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LIST OF ABBREVIATIONS 
 
ng/mL                                                                                   Nanogram per mililiter 

µg/mL                                                                                   Microgram per mililiter 

µM                                                                                                          Micromolar 

mM                                                                                                            Milimolar 

M                                                                                                                     Molar 

AKT                                                                                     Protein kinase B (PKB) 

AUC                                                                                      Area Under the Curve 

CDK                                                                                 Cyclin-dependent Kinase  

CDKI                                                                   Cyclin-dependent kinase inhibitor  

CycIF                                                                            Cyclic immunofluorescence 

E50                                                                                             Half-maximal effect 

EC50                                                               Half-maximal effective concentration 

EDTA                                                                     Ethylenediaminetetraacetic acid 

EGF                                                                                    Epidermal growth factor 

EGFR                                                                   Epidermal growth factor receptor 

Emax                                                                                                   Maximal effect 

ERK                                                                Extracellular-signal-regulated kinase 

FBS                                                                                          Fatal bovine serum 

FSC                                                                                 Flow cytometry standard 

GI50                                                                          Half-maximal growth Inhibition 

H2O2                                                                                          Hydrogen peroxide 

HER2                                                    Human epidermal growth factor receptor 2 

HPLC                                                    High performance liquid chromatography 

HS                                                                                                             Hill slope 

HTS                                                                               High-throughput screening 

IC50                                                                             Half-maximal inhibitory effect 

IF                                                                                            Immunofluorescence 

KCl                                                                                             Potassium chloride 

KH2PO4                                                                         Monopotassium phosphate 



 6 

MAPK                                                                 Mitogen-activated protein kinases 

MEK                                                          Mitogen-activated protein kinase kinase 

MS                                                                                             Mass spectrometry 

mTOR                                                                    Mechanistic target of rapamycin 

Na2HPO4                                                                                 Disodium phosphate 

NaCl                                                                                               Sodium chloride 

NaOH                                                                                          Sodium hydroxide 

NMEs                                                                                   New molecular entities 

PBS                                                                                Phosphate-buffered saline 

PCA                                                                          Principal component analysis 

PCs                                                                                       Principal components 

PMSF                                                                        Phenylmethylsulfonyl fluoride 

R&D                                                                             Research and development 

ROI                                                                                              Region of interest 

SDS                                                                                    Sodium dodecyl sulfate 

STN                                                                                         Signal-to-Noise ratio 

TSCs                                                                                           Tumor stem cells 

viSNE                                                 t-distributed stochastic neighbor embedding 
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1. INTRODUCTION 

1.1 Challenges to drug discovery and patient care 

1.1.1 High risk of failure in current drug discovery paradigm 
Drug discovery and development is costly, time consuming and extremely 

risky. Estimates suggest that it costs about $1 billion to successfully discover, 

develop and launch a single new drug in the market. About 80% of this cost 

belongs to R&D expenditure, most of which is consumed by failures at different 

stages of drug discovery and development pipeline, raising questions about 

productivity and the possible flaws in current drug discovery paradigm (Figure 

1.1) (Bains, 2004; Earm and Earm, 2014). 

 

 
 

Figure 1.1 Drug discovery and development paradigm. 
In much generalized format, a potential target for a given disease is identified 

and HTS assays are constructed to find chemical agents that modulate the target 

activity. The target is validated through secondary screens and hits are optimized 

to lead compounds by extensive medicinal chemistry programs and animal 

testing. Efficacy and safety of potential drug candidates are then evaluated in 

different phases of clinical development before approval by the regulatory 

agencies. Adapted from previously published work (Roses, 2008). 

 

Development and utilization of high-throughput screening methods has 

drastically increased the number of chemical agents entering early clinical trials. 

However, most lead compounds that progress through high-throughput screening 
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campaigns and medicinal chemistry studies fail to pass clinical trials typically due 

to lack of potency or safety (Hughes et al., 2011). It has been suggested that one 

way to avoid the high cost of failures is “quick win, fast fail” drug development 

paradigm, where technical advances in genomic and proteomic profiling methods 

as well as novel systems and quantitative modeling approaches are leveraged in 

early stages of drug development to process the potential drug candidates 

resulting in a reduced number of new molecular entities (NMEs) advancing into 

late phases of clinical trials, but those that do advance have a higher probability 

of success and launch (Paul et al., 2010). 

 

1.1.2 Variability in patient responses to anti-cancer drugs 
Over the past two decades, huge investments by large pharmaceutical 

companies has led to successful development and approval of a considerable 

number of targeted therapies for use in oncology and immune therapy (Arora and 

Scholar, 2005; Hoelder et al., 2012; Yegnasubramanian and Maitra, 2013; Zhang 

et al., 2009). In most types of cancers, patient stratification is the key to the use 

of targeted therapies, because only subsets of cancers of any type have the 

signaling dependencies that kinase inhibitors and similar drugs aim to inhibit 

(Hanahan and Weinberg, 2011). However, even in stratified patient groups a 

primary challenge facing development and use of such new medicines is patient-

to-patient variability in responses to even the most potent and targeted 

therapeutics. While the focus of classic pharmacology has been on drug-target 

interactions and structure-activity relationships, advances in affordable genomic 

sequencing of patient-derived cancer tissue biopsies has led to development of 

an entirely new branch in pharmacology called “pharmacogenomics” with the 

hope of tailored and personalized cancer care. Interestingly, patient-to-patient 

variability is also common in mechanisms of drug resistance or relapse in 

originally drug-naïve populations (Yang et al., 2010).  

A recent approach to understanding such variability involves genotyping a 

large and diverse bank (‘encyclopedia’) of patient-derived cell lines to cover the 

complex mutational landscapes within cancer types and subtypes, coupled with 
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systematic measurement of drug-response across them (Barretina et al., 2012). 

In the case of anti-cancer drugs that block cell proliferation or induce apoptosis 

(Tyson et al., 2012), cells are typically exposed to drugs over a 104 - to 105  -fold 

concentration range, and after 72–96 hours relative viability is quantitated 

typically by measuring viability surrogates such as ATP content. Such data is 

conventionally analyzed from the perspective of IC50 values (or similar 

parameters), which are descriptive of the shape of the dose-response curve at its 

midpoint. However, inspection of dose-response curves reveals that they differ 

substantially in shape from one drug to the next and from one cell line to the 

next. Thus, the focus to date on potency (Garnett et al., 2012; Heiser et al., 2012) 

ignores the potential impact and biological importance of variation in other 

parameters, such as the steepness of the dose-response curve or differences in 

maximum effect (Figure 1.2) (Fallahi-Sichani et al., 2013). 

Mutations and nongenetic factors that generate dose-response curves 

with HS < 1 and Emax > 0 are likely to be important clinically. The incremental 

therapeutic benefit of getting closer and closer to the maximum tolerated dose 

will be less for a drug with a shallow rather than steep dose-response curve. 

Studies on dose-response relationships for antiviral drugs have also concluded 

that variation in HS is important for assessing drug sensitivity and resistance. 

Attempts to identify new drugs or effective combination therapies might therefore 

focus on steepening the dose-response relationship and increasing maximum 

effect, not just decreasing IC50 (Fallahi-Sichani et al., 2013). 



 10 

 
 

Figure 1.2 Variability in shape of drug-response behavior in breast cancer 
cell line. 
Examples of response to anti-cancer drugs. Analysis of response to Docetaxel 

(anti-mitotic and microtubule stabilizing), Fascaplysin (CDK4/6 inhibitor) and 

GSK2126458 (PI3K inhibitor) implicate distinct dose response behaviors across 

55 cancer cell lines. In Docetaxel, variability can be seen clearly at the levels of 

IC50, Emax and hill slope (HS) but Fascaplysin shows most variability at the level 

of IC50 and no variability at the level of Emax or hill slope in comparison to 

GSK2126458 which shows minor variability in Emax and most variability at the 

level of HS (Fallahi-Sichani et al., 2013). 

 

 

1.1.3 Cell-to-cell variability in responses to anti-cancer drugs 
Drug action inside of a tumor rarely affects all cells in the same way, 

leaving opportunities for individual cells to escape and give rise to relapse and 

possibly resistance. While much of cell-to-cell variability in drug responses likely 

originates from genetic heterogeneity (Michor and Polyak, 2010), and existence 

of drug tolerant tumor stem cells (TSCs) (Hanahan and Weinberg, 2011), a large 

number of diverse studies have reported striking fate variability even in 

genetically identical, clonal cells in culture. Using quantitative single-cell imaging, 

fate variability has been traced to stochastic changes in protein concentrations 

that influence switching between cellular programs (Levin et al., 2011; Spencer et 

al., 2009) or variable positioning in the cell cycle (Yano et al., 2014). It is 
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therefore crucial to systematically monitor how cancer cell subpopulations 

emerge, shift or vanish from the cellular signaling landscape in response to drug 

treatment (Figure 1.3). 

To best of our knowledge, cell-to-cell variability in drug induced cell fate 

decision-making has been described primarily in compounds and ligands that 

induce apoptosis (Flusberg and Sorger, 2013; Spencer et al., 2009) but 

therapeutics that lead to induction of cytostasis have largely been unexplored. 
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Figure 1.3 Characteristics of heterogeneous and homogeneous signaling 
responses for different forms of measurements. 
(a) Schematic representations of population-level measurements of signaling and 

apoptosis over time (left) or for a dose response (right). These are expected to 

be similar whether the cells respond heterogeneously or homogeneously. Dose-

response curves can be characterized by potency (IC50), the maximal 

effectiveness (Emax), the half-point of effectiveness (E50) and the concentration at 

EC50. (b-c) Schematic representations of hypothetical results of various single-

cell end point measurements such as flow cytometry and dynamic 
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measurements for time-dependent or dose-dependent data series. Although 

these are all consistent with the hypothetical population-level measurements 

shown in a, they illustrate how population-based measurements can fail to 

distinguish between heterogeneous all-or-none signals (b) and homogeneous 

graded signals (c)(Xia et al., 2014). 

 

 

1.1.4 Aims and approaches 
Currently, the main approaches to drug discovery are phenotypic 

screening and target-based screening. The former evaluates the induced 

phenotypic effects of compounds on cells and the latter measures either the 

binding of compounds to a purified target protein or activity of the target protein in 

response to compounds (Hughes et al., 2011; Reguera et al., 2014). Historically, 

drug discovery was driven by phenotypic screening, often with limited knowledge 

of biochemical and molecular details of diseases, but more recently specially in 

cancer therapy, advances in genomics has led to identification of druggable 

target candidates in the genome, making target-centric approaches more 

popular. Conventional phenotypic assays are typically low in throughput and only 

use bulk measurements of population average to examine drug responses. 

Target-based approaches are high in throughput but lack physiological 

environments to probe compound pharmacodynamics in the cellular context. 

Indeed, it has been argued that too much focus on genetic approaches to 

validate targets for use in target-based drug discovery has resulted in reduced 

success in discovering first-in-class medicines (Hoelder et al., 2012; Samsdodd, 

2005). 

Understanding the mechanisms of action of therapeutic drugs requires 

characterization of drug-induced changes in intracellular state. In the case of 

targeted anti-cancer drugs these typically involve inhibition of oncogene 

signaling, changes in cell cycle distribution and induction of senescence or 

apoptosis. Multiplex methods are required to monitor this diversity and the 
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methods described in this thesis illustrate that microscopy is ideal for this 

purpose. We argue that cell-based measurements of target and close-to-target 

protein states (phospho-states) and abundance with automated multiplexed high-

content and high-throughput microscopy methods, not only combines the 

advantages of both phenotypic and target-based approaches (in the case of 

engineered cell lines), but also allows assessment of single-cell drug responses. 

Single-cell profiling uncovers relationships between target inhibition and induction 

of cellular phenotypes that are obscured by population average methods and it 

fits well into the workflow of drug discovery. It can also be very economical with 

respect to reagents and numbers of cells (an important consideration with 

patient-derived materials). To this end, we propose utilization of an automated 

high-content immunofluorescence (IF) combined with a novel highly multiplexed 

cyclic immunofluorescence (CycIF) single-cell imaging method instead of 

conventional HTS techniques that only use bulk measurements of population 

average to address issues of potency and efficacy of chemical agents early in 

preclinical studies with an emphasis on single-cell pharmacodynamics. 

  



 15 

 

2. MATERIALS AND METHODS 

1.2 Materials 

1.2.1 Cell culture 
MCF10A, BT474, SkBr3, hMEC, H1666, H1650 and H3255 cell lines were 

obtained directly from the American Type Culture Collection (ATCC), 21PT and 

21MT1 cells were obtained from Gray lab and HMLE and HMLER cells were 

obtained from Weinberg lab. MCF10A, 21PT and 21MT1 cell lines were cultured 

under conventional conditions in DMEM/F12 (Invitrogen) supplemented with 5% 

(v/v) horse serum, EGF (20 ng/ml), insulin (10 µg/ml), hydrocortisone (0.5 µg/ml), 

and cholera toxin (100 ng/ml) with penicillin (50 U/ml) and streptomycin (50 

µg/ml) and beside BT474 cell line that was grown in RPMI media supplemented 

with 10% (v/v) FBS and penicillin (50 U/ml) and streptomycin (50 µg/ml), the rest 

of the cell lines were cultured according to ATCC culture methods. 

1.2.2 Ligand and kinase inhibitors 
EGF ligand was purchased from PeproTech (Cat. No. AF-100-15) and the 

small molecule drugs Dactolisib (NVP-BEZ235), Torkinib (PP242), Gefitinib, 

Erlotinib, MK2206, Triciribine, Selumetinib (AZD6244) and PD0325901 were 

purchased from Selleck Chemicals and Lapatinib from LC laboratories. All 

compounds were dissolved in DMSO as 10 mM stock solutions. For drug dose-

response, ~5,000 cells for MCF10a, 21PT and 21MT1 cells or ~15,000 cells for 

the rest of the cell lines were plated per well in two replicate 96-well plates 

(Corning) in full growth media for 24 hours and then either starved over night and 

treated with EGF or in full serum treated with drugs for 24-48 h. For perturbations 

and their nominal targets see Figure 2.1. 
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Figure 2.1 Nominal targets of ligand and kinase inhibitor panel. 
Epidermal growth factor (EGF) binds to the extracellular domain of epidermal 

growth factor receptor (EGFR) causing homo- (with itself) or hetero- (with other 

receptors like human epidermal growth factor receptor 2) dimerization and 

autophosphorylation of the kinase domain. This activity leads to binding to 

downstream adaptor proteins and activation of MAPK and PI3K/AKT signaling 

pathways. Erlotinib, Gefitinib and Lapatinib compete with ATP and inhibit the 

kinase activity of EGFR. Lapatinib is a dual kinase inhibitor and in addition to 

EGFR it also inhibits the kinase activity of HER2 (human epidermal growth factor 

receptor 2). PD0325901 and Selumetinib (AZD6244) inhibit MAPK signaling by 

targeting MEK. Triciricbine and MK2206 inhibit different subunits of AKT. Torkinib 

(PP242) is an mTOR targeting drug and Dactolisib is a dual inhibitor of PI3K and 

mTOR. 

 
 

1.2.3 Antibodies 
Antibody validation is not a straightforward process and we typically rely 

on commercial antibodies already in wide spread use. In studies of cell signaling, 
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antibody selectivity in a particular cell type is assessed using activating 

extracellular ligands in combination with kinase inhibitors. In principle many 

primary antibodies that work for use in biochemical methods such as western 

blotting, do not work well for immunofluorescence. One reason for this issue is 

that in western blotting, proteins are fully denatured after being exposed to 

detergents likes SDS but in immunofluorescence, antibodies might not reach 

their specific epitopes due to protein folding that remains intact after fixation. 

For the purpose of testing and validating relevant antibodies for the targets 

of interest in this study, MCF10a cells were starved overnight and exposed to 

EGF at 8 doses in serum-free media for 24 hours. Conventional four-color 

immunofluorescence was used to characterize cells stained with the DNA dye 

Hoechst 33342 to label nuclei and one of the 30 different primary antibodies 

(Figure 2.2). 
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Figure 2.2 Antibodies tested for immunofluorescence imaging. 
Antibodies specific to total or phosphorylated levels of different proteins that 

regulate signaling pathways such as those controlling MAPK, AKT or 

translational control as well as those specific to cell cycle regulation were probed 

by measuring their dynamic range in response to increasing doses of EGF. 

 
From the tested antibodies, 20 markers showed acceptable STN ratio and 

we used these antibodies for drug screen using conventional 

immunofluorescence imaging (Figure 2.3). 
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Figure 2.3 Antibodies used for high-content immunofluorescence imaging 
and drug screening. 
Antibodies specific to total or phosphorylated levels of different proteins that 

regulate signaling pathways such as those controlling MAPK, AKT or 

translational control as well as those specific to cell cycle regulation were used in 

drug screen using conventional immunofluorescence imaging. 

 
 

 

For the purpose of testing and validating relevant antibodies to for the 

targets of interest to be used in CycIF method, MCF10a cells were either starved 

for 24 hours and then treated with EGF at different concentrations or exposed to 

one of the four kinase inhibitors (denoted in Figure 2.1 with a star) in full serum 

and then subjected to CycIF staining (Figure 2.4). 20-channel images were 

registered against nuclei to align images from successive cycles, segmented and 

single-cell features were extracted using ImageJ software (Abràmoff et al., 2004) 

corresponding to whole cell, membrane, cytoplasmic and nuclear intensities. 
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Figure 2.4 Antibodies used for cyclic immunofluorescence (CycIF) ligand 
response and drug screen. 
Antibodies specific to total or phosphorylated levels of different proteins that 

regulate signaling pathways such as those controlling MAPK, AKT, NFkB, 

apoptosis or translational control as well as those specific to cell differentiation, 

cytoskeleton and cell cycle regulation were used for EGF ligand and drug 

screening using CycIF. 
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1.2.4 Chemical reagents 

1.2.4.1 Bleaching reagents 
140 µl of fluorophore inactivation solution containing 3% H2O2 and 20 mM 

NaOH in PBS (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4 and 1.8 mM 

KH2PO4; pH ≈ 9.5) was added to each well and the samples were continuously 

illuminated with an ordinary incandescent table lamp. Fluorophore inactivation 

was monitored using a Cytell Imaging system in continued presence of the 

oxidation solution. When inactivation was complete (typically 60 min) cells were 

washed three times with 250 µl PBS using BioTek EL406 plate washer and then 

incubated with Odyssey Blocking Buffer (OBB) for an hour. After blocking, 

samples were subjected to the next round of staining, as described above. H2O2 

was obtained as a 30% solution from Sigma (Cat. No. H1009), NaOH as pellets 

(Cat. No. S5881), and hydrochloric acid as a 37% (12 M) solution (Cat. No. 

258148) (Lin et al., 2015). 
 

1.2.4.2 Lysis buffer for western blot 
1% Triton lysis buffer was prepared by adding 1 mL of Triton X-100 (10%) 

to 9 mL of PBS. 1 pellet of mini complete protease inhibitor (1 tablet per 10 mL) 

was added to the solution with 10 mM final EDTA concentration. 20 mM BME 

was added to the final solution. 

 

1.3 METHODS 

1.3.1 Western blot 
Cells were seeded in 6-well plates and treated with Lapatinib the next day. 

At desired time points, the media was aspirated and cells were washed with 1 mL 

of ice cold PBS. PBS was aspirated completely and 150 µL of ice-cold Triton 

lysis buffer was added to the wells. The plates were left on ice for 20 mins and 

scraped occasionally. The lysates were collected from the wells and transferred 

to eppendorf tubes. Tubes were spun at maximum speed for 10 mins in cold 
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room. The lysates were removed from the nuclear pellet, added to new tubes and 

normalized using Bradford assay. The normalized sample lysates were added to 

tubes containing (5x) standard buffer (SB), boiled for 1 min and stored at -80°C. 

Lysates were fed into precast gels and ran in 1x SDS running buffer. Gels 

were transferred in transfer buffer to membranes pre soaked in 100% methanol 

over night in cold room. The next day membranes were blocked with Odyssey 

Blocking Buffer for 1 hour at room temperature with gentle shaking. Blocking 

buffer was aspirated and primary antibodies were added to the membranes 

according to vendor’s recommended dilution for western blot application in 

Odyssey Blocking Buffer plus 0.1% Tween-20 and incubated for 2 hours at room 

temperature with gentle shaking. Membranes were washed 5 times for 5 mins 

each round with generous amounts of PBS plus 0.1% Tween-20 with gentle 

shaking. Secondary IRDye antibodies were diluted (1:20,000) in Odyssey 

Blocking Buffer plus 0.1% Tween-20 and incubated with the membranes for 1 

hour with gentle shaking and protected from light. Membranes were washed 5 

times for 5 mins each round with generous amounts of PBS plus 0.1% Tween-20 

with gentle shaking. Finally, membranes were soaked in 1x PBS and scanned on 

Odyssey Infrared imaging system. 

1.3.2 ELISA 
Lysis buffer was prepared immediately before use and kept on ice at all 

times.150-200 µl/well was used in 6-well plate. IC Diluent #12 (dilute Sample 

Diluent Concentrate 2x diluted with an equal volume of water) + 1:140 aprotinin + 

1:1000 LPC + 1:100 Thermo Halt phosphatase inhibitor cocktail + 1:500 PMSF 

(500 mM stock) IC Diluent #12 = 1% NP-40, 20 mM Tris (pH 8.0), 137 mM NaCl, 

10% glycerol, 2 mM EDTA, 1 mM activated sodium orthovanadate. Plates were 

put on ice and quickly washed with ice-cold PBS. PBS was aspirated and the 

lysis buffer was added. Cells were scraped off the plates and put in eppendorf 

tubes. They were kept on ice during this time and rocked gently on ice for 30 

minutes at 4°C. Then microcentrifuged at 14,000 g for 5 minutes at 4°C and the 
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supernatant was slowly transferred into clean eppendorf tubes, making sure 

sample is well mixed and aliquotted if needed and stored at -80°C. 

Capture antibody was reconstituted if needed and then vortexed. 

Appropriate amount of diluted capture antibody was prepared in PBS without 

carrier protein.  Immediately 100 µl was pipetted into each desired well. Plates 

were sealed and incubated overnight at room temperature and gently agitated on 

rocker. The final concentrations of the used capture antibodies were 0.4 µg/ml for 

EGFR and 7 µg/ml for HER2. Blocking solution was brought to room temperature 

to be used. Capture antibody was aspirated followed by washing four times with 

400 µl/well 1x PBS-T (0.05% Tween-20 in PBS) and once with 1x PBS. Wash 

buffer was gently agitated for 0.5 – 2 min before removing.  After the last wash, 

plates were inverted on clean paper towel and aspirated. 300 µl/well of blocking 

solution was pipetted followed by incubation at room temperature with gentle 

agitation for 1-2 hours. 2 ug/well primary antibody for p-EGFR, 40 µg/well for p-

HER2 was pipetted. The blocking buffer was aspirated followed by washing four 

times with 400 µl/well 1x PBS-T (three times for the total protein assays) and 

once with 1x PBS. After the last wash, plates were inverted on clean paper towel 

and aspirated. 100 µl/well of the samples were added in IC Diluent #12. Plates 

were seal and incubated for 2 hours at room temperature on rotator. Standards 

and samples were aspirated, followed by washing four times with 400 µl/well 1x 

PBS-T (three times for the total protein assays) and once with 1x PBS. Detection 

antibody (p-EGFR and p-HER2 at 1:200 dilution) was prepared in IC Diluent #14 

and 100 µl/well was pipetted. Plates were sealed and incubated overnight at 4°C 

with continued rocking. The next day, wells were washed four times with 400 

µl/well of 1x PBS-T and once with 1x PBS. After the last wash, plates were 

inverted on clean paper towel and aspirated. Donkey anti-Rabbit HRP-

conjugated antibody in IC Diluent #14 (p-EGFR = 1:40,000, p-HER2 = 1:5,000) 

was prepared and 100 µl/well pipetted. Plates were sealed and incubated for 2 

hours at room temperature rocking. Substrate solution was warmed to room 

temperature before use. Plates were washed four times with 400 µl/well 1x PBS-

T and once with 1x PBS, followed by gentle agitation of wash buffer for 1-2 min 
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before removing. After the last wash, plates were inverted on clean paper towel 

and aspirated. 100 µl/well substrate solution was added (1:1 Substrate Reagents 

A & B; mixed together within 15 minutes of use and protect from light) to wells. 

After 20 minutes incubation at room temperature, 50 µl/well stop solution was 

added to wells followed by pipetting up and down to mix and samples were 

quantified using a plate reader (Kleiman et al., 2011). 

1.3.3 High-content immunofluorescence (IF) imaging 
Cells were fixed in 2% paraformaldehyde for 10 min at room temperature 

and washed with PBS-T (0.1% Tween-20, Sigma-Aldrich), permeabilized in 

methanol for 10 min at room temperature, washed with PBS-T, and blocked in 

Odyssey Blocking Buffer (OBB, LI-COR Biosciences) for 1 hour at room 

temperature. Cells were incubated overnight at 4°C with primary monoclonal 

antibodies from rabbit, goat, or mouse in OBB (Figure 2.3, Table 1 for more 

details). Cells were washed three times in PBS-T and incubated with fluor-

conjugated secondary antibodies against rabbit, goat, or mouse IgG diluted 

1:2,000 in OBB (Table 2). Cells were washed once in PBS-T, once in PBS and 

incubated in 250 ng/ml Hoechst 33342 (Invitrogen) and 1:500 Whole Cell Stain 

Blue (Thermo Scientific) solutions. Cells were then washed twice with PBS and 

imaged with a 10x objective on Operetta automated epifluorescence microscope 

(PerkinElmer) (Table 3). Automated image segmentation and single-cell 

quantification of stain intensities was performed using standard routines 

implemented in Columbus and Harmony (PerkinElmer, Figure 2.5). For 

illustration purposes, representative images were RGB-transformed and merged 

using ImageJ (Abràmoff et al., 2004). 
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Table 1 List of primary antibodies for ligand and drug response. 
Host Antibody Target residue Dilution Vendor 

Rabbit phospho-RSK Ser-380 1:200 GeneTex 

Rabbit Phosphor-

ERK1/2 

Thr202/Tyr204 1:400 Cell Signaling 

Rabbit phospho-Akt Ser473 1:400 Cell Signaling 

Rabbit Foxo3a Total 1:400 Cell Signaling 

Rabbit phospho-S6 Ser235/236 1:400 Cell Signaling 

Rabbit phospho-4E-

BP1 

Thr37/46 1:400 Cell Signaling 

Rabbit phospho-CDK2 Tyr15 1:400 GeneTex 

Rabbit phospho-CDC2 Tyr15 1:200 Cell Signaling 

Rabbit phospho-

p57Kip2 

Thr310 1:200 Cell Signaling 

Rabbit phospho-

p27Kip1 

Ser10 1:200 GeneTex 

Rabbit phospho-

p27Kip1 

Thr187 1:200 Santa Cruz 

Rabbit Survivin Total 1:800 Cell Signaling 

Rabbit p27kip1 Total 1:200 Cell Signaling 

Rabbit p21Cip1 Total 1:400 Cell Signaling 

Rabbit P57Kip2 Total 1:200 Cell Signaling 

Rabbit FoxM1 Total 1:400 Cell Signaling 

Rabbit Cyclin A Total 1:200 Santa Cruz 

Rabbit Cyclin B1 Total 1:400 Cell Signaling 

Goat phospho-Rb Ser807/811 1:400 Santa Cruz 

Mouse p27Kip1 Total 1:200 Becton 

Dickenson 
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Figure 2.5 High-content/high-throughput IF and CycIF imaging pipeline. 
Multi-well plates with cells that were perturbed with increasing doses of different 

drugs are fixed at desired time points and stained with a DNA dye and primary 

and then secondary antibodies for IF pipeline or alternatively with primary 

antibodies conjugated with alexa-fluor dyes for CycIF pipeline. Plates are 

scanned on an automated high-throughput epifluorescence microscope and 

images are segmented for IF or registered after each round of staining and 

segmented for CycIF. Single-cell features from different cellular compartments 

are generated and multiplexed high-dimensional data from mean and single-cell 

dose response curves are used for statistical analysis and high-dimensional 

visualization. 
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Table 2 List of secondary antibodies for ligand and drug response. 
Host Dye Dilution Vendor 

Donkey Alexa-647 1:2000 Invitrogen 

Donkey Alexa-488 1:2000 Invitrogen 

Donkey Alexa-568 1:2000 Invitrogen 

 

Table 3 List of filters used for IF imaging. 
Filter Wavelength 

Excitation 360-400 

Excitation 460-490 

Excitation 560-580 

Excitation 620-640 

Emission 410-480 

Emission 500-550 

Emission 590-640 

Emission 650-700 

 

1.3.4 Highly multiplexed cyclic immunofluorescence (CycIF) 
imaging 
Cells were fixed in 4% paraformaldehyde for 30 min at room temperature 

and washed three times with PBS, permeabilized in ice-cold methanol for 10 min 

at room temperature, rewashed with PBS, and blocked in Odyssey blocking 

buffer (LI-COR) for 1 hour at room temperature. Cells were incubated overnight 

at 4°C with primary antibodies in blocking buffer. For staining with fluorophore-

conjugated primary antibodies, cells were washed three times with PBS and 

stained with Hoechst 33342 (0.1 µg/ml) for 15 min at room temperature. For 

primary antibodies that were not fluorophore-conjugated (i.e. for indirect 

immunofluorescence), cells were washed three times with PBS, incubated with 

fluorophore-conjugated secondary antibodies in blocking buffer for 1 hour at 
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room temperature, washed with PBS and then stained with Hoechst 33342 for 15 

min at room temperature. After image acquisition, cells were washed three times 

with PBS (250 µl per well) using BioTek EL406 plate washer with final aspiration 

so as to empty each well. 100 µl of a mixture of 3% H2O2 and 20 mM NaOH in 

PBS (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4 and 1.8 mM KH2PO4) (pH ≈ 

9.5) were added to each well for 1 hour at room temperature and continuously 

illuminated with an ordinary incandescent table lamp. To monitor for fluorophore 

inactivation, remaining fluorescence was measured on a microscope prior to 

removal of the oxidation solution. Cells were then washed three times with 250 µl 

PBS using a plate washer and reincubated with blocking buffer. After blocking, 

samples were subjected to the next round of staining, as described above. H2O2 

was obtained as a 30% solution from Sigma (Cat. No. H1009), NaOH as pellets 

(Cat. No. S5881), and hydrochloric acid as a 37% (12 M) solution (Cat. No. 

258148) (Lin et al., 2015). 
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Figure 2.6 CycIF imaging method variants. 
(a) An overview of the CycIF procedure. Four-color staining alternates with 

fluorophore inactivation by oxidation to progressively build a multichannel image. 

(b) CycIF procedure using direct immunofluorescence (with fluorophore-

conjugated antibodies) and chemical inactivation of fluorophores. COLO858 

melanoma cells were fixed and stained using antibodies for Ki-67 (Alexa 488), p-

Histone H3 (Alexa 555), p21/Cip1 (Alexa 647) and Hoechst (left panel). Cells 

were exposed to fluorophore-inactivation by oxidation using hydrogen peroxide, 

high pH and light and then reimaged (middle panel) to confirm efficient bleaching. 

Cells were then stained with fluorophore-conjugated antibodies for p-S6S240/244 

(Alexa 488), p-RbS807/811 (Alexa 555), p-S6S235/236 (Alexa 647) and Hoechst. (c) 
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CycIF procedure using indirect immunofluorescence and protease-mediated 

antibody stripping. MCF7 cells were fixed and stained using primary antibodies 

for p-ERK1/2T202/Y204 (rabbit), p53 (mouse), Alexa 488-conjugated anti-rabbit, and 

Alexa 647-conjugated anti-mouse secondary antibodies (left panel). Cells were 

digested with pepsin/papain mixture and reimaged (middle panel). Cells were 

restained using primary antibodies for p-RbS807/811 (rabbit), p-Histone H2A.XS139 

(mouse), Alexa 488-conjugated anti-rabbit, and Alexa 647 conjugated anti-mouse 

secondary antibodies (right panel) (Lin et al., 2015). 

 
Table 4 List of conjugated antibodies used in CycIF. 
 Alexa-488/FITC Alexa-555/Cy3 Alexa-647/Cy5 

Cycle 

1 

p53 Antibody (DO-1, sc-126) 

Dilution 1:400 

ActinRed 555 

(Invitrogen #R371112, Lot 

#1646656) 

FoxO3a (75D8) 

Rabbit mAb 

(CST #2497, Lot 

#10) Dilution 

1:400 

Cycle 

2 

p-ERK1/2 T202/Y204  

(CST #4344, Lot #12) Dilution: 

1:200  

p-Rb S807/S811  

(CST #8957, Lot #1) 

Dilution: 1:400 

p21 Waf1/Cip1  

(CST #8587, Lot 

#3) Dilution: 

1:200 

Cycle 

3 

Cyclin D1  

(AB #AB190194, Lot 

#GR199456-1) Dilution: 1:400 

p-AuroraABC  

(CST #13464, Lot #1) 

Dilution: 1:200 

p27  

(AB #AB194234, 

Lot #GR200274-

1) Dilution: 1:400 

Cycle 

4 

p-S6 S240/S244  

(CST #5018, Lot #4) Dilution: 

1:800 

p-Histone H3 S10  

(CST #3475, Lot #2) 

Dilution: 1:800 

p-S6 S235/S236  

(CST #4851, Lot 

#22) Dilution: 

1:400 

Cycle 

5 

Bax  

(BIO #633603, Lot #B169774) 

Dilution: 1:400 

S6 (CST #6989, Lot #2) 

Dilution: 1:200  

p-H2.AX S139  

(BIO #613407, 

Lot #B199199) 

Dilution: 1:400 
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Cycle 

6 

PCNA  

(CST #8580, Lot #1) Dilution: 

1:400 

pan-Keratin  

(CST #3478, Lot #4) 

Dilution: 1:200 

pan-Akt  

(CST #5186, Lot 

#3) Dilution: 

1:400 

Cycle 

7 

EGFR  

(CST #5616, Lot #4) Dilution: 

1:400 

VEGFR2  

(CST #12872, Lot #1) 

Dilution: 1:400 

mTOR  

(CST #5048, Lot 

#2) Dilution: 

1:300 

Cycle 

8 

E-Cadherin  

(CST #3199, Lot #11) Dilution: 

1:200 

β-Actin  

(CST #8046, Lot #1) 

Dilution: 1:200 

Vimentin  

(CST #9856, Lot 

#7) Dilution: 

1:800 

Cycle 

9 

Ki-67  

(CST #11882, Lot #4) Dilution: 

1:400 

cPARP  

(CST #6894, Lot #1) 

Dilution: 1:200 

p65 NFkB  

(AB #AB190589, 

Lot #GR199457-

1) Dilution: 1:800 

 

1.3.4.1 CycIF image processing 
Plates were imaged with 10x objective using a Cytell Cell Imaging System 

(GE). All raw images are available on HMS-LINCS webpage 

(http://lincs.hms.harvard.edu/). Image segmentation and analysis were performed 

using ImageJ. Hoechst images were converted to nuclear masks and ROIs.  The 

same ROIs were applied to images for all data channels (488/555/647) and the 

fluorescent intensities were obtained.  The nuclear masks were then converted 

into RING ROIs outside the nuclei and used to quantify channels of interest.  The 

intensity data generated by ImageJ were then passed to MATLAB for further 

processing and analysis. 

For sequential imaging of CycIF, image registration was accomplished 

using ImageJ software package scripts and the provided plugins (StackReg: 

http://bigwww.epfl.ch/thevenaz/stackreg/; MultiStackReg: 

http://bradbusse.net/downloads.html). Hoechst images from different cycles were 

inputted as reference images to generate registration information. The same 
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registration information was used to transform images from other channels.  The 

transformed images were compiled into multi-image stacks and the image 

segmentation and data retrieval were performed as described above. All ImageJ 

and MATLAB scripts are available on this website 

(http://lincs.hms.harvard.edu/lin-NatCommun-2015/). 

1.3.4.2 CycIF data analysis 
The viSNE and Wanderlust Matlab codes in the CYT package were 

obtained from the Pe’er lab webpage 

(http://www.c2b2.columbia.edu/danapeerlab/html/software.html). The raw data 

generated from CycIF was imported into FlowJo and converted to FCS files. FCS 

files were then used as input for both the viSNE and Wanderlust toolkits. All data 

files were aggregated and used to generate viSNE diagrams. For Wanderlust, 

the same FCS files were normalized using the Wanderlust script with default 

parameters (L number = 30; K number = 5; Number of landmarks = 20; Number 

of graphs = 25; Distance Metric = Cosine). Data from the DMSO-treated control 

sample were the starting point for the Wanderlust trajectory. 

1.3.5 Analysis and statistics 

1.3.5.1 Parameterization of dose-response curves 

Variability in shape of dose-response curves can be quantified by 

performing a multiparametric analysis using a conventional logistical sigmoidal 

function  

 

Equation 1 

𝑦 = 𝐸!"# +
𝐸! − 𝐸!"#

1+ 𝐷
𝐸𝐶!"

!"  
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where y is a response measure at dose D (typically the experimental data), E0 

and Einf are the top and bottom asymptotes of the response, EC50 is the 

concentration at half-maximal effect, and Hill slope (HS) is a slope parameter 

analogous to the Hill coefficient. Three values derived from equation 1 are in 

common use: IC50, Emax and the area under the dose-response curve (AUC). 

Although they are not strictly parameters of equation 1, we refer to IC50, Emax and 

AUC as ‘parameters’ for simplicity. EC50 and IC50 are the classic measures of 

drug potency, and Emax and Einf are measures of drug efficacy (for anticancer 

drugs, Emax varies between 1 at low doses and 0 at high doses, which 

corresponds to the maximum response of the cells). AUC combines potency and 

efficacy of a drug into a single parameter. AUC values can be compared for a 

single drug across multiple cell lines exposed to the same range of drug 

concentrations, but comparison of different drugs is problematic (because the 

scaling between drugs and dose ranges is generally arbitrary). In the simple case 

of second-order competitive inhibition, the case considered in most 

pharmacology textbooks, E0 = 1, Emax = Einf = 0, EC50 = IC50 and HS = 1 (Figure 

2.7). 
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Figure 2.7 Parameterization of dose-response curves. 
Schematic of key dose-response parameters (EC50, IC50, Einf, Emax and AUC) 

calculated following curve fitting to the cell survival data. The pink area 

represents the AUC. The red dashed line represents the simple case of E0 = 1, 

Emax = Einf = 0, EC50 = IC50 and HS = 1. Effects of variations in EC50, hill slope 

(HS) and Einf on the shape of dose-response curve are shown on the right. 

Details of parameters and logistic equation are described in the text (Fallahi-

Sichani et al., 2013). 
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Figure 2.8 Growth inhibition curves. 
Schematic of key dose-response parameters. Half-maximal growth inhibition 

(GI50) and total growth inhibition (TGI) that can be calculated by fitting logistic 

curves to data on relative cell growth comprising a change in cell number after 

drug treatment normalized to the change in cell number in an untreated control 

well (Fallahi-Sichani et al., 2013). 
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not available) (Barretina et al., 2012). Multiparametric analysis yielded values for 

EC50, IC50, GI50, HS, Einf, Emax and AUC for 2,789 drug–cell line combinations; 

data filtering described in the text and revealed substantial differences from one 

drug and cell line to the next (Figure 2.8). 

 
Figure 2.9 Parameters derived from drug response measured by relative 
ATP content. 
The range of dose-response parameters, IC50 (a measure of potency), Emax (a 

measure of efficacy) and HS (a measure of curve steepness) estimated for 64 

compounds across 53 of the breast cell lines are represented by box-and-

whisker plots and median parameter values and interquartile ranges; bars 

extending to 1.5x the interquartile range are shown for each drug as a measure 

of variance. Parameter values for outlier cell lines are marked with asterisks. 

Compounds are sorted on the basis of the median IC50 value. Drug targets are 

nominal and do not include off-target effects (Fallahi-Sichani et al., 2013). 
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1.3.5.3 Principal component analysis (PCA) 
Principal component analysis (PCA) is a dimensionality reduction method 

that rotates the high-dimensional data set, seeking to capture most variance in a 

small number of successively chosen orthogonal axes of measurement 

combinations. PCA can be thought of as fitting a quadratic surface with n 

dimensions to the data, where each axis of the surface represents a principal 

component. To find these axes, the averaged data points must be subtracted 

from the origin in order to zero-center the data points. Then, a covariance matrix 

of the data points needs to be computed so that the eigenvalues with their 

corresponding eigenvectors could be calculated.  

The principal components are defined by weighting signals with high 

covariance and de-emphasizing signals that show little covariation with other 

signals. In this way, PCA condenses measurements to highlight the global 

patterns in the data set as reflected by just two or three dimensions that capture 

the maximal covariation between all of the signals (Janes and Yaffe, 2006; 

Wikipedia, 2015). 

1.3.5.4 K-means clustering 
Clustering is a simple data-mining tool for analyzing large-scale datasets. 

Many clustering methods are based on global optimization of a criterion that 

measures compatibility of the clustering result to the data. K-means and mixture 

Gaussian model-based clustering are examples of this category (Tseng, 2007). 

K-means clustering is an unsupervised learning algorithm that solves the well-

known clustering problem. This statistical clustering method that partitions n data 

points into k clusters in a way that each observation will belong to the cluster with 

the closest mean. To start the clustering, k center-points need to be defined for 

each cluster. These center-points are placed as far as possible in respect to each 

other. Then, data points from each cluster are assigned to nearest center-points 

until there are no data points left. Afterwards, new center-points are calculated 

which might lead to a change in their location and the process is repeated until 

the cluster centroids do not reposition anymore. Therefore, the drawback of this 
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method is that it heavily dependens on the prior selection of the center-points 

(Abdul Nazeer and Sebastian, 2010). 

1.3.5.5 viSNE (Stochastic Neighboring Embedding) 
Reducing the dimensionality of data involving heterogeneous cell 

populations can be accomplished using t-distributed stochastic neighbor 

embedding (t-SNE) (Maaten and Hinton, 2008) which projects cell populations in 

a two-dimensional space while attempting to preserve local neighbor 

relationships. SNE methods accomplish this by distributing data points so that 

distributions of pairwise similarity scores for each point to all others are minimally 

divergent between the original and the projected data (Hinton and Roweis, 2002). 

To obtain a flat projection that better retains the heterogeneity of cells than the 

projection of k-means clusters, t-SNE implementation viSNE could be used as an 

alternative approach motivated for the analysis of CyTOF data (Amir el et al., 

2013). 

1.3.5.6 Wanderlust 
Because cells in normally growing populations of cells are present at 

different points in the cell cycle, it is possible to reconstruct cell cycle trajectories 

from certain kinds of fixed cell data (Kafri et al., 2013). A widely used method to 

this end is the Wanderlust algorithm (Bendall et al., 2014), which connects paths 

of nearest neighbors among subsampled single-cell readouts in order to place 

cells on a shared axis that may correspond to progression through a 

differentiation program or the cell cycle (Gut et al., 2015). 
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3. RESULTS 

1.4 Dissecting population averaged drug response 

1.4.1 Results from high-content immunofluorescence (IF) 
imaging and biochemical methods 

1.4.1.1 Multiparametric analysis of dose-response curves 

We derived different dose-response parameters from each individual 

curve, including GI50, AUC, Hill slope (HS), and Emax. Instead of reporting a single 

parameter as a measure of potency or efficacy, we plotted pairwise combinations 

against each other while surmising dependencies between some parameters and 

target identity. Overall, MEK inhibitors (PD0325901 and Selumetinib) were most 

potent in inhibiting growth, followed by mTOR (Dactolisib and PP242) and EGFR 

(Gefitinib and Erlotinib) inhibitors, and AKT targeting drugs (MK2206 and 

Triciribine) were least potent (Figure 3.1). This ranking of target classes by 

potency was largely consistent between AUC and GI50.  
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Figure 3.1 Measurement of drug potency by pairwise combinations of two 
parameters. 
Rank orders of most potent to least potent inhibitors of growth in MCF10a cell 

line. MEK inhibitors (PD0325901 and Selumetinib in blue), mTOR inhibitors 

(Dactolisib and PP242 in black), EGFR inhibitors (Gefitinib, Erlotinib and 

Lapatinib in green) and AKT inhibitors (Triciribine and MK2206 in red). 

 
When maximal effect (Emax) was plotted against HS, drugs sharing a 

nominal target always cluster together. Among those clusters, EGFR targeting 

drugs implicate a much steeper HS than all other target classes. Furthermore, all 

drugs other than the AKT-targeting ones have very similar maximal cytostatic 

effects (Emax) (Figure 3.2). 
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Figure 3.2 Measurement of drug efficacy and hill slope reveals clusters 
based on drug target. 
All tested drugs with different targets (EGFR, MEK and mTOR) are effective in 

inhibiting growth at highest tested dose with Emax ~0.1, beside AKT inhibitors with 

Emax ~0.35. EGFR targeting drugs (Erlotinib, Gefitinib and Lapatinib) have much 

steeper hill slope (HS>1.5) compared to MEK-, AKT- and mTOR targeting drugs. 

 

1.4.1.2 Averaged signal-response parameters 

To explore differences in the signaling response between drugs, we 

averaged signals such as p-ERK1/2, p-S6, and p-4EBP1, which had shifting but 

always unimodal distributions across cells. We confirmed that MEK and EGFR 

drugs inhibited ERK signaling, but unexpectedly, AKT/mTOR drugs, in particular 

Torkinib, increased the phosphorylation of ERK1/2 in a dose-dependent manner. 

This suggests a feedback mechanism whereby mTOR activity negatively 

regulates ERK activation. Besides AKT inhibitors, which had no effect, and MEK 

inhibitors, which were minimally effective, other drugs fully suppressed S6 

phosphorylation, and only mTOR-targeting drugs fully suppressed 4E-BP 

phosphorylation (Figure 3.3).  
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Figure 3.3 Averaged signal analysis reveals significant molecular 
complexity underlying phenotypic differences. 
Dactolisib was very potent against p-S6 and p-4E-PB1, two proteins involved in 

translational control, whereas Selumetinib, which is even more potent as an 

inhibitor of cell growth, had little effect. In the case of the mTOR inhibitor 

(Torkinib), dose-dependent increase in p-ERK1/2 is evident. 

 

1.4.1.3 Dynamics of MAP kinase signaling in response to EGFR inhibitors 
In order to probe how dynamics of MAPK signaling relates to response to 

EGFR/ERBB2 inhibition, we treated a panel of 11 cell lines (four human 

mammary epithelial cells, four HER2 positive breast cancer cells and three lung 

cancer cell lines) with increasing dose of Lapatinib (9 doses and DMSO) and 

measured the phosphorylated levels of ERK1/2 after 1 hour and 6 hours and 

plotted the IC50 of p-ERK1/2 signal response curves at 1 hour in blue, 6 hour in 

green and the IC50 of the growth inhibition curve after 72 hours in red (Figure 

3.4). 
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Figure 3.4 MAPK dynamics in response to EGFR/HER2 inhibiting by 
lapatinib. 
Averaged p-ERK1/2 IC50 curves after 1 hour (blue) and 6 hours (green) and 

averaged GI50 curves after 72 hours (red) in 3 immortalized human mammary 

epithelial cells (MCF10a, HMLER, HMLE and hMEC), 4 HER2 positive breast 

cancer cells (21MT1, 21PT, SkBr3 and BT474) and 3 non-small cell lung cancer 

cell lines (H1666, H1650 and H3255). SkBr3, BT474, H1650 and H3255 are 

sensitive and the rest of the cell lines are resistant to lapatinib measured by the 

GI50. 

 
As it can be seen in Figure 3.4, in sensitive cell lines, where the GI50 

concentration is about 100 nM, the p-ERK1/2 IC50 does not change much over 

time. However in resistant cell lines, the IC50 of p-ERK1/2 signal response curve 
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is about 100 nM at 1 hour but it recovers after 6 hours of drug treatment. 

Moreover, the IC50 of p-ERK1/2 at 6 hours has a value similar to the IC50 of the 

growth inhibition curve at 72 hours. 

To examine the degree of correlation between early (1 hour) and 

intermediate (6 hours) p-ERK1/2 response and the late phenotypic response 

GI50, we calculated the linear correlation between these data points for all the cell 

lines. As it can be seen in Figure 3.5, there is a good linear relationship (R2=0.80) 

between the early signal and late phenotype and this correlation improves 

(R2=0.96) with time. 

 

 
 
Figure 3.5 Linear correlation between dynamics of p-ERK1/2 and growth 
inhibition. 
The x-axis shows the phenotypic response curves measured by GI50 and y-axis 

the IC50 of p-ERK1/2 signal response curves for all the cell lines. The left panel 

shows the correlation of the phenotype with p-ERK1/2 at 1 hour and the right 

panel shows the correlation between p-ERK1/2 and phenotype after 6 hours of 

drug exposure. 

 
This result shows the importance of MAPK signaling and its dynamics in 

response to EGFR/HER2 targeted inhibition. Among many possible mechanisms 
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that could explain the transient inactivation of MAPK signaling in response to 

EGFR/HER2 therapies, drug metabolization (Duckett and Cameron, 2010), efflux 

by ABC transporters (Sharom, 2008) and activation of autocrine loops (Gazdar 

and Minna, 2008) have been described extensively in the literature. To 

investigate whether the drug is still active post treatment, we treated MCF10a 

cells with increasing dose of Lapatinib for 5 hours and took the conditioned 

media and drug that have been on cells during this time and put it on fresh cells 

that had no memory of drug treatment and measured p-ERK1/2 activity after 1 

hour. Interestingly, the 1 hour signal response curve of the drug that had been on 

cells in total for 6 hours was very similar to the signal response curve of the drug 

that was only on cells for 1 hour. In addition, we performed a reverse experiment 

where we took the cells that have been in the presence of drug for 5 hours and 

put fresh media and drug on them for 1 hour. The resulting signal response curve 

was very similar to cells that have been in the presence of the drug for 6 hours 

(Figure 3.6). 

This result not only shows that the drug is not degraded and remains fully 

active after 6 hours but also indicates that the recovery is an induced state of 

cells, as cells that had the memory of being in the presence of drug remained 

resistant to p-ERK1/2 inhibition when exposed to fresh drug. 

Another possible mechanism for the recovery is activation of an autocrine 

loop or drug efflux that may potentially lead to reactivation of the drug target, the 

former by more extracellular EGF and thereby receptor activation and the latter 

by reducing the intracellular drug concentrations. To investigate this, we 

pretreated cells with Batimastat an inhibitor of ligand shedding and then treated 

cells with Cetuximab and EGFR neutralization antibody that competes with 

EGFR specific ligands. Surprisingly, the same behavior of p-ERK1/2 signaling 

was observed with Cetuximab in the absence or presence of Batimastat, 

providing evidence that EGFR autocrine loop is not the cause of recovery (Figure 

3.7). 
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Figure 3.6 p-ERK1/2 recovery is an induced state. 
Averaged p-ERK1/2 signal responses to Lapatinib were assessed in 4 different 

conditions. p-ERK1/2 signal response after 1 hour (blue) treatment with fresh 

Lapatinib, after 6 hours (green) of treatment with fresh Lapatinib, after 1 hour of 

treatment with Lapatinib that was exposed to cells for 5 hours (yellow) and after 1 

hours of treatment with fresh Lapatinib on cells pretreated with the drug for 5 

hours (red). 
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Figure 3.7 p-ERK1/2 recovery is not regulated by an autocrine loop 
activation. 
Averaged p-ERK1/2 signal response to Cetuximab (Erbitux) in the presence or 

absence of Batimastat a ligand shedding inhibitor. p-ERK1/2 signal response 

curve after 1 hour of exposure to Erbitux in the presence of Batimastat (blue), 

after 1 hour of exposure to Erbitux in the absence of Batimastat (green), after 6 

hour of exposure to Erbitux in presence of Batimastat (yellow) and after 6 hour of 

exposure to Erbitux in the absence of Batimastat (red). 

 
Furthermore, Cetuximab cannot be a substrate for an ABC transporter and 

the evidence in the literature (Dai et al., 2008) shows that Lapatinib is rather an 

inhibitor of ABCG2 drug pumps. However, observing similar results from small-

molecule and antibody inhibition pointed us to the drug target itself.  

1.4.1.4 Dynamics of drug target inhibition 
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hour with Lapatinib, p-EGFR and p-HER2 are fully inhibited in all cell lines. 

However, after 6 hours, both drug targets get reactivated in resistant cell lines, 

while they remain inactive in sensitive cell lines. 

 
 
Figure 3.8 Recovery of MAP kinase signaling is regulated at the receptor 
level. 
Phosphorylated levels of EGFR and HER2; Lapatinib targets were quantified by 

ELISA. Both phosphorylated forms of EGFR and HER2 are inhibited after 1 hour 

of exposure to Lapatinib, however both targets recover only in resistant cell lines. 

Top panel shows phosphorylated EGFR at Tyr1068 residue and the bottom 

panel shows phosphorylated levels of HER2 at Tyr1221/1222 residues. 
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To investigate the origin of this recovery we used high-content imaging 

and western blot analysis to have a relative view on the localization and activity 

of the receptor (EGFR). 

 

 
 
Figure 3.9 Total EGFR localizations in response to lapatinib in full serum. 
EGFR localization in full serum media after 1 or 6 hours treatment with DMSO or 

1 µM lapatinib. 

 
As it can be seen in Figure 3.9, EGFR in cells cultured in full serum media 

seem to be internalized, detected as punctuates inside the cell. However, 1 hour 

post Lapatinib treatment, the EGFR punctuates quantified as spots seem to 

diffuse rapidly accompanied by reduction of clathrin heavy chain spots with a 

very similar rate (Figure 3.10). The rate seems to decline between 1 hour and 6 

hours in a way that the ratio of total levels and membrane levels of EGFR remain 

constant but both increase during these time points. The phosphorylation of the 

receptor at two different sites and its direct downstream binding protein Shc 

seems to follow the same trend which is inhibition at 1 hour accompanied by 

subsequent recovery and reactivation later on. 
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Figure 3.10 Recovery of EGFR phosphorylation is accompanied by EGFR 
translocation to plasma membrane. 
Phosphorylated levels of EGFR at Tyr1068 and Tyr1173 residues get inhibited 

after 1 hour of drug exposure. This reduction is associated with a sharp decline in 

the number of EGFR and clathrin heavy chain punctuates as well as increased 

levels of EGFR localization at the cell membrane. The number of EGFR and 

clathrin heavy chain spots flat out after 1 hour, while the membrane levels of 

EGFR continue to rise during the process of p-EGFR recovery. 

 

1.4.1.5 Drug combination to overcome recovery 
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We argue that localization of the receptor at cell membrane facilitates 

ligand binding and thereby causes activation of the reserved receptor that was 

internalized prior to drug treatment. 

Due to post-treatment recovery of the drug target itself, we examined 

combined treatment of Lapatinib with Erlotinib, another EGFR inhibitor. In other 

words, we hypothesized that inhibiting the activity of the same target with multiple 

drugs would likely lead to sustained inhibition (Figure 3.11). 

 

 
Figure 3.11 Sustained inhibition of p-ERK1/2 by drug combination. 
On the x-axis increasing doses of Lapatinib was combined with increasing doses 

of Erlotinib on the y-axis of a 96-well plate and p-ERK1/2 was measured. Single-

cell frequency plots for cells in each well show how the population behaves 

across dose combinations. Red color indicates high levels and black indicates 

low levels of p-ERK1/2. 
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Figure 3.12 Combination of EGFR targeting drugs leads to sustained 
inhibition of proliferation signaling. 
On the x-axis increasing doses of lapatinib was combined with increasing doses 

of Erlotinib on the y-axis of a 96-well plate and p-Rb was measured. Single-cell 

frequency plots for cells in each well show how the population behaves across 

dose combinations. Red color indicates high levels and black indicates low levels 

of p-Rb. 

 

As it can be seen in Figures 3.11 and 3.12 at the level of p-ERK1/2 and p-

RB, Lapatinib combined with Erlotinib leads to a synergistic effect resulting in a 

full and sustained inhibition of these signals compared to Lapatinib alone after 24 

hours of drug treatment. 

 

1.4.1.6 Principal component analysis of drug response data 

To explore the space of signaling changes in response to all drugs along 

all measured signaling markers, we performed principal component analysis 

(PCA) over all drug treated conditions after normalizing bulk signals against 
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DMSO-treated samples and converting into log ratios. PCA rotates the high-

dimensional data set, seeking to capture most variance in a small number of 

successively chosen orthogonal axes of stain combinations. We found that two 

such principal component axes alone were sufficient to capture 88% of all 

variance, indicating that the bulk signaling changes in response to each of the 

tested drugs collectively occurred in a flat plane (Figure 3.13). Increasing doses 

of kinase inhibitors perturbed the bulk signaling state of cells in a characteristic 

direction for each target class. While all MEK, EGFR, and mTOR inhibitors 

reduced signals along the first component, which was largely a projection of p-

CDK2, differences in the effects between target classes lied mostly in ERK 

activation and p-S6. p-ERK1/2 was the largest negative loading of the second 

principal component, and suppression of p-S6 and p-4E-BP were strongly 

positive loadings of both. This largely reflects induction of p-ERK1/2 by mTOR 

inhibitors and a declining effect of drugs on p-S6 and p-4E-BP from mTOR 

inhibitors, which were strong suppressors, over EGFR inhibitors to MEK 

inhibitors, which had no effect. The signaling axis along the cell growth markers 

p-S6 and p-4E-BP was virtually orthogonal to that of the cell cycle progression 

markers p-CDK2 (see compass inset) and p-Rb.  
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Figure 3.13 Principal component analysis (PCA) of drug effects clusters 
inhibitors that have similar nominal targets. 
PCA analysis of MEK inhibitors (PD0325901 and Selumetinib), EGFR inhibitors 

(Erlotinib, Gefitinib and Lapatinib) AKT inhibitors (Triciribine and MK2206) and 

mTOR inhibitors (Dactolisib and Torkinib). 

 

To challenge this interpretation with an alternative analysis, we normalized 

the log ratios by the standard deviation of each signal in freely cycling cells. 

Intuitively, this normalization emphasizes drug-induced changes in signaling 

markers that are otherwise more tightly regulated. The corresponding PCA 

therefore yielded different loadings, with the direct CDK2 inhibitory protein p27 as 

the main loading of the first principal component, and p-AKT and p-4E-BP as the 

main loadings of the second (Figure 3.13). The projection of drug effects along 

the p27/Kip1 axis was oriented in opposite direction to the p-CDK2 axis in Figure 

3.12, consistent with mutually antagonistic interactions between CDK2 and 

p27/Kip1. While the protein synthesis marker p-4E-BP was shared between the 

second principal components of both analyses, the mTOR regulator AKT and the 
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mTOR substrate p-S6 were concordant readouts of growth regulation as well. 

This confirms that the bulk signaling changes in response to treatment with drugs 

from the kinase inhibitor panel largely occur within a plane spanned by growth 

and cell cycle progression axes. 

 

 
Figure 3.14 Principal component analysis (PCA) of drug effects clusters 
inhibitors that have similar nominal targets. 
PCA analysis of MEK inhibitors (PD0325901 and Selumetinib), EGFR inhibitors 

(Erlotinib, Gefitinib and Lapatinib) AKT inhibitors (Triciribine and MK2206) and 

mTOR inhibitors (Dactolisib and Torkinib). PC1 and PC2 in this PCA model are 

indicated with an apostrophe in the text. 
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1.5 Dissecting single-cell level variability in drug response 

1.5.1 Results from high-content immunofluorescence (IF) 
imaging 

1.5.1.1 Fractional analysis of signal-response curves 

To test the predictive value of some of the strongest loadings of the PCA 

model, we first integrated those signals over all doses by computing the AUCs of 

the p-ERK1/2, p-S6, and p-CDK2 mean signals. Because some of these signals 

where highly variable from cell to cell (Figure 3.15), we also calculated the AUCs 

of the fractions of cells that either p-CDK2 positive or were p-CDK2/p-Rb double 

positive after treatment with drugs for 24 hours. 

 

 
Figure 3.15 Representative images of graded and on or off signals. 
Representative images of population of cells stained with Hoechst dye and 

Whole Cell Blue to label nuclei and cytoplasm (blue) as well as stained with 

primary mouse p27/Kip1 antibody (green), goat p-Rb antibody (orange) and 

rabbit p-CDK2 antibody (red) together with respective species-specific secondary 

antibodies. p27/Kip1 has a graded distribution across single cells compared to p-

Rb that is either on or off and p-CDK2 signal that is either on or off and either 

cytoplasmic or nuclear. Bars correspond to ~10 µm. 
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We then assessed the correlation of these metrics with the AUC of growth 

inhibition after 48 hours (Figure 3.16). We found no significant correlation 

between the phenotypic response (AUC of GI50 after 48 hours) and the AUC of 

upstream signaling nodes such as p-ERK or p-S6. However, p-CDK2, a 

downstream cell cycle regulator showed a much better linear relationship with the 

48-hour phenotype. This correlation significantly improved when the fraction of p-

CDK2 positive cells was used instead of the mean p-CDK2 signal. Notably, the 

fraction of p-CDK2/p-Rb double positive cells did not improve predictions beyond 

using p-CDK2 alone, thus emphasizing the crucial role of CDK2 in controlling 

drug response upstream of p-Rb in MCF10A cells. More generally, the results 

show that an analysis based on fractions of positive or negative cells can be 

more informative of drug response signaling than simply using population 

averages.  

 
Figure 3.16 Single-cell fractions better predict growth inhibition phenotype. 
The linear correlation between AUC of signal response curves of phospho-

specific measured markers (strongest loadings of PCA model) (p-ERK1/2, p-S6, 

p-CDK2 as well as positive p-CDK2 fraction and p-CDK2 and p-Rb double 

positive fraction) after 24 hours and the AUC of growth inhibition curve after 48 

hours. Statstical significance was assessed by Fisher’s r-to-z transformation. 
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1.5.1.2 Single-cell visualization of cytostatic states 

To assess the role of the strongest loadings in the second PCA model 

(Figure 3.14), we plotted the single-cell drug responses of Cyclin-dependent 

kinase inhibitors (CDKIs) p21/Cip1, p27/Kip1, and p57/Kip2 against p-RB for the 

maximal tested drug dose (10 µM, Figure 3.17). We found that EGFR- and MEK-

targeting drugs caused an accumulation of these CDKIs, whereas mTOR drugs 

not only failed to increase p27/Kip1 and p57/Kip2 levels, they even led to a 

reduction in p21/Cip1. This was similar for AKT inhibitors, which we showed not 

to be effective in inhibiting growth. These results illustrate the value of high-

content imaging compared to methods that measure viability or surrogates such 

as ATP concentrations, while EGFR-, MEK- and mTOR-targeting drugs shared 

similar Emax, yet our high-content molecular analysis revealed quite different 

cytostatic states. 
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Figure 3.17 Molecular details of cytostasis are different from one drug to 
the next. 
Abundance of CDKIs (p21/Cip1, p27/Kip1 and p57/Kip2) was assessed across 

non-treated cells and highest tested dose of 3 inhibitors of EGFR (Lapatinib), 

MEK (Selumetinib) and mTOR (Torkinib). Unlike mTOR inhibitor (Torkinib) that 

shows reduction in p21/Cip1 and no induction of p27/Kip1 and p57/Kip2, EGFR- 

(Lapatinib) and MEK- (Selumetinib) targeting drugs lead to upregulation of all 

measured CDKIs. 
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1.5.2 Results from cyclic immunofluorescence (CycIF) imaging 

1.5.2.1 K-means clustering in PCA space 

Cell cycle regulators have previously been implicated as drivers of 

phenotypic cell-to-cell variability (Buettner et al., 2015; Overton et al., 2014; Patel 

et al., 2014; Powers and Satija, 2015) (Figure 3.15). Because different drugs also 

elicited distinct co-distributions of p-Rb with the CDKI proteins p21/Cip1, 

p27/Kip1, and p57/Kip2 in pairwise co-stained MCF10A cultures, we decided to 

escalate the dimensionality of observed co-distributions to 19 signaling readouts 

by means of CycIF measurements after 24 hours of drug treatment. To survey 

unperturbed cultures for distinct subpopulations, we conducted k-means 

clustering, starting with k = 5 and using the cosine distance metric, which 

distinguishes the directions of marker combinations in signaling space. We then 

iteratively merged clusters while projections along pairwise centroid lines were 

not bimodal. Because this procedure yielded k = 3 well-defined clusters, we 

projected the single-cell densities into the plane defined by cluster centroids 

(Figure 3.18). This projection revealed a difference between the two most 

populated clusters mostly in an increase in p-Rb, PCNA, and a decrease in the 

quiescence marker p27/Kip1. These clusters thus corresponded to proliferating 

(blue) and non-proliferating cells (black). A third, much less populated cluster 

(red) could be distinguished from the remaining population by a large increase in 

γ-H2A.X, p-Histone H3, and pan-p-Aurora staining, each indicative of the mitotic 

fraction. This shows that our dataset captures at least three distinct proliferation 

states in unperturbed cultures. 
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Figure 3.18 k-means clustering in unperturbed cells reveals existence 3 
distinct cellular states corresponding to cell cycle. 
K-means clustering of CycIF data from unperturbed cells showed 3 cluster 

centers corresponding to quiescence enriched with low levels of p-Rb, p-S6, 

PCNA (black) and proliferation enriched with high levels of p-Rb, p-S6, PCNA 

(blue) and mitotic state enriched with p-Aurora and p-Histone H3 (red). 

 

To explore and compare the effects of kinase inhibitors on single-cell co-

distributions, we first performed a PCA on all drug-induced shifts of population 

averages as we did for the dataset obtained by conventional IF microscopy. In 

agreement with the conventional dataset, the plane spanned by the first two 

principal components (Figure 3.19) described drug-induced changes that were 

separable between p-S6 and p-Rb (compass inset). The second principal 
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component reproduced the induction of p27/Kip1 in response to MEK inhibition 

by Selumetinib that we had observed in traditional IF experiments, and made for 

an additional reduction in p-Rb. Overall, our coarse analysis raises the 

hypothesis that p27/Kip1 induction due to MEK inhibition is a critical mechanism 

that distinguishes kinase inhibitors in their ability to suppress p-Rb-mediated cell 

cycle progression. 

 

 
Figure 3.19 Principal component analysis (PCA) of CycIF data is consistent 
with conventional IF data. 
PCA analysis of 3 drugs targeting MEK (Selumetinib), EGFR (Lapatinib) and 

mTOR (Torkinib). Increasing drug doses are illustrated by increasing sizes of 

symbols for each drug. 
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We then used the PCA-derived transformation to project single-cell states 

into density plots for increasing concentrations of kinase inhibitors (Figure 3.20). 

The projection revealed a bimodal distribution of proliferation markers in cells 

treated with DMSO alone, with the largest fraction corresponding to cells 

expressing high abundances of p27/Kip1. Treatment with high concentrations of 

any one drug yielded tight unimodal distributions, but Lapatinib- and Selumetinib-

treated cells congregated in a state with higher p27/Kip1 concentrations than 

Torkinib-treated cells. The density plot for cells treated with a close to IC50 

concentration of Selumetinib revealed that the highest bulk abundance of 

p27/Kip1 comprised of unusually disperse single-cell distributions. A limitation of 

this analysis is, however, that the linear projection based on bulk changes is 

unlikely to capture the full heterogeneity of cells. 

 

 
Figure 3.20 Single-cell projection on k-means clusters in PCA space 
reveals differential cytostatic states. 
Single-cell projection of k-mean cluster in presence of increasing doses of 3 

drugs targeting MEK (Selumetinib), EGFR (Lapatinib) and mTOR (Torkinib) 

shows differential single-cell distributions. 

 

1.5.2.2 viSNE visualization of drug response data 
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stochastic neighboring embedding dimension-reduction method (viSNE), which 

retains high-dimensional structure of data but yields better separations in 

different sub-populations with distinct signatures. First, four replicates of 

control/DMSO-treated samples were analyzed by viSNE, and as expected all 

controls are inseparable (Figure 3.21). 

 
Figure 3.21 DMSO-treated cells in viSNE space are inseparable. 
4 independent DMSO-treated samples were compared using viSNE analysis 

showing that they occupy the same domains in viSNE projection. 

 

However, examining drug-treated samples, shows distinct sub-domains on 

the viSNE projects, with clear DMSO occupied domain, mTOR/PI3K drugs 

(Torkinib and Dactolisib) domain and overlapping but still distinguishable domain 

consisted by EGFR/MEK drugs (Lapatinib and Selumetinib) (Figure 3.22). 
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Figure 3.22 viSNE analysis of perturbed cells implies drug specific induced 
subpopulations. 
Single-cell viSNE analysis of drug perturbed states at the GI50 concentrations. 

DMSO-treated sample (blue), MEK inhibitor (Selumetinib, pink), EGFR inhibitor 

(Lapatinib, green), PI3K-mTOR inhibitor (Dactolisib, red) and mTOR inhibitor 

(Torkinib, black) populate different subdomains. 

 

For the purpose of mapping single-cell heterogeneity in drug induced 

states, we separated the data by drug target, which further separated clear 

differences compared to DMSO-treated cells for each drug at the GI50 

concentration (Figure 3.23). 
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Figure 3.23 viSNE analysis of single drugs implies similarity in single-cell 
phenotypes across drug target subsets. 
Single-cell viSNE analysis of drug perturbed states at the GI50 concentrations. 

DMSO-treated sample (blue), MEK inhibitor (Selumetinib, pink), EGFR inhibitor 

(Lapatinib, green), PI3K-mTOR inhibitor (Dactolisib, red) and mTOR inhibitor 

(Torkinib, black) populate different subdomains. MEK and EGFR inhibitors are 

similar but distinguishable and PI3K-mTOR inhibitor and mTOR inhibitors show 

high degree of similarity. 

 

These results indicate the power of single-cell visualization of CycIF data 

using viSNE algorithm for potential application in preclinical drug discovery. In 

order to investigate the variation in single-cell drug responses at the level of 

signaling, we further examined the distribution of each individual signal by viSNE. 

As shown in Figure 3.24, viSNE plots indicated that Ki-67 covers the most area 

of cycling cells, while PCNA and p-RB labeled different subsets of proliferative 

cells. Interestingly, while Cyclin D1 is normally considered as a proliferative 

marker, high Cyclin D1 cells were p-RB negative and with strong p21/Cip1 and 

p53 staining. As previous studies suggested, the subpopulation might correspond 

to quiescent or senescent states that may be induced by drugs (Chen et al., 

2013). By comparing the distribution of signals and their corresponding drug 

treatments, we found that similar to conventional (IF) results, EGFR and MEK 

inhibitor (Lapatinib and Selumetinib) treated cells have relatively high levels of 

p27/Kip1 and FOXO3a compared to mTOR inhibitors (Dactolisib and Torkinib). In 

addition, we examined the distributions of p-ERK1/2 and p-S6, signals upstream 

of cell cycle regulators as well as downstream targets of the inhibitors. As we 

expected, two p-S6 sites are decreased by mTOR targeting drugs and the cells 
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with highest p-ERK signal seem to be enriched in the mTOR inhibitor treated 

cells, which agreed with the previous findings on the negative feedback loop 

between PI3K/mTOR and ERK pathways (Carracedo et al., 2008). Lastly, 

although the Ki-67 plot indicates all these drugs efficiently put cells into non-

proliferative state, the γH2A.X plot suggests that the overall DNA damage/cell 

death were low in these treatments. 

 

 
Figure 3.24 viSNE analysis of drug induced domains across 12 signals 
reveals distinct signaling states across different drugs. 
Assessment of enrichment of 12 different drug induced signals in viSNE space. 

Proliferation markers (Ki-67, PCNA, p-Rb and Cyclin D1) occupy differential 

domains in viSNE space. Cyclin-dependent kinase inhibitor p21/Cip1 occupies 

similar domains as p53, while p27/Kip1 occupies similar domain as Foxo3a. p-

ERK1/2 remains active in some cells and different active phospho residues on 

S6 occupy similar single-cell domains. 
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1.5.2.3 Fractional analysis in viSNE space 

In addition to probing the overall signaling responses of different drugs by 

viSNE, we took advantage of multi-dimensional single-cell data to dissect 

different phenotypic responses of subpopulations. We resampled the Torkinib 

treated cells into 3 different sub-populations by gating their p-Rb levels. 

Surprisingly, we found that cells high with p-RB (drug resistant cells) are mostly 

enriched in S/G2, with high Ki-67, PCNA and low p21/Cip1 (Figure 3.25). We also 

found that these resistant cells might have slightly higher total-AKT, which may 

account for sensitivity to PI3K/mTOR inhibition.  

 

 
Figure 3.25 Torkinib resistant subpopulation is in S/G2 cell cycle phase and 
enriched with markers of proliferation. 
In viSNE space, cells that were treated with Torkinib were gated based of p-Rb 

levels (high, medium and low) (left panel). Cells that are high with p-Rb signal in 

presence of drug seem to be in S/G2 cell cycle phase based on DNA content and 

enriched with markers of proliferation (Pan-AKT, PCNA and Ki-67, left panel). 

Cells with low p-Rb signal seem to have high levels of p21/Cip1. 
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1.5.2.4 Wanderlust visualization of steady states 

Even though, the viSNE algorithm was powerful in visualizing high-

dimensional subpopulation differences in mTOR targeting drugs by keeping 

single-cell information intact, due to static representation of the signals in such 

analysis, it lackes clear information on transitional states. Thus, we addressed 

this issue by performing Wanderlust algorithm on CycIF dataset initially for cell 

cycle regulating proteins in unperturbed cells (Figure 3.26).  

 
Figure 3.26 Single-cell distribution of cell cycle markers in viSNE space 
combined with Wanderlust axis recapitulates direction of cell cycle 
progression. 
Single-cell distributions of cell cycle markers such as p-Rb, Ki-67 and p21/Cip1 in 

single cells shows distinct cellular states. Wanderlust overlay on viSNE space 

shows the direction of cell cycle progression (bottom right). 

 

Additionally, we were able to reconstitute different stages of cell cycle from 

Wanderlust trajectory. In G0/G1 stage, DNA content is the lowest accompanied by 
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low levels of p-RB and rising levels of Ki-67, PCNA and Cyclin D1 as well as 

accumulation of p27/Kip1 and p21/Cip1. In G1/S phase, levels of Ki-67 and 

Cyclin D1 continue to rise at a slower rate, whereas PCNA levels do not rise 

much while the levels of p27/Kip1 and p21/Cip1 decline, former with a slow and 

latter with a faster rate until cells pass the restriction point and commit to DNA 

synthesis that is accompanied by a sharp increase of p-RB. In S/G2/M cell cycle 

stage, p27/Kip1 and p21/Cip1 continue to degrade with similar rates 

accompanied by degradation of Cyclin D1 and this time levels of Ki-67 reach a 

plateau, while the PCNA levels sharply rise (Figure 3.27).  

 
Figure 3.27 Reconstruction of cell cycle progression by Wanderlust 
analysis of static cell cycle regulator markers. 
Different markers of cell cycle progression such as p-Rb, p21/Cip1, p27/Kip1, 

Cyclin D1, PCNA, Ki-67 and DNA content were measured in unperturbed cells 

and Wanderlust analysis correctly reconstituted G0/G1, G1/S and G2/M cell cycle 

stages. 
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continuous system such as cell cycle. However, it is able to reconstruct only non-

branching trajectories, underlining a requirement for different analytical methods 

to study bifurcating cell populations. This is crucial as we show in the viSNE 

section that all tested drugs generated significant cell-to-cell heterogeneity, 

particularly when their response was incomplete (Emax>0). Different 

subpopulations of cells arise in this case because of branching in cell cycle 

trajectories, with some cells exiting the cell cycle and others continuing to 

proliferate. Newly developed algorithms such as Wishbone (Setty et al., 2016) 

can deal with bifurcations in developmental systems, however to the best of our 

knowledge have not been tested in pharmacology so far. 
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4. DISCUSSION 
 

Discovery and development of new medicines is expensive and prone to 

failures (Bains, 2004; Swinney and Anthony, 2011). Reducing the high cost of 

failures could remove a huge burden from pharmaceutical companies and opens 

possibilities to focus investments on R&D in a more productive manner. Among 

many reasons for failure in development of new drugs, safety and efficacy seem 

to play a major role (Hughes et al., 2011). While there are only limited 

approaches to assess drug safety in preclinical studies, the potential applications 

of novel technologies and computational frameworks in preclinical stages of drug 

discovery is evident (Sorger et al., 2011). Recruitment of such approaches in 

early phases of drug development will likely lead to lower number of potential 

drug candidates progressing to late clinical phases, but at the same time 

increases the likelihood of success in a few rigorously tested safe, potent and 

effective chemical agents to be approved and used in therapy (Paul et al., 2010). 

Understanding the molecular mechanisms of drug action requires 

characterizing drug-induced changes in cellular states. In the case of targeted 

anti-cancer drugs these typically involve inhibition of oncogene signaling, 

changes in cell cycle distribution and induction of senescence or apoptosis. 

Conventional high-throughput screening approaches that examine bulk drug 

effects fail to systematically assess this complexity and multiplex methods are 

required to collect well-average drug dose-response data for multiple molecular 

signals and cellular phenotypes along a response pathway. Because imaging 

allows data to be acquired at relatively low cost, it is feasible to obtain detailed 

information on the impact of dose and time across multiple compounds. We 

believe that this will be particularly useful in the later stages of pre-clinical drug 

development in which the aim is to select candidates among dozens of lead 

compounds with similar structures (structure-activity relationships). 
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In this thesis, we have shown that microscopy represents effective means 

to characterize differences among drugs that relate to drug resistance or 

sensitivity. We show how the focus to date on drug potency (typically IC50 or 

AUC) ignores the potential impact and biological importance of variation in other 

parameters, such as the steepness of the dose-response curve hill slope (HS) or 

differences in maximum effect (Emax). Interestingly, analysis of drug dose-

response curves revealed that within effective drug groups, drugs that have 

different potency seem to lead to similar levels of growth inhibition at highest 

tested dose of each drug. In addition, unlike drugs that target intracellular 

biochemical nodes like MEK (PD0325901 and Selumetinib), AKT (MK2206 and 

Triciribine) or mTOR (Dactolisib and Torkinib) that have shallow dose response 

curves (HS<~1), EGF receptor targeting drugs (Erlotinib, Gefitinib and Lapatinib) 

lead to much steeper dose responses (HS >1.5). 

Averaged analysis of activity for a few signaling kinases like p-ERK1/2, p-

S6 and p-4EB-BP1 post perturbation with the drug panel, revealed significant 

molecular complexity underlying the phenotypic differences. For example, the 

PI3K/mTOR inhibitor Dactolisib was a very potent suppressor of the 

phosphorylation of S6 and 4E-BP1, two major proteins involved in translational 

control, whereas Selumetinib, which is even more potent as an inhibitor of cell 

growth, had little effect. In the case of the mTOR inhibitor Torkinib, we observed 

dose-dependent increases in p-ERK1/2, a pro-growth counter therapeutic effect 

consistent with negative regulation of MAP kinase signaling by mTOR. 

To investigate the role of MAPK signaling in drug response and 

importance of time and dose on phenotypic regulation, we screened the 

response of a panel of non-transformed as well as cancer cell lines to Lapatinib; 

an FDA approved small-molecule dual tyrosine kinase inhibitor targeting 

EGFR/HER2 and showed that the dynamics of ERK phosphorylation is important 

in predicting the response to Lapatinib in a way that ERK phosphorylation is a 

good predictor of late phenotypic response only at intermediate time points. In 

fact, unlike intermediate p-ERK1/2 response, early-immediate p-ERK1/2 signal 

response can only poorly predict the phenotype. We investigated the origins of p-
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ERK1/2 recovery post treatment with Lapatinib in one of the resistant cell lines 

(MCF10a) by providing evidence against drug efflux, metabolization or activation 

of an autocrine loop. 

Through time series experiments, using combination of high-content 

imaging, ELISA and western blot methods we provided evidence toward a 

dynamic behavior of drug target (EGFR/HER2) post exposure to Lapatinib. Since 

our aim was to examine a focused case in a typical protocol used in high-

throughput drug screens, we assessed Lapatinib response using the exact 

protocol. In this protocol drug is combined with full serum media and added to 

cells, which could influence cell signaling in steady state. In basal conditions, 

most EGFR seemed to be localized in the cytosol as punctuates, likely in 

multivesicular bodies. Upon drug exposure, immediate reduction in EGFR 

phosphorylation at multiple residues is detected, cytosolic EGFR translocates to 

plasma membrane, where it has access to extracellular EGF ligand in the full 

serum media, which in turn leads to EGFR reactivation and p-ERK1/2 recovery. 

This translocation was associated with a reduction in the number of intracellular 

EGFR and clathrin heavy chain punctates suggesting a clathrin-mediated 

receptor internalization in basal conditions. In order to sustain EGFR/ERK 

inhibition, we hypothesized that by combining two inhibitors for the same target 

(EGFR), we could not only sustain the EGFR/ERK inhibition by a synergistic 

effect, but also reduce the toxicity caused by high concentrations of drugs as 

each single agents used as monotherapy. In result, we observed that the 

combination of Lapatinib and Gefitinib caused p-ERK1/2 to remain inhibited as 

measured at 24 hours, which also resulted in the inhibition of a downstream cell 

cycle regulator (p-Rb). It is of importance to note that EGFR/ERK recovery only 

occurred at the Lapatinib concentrations below sub-saturation. In fact, the shift of 

p-ERK1/2 IC50 between immediate and intermediate time points happens only at 

concentrations below 3.2 nM suggesting that the activation of reserved 

intracellular EGFR fraction does not lead to recovery at high concentrations due 

to the presence of sufficient drug amounts of drug in the surrounding 

microenvironment. This alone, at least partially explains the steep hill slope of the 
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response to Lapatinib. Because all EGFR molecules need to remain inhibited in 

order to sustain pathway inhibition consistent with the regulation of EGFR activity 

by threshold effects (Sigismund et al., 2013). 

In order to identify the dominant signaling axis of drug response, we 

performed principal component analysis on bulk drug effects and applied PCA to 

the relative changes of signaling readouts. Two PCs captured ~90% of variance, 

indicating that the bulk signaling changes in response to all drugs explored in this 

dataset can be understood within a plane spanned by two axes. One axis (PC1) 

corresponded primarily to the phosphorylated levels of the CDK2 cell cycle 

kinase (p-CDK2). PC2 largely comprised p-ERK1/2 with negative loading and the 

phosphorylated forms of the ribosomal S6 subunit (p-S6S235/236) and of the 

translation repressor 4E-BP with positive loadings. S6 is activated by 

phosphorylation at multiple sites by TORC1 (Gonzalez et al., 2015) and by the 

p90 ribosomal S6 kinase (RSK; which in turn lies downstream of the MEK/ERK 

kinase cascade). Thus, virtually all of the effects of the nine drugs tested can be 

captured in a two-dimensional landscape in which proliferation (p-CDK2), MAPK 

signaling (p-ERK1/2) and protein translation (p-S6) are the most important 

molecular features.  
Dose-response trajectories were distinct for each target class, with PC2 

accounting for the greatest variation. For example, the AKT inhibitors (MK2206 

and Triciribine) resulted in dose-response trajectories that were similar to each 

other, yet distinct from those of the mTOR inhibitors (Dactolisib and Torkinib). 

The three ErbB receptor inhibitors tested, Gefitinib, Lapatinib and Erlotinib were 

also similar to each other, however distinct from all other drug classes. 

Altogether, the tight grouping of dose-response trajectories by drug class in 

signaling space suggests high selectivity of these compounds. The signaling 

plane identified by PCA also serves to illustrate that with increasing dose of 

mTOR drugs, the dose-response trajectories depart from a pure effect along the 

S6 axis and progressively induce mitogenic ERK signaling. In contrast, MEK 

inhibitors affected readouts more broadly and resulted in trajectories with many 
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other components orthogonal to the p-ERK1/2 vector. Thus, MEK inhibitors did 

not point in the opposite direction from p-ERK1/2. 

Multiple methods exist for normalizing and scaling experimental data prior 

to analysis methods such as PCA and it is not always clear which is the most 

appropriate method of choice for a given data set. Initially, raw intensity values 

obtained from image processing algorithms were divided by intensity values for 

DMSO only controls to obtain log2 fold-change ratios. As an alternative approach 

that aimed to highlight the elevated signaling states in drug-treated cells, log 

ratios were normalized by the cell-to-cell variability (as measured by standard 

deviation) for each IF signal in unperturbed cells. PCA of data normalized in this 

way yielded different loadings with the abundance of p27/Kip1 as the primary 

PC1’ loading and p-4E-BP1 as the primary PC2’ loading; PC1’ and PC2’ 

captured 75% of variance. Drug-response data projected differently in the PCA 

space defined by PC1’/PC2’ relative to PC1/PC2 but key biological features were 

retained. For example, in both cases drugs with similar targets mapped close 

together and drugs with different targets were distinct. PC1 and PC1’ were nearly 

the opposite of each other, consistent with mutually antagonistic interactions 

between CDK2 and p27/Kip1. With respect to PC2 and PC2’, it is reasonable to 

consider p-4E-BP1 as a stand-in for pS6, given that both lie downstream of 

AKT/mTOR. Thus, even though the two PCA plots appear to be different, they 

both capture the fact that the drugs tested move cells across a plane defined by 

cell cycle progression and protein translational activity. 

 

Single-cell profiling uncovers relationships between drug-target 

engagement and induction of cellular phenotypes that are obscured by 

population average methods, fitting well into the workflow of drug discovery. It 

can also be very economical with respect to reagents and numbers of cells (an 

important consideration with patient-derived materials). The data described in this 

thesis illustrate the potential of simple well-average data derived from imaging to 

characterize the diversity of cellular response to drugs. The analysis and insights 

are fundamentally similar to what can be achieved with multiplex biochemical 
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assays. However, for proteins and modification states that are bimodally 

distributed across the cell cycle, such as p-CDK2, averaging signals across an 

entire plate is suboptimal. We therefore compared the correlation between the 

computed AUC of average relative upstream signals such as p-ERK1/2 and p-S6 

as well as averages of most downstream signals such as p-CDK2 response 

curves and the AUC of the growth inhibition curve at 48 h and compared this to 

the correlation between fraction p-CDK2 positive fraction and phenotypic 

response. We observed no linear relationship between p-ERK1/2 or p-S6 and the 

phenotypes when all drugs were loaded in the model, however averaged p-CDK2 

response correlated well with growth inhibition (R2=0.71). A statistically 

significant (p=0.02 by Fisher’s r-to-z transformation test) improvement was 

achieved when instead of averaged p-CDK2, the fraction double-positive p-

CDK2/p-Rb fraction was used in the regression model (R2=0.91). 

Furthermore, to assess the molecular details of single-cell cytostatic 

phenotypes induced by drugs at the highest tested dose, we plotted of Cyclin-

dependent kinase inhibitors (CDKIs) (p21/Cip1, p27/Kip1 and p57/Kip2) 

abundance against p-Rb to quantify quiescent and proliferative subpopulation 

fractions. Analysis of the single-cell scatter plots revealed significant differences 

in molecular phenotypes induced by different drugs. Even though the averaged 

relative growth of all drugs, aside from AKT targeting-drugs were similar (Emax ~ 

1), mTOR targeting-drugs like Torkinib not only led to accumulation of p27/Kip1 

and p57/Kip2, but also reduced p21/Cip1 levels, whereas EGFR and MEK 

targeting-drugs perturbed all 3 CDKIs. These results underlie the value of high-

content single-cell microscopy in characterization of drug-induced cellular 

phenotypes, given that similar bulk growth inhibition does not necessarily 

correspond to similar cytostatic phenotype at single-cell level. 

Analysis of the well-average changes induced by a representative subset 

of the kinase inhibitors (one drug per target class) in the highly multiplexed CycIF 

dataset yielded comparable observations with respect to the underlying biology, 

although the sets of antibodies used for conventional IF and CycIF were largely 

distinct due to differing criteria for selection and optimization. For example, a 
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PCA of the well-averaged changes also revealed a planar surface that is 

sufficient to distinguish all drug classes. In this dataset as well, induction of 

p27/Kip1 is the major upstream distinction between the molecular effects of 

Torkinib, Lapatinib, and Selumetinib. A fundamental advantage of highly 

multiplexed single-cell measurements is the ability to reveal correlations between 

different signals within a population beyond the bulk changes. Such correlations 

can be used to infer functional relationships among proteins that are obscured by 

population average measurements or even by multiple-rounds of single-cell low-

plex measurements.  

As a first step in analyzing single-cell distributions in CycIF data, we 

performed k-means clustering and chose unperturbed cells. We started with k = 5 

clusters and used the cosine distance metric, which distinguishes marker 

combinations primarily by their orientation in signaling space. We then iteratively 

merged clusters in cases where projections along pairwise centroid lines were 

not bimodal. This procedure yielded k = 3 well-defined clusters that can be 

projected as single-cell densities into a plane defined by cluster centroids. These 

clusters appear to correspond to three distinct cell cycle states. Most populated 

cluster (77% of cells) was distinguished from the next-most populated cluster of 

cells (22%) by lower levels of pRb, PCNA, and higher levels of p27/Kip1, 

suggesting that the clusters correspond to non-proliferating and proliferating 

cells. A third, relatively disperse cluster (red, 1%) was distinguished by higher γ-

H2AX, p-Histone H3, and p-AuroraA/B/C staining, each of which is indicative of 

mitosis. A limitation of this analysis is, however, that a linear planar projection is 

unlikely to capture the full heterogeneity of the cells, and that no additional states 

or transitions of cell cycle progression were resolved by k-means. 
Graph-based trajectory reconstruction can be used as means to interpret 

high-dimensional data based on the inference of temporal order. It has been 

shown that cell-cycle trajectories can be reconstructed from fixed cell images 

(Kafri et al., 2013) and complex differentiation programs from CyTOF data 

(Bendall et al., 2014). The Wanderlust algorithm accomplishes this by connecting 

nearest neighbors among subsampled single-cell readouts as a means to place 
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them on single axis (Gut et al., 2015). When applied to CycIF data from 

unperturbed MCF10A cultures, the Wanderlust algorithm indeed reconstructed 

known cell cycle transitions, in support of antibody selectivity and the notion that 

CycIF data captures a rich set of biological information. We saw that on the 

Wanderlust axis, normalized DNA content (Hoechst 33342 staining) is low from 

6x104 to 12x104, at which point it rises steadily, concomitant with a rise in Rb 

phosphorylation. Between 6x104 and 12x104 the levels of the p21/Cip1 and 

p27/Kip1 CDKIs were high and Cyclin D1 levels increased rapidly. These 

trajectories recapitulated well-documented changes in cell cycle regulators 

whereby expression of Cyclin D1 in G0/G1 permits CDK2 to overcome p27/Kip1 

inhibition and mark it for degradation. This leads to activation of a switch that 

leads to Rb phosphorylation and thereby, licensing of DNA replication, and entry 

into S phase. Cyclin D1 concentration occurs in cells with 4N DNA followed by 

mitosis in cells with high PCNA levels, at which point the Wanderlust plot can be 

assumed to wrap over to the left. 

Multiplex imaging reveals that the exposure of cells to targeted anti-cancer 

drugs induces cell cycle states that are not found in normal cells and that these 

can be heterogeneous across the population. We and others and we have linked 

such heterogeneity among genetically identical cells to submaximal drug 

response and the perdurance of drug-resistant subpopulations potentially 

involved in residual disease. The t-SNE implementation viSNE yields a flat 

projection that better represents heterogeneity than conventional projection of k-

means clusters and has previously been shown to work well with CyTOF data 

(Amir el et al., 2013). The same data used to generate the Wanderlust plot were 

projected here using viSNE algorithm. The viSNE plots from p-RB and Ki-67 

stainings (both of which are markers of cell proliferation) occupy the territories 

opposite to the p21/Cip1 (negative cell cycle regulator). When viSNE was used to 

project data from untreated MCF10a and cells color-coded by Wanderlust index, 

we observed that the cell cycle precedes counter-clockwise through the 

projection. A “peninsula” in the edge of the viSNE space encompasses the Ki-67 

negative cells subset of non-cycling cells and likely corresponded to the 
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quiescent fraction of the MCF10A culture. As a control in contrast, merging four 

replicate sets from DMSO-treated cultures yielded a viSNE projection in which 

none of the replicates segregated. 
 To compare drug responses at a single-cell level we merged CycIF data 

from cells treated with each of the four different kinase inhibitors or with DMSO 

alone. The doses of drugs used here were selected to lie between GI50 and GI80.  

Projecting the data with viSNE yielded a landscape in which different drugs 

mapped to different regions of the space. For example the mTOR/PI3K drugs 

Torkinib and Dactolisib were distinct from the populated patch corresponding to 

treatment with the EGFR or MEK inhibitors Lapatinib and Selumetinib. This 

shows that the localization of cells in the viSNE projection reflects differences in 

drug response. These projections also demonstrated numerous subpopulations 

after drug treatment that fragmented landscapes. 

To interpret these viSNE clusters at the level of signaling, we color-coded 

data points in the same viSNE projection according to the relative intensity of 

each CycIF signal. Antibodies specific to different cell cycle proteins and 

phosphorylation states revealed multiple subpopulations distinguished by 

antigens commonly thought to exhibit similar regulation of biological processes. 

Specifically, antibodies against Ki-67 stained the largest number of cells whereas 

antibodies against PCNA and p-Rb labeled only distinct subpopulations within 

the Ki-67 domain. Because Cyclin D/CDK complexes promote Rb 

phosphorylation, the point in the cell cycle at which Cyclin D1 abundance is 

highest is usually thought to correspond to the point of maximal Rb 

phosphorylation. However, we found that cells with the highest Cyclin D1 

concentrations were p-Rb negative and exhibited strong p21/Cip1 and p53 

staining. This subpopulation likely corresponds to a non-proliferative state that 

has previously been described as an alternative mode of cell cycle exit (Chen et 

al., 2013).  

Consistent with our PCA of the traditional IF drug screen dataset, viSNE 

domains populated by cells treated with EGFR or MEK inhibitor (Lapatinib or 

Selumetinib) featured higher levels of p27/Kip1 (and also FOXO3a) than viSNE 
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domains corresponding to mTOR inhibition by Dactolisib or Torkinib. When we 

examined the distribution of p-ERK1/2 and p-S6, which function as signals 

downstream of all drugs in our panel but upstream of cell cycle regulators we 

found that viSNE domains corresponding to treatment of cells with Torkinib 

exhibited greatly reduced S6 phosphorylation at S235/236 and S240/244 but 

high p-ERK1/2 levels. This is in agreement with previous data showing that 

mTOR inhibition relieves ERK from negative feedback, albeit through an unclear 

mechanism (Albert et al., 2009; Carracedo et al., 2008). 

To explore the ability of viSNE to dissect drug responses in cell 

subpopulations in comparison with classic scatter plots, we gated on the cluster 

of Torkinib-treated cells that featured the highest p-Rb levels and examined the 

marginal distributions of the signaling proteins in this cluster. This analysis 

revealed strong Ki-67 and PCNA expression, low p21/Cip1 and p27/Kip1 

expressions and 2N DNA content indicative of S/G2-like cells that are still 

proliferating. We conclude that although most MCF10A cells arrest in the 

presence of Torkinib, a subset of cells escapes this effect, which may underlie 

the reduced Emax observed for Torkinib. More generally, the ability to isolate this 

subset suggests that our dataset is informative of abnormal cell cycle states that 

may potentially underlie resistance. 

 

Further research is required to test these ideas. However it is evident that 

the near-universal use of population average measurements to characterize drug 

response at cellular level is prone to missing important information. However, 

effective analysis of single-cell data involving drug-induced subpopulations and 

cell-cycle bifurcations will requires the development of new algorithms. Existing 

graph reconstruction methods such as Wanderlust and Wishbone are not yet 

fully able to fully deal with this complexity in the context of pharmacology. 

 

While multiplex single-cell imaging using methods such as CycIF are no 

more complicated than conventional IF, they are substantially cost-effective since 

they cut down on the amount of cell culture material and reveal connections 
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between molecular signals and phenotypes that cannot be discerned using 

population average methods or multiple rounds of low-plex measurement across 

many cell culture samples. Cell cycle progression, for example, can be directly 

inferred from such data using graph-based trajectory reconstruction. The image 

segmentation and analysis routines used in this thesis are intentionally simple 

ones and primarily yielding per-cell intensity data.  The addition of morphometric 

data (on cell shape or the organization of the cytoskeleton for example) will most 

certainly yield additional insight. I hope that the data in this thesis will motivate 

methodologies for analyzing or visualizing of high-dimensional single-cell data on 

normally growing and drug-treated cells.  
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5. SUMMARY 
 

The activities of small molecule anti-cancer drugs are commonly 

measured in cell-based assays as means to optimize drug properties, study 

biological processes such as cell growth and death, and identify factors that 

control drug sensitivity and resistance. Most of these assays involve 

measurement of a single parameter in drug-treated cells, commonly the number 

of viable cells. However, understanding the mechanisms of action of therapeutics 

requires characterizing drug-induced changes in intracellular states. This typically 

involves inhibition of oncogene signaling, changes in cell cycle distribution and 

induction of senescence or apoptosis. Near-universal use of conventional single-

parameter screening techniques used in drug discovery fail to systematically 

assess this complexity.  Thus, multiplex methods are required to collect drug 

dose-responses from multiple molecular signals and cellular phenotypes along a 

response pathway. Multiplex assays such as flow-based methods have the 

potential to provide data on many more features of drug-perturbed cells but are 

difficult to perform in high-throughput on adherent cells; bead-based immuno-

assays are expensive and provide only well-average data. In this thesis, we 

argue that high-content and high-throughput microscopy is ideal for this purpose 

as it not only combines aspects of phenotypic and target-centric approaches in 

cell populations, but also sheds light on the molecular details of drug-induced 

phenotypes at single-cell level. 

Analysis of phenotypic dose-response curves from 9 kinase inhibitors 

measured by high-throughput microscopy revealed systematic similarities and 

variations between different drugs. For example, EGFR-targeting drugs exhibited 

much steeper hill slope (HS) compared to drugs targeting MEK, AKT or mTOR. 

While all effective drugs had similar averaged maximal cytostatic effects 

(Emax~1.1), the accumulation of Cyclin-dependent kinase inhibitors (CDKIs) 

varied from one drug to the next. 
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Principal component analysis (PCA) on the measured molecular signals 

captured 90% of the variance in two principal components (PCs) indicating that 

the bulk signaling changes in response to all explored drugs can be understood 

within a plane spanned by two orthogonal axes of protein synthesis (p-4EBP1 

and p-S6) and cell cycle progression (p-CDK2, p27/Kip1). Interestingly, mTOR 

inhibition caused dose-dependent upregulation of ERK1/2 phosphorylation that 

may be counter-therapeutic. Furthermore, we investigated the importance of 

MAPK signaling dynamics in a panel of immortalized and cancer cell lines in 

response to a dual EGFR/HER tyrosine kinase inhibitor (Lapatinib). Averaged 

ERK1/2 phosphorylation response curve at intermediate time points was highly 

correlated with the late phenotypic response (R2=0.96) and the transient p-

ERK1/2 inhibition was associated with translocation of EGFR to plasma 

membrane and recovery of EGFR phosphorylation. Combination of two EGFR 

inhibitors led to sustained inhibition of EGFR/MEK/ERK signaling pathway and 

thereby the inhibition of proliferation measured by Rb phosphorylation. 

Even though averaged measurements of drug response is clearly useful in 

investigating how cells at the population level behave in response to drugs, 

single cell profiling is increasingly recognized as means to understand natural 

and induced changes in cellular physiology. Progress has been particularly rapid 

in the case of highly multiplexed flow-based methods but in contrast, microscopy-

based profiling approaches have lagged behind both with respect to the 

development of easily implemented assays and computational analysis 

frameworks. 

We monitored the response to 4 kinase inhibitors targeting immediate-

early signaling pathways in the widely used, non-transformed mammary epithelial 

cell line using a novel “cyclic immunofluorescence” method (CycIF) capable of 

imaging up to 30 channels and analyzed the data using existing tools like k-

means clustering, viSNE and Wanderlust algorithms. We were able to 

reconstitute different stages of cell cycle from Wanderlust trajectory. Using viSNE 

algorithm, we showed that different drugs lead to emergence of distinct 

subpopulations. In particular, response to mTOR targeting drugs was associated 



 85 

with resistance of a subpopulation in S/G2 cell cycle phase that was highly 

enriched with markers of proliferation. Thus, highly multiplexed single-cell 

imaging reveals valuable insight into mechanisms of drug action and cell-to-cell 

variability in drug response. 
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6. ZUSAMMENFASSUNG 
 
Die Wirkung von niedermolekularen Krebsmedikamenten wird normalerweise 

mittels zell-basierten Analysen getestet, um die Wirksamkeit zu optimieren, 

Erkenntnisse über Zellwachstum und -tod zu gewinnen, sowie Faktoren zu 

identifizieren, die Resistenz und Sensitivität beeinflussen. 

Viele dieser Methoden umfassen die Messung eines einzelnen Parameters der 

medikamentös-behandelten Zellen, meist die Anzahl lebender Zellen. Um die 

Wirkmechanismen von Therapeutika zu verstehen, müssen die 

arzneimittelbedingten Veränderungen auch hinsichtlich des intrazellulären 

Zustandes charakterisiert werden. Dies beinhaltet üblicherweise die Inhibition der 

Onkogen-Signalwege, Veränderungen in dem Zellzyklus und Induktion von 

Seneszenz oder Apoptose. Naheliegende konventionelle Einzelparameter 

Screening Techniken, wie sie in der Arzneimittelforschung genutzt werden, sind 

nicht im Stande diese Komplexität methodisch zu bewerten. Deshalb sind 

Multiplex Methoden erforderlich, um den Dosis-Wirkungs-Verlauf von multiplen 

molekularen Signalen und zellulären Phänotypen zu erfassen. Multiplex 

Analysen, wie durchfluss-basierte Methoden, haben das Potential Daten zu 

vielen Eigenschaften von medikamentös behandelten Zellen zu liefern, es ist 

aber schwierig dieses im Hochdurchsatz mit adhärenten Zellen durchzuführen. 

Bead-basierte Immuntests sind teuer und liefern nur Durchschnittswerte je Well. 

In dieser These behaupten wir, dass hochauflösende und Hochdurchsatz-

Mikroskopie für diesen Verwendungszweck ideal ist, da nicht nur Aspekte wie  

Phänotyp- und Ziel-basierende Ansätze, sondern auch molekulare Details der 

medikamentös-induzierten Phänotypen der einzelnen Zellen einbezogen werden 

können. 

 

Die Analyse der phänotypischen Dosis-Wirkungs-Kurven von neun Kinase-

Inhibitoren, gemessen mittels Hochdurchsatz-Mikroskopie, zeigt systematische 
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Parallelen, aber auch Variationen zwischen den verschiedenen Medikamenten. 

Zum Beispiel zeigen EGFR-modifizierte Medikamente einen steileren Hill-Anstieg 

im Vergleich zu Medikamenten, die MEK, AKT oder mTOR modifizieren. 

Während alle wirksamen Medikamente vergleichbare durchschnittliche maximale 

zytostatische Effekte (Emax~1.1) hatten, variierte die Zunahme von Cyclin-

abhängigen Kinase Inhibitoren (CDKIs) der einzelnen Medikamente. 

 

Die Hauptkomponentenanalyse (PCA) der gemessenen molekularen Signale 

erfasst 90% der Varianz von zwei wesentlichen Bestandteilen (PCs), daraus 

ergibt sich, dass ein Großteil der veränderten Signale im Zusammenhang mit 

allen erforschten Medikamenten mittels einer zweidimensionalen Fläche 

zwischen orthogonalen Axen für Protein-Synthese (p-4EBP1 und p-S6) und 

Zellzyklus-Verlauf (p-CDK2, p27/Kip1) beschreiben werden kann. 

Interessanterweise verursacht die Inhibition von mTOR einen dosisabhängigen 

Anstieg der Phosphorylation von ERK1/2, der die Wirkung verringern könnte. 

Außerdem untersuchten wir die Bedeutung von MAPK-Signalwegen in einem 

“Panel” von immortalisierten und Krebszelllinien in Reaktion auf einen doppelten 

EGFR/HER Tyrosin-Kinase-Inhibitor (Lapatinib). Im Durchschnitt gab es eine 

hohe Korrelation des Verlaufs der ERK1/2-Phophorylation mit der 

phänotypischen Reaktion (R2=0.96), und die transiente Inhibition von p-ERK1/2 

wurde mit der Translokation von EGFR zur Plasmamembran und 

Wiederherstellung der EGFR Phosphorylation in Zusammenhang gebracht. Die 

Kombination von zwei EGFR Inhibitoren führte zu kontinuierlicher Inhibition des 

EGFR/MEK/ERK Signalwegs und in der Folge zur Inhibition der Proliferation, 

gemessen anhand der Phosphorylierung von Rb. 

Obwohl die durchschnittlichen Messungen der Dosiswirkung zweifellos nützlich 

sind, um das Verhalten der gesamten Zellenpopulation auf die entsprechenden 

Medikamente zu erforschen, wird die Einzel-Zell-Analyse zunehmend als 

Möglichkeit für die Erforschung von natürlichen und induzierten Veränderungen 

in der Zellphysiologie anerkannt. Die Entwicklung war besonders schnell im Fall 

von Hochdurchsatz-durchfluss-basierten Methoden, demgegenüber war das 
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Entstehen von Mikroskopie-basiertem “Profiling” verzögert wegen der 

Entwicklung von einfach umzusetzenden Analysen sowie von rechnerisch 

analytischen Systemen. 

Wir überwachten die Reaktion auf vier Kinase-Inhibitoren, die auf den frühen 

Signalweg wirken. Wir verwendeten dafür die häufig genutzten, nicht 

umgewandelten, mamillären epithelialen Zellinien und dazu eine neuartige 

“zyklische Immunfluoreszenz” Methode (CycIF), die fähig ist bis zu 30 Kanäle 

gleichzeitig abzubilden. Zur Datenanalyse wurden bereits bestehende Hilfsmittel 

wie k-means-Algorithmus, viSNE- und Wanderlust-Algorithmus verwendet. Wir 

waren in der Lage verschiedene Abschnitte des Zellzyklus mit der Wanderlust-

Zeitschiene darzustellen. Mittels viSNE-Algorithmus konnten wir zeigen, dass 

verschiedene Medikamente zur Entstehung von eigenständigen Subpopulationen 

führen. Im Besonderen konnte die Reaktion von Medikamenten die auf mTOR 

wirken, mit einer Resistenz einer Subpopulation im S/G2 Zellzyklus in 

Zusammenhang gebracht werden. In dieser Subpopulation waren 

Proliferationsmarker sehr stark angereichert. Folglich offenbart das “Multiplex-

Single-Cell-Imaging” nützliche Einblicke in die Wirkmechanismen von 

Medikamenten und Zell-zu-Zell-Variabilität. 
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