the occupation of the system, respectively. Besides the elaboration
of the key properties of the statistical methods, their further examinations lead to new
results for the theory of Bayesian statistics itself. The second part is also about the
same system but a different observational setup is used. This means that the assump-
tion of observations of the arrival and service process is dropped. Instead merely the
customer’s departure stream is assumed to be observable. Within this setup the main
interest is in making inference for the service time distribution. This is done by studying
the probabilistic structure of the system in more depth. The emerging theoretical con-
siderations about the sufficient statistic of this inner structure make it possible to think
about mixtures of such systems. These mixtures build the basis for the development of
further Bayesian nonparametric inference for the service time distribution within this
framework. The last part departs from the previous two in such that the queue with
infinitely many servers is considered. This means that a separate server is assigned to
each customer and no queue builds up. The interest is again in the service time distribu-
tion. The observations are indirect, meaning that merely the instants when customers
arrive to and depart from the system, respectively, are recorded. The distribution of
the emerging raw data has a known relationship to the service time distribution. This
relationship was exploited in the past in order to make statistical inference for the service
time distribution using the frequentist methodology. However, this raised several ques-
tions which have not been answered yet. This thesis provides answers to these questions
which are necessary to deal with the issue from a Bayesian perspective. Since the raw
data forms a general stationary process, the major problem consists in finding a suit-
able parametrization of the shift-ergodic measures. That is mainly due to the fact that
this enables one to formalize mixtures of ergodic measures which in turn generate the
observed data. Such a parametrization is developed and subsequently used for making
Bayesian inference for stationary data.
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1 Introduction

Much attention has been drawn to the analysis and the statistics of queueing systems.
Beside approaches to statistical inference for queueing systems from the classical perspec-
tive, since the early 1980s there has taken place remarkable research in what is frequently
called Bayesian queues. That means inference for queueing systems from the Bayesian
point of view. Bayesian statistical approaches are often feasible and useful in the area of
Operations Research since one is able to express prior knowledge about the system which
is often present. To cite Dennis Lindley, who was a great advocate of the Bayesian idea on
the one hand side and also worked in the �eld of stochastic processes a�ecting queueing
theory

Operational research workers are continually trying to express ideas to manage-
ment that involve uncertainty: they should do it using the concepts contained
therein.

-Excerpt of the foreword of De Finetti (1974) by Dennis Lindley-

The possibility of incorporating prior knowledge into inferential procedures makes infer-
ence more robust especially if the à priori knowledge is good and the amount of available
data is small. However, it is by far not the only feature that makes Bayesian statistics at-
tractive to statisticians examining queueing systems. Another one is the richness of designs
and statistical modeling which is o�ered to the statistician. This richness is mainly due
to the fact that rather sophisticated methods are utilized than merely replacing parame-
ters by their empirical versions and, thus, often has to come along with deep theoretical
considerations. Presumably the most striking advantage is that the Bayesian approach to
statistics enables one to epistemically predict the future behavior of the system which is
due to the subjectivistic approach to probability which Bayesian statistics build on. More
precisely, the interpretation of probability as a personal state of information or uncer-
tainty gives rise to a prior distribution. Loosely speaking, the prior distribution models
one's uncertainty by mixing up di�erent rigid states which are themselves represented by
probability distributions, the so called likelihoods. One's state of information is changed
by observing data in a certain way to be further described. Informally, the prior is up-
dated to the posterior by the data. This updating procedure can by accomplished by
di�erent tools. The most popular one is the celebrated Bayes theorem

P(target ∣ data) = P(data ∣ target)P(target)
P(data)

which roughly says that the posterior behaves proportionally to the product of the like-
lihood and the prior. However, in situations where the interest lies in objects of in�nite
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1 Introduction

dimension, which often appear in queueing theory, classical approaches break down. Then
other theoretical methods need to be found in order to de�ne priors on measure spaces
that are not representable by �nite dimensional parameter spaces and to update them
properly to a posterior. This leads to the �eld of Bayesian nonparametrics. Having access
to the entire posterior measure can be more telling than solely regarding one of its spe-
ci�c functionals in form of estimators. Moreover, one can actually write down a posterior
predictive distribution

P(future data ∣ observed data) = ∫ P(future data ∣ target)dP(target ∣ observed data)

which is vacuous in general from the viewpoint of classical frequentistic statistics since the
data mostly has to ful�ll several independence assumptions. In contrast, the associated
assumption in Bayesian statistics is relaxed to conditional independence which, by the
celebrated de Finetti theorem, is equivalent to a judgment of the data that has observable
character. That is the judgment of exchangeability which basically means that the order
of observable data does not a�ect the update, i.e. the order statistic is judged to be
su�cient for future predictions. Certainly this is not true in many situation. However,
following the same methodology other useful judgments can be found to express ones
belief in the situation to be modeled. From a more theoretical viewpoint all these consid-
erations are dealt with by ergodic theory, which might be regarded as another advantage
since ergodic theory has long reaching interrelations with other mathematical theories.

Several scientists followed these advantages in order to create a vivid research area by
combining the �eld of stochastic processes with Bayesian statistics. While the earliest
works include inference based on the classical Bayes theorem for exactly solvable queue-
ing systems, more recent works began to transfer the methodology to more general systems
using non-parametric Bayesian statistics. It is worth mentioning some of the recent works
on Bayesian queues. Two seminal works were given by Armero (1985) and Mcgrath et al.
(1987); McGrath and Singpurwalla (1987) who dealt with Markovian queues, i.e. queues
with a homogeneous Poisson process as input stream and exponential service times with
varying number of service stations. In this parametric and explicitly solvable model, the
aim of these works was to infer the tra�c intensity, the waiting time of customers and the
number of customers in the system under several di�erent observational setups. These
works form the base for further works on Bayesian inference for systems with Markovian
characters under several generalizations cf. e.g. Armero and Conesa (1998, 2004, 2006)
and Ausín et al. (2007). Generalizations in many ways were performed as for example
a non-Markovian setting for the inter arrival times, cf. Wiper (1998) and Ausín et al.
(2007).
While assuming the arrival stream to be a Poisson process is often well suited, the service
times often need to be modeled more �exibly. Hence, it is reasonable to generalize the
distribution of the service times. Since the most desirable properties of queueing systems
depend on the Poisson process input, this can be done without loosing such. Models
with generalizations of the service time distribution can be found in Insua et al. (1998),
where Erlang- and hyperexponential distributions are employed to model the service times
more �exibly. Ausín et al. (2004) use the well known probabilistic result that the class of
phase-type distributions forms a dense set in the space of all probability distributions [cf.
Asmussen (2008, p.84)]. They model the service time distribution semi-parametrically,
assign prior distributions to its parameters and infer the system using MCMC procedures.
However, one is often interested in an even more general approach for modeling the ser-
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1 Introduction

vice time distribution which leads to a non-parametric Bayesian approach to estimate the
unknown service time distribution. The �rst work in a discrete-time framework concern-
ing this was given by Conti (1999) for a Geo/G/1. The basic assumption of this paper
was that one is able to observe both, the arrival and service process while its aim was to
make inference for the waiting-time distribution. This is a di�cult task for at least three
reasons. The �rst is that the process of waiting-times belongs, from a theoretical perspec-
tive, to a quite general family and methods for Bayesian statistics in such generality are
not known yet. Secondly, the waiting-times are not even observed directly which makes
the task of Bayesian inference for such a general process even harder since a hypothetical
prior distribution would have to be updated to the posterior by merely observing the
arrival and service process. The third reason is that the service time distribution needs
to be modeled in an in�nite dimensional parameter space since it is not assumed to be
of a certain form that can be parametrized in a �nite manner. Conti solved this using
the celebrated Dirichlet process as a nonparametric prior for the service time distribution
and exploiting a functional relationship between inter-arrival, service and waiting times.
Thereby, he obtained Bayesian estimators for a suitable functional of the service time dis-
tribution and showed its goodness in terms of posterior consistency and a Bernstein-von
Mises type result.

The aim of this thesis is to extend these ideas to systems in continuous-time. It splits
in three parts. The �rst part (chapter 3) deals with Bayesian statistics for the M/G/1
under the same observational assumptions as in Conti's paper. That means, arrival- and
service-times are assumed to be observables and the wish is to make Bayesian inference
for the waiting-time distribution and the distribution of the size of the system. Therefor
a class of prior distributions is employed which contains the Dirichlet process as a special
case, i.e. the neutral-to-right priors. Exploiting a well known functional relationship of
the transforms of the distributions of the service and inter-arrival times and the system
size, a Bayesian estimator for the latter is obtained as well as posterior consistency and
posterior normality. The posterior consistency of the estimator for the particular char-
acteristics requires the posterior consistency of the random expected value of the service
time distribution. Since this is a functional of a random distribution function which is
not supported by a compact set in general, this is a theoretically deep question. How-
ever, an a�rmative answer in form of a new result is given under relatively mild conditions.

The second part (chapter 4) of the thesis deals again with the M/G/1 queueing system
but under a distinct observational setup. Thereby, the entire queueing system is assumed
to be a complete black box such that the only thing that can be observed is the departure
stream of customers. The interest lies in making inference for the arrival stream and
the general service time distribution, respectively. So, the departure stream has to carry
information for both of these targets. Since, assuming the system in steady state, the
arrival stream and the departure stream are of the same stochastic nature, inference for
the arrival stream can be made rather directly by observations of the inter-departures.
However, at the same time, the assumption of the system being in steady state disables
one to make inference for the service time distribution by merely observing inter-departure
times. Hence, an additional observation is introduced, namely the number of customers
a departing customer leaves behind in the queue. The subsequent inference procedure for
the service time distribution is based on the fact that the marks of the observation process
form a Markov chain, the so called embedded Markov chain whose stochastic matrix is
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1 Introduction

of a particular delta shape. Dealing with this from a subjectivistic viewpoint, a symme-
try condition for Markov measures being governed by those stochastic matrices is found
that lies in between of exchangeability and partial exchangeability [c.f. Diaconis and
Freedman (1980)]. Measures possessing that symmetry are shown to be summarized by a
statistic which, in turn, is shown to have S-structure. S-structure is a certain property of
statistics that, roughly speaking, ensures their stability with respect to extension of the
data. By a classical result of Freedman (1962) one can think of stationary measures being
summarized by the particular statistic as mixtures of shift-ergodic measures being sum-
marized by the statistic. The mixing measure is then modeled by exploiting the special
structure of the transition matrix. More precisely, it is modeled using a family of Dirichlet
processes which basically consists of shifted versions of one particular Dirichlet process.
Based on the observation of the marked departure process and theoretical considerations
gone ahead, inference procedures for the general service time distribution are obtained
as well as results justifying their usage in terms of posterior consistency and posterior
normality.

The third part (chapter 5) of the thesis is written in the light of the M/G/∞ system. An
in�nite amount of servers represents the idea that every customer gets her own service
station when arriving at the system. Thus, there is no queue building up at all. However,
since the M/G/∞ model is often used for black box type systems, the interest is again in
inferring the service time distribution on basis of rather indirect observations. To put it
more precisely, the observations are the instants customers arrive to and depart from the
system, respectively. However, in many situations it can not be tracked which instants
belong to a certain customer. A classical example is that of a motorway with a sensor
detecting arriving cars at its ramps and exits. A work of Brown (1970) dealt with the issue
of making inference for this setup from a frequentist point of view. Brown discovered that
the sequence of di�erences, i.e. the di�erence between some departure and the nearest
instant of some arrival right before that departure is a stationary and ergodic process.
Exploiting the ergodic theorem he obtained an estimator for the cumulative distribution
function (c.d.f.) of the sequence of di�erences. Subsequently, he showed that the c.d.f. of
the sequence of di�erences has a direct link to the c.d.f. of the service time distribution,
a fact that allows to transfer inference procedures to the latter. But according to Brown

[⋯] we have obtained an estimator for the c.d.f. G, [however] it is clearly not
the best estimator in any sense because we do not use all the information. The
problem of �nding a best estimator (according to any criterion) is still open.

-Comments and additions from Brown (1970)-

However, Brown did not further specify what he meant by all the information, that might
improve inference. It turns out in the present thesis, that exactly this question comes
up right at the beginning rather than at the end of a Bayesian's analysis of the M/G/∞

system in the setup sketched above. Since Brown's estimators are based one some empir-
ical version of the c.d.f., this suggests itself that the omitted information is the interplay
of the data from the sequence of di�erences. Regarding the issue from a subjectivistic
viewpoint, the di�culty is that one has to express her uncertainty in the shift-ergodic
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measures. While Choquet theory guarantees the existence of a proper mixing measure,
�nding a suitable model for it is a rather hard task. This is mainly due to the over-
whelming size of the space of shift ergodic measures and the resulting lack of a suitable
parametrization which in turn would enable one to execute the integration with respect
to the mixing measure. Since the underlying state space of the stationary data has direct
in�uence on this size, the state space is assumed to be a �nite set. From an applied
perspective this would mean that one merely measures the length of the elements of the
sequence of di�erences by �nitely categorizing the positive real axis, an assumption which
doesn't appear too bad to the practitioner. However, from a theoretical viewpoint this as-
sumption has great advantage since it enables the theorist to exploit the theory of Markov
chains in order to create a reasonable parameter space. Since this parameter space has to
encapsulate ergodic measures of any dependence range, it is not supposed to be actually
graspable. As in the case of e.g. fractals, the entire object can not be described in full
extent. Instead it is described by an in�nite sequence of �nite dimensional objects which
are belted by some rule of their reciprocal behavior. The �nite dimensional objects are
taken to be decent multi-dimensional generalizations of stochastic matrices, which I call
stochastic tensors. The rule which sticks those tensors together is a family of projections
that reduce the dimension of the tensors in a certain way. The family of tensors and
the family of mappings are then used to de�ne the parameter space in terms of the in-
verse limit of the system consisting of these both families. Having clari�ed the parameter
space of the shift-ergodic measures the next step in the direction of Bayesian statistics
for stationary data is to model the mixing measure in a useful manner. That is, it should
have big support in order to express one's à priori knowledge, it should be mathemat-
ically feasible and it should allow for an update mechanism that provides the posterior
law in an analytically closed way. This is done by several assumptions on the sampling
scheme data is generated from. One such assumption is that the range of dependence
is �nite but by no means bounded. Another is that, given the order of dependence, the
stochastic tensor of the dimension given by this order is sampled due to a certain inde-
pendence constraint. This means that sectors of the tensor which encode the transition
probabilities with respect to di�erent predecessor states are sampled from independent
Dirichlet distributions. This speci�c sampling scheme allows to de�ne a posterior mea-
sure in closed form, i.e. to update the distributions appearing in the sampling scheme
by observed data. While updating the tensors themselves is a minor problem, updating
the distribution on the order of dependence is more sophisticated. Although I conjecture
that the de�ned posterior will center around the true data generating measure when the
data size increases, I was unable to obtain an appropriate posterior consistency result yet.
Fully answering this question is future work that might require further topological and
geometrical arguments. However, there is hope for an a�rmative answer since the work
of Lijoi et al. (2007) gives a non-constructive Doob-type consistency result for stationary
data but without specifying a certain model as it is done in the present thesis. Through-
out chapter 5 several examples are given in order to strengthen the grasp of the reader
with respect to the core of Bayesian statistics for stationary data.

The present thesis is organized in several chapters. In chapter 2 the theory of continuous-
time queueing models is recalled in order to provide the theoretical background which
is necessary for the statistical evaluation of those models in the subsequent chapters.
Chapter 3 is devoted to the M/G/1 model. Thereby the arrival stream as well as the
service process are assumed to be observable. The main task is to develop inference for the
distributions of the waiting times of the customers and the occupation of the system. The
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1 Introduction

underlying queueing model in chapter 4 is again theM/G/1 system. But the observational
setup changes in so far that the system is assumed to be a black box and the only accessible
data stems from the departure process. In this framework theoretical examinations from
the subjectivist perspective are given which lead to nonparametric Bayesian inference for
the non-observable service time distribution G. Chapter 5 departs from the two previous
chapters by regarding the M/G/∞ model. Again the system is blackened and the data is
assumed to consist of instants of arrivals and departures, respectively. The aim is to make
Bayesian inference for G. Since the raw data forms a general stationary process, this aim
is accompanied with further deep theoretical considerations. The last chapter provides
the conclusions of the thesis as well as outlook to future work. Latter is given with
particular respect to chapter 4. So, coarse ideas are given with respect to the possibilities
of extending the theory developed in chapter 5 into more general settings.
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2 Continuous-Time Queueing

Models

Queueing theory is a branch of probability theory which deals with the analysis of stochas-
tic processes formalizing dynamically �uctuating systems of customers. Thereby, the term
customers can have manifold meanings depending on the situation to be modeled. One
can think of actual customers queueing up at a checkout, of information to be transmitted,
of jobs needed to be done by a CPU, of items storing in a warehouse, of cars or trains
using a joint trail, air planes waiting for a clearance to land or for take o�, respectively,
and many others. A queuing system mostly consists of a unit serving the customers and
a waiting room where customers which can not be processed immediately are stored.

Arrivals
Waiting Room Serving-Station

Departures

Figure 2.1: Sketch of a queueing system

The �rst categorization that appears is in the time the system evolves in, i.e. whether
it evolves in discrete or in continuous time. Discrete-time systems are commonly used
to model situations in which the server handles jobs of �xed size such as e.g. a robot
executing some job at a production street or an information system transmitting cells of
�xed size. In contrast, continuous-time models are used whenever the server works o�
jobs which can have arbitrary length. The main di�erence is that the randomness of the
service times in discrete-time systems is encoded in the batch size of the jobs rather than
in the time a customer occupies the server. Hence, in discrete-time systems, the service
time is most often already determined when the customer enters the system rather than
at the beginning of the service, or even during it is executed, respectively.
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2 Continuous-Time Queueing Models

Time

Figure 2.2: Occupation process of a discrete-time queueing system

Time

Figure 2.3: Occupation process of a continuous-time queueing system

Once it is clari�ed whether the system is modeled in discrete or continuous time, the
system can be further described. Basically, this is done by the arrival stream of cus-
tomers and their associated service times. But also factors like the numbers of parallel
servers, the size of the the waiting room or the policy of the queue comes into play. Due
to the wide-ranging possibilities of setting up such a system, Kendall (1953) introduced
a clear-cut nomenclature for them. Following an extended version of this, a queueing
system is uniquely determined by a certain tuple commonly denoted by A/S/c/K/N/D.
Thereby, A describes the arrival process, S the process of service times, c the number of
serving stations, K the capacity of the waiting room, N the number of the population of
customers and D the queueing policy. Prominent arrival streams are given by A = Geo
for the case of discrete-time and A =M for continuous-time, respectively. Thereby, Geo
denotes inter-arrival times governed by a geometric distribution while M indicates ex-
ponentially distributed inter-arrival times. M stands for Markovian in order to depict
the memorylessness property of the exponential distribution which the geometric does
possess as well. To indicate independent inter-arrival times governed by a general distri-
bution it is common to use GI for discrete-time and just G for continuous-time systems.
The notation for the service times is quite similar. The values for c, K and N are self-
explanatory. D denotes the queueing policy, i.e. the order customers are processed by the
server. Frequently used policies are �rst-in-�rst-out (FIFO) which depicts the classical
idea of a queue in a supermarket, �rst-in-last-out (FILO) which is often used in storage
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2 Continuous-Time Queueing Models

issues, processor-sharing (PS) where the customers receive the same share of the proces-
sor capacity, round-robin where customers are served in a simultaneously but alternating
manner and many others as e.g. shortest-job-�rst or priority policies.

The scope of this work is the statistical analysis of the continuous-timeM/G/1/∞/∞/FIFO

and theM/G/∞/∞/∞/FIFO (or in abbreviation justM/G/1 andM/G/∞) queueing mod-
els from a Bayesian perspective and under di�erent schemes of observations. Thereby, the
�rst two parts are devoted to the M/G/1 model while the third part deals with the
M/G/∞ queue. Studying the M/G/1 model from a statistical viewpoint, di�erent ob-
jects of interest as well as di�erent levels of di�culty arise depending on which data can
actually be observed. While in the �rst part it is assumed that the scientist has access
to the system, i.e. the arrival stream and service process are observable, the basic as-
sumption of the second part is contrary. In the second part, the system is assumed to
be a black box such that only the departure stream provides observable data. The last
part is about the M/G/∞ model, which models a complete di�erent situation, that is no
queue will build up since each customer is assigned her own server. Again, the system is
assumed non-accessible and the data merely consists of the instants customers enter and
leave the system, respectively. Since this is fairly vague yet, the analysis of the M/G/∞

model will lead to a theoretically deeper study of the foundations of Bayesian statistics.

Before embarking on the main task of this work, namely building up Bayesian models
that �t the respective situations best and subsequently analyzing them mathematically, a
brief introduction to the M/G/1 and M/G/∞ model, respectively, will be given in order
to provide the reader with the most important information needed for the subsequent
chapters.

2.1 The M/G/1 Model

The present subsection is devoted to the M/G/1 queueing model. The model is chosen,
in Kendall's notation [Kendall (1953)], to be the M/G/1/∞/∞/FIFO system. So, indis-
tinguishable customers arrive consecutively according to a homogeneous Poisson process
to the system giving rise to exponentially distributed inter-arrival times (An)n∈Z. Note
that most of the appreciable properties of the M/G/1 system are due to this assumption,
see below. Moreover, customers requiring service are served according to a general ser-
vice time distribution G concentrated on R+. The service times are assumed to form a
sequence of i.i.d. random variables (Sn)n∈Z. The consecutive services are accomplished
by one reliable service station in a �rst-in-�rst-out manner. Customers who cannot be
served immediately are stored in an in�nitely large waiting-room and form a queue.

A main characteristic of the M/G/1 queue is the tra�c coe�cient ρ, which serves as an
indicator for the load of the system. It is de�ned as the quotient of the mean service time
and the mean inter-arrival time, in symbols ρ ∶= E[S]

E[A] . Due to exponentially distributed

inter-arrival times, this amounts for M/G/1 to ρ = λE[S] ∶= λµ, where λ denotes the
arrival intensity and µ the mean service time. The coe�cient ρ plays an important role
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2 Continuous-Time Queueing Models

since it indicates whether the system is stable, i.e. whether the queue attains a stochastic
steady state after it has run an in�nitely long time (c.f. the de�nition of the stationary
distributions of Markov chains) in the sense that its occupation �uctuates and can even
attain arbitrarily large values but it will be cleared in �nite time with probability one.
Thereby the stable case corresponds to ρ < 1, while for ρ > 1 the content of the queue
will explode almost surely. Analogously as in the theory of power series in complex
analysis, ρ = 1 is a borderline case which deserves further examination. However, one is
usually interested in the stable behavior of the system or the way to it, respectively. The
characteristic ρ can be shown to have another nice interpretation; it equals the probability
that the system is empty. To see this, it is most e�cient to consider the "inner structure"
of the system. However, the queue length process cannot be argued to be a Markov
process in general. This holds only in introductory cases as M/M/1. Generally, it is
only a so called semi-Markov process. The main reason is that the queue length process
strongly depends on the entire past through the residual service time of the customer just
in service. A way out is to take into account this additional information by conditioning
on it. The most straight forward way to do so in a practically workable manner is to
consider the process of the queue lengths at instances right before customers depart from
the system because then the residual service time of the present customer is just known
to be naught. This approach yields the so called embedded Markov chain. It is regarded
as a discrete-time process being embedded into the continuous-time framework which is
governed by a Markov measure of a particular structure. This structure in turn reveals
itself in form of the stochastic transition matrix which determines the Markov law. In
order to depict it, it is given as

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a0 a1 a2 a3 a4 a5 ⋯

a0 a1 a2 a3 a4 a5 ⋯

0 a0 a1 a2 a3 a4 ⋯

0 0 a0 a1 a2 a3 ⋯

0 0 0 a0 a1 a2 ⋯

⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where aj denotes the probability that j customers enter the system during a service time.
Brie�y re�ecting the tra�c coe�cient one can roughly say that the necessary condition
for the embedded Markov chain to be "ergodic" (in sense of the theory of Markov chains)
is given by ρ < 1.

At this point, from a rather statistical point of view, the question may arise whether the
distribution of the queue length process observed at departure times is the same as at
arbitrary time points. This question has an a�rmative answer when the system is stable
and the system's input is a homogenous Poisson process, since then the PASTA property
and the level-crossing laws appear to hold. PASTA, abbreviating Poisson-arrivals-see-
time-averages, means that the probability to �nd the stable system in a certain state
at an arbitrary time point is equal to the probability that some arriving customer �nds
the system in this particular state without counting himself. Note that PASTA strongly
depends on the lack of anticipation assumption (LAA) of the arrival stream. Roughly
speaking, LAA means that future increments of the arrival process are not a�ected by
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2 Continuous-Time Queueing Models

the present state s ∈ N0 of the queueing system. This assumption is clearly met by the
Poisson process governing the arrivals of customers. For more details on LAA and PASTA
see Wol� (1982). Thus, from a statistical point of view, if one is interested in making
inference for some characteristic of the queueing system M/G/1 based on consecutive ob-
servations, there is no di�erence between collecting respective data at instances of arrivals
or arbitrarily chosen instances. The second property of an stable M/G/1 system is the so
called level-crossing law (LC). LC says that the limiting fraction of arriving customers
seeing s ∈ N0 customers in front equals the limiting fraction of departing customers leaving
s customers behind. See Brill (2008) for an exhaustive treatment of level-crossing laws.
Thus, in steady state of the queue, we conclude by PASTA and LC that the system size at
arbitrary instances equals that at departure times of customers. This will play an essential
role in the statistical treatment of the second part. The third property brie�y reviewed
is perhaps even more unexpected on a �rst glance. It says that the departure process,
i.e. the continuous time stochastic process given by the random departure time points,
in equilibrium is a Poisson process with the same intensity rate as the arrival process.
This relies on the fact that any stable (in the literature in abuse of notation often called
"ergodic") birth-death process is time-reversible. Thus, the reversed system evolves as
the originalM/G/1 which in turn implies a Poisson process for the departure stream with
the same rate as the arrival process, see e.g. Asmussen (2008, page 115). However, the
latter property a�ects the statistical viewpoint on the system. Whenever the system has
reached equilibrium, solely observing the departure stream is completely non-informative
with respect to the unknown service time distribution. Hence, in the second part of the
thesis additional observations will be required which provide enough information about
the services in order to infer on the service time distribution.

For the sake of clarity of what follows, some notation comes in useful. Thereby, it will be
assumed that all random variables are de�ned on a common underlying probability space
(Ω,A,P).

� Qt ≡ queue length at time t ∈ R

� Nt ≡ number of customers in the entire system at time t ∈ R,
i.e. Nt = Qt + 1 in case Qt > 0 for t ∈ R

� Wn ≡ waiting time of customer n ∈ Z

� Dn ≡ sojourn time in the system of customer n ∈ Z

� An ≡ time between arrival of n-th and (n − 1)-st customer n ∈ Z

� Sn ≡ service time of customer n ∈ Z

� Tn ≡ time point of the departure of the n-th customer

� Dn = Tn+1 − Tn ≡ time between departure of n-th and the (n + 1)-th customer

� ASn ≡ number of customers entering the system during the service of customer n ∈ Z.
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Then, the following statements are well known facts in queueing theory.

E[N] = ρ +
ρ2 + λVar[S]

2(1 − ρ)
.

This formula is known as the Pollaczek-Khinchin mean formula and relates the mean of the
random variable N to that of the random variables A, S and to the variance of S, Var[S].
However, this formula only relates parameters of aforementioned distributions to each
other instead of the entire distributions. However, in Bayesian statistics one is typically
interested in the entire distribution of a parameter one is uncertain in. A functional
relationship is given by the Pollaczek-Khinchine transform formula. To state it, de�ne
the following objects. Let n(z) = ∑

∞
k=0 z

kP(N = k) be the probability generating function
(p.g.f.) of the distribution of N and g(z) = ∫

∞
0 e−zsdG(s) the Laplace-Stieltjes transform

(LST) of the service time distribution G. Then the following functional relationship can
be obtained, which relates the distributions of the system size, the queue length and the
waiting times, respectively, to the distribution of the inter-arrivals and the service times.

n(z) = g(λ(1 − z))
(1 − z)(1 − ρ)

g(λ(1 − z)) − z
, z ∈ [0,1].

Manipulations of this formula give

q(z) =
(1 − z)(1 − ρ)

g(λ(1 − z)) − z
, z ∈ [0,1], and w(z) =

z(1 − ρ)

z − λ(1 − g(z))
, z ∈ R+,

where q(z) denotes the p.g.f. of the queue-length distribution and w(z) the LST of the
waiting-time distribution. The latter two quantities are of special statistical interest in
chapter 3 since they provide the essential information about the development of the queue.

Moreover, by time-reversibility, one has L[A] = L[D] = E[λ], where L stands for the law
of a random quantity and E(λ) for the exponential distribution with rate λ > 0.

Turning to the inner structure of the system, recall that the process {Nt}t∈R was said
to be a semi-Markov Process in general. A mathematical rigorous de�nition of that is
given now. Therefor, let {N(t)}t∈R denote the stochastic process with state space N0

that describes the number of customers in the system at time t. It is plain that in gen-
eral N(t) is not a Markov process. The only situation in which N(t) can be considered
Markovian is when G = E , which is due to the memorylessness property of the exponen-
tial distribution. However, a "sub-process" of N can be found that is a Markov chain
and thus makes N a semi-Markov process. Call N(t) a semi-Markov process with state
space N0 according to the following construction. Assume there is a stochastic kernel
κ ∶ N0×(BN0⊗BR) → [0,1] and a discrete-time stochastic process (τn)n∈Z such that P-a.s.
τn < τn+1 and N(t) = cn+1, for all t ∈ [τn, τn+1). De�ne a two-component discrete-time
stochastic process Y by Yn ∶= (cn, τn − τn−1). Then, N(t) is a semi-Markov process with
kernel κ if P(Yn+1 = yn+1∣Yi; i ≤ n) = P(Yn+1 = yn+1∣Yn) = κ(cn, yn+1). Although it will
hardly a�ect the present thesis, it is worth mentioning that Epifani et al. (2002) deal with
semi-Markov processes from a subjectivist viewpoint by obtaining de Finetti-style theo-
rems exploiting among others theory from Diaconis and Freedman (1980). These results
give rise to think about mixtures of laws governing a semi-Markov process as laws ful�ll-
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ing a certain kind of symmetry or invariance condition, respectively. They are useful for
Bayesian statistics since they form its basis by providing the existence of a prior measure.

In order to move on, notice that the de�nition of a semi-Markov process �ts well the
processN considered here since the system size is constant on intervals where no departure
and no arrival occurs. The holding times τn then are seen to be the minimum of the
residual service times of the customer currently being served (if there is some) and the time
elapsing until the next arrival of a new customer. Although, due to the memorylessness
property of the exponential distribution, the time until the next arrival is an exponential
distribution, the description of the entire holding time distribution is di�cult. However,
it should become easier if we omit to take into account the residual service time. That
means we observe the system at instances at which a customer departs from the system,
Tn. Indeed, it turns out that the process {N(Tn), Tn}n∈Z is a Markov chain. To see this,
note that

N(Tn+1) = N(Tn) +ASn+1 − δN(Tn)({0}),

Tn+1 = [1 − δN(Tn)({0})](Tn + Sn+1) + δN(Tn)({0})(Tn + Sn+1 + In+1),

where In+1 ∼ E(λ) re�ects the remainder of the inter-arrival time between the n-th and
(n + 1)-st customer, which is independent of {(N(Ti), Ti) ∶ i < n} as well as Sn+1 is by
assumption. If one focuses solely on the Markov chain {N(Tn)}n, above equation gives
rise to the stochastic matrix governing the chain N ∶= {N(Tn)}n. Let M = (mij)i,j∈N0 ∈

S ⊂ M(∞,R) denote the in�nite matrix consisting of all probabilities of transitions of
the chain N from state i to state j, where S denotes the space of all in�nite stochastic
matrices. Then, the probability of having a transition from i to j is given through

mij = P (AS = j − i + [1 − δi({0})]) ,

which yields the following form of M , c.f. page 9.

M =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a0 a1 a2 a3 a4 a5 ⋯

a0 a1 a2 a3 a4 a5 ⋯

0 a0 a1 a2 a3 a4 ⋯

0 0 a0 a1 a2 a3 ⋯

0 0 0 a0 a1 a2 ⋯

⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where for i ∈ N0 ai = P(AS = i).

Note that this stochastic matrix is a member of a larger family of stochastic matrices,
so called ∆-matrices which were introduced by Abolnikov and Dukhovny (1991). To be
more precise, M is a positive homogenous ∆1,1, where the �rst 1 indicates that pij = 0 for
all i − j > 1, the second that this holds for all rows i > 1, homogeneity that mij = aj−i+1

for all i > 1 and positivity that aj−i+1 > 0. Notice that positivity is given since the
number of customers who enter the system during a service time is not bounded, even if
its probability might decay at a fast rate. Abolnikov and Dukhovny (1991) further study
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the "ergodicity" of Markov chains governed by some ∆-matrix and obtain necessary and
su�cient conditions for that in terms of the p.g.f. of the discrete distribution (ai)i∈N0 .
For the here considered stochastic matrix M , it is easy to see that it is irreducible and
aperiodic since

Mk =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

x x x x x x ⋯

x x x x x x ⋯
⎫⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(k − 1)-times

x x x x x x ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋯

x x x x x x ⋯

0 x x x x x ⋯

0 0 x x x x ⋯

0 0 0 x x x ⋯

⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱

where an entry x means an entry strictly greater than zero. Moreover, Theorem 3.4.
in Abolnikov and Dukhovny (1991) shows that the Markov chain N governed by above
M is positive recurrent if and only if a′(1) < 1. Since a′(1) = λE[S] = E[S]/E[I] = ρ,
see the explicite form of a(z) below, this requirement becomes the common condition in
queueing theory for stability of the M/G/1 system. It is well known from the theory of
Markov chains that for M of above form with a′(1) < 1 there exists a unique M -invariant

distribution p ∈ P(N0), i.e. p ∈ c
(+)
0 where c

(+)
0 denotes the space of null sequences with all

projections being strictly positive and such that p = pM , meaning pj = ∑
∞
i=0 pimij. Letting

π(⋅) denote the p.g.f. of p, a result by Harris (1967) yields

π(z) = a(z)
(1 − z)(1 − a′(1))

a(z) − z
.

This formula relates the p.g.f. of the stationary distribution to that of the distribution of
AS in an explicit form. Put another way, the mapping M ↦ p that maps the stochastic
matrix onto its associated invariant distribution can be explicitly obtained here. This
strongly depends on the particular shape of the stochastic matrix and in general this
mapping can not be given explicitly even if it is known from probability theory that it is
well de�ned and injective.

Manipulating the distribution of AS or its p.g.f., respectively, further functional relation-
ships can be obtained.

P(AS = k) =
∞

∫
0

P(AS = k∣S ≤ t)G(dt) =
1

k!

∞

∫
0

e−λt(λt)kG(dt),
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which in turn yields

a(z) ∶=
∞
∑
k=0

zkP(AS = k) =
∞

∫
0

e−λt [
∞
∑
k=0

(λt)k

k!
]G(dt) =

∞

∫
0

e−λ[1−z]tG(dt) =∶ g(λ [1 − z]),

using the monotone convergence theorem. Hence, a functional of the service time distri-
bution G, g(⋅) is obtained in terms of the distributions of AS and D . This functional
relationship will be the starting point for the inferential analysis in part 2 (chapter 4).

2.2 The M/G/∞ Model

The third part (chapter 5) of the Bayesian statistical analysis of continuous-time queueing
systems will be devoted to the M/G/∞ model. The considered observation scheme will
be as in Brown (1970), i.e. only the instants of arrivals and departures of customers,
respectively, are recorded. Due to that observation scheme foundational analysis of the
M/G/∞ queueing model will play a rather minor role. Nevertheless, for the sake of
completion, the foundations ofM/G/∞ are brie�y reviewed. TheM/G/∞/●/∞/● system
can be seen as a generalization of the M/M/c/∞/∞/FIFO queue for two reasons. Firstly
the service time distribution G generalizes the exponential distribution in M/M/c and
secondly M/M/∞ can be regarded as emerging from M/M/c by taking the limit c→∞.
For that reason, it is natural to start the study with the M/M/∞ system. The M/M/∞

system can be described as a birth-death process using a so called transition intensity
matrix Q [c.f. Asmussen (2008, section III.2 �.) ] which indicates the instantaneous
rates of change of the content of the system. Letting λ be the parameter of the Poisson
arrival process and 1/µ the mean of the exponential service time distribution, Q is given
through

Q =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−λ λ 0 0 0 0 ⋯

µ −(λ + µ) λ 0 0 0 ⋯

0 2µ −(λ + 2µ) λ 0 0 ⋯

0 0 3µ −(λ + 3µ) λ 0 ⋯

0 0 0 4µ −(λ + 4µ) λ ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Based on the theory of birth-death processes several characteristics of theM/M/∞ system
can be developed. However, since no queue builds up at all, di�erent characteristics as
for the M/G/1 system are of interest. These are for instance the transient behavior of
the system as well as the stationary occupation probability. But also characteristics like
the busy-time period, or more generally the congestion-time period which amounts to the
time the system spends in states exceeding a certain �xed number, and the distribution
of the maximum of the system's occupation over a �nite time horizon can be obtained.
Again, ρ = λ

µ < 1 is necessary and su�cient for the system to reach equilibrium. The

transient analysis for M/M/∞ is e.g. given in Gross et al. (2008, section 2.11). The
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probability that the occupation at time t > 0 equals a non-negative integer n, given that
the system was empty at t = 0 is given by

pt0,n =
1

n!
exp [−ρ (1 − e−tµ)] [ρ (1 − e−tµ)]

n
,

which yields the mean

E [Nt∣N0 = 0] = ρ (1 − e−tµ) .

Furthermore, taking the limit t →∞ yields the stationary distribution of the occupation
of the system which equals a Poisson distribution with intensity ρ, i.e.

p
0
t→n

t→∞
Ð→ π(n),

where

π(n) =
ρne−ρ

n!
.

Moreover, Newell (1966) has shown that this probability is just the same for the M/G/∞

system, where ρ = λE[S]. More generally, a transient analysis of M/G/∞ can be found
in Kulkarni (2009, chapter 8).

The mean congestion period for h ∈ N0 can be argued to equal

E [N(t + h) −N(t) > h] = λ−1
∞
∑
j=h+1

h!

j!
ρj−h,

c.f. Guillemin et al. (1996). Moreover, by Guillemin and Simonian (1995), the Laplace
transform of the congestion distribution is shown to relate to Kummer's function in a
certain way. Using h = 0 delivers the respective terms for the busy-time period.

The distribution of the maximum of the system's content over a �nite time horizon is more
complicated to examine. However, the study was given by Morrison et al. (1987) who
obtained some relationship of the maximum distribution and Poisson-Charlier polynomi-
als. For reasons of presentation, the details are omitted here and the interested reader is
referred to Morrison et al. (1987).

Another interesting theoretical result for M/M/∞ was given by Knessl and Yang (2001)
who showed that some rescaled version of the process describing the occupation of the
system converges to an Ornstein-Uhlenbeck process when the tra�c increases. In symbols
that means

L[ρ−1/2(N − ρ)]
ρ→∞
Ð→ L(Y ),

where Y denotes a stochastic process evolving according to the SPDE dYt = −Y dt+
√

2dWt,
where W is a standard Brownian motion. By that result, M/M/∞ systems under heavy
tra�c can be approximated by processes which in turn can be studied from a It	o calculus
perspective.
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2.3 Further Reading

For supplementary material about queueing theory see e.g. Kleinrock (1976); Medhi
(2002); Haigh (2004); Gross et al. (2008); Asmussen (2008); Kulkarni (2009); Nelson (2013)
as well as references therein.
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3 Inference for M/G/1 based on

Observations of the Arrival

Stream and the Service Process

3.1 Introduction

The present chapter is devoted to the problem of making Bayesian nonparametric infer-
ence for the M/G/1 system's characteristics as e.g. the customers waiting time distribu-
tion or the occupation of the system, respectively. It can be regarded as an extension of
Conti (1999) to the continuous-time framework. The work of Conti (1999) was about the
Geo/G/1 system which can be seen to be the discrete-time analog of the continuous-time
M/G/1. The major issue in Conti (1999) as well as in this chapter is that the objects
one wants to infer are stochastic processes that are of quite general appearance. More
precisely, the waiting times of customers and the system size are both general stationary
processes. It should be stressed that they do not possess a �nite range of the dependency.
A fact that raises the di�culty for statistics from a Bayesian perspective especially if the
processes can be observed directly. See also chapter 5 of this thesis for more details on
that. An additional di�culty emerges when the processes are even not observable directly
and the only observations consist in the input of the system in form of the arrival stream
of customers and the service process. This situation is dealt with in Conti's paper in a
discrete-time framework and the ideas will be transferred to the continuous-time setting
in this chapter.

Before embarking into the theory, Conti's paper is brie�y reviewed. The Geo/G/1 queue-
ing system is frequently used to model communication systems where information encoded
in packages of �xed size is transmitted by a serving unit. The server is assumed to be
able to transmit one package during one time slot. Hence, the randomness of the ser-
vice times is rather given in form of random batch sizes, i.e. marks of the point process
governing the arrival stream. Employing a Dirichlet process prior for the distribution of
the magnitude of these marks, Conti obtains estimators for various characteristics of the
queue exploiting a well known functional relationship [c.f. Grübel and Pitts (1992)] of the
inter-arrival and the service time distribution with the waiting time distribution. Since
the target of Conti's work was to infer the waiting time distribution, he took this rather
indirect approach mainly because assigning a prior distribution to the waiting time dis-
tribution and updating it by data consisting of the marked arrival stream is an infeasible
task. Subsequently, he obtained large sample properties for the estimators which estab-
lish their justi�cation. One main result, which is always important in Bayesian statistics,
was uniform posterior consistency which states that the posterior law centers around the
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3 M/G/1: Observations of Arrivals and Services

true data generating probability measure when the data size increases. Hence, posterior
consistency ensures that the statistical procedure is not misleading. Another result con-
sisted in a Bernstein-von Mises type result which forms a Bayesian analog to the central
limit theorem and gives an idea how the centering of the posterior takes place. This can
be interesting for an user applying the estimators since it enables one to sample from a
distribution which is "close" to the posterior law whenever the sample size is "large". For
the Bernstein-von Mises theorem results in Freedman (1963, section 4) were employed
which clarify the behavior of the posterior in the discrete case and under the promises
that the true distribution is supported by a �nite set.

The aim of the present chapter is to take a similar way of Bayesian statistical inference for
the continuous-time M/G/1 system which is the more appropriate model in many situa-
tions where time-continuity is more reasonable. For example one could think of customers
arriving at a cashier in a supermarket, cars arriving at a tra�c jam, goods arriving at
a storing center and many others. Therefor a continuous-time analog for the functional
relationship of observables and objects of interest is used which is known as the func-
tional Pollaczek-Khinchine formula in honor of Felix Pollaczek and Aleksandr Khinchine
who derived the steady state behaviour of the M/G/1 system in the 1930s, c.f. chapter
2. Thereby, the philosophy is analog to that of Conti (1999), meaning that the main
target will be the nonparametric estimation of the waiting time distribution on basis of
observations of the arrival stream and the service times. However, since continuous-time
is alleged a richer class of prior distributions is used which allows to express prior knowl-
edge more �exibly. The combination of this larger class of prior distributions together
with the assumption of continuous-time leads to more intricate proofs of results related
to the discrete-time analog. As usual, the Bayesian approach is appreciable if the prior
knowledge is good and only few data are available. However, typically large data samples
are accessible Therefore, large sample properties as posterior consistency and posterior
normality are also investigated.

The chapter is organized the following way. Section 3.2 is devoted to the assignment
of prior distributions to the random distributions governing the observables. Therefor,
some facts of Bayesian statistics are reviewed. This brief survey includes the probabilistic
background as well as the family of prior distributions which is used to model the general
random c.d.f. of the service times. Furthermore, suitable estimators are de�ned on basis
of the expressions recalled in the �rst chapter. Subsequently, frequentist validations of
the suggested estimators is given in section 3.3 and section 3.4. Section 3.3 deals with the
concentration of the posterior law of the random quantities in form of posterior consistency
results. Since the estimators depend on the mean of the service time distribution through
the tra�c coe�cient, posterior consistency of this mean needs to be shown which leads
to a new result. In section 3.4 it is examined how the concentrations of the respective
posterior laws take place. This typically leads to Bernstein-von Mises type results which
are obtained for the present setup.
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3 M/G/1: Observations of Arrivals and Services

3.2 Prior Assignments and Estimators

All the transforms n(z), q(z) and w(z) introduced in chapter 2 depend on the arrival
rate λ and on the LST of the service time distribution g(z). These values are typically
assumed to be unknown and thus need to be inferred. For this inference, we choose a
Bayesian approach which is further introduced in the present section. Since it does not
make sense to a subjectivist statistician to talk about "�xed but unknown" parameters
[see De Finetti (1974)],
another philosophical concept is used. That is one interprets the "�xed but unknown"
parameter as a random quantity itself. This approach leads to the concept of exchange-
ability which provides a meaningful, observable character of the data. This approach is
brie�y reviewed. Let (Ω,A,P) be an abstract probability space. Call an in�nite sequence
of random variables (Xi)

∞
i=1 with Xi ∶ Ω→ R, i ∈ N, exchangeable if for any m ∈ N and any

permutation π of m elements it holds that

L[X1, . . . ,Xm] = L [Xπ(1), . . . ,Xπ(m)] , (E)

where L denotes the joint law of the respective random object.

Now, assume that we observe n inter-arrival times An1 = (A1, . . . ,An) between the �rst
(n + 1) consecutive customers as well as the service times Sn1 = (S1, . . . , Sn) of the �rst
n customers. The data An1 and Sn1 are assumed to be the �rst n projections of two in-
dependent sequences of exchangeable random variables A∞

1 and S∞1 which, in turn, are
assumed to be independent of each other, i.e. L(Si; i ∈ I ∣Aj; j ∈ J) = L(Si; i ∈ I) for all
�nite subsets I, J ⊂ N.

We now turn to de Finetti's theorem for Polish spaces [Hewitt and Savage (1955)]. Let
P(S) denote the space of all probability measures on some Polish space S and consider in
particular P(R) equipped with the topology of weak convergence of measures. This leads
to a measurable space (P(R),BP(R)) which is itself Polish [e.g. Kechris (1995)]. By the
de Finetti theorem for exchangeables, it holds for all n ∈ N and for all measurable subsets
Ai ⊂ R, i = 1, . . . , n that X∞

1 = (X1,X2 . . . ) is exchangeable if and only if there is a unique
mixing measure ν ∈ P(P(R)) such that

P(Xi ∈ Ai; i = 1, . . . , n) = ∫
P(R)

n

∏
i=1

P (Xi ∈ Ai)ν(dP ).

The right-hand side re�ects the equivalent property of the sequence X∞
1 being exchange-

able the following way. The data X∞
1 are conditionally i.i.d. given some probability

measure P ∈ P(R), in symbols write X∞
1 ∣P ∼ ⊗NP . The probability measure P itself is

random and distributed according to the mixing measure ν which is called the prior dis-
tribution from a Bayesian statistical point of view. Moreover, notice that unconditionally
the data X∞

1 are in general not independent. Indeed, from a result from Kingman (1978),
it is seen that in general exchangeable data are positively correlated, a fact that makes
Bayesian statistics a theory of statistical prediction and thus convenient for other theories
as e.g. machine learning.
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3 M/G/1: Observations of Arrivals and Services

For actual applications, however, the prior ν and the integration in de Finetti's theorem
becomes infeasible in general. This is mainly due to the fact that one has merely a
nonconstructive proof of the existence of ν. Another di�culty is that the set P(R) is quite
large. One has mainly two ways to choose to circumvent this problem in applications. The
�rst is to shrink the support of ν to a reasonable subset of P(R) by an additional symmetry
constraint on the sequence of random variables, thus, to put additional information on
the data, to boil down above integration to a �nite dimensional parameter space. The
second is to model ν nonparametrically by sophisticated probabilistic tools. We use the
�rst approach here to get a prior distribution for the random arrival rate λ ∶ Ω→ R+ and
the second to get a prior distribution for the random service time distribution G ∶ Ω →
P(R+).

3.2.1 Arrival Rate

In case of the inter-arrivals an additional symmetry assumption on the law of the in�nite
exchangeable sequence A∞

1 will give rise to a mixing measure which is supported by all
exponential distributions. This additional symmetry condition is stated as follows. Let
n ∈ N and for i = 1, ..., n, Bi ∈ BR+ , the Borel sigma-�eld on R+. Furthermore, let ci ∈ R
be real constants such that ∑

n
i=1 ci = 0 and Ci = ci +Bi = {ci + r ∶ r ∈ Bi} ⊂ R+, i = 1, . . . , n.

The law of the exchangeable sequence A∞
1 ful�lls the symmetry condition

P(Ai ∈ Bi; i = 1, ..., n) = P(Ai ∈ Ci; i = 1, ..., n), (S)

for all n,Bi,Ci as above if and only if it is a mixture of exponential distributions [Diaconis
and Ylvisaker (1985)], in symbols

P(Ai ∈ Bi; i = 1, ..., n) = ∫
E

n

∏
i=1

P (Ai ∈ Bi)ν(dP )

= ∫
R+

n

∏
i=1
∫
Bi
λe−λxidxiν̃(dλ),

where E denotes the space of all exponential distributions on R+ and ν̃ denotes the push-
forward measure of ν along the natural parametrization˜∶ E → R+;P ↦ λ of the exponential
distributions. Moreover, if in above situation additionally it holds E[A2∣A1] = αA1 + β
for real constants α,β > 0, then the mixing measure ν̃ can be shown to be a Gamma
distribution.

Since the M/G/1 queueing model implies a mixture of exponential distributions for the
joint law of the inter-arrivals, from a Bayesian point of view, we assume A∞

1 to meet con-
straints (E), (S) and that E[A2∣A1] = αA1 +β holds as well (note that by exchangeability,
this extends to all random inter-arrival times). The latter directly leads to a conjugate
prior for the arrival rate. To be more precise, if we assume λ to be a random variable
distributed according to a Gamma distribution with hyper parameters a, b > 0, then the
posterior distribution given the data Xn

1 is a Gamma distribution as well with updated
hyper-parameters (a+n, b+∑

n
i=1Ai), i.e. the family of gamma distributions is closed with
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respect to exponential sampling. In summary, we assume the following sampling scheme

λ∣(a, b) ∼ Γ(a, b)

A∞
1 ∣λ ∼⊗

N
E(λ),

which leads, through Bayes theorem, to the posterior distribution, the Bayes estimate
for squared error loss and the posterior predictive distribution density, respectively, given
by

λ∣(a, b),An1 ∼ Γ(a + n, b +
n

∑
i=1

Ai)

EΓ[λ∣A
n
1 , (a, b)] =

a + n

b +∑
n
i=1Ai

f (an+1∣A
n
1 , (a, b)) =

(a + n) (b +∑
n
i=1Ai)

a+n

(b +∑
n
i=1Ai + an+1)

a+n+1 .

The latter leads to the predictive value for the next observation

E[An+1∣A
n
1 , (a, b)] =

1

a + n − 1

n

∑
i=1

Ai +
b

a + n − 1
.

Note that the latter equation again re�ects the learning process which does not exist
in the frequentistic approach in such an explicit form and that for n = 1 it is given by
E[A2∣A1, (a, b)] = 1/aA1 + b/a.

3.2.2 Service Time Distribution

Since theM/G/1 model does not imply a parametric mixture for the service time random
variables as for the inter-arrivals, assigning a suitable prior is a more di�cult task. Not be-
ing able to shrink the support of the mixing measure ν in the de Finetti theorem to a �nite-
dimensional set, we have to choose a prior that supports most of P(R+). The common way
is to parametrize P(R+) by a reasonable dense subset. This is taken to be the set of all dis-
crete distributions on R+, Pd(R+) = {P ∈ P(R+) ∶ P (⋅) = ∑

∞
i=1wiδxi(⋅);wi ∈ [0,1],∑

∞
i=1wi =

1, xi ∈ R+;∀i ∈ N}. It is well-known that the most famous non-parametric prior in Bayesian
statistics, namely the Dirichlet process prior obtained in Ferguson (1973), samples dis-
crete probability measures with probability one. Moreover, it is known that it has full
weak support of all of P(R+) if its base measure has support all of R+. However, here
we will use a slightly more general family of prior distributions that enables us to model
more �exibly prior beliefs of the true data generating distribution G0. This larger family
will be a subclass of so called neutral to the right prior processes, namely the beta-Stacy
processes. Although these priors sample discrete probabilities with probability one, too,
an analogue of the result concerning the weak support is known as well. The class of
neutral to the right priors is now brie�y introduced and its most important properties
will be stated.
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3 M/G/1: Observations of Arrivals and Services

Neutral to the right Priors

Let F(R+) denote the space of all cumulative distribution functions (c.d.f.) on R+. Then,
a random distribution function F ∈ ΩF(R+) is said to be neutral to the right (NTR) if for
each k > 1 and 0<t1 < t2 < ... < tk the normalized increments

F (t1),
F (t2) − F (t1)

1 − F (t1)
, ...,

F (tk) − F (tk−1)

1 − F (tk−1)

are independent assuming F (t) < 1,∀t ∈ R+. That is, for all i ∈ N, F̄ (ti)/F̄ (ti−1) is in-
dependent of the sigma-�eld generated by F up to time ti−1, σ({F (t) ∶ t < ti−1), where
F̄ (⋅) ∶= 1 − F (⋅) is the survival function associated to F . This essentially asserts that the
proportion of mass that F assigns to (ti,∞) with respect to (ti−1,∞) does not depend on
how F behaves left of ti−1. This property coined the name neutral to the right. Doksum
(1974) has shown that F (⋅) ∈ ΩF is NTR if and only if L(F (⋅)) = L(1 − exp[−A(⋅)]) for
some independent increment process A(⋅) which is almost surely non-decreasing, right
continuous and such that limt→−∞A(t) = 0 and limt→∞A(t) = ∞. Such objects are called
increasing additive processes, see e.g. Sato (1999). For more details on the construction
of NTR priors see e.g. Phadia (2015). Since independent increment processes are well
understood, the de�nition of NTR priors leads to a rich class of non-parametric priors
which are analytically tractable. Another nice feature of NTR priors is that this family
is conjugate with respect to (possibly right-censored) exchangeable data. A fact that
makes NTR priors appreciable in statistical survival analysis. Notice, that a Dirichlet
process prior updated by right censored data is not longer Dirichlet but can be shown to
be structurally conjugate considered as a member of NTR.

The next proposition makes a statement about the weak support of a NTR prior. Recall
that the topological support of a measure is the smallest closed set with full measure.
In the following theorem F(R+) is identi�ed with the space of all probability measures
P(R+) which is equipped with the weak topology.

Proposition 3.2.1. Dey et al. (2003)
Let F be a random distribution function which is governed by a NTR prior Π ∈ P(F),
i.e. F ∼ Π, and let A(⋅) = − log(1−F (⋅)) be the corresponding positive increasing additive
process with Lévy measure L. Then, Π has full support if L has full support. The assertion
remains true if F(R+) is equipped with the sup-norm.

Proof. It has to be shown that all weak neighborhoods of any probability measure have
positive Π-mass. Since continuous distributions are dense in P(R+) with respect to the
weak topology, it su�ces to show the assertion for all weak neighborhoods of continuous
distributions. Now, choose some random distribution function F0 and some ε > 0 and

consider Uε ∶= {F ∶ sup
0≤t<∞

∣F (t) − F0(t)∣ < ε}. Then [e.g. Ghosh and Ramamoorthi (2003))]

W ⊆ Uε for some weak neighborhood W of F0. Moreover, there is δ > 0, m ∈ N and
0 < t1 < t2 < ⋯ < tm such that {F ∶ ∣F (ti, ti+1] − F0(ti, ti+1]∣ < δ, i = 1, . . . ,m} ⊆ W . Hence,
it is enough to show that sup-neighborhoods restricted to compact sets possess positive
prior probability. By the homeomorphism φ ∶ F (⋅) ↦ − log[1 − F (⋅)] the problem can be
translated to the analogous one for the corresponding Lévy process. That is to show that

L(A) gives positive probability to sets of the form C ∶= {A ∶ sup
0≤t≤r

∣A(t) − φ−1F0(t)∣ < γ} for
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�xed r ∈ Q. Now, take a partition ρ = ∪ki=1(ai, ai+1] of (0, r] such that sup
1≤j≤k

φ−1F0(aj, aj+1] <

γ and de�ne

Bi ∶= (ai, ai+1] × (φ−1F0(ai, ai+1] − γ/k,φ
−1F0(ai, ai+1] + γ/k),

B ∶= ∩ki=1 {A ∶ #{(t,A({t}) ∈ Bi} = 1} .

It follows that B ⊆ C and, since L was assumed to have full support,

φ−1Π(C) ≥ φ−1Π(B) =
k

∏
i=1

L(Bi)e
−L(Bi) > 0.

Beta Processes and Beta-Stacy Processes

For our purposes, we choose a NTR prior with corresponding process Y (⋅) being driven
by a certain class of Lévy measures. These were studied by Hjort (1990) and Walker
and Muliere (1997). Hjort studied beta-processes from a survival analysis viewpoint and
therefor elicited a non-parametric prior for the cumulative hazard function (c.h.f.) given
for F ∈ F(R+) by

H(t) = ∫
t

0

dF (s)

F̄ (s)
, t > 0.

Walker and Muliere (1997) give the de�nition of the analog of the beta-process as a prior
for the c.d.f. directly as follows. F is said to be distributed according to a beta-Stacy
process with parameters (c(⋅),H(⋅)) ∈ RR+

+ ×F(R+) (for short F ∼ BS(c,H)) if for all t ≥ 0
the corresponding process Y (⋅) ful�lling F (⋅) = 1 − exp[−Y (⋅)] has Lévy measure

dLt(x) =
dx

1 − e−x

t

∫
0

e−xc(s)(1−H(s))c(s)dHc(s),

for all x > 0, where Hc(t) = H(t) − ∑
k∶tk<t

H(tk) is the continuous part of H with ti as

the �xed points of discontinuity of H. Since we work in a continuous-time framework,
we will always choose H to be continuous. However, discontinuities appear in the Lévy
measure governing the posterior law. Note that EBS[F (⋅)] = H(⋅) is the prior guess on
the c.d.f. F and the function c(⋅) acts like a tuning parameter a�ecting the magnitude
of the increments and is sometimes interpreted as the "�exible belief in the prior guess".
For the sake of clarity, note that the Dirichlet process with �nite measure α as parameter
admits a similar representation with Lévy-measure

dDt(x) =
dx

1 − e−x

t

∫
0

e−xc(1−ᾱ(s))cᾱ(ds),

where c = α(R) and ᾱ(⋅) denotes the c.d.f. corresponding to the probability measure
α(⋅)/c. In the case of the Dirichlet process it is well-known that the prior guess on the
random probability measure equals α(⋅)/c and c itself is often interpreted as the strength
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of belief in the prior guess. Thus, a Dirichlet process is a beta-Stacy process whose
parameters are determined by α alone.

As already mentioned, the beta-Stacy process is a parametrically conjugate prior, meaning
that the posterior law of F given exchangeable possibly right-censored data is a beta-Stacy
process as well. To be more precise, let Sn1 be the �rst n projections of in�nite exchangeable
data S∞1 . Let S∞1 be conditional i.i.d. given the c.d.f. F and let F ∼ BS(c,H).

Furthermore, de�ne Mn(t) =
n

∑
i=1

1[t,∞)(Si) and Nn(t) =
n

∑
i=1

1[0,t](Si). Then it holds [Walker

and Muliere (1997, Theorem 4)] that F ∣Sn1 ∼ BS(c∗n,H
∗
n), where c

∗
n(⋅) and H

∗
n(⋅) are given

by

H∗
n(t) = 1 − ∏

s∈[0,t]
(1 −

c(s)dH(s) + dNn(s)

c(s)H̄(s) +Mn(s)
) ,

c∗n(t) =
c(t)H̄(t) +Mn(t) −Nn(t)

H̄∗
n(t)

.

Thereby, H∗
n(t) is de�ned by means of the product integral, see Gill and Johansen (1990).

Note, that the posterior process possesses �xed points of discontinuity at the observations
and that the posterior guess on F , i.e. the Bayes estimate with respect to squared error
loss is given by F̂n(⋅) =H∗

n(⋅).

Having a look at the Pollazcek-Khinchine transform formulas in chapter 2, one may ask
if they are well de�ned for almost all λ and F drawn from their respective prior and pos-
terior distributions. While the posterior of the mean inter-arrival times is straightforward
by de�nition, the mean and the second moment of the random c.d.f. describing the gen-
eral service times deserves more attention. The existence of functionals of c.d.f.'s drawn
according to a beta-Stacy process was studied in Epifani et al. (2003). Relating H(⋅)

and c(⋅) to the existence of a certain functional, they obtained su�cient conditions for
moments of order m to exist [equation (10) in their article]. We will assume throughout
that this condition holds at least for the moment of second order. Moreover, note that
they obtained an explicit formula for the prior moments [equation (11)] as well as for the
posterior moments [equation (13)].

In summary, we assume the following sample scheme for the service times in the M/G/1
system.

G∣(c,H) ∼ BS(c,H)

S∞1 ∣G ∼⊗
N
G.

This leads to the posterior distribution

G∣(c,H), Sn1 ∼ BS(c∗n,H
∗
n).
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Notice again that this updating continues to hold for right-censored observations. Hence,
the model can be enlarged in that one does not have to keep exact track of the customers
and is still able to make reasonable inference even if e.g. it is solely known that the service
of customers has exceeded a certain threshold.

3.2.3 Estimators for Queueing Characteristics

In this subsection, we study the Bayes estimators, i.e. the posterior means, of several
characteristics of the M/G/1 system. Not all posterior laws of each single characteristic
are obtainable explicitly. Hence, for those characteristics whose posterior laws are not ob-
tainable in closed form, we de�ne suitable estimators by replacing appropriate estimators
for the corresponding values.

Assume for the general service time distribution G ∼ BS(c,H) and let

Ĝn = EBS [G∣Sn1 ] ,

µ̂n = EBS [∫

∞

0
tdG(t)∣Sn1 ] and

λ̂n = EΓ [λ∣An1 ]

be the Bayes estimators with respect to squared error loss. Note that with Mn(s) =

∑
n
j=1 δXj[s,∞), as in Epifani et al. (2003), µ̂n can be given as

µ̂n = ∫
∞

0
exp [−∫

t

0

α(ds)

β(s) +Mn(s)
] exp [−∫

t

0

β(s) +Mn(s) − 1

β(s) +Mn(s)
Nn(ds)]dt,

where if H is continuous [see Phadia (2015)]

� β(t) = c(t)[1 −H(t)]

� α(t) = ∫
t

0 c(s)dH(s).

Observe that ρ̂n = EBS⊗Γ [λµ∣Sn1 ,A
n
1 ] = µ̂nλ̂n by above independence assumption. How-

ever, in Bayesian statistics, one is interested in the entire posterior law rather than merely
in a certain functional. The posterior law of ρ is obtainable explicitly in the following
form

PBS⊗Γ(ρ ≤ t∣A
n
1 , S

n
1 ) = PBS⊗Γ(µλ ≤ t∣A

n
1 , S

n
1 )

= ∫

∞

0
PBS⊗Γ(µ ≤ t/λ∣An1 , S

n
1 , λ)PBS⊗Γ(λ∣A

n
1 , S

n
1 )dλ

= ∫

∞

0
PBS(µ ≤ t/λ∣Sn1 , λ)PΓ(λ∣A

n
1)dλ

=
(b +∑

n
i=1Ai)

a+n

Γ(a + n) ∫

∞

0
PBS(µ ≤ t/λ∣Sn1 , λ)λ

a+n−1e−λ(b+∑
n
i=1Ai)dλ.

Note that PBS(µ ≤ t/λ∣Sn1 , λ) can be stated more explicitly in form of a density by means
of Proposition 4 in Regazzini et al. (2003). This explicit form is omitted here due to
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technical reasons and left to the interested reader. If one observes the queueing system
and is, as is usually the case, not aware of the condition ρ0 < 1, one can at least obtain
the posterior probability that the system is stable PBS⊗Γ(ρ < 1∣An1 , S

n
1 ).

We close this section by de�ning estimators for:

� mean service time: µ̂n

� tra�c intensity: ρ̂n = λ̂nµ̂n

� LST of service-time distribution: g∗n(z) = ∫
∞

0 e−ztdĜn(t)

� LST of waiting-time distribution: w∗
n(z) =

z(1−ρ̂n)
z−λ̂n(1−g∗n(z))

� pgf of queue-size distribution: q∗n(z) =
(1−ρ̂n)(1−z)
g∗n(λ̂n(1−z))−z

� system-size distribution: n∗n(z) = q
∗
n(z)g

∗
n(λ̂n(1 − z)).

Notice that for the random arrival- and service rate and the random distribution function
of the service times the natural Bayes estimator is used, i.e. the minimizer with respect
to squared error loss. They are analytically tractable and obtainable in closed form. For
the remaining queueing characteristics obvious plug-in estimators are used. The reason
therefor is that a closed form of the push-forward law under the mapping

(λ,G(⋅)) ↦ f(⋅),

where f ∈ {n, g, q}, of the prior ΠBS⊗Γ is not easy to obtain. Neither is known how to
update such a pushed prior by exchangeable data (S,A)n1 , which we actually have access
to, in a natural Bayesian way.

The goodness of these estimates in a rigorous mathematical sense is established in the
next sections.

3.3 Posterior Consistency Results

Posterior consistency provides a tool for validation of Bayesian procedures. Roughly
speaking, it is de�ned to be the property of the posterior law to center around the true
"parameter" when the number of observed data increases. As a consequence of poste-
rior consistency two di�erent priors will asymptotically lead to the same prediction, a
fact often called merging of prior opinions. So, prior information is consecutively washed
away by the new state of information provided by the data. Posterior consistency is the
most desired property of Bayesian procedures since it states that one can recover the true
measure from the data. For examples of inconsistent Bayes procedures see e.g. Diaconis
and Freedman (1986) and Kim and Lee (2001) and references therein.
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3 M/G/1: Observations of Arrivals and Services

We will have to deal with two di�erent posterior consistency issues, a parametric one for
the posterior of the arrival rate and a non-parametric one for the service time distribution
and values depending on it. The �rst was considered by Doob (1949) in a rather general
way by the use of martingale theory. It clari�es that, under very weak constraints (the
state- and the parameter spaces are assumed to be Polish spaces and the likelihood is
identi�able), there is a subset of the parameter space with full prior mass such that the
sequence of posterior laws is consistent at any parameter of that subset that is taken as
the true one. However, one problem is that in high-dimensional parameter spaces the set
with full prior mass might become topologically small. Therefore, especially nonparamet-
ric Bayesian statistical problems deserve a deeper study of posterior consistency since the
set of possible likelihoods can not longer be assumed to be parametrized �nitely.

First of all, the de�nition of posterior consistency in a rather general framework is given
as it can be found e.g. in Schervish (1995). Notice that for any Polish state space S the
space of all probability measures, P(S), can be equipped with the topology induced by
weak convergence which has neighborhood bases for P ∈ P(S) given by the collection
of sets of the form UP ;ε = {Q ∈ P(R) ∶ ∣∫ fidP − ∫ fidQ∣ < ε, fi ∈ Cb(R), for all i = 1, .., k}.
This topology makes P(S) itself a Polish space [see Kechris (1995)] and the topology
can be metrized e.g. by the Prohorov metric. The Borel σ-�eld, B(P), with respect to
the weak topology serves as a natural measure-theoretical structure to turn P(S) into a
measurable space (P(S),B(P)). B(P) turns out to be the smallest σ-�eld on P(S) that
makes the mappings P ↦ P (A) (B(P),B([0,1]))-measurable for all A ∈ B(S). In the
sequel Π, occasionally with an appropriate index, shall denote a prior distribution and Πn

the corresponding posterior distribution after having seen the �rst n projections of the
exchangeable data. A distribution (or a value that parametrizes a distribution) indexed
by a naught will always denote the true data generating measure.

De�nition 3.3.1. Let Π ∈ P(P(R)) be a prior distribution, i.e. the distribution of some
random probability measure P ∈ P(R) and let X∞

1 be a sequence of exchangeable data
which is conditionally i.i.d. given P . Moreover, let P0 ∈ P(R) be the true data generating
distribution and (Πn)n≥0 = (Π(⋅∣Xn

1 ))n≥0 be the sequence of posterior laws. Then call
(Πn)n≥0 weakly consistent at P0 if for all weak neighborhoods UP0,ε of P0 it holds

Πn(UP0,ε)
n→∞
Ð→ 1,

for P∞
0 -almost all data sequences X∞

1 .

Here, P∞
0 denotes the true joint law governing the sequence X∞

1 .

Needless to say that in the case of the arrival rate λ things become easier because, due
to the additional judgment concerning the symmetry of the distribution of the exchange-
able sequence of inter-arrival times, one can reduce the problem to that of parametric
consistency that is rather easy to handle by conjugacy.

Proposition 3.3.2. Let ΠΓ stand for the Gamma prior of the random arrival rate λ and
(ΠΓ;n(⋅))n≥1 = (ΠΓ(⋅∣An1))n≥1 be the sequence of posterior laws. Then, for all ε > 0 and for
P∞
λ0

almost all sequences A∞
1 it holds

ΠΓ;n (∣λ − λ0∣ < ε)
n→∞
Ð→ 1.
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Proof. Taking into account that the gamma prior is conjugate for exponentially dis-
tributed data, the posterior density can be shown to be that of a Γ(a + n, b + ∑

n
i=1Ai)

distribution. By well known properties of the Gamma distribution one has EΓ;n[λ] =

(a + n)(b + ∑
n
i=1Ai)

−1 and VarΓ;n[λ] = (a + n) (b +∑
n
i=1Ai)

−2
. Applying the continuous

mapping theorem the assertion follows from the strong law of large numbers and the
Markov inequality.

Let us now turn to the nonparametric part concerning the random c.d.f. G. The following
two results are due to Dey et al. (2003) and give the consistency of the Bayes estimator
and the random c.d.f. G.

Lemma 3.3.3 (Dey et al. (2003)). Let G0 ∈ F(R+) be the true c.d.f. of the service
times. Furthermore suppose that G0 is continuous and that G0(t) < 1 for all t ∈ R+. Let
G ∼ BS(c,H) and ΠBS;n denote the posterior distribution of G. Then, for G∞

0 -almost all
sequences of data S∞1 and all t ∈ R+ it holds

EBS;n [G(t)]
n→∞
Ð→ G0(t).

Next, the posterior consistency of the random service time distribution G induced by a
beta-Stacy prior will be stated. Since the service time distribution function G(⋅) is seen
to be a random function rather than a random variable, we investigate deviations in the
sup-norm.

Theorem 3.3.4 (Dey et al. (2003)). Let G0 ∈ F(R+) be the true c.d.f. of the service times.
Again, suppose that G0 is continuous and that G0(t) < 1 for all t ∈ R+. Let G ∼ BS(c,H)

and ΠBS;n denote the posterior distribution of G. Then, for all ε > 0 it holds

ΠBS;n ( sup
0≤t<∞

∣G(t) −G0(t)∣ < ε)
n→∞
Ð→ 1

for G∞
0 -almost all sequences S

∞
1 .

Remark 3.3.5. We stress some peculiarity of a certain class of neutral to the right mea-
sures. For a full formal treatment see Dey et al. (2003). As already mentioned previously,
neighborhoods w.r.t. the sup-norm contain some weak neighborhoods. These, in turn, are
given as �nite intersections of sets of the form {G ∶ ∣G(t) −G0(t)∣ < γ}. Thus, it is enough
to show that the posterior mass of such sets converges to one. But since the Lévy measure
that corresponds to the beta-Stacy prior is of the form L(dt, ds) = a(t, s)dsK(dt) for suit-
able a and K, the convergence of the expected value of the posterior law to the true c.d.f.
already ensures that the posterior variance vanishes with increasing data size.

As an immediate consequence one has the uniform consistency of the Bayes estimator.

Corollary 3.3.6. Let the conditions of Lemma 3.3.3 be ful�lled. Then the Bayes estimate
EBS;n[G(⋅)] of the service time distribution is uniformly consistent at the true continuous
service time distribution G0(⋅), that is

sup
0≤t<∞

∣EBS;n[G(t)] −G0(t)∣
n→∞
Ð→ 0,

for G∞
0 -almost all sequences S

∞
1 .
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Proof. By above theorem one has

sup
0≤t<∞

∣EBS;n[G(t)] −G0(t)∣ = sup
0≤t<∞

RRRRRRRRRRRR

∫
F

(G(t) −G0(t))ΠBS;n(dG)

RRRRRRRRRRRR

≤ ∫

{G∶sup∣G(t)−G0(t)∣≥ε}

sup
0≤t<∞

∣G(t) −G0(t)∣ΠBS;n(dG)

+ ∫

{G∶sup∣G(t)−G0(t)∣<ε}

sup
0≤t<∞

∣G(t) −G0(t)∣ΠBS;n(dG)

< ΠBS;n ( sup
0≤t<∞

∣G(t) −G0(t)∣ ≥ ε) + ε
n→∞
Ð→ ε.

Since ε > 0 can be chosen arbitrarily small, the proof is completed and the assertion
follows.

The next lemma establishes the uniform consistency on R+ of the service time LST in
posterior law.

Proposition 3.3.7. Let g(z) = ∫ e
−szdG(s) denote the LST of the random service time

distribution G possessing a beta-Stacy process prior and g0(z) = ∫ e
−szdG0(s) the LST

of the corresponding true data generating distribution. Then, if the constraints of Theo-
rem 3.3.4 are ful�lled, it holds

ΠBS;n ( sup
0≤z<∞

∣g(z) − g0(z)∣ < ε)
n→∞
Ð→ 1,

for all ε > 0 and for G∞
0 -almost all data sequences S∞1 .

Proof. The assertion of the proposition follows from Theorem 3.3.4 and the continuous
mapping theorem applied to the mapping G(⋅) ↦ g(⋅) which is continuous w.r.t. the sup-
norm. Indeed, take a δ > 0 and let UG0,δ be a uniform δ-neighborhood of the true service
time distribution and let G ∈ UG0,δ with corresponding LST g. Then, by integration by
parts of the Riemann-Stieltjes integral it holds that

sup
0≤z<∞

∣g(z) − g0(z)∣ = sup
0≤z<∞

∣∫

∞

0
e−sz[G −G0](ds)∣

= sup
0≤z<∞

∣[e−sz[G(s) −G0(s)]∣s=∞ − [e−sz[G(s) −G0(s)]∣s=0 − ∫
∞

0
[G(s) −G0(s)]de

−zs∣

= sup
0≤z<∞

∣∫

∞

0
[G(s) −G0(s)]de

−zs∣ = sup
0≤z<∞

∣∫

∞

0
[G(s) −G0(s)]ze

−zsds∣

≤ sup
0≤z<∞

∫

∞

0
ze−zs ∣G(s) −G0(s)∣ds

< δ sup
0≤z<∞

∫

∞

0
ze−zsds = δ,

which completes the proof and shows the claim.

Next, the consistency of the estimator g∗n(z) of the LST of the service time distribution
is studied. On basis of the previous result, the following lemma establishes the uniform
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consistency on R+ of the estimator g∗n(z).

Lemma 3.3.8. Let g∗n(⋅), g0(⋅) as above. Then, under the constraints of Theorem 3.3.4,
it holds

sup
0≤z<∞

∣g∗n(z) − g0(z)∣
n→∞
Ð→ 0,

for G∞
0 -almost all sequences of data S

∞
1 .

Proof. Let ε > 0 be arbitrary and let Ĝn(⋅) ∶= EBS;n[G(⋅)]. Then by properties of the
Riemann-Stieltjes integral, one has

sup
0≤z<∞

∣g∗n(z) − g0(z)∣

= sup
0≤z<∞

∣∫

∞

0
e−zsdĜn(s) − ∫

∞

0
e−zsdG0(s)∣

= sup
0≤z<∞

∣ [e−zsĜn(s)]∣s=∞
− [e−zsĜn(s)]∣s=0

− ∫

∞

0
Ĝn(s)de

−zs

− [e−zsG0(s)]∣s=∞ + [e−zsG0(s)]∣s=0 + ∫
∞

0
G0(s)de

−zs∣

= sup
0≤z<∞

∣∫

∞

0
Ĝn(s)d(e

−sz) − ∫
∞

0
G0(s)d(e

−sz)∣

= sup
0≤z<∞

∣∫

∞

0
[Ĝn(s) −G0(s)]ze

−zsds∣

< sup
0≤s<∞

∣Ĝn(s) −G0(s)∣ .

Hence, the assertion follows from Corollary 3.3.6 and the proof is completed.

Since the Bayesian estimate of the random mean of G, i.e. EBS;n [∫
∞

0 tdG(t)], is used to
de�ne estimators of several queueing characteristics, its posterior consistency is examined
next. For the most prominent prior process, namely the Dirichlet process a rather general
result is known. This is reviewed brie�y. So, let P ∼ Dα be a random probability measure
that is distributed according to a Dirichlet prior with �nite measure α as parameter.
Let f ∶ S → R be measurable. Then [c.f. Feigin and Tweedie (1989)] ∫ ∣f ∣dα < ∞ ⇒

∫ ∣f ∣dP < ∞ with Dα probability one and EDα [∫ fdP ] = ∫ fdEDα [P ] = ∫ fdα. This fact
in combination with an assumption that the state space is countable makes it easy to show
that posterior consistency of the random measure P induces posterior consistency of the
random mean of P . However, here neither the state space is assumed to be countable
nor the random measure is assumed to possess a Dirichlet prior. Thus the posterior
consistency of the random mean of G which is drawn according to a beta-Stacy process
is studied in more depth and an a�rmative result is given.

Lemma 3.3.9. Suppose G(⋅) is drawn according to a beta-Stacy process with parameters
(α,β), where α is a measure on R+ and β(s) ≥ 1 such that

(1.) ∫R+[β(s)]
−1α(ds) = ∞

(2.) ∫R+ exp [− ∫
t

0 [β(s)]
−1α(ds)]dt < ∞.
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Then the posterior expectation of the random mean of G converges G∞
0 -a.s. to the true

one. That is for G∞
0 -almost all sequences of data X

∞
1 it holds

EBS;n [∫
R+
tdG(t)] ∶= EBS [∫

R+
tdG(t)∣Xn

1 ]
n→∞
Ð→ ∫

R+
tdG0(t).

Proof. First of all note that, due to Epifani et al. (2003), the �rst moment of the random
mean under the prior does exist and is given as

EBS;n [∫
R+
tdG(t)] =

∞

∫
0

exp [−∫

t

0

α(ds)

β(s) +Mn(s)
] ×

⎡
⎢
⎢
⎢
⎢
⎣

∏
{i∶Xi≤t}

β(Xi) +Mn(Xi) − 1

β(Xi) +Mn(Xi)

⎤
⎥
⎥
⎥
⎥
⎦

dt,

where Mn(s) = ∑
n
j=1 δXj[s,∞). Thus, letting Nn(s) = ∑

n
i=1 δXi[0, s), one obtains

EBS;n [∫
R+
tdG(t)]

=

∞

∫
0

exp [−∫

t

0

α(ds)

β(s) +Mn(s)
] exp [−∫

t

0
log(

β(s) +Mn(s)

β(s) +Mn(s) − 1
)dNn(s)]dt.

Since β(s) ≥ 1, by elementary properties of the logarithm, it follows

1

β(s) +Mn(s)
≤ log(

β(s) +Mn(s)

β(s) +Mn(s) − 1
) ≤

1

β(s) +Mn(s) − 1
,

which in turn implies

∞

∫
0

exp [−∫

t

0

α(ds)

β(s) +Mn(s)
] × exp [−∫

t

0

Nn(ds)

β(s) +Mn(s) − 1
]dt

≤ EBS;n [∫
R+
tdG(t)]

≤

∞

∫
0

exp [−∫

t

0

α(ds) +Nn(ds)

β(s) +Mn(s)
]dt.

such that it remains to show that the bounding terms converge to the mean of the true
c.d.f.. From a straight-forward application of the monotone convergence theorem and by
continuity of the exponential function, it follows

lim
n→∞

EBS;n [∫
R+
tdG(t)] =

∞

∫
0

exp [−∫

t

0
lim
n→∞

1/nNn(ds)

1/nβ(s) + 1/nMn(s)
]dt

=

∞

∫
0

exp [−∫

t

0

G0(ds)

1 −G0(s)
]dt.

Now, note that G0(ds)
1−G0(s) = λ(s)ds = P(s < S ≤ s+∆s∣S > s), where λ(s) = lim∆s→0

P(s<S≤s+∆s)
∆s[1−G0(s)]

usually denotes the hazard function. Hence Λ(t) = ∫
t

0 λ(s)ds = ∫
t

0
G0(ds)

1−G0(s) is the cumulative
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hazard until t ≥ 0. On the other hand Λ(t) = − log(1 −G0(t)). Thus,

exp [−∫

t

0

G0(ds)

1 −G0(s)
] = exp [−∫

t

0
λ(s)ds] = exp [−Λ(t)] = exp [log(1 −G0(t))] = 1 −G0(t),

which in turn completes the proof.

The next lemma establishes the contraction of the mass of the posterior law of the random
mean.

Lemma 3.3.10. If, in addition to the assumptions of the previous lemma, the parameter
(α,β) meets the condition

∫
R+

exp [−∫

√
t

0
[β(s)]

−1
α(ds)]dt < ∞

then the posterior variance of the random mean ∫ tG(dt) vanishes G∞
0 -a.s. as the size of

the data increases. That is, for G∞
0 -almost all sequences of data X

∞
1 it holds

VBS;n [∫
R+
tG(dt)] ∶= VBS [∫

R+
tG(dt)∣Xn

1 ]
n→∞
Ð→ 0.

Proof. Due to Lemma 3.3.9 and the continuous mapping theorem the claim follows if the
second moment of the random mean under the posterior converges a.s. to the square of
the mean of the true distribution function G0(⋅). From Epifani et al. (2003) the second
moment under the prior law exists and the second moment under the posterior law of the
random mean is given by

EBS;n [(∫

∞

0
tdG(t))

2

]

= 2

∞

∫
0

∞

∫
r

exp [−∫

r

0

α(dx)

β(x) +Mn(x) + 1
] exp [−∫

s

0

α(dx)

β(x) +Mn(x)
]

×
⎛

⎝
∏

{i∶Xi≤r}

β(Xi) +Mn(Xi)

β(Xi) +Mn(Xi) + 1

⎞

⎠

⎛

⎝
∏

{j∶Xj≤s}

β(Xj) +Mn(Xj) − 1

β(Xj) +Mn(Xj)

⎞

⎠
dsdr

= 2

∞

∫
0

exp [−∫

r

0

α(dx)

β(x) +Mn(x) + 1
] exp [−∫

r

0
log(

β(x) +Mn(x)

β(x) +Mn(x) + 1
)dNn(x)]

∞

∫
r

exp [−∫

s

0

α(dy)

β(y) +Mn(y)
] exp [−∫

s

0
log(

β(y) +Mn(y)

β(y) +Mn(y) − 1
)dNn(y)]dsdr

Hence, by similar arguments as in the proof of the previous lemma and using Fubini's
theorem, it follows that for G∞

0 −almost all sequences of data
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EBS;n [(∫

∞

0
tdG(t))

2

]
n→∞
Ð→2

∞

∫
0

exp [−∫

r

0

dG0(x)

1 −G0(x)
]

∞

∫
r

exp [−∫

s

0

dG0(y)

1 −G0(y)
]dsdr

= 2

∞

∫
0

∞

∫
r

exp [−∫

r

0

dG0(x)

1 −G0(x)
] exp [−∫

s

0

dG0(y)

1 −G0(y)
]dsdr.

(#)

Furthermore, a straight-forward application of Fubini's theorem yields

∞

∫
0

s

∫
0

g(r, s)drds =

∞

∫
0

∞

∫
r

g(r, s)dsdr,

where g is an arbitrary integrable function g ∶ [0,∞)2 → R+. Now, let f(r, s) denote the
integrand of the last integral of equation (#). Since f is symmetric, i.e. f(r, s) = f(s, r),
it follows from above equality and further application of Fubini's theorem

2

∞

∫
0

∞

∫
r

f(r, s)dsdr =

∞

∫
0

s

∫
0

f(r, s)drds +

∞

∫
0

∞

∫
r

f(r, s)dsdr

=

∞

∫
0

r

∫
0

f(s, r)dsdr +

∞

∫
0

∞

∫
r

f(r, s)dsdr =

∞

∫
0

∞

∫
0

f(r, s)drds.

Therefore,

EBS;n [(∫

∞

0
tdG(t))

2

]
n→∞
Ð→ (∫

∞

0
tdG0(t))

2

,

which completes the proof of the assertion.

Theorem 3.3.11. Under the assumptions of Lemma 3.3.9 and Lemma 3.3.10 the mean
of the random c.d.f. G possesses the property of posterior consistency. That is for all
ε > 0 and G∞

0 -almost all sequences of data it holds

ΠBS (∣∫
R+
tG(dt) − ∫

R+
tG0(dt)∣ > ε∣X

n
1 )

n→∞
Ð→ 0.

Proof. This is a direct consequence of the two previous lemmas and the Markov inequality.

Remark 3.3.12. A brief discussion of the assumptions of above lemmas and theorem,
respectively, is given. Assumption (1.) of Lemma 3.3.9 is an artifact of survival analysis
and ensures that the prior (α,β), that is to be chosen, actually leads to a cumulative

34



3 M/G/1: Observations of Arrivals and Services

hazard function. Assumption (2.) of the �rst lemma and the additional assumption of the
second lemma, respectively, ensures the existence of the �rst, resp. second, moment of the
posterior distribution of the random mean. These conditions are given in Epifani et al.
(2003) Proposition 4.

Moreover, this work extends results which concern the existence of certain random func-
tionals w.r.t. to a random c.d.f. drawn according to a NTR prior. Those results can
be understood as a generalization of a work by Feigin and Tweedie (1989) which gives
conditions under which certain functionals of a random measure drawn according to a
Dirichlet prior exist in terms of the base measure (the prior parameter). At this place it
should be emphasized that they investigated this problem by creating a new approach to
the Dirichlet process which is often not mentioned in the literature. To be more precise,
they show that the Dirichlet process can be extracted as the invariant distribution of a
measure-valued Markov chain and exploit this theory to show su�ciency of the conditions
of their existence theorem. Since Dirichlet priors are as well included in the family of
NTR priors the extension by Epifani et al. seems natural.

The last assumption, i.e. that β(s) ≥ 1 ensures posterior consistency of the random mean
of the c.d.f. governed by the beta-Stacy prior and is used in the proofs of both lemmas.
Hence, a prior for the random c.d.f. G is to be chosen, in terms of its parameter, such
that the sequence of posteriors of the G-mean is consistent as long as this property is
desired. It is interesting to see how advanced information on the posterior consistency
of the random mean in�uences the prior knowledge of the random c.d.f. itself. To put
it another way, information concerning the posterior consistency of the random mean is
indeed prior information on G. However, the other way around is not true in general, i.e.
posterior consistency of the random c.d.f. does not generally imply posterior consistency
of the random mean. That is because this functional is not continuous. However, posterior
consistency of G implies that of its truncated mean. That means integration is restricted
to a compact set and would lead to a weaker form of consistency in the sense of compact
convergence.

As an immediate consequence of the previous results one obtains the consistency of the
tra�c intensity of the M/G/1 queue.

Corollary 3.3.13. Let µ ∶= ∫ sG(ds), µ0 ∶= ∫ sG0(ds) be the random and true mean of
the service-time distribution and ρ0 = λ0µ0 the true tra�c intensity. Further, let ΠBS⊗Γ =

ΠBS⊗ΠΓ be the prior on (P(R+),R+) that is formed by taking the product-measure of
ΠBS and ΠΓ, ΠBS⊗Γ;n the posterior, respectively, and de�ne λ̂n ∶= Eλ;n[λ] ∶= EΓ[λ∣An1 ],
µ̂n ∶= EBS;n [∫

∞
0 tdG(t)] ∶= EBS [∫

∞
0 tdG(t)∣Sn1 ] and ρ̂n ∶= EBS⊗Γ;n[ρ] ∶= EBS⊗Γ[ρ∣An1 , S

n
1 ].

Then, under the assumptions of Proposition 3.3.2 and Theorem 3.3.11, one has

(i) for all ε > 0

ΠBS⊗Γ(∣ρ − ρ0∣ ≥ ε∣S
n
1 ,A

n
1)

n→∞
Ð→ 0,

for P∞
λ0
⊗G∞

0 -almost all data sequences (A∞
1 , S

∞
1 ),

(ii)

∣ρ̂n − ρ0∣
n→∞
Ð→ 0,
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for P∞
λ0
⊗G∞

0 -almost all data sequences (A∞
1 , S

∞
1 ).

Proof. (i) Recalling the posterior consistency of the arrival rate λ in Proposition 3.3.2 and
the service rate µ in Theorem 3.3.11 one has

ΠBS⊗Γ;n(∣ρ − ρ0∣ ≥ ε) = ΠBS⊗Γ;n(∣µλ − µλ0 + µλ0 − λ0µ0∣ ≥ ε)

≤ ΠBS⊗Γ;n(∣µλ − µλ0∣ + ∣µλ0 − λ0µ0∣ ≥ ε)

≤ ΠBS⊗Γ;n (∣µλ − µλ0∣ ≥ ε/2) +ΠBS⊗Γ;n (∣µ − µ0∣ ≥
ε

2λ0

)

≤ ΠBS⊗Γ;n ((µ0 + δ)∣λ − λ0∣ ≥ ε/2, ∣µ − µ0∣ < δ)

+ΠBS;n (∣µ − µ0∣ ≥ δ) +ΠBS;n (∣µ − µ0∣ ≥
ε

2λ0

)

≤ ΠΓ;n (∣λ − λ0∣ ≥
ε

2(µ0 + δ)
) +ΠBS;n (∣µ − µ0∣ ≥ δ) +ΠBS;n (∣µ − µ0∣ ≥

ε

2λ0

) ,

from which the assertion of (i) follows.

(ii) Straightforward one has a.s.

∣ρ̂n − ρ0∣ ≤ ∣µ̂nλ0 − µ̂nλ̂n∣ + λ0∣µ̂n − µ0∣

≤ (µ0 + γ)∣λ0 − λ̂n∣ + λ0∣µ̂n − µ0∣

by selecting γ > 0 such that a.s. ∣µ̂n − µ0∣ < γ, for all n su�ciently large. The assertion
of (ii) then follows from the proof of Proposition 3.3.2 and Lemma 3.3.9 completing the
proof.

We are now in a position to state the main theorem of this section, i.e. the consistency
of the estimators for the waiting time LST, the queue length p.g.f. and the system size
p.g.f., de�ned in chapter 2 .

Theorem 3.3.14. Under the assumptions of Proposition 3.3.2, Proposition 3.3.7 and
Theorem 3.3.11 one has

(i) for all ε > 0

ΠBS⊗Γ ( sup
0≤z<∞

∣f(z) − f0(z)∣ ≥ ε∣S
n
1 ,A

n
1)

n→∞
Ð→ 0.

(ii)

sup
0≤z<∞

∣f∗n(z) − f0(z)∣
n→∞
Ð→ 0,

for P∞
λ0
⊗G∞

0 -almost all data sequences (A∞
1 , S

∞
1 ), where f(⋅) ∈ {n(⋅), q(⋅),w(⋅)}.

Proof. We show the result for f = w, that is in the case of the p.g.f. of the waiting-time
distribution. The other cases are treated similarly and we omit the details. We intent to
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apply the continuous mapping theorem. Therefor note that the mapping (g(⋅), λ, µ) ↦
w(⋅) is continuous with respect to the suitable topologies induced by the sup-norm. Hence,
the assertion of the theorem is implied by the results of the present section.

We shall stress that above theorem is important, especially for applications, since it states
that one can reduce the di�cult task of making Bayesian inference for queueing charac-
teristics to that of making inference for the observables separately in order to compose it
subsequently to that of the objects of interest. Qualitatively this will lead to reasonable
asymptotic inference. This is appreciable because it is a non-feasible task to place a prior
on the distributions of aforementioned characteristics in a way that it can be updated
with data given by observations that we have access to.

3.4 Posterior Normality Results

Asymptotic normality results, so called Bernstein-von Mises theorems, for the posterior
law serve as an additional validation of Bayesian procedures. Especially in situations
where the exact posterior law is not available or hard to compute they are useful from
a rather applied viewpoint to get an approximation of the posterior law. While section
3.3 has shown that the posterior concentrates around the true value when data increases,
normality results give an idea how, asymptotically speaking, it does concentrate and how
�uctuations around this centering appear. Often it is true that the posterior law, if
centered and rescaled appropriately, resembles a centered Gaussian distribution with a
certain covariance structure. For applications, special interest lies in this limiting covari-
ance structure.

The earliest result dates back to de Laplace (1774) who approximates the posterior of
a beta distribution by a normal integral. Sergei Bernstein and Richard von Mises gave
a rather modern version of this approach by applying a general result about in�nite
products of functions to the sequence of posterior densities, see e.g. Johnson (1967) for
a review and references. These approaches of expanding posterior densities coined the
name. Nowadays, the parametric case is well understood and results including centering
with the MLE or the Bayes estimate as well can be found in Schervish (1995) or Ghosh
and Ramamoorthi (2003). However, the results needed for an asymptotic behavior of the
posterior of in�nite-dimensional parameters, i.e. in the nonparametric case, go deeper
and deserve separate investigation. Posterior normality results involving Dirichlet process
priors or NTR processes can be found in Conti (1999) who employs a result by Freedman
(1963) on asymptotic normality in the �nite-dimensional case.

We use a general result by Kim and Lee (2004) on the asymptotic normality of NTR
processes to obtain the asymptotic behavior of the posterior law of the waiting time LST.
This result is stated next. For the sake of clarity, it is stated for the non-censored case.
However, it can be enlarged to the situation where data is right-censored. For a positive
real number τ let (D[0, τ], ∥⋅∥τ) denote the space of all cadlag functions on [0, τ] equipped
with the sup-norm and L[X] the law of a random object X.
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Theorem 3.4.1 (Kim and Lee (2004)). Suppose that G(⋅) = 1 − exp[A(⋅)] is a random
c.d.f. drawn according to a NTR prior Π with corresponding increasing additive process
A(⋅) whose Lévy measure L is given by

L([0, t],B) =

t

∫
0

∫
B

gs(x)

x
dxλ(s)ds,

where ∫
1

0 gt(x)dx = 1 for all t ∈ R+. Let the true c.d.f. G0 be continuous and such that
G0(t) < 1 for all t ∈ R+. Moreover let the following conditions be ful�lled for a τ > 0,

� sup
t∈[0,τ],x∈[0,1]

(1 − x)gt(x) < ∞,

� there is a function q(t) ∶ R+ → R such that 0 < inf
t∈[0,τ]

q(t) < sup
t∈[0,τ]

q(t) < ∞ and, for

some α > 1/2 and ε > 0,

sup
t∈[0,τ],x∈[0,ε]

∣
gt(x) − q(t)

xα
∣ < ∞,

� λ(t) is bounded and positive on (0,∞).

Then it holds that for G∞
0 -almost all sequences of data S

∞
1

lim
n→∞

Π (
√
n[G(⋅) −EΠ;n[G(⋅)]]∣Sn1 ) = L[A(⋅)]

weakly on (D[0, τ], ∥⋅∥τ), where A(⋅) denotes a centered Gaussian process given by A(t) =
(G0(t)−1)W (A0(t)) with a Brownian motionW. The covariance structure then is h(u, v) ∶=
Cov[A(u),A(v)] = (1 −G0(u))(1 −G0(v))min(A0(u),A0(v)).

Proof. See Kim and Lee (2004) for the proof as well as for a discussion of the constraints
of the theorem.

Above theorem can well be stated as follows. The posterior distribution of the scaled and
centered random process looks more and more like a Gaussian process as the sample size
increases. The limiting process is centered, i.e. the expectation function is the constant
function taking only the value zero. Next result ensures that above assertions hold for
beta-Stacy processes.

Corollary 3.4.2 (Kim and Lee (2004)). The assertion of Theorem 3.4.1 for the random
c.d.f. G holds, with G being governed by a beta-Stacy process prior with parameters
(c(⋅),H(⋅)), where H is a continuous distribution function with continuous density a with
respect to the Lebesgue measure such that 0 < inft c(t)[1−H(t)] < supt c(t)[1−H(t)] < ∞,
i.e. for G∞

0 -almost all sequences of data S
∞
1 it holds

lim
n→∞

ΠBS;n(
√
n[G(⋅) − Ĝn(⋅)]) = L[A(⋅)]

weakly on (D(1)[0,∞), ∥⋅∥∞) with A(⋅) as in Theorem 3.4.1, where D(1)[0,∞) denotes the
space of cadlag functions bounded by one on [0,∞).
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Proof. By Theorem 5 of Dey et al. (2003), a beta-Stacy process is a transformed beta
process. More precisely, a process Λ is a beta-Stacy process with parameters (c(⋅),H(⋅))

if and only if it is a beta process with parameters (c(⋅)[1 −H(⋅)], ∫
⋅

0
dH(s)

1−H(s)). Further on,

Kim and Lee (2004) showed that a beta process ful�lls the constraints of the theorem as

long as a(s)
1−H(s) is positive and continuous on R+ and c(t)[1 −H(t)] is as required.

Next, we turn to the asymptotic behavior of the LST g of the service time distribution
G and its random mean µ ∶= ∫ xdG(x). Since a plug-in estimator for g is employed, we
will use the functional delta method to provide the asymptotic normality result. Recall
that in section 3.3 a posterior consistency result was given for the random mean µ, i.e. it
was shown that the posterior law of µ centers a.s. around its true value µ0 ∶= ∫ xG0(x).
This suggests the conjecture that a normality result might be present in this case as well.
However, even if Regazzini et al. (2003) provide results to approximate the density of the
random mean of random measures, we were not able to show the density in our case to
be approximated by a normal density if the sample size increases. The main reason for
this is that it does not seem to be straight-forward to obtain a suitable expansion of this
approximated density.

Hence, in the following we make the rather technical assumption that there is prior knowl-
edge of the kind that service times can not exceed a certain su�ciently large thresh-
old M ∈ R+. From a practical point of view this is a rather gentle constraint. Let
FM ∶= FM(R+) ∶= {F ∈ F(R+) ∶ F (t) = 1,∀t ≥ M} be the space of all c.d.f.'s whose
corresponding probability measure has support [0,M]. Since it is well known that the
prior guess on the c.d.f. G under a beta-Stacy prior BS(c,H) is given as EBS;n[G] = H,
in the following we take H ∈ FM such that H is continuous on [0,M]. Recall that
G(⋅) = 1 − exp[−A(⋅)], where A is a non-negative increasing additive process with Lévy
measure

dNt(x) =
dx

1 − e−x

t

∫
0

e−xc(s)[1−H(s)]c(s)H(ds).

From the theory of increasing additive processes it is well known [see e.g. Sato (1999)] that
for all t > 0 A(t) = At is a random variable governed by a in�nitely divisible distribution
φt. Let φ̂t(ξ) denote the characteristic function of φ, i.e.

φ̂t(ξ) = ∫ exp[iξs]φ(ds) = exp [−∫

∞

0
(1 − eiξx)dNt(x)] .

Furthermore, since (At) has independent increments one has φ̂t(ξ) = φ̂s(ξ)φ̂s,t(ξ) for all

s < t, where φ̂s,t(ξ) denotes the characteristic function of the di�erence At − As. Now,
since H ∈ FM it follows for t >M,
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φ̂t(ξ) = exp [−∫

∞

0
(1 − eiξx)dNt(x)] = exp [−∫

∞

0

1 − eiξx

1 − e−x ∫
t

0
e−xc(s)[1−H(s)]c(s)H(ds)dx]

= exp [−∫

∞

0

1 − eiξx

1 − e−x ∫
M

0
e−xc(s)[1−H(s)]c(s)H(ds)dx]

⋅ exp [−∫

∞

0

1 − eiξx

1 − e−x ∫
t

M
e−xc(s)[1−H(s)]c(s)H(ds)dx]

= φ̂M(ξ),

the process (At)t≥M is a.s. constant. That implies that the corresponding c.d.f. G is
constant from M onwards. In order to ensure that it is indeed a distribution function, we
set G(t) ∶= 1, for all t ≥M . The support of the truncated prior Π

(M)
BS law will still be all

of FM .

In order to achieve a posterior normality result for the random LST g, we show that
the mapping Φ ∶ D(1)[0,M] → C(1)[0,∞);G ↦ ∫

∞
0 e−szdG(s) is Hadamard di�erentiable,

where D(1)[0,M] and C(1)[0,∞) denote the space of cadlag and continuous functions,
bounded by one, respectively. Moreover, since we are solely interested in distribution
functions on R+, w.l.o.g. it is assumed that D(1)[0,M] consists only of functions starting
at zero. For a good reference on Hadamard di�erentiability and applications including
the functional delta method see Kosorok (2008).

Lemma 3.4.3. The mapping

Φ ∶ (D(1)[0,M], ∥.∥M) → (C(1)[0,∞), ∥.∥∞)

G↦ Φ[G](●) ∶= ∫

M

0
e−●sG(ds)

is Hadamard di�erentiable.

Proof. Let t↘ 0 and ht ∈D(1)[0,M], such that ht
t↘0
Ð→ h ∈D(1)[0,M] w.r.t. the sup-norm.

Then, by properties of the Riemann-Stieltjes integral, one has

∥
Φ[G + tht](z) −Φ[G](z)

t
− ∫

M

0
e−zsdh(s)∥

∞

= sup
0≤z<∞

∣∫

M

0
[ht(s) − h(s)](−z)e

−zsds∣

≤ sup
0≤z<∞

∣∫

M

0
( sup

0≤x<M
∣ht(x) − h(x)∣) (−z)e−zsds∣

≤ ∥ht − h∥M sup
0≤z<∞

∫

M

0
ze−zsds

= ∥ht − h∥M
t↘0
Ð→ 0.
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De�ne

Φ′
G ∶D

(1)[0,M] → C(1)[0,∞)

h↦ Φ′
G[h](z) = ∫

M

0
e−zsdh(s).

Since the Riemann-Stieltjes integral is linear in the integrator, the mapping Φ′
G is linear.

Moreover, if sup
0≤s<M

∣F (s) −G(s)∣ < δ, it follows

RRRRRRRRRRRR

M

∫
0

e−zsdF (s) −

M

∫
0

e−zsdG(s)

RRRRRRRRRRRR

≤ ∥F −G∥M sup
0≤z<∞

M

∫
0

ze−zsds < δ,

thus the continuity of Φ′
G. Hence the mapping Φ is Hadamard di�erentiable with derivative

Φ′
G.

Now, the lemma will be applied in combination with the functional delta method to obtain
the posterior normality of the service time LST centered suitably at its respective Bayes
estimator. Write Π

(M)
BS;n for the posterior law induced by the M -truncated beta-Stacy

process.

Corollary 3.4.4. Let g∗Mn (z) = ∫
M

0 e−zsdEBS;n[G](s). Under the assumptions of Theo-
rem 3.4.1 and Corollary 3.4.2, it holds for G∞

0 -almost all sequences S
∞
1

lim
n→∞

Π
(M)
BS;n (

√
n [g(⋅) − g∗Mn (⋅)]) = L[G(⋅)]

on C(1)([0,∞), ∣∣.∣∣∞), where G(z) is a centered Gaussian process with covariance structure
γ(⋅, ⋅) given by

γ(u, v) = Cov [G(u),G(v)] = uv∫
M

0
∫

M

0
e−(us+vt)h(u, v)dudv,

where h(⋅, ⋅) is de�ned in Theorem 3.4.1.

Proof. By the functional delta method applied to the mapping in the previous lemma one
has

G(z) = Φ′
G [(G0(⋅) − 1)W (A0(⋅))] (z) = ∫

M

0
e−zsd [(G0(s) − 1)W (A0(s)] .

Using a Riemann sum approximation for above integral, one concludes that the process
G(⋅) is a Gaussian process. Further, by well-known properties of the Riemann-Stieltjes
integral, one gets

G(z) = z∫
M

0
(1 −G0(s))W (A0(s)) e

−szds.

Using Fubini's theorem it is immediately seen that E[G(z)] = 0 for any z ∈ R+. Again
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using Fubini's theorem, the covariance structure of G(⋅) is obtained as

Cov [G(u),G(v)] = E [G(u)G(v)]

= uvE [∫

M

0
∫

M

0
(1 −G0(s))W (A0(s))e

−us(1 −G0(t))W (A0(t))e
−vtdsdt]

= uv∫
M

0
∫

M

0
e−(us+vt)(1 −G0(s))(1 −G0(t))E [W (A0(s))W (A0(t))]dsdt

= uv∫
M

0
∫

M

0
e−(us+vt)h(s, t)dsdt.

Next, we investigate the posterior normality of the mean of the random c.d.f. G. Since no
exact results seem obtainable, we use the plug-in estimator µ∗n ∶= ∫

M

0 [1 − EBS;n[G(t)]]dt

which, in general, does not equal EBS;n [∫
M

0 [1 −G(t)]dt]. This estimator in combination

with the M -truncated c.d.f.'s enables us to use the functional delta method for obtaining
normality results.

Lemma 3.4.5. Let M be an arbitrary positive real number. Then, the mapping

Ψ ∶ (FM , ∥⋅∥M) → ([0,M], ∣⋅∣)

G↦ Ψ[G] ∶= ∫

M

0
[1 −G(s)]ds

is Hadamard-di�erentiable with derivative Ψ′[h] = −∫
M

0 h(s)ds.

Proof. Take t↘ 0 and ht ∈ FM , such that ht
t↘0
Ð→ h ∈ FM . Then

∣
Ψ[G + tht] −Ψ[G]

t
+ ∫

M

0
h(s)ds∣ = ∣∫

M

0
h(s) − ht(s)ds∣ ≤M ∥h − ht∥M

t↘0
Ð→ 0.

Obviously, the derivative of Ψ is linear and continuous w.r.t. to the considered topologies.

Corollary 3.4.6. Under the assumptions of Theorem 3.4.1 and Corollary 3.4.2 it holds
for G∞

0 almost all data S∞1 that

lim
n→∞

Π
(M)
BS;n (

√
n[µ − µ∗n]) = L[H],

where H is a centered Gaussian random variable with variance η ∶= Var[H] = ∫
M

0 ∫
M

0 h(s, t)dsdt.

Proof. By the previous lemma and the functional delta method the limiting variable is
given by Ψ′[(G0(⋅) − 1)W (A0(⋅))] = ∫

M

0 (1 −G0(s))W (A0(s))ds which is seen to be cen-
tered Gaussian by a Riemann sum approximation in combination with Fubini's theorem.
Moreover, again by Fubini' theorem

Var[H] = E [H2] = E [∫

M

0
∫

M

0
(1 −G0(s))W (A0(s))(1 −G0(t))W (A0(t))dsdt]

= ∫

M

0
∫

M

0
h(s, t)dsdt.
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Next we consider the asymptotic normality of the arrival-rate when centering with its
Bayes estimate.

Proposition 3.4.7. Let λ̂n ∶= EΓ;n [λ]. Then, for P∞
λ0
-almost all sequences of data A∞

1

one has

lim
n→∞

ΠΓ (
√
n [λ − λ̂n] ∣A

n
1) = N ,

where N is a centered Gaussian random variable with precision λ2
0.

Proof. By Theorem 1.4.3. in Ghosh and Ramamoorthi (2003) the convergence of the
posterior distribution of

√
n [λ − λ̂n] to a centered normal distribution directly follows.

Moreover, the variance of this limiting Gaussian variable is given by the inverse Fisher
information at the true arrival rate. Checking the necessary conditions for interchanging
integral and derivative is left to the interested reader. The Fisher information is obtained
as

I(λ0) = Eλ0 [(
∂

∂λ
log (λe−λA))

2

] = −Eλ0 [
∂2

∂λ2
[log(λ) − λA]]

∣λ=λ0

= λ−2
0 .

We are now in a position to formulate the posterior normality of the waiting-time LST.
However, the same techniques can be applied to show posterior normality of several other
queueing characteristics like e.g. for the queue length p.g.f. or the sojourn time LST. The
waiting-time distribution is of special interest since it gives a qualitative idea about the
loss of information that can occur in a M/G/1 system and thus helps to ensure a well-
working system. However, since the exact posterior law of the waiting time distribution is
not obtainable in closed form, asymptotic approximations are given. These results extend
results of section 3.3 where it was shown that the plug-in estimator is reasonable to make
inference. Roughly, we prove that the posterior law of the LST follows, asymptotically
speaking, a Gaussian quantity that is centered around the plug-in estimator. Let ΠBS⊗Γ =

Π
(M)
BS ⊗ΠΓ denote the prior on the parameter space R+ × FM .

Theorem 3.4.8. Let w(z) =
z(1−ρ)

z−λ(1−g(z)) be the LST of the waiting time distribution as

given in chapter 2 and w∗M
n (z) = z(1−λ̂nµ∗n)

z−λ̂n(1−g∗Mn (z)) be its plug-in estimator. Then, under the

assumptions of Theorem 3.4.1 and Corollary 3.4.2, for G∞
0 ⊗P∞

λ0
-almost all sequences of

data (S,A)∞1 it holds that

lim
n→∞

ΠBS⊗Γ (
√
n [w(⋅) −w∗M

n (⋅)] ∣An1 , S
n
1 ) = L[Z(⋅)]

weakly on C([0,∞), ∣∣.∣∣∞), where Z(⋅) is a centered Gaussian process with covariance
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structure ζ(u, v) = Cov[Z(u),Z(v)] given by

ζ(u, v) =
w0(u)w0(v)

(1 − ρ0)
2

[λ2
0η +

µ2
0

λ2
0

] + λ−2
0

w0(u)(1 − g0(u))

λ0(1 − g0(u)) − u
×
w0(v)(1 − g0(v))

λ0(1 − g0(v)) − v

+
w0(u)w0(v)λ2

0

[λ0(1 − g0(u)) − u] [λ0(1 − g0(v)) − v]
γ(u, v)

−
µ0w0(u)w0(v)

[λ0(1 − ρ0)]
2

[
w0(u)(1 − g0(u))

u
+
w0(v)(1 − g0(v))

v
]

−
λ0w0(u)w0(v)

(1 − ρ0)
2

⎡
⎢
⎢
⎢
⎢
⎣

w0(u) ∫

[0,M]2
e−ush(s, t)d(s, t) +w0(v) ∫

[0,M]2
e−tvh(s, t)d(s, t)

⎤
⎥
⎥
⎥
⎥
⎦

,

where γ(⋅, ⋅) is given in Corollary 3.4.4.

Proof. Taking a similar route of proving as in the proof of Theorem 3 in Conti (1999), we
begin with a decomposition of

√
n [w(z) −w∗M

n (z)]. The decomposition yields

√
n [w(z) −w∗M

n (z)] =
−w(z)

1 − ρ

√
n [λµ − λ̂nµ

∗
n]

+ z(1 − λ̂nµ
∗
n)

√
n [

1

z − λ(1 − g(z))
−

1

z − λ̂n(1 − g(z))
]

+ z(1 − λ̂nµ
∗
n)

√
n(

1

z − λ̂n(1 − g(z))
−

1

z − λ̂n(1 − g∗Mn (z))
)

=∶ Z1;n(z) +Z2;n(z) +Z3;n(z)

Now, the three terms of the sum are investigated separately and it will be shown that
they possess the same asymptotic distribution as objects whose asymptotic is easier to
obtain. These objects will be tagged by an additional ∗ superscript. First write

Z1;n(z) =
−w(z)

1 − ρ

√
n [µ∗n(λ − λ̂n) + (µ − µ∗n)(λ − λ0) + λ0(µ − µ

∗
n)]

and note that by the uniform posterior consistency results of section 3.3 and the continuity
of the mapping G↦ ∫

M

0 (1 −G(s))ds one has

lim
n→∞

ΠBS⊗Γ [Z1;n(z)∣A
n
1 , S

n
1 ] = lim

n→∞
ΠBS⊗Γ [

−w0(z)

1 − ρ0

√
n(µ0(λ − λ̂n) + λ0(µ − µ

∗
n))∣A

n
1 , S

n
1 ]

=∶ lim
n→∞

ΠBS⊗Γ [Z∗
1;n(z)∣A

n
1 , S

n
1 ] =∶ L[Z1(z)].

For Z2;n(z), note that the mapping λ↦ [z − λ(1 − g(z))]
−1
is analytic in a suitably chosen

neighborhood of λ0. Its derivative is given by

λ↦
1 − g(z)

[z − λ(1 − g(z))]
2 .
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Thus, a Taylor expansion of that mapping yields

Z2;n(z) = (1 − λ̂nµ
∗
n)z

1 − g(z)

[z − λ̄(1 − g(z))]
2

√
n (λ − λ̂n) ,

for a suitably chosen λ̄ ∈ [λ0, λ̂n]. Therefore, using consistency results and continuous
mapping, one gets

lim
n→∞

ΠBS⊗Γ [Z2;n(z)∣S
n
1 ,A

n
1] = lim

n→∞
ΠΓ [(1 − ρ0)z

1 − g0(z)

[z − λ0(1 − g0(z))]
2

√
n (λ − λ̂n) ∣A

n
1]

=∶ lim
n→∞

ΠΓ [Z∗
2;n∣A

n
1] =∶ L[Z2(z)].

Another Taylor expansion for the mapping x↦ [z − λ̂n(1 − x)]
−1

and analogous reasoning
as before yields

lim
n→∞

ΠBS⊗Γ [Z3;n(z)∣S
n
1 ,A

n
1] = lim

n→∞
Π

(M)
BS [−

w0(z)λ0

λ0(1 − g0(z)) − z

√
n [g(z) − g∗Mn (z)] ∣Sn1 ]

=∶ lim
n→∞

Π
(M)
BS [Z∗

3;n∣S
n
1 ] =∶ L[Z3(z)].

Now, the convergence of the posterior law of the waiting time LST follows from the
previous results of the present section. What remains is the calculation of the covariance
structure. This, in turn, is easily obtained by above decomposition and the assumed
independence of the arrivals and services or their prior laws, respectively.

Cov [
3

∑
i=1

Zi(u),
3

∑
i=1

Zi(v)] =
3

∑
i=1

Cov [Zi(u),Zi(v)] +∑
i≠j

Cov [Zi(u),Zj(v)]

=
3

∑
i=1

Cov [Zi(u),Zi(v)]

+ Cov [Z1(u),Z2(v)] + Cov [Z2(u),Z1(v)]

+ Cov [Z1(u),Z3(v)] + Cov [Z3(u),Z1(v)]

By the previous results of this section it follows

3

∑
i=1

Cov [Zi(u),Zi(v)] =
w0(u)w0(v)

(1 − ρ0)
2

[λ2
0η +

µ2
0

λ2
0

]

+ λ−2
0

w0(u)(1 − g0(u))

λ0(1 − g0(u)) − u
×
w0(v)(1 − g0(v))

λ0(1 − g0(v)) − v

+
w0(u)w0(v)λ2

0

[λ0(1 − g0(u)) − u] [λ0(1 − g0(v)) − v]
γ(u, v).

Furthermore, by the independence assumption of the prior laws of the inter-arrival rate
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3 M/G/1: Observations of Arrivals and Services

and the service time distribution, one has

Cov [Z1(u),Z2(v)] =
µ0

λ2
0(1 − ρ0)

×
w0(u)w0(v)(g0(v) − 1)

v − λ0(1 − g0(v))
.

Furthermore, using the previous results of the present section and Fubini's theorem, one
has

Cov [Z1(u),Z3(v)] =
w0(u)w0(v)λ2

0

(1 − ρ0)(λ0(1 − g0(v)) − v)
E[H × G(v)]

=
w0(u)w0(v)λ2

0

(1 − ρ0)(λ0(1 − g0(v)) − v)

×E [∫

M

0
(1 −G0(s))W (A0(s))ds × v∫

M

0
(G0(t) − 1)W (A0(t))e

−tvdt]

=
vw0(u)w0(v)λ2

0

(1 − ρ0)(λ0(1 − g0(v)) − v)
∫

M

0
∫

M

0
e−tvh(s, t)dsdt

= −
w0(u)w0(v)

(1 − ρ0)
2
λ2

0w0(v)∫
[0,M]2

e−tvh(s, t)d(s, t).

Finally, compounding above covariance structures yields ζ(⋅, ⋅).

The covariance structure ζ(⋅, ⋅) depends on the unknown objects. However, one can use
the suggested estimators and plug them in place of the true ones. This might be helpful
to implement the problem and the provided consistency results ensure accuracy as long
as the sample size is large enough.
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4 Inference for the Service

Distribution in M/G/1 based on

Observations of the Departure

Process

4.1 Introduction

Chapter 3 dealt with the issue of making Bayesian inference for characteristics of the
M/G/1 system as for instance the tra�c intensity. Therefor it was assumed that the
inner of the system can be observed, i.e. the service time data of customers was available.
However, in some situations this is a rather unrealistic assumption. For instance think
of a machine in an automatized production process executing di�erent tasks which ran-
domly depend on the item in progress. If the items cannot be distinguished in advance,
the assumption of a general service time distribution may be justi�ed. Moreover, if one
has no access to the execution process of the machine the system might be assumed to be
a black box. In such situations one can merely observe the departure process. However,
it will turn out that this is not enough to make inference for the service time distribution
such that an additional observation is required. This additional observation amounts to
a kind of counter that yields the number of items waiting for service at the instance a
certain item leaves the system. Hence, a marked departure process is used in order to
make inference for the random service time distribution.

Based on these ideas the present chapter deals with nonparametric Bayesian statistical
inference for the service time distribution. The chapter is organized as follows. In section
4.2 the the necessary preliminaries and assumptions are given that extend the survey
given in the �rst chapter. Section 4.3 is devoted to �nding a suitable prior distribution
for the problem. This will come along with the study of the statistical structure of the
space of probability measures that govern the data of the marks of the departure process.
This structure is shown to lie in between of usual exchangeability and partial exchange-
ability. Additionally there are some examples presented that shall clarify the ideas. In
section 4.4 an explicit estimator is given as well as its justi�cation in form of posterior
consistency results. The last point of section 4.4 is devoted to a Bernstein-von Mises type
result further describing the centering process of the posterior law similarly as in section
3.4.
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4 M/G/1: Observations of the Departure Stream

4.2 Preliminaries

The model under consideration is again the single server M/G/1 queueing model under
a �rst-in-�rst-out policy. It will be assumed throughout, that the queueing system has
reached its stable equilibrated behavior, thus the process of successive waiting times of
customers forms a stationary process. Recall from chapter 2 the necessary and su�cient
conditions for the system to reach steady state. Moreover, recall the features of M/G/1
which will be used in this chapter to infer the service time distribution. These are PASTA,
LAA, LC and time-reversibility of the underlying birth-death process. Also bear in mind
that the process of the system's occupation is a semi-Markov process. This semi-Markov
process possesses an embedded Markov chain consisting of the magnitude of the system
at departures, i.e. at time points customers have just received their complete service.
The embedded Markov chain is governed by a Markov law which, in turn, is parametrized
by an in�nite stochastic matrix of particular shape. The matrix belongs to the family
of stochastic delta matrices, as de�ned in Abolnikov and Dukhovny (1991), and is of the
form

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a0 a1 a2 a3 a4 a5 ⋯

a0 a1 a2 a3 a4 a5 ⋯

0 a0 a1 a2 a3 a4 ⋯

0 0 a0 a1 a2 a3 ⋯

0 0 0 a0 a1 a2 ⋯

⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where aj denotes the probability that j ∈ N0 customers enter the system during a service
time.

Let (Ω,A,P) be an arbitrary probability space which represent the domain of all random
quantities involved. Furthermore, let for n ∈ Z denote Sn the random service time of the
n-th customer, Tn, the instance of time at which customer n departs from the system
and Dn ∶= Tn+1 − Tn be the inter-departure time between the n-th and the (n + 1)-th
customer. Furthermore, let An denote the inter-arrival time between the n-th and (n+1)-
th customer and ASn the number of customers entering the system during the service of
customer n. Since all of the above random variables do not depend on a speci�c customer,
it is common to write them without index. Note, that by properties of M/G/1 mentioned
above, one has L[A] = L[D] = E[λ], where L stands for the the law of a random quantity
and E(λ) for the exponential distribution with rate λ > 0. Concerning the marks of the
departure process, let {Nm}m∈Z denote the embedded Markov chain. Therefore, for any
m ∈ Z there is an integer n such that Nm = NTn . Besides of the observation processes, let
P(S) denote the space of all probability measures on some Polish space S and G ∈ P(R+)
be the general distribution of the service times.
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4 M/G/1: Observations of the Departure Stream

All of the aforementioned facts lead us to the following assumption on the accessible
observations.

Data is collected from observations of the stochastic process {N(Tn), Tn}n∈N. (O)

Assumption (O) means that we observe the instants of time at which the consecutively
served customers depart from the system as well as the number of customers they leave
behind in the system. Thus, one can imagine the M/G/1 system as a perfect black box.
The only thing to which we have access is the departure process being a marked point
process. This point process is a marked Poisson process with rate λ > 0 and with marks
consisting of the system size at departure time points. Notice that the marks do not
directly depict the service times since they are possibly corrupted by idle times under the
promises that ρ < 1.

We are now interested in making Bayesian statistical inference for several characteristics of
the system on grounds of these observations. These characteristics are e.g. the unknown
service time distribution, waiting time distribution and the distribution of the busy and
idle times, c.f. chapter 2.

4.3 Prior Assignments and the Statistical Structure of

the Law of the Embedded Markov Chain

In this section we assign prior distributions to the laws of several random quantities needed
for statistical inference in the Bayesian paradigm. Assumption (O) on the observations
already indicates that the issue is twofold. On the one hand we can extract the inter-
departure times Dn ∶= Tn −Tn−1 from the observations. As argued in the previous section,
these can be viewed as independent and exponentially distributed random quantities
with mean λ−1, leading to a parametric inference problem. On the other hand, the marks
{N(Tn)}n were argued to form a Markov chain with stochastic matrix ∆1,1-matrix, leading
to a non-parametric inference problem. We now regard the both issues separately.

4.3.1 Prior for Inter-Departure Time Distribution

By the properties of M/G/1 reviewed in chapter 2, the process of the departure instances
is distributed the same way as the arrival process, i.e. both are homogenous Poisson
processes with intensity λ > 0. Therefore, the same theoretical considerations as in section
3.2 can be employed leading to the following statistical setup

D∞
1 ∣λ

i.i.d.
∼ ⊗

N
E(λ)

λ ∼ Γ(a, b)

Thereby, Γ(a, b) denotes the gamma distribution with parameters a, b > 0. Since the
gamma distribution is well known to be a conjugate prior for the rate of exponential
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4 M/G/1: Observations of the Departure Stream

distributions, it easily follows

λ∣(a, b),Dn
1 ∼ Γ(a + n, b +

n

∑
i=1

Di)

EΓ[λ∣D
n
1 , (a, b)] =

a + n

b +∑
n
i=1Di

f(an+1∣D
n
1 , (a, b)) =

(a + n) (b +∑
n
i=1Di)

a+n

(b +∑
n
i=1Di + an+1)

a+n+1

E[Dn+1∣(a, b),D
n
1 ] =

1

a + n − 1

n

∑
i=1

Di +
b

a + n − 1
.

Recall that the latter equation again re�ects the learning process which is not directly
available in the frequentistic approach in and that for n = 1 it is given by E[D2∣D1, (a, b)] =
1/aD1 + b/a as required in above assumption on the shape of the prior.

4.3.2 On the statistical structure of the law of the embedded

Markov chain

Eliciting a prior distribution for the law of the marks {N(Tn)}n of the marked departure
process described in section 4.2 is a more involved task since the data can not longer be
considered as conditional i.i.d. or equivalently as exchangeable. However, Diaconis and
Freedman (1980) have shown hat an analogue of the de Finetti theorem remains to hold
for laws ful�lling an invariance principle [c.f. Kallenberg (2006)] that is more general than
exchangeability and appropriate for the case of Markov chains. Since this theory will be
used throughout the present chapter, it is brie�y reviewed.

Let Y ∞
1 ∶ Ω → NN

0 be a discrete-time stochastic process with state space N0. Y ∞
1 is called

partially exchangeable if for all n ∈ N

L(Y n
1 ∣tn(Y

n
1 ) = r) = Ut−1

n (r). (PE)

Thereby, Y n
1 = (Y1, . . . , Yn), UB denotes the uniform law on a discrete set B and t ∶= {tn}n∈N

is a certain statistic, i.e. a family of measurable mappings, de�ned by

tn ∶ (i1, i2, . . . , in) ↦ tn((i1, i2, . . . , in)) ∶= (i1, T )) ,

where T = (trs)r,s∈N0 is the transition count matrix de�ned by

trs ∶= #{j ∶ (ij, ij+1) = (r, s), j = 1, . . . , n − 1}.

Condition (PE) is a another way to say that the law of the process Y ∞
1 is summarized by

the statistic {tn}n, c.f. Freedman (1962). If in addition to (PE) recurrence holds for the

process Y ∞
1 , i.e. P(lim sup

n→∞
{Yn = Y1}) = 1, then Diaconis and Freedman (1980, Theorem
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4 M/G/1: Observations of the Departure Stream

(7)) shows that there is a unique measure µ ∈ P(P(N0) ×S) such that for all n ∈ N

P(Yi = yi; i = 1, . . . , n) = ∫

P(N0)×S

py1

n−1

∏
i=1

myi,yi+1
µ(dp, dM).

Thus, any law of a recurrent process also ful�lling (PE) is a mixture of Markov mea-
sures. Note that recurrence is necessary to exclude pathologies from the mixture, see
e.g. Diaconis and Freedman (1980, Example (19)). However, an earlier result appeared
in Freedman (1962) for measures being shift-invariant, a property which clearly implies
recurrence of all states whenever all of the state space is supported by the push-forward
of the particular shift-invariant measure under coordinate-projections. (Note that more
recently Fortini et al. (2002) introduced a stronger version of recurrence and showed
that laws of processes whose successor matrix is row-wise exchangeable always ful�ll this
strong recurrence.) Furthermore, Freedman (1962) showed an even more general result
for stationary probabilities being summarized by a S-structure statistic and noted that
the family t = {tn}n has S-structure. Since the M/G/1 system is assumed to be in equi-
librium, we feel that this approach is appropriate for the embedded Markov chain of the
underlying queueing system. Roughly, this implies for above de Finetti-style theorem for
Markov chains that it su�ces to regard the mixing measure µ having support merely
consisting of S since the corresponding invariant distribution p is uniquely determined by
the stochastic matrix M [see e.g. Chung (1967) or Freedman (1983)]. In the case of the
embedded Markov chain of M/G/1 the M -invariant distribution is expressible explicitly
in terms of M , see chapter 2.

In analogy to the previous subsection, we examine under what constraints the support of
µ ∈ P(S) can be shrunk to the set of ∆ matrices governing the embedded Markov chains of
M/G/1 systems. Of course, L(N) is summarized by the family {tn}n since it is Markovian.
Yet, {t}n is not minimal su�cient, a fact that yields a di�erent grouping of data strings of
equal length in equivalence classes, see examples below. Clearly, there are two properties
of M being not ful�lled for arbitrary in�nite stochastic matrices. Namely ∆-shape and
homogeneity. They should be re�ected in the appropriate statistic summarizing a mixture
of laws of embedded Markov chains of M/G/1.
For any positive integer n, let Dn ∶= {(ai) ∈ Nn

0 ∶ ai+1 − ai < 2,∀1 ≤ 1 ≤ n − 1} be the n-
dimensional down-skip-free subspace of Nn

0 , D∞ ⊂ NN
0 the down-skip-free sequence space

and D ∶= ⋃n∈NDn the collection of down-skip-free strings of any length. Moreover, let
τ ∶= (τn)n∈N be a family of measurable mappings, each τn operating on Dn through

τn ∶Dn → N0 × {0,1, . . . , n} ×NN
0

an1 ↦ (a1,
n

∑
k=1

δak0, I(a
n
1)) ,

where I(an1) ∶= (ιr(an1))r∈N0
∶= (#{j ∶ aj+1 − aj + (1 − δaj0) = r, j = 1, . . . , n})

r∈N0
are the

("zero-adjusted") increments of the data string an1 . Thus, τn records the length, the
initial state, the number of zeros and the increments of the down-skip-free data string an1 .
Call two strings an1 , b

n
1 ∈ Dn τ -equivalent and write an1 ∼τ b

n
1 if and only if τn[an1 ] = τn[b

n
1 ].

Following examples are given to clarify the meaning of the statistic τ .
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Example 4.3.1. De�ne the following elements of D9 by

a9
1 = 121211100, b9

1 = 102232101, c9
1 = 123332100

d9
1 = 100234543, e9

1 = 121002343, f 9
1 = 102102323

g9
1 = 100234543, h9

1 = 100002345, i91 = 210101100

For instance, g9
1 can be viewed as

1 0 0 2 3 4 5 4 3

+0 +0 +2 +2 +2 +2 +0 +0 .

This corresponds to the possible path (depending on the times T n1 ) given trough

X1 X2 X3 X4 X5 X6 X7X8 X9 ,

where a snake arrow depicts an arrival, a zigzag arrow a departure and Xi = (Ti,N(Ti)).
Note that the system is idle after the second and the third departure, respectively, and
occupied apart from that.

We contrast above by depicting i91 the same way.

2 1 0 1 0 1 1 0 0

+0 +0 +1 +0 +1 +1 +0 +0 .

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 .

We contrast g9
1 and i91 due to the following reasons. Having a look at the path of g9

1 and
i91, respectively, one observes that the i-path has more idle times as the g-path. Roughly
speaking, that is because the g-path is governed by more increments of higher magnitude.
Thus, the probability that the system is unoccupied is lower. This responds to the fact that
the arrival and the departure stream of g do not look like having the same intensity rate,
while the streams of i rather do. However, this is a basic assumption of ours, since the
system is assumed to has run an in�nitely long time. So, if g9

1 would be a "typical" path,
the embedded Markov chain is rather likely to be transient. Further, keep in mind that
only the stream below the horizontal line is communicated to us as data and notice that
the only equivalences among above data examples are

a9
1 ∼τ b

9
1 ∼τ c

9
1 and d9

1 ∼τ e
9
1 ∼τ f

9
1 ∼τ g

9
1.
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The string i91 cannot be a member of any equivalence class of the other strings appearing
in the example since it has initial state departing from all the other strings.

Remark 4.3.2. (i) In a sense, the statistic τ can be seen to lie in between of t and
o, o denoting order statistic, but closer to t in the following sense. t-equivalence
clearly implies τ -equivalence, since one can recover the number of appearance of
states among data, as well as the increments ι. The converse is not true nor does
o-equivalence imply τ -invariance or the other way around, respectively. Of course,
t-equivalence implies o-equivalence, see e.g. Diaconis and Freedman (1980, Proposi-
tion (27)).

(ii) For a data string of �nite length, it is obvious that the number of elements of the
corresponding equivalence class is bounded. However, eliciting the exact number of
elements included in this class seems to be an interesting but hard task, as it is in
the case of t. We leave this as an open combinatorial problem, see also section 5.4
of the next chapter.

We continue with mentioning an observation concerning the number of arrivals and de-
partures that occur within a time horizon of observation Tn − T1. By de�nition, it is
clear that one observes n departures. However, even if the statistic τ keeps track of the
number of increments of the process, it may happen that the number of arrivals di�er in
τ -equivalent strings. For instance note that in above example the number of arrivals in
b9

1 exceeds that of a
9
1 by one despite a9

1 ∼τ b
9
1. We pin that fact as a proposition.

Proposition 4.3.3. The number of departing customers during Tn − T1 is an invariant
of τ , but the number of arriving customers is not.

Now, we go on to shed more light on the aforementioned fact that the numbers of arrivals
in equivalent strings can di�er. This fact corresponds in a sense to the one that equivalent
stings may not end with the same symbol. However, in the case of mixtures of general
Markov chains this is not true, i.e. the terminal state xn of a data string xn1 is completely
determined by x1 and the transition-counts. For a proof see e.g. Martin (1967, Lemma
6.1.1.) and notice that it continues to hold true for countable in�nite state spaces.

Lemma 4.3.4. Let for an1 , b
n
1 ∈ Dn hold an1 ∼τ b

n
1 . Then

(i) an ∈ {0,1} ⇔ bn ∈ {0,1},

(ii) an = r > 1 ⇔ bn = r.

Proof. (i) By contradiction.
Suppose an ∈ {0,1} and bn ≥ 2. Since an1 ∼τ b

n
1 , one necessarily has

∑
r∈N0

ιr(a
n
1) = ∑

r∈N0

ιr(b
n
1).

Thus,

n−1

∑
k=1

[ak+1 − ak + (1 − δak0)] =
n−1

∑
k=1

[bk+1 − bk + (1 − δbk0)] , (∗)
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which in turn yields

an +
n−1

∑
k=1

δak0 = yn +
n

∑
k=1

δbk0, (∗∗)

since a1 = b1 and bn ≠ 0 by assumption.
Now, treat the two possible cases an ∈ {0,1} separately.

Case 1:(an = 0) By (∗∗), one has

0 − bn =
n

∑
k=1

δbk0 −
n

∑
k=1

δak0 + δan0
°
=1

⇒ bn = −1.

Case 2:(an = 1) Again by (∗∗), one has

1 − bn =
n

∑
k=1

δbk0 −
n

∑
k=1

δak0 + δan0
°
=0

⇒ bn = 1.

This shows necessity. By interchanging the roles of an1 and bn1 , su�ciency is proven the
same way. Thus, (i) follows.

(ii) To prove (ii), note that

n−1

∑
k=1

δak0 =
n

∑
k=1

δak0 =
n

∑
k=1

δbk0 =
n−1

∑
k=1

δbk0,

exploiting (i) and an1 ∼τ b
n
1 . Thus, (∗) yields

an − a1 = bn − b1.

The lemma states that equality of the terminal state must only hold if the terminal
state exceeds 1. This re�ects the fact that the laws over which one mixes are governed
by ∆1,1-matrices. As a consequence of the Lemma 4.3.4 we have that the statistic τ
possesses a certain kind of algebraic structure which re�ects stability of the equivalence
classes induced by the statistic with respect to extension of the data. This structure was
discovered in Freedman (1962) who called it S-structure. Here we consider its analog
on the space D. That is a statistic σ = {σn}n∈N is said to have S-structure on D if for
an1 , b

n
1 ∈ Dn and xm1 , y

m
1 ∈ Dm such that an1 ∼τ bn1 , x

m
1 ∼τ ym1 and an1x

m
1 , b

n
1y

m
1 ∈ Dn+m it holds

true that an1x
m
1 ∼τ bn1y

m
1 , n,m ∈ N. S-structure will then enable us to identify stationary

measures summarized by τ in a unique way as mixtures of laws of embedded Markov
chains of M/G/1.

Proposition 4.3.5. τ has S-structure on D.
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Proof. By above Lemma 4.3.4, nothing has to be shown if an > 1. However, if an ∈ {0,1}
and an ≠ bn then, again by the lemma, one has bn = 1 − an. Since the stacked data strings
of length n +m are down-skip-free by assumption, one has an1x

m
1 ∼τ bn1y

m
1 . Indeed, seeing

an increment from 0 to r ∈ N0 provides the same τ -information as from 1 to r by de�nition
of τ .

Notice that without recording the number of zeros among the data, one would not have
S-structure for τ , i.e. τ̃[an1 ] ∶= (a1, I(an1)) does not possess S-structure. For a counter
example take g9

1 and h9
1 from previous example and note that both have 1 as initial state

and four increments of magnitude 0 and 2, respectively. Hence, g9
1 ∼τ̃ h

9
1 but g9

144 is not
τ̃ -equivalent to h9

144. Roughly speaking, seeing how often the system is idle is informative
with respect to the M/G/1 system.

The following lemma states an invariance property of laws summarized by τ with respect
to scaling the magnitude of the coordinate process. It is necessary for the proof of the
subsequent theorem since it will establish the homogeneity of the stochastic matrix.

Lemma 4.3.6. Let P ∈ P(D) be summarized by τ . Furthermore, let xn1 ∈ Dn with xi > 0,
∀i = 1, . . . , n and for r ≥ 1 let yn1 = xn1 + r

n
1 , where r

n
1 = (r, r, . . . , r). Then it holds true that

P (xn1 ∣x1) = P (yn1 ∣y1).

Proof. First of all note that yn1 ∈ Dn and that
n

∑
i=1
δxi0 = 0⇔

n

∑
i=1
δyi0 = 0. Moreover,

P (xn1 ∣x1) = P (xn1 ∣x1,∑ δxi0 = 0) = P (xn1 ∣τn(x
n
1))P (I(xn1)∣x1,∑ δxi0 = 0)

= P (xn1 ∣x1,∑ δxi0 = 0, (#{j ∶ xj+1 − xj = s, j = 1, . . . , n})s∈N0
)P (I(xn1)∣x1,∑ δyi0 = 0)

= P (yn1 ∣x1 + r,∑ δyi0 = 0, (#{j ∶ yj+1 − yj = s, j = 1, . . . , n})s∈N0
)P (I(yn1 )∣x1 + r,∑ δyi0 = 0)

= P (yn1 ∣τn(y
n
1 ))P (I(yn1 )∣x1,∑ δyi0 = 0) = P (yn1 ∣y1) .

We are now in position to state the mixing theorem for M/G/1, which will give rise to a
prior distribution that is concentrated on the subspace of Markov measures (MM) that are
governed by stochastic matrices which are of the shape discussed in the present section.
Denoting this space as MM[∆

(h)
1,1 ] and equipping it with the sigma �eld induced by weak

convergence turns it into a measurable space.

Theorem 4.3.7. Let P ∈ P(D) be a shift-invariant probability summarized by τ . Then, P
is uniquely representable as a convex mixture of Markov measures governed by homogenous
∆1,1 stochastic matrices. That is, there is an unique measure µ ∈ P(∆

(h)
1,1 ) such that

P (⋅) = ∫

MM[∆(h)1,1 ]

Q(⋅)µ(dQ).

Proof. By David Freedman's S-structure Theorem [Freedman (1962, Theorem 1)] it holds
that P is a mixture of shift-ergodic laws being themselves summarized by τ . Since τ is
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a function of t, P is a mixture of MM [Freedman (1962, Theorem 2)]. Moreover, the
space of MM's supporting the mixing measure µ consists of laws governed by stochastic
matrices possessing ∆-shape since supp(P ) = D. By above lemma, homogeneity of these
matrices follows for all row indexes i ≥ 1. To see, that the zeroth row has to equal the
�rst, just note that 0101 ∼τ 0110 ⇒ m01 = m11. Using this and 01010 ∼τ 01100 it follows
m00 = m10. Now, since τ has S-structure, 0101r ∼τ 0110r for r > 1. But then, Q ∈ MM
being summarized by τ yields Q(0101r) = Q(0110r) and this, in turn, m0r =m1r.

To state Theorem 4.3.7 in the language of Choquet theory, see chapter 5, the space of
stationary measures that are summarized by the statistic τ is a simplex with boundary
consisting of all Markov measures governed by homogenous ∆1,1-matrices. Any nontrivial
convex mixture thus gives a barycenter in the interior of this simplex. Using an obvious
parametrization, one can state the result rather statistically.

Corollary 4.3.8. Let X∞
1 be a sequence of stationary data with state space N0 inducing

a joint distribution which is summarized by τ . Then for n ∈ N and all strings of data xn1
one has

P(Xj = xj; j = 1, . . . , n) = ∫

∆
(h)
1,1

px1

n−1

∏
i=1

mxi,xi+1
µ̃(dp, dM).

The corollary states that the problem of �nding a prior distribution, modeling the mixing
measure µ, can be reduced to that of �nding a random object which takes a.s. values in
the space P(N0) × ∆

(h)
1,1 and whose distribution is analytically tractable. Obviously the

random objects ν andM are dependent which complicates the model in general. However,
since ν is the unique invariant distribution with respect to M , it is fully determined by
M and thus can be viewed as an injective function of M . This simpli�es the mixture in
Corollary 4.3.8 in the way that one merely has to take into account the distribution of
the random stochastic ∆

(h)
1,1 matrix. That is

P(Xj = xj; j = 1, . . . , n) = ∫

∆
(h)
1,1

νx1(M)
n−1

∏
i=1

mxi,xi+1
µ̂(dM),

for a µ̂ suitably related to µ. We stress again, that the particular shape of the ∆-matrices
allow for an explicit form of p(M) in terms of probability generating functions, see Harris
(1967).

It is known that some measures summarized by a certain statistic can be described in
terms of dynamical systems whose dynamics are induced by an associated transformation
of the underlying space. The bridge from statistics to dynamical systems is built by er-
godic theory, see e.g. Maitra (1977). For instance, exchangeable probability measures, i.e.
measures summarized by the order statistic, are invariant with respect to transformations
induced by �nite permutations. Recall that exchangeable probability measures are auto-
matically stationary. Furthermore, stationary measures summarized by transition counts
can be argued to be invariant with respect to transformations induced by switching certain
blocks, see below. In both of these cases, there is a fact that simpli�es the investigation
of classes of equivalent strings, namely the multi-set of symbols through which a string
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passes is the same for all equivalent strings. However, in the here considered situation
this is not necessarily true as above example shows. Hence, a description in terms of cer-
tain permutation-like transformations of the corresponding sequence of increments seems
more useful since their multi-sets are invariants for τ . What can be certainly stated is that
under τ -equivalence invariance of the probability measure with respect to "more" than
only block-switch transformations holds. It seems natural to investigate transformations
induced by changes in the increments. In order to formalize this approach, denote for a
sting xn1 the string of ordered increments occurring in xn1 as I[xn1 ] ∶= i

n−1
1 (xn1).

Proposition 4.3.9. If P is a stationary probability measure summarized by τ , then P is
invariant with respect to the transformations induced by the following operations

(i) switching two blocks whenever these have the same initial state and (a) end with the
same symbol or (b) one ends with a 0 and the other with a 1,

(ii) for a permutation σ of (k + 1) elements, permuting a block of positive increments

im+km into i
σ(m+k)
σ(m) .

Proof. One has to argue that value of the statistic τ remains the same under above
transformations. Since an increment from 0 has the same observable character than
an increment from 1, the assertion of (i) follows from Lemma 4.3.4. For (ii) note that
permuting the order of increments within a block of positive increments does not change
the accumulated increment over this block. Thus, the number of 0's of the string remains
the same.

The transformations induced by (i) and (ii) of Proposition 4.3.9 give necessary conditions.
However, these are not su�cient, i.e. for two stings that are equivalent with respect to τ
it is in general not possible to turn one into the other by only applying transformations of
the mentioned types. As an example regard the strings 2324321 ∼τ 2354321. Note that it
is not possible to generate state 5 in the �rst string by solely applying transformations of
type (i) and (ii). The reason is that also block-switch transformations of the increments
are allowed that keep the number of zeros among the sting constant. However, one can
hardly formalize those transformations in a neat way and should stick to the description
using the statistic τ .

A further description of measures being summarized by the statistic τ can be given using
a common ergodic theoretical categorization. This again re�ects the fact that τ lies, in a
sense, in-between the order statistic and the transition counts. Therefor, keep in mind that
all probabilities summarized by the order statistic are invariant under �nite permutations,
and note from Diaconis and Freedman (1980) that stationary probabilities summarized
by transition counts are invariant with respect to a certain subgroup of permutations.
This subgroup consists of all permutations that can be described as transformations of
blocks that begin with the same symbol and end with the same symbol and hence do not
a�ect the transition counts.
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4.3.3 A prior for the law of the embedded Markov chain

Having clari�ed the statistical structure of the data we are observing, we continue by
�nding a suitable prior, i.e. by modeling the mixing measure µ in above theorem. We
motivate this modeling by an urn process. For urn processes yielding suitable prior dis-
tributions for Bayesian statistics see e.g. Blackwell and MacQueen (1973), Hoppe (1984)
, Fortini and Petrone (2012a) and references therein. However, our prior can not be cho-
sen in a way such that the rows of the stochastic matrix are seen to be independently
sampled. This is due to the following fact [see Fortini and Petrone (2014, Corollary 1)].
The rows of M are stochastically independent with respect to µ if and only if transition
counts together with recording the �rst state are predictive su�cient, i.e. if and only if
the probability of observing the next datum only depends on the observation of the last
state and the observed number of transitions out of this last state. This clearly fails in
our context since transitions of the same magnitude are informative no matter what the
starting state of these transitions was.

Consider the following situation. Suppose there is a countable in�nite set C called the
color space. Without loss of generality, take C = N0. Furthermore, suppose there is an urn
Ui associated to each color i ∈ C, i.e. think of Ui being colored by color i. Let Ui contain
initially αi black balls and start drawing a black ball from urn Ux1 , where x1 is chosen
according to a (stationary) start distribution p0 ∈ P(N0). Then, having drawn the black
ball, replace it together with a ball of color x2 sampled by a color distribution cx1 ∈ P(N0)

and move to urn Ux2 . Once a colored ball is sampled from an urn, replace it together
with another ball of this color and move to the urn of this color. Otherwise, continue as
before. This is the general de�nition of a reinforced Hoppe urn process. However, in the
here considered situation slight modi�cations are needed.
Proceed as described but with the following constraints. Firstly, the initial number of
black balls is the same for all urns, i.e. αi = α, for all i ∈ N0. Secondly, if one draws
a ball from urn i ∈ N0, then the support of the color sampling distribution ci is shrunk
to supp(ci) = N0 ∖ {0,1, . . . , i − 2} for i > 1 and supp(ci) = N0 for i = 0,1. Moreover, the
color sampling distributions ful�ll the shift condition ci({j}) = c0({j − i + 1}). Thirdly,
not only the present urn is reinforced but all urns are reinforced the following way. If
one draws from Ui a ball of color j then replace it together with an additional ball of the
same color and add to Uk, k ≠ i, an additional ball of color j − i+ 1− δk0 − δi0 and move to
Uj. If a black ball is drawn from Ui, sample a color l and replace the black ball together
with the ball of that color. Additionally, add a ball of color l − i+ 1− δk0 − δi0 to Uk, k ≠ i.
Now, let X∞

1 denote the process of the colors successively sampled according to above urn
process. That yields the predictive scheme

Xn+1 = ●∣X
n
1 ∼

α

α + n − 1
c0({● −Xn + 1}) +

1

α + n − 1

n−1

∑
i=1

δXi+1−Xi+(1−δXi0)({●}). (P)

Now, it is shown in Fortini and Petrone (2012a) that a reinforced Hoppe urn process as
introduced above is partially exchangeable. Further, it is well known from Blackwell and
MacQueen (1973) that the right hand side of (P) converges for n → ∞ to a Dirichlet
process with base measure αc0(⋅). However, this is essentially the same whatever value
Xn takes except of the di�erent shifting of c0 in (P). This motivates the following choice
of a model for the prior µ.
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Let µ ∈ P(∆
(h)
1,1 ) be the distribution on the space of homogenous ∆1,1 stochastic matrices

such that the 0th row of M ∈ ∆
(h)
1,1 is sampled according to a Dirichlet process with base

measure αc0(⋅) and the ith row, i ≥ 1, is a copy of the 0th row but shifted i − 1 times to
the right and the resulting "empty" entries of the row �lled with zeros. Furthermore, (P)
tells one how to update that prior distribution by seeing the data Xn

1 .

To summarize the present section, assume that the dataX∞
1 forms an in�nitely extendable

stationary process with law summarized by τ . Thus, X∞
1 is a mixture of stationary Markov

chains governed by homogenous ∆1,1 stochastic matrices. The distribution of the random
stochastic matrix, i.e. the prior, is such that it makes rows dependently sampled from a
Dirichlet process with parameters α > 0 and c0(⋅) ∈ P(N0). Symbolically we write

M ∼Dir(∆)(αc0)

X∞
1 ∣M

MM
∼ M.

The posterior of M after having seen data Xn
1 is given by

M ∣Xn
1 ∼Dir(∆)(cn),

where cn is the discrete measure given through

cn({k}) = αc0({k}) +
n−1

∑
i=1

δXi+1−Xi+(1−δXi0)({k}).

Thus, the posterior guess on the stochastic matrix M is given by

E[M ∣Xn
1 ] =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

c̄n({0}) c̄n({1}) c̄n({2}) c̄n({3}) c̄n({4}) . . .

c̄n({0}) c̄n({1}) c̄n({2}) c̄n({3}) c̄n({4}) . . .

0 c̄n({0}) c̄n({1}) c̄n({2}) c̄n({3}) ⋱

0 0 c̄n({0}) c̄n({1}) c̄n({2}) ⋱

0 0 0 c̄n({0}) c̄n({1}) ⋱

0 0 0 0 c̄n({0}) ⋱

⋮ ⋮ ⋮ ⋮ ⋱ ⋱

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where c̄n({⋅}) =
cn({⋅})
α+n−1 . The prior guess on M is given in a similar way.
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4.4 Inference for the Hidden Service Time Distribution

4.4.1 Estimators for queueing characteristics

In the previous section a posterior law of parametric form for the inter-departure time
distribution was obtained. Moreover, a non-parametric posterior law for the stochastic
matrix M governing the embedded Markov chain of the M/G/1-system was obtained
based on a Dirichlet process sampling the 0th row of M , which describes the probability
for the number of customers who enter the system during a service time. Now, we will
use both to obtain an estimator for the service time distribution. Obtaining a direct and
tractable closed-form prior to posterior analysis for the service time distribution based
on observations given through the marked departure process as described before seems
hardly possible. However, a natural approach can be given by the connection provided
by the functional relation ship

g(z) = a(1 −
z

λ
) .

Exploiting this, we de�ne a plug-in estimator for the service-time LST g(⋅) after having
seen data (T,N(T ))n1 by

ĝn(z) ∶= γn (1 −
z

λ̄n
) ,

where λ̄n = EΓ[λ∣(Ti+1−Ti)n1 ] denotes the posterior expected value of the variable λ under
the prior speci�ed in section 4.3 and

γn(z) =
∞
∑
k=0

zkc̄n({k}) = ED(∆) [
∞
∑
k=0

zkA({k})∣Xn
1 ]

denotes the posterior expected value of a(⋅), the p.g.f. of the discrete distribution of AS,
which is denoted as A({⋅}) and itself is regarded as being random. Notice that the inter-
change of the sum and the limit is justi�ed since ED [a(z)] = ED [∫N0

zkPAS(dk)] and for
any z ∈ [0,1] the mapping k ↦ zk is a real valued measurable function and ∫N0

zkα(dk) <

∞ by assumption. Thus, one has ΠD (∫N0
zkP (dk) < ∞) = 1 and ED [∫N0

zkP (dk)] =

∫N0
zkED[P ](dk), see e.g. Feigin and Tweedie (1989) or Phadia (2015).

Based on ĝn(⋅), one is able to give estimators for other values of interest. One of those is the
tra�c intensity ρ ∶= E[S]/E[Ti+1−Ti] = λσ, where σ denotes the mean service time and λ−1

is the mean inter-departure time. The tra�c intensity appears in further characteristics
as the LST of the waiting-time distribution or the p.g.f. of the queue-length distribution
and hence is of particular interest. An immediate approach is given by de�ning a plug-
in estimator for ρ through ρ̂n ∶= λ̄nσ̂n, where σ̂n is given by σ̂n = − [ ∂

∂z ĝn(z)]∣z=0
, i.e. the

negative of the derivative of ĝn(⋅) elaborated at z = 0. Such estimators can be problematic
with respect to translating (uniform) large sample results for γn(⋅) to that for σ̂n. However,
in the here considered situation things become easier since ρ has a direct relation to the
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random variable AS which we have access to through the observations. Indeed, one has

ρ̂ = λ̂nσ̂n = λ̂n

⎡
⎢
⎢
⎢
⎢
⎣

∞
∑
k=0

k (1 −
z

λ̂n
)

k−1
1

λ̂n
c̄n({k})

⎤
⎥
⎥
⎥
⎥
⎦∣z=0

=
∞
∑
k=1

kc̄n({k}) = EED;n[PAS ] [AS] .

Based on above estimators, we can de�ne estimators for further queueing characteristics as
e.g. the waiting-time distribution, the busy-time distribution and duration-time distribu-
tion exploiting similar functional relationships. For details on these relationships see e.g.
Nelson (2013, chapter 7). De�ne estimators for the following queueing characteristics

� p.g.f. of number of customers in queue: q̂n(z) =
(1−ρ̂n)(1−z)
ĝn(λ̄n(1−z))−z ,

� p.g.f. of number of customers in the system: m̂n(z) = ĝn(λ̄n(1 − z))q̂n(z),

� LST of waiting time of a customer in queue: ŵn(s) =
s(1−ρ̂n)

s−λ̄n+λ̄nĝn(s) .

For the number of customers served in a busy period as well as the length of the busy
period itself only estimates for the associated functional equation can be given, i.e.

� LST of busy period: b(s) = ĝn(s + λ̄n[1 − b(s)]),

� p.g.f. of number of customers served in a busy period: mb(z) = zĝn(z)(λ̄n[1 −
mb(z)]).

Solutions to these equations may be understood as estimators for the busy time LST and
the p.g.f. of the number of customers served in a busy period. However, the goodness
of those estimators w.r.t. large samples is in question not only from a applied point of
view, i.e. due to deviations appearing from numerical approximations, but also from a
theoretical viewpoint since it is not known if minor changes in λ and γ do lead to minor
changes in the solution to the equations. Put another way, it is not clear whether the
mapping that maps λ and g(⋅) onto b(⋅) and mb(⋅), respectively, is continuous.

We continue by emphasizing the role of the special form of the stochastic matrix M with
respect to the M -invariant distribution p of the Markov chain X∞

1 . We point out that
the speci�c appearance of M allows to write down explicitly the invariant distribution as
a function of M in form of their transforms. That is, the diagram

M
φ //

OO

ψ
��

pOO
ψ
��

a(⋅)
ξ
// π(⋅)

commutes. Therein, for the sake of brevity, ψ on the left-hand side denotes the composi-
tion of the mapping that extends the distribution of AS appearing in the 0th row of M to
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the whole of M and the mapping that maps the distribution of AS onto its p.g.f., while
on the right-hand side it just describes the mapping that maps the distribution p onto its
p.g.f. . Recall from chapter 2 that the mapping ξ is given through

ξ ∶ a(z) ↦ a(z)
(1 − z)(1 − a′(1))

a(z) − z
=∶ π(z).

Certainly, such a description is not possible in general. It even fails for the case of a non-
homogenous ∆1,1 stochastic matrix which governs the embedded Markov chain of M/G/1
with state-dependent service, see Harris (1967, equation (4)). This special feature of
standard M/G/1 enables us to give a direct estimator for the p.g.f. of the distribution of
the system size at instants of departing customers which is, by the PASTA property, the
same for any arbitrary instant of time. This estimator is given by

π̂n(z) = γn(z)
(1 − z)(1 − γ′n(1))

γn(z) − z
.

4.4.2 Posterior consistency

The estimators just de�ned are obvious ones, yet deserve some further theoretical jus-
ti�cation. This will be given by posterior consistency which, roughly speaking, states
that the mass of the posterior law will center around the true data-generating measure.
To be more precise, let for a random probability measure P ∈ PΩ a prior Π ∈ P(P) be

given. Further, let data Y ∞
1 be given such that Y ∣P

iid
∼ P . Then, denote by (Πn)n∈N0 the

sequence of posterior laws of P given observed data Y n
1 , i.e. Πn(C) = Π(P ∈ C ∣Y n

1 ) and
for the sake of completeness Π0 ∶= Π, for all sets C in the sigma �eld induced by weak
convergence of measures. The sequence (Πn)n∈N0 is called consistent at the true data-

generating distribution P0 if for P0-almost all data sequences it holds that Πn
w,n→∞
Ð→ δP0 .

First of all we state posterior consistency of the the parametric sequence of posteriors for
the inter-arrival rate λ.

Lemma 4.4.1. For almost all sequences T∞
1 and for any ε > 0 it holds that

ΠΓ;n([λ0 − ε, λ0 + ε])
n→∞
Ð→ 1,

where ΠΓ denotes the prior distribution for λ as speci�ed in section 4.3 and λ0 the true
inter-arrival rate.

Proof. Let {Di}i, Di ∶= Ti+1 − Ti be the exponentially distributed inter-departure time
data. By conjugacy of the gamma-distribution with respect to exponential likelihoods
and well known properties of the gamma distribution, the posterior expected value of the
arrival rate is given by

EΓ[λ∣D
n
1 ] =

a + n

b +∑
n
i=1 [Di]

,

where (a, b) ∈ R2
+ are the prior parameters. Moreover, the posterior variance is given by

VΓ[λ∣D
n
1 ] =

a + n

(b +∑
n
i=1 [Di])

2 .
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Thus, by means of the SLLN and the continuous mapping theorem, EΓ[λ∣Dn
1 ]

n→∞
Ð→ 1/λ0

and VΓ[λ∣Dn
1 ]

n→∞
Ð→ 0 such that the assertion of the lemma follows from a straight forward

application of the Markov inequality.

Remark 4.4.2. The proof of the previous lemma shows that the Bayes estimator is a
consistent (in the usual sense) estimator. However, for a Bayesian this is not enough. It
is required to know that �uctuations of the random intensity around its estimate become
smaller when sample size increases.

Next, we study the posterior consistency of the random stochastic matrix M ∈ [∆
(h)
1,1 ]

Ω
⊂

SΩ. Virtually, this task requires an extended de�nition of posterior consistency. So, let
M be a random matrix and let Y ∞

1 be a Markov chain with countable state space that,

given M , is governed by M , i.e. Y ∞
1 ∣ M

MC
∼ M . Let a prior Π be given for M and, as

before, denote by (Π(⋅∣Y n
1 ))n∈N0 = ((Πn(⋅))n∈N0 the sequence of posterior laws of M . Call

(Πn)n∈N0 consistent if forM0-almost all sequences of data Y ∞
1 it holds that Πn(C0)

n→∞
Ð→ 1,

for all sets C0 in the sigma �eld on S induced by coordinate-wise convergence containing
M0, the true stochastic matrix governing the data. Here, M0-almost all sequences of data
means the smallest set of data strings which has full mass under the stationary Markov
probability measure that is induced by M0.

Next, we show the posterior consistency of the random matrix M .

Lemma 4.4.3. For almost all data sequences N(T )∞1 and all measurable neighborhoods
C0 of the true stochastic matrix M0 governing the embedded Markov chain of M/G/1 it
holds for the prior ΠD(∆) speci�ed in section 4.3 that

ΠD∆;n(C0)
n→∞
Ð→ 1.

Proof. Since M0 ∈ ∆
(h)
1,1 , it su�ces to regard all neighborhoods of M0 contained in the

trace sigma �led induced by ∆
(h)
1,1 . But then, using mapping ψ in above diagram, it is

enough to show consistency for the 0th row of M , which is nothing but the distribution of
the variable AS. Since the posterior, emerging form the Dirichlet process prior updated
in a manner as described before by data Xn

1 , is as well a Dirichlet process with updated
base measure

cn({k}) = αc0({k}) +
n−1

∑
i=1

δXi+1−Xi+(1−δXi0)({k}),

posterior consistency of M follows from convergence properties of that prior process, see
e.g. Ghosh and Ramamoorthi (2003, chapter 3).

The posterior consistency of the random matrix immediately yields the consistency of the
Bayes estimator for the stochastic matrix and for the p.g.f. of AS, respectively.

Corollary 4.4.4. For M0-almost all sequences of data Xn
1 ∶= N(T )n1 , it holds that

(i) ED∆ [M ∣Xn
1 ]

n→∞
Ð→ M0,
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(ii) VarD∆ [M ∣Xn
1 ]

n→∞
Ð→ 0,

(iii) for any R > 0, sup
z∈[0,R]

∣γn(z) − a0(z)∣
n→∞
Ð→ 0.

Proof. The assertions of (i) and (ii) just follows as necessary consequences of Lemma 4.4.3.
For (iii) note that one has

lim
n→∞

sup
z∈[0,R]

∣γn(z) − a0(z)∣ ≤ lim
n→∞

sup
z∈[0,R]

∞
∑
k=0

zk ∣c̄n({k}) − P
AS
0 ({k})∣

≤ lim
n→∞

∞
∑
k=0

Rk ∣c̄n({k}) − P
AS
0 ({k})∣ ≤ lim

n→∞

∞
∑
k=0

RkED∆ [∣PAS ({k}) − PAS
0 ({k})∣ ∣ Xn

1 ] ,

such that the assertion of (iii) follows from (i) and the monotone convergence theorem.

So far we established posterior consistency with respect to the direct observables. Now
we show that the indirect estimator de�ned above possesses certain consistency properties
as well. Since the LST of the service time distribution is expressed in terms of the p.g.f.
of the distribution AS, which in turn is a power series, it seems natural to undertake
the investigation of posterior consistency within a framework that re�ects this analytic
approach. Hence, posterior consistency of the LST of the service time distribution will
be stated as a kind of a.s. compact convergence inside the posterior law. Call a series of
functions compact convergent to a limit function if its restriction to compact sets converges
uniformly. Therefor, let g0(⋅) denote the the LST of the true service time distribution
G0(⋅), i.e. g0(z) = ∫

∞
0 e−zsdG0(s).

Theorem 4.4.5. For almost all data sequences (T,N(T ))∞1 , all R > 0 and all ε > 0 it
holds true that

P( sup
z∈[0,R]

∣ĝn(z) − g0(z)∣ ≥ ε ∣ (T,N(T ))n1)
n→∞
Ð→ 0.

Proof. Let R > 0 and ε > 0 be arbitrarily chosen real numbers. De�ne

X ∶= sup
z∈[0,R]

∣
∞
∑
k=0

(1 −
z

λ̄n
)
k

c̄n({k}) −
∞
∑
k=0

(1 −
z

λ̄n
)
k

A0({k})∣ ,

Y ∶= sup
z∈[0,R]

∣
∞
∑
k=0

(1 −
z

λ̄n
)
k

A0({k}) −
∞
∑
k=0

(1 −
z

λ0

)
k

A0({k})∣

Then one has

P( sup
z∈[0,R]

∣ĝn(z) − g0(z)∣ ≥ ε ∣ (T,N(T ))n1)

= P( sup
z∈[0,R]

∣γ (1 −
z

λ̄n
) − a0 (1 −

z

λ0

)∣ ≥ ε ∣ (N,T (N))n1)

≤ P (X + Y ≥ ε, Y ≥ ε/2∣(N,T (N))n1) + P (X + Y ≥ ε, Y < ε/2 ∣ (N,T (N))n1)

≤ P (Y ≥ ε/2∣(N,T (N))n1) + P (X ≥ ε/2 ∣ (N,T (N))n1) .

64



4 M/G/1: Observations of the Departure Stream

Exploiting the independence assumption between λ and M , for the �rst addend it follows

P (Y ≥ ε/2 ∣ (N,T (N))n1)

≤ ΠΓ (
∞
∑
k=0

A0({k})
k

∑
i=0

Rk−i ∣λ̄
−(k−i)
n − λ

−(k−i)
0 ∣ ≥ ε/2 ∣ T n1 ) ,

while for the second one has

P (X ≥ ε/2 ∣ (N,T (N))n1)

≤ P(
∞
∑
k=0

sup
z∈[0,R]

∣1 −
z

λ̄n
∣
k

∣c̄n({k}) −A0({k})∣ ≥ ε/2 ∣ (T,N(T ))n1)

≤ ΠD(∆)
⎛

⎝

∞
∑
k=0

(1 +
R

λ0 −O(n−κ)
)

k

∣c̄n({k}) −A0({k})∣ ≥ ε/2 ∣ N(T )n1
⎞

⎠
,

for some suitably chosen κ > 0. Hence the assertion of the theorem follows from Lemma 4.4.1
and Corollary 4.4.4.

As an immediate consequence, one has the a.s. uniform convergence of the estimator
ĝn(z) on sets of the form {z ∈ R+ ∶ z ≤ R} for some positive real number R.

Theorem 4.4.6. For almost all data sequences (T,N(T ))∞1 and all R > 0 it holds true
that

sup
z∈[0,R]

∣ĝn(z) − g0(z)∣
n→∞
Ð→ 0.

Proof. Let R > 0 be an arbitrarily �xed positive real number. Then one has

sup
z∈[0,R]

∣ĝn(z) − g0(z)∣ = sup
z∈[0,R]

∣γn (1 −
z

λ̄n
) − a0 (1 −

z

λ0

)∣

= sup
z∈[0,R]

∣
∞
∑
k=0

(1 −
z

λ̄n
)
k

c̄n({k}) −
∞
∑
k=0

(1 −
z

λ0

)
k

A0({k})∣

≤ sup
z∈[0,R]

∞
∑
k=0

∣(1 −
z

λ̄n
)
k

c̄n({k}) − (1 −
z

λ0

)
k

A0({k})∣

≤
∞
∑
k=0

sup
z∈[0,R]

∣1 −
z

λ̄n
∣
k

∣c̄n({k}) −A0({k})∣ +
∞
∑
k=0

A0({k})
k

∑
i=0

Rk−i ∣λ̄
−(k−i)
n − λ

−(k−i)
0 ∣ .

Hence, the assertion of the theorem follows using above lemmas in combination with
monotone convergence and continuous mapping theorems.

Next, we point out that similar consistency properties hold for several derivatives of ĝn(⋅)
as well as for other queueing characteristics mentioned earlier.

Theorem 4.4.7. Let f ∈ {w, q,m}, f̂n(z) be one of the estimators de�ned at the beginning
of this section and f0(z) the true transform. Then, for any R > 0 and ε, one has

P( sup
0≤z≤R

∣f̂n(z) − f0(z)∣ > ε ∣ (T,N(T ))n1)
n→∞
Ð→ 0.
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Moreover it holds

sup
0≤z≤R

∣f̂n(z) − f0(z)∣
n→∞
Ð→ 0.

Proof. The assertion of the theorem follows directly by applying above results together
with the continuous mapping theorem. The technical detail of the proof are similar to
that of the proofs in section 3.3 and therefore omitted.

4.4.3 Posterior normality

Another frequentist large sample property, which can be used as another justi�cation of a
certain estimator, is given by posterior consistency. Roughly speaking, this means that the
posterior law of the object of interest, centered at its estimate and rescaled suitably, looks
more and more like a Gaussian distribution. Result of that kind are useful for simulations
and give �rst insight into convergence rates of the posterior. The �rst result in this
direction was obtained in Conti (1999) where the author has proven that the posterior
law of the p.g.f. of a random law drawn according to a Dirichlet process and centered at
its Bayesian estimate converges towards a centered Gaussian process possessing a certain
covariance structure. To be more precise, in the notation of the present work, it was
obtained that under suitable constraints it holds that

L(
√
n [a(z) − γn(z)] ∣X

n
1 )

n→∞
Ð→ L(X(z)) ,

where X(⋅) is a centered Gaussian process with covariance structure H(u, v) = a0(uv) −
a0(u)a0(v). Weak convergence, thereby, is considered on the space of continuous functions
equipped with the sup-norm and the theorem holds for almost all data sequences X∞

1 , see
also chapter 3. Moreover, it is easy to show in the parametric situation of the departure
rate that for almost all data sequences T∞

1 it holds that

L(
√
n [λ − λ̄n] ∣T

n
1 )

n→∞
Ð→ N(0, λ−2

0 ).

Thus, combining these two results, one has

Theorem 4.4.8. For almost all data sequences (T,N(T ))∞1 it holds that

L(
√
n [g(z) − ĝn(z)] ∣(T,N(T ))n1)

n→∞
Ð→ L(G(z)) ,

on the space of continuous functions equipped with the sup-norm. Here, G(z) is a centered
Gaussian process with covariance structure

K(u, v) =H (1 −
u

λ0

,1 −
v

λ0

) + uvλ−6
0 a

′
0 (1 −

u

λ0

)a′0 (1 −
v

λ0

) .

Proof. We omit technicalities by mentioning that the proof works along the lines of proof
of Conti (1999, Theorem 3). Thus, the assertion of the theorem follows from results
obtained earlier.
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Applying this result, one is able to give similar results for the centering of the estimators
f̂n appearing in Theorem 4.4.7. In order to do so, the main work to do is to apply previous
results and subsequently calculate the particular covariance structure analogously as in
the proof of Theorem 3.4.8 However, since these are rather non-telling calculations which
are similar to those already presented in section 3.4, we omit the details and leave them
to the interested reader.
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5 Inference for Stationary Data

motivated by the M/G/∞ Queue

5.1 Introduction

The �rst two parts of this thesis were devoted to the continuous-time queueing model with
homogenous Poisson input and a server executing tasks of generally distributed random
time intervals. However, there are situations where one server (or more generally �nitely
many servers) are not appropriate to think of. A classical example is that of cars entering
and leaving a sparsely crowded motorway suggesting that the system is modeled without
interactions of the customers. Furthermore, the emergingM/G/∞ system might be taken
in situations where one is certain in advance that the number of servers is so large that
the system can provide immediate service to any customer. Since customers entering the
system are served immediately, no queue builds up at all. Therefore the interest is not
in waiting times of the customers but rather in the occupation of the system, i.e. how
many cars are on the road, and the customers duration in the system, i.e. how long does
a particular car stay on the motorway. Of course the duration then just amounts to the
service time time which assumed to be distributed according to the general distribution
G. Inference for G on basis of direct observations is a rather easy task which can be dealt
with as in chapter 3 of the thesis. However, direct observations are often not appropriate
to think of. This is mainly due to the facts that either the number of customers in the
system is so large that it becomes impossible to track them all or just due to technical
limitations. Going back to the example of cars on a motorway it might be both. So, one is
interested in a way of making inference for G on basis of observations which can easily be
accessed. However, data one has direct access to or which can be collected e�ciently most
often amounts to raw data which have to be worked up. Such data for instance might
consist of records of the instants of arrivals and departures of customers, i.e. of instants
when cars enter and leave the motorway. This setup was dealt with by Brown (1970)
from a purely frequentist viewpoint. As a result that improves the possibility of making
inference for G in an indirect way by great extent, Brown showed that G is representable
as a function of the c.d.f. of a certain functional of the raw data consisting of arrival and
departure instants. This functional is called the sequence of di�erences, which consists of
the di�erences of the departure instances and the arrivals instances which occur directly
before a particular departure. Plainly, those di�erences do not match the customers ser-
vice times in general. Consciously, the term functional is used since one can think of the
data to emerge from a function that maps two divergent sequences of real numbers onto
another sequence of reals. The sequence of di�erences then was shown to be a stationary
and ergodic sequence of random variables. Exploiting the obtained relationship of G and
the c.d.f. of the sequence of di�erences, Brown de�ned estimators for G. However, these
estimators are based on an estimator for the c.d.f. of the sequence of di�erences which,
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roughly speaking, is some version of the empirical measure. Put di�erently, Brown pre-
tended as the data was i.i.d. which it is certainly not. He remarked that fact at the end
of his work by stating that "it is clearly not the best estimator in any sense because we do
not use all the information". Obviously the information which wasn't used consists of the
interplay of the projections of the data. Simply put, the way he used the data only asked
how often does a particular length of data appear rather then when (in the sense of the
structure of the data) do a certain length appear. From that perspective the estimator
provided by Brown is the most workable one but at the same time it is the worst one can
think of.

The problem of embedding these ideas into a Bayesian framework is manifold. The major
point is that a Bayesian's considerations have to start where Brown's came to an end.
This is quite natural and due to the fact that a Bayesian has to clarify the mixing measure
before being able to model it in some workable way. Anyway, from a Bayesian perspective,
the data in form of the sequence of di�erences is not ergodic at all. As observed data one
has to express her uncertainty in the measure that might have generated the sequence of
di�erences in form of an integral mixture. A theoretically deep problem emerges from the
fact that the space of possible measures, i.e. the space of shift-ergodic measures, is enor-
mous. Another problem is that the integration with respect to some appropriate mixing
measure has to be clari�ed. This is usually done by a suitable parametrization. However,
those problems become even harder if the space the data takes values in becomes more
general. Hence, in order to not lose track of the problem, the state space will be assumed
to be a �nite set. For the original problem that means that the length of the di�erences
has to be �nitely categorized. A parametrization is then given by using the algebraic
idea of the inverse limit, which yields an appropriate parameter space. Subsequently, a
reasonable prior is provided under several assumptions on the sampling scheme of the
data and its update to the posterior is de�ned.

The chapter is organized in several sections. Section 5.2 recalls the paper of Brown
(1970) in full extent. In section 5.3 the mathematical preliminaries are presented in
order to clarify the problem and to describe the di�culty of making Bayesian inference
for stationary data. Section 5.4 is devoted to the issue of describing the magnitude
of equivalence classes of binary that emerge from a statistical judgment which departs
from independence. This generalizes the well known fact that the equivalence classes of
exchangeable binary data have (

n
k
) elements, where k ≤ n is the number of "successes"

among a data string of length n. The subsequent sections deal with the issue of �nding a
suitable parameter space of the shift-ergodic measures under consideration (section 5.5)
as well as an explicit model for a prior distribution (section 5.6). In section 5.6 it is also
demonstrated how the prior may be updated through observed stationary data.

5.2 Background from Brown's work on M/G/∞ queues

The statistical analysis of stochastic systems often becomes a sophisticated task due to
relatively general structures appearing for which one would have to provide tools for sta-
tistical inference. The more is known about the structure in advance, i.e. "smaller" the
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model is in a particular sense of dimension which is to specify, the more manageable the
statistical evaluations become. That is due to the fact that often "�nite-dimensional"
models do possess a neat parametrization of the stochastic mechanism generating the
data. However, if the data being observed can not be assumed to be generated by a
"�nite generator" it is in question what meaning a parametrization or a parameter, re-
spectively, does have.

The theory of queueing systems will serve as a motivating �eld for the rather theoretical
considerations in this text. In queueing theory general stationary processes do appear
frequently and from a statistical viewpoint one is often intended to make inference for
them. However, directly eliciting a suitable prior distribution for laws governing these
processes is apparently a di�cult task as well as the formalization of the learning process
induced by observation of data. The main reason for this is that one has to express one's
uncertainty in the structure among the data itself if it is not known in advance.
For instance, if one is to make inference for the waiting time distribution or the queue
length distribution in a M/G/1/∞ system by only observing the service times and the
inter-arrival times of customers, one can employ indirect methods which involve particular
transforms of those distributions. This approach, which consists of a functional relation-
ship, allows to bridge inference methods for the distributions of the observables to the
distributions of interest by continuity and di�erentiability properties of the functional.
The point is that the relatively simple stochastic structures of the input variables are
exploited to provide inference procedures for the structurally complicated ones. However,
neither gives this a possibility for making inference for the structure of the target vari-
ables, nor is such an approach always available. An example where it is not is provided by
the following (frequentistic) statistical setup of an M/G/∞ system which is due to Brown
(1970) and which is brie�y reviewed in the following.

Suppose an M/G/∞ system is given. Since the number of servers is arbitrarily large,
each customer can be viewed to have her own server. Hence, no queue builds up and no
customers waiting times arise. Instead, the interest may lie in the number of customers
being present in the system or the duration of a customer, respectively. The original
motivation in the paper of Brown was to model cars on a highway. The only observation
one has access to are the times when a car enters and leaves the highway, respectively,
and the main interest is in the service time distribution, i.e. in the distribution that
governs the time a car spends on the highway. For the sake of simplicity interactions
of cars as in the form of tra�c jams are omitted. On a �rst glance the problem hardly
seems to be solvable. Yet, Brown found an ingenious way to handle it. The basic idea
is to schedule the instants of arrivals to the system and departures from the system
the following way. Let (Ω,A,P) denote an abstract probability space. Furthermore, let
(Ai ∶ Ω → R)i∈Z and (Di ∶ Ω → R)i∈Z denote the sequence of random time points of
customer's arrivals and departures, respectively, occurring to a M/G/∞ system. Thus If
a departure D is observed, it is matched to the nearest arrival being less than D which
will be denoted as AD. Thus, AD = sup{Ai ∶ Ai < D}. De�ne the sequence of di�erences
(Zi)i∈Z by Zi ∶=Di −ADi . The assumption of in�nitely extendability of the system indeed
ensures that the sequence (Zi) is actually in�nitely long. Plainly, (Zi) does not necessarily
reproduce the duration of a customer in the system since the customer departed at D does
not have to have arrived to the system at time point AD. This is an issue being dealt
with later on. First note a statement about the sequence (Zi).

70



5 M/G/∞: Observations of Arrival and Departure Instances

Lemma 5.2.1 (Brown). The sequence of di�erences (Zi)i∈Z is stationary and ergodic.

This is a remarkable result even if not that surprising on a second glance. Roughly, since
the input stream is a Poisson process with rate λ > 0, i.e. the inter-arrival times of the
customers are assumed to be independent and identically distributed according to an
exponential distribution with rate λ, and the service times are assumed to form an i.i.d
sequence following a general distribution the functional (Zi) has no chance to depart from
stationarity. Keep in mind that any i.i.d. sequence of random variables is stationary (to
be de�ned rigorously below), which is, roughly speaking, due to the factorization of their
joint law into a product measure. For a random variable X ∶ Ω → R denote by L[X] the
law of X. Put another way, L[X] is the push-forward of P under the mapping X. By
stationarity, it holds that L[Zi] is the same for all i ∈ Z. Hence, the c.d.f. of Zi is the
same for all i ∈ Z and will be denoted by H ∶ R+ → [0,1].

Brown's paper moves on by proving a functional relation ship between the H and the
distribution G of the time spent by the customers in the system.

Lemma 5.2.2 (Brown). G(x) = 1 − (1 −H(x))eλx.

This functional relationship enables one to transfer statistical inference for H to that
of G which was of original interest. For the statistical evaluation of H, he chose a
purely frequentist approach. The method is a nonparametric one that uses Ĥn(x) ∶=

1/n∑
n−1
k=0 1[0,Zi](x) as an estimator for H(x). Further, V̂n(x) ∶= 1 − (1 −Hn(x))eλ̂nx and

Ĝn(x) ∶= sup0≤y≤x V̂n(y) serves as a plug-in estimate forG, where λ̂n is the sample intensity.
The estimator is then justi�ed by a consistency result.

Theorem 5.2.3 (Brown). (i) Ĥn
n→∞
Ð→ H a.s. uniformly,

(ii) V̂n
n→∞
Ð→ G a.s. uniformly on compact intervals,

(iii) Ĝn
n→∞
Ð→ G a.s. uniformly.

Thus, the de�ned estimators are able to recover G arbitrarily precise in a certain metric as
the amount of data increases. The proof of (i) of that theorem mainly relies on exploiting
of the ergodic theorem [see e.g. Petersen (1989)] applied to the function 1[0,Zi](x). Notice
that it is possible to apply the ergodic theorem since (Zi) was shown to be stationary
and ergodic. Assertion (ii) is an easy consequence of (i) and (iii) is a dodge which allows
to de�ne an estimator that converges "globally uniformly" instead of only "locally uni-
formly". See the paper of Brown for further details.

In a brief discussion at the end of his paper Brown himself pointed out that it is clearly
not the best estimator in any sense because we do not use all the information. Even if
Brown did not further specify what information he exactly meant to be dropped, it is
almost obvious what it is. The estimator Ĥn only processes "absolute" information about
the length of an observed di�erence Z but not the information "when" a certain length
occurs with respect to the other observations. More precisely, the estimator pretends as
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the observed data Zn
1 ∶= (Z1, . . . , Zn) were i.i.d. and leaves out the dependence structure

among the projections Zi. Thus, if one is to improve the estimator one would have to
embed the problem into a larger framework in a way that includes the dependency of the
data.

5.3 Theoretical Preliminaries

If one would like to undertake inferential analysis from the Bayesian viewpoint for the
statistical setup just presented, the problem indicated by Brown appears at the very �rst
rather than at the end of some frequentistic procedure. The reason therefor is the sub-
jectivistic approach of probability which builds the theoretical fundament of Bayesian
statistics. It forces one to approach the problem from a less direct and more theoretical
direction because a Bayesian has to elicit a prior distribution on the space of measures
that possibly generated the data. Since the data forms a (general) stationary sequence
of random variables, this space cannot be shrunk to that of all i.i.d measures in general
as was done tacitly by Brown's frequentist approach. This rather heuristical explanation
will be described more precisely subsequently in the sequel.

Suppose a sequence of random quantities (Xi ∶ Ω→ X)i∈N with state space X is given. In
order to ensure X to possess necessary measure-theoretical structure, throughout it will
be assumed that X is a Polish space. That is a completely metrizable separate topological
space, i.e. its topology is induced by a certain metric, any Cauchy sequence w.r.t. this
metric has a limit point in X and the topology has a countable basis. Endow X with
the Borel σ-�eld BX in order to make it a measurable space. Call the sequence (Xi)

stationary if L[X1, . . . ,Xn] = L[Xk, . . . ,Xk+n] for all n ∈ N and k ∈ N0. That is (Xi)

is stationary if the joint law of any of its subfamily is the same as the joint law of the
subfamily after having shifted the index set arbitrarily. This perception allows a more
general description in terms of ergodic theory which is preferable. Let X N denote the
sequence space with entries in X . As a product of Polish spaces, X N is Polish itself and
one can take the Borel σ-�eld BXN as measurable structure on the sequence space. Recall
BXN = ⊗k∈NBX and that a compatible metric is given by the Fréchet-metric

d(x, y) =
∞
∑
k=1

dX (xk, yk)

2k+1(1 + dX (xk, yk))
.

Let P(X N) be the space of all probability measures on X N and endow this space with the
topology induced by weak convergence. That is take as neighborhood basis of µ ∈ P(X N)

sets of the form {ν ∈ P(X N) ∶ ∣∫ fidν − ∫ fidµ∣ < ε; i = 1, . . . ,m; fi ∈ Cb;}. The topology de-
�ned that way in turn induces the Borel σ-�eld BP which is known to be the smallest
σ-�eld which makes the mappings µ↦ µ(A)measurable for all µ ∈ P(X N) and all A ∈BXN .
Moreover, it is well known that P(X N) is a Polish space if X is, see e.g. Kechris (1995).
A compatible metric is given through the celebrated Prohorov-metric, c.f. Billingsley
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(1999), or the metric de�ned by

dP(µ, ν) =
∞
∑
k=1

∣∫ fkdµ − ∫ fkdν∣

∥f∥∞
,

where {fk} ⊂ Ud ⊂ Cb is a suitably chosen subset of uniformly continuous (w.r.t. d) and
bounded functions, c.f. Kechris (1995), and ∥f∥∞ denotes the sup-norm of f .

Next, de�ne the shift T on X N to be the mapping

T ∶ X N → X N

x = (x1, x2, . . . ) ↦ T (x) ∶= (x2, x3, . . . ),

i.e. T a�ects the indices of the sequence x such that k ↦ k+1 which results in a shifting of
x to the left. T is a continuous onto map as is easily seen using the distance d. Therefore
T is measurable with respect to BXN .

The mapping T naturally induces an operator on P(X N) by forming push-forward mea-
sures under T . This approach gives the so called shift-operator. More precisely, de�ne the
operator

T ∶ P(X N) → P(X N)

P ↦ T [P ] ∶= TP,

where the measure TP is de�ned as TP (B) ∶= P (T −1B) ∶= P ({x ∈ X N ∶ T (x) ∈ B}) for
all B ∈ BXN . Since there is hardly a danger of confusion we will use T for both the
mapping on X N and P(X N). It is easily seen that the operator T is continuous and a�ne,
i.e. it holds that T [∑i∈I aiµi] = ∑i∈I aiTµi for any ai ∈ [0,1], ∑i∈I ai = 1 and µi ∈ P(X N),
where I is an arbitrary index set. A physical interpretation is of this is that T preserves
barycenters if the involved measures are stationary.

Call a µ ∈ P(X N) stationary if Tµ = µ, in words if the measure is invariant with respect
to the shift operator. Let P(X N, T ) ⊂ P(X N) denote the set of stationary measures. Note
that there is a geometrical description of the appearance and a topological description of
the size of P(X N, T ) with respect to P(X N). That is the set of stationary measures is
a compact convex and nowhere-dense subset of P(X N). Nowhere-density of a set K ⊂ S
relative to S means that the interior of the closure of K is just the empty set, K̄o = ∅.
Thus a non-stationary probability measure cannot be approximated arbitrarily close by
stationary measures.

As an introductory example of a stationary measure take δx̄(⋅), where x̄ ∶= (x,x, x, . . . )
for a x ∈ X and δx̄ denotes the Dirac measure with atom 1 at x̄. Thus for any B ∈ BXN

it is δx̄(B) = 1 if and only if (i�) x̄ ∈ B and Tδx̄(B) = δx̄({y ∈ X N ∶ y ∈ T −1B}) = 1 i�
x̄ ∈ T −1B. Since x̄ ∈ B ⇔ x̄ ∈ T −1B stationarity of δx̄ is readily obtained. Stationary
measures of that certain form are of special interest because they form the set of extreme
measures of P(X N) which are stationary at the same time. Call a measure µ ∈ Q ⊂ P(X N)
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extreme (in Q) if all convex mixtures of measures in Q yielding µ are trivial ones, more
formally if µ = ∑i∈I aiµi ⇒ µi = µ,∀i ∈ I, where {ai} is as above and µi ∈ Q for all
i ∈ I. The set of all extremes in P(X N) is given by ex[P(X N)] = {δx ∶ x ∈ X N} while
ex[P(X N)] ∩ P(X N, T ) = {δx̄ ∶ x ∈ X}. Plainly, one also has {δx̄ ∶ x ∈ X} ⊂ ex[P(X N, T )].

5.3.1 Choquet Theory

Extreme points of a certain set are of special interest because they generate the convex
hull of this set by mixing up extreme elements properly and, applied to sets of measures,
have a particular statistical meaning. The �rst-mentioned is made more precise by the
theory of Choquet simplices. As a result one has the celebrated representation theorem
named after Choquet. For a proof and more details see e.g. Phelps (2001).

Theorem 5.3.1 (Choquet, 1956). Let K ⊂X be a metrizable compact and convex subset
of a separable locally convex space X. Then, for every point x ∈ X there is a unique
probability measure m ∈ P(K) with supp[ρ] = ex[K] such that ρ represents x, that is

x = ∫

ex[K]

ym(dy).

If applied to X = P(X N), which is seen as embedded in the locally convex vector space of
all signed measures, and K = P(X N, T ), Theorem 5.3.1 yields a mixing measure that is
supported by the extremes of P(X N, T ). However, if one is to make Bayesian statistical
inference for stationary data, there is need for a more statistical interpretation of the
theory just presented. A �rst step is to identify ex[P(X N, T )] with the set of so called
ergodic measures. In order to give a de�nition call a set B ∈ BXN invariant with respect
to the mapping T (or in short T -invariant or just invariant) if T −1B = B and notice
that the collection of such sets forms a σ-�eld denoted by I = IT usually called the
invariant σ-�eld. A stationary measure P is clearly invariant on I since for I ∈ I it holds
TP (I) = P (T −1I) = P (I). However, this not true for all B ∈BXN in general. Now, call a
stationary measure P ergodic with respect to T (in short T -ergodic or just ergodic) if for
all I ∈ I it holds P (I)P (Ic) = 0. Thus for an ergodic measure either an invariant event
or its complement, respectively, is certain. Write Pe(X , T ) for the set of all T -ergodic
measures. Regard above exemplary measure δx̄ and let I be an invariant set. By de�nition
δx̄(I) ∈ {0,1} such that δx̄ is ergodic. This rises the question if it is true for all extreme
points of P(X N, T ) to be ergodic. It is well known that this question has an a�rmative
answer. Due to the author's lack of an appropriate source for citation the proof is given.
However, it can be found in the literature.

Lemma 5.3.2. ex[P(X , T )] = Pe(X , T ).

Proof. Let µ ∈ ex[P(X N, T )] and I ∈ I with µ(I) > 0. De�ne for B ∈ BXN the trace

measure of I which is given by ν(B) ∶=
µ(B∩I)
µ(I) . Then ν ∈ P(X N, T ). Suppose µ(I) < 1,

then µ(X N ∖ I) > 0 and such that ρ(B) ∶=
µ(B∖I)
µ(XN∖I) ∈ P(X

N, T ) is properly de�ned. Hence,

µ(⋅) = µ(I)ν(⋅) + (1 − µ(I))ρ(⋅) which is a contradiction. For the converse, suppose
µ ∈ Pe(X , T ) and regard the non-trivial (i.e.0 < a < 1) representation µ = aν + (1 − a)ρ.
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Then ν, ρ << µ and the Radon-Nikodym derivatives fν ∶=
dν
dµ and fρ ∶=

dρ
dµ exist. Since

I+ ∶= {fν − fρ > 0}, I− ∶= {fν − fρ < 0} ∈ I, one has µ(I+), µ(I−) ∈ {0,1}. Assume w.l.o.g.
that µ(I+) = 1(⇒ µ(I−) = 0), then

1 = ν(X N) = ∫
XN
fνdµ = ∫

I+
fνdµ > ∫

I+
fρdµ = ∫

XN
fρdµ = ρ(X N) = 1.

Thus fν = fρ µ-a.s. which in turn implies ν = ρ.

5.3.2 Ergodic Decomposition

By Theorem 5.3.1 in combination with Lemma 5.3.2 one has that any µ ∈ P(X N, T ) is
representable as integral mixture of T -ergodic measures. This is also known as ergodic
decomposition and serves a a certain kind of integral-limit interchanging result. As an
example, suppose that for 0 < a < 1 a stationary measure is given by µ = aν + (1 − a)ρ,
where and ν, ρ ∈ Pe(X N, T ). Thus, µ(⋅) = ∫Pe(XN,T ) σ(⋅)m(dσ), where the mixing measure

is given as m = aδν + (1 − a)δρ. Then, for an µ integrable function f it holds that

∫

XN

f(y)µ(dy) = ∫
XN

f(y)[aν + (1 − a)ρ](dy) = a∫
XN

f(y)ν(dy) + (1 − a)∫
XN

f(y)ρ(dy)

= ∫

Pe(XN,T )

⎡
⎢
⎢
⎢
⎢
⎣
∫

XN

f(y)σ(dy)

⎤
⎥
⎥
⎥
⎥
⎦

m(dσ)

and the questions arises if a similar result remains to be true for more general mixtures
of ergodic measures. The ergodic decomposition theorem gives an a�rmative answer.

Theorem 5.3.3 (Ergodic Decomposition). The state space X N admits an essentially
unique decomposition map, i.e. a measurable mapping g ∶ X N → Pe(X N, T ) for which it
holds

(i) g is T -invariant, that is g = g ○ T −1,

(ii) for any m ∈ Pe(X N, T ) the pre-image g−1(µ) is a measurable set with full m-mass,

(iii) for all µ ∈ P(X N, T ) and all B ∈BXN it holds

µ(B) = ∫

XN

gx(B)µ(dx).

Moreover, for any µ-integrable function f ∶ X → R one has

∫

XN

f(y)µ(dy) = ∫
XN

⎡
⎢
⎢
⎢
⎢
⎣
∫

XN

f(y)gx(dy)

⎤
⎥
⎥
⎥
⎥
⎦

µ(dx).

A proof of Theorem 5.3.3 can be found in Varadarajan (1963) and Maitra (1977) as well
as further generalizations to more general spaces and groups of transformations. In the

75



5 M/G/∞: Observations of Arrival and Departure Instances

proof it becomes clear how one can think about the decomposition map and what exactly
is meant by "essentially unique". More precisely, gx(⋅) can be identi�ed with the regular
conditional probability µ(⋅ ∣ I)(x) which is µ-a.s. unique. Thus, the extreme points of
P(X N, T ) can be identi�ed with "measures having seen an in�nite amount of informa-
tion", i.e. the joint distribution L[X] of a sequence X = X∞

1 is extreme i� L[X] is a.s.
non-random (as a variant of Kallenberg (2006, Proposition 1.4)).

5.3.3 Statistical Interpretations and De�nitions

Here the main similarity and the main di�erence of the frequentistic and subjectivistic
interpretation of statistics appears. Both factions assume that the data being observed
is generated from an ergodic measure. But while a frequentist says that this generating
measure is "�xed but unknown", this is not satisfactory to a Bayesian since she wants
to express her uncertainty in the generating measure. This uncertainty is expressed by
the mixing measure m ∈ P(Pe(X N, T )) which appears in Theorem 5.3.1 and which is
just a Dirac measure with atom at the "unknown" probability measure in the frequentist
framework. As a result, a Bayesian feels like observing (non-ergodic) stationary data
while the same data is interpreted as T -ergodic from a frequentist viewpoint. The task
of a Bayian statistician now is to "model" m suitably such that one is able to update it
by observed data. This is a hard task in general since Pe(X N, T ) is a very large space
and it is not known how to calculate the mixing integral in general. Even if additional
structural assumptions on the data can shrink the set of all ergodic measures to one that
is well manageable, such an assumption is not appropriate in general. However, studying
such situations can give an idea how one would have to proceed in the general case.

The easiest example arises when the additional structure is given in form of an invariance
assumption with respect to the group of all index permutations Π. Roughly speaking,
while T -invariance means that time does not matter, i.e. "it does not matter when data
is collected", invariance with respect to Π means that in addition "it does not matter in
which order data is observed". This additional judgement lets the support of the mixing
measure m shrink to the set of ergodic measures which support this judgment. By the
Hewitt-Savage 0/1-law [c.f. Hewitt and Savage (1955)] these are just the i.i.d. measures,
i.e. the measures that make the projections of elements of X N i.i.d. variables. The prop-
erty of independence lets an i.i.d. measure µ factorize while the assumption of identically
distributed projections ensures that the components of this factorization are all the same.
So that µ = ⊗i∈N µ̃ for a particular µ̃ ∈ P(X) and it su�ces to make inference for µ̃ by
considering an updating mixture measure m̃ ∈ P(P(X)). By suitable parametrization
of P(X), for instance by the dense subspace of all discrete measures, one can obtain
statistically workable mixing distributions (priors), see e.g. Ferguson (1973) and Sethu-
raman (1994). It is worth mentioning that the i.i.d. measures are the ergodic measures
gx(⋅) = µ(⋅ ∣ E)(x) in the decomposition theorem, where I ⊂ E is the exchangeable σ-�eld,
c.f. Kallenberg (2006).

This example shows that a suitable parametrization can simplify the task of making
Bayesian inference considerably. However, further examples, which generalize the invari-
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ance property of the data, are rather complicated to study for general state spaces X .
Thus, in the subsequent it will be assumed that X is a �nite set, often X = {0,1} which
leads to the Cantor space C = {0,1}N and accounts to binary response of an experiment.
Admittedly, this is a slight loss in generality and lets one depart from the original task (of
making inference for the distribution of the sequence of di�erences). However there will be
a big gain in the presentation and clarifying of a parametrization of the set of ergodic mea-
sures in general. The above considerations for Polish spaces clearly remain true if ∣X ∣ < ∞.

As already mentioned above, the key for Bayesian statistics is to give a suitable parametriza-
tion of the set of ergodic measures one wishes to de�ne a prior distribution on. Thus,
the task is to head for a parametrization of Pe(X N, T ). If X = {0,1} the i.i.d. measure
coincide with the so called Bernoulli-measures which possess a simple parametrization.
To be more precise, let for c1, . . . , ck ∈ {0,1} the cylinder set generated by the ci's be given
through [c1, . . . , ck] = {x ∈ C ∶ xi = ci,∀i = 1, . . . , k}. It is well known that the collection of
all possible cylinder sets Z is a semi-algebra which generates BC. Then, de�ne

µk([c1, . . . , ck]) ∶=
k

∏
i=1

pci ,

where p1 = 1 − p0 = p for a number p ∈ [0,1]. The family {µk}k≥1 can be uniquely
extended to a probability µ ∈ Pe(C, T ) That means Pe(C,Π) is parametrized by [0,1]. In
combination with Theorem 5.3.1 the parametrization yields for P ∈ P(C,Π) the unique
existence of m ∈ P(Pe(C,Π)) with

P ([c1, . . . , ck]) = ∫

Pe(C,Π)

Q([c1, . . . , ck])m(dQ) = ∫

[0,1]

k

∏
i=1

pcim̃(dp)

= ∫

[0,1]

p∑
k
i=1 ci(1 − p)k−∑

k
i=1 cim̃(dp),

which amounts to the classical de Finetti theorem. From a statistical viewpoint any
distribution on [0,1] can be used as a prior to express one's state of information which
is then updated by observed data through Bayes theorem. The Beta distribution plays
a special role since it is conjugate with respect to Bernoulli-data and it supports all of
the unit interval. Before continuing with structurally more complicated considerations,
an exact de�nition of the terms parametrization and parameter space shall be given.

De�nition 5.3.4. Let Pe(C,G) be the set of measures which are ergodic with respect to
a suitable family of transformations G. Further, let (S,S) be a measurable space. A
mapping φ ∶ Pe(C,G) → S is called a parametrization if it is bimeasurable (one-to-one
and both φ and φ−1 are measurable). In that case (S,S) is called a parameter-space of
Pe(C,G).

So, in above example of mixtures of Bernoulli measures, [0,1] is a parameter space with
corresponding parametrization φ given by

φ−1 ∶ [0,1] → Pe(C,Π)

p↦ φ−1(p) ∶= ⊗
i∈N

[pδ1(⋅) + (1 − p)δ0(⋅)]
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and m̃ = φm. Moreover, notice that from a statistical point of view the points 0,1 might
be excluded from supp[m̃] since they correspond to statistically uninteresting measures,
i.e. to reducible Bernoulli-measures. Those are Bernoulli-measures for which the state
space can be reduced without any e�ect, e.g. notice that supp[φ−1(0)] = 0̄. Furthermore,
suppose a prior distribution with an atom on 0 is given. Then updating to the posterior
by observing a 1 at any place would let vanish this atom.

5.3.4 Turning to Dependent Data

Next, further families of measures shall be described which are invariant with respect to
T but possess "less" additional invariance than exchangeables. Think of these measures
to be of the form µ(⋅ ∣ I ⋁G) for a particular σ-�eld G such that I ⊂ I ⋁G ⊂ I ⋁E = E . Put
another way, the invariance property is relaxed to a subfamily β ⊂ Π, where Π denotes the
family of all coordinate permutations. More precisely, this subfamily β consists of all �nite
permutations that swap two blocks of symbols which begin and end with the same symbol.
Since those transformations leave the �rst symbol as well as the number of transitions from
a particular state into another one �xed, one is led to think about mixtures of Markov
laws. The work of Diaconis and Freedman (1980) does con�rm this idea. However, this
paper deals with laws which are recurrent but not necessarily stationary from a rather
stochastic viewpoint. There was an earlier approach appearing in Freedman (1962) which
deals solely with stationary measures rather from a statistical perspective. Moreover, it
contains a result that clari�es mixtures possessing a certain structure, the so called S-
structure. The de�nition is as follows. Let t be a statistic, i.e. a family of measurable
mappings t = {tn ∶ X n → En}n∈N for some suitable subspace En of an Euclidean space which
is equipped with a measurable structure En. Note that for many statistical problems it is
true that tn+1(xn+1

1 ) = tn(xn1) + fn+1(xn1 , xn+1) for a suitable family of functions f = {fn}.
The family f then indicates the structure among the data, for instance the length of
memory the data possesses. A more precise way to express this is to say that there is a
family of transition kernels r = {rn ∶BX ×En−1 → [0,1]}n∈N such that for any n > 1 and
e(n−1) ∈ En−1 it holds that rn(t−1

n (e(n−1)), e(n−1)) = 1 and if rn+1(⋅, t) is a distribution of the
data Xn+1 for some t ∈ En then rn(⋅, e(n−1)) is a regular conditional distribution of Xn given
tn−1(Xn−1

1 ) = e(n−1) for all e(n−1) = tn(pr1∶n(t−1
n+1({t}))), where pr1∶n denotes the projection

onto the �rst n symbols. For more details see e.g. Schervish (1995). The statistic t
induces an equivalence relation ∼t on the data through an1 ∼t bn1 ⇔ tn(an1) = tn(a

n
1). Now,

t is said to have S-structure if for all n,m ∈ N and an1 ∼t bn1 , x
m
1 ∼t ym1 it follows that

an1x
m
1 ∼t bn1y

m
1 . The relation ∼t can now be used to classify stationary measures. Say that

µ ∈ P(X N, T ) is summarized by t if µ(an1) = µ(b
n
1) for all a

n
1 ∼t bn1 . For �nite state spaces

X this is tantamount to saying that [prnµ] (⋅ ∣ tn(yn1 )) = U{xn1 ∈Xn∶xn1 ∼tyn1 }(⋅) for all n ∈ N and
for all cylinders yn1 , where UA denotes the uniform distribution on a �nite set A. Then,
Freedman proved the following mixing result.

Theorem 5.3.5 (Freedman's S-structure theorem). Let t be a statistic which has S-
structure. Any µ ∈ P(X N, T ) that is summarized by t is a mixture of T -ergodic measures
summarized by t.

The converse is trivially ful�lled. By taking t to be the transition counts, Freedman readily
showed that so called partially exchangeable stationary measures are given as mixtures of
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stationary Markov measures. More precisely, let k ∶= #X and de�ne for a stochastic vector
p = (pi)i∈{1,...,k} and a stochastic matrixM = (pij)i,j∈{1,...,k} the (p,M)-Markov measure as

µn([c1, . . . , cn]) ∶= pc1

n−1

∏
m=1

pcmcm+1
,

for all cylinder sets [c1, . . . , cn] and all n ∈ N. By means of the Kolmogoro� extension
theorem the family {µn}n≥1 is uniquely extendable to a probability µ ∈ P(X N). In that
case call µ the (p,M)-Markov measure. Thus, a Markov measure is eventually seen to
be parametrized by (k + 1) units of unit-simplices of dimension (k − 1) denoted by ∆k−1.
In contrast to the case of Bernoulli measures not every Markov measure is stationary, i.e.
not all combinations of stochastic vectors and stochastic matrices lead to a stationary
Markov measure. The space of stationary Markov measures is obtained as a suitable
subspace of ∆k−1 ×S(X), where S(X) = S denotes the space of all stochastic matrices
on the state space. This subspace can be obtained as an algebraic constraint involving
the roots of certain polynomials in the components of p. Hence, one can think of this
subspace as an algebraic variety, yet under some additional (probabilistic) constraints.
From the theory of Markov chains it is well known that these polynomials are given by
the equation pM = p, where p is interpreted as a row vector. If one has binary response,
i.e. if the state space is X = {0,1}, this equation gives rise to the polynomials

(I) p0p0
0 + p1p1

0 − p0,

(II) p0p0
1 + p1p1

1 − p1.

Thus, a given stochastic matrix

M =
⎛
⎜
⎝

p0
0 p0

1

p1
0 p1

1

⎞
⎟
⎠

uniquely determines a stochastic vector through the roots of above polynomials under the

constraint p0+p1 = 1 which then is given by p0 =
p1

0

p0
1+p1

0
as long as a certain requirement for

M hold. This is essentially given through irreducibility. Recall the following notions from
the theory of Markov chains, c.f. Freedman (1983) and Seneta (1981). For a �nite state
space X call a stochastic matrix M = (mij)i,j∈X irreducible if for any pair i, j ∈ X there is

a positive integer l such that (M l)ij > 0, i.e. any two states communicate. Let hi = hi(M)

denote the period of state i ∈ X with respect to M , that is the greatest common divisor of
positive integers l such that (M l)ii > 0. In case that the state space is �nite, irreducibility
implies positive recurrence, i.e. ∑l∈N (M l)ii = ∞ and the mean recurrence time is �nite for
all i ∈ X , and that the period h is the same for all states. Call M primitive (eventually
positive) if there is a positive integer l such that M l > 0.

Theorem 5.3.6 (Perron-Frobenius). Let M ∈S(X) be irreducible. Then, for the spectral
radius it holds ρ = ρ(M) = 1 and there are h complex eigenvalues ej, j = 1 . . . , h with
∣ej ∣ = 1. If in addition M is primitive, then 1 is the only eigenvalue on the spectral radius
and the associated left eigenvector p (resp. right eigenvector q) is strictly positive and
unique up to positive multiplicity. If p (resp. q) is properly normalized, i.e. p ∈ P(X),
then it is called the M-invariant distribution. The matrix qp ∈ S(X) is the projection
onto the ρ-eigenspace and is called the Perron-projection. It is given by qp = liml→∞M l =

liml→∞
1
l ∑

l
k=1M

k. Moreover, each row of qp equals p.
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For a proof of the Perron-Frobenius theorem as well as for a good source for the the theory
of stochastic matrices see Seneta (1981).

Note that the Césaro-limit always exists, even for periodic matrices. However, in general
periodicity a�ects the convergence towards the M -invariant distribution p. That is the
convergence in form of liml→∞M l does only hold if the matrix is irreducible, positive
recurrent and aperiodic (h = 1, e.g. implied by primitivity). These attributes are together
sometimes, in abuse of notation, called "ergodic" which has nothing to do with the T -
ergodicity of the Markov law implied by M as following proposition shows.

Proposition 5.3.7. Let X be �nite. A stationary Markov measure with a primitive
stochastic matrix is T -ergodic.

Proof. De�ne for nA, nB ∈ N the cylinder sets A ∶= [a1, . . . , anA] and B ∶= [b1, . . . , bnB].
Then for s > nA one has

µ(A ∩ T −sB) = pa1 (
nA−1

∏
i=1

maiai+1
)(M s)anAb1

(
nB−1

∏
i=1

mbibi+1
) .

By the Perron-Frobenius theorem, this yields lim
s→∞

1
s

s

∑
i=1
µ(A ∩ T −iB) = µ(A)µ(B) which in

turn implies ergodicity.

For X = {0,1}, similarly to the case of Bernoulli measures, the interest from a statistical
point of view ought to be in those stationary Markov measures that are parametrized by
a positive stochastic matrix. At the same time such an assumption would exclude (a.s.)

the reducible matrices
⎛
⎜
⎝

1 0

p0
1 p1

1

⎞
⎟
⎠
,
⎛
⎜
⎝

p0
0 p0

1

0 1

⎞
⎟
⎠
and the only periodic matrix

⎛
⎜
⎝

0 1

1 0

⎞
⎟
⎠
from the

inference procedure, where pij is the conditional probability of jumping in state j from
state i. Above fact can be depicted as follows, making obvious that the set of binary
stationary Markov measures is nowhere-dense in the set of all binary Markov measures.
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The entire unit cube in three dimensions depicts the parameter space of all binary Markov
measures. Solving for the system of equations which emerges from the constraint of sta-

tionarity yields (whenever well de�ned) p0 =
p1

0

p1
0+(1−p0

0)
. Thus the invariant probability

vector is obtained as function of the stochastic matrix.

Figure 5.1: Embedding of stationary Markov measures in all Markov measures

This function can be visualized as a surface embedded into the unit cube making obvious
that the stationary Markov measures are nowhere-dense in all Markov measures.Moreover,
one can discover the "singularity" of the surface which corresponds to the identity ma-
trix. Moreover, one can discover the "singularity" of the surface which corresponds to the
identity matrix.
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In addition to above visualization, it is possible to depict the Bernoulli measures embed-
ded into the surface representing the stationary Markov measures. Clearly, the Bernoulli
measures are the Markov measures for which it holds p0

0 = p
1
0, which also yields p0 = p0

0.
This means that one can discover the Bernoulli measure as diagonal of the unit cube.
Since this diagonal is embedded into the surface, this visualization makes obvious the fact
that Bernoulli measures are automatically stationary.

Figure 5.2: Embedding of Bernoulli measures in the stationary Markov measures

If the state space has more than two elements, above visualizations become di�cult as
well as in the case of dependencies with a wider range, c.f. section 5.5 . However, one
may bear in mind above pictures when dealing with those generalizations in order to have
an intuitive comprehension when dealing with them in higher dimensional simplices.
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Now, let t be the family of measurable functions given through

tn ∶X
n → X ×Nk×k

0

[c1, . . . , cn] ↦ tn([c1, . . . , cn]) ∶= (c1, [#{m = 1, . . . , n − 1 ∶ (cm, cm+1) = (i, j)}]i,j∈X ) ,

which de�nes the transition counts. This particular statistic is easily seen to have S-
structure such that Theorem 5.3.5 holds. The ergodic measures being summarized by
transition counts are of certain form.

Theorem 5.3.8 (Freedman (1962)). If a measure µ ∈ Pe(X N, T ) is summarized by tran-
sition counts, then it is a Markov measure.

That means stationary measures which are summarized by transition counts, sometimes
called partially exchangeable or nowadays oftenMarkov exchangeable, see e.g. Fortini et al.
(2002), are mixtures of stationary Markov measures which in turn are parametrized by a
stochastic matrix. Thus, in order to make Bayesian inference for partially exchangeable
measures it su�ces to model a prior distribution on the space of stochastic matrices
wich is equipped with the Borel σ-�eld BS induced by the topology of coordinate-wise
convergence. This is tantamount to de�ning a random stochastic matrix which is a.s.
irreducible with respect to an appropriate (prior) distribution. Moreover, the prior should
be chosen in a way that allows to update this prior appropriately by (Markovian) data.
As mentioned earlier, it is reasonable to let the set of matrices which have zero entries be
a null set with respect to the prior as long as no additional information on the observation
process (cyclic behavior etc.) is available in advance. However, by de�nition of the support
of a probability measure, such a prior will have support of the entire space of stochastic
matrices as long as all positive matrices are supported. The update procedure of such a
prior strongly depends on how the prior does sample the rows of the random stochastic
matrix. This in turn is known to be in�uenced by the predictive su�cient statistic, c.f.
Fortini et al. (2000); Fortini and Petrone (2012b, 2014). Roughly speaking, call a statistic
t = {tn}n∈N predictively su�cient if prediction of future observations on basis of t are as
good as on basis of the original data. That is the future observation Xn+1 is conditionally
independent of the past Xn

1 given tn(Xn
1 ), or in symbols Xn+1 á Xn

1 ∣ tn(Xn
1 ). See

e.g. Dawid (1979) for an exhaustive treatment of conditional independency in statistical
theory. The following well known result on mixtures of Markov measures, when t is taken
to be transition counts, clari�es the independence among the rows of a sampled stochastic
matrix.

Proposition 5.3.9. The rows of the random stochastic matrix M ∈ SΩ are sampled
independently i� transition counts are predictively su�cient.

A rigorous proof can be found in Fortini and Petrone (2014). Note that for a string xn1 the
terminal state xn is fully determined by tn(xn1). Hence, if on has at hand tn(Xn

1 ), then
only the terminal state and the number of transitions from Xn will in�uence the predic-
tion of Xn+1, if transition counts are judged to be predictively su�cient. Note that this
is not always the case for Bayesian inference problems for Markov processes. A counter
example is given by a random stochastic ∆-matrix [Abolnikov and Dukhovny (1991)],
c.f. chapter 4 of the thesis. In that case, since certain rows are essentially obtained as
repetitions of others, classical transition counts are not predictively su�cient, nor is the
support of a suitable prior full. However, in such a case a lot of prior information is
given in the form that one knows that data e.g. stems from a queueing system. Usually
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such information is not available such that predictive su�ciency of transition counts is
a reasonable assumption that simpli�es Bayesian inference for Markov measures consid-
erably. This simpli�cation is die to the fact that rows are updated separately by data
only a�ecting a particular row. Suppose X = {0,1}, since the Bernoulli measures can be
rediscovered in the space of stationary stochastic matrices (i.e. those for which p0

0 = p
0
1)

one can think of two extremes with respect to the dependency of the the rows. On the
one hand one has totally independent rows while on the other, one has totally dependent
(i.e. identical) rows.

5.4 On the Size of Equivalence Classes of Partially

Exchangeable Measures in the Binary Case

Su�ciency and predictive su�ciency in the case of a �nite state space can also be described
by how �ne equivalence classes becomes or in how many equivalence classes the data splits.
Since the general case is di�cult to describe, merely the case of binary data is considered.
Suppose that X = {0,1} and that the order statistic is judged to be su�cient which is
well known to be equivalent to Σ(Xn

1 ) ∶= Σn(Xn
1 ) ∶= ∑

n
i=1Xi, that is the number of 1's

appearing in a data string, being su�cient in the case of binary response. Now, given
Σ(Xn

1 ) = m, by easy combinatoric arguments one has that the class of strings which
possess the certain value of Σ, i.e. Σ−1(m), has (

n
m
) elements. Thus, given Σ(Xn

1 ) = m

one has a discrete uniform distribution on some space with (
n
m
) elements. Moreover,

(n + 1) of such uniform distributions exist. If the statistic equals transition counts t
rather than Σ, an analog result can be given which is done here. For a given n ∈ N
let tij ∶= t

i
j(x

n
1) ∶= #{l = 1, . . . , n − 1 ∶ (xl, xl+1) = (i, j)} denote the number of jumps the

process makes from state i to j among the string xn1 .

Proposition 5.4.1. Let X = {0,1} and t = {tn}n∈N be the statistic of transition counts.
Then

(a) The total number of equivalence classes given Σ (xn1) = m ∈ {0, . . . , n} evolves as
follows. Let n = 2η for η ∈ N then

#{tn (Σ−1
n (η))} = 2(2η − 1).

Moreover, for all l ≥ 2η + 1 it holds

#{tl (Σ−1
l (η))} = #{tl (Σ−1

l (l − η))} = 4η − 1.

(b) The total number of equivalence classes is given by

#{tn (x
n
1) ∶ x

n
1 ∈ X

n} = n(n − 1) + 2.
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(c) the number of elements in a particular equivalence class is given by

#t−1
n (h) =

⎧⎪⎪
⎨
⎪⎪⎩

(
t00+t01−δxn({1})
t01−δxn({1}) ) (

t11+t10−δxn({0})
t10−δxn({0}) ) , if h = (x1∣ [t00, t

0
1, t

1
0, t

1
1] ∣xn) ∈ tn (X

n)

0 , if h ∉ tn (X n) ,

where (
−1
−1
) ∶= 1.

Proof. (a) Let n = 2η andm = η and indicate by an overlined sequence c1, . . . , cl of symbols
with an index I the string which appears by repeating the sequence i times, i.e.

c1, . . . , clI = [c1, . . . , cl]⋯[c1, . . . , cl]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

I−times

.

Due to symmetry it su�ces to regard strings with 1 as initial symbol. Then, start with the
equivalence class given by the only element 1(η)0(η) and observe that the only transitions
are given by η − 1 transitions 1 → 1, η − 1 transitions 0 → 0 and one transition 1 → 0. To
create new equivalence proceed inductively by transposing "forbidden" blocks as follows.
First transpose the �rst block [10] in 1(η)0(η) with the second [0] appearing which yields
1(η−1)[01]0(η−1). Then, transpose the �rst block [10] and the third 0 appearing in the
new sting to obtain 1(η−2)[0101]0(η−2). Proceed that way until the string 10(η) is reached.
Plainly, this yields η equivalence classes since every single string possesses e.g. a di�erent
number of transitions 1→ 1. Now, create the remaining η−1 equivalence classes beginning
and ending with 1 by the following scheme. First, transpose the last 1 and the last 0 in
10(η) to get 10(η−1)[01] = 10(η−2)[1001]. Then, transpose the �rst 1 and the block [00] of
the block [1001] for having 10(η−3)[100011]. Proceed that way until the sting [1]0(η)1(η−1)
is produced. Note that this algorithm is fully exhaustive since it produces all admissible
combinations of transitions 0 → 0 and 1 → 1. Hence, by symmetry (regard now all stings
of length 2η having η symbols 1 and initial state 0) there are 2[η + (η − 1)] equivalence
classes.
Now, consider the case l = 2η + 1 and regard the set of equivalence classes of length l
having η symbols 1. By S-structure of the transition counts, essentially the same number
of equivalence classes evolves up to the exception [0]01η which is only one additional
equivalence class. Therefore, the total number of equivalence classes is given by 4η − 1.
Note that the same reasoning holds for all l ≥ 2η + 1 and, by symmetry, as well for
m ≥ ⌊l/2⌋ + 1.
(b) Let n = 2η be an even number. Then, by (a) one has

#{tn (x
n
1) ∶ x

n
1 ∈ X

n} = 2 [1 +
η−1

∑
m=1

(4m − 1)] + 2(2η − 1)

= 2 [1 + 2η(η − 1) − (η − 1)] + 4η − 2

= (2η − 2)(2η − 1) + 4η

= 4η2 − 2η + 2

= n(n − 1) + 2.
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On the other hand, for n = 2η + 1, one has

#{tn (x
n
1) ∶ x

n
1 ∈ X

n} = 2 [1 +
η

∑
m=1

(4m − 1)]

= 2 + 4η(η + 1) − 2η

= 4η2 + 2η + 2

= n(n − 1) + 2.

(c) By well known properties of partially exchangeable sequences, among others c.f. Dia-
conis and Freedman (1980) and Zabell (1995), one can think of a partially exchangeable
sequence as several exchangeable sequences "properly interwoven". In case of binary data,
there are two of those, the so called sequences of 0-successors and 1-successors. Hence,
the number of elements in a certain equivalence class is determined by the di�erent ways
the 0-successors and 1-successors can be arranged. The total number of 0-successors and
1-successors is given by t00+t

0
1 and t

1
0+t

1
1, respectively. Therefore the possibilities to arrange

succeeding 1's among the 0-successors and 0's among the 1-successors are essentially given

by (
t00+t01
t01

) and has (
t10+t11
t10

), respectively. Suppose some string ends with 1 and t00 + t
0
1 = 0,

then the string has to equal 1n and the assertion is true by de�nition. (The same holds
for the string 0n.) If a sting ends with 1 and has t00 + t

0
1 > 0, then t01 ≥ 1. But then the

last transition 0 → 1 has to appear right in front of the last block of 1's such that there

are just (
t00+t01−δxn({0})
t01−δxn({0}) ) possibilities left to schedule the 0-succeeding 0's and 1's. Since the

same is true for strings having 0 as terminal state, the assertion follows.

Proposition 5.4.1 gives a full description of the equivalence classes which emerge from the
assumption that transition counts are su�cient. Using it one can get an idea how the
re�nement of the clusters that build up from order statistics to transition counts evolves.

In order to depict the theory just developed, all the equivalence classes are drawn for
binary data strings up to length �ve. Notice that all the equivalence classes associated to
the order statistic can be recovered by summarizing the respective columns. The image
is believed to give an idea of the ongoing splitting process of the equivalence classes when
moving to higher dependencies.

{0,1}1:

(0∣0,0,0,0∣0)
0

(1∣0,0,0,0∣1)
1

{0,1}2:

(0∣1,0,0,0∣0)
00

(1∣0,0,1,0∣0)
10

(0∣0,1,0,0∣1)
01

(1∣0,0,0,1∣1)
11
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{0,1}3:

(0∣2,0,0,0∣0)
000

(0∣1,1,0,0∣1)
001

(1∣1,0,1,0∣0)
100

(0∣0,1,1,0∣1)
010

(0∣0,1,0,1∣1)
011

(1∣0,0,1,1∣0)
110

(1∣0,1,1,0∣1)
101

(1∣0,0,0,2∣1)
111

{0,1}4:

(0∣3,0,0,0∣0)
0000

(1∣2,0,1,0∣0)
1000

(0∣2,1,0,0∣1)
0001

(0∣1,1,1,0∣0)
0100
0010

(0∣1,1,0,1∣1)
0011

(1∣1,0,1,1∣0)
1100

(1∣1,1,1,0∣1)
1001

(0∣0,1,1,1∣0)
0110

(0∣0,2,1,0∣1)
0101

(1∣0,1,2,0∣0)
1010

(0∣0,1,0,2∣1)
0111

(1∣0,0,1,2∣0)
1110

(1∣0,1,1,1∣1)
1011
1101

(0∣3,0,0,0∣0)
0000

{0,1}5:

(0∣4,0,0,0∣0)
00000

(1∣3,0,1,0∣0)
10000

(0∣3,1,0,0∣1)
00001

(0∣2,1,1,0∣0)
01000
00100
00010

(1∣2,0,1,1∣0)
11000

(0∣2,1,0,1∣1)
00011

(1∣2,1,1,0∣1)
10001

(0∣0,2,2,0∣0)
01010

(1∣1,1,1,1∣0)
10100
10010

(0∣1,2,1,0∣1)
01001
00101

(1∣1,1,1,1∣0)
01100
00110

(0∣1,1,0,2∣1)
00111

(1∣1,0,1,2∣0)
11100

(0∣0,1,1,2∣0)
01110

(1∣0,2,2,0∣1)
10101

(0∣0,2,1,1∣1)
01011
01101

(1∣0,1,2,1∣0)
10110
11010

(1∣1,1,1,1∣1)
10011
11001

(0∣0,1,0,3∣1)
01111

(1∣0,0,1,3∣0)
11110

(1∣0,1,1,2∣1)
10111
11011
11101

(1∣0,0,0,4∣1)
11111

In addition, the equivalence classes can be further summarized by stationarity, i.e. by the
additional invariance Tµ = µ. More precisely, stationarity yields a coarser splitting of the
spaces of �nite strings in equivalence classes. From a more theoretical perspective it is
explainable that this must happen since B ⊂ B⋁I, where B denotes the σ-�eld of sets being
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invariant with respect to the family of admissible block transformations β c.f. Diaconis
and Freedman (1980, Proposition (27)). Roughly, this means that the additional (prior)
information encoded in I must lead to "less" measures ful�lling the associated invariance
condition. Indeed, for the associated extreme points of the family of measures ful�lling
above invariances, one has {µ(⋅∣B⋁I)} ⊂ {µ(⋅∣B)}. This behavior can neatly be depicted
in the case of binary data by a proper extension of above picture. By stationarity the
parameters binary Markov measure µ has to ful�ll the additional constraint (see also the
subsequent section 5.5, especially Proposition 5.5.3, for further explanations)

p0p
0
0 + p1p

1
0 = p0,

where p = (p0, p1) is the stochastic vector and
⎛
⎜
⎝

p0
0 p0

1

p1
0 p1

1

⎞
⎟
⎠
is the stochastic matrix which

together parametrize the Markov measure µ. By straight-forward manipulations, above
constraint becomes

p0p
0
1 = p1p

1
0.

This in turn yields e.g.

µ([0,1]) = µ([1,0]), µ([0,0,1]) = µ([1,0,0]), µ([0,1,1]) = µ([1,1,0]),

etc., which amounts to a kind of "mirroring-invariance". Above �gure depicts the melting
of di�erent equivalence classes under β-invariance to joint equivalence classes under {β,T}

by assigning a joint color to the respective classes.

{0,1}1:

(0∣0,0,0,0∣0)
0

(1∣0,0,0,0∣1)
1

{0,1}2:

(0∣1,0,0,0∣0)
00

(1∣0,0,1,0∣0)
10

(0∣0,1,0,0∣1)
01

(1∣0,0,0,1∣1)
11

{0,1}3:

(0∣2,0,0,0∣0)
000

(0∣1,1,0,0∣1)
001

(1∣1,0,1,0∣0)
100

(0∣0,1,1,0∣1)
010

(0∣0,1,0,1∣1)
011

(1∣0,0,1,1∣0)
110

(1∣0,1,1,0∣1)
101

(1∣0,0,0,2∣1)
111
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{0,1}4:

(0∣3,0,0,0∣0)
0000

(1∣2,0,1,0∣0)
1000

(0∣2,1,0,0∣1)
0001

(0∣1,1,1,0∣0)
0100
0010

(0∣1,1,0,1∣1)
0011

(1∣1,0,1,1∣0)
1100

(1∣1,1,1,0∣1)
1001

(0∣0,1,1,1∣0)
0110

(0∣0,2,1,0∣1)
0101

(1∣0,1,2,0∣0)
1010

(0∣0,1,0,2∣1)
0111

(1∣0,0,1,2∣0)
1110

(1∣0,1,1,1∣1)
1011
1101

(0∣3,0,0,0∣0)
0000

{0,1}5:

(0∣4,0,0,0∣0)
00000

(1∣3,0,1,0∣0)
10000

(0∣3,1,0,0∣1)
00001

(0∣2,1,1,0∣0)
01000
00100
00010

(1∣2,0,1,1∣0)
11000

(0∣2,1,0,1∣1)
00011

(1∣2,1,1,0∣1)
10001

(0∣0,2,2,0∣0)
01010

(1∣1,1,1,1∣0)
10100
10010

(0∣1,2,1,0∣1)
01001
00101

(1∣1,1,1,1∣0)
01100
00110

(0∣1,1,0,2∣1)
00111

(1∣1,0,1,2∣0)
11100

(0∣0,1,1,2∣0)
01110

(1∣0,2,2,0∣1)
10101

(0∣0,2,1,1∣1)
01011
01101

(1∣0,1,2,1∣0)
10110
11010

(1∣1,1,1,1∣1)
10011
11001

(0∣0,1,0,3∣1)
01111

(1∣0,0,1,3∣0)
11110

(1∣0,1,1,2∣1)
10111
11011
11101

(1∣0,0,0,4∣1)
11111

However, it is not known yet how this coarsening of equivalence classes induced by sta-
tionarity a�ects the frmulas given in Proposition 5.4.1. An appropriate result would be
interesting and �nding it is left as future work at this point.
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5.5 Higher-Order Dependencies

In order to deal with higher-order dependencies, most often the theory of Markov chains
is employed by modeling processes with long memories as Markov chains in larger state
spaces. For example, if X = {0,1} and the process to be modeled has length of mem-
ory 2, then one might take the process to the "higher-dimensional" state space X [2] ∶=
{(00), (01), (10), (11)} and let it evolve by a 4 × 4 stochastic matrix with entries of 0
whenever i2 ≠ j1 for some i, j ∈ X (2). The theory behind this idea is given by symbolic
topological dynamics. For a comprehensive introduction see e.g. Lind and Marcus (1995).
Particularly, it uses the embedding of a higher-order Markov chain into a larger space by
exploiting a so called higher block code. Hence, a Markov chain of order N on X evolves
as a usual Markov chain in the N th higher block shift X [N]. Some drawback appears
since a stationary probability measure for a Markov chain on X [N] which is governed by
a #XN ×#XN stochastic matrix will be a probability vector on X [N] rather than on X .
Furthermore, there are probability measures whose associated process does not evolve as
a usual Markov chain on any higher block shift. An early and prominent example dates
back to Blackwell (1957) which uses the idea of collapsing states, which brie�y recalled.

Example 5.5.1 (Blackwell (1957)). Let S be the shift map on {a, b, c} and µ ∈ P({a, b, c}, S)
be a Markov measure governed by the stochastic matrix

M =

⎛
⎜
⎜
⎜
⎜
⎝

0 2/3 1/3

1/3 2/3 0

2/3 0 1/3

⎞
⎟
⎟
⎟
⎟
⎠

and M-invariant probability vector p which is given by p = (pa, pb, pc) = (2/7,4/7,1/7).
Now, let the two states b and c collapse into the same state. More precisely, apply the
factor map (a continuous and onto map) f , which is given by

f ∶{a, b, c} → {0,1}

a↦ 0; b, c↦ 1.

It can be argued that the push-forward of µ under f is stationary as well, i.e. ν ∶= fµ ∈

P({0,1}, T ). However, it can be shown that ν is not Markovian of any �nite order.

Hence, the question arises what can be inferred from binary data with respect to the
measure ν. The "goodness" of an estimate for ν will clearly depend on the "size" of
the model space one does work in. For instance, if one has prior information that the
data can only stem from Markov measures on {a, b, c} hidden by a suitable factor map,
the model space is rather manageable and it might be possible to have access to some
"�nite inference procedure". See e.g. Marcus et al. (2011) for more information on hidden
Markov structures as well as for conditions ensuring their "�nite origin". However, if such
prior information is not available, one would have to embed the inference procedure into
a larger framework which allows to enlarge the model space step-wise if data increases.
Since Bayesian statistics require a reasonable parametrization of the measure one wishes
to infer on, it is now headed for such a parametrization and parameter space, respectively.
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First of all a well known assertion about creating probability measures is recalled.

Theorem 5.5.2 (Ionescu-Tulcea). Let (Xn,An)n∈N be a sequence of measurable spaces,

(κn ∶
n−1

∏
i=1

Xi ×An → [0,1])
n≥2

a sequence of stochastic kernels and κ1 ∈ P(X1). Then, there is a unique probability
measure µ ∈ P (∏n∈NXn) such that µ = ⊗n∈N κn, i.e. for all n ∈ N and for all Ai ∈ Ai; i =
1, . . . , n it holds that

µ(A1 × ⋅ ⋅ ⋅ ×An ×
∞
∏
i=n+1

Xi)

= ∫
A1

. . . ∫
An−1

κn [(x1, . . . , xn−1),An]κn−1[(x1, . . . , xn−2), dxn−1] . . . κ1[dx1].

Hence, one might say that a general probability µ ∈ P (X N), i.e. Xn = X , is parametrized
by a sequence of stochastic kernels. Now, let X be �nite. If µ is a stationary Markov
measure then for all n > 2 the kernels are determined by κ2 through an appropriate
repetitive embedding of κ2. Moreover, under su�cient conditions, the probability vector
κ1 is uniquely determined by κ2 as well by the system of algebraic constraints given by
κ1 ∗ κ2 = κ1, where κ2 is considered as a matrix. As mentioned earlier, then it would be
su�cient to make statistical inference for the stochastic matrix κ2 and subsequently to
transfer it to κ1. The question is if this holds true for higher dependencies as well. To
put it another way, under what constraints is it true that κN determines κn for all n ≠ N?
Plainly, one such constraint ought to be stationarity. Thus a result is recorded which gives
a characterization of stationarity in the case that X is �nite (or at least countable) for
measures carrying longer memories. Since no appropriate source for a citation is known
to the author, a proof is given.

Proposition 5.5.3. For a countable state space X and µ ∈ P(X N) the following is equiv-
alent

(i) µ ∈ P(X N, T )

(ii) for all cylinder sets [c1, . . . , cm] it holds

µ([c1, . . . , cm]) = ∑
c∈X

µ([c, c1, . . . , cm]).

Proof. Let Tµ = µ and [c1, . . . , cm] be a cylinder set. Then

µ([c1, . . . , cm]) = Tµ([c1, . . . , cm]) = µ (T −1[c1, . . . , cm]) = µ(⋃
c∈X

[c, c1, . . . , cm])

= ∑
c∈X

µ([c, c1, . . . , cm]).

On the other hand, if above is true for some set function and for all cylinder sets, by
Caratheodory's extension theorem, the invariance property extends to all Borel sets since
the set of cylinders is a semi-ring generating the Borel σ-�eld.
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Regarding a (p,M)-Markov measure µ, it is possible to interpret the stochastic matrix
M as a device that maps a probability measure on the �nite state space X onto another
one. If the probability measure in form of a vector is the right eigenvector of M , the
image is just the same and by Proposition 5.5.3 µ is readily seen to be stationary. A
similar description is possible when dealing with higher dependencies although the notion
of an eigenvector is more delicate. More precisely, the higher kernels can be regarded
as functions whose arguments are lower kernels. As an example, let X = {0,1} and let
µ ∈ P(C) have order of dependency be N = 2. Then, a probability κ0, and the �rst
two kernels κ1, κ2 appearing in Theorem 5.5.2 which parametrize µ are given as a vector

p = (p0, p1), a matrix M =
⎛
⎜
⎝

p0
0 p1

0

p0
1 p1

1

⎞
⎟
⎠
and a third device that maps M onto another matrix

M ′, i.e.

M
κ2
↦M ′ ∶=

⎛
⎜
⎝

p0
0p

00
00 + p

0
1p

01
10 p0

0p
00
01 + p

0
1p

01
11

p1
0p

10
00 + p

1
1p

11
10 p1

0p
10
01 + p

1
1p

11
11

⎞
⎟
⎠
,

where pijjk ∶= P(Xn = k ∣ Xn−1 = j,Xn−2 = i) is given through the kernel κ2. The image
matrix M ′ encodes the two-step jump probabilities that for a usual Markov chain are
just given through M2. This motivates the de�nition of a stochastic tensor following the
notion of a stochastic matrix. Note that a matrix can be regarded as a tensor, too. To
be more precise, let V be a �nite-dimensional linear space over a �eld K which is taken
to be the reals. Further, let V ∗ denote the dual space of V , that is the space of all linear
mappings l ∶ V → V . Let r, s ∈ N0.

De�nition 5.5.4 (Tensor). A (r, s)-tensor τ is a (r + s) multi-linear map

τ ∶ V ∗ × ⋅ ⋅ ⋅ × V ∗
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r-times

×V × ⋅ ⋅ ⋅ × V
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

s-times

→ K.

Further, let T rs ∶= T rs (V ) denote the space of all (r, s) tensors, which is itself a linear space
with dim[T rs ] = dim[V ]r+s. This linear space possesses a basis which is of the form

Br
s = {ei1 ⊗ ⋅ ⋅ ⋅ ⊗ eir ⊗ e

j1 ⊗ ⋅ ⋅ ⋅ ⊗ ejs ∶ i′s, j′s = 1, . . . ,dim[V ]} ,

where a basis element is de�ned by

ei1 ⊗ ⋅ ⋅ ⋅ ⊗ eir ⊗ e
j1 ⊗ ⋅ ⋅ ⋅ ⊗ ejs ∶V ∗ × ⋅ ⋅ ⋅ × V ∗

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
r-times

×V × ⋅ ⋅ ⋅ × V
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

s-times

→ K

(v1, . . . , vr,w1, . . . ,ws) ↦
r

∏
k=1

< vi, eik >
s

∏
l=1

< vj, e
ejl >,

where < −, ⋅ >∶ V ∗ × V → K denotes a standard inner product.

Using the multi-linearity, a (r, s)-tensor τ can be decomposed as

τ = ∑
i′s,j′s=0,...,dim[V ]

ai1⋯irj1⋯jsei1 ⊗ ⋅ ⋅ ⋅ ⊗ eir ⊗ e
j1 ⊗ ⋅ ⋅ ⋅ ⊗ ejs ,
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which can be abbreviated by Einstein's summation convention as

τ = ai1⋯irj1⋯jsei1 ⊗ ⋅ ⋅ ⋅ ⊗ eir ⊗ e
j1 ⊗ ⋅ ⋅ ⋅ ⊗ ejs ,

which means summation over the "cross-indices". Call (i1⋯ir) the contra-variant and
(j1⋯js) the co-variant index of the coe�cients ai1⋯irj1⋯js of τ . Notice that for instance
V ≅ T 1

0 , V
∗ ≅ T 0

1 , M(2 × 2,K) ≅ L(V,V ) ≅ L(V ∗, V ∗) ≅ T 1
1 , L(L(V,V ),L(V,V )) ≅

L(L(V ∗, v∗),L(V ∗, V ∗)) ≅ T 2
2 etc., where L(V,W ) denotes the space of linear mappings

from some linear space V to another linear space W . See e.g. Bowen and Wang (2008)
for more details on multi-linear algebra and tensor algebra, respectively.

Apparently, a tensor is a multi-dimensional array of numbers which is able to carry a
lot of information. This is the reason for its frequently usage e.g. in theoretical physics,
particularly in relativity. The idea is that for the statistician it might be useful because
a higher-dimensional tensor can carry information about the unfolding of of a stationary
stochastic process. The next de�nition which is in the spirit of a stochastic matrix that
is used to encode one-step jump probabilities of a stochastic process clari�es this idea.

De�nition 5.5.5 (Stochastic Tensor). For a positive integer N , call a (N,N)-tensor
which is represented by τ = pi1⋯iNj1⋯jN ⊗

M
k=1 eik ⊗⊗

M
l=1 e

jl stochastic if the following conditions
are ful�lled.

1. pi1⋯iNj1⋯jN ∈ [0,1],

2. ∑j∈X p
i1⋯iN
j1⋯jN−1j

= 1,

3. pi1⋯iNj1⋯jN = 0, whenever (i2, . . . , iN) ≠ (j1, . . . , jN−1).

Moreover, call a stochastic (N,N)-tensor τN positive (and write τN > 0) if pi1⋯iNj1⋯jN > 0
whenever (i2, . . . , iN) = (j1, . . . , jN−1). Denote by SN

N the space of stochastic (N,N)-
tensors and by SN

N(+) the space of positive stochastic tensors.

A tensor can be represented by a so called �attening, c.f. Landsberg (2012). Such a
�attening maps a tensor, which is thought of as a multi-dimensional array of numbers,
onto a matrix. This is a frequently used way to depict a tensor as a matrix, yet it is
certainly not unique. However, it is reasonable to take that squared �attening that allows
for the usual interpretation of multi-dependence jump probabilities in terms of powers
of stochastic matrices For instance, if X = {0,1} a stochastic (2,2)-tensor τ2 can be
represented by the matrix

τ̃ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

p00
00 p00

01 0 0

0 0 p01
10 p01

11

p10
00 p10

01 0 0

0 0 p11
10 p11

11

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⇒ τ̃ 2 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

p00
00p

00
00 p00

00p
00
01 p00

01p
01
10 p00

01p
01
11

p01
10p

10
00 p01

10p
10
01 p01

11p
11
10 p01

11p
11
11

p10
00p

00
00 p10

00p
00
01 p10

01p
01
10 p10

01p
01
11

p11
10p

10
00 p11

10p
10
01 p11

10p
10
00 p11

11p
11
11

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The �attenings of stochastic tensors make obvious the embedding of measures having
lower-order dependencies in spaces of measures having higer-order dependencies, e.g. the
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Bernoulli measures have stochastic tensors

τ̃0 = (p0 p1
) , τ̃1 =

⎛
⎜
⎝

p0 p1

p0 p1

⎞
⎟
⎠
, τ̃2 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

p0 p1 0 0

0 0 p0 p1

p0 p1 0 0

0 0 p0 p1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, τ̃3 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

p0 p1 0 0 0 0 0 0

0 0 p0 p1 0 0 0 0

0 0 0 0 p0 p1 0 0

0 0 0 0 0 0 p0 p1

p0 p1 0 0 0 0 0 0

0 0 p0 p1 0 0 0 0

0 0 0 0 p0 p1 0 0

0 0 0 0 0 0 p0 p1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

etc.

For similar reasons as mentioned earlier for Markov measures, from a statistical viewpoint,
it is reasonable to consider merely positive stochastic tensors. In addition, SN

N(+) ⊂ SN
N

is obviously dense with respect to the topology of coordinate-wise convergence. Notice
that a �attening of above stochastic type for a positive stochastic (N,N)-tensor τN leads
to a primitive stochastic (#X)N × (#X)N matrix τ̃N . Indeed, it is readily seen that
τN > 0⇒ (τ̃N)

N
> 0.

If X is �nite and one concentrates on positive stochastic matrices, i.e. positive stochastic
tensors of degree 1 + 1, the associated stochastic vector is uniquely de�ned by such a

matrix. In the binary case, the appropriate M =
⎛
⎜
⎝

p0
0 p0

1

p0
1 p1

1

⎞
⎟
⎠
-invariant probability vector is

given as (p0, p1) = (
p1

0

p0
1+p1

0
,

p0
1

p0
1+p1

0
). It is obvious that the mapping which maps the positive

stochastic matrix onto its invariant probability is injective and continuous with respect
to the topologies of coordinate-wise convergence. Moreover, from the theory of Markov
chains it is clear that the corresponding stochastic vector is strictly positive. This moti-
vates the question if that is also true for measures describing higher-order dependencies.
Plainly speaking, is it true that stationarity of a probability measure possessing order N
dependencies gives rise to the following properties a�ecting its parametrization. (i) Does a
positive stochastic (N,N)-tensor uniquely determine the corresponding lower-dimensional
tensors? (ii) Are all lower-dimensional tensors strictly positive? (iii) If so, is the mapping
which gives the lower dimensional tensors continuous?

Before answering these questions, an exemplary observation is given for the case of binary
data, which is stated as a proposition.

Proposition 5.5.6. Let µ ∈ P(C) be a probability measure which has the order of de-
pendency be N = 3. Then, under the hypotheses that µ is stationary and its highest
stochastic tensor τ3 is positive, the associated lower-dimensional stochastic tensors are
uniquely determined by τ3, they are positive and the mappings which maps τ3 onto the
lower-dimensional tensors is continuous.
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Proof. Using Proposition 5.5.3, stationarity of µ implies the following system of 14 poly-
nomial equations to hold, where the coe�cients of the tensors τ0, τ1, τ2 are regarded as
variables and those of the tensor τ3 as coe�cients of the polynoms.

(I) pc1 − ∑
j∈{0,1}

pjp
j
c1 = 0; ∀c1 ∈ {0,1}

(II) pc1p
c1
c2 − ∑

j∈{0,1}
pjp

j
c1p

jc1
c1c2 = 0; ∀c1, c2 ∈ {0,1}

(III) pc1p
c1
c2p

c1c2
c2c3 − ∑

j∈{0,1}
pcp

j
c1p

jc1c2
c1c2c3 = 0; ∀c1, c2, c3 ∈ {0,1}.

As one readily checks, the unique solution to above system of equations is given in the
following recursive form. Clearly, stochasticity and positivity of the tensor τ3 is exploited
in order to reach this unique solution.

τ̃2(τ3) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

p00
00 p00

01 0 0

0 0 p01
10 p01

11

p10
00 p10

01 0 0

0 0 p11
10 p11

11

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

p100
000

p100
000+p000

001

p000
001

p100
000+p000

001
0 0

0 0
p101

010+p110
100(p001

010−p101
010)

1+(p101
010−p001

010)(p010
100−p110

100)
p101

011−p010
100(p001

010−p101
010)

1+(p101
010−p001

010)(p010
100−p110

100)
p110

100+p101
010(p010

100−p110
100)

1+(p101
010−p001

010)(p010
100−p110

100)
p110

101−p001
010(p010

100−p110
100)

1+(p101
010−p001

010)(p010
100−p110

100)
0 0

0 0
p111

110

p111
110+p011

111

p011
111

p111
110+p011

111

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

τ̃1(τ2) =
⎛
⎜
⎝

p0
0 p0

1

p1
0 p1

1

⎞
⎟
⎠
∶=

⎛
⎜
⎝

p10
00

p00
01+p10

00

p00
01

p00
01+p10

00

p11
10

p11
10+p01

11

p01
11

p11
10+p11

01

⎞
⎟
⎠
,

τ̃0(τ1) = (p0, p1) ∶= (
p1

0

p1
0 + p

0
1

,
p0

1

p1
0 + p

0
1

) .

The only cases where stochasticity and positivity is not seen at a �rst glance are the
entries of the second and third rows of the tensor τ̃2(τ3). For stochasticity, regard the
sum of the entries of the second row, which is given by

p101
010 + p

110
100(p

001
010 − p

101
010)

1 + (p101
010 − p

001
010)(p

010
100 − p

110
100)

+
p101

011 − p
010
100(p

001
010 − p

101
010)

1 + (p101
010 − p

001
010)(p

010
100 − p

110
100)

=
1 + (p001

010 − p
101
010)(p

110
100 − p

010
100)

1 + (p101
010 − p

001
010)(p

010
100 − p

110
100)

= 1.

Furthermore, suppose that

p101
010 + p

110
100(p

001
010 − p

101
010)

1 + (p101
010 − p

001
010)(p

010
100 − p

110
100)

≤ 0.

By positivity of τ3, the denominator is clearly positive. Hence, it follows

p101
010 + p

110
100(p

001
010 − p

101
010) ≤ 0⇔ p101

010(1 − p
110
100) + p

110
100p

001
010 ≤ 0⇔ p101

010p
110
101 + p

110
100p

001
010 ≤ 0,
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which is a contradiction. The same reasoning holds for the third row of τ̃2. Moreover, the
mappings τi ↦ τ̃i−1 are obviously continuous for i = 1,2,3.

Note that the system of polynomial equations appearing in the proof of Proposition 5.5.6
can be reduced to 7 equations by omitting redundancies. These arise since the equations
for [0, . . . , ci] = [1, . . . , ci], i = 2,3, possesses the same amount of information. Propo-
sition 5.5.6 is of particular statistical interest since, once it is clari�ed that the order
of dependency of the data is N = 3 and the rows of τ̃3 are assumed independent under
the prior, it su�ces to make inference for the entries of τ̃3 separately. More precisely,
an order-3 Markov measure µ, which is parametrized by positive stochastic tensors, is
solely parametrized by the highest positive stochastic tenosr τ3. Hence, it su�ces to put
a prior distribution on S3

3(+) which is then updated appropriately. If required, this in-
ference procedure can be transferred to lower tensors using Proposition 5.5.6. Hence, the
learning process for a stationary measure µ which is parametrized by positive stochastic
tensors is determined by the learning process for τ3 alone. For the next higher order of
dependencies N = 4 a similar description is expected to hold. Actually, it is easy to obtain

p000
000 =

p1000
0000

p1000
0000+p0000

0001
and p111

111 =
p0111

1111

p0111
1111+p1111

1110
. However, obtaining further solutions is costly due

to the overwhelming complexity of the system of 30 (respectively 15) equations. Hence,
the search in on for a rather theoretical approach to solutions of above kind.

As a �rst step, a result of Freedman (1962) is generalized. Therefore, transitions counts

of length N are introduced. For N ∈ N call the statistic t(N) = (t
(N)
n )n∈N, which for n > N

is given through

t
(N)
n ∶X n → XN × T NN

(c1, . . . , cn) ↦ ((c1, . . . , cN), [#{m = 1, . . . , n −N ∶ (cm, . . . , cm+N) = (i1, . . . , iN)}]i1,...,iN ∈X )

and through (c1, . . . , cn) if n ≤ N . Analogously to the case of usual transition counts, for
n > N the "terminal state" (cn−N+1, . . . , cn) can be seen to be uniquely determined by

t
(N)
n (c1, . . . , cn). The proof works along the lines of Martin (1967, Lemma 6.11). Further-
more the statistic can easily be seen to possess S-structure. Then, one has the following
result.

Lemma 5.5.7. Let A probability measure µ ∈ Pe(X N, T ) which is summarized by t(N) is
an order-N Markov measure.

Proof. The proof is in the fashion of the proof of Freedman (1962, Theorem 2). De�ne

A ∶= [a1, . . . , an−N , c1 . . . , cN]

B ∶= [c1,⋯, cN , b1,⋯, bm−N].

Then, since µ is summarized by t(N), one has for i, j ≥ N

µ ([c1,⋯, cN]⋂T −j [A ∩ T −(j+n)B])

= µ(([c1,⋯, cN] ∩ [ ⋃
x1,...,xi+N+1

[x1, . . . , xi+N+1, c1, . . . , cN]])⋂T −(j+i+N) [A ∩ T −(n−N)B]) .
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Now, ergodicity of µ implies

µ ([c1,⋯, cN])µ (A ∩ T −(j+n)B)

= µ([c1,⋯, cN] ∩ [ ⋃
x1,...,xi+N+1

[x1, . . . , xi+N+1, c1, . . . , cN]])µ (A ∩ T −(n−N)B) . (*)

Now, suppose �rst that µ ([c1,⋯, cN]) = 0 which clearly implies µ (A) = 0 by stationarity
of µ. Hence

0 = µ (A ∩ T −n[x])µ (A) = µ([c1, . . . , cN])µ (A ∩ T −n[x]) = 0.

Otherwise, i.e. if µ ([c1,⋯, cN]) > 0, it follows by (*) for l ∈ N large enough that

µ ([c1,⋯, cN])µ (A⋂T −l[c1, . . . , cN , x]) = µ (A ∩ T −n[x])µ ([c1, . . . , cN] ∩ T −l[c1, . . . , cN]) .

Letting l →∞ and again exploiting ergodicity of µ, this becomes

µ (A)µ ([c1, . . . , cN , x]) = µ (A ∩ T −n[x])µ ([c1, . . . , cN]) ,

which yields the N -order Markov property

µ (A ∩ T −n[x])

µ (A)
=
µ ([c1, . . . , cN , x])

µ (([c1, . . . , cN])
.

Hence, by Theorem 5.3.5 it is true that all stationary measures which are summarized by
the statistic t(N) are representable as mixtures of order-N Markov measures. Next, an
analog result to Proposition 5.5.6 shall be given in the case of an arbitrary �nite state
space and an arbitrary order of dependence.

Theorem 5.5.8. Let X be a �nite state space and N be a positive integer. Furthermore,
let µ ∈ Pe(X N, T ) be Markovian of order N with highest positive stochastic tensor τN ∈

SN
N(+), τ̃N denote the stochastically �attened version of τN and p(N) ∶= (p(c1,...,cN ))c′s∈X =

(µ([c1, . . . , cN])c′s∈X ∈ ∆N−1 denote the stochastic vector which is invariant with respect to
τ̃N . Then, a solution of τN−1 is given by

pc1...cN−1
c2...cN

=
p(c1,...,cN )

∑
j∈X

p(j,c1,...,cN−1)
.

Moreover, the solution is unique and positive. The solutions of the lower-dimensional
tensors which fully parametrize µ are given recursively the same way.

Proof. Recall that the �attened form of a positive stochastic tensor τN gives rise to a
primitive N ×N stochastic matrix. Hence, by the theory of Markov chains, the invariant
distribution p(N) is uniquely determined by τN and all the entries of p(N) are positive.
The same reasoning holds as well for the lower-dimensional tensors. It remains to show
that the sequence of tensors generated this way is actually a solution. However, this is
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clear since

pc1...cN−1
c2...cN

=
p(c1,...,cN )

∑
j∈X

p(j,c1,...,cN−1)
⇔ pc1...cN−1

c2...cN ∑
j∈X

p(j,c1,...,cN−1) = p(c1,...,cN ),

which, by Proposition 5.5.3, is nothing but

pc1...cN−1
c2...cN ∑

j∈X
µ([j, c1, . . . , cN−1]) = µ([c1, . . . , cN−1])p

c1...cN−1
c2...cN

= µ([c1, . . . , cN]).

By an recursion argument the assertion follows also for all lower-dimensional stochastic
tensors.

The statement of Theorem 5.5.8 lets one think about a "larger parameter space" in which
all the positive parametrization of the �nite order Markov measures can be embedded in
a natural way in order to accomplish a parametrization of more general stationary (and
ergodic) measures. Since Theorem 5.5.8 induces an inverse scheme of the kind

τ0
φ1
←Ð τ1

φ2
←Ð ⋅ ⋅ ⋅

φN−1
←Ð τN−1

φN
←Ð τN (D)

one might think of an inverse limit as a suitable parameter. However it is necessary
to have a topological or measurable structure on such a space since Bayesian statistics
force one to de�ne a prior distribution on the parameter space. This will be achieved by
a continuity result for the mappings φ in diagram (D), which was already indicated in
Proposition 5.5.6.

Theorem 5.5.9. The mappings φl ∶ Sl
l(+) → Sl−1

l−1(+), i = 1, . . . ,N are continuous with
respect to the topologies of coordinate-wise convergence.

Proof. It is known from Schweitzer (1968) that the mapping which maps a stochastic
matrix onto its invariant probability vector is continuous as long as the mapping is con-
sidered on the space of stochastic matrices that possess a single irreducible set of states.
Indeed, it is shown that if pM1 = p, qM2 = q and p1 = 1 = q1, then p = qH(M1,M2) for
some suitably chosen matrix H which depends on the two irreducible stochastic matrices
M1 and M2. Plainly the conditions of Schweitzer (1968) are ful�lled for the �attenings
of positive stochastic tensor, the mapping that maps a �attened tensor onto its invariant
stochastic vector is continuous. Thus, the mapping from Theorem 5.5.8,

τN ↦ τ̃N ↦ τ̃N−1 ∶= (pc2...cNc1...cN−1
)
ci∈X

∶= (
p(c1,...,cN

∑j∈X p(j,c1,...,cN−1)
)

ci∈X

is continuous, which proves the assertion of the theorem.

Using Theorem 5.5.8 and Theorem 5.5.9 the following setup for a parametrization of pos-
itive T -ergodic measures, i.e. measures which give positive mass to any cylinder set, can
be given. An algebraic approach will be employed.

Therefor let for N ∈ N the mapping φN ∶SN
N(+) →SN−1

N−1(+) be given as above and de�ne

98



5 M/G/∞: Observations of Arrival and Departure Instances

for n,m ∈ N0, m < n the mappings

ψn,m ∶Sn
n(+) →Sm

m(+)

ψn,m ∶= φm+1 ○ φm+2 ○ ⋅ ⋅ ⋅ ○ φn−1 ○ φn.

Let ∏
l∈N0

Sl
l(+) be the space of sequences of positive stochastic tensors increasing by dimen-

sionality. Furthermore, let for n ∈ N the projection onto the nth coordinate be denoted
by prn ∶ ∏

l∈N0

Sl
l(+) → Sn

n(+). De�ne S∞(+) ⊂ ∏
l∈N0

Sl
l(+) to be the subset of sequences

τ = (τ0, τ1, . . . ) for which it holds true that prm(τ) = ψn,m ○ prn(τ) for all m ≤ n. Now,
S∞(+) = lim

←Ð
(Sl

l(+), ψn,m)m,n,l is the inverse limit of the family of sets {Sl
l(+)}l∈N0

with

respect to the family of mappings {ψn,m}n,m∈N0,m≤n and it will be called positive stochastic
unfolding. For any n ∈ N call the restriction of the projections to S∞(+) the canonical
mappings and denote them by ψn ∶= (prn)∣S∞(+) . Hence, for all m < n, the following
diagram commutes

S∞(+)

Sn
n(+) Sm

m(+)

ψn

ψm

ψn,m

.

Clearly, the inverse limit is non-empty since all trivial extensions of i.i.d. measures are
contained. Furthermore, it is well known that an inverse limit is essentially unique (up
to homeomorphism), so is the unfolding. For further details see e.g. Bourbaki (1968).
Moreover, by Theorem 5.5.9, all the topologies on the Sl

l(+) with respect to coordinate-
wise convergence induce a topology on S∞(+), the inverse topology. That is the topology
induced by the product topology on ∏

l∈N0

Sl
l(+) and is the coarsest topology that makes

the mappings {ψl} continuous. Note that a basis of the inverse topology is given by the
family of sets

U = {ψ−1
n (Bl) ∶ n ∈ N,Bl ∈ Ul} ,

where Ul is a basis of the topology on Sl
l(+), c.f. Bourbaki (1969). Hence, by taking the

Borel σ-�eld induced by the inverse topology, denoted by B∞, one eventually obtains a
measurable structure on S∞(+). That makes (S∞(+),B∞) a measurable space which
serves as the parameter space.

5.6 Bayesian Statistical Inference for Stationary Data

As mentioned earlier, in order to make Bayesian inference for a certain class of measures,
it is reasonable to have access to a parametrization of that class. This is due to the fact
that in most cases it enables one to execute the integration appearing in the de Finetti
theorem or the ergodic decomposition, respectively, on the parameter space rather than
on an abstract space of measures. However, while the integration space can be clari�ed
by a suitable parametrization, it remains the question about the speci�c measure with
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respect to which this integration is done. This is the actual statistical model in form
of a prior measure and forms the core of Bayesian statistics. Since a prior measure is
required to have nice properties with respect to the update mechanism, it operates on
an appropriate subspace of the parameter space. For instance, the celebrated Dirichlet
process concentrates on the space of discrete measures since a general Polish space gives
rise to a measure space that is "too rich". In a way, this is the price one has to pay
for a analytically feasible update procedure. The same issue also appears for Bayesian
inference for stationary data but in an even more delicate manner. The previously given
parametrization of positive stationary measures does provide an appropriate parameter
space. Any measure in P(S∞) could be used as a prior. However, as long as one wishes
to make statistical inference in a closed form with a support as large as possible, some
restrictions in form of a model appear to be accepted. The model itself should be chosen
such that it supports most of reasonable prior knowledge. One such assumption is that
the data which is observed is generated by an positive ergodic measure that possesses a
�nite order of dependency, i.e. from an order-N Markov measure which is parametrized
by positive stochastic tensors. A second assumption is that, given the true order of de-
pendence N0, the prior samples the rows of τ̃N independently. Put another way, given
N0 the N0-step transition counts are assumed to be predictively su�cient. A great ad-
vantage of this second assumption is that it gives a clear-cut rule how one can learn from
observed data, i.e. a clear-cut procedure for updating the prior. This is mainly due to the
fact that updating the prior can be done by updating the rows of τ̃N0 by the number of
the successors, which are associated to the particular rows, separately. Then, by results
from the previous section 5.5, the inference procedure is uniquely given by merely updat-
ing the (N0,N0)-tensor and transferring inference to lower-dimensional tensors through
the mappings φ. Notice that row-independence is clearly a model assumption that ex-
cludes the possibility of learning from transitions corresponding to di�erent rows. This
is not an appropriate assumption in some situations in which one must be able to learn
for rows from di�erent transitions. For instance, Bayesian inference for stochastic ∆-
matrices, which occur in chapter 4 requires such "cross-learning procedures". However,
these special learning processes occur in situations which can be judged to correspond to
additional prior information, e.g. such as the data is generated from a queueing system.
Such additional prior information is not assumed to be available here such that the setup
just presented is felt to be the best balance of a large support of the prior and suitable
updating on the one hand side and being most "uninformative" on the other.

An actual way to provide inference is to split it in two stages. In the �rst stage one chooses
the order of dependence that, in a certain way, is most likely to govern the data observed
so far. Subsequently, the second stage provides inference for the parameters of the mea-
sures having a particular dependence structure. While the second stage is fairly clear
under the model assumptions, the second deserves further considerations. A Bayesian
way to make inference for the order of dependence could consist in placing a prior on
the non-negative integers and updating the weights by the data according to some rule.
This updating rule should incorporate some properties which come from the fact that
solely �nite data strings are observed. More precisely, it seems pointless to make "direct"
inference for dependency structures of order greater than n ∈ N when a data string Xn

1 of
length n is observed. Furthermore, the dependency structure of the true data generating
measure which possesses an order that is relatively small (in comparison to n) should be
better exposed from Xn

1 than one that is large. This is in full correspondence to infor-
mation criterions as for instance BIC, i.e. over-�tting of the model should be punished.
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Roughly speaking, this means that very high orders of dependency ought to loose mass by
observing relatively short data strings but must be able to regain mass when the length
of the data string increases considerably.

Before giving a proposal for a direct approach to a prior to posterior update mechanism
which allows to infer the order of dependence, two di�erent approaches are brie�y recalled.
The �rst traces back to De Finetti (1938). Therein de Finetti intended to make structural
inference for contingency tables for which he searched for a description of the data to be
"close to exchangeability". As a classical example suppose the situation where one is
given data of the form (X1, Y1), . . . , (Xn, Yn). For the sake of clarity, suppose that the
X's and Y 's are of binary response. One might think of the X's being the positive or
negative response of a medical treatment of women and the Y 's of men, respectively. The
question may come up if the X's and Y 's behave similarly or if they depart from each
other considerably. In other words, is the sequence of data X1, Y1,X2, Y2, . . . ,Xn, Yn to
be treated as an exchangeable sequence, or is it more reasonable to think of the data
possessing a rather partial exchangeability property. Latter would mean that merely the
X's and Y 's are exchangeable among each others separately. Under suitable conditions,
both situation provide de Finetti type results which appear as

P ((Xi, Yi) = (xi, yi); i = 1, . . . , n) = ∫
[0,1]

p

n

∑
k=1

xi+
n

∑
k=1

yi
(1 − p)

2n−[
n

∑
k=1

xi+
n

∑
k=1

yi]
µ(dp),

for the �rst and

P ((Xi, Yi) = (xi, yi); i = 1, . . . , n) = ∫

[0,1]2
p

n

∑
k=1

xi
(1 − p)

n−
n

∑
k=1

xi
q

n

∑
k=1

yi
(1 − p)

n−
n

∑
k=1

yi
ν(dp, dq),

for the second. In a sense these both integral representation depict two extremes. While
the �rst one represents the conditional independence, the second represents the conditional
Markov property. Recall that if in the second situation transition counts are judged to
be predicively su�cient the mixing measure ν factorizes. Furthermore, if ν concentrates
on the diagonal p = q one is in the �rst situation. With respect to the relationship of
the rows of the stochastic matrix these are the two extremes that can happen, i.e. total
independence of the rows versus complete dependence in the sense of spitting image of
each other. De Finetti suggested to use a prior which is properly centered around the
diagonal p = q and might be given as

ν(dp, dq) = C−1e−D(p−q)2

dpdq,

where D serves as a scaling parameter and C is the appropriate normalization factor.
The power appearing in the exponent is motivated by the central limit and provides an
approximation to the posterior law. More precisely, for large samples Xn

1 and under
relatively mild condition it can be argued that the posterior law can be approximated
by

ν(dp, dq) = C̃−1e−
1
2
[(p−q)2+nP (p,q)],

where P is a polynomial in p and q which provides an update involving empirical versions
of the "success"-probabilities under X and Y , respectively, as well as empirical versions
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of the deviations from those. For further details and more examples see Bacallado et al.
(2015) who recently took up that approach from a rather computational viewpoint using
MCMC for calculations of the posterior. They also emphasize the relation to algebraic
statistics since for the systems of occurring polynomials it might be useful to calculate
Gröbner bases in order to have a conventionally uni�ed approach. In the case consid-
ered in this thesis one has systems of polynomials, too. They form the constraints of the
parametrization of the positive measures. Hence, one might think of an analogous ap-
proach. However, since such methods are based on MCMC procedures, the may become
intensive not only from a view point of computational power but also from a viewpoint
of implementation. Furthermore, they are based on the CLT which imposes additional
constraints and moreover gives just an approximation to the problem.

A second method was indicated by Strelio� et al. (2007) who investigate the problem from
a viewpoint which is apparently closer to physics. They also decide to make Bayesian in-
ference N -order Markov chains in two steps. The �rst step consists in making inference
for the transition probabilities. Their method is based on a Dirichlet distribution prior
which is put on each row of the �attening of the corresponding stochastic tensor. Hence,
even if they do not emphasize that fact, they tacitly assume N -step transition counts
to be predictively su�cient. As mentioned earlier, this seems to be the most reasonable
approach for at least two reasons. The �rst is that, from a rather philosophical point
of view, knowledge about ability of learning across the rows would amount to additional
prior knowledge. Thus, the independence assumption might be seen to be relatively "non-
informative". Certainly, by analogy of taking a uniform prior as a non-informative one in
a suitably parametric problem, this is not how the story is going to end. The second is a
rather practical one. That is an appropriate prior distribution emerges as the product of,
in their framework, Dirichlet distributions, as well as the posterior does. So, by taking
independent Dirichlet distributions one can set up a model which can be �nely tuned by
known theory and which allows the usual prior to posterior update using Bayes' theorem.
In a second step they infer the order of dependence. Since they intend to exploit Bayes'
theorem for their method, this already indicates that some constraint must come into play.
More precisely, since Bayes' theorem generally does not hold in non-parametric situations,
its usage indicates a rather parametric approach. This fact manifests itself in form of an
assumption on the �niteness of the order of dependence. Put another way, they take the
maximal order of dependence as known which, in turn, yields a �nitely supported prior on
the order of dependence. This might be seen as a drawback since it amounts to additional
prior knowledge one usually does not have access to, even if it simpli�es prior to posterior
computations. Two typical priors they present in this framework are a uniform and one
that gives a punishment which increases exponentially in the number of parameters.

Here, I suggest a di�erent kind of inference procedure, which will be based on the idea of
the update mechanism of the Dirichlet process. The Dirichlet process, which is the most
famous non-parametric prior for conditional i.i.d. data in Bayesian statistics, places prior
weights on elements of the (countable) parameter space in form of a properly normalized
�nite measure. These weights are updated by means of the empirical measure. Roughly
speaking, this means that weights corresponding to rare events lose mass in favor of events
occurring relatively often which gain mass. Thereby, the numbers involving the update
are easily obtained by the assumption of conditional independence, i.e. they are just the
frequency counts. Notice that a classical form of the Bayes' theorem is not available in
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this non-parametric approach in general, see e.g. Schervish (1995) for more details. The
basic idea is to generate for each 0 < N < n a hypothetical empirical N -transition count
matrix under the hypotheses that the order of dependence is N − 1 and subsequently to
measure some distance of the observed N -transition count matrix and the hypothetical
one. This approach gives a number which can then be used to update the prior on the
orders of dependence. Since the assumption of conditional i.i.d. data clearly fails in the
case considered here, the numbers involved in the update will become more complicated
and obtaining them is computationally intensive. However, nowadays there is usually
a huge amount of computational capacity available which still keeps on growing. Once
suitable numbers are available, the target is rather to �nd a proper update mechanism
which is workable in the following sense. It should emerge from an algorithm which is
relatively simple to implement and which can be taught to a machine. It should respect
the point stated earlier. And it should enable one to update priors with in�nite support.

In order to clarify the idea, �rst regard the following example. Suppose one is given the
following data strings of length n = 20.

(a) X20
1 = 11111111111111111111

(b) X20
1 = 11110011011010101111

(c) X20
1 = 11111110000111100111

(d) X20
1 = 01010101010101010101

(e) X20
1 = 11011011011011011011.

The data string (a) is generated from a Bernoulli measure with success probability p1 = 1−
10−10 and the string (b) from a Bernoulli measure with p1 = 3/4. The strings (c) and (d) are

generated from stationary Markov measures with parametrization (1/4,3/4),
⎛
⎜
⎝

7/10 3/10

1/10 9/10

⎞
⎟
⎠

and (1/2,1/2),
⎛
⎜
⎝

1/100 99/100

99/100 1/100

⎞
⎟
⎠
, respectively. The data string (d) is generated from a

stationary 2-Markov measure with parametrization

(51/151 100/151) ,
⎛
⎜
⎝

1/50 50/51

1/2 1/2

⎞
⎟
⎠
,

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1/2 1/2 − −

− − 1/100 99/100

1/100 1/100 − −

− − 99/100 1/100

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. If one is intended

to measure a distance of an empirical transition count matrix under the hypothesis that
the data is generated from a Bernoulli measure and the actually observed one, the strings
should give larger distances in increasing order up to (e). Indeed, already on a �rst glance
the data (d) looks more likely to stem from a Markov measure as the data (a). Let for

j ∈ {0,1} the empirical measure be denoted as en(j) = e
(0)
n = 1

n ∑
n
i=1 δXi({j}). De�ne the

empirical transition count matrix under the hypothesis that the data is generated from a
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Bernoulli measure by

t̂cn = (n − 1)
⎛
⎜
⎝

en(0)en(0) en(0)en(1)

en(1)en(0) en(1)en(1)

⎞
⎟
⎠
.

For above data strings that becomes

(a) t̂cn = 19
⎛
⎜
⎝

0 0

0 1

⎞
⎟
⎠
=
⎛
⎜
⎝

0 0

0 19

⎞
⎟
⎠

(b) t̂cn = 19
⎛
⎜
⎝

6/20 ∗ 6/20 6/20 ∗ 14/20

14/20 ∗ 6/20 14/20 ∗ 14/20

⎞
⎟
⎠
=
⎛
⎜
⎝

1.71 3.99

3.99 9.31

⎞
⎟
⎠

(c) t̂cn = 19
⎛
⎜
⎝

6/20 ∗ 6/20 6/20 ∗ 14/20

14/20 ∗ 6/20 14/20 ∗ 14/20

⎞
⎟
⎠
=
⎛
⎜
⎝

1.71 3.99

3.99 9.31

⎞
⎟
⎠

(d) t̂cn = 19
⎛
⎜
⎝

1/2 ∗ 1/2 1/2 ∗ 1/2

1/2 ∗ 1/2 1/2 ∗ 1/2

⎞
⎟
⎠
=
⎛
⎜
⎝

4.75 4.75

4.75 4.75

⎞
⎟
⎠

(e) t̂cn = 19
⎛
⎜
⎝

6/20 ∗ 6/20 6/20 ∗ 14/20

14/20 ∗ 6/20 14/20 ∗ 14/20

⎞
⎟
⎠
=
⎛
⎜
⎝

1.71 3.99

3.99 9.31

⎞
⎟
⎠

while the actually observed transition count matrices are given by

(a) tcn =
⎛
⎜
⎝

0 0

0 19

⎞
⎟
⎠

(b) tcn =
⎛
⎜
⎝

1 5

5 8

⎞
⎟
⎠

(c) tcn =
⎛
⎜
⎝

4 2

2 13

⎞
⎟
⎠

(d) tcn =
⎛
⎜
⎝

0 10

9 0

⎞
⎟
⎠

(e) tcn =
⎛
⎜
⎝

0 6

6 7

⎞
⎟
⎠
.
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Using entry-wise absolute distance d
(n)
1 or entry-wise quadratic distance d

(n)
2 , respectively,

one obtains

(a) d
(n)
1 (tcn, t̂cn) = 0.00; d

(n)
2 (tcn, t̂cn) = 0.0

(b) d
(n)
1 (tcn, t̂cn) = 4.04; d

(n)
2 (tcn, t̂cn) ≈ 2.1

(c) d
(n)
1 (tcn, t̂cn) = 9.96; d

(n)
2 (tcn, t̂cn) ≈ 5.2

(d) d
(n)
1 (tcn, t̂cn) = 19.0; d

(n)
2 (tcn, t̂cn) ≈ 9.5

(e) d
(n)
1 (tcn, t̂cn) = 8.04; d

(n)
2 (tcn, t̂cn) ≈ 4.0.

So, the distances behave as they were expected to, where it should be stressed that
the string (e) gives less evidence to the 1-Markov measures as string (c) does. This
is due to the fact that string (e) is generated from a 2-Markov measure. To continue
the example, an analogous approach is given for N = 2. Therefor de�ne the empirical
transition probabilities as

e
(1)
n (j1, j2) ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∑n−1
i=1 δ(Xi,Xi+1)({(j1,j2)})

ne
(0)
n (j1)

, e
(0)
n (j1) ≠ 0

0, e
(0)
n (j1) = 0

and the emprical 2-transition count matrix under the hypothesis that the data is 1-Markov
as

t̂c
(2)
n ∶= (n − 2)

×

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

e
(0)
n (0)e

(1)
n (0,0)e

(1)
n (0,0) e

(0)
n (0)e

(1)
n (0,0)e

(1)
n (0,1) −

− e
(0)
n (0)e

(1)
n (0,1)e

(1)
n (1,0) e

(0)
n (0)e

(1)
n (0,1)e

(1)
n (1,1)

e
(0)
n (1)e

(1)
n (1,0)e

(1)
n (0,0) e

(0)
n (1)e

(1)
n (1,0)e

(1)
n (0,1) −

− e
(0)
n (1)e

(1)
n (1,1)e

(1)
n (1,0) e

(0)
n (1)e

(1)
n (1,1)e

(1)
n (1,1)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

For above strings, the 2-transition count matrices and the empirical ones under the 1-
Markov hypothesis are given by

(a) tc
(20)
n =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 − −

− − 0 0

0 0 − −

− − 0 18

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

; t̂c
(2)
n =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 − −

− − 0 0

0 0 − −

− − 0 18

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⇒ d
(n)
1 (t̂c

(2)
n , tc

(2)
n ) = 0 = d

(n)
2 (t̂c

(2)
n , tc

(2)
n )
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(b) tc
(20)
n =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 − −

− − 2 3

1 4 − −

− − 3 4

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

; t̂c
(2)
n ≈

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.15 0.75 − −

− − 1.73 2.77

0.81 4.04 − −

− − 3 4.7

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⇒ d
(n)
1 (t̂c

(2)
n , tc

(2)
n ) = 1.83; d

(n)
2 (t̂c

(2)
n , tc

(2)
n ) ≈ 0.86

(c) tc
(20)
n =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 2 − −

− − 0 2

2 0 − −

− − 2 8

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

; t̂c
(2)
n ≈

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2.4 1.2 − −

− − 0.27 1.5

1.3 0.64 − −

− − 1.64 9

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⇒ d
(n)
1 (t̂c

(2)
n , tc

(2)
n ) ≈ 4.4; d

(n)
2 (t̂c

(2)
n , tc

(2)
n ) ≈ 1.66

(d) tc
(20)
n =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 − −

− − 9 0

0 9 − −

− − 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

; t̂c
(2)
n =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 − −

− − 9 0

0 9 − −

− − 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⇒ d
(n)
1 (t̂c

(2)
n , tc

(2)
n ) = 0 = d

(n)
2 (t̂c

(2)
n , tc

(2)
n )

(e) tc
(20)
n =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 − −

− − 0 6

0 6 − −

− − 6 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

; t̂c
(2)
n =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 − −

− − 2.5 3

0 6 − −

− − 3 3.5

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⇒ d
(n)
1 (t̂c

(2)
n , tc

(2)
n ) = 12; d

(n)
2 (t̂c

(2)
n , tc

(2)
n ) ≈ 6.

It is interesting that string (d) which has the strongest evidence of being order 1-Markovian
at the same time has no evidence of being 2-Markovian. The evidence of strings (b) and
(c) being 2-Markovian is less than that of being 1-Markovian. However, it does not van-
ish since it might stem from a higher-order which did not reveal itself yet in the data of
length n. That is the same for the string (a). If n increases observing a 1 in string (a)
might change ones opinion in the order of dependence dramatically. For instance if (a) is

extended to (0201)m for a suitable m ∈ N one might focus on an order of dependence of
N = 20 even if for n = 20 it is most reasonable to give high posterior weight on N = 0.

For a general approach proceed as in the example. For l > 0 and j′s ∈ X de�ne by

e
(l)
n (j1, . . . , jl+1) ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∑n−li=1 δ(Xi,...,Xi+l)({(j1,...,jl+1)})

∑n−(l−1)
i=1 δ(Xi,...,Xi)({(j1,...,jl)})

,∑
n−(l−1)
i=1 δ(Xi,...,Xi)({(j1, . . . , jl)}) ≠ 0

0 ,∑
n−(l−1)
i=1 δ(Xi,...,Xi)({(j1, . . . , jl)}) = 0
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the empirical conditional probability of a transition (j1 . . . , jl) → (j2, . . . , jl+1). Further-
more, de�ne the l-transition count tensor under the hypothesis of a (l−1)-Markov measure
as

t̂c
(l)
n ∶= t̂c

(l)
(Xn

1 ) ∶= (n − l)(
l−1

∏
i=1

e
(i)
n (j1, . . . , ji+1) × e

(l−1)
n (j2, . . . , jl))

j′s∈X

and the actually observed one as tc
(l)
n = tc(l)(Xn

1 ). Let d(l) ∶ T ll × T
l
l → R+ be an ap-

propriate distance and de�ne d
(n)
l ∶= max

Xn
1 ∈Xn

d(l) (tc(l)(Xn
1 ), t̂c

(l)
(Xn

1 )) as well as w
(n)
l ∶=

d(l) (tc
(l)
n , t̂c

(l)
n ). For a �nite measure α on the non-negative integers let a ∶= α(N0) such

that π(●) ∶= α(●)
a ∈ P(N0) is a proper prior on the orders of dependence. Observing the

data Xn
1 de�ne the update π

Xn
1
→ π(n) = π(●∣Xn

1 ) for 1 < l < n − 1 as

πl
Xn

1
→

1

a + (n − 1)

⎡
⎢
⎢
⎢
⎢
⎣

αl +
w

(n)
l

d
(n)
l

n−1

∑
i=l

i

∏
m=l+1

d
(n)
m −w

(n)
m

d
(n)
m

⎤
⎥
⎥
⎥
⎥
⎦

,

where the empty product is taken to equal 1. Moreover, de�ne π
(n)
m ∶= αm

a+(n−1) for all m ≥ n

and π
(n)
0 ∶= 1

a+(n−1) ∑
n−1
i=1 ∏

i
m=1

d
(n)
m −w(m)m

d
(n)
m

for l = 0. In full detail this amounts to the following

scheme

π
(n)
0 =

1

α + (n − 1)

⎡
⎢
⎢
⎢
⎢
⎣

α0 +
d
(n)
1 −w

(n)
1

d
(n)
1

⎛

⎝
1 +

d
(n)
2 −w

(n)
2

d
(n)
2

+⋯ +
n−1

∏
i=2

d
(n)
i −w

(n)
i

d
(n)
i

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

π
(n)
1 =

1

α + (n − 1)

⎡
⎢
⎢
⎢
⎢
⎣

α1 +
w

(l)
1

d
(n)
1

⎛

⎝
1 +

d
(n)
2 −w

(n)
2

d
(n)
2

+⋯ +
n−1

∏
i=2

d
(n)
i −w

(n)
i

d
(n)
i

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

π
(n)
2 =

1

α + (n − 1)

⎡
⎢
⎢
⎢
⎢
⎣

α2 +
w

(l)
2

d
(n)
2

⎛

⎝
1 +

d
(n)
3 −w

(n)
3

d
(n)
3

+⋯ +
n−1

∏
i=3

d
(n)
i −w

(n)
i

d
(n)
i

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

⋮

π
(n)
n−2 =

1

a + (n − 1)

⎡
⎢
⎢
⎢
⎢
⎣

αn−2 +
w

(n)
n−2

d
(n)
n−2

⎛

⎝
1 +

d
(n)
n−1 −w

(n)
n−1

d
(n)
n−1

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

π
(n)
n−1 =

1

a + (n − 1)

⎡
⎢
⎢
⎢
⎢
⎣

αn−1 +
w

(n)
n−1

d
(n)
n−1

⎤
⎥
⎥
⎥
⎥
⎦

π
(n)
m =

αm
a + (n − 1)

,∀m ≥ n.

To brie�y comment on the update scheme, the idea is the following. Analogously as for
the Dirichlet process, observing a data string of length n brings in additional total weight
of (n − 1). However, in the case considered here the single weights do not amount to
rather direct observations which, for the Dirichlet process, account for the assumption
of exchangeable data. Instead the weights stem from a measurement of the distance
between several classes of measures carrying di�erent orders of dependence. Once the
weights are available, they are split according to their evidence data of length n is able to
provide. More precisely, the weight w

(n)
l is used to update π

(n)
l rather direct way by the
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fraction
w
(n)
l

d
(n)
l

, while the remaining mass is spread to the lower-dimensional classes accord-

ing to their empirical evidence of being the true one. Thereby, as usual the prior guess
is washed away by increasing information in form of data. Moreover, there seems to be
hope for posterior consistency since one would expect the updating weights to converge to
1 or 0, respectively, depending on they correspond to the true data generating order or not.

To sum it up, this gives the following model for sampling stationary data

N ∼ π ∈ P(N0)

τN ∣ N ∼ ⊗k
N

i=1Diri (hi
k
)

Xn
1 ∣ N, τN ∼ µ

(N)
τN ,

where k = #X , µ
(N)
τN denotes the Markov measure of order N , which is parametrized by

(τ0(τN), τ1(τN), . . . , τN−1(τN), τN) and Diri (hi
k
) ∈ P(∆k−1) means a Dirichlet prior for the

ith row of the �attening of τN with hyper-parameters hi
k
∶= (h

(1)
i , . . . , h

(k)
i ) ∈ ∆k−1 for all

i ∈ kN . Hence, after a suitable parametrization, a prior η ∈ P(Pe+(X
N, T )) on the space of

positive shift-ergodic measures is provided through

η̃(B) = ∑
N∈N0

πN ∫
SNN (+)

1S̄NN (+)∩B(τN) [⊗k
N

i=1Diri (hi
k
)] (dτN),

where B ⊂ S∞(+) and S̄N
N(+) is the natural embedding of SN

N(+) into S∞(+). Note
the di�erence of S̄N

N(+) ∩ B and ψN(B); for the latter the independence assumption
of the Dirichlet distributions for dimensions exceeding N becomes vacuous in general.
The corresponding posterior measure is provided by above update mechanism which,
under the assumption of row-wise independence for the �attened stochastic tensors, yields

η(●)
Xn

1
→ η(n)(●) ∶= η(● ∣Xn

1 ) with

η̃(n)(B) = ∑
N∈N0

π
(n)
N ∫

SNN (+)
1S̄NN (+)∩B(τN) [⊗k

N

i=1Diri (h
(n)
i

k

)] (dτN),

where h
(n)
i

k

denotes the hyper-parameters updated by N -transition counts in the common
way.
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In this thesis, I dealt with the issue of making statistical inference for continuous-time
queueing systems from the Bayesian perspective. From an applied point of view, queueing
systems are vivid stochastic models which are often set up with a certain intention in mind
or at least with a initial idea of its future behavior. This amounts to prior knowledge which
can be represented within the framework of Bayesian statistics. Observing the system or
parts of it, the scientist can improve the prediction about the system's future behavior
by updating the prior knowledge through the data. Formalizing this update mechanism,
which may be seen as a learning process projecting past observations onto future predic-
tion, is the major assignment of Bayesian statistics. From a rather theoretical viewpoint,
queueing systems can be seen as functionals of several stochastic input-processes which
characterize the queueing system. One such input is the arrival stream of customers to
the system. Throughout the thesis, this was taken to be a Poisson process for at least two
reasons. One is that Poisson arrivals �t most situations fairly well. Another is that this
assumption ensures the system to possess several nice properties which can be exploited
to increase the range of statistical inference. As adequate this particular parametric as-
sumption on the arrival stream is, as inadequate often is any parametric assumption on
the serving process. From the subjectivist point of view, the main reason for this is that a
parametric assumption would correspond to additional prior knowledge which is usually
not available and thus would lead to poor inference procedures. Hence, one has to model
the service time nonparametrically, leading to the M/G/c model, where c is the number
of serving stations. The output of the queueing functional consists of further stochastic
processes as for instance the occupation of the system or the waiting time process of the
customers. However, often the process one wishes to infer is not directly observable. For
that reason one has to develop statistical methods which enable one to make inference
for objects of interest using observations of di�erent processes. These statistical methods
base on the usage of functional relationships between the observables and the object of
interest. While the �rst two parts of the thesis were devoted to the issue of indirect
Bayesian nonparametric inference for the single server model M/G/1, in the last part I
examined related questions for the M/G/∞ model.

In chapter 3 of the thesis, I developed indirect inference methods for the continuous-time
M/G/1 queueing model. The object of interest was the distribution of the size of the
system and the waiting time distribution. Even if those processes were directly observ-
able, it is not clear at all how to make Bayesian inference for them. The main reason for
this is that, under some reasonable constraints, they form general stationary processes.
However, the aim was to make indirect inference which, at the same time, provides a
solution to aforementioned issue. The methods were based on the observations of the
arrival stream and the service times, respectively. Since the M/G/1 queue evolves in
continuous time, the law of the random service time c.d.f. is chosen to have a large sup-
port in order to express one's prior knowledge about G as well as possible. Therefore,
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a certain neutral-to-right prior was assigned to the distribution of G, namely the beta-
Stacy process. The family of beta-Stacy processes, which contains the Dirichlet process
as a special case, is well understood since it bases on the theory of increasing additive
processes. Moreover, explicit closed-form formulas can be given describing the update to
the associated posterior law and posterior consistency results are known for that class
of priors under relatively mild conditions. However, it appears that one is interested in
statistics for the tra�c coe�cient of the queue, thus also in the expected value of G, which
is random itself. Since G does not have a �nite support in general, consistency results
for G can not be easily transferred to its mean. Hence, I gave a direct proof of the fact
that the distribution of the random mean associated to G does actually center around
its true value. Using this result, I showed posterior consistency and posterior normality
results for the estimators of the Laplace transform of the waiting-time distribution and
the probability generating function of the system size, respectively.

Chapter 4 was also dedicated to the M/G/1 system but under a di�erent observational
setup. In contrast to chapter 3 where the input, in form of arrivals and services, was
assumed to be observable, here the queueing system is assumed to be a complete black
box. The only thing which is assumed to be observable is the departure stream of the
customers. In that situation one is usually interested in making inference for the service
time distribution G. By a known result from queueing theory, G relates to the parameter
of the Poisson arrival process and the distribution of the size of the system at instances
of departures, which can be seen as marks of the marked departure process. Since, in
steady state, the departure process behaves as the arrival stream, inferring the intensity
of the arrival stream is a minor problem. In contrast to that, the marks of the departure
process deserve some deeper study. It is well known that these marks form a Markov
chain on the non-negative integers, the so called embedded Markov chain of the M/G/1
system. Hence, from a subjectivist point of view, a random Markov measure needs to
be given which almost surely re�ects the M/G/1 origin of the data and which is possible
to be updated by observed data consisting of the marks. In order to clarify the problem
and to �nd a satisfying solution, I presented a deeper study concerning the statistical
structure of the probability measures governing the embedded Markov chain. By a new
result obtained in this thesis, the measures governing the embedded Markov chain are
summarized by a certain statistic which in turn possesses S-structure. Together with
Freedman's S-structure theorem, this result paved the way for the theoretical clari�ca-
tion of the existence of a prior on the space of Markov measures governing the embedded
chain. As a particular model for that prior, a certain functional of the Dirichlet process
was taken that lead to consistency and normality results for the emerging posterior of the
random stochastic matrix. These results were �nally used to obtain analog properties of
the Bayesian estimator for G.

Chapter 5 departed from the previous two since the continuous-time queueing model
M/G/∞ with Poisson input and generally distributed service times, but with in�nitely
many servers was considered. The basic assumption was that only time points when
customers enter and leave the system, respectively, can be recorded. By a known result,
G relates to the the distribution of some functional of the observations. However, this
functional amounts to a general stationary process and Bayesian statistics for station-
ary data taking values in arbitrary Polish spaces is a di�cult task which has not been
studied intensively, yet. Hence, in a �rst step, I simpli�ed the problem by assuming the
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data to take values in a state space with �nitely many elements in order to clarify the
problem. The theory then presented shed light on the di�culties of Bayesian inference
for stationary data taking values in a �nite state space by developing a parametrization
of a statistically appropriate subset of the shift-ergodic measures. This parametrization
relied on the algebraic idea of an inverse limit which is taken with respect to measurable
mappings between suitable parameter spaces of measures carrying dependencies of �xed
�nite range. A Bayesian statistical model, in the �rst instance, requires to elicit a prior
distribution that is able to express one's à priori knowledge. Simply put, the model reveals
the mechanism which generates the data. After having clari�ed the associated parameter
space for stationary/ergodic measures, the model was chosen in a way that allows for
inference for stationary data sampled according to this mechanism. The data generating
mechanism itself evolved in three consecutive stages. In the �rst one, the order of depen-
dence of the measure that eventually generates the data was sampled from a distribution
on the non-negative integers. Thus, one model assumption was that the true order of
dependence is �nite but by no means bounded. In the second stage, given the order of de-
pendence just sampled, a stochastic tensor, which amounts to a natural generalization of
stochastic matrices encoding the long range dependence transition probabilities, was sam-
pled. Here a second crucial assumptions appeared. Namely, the independence assumption
among sectors of the stochastic tensors that relate to di�erent predecessor states of the
transition probabilities. This assumption allowed to sample "row-wise" from Dirichlet
distributions which induce a probability measure on the space of stochastic tensors. By
the theoretical considerations of the given parametrization, a stochastic tensor of a cer-
tain dimension fully determines all the lower-dimensional ones and therefore the measure
which in turn generates the data. Sampling the data from this measure was the last stage.

Certainly, this model is not the only possible. However, it has several advantages. Firstly
it is workable in the sense that the mechanism the data is sampled from becomes lucid.
Secondly, from a rather philosophical viewpoint, it relates to a model which is (in abuse of
language) merely sparsely informative. This is mainly due to the row-wise independence
assumption that does not allow for learning across the rows, since the opportunity of such
procedures might be regarded as additional information. The third and probably the most
striking advantage is that it allows for a clear-cut update by observed data. Therefor the
stage-wise sampling scheme is exploited by updating the Dirichlet distributions separately
by higher order transition counts in a �rst step to be followed by updating the prior on
the order of dependence in a second. While the �rst one is well known, the second relies
on a speci�c non-trivial topological measurement of the empirical strength of belief in the
order of dependence.

As an outlook it is worth mentioning the examination of the stated update mechanism
with respect to posterior consistency. More precisely to answer the question whether
the posterior law does actually center around the parameter of the true data generating
measure which is sampled according to the aforementioned scheme. Therefor, due to the
topological considerations which the posterior builds on, this is supposed to come along
with further sophisticated theory. But there seems to be hope for an a�rmative answer
since a Doob-type posterior consistency result was developed in Lijoi et al. (2007). How-
ever, since Doob-type consistency results classically rely on reverse martingale techniques
they do not give much insight into what is happening in more detail. Hence, there is
additional need for consistency results for explicit and workable models.
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Furthermore, it would be interesting to extend the theory to more general situations.
Thereby, the most interesting generalizations would of course be with respect to the state
space on the one hand side and with respect to the model itself. Extending the presented
theory to countably in�nite or even uncountable state spaces seems fairly di�cult since
the mappings which are used to construct the parameter space of the positive shift-ergodic
measures are not easily seen to be continuous or measurable, respectively. For the case of
countably in�nite state truncation techniques as in Gibson and Seneta (1987) are expected
to be of help. The case of in�nite state spaces is presumably even harder since �nite ap-
proximations to the kernels determining the shift-ergodic measures would be necessary.
The work of Fortini et al. (2002) may give an idea of such approximations. Moreover,
perturbation techniques of general operators as in Kato (1995) might be helpful. Merely
considering usual Markov measures (i.e. the dependency range of the induced process is
unity) on in�nite state spaces, a basic question will be how to model the learning pro-
cedure for the Markov kernel. More precisely, what one can learn about transitions of
the process into some Borel set given the process was located to a certain region of the
state space based on observations that belong to distinct regions. In order to visualize
the issue, I personally �nd it helpful to imagine pebbles thrown onto the surface of some
�uid, the pebbles standing for the observed data. How long can the repercussion of the
emerging circles be modeled? How can one build further statistical models out of that?
Extending the model itself can be done in several ways and this depends on the certain
situation one wishes to model. Basically, any probability measure one the developed pa-
rameter space of the shift-ergodic measures can be used as a prior. However, generally it is
not easy to give a full description of its push-forwards under �nite-dimensional projections
nor of the appropriate posterior measure whenever the row-wise independence assumption
is dropped. Perhaps further rigid models with known update mechanisms can be build in
order to mix over them subsequently. This might create an additional level of modeling
as well as expressing one's uncertainty. Then the question would naturally arise to the
mathematician whether there is a reasonable family of explicitly describable models that
is dense in all models sampling stationary data or at least in a statistically appropriate
subset of them.
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