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Abstract 

Genome instability and its resulting phenotypes has long been studied and found to be a 

key factor for cancer development and treatment success. One of the key processes is 

chromosomal instability (CIN), which results in aneuploidy and is a recurring property of 

cancer cells. It is considered to be a main contributor to tumor heterogeneity. Breast cancer 

is the most common form of cancer in women today and shows aneuploidy in approximately 

75 % of all cases. Forms with a lower association to aneuploidy, e.g. the luminal subtypes 

generally have a better prognosis when compared to basal-like or triple-negative ones, 

which frequently show high rates of aneuploidy. The precursor forms of breast cancer are 

ductal-, and lobular carcinoma in situ, whose early stages show similar rates of aneuploidy 

similar to their invasive later stages. This suggests that aneuploidy is a central mechanism in 

early cancer development and potentially initiation. To test how aneuploidy confers the 

ability to initiate and drive cancer, we use MCF10A cells in a 3D cell culture model, which 

reflects many of the physiological properties of human breast lobules. We introduce 

aneuploidy by downregulating a variety of tumor driver genes that are correlated to CIN in 

cancer and measure the effects on morphogenesis, expression, tumorigenicity, and 

chromatin conformation. 

Using a high-content screening approach, we could identify two genes namely ESPL1 and 

TOP2A that upon knockdown induce abnormal mitosis resulting in aneuploidy. These cells 

develop into disorganized acini, which share features of lobular neoplasia, e.g. no hollow 

lumen and disorganized cell as well as acinus structure. Microarray expression profiles 

revealed a deregulation of breast cancer related genes including CD24, CD44, ALDH1A3 and 

CCND1. Interestingly, the chromosome conformation capture (4C-seq) experiments 

displayed a modified enhancer and CTCF binding landscape for CCND1, which correlated 

with the upregulation of CCND1. However, the deregulated expression was not sufficient to 

transform MCF10A cells to form persistent tumors in mice. 

In conclusion, random aneuploidy influences the chromatin conformation and is capable 

of deregulating cancer driver genes.  This highlights a new mechanism of cancer initiation 

and development; aneuploidy not only provides a tool for evolution but functions also as a 

tumor driver. 
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Abstract figure: Graphical overview of the candidate selection process. 
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Zusammenfassung 

Genomische Instabilität und ihre Ursachen sind wichtige Faktoren in der 

Krebsentstehung zu sein, und beeinflussen den Behandlungserfolg. Häufig äußert sich GIN in 

Form von chromosomaler Instabilität (CIN), wodurch Aneuploidie verursacht wird. 

Aneuploidie wiederum ist eine der Hauptursachen für Krebsheterogenität. Brustkrebs 

beispielsweise ist in 75% der Fälle aneuploid und stellt die häufigste Form von Krebs bei 

Frauen dar. Spezielle Untergruppen wie luminaler Brustkrebs zeigen weniger Aneuploidie 

und haben eine bessere Prognose als basal- oder triple-negative Brusttumoren. Duktale- und 

lobuläre Karzinome in situ werden als Vorstufen von Brustkrebs anerkannt und haben schon 

früh ein Ausmaß an Aneuploidie, das mit invasiven Krebsformen vergleichbar ist. Hieraus 

lässt sich ein wesentlicher Stellenwert bei der Entwicklung, und potentiell auch bei der 

Entstehung von Krebs, ableiten. Um herauszufinden wie Aneuploidie die Krebsentwicklung 

und Entstehung begünstigt, verwenden wir MCF10A Zellen in einem 3D Zellkulturmodell, 

welches Ähnlichkeit mit der physiologischen Brustdrüse aufweist. In dem Modell induzieren 

wir Aneuploidie, indem wir Gene herunterregulieren die mit CIN und Krebs in Verbindung 

gebracht werden und messen die Effekte auf die Morphogenese, Genexpression, 

Tumorigenität und Chromatininteraktion. 

In einem high-content screening Verfahren konnten wir die zwei Gene ESPL1 und TOP2A 

identifizieren, die die Mitose stören, wodurch Aneuploidie verursacht wird. Die aneuploiden 

Zellen entwickeln sich zu Azini, welche lobulären Neoplasien ähneln und ein fehlendes 

Lumen, sowie eine disorganisierte Zell- und Azinusstruktur aufweisen. Diese zeigten bei 

Expressionsversuchen eine Deregulation von CD24, CD44, ALDH1A3 und CCND1 gezeigt und 

zu einer Änderung der Interaktionen von Enhancern und CTCF-Bindestellen geführt. Diese 

veränderten Interaktionen weisen eine Korrelation mit der CCND1 Hochregulierung auf. 

Allerdings hat die induzierte Aneuploidie nicht zu einer Transformation geführt, um 

persistente Tumoren in Mäusen zu bilden. 

Diese Ergebnisse zeigen, dass Aneuploidie die Chromatininteraktionen beeinflusst. Dies 

wiederum bedeutet, dass Aneuploidie nicht nur ein evolutionäres Werkzeug für Krebs ist, 

sondern aktiv krebsrelevante Gene deregulieren kann. 
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1 Introduction 

1.1 General introduction 

In 1914 Theodor Boveri contributed to set the field of cancer genomics and made the 

first groundbreaking assumptions about the influence of aneuploidy on cancer development 

(Boveri, 2008). By examining sea urchin eggs, he discovered that chromosomes can be miss-

segregated and accumulate in the daughter cells. Presuming these chromosomes are 

essential for cellular processes, he concluded that additional copies could lead to process 

deregulation and ultimately result in cancer (Boveri, 2008). 

Today, the greatest obstacles in cancer therapy, besides metastasis, are the 

development of drug resistance upon treatment and non-responding cancers (Holohan et 

al., 2013). The number of patients suffering from such cancers indicates a lack of 

understanding of this disease and its diverse nature (Soto & Sonnenschein, 2012; Vogelstein 

et al., 2013; Hanahan & Weinberg, 2011). In the current view, this is to some extend 

attributable to tumor heterogeneity (Marusyk et al., 2012). Tumor heterogeneity results 

from a complex interplay between the individual genetic and epigenetic background as well 

as genomic instability (GIN). GIN includes structural, numerical, and sequence alterations, 

which are seen in nearly all cancers. 

1.2 Chromosomal instability 

Chromosomal instability (CIN) is a form of GIN where the healthy number and structure 

of whole chromosomes or parts of it cannot be maintained. Besides other mechanisms, this 

can be a result of missegregation of the chromosomes during division ultimately resulting in 

aneuploid cells (Gordon et al., 2012). Though aneuploid cells are more likely to suffer from 

CIN, not all cells that show aneuploidy are chromosomally instable. Many transcriptionally 

highly active cells like the puff-cells in Drosophila melanogaster (Korge, 1975) or somatic 

liver cells (Duncan et al., 2010) and neurons (Rehen et al., 2001) can show some form of 

aneuploidy, while being an important part of the healthy tissue. In a study by Knouse and 

colleagues using single cell sequencing less than 5% of all cells of healthy skin, brain and liver 



 
2 

 

samples showed aneuploidy (Knouse et al., 2014). In the majority of the cases, however, 

aneuploid cells pose a risk towards tumorigenesis (Clemente-Ruiz et al., 2016). 

Aneuploidy is a common feature of many cancers (table 1, Cimini, 2008), and tumors 

diagnosed in early stages often contain aneuploid cells (Ottesen et al., 1995; Wang et al., 

2014). Ottesen and colleagues could show that, independent of molecular subtype, cells 

from ductal carcinoma in situ (DCIS) tissues display high rates of aneuploidy. The frequency 

only slightly increases with progressing tumor stage suggesting an early occurrence. 

Table 1: Prevalence of aneuploid cancers by entities (Cimini, 2008, modified) 

Entity Total aneuploid cancers 

Bladder 157/192 (81.8 %) 

Breast 598/800 (74.8 %) 

Cervix uteri   75/84   (89.3 %) 

Colon 301/340 (88.5 %) 

Corpus uteri 116/165 (70.3 %) 

Liver 110/155 (71.0 %) 

Lung 413/435 (94.9 %) 

Ovary 386/422 (91.5 %) 

Prostate 151/186 (81.2 %) 

Stomach 167/180 (92.8 %) 

 

1.2.2 The converse nature of early CIN 

High degrees of CIN as well as prolonged CIN have been shown to be potent cell death 

initiators (Clemente-Ruiz et al., 2016), even in absence of control mechanisms guided by p53 

(Giam & Rancati, 2015). Conversely, it is proposed to be a key tool for evolution in cancer 

(Clemente-Ruiz et al., 2016). In the current understanding, CIN leads to the generation of a 

karyotypically diverse population that has a higher capability to adapt to environmental 

changes. The shaping of the aneuploid cancer landscape not only includes random gains and 

losses of chromosomes or part of them. Davoli and colleagues describe a misbalance of 

specific regions in the genome correlated to STOP-genes (genes that negatively regulate the 

cell cycle and that are enriched for tumor suppressors, e.g. PTEN, TP53, SMAD4, CDKN2A) 

and GO-genes (genes that positively regulate the cell cycle and are enriched for oncogenes 

e.g. IDH1, BRAF, KRAS, PIK3CA) that drive the selection; a phenomenon called cumulative 
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haploinsufficiency and triplosensitivity (Davoli et al., 2013). In this model the selection of 

specific aberrations in many regions of the genome collectively resulting in aneuploidy is 

driven by tumor suppressors that fail to operate, when there is only one allele left and 

oncogenes that disproportionally increase their oncogenic potential, as soon as there are 

more than 2 alleles. 

The idea of CIN being an initiator, e.g. of colon cancer and retinoblastoma, is supported 

by mathematical models as proposed by Nowak and colleagues (Nowak et al., 2002). In 

another study, using single cell genome sequencing and copy number profiling, the authors 

suggest that TNBC cells acquire aneuploidy early (Wang et al., 2014). After initial selection of 

a stable clone with aneuploid karyotype from a previously unstable cell population, the cells 

start to accumulate mutations with a higher rate. The high mutation rate may then account 

for increased heterogeneity allowing some cells to better survive selective pressure like 

chemotherapy. What exactly drives the higher mutation rate was not further discussed.  

Gao and colleagues propose a similar model where early short bursts of crisis lead to 

punctuated copy number changes (Gao et al., 2016). These changes remain stable, while the 

tumor mass expands. Other authors report a mutual dependence of CIN and mutations (Pino 

& Chung, 2014) or that certain mutations are necessary to induce aneuploidy for the 

progression of cancer (Drost et al., 2015). 

1.2.3 Heterogeneity, drug resistance, and recurrence 

The works of Selmecki and colleagues show that extra copies of key chromosomes can 

confer drug resistance in candida albicans against fluconazole (Selmecki, Forche & Berman, 

2006). The same concept is applicable to mammalian cells. In 2001, Gorre and colleagues 

hypothesize that the mechanism of resistance in their chronic myeloid leukemia samples is 

attributable to a gene amplification (Gorre et al., 2001). Potentially, these amplifications are 

the result of early CIN and subsequent selection of cell populations harboring a variety of 

genetic changes. Such changes can include amplifications as well as translocations, fusions, 

deletions, and mutations that either circumvent cancer inhibition or activate cancer-driving 

processes giving rise to cells that appear to have a spectrum of new properties or abilities. 

The plasticity of such a cell population enables it to adapt to challenges like chemotherapy or 

targeted treatments, the immune system and finally normally lethal levels of CIN. Such a 
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“gain of function” of the cell population mediated by aneuploidy was shown by Sotillo and 

colleagues (Sotillo et al., 2010). Here, MAD2 overexpression in KRAS-driven lung tumors in 

mice leads to an increased tumor volume when compared to cells without MAD2 

overexpression. In addition, aneuploid cells suffering from CIN relapsed significantly earlier 

after KRAS withdrawal and gave rise to highly aneuploid tumors. This suggests that 

aneuploidy is capable of conferring functions that mitigate the loss of previously necessary 

drivers like KRAS overexpression. 

1.2.4  CIN and epigenetics 

Genes are often deregulated when one allele is deleted or amplified. However, this is not 

always the case. One prominent example is CCND1, a gene mainly involved in cell cycle 

progression as well as a broad variety of other pathways. Importantly, CCND1 is often 

upregulated by overexpression or amplification in many cancer entities (Musgrove et al., 

2011). A special case is invasive breast cancer where CCND1 expression does not correlate 

with copy number variations or ploidy here (figure 1, Forbes et al., 2017). 
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Figure 1: CCND1 expression is insensitive against copy number variations and ploidy in invasive breast 

carcinoma (data downloaded from COSMIC). Downregulation: Z-score < -2, upregulation: Z-score > 2. 

This illustrates that aneuploidy alone does not dictate expression levels but relies on 

epigenetic regulation. Mechanistically, it is questionable how aneuploidy could directly 

affect epigenetic regulation, like DNA or histone modifications. However, there is another 

layer of epigenetic regulation, namely chromatin conformation, that is theoretically 

susceptible towards chromatin content changes. Since the development of chromatin 

conformation capture assays like 3C (Dekker et al., 2002), 4C (Simonis et al., 2006) and Hi-C 

(Lieberman-aiden et al., 2009) more insight about chromatin conformation and the 
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correlation to gene regulation could be gained. The theory behind these methods is that 

DNA-DNA interactions are mediated by proteins that bring two DNA loci in proximity to each 

other. These loci are cut by restriction enzymes, purified, ligated and then further analyzed 

using PCR or sequencing methods looking at either interactions of two single loci or even 

multiple loci versus multiple loci. Canela and colleagues could show that DNA-DNA 

interactions that are mediated by CCCTC binding factor (CTCF) and cohesin bound loop 

anchors correlate with translocation breakpoint regions in several cancers (Canela et al., 

2017), thus showing the potential influence on tumorigenesis. Although, aneuploidy is a 

central property in cancer and chromatin capture technologies are extensively employed, 

the influence of aneuploidy on chromatin conformation and the consequences are elusive. 

1.3 Breast Cancer 

Breast cancer is a diverse group with subtypes, which have good examples for aneuploid 

tumors (table 1) that frequently relapse (Voduc et al., 2017, table 2). Worldwide, breast 

cancer is the most common cancer in women (Ferlay et al., 2013). Overall, it shows a 5 year 

survival rate of 80 - 90 % (Cancer Facts and Figures, 2016; Ferlay et al., 2013), but the 

prognosis strongly correlates with molecular subtype (Keegan et al., 2013, table 2). Basal-like 

tumors (BLCA) account for 15-20 % of all breast cancers and represent one subtype showing 

considerably higher aggressiveness (Foulkes & Smith, 2010; Hammond et al., 2010, table 2). 

However, these numbers vary between ethnical groups and age. Strongly correlated to this 

molecular breast cancer type is the lack of estrogen α-, progesterone- and HER2-receptor 

expression (table 2). 80 % of the basal-like cancers show this triple-negative status. Triple-

negative breast cancers account for approximately 37 % of breast cancer related deaths in 

the first three years (Keegan et al., 2013). 75 % of breast cancers show aneuploidy (table 1, 

Cimini, 2008), and the molecular subtypes associated with basal-like subtypes generally 

show high degrees of aneuploidy (table 2, Foulkes & Smith, 2010). 
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Table 2: Characteristics of BLCA related molecular subtypes compared to all other subtypes (Foulkes & 

Smith, 2010, modified). 

Characteristic Subtype of Breast Cancer 

  Triple-Negative Basal-like BRCA1-Related All Other Subtypes 

IHC expression         

ERα Negative, by definition Usually negative Usually negative Usually positive 

PgR Negative, by definition Almost always negative Usually negative Usually positive 

HER2 Negative, by definition Usually negative Usually negative Usually negative 

Other features         

Degree of aneuploidy Usually high High Very high Variable 

Gene-expression profile 
Often basal-like and 

occasionally claudin-low 
Basal-like, by definition Usually basal-like 

Not basal-like, by 
definition 

Prognosis in first 5 yrs after 
diagnosis 

Intermediate Generally adverse Generally adverse Generally good 

 

1.3.1 Molecular properties of breast cancer 

Healthy estrogen receptor (ER) and progesterone receptor (PgR) expression not only 

influences menstrual cycle but also maturation of primary and secondary sex characteristics 

by modulating the expression of a broad range of genes (Klinge, 2001; Stepanova et al., 

2006). Upon binding of the ligand, the receptors translocate into the nucleus, dimerize and 

bind to “hormone response elements” in the DNA to act as transcription factors. In breast 

cancer ERα (ESR1) and PgR expression are correlated to a better prognosis when compared 

to ERα-/PgR- cancers (Foulkes & Smith, 2010). Since PgR expression is modulated by ERα 

expression, ERα+/PgR- and ERα-/PgR+ cancers are rare (Bae et al., 2015). However, patients 

suffering from these cancer types might benefit from conventional treatment. Together, 

both receptors are one key factor for determining the treatment strategy. ERα is the only 

diagnostically relevant estrogen receptor today, although there are other ERs like ERβ and 

mER (membrane bound ER), whose influence on the prognosis is not fully understood 

(Soltysik & Czekaj, 2013). Conventionally, ERα+ cancers are treated with resection, 

chemotherapy, endocrine therapy, anti-HER2 therapy or a combination of those depending 

on tumor stage (Senkus et al., 2015). HER2 is a receptor tyrosine kinase that activates RAS- 

and AKT-signaling inducing proliferation and survival (Moasser, 2011). Overexpression and 

amplification are frequently found in breast cancer (Burstein, 2005) but also other entities 

(Merrick et al., 2006). Most HER2+ tumors can be treated with HER2 targeted treatments 

like Trastuzumab in combination with chemotherapy and resection (Senkus et al., 2015). 
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The absence of ERα, PgR and HER2 expression in TNBCs drastically limits the treatment 

options because antibodies, modulators or inhibitors against these proteins cannot be 

applied. The current standard therapy is resection and/or irradiation combined with 

adjuvant or neoadjuvant chemotherapy (Senkus et al., 2015). Patients with TNBC under 

neoadjuvant therapy tend to have better complete response rates when compared to 

patients with non-TNBC (22% vs. 11%, Liedtke et al., 2008) and have similar survival rates as 

non-TNBC patients. However, the majority of TNBC patients develop residual disease 

resulting in a significantly lower overall survival (88 % vs 68 %, p = 0.001, Liedtke et al., 

2008). Additionally to the receptor status, TNBCs and BLCA show high intra- and 

intertumoral heterogeneity (Abramson & Mayer, 2014) and aneuploidy (table 2, Foulkes & 

Smith, 2010). A previous study showed that breast cancer stem cells (BCSC), defined by 

CD24low/CD44+ status, are more abundant in TNBCs which could be associated with poor 

outcome (Idowu et al., 2012). The role of aneuploidy in cancer, especially in relation to 

BCSCs, is not fully understood. In the current understanding, BCSCs harboring CIN become 

aneuploid and accumulate genetic aberrations over time giving rise to progressively 

changing daughter cells that utilize CIN as evolutionary tool (Van Wely et al., 2012). 

1.4 MCF10A 3D cell culture 

Conventional monolayer (2D) cell culture models are well suited to quickly estimate the 

response to drugs or other treatments. However, they fail to account for more complex 

interactions, e.g. three-dimensional organization, secretion, cell-cell and cell-matrix 

interactions or nutrient, and oxygen gradients that are inherent for physiological tissue. A 

good example for the limited applicability of data collected with monolayer culture to 

physiological conditions is the epigenetic downregulation of FABP3 in monolayer cell culture. 

It results in a change of EGFR traffic, leading to altered drug sensitivity (Nevo et al., 2009). 

This relativizes conclusions drawn in studies on EGFR signaling as well as drug sensitivity 

using 2D cell culture. 

Cells showing symptoms of CIN during division, namely lagging chromosomes, chromatin 

bridges, micronuclei, multipolar spindles or aneuploidy, usually divide with a reduced rate 

when compared to healthy cells (Santaguida & Amon, 2015). Adapting the model of CIN 

occurring early, these cells need to overcome growth arrest to be able to divide often 
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enough to utilize the genetic changes in the following steps. Such cells are overgrown by 

healthy cells in 2D culture. In physiological tissue, when they are not checked by the immune 

system, as well as in 3D cell culture these cells can form their own microenvironment. This 

makes 3D culture the optimal setup to test the influence of cells suffering from CIN on their 

environment. 

1.4.1 MCF10 cell line series 

One cell line that can form acini in 3D cell culture is MCF10A. The acini resemble 

physiological structures of the mammary gland by means of overall organization including 

size, polarization and lumen formation (figure 2). They show a basal-like expression profile 

(Neve et al., 2006), triple-negativity (Lawrence et al., 2015), and a CDKN2A deletion (Jonsson 

et al., 2007). However, they are non-tumorigenic and were isolated from a patient suffering 

from cystic fibrosis (Soule et al., 1990). Yoon and colleagues could show that MCF10A cell 

populations have a stable karyotype unlike TNBCs (Yoon et al., 2002). By overexpression of 

HRAS Dawson and colleagues created MCF10AT cells that form persistent pre-malign 

nodules in mice (Dawson et al., 1996), which occasionally develop into invasive 

adenocarcinoma. Some of these invasive adenomas show CIN, although MCF10AT cell are 

considered to be chromosomally stable (figure 2, Heppner & Wolman, 1999). RAS 

overexpression could be shown to induce replication stress that can result in CIN (Miron et 

al., 2015), which might explain the sudden appearance of CIN in MCF10AT xenografts. As 

stated before, the previously reported absence of CIN might be an artefact of monolayer 

culture. One of the invasive carcinomas formed by MCF10AT xenografts was dissociated and 

further cultured. One clone from this carcinoma showing increased rates of CIN gave rise to 

MCF10CA1 cells, that are highly tumorigenic (figure 2, Santner et al., 2001) correlating CIN to 

malignancy in MCF10AT cells. 
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Figure 2: Cryo-slices of the MCF10 progression cell line and their increasingly malign properties. MCF10A 

cells show organized hollow spheroids when cultured on Matrigel, whereas MCF10AT spheroids lack a hollow 

lumen. MCF10CA spheroids develop into disorganized spheroids showing protrusions that indicate invasive 

behavior. The bars represent a length of 50 µm. * in the presence of EGF. 

Originally, the overexpression of the mutated HRAS was introduced to increase 

proliferation (Dawson et al., 1996). However, mutated HRAS also effects apoptosis, the 

energy metabolism, angiogenesis (Pylayeva-gupta et al., 2011), and induces replication 

stress (Miron et al., 2015), which masks the origin of tumorigenicity (MCF10A -> MCF10AT) 

and what causes the increased malignancy (MCF10AT -> MCF10CA). 

1.5 High-content siRNA screening 

High-content RNAi screens utilizing a 3D cell culture setup enable testing hypotheses that 

require intercellular communication and cell-cell interactions. Britschgi and colleagues 

phenotypically screened primary breast cells cultured as 3D culture to find mechanistic hints 

how the cellular fate can be regulated using small-hairpin RNA (shRNA). By permanent 

downregulation of tumor suppressors, which also regulate cellular fate, they found that 

LATS1 and 2 play an important role in fate decision over estrogen signaling outside of the 

hippo pathway (Britschgi et al., 2017). 
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Unlike shRNA, small-interfering RNA (siRNA) mediated knockdowns confer a transient 

downregulation of genes by targeting certain RNAs for degradation before translation 

without additionally altering the genome (Elbashir et al., 2001). This is a good tool to acquire 

an optimal ratio of specificity, efficiency and versatility in a high-content screening setup 

(Semizarov et al., 2003) while avoiding prolonged downregulation that could be detrimental 

on cell fitness. 

Evidence that a single knockdown can produce abnormal DCIS/LCIS-like (lobular 

carcinoma in situ) morphogenesis in MCF10A acini was given by Russ and colleagues (Russ et 

al., 2012). In their study the downregulation of LLGL1 and LLGL2 (alternatively named HUGL1 

and HUGL2 in the paper, respectively) was shown to induce a reduced lumen formation as 

well as a change of polarity of MCF10A acini similar to MCF10AT spheroids (figure 3), though 

this was not induced by aneuploid cells. 

 

Figure 3: Comparison of a healthy acinus with perturbed acini and ex-vivo DCIS and LCIS sections. A) 

Hollow MCF10A acinus with a single cell inside the lumen (Russ et al., 2012, modified), B+C) shLLGL1 and 

shLLGL2 treated MCF10A acini lacking the hollow lumen (Russ et al., 2012, modified), D) MCF10AT filled 

spheroid resembling pre-malign DCIS/LCIS, E) Section of high nuclear grade DCIS with variably sized and shaped 

nuclei; the asterisk marks central necrosis; hematoxylin and eosin staining; 200x magnification (Morrow, 

Schnitt, & Norton, 2015, modified), F) Classic-type LCIS section (see arrows for examples of a small (bottom) 

and big (top) filled acinus); hematoxylin and eosin staining; 200x magnification (Morrow, Schnitt, & Norton, 

2015, modified). The bars (A-D) represent a length of 50 µm. 

In contrast to high-throughput screens, which primarily detect single parameters like cell 

death induced by drugs for a high number of conditions, high-content screens can detect a 
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higher number of parameters for a medium number of conditions. MCF10A acini show 

several physiologically relevant traits like a hollow lumen, polarization, growth arrest, and 

stage dependent rotation/cell migration (Debnath, Muthuswamy, & Brugge, 2003; Wang et 

al., 2012). By introducing aneuploidy any of these traits might be perturbed. Also, 

unexpected or new traits like escaping cells, protrusions, cell death or formation of new 

phenotypes might emerge, which makes multiparametric analysis necessary.  

1.6 Scope of the study 

Most BLCA show a high rate of aneuploid cells. In order to find the influence of 

aneuploidy on tumorigenesis in this context, we want to use non-tumorigenic, 

chromosomally stable MCF10A cells that share a basal-like expression profile as well as TNR-

status with most BLCA. Cultured on Matrigel, they form structures that resemble healthy 

acini. We test if introducing aneuploidy to these cells results in changes of the morphology 

and expression reminiscent of cancer cells.  

Specifically, we use a variety of CIN correlated cancer driver genes in a siRNA high-

content screen. Referring to the argument that CIN is an early event, helping the cells to 

generate enough genetic variability to increase the population´s plasticity, siRNA is especially 

suited here. Transiently inducing mitotic errors that lead to segregation defects simulates 

the early accumulation of genetic material by CIN without further manipulation. 

Subsequently, the aneuploid cells can form a niche and divide by interacting with the 

environment and other cells. This will show whether i) aneuploid cells can change the acinus 

morphogenesis and ii) differently induced aneuploidy leads to different morphological 

features that might resemble DCIS/LCIS. Next, we will follow aneuploid cells during altered 

acinus development using time-lapse imaging and identify how the cells interfere with 

normal morphogenesis. To correlate the abnormal development with a potentially malign 

transformation, expression profiling and enrichment analysis will be conducted. The 

expression of relevant markers will be confirmed using immune-staining as well as QPCR. In 

addition, we will compare properties like tumor initiating potential (mammospheres and 

xenografts) and drug-sensitivity to infer the level of transformation. Finally, we will use 

chromatin conformation capturing (4C) to show how aneuploidy leads to altered chromatin 

interaction resulting in the deregulation of specific cancer related genes. 
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2 Material and Methods 

2.1 Monolayer (2D) cell culture 

MCF10A cells (Soule et al., 1990) were kindly provided by the Zev Gartner and colleagues 

(http://www.gartnerlab.ucsf.edu/) and transfected with a pBabe vector containing a 

construct of GFP labelled H2B. The MCF10A stock originates from ATCC (ATCC, CRL-10317). 

MCF10AT (Dawson et al., 1996) and MCF10CA (Santner et al., 2001) were acquired from the 

Karmanos cancer institute (KCI, http://www.karmanos.org/home). 

DMEM/F12 medium (life technologies, ThermoFisher, Waltham, Massachusetts, USA, 

#11330-032) was acquired from GIBCO (ThermoFisher, Waltham, Massachusetts, USA). The 

standard medium was supplemented with EGF [20 ng/ml] (Sigma, St. Louis, Missouri, USA, 

E9644), Insulin [10 µg/ml] (Sigma, St. Louis, Missouri, USA, I1882), cholera toxin [100 ng/ml] 

(Sigma, St. Louis, Missouri, USA, C8052), hydrocortisone [500 µg/ml] (Sigma, St. Louis, 

Missouri, USA, H0888) and 5 % horse serum (life technologies, ThermoFisher, Waltham, 

Massachusetts, USA, #1605-122) to get the full medium. 

MCF10A as well as MCF10AT and MCF10CA cells were cultured in polystyrene culture 

flasks (Greiner Bio-One GmbH, Kremsmünster, Oberösterreich, #690175) as monolayer. As 

soon as they reached a density of 80-90 % the cells were washed with phosphate buffered 

saline (PBS). Afterwards they were detached using 0.05 % trypsin/EDTA (T/E) for 15 minutes 

at 37 °C and agitation. Subsequently the cell suspension was either diluted in full medium at 

least 1/12 to obtain a T/E concentration of below 0.005% and cell density between 10.000 

and 50.000 cells/ml depending on further culturing needs or first centrifuged at 

approximately 300 g for 2-3 minutes and resuspended in an appropriate volume of full 

medium and pipetted into a new culture flask. 

2.2 3D cell culture 

Basement membrane extract Matrigel® was acquired from Corning (New York, USA, 

#356231). After preconditioning the well of a 24-well plate (Greiner Bio-One GmbH, 

Kremsmünster, Oberösterreich, #662160) with 100 µl full medium and subsequent removal 

of the medium 70 µl Matrigel was dispensed into each well and let solidify for 30 minutes at 
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room temperature (RT). After diluting MCF10A cells in suspension (for procedure see chapter 

monolayer (2D) cell culture) to a concentration of 50.000 cells/ml they were enriched with 5 % 

Matrigel and pipetted into wells that were previously coated with Matrigel. The medium was 

exchanged every 3 days with full medium supplemented with 5 % Matrigel. 

Previous studies showed that some contents of Matrigel vary strongly between different 

LOTs (Hughes et al., 2010). To ensure that the results are no batch dependent all results 

have been confirmed using three different LOTs of Matrigel (LOT #: 2323349, 4160003, 

5047311). 

2.3 RNAi experiments 

The silencer select siRNAs were acquired from Ambion (ThermoFisher, Waltham, 

Massachusetts, USA). The full list of siRNAs and their IDs can be found in supplementary 

table 2. From the diluted cell culture suspension 20.000 cells were dispensed into each well 

of a 24-well plate and left over night. To prepare transfection complexes 1 µl Lipofectamine 

2000 (ThermoFisher, Waltham, Massachusetts, USA, #11668019) was mixed with 50 µl 

nuclease free water and incubated for 5 minutes. In parallel 0.1 µl siRNA with a 

concentration of 30 µM was mixed with 50 µl nuclease free water and incubated for 5 

minutes. The Lipofectamin mix and the siRNA mix were added together and incubated for 15 

minutes to get the transfection mix. The medium was removed from the cell containing wells 

and replaced with the transfection mix plus 300µl transfection medium (culture medium 

lacking serum) and incubated overnight. 

2.4 Quantitative PCR 

The total RNA was isolated using the QIAGEN RNeasy Kit (Qiagen, Venlo, Netherlands, 

#74106) after supplier recommendations. In short, the cells were lysed using RLT buffer, 

applied to silica membrane columns and centrifuged. The bound RNA was washed and then 

eluted using 50 µl nuclease free water. The quality and concentration was confirmed using 

the Nanodrop 2000 and samples with a concentration of below 50 ng / µl and a 260/280 

absorption ratio of below 1.8 were discarded. The total RNA was treated with the 

ThermoFisher (previously Fermentas) DNase digestion kit (ThermoFisher, Waltham, 

Massachusetts, USA, #K1622) after supplier recommendations to get rid of DNA. As 
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proposed 500 mg RNA and DNase I were used for the DNA-digestion which was stopped 

using 1 µl 50 mM EDTA. In the next step the RNA was used for cDNA synthesis with the 

RevertAid First Strand cDNA synthesis kit (ThermoFisher, Waltham, Massachusetts, USA, 

#K1622) after supplier recommendations using poly-A-primers. The cDNA was diluted with 

nuclease-free water to an endconcentration of 1.4 ng/µl. 4 µl of diluted cDNA was then 

mixed with either 5 µl SYBR green MM (ThermoFisher, Waltham, Massachusetts, USA, #AB-

1162) 0.2 µl 10µM forward and reverse primer and 0.6 µl nuclease-free water or 10 µl 

TaqMan Universal Master Mix II, with UNG (ThermoFisher, Waltham, Massachusetts, USA, # 

4440044) and 1 µl TaqMan Gene Expression Assay (TermoFisher, Waltham, Massachusetts, 

USA, #4331182) with <100 ng cDNA with 5µl water in the designated well of a 96-well Q-PCR 

plate. The plate was measured and analyzed using the Fisher StepOnePlus RealTime PCR 

machine (ThermoFisher, Waltham, Massachusetts, USA, #4376599) and the Step One 

Software version 2.0. The experiment was set to quantitation-comparative Ct (ΔΔCt), 

SybrGreen or 6-FAM dye (for TaqMan assays) reagents with 95 °C 10 minutes denaturation, 

40 cycles of 15 seconds at 95 °C, 30 seconds at 60 °C, melt curve: 95 °C for 15 seconds, 60 °C 

for 1 minute and a subsequent heating ramp of 0.3 °C/minute until 95 °C was reached. 

The primers with their respective sequence or the Expression assay used for Q-PCR are: 

INCENP forward: CAAGAAGACTGCCGAAGAGC, INCENP reverse: TCAGAACCAACTTTCTGGGG, 

RPLP0 forward: GGCGACCTGGAAGTCCAACT, RPLP0 reverse: CCATCAGCACCACAGCCTTC, 

additionally we used TaqMan® Gene Expression Assays for CD24, CD44, EPCAM, ALDH1A3, 

CCND1, TOP2A and ESPL1. 

2.4 Immunofluorescence for monolayer and 3D cell culture 

The full list of antibodies used for immunofluorescence staining can be found in 

supplementary table 3. The medium was aspirated and the cells were fixed using 2 % 

formaldehyde (Sigma, St. Louis, Missouri, USA, F8775) in PBS for 12 minutes. The fixative 

was removed and the cells were washed 3 times with PBS for 1-5 minutes at 4 °C (or RT). 

After fixation the cells were treated with pre-chilled 0.5 % triton x-100 in PBS-glycin for <10 

minutes at 4 °C (or RT) and subsequently washed 3x for 1-5 minutes with 1x washing buffer 

(10x Washing buffer: 38 g NaCL, 9.38 g Na2HPO4, 2.07 g NaH2PO4, 2.5 g NaN3, 5 g BSA, 10 

ml Triton-X 100, 2.05 ml Tween-20, filled up to 500 ml with water and titrated to a pH of 
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7.4). In the next step the cells were blocked with 10 % serum (1:1 goat serum (Sigma, St. 

Louis, Missouri, USA, G9023) and donkey serum (Jackson ImmunoResearch, West Grove, PA, 

USA, # 017-000-121) in 1x washing buffer (=blocking buffer). The primary antibody (see 

supplementary table 3) is diluted in blocking buffer and incubated on the cells overnight (at 

least for 1 hour) at 4 °C (or RT). The cells were then washed 3x with 1x washing buffer for 10 

minutes each at RT. After the washing the secondary antibody (see supplementary table 3) 

diluted in blocking buffer was incubated on the cells for 1 hour and the cells afterwards 

washed 2x with washing buffer. Confocal imaging was conducted using the Zeiss LSM 780 

under the control of AutofocusScreen macro (http://www.ellenberg.embl.de/apps/AFS/, 

24.02.2016). 

2.4.1 SiR dyes (Lukinavičius et al., 2014) 

To stain the Golgi and lysosomes we used the experimental SiR-pepstatin dye kindly 

provided by Kai Johnsson and Luc Reymond (Spirochrome, Stein am Rhein, Switzerland) in a 

concentration of ~0.5 µM in full medium which was added to the cells 4 h before imaging 

and was changed every 48 h. Pepstatin is an inhibitor of aspartyl proteases but shows a low 

inhibitory effect when coupled to SiR to ensure proper cell functioning while reliably 

delivering the probe to the intended organelle.  

2.5 Drug tests 

To test the functionality of the anti-H2AFX antibody (see supplementary table 3) upon 

drug treatment cells cultured in 2D and 3D were treated with increasing concentrations (0, 

1, 3, 10, 30, 100 µM) of Etoposide in full medium for the entire time until staining. 

In order to test drug sensitivity against paclitaxel we treated 3D and 2D cultured cells 

with increasing concentrations (0, 1, 3, 10, 30, 100 nM) for 48 h. Subsequently the cells were 

washed and imaged 24 h later. 

2.6 Microarray expression profiling 

The total RNA was isolated using the QUIAGEN RNeasy Kit (for procedure see chapter 

“Quantitative PCR”). The RNA was then labeled and hybridized in technical and biological 

duplicates with Illumina HumanHT-12 v4 Expression BeadChips (Illumina, San Diego, USA, 
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BD-901-1001) and quantile normalized against the non-treated MCF10A negative controls by 

the DKFZ Genomics and Proteomics core facility. 

The top 100 deregulated (either up, down or up-and-down) as well as all upregulated (> 

1.5 fold, p < 0.05) genes were analyzed using the gene set enrichment analysis tool 

(http://software.broadinstitute.org/gsea/index.jsp) of the Broad institute. Set enrichments 

were conducted using all known gene sets and selected based on the rank of the lowest p-

value (hypergeometric distribution) and false-discovery-rate (q-value). 

2.7 Multiplex fluorescence in situ hybridization (M-FISH) 

Cells with a density of 40-60 % were treated with 40 ng/ml colcemid (Sigma, D7385) for 

12-20 hours at 37 °C to enrich the culture for cells in the metaphase. In the next step, the 

cells were detached by adding T/E to the cells for 10 minutes at 37 °C and transferred into a 

reaction tube. The cells were then centrifuged at 300 g for 10 minutes at RT. The 

supernatant was aspirated until there was ~500 µl left and the cells resuspended by flicking 

the tube. Subsequently, the cells were treated with 5 ml hypotonic solution (0.55 % KCl in 

deionized water) which was applied dropwise for 10 minutes at RT. Afterwards, the cells 

were centrifuged at 300 g for 10 minutes at RT and the supernatant again aspirated until 

there was ~500 µl left so that the cells could be resuspended by flicking the tube. The cells in 

the suspension were then fixed by dropwise adding 5 ml of Carnoy´s Fixative (75 % 

Methanol, 25 % acetic acid) and incubated for 10 minutes at RT. The fixation was repeated 

twice. The fixed solutions were then further processed and analyzed by Anna Jauch and 

Brigitte Schoell (Human genetics, DKFZ) and Ilse Chudoba from Metasystems (statistical 

analysis). 

For statistical quantification of aneuploid nuclei 200 – 2000 metaphases were counted 

using the Metafer 4 v3.11.7 software (Metasystems, Altlußheim, Germany). The metaphases 

were classified using the “mFISH classifier” of the software and a sensitivity threshold of 20. 

The metaphases were then manually grouped into normal and aneuploid appearance based 

on the number of visible chromosomes. 

M-FISH was performed as described by Geigl and colleagues (Geigl et al., 2006). Briefly, 

Landry and colleagues summarized the process as “seven pools of flow-sorted human whole 
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chromosome painting probes were amplified and directly labeled using seven different 

fluorochromes (DEAC, FITC, Cy3, Cy3.5, Cy5, Cy5.5, and Cy7) using degenerative 

oligonucleotide primed PCR (DOP-PCR). Metaphase chromosomes immobilized on glass slides 

were denatured in 70 % formamide/2x saline-sodium citrate (SSC) pH 7.0 at 72 °C for 2 

minutes followed by dehydration in a degraded ethanol series. Hybridization mixture 

containing combinatorically labeled painting probes, an excess of unlabeled cot1 DNA, 50% 

formamide, 2xSSC, and 15% dextran sulfate were denatured for 7 minutes at 75 °C, pre-

annealed at 37 °C for 20 minutes and hybridized at 37 °C to the denaturated metaphase 

preparations. After 48 hours, the slides were washed in 2x SSC at room temperature for 3x 5 

minutes followed by two washes in 0.2x SSC/0.2 % Tween-20 at 56 °C for 7 minutes, each. 

Metaphase spreads were counterstained with 4.6-diamidino-2-phenylindole (DAPI) and 

covered with antifade solution. Metaphase spreads were recorded using a DM RXA 

epifluorescence microscope (Leica Microsystems, Bensheim, Germany) equipped with a 

Sensys CCD camera (Photometrics, Tucson, Arizona, USA). Camera and microscope were 

controlled by the Leica Q-FISH software and images were processed on the basis of the Leica 

MCK software and presented as multicolor karyograms (Leica Microsystems Imaging 

solutions, Cambridge, United Kingdom)” (Landry et al., 2013). 

2.8 Mammosphere assay (modified after Shaw et al., 2012) 

To test the renewal capacity 1000 cells/cm² were seeded in Greiner ULA 96 well plates 

(Greiner Bio-One, Kremsmünster, Oberösterreich, # 655970) with tumorsphere medium 

(Standard medium without serum supplemented with 2% B27, TermoFisher, Waltham, 

Massachusetts, USA, # 12587010). The cells were cultured for 5 days and the 

mammospheres counted. Subsequently, the first generation MFE (mammosphere formation 

efficiency) was calculated after 100 x (# seeded cell / # mammospheres >50µm). 

The mammospheres were harvested by removing the medium and added to a collection 

tube. After another rinsing of the well the collected material was centrifuged at 150 g for 3 

minutes and the pelleted spheres were resuspended in accutase and incubated for 10 

minutes at RT to get a single cell suspension. All cells were reseeded into the same amount 

of wells. Finally, the cells were cultured for 5 days and the mammospheres counted to 

calculate the second generation MFE. 
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2.9 Xenografts 

MCF10A, MCF10AT and MCF10CA cells were treated with either scrambled, ESPL1, 

TOP2A or no siRNA and cultured until there were at least 1.5 * 106 cells. The cells were 

detached using 0.05 % T/E and dissolved in a mixture of full medium and Matrigel (3:1) to a 

density of 2 * 106 cells / ml. After anesthesia by gaseous narcosis (Isoflurane 2.5 % with 

Oxygen mixed by air flow) 100 ml (=2 * 105 cells) of the mixture was injected into the 

mammary fat pad of 2-months old NSG-mice (NOD scid gamma mice, 6 mice per condition, 

all female). Additionally, one EGF-pellet (Innovative America, #NE-121) with a dose of 0.18 

mg 17β-estradiol / pellet was transplanted. The xenografts were then grown for 4 weeks. 

The mice were treated according to the German authorization numbers G-240/11 and G-

82/16. For reasons of animal safety mice with abnormally big tumors were killed before this 

deadline to minimize suffering. If no tumors were visible after 4 weeks, the xenografts were 

left untouched for two more weeks and then extracted. The brain, lungs and liver were 

inspected for signs of metastases. The extracted tumors were weighed and partially 

formalin-fixed (10 %, buffered). The mouse experiments and immunohistochemistry were 

conducted by Corinna Klein and Martin Sprick from the Hi-Stem, DKFZ. 

2.10 Chromatin conformation capture (4C) 

To assess the chromatin interactions upon induction of aneuploidy 4C sample 

preparation was performed as described by Van de Werken and colleagues (Van de Werken 

et al., 2012). In short, 10 million cells per viewpoint were isolated from Matrigel (80 % 

Matrigel, 20 % PBS) by incubating them with dispase for 10 min at 37 °C. After dissociation of 

the cells with 0.05 % T/E for 5 min at 37 °C the cells were stepwise washed with 5 ml 

Versene, trypsin and medium. Subsequently, they were counted, diluted to 107 cells and 

fixed using 4 % formaldehyde for 10 min at RT.  The cells were washed with 1 M glycine, 

centrifuged for 8 min at 300 g, resuspended in 1 ml lysis buffer (50 mM TRIS, 150 mM NaCl, 5 

mM EDTA, 0.5 % NP-40, 1 % TX-100 in H2O) and incubated for 5 min at RT, for 5 min in a 65 

°C water bath and then cooled on ice. In the next step, the cells were washed with PBS, 

transferred into 1.5 tubes and either frozen at -80 °C or further processed for the digestion 

using 10 % SDS at 37 °C for 1 hour. After adding 75 µl 20 % TX-100 and incubation for 1 hour 

at 37 °C a 5 µl aliquot as pre-digestion control was taken. In a first three-step digestion with 

each 200 U DpnII or NlaIII the samples were incubated for 4 hours at 37 °C, O/N at 37 °C and 
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again 4 hours at 37 °C. A post-digestion control was taken and all samples incubated at 65 °C 

for 20 minutes to inactivate the enzyme. The samples were transferred to a 50 ml tube and 

incubated at 16 °C in the water bath O/N with a ligation mix (700 µl 10x ligation buffer, 7 ml 

ddwater, and 10 µl T4 Ligase (Roche 5 U/µl)). The ligation control was taken and tested on a 

0.6 % agarose gel. De-crosslinking was done by adding 15 µl Proteinase K (20 mg/ml) and 

incubation at 65 °C in the water bath O/N. The next morning 30 µl RNAse A (10 mg/ml) was 

added and the mixture incubated at 37 °C for 45 min. After adding 7 ml phenol-chloroform 

and vigorously mixing the sample was centrifuged for 15 minutes at RT at 3000 g. The water 

phase was aspired and transferred to a 50 ml tube and mixed with 7 ml ddwater, 7 µl 

glycogen, 1.5 ml 2 M NaAC pH 5.6, and 35 ml 100 % ethanol and frozen at -80 °C. In the next 

step, the samples were centrifuged for 30 minutes at 4 °C at 9000 g and the pellet 

resuspended in 10 ml cold 70 % ethanol. After a centrifugation for 15 min at 4 °C at 3000 g 

the supernatant was discarded and the pellet dried at RT for a few minutes. Subsequently 

the pellet was dissolved in 1.5 µl 10 mM Tris pH 7.5 at 37 °C and then either frozen at -20 °C 

or digested a second time with 200 U Csp6I or BfaI and incubated O/N at 37 °C. The digestion 

efficiency was tested on a 0.6 % agarose gel. The enzyme was then inactivated at 65 °C for 

25 minutes and the sample transferred into a new 50 ml tube and mixed with 1.4 ml 10x 

ligation buffer, 20 µl ligase (Roche, Basel, Switzerland, 5 U/µl) and filled up with ddwater to 

14 ml for a second ligation O/N at 16 °C. The next morning 1.4 ml 2 M NaAC pH 5.6, 14 µl 

glycogen and 35 ml 100 % ethanol were added and frozen at -80 °C. In the next step, the 

samples were centrifuged for 45 minutes at 4°C at 3000 g and the supernatant discarded. 

After resuspending the samples in 70 % ethanol and centrifugation for 15 at 20 °C at 3000 g 

the pellet was dried and dissolved in 150 µl 10 mM Tris pH 7.5 at 37 °C. The samples were 

then purified using the QIAquick PCR purification kit (Qiagen, Venlo, Netherlands, #28106) 

after supplier recommendations with 3 columns per sample and 50 µl 10 mM Tris pH 7.5 as 

elution buffer. The concentration was determined using a Nanodrop 2000 (Thermo Fisher, 

Waltham, Massachusetts, USA, ND-2000). The eluates were validated with a test PCR 

checking for a smear close to the expected size of fragments on a 1.5 % agarose gel. 

Subsequently the sequencing PCR was conducted (2.5 µl 10x PCR buffer, 0.5 µl 10 mM 

dNTPs, 4.5 µl 1 µg/µl forward primer 1:7 diluted, 3 µl 1 µg/µl reverse primer 1:7 diluted, 0.35 

µl polymerase ELT, 5 µl 100 ng 4C DNA template, 9.15 µl ddwater) including no-template 
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control (2 min 94 °C, 35x- 15 s 94 °C, 1 min 55 °C, 3 min 68 °C- then 7 min 68 °C and cooling 

at 4 °C). 5 µl of the products were tested on a 1.5 % agarose gel and the rest was purified 

with the Roche-PCR-purification kit (Roche, #11732676001) and 10 µl checked on a 1.5 % 

agarose gel for dimers >100 bp. If present the annealing temperature or primers would 

needed to be modified. In the next step 16 PCR per viewpoint were prepared in the same 

way as before with double the amount. The products were purified using the Roche PCR 

purification kit and then again purified using the QIAquick PCR purification kit and the 

concentration was tested with the Nanodrop2000. The single end sequencing was 

conducted in the DKFZ sequencing core facility with < 20 pooled probes (10nmol combined) 

per lane on a HiSeq2000. The experiments were conducted by Sabine Aschenbrenner, 

technical assistant of the Eilslabs. 

2.11 Data analysis  

All images were automatically analyzed using custom KNIME version 3.2.1 workflows 

(Berthold et al., 2007). The list of workflows and their location can be found in 

supplementary table 6. 

2.11.1 High-content screen immunostainings 

Nine images per well (per condition there were three replicates) from the HCS 

immunostainings were analyzed using the “HCS 3D analyzer” KNIME workflow. Images were 

excluded if they were empty/black or out of focus. In detail the images were median filtered 

and segmented using a local threshold (otsu). After filtering objects on the edges of the 

images and a “fill holes” step, the objects were split by the ImageJ watershed. The segments 

were processed into labels using a connected component analysis (CCA) and then used to 

create three label-regions for each object. These regions were used to read out parameters 

in i) the center ii) the whole object iii) and the region outside the center region but within 

the whole region (donut shaped). The H2B-GFP as well as the GM130 intensity signal that 

were read out in the donut and the center region and used to calculate the hollowness 

(“H2B-GFP intensity donut”/ “H2B-GFP intensity center”) and the polarization (“GM130 

intensity center”/ “GM130 intensity donut”). The other parameters (number and size of 

objects, circularity, Haralick and Tamura textures, H2B-GFP intensity, H2AFX intensity) were 
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measured in the whole region and the mean, standard deviation and count were calculated 

as mean per spheroid over all replicates and their 27 images. 

The QPCR validation of the knockdowns was conducted by calculating the portion of cells 

showing a polylobed nucleus. The images were analyzed with the “image based knockdown 

efficiency” KNIME workflow (for the detailed list including input, output and server/GitHub 

location can be found in supplementary table 6). The workflow is based on global 

thresholding to segment the cells. The segmented cells were then classified by random 

forest classification that was trained using 20 % of the images as training set and 

subsequently cross validated and counted. 

The nine parameters of each knockdown condition of the HCS were normalized against 

the respective negative control creating a percentage deviation to the negative control after 

the formula 

% 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 100 − (𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑦𝑥 ∗ 100)/𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑥 

X = Number of the plate the set of experiments were conducted on 

Y = Position of the condition on the plate (6 conditions per plate) 

The parameters were then used to perform a principal component analysis (PCA) by 

preserving 100 % of the information and calculating nine eigenvectors for each condition by 

spectral decomposition using the “PCA cluster” KNIME workflow. These were then used in a 

k-means clustering approach to identify groups that are furthest separated from the other 

groups. The “k” was set based on an optimal separation of negative control and scrambled 

control associated clusters from the other clusters. The three clusters furthest apart were 

chosen for further manual selection of suitable candidates. Dead cells/spheroids show a high 

difference to the negative control or other phenotypes. Such candidates were filtered from 

the three furthest clusters as well as candidates that were visually not/hard to be 

distinguished from the negative controls. 

To automatically quantify the portion of abnormal spheroids in each condition the 

spheroids were classified using the “class identifier” KNIME workflow. After a global 



 
22 

 

thresholding (after Otsu´s method, Otsu, 1979), watershed and CCA the cells were classified 

by a random forest classifier that was trained using 20 % of all images to be classified. 

2.11.3 Time-lapse analysis 

The time-lapse images were concatenated and automatically cropped with the “TL 

concatenator” KNIME workflow using global thresholding segmentation and a 3D CCA that 

was then used as a mask for the segment cropper. The resulting single spheroid time-lapses 

were then further analyzed with the “TopTL analyzer” KNIME workflow. After a Gaussian 

convolution, global thresholding (after Otsu´s method), fill hole-step, contour smoothing, 

watershed and CCA similar to the HCS image analysis three regions (center, whole object, 

donut) were created using the initial segments. These regions were used to calculate the 

size, sphericity, hollowness and polarization as described before. 

Images processed by the “TL concatenator” (see previous paragraph) were also used for 

a pseudo-single cell tracking inside the spheroids using the “MIP single cell tracking” KNIME 

workflow. Here, the single spheroid time-lapse images were z-projected using standard 

deviation approach. After a median filtering, local thresholding (Bernsen), contour 

smoothing, watershed and CCA the single cells were tracked in the segmented area using 

ImageJ´s “Trackmate tracker”. In this case, the imperfect tracking and resulting constant 

splitting of tracks after a few time points could be used to calculate an average speed of all 

nuclei during short time intervals. 

2.11.4 Breast cancer stem cell marker analysis 

The intensities were measured with the “BCSC analyzer” KNIME workflow that first z-

projects the single spheroid stack images followed by a Gaussian convolution and global 

thresholding resulting in mean intensities per single spheroid. 

2.11.5 Drug sensitivity testing 

The images were processed using the “drug test analysis” KNIME workflow. After a 

Gaussian convolution, global thresholding (after Otsu´s method, Otsu, 1979), watershed and 

CCA the size and the number of objects were calculated per well. 

2.11.6 Mammosphere formation 
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The stitched whole-well images were first z-projected (maximum intensity), convolved, 

global thresholded (manual) and then processed by CCA using the “mammosphere_analysis” 

KNIME workflow. Objects that were bigger than four cells (85 pixels) were selected and 

counted. 

2.11.7 4C sequencing analysis 

The 4C sequencing data was analyzed by Qi Wang using custom in-house workflows developed 

by the AG Herrmann. The demultiplexing and trimming of primer sequences, a Python script 

from “FourCSeq” R package was used. The remaining sequences were aligned to the human 

reference genome GRCh37/hg19 using Bowtie 2 alignment program with default parameters 

and no clipping allowed. We performed an in silico cutting of the reference genome using 

FourCSeq. The definition of restriction fragments are illustrated in the figure 4. Only reads 

that start directly at a restriction enzyme cutting site and show the right orientation of the 

read at the fragment end following figure b have been assigned to each restriction fragment 

in each sample.  

 

Figure 4: Restriction fragment definition and orientation (Klein et al., 2015). 

Different samples were normalized according to their total library sizes. We transformed 

the data to unique coverage (more than one reads per fragment end is set to one) to avoid 

possible PCR artifacts which may originate from a single ligation event. A window size of 100 
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was used in counting the number of ligated sites to define inter-chromosomal interactions. 

To call out statistically significant interacting regions, z-scores were calculated based on the 

relative unique coverage in the background window of 3000. We randomly permuted the 

dataset 100 times and applied a false discovery rate (FDR) threshold of 0.01 to the z-scores. 

Windows with a z-score above the FDR are scored as “interacting region”. For each 

experiment, the percentage of reads on the viewpoint chromosome over all reads was 

calculated, where only experiments with more than 50 % intra-chromosomal reads are 

considered suitable for trans-interactions analysis. A window size of 500 unique fragment 

ends was used. Windows that exceed the threshold are scored as trans-interactions. 

2.12 Statistical Methods 

The data quantified using KNIME was further processed by integrated custom R scripts or 

Graphpad and statistically quantified using linear regression, linear/non-linear fitting or 

ANOVA where appropriate. The statistical level of significance was considered to be below a 

value of 0.05. 

2.12.2 List similarity 

To determine the overlapping elements of the list of genes from siESPL1 and siTOP2A 

expression profiles the “list comparison” tool from the Whitehead Institute, Cambridge was 

used (http://jura.wi.mit.edu/bioc/tools/compare.php). 
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3 Results 

3.1 High-content screen 

In a first literature research we focused on publications investigating i) CIN gene 

signatures that better predict the outcome of patients than morphological tumor 

classifications (for references, please see supplementary table 5) ii) tumor drivers that can 

function as tumor suppressors (TSGs) and contribute to CIN (for references please see 

supplementary table 5) iii) well known and/or highly mutated tumor drivers including the 

top 10 most mutated genes based on the COSMIC database 

(http://cancer.sanger.ac.uk/cosmic, Forbes et al., 2017) resulting in a list of 236 candidates 

(Abstract figure: Literature). 

To further refine this list, we selected 82 candidates that are associated to seven “GO-

process” groups (supplementary table 1, figure 5 and abstract figure: classification). The 

selection of the candidates was based on visible morphological phenotypes during 

knockdown (Genome RNAi, DKFZ and Cellular Phenotype Database, EMBL) as predictor for 

aneuploidy as shown by Sadaie and colleagues (Sadaie et al., 2015). The list is comprised of a 

spectrum from well-known to poorly-studied genes defined by the number of cited articles 

on Pubmed (https://www.ncbi.nlm.nih.gov/pubmed/). In total, the genes include ~31 % high 

(> 200 cited articles), ~36 % medium (< 200 and > 50 cited articles) and ~33 % low (< 50 cited 

articles) cited candidates. 
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Figure 5: Screening candidates categorized into 7 “GO-process” defined groups. The character size of the 

names correlates with the referenced number of publications on PubMed (12 points: >200 publications, 10 

points: between 200 and 50 publications, 8 points: < 50 publications; August 2016). 

To be able to capture as many changes as possible we imaged the developing acini after 

3, 6 and 9 days. At those time points, we measured nine parameters (number of acini, size, 

roundness, hollowness, polarization, Tamura and Haralick textures, H2AFX intensity, and 

H2B intensity). Using these three time points, there was a strong difference between day 3 

and 6 when comparing most of the parameters. After day 6, the acini did only show slight 

changes over time (figure 6). The morphological phenotypes visible from day 6 were stable 

until day 21 (supplementary figure 1). Further culturing of acini on Matrigel was impractical 

due to gradual degradation and depletion of the Matrigel layer and subsequent monolayer 

formation. This indicates day 6 as the optimal time point for further analysis of the acini in 

this setup. 

To test whether the additional knockdown of TP53 leads to more severe phenotypes, we 

conducted double-knockdowns (dKD) with TP53 and the respective candidate (knockdown 

using only one target: KD). In general, there was no detectable effect of the double 

knockdown (figure 6). 
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Figure 6: Comparison of the parameters size, hollowness, and polarization of a random 25 % sample 

(n=20) of the candidates between single and double knockdown at day 3, 6 and 9. Each data point represents 

a single candidate measured in triplicates. The black bars represents the mean of all data points and the error 

bars the standard deviation. 

The knockdown of all candidates was compared with a 2D culture control to see if the 2D 

phenotypes were similar to results reported in the literature and RNAi morphology 

Databases (EMBL cellular phenotype database: 

“http://www.ebi.ac.uk/fg/sym/search/result”, DKFZ GenomeRNAi database: 

“http://www.genomernai.org/”). Differences were found in 16 cases, 21 were inconclusive 

and 45 were in conjunction with the literature (supplementary table 1). 

Analysis of all candidates using all 9 parameters in a principal component analysis (PCA, 

for eigenvector distribution see supplementary figure 2) and subsequent k-means clustering 
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resulted in 8 groups of candidates (figure 7). The three groups with the highest distance 

(distance > 70) apart from the null vector in figure 7 highlighted as red squares (BRCA1, 

H2AFX, MBD5, MYH10, RB1), green diamonds (scr28, DIAPH3, ESPL1, LATS2, NEU1, ZWILCH, 

ZWINT) and blue triangles (ATR, CHFR, CMAS, COPB2, SETDB2, TOP2A) were selected for 

visual validation (Abstract figure: HCS). The other groups (circle that is crossed, white, boldly 

bordered, dotted, or black) were omitted because they were closer to the null vector or the 

negative control associated group (k-means cluster 1, figure 7). 

 

Figure 7: Selection of candidates using PCA and k-means clustering plotted by PC1 vs. PC2 and PC1 vs. 

PC3. 

A further visual validation step resulted in five candidates (DIAPH3, ESPL1, H2AFX, 

SETDB2, TOP2A, Abstract figure: Morphology filtering). These candidates were selected from 

the candidates inside the three colored groups accounting for a sufficient amount of viable 

spheroids as well as a clearly abnormal appearance (figure 8, table 3) based on the 

parameters quantified during the HCS. 
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Table 3: Selected candidates with their respective visual selection criteria and cluster. Dead: none or a 

very low number of viable spheroids present (additionally to a reduction of the number of acini of more than 

50 %), weak: the measured phenotype was visually difficult to differentiate from the negative control, not 

visible: the phenotype was not visible, abnormal: the spheroids showed altered acinus architecture (multiacinar 

structure, tubular/invasive structures, disorganized spheroids, filled spheroids, altered Golgi), asterisk: 

scrambled control that was visually not distinguishable from the negative control, the colors of the “Cluster” 

column correspond to the colors of the clusters in figure 7. 

Gene Visual selection Cluster 

scr28 not visible* 6 

ATR weak 7 

BRCA1 weak 8 

CHFR weak 7 

CMAS dead 7 

COPB2 dead 7 

DIAPH3 abnormal 6 

ESPL1 abnormal 6 

H2AFX abnormal 8 

LATS2 weak 6 

MBD5 weak 8 

MYH10 not visible 8 

NEU1 weak 6 

RB1 weak 8 

SETDB2 abnormal 7 

TOP2A abnormal 7 

ZWILCH dead 6 

ZWINT dead 6 
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Figure 8: Overview of examples for morphology filtering using visual phenotypes. SiATR represents the 

“weak” phenotype with only a few single cells lying around the otherwise normal acini, siCMAS shows an 

acinus reduction of > 50 % with a slight increase of H2AFX signal representing the “dead” phenotype, siESPL1 

shows a high number of acini with abnormal nucleus and Golgi architecture which defines the “abnormal” 

phenotpye, siMYH10 shows neither acinus architecture or acinus number alteration making them visually 

indistinguishable from the negative control. Nuclei: cyan, Golgi (GM130): yellow, DNA damage (H2AFX): red, 

the bar (top left image) represents a length of 100 µm. 

Info box 1: Background of the selected 5 candidates 

DIAPH3 is a member of the formin gene family which is involved in actin remodeling 

(Palazzo et al., 2001) and influence amoeboid tumor cell mechanics (Morley et al., 2015). 

DIAPH3 is overexpressed in approximately 9.06 % of all breast tumors (Forbes et al., 2017). 

It was reported to induce a decreased rate of intracellular protein transport (EMBL-CPD). A 

nuclear phenotype has not been described, which is in line with our findings in 2D. The 

acini, however, showed an altered architecture regarding nucleus positioning and Golgi 

organization giving the acini an unorganized morphology (figure 9). In addition, there was a 

lower density of acini as well as some single dead cells. 
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ESPL1 has a cysteine protease activity and cleaves cohesin subunits to initiate the final 

step of sister chromatid separation to further progress the mitosis machinery (Papi et al., 

2005). The overexpression of ESPL1 was shown to increase tumorigenicity in an aneuploidy 

correlated fashion (Mukherjee et al., 2014) and it is overexpressed in 9.33 % of all breast 

cancers (Forbes et al., 2017). However, downregulation of ESPL1 in cooperation with non-

functional p53 was shown to induce aneuploid tumors in mice as well (Mukherjee et al., 

2011). In our hands, the knockdown of ESPL1 leads to polylobed nuclei with an aneuploid 

karyotype. In the 3D model, they develop into small, disorganized spheroids where 

polylobed nuclei pervade the structure and interfere with polarization and lumen formation 

(figure 9). Similar to DIAPH3 there was a reduced density as well as an increased number of 

dead cells. 

 

H2AFX belongs to the family of histones that are involved in DNA organization. H2AFX is 

associated to sites with double-strand breaks and mediates DNA repair (Fernandez-capetillo 

et al., 2003). According to COSMIC H2AFX is overexpressed in 4.8 % of all breast cancers 

(Forbes et al., 2017). The downregulation was not correlated with any phenotypic changes 

in 2D by EMBL-CPD. However, in the 2D screen the cells showed an increase in nucleus size 

as well as reduced H2AFX intensity. In 3D, there were many dead cells, the spheroids were 

smaller and showed slight organizational abnormalities (figure 9). 

 

SETDB2 is a member of SET domain proteins which contains a methyl-CPG binding 

domain and plays a role in segregation (Falandry et al., 2010). The COSMIC database reports 

an up- and downregulation in breast cancers of 2.08 % and 1.36 %, respectively. EMBL-CPD 

reported no morphological phenotypes upon knockdown in 2D which is in line with our 

findings. However, Falandry et al. reported nuclear as well as mitotic phenotypes for 

SETDB2 downregulation in 293T and HELA cells (Falandry et al., 2010). Spheroids growing on 

Matrigel lacked the developed of a hollow lumen (figure 9). 

 

During the cell cycle the topoisomerase IIa (TOP2A) plays a role in chromatin 

condensation and chromatid separation by transiently breaking and subsequent rejoining of 

the DNA after the strands passed each other (Chen et al., 2015). TOP2A overexpression was 
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previously shown to correlate with poor prognosis (Chen et al., 2015) and the COMSIC 

database shows an upregulation in 18.75 % of all breast cancers. The knockdown of TOP2A 

in 2D results in a reduced number of cells and polylobed nuclei similar to the reported 

results of the EMBL-CPD. Comparable to ESPL1 the cells grown on Matrigel developed into 

disorganized, small spheroids consisting of or containing polylobed nuclei (figure 9). 

 

 

Figure 9: Final five candidates in comparison with the negative and scrambled control illustrating 

morphological changes of the acinus architecture defined by restructured nucleus (H2B-GFP) and Golgi 

(GM130) architecture and DNA-damage (H2AFX). The bar (top left image) represents a length of 50 µm. 

3.2 Karyotype and acinus architecture 

Sadaie and colleagues  showed that “irregular” or polylobed nuclei usually do not have a 

diploid chromosome set in 2D (Sadaie et al., 2015). Since we observed polylobed nuclei in 

the 2D and 3D knockdowns, we wanted to confirm that these interfere with acinus 

development. Most metaphases of the negative control showed no additional genomic 

abnormalities besides the chromosome 1q amplification and the 3, 5, 9 translocations, which 

were acquired during immortalization of the cell line (figure 10, Soule et al., 1990). However, 

in three out of 15 metaphases we detected gains or losses of single whole chromosomes and 
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one additional metaphase with a chromosome 14;22 translocation (supplementary table 4) 

indicating a consistent emerging and subsequent loss of subpopulations. 

In general, MCF10A cells show an increased number of aneuploid cells when treated with 

Lipofectamine2000 and siRNA shown by the scrambled control (figure 11). The knockdown 

of ESPL1 and TOP2A leads to more severe division defects resulting in a high number of 

polylobed nuclei with polyploid karyotype in the cell populations (figure 11, x-axis) resulting 

in higher rates of 8-10 % aneuploid nuclei in comparison to 2-4 % for the others (figure 11). 

Also in some cases, ESPL1 and TOP2A downregulated cells acquired tetraploid or higher 

chromosome sets (figure 10). 

 

Figure 10: Comparison of a normal MCF10A karyotype with induced near tetraploid/aneuploid 

karyotypes. As described before MCF10A cells show a near diploid karyotype (Soule et al., 1990) with a 

chromosome 1q amplification and 3, 5, 9 translocations (i(1)(q10), del(1)(q12q32), der(3)t(3;9), i(8)(q10), 

der(9)t(3;5;9)). 

After quantifying the amount of aneuploid nuclei, we correlated this with the relative 

number of abnormal acini. To do this we morphologically classified the acini into normal and 

abnormal (disrupted nuclei or Golgi organization, filled lumen, exceptionally big) classes. 

Subsequent plotting of the percental portion of aneuploid nuclei (x-axis) versus the ratio of 

abnormal and normal acini (y-axis) yielded a correlation of r²=0.49 (figure 11) in a linear 

regression. The downregulation of ESPL1 and TOP2A lead to the highest number of 

aneuploid cells as well as abnormal spheroids (figure 11, red dotted box). Thus, all further 

experiments were focused on these conditions (Abstract figure: Karyotyping and 

expression). 
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Figure 11: Correlation of aneuploid cells and formation of disorganized acini. Red line: linear regression 

(r²=0,49), the red dotted box marks the candidates with the highest aneuploidy. 

3.3 Time-lapse imaging and analysis 

In a time-lapse over 7 days the nuclei were followed during the acinus development. The 

negative control cells developed into hollow and polarized spheroids (figure 12). The 

migration speed of cells inside the spheroids was fast at the beginning and rapidly slowed 

down. At the end, the cells only slowly moved which was similar for the scrambled control 

(linear regression slope significantly non-zero: p = < 0.0001 and p= 0.0116 for Negative and 

siScrambled, respectively, figure 13). In addition, there were no aberrant mitotic events 

(figure 14). 
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Figure 12: Acinus feature development tracked over time compared between one normal and two 

abnormal spheroids. Time-lapse (cyan: H2B-GFP, yellow: Golgi and lysosomes, the bar represents a length of 

50 µm), S: size, H: hollowness, P: polarization, each bin of the 276 time points spans a time window of 20 

minutes. 

Disorganized spheroids of siESPL1 and siTOP2A were smaller and showed defects in 

polarization and hollow lumen formation over the whole development time when compared 

to the negative control (figure 12). The migration speed of the cells inside the acini remained 

constant for both knockdowns over the time-lapse period (linear regression slope 

significantly non-zero: p = 0.72 and p= 0.57 for siESPL1 and siTOP2A, respectively, figure 13). 

When cultured for up to 21 days, the disorganized spheroids maintained their morphology 

(supplementary figure 1). During division, cells of both conditions showed similar mitotic 

aberrations, e.g. delayed metaphases, unaligned metaphases and mitotic slippage (figure 14, 

t1-t5). The time-lapse additionally shows, how the polylobed nuclei do not align and 

sterically interfere with hollow lumen formation and polarization. 
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Figure 13: Mean velocity of the nuclei that migrate in the acini during different stages of the 

development. The red line represents a linear regression for each condition; the red number indicates the p-

value for the regression line to have a slope of non-zero (slope ≠ 0). 

  

 

Figure 14: Abnormal mitotic phenotypes of siESPL1 and siTOP2A in comparison to a normal division. 

Grey: H2B-GFP; red arrows: single identifiable nuclei; time interval: 20 min; the bar represents a length of 25 

µm. 

3.4 Expression profiling 

Testing the expression wise consequences of aneuploidy, we see the expression profiles 

of siESPL1 and siTOP2A to exhibit an upregulation of a higher number of genes, whereas the 

downregulation was similar for all three conditions in 2D, when compared to the scrambled 

control (table 4). When cultured on Matrigel, siScrambled showed a similar amount of 
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upregulated genes as in 2D, culture but fewer genes were downregulated. SiESPL1 showed a 

weaker level of deregulated genes on Matrigel, and siTOP2A showed a strong increase of 

upregulated genes but had a comparable number of downregulated genes to 2D culture 

(table 4). The overlap of deregulated genes of 2D and 3D cultured cells were minimal, and 

the only relevant common element was ALDH1A3, which was upregulated in siESPL1 and 

siTOP2A for 2D and 3D culture each. 

Table 4: Number of up- and downregulated genes of siScrambled, siESPL1 and siTOP2A cultured in 2D 

and 3D. 

    siScrambled siESPL1 siTOP2A 

2D 
Upregulated 9 108 128 

Downregulated 87 91 117 

3D 
Upregulated 18 67 283 

Downregulated 28 10 90 

 

Gene enrichment analysis showed a deregulation of a broad range of cancer related 

genes in 2D as well as 3D knockdowns of siESPL1 and siTOP2A, while siScrambled was not 

enriched for any cancer related gene sets in 2D or 3D culture. Enrichment of genes that were 

> 1.5 fold overexpressed (p < 0.05) showed that siESPL1 gene sets were stronger associated 

to breast cancer gene sets than other gene sets, whereas siTOP2A showed a stronger 

association to leukemia gene sets (table 5). 3D profiles of siESPL1 and siTOP2A resulted in a 

higher rate of breast cancer related gene sets or cancer module sets when compared to 2D 

profiles (siESPL1: 8/20 vs. 4/20, siTOP2A: 4/20 vs. 0/20, respectively). 
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Table 5: Enrichment of top overexpressed genes and their associated enriched gene sets. The gradient 

codes for the number of enriched gene sets correlated with the respective cancer entity. O/L: enrichment of 

the overlapped upregulated genes of siESPL1 and siTOP2A, CA: cancer, Thyr.: thyroid, Panc.: pancreas, 

Melanom.: melanoma, Prost.: prostata. 

Top 20 
enrich. 

siScrambled siESPL1 siTOP2A O/L 

     3d 2d 3d 2d 3d 2d - 

   Breast CA 0 0 6 3 1 0 5 

   CA module 0 0 2 1 3 0 2 

   Leukemia 0 0 0 0 4 0 1 

   Bone CA 0 0 0 1 0 2 0 

   Thyr. CA 0 0 1 0 0 1 1 

 

  High 

Pancr. CA 0 0 0 1 0 0 0 

 

  ↕ 

Melanom. 0 0 0 1 0 0 0 

 

  low 

Lung CA 0 0 0 0 1 0 1 

   Ovary CA 0 0 0 0 0 1 0 

   Prost. CA 0 0 0 0 0 1 0 

   Other CA 0 0 0 0 0 0 1 

   non-cancer 20 20 11 13 11 13 9 

    

Remarkably, siESPL1 and siTOP2A shared 46 genes in their profiles that were upregulated 

almost exclusively in 3D culture and relevant for cancer, e.g. keratins, interleukins, S100 

calcium regulators, EGFR-effectors, BCSC-markers, cyclins and genes that share common 

transcription factor motifs. In a gene-set enrichment analysis the overlap list (O/L) showed a 

high association to breast cancer related gene sets (table 5). 

While siESPL1 and siTOP2A showed an upregulation of ALDH1A3, siTOP2A also displayed 

a deregulation of additional BCSC markers, e.g. downregulation of CD24 and upregulation of 

CD44 (Musgrove et al., 2011; Munz et al., 2009). 

Info box 2: Background of upregulated and cancer relevant genes 

Keratins are widely expressed in many cancer entities and are correlated to invasion, 

metastasis and treatment responsiveness and serve as reliable marker proteins (Karantza, 

2011). In the profiles of siESPL1 and siTOP2A Keratin 14, which is correlated to breast 

cancer metastasis (Cheung et al., 2016) as well as Keratin 16 and Keratin 81 could be 

identified to be overexpressed.  
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Besides immune regulation, interleukins have a broad range of functions in health but 

also disease (Brocker et al., 2010). Interleukin 1a and 1b as well as interleukin 8 are 

associated to breast cancer (Pantschenko et al., 2003; Singh et al., 2013) and were 

upregulated in both conditions. 

 

S100A8 and its dimerization partner S100A9 were upregulated in siESPL1 and siTOP2A 

expression profiles. They are members of the S100 family, which are responsible for calcium 

sensing, and deregulation can be seen in many cancers (Bresnick et al., 2015). 

 

The upregulated EGFR-effectors HBEGF and EGR1 were shown to contribute to 

metastasis (HBEGF, Zhou et al., 2014) and are regulated by c-JUN and JNK downstream of 

EGFR signaling (EGR1, Hoffmann et al., 2008).  

 

ALDH1A3 is widely used as CSC/SC marker and correlates with a variety of cancers but 

especially breast cancer and breast cancer stem cells (Marcato et al., 2011; Duan et al., 

2016). However, there are varying results reported in the literature regarding its association 

to stem cell populations, predictive power and prognostic value (Medema, 2013; Liu et al., 

2015). ALDH1A3 was upregulated not only in the expression profiles of 3D culture but also 

in monolayer culture of siESPL1 and siTOP2A. 

 

CCND1 is involved in a broad variety of pathways and upregulated by overexpression 

but also amplification in many cancer entities (Musgrove et al., 2011). According to COSMIC 

CCND1 is upregulated in ~17% of all breast cancers (Forbes et al., 2017). In a study that used 

melanoma cells, a CCND1 amplification was shown to confer sensitivity to certain drugs like 

paclitaxel (Wilson et al., 2016). 

 

Additionally, the expression profiles of siESPL1 and siTOP2A share genes that have a 

MAZ (EGR1, ACTB, DAAM1, DUSP6, FGFBP1), ETS2 (EGR1, ACTB, HBEGF, ARHGDIB, CCL20), 

PAX4 (DAAM1, HBEGF, ARHGDIB) and/or TCF3 (DAAM1, DUSP6, HBEGF, CCL20) binding 

motif in the promoter region. These transcription factors are involved in RAS signaling 

(MAZ, Ray & Ray, 2015), cooperate with PTEN or mutant p53 to modify the chromatin 
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(ETS2, Trimboli et al., 2009; Prives & Lowe, 2015), miR regulation (PAX4, J Zhang et al., 

2015) and finally Wnt-signaling and embryonic stem cell self-renewal (TCF3, Yi et al., 2011). 

However, these transcription factors themselves could not be shown to be upregulated. 

3.5 Validation of the expression changes of MCF10dE and 

MCF10dT  

Validating the findings of the microarray expression profile we see that the expression of 

CD24 in QPCR experiments was slightly downregulated for siScrambled and siTOP2A but not 

siESPL1. However, there was no significant change for any condition contradicting the 

expression-profiling results (figure 15). For CD44, ALDH1A3 and CCND1, siESPL1 and siTOP2A 

showed a significant upregulation, while the expression showed no difference for 

siScrambled (figure 15). 
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Figure 15: Relative expression of breast cancer related genes. The dotted line represents the expression 

level of the negative control that was used for normalization, asterisk: significant (p ≤ 0.05). 
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In contrast to the QPCR results anti CD24 staining by immunofluorescence was 

significantly lower for siESPL1 and siTOP2A when compared to siScrambled or the negative 

control (figure 16). The BCSC markers CD44 and ALDH1A3 as well as the oncogene CCND1 

showed a significantly increased fluorescence signal for siESPL1 and siTOP2A but not for 

siScrambled (figure 16). 
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Figure 16: Immunofluorescence of BCSC markers in abnormal spheroids in comparison to normal 

spheroids. Five representative spheroids per condition were imaged, asterisk represents a significant 

difference to the negative control (P = 0.05). 

3.6 Drug tests 

By testing the sensitivity to paclitaxel, which can be altered in cancer cells, we detected 

in 2D culture, the IC50 of the negative and scrambled control was 2.6 and 2.8 µM, 

respectively. The IC50 changed from 2.6 to 9.5 for the negative control but did not change 

for the scrambled control in 3D culture. SiESPL1 cells showed an IC50 of 10 µM as monolayer 

and increased their sensitivity to <0.1 µM when cultured on Matrigel. The IC50 of siTOP2A 
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cultured as monolayer was 0.2 µM and changed to <0.1 µM similar to ESPL1 undercutting 

the lowest measurable value for this concentration range. Interestingly Bouchet and 

colleagues reported a reduced sensitivity of aneuploid cells against paclitaxel (Bouchet et al., 

2007). However, Wilson and colleagues showed that CCND1 overexpression can sensitize 

cells against paclitaxel (Wilson et al., 2016). 
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Figure 17: Drug response curves of siScrambled, siESPL1 and siTOP2A cultured in 2D and 3D treated with 

paclitaxel. 

3.7 Testing tumorigenic potential in-vitro and in-vivo  

Stem cells show an increased renewal capacity when compared to other cells. To assess 

whether the upregulation of stem cell marker upon ESPL1 and TOP2A downregulation leads 

to a functional increase in renewal capacity of MCF10A cells, we performed a clonogenic 

mammosphere formation assay. When previously cultured in 2D, the cells of the negative 

control showed a mammosphere forming efficiency (MFE) of approximately 1 %, which is in 

line with the data reported in previous studies (Fang et al., 2011; Liu et al., 2009). The 

scrambled controls as well as siESPL1 and siTOP2A showed an MFE of around 0.5 %. When 

previously cultured in 3D, the MFE decreased for the negative control to a MFE of 

approximately 0.5 % but did not change for the other conditions. Although the 2D cultured 

negative control showed a higher MFE than the other groups there were neither statistically 

significant differences between 2D and 3D cultured cells nor between the first and the 

second generation in any group. 
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Figure 18: Comparison of the mammosphere forming efficiency from cells previously cultured as 

monolayer or on Matrigel. 

Because of the abnormal morphology and related expression, we tested if these changes 

are sufficient to increase the tumorigenic potential of any of the MCF10 cell lines. After 

imbedding in Matrigel and injection into NGS mice, neither MCF10A nor any of the si- or 

shRNA transfected cell lines formed persistent tumors over 4 weeks. 

MCF10AT cells, which were generated by overexpressing the active mutant HRAS also 

acquired the ability to form persistent tumors in mice with a low efficiency (Dawson et al., 

1996). We exploit the low efficiency to gain a bigger dynamic range for testing the effects of 

aneuploidy on the tumorigenicity as well as the tumor initiation capacity. After eight weeks 

siScrambled treated MCF10AT formed tumors in five out of six mice with a tumor weight of 

0.02 ± 0.01 gram when injecting 50.000 cells. SiESPL1 and siTOP2A treated MCF10AT formed 

tumors in six out of six mice each with the weight of 0.11 ± 0.21 and 0.18 ± 0.25 resulting in 

no statistical difference for tumorigenic potential or tumor weight. 

MCF10CA cells, which served as positive control in this experiment, formed tumors in 

100 % of the mice. SiTOP2A treated MCF10CA cells developed into significantly bigger 

tumors (p = 0.05) when compared to siScrambled treated MCF10CA (supplementary figure 

3). Although siESPL1 treated MCF10CA cells on average formed slightly bigger tumors, there 

was no statistical significance (supplementary figure 3). 
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3.8 Chromatin conformation capture (4C-seq) 

SiESPL1 and siTOP2A showed a high degree of aneuploidy, which led to increased 

amounts of chromatin in the nucleus. To test if this interferes with the chromatin 

conformation that in turn influences the expression, we looked at the interaction of the DNA 

at the transcription start site (TSS) regions of breast cancer related genes (Chang et al., 

2013), that were also deregulated in the expression profiles of siESPL1 and siTOP2A. 

Interestingly, cells cultured as monolayer on average showed the highest cis-chromatin 

interaction value (cCIV), which estimates the number of interactions with a high probability 

of the viewpoint (in this case the transcription start site of each gene) with other loci on the 

same chromosome (Table 6). Using the cCIV, the viewpoints with the highest discrimination 

between 2D and 3D are CCND1, FGFBP1, MAZ and TCF3. HBB, which we used as a control 

(Guo et al., 2015), is fairly constant for monolayer cultures. In 3D however, the cCIV of HBB 

shows a higher variability between the cell lines.  

Table 6: Cis-chromatin interaction value by viewpoint and cell line. 2D: cells cultured as monolayer, 3D: 

cells cultured on Matrigel. 

    CCND1 DUSP6 EGR1 ETS2 FGF1 FGFBP1 FGFR2 HBB MAZ PAX4 RUNX3 TCF3 

   

2D 

MCF10A 579 487 566 584 602 587 636 648 515 634 622 558 

   
siScrambled 534 565 519 586 568 583 595 662 512 591 602 452 

   
siESPL1 576 583 549 679 590 623 616 668 592 627 598 585 

 
  High 

siTOP2A 596 629 642 652 612 639 650 671 577 659 650 560 

 
  

↕ MCF10CA 578 567 573 588 572 550 593 655 461 645 621 397 

 
  

3D 

MCF10A 542 524 450 494 451 469 497 566 403 511 477 182 

 
  

siScrambled 543 567 527 475 495 443 510 524 320 515 494 270 

 
  Low 

siESPL1 326 418 491 506 563 402 531 628 419 602 580 319 

   
siTOP2A 360 334 414 482 539 438 504 616 410 621 507 168 

   
MCF10CA 56 546 485 516 573 446 525 485 405 576 567 307 

    

Interestingly, CCND1 expression of our cell lines did not vary much for monolayer 

cultured cells but did show an upregulation with increasing aneuploidy in 3D (Abstract 

figure: 4C-seq). When the expression was plotted against the cCIV, we found a negative 

correlation with a coefficient of determination of r² = 0.82 (figure 19, p < 0.001). This 



 
45 

 

correlation is noteworthy with the background that Dalvai and colleagues could show that a 

binding of the 3’ enhancer enh2 to the TSS region of CCDN1 mediated by H2A.Z could 

downregulate the expression of CCND1 (Dalvai et al., 2012). 
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Figure 19: Correlation of cCIV and the expression level of CCND1 in the different cell lines. 

Comparing the probability of chromatin interactions around the TSS of CCND1 between 

the different cell lines, we could see the highest number of reads between 600 kb upstream 

and 60 kb downstream (figure 20, near-cis region). The interactions inside and outside this 

window did not change much in 2D for any condition (figure 20, left). In 3D, the reads 

drastically dropped close to zero outside of the previously defined window (far-cis region) 

for MCF10dE and SiTOP2A, whereas we saw a clear reduction of reads within the near-cis 

region (figure 20, right). Remarkably, the MCF10CA sample showed very few reads around 

the TSS of CCND1. 



 
46 

 

 

 

Figure 20: Far-cis interaction probability. The numbers are given as relative position on the chromosome 

11 from the TSS of CCND1 (yellow VP) in kb and binned into 20 kb segments. Two dashed lines highlight the 600 

kb upstream and 50 kb downstream window. 

The annotation of the interaction in the near-cis region with H2A.Z acetylation, enhancer 

and CTCF-binding sites using the data generated by the Broad institute, ENCODE for HMEC, 

vHMEC, epithelial and myoepithelial breast cells and “Genecards.org” revealed a 

reorganization of interactions for 3D cultured siESPL1 and siTOP2A. After the identification 

of each major peak with H2A.Z acetylation, enhancer and/or CTCF binding sites, we saw that 

3D cultured MCF10A as well as siScrambled cells showed a similar profile as the 2D 

conditions (figure 21). 3D siESPL1 showed reduced peaks at position 2, 4, 6, 7, 8, 10, 11, 13, 

14, 15, 16, 17, 19, 23, 24, 25, 27, and 33. With alteration of interactions in the positions 2, 6, 

8, 11, 13, 15, 18, 23, 24, 26, 27 and 33 siTOP2A cultured in 3D showed overall more 

interactions in this region than siESPL1. The position 34 does not only contain a predicted 

enhancer and CTCF binding site but is also located in the ORAOV1 locus/promoter and is 

annotated as the enhancer with the highest enhancer-score in the gene cards database for 

CCND1. Two out of three positions that are exclusively marked to be CTCF binding sites were 

altered in 3D siESPL1 and siTOP2A. Remarkably, none of the exclusive CTCF binding sites 

showed H2A.Z acetylation which is associated to active gene regulation (Valdes-Mora et al., 

2012). 
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Figure 21: Near-cis interaction probability and alteration of the enhancer and CTCF binding site 

landscape. In the top row of the panel red indicates a difference of 3D siESPL1 (E) or 3D siTOP2A (T) or both if 

not further specified to all the other conditions. In the bottom rows of the panel, blue indicates a H2A.Z 

acetylation site, enhancer (Genecards, E119 enh, E028 enh, E027 enh) or CTCF binding site (CTCF EBC, CTCF 

MCF7) predicted by the ENCODE dataset or by “Genecards.org”. The asterisk indicates the overlapping region 

of ORAOV1 with the enhancer and CTCF binding sites. The viewpoint (black VP) is highlighted by a dashed line. 
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4 Discussion 

At the beginning of the last century Theodor Boveri proposed cancer to be a 

chromosomal disease (Boveri, 2008). He could detect mitotic abnormalities in urchin eggs 

that resulted in chromosome mis-segregation. Unaware of genes and the regulation behind 

them, he argued that abnormal mitosis might lead to the accumulation of chromosomes and 

finally result in cancer. Since the connection of mutations and cancerogenesis in 1982 (Tabin 

et al., 1982; Reddy, Reynolds & Santos, 1982) the genetic origin of cancer is extensively 

explored. However, today we know of several more contributors to cancer. In 2011, 

Hanahan and Weinberg summarized many of the theories centered on genomics in the 

“Hallmarks of cancer” (figure 22, Hanahan & Weinberg, 2011). They explain how genetic 

changes convey new properties, which are also modified by the environment. 

 

Figure 22: Hallmarks of cancer and potential treatment strategies as proposed by Hanahan and 

Weinberg (Hanahan & Weinberg, 2011). 
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The important influence of the microenvironment on tumorigenesis in detail was 

summarized by Mina Bissell (Bissell et al., 2011). While the hallmarks of cancer mainly 

focused on a genetic origin of the hallmarks Bissell & Hines argue that the 

microenvironment, e.g. stroma and extra cellular matrix is equally important for tissue 

homeostasis and tumorigenesis. 

Another factor influencing tumorigenesis is epigenetic gene regulation. DNA- and 

histone-modifications as well as chromatin-conformation have been proven to effect central 

pathways, e.g. HIPPO signaling (Harvey et al., 2013), and to regulate the expression of nearly 

all genes. 

Generally, during cancerogenesis these factors show a combinatorial effect. The majority 

of colorectal cancers develop after a mutation sequence of the APC-KRAS-DCC-P53 genes  

and often show micro-satellite instability and epigenetic gene alterations (Armaghany et al., 

2012). Breast cancer shows aneuploidy in 75 % of the tumors, and recurring mutations 

appear in many genes including TP53, PIK3CA, PTEN and BRCA1 (Nik-zainal et al., 2016). 

However, the interplay of all of these factors is not clear. 

Remarkably, aneuploidy is seen in nearly all cancer entities (Cimini, 2008). Several 

studies suggest that the acquisition of aneuploidy is a central, as well as early event in cancer 

(Nowak et al., 2002, Wang et al., 2014, Gao et al., 2016). In their recent work, Gao and 

colleagues raise the question how genome instability can be reversibly turned on. In their 

opinion, this is a critical question because aneuploidy shows detrimental effects on cell 

viability and proliferation (Gao et al., 2016). However, in the perspective that other data 

suggest that adult tissues show a certain degree of aneuploidy by chance (Knouse et al., 

2014) a reversible modus not always seems to be necessary. Rather, it implies that there is a 

tendency for abnormal mitosis. In most cases, arising abnormal daughter cells are selected 

against in the tissue environment, eliminated by the immune system or they die because of 

the detrimental effects of aneuploidy. Several studies showed that additional chromosomes 

can lead to an overload of proteins that affect the cells by proteotoxic as well as oxidative 

stress and DNA-damage (Dodgson et al., 2016; Ohashi et al., 2015); an insight that might 

even be utilized for future treatments. These effects are further amplified in ongoing CIN 

and effectively lead to cell cycle arrest and death. 
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Some of the arising abnormal daughter cells survive this first wave of death however. 

Theoretically, they could achieve this by i) exhibiting only low levels of CIN and “fly under the 

radar” (Giam & Rancati, 2015), ii) the deletion of cell death initiators like p53, iii) excessive 

accumulation of genomic regions with survival genes overriding cell death initiators or a 

combination of these scenarios. However, scenarios ii and iii alone seem to be unlikely 

because ongoing genomic rearrangements would further impair proper cell division and 

viability. The central question now is how the daughter cells utilize the genetic material to 

fuel the evolution, despite suffering from impaired cell division. One explanation might be a 

phenomenon called triplosensitivity and haploinsufficiency as proposed by Davoli and 

colleagues (Davoli et al., 2013). The authors hypothesize, that the cells overcome the 

detrimental effects of aneuploidy by specifically amplifying chromosomes or chromosome 

arms that carry GO-genes while deleting regions with STOP- or tumor suppressor genes. 

However, the mechanism why some genes are haploinsufficient or triplosensitive, while 

others are not remains unclear. Additionally, this concept intrinsically requires cells to divide 

with a sufficient rate and/or live long enough to generate enough daughter cells to select for 

the required genomic setting. This assumption calls to dispute what mechanisms can alter 

expression upon aneuploidization to make the cells survive and also drive the cell cycle. 

Changes in the epigenome could be shown to contribute to tumorigenesis. In some 

cancers there are very few or no detectable mutations and even no genomic alterations 

whatsoever (Mack, 2014; Parker et al., 2014; Rogier Versteeg, 2014); again highlighting the 

importance of epigenetics and microenvironment for tumor development. However, DNA 

methylation tends to be more stable and changes over longer periods of time (Talens et al., 

2017; Vandiver et al., 2015). Some histone modifications are more readily changeable and 

can react to immediate situations (Lee et al., 2010). It is unclear though, how or whether 

aneuploidy can directly influence DNA methylation or histone modification and utilize their 

function for increased viability or cell cycle fidelity. 

Recently, chromatin capture technologies revealed how CTCF plays an important role in 

the regulation of genes by chromatin-chromatin interactions, which was reviewed by Ong 

and Corces (Ong & Corces, 2014). Presuming the organization of chromatin interactions is 

tightly controlled and dependent on a correct chromosomal composition the accumulation 
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of additional genetic material potentially directly interferes with proper chromatin-

chromatin interactions and could thus deregulate tumor drivers. 

4.1 Finding the connection of morphology, karyotype and cancer 

using siRNA HCS 

As Ottesen and colleagues described, early stages of breast DCIS show high rates of 

aneuploidy (Ottesen et al., 1995). It is very likely, that these genomic alterations lead to an 

abnormal behavior of cells rendering them immune against growth inhibitory cues exerted 

by the microenvironment while providing a niche the cells can properly grow in. Utilizing this 

phenomenon, we induced abnormal mitosis in 3D cultured MCF10A cells using siRNA 

targeted at different CIN associated genes. Thereby, we selected candidates that i) increase 

the rate to accumulate DNA as proposed before mimicking the tendency of normal tissues to 

acquire aneuploidy by chance and ii) induce abnormal morphological properties similar to 

CIS. It is important in this context to have a transient and specific effect with the right dose 

of aneuploidy. ShRNA and CRISPR are excellent tools to precisely and permanently 

downregulate genes. However, in our context they would introduce ongoing and high levels 

of CIN and lead to additional genomic changes. Also, most drugs transiently inhibit the 

function of a certain protein but often show side effects (Kayl & Meyers, 2006) which 

renders them impractical for our purpose. 

Unexpectedly, a workaround over 2D KDs which were then reseeded onto Matrigel was 

necessary. In a first attempt of siRNA mediated knockdown under 3D culture conditions,  we 

could detect mCherry labeled siRNA in the cytoplasm of cells but cells cultured on Matrigel 

did neither show knockdown-specific phenotypes nor mRNA depletion in QPCR assays. In 

contrast, KD in 2D and subsequent reseeding into 3D resulted in abnormal acini that 

resembled lobular neoplasia as defined by O´Malley (O´Malley, 2010). Zoldan and colleagues 

reported that mixing siRNA particles with Matrigel did not affect the efficiency of the siRNA 

(Zoldan et al., 2011). The question remains whether this is attributable to the cell line, 

because different cell lines react to siRNA with different efficiencies. To rule out problems 

with Matrigel we tested different LOTS because of previously reported high LOT-to-LOT 

variation with regard to the compound composition which might alter the efficiency of 

siRNAs delivery. 
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When matching our 2D knockdown phenotypes with the literature as well as RNAi 

databases, we saw only 45 of 82 candidates to reflect the findings. This might indicate that 

the siRNAs effects either in our hands and/or on MCF10A cells are different in comparison to 

other examiners/cell lines. Another argument is that the analyzed parameters were not 

exactly the same. Interestingly, while AURKB, INCENP, ECT2, and TPX2 induce similar 

phenotypes when compared to ESPL1 and TOP2A in 2D the knockdowns in 3D result in no or 

weak morphological changes or killed the cells. This might indicate that the modus or grade 

of aneuploidization in these conditions is distinct and the cells can either rescue the effects 

or die from it in 3D.  

ESPL1 and TOP2A knockdowns resulted in whole genome and whole chromosome 

amplifications without additional alterations. This similar phenotype might be attributable to 

the related function and cooperation during sister chromatid separation (figure 23). 

 

Figure 23: Cooperation of separase (ESPL1) and TOP2A during sister chromatid separation in the 

anaphase (Chen et al., 2015). 
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This shared phenotype is remarkable before the background that TOP2A influences many 

other processes that involve decatenation (Chen et al., 2015). Apparently, impaired sister 

chromatid separation is the most immediate effect. The transient downregulation and 

subsequent aneuploidy alters the acinus morphology. This is a demonstration that gene 

mutations are not imperative to induce abnormal morphologies reminiscent of DCIS/LCIS.  

By anticipating the inhibitory effects of p53 on growth of aneuploid cells we additionally 

sensitized the cells by knocking down p53 as well. However, the abnormal acini kept growing 

and retained their morphology even without p53 knockdown. This brings into question why 

p53 did not fully inhibit the growth. When compared to the parameters of the single-KD 

there were no measurable differences of the double-KD. By monitoring aneuploid cells in 2D 

we could see a clear reduction of mitotic activity and these cells were eventually overgrown. 

In the 3D context, they could grow unhindered with a slower rate.  

Time-lapse imaging revealed that aneuploid cells displayed an impaired rotational 

movement and loss of directed migration. This interfered with the usual motion of cells that 

develop into normal acini. Wang and colleagues reported that improper motion can lead to 

abnormal acinus morphologies (Wang et al., 2013). Seemingly, under the right circumstances 

even “unfit” MCF10A cells can continue to grow and form abnormal acini.  

As reported by Yoon and colleagues, MCF10A exhibit a low level of chromosomal 

instability (Yoon et al., 2002). We saw four out of fifteen cells with either chromosome 14;22 

translocation or gains of random single chromosomes (supplementary table 5). Taking into 

account that these changes only occurred rarely and our results were robust over several 

conditions and experiments we presume that this does not interfere with our findings. 

4.2 Cancer marker expression and its effects 

As reviewed by Yersal and Barutca, the molecular classification of cancer-subtypes using 

expression profiles has increased the number of treatment options (Yersal & Barutca, 2014) 

and considerably improved the therapy success for some sub-types (Perou et al., 2000). In 

order to classify the breast cancer subtypes, ERα, keratins, PgR and HER2 expression are 

quantified. However, there are many other markers that are deregulated and can help 

predict the treatment strategy and outcome (Kabel, 2017). The deregulation of cancer 
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markers can result from a variety of reasons, namely activating or deactivating mutations of 

upstream effectors, gene amplifications, deletions or translocation. Nevertheless, deriving 

transcription levels from the genetic setup alone is challenging because gene regulation 

heavily depends on the epigenetic setup. 

Interestingly, independently of cell lines or tissue, several studies reported an 

upregulation of cancer related genes upon induction of aneuploidy (Zhang et al., 2013; Ben-

david et al., 2014). Our expression profiles support this and share the expression of breast 

cancer markers (figure 15 and 16). The breast cancer markers CD24, CD44 and ALDH1A3 are 

frequently deregulated and correlate with aggressiveness. However, a recent study showed 

that the mentioned markers seem to be expressed by different subpopulations rather than 

providing a breast cancer stem cell profile (Liu et al., 2014). This idea is supported by many 

conflicting results regarding CD24-/CD44+ breast cancer stem cell profiles as discussed by Liu 

and colleagues. Another marker that was upregulated in our expression profiles is CCND1 

(figure 15 and 16). CCND1 plays an important role during the G1 phase and connects several 

central pathways involved in tumorigenesis (figure 24). It is overexpressed in over 17 % of all 

breast cancers but shows copy number variations in only 5 % of the cancers (Forbes et al., 

2017). Assuming that CCND1 expression is not sensitive to copy number variations (figure 1, 

left), the upregulation upon aneuploidization in both conditions (siESPL1 and siTOP2A) could 

be a hint that CCND1 silencing mechanisms were disrupted by an impaired chromatin 

conformation. 
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Figure 24: The central role of Cyclin D (CCND1 and CCND2) during the G1 phase (Otto & Sicinski, 2017). 

Insensitivity of CCND1 to ploidy in invasive carcinoma (figure 1, right) does not 

necessarily contradict the upregulation of CCND1 in newly acquired aneuploidy of CIS-like 

acini. Potentially, CCND1 is upregulated early after aneuploidization to maintain the cell 

cycle until CIS further develops into more severe forms. This is supported by the study of 

Simpson and colleagues (Simpson et al., 1997) where they found a decreasing expression 

level of CCND1 with increasing DCIS grade. They pointed out that yet to be discovered 

mechanisms other than aneuploidy were responsible for the CCND1 upregulation in early 

DCIS. Combining the facts that DCIS shows aneuploidy early (Ottesen et al., 1995), CCND1 is 

upregulated in early DCIS (Simpson et al., 1997) and upon aneuploidization in our 

experiments (figure 15 & 16), we postulate that CCND1 upregulation occurs early after 

aneuploidization in CIS development and declines in later stages to be upregulated in 

invasive carcinoma again. 

The transition of CIS to invasive carcinoma is extensively studied (Ma et al., 2003; Lee et 

al., 2012; Hannemann et al., 2006). However, there is very limited comprehensive data 

about differential expression from CIS when compared to normal tissue. Single mutations in 

genes like BRCA1 and BRCA2 as well as ATM, BRIP1, CDH1, CHEK2, MRE11A, NBN, PALB2, 

PTEN, RAD50, RAD51C STK11 and TP53 are correlated to breast cancer and are used as 
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diagnostic markers (breastcancer.org). Nevertheless, it is not clear if these markers increase 

the risk of either tumor initiation or tumor development in the case CIS is already present. 

In a study by So and colleagues (So et al., 2014), the authors argue that expression of 

CCND1 alongside c-MYC and IGF-IR is important for the initiation of cancer development. 

They also found a higher CD44 expression and its isoforms to be correlated with increasing 

malignant potential using MCF10 cell lines. Remarkably, the introduction of random 

aneuploidy to MCF10A cells led to the development of acini reminiscent of CIS regarding 

morphology and expression. Though, the upregulation of CD44 and CCND1 in our 

experiments was not sufficient to increase the tumorigenic potential. This might be due to a 

lack of de-regulation of other important tumor drivers that were discussed in the previous 

paragraphs. Moreover, it might be possible that engrafted cells require a larger time window 

to fully develop their tumorigenic potential. In addition, this raises the question, what is 

necessary to induce tumorigenicity. 

MCF10AT cells which overexpress activated HRAS, are tumorigenic and develop into 

invasive carcinoma in around 20 % of the xenografts (Dawson et al., 1996). In our hands, 

MCF10AT cells formed xenografts with a similar size and frequency with siESPL1, siTOP2A or 

siScrambled treatment. The additional amplification of the karyotype did not affect the 

tumorigenic potential of MCF10AT. So and colleagues showed already that CCND1 was 

upregulated in MCF10AT xenografts and that these tumors shared many features with 

untreated CIS (So et al., 2014). Also, Simpson and colleagues demonstrated that higher 

grades of CIS did not show further CCND1 upregulation (Simpson et al., 1997). This brings 

the applicability of this setup using MCF10AT into question. However, further histological 

analysis similar to what Sadlonova and colleagues conducted is required to assess whether i) 

CCND1 expression correlates with tumor size, ii) the treatment induced tumors show traits 

of higher CIS stages or iii) there are more invasive structures (Sadlonova et al., 2007). 

Using MCF10CA1 cells treated with siESPL1, siTOP2A or siScrambled in xenografts we 

detected a slight increase in size for siESPL1 and siTOP2A (supplementary figure 3). The 

increased size for siESPL1 was not significant, though. Importantly, the number of mice was 

low and the effects were small. It remains unclear if the lacking significance is a result of 

missing marker upregulation, additional aneuploidy or other effects. 
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4.3 The effects of aneuploidy on the genome and its regulation 

In 2006, Carter and colleagues published a gene signature containing mostly genes 

whose deregulation correlates with aneuploidy (Carter et al., 2006). They were able to 

better predict clinical outcome of six cancer entities and reliably stratify breast cancers into 

grade 1 and 2. Their findings do not only demonstrate the influence of aneuploidy on cancer 

but confirm that aneuploidy plays a critical role in gene regulation. The mechanisms behind 

that were discussed to be caused by i) the DNA content itself changes expression and the 

mitotic competence of a cell, ii) a loss of the ability to maintain the “integrity of genetic 

information on the chromosomal level” and iii) an override of checkpoints during mitosis 

caused by the genes from their signature. 

Beach and colleagues showed that aneuploid cells retain the variability of the mother 

population, and cells that shared the same aneuploidies could have drastically different 

phenotypes (Beach et al., 2017). This highlights that the genetic setup follows the regulation 

of epigenetics. Epigenetic regulation over chromatin-chromatin interactions make up one of 

the major epigenetic tools the cell has to regulate gene expression (Lieberman-aiden et al., 

2009). As opposed to methylation/acetylation of the DNA or histones, chromatin-chromatin 

interactions are, at least theoretically, susceptible against changes of the chromatin content. 

This is supported by the fact that aneuploidy and changes of the expression profile do not 

always correlate. 

By looking at different chromatin interactions of the promoter regions of genes that 

were upregulated in the siESPL1 and siTOP2A expression profiles (Info box 2) using 4C-seq, 

we could see a reduced number of interactions for the 3D conditions when compared to the 

2D conditions. Remarkably, CCND1 showed a strong negative correlation of expression and 

the number of interactions (figure 19). 

A central question of this work is how CCND1 could be upregulated upon 

aneuploidization, despite being copy number insensitive. As Whalen and colleagues  

showed, enhancer-promoter interactions independent of genomic distance are important 

for gene expression (Whalen et al., 2016). The detection of several potential CCND1 

promoter interacting enhancer regions that had fewer interactions with the CCND1 

promoter is an important argument that CCND1 is regulated by several enhancers forming 
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inhibitory loops. One of these inhibitory enhancer interactions was described by Dalvai and 

colleagues. They showed that the enhancer enh2 interacts with the CCND1 promoter over 

H2A.Z. Upon acetylation of H2A.Z by the Tip60 acetyltransferase, the H2A.Z-mediated 

inhibitory loop is released, which activates CCND1 for transcription (Dalvai et al., 2012). The 

fact that the upregulation of CCND1 in 2D was not detectable could be caused by i) the 

missing niche that cells growing in 3D have to form in order to develop into aneuploid acini 

and divide enough to bring the conformational changes into effect or ii) additional unknown 

cues in the 3D environment that enable the cells to alter chromatin conformation. Another 

interesting finding is that many of the interaction changes occurred in the far-cis regions, 

which also exhibit the fewest interactions (figure 20). The biological meaning of the low 

interacting regions for CCND1 expression needs to be further analyzed. 

Our results suggest that either additional chromosomes reduce the accessibility of the 

chromosomal regions, or interactions of different chromosomes play a crucial role in 

aneuploidy driven CCND1 upregulation. The first argument would result in broader changes 

and would be less consistent. This contradicts our findings of similar changes between 

siESPL1 and siTOP2A and over different viewpoints. Different chromosomes interact with 

each other using CTCF motifs (Botta et al., 2010) but can seemingly also mediate intra-

chromosomal interactions. Intra-chromosomal interactions would not change much with 

additional copies of other chromosomes if all of them would only self-interact or they are 

not modified by other processes. However, this is exactly what we see, a change of 

interactions based on increased chromatin content.  

Our findings might be a good explanation for the deregulation of tumor drivers whose 

overexpression could not be correlated with copy number changes. However, the 

mechanism how aneuploidy confers the interaction changes in detail remains unclear. One 

approach to explain this might be that genes with specific enhancer landscapes around them 

are more susceptible against alterations of chromatin interactions upon chromosome gains 

or losses. This is supported by the fact that there are several genes in the expression profiles 

of siESPL1 and siTOP2A that share either of the transcription factor binding motifs of TCF3, 

PAX4, ETS2 and MAZ. All of these transcription factors have also been shown to play a role in 

CCND1 regulation (Hovanes et al., 2001; Mellado-gil et al., 2016; Guo et al., 2011, TRANSFAC 
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database for transcription factors, Broad institute). This is a hint that certain enhancer 

setups might predispose genes to be deregulated upon chromosome number changes. 

Another idea would be that the transcription factors themselves are deregulated and cause 

the abnormal expression. However, the transcription factors did not show altered levels in 

our expression profiles. 

The implications of aneuploidy driven reshaping of the enhancer-landscape resulting in 

the deregulation of cancer relevant genes are immense. It implicates that aneuploidy would 

not only be a tool for diversification and subsequent cancer evolution but also be capable of 

actively driving further steps towards tumorigenicity. Additionally, this concept could 

strengthen the arguments made by Davoli and colleagues (Davoli et al., 2013) because this 

could explain why some genes are considered triplosensitive or haploinsufficient. In short, 

genes sharing either inhibitory elements or transcription factor binding sites similar to 

CCND1 are deregulated by the altered interactions rather than the copy number changes. In 

succession, they would appear to be triplosensitive because additional chromosomes would 

change the intra-chromosomal interaction landscape and increase the gene expression 

similar to CCND1. In the case of haploinsufficiency it is to be determined, whether 

chromosome number changes also result in reduced interactions in 3D. If this is the case, 

then classical enhancer function that works by assembling proteins to the promoter region 

of the target gene to enhance the expression might be impaired and result in 

downregulation of the gene. 

Lastly, ESPL1 and TOP2A cooperate during sister chromatid separation, act together 

during chromatin condensation and potentially also during chromatin conformation 

processes. CTCF and cohesin are the most important proteins mediating chromatin 

conformation (Uhlmann, 2016). Chromatin interactions are stabilized by cohesin which is 

broken down by separase (Petronczki et al., 2003). TOP2B which is an isoform of TOP2A 

mediates DNA breaks that correlate with cohesin (Canela et al., 2017). Taken together this 

potential cooperation of cohesion/separase/topoisomerase and its disruption affecting 

chromatin interactions might be the reason for the observed results instead of the 

aneuploidy (Uhlmann, 2016). 
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Figure 25: TOP2B and separase are involved in chromatin interaction rearrangements (Canela et al., 2017 

and Petronczki et al., 2003, modified). 

4.4 Conclusion 

We can show that introduction of mitotic errors by downregulation of ESPL1 and TOP2A 

first lead to accumulation of genetic material (figure 10). In 3D, we can measure that this 

reliably triggers the upregulation of CCND1 (figure 15 and 16) by altering the chromatin 

conformation of CCND1 associated enhancers (figure 21). The upregulation of CCND1 leads 

to altered cell cycle progression and potentially increases the chance for abnormal cells to 

further develop into early forms of CIS (figure 26). This is supported by So and colleagues, 

who show that CCND1 is upregulated in low grade CIS (So et al., 2014). In further 

developmental steps it is progressively downregulated with increasing grade (Simpson et al., 

1997). The upregulation of CCND1 in invasive breast cancers might then again further drive 

cancer development by keeping aneuploid cells dividing (figure 26). 
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Figure 26: Proposed model of aneuploidy driven CCND1 upregulation and resulting development of CIS. 

5 Outlook 

This project centered on the effects of tumor drivers whose deregulation was correlated 

to CIN. In the initial HCS, we transiently downregulated genes to mimic a loss of function 

which resulted in abnormal mitosis and aneuploidy. In cancer, the upregulation of tumor 

drivers is seen just as often and might be an alternative way of testing the model resulting 

from this project. In this context, the effect of CCND1 upregulation would be especially 

interesting. To be able to better generalize the results, other cell models could be analyzed. 

One remaining question is whether aneuploid cells alone in the acini show the altered 

expression or all cells within the acini deregulate the tumor markers. This could be tested 

using single cell expression profiles. The immunofluorescence staining suggests the latter 

alternative. If so, how do the aneuploid cells confer the expression to the other cells? 

Although we tested for genomic alteration, we did not test if the induction of aneuploidy 

also caused smaller alterations that were not visible in MFISH. At least in theory, it is 

possible that the changes were caused by mutations that are only detectable by sequencing. 

MCF10A cells that were induced to be aneuploid did not show increased tumorigenic 

potential in xenografts. There are several questions that arise in this context. What is 

necessary to transform MCF10A cells into a physiologically relevant xenograft model? 
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MCF10AT cells, which overexpress activated HRAS, seem like an overkill method with limited 

clinical applicability. Would TP53 downregulation in addition to the aneuploidy caused by 

ESPL1 and TOP2A downregulation be enough? The initial screen gives the impression that 

additional TP53 downregulation might not be enough. However, it is not clear if the lack of 

effects in the dKD HCS are a result of wrong dosage or timing.  

To get a better understanding of how aneuploidy shapes the chromatin interactions, 

chromatin conformation capture technologies at single cell resolution (Hi-C, 4-C) might shed 

light on the effects of random aneuploidy or copy number alteration of single chromosomes 

and how consistent the changes are across cells of a single tumor. Here, a method could be 

utilized that leads to a selective miss-segregation of single chromosomes shown by Beach 

and colleagues (Beach et al., 2017). In yeast, the substitution of the centromeric region with 

a conditional centromere that can express GAL1 during mitosis stops kinetochore formation 

and proper segregation. This approach might be adaptable for mammalian cells in the 

future. 
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7 Supplementary Data 

7.1 Supplementary results 

Knockdown protocol development 

To test the downregulation of an example candidate in the 3D environment we 

transfected MCF10A cells growing on Matrigel with mCherry-INCENP siRNA after standard 

protocol and could detect the fluorescence inside the cells one day later. However, induction 

of morphological phenotypes characteristic for INCENP downregulation like polylobed 

shapes was absent. QPCR analysis also showed no downregulation of INCENP expression 

(Supplementary results figure 1). 
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Supplementary results figure 1: Cellular localization of mCherry reporter siRNA and QPCR quantified 

INCENP expression level after transfection of MCF10A cells with siINCENP growing on Matrigel. Cyan: H2B-

GFP, yellow: mCherry reporter siRNA, the bar represents a length of 50 µm. 

Attempting to improve the effects of the knockdown we transfected cells as monolayer 

and subsequently reseeded them into monolayer and 3D culture. A high abundance of 

morphologically abnormal nuclei was visible in monolayer culture. When cultured on 

Matrigel there were not only single polylobed nuclei in the well but also acini consisting of or 

at least containing polylobed nuclei. The QPCR analysis shows a strong downregulation of 

INCENP RNA of ~85% (Supplementary results figure 2) after the initial knockdown. Image 

analysis revealed a rate of > 50 % polylobed nuclei in the whole population of cells in 

monolayer culture. 
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Supplementary results figure 2: Improved downregulation efficiency after a knockdown in monolayer 

culture with subsequent reseeding. Cyan: H2B-GFP, the bar (top left image) represents a length of 50 µm. 

Screen consistency 

Assessing the assays consistency all negative controls of all individual plates were compared with 

each other. All parameters of the negative controls appear in a similar dimension and have a small 

std. dev. (supplementary results figure 3). 
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Supplementary results figure 3: Consistency assessment of the HCS comparing the negative controls of 

all 28 measured plates. Each point represents the mean of all replicates of the negative controls per well. The 

overall mean and standard deviation are represented by the red bar and the red error bars. 
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7.2 Supplementary figures 

  

Supplementary figure 1: Morphology of a normal (left) and abnormal (right) spheroid after 21 days of 

culturing on Matrigel. Cyan: H2B-GFP, Yellow: Golgi and lysosomes. The bar represents a length of 50 µm. 
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Supplementary figure 2: Eigenvector distribution of the PCA of the nine screening parameters plotted 

against their respective eigenvalue and supplemented with their strongest correlating parameter. 
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Supplementary figure 3: Tumorigenicity of MCF10CA in after siScrambled, siESPL1 and siTOP2A 

treatment. 

7.3 Supplementary tables 

Supplementary table 1: Screening candidates. The names and IDs are according to NCBI. The right column 

indicates if the measured 2D phenotype was in line (green), inconclusive (yellow) or not in line with the 

literature (red). 

Gene ID Reference 
# publications 

(august 2016) 

Measured 
2D phenotype 

in line with 
reported  

2D phenotype 

ACTA1 58 havaki 2007 cancer cell 346   

APC 324 
thompson et al 2010 current biol, cosmic 

(most mutated genes) 
710   

ARID1A 8289 cosmic (most mutated genes) 155   

ATM 472 
pandita 2002 oncogene, cosmic (most 

mutated genes) 
1027   

ATR 545 pino & chung 2010 gastroenterology 405   

AURKB 9212 carter et al 2006 nature 323   

BAZ2A 11176 parry and clarke 2011 genes and cancer 27   

BAZ2B 29994 parry and clarke 2011 genes and cancer 20   

BRCA1 672 
thompson et al 2010 current biol, cosmic 

(most mutated genes) 
2346   

BRCA2 675 thompson et al 2010 current biol 1408   

C20orf24 55969 carter et al 2006 nature 12   

CAMLG 819 thompson et al 2010 current biol 33   

CDC45 8318 chibon et al 2010 nature med 56   

CDC6 990 carter et al 2006 nature 119   



 
83 

 

CDH1 999 cosmic (most mutated genes) 1509   

CDKN1B 1027 davoli et al 2013 cell 849   

CDKN2A 1029 
davoli et al 2013 cell, cosmic (most mutated 

genes) 
1930   

CENPE 1062 chibon et al 2010 nature med 74   

CENPF 1063 thompson et al 2010 current biol 73   

CHEK1 1111 carter et al 2006 nature 403   

CHFR 55743 perez de castro et al 2007 carcinogenesis 87   

CKAP2 26586 thompson et al 2010 current biol 39   

CMAS 55907 carter et al 2006 nature 25   

COPB2 9276 hutchins et al 2010 science 56   

CTPS1 1503 carter et al 2006 nature 49   

DIAPH3 81624 johansson 2013 plos one 38   

ECT2 1894 carter et al 2006 nature 79   

ESPL1 9700 carter et al 2006 nature 49   

FBXW7 55294 thompson et al 2010 current biol 259   

FHIT 2272 saldivar 2012 plos genet 306   

FOXM1 2305 carter et al 2006 nature 278   

GATA3 2625 cosmic most mutated genes 270   

H2AFX 3014 carter et al 2006 nature 337   

HAUS8 93323 thompson et al 2010 current biol 19   

INCENP 3619 neumann et al 2010 nature 66   

KIF2B 84643 thompson et al 2010 current biol 15   

KIF4A 24137 carter et al 2006 nature 57   

KMT2C 58508 cosmic (most mutated genes) 65   

LATS1 9113 sorrentino et al 2014 nat cell biol 94   

LATS2 26524 sorrentino et al 2014 nat cell biol 89   

LMNB2 84823 kuga et al 2014 oncogene 61   

LLGL1 3996 russ et al 2012 plos one 40   

LLGL2 3993 russ et al 2012 plos one 27   

MAD2L1 4085 carter et al 2006 nature 213   

MAP2K4 6416 
carter et al 2006 nature, cosmic (most 

mutated genes) 
165   

MAP3K1 4214 davoli et al 2013 cell 150   

MAPRE1 22919 thompson et al 2010 current biol 115   

MBD5 55777 parry and clarke 2011 genes and cancer 25   

MBD6 114785 parry and clarke 2011 genes and cancer 15   

MYH10 4628 overholzer 2007 cell 101   

MYO10 4651 overholzer 2007 cell 50   

NCAPH 23397 chibon et al 2010 nature med 32   

NEU1 4758 butler et al 2013 traffic 77   

NISCH 11188 johansson et al 2013 plos one 36   

NUP98 4928 perez de castro et al 2007 carcinogenesis 171   

PARD3 56288 wan et al  2013 mboc 94   

PLK4 10733 chibon et al 2010 nature med 75   
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PRC1 9055 carter et al 2006 nature 58   

PTEN 5728 cosmic (most mutated genes) 1606   

RANBP1 5902 thompson et al 2010 current biol 71   

RB1 5925 
thompson et al 2010 current biol, cosmic 

(most mutated genes) 
1015   

RBMX 27316 davoli et al 2013 cell 101   

RHOA 387 overholzer 2007 cell 763   

ROCK1 6093 overholzer 2007 cell 318   

ROCK2 9475 overholzer 2007 cell 135   

SETDB2 83852 parry and clarke 2011 genes and cancer 13   

SGO2 151246 chibon et al 2010 nature med 26   

SMAD2 4087 petersen et al 2010 oncogene 459   

SPINK7 84651 thompson et al 2010 current biol 18   

TOP2A 7153 carter et al 2006 nature 363   

TP53 7157 
thompson et al 2010 current biol, cosmic 

(most mutated genes) 
7747   

TP63 8626 stefanou et al 2004 histol histopathol 642   

TPX2 22974 carter et al 2006 nature 93   

TRIP13 9319 carter et al 2006 nature 40   

TTN 7273 cosmic most mutated genes 237   

UHRF2 115426 parry and clarke 2011 genes and cancer 35   

VCL 7414 mierke et al 2010 jbc 172   

ZBTB4 57659 parry and clarke 2011 genes and cancer 13   

ZFP36L1 677 davoli et al 2013 cell 49   

ZSCAN22 342945 
personal communication (Claudia Lukas, Uni 

Kopenhagen) 
9   

ZWILCH 55055 perez de castro et al 2007 carcinogenesis 11   

ZWINT 11130 carter et al 2006 nature 38   

Supplementary table 2: Sirna library 

HGNC 
symbol 

siRNA ID 
#1 

siRNA ID 
#2 

siRNA ID 
#3 

ACTA1 s941 s942 s943 

APC s1433 s1434 s1435 

ARID1A s15785 s15786 s15784 

ATM s1710 s1709 s1708 

ATR s536 s56826 s227305 

AURKB s17611 s17612 s17613 

BAZ2A s22058 s22056 s22057 

BAZ2B s26865 s26866 s26867 

BRCA1 s458 s459 s457 

BRCA2 s2085 s224694 s224695 

C20orf24 s31821 n269281 n269282 

CAMLG s2371 s2372 s2370 

CDC45 s15829 s15830 s15831 
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CDC6 s2744 s2745 s2746 

CDH1 s2769 s2770 s2768 

CDKN1B s2837 s2838 s2839 

CDKN2A s216 s218 s217 

CENPE s2915 s2916 s2917 

CENPF s2918 s2919 s2920 

CHEK1 s502 s503 s504 

CHFR s31392 s31393 s31394 

CKAP2 s25563 s25564 s25565 

CMAS s31758 s31757 s31759 

COPB1 s3371 s3372 s3373 

CTPS1 s3731 s3732 s229529 

DIAPH3 s37734 s37735 s37736 

ECT2 s4444 s4445 s4446 

ESPL1 s18686 s18687 s18688 

FBXW7 s30663 s30664 s224357 

FHIT s5191 s5192 s5193 

FOXM1 s5248 s5249 s5250 

GATA3 s5600 s5601 s5599 

H2AFX s6412 s6413 s226270 

HAUS8 s41118 s41119 s41120 

INCENP s7424 s7423 s7422 

KIF2b s39236 s39237 s39238 

KIF4A s24406 s24407 s24408 

KMT2C s33888 s33890 s33889 

LATS1 s17392 s17393 s17392 

LATS2 s25503 s25504 s25505 

LLGL1 s8216 s8217 s8215 

LLGL2 s8209 s8210 s8211 

LMNB2 s39476 s39477 s39478 

MAD2L1 s8392 s8393 s8391 

MAP2K4 s12702 s12703 s12701 

MAP3K1 s8667 s8668 s8669 

MAPRE1 s22673 s22674 s22675 

MBD5 s31485 s31486 s31487 

MBD6 s41594 s41595 s41596 

MYH10 s9170 s9171 s9169 

MYO10 s9225 s9223 s9224 

NCAPH s23735 s225959 s225960 

NEU1 s224109 s9455 s9454 

NISCH s22093 s22094 s223208 

NUP98 s9782 s9783 s9784 

PARD3 s32126 s32127 s32128 

PLK4 s21085 s21084 s21083 
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PRC1 s17267 s17268 s17269 

PTEN s325 s326 s327 

RANBP1 s11772 s11770 s11771 

RB1 s523 s524 s522 

RBMX s26142 s26143 s223747 

RHOA s758 s759 s760 

ROCK1 s12097 s12098 s12099 

ROCK2 s18161 s18162 s18163 

SETDB2 s38215 s38216 s38217 

SGOL2 s45544 s45543 s45545 

SMAD2 s8397 s8398 s8399 

SPINK7 s39252 s39253 s39251 

TAF4 s13733 s13734 s13735 

TOP2a s14308 s14309 s14307 

TP53 s605 s606 s607 

TP63 s16411 s229399 s229400 

TPX2 s22745 s22746 s22747 

TRIP13 s17805 s17806 s17807 

TTN s14484 s14485 s14486 

UHRF2 s41816 s41817 s41818 

VCL s14762 s14763 s14764 

ZBTB4 s33538 s33539 s33540 

ZFP36L1 s2089 s2090 s2091 

ZSCAN22 s50958 s50956 s50957 

ZWILCH s30072 s30073 s30074 

ZWINT s21949 s21950 s21951 

SCRAMBL
ED 

s813 s814   

 

Supplementary table 3: List of antibodies 

Experiments Antibody 
Sp

ecies 
Reactivity 

Dilu
tion 

HCS 
immunofluorescence 

Anti-GM130 
(ABCAM, ab52649) 

Ra
bbit 

Cow, Dog, 
Human, 
Monkey 

1:2
50 

Anti-γH2AFX 
(ABCAM, ab22551) 

Mo
use 

Mouse, Rat, 
Cow, Human 

1:2
50 

BCSC-marker 
confirmation 

Anti-CD24 
(ThermoFisher, MA5-11833) 

Mo
use 

Human 
1:1

000 

Anti-CD44 
(ThermoFisher, MA5-13890) 

Mo
use 

Human 
1:2

50 
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Anti-ALDH1A3 
(ThermoFisher, PA5-29188) 

Ra
bbit 

Human 
1:5

00 

Anti-CCND1 
(ThermoFisher, AHF0082) 

Mo
use 

Rat, Human 
1:1

00 

Anti-EPCAM 
(ThermoFisher, MA5-12436) 

Mo
use 

Human, 
Mouse 

1:2
50 

Secondary 
antibodies 

Alexa-568 anti 
(ThermoFisher, a-21070) 

Go
at 

Mouse 
1:5

00 

Alexa-568 anti 
(ThermoFisher, a-21050) 

Do
nkey 

Rabbit 
1:5

00 

Alexa-633 anti 
(ThermoFisher, a-21052) 

Go
at 

Mouse 
1:5

00 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary table 4: Chromosomal changes of 15 metaphases of untreated MCF10A cells using 

MFISH. Green: gains, yellow: losses, blue: translocations, n: number of chromosomes, i: isochromosome, del: 

deletion, der: derivative, t: translocation. 
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Supplementary table 5: List of all potential screening candidates before “classification” 
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name id Literature where from 

ACTA1 58 - (overholzer 2007) overholzer 2007 cell, havaki 2007 cancer cell 

ACTL6A 86   carter, bao et al 2013 cell 

AKT1 207 sasaki 2010 biochem biophy res commun sasaki 2010 biochem biophy res commun 

ANAPC

1 

64682 - ming liang he 2011 am j cancer research 

ANLN 54443   carter, hall et al 2005 clinical canc res 

APC 324 miclea. 2011. exp cell res, vitale et al 2011 cell 

death differ, thompson et al 2010 cell 

vitale, thompson 

ARHGA

P19 

84986   johansson 

ARHGE

F5 

7984 kuroiva 2011 jcs debily et al 2004 hum mol genet 

ARID1A 8289   * 

ASF1B 55723   carter 

ASPM 259266 schaukat. 2012. plos one, buchmann. 2011. 

genes & dev 

cinsarc 

ATAD2 29028   carter, kalashnikova et al 2010 cancer res 

ATM 472 schaukat. 2012. plos one, pandita. 2002. 

nature oncogene 

  

ATR 545 pino. 2010. gastroenterology pino. 2010. gastroenterology 

AURKA 6790 zhang. 2011. mol cell biochem, vitale et al 

2011 cell death differ, thompson et al 2010 cell, 

perez de castro et al 2007 carcinogenesis 

cinsarc, vitale, thompson, de castro 
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AURKB 9212 addepalli. 2010. gene ther, vitale et al 2011 

cell death differ, thompson et al 2010 cell, perez de 

castro et al 2007 carcinogenesis 

cinsarc+carter, vitale, thompson, de castro 

AXIN2 8313 hadjihannas 2010 embo report, thompson et 

al 2010 cell 

thompson 

BIRC5 332 lamers 2011 endocr relat cancer, perez de 

castro et al 2007 carcinogenesis 

cinsarc, de castro 

BMI1 648 fasano 2007 cell stem cell fasano 2007 cell stem cell 

BORA 79866   carter 

BRCA1 672 ballal 2009 j biol chem, vitale et al 2011 cell 

death differ, thompson et al 2010 cell 

vitale, thompson 

BRCA2 675 hattori 2011 mol cancer ther, vitale et al 2011 

cell death differ, thompson et al 2010 cell 

vitale, thompson 

BUB1 699 shi 2010 Mol. Hum. Reprod. Advance oxford 

journal, thompson et al 2010 cell, perez de castro et 

al 2007 carcinogenesis 

cinsarc, yuan et al 2005 clin canc res, 

thompson, de castro 

BUB1B 701 miyamoto 2011 hum mol gen, thompson et al 

2010 cell, perez de castro et al 2007 carcinogenesis 

cinsarc, yuan et al 2005 clin canc res, 

thompson, de castro 

BUB3 9184 li 2009 plos one, thompson et al 2010 cell, 

perez de castro et al 2007 carcinogenesis 

yuan et al 2005 clin canc res, thomspon, de 

castro 

C20orf2

4 

55969   carter 

CAMLG 819 thompson et al 2010 cell lim et al 2011 breast canc res, thomspn 

CCNA2 890   carter, tane et al 2009 cell cycle 

CCNB1 891 perez de castro et al 2007 carcinogenesis cinsarc+carter, de castro 
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CCNB2 9133 perez de castro et al 2007 carcinogenesis cinsarc+carter, de castro 

CCNE1 989 Etemadmogha 2010 plos one, thompson et al 

2010 cell 

thompson 

CCT5 22948   carter 

CDC20 991 taniguchi 2008 anticancer res, thompson et al 

2010 cell, perez de castro et al 2007 carcinogenesis 

cinsarc+carter, yuan et al 2005 clin canc res, 

thompson, perez de castro 

CDC45 8318   cinsarc+carter 

CDC6 990   cinsarc+carter 

CDC7 8317   cinsarc, bonte et al 2008 neoplasia 

CDCA2 157313   cinsarc, uchida 2013 plos one 

CDCA3 83461   cinsarc+carter, uchida 2012 bmc cancer 

CDCA8 55143 perez de castro et al 2007 carcinogenesis cinsarc+carter, de castro 

CDH1 999 naoe 2010 mol cell biol, ye 2012 mol med 

report 

* 

CDK1 983 zhang 2011 j cellular biochem, perez de castro 

et al 2007 carcinogenesis 

westbrook et al 2007 cancer res, de castro 

CDKN1

A 

1026 vitale et al 2011 cell death differ vitale 

CDKN1

B 

403429 sugihara 2006 sugihara 2006 

CDKN2

A 

1029 vitale et al 2011 cell death differ *, vitale 

CENPA 1058 mcgovern 2012 breast cancer res carter, mcgovern 2012 breast cancer res 

CENPE 1062 tanudji 2004 mboc, thompson et al 2010 cell cinsarc, thompson 



 
92 

 

CENPF 1063 thompson et al 2010 cell, perez de castro et al 

2007 carcinogenesis 

thompson, de castro 

CENPH 64946 orthaus 2006 biochem biophys res comm, 

thompson et al 2010 cell 

thompson 

CENPL 91687 - cinsarc 

CEP110 9738 perez de castro et al 2007 carcinogenesis de castro 

CEP55 55165 inoda et al 2009 j immunotherapy cinsarc+carter 

CHEK1 1111 höglund et al 2011 clinical cancer research carter 

CHEK2 11200 schaukat 2012, nagel et al 2012 breast cancer 

research treatment 

  

CHFR 55743 maddika 2009 JOURNAL OF BIOLOGICAL 

CHEMISTRY, perez de castro et al 2007 

carcinogenesis 

de castro 

CIT 11113 whitworth et al 2012 plos one whitworth et al 2012 plos one 

CKAP2 26586 hong 2009 cell cycle, thompson et al 2010 cell thompson 

CKAP5 9793 perez de castro et al 2007 carcinogenesis de castro 

CKS1B 1163 shi 2010 onkotarget, perez de castro et al 

2007 carcinogenesis 

de castro 

CKS2 1164 frontini 2012 dev cell, perez de castro et al 

2007 carcinogenesis 

cinsarc+carter, de castro 

CLASP1 23332 Kiyosue 2005 jcb, thompson et al 2010 cell thompson 

CLASP2 23122 Kiyosue 2005 jcb, thompson et al 2010 cell thompson 

CMAS 55907 - carter 

COPB2 9276 -   



 
93 

 

CTNNB

1 

1499 zeng 2007 neoplasia, thompson et al 2010 cell thompson 

CTPS 1503 - carter 

CTSB 1508 bengsch et al 2013 oncogene   

DCC 1630 koren 2003 breast cancer treatme   

DHCR7 1717   carter 

DIAPH3 81624 johansson 2013 plos one johansson 

DKC1 1736 montanaro 2006 j pathol carter 

ECT2 1894 kanada 2008 Molecular Biology of the Cell, 

perez de castro et al 2007 carcinogenesis 

cinsarc+carter, de castro 

ELAVL1 1994 zhu et al 2013 tumour biol carter 

ERBB2 2064 leung 2012 nature   

ESPL1 9700 thompson et al 2010 cell, perez de castro et al 

2007 carcinogenesis 

cinsarc+carter, thompson, de castro 

ETS1 2113 verschoor 2013 cancer & met   

EZH2 2146 panousis 2011 eur j gynaec oncol carter 

FANCI 55215 garcia 2009 carcinogenesis cinsarc 

FBXO5 26271   CINSARC 

FBXW7 55294 izumi 2012 plos one, vitale et al 2011 cell 

death differ, thompson et al 2010 cell 

vitale, thompson 

FEN1 2237 van pel 2013 plos genet carter 

FHIT 2272 fragile site FRA3B, arun 2005 Cancer 

Epidemiol Biomarkers Prev 

fragile site 



 
94 

 

FLT1 2321 schaukat 2012, lee 2011 blood, lee 2008 plos 

med 

  

FOXM1 2305 xue 2010 plos one, thompson et al 2010 cell, 

perez de castro et al 2007 carcinogenesis 

cinsarc+carter, thompson, de castro 

FOXQ1 94234 kaneda 2010 cancer res, feuerborn 2011 j cell 

physiol 

  

GATA3 2625 vudoc et al 2008 cancer epidemiolo, 

dydensborg 2009 nature 

* 

GATA4 2626 hua 2009 mol cancer res   

GPI 2821 funasaka 2009 cancer res carter 

H2AFX 3014 perez de castro et al 2007 carcinogenesis cinsarc+carter, de castro 

H2AFZ 3015 svotelis 2010 cell cycle carter 

HAUS8 93323 thompson et al 2010 cell thompson 

HDGF 3068 chen 2012 j pathol carter 

HP1BP3 50809 ? (housekeeping gene?!) cinsarc 

ID1 3397 vitale et al 2011 cell death differ, thompson et 

al 2010 cell 

vitale, thompson 

INCENP 3619 Jennifer C Hofmann, Alma Husedzinovic, 

and Oliver J Gruss. The function of spliceosome 

components in open mitosis. Nucleus. 2010 Nov-

Dec; 1(6): 447–459. PMCID: PMC3027046 

  

KIF11 3832 vitale et al 2011 cell death differ, thompson et 

al 2010 cell 

cinsarc, vitale, thompson 

KIF14 9928 singel 2012 cancer research cinsarc 

KIF15 56992 scanlan 2001 cancer immun cinsarc 
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KIF18A 81930 zhang 2010 carcinogenesis cinsarc 

KIF20A 10112 Hill 2000 embo j cinsarc+carter 

KIF23 9493 ? cinsarc 

KIF2a 3796 ganem 2004 jcb, thompson et al 2010 cell thompson 

KIF2b 84643 manning 2007 mboc, thompson et al 2010 cell thompson 

KIF2C 11004 Kline-Smith 2004 mol biol cell, thompson et al 

2010 cell 

cinsarc, thompson 

KIF4A 300521 wandke 2012 jcb, thompson et al 2010 cell, 

perez de castro et al 2007 carcinogenesis 

cinsarc+carter, thompson, de castro 

KIFC1 3833 de 2009 cancer res cinsarc 

KLF4 9314 yu 2011 oncogene, thompson et al 2010 cell thompson 

KNTC1 9735 perez de castro et al 2007 carcinogenesis de castro 

KRAS 3845 sunaga 2011 mol cancer ther, chen et al 2010 

Breast Cancer Research and Treatment 

  

LATS1 9113 vitale et al 2011 cell death differ, perez de 

castro et al 2007 carcinogenesis 

vitale, de castro 

LATS2 26524 vitale et al 2011 cell death differ, perez de 

castro et al 2007 carcinogenesis 

vitale, de castro 

LLGL1 3996 wan et al 2012 mboc   

LLGL2 3993 wan et al 2012 mboc   

LSM4 25804 carter et al 2006 carter 

MAD1L

1 

8379 chen 2012 oncol rep, vitale et al 2011 cell 

death differ, thompson et al 2010 cell, perez de 

castro et al 2007 carcinogenesis 

vitale, thompson, de castro 
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MAD2L

1 

4085 michel 2004 pnas, thompson et al 2010 cell, 

perez de castro et al 2007 carcinogenesis 

cinsarc+carter, yuan et al 2005 clin canc res, 

thompson, de castro 

MAP2K

1 

5604 -   

MAP2K

3 

5606 schaukat 2012, jia 2010 proteomics clin appl   

MAP2K

4 

6416 * * 

MAPK1 5594 -   

MAPK8 5599 schaukat 2012, parra 2010 int j mol med   

MAPRE

1 

22919 thompson et al 2010 cell, perez de castro et al 

2007 carcinogenesis 

thomspn, de castro 

MCM10 55388 mark 2008 bichem biophys res comm carter 

MCM2 4171 cobanoglu 2010 clinical res cinsarc 

MCM7 4176 liu 2012 lung cancer cinsarc+carter 

MDM2 4193 brekmann 2012 breast cncer research, 

thompson et al 2010 cell 

thompson 

MDM4 4194 thompson et al 2010 cell thompson 

MELK 9833 hebbard 2010 cancer res cinsarc+carter 

MEX3C 51320 burrell 2013 nature   

MKL1 57591 scharenberg 2010 int j biochem cell biol   

MLH1 4292 iwaizuma 2013 mutat res   

KMT2C 58508 watanabe 2011 plos one, gupta 2012 cancer 

research 

* 



 
97 

 

MMP2 4313 hillion 2009, mendes 2009 clinic exp met   

MMP9 4318 mendes 2009 clinic exp met   

MRE11

A 

4361 yuan 2012 j nat canc inst   

MSH6 2956 bonadona 2011 jama carter 

MT1JP  4498 carter et al 2006 carter 

MTCH2 23788 carter et al 2006 carter 

MUS81 80198 wu et al 2010 anticancer research, franchitto 

2008 jcb, 

  

MYC 4609 wang 2004 breast cancer research, vitale et al 

2011 cell death differ 

  

MYH10 4628 overholzer 2007 cell, lordier 2012 nature   

MYO10 4651 overholzer 2007 cell, liu 2012 mol biol cell   

NCAPD

2 

9918 perez de castro et al 2007 carcinogenesis de castro 

NCAPH 23397 perez de castro et al 2007 carcinogenesis cinsarc, carter, de castro 

NDC80 10403 tooley 2011 mboc, thompson et al 2010 cell thompson 

NDE1 54820   cisnarc 

NDUFA

B1 

4706   carter 

NEK2 4751 schaukat 2012, prigent 2005 exp cell res, 

perez de castro et al 2007 carcinogenesis 

cinsarc+carter, de castro 

NEU1 4758 butler 2013 trafic   

NIN 51199 perez de castro et al 2007 carcinogenesis de castro 
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NISCH 11188 johansson joahnsson 

NPM1 4869 qin 2011 Int J Med Sci, perez de castro et al 

2007 carcinogenesis 

de castro 

NUF2 83540 mattiuzzo 2011 plos one cinsarc 

NUMA1 4926 williams 2011 nature, perez de castro et al 

2007 carcinogenesis 

de castro 

NUP20

5 

23165 expression atlas-embl carter 

NUP98 4928 funasaka 2011 cel cycle, perez de castro et al 

2007 carcinogenesis 

de castro 

NXT1 29107   carter 

OIP5 11339 expression atlas embl cinsarc+carter 

PAK3 5063 schaukat 2012, parker 2013 plos one cinsarc 

PAK4 10298 schaukat 2012, tabusa 2012 mol cancer res   

PARD3 56288 wan 2013 mboc   

PARP1 142 rojo 2012 annual oncol   

PASK 23178 schaukat 2012, expression atlas embl   

PAX9 5083 hsu 2009 PNAS   

PBK 55872 kim 2012 cancer res carter, cinsarc 

PCM1 5108 perez de castro et al 2007 carcinogenesis de castro 

PCNA  5111 expression atlas embl,  carter 

PIGN 23556 burrell 2013 nature   

PIK3CA 5290 zhou 2011 World J Gastroenterol, * 
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aleskandarani 2010 breast cancer res treat 

PIM1 5292 hsu 2012 cancer letters, vitale et al 2011 cell 

death differ 

  

PIN1 5300 matsuura 2010 THE JOURNAL OF BIOLOGICAL 

CHEMISTRY, perez de castro et al 2007 

carcinogenesis 

de castro 

PINK1 56018 schaukat 2012, dagda 2009 JOURNAL OF 

BIOLOGICAL CHEMISTRY, expression atlas embl, 

berthier 2011 um pathol 

  

PLK1 5347 tyagi 2010 biochem phamacol, vitale et al 

2011 cell death differ,perez de castro et al 2007 

carcinogenesis 

de castro 

PLK4 10733 vitale et al 2011 cell death differ, perez de 

castro et al 2007 carcinogenesis 

cinsarc, vitale, de castro 

PRC1 9055 shrestha 2012 mbc, perez de castro et al 2007 

carcinogenesis 

cinsarc+carter, de castro 

PRKCA 5578 schaukat 2012, expression atlas embl   

PRPF4 9128 thompson et al 2010 cell thompson 

PTEN 5728 bowen 2009 anticancer res * 

PTH1R 5745 expression atlas embl, liang 2012 med oncol   

PTPN11 5781 Liu 2012 cancer res, expression atlas embl, 

zhou 2009 histopathol 

  

PTTG1 9232 huang 2012 braz j med biol res, thompson et 

al 2010 cell, perez de castro et al 2007 

carcinogenesis 

cinsarc+carter, thompson, de castro 

RAD21 5885 thompson et al 2010 cell, perez de castro et al carter, thompson, de castro 
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2007 carcinogenesis 

RAD51

AP1 

10635 expression atlas embl, obama 2008 clin canc 

res 

cinsarc+carter 

RAE1 8480 thompson et al 2010 cell thompson 

RANBP

1 

5902 thompson et al 2010 cell thompson 

RASSF1 11186 van der weyden 2005 mol cell biol, perez de 

castro et al 2007 carcinogenesis 

de castro 

RB1 5925 semizarrov 2004 nucl acid res, vitale et al 2011 

cell death differ, thompson et al 2010 cell 

*, vitale, thompson 

REST 5978 thompson et al 2010 cell thompson 

RFC4  5984 expression atlas embl,  carter 

RHOA 387 overholzer 2007 cell, vega 2011 jcb overholzer 

RNASE

H2A 

10535 flanagan 2009 mol canc ther cinsarc+carter 

ROCK1 6093 overholzer 2007 cell, liu 2011 j orthop res overholzer 

ROCK2 9475 overholzer 2007 cell overholzer 

RRM1 6240 kim 2011 j kor med sci carter 

RRM2 6241 expression atlas embl, yun 2008 exp & mol 

med 

cinsarc+carter 

SFRS2 6427 gout 2012 plos one, expression atlas embl carter 

SGOL1 151648 kahyo 2011 oncogene, thompson et al 2010 

cell 

thompson 

SGOL2 151246 thompson et al 2010 cell cinsarc, thompson 
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SLC16A

1 

6566 thompson et al 2010 cell thompson 

SMAD2 4087 petersen 2012 oncogene   

SMAD4 4089 Deckers 2006 cancer res, stuelten 2006 bmc 

cancer 

  

SMC1A 8243 zhang 2013 oncology letters, thompson et al 

2010 cell 

thompson 

SMC2 10592 expression atlas embl cinsarc 

SMC3 9126 ghiselli 2006 molecular cancer, thompson et al 

2010 cell 

thompson 

SNCG 6623 shen 2011 chin med j, perez de castro et al 

2007 carcinogenesis 

de castro 

SPAG5 10615 johansson 2013 plos one cisnarc, johansson 

SPC25 57405 wang 2013 jnci cinsarc 

SPINK7 84651 cheng et al 2009 jbc, thompson et al 2010 cell thompson 

STAG1 10274 thompson et al 2010 cell, perez de castro et al 

2007 carcinogenesis 

thompson, de castro 

TACC3 10460 schneider 2008 oncogene, perez de castro et 

al 2007 carcinogenesis 

de castro 

TBCK 93627 schaukat 2012, -   

TCF4 6925 johansson 2013 plos one   

TERT 7015 beesley 2011 plos one   

THY1 7070 expression atlas embl   

TLN1 7094 lai 2011 j pathol   
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TOP2a 7153 thompson et al 2010 cell cinsarc+carter, thompson 

TOR1AI

P1 

26092 expression atlas embl   

TP53 7157 vitale et al 2011 cell death differ, thompson et 

al 2010 cell 

*, vitale, thompson 

TP63 8626 stefanou 2004 histopathol   

TPX2 22974 warner 2009 clin canc res, perez de castro et 

al 2007 carcinogenesis 

cinsarc+carter, de castro 

TRIP13 9319 furnier 2006 cancer research cinsarc+carter 

TTK 7272 thompson et al 2010 cell, perez de castro et al 

2007 carcinogenesis 

cinsarc+carter, yuan et al 2005 clin canc res, 

thompson, de castro 

TTN 7273 expression atlas embl * 

UBE2C 11065 lin 2006 neoplasia, perez de castro et al 2007 

carcinogenesis 

carter, de castro 

UBE2I 7329 perez de castro et al 2007 carcinogenesis carter, de castro 

UNG 7374 pulukuri 2009 mol canc res carter 

VCL 7414 mierke 2010 jbc, expression atlas embl   

VHL 7428 zhou 2012 febs letters, thompson et al 2010 

cell 

thompson 

VRK1 7443 schaukat 2012, molitor 2013 oncogenesis   

WNK1 65125 schaukat 2012, Tu 2010 pnas, expression atlas 

embl 

  

WWOX 51741 Fu 2011 blood   

YIF1B 90522 johansson 2013 plos one johansson 
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ZNF516 9658 burrell 2013 nature   

ZSCAN2

2 

342945 -   

ZW10 9183 varma 2008 diss, perez de castro et al 2007 

carcinogenesis 

de castro 

Zwilch 55055 perez de castro et al 2007 carcinogenesis carter, de castro 

ZWINT 11130 perez de castro et al 2007 carcinogenesis cinsarc+carter, de castro 

 

 

 

Supplementary table 6: List of KNIME workflows used for data analysis. 
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