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Abstract

Using a modified DCC-MIDAS specification that allows the long-term correlation

component to be a function of multiple explanatory variables, we show that the

stock-bond correlation in the US, the UK, Germany, France, and Italy is mainly

driven by inflation and interest rate expectations as well as a flight-to-safety during

times of stress in financial markets. Based on the new DCC-MIDAS model, we

construct stock-bond hedge portfolios and show that these portfolios outperform

various benchmark portfolios in terms of portfolio risk. While optimal daily weights

minimize portfolio risk, we find that portfolio turnover and trading costs can be

substantially reduced when switching to optimal monthly weights.
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1 Introduction

Evaluating the potential benefits of explicitly modeling short- and long-term components

in conditional correlations has recently become a swiftly expanding research area in finan-

cial econometrics.1 For example, economic gains in financial applications such as portfolio

choice or risk management have been documented in Colacito et al. (2011), Bauwens et

al. (2013), and Bauwens and Otranto (2016).

We contribute to this growing literature by proposing a new specification for dy-

namic correlations that allows the long-term component to be a function of multiple low-

frequency explanatory variables and, hence, to fluctuate at a lower frequency than the

short-term correlation. Such a MIxed Data Sampling (MIDAS) framework is ideally suited

for analyzing the low-frequency economic determinants of high-frequency conditional cor-

relations. Our specification nests the DCC-MIDAS model of Colacito et al. (2011) in

the specific case that lagged monthly realized correlation is the only explanatory variable.

The new model allows us to combine lagged realized correlation, RC, with other economic

explanatory variables, X, and to check whether those variables have explanatory power

for the long-term correlation when controlling for lagged realized correlation. We specify

the long-term component as a function of the weighted lagged values of the explanatory

variables, whereby – in the spirit of the RiskMetrics model – we impose exponentially de-

caying weights. To make the new model tractable, we estimate an individual smoothing

parameter for lagged realized correlation but impose the restriction that all other ex-

planatory variables obey the same smoothing parameter. However, for each explanatory

variable we estimate the coefficient that determines the variable’s effect on the correla-

tion. Hence, at each point in time the new model allows us to decompose the long-term

correlation into the contributions stemming from the individual economic determinants.

We refer to the new specification as the DCC-RC-X model. Of course, there are other

approaches to introduce explanatory variables into conditional correlations. For example,

the conditional correlation model presented in Bauwens and Otranto (2016) assumes that

conditional correlations depend on market volatility. However, they focus on a single ex-

planatory variable and do not cover the mixed-frequency case. While their model is also

applicable to a high-dimensional setting, we restrict our attention to the bivariate case.

1 Typically, a long-term component is either introduced as a time-varying constant or as a multiplica-

tive factor in the conditional correlation (see, for example, Colacito et al., 2011, Hafner and Linton, 2010,

and Bauwens et al., 2016/2017).
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For a cross-section of countries, we apply the new DCC-RC-X approach to model-

ing the time-varying correlation between stock and bond returns. Although for most

countries this correlation is close to zero on average, it varies strongly over time. As the

following quote underlines, the stock-bond correlation is of crucial importance for financial

practitioners:

“The correlation between stocks and bonds is one of the most important inputs

to the asset allocation decision. However, it is difficult to estimate reliably,

and can change drastically with macroeconomic conditions.” Pimco (2013)

The quote also shows that practitioners are well aware of the fact that movements in the

stock-bond correlation can often be traced back to changes in the economic environment.

At least since Shiller and Beltratti (1992) and Campbell and Ammer (1993), there is

a growing academic literature on the determinants of the comovement between stock

and bond returns. More recent empirical and theoretical contributions are Connolly et

al. (2005), Andersen et al. (2007), Andersson et al. (2008), Baele at al. (2010), David and

Veronesi (2013), and Asgharian et al. (2015/2016), among others.

Using monthly expectations data from Consensus Economics for the April 1991 to

January 2016 period, we provide international evidence on the economic determinants

of the low-frequency stock-bond correlation. Our analysis covers data for the US, the

UK, Germany, France, and Italy. We find that in all countries expectations regarding

future CPI inflation are an important driver of the long-term stock-bond correlation. Our

parameter estimates suggest that market participants expect central banks to counteract

increasing inflation expectations by raising the policy rate.2 This expectation leads to

upward revisions in future expected returns which requires stock and bond prices to

decline today.3 That is, higher inflation expectations tend to increase the comovement

between stocks and bonds. Similarly and by the same logic, we find that expectations of an

increase in the future three-month interest rate boost the stock-bond correlation. Stress

in financial markets (as measured by realized stock market volatility) is another important

2Engle and West (2006), Clarida and Waldman (2008), and Conrad and Lamla (2010) provide theoret-

ical and empirical evidence for the notion that the response of financial markets to news about inflation

depends on market participants’ beliefs about the central bank’s reaction function. If a central bank is

expected to have a strong preference for low inflation, market participants increase their expectations

concerning the policy rate in response to higher than expected inflation.
3The observation that stock market returns are negatively related to (expected) inflation goes back

to Fama and Schwert (1977).
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driver of the stock-bond correlation. We find that elevated levels of stock market volatility

significantly reduce the stock-bond correlation in the US, the UK, Germany, and France.

This observation can be rationalized by a flight-to-quality phenomenon (see Connolly et

al., 2005, Bekaert et al., 2009, or Adrian et al., 2016). That is, in times of turbulent

stock markets investors reduce their risk exposure by selling stocks and buying bonds

which induces a negative correlation. For Italy, the stock-bond correlation appears to

increase in response to heightened domestic stock market volatility. Again, this can be

explained by a type of flight-to-quality. While for the other countries the explanation

relies on a domestic re-balancing of stock and bond holdings, it appears that investors

withdraw money from both Italian stocks and bonds and invest in safe haven countries

(see also Conrad and Zumbach, 2016). Our results suggest that the long-term stock-

bond correlation is mainly driven by expectations regarding future monetary policy and

phases of stress in financial markets. Thus, we complement and extend previous findings

by, for example, Andersson et al. (2008) and Asgharian et al. (2015) using a new model

framework and considering a wider set of countries.

We then examine whether incorporating information about the economic environment

in the long-term correlation of the DCC-RC-X model helps to improve asset allocation

when constructing stock-bond hedge portfolios. We consider an investor who must hold

stocks (bonds) and adds bonds (stocks) to reduce the portfolio risk. We compare the

portfolio variance of this hedge portfolio for the different estimates of the conditional

covariance matrix as implied by various DCC-RC-X models and certain benchmark mod-

els. Using the test for equal portfolio variances proposed by Engle and Colacito (2006),

we show that hedge portfolios that are based on forecasts of the conditional covariance

matrix from the DCC-RC-X models outperform portfolios based on simple benchmark

models (such as a constant covariance matrix or the random walk model) in terms of

portfolio variance. This is an important result, since simple benchmark models are often

hard to beat (see DeMiguel et al., 2009). We also provide evidence that in the US, the

UK, and Italy the DCC-RC-X models lead to portfolios with significantly lower variances

than portfolios based on the standard DCC model when stock markets are not in turmoil.

This finding is intuitively reasonable, since the long-term components of the DCC-RC-X

models change smoothly with macroeconomic conditions and are most informative if con-

ditional correlations do not change too abruptly. A nice feature of the DCC-RC-X models

is that they allow us to directly link changes in optimal portfolio weights to changes in

the underlying explanatory variables. For example, the negative stock-bond correlation
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that has been prevalent in most countries since the Great Depression can be explained

by deflationary fears and the expectation of an ongoing expansionary monetary policy.

Therefore, an investor who must hold stocks will also be long in bonds to hedge portfolio

risk. That is, the favorable negative correlation creates hedging opportunities without the

need for short selling. However, the risk of such a portfolio can dramatically increase if

the correlation unexpectedly heads in a positive direction.4 This example illustrates that

it is of crucial importance to have a model that anticipates such changes in correlations.

Finally, we provide a comparison of portfolios that are based on daily optimal weights

with portfolios that are based on monthly optimal weights. Although the former lead

to portfolios with lower risk, the latter portfolios require much less re-balancing (since

monthly optimal weights are smoother) and, hence, have lower turnover. In essence,

the net excess returns after trading costs are usually higher for the portfolios based on

monthly optimal weights.

The remaining paper is organized as follows. Section 2 outlines the DCC-RC-X speci-

fication. Section 3 introduces the dataset. Section 4 presents our empirical results on the

stock-bond correlation and the macro environment, while Section 5 presents the portfolio

choice application. Section 6 provides some extensions and robustness checks. Finally,

Section 7 concludes. Additional empirical results can be found in the Appendix.

2 Econometric Model

We denote the daily stock and bond returns by rS,t and rB,t and consider the bivariate

vector of returns rt = (rS,t, rB,t)
′. We assume that expected returns E[rt|Ft−1] = µ =

(µS, µB)′ are constant and write rt = µ + εt, where εt = (εS,t, εB,t)
′. The conditional

covariance matrix of the innovations εt is given by Ht = Var[εt|Ft−1] and can be decom-

4For example, on December 14, 2015, the Financial Times article “Markets got used to monetary

policy medicine” expressed concerns that the risk of stock-bond portfolios might “suddenly shoot up” in

response to a positive “correlation shock” due to “central banks not being as accommodative as people

wanted them to be”. Similarly, on October 06, 2016, the Wall Street Journal published an article titled

“Relationship between bonds and stocks gets complicated”. It was argued that the correlation switched

from negative to positive in September 2016 “because markets grew nervous about central-bank policy”,

i.e. because of the expectation of a tighter monetary policy.
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posed as follows Ht = DtRtDt, where

Rt =

 1 ρSB,t

ρSB,t 1

 and Dt =

 h
1/2
S,t 0

0 h
1/2
B,t

 (1)

with ρSB,t denoting the conditional correlation between stock and bond returns and hS,t

and hB,t the conditional variances. If Rt is constant, the model reduces to the constant

conditional correlation (CCC) model of Bollerslev (1990).

The DCC-RC-X specification: We model hS,t and hB,t as GARCH(1,1) processes

with parameters ωi > 0, αi > 0, βi ≥ 0 and αi + βi < 1, i ∈ {S,B}, and define

the ‘volatility-adjusted’ residuals ZS,t = εS,t/
√
hS,t and ZB,t = εB,t/

√
hB,t. Hence, the

conditional stock-bond correlation can be expressed as

ρSB,t =
Cov(rS,t, rB,t|Ft−1)√

Var[rS,t|Ft−1]Var[rB,t|Ft−1]
= E[ZS,tZB,t|Ft−1], (2)

i.e. in terms of the conditional correlation between the volatility-adjusted residuals. These

dynamic correlations are modeled by specifying an equation for the ‘quasi-correlations’ in

a first step and then by rescaling in a second step (see Engle, 2002). The quasi-correlations

Qt = [qij,t]i,j=S,B are given by

Qt = (1− αSB − βSB)R̄τ + αSBzt−1z
′
t−1 + βSBQt−1, (3)

where zt = (ZS,t, ZB,t)
′ and αSB > 0, βSB ≥ 0, αSB + βSB < 1. The matrix R̄τ

contains the low-frequency long-term correlations, where τ denotes the lower frequency.

Our model reduces to Engle’s (2002) DCC specification with correlation targeting when

R̄τ is assumed to be constant and equal to the sample correlation matrix of the volatility-

adjusted residuals. Instead, we allow the off-diagonal elements ρ̄SB,τ of R̄τ to be driven

by lagged monthly realized correlations as well as exogenous explanatory variables that

are also observed at a monthly frequency. We will denote the explanatory variables by

Xj,τ , j = 1, . . . , J . In this mixed frequency setting, the quasi-correlations can be written

as

qSB,t = ρ̄SB,τ + αSB(ZS,t−1ZB,t−1 − ρ̄SB,τ ) + βSB(qSB,t−1 − ρ̄SB,τ ), (4)

i.e. as evolving around the long-term correlation. In order to ensure that the long-term

correlation ρ̄SB,τ is less than one in absolute value, we employ the Fisher-z transformation

and specify

ρ̄SB,τ =
exp(2mSB,τ )− 1

exp(2mSB,τ ) + 1
(5)
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with

mSB,τ = θRC

KRC∑
k=0

λkRCRCτ−1−k + θ1

K1∑
k=0

λk1X1,τ−1−k + . . .+ θJ

KJ∑
k=0

λkJXJ,τ−1−k (6)

= mRC,τ +m1,τ + . . .+mJ,τ . (7)

In equation (6), RCτ stands for the monthly realized correlation between the volatility-

adjusted residuals

RCτ =

∑Nτ
t=Nτ−1+1 ZS,tZB,t√∑Nτ

t=Nτ−1+1 Z
2
S,t

∑Nτ
t=Nτ−1+1 Z

2
B,t

, (8)

where Nτ =
∑τ

i=1 N
(i) with N (i) denoting the number of days within month i and N0 = 0.

When no explanatory variable Xj,τ is included, the model basically coincides with the

DCC-MIDAS of Colacito et al. (2011).5 Conrad et al. (2014) also employ a variant of

equation (6) but impose the restriction that θRC = 0 and J = 1, i.e. they consider a single

explanatory variable only. On the contrary, we are explicitly interested in modeling the

long-term correlation as a function of multiple explanatory variables while at the same

time controlling for the effect of the lagged RCτ . This will reveal whether macro conditions

contain information that is complementary to the information included in lagged RCτ .

However, as discussed in Conrad and Loch (2015) for the case of a GARCH-MIDAS model,

estimating individual weighting schemes for several variables at the same time is difficult.

We therefore impose the following restriction: we estimate the parameter 0 < λRC < 1,

but impose the constraint that all Xj,τ variables share the same smoothing parameter,

i.e. λ1 = . . . = λJ = λ. This is a sensible restriction, since estimates with J = 1 for

the different variables suggested that the same λ applies to all explanatory variables.

Based on a grid search, we found λ = 0.96 to be the best choice in terms of information

criteria.6 In this way, equation (6) is parsimoniously specified and can be thought of as

an ‘Exponential Smoother’ in the spirit of the RiskMetrics model. In addition, we choose

KRC = K1 = . . . = KJ = 48 lags, i.e. we employ four MIDAS lag years.7 Note that

despite these assumptions, equation (6) still involves J + 2 parameters that have to be

5Their long-term component uses a Beta weighting scheme and, in the absence of other explanatory

variables than RCτ , does not require a Fisher-z transformation.
6Asgharian et al. (2016) estimate a DCC-MIDAS model for the US stock-bond correlation including

one variable at a time. Their parameter estimates imply that the optimal weighting scheme is almost

flat. Our choice of λ = 0.96 is in line with their finding and ensures that the weights are slowly declining.
7We checked empirically that choosing 48 as a truncation lag is innocuous. Including more than 48

lags does not change any of our results.

6



estimated. In the empirical application, each explanatory variable Xj,τ is standardized

so that the order of magnitude of the θj’s is comparable. The θj parameters determine

the impact of each variable on the long-term correlation and, in particular, the sign of

the marginal effect. We refer to the specification with RCτ and additional explanatory

variables as DCC-RC-X and to the specification with J = 0 as DCC-RC.

Finally, the short-term correlation is obtained by rescaling:

ρSB,t =
qSB,t√
qSS,tqBB,t

(9)

Model estimation: Following Engle (2002) and Colacito et al. (2011), we estimate the

DCC-MIDAS model in two steps. In a first step, we estimate univariate GARCH models

for the stock and bond returns. Then, in a second step, we construct the volatility-

adjusted residuals and estimate the parameters in the long- and short-term correlation

components. That is, we sequentially maximize the first and the second term of the

following log quasi-likelihood function

L =−
T∑
t=1

(
2log(2π) + 2log(|Dt|) + ε′tD

−2
t εt

)
−

T∑
t=1

(
log(|Rt|) + z′tR

−1
t zt − z′tzt

)
(10)

For further details on the two-step maximization, see Engle (2008).

Correlation ratios: In order to quantify the overall relevance of the long-term compo-

nent as a determinant of the conditional correlation, we calculate the following correlation

ratio (CR1)

CR1 =
Var[ρ̄SB,τ ]

Var[ρSB,τ ]
, (11)

where ρSB,τ = 1/N (τ)
∑Nτ

t=Nτ−1+1 ρSB,t. That is, CR1 measures how much of the variability

in the monthly conditional correlation can be attributed to changes in the long-term

correlation. Equation (7) has the nice property that it provides a direct decomposition

of the long-term correlation into the contributions, mj,τ , of the individual explanatory

variables. We use this property to compute a second correlation ratio (CR2)

CR2 =
Var[m1,τ + . . .+mJ,τ ]

Var[mSB,τ ]
, (12)

which measures how much of the total variation in mSB,τ is due to changes in the explana-

tory variables. Hence, CR2 portrays how relevant the explanatory variables are once one

controls for the lagged realized correlation.
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Correlation news impact function: The additional flexibility that is provided by

the DCC-RC-X in comparison to the nested DCC can be illustrated by means of the

correlation news impact function (CNIF), see Kroner and Ng (1998) and Engle (2008).

The correlation news impact function shows how correlations are updated in response to

news by expressing the correlation in t + 1 as a function of the standardized shocks in t

and prior information. The CNIF of the DCC-RC-X can be written as

CNIFt+1 = f(ZS,t, ZB,t|ρ̄SB,τ , qSS,t, qBB,t, qSB,t) (13)

=
(1− αSB − βSB)ρ̄SB,τ + αSBZS,tZB,t + βSBqSB,t√

(1− αSB − βSB + αSBZ2
S,t + βSBqSS,t)(1− αSB − βSB + αSBZ2

B,t + βSBqBB,t)

Clearly, the CNIF of the DCC is nested by restricting ρ̄SB,τ = ρ̄SB. In principle, the

CNIF can be represented in a three-dimensional plot as a correlation news impact surface.

Since our specification is symmetric in both shocks, we prefer to present two-dimensional

plots where either both shocks have the same sign and ZB,t = ZS,t or have opposite signs

and ZB,t = −ZS,t. Note that even if there is no shock, i.e. ZS,t = ZB,t = 0, there is an

adjustment towards ρ̄SB,τ due to mean-reversion. For simplicity, consider the case where

in addition qSS,t = qBB,t = 1 so that ρSB,t = qSB,t. Then, we obtain

CNIFt+1 =

(
1− βSB

1− αSB

)
ρ̄SB,τ +

βSB
1− αSB

ρSB,t, (14)

which shows that (in the absence of shocks) the CNIF is a weighted average of the long-

term and the short-term correlation with 0 < βSB/(1− αSB) < 1 by construction. Thus,

the adjustment towards ρ̄SB,τ is stronger the lower αSB and βSB are.

Figure 1 shows the CNIF of equation (13) for a situation in which ρSB,t = 0.1. The blue

line represents a CNIF with ρ̄SB,τ = 0.3 and the red line a CNIF with ρ̄SB,τ = −0.18. The

left (right) panel considers the case ZB,t = ZS,t (ZB,t = −ZS,t). When ZS,t = ZB,t = 0,

in both panels the blue (red) line is above (below) ρSB,t = 0.1 due to mean-reversion.

Further, when ZS,t is increasing this leads to upward (downward) adjustments in the

CNIF in the left (right) panel which simply reflects that shocks of the same (opposite)

sign tend to increase (decrease) correlations. Finally, note that the difference in the two

CNIFs is decreasing in the size of the shocks. Figure 1 nicely illustrates that in the

DCC-RC-X the adjustment of the conditional correlation in response to news depends

on the current stance of the long-term component. In sharp contrast, the long-term

component is assumed to be constant in the DCC. It also helps us to understand under
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which circumstances the DCC-RC-X and the DCC will respond differently to shocks. If,

for simplicity, we assume that both models have the same αSB and βSB parameters and

also the same current short-term correlation ρSB,t, then Figure 1 can be interpreted as

showing the CNIFs of a DCC with ρ̄SB = −0.18 and a DCC-RC-X with ρ̄SB,τ = 0.3. Thus,

the figure suggests that the differences in the updating of the correlations in response to

news will be the strongest when shocks are small (and |ρ̄SB,τ − ρ̄SB| is large).

3 Data

We focus on the US and four major European countries, i.e. the United Kingdom (UK),

Germany (GER), France (FR), and Italy (IT). For each country, we combine daily stock

and bond returns with monthly macroeconomic expectations data and realized stock

market volatility. Our data covers the period from April 1991 to January 2016 and includes

around 6300 daily (the actual number of daily observations varies across countries due to

different public holidays) and 298 monthly observations.

Stock and bond market data: The left panels of Figure 2 show the evolution of the

stock and bond prices over the full sample period. For each country, we consider daily log-

returns on MSCI stock prices and 10-year government bond prices.8 Summary statistics

for the daily stock and bond returns as well as their correlation for a rolling window of 22-

days can be found in Panel A of Table 1, and for monthly realized stock and bond market

volatilities, defined as the square root of the sum of squared daily returns, in Panel B.

For all countries but Italy, the average annualized stock returns are higher than average

annualized bond returns but at the same time stock volatility is at least twice as high as

bond volatility. For all countries, the average 22-days rolling window correlation is close

to zero. However, the minimum and maximum correlations over the sample period are

roughly between ±0.9, i.e. the correlations fluctuate heavily over time. The right panels

of Figure 2 illustrate this behavior by plotting the 22-days rolling window correlations

and, in addition, the much smoother 252-days rolling window correlations.

8 The respective Tickers for the stock prices are: MSUSAM$, MSUTDKL, MSGERML, MSFRNCL,

MSITALL. The respective Tickers for the 10-year government bond prices are: BMUS10Y, BMUK10Y,

BMBD10Y, BMFR10Y, BMIT10Y.
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Macro expectations data: We employ monthly expectations data for CPI inflation,

GDP growth, and the three-month interest rate (I3M) from Consensus Economics.9 For

inflation and GDP growth, each month the forecasters provide expectations for this year’s

and next year’s realizations, i.e. fixed event forecasts. We follow Dovern et al. (2012) and

construct one-year-ahead fixed horizon predictions by first taking the average of the this

year, X̄τ ,this, and the next year, X̄τ ,next, fixed event forecasts over the cross-section of

forecasters, where τ refers to the month in which the prediction is produced. Fixed

horizon one-year ahead predictions are then obtained as

Xτ =
k

12
X̄τ ,this +

12− k
12

X̄τ ,next,

where k = 1, . . . , 12 refers to the number of remaining months in the year. The three-

month interest rate predictions are directly for a fixed horizon of twelve months and,

hence, we simply average over the forecasters. Panel C of Table 1 presents the summary

statistics for the expectations data and Figure 3 provides an impression of the evolution of

the expectations data over time and across countries. It also shows the monthly realized

volatilities in the five stock markets.10

For each country, Table 2 provides an overview of the correlation between the ex-

pectations data, monthly realized stock market volatility (RV) and the monthly realized

stock-bond correlation. In particular, the table reveals a strong correlation between in-

flation and interest rate expectations. Similarly, expectations on GDP growth have a

sizable positive correlation with the three-month interest rate. This can be viewed as evi-

dence that forecasters believe in central banks following a Taylor type policy rule, so that

higher inflation and/or growth expectations are aligned with higher short-term interest

rate expectations due to the expected monetary policy response.11 The negative correla-

tion between GDP growth and RV is in line with the counter-cyclical behavior of stock

volatility documented, for example, in Schwert (1989) or, more recently, Paye (2012) and

9In contrast to the Fed’s and the ECB’s quarterly Survey of Professional Forecasters (SPF), Consensus

Economics expectations are available for a range of countries and on a monthly basis, which substantially

increases the number of usable observations. To be more specific, survey participants are asked to provide

their forecasts in the first week of each month. The forecasts are then released in the second week of the

month.
10For the DCC-RC-X model estimation, we standardize the explanatory variables by subtracting their

means and dividing by their standard deviations. Since realized volatility is heavily skewed, we standard-

ize it by subtracting its median and dividing by its standard deviation.
11For empirical evidence on the consistency of survey expectations with the Taylor rule see Dräger et

al. (2016).
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Conrad and Loch (2015). Finally, the table gives a first indication on how the stock-bond

correlation is related to the economic environment. For all countries but Italy we find

a strong positive correlation with expectations on inflation and the three-month interest

rate, a weaker positive correlation with expected GDP growth, and a strong negative

correlation with RV. The correlation pattern differs for Italy, where we find a negative

correlation with expected GDP growth and a slightly positive correlation with RV instead.

Also, the correlations with inflation and interest rate expectations are comparably low.

4 Long-term stock-bond correlation and the macro

environment

4.1 GARCH parameter estimates

First, we very briefly present the parameter estimates for the GARCH(1,1) models for

stocks and bonds in Tables 3. The parameter estimates for αi and βi are highly significant

and take the usual values. As expected, both stock and bond returns have considerable

volatility persistence as measured by αi + βi being close to one. Interestingly, for all

countries but Italy the αi (βi) estimates are higher in the stock (bond) than on the bond

(stock) market which suggests that stock markets are more responsive to news than bond

markets. Finally, for all countries the unconditional variance, σ2
i = ωi/(1− αi− βi), that

is implied by the parameter estimates is higher in the stock than in the bond market.

4.2 DCC and DCC-RC parameter estimates

For each country, the first two lines in Table 4 present the parameter estimates for the

DCC and DCC-RC models. We base the models on the standardized residuals from the

GARCH estimates from the previous section.12

The parameter estimates of αSB and βSB imply that the conditional correlations in

the DCC-RC model are markedly less persistent than in the DCC model. This effect

12Alternatively, we could employ an asymmetric GARCH model or a GARCH-MIDAS model as, for

example, in Conrad et al. (2014) in the first step. However, as a result the volatility-adjusted residuals

would depend on the selection of the best volatility model which might vary across stock/bond markets

and, more importantly, across countries. We prefer to rely on simple GARCH models with the same

specification across all countries, which ensures that our comparison of model performance is solely

driven by differences in the specification of conditional correlations.
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provides support for the notion that the explicit modeling of a time-varying long-term

correlation takes out persistence from the short-term correlation (see also Colacito et

al., 2011, and Bauwens et al., 2016). The θRC estimates in the DCC-RC models are

positive and highly significant for all countries. That is, the current long-term stock-bond

correlation is positively related to the lagged monthly realized stock-bond correlations.

The λRC estimates imply that the optimal weights on the lagged RC vanish after about one

year. According to the AIC and BIC criteria, the DCC-RC is clearly preferred to the DCC

in all countries. Finally, the last column of Table 4 presents the CR1 correlation ratios

for the DCC-RC models. Between 80% (France) and 92% (Italy) of monthly conditional

correlations can be explained by changes in past RC.

Figure 4 shows the estimated short- and long-term components. Roughly speaking,

for all countries but Italy, the correlations have been positive from the beginning of the

sample in 1995, then became negative during the 1998 default of Russian bonds, came

back into the positive territory again, but turned and stayed mainly negative since the

beginning of the 2000s. The most negative correlations are observed during and in the

aftermath of the collapse of the dot-com bubble and during the financial crisis and Great

Recession. For Italy, the correlation behaves similarly until 2008/9 but then becomes and

stays positive until the end of the sample period.

4.3 DCC-RC-X parameter estimates

In a next step, we add macroeconomic variables as additional predictors of the long-term

correlation. Since inflation expectations and three-month interest rate expectations are

highly correlated (see Table 2), we include one or the other in order to avoid a multi-

collinearity problem. Table 4 shows that the specifications which additionally include the

macro expectations lead to further improvements in the model fit. For example, for the

US we find that inflation expectations as well as short-term interest rate expectations are

highly significant.13 Also, lagged RV is found to be significant. In addition, we include

the first principle component of inflation and interest rate expectations as an explanatory

variable. Since both variables are informative about the markets’ expectation concerning

future monetary policy, we refer to this variable as ‘monetary policy’ (MP) factor.14 Again,

MP is highly significant. When including inflation expectations and RV, the estimate of

13A detailed discussion of the signs of the estimated coefficients will be provided in Section 4.4.
14Although there is no independent monetary policy in Germany, France, and Italy, expected inflation

and interest rate conditions in these countries are highly relevant for the ECB’s monetary policy.
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λRC drops considerably, which implies a faster decay of the weighting scheme on lagged

RC values. Also, the correlation ratio CR1 increases from 87.20% for the DCC-RC to

90.98% for the DCC-RC-RV-CPI. The value of the correlation ratio CR2 implies that

roughly 12% of the variation in the long-term correlation is due to CPI and RV. As a

consequence, the AIC and BIC clearly favor this model. For the other countries, the

evidence in favor of the DCC-RC-X model is markedly weaker. We find inflation to be

significant in Germany and Italy, GDP growth in France and RV in Italy. Consequently,

for these countries the gains in terms of increases in CR1 compared to the DCC-RC are

considerably smaller than for the US. This is also reflected in CR2 ratios between 3.35%

(Italy) and 8.88% (Germany) for the best performing model. While the AIC criterion still

prefers the best macro expectation based model over the DCC-RC for all countries, the

BIC – which punishes more severely than the AIC for additional parameters – prefers the

pure DCC-RC for the UK, France, and Italy.

4.4 Pure DCC-X models and economic interpretation

Section 4.3 suggests that – apart from the US – the explanatory power of expected macro

conditions and RV is limited when controlling for RC. Next, we reestimate all models

but exclude lagged RC. This allows for a clearer picture of the underlying economic

relationship between the explanatory variables and the long-term stock-bond correlation.

Table 5 shows that in pure DCC-X models, expected inflation, the three-month interest

rate, the monetary policy factor as well as lagged RV are important drivers of the stock-

bond correlation. Obviously, this relationship is partly masked when including RC which

appears to encompass most of these drivers.

First, stock market volatility has a significant and strongly negative effect in all coun-

tries but Italy. The negative sign of the effect is in line with a flight-to-quality phenomenon

(see, e.g., Connolly et al., 2005, Cappiello et al., 2006, and Adrian et al., 2016). In times

of turbulence in stock markets investors require a higher risk premium on stocks while

expected returns for bonds decrease. Investors re-balance their portfolio risks by selling

stocks and buying bonds which results in a negative stock-bond correlation.15 We only

find a significantly positive effect for Italy. This may be explained by investors who do

15A related explanation is that a “Value-at-Risk (VaR) shock” induced by an upsurge of stock market

volatility prompts investors to sell their stock holdings due to VaR constraints and to buy less risky

bonds.
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not consider the government bonds of all countries as ‘equally safe’. Specifically, during

crisis times investors may sell Italian stocks as well as bonds and flee into the safe haven

of German government bonds.16 Hence, during phases of high RV in the Italian stock

market the stock-bond correlation increases due to simultaneously falling stock and bond

prices.

Second, the coefficient on expected inflation is positive in all countries. It is significant

for the US, Germany, France, and Italy. The positive sign implies that an increase in

expected inflation leads to a rise in the long-term stock-bond correlation. This effect can

be rationalized as follows. If monetary policy follows an inflation objective, then it will

react to higher expected inflation by increasing the policy rate. Anticipating this policy

response, investors require higher expected returns on stocks and bonds in the future

which (everything else unchanged) induces a decline of stock and bond prices today.17

Conversely, the parameter estimates imply that declining inflation expectations lead to a

decreasing stock-bond correlation that eventually becomes negative. This behavior can

be rationalized by the argument of Baele et al. (2010) that deflationary fears lead to a

negative stock-bond correlation because stock prices decrease in times of bad economic

prospects due to the cash flow effect while at the same time bond prices increase.18

Third, in the US, the UK, Germany and Italy an increase in the expected interest rate

is associated with a significant upswing in the stock-bond correlation. This effect is in line

with the response to an increase in expected inflation as discussed above and can again

be explained by the common discount rate effect (see also Yang et al., 2009, for similar

16Based on high-frequency data, Conrad and Zumbach (2016) provide strong evidence for this behavior

during the European sovereign debt crisis. Also, Perego and Vermeulen (2016) make a similar argument

for explaining why the stock-bond correlation turned positive for southern European countries during the

sovereign debt crisis while it stayed negative for northern European countries.
17Andersen et al. (2007, p.257) find that the same news can lead to increasing or decreasing stock

prices, depending on whether the cash flow or the discount effect dominates. Their estimates suggest

that “the cash flow effect dominates during contractions while the discount effect dominates in expansions

(due to central bank policy)”. As Table 2 shows, inflation expectations are unconditionally more strongly

correlated with interest rate expectations than with GDP growth. Thus, it is not surprising that the

discount rate effect dominates (on average) the cash flow effect for stock returns.
18In contrast to our estimates, the general equilibrium model of David and Veronesi (2013) predicts

that in a deflationary regime increasing inflation expectations should decrease bond prices but increase

stock prices and, hence, induce a negative stock-bond return correlation. This effect materializes if for

stocks the cash flow effect dominates. A recent example for such a scenario is the so-called ‘Trump

reflation trade’.
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evidence for the US and UK).

Fourth, the monetary policy factor is significant in all countries but France and, as

expected, has the same sign as inflation or interest rate expectations. That is, the expec-

tation of a more contractive monetary policy increases the stock-bond correlation.

Fifth, in line with the findings in Andersson et al. (2008), expectations on future GDP

growth are insignificant in all countries. Also, note that the CR1 ratios for the DCC-

RV-GDP model are much lower than for all other specifications. Yet, the insignificance

might be due to a potentially time-varying sign of the effect of GDP growth, i.e. the sign

of the effect of GDP growth might depend on the stance of expected monetary policy.

To capture such an effect, we estimate a model that includes GDP growth, the monetary

policy factor, and an interaction term of the two. The parameter estimates suggest that

for the US, the UK, and Germany there is indeed a time-varying effect (see Table 6). The

sign of the interaction term can be interpreted as follows. If monetary policy is expected to

tighten (MP above average), a decline in GDP growth expectations leads to an increase

in the stock-bond correlation. This response is in line with increasing bond and stock

prices (due to the discount effect). On the other hand, if monetary policy is expected to

be accommodative (MP below average), a decline in GDP growth expectations reduces

the stock-bond correlation. In this case, lower GDP growth is good news for bonds but

bad news for stocks (due to the cash flow effect).19 Only for Italy, we directly observe a

significantly negative coefficient for GDP growth.

Although, the CR1 ratios as well as the AIC and BIC suggest that omitting RC as an

explanatory variable leads to a loss in terms of model fit, the pure DCC-X models clearly

reveal that expected macro conditions as well as RV are economically important drivers of

the stock-bond correlation. In summary, our results suggest that the time-varying long-

term stock-bond correlation is closely linked to expectations regarding future monetary

policy and a flight-to-quality phenomenon during crisis times. Note that our results

complement previous findings on the time-varying stock-bond correlation. In particular,

our findings regarding the effects of expected inflation and stock market volatility are in

line with Andersson et al. (2008) and Asgharian et al. (2016). However, Andersson et

al. (2008) exclusively rely on predictive regressions, while Asgharian et al. (2016) consider

US data only.

19This interpretation is in line with Boyd et al. (2005) who show that ‘rising unemployment is good

news for stocks during economic expansions and bad news during contractions’ (see also Andersen et al.,

2007).
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4.5 Graphical decomposition of the long-term correlation

For each country, Figure 5 shows the long-term stock-bond correlation as predicted by

the DCC-RV-X model from Table 5 as well as its decomposition into the individual con-

tributions from the two explanatory variables as defined in equation (7). For example,

for the US both the monetary policy factor, mMP , as well as realized volatility, mRV ,

contribute positively to the long-term stock bond correlation at the beginning of the sam-

ple period. The decline in correlation into negative territory is mainly driven by lower

inflation expectations and an increase in RV after the default of Russian bonds and the

Long-Term Capital Management crisis in 1998 as well as the burst of the dot-com bubble

in 2001. The second and even sharper decrease in correlation occurred in 2008 and is

triggered by a massive increase in volatility during the financial crisis. The fact that the

correlation stays negative towards the end of the sample period is due to the strongly

negative monetary policy factor. That is, the expectation of a deflationary regime and an

ongoing expansive monetary policy keeps the correlation in the negative territory. The

behavior of the stock-bond correlation in the UK, Germany, and France is broadly similar

to the one in the US. Again, Italy is different. The model predicts a strongly negative

stock-bond correlation for the 2004 to 2008 period. Then, the correlation turns positive

during the financial crisis, which reflects the flight-to-quality argument from before.

5 Dynamic Hedge Portfolio

In this section, we apply the different models to a portfolio choice problem, i.e we evaluate

the potential economic gains of modeling time-varying long-run correlations by implement-

ing a dynamic asset allocation strategy. We use the in-sample (IS) period June 1995 to

December 2013 and the out-of-sample (OOS) period January 2014 to January 2016. All

models have been reestimated for the IS period. The corresponding parameter estimates

are provided in Tables 14 to 16 in Appendix D. Portfolio evaluation is based on daily

portfolio returns.

5.1 Portfolio choice problem

We consider an investor who constructs a dynamic hedge portfolio (HP). That is, the

investor must hold either stocks (bonds) in his portfolio but adds bonds (stocks) to reduce

the portfolio risk. For example, if the investor must hold stocks, the weights of this hedge
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portfolio are obtained as the solution of the minimization problem:

min
wt

w′tHtwt s.t. w′tµ̃ = µ0, (15)

where µ̃ = (µ̃S, 0)′ is the vector of expected excess returns on stocks and bonds and

wt = (wS,t, wB,t)
′ the vector of potfolio weights. The required excess return is assumed to

be given by µ0 = µ̃S. The optimal weights are then given by

wHP
t = (wHPS,t , w

HP
B,t )′ = (1,−Cov(rS,t, rB,t|Ft−1)/Var(rB,t|Ft−1))′

and 1 − wHPS,t − wHPB,t = −wHPB,t is held in cash. Thus, in addition to holding stocks,

the investor will be long/short in bonds if the covariance between stocks and bonds is

negative/positive. Focusing on a hedge portfolio has the advantage that the optimal

portfolio weights do not depend on expected returns (see also Section 6). For a further

discussion of hedge portfolios and their applications see Engle (2008) and Engle and

Colacito (2006). We impose the restriction that the investor must hold stocks (bonds)

if the average return on stocks (bonds) during the IS period is higher than the average

return on bonds (stocks). According to Table 1, the investor is required to hold stocks in

the US, the UK, Germany, and France while she is required to hold bonds in Italy.

5.2 DCC-MIDAS models and benchmark competitors

For the empirical evaluation of the portfolio choice problem, we use the standard DCC

model as well as the best DCC-(RC)-X models as identified by the AIC in Tables 15 and 16.

As natural competitors, we consider the following simple, yet powerful benchmark models:

Constant covariance matrix (Const): Our first benchmark portfolio is based on

the assumption of a time-invariant constant covariance matrix. This portfolio is obtained

by replacing the entries of Ht with estimates of the unconditional variances of stocks

and bonds and their unconditional covariance. Hence, the optimal portfolio weights are

constant. For the IS evaluation, we estimate the entries of the covariance matrix by

their sample counterparts over the full IS period. For the much shorter OOS evaluation

period, we estimate these quantities by their realized counterparts during the June 2013

- December 2013 period, i.e. during the last six months of the IS period. This ensures

that we use timely estimates that are representative of the market environment before

the start of the OOS period.

Monthly Random Walk (RW) covariance matrix: For all days within month τ ,

the RW model estimates the conditional covariance matrix Ht by the realized covariance
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matrix of month τ −1. Thus, the second benchmark model will produce portfolio weights

that vary at a monthly frequency.

Constant Conditional Correlation (CCC): We also consider a daily CCC model.

Since the daily CCC model is based on the same estimates ĥS,t and ĥB,t as the DCC/DCC-

(RC)-X models but assumes a constant conditional correlation, a comparison with the

DCC/DCC-(RC)-X models will reveal the potential gains of employing a short-/long-

term conditional correlation structure.

5.3 Daily optimal portfolio weights

We construct optimal daily portfolio weights for the DCC, the DCC-(RC)-X as well as

the three benchmark models. For the DCC and DCC-(RC)-X models, the optimal daily

portfolio weights, ŵHP
t , are based on the forecast Ĥt|t−1, where the diagonal elements

are simply the estimates of the one-day ahead conditional variances of stocks, ĥS,t, and

bonds, ĥB,t, and the off-diagonal elements are given by ρ̂SB,t

√
ĥS,tĥB,t. In case of the CCC

model, the off-diagonal elements are set to ρ̂SB

√
ĥS,tĥB,t, where ρ̂SB is the IS correlation

of the volatility-adjusted residuals. Recall that for the Const model, the optimal weights

do not change at all, while for the RW model the optimal weights are changing at the

monthly frequency only. Nevertheless, all models require daily re-balancing.

5.4 Monthly optimal portfolio weights

As an alternative to the daily optimal portfolio weights, we also consider optimal weights

that are changing at a monthly frequency. That is, at the end of each month, we choose

portfolio weights for stocks, bonds, and cash that are kept constant over the following

month. A comparison of monthly and daily portfolio weights is important for a realistic

evaluation, since portfolio weights that change at a daily frequency are likely to generate

lower variances but might suffer from the costs associated with excessive re-balancing.

First, define monthly stock and bond returns as

rS,τ =
N(τ)∑
k=1

rS,t+k and rB,τ =
N(τ)∑
k=1

rB,t+k, (16)

where day t denotes the last day of month τ − 1. Constructing the monthly portfolio

weights requires an estimate of the monthly conditional covariance matrix Hτ |τ−1, i.e. we

need to obtain estimates of Var[rS,τ |Fτ−1], Var[rB,τ |Fτ−1] as well as Cov(rS,τ , rB,τ |Fτ−1).
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The forecast of the monthly conditional variance of stocks and bonds can be computed as

Var[ri,τ |Fτ−1] =
N(τ)∑
k=1

hi,t+k|τ−1 = N (τ)σ2
i +

1− (αi + βi)
N(τ)

1− (αi + βi)
(hi,t+1|τ−1 − σ2

i ), (17)

where hi,t+k|τ−1 = Var[ri,t+k|Fτ−1] = σ2
i + (αi + βi)

k−1(hi,t+1|τ−1 − σ2
i ) and σ2

i = ωi/(1−
αi − βi), i ∈ {S,B}. The conditional covariance can be approximated by

Cov(rS,τ , rB,τ |Fτ−1) ≈
N(τ)∑
k=1

ρSB,t+k|τ−1

√
hS,t+k|τ−1hB,t+k|τ−1, (18)

with

ρSB,t+k|τ−1 ≈ ρ̄SB,τ + (αSB + βSB)k−1(ρSB,t+1|τ−1 − ρ̄SB,τ ). (19)

For more details on the derivation of equations (18) and (19) see Appendix A. Equa-

tion (19) illustrates that the forecast of the conditional correlation converges to the cur-

rent value of the long-term correlation component for k →∞. However, for the monthly

conditional covariance forecasts this effect is limited by the fact that the k is at most N (τ)

and αSB +βSB is typically close to one. The optimal monthly portfolio weights ŵHP
τ then

depend on the estimate Ĥτ |τ−1.

Table 7 evaluates how well the different models do in forecasting the ex-post realized

monthly covariances over the IS period. We consider a simple Mincer-Zarnowitz regression

of the realized covariance on a constant and the covariance forecast. We report the

regression R2 as well as the p-value of the F -test that the constant is zero and the slope

coefficient is one. We consider forecasts from the DCC/DCC-(RC)-X models as well as

from the RW and the CCC benchmark models as described above. In all countries the

RW forecast achieves a higher R2 than the CCC forecast, whereas the DCC and DCC-

(RC)-X models clearly improve upon the RW forecast in terms of R2. Among all models,

the DCC-RC model achieves the highest R2 in three out of the five countries. Note that

the null hypothesis of forecast efficiency is typically rejected for the benchmark models

but not for the DCC/DCC-(RC)-X models.20

5.5 Comparison in terms of portfolio variance

We are now interested in formally testing whether the DCC and DCC-(RC)-X models

deliver portfolios with smaller variances than the benchmark models. We denote the

20In particular, the CCC model suffers from the constant conditional correlation assumption because

realized covariances frequently change their sign during the IS period.
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estimate of the conditional covariance matrix from model j by Ĥj,t|t−1 and the estimate

based on a certain benchmark model (BM) by ĤBM,t|t−1. Following Engle and Colacito

(2006), we test for the equality of the variances of two portfolios based on Ĥj,t|t−1 and

ĤBM,t|t−1 by testing whether the difference

dj,BM,t = ((ŵHP
j,t )′(rt − r̄))2 − ((ŵHP

BM,t)
′(rt − r̄))2 (20)

is different from zero by means of a Diebold-Mariano (1995) type test. We employ the

portfolio variance as our criterion for comparing the different models, because – as shown

in Engle and Colacito (2006) – the portfolio variance is minimized when using the true

conditional covariance matrix.

Suppose that portfolio standard deviations based on Ĥj,t|t−1 and ĤBM,t|t−1 are given by

σ̂P,j and σ̂P,BM . We can quantify the gain/loss (G/L) from using the covariance matrix

Ĥj,t|t−1 instead of ĤBM,t|t−1 as follows: if we are willing to accept σ̂P,BM units of risk

and base our portfolio on Ĥj,t|t−1, then we can require an excess return of µ0σ̂P,BM/σ̂P,j.

Hence, we end up with an increase/decrease of the required excess return by

G/Lj,BM = 100 · (σ̂P,BM − σ̂P,j)/σ̂P,j%. (21)

5.6 Empirical evaluation of portfolio variances

5.6.1 Comparison with benchmark models

We first discuss the IS results. Table 8 shows the results for daily and monthly portfolios.

In all countries, the DCC and DCC-(RC)-X models significantly reduce the portfolio

variance in comparison to the three benchmark models. For example, for the US the gain

of building a portfolio with daily changing weights based on the covariance matrix from the

DCC-RC-RV-CPI model instead of using the constant covariance matrix is 5.78%. That

is, an investor with required (yearly) return of 10% could increase the required return

to 10.578% while taking the same risk as before. As expected, gains are generally the

strongest with respect to the portfolio based on the constant covariance matrix, followed

by the portfolio based on the CCC and then the RW.21 Also, in all countries the gains are

higher for portfolios with daily changing weights than for the ones with monthly weights.

For the OOS period, we obtain quite similar results. As Table 9 shows, in all countries

the DCC and DCC-(RC)-X based portfolios still improve upon the portfolios based on

21The finding that the gains against the CCC are higher than against the RW is in line with the

observation that the R2 values for the CCC in the MZ-regressions are lower than those for the RW.
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the constant covariance matrix. Similarly, for all countries but Italy, we find that the

DCC/DCC-(RC)-X based portfolios improve upon the CCC model. With the exception

of Germany and France, the models also compare favorably with the RW model. The

fact that we loose some significance compared to the IS period, may be simply due to the

much shorter OOS period that comprises 530 daily observations only. Obviously, using

only two years of OOS observations, it becomes more difficult to discriminate between

the models. The results for Germany, France, and Italy are also likely to be influenced

by the unusual market environment due to the ECB’s quantitative easing (QE) program.

In response to QE, bond prices strongly increased in Germany, France and Italy with

annualized bond returns above 8%.

In summary, the DCC as well as the DCC-(RC)-X models clearly lead to significantly

lower portfolio variances than the benchmark models, which translates into economically

sizable increases in required returns that can be realized without taking more risk.

5.6.2 Comparison with DCC model

Tables 8 and 9 also show that the DCC-(RC)-X models achieve slightly higher gains than

the DCC model. Of course, the DCC is a much harder competitor. Direct Engle and

Colacito (2006) tests against the DCC suggest that the DCC-(RC)-X models still achieve

positive gains, but these gains are almost always insignificant (results not reported).

However, this result might be explained by the fact that relative model performance

varies over time. First, in times of financial turmoil in the stock market, the quality of the

GARCH forecasts of daily and monthly volatility can be expected to deteriorate drastically

(see Stürmer, 2016). Since the covariance forecasts use these volatility forecasts as inputs,

we can expect that all models do not perform well in times of crisis, which implies that

it becomes harder to differentiate between models. Second, since the daily conditional

correlations from the various DCC-(RC)-X models and the nested DCC models are almost

identical (e.g. the correlation between ρSB,t based on the DCC and the DCC-RV-CPI is

0.99 for the US), we can only expect to see differences in the performance if the two

respond differently to shocks. As discussed in Section 2, this is the case if shocks are

small. Since we find the level of monthly RV to be positively related to the size of the

shocks, we can only expect the DCC-X models to perform differently from the DCC if RV
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is not extreme.22 We therefore consider Engle and Colacito (2006) tests as in equation (20)

but distinguish between a ‘normal’ and a ‘high’ volatility regime. A high volatility regime

is defined as RV being above the 70th percentile of its historical distribution.

Table 10 reveals some very interesting findings for the IS period. For both daily and

monthly weights, portfolios based on the DCC-(RC)-X models have significantly lower

variances than the DCC based portfolios during ‘normal’ volatility regimes in the US, the

UK, and Italy. The (significant) gains range from 0.34 to 0.72 percent and are, as expected,

somewhat below the gains that can be achieved against the simple benchmark models.23

During phases of high volatility in the stock market, the gains/losses are insignificant. The

finding that the DCC-(RC)-X models improve upon the DCC when volatility is normal is

reasonable, since the long-term components are intended to capture smoothly time-varying

macro and financial conditions and, hence, should improve covariance forecasts in stable

environments but not when financial volatility upsurges unexpectedly. Table 10 provides

somewhat weaker evidence for the OOS period, where significant gains are realized in the

US and, to some extent, the UK, France, and Italy.

Most importantly, the DCC-(RC)-X models provide an economic rationale for why

optimal portfolio weights vary over time. Figures 6 and 7 show the optimal bond (stock)

weights for the IS and OOS period. For example, for the US, the UK, Germany, and

France the optimal bond weight is negative during the first three years of the IS period.

The negative weight can be explained by a strongly positive monetary policy factor,

i.e. contractive monetary policy, which leads to a positive stock-bond correlation. On

the other hand, the weight on bonds is large and positive when RV is high, i.e. during

the burst of the dot-com bubble as well as during the financial crisis. Finally, the sharp

decrease in the weight on bonds in 2013 reflects heightened bond market volatility during

the taper tandrum episode. Since the stock-bond correlation was mainly negative during

recent years, the optimal hedge portfolios for the US, the UK, Germany, and France are

mostly long in bonds.

22More precisely, we find that the level of monthly RV is positively related to
∑N(τ)

k=1 |ZS,t+kZB,t+k|,
by which we measure the “monthly absolute shock product”. Intuitively, if this measure is low, mean-

reversion dominates when updating correlations and, hence, DCC-(RC)-X and DCC might potentially

update in different directions. On the other hand, if this measure is large, DCC-(RC)-X and DCC will

have very similar updates.
23Note that these gains are similar to the below 1% gains of the DCC-MIDAS compared to the DCC

that Colacito et al. (2011) report on average for two-dimensional portfolios of stock indices from the G7

countries.
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5.7 Portfolio risk, portfolio turnover, net excess returns and

Sharpe ratios

Next, we descriptively compare the characteristics of the portfolios based on daily/monthly

weights constructed from the DCC and the DCC-(RC)-X models. First, we consider the IS

period. As Table 12 shows, in all countries the hedge portfolios achieve a lower portfolio

risk than when purely investing in the stock (bond) market. For example, the annu-

alized volatility of the US stock market is 19.88%, while the hedge portfolio based on

daily weights from the DCC-RC model reduces risk to 18.17%. When the same model

is employed but with monthly weights, the portfolio risk slightly increases to 18.38%.

Whether we consider daily or monthly portfolio weights, it is always one of the DCC-X

based portfolios that is the portfolio with the lowest risk. This confirms our findings from

Section 5.6.

Although our main criterion for portfolio choice is portfolio risk, we also provide sum-

mary information on portfolio returns and Sharpe ratios. In order to make a realistic

comparison between the returns on the portfolios based on daily/monthly weights, trans-

action costs should be taken into account. This will punish models that generate ‘too

much trading’. For calculating transaction costs, we first have to quantify the portfolio

turnover. We define the total portfolio turnover from day t− 1 to day t as

TOt =
∑

i∈{S,B}

∣∣∣∣wi,t − wi,t−1
1 + ri,t−1

1 + wS,t−1rS,t−1 + wB,t−1rB,t−1 + (1− wS,t−1 − wB,t−1)rf

∣∣∣∣ ,
(22)

where rf denotes the risk-free rate.24 For example, Table 12 shows that for the US the

portfolio based on daily weights from the DCC-RC model has an average daily turnover

of 18.45%. This turnover sharply decreases to only 4.75% when the same model is used

to construct the portfolio but with monthly weights. Using monthly weights thus sub-

stantially reduces portfolio turnover and, hence, trading costs. Interestingly, the low

persistence of the conditional correlation in the DCC-RC(-X) models (as measured by

αSB+βSB, see Table 5), causes the DCC-RC(-X) to be the model with the highest/lowest

turnover when considering daily/monthly portfolios. This is because the higher weight,

(1−αSB−βSB), that is attached to the long-term component creates an additional source

of variation for the daily conditional covariance forecasts but smoothes the monthly fore-

24For simplicity, we assume that the risk-free rate is equal to zero.
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casts. Hence, the optimal daily/monthly portfolio weights based on the DCC-RC-X be-

come more/less variable than the weights based on the DCC and DCC-X. Note that the

comparably low turnover for the Italian portfolios can be rationalized by the observation

that the investor must hold bonds in Italy. Since bonds are less volatile than stocks,

keeping the weight on bonds equal to one requires only little re-balancing.

Next, we can calculate the portfolio excess return net of transaction costs as

rP,t = wS,trS,t + wB,trB,t + (1− wS,t − wB,t)rf − rf − c · TOt, (23)

where c ·TOt represents proportional transaction costs. Following Bollerslev et al. (2016),

we impose c = 0.02. Table 12 reports annualized net excess returns. Note that for

all countries but Italy, the realized excess returns of the various hedge portfolios are

above realized returns of the country’s stock (bond) market. For example, for the US the

annualized average realized return in the stock market was 6.78%, while the daily portfolio

based on the DCC achieved a return of 9.46%. Since the stock-bond correlation was

negative during most of our IS period in the US, the investor was long in bonds for most

of the time. US bonds had a positive return and so the optimal hedge portfolio resulted

in an excess return higher than the return on the US stock market.25 For all countries

(except Italy) and all models, we find that the net excess returns of the portfolios based

on monthly weights are higher than the net excess returns of the portfolios based on daily

weights. Since the monthly weights are more stable, they simply require less re-balancing

and, hence, are cheaper to implement. Among the different portfolios, the one based on

monthly DCC weights results in the highest net excess return (again except for Italy).

Finally, the last column presents the portfolio Sharpe ratios. Although the daily

portfolios have lower risk, the figures clearly indicate that the portfolios based on monthly

weights achieve higher Sharpe ratios. For all countries but Italy, the DCC based portfolios

lead to the highest Sharpe ratios. Note that this finding does not contradict the results

from the Engle and Colacito (2006) tests. As discussed for Engle and Colacito (2006), a

comparison in terms of empirical Sharpe ratios does not necessarily lead to the selection

of the model that minimizes the portfolio variance.

Table 13 shows that for the OOS period the results are slightly different. In all

countries, the portfolio with the lowest variance is based on one of the DCC-(RC)-X

25Obviously, this result also depends on the assumption that rf = 0. Since the investor is long in bonds

on average, she has to borrow money at the risk-free rate. If this rate is non-zero, this will reduce her

excess return.
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models. While the pattern with respect to portfolio turnover is the same as IS, now

the highest net excess return and the highest Sharpe ratio are obtained for a DCC-RV-

MP/CPI based portfolio in the US, UK, Germany, and France.26 That is, during our OOS

period the MP/CPI factor appears to be highly relevant. Our results therefore suggest

that the DCC-(RC)-X models may improve upon the simple DCC in certain environments

in which the influence of monetary policy is strong.

In summary, IS and OOS we always find the minimal portfolio risk for one of the DCC-

(RC)-X models. While IS the highest Sharpe ratios are observed for the DCC model, OOS

the DCC-RV-MP/CPI model is clearly preferred.

6 Extensions and Robustness

6.1 A global financial stress factor

Monthly realized stock market volatilities are highly correlated across countries (see Ta-

ble 17). This illustrates that stress in financial markets is very much globally synchronized

and suggests that there might be a single global financial stress factor driving the flight-

to-quality phenomenon. Given the prominent role played by the US stock market, we

consider RV in the US stock market as a direct and simple proxy for this global risk

factor. Alternatively, we use the VIX index, which reflects the stock market’s expecta-

tion of volatility during the following month and is widely considered as the ‘fear gauge’.

For example, Adrian et al. (2016) argue that expected returns on bonds tend to fall and

expected returns on stocks to rise when the VIX is above its median, which coincides

with periods of flight-to-safety. We reestimate the DCC-MIDAS models from Table 5 by

replacing the local RV with the US RV or the VIX (see Table 18). We find that US RV

significantly drives the long-term stock-bond correlation in the UK, Germany, and France,

but not in Italy. However, with the exception of France, including US RV instead of the

domestic RV leads to a decline in the CR1 ratio and, hence, the model fit. The decline

is most dramatic in Italy, implying that the Italian stock-bond correlation is driven by

domestic rather than global factors. We find the same results when including the VIX.

26For the UK, we observe negative net excess returns and negative Sharpe ratios. This is because the

investor is forced to hold stocks, although during the OOS period UK stocks have a negative average

return.
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6.2 Monthly DCC

We also evaluated the one-step ahead forecast from a DCC model that is directly esti-

mated for monthly data. Considering a monthly DCC is interesting, since it allows for

a comparison of the direct one-month ahead covariance forecast with the iterated one as

described by equation (18). We find that the monthly DCC leads to considerably lower

gain/loss ratios that are insignificant or even significantly negative when compared to

the RW model. Our results clearly suggest that portfolios based on monthly changing

weights using iterative forecasts from the daily DCC perform much better than portfolios

based on monthly weights from the monthly DCC. This finding is in line with Kole et

al. (2015) who study forecasting Value-at-Risk (VaR) under temporal aggregation. In

particular, they find that the ten-day VaR forecasts of daily models based on an iterated

procedure are more accurate than forecasts based on models that are directly estimated

at the 10-day frequency.

6.3 Alternative portfolios

As a robustness check, we consider different alternatives to the hedge portfolio in Section 5.

Our findings are broadly confirmed and detailed results are available upon request.

Optimal risky portfolio (ORP): For the ORP, we need to specify the assumed excess

returns for stocks and bonds in order to obtain the portfolio weights. They are obtained

as the solution of the minimization problem in (15) with µ̃ = µ− rf1 denoting the vector

of assumed excess returns and 1 a bivariate vector of ones. Again, we impose rf = 0. For

both the IS as well as the OOS period, we set the assumed returns equal to the realized

excess returns during the IS period. Finally, we set the required return equal to the

realized stock return in each country. The portfolio evaluation based on the ORP yields

very similar results to those in Section 5.

Short selling constraint: The solution for the weights of the ORP allows for short

selling of stocks or bonds. However, we verified that all our results are unaffected when

imposing a short selling constraint.

Minimum variance portfolio (MVP): If stocks and bonds are assumed to have the

same expected excess return µ̃S = µ̃B = µ̃, then µ̃ = µ̃1 and we can show that the

optimal portfolio is a combination of the MVP and cash. If, in addition, µ0 = µ̃, then the

investor will only hold the MVP and no cash. Again, the empirical results are such that

essentially all our conclusions remain unchanged.
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6.4 Corrected DCC

As an alternative to the DCC model given by equation (3), we also implemented a spec-

ification in the spirit of the ‘corrected’ DCC model of Aielli (2013). Note that for this

model the recursion given by equation (19) holds exactly. We found all our results to be

robust with respect to this modification. Detailed results are available upon request.

7 Conclusions

We suggest a modified version of the DCC-MIDAS specification of Colacito et al. (2011)

that allows us to model the long-term stock-bond correlation as a function of both lagged

realized correlations and additional explanatory variables. Our findings suggest that ex-

pectations regarding future monetary policy and a flight-to-quality phenomenon are the

main drivers of the correlation. The relative importance of these factors varies over time

and across countries. In particular, the special role played by Italy appears interesting

from a European policy perspective. Further, models that enable us to anticipate changes

in the long-term stock-bond correlation are highly relevant from a portfolio choice and

risk management perspective. We show that stock-bond hedge portfolios that are based

on forecasts of the conditional covariance matrix from the DCC-(RC)-X models have

significantly lower portfolio risk than portfolios based on simple benchmark models. In

addition, the DCC-(RC)-X models tend to improve upon the simple DCC in terms of

portfolio variance when stock markets are not in turmoil. Since changes of the long-term

correlation in the DCC-(RC)-X models reflect smooth movements in the macro environ-

ment, they are most informative during times of tranquility in the stock market. Most

importantly, knowing the macro determinants of changes in the long-term correlations

provides a clear economic rationale for why portfolio weights change over time. Finally,

we find that portfolio turnover can be substantially reduced by switching from daily to

monthly optimal weights. Monthly weights are more stable and often result in higher net

excess returns after trading costs.
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A Construction of Monthly Covariance Forecasts

We define monthly stock and bond returns as

rS,τ =
N(τ)∑
k=1

rS,t+k and rB,τ =
N(τ)∑
k=1

rB,t+k,

where day t denotes the last day of month τ − 1. The covariance between monthly stock

and bond returns can be written as

Cov(rS,τ , rB,τ |Fτ−1) =
N(τ)∑
k=1

Cov(rS,t+k, rB,t+k|Fτ−1) (24)

=
N(τ)∑
k=1

E(ZS,t+kZB,t+k
√
hS,t+khB,t+k|Fτ−1) (25)

≈
N(τ)∑
k=1

E(ZS,t+kZB,t+k|Fτ−1)
√
hS,t+k|τ−1hB,t+k|τ−1 (26)

=
N(τ)∑
k=1

ρSB,t+k|τ−1

√
hS,t+k|τ−1hB,t+k|τ−1 (27)

where the first line follows because rS,t+k and rB,t+j are uncorrelated for k 6= j and

the approximation in equation (26) is based on a first order Taylor series expansion of

E(ZS,t+kZB,t+k
√
hS,t+khB,t+k|Fτ−1) as in Engle (2008, equation (9.10)).

Next, we need to derive an expression for ρSB,t+k|τ−1. Again, as in Engle (2008), we

use the approximation ρSB,t+k|τ−1 = E[ZS,t+k−1ZB,t+k−1|Fτ−1] ≈ E[qSB,t+k|Fτ−1]. Engle

and Sheppard (2005) show that this approximation works well if the diagonal elements of

Qt are close to one and k is large. Finally, we apply the approximation to equation (4)

and obtain

ρSB,t+k|τ−1 ≈ ρ̄SB,τ + (αSB + βSB)(ρSB,t+k−1|τ−1 − ρ̄SB,τ ) (28)

= ρ̄SB,τ + (αSB + βSB)k−1(ρSB,t+1|τ−1 − ρ̄SB,τ ). (29)
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B Tables

Table 1: Descriptive statistics
Apr 1991 - Jan 2016 June 1995 - Dec 2013 Jan 2014 - Jan 2016

Country Variable Obs Mean SD Obs Mean SD Obs Mean SD

Panel A: Daily return data

US Stocks 6257 6.74 1.14 4679 6.78 1.25 523 2.01 0.89

Bonds 6257 1.50 0.47 4679 1.06 0.48 523 4.42 0.41

RC RW(22) 6236 -0.08 0.46 4679 -0.15 0.44 523 -0.38 0.29

UK Stocks 6277 3.50 1.11 4697 3.67 1.19 526 -5.57 0.95

Bonds 6277 2.57 0.41 4697 2.04 0.39 526 6.59 0.41

RC RW(22) 6256 -0.08 0.44 4697 -0.17 0.40 526 -0.30 0.29

GER Stocks 6283 5.03 1.41 4712 5.68 1.51 525 -1.05 1.28

Bonds 6283 2.75 0.34 4712 2.18 0.35 525 8.14 0.37

RC RW(22) 6262 -0.08 0.48 4712 -0.19 0.45 525 -0.28 0.30

FRA Stocks 6301 4.56 1.36 4728 4.78 1.43 531 2.21 1.22

Bonds 6301 2.97 0.36 4728 2.40 0.35 531 9.12 0.38

RC RW(22) 6279 -0.05 0.44 4728 -0.16 0.40 531 -0.15 0.28

IT Stocks 6287 1.80 1.48 4710 1.02 1.49 526 -1.09 1.57

Bonds 6287 3.59 0.47 4710 3.33 0.44 526 10.95 0.47

RC RW(22) 6266 0.11 0.42 4710 0.03 0.43 526 0.34 0.30

Panel B: Monthly realized volatility

US Stocks 298 15.56 2.70 223 17.17 2.90 25 13.04 1.56

Bonds 298 7.00 0.71 223 7.28 0.74 25 6.30 0.53

UK Stocks 298 15.54 2.46 223 16.50 2.67 25 13.76 1.82

Bonds 298 6.12 0.64 223 5.97 0.56 25 6.31 0.43

GER Stocks 298 19.70 3.08 223 21.17 3.28 25 19.23 1.89

Bonds 298 5.13 0.55 223 5.24 0.51 25 5.48 0.61

FRA Stocks 298 19.38 2.75 223 20.41 2.99 25 18.23 1.96

Bonds 298 5.44 0.59 223 5.32 0.55 25 5.76 0.52

IT Stocks 298 21.29 2.90 223 21.03 3.14 25 23.90 2.09

Bonds 298 6.50 1.08 223 6.05 1.04 25 7.13 0.74

Panel C: Monthly expectation data

US CPI 298 2.38 0.78 223 2.28 0.68 25 1.41 0.47

I3M 298 3.24 2.05 223 3.17 2.04 25 0.78 0.36

GDP 298 2.58 0.99 223 2.57 1.09 25 2.72 0.22

UK CPI 298 2.78 0.75 223 2.66 0.65 25 2.26 0.50

I3M 298 4.60 2.55 223 4.33 2.11 25 1.02 0.16

GDP 298 1.95 1.07 223 1.92 1.10 25 2.60 0.15

GER CPI 298 1.85 0.79 223 1.61 0.43 25 1.19 0.35

I3M 298 3.29 2.11 223 2.93 1.29 25 0.12 0.14

GDP 298 1.52 1.04 223 1.54 1.07 25 1.80 0.19

FRA CPI 298 1.66 0.61 223 1.56 0.40 25 0.78 0.29

I3M 298 3.31 2.20 223 2.90 1.35 25 0.11 0.11

GDP 298 1.68 0.97 223 1.72 1.02 25 1.08 0.26

IT CPI 298 2.50 1.35 223 2.18 0.72 25 0.60 0.28

I3M 298 4.28 3.47 223 3.41 2.11 25 0.11 0.11

GDP 298 1.19 1.12 223 1.13 1.23 25 0.76 0.29

Notes: The reported statistics include the number of observations, the mean, and standard deviation

(SD). The mean is annualized for the daily returns and monthly realized volatility. The full data

covers the sample period from April 1991 to January 2016 and includes 6277 (US), 6257 (UK), 6283

(GER), 6301 (FR), 6287 (IT) daily and 298 monthly observations. In the portfolio choice application

in Section 5, we consider the in-sample June 1995 to December 2013 period and the out-of-sample

January 2014 to January 2016 period.
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Table 2: Country-wise correlations

Country Variable CPI I3M GDP RV RCorr

US

CPI 1.00

I3M 0.66 1.00

GDP 0.30 0.27 1.00

RV -0.25 -0.15 -0.40 1.00

RCorr 0.45 0.60 0.18 -0.39 1.00

UK

CPI 1.00

I3M 0.29 1.00

GDP 0.02 0.23 1.00

RV -0.12 -0.11 -0.33 1.00

RCorr 0.19 0.58 0.23 -0.39 1.00

GER

CPI 1.00

I3M 0.76 1.00

GDP 0.04 0.19 1.00

RV -0.29 -0.13 -0.10 1.00

RCorr 0.46 0.50 0.09 -0.41 1.00

FRA

CPI 1.00

I3M 0.74 1.00

GDP 0.16 0.49 1.00

RV -0.12 -0.08 -0.10 1.00

RCorr 0.35 0.45 0.18 -0.40 1.00

IT

CPI 1.00

I3M 0.92 1.00

GDP 0.31 0.50 1.00

RV -0.09 -0.24 -0.10 1.00

RCorr 0.21 0.14 -0.12 0.06 1.00

Notes: Country-wise correlations of the macroeconomic ex-

pectations, monthly realized stock market volatility and the

monthly realized correlations, RCorr, of stock and bond re-

turns over the full April 1991 to January 2016 sample period.
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Table 3: GARCH(1,1) model estimations

Country µ ω α β BIC AIC

Panel A: Stocks

US 0.0515???
(0.0102)

0.0125???
(0.0034)

0.0828???
(0.0116)

0.9071???
(0.0127)

2.6844 2.6801

UK 0.0379???
(0.0102)

0.0137???
(0.0034)

0.0926???
(0.0119)

0.8968???
(0.0130)

2.6991 2.6948

GER 0.0559???
(0.0136)

0.0290???
(0.0092)

0.0847???
(0.0107)

0.8996???
(0.0105)

3.1928 3.1885

FRA 0.0472???
(0.0140)

0.0288???
(0.0090)

0.0815???
(0.0108)

0.9020???
(0.0135)

3.1783 3.1740

IT 0.0369??
(0.0144)

0.0183???
(0.0054)

0.0794???
(0.0116)

0.9149???
(0.0119)

3.3706 3.3663

Panel B: Bonds

US 0.0081
(0.0052)

0.0020???
(0.0006)

0.0419???
(0.0057)

0.9490???
(0.0070)

1.2005 1.1962

UK 0.0107??
(0.0046)

0.0015???
(0.0005)

0.0424???
(0.0076)

0.9493???
(0.0093)

0.9358 0.9315

GER 0.0139???
(0.0038)

0.0009???
(0.0003)

0.0437???
(0.0065)

0.9489???
(0.0077)

0.5767 0.5725

FRA 0.0136???
(0.0041)

0.0016???
(0.0005)

0.0444???
(0.0065)

0.9431???
(0.0095)

0.6952 0.6909

IT 0.0171???
(0.0043)

0.0012??
(0.0005)

0.0805???
(0.0147)

0.9185???
(0.0141)

0.9516 0.9473

Notes: The table reports country-wise estimation results for the GARCH(1,1)

model estimation over the full April 1991 - January 2016 sample. The num-

bers in parentheses are Bollerslev-Wooldridge (1992) robust standard errors. ???,

??, ? indicate significance at the 1%, 5%, and 10% level. BIC is the Bayesian

information criterion and AIC is the Akaike information criterion.
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Table 4: DCC and DCC-RC-MIDAS-X model estimations

Model αSB βSB λRC θRC θRV θX BIC AIC CR1 CR2

US-DCC 0.0406???
(0.0077)

0.9532???
(0.0097)

3.7372 3.7347

US-DCC-RC 0.0655???
(0.0145)

0.8522???
(0.0532)

0.6051???
(0.1838)

0.3722??
(0.1674)

3.7285 3.7235 87.20

US-DCC-RC-RV-CPI 0.0647???
(0.0143)

0.8442???
(0.0489)

0.4180???
(0.1449)

0.4042???
(0.0966)

−0.0035
(0.0029)

0.0086???
(0.0027)

3.7252 3.7177 90.98 11.86

US-DCC-RC-RV-I3M 0.0646???
(0.0139)

0.8456???
(0.0473)

0.4103???
(0.1385)

0.4165???
(0.0937)

−0.0061??

(0.0031)
0.0040???
(0.0015)

3.7272 3.7197 89.81 9.59

US-DCC-RC-RV-MP 0.0646???
(0.0141)

0.8447???
(0.0478)

0.4016???
(0.1391)

0.4126???
(0.0930)

−0.0054?

(0.0030)
0.0042???
(0.0014)

3.7262 3.7186 90.51 11.35

US-DCC-RC-RV-GDP 0.0650???
(0.0141)

0.8494???
(0.0489)

0.5337???
(0.1615)

0.3935???
(0.1265)

−0.0034
(0.0032)

0.0015
(0.0023)

3.7304 3.7229 87.66 2.09

UK-DCC 0.0324???
(0.0071)

0.9628???
(0.0089)

3.7114 3.7089

UK-DCC-RC 0.0467???
(0.0076)

0.8978???
(0.0233)

0.8174???
(0.0826)

0.1801??
(0.0799)

3.6999 3.6949 89.16

UK-DCC-RC-RV-CPI 0.0463???
(0.0077)

0.8994???
(0.0237)

0.8306???
(0.0818)

0.1671??
(0.0799)

0.0010
(0.0032)

0.0034
(0.0028)

3.7023 3.6948 89.86 1.18

UK-DCC-RC-RV-I3M 0.0469???
(0.0076)

0.8967???
(0.0235)

0.7991???
(0.1094)

0.1887??
(0.0871)

−0.0007
(0.0034)

0.0009
(0.0026)

3.7031 3.6956 89.28 0.34

UK-DCC-RC-RV-MP 0.0468???
(0.0077)

0.8964???
(0.0219)

0.7512???
(0.1044)

0.1930???
(0.0722)

−0.0018
(0.0032)

0.0060
(0.0039)

3.7017 3.6942 90.60 6.53

UK-DCC-RC-RV-GDP 0.0463???
(0.0076)

0.8996???
(0.0252)

0.8405???
(0.1061)

0.1611
(0.1015)

−0.0005
(0.0035)

−0.0016
(0.0031)

3.7030 3.6955 88.69 0.36

GER-DCC 0.0396???
(0.0082)

0.9559???
(0.0097)

3.6553 3.6528

GER-DCC-RC 0.0515???
(0.0074)

0.9120???
(0.0179)

0.8908???
(0.0514)

0.1136??
(0.0520)

3.6407 3.6357 87.42

GER-DCC-RC-RV-CPI 0.0502???
(0.0074)

0.9115???
(0.0174)

0.8531???
(0.0678)

0.1269??
(0.0617)

0.0041
(0.0043)

0.0138???
(0.0051)

3.6396 3.6321 88.42 8.88

GER-DCC-RC-RV-I3M 0.0515???
(0.0075)

0.9118???
(0.0200)

0.8772???
(0.1176)

0.1155
(0.0940)

−0.0023
(0.0046)

0.0021
(0.0066)

3.6438 3.6363 86.36 1.04

GER-DCC-RC-RV-MP 0.0513???
(0.0074)

0.9106???
(0.0185)

0.8324???
(0.1043)

0.1362?
(0.0790)

−0.0017
(0.0039)

0.0064
(0.0042)

3.6422 3.6347 86.39 7.19

GER-DCC-RC-RV-GDP 0.0508???
(0.0075)

0.9138???
(0.0174)

0.9172???
(0.0480)

0.0894?
(0.0518)

−0.0011
(0.0048)

−0.0038
(0.0035)

3.6434 3.6359 87.18 1.37

FRA-DCC 0.0373???
(0.0080)

0.9548???
(0.0103)

3.7571 3.7547

FRA-DCC-RC 0.0469???
(0.0080)

0.9157???
(0.0208)

0.8933???
(0.0381)

0.1013???
(0.0363)

3.7503 3.7453 80.02

FRA-DCC-RC-RV-CPI 0.0456???
(0.0078)

0.9176???
(0.0199)

0.9009???
(0.0399)

0.0849??
(0.0377)

−0.0001
(0.0042)

0.0062
(0.0041)

3.7517 3.7442 81.06 5.04

FRA-DCC-RC-RV-I3M 0.0467???
(0.0081)

0.9169???
(0.0207)

0.9113???
(0.0494)

0.0855??
(0.0431)

−0.0014
(0.0043)

−0.0021
(0.0043)

3.7532 3.7457 80.16 1.06

FRA-DCC-RC-RV-MP 0.0467???
(0.0080)

0.9160???
(0.0211)

0.8876???
(0.0516)

0.0971??
(0.0443)

−0.0017
(0.0041)

0.0016
(0.0033)

3.7532 3.7458 79.17 1.28

FRA-DCC-RC-RV-GDP 0.0458???
(0.0080)

0.9178???
(0.0198)

0.9407???
(0.0364)

0.0633?
(0.0344)

−0.0014
(0.0045)

−0.0050?

(0.0029)
3.7516 3.7441 82.34 8.07

IT-DCC 0.0257??
(0.0103)

0.9717???
(0.0119)

3.6417 3.6392

IT-DCC-RC 0.0528???
(0.0103)

0.8696???
(0.0423)

0.7431???
(0.0620)

0.2579???
(0.0617)

3.6308 3.6258 91.76

IT-DCC-RC-RV-CPI 0.0503???
(0.0101)

0.8743???
(0.0419)

0.7390???
(0.0659)

0.2352???
(0.0623)

0.0059??
(0.0029)

0.0036?
(0.0021)

3.6315 3.6240 92.46 3.35

IT-DCC-RC-RV-I3M 0.0511???
(0.0101)

0.8728???
(0.0419)

0.7419???
(0.0625)

0.2450???
(0.0613)

0.0045
(0.0029)

0.0014
(0.0017)

3.6327 3.6252 91.89 1.48

IT-DCC-RC-RV-MP 0.0507???
(0.0101)

0.8737???
(0.0418)

0.7403???
(0.0635)

0.2419???
(0.0615)

0.0051?
(0.0029)

0.0016
(0.0013)

3.6323 3.6248 92.14 2.15

IT-DCC-RC-RV-GDP 0.0524???
(0.0103)

0.8671???
(0.0435)

0.7523???
(0.0666)

0.2349???
(0.0646)

0.0027
(0.0028)

−0.0014
(0.0015)

3.6326 3.6251 91.85 1.45

Notes: The table reports country-wise estimation results for the DCC, DCC-RC, and DCC-RC-RV-X model estimations based on standardized residuals

from the GARCH(1,1) models in Table 3. The correlation ratios CR1/CR2 are calculated according to equation (11/12). For each country, the lowest

AIC/BIC and highest CR1/CR2 are shown in bold. Otherwise, see the notes for Table 3.
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Table 5: DCC-MIDAS-RV-X model estimations
Model αSB βSB θRV θX BIC AIC CR1

US-DCC-RV-CPI 0.0455???
(0.0090)

0.9374???
(0.0142)

−0.0115??
(0.0050)

0.0199???
(0.0050)

3.7295 3.7244 71.87

US-DCC-RV-I3M 0.0456???
(0.0088)

0.9379???
(0.0140)

−0.0176???
(0.0045)

0.0097???
(0.0027)

3.7316 3.7266 64.49

US-DCC-RV-MP 0.0458???
(0.0089)

0.9368???
(0.0143)

−0.0153???
(0.0045)

0.0098???
(0.0024)

3.7304 3.7253 68.97

US-DCC-RV-GDP 0.0426???
(0.0082)

0.9474???
(0.0115)

−0.0175???
(0.0064)

0.0040
(0.0070)

3.7367 3.7317 38.65

UK-DCC-RV-CPI 0.0343???
(0.0077)

0.9582???
(0.0110)

−0.0144??
(0.0069)

0.0092
(0.0071)

3.7126 3.7076 40.07

UK-DCC-RV-I3M 0.0382???
(0.0083)

0.9480???
(0.0139)

−0.0156???
(0.0044)

0.0091???
(0.0033)

3.7104 3.7054 60.85

UK-DCC-RV-MP 0.0397???
(0.0085)

0.9408???
(0.0154)

−0.0113???
(0.0040)

0.0189???
(0.0044)

3.7054 3.7004 80.98

UK-DCC-RV-GDP 0.0349???
(0.0078)

0.9574???
(0.0111)

−0.0148??
(0.0072)

0.0030
(0.0060)

3.7134 3.7083 33.74

GER-DCC-RV-CPI 0.0440???
(0.0079)

0.9435???
(0.0109)

−0.0022
(0.0072)

0.0334???
(0.0090)

3.6452 3.6402 73.01

GER-DCC-RV-I3M 0.0463???
(0.0076)

0.9399???
(0.0108)

−0.0192???
(0.0047)

0.0163???
(0.0052)

3.6478 3.6428 64.87

GER-DCC-RV-MP 0.0459???
(0.0075)

0.9393???
(0.0108)

−0.0122??
(0.0051)

0.0183???
(0.0047)

3.6451 3.6401 71.91

GER-DCC-RV-GDP 0.0444???
(0.0081)

0.9461???
(0.0110)

−0.0203???
(0.0065)

0.0102
(0.0064)

3.6526 3.6476 41.56

FRA-DCC-RV-CPI 0.0396???
(0.0079)

0.9472???
(0.0112)

−0.0121??
(0.0053)

0.0129?
(0.0073)

3.7562 3.7512 49.30

FRA-DCC-RV-I3M 0.0407???
(0.0077)

0.9462???
(0.0109)

−0.0163???
(0.0047)

0.0060
(0.0050)

3.7576 3.7526 39.52

FRA-DCC-RV-MP 0.0405???
(0.0077)

0.9460???
(0.0110)

−0.0141???
(0.0049)

0.0079
(0.0049)

3.7566 3.7516 46.32

FRA-DCC-RV-GDP 0.0404???
(0.0077)

0.9476???
(0.0108)

−0.0172???
(0.0049)

0.0012
(0.0037)

3.7586 3.7536 32.56

IT-DCC-RV-CPI 0.0277??
(0.0120)

0.9666???
(0.0152)

0.0250???
(0.0071)

0.0172???
(0.0065)

3.6399 3.6349 64.38

IT-DCC-RV-I3M 0.0264??
(0.0111)

0.9695???
(0.0133)

0.0245???
(0.0091)

0.0103?
(0.0063)

3.6421 3.6371 49.78

IT-DCC-RV-MP 0.0269??
(0.0114)

0.9685???
(0.0140)

0.0250???
(0.0082)

0.0096??
(0.0046)

3.6412 3.6362 56.72

IT-DCC-RV-GDP 0.0261??
(0.0113)

0.9702???
(0.0136)

0.0164
(0.0107)

−0.0024
(0.0069)

3.6435 3.6385 26.31

Notes: The table reports country-wise estimation results for the DCC-RV-X model based on standard-

ized residuals from the GARCH(1,1) models in Table 3. Otherwise, see the notes for Table 3.

Table 6: DCC-MIDAS-X model estimations: GDP interaction
Model θGDP θMP θGDP ·MP BIC AIC CR1

US-DCC-GDP-MP −0.0102
(0.0086)

0.0125???
(0.0033)

−0.0086??
(0.0038)

3.7339 3.7276 56.19

UK-DCC-GDP-MP −0.0084
(0.0063)

0.0273???
(0.0066)

−0.0062?
(0.0032)

3.7080 3.7017 64.50

GER-DCC-GDP-MP −0.0105
(0.0066)

0.0161???
(0.0048)

−0.0175???
(0.0057)

3.6445 3.6382 65.11

FRA-DCC-GDP-MP −0.0058
(0.0071)

0.0151??
(0.0070)

−0.0021
(0.0066)

3.7602 3.7540 27.75

IT-DCC-GDP-MP −0.0148???
(0.0049)

0.0123???
(0.0039)

0.0099???
(0.0035)

3.6372 3.6310 86.70

Notes: The table reports country-wise estimation results for the DCC-X model based on

standardized residuals from the GARCH(1,1) models in Table 3. We consider a DCC-MIDAS-

X model that includes lags of GDP , MP as well as the interaction GDP ·MP , and report

estimates of the respective θX parameters. Otherwise, see the notes for Table 3.
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Table 7: Monthly Mincer-Zarnowitz Regressions
Model R2 p-value

US-RW 28.02 0.00

US-CCC 27.24 0.00

US-DCC 37.94 0.17

US-DCC-RC 39.52 0.25

US-DCC-RC-RV-CPI 38.87 0.58

US-DCC-RV-CPI 37.03 0.52

UK-RW 43.67 0.00

UK-CCC 27.43 0.00

UK-DCC 46.38 0.33

UK-DCC-RC 47.74 0.93

UK-DCC-RC-RV-MP 46.89 0.88

UK-DCC-RV-MP 45.50 0.90

GER-RW 53.08 0.00

GER-CCC 31.01 0.00

GER-DCC 54.84 0.73

GER-DCC-RC 54.81 0.43

GER-DCC-RC-RV-MP 53.80 0.24

GER-DCC-RV-MP 53.08 0.16

FRA-RW 37.73 0.00

FRA-CCC 17.89 0.01

FRA-DCC 42.24 0.98

FRA-DCC-RC 42.24 0.98

FRA-DCC-RC-RV-CPI 42.01 0.70

FRA-DCC-RV-CPI 40.95 0.79

IT-RW 34.14 0.00

IT-CCC 24.55 0.00

IT-DCC 44.46 0.04

IT-DCC-RC 46.63 0.13

IT-DCC-RC-RV-CPI 47.19 0.13

IT-DCC-RV-CPI 44.18 0.08

Notes: We evaluate the monthly covariance forecasts

via a Mincer-Zarnowitz Regression of the realized co-

variance on a constant and the covariance forecast.

We report the regression R2 percentage value as well

as the p-value of the F -test that the constant is zero

and the slope coefficient is one. For each country,

the highest R2 value is shown in bold. The estimates

are based on the full June 1995 to December 2013

in-sample period.
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Table 8: Portfolio evaluation: in-sample gain/loss

optimal daily weights optimal monthly weights

Model / Benchmark Const RW CCC Const RW CCC

US-DCC 5.47??? 3.51??? 4.86??? 4.27??? 2.33??? 4.04???

US-DCC-RC 5.66??? 3.70??? 5.05??? 4.48??? 2.54??? 4.25???

US-DCC-RC-RV-CPI 5.78??? 3.81??? 5.17??? 4.55??? 2.61??? 4.32???

US-DCC-RV-CPI 5.63??? 3.67??? 5.02??? 4.36??? 2.42??? 4.13???

UK-DCC 6.57??? 3.45??? 4.94??? 5.01??? 1.94??? 4.05???

UK-DCC-RC 6.59??? 3.47??? 4.96??? 5.25??? 2.17??? 4.28???

UK-DCC-RC-RV-MP 6.58??? 3.46??? 4.95??? 5.17??? 2.09??? 4.21???

UK-DCC-RV-MP 6.56??? 3.45??? 4.93??? 4.93??? 1.86??? 3.96???

GER-DCC 7.06??? 3.80??? 5.77??? 6.21??? 2.97??? 5.37???

GER-DCC-RC 7.38??? 4.11??? 6.09??? 6.30??? 3.06??? 5.46???

GER-DCC-RC-RV-MP 7.32??? 4.05??? 6.03??? 6.13??? 2.89??? 5.29???

GER-DCC-RV-MP 7.15??? 3.89??? 5.86??? 5.96??? 2.73??? 5.13???

FRA-DCC 7.03??? 3.60??? 5.28??? 5.56??? 2.18??? 4.41???

FRA-DCC-RC 7.00??? 3.57??? 5.26??? 5.68??? 2.30?? 4.53???

FRA-DCC-RC-RV-CPI 7.09??? 3.66??? 5.34??? 5.72??? 2.33?? 4.57???

FRA-DCC-RV-CPI 7.08??? 3.64??? 5.33??? 5.50??? 2.12??? 4.35???

IT-DCC 10.74??? 6.22??? 10.16??? 8.47??? 4.04?? 8.13???

IT-DCC-RC 11.85??? 7.29??? 11.27??? 9.46??? 4.99?? 9.11???

IT-DCC-RC-RV-CPI 11.92??? 7.36??? 11.34??? 9.64??? 5.16?? 9.29???

IT-DCC-RV-CPI 10.94??? 6.42??? 10.37??? 8.64??? 4.21?? 8.30???

Notes: We reestimate all models for the in-sample period June 1995 to December 2013. We

then construct hedge portfolios based on forecasts of the covariance matrix, see Section 5 for

details. We compare the portfolios based on forecasts from the DCC/DCC-(RC)-X models to

benchmark portfolios based on forecasts from the constant covariance matrix (Const), the ran-

dom walk (RW) covariance matrix, and the constant conditional correlation (CCC) model in

terms of the portfolio variance.

The table reports the gain/loss G/Lj,BM = 100 · (σ̂P,BM − σ̂P,j)/σ̂P,j% based on the portfo-

lio standard deviations σ̂P,j , resp. σ̂P,BM , from the DCC/DCC-(RC)-X, resp. the benchmark

models. We test for the equality of the portfolio variances by testing whether the difference in

equation (20) is different from zero by means of a Diebold-Mariano test. ???, ??, ? indicate

significance at the 1%, 5%, and 10% level, respectively. For each country, the highest/lowest

significant gain/loss value is shown in bold. Portfolio evaluation is based on daily returns over

the full in-sample period.
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Table 9: Portfolio evaluation: out-of-sample gain/loss

optimal daily weights optimal monthly weights

Model / Benchmark Const RW CCC Const RW CCC

US-DCC 11.27??? 3.21?? 10.31??? 9.77??? 1.81?? 8.81???

US-DCC-RC 12.12??? 3.99??? 11.15??? 9.92??? 1.96?? 8.96???

US-DCC-RC-RV-CPI 12.36??? 4.22??? 11.39??? 10.36??? 2.37?? 9.40???

US-DCC-RV-CPI 11.85??? 3.74?? 10.88??? 10.39??? 2.39??? 9.43???

UK-DCC 12.14??? 3.33? 11.88??? 11.32??? 2.58?? 11.08???

UK-DCC-RC 12.42??? 3.59? 12.17??? 11.25??? 2.51 11.00???

UK-DCC-RC-RV-MP 12.72??? 3.87? 12.47??? 11.79??? 3.01? 11.55???

UK-DCC-RV-MP 12.70??? 3.84? 12.44??? 12.27??? 3.45??? 12.02???

GER-DCC 7.19?? 1.79 6.61?? 6.01?? 0.68 5.39??

GER-DCC-RC 8.01??? 2.57? 7.43??? 6.86??? 1.48 6.23???

GER-DCC-RC-RV-MP 7.78?? 2.35 7.20?? 6.45? 1.09 5.82?

GER-DCC-RV-MP 7.52?? 2.11 6.95?? 6.63? 1.26 6.00?

FRA-DCC 6.34?? 0.34 4.72? 6.48?? 0.47 4.72??

FRA-DCC-RC 6.54?? 0.53 4.92?? 6.76??? 0.74 5.00??

FRA-DCC-RC-RV-CPI 6.55?? 0.54 4.93? 6.58?? 0.57 4.82?

FRA-DCC-RV-CPI 6.46?? 0.46 4.84? 6.64?? 0.63 4.88?

IT-DCC 10.38??? 5.39??? 1.74 7.35?? 2.49? 0.69

IT-DCC-RC 10.58??? 5.58??? 1.92 7.59??? 2.73? 0.92

IT-DCC-RC-RV-CPI 10.61??? 5.61??? 1.96 7.87??? 2.99?? 1.18

IT-DCC-RV-CPI 10.22??? 5.23??? 1.59 7.58?? 2.72? 0.91

Notes: Portfolio evaluation in terms of portfolio variance over the out-of-sample period January

2014 - January 2016. Otherwise, see the notes for Table 8.
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Table 10: Portfolio evaluation against the DCC model: in-sample gain/loss

optimal daily weights optimal monthly weights

volatility regime volatility regime

Model normal high normal high

US-DCC-RC 0.35?? 0.11 0.37? 0.13

US-DCC-RC-RV-CPI 0.44?? 0.24 0.65?? 0.12

US-DCC-RV-CPI 0.36?? 0.07 0.72??? −0.18

UK-DCC-RC 0.41??? −0.17 0.49??? 0.11

UK-DCC-RC-RV-MP 0.44??? −0.20 0.53?? −0.02

UK-DCC-RV-MP 0.34?? −0.16 0.47? −0.33

GER-DCC-RC 0.22 0.34 0.27 0.00

GER-DCC-RC-RV-MP 0.17 0.29 0.13 −0.16

GER-DCC-RV-MP 0.10 0.09 0.15 −0.40

FRA-DCC-RC 0.06 −0.07 0.16 0.09

FRA-DCC-RC-RV-CPI 0.11 0.04 0.21 0.12

FRA-DCC-RV-CPI 0.09 0.02 0.20 −0.19

IT-DCC-RC 0.39?? 1.58 0.36?? 1.39

IT-DCC-RC-RV-CPI 0.45?? 1.64 0.45?? 1.61

IT-DCC-RV-CPI 0.16 0.22 0.21 0.11

Notes: We compare the portfolios based on forecasts from the DCC-MIDAS

models to a benchmark portfolio based on forecasts from the DCC model in

terms of the portfolio variance. Portfolio evaluation is based on daily returns over

the in-sample period. We now distinguish between a normal and high volatility

regime. The normal (high) volatility regime is defined as realized volatility being

below (above) the 70th percentile of its historical distribution. Otherwise, see the

notes for Tabel 8.
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Table 11: Portfolio evaluation against the DCC model: out-of-sample gain/loss

optimal daily weights optimal monthly weights

volatility regime volatility regime

Model normal high normal high

US-DCC-RC 0.63? 0.88 1.07?? −0.59

US-DCC-RC-RV-CPI 0.76?? 1.15 1.31?? −0.09

US-DCC-RV-CPI 0.73??? 0.34 1.11?? 0.12

UK-DCC-RC 0.86 −0.17 1.61?? −1.29

UK-DCC-RC-RV-MP 0.50 0.53 0.81 0.10

UK-DCC-RV-MP 0.54 0.45 0.72 0.93

GER-DCC-RC 0.57 0.97 0.53 1.09

GER-DCC-RC-RV-MP −0.20 1.37 −0.71 1.64

GER-DCC-RV-MP −0.42 1.13 −0.69 2.03

FRA-DCC-RC 0.94 −0.51 1.37? −0.80

FRA-DCC-RC-RV-CPI 0.48 −0.13 0.39 −0.28

FRA-DCC-RV-CPI 0.05 0.15 0.09 0.18

IT-DCC-RC 0.08 0.41 0.37 −0.10

IT-DCC-RC-RV-CPI −0.20 1.19? −0.13 1.93

IT-DCC-RV-CPI −0.93? 1.80 −1.38? 4.17?

Notes: We compare the portfolios based on forecasts from the DCC-MIDAS

models to a benchmark portfolio based on forecasts from the DCC model in

terms of the portfolio variance. Portfolio evaluation is based on daily returns

over the out-of-sample period. Otherwise, see the notes for Table 10.
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Table 12: Portfolio statistics: in-sample

optimal daily weights optimal monthly weights

Model SD TO rP,t Sharpe SD TO rP,t Sharpe

US Stock 19.88 6.78 0.34

US-DCC 18.20 13.21 9.46 0.52 18.41 5.36 9.88 0.54

US-DCC-RC 18.17 18.45 8.59 0.47 18.38 4.75 9.25 0.50

US-DCC-RC-RV-CPI 18.15 18.16 8.27 0.46 18.36 4.67 8.79 0.48

US-DCC-RV-CPI 18.18 14.05 8.79 0.48 18.40 5.03 8.99 0.49

UK Stock 18.88 3.67 0.19

UK-DCC 17.20 13.90 6.30 0.37 17.45 5.51 6.98 0.40

UK-DCC-RC 17.19 18.19 5.33 0.31 17.41 4.67 6.08 0.35

UK-DCC-RC-RV-MP 17.20 18.24 5.16 0.30 17.43 4.67 5.88 0.34

UK-DCC-RV-MP 17.20 15.94 5.44 0.32 17.47 5.17 6.05 0.35

GER Stock 23.95 5.68 0.24

GER-DCC 21.43 22.73 9.16 0.43 21.60 9.32 9.79 0.45

GER-DCC-RC 21.37 27.80 7.97 0.37 21.59 8.11 8.67 0.40

GER-DCC-RC-RV-MP 21.38 27.49 7.79 0.36 21.62 8.00 8.44 0.39

GER-DCC-RV-MP 21.41 25.13 8.23 0.38 21.65 8.69 8.79 0.41

FRA Stock 22.78 4.78 0.21

FRA-DCC 20.77 21.47 6.89 0.33 21.06 7.95 7.07 0.34

FRA-DCC-RC 20.78 25.87 6.03 0.29 21.04 6.97 6.52 0.31

FRA-DCC-RV-CPI 20.76 25.34 5.81 0.28 21.03 6.91 6.12 0.29

FRA-DCC-RV-CPI 20.77 22.19 6.49 0.31 21.07 7.71 6.54 0.31

IT Bond 7.00 3.33 0.48

IT-DCC 6.25 1.38 2.54 0.41 6.38 0.57 2.48 0.39

IT-DCC-RC 6.19 2.20 2.38 0.38 6.32 0.53 2.39 0.38

IT-DCC-RC-RV-CPI 6.18 2.11 2.38 0.39 6.31 0.54 2.38 0.38

IT-DCC-RV-CPI 6.24 1.47 2.54 0.41 6.37 0.58 2.52 0.40

Notes: Portfolio evaluation in terms of portfolio standard deviation (SD), turnover (TO), net

excess returns, rP,t (with transaction costs c = 2%), and corresponding Sharpe ratios for the

hedge portfolios over the in-sample period June 1995 to December 2013. Numbers in bold indicate

the models with the lowest SD, the lowest TO, and the highest rP,t and Sharpe ratio. See also

Section 5.
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Table 13: Portfolio statistics: out-of-sample

optimal daily weights optimal monthly weights

Model SD TO rP,t Sharpe SD TO rP,t Sharpe

US Stock 14.10 2.01 0.14

US-DCC 12.84 12.27 4.28 0.33 13.02 4.29 6.78 0.52

US-DCC-RC 12.74 16.08 3.48 0.27 13.00 3.39 5.96 0.46

US-DCC-RC-RV-CPI 12.72 15.90 3.81 0.30 12.95 3.67 6.41 0.50

US-DCC-RV-CPI 12.78 13.04 4.23 0.33 12.94 4.10 6.83 0.53

UK Stock 15.08 -5.57 -0.37

UK-DCC 14.03 11.84 -0.67 -0.05 14.13 4.38 -1.31 -0.09

UK-DCC-RC 13.99 15.88 -1.86 -0.13 14.14 3.47 -2.26 -0.16

UK-DCC-RC-RV-MP 13.96 16.09 -1.14 -0.08 14.07 3.92 -1.51 -0.11

UK-DCC-RV-MP 13.96 14.16 -0.08 -0.01 14.01 4.52 -0.65 -0.05

GER Stock 20.29 -1.05 -0.05

GER-DCC 19.42 18.97 8.27 0.43 19.63 7.36 10.16 0.52

GER-DCC-RC 19.27 24.19 8.69 0.45 19.48 6.23 9.88 0.51

GER-DCC-RC-RV-MP 19.31 24.42 10.30 0.53 19.56 7.17 12.23 0.63

GER-DCC-RV-MP 19.36 22.04 9.90 0.51 19.52 7.70 12.15 0.62

FRA Stock 19.31 2.21 0.11

FRA-DCC 19.07 16.57 11.18 0.59 19.05 4.67 11.33 0.59

FRA-DCC-RC 19.03 21.26 10.16 0.53 18.99 3.72 9.62 0.51

FRA-DCC-RC-RV-CPI 19.03 21.04 11.47 0.60 19.03 4.48 11.14 0.59

FRA-DCC-RV-CPI 19.05 17.51 11.28 0.59 19.02 4.76 11.21 0.59

IT Bond 7.53 10.95 1.45

IT-DCC 6.79 1.63 10.74 1.58 6.98 0.79 11.22 1.61

IT-DCC-RC 6.78 2.60 10.42 1.54 6.96 0.76 10.83 1.55

IT-DCC-RC-RV-CPI 6.77 2.48 10.28 1.52 6.95 0.69 10.71 1.54

IT-DCC-RV-CPI 6.80 1.63 10.40 1.53 6.96 0.67 11.06 1.59

Notes: Portfolio evaluation in terms of portfolio standard deviation (SD), turnover (TO), net

excess returns, rP,t (with transaction costs c = 2%), and corresponding Sharpe ratios for the

hedge portfolios over the out-of-sample period January 2014 - January 2016. See also Table 12.
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C Figures

Figure 1: The figure shows the correlation news impact function, CNIFt+1, as a function

of ZS,t and ZB,t, see equation (13). We choose qSS,t = qBB,t = 1 and qSB,t = 0.1 such that

ρSB,t = 0.1. The parameters are given by αSB = 0.05 and βSB = 0.9. The left (right)

panel show situations with shocks of equal sign, ZB,t = ZS,t, (opposite sign, ZB,t = −ZS,t,).
The blue line represents the CNIF of a DCC-RC-X with ρ̄SB,τ = 0.3 and the red line a

CNIF with ρ̄SB,τ = −0.18.
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Figure 2: Country-wise daily stock and bond prices (left panels) as well as 22-days and

252-days rolling window correlations (right panels) over the full April 1991 to January

2016 sample period.
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Figure 4: Country-wise daily conditional correlations (red) and monthly long-term corre-

lation component (blue) from the DCC-RC model in Table 5.

48



-.6

-.4

-.2

.0

.2

.4

.6

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014

US-RV-CPI

-.6

-.4

-.2

.0

.2

.4

.6

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014

UK-RV-MP

-.8

-.6

-.4

-.2

.0

.2

.4

.6

.8

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014

GER-RV-MP

-.4

-.3

-.2

-.1

.0

.1

.2

.3

.4

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014

FRA-RV-CPI

-.6

-.4

-.2

.0

.2

.4

.6

.8

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014

IT-RV-CPI

Figure 5: Country-wise monthly long-term correlation component (gray area) and its

contributions from realized volatility (mRV , red line) and the macro variable X (mX , blue

line) from the bivariate DCC-RV-X model estimations in Table 5. For the US, FRA, and

IT we include CPI and for the UK and GER we include MP.
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Figure 6: Optimal daily (red) and monthly (blue) weights on bonds for the US, the UK,

GER, and FRA and on stocks for IT from the DCC-MIDAS models over the full 1995-

2013 in-sample period. For the US, FRA, and IT we consider the DCC-RV-CPI model

and for the UK and GER we consider the DCC-RV-MP model.
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Figure 7: Optimal daily (red) and monthly (blue) weights on bonds for the US, the UK,

GER, and FRA and on stocks for IT from the DCC-MIDAS models over the 2014-2016

out-of-sample period. For the US, FRA, and IT we consider the the DCC-RV-CPI model

and for the UK and GER we consider the DCC-RV-MP model.
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D Appendix

Table 14: GARCH(1,1) model subsample estimations

Country µ ω α β BIC AIC

Panel A: Stock market

US 0.0533???
(0.0107)

0.0104???
(0.0031)

0.0750???
(0.0109)

0.9167???
(0.0118)

2.7065 2.7019

UK 0.0419???
(0.0108)

0.0123???
(0.0031)

0.0866???
(0.0108)

0.9036???
(0.0117)

2.7154 2.7108

GER 0.0582???
(0.0141)

0.0287???
(0.0094)

0.0842???
(0.0113)

0.9000???
(0.0111)

3.1890 3.1844

FRA 0.0485???
(0.0147)

0.0286???
(0.0094)

0.0811???
(0.0112)

0.9025???
(0.0139)

3.1852 3.1806

IT 0.0372??
(0.0147)

0.0177???
(0.0053)

0.0792???
(0.0124)

0.9149???
(0.0127)

3.3409 3.3363

Panel B: Bond market

US 0.0069
(0.0055)

0.0021???
(0.0006)

0.0425???
(0.0059)

0.9483???
(0.0073)

1.2182 1.2135

UK 0.0093?
(0.0048)

0.0016???
(0.0005)

0.0450???
(0.0082)

0.9461???
(0.0098)

0.9274 0.9227

GER 0.0116???
(0.0040)

0.0011???
(0.0003)

0.0472???
(0.0071)

0.9442???
(0.0082)

0.5638 0.5591

FRA 0.0109??
(0.0042)

0.0017???
(0.0005)

0.0467???
(0.0073)

0.9402???
(0.0105)

0.6832 0.6786

IT 0.0153???
(0.0043)

0.0012??
(0.0005)

0.0846???
(0.0162)

0.9144???
(0.0155)

0.9193 0.9147

Notes: The table reports country-wise estimation results for the GARCH(1,1)

model estimation over the April 1991 - December 2013 subsample. The numbers

in parentheses are Bollerslev-Wooldridge (1992) robust standard errors. ???, ??,

? indicate significance at the 1%, 5%, and 10% level, respectively. BIC is the

Bayesian information criterion and AIC is the Akaike information criterion.
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Table 15: DCC and DCC-RC-X model subsample estimations

Model αSB βSB λRC θRC θRV θX BIC AIC CR1 CR2

US-DCC 0.0388???
(0.0077)

0.9560???
(0.0094)

3.7422 3.7395

US-DCC-RC 0.0606???
(0.0142)

0.8647???
(0.0509)

0.5873???
(0.1712)

0.3884??
(0.1573)

3.7358 3.7303 86.24

US-DCC-RC-RV-CPI 0.0593???
(0.0142)

0.8607???
(0.0471)

0.4223???
(0.1441)

0.4117???
(0.1014)

−0.0034
(0.0033)

0.0084??
(0.0033)

3.7332 3.7249 90.15 10.60

US-DCC-RC-RV-I3M 0.0597???
(0.0139)

0.8600???
(0.0464)

0.4204???
(0.1413)

0.4219???
(0.1000)

−0.0060?

(0.0033)
0.0032?
(0.0017)

3.7356 3.7273 88.83 7.83

US-DCC-RC-RV-MP 0.0596???
(0.0140)

0.8599???
(0.0465)

0.4111???
(0.1404)

0.4198???
(0.0988)

−0.0053?

(0.0032)
0.0037??
(0.0016)

3.7346 3.7263 89.51 9.47

US-DCC-RC-RV-GDP 0.0595???
(0.0141)

0.8616???
(0.0486)

0.5054???
(0.1581)

0.4027???
(0.1211)

−0.0046
(0.0034)

0.0010
(0.0024)

3.7374 3.7292 87.35 2.87

UK-DCC 0.0314???
(0.0072)

0.9646???
(0.0087)

3.6971 3.6944

UK-DCC-RC 0.0475???
(0.0078)

0.8892???
(0.0246)

0.7642???
(0.0744)

0.2317???
(0.0717)

3.6858 3.6804 90.76

UK-DCC-RC-RV-CPI 0.0469???
(0.0079)

0.8907???
(0.0249)

0.7740???
(0.0749)

0.2175???
(0.0704)

0.0004
(0.0031)

0.0038
(0.0027)

3.6882 3.6800 90.24 1.43

UK-DCC-RC-RV-I3M 0.0475???
(0.0078)

0.8891???
(0.0247)

0.7589???
(0.0913)

0.2317???
(0.0765)

−0.0007
(0.0032)

0.0001
(0.0025)

3.6894 3.6812 89.80 0.07

UK-DCC-RC-RV-MP 0.0477???
(0.0079)

0.8903???
(0.0235)

0.6991???
(0.0885)

0.2386???
(0.0658)

−0.0012
(0.0031)

0.0065?
(0.0038)

3.6878 3.6796 91.48 5.82

UK-DCC-RC-RV-GDP 0.0473???
(0.0078)

0.8896???
(0.0251)

0.7746???
(0.0867)

0.2212???
(0.0799)

−0.0010
(0.0033)

−0.0011
(0.0023)

3.6893 3.6811 89.36 0.13

GER-DCC 0.0356???
(0.0077)

0.9609???
(0.0090)

3.6309 3.6282

GER-DCC-RC 0.0489???
(0.0077)

0.9140???
(0.0216)

0.8647???
(0.0845)

0.1392
(0.0849)

3.6183 3.6128 89.18

GER-DCC-RC-RV-CPI 0.0469???
(0.0075)

0.9141???
(0.0184)

0.8176???
(0.0659)

0.1580???
(0.0612)

0.0055
(0.0041)

0.0158???
(0.0049)

3.6156 3.6074 88.93 9.66

GER-DCC-RC-RV-I3M 0.0492???
(0.0076)

0.9122???
(0.0203)

0.7914???
(0.1077)

0.1753??
(0.0852)

−0.0032
(0.0044)

0.0065
(0.0046)

3.6209 3.6127 87.02 4.82

GER-DCC-RC-RV-MP 0.0481???
(0.0075)

0.9134???
(0.0187)

0.7718???
(0.0793)

0.1749???
(0.0666)

−0.0006
(0.0038)

0.0099???
(0.0035)

3.6179 3.6097 88.04 11.22

GER-DCC-RC-RV-GDP 0.0482???
(0.0078)

0.9170???
(0.0214)

0.9006???
(0.0850)

0.1077
(0.0882)

−0.0000
(0.0047)

−0.0036
(0.0044)

3.6214 3.6133 87.22 1.15

FRA-DCC 0.0377???
(0.0087)

0.9550???
(0.0110)

3.7277 3.7250

FRA-DCC-RC 0.0495???
(0.0097)

0.9115???
(0.0260)

0.8834???
(0.0468)

0.1105??
(0.0448)

3.7216 3.7161 77.38

FRA-DCC-RC-RV-CPI 0.0481???
(0.0095)

0.9122???
(0.0255)

0.8939???
(0.0446)

0.0930??
(0.0428)

0.0022
(0.0042)

0.0098??
(0.0044)

3.7216 3.7135 83.71 7.52

FRA-DCC-RC-RV-I3M 0.0489???
(0.0098)

0.9136???
(0.0260)

0.9016???
(0.0660)

0.0952?
(0.0553)

−0.0008
(0.0043)

−0.0021
(0.0063)

3.7250 3.7169 79.05 0.53

FRA-DCC-RC-RV-MP 0.0500???
(0.0099)

0.9088???
(0.0280)

0.8523???
(0.0742)

0.1220??
(0.0602)

−0.0005
(0.0041)

0.0049
(0.0037)

3.7240 3.7158 81.23 4.21

FRA-DCC-RC-RV-GDP 0.0477???
(0.0094)

0.9152???
(0.0236)

0.9351???
(0.0369)

0.0687?
(0.0362)

−0.0008
(0.0045)

−0.0053?

(0.0030)
3.7233 3.7151 79.89 7.43

IT-DCC 0.0254??
(0.0106)

0.9720???
(0.0120)

3.6301 3.6274

IT-DCC-RC 0.0561???
(0.0117)

0.8511???
(0.0468)

0.7190???
(0.0615)

0.2856???
(0.0615)

3.6184 3.6129 88.97

IT-DCC-RC-RV-CPI 0.0529???
(0.0114)

0.8594???
(0.0457)

0.7077???
(0.0636)

0.2628???
(0.0606)

0.0054?
(0.0028)

0.0037
(0.0024)

3.6196 3.6114 93.13 3.11

IT-DCC-RC-RV-I3M 0.0541???
(0.0115)

0.8551???
(0.0464)

0.7188???
(0.0604)

0.2712???
(0.0596)

0.0040
(0.0027)

0.0011
(0.0018)

3.6207 3.6125 93.00 1.20

IT-DCC-RC-RV-MP 0.0536???
(0.0114)

0.8573???
(0.0460)

0.7137???
(0.0611)

0.2694???
(0.0596)

0.0046?
(0.0028)

0.0015
(0.0015)

3.6203 3.6122 93.06 1.80

IT-DCC-RC-RV-GDP 0.0559???
(0.0117)

0.8467???
(0.0482)

0.7391???
(0.0655)

0.2538???
(0.0640)

0.0026
(0.0026)

−0.0017
(0.0016)

3.6203 3.6121 93.11 1.47

Notes: The table reports country-wise estimation results for the DCC, DCC-RC and DCC-RC-X model estimations based on

standardized residuals from the GARCH(1,1) models in Table 14. Otherwise, see the notes for Table 14.
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Table 16: DCC-MIDAS-RV-X model subsample estimations

Model αSB βSB θRV θX BIC AIC CR1

US-DCC-RV-GDP 0.0402???
(0.0081)

0.9498???
(0.0115)

−0.0194???
(0.0063)

0.0025
(0.0069)

3.7416 3.7361 40.59

US-DCC-RV-CPI 0.0429???
(0.0088)

0.9428???
(0.0133)

−0.0113?
(0.0060)

0.0199???
(0.0067)

3.7362 3.7307 69.12

US-DCC-RV-I3M 0.0429???
(0.0087)

0.9435???
(0.0131)

−0.0181???
(0.0051)

0.0082??
(0.0034)

3.7386 3.7331 59.67

US-CC-RV-MP 0.0432???
(0.0088)

0.9425???
(0.0134)

−0.0157???
(0.0053)

0.0089???
(0.0033)

3.7375 3.7320 64.65

UK-DCC-RV-GDP 0.0341???
(0.0082)

0.9586???
(0.0116)

−0.0159??
(0.0076)

0.0016
(0.0062)

3.6996 3.6942 32.70

UK-DCC-RV-CPI 0.0331???
(0.0081)

0.9597???
(0.0114)

−0.0143??
(0.0072)

0.0118
(0.0073)

3.6982 3.6927 44.43

UK-DCC-RV-I3M 0.0372???
(0.0090)

0.9516???
(0.0142)

−0.0148???
(0.0053)

0.0087?
(0.0045)

3.6979 3.6924 55.92

UK-DCC-RV-MP 0.0399???
(0.0092)

0.9424???
(0.0163)

−0.0094??
(0.0045)

0.0220???
(0.0051)

3.6922 3.6867 83.25

GER-DCC-RV-GDP 0.0403???
(0.0079)

0.9519???
(0.0104)

−0.0193???
(0.0072)

0.0092
(0.0068)

3.6291 3.6237 38.10

GER-DCC-RV-CPI 0.0395???
(0.0077)

0.9499???
(0.0106)

0.0009
(0.0079)

0.0380???
(0.0098)

3.6204 3.6149 76.96

GER-DCC-RV-I3M 0.0430???
(0.0075)

0.9445???
(0.0108)

−0.0176???
(0.0049)

0.0225???
(0.0058)

3.6230 3.6176 72.28

GER-DCC-RV-MP 0.0423???
(0.0074)

0.9444???
(0.0107)

−0.0092?
(0.0053)

0.0232???
(0.0049)

3.6198 3.6144 77.15

FRA-DCC-RV-GDP 0.0407???
(0.0085)

0.9483???
(0.0115)

−0.0163???
(0.0053)

0.0011
(0.0043)

3.7299 3.7245 28.35

FRA-DCC-RV-CPI 0.0398???
(0.0089)

0.9478???
(0.0124)

−0.0091
(0.0056)

0.0188??
(0.0077)

3.7262 3.7208 56.58

FRA-DCC-RV-I3M 0.0416???
(0.0085)

0.9462???
(0.0118)

−0.0149???
(0.0051)

0.0098
(0.0062)

3.7284 3.7229 43.87

FRA-DCC-RV-MP 0.0414???
(0.0087)

0.9453???
(0.0124)

−0.0109??
(0.0052)

0.0141??
(0.0056)

3.7262 3.7208 56.32

IT-DCC-RV-GDP 0.0254??
(0.0112)

0.9713???
(0.0132)

0.0164
(0.0114)

−0.0018
(0.0079)

3.6325 3.6271 24.81

IT-DCC-RV-CPI 0.0294??
(0.0132)

0.9636???
(0.0175)

0.0223???
(0.0064)

0.0201???
(0.0066)

3.6279 3.6224 64.88

IT-DCC-RV-I3M 0.0266??
(0.0115)

0.9692???
(0.0138)

0.0227??
(0.0090)

0.0123?
(0.0067)

3.6307 3.6252 50.27

IT-DCC-RV-MP 0.0275??
(0.0122)

0.9673???
(0.0151)

0.0228???
(0.0078)

0.0113??
(0.0049)

3.6296 3.6242 56.91

Notes: The table reports country-wise estimation results for the DCC-X model estimations based on

standardized residuals from the GARCH(1,1) models in Table 14. Otherwise, see the notes for Table 14.
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Table 17: Cross-country correlations: stock market RV

Country US UK GER FR IT

US 1.00

UK 0.89 1.00

GER 0.83 0.88 1.00

FRA 0.86 0.94 0.93 1.00

IT 0.69 0.77 0.75 0.83 1.00

Notes: Cross-country correlations of the real-

ized stock market volatilities over the full April

1991 to January 2016 sample period.

Table 18: DCC-MIDAS-X with a global financial stress factor

Model αSB βSB θRV ?/θV IX θX BIC AIC ∆CR1

Panel A:

UK-DCC-RV*-MP 0.0394???
(0.0083)

0.9401???
(0.0151)

−0.0122???
(0.0037)

0.0182???
(0.0042)

3.7042 3.6992 -0.81

GER-DCC-RV*-MP 0.0453???
(0.0074)

0.9377???
(0.0110)

−0.0146???
(0.0043)

0.0171???
(0.0043)

3.6436 3.6386 -1.89

FRA-DCC-RV*-CPI 0.0394???
(0.0079)

0.9460???
(0.0115)

−0.0137???
(0.0048)

0.0105
(0.0070)

3.7551 3.7502 3.98

IT-DCC-RV*-CPI 0.0256??
(0.0108)

0.9715???
(0.0124)

0.0098
(0.0136)

0.0196
(0.0131)

3.6433 3.6383 -29.89

Panel B:

US-DCC-VIX-CPI 0.0453???
(0.0090)

0.9386???
(0.0139)

−0.0091??
(0.0043)

0.0203???
(0.0052)

3.7299 3.7249 -1.82

UK-DCC-VIX-MP 0.0393???
(0.0083)

0.9410???
(0.0150)

−0.0101???
(0.0032)

0.0191???
(0.0042)

3.7042 3.6992 -1.25

GER-DCC-VIX-MP 0.0452???
(0.0075)

0.9402???
(0.0108)

−0.0104??
(0.0044)

0.0181???
(0.0049)

3.6450 3.6400 -3.81

FRA-DCC-VIX-CPI 0.0387???
(0.0081)

0.9495???
(0.0113)

−0.0088
(0.0054)

0.0123
(0.0089)

3.7567 3.7517 -0.83

IT-DCC-VIX-CPI 0.0258??
(0.0106)

0.9712???
(0.0123)

0.0079
(0.0108)

0.0190
(0.0121)

3.6433 3.6383 -30.49

Notes: The table reports country-wise estimation results for the DCC-RV-X model estimations based

on standardized residuals from the GARCH(1,1) models in Table 3. For all countries, Panel A includes

the US-RV, RV ∗, and Panel B the standardized VIX. ∆CR1 denotes the change in CR1 compared to

the respective DCC-RV-X model from Table 5. Otherwise, see the notes for Table 3.
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