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1. Introduction 

 

The accurate, reproducible and precise identification of the spatial distribution for tumor regions 

and adjacent healthy tissues is a required step before radiotherapy treatment planning.
1
 After 

identifying these regions, physicians prescribe absorbed doses to the tumor tissues and define 

maximum doses to the organs at risk. Traditionally, the delineation of the target regions and the 

surrounding organs at risk is defined based on anatomical images obtained from computed 

tomography (CT). 
2-6

  

However, not all spatial regions inside the tumor can be identified or might be visible on a CT 

scan. In addition, the effect of the prescribed absorbed dose to the tumor regions depends on 

specific properties of the tumor such as its oxygenation status and the proliferation rate of the 

tumor cells. Therefore, it is useful to include further imaging modality techniques such as 

positron emission tomography (PET) to acquire deeper physiological insights about the 

heterogeneity of the tumor and thus to support treatment planning.
7-13

 In fact, tumor heterogeneity 

is a required information for treatment planning as different metabolic structures within the tumor 

may have different responses to radiotherapy and this requires adjusting the prescribed absorbed 

dose for each individual region.
14

 

In this chapter contents are organized in two sections. The physical principle of positron emission 

tomography (PET) is provided and described in the first section. Also, the section introduces a 

review of the formation process of PET images which starts from patient injection, photon 

detection and data collection and ends with image reconstruction. In the second section, the focus 

is on PET image segmentation using k-means, followed by investigating and checking the 



 

  2 

reproducibility of this algorithm and evaluating the accuracy of PET image segmentation using 

five cluster validity indices. 

 

1.1 Positron Emission Tomography 

PET is a functional nuclear medicine imaging technique. It is considered as an important tool in 

radio-oncologic treatment planning, as it allows studying the relevant molecular processes in the 

tumor cells non-invasively.
15-18

 It has several applications in research, before and after 

radiotherapy treatment planning. Among others, it can be used for tumor diagnostics, tumor 

staging and restaging, optimizing the radiotherapy by adjusting the prescribed dose according to 

specific properties of different sub-regions within the tumor as well as by monitoring and 

evaluating the tumor response to radiotherapy treatment planning.
19, 20

 Additionally, it is used to 

differentiate recurrence from radiation necrosis.
20

  

 

1.1.1  General basic principles of PET imaging (physics) 

When a patient is required to take a PET in clinical routine, the patient is injected with small 

amount of labeled molecules or compounds with positron emitting radioisotopes (radiotracer). 

After a specific time and appropriate uptake period, the radiolabeled tracer subsequently is 

transported and distributed inside the human body and accumulates particularly in the tumor 

regions.
10, 21, 22

 PET images are acquired based on the emission of positron particle (the anti-

particle of electron) from the injected radiolabeled tracer during the physical decay of the 

attached radioisotope. The emitted positron travels a short distance (the positron range) which not 

only affected by its initial energy but also by the properties and characteristics of the surrounding 
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tissues including electron density and atomic number. At the end of its path, it combines with an 

electron by annihilation in which their rest masses are converted into gamma photons. 

Consequently, two 511 keV gamma photons travelling in opposite direction are emitted within 

the human body. These high energetic gamma photons might be located and registered in 

coincidence (simultaneously) by PET detectors which are arranged in a ring around the patient.
10, 

21, 22
 

To support the treatment planning technique, the PET is commonly integrated with a CT or 

magnetic resonance tomography (MRT). The combined modalities provide both anatomic and 

functional information about different metabolic processes in the human body.
8-13

 Various 

positron emitting isotopes are available which can be incorporated into biological molecules 

without changing their chemical properties. Moreover, their half-life is relatively suitable to 

avoid high dose to the patients and to minimize the radiation risk while the required diagnostic 

information still can be obtained.  

 

1.1.2  PET radiotracers 

A radiotracer is a biological compound or molecule which is labelled with one of various 

available radioisotopes without changing their chemical properties. Through the radioactive 

decay including emitting particles, the nucleus changes its compositions and reaches a more 

stable state.
10, 21, 22

 The most frequently used radioisotopes in PET are 
18

F, 
12

C, 
13

N, which have 

too many protons compared to the number of neutrons. Thus, to reach the stability, the decay 

mode of these isotopes is positron emission. Among all, 
18

F is the best currently used 

radioisotope due to its suitable half-life (109.8 min) and its suitable mean range (0.6 mm). It is 
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used to produce for example [
18

F]fluoro-deoxy-glucose ([
18

F]FDG) and [
18

F]fluoro-ethyl-L-

tyrosine [
18

F]FET.  

Depending on specific clinical application and the molecular processes being investigated, the 

patient is injected with one type of several available radiolabeled tracers used for PET. Most 

frequently, [
18

F]FDG is used in oncology, because it measures glucose metabolism in different 

tissues, which is enhanced in tumors.
23, 24

 However, the high accumulation of this tracer in brain 

or due to inflammation is problematic.
25

 A more specific radiotracer for identifying tumor regions 

is [
18

F]FET, which is an amino-acid radiolabeled tracer. This tracer accumulates in brain tumors 

rather than normal brain tissues due to the higher number of amino acid transporters in tumor 

cells.
26-28

 

  

1.1.3  Interaction of gamma rays with matter  

After the radioactive decay and the annihilation radiation process, photons are emitted within the 

human body which can be scattered and absorbed when passing through the tissues. The possible 

interaction mechanisms with the matter are affected by the energy of the incoming photons. The 

photoelectric effect and Compton scattering interaction predominate when the photon energy is in 

the (K-eV) range. For higher photon energies (range 1.02 M-eV and more), pair production 

becomes important. Furthermore, the probability of these interactions depends on the atomic 

number and the electron density of the matter in such a way that the probability of Compton 

scattering increases along with decreasing the atomic number of the material ,whereas , for dense 

materials with higher atomic numbers, the photoelectric effect is much more significant.
10, 21, 22, 29, 

30
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1.1.4  Photon detection and data acquisition  

The PET detector consists of a dense crystalline scintillator material. When the produced high 

energetic two photons reach this material, visible light is emitted. Then, the produced visible light 

is converted into electrical current by the photomultiplier tube (PMT) which is connected with 

PET detectors. The main components of this tube are photocathode, anode, and several dynodes. 

When the incident visible light strikes the photocathode, electrons are injected which are 

accelerated from the photocathode to the first dynode by the high potential difference. When 

hitting the first dynode, more electrons are emitted through secondary emission process. These 

emitted electrons are in turn accelerated to the second dynode. This process is repeated until 

reaching the last dynode. After being amplified through (PMT), the multiplied secondary 

electrons are attracted to the anode, which in turn transfers and delivers the electron current to an 

external electronic circuit involving preamplifier, amplifier, pulse height analyzer and other 

subsequent electronics.
10, 21, 22, 29, 30

 

 

1.1.5  Classification of detected events in PET 

PET scan is based on the annihilation coincidence detection (ACD) in which the signal is 

registered and counted when the produced high energetic two gamma rays are detected 

simultaneously (in coincidence) by two detectors opposite each other. Then, the origin of the two 

photons or the annihilation position is assumed to be somewhere along the line connecting the 

associated detectors (called the line of response LOR). Time window and energy resolution 

parameters are used to make sure that the detected gamma rays come from the same annihilation; 

this in turn helps to accurately localize the spatial distribution of the injected radiolabeled tracer. 

However, not all photons produced by the annihilation process will reach the detectors as many 
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of them may undergo absorption or scattering before being detected. Consequently, they are four 

classes of detected events including true, randoms, scatter and single coincidence events.
10, 21, 22, 

29, 30
 

True event occurs when the two high energetic gamma rays come from same annihilation and are 

successfully detected and counted within time window and energy window, while random event 

arises when the two high energetic gamma rays do not originate from same annihilation but still 

they are detected within the time window. To obtain quantitative imaging, subtraction of randoms 

coincidence events from the total measured counts must be done. Scatter event occurs when one 

of the detected annihilation photons undergoes a Compton interaction while passing the body, 

leading to incorrect position information. Attenuation event corresponds to the detection of a 

single photon within the coincidence time window. The missing photon is due to the high 

possible interaction of the gamma photons (absorption and scattering) with the human tissues 

while passing through the body. To obtain quantitative PET information, the proper working of 

attenuation correction must be assured. This can be done by a transmission scan using external 

photon point source, or using CT scan. 
10, 21, 22, 29, 30

 

 

1.1.6  Image reconstruction 

During data acquisition, the LORs are organized into sets of projections representing the line 

integrals along all parallel LORs at specific angle. After acquisition and applying the required 

corrections, in the next step of PET image processing, the measured projections must be 

converted into an image through process called image reconstruction. This can be done using 

various algorithms.
10, 21, 22, 29, 30

 The direct and simple one is filtered back projection.
22

 With the 

improvement of computing ability, the most commonly used algorithms for PET image 
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reconstruction are iterative algorithms.
22

 The results of all reconstruction algorithms and the 

equality of the reconstructed PET images are influenced by the selection of image matrix sizes 

and the applied filter. In case of iterative algorithms, an adequate number of iterations and subsets 

must be chosen for the available statistical quality of the data.
31

 

 

1.1.7  Static and dynamic PET images 

PET data is stored in a large matrix and the radioactivity concentration values are assigned to 

each voxel. Normally they are two types of PET images, namely static and dynamic PET images. 

In static PET images, we have only one time frame and each voxel contains the summation of the 

information over the entire image acquisition period. This image type is used when the time 

dimension is irrelevant. On the other hand, to have more information about different tissues, 

dynamic PET images with various numbers of frames and different frame durations can be used. 

With the additional three spatial dimensions, it contains temporal dimension so the distribution of 

tracer concentration as a function of time can be measured for different metabolic structures 

inside the human body.
10, 21, 22, 29, 30, 32

 

 

1.2 PET image segmentation using cluster analysis 

 Image segmentation is an important task to delineate tumor regions. Different approaches of PET 

image segmentation have been described, discussed and implemented in literature.
33-37

  

Drawing regions-of-interest (ROIs) directly on PET images is performed by the physicians to 

identify different functional structures. The tissue time-activity curves (TACs) which describe the 
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radiotracer concentration as a function of the time can be extracted for further analysis, i.e. to 

quantify the tumor regions by implementing a compartment model.
38

 However, the manual 

delineation of ROIs is a time-consuming, effort-demanding task and is operator dependent. 

Furthermore, it is challenging due to the inability of the operator to integrate the full TACs of the 

voxels in the evaluation and of the noise in PET images.
33, 39, 40

 An alternative solution is the 

automated segmentation of dynamic PET images, which is not only time-saving and highly 

reproducible, but also takes full time-activity curves (TACs) into consideration.
36

 There is a great 

interest on fully-automated approaches with no user interaction to ensure high reproducibility and 

to reduce the workload of physicians. k-means is one of the most frequently used algorithm due 

to its simplicity.
41-44

 

 

1.2.1 k-means clustering 

k-means classifies big data into several groups based on a specific criterion in such a way that the 

objects within a group are similar to each other but different to objects of other groups.
41-44

 For 

dynamic PET images, it is used to partition voxel TACs into regions with similar kinetic 

behavior. Each cluster is represented by its centroid which is the average of TACs for all voxels 

in that cluster. The workflow of the segmentation k-means is as follows: 

1. The number of the clusters must be defined by the user.  

2. The initial cluster centroids are assigned randomly by the algorithm. 

3. The distances between each centroid and each voxel-TAC are calculated. The most often 

used distance measure is Euclidean distance but one can chose alternatives measures such 

as: city-block, cosine and correlation distance measures. 
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Therefore, the objective function OF to minimize is the sum of squared distances within 

each cluster:  

    ∑∑‖     ‖
 

  

   

  

   

 (1)  

   is the vector of the TAC of each voxel   ,    is the centroid or the mean TAC for cluster 

 ,    is the number of clusters and    is the number of voxels within each cluster. 

 

4. Thus, k-means assigns each voxel-TAC to the closest centroid using the chosen distance 

measure. 

5. When all voxel-TACs are assigned, k-means recalculates the new centroids by taking the 

average of all voxel-TACs within each individual cluster.  

6. This process is repeated until one of the termination conditions (the centroids no longer 

change or the maximum number of iterations is reached) is fulfilled, otherwise the 

calculation keeps running.  

 

k-means cluster analysis depends on random centroid initializations; repeated replications may 

yield different results. Therefore, one may need to repeat the cluster analysis few times to find 

good clustering solutions and to check the reproducibility of the results. Moreover, the main 

drawback of the k-means algorithm is that the number of clusters needs to be entered by a user 

before running the algorithm.
41, 42

 Automated determination of the number of clusters, which 

affects the results of clustering, is one of the main challenges in data clustering.
42

 To resolve this 

issue, cluster validity indices are used to validate the goodness of partitions after clustering.  
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1.2.2 Cluster validity indices 

The validation indices are based on the similarity of objects within the same cluster 

(compactness) and the dissimilarity of objects in different clusters (separation).
45, 46

 Different 

types of indices exist such as the Bayesian information criterion (BIC), the Akaike information 

criterion (AIC) , Silhouette, Dunn’s and WB indices 
47, 48, 49, 50

, which are used to find the optimal 

number of clusters depending on the dimensionality and noise of the data under consideration.  

 

1.2.3 Validity indices used for PET image segmentation 

PET image segmentation is considered as a difficult task because of partial volume effects, bias 

due to scatter, random, attenuation coincidences, and patient motion during measurement.
33, 51-53

 

Consequently, most validity indices have limitations for PET image analysis.
46

 Some of these 

limitations are related to data characteristics, for example to the noise in the data, or to the 

dimensionality of the data. In addition, cluster validity indices can also be affected by the sizes, 

densities and shapes of the clusters.
46

  

Different cluster validity indices were proposed as a validation tool for PET image segmentation. 

For example, for dynamic [
18

F]fluoro-deoxy-glucose PET ([
18

F]FDG-PET) image segmentation, 

the Akaike information criterion (AIC) and the Schwarz criterion (SC) were used to define the 

number of clusters and simulations with the Zubal phantom were used for validation of the 

results.
36

 However, testing these indices for dynamic [
18

F]FET-PET images segmentation was not 

performed. In addition, Silhouette and modified Dunn’s indices were also used as validation 

indices when comparing different clustering methods that can be used in the context of dynamic 

[
18

F]FDG-PET data.
37 

However, which of them could lead to more efficient segmentation of PET 

images was not investigated.  



 

  11 

Accordingly, the Akaike information criterion AIC,
47

 WB,
50

 I,
54

 modified Dunn’s,
55

 and 

Silhouette
56

 indices were investigated for dynamic [
18

F]FET-PET images segmentation based on 

the developed general requirements for an adequate cluster validity index. AIC was investigated 

for our datasets as it was used earlier for PET image segmentation.
36

 WB-index is based on the 

sum-of-squares within clusters and the sum-of-squares between clusters. It was investigated due 

to its simplicity and being already used for other multi-dimensional data.
50

 The I-index was 

investigated by Jegatha Deborah et al.
57

 and it was claimed that this index works well on any type 

of data sets. This motivated us to use this index for medical image segmentation application. 

Last, Silhouette and modified Dunn’s indices were already used as validation indices by another 

group in the context of dynamic [
18

F]FDG-PET data.
37

 However, which of them could lead to a 

better segmentation of dynamic [
18

F]FET-PET images was not investigated. Additionally, these 

cluster validity indices were expected to be valid for the noisy and high dimensional PET data. 
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1.3 Aims 

The objectives of this study were:  

 First, to define relevant general requirements for adequate clustering validity index best 

suited for determining reproducibly and automatically the optimal number of clusters for 

dynamic data.  

 Second, to implement and compare different cluster validity indices with respect to the 

developed requirements at the example of selecting the best brain image segmentation for 

[
18

F]FET-PET.  

 

1.4 Structure of the thesis 

This thesis is divided into five chapters where the first is the introduction including an overview 

and the state-of-the-art of PET measurements, image segmentation, k-means clustering and 

cluster validity index. The materials and methods used in this study are described in chapter 2. 

The results and the discussion are presented in chapters 3 and 4, respectively. Chapter 5 gives the 

conclusions drawn from the study. 
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2. Materials and Methods  

This chapter describes the materials and methods in the order of the work flow. First, the data 

acquisition, second the data preprocessing, then the clustering, and the estimation of the optimal 

number of clusters including reproducibility checks. Finally, requirements for an adequate cluster 

validity index are described and the methods used to check the requirements are documented. 

 

2.1 Patients and data acquisition 

Dynamic [
18

F]FET-PET images were acquired using the PET/CT Biograph mCT (Siemens, 

Erlangen, Germany) for 45 min in list mode for 8 patients with brain tumors. The data acquisition 

was obtained directly after [
18

F]FET tracer injection. Then, the raw data were iteratively 

reconstructed using the TrueX algorithm (Siemens Medical Solutions, Knoxville, TN 37932, 

USA)
 31

 with 24 subsets/4 iterations, 3 mm Gaussian filter and with 21 time frames (6 × 20 s, 8 × 

60 s, 7 × 300s).
58

 To obtain quantitative PET data, the required corrections were performed 

including dead-time, randoms, attenuation and scatter corrections. The images were sampled into 

400 × 400 voxels with voxel size 2.0 × 2.0 × 3.0 mm
3
 in x, y and z dimension, respectively and 

56 slices per each frame.  
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2.2 PET data preprocessing 

After acquisition of the dynamic PET data, the data underwent two preprocessing steps described 

in the following. 

 

Mask  

To reduce the number of noisy voxels and to extract and include the relevant voxels in the 

subsequent analysis, a threshold mask was created. The threshold value was set to the mean of all 

dataset (voxel-activities) of the investigated slice. Thus, only the voxels larger than the threshold 

were included in the clustering. 

Frame weighting 

In this study, the data were reconstructed using 21 frames with different frame duration. Hence, 

the image with shorter duration is noisier (low detected counts) than the image with longer frame 

duration (high detected counts). To prevent low count frames from dominating the clustering 

process, a statistical weighting
59

 was applied to the frames j according to: 

    
                

     
, (2) 

with the total counts Pj and the total randoms Rj in frame j. 

 

According to that, the frames with longer duration have higher weighting factors due to higher 

signal to noise ratio. 
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2.3 Clustering using the k-means algorithm 

This algorithm was used to divide voxel TACs according to their shape and magnitude into 

several groups using the Euclidean distance measure. According to that, the data were converted 

into two-dimensional matrix, with column corresponding to frame, and row corresponding to 

voxel and then k-means was performed using the function k-means of MATLAB (R2015b, 

MathWorks, Natick, Massachusetts, USA) software. More specifically, this was done using this 

command: idx = kmeans(X, k) to partition the voxel-TACs in the matrix X into k clusters. Rows 

of X correspond to voxels activity concentration of PET images; columns correspond to the time 

frames. k-means returns a vector (idx) containing the cluster indices of each voxel-TAC. In this 

study, the maximum number of iterations was set to one million which was never reached. 

2.4 Reproducibility of k-means objective function value  

To measure the reproducibility of k-means, the coefficient of variation (CV), i.e. the ratio of 

standard deviation to mean, was calculated for the objective function values OFVs. The 

calculation was done using 100 random centroid initialization replications (RCI100), for number 

of clusters ranging from 2 to 50. Maximum CV was given as indicator of k-means reproducibility. 

 

  



 

  16 

2.5 Cluster validity indices 

To determine the optimal number of clusters for dynamic brain [
18

F]FET-PET images, the 

following indices were investigated (TABLE I): 

 AIC
47

 is a criterion used for model selection and it is a function of the sample size, the 

number of clusters (NC) and the sum of squares distances within clusters (SSW). The 

optimal number of clusters is assumed to be the value for which the AIC is minimal. 

 WB-index
50

 is a function of NC (the number of clusters), SSW (sum-of-squares within 

cluster) and SSB (sum-of-squares between clusters). The optimal number of clusters is 

assumed to be the value for which the WB-index is minimal. 

 I-index
54

 measures the separation based on the maximum Euclidian distance between 

cluster centroids and measures compactness based on the sum of distances between voxel-

TACs and their cluster center. The optimal number of clusters is defined where this index 

reaches its maximum. 

 The modified Dunn’s index
55, 60

 computes the distance between the voxel-TACs within a 

cluster to the centroids of different clusters as the inter-cluster separation and the 

maximum diameter among all clusters as the intra-cluster compactness. The optimal 

cluster number is defined where this index reaches its maximum. 

 The Silhouette index
56

 is based on the pairwise difference of between and within cluster 

distances to validate the clustering performance. The optimal number of clusters is 

defined where this index reaches its maximum. 
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TABLE I. Cluster validity indices. 

Measure                                 Definition Optimal 

value 

AIC 
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Modified 

Dunn’s 

index 
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∑
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D: data set;   : TAC of each voxel i; N: number of objects in D;  ̅  
∑   

 
   

 
: center of D; NC: 

number of clusters; p: number of attributes in D;   : number of objects in   ;   : i
th

 cluster;   : 

center of   ; d(x, y): distance between x and y; a(x): average distance between the object x to the 

other objects in the same cluster as x; b(x): minimum average distance between the object x to 

objects in a different cluster, minimized over all clusters; SSW: sum of square within cluster; 

SSB: sum of square between clusters. 
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2.6 Determination of the needed number of replications for 

each validity index 

k-means cluster analysis depends on random centroid initializations, repeated replications may 

yield different results. Therefore, one needs to repeat the cluster analysis a few times to find good 

clustering solutions and to check the reproducibility of the results. The required number of 

replications needed by each validity index was therefore investigated. This was done in 2 steps: 

First step: The true optimal number of clusters was calculated using 100 random centroid 

replications for each number of clusters ranging from 2 to 50 (RCI100). The replication with the 

minimal objective function value was selected for each cluster number from the 100 centroid 

initialization replications. Then the optimal number of clusters was determined by the global 

extremum of WB, I, modified Dunn’s and Silhouette validity indices. 

Second step: A single random centroid initialization for each number of clusters ranging from 2 

to 50 was performed (RCI1) and the optimal number of clusters suggested by each validity index 

was collected. This process was replicated 100 times (so in total we have 100 numbers of clusters 

suggested by each index for each investigated slice for each patient (100 × RCI1)). The optimal 

number of clusters for each single random centroid initialization (RCI1) was compared with the 

true optimal number of clusters determined in step one. The probability of getting a wrong result 

was estimated from the number of wrong results divided by 100. Then the probability to obtain a 

wrong optimal cluster number for n runs was estimated to be         
  . Thus, n was estimated 

from:  

         
                                   . (3) 

 
 

 This procedure was performed 24 times (for the 3 neighboring slices for all 8 patients). 
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2.7 Evaluation of the validity indices for the general 

requirements  

 

 Requirement number 1 (the number of clusters suggested by the index should give a 

physiologically reasonable segmentation) 

To check the reasonability of cluster result, visual inspection was performed on the images of 

clusters and their TACs. At least 3 clusters (white/gray matter, and tumor) were expected and any 

other result was not accepted.  

 Requirement number 2 (the number of clusters suggested by the index should not 

depend on the number of the investigated voxels) 

To test the dependence of the optimal number of clusters according to the validity indices on the 

number of voxels, k-means clustering analysis was applied after duplication of a slice selected 

from each patient. The result was compared with applying cluster analysis for same slice without 

duplication. 

 Requirement number 3 (the optimal number of clusters suggested by the index should 

be highly reproducible) 

In addition to investigating the reproducibility of k-means, the reproducibility of the tested 

indices was also evaluated and compared. Thus, the dependence of each validity index on the 

randomly initialized centroid replications was investigated as follows: For each number of 

clusters (ranging from 2 to 50), 100 randomly initialized centroid replications of k-means were 

calculated. From the results 100 values for each validity index and number of clusters were 

obtained. The coefficient of variation (the ratio of standard deviation to mean) was calculated for 

each index for every cluster number and for every patient. As global indicator for the dependence 
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of a validity index on the randomly initialized centroid, the maximum coefficients of variation of 

the patient population were calculated at the optimal number of clusters. Furthermore, to 

guarantee highly reproducible results, the required number of replications was calculated for WB, 

I, modified Dunn’s, and Silhouette indices using Eq. (3) for further demonstration of the 

dependence of each index on random centroid initializations. 

 Requirement number 4 (the index should have a clear single extremum) 

To verify whether the validity indices have a single extremum, visual inspection was performed 

on the replication with minimum OFV from 100 random centroid initialization replications 

(RCI100) for number of clusters ranging from 2 to 50. 

 Requirement number 5 (the computation time should be reasonable for use in a 

clinical setting) 

Indices calculation time needed for single replication was recorded for one slice (119×97 

voxels×21 frames) of one patient with number of clusters fixed to 10. 
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3. Results 

In this chapter, the results of the reproducibility of k-means and the investigating of the cluster 

validity indices with respect to the developed requirements of an adequate cluster validity index 

are presented. 

 

FIG.1 and FIG.2 show a typical slice each after reconstruction and before clustering in 21 frames. 

These patients had oligodendroglioma and glioblastoma with corresponding high tracer uptake, 

respectively.  

FIG.1.  Reconstructed dynamic [
18

F]FET-PET images for a patient had oligodendroglioma. Note 

that concentrations higher than 6000 (Bq/cc) were set to 6000 (Bq/cc). 
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FIG.2. Reconstructed dynamic [
18

F]FET-PET images for a patient had glioblastoma. Note that 

concentrations higher than 21415 (Bq/cc) were set to 21415 (Bq/cc). 

 

 

FIG.3. Coefficient of variation (CV) of the k-means objective function value (OFV) using 100 

random centroid initialization replications (RCI100) to evaluate the reproducibility of k-means, for 

number of clusters from 2 to 50.  
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3.1 Reproducibility of k-means objective function value  

Within all patients, the maximum CV of OFV was 2.7×10
-2

 as depicted in FIG.3. The CV strongly 

depends on the patient and on the number of clusters. 

 

3.2 Cluster validity index requirements 

TABLE II summarizes the developed general requirements during this study, which were used as 

a basis for the evaluation. Accordingly, to evaluate the optimal number of clusters, the validity 

indices were investigated according to the five requirements (TABLE II). The first requirement 

(physiologically reasonable segmentation) is shown at the end of this section as the optimal 

number of clusters must be defined first using the different validity indices before evaluating the 

tissue segmentation result.  
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TABLE II. General requirements for the optimal number of clusters determined based on an 

adequate cluster validity index. 

Requirement 

number 

Specification 

1 The optimal number of clusters should give a physiologically 

reasonable segmentation. 

2 The number of clusters should not depend on the number of voxels 

included in the analysis. ⃰ 

3 The suggested optimal number of clusters should be highly 

reproducible.
£
 

4 The index should have a clear single extremum to specify the optimal 

number of clusters uniquely. 

5 The required computation time should be reasonable for use in a 

clinical setting.  

⃰ For example doubling each voxel should yield the same optimal number of clusters. 

£ 
For example the difference of the validity index value between clustering results with different 

numbers of clusters should be large compared to those within different replications of a given 

number of clusters. 
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Requirement number 2  

Based on the AIC, different optimal numbers of clusters were suggested when applying cluster 

analysis to duplication of a slice and the same slice without duplication. This demonstrates that 

this index does not fulfil the needed second requirement for an adequate validity index (TABLE 

II). The dependence of this index on the number of voxels can be seen in FIG.4. AIC 

performance thus was inadequate and was excluded from further comparison. 

 

 

FIG.4. Optimal number of clusters suggested by the AIC as a function of the number of voxels 

(range 300 – 30000) showing the violation of requirement 2 (TABLE II; note the logarithmic 

scale for the x-axis). 
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At the same time, the identical optimal number of clusters was observed between applying cluster 

analysis to duplication of a slice and the same slice without duplication for WB, I , modified 

Dunn’s, and Silhouette indices in all patients, suggesting that all these four validity indices meet 

and fulfil this requirement. 

 

Requirement number 3  

The dependence of the four indices on the random centroid initialization for each number of 

clusters (ranging from 2 to 50) for the patients shown in FIG.1 and FIG.2 is seen in FIG.5 and 

FIG.6, respectively. There are deviations among replications within a given number of clusters. I 

and modified Dunn’s indices have lower reproducibility and are strongly influenced by the initial 

centroids selection. This influence of random centroid initialization is less prominent in the other 

indices. From all patients, the maximum coefficient of variation of WB, I, modified Dunn’s, and 

Silhouette validity indices were 3×10
-2 

(optimal number of clusters 6), 1 (optimal number of 

clusters 6), 2×10
-1 

(optimal number of clusters 3) and 3×10
-3

 (optimal number of clusters 2), 

respectively. 

The required numbers of replication needed to yield with high reproducibility the optimal number 

of clusters according to Eq. (3) were 4, 39, 41, and 23 for WB, I, modified Dunn’s, and Silhouette 

validity indices, respectively.  
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FIG.5. Cluster validity indices plot for the number of clusters from 2 to 50 with 100 different 

random initial centroids of the patient shown in FIG.1. At the optimal number of clusters, defined 

by WB, I (note the logarithmic scale for the y-axis), modified Dunn’s and Silhouette indices, the 

coefficients of variation were 7×10
-5

, 2×10
-1

, 2×10
-4 

and 2×10
-4

, respectively. 
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FIG.6. Cluster validity indices plot for the number of clusters from 2 to 50 with 100 different 

random initial centroids of the patient shown in FIG.2. At the optimal number of clusters, defined 

by WB, I (note the logarithmic scale for the y-axis), modified Dunn’s and Silhouette indices, the 

coefficients of variation were 3×10
-2

, 8×10
-16

, 2×10
-2 

and 3×10
-3

, respectively. 

 

Requirement number 4  

To determine the optimal number of clusters, the replication with the minimum objective 

function value was selected from 100 centroid initialization replications (FIG.5 and FIG.6). To 

have a better visualization, we showed the data with logarithmic scale for the y-axis of I-index. 

The optimal number of clusters was determined by the global extremum of WB, I, modified 

Dunn’s and Silhouette validity indices (FIG.7 and FIG.8). Within all patients, only the WB-index 

showed a single global maximum, whereas the other indices showed also local extrema. 
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FIG.7. The optimal number of clusters is defined for a given range from 2 to 50 according to (a) 

WB, (b) I (note the logarithmic scale for the y-axis), (c) modified Dunn’s and (d) Silhouette 

validity indices for the patient shown in FIG.1. The replication with the minimal objective 

function value was selected from 100 replications. 
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FIG.8. The optimal number of clusters is defined for a given range from 2 to 50 according to (a) 

WB, (b) I (note the logarithmic scale for the y-axis), (c) modified Dunn’s and (d) Silhouette 

validity indices for the patient shown in FIG.2. The replication with the minimal objective 

function value was selected from 100 replications. 
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Requirement number 5  

The calculation times needed (in seconds) using one replication were 0.2±0.1, 0.0004±0.0002, 

0.05±0.02, 0.0009±0.0002, and 2.5±0.1 for k-means, WB-index, I-index, modified Dunn’s index 

and Silhouette index, respectively. Thus, computation time is not an issue when using validity 

indices. 

 

Requirement number 1  

k-means cluster segmentation results for the patients shown in FIG.1 and FIG.2 are presented in 

FIG.9 and FIG.10, respectively for the optimal number of clusters suggested by the WB, I, 

modified Dunn’s, Silhouette validity indices. White matter, gray matter, and 2 regions within the 

tumor were clearly delineated with the optimal number of clusters suggested by WB and I 

indices, compared with the number of clusters suggested by modified Dunn’s and Silhouette 

indices (FIG.9). In all patients, the tumor was separated from the whole brain with the optimal 

number of clusters suggested by modified Dunn’s, Silhouette validity indices. 

The extracted tumor TACs obtained using the corresponding optimal number of clusters 

suggested by WB and Silhouette indices for the patients shown in FIG.1 and FIG.2 are depicted 

in FIG.11 and FIG.12, respectively. Additional sub-regions inside the tumor are observed by 

cluster analysis using WB-index with noisy TAC due to the lower number of voxels (110) within 

that cluster shown in FIG.11.  
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FIG.9. k-means segmentation (upper row) and superimposed tumor contours (lower row) of the 

[
18

F]FET-PET kinetics of the patient with an oligodendroglioma (FIG.1) for the optimal number 

of clusters NC=5 given by WB and I indices (left column) and the optimal number of clusters 

NC=3 given by the modified Dunn’s and Silhouette indices (right column). Different clusters are 

represented by different colors. The area removed by thresholding corresponds to the dark blue 

color with value 0. The contour was detected using the ‘log’ edge algorithm (Laplacian operator) 

of MATLAB (R2015b, MathWorks, Natick, Massachusetts, USA) software. The obtained 

contours were checked by an experienced physician for plausibility. Non-tumor cluster areas such 

as veins, arteries and the sinus cavernous or enrichment of the mucous membranes of the nasal 

sinuses in the [
18

F]FET-PET brain images are not contoured. 
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FIG.10. k-means segmentation (upper row) and superimposed tumor contours (lower row) of the 

[
18

F]FET-PET kinetics of the patient with glioblastoma (FIG.2) for the optimal number of 

clusters NC=6 given by WB-index (left column) and the optimal number of clusters NC=4 given 

by I index (middle column) and the optimal number of clusters NC=2 given by the modified 

Dunn’s and Silhouette indices (right column). Different clusters are represented by different 

colors. The area removed by thresholding corresponds to the dark blue color with value 0.  
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FIG.11. TACs corresponding to the tumor clusters (seen in FIG.9) based on the optimal number 

of clusters suggested by the WB-index or I-index (a) and (b) and by the optimal number of 

clusters suggested by modified Dunn’s index or Silhouette index (c). The numbers of voxels were 

597, 110, and 601, for tumor clusters 1, 2 and 3, respectively. 

  



 

  36 

 

FIG.12. TACs corresponding to the tumor clusters (seen in FIG.10) based on the optimal number 

of clusters suggested by the WB-index (a) and (b), the optimal number of clusters suggested by I-

index (c) and (d) and the optimal number of clusters suggested by modified Dunn’s index or 

Silhouette index (d) and (f). The numbers of voxels were 175, 115, 498, 128 and 414 for tumor 

clusters 1, 2, 3, 4 and 5, respectively. 

 

 

The clustering algorithm was performed for every patient independently on 3 neighboring slices 

containing tumor tissue. Single slices were investigated because of computational reasons. As 

only validity indices were included in the evaluation, which do not depend on the number of 

voxels, the number of optimal clusters should not depend on the number of clustered voxels. Note 

that a 3D data set has just more voxels from the view of the k-means algorithm. The separate 

clustering of 3 neighboring slices was done to investigate the stability of the optimal number of 

clusters as the slice thickness is 3 mm. The similarity of the optimal number of clusters was 
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interpreted as stability based on the assumption that neighboring slices should have very similar 

if not identical optimal number of clusters.  

When considering reasonability of the number of clusters produced by indices, at least three 

clusters including gray matter, white matter and tumor were expected. The optimal number of 

clusters given by modified Dunn’s and Silhouette indices led to a very poor segmentation 

(TABLE III) as mostly 2 regions were identified (tumor and remainder). WB and I indices 

suggested higher number of clusters than modified Dunn’s and Silhouette indices. Only in two 

cases I-index suggested a higher value, in 14 cases they are the same and in 8 cases WB-index 

suggested a higher value. The optimal number of clusters ranged from 4 to 6 by WB-index and 3 

to 6 by I-index. Both indices allowed better differentiation of different tissues as compared with 

modified Dunn’s and Silhouette validity indices. The optimal numbers of clusters suggested by 

WB and I indices deviate maximum by two clusters between neighboring slices.  

Performing k-means on the whole brain volume (56 slices) is time consuming (6 h per one 

replication). The sensitivity of the PET is higher in the center of the axial field of view than at the 

edge of the axial field of view. This results in different statistical properties of the slices 

depending on the axial field of view. Thus, clustering of three slices by three slices could be more 

adequate than clustering of all 56 slices together. Therefore, to check the influence of a larger 

number of voxels on the result, the clustering was performed on the same three neighboring slices 

together. The optimal numbers of clusters given by the investigated validity indices are listed in 

TABLE III (numbers in the brackets). Mostly, WB and I indices suggested for three neighboring 

slices together the rounded mean of the numbers of the three neighboring slices separately. Only 

in two patients the clustering of the 3 slices together yielded a different result between WB and I 

indices. A factor 3 increase of voxels did not largely change the found number of optimal 
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clusters. Connectivity of the tumor clusters was checked: In all patients the tumor voxels in the 3 

slices were spatially connected. 

 

 

TABLE III. Comparison of the optimal number of the clusters for three neighboring slices as 

defined by different cluster validity indices. Note: From first row to the eighth row, the first three 

numbers in each slot are the optimal number of clusters corresponding to three neighboring slices 

separately. The number in the bracket is the optimal number of clusters corresponding to the 

same three slices together. 

 

 

 

 

 

 

 

 

 

 

Patient 

number 

WB-index I-index 

Modified 

Dunn’s index 

Silhouette 

index 

1 4, 5, 5 (5)   4, 5, 5 (5) 3, 3, 3 (3) 3, 3, 3 (3) 

2 5, 6, 5 (5) 4, 4, 4 (4) 2, 2, 2 (2) 2, 2, 2 (2) 

3 5, 6, 6 (6) 6, 6, 5 (6) 2, 2, 2 (2) 2, 2, 2 (2) 

4 4, 4, 4 (4) 4, 4, 4 (4) 2, 2, 2 (2) 2, 2, 2 (2) 

5 5, 4, 4 (4) 4, 4, 3 (4) 2, 2, 2 (2) 2, 2, 2 (2) 

6 5, 5, 5 (5) 4, 5, 5 (5) 3, 3, 3 (3) 3, 3, 3 (3) 

7                                                                                            4, 4, 4 (4) 4, 4, 4 (4) 3, 3, 3 (3) 3, 3, 2 (3) 

8 6, 5, 4 (4)               5, 6, 4 (7) 2, 2, 2 (2) 2, 2, 2 (2) 

Min 4 (4) 3 (4) 2 (2) 2 (2) 

Max 6 (6) 6 (7) 3 (3) 3 (3) 
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An example of the k-means cluster segmentation results of three neighboring slices independently 

are visualized in FIG.13 and FIG.14, according to the optimal number of clusters suggested by 

WB validity index.  

 

 

FIG.13. The top row shows an example for three neighboring slices having tumor in the last 

frame, (a) slice 25 (b) slice 26 (c) slice 27 taken from patient shown in (FIG.1). k-means 

segmentation result can be seen in the bottom row for the three neighboring slices with the 

optimal number of clusters, (a) 4 (b) 5 (c) 5, given by WB validity index. Clusters are represented 

by different colors. The area removed by thresholding corresponds to the dark blue color with 

value 0. The slices b and c have one cluster more than slice a due to heterogeneity of tumor in the 

selected plane. 
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FIG.14. The top row shows an example for three neighboring slices having tumor in the last 

frame, (a) slice 42 (b) slice 43 (c) slice 44 taken from patient shown in (FIG.2). k-means 

segmentation result can be seen in the bottom row for the three neighboring slices with the 

optimal number of clusters, (a) 5 (b) 6 (c) 5, given by WB index. Clusters are represented by 

different colors. The area removed by thresholding corresponds to the dark blue color with value 

0. The slices b has one additional cluster more than slices a and b. 
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4. Discussion 

Automated cluster analysis of PET image segmentation is used to accurately and reproducibly 

define the spatial distribution of the tumor regions. In this study a validation strategy of k-means 

clustering algorithm for dynamic human brain [
18

F]FET-PET images is provided. Eight patient 

data reconstructed for the same parameters on the same scanner were used. 
 

The traditional solution to find the optimal number of clusters is based on cluster validity indices; 

these however are affected by data characteristics, like noise or the dimensionality of the data. 

General requirements for a validity index to be adequate to describe PET data are that the number 

of clusters suggested by the index should result in a physiologically reasonable segmentation, not 

depend on the number of the investigated voxels and be highly reproducible. Additionally, the 

index should have a clear single extremum to have a unique solution and the computation time 

should be reasonable for use in a clinical setting (TABLE II). AIC, WB, I, modified Dunn’s and 

Silhouette validity indices were compared to determine the optimal number of clusters that best 

fits the given PET data. 
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Comparison of the five investigated validity indices based on the predefined requirements 

AIC was excluded from further comparison as the optimal number of clusters suggested by this 

index depends on the number of investigated voxels, which is not desired (FIG. 4). Besides, 

Silhouette and modified Dunn’s indices performance was inadequate in our comparison due to 

different reasons. For example, Silhouette index uses the average minimum distance between 

clusters as the indicator of the inter-cluster separation, which should be maximized. For a data set 

with sub-clusters, the inter-cluster separation will achieve higher values when sub-clusters are 

considered as one big cluster.
46

 Therefore, in our data we cannot observe the sub-cluster within 

the tumor and other relevant clusters in the brain (FIG.9 (right column)). The main disadvantages 

of the modified Dunn’s index are that on the one hand this index can be potentially influenced by 

the outlier in the data (as the maximum cluster diameter can be large in a noisy data set).
46

 On the 

other hand, this index is strongly influenced by the initial centroids selection. Consequently, 

Silhouette and modified Dunn’s indices seem not to be qualified for segmentation of dynamic 

human brain [
18

F]FET-PET images. Furthermore, both indices suggested less number of clusters 

leading to poor segmentation compared to the number of clusters suggested by WB and I indices. 

When comparing I-index with WB-index, both indices provided similar results. In more detail, 

WB-index suggested sometimes one or two more clusters than I-index and in most cases both 

suggested the same optimal number of clusters. However, WB-index is more resistant to noise 

because it takes mean values of all data into account through dividing sum of within-cluster-

distances by sum of between-cluster-distances. As compared with I-index, WB-index is also 

simpler to understand. The WB-index showed only one global minimum for the given number of 

clusters ranging from 2 to 50 for all investigated patients while the other indices did not hold this 

property. 
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Within 8 patients, different optimal numbers of clusters were expected depending on the 

heterogeneity of the tumor and the location of slices. Assuming similar situation between 

neighboring slices of a specific patient, the optimal numbers of clusters are more or less the same 

among these slices. In TABLE III, the intra-patient difference of the number of clusters was less 

than or equal to two clusters between neighboring slices, given by WB and I indices.  

Comparison of the manual and the automated segmentation methods 

The tumor cluster results obtained were checked by a physician for plausibility. In no case it was 

deemed that the clustering of the tumor was wrong. As we are confident that the automatic 

segmentation is more accurate than the manual segmentation, which uses static images (i.e. less 

information) and is operator dependent, time-consuming and challenging due to noise in the PET 

images, we do not expect relevant information from comparing the cluster results to the inferior 

manual method.
59

 In addition, we do not expect relevant information from comparing the cluster 

results with the manual delineation of ROIs on dynamic images as it is difficult (if not 

impossible) for the physician to integrate the full voxel time activity curves (i.e. 21 frames with 

different frame duration and noise properties) into the evaluation (FIG.1 and FIG.2 ). 

Comparison between global k-means algorithm and the current used approach 

To further demonstrate the validity of our current used approach, one of the deterministic 

clustering approaches (the global k-means algorithm)
61

 was implemented, investigated and the 

results were compared to the used repeated random initialization approach. Regarding to the 

objective function value, we observed that the k-means objective function value of the used 

approach outperformed the deterministic clustering global k-means in 67 of the 72 investigated 

cases (93 %). This was calculated for the number of clusters from 2 to 10 (i.e. 9) based on one 

slice containing parts of tumor for eight patients. Moreover, the optimal numbers of clusters 
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suggested by WB-index, modified Dunn’s index and Silhouette index were the same using both 

approaches while for the I-index, only 1 case out of 24 the optimal number of clusters showed a 

difference of one in the optimal number of clusters. However, this was to be expected as the I-

index is sensitive to the random initial centroid selection (in FIG.5 and FIG.6). 

Real ground truth data for evaluating dynamic PET image segmentation 

Brain PET image segmentation requires a real ground truth which reflects the characteristics of 

the segmentation problem encountered in practice. Physical and digital phantoms have an 

important role in assessment and validation of the accuracy of automated segmentation.  

To deduce valid conclusions on the correct segmentation in the real patient from a simplified 

physical phantom is however virtually impossible. This is due to the unknown tumor structure 

(e.g. perfusion, distribution of different cell types, vessels, etc.) and the tumors are most often 

simulated as spheres with uniform activity.
62, 63

 In addition, such phantoms typically can neither 

reproduce the complexity of the brain and nor both the normal and pathological anatomical 

variability observed in clinical data.
64

 

Therefore, using digital phantom as surrogate for real PET data is a common approach to know 

the ground truth.
33, 63, 65-70

 However, this requires constructing phantoms that reproduce the full 

range of PET imaging characteristics encountered in practice coming from data acquisition using 

complex scanner geometry and a reconstruction algorithm. These characteristics include partial 

volume artifacts (e.g. different percentages of blood vessels in each voxel), poor spatial 

resolution and noise; these make the construction of adequate digital phantoms a difficult task.
64

 

In addition, one needs to generate phantoms with various anatomies and complex shapes and 

different levels of activity in the tumors in order to generate realistic tumors.
62, 63, 70

  

Moreover, assigning TACs extracted from FET patients to a digital phantom will turn the real 

problem into an artificially simplified (i.e. one needs to choose the number of TACs used) task, 
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the relation of which to the real segmentation task is unknown (as the PET data clearly are more 

complex and do not consist of only a few different TACs). Thus, the results obtained from the 

simulations are invalidated; this is especially significant when choosing a low number of TACs. 

In case a very high number (e.g. 1000) of TACs is chosen for the simulation to be nearer to the 

real situation, then, after adding the noise, a low number of clusters is chosen by all the validity 

indices; thus, one cannot decide which validity index is better (maybe except for assuming that 

the best one is the one choosing the highest number of clusters). As additional drawback 

associated with using the patient images as an input for simulations is that the patient images 

suffer from limited spatial resolution and noise. The limited spatial resolution and noise 

propagate through the simulation and reconstruction processes, which result in simulated images 

different from those initially used as input images.
71

 For example, the modulation transfer 

function (MTF) is applied twice to the data: first during the real measurement, and second during 

the generation of the sinogram based on the real measurement followed by the image 

reconstruction. 

Using a realistic simulation therefore needs a long computation time and is highly demanding in 

computational resources.
19

 In addition, the existence of simulated datasets is very limited in 

number, realism, and variability.
70

 Although we thus could not investigate measurements with 

known ground truth, we believe that the WB-index is a good starting point to determine 

reproducibly the optimal number of clusters for [
18

F]FET-PET data. 
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Further points for improving clustering results 

First, in the preprocessing step related to reduce the number of noisy voxels and extract the 

relevant voxels for further analysis, different thresholding methods, such as histogram shape-

based methods can be implemented and compared. At the same time, different frame weighting 

and other reconstruction parameters schemes can be applied and compared with the one used in 

this study. 

Second, Euclidean distance was used to assign each voxel-TAC to the nearest centroids. Different 

distance measures, as for example city-block, cosine and correlation distance measures72, 73, can 

be implemented and compared with the one used in this study. 

Third, in this study, clustering algorithm of TACs was performed on the temporal information 

without involving the spatial correlation between voxels. That is why for example the tumor 

voxels and some skin voxels belong to the same cluster (FIG.9 (upper row)). Thus, in future a 

segmentation method that utilizes both the spatial and temporal information in dynamic PET data 

may additionally aid in the evaluation of patients.
34, 74

 

Fourth, the optimal number of clusters for PET data can be determined based on non-least square 

fitting for generation of biological parameters. Accordingly, after PET data is being clustered, the 

resulting mean TACs can be used directly for estimating of kinetic parameters using a 

compartment model. A compartment is a volume in which the tracer is distributed uniformly. 

These models contain parameters which describe the transport rates of the tracer such as the flow 

in, flow out, and generally the uptake of the tracer inside specific cluster. These parameters can 

be estimated by fitting the model equations to TACs derived from PET images clustering. Then, 

the optimal number of clusters for PET data can be determined based on the biological 
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parameters derived from the compartments model such as all voxel-TACs belong to same cluster 

have similar biological parameters.  
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5. Conclusions 

k-means clustering is a highly reproducible approach to define different functional structures on 

dynamic [
18

F]FET-PET brain images compared to the manual drawing of ROIs for the 

investigated image reconstruction algorithm and the used scanner.  

Among all investigated cluster validity indices, the WB-index could be used to reproducibly and 

automatically determine the optimal number of clusters for [
18

F]FET-PET brain images. 

In addition, the WB-index suggests a higher number of clusters compared to I, modified Dunn’s, 

and Silhouette validity indices, thus allowing better differentiation of different brain tissues. 

Besides, the WB index has a higher reproducibility and a unique global minimum with a simple 

approach.  

The methodology developed in this study is general and can also be performed on dynamic 

[
18

F]FDG-PET images or any other types of tracer. 
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