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i

Thema

Dual flows in hyperbolic space and

de Sitter space

Gutachter: Prof. Dr. Claus Gerhardt



ii

Danksagung
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DUAL FLOWS IN HYPERBOLIC SPACE AND DE SITTER

SPACE

HAO YU

Abstract. We consider contracting flows in (n+1)-dimensional hyper-
bolic space and expanding flows in (n+1)-dimensional de Sitter space.
When the flow hypersurfaces are strictly convex we relate the contract-
ing hypersurfaces and the expanding hypersurfaces by the Gauß map.
The contracting hypersurfaces shrink to a point x0 in finite time while
the expanding hypersurfaces converge to the maximal slice {τ = 0}.
After rescaling, by the same scale factor, the resclaed contracting hy-
persurfaces converge to a unit geodesic sphere, while the rescaled ex-
panding hypersufaces converge to slice {τ = −1} exponential fast in
C∞(Sn).

Zusammenfassung. Wir betrachten kontrahierende Flüsse im (n+1)-
dimensionalen hyperbolischen Raum und expandierende Flüsse im
(n + 1)-dimensionalen de Sitter Raum. Wir verbinden die kontrahie-
renden Hyperflächen mit den expandierenden Hyperflächen durch die
Gaußsche Abbildung, falls die Hyperflächen der Flüsse strikt konvex
sind. Die kontrahierenden Hyperflächen schrumpfen zu einem Punkt
x0 in endlicher Zeit, während die expandierenden Hyperflächen zu dem
maximalen Schnitt {τ = 0} konvergieren. Nach Reskalierung mit dem
gleichen Faktor konvergieren die reskalierten kontrahierenden Hyper-
flächen nach einem geodätischen Einheitsspäre, während die reskalier-
ten expandierenden Hyperflächen nach dem Schnitt {τ = −1} expo-
nentiell schnell in C∞(Sn) konvergieren.
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1. Introduction

In a recent paper [7] a pair of dual flows was considered in S
n+1. The one

flow is the contracting flow

(1.1) ẋ = −Fν,

while the other is an expanding flow

(1.2) ẋ = F̃−1ν,

where F ∈ C∞(Γ+) and F̃ is its inverse

(1.3) F̃ (κi) =
1

F (κ−1
i )

.

There is a Gauß map for the pair (Sn+1, Sn+1), which maps closed, strictly

convex hypersurfaces M to their polar sets M̃ , cf. [5, Chapter 9]. Gerhardt
[7] proved, that the flow hypersurfaces of (1.1) and (1.2) are polar sets of each
other, if the initial hypersurface have this property. Under the assumption
that F is symmetric, monotone, positive, homogeneous of degree 1, F strictly
concave (cf. 3.1) and F̃ concave, it is proved in [7] that the contracting flows
contract to a round point and the expanding flows converge to an equator
such that after appropriate rescaling, both flows converge to a geodesic sphere
exponential fast.

The Gauß map exists also for the pair (Hn+1, N), where Hn+1 is the
(n + 1)-dimensional hyperbolic space and N is the (n + 1)-dimensional de
Sitter space, cf. [5, Chapter 10]. We prove in this work similar results as in

[7] by using this duality. Let M(t) resp. M̃(t) be solutions of the contracting
flows

(1.4) ẋ = −Fν

in Hn+1 resp. the dual flows

(1.5) ẋ = −F̃−1ν

in N , where F̃ is the inverse of F defined by (1.3). We impose the following
assumptions.

1.1. Assumption. Let F ∈ C∞(Γ+) be a symmetric, monotone, 1-
homogeneous and concave curvature function satisfying the normalization

(1.6) F (1, . . . , 1) = 1.

We assume further, either

(1) F is concave and F̃ is concave and the initial hypersurface M0 is
horoconvex (i.e. all principal curvatures κi ≥ 1),

or
(2) F̃ is convex and M0 is strictly convex.

We now state our main results
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1.2. Theorem. We consider curvature flows (1.4) and (1.5) under as-

sumption 1.1 with initial smooth hypersurfaces M0 and M̃0, where M̃0 is the

polar hypersurface of M0. Then the both flows exist on the maximal time

interval [0, T ∗) with finite T ∗. The hypersurfaces M̃(t) are the polar hyper-

surfaces of M(t) and vice versa during the evolution. The contracting flow

hypersurfaces in Hn+1 shrink to a point x0 while the expanding flow hyper-

surfaces in N converge to a totally geodesic hypersurface which is isometric

to S
n. We may assume the point x0 is the Beltrami point by applying an

isometry such that the hypersurfaces of the expanding flow are all contained

in N− and converge to the coordinate slice {τ = 0}.
Viewing Hn+1 and N as submanifolds of Rn+1,1 and by introducing polar

coordinates in the Euclidean part of Rn+1,1 centered in (0, . . . , 0) ∈ Rn+1, we

can write flow hypersurfaces in Hn+1 resp. N as graphs of functions u resp.

u∗ over Sn. Let Θ = Θ(t, T ∗) be the solution of (1.4) with spherical initial

hypersurface and exitence intervall [0, T ∗). Then the rescaled functions

(1.7) ũ = uΘ−1

and

(1.8) w = u∗Θ−1

are uniformly bounded in C∞(Sn). The rescaled principal curvatures κiΘ as

well as κ̃iΘ
−1 are uniformly positiv, where κ̃i are the principal curvatures of

M̃(t).
If the curvature function F is further strictly concave or F = 1

nH, then the

rescaled functions (1.7) resp. (1.8) converge to the constant functions 1 resp.

−1 in C∞(Sn) exponentially fast.

Let us review some results concerning the contracting flows in Hn+1. Un-
der the assumption that the initial hypersurface is strictly convex and satisfies
the condition κiH > n for each i, Huisken [11] proved that the flow (1.4) with
F = H converges in finite time to a round sphere. Andrews [2] proved sim-
ilar results for a general class of curvature function with argument κi − 1.
Makowski [13] proved the contracting flow with a volume preserving term
exists for all times and converges to a geodesic sphere exponentially fast.
The key ingredient treating the contracting flow is the pinching estimates.
Under assmuption 1.1 (1) it follows by a similar calculation as in [13], while
Gerhardt [8] proved the pinching estimates under assumption 1.1 (2).
The elementary symmetric polynomials are defined by

(1.9) Hk(κ1, . . . , κn) =
∑

1≤i1<···<ik≤n

κi1 . . . κik , 1 ≤ k ≤ n.

Examples of curvature functions F satisfying assumption 1.1 (1) (up to nor-
malization condition (1.6)) are

• the power means
(

1
n

∑

i κ
r
i

)1/r
for |r| ≤ 1,

• σk = H
1/k
k for 1 ≤ k ≤ n,
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• the inverse σ̃k of σk for 1 ≤ k ≤ n,

• (Hk/Hl)
1/(k−l)

for 0 ≤ l < k ≤ n,

• Hαn
n H

αn−1−αn

n−1 · · ·Hα2−α3

2 Hα1−α2

1 for αi ≥ 0 and
∑

i αi = 1.

For a proof see [3, Chapter 2]. Moreover, the curvature functions in the above
list are all strictly concave with exception of the mean curvature (cf. Section
3)

Examples of convex curvature functions F̃ , which is used in assumption 1.1
(2) (up to normalization condition (1.6)) are (cf. [5, Remark 2.2.13])

• the mean curvature H ,

• the length of the second fundamental form |A| =
(
∑

i κ
2
i

)1/2
,

• the complete symmetric functions

γk(κ1, . . . , κn) =
(

∑

|α|=k κ
α1

1 κα2

2 . . . καn
n

)1/k

for 1 ≤ k ≤ n.

Note that for convex F̃ under assumption 1.1 (2), F is of class (K) and
homogeneous of degree 1, hence strictly concave. (cf. [5, Definition 2.2.1,
Lemma 2.2.12, 2.2.14], [7, Lemma 3.6])

2. Setting and general facts

We now review some general facts about hypersurfaces from [5, Chapter
1]. Let N be a (n + 1)-dimensional dimensional semi-Riemannian manifold
and M be a hypersurface in N . Geometric quantities in N will be denoted
by (ḡαβ), (R̄αβγδ), etc., where greek indices range from 0 to n. Quantities in
M will be denoted by (gij), (hij) etc., where latin indices range from 1 to n.
Generic coordinate systems in N resp. M will be denoted by (xα) resp. (ξi).

Covariant differentiation will usually be denoted by indices, only if ambi-
guities are possible, by a semicolon, e.g. hij;k.

Let x : M →֒ N be a spacelike hypersurface (i.e. the induced metric is
Riemannian) with a differentiable normal ν, which is always supposed to be
normalized, and (hij) be the second fundamental form, and set σ =

〈

ν, ν
〉

.
We have the Gauß formula

(2.1) xαij = −σhijν
α,

the Weingarten equation

(2.2) ναi = hki x
α
k ,

the Codazzi equation

(2.3) hij;k − hik;j = R̄αβγδν
αxβi x

γ
j x

δ
k,

and the Gauß equation

(2.4) Rijkl = σ{hikhjl − hilhjk}+ R̄αβγδx
α
i x

β
j x

γ
kx

δ
l .

Let us review some properties of Hn+1 and N , cf. [5, Section 10.2]. We
label the coordinates in the (n+ 2)-dimensional Minkowski space Rn+1,1 as
x = (xa), 0 ≤ a ≤ n + 1, where x0 is the time function. Recall that the
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hyperbolic space Hn+1 and de Sitter space N are the subspaces of Rn+1,1

defined by

(2.5) H
n+1 = {x ∈ R

n+1,1 :
〈

x, x
〉

= −1, x0 > 0},

(2.6) N = {x ∈ R
n+1,1 :

〈

x, x
〉

= 1}.
Introduce polar coordinates in the Euclidean part of Rn+1,1 centered in
(0, . . . , 0) ∈ Rn+1 such that the metric in Rn+1,1 is expressed as

(2.7) ds̄2 = −dx02 + dr2 + r2σijdξ
idξj ,

where σij is the spherical metric.
By viewing H

n+1 as

(2.8) H
n+1 = {(x0, r, ξi) : r =

√

|x0|2 − 1, x0 > 0, ξ ∈ S
n},

and by setting

(2.9) ̺ = arccoshx0,

Hn+1 has coordinates (̺, ξi) and the metric

(2.10) ds̄2
Hn+1 = d̺2 + sinh2 ̺ σij dξ

idξj .

Similarly,

(2.11) N = {(x0, r, ξi) : r =
√

1 + |x0|2, x0 ∈ R, ξ ∈ S
n},

and by setting the eigentime

(2.12) τ = arcsinhx0,

N has coordinates (τ, ξi) and the metric

(2.13) ds̄2N = −dτ2 + cosh2 τσijdξ
idξj .

3. Strictly concave curvature functions

For ξ, κ ∈ Rn, we write ξ ∼ κ, if there is λ ∈ R such that ξ = λκ.

3.1.Definition. Let F ∈ C2(Γ ) be a symmetric, monotone, 1-homogeneous
and concave curvature function. We call F strictly concave (in non-radial di-
rections), if

(3.1) Fijξ
iξj < 0 ∀ξ 6∼ κ and ξ 6= 0,

or equivalently, if the multiplicity of the zero eigenvalue for D2F (κ) is one
for all κ ∈ Γ .

Note since F is homogeneous of degree 1, κ ∈ Γ is an eigenvector of
D2F (κ) with zero eigenvalue. In [7, Chapter 3] it is proved that σk, 2 ≤ k ≤ n
and the inverses σ̃k of σk, 1 ≤ k ≤ n are strictly concave. In [12, Chapter 2]
it is proved that Qk = Hk+1/Hk, 1 ≤ k ≤ n − 1 are strictly concave in Γ+.
We consider the rest of the concave and inverse concave curvature functions
listed on page 3.
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3.2. Lemma. The curvature functions

(3.2) F = ( 1n

∑

i

κri )
1/r − 1 ≤ r < 1

are strictly concave in Γ+.

Proof. Note that F converges locally uniformly to σn = (κ1 · · ·κn)1/n as
r → 0 and σn is strictly concave. Furthermore, for −1 ≤ r < 1 and r 6= 0,

(3.3)
∂F

∂κi
= n−1/r

(

∑

l

κrl

)
1
r
−1

κr−1
i ,

(3.4)
∂2F

∂κi∂κj
= n−1/r(1 − r)

(

∑

l

κrl

)
1
r
−2

κr−2
i (κiκ

r−1
j −

∑

l

κrl δij).

Consider η such that Fijη
j = 0. Since r 6= 1,

(3.5) ηi =

(

∑

l

κrl

)−1

κr−1
j ηjκi.

Knowing that F is concave for |r| ≤ 1 we conclude that F is strictly concave
for −1 ≤ r < 1. �

3.3. Lemma. Let fα be concave in Γ+ for all 1 ≤ α ≤ k and strictly

concave in Γ+ for at least one index in 1 ≤ α ≤ k. Let ϕ be strictly monotone

increasing and concave in Γ+, then

(3.6) F (κ1, · · · , κn) = ϕ(f1(κ1, · · · , κn), · · · , fk(κ1, · · · , κn))
is strictly concave in Γ+.

Proof. Let 0 6= ξ ∈ R
n and ξ 6∼ κ, then

(3.7) Fijξ
iξj = ϕαf

α
ijξ

iξj + ϕαβf
α
i f

β
j ξ

iξj < 0,

since by assumption

(3.8) ϕα > 0, ϕαβ ≤ 0, fαijξ
iξj ≤ 0

and

(3.9) fαijξ
iξj < 0 for at least one 1 ≤ α ≤ k.

�

Note that the weighted geometric mean

(3.10) ϕ(f1, · · · , ϕk) = (f1)α1 · · · (fk)αk with
∑

i

αi = 1
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is a strictly monotone increasing and concave function. Knowing that
Hk+1/Hk, 1 ≤ k ≤ n− 1 are strictly concave in Γ+, we conclude that
(3.11)

(Hk/Hl)
1/(k−l)

= (Hl+1/Hl)
1/(k−l) · · · (Hk/Hk−1)

1/(k−l)
0 ≤ l < k ≤ n

and
(3.12)

Hαn
n H

αn−1−αn

n−1 · · ·Hα2−α3

2 Hα1−α2

1 =

(

H1

H0

)α1
(

H2

H1

)α2

· · ·
(

Hn

Hn−1

)αn

with αi ≥ 0,
∑

i αi = 1 and α1 6= 1 are strictly concave in Γ+.

4. Polar sets and dual flows

We state some facts about Gauß maps for (Hn+1, N), cf. [5, Section 10.4].

4.1. Theorem. Let x : M0 → M ⊂ Hn+1 be a closed, connected, strictly

convex hypersurface. Consider M as a codimension 2 immersed submanifold

in Rn+1,1 such that

(4.1) xij = gijx− hij x̃,

where x̃ ∈ Tx(R
n+1,1) is the representation of the exterior normal vector

ν = (να) of M in Tx(H
n+1). Then the Gauß map

(4.2) x̃ : M0 → N

is the embedding of a closed, spacelike, achronal, strictly convex hypersurface

M̃ ⊂ N . Viewing M̃ as a codimension 2 submanifold in Rn+1,1, its Gaussian

formula is

(4.3) x̃ij = −g̃ij x̃+ h̃ijx,

where g̃ij , h̃ij are the metric and second fundamental form of M̃ and x is

the embedding of M which also represents the future directed normal vector

of M̃ . The second fundamental form h̃ij is defined with respect to the future

directed normal vector, where the time orientation of N is inherited from

Rn+1,1. Furthermore, there holds

(4.4) h̃ij = hij ,

(4.5) κ̃i = κ−1
i .

�

We prove in the following that the duality is also valid in case of curvature
flows.

4.2. Lemma. Let Φ ∈ C∞(R+) be strictly monotone, Φ̇ > 0, and let

F ∈ C∞(Γ+) be a symmetric, monotone, 1-homogeneous curvature function

such that F |Γ+
> 0 and such that the flows

(4.6) ẋ = −Φ(F )ν
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in Hn+1 resp.

(4.7) ˙̃x = −Φ(F̃−1)ν̃

in N with initial strictly convex hypersurfaces M0 resp. M̃0 exist on maximal

time intervals [0, T ∗) resp. [0, T̃ ∗), where ν and ν̃ are the exterior normal

resp. past directed normal. The flow hypersurfaces are then strictly conxex.

Let M(t) resp. M̃(t) be the corresponding flow hypersurfaces, then T ∗ = T̃ ∗

and M(t) = M̃(t) for all t ∈ [0, T ∗).

Proof. The arguments are similar to those in [7, Section 4] with combination
with the results from [5, Section 10.4]. Since there holds

(4.8)
〈

x, x
〉

= 1,
〈

ẋ, x
〉

= 0,
〈

xj , x
〉

= 0,
〈

x̃, x
〉

= 0,

(see [5, Lemma 10.4.1] for the last identity) we can consider the flow (4.6) as
flow in Rn+1,1

(4.9) ẋ = −Φx̃,

and we have the decomposition

(4.10) Tx(R
n+1,1) = Tx(H

n+1) ⊕
〈

x
〉

.

Furthermore, we conclude from

(4.11)
〈

˙̃x, xj
〉

= Φj ,
〈

˙̃x, x̃
〉

= 0,
〈

˙̃x, x
〉

= Φ,

from the Weingarten equation (see [5, Lemma 10.4.3, 10.4.4])

(4.12) xj = h̃kj x̃k,

and from (4.10) that

(4.13) ˙̃x = Φx+ Φmxm = Φx+ Φmh̃kmx̃k,

where

(4.14) Φm = gmjΦj ,

and the second fundamental form h̃ij is defined with respect to the future
directed normal vector ν̃. The corresponding flow equation in N has the form

(4.15) ˙̃x = Φν̃ + Φmh̃kmx̃k.

Let t0 ∈ [0, T ∗) and introduce polar coordinates in the Euclidean part of the
Minkowski space as well as an eigentime coordinate system in N as in Section
2. For ǫ small and t0 < t < t0 + ǫ, M̃(t) can be written as graph over Sn

(4.16) M̃(t) = graph ũ|Sn ,
and we obtain the scalar flow equation

(4.17)
dũ

dt
= Φṽ−1 + Φmh̃kmũk,

where

(4.18) ṽ2 = 1− |Dũ|2 = 1− 1

cosh2 ũ
σij ũiũj .
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Note that ν̃ in (4.15) is the future directed normal

(4.19) (ν̃α) = ṽ−1(1, ˇ̃ui),

where

(4.20) ˇ̃ui =
1

cosh2 ũ
σij ũj.

Thus it holds in view of (4.15)

∂ũ

∂t
=

dũ

dt
− ũi ˙̃x

i

= Φṽ−1 + Φmhkmũk − Φṽ−1|Dũ|2 − Φmh̃kmδikũi

= Φṽ.

(4.21)

This is exactly the scalar curvature equation of the flow equation

(4.22) ˙̃x = −Φν̃,

where ν̃ in (4.22) is the future directed normal and

(4.23) Φ = Φ(F ) = Φ(F̃−1).

Now h̃ij in N is defined with respect to the future directed normal. By
adapting the convention in [5, p.307] we switch the light cone in N and by
defining τ = −arcsinhx0 in (2.12) we still derive the flow (4.22) in N , where
ν̃ is now the past directed normal and the second fundamental form is defined
with respect to this normal. The rest of the proof is identical to [7, Theorem
4.2]. �

From now we shall employ this duality by choosing

(4.24) Φ(r) = r.

Note that the expanding flows in Hn+1 was already considered in [6] and
its non-scale-invariant version in [14].

5. Pinching estimates

We consider the contracting flow

ẋ = −Fν,

x(0) = M0
(5.1)

in Hn+1 with initial smooth and strictly convex hypersurfaces M0, where ν
is the exterior normal vector.

Under the assumptions of Theorem 1.2 the curvature flow (5.1) exists on
a maximal time interval [0, T ∗), 0 < T ∗ ≤ ∞, cf. [5, Theorem 2.5.19, Lemma
2.6.1].

5.1. Theorem. Let M(t) be a solution of the flow (5.1) in H
n+1. If the

initial hypersurface M0 in Hn+1 satisfies

(5.2) κi > 1,
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then this condition will also be satisfied by the flow hypersurfaces M(t) during
the evolution.

Proof. The tensor

(5.3) Sij = hij − gij

satisfies the equation

Ṡij − F klSij;kl =F klhrkh
r
l hij − 2Fhki hkj

+KN{2Fgij − F klgklhij}+ 2Fhij + F kl,rshkl;ihrs;j

≡Nij + Ñij ,

(5.4)

where Ñij = F kl,rshkl;ihrs;j . At every point where hijη
j = ηi there holds

(5.5) Nijη
iηj = {F klhrkhrl − 2F + F klgkl}|η|2 ≥ 0.

It was proved in [3, Theorem 3.3, Lemma 4.4] that

(5.6) Ñijη
iηj + sup

Γ
2F kl{2Γ rl Sir;kηi − Γ rkΓ

s
l Srs} ≥ 0,

where only the inverse concavity of F was used. Andrews’ maximum principle
in [3, Theorem 3.2] implies that Sij > 0 during the evolution. �

In the next step we use a constant rank theorem to allow the condition
κi ≥ 1 in the proof of the succeeding Lemma 5.4.

5.2. Lemma. Let M(t) be a solution of the flow (5.1) in Hn+1 and assume

that the tensor Sij satisfies Sij ≥ 0 on the hypersurfaces M(t) for t ∈ [0, T ∗),
then Sij is of constant rank l(t) for every t ∈ (0, T ∗).

Proof. The proof is similar to those in [15, Theorem 3.2], where the main
part is based on the computation in [4, Theorem 3.2]. For ǫ > 0, let

(5.7) Wij = Sij + ǫgij .

Let l(t) be the minimal rank of Sij(t). For a fixed t0 ∈ (0, T ∗), let x0 ∈ M(t0)
be the point such that Sij(t0, ξ) attains its minimal rank at x0. Set

(5.8) φ(t, ξ) = Hl+1(Wij(t, ξ)) +
Hl+2(Wij(t, ξ))

Hl+1(Wij(t, ξ))
,

where Hl is the elementary symmetric polynomials of eigenvalues of Wij ,
homogeneous of order l. A direct computation shows

F klWij;kl − Ẇij =− F klhrkh
r
lWij − F klgklWij + 2FhkiWkj

− F kl,rsWkl;iWrs;j + 2Fǫgij

− (1− ǫ){F klhrkhrl − 2F + F klgkl}gij.
(5.9)

As in [4], we consider a neighborhood (t0 − δ, t0]×O around (t0, ξ0). We use
the notation h = O(f) if |h(ξ)| ≤ Cf(ξ) for every (t, ξ) ∈ (t0 − δ, t0] × O,
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where C is a constant, depending on the C1,1 norm of the second fundamental
form on (t0 − δ, t0]×O, but independent of ǫ. It was proved in [4, Corollary
2.2] that φ is in C1,1. And as in [4], let G = {n − l + 1, n − l + 2, . . . , n}
and B = {1, . . . , n − l}. We choose the coordinates such that hij = κiδij
and gij = δij . In view of [4, (3.14)], in such coordinates φij is up to O(φ)
non-negative in O and we have

F klφ;kl − φ̇ ≤φij{−F klhrkh
r
lWij − F klgklWij + 2FhkiWkj

+ 2Fǫgij − F kl,rsWkl;iWrs;j}+ F klφij,rsWij;kWrs;l +O(φ).

(5.10)

We can choose O small enough, such that ǫ = O(φ) as in [4, (3.8)]. It was
proved in [4, (3.14)] that φii = O(φ) for i ∈ G and since Wii ≤ φ for i ∈ B,
we infer that

(5.11) F klφ;kl − φ̇ ≤ −φijF kl,rsWkl;iWrs;j + F klφij,rsWij;kWrs;l +O(φ).

Using the inverse concavity of F and proceed as in [4, Theorem 3.2], we
conclude

(5.12) F klφ;kl − φ̇ ≤ C{φ+ |Dφ|},

where C is a constant independent of ǫ and φ. Taking ǫ → 0, the strong
maximum principle for parabolic equations yields

(5.13) Hl(t0)+1(Sij(t, ξ)) ≡ 0 ∀(t, ξ) ∈ (t0 − δ, t0]×O.

Since M(t0) is a closed hypersurface, Sij(t0, ξ) is of constant rank l(t0) on
M(t0). �

Note that the proof of the Lemma 5.1 implies, if the initial hypersurface
satisfies κi ≥ 1, then this condition remains true during the evolution. Fur-
thermore, every closed hypersurface in Hn+1 contains a point on which holds
κi > 1. Thus we conclude

5.3. Corollary. Let M(t) be a solution of the flow (5.1) in Hn+1. If the

initial hypersurface M0 in Hn+1 satisfies κi ≥ 1, then κi > 1 for every

t ∈ (0, T ∗).

5.4. Lemma. Let M(t) be a solution of the flow (5.1) in H
n+1 under

assumption 1.1 (1), then there exists a uniform positive constant ǫ > 0 such

that

(5.14) κ1 ≥ ǫκn

during the evolution, where the principal curvatures are labeled as

(5.15) κ1 ≤ · · · ≤ κn.
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Proof. The proof is similar to [13, Lemma 4.2]. By Replacing M0 by M(t0)
for a t0 ∈ (0, T ∗) as initial hypersurface, we can assume that κi > 1 on M0

Let F be a concave and inverse concave curvature function, then

(5.16) Tij = hij − gij − ǫ(H − n)gij

satisfies the equation

Ṫij − F klTij;kl =F klhrkh
r
l {hij − ǫHgij} − 2Fhki {hkj − ǫHgkj}

+ 2KNFgij − 2nǫKNFgij −KNF klgkl{hij − ǫHgij}
− 2F (ǫn− 1)hij + F kl,rshkl;ihrs;j − ǫF kl,rshkl;phrs;qg

pqgij

≡Nij + Ñij ,

(5.17)

where Ñij = F kl,rshkl;ihrs;j − ǫF kl,rshkl;phrs;qg
pqgij .

At every point where Tijη
j = 0 there holds

Nijη
iηj =F klhrkh

r
l (1− ǫn)|η|2 + 2Fhij(ǫn− 1)ηiηj

+ {F klgkl − 2F}(1− ǫn)|η|2 − 2F (ǫn− 1)hijη
iηj

=(1− ǫn)
∑

i

Fi(κ
2
i − 2κi + 1)|η|2 ≥ 0.

(5.18)

It is proved in [1, Theorem 4.1] (see also the modification in [13, Theorem
B.2]) that

(5.19) Ñijη
iηj + sup

Γ
2F kl{2Γ rl Tir;kηi − Γ rkΓ

s
l Trs} ≥ 0,

We can choose ǫ > 0 sufficiently small, such that Tij ≥ 0 on M0, then the
Andrews’ maximum principle [3, Theorem 3.2] implies Tij ≥ 0 and hence

(5.20) κ1 − 1 ≥ ǫ(H − n)

during the evolution. �

The following pinching results is due to Gerhardt. By using [8, Theorem
1.1] and the duality result Lemma 4.2 we obtain

5.5. Theorem. Let M(t) be a solution of the flow (5.1) in Hn+1 under

the assumption 1.1 (2), then there exists a uniform constant ǫ > 0 such that

(5.21) κ1 ≥ ǫκn

during the evolution.
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6. Contracting flows - convergence to a point

Fix a point p0 ∈ H
n+1, the hyperbolic metric in the geodesic polar coor-

dinates centered at p0 can be expressed as

(6.1) ds̄2 = dr2 + sinh2 rσijdx
idxj ,

where σij is the canonical metric of Sn.
Geodesic spheres with center in p0 are totally umbilic. The induced metric,
second fundamental form and the principal curvatures of the coordinate slices
Sr = {x0 = r} are given by

(6.2) ḡij = sinh2 rσij , h̄ij =
1
2
˙̄gij = coth rḡij , κ̄i = coth r,

respectively. See [5, (1.5.12)].

6.1. Lemma. Consider (5.1) with initial hypersurface x(0) = Sr0 , then the

corresponding flow exists in a maximal time intervall [0, T ∗) with T ∗ finite

and will shrink to a point. The flow hypersurfaces M(t) are all geodesic

spheres with the same center and their radii Θ = Θ(t) solve the ODE

Θ̇ = − cothΘ,

Θ(0) = r0.
(6.3)

Proof. We set

x0(t, ξ) = Θ(t),

xi(t, ξ) = xi(0, ξ).
(6.4)

In view of [5, (1.5.7)] the exterior normal of a geodesic sphere is (1,0,. . . ,0).
Using that F (h̄ij) = cothΘ, we see that x in (6.4) solves the flow equation

(5.1). Now the solution of (6.3) is given by

(6.5) coshΘ = (cosh r0)e
−t.

Thus the spherical flow exists only for a finite time [0, T ∗). Note that (6.5)
can be rewritten as

(6.6) Θ = arccosh e(T
∗−t).

�

Next we want to prove that the flow (5.1) shrinks to a point. Using the
inverse of the Beltrami map, Hn+1 is parametrizable over B1(0) yielding the
metric (cf. [5, Section 10.2])

(6.7) ds̄2 =
1

(1− r2)2
dr2 +

r2

1− r2
σijdξ

idξj .

Define the variable ̺ by

(6.8) ̺ = arctanhr = 1
2 (log(1 + r) − log(1− r)),

then

(6.9) ds̄2 = d̺2 + sinh2 ̺ σij dξ
idξj .
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Let

(6.10) ds̃2 = dr2 + r2σijdξ
idξj

be the Euclidean metric over B1(0). Define

(6.11) dτ =
1

r
√
1− r2

dr, dτ̃ = r−2dr,

we have further

ds̄2 =
r2

1− r2
{dτ2 + σijdξ

idξj} ≡ e2ψ{dτ2 + σijdξ
idξj},

ds̃2 = r2{dτ̃2 + σijdξ
idξj} ≡ e2ψ̃{dτ̃2 + σijdξ

idξj}.
(6.12)

An arbitary closed, connected, strictly embedded hypersurface M ⊂ Hn+1

bounds a convex body and we can write M as a graph in geodesic polar
coordinates.

(6.13) M = graphu = {τ = u(x) : x ∈ S
n}.

M can also be viewed as a graph M̃ in B1(0) with respect to the Euclidean
metric

(6.14) M̃ = graph ũ = { τ̃ = ũ(x) : x ∈ S
n}.

Writing ũ = ϕ(u), then there holds (see [5, (10.2.18)])

(6.15) ϕ̇2 = 1− r2.

The same argument as in [7, Lemma 6.1] yields

6.2. Lemma. Let M(t) be a solution of (5.1) on a maximal time inter-

val [0, T ∗) and represent M(t), for a fixed t ∈ [0, T ∗), as a graph in polar

coordinates with center in x0 ∈ M̂(t)

(6.16) M(t) = graphu(t, ·),

then

(6.17) inf
M(t)

u ≤ Θ(t, T ∗) ≤ sup
M(t)

u,

where the solution of the spherical flow Θ(t, T ∗) is given by (6.6). �

6.3. Lemma. Let x0 ∈ M̂(t) be as above and represent M(t) in Euclidean

polar coordinates (6.10), then there exists a constant c0 = c0(M0) < 1 such

that the estimate

(6.18) r ≤ c0

holds for any t ∈ [0, T ∗).
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Proof. The argument is similar to those in [7, Lemma 6.3, Remark 6.5]. Look-
ing at the scalar flow equation for a short time interval, we conclude that the
convex bodies M̂(t) ⊂ Hn+1 are decreasing with respect to t. Furthermore,

M̂0 is strictly convex. Thus ̺ is uniformly bounded and the claim follows
from the relation

(6.19) r = tanh ̺ = 1− 2

e2̺ + 1
.

�

Denote hij resp. h̃ij the second fundamental forms and κi resp κ̃i the
principal curvatures of M with respect to the ambient metric ḡαβ resp. g̃αβ.

6.4. Lemma. The principal curvatures κ̃i of M(t) are pinched, i.e., there

exists a uniform constant c such that

(6.20) κ̃n ≤ cκ̃1,

where the κ̃i are labeled as

(6.21) κ̃1 ≤ · · · ≤ κ̃n.

Proof. The hij and h̃ij are related through the formula (see [5, (10.2.33)])

(6.22) h̃ij ṽ = (1− r2)hijv,

where

v2 = 1 + σijuiuj ,

ṽ2 = 1 + ϕ̇2σijuiuj .
(6.23)

Because of Lemma 6.3 there exists 0 < δ < 1 such that

(6.24) r2 ≤ 1− δ,

and thus

(6.25) δv2 ≤ ṽ2 ≤ v2,

(6.26) δhij ≤ h̃ij ≤ δ−1hij .

Furthermore, there holds

gij =
r2

1− r2
{uiuj + σij},

g̃ij = r2{ϕ̇2uiuj + σij}.
(6.27)

and we conclude

(6.28) δ2gij ≤ g̃ij ≤ gij .

Now the claim follows from the maximum-minimum principle. �
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For M̂(t) ⊂ Hn+1, the inradius ρ−(t) and circumradius ρ+(t) of M̂(t) are
defined by

ρ−(t) = sup{r : Br(y) is enclosed by M̂(t) for some y ∈ H
n+1},

ρ+(t) = inf{r : Br(y) encloses M̂(t) for some y ∈ H
n+1}.

(6.29)

Now, choose x0 ∈ M̂(t) to be the center of the inball of M̂(t) ⊂ Hn+1 and
let x0 be the center of the geodesic polar coordinates. Note that the center
of the Euclidean inball is also x0. Let ρ−(t) resp. ρ+(t) be the inradius resp.

circumradius of M̂(t) ⊂ Hn+1, and let ρ̃−(t) resp. ρ̃+(t) be the inradius resp.

circumradius of M̂(t) ⊂ Rn+1.

6.5. Lemma. Let Bρ−(t)(x0) ⊂ M̂(t) be a geodesic inball, then there exist

positive constants c and δ, such that

(6.30) M̂(t) ⊂ B4cρ−(t)(x0) ∀t ∈ [T ∗ − δ, T ∗).

Proof. The pinching estimates in the Euclidean ambient space (6.20) and [1,
Theorem 5.1, Theorem 5.4] imply

(6.31) ρ̃+(t) ≤ cρ̃−(t)

with a uniform constant c, hence M̂(t) is contained in the Euclidean ball
Bρ̃(0),

(6.32) M̂(t) ⊂ Bρ̃(0), ρ̃(t) = 2cρ̃−(t).

Furthermore, we deduce from Lemma 6.2 that

(6.33) inf
M(t)

ũ ≤ Θ̃ ≤ sup
M(t)

ũ,

where M(t) = graph ũ is a representation of M(t) in Euclidean polar coor-
dinates. We conclude further

(6.34) ρ̃(t) = 2cρ̃−(t) ≤ 2cΘ̃.

Choose now δ > 0 small such that

(6.35) 2cΘ̃(t, T ∗) ≤ 1 ∀t ∈ [T ∗ − δ, T ∗).

Now it holds for

(6.36) ρ(t) = arctanh ρ̃(t)

(6.37) M̂(t) ⊂ Bρ(t)(x0) ⊂ H
n+1.

Since

(6.38) ρ̃(t) ≤ 1,

we conclude further

(6.39) ρ̃ ≤ ρ ≤ 2ρ̃, ρ̃− ≤ ρ−.



DUAL FLOWS IN HYPERBOLIC SPACE AND DE SITTER SPACE 17

Thus

(6.40) ρ ≤ 2ρ̃ = 4cρ̃− ≤ 4cρ−

and the claim follows. �

6.6. Lemma. During the evolution the flow hypersurfaces M(t) are smooth

and uniformly convex satisfying a priori estimates in any compact subinterval

[0, T ] ⊂ [0, T ∗).

Proof. Let 0 < T < T ∗ be fixed. From (6.31) and (6.33) we infer

(6.41) cΘ̃(T, T ∗) ≤ ρ̃−(T ).

Since

(6.42) Θ(T, T ∗) = arctanhΘ̃(T, T ∗), ρ−(T ) = arctanhρ̃−(T ),

and ρ̃−(T ), Θ̃(T, T ∗) are uniformly bounded from above by 1 we infer that

(6.43) 0 < c
2Θ = c

2arctanhΘ̃ ≤ cΘ̃ ≤ arctanh(cΘ̃) ≤ ρ−(T ).

Let x0 ∈ M̂(T ) be the center of an inball and introduce geodesic polar coordi-
nates with center x0. This coordinate system will cover the flow in 0 ≤ t ≤ T .
Writing the flow hypersurfaces as graphs u(t, ·) of a function we have

(6.44) 0 < c−1 ≤ u ≤ c.

And since M(t) are convex,

(6.45) v2 = 1 + sinh−2 u σijuiuj

is uniformly bounded. Under assumption 1.1 (1) we have κi ≥ 1. And under
assumption 1.1 (2) it is proved in [8, Lemma 4.4] that

(6.46)
1

n
κ̃n ≤ F̃ ≤ c

in N or equivalently, κi ≥ c in Hn+1. The proof of uniform boundedness of κi
from above is similar to those in [7, Theorem 6.6]. Since F is concave, we may
first apply the Krylov-Safonov and then the parabolic Schauder estimates to
obtain the desired a priori estimates. �

In view of Lemma 6.1, 6.2, 6.5 and 6.6, the flow (5.1) shrinks in finite time
to a point x0.

7. The rescaled flow

In view of Lemma 6.2 and 6.5 we can choose δ > 0 small and define

(7.1) tδ = T ∗ − δ,

such that

(7.2) M̂(tδ) ⊂ B8cρ−(tδ)(x0) ∀x0 ∈ M̂(tδ),

and

(7.3) 8cρ−(tδ) ≤ 8cΘ(tδ, T
∗) < 1.
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Fix now a t0 ∈ (tδ, T
∗) and letBρ−(t0)(x0) be an inball of M̂(t0). Choose x0

to be the center of a geodesic polar coordinate system, then the hypersurfaces
M(t) can be written as graphs

(7.4) M(t) = graphu(t, ·) ∀tδ ≤ t ≤ t0,

such that

(7.5) ρ−(t0) ≤ u(t0) ≤ u(t) ≤ 1.

7.1. Lemma. Let

(7.6) χ =
v

sinhu
≡ vη(r),

if χi = 0, then ui = 0.

Proof. Note that

(7.7) η(r) =
1

sinh r

solves the equation

(7.8) η̇ = − H̄

n
η,

hence the proof is same as those in [7, Lemma 7.1]. �

Similar to [7, Lemma 7.2, Corollary 7.3] we obtain

7.2. Lemma. There exists a uniform constant c > 0 such that

(7.9) Θ(t, T ∗)F ≤ c ∀t ∈ [tδ, T
∗),

and that the rescaled principal curvatures κ̃i = κiΘ satisfy

(7.10) κ̃i ≤ c ∀t ∈ [tδ, T
∗).

�

7.3. Lemma. Let t1 ∈ [tδ, T
∗) be arbitrary and let t2 > t1 be such that

(7.11) Θ(t2, T
∗) = 1

2Θ(t1, T
∗).

Let x0 ∈ M̂(t2) be the center of an geodesic inball and introduce polar coor-

dinates around x0 and write the hypersurface M(t) as graphs

(7.12) M(t) = graphu(t, ·).
Define ϑ by

(7.13) ϑ(r) = sinh r,

and

(7.14) ϕ =

∫ u

r2

ϑ−1,
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where r2 = Θ(t2, T
∗). Then ϕ(t, ·) is uniformly bounded in C2(Sn) for any

t1 ≤ t ≤ t2 independent of t1, t2. Furthermore, let Γ kij and Γ̃ kij be the Christof-

fel symbols of the metrics gij and σij respectively, then the tensor Γ kij − Γ̃ kij
is also uniformly bounded independent of t1, t2.

Proof. As in [7, Lemma 7.4], we conclude from Lemma 6.2 and Lemma 6.5
that there exists a uniform constant c > 1, independent of t1, t2, such that

(7.15) c−1Θ(t2, T
∗) ≤ u(t, ξ) ≤ cΘ(t2, T

∗) ∀t ∈ [t1, t2].

Note that

(7.16) ϕ = {log sinh( r2 )− log cosh( r2 )}
∣

∣

u

r2
,

thus we derive the C0-estimates

(7.17) |ϕ| ≤ log c.

As in the proof of [7, Lemma 7.5], an upper bound for the principal curvatures
of the slices {x0 = const} intersecting M(t) satisfies

(7.18) κ̄ ≤ sup coshu(0, ·)
sinhumin

≤ c

umin
,

and from [5, (2.7.83)] we infer that the uniformly boundedness of v.

(7.19) v ≤ eκ̄(umax−umin) ≤ e
c(umax

umin
)−1

,

concluding further that

(7.20) |Dϕ|2 = v2 − 1 ≤ c.

Define

(7.21) g̃ij = σij − v−2ϕiϕj ,

where

(7.22) ϕi = σikϕk.

Due to the boundedness of v the metrics g̃ij and σij are equivalent, thus we
can raise the indices of ϕij by g̃ij and by employing the relation [6, (3.26)]

(7.23) hij = v−1ϑ−1{−(σik − v−2ϕiϕk)ϕjk + ϑ̇δij},
we infer

(7.24) g̃ikϕjk = −vϑhij + ϑ̇δij ,

concluding further from (7.10)

(7.25) ‖ϕij‖2 ≤ c(v2ϑ2|A|2 + nϑ̇2)

is bounded from above for all t ∈ [t1, t2]. We choose coordinates such that

Γ̃ kij in a fixed point vanishes. Denote the covariant derivative with respect to
σij by a colon. In such coordinates

(7.26) Γ kij =
1
2g
km(gmi:j + gmj:i − gij:m).
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From

(7.27) gij = ϑ−2g̃ij

we compute

(7.28) gkmgmi:j = g̃km{ϕmjϕi + ϕijϕm + 2 coshuϕj(ϕmϕi + σmi)}.
Using the estimates for ϕ proved before, we conclude that Γ kij − Γ̃ kij are
uniformly bounded independent of t1 and t2. �

Define a new time parameter as

(7.29) τ = − logΘ,

then

(7.30)
dt

dτ
= Θ

sinhΘ

coshΘ
.

In the following we denote the differentiation with respect to t by a dot and
differentiation with respect to τ by a prime.

7.4. Lemma. The rescaled quantity F̃ = FΘ satisfies the inequality

(7.31) sup
M(t1)

F̃ ≤ c inf
M(t2)

F̃

with a uniform constant c > 0.

Proof. F̃ satisfies the equation

(7.32) F̃ ′ = ḞΘ2 sinhΘ

coshΘ
− F̃ ,

and from the evolution equation of F in [7, (2.8)] we conclude further

F̃ ′ + F̃ − {F ijF;ij + F ijhikh
k
jF +KNF ijgijF}Θ2 sinhΘ

coshΘ
= 0.(7.33)

We consider the non-trivial term in (7.33)

(7.34) − F ijF;ijΘ
2 sinhΘ

coshΘ
.

In view of (7.27), the pinching estimate and the boundedness of v, Θ2F ij

and σij are equivalent and hence uniformly positive definite. Furthermore,

(7.35) F;ij = F:ij − {Γ kij − Γ̃ kij}Fk.

Hence we conclude from Lemma 7.3 that F̃ satisfies a uniform parabolic
equation of the form

(7.36) F̃ ′ − aijF̃:ij + biF̃i + cF̃ = 0

in the cylinder [τ1, τ2] × Sn, where τi = − logΘ(ti, T
∗), with uniformly

bounded coefficients. The statement follows then from the parabolic Har-
nack inequality. �
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7.5. Corollary. The rescaled principal curvatures κ̃i = κΘ are uniformly

bounded from below.

Proof. Consider a point (t, ξ) in M(t) such that

(7.37) u(t, ξ) = sup
M(t)

u.

In view of [5, (1.5.10)], it holds in (t, ξ)

(7.38) hij ≥ h̄ij , gij = ḡij , κi ≥ κ̄i =
coshu

sinhu
,

where we denote the quantity of the slices {x0 = const } with a bar. In view
of (7.15)

(7.39) sup
M(t)

F̃ ≥ F (κ̃i(t, ξ)) ≥ F

(

coshu(t, ξ)

sinhu(t, ξ)
Θ(t, T ∗)

)

≥ c > 0.

The statement follows from the pinching estimates and Lemma 7.4. �

Let x0 ∈ Hn+1 be the point the flow hypersurfaces are shrinking to and
introduce geodesic polar coordinates around it. Write M(t) = graph u(t, ·)
and let

(7.40) ũ(τ, ξ) = u(t, ξ)Θ(t, T ∗)−1,

(7.41) τδ = − logΘ(tδ, T
∗), Q(τδ,∞) = [τδ,∞)× S

n.

Using the same argument as in [7, Lemma 7.9, Lemma 7.10] we conclude that

7.6. Lemma. The quantities v and |Dũ| are uniformly bounded form above

and ũ is uniformly bounded from below and above in Q(τδ,∞). �

Let

(7.42) ϕ = −
∫ Θ(0,T∗)

u

ϑ−1,

then

(7.43) ϕi = ϑ−1ui, ϕij = ϑ−1uij − coshu ϑ−2 ui uj,

and

(7.44) ϑ−2|D2u|2 + |Dũ|4 cosh2 u− 2ϑ−1|D2u||Dũ|2 coshu ≤ |D2ϕ|2.
Since |D2ϕ| and |Dũ| are bounded, we conclude that the C2-norm of ũ is
uniformly bounded, where the covariant derivatives of ũ and ϕ are taken
with respect to σij . From [5, Remark 1.5.1, Lemma 2.7.6] we conclude that

(7.45)
sinhΘ

coshΘ
Fv = Φ(x, τ, ũ, ũe−τ , Dũ,D2ũ),



22 HAO YU

where Φ is a smooth function with respect to its arguments, and

Φij ≡ ∂Φ

∂(−ũij)
= F ijΘ

sinhΘ

coshΘ
,

Φij,kl = F ij,klv−1Θ2 sinhΘ

coshΘ
.

(7.46)

Hence by applying first the Krylov and Safonov, then the Schauder estimates,
we deduce (cf. [5, Remark 2.6.2])

7.7. Theorem. The rescaled function ũ satisfies the uniformly parabolic

equation

(7.47) ũ′ = −Φ+ ũ

in Q(τδ,∞) and ũ(τ, ·) satisfies a priori estimates in C∞(Sn) independently

of τ .

8. Convergence to a sphere

The aim of this section is to prove that ũ converges exponentially fast to
the constant function 1 if F is strictly concave or F = 1

nH . Comparing the
proof in [7, Section 8], we should handle a term stemming from the negative
curvature of the ambient space KN < 0.

8.1. Lemma. There exists a positive constant C such that

(8.1) F klgkl|A|2 − FH ≤ C
∑

i<j

(κi − κj)
2.

Proof. The proof is similar to [7, Lemma 8.2]. Let

(8.2) ϕ = F klgkl|A|2 − FH.

Denote the partial derivatives of ϕ with respect to κi by ϕi, then

(8.3) ϕj =

n
∑

i=1

Fij |A|2 +
n
∑

i=1

2Fiκj − FjH − F,

ϕjk =

n
∑

i=1

Fijk|A|2 +
n
∑

i=1

2Fijκk +

n
∑

i=1

2Fikκj

+ 2δjk

n
∑

i=1

Fi − FjkH − Fj − Fk.

(8.4)

Therefore

(8.5) ϕ(κn, · · · , κn) = 0, ϕj(κn, · · · , κn) = 0 ∀j = 1, . . . n.

by using the Euler’s homogeneous relation and the normalization (1.6). Fur-
thermore, ϕjk are uniformly bounded from above, since ϕjk are homogeneous
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of grad 0 and κi

|A| are compactly contained in the defining cone. The state-

ment follows by an argument using Taylor’s expansion up to the second order
similar to those in [7, Lemma 8.2]. �

We want to estimate the function

(8.6) fσ = F−α(|A|2 − nF 2),

where

(8.7) α = 2− σ,

and 0 < σ < 1 small. For simplicity we drop the subscript σ of fσ. In the
following we always assume that F satisfies the assumption 1.1.

By Lemma 8.1 we have the following inequality corresponding to [7,
Lemma 8.3].

8.2. Lemma. Let F be strictly concave, then there exist uniform constants

ǫ > 0 and C > 0, such that

−F ijfij+2ǫ2F ijhkih
k
j f ≤ αF−1F ijF;ijf + 2(α− 1)F−1F ijFifj

− 2{hij − FnF ij}F−αF;ij − 2ǫ2|DA|2F−α + 2Cf.
(8.8)

Corresponding to [7, Lemma 8.5] we have

8.3. Lemma. Let F be strictly concave, then there exist positive constants

C and c such that for any p ≥ 2, any δ > 0 and any 0 ≤ t < T ∗

ǫ2
∫

M

F ijhkih
k
j f

p ≤ {δ−1c(p− 1) + c}
∫

M

F ijfifjf
p−2

+ {δc(p− 1) + c}
∫

M

|DA|2F−αfp−1 + 2C

∫

M

fp.

(8.9)

Parallel to [7, Lemma 8.6] we have

8.4. Lemma. Let F be strictly concave, then there exist C1 > 0 and σ0 > 0
such that for all

(8.10) p ≥ 4cǫ−2, σ ≤ min(14c
−1ǫ3p−1/2, σ0),

the estimate

(8.11) ‖f‖p,M ≤ C1 ∀t ∈ [0, T ∗)

holds, where C1 = C1(M0, p) and σ0 = σ0(F,M0).

Proof. Multiply [7, (8.30)] with pfp−1 and integrate by parts, and note that

(8.12) dµt = µt dx on Mt,

where

(8.13)
d

dt
µt =

d

dt

√
g = 1

2µtg
ij ġij = −FHµt,
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thus

(8.14)
d

dt

∫

M

fp = p

∫

M

fp−1f ′ −
∫

M

HFfp,

and

d

dt

∫

M

fp + 1
2p(p− 1)

∫

M

F ijfifjf
p−2 + ǫ2p

∫

M

|DA|2F−αfp−1

≤ σp

∫

M

F ijhkih
k
j f

p + 4Cp

∫

M

fp.

(8.15)

By choosing

(8.16) c0 = 1
4c, σ ≤ min(ǫ3p−1/2c0

−1, σ0), δ = ǫp−1/2,

and by using (8.9), the right-hand side of inequality (8.15) can be estimated
from above by

ǫp1/2c−1
0 {ǫ2

∫

M

F ijhkih
k
j f

p}+ 4Cp

∫

M

fp

≤ ǫp1/2c−1
0 {δ−1c(p− 1) + c}

∫

M

F ijfifjf
p−2

+ ǫp1/2c−1
0 {δc(p− 1) + c}

∫

M

|DA|2F−αfp−1 + {2Cǫp1/2c−1
0 + 4Cp}

∫

M

fp

= c−1
0 {p(p− 1)c+ ǫp1/2c}

∫

M

F ijfifjf
p−2

+ c−1
0 {ǫ2(p− 1)c+ ǫp1/2c}

∫

M

|DA|2F−αfp−1 + {2Cǫp1/2c−1
0 + 4Cp}

∫

M

fp

≤ 1
2p(p− 1)

∫

M

F ijfifjf
p−2 + 1

2ǫ
2(p− 1)

∫

M

|DA|2F−αfp−1 + 5Cp

∫

M

fp.

(8.17)

From (8.15), (8.17) we conclude that

(8.18)
d

dt

∫

M

fp ≤ 5Cp

∫

M

fp,

and the Gronwall’s lemma leads to

(8.19)

∫

M

fp ≤
∫

M

fp
∣

∣

t=0
· exp(5CpT ∗),

(8.20) ‖f‖p =
(
∫

M

fp
)

1
p

≤ e5CT
∗

(|M0|+ 1) sup
0≤σ≤1/2

sup
M0

fσ.

�

To proceed further, we use the Stampacchia iteration scheme as in the
Huisken’s paper [10, Theorem 5.1], as well as [11, Theorem 5.1]. Note that
Hn+1 is simply connected and has constant sectional curvature KN = −1,
thus the Sobolev inequality in [9, Theorem 2.1] has the form
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8.5. Lemma. Let v be a nonnegative Lipschitz function on M , then there

exists a constant c = c(n) > 0, such that

(8.21) (

∫

M

|v| n
n−1 )

n−1

n ≤ c{
∫

M

|Dv|+
∫

M

H |v|}.

Corresponding to [7, Theorem 8.7], we have

8.6. Theorem. Let F be strictly concave or F = 1
nH, then there exist

constants δ > 0 and c0 > 0, such that

(8.22) |A|2 − nF 2 ≤ c0F
2−δ.

Proof. As in the proof of [10, Theorem 5.1] let fσ,k = max(fσ − k, 0) for all
k ≥ k0 = supM0

fσ and denote by A(k) the set where fσ > k. We obtain

with v = f
p/2
σ,k for p ≥ 4cǫ−2,

d

dt

∫

A(k)

v2 +

∫

A(k)

|Dv|2 ≤ σp

∫

A(k)

H2fpσ + 5Cp

∫

A(k)

fpσ

≤ C(p)

∫

A(k)

H2fpσ .

(8.23)

By applying Lemma 8.5 we can bound fσ for σ small as in the proof of [10,
Theorem 5.1]. The case F = 1

nH is proved in [11, Lemma 5.1]. �

8.7. Lemma. Let F be strictly concave or F = 1
nH and M̃(τ) be the

rescaled hypersurfaces, then there are constants c, δ > 0 such that

(8.24)

∫

M̃

|DÃ|2 ≤ ce−δτ ∀τ0 ≤ τ < ∞,

where

(8.25) τ0 = − logΘ(0, T ∗), |DÃ|2 = Θ2gijhkl;iΘhlk;jΘ.

Proof. Choose

(8.26) f = F−2{|A|2 − nF 2}.
From Theorem 8.6 we infer

(8.27) f ≤ c0F
−δ ≤ cΘδ = ce−δτ ∀τ ≥ τ0,

and from Theorem 7.7 we obtain

(8.28) |DmA| ≤ c|A| ∀m ≥ 1.

Integrating inequality (8.8) over M , using integraion by parts and using re-
lation (8.28), we infer

(8.29) 2ǫ2
∫

M

|DA|2F−2 ≤ c

∫

M

f.

Hence (8.24) follows by rescaling (8.29). �

Using the same proof of [7, Lemma 8.10] we have
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8.8. Lemma. There are positive constants c and δ such that for all τ ≥ τ0

(8.30) F̃max − F̃min ≤ ce−δτ ,

and

(8.31) ‖DF̃‖ ≤ ce−δτ .

�

8.9. Lemma. There are positive constants c and δ such that for all τ ≥ τ0

(8.32) |Dũ| ≤ ce−δτ ,

where

(8.33) |Dũ|2 = σij ũiũj.

Proof. As in the proof of [7, Lemma 8.12], we let

(8.34) ϕ = log ũ, w = 1
2 |Dϕ|2,

then

(8.35) ϕ′ = −e−ϕF̃Θ−1 sinhΘ

coshΘ
v + 1.

Differentiate now (8.35) with respect to ϕkDk we obtain

w′ =2e−ϕwF̃Θ−1 sinhΘ

coshΘ
v − e−ϕF̃Θ−1 sinhΘ

coshΘ
v−1 sinh−2 u u2wkϕ

k

+R1 +R2,
(8.36)

where

R1 = −e−ϕ
sinhΘ

coshΘ
vFkϕ

k,

R2 = e−ϕF̃
sinhΘ

Θ coshΘ
v−1|Dϕ|4 sinh−3 u{u3 coshu− u2 sinhu} ≥ 0.

(8.37)

In view of (8.31) R1 decays exponentially. Thus the function

(8.38) wmax = sup
M̃(τ)

w

is Lipschitz and satisfies

(8.39) w′
max ≥ 2e−ϕwF̃Θ−1 sinhΘ

coshΘ
v − ce−δτ

for almost every τ ≥ τ0. Using the same argument as in [7, Lemma 8.12] we
conclude that

(8.40) wmax(τ) ≤ c
δ e

−δτ ∀τ ≥ τ0.

�

The same arguments of [7, Corollary 8.13] and the interpolation inequali-
ties for the Cm-norms (cf. [6, Corollary 6.2]) yield
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8.10. Theorem. Let F be strictly concave or F = 1
nH, then the rescaled

function ũ converges in C∞(Sn) to the constant function 1 exponentially fast.

�

8.11. Lemma. Let F be strictly concave or F = 1
nH, then there exist

positive constants c and δ such that

(8.41) |F̃ (τ, ·)− 1| ≤ ce−δτ ∀τ ≥ τ0.

Proof. Observe that for τ1 sufficiently large we have

(8.42)

∣

∣

∣

∣

sinhΘ

coshΘ
−Θ

∣

∣

∣

∣

≤ cΘ2 ∀τ ≥ τ1.

The rest of the proof is identical to [7, Lemma 8.16]. �

9. Inverse curvature flows

Let M(t) be the flow hypersurfaces of the direct flow in Hn+1 and write
M(t) as graphs M(t) = graphu(t, ·). with respect to the geodesic polar coor-
dinates centered in the point where the direct flow shrinks to. By applying
an isometry we may assume that the point x0 is the Beltrami point. The
polar hypersurfaces M(t)∗ are the flow hypersurfaces of the corresponding
inverse curvature flow in the de Sitter space. Write M(t)∗ = graphu∗(t, ·)
over Sn.

9.1. Lemma. The functions u, u∗ satisfy the relations

(9.1) umax = −u∗
min ∀t ∈ [tδ, T

∗),

(9.2) umin = −u∗
max ∀t ∈ [tδ, T

∗).

Proof. We use the relation [5, (10.4.65)]

(9.3) x̃0 =
r√

1− r2
,

and note that by comparing [5, (10.2.5)] and the metric in the eigentime
coordinate system in N (2.13) we infer that

(9.4) cosh2 u∗ = 1 + |x̃0|2.
From (6.8) we infer that

(9.5) r = tanhu.

Since we have switched the light cone such that the uniformly convex slices
are contained in {τ < 0}, we deduce that

(9.6) u∗ = −arcsinh(ṽ sinhu) = −arcsinhχ̃.

In a point where u∗ attains its minimum, there holds v = 1 in view of Lemma
7.1. Thus u = −u∗ and u attains its maximum in such a point. This proves
(9.1). The proof of (9.2) is similar. �
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9.2. Corollary. There exists a positive constant c such that

(9.7) − c ≤ w ≡ u∗Θ−1 ≤ −c−1 ∀t ∈ [tδ, T
∗).

�

Define ϑ(u) = cosh(u) and ḡij = ϑ2σij . We prove in the following that w
is uniformly bounded in C∞(Sn). For simplicity, we write in the following
u instead u∗ for the graphs of the flow hypersurfaces in the de Sitter space.
The proof of C1-estimates of w is similar to [5, Theorem 2.7.11].

9.3. Lemma. There exists a positive constant c such that

(9.8) |Dw|2 ≡ σijwiwj ≤ c ∀t ∈ [tδ, T
∗).

Proof. Since

(9.9) ‖Du‖2 ≡ gijuiuj = v−2ḡijuiuj ≡ v−2|Du|2,
we first estimate ‖Du‖Θ−1. Let λ be a real parameter to be specified later
and define

(9.10) G = 1
2 log(‖Du‖2Θ−2) + λuΘ−1.

There is x0 ∈ S
n such that

(9.11) G(x0) = sup
Sn

G,

and thus in x0

(9.12) 0 = Gi = ‖Du‖−2uiju
j + λuiΘ

−1,

where the covariant derivatives are taken with respect to gij and

(9.13) ui = gijuj = v−2ḡijuj .

Since

(9.14) hijv
−1 = −uij − ϑ̇ϑσij ,

we infer that

λ‖Du‖−4Θ−4 = −uiju
iujΘ−3

= v−1hiju
iujΘ−3 + ϑ̇ϑσiju

iujΘ−3.
(9.15)

By considering the dual flow in the hyperbolic space, we conclude that hij >
0. Furthermore,

ϑ̇ϑσiju
iujΘ−3 = (ϑ̇Θ−1)ϑ−1v−2‖Du‖2Θ−2.(9.16)

By applying [5, Theorem 2.7.11] directly, we conclude that v−2 is uniformly

bounded. Note ϑ̇Θ−1 ≤ c. Let c0 be an upper bound for (ϑ̇Θ−1)ϑ−1v−2 and
by choosing λ < −c0 we conclude that ‖Du‖Θ−1 can not be too large in x0.
Thus ‖Du‖Θ−1 is uniformly bounded from above. We conclude that

(9.17) σijwiwj = ‖Du‖2Θ−2θ2v2

is uniformly bounded. �
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9.4. Lemma. There exists a positive constant c such that for all m ≥ 2

(9.18) |Dmw|2 ≤ c ∀t ∈ [tδ, T
∗).

Proof. Let (ĥij) = (hij)
−1 be the inverse of the second fundamental form in

Hn+1 and h̃ij the second fundamental form in N . We consider the mixed
tensor

(9.19) ĥji = gikĥ
kj , h̃ji = g̃kj h̃ki,

where gij and g̃ij = hki hkj are the metrics of hypersurfaces in Hn+1 resp. N .
From the relation

(9.20) κ̃i = κ−1
i ,

we infer that

(9.21) h̃ji = ĥji .

From Theorem 7.7 we infer that hjiΘ are uniformly bounded in C∞(Sn) and
due to Lemma 7.2 and Corollary 7.5 there are constants c1, c2 > 0 such that

(9.22) 0 < c1δ
j
i ≤ hjiΘ ≤ c2δ

j
i ,

and thus h̃jiΘ
−1 = ĥjiΘ

−1, as the inverse of hjiΘ, are uniformly bounded in
C∞(Sn). We switch now our notation by considering the quantities in N
without writing a tilde. Denote the covariant derivatives with respect to ḡij
resp. σij by a semiconlon resp. a colon. In view of [5, Remark 1.6.1, Lemma
2.7.6] we have

v−1hij = −v−2u;ij − ϑ̇ϑσij

= −v−2{u:ij − 1
2 ḡ
km
(

(ϑ2)jσmi + (ϑ2)iσmj − (ϑ2)mσij
)

uk} − ϑ̇ϑσij .

(9.23)

Therefore,

(9.24) u:ij = −vhij + 2ϑ−1ϑ̇uiuj − ϑϑ̇σij .

By considering the dual flow in hyperbolic space, we infer that

(9.25) |A|Θ−1 ≤ c,

and note that

(9.26) ḡij ≤ ḡij + v−2ǔiǔj = gij ,

where

(9.27) ǔi = ḡijuj,

we conclude that

(9.28) σikσjlhijhkl ≤ c|A|2.
In view of ϑ̇Θ−1 ≤ c we conclude that |D2w|2 is uniformly bounded.
Contract (9.24) with gij we conclude further

(9.29) − gijw:ij − ϑ−3ϑ̇Θv−2|Dw|2 + vHΘ−1 + nϑ−1ϑ̇Θ−1 = 0.
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Since v is uniformly bounded, (9.29) is a uniformly elliptic equation in w
with bounded coefficients. A bootstrapping procedure with Schauder theory
yields for all m ∈ N

(9.30) |w|m,Sn ≤ cm ∀t ∈ [0, T ∗).

�

From Lemma 8.10 and preceding results in Section 9 we conclude

9.5. Theorem. Let the geodesic polar coordinates (τ, ξi) of N be specified

in Section 2. Represent the inverse curvature flow (1.5) in N as graphs over

Sn, M(t)∗ = graph u∗(t, ·), where the curvature function F̃ satisfies the as-

sumption 1.1. Then u∗ converges to the constant function 0 in C∞(Sn). The

rescaled function w = u∗Θ−1 are uniformly bounded in C∞(Sn). When the

curvature function F of the corresponding contracting flow is strictly concave

or F = 1
nH, then w(τ, ·) converges in C∞(Sn) to the constant function −1

exponentially fast. �
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