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Abstract

Light field data captures the intensity, as well as the direction of rays in

3D space, allowing to retrieve not only the 3D geometry information, but

also the reflectance properties of the acquired scene. The main focus of this

thesis is precise 3D geometry reconstruction from light fields, especially on

scenes with specular objects.

A new semi-global approach for 3D reconstruction from linear light fields

is proposed. This method combines a modified version of the Progressive

Probabilistic Hough Transform with local slope estimates to extract ori-

entations, and consequently depth information, in epipolar plane images

(EPIs). The resulting reconstructions achieve a higher accuracy than local

methods, with a more precise localization of object boundaries, as well as

preservation of fine details.

In the second part of the thesis the proposed approach is extended to cir-

cular light fields in order to determine the full 360° view of target objects.

Additionally, circular light fields allow retrieving depth even from datasets

acquired with telecentric lenses, a task which is not possible using a linearly

moving camera. Experimental results on synthetic and real datasets demon-

strate the quality and the robustness of the proposed algorithm, which pro-

vides precise reconstructions even with highly specular objects.

The quality of the final reconstruction opens up many possible application

scenarios, such as precise 3D reconstruction for defect detection in industrial

optical inspection, object scanning for heritage preservation, as well as depth

segmentation for the movie industry.





Zusammenfassung

Lichtfelddaten bilden sowohl die Intensität als auch die Richtung von Strahlen

im dreidimensionalen Raum ab. Daher erlauben sie nicht nur die Rekon-

struktion von 3D Geometrieinformationen sonder auch von Reflektanzeigen-

schaften der aufgenommenen Szene. Der Schwerpunkt dieser Arbeit ist die

Gewinnung präziser 3D Geometrie aus Lichtfeldern, besonders bei Szenen

mit spiegelnden Objekten.

Einen neuen semiglobalen Ansatz zur 3D Rekonstruktion aus linearen Licht-

feldern wird vorgeschlagen. Diese Methode kombiniert eine modifizierte

Variante der Progressive Probabilistic Hough Transform mit lokalen Schätzun-

gen der Orientierung um damit die Tiefe aus Epipolar Bildern zu extrahieren.

Die Rekonstruktion erzielt eine höhere Genauigkeit als lokale Methoden,

und erhält feine Details.

Im zweiten Teil der Arbeit wird der vorgeschlagene Ansatz auf kreisförmige

Lichtfelder ausgedehnt, um die komplette Ansicht des Objektes zu bes-

timmen. Darüber hinaus ermöglichen zirkuläre Lichtfelder es Tiefendaten

auch aus Datensätzen zu gewinnen, die mit einem telezentrischen Objektiv

aufgenommen wurden, was mit einer sich linear bewegten Kamera nicht

möglich ist. Experimentelle Ergebnisse demonstrieren die Güte und die

Robustheit des vorgestellten Algorithmus, welcher selbst bei hochgradig

spekularen Objekten präzise Rekonstruktionen liefert.

Die Qualität der endgültigen Rekonstruktion eröffnet viele mögliche Anwen-

dungsszenarien wie zum Beispiel die genaue 3D Rekonstruktion zur Defek-

terkennung in der industriellen optischen Inspektion, das Einscannen von

Objekten zur Bewahrung des kulturellen Erbes, sowie die Tiefenschätzung

für die Filmindustrie.
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Chapter 1

Introduction

1.1 Introduction

The history of photography has deep roots in the antiquity. Leonardo Da Vinci [25]

proposed the first description of the camera obscura in his writing notebook in 1502.

However, the pinhole camera principle was probably already known to the Greek math-

ematicians Aristotle and Euclid in the 5th and 4th centuries BCE [53]. The first docu-

mented and still surviving photo was captured by Nicéphore Niépce in 1826 (or 1827).

Since then, photography started to be extensively studied and further developed, lead-

ing to many novelties and inventions: the first metal-based commercial photographic

process (Louis Daguerre, 1839) which allowed to produce clear pictures within few min-

utes of exposure time, the paper-based calotype negative and salt print process (Henry

Fox Talbot, 1841) which shortened the exposure time to fraction of seconds, the intro-

duction of color photography (Leopold Godowsky Jr. and Leopold Mannes, 1935), and

the invention of digital photography (Steven Sasson, 1975). This latest innovation dra-

matically reduced the delay and the cost of producing a picture, allowing to store, edit,

and distribute digital photos by simply using ordinary computers. Later on, thanks the

rapid progress in the computer industry, we entered the era of digital image processing,

where signal processing theory and algorithms could be used to perform a number of

tasks such as pattern recognition, classification, feature extraction, and so on.

Photography revolutionized our world and society, and is now employed in many

contexts such as art, journalism, medicine, sport, as well as business and science. How-

ever, despite the great number of innovations, photography is still lacking of one fun-
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1. INTRODUCTION

damental component: the depth. When we take a picture, we are simply projecting

the 3D world onto the 2D image plane of a camera sensor, losing therefore the third

dimension. The first attempts to 3D-photographs are as old as photography itself: two

cameras separated by approximately the same distance of the human eyes were used

to simulate our vision and acquire stereoscopic images by John Benjamin Dancer in

1856. However, only with digital photography it was possible to develop algorithms

able to produce a 2D image showing the distance between the camera and the surface

points of the acquired scene. Scientists and researchers proposed algorithms such as

stereo and multi-view, which try to find correspondences between scene points pro-

jected onto the image planes of two or more cameras placed at different locations. The

distance between these correspondences is called disparity, and it encodes the depth

information. The combination of photography and digital image processing allows to

extract a great number of information about the acquired scene, such as 3D geometry,

reflectance properties, and incident light. All these properties are enclosed in the flow

of light that any object in our world reflects toward all directions in 3D space over time.

In 1936 Arun Gershun [38] described this information and defined the function that

relates a ray to the radiance it transports as the light field. This function was later on

named plenoptic function by Adelson and Bergen [2]. Unfortunately, Gershun formu-

lated his theory years before the digital computer era, and light field were introduced

into computer graphics only in 1996 by both Gortler et al. [41] and Levoy et al. [58]

for an image base rendering application. Since then, the scientific community started

to apply this concept to many areas of research. Some examples are image based ren-

dering [18, 26, 41, 58], super resolution [13, 40, 95], as well as digital refocusing and

all-in-focus imaging [66]. Besides these applications, one the most important tasks

where light field can be applied, and the one we are interested in this thesis, is three

dimensional reconstruction.

1.2 Motivation

In practical applications, light fields are a dense collection of pinhole views from differ-

ent locations, therefore they can be considered as multi-view camera systems. However,

light fields normally exploit much more views, as well as a more structured sampling

of the scene, in order to avoid the problem of determining which parts of one image

2



1.2 Motivation

correspond to which parts of another image, namely the correspondence problem. This

is one of the main issues of binocular and multi-view stereo systems, which need to

match over large patches to find correspondences within images. In densely sampled

light fields this problem is avoided, leading to a more robust and precise correspon-

dence matching. Another major limit of stereo algorithms is their difficulty in finding

correspondences in presence of non-Lambertian surfaces. In this case, the intensity of

corresponding points changes between the views, based on the bidirectional reflectance

distribution function (BRDF) of the material. The BRDF describes the distribution

of the reflected light on opaque surfaces with respect to the incidence angle and the

normal to the surface. Differently from stereo systems, light fields are less influenced

by non-Lambertian surfaces, thanks to the use of the redundancy in the acquired data

and the smooth angular deviation between two viewpoints. However, highly specular

objects are still very challenging even for light field algorithms. One of the first methods

to extract depth from densely sampled light fields is the work of Bolles [15], were salient

lines were extracted from epipolar-plane images (EPI). Many approaches followed this

seminar publication: Criminisi et al. [23] proposed the extraction of EPI-regions by

using photoconsistency either in 2D (EPI-strips) or in 3D (EPI-tubes). Wanner [93]

used the structure tensor to estimate the local slope of each pixel in the EPI, obtaining

a coarse depth map which is then refined by means of a global optimization. Wan-

ner’s method was continued by Diebold [30], who introduced a variant of the structure

tensor where the inner Gaussian smoothing was replaced by a derivation filter in the

x-direction, i.e. the one parallel to the camera motion, in order to be robust against

intensity changes along feature paths. Unfortunately, structure tensor methods pro-

vide only a local evaluation of EPIs’ orientations. This can be a problem especially in

noisy datasets, where using all the available information, i.e. the full EPI-line, helps

to increase the quality of the final reconstruction. Additionally, global optimization

approaches tend to smooth depth discontinuities by averaging between foreground and

background disparities, leading to loss of precision at object contours. Štolc et al. [91]

proposed to detect EPI-lines by testing a set of slope hypothesis with a block match-

ing approach. Kim et al. [51] compute depth estimates around object boundaries, i.e.

in the scene’s highly textured areas, by testing all the possible disparity hypotheses

and choosing the one that leads to the best color constancy along EPI-lines. All these

methods were specifically developed for linear light fields, which are a collection of

3



1. INTRODUCTION

images captured along a linear path, and strongly rely on the Lambertian hypothesis.

One of the disadvantages of linear light fields is that only one side of the scene can be

reconstructed. Therefore, in order to obtain the complete 3D shape, the target object

has to be recorded from four different sides, and then the results have to be merged

for the final reconstruction. This constrain makes the acquisition procedure long and

tedious.

In order to overcome the limitations of linear light fields, some approaches [26, 31]

tried to get rid of the linear motion constrain by proposing an unstructured light field

approach using a simple hand-held camera. Feldmann et al. [32, 33] used the intensity

constancy as a measure to determine valid paths in light field video sequences. In their

work, the 3D space is discretized into voxels and then, for each hypothetical 3D point,

the algorithm seeks in the image volume if the corresponding path exists. Otherwise,

the next voxel is selected until the resulting trajectory fits to the image volume. This

method was also adapted to the case of a camera which rotates around the target scene.

Crispell et al. [24], and later on Lanman et al. [54], retrieve EPI-trajectories in circular

light fields only on depth discontinuities instead of texture edges. They use a contour

tracking approach which is not robust to specularities and cannot deal with EPIs having

many close trajectories. Similarly to Feldmann et al. [32], Yücer et al. [100] proposed a

circular light field setup, where the target object is rotating 360° in front of the camera.

They first developed a method to segment objects and compute the visual hull. Then,

they extended their approach to estimate the depth also in concave areas, by analyzing

the local gradient directions in the image volume [99]. However, also these approaches

were developed for Lambertian surfaces, making them unsuitable to reconstruct objects

having glossy or specular properties.

In this thesis we address and overcome the described issues by introducing a novel

method which is able to produce more accurate and reliable 3D reconstructions out of

densely sampled linear light fields. The proposed approach outperforms classical light

field algorithms, and is able to deal even with non-Lambertian materials. Addition-

ally, we extend our algorithm to circular light fields, making possible to reconstruct

the full 3D shape with just one continuous acquisition. Our method can be applied

in fields such as industrial optical inspection, where 3D reconstruction of objects with

4



1.3 Organization

non-Lambertian surface properties is often an issue. Besides 3D reconstruction, an-

other application is material classification based on BRDF estimation. In fact, the

intensity variation along each trajectory encodes the material properties of the surface.

Therefore, the distribution of these intensities can be approximated by mathematical

models and associated to a specific BRDF.

1.3 Organization

The thesis is organized in this way. In Chapter 2 we provide an overview of methods for

estimating the scene geometry, analysing their advantages and disadvantages. Then, in

Chapter 3 we introduce the concept of light field and its mathematical representation.

Moreover, practical solution adopted to sample a light field are presented, as well as

a detailed explanation on how to retrieve depth information from a light field video

sequence. In Chapter 4 we propose a novel algorithm for accurate 3D reconstruction

from linear light fields. The method is validated and compared with state-of-the-art

light field algorithms on synthetic and real datasets. Then, in Chapter 5 this method is

extended to circular light field acquisitions, and the quality of our approach is demon-

strated by comparing the 3D reconstructions with state-of-the-art multi-view stereo

algorithms. Eventually, in Chapter 6 we conclude the thesis by summarizing the con-

tributions and analysing possible applications and further developments.

5
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Chapter 2

Range Imaging

Range imaging, or depth imaging, is one of the hardest fundamental challenges of

computer vision. It consists of a collection of techniques which are used to produce a

2D image showing the distance to surface points on objects in a scene from a known

reference point, normally associated with some type of sensor device, the so-called range

camera. The resulting range image has pixel values which correspond to the distance,

e.g. brighter values mean shorter distance, or vice-versa. Depth data plays a crucial role

in a number of applications, such as automated driving, human-machine interactions,

artificial intelligence, industrial applications, the game and movie industry, as well as

common consumer products. Range cameras can be divided in two main categories,

active and passive systems, depending on the need or not of special conditions in terms

of scene illumination. In this chapter, these two classes of depth imaging systems will

be analysed.

2.1 Active Systems

Active systems use an active light source to illuminate the scene and provide information

about the geometry of the visible surfaces. The basic physical principle of these sensors

is the same used in electromagnetic and active acoustic sensing: a signal is transmitted

to the target scene, reflected, and detected by a sensor. The difference between the sent

and received signal encodes the depth of the reflecting surface. In this section, some of

the most popular active systems are described.

7



2. RANGE IMAGING

2.1.1 Laser Range

Laser range cameras acquire the distance information of an object by using a laser

beam. Specifically, these devices exploit the active triangulation principle by using

a laser projector to illuminate a scene with a laser beam and, at the same time, by

acquiring the scene with a camera. The laser is mounted on a sweeping device or

more commonly in front of a tilting mirror in order to scan the whole scene. The laser

beam is reflected from the object and falls on the camera, where is focused on the

sensor, usually a Charge Coupled Device (CCD) array, through an optical lens. Laser

range scanners can provide extremely accurate and dense 3D measurements over a large

working volume. However, they can measure a single point at a time, limiting their

applications to static scenes only. Moreover, they are quite expensive and difficult to

set, especially for large-scale outdoor scenes.

2.1.2 Structured Light

Like laser range systems, structured light cameras estimate the 3D shape of objects

using the active triangulation principle. The main difference is that they illuminate

the target scene with a known and more complex structure than the simple light beam.

A structured light imaging system consists of (at least) one camera and a projection

system, which projects a light of a distinct frequency in a particularly structured pattern

onto the target surface. This allows to easily distinguish a set of pixels by means of

a local coding strategy. An exaustive survey on coded structured light systems is

provided by Salvi et al. in [78]. Although a large amount of patterns are available, the

most common used structures are composed of one or more parallel laser stripes. The

projected light appears distorted from other perspectives than the one of the projector.

Therefore, if the camera is not aligned with the projector, the acquired images will have

the light pattern distorted according to the distance of the reflecting object surface.

The depth of the acquired scene can be computed from the amount of distortion. One

of the drawbacks of this method is the high sensitivity to ambient light. To generate

patterns with a different light from the ambient one, visible red laser (i.e. 660nm) or

infrared (i.e. 760nm) are commonly used [1]. However, structured light still performs

better in darkened rooms. Another issue comes from the usage of one camera, which

may lead to occlusion problems. As an example, it could happen that the projected

8



2.1 Active Systems

(a) (b) (c) (d)

Figure 2.1: Different types of time-of-flight camera: the PMD CamCube 3.0 [73] with

200 × 200 pixels (a), the MESA Imaging SR4000 [63] with 176 × 144 pixels (b), the

Basler ToF Camera [7] having a resolution of 640× 480 pixels, and the ToF camera from

the European Commission funded project ARTTS [5] with 176× 144 pixel (d).

stripes cannot be seen by the camera due to the shape of the illuminated surface.

Eventually, structured light tends perform poorly on highly specular surfaces [64] and

in the reconstruction of fine details.

2.1.3 Time-of-Flight

Time-of-flight (ToF) range cameras are relatively new active sensors which allow the

acquisition of 3D point clouds at video frame rates. Some recent models of ToF cameras

are showed in Figure 2.1. Depth measurements are based on the well-known time-of-

flight principle [34]: the time-of-flight τd is the time that the light needs to cover the

distance d from a light source to an object, and from this object back to the camera.

If the light source is assumed to be located near the camera, τd can be computed as

τd =
2d

c
, (2.1)

where c is the speed of light (c = 3 · 108m/s). According to the camera technology, the

ToF method is suitable for ranges starting from some centimeters to several hundreds

of meters, with relative accuracies of 0.1%. This means that standard deviations in

the millimeter range are realistically achievable at absolute distances of some meters,

corresponding to a time-resolution of 6.6 ps [19].

Two types of ToF cameras are available: pulse-based and phase-based, the latter

better known as continuous wave [82]. The simplest version are the pulse-based ToF

cameras, which directly evaluate τd employing discrete pulse of light emitted by a light
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source and reflected by the target object. In these devices each pixels has an inde-

pendent clock, used to measure the time of travelled laser pulse [72]. Pulse-based ToF

cameras can be implemented by arrays of Single-Photon Avalanche Diodes (SPADs)

[4, 75] or an optical shutter technology [42]. The SPADs high sensitivity enables the

sensor to detect low level of reflected light, therefore inexpensive laser sources with mil-

liwatt power can be used for ranges up to several meters [72]. The advantage of using

pulsed light is the possibility of transmitting a high amount of energy in a very short

time. In this way, the influence of background illumination can be reduced. On the

other hand, these systems must be able to produce very short light pulses with fast rise

and fall times, which are necessary to assure an accurate detection of the incoming light

pulse [89]. Continuous-wave ToF cameras use periodically modulated light sources, and

determine the depth by measuring the phase shift between the emitted and the received

optical signal. In order to measure this shift, continuous-wave ToF are equipped with

special sensors consisting of two quantum wells for every pixel, which store the electrons

generated by the incident photons. These electrons are then sorted by an electronic

switch, implemented as a variable electrical field, into the one or the other quantum

well. The switch is synchronized with the reference modulated signal, thus the number

of accumulated electrons in each quantum well corresponds to one sample of the light

signal [82]. The special pixels used in continuous-wave ToF, sometimes called smart

pixels, are larger than the standard ones, yielding to relatively small image resolution

(e.g. 640× 480 pixels for the Basler ToF Camera [7]).

One of the advantages of these ToF cameras with respect to laser scanners is that

they can acquire 3D images without any scanning mechanism and with higher frame

rate. However, the depth measured from ToF cameras is affected by many errors, a

simplified overview of these problems can be found in [34, 52]. One of the most im-

portant is the photon-shot noise, which accounts for the statistical Poisson-distributed

nature of the arrivals process of photons on the sensor, and affects the measurement

precision. Moreover, the estimated depth of a sensor pixel associated to a depth dis-

continuity area is a combination between the different depth levels of the area, this is

the so-called flying pixels problem. Eventually, ToF cameras are suffering multi-path

propagation, which leads to a wrong estimation of the scene’s depth [82, 90].
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2.2 Passive Systems

In contrast to active systems, passive range imaging systems allow to recover the scene’s

depth without using any external illumination source, they are easily deployable, and

have a lower cost. The drawback is that they require some post-processing steps in order

to compute the depth information. The basis of these system is the passive triangulation

principle: when an object is viewed from two (or more) coplanar viewpoints, the image

as observed from one position is shifted laterally when viewed from another other one.

The distance between these projections, known as disparity, is inversely proportional

to the distance between the object’s point and the cameras.

2.2.1 Stereo Systems

Stereo vision systems use two standard cameras in order to simulate the human binoc-

ular vision and estimate the depth distribution of an acquired scene. An exhaustive

overview of stereo systems can be found in [44, 48]. Figure 2.2 shows the imaging of a

point in a typical stereo setup. In the figure, two pinhole cameras have parallel optical

axes and are laterally shifted by a known distance, the so-called baseline b. Moreover,

the two cameras have the same focal length f . With this configuration, a 3D point

P (X,Y, Z) is projected in the two image planes at the locations xl and xr. Exploiting

similar triangles, the difference between these two projections gives us the disparity

d = ∆x = xr − xl =
f (X + b)

Z
− fX

Z
=
bf

Z
. (2.2)

From the disparity, the point’s depth can be computed by

Z =
bf

d
. (2.3)

In Figure 2.2 we assumed that the two projections have the same vertical coordinate in

the image planes. However, when two images are acquired with a stereo camera this is

not always the case. Figure 2.3 shows the so-called epipolar geometry for a two-frame

stereo setup. The scene point P (X,Y, Z) is projected into the image plane of each

camera in the points pl = (xl, yl) and pr = (xr, yr), respectively. These two points

are called corresponding points (or conjugate points). The two cameras have coplanar

projections centers Cl and Cr, which define the epipolar plane π. The intersections

between the baseline and the image planes Il and Ir define the two epipoles el and

11
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f

Z

X

xl

P (X, Y, Z)
image plane

xr

left camera

right camera

camera aperture

b

Figure 2.2: Imaging of a point in a typical stereo setup (top view of the XZ plane). The

two cameras have the same focal length f , and are displaced horizontally by the baseline b.

Both the optical axes are parallel to the Z axis. The 3D world point P (X,Y, Z) is imaged

on the position xl on the left camera, and on the position xr on the right camera. The

difference of these two projections gives the disparity and, consequently, the depth Z of P

trough Equations 2.2 and 2.3.
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Left view

P (X, Y, Z)

pl
pr

Cl Cr

Right view

el

er

P1

P2

P3

Il

Ir

epipolar plane π

baseline b

epipolar line

Figure 2.3: Eipolar geometry for a stereo camera setup. Given a left image plane Il

with projection center Cl and a right image plane Ir with projection center Cr, the line

connecting Cl and Cr intersects Il at el, and Ir at er. These two intersection points are

called epipoles. The green plane containing Cl, Cr and the 3D world point P is called

epipolar plane. All points lying between P and Cl are projected onto a point pl on Il and

on a line (in red) called epipolar line on Ir, which marks the intersection of the epipolar

plane with Ir. Source: [22].
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er. All the points on the line between P and Cl are projected in Il on pl. For the

right camera, the projections of these points in the image plane Ir lie on the so-called

epipolar line (marked in red in the figure), which is defined by the intersection between

the epipolar plane π and the image plane Ir. For a given point pl, the corresponding

point on the other view can be found by simply searching along the epipolar line in

Ir, reducing the search domain from 2D to 1D, this is also known as the correspon-

dence problem. However, in practical applications the image planes of a stereo pair

are not coplanar. Therefore, a rectification is performed in order to simplify the stereo

matching algorithm. Image rectification transforms each image plane such that pairs of

conjugate epipolar lines become collinear and parallel to one of the image axes (usually

the horizontal one). The rectified images can be thought of as acquired by a new stereo

rig, obtained by rotating the original cameras in order to generate two coplanar image

planes that are also parallel to the baseline. The main challenge of stereo algorithms

is to find the conjugate point of every pixel in the so-called reference image (Il), by

searching through the corresponding horizontal line in the so-called target image (Ir).

The reliability of point matching is fundamental, because mismatching correspondences

lead to wrong depth estimation and gaps in the reconstruction. Stereo algorithms can

be subdivided in three main classes: local, global, and semi-global. This subdivision can

be stripped-down as a trade-off between robustness and low computational complexity.

2.2.1.1 Local Methods

With local methods the disparity of every point in the reference image is computed

by exploiting the local similarity of the intensity values, within a finite window, in

the correspondent row of the target image. One of the most used algorithms is the

so-called fixed window stereo algorithm. With this technique, for each pixel on the

reference image its conjugate is searched using a window centered around the pixel. This

window is compared with other windows of the same size centered around each possible

candidate in the target image, as shown in Figure 2.4. The computed disparity is the

shift associated at the maximum similarity between the values of each pair of windows.

In order to evaluate this similarity a cost function is normally used, the most commons

are sum of squared differences (SAD) [27, 67, 101], normalized cross correlation [11],

and the Census transform [55]. The main limitation of these algorithms lies in selecting

an appropriate window size, which should be large enough to include sufficient intensity
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Cost

Function

M
ax

D
isparity

M
in

D
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Figure 2.4: Fixed window stereo algorithm: the feature from the left image (location

(x0, y0)) is used to find the corresponding feature on the right image by shifting a window

over a disparity range defined by the minimum and maximum disparity. The conjugate

feature is determined by using a cost function which computes the correlation (or the

difference) between the two windows. In this case, the shift corresponding to the minimum

cost defines the disparity of the feature. Source: [104].
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variation and small enough to avoid including scene’s depth discontinuity and having

projective distortions effects.

2.2.1.2 Global Methods

In contrast to local approaches, global methods compute the whole disparity image

D at once by imposing smoothness constraints on the scene’s depth in the form of

regularized energy functions. In general they formulate the problem as a global energy

cost minimization

arg min
D

(Edata (I1, I2, D) + Esmooth (D)) . (2.4)

The term Edata (I1, I2, D), called data term, measures the similarity between the two

images I1 and I2 under the condition of a certain disparity D. The term Esmooth (D),

called smoothness term, is used to regularize the disparity estimation. Generally it is

assumed that the disparity map has smooth regions separated by sharp transition along

object boarders. An example of regularization is the combined adaptive second order

total variation proposed by Lenzen et al. [56, 57] and Papafitsoros [70]. Equation 2.4

leads to an optimization problem which typically has a greater computational than local

methods. To solve this problem, many different methods have been developed, such

as representing the disparity map as a Markov random field [59] which can be solved

by means of belief propagation [86] or using graph cut optimization [16, 17]. Global

methods are more robust than the local ones in textureless areas. On the other hand,

they are computationally expensive, and the final reconstruction is highly sensitive to

the smoothness assumptions, which determine the quality of depth discontinuities at

object contours [87].

2.2.1.3 Semi-Global Methods

Semi-global stereo algorithms use a global disparity model like the global methods,

but they impose constraints only on a portion of the image, in order to reduce the

computational cost. An example of these methods is the semi-global matching from

Hirschmüller [45], which is based on the idea of pixel-wise matching by using mutual

information as matching cost. This algorithm computes many 1D energy functions

along different paths (usually 8 or 16), then the functions are minimized and finally

their costs are summed up. For each point, the chosen disparity corresponds to the
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minimum aggregated cost. As compared to local and global methods, this algorithm is

very fast and works well even with textureless regions.

2.2.2 Multi-View Stereo Systems

The two views case discussed so far can be extended to setups where the target scene

is acquired by more than two different known camera viewpoints, the so-called multi-

view stereo systems, widely described in [84] by Seitz et al.. The acquisition can be

done by simultaneously recording a dynamic scene with a camera array, or sequentially

capturing a static scene with a moving camera. Multi-view stereo techniques exploit

stereo correspondence to recover the full scene geometry, normally as a point cloud,

instead of a single depth map of the reference view. In the last two decades, many multi-

view stereo algorithms were proposed. These algorithms consider a large number of

views, from tens [36, 49, 83, 105] to hundreds or several thousands of images [35, 39, 85].

Among them, Goesele et al. [39] propose an approach which heavily relies on an adaptive

view selection to produce high quality reconstructions. Furukawa and Ponce [36] present

a method that clusters the images into several sets that can be processed in parallel by

generating and propagating a semi-dense set of rectangular patches covering the surfaces

visible in the images. In Chapter 4 a new algorithm for 3D reconstruction from multiple

views will be introduced, and the methods from Goesele et al. and Furukawa and Ponce

will be used for the comparison.
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Chapter 3

Light Fields

In this chapter the background and the mathematical definition of light fields will be

presented. Moreover, it will be shown how light fields can be acquired and used in the

context of image processing, and specifically the relation between the unknown scene

depth and the information contained in a light field video sequence. Eventually, the

structure tensor approach for EPI-lines local slope estimation will be described.

3.1 The Plenoptic Function

The world is made of three-dimensional objects which are filling the space around

them with a dense array of light rays having different intensities. These light rays

are travelling independently through the space, and contain all the information that

characterizes the scene. A light field can be described by the plenoptic function, a

seven-dimensional function, introduced by Abelson and Bergen [2], which allows the

reconstruction of every possible view, at every moment, from every position, at every

wavelength, within the bounds of the space-time wavelength region under consideration.

Its mathematical definition is

P (Θ, φ, λ, t,X, Y, Z), (3.1)

where (X,Y, Z) indicate the position in space of an object point which is hit by some

light, (Θ, φ) describe the direction of one of the point’s reflected rays, λ is the wave-

length, and t denotes the time. In practice, it is possible to use a camera to sample the

plenoptic function: a black and white image of a scene is nothing but the accumulation
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of the light seen from a single viewpoint, at a single time, averaged over the wave-

lengths of the visible spectrum. In fact, when taking an image, one simply records the

intensity distribution P (Θ, φ) within the pencil of light rays passing through the lens.

In the following, we will use the concept of plenoptic function to derive a mathematical

description of a light field.

3.2 The Lumigraph Parametrization

In practical applications, it is not realistic to sample the plenoptic function defined in

Equation 3.1, due to his seven dimensions and the measurement difficulties. However, it

is possible to simplify it in order to reduce the number of dimensions. The first dimen-

sion is the time t, which can be eliminated by considering static scenes. Additionally,

the radiance is usually sampled at three wavelength bands (i.e. red, green, and blue),

so the wavelength λ can be ignored as well. After these simplifications, the plenoptic

function becomes

P (Θ, φ,X, Y, Z). (3.2)

This is a five dimensional function which depends only on the position and the direction

of the light rays, but unfortunately is still not suited for computer graphics. As an

example, placing a sensor to measure the radiance in concave parts of the scene will

probably block the natural illumination. For these reasons, other assumptions have to

be made. In their 1991 paper, Gortler et al. [41] considered the light rays leaving the

convex hull of a bounded object, which are propagating in the free space. These light

rays can be represented with a two plane system: one plane Π of coordinates (s, t)

encoding the camera position in the world coordinate system, and a second plane Ω

of coordinates (x, y) encoding the image plane coordinates. This new representation,

better known as Lumigraph or 4D light field, is defined as

L : Π× Ω→ R, (s, t, x, y) 7→ L(s, t, x, y). (3.3)

A graphical representation of the two-plane parametrization of a light ray is showed

in Figure 3.1. A 4D light field can be considered as a collection of pinhole views, all

located on a common image plane and with parallel viewing direction.
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Figure 3.1: With the two-plane parametrization, a light ray can be specified by its two

points of intersection with two parallel planes. The plane Π encodes the spatial information

and contains the centers of projection of the cameras used to acquire the light field. The

plane Ω encodes the location in the image plane. Let us consider two cameras, with the

coordinates t and y fixed, i.e. t = t∗ and y = y∗, and the centers of projection horizontally

displaced by ∆s (the baseline). The projections of a point P (X,Y, Z) on Ω through (s∗, t∗)

and (s∗+∆s, t∗) are spaced by ∆x. ∆x defines the disparity and is inversely proportional to

the depth of P . This example corresponds to the classical two-frame stereo setup discussed

in Section 2.2.1 Source: [92].

3.3 Epipolar Plane Images

One of the most important applications of light field imaging is extracting the three

dimensional geometry of objects and scenes. In practice, the Lumigraph has to be

sampled by acquiring a set of images from different viewpoints. One way to do this is

separating the 4D light field into horizontal and vertical 3D light fields. Let us consider

Figure 3.1, and assume that a vertical world coordinate t∗ is fixed on the plane Π. A

set of pinhole cameras, all with their center of projections lying on Π, are placed at the

height t∗, horizontally spaced by a fixed baseline ∆s. When the images from all these

cameras are stacked one on top of each other, creating a 3D image volume (s, x, y), a 2D

slice through this volume at a fixed image plane coordinate y∗ equals to the Lumigraph

subspace (s, x). This subspace is known as epipolar-plane image (EPI), and was firstly

defined by Bolles et al. [15]. An example of how an EPI can be extracted from an image

volume is presented in Figure 3.2, for the specific case of horizontal camera motion. It

can be seen that the flow of the pixels motion lies along straight lines in the EPI-space.

The slope of the lines corresponds to the depth of the 3D points on the object tracing

out the lines. As for the two-frame stereo Equation 2.3, the relation between the depth
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Figure 3.2: Representation of a scene acquired with a horizontal 3D light field. Succes-

sive images are stacked into an image volume, and an epipolar-plane image (EPI) can be

obtained by horizontally slicing this volume. The same considerations can be applied for

the vertical 3D light field case. Source: [28].

of a 3D point and the slope of its corresponding EPI-line is

Z =
∆sf

∆x
, (3.4)

where ∆s is the baseline in meters between two neighboring cameras, ∆x is the dispar-

ity, and the focal f is the distance between the two planes Π and Ω.

In a sx-plane, the disparity of an EPI-line is proportional to the slope of the line

itself. Specifically, the disparity corresponds to the shift of line points between two

neighboring views. Figure 3.3 shows a simplified representation of an EPI-line in the

sx-plane. If we define the orientation θ as the angle between the EPI-line and the

s-axis, then the relation between orientation and disparity d is

d =
∆s

∆x
=

1

∆x
= tan θ, (3.5)

where in this case ∆s = 1 px is simply the distance in the EPI space of two neighbouring

views, and ∆x is still the disparity. All the considerations of this section can be applied

to vertical 3D light fields setups, where a set of cameras are vertically displaced at a

fixed coordinate s∗, by simply substituting t with s and y with x.
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Figure 3.3: Schematic representation of an EPI-line in the sx-plane: if two adjacent views

s1 and s2 are considered, the slope of the EPI-line is ∆s/∆x and its orientation equals to

θ = arctan(∆s/∆x).

3.4 Light Field Acquisition

A 4D light field can acquired in many ways. Two of the most common are plenoptic

cameras and camera arrays. Additionally, a light field can be synthetically generated

with computer graphics software. In this section, this acquisition methods will be

briefly described.

3.4.1 Plenoptic Cameras

A plenoptic camera is a special type of camera which allows to capture a 4D light field

by means of a matrix of micro-lenses, which measures the directional distribution of

the light. This type of device, also known as light field camera, was firstly described

by Lippmann [60] in 1908, who called the idea “integral photography”. However, a

plenoptic camera as we know it today is mainly based on the works of Adelson et al. [3]

and Ng et al. [66]. A micro-lenses array is placed at the focal point of the main lens,

between the lens and the image sensor (see Figure 3.4). In this way it is possible to

acquire the angular information of the scene, due to the fact that the light is split

by these micro-lenses. Each micro-lens projects a small sharp image of the the main

lens aperture from different viewing angles, and covers as many pixels underneath it

as possible, without overlapping with other sub-images. The main drawbacks of these

sensors are the small baselines and the lack of resolution in favor of angular information.

Two common light field cameras available on the market are the Raytrix and the Lytro
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(a) (b) (c)(d) (e)

Figure 3.4: Representation of a plenoptic camera: camera sensor (a), micro-lens ma-

trix (b), main lens (c), camera aperture (d), and the acquired object (e).

(a) (b)

Figure 3.5: Two commercial plenoptic cameras: the Raytrix [74] (a), and the Lytro [61]

camera (b).

cameras, showed in Figure 3.5.

3.4.2 Camera Arrays and Gantries

Looking back at Figure 3.1, the sampling of the Π-plane can be achieved by acquiring

a set of images at different positions. The easiest way to do this is by means of an

array of standard cameras, or a camera gantry. Compared to a plenoptic camera, this

setups have the advantage that the acquired images have a much higher resolution,

and any commercially available camera can be used. Wilburn et al. [97] proposed a

camera array, showed in Figure 3.6 (a), which captures dynamic scenes from different

viewpoints. One of the disadvantages of such configurations is that they are difficult

and expensive to build. Moreover, a highly precise calibration is fundamental in order

to correct alignment errors, and project all the images onto a reference plane [88]. All
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(a)

camera

translation stage

rotation stage

(b)

Figure 3.6: Two systems for acquiring a light field: the multi-camera array from

Wilburn et al. [97] (a), and the camera mounted on a translation stage built in our labo-

ratory (b).

these issues can be avoided by using a single camera mounted on a translation stage

(or vice versa a fixed camera recording an object mounted on a stage). An example

of this acquisition system is showed in Figure 3.6 (b). With the translation stage the

placement problem of the camera arrays is solved thanks to the precision of the stage

itself, which in some cases can provide baselines down to 0.1µm. Moreover, only one

camera is needed, making the setup cheaper and eliminating issues related to the small

variations between the array’s sensors. The obvious drawback of a moving camera is

that only static scenes can be acquired.

3.4.3 Synthetic Light Fields

In order to test and evaluate the quality of our algorithms, we will also use synthetic

light fields. These are light field sequences generated with Blender [14], an open source

3D computer graphics software. Blender allows to acquire synthetic scenes with unlim-

ited, perfectly aligned cameras, which can be placed anywhere in the 3D world space.

Each generated image is completely undistorted, and comes with the corresponding

ground truth depth, a very important information for the evaluation of the 3D recon-

structions. Blender also allows to simulate material properties of the objects, such

as Lambertian and specular surfaces. All these characteristics make Blender the per-

fect tool for fast and inexpensive dataset generation, as well as rapid testing of new
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Figure 3.7: The Halcon calibration plate composed of 49 black dots on a white background

used for the internal camera calibration.

algorithms.

3.5 Capture and Calibration

To capture our light fields we chose the approach of a single camera mounted on a

translation stage. Figure 3.6 (b) shows the acquisition setup, composed of a Owis

Limes 170 [68] high-precision linear stage, and a pco.edge 5.5 [71] USB 3.0 camera

with a resolution of 2560 × 2160 px and pixel pitch 6.5µm/px. Additionally, a high

precision rotation stage (Owis DTM 130N [69]) is used to rotate the target objects

360° in front of the camera. With this setup we will acquire and analyze light fields

generated from two different types of motion: linear and circular. Linear light fields are

captured by linearly moving the camera in front of a fixed object, acquiring one image

for each position of the translation stage. Circular light fields are acquired by keeping

the camera fixed and using the rotation stage to rotate the object in front of it.

After the acquisition, each image has to be processed in order to remove the distor-

tion introduced by the camera lens. To this end, we acquired images of the calibration

plate showed in Figure 3.7, and then used the software Halcon [43] to estimate the

intrinsic camera parameters and correct the images.

3.6 Local Orientation Estimation

A common way to estimate orientations in images is by means of the structure ten-

sor (ST), which was firstly used for this purpose in the work of Bigun and Granlund [10].

This section follows the chapter “Directions in 2D” from the book of Bigun [9].
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Let f (r), with r = (x, y)>, represent an image with some oriented textures, while

the unit vector n represents the direction of these textures in the image (see Fig-

ure 3.8 (a)). The function f is called a linearly symmetric image if its isocurves have

a common direction, i.e. there exists a scalar function of one variable g such that

f (x, y) = g
(
n>r

)
= g (nxx+ nyy) . (3.6)

In this case, isocurves are parallel lines of constant intensity. In an EPI, isocurves

correspond to lines, whose orientation is related to the disparity through Equation 3.5.

In general, an EPI is not linearly symmetric, since it does not have constant dispar-

ity. However, an approximation to a linearly symmetric image can be obtained by

considering a sufficiently small local neighbourhood.

From the previous definition, it derives that a linearly symmetric image can be

generated solely from a 1D function g (t) and a direction n. The magnitude of the

Fourier transform |F (ω)| of such an image is confined to a line through the origin

having direction n. Along this line, |F (ω)| is proportional to the 1D Fourier transform

of the signal g(t). Figure 3.8 shows a synthetic EPI of constant disparity and the

magnitude of its Fourier transform. If the magnitude is zero, than the complex values

be zero as well. The same can be said for the power spectrum |F (ω)|2, which will be

used instead of the magnitude. The estimation of the direction of n is performed by

fitting an axis to the power spectrum of the image f in the total least squares sense

(see Figure 3.9). This is equivalent to finding an axis of direction n that minimizes the

error function

e(n) =

∫
d2 (ω,n) |F (ω) |2 dω, (3.7)

where d(ω,n) is the shortest distance of the point ω to the axis n, i.e. the norm of d,

as shown in Figure 3.9. By rewriting the distance of points from the axis in quadratic

form it derives

d2 (ω,n) = n>
(
Iω>ω − ωω>

)
n =

= n>
[(
ω2
x + ω2

y 0

0 ω2
x + ω2

y

)
−
(
ω2
x ωxωy

ωxωy ω2
y

)]
n.

(3.8)

For notational convenience, Equation 3.7 can be rewritten as

e (n) = n>Jn = n> (I · Trace (S)− S) n, (3.9)
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Figure 3.8: The 2D image f(x, y) = g(k>r), which represents an EPI of constant disparity

(a). The orientation vector n was chosen in order to set the disparity of the lines to 0.5 px.

The subfigure (b) shows the magnitude |F (ω)| of the Fourier transform of f(x, y), where

ω = (ωx, ωy). Here the line along which |F (ω)| is concentrated has the direction of n.

|F |2

ωy

ωx

ω d

n

Figure 3.9: Visual representation of the power spectrum |F (ω)|2 of an image. Finding

the direction of linear symmetry, i.e. the vector n, equals to fitting an axis to |F (ω)|2 in

the total least squares sense. The vector d is the distance vector of a point ω from this

axis and is orthogonal to n. Source: [9].
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where I is the identity matrix, J is the inertia tensor, and S is the structure tensor of

the image f , defined as

S =

∫
ωω> |F (ω)|2 dω =

(
S11 S12

S21 S22

)
, (3.10)

with

Sij =

∫
ωiωj |F (ω) |2 dω. (3.11)

The matrix S is defined in the frequency domain. Therefore, when computing the

direction in all the local patches of an image, one would have to perform the Fourier

transform multiple times. However, by means of the Parseval’s theorem and the differ-

entiation property of the Fourier transform, Equation 3.10 can be reformulated in the

spatial domain as

Sij =
1

4π2

∫
∂f

∂xi

∂f

∂xj
dx, with i, j : 1, 2 (3.12)

where x1 = x, x2 = y, dx = dxdy, and the integral is a double integral over the 2D

plane. The correspondent matrix form is

S =
1

4π2

∫
∇f ∇>f dx. (3.13)

Aside from the 1/4π2 factor, the introduction of a window function w(r) to restrict the

computation to a local neighbourhood leads to the same definition given by Jähne [48]:

S =

∫
w
(
r− r′

) [
∇f

(
r′
)
∇>f

(
r′
)]
dr′. (3.14)

This equation is derived by maximizing the squared scalar product between the direc-

tion vector n and the gradient vector ∇f :

(∇>f · n)2 = |∇f |2 cos2(^(∇f,n)), (3.15)

which reaches the maximum when the two vectors are parallel or antiparallel.

The structure tensor associates a 2×2 symmetric matrix to every point in an image,

so that each component Sij is of the same size of the image. From now the notation S

will be used to indicate the matrix

S =

(
S11 S12
S21 S22

)
. (3.16)
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In order to find the optimal orientation, the quadratic form n>Sn has to be maxi-

mized. This can be done by finding the eigenvector of S corresponding to the highest

eigenvalue. As shown by Jähne [48], if we call λ1 and λ2 the eigenvalues of S and

assume, without loss of generality, that λ1 > λ2, three cases arise:

• when λ1 = 0, λ2 = 0, the neighborhood is constant;

• when λ1 > 0, λ2 > 0, the neighborhood changes in all directions;

• when λ1 > 0, λ2 = 0, the neighborhood is linearly symmetric.

The eigenvalues give a measure of the scatter of the spectral energy of f and correspond

to the inertia about the axes defined by the respective eigenvectors. In the last case

(i.e. λ1 > 0, λ2 = 0), we have an ideal local orientation. In fact, the power spectrum

of f is concentrated to a central line, and the error e(n1) equals to 0, where n1 is the

eigenvector of λ1.

In general, it is useful to define a measure to quantify how well an image patch

approximates linear symmetry. Jähne [48] defines the coherence as

c =
λ1 − λ2
λ1 + λ2

=

√
(S11 − S22)2 + 4S2

12

S11 + S22
, (3.17)

which varies between 0 for isotropic structures and 1 in presence of ideal orientations.

The disparity can be computed by determining the local orientation angle θ. Thus

we identify the real orthogonal matrix that diagonalizes S by solving

R−1SR =

(
λ1 0
0 λ2

)
, with R =

(
cos θ − sin θ
sin θ cos θ

)
. (3.18)

By setting the off-diagonal elements of the left side to zero we end up with the formula

for the angle

θ =
1

2
arctan

(
2S12

S11 − S22

)
, (3.19)

where 0 < θ < π.

In an EPI, the angle θ is formed by n1 with the x-axis and it is equivalent to

the orientation of the corresponding EPI-line (see Figure 3.3). Hence, by substituting

Equation 3.19 in Equation 3.5, we obtain the disparity

dy∗,t∗ = tan θ = tan

(
1

2
arctan

(
2S12

S11 − S22

))
. (3.20)
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3.6 Local Orientation Estimation

3.6.1 Classic Structure Tensor

The implementation of the structure tensor for discrete images generally consists of four

steps: an initial smoothing to reduce noise, the gradients computation, the structure

tensor components computation, and the smoothing of these components.

In the first step, a symmetric Gaussian filter Gρ is used, which is obtained by

discretizing the function

Gρ(x, y) =
1

2πρ2
e
−x

2+y2

2ρ2 . (3.21)

A Gaussian has infinite support, but since about 99.7% of the area under a 1D Gaussian

is contained in a region [µ − 3ρ, µ + 3ρ] (where µ is the mean which we set to 0), we

can neglect the coefficients outside this region. The kernel radius of the filter is then

r = d3ρe, yielding a filter kernel of a size [δ × δ], with δ = 2r + 1 = 2d3ρe+ 1.

The gradients can be computed with standard derivative filters, applied horizontally

and vertically. Two of the most common are the 3 × 3 Sobel and Scharr [80] filters,

which compute the derivative in one direction and apply smoothing in the perpendicular

one. The Scharr operator is better suited to estimate the orientation of lines, since it

optimizes the rotational symmetry. The filter masks for the horizontal derivative are

Sobel: Hx =

1 0 −1
2 0 −2
1 0 −1

 , Scharr: Hx =

 3 0 −3
10 0 −10
3 0 −3

 , (3.22)

and in the vertical direction Hy = HT
x . The derivative of image I is thus defined as

Dxi, ρ = I ∗ Gρ ∗Hxi , with i = 1, 2 (3.23)

where x1 = x, x2 = y, and ∗ denotes the convolution. In accordance with Wan-

ner and Goldlücke [94], we call ρ the inner scale of the structure tensor.

Alternatively, the smoothing and differentiation steps can be combined with the

derivative of Gaussian (or Gaussian gradient) filter ∂Gxi, ρ which is obtained by sampling

the function
∂Gρ(x1, x2)

∂xi
= − xi

2πρ4
e
−x

2
1+x2

2
2ρ2 . (3.24)

In this case we will have

Dxi, ρ = I ∗ ∂Gxi, ρ. (3.25)
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The window function w of Equation 3.14 is implemented by convolving the three

structure tensor components with a Gaussian filter Gσ obtained from Equation 3.21.

Wanner and Goldlücke [94] define σ the outer scale. The structure tensor is then defined

as

Sρ, σ (I) =

(
S11 S12
S21 S22

)
=

(
Gσ ∗ (Dx, ρ ·Dx, ρ) Gσ ∗ (Dx, ρ ·Dy, ρ)
Gσ ∗ (Dx, ρ ·Dy, ρ) Gσ ∗ (Dy, ρ ·Dy, ρ)

)
, (3.26)

where · identifies the pointwise multiplication. Eventually, the disparity can be obtained

through Equation 3.20.

3.6.2 Modified Structure Tensor

Another local orientation estimator is the so called modified structure tensor proposed

by Diebold [30]. Even though this method was originally developed to process heteroge-

neous light fields (e.g. image sequences with changing properties between the captured

frames), it is also claimed to yield better results for standard light fields. Differently

from the classic tensor, the modified one replaces the inner Gaussian smoothing by

differentiating the EPI in the x-direction. To this aim, Diebold used a 1D derivative

filter with kernel

Dx =
1

2
[1 0 − 1]. (3.27)

The gradient components are then computed as

Dxi = I ∗Dx ∗Hxi . (3.28)

The horizontal differentiation allows to be more robust to intensity changes along fea-

ture paths, which can result, for example, from changes in illumination across views.

3.6.3 2.5D Structure Tensor

In contrast to the classic and the modified approach, which are applied to a single 2D

EPI, a 2.5D variant of the structure tensor, which considers also the vertical direction

of the image volume, was proposed by Diebold [28]. This method has an additional 1D

smoothing along the y-coordinate, i.e. in the direction perpendicular to the EPIs. This

is implemented by convolving, along the y-direction, the structure tensor components

Sij for each view with a 1D Gaussian kernel of standard deviation σ (outer scale). The

2.5D structure tensor extends the smoothing range from the 2D EPI to the 3D light field
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3.6 Local Orientation Estimation

volume, including also the local image information of neighbouring EPIs. This leads to

more support for the local orientation computation. Therefore, smaller kernels can be

used to achieve results with similar precision to those of the 2D structure tensor. On

the other hand, increasing the support reduces the precision at depth discontinuities.

3.6.4 Refocusing

In general, an EPI-line has to be continuous in order to be correctly estimated by

the local structure tensor. If the disparity between neighbouring views is too large, a

line degenerates into a sequence of disconnected segments. To avoid this, a refocusing

step is needed to ensure that EPI-lines are in the disparity range ±1 px. As described

by Diebold and Goldlücke [29] and Wanner [92], EPI-rows are shifted in the opposite

direction with respect to the center view (see Figure 3.10). In case of datasets with a

total disparity range larger than 2 pixels, the refocus step has to be repeated iteratively.

Eventually, the results of different refocus levels are merged by choosing, for each pixel,

the disparity with the highest coherence.

refocused 2px

dr = 3 db = 1 d′r = 1 d′b = −1

original

Figure 3.10: The original EPI has disparities in the range [1 px, 3 px]. It can be refocused

with a shift of 2 px in order to make disparities lie in the range [−1 px, 1 px]. In the refocused

EPI, the red line with an original disparity dr = 3 px will have a disparity d′r = 1 px, and

the blue line will go from db = 1 px to d′b = −1 px. Source: [92].
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Chapter 4

Depth Reconstruction from

Linear Light Fields

This chapter presents a new method for estimating high quality depth maps from

linear light fields. The approach exploits a coarse slope map generated by computing

the local structure tensor of the EPI, together with a binary edge map of the EPI,

and extracts feature paths, also called trajectories, by using a modified version of the

Hough transform. The result is a set of highly accurate depth maps of the target

scene from all the viewpoints. Since the Hough transform uses binarized EPI images to

retrieve trajectories, it is possible to get rid of the Lambertian hypothesis and process

even datasets with intensity changes along the EPI-lines. In fact, if a feature path

is only partially visible, or its intensity saturates because of a specular reflection, the

Hough transform can still recover the full line. Differently from the structure tensor,

which provides local orientation estimation by only using a portion of the line, with

the Hough transform all the points lying on the line contribute to the detection of the

line itself. Therefore, the proposed approach can be considered a semi-global method.

In the following, Section 4.1 explains the Hough transform, focusing on the specific

case of line detection. The application of this method to linear EPIs, and the proposed

algorithm, are presented in Section 4.2. Eventually, both local structure tensor and

the Hough transform based methods are evaluated for synthetic and real datasets in

Sections 4.3 and 4.4, respectively. Part of the work presented in this chapter has already

been published by G. Manfredi in his Master of Science thesis [62].
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4. DEPTH RECONSTRUCTION FROM LINEAR LIGHT FIELDS

4.1 Hough Transform for Line Detection

The Hough transform [46] is an elegant method for estimating parametrized line seg-

ments in an image. This approach can locate regular curves such as straight lines,

circles, parabolas, ellipses, etc. in an image. In practice, Hough transform is applied on

a binary image, which we obtain with a Canny edge detector [20]. The simplest case is

straight line detection: let (xi, yi) be an image point, all the lines passing through this

point must satisfy the equation

yi = mxi + c, (4.1)

where m and c are the slope and the offset of the line, respectively. The main idea

behind the Hough transform is to consider a straight line not as a collection of image

points (x, y), but as parameters (m, c). These define a parameter space of coordinates

(m, c) where an image point maps to a line. All the points lying on a straight line

in the image space will be mapped onto lines in the parameter space. All these lines

intersect in a point which uniquely defines the parameters of the line in the image.

Therefore, image lines can be detected by simply considering points in the mc-plane

where enough lines intersect. The drawback of this parametrization is that the slope

m of a line approaches infinite for vertical lines. Therefore, in practical applications a

line is expressed in polar coordinates as

ρ = x cos θ + y sin θ, (4.2)

where ρ is the perpendicular distance from the origin to the closest point on the line

(e.g. the vector d in Figure 4.1), and θ is the angle between the x-axis and the d vector.

In general this angle is comprised in a range |θi| ≤ θmax. With this parametrization,

each edge point in the image maps to a sinusoidal curve in the new (ρ, θ) parameter

space, the so called Hough space.

In order to identify lines, the Hough space is discretized in so called cells and initially

populated with zeros. Then each edge point votes, which means it increments by 1 the

cell having coordinates (ρi, θi) with |θi| ≤ θmax, where ρi is the discrete ρ coordinate

whose value is closest to the one computed with Equation 4.2. Once voting is complete,

cells whose values are local maxima or peaks define the parameters for the lines in the

image. Eventually, the disparity of an EPI is computed through Equation 3.20 by using

the orientation θ of a line instead of the structure tensor orientation. Line detection in
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d

x

y

θ

Figure 4.1: Parametrization of a line in polar coordinates: if d is the shortest vector

connecting the origin to the line (to which it is perpendicular), then θ is the angle it

makes with the x-axis and ρ = ‖d‖ is its norm. The line can then be expressed through

Equation 4.2.

EPIs by means of the Hough transform has the advantage of being robust against noise

and unaffected by occlusions of the feature paths. Moreover, the Hough transform is

tolerant to gaps in the edges, because even a partial line can be reconstructed if it has

enough support.

4.2 Application to Linear Light Fields

Given its characteristics, a Hough transform based approach seems ideal to treat linear

light fields. To do this, the first step consists in defining the parameter space (ρi, θi).

For the same reasons explained in Section 3.6.4, only continuous EPI-lines, i.e. within

the ±1 disparity range, can be correctly estimated. Thus, the refocusing procedure

of Section 3.6.4 has to be applied also in this case. That said, it will be set θmax =

arctan(1) = 45◦, so that −θmax ≤ θ ≤ θmax. The sampling of θ is performed by taking

the inverse of the tangent of linearly spaced disparity values. The disparity resolution

can be computed from the height of the EPI, i.e. by the number of views N , and is

defined as

∆d =
1

N − 1
. (4.3)

The discretization of ρ depends on the chosen sensor. Specifically, a sensor with reso-

lution Nx ×Ny pixels yields to ρ ∈ [0, 1, ..., Nx] pixels.

The preliminary step to identify lines using the Hough transform is to generate a

binary edge map of the EPI. Similarly to Criminisi et al. [23] a Canny edge detector is
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4. DEPTH RECONSTRUCTION FROM LINEAR LIGHT FIELDS

applied. The gradient used by the detector is computed with a derivative of Gaussian

filter ∂Gxi, σ as defined by Equation 3.24, where σ is the edge scale.

The problem of determining the extension of a line, i.e. where it is actually visible,

can be solved in various ways. A possible approach would be to find the intersection

of lines using their equations. This would yield a high number of intersection points,

defining as many line segments. Then either all the line segments, or all the intersection

points, would need to be classified in order to determine which segments are visible or

which points are actual intersections, respectively. In fact, a feature path is theoretically

visible in the whole EPI (i.e. in all views), unless it is occluded at some point by another

line with higher disparity, which corresponds to a closer feature.

In this work, we choose a different approach, which adapts a particular imple-

mentation of the Hough transform, the Progressive Probabilistic Hough Transform

(PPHT) [37], to the characteristics of an EPI. The choice of the PPHT was mainly

guided by speed considerations. In fact, for the standard Hough transform, Equa-

tion 4.2 has to be solved for every value of θ for every edge point. Therefore, the

voting process can be a very costly operation, particularly considering that it has to be

repeated for every EPI, i.e. as many times as the rows in a single view (vertical camera

resolution), and even more if several refocusing steps are required. The advantage of

the PPHT is that voting is restricted to a subset of all edge points: to detect a line only

as many points have to vote as are required to bring the value of the corresponding

accumulator cell above a threshold thr.

In the following sections, the general algorithm is described. A list of the parameters

used can be found in Appendix A.1.

4.2.1 Outline

During the processing of an EPI, edge points vote in an order defined by a random

probability distribution. Once a line has been detected, it is processed in two steps.

In the first step the end points are determined based on the edge map: the longest

segment is found which is either continuous or has gaps of a given maximum length.

In the second step, all line points remove their votes (if any) from the accumulator and

are deleted from the edge map, so that they will not vote again.
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Although applying the original algorithm is possible, we decided to leverage the

local orientation provided from the structure tensor. Therefore, we have three inputs:

the edge map from the Canny filter, the local disparity, and the coherence map. The

structure tensor disparity is used to:

(a) reduce the voting range of edge points

(b) control the deletion of points from the edge map in the second step

(c) determine the end points of lines in the disparity map

4.2.2 Voting Range Reduction

To speed up computation and remove noise in the Hough space, it is desirable to restrict

the angle range, over which an edge point pi votes, to a region around the structure

tensor orientation θ′i. In order to determine how large this region should be, it is possible

to use the coherence (defined in Equation 3.17) which characterizes the quality of the

structure tensor estimate. If the coherence ci at that point is low, i.e. below a threshold

cth, pi will vote over the whole angle range. On the other hand, as the coherence grows,

the range can be decreased. In this way, for large coherences (ci ≥ cth) the size of the

search range is determined by a linear function of the coherence. More formally, a point

pi votes over |θ − θ′i| ≤ ∆θ(ci), with

∆θ(ci) = ∆θmin + (θmax −∆θmin)
ci − 1

cth − 1
, (4.4)

where ∆θmin defines the minimum size of the angle range and θmax = 45◦. The com-

parison between the standard Hough space and the one with the structure tensor ini-

tialization is shown in Figure 4.2

4.2.3 Controlled Edge Points Deletion

A common situation is that background lines (lower disparity), which are occluded at

some point, are detected before the foreground line marking the occlusion boundary

(higher disparity). Since in the second step of the algorithm each detected line is deleted

from the edge map, these background lines will also delete points from the boundary

line, making its detection more difficult. In fact, if the accumulator threshold thr is

not low enough, it might be the case that this line, which is of high importance for
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Figure 4.2: On the top, the accumulator representing the Hough space for a synthetic

EPI of constant disparity 0.5 px. The domain of θ is [−45◦, 45◦]. As can be seen, im-

age points map to sinusoidal curves in the Hough space, and these intersect for θ being

equal to the orientation of lines in the image. As expected, maxima can be observed at

θ ≈ 26.57◦ ≈ arctan(0.5). The bottom figure shows the accumulator resulting by re-

stricting the voting range to a region around the structure tensor orientation θ′i. The size

of the range depends on the coherence ci of a point, which leads to the different length of

the curves in the accumulator.
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(a) (b) (c) (d)

Figure 4.3: Controlled edge point deletion: the EPI portion (a) shows a depth disconti-

nuity. With the standard PPHT the line marking the occlusion boundary is overwritten by

background lines (c). The local orientation estimation from the structure tensor (b) can be

used to guide the deletion of the edge points and preserve the occlusion border (d). Note:

the binary edge maps (c-d) are color coded to differentiate background from foreground

lines.

subsequent processing of the disparity map, will not be detected. The optimal solution

would be to first detect foreground lines. This could be implemented by using the local

orientation estimates to define a custom probability distribution, where a point has a

probability of being selected for the voting proportional to its disparity. The task of

redefining a new custom probability distribution for every point has however proven

to be prohibitively slow1. Our solution consists in deleting a point in the edge map

only if the structure tensor’s disparity is smaller than the detected line’s disparity by

a margin.

As an example, let us suppose that a low disparity line is found during voting. Let

us further suppose that this line is occluded at some point and that, in the first step

(end points detection), the detected end point of the line lies on the higher disparity

line marking the occlusion boundary (if the edge map is good this should always be the

case). In the second step (removal of the detected line from the edge map), we do not

want to delete this point (as happens in Figure 4.3 (c)), since it in fact belongs to the

boundary line, and not to the detected one. Therefore we check the disparity returned

by the structure tensor at that point and establish that it is higher than the disparity

of the detected line. In this case we do not delete the point from the edge map, so that

1We tested two implementations of the discrete distribution class, as supplied by the C++

Standard Template Library (STL) [47] and by Boost [79].
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Figure 4.4: This figure shows what can happen if the standard PPHT is applied to an

EPI. The leftmost red line (higher disparity) marks an occlusion boundary, and the region

to its right belongs to a foreground object. This means that the blue lines (lower disparity)

should stop at the boundary. However, if no constraint is enforced it can occur that some

of these lines propagate too far. In the region inside the green circle, it is shown what

happens if the maximum gap is set to 4 pixels, which is less than the distance between the

parallel red lines (foreground): the foreground lines “support” the propagation of the blue

line (background).

it will still cast its votes and/or be a “supporting point” of the foreground line marking

the occlusion boundary, as shown in Figure 4.3 (d).

4.2.4 Controlled Line Propagation

The last feature is needed in cases where lower disparity lines are erroneously propa-

gated over an occlusion boundary (i.e. in a foreground region) due to the sparsity of

the EPI edge map. In fact, if the maximum line gap is larger than the distance of two

neighbouring foreground lines, it can happen that these lines end up “supporting” the

background line. In order to detect this scenario, line points for which the disparity of

the line lies below the structure tensor’s one by a given margin are counted, and if their

number exceeds a threshold the line is marked as “suspect”. This means that a line

should be suspect if it penetrates a region of higher disparity, as shown in Figure 4.4,

a situation that cannot happen in a real EPI. If this is the case, the line is saved for

further processing (see Section 4.2.5), otherwise it is drawn directly in the disparity

map during the second step.
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4.2.5 Handling of suspect lines

The algorithm terminates when the edge map is empty, either because all points have

voted or because they have been removed, as belonging to a detected line. At this

stage, the disparity map already contains all the non-suspect lines, while suspect lines

are saved in a list. This list is sorted by decreasing disparity, i.e. from foreground to

background lines, and lines are drawn in the disparity map from a given point until a

line with a higher disparity, which determines the occlusion point, is met. The main

problem is finding the point from which a line has to be propagated. To this end, the

difference between line’s and structure tensor’s disparities is checked at the two end

points of a line, to determine if the end points yield the correct disparity. Thus, three

cases arise:

1. Both points are correct: the line is propagated from both points.

2. Only one point is correct: the line is propagated from this point.

3. None of the points is correct: the algorithm walks the line until a point is met

where local orientation and line orientation are similar. The line is then propa-

gated from this point in both directions.

4.2.6 Line score

Similarly to the local structure tensor, also the proposed Hough transform approach

needs a quality measure to characterize the reliability of the detected lines. We therefore

define the line score as

line score =
1

2

(
supported points

line length
+

line length

N

)
, (4.5)

where supported points is the number of line points in the edge map, and N is the

number of views, i.e. the EPI height. The line score can be used to merge disparity

maps belonging to different refocusing steps, and to filter out lines with low scores.

As for the coherence, its value lies in the range of [0, 1]. However, the score above

which lines can be considered correct is generally lower, and will be further analyzed

in Section 4.3.
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Figure 4.5: Synthetic EPIs for disparity values of -1, -0.5, 0, 0.5, 1 pixel (from left to

right).

4.3 Synthetic EPIs Evaluation

In this section, an extensive evaluation of the proposed algorithm is presented. Syn-

thetic EPIs of constant disparity are used to compare our method with local structure

tensor approaches.

4.3.1 Synthetic EPIs Generation

To assess the performance of the algorithms, we generate synthetic EPIs of constant

disparity in the range ±1 px, linearly spaced by 0.01 px. Each EPI has a height of

101 pixels, representing 101 views. A synthetic EPI of disparity d = 0 is obtained by

creating an image where each column has a random constant intensity value between 0

and 1. The image is then convolved with a one-dimensional Gaussian filter to mimic the

appearance of a real EPI, where lines have different widths and transitions are smooth.

This image is used to generate EPIs of arbitrary disparity by simply shifting each row

with sub-pixel accuracy (using linear interpolation), where the shift is determined by

the row index. This is the same procedure applied for the refocusing described in

Section 3.6.4. It is important to notice that the slope of a line is determined by a shift

of the pixels between the views, i.e. by the disparity. This means that the orientation

can be detected reliably only for lines having disparities in the range [−1 px,+1 px].

Figure 4.5 shows examples of EPIs for five different disparity values. The synthetic

EPIs are processed with a given algorithm, and the disparity values of the center row

are compared with the ground true value to determine the estimation error. We note

that in our implementation disparity values outside the range [−1 px, 1 px] are rejected.

For each disparity value, 50 EPIs were created to make the results statistically reliable,

giving a total of N = 201× 50 EPIs. Additionally, to better evaluate the robustness of
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4.3 Synthetic EPIs Evaluation

the algorithms, zero-mean Gaussian white noise of variance σ2n was added to the EPIs

(the noise variance refers to intensities in the range [0, 1]).

4.3.2 Bias, Precision and Accuracy

The performance of a disparity estimator can be quantified through three measures:

bias, precision and accuracy [6]. The bias corresponds to the systematic error of an

estimator and is equal to the mean error. On the other hand, the precision represents

the statistical (random) error and can be measured by the variance (or the standard

deviation) of the estimates, meaning that it does not depend on the true value. The

accuracy of an estimator measures both its bias and its precision, as well as the closeness

of the estimates to the true value. A common way to quantify accuracy is through the

mean square error (MSE), as it can be computed as the sum of the squared bias and

the variance. More formally, the MSE for a disparity estimator d with respect to the

ground true disparity gt is defined as

MSE(d) = (Bias(d, gt))2 + V ar(d) = (E(d− gt))2 + E[(d− E(d))2], (4.6)

where E denotes the expected value. In practice, for a disparity map, the MSE is

computed as

MSE = E[(d− gt)2] =
1

P

∑
p

(dp − gtp)2, (4.7)

where dp is the estimated disparity at pixel p, gtp is the ground truth disparity, and P

is the total number of pixels for which both a disparity estimate and a ground truth

value1 exist.

4.3.3 Results

In order to provide a graphical representation of the achievable accuracy, we first show

the box-and-whisker diagrams of the errors. An example of this type of diagram is

shown in Figure 4.6. The central red line of the box, which corresponds to the second

quartile q2, represents the median value of the errors, giving a rough idea of the bias

(as opposed to the mean error, it is less affected by outliers). The extension of the blue

rectangles corresponds to the interquartile range (IQR), i.e. the difference between the

1For synthetic EPIs a ground truth value always exists. This specification is needed later on in

Section 4.4 when discussing actual light field datasets (synthetic and real).
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q1 q2 q3

IQR

whisker outliers

q1− 1.5×IQR q3+ 1.5×IQR

Figure 4.6: Sample box from a box-and-whisker diagram rotated clockwise by 90◦. q1

is the first quartile (25th percentile), q2 the second (median, 50th percentile), and q3 the

third (75th percentile). The region between q1 and q3 is the interquartile range (IQR). The

total extension of the whiskers includes values in the range [q1−1.5×IQR, q3 +1.5×IQR].

Red circles represent outliers.

first quartile q1 (lower edge of the rectangle) and the third quartile q3 (upper edge). The

quartiles q1, q2, and q3 mark the 25th, 50th, and 75th percentile, respectively. This means

that 50% of the errors reside within the IQR. The IQR also gives a rough idea of the

precision of the evaluated method. The black dotted lines extending outside this area

are called whiskers and contain error data in the range [q1−1.5× IQR, q3 +1.5× IQR].

If the data were normally distributed, the whiskers would correspond to approximately

±2.7σ and cover about 99.3% of the data. Values outside this range are considered as

outliers and marked with red circles.

In this section, the proposed Hough transform approach is compared with the struc-

ture tensor, which is implemented using three different derivative filters: Gaussian gra-

dient ([5× 5]), Scharr ([3× 3]), and Sobel ([5× 5]). The Gaussian gradient filter is also

used in the Hough transform approach to compute the structure tensor. Moreover, we

include in the evaluation also the modified structure tensor method from Diebold [30].

Since we are dealing with EPIs of constant disparity, increasing the outer scale σ, and

therefore the window over which the structure tensor is computed, would give increas-

ingly better results, as long as border artifacts are neglected. However, using a too

large window is unrealistic, since in practice an EPI contains different orientations, and

averaging over these would yield to wrong results. In general, the outer scale has to be

chosen based on the size of the features we want to detect. Based on the experiments

of Wanner [92], an optimal inner scale for the gradients ρ of 0.75 is used, whereas the

outer scale σ is set to 1.5. The resulting box-and-whisker diagrams for the structure

tensor estimations are shown in Figure 4.7. From these plots it can be already seen
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(d) Modified

Figure 4.7: Box plots of disparity error for classic structure tensor with 3 derivative filters:

(a) Gaussian gradient [5 × 5], (b) Scharr [3 × 3], and (c) Sobel [5 × 5], for ρ = 0.75 and

σ = 1.5. Box plot of disparity error for modified structure tensor with Scharr derivative

filter and σ = 1.5 (d). To simplify visualization, boxes are shown each 4 disparity values.

that the Sobel filter is the least accurate estimator, whereas the remaining three have

similar performances. The errors produced using the Hough transform approach are

shown in Figure 4.8. Here it can be observed the effect of the angle quantization in

the Hough space. In fact, a disparity value is either estimated exactly (see the median

values centered at zero), or with an error a multiple of the quantization step of θ (i.e.

the disparity resolution). In this specific case, the EPIs have a height of 101 pixels,

which leads to a disparity resolution of 0.01 px.

Figure 4.9 (a) shows the mean errors for each disparity value of the noiseless EPIs.

This plot gives a measure of the estimation’s biases for all the different methods. It can
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Figure 4.8: Box plot of disparity error for Hough transform. Edge scale is 1.5. The local

orientation is computed via classic structure tensor with Gaussian gradient (ρ = 0.75, σ =

1.5). Other parameters: accumulator threshold 40, minimum line length 20, maximum gap

3, cth = 0.9 (see Appendix A.1 for a description of the parameters).

be observed that all the curves have a peculiar behavior around the disparities 0 px,

±0.5 px and ±1 px. This is due to the fact that the EPI-lines are not continuous but

quantized on a discrete pixel grid. Therefore, lines with a disparity of 0 px and ±1 px

can be exactly represented on the grid, i.e. the quantization error is zero, and lines

at ±0.5 px can be approximated relatively well. As a consequence, all the methods

can better detect these orientations. On the other hand, the quantization error is

maximized around the disparities 0 px, and ±1 px, leading to larger errors. Aside from

this phenomenon, the results of the classic structure tensor with Gaussian gradient and

of the Hough transform exhibit the smallest biases. Regarding the other methods, we

can observe how the Sobel filter gives the worst results, whereas the Scharr operator,

which as previously mentioned optimizes rotational symmetry, performs clearly better.

In addition, Figure 4.9 (b) shows the resulting standard deviations of the estimates,

which give a measure of each method’s precision. We can observe that the Hough

transform disparity estimates are roughly as unbiased as the classic structure tensor,

but less precise. This is due to the fact that, differently from the structure tensor,

which produces continuous orientation estimates, the Hough transform discretizes the

disparity space with a certain resolution. The variance of the estimates directly depends

on the disparity resolution defined by Equation 4.3. For 101 pixels EPIs this resolution

is 0.01 px. Figures 4.9 (c) (d) show the mean error and standard deviation for the noisy

EPIs case. Here, a zero-mean Gaussian white noise of variance σ2n = 0.01 was added to
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4.3 Synthetic EPIs Evaluation

each EPI (an example of noised EPI is shown in Figure 4.10). The results show that

the proposed Hough transform method dramatically outperforms the local structure

tensor approaches.

In order to better understand the relation between disparity resolution and quality

of the Hough transform, we applied the proposed method on EPIs with 201 pixels

height. In this way it is possible to discretize the disparity space with a resolution of

0.005 px. The resulting mean error and standard deviation are shown in Figure 4.11,

where they are compared with the previous results on 101 pixels EPIs. The effect of

the new disparity resolution can be noticed especially in the standard deviation plot,

where the 201 pixels EPIs show a more precise estimation (about half of the previous

standard deviation).

A complete overview of the noise’s effect on the disparity estimation is shown in

Figure 4.12. Here the mean disparity error of the classic structure tensor with Gaussian

gradient and the Hough transform are plotted for different noise levels. These figures

demonstrate the noise robustness of the Hough transform approach.

The overall accuracy of the algorithms is evaluated by means of the root-mean-

square error (RMSE), which is computed over all N EPIs as

RMSE =
√

MSE =

√
1

NP

∑
i

∑
p

(di,p − gti,p)2, with i = 1, . . . , N ; (4.8)

the sum is taken over all pixels (excluding the ones within a margin from the border)

of the center rows of all EPIs for all the 201 disparity values. Differently from the

MSE, the RMSE has the same units as the quantity being estimated, which in this case

is pixel. The results are reported in Table 4.1, for both noiseless and noisy EPIs. In

the noiseless case all the local tensor based methods, besides the one using the Sobel

operator, have a higher accuracy than the Hough transform. As previously explained,

this is due to the discretization that the Hough transform applies to the disparity space.

In these experiments the disparity resolution is 0.01 px. Therefore, the resulting RMSE

of 0.0079 px agrees with this value. On the other hand, for the noisy EPIs (which better

represents real EPIs) this discretization effect is negligible, and the Hough transform

approach gives the best result. It could be argued that the structure tensor estimates

are worse but also dense, and that, if we restrict the evaluation to the areas where the
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• Classic ST Gauss. grad. • Classic ST Scharr • Classic ST Sobel • Modified ST • Hough transform
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Figure 4.9: Mean disparity estimation error and standard deviation of the estimates for

noiseless (a-b) and noisy EPIs (c-d): classic structure tensor with Gaussian gradient, Scharr

and Sobel filters, modified structure tensor with Scharr filter, and Hough transform. The

mean error represents the bias, whereas the standard deviation can be used to measure the

precision. In the noiseless case the classic structure tensor with Gaussian gradient and the

Hough transform have the lowest mean disparity errors. Moreover, the tensor methods have

generally a lower standard deviation. In the noisy dataset the Hough transform performs

better than all the tensor methods, both in error and standard deviation.

Figure 4.10: EPI of disparity 0.5 with added zero-mean Gaussian white noise of variance

σ2
n = 0.01 px2.
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• Hough transform 101 views • Hough transform 201 views
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Figure 4.11: Mean disparity estimation error (a) and standard deviation (b) of the

estimates computed with the proposed Hough transform approach from 101 pixels height

(blue curves) and 201 pixels height EPIs (red curves). A higher number of pixels in the

vertical axis allows a more precise angle space sampling, leading to a higher disparity

resolution. For this reason the estimations of the 201 pixels EPIs’ case are more precise

and show a smaller mean error and standard deviation.

Hough transform finds lines, the average error would be lower. Thus, in Table 4.1 also

this case is reported in columns marked with an asterisk (*). In this case it can be

seen that in general, restricting the analysis to “high-coherence” regions reduces the

RMSE of the tensor methods. However, the Hough approach is still the best performing

algorithm in the noisy case.

In Figure 4.13 (a) we analyze what happens to the RMSE of the Gaussian gradi-

ent structure tensor when points having a coherence lower than a threshold are ne-

glected, and what percentage of points lies above the threshold. We do the same in

Figure 4.13 (b) for the Hough transform, where the line score substitutes the coherence.

While for the structure tensor there is no clear value to use as threshold, for the Hough

transform it can be set to 0.45, thereby retaining about 91% of points and reducing the

RMSE from 0.10 px to 0.027 px. This indicates that there is a small number of outliers

which negatively influences the result, but also that the line score is a good criterion

to filter them out while keeping the majority of points.

Eventually, we study the sparsity of the disparity map returned by the Hough

transform. We investigate the number of lines returned by the algorithm, by counting
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(c) Hough (3D view)
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Figure 4.12: Mean disparity estimation errors for classic structure tensor (top) and Hough

transform (bottom) with increasing noise variance (10 levels of noise from σ2
n = 0.001 px2

to σ2
n = 0.01 px2). The Hough transform shows a much higher robustness to noise.

Method RMSE [px]

noiseless noiseless* noisy noisy*

Classic ST Gauss. Grad. 0.0022 0.0022 0.2926 0.2533

Classic ST Scharr 0.0037 0.0045 0.2391 0.2148

Classic ST Sobel 0.0114 0.0135 0.2068 0.1955

Modified ST 0.005 0.0047 0.4429 0.4167

Ours 0.00795 - 0.1042 -

Table 4.1: RMSE of the different methods, for noiseless and noised EPIs (σ2
n = 0.01 px2).

The asterisk (*) indicates that the method is evaluated only in the EPI regions where the

Hough transform gives a result, i.e. a line is found.

52



4.4 Light Field Datasets Evaluation

• RMSE • % of accepted pixels
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(b) Hough transform

Figure 4.13: The plots show how the RMSE can be reduced by filtering out points having

a low certainty measure, for EPIs with additive Gaussian noise of variance σ2 = 0.01 px2.

This is done by thresholding points based on either their coherence for the structure tensor

(a), or their line score for the Hough transform (b). The percentage of accepted pixels for

different threshold values is also shown.

the number of pixels in the center row for which a disparity estimate exists. This is

shown in Figure 4.14 for a noiseless and a noisy EPI. It can be observed that the noise

does not have a critical impact on the number of lines. A fact that emerges from these

plots is that a higher number of correct lines is found at disparities 0 px, ±0.5 px and

±1 px, which is in accordance with what we observed before about the quantization of

lines on the pixel grid and with the lower estimation errors at these disparities.

4.4 Light Field Datasets Evaluation

When dealing with real light field datasets, the output of a reconstruction algorithm

is a disparity map. To evaluate this disparity, we use the peak signal-to-noise ratio

(PSNR):

PSNR = 10 log10
MAX2

MSE
, (4.9)

where MAX is set to the disparity range of the ground truth and MSE is the mean

square error as defined by Equation 4.7. This error measure was chosen because of its

scale independence, which allows comparing results obtained with different disparity

ranges. Additional error measures, such as RMSE and the percentage of bad matching
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• all lines • lines with |err| ≤ 0.01px • lines with err = 0px
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Figure 4.14: Number of lines passing through the center row returned by the Hough

transform. For noiseless EPIs (a) the blue curve shows the total number of lines, whereas

the green one shows the number of lines whose error err = 0 px. For noisy EPIs (σ2
n =

0.01 px2) (b), the blue curve represents all lines, the red one those for which |err| ≤ 0.01 px

and the green one those for which err = 0 px. As previously noted, disparities and thus

errors are quantized, hence there are no errors in the open range [0, 0.01] px. For the

noiseless EPIs the curve with |err| ≤ 0.01 px is not shown since it is very similar to the

one representing all lines. Peaks can be observed at disparities 0 px, ±0.5 px and ±1 px.
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pixels (later defined in Equation 5.11) are reported in Appendix A.2. In the following,

the algorithms are evaluated on synthetic datasets generated with Blender, as well

as on real light fields. The proposed Hough transform algorithm is compared with

the already discussed structure tensor methods (Gaussian gradient, Sobel, Scharr, and

modified) and with the 2.5D structure tensor [28] from Diebold. In order to give a

qualitative idea of the results, only the disparity maps and point clouds most relevant

to the discussion are presented. Further disparity maps and point clouds can be found

in Appendix A.3 and A.4.

4.4.1 Synthetic Datasets

In this section the results from synthetic light field datasets generated with Blender are

presented. For the structure tensor some images are reported, which show the difference

between the estimated disparity map and the ground truth, highlighting regions where

the error is higher. For the Hough transform these images are not shown, as they are

relatively hard to visualize due to the sparse representation.

4.4.1.1 Synthetic Buddha

The first synthetic scene is the Synthetic Buddha dataset. For this light field the

used camera has a resolution of 2560 × 2160 px and a pixel pitch of 6.5µm/px. The

resulting sensor size of 16.64mm has been used also for the other synthetic datasets

presented in the following. A lens with a focal length of 28mm was used. The camera

position and baseline were chosen to fit a given disparity range. All the results refer

to the center view, shown in Figure 4.15. The classic structure tensor with Gaussian

gradient was applied with an inner scale ρ = 0.75 and an outer scale σ = 1.5. The

resulting disparity and coherence maps for a disparity range of 2 px are shown in Fig-

ure 4.16, along with the estimation errors. It can be observed that the structure tensor

estimation is worse at the occlusion boundaries (e.g. the right side of wooden plank) and

in regions with few or texture (some parts of the dice), including dark areas (shadows).

While for texture-less areas there is simply no feature path in the EPI, occlusions rep-

resent a problem for the structure tensor, which averages between the foreground and

background disparities. On the contrary, the Hough transform, with its better edge lo-

calization properties, gives sharp depth discontinuities and less noise in the texture-less

areas. The resulting disparity map of the Hough method is shown in Figure 4.16 (c).
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Figure 4.15: Center view for the Synthetic Buddha dataset (a) and corresponding

ground truth for ∆ d = 2 px (b).

This result is visually complicated to evaluate, especially because of the sparsity of the

disparity image. Therefore, to better visualize the quality of the proposed method, the

point clouds generated from the center view disparities are presented in Figure 4.17.

For the Hough transform the following parameters were used: edge scale 1, accumulator

threshold 17, minimum line length 8, maximum gap 3, cth = 0.9, minimum line score

0.7 (see Appendix A.1 for a description of the parameters).

For a 2 px disparity range, we have d− = 4 px and d+ = 6 px, requiring a single

refocusing step at disparity of 5 px. Since after refocusing this disparity becomes zero,

we expect to have smaller errors around it, according to what we observed in Section 4.3.

This is indeed the case, as indicated in Figure 4.16 (e) by the white horizontal stripe

on the wooden plank (highlighted by the green circle) and on the floor. After the

refocusing, these areas have a disparity of 0 px, where the structure tensor error is

minimized. In the 4 px range case, we have d− = 8 px and d+ = 12 px, leading to three

refocusing steps at 9, 10 and 11 pixels. As in the previous case, in Figure 4.18 three low

error regions (highlighted by the green circles) can be observed around the refocused

disparities.

The PSNR values are shown in Table 4.2 for 41 views. We would expect the

results to improve as the disparity range grows (i.e. the achievable resolution increases).

However, other effects have to be considered as the range increases. For the structure
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Figure 4.16: Synthetic Buddha dataset: classic structure tensor disparity map (a),

coherence map (b), and our Hough transform disparity map (c) for a disparity range of 2 px

and 41 views. In the disparity map white represents an invalid estimate, i.e. outside the

range ±1 px with respect to the disparity used for refocusing. Disparity errors for structure

tensor (d-e). Red represents a positive error, blue a negative one, white zero error, and

black no value. In order to highlight errors at different scales, in (d) the range is clipped

to ±0.05 px and in (e) to ±0.01 px.
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(a) Classic ST Gauss. Grad. (b) Ours

Figure 4.17: Point clouds of the Synthetic Buddha dataset with ∆ d = 2 px: clas-

sic structure tensor with Gaussian gradient and coherence threshold 0.9 (a), and Hough

transform computed with 101 views and line score threshold 0.7 (b). The Hough transform

approach gives better results, especially at depth discontinuities.
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Figure 4.18: Disparity errors of the structure tensor for a disparity range of 4 px and

three refocusing steps. To compute the difference, both estimated disparity and ground

truth have been scaled to fit a 2 px disparity range, and thus the error also refers to this

range; this allows direct comparison with Figure 4.16 (e). To highlight the behavior of the

estimates around the refocused disparities (9, 10 and 11) we clipped the errors to ±0.01 px

and added three green circles.

58



4.4 Light Field Datasets Evaluation

tensor, the area around occlusion boundaries where artifacts occur becomes larger. On

the other hand, for the Hough transform the poorer performance is due to the high

errors that occur around disparities 0 px and ±1 px: three refocusing steps mean that

each of these regions occurs three times.

Method Disparity Range [px]

1.2 2 4

Classic ST Gauss. Grad. 25.66 27.27 27.82

Classic ST Gauss. Grad.* 29.39 30.21 31.35

Classic ST Scharr* 29.67 30.48 31.43

Classic ST 2.5D* 29.69 30.55 31.89

Modified ST* 27.52 28.72 29.52

Ours (41 views) 27.31 28.98 28.86

Ours (101 views) 30.52 30.94 29.56

Table 4.2: PSNR for the Synthetic Buddha scene with different baselines (and there-

fore disparity ranges). The asterisk (*) marks that a coherence threshold of 0.9 has been

applied. For the Hough transform a line score threshold of 0.7 was used.

For the local tensor methods it is sufficient to have enough views so that the filter

kernels are entirely contained in one EPI. Increasing the number of views does not

improve the results. This is not the case for the Hough transform, for which the

disparity resolution, i.e. the resolution of the Hough space, increases with the number of

views. Thus, the same experiment was repeated with 101 views, obtaining, as expected,

a higher PSNR. A different number of views also implies adapting the parameters: the

accumulator threshold was set to 40 and the minimum line length to 20.

In general we can observe how the Hough transform gives the highest PSNR for

disparities requiring a single refocusing step if enough views are used. Among tensor

based methods, the 2.5D variant of the classic structure tensor gives the highest value;

this is expected as the additional smoothing of the tensor components removes noise,

although it does not mean that the disparity map is more accurate.

In order to analyze the noise robustness, Gaussian noise of variance σ2n = 0.01 px2

(referred to RGB intensities scaled to the [0, 1] range) was added to each view in the

same way as in Section 4.3.1. Disparity maps where computed with the classic structure
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4. DEPTH RECONSTRUCTION FROM LINEAR LIGHT FIELDS

tensor and with the Hough transform. In the latter, the used edge scale was set to 4,

in order to get a cleaner edge map. The structure tensor gives a PSNR of 8.71 while

for the Hough transform the PSNR is 16.81. These results confirm that, as observed in

Section 4.3.3, the Hough transform is more robust to noise than the structure tensor.

4.4.1.2 Bronze Man

The synthetic Bronze man model (Figure 4.19) was rendered with a focal length of

50mm and with a baseline of 21.2mm. The 3D model is located between Z+ = 5.8m

and Z− = 6.9m, giving a disparity range of ∆ d = 1.8 px. The acquired object has

the peculiarity of presenting non-Lambertian surfaces, which cause the intensity of a

pixel to change across views. Although for this dataset this effect is not so dramatic, it

still negatively affects the estimates of the classic structure tensor. On the other hand,

this dataset does not have large depth discontinuities, a characteristic that favors local

tensor methods. From Table 4.3 it can be seen that the modified structure tensor gives

the best result. The Hough transform approach gives a lower PSNR in comparison to

the modified structure tensor, but nonetheless it performs better than all the classic

ones.

Method Disparity Range

[1.8 px]

Classic ST Gauss. Grad. 28.69

Classic ST Gauss. Grad.* 32.01

Classic ST Scharr* 30.02

Classic ST 2.5D* 33.22

Modified ST* 36.01

Ours (41 views) 34.9

Table 4.3: PSNR for the Bronze man dataset with a baseline b = 21.2mm

(∆ d = 1.8 px). The asterisk (*) marks that a coherence threshold of 0.9 has been

applied. For the Hough transform a line score threshold of 0.7 was used.

4.4.1.3 Clutter

The Clutter dataset, whose center view is shown in Figure 4.20 (a), has a depth

range between Z+ = 24m and Z− = 40m. It was captured with a 50mm lens and
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(a) Center view (b) Ground truth

(c) Modified ST (d) Ours

9.2 9.4 9.6 9.8 10 10.2 10.4 10.6 10.8 11

Figure 4.19: Bronze man dataset: center view (a), ground truth disparity (b), modified

structure tensor disparity (c), and Hough transform disparity (d). Resolution: 1001 ×
1001 px.
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with two baselines, 39mm and 78mm, yielding to disparity ranges of ∆ d = 2 px

and ∆ d = 4 px, respectively. Although it does not present many reflecting surfaces,

this dataset is very challenging, since it has a lot of fine structures and occlusions.

The disparity maps estimated with the 2.5D structure tensor and the Hough transform

are shown in Figures 4.20 (c) and (d). Table 4.4 reports the PSNR values. Like in

the Synthetic Buddha dataset, which also has many occlusions, the best scoring

method for ∆ d = 2 px is the Hough transform, if supplied with enough views (101

in this case). For ∆ d = 4 px so many views could not be acquired, since the frustum

would have been too shallow in relation to the scene. Therefore, for this setup the best

results are obtained by the 2.5D version of the classic structure tensor. As opposed to

the Bronze man dataset, the modified structure tensor gives the lowest score. This

leads to the conclusion that, although the modified structure tensor can handle specular

reflections better than the other methods, this method has difficulties with complicated

structures in the scene.

Method Disparity Range [px]

2 4

Classic ST Gauss. Grad. 21.66 22.82

Classic ST Gauss. Grad.* 25 26.6

Classic ST Scharr* 24.65 26.08

Classic ST 2.5D* 26.29 27.94

Modified ST* 24.58 26.08

Ours (41 views) 24.46 24.62

Ours (101 views) 27.46 -

Table 4.4: PSNR for the Clutter dataset with a baseline of 39mm (∆ d = 2 px) and

78mm (∆ d = 4 px). 101 views could not be acquired with a 78mm baseline because the

frustum would have been too shallow with respect to the object.

4.4.2 Real Datasets

In this section results from three real datasets are presented. One of these is a Bud-

dha head statue, for which “ground truth” data from a structured-light scanner was

available. Additionally, two outdoor scenes are analysed.
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(a) Center view (b) Ground truth

(c) Classic ST 2.5D (d) Ours

6.5 7 7.5 8 8.5 9 9.5 10

Figure 4.20: Clutter dataset: center view (a), ground truth disparity (b = 78mm,

∆ d = 4 px) (b), classic structure tensor 2.5D disparity (c), and Hough transform disparity

for 41 views (d). Resolution: 1024× 768 px.
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4.4.2.1 Buddha Head

The Buddha head sculpture was captured with a 50mm lens. The visible side of

the head has a depth range ∆Z = 18.1 cm, with Z+ = 1.773m and Z− = 1.954m.

The light field was captured with a single camera mounted on a translation stage,

as described in Section 3.4.2. Baselines of b = 4mm (d− = 16.7 px, d+ = 18.4 px,

∆ d = 1.7 px) and 6mm (d− = 25.0 px, d+ = 27.6 px, ∆ d = 2.6 px) were used. For

both cases two refocusing steps were executed during the disparity computation. As

reference, the Buddha’s head was measured with a structured-light scanner. The center

view and the structured-light disparity are shown in Figure 4.21. Using this measure as

ground truth implies that the reliability of the evaluation is affected by the correctness

of the alignment of the estimated and reference point clouds, and by the presence of

holes in the reference mesh. Nonetheless, the ranking of the algorithms based on the

PSNR, shown in Table 4.5, agrees with the one shown in Table 4.3 for the Bronze Man

dataset, even though the statue apparently has Lambertian surfaces. In particular, the

modified structure tensor has the best score, while the Hough transform scores better

than the classic structure tensor, but worse than its 2.5D variant. Unfortunately, as

previously stated, a better PSNR does not necessarily mean that the disparity map

is better, since it cannot measure aspects like the quality of depth discontinuities and

the noise in texture-less areas. Figure 4.22 shows the center view disparities of the two

reconstructions. Moreover, the point clouds are presented in Figure 4.23. Here it is

possible to visualize the improvements of the Hough transform reconstruction, which

again is more precise and less noisy than the other methods.

4.4.2.2 Backyard

The Backyard is a rather challenging dataset, as it presents underexposed noisy areas

and fine detail in the form of the corrugated iron walls of the building (Figure 4.24 (a)).

For the acquisition a 28mm lens was used. 43 views were captured with a baseline of

14mm, yielding a total displacement of 588mm. Approximately, the depth limits of

the scene are Z+ = 17.4m and Z− = 28.5m, which give d− = 2.2 px and d+ = 3.6 px

(∆ d = 1.4 px). Figures 4.24 (b) and (c) show the results for the classic struc-

ture tensor (ρ = 0.75, σ = 1.5) and the Hough transform (same parameter used for
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Method Disparity Range [px]

1.7 2.6

Classic ST Gauss. Grad. 24.4 25.4

Classic ST Gauss. Grad.* 27.69 28.51

Classic ST Scharr* 26.65 27.76

Classic ST 2.5D* 29.79 30.55

Modified ST* 30.81 31.7

Ours (41 views) 28.24 29.27

Ours (71 views) 29.16 -

Table 4.5: PSNR for the Buddha head dataset with a baseline of 4mm (∆ d = 1.7 px)

and 6mm (∆ d = 2.6 px). 71 views could not be acquired with a 6mm baseline because

the frustum would have been too shallow with respect to the object.

(a) Center view
25

25.5

26

26.5

27

27.5

(b) Structured light disparity

Figure 4.21: Buddha head dataset: center view (a) and structured light ground truth

disparity (b = 6mm, ∆ d = 2.6 px) (b). The holes in the ground truth are due to holes

in the reference mesh.
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(a) Modified ST
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18.2
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(b) Ours

Figure 4.22: Buddha head dataset: modified structure tensor disparity (b = 6mm,

∆ d = 2.6 px) (a), and Hough transform disparity map for 71 views (b = 4mm,

∆ d = 1.7 px) (b).

(a) Classic ST (b) Classic ST 2.5D (c) Modified ST (d) Ours

Figure 4.23: Point clouds for the Buddha head dataset with b = 6mm (∆ d = 2.6 px):

classic structure tensor (a), classic structure tensor 2.5D (b), and modified structure tensor

(c). Coherence threshold 0.7 for all the tensor methods. Hough transform computed with

71 views and line score threshold 0.6 (d).
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the synthetic Buddha dataset, except for an edge scale of 1.5). The close-ups in Fig-

ures 4.24 (d) and (e) indicate a better performance of the Hough transform, particularly

in the difficult underexposed areas.

4.4.2.3 Mathematikon

The Mathematikon scene, for which the center view is shown in Figure 4.25 (a), has

a wide depth range, going from Z+ = 5.3m to Z− = 90m. A 28mm lens and

baseline of 8mm were used, yielding d− = 0.4 px, d+ = 6.8 px, and ∆ d = 6.4 px.

To process this light field, six refocusing steps were necessary. The resulting disparity

maps are shown in Figures 4.25 (b) and (c) for the classic structure tensor and for the

Hough transform (for 41 views). In the processing we used the same parameters as

for the backyard dataset. The results highlight two situations in which both methods

struggle at estimating disparities, namely texture-less areas like the vases, which are

essentially solid gray, and horizontal structures, like the upper sections of the steel bike

racks, which are almost parallel to the motion of the camera and do not exhibit any

parallax. The fine structures of the plants can be recovered quite well by both methods.

In the structure tensor disparity map, the white regions above the plants are due to

the fact that the finer vegetation was moved by the wind, causing random patterns in

the EPIs; this phenomenon affects the Hough transform estimates to a lesser extent.

Looking at the close-up of the bike racks (Figures 4.25 (d) and (e)) we can observe how

the fine vertical structures are preserved by the Hough transform, while the structure

tensor blurs them out because of the averaging window.

4.5 Conclusion

We have presented a new semi-global approach for 3D reconstruction from linear light

fields. This method retrieves reliable EPI-lines by exploiting both the benefits of local

and global slope estimation. The global aspect comes from the Hough transform, in

which all the line’s points contribute to increase the value of the accumulation matrix

location corresponding to the real line. The local information from the structure ten-

sor is used to speed-up the process and guide the disparity estimation near occlusion

boundaries. The proposed approach was compared with five variants of the structure

tensor: Gaussian gradient, Scharr, Sobel, modified and 2.5D. Experiments on synthetic
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(a) Center view

(b) Classic ST (c) Ours

(d) Classic ST (close-up) (e) Ours (close-up)

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

Figure 4.24: Backyard dataset: center view (a), disparity maps obtained with classic

structure tensor (b), and with the Hough transform (c). The close-ups (d-e) highlight how

structures in noisy areas are better recovered by the Hough transform.
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(a) Center view

(b) Classic ST Gauss. grad. (c) Ours

1 2 3 4 5 6

(d) Classic ST Gauss. grad. (close-up) (e) Ours (close-up)

1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4

Figure 4.25: Mathematikon dataset: center view (a), disparity maps obtained with

classic structure tensor (b), and the Hough transform (c). The two white spots at the

bottom right are caused by two dust particles on the sensor. The close-ups (d-e) of the

bike racks (with scaled colors) show how vertical edges are better recovered by the Hough

transform. 69
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EPIs demonstrated that our method has a much higher robustness to noise, outper-

forming the local tensor approaches. Moreover, it was shown that the accuracy of the

Hough transform method depends on the number of views (i.e. the EPI’s height),

and it can be improved by simply adding more images to the dataset. Eventually,

all the methods were evaluated on real and synthetic scenes. Our approach showed

better reconstruction than the local methods, especially on complicate datasets with

many occlusions. This is due to the better edge localization properties of the Hough

transform, which lead to sharp depth discontinuity edges and preserve fine details.

In the future, the algorithm could be further improved with respect to occlusion

handling, by computing the intersection points directly from the lines’ equations. Be-

sides precise 3D reconstruction, another application of the presented method could be

material classification based on BRDF estimation. In fact, the intensity variations along

the trajectories could be used to associate the material properties to specific BRDFs.
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Chapter 5

Depth Reconstruction from

Circular Light Fields

Three dimensional reconstruction with linear light fields is based on the fact that scene

points trace straight lines on the EPIs, whose slopes are inversely proportional to the

distance of the point. Unfortunately, the disadvantage of this acquisition setup is that

only one side of the scene can be reconstructed. To have the complete 3D shape, the

target object has to be recorded from four different sides, and then the results have to

be merged for the final reconstruction. This constrain makes the acquisition procedure

long and tedious. Another limitation is that linear light field algorithms are generally

developed for data acquired with standard perspective lenses. However, for certain

specific applications, e.g. precise measurement tasks in optical inspection, telecentric

lenses are better suited. This particular type of lens allows to obtain an orthographic

projection, where two identical objects look the same even if one is closer to the camera

than the other. Thus, a linear light field acquired with a telecentric lens would lead

to EPIs where all the lines have the same slope, making it impossible retrieving any

depth information.

To overcome all the described issues, we extend the semi-global light field approach

presented in Chapter 4 to dataset acquired with a circular motion, termed circular light

fields. A circular light field captures the scene either by rotating the object in front of

the camera, or the camera around the object. In this way it is possible to reconstruct

the full 360° shape with just one continuous acquisition. With this particular setup,

every captured scene point corresponds to a curved trajectory in the EPI. Variations
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(a) (b) (c) (d)

Figure 5.1: The proposed algorithm processes data generated from a circular camera

motion (a), retrieving the trajectories of 3D points in the EPIs (b). The resulting depth

maps can be used to generate a point cloud (c) and a mesh (d) of the target scene.

of the depth lead to sine shaped curves with different amplitudes and phase offsets, as

showed in Figure 5.1. It will be shown that circular light fields can be used to retrieve

depth information even from datasets acquired with a telecentric lens.

The proposed algorithm uses a coarse EPI-slope map, generated with the local

structure tensor, together with a binary edge map of the EPI, to extract trajectories

by using an adapted version of the Hough transform. The result, is a set of highly

accurate depth maps of the target scene from all sides. Since the Hough transform

uses binarized EPIs to retrieve trajectories, it is possible to get rid of the Lambertian

hypothesis and process datasets with strong intensity changes along the EPI-curves.

In fact, even if a trajectory is only partially visible or its intensity saturates because

of a specular reflection, the Hough transform can still recover the full curve. In order

to apply circular light fields to both perspective and telecentric lenses, two slightly

different versions of the algorithm are proposed.

5.1 Circular Light Fields

EPI analysis was extended to the case of circular camera movements by Feldmann et

al. [32]. The acquisition setup is composed of a fixed camera and an object rotating

around a point M aligned with the camera’s optical center C, as shown in Figure 5.2 (a).
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In this section, the image formation of circular light fields is explained, for both ortho-

graphic and perspective camera projection models.

5.1.1 Orthographic Camera

The simplest camera projection is the orthographic projection, which can be obtained

through a telecentric lens. Let P = [X,Y, Z]> be an arbitrary 3D point, assuming a

sensor with square pixels, its projection into image coordinates (x, y) is expressed as

xy
1

 =

m 0 0 xc
0 m 0 yc
0 0 0 1



X
Y
Z
1

 , (5.1)

where m is the telecentric lens magnification divided by the pixel pitch σ, and (xc, yc)

denotes the sensor’s principal point.

Figure 5.2 (a) shows the xz image plane of an orthographic camera and two points

P1 and P2 rotating with two different radii RP1 and RP2 around the rotation center

M with a phase θ. The points have, respectively, a phase offset φP1 and φP2 . From

Figure 5.2 it is possible to define the X, Z components of the generic point P in polar

coordinates as

X = R · sin (θ + φ) (5.2a)

Z = RM −R cos (θ + φ) , (5.2b)

where R is the point’s radius, θ ∈ [0, 2π] is the rotation’s phase, and RM is the distance

between the center of rotation M and the camera optical center C. On Figure 5.2 (b),

the corresponding trajectories of the points P1 and P2 projected onto the image plane

are shown. In general, the trajectory of a point P can be derived from Equations 5.1

and 5.2 as

x = A · sin (θ + φ) + xc (5.3a)

y = H + yc, (5.3b)

where A = m · R is the trajectory’s amplitude in pixel, and H = m · Y is the point’s

height in pixel.
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(a) (b)

Figure 5.2: Orthographic camera: xz-plane showing the projection in the image plane

IP of the points P1 and P2 rotating with a phase θ around M (a); trajectories of the two

points in the EPI xθ-plane, the dots indicate the points of maximum amplitude (b).

It is important to note that y only depends on the height Y of the 3D point (due

to the depth independence of the orthographic projection). Consequently, in the or-

thographic case, the full trajectory of a rotating 3D point is imaged in one EPI. An

example of such a circular light field in shown in Figure 5.3.

From Equations 5.3 it can be seen that any scene point is simply defined by its radius

R and its phase offset φ. With this parametrization, Feldmann et al. [32] defined two

occlusion rules:

1. All the points in the quadrants I and IV will occlude those in the quadrants II

and III if their projection rays are equal;

2. In the quadrants I and IV all the points with a larger radius will occlude those

with a smaller one if their projection rays are equal. Vice versa, for the quadrants

II and III, points with a smaller radius will occlude those with a larger one.

Points moving in the quadrants I and IV correspond to curves with positive slope

( δxδθ > 0), whereas points moving in the quadrants II and III lead to curves with

negative slope ( δxδθ < 0).
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(a) (b)

Figure 5.3: Example of circular light field acquired with a telecentric lens: first image

(a); EPI corresponding to the coordinate y∗ highlighted by the dashed line (b).

5.1.2 Perspective Camera

With a standard lens, a perspective projection is obtained. The pinhole camera model

defines the projection of the 3D point P = [X,Y, Z]> into image coordinates (x, y) as

xy
1

 =

f 0 xc 0
0 f yc 0
0 0 1 0



X
Y
Z
1

 . (5.4)

In this case, due to the projection’s depth dependency, the sinusoidal trajectories of

Section 5.1.1 are slightly distorted. If the generic 3D point P is again considered, its

trajectory can be derived from Equations 5.2 and 5.4 as

x = f · R sin (θ + φ)

RM −R cos (θ + φ)
+ xc (5.5a)

y = f · Y

RM −R cos (θ + φ)
+ yc, (5.5b)

where f is the focal length. Figure 5.4 shows the trajectories’ x components for different

rotation radii, and the y-components for different rotation radii and Y -coordinates, as

a function of the rotation phase θ. For the perspective case, the trajectory of a point

does not completely lie in the xz-plane, as it was in the orthographic projection, but

is also moving in the y-direction during the rotation.
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(a) (b)

Figure 5.4: Perspective camera: trajectories with increasing radius in the xθ-plane (a),

the dots indicate the points of maximum amplitude; trajectories with increasing radius and

different height Y in the yθ-plane (b).

5.2 Hough Transform for Orthographic Camera

As already explained in Section 4.1, the Hough transform can locate regular curves

such as straight lines, circles, parabolas, and ellipses in an image. It has the advantage

of being robust against noise and unaffected by occlusions or gaps in the trajectory.

Also for circular light fields, the Hough transform works with binary images computed

with a Canny edge detector [20]. When looking at Equations 5.3 and 5.5 it is clear that

a Hough transform based approach could be used to retrieve such parametrized curves

from video sequences acquired with a circular motion. Specifically, the orthographic

projection case of Equations 5.3 can be correctly solved by analyzing a single EPI.

On the contrary, the perspective projection case of Equations 5.5 can have only an

approximated solution by analyzing EPI like slices, due to the fact that a point changes

its y-coordinate during the rotation. In the following, we describe the general Hough

transform algorithm for orthographic circular light fields. The perspective circular

approximation will be explained in Section 5.3.

5.2.1 Hough Space Generation

With the parametrization of Equation 5.3a each EPI-trajectory t (i.e. a 3D point) can

be associated with a pair (At, φt). The (A, φ) plane is termed Hough space H. The
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occlusion ordering rule 1 imposes that two Hough spaces have to be computed in order

to identify the trajectories: a Hough space H1 for trajectories in the quadrants (I, IV),

and a Hough space H2 for the ones in quadrants (II, III). The two Hough spaces are

discretized into cells and initially populated with zeros. This discretization depends

on the chosen sensor and the acquired images. Specifically, a sensor with resolution

Nx ×Ny pixel yields to amplitudes A ∈ [0, 1, ..., Nx/2]. On the other hand, the phase

offsets are determined by the number of images N , and are φ ∈ [0, 2π/N, ..., 2π]. In

fact, each image corresponds to a rotation angle of 2π/N , which defines the phase

resolution. Now that the Hough spaces are defined, each non-zero point i of the EPI

binary image has to vote by incrementing of 1 the cell having coordinates (Ai, φi) in

the correct Hough space. In order to determine if an edge point is related to H1 or H2,

i.e. the trajectory point is in the (I, IV) or (II, III) quadrants, the local slope of the

EPI-image is computed with the structure tensor: points with positive slope belong

to the quadrants (I, IV), whereas points with negative slope belong to the quadrants

(II, III).

In the voting procedure, for each edge point in the EPI binary image, its coordinates

(xi, θi) identify a rotation phase θi and a point coordinate xi, i.e. the amplitude of the

possible trajectory at θi. From these two values it is possible to invert Equation 5.3a

and derive the trajectory’s phase offset φ with

φ =


arcsin

(
xi − xc
Ai

)
− θi if

δx

δθ
> 0

arccos

(
xi − xc
Ai

)
− θi +

π

2
otherwise.

(5.6)

This equation has to be solved for all the possible trajectory’s amplitudes Ai ∈ [1, ..., xi]

(with xi ≤ Nx/2), and each resulting pair (Ai, φi) determines the cell in the Hough

space which has to be incremented. Once all the edge points have been processed, cells

whose values are local maxima or peaks define the parameters for the trajectories in

the EPI.

5.2.2 Trajectories Determination

Since the 3D points can have different radii, the corresponding EPI-trajectories will also

have different amplitudes. This leads, in the EPI binary image, to a set of sinusoidal
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Figure 5.5: Orthographic Hough transform: the Hough space H1 for the EPI of Figure 5.3

(a); the corresponding post-processed space (rescaled between 0 and 1) for the local maxima

detection (b).

curves with a different number of points: less points for small amplitude curves, more

points for large amplitude ones. Consequently, in the Hough spaces, the local maxima

corresponding to larger amplitudes A will have a higher cell value than local maxima

corresponding to smaller amplitudes. Moreover, EPI-points with large amplitude can

be fitted to more curves than points with small amplitude. Therefore, the noise in

the Hough space increases with large A, as can be seen in Figure 5.5 (a). In order to

correctly detect all these local maxima, each one of the two Hough spaces has to be post-

processed. The first step consists of removing the low frequencies by subtracting from

H its low-pass filtered version HLP = Gρ ∗H, where Gρ is the Gaussian filter defined in

Equation 3.21. Then, the result is rescaled by multiplying it with a weighting matrix

W which gives more weight to small amplitudes and reduces high amplitudes. All

the columns of W have the same weighting vector: an exponential function e−0.001 ∗
[1, 2, ..., Amax]> was chosen. Eventually, thanks to the post-processing, it is possible to

apply a global threshold (Otsu’s method) to identify all the local maxima. The Hough

space H1 for the EPI of Figure 5.3 and the corresponding post-processed space are

shown in Figure 5.5.

5.2.3 Trajectories Propagation

Each one of the identified local maxima is a pair (A, φ) which defines a trajectory that

will be propagated in the EPI. For this task, the occlusion ordering rules of Section 5.1.1

78



5.2 Hough Transform for Orthographic Camera

are fundamental. To ensure the visibility of the foreground points, all the pairs (A, φ)

from H1 are sorted in descending order of amplitude A, whereas the pairs from H2 are

sorted in ascending order of amplitude (see rule 2). For each trajectory, defined by a

pair (Ai, φi), its x-coordinates are computed with Equation 5.3a. Then, an occlusion

visibility range, based on the rules defined in Section 5.1.1, is used to determine the

phase locations θ, i.e. the EPI vertical coordinates, where the trajectory is visible. This

range differs from H1 to H2, and is defined as

π

2
< θ + φi <

3

2
π for H1

0 < θ + φi <
π

2
∧ 3

2
π < θ + φi < 2π for H2.

(5.7)

For example, the point P1 in Figure 5.2 has φP1 = 0 and a visibility range equal to[
π
2 ,

3
2π
]
, i.e. the quadrants II and III.

In order to take into account already propagated trajectories, and avoid new ones to

overwrite them, an EPI binary mask is introduced. Moreover, to prevent propagation

in wrong areas, trajectories from H1 (H2) are only propagated where the EPI-slopes are

positive (negative). Eventually, the remaining portion of the trajectory can be written

in the EPI, and in parallel into the EPI-mask. These steps are repeated for all the

pairs (A, φ). The first propagated trajectories are the ones related to points belonging

to the quadrants (I, IV), i.e. H1. Then, also the trajectories from H2 are propagated

(see rule 1). The propagation procedure is summarized in Algorithm 1.

foreach (Ai, φi) ∈ H do

compute the trajectory coordinates (xi, θi);

remove occluded coordinates;

remove masked coordinates;

remove wrong slope coordinates;

propagate the remaining trajectory portion;

end
Algorithm 1: Trajectory propagation.

5.2.4 EPI-Depth Generation

Once all the trajectories have been propagated, it is straightforward to compute the

depth map. In fact, any 3D point P, which corresponds to a trajectory with parameters
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Figure 5.6: The input EPI-edge image (Canny) and the results of the orthographic Hough

transform: EPI-amplitude, EPI-phase, and EPI-depth image. Note that the depth of a

trajectory changes along the trajectory itself, since the 3D point is moving in space, whereas

amplitude and phase are constant for each trajectory.

(A, φ), has a depth Z, with respect to the origin C, defined by Equation 5.2b, with

R = m·A. The results of the orthographic Hough transform for the EPI of Figure 5.3 (b)

are shown in Figure 5.6.

By applying the described steps to all the EPIs of the image volume (i.e. for each

y-coordinate), the whole scene can be reconstructed. The final output is a set of sparse

depth images, one for each rotation angle θ.

5.3 Hough Transform for Perspective Camera

When a standard perspective camera is considered, Equations 5.5 show that a trajectory

is not confined in a single EPI, but also moves in the yθ-plane, leading to a curve through

the whole 3D image volume. The y-shift increases with the distance between a 3D point
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and the horizontal plane through the camera’s optical center, where there is no shift.

Therefore, in order to find a trajectory, a 3D search in the full image volume should be

performed, as described by Feldmann et al. [32]. In this section, the Hough transform

approach is adapted to the perspective projection case. In order to continue using EPI

like slices, we propose an approximate solution which neglects the y-shift. Even though

the full trajectory is not available, a portion of it is always visible in the EPI. One of the

advantages of the Hough transform is that even a portion of a curve can be retrieved if

it has enough support. Therefore, it is possible to reconstruct the EPI-trajectories and

achieve good results even with this approximation. The algorithm for the perspective

case is similar to the orthographic one, with a few differences described in the following.

5.3.1 Hough Space Generation

As in the orthographic case, the discretization of the Hough spaces depends on the

chosen sensor and the acquired images. In this case, the relation between amplitude A

in pixel and radius R in meters is defined in [33] as

R = 2 ·
RM tan

(
1/
(
2FOV

))
·A√

4
(
tan

(
1/
(
2FOV

)))2 ·A2 +N2
x

, (5.8)

where FOV = 2 arctan ((σ ∗Nx) /2f) is the field of view. With this formula it is possi-

ble to associate the correct radius value to each trajectory’s amplitudeA ∈ [0, 1, ..., Nx/2].

In the perspective case, the behavior of a trajectory in the xz image plane is de-

termined by Equation 5.5a. Therefore, in the voting procedure this equation has to be

solved in order to find the trajectory’s phase offset φ from the EPI binary image point

(xi, θi). We chose to invert the equation by means of a look-up table. The trajecto-

ries determination via local maxima detection follows the same procedure used for the

orthographic case in Section 5.2.2.

5.3.2 Trajectories Propagation

Once a trajectory is determined, its amplitude A (radius R) and phase offset φ are used

to compute its coordinates through the EPI. The propagation procedure is similar to

the one described in Section 5.2.3, with two differences:

1. The x-coordinates are computed with Equation 5.5a;
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2. The trajectories are no longer perfect sines. As can be seen in Figure 5.4(a), three-

dimensional points with larger radius R deviate more from the ideal sinusoidal

curve. The phase of the maximum amplitude, which determines the occlusion

visibility range is

φmax = arccos (R/RM ) . (5.9)

From this peak it is possible to determine the segments where the trajectory is

visible and can be propagated.

The remaining steps are the same as in Algorithm 1. Eventually, the depth maps are

computed by projecting every 3D point into each camera’s image plane, taking into

account the perspective projection.

5.4 Experiments and Results

To evaluate the quality of the reconstruction, tests with both synthetic and real datasets

were performed. The result of the proposed algorithm are a set of depth images, one

for each rotation angle θ, which can be converted into a point cloud. Afterwards,

it is possible to generate a mesh from the point cloud. To this end, we used the

Poisson Surface Reconstruction of [50]. The same meshing procedure was employed to

generate meshes from the point cloud obtained with two recent publicly available multi-

view algorithms. The first is the patch based method Clustering Views for Multi-view

Stereo (CMVS) from Furukawa and Ponce [36], which has an optimized view selection

that discards some images due to the small baseline. The second is the Multi-View

Environment (MVE) from Goesele et al. [39], which computes per-image depth maps,

later merged in 3D space. For the evaluation, the obtained meshes are aligned with

the ground truth by means of the iterative closest point (ICP) algorithm [8]. In the

comparison, is important to note that the two multi-view methods are designed to

process data acquired with perspective lenses. For all the datasets we report a visual

comparison of the resulting meshes. Additionally, for the synthetic dataset we provide

also quantitative results, since the ground truth is available.

5.4.1 Synthetic Datasets

Similarly to what was presented in Section 4.4.1, we used Blender to generate synthetic

circular light fields of a test scene. The accuracy of the final reconstructions is evaluated
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by means of the one-sided Hausdorff distance [76]. This measure gives the geometric

difference between the reconstructed mesh and the ground truth, and is defined as

sup
x∈X

inf
y∈Y

d (x, y) , (5.10)

where X is the reference mesh (the reconstructed one), Y is the target mesh (the ground

truth), and d(x, y) is the distance between the 3D points x and y. This operation is

performed with Meshlab [21], which searches, for each point x of the reconstructed

mesh X, the closest point y on the ground truth mesh Y . We will report the RMSE in

percentage normalized with respect to the diagonal of the bounding box of the mesh,

a measure that can be always understood without knowing anything about the mesh

units. Additionally, we compute the percentage of bad matching pixels (BadPix) [81] of

the reconstructions. The general definition of the BadPix measure for a disparity map

d and a ground truth disparity gt is

BadPix =
1

P

∑
p

(|dp − gp| > δ) , (5.11)

where dp is the estimated disparity at pixel p, gtp is the correspondent ground truth

disparity, P is the total number of pixels, and δ is the error tolerance. This measure

can be directly applied to the algorithms’ depth maps, as well as the 3D meshes, by

means of the Hausdorff distance.

Note that for computing both RMSE and BadPix, we discarded points with a

distance larger than 5% of the diagonal of the bounding box. In this way outliers are

not considered.

5.4.1.1 Synthetic Buddha Head

In order to evaluate the robustness with respect to specular surfaces, we decided to

use the mesh obtained with the structured light scan of the Buddha head sculpture

(see Section 4.4.2.1). Specifically, we used Blender to generate synthetic datasets by

setting the surface properties to Lambertian and specular. For each type of surface,

two datasets were created by setting the virtual cameras to telecentric and perspective,

for a total of four datasets. All the datasets are composed of 720 images (i.e. one image

each 0.5◦) with a resolution of 1001× 1001 pixel, and pixel pitch σ = 6µm. The focal

length for the perspective camera is f = 18 [mm], whereas the telecentric camera has a
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(a) (b) (c)

Figure 5.7: Synthetic circular light field Buddha head generated with a perspective lens:

one frame for the specular dataset (a). EPIs corresponding to the y-coordinate highlighted

by the yellow dashed line: specular dataset (b) and Lambertian dataset (c). Note the

strong intensity variations in the EPI-trajectories for the specular case.

magnification of 0.1. A frame of the perspective light field, as well as two EPIs showing

the specular and the Lambertian case are showed in Figure 5.7. In addition to the

following evaluation, supplementary figures showing the quality of the reconstructions

are presented in Appendix B.2.

Figure 5.8 shows a visual comparison of the obtained meshes for the telecentric lens

and Lambertian surface. The results are visually quite similar, however our method

seems less noisy than MVE and with more details than CMVS. These impressions will

be later confirmed in the quantitative evaluation.

In the telecentric specular dataset, showed in Figure 5.9, CMVS and MVE have

much more problems due to the non-Lambertian effects on the surface. Especially

CMVS, which has clear errors in the reconstruction. On the contrary, our Hough

transform based approach still gives a very good reconstruction, with much less noise,

especially in the Buddha’s face. This is due to the way the voting procedure of the

Hough transform uses all the available images to find the EPI-trajectories, which can

be retrieved even if they are only partially visible.

The resulting meshes for the datasets acquired with the perspective lens (for both

Lambertian and specular surfaces) are showed in Figures 5.10 and 5.11. Now our

method is using an approximated model (since we are ignoring the y-shift), whereas

MVE and CMVS assume the right pinhole model. Nevertheless, the results are quite
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Dataset PSNR [dB]

Ours CMVS MVE

Telecentric Lambertian 36.24 33.45 33.49

Telecentric specular 35.96 28.08 28.48

Perspective Lambertian 33.62 32.72 32.82

Perspective specular 33.96 27.56 27.55

Table 5.1: Buddha head synthetic datasets: PSNR of the meshes. Our method outper-

forms the others and is not affected by specular surfaces.

similar to the telecentric case. Our method produces superior meshes, more precise

and less noisy, especially for the dataset with specular surface.

The visual results gave us an idea of the algorithms’ quality. However, a quan-

titative evaluation is important to confirm the impressions of the visual comparison.

Table 5.1 shows the PSNR computed through the Hausdorff distance of the meshes

in percentage. Our Hough transform approach is always better than the multi-view

methods. Moreover, our method is robust to specular surfaces. In fact, the PSNR is

almost the same for both Lambertian and specular datasets. Additional error mea-

sures, such as the BadPix and the RMSE of the reconstructed meshes are reported in

Appendix B.2.

Additionally, we evaluate the quality of the reconstruction for all the 360° views. To

this end, we used Blender to generate circular light fields containing the depth maps of

the reconstructed meshes (i.e. with our Hough transform approach, CMVS, and MVE),

and then we compute the BadPix with respect to the ground truth depth for each view.

For this measure, we chose an error tolerance δ = 0.05 [m]. Figure 5.12 shows the plots

for all the four cases; the starting view is the front Buddha face, then the object rotates

clockwise for 360°.

The telecentric camera and Lambertian surface case is showed in Figure 5.12 (a),

where it can be seen that our approach gives the best result for all the views. MVE and

CMVS have very similar performances, and have more bad matching pixels than our

method. It is important to remember that, in this case, both the multi-view algorithms

are using an approximated model, since they were designed for perspective cameras.

Figure 5.12 (c) shows the same plot for the perspective camera and Lambertian surface
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(a) Ground Truth (b) Ours (c) CMVS (d) MVE

Figure 5.8: Buddha head Lambertian dataset acquired with a telecentric camera, mesh

comparison: ground truth (a), ours (b), CMVS (c), and MVE (d). The results are quite

similar, however our Hough transform approach looks smoother than MVE and slightly

more detailed than CMVS.

(a) Ground Truth (b) Ours (c) CMVS (d) MVE

Figure 5.9: Buddha head specular dataset acquired with a telecentric camera, mesh

comparison: ground truth (a), ours (b), CMVS (c), and MVE (d). Our circular light field

approach outperforms the two multi-view algorithms.
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(a) Ground Truth (b) Ours (c) CMVS (d) MVE

Figure 5.10: Buddha head Lambertian dataset acquired with a perspective camera,

mesh comparison: ground truth (a), ours (b), CMVS (c), and MVE (d). As in the tele-

centric case, our method looks slightly better than the other two.

(a) Ground Truth (b) Ours (c) CMVS (d) MVE

Figure 5.11: Buddha head specular dataset acquired with a perspective camera, mesh

comparison: ground truth (a), ours (b), CMVS (c), and MVE (d). Our circular light field

approach outperforms the two multi-view algorithms.
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case. Here the three algorithms perform almost the same, but overall our method is

still the best (even though now we use an approximated model, which ignores the y-

shift). The potential of our Hough transform light field approach can be seen in Figures

5.12 (b) and 5.12 (d), where the BadPix for the two specular datasets (telecentric and

perspective) are presented. The proposed approach dramatically outperforms the multi-

view methods for all the views. It is interesting to notice that for both the specular

datasets, CMVS has a large error around 150°. This angle corresponds to the back

part of the head, which presents many structures and should be easier to reconstruct.

However, the specular surface gives some problems to CMVS, which is failing in this

area.

5.4.2 Real Datasets

Real datasets were acquired both with a telecentric lens (Zeiss Visionmes 105/11) for

the orthographic case, and a standard lens (Zeiss Makro-planar 2/100 ZF.2) for the

perspective one. The former [103] is a telecentric lens with a working distance of

121 [mm] and a magnification of 0.1. The latter [102] is a standard lens with focal

length 100 [mm]. Calibration was performed for both the lenses, in order to remove

distortion from the images and determine the correct rotation center. We used again

the pco.edge 5.5 [71] camera with a resolution of 2560 × 2160 pixel and a pixel pitch

of σ = 6.5µm. Test objects were placed on a high precision rotation stage (Owis DTM

130N [69]), and light fields composed of N = 720 images were acquired. The acquisition

setup, as well as the rotation stage are shown in Figure 5.13. In the following, the

results of two plastic animal figures as well as one highly specular metallic drill bit are

presented.

5.4.2.1 Cat

The results of the orthographic case for the Cat dataset are showed in Figure 5.14.

When looking at the mesh generated with CMVS, it can be seen that it lacks in details,

and the cat’s tail is lost. Also the mesh produced with MVE presents some issues, it is

noisy and with many errors on the surface. Differently from the multi-view methods, our

algorithm provides the a very good reconstruction. For the perspective case, presented

in Figure 5.15, the MVE reconstruction is not available since the algorithm failed with
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(d) Perspective specular

Figure 5.12: Buddha head synthetic datasets: BadPix 0.05 [m] for all the 360° views.

Comparison of our method with CMVS and MVE for four possible cases: telecentric Lam-

bertian (a), telecentric specular (b), perspective Lambertian (c), and perspective specular

(d). Our approach dramatically outperforms the others, especially for specular surfaces.

Note that the scales of the Lambertian cases (a-c) and specular cases (b-d) plots are dif-

ferent.
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(a) (b)

Figure 5.13: Circular light fields acquisition setup: the rotation stage OWIS DTM 130N

(a), and the whole setup with the telecentric lens Zeiss Visionmes 105/11 (b).

this dataset. Our approach produces a result comparable to CMVS, and it is difficult

to determine which is the best reconstruction.

5.4.2.2 Seahorse

Similarly to the Cat dataset, also in the Seahorse dataset our approach outperforms

the multi-view stereo algorithms in the orthographic case. From the images presented

in Figure 5.16 it is clearly visible that the light field method produces a superior mesh.

The comparison is more difficult in the reconstructions from data acquired with the

standard lens, shown in Figure 5.17. Here the three results are very similar, with

our reconstruction showing a more noisy surface. Once again we can say that our

approximation is comparable to the other two algorithms.

5.4.3 Drill Bit

In the third real dataset, we tested the robustness of our algorithm against non-

Lambertian surfaces by reconstructing a Drill Bit. This is a highly specular and

challenging metallic part. Nevertheless, we can precisely reconstruct the object and

correctly retrieve the EPI-trajectories even with strong intensity variations. The re-

sults comparison between our light field approach and the multi-view methods are

reported in Figures 5.18 and 5.19 for the telecentric and perspective case, respectively.

Also for this dataset, the MVE reconstruction algorithm failed in the reconstruction.
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(a) Our Point Cloud (b) Ours (c) CMVS (d) MVE

(e) Our Point Cloud (f) Ours (g) CMVS (h) MVE

Figure 5.14: Cat dataset acquired with a telecentric camera. First view:

our point cloud (a), our mesh (b), CMVS (c), and MVE (d). Second view:

our point cloud (e), our mesh (f), CMVS (g), and MVE (h).
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(a) Our Point Cloud (b) Ours (c) CMVS

(d) Our Point Cloud (e) Ours (f) CMVS

Figure 5.15: Cat dataset acquired with a perspective camera. First view:

our point cloud (a), our mesh (b), CMVS (c). Second view: our point cloud (d),

our mesh (e), CMVS (f). Note: for this dataset the result from MVE is not available.
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(a) Our Pointcloud (b) Ours (c) CMVS (d) MVE

(e) Our Pointcloud (f) Ours (g) CMVS (h) MVE

Figure 5.16: Seahorse dataset acquired with a telecentric camera. First view:

our point cloud (a), our mesh (b), CMVS (c), and MVE (d). Second view:

our point cloud (e), our mesh (f), CMVS (g), and MVE (h).
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(a) Our Pointcloud (b) Ours (c) CMVS (d) MVE

(e) Our Pointcloud (f) Ours (g) CMVS (h) MVE

Figure 5.17: Seahorse dataset acquired with a perspective camera. First view:

our point cloud (a), our mesh (b), CMVS (c), and MVE (d). Second view:

our point cloud (e), our mesh (f), CMVS (g), and MVE (h).
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(a) Ours

Pointcloud

(b) Ours (c) CMVS (d) MVE

(e) Ours

Pointcloud

(f) Ours (g) CMVS (h) MVE

Figure 5.18: Drill Bit dataset acquired with a telecentric camera. First view:

our point cloud (a), our mesh (b), CMVS (c), and MVE (d). Second view:

our point cloud (e), our mesh (f), CMVS (g), and MVE (h).
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(a) Our Point

Cloud

(b) Ours (c) CMVS

(d) Our Point

Cloud

(e) Ours (f) CMVS

Figure 5.19: Drill Bit dataset acquired with a perspective camera. First view:

our point cloud (a), our mesh (b), CMVS (c). Second view: our point cloud (d),

our mesh (e), CMVS (f). Note: for this dataset the result from MVE is not available.
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Figure 5.20: Trajectories analysis for the Drill Bit telecentric dataset: first frame of

the light field (a), and the EPI corresponding to the y-coordinate highlighted by the yellow

dashed line (the object rotates anticlockwise in front of the camera) (b). Five samples of

the founded trajectories are highlighted with different colors. The correspondent grayscale

intensity values of these trajectories are plotted in (c). It can be observed that these

trajectories have similar intensity behaviors, with two specular peaks, due to the two main

illumination units. In particular, trajectory 1 passes through two strong peaks, which are

clearly visible in the EPI, leading to saturation in those areas.

In order to further appreciate the robustness to specular surfaces of the proposed

algorithm, Figure 5.20 shows a frame of the circular light field, as well as an EPI.

In this image the non-Lambertian effects of the metallic surface are visible, with two

clear specular peaks due to the two main lights used to illuminate the scene. This

type of data cannot be correctly resolved by classical multi-view algorithms which

try to find correspondences between the views, assuming color constancy. However,

our approach is able to determine these correspondences in the form of trajectories.

Some of these are highlighted in the EPI, and the correspondent intensity values are

plotted in Figure 5.20 (c). For simplicity, we report the intensity of the grayscale EPI,

rescaled between 0 and 255. Also from this plot the two specular peaks are clearly

distinguishable.
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5.5 Conclusion

We introduced a novel method to recover precise depth information from circular light

fields. Two variants were presented: one for images acquired with telecentric cameras

and the other for standard perspective lenses. Differently from classic linear light

fields, with circular light fields it is possible to reconstruct the full 360° view of the

target scene with just one continuous acquisition. Additionally, they allow retrieving

depth even from image sequences acquired with telecentric lenses, a task which is not

possible with simple linear motion. In this way, also setups that require telecentric

optics can be used to make 3D reconstruction from images without having to change

the lens or placing an additional perspective camera. Our method also overcomes the

limitation to Lambertian surfaces, which many state-of-the-art algorithms have, by

using the Hough transform of binarized EPIs. This leads to a very robust estimation

of the EPI-trajectories, which can be found in presence of specular reflections, noise, or

even wiggles due to some imprecisions in the calibration or in the rotation mechanism.

We demonstrated the quality of the reconstruction by comparing the resulting

meshes of proposed method with two state-of-the-art multi-view algorithms. In case

of synthetic datasets, the availability of the ground truth allowed to quantitatively

evaluate the results. It was showed that our approach always exceeds the quality of

multi-view algorithms, especially in case of non-Lambertian surfaces, were we dramat-

ically outperform the others methods in terms of qualitative and quantitative results.

Further experiments with real datasets demonstrated the quality of our reconstructions.

The robustness against specular surfaces makes our circular light field approach

suitable to many tasks in industrial optical inspection, where 3D reconstruction of

objects with non-Lambertian surface properties is often an issue. Besides 3D recon-

struction, another application is material classification based on BRDF estimation. In

fact, the intensity variation along each trajectory encodes the material properties of

the surface. Therefore, the distribution of these intensities (such as the distributions

showed in Figure 5.20 (c)) can be approximated by mathematical models and associ-

ated to a specific BRDF. Moreover, the presented setup with a fixed light and circular

motion is particularly suited for this type of application. In fact, a rotation is better
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than simple linear motion for BRDF reconstruction, since it leads to a larger angular

variation between the object and the light source.

In order to further improve the algorithm, it would be worth investigating a possible

combination with photometric stereo [98]. In fact, at the moment the algorithm is not

computing, and therefore using, the surface normals. However, the possibility to handle

specular surfaces suggests to exploit this non-Lambertian effects to jointly estimate the

geometry and the slope of the surface, similarly to what was done in previous works

such as [12, 65, 77], in order to get a denser and even more precise final reconstruction.
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Chapter 6

Conclusion

In this thesis we introduced new approaches for 3D reconstruction from light fields

video sequences acquired with two different types of motion. Differently from classical

multi-view stereo systems, light fields allow to get rid of the correspondence problem,

by exploiting the redundancy contained in a densely sampled image sequence, as well

as the internal structures of the EPIs, deriving from each specific motion. In the case

of linear motion, scene points correspond to lines in the EPI, where the slope of the

trajectory encodes the point’s distance to the cameras. On the other hand, we have

seen that for circular motion the scene’s points lead to curved trajectories in the EPI.

Variations of the depth lead to sine shaped curves with different amplitudes and phase

offsets.

We first described our acquisition setup, composed of a high precision motorized

translation stage which is moving a camera with a predefined baseline, to easily acquire

linear light fields. On the other hand, circular light fields were acquired by means of a

rotation stage, which allows to rotate a target object 360° in front of a fixed camera. We

acquired datasets with both a standard and a telecentric lens, to analyse respectively

the two cases of perspective and orthographic projection. For both linear and circular

light fields, additional synthetic datasets were generated with Blender.

After reviewing the state-of-the-art in linear light field 3D reconstruction algorithms,

we introduced a new semi-global approach to estimate lines’ orientation in EPIs. The

proposed method combines the local slope estimation from the structure tensor with the

global information deriving from the Hough transform of the EPI. A quality measure
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(i.e. the line score) was introduced to estimate the reliability of the detected lines. We

compared our method with different structure tensor approaches, showing that we can

achieve better reconstructions, especially in presence of noisy data, where the Hough

transform approach is extremely robust. Moreover, our approach leads to better results

around depth discontinuities (avoiding edge blurring effects of the local tensor meth-

ods), and is able to preserve fine details in the final depth map. Therefore, this approach

is particularly suited for datasets with many occlusions and complicate structures.

We then focused on overcoming the biggest limit of linear light fields, namely the fact

that only one side of the target object can be reconstructed. To this end, we extended

our Hough transform approach to circular light fields, which allow to reconstruct the

full 3D object shape with just one continuous acquisition. An additional advantage

of circular motion is the possibility to retrieve depth information even from sequences

acquired with a telecentric lens. This is particularly useful in applications where this

type of optic is needed (e.g. industrial optical inspection), but at the same time one

wants to obtain a 3D reconstruction without placing an additional perspective camera.

After providing a comprehensive mathematical description of the orthographic and

perspective projection models, we present two variants of the algorithm, which can deal

with video sequences acquired with respectively telecentric and standard perspective

lenses. The output of the algorithms is a point cloud, from which we generate a mesh

of the acquired object. The mesh is then compared with state-of-the-art multi-view

techniques. In the evaluation we showed that our approach outperforms the multi-view

stereo methods for both perspective and orthographic cases. The Hough transform leads

to a very robust estimation of the EPI-trajectories, which can be correctly retrieved

even in presence of specular reflections.

6.1 Limitations and Future Work

The new Hough transform based method for linear light fields has proved to give better

reconstructions than the local structure tensor approaches. It is also robust to noise

and allows to obtain very precise depth maps, especially around depth discontinuities.

One of the limitations of this algorithm is that the detected lines are based on the

EPI-edge map generated with the Canny edge detector. After the reconstruction, this

leads to a sparse disparity map. This disparity map could be post-processed by using a
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global optimization scheme, such as the second order total variation method proposed

by Diebold [28], or by applying bilateral filtering approaches [90, 96]. Moreover, the

Hough transform parameter space leads to a discretisation of the disparity values. For

this reason the resulting depth maps are composed of many fronto-parallel surfaces,

one for each depth level. Also for this issue a filtering procedure to get continuous

depth values would be a possible solution. Another improvement could be a better

handling of the occlusions, which are currently determined by comparing the slope of

the line with the local structure tensor orientation. Instead of this, we could compute

the exact occlusions’ locations by determining where the EPI-lines intersect. Similar

considerations can be applied to the circular light field approach, which is also providing

sparse, discretised, but very accurate depth maps. In Chapter 5 it was shown that the

Hough transform approach is able to deal with specular objects. These type of surfaces

provide an extra information about the shape of the objects. A further development of

the algorithm could be exploiting the intensity variation along the trajectories, showed

for example in Figure 5.20, and hence combine the surface slope (i.e. surface normals)

and geometry (i.e. depth) information in order to generate denser and more precise

reconstructions.

Possible applications of these algorithm are all the tasks where an accurate 3D

reconstruction is required. One example is industrial optical inspection, where the

exact geometry of a production part can be used to decide weather the part is good

or defected. Moreover, the robustness to specular surfaces of the Hough transform

opens up many possible applications and further developments such as the extraction

of the material’s BRDF information by analysing the intensity variations along each

EPI-trajectory. Another possible application scenario is the movie industry, where

accurate depth maps are a fundamental prerequisite for post-production tasks such as

background-foreground segmentation.
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Appendix A

Linear Light Fields

A.1 Hough Transform Parameters

Here we describe the parameters for the Hough transform algorithm for linear light

fields:

• Edge scale: the standard deviation of the derivative of Gaussian filter, defined by

Equation 3.24, that computes the gradient used by the Canny edge detector.

• Accumulator threshold thr: the value above which an accumulator cell (ρi, θi)

has to lie in order for the corresponding line to be detected.

• Maximum gap [px]: the maximum length of gaps in a line. If the gap between

two collinear line segments does not exceed this value, then the segments will be

merged to a single line.

• Minimum line length [px]: lines shorter than this value are discarded.

• Minimum line score: lines having a score below this value are discarded. The line

score is computed through Equation 4.5.

• Coherence threshold cth: edge points whose coherence lies below this threshold

vote over the entire θ range. Otherwise, they vote over a restricted region, whose

size is inversely proportional to the coherence, as defined in Equation 4.4.
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A.2 RMSE and BadPix

Here we report the RMSE and BadPix values for the linear light field datasets. The

RMSE contains essentially the same information of PSNR and is computed through

Equation (4.8). Differently, the BadPix, defined in Equation 5.11, provides the per-

centage of pixels for which the absolute difference between computed disparity and

ground truth is greater than a threshold δ, which we set to 0.05 px. Both metrics are

scale-dependent, which in our case means that they depend on the disparity range.

For this reason, we scale both estimated and ground truth disparity maps so that

the range of the ground truth amounts to 2 px, i.e. a disparity map is multiplied by

2/(d+(GT )− d−(GT )). This range allows a direct comparison of the RMSE with the theo-

retical values obtained in Section 4.3.2. The parameters are those used in Section 4.4.

For the structure tensor results, the asterisk (*) marks that a coherence threshold of

0.9 has been applied.

Synthetic Buddha

RMSE [px] Disparity Range [px]

1.2 2 4

Classic ST Gauss. Grad. 0.10 0.09 0.08

Classic ST Gauss. Grad.* 0.07 0.06 0.05

Classic ST Scharr* 0.07 0.06 0.05

Classic ST 2.5D* 0.07 0.06 0.05

Modified ST* 0.08 0.07 0.07

Ours (41 views) 0.09 0.07 0.07

Ours (101 views) 0.06 0.06 0.07

BadPix(0.05) Disparity Range [px]

1.2 2 4

Classic ST Gauss. Grad. 7.83 5.68 4.05

Classic ST Gauss. Grad.* 3.02 2.11 1.34

Classic ST Scharr* 3.83 2.53 1.44

Classic ST 2.5D* 1.83 1.48 1.08

Modified ST* 1.86 1.53 1.33

Ours (41 views) 10.67 3.94 2.41

Ours (101 views) 0.98 0.90 1.02
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Bronze Man

RMSE [px] Disparity Range

[1.8 px]

Classic ST Gauss. Grad. 0.07

Classic ST Gauss. Grad.* 0.05

Classic ST Scharr* 0.04

Classic ST 2.5D* 0.07

Modified ST* 0.03

Ours (41 views) 0.04

BadPix(0.05) Disparity Range

[1.8 px]

Classic ST Gauss. Grad. 27.59

Classic ST Gauss. Grad.* 20.60

Classic ST Scharr* 29.34

Classic ST 2.5D* 15.96

Modified ST* 3.79

Ours (41 views) 4.55
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Clutter

RMSE [px] Disparity Range [px]

2 4

Classic ST Gauss. Grad. 0.17 0.15

Classic ST Gauss. Grad.* 0.11 0.09

Classic ST Scharr* 0.12 0.10

Classic ST 2.5D* 0.10 0.08

Modified ST* 0.12 0.10

Ours (41 views) 0.12 0.12

Ours (101 views) 0.08 -

BadPix(0.05) Disparity Range [px]

2 4

Classic ST Gauss. Grad. 37.12 28.15

Classic ST Gauss. Grad.* 18.62 12.80

Classic ST Scharr* 21.67 14.17

Classic ST 2.5D* 14.21 10.91

Modified ST* 17.78 12.99

Ours (41 views) 14.21 12.49

Ours (101 views) 8.07 -
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Buddha Head

RMSE [px] Disparity Range [px]

1.7 2.6

Classic ST Gauss. Grad. 0.12 0.11

Classic ST Gauss. Grad.* 0.08 0.07

Classic ST Scharr* 0.09 0.08

Classic ST 2.5D* 0.07 0.06

Modified ST* 0.06 0.05

Ours (41 views) 0.08 0.07

Ours (101 views) 0.06 -

BadPix(0.05) Disparity Range [px]

1.7 2.6

Classic ST Gauss. Grad. 50.10 47.28

Classic ST Gauss. Grad.* 42.93 38.36

Classic ST Scharr* 47.61 43.11

Classic ST 2.5D* 31.69 28.02

Modified ST* 29.05 24.39

Ours (41 views) 45.96 40.10

Ours (101 views) 36.65 -
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A.3 Disparity Maps

In this section additional disparity maps for the linear light field datasets are presented.

(a) (b) (c)

(d)

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6

Figure A.1: Synthetic Buddha dataset with ∆d = 2 px: classic structure tensor with

Scharr derivative filter (a), classic structure tensor 2.5D (b), modified structure tensor (c),

and Hough transform for 101 views (d).

(a) (b) (c)

9.2 9.4 9.6 9.8 10 10.2 10.4 10.6 10.8 11

Figure A.2: Bronze man dataset with ∆d = 1.8 px: classic structure tensor (a), classic

structure tensor with Scharr derivative filter (b), and classic structure tensor 2.5D (c).
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(a) (b) (c)

6.5 7 7.5 8 8.5 9 9.5 10

(d) (e)

3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5

Figure A.3: Clutter dataset with ∆d = 4 px: classic structure tensor (a), classic

structure tensor with Scharr derivative filter (b), and modified structure tensor (c). Dataset

with ∆d = 2 px: Hough transform for 41 views (d) and Hough transform for 101 views (e).

(a) (b) (c) (d)

25 25.5 26 26.5 27 27.5

Figure A.4: Buddha head dataset with ∆d = 2.6 px: classic structure tensor (a),

classic structure tensor with Scharr derivative filter (b), classic structure tensor 2.5D (c),

and Hough transform for 41 views (d).
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(a) (b)

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

Figure A.5: Backyard dataset with ∆d = 1.4 px: classic structure tensor 2.5D (a) and

modified structure tensor (b).

(a) (b)

1 2 3 4 5 6

Figure A.6: Mathematikon dataset with ∆d = 6.4 px: classic structure tensor 2.5D (a)

and modified structure tensor (b).
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A.4 Point Clouds

To better show the differences between local structure tensor methods and the proposed

Hough transform approach, additional point clouds of the reconstructed scenes are

presented in the following figures.

(a) (b) (c)

Figure A.7: Bronze man dataset with ∆d = 1.8 px: classic structure tensor (a), modified

structure tensor (b), and hough transform (c). Coherence threshold 0.9 for all the tensor

methods.

(a) (b) (c)

Figure A.8: Clutter dataset with ∆d = 4 px: classic structure tensor 2.5D (a), modified

structure tensor (b), and hough transform for 41 views (c). Coherence threshold 0.9 for all

the tensor methods.
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Appendix B

Circular Light Fields

B.1 RMSE and BadPix

In this section we report the RMSE values for the Buddha head circular light field

dataset. Additionally, we report also the also the BadPix, computed with an error

tolerance δ = 0.05 [m].

Dataset RMSE [%]

Ours CMVS MVE

Telecentric Lambertian 0.49 0.59 0.56

Telecentric specular 0.45 0.91 0.72

Perspective Lambertian 0.54 0.62 0.59

Perspective specular 0.56 0.91 0.81

Table B.1: Buddha head synthetic datasets: RMSE of the reconstructed meshes in

percentage, normalized by the extent of the bounding box.

Dataset BadPix [%]

Ours CMVS MVE

Telecentric Lambertian 1.63 3.39 3.35

Telecentric specular 1.58 16.58 13.29

Perspective Lambertian 3.04 4.22 3.76

Perspective specular 3.08 20.24 14.34

Table B.2: Buddha head synthetic datasets: BadPix 0.05 [m] of the reconstructed

meshes.
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B.2 Reconstruction Errors

In the following we report a comparison of the reconstruction of the Buddha head

circular light field dataset. The two the multi-view methods CMVS and MVE are

compared with the Hough transform approach by means of meshes where the color

highlights the error on millimeters with respect to the structured light ground truth.

(a) Ours (b) CMVS (c) MVE

(d) Ours (e) CMVS (f) MVE

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Figure B.1: Buddha head Lambertian dataset acquired with a telecentric camera.

Comparison of the reconstruction errors in millimeters: ours (a), CMVS (b), MVE (c).
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(a) Ours (b) CMVS (c) MVE

(d) Ours (e) CMVS (f) MVE

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Figure B.2: Buddha head specular dataset acquired with a telecentric camera. Com-

parison of the reconstruction errors in millimeters: ours (a), CMVS (b), MVE (c).
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(a) Ours (b) CMVS (c) MVE

(d) Ours (e) CMVS (f) MVE

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Figure B.3: Buddha head Lambertian dataset acquired with a perspective came. Com-

parison of the reconstruction errors in millimeters: ours (a), CMVS (b), MVE (c).
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(a) Ours (b) CMVS (c) MVE

(d) Ours (e) CMVS (f) MVE

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Figure B.4: Buddha head Lambertian dataset acquired with a perspective camera.

Comparison of the reconstruction errors in millimeters: ours (a), CMVS (b), MVE (c).
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[60] G. Lippmann. Épreuves réversibles donnant la sensation du relief. In

J. Phys. Theor. Appl., pages 821–825, 1908. Available from: https://doi.org/

10.1051/jphystap:019080070082100. 23

[61] Lytro Inc. [online]. March 2017. Available from: https://store.lytro.com/.

24

[62] G. Manfredi. Depth Estimation from 3D Light Fields. Master’s thesis, Heidel-

berg University, 2016. 35

[63] MESA Imaging SR4000 [online]. March 2017. Available from: http://hptg.

com/industrial/. 9

[64] S. K. Nayar and M. Gupta. Diffuse structured light. In 2012 IEEE Inter-

national Conference on Computational Photography (ICCP), pages 1–11, April

2012. Available from: https://doi.org/10.1109/iccphot.2012.6215216. 9

[65] D. Nehab, S. Rusinkiewicz, J. Davis, and R. Ramamoorthi. Efficiently

Combining Positions and Normals for Precise 3D Geometry. In ACM

SIGGRAPH 2005 Papers, SIGGRAPH ’05, pages 536–543, New York, NY, USA,

2005. ACM. Available from: http://doi.acm.org/10.1145/1186822.1073226.

99

[66] R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Han-

rahan. Light field photography with a hand-held plenoptic camera.

Technical Report CSTR 2005-02, Stanford University, 2005. 2, 23

[67] A. S. Ogale and Y. Aloimonos. Shape and the stereo correspondence

problem. International Journal of Computer Vision, 65(3):147–162, 2005. Avail-

able from: https://doi.org/10.1007/s11263-005-3672-3. 14

[68] Owis Limes 170-600-HiSM [online]. March 2017. Available from: https:

//goo.gl/pZwWd5. 26

126

https://doi.org/10.1007/978-4-431-66933-3
https://doi.org/10.1051/jphystap:019080070082100
https://doi.org/10.1051/jphystap:019080070082100
https://store.lytro.com/
http://hptg.com/industrial/
http://hptg.com/industrial/
https://doi.org/10.1109/iccphot.2012.6215216
http://doi.acm.org/10.1145/1186822.1073226
https://doi.org/10.1007/s11263-005-3672-3
https://goo.gl/pZwWd5
https://goo.gl/pZwWd5


BIBLIOGRAPHY

[69] Owis DTM 130N [online]. March 2017. Available from: https://goo.gl/

IDMrfi. 26, 88

[70] K. Papafitsoros and C. B. Schönlieb. A Combined First and Second

Order Variational Approach for Image Reconstruction. J. Math. Imag-

ing Vis., 48(2):308–338, February 2014. Available from: https://doi.org/10.

1007/s10851-013-0445-4. 16

[71] pco.edge 5.5 [online]. March 2017. Available from: https://goo.gl/ltkn93.

26, 88

[72] D. Piatti. Time-of-Flight cameras: tests, calibration and multi-frame registra-

tion for automatic 3D object reconstruction. PhD thesis, Polytechnic University

of Turin (Italy), 2010. 10

[73] PMD CamCube 3.0 [online]. March 2017. Available from: https://goo.gl/

F9nT6P. 9

[74] Raytrix GmbH [online]. March 2017. Available from: http://www.raytrix.

de/. 24

[75] A. Rochas, M. Gosch, A. Serov, P. A. Besse, R.S. Popovic, T. Lasser,

and R. Rigler. First fully integrated 2-D array of single-photon detec-

tors in standard CMOS technology. IEEE Photonics Technology Letters,

15(7):963–965, 2003. Available from: https://doi.org/10.1109/lpt.2003.

813387. 10

[76] W. Rucklidge. Efficient Visual Recognition Using the Hausdorff Distance.

Springer, 1996. Available from: https://doi.org/10.1007/bfb0015091. 83

[77] R. Sabzevari, V. Murino, and A. Del Bue. PiMPeR: Piecewise Dense

3D Reconstruction from Multi-View and Multi-Illumination Images.

CoRR, abs/1503.04598, 2015. Available from: http://arxiv.org/abs/1503.

04598. 99

[78] J. Salvi, J. Pags, and J. Batlle. Pattern Codification Strategies in

Structured Light Systems. Pattern Recognition, 37:827–849, 2004. Available

from: https://doi.org/10.1016/j.patcog.2003.10.002. 8

127

https://goo.gl/IDMrfi
https://goo.gl/IDMrfi
https://doi.org/10.1007/s10851-013-0445-4
https://doi.org/10.1007/s10851-013-0445-4
https://goo.gl/ltkn93
https://goo.gl/F9nT6P
https://goo.gl/F9nT6P
http://www.raytrix.de/
http://www.raytrix.de/
https://doi.org/10.1109/lpt.2003.813387
https://doi.org/10.1109/lpt.2003.813387
https://doi.org/10.1007/bfb0015091
http://arxiv.org/abs/1503.04598
http://arxiv.org/abs/1503.04598
https://doi.org/10.1016/j.patcog.2003.10.002


BIBLIOGRAPHY
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[95] S. Wanner and B. Goldlücke. Spatial and angular variational super-

resolution of 4D light fields. In Proc. European Conference on Computer

Vision, 2012. Available from: https://doi.org/10.1007/978-3-642-33715-4_

44. 2

[96] O. Wasenmüller, G. Bleser, and D. Stricker. Combined Bilateral

Filter for Enhanced Real-time Upsampling of Depth Images. In VIS-

APP (1), pages 5–12, 2015. Available from: https://doi.org/10.5220/

0005234800050012. 103

[97] B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth,

A. Adams, M. Horowitz, and M. Levoy. High performance imaging

using large camera arrays. ACM Transactions on Graphics, 24:765–776, July

2005. Available from: http://doi.acm.org/10.1145/1186822.1073259. 24, 25

[98] R. J. Woodham. Photometric method for determining surface orienta-

tion from multiple images. Optical engineering, 19(1):191139–191139, 1980.

Available from: https://doi.org/10.1117/12.7972479. 99
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