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Abstract

The topic of this thesis are magnetic domains in thin ferromagnetic films with

strong perpendicular anisotropy. Our starting point is Micromagnetics, a con-

tinuum model based on the principle of minimal energy. At its core is the

micromagnetic energy functional, whose local minimizer represent the stable

magnetization configurations of the ferromagnetic body.

Identifying a suitable thin film regime leads us to investigate a singular limit of

the nonconvex and nonlocal micromagnetic energy functional. Our asymptotic

analysis yields a scaling law for the typical domain size as a function of the

film thickness and another material parameter. To prove an ansatz free lower

bound of the energy, we extend an interpolation inequality first obtained in

[26].

Moreover, we study a shape optimization problem that can be considered as

a prototypical model for a single magnetic domain. We minimize the sum

of the perimeter and the dipolar self-energy among subsets of R3 with pre-

scribed volume. Upon proving that minimizers exist, we show that they are

(L3-equivalent to) connected open sets with smooth boundary. We further-

more establish a scaling law for the minimal energy in terms of the prescribed

volume which yields further information about the shape of minimizers.
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Zusammenfassung

Das Thema dieser Arbeit ist die Domänenstruktur in ferromagnetischen Fil-

men mit starker Anisotropie senkrecht zur Filmebene. Den Ausgangspunkt

bildet das mikromagnetische Modell, welches auf einer Kontinuumsapproxima-

tion und dem Prinzip der minimalen Energie beruht. Zentraler Bestandteil des

Modells ist das mikromagnetische Energiefunktional, dessen lokale Minimierer

die stabilen Konfigurationen der Magnetisierung des ferromagnetischen Mate-

rials repräsentieren.

Die Identifikation eines geeigneten Regimes dünner Filme führt zur Unter-

suchung eines singulären Limes des nichtkonvexen und nichtlokalen mikro-

magnetischen Energiefunktionals. Das asymptotische Verhalten der Energie

impliziert ein Skalierungsgesetz für die typische Längenskala der erwarteten

magnetischen Domänen als Funktion der Filmdicke und eines weiteren Mate-

rialparamters. Für den Beweis einer unteren Schranke der Energie wird eine

Interpolationsungleichung aus [26] verschärft.

Des Weiteren wird ein Optimierungsproblem für die Form einer einzelnen

magnetischen Domäne untersucht. Dabei wird die Summe des Oberflächen-

inhalts und der Demagnetisierungsenergie über geeignete Teilmengen des R3

mit vorgegebenem Volumen minimiert. Es wird bewiesen, dass Minimierer ex-

istieren und dass diese L3-äquivalent zu offenen, zusammenhängenden Mengen

mit glattem Rand sind. Der Beweis eines Skalierungsgesetzes für die minimale

Energie als Funktion des vorgegebenen Volumens liefert weitere Informationen

über die optimale Form von Minimierern.
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Introduction

This thesis is motivated by the phenomenon of spatially ordered magnetiza-

tion patterns in thin ferromagnetic films with strong perpendicular anisotropy.

These patterns usually consist of uniformly magnetized regions – magnetic

domains – separated by transition regions called domain walls [44]. Exper-

imentally observed patterns include so-called stripe, bubble or maze domain

phases [88, 84, 43, 95, 77], depending on the geometry of the sample, external

magnetic fields and other factors (see also Figure 1).

Magnetization patterns are not only of academic interest. Indeed, magnetic

domains may be considered to “link the basic physical properties of a ma-

terial with its macroscopic properties and applications” [44, p. vii]. Over

the last decade, ferromagnetic films with perpendicular anisotropy and related

multilayer constructions have played an indispensable role in data storage tech-

nologies [48]. Additionally, films and multilayer structures consisting of only

a few atomic layers have received increased attention among experimentalists

[49, 62, 94, 86, 87] due to possible applications in future spintronic devices [6].

Figure 1: Faraday microscopy image depicting the domain structure of a garnet

film with out-of-plane anisotropy (view from top; black/white indicates whether the

magnetization points towards/away from the viewer). Reproduced from [69] with

permission.
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2 INTRODUCTION

Beginning with the pioneering works of Landau and Lifshitz [64], Néel [79, 80]

and Kittel [52], it turned out that magnetic domains may usually be modelled

on the basis of energy considerations. From those works, the micromagnetic

modeling framework emerged and has been reviewed by Kittel [53] and Brown

[13]. Its core is the micromagnetic energy functional, whose local minimizers

represent the stable magnetization configurations of the ferromagnetic body.

The micromagnetic energy has been the subject of intensive studies for var-

ious ferromagnetic systems in the physical and mathematical literature (see

[44] and [28] for reviews). In particular, it was shown in [5] that strong uniax-

ial anisotropy of the material leads to mangetizations that are predominantly

aligned with the so-called easy axis of the material. Moreover, for bulk sam-

ples with strong uniaxial anisotropy, the ground state has been studied in

[18, 19, 81, 56]. Furthermore, numerous thin film regimes for the micromag-

netic energy have been identified and investigated. However, the majority of

those studies considers films where, unlike in our setting, the magnetization

tends to lie in the film plane (see, e.g., [35, 15, 27, 74, 60, 26, 63, 47, 46, 45, 16]).

Only a few studies in the mathematical literature consider films with magne-

tization perpendicular to the film plane. Their focus is on different parame-

ter regimes [5, 38, 22], the effect of Dzyaloshinskii-Moriya interaction [76] or

Skyrmions [70]. The ground state of ferromagnetic films with strong anisotropy

perpendicular to the film plane has only been studied using ansatz based com-

putations in the physical literature [61, 29, 51, 78]).

The first part of this thesis provides an ansatz free analyis of ferromagnetic

films with strong anisotropy perpendicular to the film plane. We determine a

scaling law for the minimal micromagnetic energy and investigate the config-

urations that achieve it. In particular, our analysis yields a scaling law for the

length scale of domains (in an averaged sense) in terms of the film thickness

and a material parameter.

When the ferromagnetic film is exposed to a critical external field, a phase

transition between a complex, branching domain pattern and the uniform mag-

netization configuration occurs. In [56], Knüpfer and Muratov determined the

scaling of the minimal energy for an external field close to saturation as well

as the critical field strength. Moreover, they showed that a branching pattern



3

of thin and slender “needle-shaped” domains with magnetization opposing the

applied field achieves the optimal scaling of the energy.

Based on the results of [56], we model a single one of the expected “needle-

shaped” domains using a shape optimization problem in full space. The sum

of the surface area and the dipolar self-energy is minimized among sets with

prescribed volume. We show that local minimizers are (up to an L3 negligible

set) connected open sets with smooth boundary. We furthermore establish a

scaling law for the minimal energy in terms of the prescribed volume which

yields further information about the shape of minimizers.

We believe that our analysis of this prototypical single domain model might

also be of interest for other (highly anisotropic) pattern forming systems gov-

erned by the competition of interfacial and dipolar energies. As examples, we

mention ferromagnetic gels [21] and certain dipolar Bose-Einstein condensates

[85, 32], where “needle-shaped” configurations have been observed experimen-

tally.

We note that our single domain model is the full space version of a Γ-limit

of the micromagnetic energy obtained in [5]. Moreover, we want to men-

tion the following related full space models, which are also the sum of an

interfacial energy and a competing nonlocal energy term. The first exam-

ple is a family of energies where the nonlocal term arises from the Riesz-

type kernel |z|α−n with (α ∈ (0, n)). It has received a lot of interest recently

[57, 58, 66, 20, 2, 10, 33, 50]. For n = 3 and α = 2, one obtains the Gamow

liquid drop model for atomic nuclei, where the nonlocal term can be under-

stood as the Coulomb energy of a configuration with uniform charge density.

See also [11] for a multi-phase version.

A second example is a model for elastic inclusions (in the framework of geo-

metrically linearized elasticity). The scaling of its minimal energy was studied

in [54]. See also [55] for a multi-phase version.

Before we describe the results of this thesis in more detail, we briefly introduce

the micromagnetic model.



4 INTRODUCTION

The micromagnetic model

Let the open, bounded set Ω ⊂ R3 represent the region in space occupied by the

ferromagnetic material. The quantity of interest is the magnetization, modeled

as a unit vector field m : Ω → S2 = {x ∈ R3 : |x| = 1} that (locally) minimizes

the micromagnetic energy functional. In a partially non-dimensionalized form,

the micromagnetic energy is given by [64, 44]

E(m) =

∫
Ω

(
l2ex|∇m|2 +Q

(
m2

2 +m2
3

)
+ 2hext ·m

)
dx+

∫
R3

|h|2 dx (0.1)

for admissible configurations in the non-convex class

A = {m ∈ L2(R3;R3) : |m(x)| = χΩ and m|Ω ∈ H1(Ω;R3)}. (0.2)

In (0.2), and throughout this whole thesis, χΩ denotes the characteristic func-

tion of the set Ω. Let us briefly explain the terms in (0.1).

(i) The first term is called the exchange energy. It is of quantum mechanical

origin and describes the tendency of neighboring spins to be aligned [42].

The material parameter lex > 0 is called the exchange length and denotes

a characteristic length scale of the material.

(ii) The second term is called the anisotropy energy. It penalizes the devia-

tion of the magnetization from the easy axis which we have taken to be e1

throughout the whole thesis. The dimensionless material constant Q is

also known as the quality factor. Our assumption of “strong” anisotropy

is made precise by the inequality Q > 1 (see chapter 1 for a detailed

explanation).

(iii) The third term is called the Zeeman energy and incorporates the effects

of an external magnetic field hext : R3 → R3.

(iv) The last term is called the stray field energy. The stray field h ∈
L2(R3;R3) is determined by the static Maxwell’s equations in matter

div(h+m) = 0 and ∇× h = 0 in D′(R3). (0.3)

Hence, up to a sign, h coincides with the Helmholtz projection of m onto

the space of gradients and the stray field energy amounts to the squared

Ḣ−1(R3)-norm of divm. In particular, the energy depends on m in a

nonlocal way.
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Note that the constant configurations m ≡ ±e1 minimize the first two terms in

the energy, but lead to contributions in divm on parts of the boundary of ∂Ω

which are penalized by the stray field energy. A scaling argument indicates

that, for sufficiently large samples, it should be advantageous to alternate

between m ≈ e1 and m ≈ −e1, i.e. to form magnetic domains. The reader is

referred to [44] for further details on the micromagnetic model and a survey

of experimental techniques and results. A mathematical-minded introduction

may be found in the survey [28].

Overview of the main results

We first explain the basic structure of this thesis which consists of three chap-

ters. In turn, we will explain the main results of each chapter.

The first two chapters are concerned with properties of domain patterns in

thin films with strong perpendicular anisotropy. The scaling of the minimal

micromagnetic energy for such films is identified in chapter 1. It leads to a

scaling law for the typical length scale of magnetic domains in such films. In

chapter 2, we use this scaling law to initiate a finer analysis, corresponding to

the next order in the Γ development of the energy. Upon heuristically simpli-

fying the energy, we derive a nonlocal Γ-limit and study some of its properties.

Whereas the magnetization is asymptotically two-dimensional in the first two

chapters, Chapter 3 is concerned with three-dimensional magnetic domains

that are expected in somewhat thicker films subject to a critical external field.

We study a shape optimization problem (see (0.7)) for a single one of those

domains.

We begin to explain the results of this thesis in more detail. The first chapter

of this thesis is concerned with the asymptotic behavior of the micromagnetic

energy for films of vanishing thickness and strong anisotropy perpendicular

to the film plane (corresponding to Q > 1 in (0.1)). Starting from the full

three-dimensional micromagnetic energy (0.1) and assuming periodicity in the

film plane to avoid boundary effects, we show that the effective behavior is de-

termined by the following two-dimensional functional Fε,λ : H1(T2; S2) → R,
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given by

Fε,λ[m] =

∫
T2

(
ε

2
|∇m|2 + 1

2ε
(1−m2

1)

)
dx

− λ

4π| log ε|

∫
T2

∫
R2

|m1(x)−m1(y)|2
|x− y|3 dy dx.

(0.4)

In (0.4), T2 denotes the square flat torus of unit side length, ε is the renormal-

ized Bloch wall width and λ is the renormalized film thickness (see section 1.1

for the precise definitions). We remark that the double integral amounts to

the squared homogeneous H
1
2 -norm. To simplify the exposition, we continue

our discussion with the reduced energy Fε,λ. However, we will prove analogous

results for the full energy (0.1) by similar (but more involved) arguments.

The main part of our analysis is concerned with the asymptotic behavior of

(0.4) as ε→ 0 for different values of λ > 0. Note that the last term in (0.4) oc-

curs with a negative sign and hence prefers oscillations of m1. As it turns out,

the value of the parameter λ is crucial. In fact, we will show that the asymp-

totic behavior changes at λ = λc, where λc =
π
2
, which is a singular point in the

terminology of [12]. For λ < λc the Γ-limit F∗,λ := Γ(L1)-limε→0 Fε,λ measures

the length of the interface separating regions with m ≈ e1 and m ≈ −e1 and

is given by (see also Theorem 1.2.5)

F∗,λ[m] =

⎧⎪⎨⎪⎩
(
1− λ

λc

)∫
T2

|∇m1| dx, for m ∈ BV (T2; {±e1}),

+∞, otherwise.

Note that the last term in (0.4) leads to a reduction of the interfacial cost

by λ
λc

compared to the classical result [5] for λ = 0. On the other hand, for

λ > λc, the scaling of the minimal energy changes to (see also Theorem 1.2.6)

minFε,λ ∼ −λε
λc−λ

λ

| log ε|
ε→0−→ −∞. (0.5)

Moreover, all sequences (mε)ε of configurations which achieve the optimal scal-

ing Fε,λ[mε] ∼ minFε,λ become highly oscillatory in the sense that∫
T2

|∇ (mε)1 | dx ∼ ε
λc−λ
λ

ε→0−→ +∞. (0.6)

Estimate (0.6) may be interpreted as a scaling law for the typical distance of

neighboring domain walls. The main difficulty in the proof is to find asymp-

totically optimal estimates for the H
1
2 -term. The lower bounds for Fε,λ rely
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on an improved version of an interpolation inequality from [26]. Whereas our

estimate is similar to the estimate in [26] when applied to monotone functions,

it is significantly stronger for highly oscillatory functions such as configurations

that minimize Fε,λ for λ > λc. In particular, our improvement is crucial to

obtain (0.5) and (0.6).

Upon studying the asymptotic behavior of Fε,λ, we carry out a similar pro-

gram for the full micromagnetic energy (0.1). Here, additional difficulties arise

in the approximation of the stray field energy and due to the transition from

three-dimensional configurations to a two-dimensional limit.

Together with C. Muratov and H. Knüpfer a joint paper comprising the results

of chapter 1 has been submitted.

In chapter 2, we use the scaling law obtained in chapter 1 to initiate a finer

analysis, corresponding to the next order in the Γ-development of the micro-

magnetic energy. Our focus is on the case when the length of the film’s unit-cell

is much larger than, but still comparable to, the expected pattern size. Due

to difficulties related in part to the diffuse interfaces, we are unable to carry

out such a program for the full micromagnetic energy. Instead, we heuristi-

cally identify a related sharp interface model. During this process, we lose

the strong regularizing effect of the exchange energy and it becomes crucial to

exploit the natural regularization in the stray-field energy. Starting from the

reduced sharp interface model, we prove the Γ-convergence towards a nonlocal

functional.

Chapter 3 is motivated by questions on single magnetic domains in uniaxial

ferromagnetic materials exposed to a critical external field and, more generally,

the nucleation of domains in such samples. To this end, we consider a shape

optimization problem for a single ferromagnetic domain Ω ⊂ R3, represented

by its characteristic function χΩ ∈ BV (R3; {0, 1}). We assume that χΩ is a

(local) minimizer of the energy

E(χ) =
∫
R3

|∇χ| dx+
∫
R3

|hχ|2 dx (0.7)

among configurations with prescribed volume
∫
R3 χ dx = V . In the last term
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in (0.7), hχ ∈ L2(R3;R3) represents the stray field, determined by (cf. (0.3))

hχ := −∇Φ, where Φ ∈ Ḣ1(R3) solves div (−∇Φ + χe1) = 0.

We first confirm that minimizers of (0.7) exist for all volumes V . The proof

uses the concentration compactness principle and the sublinear scaling of the

minimal energy. Next, we turn to the regularity of local minimizers and prove

that they are (up to L3-equivalence) bounded open sets with smooth boundary.

The proof is based on the C1,α-regularity results for quasi-minimizers of the

perimeter functional. Additionally, we exploit stationarity of the energy with

respect to inner variations. Furthermore, classical results from potential theory

imply that the corresponding stray field hχ is in L∞(R3;R3). We then turn to

topological properties of local minimizers. In particular, we prove that certain

regular representatives of local minimizers of (0.7) are connected. Finally, we

identify the scaling of the minimal energy in terms of the prescribed volume

V which turns out to be

min
χ∈BV (R3;{0,1}),∫

χ dx=V

E(χ) ∼

⎧⎨⎩V
2
3 for V ≤ 1,

V
5
7 (log eV )

1
7 for V > 1.

The upper bound for large V is obtained by (the characteristic function of)

prolate spheroids with length V
3
7 (log V )

2
7 along the e1-direction and radius

V
2
7 (log V )−

1
7 in the plane perpendicular to e1. The proof of the lower bound

is based on ideas and a geometric construction from [17].

We take a moment to compare the settings in chapters 1 to 3. Their unify-

ing theme is that an energy – essentially given by the sum of interfacial and

dipolar self-energy – is minimized among highly anisotropic magnetization con-

figurations which are (approximately) aligned with the e1-axis. In all settings,

the anisotropy ultimately originates from the leading order of (0.1). But this

mechanism is replaced by a constraint in chapters 2 and 3. This is of course

related to the passage from a diffuse to a sharp interface description, which

also removes an additional length scale given by the width of interfaces. The

main difference between the settings in chapters 1 and 2 versus chapter 3 is the

geometric constraint of the film in chapters 1 and 2 and the critical external

field which leads to the volume constraint in chapter 3.
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Notation: For x ∈ Rn, n ≥ 2 we write x = (x1, x
′), where x′ is the projection

of x onto the last (n − 1) components. For µ > 0 and Ω ⊂ Rn, we write

µΩ = {µx : x ∈ Ω} to denote the isotropic rescaling of Ω by µ. We write

χΩ to denote the characteristic function of Ω. The open Euclidean ball with

center x0 and radius r is denoted by Br(x0) = {x ∈ Rn : |x− x0| < r} and we

set Br := Br(0). The symbol δi,k denotes the Kronecker Delta with δi,k = 1 if

i = k and δi,k = 0 otherwise.

The n-dimensional Lebesgue measure of a measurable set Ω ⊂ Rn is denoted

by |Ω| and if B1 is the unit ball in Rn we set ωn = |B1|. The k-dimensional

Hausdorff measure is denoted by Hk.

Our notation for function spaces follows [30, 31] to which we also refer as

references. This includes the Hölder spaces Ck,α of functions with α-Hölder

continuous derivatives up to order k, the space of functions with bounded

variation BV , and the Sobolev spaces W k,p of functions with weak partial

derivatives up to order k in Lp. For the latter, we set Hk := W k,2 when p = 2.

Additionally, if Ω ⊂ Rn is open and Y ⊂ Rm, we write f ∈ W k,p(Ω;Y ) to

denote that f ∈ W k,p(Ω,Rm) and f(x) ∈ Y for almost every x ∈ Ω (and

likewise for BV (Ω, Y )).

Let k ≥ 0 be an integer, α ∈ (0, 1] and let Ω ⊂ Rn be open and bounded. We

say that ∂Ω is a Ck,α boundary if, for each point y ∈ ∂Ω, there exists r > 0

and a function γ ∈ Ck,α(Rn−1) such that – upon rotating and relabeling the

coordinate axes if necessary – we have

Ω ∩ Br(y) = {(x1, x′) ∈ Br(y) : x1 > γ(x′)}. (0.8)

Furthermore, ∂Ω is smooth if γ ∈ C∞. If ∂Ω is a Ck,α boundary, we define the

Hölder space Ck,α(∂Ω) in terms of local coordinates and refer to [73, Chapter

I.1] for further details.

The expression f(x) ≲ g(x) means that there exists a universal constant C > 0

such that the inequality f(x) ≤ Cg(x) holds for every x. The symbol ≳ is

defined analogously with ≥ instead of ≤ and we write ∼ if both ≲ and ≳

hold. The previous relations are to be distinguished from ≈ which is only used

in heuristic arguments and denotes “approximately equal” (in an unspecified
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sense).

The flat torus with side length ℓ > 0 is denoted by Tn
ℓ := (Rn/ℓZn) and we

abbreviate Tn := Tn
1 . We frequently identify functions u : Tn

ℓ → R with ℓ-

periodic functions v : Rn → R by means of the natural projection π : Rn → Tn
ℓ ,

i.e. when u = v ◦ π holds we identify u with v.

For u ∈ L1((0, t)×T2
ℓ) we write u ∈ L1(T2

ℓ) to denote the e1-average, given by

u(x′) =
1

t

∫ t

0

u(x1, x
′) dx1. (0.9)

Moreover, for every v ∈ L1(T2
ℓ) we write χ(0,t)v ∈ L1((0, t)×T2

ℓ) to denote the

function (χ(0,t)v)(x1, x
′) = χ(0,t)(x1)v(x

′) for (x1, x
′) ∈ (0, t)× T2

ℓ .

For future reference, we now fix the constants in the definition of the Fourier

coefficients. For f ∈ L2(T2
ℓ), we write

f̂k =

∫
T2
ℓ

e−ik·xf(x) dx, where k ∈ 2π

ℓ
Z2. (0.10)

The inverse Fourier transform is then given by

f(x) =
1

ℓ2

∑
k∈ 2π

ℓ
Z2

eik·xf̂k, (0.11)

where convergence is understood in the L2(T2
ℓ) sense. Parseval’s Theorem then

states that∫
T2
ℓ

f ∗(x)g(x) dx =
1

ℓ2

∑
k∈ 2π

ℓ
Z2

f̂ ∗
k ĝk for f, g ∈ L2(T2

ℓ), (0.12)

where “∗” denotes complex conjugation. Furthermore, we use the symbol ∇su

to denote ∫
T2
ℓ

|∇su|2 dx :=
1

ℓ2

∑
k∈ 2π

ℓ
Z2

|k|2s|ûk|2 (0.13)

for s ∈ R. For s = 1
2
we will also use the following well-known real space

representation of the (square of the) homogeneous H
1
2 (T2

ℓ)-norm∫
T2
ℓ

|∇ 1
2u|2 dx =

1

4π

∫
T2
ℓ

∫
R2

|u(x+ y)− u(x)|2
|y|3 dy dx. (0.14)

For the convenience of the reader, a proof of the equivalence is provided in

Lemma A.4 in Appendix A.



Chapter 1

Domains in ultrathin films

In this chapter, we are interested in deriving a reduced two-dimensional model

for ultrathin ferromagnetic films with strong perpendicular anisotropy. More-

over, we characterize low energy states in films of large spatial extent. Our

starting point is the three-dimensional micromagnetic energy functional (0.1).

Since our focus is on materials with strong perpendicular anisotropy, we as-

sume that the parameter Q in (0.1) is greater than 1 (the value 1 is explained

below). The high anisotropy leads to magnetizations that are predominantly

perpendicular to the film plane. It is well-known that such materials feature

magnetizations that consist of one or many regions of nearly constant magneti-

zation, called magnetic domains, separated by interfaces, called domain walls.

We identify the critical scaling for the size of the sample where a transition

from single domain states to multidomain states occurs. Moreover, we analyze

the asymptotic behavior of the energy in the two regimes separated by this

transition. In the subcritical regime, the global minimizers are the single do-

main states m = ±e1. We derive the asymptotic behavior of the energy in this

regime in the framework of Γ-convergence. The reduced energy turns out to

be much simpler than the full energy, in particular, it is two-dimensional and

local. In the supercritical regime, which lies beyond the transition towards

multidomain configurations, we establish the scaling of the energy (up to a

multiplicative constant) and characterize sequences that achieve this scaling.

Our analysis shows that the magnetization in this regime consists of several

11
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domains and suggests that the typical distance between domain walls scales as

typical domain size S ∼ e
2πlex

√
Q−1

T√
Q− 1

lex (1.1)

where T is the thickness of the film.

Although additional physical effects become important in ultrathin films (e.g.

Dzyaloshinskii-Moriya interaction [9, 83]), we believe that our results are suf-

ficiently robust and carry over at least qualitatively to more general models

that incorporate these effects (see, e.g., [76]).

A reduction of the full three-dimensional micromagnetic energy to a local two-

dimensional model in the thin film limit was first established rigorously in

[38]. Subsequently, several thin film regimes for magnetically soft materials

have been identified and analyzed, see, e.g., [15, 27, 74, 60, 63, 46]. However,

since we consider materials with high perpendicular anisotropy, our setting

is considerably different, as we now explain. For thin films of the form Ω =

(0, t)×T2, the leading order contribution of the stray field energy penalizes the

out-of-plane component of the magnetization. Neglecting boundary effects, we

have (see, e.g., Theorem 1.5.2)⏐⏐⏐⏐∫
R×T2

|h|2 dx−
∫
(0,t)×T2

m2
1 dx

⏐⏐⏐⏐ ≲ t

∫
(0,t)×T2

|∇m|2 dx.

To our knowledge, the first result in this direction is contained in [38]. In

the absence of high perpendicular anisotropy or a sufficiently strong exter-

nal field (as in the previously mentioned papers) the micromagnetic energy

forces the out-of-plane component m1 to vanish asymptotically. In our set-

ting, the anisotropy energy Q
∫
Ω
(m2

2 +m2
3) dx = Q

∫
Ω
(1 −m2

1) dx is however

sufficiently strong (recall that Q > 1) such that low energy configurations

require m ≈ ±e1 on most of the domain. Hence, domain patterns may asymp-

totically be described by the scalar quantity m1. We note that the reduction

towards a two-dimensional model of a closely related scalar problem involving

a Ginzburg-Landau energy with dipolar interactions has recently been ana-

lyzed in [75].
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The behavior of the material changes when the film can no longer be considered

to be thin. In [18, 19] the scaling of the minimal energy was identified (for

a sharp interface version of the micromagnetic model). The estimates have

been refined to an asymptotic equality in [81]. Magnetizations with optimal

energy involve so-called branching domain patterns which become finer and

finer as they approach the boundary of the sample. When the ferromagnetic

sample is exposed to a critical external field, a transition between a uniform

and a branching domain pattern occurs. The critical field strength and the

scaling of the micromagnetic energy for this regime were derived in [56]. In

our regime, the thickness of the film is so small that this does not only exclude

the branching patterns that occur in bulk samples, but actually forces the

magnetization to become constant in the direction normal to the film plane.

1.1 Setting

In order to non-dimensionalize the micromagnetic energy, we express lengths

as multiples of the exchange length lex and rescale (effectively this amounts to

setting lex = 1). We are interested in thin ferromagnetic films of uniform (non-

dimensionalized) thickness t. For simplicity, we assume that the film extends

infinitely in the film plane and that its magnetization is periodic in both in-

plane coordinates with period ℓ. This means that we neglect boundary effects

in the case of a finite sample of large spatial extent.

The film is composed of a uniaxial ferromagnetic material whose easy axis is

perpendicular to the film plane, i.e. parallel to e1. Furthermore, we assume

that the external field hext is parallel to e1 and hence independent of x1 (due

to ∇ · hext = 0). By a slight abuse of notation, from now on, we consider

hext : T2
ℓ → R as a scalar function. The non-dimensionalized energy per unit-

cell (0, t)× T2
ℓ then reads

E(m) :=

∫
(0,t)×T2

ℓ

(|∇m|2 +Q(m2
2 +m2

3)− 2m1hext) dx+

∫
R×T2

ℓ

|h|2 dx.
(1.2)

In the last term of (1.2), the stray field is the unique distributional solution

h ∈ L2(R× T2
ℓ ;R3) of

∇× h = 0 and ∇ · (h+m) = 0 in R× T2
ℓ , (1.3)
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e2-axis

e3-axis

e1-axis

`

t

s

Figure 1.1: Typical magnetization pattern (”stripe pattern”) in a unit cell (0, t)×
T2
� of the ferromagnetic film. The arrows represent the value of the magnetization

m(x) at x, which is approximately constant across regions of the same color. The

domains are separated by continuous domain walls of vanishing thickness, depicted

as lines.

where m ∈ H1((0, t)×T2
�) is extended by zero to R×T2

� . Hence, up to a sign,

h equals the Helmholtz projection of m onto the space of gradients. We also

use the notation h = h[m] to denote the solution of (1.3).

Note that (1.2) depends on the three dimensionless parameters �, t and Q. We

are interested in the asymptotic behavior of the energy in (1.2) for thin films

(i.e. t � 1) with large extension in the film plane (i.e. � � 1) and high

anisotropy (i.e. Q > 1).

1.1.1 Identification of the regimes and the reduced en-

ergy F

In this section, we motivate the rigorous results contained in section 1.2. We

use heuristic arguments to identify the scaling of the transition between mon-

odomain and multi-domain states, and to explain how the micromagnetic en-

ergy E in (1.2) is related to the two-dimensional reduced energy F in (0.4).

Roughly speaking, we will argue that (upon rescaling) F is a prototype for the

next-to-leading-order term in the Γ-development of E, cf. [4].

To simplify the exposition, we neglect the energy contribution due to the ex-

ternal field hext. Furthermore we make two assumptions (for this section only),

stated below. These assumptions are actually consequences of the thin film

regime (see (1.89) and Theorem 1.5.2). Our assumptions are:
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(i) The magnetization m is constant in the direction normal to the film, i.e.

m(x1, x
′) = χ(0,t)(x1)m(x′) for x = (x1, x

′) ∈ (0, t)× T2
ℓ . (i)

(ii) The stray field energy can be approximated by∫
R×T2

ℓ

|h[m]|2 dx ≈ t

∫
T2
ℓ

m2
1 dx− t2

2

∫
T2
ℓ

|∇ 1
2m1|2 dx. (ii)

Assumption (i) can be understood as a consequence of the vanishing thickness

of the film which is smaller than the thickness of optimal domain walls (so-

called Bloch walls).

We will now motivate Assumption (ii). For magnetizations that are constant

in the normal direction of the film, i.e. m(x1, x
′) = χ(0,t)(x1)m(x′), it is well-

known that the stray field energy splits into a contribution due to the normal

component m1 and a contribution due to the in-plane divergence ∇′ · m′ =

∂2m2 + ∂3m3, see, e.g., [3, 35]. With the aid of the Fourier transform, a direct

calculation yields (see also Theorem 1.5.2)∫
R×T2

ℓ

|h[m]|2 dx =
1

ℓ2

∑
k∈ 2π

ℓ
Z2

tσ(t|k|)|m̂1,k|2

+
1

ℓ2

∑
k∈ 2π

ℓ
Z2

t (1− σ(t|k|))
⏐⏐⏐⏐ k|k| · m̂′

k

⏐⏐⏐⏐2 , (1.4)

where the Fourier multiplier σ is given by σ(s) = 1−e−s

s
. In the electrostatics

analogy, the first term on the right hand side can be understood as the con-

tribution of surface charges proportional to m1 at the top and bottom surface

of the film, whereas the second term describes the contribution due to volume

charges proportional to ∇′ ·m′. Since the strong anisotropy requires |m1| ≈ 1

on most of the domain, a scaling argument indicates that only the contribution

due to m1 is relevant. Indeed, since |1 − σ(t|k|)| ≤ t|k| ≤ t(1 + |k|2) the con-

tribution due to m′ may be estimated by the exchange and anisotropy energy

at lower order

1

ℓ2

∑
k∈ 2π

ℓ
Z2

t (1− σ(t|k|))
⏐⏐⏐⏐ k|k| · m̂′

k

⏐⏐⏐⏐2 ≤ t2
∫
T2
ℓ

(
|∇m|2 + |m′|2

)
dx. (1.5)
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The right hand side of (ii) is obtained by neglecting the second term on the

right hand side of (1.4) and approximating σ(s) ≈ 1− s
2
in the first term (see

Theorem 1.5.2 for a rigorous version).

With (i), (ii) and hext = 0, the energy (1.2) can now be written as

E(m) ≈ t

∫
T2
ℓ

(
|∇m|2 +Q

(
m2

2 +m2
3

))
dx

+ t

∫
T2
ℓ

m2
1 dx−

t2

2

∫
T2
ℓ

|∇ 1
2m1|2 dx.

(1.6)

We use the constraint |m| = 1 to combine the leading order stray-field energy

term with the anisotropy energy∫
T2
ℓ

m2
1 dx+

∫
T2
ℓ

Q
(
m2

2 +m2
3

)
dx = ℓ2 +

∫
T2
ℓ

(Q− 1)
(
m2

2 +m2
3

)
dx. (1.7)

Inserting (1.7) into (1.6) allows to extract the leading order constant

E(m) ≈ ℓ2t+ t

∫
T2
ℓ

(
|∇m|2 + (Q− 1)

(
m2

2 +m2
3

))
dx

− t2

2

∫
T2
ℓ

|∇ 1
2m1|2 dx.

Upon rescaling T2
ℓ to the fixed domain T2 and renormalizing the energy, we

obtain

E(m(ℓ·))− ℓ2t

ℓt
√
Q− 1

≈
∫
T2

(
1

ℓ
√
Q− 1

|∇m|2 + ℓ
√
Q− 1

(
m2

2 +m2
3

))
dx

− t

2
√
Q− 1

∫
T2

|∇ 1
2m1|2 dx.

(1.8)

In order to determine the critical scaling where minimizers of (1.8) cease to

be constant and start to oscillate, we ask for which ℓ, t and Q it is possible to

control the last term by the first integral

t

2
√
Q− 1

∫
T2

|∇ 1
2m1|2 dx

?

≲
∫
T2

(
1

ℓ
√
Q− 1

|∇m|2 + ℓ
√
Q− 1

(
m2

2 +m2
3

))
dx.

We make a one-dimensional ansatz m̃ corresponding to N domains separated

by smooth domain walls of width ε, see Figure 1.2. For the nonlocal term, a
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x2

m̃1 (for N = 4)

1

1
2N

3
2N

1

0

−1

∼ ε

Figure 1.2: One-dimensional ansatz modeling a stripe pattern.

straightforward computation yields (see Lemma 1.4.2)∫
T2

|∇ 1
2 m̃1|2 dx =

1

4π

∫
T2

∫
R2

|m̃1(x+ z)− m̃1(x)|2
|z|3 dz dx

≈ 4

π
log

(
1

εN

)
N.

Since the nonlocal term depends only logarithmically on the transition layer,

we optimize the width and internal structure of the transition layer for the

first two terms in the energy by choosing ε = 1
ℓ
√
Q−1

. For the corresponding

Bloch wall profiles [44], we obtain∫
T2

(
1

ℓ
√
Q− 1

|∇m̃|2 + ℓ
√
Q− 1(m̃2

2 + m̃2
3)

)
dx

≈ 2

∫
T2

|∇m̃1| dx ≈ 4N.

Hence

E(m̃(ℓ·))− ℓ2t

ℓt
√
Q− 1

≈ N

(
4− 2t

π
√
Q− 1

log

(
ℓ
√
Q− 1

N

))
. (1.9)

The (renormalized) energy of our ansatz (1.9) becomes negative, i.e. smaller

than the energy of the constant configurations m ≡ ±e1, if 8
√
Q− 1 <

4
π
t log

(
ℓ
√
Q−1
N

)
. By monotonicity in N , we expect that the critical scaling

occurs for N = 1 and t ∼ tc, where

tc ≈
2π

√
Q− 1

log
(
ℓ
√
Q− 1

) (1.10)

is the critical thickness of the onset of multidomain states.

Inserting (1.10) into (1.8) and abbreviating

ε =
1

ℓ
√
Q− 1

, λ =
t log

(
ℓ
√
Q− 1

)
4
√
Q− 1

,
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we are led to study the asymptotic behavior for ε → 0 of the family of func-

tionals Fε,λ : L1(T2; S2) → R ∪ {+∞}, given by

Fε,λ(m) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
T2

(
ε

2
|∇m|2 + 1

2ε

(
1−m2

1

))
dx

− λ

| log ε|

∫
T2

|∇ 1
2m1|2 dx,

m ∈ H1(T2; S2),

+∞ otherwise,

(1.11)

where λ ∼ 1 is a fixed parameter and with minE ≈ ℓ2t+2ℓt
√
Q− 1 minFε,λ.

Remark 1.1.1. (Natural cut-off in the stray field energy) For thin films, the

exponential decay of the Fourier multiplier in (1.4) leads to a natural regu-

larization of the stray field energy. Instead of (ii), we could have used the

alternative approximation∫
R×T2

ℓ

|h[m]|2 dx

≈ t

∫
T2
ℓ×(0,t)

m2
1 dx− t2

8π

∫
T2
ℓ

∫
R2\Bt

|m1(x+ z)−m1(x)|2
|z|3 dz dx,

where the region |z| < t is excluded in the last integral. However, our approx-

imations in (ii) and in Theorem 1.5.2 ignore this cut-off. We will now explain

that due to periodicity, this cut-off is not relevant in our setting. Roughly

speaking, the reason is that the length scale of the cut-off is much smaller

than the width of domain walls, which is the smallest length scale on which m

varies. More precisely, we have (see Lemma 1.3.1)

t2
∫
T2
ℓ

∫
Bt

|m1(x+ z)−m1(x)|2
|z|3 dx dz ≲ t3

∫
T2
ℓ

|∇m1|2 dx

≲ t2
∫
(0,t)×T2

ℓ

|∇m|2 dx,

(1.12)

so that the effect due to the cut-off is controlled by the exchange energy at

lower order. Here we have implicitly used that the film is periodic and hence

does not have boundaries. On the other hand, if the ferromagnetic material is

modeled by a finite domain (0, t)× Ω, exploiting the cut-off in the stray field

energy becomes crucial: At the boundary ∂Ω, the out-of-plane component m1

should jump so that ∥m1∥H 1
2 (R2)

would be infinite. Since the exchange energy

is oblivious to this jump at the boundary, (1.12) does not hold for Ω instead

of T2
ℓ .
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1.2 Main results

Our main result is the identification of two thin-film regimes separated by a

transition and the derivation of the asymptotic behavior of the energy in the

regimes. We will state the results for the full energy E in Section 1.2.1 and

for the reduced energy F in Section 1.2.2.

1.2.1 Results for the full energy E

In terms of ℓ, t and Q, the regimes may be expressed by

Q > 1, ℓ≫ 1 and
t| log

(
ℓ
√
Q− 1

)
|

4
√
Q− 1

= λ

and λc := π/2, where

• λ < λc corresponds to the subcritical regime featuring single domain

states,

• λ = λc corresponds to the transition,

• λc < λ < γ | log(ℓ
√
Q−1)|

Q−1
, for some universal γ > 0, corresponds to the

multidomain state.

The upper bound λ < γ | log(ℓ
√
Q−1)|

Q−1
is necessary because we do not know

whether magnetizations are approximately two-dimensional beyond this thresh-

old.

It is convenient to rescale the domain of the ferromagnetic film to a fixed

domain by means of the anisotropic transformation

(0, t)× T2
ℓ → (0, 1)× T2 with (x1, x2, x3) ↦→

(x1
t
,
x2
ℓ
,
x3
ℓ

)
,

and study the renormalized energy J : L1((0, 1)×T2; S2) → R∪{+∞}, defined
by

J(m) :=

⎧⎪⎨⎪⎩
E(m(t·, ℓ·, ℓ·))− ℓ2t

ℓt
√
Q− 1

for m ∈ H1((0, 1)× T2×; S2),

+∞ otherwise.

(1.13)

The asymptotic behavior of (1.13) in the subcritical regimes is characterized

in the following theorem.
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Theorem 1.2.1 (Subcritical regime). Let λc := π
2
, λ ∈ [0, λc), Q > 1 and

(ℓk, tk, hext,k)k∈N be a sequence with

ℓk → ∞,
tk| log

(
ℓk
√
Q− 1

)
|

4
√
Q− 1

= λ and
ℓk√
Q− 1

hext,k(ℓk·) → g (1.14)

for some g ∈ L1(T2) and for all k ∈ N. Then the sequence of renormalized

energies (Jk)k∈N, defined by (1.13) with (ℓ, t, hext) replaced by (ℓk, tk, hext,k),

satisfies

(i) Compactness: For every sequence (mk)k∈N in L1((0, 1)× T2; S2) with

lim sup
k→∞

Jk(mk) < +∞,

there exists a sub-sequence (not relabeled) and m ∈ BV (T2; {±e1}) such
that ∫

(0,1)×T2

|mk(x)−m(x′)| dx→ 0 for k → ∞. (1.15)

(ii) Γ-Convergence: The sequence of functionals (Jk)k∈N Γ-converges to-

wards J∗ : L
1(T2; {±e1}) → R ∪ {+∞} given by

J∗(m) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2

(
1− λ

λc

)∫
T2

|∇m1| dx− 2

∫
T2

gm1 dx,

if m ∈ BV (T2; {±e1}),
+∞ otherwise.

This means

(a) liminf - Inequality: Every sequence (mk)k∈N in L1((0, 1) × T2; S2)

that converges towards m ∈ L1(T2; {±e1}) in the sense of (1.15)

satisfies

lim inf
k→0

Jk(mk) ≥ J∗(m).

(b) Recovery Sequence: For every m ∈ L1(T2, {±e1}) there exists a

sequence of magnetizations (mk)k∈N in L1((0, 1) × T2; S2), which

converges towards m in the sense of (1.15) and satisfies

lim sup
k→0

Jk(mk) ≤ J∗(m).
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Whereas the energy favors single domain states in the subcritical regime, our

next theorem shows that the energy leads to pattern formation in the super-

critical regime.

Theorem 1.2.2 (Supercritical regime). Let hext = 0. There are universal

constants δ,K > 0 such that for Q, ℓ, t > 0 in the regime

Q > 1, t ≤ δmin

{√
Q− 1,

1√
Q− 1

}
and ℓ ≥ K

e2πt
−1

√
Q−1

√
Q− 1

(1.16)

the minimal renormalized energy J in (1.13) scales as

−Ctℓe−2πt−1
√
Q−1 ≤ min J(m) ≤ −ctℓe−2πt−1

√
Q−1,

for some universal constants 0 < c < C.

Furthermore, profiles achieving the optimal scaling in the regime (1.16) can be

characterized as follows.

Proposition 1.2.3. Let δ,K be as in Theorem 1.2.2, hext = 0 and let ℓ, t, Q

satisfy (1.16). For any γ > 0 and all m ∈ H1((0, 1)× T2; S2) which satisfy

J(m) ≤ −γtℓe−2πt−1
√
Q−1, (1.17)

we have

(i)

∫
T2×(0,1)

|m−m|2 dx ≤ cγt
3e−2πt−1

√
Q−1
√
Q− 1, (1.18)

(ii)

∫
T2×(0,1)

(
m2

2 +m2
3

)
dx ≤ cγe

−2πt−1
√
Q−1, (1.19)

(iii) cγℓe
−2πt−1

√
Q−1
√
Q− 1 ≤

∫
T2

|∇′m1| dx

≤ Cγℓe
−2πt−1

√
Q−1
√
Q− 1 (1.20)

(iv)

∫
T2×(0,1)

( |∇m|2
ℓ
√
Q− 1

+ ℓ
√
Q− 1 (1−m2

1)

)
dx− 2

∫
T2

|∇m1| dx

≤ cγ
t√

Q− 1

∫
T2

|∇m1| dx, (1.21)

where 0 < cγ < Cγ are constants (changing from line to line) which may

depend only on γ.
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We take a moment to interpret the statements (i)–(iv) in Proposition 1.2.3

above. Item (i) shows that the magnetization is approximately two-dimensional,

i.e. independent of the thickness variable. Moreover, since |m| = 1, item

(ii) means that the magnetization is mostly perpendicular to the film (i.e.

m ≈ ±e1). Furthermore, item (iii) is an estimate for the total length of

the domain walls in a unit cell. Back in the original, physical variables, this

quantity for the unit cell (0, T )× (0, L)2 is

W := L

∫
T2

|∇m1| dx
(1.20)∼ L2

lex
e−

2πlex
√
Q−1

T

√
Q− 1. (1.22)

We expect that the stray field energy induces a repulsive interaction of (near-

est) neighboring domain walls and leads to an approximately equidistant spac-

ing of the walls. In view of (iii), the typical distance of neighboring walls should

be

S :=
length of the film

# of walls on cross section
∼ ℓ∫

T2
|∇′m1| dx

lex

(1.20)∼ lexe
2πlex

√
Q−1

T√
Q− 1

.

(1.23)

The exponential dependence of the typical distance between neighboring walls

on the inverse thickness in (1.23) was already observed in ansatz based compu-

tations in [51] for a two-dimensional sharp interface model. Item (iv) in Propo-

sition 1.2.3 indicates that domain walls approximate Bloch walls of thickness

proportional to εL = lex√
Q−1

for which the left hand side of (1.21) is exactly

zero. Note that (1.21) also implies that m approximately satisfies the optimal

profile ODE in an L2-sense∫
(0,1)×T2

(
|∇m1|√

ℓ
√
Q− 1 (1−m2

1)
−
√
ℓ
√
Q− 1 (1−m2

1)

)2

dx

≲
t√

Q− 1

∫
T2

|∇m1| dx,

with the convention |∇m1|√
1−m2

1

= 0 if |m1| = 1. Finally, we want to mention that

the estimate of the in-plane magnetization in item (i) is consistent with the

in-plane magnetization of a Bloch wall of length W (see (1.22)) and thickness
lex√
Q−1

.

Our third theorem addresses the transition where the cross-over from con-

stant to non-constant global minimizers occurs and which separates the two

previously described regimes.
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Theorem 1.2.4 (Critical scaling). Let hext = 0 and let δ > 0 be as in Theorem

1.2.2. Then the following holds

(i) Cross-over of global minimizers There are constants c, C > 0 such

that for ℓ, t, Q which satisfy

Q > 1, t ≤ δmin

{√
Q− 1,

1√
Q− 1

}
and ℓ ≤ c

e2πt
−1

√
Q−1

√
Q− 1

the renormalized energy J is non-negative and m ≡ ±e1 are the only

global minimizers, whereas for ℓ, t, Q which satisfy

Q > 1, t ≤ δmin

{√
Q− 1,

1√
Q− 1

}
and ℓ ≥ C

e2πt
−1

√
Q−1

√
Q− 1

the minimal rescaled energy min J is strictly negative and minimizers

cannot be constant.

(ii) Γ-convergence For t log(ℓ
√
Q−1)√

Q−1
= 2π, J Γ-converges for ℓ

√
Q− 1 → ∞

towards

J∗(m) =

⎧⎨⎩0 if m ∈ L1(T2; {±e1}),
+∞ otherwise.

(iii) Compactness upon rescaling For C > 0 and ℓ
√
Q− 1 → ∞, se-

quences with

J(m) ≤ C

log(ℓ
√
Q− 1)

are compact in L1((0, 1) × T2) with a limit of the form χ(0,1)m where

m ∈ BV 1(T2; {±e1}).

1.2.2 Results for the simplified energy F

In this section, we will formulate results analogous to the ones in the previous

section, but for the reduced energy F . The relation between the full energy

E and the reduced two-dimensional energy F was explained heuristically in

section 1.1.1 and will be made rigorous in section 1.5. The reason to formulate

our results also in terms of F is mainly expositional: We believe that the

main ideas are easier to understand when they are not obscured by additional
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difficulties arising from the reduction to a two-dimensional model and the

stray-field energy approximation.

The behavior of the reduced energy F in the subcritical regime is summarized

in the following theorem.

Theorem 1.2.5 (Subcritical regime). Let λ < λc :=
π
2
and Fε,λ as defined in

(1.11). Then the following holds

(i) Compactness: Every sequence {mε}ε>0 in H1(T2; S2) with

lim sup
ε→0

Fε,λ(mε) < +∞

converges in L1(T2) (up to extracting a subsequence) towards a limit in

BV (T2; {±e1}).

(ii) Γ-convergence: As ε → 0, the sequence of functionals {Fε,λ}ε>0 Γ-

converges with respect to the L1(T2)-topology towards F∗,λ, given by

F∗,λ(m) =

⎧⎨⎩
(
1− λ

λc

) ∫
T2 |∇m1| dx for m ∈ BV (T2; {±e1}),

+∞ otherwise.
(1.24)

The next theorem is concerned with the minimal energy and the structure of

low energy states in the supercritical regime.

Theorem 1.2.6 (Supercritical regime). Let λc := π
2
and Fε,λ as defined in

(1.11). There are constants δ < 1 < K such that for

0 < ε < K− λ
λ−λc and λc < λ < δ| log ε|,

the minimal energy of Fε,λ satisfies

−C λε
λc−λ

λ

| log ε| ≤ minFε,λ ≤ −c λε
λc−λ

λ

| log ε|

for some universal constants 0 < c < C. Moreover, the profiles achieving

the optimal scaling can be characterized as follows. For any γ > 0 and all

m ∈ H1(T2; S2) which satisfy

Fε,λ(m) ≤ −γ λε
λc−λ

λ

| log ε| ,
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the quantities ∫
T2

|∇m1| dx ≤
∫
T2

(
ε

2
|∇m|2 + 1−m2

1

2ε

)
dx

≤ λ

| log ε|

∫
T2

|∇ 1
2m1|2 dx

(1.25)

agree to the leading order and scale as ε
λc−λ

λ , i.e. if A and B are any of the

three quantities in (1.25), we have

cγε
λc−λ

λ ≤ A ≤ Cγε
λc−λ

λ and |A− B| ≤ C̃γ
λ

| log ε|A, (1.26)

for some positive constants cγ, Cγ and C̃γ which depend only on γ.

Under the assumptions of Theorem 1.2.6, statements analogous to (1.18) –

(1.21) in Proposition 1.2.3 hold as well, they are simple consequences of the

stronger statement (1.26).

The next theorem addresses the structure of minimizers in a neighborhood of

the transition.

Theorem 1.2.7 (Critical scaling). Let λc :=
π
2
and Fε,λc as defined in (1.11).

Then the following holds

(i) Cross-over of global minimizers: There are two constants 0 < β1 <

1 < β2 such that for

λ ≤ λ−(ε) := λc

(
1− | log β1|

| log ε|

)
(1.27)

the minimal energy minFε,λ is zero and only attained by the constant

configurations m ≡ ±e1, whereas for

λ ≥ λ+(ε) := λc

(
1 +

| log β2|
| log ε|

)
the minimal energy is strictly negative and minimizers cannot be con-

stant.

(ii) Γ-convergence: As ε → 0, the sequence of functionals {Fε,λc}ε>0 Γ-

converges with respect to the L1(T2)-topology towards F∗,λc, given by

F∗,λc(m) =

⎧⎨⎩0, if m ∈ L1(T2; {±e1})
+∞ otherwise,

(1.28)
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(iii) Lack of compactness: There is a sequence {mε}ε>0 in H
1(T2; S2) with

lim sup
ε→0

Fε,λc(mε) → 0

which is not precompact in L1(T2).

(iv) Compactness upon rescaling: For every C > 0, every sequence

{mε}ε>0 with

Fε,λc(mε) ≤ C| log ε|−1

converges in L1(T2) (up to extracting a subsequence) to a limit in

BV (T2; {±e1}).

Theorem 1.2.7 suggests that | log ε|Fε,λc is the appropriate rescaling for the

critical case. Unfortunately, it seems not possible to obtain the Γ-limit of

| log ε|Fε,λc with our H
1
2 -estimate (1.29) of the following section. However, we

will derive a Γ-limit for a related sharp interface model in chapter 2.

We illustrate our results in a phase diagram (Figure 1.3). It is not difficult to

see that for each 0 < ε < 1 there is a sharp threshold value λ = λc(ε) > 0 at

which a transition from monodomain (m ≡ +e1 or m ≡ −e1) to multidomain

(m ̸≡ const) states as global energy minimizers occurs. Moreover, ε ↦→ λc(ε)

is locally Lipschitz-continuous on (0, 1) (for the reader’s convenience, a proof

of this fact is presented in Lemma A.1 in the appendix).

While we do not know the precise value of λc(ε) for ε > 0, we show in Theorem

1.2.7 that λ−(ε) ≤ λc(ε) ≤ λ+(ε) and limε→0 λc(ε) = π
2
, i.e. the definition

above agrees with λc := λc(0) = π
2
. Furthermore, global minimizers m(ε,λ)

of Fε,λ with (ε, λ) between the red (dashed) curves of the form λ(ε) = λc +

γ| log ε|−1 satisfy a uniform bound of the form c ≤
∫
T2 |∇m(ε,λ),1| dx ≤ C, with

constants C > c > 0 depending only on the values of γ > 0 for these curves.

1.3 A bound on the homogeneous H
1
2-norm

Since all three terms in F contribute in highest order to the limit, it is impor-

tant to estimate the negative term
∫
T2 |∇

1
2m1|2 dx with precise leading order

constant. In this section we will establish an upper bound for the homoge-

neous H
1
2 -norm which is the key ingredient for the lower bounds (recall that

the H
1
2 -term occurs in the energy with a negative sign).
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λ

ε

λc =
π
2

0

λ−(ε) λ+(ε)

λc(ε)

minFε,λ = 0,

attained by
m ≡ ±e1

minFε,λ < 0,

minimizers are
spatially

modulated

Figure 1.3: Sketch of the phase diagram for minimizers of Fε,λ in terms of λ > 0

and 0 < ε ≪ 1.

We will prove the following

Lemma 1.3.1. There is a universal constant c∗ ≥ 1 such that for every f ∈
C∞(T2) and every ε > 0 we have∫

T2

|∇ 1
2f |2 dx ≤ ε

2

∫
T2

|∇f |2 dx (1.29)

+
2

π
log

(
c∗ max

{
1,min

{ ∥f∥∞
ε
∫
T2 |∇f | dx

,
1

ε

}})
∥f∥∞

∫
T2

|∇f | dx.

In Lemma 1.3.1, we improve an inequality established in [26]. Expressed in

our setting, the inequality proved in [26] asserts that for every δ > 0 there

exists Mδ ≫ 1 such that for all ε ≤ R and all f : T2 → R, we have

∑
k∈2πZ2

min

{
1

ε
, |k|, R|k|2

}
|f̂k|2

≤ (1 + δ)
2

π
log

(
2MδR

ε

)
∥f∥∞

∫
T2

|∇f | dx.
(1.30)

Note that (1.29) implies a similar estimate∫
T2

|∇ 1
2f |2 dx ≤ ε

2

∫
T2

|∇f |2 dx+
2

π
log (c∗/ε) ∥f∥∞

∫
T2

|∇f | dx (1.31)

for all ε ≤ 1, which is weaker than (1.29). Estimate (1.30) is an inequality for

a regularized Ḣ
1
2 -norm, whereas (1.31) estimates the full Ḣ

1
2 -norm, but needs
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an additional Ḣ1-term. It ceases to be optimal for functions which oscillate

significantly. Indeed, let α ∈ (0, 1) and consider functions f with∫
T2

|∇f | dx ≳ ε−α∥f∥∞. (1.32)

Then the second term in (1.29) is smaller than the second term in (1.31) by a

factor of (1 − α) for all f which satisfy (1.32). Asymptotic optimality in the

case of strong oscillation is crucial to obtain the results on the supercritical

regime.

The proof of Lemma 1.3.1 uses similar ideas as in [26] and is based on a separate

treatment of distinct scales. However, our proof does not involve any Fourier

Analysis.

Lemma 1.3.1. We will show that the following estimates hold for all f ∈
C∞(T2) and all 0 < r ≤ R:∫

T2

∫
Br

|f(x+ z)− f(x)|2
|z|3 dz dx ≤ πr

∫
T2

|∇f |2 dx, (1.33)∫
T2

∫
BR\Br

|f(x+ z)− f(x)|2
|z|3 dz dx

≤ 8 log(R/r)∥f∥∞
∫
T2

|∇f | dx, (1.34)∫
T2

∫
R2\BR

|f(x+ z)− f(x)|2
|z|3 dz dx

≤ 2π∥f∥∞
R

min

{
4∥f∥∞,

∫
T2

|∇f | dx
}
. (1.35)

The claim of the Lemma will follow by adding (1.33) – (1.35) and a suitable

choice of r and R. Before we start with the proofs of estimates (1.33) – (1.35),

we first record an auxiliary inequality for further use. By the Fundamental

Theorem of Calculus, Jensen’s inequality and Fubini’s theorem we get∫
T2

|f(x+ z)− f(x)|p dx =

∫
T2

⏐⏐⏐⏐∫ 1

0

∇f(x+ sz) · z ds

⏐⏐⏐⏐p dx

≤
∫ 1

0

∫
T2

|∇f(x+ sz) · z|p dx ds ≤
∫
T2

|∇f(x) · z|p dx

(1.36)

for all z ∈ R2 and all 1 ≤ p < ∞. In order to prove (1.33), we use Fubini’s

Theorem and apply (1.36) with p = 2 to get∫
T2

∫
Br

|f(x+ z)− f(x)|2
|z|3 dz dx

(1.36)

≤
∫
Br

∫
T2

|∇f(x) · z|2
|z|3 dx dz. (1.37)
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We apply Fubini’s Theorem again and evaluate the integral with respect to z

in polar coordinates∫
Br

∫
T2

|∇f(x) · z|2
|z|3 dx dz =

(∫ r

0

∫ 2π

0

cos2 φ dφ dρ

)(∫
T2

|∇f(x)|2 dx

)
= πr

∫
T2

|∇f |2 dx. (1.38)

Together, (1.37) and (1.38) yield the first estimate (1.33).

For the estimate involving intermediate distances (1.34), we use Fubini’s The-

orem (twice) and (1.36) with p = 1 to conclude∫
T2

∫
BR\Br

|f(x+ z)− f(x)|2
|z|3 dz dx

(1.36)

≤ 2∥f∥∞
∫
T2

∫
BR\Br

|∇f(x) · z|
|z|3 dz dx.

(1.39)

As in the proof of (1.30) in [26], we evaluate the inner integral in polar coor-

dinates ∫
BR\Br

|∇f(x) · z|
|z|3 dz =

∫ R

r

∫ 2π

0

|∇f(x)| | cosφ|
ρ

dφ dρ

= 4 log

(
R

r

)
|∇f(x)|.

(1.40)

Inserting (1.40) into (1.39) yields the claim (1.34).

In order to prove (1.35), we first show that for all z ∈ R2 we have∫
T2

|f(x+ z)− f(x)| dx ≤ min

{
2∥f∥∞,

1

2

∫
T2

|∇f | dx
}
. (1.41)

Indeed, the upper bound of 2∥f∥∞ in (1.41) is trivial. Furthermore, since f

is periodic, it is sufficient to show the second upper bound in (1.41) only for

z ∈
(
−1

2
, 1
2

)2
. Thus the second bound in (1.41) follows from (1.36) with p = 1∫

T2

|f(x+ z)− f(x)| dx
(1.36)

≤
∫
T2

|∇f(x) · z| dx ≤ 1

2

∫
T2

|∇f(x)| dx

so that the proof of (1.41) is complete. With (1.41) at hand, estimate (1.35)

now follows by direct integration∫
T2

∫
R2\BR

|f(x+ z)− f(x)|2
|z|3 dz dx

≤ 2∥f∥L∞

∫
R2\BR

∫
T2

|f(x+ z)− f(x)|
|z|3 dx dz

(1.41)

≤ 2π∥f∥∞
R

min

{
4∥f∥∞,

∫
T2

|∇f | dx
}
.
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It remains to prove (1.29), for which we use the real-space representation of

the homogeneous H
1
2 -norm∫

T2

|∇ 1
2f |2 dx =

1

4π

∫
T2

∫
R2

|f(x+ z)− f(x)|2
|z|3 dz dx. (1.42)

A proof of (1.42) is given in the appendix for completeness of the presentation.

Without loss of generality, we may assume that f is not equal to a constant

in T2. Adding (1.33) – (1.35) to estimate the right hand side of (1.29), we

therefore get∫
T2

|∇ 1
2f |2 dx ≤ r

4

∫
T2

|∇f |2 dx (1.43)

+

(
2

π
log

(
R

r

)
+

1

2R
min

{
4∥f∥∞∫

T2 |∇f | dx
, 1

})
∥f∥∞

∫
T2

|∇f | dx.

For r = 2ε and R = max
{
2ε,min

{
4∥f∥∞∫

T2 |∇f | dx , 1
}}

the claim (1.29) now follows

from (1.43).

1.4 Proofs for the reduced energy F

In this section we give the proofs of the theorems involving the reduced energy

F . The proof of Theorem 1.2.5 is a direct consequence of Lemma 1.4.1 and

Lemma 1.4.3. Similarly the proof of Theorem 1.2.6 follows immediately from

Lemma 1.4.4 and Lemma 1.4.5. Finally, the proof of Theorem 1.2.7 is presented

at the end of this section.

1.4.1 Proof of Theorem 1.2.5

Lemma 1.4.1 (Lower bound and compactness in the subcritical regime). Let

λ < λc := π
2
and Fε,λ as defined in (1.11). Then every sequence {mε}ε>0 in

H1(T2; S2) with

lim sup
ε→0

Fε,λ(mε) < +∞

converges in L1(T2;R3) (up to extracting a subsequence) towards a limit in

BV (T2; {±e1}). Furthermore, for every sequence {mε}ε>0 in L1(T2; S2) with
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mε → m for some m in L1(T2;R3) we have

lim inf
ε→0

Fε,λ(mε) ≥

⎧⎨⎩
(
1− λ

λc

)∫
T2

|∇m1| dx, if m ∈ BV (T2; {±e1}),

+∞ otherwise.

(1.44)

Lemma 1.4.1. We first show that for sufficiently small ε > 0 we have

Fε,λ(m) ≥
(
1− λ| log cε|

λc| log ε|

)∫
T2

|∇m1| dx (1.45)

for all m ∈ H1(T2; S2), where c > is a universal constant. Indeed, for λ < λc

we expect
∫
T2 |∇m1| dx to be small and hence it is sufficient to use Lemma

1.3.1 for m1 in the weaker form (1.31). Recalling that ∥m1∥∞ ≤ 1 and λc =
π
2
,

we get

λ

| log ε|

∫
T2

|∇ 1
2m1|2 dx

(1.31)

≤ λ

| log ε|

∫
T2

ε

2
|∇m1|2 dx

+
λ

λc

log (c∗/ε)

| log ε|

∫
T2

|∇m1| dx.
(1.46)

We also use the constraint |m| = 1 in the form of the well-known estimate

|∇m1|
(A.7)

≤ ε

2
|∇m|2 + 1

2ε
(1−m2

1). (1.47)

which is obtained by differentiating |m|2 = 1 and applying Young’s inequality

(see (A.7) in the Appendix for a proof). Now the claimed lower bound (1.45)

follows from (1.46) and (1.47):

Fε,λ(m) =

∫
T2

(
ε

2
|∇m|2 + 1

2ε
(1−m2

1)

)
dx− λ

| log ε|

∫
T2

|∇ 1
2m1|2 dx

(1.46)

≥
(
1− λ

| log ε|

)∫
T2

(
ε

2
|∇m|2 + 1

2ε
(1−m2

1)

)
dx

− λ

λc

log (c∗/ε)

| log ε|

∫
T2

|∇m1| dx (1.48)

(1.47)

≥
(
1− λ

λc

log
(
eλcc∗/ε

)
| log ε|

) ∫
T2

(
ε

2
|∇m|2 + 1

2ε
(1−m2

1)

)
dx

(1.47)

≥
(
1− λ

λc

log
(
eλcc∗/ε

)
| log ε|

) ∫
T2

|∇m1| dx.
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Let {mε}ε>0 be a sequence in H1(T2; S2) with bounded energy

lim supε→0 Fε,λ(mε) < +∞. From the penultimate line in (1.48), |mε| = 1 and

λ < λc we obtain

0 = lim sup
ε→0

εFε,λ(mε)
(1.48)

≥ 1

2

(
1− λ

λc

)
lim sup

ε→0

∫
T2

(
m2

ε,2 +m2
ε,3

)
dx,

implying that the last two componentsmε,2 andmε,3 converge to zero in L
2(T2)

as ε → 0. Moreover, (1.48) yields a uniform bound for mε,1 in BV , which by

compactness of BV (T2) in L1(T2) implies the existence of a convergent sub-

sequence. Passing to another subsequence, we may assume that mε converges

pointwise almost everywhere. Since |mε| = 1, we obtain m = ±e1 almost

everywhere.

For the liminf inequality (1.44), we may assume without loss of generality that

lim infε→0 Fε,λ(mε) < +∞. But then there is a subsequence (not relabelled)

such that lim supε→0 Fε,λ(mε) < +∞ and by the compactness result and

uniqueness of the limit we have m ∈ BV (T2; {±e1}). Now the liminf in-

equality follows directly from (1.45), the fact that limε→0
λ| log cε|
λc| log ε| =

λ
λc
< 1 and

lower semi-continuity of the BV -seminorm.

Before we begin with the construction of the upper bound, we define a family

of asymptotically optimal profiles and record some of their properties (see Fig.

1.4).

x

ξε,R(x)

1

ηε,R−ηε,R 0

1

0

−1

∼ ε ξε,R = 1

Figure 1.4: Family of asymptotically optimal profiles ξε,R

Lemma 1.4.2 (Estimates for a family of asymptotically optimal profiles). For

R ∈ (0,+∞] and ε > 0, let ξε,R : R → [−1, 1] be the unique solution to the
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initial value problem

ξε,R(0) = 0 and ξ′ε,R =
1

ε
(1− ξ2ε,R)

1
2

(
1− ξ2ε,R +

( πε
2R

)2) 1
2

. (1.49)

Then ξε,R is non-decreasing and satisfies

ξε,R(x) = −ξε,R(−x) and |ξε,R(x)− sign(x)| ≤ 2e−2|x|/ε. (1.50)

Moreover, ξε,R(x) = 1 if x ≥ ηε,R and ξε,R(x) = −1 if x ≤ −ηε,R, for some

ηε,R ∈ (0, R]. The contribution to the local part of the energy may be estimated

as

1

2

∫ ηε,R

−ηε,R

(
ε|ξ′ε,R|2
1− ξ2ε,R

+
1− ξ2ε,R

ε

)
dx ≤ 2 +

π2ε

4R
. (1.51)

Lastly, there is a universal constant c > 0 such that∫ X

−X

∫ X

−X

|ξε,R(x)− ξε,R(y)|2
|x− y|2 dx dy ≥ 8 log(cX/ε) for X ≥ 2ε. (1.52)

Proof. The existence, uniqueness and monotonicity of ξε,R follows by direct

integration. In particular, for R < +∞, there exists a unique real number

ηε,R > 0, such that the solution of (1.49) satisfies ξε,R(s) ∈ (−1, 1) for s ∈
(−ηε,R, ηε,R) and ξε,R(±ηε,R) = ±1. For R = +∞, we have ξε,∞ = tanh(·/ε)
and the claim follows for ηε,∞ = +∞. Estimate (1.50) follows immediately

from ξε,∞ ≤ ξε,R ≤ 1 for x ≥ 0.

We will now show that ηε,R ≤ R holds. Indeed, since ξε,R is strictly monotone

on (−ηε,R, ηε,R), the inverse function theorem yields

ηε,R = lim
s→1−

ξ−1
ε,R(s) =

∫ 1

0

(
ξ−1
ε,R

)′
(s) ds

=

∫ 1

0

ε√
(1− s2)

(
1− s2 + π2ε2

4R2

) ds ≤
∫ 1

0

2R

π
√
1− s2

ds = R.
(1.53)

We turn to the proof of (1.51). By (1.49), we have

ε|ξ′ε,R|2
1− ξ2ε,R

+
1− ξ2ε,R

ε

(1.49)
= 2ξ′ε,R +

1

ε

(√
1− ξ2ε,R +

( πε
2R

)2
−
√
1− ξ2ε,R

)2

= 2ξ′ε,R +
1

ε

⎛⎝∫ πε
2R

0

s√
1− ξ2ε,R + s2

ds

⎞⎠2

≤ 2ξ′ε,R +
π2ε

4R2

(1.54)
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and thus (1.51) follows from (1.54) by integration.

It remains to prove (1.52). By symmetry of ξε,R we have∫ X

−X

∫
{ε≤|z|≤X}∩{|x+z|≤X}

|ξε,R(x+ z)− ξε,R(x)|2
|z|2 dz dx

= 2

∫ 0

−X

∫
{ε≤|z|≤X}∩{|x+z|≤X}

|ξε,R(x+ z)− ξε,R(x)|2
|z|2 dz dx

(1.55)

As it turns out, it is sufficient to restrict the integral to a set where |ξε,R(x +

z)− ξε,R(x)| ≳ 1 to obtain the correct leading order behavior∫ 0

−X

∫
{ε≤|z|≤X}∩{|x+z|≤X}

|ξε,R(x+ z)− ξε,R(x)|2
|z|2 dz dx

≥
∫ 0

−X

∫ x+X

ε

|ξε,R(y)− ξε,R(x)|2
|y − x|2 dy dx.

Since |1 − ξε,R| decays exponentially with rate 1/ε, we split the integral into

the leading order and a lower order correction∫ 0

−X

∫ x+X

ε

|ξε,R(y)− ξε,R(x)|2
|y − x|2 dy dx =

∫ 0

−X

∫ x+X

ε

4

|y − x|2 dy dx

−
∫ 0

−X

∫ x+X

ε

4− |ξε,R(y)− ξε,R(x)|2
|y − x|2 dy dx.

(1.56)

The first term on the right hand side of (1.56) yields∫ 0

−X

∫ x+X

ε

1

|y − x|2 dy dx = log

(
ε+X

ε

)
− 1.

Thus, it is sufficient to show that the second term on the right hand side of

(1.56) is bounded independently of ε. Indeed, using the exponential decay of

|1− ξε,R|, we get ∫ 0

−X

∫ x+X

ε

4− |ξε,R(y)− ξε,R(x)|2
|y − x|2 dy dx

≲
∫ ∞

0

∫ ∞

1

e−2x + e−2y

|x+ y|2 dx dy ≲ 1.

(1.57)

Together, (1.55) – (1.57) yield the claim (1.52).

For the special case λ = 0, the Γ-convergence and in particular the construc-

tion of a recovery sequence is a classical result, relying on the optimal one-

dimensional transition profiles to smooth out the jump discontinuity in the



1.4. PROOFS FOR THE REDUCED ENERGY F 35

limit configuration [5]. As it turns out, this construction also works for λ > 0,

where Fε,λ is nonlocal. We will use a construction based on the nearly optimal

profile ξε,R from Lemma 1.4.2. As the calculations for the local part of the

energy are well-known, our focus is on the contribution of the homogeneous

H
1
2 -norm. Recall that we need to prove a lower bound for the H

1
2 -norm in

order to obtain an upper bound for F .

Lemma 1.4.3 (Construction of a recovery sequence in the subcritical and

critical regime). Let λ ≤ λc and m ∈ L1(T2; S2). Then there is a sequence

{mε}ε>0 in H1(T2; S2) with

lim sup
ε→0

Fε,λ(mε) ≤ F∗,λ(m),

where Fε,λ is given by (1.11), and F∗,λ is given by (1.24) for λ < λc or (1.28)

for λ = λc, respectively.

Lemma 1.4.3. It is sufficient to prove the limsup inequality under the addi-

tional assumption that m = (χA − χT2\A)e1 for a set A ⊂ T2 with smooth

boundary. By standard density results (see, e.g., [67, Prop. 12.20]) and a di-

agonal argument, the limsup inequality then extends to arbitrary A ⊂ T2 with

finite perimeter for λ < λc or to measurable A ⊂ T2 for the λ = λc case. Since

F∗,λ(m) = +∞ form /∈ BV (T2, {±e1}) when λ < λc or form /∈ L1(T2, {±e1}))
when λ = λc, this yields the claim.

Our strategy is to adapt the optimal profiles ξε,R from Lemma 1.4.2 to the

two-dimensional setting by means of the signed distance function d, given by

d(x) := dist(x,Ac) − dist(x,A). Without loss of generality, we may assume

0 < |A| < 1 (otherwise take mε ≡ ±e1). To fix the notation, let ν : ∂A → R2

denote the smooth inward normal to A and τ : ∂A → R2, τ = ν⊥ denote a

smooth tangent vector field to ∂A obtained by a counter-clockwise 90◦ rotation

of ν. As ∂A is assumed to be smooth, there exists a tubular neighborhood

(∂A)R =
⋃

x∈∂ABR(x) ⊂ T2 for some R > 0 such that the projection p :

(∂A)R → ∂A, p(x) := argminy∈∂A |x − y| is single-valued and hence well-

defined. Furthermore, the projection p and the signed distance function d are

smooth on (∂A)R and the identity

x = p(x) + d(x)ν(p(x))
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holds for all x ∈ (∂A)R, see, e.g., [37, Lemma 14.16].

With the necessary notation at hand, we define the recovery sequence by

mε(x) = ξε,R(d(x))e1 +
√

1− ξ2ε,R(d(x)) τ(p(x)). (1.58)

Recall that ηε,R ≤ R, (see (1.53)) and hence the function mε is Lipschitz

continuous and piecewise smooth.

It is easy to see that mε → m in L1(T2), and for the sake of completeness,

we briefly mention how to compute the contribution of the local energy terms.

Since τ ⊥ e1, (τ ◦p) ·∇(τ ◦p) = 0 and |∇d| = 1 almost everywhere, the squared

gradient of mε can be estimated by

|∇mε|2 =
|ξ′ε,R(d)|2
1− ξ2ε,R(d)

+ (1− ξ2ε,R(d))|∇(τ ◦ p)|2 ≤ |ξ′ε,R(d)|2
1− ξ2ε,R(d)

+ CA,

(1.59)

where CA > 0 is a constant that depends only on A for all R ≤ RA, where

RA > 0 depends only on A. In the following, CA may change from line to line.

We next employ the co-area formula, to reduce to the one-dimensional case:∫
T2

(
ε

2
|∇mε|2 +

1

2ε
(1−m2

ε,1)

)
dx

(1.59)

≤
∫
(∂A)ηε,R

(
ε|ξ′ε,R(d)|2

2(1− ξ2ε,R(d))
+

1

2ε
(1− ξ2ε,R(d))

)
dx+ εCA (1.60)

≤
∫ ηε,R

−ηε,R

(
ε|ξ′ε,R(s)|2

2(1− ξ2ε,R(s))
+

1

2ε
(1− ξ2ε,R(s))

)
H1({d(x) = s}) ds+ εCA.

Inserting the estimate for the one-dimensional profile from Lemma 1.4.2, we

obtain∫ ηε,R

−ηε,R

(
ε|ξ′ε,R(s)|2

2(1− ξ2ε,R(s))
+

1

2ε
(1− ξ2ε,R(s))

)
H1({d(x) = s}) ds

(1.51)

≤ sup
−ηε,R≤s≤ηε,R

H1({d(x) = s})
(
2 +O

( ε
R

))
.

(1.61)

Since ∂A and the signed distance function d are smooth in (∂A)R, we have

lim
s→0

H1({d(x) = s}) = H1(∂A). (1.62)
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In the limit ε → 0, then R → 0, estimates (1.60), (1.61) and (1.53) hence

imply

lim sup
R→0

lim sup
ε→0

∫
T2

(
ε

2
|∇mε|2 +

1

2ε

(
1−m2

ε,1

))
≤ 2H1(∂A). (1.63)

We now turn to the estimate of the nonlocal term in the energy F . As for the

local terms, our strategy is to use the one-dimensional estimates from Lemma

1.4.2. Invoking the coarea formula twice and inserting (1.58), we get∫
T2

∫
R2

|mε,1(x)−mε,1(y)|2
|x− y|3 dx dy (1.64)

≥
∫ R

−R

∫
{x: d(x)=ρ′}

∫ R

−R

∫
{y: d(y)=ρ}

|ξε,R(ρ′)− ξε,R(ρ)|2
|x− y|3 dH1(y) dρ dH1(x) dρ′.

We claim that the integrals over curves tangential to the boundary may be

estimated as follows: For every δ > 0, there is an Rδ,A such that∫
{x: d(x)=ρ′}

∫
{y: d(y)=ρ}

1

|x− y|3 dH
1(y) dH1(x) ≥ (1− δ)

2H1(∂A)

(ρ− ρ′)2
, (1.65)

for all R ≤ Rδ,A and all ρ ̸= ρ′ ∈ (−R,R). Assuming for a moment that

(1.65) holds, we conclude by inserting (1.65) into (1.64) and applying the one-

dimensional estimate (1.52)

λ

| log ε|

∫
T2

|∇ 1
2mε,1|2 dx

(1.64),(1.65)

≥ (1− δ)
λH1(∂A)

2π| log ε|

∫ R

−R

∫ R

−R

|ξε,R(ρ)− ξε,R(ρ
′)|2

|ρ− ρ′|2 dρ′ dρ

(1.52)

≥ (1− δ)2H1(∂A)
λ

λc

log(cR/ε)

| log ε| .

Since δ was arbitrary, we obtain

lim inf
R→0

lim inf
ε→0

λ

| log ε|

∫
T2

|∇ 1
2mε,1|2 dx ≥ 2H1(∂A)

λ

λc
. (1.66)

Together, (1.63) and (1.66) imply the limsup inequality by a standard diagonal

argument.

It remains to prove (1.65), for which we fix x ∈ (∂A)R with d(x) = ρ′ and

pass to curvilinear coordinates in a neighborhood of x̃ := p(x) ∈ ∂A. More
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precisely, let the curve γ : (−R 1
2 , R

1
2 ) → ∂A be a parametrization by arclength

of a neighborhood of x̃ in ∂A with γ(0) = x̃. Then, for all R ≤ RA with some

RA > 0 the function

Ψ(σ, ρ) := γ(σ) + ν(γ(σ))ρ

is a diffeomorphism from (−R 1
2 , R

1
2 )×(−R,R) onto its image, which we denote

by Γx̃. The choice R
1
2 will become clear later. Note that due to compactness

of ∂A, we may choose RA independent of x̃. A transformation of variables

then yields

∫
{y: d(y)=ρ}∩Γp(x)

1

|x− y|3 dH
1(y) =

∫ R
1
2

−R
1
2

(1 + κ(γ(σ))ρ)

|Ψ(0, ρ′)−Ψ(σ, ρ)|3 dσ, (1.67)

where κ(ỹ) denotes the signed curvature of ∂A at ỹ (negative if A is convex).

Since the curvature of ∂A is bounded, there is, for any δ > 0, an Rδ,A > 0 such

that for all R ≤ Rδ,A we have

|κ|R ≤ δ and |Ψ(0, ρ′)−Ψ(σ, ρ)| ≤ (1 + δ)
√
σ2 + (ρ− ρ′)2. (1.68)

We conclude that, for any δ̃ > 0, there is an R̃δ̃,A > 0 such that for all R ≤ R̃δ̃,A

and all ρ, ρ′ ∈ (−R,R) we have∫
{y: d(y)=ρ}∩Γp(x)

1

|x− y|3 dH
1(y)

(1.67),(1.68)

≥ (1− δ̃)

∫ R
1
2

−R
1
2

1

(σ2 + (ρ− ρ′))3/2
dσ (1.69)

= (1− δ̃)
2

(ρ− ρ′)2
R

1
2√

R + (ρ− ρ′)2
≥ (1− 2δ̃)

2

(ρ− ρ′)2
.

Integrating (1.69) over x and invoking (1.62) we obtain (1.65).

1.4.2 Proof of Theorem 1.2.6

We begin with the proof of the lower bound in Theorem 1.2.6, which is the

subject of Lemma 1.4.4. The proof of Theorem 1.2.6 is completed with the

construction of the upper bound, carried out in Lemma 1.4.5.
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Lemma 1.4.4. Let λc := π
2
and Fε,λ as defined in (1.11). Then there is a

universal constant δ > 0 such that for all ε < 1
2
and all

λc ≤ λ < δ| log ε| (1.70)

the family of functionals {Fε,λ} is bounded below by

minFε,λ ≳ −λε
λc−λ

λ

| log ε| . (1.71)

Moreover, the profiles achieving the optimal scaling can be characterized as

follows: For any γ > 0 and all m ∈ H1(T2; S2) which satisfy

Fε,λ(m) ≤ −λε
λc−λ

λ

| log ε| γ, (1.72)

there holds∫
T2

|∇m1| dx ≤
∫
T2

(
ε

2
|∇m|2 + 1−m2

ε,1

2ε

)
dx ≤ λ

| log ε|

∫
T2

|∇ 1
2m1|2 dx, (1.73)

and the above quantities agree to leading order and scale like ε
λc−λ

λ , i.e. if A

and B are any of the three quantities in (1.73), we have

A ∼ ε
λc−λ

λ and |A− B| ≲ λ

| log ε|A, (1.74)

where the the constants may depend on γ.

Proof. By (1.29), we may bound the energy from below by

Fε,λ(m)
(1.29)

≥
(
1− λ

| log ε|

)∫
T2

ε

2
|∇m|2 + 1

2ε
(1−m2

1) dx (1.75)

− λ

λc

log
(
c∗ max

{
1,min

{
1

ε
∫
T2 |∇m1| dx ,

1
ε

}})
| log ε|

∫
T2

|∇m1| dx.

Without loss of generality, we may assume that
∫
T2 |∇m1| dx > 0. We first

consider the case min{ 1
ε
∫
T2 |∇m1| dx ,

1
ε
} ≤ 1, for which, with the help of (A.7),

the estimate in (1.75) turns into

Fε,λ(m) ≥
(
1− λ log(c

1/λc
∗ )

| log ε|

)∫
T2

|∇m1| dx

(1.70)

≥ (1− Cδ)

∫
T2

|∇m1| dx
(1.76)
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for some universal constant C > 0. For δ < 1/C, the right hand side of (1.76)

is positive and the lower bound follows. Hence, we may assume

min{ 1
ε
∫
T2 |∇m1| dx ,

1
ε
} > 1 so that (1.75) implies

Fε,λ(m) ≥
(
1− λ

| log ε|

)∫
T2

ε

2
|∇m|2 + 1

2ε
(1−m2

1) dx

− λ

λc

log
(

c∗
ε
∫
T2 |∇m1| dx

)
| log ε|

∫
T2

|∇m1| dx.
(1.77)

Abbreviating the energetic cost for m to deviate from the optimal Bloch wall

profile by

Dε(m) :=

∫
T2

ε

2
|∇m|2 + 1

2ε
(1−m2

1) dx−
∫
T2

|∇m1| dx,

and inserting µ := ε
λ−λc

λ

∫
T2 |∇m1| dx and c∗∗ := c∗e

λc into the lower bound in

(1.77), we get

Fε,λ(m) ≥
(
1− λ

| log ε|

)
Dε(m)− λ

λc

log
(

c∗∗
µ

)
| log ε| µ ε

λc−λ
λ . (1.78)

Since supµ>0 µ log(c∗∗/µ) = c∗∗/e, and since Dε(m) ≥ 0 by (A.7), the lower

bound in (1.71) follows.

We now turn to the proof of (1.74). Note that (A.7) and Fε,λ(m) ≤ 0 yield∫
T2

|∇m1| dx ≤
∫
T2

(
ε

2
|∇m|2 + 1−m2

1

2ε

)
dx ≤ λ

| log ε|

∫
T2

|∇ 1
2m1| dx.

For (1.74) it is hence sufficient to show∫
T2

|∇m1| dx ∼ ε
λc−λ

λ ,

λ

| log ε|

∫
T2

|∇ 1
2m1| dx−

∫
T2

|∇m1| dx ≲
λε

λc−λ
λ

| log ε| ,
(1.79)

where here and in the rest of the proof the constants may depend on γ. We

combine the lower bound for the energy (1.78) with the upper bound (1.72) to

obtain µ log(c∗∗/µ) ≳ 1, which in turn implies µ ∼ 1. Hence, the first item in

(1.79) may be estimated as∫
T2

|∇m1| dx = µε
λc−λ

λ ∼ ε
λc−λ

λ .
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For δ > 0 sufficiently small universal and µ ∼ 1, the second item in (1.79)

follows from (1.78):

λ

| log ε|

∫
T2

|∇ 1
2m1| dx−

∫
T2

|∇m1| dx = −Fε,λ(m) +Dε(m)
(1.78)

≲
λε

λc−λ
λ

| log ε| .

This concludes the proof.

Lemma 1.4.5 (Upper bound in the supercritical regime). There is a constant

0 < K < 1 such that for every (ε, λ) with

λc < λ and 0 < ε
λ−λc

λ < K, (1.80)

there is mε,λ ∈ H1(T2; S2) which satisfies

Fε,λ(mε,λ) ≲ −λε
λc−λ

λ

| log ε| .

Proof. We make an ansatz with N transitions equally separated by 1/N -sized

regions of approximately constant magnetization. More precisely, we take the

transitions as solutions of the optimal profile ODE and define

mε,N(x1, x2) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ξε,∞

(
x2−

1
2N
ε

)
e1 +

√
1− ξ2ε,∞

(
x2−

1
2N
ε

)
e2, x2 ∈

[
0, 1

N

]
ξε,∞

(
3
2N

−x2

ε

)
e1 +

√
1− ξ2ε,∞

(
3
2N

−x2

ε

)
e2, x2 ∈

[
1
N
, 2
N

]
extended periodically to T2 (see Fig. 1.2). Applying Lemma 1.4.2 withX = 1

2N

and using symmetries of mε,N , we get∫
T2

(
ε

2
|∇mε,N |2 +

1−m2
(ε,N),1

2ε

)
dx ≤ 2N (1.81)

and, for all ε < 1
4N

, we have∫
T2

|∇ 1
2m(ε,N),1|2 dx

(A.11)
=

1

4π

∫
T

∫
R

∫
R

|m(ε,N),1(x2)−m(ε,N),1(y2)|2
(|x2 − y2|2 + s2)3/2

ds dx2 dy2

≥ 1

2π

N∑
k=1

∫ k
N

k−1
N

∫ k
N

k−1
N

|m(ε,N),1(x2)−m(ε,N),1(y2)|2
|x2 − y2|2

dx2 dy2

=
N

4λc

∫ 1
2N

− 1
2N

∫ 1
2N

− 1
2N

|ξε,∞(x)− ξε,∞(y)|2
|x− y|2 dx dy

(1.52)

≥ 2N
log( c

2εN
)

λc
.

(1.82)
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To obtain the upper bound, we combine estimates (1.81) and (1.82) and opti-

mize in N ∈ N. The choice N := 2
⌊
Kε

λc−λ
λ

⌋
is admissible because N

(1.80)

≥ 2

and εN ≤ 2K ≤ 1
4
for K ≤ 1

8
min{1, c}. Since 0 < ε < 1, we get

Fε,λ(mε,N) ≤ 2N

(
1− λ log( c

2εN
)

λc| log ε|

)
≤− Cλε

λc−λ
λ

| log ε| ,
(1.83)

for some universal C > 0, which is the desired estimate.

1.4.3 Proof of Theorem 1.2.7

Theorem 1.2.7. We start by proving item (i). Inserting (1.27) into the lower

bound (1.45), we get for sufficiently small ε > 0

Fε,λ(m) ≥
(
1− log(εc) log(ε/β1)

log(ε)2

)∫
T2

|∇m1| dx

≥
( | log(ε)| log(c/β1) + log(c) log(β1)

| log(ε)|2
)∫

T2

|∇m1| dx.

For β1 < c, the bracket is positive, which shows that the minimal value of

minFε,λ = 0 is only attained for m ≡ ±e1. Since ε
λ+(ε)−λc

λ+(ε) ≤ 2
β2

for sufficiently

small ε > 0, the second part follows from Lemma 1.4.5.

To proceed, we next establish the estimate∫
T2

|∇m1| dx ≲ max {1, | log ε|Fε,λc(m)} . (1.84)

It is enough to show that there are constants C, ε0 > 0 such that for all

ε ∈ (0, ε0) we have∫
T2

|∇m1| dx ≥ C =⇒ Fε,λc(m) ≳
1

| log ε|

∫
T2

|∇m1| dx. (1.85)

Indeed, by (1.29), we may bound the energy from below by

Fε,λc(mε)
(1.29)

≥
(
1− λc

| log ε|

)∫
T2

(
ε

2
|∇mε|2 +

1

2ε
(1−m2

ε,1)

)
dx (1.86)

−
log
(
c∗ max

{
1,min

{
1

ε
∫
T2 |∇mε,1| dx ,

1
ε

}})
| log ε|

∫
T2

|∇mε,1| dx.

We first consider the case min{ 1
ε
∫
T2 |∇mε,1| dx ,

1
ε
} ≤ 1, for which (1.86) turns into

Fε,λc(m) ≥
(
1− λc + log(c∗)

| log ε|

)∫
T2

|∇mε,1| dx ≳
∫
T2

|∇m1| dx.
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For the remaining case, we have min{ 1
ε
∫
T2 |∇m1| dx ,

1
ε
} ≥ 1 and (1.86) implies

Fε,λc(mε) ≥
(
1− λc

| log ε|

)∫
T2

(
ε

2
|∇mε|2 +

1

2ε
(1−m2

ε,1)

)
dx

−
log
(

c∗
ε
∫
T2 |∇mε,1| dx

)
| log ε|

∫
T2

|∇mε,1| dx

(A.7)

≥ −
log
(

c∗∗∫
T2 |∇m1| dx

)
| log ε|

∫
T2

|∇m1| dx,

where we have inserted c∗∗ := c∗e
λc . The estimate (1.85) follows with the

choice C = 2c∗∗.

With (1.84) at hand, we now prove item (ii), starting with the lower bound.

Let mε → m in L1(T2) for some m ∈ L1(T2;R3). Lemma 1.4.4 yields

lim inf
ε→0

Fε,λc(mε) ≥ 0,

which proves the lower bound in case that m ∈ L1(T2; {±e1}). For the re-

maining case, we may assume
∫
T2(1 −m2

ε,1) dx ≳ 1. For sufficiently small ε,

estimates (1.29) and (1.84) then yield∫
T2

(1−m2
ε,1) dx ≲ ε

(
Fε,λ(mε) +

λc
| log ε|

∫
T2

|∇ 1
2mε,1|2 dx

)
(1.29)

≲ ε

(
Fε,λ(mε) +

∫
T2

|∇mε,1| dx
)

(1.84)

≲ ε (1 + | log ε|Fε,λc(mε)) ,

(1.87)

which implies lim infε→0 Fε,λc(mε) = +∞ for m ∈ L1(T2;R3) \ L1(T2; {±e1}).
Since the construction of the upper bound was already carried out in Lemma

1.4.3, the proof is complete.

To prove item (iii), we again make use of the construction in Lemma 1.4.5.

However, this time we take N = ⌊log(| log ε|)⌋. Analogous to (1.83), we get

for sufficiently small ε

Fε,λ(mε,N) ≤ 2N

(
1− log(2εN

c
)

log ε

)
≲
N logN

| log ε| −→ 0, for ε→ 0.

Therefore, it remains to show that mε,N is not compact in the strong L1-

topology. Since
∫
T2 |mε,N |2 dx = 1, any possible limit m̃ of (a subsequence of)

mε,N in the strong topology needs to satisfy
∫
T2 |m̃|2 dx = 1. However, since

εN → 0 as ε → 0, it is clear that mε,N converges weakly to zero in L2(T2),

leading to a contradiction. Finally, item (iv) follows dirctly from (1.87), (1.84)

and the compact embedding BV (T2) ↪→ L1(T2).
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1.5 Stray field estimates and reduction of the

full energy

The goal of this section is to make the heuristic reduction in section 1.1.1

rigorous. We prove the following

Lemma 1.5.1 (Reduction of the energy). There is a universal constant C > 0

such that energy E is bounded below by

E(m) ≥ ℓ2t+
(
1− Ct2

) ∫
(0,t)×T2

ℓ

|∇m|2 + (Q− 1)(m2
2 +m2

3) dx

− 2

∫
(0,t)×T2

ℓ

m1hext dx−
t2

2

∫
T2
ℓ

|∇ 1
2m1|2 dx,

(1.88)

where m(x′) = 1
t

∫ t

0
m(x1, x

′) dx1 denotes the e1-average of the magnetization

over (0, t).

Note that for two-dimensional magnetizations (1.88) also holds in the reversed

direction if −C is replaced by C. Hence the lower bound is asymptotically

sharp. We also remark that a similar sharp estimate for the three-dimensional

dipolar energy holds for thin three-dimensional domains in the whole space

[75].

For the proof of Lemma 1.5.1, which is deferred until the end of this section,

we need several estimates presented in the following sections.

1.5.1 Approximation of m by its e1-average m

Since the thickness t of the film is small, the exchange energy strongly penalizes

oscillations of the magnetization in the normal direction of the film. Hence the

averaged magnetization m is a good approximation of m, and Assumption (i)

in section 1.1.1 can be made rigorous by the following Poincaré-type inequality∫
(0,t)×T2

ℓ

|m− χ(0,t)m|2 dx ≲ t2
∫

(0,t)×T2
ℓ

|∂1m|2 dx, (1.89)

which holds for all m ∈ H1((0, t)× T2
ℓ ;R3) and can be proved by standard

methods.
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1.5.2 Approximation of the stray field energy

In this section, we establish an approximation of the stray field, i.e. a rig-

orous version of Assumption (i). In particular, we show that for thin films,

the difference between the stray field energy of the averaged magnetization

and the stray field energy of the full magnetization may be estimated by the

exchange energy at lower order. The statement of Theorem 1.5.2 below is

slightly stronger than what is necessary to prove Lemma 1.5.1 and might be

of independent interest for other thin film regimes.

Theorem 1.5.2. Let m ∈ H1((0, t)× T2
ℓ ;R3), then the stray field energy (see

(1.3)) satisfies⏐⏐⏐⏐⏐
∫
R×T2

ℓ

|h[m]|2 dx−
∫
R×T2

ℓ

|h[m1e1]|2 dx−
∫
R×T2

ℓ

|h[m′]|2 dx

⏐⏐⏐⏐⏐
≲ t2

∫
(0,t)×T2

ℓ

|∇m|2 dx, (1.90)⏐⏐⏐⏐⏐
∫
R×T2

ℓ

|h[m]|2 dx−
∫
R×T2

ℓ

|h[χ(0,t)m]|2 dx

⏐⏐⏐⏐⏐ ≲ t2
∫
(0,t)×T2

ℓ

|∇m|2 dx, (1.91)

where m′ = m −m1e1 is understood to have values in R3 with e1-component

0. Moreover, the contributions due to m1 and m′ may be approximated by⏐⏐⏐⏐⏐
∫
R×T2

ℓ

|h[m1e1]|2 dx−
∫
(0,t)×T2

ℓ

m2
1 dx+

t2

2

∫
T2
ℓ

|∇ 1
2m1|2 dx

⏐⏐⏐⏐⏐
≲ t2

∫
(0,t)×T2

ℓ

|∇m|2 dx, (1.92)⏐⏐⏐⏐⏐
∫
R×T2

ℓ

|h[m′]|2 dx− t2

2

∫
T2
ℓ

|∇− 1
2∇′ ·m′|2 dx

⏐⏐⏐⏐⏐
≲ t2

∫
(0,t)×T2

ℓ

|∇m|2 dx, (1.93)∫
R×T2

ℓ

|h[m′]|2 dx ≲ t2
∫
(0,t)×T2

ℓ

(
|∇m|2 + |m′|2

)
dx. (1.94)

Proof. It is sufficient to argue for m ∈ C∞
c (R × T2

ℓ ;R3), because the general

case follows by an approximation argument, as we now explain. Since (0, t)×T2
ℓ

is an extension domain, there exists, for every m ∈ H1((0, t) × T2
ℓ ;R3), a se-

quence {mk}k∈N in C∞
c (R × T2

ℓ ;R3) such that ∥m − mk∥L2(R×T2
ℓ )
+ ∥∇m −
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∇mk∥L2((0,t)×T2
ℓ ))

→ 0. It remains to check that all terms in (1.90) – (1.93) are

continuous. Note that by (1.89), we also have ∥mk − m∥L2(T2
ℓ )

→ 0. More-

over, t
∫
Tℓ
|∇mk|2 dx ≲

∫
(0,t)×T2

ℓ
|∇mk|2 dx (see (A.8) in the Appendix for a

proof). Hence the convergence follows from the elliptic estimate
∫
R×T2

ℓ
|h[mk−

m]|2 dx ≤
∫
R×T2

ℓ
|mk − m|2 dx and by interpolation for the terms involving

fractional derivatives.

We write the stray field energy in terms of the magnetostatic potential φ∫
R×T2

ℓ

|h[m]|2 dx = −
∫
R×T2

ℓ

φ∇ ·m dx where ∆φ = ∇ ·m in D′(R× T2
ℓ).

Upon passing to Fourier series (with respect to the in-plane variables), we get∫
R×T2

ℓ

φ∇ ·m dx =
1

ℓ2

∫
R

∑
k∈ 2π

ℓ
Z2

φ̂∗
k(z) (∂zm̂1,k(z)− ik · m̂′

k(z)) dz, (1.95)

where the Fourier coefficients φ̂k of φ with φ̂k : R → C for k ∈ 2π
ℓ
Z2 solve

∂2z φ̂k − |k|2φ̂k = ∂zm̂1,k − ik · m̂′
k.

We introduce the fundamental solution

Hk(s) =

⎧⎨⎩ e−|k||s|

|k| for k ̸= 0,

−|s| for k = 0,

which satisfies

−∂2sHk + |k|2Hk = 2δ in D′(R) for all k ∈ Z2, (1.96)

where δ denotes the Dirac measure at 0. The fundamental solution allows to

rewrite φ̂k(z) as

φ̂k(z) = −1

2

∫
R
Hk(z − z′) (∂zm̂1,k(z

′)− ik · m̂′
k(k, z

′)) dz′,

which by (1.95) leads to the following expression for the stray field energy∫
R×T2

ℓ

|h[m]|2 dx =
1

2ℓ2

∫
R

∫
R

∑
k∈ 2π

ℓ
Z2

(∂zm̂1,k(z)− ik · m̂′
k(z))

∗ (1.97)

×Hk(z − z′)(∂zm̂1,k(z
′)− ik · m̂′

k(z
′)) dz dz′.
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To prove (1.90), we need to show that the mixed terms in (1.97), i.e. terms of

the form

I :=
1

ℓ2

∫
R

∫
R

∑
k∈ 2π

ℓ
Z2

∂zm̂
∗
1,k(z)Hk(z − z′)(ik · m̂′

k(z
′)) dz dz′ (1.98)

satisfy |I| ≲ t2
∫
(0,t)×T2

ℓ
|∇m|2 dx. Integrating by parts in (1.98), we get

I = − 1

ℓ2

∫
R

∫
R

∑
k∈ 2π

ℓ
Z2

m̂∗
1,k(z)∂zHk(z − z′)(ik · m̂′

k(z
′)) dz dz′. (1.99)

We write m = χ(0,t)m + u where as usual m(x′) = 1
t

∫ t

0
m(x1, x

′) dx1 denotes

the average of m over in the e1-direction. With this notation, (1.99) turns into

I = − 1

ℓ2

∫
R

∫
R

∑
k∈ 2π

ℓ
Z2

(χ(0,t)(z)m̂1,k + û1,k(z))
∗∂zH(k, z − z′)

×
(
ik · χ(0,t)(z

′)m̂
′
k + ik · û′k(z′)

)
dz dz′.

(1.100)

Since ∂sHk(s) = − s
|s|e

−|k||s| is anti-symmetric in s, we have
∫ t

0

∫ t

0
∂zHk(z −

z′) dz dz′ = 0 which means that upon expanding (1.100), the term involving

m1 andm
′ vanishes. Furthermore, we have |∂zHk| ≤ 1 and hence the remaining

terms in (1.100) may be estimated by

|I| ≤ 1

ℓ2

∫
R

∫
R

∑
k∈ 2π

ℓ
Z2

(
|û1,k(z)| |k · m̂′

k(z
′)|

+|χ(0,t)(z)m̂1,k| |k · u′k(z′)|
)
dz dz′.

(1.101)

Note that passing to Fourier series in the in-plane variables commutes with

taking e1-averages. Thus ûj,k has e1-average zero for all j = 1, 2, 3 and the

intermediate value theorem yields τj,k, ρj,k ∈ (0, t) such that ℜûj,k(τj,k) = 0

and ℑûj,k(ρj,k) = 0. By the fundamental theorem of calculus, we hence get

the estimate

|ûj,k(z)| ≲
∫ t

0

|∂zm̂j,k(τ)| dτ for all z ∈ (0, t) and j = 1, 2, 3. (1.102)

Inserting (1.102) into (1.101) and using Jensen’s inequality yields the rough

estimate

|I| ≲
3∑

n,j=1

t

ℓ2

∫ t

0

∫ t

0

∑
k∈ 2π

ℓ
Z2

|∂zm̂j,k(z)| |k| |m̂n,k(z
′)| dz dz′.
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By Young’s inequality and Parseval’s identity, we conclude

|I| ≲
3∑

n,j=1

t

ℓ2

∫ t

0

∫ t

0

∑
k∈ 2π

ℓ
Z2

(
|∂zm̂j,k(z)|2 + |k|2|m̂n,k(z

′)|2
)
dz dz′

≲ t2
∫
(0,t)×T2

ℓ

|∇m|2 dx,

which completes the proof of (1.90). Assuming for a moment that (1.92) and

(1.93) hold, identity (1.91) is obtained as follows. Applying (1.90) to m and

χ(0,t)m, we get⏐⏐⏐⏐⏐
∫
R×T2

ℓ

|h[m]|2 dx−
∫
R×T2

ℓ

|h[χ(0,t)m]|2 dx

−
∫
R×T2

ℓ

|h[m1e1]|2 dx+

∫
R×T2

ℓ

|h[χ(0,t)m1e1]|2 dx

−
∫
R×T2

ℓ

|h[m′]|2 dx+

∫
R×T2

ℓ

|h[χ(0,t)m
′]|2 dx

⏐⏐⏐⏐⏐
(1.90)

≲ t2
∫
(0,t)×T 2

ℓ

|∇m|2 dx,

(1.103)

where we have also used (see (A.8) in the appendix for a proof)

∫
(0,t)×T 2

ℓ

|∇
(
χ(0,t)m

)
|2 dx = t

∫
T2
ℓ

|∇′m|2 dx
(A.8)

≤
∫
(0,t)×T 2

ℓ

|∇m|2 dx.

Applying (1.92) and (1.93) to (1.103) yields the claim⏐⏐⏐⏐⏐
∫
R×T2

ℓ

|h[m]|2 dx−
∫
R×T2

ℓ

|h[χ(0,t)m]|2 dx

−
∫
(0,t)×T2

ℓ

m2
1 dx+

∫
(0,t)×T2

ℓ

(χ(0,t)m1)
2 dx

⏐⏐⏐⏐⏐
(1.92),(1.93)

≲ t2
∫
(0,t)×T2

ℓ

|∇m|2 dx⏐⏐⏐⏐⏐
∫
R×T2

ℓ

|h[m]|2 dx−
∫
R×T2

ℓ

|h[χ(0,t)m]|2 dx

⏐⏐⏐⏐⏐ (1.89)≲ t2
∫
(0,t)×T2

ℓ

|∇m|2 dx.

We turn to the proof of (1.92). Integrating by parts twice and inserting (1.96),
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we get ∫
R×T2

ℓ

|h[m1]|2 dx

(1.97)
=

1

2ℓ2

∫
R

∫
R

∑
k∈ 2π

ℓ
Z2

∂zm̂
∗
1,k(z)Hk(z − z′)∂zm̂1,k(z

′) dz dz′

= − 1

2ℓ2

∫
R

∫
R

∑
k∈ 2π

ℓ
Z2

m̂∗
1,k(z)∂

2
zHk(z − z′)m̂1,k(z

′) dz dz′

(1.96)
=

1

ℓ2

∫
R

∑
k∈ 2π

ℓ
Z2

|m̂1,k(z)|2 dz

− 1

2ℓ2

∫
R

∫
R

∑
k∈ 2π

ℓ
Z2

m̂∗
1,k(z)|k|e−|k||z−z′|m̂1,k(z

′) dz dz′.

Since |1− e−|k||z|| ≤ |k|t for z ∈ (−t, t), the last line above

J :=
1

2ℓ2

∫
R

∫
R

∑
k∈ 2π

ℓ
Z2

m̂∗
1,k(z)|k|e−|k||z−z′|m̂1,k(z

′) dz dz′

may be estimated, with the help of Young’s inequality, by⏐⏐⏐⏐⏐J − t2

2ℓ2

∑
k∈ 2π

ℓ
Z2

|k||m̂1,k(z)|2
⏐⏐⏐⏐⏐

≲
t

ℓ2

∫ t

0

∫ t

0

∑
k∈ 2π

ℓ
Z2

|m̂1,k(z)||k|2|m̂1,k(z
′)| dz dz′

≲
t2

ℓ2

∫ t

0

∑
k∈ 2π

ℓ
Z2

|k|2|m̂1,k(z)|2 dz,

which by Parseval’s identity is equivalent to⏐⏐⏐⏐⏐J − t2

2

∫
T2
ℓ

|∇ 1
2m1|2 dx

⏐⏐⏐⏐⏐ ≲ t2
∫
(0,t)×T2

ℓ

|∇′m1|2 dx.

In total, we get⏐⏐⏐⏐⏐
∫
R×T2

ℓ

|h[m1e1]|2 dx−
∫
(0,t)×T2

ℓ

m2
1 dx+

t2

2

∫
T2
ℓ

|∇ 1
2m1|2 dx

⏐⏐⏐⏐⏐
≲ t2

∫
(0,t)×T2

ℓ

|∇′m1|2 dx,
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which proves (1.92). We continue with the proof of (1.93). Since |1−e−|k||z|| ≤
|k|t for z ∈ (0, t), we may insert |Hk(z − z′)− 1

|k| | ≤ t for k ̸= 0 into (1.97)∫
R×T2

ℓ

|h[m′]|2 dx

(1.97)
=

1

2ℓ2

∫
R

∫
R

∑
k∈ 2π

ℓ
Z2\{0}

(k · m̂′
k(z))

∗Hk(z − z′)k · m̂′
k(z

′) dz dz′.

This yields ⏐⏐⏐⏐⏐
∫
R×T2

ℓ

|h[m′]|2 dx− t

2ℓ2

∑
k∈ 2π

ℓ
Z2\{0}

|k · m̂′
k|2

|k|

⏐⏐⏐⏐⏐
≲

t2

2ℓ2

∫
R

∑
k∈ 2π

ℓ
Z2

|k · m̂′
k(z)|2 dz,

which proves the first equality. The second equality follows as in (1.5).

Lemma 1.5.1. We invoke Theorem 1.5.2 to obtain a lower bound for the stray

field energy. Combining (1.90) with (1.92) and neglecting the non-negative

term
∫
R×T2

ℓ
|h[m′]|2 dx, we get∫

R×T2
ℓ

|h[m]|2 dx
(1.90)

≥
∫
R×T2

ℓ

|h[m1e1]|2 dx− Ct2
∫
(0,t)×T2

ℓ

|∇m|2 dx

(1.92)

≥
∫
(0,t)×T2

ℓ

m2
1 dx− t2

2

∫
T2
ℓ

|∇ 1
2m1|2 dx

− Ct2
∫
(0,t)×T2

ℓ

|∇m|2 dx,

(1.104)

for some universal constant C > 0. Note that estimating
∫
R×T2

ℓ
|h[m′]|2 dx

by zero is reasonable, since (1.93) shows that the term is controlled by the

exchange and anisotropy energy at lower order. Inserting (1.104) into the

energy E yields

E(m)
(1.2)
=

∫
(0,t)×T2

ℓ

(
|∇m|2 +Q(m2

2 +m2
3)− 2m1hext

)
dx+

∫
R×T2

ℓ

|h|2 dx.

(1.104)

≥
∫

(0,t)×T2
ℓ

(
|∇m|2 +Q(m2

2 +m2
3)− 2m1hext

)
dx+

∫
(0,t)×T2

ℓ

m2
1 dx

− t2

2

∫
T2
ℓ

|∇ 1
2m1|2 dx− Ct2

∫
(0,t)×T2

ℓ

|∇m|2 dx.

(1.105)
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The constraint |m| = 1 allows to combine the leading order of the stray field

energy with the anisotropy energy which leads to constant contribution and a

renormalized anisotropy term∫
(0,t)×T2

ℓ

Q(m2
2 +m2

3) dx+ t

∫
T2
ℓ

m2
1 dx

= ℓ2t+

∫
(0,t)×T2

ℓ

(Q− 1)(m2
2 +m2

3) dx.

(1.106)

Finally, we insert (1.106) into (1.105) to extract the leading order constant ℓ2t

and conclude the claim of Lemma 1.5.1

E(m) ≥ ℓ2t+

∫
(0,t)×T2

ℓ

(
|∇m|2 + (Q− 1)(m2

2 +m2
3)− 2m1hext

)
dx

− t2

2

∫
T2
ℓ

|∇ 1
2m1|2 dx− Ct2

∫
(0,t)×T2

ℓ

|∇m|2 dx,

which completes the proof.

1.6 Proofs for the full energy E

The proofs for the full energy E are based on the arguments in the proofs for

the reduced energy F . We recommend to read section 1.4 first.

Under mild assumptions on ℓ, t, Q and hext, weaker than those of Theorems

1.2.1 – 1.2.4, Lemma 1.3.1 and Theorem 1.5.2 yield the following estimates for

the rescaled energy J .

Lemma 1.6.1. There are universal constants C, δ > 0 such that for (ℓ, t, Q, hext)

which satisfy

Q > 1, t < δmin{1, ℓ} and
ℓ√
Q− 1

hext(ℓx
′) = g(x′) (1.107)

for some g ∈ L1(T2), the rescaled energy J (see (1.13)) satisfies

J(m) ≥
(
1− Ct2 − t

4
√
Q− 1

) ∫
(0,1)×T2

(
ε|∇m|2 + 1

ε
(m2

2 +m2
3)

)
dx

+
1

2εt2(Q− 1)

∫
(0,1)×T2

|∂1m|2 dx− 2

∫
T2

gm1 dx (1.108)

− t

π
√
Q− 1

log

(
c∗ max

{
1,min

{
1

ε
∫
T2 |∇m1| dx

,
1

ε

}})∫
T2

|∇m1| dx,
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for all m ∈ H1((0, 1)× T2; S2), where we have abbreviated ε := 1
ℓ
√
Q−1

. Fur-

thermore, for any m ∈ H1(T2; S2) we have the upper bound

J(χ(0,1)m) ≤ (1 + Ct2)

∫
T2

(
ε|∇m|2 + 1

ε
(m2

2 +m2
3)

)
dx

− 2

∫
T2

m1g dx− t

2
√
Q− 1

∫
T2

|∇ 1
2m1|2 dx.

(1.109)

Proof. The lower bound for E in Lemma 1.5.1 implies a lower bound for the

rescaled energy J

J(m) =
E(m(t·, ℓ·, ℓ·))− ℓ2t

ℓt
√
Q− 1

(1.88)

≥
(
1− Ct2

) ∫
(0,1)×T2

(
1

ℓ
√
Q− 1

|∇′m|2

+
ℓ

t2
√
Q− 1

|∂1m|2 + ℓ
√
Q− 1(m2

2 +m2
3)

)
dx

− 2ℓ√
Q− 1

∫
T2

m1(x
′)hext(ℓx

′) dx− t

2
√
Q− 1

∫
T2

|∇ 1
2m1|2 dx.

(1.110)

We insert

ℓ√
Q− 1

hext(ℓx
′) = g(x′) and ε =

1

ℓ
√
Q− 1

into (1.110) to obtain

J(m)
(1.88)

≥
(
1− Ct2

) ∫
(0,1)×T2

(
ε|∇′m|2 + |∂1m|2

εt2(Q− 1)
+

1

ε
(m2

2 +m2
3)

)
dx

− 2

∫
T2

gm1 dx− t

2
√
Q− 1

∫
T2

|∇ 1
2m1|2 dx. (1.111)

In view of (1.107) we may assume that

(1− Ct2)

(
1

εt2(Q− 1)
− ε

)
≥ 1

2εt2(Q− 1)
. (1.112)

Hence, applying Lemma 1.3.1 to the last term in (1.111) and inserting (1.112)

we arrive at (1.108). The proof for the upper bound (1.109) is simpler and

analogous to the arguments that led to (1.111).
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1.6.1 Proof of Theorem 1.2.1

It is possible to invoke the lower bound for F on slices {x1 = const} to obtain

the lower bound for the full (rescaled) energy J . However, we will not pursue

this option. Instead, we apply the H
1
2 -bound of Lemma 1.3.1 directly and

extend the arguments of the previous section. The reason is related to the fact

that C∞(T2 × (0, 1); S2) is not dense in H1(T2 × (0, 1); S2), which can be seen

by considering f(x) = x
|x| (see [8, 7, 41]). Hence, evaluating Sobolev functions

on slices {x1 = const} and confirming that the constraint |m| = 1 still holds

requires to use the precise representative of a Sobolev function and gets rather

technical.

Proof of the lower bound and compactness in Theorem 1.2.1. Our starting point

is the lower bound (1.108). It turns out to be more convenient to use the pa-

rameter ε = 1
ℓ
√
Q−1

instead of ℓ. We first note that for ε < 1 the last term in

(1.108) may be estimated with the aid of (A.8) and (A.7) by

log

(
c∗ max

{
1,min

{
1

ε
∫
T2 |∇m1| dx

,
1

ε

}})∫
T2

|∇m1| dx

≤ log (c∗/ε)

∫
(0,1)×T2

(
ε|∇m|2 + 1

ε
(m2

2 +m2
3)

)
dx.

(1.113)

For Q and (ℓk, tk, hext,k) satisfying (1.14), we abbreviate

εk :=
1

ℓk
√
Q− 1

→ 0 and gk :=
ℓk√
Q− 1

hext,k(ℓk·) → g, (1.114)

and note that

t2k +
tk√
Q− 1

(1.14)−→ 0. (1.115)

Inserting (1.14) and (1.113) – (1.115) into the lower bound (1.108), we deduce

that for any γ > 0 and sufficiently large k ≥ k0(γ), we have

Jk(m) ≥
(
1− λ

λc
− γ

) ∫
(0,1)×T2

(
εk|∇m|2 + 1

εk
(m2

2 +m2
3)

)
dx

+
1

2εkt2k(Q− 1)

∫
(0,1)×T2

|∂1m|2 dx− 2

∫
T2

m1gk dx.

(1.116)
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Note that (1.116) for 2γ ≤ 1− λ
λc

and sufficiently large k implies∫
(0,1)×T2

(
m2

2 +m2
3

)
dx ≲

εk
(λc − λ)

(Jk(m) + 2∥gk∥L1) . (1.117)

Using Poincaré’s inequality and (1.116) for γ < 1− λ
λc

again, we get∫
(0,1)×T2

|m− χ(0,1)m|2 dx ≲
∫
(0,1)×T2

|∂1m|2 dx (1.118)

(1.116)

≲ εkt
2
k(Q− 1)

(
lim sup
k→∞

Jk(m) + 2∥gk∥L1

)
.

Furthermore, applying (A.7) and (A.8) to (1.116) again implies the lower

bound

J(m) ≥ 2

(
1− λ

λc
− γ

)∫
T2

|∇′m1| dx− 2

∫
T2

m1gk dx. (1.119)

In order to prove compactness, let m(k) ∈ H1((0, 1)× T2; S2) with

lim supk→∞ J(mk) < ∞. Since λ < λc and gk → g in L1(T2), inequality

(1.119) implies a uniform bound on m
(k)
1 in BV (T2). A standard compactness

argument implies that m
(k)
1 → m1 in L

1(T2) for a subsequence (not relabelled)

and some m1 ∈ BV (T2). We will now show that in fact m(k) → χ(0,1)m1e1 in

L1((0, 1)× T2;R3). Indeed, the triangle inequality yields∫
(0,1)×T2

|m(k) − χ(0,1)m1e1| dx ≤
∫
(0,1)×T2

(
|m(k)

2 |2 + |m(k)
3 |2

) 1
2
dx

+

∫
(0,1)×T2

|m(k)
1 − χ(0,1)m

(k)
1 | dx+

∫
T2

|m(k)
1 −m1| dx, (1.120)

and we already know that the last term on the right hand side of (1.120)

vanishes. Furthermore, the first term vanishes due to (1.117) and the second

one due to (1.118) and (1.14). This completes the proof of the compactness

statement.

The liminf inequality is easily obtained from the lower bound (1.119). Indeed,

let m(k) ∈ H1((0, 1)× T2; S2) with m(k) → m in L1((0, 1)× T2). By Jensen’s

inequality, we also have m(k) → m in L1(T2). By lower semicontinuity of the

BV seminorm and since γ was arbitrary, we obtain from (1.119) in the limit

lim inf
k→∞

Jk(m
(k)) ≥

(
1− λ

λc

)∫
T2

|∇′m1| dx− 2

∫
T2

m1g dx.
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It remains to prove the upper bound for the Γ-convergence. As it turns out,

we may use the recovery sequence for the reduced energy F also for the full

energy E (up to thickening).

Construction of the recovery sequence in Theorem 1.2.1. Let λ ≤ λc and m ∈
BV (T2; {±e1}). Furthermore, let mε ∈ H1(T2; S2) denote the recovery se-

quence for Fε,λ from Lemma 1.4.3. With the notation (1.114) we set

m(k)(x1, x
′) := χ(0,1)(x1)mεk(x

′) for (x1, x
′) ∈ (0, 1)× T2

and claim that

lim sup
k→∞

Jk(m
(k)) ≤ J∗(m).

Inserting the abbreviation λk := tk| log(εk)|
4
√
Q−1

into the upper bound (1.109), we

obtain

Jk(m
(k)) ≤

(
1 + Ct2k

) ∫
T2

(
εk|∇mεk |2 +

1

εk
(m2

εk,2
+m2

εk,3
)

)
dx

− 2λk
| log εk|

∫
T2

|∇ 1
2mεk,1|2 − 2

∫
T2

gkmεk,1 dx

= 2Fεk,λk
[mεk ]− 2

∫
T2

gkmεk,1 dx

+ Ct2k

∫
T2

(
εk|∇mεk |2 +

1

εk
(m2

εk,2
+m2

εk,3
)

)
dx.

(1.121)

We have shown in Lemma 5.3 that∫
T2

(
εk|∇mεk |2 +

1

εk
(m2

εk,2
+m2

εk,3
)

)
dx→ 2

∫
T2

|∇m1| dx <∞.

Since (1.14) implies tk → 0, λk → λ < λc and gk → g in L1(T2), the claim

follows upon applying Lemma 1.4.3 to (1.121)

lim sup
k→∞

Jk[m
(k)] ≤ 2F∗,λ(m)− 2

∫
T2

gm1 dx.
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1.6.2 Proof of Theorem 1.2.2

Theorem 1.2.2. We begin with the proof of the lower bound for which we use

(1.108) with g = 0. For sufficiently small δ, the regime (1.16) implies

Ct2 +
t√

Q− 1

(1.16)

≲ Cδ2 + δ ≲ δ. (1.122)

Analogous to the argument that lead from (1.75) to (1.77), but now with

(1.122) instead of (1.70), we reduce (1.108) to the case

J(m) ≥
(
1− Ct2 − t√

Q− 1

) ∫
(0,1)×T2

(
ε|∇m|2 + 1

ε
(m2

2 +m2
3)

)
dx

+
1

2εt2(Q− 1)
|∂1m|2 dx−

t log
(
c∗

1
ε
∫
T2 |∇m1| dx

)
π
√
Q− 1

∫
T2

|∇m1| dx.

(1.123)

Abbreviating the energetic cost for m to deviate from the optimal Bloch wall

profile by

Dε(m) :=

∫
(0,1)×T2

(
ε|∇m|2 + 1

ε
(1−m2

1)

)
dx− 2

∫
T2

|∇m1| dx, (1.124)

and inserting µ := εe2πt
−1

√
Q−1

∫
T2 |∇m1| dx and c∗∗ := c∗e

2π(1+Ct
√
Q−1) (1.16)∼ 1

into the lower bound (1.123) we get

J(m) ≥
(
1− Ct2 − t√

Q− 1

)
Dε(m) +

1

2εt2(Q− 1)

∫
(0,1)×T2

|∂1m|2 dx

− log (c∗∗/µ)

π
µ tℓe−2πt−1

√
Q−1.

(1.125)

Minimizing in µ > 0 then yields the lower bound

J(m) ≳ −c∗∗tℓe−2πt−1
√
Q−1 ≳ −tℓe−2πt−1

√
Q−1.

It remains to construct a sequence that achieves the optimal scaling. Let mε,N

denote the function constructed in Lemma 1.4.5 and define mε,N := χ(0,1)mε,N .

We insert (1.81) and (1.82) into (1.109) and use that (1.16) implies t2 ≲ t√
Q−1

to deduce

J(mε,N) ≤ 4N

(
1 + Ct2 − t log( c

2εN
)

2π
√
Q− 1

)
(1.16)

≤ 4N

(
1− t log( c̃

2εN
)

2π
√
Q− 1

)
(1.126)
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for some universal c̃ > 0. Optimizing in N leads to

N := 2

⌊
ℓ
√
Q− 1

e−2πt−1
√
Q−1

K

⌋
, (1.127)

which satisfies N ≥ 2 due to (1.16) and is hence admissible. Inserting (1.127)

into (1.126), and taking K ≥ 8
c̃
, we conclude that the function mε,N indeed

achieves the optimal scaling

J(mε,N) ≲ −tℓe−2πt−1
√
Q−1.

1.6.3 Proof of Proposition 1.2.3

Proposition 1.2.3. Let m satisfy (1.17). Then (1.122) and (1.125) imply µ ∼ 1

and hence (1.20) ∫
T2

|∇m1| dx ∼ ℓ
√
Q− 1e−2πt−1

√
Q−1,

where here and throughout the rest of this proof, the constants associated with

≲,≳ and ∼ may depend on γ. In turn, inserting (1.17), (1.20) and (1.122)

into (1.125) implies (1.21)

Dε(m)
(1.125)

≲
t√

Q− 1

∫
T2

|∇m1| dx.

Furthermore, Poincaré’s inequality, (1.125), (1.17) and µ ∼ 1 yield (1.18)∫
(0,1)×T2

|m− χ(0,1)m|2 dx ≲
∫
(0,1)×T2

|∂1m|2 dx

(1.125)

≲ t3
√
Q− 1 e−2πt−1

√
Q−1.

Finally, we deduce (1.19) from (1.124), (1.20) and (1.21)∫
(0,1)×T2

(
m2

2 +m2
3

)
dx

(1.124)

≲ ε

(∫
T2

|∇m1| dx+Dε(m)

)
≲ e−2πt−1

√
Q−1,

which completes the proof.

1.6.4 Proof of Theorem 1.2.4

Theorem 1.2.4. The proof is analogous to the proof of Theorem 1.2.7.
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Chapter 2

The critical scaling

In the previous chapter, we have identified the scaling of the minimal micro-

magnetic energy and the typical length scale of patterns that achieve it. In this

section, we make a first step towards a finer analysis, which corresponds to the

next order in the Γ-development. Our focus is on the case where the length of

the unit-cell is much larger than, but still comparable to, the expected pattern

size. This is a special case of the “critical scaling” in the previous chapter.

Due to difficulties related in part to the diffuse interfaces, we are unable to

carry out such a program for the full micromagnetic energy. Instead, our anal-

ysis in this chapter proceeds in two steps.

As a first step, presented in section 2.1, we use heuristic arguments to re-

duce the full micromagnetic energy to the reduced energy Hη,γ, defined below.

Roughly speaking, Hη,γ is a (suitably rescaled) sharp interface version of Fε,λ

(see (0.4)). In contrast to chapter 1, it is now crucial to exploit the natural

regularization in the stray field energy (cf. Remark 1.1.1).

For the second step, we return to mathematical rigor. In section 2.2, we state

the main results of this chapter including the Γ-convergence of Hη,γ towards a

nonlocal limit energy. All proofs are given in section 2.3.

We introduce the reduced energy Hη,γ : L1(Tn) → R ∪ {+∞}, given by

Hη,γ(u) = log
(

1
γη

) ∫
Tn

|∇u| dx

− 1

cn

∫
Tn

∫
Rn\Bη

|u(x+ z)− u(x)|2
|z|n+1

dz dx
(2.1)

59
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for u ∈ BV (Tn; {−1, 1}) and Hη,γ(u) = +∞ otherwise. Here, cn := 2(n+1)ωn+1

π

is a dimensional constant (in particular, c1 = 4 and c2 = 8). We are interested

in the dependence of Hη,γ on the positive parameters η and γ. Whereas η may

be interpreted as the aspect ratio of the ferromagnetic film (more precisely of

its unit-cell), the interpretation of γ is less obvious (see (2.6) below). It will

turn out – as a consequence of our analysis – that γ is proportional to the total

interfacial length of minimizers of Hη,γ. Thus 1/γ may be interpreted as the

rescaled typical distance of neighboring domain walls.

2.1 Heuristic derivation of the reduced energy

In this section, we provide a heuristic derivation of the reduced energy Hη,γ

from the full micromagnetic energy (0.1). As in chapter 1, we assume period-

icity in the film plane and consider the energy in a unit-cell (0, t) × T2
ℓ with

non-dimensionalized thickness t and length ℓ. We also keep the assumption

that the parameter Q is larger than 1.

Moreover, we also assume that the magnetization is two-dimensional, i.e. con-

stant in the direction normal to the film. Recall that in chapter 1, we have

considered ultrathin films and proved in particular that the magnetization is

(asymptotically) two-dimensional. While our proof does not extend to thicker

films, experimental observations (see, e.g., [44, Chapter 5.6]) indicate that this

property continues to hold also for films of “intermediate” thicknesses. In the

following, we assume that t is sufficiently small such that the magnetization is

approximately two-dimensional.

We begin to renormalize the energy as in section 1.1.1. However, this time we

keep the full stray field energy which yields

E(m(ℓ·))− ℓ2t

ℓt
√
Q− 1

=

∫
T2

(
1

ℓ
√
Q− 1

|∇m|2 + ℓ
√
Q− 1

(
m2

2 +m2
3

))
dx

+
ℓ√
Q− 1

∑
k∈2πZ2

(σ(t/ℓ|k|)− 1)|m̂1,k|2

+
ℓ√
Q− 1

∑
k∈2πZ2

(1− σ(t/ℓ|k|))
⏐⏐⏐⏐ k|k| · m̂′

k

⏐⏐⏐⏐2 .
(2.2)

We neglect the last term, which is reasonable because it is non-negative and

vanishes for the Bloch wall constructions that we used to obtain the upper
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bound in chapter 1. The term in the second line will be approximated by a

regularized H
1
2 -norm. This is the content of the following Lemma.

Lemma 2.1.1 (Multiplier estimate). There are universal constants c1, c2 > 0

such that for all s > 0 and any f ∈ L2(T2) we have∑
k∈2πZ2

(1− σ(s|k|))|f̂k|2 ≥
s

8π

∫
T2

∫
R2\Bc1s

|f(x+ z)− f(x)|2
|z|3 dz dx, (2.3)

∑
k∈2πZ2

(1− σ(s|k|))|f̂k|2 ≤
s

8π

∫
T2

∫
R2\Bc2s

|f(x+ z)− f(x)|2
|z|3 dz dx. (2.4)

A proof of Lemma 2.1.1 is provided in section 2.3.3. Although the values of

c1 and c2 are not equal, this difference is expected to affect only the implicit

constants in the scaling laws. We thus approximate the energy by

E(m(ℓ·))− ℓ2t

ℓt
√
Q− 1

≈
∫
T2

(
1

ℓ
√
Q− 1

|∇m|2 + ℓ
√
Q− 1

(
m2

2 +m2
3

))
dx

− t

8π
√
Q− 1

∫
T2

∫
R2\Bt/ℓ

|m1(x+ z)−m1(x)|2
|z|3 dz dx.

(2.5)

Furthermore, we introduce

γ := min

{√
Q− 1,

1

t

}
ℓe−2π

√
Q−1t−1

(2.6)

which we expect to correspond to the number of domains in a unit cell. Note

that, using the rescaled Bloch wall thickness ε = 1
ℓ
√
Q−1

and the aspect ratio

η = t
ℓ
, (2.6) may be expressed as

2π
√
Q− 1

t
= log

(
1

γmax{η, ε}

)
. (2.7)

Expressed in terms of ε, η and γ, the renormalized micromagnetic energy (2.5)

reads

E(m(ℓ·))− ℓ2t

ℓt
√
Q− 1

≈
∫
T2

(
ε|∇m|2 + 1

ε

(
m2

2 +m2
3

))
dx

− 1

4 log
(

1
γmax{η,ε}

) ∫
T2

∫
R2\Bη

|m1(x+ z)−m1(x)|2
|z|3 dz dx.

(2.8)

Let us first discuss the case ε ≪ η, where the H
1
2 -term is almost oblivious to

the width of the diffuse interfaces on scale ε due to its regularization on scale
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η. Thus, it seems appropriate to pass to a sharp interface description. For

ε ≳ η, we have already explained in Remark 1.1.1 that the regularization on

scale η in the H
1
2 -term is negligible compared to the regularization due to the

exchange energy on the larger scale ε (by enforcing a domain wall thickness

of ε which is the smallest scale of m in the two-dimensional system). A sharp

interface description should therefore contain a regularization of the H
1
2 -term

on scale max{η, ε} which leads to

E(m(ℓ·))− ℓ2t

ℓt
√
Q− 1

≈ 2

∫
T2

|∇m1| dx

− 1

4 log
(

1
γmax{η,ε}

) ∫
T2

∫
R2\Bmax{η,ε}

|m1(x+ z)−m1(x)|2
|z|3 dz dx.

(2.9)

The connection between Hη,γ and the micromagnetic energy is then given by

E(m(ℓ·))− ℓ2t

πℓt2
≈ Hmax{η,ε},γ(m1), (2.10)

where η = t
ℓ
, ε = 1

ℓ
√
Q−1

and γ is as in (2.6). This heuristic indicates that with

additional work, the scaling law for the typical domain size (1.23) might be

generalized to (in physical variables)

S ∼ max

{
1√
Q− 1

,
T

lex

}
lexe

2πlex
√
Q−1

T (2.11)

for sufficiently thin film thicknesses T (such that the magnetization turns out

to be approximately two-dimensional).

2.2 Main results

In this section, we return to mathematical rigor and study the asymptotic

behavior of Hη,γ for η → 0 with γ > 0 fixed. Our main result is the derivation

of a nonlocal Γ-limit summarized in the next theorem.

Theorem 2.2.1 (Γ-convergence and compactness). Fix a sequence (ηk, γk)k∈N

with ηk → 0+ and γk → γ > 0 and set Hk := Hηk,γk (see (2.1)). Then the

following holds

(i) Compactness For every sequence (uk)k∈N in L1(Tn) with

lim sup
k→∞

Hk(uk) <∞ (2.12)
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there is u ∈ BV (Tn; {−1, 1}) such that (upon passing to a subsequence)

uk → u in L1(Tn).

(ii) Γ-convergence The sequence (Hk)k∈N Γ-converges with respect to the

L1(Tn) topology towards

H∗,γ(u) := sup {Hη,γ(u) : η > 0}. (2.13)

Since H∗,γ is not given explicitly, we analyze it in more detail. First, we study

its dependence on the parameter γ.

Theorem 2.2.2. (Dependence on γ) Let H∗,γ be given by (2.13). There are

constants c1, C1 > 0 (which only depend on the dimension n) such that the

minimal energy minH∗,γ satisfies

−C1γ ≤ min
u∈L1

H∗,γ(u) ≤ −c1γ for all γ ≥ π

2
. (2.14)

Moreover, if H∗,γ(u) ≤ cminH∗,γ for some c > 0, there are constants c2, C2 >

0 such that

c2γ ≤
∫
Tn

|∇u| dx ≤ C2γ. (2.15)

The constants c2, C2 depend on c, but are independent of γ and u.

Theorem 2.2.2 confirms our heuristic interpretation of γ as the ”the number

of domains in a unit-cell”.

In the following, we give an alternative expression for H∗,γ for n = 1. It uses

the fact that the sequence {Hη,γ(u)}η>0 becomes constant and hence indepen-

dent of η for sufficiently small η. We begin to introduce some notation: Let

x0, x1, . . . , x2N−1 be points in [0, 1] with 0 = x0 < x1 < . . . < x2N−1. We set

dk := xk − xk−1 and xk+2Nℓ = xk for ℓ ∈ Z and 0 ≤ k < 2N . We may now

define the 1-periodic function u : R → {−1, 1} with jumps at xk by (see Figure

2.1)

u = −1 + 2

(∑
k∈Z

χ(x2k,x2k+1)

)
. (2.16)

Note that Hη,γ(u) <∞ implies u ∈ BV (Tn; {±1}) and hence, for n = 1, every

u with H∗,γ(u) <∞ has the form (2.16).
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u(x)

x0 x1 x2 x2N−3 x2N−2 x2N−1 x2N = x0

1

0

−1

d2N

Figure 2.1: The function u as in (2.16).

Theorem 2.2.3 (Alternative representation of the energy). For n = 1, u as

in (2.16) and η ≤ min dk the energy Hη,γ(u) may be written as

Hη,γ(u) = log

(
1

eγ

)∫
T
|∇u| dx

− 2
∞∑
j=0

log

⎛⎜⎝ 2N∏
k=1

(∑2j
n=0 dk+n

)2(∑2j−1
n=0 dk+n

)(∑2j+1
n=0 dk+n

)
⎞⎟⎠ (2.17)

with the convention that for j = 0 the factors consisting of an empty sum

are omitted. In the special case that d2k−1 = 1+s
2N

and d2k = 1−s
2N

for some

s ∈ (−1, 1), we obtain

Hη,γ(u) = 4N log

(
πN

eγ cos
(
πs
2

)) . (2.18)

For n ≥ 2, let ũ : Tn → R with ũ(x1, x
′) = u(x1) be the constant extension of

u. Then identities (2.17) and (2.18) hold for ũ with “≤” instead of “=”.

The utility of the formula (2.17) is primarily due to the fact that its right hand

side is independent of η.

2.3 Proofs

Our main tool is the estimate for the regularized homogeneousH
1
2 -norm (1.34),

which we formulate here for arbitrary dimensions n ∈ N.

Lemma 2.3.1. For n ∈ N, all 0 < r < R and all u ∈ BV (Tn;R), we have∫
Tn

∫
BR\Br

|u(x+ z)− u(x)|2
|z|n+1

dz dx ≤ cn log(R/r)∥u∥L∞

∫
Tn

|∇u| dx, (2.19)

where cn := 2(n+1)ωn+1

π
as in (2.1).
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Lemma 2.3.1 may be proved literally as in the proof of Lemma 1.3.1, hence we

do not repeat the proof here. A useful observation is that (2.19) is sharp for

n = 1.

Lemma 2.3.2. Let n = 1 and define u ∈ BV (T; {−1, 1}) by u = 1 − 2χ(0, 1
2
)

(extended periodically). Then u satisfies (2.19) with equality for all 0 < r <

R < 1
2
.

Proof. Note that c1 = 4. Hence, for all 0 < r < R < 1
2
, we have∫

T

∫
BR/Br

|u(x+ z)− u(x)|2
|z|2 dz dx = 4

∫ 1
2

1
2
−R

∫ R

max{ 1
2
−x,r}

4

|z|2 dz dx

= 16

∫ 1
2

1
2
−R

− 1

R
+

1

max{1
2
− x, r} dx = 16

(
−1 +

∫ 1
2
−r

1
2
−R

1
1
2
− x

dx+ 1

)
= 16 log(R/r) = 4 log(R/r)

∫
T2

|∇u| dx.

2.3.1 Proof of Theorem 2.2.1

The proof of Theorem 2.2.1 uses monotonicity and lower semi-continuity of

Hη,γ, which we record in Lemma 2.3.3 below

Lemma 2.3.3. For all γ > 0 and all η ≤ 1
γ
, the functionals Hη,γ and H∗,γ are

lower semi-continuous with respect to L1(Tn)-convergence. Furthermore, Hη,γ

is monotone in η > 0, more precisely

Hη,γ(u) ≥ Hη′,γ(u) for all 0 < η ≤ η′ and all u ∈ L1(Tn). (2.20)

Proof. We first show thatHη,γ is lower semi-continuous (l.s.c.). Since
∫
Tn |∇u| dx

is l.s.c. (see, e.g., [40, Theorem 1.9]), it remains to argue for the second term

in Hη,γ. Let uk → u in L1(Tn). Without loss of generality, we may assume

that Hη,γ(uη) < ∞ and hence uη, u ∈ BV (Tn; {±1}). Since |u| ≤ 1, we get

uk → u in L2(Tn). In particular∫
Tn

|uk(x+ z)− uk(x)|2 dx −→
∫
Tn

|u(x+ z)− u(x)|2 dx for all z ∈ Rn.

By Fubini’s theorem and dominated convergence, we conlude that∫
Tn

∫
R\Bη

|uk(x+ z)− uk(x)|2
|z|n+1

dz dx→
∫
Tn

∫
R\Bη

|u(x+ z)− u(x)|2
|z|n+1

dz dx.
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This shows that Hη,γ is l.s.c for all 0 < η ≤ 1/γ. We conclude that the

pointwise supremum of the l.s.c. functions H∗,γ = supη∈(0,1/γ)Hη,γ is also l.s.c..

Monotonicity of Hη,γ is a straightforward consequence of (2.19). Indeed, for

η′ ≥ η > 0, we have

Hη,γ(u)−Hη′,γ(u) = log(η′/η)

∫
Tn

|∇u| dx

− 1

cn

∫
Tn

∫
Bη′\Bη

|u(x+ z)− u(x)|2
|z|n+1

dz dx
(2.19)

≥ 0.

Lemma 2.3.4. Let η > 0. Then the energy Hη,γ satisfies the lower bound

Hη,γ(u) ≥ log

(
1

Rγ

)∫
Tn

|∇u| dx− 4nωn

cnR
(2.21)

for all u ∈ BV (Tn; {±1}), all γ > 0 and all R ≥ η > 0.

Proof. Since R ≥ η, (2.20) and an elementary estimate imply

Hη,γ(u) ≥ log

(
1

Rγ

)∫
Tn

|∇u| dx− 1

cn

∫
Tn

∫
Rn\BR

|u(x+ z)− u(x)|2
|z|n+1

dz dx

≥ log

(
1

Rγ

)∫
Tn

|∇u| dx− 4nωn

cnR
for all R ≥ η > 0.

We turn to the proof of Theorem 2.2.1.

Proof of Theorem 2.2.1. We begin with the proof of compactness. Using (2.21)

with R = 1
2γk

yields

log(2)

∫
Tn

|∇uk| dx
(2.21)

≤ H 1
2γk

,γk
(uk) +

8nωn

cn
γk

≲ lim sup
k→∞

Hk(uk) + γ <∞.
(2.22)

Hence, precompactness of (uk)k∈N follows from compactness of the embedding

BV ↪→ L1 (see, e.g., [40, Thm. 1.19]).

We turn to the proof of the liminf inequality. Let uk → u in L1(Tn). Without

loss of generality, we may assume that

lim inf
k→∞

Hk(uk) = lim
k→∞

Hk(uk) <∞ (2.23)
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and hence (uk)k∈N is bounded in BV (Tn; {±1}) (see (2.22)). By monotonicity

of Hη,γ, we get

Hk(uk) ≥ Hη′,γk(uk) = Hη′,γ(uk) + log

(
γ

γk

)∫
Tn

|∇uk| dx for ηk ≤ η′.

By lower semi-continuity of Hη′,γ, and boundedness of ∥uk∥BV this implies

lim inf
k→∞

Hk(uk) ≥ Hη′,γ(u) for all η′ <
1

γ
. (2.24)

Taking the supremum over 0 < η′ < 1
γ
yields the liminf inequality. Due to the

monotonicity of Hη,γ the limsup inequality is easily obtained for the constant

sequence uk = u.

Proof of Theorem 2.2.2. The lower bound on the minimal energy follows by

monotonicity of Hη,γ in η and (2.21) with R = 1
γ

H∗,γ(u) ≥ H 1
γ
,γ(u) ≥ −4nωn

cn
γ. (2.25)

The upper bound is based on a one dimensional configuration u2N with 2N

equidistant walls. By Theorem 2.2.3, we obtain for all n ≥ 1

Hη,γ(u2N) ≤ 4N log

(
πN

eγ

)
for all η ≤ 1

2N
. (2.26)

Taking N to be the smallest integer greater than γ
π
yields

1

e
≤ πN

eγ
≤ 2

e
for γ ≥ π

2
(2.27)

and hence

min
u∈L1

H∗,γ(u) ≤ H∗,γ(u2N) ≤
8γ

π
log

(
2

e

)
for all γ ≥ π

2
. (2.28)

Moreover, if H∗,γ(u) ≤ −cγ holds then (2.21) with R = 1∫
Tn |∇u| dx yields

−cγ ≥ H∗,γ(u) ≥
(
log

(∫
Tn |∇u| dx

γ

)
− 4nωn

cn

)∫
Tn

|∇u| dx (2.29)

≥ log

(∫
Tn |∇u| dx
γκn

)∫
Tn

|∇u| dx, (2.30)

where we have abbreviated κn = e
4nωn
cn . Since x log(x) ≤ −c and x ∈ (0,∞)

implies x ∼ 1, the claim follows.
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2.3.2 Proof of Theorem 2.2.3

We turn to the proof of Theorem 2.2.3, which is mainly a direct computation of

the integral. However, a subtle point is that the infinite sum which is obtained

by evaluating the integral is only conditionally convergent if the terms involving

a fixed pair (xi, xk) (see notation (2.16)) are computed individually and then

summed over i and k. Instead, we will always consider certain 4-tuples of such

points, because the associated sum turns out to be absolutely convergent.

Proof of Theorem 2.2.3. We rewrite the nonlocal part of the energy

∫
T

∫
R\Bη

|u(x+ z)− u(x)|2
z2

dz dx =
2N∑
k=1

∫ xk

xk−1

∫
R\Bη

|u(x+ z)− u(x)|2
z2

dz dx.

Since u is constant on (xk−1, xk), we get (inserting (2.16))

∫ xk

xk−1

∫
R\Bη

|u(x+ z)− u(x)|2
z2

dz dx

= 4
∑
j∈Z

∫ xk

xk−1

∫
R\Bη

χ(xk+2j ,xk+2j+1)(x+ z)

z2
dz dx

= 4

∫ xk

xk−1

∫
R\Bη

χ(xk,xk+1)(x+ z)

z2
dz dx

+ 4

∫ xk

xk−1

∫
R\Bη

χ(xk−2,xk−1)(x+ z)

z2
dz dx

+ 4
∞∑
j=1

∫ xk

xk−1

∫
R\Bη

χ(xk+2j ,xk+2j+1)(x+ z)

z2
dz dx

+ 4
∞∑
j=1

∫ xk

xk−1

∫
R\Bη

χ(xk−2(j+1),xk−2j−1)(x+ z)

z2
dz dx.

(2.31)

Evaluating the integrals on the right hand side exploiting η ≤ min dk, we
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obtain ∫ xk

xk−1

∫
R\Bη

|u(x+ z)− u(x)|2
z2

dz dx

= 4 + 4 log

(
(xk − xk−1)(xk+1 − xk)

η(xk+1 − xk−1)

)
+ 4 + 4 log

(
(xk − xk−1)(xk − xk−2)

η(xk − xk−2)

)
+ 4

∞∑
j=1

log

(
(xk+2j − xk−1)(xk+2j+1 − xk)

(xk+2j+1 − xk−1)(xk+2j − xk)

)

+ 4
∞∑
j=1

log

(
(xk − xk−2j−1)(xk−1 − xk−2j−2)

(xk − xk−2j−2)(xk−1 − xk−2j−1)

)
.

(2.32)

Note that the infinite sums converge absolutely because all terms have the

same sign. Furthermore, the first two log-terms can be considered as the j = 0

terms from the third and forth line except for the vanishing factors xk+2j − xk

and xk+2j−1 − xk−1. With the convention that vanishing factors are omitted,

we get ∫ xk

xk−1

∫
R\Bη

|u(x+ z)− u(x)|2
z2

dz dx = 8(1 + log(1/η))

+ 4
∞∑
j=0

log

(
(xk+2j − xk−1)(xk+2j+1 − xk)

(xk+2j+1 − xk−1)(xk+2j − xk)

)

+ 4
∞∑
j=0

log

(
(xk − xk−2j−1)(xk−1 − xk−2j−2)

(xk − xk−2j−2)(xk−1 − xk−2j−1)

)
.

(2.33)

Inserting dk = xk − xk−1 into (2.33) and summing over k, we get∫
T

∫
R\Bη

|u(x+ z)− u(x)|2
z2

dz dx = 16N(1 + log(1/η))

+ 4
∞∑
j=0

log

⎛⎝ 2N∏
k=1

(∑2j
n=0 dk+n

)(∑2j
n=0 dk+1+n

)
(∑2j−1

n=0 dk+n

)(∑2j+1
n=0 dk+n

)
⎞⎠

+ 4
∞∑
j=0

log

⎛⎝ 2N∏
k=1

(∑2j
n= dk−n

)(∑2j
n=0 dk−1−n

)
(∑2j+1

n=0 dk−n

)(∑2j−1
n=0 dk−1−n

)
⎞⎠ ,

(2.34)

where for j = 0 the factors consisting of empty sums are omitted. By period-
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icity of the dk, this turns into∫
T

∫
R\Bη

|u(x+ z)− u(x)|2
z2

dz dx = 16N(1 + log(1/η))

+ 8
∞∑
j=0

log

⎛⎜⎝ 2N∏
k=1

(∑2j
n=0 dk+n

)2(∑2j−1
n=0 dk+n

)(∑2j+1
n=0 dk+n

)
⎞⎟⎠ .

(2.35)

Since
∫
T |∇u| dx = 4N , inserting (2.35) into the definition of Hη,γ yields the

claim

Hη,γ(u) = log

(
1

ηγ

)∫
T
|∇u| dx− 1

4

∫
T

∫
R\Bη

|u(x+ z)− u(x)|2
z2

dz dx

= log

(
1

eγ

)∫
T
|∇u| dx− 2

∞∑
j=0

log

⎛⎜⎝ 2N∏
k=1

(∑2j
n=0 dk+n

)2(∑2j−1
n=0 dk+n

)(∑2j+1
n=0 dk+n

)
⎞⎟⎠ .

For the special case d2k−1 =
1+s
2N

and d2k =
1−s
2N

the second term simplifies to

2
∞∑
j=0

log

⎛⎜⎝ 2N∏
k=1

(∑2j
n=0 dk+n

)2(∑2j−1
n=0 dk+n

)(∑2j+1
n=0 dk+n

)
⎞⎟⎠

= 4N log

(
(1− s2)

4N

∞∏
j=1

(2j + 1 + s)(2j + 1− s)

(2j)(2j + 2)

)
.

(2.36)

With the aid of a Sine product formula (see, e.g., [1, p.75]), we obtain the

identity

(1− s2)
∞∏
j=1

(2j + 1 + s)(2j + 1− s)

(2j)(2j + 2)
= 2(1− |s|)

∞∏
j=1

(
1− (1− |s|)2

(2j)2

)
=

4

π
sin
(π
2
(1− |s|)

)
=

4

π
cos
(πs
2

)
.

(2.37)

Inserting (2.36) and (2.37) into (2.17) yields the claim

Hη,γ(ũN) = −4N

(
1 + log(γ) + log

(
cos
(
πs
2

)
πN

))
= 4N log

(
πN

eγ cos
(
πs
2

)) .
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For n ≥ 2 note that since ũ depends only on x1 we have∫
Tn

∫
Rn\Br

|ũ(x+ z)− ũ(x)|2
|z|2 dz dx

≥
∫
Tn

∫
Rn−1×(R\(−r,r))

|ũ(x+ z)− ũ(x)|2
|z|2 dz dx

≥
∫
T

∫
Rn−1×(R\(−r,r))

|u(x1 + z1)− u(x1)|2
(|z1|2 + |z′|2)n+1

2

dz1 dz
′ dx1

∗
≥ cn
c1

∫
T

∫
R\(−r,r)

|u(x1 + z1)− u(x1)|2
|z1|2

dz1 dx1

(2.38)

where (at *) we have used the integral identity∫
Rn−1

1

(|z1|2 + |z′|2)n+1
2

dz′ = Hn−2(Sn−2)

∫ ∞

0

1

(|z1|2 + r2)
n+1
2

rn−2 dr

=
Hn−2(Sn−2)

(n− 1)|z1|2
=

(n+ 1)ωn+1

2π|z1|2
=

cn
c1|z1|2

.

2.3.3 Proof of Lemma 2.1.1

Proof of Lemma 2.1.1. We first show that there are universal constants c1, c2 >

0 such that

1− σ(t|ξ|) ≥ t

8π

∫
R2\Bc1t

|1− eiξ·z|2
|z|3 dz, (2.39)

1− σ(t|ξ|) ≤ t

8π

∫
R2\Bc2t

|1− eiξ·z|2
|z|3 dz, (2.40)

for all t > 0. To simplify the notation, we introduce g : R+ → R+, defined by

g(s) :=
1

2π

∫
R2\B1

sin2(sz1/2)

|z|3 dz. (2.41)

By rotational symmetry and scaling we may write

t

8π

∫
R2\Bct

|1− eiξ·z|2
|z|3 dz =

t

8π

∫
R2\Bct

|1− ei|ξ|z1 |2
|z|3 dz

1

8πc

∫
R2\B1

|1− ei|ξ|ctz1 |2
|z|3 dz =

1

2πc

∫
R2\B1

sin2(|ξ|ctz1/2)
|z|3 dz

=
1

c
g(ct|ξ|).

(2.42)
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We thus have to show that there are c1, c2 such that

1

c2
g(c2s) ≤ 1− σ(s) ≤ 1

c1
g(c1s) for all s ∈ (0,∞). (2.43)

In order to prove (2.43), we investigate the asymptotic behavior of 1−σ and g

for s→ 0 and s→ ∞. Evaluation of the limit s→ ∞ and a Taylor expansion

at 0 yield

lim
s→∞

1− σ(s) = 1 and 1− σ(s) = s/2− s2/6 + s3/24 +O(s4). (2.44)

Moreover, we conclude from sin2(sz1/2)⇀
∗ 1

2
in L∞(R2) as s→ ∞ that

lim
s→∞

g(s) =
1

4π

∫
R2\B1

1

|z|3 dz =
1

2
. (2.45)

Furthermore, expressing the integral (2.41) in polar coordinates and substitut-

ing ρ = sr| cos θ|
2

, we get

g(s) =
1

2π

∫ ∞

1

∫ 2π

0

sin2(sr| cos θ|/2)
r2

dθ dr

=
s

4π

∫ 2π

0

| cos θ|
∫ ∞

s| cos θ|
2

sin2(ρ)

ρ2
dρ dθ.

(2.46)

Inserting the identity
∫∞
0

sin2(ρ)
ρ2

dρ = π
2
into (2.46), we arrive at

g(s) =
s

4π

∫ 2π

0

| cos θ|
(
π

2
−
∫ s| cos θ|

2

0

sin2(ρ)

ρ2
dρ

)
dθ

=
s

2
− s

4π

∫ 2π

0

| cos θ|
∫ s| cos θ|

2

0

sin2(ρ)

ρ2
dρ dθ.

(2.47)

Since sin2(ρ)
ρ2

∼ 1 for ρ ≤ 3
2
, (2.47) implies

g(s)− s

2
∼ −s2 for s ≤ 3. (2.48)

We begin to prove the first inequality in (2.43) by showing that c(1−σ( s
c
))−g(s)

is non-negative. Indeed, we find

c(1− σ(
s

c
))− g(s)

(2.44),(2.48)

≥ s

2
− s2

6c
− s

2
+ Cs2

= (C − 1

6c
)s2 ≥ 0 for s ≤ 3 and c sufficiently small

(2.49)
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where C denotes the universal constant implicitly contained in (2.48). For

s ≥ 3 we have due to the monotonicity of σ

c(1− σ(
s

c
)) = c(1− σ(

3

c
))

(2.44)

≥ 3

2
−O(

1

c
). (2.50)

In view of (2.45) and the monotonicity of 1− σ, we may assume that there is

s∗ > 3 with g(s∗) = maxs≥3 g(s) ≥ 3
2
(if not, the proof of the first inequality

in (2.43) is complete). On the compact interval [3, s∗] the strict inequality

g(s) < s
2
turns into

g(s) ≤ s

2
− δ for all s ∈ [3, s∗] (2.51)

and for some sufficiently small δ > 0. Hence, upon taking c sufficiently large,

we have

c(1− σ(
s

c
))

(2.44)

≥ s

2
−O(

s2

c
) ≥ s

2
− δ

(2.50)

≥ g(s) for all s ∈ [3, s∗]. (2.52)

On the remaining interval [s∗,∞), the claim follows from the monotonicity of

1− σ. We turn to the proof of the second inequality in (2.43). For sufficiently

small c, we find

1

c
g(cs)− (1− σ(s))

(2.44),(2.48)

≥ s/2− Ccs2 −
(
s/2− s2/6 + s3/24

)
=

(
1

6
− Cc− s

24

)
s2 ≥ 0 for s ≤ 3.

(2.53)

It remains to show the inequality for s ≥ 3. Since g is strictly positive on

(0,∞) and by (2.45) and (2.48) we have for sufficiently small c̃ > 0 that

inf
s≥s0

g(s) = g(s0) for all 0 < s0 ≤ c̃. (2.54)

We conclude that for 3c ≤ c̃, we have

inf
s≥3

1

c
g(cs)

(2.54)
=

1

c
g(3c)

(2.48)

≥ 3

2
(1−O(c)) ≥ 1 = sup

s∈(0,∞)

1− σ(s), (2.55)

which completes the proof of (2.43).

We turn to the proof of (2.3), the proof of (2.4) is essentially the same. By a

density argument, we may assume that f ∈ C∞
c (T2). The multiplier estimate

(2.39) yields

∑
k∈2πZ2

(1− σ(t|k|))|f̂k|2 ≥
∑

k∈2πZ2

(
t

8π

∫
R2\Bc1t

|1− eiξ·z|2
|z|3 dz

)
|f̂k|2.
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Changing the order of integration and summation on the right hand side by

means of Fubini’s Theorem and inserting the identity∑
k∈2πZ2

|1− eiξ·z|2|f̂k|2 =
∫
R2

|f(x+ z)− f(x)|2 dξ (2.56)

yields the claim∑
k∈2πZ2

(1− σ(t|k|))|f̂k|2 ≥
t

8π

∫
R2

∫
R2\Bc1t

|f(x+ z)− f(x)|2
|z|3 dz dξ. (2.57)



Chapter 3

Optimal shape of a single

domain

In this chapter, we are interested in the shape and the regularity of magnetic

domains in a ferromagnetic film exposed to an external magnetic field close

to saturation. Based on the results in [56], we introduce a simple model for a

single magnetic domain in such films: a subset of R3 that minimizes the sum of

its surface area and stray field energy among competitors of the same volume.

In the following, we first give a precise definition of our model and introduce

the necessary notation. The analysis of this minimization problem is the main

topic of this chapter. The relation between the full micromagnetic energy and

our prototypical model is discussed in section 3.1.

For n ≥ 2 we define the energy of a measurable set Ω ⊂ Rn by

E(Ω) = P(Ω) +

∫
Rn

|∇ΦΩ|2 dx, (3.1)

where P(Ω) denotes the perimeter of Ω. The potential ΦΩ : Rn → R is defined

as the unique distributional solution of

∆ΦΩ = ∂1χΩ, lim
|x|→∞

ΦΩ(x) = 0, (3.2)

where χΩ denotes the characteristic function of Ω. We study the problem of

minimizing (3.1) subject to a volume constraint, i.e. we minimize the energy

E over the admissible class

CV := {Ω ⊂ Rn : Ω is of finite perimeter and |Ω| = V }. (3.3)

75
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The second term in (3.1) can be understood as the dipolar self-energy of a

uniform dipole density on Ω ⊂ Rn, proportional to e1. Our focus is on the

competing effects of interfacial versus dipolar energy. We study a full-space

problem, there are no geometric constraints which might alter the nature of

the problem. We only prescribe the volume of the set Ω and thus the relative

strength of the two energy contributions.

We abbreviate the nonlocal term in (3.1) by

N (Ω) :=

∫
Rn

|∇ΦΩ|2 dx

and remark that it amounts to the squared Ḣ−1-norm of ∂1χΩ. An important

quantity for our analysis is the interaction energy of two disjoint sets F,G ⊂
Rn, given by

I(F,G) := N (F ∪G)−N (F )−N (G) = 2

∫
Rn

∇ΦF · ∇ΦG dx, (3.4)

where ΦF satisfies (3.2). It is instructive to express the interaction energy by

means of the strongly singular Calderón–Zygmund kernel

∂21Γ(z) =
|z|2 − nz21
nωn|z|n+2

.

Deferring the technical details to Lemma 3.3.2, we momentarily assume that

dist(F,G) > 0, which allows us to write

I(F,G) = 2

∫
F

∫
G

∂21Γ(x− y) dx dy.

Note that ∂21Γ(z) takes both signs and vanishes on the double cone generated

by |z|2 = nz21 . If the distance between F and G is large compared to their

diameters, I is approximated by the well-known formula for the interaction

energy of two dipoles with dipole moments |F |e1 and |G|e1 respectively (see

(3.26) for the precise formulation).

Our analysis is not restricted to global minimizers. In fact, most of our results

extend also to local minimizers with respect to the metric d(F,G)1 := |F∆G|,
1More precisely, d is a pseudometric on {F ⊂ Rn : |F | < ∞} and becomes a metric upon

identifying sets that agree up to a set of measure zero.
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where ∆ denotes the symmetric difference of sets. Furthermore, we say that a

sequence of sets (Fk)k∈N converges locally to F if

|(Fk∆F ) ∩K| → 0 for all compact K ⊂ Rn. (3.5)

Although our focus is on dimensions n = 2 and n = 3, we will allow arbitrary

n ≥ 2 when this does not require additional work.

We introduce more notation and recall results that we use frequently through-

out this chapter. Let F ⊂ Rn be a Lebesgue measurable set and let A ⊂ Rn

be open. The relative perimeter of F in A is defined by

P(F ;A) = sup

{∫
F

div T (x) dx : T ∈ C1
c (A;Rn) and sup |T | ≤ 1

}
.

Note that P( · ;A) is lower semi continuous with respect to local conver-

gence of sets (see, e.g., [67, p.126]). We say that F has finite perimeter, if

P(F ) := P(F ;Rn) <∞ which we assume for the rest of this paragraph. Then

the distributional derivative of the characteristic function χF of F can be rep-

resented as the integration against an Rn-valued Radon measure DχF . Its

support

suppDχF = {x ∈ Rn : 0 < |Br(x) ∩ F | < |Br| for all r > 0} (3.6)

serves as a measure theoretic notion of boundary. In contrast to the topological

boundary ∂F of F , suppDχF is well-defined for Hn equivalence classes of sets.

For x ∈ suppDχF we define the measure theoretic outer normal ν(x) whenever

ν(x) = − lim
r→0+

DχF (Br(x))

P(F ; (Br(x))
exists and belongs to Sn−1. (3.7)

The set of points x ∈ suppDχF where ν(x) is defined is called the reduced

boundary ∂∗F of F . Note that ∂∗F ⊂ suppDχF ⊂ ∂F . Moreover, for every F ,

there is a Borel set F̃ which is Hn-equivalent to F and has minimal topological

boundary suppDχF̃ = ∂F̃ (see e.g. [67, Proposition 12.19]). The essential

interior F̊M of F is the set of all points with density one

F̊M =

{
x ∈ Rn : lim inf

r→0

|F ∩ Br(x)|
|Br|

= 1

}
. (3.8)

It satisfies |F̊M∆F | = 0. For our analysis, F̊M is a particularly useful repre-

sentative of the Hn equivalence class of F (see section 3.2).
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By De Giorgi’s structure theorem, we have DχF = −ν dHn−1⌞∂∗F and in

particular (see e.g. [67, p.170])∫
F

div T dx =

∫
∂∗F

T · ν dHn−1 for all T ∈ C1
c (Rn;Rn). (3.9)

For a vector field T ∈ C1(Rn;Rn) the boundary divergence divFT : ∂∗F → R
of T on Ω is given by

divFT = div T − ν · ∇Tν. (3.10)

Moreover, we recall Newton’s kernel

Γ(x) =

⎧⎪⎨⎪⎩
1

2π
log |x| for n = 2,

1

n(2− n)ωn

1

|x|n−2
for n ≥ 3,

(3.11)

where ωn denotes the volume of the unit ball in Rn and the sign of Γ is chosen

such that ∆Γ = δ distributionally.

3.1 A simple model for uniaxial magnetic do-

mains

Our analysis of (3.1) is motivated by questions related to the nucleation of

magnetic domains in thin ferromagnetic films exposed to an external magnetic

field close to saturation. In the following, we explain heuristically why local

minimizers of (3.1) are a suitable simple model for a single magnetic domain.

However, the goal of this chapter is to study (3.1) and we do not claim that

there is a rigorous connection between (3.1) and the full micromagnetic energy

(0.1).

Consider a film (0, t)×R2 of a ferromagnetic material with non-dimensionalized

thickness t and artifical period ℓ≫ t in the plane. Assume furthermore that

(a) the magnetization tends to be aligned perpendicular to the film plane on

most of the sample, i.e. m ≈ ±e1 and

(b) the width of domain walls is small compared to the typical length scale

of domains.
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Under the above assumptions, the micromagnetic energy (0.1) should be well

approximated by the following sharp interface model for the out of plane com-

ponent m1 ∈ BV ((0, t)× T2
ℓ , {−1, 1}),

Ẽ(m1) = 2

∫
(0,t)×T2

ℓ

lex
√
Q|∇m1| − hextm1 dx+

∫
R×T2

ℓ

|h|2 dx. (3.12)

In fact, this has been proved rigorously in [81] for the regime Q≫ 1, lexQ
1
2 ≪ 1

and (lexQ
1
2 )

1
3 t

2
3 ≪ ℓ in the absence of an external field. The case with applied

field is discussed in [56]. The last term in (3.12) denotes the stray field energy.

Note that it can also be written as in (3.1) in the form∫
R×T2

ℓ

|h|2 dx =

∫
R×[0,ℓ)2

|∇Φ|2 dx

where ∇ΦΩ ∈ L2(R × T2
ℓ ;R3) solves div(∇Φ) = ∂1m1. We identify m1 with

Ω ⊂ R3 via m1 = −1+ 2χΩ and consider (3.1) as a full space analog to (3.12).

The Zeeman energy in (3.12), which determines the volume fraction of the two

phases, has been replaced by the volume constraint (3.3).

In addition to (a) and (b), the interpretation of local minimizers of (3.1) as

single magnetic domains is limited by the implicit assumption that

(c) the single domain is sufficiently far away from other domains and the

sample boundary.

However, we hope that our analysis for this toy problem will be useful for

further analysis of the full micromagnetic energy.

3.2 Main results

In this section we state our main results. The first theorem asserts the existence

of minimizers for all prescribed volumes V ≥ 0.

Theorem 3.2.1 (Existence). For every V ≥ 0 there exists an Ω ∈ CV with

E(Ω) = inf
F∈CV

E(F ).

The proof is based on arguments in the spirit of the concentration compactness

principle [65]. A simple but fruitful observation is that the minimal energy

e(V ) := inf
F∈CV

E(F ) (3.13)
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is strictly subadditive (see Lemma 3.4.1). This information is used to rule

out partial vanishing of volume for the limit of a minimal sequence. Since the

strict subadditivity mainly relies on the scaling identities

P(µΩ) = µn−1P(Ω) and N (µΩ) = µnN (Ω) for all µ > 0,

we want to point out that the argument also applies to related models, e.g.

for elastic inclusions as in [54].

We turn to the regularity of local minimizers. Recall that E is oblivious to

changes on Hn negligible sets. Hence we focus on a suitable representative

from each Hn equivalence class of minimizers.

Definition 3.2.2 (Regular local minimzer). The set Ω ∈ CV is called a regular

local minimizer of E if the following holds.

(i) There is δ > 0 such that E(Ω) ≤ E(F ) for all F ∈ CV with |F∆Ω| < δ.

(ii) Ω equals its essential interior
{
x ∈ Rn : lim infr→0

|Ω∩Br(x)|
|Br| = 1

}
.

Our main regularity result is the following.

Theorem 3.2.3 (Regularity of the boundary). Let 2 ≤ n ≤ 7 and let Ω ∈ CV
be a regular local minimizer of E (see Def. 3.2.2). Then Ω is an open bounded

set with smooth boundary.

The proof of Theorem 3.2.3 uses the regularity theory for quasi-minimizers

of the perimeter [25, 91]. The assumption n ≤ 7 is convenient because it

prevents the existence of singular points. However, we do not know whether

the restriction to n ≤ 7 is essential for Theorem 3.2.3.

We continue with the regularity of the stray field −∇ΦΩ associated to a local

minimizer Ω of E . Note that for a cube Q = (0, 1)n, some components of

∇ΦQ exhibit logarithmic singularities at the edges and corners of Q (see e.g.

[92]). In contrast, the smooth boundary of a regular local minimizer admits

to use classical results for the so-called single layer potential [39, 72] (see also

Theorem 3.3.3). In particular, for an open bounded set Ω with C1,α boundary

(α ∈ (0, 1)), we introduce the quantity ⟨∇ΦΩ⟩ : ∂Ω → Rn given by

⟨∇ΦΩ⟩(x) = − lim
δ→0

∫
∂Ω\Bδ(x)

∇Γ(x− y)ν1(y) dHn−1(y) for x ∈ ∂Ω, (3.14)
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where ν : ∂Ω → Sn−1 denotes the outward pointing normal vector to ∂Ω. We

obtain the following regularity result for the stray field −∇ΦΩ of a regular

local minimizer Ω of E .

Corollary 3.2.4 (Regularity of the stray field). Let 2 ≤ n ≤ 7 and let Ω ∈ CV
be a regular local minimizer of E (see Def. 3.2.2). Then ∇ΦΩ (see (3.2))

satisfies ∇ΦΩ ∈ L∞(Rn;Rn) . Moreover, ∇ΦΩ is harmonic on Rn \ ∂Ω and

has smooth extensions to ∂Ω from Ω and Rn \ Ω, denoted by (∇ΦΩ)i and

(∇ΦΩ)e respectively. They satisfy the jump relations⎧⎨⎩(∇ΦΩ)i = ⟨∇ΦΩ⟩ − ν1
2
ν,

(∇ΦΩ)e = ⟨∇ΦΩ⟩+ ν1
2
ν,

on ∂Ω,

where ν ∈ C∞(∂Ω; Sn−1) denotes the outward pointing normal vector.

For a regular local minimizer, the value of its stray field on the boundary is

related to its local geometry. Exploiting stationarity of a local minimizers

Ω of E with respect to inner variations, we obtain the following optimality

condition.

Theorem 3.2.5 (Noether equation). Let 2 ≤ n ≤ 7 and let Ω ∈ CV be a

regular local minimizer of E (see Def. 3.2.2). Let HΩ denote the sum of the

principal curvatures of ∂Ω and let ⟨∂1ΦΩ⟩ be given by (3.14). Then there is

Λ ∈ R such that

HΩ + 2⟨∂1ΦΩ⟩ = Λ on ∂Ω. (3.15)

Following [36, p.146] we call (3.15) the Noether equation associated to E be-

cause it originates from taking inner variations. However, we note that such

equations are sometimes also called Euler-Lagrange equations.

The proof of Theorems 3.2.3 and 3.2.5 are strongly related. First, we invoke the

regularity theory for quasi-minimizers of the perimeter [25, 91] to deduce C1,α-

regularity of the boundary. We then exploit stationarity with respect to inner

variations, incorporating the volume constraint with the aid of a Lagrange

multiplier. This shows that regular local minimizers satisfy (3.15) in a weak

form (see (3.16) below) and are hence regular critical points in the sense of the

following definition.
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Definition 3.2.6 (Regular critical point). Ω ∈ CV is called a regular critical

point, if

(i) Ω is open and bounded with C1,α boundary for some α ∈ (0, 1) and

(ii) there is Λ ∈ R such that∫
∂Ω

divΩT dHn−1 +

∫
∂Ω

(2⟨∂1ΦΩ⟩ − Λ) (T · ν) dHn−1 = 0 (3.16)

holds for all T ∈ C∞
c (Rn;Rn) where divΩ T = div T − ν · ∇Tν denotes

the boundary divergence of T .

Finally, we use a bootstrap argument for (3.16) to show that regular critical

points have smooth boundary and satisfy (3.15).

We turn to topological properties of local minimizers. In particular, we show

that regular local minimizers are connected.

Theorem 3.2.7 (Connectedness). Let 2 ≤ n ≤ 7 and let Ω ∈ CV be a regular

local minimizer of E (see Def. 3.2.2). Then Ω, Rn \ Ω and ∂Ω are connected.

For n = 2, Ω is homeomorphic to a ball.

For n ≥ 3, however, the situation is more complex. While Theorem 3.2.7 rules

out the existence of “cavities” as in Ω = B1 \ B 1
2
, it does not exclude the

possibility that ∂Ω is a k-fold torus. In particular, we do not know whether

regular local minimizers are simply connected.

To give a glimpse at our proof that regular minimizers are connected, we ar-

gue by contradiction and consider a disconnected global minimizer A∪B with

A,B open, nonempty disjoint. A key observation is that the energy of par-

tially shifted configurations y ↦→ E(A ∪ (y + B)) satisfies a strong maximum

principle and hence must be constant (on the connected component of 0 in

{y ∈ Rn : dist(A, y + B) > 0}). This allows to construct another minimizer

which violates Theorem 3.2.3 and thus yields the desired contradiction.

To further characterize low energy configurations for E , we study the scaling

of the minimal energy for n = 3.
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Theorem 3.2.8 (Scaling of the minimal energy). Let n = 3 and define

f : (0,∞) → R by

f(V ) :=

⎧⎨⎩V
2
3 for V ≤ 1,

V
5
7 (log eV )

1
7 for V ≥ 1.

Then there are universal constants c, C > 0 such that

cf(V ) ≤ min
F∈CV

E(F ) ≤ Cf(V ).

The optimal scaling of the energy for large V is achieved by prolate ellipsoids of

length L ∼ V
3
7 (log V )

2
7 in the e1-direction and radius R ∼ V

2
7 (log V )−

1
7 in the

plane perpendicular to e1 (which become slender for large V in the sense that

R/L → 0 for V → ∞). The ansatz free lower bound is based on a geometric

construction from [17] which has also been used in the micromagnetic setting

in [56].

Organization: The remainder of chapter 3 is organized as follows: In section

3.3 we establish elementary properties of the potential and review results from

potential theory that we will use throughout this work. Existence of minimizers

is proved in section 3.4. The proof of the regularity for local minimizers takes

up sections 3.5 and 3.6: More precisely, initial C1,α-regularity of the boundary

of a local minimizer is shown in section 3.5. In turn, the first inner variation

of E at C1,α-sets is computed in subsection 3.6.1. Finally, higher regularity for

regular critical points and of the associated stray field is proved in subsection

3.6.2. Connectedness of local minimizers is proved in section 3.7 and the scaling

of the minimal energy is proved in section 3.8.

3.3 Preliminaries

We record several basic properties of ΦΩ and N for future use.

Lemma 3.3.1 (Properties of ΦΩ). Let Ω ⊂ Rn satisfy |Ω| < ∞. Then the

following holds

(i) Problem (3.2) has a unique distributional solution, given by

ΦΩ(x) =

∫
Rn

∂1Γ(x− y)χΩ(y) dy for a.e. x ∈ Rn,

where Γ is Newton’s kernel.
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(ii) The gradient ∇ΦΩ admits the following representation using a Calderón-

Zygmund kernel

∂kΦΩ(x) = lim
ε→0

∫
Rn\Bε(x)

∂2k,1Γ(x− y)χΩ(y) dy +
δi,k
n
χΩ(x) (3.17)

for every 1 ≤ k ≤ n and almost every x ∈ Rn. Here δi,k denotes the

Kronecker Delta with δi,k = 1 if i = k and δi,k = 0 otherwise.

Moreover, for all p ∈ (1,∞), we have ΦΩ ∈ W 1,p
loc (Rn) and there is a

constant Cn,p such that

∥∇ΦΩ∥Lp(Rn) ≤ Cn,p|Ω|
1
p . (3.18)

(iii) If Ω is a bounded set of finite perimeter and Hn(∂Ω) = 0, then ΦΩ has

the alternative representation

ΦΩ(x) = −
∫
∂∗Ω

Γ(x− y)ν1(y) dHn−1(y)

for almost every x ∈ Rn.

Lemma 3.3.1 states in particular that the solution ∂1Γ ∗χΩ coincides with the

solution obtained by Lp-theory (upon fixing a constant). Of course, this is

easily verified if χΩ is replaced by some f ∈ C∞
c (Rn) and extends to χΩ by

an approximation argument. However, since we have not been able to find a

reference which applies precisely to our setting, we give a few details below.

Proof. The proof of item (i) is standard and provided in Lemma B.1 in the

appendix for the sake of completeness of the presentation.

We turn to the proof of (ii). Let T : Lp(Rn) → Lp(Rn;Rn) be given by

(Tf)k(x) = lim
ε→0

∫
Rn\Bε(x)

∂k∂1Γ(x− y)f(y) dy +
δ1,k
n
f(x) (3.19)

for all 1 ≤ k ≤ n. Then T is a linear and bounded operator for any p ∈ (1,∞)

and the convergence as ε→ 0 in (3.19) holds in Lp(Rn;Rn) (see, e.g., [89, II.4.2

Theorem 3, p.39] and note that
∫
Sn−1 ∂j∂kΓdHn−1 = 0). A direct calculation

shows that (see Lemma B.2)

∇(∂1Γ ∗ f) = Tf for all f ∈ C∞
c (Rn). (3.20)
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This identity extends to the case f = χΩ by the following approximation

argument. Let fi ∈ C∞
c (Rn) such that fi → χΩ in L1(Rn)∩Lp(Rn) and define

Ψi = ∂1Γ ∗ fi. By (3.20) and continuity of T , we have

∇Ψi = Tfi → TχΩ in L2(Rn). (3.21)

It is now sufficient to show ∇Ψi ⇀ ∇ΨΩ (weakly) in Lp(Rn;Rn), then (3.17)

and (3.18) follow from (3.21) and the Lp-estimates for T . We first show that

we have Ψi → ΦΩ in L1
loc(Rn). Indeed, since |∂1Γ| ≤ |∂1Γ|χB1 +χRn\B1 we may

split the integral and with the aid of Fubini’s Theorem, we get for any R > 0∫
BR

|ΦΩ(x)−Ψi(x)| dx ≤
∫
BR

∫
B1

|∂1Γ(y)| |χΩ(x− y)− fi(x− y)| dy dx

+

∫
BR

∫
Rn\B1

|χΩ(x− y)− fi(x− y)| dy dx

≤
(∫

B1

|∂1Γ(y)| dy + |BR|
)
∥χΩ − fi∥L1(Rn) → 0.

Let R > 0 and define (Ψi)R := −
∫
BR

Ψi dx. Since lim supi→∞ ∥∇Ψi∥Lp(Rn;Rn) <

∞ by (3.21), Poincaré’s inequality implies that the sequence Ψi − (Ψi)R is

bounded in W 1,p(BR). By weak compactness, there is a subsequence (not

relabeled) and some g ∈ W 1,p(BR) such that

∇Ψi ⇀ ∇g (weakly) in Lp(BR;Rn) and Ψi − (Ψi)R → g in Lp(BR).

Uniqueness of the limit and Ψi → ΦΩ in L1
loc(Rn) imply ∇Ψi ⇀ ∇ΦΩ in

Lp(BR;Rn). Since R > 0 was arbitrary, we get

∇Ψi ⇀ ∇ΦΩ in Lp(Rn),

which, together with (3.21), implies ∇ΨΩ = TχΩ. Since χΩ ∈ Lp(Rn) for every

p ∈ (1,∞), boundedness of T yields a constant Cn,p such that

∥∇ΨΩ∥Lp ≤ Cn,p∥χΩ∥Lp = Cn,p|Ω|
1
p .

Turning to the proof of item (iii), we introduce ψΩ : Rn → R, given by

ψΩ(x) = −
∫
∂∗Ω

Γ(x− y)ν1(y) dHn−1(y).



86 CHAPTER 3. OPTIMAL SHAPE OF A SINGLE DOMAIN

The function ψΩ is well defined for x /∈ ∂Ω because then Γ(x−·) is continuous
on the compact set ∂Ω. Let ρ ∈ C∞

c (B1) with
∫
Rn ρ dx = 1 and set ρε =

1
εn
ρ
(
1
ε

)
for all ε > 0. Applying the weak Gauss-Green formula (3.9) for Γ ∗ ρε yields

−
∫
∂∗Ω

(Γ ∗ ρε)(x− y)ν1(y) dHn−1(y) =

∫
Rn

(∂1Γ ∗ ρε)(x− y)χΩ(y) dy.

In the limit ε→ 0, this implies ψΩ(x) = ΦΩ(x) for all x /∈ ∂Ω and hence almost

everywhere.

We continue by recording several basic estimates for the nonlocal term.

Lemma 3.3.2 (Identities and estimates and for the nonlocal term). Let Ω, F,G ⊂
Rn with finite measure. Then the following holds

(i) N (Ω) has the Fourier representation

N (Ω) =

∫
Rn

ξ21
|ξ|2 |χ̂Ω(ξ)|2 dξ. (3.22)

(ii) Let p ∈ (1,∞) and q := p
p−1

. Then there is a constant Cn,p such that

|N (F )−N (G)| ≤ Cn,p |F ∪G| 1p |F∆G| 1q . (3.23)

Moreover, the interaction energy I(F,G) (see (3.4)) satisfies

I(F,G) ≤ Cn,p|F |
1
p |G| 1q . (3.24)

(iii) For J ∈ {F,G}, define the center of mass xJ and the dipole moment µJ

by

xJ =

∫
J

x dx and µJ = |J |e1 (3.25)

and abbreviate r = xF − xG. If F and G have positive distance the

interaction energy I(F,G) has the asymptotic form

I(F,G) =
2

nωn

(
µF · µG|r|2 − n(µF · r)(µG · r)

|r|n+2

)
+O

(
|F ||G|diam(F ) + diam(G)

rn+1

)
.

(3.26)
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Proof. To show (3.22), we approximate χΩ by a sequence of smooth functions

fk ∈ C∞
c (Rn) such that fk → χΩ in L2(Rn). We introduce Φk ∈ H2(Rn) as the

unique solution of ∆Φk = ∂1fk. Since Φ̂k(ξ) = − iξ1
|ξ|2 f̂k(ξ) and ∇Φk → ∇ΦΩ in

L2(Rn), we get (3.22)

N (Ω) = lim
k→∞

∫
Rn

|∇Φk|2 dx =

∫
Rn

|ξ|2
⏐⏐⏐Φ̂k(ξ)

⏐⏐⏐2 dξ

= lim
k→∞

∫
Rn

ξ21
|ξ|2 |f̂k(ξ)|

2 dξ =

∫
R3

ξ21
|ξ|2 |χ̂Ω(ξ)|2 dξ.

Estimates (3.23) and (3.24) are direct consequences of Hölder’s inequality and

the elliptic Lp-estimates (3.18). Indeed, for all p ∈ (1,∞) we have

|N (F )−N (G)| ≤
∫
Rn

⏐⏐|∇ΦF |2 − |∇ΦG|2
⏐⏐ dx

=

∫
Rn

|∇ΦF +∇ΦG| |∇ΦF −∇ΦG| dx

≤ Cn,p∥χF + χG∥Lp∥χF − χG∥Lq

≤ Cn,p |F ∪G| 1p |F∆G| 1q .

Similarly, we obtain for the interaction energy

I(F,G) = 2

∫
Rn

∇ΦF · ∇ΦG dx ≤ 2∥∇ΦF∥Lp∥∇ΦG∥Lq

≤ Cn,p∥χF∥Lp∥χG∥Lq ≤ Cn,p |F |
1
p |G| 1q .

To prove (3.26), we use the weak formulation of (3.2) to obtain

I(F,G) = 2

∫
G

∂1ΦF dx.

Inserting (3.17) into the previous expression, we get

I(F,G) = 2

∫
G

(
lim
ε→0

∫
Rn\Bε(x)

∂21Γ(x− y)χF (y) dy

)
dx+

2

n
|F ∩G|.

Since dist(F,G) > 0 the above expression simplifies to

I(F,G) = 2

∫
G

∫
F

∂21Γ(x− y) dy dx, (3.27)

where the strongly singular kernel ∂21Γ(z) is given by

∂21Γ(z) =
1

nωn

|z|2 − nz21
|z|n+2 . (3.28)
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A short calculation shows that (3.28) satisfies⏐⏐∂21Γ(x− y)− ∂21Γ(xF − xG)
⏐⏐ ≲ diam(F ) + diam(G)

|xF − xG|n+1
(3.29)

for all x ∈ F, y ∈ G. Inserting (3.29) and (3.25) into (3.27) yields the claim

(3.26).

We will use the following classical results of potential theory.

Theorem 3.3.3 (Fine properties of the potential). Let k ≥ 0 be an integer

and α ∈ (0, 1). Let Ω ⊂ Rn be an open bounded set with Ck+1,α boundary and

let f ∈ Ck,α(∂Ω). Define the potential Ψ : Rn → R by

Ψ(x) =

∫
∂Ω

Γ(x− y)f(y) dHn−1(y).

Furthermore, we define the direct value of the gradient ⟨∇Ψ⟩ : ∂Ω → Rn by

⟨∇Ψ⟩(x) = lim
ε→0

∫
∂Ω\Bε(x)

∇Γ(x− y)f(y) dHn−1(y) for all x ∈ ∂Ω.

Then the following holds:

(i) The potential Ψ is continuous on Rn and harmonic on Rn\∂Ω. Moreover,

the restriction of Ψ to Ω has an extension Ψi ∈ C1+k,α(Ω) and, likewise,

the restriction of Ψ to Rn \ Ω has an extension Ψe ∈ C1+k,α(Ω).

(ii) The extensions Ψi/e from (i) satisfy the jump relations

∇Ψi = +
f

2
ν + ⟨∇Ψ⟩ on ∂Ω,

∇Ψe = −f
2
ν + ⟨∇Ψ⟩ on ∂Ω,

where ν : ∂Ω → Rn denotes the outward pointing unit normal.

(iii) In particular, ⟨∇Ψ⟩ ∈ Ck,α(∂Ω;Rn).

The case k = 0 was proved by Giraud, see in particular [39, chapter 7] (in

French). The proof for general k is due to Miranda [72, Th. 2.I] (in Italian).

See also [73, Theorems 14.V and 14.VII] and [71, p.367] for related but weaker

statements in English. The jump relations continue to hold even for Lips-

chitz boundaries and f ∈ Lp(∂Ω) in an almost everywhere sense for so-called

nontangential limits, see, e.g., [93, Thm. 1.11]).

We want to point out that Theorem 3.2.3 only depends on item (iii) in Theo-

rem 3.3.3 above. Items (i) and (ii) are only used to obtain Corollary 3.2.4.
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3.4 Existence of minimizers

In this section we prove Theorem 3.2.1 via the direct method in the calculus

of variations and arguments in the spirit of the concentration compactness

principle [65]. Since the main difficulty is to exclude vanishing of volume (i.e.

“mass”) in the limit, this approach (in the context of geometric variational

problems) has been called “method of the vanishing mass” by Frank and Lieb

(see [33] for a beautiful presentation of this method). We want to emphasize

that the proof mainly uses the sublinear scaling of the energy together with

mild decay properties of the nonlocal interaction and is oblivious to the specific

structure of the nonlocal term.

We begin with the proof of the subadditivity of the minimal energy.

Lemma 3.4.1. The minimal energy e (see (3.13)) is continuous and strictly

subadditive

e(V1) + e(V2) > e(V1 + V2) for all V1, V2 > 0. (3.30)

Proof. Using the scaling properties of the energy, we obtain

e(V ) = inf
Ω∈CV

(P(Ω) +N (Ω)) = inf
Ω̂∈C1

(
P(Ω̂)V

n−1
n +N (Ω̂)V

)
= inf

Ω̂∈C1
V
(
P(Ω̂)V − 1

n +N (Ω̂)
)

for all V > 0.
(3.31)

In particular, (3.31) shows that the minimal energy is the pointwise infimum

over a family of concave functions and hence concave and continuous on (0,∞).

Since e(0) = 0, this already implies that e is subadditive. In the following,

we will use the isoperimetric inequality infΩ∈C1 P(Ω) ≥ nωn to show that the

subadditivity is actually strict. Inserting a zero, we may rewrite (3.31) as

e(Vi) = inf
Ω̂∈C1

Vi

(
P(Ω̂)(V1 + V2)

− 1
n +N (Ω̂)

+ P(Ω̂)
(
V

− 1
n

i − (V1 + V2)
− 1

n

)) (3.32)

for i = 1, 2 and all V1, V2 > 0. Inserting P(Ω̂) ≥ nωn into (3.32) yields

e(Vi) ≥ inf
Ω̂∈C1

Vi

(
P(Ω̂)(V1 + V2)

− 1
n +N (Ω̂)

)
+ nωn

(
V

n−1
n

i − Vi(V1 + V2)
− 1

n

)
.

(3.33)
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Adding (3.33) for i = 1, 2 and observing that xα + (1− x)α > 1 for x ∈ (0, 1)

and α ∈ [0, 1) we get

e(V1) + e(V2)
(3.33)

≥ (V1 + V2) inf
Ω̂∈C1

(
P(Ω̂)(V1 + V2)

− 1
n +N (Ω̂)

)
+ nωn

(
V

n−1
n

1 + V
n−1
n

2 − (V1 + V2)
n−1
n

)
(3.31)
> e(V1 + V2) for all V1, V2 > 0.

This proves (3.30) and the proof is complete.

Remark 3.4.2. Since the proof of Lemma 3.4.1 only uses the scaling properties

of the energy and a positive lower bound for P , Lemma 3.4.1 also holds for

other nonnegative terms N which satisfy a scaling law of the form

N (λΩ) = N (Ω)λαn for all Ω ∈ C1 and all λ > 0

for some α ∈ [0, 1].

Before we begin with the proof of Theorem 3.2.1, we record a compactness

result.

Lemma 3.4.3 (Compactness). Let (Ωk)k∈N be a sequence with Ωk ⊂ Rn and

lim inf
k→∞

|Ωk| > 0 and lim sup
k→∞

P(Ωk) <∞.

Then there exists a subsequence (still denoted by (Ωk)k∈N), a sequence (ak)k∈N

of points in Rn and a set Ω ⊂ Rn with |Ω| > 0 such that

Ωk − ak → Ω locally for k → ∞.

A proof may be found, for instance, in [67, Cor. 12.27 and Le. 29.10]. See also

[33, Prop. 2.1] for a short argument showing that it is possible to find a limit

Ω with nonzero measure.

Proof of Theorem 3.2.1. We use the direct method of the calculus of variations

and briefly note that E is lower semi-continuous with respect to the metric

d(F,G) = |F∆G|. Indeed, the lower semi-continuity of the perimeter is a

classical result (see, e.g., [67, p.126]) and continuity of N follows from (3.23).

Let (Ωk)k∈N be a minimal sequence for E in CV . By a density argument we can
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assume without loss of generality that Ωk has smooth boundary. A comparison

with a ball B ∈ CV yields the uniform perimeter bound

lim sup
k→∞

P(Ωk) ≤ lim sup
k→∞

E(Ωk) ≤ E(B) <∞.

Now Lemma 3.4.3 asserts that, upon passing to a subsequence, we have

Ωk − ak → Ω locally for k → ∞ (3.34)

for some Ω with nonzero measure. Since E is invariant with respect to transla-

tions, we may assume, without loss of generality, that ak = 0 for all k. Hence,

it remains to show that Ω is admissible, i.e. that |Ω| = V . We will show that

Ωk may be partitioned into two disjoint sets Ωk = Ω
(1)
k ∪̇Ω

(2)
k such that

Ω
(1)
k

d−→ Ω (globally) (3.35)

and the energy is asymptotically additive with respect to this partition

E(Ωk)−
(
E(Ω(1)

k ) + E(Ω(2)
k )
)
→ 0 for k → ∞. (3.36)

Assuming for a moment that such a partition of Ωk exists, the proof closes as

follows. By continuity of the minimal energy, we get

e(V ) = lim
k→∞

E(Ωk)
(3.36)
= lim

k→∞

(
E(Ω(1)

k ) + E(Ω(2)
k )
)

≥ lim
k→∞

(
e(|Ω(1)

k |) + e(V − |Ω(1)
k |)

)
(3.35)
= e(|Ω|) + e(V − |Ω|).

Since 0 < |Ω| ≤ V , Lemma 3.4.1 implies |Ω| = V i.e. Ω ∈ CV and Ωk
d→ Ω.

By lower semi continuity of E , the claim follows

E(Ω) ≤ lim inf
k→∞

E(Ωk) = min
F∈CV

E(F ).

We will show that there exists a sequence (rk)k∈N such that (3.35) and (3.36)

hold for Ω
(1)
k := Ωk∩Brk and Ω

(2)
k := Ωk \Brk (upon passing to a subsequence).

For all R > 0, (3.34) implies

Ωk ∩ BR
d−→ Ω ∩ BR for k → ∞.

By a diagonal argument, we deduce that there is another subsequence (again

labelled Ωk) such that

Ωk ∩Bk
d−→ Ω ∩ Bk for k → ∞.
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The latter statement may be strengthened: Since

|Ω∆(Ωk ∩ Br)| ≤ |Ω \Br|+ |(Ω∆Ωk) ∩ Br)| for all r > 0,

we conclude that for every sequence (rk)k∈N with rk ≤ k and limk→∞ rk = +∞,

we have

Ω
(1)
k := Ωk ∩ Brk

d−→ Ω, (3.37)

Ω
(2)
k := Ωk \Brk → ∅ locally, (3.38)

for k → ∞. Hence (3.35) holds. Furthermore, the coarea formula implies∫ k
2

k
4

Hn−1(Ωk ∩ ∂Br) dr =

∫
B k

2
\B k

4

χΩk
dx ≤ V.

Thus there exists a sequence (rk)k∈N with 4rk ∈ (k, 2k) such that

Hn−1(Ωk ∩ ∂Brk) ≤
4V

k
. (3.39)

We conclude that for Ω
(1)
k = Ωk ∩ Brk and Ω

(2)
k = Ωk \Brk , we get

P(Ωk) ≤ P(Ω
(1)
k ) + P(Ω

(2)
k ) ≤ P(Ωk) + 2Hn−1(Ωk ∩ ∂Brk)

(3.39)

≤ P(Ωk) +
8V

k
.

(3.40)

Moreover, since |Ωk| = V for all k, (3.37) translates into

χ
Ω

(1)
k

→ χΩ and χ
Ω

(2)
k
⇀ 0 in L2(Rn) for k → ∞.

Hence ∇Φ
Ω

(1)
k

→ ∇ΦΩ and ∇Φ
Ω

(2)
k
⇀ 0 in L2(Rn;Rn) and

N (Ωk)−N (Ω
(1)
k )−N (Ω

(2)
k )

(3.4)
= I(Ω

(1)
k ,Ω

(2)
k ) → 0 for k → ∞. (3.41)

Combining (3.40) and (3.41) yields (3.36) and completes the proof.

3.5 C1,α-regularity

In this section we use the regularity theory for quasi-minimizers of the perime-

ter functional to prove C1,α-regularity of regular local minimizers of E . Such

results are by now classical and our proof is essentially a combination of stan-

dard arguments. From the numerous results of this type in the literature,
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the following two seem to be closest to our setting. In [5], Anzellotti, Baldo

and Visintin study the energy functional E restricted to a bounded domain.

They establish C1,α regularity for suitable representatives of global minimizers

without volume constraint. In [82], Rigot proves C1,α regularity for certain

representatives of global minimizers of a related (but more regular) energy

functional subject to a volume constraint.

First, we recall the definition of a quasi-minimizer of perimeter.

Definition 3.5.1 (Quasi-minimizer of perimeter). Let ω : (0, R) → (0,∞) be

an increasing function with limr→0+ ω(r) = 0. A measurable set F ⊂ Rn is

called a quasi-minimizer of perimeter (with respect to ω) if

P(F ;Br(x)) ≤ P(G;Br(x)) + ω(r)rn−1 (3.42)

for all x ∈ suppDχF , all r ∈ (0, R) and all measurable G ⊂ Rn with F∆G ⊂⊂
Br(x).

Our main tool (in this section) is the regularity result for quasi-minimizers

of perimeter due to Tamanini [91], extending earlier results due to De Giorgi

[25]. It states that quasi-minimizers of perimeter enjoy the following regularity

properties

Theorem 3.5.2 (Tamanini, [91, Theorem 1, Lemma 4]). Let 2 ≤ n ≤ 7 and let

ω : (0, R) → (0,∞) be given by ω(r) = Cr2α for some α ∈
(
0, 1

2

)
and C,R > 0.

If F ⊂ Rn is a quasi-minimizer for perimeter, then suppDχF = ∂∗F is a C1,α-

hypersurface and the C1,α-constants only depend on C,R and α. Moreover,

there is R > 0 such that the following density bounds

ωn−1r
n

(
1− 1

2n

)
≥ |F ∩ Br(x)| ≥ ωn−1

rn

2n
(3.43)

hold for all x ∈ suppDχF and all r ∈ (0, R), where R > 0 depends on ω and

n and ωn−1 denotes the volume of the (n− 1)-ball.

The main result of this section is the following proposition. It constitutes the

first step towards the proof of Theorem 3.2.3.
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Proposition 3.5.3 (C1,α-Regularity for local minimizers). Let 2 ≤ n ≤ 7 and

let Ω ∈ CV be a regular local minimizer of E . Then Ω is an open bounded set

with C1,α boundary for every α ∈ (0, 1
2
).

Our strategy to prove Proposition 3.5.3 is to show that every local minimizer

Ω ∈ CV of E satisfies (3.42) with ω(r) = Cr2α and then to apply Theorem

3.5.2. Adapting a standard technique (see, e.g., [67, p.279]), we remove the

volume constraint and show that Ω is an unconstrained minimizer of a suitable

penalized energy functional. If we knew that ∂1ΦΩ ∈ L∞(Rn) quasi-minimality

of Ω would easily follow from the estimate

|N (Ω)−N (F )| ≤ (1 + 2∥∂1ΦΩ∥L∞)|F∆Ω|.

But we have not yet shown that ∂1ΦΩ ∈ L∞(Rn) for minimizers Ω (which we

will obtain as a consequence of Proposition 3.5.3). To avoid circular reasoning,

we work with estimate (3.23) instead.

Proof of Proposition 3.5.3. Let Ω ∈ CV be a regular local minimizer of E .
Step 1: We claim that there is some ΛΩ > 0 such that Ω minimizes the

unconstrained problem

JΩ(F ) := E(F ) + ΛΩ |F∆Ω|

among all F ⊂ Rn with finite perimeter. We argue by contradiction and

assume that there is a sequence Λk → ∞ and sets Fk ⊂ Rn such that

E(Fk) + Λk |Fk∆Ω| < E(Ω). (3.44)

Setting F̂k := µkFk where µk :=
(

|Ω|
|Fk|

) 1
n
, we have |F̂k| = |Ω| for all k. More-

over, Λk → ∞ and (3.44) imply µk → 1 and

|Ω∆F̂k| ≤ |Ω∆µkΩ|+ µn
k |Ω∆Fk| → 0.

Hence, for sufficiently large k, F̂k is an admissible competitor to Ω and local

minimality of Ω implies

E(Ω) ≤ E(F̂k) for all sufficiently large k. (3.45)
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On the other hand, we deduce from the scaling properties of E and (3.44) that

E(F̂k) = E(Fk) + (µn−1
k − 1)P(Fk) + (µn

k − 1)N (Fk)

(3.44)

≤ E(Ω)− Λk|Fk∆Ω|+max{|µn−1
k − 1|, |µn

k − 1|}E(Ω).
(3.46)

Note that (3.45) and (3.46) imply µk ̸= 1 for sufficiently large k. Inserting

|Fk∆Ω| ≥ ||Fk| − |Ω|| = |µ−n
k − 1||Ω| into (3.46), we obtain

E(F̂k) ≤ E(Ω) + |µ−n
k − 1|

(
−Λk|Ω|+

max{|µn−1
k − 1|, |µn

k − 1|}
|µ−n

k − 1| E(Ω)
)
.

Since µk → 1 and Λk → ∞, the expression in parentheses becomes negative

for sufficiently large k which contradicts (3.45) and proves the claim of Step 1.

Step 2: We show that Ω is a quasi-minimizer of perimeter with ω of the form

ω(r) = Cr2α. Let R > 0 and let F∆Ω ⊂⊂ Br(x) for some r ≤ R. Then

minimality of Ω for JΩ yields

P(Ω) ≤ P(F ) + ΛΩ|F∆Ω|+N (F )−N (Ω).

Exploiting continuity of N by applying (3.23) with 1
q
:= n−1+2α

n
, we get

P(Ω) ≤ P(F ) + ΛΩ|F∆Ω|+ C(α, n) |Ω ∪ F | 1−2α
n |Ω∆F |n−1+2α

n

≤ P(F ) + C(α,R,Ω)rn−1+2α for r ≤ R

where C(α,R,Ω) := ΛΩω
2
nR

1−2α +C(α, n)ωn(2|Ω|+ ωnR
n)

1−2α
n . Hence, Ω is a

quasi-minimizer of perimeter and Theorem 3.5.2 yields the C1,α-regularity of

suppDχΩ = ∂∗Ω and the density bounds.

Step 3 : We use the density estimates (3.43) to show that Ω is bounded. Assume

for contradiction that Ω is not bounded. Then there is a sequence (xk)k∈N of

points in Ω with |xk − xj| ≥ R for all j ̸= k. Then the lower bound on the

density implies

|Ω ∩ BR(xk)| ≥
ωn−1

2n

(
R

2

)n

for all k

and hence

|Ω| ≥
∑
k

|Ω ∩ BR/2(xk)| = +∞
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which contradicts |Ω| < ∞. Thus, such a sequence (xk)k∈N cannot exists and

Ω must be bounded.

Step 4: We show that Ω is open with C1,α boundary. To this end, we introduce

the open sets

Ω(1) := {x ∈ Rn : ∃r > 0 s.t. |Ω ∩ Br(x)| = |Br|},
Ω(0) := {x ∈ Rn : ∃r > 0 s.t. |Ω ∩ Br(x)| = 0}.

We first show that Ω = Ω(1). Indeed, it is straightforeward to check (using the

definitions) that

Ω(1) ⊂ Ω̊M ⊂ Ω(1) ∪ (suppDχΩ \ ∂∗Ω). (3.47)

Since suppDχΩ = ∂∗Ω by Step 2 and Ω = Ω̊M , (3.47) implies Ω = Ω(1).

Likewise, it is straightforward to check that ∂(Ω(1)) ⊂ Rn \ (Ω(1) ∪Ω(0)). Since

suppDχΩ ⊂ ∂Ω we get

∂Ω = ∂(Ω(1)) = Rn \ (Ω(1) ∪ Ω(0)) = suppDχΩ.

Since suppDχΩ is a C1,α-hypersurface (see Step 2), we conclude that Ω is a

bounded open set with C1,α boundary.

3.6 Higher regularity

In this section, we prove Theorems 3.2.3 and 3.2.5 and Corollary 3.2.4. We

proceed in two steps: In Proposition 3.6.2 (below), we exploit stationarity of

E with respect to inner variations to show that the weak Noether equation

(3.16) holds for minimizers. In Proposition 3.6.3 (below), we use a bootstrap

argument for (3.16) to deduce smoothness of the boundary and ⟨∂1ΦΩ⟩. The-
orem 3.2.3 is then a direct consequence of Propositions 3.5.3, 3.6.2 and 3.6.3.

In turn, Corollary 3.2.4 follows by an application of Theorem 3.3.3.

3.6.1 Computation of the inner variation of E
We present the derivation of the weak Noether equation for regular local min-

imizers of E . First, we introduce the necessary notation. Let T ∈ C∞
c (Rn;Rn)
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be a compactly supported smooth vector field and let {Ft}|t|<t0 be a family of

diffeomorphisms Ft : Rn → Rn for all t ∈ (−t0, t0). We call {Ft}|t|<t0 a local

variation with initial velocity T , if

(i) (x, t) ↦→ Ft(x) is smooth on Rn × (−t0, t0),

(ii) F0 = IdRn and ∂tFt

⏐⏐⏐
t=0

= T ,

(iii) there is R > 0 with {Ft(x) ̸= x} ⊂ BR for all |t| < t0.

To simplify the notation, we write Ωt := Ft(Ω).

We compute the first variation of E at sufficiently regular sets. Our approach

is based on a diffuse interface approximation in order to regularize the nonlocal

term in the energy. Before we present our argument (see Lemma 3.6.1 below),

let us explain why such a regularization procedure seems necessary. It might

look promising to define

Ψ(s, t) =

∫
Rn

∇ΦΩs · ∇ΦΩt dHn−1 =

∫
Ωt

∂1ΦΩs dHn−1

and to compute d
dt

⏐⏐
t=0

N (Ωt) =
d
dt

⏐⏐
t=0

Ψ(t, t). If Ψ was differentiable, we would

have d
dt

⏐⏐
t=0

Ψ(t, t) = 2∂1Ψ(0, 0) by symmetry of Ψ. Hence, the (usually sim-

pler) computation of the partial derivative ∂1Ψ(0, 0) would be sufficient. How-

ever, a computation shows that, in general, Ψ is merely Lipschitz continuous

in each component. The one-sided derivatives ∂+1 Ψ and ∂−1 Ψ differ on the di-

agonal {(t, t) : t ∈ R} for suitable initial velocities. This is of course related to

the fact that ∂1ΦΩt jumps on ∂Ωt.

Lemma 3.6.1. Let Ω be open and bounded with C1,α boundary for some α > 0

and {Ft}|t|<t0 a local variation with initial velocity T ∈ C∞
c (Rn;Rn). Then the

first inner variation ∂E(Ω, T ) of E at Ω in direction T is given by

∂E(Ω, T ) := d

dt

⏐⏐⏐⏐
t=0

E(Ft(Ω))

=

∫
∂Ω

divΩT dHn−1 +

∫
∂Ω

2⟨∂1ΦΩ⟩ (T · ν) dHn−1.

(3.48)

Proof. It is well-known that the first variation of the perimeter is given by

(see, e.g., [67, Theorem 17.5])

d

dt

⏐⏐⏐⏐
t=0

P(Ωt) =

∫
∂Ω

divΩT dHn−1.
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Hence, it remains to show that

d

dt

⏐⏐⏐⏐
t=0

N (Ωt) =

∫
∂Ω

2⟨∂1ΦΩ⟩ (T · ν) dHn−1. (3.49)

Let ρ ∈ C∞
c (Rn) denote a rotational symmetric mollifier and set ρε :=

1
εn
ρ( ·

ε
)

for all ε > 0. We introduce

uε,t := ρε ∗ χΩt

and the corresponding field ∇Φε,t as the unique weak solution Φε,t ∈ Ḣ1(Rn)

of

∆Φε,t = ∂1uε,t. (3.50)

To simplify the notation, we set Xt := ∂tFt ◦ F−1
t and introduce the functions

fε, g : (−t0, t0) → R, given by

fε(t) :=

∫
Rn

|∇Φε,t|2 dx and (3.51)

g(t) :=

∫
∂Ωt

2⟨∂1ΦΩt⟩ (Xt · ν) dx. (3.52)

We claim that there is t∗ ∈ (0, t0) such that fε ∈ C1([−t∗, t∗]) and

sup
t∈[−t∗,t∗]

|f ′
ε(t)− g(t)| → 0 as ε→ 0. (3.53)

Assuming for a moment that (3.53) holds, the proof closes as follows. Using

L2-estimates for the elliptic equation (3.50) we see that fε(t) → N (Ωt) as

ε→ 0 pointwise for all t ∈ (−t0, t0). Hence, (3.53) implies

d

dt
N (Ωt) = g on (−t∗, t∗).

Evaluating g(0) using X0 = T then yields the claim (3.49).

We turn to the computation of f ′
ε. Note that F̃s := Ft+s ◦ F−1

t is a local

variation with initial velocity Xt := ∂tFt ◦ F−1
t . A standard computation (see,

e.g., [67, Prop. 17.8]) yields

∂tuε,t(x) =

∫
∂Ωt

ρε(x− y)(Xt(y) · ν(y)) dHn−1(y). (3.54)
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Since uε,t is continuously differentiable in t and suppuε,t ⊂⊂ BR for all t ∈
(−t0, t0) and some R > 0, we have for any ε > 0 fixed

lim
h→0

uε,t+h − uε,t
h

= ∂tuε,t in L2(Rn). (3.55)

Moreover, ∂tuε,t is bounded in L2(Rn) uniformly in t ∈ (−t0, t0). Let S :

L2(Rn) → L2(Rn;Rn) be given by S(f) := ∇(∂1Γ ∗ f) (cf. (3.17)), so that

in particular S(uϵ,t) = ∇Φε,t. Since S is linear and L2-continuous, a short

computation using (3.55) yields

f ′
ε(t) = 2

∫
Rn

S(uε,t) · S(∂tuε,t) dx.

We remove S again by inserting the equations S(uε,t) = ∇Φϵ,t and∇·S(∂tuε,t) =
∂1∂tuε,t and integrating by parts twice. We obtain

f ′
ε(t) = 2

∫
Rn

∂1Φε,t∂tuε,t dx. (3.56)

Upon inserting the representation ∂1Φε,t = (∂1Γ ∗ ∂1(ρε ∗ χΩt)) and (3.54) into

(3.56), we conclude that

f ′
ε(t) = 2

∫
Rn

(∂1Γ ∗ ∂1(ρε ∗ χΩt))∂tuε,t dx

= 2

∫
∂Ωt

(∂1Γ ∗ ∂1(ρ̃ε ∗ χΩt))(x) (Xt(x) · ν(x)) dHn−1(x),
(3.57)

where we have abbreviated ρ̃ε = ρε ∗ ρε. It remains to investigate the limit

lim
ε→0

(∂1Γ ∗ ∂1(ρ̃ε ∗ χΩt))(x) = − lim
ε→0

∫
∂Ωt

(ρ̃ε ∗ ∂1Γ)(x− y)ν1(y) dHn−1(y).

Note that when the family of regularized kernels ρ̃ε ∗∂1Γ in the last expression

is replace by the truncated kernels χRn\Bε∂1Γ, we have

− lim
ε→0

∫
∂Ωt\Bε(x)

∂1Γ(x− y)ν1(y) dHn−1(y) = ⟨∂1ΦΩt⟩(x).

By means of a lengthy but conceptually simple estimate (which we defer to

Lemma B.3 in the appendix) we obtain the uniform convergence

(∂1Γ ∗ ∂1(ρ̃ε ∗ χΩt))(x)
ε→0−→ ⟨∂1ΦΩt⟩(x) for all x ∈ Ωt (3.58)

uniformly in t ∈ [−t∗, t∗] and x. Since ∂Ωt is compact and uniformly bounded

in t, applying (3.58) to (3.57) proves (3.53). This completes the proof.
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We now show that regular local minimizers of E satisfy the weak Noether

equation.

Proposition 3.6.2. Let 2 ≤ n ≤ 7 and let Ω be a regular local minimizer of

E . Then the weak Noether equation (3.16) holds on ∂Ω.

Our proof is based on Lemma 3.6.1 and a combination of well-known argu-

ments regarding the existence of a Lagrange multiplier (see, e.g., [36, p.90]

and [67, p.208]). However, we have not been able to find a reference that

applies precisely to our setting. For the convenience of the reader, we provide

the details below.

Proof of Proposition 3.6.2. Let Ω be a regular local minimizer of E . Then Ω

is an open, bounded set with C1,α boundary by Prop. 3.5.3. Our goal is to

construct a local variation {Gt}|t|≤t0 with |Gt(Ω)| = |Ω| for |t| < t0.

Let {Ft}|t|≤t0 be a local variation with initial velocity T ∈ C∞
c (Rn;Rn). It is

well-known that the first variation of Lebesgue measure is given by (see, e.g.,

[67, p.202])

d

dt

⏐⏐⏐
t=0

|Ft(Ω)| =
∫
∂Ω

T · ν dHn−1 =

∫
Ω

div T dx. (3.59)

We consider vector fields S, T ∈ C∞
c (Rn;Rn) where T is arbitrary and S sat-

isfies ∫
∂Ω

S · ν dHn−1 ̸= 0. (3.60)

Define the smooth family of diffeomorphisms

Fs,t ∈ C∞
c (Rn;Rn) Fs,t(x) = x+ sS(x) + tT (x)

for s, t ∈ (−r, r) with r > 0 sufficiently small and consider the smooth function

f(s, t) = |Fs,t(Ω)|. Since {F̃h}|h|<r with F̃h := Fh+s,t ◦ F−1
s,t is a local variation

with initial velocity ∂hF̃h

⏐⏐⏐
h=0

= ∂sFs,t ◦ F−1
s,t , (3.59) implies

∇f(s, t) =

⎛⎜⎜⎝
∫
Fs,t(Ω)

div(∂sFs,t ◦ F−1
s,t ) dx∫

Fs,t(Ω)

div(∂tFs,t ◦ F−1
s,t ) dx

⎞⎟⎟⎠ .
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Moreover, (3.60) shows that ∂sf(0, 0) ̸= 0. Thus, upon possibly reducing

r > 0, the implicit function theorem yields a function s : (−r, r) → R with

f(s(t), t) = f(0, 0) for t ∈ (−r, r) and s′(0) = −
∫
∂Ω
T · ν dHn−1∫

∂Ω
S · ν dHn−1

. (3.61)

In particular, Gt := Fs(t),t is a local variation with initial velocity s′(0)S + T

and it satisfies |Gt(Ω)| = f(0, 0) = |Ω| for all t ∈ (−r, r). Since Ω is of finite

perimeter we also have (see, e.g., [67, Lemma 17.9])

|Gt(Ω)∆Ω| → 0 for t→ 0.

Hence Gt(Ω) is an admissible comparison set to Ω for sufficiently small |t|.
Local minimality of Ω hence requires

∂E(Ω, s′(0)S + T )
(3.48)
=

d

dt

⏐⏐⏐⏐
t=0

E(Gt(Ω)) = 0. (3.62)

By linearity of the first variation in the initial velocity (see (3.48)) and upon

inserting (3.61) into (3.62), we conclude

∂E(Ω, T ) = Λ

∫
∂Ω

T · ν dHn−1 where Λ =
∂E(Ω, S)∫

∂Ω
S · ν dHn−1

.

Hence, the weak Noether equation (3.16) holds and the proof of Proposition

3.6.2 is complete.

3.6.2 Higher regularity for regular critical points

In this section, we use a bootstrap argument for (3.16) to deduce higher regu-

larity of ∂Ω and ⟨∇ΦΩ⟩.

Proposition 3.6.3 (Regular critical points are smooth). Let Ω be a regular

critical point. Then the following holds

(i) The boundary ∂Ω is a smooth hypersurface.

(ii) The Noether equation holds in the strong form

HΩ + 2⟨∂1ΦΩ⟩ = Λ on ∂Ω.
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Proof of Proposition 3.6.3. Fix x0 ∈ ∂Ω. By Definition 3.2.6 (i) and upon

rotation and translation we may assume x0 = 0 and

∂Ω ∩ (D × (ε, ε)) = graph(u),

where D denotes a ball in Rn−1 with radius r > 0, u ∈ C1,α(D) and ε > 0.

Let φ ∈ C∞
c (D) and η ∈ C∞

c (R) with η ≡ 1 on (−ε, ε). Testing (3.16) with

T (x) = η(xn)φ(x
′)en yields

−
∫
D

∇′u · ∇′φ√
1 + |∇′u|2

dx′ + 2

∫
D

⟨∂1ΦΩ⟩(x′ + u(x′)en)φ dx′ = Λ

∫
D

φ dx′

for all φ ∈ C∞
c (D). This is the weak formulation of the following elliptic

equation for u

div

(
∇u√

1 + |∇u|2

)
= −2⟨∂1ΦΩ⟩(Id, u) + Λ. (3.63)

We use a bootstrap argument to show that the solution of (3.63) is smooth. It

is based on the following two implications, which hold for every integer k ≥ 0

and α ∈ (0, 1).

(i) When u ∈ Ck+1,α(D), then Theorem 3.3.3 (iii) implies ⟨∇ΦΩ⟩ ∈ Ck,α(∂Ω)

and the right hand side of (3.63) is in Ck,α(D).

(ii) When the right hand side of (3.63) is in Ck,α(D) then Schauder Theory

yields u ∈ Ck+2,α(D) (see, e.g., [37, Theorem 9.19]).

Hence, ∂Ω is a smooth hypersurface and ⟨∇ΦΩ⟩ ∈ C∞(∂Ω;Rn). In particular

∂Ω ∈ C2 which allows rewrite the first variation of the perimeter as (see, e.g.,

[67, Remark 17.7]) ∫
∂Ω

divΩ T dx =

∫
∂Ω

HΩ (T · ν) dHn−1, (3.64)

where HΩ denotes the sum of the principal curvatures. Hence (3.64) and (3.16)

imply (3.15).

3.7 Topological properties of minimizers

In this section, we give the proof of Theorem 3.2.7, which is organized as fol-

lows. Connectedness of a regular local minimizer Ω is proved in Proposition
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3.7.1 below. Since E is invariant with respect to taking complements, connect-

edness of Rn \Ω is obtained by essentially the same argument in Lemma 3.7.2.

In turn, we invoke a topological Lemma to deduce connectedness of ∂Ω from

connectedness of Ω and Rn\Ω. Finally, for n = 2 we use the Jordan-Schoenflies

Theorem to conclude that regular local minimizers are topologically equivalent

to a ball. Theorem 3.2.7 is then an immediate consequence of Proposition 3.7.1

and Lemmas 3.7.2–3.7.4.

Proposition 3.7.1. Let 2 ≤ n ≤ 7 and let Ω ∈ CV be a regular local minimizer

of E . Then Ω is connected.

Proof of Proposition 3.7.1. Assume for contradiction that Ω is not connected

and thus can be written as the union Ω = A∪̇B of two nonempty disjoint open

sets A,B. We will show

Step 1: The regularity of ∂Ω implies

dist(A,B) > 0. (3.65)

Step 2: Let ZY (0) denote the connected component of 0 in the nonempty open

set Y := {y ∈ Rn| dist(A, y + B) > 0}. Then y ↦→ E(A ∪ (y + B)) is constant

on ZY (0).

In case Ω is a global minimizer, we are almost done: We can find y ∈ ∂Y ∩ZY (0)

such that A∪(y+B) is another global minimizer. However, A∪(y+B) violates

(3.65) and thus yields the desired contradiction. The general case of a local

minimizer requires a bit more work.

Step 3: Evaluating the Noether equation for a family of local minimizers con-

structed with the help of Step 2, we obtain ∂1ΦB ≡ 0 and hence |B| = 0.

Obviously, |B| = 0 contradicts our assumption that B is open and nonempty.

Hence Ω must be connected and the proof is complete. We turn to the proof

of Steps 1–3.

Proof of Step 1: If (3.65) was false then boundedness of Ω implies that there

is a point x ∈ A ∩ B ⊂ Ω. Since Ω is open with smooth boundary, the open

set Bε(x) ∩ Ω is connected for sufficiently small ε > 0. This contradicts the

fact that Bε(x) ∩ Ω contains points from A and B. Hence (3.65) holds.

Proof of Step 2: We set Ωy := A ∪ (y + B) and investigate how the energy
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E(Ωy) changes for y in the open set

Y = {y ∈ Rn| dist(A, y +B) > 0}.

As E is invariant under translation, only the interaction energy changes. Also

using linearity of (3.2), we get

E(Ωy)− E(Ω) = 2

∫
Rn

∇ΦA · (∇Φy+B −∇ΦB) dx. (3.66)

To simplify the notation, we neglect the constant terms and the factor 2 in

(3.66) and introduce

f : Y → R, f(y) =

∫
Rn

∇ΦA · ∇Φy+B dx.

Inserting the identity Φy+B(x) = ΦB(x− y) and using the weak formulation of

(3.2) and a translation by y allows to rewrite f as

f(y) =

∫
B

∂1ΦA(x+ y) dx. (3.67)

We claim that f is harmonic. Indeed for any y0 ∈ Y we can find Bε(y0) ⊂ Y

and some constant cε > 0 such that dist(A, y + B) ≥ cε for all y ∈ Bε(y0).

Since ∂1ΦA is harmonic on Rn \ ∂A we may deduce that f is harmonic on

Bε(y0) by differentiating under the integral sign in (3.67). Since Ω is a local

minimizer of E , we have f(y) ≥ f(0) for all y in a suitable neighborhood of

0. The strong maximum principle asserts that f is constant on ZY (0), the

connected component of Y which contains 0.

Proof of Step 3: Since Ω is a local minimizer, there is δ > 0 such that

E(F ) ≥ E(Ω) for all F ∈ CV with |F∆Ω| < δ.

We claim that there is ε > 0 such that for all y ∈ Bε the set Ωy = A∪ (y+B)

is a local minimizer. Indeed, since B is of finite measure, translating B is a

continuous operation and hence there is ε > 0 such that |B∪(y+B)| < δ/2 for

all y ∈ Bε. By possibly reducing ε we may assume Bε ⊂ ZY (0) from Step 2.

Moreover, for every y ∈ Bε and every F ∈ CV with |F∆Ωy| < δ
2
, the triangle

inequality implies

|F∆Ω| ≤ |F∆Ωy|+ |B∆(y +B)| < δ.
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and hence

E(F ) ≥ E(Ω) Step 2
= E(Ωy).

Theorem 3.2.3 implies that the Noether equation

HΩy + 2⟨∂1ΦΩy⟩ = Λy on ∂Ωy (3.68)

holds for some Λy ∈ R. We will evaluate the Noether equation at two suitable

points p, q ∈ ∂Ωy to show that |B| = 0. The choice of the p, q will become

clear later. Let p ∈ ∂Ω be such that

sup
x∈Ω

x1 = p1

and assume w.l.o.g that p ∈ ∂A. Furthermore, let q ∈ ∂A satisfy q = p − te1

with minimal t. Evaluating (3.68) at p and q and using linearity of (3.2), we

obtain

HA(p) + 2⟨∂1ΦA⟩(p) + 2∂1ΦB(p− y)

=HA(q) + 2⟨∂1ΦA⟩(q) + 2∂1ΦB(q − y).

This shows that y ↦→ ∂1ΦB(q− y)− ∂1ΦB(p− y) is constant on Bε. Since it is

harmonic, it is even constant on the connected component of 0 in Rn \ ((p −
B) ∪ (q − B)) and, in particular, on L := {te1 : t ≥ 0}. Since ∂1ΦB decays at

infinity, we conclude

∂1ΦB(q − y) = ∂1ΦB(p− y) for all y ∈ L.

This means that on q+L, ∂1ΦB equals a periodic function. Using the decay at

infinity again, we get ∂1ΦB ≡ 0 on q + L. However, the asymptotic behavior

of ∂1ΦB is given by

∂1ΦB(q + te1) =

∫
Rn

∂21Γ(q + te1 − y)χB(y) dy

= |B| ∂21Γ(q − xB + te1) +O(t−n−1)

for some fixed xB ∈ Rn. For t sufficiently large, ∂1ΦB(p − xB + te1) = 0 thus

implies |B| = 0. This clearly contradicts our assumption that B is open and

nonempty. Hence Ω must be connected.

We turn to the complement of a regular local minimizer.
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Lemma 3.7.2. Let 2 ≤ n ≤ 7 and let Ω ∈ CV be a regular local minimizer of

E . Then Rn \ Ω is connected.

Proof. We first note that for all F ∈ CV , the set Rn \ F is also of finite

perimeter with DχRn\F = −DχF and hence ΦRn\F = −ΦF . Thus, the domain

of E extends naturally to

Cc
V := {F : Rn \ F ∈ CV }

with E(Rn \ F ) = E(F ) for all F ∈ CV . Let Ω be a regular local minimizer.

Then G := Rn \ Ω is open with smooth boundary and a local minimizer of E
on Cc

V . Thus, arguments similar to those used in Lemma 3.7.1 (for G instead

of Ω) allow to conclude that G is connected. We indicate only some minor

changes: Whereas Ω is bounded, G is not. However, since Ω ⊂ BR for some

R > 0 any partition G = A∪̇B for some disjoint open sets A,B must contain

the connected set Rn\BR. Thus we may assume without loss of generality that

Rn \ BR ⊂ A and B is bounded. The point p in Step 2 will then necessarily

lie in ∂A.

Connectedness of the boundary ∂Ω of a regular local minimizer is obtained by

the following topological Lemma.

Lemma 3.7.3. Let Ω ⊂ Rn be an open, bounded set that equals the interior of

its closure int(Ω) = Ω. Let Ω and Rn \Ω be connected. Then ∂Ω is connected.

A proof is provided in the appendix for the convenience of the reader.

For n = 2 our result can be strengthened: The Jordan-Schoenflies Theorem

asserts that local minimizers are homeomorphic to a ball.

Lemma 3.7.4. Let n = 2 and Ω be the open representative of a local minimizer

of E from Theorem 3.2.3. Then Ω is homeomorphic to the ball B1 ⊂ R2.

Proof. Theorem 3.2.3, Proposition 3.7.1 and Lemma 3.7.3 imply that ∂Ω is a

compact, connected 1-manifold without boundary and hence homeomorphic

to S1 (see, e.g., [34]). In particular, ∂Ω is the image of an injective continuous

map γ : S1 → ∂Ω. Then the Jordan-Schoenflies Theorem (see, e.g., [14])

implies that there is an homeomorphism φ : R2 → R2 such that

φ(Ω) = B1, φ(∂Ω) = S1 and φ(R2 \ Ω) = R2 \B1.
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3.8 Scaling of the minimal energy

In this section, we prove Theorem 3.2.8. Throughout the whole section, we

focus on the three dimensional case (n=3). We recall that

e(V ) = inf
F∈CV

E(F )

denotes the minimal energy as a function of the prescribed volume V .

3.8.1 Upper bound

To prove the upper bound in Theorem 3.2.8, it is sufficient to find an admissible

configuration with sufficiently low energy.

Proof of the upper bound in Theorem 3.2.8. We split the proof into the cases

V ≤ 2 and V > 2 (the value 2, however, is inessential). For small volumes

V ≤ 2, the optimal scaling is achieved by balls. Indeed, let B denote a ball of

volume 1. Then V
1
3B has volume V and we get

E(V 1
3B) = P(B)V

2
3 +N (B)V ≲ V

2
3 for V ≤ 2. (3.69)

We turn to the remaining case V > 2. For L > R > 0 let Ω be the prolate

spheroid

Ω :=

{
x ∈ R3 :

x21
L2

+
x22
R2

+
x23
R2

≤ 1

}
.

When L > R, the surface area of Ω is given by (see, e.g., [96, p. 214])

P(Ω) = 2πR2 +
2πRL2

√
L2 −R2

sin−1

(√
L2 −R2

L

)
≲ RL. (3.70)

The nonlocal energy for the spheroid is well-known in the physics literature

since the work of Maxwell [68, p.69] (see also [90]). His calculations also show

(and exploit) the remarkable property of ellipsoids that their stray field −∇ΦΩ

is constant in Ω. For L > R, the nonlocal energy of Ω is given by (see [44, Eq.

(3.23a)])

N (Ω) =
4πR4L

3(L2 −R2)

(
L√

L2 −R2
sinh−1

(√
L2 −R2

R

)
− 1

)
.
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Under the assumption L ≥ 2R, this expression simplifies to

N (Ω) ∼ R4

L
log

(
L

R

)
. (3.71)

We now choose L := 3
4π

V
R2 to ensure |Ω| = V . Moreover, we set R :=

cV
2
7 (log V )−

1
7 where c > 0 is the largest number such that

L

R
=

3

4π

V
1
7

c3(log V )
3
7

≥ 2 for all V ≥ 2.

With these choices, we have

R ∼ V
2
7 (log V )−

1
7 and L ∼ V

3
7 (log V )

2
7 .

Hence, estimates (3.70) and (3.71) yield

E(Ω) ≲ V
5
7 (log V )

1
7 for all V ≥ 2. (3.72)

Together, (3.69) and (3.72) yield the upper bound in Theorem 3.2.8.

3.8.2 Lower bound

Whereas the lower bound in Theorem 3.2.8 for small V follows directly from

the isoperimetric inequality, the case of large V is more involved. In order to

prove the latter case, we establish the following interpolation result.

Proposition 3.8.1. There is C > 0 such that for all measurable Ω ⊂ R3 with

|Ω| ∈ (0,∞) and finite perimeter, the scale invariant quantities

P̂(Ω) :=
P(Ω)

|Ω| 23
and N̂ (Ω) :=

N (Ω)

|Ω|

satisfy

N̂ (Ω)P̂(Ω)6

log P̂(Ω)
≥ C. (3.73)

Note that the isoperimetric inequality assures that P̂(Ω) ≥ 3
√
36π > 1. More-

over, our construction for the upper bound of E provides a sequence (Ωk)k∈N

of sets Ωk ⊂ R3 with N̂ (Ωk) → 0 such that the left hand side in (3.73) remains

bounded.

Before we prove Proposition 3.8.1, we first show that it implies the remaining

lower bound for the energy.



3.8. SCALING OF THE MINIMAL ENERGY 109

Proof of the lower bound in Theorem 3.2.8. The lower bound for small V fol-

lows from the isoperimetric inequality in three dimensions

E(Ω) ≥ P(Ω) ≳ V
2
3 for all Ω ∈ CV .

Turning to large V , we apply Young’s inequality and (3.73) to get

E(Ω) ≳ P(Ω)
6
7N (Ω)

1
7

(3.73)

≳ |Ω| 57
(
log P̂(Ω)

) 1
7

for all Ω ∈ CV . (3.74)

For the lower bound, it is sufficient to consider only those Ω ∈ CV which

satisfy N (Ω) ≤ e(V ). Since the isoperimetric inequality and (3.73) imply

P̂(Ω)6N̂ (Ω) ≳ 1, our upper bound on e(V ) from the previous section yields

P̂(Ω)6 ≳
1

N̂ (Ω)
≳

V

e(V )
≳ V

1
7 (3.75)

for all V ≥ 2 and all Ω ∈ CV with N (Ω) ≤ e(V ). Inserting (3.75) into (3.74)

yields the lower bound for V ≥ 2.

Our argument for (3.73) is based on ideas and techniques developed for a

related problem for superconductors in [17], which have been applied to the

micromagnetic setting in [56].

A key ingredient in the proof is an estimate for the so called transition energy,

i.e. a lower bound for the energy of Ω in terms of its restriction on Ω∩({a}×R2)

and Ω ∩ ({b} × R2) (see also [56, Lemma 3.4], [17, Lemma 2.2]).

Lemma 3.8.2 (Transition energy). Let Ω ∈ CV . For almost every a, b ∈ R
and every ψ ∈ H1(R2) we have⏐⏐⏐⏐∫

R2

χΩ(b, ·)ψ − χΩ(a, ·)ψ dx′
⏐⏐⏐⏐ ≤ N (Ω)

1
2 |b− a| 12 ∥∇′ψ∥L2(R2)

+

⏐⏐⏐⏐∫
R2

∂1ΦΩ(b, ·)ψ − ∂1ΦΩ(a, ·)ψ dx′
⏐⏐⏐⏐ . (3.76)

Proof. We use an approximation argument where we replace χΩ by u ∈ C∞
c (R3)

and then consider the limit u → χΩ in L2(R3). Let a, b ∈ R, and φ be the

distributional solution of ∆φ = ∂1u. Applying the fundamental theorem of
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calculus, inserting the equation for φ and integrating by parts, we get∫
R2

u(b, ·)ψ − u(a, ·)ψ dx′ =

∫ b

a

∂1

(∫
R2

u(x1, ·)ψ dx′
)

dx1

=

∫ b

a

(∫
R2

∂1u(x1, ·)ψ dx′
)

dx1 =

∫
(a,b)×R2

(∆φ)ψ dx

= −
∫
(a,b)×R2

∇′φ · ∇′ψ dx+

∫
R2

∂1φ(b, ·)ψ − ∂1φ(a, ·)ψ dx′.

(3.77)

By Cauchy-Schwarz and Fubini’s theorem applied to the first integral in the

last line of (3.77) we get⏐⏐⏐⏐∫
(a,b)×R2

∇′φ · ∇′ψ dx

⏐⏐⏐⏐ ≤ ∥∇′φ∥L2((a,b)×R2)∥∇′ψ∥L2((a,b)×R2)

≤ ∥∇φ∥L2(R3) |b− a| 12 ∥∇′ψ∥L2(R2).

(3.78)

We insert (3.78) into (3.77) and consider the limit u → χΩ in L2(R3). L2-

theory for the potential implies ∇φ → ∇ΦΩ in L2(R3). Upon passing to

a subsequence, Fubini’s Theorem yields u(x1, ·) → χΩ(x1, ·) and ∇φ(x1, ·) →
∇ΦΩ(x1, ·) in L2(R2) for almost every x1 ∈ R. Hence, for almost every a, b ∈ R,
we obtain (3.76) which concludes the proof of the lemma.

Before we begin with the proof of Proposition 3.8.1, we record the following

approximation Lemma due to De Giorgi [24, Lemma II] (see also [23, Lemma

2.1]).

Lemma 3.8.3. Let S ⊂ R2 be a set of finite perimeter with |S| < ∞ and let

r > 0 satisfy rP(S) ≤ |S|. Then there exists an open set Sr ⊂ R2 with the

properties

(i) |S ∩ Sr| ≥ 1
2
|S|.

(ii) For all t > 0 the set St
r := {x ∈ Rn| dist(x, Sr) < t} satisfies

⏐⏐St
r

⏐⏐ ≤ C |S|
(
1 +

(
t

r

)n)
where C is a universal constant.

For a proof of Lemma 3.8.3 we refer to [24, Lemma II] or [23, Lemma 2.1].
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Proof of Proposition 3.8.1. Let Ω ∈ CV . By an approximation argument, we

may assume that Ω is bounded and has smooth boundary. For h ∈ R, we call

the set

S(h) := {x′ ∈ R2| (h, x′) ∈ Ω}

the slice of Ω at h. Its H2 measure is denoted by |S(h)|. We note that since

Ω has smooth boundary, we have |S(h)| ≤ P(Ω) for all h ∈ R.
The argument is based on Lemma 3.8.2 and divided into four steps.

Step 1: Exclude slices with above-average stray field energy. We want to apply

the transition energy estimate (3.76) for suitable values a, b ∈ R such that

the first term on the right hand side of (3.76) dominates the terms involving

∂1ΦΩ(x1, ·) for x1 ∈ {a, b}. To this end, let H ⊂ R be a measurable set of size

|H| = V

2P(Ω)
(3.79)

such that for all h ∈ H and all ℓ ∈ R\H, we have (see Lemma B.4 for details)∫
R2

|∇ΦΩ(ℓ, x
′)|2 dx′ ≤

∫
R2

|∇ΦΩ(h, x
′)|2 dx′

and hence∫
R2

|∇ΦΩ(ℓ, x
′)|2 dx′ ≤ −

∫
H

∫
R2

|∇ΦΩ(x1, x
′)|2 dx′ dx1 ≤

N (Ω)

|H| . (3.80)

Our choice (3.79) is such that at least half of Ω’s volume is in (R \H) × R2.

Indeed, using |S(h)| ≤ P(Ω) for h ∈ H and inserting (3.79), we obtain∫
R\H

|S(x1)| dx1 =
∫
R
|S(x1)| dx1 −

∫
H

|S(x1)| dx1

≥ V − |H|P(Ω)
(3.79)

≥ V

2
.

(3.81)

Furthermore, extending H by a set of measure zero, we may also assume that

Lemma 3.8.2 holds for all x1 ∈ R \H.

Step 2: Identification of two suitable slices. We identify suitable a, b ∈ R \H
in order to apply Lemma 3.8.2 for these values a, b.
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As a proxy for the radius of Ω we introduce the quantity

r := sup
x1∈R\H

|S(x1)|
H1(∂S(x1))

. (3.82)

The isoperimetric inequality in two dimensions states that H1(∂S)2 ≥ 4π|S|
and implies that r is finite

r = sup
x1∈R\H

|S(x1)|
H1(∂S(x1))

≤ 1

2
√
π

sup
x1∈R\H

|S(x1)|
1
2 ≲ P(Ω)

1
2 . (3.83)

Furthermore, we can estimate r from below in terms of the volume and the

interfacial energy

V

2

(3.81)

≤
∫
R\H

|S(x1)| dx1
(3.82)

≤ r

∫
{|S|>0}\H

H1(∂S(x1)) dx1 ≤ rP(Ω). (3.84)

Now we take a ∈ R \H such that (cf. (3.82))

|S(a)|
H1(∂S(a))

≥ r

2
. (3.85)

S(a) is the first of the two slices that we will use for the transition energy

estimate. In view of the isoperimetric inequality, we have

|S(a)| ≳ |S(a)|2
H1(∂S(a))2

(3.85)

≥ r2

4
. (3.86)

It remains to identify the second slice S(b) which should have significantly less

area then S(a), lie outside of H and with b close to a. We claim that there is

b ∈
(
a− 32

r2
V, a+ 32

r2
V
)
∩ (R \H) with |S(b)| ≤ 1

4
|S(a)|. (3.87)

Indeed, assume for contradiction that no such b exists and thus |S(x1)| >
1
4
|S(a)| for all x1 ∈

(
a− 32

r2
V, a+ 32

r2
V
)
∩ (R \H). Since |H| = V

2P(Ω)

(3.83)

≤ V
2r2

we obtain a contradiction

V ≥
∫
(
a−32

r2
V,a+

32
r2

V
)
∩(R\H)

|S(x1)| dx1

>
1

4
|S(a)|(V 64

r2
− |H|) ≥ |S(a)|V 8

r2

(3.86)

≥ 2V.

Hence, we conclude that such a b exists and use S(b) as the second slice.
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Step 3: Definition of a suitable testfunction. The construction of the test-

function closely follows [17]. For λ ≥ 2, we define the function φ : R → R
by

φ(t) =

⎧⎪⎪⎨⎪⎪⎩
1 for t ≤ r,
log(λr/t)
log(λ)

for r ≤ t ≤ λr,

0 for λr ≤ t.

In view of (3.85), we apply Lemma 3.8.3 to S(a) and r which yields the regular-

ized set Sr. We define the test function ψ ∈ H1(R2) by ψ(x) := φ(dist(x, Sr)).

Arguing as in [17], one can show that∫
R2

ψ2 dx ≲
|S(a)|λ2
(log λ)2

and

∫
R2

|∇′ψ|2 ≲ |S(a)|
r2 log(λ)

. (3.88)

For the convenience of the reader, we sketch the argument for the first item in

(3.88) (the second one is analogous). We use the coarea formula and integrate

by parts to obtain∫
R2

ψ2 dx = |Sr|+
∫ ∞

0

φ2(t)H1(∂St
r) dt = −

∫ λr

r

2φ(t)φ′(t)|St
r| dt. (3.89)

Since φ′(t) = − 1
t log(λ)

on (r, λr), using properties (i) and (ii) from Lemma

3.8.3 turns (3.89) into∫
R2

ψ2 dx
(3.89)

≲ −
∫ λr

r

φ(t)φ′(t)|S(a)|
(
t

r

)2

dt

∼ |S(a)|
∫ λr

r

t log(λr/t)

r2(log λ)2
dt ∼ |S(a)|λ2

(log λ)2
.

Step 4: Derivation of the lower bound. We use (3.76) for a, b and ψ as defined

in Steps 2 and 3, respectively. Also applying Hölder’s inequality and (3.80),

we obtain⏐⏐⏐⏐∫
R2

χΩ(b, ·)ψ − χΩ(a, ·)ψ dx′
⏐⏐⏐⏐

(3.76)

≤ N (Ω)
1
2 |b− a| 12 ∥∇′ψ∥L2(R2) (3.90)

+

⏐⏐⏐⏐∫
R2

∂1ΦΩ(b, ·)ψ − ∂1ΦΩ(a, ·)ψ dx′
⏐⏐⏐⏐

(3.80)

≤ N (Ω)
1
2

(
|b− a| ∥∇′ψ∥2L2(R2) +

2P(Ω)

V
∥ψ∥2L2(R2)

) 1
2

.
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The left hand side of (3.90) may be bounded below using Lemma 3.8.3 (i) and

(3.87) ∫
R2

(χΩ(a, ·)− χΩ(b, ·))ψ dx′ ≥ |S(a) ∩ Sr| − |S(b)|

≥ 1

2
|S(a)| − 1

4
|S(a)| ≳ |S(a)|.

(3.91)

Together, (3.91) and (3.90) imply

|S(a)|2 ≲ N (Ω)

(
|b− a|∥∇ψ∥2L2(R2) +

2P(Ω)

V
∥ψ∥2L2(R2)

)
. (3.92)

Inserting (3.88) into (3.92) and dividing by |S(a)|, we get

|S(a)| ≲ N (Ω)

( |b− a|
r2 log λ

+
2P(Ω)λ2

V (log λ)2

)
. (3.93)

In turn, inserting (3.86) and the first item in (3.87) into (3.93), we obtain

r2
(3.86)

≲ |S(a)| ≲ N (Ω)

(
V

r4 log λ
+

2P(Ω)λ2

V (log λ)2

)
. (3.94)

Finally, inserting (3.84) into (3.94), we arrive at(
V

P(Ω)

)2

≲ N (Ω)

( P(Ω)4

V 3 log λ
+

2P(Ω)λ2

V (log λ)2

)
. (3.95)

The isoperimetric inequality asserts that the choice λ = P (Ω)
3
2

V
≥ 6

√
π is

admissible. Inserting it into (3.95) yields

V 5 log

(
P(Ω)

3
2

V

)
≤ CN (Ω)P(Ω)6

which is equivalent to (3.73).
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Appendix A

Here we provide supplementary material to chapter 1. In particular, we give

a proof for the continuity of ε ↦→ λc(ε), the critical value of λ (see also Figure

1.3). Furthermore, we record a few well-known results that are used throughout

chapter 1. For the convenience of the reader, we also give the proofs.

For 0 < ε < 1, we define the critical value of λ where minFε,λ becomes negative

as

λc(ε) := inf{λ : minFε,λ < 0}. (A.1)

Lemma A.1. The function λc : (0, 1) → R (see (A.1)) is Lipschitz-continuous

on compact subsets of (0, 1).

Proof. The main idea is to express λc as the infimum over λc,m, where m is

held fixed (see (A.2)) and to deduce regularity of λc from the regularity of

λc,m. We define

X := {m ∈ H1(T2; S2) : m is not constant}

and introduce, for any m ∈ X, the function

λc,m : (0, 1) → R, ε ↦→ λc,m(ε) := inf{λ : Fε,λ[m] < 0}. (A.2)

Note that Fε,λ[m] ≥ 0 if m is constant and that λ ↦→ Fε,λ[m] is strictly mono-

tone (for ε and m ∈ X fixed). Hence, we may rewrite

λc(ε) = inf{λ : ∃m ∈ X s.t. Fε,λ[m] < 0}
= inf{λ : ∃m ∈ X s.t. λ > λc,m(ε)} = inf

m∈X
λc,m(ε).

(A.3)

115
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Step 1: Regularity of λc,m. We claim that⏐⏐⏐⏐ ddελc,m(ε)
⏐⏐⏐⏐ ≤ (1 + 1

| log ε|

)
λc,m(ε)

ε
for all m ∈ X. (A.4)

To prove (A.4), fix m ∈ X and abbreviate

a =

∫
T2

|∇m|2 dx, b :=

∫
T2

(1−m2
1) dx c :=

∫
T2

|∇ 1
2m1|2 dx,

so that Fε,λ[m] = ε
2
a+ b

2ε
− λ

| log ε|c with partial derivatives

∂εFε,λ[m] =
a

2
− b

2ε2
− λc

ε| log ε|2 and ∂λFε,λ[m] = − c

| log ε| .

By continuity of (ε, λ) ↦→ Fε,λ[m] and strict monotonicity in λ, we deduce from

(A.2) that λc,m satisfies Fε,λc,m(ε)[m] = 0 for all ε ∈ (0, 1) and, furthermore,

that it is the only function with this property. Then the implicit function

theorem asserts that λc,m is C1((0, 1)) with

d

dε
λc,m(ε) = − (∂λFε,λ[m])−1 ∂εFε,λ[m]

=
| log ε|
c

(
a

2
− b

2ε2
− λc

ε| log ε|2
)
.

(A.5)

Inserting the identity Fε,λc,m(ε)[m] = ε
2
a+ b

2ε
− λc,m(ε)

| log ε| c = 0 into (A.5), we obtain

the estimate⏐⏐⏐⏐ ddελc,m(ε)
⏐⏐⏐⏐ ≤ | log ε|

ε

(
εa
2
+ b

2ε

c

)
+
λc,m(ε)

ε| log ε| ≤
(
1 +

1

| log ε|

)
λc,m(ε)

ε

which completes the proof of (A.4).

Step 2: Regularity of λc. The metric space (X, ∥ · ∥H1) is separable as a

subset of the separable metric space H1(T2;R3) and hence there exists a dense

countable subset {mn : n ∈ N} ⊂ X. Let δ ∈ (0, 1/2) and define M :=

supε∈[δ,1−δ] |λc,m1(ε)|< +∞. Then the functions

gn : [δ, 1− δ] → R, ε ↦→ gn(ε) = min{λc,mn(ε),M}

are Lipschitz-continuous for all n ∈ N. Furthermore, by (A.4), their Lipschitz-

constant is bounded by δ−1(1 + 1
| log δ|)M (independent of n ∈ N). Define the

sequence of functions fk := min1≤n≤k gn and observe that

(i) ∥fk∥C0([δ,1−δ]) ≤M for all k ∈ N,
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(ii) fk is Lipschitz continuous with Lipschitz constant bounded by δ−1(1 +
1

| log δ|)M ,

(iii) fk(ε) → λc(ε) as k → ∞ for all ε ∈ [δ, 1− δ].

The last point follows from (A.3), the density of {mn : n ∈ N} ⊂ X and

continuity of m ↦→ Fε,λ[m]. Now the compact embedding C0,1([δ, 1 − δ]) ↪→
C0([δ, 1 − δ]) implies that fk→f uniformly for some f ∈ C0,1([δ, 1 − δ]) with

Lipschitz constant bounded by δ−1(1 + 1
| log δ|)M . By uniqueness of the limit

we conclude that f = λc, which completes the proof.

It is well-known that ifm ∈ H1 takes values in S2, this implies certain estimates

for the gradient ∇m (see, e.g., [59]). Since these estimates are used frequently

throughout this thesis, we record them in the following Lemma.

Lemma A.2. Let Ω ⊂ Rn be open and m ∈ H1(Ω, S2). Then for every ε > 0

we have

(i)
|∇m1|2
1−m2

1

≤ |∇m|2 for a.e. x ∈ Ω with |m1(x)| < 1, (A.6)

(ii) |∇m1| ≤
ε

2
|∇m|2 + 1−m2

1

2ε
for a.e. x ∈ Ω. (A.7)

Proof. To prove (i), we apply the weak product rule to the constraint |m|2 = 1,

which yields

−m1∇m1 = m2∇m2 +m3∇m3

a.e. in Ω. After squaring both sides and applying the n-dimensional Cauchy-

Schwarz inequality, we obtain

m2
1|∇m1|2 ≤

(
m2

2 +m2
3

)
(|∇m2|2 + |∇m3|2).

Finally we add (m2
2 +m2

3) |∇m1|2 to both sides. Since |m|2 = 1, this yields

|∇m1|2 ≤ (1−m2
1)|∇m|2,

and hence proves (A.6).

We turn to the proof of (ii). Since ∇m1 = 0 almost everywhere on the set

{x ∈ Ω : |m1(x)| = 1}, it remains to prove (A.7) on {x ∈ Ω, |m1(x)| < 1}.
This follows from (A.6) upon an application of Young’s inequality

2|∇m1| ≤
ε|∇m1|2
1−m2

1

+
1−m2

1

ε

(A.6)

≤ ε|∇m|2 + 1−m2
1

ε
,

which concluded the proof.
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In the following Lemma, we record a consequence of Jensen’s inequality for

the gradients of e1-averages.

Lemma A.3. For every p ∈ [1,∞) and every f ∈ W 1,p((0, 1)× T2), we have∫
T2

⏐⏐⏐⏐∇′
∫ 1

0

f(x1, x
′) dx1

⏐⏐⏐⏐p dx′ ≤
∫

(0,1)×T2

|∇′f |p dx. (A.8)

Proof. Assume for a moment that f ∈ C∞((0, 1) × T2). Since | · |p : R2 → R
(the p-th power of the euclidean norm) is a convex function, an application of

Jensen’s inequality (for two-dimensions) then yields

⏐⏐⏐⏐∫ 1

0

∇′f(x1, x
′) dx1

⏐⏐⏐⏐p dx′ ≤
1∫
0

|∇′f(x1, x
′)|p dx1 (A.9)

for all x′ ∈ T2. For f ∈ C∞((0, 1)×T2), we can change the order of integration

and differentiation, so that (A.8) follows from (A.9) upon integrating over T2

∫
T2

⏐⏐⏐⏐∇′
∫ 1

0

f(x1, x
′) dx1

⏐⏐⏐⏐p dx′ =

∫
T2

⏐⏐⏐⏐∫ 1

0

∇′f(x1, x
′) dx1

⏐⏐⏐⏐p dx′

(A.9)

≤
∫
T2

1∫
0

|∇′f(x1, x
′)|p dx1 dx′.

(A.10)

Finally, (A.10) extends to any f ∈ W 1,p((0, 1)×T2) by a standard approxima-

tion argument using lower semi-continuity of the W 1,p(T2) norm with respect

to weak convergence of the e1-averages.

The next Lemma relates the real space formulation of the homogeneous Ḣ
1
2 -

norm to its Fourier representation.

Lemma A.4. For every smooth function f : T2
ℓ → R, the following holds∫

T2
ℓ

|∇ 1
2f |2 dx :=

1

ℓ2

∑
k∈ 2π

ℓ
Z2

|k||f̂k|2 =
1

4π

∫
T2
ℓ

∫
R2

|f(x)− f(y)|2
|x− y|3 dx dy. (A.11)

Proof. First we prove the identity∫
R2

|eik·x − 1|2 1

|x|3 dx = 4π|k| for every k ∈ 2π
ℓ
Z2. (A.12)
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By scaling and rotational symmetry, we have∫
R2

|eik·x − 1|2 1

|x|3 dx = |k|
∫
R2

|eix1 − 1|2 1

|x|3 dx. (A.13)

We evaluate the last integral in polar coordinates. On substituting ρ = r cos θ
2

,

we obtain∫
R2

|eix1 − 1|2 1

|x|3 dx =

∫
R2

|e ix1
2 − e−

ix1
2 |2 1

|x|3 dx =

2π∫
0

∞∫
0

4 sin2

(
r cos θ

2

)
1

r3
r dθ dr

= 2

2π∫
0

| cos θ| dθ
∞∫
0

sin2 ρ

ρ2
dρ = 4π. (A.14)

Together, (A.13) and (A.14) prove (A.12).

With (A.12) at hand, we will now prove (A.11). By a variable transforma-

tion and Fubini’s Theorem, we obtain∫
T2
ℓ

∫
R2

|f(x)− f(y)|2
|x− y|3 dx dy =

∫
R2

∫
T2
ℓ

|f(z + y)− f(y)|2 dy
1

|z|3 dz.

Rewriting the inner integral in Fourier space and using Fubini’s Theorem again

yields∫
R2

∫
T2
ℓ

|f(z + y)− f(y)|2 dy
1

|z|3 dz =
1

ℓ2

∫
R2

∑
k∈ 2π

ℓ
Z2

|e−ik·z − 1|2|f̂k|2
1

|z|3 dz

=
1

ℓ2

∑
k∈ 2π

ℓ
Z2

|f̂k|2
∫
R2

|e−ik·z − 1|2 1

|z′|3 dz
(A.12)
=

4π

ℓ2

∑
k∈ 2π

ℓ
Z2

|k||f̂k|2,

which gives the desired formula.
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Appendix B

Lemma B.1. Let Ω ⊂ Rn satisfy |Ω| <∞ and define ΨΩ : Rn → R by

ΨΩ(x) =

∫
Rn

∂1Γ(x− y)χΩ(y) dy. (B.1)

Then ΨΩ ∈ L1
loc(Rn) is a distributional solution to (3.2).

Proof. Step 1: We show that ΨΩ ∈ L1
loc(Rn) is a distributional solution of

∆ΨΩ = ∂1χΩ. First note that the integral (B.1) is well-defined for all x ∈ Rn,

because |Ω| < ∞ and the singularity of ∂1Γ is integrable, i.e. ∂1Γ ∈ L1
loc(Rn).

Let φ ∈ C∞
c (Rn). Inserting (B.1), applying Fubini’s theorem and integrating

by parts, we get∫
Rn

ΨΩ(x)∆φ(x) dx
(B.1)
=

∫
Rn

(∫
Rn

∂x1Γ(x− y)∆φ(x) dx

)
χΩ(y) dy

=

∫
Rn

(∫
Rn

−Γ(y − x)∂1∆φ(x) dx

)
χΩ(y) dy.

Upon inserting the identity ∂1φ(y) = (Γ ∗ ∂1∆φ)(y), we conclude that ΨΩ ∈
L1
loc(Rn) is indeed a distributional solution of ∆ΨΩ = ∂1χΩ.

Step 2: We show that ΨΩ satisfies the decay condition lim|x|→∞ ΨΩ(x) = 0.

By monotonicity of |∂1Γ|, we have⏐⏐⏐⏐⏐
∫
B|x|/2

∂1Γ(x− y)χΩ(y) dy

⏐⏐⏐⏐⏐ ≤ sup
y∈B|x|/2

|∂1Γ(x− y)| |Ω| = |∂1Γ(x/2)| |Ω|.

(B.2)

Since |∂1Γ| ∈ L1
loc(Rn) is spherically monotone, the remaining part may be

estimated using rearrangements of Ω \ B|x|/2. Let B̃(x) be the ball of volume

|Ω \B|x|/2|, then⏐⏐⏐⏐⏐
∫
Rn\B|x|/2

∂1Γ(x− y)χΩ(y) dy

⏐⏐⏐⏐⏐ ≤
∫
B̃(x)

|∂1Γ|(y) dy. (B.3)

Since |B̃(x)| = |Ω \ B|x|/2| → 0 for |x| → 0 (e.g. by dominated convergence),

adding (B.2) and (B.3) yields the claim

|ΨΩ(x)| ≤ |∂1Γ(x/2)| |Ω|+
∫
B̃(x)

|∂1Γ|(y) dy −→ 0, for |x| → 0.
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Lemma B.2. Let T be given by (3.19) and f ∈ C∞
c (Rn). Then

∇(∂1Γ ∗ f) = Tf.

Proof. Since ∂1Γ ∈ L1
loc(Rn), we have

∂k(∂1Γ ∗ f)(x) = (∂1Γ ∗ ∂kf)(x) = lim
ε→0

∫
Rn\Bε(x)

∂1Γ(y)∂kf(x− y) dy (B.4)

for all 1 ≤ k ≤ n and every x ∈ Rn. Moreover, for any ε > 0, an integration

by parts yields∫
Rn\Bε(x)

∂1Γ(y)∂kf(x− y) dy =

∫
∂Bε(x)

∂1Γ(y)f(x− y)
yk − xk
|y − x| dy

+

∫
Rn\Bε(x)

∂2k,1Γ(y)f(x− y) dy.

(B.5)

Since f is smooth, we have f(x−y) = f(x)+O(|y|) for y → x and in the limit

ε→ 0, the boundary term yields

lim
ε→0

∫
∂Bε(x)

∂1Γ(y)f(x− y)
yk − xk
|y − x| dy =

f(x)

nωn

∫
Sn−1

zkz1
|z|n+1

dz =
δ1,k
n
f(x).

Together, (B.4) and (B.5) yield the claim

∇(∂1Γ ∗ f) = lim
ε→0

∫
Rn\Bε

∂2k,1Γ(y)f(· − y) dy +
δ1,k
n
fe1.

Lemma B.3. Let Ω ⊂ Rn be a bounded open set with C1,α-boundary for some

α ∈ (0, 1] and let {Ft}|t|<t0 be a local variation for which we set Ωt = Ft(Ω).

Let ρ ∈ C∞
c (Rn) be a rotational symmetric mollification kernel and set ρε(x) :=

1
εn
ρ(x

ε
). Then there is t∗ ∈ (0, t0) such that for all t ∈ [−t∗, t∗] and all x ∈ ∂Ωt

−
∫
∂Ωt

(ρε ∗ ∇Γ)(x− y)ν1(y) dHn−1(y)
ε→0−→ ⟨∇ΦΩt⟩(x)

uniformly in t and x.

The main point is that due to uniform C1,α-bounds on ∂Ωt the convergence is

uniform.
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Proof of Lemma B.3. We abbreviate kε = (ρε∗∂1Γ)−∂1Γ and assume without

loss of generality that supp ρε ⊂ B ε
2
. Since ρε is rotational symmetric and ∂1Γ

is harmonic on Rn \ {0} we conclude that kε ≡ 0 on Rn \Bε. We rewrite

− (ρε ∗ ∂1ΦΩt) (x) + ⟨∂1ΦΩt⟩(x)

=

∫
∂Ωt

(ρε ∗ ∂1Γ)(x− y)ν1(y) dy − lim
δ→0

∫
∂Ωt\Bδ(x)

∂1Γ(x− y)ν1(y) dy

= lim
δ→0

∫
∂Ωt∩(Bε(x)\Bδ(x))

kε(x− y)ν1(y) dy for all x ∈ ∂Ωt. (B.6)

Since the C1,α-boundary ∂Ω is compact and Ωt is a smooth deformation of

Ω, there are C, r,> 0 and t∗ ∈ (0, t0) with the following properties: For all

t ∈ (−t∗, t∗) and all x ∈ ∂Ωt there is γx,t ∈ C1,α(Rn−1) with ∥γx,t∥C1,α ≤ C and

– up to relabeling and reorienting the coordinate axes if necessary – we have

Ωt ∩ Br(x) = {(y1, y′) ∈ Br(x) : y1 − x1 < +γx,t(y
′ − x′)}.

Moreover, ν is C0,α-continuous on ∂Ωt with t-independent bounds. Since

|kε(z)| ≲ |z|1−n, we conclude that for all δ > 0 and all ε < r we have∫
∂Ωt∩(Bε(x)\Bδ(x))

kε(x− y)(ν1(y)− ν1(x)) dy

≤ CΩ

∫
∂Ωt∩(Bε(x)\Bδ(x))

1

|x− y|n−1−α
dy ≤ CΩε

α

(B.7)

for some generic constant CΩ which depends on Ω but is independent of t, ε

and δ. In view of (B.6) and (B.7), it is sufficient to show that∫
∂Ωt∩(Bε(x)\Bδ(x))

kε(x− y) dy

vanishes for ε → 0 uniformly in t and δ. To simplify the notation, we assume

in the following (without loss of generality) that x = 0 and that γ := γx,t

satisfies ∇′γ(0) = 0. The integral over ∂Ωt ∩ (Bε \Bδ) can be written in the

parametrized form∫
Ωt∩(Bε\Bδ)

kε(y) dy =

∫
M

kε(γ(y
′)e1 + y′)

√
1 + |∇′γ|2 dy′

where M := {y′ ∈ B′
r : δ2 ≤ γ2(y′) + |y′|2 < ε2} and B′

r denotes a ball in

Rn−1. It is convenient to split M = R1 ∪ A ∪ R2 into a maximal annulus



APPENDIX B 123

A := Br2 \Br1 ⊂M and boundary sets R1 =M ∩Br1 and R2 :=M \Br2 . We

begin with the estimate for the integral on the annulus A which we rewrite as∫
A

kε(γ(y
′)e1 + y′)

√
1 + |∇′γ|2 dy′

=
1

2

∫
A

(
kε(γ(y

′)e1 + y′)
√

1 + |∇′γ(y′)|2

+ kε(γ(−y′)e1 − y′)
√
1 + |∇′γ(−y′)|2

)
dy′

in order to exploit cancellation. An elementary estimate using |γ(y′)| ≲ |y′|1+α

yields

|kε(γ(y′)e1 + y′) + kε(γ(−y′)e1 − y′)| ≲ 1

|y′|n−1−α
.

Since 1 ≤
√
1 + |∇′γ|2 ≤ 1 + C|y′|α and |kε(y′)| ≲ 1

|y′|n−1 we get⏐⏐⏐kε(γ(y′)e1 + y′)
√

1 + |∇′γ(y′)|2 + kε(γ(−y′)e1 − y′)
√

1 + |∇′γ(−y′)|2
⏐⏐⏐

≲
1

|y′|n−1

and thus∫
A

kε(γ(y
′)e1 + y′)

√
1 + |∇′γ|2 dy′ ≲

∫ r2

r1

1

ρ1−α
dρ ≲ rα2 ≲ εα. (B.8)

For the estimate of the boundary set R2 note that R2 ⊂ B′
ε \ B′

r2
and that

|ε− r2| ≤ ε1+2α. Thus∫
R2

kε(y
′)
√

1 + |∇′γ|2 dy′ ≲
∫ ε

r2

1

ρ−1
dρ ∼ log(

ε

r2
) ≲

ε− r2
r2

∼ ε2α. (B.9)

The estimate for R1 is analogous. Combining (B.8), (B.9) and the analogous

estimate on R1, we conclude that∫
∂Ωt∩(Bε(x)\Bδ(x))

kε(x− y) dy ≤ CΩε
α → 0 (B.10)

uniformly in t and δ. Inserting (B.7), (B.10) and |ν1| ≤ 1 into (B.6) yields the

claim.

For the convenience of the reader, we provide a proof of Lemma 3.7.3. It uses

that Rn is simply connected.
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Proof of Lemma 3.7.3. Assume for contradiction that ∂Ω is not connected and

hence can be written as ∂Ω = A ∪ B for some nonempty disjoint sets A,B.

Since ∂Ω is compact, we may assume that A and B are compact as well and

have positive distance. Moreover, the functions

d : Rn → [0, 1], x ↦→ d(x) =
dist(x,A)

dist(x,A) + dist(x,B)

and

f : Rn → S1, x ↦→ f(x) :=

⎧⎨⎩eiπd(x), x ∈ Ω,

e−iπd(x), x ∈ Rn \ Ω,

are continuous. Let a ∈ A and b ∈ B. Since Ω and Rn \ Ω are connected,

so are their closures Ω and Rn \ Ω = Rn \ int(Ω) = Rn \ Ω. Hence there are

continuous curves γ1, γ2, with γi(0) = a, γi(1) = b with values in Ω and Rn \Ω,
respectively. Since Rn is simply connected, there exists a continuous homotopy

H : [0, 1]2 → Rn, between γ1 and γ2, preserving the endpoints H(s, 0) = a and

H(s, 1) = b for all s ∈ [0, 1]. Then, f ◦H(s, t) is a homotopy of curves in S1 ⊂ C
with fixed end points f ◦ H(i, k) = f(γi(k)) = (−1)k, i = 1, 2, k = 0, 1 but

f ◦H(0, [0, 1]) = {z ∈ S1 : ℑ(z) ≥ 0} and f ◦H(1, [0, 1]) = {z ∈ S1 : ℑ(z) ≤
0}. However, such a homotopy cannot exist. It contradicts, for instance, the

Cauchy integral theorem because the corresponding winding numbers

1

2πi

∫
f◦H(k,·)

1

z
dz =

⎧⎨⎩1
2
, k=0,

−1
2
, k=1,

are not equal. Hence, ∂Ω must be connected which completes the proof.

The following elementary Lemma allows to partition the domain of f ∈ L1(R)
into two sets X and Xc such that the values of f are larger on X then on Xc.

Lemma B.4. Let f ∈ L1(R) with f ≥ 0 and let M > 0. Then there exists a

measurable set X ⊂ R with |X| = M and γ ∈ R such that f ≥ γ on X and

f ≤ γ on R \X.

Proof of Lemma B.4. To simplify the notation we introduce the abbreviation

{f > t} := {x ∈ R| f(x) > t} and similarly for ≥ or = instead of >. Consider

the monotonically decreasing function g(t) := |{f > t}| and define

γ := inf{t > 0| g(t) ≤M}. (B.11)
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Chebychef’s inequality g(t) ≤ 1
t

∫
R f(x) dx assures that the set on the right

hand side of (B.11) is not empty. Using the continuity of the Lebesgue measure,

we obtain

g(γ) = |{f > γ}| = | ∪n∈N {f > γ + 1/n}| = lim
n→∞

g(γ + 1/n)
(B.11)

≤ M.

(B.12)

If g(γ) = M the claim follows for X := {f > γ}. However, in the case that

g(γ) < M we have to add a subset of {f = γ} to X. To this end, we claim

that |{f ≥ γ}| ≥ M . Indeed, if γ = 0 this follows directly from f ≥ 0. For

γ > 0 we get from (B.11) that g(γ− 1/n) > M for all n ∈ N. By Chebycheff’s

inequality, g(γ − 1/n) is finite for nγ > 1 and we conclude

|{f ≥ γ}| = | ∩n∈N {f > γ − 1/n}| = lim
n→∞

g(γ − 1/n) ≥M. (B.13)

To define the set X we consider the continuous function

h(s) := λ1((−s, s) ∩ {f = γ}).

Since h(0) = 0 and

lim
s→∞

h(s) = lim
s→∞

|(−s, s) ∩ {f ≥ γ}| − lim
s→∞

|(−s, s) ∩ {f > γ}|
(B.13)

≥ M − g(γ),

the mean value theorem implies that there is s∗ ∈ [0,∞) such that

h(s∗) = |(−s∗, s∗) ∩ {f = γ}| =M − g(γ). (B.14)

The claim now follows for

X := {f > γ} ∪ ((−s∗, s∗) ∩ {f = γ}) .
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gel, H. Béa, C. Baraduc, S. Auffret, G. Gaudin, and

D. Givord, The skyrmion switch: Turning magnetic skyrmion bubbles

on and off with an electric field, Nano Letters, 17 (2017), pp. 3006–3012.

[87] A. Soumyanarayanan, M. Raju, A. L. Gonzalez Oyarce,

A. K. C. Tan, M.-Y. Im, A. P. Petrovic, P. Ho, K. H. Khoo,

M. Tran, C. K. Gan, F. Ernult, and C. Panagopoulos, Tunable

room temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers, arXiv

preprint arXiv:1606.06034, (2016).

[88] M. Speckmann, H. P. Oepen, and H. Ibach, Magnetic domain struc-

tures in ultrathin Co/Au(111): On the influence of film morphology, Phys-

ical Review Letters, 75 (1995), pp. 2035–2038.

[89] E. M. Stein, Singular integrals and differentiability properties of func-

tions, Princeton University Press, 1970.



136 BIBLIOGRAPHY

[90] E. C. Stoner, XCVII. The demagnetizing factors for ellipsoids, The

London, Edinburgh, and Dublin Philosophical Magazine and Journal of

Science, 36 (1945), pp. 803–821.

[91] I. Tamanini, Boundaries of Caccioppoli sets with Hölder-continuous nor-
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