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Abstract

In this thesis, we address coupled incompressible flow problems with respect

to their efficient numerical solutions. These problems are modeled by the Os-

een equations, the Navier-Stokes equations and the Brinkman equations. For

numerical approximations of these equations, we discretize these systems by

Hdiv-conforming discontinuous Galerkin method which globally satisfy the

divergence free velocity constraint on discrete level. The algebraic systems

arising from discretizations are large in size and have poor spectral properties

which makes it challenging to solve these linear systems efficiently.

For efficient solution of these algebraic system, we develop our solvers based

on classical iterative solvers preconditioned with multigrid preconditioners

employing overlapping Schwarz smoothers of multiplicative type. Multigrid

methods are well known for their robustness in context of self-adjoint prob-

lems. We present an overview of the convergence analysis of multigrid method

for symmetric problems. However, we extend this method to non self-adjoint

problems, like the Oseen equations, by incorporating the downwind ordering

schemes of Bey and Hackbusch and we show the robustness of this method

by empirical results.

Furthermore, we extend this approach to non-linear problems, like the Navier-

Stokes and the non-linear Brinkman equations, by using a Picard iteration

scheme for linearization. We investigate extensively by performing numerical

experiment for various examples of incompressible flow problems and show

by empirical results that the multigrid method is efficient and robust with
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respect to the mesh size, the Reynolds number and the polynomial degree.

We also observe from our numerical results that in case of highly heteroge-

neous media, multigrid method is robust with respect to a high contrast in

permeability.
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Zusammenfassung

Diese Arbeit beschäftigt sich mit Methoden zum effektiven Lösen von Gle-

ichungen, die aus gekoppelten inkompressiblen Strömungsproblemen resul-

tieren. Dabei handelt es sich genauer um die Oseen-, Navier-Stokes- und

Brinkmangleichungen. Zur Approximation der Lösung dieser Gleichungen

verwenden wir Hdiv-konforme unstetige finite Elemente, welche die Inkom-

pressibilitätsnebenbedingung global erfüllen. Die großen Dimensionen und

die schlechte Kondition der korrespondierenden linearen Gleichungssysteme

machen das effiziente Lösen zu einer herausfordernden Aufgabe.

Zum effektiven Lösen der Gleichungssystem entwickeln wir unsere Löser

basierend auf klassischen interativen Lösern mit Mehrgittervorkonditionier-

ern, die multiplikative Schwarz-Glätter benutzen. Mehrgittermethoden sind

wohlbekannt fr ihre Robustheit im Kontext selbstadjungierter Probleme. Wir

präsentieren einen Überblick über die Konvergenzanalysis für symmetrische

Probleme. Für nicht selbstadjungierte Probleme, wie den Oseengleichungen,

benutzen wir die Downwind-Sortierung nach Bey und Hackbusch und zeigen

die Robustheit der resultierenden Methode empirisch.

Darüber hinaus erweitern wir diesen Ansatz auf nichtlineare Probleme, wie

die Navier-Stokes- oder die nichtlinearen Brinkmangleichungen, wobei eine

Picarditeration zur Linearisierung benutzt wird. Wir untersuchen diesen Al-

gorithmus eingehend mit numerischen Experimenten für verschiedene Beispiele

inkompressibler Strömungsprobleme und zeigen mit empirischen Resultaten,

dass das Mehrgitterverfahren effizient und robust im Bezug auf Gitterweite,
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Reynoldszahl und Polynomgrad ist. Wir beobachten in unseren numerischen

Resultaten, dass das Mehrgitterverfahren auch für stark heterogene Mate-

rialien robust im Bezug auf den Quotienten der Permeabilitätskoeffizienten

ist.
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Chapter 1

Introduction

In this thesis, we develop a methodology for the efficient numerical solu-

tions of large algebraic systems arising from discretizations of the Oseen, the

Navier-Stokes and the Brinkman equations. We use multigrid precondition-

ers with overlapping Schwarz smoothers. Robustness with respect to the

mesh parameters of the multigrid method is shown by empirical results.

Fluid flow is an essential part of many applications, e.g. aerodynamics,

natural convection in the earth’s mantle or flows in industrial foams. It is

often complicated and expensive to imitate these flows in experiments, if not

impossible. Therefore, the numerical simulations are an important tool to

complement the experiments or to replace them.

With modern computers and their capabilities, large scale simulations in

Computational Fluid Dynamics (CFD) have garnered considerable attention

in recent years. There are two major aspects in CFD. First, it is based on
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proper mathematical modeling of physical phenomena. Second, it is based

on efficient implementation of the derived algorithms. The focus in this

manuscript is the latter aspect of CFD.

The Navier-Stokes equations are used as a mathematical model for incom-

pressible fluid flow and have many applications in real-world problems. There-

fore, efficient simulation methods for the Navier-Stokes equations are of great

importance.

We develop a methodology for solving the Navier-Stokes equations efficiently

in the first part of this thesis. We start with a linearized version of the

Navier-Stokes equations, namely the Oseen equations. The finite element

discretization of such equations leads to large algebraic systems with poor

spectral properties [16, 64]. Hence, it becomes challenging to solve these large

algebraic systems efficiently. In order to solve such algebraic systems, precon-

ditioning techniques are required [30, 31, 35, 49, 72]. In our methodology, we

use the multigrid preconditioners with overlapping Schwarz smoothers [8, 10].

Such preconditioners have proven to be efficient, theoretically and numeri-

cally, for symmetric problems e.g. [8, 10, 33, 42, 43, 52, 59, 67, 68]. However,

for non-symmetric problems, like the Oseen equations, there are no existing

results for efficiency of this multigrid method, either theoretical or numerical.

We extend this method to non-symmetric problems by incorporating the

downwind ordering schemes of Bey and Hackbush [12, 37]. These re-ordering

techniques have proven to be efficient for obtaining robust multigrid methods

2



for advection dominated cases in advection-diffusion problems, for instance

in [50]. Nevertheless, for the Oseen equations, we extend the idea of ap-

plying downwind ordering to vertex patches, namely subdomains in context

of Schwarz smoothers, for smoothing operations in multigrid method. Our

numerical results show that the multigrid preconditioner is efficient as com-

pared to the block preconditioners [35, 55, 62]. Moreover, it is robust with

respect to the mesh size, the Reynolds number and the polynomial degree.

For the Navier-Stokes equations, we encounter additional problems due to

the nonlinear convection term. For linearization, we use the classical Picard

iteration, following the approach in [22], where multigrid preconditioner is

used in each iteration for solving the linear system. In this case, we show

efficiency of the multigrid method by the numerical results for different fluid

flow problems. Whereas, robustness of the multigrid method with respect to

the mesh size for high Reynolds numbers is still an open question.

In the second part of this thesis, we extend our numerical experiments to

show the efficiency of the multigrid methods for fluid flow problems in het-

erogeneous porous media. There are many real-world application in which

mathematical models and simulations of flow through porous media are of

great importance. Examples include ecology, underground water flow, indus-

trial filters and oil exploration etc. Hence, many researchers search for better

mathematical models and efficient algorithms for these flow problems.

Mathematically, fluid flow through porous media is described by the Darcy’s

3



law on the macro level neglecting viscous effects. In 1947, Brinkman [17]

proposed a model for fluid flow through porous media which also takes into

account viscous effects. The Brinkman model is widely used for fluid flow

problems in highly porous media, whereas for low porosity and low Reynolds

numbers the Darcy model is still considered to be appropriate.

We consider two cases: the linear Brinkman equations (neglecting the con-

vection term) and the nonlinear Brinkman equations (including the convec-

tion term). We use the same multigrid setting for solving algebraic systems,

arising from the discretizations of the Brinkman equations in both cases.

Multigrid methods have recently proven to be efficient by Kanschat and Mao

[51] for the linear Brinkman equations. We extend this approach of multi-

grid methods to the nonlinear Brinkman equations using the classical Picard

iteration. We show by empirical results that the multigrid method is robust

with respect to the mesh size and variations in permeability.

1.1 Outline

In Chapter 2, we present basic definitions of function spaces and finite ele-

ment spaces. We also set some basic notation for discontinuous Galerkin dis-

cretization and multi-level meshes, those are used throughout this manuscript.

In Chapter 3, we present the multigrid method with overlapping Schwarz

smoothers for the Oseen equations. The system is discretized by Hdiv-

conforming discontinuous elements and the resulting linear problem is solved

4



by using multigrid preconditioner with overlapping Schwarz smoothers. We

provide an overview of the convergence analysis for multigrid preconditioner

for symmetric problems given in [52]. We perform extensive numerical ex-

periments using the multigrid method for the Oseen equations. We observe

that our solver is robust with respect to the mesh size, the Reynolds num-

ber and the polynomial degree. This implies that the numerical results for

non-symmetric problems are in agreement with the theory for symmetric

problems.

In Chapter 4, we extend our numerical experiments to the nonlinear prob-

lems, namely the Navier-Stokes equations. We use the same discretization

as in case of the Oseen equations and the resulting linear problem is solved

by using multigrid preconditioner with overlapping Schwarz smoothers of

multiplicative type. We use the classical Picard iteration for linearizing and

GMRES [66] in combination with multigrid preconditioner as inner solver for

the linear system. Finally, we present numerical results for a variety of flow

problems. These results show that for the Navier-Stokes equations, robust-

ness of the multigrid preconditioner depends on mesh parameters and the

Reynolds number. Nevertheless, it is still efficient.

In Chapter 5, we present the multigrid preconditioner for the finite element

approximation of flow problems in highly heterogeneous porous media gov-

erned by the Brinkman equations. In Section 5.2, we describe the multigrid

method for the linear Brinkman equations (neglecting the convection term)

and present the corresponding numerical results. In Section 5.3, we use the

5



same multigrid method for the nonlinear Brinkman equations (including the

convection term) and we present the numerical results. In both cases, we

observe from the computational results that the multigrid method is robust

with respect to the mesh size and variations in permeability for highly het-

erogeneous porous media.

The thesis is concluded by summarizing its findings and points towards the

importance of extending its contribution.
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Chapter 2

Mathematical Framework

In this chapter, we provide an overview of some basic definitions of function

spaces, widely used in this script later on. We introduce some notations

especially for discontinuous Galerkin and multilevel meshes. We will follow

these definitions and notations in later chapters.

2.1 Function Spaces

In this section we provide an overview of some existing theory about the

function spaces.

2.1.1 Sobolev Spaces

The natural spaces for variational problems are Sobolev spaces [1]. We con-

sider a Lipshitz domain Ω ⊂ Rd where d is 2 or 3. We start with L2-spaces in

this domain. The L2(Ω) is a space of square integrable functions on domain

7



Ω with the following norm.

‖u‖0 =

∫
Ω

|u|2dx for u ∈ L2(Ω)

The space H1(Ω) is the space of all functions which have weak gradient. So

we have the following norm for this space

‖u‖1 =

∫
Ω

|u|2dx+

∫
Ω

|∇u|2dx for u ∈ H1(Ω)

Then we have H1
0 (Ω) which is the space of the functions u ∈ H1(Ω) such

that u|∂Ω = 0. Here u|∂Ω in sense of traces and u|∂Ω for u ∈ H1(Ω) ∩ C0(Ω)

coincide.

2.1.2 Finite Element Spaces

For the discretization of our model problems on mesh T`, we choose discrete

subspace S` = V` × Q` where Q` ⊂ Q. Following [22] and [52] for the

divergence free velocity we consider the discrete subspace V` of the space

Hdiv
0 (Ω), where

Hdiv (Ω) =
{
v ∈ L2

(
Ω;Rd

)
| ∇ · v ∈ L2 (Ω)

}
,

Hdiv
0 (Ω) =

{
v ∈ Hdiv (Ω) | v · n = 0 on ∂Ω

}
.

Here, we observe that any pair of the velocity spaces V` and pressure Q` is

admissible, if the key relation

∇ · V` = Q` (2.1)

holds.
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2.1.3 Raviart-Thomas spaces

We choose the well known Raviart-Thomas space [65]. The details of con-

structing the Raviart-Thomas space follow as in [52].

We define on the reference cell T̂ = [0, 1]d two polynomial spaces Q̂k and

V̂k such that first is the space of polynomials in d variables each with max-

imum degree k and second is the vector valued Raviart-Thomas space V̂k =

Q̂d
k +xQ̂k. Now, for each cell T ∈ T`, we have a linear mapping ΨT such that

T = ΨT (T̂ ) through which we get polynomial spaces VT and QT on the mesh

cell T . As the polynomial degree k is chosen uniformly for the whole mesh

so we omit index k from now on. By this construction we get the following

pair of finite element spaces.

V` =
{
v ∈ Hdiv

0 (Ω) | ∀T ∈ T` : v|T ∈ VT
}
,

Q` =
{
q ∈ L2

0 (Ω) | ∀T ∈ T` : q|T ∈ QT

}
.

Figure 2.1: Degrees of freedom of Raviart-Thomas elements for order 0,1 and

2 are 4, 12 and 24 respectively
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2.2 Multilevel Meshes

For the finite element discretization, we make a hierarchy of meshes {T`}`=0,...,L

on the domain Ω where ` indicates the mesh level in multilevel method such

that by going from level ` to level ` + 1 mesh is refined once in a way such

that each cell is divided into 2d cells(children) so that we obtain the nested

meshes. The mesh size h` is defined as the maximum of the diameter of the

cells at level `.

Through this process of refinement we construct the conforming meshes, so

Figure 2.2: Multi-level meshes from left to right for levels ` = 0, 1, 2

every face of a cell is either at boundary or a whole face of another cell. The

notation for the set of all faces will be F` and F` = F i`
⋃
F∂` , sum of interior

and boundary faces.

2.3 DG Notations

We define the averaging operator {{�}} and the jump J�K over the face F

between two adjacent cells T1 and T2 (Fig. 2.3) as follow:

{{u}} =
u1 + u2

2
JuK = u1 − u2

10



where u1 and u2 are the traces of u from T1 and T2 on the joint face F .

T1 T2

F

n

Figure 2.3: Two adjacent mesh cells

We introduce a short hand notation for the integral forms on T` and on F`
by

(φ, ψ)T` =
∑
T∈T`

∫
T

φ� ψdx, 〈φ, ψ〉F`
=
∑
F∈F`

∫
F

φ� ψds,

‖φ‖T` =

(∑
T∈T`

∫
T

|φ|2dx

) 1
2

, ‖φ‖F`
=

(∑
F∈F`

∫
F

|φ|2dx

) 1
2

.

The point-wise multiplication operator φ � ψ refers to the product φψ, the

scalar product φψ̇ and the double contraction φ : ψ for scalar, vector and

tensor arguments respectively. The modulus |φ| =
√
φ� ψ is defined accord-

ingly.
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Chapter 3

The Oseen Equations

3.1 Introduction

In this chapter, the multigrid method with overlapping Schwarz smoothers

for the Oseen equations is presented. The system is discretized by Hdiv-

conforming discontinuous Galerkin method and the resulting linear problem

is solved by using a multigrid preconditioner employing overlapping multi-

plicative Schwarz smoothers. An overview of the convergence analysis of

multigrid preconditioner for symmetric problems is presented which shows

the robustness of the multigrid method. We extend this method to non-

symmetric problems by apply the downwind ordering schemes of Bey and

Hackbusch. We show the robustness of multigrid method by performing ex-

tensive numerical experiments for the case of non-symmetric problems, like

the Oseen equations. We observe the efficiency of multigrid preconditioners

as compare to block preconditioners [35, 55]. Furthermore, we see that, with

multigrid preconditioners, the work required by linear solver - in case of the

12



Oseen equations - is nearly same as for Laplace problem. Moreover, our nu-

merical results show that the multigrid method is robust with respect to the

mesh size, the Reynolds number and the polynomial degree.

3.2 Model Problem

The Oseen equations are

−ν∆u+ (β · ∇)u+ γu+∇p = f in Ω,

∇ · u = 0 in Ω,

u = g on ∂Ω, (3.1)

where u, p and f ∈ L2 (Ω)d are velocity, pressure and prescribed external

body force, respectively. Here ν is the kinematic viscosity, β is a convective

velocity field and γ is a given scalar function and we assume that

γ (x)− 1

2
∇ · β (x) = γ0 (x) ≥ 0 x ∈ Ω. (3.2)

As in [23] and the references therein, the condition (3.2) guarantees the ex-

istence and uniqueness of the solution (u, p) ∈
(
V = H1

0 (Ω)d , Q = L2
0 (Ω)

)
,

where Ω ⊂ Rd is a bounded and convex domain with no-slip boundary con-

ditions.

3.3 Discontinous Galerkin discretization

We use a divergence conforming discontinuous Galerkin discretization for

(3.1), by following the examples in [22, 48, 52, 53, 54]. For this type of

13



discretization weakly divergence free functions are point-wise divergence free.

Such discretizations are available in literature, for instance, in Scott and

Vogelius [70, 75], Neilan et al. [32, 36] and Zhang [81, 82]. The Laplacian

term is discretized by means of the interior penalty method [9, 63]. Using the

notations defined in Section 2.3 for jumps and averages, the interior penalty

bilinear form for the Laplacian term and the upwinding bilinear form for the

convection term can be written as

a` (u, v) = ν (∇u,∇v)T` + 4 〈σ`{{u⊗ n}}, {{v ⊗ n}}〉Fi
`

− 2 〈{{∇u}}, {{n⊗ v}}〉Fi
`
− 2 〈{{∇v}}, {{n⊗ u}}〉Fi

`

+ 2 〈σ`u, v〉F∂
`
− 〈∂nu, v〉F∂

`
− 〈∂nv, u〉F∂

`
,

b` (β;u, v) = (γu, v)T` − (u,∇ · v ⊗ β)T`

+ 2
〈
| β · n | u↑, JvK

〉
F i

`

+ 2 〈| β · n | u, v〉F∂
`
.

The operator ⊗ denotes the Kronecker product of the two vectors. We note

that the term 4{{u⊗n}} : {{v⊗n}} actually denotes the jumps of u and v. To

ensure the coercivity of form a` (., .), the interior penalty parameter σ` has

to be chosen sufficiently large. We can estimate its lower limit by

σ` >
k (k + 1)

2h`
.

Where k is the degree of the polynomial and h` is the mesh size at level `.

We usually choose twice the value in our numerical test.

The discrete weak formulation of (3.1) reads now: find (u`, p`) ∈ V` × Q`

such that for all test functions v` ∈ V` and q` ∈ Q` there holds

A`
((

u`
p`

)
,

(
v`
q`

))
= F (v`, q`) ∀v` ∈ V`, q` ∈ Q`, (3.3)
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where

A`
((

u`
p`

)
,

(
v`
q`

))
≡ a` (u`, v`) + b`(β;u`, v`) + (p`,∇ · v`)− (q`,∇ · u`) ,

F (v`, q`) ≡ (f, v`) .

3.4 Existence and Uniqueness of Solution

In this section, we present an overview of the theory for the existence and

uniqueness of discrete solution as discussed in [22, 24, 41, 53]. We use the

finite element spaces RTk/Qk, as described in Section 2.1.2. Thus for pair of

Raviart-Thomas spaces, we have

∇ ·RTk = Qk.

The resulting space V` is equipped with the norm

|||u|||2σ =
∑
T∈T`

‖∇u‖2
L2(T ) +

∑
F∈F`

∫
F

σL|{{u⊗ n}}|2ds.

For the existence and uniqueness of discrete solution, we need continuity and

coercivity of the form A`(., .) for which we have following estimates for the

diffusion term, the convection term and incompressibility constraint. For

proofs of the following proposition we refer to [21, 22].

Proposition 3.4.1. If the interior penalty (IP) parameter is chosen suffi-

ciently large, then there exist constants ca > and α > 0, independent of the
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viscosity and the mesh size, such that

a`(u, v) ≤ νca|||u|||σ|||v|||σ u, v ∈ V`,

a`(u, u) ≥ να|||u|||2σ u ∈ V`.

Proposition 3.4.2. For any divergence free velocity field β and any u ∈ V`
we have

b`(β;u, u) ≥ 0.

Furthermore, if we also have that β1, β2, v ∈ V`, it holds

|b`(β1;u, v)− b`(β2;u, v)| ≤ c0|||β1 − β2|||σ|||u|||σ|||v|||σ.

Proposition 3.4.3. For any pressure function q ∈ Q`, there exists a velocity

function v ∈ V`, satisfying

inf
q∈Q`

sup
v∈V`

(q,∇ · v)

|||v|||σ‖q‖L2(Ω)

≥ γ` > 0,

where γ` = c
√

hL
h`

= c
√

2L−` and c is a constant independent of the multigrid

level `.

Proof. For the proof we refer to [69].

By using these propositions and the analysis given in ([22], Theorem 3.1)

we obtain the result that there exist a unique solution for discontinuous

Galerkin discretization of (3.3).
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3.5 The singularly pertubed problem

For the multigrid analysis, we introduce the singularly perturbed problem

related to (3.3). This makes it easy to carry the analysis in only velocity space

V`. Afterwards, we show the equivalence of both solutions of original problem

and singularly perturbed problem. The singularly perturbed problem, as in

[34], has the following form

a`(u`, v`) + b`(β;u`, v`) + (p`,∇ · v`) = (f, v`), (3.4)

−ε(p`, q`) + (q`,∇ · u`) = 0. (3.5)

From (3.5), we have the relation p` = ε−1∇ · u`. By substituting this value

of p` in (3.4), we have the following simpler penalty bilinear form

A`,ε(u`, v`) ≡ a`(u`, v`) + b`(β;u`, v`) + ε−1(∇ · u`,∇ · v`) = (f, v`), (3.6)

and the singularly perturbed problem: find u` ∈ V` such that for all v` ∈ V`
there holds

A`,ε(u`, v`) = (f, v`). (3.7)

Then for the equivalence of the solutions, we have the following lemma as

presented in [52] for the Stokes problem.

Lemma 3.5.1. Let (um, pm) be the solution to (3.4)-(3.5) and ue be the

solution to (3.7). Then, if (2.1) holds, the following equations hold true:

um = ue, and εpm = ∇ · um = ∇ · ue.

Proof. Proof of this lemma is simple by following the approach from [52], in

spite of the fact that here we additionally have convection term. Nevertheless,

it goes off in case of testing with v` = 0 so rest of the proof is same.
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Notations: For the following sections, we would like to introduce the

separate notations for the mixed problem and singularly perturbed problem.

We drop the subscript ε wherever possible. Furthermore, curly letters refer

to the mixed form, while capitals refer to operators on the velocity space

only. Thus:

• a`(u, v) is the vector valued interior penalty form.

• A`(u, v) is the form of the singularly perturbed problem (3.7).

• A`
((

u
p

)
,
(
v
q

))
is the mixed bilinear form (3.3).

Additionally, we associate operators with bilinear forms using the same sym-

bol:

A` : V` → V` (A`u, v) = A`(u, v) ∀u, v ∈ V`,

A` : X` → X` (A`u, v) = A`(u, v) ∀x, y ∈ X`.

3.6 Overlapping Schwarz Smoothers

In this section, we define a class of smoothing operators B` used in the multi-

grid V-cycle [51]. These smoothers are based on a subspace decomposition

of the space X` corresponding to the overlapping subdomains of the triangu-

lation T`. We create the subdomains T`,ν in form of vertex patches in such a

way that every subdomain contains all cells sharing the same vertex ν (See

Fig: 3.1). In this way we get an overlapping covering with N` > 0 patches,

denoted by {Ω`,ν}N`
ν=1.
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The subspace X`,ν = V`,ν ×Q`,ν consists of the functions in X` with support

in Ω`,ν . This implies homogeneous slip boundary conditions on ∂Ω`,ν for the

velocity subspace V`,ν and zero mean value on Ω`,ν for the pressure space

Q`,ν .

1 2

3 4

1 2

3 4

1 2

3 4

Figure 3.1: Subdomains consisting of vertex patches

3.6.1 Projection Operators

In this section, we describe some operators for interpolation and restriction.

These operators will be used throughout this thesis for Schwarz smoothers.

We assume the existence of restriction and interpolation operators as given

in [71]. We suppose these operators for both, singularly perturbed problem

and mixed form, as follows:

R`,ν : V` −→ V`,ν , R`,ν : X` −→ X`,ν ,

RT
`,ν : V`,ν −→ V`, RT

`,ν : X`,ν −→ X`.

Let us suppose the following decomposition of V` and X`

V` =
∑
ν∈N`

RT
`,νV`,ν , X` =

∑
ν∈N`

RT
`,νX`,ν .

When the space at level ` is decomposed as above then the representation of

the any element of spaces (V` and X`) as the sum of elements of subspaces
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(V`,ν and X`,ν) is not unique.

For the subspaces, we introduce the local bilinear forms and matrices asso-

ciated with them in the following way:

A`,ν(·, ·) : V`,ν × V`,ν −→ R, A`,ν(·, ·) : X`,ν ×X`,ν −→ R,

A`,ν : V`,ν −→ V`,ν , A`,ν : X`,ν −→ X`,ν .

These local bilinear forms can be different from the original global bilinear

forms. However, in case of using the exact subspace solvers the local bilinear

forms are inherited from the global form as following

A`,ν(uν , vν) = A`(R
T
`,νuν , R

T
`,νvν) ∀uν , vν ∈ V`,ν ,

A`,ν(xν , yν) = A`(RT
`,νxν ,RT

`,νyν) ∀xν , yν ∈ X`,ν ,

we get the following relations.

A`,ν = R`,νA`R
T
`,ν , A`,ν = R`,νA`RT

`,ν .

We define projection-like operators P`,ν : V` −→ V`,ν and P`,ν : X` −→ X`,ν

such that

A`,ν(P`,νu`, v`,ν) = A`(u`, R
T
`,νv`,ν) ∀v`,ν ∈ V`,ν , (3.8)

A`,ν(P`,νx`, y`,ν) = A`(x`,RT
`,νy`,ν) ∀y`,ν ∈ X`,ν . (3.9)

By this definition we obtain a relation between local and global bilinear forms

on level `

A`,νP`,ν = R`,νA`, (3.10)

A`,νP`,ν = R`,νA`. (3.11)
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3.6.2 Multiplicative Schwarz

To define the multiplicative Schwarz smoother, we start with the following

multiplicative algorithm as given in [15].

Algorithm 3.6.1. Given ui` ∈ V` is initial solution, we define the next iterate

ui+1
` ∈ V` as follows:

1. w0 = ui`.

2. For ν = 1, · · · , N` define wν by

wν = wν−1 + A`,νR`,ν(f − A`wν−1).

3. Set ui+1
` = wN`

.

Let E0 = u` − w0 and Eν = u` − wν for ν = 1, · · · , N`. In addition we

have the following relation in local to global forms

R`,νA` = A`,νP`,ν

where P`,ν is the projection operator defined in (3.10). So we can write the

error propagation operator in the recursive form

Eν = (I − P`,ν)Eν−1

Consequently,

u` − ui+1
` = (I − PN`

)(I − PN`−1) · · · (I − P1)(u` − ui`),

We define the symmetric multiplicative Schwarz smoother B` using the error

propagation operators, associated with spaces V`,ν , by

B` = (I − E∗`E`)A−1
` with E` = (I − P`,1) · · · (I − P`,N`

), (3.12)
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where E∗` is the A`-adjoint of E`. Similarly the symmetric multiplicative

Schwarz smoother B` can be defined using the error propagation operators

for mixed form, associated with spaces X`,ν , by

B` = (I − E∗` E`)A−1
` with E` = (I − P`,1) · · · (I − P`,N`

), (3.13)

where E∗` is the A`-adjoint of E`.

3.6.3 Convergence Analysis

In this section, we provide an overview of the convergence analysis of the

Multiplicative Schwarz smoohters which has been presented in [15] and [79]

as iterative methods. Here, we analyze these iterative methods as smoothers

in the multigrid framework. In our analysis, we always use the exact solvers

for the subspace problems which is different in the sense that they considered

the approximation on the subproblems.

For convenience, we drop out the subscript ` in this section until it is neces-

sary to use. For proving the convergence of the multiplicative algorithm we

need to show that error reduces in each iteration which means we have the

following contraction property

‖E‖A ≤ δ where ‖E‖A = sup
u∈V

A(Eu,Eu)

A(u, u)
,

with a constant 0 < δ < 1. Here E is given in (3.12). As E∗E = I −BA, so

we can also write this contraction property in the following form.

A((I −BA)u, u) ≤ δ2A(u, u) ∀u ∈ V.

We have the following assumptions at hand for the analysis of these smoothers.

Constant appearing in these assumptions determine an upper for contraction
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as we will see later.

Stable Decomposition: For any u ∈ V there exists a decomposition

u =
∑N

ν=1 R
T
ν uν for uν ∈ Vν , such that

N∑
ν=1

Aν(uν , uν) ≤ C0A(u, u). (3.14)

Strengthened Cauchy-Schwarz: There exist constants 0 ≤ ενξ ≤ 1, 1 ≤

ν, ξ ≤ N , such that

|A(RT
ν uν , R

T
ξ uξ)| ≤ ενξA(RT

ν uν , R
T
ν uν)

1/2A(RT
ξ uξ, R

T
ξ uξ)

1/2, (3.15)

for uν ∈ Vν and uξ ∈ Vξ. We will denote the spectral radius of ε = {ενξ} by

ρ(ε).

Local Stability: There exists a constant ω > 0, such that

A(RT
ν uν , R

T
ν uν) ≤ ωAν(uν , uν), uν ∈ Vν , 1 ≤ ν ≤ N. (3.16)

We present here a technical lemma which will be used in the main result for

the convergence.

Lemma 3.6.1. Denote for 1 ≤ ν ≤ N , Eν = (I − Pν)(I − Pν−1) · · · (I − P1)

and E0 = I. Then

I − Eν =
ν∑
j=1

PjEj−1, (3.17)

(2− ω)
N∑
ν=1

A(PνEν−1v, Eν−1v) ≤ A(v, v)− A(Ev,Ev) ∀v ∈ V. (3.18)

Proof. From the representation of Eν we have the following identity

Eν−1 − Eν = PνEν−1,
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which implies (3.17). Furhtermore, we can deduce that

A(Eν−1u,Eν−1u)− A(Eνu,Eνu) = A(PνEν−1u, PνEν−1u) + 2A(PνEν−1u,Eνu),

= A(PνEν−1u, PνEν−1u) + 2(Pν(I − Pν)Eν−1u,Eν−1u),

= ((2I − Pν)PνEν−1u,Eν−1u),

≥ (2− ω)(PνEν−1u,Eν−1u).

Summing up these inequalities over ν, gives (3.18).

In Lemma 3.6.1, the constant ω ∈ (0, 2) is the same constant which

appears in the assumption of local stability. Now, we present a theorem

which is main part of convergence analysis.

Theorem 3.6.1. For the multiplicative algorithm, we have the following es-

timate

A((I −BA)u, u) ≤ δA(u, u) ∀u ∈ V,

where δ = 1− 2−ω
C0(1+C1)2

.

Proof. The proof of this theorem is presented in ([79], Theorem 4.4) which

can be followed for exact subspace solvers as here is the case.

We see from this theorem the contraction constant depends on the con-

stants ω, C0 and C1. For estimates of constants, we start with the constant

ω ∈ (0, 2) which appears in local stability estimate and is one in case of

the exact subspace solvers. C0 is the constant from stable decomposition

and C1 depends on the spectral radius ρ(ε) corresponding the strengthened

Cauchy-Schwarz inequality.
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3.7 Multigrid preconditioner

In this section, we describe our method for building multigrid preconditioners

and their convergence analysis for symmetric problems. As described in

Section 2.2, we use multi-level meshes. By having these multi-level meshes,

which contain nested mesh cells, we have the nestedness of finite element

spaces as follows:

V0 ⊂ V1 ⊂ ... ⊂ VL,

Q0 ⊂ Q1 ⊂ ... ⊂ QL,

X0 = V0 ×Q0 ⊂ X1 ⊂ ... ⊂ VL ×QL = XL.

This relation extends to the divergence free subspaces, see [52]

V 0
0 ⊂ V 0

1 ⊂ ... ⊂ V 0
L . (3.19)

3.7.1 Projection Operators

The nestedness of the spaces implies that there is a sequence of operators

IT` : X` → X`+1 of the form IT (v`, q`) =
(
IT`,uv`, I

T
`,pq`

)
, such that

IT`,u : V` → V`+1, IT`,p : Q` → Q`+1, (3.20)

IT`,u : V 0
` → V 0

`+1. (3.21)

The L2-projection of I` : X`+1 → X` is defined by

I` (v`, q`) = (I`,uv`, I`,pq`) ,

25



with

(v`+1 − I`,uv`+1, w`) = 0 ∀w` ∈ V` (q`+1 − I`,pq`+1, r`) = 0 ∀r` ∈ Q`.

(3.22)

The A-orthogonal projection P from (V`+1×Q`+1)→ (V`×Q`) is defined by

A`
(
P`
(
u`+1

p`+1

)
,

(
v`
p`

))
= A`+1

((
u`+1

p`+1

)
, IT`

(
v`
p`

))
, (3.23)

for all (u`+1, p`+1) ∈ (V`+1 × Q`+1) and (v`, q`) ∈ V` × Q`. Similarly, The

A-orthogonal projection P` from V`+1 → V` is defined by

A`(P`u`+1, v`) = A`+1(u`+1, I
T
`,uv`), (3.24)

for all u`+1 ∈ V`+1, v` ∈ V`. From these definitions of the projection operators,

we have the following relationship between consecutive levels.

A`P` = I`A`+1, A`P` = I`A`+1. (3.25)

As, we have the multi-level structure of the spaces V` × Q`, ` = 0, ..., L,

so on each level ` we rewrite the weak formulation to find (u`, p`) ∈ V` ×Q`

such that

A`
((

u`
p`

)
,

(
v`
q`

))
=

(
f

v`

)
∀(v`, q`) ∈ V` ×Q`,

in algebraic form A`x` = b` where x` ≡
(
u`
p`

)
and b` ≡

(
f
v`

)
is the right hand

side of the system.

3.7.2 V-cycle Algorithm

The multigrid preconditioner M` : X` −→ X`, where (X` = V` × Q`) is de-

fined recursively in V-cycle with m(`) ≥ 1 pre-smoothing and post-smoothing
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steps. Let B` be suitable smoother. We assume that the coarse mesh problem

A0x0 = b0 has a small size so that we directly invert A0 and haveM0 = A−1
0 .

For ` ≥ 1, we define the action of M` on vector b` ∈ X` as follows:

• Pre-smoothing:

xi = xi−1 + B`(b` −A`xi−1) i = 1, · · · ,m(`).

• Coarse grid correction:

xm(`)+1 = xm(`) + IT`−1M`−1I`−1(b` −A`xm(`)).

• Post-smoothing:

xi = xi−1 + B`(b` −A`xi−1) i = m(`) + 2, · · · , 2m(`) + 1.

• Assign:

M`b` = x2m(`)+1.

The number of smoothing steps m(L) on the finest level is a free parameter

and for the standard V-cycle m(`) = m(L), whereas in the case of variable

V-cycle, this becomes m(`) = m(L)2L−`. The smoothers B` are overlapping

Schwarz smoothers discussed in Section (3.6). We refer toML as the V-cycle

preconditioner of A. The V-cycle iteration is given by

xk+1 = xk +ML(bL −ALxk). (3.26)

The definition of the precondintioner M` : V` ←→ V` for the elliptic operator

A` follows the same concept, but dropping the pressure variables.
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3.7.3 Recurrence Relation

We derive a recurrence relation for the error operator I −M`A` of the V-

cycle algorithm as given in [14]. This operator will be used in the following

convergence analysis. After m(`) smoothing steps, we have

x− xm(`) = Km(`)
` x, Km(`)

` = (I − B`A`)m(`).

Then from the correction step, it follows:

x− xm(`)+1 = x− xm(`) −M`−1I`−1A`(x− xm(`)),

where b` = A`x. By using the relation given in (3.25), we get

x− xm(`)+1 = (I −M`−1A`−1P`−1)(x− xm(`)),

= (I −M`−1A`−1P`−1)Km(`)
` x,

(3.27)

and finally we have the following relation

(I −M`A`)x = x− x2m(`) − B`A`(x− x2m(`)),

= Km(`)
` (x− xm(`)+1),

= Km(`)
` (I −M`−1A`−1P`−1)Km(`)

` x,

since x ∈ X` is arbitrary. Hence, we have

(I −M`A`) = Km(`)
` (I −M`−1A`−1P`−1)Km(`)

` , (3.28)

= Km(`)
` [(I − P`−1) + (I −M`−1A`−1)P`−1]Km(`)

` . (3.29)
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3.7.4 Convergence Analysis

In this section, we give an overview of the convergence analysis for multigrid

preconditioner with overlapping Schwarz smoothers. Most of the results are

part of the standard multigrid theory. The detailed analysis on the con-

vergence of multigrid has been done by Kanschat and Mao [52] for Stokes

problem. Here, we skip proofs of theorems and only present some results re-

lated to convergence of multigrid method. This shows that multigrid method

is independent of mesh parameters. For detailed proofs and discussion, we

refer to [52] and [59]. The main result is presented in form of following

theorem.

Theorem 3.7.1. The multilevel iteration I −MLAL for the Stokes prob-

lem with the variable V-cycle operator defined in Section 3.7.2 employing

the smoother B` defined in (3.12) is a contraction with contraction number

independent of the mesh level `.

To prove this theorem, first they proved the same result for singularly

perturbed problem as described in Section 3.5. Then they have the following

result for the equivalence between mixed problem and singularly perturbed

problem.

Theorem 3.7.2. The multigrid algorithm in mixed variables preserves the

space X`,ε. On this subspace it is equivalent to the multigrid algorithm in

primal variables. This means for (u`, p`) ∈ X`,ε and (û`, p̂`) = M`(u`, p`)

there holds (û`, p̂`) ∈ X`,ε and

û` = M`u`,
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where M` and M` are the corresponding multigrid operators for each algo-

rithm.

In theoretical perspective these results are only proved for symmetric

positive definite systems. For proving these results, they used the recurrence

relation given in (3.28) and (3.29) and the symmetry of the system.

3.7.5 Downwind Ordering

We extend multigrid methods with Schwarz smoothers to non-symmetric

problems by incorporating the downwind ordering of Bey[12] and Hack-

busch[37]. We apply this sorting scheme to the vertices of the mesh because

we use vertex patches as our subdomains in Schwarz methods for smoothing.

This downwind ordering of vertex patches is effective when the convection

direction is constant which means there are no cycles in flow. Otherwise,

when there are vortices in flow then simple sorting in downwind direction is

not sufficient alone. In those cases, we consider sorting in multiple directions,

known as full sweep. In computational results, we have observed that in case

of convection dominated flows (high Reynolds number) downwind ordering is

considerably effective and we get the iterations count for linear solver those

are comparable to Laplace problem.

3.8 Numerical Results

We test multigrid preconditioners with overlapping Schwarz smoothers for

the Oseen problem. For our tests, we consider the following two dimensional
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analytical solutions as the exact solutions for the computing errors and con-

vergence rates.

Remark 3.8.1. We implemented all of our solvers in C++ by using a finite

element library deal.II[11, 7]. All the computational results in later chapters

are also obtained by using the same library.

Remark 3.8.2. For all of our results, there is only one cell in the coarse

mesh such that T = Ω. On a finer level ` the mesh is obtained by dividing

all the cells on coarser level `− 1 into four cells so that the mesh on level `

has 4` cells.

3.8.1 Poisseuille Flow

The Poisseuille flow of incompressible fluid a pipe or channel is modeled by

Navier-Stokes equations. The solution can be described, in terms of Reynolds

number Re, as following.

u1 (x, y) = 1− 1

L2

(
x2 + y2

)
,

u2 (x, y) = 0, (3.30)

p (x, y) = − 1

L2

2x

Re
+ C,

where a constant C is chosen in such a way that
∫

Ω
pdx = 0. The Reynolds

number is defined as Re = UL
ν

, where U is the velocity of the fluid and L is

characteristic length. In our case characteristic length is radius of channel.

We take the domain Ω = (−1, 1)2 with non-homogeneous Dirichlet boundary

conditions, where the velocities at boundary of domain are give by (3.30). By

choosing β = u and γ = 0, the functions given in (3.30) solve the equation
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(3.1).

In Table 3.1, the convergence rates for errors are presented for finite element

spaces pair RT1 × Q1 and ν = 10−2. Reduction of residual is set to 10−10.

We observe optimal convergence of L2 and H1 errors for both velocity and

pressure.

Levels ‖u− uh‖L2 ‖u− uh‖H1 ‖p− ph‖L2 ‖p− ph‖H1

3 3.8515e-02 - 5.8002e-01 - 4.6650e-03 - 1.5503e-02 -

4 9.7420e-03 1.98 2.8928e-01 1.00 1.3147e-03 1.83 6.2433e-03 1.31

5 2.4967e-03 1.96 1.4449e-01 1.00 3.7782e-04 1.80 2.6985e-03 1.21

6 6.4058e-04 1.96 7.2216e-02 1.00 1.0326e-04 1.87 1.2541e-03 1.11

7 1.6318e-04 1.97 3.6098e-02 1.00 2.7518e-05 1.91 6.1207e-04 1.03

8 4.1264e-05 1.98 1.8046e-02 1.00 7.2233e-06 1.93 3.0396e-04 1.01

Table 3.1: Convergence rates of errors for Poiseuille flow

3.8.2 Kovasznay Flow

Another two dimensional analytical solution of incompressible Navier-Stokes

equations is derived by Kovasznay [57] which can be described by Reynolds

number Re in terms of parameter λ = Re/2−
√
Re2/4 + 4π2.

u1 (x, y) = 1− expλx cos 2πy,

u2 (x, y) =
λ

2π
expλx sin 2πy, (3.31)

p (x, y) =
1

2
exp2λx +C.

Where we choose the constant C such that mean pressure is
∫

Ω
pdx = 0. We

consider the domain in this case Ω = (−1
2
, 3

2
) × (0, 2) with inhomogeneous
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Dirichlet boundary conditions in which the velocities are given by (3.31). In

this test case, we choose β = u and γ = 0 which satisfy the condition (3.2).

Therefore, the analytical solution given in (3.31) satisfies (3.1). In Figure 3.2,

we show that the Kovasznay flow problem is rather difficult to solve as we

observe a reverse flow from the stream line representation of velocity. Here

the color scale from red to blue shows high to low speeds respectively.

The analytical solution in (3.31) is smooth for any Reynolds number which

allows us to test our method for the higher order elements and any Reynolds

number. Thus in Table 3.2, k is the degree of polynomial used in the finite

element pair RTk × Qk and we can observe the optimal convergence rates

of L2 and H1 errors of velocity and pressure. These results are obtained to

reduce the residual to 10−10 for Reynolds number Re = 10.

(a) Re = 10 (b) Re = 100

Figure 3.2: Velocity stream lines for Kovasznay flow
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k ` ‖u− uh‖L2 ‖u− uh‖H1 ‖p− ph‖L2 ‖p− ph‖H1

5 5.6000e-02 1.88 2.6585e+00 1.00 1.1640e-01 1.76 5.6070e+00 0.90

1 6 1.4541e-02 1.95 1.3270e+00 1.00 3.3487e-02 1.80 2.8676e+00 0.97

7 3.7279e-03 1.96 6.6286e-01 1.00 9.4132e-03 1.83 1.4424e+00 0.99

5 3.6596e-03 2.99 2.7714e-01 1.99 1.0209e-02 2.60 7.1736e-01 1.73

2 6 4.5875e-04 3.00 6.8776e-02 2.01 1.6827e-03 2.60 2.1249e-01 1.76

7 5.7358e-05 3.00 1.7120e-02 2.01 2.8395e-04 2.57 6.5361e-02 1.70

5 2.0577e-04 3.84 1.8446e-02 3.01 6.6551e-04 3.50 6.5624e-02 2.66

3 6 1.3806e-05 3.90 2.2682e-03 3.02 6.8288e-05 3.28 1.0231e-02 2.68

7 8.8572e-07 3.95 2.8037e-04 3.02 4.8829e-06 3.54 1.6580e-03 2.63

Table 3.2: Convergence rates of errors for Kovasznay flow

3.8.3 Multigrid Performance

We carried out all of numerical tests for flow problems as mentioned above,

with multigrid preconditioner using multiplicative Schwarz smoothers. In

(3.1), we have both the diffusion term and convection term. Hence, we

perform our numerical tests for low and high Reynolds number: diffusion

dominated case and convection dominated case. We have observed that with

multiplicative smoothers sorting of the vertex patches in direction of flow

improves the result as presented in Table 3.3. Where vertex patches are the

overlapping subdomains used in the building Schwarz smoothers. Sorting is

considerably effective in case of convection dominated problems as the flow of

information follows the direction of flow. Therefore sorting in the direction of

flow reduces the number of iteration of the linear solver quite notably which

can be seen in Table 3.3 in which we present the number of GMRES iterations
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level ν = 10−2 ν = 10−3 ν = 10−4

sorted non-sorted sorted non-sorted sorted non-sorted

3 4 4 5 5 5 5

4 4 5 7 10 8 13

5 6 9 6 14 10 26

6 7 10 6 18 12 55

7 8 10 7 35 11 fails

8 8 10 7 42 11 fails

Table 3.3: GMRES iterations for variation of parameter ν with and without

sorting

to reduce the residual to 10−6 for different diffusion coefficients. Both cases

with sorting and without sorting are included to make a comparison. For

these results we used the finite element spaces pair RT1 × Q1 which is also

the case for following tables if not otherwise mentioned.

In Tables 3.4 and 3.5, we present the iteration count for a variety of

Reynolds number in case of using one and two smoothing steps respectively.

In these tables, the results are for Poisseuille flow function. We observed

that the number of GMRES iterations is independent of mesh parameter

and Reynolds number. Similarly, in Tables 3.6 and 3.7, the iteration count

in case of Kovasznay flow function is presented for one and two smoothing

steps for different Reynolds number. Observation in this case is that the

number of GMRES iterations is independent of the mesh parameters but it

starts increasing after a certain limit of Reynolds number. These results show
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ReynoldsNumbers

levels 1.0 10.0 50.0 100.0 500.0 1000.0 5000.0 10000.0

3 5 4 3 4 4 5 5 5

4 6 6 5 4 5 7 8 8

5 7 7 6 6 5 6 10 10

6 7 7 7 7 6 6 9 12

7 7 8 8 8 7 7 9 11

8 7 8 9 8 7 7 8 11

Table 3.4: Iteration count for different Reynolds numbers using RT1×Q1 for

Poiseuille flow function with m (`) = 1

ReynoldsNumbers

levels 1.0 10.0 50.0 100.0 500.0 1000.0 5000.0 10000.0

3 4 3 3 3 3 3 3 3

4 5 5 4 4 4 5 6 6

5 5 5 6 5 4 4 7 8

6 5 5 6 6 5 5 6 8

7 5 5 6 6 5 5 5 7

8 5 5 6 6 5 5 5 5

Table 3.5: Iteration count for different Reynolds numbers using RT1×Q1 for

Poiseuille flow function with m (`) = 2
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the efficiency of the multigrid precondition in case of convection dominated

problems when multiplicative Schwarz smoothers are used with sorting of

vertex patches in convection direction.

ReynoldsNumbers

levels 1.0 10.0 50.0 100.0 500.0 1000.0 5000.0 10000.0

3 4 4 4 4 5 5 5 5

4 6 6 5 5 6 7 8 9

5 6 7 7 6 6 8 11 11

6 7 7 8 7 7 7 13 15

7 7 8 8 8 8 8 12 17

8 7 8 9 9 8 8 12 15

Table 3.6: Iteration count for different Reynolds numbers using RT1×Q1 for

Kovasznay flow function with m (`) = 1

In Table 3.8, we present the iteration count for different relaxation pa-

rameter which is used in the multiplicative Schwarz smoother. We perform

these tests for the choice of optimal relaxation parameter. As we can see from

these numbers that r = 1.0 is suitable choice for the relaxation parameter

in this case which may not be optimal for the case of additive smoothers.

These numbers are required to reduce the residual by 10−6 by using finite

element pair RT1 × Q1 and for Reynolds number Re = 100. We have pre-

sented mostly the iteration counts by using only first order Raviart-Thomas

element for the variation of other parameters. In Table 3.9, we tabulate the

iteration count for different polynomial degrees used in the finite element
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ReynoldsNumbers

levels 1.0 10.0 50.0 100.0 500.0 1000.0 5000.0 10000.0

4 4 4 4 4 5 5 5 6

5 5 5 6 5 4 5 7 8

6 5 5 6 6 5 5 9 10

7 5 5 6 6 5 5 7 10

8 5 5 6 6 5 5 7 9

9 13 5 6 6 6 5 5 6

Table 3.7: Iteration count for different Reynolds numbers using RT1×Q1 for

Kovasznay flow function with m (`) = 2

level Iterations

r = 1.0 r = 0.7 r = 0.5

3 4 4 6

4 4 5 7

5 6 6 8

6 7 7 9

7 8 8 9

8 8 8 9

Table 3.8: Number of iterations for different relaxation parameters

pair RTk × Qk for two different Reynolds numbers. Figures in this table

show that the multigrid method is robust with respect to polynomial degree
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and Reynolds number.

In Table 3.10, we present a comparison of multigrid preconditioners with

ν = 10−1 ν = 10−3

levels k = 1 k = 2 k = 3 k = 4 k = 5 k = 1 k = 2 k = 3 k = 4 k = 5

3 4 4 3 3 3 5 4 3 3 3

4 6 4 4 4 3 7 4 4 3 3

5 7 4 4 4 3 6 4 4 3 3

6 7 4 4 4 3 6 4 4 4 4

7 8 4 4 4 3 7 4 4 4 4

Table 3.9: GMRES iterations for FE pair RTk ×Qk

block preconditioners. Where Tables 3.10b and 3.10a shows the numbers

from [35, 55] for Poiseulle flow using block preconditioners and in Table

3.10c, we tabulate the iteration count for multigrid preconditioner. We ob-

serve that multigrid preconditioners are much more efficient as compared to

the block preconditioners. Here, we see a slightly higher number in iteration

counts for multigrid preconditioner as compare to our previous results. It is

because of a more stringent stopping criterion. As these iteration numbers

are for GMRES to reduce the residual by a factor of 1010 which was also used

in [35, 55].
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ν

levels 10−2 10−3 10−4

3 44 119 377

4 39 137 1183

5 39 110 945

6 42 71 774

7 48 50 397

(a) Block preconditioners Kay/Loghin

ν

levels 10−2 10−3 10−4

3 59 181 440

4 56 201 1129

5 55 134 1226

6 59 107 964

7 66 82 615

(b) Block preconditioners Kanschat

ν

levels 10−2 10−3 10−4

3 5 8 8

4 7 10 13

5 9 10 17

6 12 10 20

7 14 12 19

(c) Multigrid preconditioner

Table 3.10: Comparison of multigrid preconditioners with block precondi-

tioners

3.9 Summary

In this chapter, we have mostly presented numerical results for the Oseen

equations using multigrid preconditioners employing overlapping Schwarz

smoothers of multiplicative type. We discretized the Oseen equations by
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Hdiv-conforming discontinuous elements. The linear systems arising from

discretization are non-symmetric systems and there is not enough theory

of multigrid methods for non-symmetric problems. Hence, we presented an

overview of multigrid theory for symmetric problems and we have performed

our numerical experiments in view of this theory. We observed that multi-

grid preconditioners efficient as compared to the block preconditioners and

robustness with respect the mesh size, the Reynolds number and the poly-

nomial degree is shown by empirical results.

41



Chapter 4

The Navier-Stokes Equations

4.1 Introduction

In this chapter, we extend our numerical experiments to the Navier-Stokes

equations to show the performance of multigrid method. The system is dis-

cretized with Hdiv-conforming discontinuous Galerkin method. Since, the

Navier-Stokes equations are nonlinear, we use Picard iteration scheme as

outer solver for non-linearity and GMRES, with multigrid preconditioner

employing overlapping Schwarz smoothers, as inner solver for solving linear

problems. Finally, we present numerical results for different fluid flow prob-

lems. We observe from our empirical results that multigrid preconditioners

are efficient and robust for low Reynolds number with respect to the mesh

size in a sense that iteration count for linear solver deteriorates slowly.
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4.2 Model Problem

Consider the Navier-Stokes equations

−ν∆u+ (u · ∇)u+∇p = f in Ω,

∇ · u = 0 in Ω, (4.1)

u = g on ∂Ω,

where u is the velocity, p the pressure, f ∈ L2 (Ω)d prescribed external body

force and ν is the kinematic viscosity.

4.3 Discontinous Galerkin discretization

In this section, we present the discretization of Navier-Stokes equations with

discontinuous Galerkin method. This type of discretization has already been

presented for the Oseen equations in Section 3.3. The Oseen equations are a

linearized version of the Navier-Stokes equations. Hence, by considering the

discretization of Oseen equations in compact form given in (3.3), we have the

following DG discretization for Navier-Stokes equations in compact form.

a` (u`, v`) + b`(β;u`, v`) + (p`,∇ · v`)− (q`,∇ · u`) = (f , v`) , (4.2)

and

β = u, (4.3)

for v` ∈ V` and q` ∈ Q`. The definitions of the bilinear forms, for diffusion

and convection terms, in (4.2) are same as given in section 3.3 for Oseen

equations.
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For non-linearity in convection term, we use an approach to separate the

variables β and u rather than using equality in convection term. Then, we

solve our non-linearity through fixed point iterations using (4.3). For the

details of this approach, we refer to [22] and [21] where it is shown that this

fixed point iteration is a contraction.

The discrete weak formulation of (4.1) reads now: find (u`, p`) ∈ V` × Q`

such that for all test functions v` ∈ V` and q` ∈ Q` there holds

A`
((

u`
p`

)
,

(
v`
q`

))
= F (v`, q`) ∀v` ∈ V`, q` ∈ Q`, (4.4)

where

A`
((

u`
p`

)
,

(
v`
q`

))
≡ a` (u`, v`) + b`(β;u`, v`) + (p`,∇ · v`)− (q`,∇ · u`) ,

F (v`, q`) ≡ (f , v`) .

4.4 Existence and Uniqueness of Solution

For showing the existence and uniqueness of discrete solution for DG dis-

cretization of Navier-Stokes equations, we follow the same approach as given

in Section 3.4 for the Oseen equations. We recall that the DG norm is given

as following:

|||u|||2σ =
∑
T∈T`

‖∇u‖2
L2(T ) +

∑
F∈F`

∫
F

σL|{{u⊗ n}}|2ds.

As we solve in each Picard iteration the Oseen system and we have already

shown that there exists a unique solution for discretization of the Oseen
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equations. Hence, in case of the Navier-Stokes equations we have additionally

the smallness condition.

µ :=
c0cp‖f‖L2(Ω)

ν2α2
< 1.

Where cp > 0 is constant independent of the mesh size appearing in the

following Poincaré inequality

‖u`‖L2(Ω) ≤ cp|||u`||| ∀u` ∈ V`.

Theorem 4.4.1. If (ui+1
` , pi+1

` ) is the approximate solution given by DG

discretization for the Oseen equations with β = ui`, i ≥ 0, then

∣∣∣∣∣∣u` − ui+1
`

∣∣∣∣∣∣ ≤ 2

(
cp‖f‖L2(Ω)

να

)
µi

(1− µ)
,

‖p` − pi+1
` ‖L2(Ω) ≤ 2γ−1

`

(
ca + 2α

α

)
cp‖f‖L2(Ω)

µi

(1− µ)
,

for any initial guess (u0
` , p

0
`) ∈ V` ×Q`.

Proof. See [21].

The smallness condition ensures the unique solution of 4.4 in addition

with the above result for Picard iteration.

4.5 Overlapping Schwarz Smoothers

In this section, we present overlapping multiplicative Schwarz smoothers used

for Navier-Stokes problem in preconditioning of linear solver with multi-

grid preconditioner. We have given a detailed discussion on these type of
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smoothers in Section 3.6, here we use the same smoothers but for Navier-

Stokes problem. We define multiplicative Schwarz smoohters by using the

following projection-like operator

A`,ν
(
P`,ν

(
u`
p`

)
,

(
v`,ν
q`,ν

))
= A`

((
u`
p`

)
,

(
v`,ν
q`,ν

))
∀
(
v`,ν
q`,ν

)
∈ X`,ν (4.5)

where X`,ν = V`,ν × Q`,ν . The symmetric multiplicative Schwarz smoother

B` using the error propagation operators, associated with spaces X`,ν , are

B` = (I − E∗` E`)A−1
` with E` = (I − P`,1) · · · (I − P`,N`

) (4.6)

where E∗` is the A`-adjoint of E`.

For these smoothers, convergence analysis is part of standard theory in case of

symmetric problems. There is very little theory for non-symmetric problems

and almost no numerical results. We use the same setting for smoothers as

given for symmetric problems and apply to our non-symmetric problem for

numerical results.

4.6 Multigrid preconditioner

For building the multigrid preconditioners for Navier-Stokes problem, we

adapt the same approach as described in Section 3.7. The multigrid pre-

conditioner M` : X` −→ X` where (X` = V` × Q`) is defined recursively in

V-cycle with m(`) ≥ 1 pre and post smoothing steps. Let B` be suitable

smoother. We assume that the coarse mesh problem A0x0 = b0 has a small

size so that we directly invert A0 and have M0 = A−1
0 . For ` ≥ 1 define the

action of M` on vector b` ∈ X`:
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• Pre-smoothing:

xi = xi−1 + B`(b` −A`xi−1) i = 1, · · · ,m(`).

• Coarse grid correction:

xm(`)+1 = xm(`) + IT`−1M`−1I`−1(b` −A`xm(`)),

where IT` and I` are the same operators as defined in section 3.7.1.

• Post-smoothing:

xi = xi−1 + B`(b` −A`xi−1) i = m(`) + 2, · · · , 2m(`) + 1.

• Assign:

M`b` = x2m(`)+1.

The number of smoothing steps m(L) on the finest level is a free parameter

and for the standard V-cycle m(`) = m(L) whereas in the case of variable

V-cycle this becomes m(`) = m(L)2L−`. The smoothers B` are overlapping

Schwarz smoothers discussed in section (4.5). We refer toML as the V-cycle

preconditioner of A. The iteration

xk+1 = xk +ML(bL −ALxk) (4.7)

is the V-cycle iteration.

47



4.7 Numerical Results

We test the Multigrid preconditioner with the overlapping Schwarz smoothers

for the incompressible fluid flow problems. We consider the analytical solu-

tions given in 3.30 and 3.31 as reference solution for our numerical tests. We

compute errors based on these reference solutions.

4.7.1 Poisseuille Flow

We consider the domain Ω = [−1, 1]2 with inhomogeneous Dirichlet boundary

conditions where the velocities at boundary of domain are give by (3.30). By

choosing β = u and γ = 0 the functions given in (3.30) solve the equation

(4.1).

In Table 4.1 the convergence rates for errors are presented. We use a finite

element spaces pair RT1×Q1 and viscosity parameter ν = 10−2. We observe

quadratic convergence in L2 errors and linear in H1 for both velocity and

pressure, in Table 4.1.

Levels ‖u− uh‖L2 ‖u− uh‖H1 ‖p− ph‖L2 ‖p− ph‖H1

3 3.8515e-02 - 5.8002e-01 - 4.6650e-03 - 1.5503e-02 -

4 9.7420e-03 1.98 2.8928e-01 1.00 1.3147e-03 1.83 6.2433e-03 1.31

5 2.4967e-03 1.96 1.4449e-01 1.00 3.7782e-04 1.80 2.6985e-03 1.21

6 6.4058e-04 1.96 7.2216e-02 1.00 1.0326e-04 1.87 1.2541e-03 1.11

7 1.6318e-04 1.97 3.6098e-02 1.00 2.7518e-05 1.91 6.1207e-04 1.03

8 4.1264e-05 1.98 1.8046e-02 1.00 7.2233e-06 1.93 3.0396e-04 1.01

Table 4.1: Convergence rates for L2 and H1 errors of velocity and pressure
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4.7.2 Kovasznay Flow

We consider the domain in this case Ω =
[
−1

2
, 3

2

]
× [0, 2] where on the bound-

ary of domain we have inhomogeneous Dirichlet boundary conditions in which

the velocities are given by (3.31). The analytical solution given in (??) sat-

isfies (4.1).In Figure 4.1 we present the velocity profile for Reynolds number

10 and 100.

The analytical solution in (3.31) is smooth for any Reynolds number which

allows us to test our method for the higher order elements and any Reynolds

number. In Table 4.2, we present the convergence rates of errors for velocity

and pressure. We observe the optimal convergence rates of L2 and H1 errors

of velocity and pressure. These results are obtained to reduce the residual

to 10−10 for Reynolds number Re = 10.

k ` ‖u− uh‖L2 ‖u− uh‖H1 ‖p− ph‖L2 ‖p− ph‖H1

5 5.6000e-02 1.88 2.6585e+00 1.00 1.1640e-01 1.76 5.6070e+00 0.90

1 6 1.4541e-02 1.95 1.3270e+00 1.00 3.3487e-02 1.80 2.8676e+00 0.97

7 3.7279e-03 1.96 6.6286e-01 1.00 9.4132e-03 1.83 1.4424e+00 0.99

5 3.6596e-03 2.99 2.7714e-01 1.99 1.0209e-02 2.60 7.1736e-01 1.73

2 6 4.5875e-04 3.00 6.8776e-02 2.01 1.6827e-03 2.60 2.1249e-01 1.76

7 5.7358e-05 3.00 1.7120e-02 2.01 2.8395e-04 2.57 6.5361e-02 1.70

5 2.0577e-04 3.84 1.8446e-02 3.01 6.6551e-04 3.50 6.5624e-02 2.66

3 6 1.3806e-05 3.90 2.2682e-03 3.02 6.8288e-05 3.28 1.0231e-02 2.68

7 8.8572e-07 3.95 2.8037e-04 3.02 4.8829e-06 3.54 1.6580e-03 2.63

Table 4.2: Convergence rates for L2 and H1 errors of velocity and pressure
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(a) Re = 10 (b) Re = 100

Figure 4.1: Velocity magnitude for Kovasznay flow

4.7.3 Multigrid Performance

We compute the solutions of the flow problems in our test cases with multigrid

preconditioner using the multiplicative Schwarz smoothers. We describe our

problem setup and parameters in following remarks.

Remark 4.7.1. We consider the domain Ω = [−1, 1]× [−1, 1] for all of our

tests. We use DG formulation with penalty parameter dependent on each

level as σ` = k(k+1)
2h`

and finite element pair RT1 ×Q1.

Remark 4.7.2. In all of our following numerical experiments we use Picard

iteration as outer solver for non-linearity and GMRES as inner solver for

linear system. We present the iterations count for Picard iteration to reduce

the residual by factor of 106 and average iterations in each Picard iteration

for inner solver to reduce the residual by a factor of 102.
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ReynoldsNumbers

levels 10 100 500 1000

2 3 5 5 8

3 4 7 8 9

4 5 7 9 8

5 4 6 7 100

6 4 6 8 –

7 4 5 100 –

(a) Picard iterations without sorting

ReynoldsNumbers

levels 10 100 500 1000

2 1 1 1 5

3 1 3 4 18

4 3 7 13 54

5 4 17 41 100

6 5 26 100 –

7 7 31 100 –

(b) GMRES iterations without sorting

ReynoldsNumbers

levels 10 100 500 1000

2 3 5 5 6

3 4 7 8 8

4 4 7 8 9

5 4 6 8 8

6 4 6 8 8

7 4 6 7 8

(c) Picard iterations with sorting

ReynoldsNumbers

levels 10 100 500 1000

2 1 1 1 1

3 1 1 1 1

4 1 3 5 6

5 3 7 14 18

6 4 19 33 43

7 4 27 60 84

(d) GMRES iterations with sorting

Table 4.3: Comparison of vertex patches sorting with no sorting

4.7.3.1 Poisseuille Flow

As in case of the Oseen equations , we also have both the diffusion and

convection terms in (4.1), so that we have the cases of diffusion dominated

and convection dominated flow. We observe that for multiplicative Schwarz
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ReynoldsNumbers

levels 1.0 10.0 50.0 100.0 500.0 1000.0 5000.0

2 5 3 6 5 5 6 6

3 3 4 6 7 8 8 8

4 3 5 6 7 8 9 10

5 3 4 5 6 8 8 10

6 3 4 5 6 8 8 9

7 3 4 5 6 7 8 15

(a) Picard iteration count

ReynoldsNumbers

levels 1.0 10.0 50.0 100.0 500.0 1000.0 5000.0

2 1 1 1 1 1 1 1

3 2 2 3 3 5 7 8

4 2 5 6 7 11 14 21

5 3 7 8 17 26 32 50

6 3 8 21 29 54 68 100

7 3 8 25 41 93 100 100

(b) GMRES iteration count

Table 4.4: Sorting in one direction, m(`) = 1.

smoothers, sorting of the vertex patches in direction of flow improves the

result as presented in Table 4.3. As shown in Table 4.3 sorting is effective in

case of convection dominated problems i.e. high Reynolds numbers for our

linear solver, we can see this by comparison of Table 4.3b and Table 4.3d.
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ReynoldsNumbers

levels 1.0 10.0 50.0 100.0 500.0 1000.0 5000.0

2 5 3 6 5 5 6 6

3 3 4 6 7 8 8 8

4 3 4 6 7 8 9 10

5 3 4 5 6 8 8 10

6 3 4 6 6 8 8 9

7 3 4 5 6 7 8 79

(a) Picard iteration count

ReynoldsNumbers

levels 1.0 10.0 50.0 100.0 500.0 1000.0 5000.0

2 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1

4 1 1 2 3 5 6 8

5 1 3 7 7 14 18 29

6 1 4 13 19 33 43 79

7 2 4 16 27 60 84 100

(b) GMRES iteration count

Table 4.5: Full sweep, m(`) = 1.

For the Picard iteration, the iteration count is almost same for low Reynolds

numbers. However, it simply fails in case of high Reynolds as shown in

Table 4.3a. Therefore sorting in the direction of flow is necessary for solving

convection dominated problems.
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ReynoldsNumbers

levels 1.0 10.0 50.0 100.0 500.0 1000.0 5000

2 5 3 6 5 5 6 6

3 3 4 6 7 8 8 8

4 3 4 6 7 8 9 10

5 3 4 6 6 7 8 10

6 3 4 6 6 8 8 10

7 3 4 5 6 7 8 –

(a) Picard iteration count

ReynoldsNumbers

levels 1.0 10.0 50.0 100.0 500.0 1000.0 5000

2 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1

4 1 1 2 2 3 3 5

5 1 2 5 6 10 12 18

6 1 4 12 15 28 36 58

7 1 4 15 25 59 85 –

(b) GMRES iteration count

Table 4.6: Full sweep, m(`) = 2.

In Table 4.4a, we present the iteration count for a variety of Reynolds number.

From these numbers, we observe that the Picard iteration scheme is stable

with respect to the mesh levels and also Reynolds numbers. Whereas, on the

other hand in Table ??, we see a strong dependence of the iteration numbers
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ReynoldsNumbers

levels 1.0 10.0 50.0 100.0 500.0 1000.0 5000.0

2 5 3 6 5 5 6 6

3 4 4 6 7 8 8 8

4 3 5 6 7 8 9 10

5 3 4 5 6 8 8 10

6 3 4 6 6 8 8 9

7 3 4 5 6 7 8 12

(a) Picard iteration count

ReynoldsNumbers

levels 1.0 10.0 50.0 100.0 500.0 1000.0 5000.0

2 1 1 1 1 1 1 1

3 1 1 1 1 2 3 3

4 1 2 3 5 7 9 14

5 2 4 8 10 17 22 36

6 2 5 15 22 37 46 83

7 2 4 17 28 67 86 100

(b) GMRES iteration count

Table 4.7: Sweep in 2 directions, m(`) = 1.

of GMRES, needed in each Picard iteration, on mesh levels and as well as

on Reynolds numbers.

Remark 4.7.3. From numerical results presented in 4.3, we observed that

sorting of vertex patches in flow direction is necessary for robustness of multi-
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ReynoldsNumbers

levels 1.0 10.0 50.0 100.0 500.0 1000.0 5000.0

2 5 3 6 5 5 6 6

3 3 4 6 7 8 8 8

4 3 5 6 7 8 9 10

5 3 4 5 6 8 8 10

6 3 4 6 6 7 8 9

7 3 4 5 6 7 8 28

(a) Picard iteration count

ReynoldsNumbers

levels 1.0 10.0 50.0 100.0 500.0 1000.0 5000.0

2 1 1 1 1 1 1 1

3 1 1 1 1 1 1 2

4 1 2 2 3 5 5 8

5 1 3 7 7 13 17 27

6 1 4 13 19 30 41 74

7 2 4 16 27 59 77 100

(b) GMRES iteration count

Table 4.8: Sweep in 2 directions, m(`) = 2.

grid precondioners employing multiplicative Schwarz smoothers. In all of our

numerical test, for other flow problems, we will use sorting scheme.

In case of Navier-Stokes equations, our numerical results show the depen-

dence of multigrid preconditioner on mesh parameters. We perform extensive
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numerical tests to get a set of optimal parameters for multigrid method. In

Table 4.4b and Table 4.5b, we show a comparison of GMRES iterations for

sorting in one direction and full sweep, respectively. From this comparison,

we observe that full sweep improves the results in terms of iterations reduc-

tion for linear solver. For further reduction of the linear solver iterations, we

test with two smooting steps at each level (m(`) = 2). These results are pre-

sented in Table 4.6 which represents that the reduction in iterations of linear

solver is not reasonable as compare to its computational cost. Similarly, for

a fair tradeoff of iterations reduction and computational cost, we perform

more numerical tests with a half sweep i.e. sorting in two directions. These

results are presented in Table 4.7 and 4.8 for one and two smoothing steps

at each level, respectively. From all of our numerical experiments, we get a

set of optimal parameters, which is not computationally expensive and gives

reasonable results, described in following remark.

Remark 4.7.4. For multigrid preconditioner, we use a half sweep (sorting

of vertex in two direction) and one smoothing step at each level. We use the

same setting for our other flow problems.

4.7.3.2 Cavity driven flow

In Section 4.7.3.1, we have performed extensive numerical experiments to

find the best choice for multigrid parameters. Here, we present some further

results for classical case of cavity driven flow by using the same parameters for

multigrid as described in Remark 4.7.4. In Table 4.9a we show the iteration

count of Picard iteration scheme for various Reynolds number and we present

the iteration count for GMRES in Table 4.9b. We observe the dependence of
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ReynoldsNumbers

levels 1.0 10.0 50.0 100.0 500.0 1000.0

3 3 5 8 11 22 19

4 3 4 7 9 29 38

5 2 3 6 7 22 27

6 2 3 5 6 16 17

7 2 3 4 5 10 14

8 3 2 3 4 9 13

(a) Picard iterations

ReynoldsNumbers

levels 1.0 10.0 50.0 100.0 500.0 1000.0

3 1 1 1 1 1 1

4 1 1 1 1 1 1

5 1 1 1 1 1 2

6 1 1 1 1 1 3

7 1 1 1 2 5 9

8 4 1 1 2 17 18

(b) GMRES iterations

Table 4.9: Cavity driven flow

multigrid preconditioners on both mesh parameters and Reynolds numbers

for this case, as we have observed in Section 4.7.3.1. However, we observe

the robustness and mesh independence of our solver in case of low Reynolds

number.
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(a) Re = 50 (b) Re = 500

Figure 4.2: Velocity magnitude for Cavity driven flow

In Fig. 4.2 we present the numerical solution of the cavity driven flow for

different Reynolds numbers. We observe three vortices for Reynolds number

500 which is the classical case for Reynolds number greater than 400.

4.7.3.3 Flow behind an obstacle (diamond)

In this section, we present the numerical results for a different flow problem.

We consider the problem of flow behind an obstacle. We apply the multi-

grid preconditioners with multiplicative Schwarz smoothers for solving the

system of linear equations arising from the discretization of Navier-Stokes

equations. For this model problem, we use the geometry as shown in Fig.

4.3 with H = 4.1. We use inhomogeneous boundary conditions given in 3.30.

This is classical test case, usually used for time dependent problems. How-

ever, we only present numerical results for stationary case.

We use the same parameters for multigrid as described in Remark 4.7.4. In

this problem our coarse mesh contains 60 cells, whereas in previous examples
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Figure 4.3: Geometry of Problem

ReynoldsNumbers

levels 1 10 50 100 200

2 4 7 4 7 20

3 4 7 4 6 19

4 4 6 4 5 20

5 4 4 7 16 31

(a) Picard iterations

ReynoldsNumbers

levels 1 10 50 100 200

2 1 1 1 1 4

3 1 1 1 4 13

4 1 4 1 3 30

5 1 2 1 3 8

(b) GMRES iterations

Table 4.10: Flow behind an obstacle

the coarse mesh was 1 cell only. Hence, our tests are only upto 5 levels in

multigrid setting. In Table 4.10, we present the results for our solver where

Table 4.10a represents the number of Picard iterations to reduce the residual

to 10−6 and Table 4.10b represents the number of GMRES iterations. The

results in Table 4.10 are for low Reynolds numbers on different refinement
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Figure 4.4: Velocity magnitude for flow behind an obstacle, top to bottom

Re = 1, 10, 50, 100, 200.

levels. We observe the robustness of our solver from numerical results. How-

ever, we also observe dependence of multigrid solver on mesh parameters and

Reynolds number.

In Fig. 4.4 we present the velocity profile for our numerical solution for dif-

61



Figure 4.5: Streamlines for velocity profiles for Obstacle Problem Re = 10

(top) and Re = 100 (bottom)

ferent Reynolds numbers. This type of flow problem is a classical test for

Navier-Stokes solvers. We know from literature, the regime where vortices

start developing, which is value of Reynolds number around 90. We show

this fact in Fig. 4.5, where we present the streamlines for velocity profile for

Reynolds number 10 and 100. In case of Reynolds number 100 we observe

the vortices developing behind the obstacle, where as in case of Reynolds

number 10 there are no vortices.

4.8 Summary

In this chapter, we presented extensive numerical results for Navier-Stokes

equations using multigrid preconditioners with overlapping multiplicative

Schwarz smoothers. In case of Navier-Stokes equations, we have two dif-

ficulties: non-linearity and non-symmetry. For solving non-linearity, we used

Picard iteration scheme as outer solver. We used GMRES as inner solver pre-
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conditioned with multigrid preconditioner, to solve the linear system in each

Picard iteration. We applied the theory of symmetric problems for building

our multigrid preconditioners. In view of our numerical results, we have seen

the dependence of our multigrid preconditioners on mesh parameters and the

Reynolds number. However, our solver is robust for low Reynolds numbers.
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Chapter 5

The Brinkman Equations

5.1 Introduction

In this chapter, we present the multigrid preconditioner for the finite element

approximations of flow problems in highly heterogeneous porous media gov-

erned by the Brinkman systems. For solving the Brinkman problem numer-

ically, there exist various approaches in the literature for approximation of

the Brinkman problem using modifications of stable elements for Stokes and

Darcy equations. Examples include, modifications based on Stokes elements

with various stabilization techniques (e.g., [4, 18, 25, 39, 40, 56]), modifi-

cations based on Darcy elements (e.g. [56, 60, 78]), the coupling of Stokes

and Darcy flows (e.g. [20, 53, 58, 61]) and elements directly constructed

for Brinkmans equations (cf. [19, 80]). However, we use the Hdiv-conforming

discontinuous Galerkin method [24, 22, 76] for the discretization of Brinkman

equations to account for the incompressibility constraint on discrete level.
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For resolving the fine scale structures in heterogeneous media, we end up with

very large algebraic systems. Further difficulty arises due to the high varia-

tions in the permeability resulting ill-conditioned algebraic systems. There

are some approaches in existing literature, to tackle theses problems, mainly

Multiscale methods (e.g. [13, 38, 47, 29, 28, 6, 5, 3, 45, 77]) and Algebraic

Multigrid methods (e.g. [27, 26, 73, 74]).

For large ill-conditioned algebraic system, arising from the discretization of

Brinkman equations, geometric multigrid methods have recently proven to

be efficient by Kanschat and Mao [51]. In their work they have considered

Brinkman equations without inertial term, whereas in this chapter we extend

the idea of applying multigrid preconditioners to the nonlinear Brinkman

equations. We provide the numerical results for the Brinkman equations

in both cases, namely, the linear Brinkman equations and the nonlinear

Brinkman equations (including convection term). Although, we lack the

theory for non-symmetric problems, however, we observe from our computa-

tional results that the multigrid method is robust with respect to the mesh

size and the permeability contrast for highly heterogeneous media.

5.2 Linear Brinkman

5.2.1 Model Problem

Flow in porous media is modelled by Darcy law as

u = − κ̃
µ
∇p. (5.1)
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However, in the cases of flow through heterogeneous media with large pores,

the Darcy’s law alone is not sufficient for modeling these flow problems. In

large pores flow is governed by Stokes law. Hence, we consider the Brinkman

model [17] for the macroscopic pressure p and the fluid velocity u:

−µ∆u+ κu+∇p = f in Ω,

∇ · u = 0 in Ω, (5.2)

u = g on ∂Ω,

where f ∈ L2 (Ω)d is a prescribed external body force, µ is the viscosity

coefficient which can be different from the fluid viscosity in general but we

use the same coefficient. We get the Darcy model in the limiting case of

µ = 0. Here κ is inverse permeability coefficient depending on the space

variables and bounded as following with the assumption that κmin and κmax

are positive constants.

0 < κmin < κ < κmax <∞ ∀x ∈ Ω, (5.3)

We are using the same notation κ for inverse permeability coefficient as it

is used in Darcy’s law (5.1) for permeability coefficient, which means that

κ = µ
κ̃
.

5.2.2 Discontinuous Galerkin discretization

We use the discontinuous Galerkin discretizations for diffusion term and in-

compressibility condition in (5.2). For diffusion term, we use the interior

penalty method of [9]. By using the notations mention in section 2.3 for

jumps and averages, the interior penalty bilinear form for the diffusion term
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including the reaction term can be written as

a` (u, v) = µ (∇u,∇v)T` + (κu, v)T` + 2µσL 〈JuK, JvK〉Fi
`

− µ 〈{{∇u}} · n, JvK〉F i
`
− µ 〈{{∇v}} · n, JuK〉F i

`

+ 2µσL 〈u, v〉F∂
`
− µ 〈∂nu, v〉F∂

`
− µ 〈∂nv, u〉F∂

`
,

where {{∇v}} is the average of the d × d matrix ∇v. The parameter σL

is interior penalty parameter chosen sufficiently large in such a way that it

ensures the coercivity of the form a` (., .). We can estimate its lower limit for

a boundary face F ∈ F of a cell T by

σL >
k (k + 1)

2hL
,

where k is the degree of the polynomial of shape functions and hL is the mesh

size finest level L. We usually choose twice the value in our numerical test.

The discrete weak formulation of (5.2) reads now: find (u`, p`) ∈ V` × Q`

such that for all test functions v` ∈ V` and q` ∈ Q` there holds

A`
((

u`
p`

)
,

(
v`
q`

))
≡ a` (u`, v`) + (p`,∇ · v`)− (q`,∇ · u`)

= F (v`, q`) ≡ (f, v`) ∀v` ∈ V`, q` ∈ Q`. (5.4)

5.2.3 Existence and Uniqueness of Solution

We are using the spaces RTk/Qk for which the pair of local spaces VT/QT

satisfy the divergence free condition. Thus for pair of Raviart-Thomas spaces

we have

∇ ·RTk = Qk.
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The resulting space V` is equipped with the norm.

|||u|||2σ =
∑
T∈T`

‖∇u‖2
L2(T ) +

∑
F∈F`

∫
F

σL|{{u⊗ n}}|2ds+ ‖u‖2
κ,L2(Ω),

where ‖u‖2
κ,L2(Ω) =

∫
Ω
κu · udx. For the existence and uniqueness of solution

we need continuity and coercivity of the form A`(., .) for which we have the

following estimates for the Laplacian, convection term and incompressibility

constraint. For the proofs of the proposition we refer to [21, 22]

Proposition 5.2.1. If the interior penalty parameter is chosen sufficiently

large, then there exist constants ca > and α > 0, independent of multigrid

mesh level `, such that

a`(u, v) ≤ ca|||u|||σ|||v|||σ, u, v ∈ V`

a`(u, u) ≥ α|||u|||2σ, u ∈ V`

Proof. Proof in given in [59].

Proposition 5.2.2. For any pressure function q ∈ Q`, there exists a velocity

function v ∈ V`, satisfying

inf
q∈Q`

sup
v∈V`

(q,∇ · v)

|||v|||σ‖q‖L2(Ω)

≥ γ` > 0 (5.5)

where γ` = c
√

hL
h`

= c
√

2L−` and c is a constant independent of the multigrid

level `.

Proof. From the relation (5.3), we have bounds for κ. By using the constants

in (5.3), the κ-dependent norm can be bounded. Then Proposition 3.4.3 leads

to 5.5. The complete proof is given in [59].
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5.2.4 Overlapping Schwarz Smoothers

In this section we present overlapping Schwarz smoother of multiplicative

type used for the multigrid preconditioners. We have done a detailed dis-

cussion on these type of smoothers, in Section 3.6. Here, we use the same

smoothers for Brinkman problem. We define multiplicative Schwarz smoothers

by using the following projection like operator

A`,ν
(
P`,ν

(
u`
p`

)
,

(
v`,ν
q`,ν

))
= A`

((
u`
p`

)
,

(
v`,ν
q`,ν

))
∀
(
v`,ν
q`,ν

)
∈ X`,ν (5.6)

where X`,ν = V`,ν × Q`,ν . The symmetric multiplicative Schwarz smoother

B` using the error propagation operators, associated with spaces X`,ν , are

B` = (I − E∗` E`)A−1
` with E` = (I − P`,1) · · · (I − P`,N`

) (5.7)

where E∗` is the A`-adjoint of E`.

We give an overview of smoothers for Brinkman problem without the con-

vergence analysis which can be found in [59], for symmetric problems. In

this section, we apply this theory for numerical results for the Brinkman

equations. Afterwards, in Section 5.3, we want to extend this approach to

non-symmetric problems and there is very little work done on theoretical

aspects of non-symmetric problems. Hence, we take advantage from theory

of symmetric problems and apply the same approach to obtain numerical

results presented in later sections.

5.2.5 Multigrid preconditioner

We adapt the same approach for building our multigrid preconditioner as

described in section 3.7. The multigrid preconditioner M` : X` −→ X`
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where (X` = V` × Q`) is defined recursively in V-cycle with m(`) ≥ 1 pre

and post smoothing steps. Let B` be suitable smoother. We assume that the

coarse mesh problem A0x0 = b0 has a small size so that we directly invert

A0 and have M0 = A−1
0 . For ` ≥ 1, we define the action of M` on a vector

b` ∈ X` as follows:

• Pre-smoothing:

xi = xi−1 + B`(b` −A`xi−1) i = 1, · · · ,m(`).

• Coarse grid correction:

xm(`)+1 = xm(`) + IT`−1M`−1I`−1(b` −A`xm(`)),

where IT` and I` are the same operators as defined in section 3.7.1.

• Post-smoothing:

xi = xi−1 + B`(b` −A`xi−1) i = m(`) + 2, · · · , 2m(`) + 1.

• Assign:

M`b` = x2m(`)+1.

The number m(L) of smoothing steps on the finest level is a free parameter.

For the standard V-cycle, m(`) = m(L). In the case of variable V-cycle,

this becomes m(`) = m(L)2L−`. The smoothers B` are overlapping Schwarz

smoothers discussed in section (5.2.4). We refer to ML as the V-cycle pre-

conditioner of A. The iteration

xk+1 = xk +ML(bL −ALxk), (5.8)

is the V-cycle iteration.
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(a) Sparse periodic geometry (b) Dense periodic geometry

Figure 5.1: Inverse Permiability coefficient (κ) distribution

5.2.6 Numerical Results

In this section, we present the numerical results for the Brinkman model.

We present test results for high contrast in permeability coefficients for two

different types of distributions, see Fig. 5.1 red regions show highly perme-

able porous media and blue regions present lowly permeable porous media.

In Fig. 5.1a, we present a periodic distribution of cells of size 1/64 (colored

red) with low permeability and rest of the region (colored blue) is highly

permeable or can be considered as free fluid region with low permeable cells

as obstacles. In Fig. 5.1b, we increase the size of these cells to 1/32 to cre-

ate another heterogeneous media for computational results. These periodic

geometries are classical tests for solvers, used by many other researcher (e.g.

[2], [46], [44], [51], [59] ).

Remark 5.2.1. In all numerical tests we consider the 2D domain Ω =
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(0, 1)×(0, 1) a unit square. We use the Dirichlet boundary conditions u =
(

1
0

)
and f = 0. The distribution of the inverse permeability coefficients is κ = 1

in blue regions and κ = 104, 105, 106 in red regions of the Sparse periodic

geometry and Dense periodic geometry.

5.2.6.1 MG Performance

We have performed numerical tests using the multigrid preconditioner with

overlapping Schwarz smoothers of multiplicative type. We present the perfor-

mance of the multigrid preconditioners in this section for Darcy and Brinkman

problems, where the problem setup is described in remark 5.2.1. We consider

constant viscosity ν = 0.01 for both regions in case of Brinkman problem and

ν = 0 in case of Darcy problem.

For multigrid preconditioner, we apply standard V-cycle algorithm with over-

lapping multiplicative Schwarz smoothers with one smoothing step at each

level. We use the uniform mesh refinements and the penalty parameter in

DG formulation as σ` = k(k+1)
2h`

, where h` is the mesh size at level ` and k is

the degree of polynomial. We use the finite element pair RT1 × Q1 in all of

our numerical tests. GMRES solver is set to reduce the residual to 10−6.

Remark 5.2.2. (Upscaling and downscaling)

The upscaling is considered to have dominant effect in case of multi-scale

methods whereas its impact is considered less dominant in preconditioning

perspective. However, we have a different observation in our numerical ex-

periments. We are building multigrid preconditioners using coarser levels

where heterogeneity of media is not resolved by mesh and hence solving on

finer levels where heterogeneous media is aligned with the mesh. In our re-
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sults, we have used no upscaling, which means, we consider the homogeneous

porous media wih high permeability on coarser levels. We have observed an

improvement of about 40% in iteration count as compared to the results pre-

sented in [59] and [51] with a different upscaling scheme. For the downscaling

scheme, we have the same approach as presented in above mentioned works.

The downscaling is done through simple inheritance.

Initial mesh Parent cell Children

k1

k1 k1

k2

k1

k1 k1 k1 k1

k1k1k1k1

k1 k1

k1k1

k2

k2 k2

k2

Figure 5.2: Upscaling and downscaling

level Sparse periodic geometry Dense periodic geometry

κ = 104 κ = 105 κ = 106 κ = 104 κ = 105 κ = 106

8 3 3 6 5 5 5

9 3 3 4 4 4 5

10 3 3 4 4 4 4

Table 5.1: Darcy: GMRES iteration count for different inverse permeability

coefficient κ for Sparse periodic geometry

In Table 5.1, we present the iteration count of GMRES for Darcy problems

using Sparse periodic geometry and Dense periodic geometry. In columns of
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Table 5.1, we show different permeability contrasts and in rows multigrid

levels. The coarsest level in the multi-level hierarchy, contains only one cell.

In this case, our mesh size at level 8 is 1/128. We build multigrid precon-

ditioners using upscaling and downscaling as described in remark 5.2.2. We

observed that our solver is robust and is independent of the mesh parame-

ters and variations in permeability coefficients. Furthermore, we provide the

numerical solution for different permeability contrast for both geometries in

Fig. 5.3 and Fig. 5.4, where we show only x-component of velocity and

pressure.

level Sparse periodic geometry Dense periodic geometry

κ = 104 κ = 105 κ = 106 κ = 104 κ = 105 κ = 106

8 8 8 7 10 10 10

9 7 6 5 9 8 7

10 6 6 11 8 7 11

Table 5.2: Brinkman: GMRES iteration count for different inverse perme-

ability coefficient κ for Dense periodic geometry

Similarly, we show the iteration count of GMRES for the Brinkman prob-

lems using the Sparse periodic geometry and Dense periodic geometry in Ta-

ble 5.2. The columns of Table 5.2 represent the iteration count for different

permeability contrasts and the multigrid levels are presented in rows. For

multigrid preconditioner, we take the same approach as for the Darcy prob-

lems. We observed that our solver is independent of permeability contrast

as can been seen in rows. Further, it is independent of the mesh as shown in
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(a) Velocity x-component for κ = 104 (b) Pressure for κ = 104

(c) Velocity x-component for κ = 105 (d) Pressure for κ = 105

(e) Velocity x-component for κ = 106 (f) Pressure for κ = 106

Figure 5.3: Darcy: Solution for Sparse periodic geometry
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(a) Velocity x-component for κ = 104 (b) Pressure for κ = 104

(c) Velocity x-component for κ = 105 (d) Pressure for κ = 105

(e) Velocity x-component for κ = 106 (f) Pressure for κ = 106

Figure 5.4: Darcy: Solution for Dense periodic geometry
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columns. We present the numerical solution for the Brinkman solver for both

geometries in Fig. 5.5 and Fig. 5.6, where we show only the x-component

of velocity and pressure for the sake of simplicity. We can see pronounced

effect of diffusion term in solutions for the Brinkman problem compared to

the solutions for Darcy problem where we do not have any diffusion. More-

over, the effect of diffusion becomes less pronounced in case of decreasing

permeability of obstacle cells.

For the numerical results presented Table 5.1 and 5.2, we have used two

different periodic geometries. The Dense periodic geometry is a classical

test used in many works as mentioned earlier in this section. We have per-

formed the same numerical tests as given in [51, 59], where we changed only

the upscaling scheme as mentioned in remark 5.2.2. We have observed an

improvement in iteration count which shows that the upscaling in precondi-

tioning has an impact as well. However, this is only observation in numerical

experiments which are limited to only periodic geometries. One can perform

these numerical test with our solvers for different geometries, e.g. Vuggy me-

dia or industrial foams, as an extension for further observations of different

upscaling schemes.
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(a) Velocity x-component for κ = 104 (b) Pressure for κ = 104

(c) Velocity x-component for κ = 105 (d) Pressure for κ = 105

(e) Velocity x-component for κ = 106 (f) Pressure for κ = 106

Figure 5.5: Brinkman: Solution for Sparse periodic geometery
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(a) Velocity x-component for κ = 104 (b) Pressure for κ = 104

(c) Velocity x-component for κ = 105 (d) Pressure for κ = 105

(e) Velocity x-component for κ = 106 (f) Pressure for κ = 106

Figure 5.6: Brinkman: Solution for Dense periodic geometry
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5.3 Nonlinear Brinkman

In this section, we discuss the Brinkman model including the convection

term. We consider that for high porosity the nonlinear Brinkman model is

more suitable as the fluid flow in large pores is modeled by the Navier-Stokes

equations. It has been described by Brinkman [17] where the inertial term

is neglected. However, there is no argument about smallness or neglegibility

of the inertial term. Hence, we present empirical results to show the perfor-

mance of multigrid method for the nonlinear Brinkman equations.

After discretization by divergence conforming DG method, we apply multi-

grid preconditioners with overlapping Schwarz smoothers to solve the result-

ing algebraic system. We use Picard iteration for solving non-linearity. We

observe from our computational results that the multigrid method is efficient

and robust with respect to the mesh size and the permeability contrast for

highly heterogeneous media.

We consider the Brinkman model with convective term for the macroscopic

pressure p and the fluid velocity u = (u1, ..., ud):

−µ∆u+ (u · ∇)u+ κu+∇p = f in Ω,

∇ · u = 0 in Ω, (5.9)

u = g on ∂Ω,

where f ∈ L2 (Ω)d is the prescribed external body force, µ is the viscosity co-

efficient and we get the Darcy model by setting µ = 0. Here κ is permeability

coefficient.
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5.3.1 Discontinuous Galerkin discretization

We use discontinuous Galerkin discretization for the Brinkman equations

including convective term. The discretization for the diffusion term and

incompressibility is same as described in Section 5.2.2. Here, we describe the

discretization for convective term using upwinding form as

b` (β;u, v) = − (u,∇ · v ⊗ β)T`

+ 2
〈
| β · n | u↑, JvK

〉
F i

`

+ 2 〈| β · n | u, v〉F∂
`
,

where β = u.

The discrete weak formulation of (5.2) reads now: find (u`, p`) ∈ V` × Q`

such that for all test functions v` ∈ V` and q` ∈ Q` there holds

A`
((

u`
p`

)
,

(
v`
q`

))
≡ a` (u`, v`) + b`(β;u`, v`) + (p`,∇ · v`)− (q`,∇ · u`)

= F (v`, q`) ≡ (f, v`) ∀v` ∈ V`, q` ∈ Q`. (5.10)

5.3.2 Multigrid preconditioner

In the case of non-symmetric problems though we do not have sufficient

theory but we apply the same method of multigrid preconditioning as it is

for symmetric problems. Hence, we build our multigrid preconditioner on

the same lines as described in section 5.2.5.

The multigrid preconditionerM` : X` −→ X` where (X` = V`×Q`) is defined

recursively in V-cycle with m(`) ≥ 1 pre and post smoothing steps. Let B`
be suitable smoother. We assume that the coarse mesh problem A0x0 = b0
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has a small size so that we directly invert A0 and haveM0 = A−1
0 . For ` ≥ 1,

we define the action of M` on vector b` ∈ X` as follows:

• Pre-smoothing:

xi = xi−1 + B`(b` −A`xi−1) i = 1, · · · ,m(`).

• Coarse grid correction:

xm(`)+1 = xm(`) +M`−1It`−1(b` −A`xm(`)),

where IT` and I` are the same operators as defined in section 3.7.1.

• Post-smoothing:

xi = xi−1 + B`(b` −A`xi−1) i = m(`) + 2, · · · , 2m(`) + 1.

• Assign:

M`b` = x2m(`)+1.

The number m(L) of smoothing steps on the finest level is a free parameter

and for the standard V-cycle m(`) = m(L) whereas in the case of variable

V-cycle this becomes m(`) = m(L)2L−`. The smoothers B` are overlapping

Schwarz smoothers discussed in section (5.2.4). We refer to ML as the V-

cycle preconditioner of A. The iteration

xk+1 = xk +ML(bL −ALxk), (5.11)

is the V-cycle iteration.
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5.3.3 Numerical Results

In this section, we present the numerical results for the Brinkman model

including the convection term. We present the results for high contrast in

permeability coefficients for two different types of distributions, see Fig. 5.1

and description in Section 5.2.6.

We have performed numerical tests using the multigrid preconditioner with

overlapping Schwarz smoothers of multiplicative type. We present the perfor-

mance of the multigrid preconditioners in this section for Brinkman problem

with convective term. For these tests, we use problem setup as described in

remark 5.2.1. We consider a constant viscosity ν = 0.01 for both regions in

case of Brinkman problem and ν = 0 in case of Darcy problem.

For multigrid preconditioner, we apply standard V-cycle algorithm with over-

lapping multiplicative Schwarz smoothers with one smoothing step at each

level. We use the uniform mesh refinements and the penalty parameter in

DG formulation as σ` = k(k+1)
2h`

, where h` is the mesh size at level ` and k is

the degree of polynomial. We use the finite element pair RT1×Q1 in all of our

numerical tests. In this case, we have a nonlinear convection term. Hence, we

use a Picard iteration scheme as outer solver for non-linearity and GMRES

as inner solver for linear system. Picard iteration solver is set to reduce the

residual to 10−6. In Table 5.3, we present the iteration count of GMRES and

Picard iteration for Brinkman problem with convective term using Sparse

periodic geometry. In columns of Table 5.3, we show different permeability

contrasts and in sub-columns, we show iterations for Picard iteration and

GMRES. The rows of 5.3, represent different levels for multigrid. The coars-

est level contains only one cell, so our mesh size at level 7 is 1/64. We build
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level κ = 104 κ = 105 κ = 106

Picard GMRES Picard GMRES Picard GMRES

7 31 4 29 4 29 4

8 31 3 27 3 26 3

9 31 3 25 3 22 3

10 26 4 19 4 14 4

Table 5.3: Iteration count of Picard iteration and GMRES for Sparse periodic

geometry

multigrid preconditioners using upscaling and downscaling as described in

remark 5.2.2. We observed that our solver is robust and is independent of

the mesh parameters and variations in permeability coefficients. Further-

more, we provide the numerical solution for different permeability contrast

for Sparse periodic geometry in Fig. 5.7, where we show only x-component

of velocity and pressure.

Similarly, we show the iteration count of GMRES and Picard iteration

for Brinkman problem with convective term using Dense periodic geometry

in Table 5.4. Where, the columns represent iterations of Picard iteration

and GMRES for different permeability contrasts. The multigrid levels are

presented in rows. For multigrid preconditioner, we take the same approach

as for the symmetric case of Brinkman problem. We observed that our solver

is independent of permeability contrast as can be seen in rows. Further, it

is independent of the mesh as shown in columns. We present the numerical

solution for the Brinkman solver for Dense periodic geometry in Fig. 5.8,
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(a) Velocity x-component for κ = 104 (b) Pressure for κ = 104

(c) Velocity x-component for κ = 105 (d) Pressure for κ = 105

(e) Velocity x-component for κ = 106 (f) Pressure for κ = 106

Figure 5.7: Nonlinear Brinkman: Solution in Sparse periodic geometery
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level κ = 104 κ = 105 κ = 106

Picard GMRES Picard GMRES Picard GMRES

7 19 3 20 4 20 4

8 22 2 24 2 25 2

9 24 2 25 2 24 3

10 22 3 21 3 17 4

Table 5.4: Iteration count of Picard iteration and GMRES for Dense periodic

geometry

where we show only x-component of velocity and pressure for the sake of

simplicity.
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(a) Velocity x-component for κ = 104 (b) Pressure for κ = 104

(c) Velocity x-component for κ = 105 (d) Pressure for κ = 105

(e) Velocity x-component for κ = 106 (f) Pressure for κ = 106

Figure 5.8: Nonlinear Brinkman: Solution in Dense periodic geometry
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5.4 Summary

In this chapter, we have mainly presented the numerical results in two parts.

First part contains the results for the Brinkman problem which have already

been done by [51] and [59]. We have done the same numerical experiments

for the classical test case of Dense periodic geometry and Sparse periodic

geometry. We have also used a different upscaling scheme which improved

the results in terms of iterations count for GMRES as compared to the afore-

mentioned works.

The second part of the chapter contains numerical results for Brinkman

model including the convective term which breaks the symmetry. By using

the theory of symmetric problems and applying our solvers to non-symmetric

problems, we still have reasonable agreements of numerical results with the-

ory. The numerical results are an encouraging step in the further develop-

ments in theory.
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Chapter 6

Summary

In this thesis, we have studied mainly the geometric multigrid method for

the Oseen, the Navier-Stokes and the Brinkman equations. We used Hdiv-

conforming finite element methods, that globally satisfy the incompressibility

constraint. The multigrid preconditioners are based on overlapping Schwarz

smoothers and used in combination with classical iterative solver. We have

implemented the multigrid method and performed numerical experiments for

flow problems.

In Chapter 3, we have mostly presented the numerical results for Oseen prob-

lem using multigrid preconditioners empolying overlapping Schwarz smoothers

of multiplicative type. The algebraic systems, arising from Hdiv-conforming

discontinuous Galerkin discretization of Oseen equations, are non-symmetric

because of the convection term. There is not enough theory of multigrid with

Schwarz smoothers for non-symmetric systems. Hence, we have performed

our numerical experiments aligned with the theory of symmetric problems.

Our results show that multigrid preconditioners with Schwarz smoothers of
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multiplicative type are robust and independent of mesh parameters for the

non-symmetric systems also.

In Chapter 4, we presented extensive numerical experiment for Navier-Stokes

problem. For numerical solution of Navier-Stokes equations, we first dis-

cretized the system using Hdiv-conforming discontinuous Galerkin methods.

Then, we solved the resulting non-symmetric algebraic system using multi-

grid preconditioners with overlapping multiplicative Schwarz smoothers. In

case of the Navier-Stokes problem, we have two difficulties: non-linearity and

non-symmetry. For solving non-linearity we used Newton method as outer

solver. We used GMRES as inner solver preconditioned with multigrid pre-

conditioner, to solve the linear system in each Newton step. We applied the

theory of symmetric problems for building our multigrid preconditioners. In

view of our numerical results, we have seen the dependence of our multigrid

preconditioners on mesh parameters and Reynolds number. Nonetheless, our

solver is robust for cases of low Reynolds number.

In Chapter 5, we have presented the efficient solvers for Brinkman equations

neglecting the convective term and then Brinkman including the convective

term. Here, we also used Hdiv-conforming discontinuous Galerkin method

for the discretization. Then, we applied our multigrid method to solve the

resulting algebraic system. We have mainly presented the numerical results

in two parts. First part contains the results for the Brinkman problem which

has already been done by [51] and [59]. We have done the same numerical

experiments for the classical test case of Sparse periodic geometry and Dense

periodic geometry. We have used a different upscaling scheme as compared to

[51, 59]. However, our upscaling scheme for multigrid precondtioner reduced
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the iterations count for GMRES further. The second part of the chapter

contains numerical results for the Brinkman model, including the convective

term that breaks the symmetry. By using the theory of symmetric problems

and applying our solvers to non-symmetric problems, we still have reason-

able agreements of numerical results with theory. The numerical results are

encouraging for a step forward to further developments in theory.

This work can be extended in two aspects: development of theoretical analy-

sis for non-symmetric problems and improvement in computational methods

for non-linear problems. Furthermore, we have already started computational

experiment for time dependent versions of Navier-Stokes and Brinkman,

which can be of great interest with respect to applications, in particular

for industrial applications.
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Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 14–25. isbn:

978-3-642-12535-5. doi: 10.1007/978-3-642-12535-5_2. url: http:

//dx.doi.org/10.1007/978-3-642-12535-5_2.

[47] Patrick Jenny and Ivan Lunati. “Multi-Scale Finite-Volume Method for

Elliptic Problems with Heterogeneous Coefficients and Source Terms”.

In: PAMM 6.1 (2006), pp. 485–486.

[48] Guido Kanschat. “Divergence-free discontinuous Galerkin schemes for

the Stokes equations and the MAC scheme”. In: International journal

for numerical methods in fluids 56.7 (2008), pp. 941–950.

[49] Guido Kanschat. “Preconditioning methods for local discontinuous Galerkin

discretizations”. In: SIAM Journal on Scientific Computing 25.3 (2003),

pp. 815–831.

98

http://dx.doi.org/10.1137/10079940X
http://dx.doi.org/10.1137/10079940X
http://hdl.handle.net/10754/600164
http://dx.doi.org/10.1007/978-3-642-12535-5_2
http://dx.doi.org/10.1007/978-3-642-12535-5_2
http://dx.doi.org/10.1007/978-3-642-12535-5_2


[50] Guido Kanschat. “Robust smoothers for high-order discontinuous Galerkin

discretizations of advection–diffusion problems”. In: Journal of Com-

putational and Applied Mathematics 218.1 (2008), pp. 53–60.

[51] Guido Kanschat, Raytcho Lazarov, and Youli Mao. “Geometric Multi-

grid for Darcy and Brinkman models of flows in highly heterogeneous

porous media: A numerical study”. In: Journal of Computational and

Applied Mathematics (2016).

[52] Guido Kanschat and Youli Mao. “Multigrid methods for Hdiv-conforming

discontinuous Galerkin methods for the Stokes equations”. In: Journal

of Numerical Mathematics 23.1 (2015), pp. 51–66.
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error estimation for divergence-free discontinuous Galerkin approxima-

tions of the Navier–Stokes equations”. In: International Journal for

Numerical Methods in Fluids 57.9 (2008), pp. 1093–1113.

[55] David Kay, Daniel Loghin, and Andrew Wathen. “A Preconditioner

for the Steady-State Navier–Stokes Equations”. In: SIAM Journal on

Scientific Computing 24.1 (2002), pp. 237–256.
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