
DISSERTATION

submitted

to the

Combined Faculty for the Natural Sciences and Mathematics

of

Heidelberg University, Germany

for the degree of

Doctor of Natural Sciences

Put forward by

M.Sc. Ajinkya Prabhune
Born in: Pune, India

Oral examination:......................................

ii

GENERIC AND ADAPTIVE
METADATA MANAGEMENT

FRAMEWORK FOR SCIENTIFIC
DATA REPOSITORIES

Advisors: Prof. Dr. Jürgen Hesser and Prof. Dr. Michael Gertz

iii

Abstract
Rapid progress in technology has led to multifold advancements in data acqui-

sition and processing in various research disciplines. These advancements have led
to a tremendous growth in data and metadata that are being generated by scientific
experiments. Regardless of any specific research domain, research practices are widely
becoming data and metadata driven. As a consequence, research communities, fund-
ing agencies, and universities are intensifying their efforts in building data repositories
for handling scientific data. Broadly speaking, the goals of a scientific data repository
are to provide long-term data archiving, make data searchable for reuse and refer-
encing, capture provenance for enabling data reproducibility, and provide metadata
and annotation support for imparting domain-specific knowledge necessary for data
interpretation. However, scientific data repositories are highly complex frameworks
that comprise components such as algorithms for data compression and long-term
data archiving, metadata and annotation management frameworks, workflow prove-
nance and interoperability between heterogeneous workflow systems, authorization
and authentication infrastructures, and visualization tools for data interpretation.

In this thesis, we present a modular scientific data repository architecture to sup-
port arbitrary research communities in handling their data and metadata lifecycle.
This architecture consists of components representing four areas of research. The first
component is a data transfer client that provides a generic interface for allowing ingest
and access to data from scientific data acquisition systems.

The second component is the MetaStore framework, which is an adaptive metadata
management framework that provides handling of both static and dynamic metadata
models. For handling arbitrary metadata schemas, the MetaStore framework is de-
signed on the component-based dynamic composition design pattern. The MetaStore
is further enriched with an annotation framework for handling dynamic metadata.

The third component is an extension of the MetaStore framework. It provides
the automated handling of provenance metadata for Business Process Execution Lan-
guage (BPEL) based workflow management systems. To automate the translation of
BPEL workflows into the ProvONE model, we have designed and implemented the
Prov2ONE algorithm. The availability of complete BPEL provenance in ProvONE
not only allows aggregate analysis of workflow definitions with their execution traces
but also enables provenance interoperability.

The fourth component of the scientific data repository is the ProvONE-Provenance
Interoperability Framework (P-PIF). This component enables the interoperability of
provenance from heterogeneous workflow management systems. The P-PIF consists
of two parts. First, we extend the Prov2ONE algorithm for Simple Conceptual Uni-
fied Flow Language (SCUFL) and Modeling Markup Language (MoML) workflow
specifications. Second, we provide workflow management system specific adapters
that provide extraction, translation, and modeling of retrospective provenance in the
ProvONE model. The availability of heterogeneous provenance traces in the ProvONE

iv

model allows us to compare, analyze, and query provenance from different workflow
management systems.

Each component of the scientific data repository presented in this thesis is as-
sessed. The performance of the data transfer client using a standard protocol for
nanoscopy datasets is evaluated. The MetaStore framework is evaluated for following
two conditions. First, the metadata ingest and full-text search performance under
different databases configurations are tested. Second, to show the comprehensive cov-
erage of functionalities provided by MetaStore, we present a feature-based evaluation
of MetaStore against existing metadata management systems. For the assessment
of the P-PIF, first, we proved the correctness and completeness of our Prov2ONE
algorithms. Additionally, we evaluated the ProvONE prospective graph patterns pro-
duced by the Prov2ONE BPEL algorithm against the established BPEL control-flow
patterns. Second, to show that P-PIF is a sustainable framework that adheres to
standards, we present a feature-based evaluation of P-PIF against existing provenance
interoperability frameworks. These assessments reveal the superiority and advantages
of the various components presented in this thesis over existing systems.

v

Zusammenfassung
Der rapide technologische Fortschritt hat in verschiedenen Forschungsdisziplinen

zu vielfältigen Weiterentwicklungen in Datenakquise und -verarbeitung geführt. Hi-
eraus wiederum resultiert ein immenses Wachstum an Daten und Metadaten, gener-
iert durch wissenschaftliche Experimente. Unabhängig vom konkreten Forschungs-
gebiet ist die wissenschaftliche Praxis immer stärker durch Daten und Metadaten
gekennzeichnet. In der Folge intensivieren Universitäten, Forschungsgemeinschaften
und Förderagenturen ihre Bemühungen, wissenschaftliche Daten effizient zu sichten,
zu speichern und auszuwerten. Die wesentlichen Ziele wissenschaftlicher Daten-
Repositorien sind die Etablierung von Langzeitspeicher, der Zugriff auf Daten, die
Bereitstellung von Daten für die Wiederverwendung und deren Referenzierung, die
Erfassung der Datenquelle zur Reproduzierbarkeit sowie die Bereitstellung von Meta-
daten, Anmerkungen oder Verweisen zur Vermittlung domänenspezifischen Wis-
sens, das zur Interpretation der Daten notwendig ist. Wissenschaftliche Datenspe-
icher sind hochkomplexe Systeme, bestehend aus Elementen aus unterschiedlichen
Forschungsfeldern, wie z. B. Algorithmen für Datenkompression und Langzeit-
datenarchivierung, Frameworks für das Metadaten- und Annotations-management,
Workflow-Provenance und Provenance-Interoperabilität zwischen heterogenen Work-
flowsystemen, Autorisierungs und Authentifizierungsinfrastrukturen sowie Visual-
isierungswerkzeuge für die Dateninterpretation.

Die vorliegende Arbeit beschreibt eine modulare Architektur für ein wis-
senschaftliches Datenarchiv, die Forschungsgemeinschaften darin unterstützt, ihre
Daten und Metadaten gezielt über den jeweiligen Lebenszyklus hinweg zu orchestri-
eren. Diese Architektur besteht aus Komponenten, die vier Forschungsfelder repräsen-
tieren. Die erste Komponente ist ein Client zur Datenübertragung (“data transfer
client”). Er bietet eine generische Schnittstelle für die Erfassung von Daten und den
Zugriff auf Daten aus wissenschaftlichen Datenakquisesystemen.

Die zweite Komponente ist das MetaStore-Framework, ein adaptives Metadaten-
Management-Framework, das die Handhabung sowohl statischer als auch dynamis-
cher Metadatenmodelle ermöglicht. Um beliebige Metadatenschemata behandeln
zu können, basiert die Entwicklung des MetaStore-Frameworks auf dem komponen-
tenbasierten dynamischen Kompositions-Entwurfsmuster (component-based dynamic
composition design pattern). Der MetaStore ist außerdem mit einem Annotations-
framework für die Handhabung von dynamischen Metadaten ausgestattet.

Die dritte Komponente ist eine Erweiterung des MetaStore-Frameworks zur au-
tomatisierten Behandlung von Provenance-Metadaten für BPEL-basierte Workflow-
Management-Systeme. Der von uns entworfene und implementierte Prov2ONE Al-
gorithmus übersetzt dafür die Struktur und Ausführungstraces von BPEL-Workflow-
Definitionen automatisch in das Provenance-Modell ProvONE. Hierbei ermöglicht die
Verfügbarkeit der vollständigen BPEL-Provenance-Daten in ProvONE nicht nur eine
aggregierte Analyse der Workflow-Definition mit ihrem Ausführungstrace, sondern

vi

gewährleistet auch die Kompatibilität von Provenance-Daten aus unterschiedlichen
Spezifikationssprachen.

Die vierte Komponente unseres wissenschaftlichen Datenarchives ist das
Provenance-Interoperabilitätsframework ProvONE - Provenance Interoperability
Framework (P-PIF). Dieses gewährleistet die Interoperabilität von Provenance-Daten
heterogener Provenance-Modelle aus unterschiedlichen Workflowmanagementsyste-
men. P-PIF besteht aus zwei Komponenten: dem Prov2ONE-Algorithmus für
SCUFL und MoML Workflow-Spezifikationen und Workflow-Management-System-
spezifischen Adaptern zur Extraktion, Übersetzung und Modellierung retrospektiver
Provenance-Daten in das ProvONE-Provenance-Modell. P-PIF kann sowohl Kon-
trollfluss als auch Datenfluss nach ProvONE übersetzen. Die Verfügbarkeit hetero-
gener Provenance-Traces in ProvONE ermöglicht das Vergleichen, Analysieren und
Anfragen von Provenance-Daten aus unterschiedlichen Workflowsystemen.

Wir haben die Komponenten des in dieser Arbeit vorgestellten wissenschaftlichen
Datenarchives wie folgt evaluiert: für den Client zum Datentrasfer haben wir die
Daten-übertragungsleistung mit dem Standard-Protokoll für Nanoskopie-Datensätze
untersucht. Das MetaStore-Framework haben wir hinsichtlich der folgenden bei-
den Aspekte evaluiert. Zum einen haben wir die Metadatenaufnahme und Voll-
textsuchleistung unter verschiedenen Datenbankkonfigurationen getestet. Zum an-
deren zeigen wir die umfassende Abdeckung der Funktionalitäten von MetaStore
durch einen funktionsbasierten Vergleich von MetaStore mit bestehenden Metadaten-
Management-Systemen. Für die Evaluation von P-PIF haben wir zunächst die Korrek-
theit und Vollständigkeit unseres Prov2ONE-Algorithmus bewiesen und darüber hin-
aus die vom Prov2ONE BPEL-Algorithmus generierten Prognose-Graphpattern aus
ProvONE gegen bestehende BPEL-Kontrollflussmuster ausgewertet. Um zu zeigen,
dass P-PIF ein nachhaltiges Framework ist, das sich an Standards hält, vergle-
ichen wir außerdem die Funktionen von P-PIF mit denen bestehender Provenance-
Interoperabilitätsframeworks. Diese Auswertungen zeigen die Überlegenheit und die
Vorteile der einzelnen in dieser Arbeit entwickelten Komponenten gegenüber ex-
istierenden Systemen.

vii

Acknowledgments
Undertaking this Ph.D. has been an amazing experience for me. Achieving this feat

would not have been possible without the advice and support of many people. Firstly,
I would like to express my sincere gratitude to my supervisor Dr. Rainer Stotzka
for giving me the opportunity to work as a Ph.D. student at Karlsruhe Institute
of Technology. I am grateful to him for supporting, motivating and enlightening
me with the first glance of research. He always believed in me and stood by me
during the difficult time, and pushed me to achieve beyond my limits. Besides my
supervisor, I would like to express my sincere gratitude to my advisors, Prof. Dr.
Jürgen Hesser and Prof. Dr. Michael Gertz, at the Faculty of Mathematics and
Computer Science of Heidelberg University. There is so much I have learned from
them that I could easily write one more chapter explaining the endless support and
guidance they have given me throughout my thesis. Their encouragement made me
push myself to my true potential. What amazes me is that despite their busy schedule,
they were able to reserve time to read and provide detailed feedback and comments
for all the publications, presentations and the thesis. Not only did they guide me in
my research, but also taught me a great deal in academic writing and presentation
skills. I would also like to thank the dissertation committee for their time, efforts,
and feedback.

During my time at Karlsruhe Institute of Technology, my colleagues contributed in
different ways to complete my thesis. I am grateful to Thomas Jejkal and Volker Hart-
mann for helping me integrate into the team and always being available for discussions
and providing me feedback.

I would like to thank my friends and family for supporting me throughout my
thesis and encouraging me to strive towards my goal. My parents Prof. Dr. Asmita
Prabhune and Dr. Ashutosh Prabhune, you both are my inspiration. The benchmark
that you have set in the family made me challenge myself to reach my potential, many
thanks to my sisters Anushree and Apoorva for often visiting me and giving me the
needed mental support. Many thanks to my close friend, Prof. Dr. Barbara Sprick
with whom I could share my ideas and get valuable insights on them. Also, special
thanks to the staff and my students from SRH Hochschule.

Last but not least, I would like to thank my beloved wife, Priyanka Sakundarwar
for her support and faith in me. Priyanka, you have been the pillar of strength for
me and helped me get through this period in the most positive way. You made sure
that there is more to life other than the Ph.D. Thank you to my mother-in-law and
father-in-law for raising such a wonderful girl.

viii

To my parents and my wife.

ix

Contents

1 Introduction 1
1.1 Motivation and Research Objectives 3
1.2 Key Challenges . 5
1.3 Contributions . 8
1.4 Structure of the Thesis . 10

2 Background and Related Work 11
2.1 Scientific Data Repository Systems . 11

2.1.1 KIT Data Manager . 15
2.1.2 Limitations of KIT Data Manager 15

2.2 Metadata Management . 16
2.2.1 Metadata management systems in SDRs 16
2.2.2 Standalone metadata management systems 18
2.2.3 Metadata management in Grid infrastructures 18
2.2.4 Commercial metadata management systems 19
2.2.5 Limitations of the existing metadata management systems . . . 20

2.3 Provenance in WfMSs . 21
2.3.1 Provenance handling in WfMSs 23
2.3.2 Provenance in Grid workflow execution environment 25
2.3.3 Limitations of WfMSs in handling provenance 26

2.4 Provenance Interoperability . 27
2.4.1 Provenance interoperability frameworks 27
2.4.2 Limitations of existing provenance interoperability frameworks 29

2.5 Summary . 30

3 Scientific Data Repositories 33
3.1 Introduction . 33
3.2 Related Work . 36
3.3 Architecture of Scientific Data Repository 37

3.3.1 Scientific Data Repository . 38
3.3.2 Generic Client Service API . 40

3.4 Evaluation . 42
3.5 Use cases . 44

3.5.1 Nanoscopy . 44
3.5.2 Angioscopy . 46

x

3.6 Summary . 48

4 Generic Metadata Management 49
4.1 Introduction and Motivation . 49
4.2 Preliminaries . 53

4.2.1 NoSQL Databases . 54
4.2.2 Web Annotation Data Model 56
4.2.3 OAI-PMH . 58

4.3 MetaStore Architecture . 59
4.3.1 Research Community . 60
4.3.2 MetaStore Core Layer . 60
4.3.3 MetaStore Extension Layer . 69
4.3.4 Scientific Data Repository . 73

4.4 Evaluation . 73
4.4.1 Evaluation of Features . 73
4.4.2 Performance Evaluation . 78

4.5 Application Use Cases . 82
4.6 Discussion . 86
4.7 Summary . 88

5 Provenance Management in WfMSs 91
5.1 Motivation and Objectives . 91
5.2 Preliminaries . 93

5.2.1 ProvONE model . 93
5.2.2 Control driven vs. Data driven workflow languages 97
5.2.3 Patterns in Control-flow languages 100
5.2.4 Provenance management in WfMSs 104

5.3 Provenance Interoperability Architecture 106
5.3.1 Vocabulary mapping rules between ProvONE and scientific

workflow specifications . 108
5.3.2 Prov2ONE Algorithm . 111
5.3.3 Correctness and completeness of the algorithms 117
5.3.4 Retrospective mapping rules between WfMSs and ProvONE . . 122
5.3.5 Prov2ONE Algorithm Analysis 127

5.4 Evaluation . 128
5.4.1 Use cases . 128
5.4.2 Provenance Challenge Queries 130
5.4.3 Features of P-PIF . 135

5.5 Discussion . 139
5.6 Summary . 140

xi

6 Conclusions and Future Work 143
6.1 Summary . 143
6.2 Future Work . 146

xiii

List of Abbreviations

BPEL Business Process Execution Language
DAQ Data Acquisition System
DC Dublin Core
GCS API Generic Client Service Application Programming Interface
HPC High Performance Computing
IR Institutional Repository
METS Metadata Encoding and Transmission Standard
MoML Modeling Markup Language
OAI-PMH Open Archives Initiative–Protocol for Metadata Harvesting
OPM Open Provenance Model
PREMIS PREservation Metadata: Implementation Strategies
KIT DM Karlsruhe Institute of Technology Data Manager
LSDF Large Scale Data Facility
P-PIF ProvONE–Provenance Interoperability Framework
RDF Resource Description Framework
SDR Scientific Data Repository
SCUFL Simple Conceptual Unified Language
SKOS Simple Knowledge Organization System
SPARQL SPARQL Protocol and RDF Query Language
WADM Web Annotation Data Model
WfMS Workf low Management System

1

Chapter 1

Introduction

The rapid growth in modern e-Science infrastructures and applications in various
fields of research has led to an exponential growth in the volume of data that is now
generated. Not only the technology for data acquisition has drastically improved but
also the infrastructure to handle this data, and the numerous applications for process-
ing the data have increased. However, to effectively use these huge volumes of data
and to facilitate an overall control over the scientific data, metadata has become a
critical aspect of scientific research. The commonly adopted definition of Metadata
is “the data that provides information about other data.” However, there is more to
this definition, in scientific research, metadata is a research topic in itself, and serves
multiple purposes throughout the life cycle of data. For example, for discovering the
data, metadata describing the data is required, for organizing complex data elements
in a digital storage system, the metadata describing its structure and relationship is
required, and for orchestrating complex scientific workflows through Workflow Man-
agement Systems (WfMS), metadata describing each data processing task and the
execution order is necessary. To give an idea of the volume of data that is generated
in various scientific areas, in the research field of astronomy, the Large Synoptic Sur-
vey Telescope (LSST) is generating around 13 terabytes each day. In genome analysis,
a single sequenced human genome produces approximately 140 gigabytes of data, and
for sequencing multiple genomes and tracking gene interactions, it is estimated that
about few hundreds of petabytes of data will be generated. The climate and weather
research group at the NASA Center for Climate Simulation (NCCS) has collected
around 32 petabytes of data with various tools and applications for data analysis
and generating valuable results. In the research area of health sciences, the biology
data repository in the European Bioinformatics Institute UK is currently hosting 20
petabytes of data describing genes, proteins, and small molecular structures [40].

A similar explosion of data can be seen in the field of localization–microscopy
(nanoscopy). With the advancements in the e-Science infrastructures and the devel-
opment of a novel imaging technique in nanoscopy has resulted in the generation of
huge volumes of data for each investigation. Currently, the data volume generated by
each investigation, i.e., the images generated for approximately 50 sections (1 section
covers only a few µm2) of a cell membrane is around 150-200 terabytes of data. This

2 Chapter 1. Introduction

volume of data is generated for only a single color channel, however, with the activa-
tion of all the color channels, the amount of data for a single investigation is expected
to be approximately one petabyte [35, 36]. Regarding the lifecycle of a nanoscopy
investigation, a routine nanoscopy investigation is a time and effort intensive process
that can last for few days or a couple of weeks. Regular research activities comprise
the following data curation steps: (a) configuration of the microscope, (b) in vitro
preparation of the specimen and the dyes, (c) generating the raw-data and metadata,
(d) execution of different data-processing workflows over the raw-data to generate
valuable results. Not only in the research area of nanoscopy is such data curation rou-
tine observed but also similar data curation steps are seen in various other research
communities. For example, (1) In the case of radiology clinical research (angioscopy),
patient images are acquired by various modalities; for example, the Computer Tomog-
raphy (CT) scanner generates CT scans for the patient under investigation and stores
these images in a Picture Archiving and Communication System (PACS) server for
further reuse. The images and its associated metadata are formatted in the Digital
Imaging and Communications in Medicine (DICOM) standard. However, for enabling
further analysis of these scans, it is necessary to make the DICOM datasets available to
the researchers, and for that, there is a need to extract, model, and store the DICOM
metadata in a database. Using the metadata to discover the Computer Tomography
(CT) scans, custom image-processing workflows, defined by the research community
can be triggered. The results generated by these workflows are beneficial for the
physicians in composing patient-specific treatment plans [103, 126]. (2) In the case
of eCodicology, for performing image analysis, the medieval manuscripts are digitized
to create an image stack. Each manuscript is associated with bibliography metadata
that uniquely describes each manuscript. This image stack is the input for image
processing workflows that are responsible for extracting different micro-structural fea-
tures from the manuscript, such as color calibration, page layout analysis, text and
image segmentation, and feature extractions [31].

Considering the use cases mentioned before, it is clear that the data and metadata
generated throughout the life cycle of the experiment need to be curated for producing
additional valuable results, archived for long-term maintenance, accessed for enabling
reuse and knowledge dissemination, and reproduced for validating the research
results. Moreover, in e-Science, data curation, archiving, preservation, access, and
metadata management are key research activities [99, 150]. Among the various areas
in the field of e-Science, this thesis primarily focuses on designing an extensible
scientific data repository framework with the capability for handling heterogeneous
metadata standards. Secondarily, as a subtopic in metadata research, for enabling
reproducibility of experimental results, the thesis focuses on enabling automated
capturing of provenance in BPEL-based WfMS, and with an extension for prove-
nance interoperability among heterogeneous WfMSs. That is for allowing analysis
of heterogeneous provenance traces by modeling them in a common provenance model.

1.1. Motivation and Research Objectives 3

We present the motivation and research objectives of our study in Section 1.1.
Then, the key-challenges faced in research areas of scientific data repository frame-
work, metadata management, provenance tracking and interoperability in WfMSs are
presented in Section 1.2. The contributions in each of these research areas are sum-
marized in Section 1.3, with the thesis outline in Section 1.4.

1.1 Motivation and Research Objectives

Motivated by the numerous applications in the research areas of scientific data
repository frameworks for big data in research, metadata management framework,
and provenance interoperability, in this section we present the various aspects that
led us to build comprehensive scientific data repository framework.

Scientific data repository framework
In e-Science, the scientific data repository framework is the backbone that supports a
successful data curation lifecycle for scientific data [78]. Buyya and colleagues define
a repository as simple data store for datasets. However, we consider a data repository
more than just a simple data store, and define a repository as a modular system
with a set of services for transferring, archiving, and persisting the datasets. Various
research areas are driven by data, and with the steady increase of data, the tools and
frameworks for handling this data are also on the rise [79]. However, these tools and
frameworks are independent of each other and have to be orchestrated by IT experts,
which is not only time-consuming but also a costly task. Moreover, as these tools and
frameworks do not provide the functionalities necessary for storing and organizing
the data and metadata, it leads to the adoption of haphazard storage techniques.
Typically, the data is stored and shared using local hard drives, CD-ROMs, DVDs,
or USB drives [17]. To overcome this haphazard handling of scientific data, research
communities have started adopting scientific data repository frameworks. Below are
some of the applications of a scientific data repository framework:

– long-term archival and organization of the data,

– data transfer (human and machine ingest) from geographically separated loca-
tions,

– controlled access and sharing of data,

– extensible metadata schema support with OAI-PMH compliance.

Metadata management framework
One of the basic functionality that a scientific data repository framework should pro-
vide is its support for handling heterogeneous metadata standards. Metadata is crucial
for managing the lifecycle of data; numerous data management tasks are directly de-
pendent on the metadata. For example, descriptive metadata is necessary for discover-
ing and identifying data, complex data organization can be described using structural

4 Chapter 1. Introduction

metadata, and access rights and preservation details can be specified using the admin-
istrative metadata [70]. Additionally, the prospective provenance metadata is highly
valuable for tracing the history of data and essential for reproducibility of the results.
Currently, organized as per the different metadata categories, there exist more than
two hundred different metadata standards [93]. To support research communities in
handling their metadata, the research in metadata is bifurcated, on the one hand,
the scientific data repository are enriched with functionalities for handling metadata
[55, 76, 149, 162], and on the other hand, standalone metadata management frame-
works that aim at providing a generic metadata management solution are developed
[19, 158]. Following are some of the applications of metadata in scientific research:

– discovering, access, sharing and reusing of data,

– visualization of complex relationships within data,

– OAI complaint large scale metadata harvesting.

WfMS and Provenance
In addition to handling the large and complex data and its associated metadata, sci-
entific experiments composed of multiple steps are critical for researchers to produce
valuable results that assist in improving the research domain. The systematic descrip-
tion of such multi-step experiment is typically expressed using a workflow specifica-
tion (workflow language). Workflows allow researchers to automate and repeat these
complex-processing steps. With the execution of workflows, it is necessary to han-
dle the provenance for allowing reproducibility of the experiment and validating the
results. Comprehensive provenance comprises two parts: (1) Prospective provenance
that captures the workflow specification or the workflow recipe. (2) Retrospective
provenance captures the runtime events that occur during the workflow execution
[181]. Until recently, handling the retrospective provenance was the primary focus,
and to model the retrospective provenance, the Open Provenance Model (OPM) [114]
and the PROV model [112] were established. However, these models are limited
in modeling only the retrospective provenance and not the prospective provenance.
To overcome this limitation and enable modeling of both prospective and retrospec-
tive in the same provenance model, the ProvONE provenance model was proposed.
Currently, there exist no technique for automatically capturing ad hoc workflow spec-
ifications in the ProvONE model, and especially there exists no solution that can
capture the provenance for a BPEL-based WfMS. The prime reason for choosing a
BPEL-based WfMS is due to the fact that BPEL is the de facto standard and there
are multiple implementations of WfMSs from major vendors that are based on BPEL
specification, thus, allowing easy portability among different BPEL-based WfMSs.
Moreover, as BPEL supports Service Oriented Architecture (SOA), various scientific
communities have adopted BPEL WfMS, especially for orchestrating Grid resources
[52, 138, 165]. Integrating a scientific data repository with a WfMS that supports
automated capturing of provenance has many applications. Some of the applications
are outlined below.

1.2. Key Challenges 5

– Automating complex repetitive tasks.

– Automated archiving of results generated during the workflow-execution.

– Documenting workflow and provenance for reproducibility.

– Sharing and analyzing provenance for improving results.

Provenance Interoperability
Provenance interoperability is allowing analysis of provenance traces from hetero-
geneous sources by modeling them in a common provenance model. Currently, to
the best of our knowledge, for enabling provenance interoperability, the existing
WfMSs support the export of only the retrospective provenance in either OPM or
PROV model [112]. Additionally, initiated by the provenance queries described in
the third provenance challenge, various standalone provenance interoperability frame-
works based on the OPM were fabricated. However, few of the questions aimed for
retrieving prospective provenance could not be answered due to the limitations of
the OPM in handling the prospective provenance. Thus, for enabling analysis of
heterogeneous provenance traces from different sources, it is necessary to model the
complete provenance (prospective and retrospective) in a common provenance model
like ProvONE. Following are the applications of having heterogeneous provenance
traces in ProvONE.

– Compare and analyze workflows defined in different specifications.

– Validate scientific results by reproducing them in a different execution environ-
ment.

– Trace and analyze workflow evolution for determining optimum workflows.

– Enable collective analysis of both prospective and retrospective provenance.

Motivated by the limitations in the research areas of scientific data repository
framework, metadata management, workflow and provenance handling with extension
towards provenance interoperability, in this thesis, we primarily devote our efforts to-
wards building a comprehensive scientific data repository framework. We consider the
scientific data repository framework as the central overarching system that comprises
metadata management, workflow and provenance handling, and provenance interop-
erability. Thus, in this thesis, we expand our efforts in multiple research areas that
are relevant to achieving our primary objective, i.e., the scientific data repository
framework.

1.2 Key Challenges

A comprehensive scientific data repository framework comprises of multiple compo-
nents that are by them independent research topics. In this section, we summarize

6 Chapter 1. Introduction

and aggregate the challenges we faced for each research topic that contributed to the
overall outcome of this thesis:

Large scale data transfer and storage
With the availability of distributed e-Science infrastructure, complex scientific
experiments can now be performed on distributed resources. A critical aspect of
distributed e-Science experiments is that the data needs to be shared among the
different geographically distributed resources. Hence, one of the basic challenges in a
distributed infrastructure is the seamless transfer of data between different resources.
Also, for handling data volumes of different sizes, the challenge is to provision
multiple data transfer protocols that can be optimized for maximizing the network
utilization.

Metadata heterogeneity
Each metadata standard is unique and conforms to a given definition (metadata
schema). It is practically impossible to design a metadata management framework
that can handle all the metadata standards. Thus, the existing metadata management
handling capabilities of the scientific data repository frameworks can support either
a single metadata standard or at the most a few metadata standards simultaneously
[7]. Following are some of the challenges that had to be tackled when implementing
a generic metadata management framework.

1. Repetitive software development lifecycles. The basic functionalities that a meta-
data management framework should provide are the CRUD (create, retrieve,
update, delete) operations. However, in practice to implement the CRUD oper-
ations for each registered metadata standard are a labor-intensive and a redun-
dant task that involves a complete software development cycle.

2. Metadata discovery. A basic problem in metadata access is allowing querying
over it, i.e., defining queries for retrieving the metadata stored for each metadata
standard. Defining metadata standard specific queries is not a viable option,
because the problems are twofold: (a) implementing metadata search queries
for each registered metadata standard is a time-consuming and a labor-intensive
task; (b) uncertainty to determine at runtime, which query needs to be executed
for the search term requested by the user. Thus, the challenge is to provide a
scalable metadata search irrespective of the metadata standard.

3. Flexible data storage model. For storing heterogeneous metadata standards with
different schemas, it is not possible to define a single generic schema that can
accommodate all the standards, because the attributes a metadata standard can
include is varied. Moreover, each metadata category serves a different purpose,
for example, descriptive, structural, technical, administrative metadata are for
data interpretation, data discovery, and access management, whereas provenance

1.2. Key Challenges 7

metadata is for analyzing the complex lineage of data. Therefore, the challenge
is providing the appropriate data model that allows not only efficient storage of
the metadata but also retrieval of it.

Provenance tracking in WfMS
In terms of enabling a BPEL-based workflow management system with automated
provenance tracking following challenges need to be addressed.

1. Distinguishing control-flow and data-flow activities. BPEL supports both, the
workflow execution constructs and the data sharing constructs. On the one
hand, BPEL specification consists of multiple control structures activities that
can be arbitrarily used to define the execution order of a workflow. Moreover,
these control structure activities can be arbitrarily nested within each other to
define highly intrinsic workflows. On the other hand, the data sharing between
BPEL activities is described through variables, wherein the variables correspond
to complex message types or element types. In practice, a message type can have
an ad hoc data structure, and there is no restriction on the level of granularity
that a workflow designer can utilize for sharing the data between the activi-
ties. In both the cases, the critical challenge is preserving the exact execution
order and the data sharing defined in a workflow in the ProvONE prospective
provenance.

2. Noisy run time event traces (retrospective provenance). Capturing the retro-
spective provenance in ProvONE is entirely dependent on the information that
a WfMS exposes. For example, Apache ODE generates twenty-three events out
of which not all are meant for retrospective provenance. The challenge is to
extract the appropriate retrospective provenance from these events.

Provenance interoperability
Workflows are defined in different languages that adhere to the specifications estab-
lished by the workflow engine. BPEL, SCUFL, and MoML are few of the prominent
specifications that are available for defining workflows. For enabling interoperability
among heterogeneous provenance traces following challenges have to be tackled.

1. Heterogeneity of workflow specifications (prospective provenance). In all the
three-workflow specifications, the primary challenge is capturing of the exact
execution order defined for both control-flow driven workflows and data-flow
driven workflows in the ProvONE model. The secondary challenge is to normal-
ize the attributes of heterogeneous prospective provenance traces to a homoge-
neous data model in ProvONE, such that it is consistent across all the workflow
specifications. Addressing the second challenge is critical because it enables
formulation of analysis queries over these heterogeneous provenance traces.

8 Chapter 1. Introduction

2. Uniformity in the retrospective provenance traces. Each WfMS exports the ret-
rospective provenance in a data model that is proprietary to the WfMS. More-
over, the end-points through which each WfMS exposes its retrospective prove-
nance are different. For example, Apache ODE provides a web-service that
regularly publishes the run-time events, Taverna and Kepler WfMS stores the
retrospective provenance in a database and provides data access objects (DAO)
for accessing it. Similar to the normalization of the prospective provenance ex-
plained above, the challenge is to normalize the retrospective provenance in a
homogeneous data model for enabling analysis querying over the heterogeneous
provenance traces.

1.3 Contributions

This thesis includes several contributions, specifically in the field of scientific data
repository for handling large volumes of data, metadata management framework,
automated provenance tracking in WfMS, and provenance interoperability.

Scientific Data Repository. In the research area of scientific data repository
systems, the first contribution of this thesis is the architecture of a scientific data
repository framework for handling the nanoscopy data curation lifecycle. The
framework is based on the principle of client-server architecture, wherein the complex
functionalities necessary for handling the lifecycle of scientific data is implemented
on the server-side, and a light-weight client is provisioned for allowing data ingest
and access from ad hoc data acquisition systems. For enabling transfer of data from
heterogeneous data acquisition systems, the client implements a systematic ingest
and download workflow with support to multiple data transfer protocols. On the
server-side the nanoscopy scientific data repository framework is built on KIT Data
Manager, which is a generic and highly customizable data repository framework. For
the storage of the data, the KIT Data Manager provides integration with Large Scale
Data Facility (LSDF) infrastructure offering cache as well as an archive. Moreover,
cluster-based execution of computing tasks is supported by LSDF framework for
data-intensive computing. The proposed scientific data repository framework is
adopted by two research disciplines and their results are published in papers "An
Optimized Generic Client Service API for Managing Large Datasets within a Data
Repository" [123] and "Managing Provenance for Medical Datasets" [126].

Adaptive Metadata Management Framework. In the research area of
metadata, the thesis presents an automatically adapting metadata management
framework for a scientific data repository system. We introduce this framework
in our paper “MetaStore: A Metadata Management Framework for Scientific Data
Repositories” [124]. For supporting ad hoc metadata models, we have designed
the MetaStore framework entirely on NoSQL database technology. The MetaStore

1.3. Contributions 9

framework is a comprehensive solution and provides multiple features, each having
well-defined execution workflow. First, we show that for allowing automated
metadata quality control, it is necessary to register the metadata in a dedicated
metadata registry. Second, instead of manually creating the functions (services) for
handling the registered metadata, we describe an automated method for generating
the services and automatically adapting the MetaStore on the fly. Third, for allowing
full-text search over the metadata, we describe the automated index creation process.
Fourth, for enabling OAI-complaint metadata harvesting, we implement the services
for OAI data provider. Furthermore, the MetaStore framework architecture is
extended with an auxiliary layer for handling dynamic metadata and for improving
the metadata quality control. This extension of MetaStore is presented in the
paper "MetaStore: An adaptive metadata management framework for heterogeneous
metadata models" [127], while the adoption of the MetaStore framework by different
research communities is presented in the paper "The MASi Repository Service - Com-
prehensive, Metadata-driven and Multi-community Research Data Management" [73].

WfMS and Provenance Management. For enabling execution of scientific
workflows, we integrate a WfMS into the scientific data repository. By integrating a
WfMS with the scientific data repository framework, we leverage the functionality
of both these systems. The WfMS allows workflows to be systematically described
using the workflow specification supported by the WfMS, whereas, a scientific data
repository offers the long-term storage and archival of the datasets generated during
the execution of a workflow. However, a systematically defined workflow offers
only the repeatability of the workflow and not the reproducibility. For enabling
data reproducibility, it is necessary to capture the complete provenance trace along
with data that is generated (raw-data, intermediate-date, and result data). In this
thesis, we propose a provenance management framework for completely automating
the capturing, modeling, and storing of provenance generated by a WfMS. This
framework is based on the Prov2ONE algorithm that automates the translation
of a BPEL workflow specification in ProvONE model. On this contribution, we
have described a provenance management framework for BPEL-based WfMS in
our paper “Prov2ONE: An Algorithm for Automatically Constructing ProvONE
Provenance Graphs” [125]. For consistency reasons, the ProvONE provenance graphs
are serialized in W3C specified Resource Description Framework (RDF), and the
analysis queries are defined in the W3C recommended SPARQL query language.

Provenance Interoperability. For enabling provenance interoperability (i.e.,
allow querying over heterogeneous provenance traces), we propose a provenance in-
teroperability framework. This framework serves as a bridge that allows seamless
integration of WfMSs for capturing heterogeneous provenance traces in a common
provenance model, namely ProvONE. The automated modeling of the comprehensive
provenance is performed in two stages. First, we extend the Prov2ONE algorithm

10 Chapter 1. Introduction

for translating the SCUFL and MoML workflow specifications as ProvONE prospec-
tive RDF graph. Second, we propose WfMS specific adapter for capturing the runtime
provenance and enriching the ProvONE prospective RDF graph with the retrospective
provenance. With the availability of the provenance in a common provenance model,
it allows analysis of heterogeneous provenance traces. For this, we also propose a set
of SPARQL queries for analyzing these provenance traces.

1.4 Structure of the Thesis

The structure of the thesis is as follows.
Chapter 2. We introduce general concepts in the research areas of scientific data
repository framework, metadata management systems, WfMS and provenance, and
provenance interoperability.
Chapter 3. We propose the architecture of an extensible scientific data repository
framework, its various components and its applicability to different research commu-
nities.
Chapter 4. We present the MetaStore framework. The MetaStore architecture is
split into two parts: (1) For handling the static metadata, we explain the realization
of the MetaStore as an automatically adapting metadata management framework.
(2) For managing the dynamics metadata, the extended functionalities of the Meta-
Store for handling annotations and metadata quality enrichment using controlled-
vocabularies are presented.
Chapter 5. We describe the provenance management framework that illustrates the
integration of a WfMS in a scientific data repository with the automated capturing of
provenance. In this chapter we explain the two-step process of collecting the complete
provenance for scientific workflows. First, we describe the Prov2ONE algorithm for
translating the workflow specification into the ProvONE provenance model. Second,
to capture the runtime provenance the workflow engine provenance collector compo-
nent of the provenance management framework is presented. We extend this result
and present a provenance interoperability framework that encompasses the provenance
from three WfMSs. We argue that for enabling querying over heterogeneous prove-
nance traces from different WfMSs it is necessary to translate these provenance traces
in a common provenance model. For this, we extend the Prov2ONE algorithm for the
SCUFL and MoML specifications. Finally, we also extend the queries put forth by
the provenance challenge, and present six novel queries for retrieving the prospective
provenance.
Chapter 6. Finally, we present the summary of the dissertation and the future open
issues are presented.

11

Chapter 2

Background and Related Work

This chapter describes the context of this work and how it fits in the broad research
area of digital curation in e-Science. Within the complex infrastructure framework
for e-Science experiments, this thesis primarily focuses on Scientific Data Repository
(SDR) architectures. For this, in Section 2.1 we briefly introduce the concept of SDR
or what is also called as Institutional Repository (IR). Also, in this section, we briefly
describe an exemplary SDR, namely the KIT Data Manager, which is an extensible
framework for building community-specific repositories. Metadata being one of the
cornerstones of an SDR, in Section 2.2, we introduce the concept of metadata and
the metadata management capabilities of existing SDRs, as well as the standalone
metadata management systems.

Positioning the topic of metadata as the fulcrum of this thesis, a vital area of re-
search within the broad research topic of metadata is the sub-topic of provenance. For
this, in Section 2.3, we introduce the concept of provenance management in scientific
research and specifically in WfMSs and SDRs. Furthermore, extending the topic of
provenance for enabling provenance interoperability between WfMSs, in this chapter
we introduce the topic of provenance interoperability in Section 2.4, and survey the
available solutions with their limitations.

2.1 Scientific Data Repository Systems

In the broad research area of e-Science and cyberinfrastructure, the principle focus is
data and questions surrounding it are: How to acquire it? How to store it? How to
access it? and how to leverage it for scientific discovery and knowledge dissemination
[90]. A vital aspect of an e-Science cyberinfrastructure is the realization of an SDR.
The term SDR is synonymous to Institutional Repositories (IR), and in this thesis,
we consider both SDR and IR to represent the same concept.

There exists a few definitions of IR, following are a couple of the prominent ones:
Lynch. C.A. [101] defines IR as:

"In my view, a university-based institutional repository is a set of services that a
university offers to the members of its community for the management and dissemi-
nation of digital materials created by the institution and its community members. It
is most essentially an organizational commitment to the stewardship of these digital

12 Chapter 2. Background and Related Work

materials, including long-term preservation where appropriate, as well as organization
and access or distribution."

Ware. M. [164] defines IR as:
"An institutional repository (IR) is defined to be a web-based database (repository)

of scholarly material which is institutionally defined (as opposed to a subject-based
repository); cumulative and perpetual (a collection of record); open and interoperable
(e.g. using OAI-compliant software); and thus collects, stores and disseminates (is
part of the process of scholarly communication). In addition, most would include
long-term preservation of digital materials as a key function of IRs"

Broadly speaking, the overarching area of research for which this thesis provides
its contributions is the architecture of SDR. So the prime question is, what purpose
does an SDR serve?. As stated by Haak et al. [104], scientific data repositories en-
able systematic data stewardship practices to foster adequate data collection, curation,
preservation, long term availability, dissemination and access.

As previously perceived, the modern SDRs are no more just a system for storing
and preserving data and metadata but offer numerous functionalities that are vital
for handling the entire lifecycle of data and metadata. In general, SDRs are large
infrastructures that provide researchers the functionalities to manage, share, access
and archive their data [116]. Following the design principle of separation of concerns,
an SDR is divided in task-specific modules, where each module provides the necessary
functionality required for handling a specific stage of the research data lifecycle.

As most of the existing SDR are institute or research area specific, till date there
exist only a few studies that try to collect the minimum functionalities an SDR should
provide. Haak et al. [104] have conducted a study to analyze one hundred SDRs to
determine the common attributes under which these SDRs were designed. In their
study the following key components (features) of the SDRs were identified: type of
data, format of data, ingest and export, curation, preservation, and storage. Another
study conducted by Assante et al. [10] have analysed the solutions offered by gener-
alist SDRs, wherein they define generalist SDR as the SDRs that support any type of
research data. The common characteristics among these generalist SDRs are: format-
ting, documenting, licensing, publication costs, validation, availability, discoverability
and citation. Similar research was done by Amorim et al. [7], wherein prominent open-
source data repositories (DSpace, CKAN, FigShare, Zenodo) were compared based on
following key-aspects: architecture, metadata handling capabilities, interoperability,
content dissemination and search features.

From the different attributes each study has conducted for gauging the features of
an SDR, it can be seen that many of these attributes represent the same feature or
the functionality offered by the SDRs. For example, the category format of data, type
of data considered by Assante et al. [10] and the characteristic formatting used by
Haak et al. [104] are the same. Thus, the first step in understanding the overall area
of research is to identify the functionalities offered by the existing SDRs. For this, we

2.1. Scientific Data Repository Systems 13

aggregate the diverse characteristics of SDRs presented by various studies, and based
on it, in the following we briefly describe these features.

– Data format: From the perspective of long-term storage and reusability of data,
it is important for the research community to know the file format accepted by
an SDR. SDRs that accept a fixed set of file-formats are a limiting factor for
research communities because it puts additional effort on them for converting
their data in SDR compatible format. Typically, for supporting a wide range of
communities, SDRs should have no constraints on the data format they support.

– Metadata management: A basic feature of a SDR is its support for metadata
that describes the stored datasets. For validating and reusing the datasets not
only within the research community but also more widely within other research
communities, it is a common practice to enrich the datasets with auxiliary con-
textual information that describes the dataset. Moreover, the information of
how the data is obtained (data provenance) also needs to be annotated to the
data for allowing data reproducibility.

– Data curation: Lord et al. [99] defines data curation as: "The activity of man-
aging and promoting the use of data from its point of creation, to ensure it
is fit for contemporary purpose, and available for discovery and reuse." SDRs
not only just provide a data storage solution but also provide access to the
high-performance computing environment that allows performing custom data
analysis workflows. Data curation is either performed automatically with the
deployment of WfMS or manually by domain experts, for example, enriching the
data quality by adding domain-specific knowledge in the form of annotations.

– Interoperability and content dissemination: Exposing the data and metadata
stored in the SDR is critical, as it enables its reuse. Data publishing is one
method of making the data public. For effective access and exchange of data and
metadata SDRs must support open and interoperable standards. For sharing
and large scale metadata harvesting, the SDR must be OAI compliant, i,e., the
SDR must support the de facto OAI-PMH protocol.

– Ingest and Access: SDRs are typically deployed in a distributed or centralized
servers with the possibility for transferring the data from data acquisition sys-
tem (DAQ), researcher’s local machine, or dedicated data processing machines.
The methods supported for ingesting and accessing the data may vary across
SDRs. Generally, data transfer protocols, such as FTP, SMTP, HTTP, Web-
DAV, GridFTP are supported by SDRs.

– Search and discoverability: Making the ingested datasets discoverable is critical
for reusability and publishing of the results. Both the dataset as well as the
metadata describing the datasets should be searchable. As the SDRs store
the data in file format, performing search on the contents within the file is

14 Chapter 2. Background and Related Work

not possible as the contents are specific to a research community. Hence, the
documentation (metadata) describing the data needs to be made available for
searching and discovering the corresponding data.

Additionally, other non-technical features that contributed towards SDR are: (1)
Licenses that describe the data policies, including the access rights are necessary for
sharing and reusing of data. (2) Data publication and maintenance cost are associated
with storing data in the repository. This cost has to be undertaken by the data
provider or the data owner. (3) Data citation is a trivial feature of an SDR, wherein
the SDR offers the possibility to reference the stored data. The data concerning an
experiment whose results are described in a publication are typically referenced by
the PID associated with data.

From the above mentioned key components of a SDRs, the main goal this thesis
is to focus on research in metadata management in SDR. The availability of meta-
data enables data discovery, sharing, reuse, interpretation, and access. However, only
the metadata is not sufficient for enabling scientific data reproducibility. Data re-
producibility of a particular data analysis workflow has become a critical aspect for
validating the claims of scientific research. Moreover, from 2008, SIGMOD has intro-
duced the "experiment repeatability requirement to help published papers achieve an
impact and stand as reliable reference-able work for future research"1. For this, the
thesis focuses on two more fine-grained research areas that are provenance handling
in WfMS and provenance interoperability among heterogeneous WfMSs.

As the contributions presented by thesis are foremostly adopted by the KIT Data
Manager, in the next section, we briefly describe the KIT Data Manager. The KIT
Data Manager is a SDR framework that has already been adopted and extended for
handling the data and metadata of nanoscopy [123], angioscopy [126] and ecodicology
[31] research communities.

Figure 2.1: Overview architecture of KIT Data Manager [85]

1
http : //www.sigmod08.org/sigmodresearch.shtml

2.1. Scientific Data Repository Systems 15

2.1.1 KIT Data Manager

The KIT Data Manager is an architecture for building repositories for a broad spec-
trum of scientific communities in handling their research data [85, 123]. The KIT Data
Manager provides a generic service stack that can be customized as per the require-
ments of the research community. The main components of the KIT Data Manager
architecture are illustrated in Figure 2.1, with a brief description for each:

Basic Service and Resource. Principally, the basic services are the low-level
services that are responsible for handling the data and the metadata on the file-storage
system. This component exposes services for migrating the data between different
storage resources. Moreover, data storage on existing repository frameworks, such as
iRods and Fedora is supported through adapter services.

High Level Services. The high-level services offer the end-user the possibility
to control the lifecycle of the data within the repository. Services for ingesting and
accessing the data from heterogeneous systems, typically, the data acquisition systems
(DAQ) of the research community are provided by this component. These services
support a wide range of protocols, for example, GridFTP, FTP, WebDAV, and Server
Message Block (SMB). For providing a generic data ingest and download client that is
independent of any data-format, we extended the KIT Data Manager with the Generic
Client Service API, and the results have been published in the IEEE BigDataService
conference [123]. Data processing and staging services allow researchers to define
custom data processing workflows within the KIT Data Manager framework.

Access Layer. The access layer offers a RESTful API for accessing the high-
level services. For integrating user interfaces with the KIT Data Manager, these
services provide the appropriate end-points. For example, user management service
for creating new users and groups in the KIT Data Manager are provided by this
layer, scheduling the ingest and download of datasets can be triggered via the access
layer services.

2.1.2 Limitations of KIT Data Manager

From the above description of the features available in KIT Data Manager, it is clear
that the KIT Data Manager is not capable of handling the entire research data lifecy-
cle. Regarding metadata, only the minimalist metadata based on the Core Scientific
Metadata Model (CSMD) is supported by the KIT Data Manager. Currently, the
KIT Data Manager clearly lacks a comprehensive metadata management function-
ality with an OAI-compliant metadata harvesting mechanism. Regarding executing
complex scientific workflows, the KIT Data Manager does not provide integration with
a WfMS, with no functionality to trace the provenance. As there is no provenance
captured by the KIT Data Manager, it is not possible to publish scientific results with
their corresponding provenance trace, workflows cannot be repeated, and provenance
traces cannot be queried and analyzed for improving the research.

16 Chapter 2. Background and Related Work

2.2 Metadata Management

Extensive research efforts have been done and are underway in metadata research and
software frameworks for handling metadata in scientific research. The wide-spread
applications of metadata have its roots in the research area of cultural-heritage. Li-
braries, archives, and museums have long been using metadata for creating, tracing
and sharing the information about books and artifacts [48, 143, 182]. Previously, the
metadata was handled using hand-written catalogs or inventory books. However, with
the digitization of the books and the artifacts, it was necessary to establish schemas
that could maintain the information that was previously written in the catalogs. Sub-
sequently, with the wide-scale acceptance of these schemas by multiple libraries, mu-
seums, and archives, metadata standards were established. For example, in the area of
digital libraries, the MAchine Readable Cataloguing schema (MARC) [176] evolved to
be an international standard that is used for documenting books and journals. MARC
was sufficient for modeling metadata for digital libraries. However, these standards
were specific to the field of cultural-heritage, and could not be adopted for other re-
search areas. Hence, during the last couple of decades, multiple research communities
began designing their own metadata schemas for handling the metadata concerning
to their research. These schemas were promoted for adoption from a wider audi-
ence, which led to the standardization of these schemas. Currently, there exist more
than two hundred metadata standards in research discipline of biology, earth science,
physical science, social science and humanities and general research data [30, 93, 128].
Moreover, as metadata was treated as a second-class citizen to data, and the metadata
management frameworks built in the context of SDRs were capable of handling only
a single or few specific metadata standards. This prevented the generic applicability
and reusability of these metadata frameworks by a wider community.

The first generation of digital repositories adopted the Qualified Dublin Core
(QDC) metadata schema [87]. However, with the need for describing complex multidi-
mensional digital objects, more complex metadata standards were created, for exam-
ple, the METS standard that allows modeling of multiple ad hoc metadata standards
within a single METS standard [27]. In the next sections, we provide an in-depth sur-
vey of existing metadata management systems in SDRs, standalone metadata manage-
ment system, metadata management systems in Grid infrastructures, and commercial
metadata management systems.

2.2.1 Metadata management systems in SDRs

In this section, we consider the metadata management capabilities of the following
generalist SDRs, DSpace [149], Archivematica [162], Eprints, Hydra [11], EUDAT
project [95], Comprehensive Knowledge Archive Network (CKAN) [170], and Fedora.
The term generalist SDRs is defined by Assante et al. [10] as:

"repositories that make no assumptions nor special arrangements for community-
or data-type-specific aspects".

2.2. Metadata Management 17

The community-specific SDRs are not considered in this thesis due to the following
two reasons: (1) The community-specific SDRs are designed for handling only specific
metadata standards that are necessary for a given research discipline, whereas the
core focus of this thesis is to design an entirely generic metadata management system.
(2) Currently, there are more than hundred community-specific SDRs, and already
there exists in-depth surveys elaborating the metadata management capabilities of
these SDRs exist [13, 102, 104].

DSpace is an open source digital repository system for preserving digital data (im-
age, video and text datasets). The primary metadata standard supported by DSpace
is the Dublin Core (DC) standard. DSpace also supports simple non-hierarchical
metadata namespaces, with the extension to support MARC and MODS metadata
standards using additional external tools. For allowing full-text search over metadata,
DSpace provides the possibility to select the metadata fields that are to be indexed
manually. Regarding support for existing standards, DSpace is OAI-PMH compliant
about allowing metadata harvesting and supports SWORD protocol [3] for repository
interoperability. As a metadata storage system, DSpace supports either PostgreSQL
or Oracle database. Fedora Commons is another digital repository designed especially
for the library community. By default, Fedora supports the DC standard, and through
Fedora-specific extensions, the METS standard is supported. In 2009, Fedora Com-
mons and DSpace were merged to form DuraSpace. Many institutional repositories
are based on Fedora Commons framework and DSpace, for example, Hydra, DRYAD,
and CLARIN [92].

Archivematica is an open-source digital preservation system based on the OAIS
functional model [94]. It supports METS metadata standard with the embedding
of DC standard for capturing the descriptive metadata and the PREMIS standard
for handling the preservation metadata. For enabling full-text search over metadata,
Archivematica uses ElasticSearch.

EPrints was designed specifically for archiving research papers, theses, and teach-
ing material, however, it is also possible to store any data. Similar to DSpace and
Archivematica, EPrints provides support for DC standard, with the possibility to ex-
port the metadata in METS standard. Regarding compliance with standards, EPrints
is OAI-PMH complaint and support SWORD protocol for repository interoperability.
Large volume data ingest through batch importing is challenging and requires PERL
scripting knowledge. For allowing full-text search over the metadata, extra effort is
required for integrating Xapian2 engine with EPrints. However, the full-text search
feature is only available for few data formats like PDF, Word, and HTML.

The European Data Infrastructure (EUDAT) is a Pan-European project that aims
at providing common data services and a collaborative research environment for multi-
ple research communities. Of the various common data services, the metadata related
services are the B2SHARE and B2FIND. The B2SHARE service is for ingesting, stor-
ing, preserving and sharing the data. The metadata fields have to be filled in manually

2
https : //xapian.org/

18 Chapter 2. Background and Related Work

during the ingest process. Moreover, for enabling full-text search over metadata, the
B2FIND uses SOLR indexing, wherein the metadata is harvested using the OAI-PMH
protocol from various metadata provider and indexed in SOLR [69].

2.2.2 Standalone metadata management systems

In this section, we survey the standalone metadata management systems that aim at
providing a generic metadata management solution.

Metacat is an open source metadata catalog and data repository, which aims
at catering the metadata needs of the National Center for Ecological Analysis and
Synthesis (NCEAS) [19]. Metacat provides a schema-independent data storage for
metadata ingested in XML format. The Metacat framework uses a hybrid storage
approach wherein it extracts, models, and stores the metadata from the XML in an
RDBMS schema that conforms to the XML format. Metacat provides a set of SQL
queries that can be executed over this schema for retrieving the metadata.

The XMC Cat metadata catalog of the LEAD cyberinfrastructure follows a hybrid
XML/relational approach that stores the XML metadata as a Character Large Object
(CLOB) and further shreds the XML using inlining [142] and stores it in a relational
database schema to enable execution of complex queries [158].

Yang et al. [177] presents DIstributed MEtadata Server (DIMES) that manages
XML-based scientific metadata in different formats, with support for sophisticated
search queries. The DIMES is based on the concept of representing the XML document
containing the metadata in its natural Document Object Model (DOM) tree structure.
For querying purposes, the XML4J package is integrated into DIMES.

2.2.3 Metadata management in Grid infrastructures

In the research area of distributed computing, there exist multiple systems for handling
metadata in the Grid environment. In the following, we describe these systems with
their features for handling scientific metadata.

The Storage Resource Broker (SRB) of the San Diego Supercomputer Center is
a middleware that provides an API for accessing heterogeneous distributed storage
resources [16]. For supporting attribute-based access of the data, the SRB employs a
Metadata Catalog Service (MCAT) [147]. The MCAT metadata schema for model-
ing descriptive and system related metadata is similar to the Dublin Core metadata
standard. This schema is modeled in a relational database (DB2) and a set of APIs
are provided for querying and updating the metadata.

The Metadata Catalog Service (MCS) is a Grid-based metadata service that is
designed for handling the metadata generated in the Grid environment [45]. Prin-
cipally, MCS provides functionalities for storing, accessing, and querying descriptive
metadata based on user defined attributes. The MCS schema is an extension of the
MCAT schema of the SRB middleware, and is implemented in a relational database
(MySQL). For systematically organizing the metadata, the MCS metadata schema is

2.2. Metadata Management 19

divided in the following logical categories: logical file metadata, collection metadata,
view metadata, authorization, user, audit, provenance metadata, and user-defined and
annotation metadata. Out of these logical categories, the user-defined and annotation
metadata allows the MCS schema to be extended beyond its default attributes. As
a generic solution for handling community-specific metadata, MCS provides two ta-
bles, one that contains the common attributes and an extension table with a set of
predefined attribute types (Integer, String, Float, Date, Time, DateTime) for storing
additional community-specific attributes. The extension table contains three columns
(object id, attribute name, and attribute value). Each entry in this table has a
reference to the object id in the common table with an attributed name and value
(basically a key-value pair). The annotation service of MCS allows users to create a
key-value pair of the string type that can be associated with an object of type logical
file, collection or view.

The Science Object Linking and Embedding (SOLE) tool is specifically designed
for linking research papers with science objects for making research data reproducible
[118]. In SOLE, a science object can be language objects (source code), annotated
PDFs and datasets, web-services, or virtual images. For retrieving the data analysis
pipelines, SOLE offers users to link the results presented in a research paper with
the workflows that were used to derive them. Metadata in the form of tagged an-
notations from PDFs are automatically extracted and stored in the SOLE database,
whereas datasets can be manually tagged with annotations for imparting additional
description.

2.2.4 Commercial metadata management systems

With the wide-spread realization of the importance of metadata, a few commercial
solutions are available that offer comprehensive metadata management capabilities.
In the following, we briefly describe these solutions.

Stardog3 is an RDF database for handling enterprise data using an enterprise
knowledge graph. It provides semantic tools based on OWL 2 ontologies, with
SPARQL support. For allowing full-text search, the data is indexed in Apache Lucene
[108]. For querying legacy systems through SPARQL, Stardog provides a Virtual
Graph that allows mapping between the Stardog graph and external data sources. For
enabling data quality control, Stardog uses Integrity Constraint Validation (ICV) that
allows an explicit definition of data rules (constraints). Moreover, Stardog supports
handling of database revision history using the PROV model, and domain-specific
controlled-vocabularies can be integrated using the SKOS specification.

PoolParty is another commercial semantic technology platform that supports an
enterprise in organizing enterprise knowledge with data analytics features [137]. Sim-
ilar to the Stardog system, the PoolParty platform is natively designed on an RDF

3
http://www.stardog.com/

20 Chapter 2. Background and Related Work

database and primarily offers the following features: (a) The Thesaurus Server pro-
vides the typical CRUD operations for handling domain-specific taxonomies and the-
sauri based on SKOS, wherein the SKOS taxonomies can be enriched with ontologies
(for example, the Friend of a Friend (FOAF)4 ontology). (b) Users can create custom
schemas from the existing ontologies using the ontology and schema editor service.
(c) Metadata vocabulary quality can be measured using the qSKOS specification.
(d) The Graph Search Server collects data from the various PoolParty services and
transforms it into RDF, which is indexed in either Apache SOLR or Elastic Search
for allowing full-text search. (e) The Extractor service analyses documents and texts,
with the metadata schemas that are mapped to predefined SKOS thesauruses, and
automatically extracts meaningful phrases, named entities, or other relevant entities.

2.2.5 Limitations of the existing metadata management systems

In this section, we summarize the limitations of the both the metadata management
systems in SDRs and the standalone metadata management systems. In the case of
the metadata handling systems of SDRs, it is observed that systems are limited in han-
dling only basic non-hierarchical metadata standard like DC, with some repositories
extending their metadata capabilities in exporting metadata in few other metadata
standards, especially in METS. As the architectural design of these repositories is
based on a SQL database, a major limitation is the flexibility of these repositories
in handling community-specific metadata standards; because for handling any new
metadata standard, the database schema and the repository framework needs to be
updated, which is a time-consuming and labor-intensive task.

In the case of the standalone metadata management systems, the Metacat and
the XMC Cat metadata catalog attempt to provide a generic metadata solution, but
have the following limitations: (1) Both of these systems do not support handling
of provenance in an accepted provenance model like PROV, OPM, or ProvONE. (2)
As the metadata, irrespective of a research community is stored in the same table; it
is not possible to segregate the community relevant metadata. (3) By design, these
solutions either utilize RDBMS, which prevents horizontal scalability with increasing
loads, or native file system that is I/O intensive.

In the case of DIMES metadata management framework, the long-term sustain-
ability of XML4J is not guaranteed because the project was migrated to the Xerces
project. Hence, the compatibility of the existing query engine in DIMES needs to be
verified. Moreover, as XML4J and Xerces are both XML parsers that perform read
and write operation on XML files located on the file-system, it raises major doubts
about their query performance and scalability. Finally, none of these systems support
handling of dynamic metadata in the form of annotations, especially with support to
the standard WADM.

4
http://xmlns.com/foaf/spec/

2.3. Provenance in WfMSs 21

2.3 Provenance in WfMSs

Provenance in e-Science is a highly vast topic that covers various areas of research
such as provenance in WfMSs, standalone provenance management systems and prove-
nance in Service Oriented Architectures (SOA). In the context of scientific workflows,
there are two aspects of provenance [33]: prospective provenance and retrospective
provenance. Prospective provenance captures the workflow definition or the recipe
describing the various processing steps that need to be followed to generate the re-
quired results. Retrospective provenance captures the actual runtime events that
occur during the execution of a workflow. These events include details of the in-
put, intermediate, and result data, the various processing tasks, and the execution
environment.

In this section, first, we describe key characteristics for data provenance, namely,
the applications of provenance, the techniques used to represent provenance, prove-
nance storage systems, and provenance dissemination. Then, considering the focus of
the thesis, which is the integration of a WfMS, especially for the Grid infrastructure,
we describe the provenance management capabilities of the existing WfMSs and
standalone provenance management system. Finally, a summary of the limitations of
these existing provenance systems is highlighted.

Applications of provenance
Provenance has a wide-range of applications, for example, provenance allows repro-
ducibility of scientific results, it enables researchers to validate the claims made by
other researchers, and the quality of data can be estimated using provenance. In the
following, we summarize the applications put forth by Goble. S. [65]:

– Substantiating data quality: By tracking the data transformations, provenance
can be used to estimate the reliability and quality of the result data generated in
an experiment. The granularity of the provenance that is captured helps deter-
mine the quality of data. Basic provenance details, such as the transformation
applied and reference to the parent data, can help the user estimate the au-
thenticity of the data, whereas, provenance containing semantic knowledge can
enable automated evaluation of the data quality based on quality metrics. Har-
tig and Jun [75] provide a novel provenance model for evaluating specific quality
criteria, such as timeliness and accuracy. The provenance model is designed for
the Web data provenance and used in assessing the quality of the data.

– Tracking the audit trail: With provenance, the audit trail of data can be traced,
i.e., the usage of resources, the movement of data between data storage units, and
detecting errors generated during data transformation step [60]. The SPADE
framework provides a cross-platform data provenance collection, filtration, stor-
age and querying service [62]. This framework provides a cross-platform kernel
that allows collection of provenance various operation systems (Windows and
Linux/Mac OS X), with the support towards the OPM.

22 Chapter 2. Background and Related Work

– Experiment repeatability: The systematically defined data derivation steps not
only allow the automation of the experiment but also offer the possibility for
others to repeat the same experiment. Quan et al. [119] present Provenance-To-
Use (PTU) tool to minimize the computation time during repeatability testing.
The PTU allows authors to assemble and their code, data, environment, and
provenance into a single package that can be distributed easily. Their approach
is specifically targeted for testing software programs that are submitted to con-
ference proceedings or journals for verifying the results. Moreover, there exists
a plethora of WfMSs that enable repeatability of in silico scientific experiments.

– Data reproducibility: With the availability of the data derivation steps (tools,
algorithms, execution-order) and the run-time details (execution environment,
parameters, and the conditions under which the experiment was performed),
the reproducibility of the experiment is guaranteed. In the research area of life
sciences, the Galaxy framework enables data analysis by allowing users to apply
tools to datasets and ensure these analyses are reproducible [67]. For this, the
metadata generated during the workflow is automatically tracked and can also
be enriched with user information in the form of annotations.

– Data ownership: With provenance, the authorship (ownership) and copyright
of the data can be established. As data migrates, so does its provenance. Thus,
the entire chronology of the ownership of the data can be traced. With the
availability of the provenance (ownership history), the genuineness on the data
can be established. For example, in the area of arts, archaeology, paleontology,
archives, and manuscript the ownership plays a critical role in determining the
legitimacy of an artifact. Kairos is a framework for providing secure provenance
data by integrating digital signatures and the Time-Stamping Protocol services
into grid computing environment [88]. With Kairos, forging the authorship is
prevented by maintaining the user’s digital signature.

Provenance Representation
The technique used for the representation of provenance determines the granularity
of details that can be recorded and the extent to which it can be used (queried).
The two major approaches that are used to represent the provenance information
are annotation or inversion [145]. In the annotation approach, which is an eager
provenance collection technique the derivation history of data, with the description of
source data and the various processes involved, is collected as annotations [20]. In the
annotation approach, the provenance is pre-computed and available as metadata for
querying and analysis. In the case of inversion approach, the derivation that generated
the output data is inverted to trace the input data. User-defined function, explicit
function, queries are used to automatically invert the derivations [38, 169, 175].

With the availability of the OPM, PROV, P-PLAN and the ProvONE provenance
model, it now possible to have a common model for representing provenance across
various research disciplines. As these provenance model can be serialized in XML,

2.3. Provenance in WfMSs 23

it is beneficial for use in SOA architectures where XML is the primary format
for message exchange. Moreover, for capturing the semantic details within the
provenance, these models support RDF representation, which is useful especially
where the domain-specific ontologies are already defined in RDF and OWL. With
the enrichment of provenance with ontologies, concept and relations can be precisely
defined for enabling enhanced use of the provenance. Various research disciplines,
as well as workflow engines, have enriched their provenance models with ontologies
[51, 61, 135].

Provenance Storage
The underlying storage system used for persisting provenance determines the
granularity of provenance that can be modeled and the expressiveness of the
queries that will allow retrieval of complex provenance details. In the simplest
case, provenance can be embedded within the data it describes and stored on the
same data storage, or tightly coupled to the data it describes. On the one hand,
this allows easy handling of provenance integrity, but on the contrary, searching,
querying, and publishing the provenance is difficult. RDBMSs are the most widely
adopted storage systems used for storing provenance [15, 57, 89, 180]. However,
with the obvious benefits of graph databases for efficient modeling and querying of
provenance graphs, few of the new systems have adopted graph database [63, 141, 174].

Provenance dissemination
In order to share and use provenance, a system should provide various means to
access it. The existing provenance systems support SQL queries, APIs, or graph-
visualization user interfaces for accessing and reusing the provenance. Additionally,
some systems allow enrichment of provenance with semantic information for enabling
defining complex queries capable of retrieving nested structures [8].

2.3.1 Provenance handling in WfMSs

Provenance has been extensively studied in several different areas of both WfMSs
[23, 42, 145] and in databases [26, 160]. In this section we present the provenance
management capabilities of the existing WfMSs, and describe them based on the
key-characteristics stated above.

Vistrails is a Python-based WfMS that provides data process management support
for exploratory computational tasks [57]. The workflows are defined in a proprietary
Vistrails specification, and the provenance traces are modeled in a proprietary schema
and stored in an RDBMS. Vistrails is the only WfMS that supports capturing the
provenance of a workflow evolution. That is, Vistrails allows the capturing and storing
of both the prospective provenance in XML and a Vistrails specific relational database
schema. For querying the stored provenance, Vistrail provides a proprietary query
language.

24 Chapter 2. Background and Related Work

Taverna is a graphical workflow creating and execution environment [172]. Tav-
erna is used by a wide-range of communities, for example, bioinformatics [152, 153],
cheminformatics [161], astronomy [82], social science, music [107], digital preservation
are some of the communities using Taverna. Taverna is shipped with the SCUFL
workflow specification for describing the workflows. The Taverna engine for executing
the workflow interprets the SCUFL XML containing the prospective provenance. The
retrospective provenance traces are captured and stored in an internal database, and
via the Taverna-PROV plugin, only the retrospective provenance traces are exported
as PROV-O RDF graph.

Kepler is a WfMS based on the Ptolemy II engine [100]. Kepler provides its
own MoML specification for defining the workflows (prospective provenance) [96].
For collecting the retrospective provenance, Kepler provides the Provenance Recorder
(PR) that consists of several event listeners interfaces. These interfaces are based on
different "concerns" for which the corresponding event listener’s object is invoked.
Kepler stores in its internal SQL database with a pre-defined provenance schema. For
querying the stored provenance, an API is exposed by the Kepler WfMS.

Pegasus WfMS provides a bridge between the scientific domain and the Grid exe-
cution environment [47]. Pegasus automatically maps high-level workflow description
onto distributed resources. The Pegasus framework automatically locates the input
data and computational resources that are required for the execution of a workflow.
The provenance in Pegasus is automatically captured by the Virtual Data System
(VDS) when the jobs are launched using Kickstarter wrapper, and the prospective
provenance is modeled in OWL. The retrospective provenance is stored in a relational
database and can be queried or visualized using pegasus-statistics, pegasus-plots, or
directly using SQL, and the prospective provenance can be queried using SPARQL.

REDUX is a closed-source WfMS that is based on the Windows Workflow Foun-
dation (WinWF), and it extends the WinWF to capture the provenance at different
levels of abstraction [15]. REDUX follows a multi-layered approach for incrementally
capturing the provenance. The first layer captures the abstract description of the
workflow, the second layer captures the specific services and data sets that are bound
to the abstract description, the third layer captures the runtime information, i.e., the
input data and the supplied parameters to each activity, and the fourth layer captures
the workflow administrative information such as start and end time of the workflow.
REDUX captures both prospective as well the retrospective provenance in an SQL
database but does not capture the workflow evolution.

Karma is BPEL-based WfMSs that was specifically developed for supporting dy-
namic workflows for weather forecasting simulations [146]. The Karma provenance ser-
vice is the focal web-service that subscribes to the notifications of the WS-Messenger
service. For exchanging the provenance among the different Karma component,
Karma provides XML schema. Finally, for persisting the XML containing the retro-
spective provenance information, it is decomposed and stored in a relational schema,
thus allowing querying using SQL.

2.3. Provenance in WfMSs 25

Sedna framework is an attempt to simplify the creation of workflows by providing a
visual language and a modeling plugin tool-box that extends the existing Eclipse IDE
plugin environment [165]. Using Sedna, researchers can easily define complex work-
flows in BPEL and deploy them on the ActiveBPEL, a BPEL-based workflow engine.
However, in terms of handling the provenance, neither Sedna nor the ActiveBPEL
workflow engine provides the functionality of capturing the provenance during the
execution of the workflow.

2.3.2 Provenance in Grid workflow execution environment

In this section, we describe the Grid workflow execution environments that are based
on BPEL workflow engine.

UNICORE is a Gird middleware that supports the orchestration of stateful Web
Service Resource Framework (WSRF) [156]. For enabling handling of provenance in
the normative PROV model, UNICORE is extended with the UniProv functionality
that is responsible for tracking both the prospective and retrospective provenance [63].
They claim to support the ProvONE for modeling the workflow templates from an
existing repository of PROV templates, but this is achieved is not explained in their
paper. For storing and querying the provenance, the Neo4j database is integrated
with UniProv.

Rajbhandari et al. [132] proposes an architecture for composing Grid services
using BPEL4WS, wherein the Grid service clients are wrapped web services called
as Proxy Web services. The workflows are deployed on Collaxa BPEL orchestration
server or BPWS4J engine. The Collaxa is a closed-source WfMS from Oracle that
provides no details about its ability to capture the workflow provenance traces. On
the other hand, the BPWS4J is enabled with the Provenance Collection Service (PCS)
and Provenance Query Service (PQS). The provenance is modeled using a pre-defined
provenance RDF schema. Whether their pre-defined provenance schema is compatible
with PROV, OPM or ProvONE is not explicitly stated by the authors.

Emmerich et al. [54] describe their experience in using BPEL for orchestration
of grid services using the ActiveBPEL workflow engine. For testing the integration
of ActiveBPEL with Grid service, they use a workflow from theoretical chemistry -
computation prediction of organic crystal structure from the chemical diagram. They
have stated that using a BPEL-based workflow engine is suitable for executing dis-
tributed grid web services but have nowhere mentioned how their framework captures
the provenance.

Aleksander S. [148] describe the integration of an arbitrary BPEL engine with the
Open Gird Service Infrastructure (OGSI) and WSRF. In their paper, they explain
that BPEL is extensible for OGSI services that are based on web service standards.
For this, they propose an extension to the BPEL engine in tracking the expiration
time of the Grid Service Reference (GSR) and using the Grid Service Handle (GSH)
for retrieving the active and valid GSRs. The integrating of WSRF with BPEL engine
is straight forward because WSRF uses the WS-Addressing specification that is also

26 Chapter 2. Background and Related Work

used in BPEL. Thus, there is no longer the need to map between GSHs and GSRs
service locator and WS-Addressing Endpoint References. The tracking of provenance
in the OGSI or in the BPEL-engine is not addressed by their system. One could
consider the events from the WSRF as a potential source of provenance but this is
not mentioned in their paper.

2.3.3 Limitations of WfMSs in handling provenance

Considering the provenance handling capabilities of the above stated WfMS, one dis-
tinct limitation is none of these systems support capturing of both prospective and
retrospective provenance in a generic and interoperable provenance models such as
P-PLAN or ProvONE. In the following, we summarize the other limitations of these
systems. (1) All of these systems define their proprietary provenance schema (mostly
SQL schemas) for storing and querying the provenance. Hence, for sharing the prove-
nance between other systems, additional plugins or software extensions have to be
developed for translating the provenance in PROV or OPM. (2) Except for Vistrails
none of the WfMSs provide the possibility for tracing workflow evolution. However,
Vistrails uses its custom data model for tracking the workflow evolution. Hence, shar-
ing a workflow evolution trace is a major limitation in Vistrails. (3) In the case of
BPEL-based WfMSs, it is clear that except UNICORE and Karma the other systems,
especially the BPEL Grid-based systems do not provide any support for provenance
handling. Moreover, the workflow enactment engine that these systems utilize (Ac-
tiveBPEL, Apache ODE, or BPWS4J) do not provide any mechanism for capturing
the provenance. The maximum what these engines offer are the run-time events dur-
ing the execution of the workflow. In the case of the UNICORE Grid middleware;
recently they have started supporting capturing of provenance in PROV and storing
it in Neo4j, a graph database. However, it is not clear which provenance analysis
queries are supported by UniProv. Moreover, the PROV ontology is mapped to the
RDF namespace and is a recommendation from W3C. Hence, sticking to the stan-
dards, an RDF store with the SPARQL querying capabilities are better suited for
modeling, storing and querying the PROV graphs. Karma support provenance han-
dling by capturing and normalizing the run-time events from the WS-Messenger and
WS-Eventing publishing interface implemented by the enactment engine. However,
Karma does not directly support any of the existing provenance models (OPM, PROV
or ProvONE) but claim that their model is compatible with the OPM [28].

Focusing on provenance management in BPEL-based WfMS, in Chapter 5, we
present the architecture for integrating a BPEL-based WfMS with the Prov2ONE
algorithm that automatically translates the prospective provenance from BPEL spec-
ification to ProvONE.

2.4. Provenance Interoperability 27

2.4 Provenance Interoperability

The successful handling of provenance from BPEL-based workflows led us to extend
our research in the field of provenance interoperability. As stated in the previous
section, most of the existing WfMSs support handling of provenance, but each adopts
its own data and storage model [58]. These models range from semantic web lan-
guages like variants of RDF and OWL, XML dialects, to relational databases. For
accessing the provenance, the user is provided either with provenance visualization
interface or needs to write queries using the query language supported by the WfMS.
Typically, the query language is determined by the data storage system adopted by
the WfMS. For example, few systems support querying using SPARQL [68, 89, 179],
while others use SQL for querying the provenance [15, 180]. Hence, for cumulatively
analyzing the provenance traces from such diverse systems, it is necessary to integrate
the provenance from these systems and their respective querying interfaces.

Additionally, the importance of sharing provenance is observed in the collaborative
research environment, where data and metadata (provenance) published by scientific
workflows of one research group needs to be used by other groups [4, 6, 111, 157].
In collaborative researcher, complex workflows are divided among multiple research
groups and based on the requirements of the research groups and the features provided
by the WfMSs; each research group may adopt a different WfMSs. Adopting a different
WfMS is not the issue, but the problem arises when these groups plan to share their
results and the associated provenance among other research groups. As explained
above, this is because each WfMS has its workflow language and data model for
storing the provenance, and exchanging the provenance among the WfMSs is not
possible. Thus, a major limitation in the research area of provenance interoperability
is the ability to share and analyze provenance traces from heterogeneous WfMSs.

In this section, first, we present the existing systems and frameworks that attempt
to enable provenance interoperability from heterogeneous provenance sources (Section
2.4.1), followed by their limitations in Section 2.4.2. The key characteristics presented
in Section 2.3 are also applicable for these systems, and we summarize each of the
existing provenance interoperability frameworks based on these key characteristics.

2.4.1 Provenance interoperability frameworks

There are several approaches described in the literature for enabling provenance in-
teroperability among heterogeneous sources. In the following, we present a brief de-
scription of these approaches.

Ellqvist et al. [53] describes a mediator architecture for integrating the provenance
from the Vistrails, Taverna, and PASOA [72] WfMSs. A core component of this
mediator architecture is the Scientific Workflow Provenance Data Model (SWPDM),
which acts a global schema capable of capturing both the prospective as well as the
retrospective provenance. For validating their concept, they describe the translation
of provenance from Vistrails, Taverna, and PASOA to SWPDM. This translation is

28 Chapter 2. Background and Related Work

based on the mapping between the respective WfMS provenance model and SWPDM
and is implemented in each of WfMS specific wrapper. For analyzing and querying the
provenance traces over the global SWPDM, a wrapper specific query API is provided
by the mediator architecture.

The Common Provenance Framework proposed by Braun et al. [24] aims at pro-
viding query interoperability between the provenance collected from the PASS and the
PLUS provenance system. The Common Provenance Framework is built on OPM,
with few extensions for enabling sharing, querying and visualization of the provenance
traces. The visualization and querying of the provenance are achieved through the
PLUS system for the provenance collected by the PASS system.

Ding et al. [51] propose a Semantic Web-based approach, also known as Linked
Provenance Data, for addressing the challenges from the Third Provenance Challenge
[144] and the research efforts in the field of Inference Web project [109]. They argue
that for enabling provenance reuse, both the generic provenance and domain specific
data. For this, they present the PC3OPM ontology for rich and interoperable domain-
specific provenance descriptions. This rich provenance is imported to an RDF store
for allowing querying and enriching of the provenance using the SPARQL Inferencing
Notation [91].

For addressing the issue of sharing workflows in the collaborative research envi-
ronment, where results from a workflow execution are used as input by other work-
flows, Missier et al. [111] presents an approach based on the common abstract model.
The common abstract model is an extension of OPM that is mapped to the local
provenance traces from the Taverna and Kepler WfMSs. With the availability of
provenance in the common provenance model, the data dependencies across multi-
ple workflow runs, systems, and user groups can be traced. Similarly, Altintas et al.
[6] presents a provenance interoperability approach based on a common data model
that is compatible with the OPM for capturing implicit user collaborations. Their
approach is specifically tailored for handling provenance interoperability in a collab-
orative research environment. To enable querying over this model, they also present
an extension to Query Language for Provenance (QLP).

Oliveira et al. [115] introduces a provenance integration architecture that provides
a mapping of provenance from e-Science WfMS and SciCumulus WfMS provenance to
ProvONE. The provenance in e-Science is stored in relational tables in the PostgreSQL
database, and in the case of SciCumulus, the provenance is modeled as a graph in the
Neo4J database. These mappings are implemented as WfMS-specific cartridges, and
the provenance collected by the WfMSs is translated to the ProvONE model. The
provenance modeled ProvONE is serialized as Prolog facts with a set of Prolog queries
for retrieving the provenance. This approach is similar to the mediator approach
proposed by Ellqvist et al. [53], with the only difference being that instead of using a
proprietary model like SWPDM, the ProvONE model is used.

For enabling workflow interoperability (prospective provenance) between multiple

2.4. Provenance Interoperability 29

WfMSs, the SHIWA project presents the coarse-grained and fine-grained workflow in-
teroperability. For enabling coarse-grained workflow interoperability, multiple WfMSs
are assembled under a common platform and treated as sub-workflows with a master
workflow that orchestrates the execution of the workflow over these sub-workflows.
For this, the meta-workflow is defined in a particular specification that interfaces
to other sub-workflow systems. However, as this approach requires immense techni-
cal and infrastructure coordination, the SHIWA project also proposed a mechanism
for fine-grained workflow interoperability through conversion of native workflow to a
common representation. For this, the Interoperable Workflow Intermediate Represen-
tation (IWIR) was introduced. IWIR is a low-level workflow representation language
that was designed to represent as many constructs from different workflow languages
as possible.

2.4.2 Limitations of existing provenance interoperability frame-
works

It is observed that many of the existing approaches for enabling provenance interop-
erability are inherently limited, this is because these approaches use OPM, which is
a provenance model that can model only the retrospective provenance. On the other
hand, few of the approaches have implemented their proprietary provenance model
for modeling provenance from heterogeneous sources, and whether these proprietary
models are compatible with OPM, PROV, P-PLAN or ProvONE is certainly not ad-
dressed in the literature. In the following, we summarize the limitations of these
approaches:

– Few of the provenance interoperability frameworks are based on proprietary data
models that are not compatible with the recommended and adopted provenance
models like OPM or PROV. Thus, the long-term sustainability and adoption of
these frameworks by wider-range of communities is a major challenge.

– The majority of these frameworks are not designed for capturing the prospec-
tive provenance, and neither do they support the widely-adopted P-PLAN or
ProvONE provenance models. Thus, only supporting partial (retrospective)
provenance interoperability.

– Instead of adopting the W3C recommended SPARQL for querying the prove-
nance, the approaches presented by Altintas et al. [6] and Oliveira et al. [115]
use QLP and Prolog queries respectively. The major limitation in their approach
is the long-term sustainability of these non-standard querying languages.

The approach presented by Oliveira et al. [115] is comparable to our approach.
However, a major limitation of their approach is that any changes to the provenance
database schema of e-Science and SciCumulus will require a remapping between the
provenance models and the re-implementation of the WfMS-specific cartridges. Espe-
cially, the mapping between the retrospective provenance from the e-Science WfMS to

30 Chapter 2. Background and Related Work

ProvONE. The e-Science WfMS stores the retrospective provenance in Neo4j, which
is property graph database. In a property graph database, there is no constraint on
the properties that can be added to the nodes or edges of a graph (i.e., any ad hoc
key-value string pairs can be added as properties). However, adding new properties
or modifying the already existing ones will break the existing mapping to ProvONE,
thus, making the implementation of e-Science cartridge obsolete. In our approach,
we automate the capturing of the exact workflow definition by mapping the entire
workflow specification of BPEL, SCUFL, and MoML to the ProvONE prospective
provenance, thus, avoiding any weak data-model mappings. Furthermore, in their
approach, the ProvONE translated provenance is stored as Prolog facts, whereas con-
sidering the long-term sustainability of a solution, our approach supports the W3C
standard RDF model, and the W3C recommended SPARQL query language.

2.5 Summary

In this chapter, we placed the thesis into its primary research context of metadata
management for scientific data, in particular for SDRs. First, we presented the concept
of SDR and the critical features that are necessary to build a comprehensive SDR.
Out of these features, we observed that majority of the tasks in an SDR are governed
by metadata. Then, we briefly introduced the features of KIT Data Manager, a
generic SDR framework, wherein we identified that the existing metadata handling
capabilities of the KIT Data Manager are limited. Similarly, we also observed the
same limitations in the metadata management capabilities of the available SDRs, as
well as the standalone metadata management systems. This led us to concretize the
primary focus of this thesis, which is metadata management for SDRs.

In our research in the area of metadata, an important sub-topic that emerged was
of provenance. For understanding the topic of provenance in-depth, we described the
various applications of provenance with the available provenance representation, stor-
age, and dissemination techniques. However, in the vast research area of provenance,
we directed our efforts in the area of provenance management in WfMSs. Again as
inital adopters of our contributions, we realized that the KIT Data Manager cur-
rently lacks an integration with a Grid infrastructures suitable WfMS. For this, first,
we presented the state-of-the-art of provenance management capabilities of the exist-
ing WfMSs, followed by the provenance handling features of the Grid-based WfMSs,
which are typically based on BPEL-based workflow engines. From the survey of these
WfMSs, we realized that currently none of these systems support handling of work-
flow provenance. Thus, these limitations led us to establish the secondary focus of
this thesis, which is provenance management for BPEL-based WfMS.

As our research was directed in the area of provenance handling in WfMS, we
realized that in collaborative research, wherein multiple WfMSs are simultaneously
used for large-scale and distributed research, it is necessary to share and analyze
provenance traces from heterogeneous sources. For this, we extended our efforts in

2.5. Summary 31

provenance interoperability. For this, first, we presented the existing provenance in-
teroperability systems with their limitations. From the literature it was clear that
existing approaches either do not support complete provenance interoperability or
if they do support, as in the approach presented by Oliveira et al. [115], they do
not adopt the standard representation (RDF) and querying techniques (SPARQL).
Thus, considering these limitations, our tertiary focus of thesis that is provenance
interoperability among WfMSs was concretized.

33

Chapter 3

Scientific Data Repositories

In distributed e-Science infrastructures where data and metadata are generated and
consumed by arbitrary data processing tasks, tools or systems, SDRs have become
mandatory for efficiently handling the data and metadata lifecycle. The basic func-
tionality of a scientific data repository is to ensure long-term preservation and access
to data and metadata [104].

The goal of this chapter is to introduce the architecture design of a generic SDR
and present our initial contributions on this research topic. Instead of developing and
promoting institution-specific or discipline-specific repository systems, the focus is to
design a simple, generic, and extensible SDR architecture that can be adapted for a
wide-range of disciplines. The design of SDR architecture presented in this chapter
is based on the principles of modular design. For this, we have divided the architec-
ture into task-specific components that individually or collectively realize a specific
functionality within SDR. The four critical components within the framework of an
SDR are data transfer handling, metadata management, workflow with provenance,
and provenance interoperability. However, as each component of this architecture is a
research topic in itself, we have individually addressed these components in separate
chapters. In this chapter, we present the data transfer component and the adoption
of the SDR architecture for two research disciplines.

3.1 Introduction

The advent of novel data acquisition systems with the potential to produce and process
enormous amounts of data has led to an exponential growth in the volume of data
and metadata that is generated in in silico scientific experiments [40, 78]. This data
and metadata have become an essential component of scholarly and scientific research.
Recently, the major conferences and journals have enforced the mandatory submission
of data and metadata along with the article, in order to accept it for publishing
[12, 74, 83, 154] These steps were taken for making the entire data processing workflow
transparent to the scientific community to enable reproducibility and verification of
the published results.

On the one hand, making research data referenceable, accessible, reproducible, and
publish worthy are major factors for gauging the quality and authenticity of the data.

34 Chapter 3. Scientific Data Repositories

However, on the contrary, to realize these factors, there is a need to design and build
state-of-the-art data and metadata management systems that would not only assist
researchers for publishing and referencing purposes but also in handling the complete
data lifecycle.

Figure 3.1: Abstract view of scientific data lifecycle

In Figure 3.1, we present an abstract view of a scientific data lifecycle described
by Hey et al. [80] in his book The fourth paradigm: data-intensive scientific discov-
ery. Regardless of the research discipline, the first step is to acquire the data from
the discipline-specific DAQ systems such as sensors, microscopes, medical modalities,
digitization infrastructures, simulations, etc. The acquired data is verified against the
research process policies by automated methods or by the domain-experts. Once this
data is accepted, the necessary metadata either through the DAQ software or via the
researcher is tagged to data. The metadata usually includes descriptive information
elaborating the acquisition hardware, software and parameters, researcher and orga-
nization details, and experiment setup. Until this step, data is stored on computing
infrastructure connected to DAQ system. However, the DAQ computing infrastruc-
ture is not suitable for long-term data preservation, processing, and data-intensive
analysis. This is because, the DAQ computing systems are built for a single purpose,
which is to acquire data from the DAQ instrument’s interface. The provisioning of
tools for preservation, access, and processing of data is not the task of these systems.
Hence, to prevent mismanagement and corruption of data, it needs to be registered
and deposited in a storage unit that is configured to handle such kind of data and is un-
der the administration of the organization’s federated resources. After the deposition
of data, remaining steps in a scientific data lifecycle are governed by the function-
ality provided by underlying data management system. Tasks such as extraction of
metadata from data, transforming it into discipline-specific metadata standard and
making it searchable through indexing are some of the necessary steps that have to
be performed to make the data discoverable, shareable, and reusable. With access to

3.1. Introduction 35

the High-Performance Computing (HPC) Cluster, data is analyzed to gain additional
insights. These results are deposited in the data storage unit with prior registration
for allowing data traceability and reproducibility. For human-interpretation of the
results, data and metadata are visualized. Visualizing techniques are employed for
domain-experts to gain more knowledge about the data and if required impart addi-
tional information on the data in the form of annotations. Regardless of the choice
of visualization and annotation tool adopted by the research community, the system
should provide the conversion of data and metadata in standard formats. Proprietary
formats should be avoided as they often lead to solutions that are not interoperable.
For example, heterogeneous metadata received from diverse sources needs to be sys-
tematically structured and exposed through standard metadata harvesting protocols
like OAI-PMH. Finally, for knowledge dissemination, after extensive exploration and
analysis, the results with its metadata describing the entire procedure needs to be
published and made referenceable.

It is clear that for efficiently handling the data deluge, research institutes, funding
agencies, data specialist, and researchers are impelled to find solutions for managing
their research data with compliance to the policies stated by the research process. This
has led to the adoption of SDR in a majority of the research institutes and universi-
ties. SDR should not only assists researchers in their routine activities but also provide
highest-level of automation in order to hide the SDR’s complexity and eliminate re-
dundant manual tasks. An SDR should expose standard interfaces for seamlessly
integrating it in existing research environment, and provide extension possibilities for
adding new functionalities. Therefore, in the context of the architectural design of
SDRs, we present the following contributions: (a) a generic and extensible architecture
of an SDR that is based on KIT DM framework, (b) automated data and metadata
agnostic data transfer client that can be integrated with arbitrary discipline-specific
DAQ, (c) adoption of the complete SDR architecture for three research discipline, of
which two are presented in this chapter.

The chapter is organized as follows. First, in Section 3.2, research efforts related
to the design of generic SDRs are presented. Then, in Section 3.3, the complete
architecture of the SDR is presented. In this section, we present the first contribution
of this chapter. However, except for the GCS API, only a brief explanation of the other
components is presented. The details of each component are treated as a separate
research topic, and their realization is described in the succeeding chapters. In Section
3.4, we present the evaluation of the GCS API with an optimized implementation of
the WebDAV protocol for nanoscopy datasets. In Section 3.5, we present the second
contribution of this chapter that is the adoption of SDR architecture for the nanoscopy
and angioscopy research data. Finally, we summarize the chapter in Section 3.6.

36 Chapter 3. Scientific Data Repositories

3.2 Related Work

The generic design of an SDR is a primary criterion for adoption by multiple research
disciplines. In this section, we present existing generic SDRs that are developed
independently of any particular research discipline.

The Fedora Commons Repository is a flexible, modular, and open-source repos-
itory platform that has native support for linked data. Most of the functionality in
Fedora is available through REST APIs. Regarding supported data size and ingest
protocol, Fedora enforces no limit on the size of data that can be ingested in the repos-
itory. Currently, HTTP REST, Network File System (NFS), and Secure Copy (SCP)
are the three data transfer protocols that are supported by Fedora. The ingested data
can be searched using SOLR indexing that offers full-text search over the metadata or
using a standalone triplestore like Jena Fuseki for searching the linked data graphs.

Archivematica is web-based and standards compliant open source repository ar-
chitecture that provides long-term access, authenticity, and reliable access to digital
content. The architecture design of Archivematics is based on micro-service pat-
tern, with compliance to the Open Archival Information System (OAIS) functional
model. Regarding support towards metadata standards, metadata in DC, METS, and
PREMIS standards can be handled by the framework. The metadata is indexed in
ElasticSearch for allowing a full-text search.

Compared to other generic repositories, the DSpace repository shares the same
vision as of the KIT DM. DSpace is a software package containing a set of tools that
allow communities to build discipline specific repositories for preserving their digital
content (scientific data) lifecycle within the repository. The data in DSpace is stored
in an asset repository, while the metadata is stored in a dedicated metadata store. By
default, the DC metadata standard is supported by DSpace, with extended support
using add-on plugins for the MARC and MODS standards. The metadata is indexed
in Apache SOLR for allowing full-text metadata search. The entire functionality of
DSpace is exposed through REST APIs that are integrated into a web user interface.
Dryad is a data repository built on the DSpace technology stack for storing data
associated with a published article. In Dryad, after data ingest, a Digital Object
Identifier (DOI) is assigned to data for allowing referencing and citation.

Samvera, formerly known as Hydra is an open-source digital asset management
solution for libraries, museums, and archives. Samvera is built on the Fedora software
stack and consist of four major components: (a) Fedora repository layer for persisting
and managing digital content. (b) SOLR indexing for full-text search and access to
preserved resources. (c) Blacklight, a Ruby on Rails plugin that provides faceted
search over the Solr indexes. (d) Samvera gems that integrate the various building
blocks of the repository to enable an extensible digital repository solution.

The first step for any research discipline before choosing an SDR is to evaluate the
features provides by it. Currently available SDRs are primarily focused on providing
only a data storage and access solution with support towards very few metadata

3.3. Architecture of Scientific Data Repository 37

standards. These SDRs do not support advanced capabilities such as execution of
complex data-processing workflows with provenance handling, and extensible static
and dynamic metadata model support. Moreover, these SDRs are capable of handling
only small to medium size datasets in the range of few GBs. However, research
disciplines such as nanoscopy, angioscopy, and eCodicology are regularly producing
data volumes in the range of a couple of hundred TBs and even few PBs. Thus, to
address the limitations of these SDRs, we describe the generic architecture of an SDR
that is based on KIT DM. The KIT DM provides the low-level services especially for
data storage and deployment of workflows on HPC clusters.

Figure 3.2: Layered architecture of scientific data repository [126]

3.3 Architecture of Scientific Data Repository

The scientific data repository is a server-side multi-layered architecture that is divided
into task-specific components. An SDR needs to provide not only the data storage and
retrieval functionality but also other functionalities that are required for efficiently
handling the lifecycle of scientific data. In this section, we present an overview of
the SDR architecture. The entire architecture is designed on principles of modular
architecture design. In order to ensure long-term sustainability, each component in

38 Chapter 3. Scientific Data Repositories

this architecture is designed considering the standard tools, protocols, and metadata
standards. The details of each component are presented in the succeeding chapters.

3.3.1 Scientific Data Repository

Services. The Services layer provides an interface to the external discipline specific
tools and frameworks that have to be integrated with the SDR.

– Scientific Workflow: Through this module, an external WfMS can be integrated
with the SDR. Provenance metadata which is a part of the scientific workflow
is also handled through this module. In Chapter 5, Section 5.2.4 we present
the detailed architecture explaining the integration of a BPEL-based WfMS
with automated handling of provenance in comprehensive provenance model like
ProvONE. This led to our first contribution in the research area of provenance
management for WfMS. Furthermore, in Chapter 5, Section 5.3, we extend this
module to a complete provenance interoperability platform that is capable of
handling provenance from heterogeneous WfMS.

– Annotation Services: The annotation services are an extension of the underly-
ing Metadata Management component. The focus of this component is to assist
researchers in handling dynamic metadata in the form of annotations. Consid-
ering the interoperability of annotations with an adoption of a standard data
model, this component is designed conforming to the Web Annotation Data
Model (WADM) standard with storage based on RDF data model.

– Data Discovery: The data discovery service is an abstract wrapper service that
primarily provides functionality for allowing full-text search over the stored
metadata. The possibility to execute custom user-defined queries is also exposed
through this service. For example, for querying and analyzing annotations and
provenance stored in RDF database, a SPARQL endpoint is exposed.

– Publication Service: The publication service is for allowing sharing and citing
the dataset stored in the SDR. For this, each dataset is assigned a unique PID,
and the data is either open-access or close-access for specific groups of researchers
depending on the policies defined by the funding and research institutes.

Metadata Management. The Metadata Management aims at providing an entirely
automated metadata management solution for arbitrary metadata standards. This
component is natively compliant with the OAI-PMH metadata harvesting protocol.
The Metadata Management component is realized through the MetaStore framework,
which is presented in Chapter 4. Here, we briefly explain the coarse functionality that
is necessary for an SDR in handling metadata.

– Metadata Extraction: The metadata extraction module provides services spe-
cific to the format in which metadata is ingested in the SDR. Metadata can

3.3. Architecture of Scientific Data Repository 39

either be embedded within data or submitted in a separate file. For meta-
data submitted through a separate file, this module offers a set of automated
metadata extractors using the Apache TIKA library [106]. However, for domain-
specific data formats, it is necessary to implement the metadata extractors. For
example, the HDF5 metadata extractor service is available for extracting the
nanoscopy descriptive metadata.

– Metadata Modelling: The metadata modeling module ensures that the extracted
metadata conforms to a given metadata schema registered by the research com-
munity. This module performs registration of metadata schema and automated
quality check for completeness and schema conformance. The metadata is mod-
eled in the registered metadata schema (standard) and submitted to the meta-
data storage module for persistence.

– Metadata Processing: The preparation of metadata for harvesting purposes and
the categorization of metadata as per their applications is done in this module.
The different queries for analyzing metadata are exposed through this module.
For example, the SPARQL queries for provenance graph matching queries and
the annotations analytical queries are made available through this module.

– Metadata Storage: The SDR architecture is designed to be database technology
agnostic. For this, in the metadata storage module, we provide database-specific
adapters. For example, for storing the static metadata, a NoSQL database
ArangoDB adapter is implemented. For storing the provenance graphs modeled
in RDF data model, an Apache Jena adapter is provided.

Data Management. The data management is a low-level component that directly
interacts with the interfaces exposed by the KIT DM. In principle, this component
can be seen as a bridge-interface between the KIT DM and the community-specific
realization of an SDR. Configurations for the HPC Cluster environment, service de-
ployment registry for the data processing tasks, and access to large scale data storage
are made available via this component.

– Data Preservation: The data preservation component is responsible for main-
taining the fixity of data that is represented as a digital object in SDR. For
each dataset ingested in SDR, the checksum is calculated and modeled in the
PREMIS preservation standard. During data ingest, download, migration op-
erations, the preservation module provides the required checks for verifying the
fixity of the content within a digital object.

– Data Analysis and Curation: This module acts as a service registry for register-
ing the community-specific data processing tasks. Each data-processing task is
exposed as a REST service making it discoverable and accessible for the research
communities in assembling workflows. The description of a service comprises a
unique service address, input parameters, and accepted data format.

40 Chapter 3. Scientific Data Repositories

Figure 3.3: Ingest
workflow [123]

Figure 3.4: Download
workflow [123]

– Data Processing: This module handles the integration with HPC cluster, with
the possibility to configure the execution environment for each data-processing
task.

3.3.2 Generic Client Service API

With the availability of e-Science infrastructures, in silico research is carried out over
distributed resources under various federated zones. This has led to a separation of
data acquisition systems (DAQ) from data processing and storage systems.

The primary requirement in any distributed execution environment is to enable
the transfer of data between various systems within the federated zones. Hence, in
this section, we present the Generic Client Service API (GCS API). The GCS API
is a data agnostic transfer client that allows transfer of data acquired from different
DAQ, tools, or systems used by the researchers to the scientific data repository. The
GCS API follows a systematic workflow for ingesting and downloading data from
external systems to and from SDR.

Ingest workflow. The ingest workflow, shown in Figure 3.3 comprises of six steps.
The steps that are to be performed manually through user interaction are marked
with ‘M’, while the steps that are automated by the GCS API are marked with ‘A’.
Except for the first two steps the entire ingest procedure is automated.

(a) Base Metadata Creation: In the first step, a user needs to create basic admin-
istrative metadata required for registration of data that is to be ingested. In
order to comply with the standards supported by the KIT DM, the metadata

3.3. Architecture of Scientific Data Repository 41

needs to be described in the Core Scientific Metadata Model. There are multi-
ple options for creating the base metadata. For example, metadata embedded
within data can be used for registration, a community-specific user interface can
be integrated with GCS API for researchers to enter the metadata or an XML
file containing the metadata can be submitted together with the data.

(b) Initialize Data Ingest: After creating base metadata, the data to be ingested
can be initialized for transfer. In this step, the user can either manually se-
lect the appropriate protocol required for transferring the data, or the GCS
API automatically analyses the data, and as per the size of data that has to
be transferred, a transfer protocol is chosen. Currently, WebDAV, FTP, and
GridFTP protocols are supported. Moreover, for optimizing the data transfer,
the fine-tuning of the protocol through the selection of protocol instances can
be configured in this step.

(c) Metadata Management: Depending on the format in which metadata is sub-
mitted for registration, in this step, the adapters necessary for extraction and
translation of the metadata into the CSMD standard are deployed. For exam-
ple, in the case of medical datasets, metadata embedded in the DICOM file
is extracted and mapped to the CSMD standard. These metadata translation
adapters have to be implemented by the research communities for datasets where
the data is embedded within the data.

(d) Register Ingest-Data in KIT DM: The underlying KIT DM service stack is re-
sponsible for managing the physical storage of data, allocation of storage re-
sources, and assignment of Persistence Identifier (PID) to each digital object.
For allowing data discovery and referencing, the metadata extracted in the pre-
vious step is registered in the KIT DM.

(e) Data Transfer - DAQ to Cache Storage: After registration of data in KIT DM,
the data acquired from the scientific instrument is transferred to the cache stor-
age connected to the data repository. The cache storage is under the control of
the KIT DM and provides access to Grid computing cluster for allowing pro-
cessing of data. In this step, any additional data curation required before the
archival of data can be performed. Data-specific staging processors can be im-
plemented and deployed in the KIT DM service stack. These staging processors
are activated on the arrival of data in the cache storage.

(f) Data Transfer - Cache Storage to Large Scale Data Storage: For data that needs
to be archived, an automated server-side process is triggered. This process trans-
fers data from the cache storage to the allocated large scale data storage. For
example, at KIT a Large Scale Data Facility (LSDF) with the storage capacity of
6 PB is provided by the Stenbuch Center for Computing (SCC) [155]. Moreover,
in this step, the low-level services execute various data preservation activities,
where the preservation metadata is verified and stored in the PREMIS standard.

42 Chapter 3. Scientific Data Repositories

Download Workflow. Data stored in the repository needs to be made accessible
either for further analysis or for sharing and disseminating the knowledge gained
through obtained results. For this, in Figure 3.4, we present the download workflow
followed for each dataset requested either by a system or a user.

(a) Request Dataset to Download: For simplicity reasons, the user only needs to
provide the unique persistence-id for initiating data download. In the case of a
dataset that is retrieved via full-text search, the workflow internally fetches the
persistence-id of the requested dataset.

(b) Register Download Dataset in KIT DM: Similar to the data registration step
explained in the ingest workflow, the first step in the download workflow is the
registration of data requested for download. This is necessary for keeping track
of data that has been exported by SDR. Minimum metadata such as user-id,
time-stamp, data-transfer protocol, and persistence-id of data is registered.

(c) Data Transfer - Large Scale Data Storage to Cache Storage: After successful
registration of download data in KIT DM, an internal process with the requested
transfer protocol triggers the transfer of data from the large scale data storage
to the cache storage. Due to data management policies implemented by the KIT
DM, external user or system has no direct access to the large scale data storage.
Moreover, a copy of original data is transferred, and this data at a given location
is never modified or removed.

(d) Data Transfer - Cache Storage to Researcher’s Workstation: The final step in the
download workflow is the transfer of data from the cache storage to researcher’s
workstation or application. The selection of appropriate data transfer protocol
with multithreading enabled and monitoring for a fail-safe transfer are automat-
ically configured in this step.

3.4 Evaluation

In this section, we focus on performance evaluation of the GCS API, the evaluation
of other components namely metadata management and workflow provenance are
presented in their respective chapters. For evaluating data transfer performance of
the GCS API, we use the nanoscopy dataset. Each dataset ingested or downloaded
using the GCS API consists of a stack of high-resolution images that are in TIFF,
KDF, or HDF5 format. The ingest and download tests are based on the workflows
defined in the previous section. Following setup is used for performing the tests.
The SDR is deployed on an Intel Xeon server machine with six cores, 132 GB RAM
and 11 TB of cache storage. The client machine hosting the GCS API is an Intel i7
machine with four cores, 16 GB RAM and 500 GB of storage. The client machine
represents a typical DAQ system that is connected to the high-resolution microscopes.
The machines are connected using a 1 Gigabit Ethernet connection. The tests are

3.4. Evaluation 43

composed using Apache JMeter and the ingest and download results are shown in
Table 3.1 and Table 3.2 respectively.

Table 3.1: Data Ingest Workflow Result

Data Size [GB] Total Execution Time Data Transfer Time

1 30 sec 17 sec

10 215 sec 184 sec

20 373 sec 344 sec

40 775 sec 758 sec

80 1445 sec 1434 sec

Table 3.2: Data Download Workflow Result

Data Size [GB] Total Execution Time Data Transfer Time

1 45 sec 18 sec

10 364 sec 198 sec

20 654 sec 353 sec

40 1355 sec 778 sec

80 2658 sec 1457 sec

The results shown in Tables 3.1 and 3.2 are obtained with the WebDAV implemen-
tation in GCS API. Data transfer rate ranging between 55-60 MB/s is achieved over
a 1 GB/s network connection. There is a noticeable difference in the Total Execution
Time seen in Tables 3.1 and 3.2, and this is because during the download process
the requested dataset needs to be transferred from the large scale data storage to
the cache storage. Even though data is transferred via a high-throughput connection,
additional time is required as per the size of the requested dataset. The GCS API
can be optimized by configuring it to use multiple instances of WebDAV protocol
instances to run in parallel. Various configurations are tested, and optimum results
are achieved by configuring the GCS API to use five instances of WebDAV protocol
instances in parallel. Other configurations are also tested, with one, two and ten
WebDAV protocol instances for the same data sizes. It was observed that configuring
the GCS API to spawn a single WebDAV protocol instance for transferring multiple
files is a bottleneck. This is because, a single instance of WebDAV instance is shared
between multiple files, and only a single file can be transferred at a given time. The-
oretically, having the same number of WebDAV protocol instances as the number of
files to transfer should provide optimum results. However, data transfer rate for each
WebDAV protocol instance is significantly small (2-5 MB/s). This drastic reduction
in data transfer rate is due to the overhead associated with the creation of separate
WebDAV instance for each file. It is yet to be seen what performances are achieved

44 Chapter 3. Scientific Data Repositories

using other data transfer protocols and with a higher bandwidth network connection,
for example, a 10 Gb/s network connection.

3.5 Use cases

The SDR architecture presented in Section 3.3 has been adopted for three research
disciplines, namely nanoscopy [123], angioscopy [126], and eCodicology [31]. In this
section, we present two published results describing the adoption of the SDR archi-
tecture for handling data and metadata of nanoscopy and angioscopy experiments.

Figure 3.5: Image section of the membrane of a breast cancer cell after
specific labeling of the Her2-receptors. Left: Merged image of wide-
field (green) and nanoscopy image (red); right: nanoscopy image (each
point represents one single molecule) with typical structures (insets).

3.5.1 Nanoscopy

The first adoption of the SDR and the GCS API was undertaken for handling data and
metadata generated in a nanoscopy workflow. The results of this work are published
in: An optimized generic client service API for managing large datasets within a data
repository (BIGDATASERVICES 2015) [123].

Light microscopy has become a routine imaging technique in biological and medi-
cal research as well as in medical diagnosis. The resolution gap between conventional
light microscopy (⇠200 nm) and electron microscopy (⇠10 nm) can be circumvented
by novel approaches of super-resolution fluorescence light microscopy. One of these
sophisticated techniques is Localization Microscopy (nanoscopy) bridging this resolu-
tion gap while maintaining the native cellular environment. An example nanoscopy
image is shown in Figure 3.5. Fluorescent markers accurately tag molecules under-
going blinking processes during the acquisition of time stacks of about 1,000 image
frames of the same image section. The registration of the blinking event allows opti-
cal separation of individual molecules. After image processing, spatial positions of all
individually tagged molecules are determined with nanometer precision leading to a
resolution in 10 nm range. Hence, based on the generated large datasets new insights
into cellular systems can be gained.

During the last decade, nanoscopy has made rapid progress towards routine ap-
plications in biophysics. The high-resolution techniques are based on a combination
of sophisticated computer image analysis with a dedicated imaging strategy. One

3.5. Use cases 45

embodiment of nanoscopy is called Spectral Precision Distance Microscopy/Spectral
Position Determination Microscopy (SPDM) [36]. Here, we refer to SPDM systems
established at the University of Heidelberg and the Institute of Molecular Biology
Mainz. For historical reasons, the data-format in which the datasets are produced
vary for each microscope. Each dataset is a collection of heterogeneous files, which
can be Hierarchical Data Format (HDF5) files, KDF files or Tagged Image File For-
mat (TIFF) image-stack files. Presently, large datasets produced by an execution of a
nanoscopy workflow are in the range of few TBs, but with activation of multiple-color
channels, the volume of data is expected to approach 150-200 TB. This data volume
is 100 times more than the data volume generated using conventional fluorescence
microscopes. For example, high-resolution images produced for just 50 sections (1
section covers only a few µm2) of a cell membrane (50⇥ 1, 000 image frames) lead to
a data volume of 50 GB. A systematic series of measurements that is the acquisition
of 100 cells per slide and 20 slides per study leads to a total data volume of about 100
TB. The metadata is a critical component of each dataset, as it enables further reuse
and reference. The associated metadata is partly embedded in the dataset itself and
partly produced in an additional file during the experiment.

Figure 3.6: Integration architecture of nanoscopy research systems
with GCS API and NORDR [123]

Nanoscopy infrastructure architecture layout
The principle idea behind the setup of the nanoscopy infrastructure is to harmonize

the interaction between various heterogeneous systems that span multiple locations.
The architecture layout as shown in the Figure 3.6, is designed around the GCS API.

– Microscope Controller Machine: The microscope controller machine is connected
to the high–resolution microscopes (DAQ system). The experiment-datasets

46 Chapter 3. Scientific Data Repositories

are generated and temporarily stored on this machine. The main focus is to
provide an immediate data transfer between this machine and the large scale
data storage. For this, we integrated the GCS API in the interface of the
controller machine.

– Researcher’s Workstation: The researcher’s workstations are located at multiple
institutes other than those of the microscopes. The main focus is on high-
throughput data access so that the researchers can download datasets for further
analysis and upload of the processed results. With the realization of the GCS
API as a command-line tool, the requested dataset can be downloaded, and the
processed data can be uploaded.

– Generic Client Service API: The GCS API is an extension of SDR. It provides
generic interfaces for interacting with disparate systems and can be seamlessly
integrated with various user interfaces. The GCS API is designed in a way that
it is system and end-user device independent. Hence, it can easily support new
microscope controller machines or researcher’s workstation from different places.

– KIT Data Manager: KIT Data Manager (KIT DM) repository system is located
in Karlsruhe; it offers various functionalities via RESTful web services. The
KIT Data Manager is further integrated with LSDF and the high-performance
computing cluster.

– Cache Storage: The cache storage is a part of LSDF located in Karlsruhe. It
is a high-performance and a high-data-throughput storage facility for enabling
data-intensive computing. The cache storage provides storage capacity of 500
TB, is connected to the large scale data storage via a high speed data network
(HSDN) (10-Gigabit Ethernet), has better latency and provides better workload
control.

– Large Scale Data Storage: The large scale data storage also a part of LSDF is
located in Karlsruhe. In the large scale data storage, datasets are stored for
long-term archival. It offers a storage capacity of approximately 6 PB and is
scalable for further demands.

3.5.2 Angioscopy

In handling datasets for the angioscopy scientific workflow, in this section, we present
adoption of SDR in the medical environment of the Mannheim medical center. This
work is published in: Managing Provenance for Medical Datasets (BIOSTEC 2017)
[126]. Electronic health records (EHR) offer a digital documentation of the diagnostic
and therapeutic history of a patient. Parts of these records are managed by Hospital
information systems (HIS) and subsystems like radiology information systems (RIS).

3.5. Use cases 47

Figure 3.7: Integration architecture of clinical data acquisition systems
with GCS API and RTDR [126]

Over the initiative integrating the healthcare enterprise (IHE) defined workflows en-
able standardized records on one hand side and as a final goal a complete coverage of
all procedures in a clinic.

The datasets in interventional radiological clinics follow a systematic workflow in-
volving the Generic Client and the Radiation Therapy Data Repository (RTDR). The
Generic Client is an extension of the GCS API that we used for the nanoscopy use
case. The workflow begins with the acquisition of datasets in DICOM format to the
final generation of a treatment record. During each step of the workflow, the DICOM
images are subject to image manipulations, with the extraction of diagnostic informa-
tion. These datasets are enriched with essential metadata describing the diagnostic
details of each step. Moreover, supplementary and related datasets might be created
in any step during the diagnosis process. The complete workflow described in our
example case consists of eight steps as shown in Figure 3.7: (1) The workflow begins
with the acquisition of raw DICOM dataset from the CT scanner system. (2) The
Generic Client performs the registration of the dataset to be ingested by extracting
the base metadata from the DICOM metadata section, translating it into the CSMD
standard and registering the dataset in RTDR. (3) A successful registration of base
metadata triggers the transfer of data to the PACS server. (4) The descriptive meta-
data from the DICOM dataset is extracted, modeled and validated. (5) The metadata
is ingested to a dedicated metadata storage database. (6) Metadata is segregated as
descriptive or provenance metadata and stored either in document data model or
graph data model of ArangoDB. (7) The DICOM dataset from the cache storage is
transferred to archive storage for long-term preservation. The preservation metadata
associated with the dataset is updated in the metadata storage. (8) The metadata is

48 Chapter 3. Scientific Data Repositories

indexed for enabling full-text search and allowing discovery of the datasets from the
RTDR. The data and metadata are accessible in a Vaadin based user interface which
is connected to the RTDR through the REST services.

3.6 Summary

This chapter presented the overall picture of a generic SDR architecture, and in the
context of SDRs, we presented our first contribution of this thesis. The architecture
of SDR follows the principle of modular design pattern that enables enrichment of its
functionality by adding task-specific modules to the architecture. The first module
that we developed for the SDR architecture is the GCS API and its extension the
Generic Client. The GCS API provides an integration interface for ad hoc systems
to submit their data and metadata directly from DAQ systems. For fail-safe ingest
and download of data, the GCS API follows systematic workflows. For registration of
ingest-data, the GCS API uses the simplified version of the CSMD metadata standard.
The KIT DM realizes this standard for capturing the basic administrative metadata
associated with each ingested dataset. The data transfer rates using WebDAV protocol
on a 1 Gb connection at peak network bandwidth usage was ⇠60 MB/sec. This data
transfer and access rates are adequate for the nanoscopy, angioscopy, and eCodicology
communities and the GCS API was deployed with this configuration on their respective
DAQ systems. To describe the practical usage of the GCS API with the SDR, we
presented detailed description of the nanoscopy and angioscopy use cases, with the
adoption of SDR and GCS API in their architecture layout. The eCodicology adopted
a similar architecture design, and the results are published as scientific contributions
in the paper: Software workflow for the automatic tagging of medieval manuscript
images (SWATI) (DRR 2015).

From the architecture it is clear that to realize a comprehensive SDR, there are
multiple areas of research that need to be addressed. Hence, in the next chapter,
we present an automatically adapting metadata management framework that can
not only be used as a standalone system but also can be integrated into an SDR.
Moreover, devoting our efforts in the research area of provenance handling in WfMSs,
in the succeeding chapter we present a novel methodology for enabling provenance
interoperability. Finally, the results from the various research areas are integrated to
realize the complete SDR.

49

Chapter 4

Generic Metadata Management

A critical aspect of eScience systems, and particularly of scientific data repository
systems, is the ability to handle metadata. Metadata is essential for managing var-
ious aspects of the life cycle of research data. For this, in this chapter, we propose
MetaStore, an adapting metadata management framework that is able to handle het-
erogeneous metadata models. The MetaStore framework can be either integrated
with a scientific data repository framework or can be used as a standalone meta-
data management system. In comparison to existing metadata management systems,
MetaStore has a number of features making it a scalable and a sustainable metadata
framework for handling static as well as dynamic metadata.

First, in Section 4.1, we briefly present the classification of metadata models, fol-
lowed by the requirements put forth by various research communities that motivated
the design of the MetaStore framework. In Section 4.2, we introduce the technologies
and standards that are used in designing the framework. In Section 4.3, we present the
contribution of this chapter, i.e., the modular design of the MetaStore architecture
with a detailed explanation of each component.For systematically highlighting the
advancements that MetaStore contributes over existing state-of-art metadata man-
agement systems, in Section 4.4, we present a feature-based and a performance evalu-
ation of MetaStore with existing metadata management systems. Moreover, to show
the generic applicability of MetaStore in handling diverse requirements from research
communities, in Section 4.5, we present three use cases for which the MetaStore frame-
work is adopted. Finally, in Section 4.6, the chapter presents an in depth discussion
on the various software engineering design decisions and benefits of the MetaStore
framework, concluding with the summary of the chapter in Section 4.7.

4.1 Introduction and Motivation

Currently, with advancements in research techniques and novel data acquisition and
processing systems at our disposal, there is an exponential growth of data and meta-
data that are generated by scientific experiments [40, 78]. Previously, due to data-
driven research, data was considered as the first-class entity with prime importance,

50 Chapter 4. Generic Metadata Management

whereas metadata was considered as auxiliary information of lesser significance. More-
over, many research communities have adopted data-driven strategies, with the sup-
porting technologies that are developed considering data as the focal point. In recent
years, the availability of comprehensive metadata models has led scientific commu-
nities to orchestrate complex scientific data life cycle using metadata. However, the
advances in metadata research were limited within the scope of a research community,
and the appropriate channels for disseminating these results for a wider adoption is
not possible. For this, multiple international research groups such as the Metadata
Standards Directory Working Group, Metadata Interest Group, Empirical Humani-
ties Metadata Working Group, Metadata Standards Catalog Working Group within
the Research Data Alliance (RDA)1 came into existence. These groups are exclu-
sively focused on providing outcomes for various aspects within the broad spectrum
of metadata research. For example, the Metadata Interest Group has provided a
minimal metadata model as an outcome, whereas the Metadata Standards Directory
and Metadata Catalog Working Groups have established a metadata registry contain-
ing more than hundred metadata models. Our active participation in these working
groups is one of the reasons for investing our efforts in metadata research.

In the research area of digital curation, Higgins. S. [81] states that: “Metadata is
the backbone of digital curation, without it, a digital resource may be irretrievable,
unidentifiable or unusable.” Moreover, Qin et al. [131] elaborates the necessity of
metadata, and explains the broad range of functions that metadata serve in large
eScience infrastructures. In the following, we list important purposes of metadata:
(1) adequately described metadata facilitates data discovery, selection, aggregation,
and reuse, (2) for allowing data verification, metadata should describe the provenance
allowing researchers to verify the quality of data and enable its reuse, (3) with context-
specific metadata description, data can be made available for analysis purpose, and
(4) with an adoption of a standard metadata harvesting protocol, data and metadata
can be shared and made interoperable with external systems [131].

Metadata can be broadly classified into static metadata and dynamic metadata
[71]. Static metadata is not subject to any changes over the entire life of data, even
if the underlying data evolves. For example, metadata describing the preparation
of a specimen and the configuration of instruments for a nanoscopy investigation is
static metadata that will never be changed, and any changes to this metadata will
invalidate the investigation and subsequent results. Contrarily, dynamic metadata is
subject to change, i.e., as data evolves its metadata may also change. For example,
an annotation describing a sub-cellular structure of a cancer cell may change due to
advancement in data acquisition techniques, modification to image processing algo-
rithms may yield better quality images, or with the availability of detailed domain
knowledge the annotation might be updated by a domain expert.

1
https://www.rd-alliance.org/

4.1. Introduction and Motivation 51

Based on applications of metadata, there exists a classification of metadata stan-
dards from the field of digital libraries. The existing metadata standards are catego-
rized into three main types: descriptive metadata, structural metadata, and admin-
istrative metadata [128]. Descriptive metadata includes details of the resource (data)
and is used for searching and identifying the latter. Additionally, descriptive metadata
can also be tagged to a given resource in the form of annotations. For example, in
medical research, it is a common practice for medical-experts (physicians) to attach
additional information on the patient’s medical records in the form of annotations
[50, 84]. Structural metadata describes the internal structure of a compound resource
and how it is formulated. For example, structural information among the pages of a
medieval manuscript can be described via structural metadata, while details necessary
to manage a resource, such as access and rights management, resource preservation
information, provenance and technical information are described using administrative
metadata. For example, file format, data schema, and file checksum.

In the research area of metadata, provenance has become an independent and
a well-established area of research. The reason is that various scientific communi-
ties have realized the importance of provenance in substantiating, reproducing, and
qualitatively assessing their scientific results. As a part of metadata research in this
thesis and to advance the research in provenance, we will describe our contributions
thereupon in the next chapter.

The motivation behind design and implementation of the MetaStore framework
is to provide a generic and a reusable metadata management system that can
be adopted by multiple scientific communities with their different needs. This
aim is further strengthened by the requirements put forth by the various research
communities. In the following, we summarize these requirements:

Metadata schema support
Research in several disciplines is rapidly changing, especially the nanoscopy and eCod-
icology research areas are continuously evolving and their metadata schemas are fre-
quently modified. In nanoscopy research, a community-specific metadata schema is
created to model the experiment description2, and workflow provenance is described
using ProvONE. Similarly, the results of eCodicology workflows are modeled using
the standard PAGE XML schema3. Hence, the requirement is to design MetaStore
to support both, standard metadata schemas as well as community-specific metadata
schemas. Additionally, to systematically handle the evolution of metadata schemas
in order to mitigate redundant modifications and enable tracing of different schema
versions, MetaStore should provide the registration of each metadata schema with its
version. Moreover, nanoscopy and eCodicology research communities have adopted
METS to systematically organize multiple metadata schemas that are required by
the community to describe their data comprehensively. Hence, an extension to basics

2
http://datamanager.kit.edu/masi/localizationmicroscopy/2016-03/LocalizationMicroscopy.xsd

3
http://www.primaresearch.org/schema/PAGE/gts/pagecontent/2017-07-15/pagecontent.xsd

52 Chapter 4. Generic Metadata Management

metadata schema support requirement is for MetaStore to also handle community-
specific METS-profiles4,5.

Full-text search
For the majority of the communities, the data is huge and serialized in machine-
readable file formats, and frequently accessing the data is not efficient due to
hardware and network limitations. In nanoscopy and eCodicology research, raw data
acquired either from high-resolution microscopes or scanners is ingested in a data
repository. For enabling further reuse of this data by either data-processing workflows
or domain-specific applications, the data needs to be made discoverable. For this,
metadata is critical for searching, identifying, and retrieving required data. A
standard approach is to provide a set of queries for each metadata schema. However,
this is not a sustainable approach, because for frequently changing metadata schemas,
the implemented queries will quickly become obsolete and return either incomplete
or incorrect results. Moreover, implementing a set of queries for each metadata
schema is an arduous and resource intensive task. Thus, the requirement from the
communities is to have a full-text search over all the metadata.

Metadata quality control
The next requirement is to provide automated metadata quality control for verifying
the well-formedness of metadata, schema conformance, and content verification for
communities possessing controlled vocabularies. Metadata can be automatically
generated by a data acquisition system or during the execution of workflows, or
metadata in the form of annotations can be manually created and tagged with the
data by domain experts. Thus, irrespective of the source from which the metadata is
generated, for maintaining a basic level of metadata quality, the MetaStore framework
should provide different levels of automated quality control checks.

Metadata harvesting
The metadata should be provided for allowing harvesting, i.e., from the collected
metadata, MetaStore should provide either partial metadata harvesting, in the case of
sharing only a specific part of metadata to an external system or complete metadata
harvesting, in the event of data migration from one data repository to another. For
enabling seamless integration of MetaStore with existing systems, and compliance
with existing metadata harvesting standards, the MetaStore framework should
support the OAI-PMH specification. In the eCodicology project, the processing of
digitized-manuscripts results in large volumes of multi-dimensional metadata. As
this metadata needs to be visualized using the CodiViz [32] tool, selective metadata
harvesting is requested by the humanities scholars. Thus, a common requirement
from the research communities is to allow large-scale metadata sharing.

4
http://datamanager.kit.edu/masi/localizationmicroscopy/mets/nanoscopy-METS-profile.xml

5
http://zimks68.uni-trier.de/stmatthias/T1108/T1108-digitalisat.xml

4.2. Preliminaries 53

Provenance support
The nanoscopy data processing workflows are described using the BPEL language,
while the eCodicology workflows are described in SCUFL. During the execution of
these workflows, it is necessary to capture and model the comprehensive workflow
provenance. For both research communities, provenance is critical metadata that
assists in validating the quality of results, enables data reproducibility, provides
systematic tracking of workflow evolution, and allows execution of graph pattern
queries for analyzing provenance traces. Moreover, as MetaStore can also be coupled
with a scientific data repository, it is necessary to support the PREMIS provenance
model used in long-term data and metadata preservation. Hence, the requirement
is to not only provide automated workflow provenance handling capabilities using a
comprehensive provenance model like ProvONE but also support the data preserva-
tion in the PREMIS model.

Automatic/Semi-automatic annotations
Currently, in the field of digital humanities, research communities often apply image
processing workflows that generate metadata at each step. For the eCodicology com-
munity, the SWATI workflow [32] is employed to extract Optical Layout Recognition
(OLR) features from the digitized medieval manuscripts. As the SWATI workflow
is continuously evolving with improved layout recognition algorithms, the extracted
OLR features (metadata) are also frequently changing. Hence, the first requirement
for MetaStore is to store this metadata in the form of annotations and make it
available for analysis. Furthermore, these annotations are subject to modification by
research experts through the CodiLab toolset6, which is an annotation framework
providing visual interpretation of annotations by overlaying them over digitized
manuscripts. Thus, the second requirement is to allow semi-automated annotations
of images and documents, with an extension for controlled vocabularies.

Miscellaneous
In the following, we list the additional requirements requested by the research com-
munities: logically linking the metadata with the data through Persistence Identifier
(PID) generated from a PID management systems like the Handle System7, high-
performance metadata access and ingest, scalable storage for handling increasing
metadata volume, and a REST API for integrating MetaStore with existing systems.

4.2 Preliminaries

In this section, we present the technologies and concepts used in designing a generic
metadata management framework. In principal, for handling both static and dynamic
metadata, the MetaStore framework is based on NoSQL database technology. For

6
https://github.com/JochenGraf/CodiLab

7
http://www.handle.net/index.html

54 Chapter 4. Generic Metadata Management

understanding the principle of NoSQL database, first, we explain the CAP theorem
and the BASE principle of the NoSQL databases, followed by the description of the
WADM, and the OAI-PMH metadata harvesting specification.

4.2.1 NoSQL Databases

NoSQL stands for Not Only SQL. It is a new type of database system that is a
paradigm shift from the typical relational database management systems. The prime
reason for choosing a NoSQL database system for the MetaStore framework is due to
the need of a flexible data model in handling arbitrary metadata models. Moreover,
with integral support in horizontal scalability for handling large metadata volumes,
replication for metadata backup, and efficient query performance as compared to SQL
databases led us to choose a NoSQL database system. However, there are more than
thirty different types of NoSQL databases, each serving a different purpose. Thus, to
systematically organize these NoSQL databases, they are categorized by data model
and application they support.

– Key-value stores: Data in these systems is stored as a pair of key-value, where
the value contains the data, and the key is a unique identifier index for retrieving
the value. For example, the two prominent key-value databases are RIAK and
REmote DIctionary Server (REDIS).

– Document stores: These systems store the information as a semi-structured
document. Typically, the data is serialized in JSON format, with an automatic
assigning of a unique identifier for identifying each document.

– Graph stores: A graph store models the data structure for schema and instances
as graph structures or generalization of them, with the graph containing nodes,
edges, and properties to represent and store the data [9].

– Wide-column stores: In a columnar database, each database table column is
stored contiguously in a separate location on disk. For improved read efficiency,
the columns are densely packed with some compression techniques [1].

The existing NoSQL databases, irrespective of the data model which they support
are based on the principle of the CAP theorem, explained below.

CAP Theorem. The CAP theorem put forth by Brewer. E. states that any
network-distributed data system can guarantee at the most two out of the following
three properties, Consistency, Availability and Partition tolerance [25], the theorem
is further proved by Gilbert et al. [64]. Thus, any network-distributed data system
can guarantee the following pair of properties simultaneously: Consistency and
Availability (CA), Consistency and Partition tolerance (CP), or Availability and
Partition tolerance (AP). In the following, we briefly explain each property of the
CAP theorem, followed by the pair-wise explanation of them.

4.2. Preliminaries 55

Consistency. The Consistency property of the CAP theorem represents Lineariz-
ability [77]. Linearizability provides a strong recency guarantee on data but is a weak
consistency model [64]. For the CAP theorem, this means that each request to the
system will return the correct response, i.e., the response will return an up to date
copy of data.

Availability. The availability property of the CAP theorem states that the system
should be continuously available, i.e., even if there are failed nodes in a system, the
requests received by the system must return a (non-error) result in the response.

Partition tolerance. A distributed system is said to be partition tolerant if it
continues to work despite loss of an arbitrary number of messages exchanged within
the system. For the CAP theorem, the partition tolerance is the key property that
confirms an uninterrupted use of distributed system and hence, is considered as the
default property.

For any distributed system, the CAP theorem states that out of the three prop-
erties only two can be satisfied by a system. In the following we explain the various
configurations that a distributed system can have:

– CA: For a CA configured system, the partition-tolerance property is sacrificed,
i.e., the entire system is running on a single machine, which contradicts the
notion of the CAP theorem.

– CP: For a CP configured system, the availability property of the system is
sacrificed. This is because for a transaction (write or read) to be consistent across
a network partitioned system, it is necessary that all nodes be synchronized
with the latest write operation, or with the current result of a read operation.
Thus, for a CP system, the nodes separated by a network partition have to be
unavailable until the entire system is in a consistency state. For example, in a
CP configured system S with three nodes n1, n2, n3, when a write operation wj

is performed on node n1 at time instance tn then any read operation on nodes
n2, n3 cannot be fulfilled by the system until the write wj is not propagated
to the remaining nodes n2, n3, i.e., the system is locked until all the nodes are
updated.

– AP: For an AP configured system, the consistency of a system is sacrificed. This
is because, for keeping a system continuously available, it is necessary for all the
nodes in a system to respond to any arbitrary number of requests. For such type
of system, whether the response data is up to date or stale is not vital. What
is important is that each request should return a response. For example, in an
AP configured system S with three nodes n1, n2, n3, if a write wj is performed
on node n1 at time tn, then any read or write operation requested to S at the

56 Chapter 4. Generic Metadata Management

same time tn should be fulfilled, even if the write wj has not propagated to the
node n2, n3, or even if any number of N-1 (N is total number of nodes) nodes
have failed.

BASE Consistency Model. The BASE consistency model stands for Basically
Available Soft state Eventual consistency. The BASE principle is logically opposite
to the ACID principle of the relational database management system [129]. In the
following, we explain each term of the BASE principal.

– Basically Available: The constraint state that the system guarantees the avail-
ability of data, even if one or few of the nodes have failed. However, there is
no guarantee that data retrieved is up to date. For example, in a network-
distributed system N with three nodes n1, n2, n3, if a write wj operation is
performed at time tn on node n2, and the node n2 crashed without propagating
this write to other nodes. Then, a read operation at time tn + 1 will have a
response, but as the read operation is provisioned either by n1 or n3, a response
containing stale data will be returned.

– Soft state: The Soft state in BASE principle completely abandons the Consis-
tency property of the ACID principle, i.e., the overall state of the system is
volatile. During times when there are no active write or modification operations
on a system, there can still be changes to the data due to the pending write
or modify operations. For example, at time instance tn a write operation wj

took place on node n2. Let’s say that the propagation of this write to other
network-distributed nodes in the system require two seconds each. Then for the
next four seconds the complete system is in a soft state, until the nodes n1 and
n3 are successfully updated.

– Eventual consistency: At a certain point in time when there are no write or
modify operations been performed, the system will eventually become consistent.
That is, all the network-distributed nodes will have the same state and return
the last updated value. This form of consistency in a database system is a type of
weak consistency, the most popular system that implements eventual consistency
is the Domain Name System (DNS). For example, if a write operation wj is
performed on a node n1 at time tn, then after a certain time interval tn + �,
this write operation will be communicated to remaining nodes.

4.2.2 Web Annotation Data Model

In many research areas, additional information in the form of annotations is assigned
to data that is either provided by research experts (data curators) or automatically
during data-processing stages [21, 50, 84]. Annotations are typically semi-structures
texts that make use of keywords and controlled vocabularies. Annotations typically
represent research experts’ accumulated knowledge and is a vital part of data that is to

4.2. Preliminaries 57

Figure 4.1: Web Annotation Data Model [136]

be published. For systematically modeling and enabling annotations interoperability,
i.e., for allowing sharing of annotations between different platforms, it is critical to
adopt a standard annotation model. For this, we integrated the WADM in MetaStore.
The core specification of WADM is shown in Figure 4.1, and comprises the following
three elements.

– annotation: The annotation is the root element that represents a web resource
defined by the mandatory oa:Annotation class, where oa is the namespace that
contains the definition of the Annotation class. An annotation can have addi-
tional descriptive information such as creating agent of an annotation, date of
creation, or additional rights assertions.

– body: The body of the annotation contains the description describing a target.
For assigning descriptive information, the class cnt:ContentAsText should be
assigned to the body, where cnt is the namespace holding the definition of
ContentAsText. A body itself can have its own properties and relationships,
including the creation or descriptive information.

– target: The target represents an external resource that is to be annotated. Each
target contains an Internationalized Resource Identifier (IRI) that points to the
location of a resource. For enabling rendering of a resource, the target should
be typed with the correct class. For example, a type can be Dataset, Image,
Sound, Text, or Video.

All the three elements of the WADM are extensible by integrating external names-
paces that contain vocabularies for additional classes and properties. For example,
the namespace http://www.w3.org/ns/oa identified by the prefix "oa" is the default

58 Chapter 4. Generic Metadata Management

vocabulary for the WADM classes and properties. However, for an enriched descrip-
tion about an annotation, it is possible to use existing vocabularies such as Friend Of
A Friend (FOAF), DC, or/and RDF.

4.2.3 OAI-PMH

The OAI-PMH provides a low-barrier mechanism that enables repository interop-
erability by exposing the metadata through a standard specification. In principal,
for realizing the OAI-PMH specification, there are two classes of participation,
Data Providers that implement the recommended six verbs as a mean for exposing
the metadata, and Service Providers that are clients that harvest metadata from
the Data Providers for exposing additional value added services. Typically, the
purpose of the harvester is to fetch metadata from a Data Provider and publish it in a
search engine or an external database for allowing a search or metadata-based analysis.

OAI-PMH Verbs
The OAI-PMH specification provides six verbs, out of which three are for retrieving
administrative metadata describing the metadata repository (ListMetadataFormats,
ListSets, Identify), and remaining three verbs are for querying the metadata from
the repository (GetRecord, ListRecords, ListIdentifiers). Each verb supports certain
parameters for defining the precise details of the request.

– Identify: This verb is used to return administrative information about a repos-
itory. The mandatory fields that have to be returned in the response are: (1)
repositoryName: a human readable name of the repository, for example, Meta-
Store. (2) baseURL: the base URL of the repository. (3) protocolVersion:
the version of OAI-PMH specification version. (4) earliestDatestamp: (5)
deleteRecord: the manner in which the repository supports deletion of a
record. (6) granularity: the finest level of harvesting granularity supported
by the repository.

– ListMetadataFormats: This verb is used to list the metadata formats available
in a repository. An optional argument, identifier specifies a unique identifier
of a record for which the available metadata formats are retrieved.

– ListSets: This verb is used to retrieve the set structure of a repository that is
required when performing selective harvesting.

– ListRecords: This verb is used for harvesting records from a repository. Optional
arguments from, until, set, resumptionToken, metadataPrefix permits selec-
tive harvesting of records.

– GetRecord: This verb is used to retrieve a specific metadata record from a
repository. The verb has two required arguments; an identifier that specifies

4.3. MetaStore Architecture 59

the unique identifier of a record, and a metadataPrefix that specifies the format
that should be included in the record.

– ListIdentifier: The verb is an abbreviated form of ListRecords, retrieving only
headers rather than records. Similar to the ListRecords verb, the optional ar-
guments permit selective harvesting of headers based on set membership set,
and/or datestamp using from and until.

To enable metadata sharing through a standard protocol, a metadata management
system, which is typically integrated with a scientific data repository should implement
these six verbs and expose them through the Data Provider. The Data Provider
(server) processes the requests sent from the Service Provider (client) and returns a
valid XML that conforms to the schema defined by the OAI-PMH specification. Based
on the technologies mentioned above, in the next section, we describe the architecture
of the MetaStore framework.

Figure 4.2: Multilayered architecture of MetaStore [127]

4.3 MetaStore Architecture

In this section, we present the multilayered architecture of the MetaStore framework
(see Figure 4.2). The architectural design of MetaStore is based on following design
principles.

Modular design: Each functionality in MetaStore is available as a separate
component (module) so that any enhancement or technology change can be system-
atically handled by updating or replacing that specific module, and without affecting
the functionality of other components in the framework.

Adaptive feature enhancement: MetaStore is designed as an entirely adap-
tive framework that modifies itself in handling ad hoc metadata models. For this, we

60 Chapter 4. Generic Metadata Management

designed MetaStore based on the principle of Compositional Adaption [110]. Compo-
sitional Adaption can be realized with the following technologies: Separation of Con-
cerns (SoC), Computational Reflection, and Component-based design. Out of these
technologies, we adopt the Component-based design architecture. The Component-
based design architecture supports two types of compositions; static and dynamic
composition. In static composition, a program is composed at compile time and can-
not be changed without recoding, whereas in a dynamic composition, components can
be added, removed, modified, or reconfigured at runtime. To design MetaStore as a
dynamically adapting framework, we realized the dynamic composition.

The complete functionality of MetaStore is divided into two layers: (1) The Meta-
Store Core Layer provides the basic functionalities necessary for handling the static
metadata, and is designed independent of any scientific data repository system or
metadata storage technology. (2) The MetaStore Extension Layer allows integra-
tion of third-party libraries and tools necessary for handling the dynamic metadata
and supports handling of SKOS modeled controlled vocabularies that are specific to
scientific disciplines. In the following subsections, the description of each layer and the
realization of the features through the different MetaStore components are presented.

4.3.1 Research Community

A research community performs metadata related interactions through the REST
API exposed by the MetaStore framework. A valid metadata schema defined either
as XSD or JSON Schema is submitted by the research community for registering it
in MetaStore. Only metadata complying to a registered schema can be inserted in
MetaStore. Similarly, for modeling provenance information in the ProvONE model,
scientific workflows defined by a research community are submitted to MetaStore.
Currently, workflows defined in the Business Process Execution Language (BPEL),
Simple Conceptual Unified Flow Language (SCUFL), and Modeling Markup Lan-
guage (MoML) are supported by MetaStore. The semi-automated annotations pro-
vided by domain-experts are captured in the WADM and SPARQL [130] end-points
are exposed for searching and retrieving the annotations. An OAI-PMH metadata
harvester exposed as a REST interface is provisioned to the research community for
sharing their metadata.

4.3.2 MetaStore Core Layer

The MetaStore Core Layer consists of various task-specific components that collec-
tively build the functionality of MetaStore. Each component or group of components
in the MetaStore Service Layer follows a well-defined workflow to accomplish a given
task. Through these components, we have implemented the features corresponding to
the requirements from Section 4.1.

4.3. MetaStore Architecture 61

Metadata Registry and Indexer
For supporting systematic handling of heterogeneous metadata schemas, we designed
the Metadata Registry component based on the key-value data model. Registering a
metadata schema with its namespace and version allows efficient schema validation
checks during the metadata quality control process.

The Metadata Registry component allows the registration of either a single meta-
data schema that exclusively describes administrative, descriptive, structural meta-
data or a community defined METS XML that may comprise multiple metadata
schemas. The Metadata Schema Registry allows research communities to maintain
multiple metadata schemas with different versions. In the case of a single metadata
schema, the schema is registered as a key-value pair, in the key-value data model of
ArangoDB, where the key is the combination of schema namespace and version and
the value is the complete schema. In the case of a METS XML, the metadata schemas
used in constructing the various sections of the METS profile are extracted and in-
dividually registered. Moreover, a relation map of the metadata schemas and the
corresponding METS-profile is created. This relation map is necessary for segregating
the metadata during the ingest stage, and for reconstructing the metadata during the
harvesting stage. A reduced version of the nanoscopy descriptive metadata schema
registered as a key-value pair is shown in Figure 4.3.

Typically, in NoSQL databases, indexes have to be created manually, which is
an arduous and time-consuming task, especially when dealing with complex scien-
tific metadata schemas. For enabling full-text search over metadata, we coupled the
Metadata Indexer component with the Metadata Registry component. The rationale
behind this design decision is to enable automated creation of indexes during the reg-
istration of a metadata schema in MetaStore. With immediate indexing of a registered
metadata schema, we guarantee that full-text search is enabled from the first inser-
tion of metadata in MetaStore. Moreover, an update to a schema does not require
manual interference from the user (system administrator), because the index terms
are extracted and reapplied on the database collection, thus, updating the index list.

The Metadata Indexer component implements the IndexTermExtractor algorithm

Figure 4.3: Metadata schema registration as key-value

62 Chapter 4. Generic Metadata Management

Algorithm 4.1. IndexTermExtractor
Input: Metadata schema X serialized in XSD or XML

. X = {x1, x2, ...xn} is a vector of nested XML child elements
Output: List L containing index terms

1: List S := ; . list containing the various sections in METS
2: String P := ; . fully qualified path of the index term
3: List L := ; . list containing unique index terms
4: function VerifySchema(X)
5: if X.namespace 2 METS then
6: S = DECOMPOSEMETS(X)
7: . the hdmdSeci,hamdSeci,hstructMapi, ... sections are extracted by this method
8: for si 2 S do
9: P = si.rootElement;

10: EXTRACTTERMS(si)
11: . for each section in METS, the method extractterms is called
12: end for
13: else
14: P = X.rootElement; . for flat XML structure assign rootElement to P
15: EXTRACTTERMS(X) . for a simple metadata schema
16: end if
17: end function
18: function EXTRACTTERMS(X)
19: for xi 2 X do
20: if xi.children 6= ; then
21: P = P [xi
22: EXTRACTTERMS(xi)
23: else
24: L = L [P . Add all the unique index term paths to list L
25: P = X.rootElement . Reset the path to the root element
26: end if
27: P = P.SUBSTRING(xi) . Reset P to the current path of the element xi
28: end for
29: end function

illustrated in Algorithm 4.1. The algorithm is similar to the Depth First Search (DFS)
algorithm. For an input XSD or XML (in the case of METS), the algorithm recur-
sively iterates the entire depth of the XSD or XML, and during each iteration, a
unique index term path is added to the list L. In the first step, the VERIFYSCHEMA
method determines if the input schema is a simple schema or a composite schema like
METS. In the case of a simple schema, the EXTRACTTERMS method is invoked.
For METS files the algorithm first decomposes all the metadata sections (DECOM-
POSEMETS method), and for each section, the EXTRACTTERMS method is in-
voked. The EXTRACTTERMS method recursively constructs a unique index path
for all the elements at a depth of n � 1 and adds it to the list L. After completion
of each recursion, the path P has to be reset to the completed element xi. For this,
the SUBSTRING method is recursively invoked for removing the sub-path that has
already been added to the list L.

4.3. MetaStore Architecture 63

In ArangoDB, as the indexing of the leaf elements is contained by the element at
a depth of n� 1 (parent element), the algorithm only needs to constructs the unique
paths for a depth of n� 1 for XSD or XML with a nested depth of n. The algorithm
terminates when all the elements xi for the depth of n � 1 are added to the list L.
After the termination of the algorithm, the index terms from list L are applied to the
respective metadata collection.

Figure 4.4: Metadata schema registration and indexing

For the default configuration of MetaStore, when ElasticSearch indexing is
disabled, the metadata schema registration and indexing process illustrated in Figure
4.4 is followed. This process consists of the following five steps: (1) The scientific
community submits their metadata schema through the MetaStore REST API, which
is verified for the schema name and the version. (2) If the submitted schema with a
given version does not exist in the schema registry, it is added to the schema registry.
(3) For each unique schema registered, a corresponding collection is created in the
document store of ArangoDB. This collection is required for storing the succeeding
metadata, thus allowing a clear separation of community-specific metadata storage.
(4) Once the metadata schema is successfully registered, the Metadata Indexer
component analyzes the registered metadata schema to generate a list of index
terms. (5) These index terms are applied to the respective collection for enabling
full-text search. If a new version of an existing metadata schema is registered, the
corresponding indexes are updated.

Metadata Code Generator
The principle aim of the Metadata Code Generator is to allow scientific communities
to handle heterogeneous metadata schemas without the need to write any software
code (services). To realize the dynamic composition of the services, the MetaStore
Code Generator follows a two-step processes. In the first step, the MetaStore Code
Generator component automatically adapts the existing MetaStore installation by
creating the services that are necessary for handling the registered metadata. Once
the services are generated, they are dynamically added to the existing pool of
services in the Metadata Management component. However, to expose these new
services through the REST interface, the Metadata Code Generator invokes the
entire compilation and redeployment of MetaStore. In the second step, to prevent

64 Chapter 4. Generic Metadata Management

Figure 4.5: Automated code generation and deployment

the disruption of active instance of MetaStore, the recompiled version of MetaStore
is deployed on an auxiliary web-server. This adaptive and automated redeployment
enables a scientific community to continue an uninterrupted usage of MetaStore.
For enabling an uninterrupted update of MetaStore, we use a load balancer with an
auxiliary instance of a web-server that is only used during the update process. The
automated code generation and deployment process for a single active instance of
MetaStore is described in Figure 4.5. (1) After successful registration of the metadata
schema, it is forwarded to the Metadata Code Generator component. (2) For the
given metadata schema (namespace) and version, the Metadata Code Generator
component automatically generates the software code (service) necessary for handling
the metadata registered in the Metadata Registry. (3) The entire MetaStore with
this new service is compiled and deployed on the auxiliary web-server. (4) The
load balancer is configured to redirect incoming requests to the updated instance of
MetaStore, simultaneously the old version of MetaStore is disabled after successful
completion of the active requests.

Figure 4.6: Metadata management and quality control

4.3. MetaStore Architecture 65

Metadata Management and Quality Control
The Metadata Management component exposes various CRUD (create, retrieve, up-
date, delete) operations that are specific to a given NoSQL database (in this case
ArangoDB and SPARQL queries for Apache Jena). The Metadata Management com-
ponent adds the dynamically created services by the Metadata Code Generator to the
pool of existing services. This component also acts as a bridge between the native
ArangoDB libraries and the MetaStore REST services8. Additionally, the metadata
is modeled in a community specified METS-profile9, and stored with the data in a
scientific data repository. To fulfill the quality control requirement from the research
communities, MetaStore supports two stages of quality control: (1) schema validation
and well-formedness and (2) vocabulary based metadata control. The vocabulary
based metadata quality control is explained in the later section.

Figure 4.6 shows the default schema validation and well-formedness quality
control process that is followed for each insertion of metadata. (1) Metadata is
submitted by the scientific community in either XML/JSON format, or extracted
from data and inserted through the REST API of MetaStore. (2) The Metadata
Management Component analyzes the metadata to determine its corresponding
schema and version from the key-value store. (3) Based on the corresponding version
of the available schema, the Metadata Quality Control component performs a schema
conformance and well-formedness check of the metadata. (4) The validated metadata
is converted into JSON format and inserted into the designated collection.

Table 4.1: Vocabulary mapping between PREMIS and ProvONE

Rule.# PREMIS ProvONE SKOS Mapping
1 Event ProcessExec relatedMatch
2 Object Data narrowMatch
3 Agent User broadMatch

4 relatedObjectIdentification wasDerivedFrom
or hadMember relatedMatch

5 linkingObjectIdentifier used relatedMatch
6 linkingAgentIdentifier wasAttributedTo broadMatch

7 relatedEventIdentification wasGeneratedBy
or used broadMatch

Provenance Manager
Provenance has a wide-range of applications. On the one hand, provenance can be
used for determining the quality of the results and for analyzing and improving the
quality of workflows, and on the other hand, provenance is critical for the long-term
preservation of data. For efficiently handling provenance, as per its application, it is
necessary to support the appropriate provenance model where required.

8
http://datamanager.kit.edu/masi/localizationmicroscopy/swagger-ui/

9
http://datamanager.kit.edu/masi/localizationmicroscopy/mets/

nanoscopy-METS-profile.xml

http://datamanager.kit.edu/masi/localizationmicroscopy/swagger-ui/
http://datamanager.kit.edu/masi/localizationmicroscopy/mets/nanoscopy-METS-profile.xml
http://datamanager.kit.edu/masi/localizationmicroscopy/mets/nanoscopy-METS-profile.xml

66 Chapter 4. Generic Metadata Management

The Provenance Manager supports the handling of scientific workflow provenance
based on the ProvONE model and provenance for long-term preservation of a digital
resource using the PREMIS model. Comprehensive workflow provenance informa-
tion consists of two parts, the workflow definition (prospective provenance) and the
execution details (retrospective provenance) [181]. ProvONE is a provenance model
that is capable of modeling both the prospective and retrospective provenance. For
efficient storage and querying of the provenance information in the ProvONE model,
the ProvONE provenance graphs are stored in the Apache Jena TDB. Various query
patterns for retrieving the ProvONE provenance information are implemented and
exposed as REST services8.

However, for allowing interoperability between these models, an exclusive mapping
between ProvONE and PREMIS terms is unfeasible, because the ProvONE model
is designed to support both prospective provenance and retrospective provenance,
whereas the PREMIS standard is intended to model only retrospective provenance.
Thus, to enable retrospective provenance interoperability between these models, the
vocabulary mapping rules between the ProvONE (retrospective provenance) and the
PREMIS model are described using the W3C SKOS mapping vocabulary specification.
This mapping is an extension to an existing vocabulary mapping between the Open
Provenance Model (OPM) [114] and PREMIS [134]. The mapping rules are presented
in Table 4.1, and a brief explanation of each rule is given.

Rule 1: A PREMIS Event is mapped to ProvONE ProcessExec using the SKOS
relatedMatch. Both the PREMIS Event and the ProvONE ProcessExec (linked to a
Process class) represents an action performed on a data represented by the ProvONE
Data or Collection or a PREMIS Object respectively.

Rule 2: A PREMIS Object is mapped to ProvONE Data using the SKOS nar-
rowMatch because a PREMIS Object can only be of the type bitstream, file, or an
aggregation, while ProvONE Data can be of any type.

Rule 3: A PREMIS Agent can be a either software, person, or an organization,
and is mapped using SKOS broadMatch to ProvONE User that can represent only a
person.

Rule 4: A PREMIS relatedObjectIdentification is mapped using the SKOS relat-
edMatch to ProvONE hadMember (structural relation) or ProvONE wasDerivedFrom
(derivation relation).

Rule 5: A PREMIS linkingObjectIdentifier is mapped to ProvONE used class
using the SKOS relatedMatch, as it represents a relation between a PREMIS Event
and PREMIS Object, and ProvONE ProcessExec and ProvONE Data, respectively.

Rule 6: A PREMIS linkingAgentIdentifier is mapped using the SKOS broad-
Match to ProvONE wasAttributedTo. In PREMIS a linkingAgentIdentifier represents
a relationship with any of the Agents, whereas in ProvONE, the wasAttributedTo
represents a relation only between a User and a Process that is associated with a
ProcessExec.

4.3. MetaStore Architecture 67

Rule 7: A PREMIS relatedEventIdentification is mapped using SKOS broad-
Match either to ProvONE wasGeneratedBy or used class, based on the PREMIS
relationshipSubType.

In this section, we described the mapping rules between preservation provenance
model and a workflow provenance model. In the next chapter, we extend these
mapping rules between heterogeneous workflow specifications and provenance models
to enable provenance interoperability.

OAI-PMH METS Provider and Harvester
A common requirement from the research communities is to have customizable meta-
data harvesting for sharing partial or entire collections of metadata. For this, we
explicitly implemented the six verbs recommended by the OAI-PMH. OAI-PMH is
the de facto standard for exporting metadata across scientific data repositories. By
design, the basic interoperability using Dublin Core metadata standard [167] is sup-
ported by MetaStore. However, due to the limited expressiveness of the Dublin Core
standard, MetaStore also supports a comprehensive metadata standard like METS.
METS is a metadata container format comprising different sections that allow en-
coding of administrative hamdSeci, structural hfileSeci, hstructMapi, hstructLinki de-
scriptive hdmdSeci and provenance hdigiprovMDi metadata. For example, to support
harvesting of nanoscopy metadata, the nanoscopy METS profile10 is provided.

The primary design consideration behind this approach is to keep the architec-
ture design of MetaStore simple and avoid any dependency to an external OAI-PMH
implementation. Adopting the ArangoDB Query Language (AQL) has the following
benefits: (a) It provides the flexibility to define and implement precise queries required
for metadata harvesting. These queries are exposed through a dedicated REST in-
terface for enabling seamless integration with other systems. (b) With the metadata
harvesting implemented on the primary metadata database, the cost and effort of
maintaining and synchronizing an auxiliary OAI data provider server are avoided.

In the following, we briefly describe the metadata harvesting process. The OAI-
PMH METS Harvester component retrieves the administrative, descriptive and struc-
tural metadata from the document store of ArangoDB and assembles it in the
hamdSeci, hdmdSeci, hstructMapi, hstructLinki section of the community specified
METS profile. The retrospective provenance metadata is queried from the Apache
Jena TDB and based on the vocabulary mappings shown in Table 4.1; the retrospective
provenance is translated in the PREMIS standard and assembled in the hdigiprovMDi
section of the METS profile. Thus, the entire metadata stored in ArangoDB and
Apache Jena TDB acts as the default OAI-PMH data provider for harvesting the
complete metadata. The OAI-PMH specified six verbs are implemented as REST
services8 based on the following core AQL queries:

10
http://www.kitdatamanager.net/masi/nanoscopy/mets/nanoscopy-METS-profile.xml

http://www.kitdatamanager.net/masi/nanoscopy/mets/nanoscopy-METS-profile.xml

68 Chapter 4. Generic Metadata Management

GetRecord: This verb retrieves a specific record from the OAI-PMH repository. The
required arguments are an identifier associated with a record and the metadataPrefix
specifying the metadata format to be retrieved. The query iterates over all the doc-
uments in the OAIPMH_Repository and returns a single record based on the filter
arguments.

FOR Metadata IN OAIPMH_Repository
FILTER Metadata._key==’<identifier>’ AND
Metadata.prefix==’<metadataPrefix>’
RETURN Metadata

Identify: This verb retrieves the administrative information describing the underlying
OAI-PMH repository. The query retrieves the administrative information, AdminInfo
from the OAIPMH_Repository.

FOR AdminInfo IN OAIPMH_Repository FILTER
AdminInfo._key==’Identify’
RETURN AdminInfo

ListIdentifiers: This verb returns a list of headers, containing a unique identifier
of every record. The required argument is the metadataPrefix specifying the meta-
data format. Optional arguments for selective harvesting based on datestamp or
set membership are also allowed. The query iterates over all the documents in
OAIPMH_Repository and returns for the given metadataPrefix the list of header
information of all the records.

FOR Metadata IN OAIPMH_Repository FILTER
Metadata.prefix==’<metadataPrefix>’
RETURN {"identifier":Metadata._key}

ListMetadataFormats: The verb is used to retrieve the metadata formats supported
by the OAI-PMH repository. The query fetches the administrative information Ad-
minInfo from the OAIPMH_Repository to return a list of supported formats.

FOR AdminInfo IN OAIPMH_Repository FILTER
Admin_Data._key==’ListFormats’
RETURN AdminInfo

ListRecords: The verb is used to retrieve all the records from the OAI-PMH repository.
The required argument for this verb is metadataPrefix. Optional arguments allow
selective harvesting based on set membership or datestamp. The query iterates over
all the documents and returns all the records.

FOR Metadata IN OAIPMH_Repository FILTER
Metadata.metadataPrefix==’<metadataPrefix>’
RETURN Metadata

4.3. MetaStore Architecture 69

ListSets: This verb is used to retrieve all the set structures supported by OAI-PMH
repository. This command is useful for selective harvesting.

FOR AdminInfo IN OAIPMH_Repository FILTER
AdminInfo._key==’ListSets’
RETURN AdminInfo

Metadata Recovery Engine
The Metadata Recovery Engine performs the restoration of the complete meta-

data storage in case of a database failure. The Metadata Recovery Engine collects
all the METS files from the scientific data repository, where each file is decomposed
according to the various METS sections. For example, the descriptive metadata from
the hdmdSeci section is extracted and with prior schema registration and validation
inserted into the document store. The provenance metadata comprising the workflow
definition in XML and the PREMIS retrospective provenance from the hdigiprovMDi
section is extracted, transformed based on mapping shown in Table 4.1 into the
ProvONE model and stored in the Apache Jena TDB. The metadata recovery process
is based on the combination of the processes shown in Figure 4.4 and Figure 4.6.

4.3.3 MetaStore Extension Layer

The MetaStore Extension Layer allows the integration of various third-party tools
and technologies with the MetaStore Core Layer. The primary aim of the MetaStore
Extension Layer is to support reuse of existing tools, software libraries, web-services,
or databases in MetaStore. For example, to enable handling of annotations, the
Anno4j library providing an implementation of WADM specification is integrated
through the extension layer of MetaStore.

Annotation Manager (WADM)
For enriching the quality of the results and imparting additional knowledge about the
data, it is necessary for domain experts to associate additional descriptions in the form
of annotations with the datasets. Moreover, when the datasets evolve, there are new
insights about the data, which require the annotations to be updated. For example,
the text segmentation step of the eCodicology Layout feature extraction workflow (see
Figure 4.15) currently implements the Trainable Weka Segmentation11. However,
with the modification of the workflow to support projection-based segmentation, the
annotations (layout features) generated for the same input dataset will be different.
As these annotations are subject to frequent changes, we consider them as dynamic
metadata, and to model this dynamic metadata we adopt the WADM. For enabling
annotations of images and text, we integrate the Annotorious JavaScript plugin of the
Annotator library, which is an open source annotation library.

Currently, the Annotorious JavaScript API provides limited functionality, as
it does not support the modeling of the annotations in the W3C recommended

11
http://imagej.net/Trainable_Weka_Segmentation

70 Chapter 4. Generic Metadata Management

WADM. Moreover, the storage systems supported by the Annotorious JavaScript
API are ElasticSearch or Parse Storage. Thus, we extend the modeling and storing
of annotations by integration the Anno4j library that provides an implementation
of WADM, and integrate the Apache Jena framework for persisting the annotations
and allowing querying using SPARQL.

Figure 4.7: Vocabulary supported metadata quality control

SKOS Metadata Vocabulary Manager
For enabling an in-depth vocabulary-based metadata quality control, research commu-
nities can extend MetaStore with SKOS Metadata Vocabulary Manager. Currently,
MetaStore offers two approaches for integrating SKOS-based controlled vocabularies.
In the first approach, research communities can import their existing vocabularies in
the Apache Jena TDB, which are modeled as SKOS vocabularies and maintained by
MetaStore. During the metadata registration these vocabularies can be linked to their
corresponding metadata schemas. This linking is necessary for enabling automated
vocabulary-based quality control. The access to these imported vocabularies is pro-
visioned through the integration of the web-based Skosmos tool [159] that offers a
REST API. Skosmos exposes a generic REST API for retrieving the vocabularies. In
the second approach, MetaStore allows configuring the available metadata vocabulary
providers (externally available vocabularies). The REST endpoints for accessing the
external vocabularies are linked to their corresponding metadata schemas for enabling
vocabulary-based metadata quality control.

For example, in the Medieval Stained Glass Church Windows use case, i.e., the
“Corpus Vitrearum Deutschland" project [139, 140], the controlled-vocabularies are
modeled in the ICONCLASS [34] standard and exposed through the Skosmos API.
For this use case, we follow the first approach described above, i.e., we have imported
the ICONCLASS controlled-vocabularies from their vocabulary server into the Meta-
Store Apache Jena TDB. These vocabularies are linked to the different fields in their
metadata schema, and during the metadata quality control process the metadata is
validated against these controlled-vocabularies.

4.3. MetaStore Architecture 71

The automated vocabulary-based metadata quality control process, as shown in
Figure 4.7, is an extension to the default metadata quality control process explained
before. The default quality control process is extended with two additional steps
that are introduced after step (3) Validate metadata (XML/JSON). Following are
the additional steps: (4) For validating the metadata, each element is verified with
its corresponding vocabulary. The vocabularies are retrieved either from MetaStore’s
Apache Jena exposing the Skosmos REST-API or from the configured external
services that expose their discipline-specific vocabularies. (5) Based on the retrieved
sets of vocabulary, the Metadata Quality Control component validates the metadata.
Finally, as explained in step (4) of Figure 4.6, the metadata is converted to JSON
format and inserted into the designated collection.

Figure 4.8: Metadata registration and ElasticSearch indexing

ElasticSearch Connector
As a core functionality, MetaStore automatically indexes the complete schema in the
database for enabling full-text search over the metadata. However, for allowing a
richer full-text search with the possibility of performing faceted and fuzzy search,
MetaStore also provides integration with ElasticSearch. Research communities can
configure MetaStore to index the complete metadata or a part of the metadata in
ElasticSearch. However, enabling this configuration will change the default behav-
ior of MetaStore, i.e., the automated indexing of metadata in the primary database
(ArangoDB) will be disabled, and the full-text search queries will be redirected to the
metadata indexed in ElasticSearch. Ideally, the configuration should be done during
the registration of the metadata schema or the community defined METS profile. For
example, in the case of a nanoscopy METS file, the descriptive metadata contains the
information necessary for performing full-text search, thus, only the metadata defined
in the hdmdSeci section of METS is indexed in ElasticSearch.

For an ElasticSearch enabled configuration of MetaStore, the metadata schema
registration is followed by the index and type creation in ElasticSearch, as illustrated
in Figure 4.8. The initial process of metadata schema registration is similar to the
one shown in Figure 4.4. The process comprises four primary steps and one optional
step. Steps (1) Submit schema, (2) Register schema, and (3) Create collection, are
the same as described before. (4) For enabling full-text search based on ElasticSearch,

72 Chapter 4. Generic Metadata Management

the corresponding index and a type for an individual registered metadata schema are
created in ElasticSearch. If a METS-profile is registered, an index is created with
multiple types corresponding to the different schemas embedded within METS. It
should be noted that with enabling of ElasticSearch in MetaStore, the automated
index creation in ArangoDB will be disabled. (5) The configurable indexing is
an optional step that allows indexing of existing metadata from ArangoDB in
ElasticSearch at any given point in time. This change does not affect the functioning
of MetaStore, as existing metadata from ArangoDB will be indexed in ElasticSearch,
and full-text searches will be redirected from ArangoDB to ElasticSearch.

RDA Metadata Directory Registry
Research Data Alliance (RDA)12 is a research community that focuses on building so-
cial and technical infrastructures for open sharing of data. The working groups within
the RDA regularly contribute recommendations and tools for handling the different
aspects involved in a life-cycle of scientific data. Two such working groups in RDA
are the Metadata Standards Directory Working Group (MSDWG) and the Metadata
Standards Catalog Working Group (MSCWG). The MSDWG has implemented a pub-
licly available metadata registry for collecting a wide-range of metadata standards13

from different disciplines [14], and the MSCWG is currently working on building a
metadata catalog14 based on this metadata registry. The metadata catalog aims at
providing an interface for allowing querying and retrieving of the metadata standards.

Currently, the MSDWG registry does not provide the functionalities necessary for
managing metadata but contains an exhaustive list of metadata standards. Thus, in-
tegrating the MSDWG registry will leverage the metadata models currently supported
by our MetaStore framework. Moreover, with the functionalities provided by MetaS-
tore, the handling of the various metadata standards registered in the MSDWG can be
completely automated. Each metadata standard in the MSDWG registry is described
using a YAML [18] template, and serialized in a “.md" file. The RDA Metadata Di-
rectory Registry component in the MetaStore Extension Layer is a bridge between
the MSDWG registry and the MetaStore framework. The RDA Metadata Directory
Registry component retrieves the metadata standard (.md file) from the MSDWG
registry and submits it to the Metadata Registry of MetaStore. Based on this “.md"
file the metadata registration, indexing and code generation processes described in
previous sections are executed. Thus, the RDA Metadata Directory Registry compo-
nent enables a seamless integration for handling the metadata standards registered in
the MSDWG registry.

12
https://www.rd-alliance.org/

13
https://github.com/rd-alliance/metadata-directory

14
https://github.com/rd-alliance/metadata-catalog-dev

https://www.rd-alliance.org/
https://github.com/rd-alliance/metadata-directory
https://github.com/rd-alliance/metadata-catalog-dev

4.4. Evaluation 73

4.3.4 Scientific Data Repository

In principle, a scientific data repository is a data storage entity that offers various
low-level services for storing (long-term archival), converting (format conversion), and
transferring scientific data. For example, the Nanoscopy Open Reference Data Repos-
itory (NORDR) is a scientific data repository for storing experiment data. Basic ad-
ministrative metadata for identifying the data is maintained by NORDR. Currently,
NORDR provides many low-level services for handling the data in the repository.
Following low-level services are available in NORDR: (a) automatically assigning Per-
sistence identifier (PID) to a dataset, (b) generating preservation metadata neces-
sary for long-term archival, and (c) implementing the different data-transfer protocols
(GridFTP [2] and WebDAV [168]) for allowing transfer of data between NORDR and
high-performance computing cluster. Moreover, the various data processing services
necessary for composing a workflow are registered in NORDR and deployed on a
high-performance computing cluster.

4.4 Evaluation

In this section, first, we present a comparison of the features of existing metadata
management systems with those of MetaStore. Second, we describe the performance of
MetaStore for two NoSQL database systems, followed by read and write performance
evaluation of MetaStore with XMC Cat metadata catalog, MCS query interface, and
the Metacat catalog system.

4.4.1 Evaluation of Features

In Section 2.2, we surveyed several metadata management systems from diverse areas
of research. In this section we present a feature-based comparison of the available
metadata systems with MetaStore. Tables 4.2 and 4.3 show a summary of the major
features of existing metadata management systems, with a comparison to those of
MetaStore.

A common architectural design limitation of the metadata management systems
in SDRs is that in these systems, the database schema is designed based on a spe-
cific metadata model, with interfaces (functionality) that are tightly coupled to this
model. For the community, it is an additional effort in either adapting or translating
their existing metadata schema to the one supported by the SDR. Such conversions
between metadata schemas often lead to a lossy transformation, where some of the
schema attributes have to be either discarded or semantically modified. To avoid any
schema mappings and conversions, MetaStore is designed independent of any specific
metadata schema, and there are no limitations on metadata schema that MetaStore
can support, as long as the metadata schema can be serialized in XML or JSON. Fur-
thermore, as the architectural design of these systems is based on relational databases,

74 Chapter 4. Generic Metadata Management

it inherently limits the extensibility in handling new metadata schemas. This is be-
cause, to handle a new metadata schema the relational schema needs to be modified,
the services (functionality) build over this schema need to be updated, and the entire
system needs to be upgraded considering the backward compatibility (i.e., the exist-
ing functionality should also be supported). In MetaStore, we overcome this design
limitation by integrating a NoSQL database that allows handling of ad hoc metadata
schemas. With the Metadata Code Generator component, the services necessary for
handling the metadata schema are created on-the-fly and are added to the architecture
without modifying the existing ones. Regarding OAI-compliance, many of the SDRs
support metadata harvesting through OAI-PMH. However, the workflow provenance
and annotations using interoperable standards (ProvONE and WADM) are not sup-
ported, whereas MetaStore is designed OAI-compliant and also supports the ProvONE
provenance model and the WADM for provenance and annotation interoperability.

Comparing the features of the standalone metadata management systems and
the Grid-based metadata systems with MetaStore, XMC Cat, Metacat, and DIMES
are based on an XML database or a hybrid of XML and SQL databases. On the one
hand, all XML-based metadata schemas can be supported by these systems, but on the
other hand, in terms of database scalability, handling increasing metadata volumes is a
major concern. In terms of metadata quality control, these systems do not implement
any quality control mechanism. Moreover, integration of controlled vocabularies for
verifying the metadata content with automated rectification is not supported by these
systems. MetaStore offers default quality check for schema conformance and well-
formedness, and advanced quality control for metadata content validation based on
SKOS-based domain-specific controlled-vocabularies.

A critical deficiency among these systems is that they are not OAI-compliant, i.e.,
large-scale metadata harvesting through standard harvesting protocols like OAI-PMH
is not supported. MetaStore is designed OAI-compliant, and the OAI-PMH data pro-
vided for allowing metadata harvesting is implemented over the primary metadata
storage (ArangoDB). In terms of data reproducibility and long-term data preserva-
tion, most of these systems do not support handling of the provenance metadata. The
MCS for a Grid environment provides the Creation and transformation history meta-
data attribute that allows a textual description of the data transformation process, but
this is an MCS-specific attribute that is not compliant with existing provenance mod-
els (OPM, PROV, ProvONE). MetaStore supports two provenance models PREMIS
and ProvONE, each for a specific purpose. With PREMIS the provenance required
for long-term preservation is handled, and as ProvONE allows modeling of a workflow
definition and the runtime provenance, the routine activities such as querying, ana-
lyzing and improving workflows can be performed. The MCS schema is an extension
of the MCAT metadata management system that provides a special extension table
(dynamic metadata) with six attribute types for modeling community-defined meta-
data schemas as non-hierarchical key-value pairs. However, this approach has multiple
limitations: (a) hierarchical metadata schemas with embedded data structures cannot

4.4. Evaluation 75

be stored in the MCS schema. (b) the MCS schema can not handle complex attributes
types such as arrays, geospatial information, and time-series data. (c) as the extension
attributes are stored in a single table, it is evident and also mentioned by the authors
that with increasing data volumes the query performance is expected to decline. We
overcome these limitations by designing MetaStore based on a NoSQL database. This
allows us to store any type of metadata model (hierarchical, flat key-value pairs) with
a wide-range of data types.

Regarding the features of the commercial metadata management systems Stardog
and PoolParty, both systems are primarily designed for handling enterprise knowledge
data. As both systems are closed-source, enriching these systems with community
driven extensions is a challenging task. On the one hand, as these systems are designed
to the RDF specification, it is possible to handle dynamic metadata in the form of
annotations, but, on the other hand, annotation interoperability through the W3C
recommended WADM is not supported. Also, these systems do not provide large-scale
metadata harvesting through the OAI-PMH specification. Stardog provides traces of
database revision history using the PROV model, whereas for scientific communities
it is necessary to capture the workflow description and provenance for enabling data
reproducibility. Moreover, for long-term preservation of the data the support towards
the appropriate metadata standard (PREMIS) is not compatible with these systems.

We also evaluated MetaStore with the Big Data processing frameworks like LOOM
[39] and Apache Falcon15. In principal, these frameworks focus on enabling efficient
data processing in a distributed environment. The LOOM framework aims at pro-
viding in-memory optimization of aggregations within a big data analysis framework.
Similar to the MapReduce processing data model, LOOM provides two-phased com-
putation. In the first phase; the individual datasets are processed, followed by con-
solidation of these results in the second phase. Apache Falcon is a feed and process
management framework built on Hadoop that primarily abstracts and automates the
redundant tasks involved in data processing pipelines. Comparing these systems to
MetaStore, the current version of MetaStore focuses on managing heterogeneous meta-
data models with support for handling large metadata volumes. However, the LOOM
and Apache Falcon frameworks are each a potential extension to the MetaStore frame-
work when large-scale metadata processing is required.

Considering the metadata management approach based on the classification of
metadata as per its use, Deelman et al. [46] propose the logical organization of meta-
data in different layers, in their paper, they claim that by organizing the metadata
in layers, it is possible to distinguish the metadata and the source or applications for
which the metadata is relevant. For example, the primary layer handles the meta-
data of the raw datasets, and the secondary and tertiary layers are responsible for
metadata describing the process of obtaining derived data and the metadata of the
derived data. Moreover, the layered metadata organization allows users to expose the
appropriate granularity of detail to the user, with the possibility to track layer-based

15
https://falcon.apache.org/

Metadata
system

Schema
flexibility

Supported
schemas

Annotation
support

Provenance
support

Full-text search
OAI

compliance
API

Open
source

Quality
control

DSpace 7
DC, MARC,

MODS
7

3(DC
extension)

Manual indexing
of DC terms

3 3 3 7

Archivematica 7
DC, METS,
PREMIS

7 3(PREMIS) 3(ElasticSearch) 3(REST) 3 3 7

Digital
Commons

7 DC 7 7
3(Apache
Luecene)

3 7 7 7

Hydra 7
DC, PREMIS,

METS
7 3(PREMIS) 3(SOLR) 3 3 7 7

ICAT Server 7 CSMD 7 7
3(Apache
Luecene)

3(SOAP &
REST)

7 3 7

EUDAT Partial
DC, ISO 19115,

MarcXML, CMDI,
DDI

3(B2Note) 7 3 3 3 3 7

EPrints 7 DC 7 7
Partial (PDF,
Word, HTML)

3 3 3 7

XMC Cat 3 Any XML schema 7 7 7 7 7 3 7

Metacat 3 Any XML schema 7 7 Partial 7 7 3 7

DIMES 3 Any XML schema 7 7 7 7 7 3 7

SRB MCAT 7 Proprietary model 7 7 Partial 3 7 3 7

MCS 7 Proprietary model 7
3(Proprietary

model)
Partial 3(SOAP) 7 3 7

Table 4.2: Feature comparison of several metadata management systems with MetaStore

Metadata
system

Schema
flexibility

Supported
schemas

Annotation
support

Provenance
support

Full-text search
OAI

compliance
API

Open
source

Quality
control

SOLE 7 Proprietary schema 3 7 7 7 3 3 7

LINDO Partial
DC, EXIF, PDF,
MXF, DICOM

3 7 7 7 3 3 7

Stardog 3
All RDF serialized

schema
7

3(transaction
provenance)

3(Apache
Luecene)

7 7 7 3

PoolParty 3
All RDF serialized

schema
7 7

3(Apache
Luecene, SOLR)

7 7 7 3

MetaStore 3
All XML and
RDF schemas

3 3(ProvONE)
3(NoSQL and
ElasticSearch)

3 3 3 3

Table 4.3: Feature comparison of several metadata management systems with MetaStore (continued)

78 Chapter 4. Generic Metadata Management

usage patterns. However, irrespective of the layers in which metadata is classified, the
fundamental characteristic of metadata is the underlying model or schema to which it
conforms. Thus, as MetaStore is entirely driven by the metadata schema, metadata
from any layer can be handled in MetaStore. Moreover, for comprehensively aggre-
gating heterogeneous metadata models from different layers, we adopt the METS
metadata schema.

0

10

20

30

40

50

0

200

400

600

800

1000

10 20 30 40 50

Av
er
ag
eR

es
po
ns
eT

im
e(
ms
)

W
rit
eO

pe
ra
tio
ns
/s
ec

No. of Concurrent Users

WriteOperation/ sec AverageResponseTime(ms)

(a) One MetaStore instance

0

10

20

30

40

50

0

200

400

600

800

1000

10 20 30 40 50

Av
er
ag
eR

es
po
ns
eT

im
e(
ms
)

W
rit
eO

pe
ra
tio
ns
/s
ec

No. of Concurrent Users

WriteOperation/ sec AverageResponseTime(ms)

(b) Two Metastore instances

Figure 4.9: MetaStore write performance (ArangoDB)

0

10

20

30

40

50

0

500

1000

1500

2000

2500

3000

3500

4000

10 20 30 40 50

Av
er
ag
eR

es
po
ns
eT

im
e(
ms
)

Re
ad
Op
er
ati
on
s/
se
c

No. of ConcurrentUsers

ReadOperation/ sec AverageResponseTime (ms)

(a) One MetaStore instance

0

10

20

30

40

50

0

500

1000

1500

2000

2500

3000

3500

4000

10 20 30 40 50

Av
er
ag
eR

es
po
ns
eT

im
e(
ms
)

Re
ad
Op
er
ati
on
s/
se
c

No. of ConcurrentUsers

ReadOperation/ sec AverageResponseTime (ms)

(b) Two Metastore instances

Figure 4.10: MetaStore read performance (ArangoDB)

4.4.2 Performance Evaluation

In this section, we present the performance evaluation of MetaStore and compare it
with existing metadata management systems. For demonstrating the extensibility

4.4. Evaluation 79

(a) One MetaStore instance (b) Two Metastore instances

Figure 4.11: MetaStore write performance (MongoDB)

(a) One MetaStore instance (b) Two Metastore instances

Figure 4.12: MetaStore read performance (MongoDB)

of MetaStore, we integrated MetaStore with both ArangoDB and MongoDB, and
the read and write performance are evaluated. MetaStore is not integrated with
an SQL database due to the primary requirement of having a flexible data model
in modeling heterogeneous metadata models. Moreover, there are multiple studies
that illustrate the advantages of NoSQL over SQL, especially considering the query
read/write performance between these two kind of databases [22, 29, 97, 117, 163].

The MetaStore framework is evaluated considering a typical research community
usage pattern (more read and fewer write operations) and the performance is mea-
sured in terms of the average response time for each operation. For evaluating the
performance, various configurations of MetaStore were assessed. Each instance of
MetaStore is deployed on a 32 GB RAM server with a 2.66GHz (8 cores) processor,

80 Chapter 4. Generic Metadata Management

and each configuration is setup with one Apache2 load balancer on 32 GB RAM server
with a 2.66GHz (8 cores) processor.

Following cluster configuration is deployed for ArangoDB. A single instance of
ArangoDB coordinator server is deployed on a 128 GB RAM server with a 3.5GHz
(6 cores) processor, and four Arango database servers (shards) were deployed on 16
GB RAM server with a 2.3GHz (2 cores) processor each. In the case of the MongoDB
cluster, three MongoDB query routers and config servers were deployed on a 8 GB
RAM server with a 2.3GHz (2 cores) processor. For storing the data, four MongoDB
data nodes (shards) were deployed on 16 GB servers with a 2.3GHz (2 cores) processor
each.

For efficiently handling large numbers of concurrent requests, we used the Apache
server with the mod_jk module for load balancing the MetaStore instances deployed
on independent tomcat servers. The maxThreads parameter in the AJP 1.3 config-
uration for each tomcat server is increased to 1024 for handling a larger number of
concurrent requests. We also optimized the load balancer to handle a higher number
of requests per second by enabling the Apache Multi-Processing Module (MPM)16

worker. It is possible to further tune the load balancer performance by increasing the
maxRequestWorkers parameter’s default value of 256, but an inappropriately large
value might bring the server to a standstill due to an influx of requests. Thus, for
a production environment we set this parameter to its default value. Each test is
executed three times. Due to negligible variations in each result, the error bars are
not shown, and only the average results are depicted. Figures 4.9a to 4.12b show the
write and read results.

Write Performance: Figures 4.9 to 4.12 illustrate the results of the write perfor-
mance for one and two instances of MetaStore integrated with AranogDB and Mon-
goDB, respectively. Each write operation carries a payload ranging between 20-30 KB
and follows the process described in Figure 4.6. For a single instance of MetaStore
deployed on ArangoDB and MongoDB, we noticed that with increasing concurrent
users, each generating multiple write operations, the average response time increased
drastically, and some write operations failed to complete. This increase in average
response time is due to the concurrent request handling limitation of each tomcat
server. Moreover, each write operation comprises the quality control process, where
an additional request is sent to retrieve the corresponding schema, followed by well-
formedness and schema conformance checks.

With the introduction of a second instance of MetaStore either deployed on
ArangoDB or MongoDB, we observe that due to the systematic distribution of the
write operations between the two MetaStore instances, the average response time is
retained below 22ms, and not a single write operation failed.

For comparing the write performance of MetaStore with the MCS query interface,
first we need to understand how metadata is stored in the MCS systems. Each add
operation in the MCS system creates a logical file with multiple user-defined attributes

16
https://httpd.apache.org/docs/2.4/mpm.html

https://httpd.apache.org/docs/2.4/mpm.html

4.4. Evaluation 81

in the database (maximum of ten attributes). The add operation is implemented
as a native Java API and as a web service interface. Using the native Java API
connected to a MySQL database, a maximum of 360 writes per second is achieved
with 25 concurrent threads. For the web interface, a maximum of 70 add operations is
possible for 25 concurrent threads. For multiple clients with four concurrent threads
each, approximately 380 add operations is achieved, whereas for the web interface, a
maximum of 80 add operations is achieved.

The LEAD infrastructure’s XMC Cat metadata catalog based on hybrid XML or
relational approach is evaluated with a native XML database, Oracle’s Berkley DB
XML17. Jensen et al. [86] argue that the size of a metadata file or the metadata content
of an experiment affect the insert time, and the hybrid XML/relational approach
performs better than an XML database. The insert performance for a scaled workload
ranged between 80ms and 120ms.

MetaStore exposes all its functionalities including the metadata insert operation
through REST services. Comparing the write performance of MetaStore with the
MCS web interface and the XMC Cat metadata catalog, it is clear that MetaStore
is easily able to handle more than 800 requests with 50 concurrent users (threads)
per second, and the performance improved with the addition of a second MetaStore
instance.

Read Performance: Figures 4.10a to 4.12b show the results of the read perfor-
mance. The number of read operations on the MetaStore framework are expected to
be higher than the write operations and hence the reads/sec factor is approximately
five times more than write/sec. As the documents in ArangoDB and MongoDB are
fully indexed, all read operations are arbitrary full-text searches.

In the case of Metacat, the XML tree structure represented by a Document Object
Model (DOM) [173] is decomposed into nodes, where the root node is the document
entity and the children nodes are elements and attributes. These nodes are stored
in a relational database schema, for allowing querying of the metadata at different
depths. Nested SQL queries are defined with a specific depth or full-text search
queries are defined with depth zero. For evaluating the read performance, the full-
text query is executed on a node size of 2.03 ⇥ 106 and the nested query on a node
size of 23,000/25,000 with a depth equal to five. For full-text search queries, it took
30sec when using indexes and 29sec when using a nested query. For the queries using
indexes with a node depth varying between one and six, the query execution time
ranged between 1sec and 50sec, whereas for SQL nested queries, the execution time
is between 1sec and 10sec.

The MCS query interface provides simple queries that do a value match for a
single static attribute in the file and complex queries that do value matching for all
the attributes in the file. For simple queries with a single client executing multiple
concurrent threads on a native Java API, a peak of approximately 2300 queries per
second is reached, whereas for the web interface approximately 120 queries per second

17
https://www.oracle.com/database/berkeley-db/xml.html

https://www.oracle.com/database/berkeley-db/xml.html

82 Chapter 4. Generic Metadata Management

is achieved. For the complex queries, approximately 560 queries per second is achieved
and for the web interface, approximately 100 queries per seconds were possible.

Compared to these results the full-text read performance of MetaStore (considering
both ArangoDB and MongoDB) varied between 19ms to 49ms for 10 to 50 concurrent
users with 1650 reads/sec to 3200 reads/sec, thus, showing significantly better perfor-
mance compared to that of Metacat, the LEAD XMC Cat metadata catalog, or the
MCS query interface.

Analyzing the performance comparison between MetaStore and existing metadata
management systems, it necessary to understand how metadata is modeled, stored and
queried in these systems. Following are the reasons why the performance of MetaS-
tore is better than that of existing systems: (1) In MetaStore the XML containing the
metadata is never decomposed into atomic entities and stored in a relational database
but transformed to JSON and stored as a JSON file in the NoSQL database. The
JSON-based storage of metadata in NoSQL databases avoids the overhead of trans-
forming XML either as a CLOB or shredding it using the inlining approach. (2) As
the metadata schema is fully indexed, the I/O intensive nested queries for retrieving
specific paths from the XML structure are not required. (3) The overhead of recon-
structing XML documents from the relational schema is completely avoided because
the queries return JSON objects that are serialized to XML based on the registered
metadata schema. (4) In the case of NoSQL databases, the write operations have
a better throughput because they are primarily performed in the main memory, in-
stead of writing to the disk, as in the case of an SQL based database. For example,
in ArangoDB the memory-mapped files are used to handle write operations and are
regularly synced to disk via the fsync command.

4.5 Application Use Cases

In this section, we briefly explain three use cases (one from bio-medical research and
two from digital humanities) for which MetaStore is adopted.
Use case 1: Nanoscopy
For illustrating the applicability of MetaStore in managing heterogeneous metadata
models, first, we consider the light super-resolution microscopy (nanoscopy) use case.
Nanoscopy is a novel imaging technique that aims at bridging the resolution gap be-
tween conventional light microscopy and electron microscopy [35]. A typical nanoscopy
investigation begins with the acquisition of raw image datasets in HDF5, KDF, or
TIFF format from a high-resolution microscope. A complete series of measurements
for a given specimen can easily amount to 100-150 TB in size. For handling such
large volumes of data, NORDR offers efficient handling of massive data volumes col-
lected from various geolocated high-resolution microscopes, backed by a large-scale
data storage and high-performance computing cluster [123]. Various nanoscopy sci-
entific workflows are executed for processing these raw datasets. These workflows

4.5. Application Use Cases 83

(a) An angel with bagpipes.
Photo: Andrea Gössel, CVMA Ger-
many/Freiburg, CC BY-NC 4.0, Link:
http://id.corpusvitrearum.de/images/4486.html

(b) The holy family.
Photo: Andrea Gössel, CVMA Ger-
many / Freiburg, CC BY-NC 4.0 Link:
http://id.corpusvitrearum.de/images/3431.html

Figure 4.13: Digitized medieval stained glasses.

are described using the Business Process Execution Language (BPEL) and the ad-
ministrative and descriptive metadata is described based on the community-specified
metadata models18.

For automating the metadata extraction from raw datasets, we implemented a
staging processor that extracts the metadata from HDF5 and TIFF file during the
ingestion of the raw datasets in NORDR. This extracted metadata is submitted to
MetaStore via the REST interface, where it is verified with the registered localization
microscopy metadata schema, and stored in the document store of ArangoDB.
Using the Prov2ONE algorithm, the workflow defined in BPEL is translated into
the ProvONE prospective provenance, which is enriched with the retrospective
provenance collected during the workflow execution. The entire ProvONE graph
is serialized in RDF and stored in Apache Jena. As the functionality (services)
for handling the extracted metadata is automatically created during the schema
registration stage, we do not need to create any additional services in MetaStore
explicitly. Moreover, this extracted metadata is wrapped in the METS format that
complies to a registered METS-profile and exposed to the researcher communities for
metadata harvesting through OAI-PMH.

Use case 2: Corpus Vitrearum Deutschland
The Corpus Vitrearum Deutschland (CVD) is a part of the Corpus Vitrearum Medii
Aevi (CVMA), which is long-term international research project in digital humanities.
The CVMA aims at digitizing, cataloging and analyzing the medieval stained glasses

18
http://datamanager.kit.edu/masi/localizationmicroscopy/2016-03/

LocalizationMicroscopy.xsd

http://datamanager.kit.edu/masi/localizationmicroscopy/2016-03/LocalizationMicroscopy.xsd
http://datamanager.kit.edu/masi/localizationmicroscopy/2016-03/LocalizationMicroscopy.xsd

84 Chapter 4. Generic Metadata Management

Figure 4.14: Digitized
parchment page of
manuscript 1108 from
city library and city
archives Trier, dating

to 15th century

Figure 4.15: Lay-
out feature extrac-

tion workflow

that are preserved in churches, museums, and galleries all over Europe. Currently,
CVD research community has digitized and published 5086 images of stained glasses,
out of which two examples are shown in Figure 4.13. On the one hand, the CVD
image repository is implemented for storing and accessing these images, but on the
contrary discovery and analysis of the images based on metadata is lacking. Each
image is embedded with an extensive set of metadata attributes that conform to the
XMP metadata standard. Most of these attributes are filled during the digitization
process, while few attributes that describe the painted figures or depicted scenes are
referred from a predefined ICONCLASS vocabulary.

Similar to the nanoscopy use case, the first step is to extract the metadata that
is embedded in the image (TIFF). For this, we reused the TIFF metadata extractor
staging processor of the nanoscopy use case. The extracted metadata is submitted
to MetaStore through the REST interface, where the metadata is validated before
inserting in the document store of ArangoDB. For automatically verifying the cor-
rectness of the terms describing the stained glasses, the corresponding ICONCLASS
vocabulary is linked to the XMP metadata schema during the metadata registration
stage.

Use case 3: eCodicology
The eCodicology is a research project in digital humanities that aims at designing,
evaluating and optimizing algorithms for identifying the layout features of medieval

4.5. Application Use Cases 85

manuscripts [31]. First, the manuscripts from the “Virtual Scriptorium St.Matthias”
were digitized, and a total of 170,000 images were acquired. An example image is
shown in Figure 4.14. These images are stored in CodiStore, which is a scientific data
repository supporting long-term archival and reuse of digitized medieval manuscripts
[32]. Currently, CodiStore is not capable of handling the metadata embedded within
the datasets (static metadata) and the metadata generated during the workflow execu-
tion (dynamic metadata). Hence, the entire MetaStore is integrated with CodiStore.

In the following, we describe our experience and the challenges faced during
the integration of MetaStore with CodiStore. During the digitization process, each
manuscript (each containing few hundreds of pages) is enriched with bibliographical
metadata describing the following attributes: Signature, Century, Material, Format,
Leaf Count, Library [32]. For systematically structuring the metadata for an entire
manuscript, the eCodicology community has adopted the Text Encoding Initiative
(TEI) format that is further embedded in a METS file, which conforms to an eCod-
icology METS-profile. This METS file also contains the administrative metadata,
structural map, and structural links that describes the hierarchy of the pages within
a manuscript and the logical and physical links between the pages. As the metadata
in TEI and METS is not subject to change, we consider it as static metadata. Sim-
ilar to the previously use cases, during the ingest of data (digitized manuscripts) in
CodiStore data repository, we implemented a staging processor for extracting TEI
metadata. The extracted metadata is inserted in the document store of ArangoDB
with prior quality control.

The handling of dynamic metadata that is generated during execution of workflow
is a challenging task. For each digitized page the Layout Feature Extraction workflow
(see Figure 4.15) is executed. Similar to the nanoscopy workflow, the provenance is
captured in ProvONE and stored in Apache Jena. The workflow consist of five steps;
Color Calibration, Noise Filtering, Page Segmentation, Text Segmentation, and Pic-
ture Segmentation. Each step in the workflow generates metadata that describes the
output generated by a particular step. For example, the Color Calibration generates
a color calibration matrix, the output of Page Segmentation is page space measure-
ments (page area, height, width, inclination angle, and left-corner co-ordinates), and
the Text Segmentation generates written space measurements (main text area, height,
width and inclination angle) and number of lines. This workflow-specific metadata
is subject to frequent changes because modifying the workflow parameters will yield
different output, or changing the algorithms will generate entirely different results.
Hence, to handle such dynamic metadata, we had to extend MetaStore with an anno-
tation framework that supports modeling of ad hoc metadata schemas conforming to
the W3C recommended WADM. For this, we integrated the Anno4j library with an
RDF triple store (Apache Jena).

86 Chapter 4. Generic Metadata Management

4.6 Discussion

In this section, we explain the various architecture design decisions undertaken in
the implementation of the MetaStore framework. As a core design principle, the
MetaStore framework is designed based on the modular architecture design pattern.
Adopting this design pattern has a multitude of advantages. First, each feature of
MetaStore is developed as an independent component (high cohesion) with no inter-
component dependencies (low coupling). This allows component-specific updating of
features with easy maintenance of the entire framework. For example, initially, the
Metadata Quality Control component offered only basic schema validation and well-
formedness checks. However, with modular architecture design of MetaStore, it is easy
to extend this component to support domain-specific vocabulary metadata content
verification. Second, it enables the seamless integration of new features (components)
while reusing the existing ones. For example, the integration of an RDF database
and the support for building and reusing SKOS-based domain-specific vocabulary
is seamlessly appended to the core functionality of MetaStore. Moreover, the same
RDF database is used to store and query the ProvONE provenance graphs. Third,
customizable integration of MetaStore with existing systems kept the complexity of
the overall architecture to a minimum. For example, for the nanoscopy use case,
as there is no dynamic metadata either from the workflows or the annotations, only
the MetaStore core layer is integrated with NORDR. Thus, the modular design of
MetaStore allowed integration of selective features from MetaStore with NORDR.
However, for handling diverse metadata in eCodicology research, i.e., static metadata
encoded in TEI format, dynamic annotations in the WADM, and workflow provenance
in ProvONE, the entire MetaStore framework is integrated with CodiStore.

With MetaStore architecture design based on NoSQL database systems, different
types of metadata, such as descriptive, administrative, provenance and structural
metadata can be efficiently modeled to maximize the utilization of the data models
offered by the ArangoDB and Apache Jena. This decision not only vastly reduced the
complexity of the architecture (technology footprint) but also the repetitive software
development effort in redesigning, implementing and updating of a relational database
schema is avoided. Moreover, with the adoption of existing open-source solutions, the
total cost of ownership is minimal. For example, workflow and provenance metadata
comprising complex relationships are modeled in the ProvONE provenance model and
serialized as RDF triples for allowing execution of graph traversal queries. Descriptive,
administrative and structural metadata that can be serialized in XML is modeled in
the document data model for enabling full-text search and complex analytical queries.
Regarding database scalability in handling increasing data volumes, with ArangoDB
it is possible to shard large volumes of metadata in multiple database instances.

The MetaStore offers different research communities an entirely automated meta-
data management system that is capable of handling both community-specific meta-
data schemas as well as existing metadata standards. The Metadata Code Generator

4.6. Discussion 87

component automatically generates the necessary code (services) for handling the
registered metadata schema and on-the-fly extends the functionality of MetaStore.
Hence, significantly reducing the resources and efforts of scientific communities in
writing and maintaining the software (services) that are necessary for implementing
the metadata schema. For generating the code, we use the JAXB-XJC19 library,
and at runtime, the Metadata Management Component determines the appropriate
metadata schema that needs to be created using Java Reflections API [56].

For enabling large-scale metadata harvesting in MetaStore, it is necessary to im-
plement the six verbs of the OAI-PMH specification. Initially, our approach is to
integrate the jOAI web application20 that provides an implementation of the OAI-
PMH specification. However, it involves setting up an additional data provider server
containing the metadata in XML format that conforms to a set of rules described by
the jOAI web application. This would have been an unnecessary overhead, for not only
maintaining an additional metadata file-server just for metadata harvesting purpose
but also in transforming the metadata stored in ArangoDB to the jOAI-compliant
format. Instead, we implemented the six OAI-PMH verbs as AQL queries in MetaS-
tore, allowing better query performance as compared to native file I/O operations in
the case of jOAI. Hence, our architectural design approach for implementing the OAI-
PMH specification within MetaStore and directly across different NoSQL databases
significantly reduced our cost and effort in using and maintaining additional metadata
harvesting tools and infrastructures.

With the availability of numerous metadata schemas, each specific for a given
application, it is evident that research communities will adopt multiple schemas si-
multaneously to describe their data. For example, the nanoscopy research community
adopted the Core Scientific Metadata (CSMD) model for describing the administra-
tive metadata, a community-specific metadata schema for the descriptive metadata,
and the PREMIS and ProvONE for the provenance metadata. On the one hand,
supporting heterogeneous metadata schemas is realized by MetaStore, but on the
contrary, the aggregate modeling of metadata for allowing comprehensive metadata
harvesting required for metadata publishing, or during data and metadata migra-
tion is a challenging aspect. For this, we adopted the METS schema and provided a
default METS-profile that allows us to aggregate heterogeneous metadata schemas.
However, as METS supports only PREMIS for modeling provenance, it is necessary
to define the SKOS-based vocabulary mapping between PREMIS and ProvONE to
enable provenance interoperability.

Currently, existing workflow management systems and the provenance interoper-
ability frameworks are based on the PROV model or the OPM [6, 24, 111]. On the
one hand, the OPM and PROV allow provenance interoperability through a stan-
dard provenance model, but on the other hand, a core limitation of these models
is that they are capable of handling only the retrospective provenance and not the

19
https://jaxb.java.net/2.2.4/docs/xjc.html

20
https://uc.dls.ucar.edu/joai/

https://jaxb.java.net/2.2.4/docs/xjc.html

88 Chapter 4. Generic Metadata Management

prospective provenance. In scientific research where complex workflows are designed,
executed, repeated, and continuously evolved, the prospective provenance is of critical
importance. Thus, for handling the entire provenance trace for scientific workflows
in a single provenance model, we adopted the ProvONE provenance model. With
the availability of workflow provenance in ProvONE, it is possible to design queries
that encompass the analysis of the workflow results along with the corresponding
workflow definition. In the case of communities where the research is still growing,
the availability of provenance in ProvONE is useful in avoiding redundant execution
of obsolete workflows, with the possibility to rapidly evolve their workflow to gener-
ate better results. Moreover, for long-term sustainability and adoption of standard
querying language (SPARQL), the ProvONE graphs are serialized in the RDF model.

Based on the software architecture design pattern adopted for implementing Meta-
Store, and the generic adaptability of MetaStore for diverse use cases, in the following,
we summarize the benefits of MetaStore: (a) The modular architecture design pattern
implicitly provided a clear separation of concerns, allowing us to realize the require-
ments as separate modules in the architecture. Moreover, with low inter-module
coupling, the maintenance and upgrading of the components are easy. (b) With the
integration of open-source solutions and the automatic adaptive architecture design,
the overall total cost of ownership is minimal. Adopting the dynamic composition
design pattern further eliminated the need in following the routine software devel-
opment life cycle. (c) By exposing all the features through a well-defined REST
interface, a seamless integration of MetaStore with existing systems is possible. For
example, NORDR, CodiStore and CVD image repository were easily integrated with
MetaStore. (d) Conforming to existing metadata standards in handling provenance
and annotation metadata, and with an implementation of the widely accepted OAI-
PMH metadata harvesting specification, we guarantee the long-term sustainability
and reuse of the MetaStore framework. (e) The flexible data model of NoSQL and
RDF databases enabled us not only to handle ad hoc metadata models but also pro-
vided the inherent sharding capabilities for managing increasing metadata volumes.
Moreover, with the adoption of these databases, it is possible to efficiently store and
query heterogeneous metadata schemas in the appropriate data model.

4.7 Summary

In this chapter, we presented MetaStore, a novel metadata management framework for
handling heterogeneous metadata models. In principle, our aim is to design a generic
metadata management system that can be reused by arbitrary research communities
using either a standard metadata model or a community-specific metadata model.

The main idea of MetaStore is based on two aspects. First, we realized from the
literature that existing metadata management systems are limited in the functionality
they provide and cannot be adopted by research communities with varying metadata
models. Second, for generic applicability of MetaStore, we collected and grouped

4.7. Summary 89

the requirements put forth by three independent research communities. Thus, for
enabling reuse of MetaStore by arbitrary research communities and for realizing the
requirements as independent functionalities, the core architecture of MetaStore is
based on the principle of modular design. On the one hand, the modular design
enabled the requirements to be implemented as task specific components, but on the
other hand, the architecture design is still static, i.e., for handling new metadata
schemas, the required functionality has to be manually implemented in MetaStore.
To overcome this static nature of MetaStore, the modular design of MetaStore is
enhanced with the principle of Compositional Adaption. The new functionality to
handle a newly registered metadata schema in MetaStore is dynamically generated at
runtime using the dynamic composition design pattern. Following is a summary of
the functionalities offered by the MetaStore framework:

– a metadata schema registry for validating metadata, with an extension to in-
tegrate discipline-specific SKOS vocabularies for allowing automated metadata
quality control,

– on-the-fly generation, compilation and deployment of the entire framework for
creating the services necessary for handling the registered metadata schema (zero
downtime upgrade of MetaStore),

– automated index creation in a NoSQL database for enabling full-text search,
and integration of ElasticSearch for allowing execution of complex analytical
queries, faceted search, and fuzzy search,

– providing an annotation framework for enabling researchers to add descriptive
information (dynamic metadata) in the form of annotations, with support to
WADM for enabling annotation interoperability,

– an OAI-PMH metadata harvester implemented on a NoSQL data provider for
enabling metadata harvesting (metadata sharing).

To show the generic applicability of MetaStore, the framework is integrated into
NORDR, CodiStore, and CVD image repository. For evaluating the MetaStore frame-
work, first, we presented a feature based comparison of MetaStore with existing meta-
data management systems. We observe that MetaStore not only exhaustively covers
the necessary functionalities but also adheres to recommended standards for long-
term architecture design sustainability and metadata interoperability. In Table 4.2
and 4.3, we provide a comparison of features available in existing metadata man-
agement system to those of the MetaStore framework. Second, we presented the
performance-based evaluation, where we highlighted the benefits of designing Meta-
Store on a NoSQL database over traditional SQL or XML databases. Additionally,
for evaluating the scalability of MetaStore, various configurations of MetaStore have
been assessed with different workloads, and it is observed that the performance of
MetaStore is significantly better compared to existing metadata systems.

90 Chapter 4. Generic Metadata Management

In this chapter, we briefly mentioned the importance of provenance for long-term
data preservation, which is critical for scientific data repositories. For enabling auto-
mated provenance interoperability, the mapping rules between the PREMIS and the
ProvONE model were established using the SKOS mapping vocabulary specification.
However, in the next chapter, we extend the topic of provenance interoperability for
enabling analysis of heterogeneous provenance traces from different WfMSs.

91

Chapter 5

Provenance Management in

WfMSs

In the previous chapter, we described the importance of metadata in scientific re-
search. For efficiently handling heterogeneous metadata models, we explained that it
is necessary to design a comprehensive metadata management framework that is in-
dependent of any given metadata model. We proposed the MetaStore framework as a
long-term sustainable and reusable framework. With the availability of MetaStore, we
have established a metadata management platform that can help extend our research
in managing provenance metadata (information) in WfMSs. Moreover, for enriching
the capabilities of SDRs in handling provenance information, it is necessary to handle
provenance during the preservation of digital data. Hence, as a minimum functionality,
the translation rules between the PREMIS and ProvONE models were established in
the previous chapter. Building on those efforts, we extend our research in provenance
interoperability for WfMSs. Even though provenance in WfMSs is a well-established
topic, there have not been many efforts undertaken in the handling of provenance
using a comprehensive model like ProvONE. In addition, literature does not con-
tain a single approach that addresses the handling of provenance for a BPEL-based
WfMS in a provenance model. The first step in enabling provenance interoperability
is the translation of heterogeneous provenance traces in a common model. For this,
we present a novel method for translating provenance from BPEL-based WfMS to
ProvONE. In the second step, we apply this method to other WfMSs to design a com-
plete provenance interoperability framework that provides functionality for collecting,
translating, storing and analysis of heterogeneous provenance information.

5.1 Motivation and Objectives

Research in provenance is being pursued in various domains such as Operating Sys-
tems (OS), Semantic Web, WfMSs, and standalone provenance management systems
[58, 178]. This chapter focuses on provenance interoperability methods that have been
developed for WfMSs [41]. Most existing WfMSs are designed considering a prove-
nance model that captures only retrospective provenance, except for a few systems
[57, 100] that are capable of capturing both prospective and retrospective provenance.

92 Chapter 5. Provenance Management in WfMSs

The latter WfMSs are based on autonomous provenance models and storage strategies
that are closely tied to the underlying storage system [42].

Currently, existing WfMSs are designed based on proprietary provenance schemas
[145] that are not compatible with standard provenance models such as PROV [112],
Open Provenance Model (OPM) [114], or ProvONE [37]. Moreover, the workflow
definition (prospective provenance) is serialized in an XML file that adheres to the
specification established by the WfMS. In addition, the associated retrospective prove-
nance collected during a workflow run is modeled in the proprietary provenance schema
and stored in logs, files, or relational databases [58, 145]. As the XML-based work-
flow definition is decoupled from its associated retrospective provenance, querying and
analysis of comprehensive provenance information is not possible. Furthermore, addi-
tional limitations of decoupled handling of prospective and retrospective provenance
are as follows:

– reproducibility of scientific results for validation of outcomes in a different exe-
cution environment is not possible due to the absence of workflow definition,

– tracking and analysis of workflow evolution are not feasible,

– comparing heterogeneous workflow definitions and their associated provenance
traces are not possible,

– sharing workflow definitions with their associated runtime provenance among
different WfMSs is a complicated and laborious task.

To address these challenges, research in provenance interoperability has bifurcated
into the following directions: (a) few of the WfMSs have introduced extensions for
mapping their system-specific provenance models to either the PROV model1 or OPM
[59, 121, 172], (b) various frameworks based on OPM are introduced for enabling
interoperability of heterogeneous provenance models [6, 24, 122]. However, these
systems based on either OPM or PROV only guarantee retrospective provenance and
not prospective provenance interoperability.

Considering these limitations, Oliveira et al. [115] introduced a provenance inter-
operability framework that uses Prolog to store and query provenance from e-Science
Central [166] and SciCumulus [44] WfMSs to ProvONE. Similarly, Lim et al. [98] pre-
sented a provenance collection framework that extends OPM with prospective prove-
nance, with a realization based on a relational database.

Although these solutions are similar to the approach presented in this chapter,
there are limitations associated with these frameworks.

First, these frameworks do not employ W3C standard RDF data model, with the
W3C recommended SPARQL querying capabilities. Due to this limitation, the long
term sustainability, and widespread adoptability, i.e., reusability of these frameworks
for other WfMSs cannot be guaranteed.

1
https://github.com/taverna/taverna-prov

5.2. Preliminaries 93

Second, as these approaches are based on the mappings between the proprietary
provenance schema implemented by the frameworks and the ProvONE model, the
granularity of translations cannot be determined. Moreover, translation of the exe-
cution order defined in the native workflow to the ProvONE model is not explicitly
addressed by these approaches.

Third, the provenance schema implemented by these frameworks is designed only
to handle data-flow languages. Thus, the extensibility of these frameworks in handling
control-flow languages like BPEL that comprise of multiple control-flow constructs is
not feasible.

The goal of this chapter is to address shortcomings of existing provenance interop-
erability frameworks, with respect to: (a) long-term sustainability and reusability of
the solution and (b) support for both control-flow and data-flow workflow languages
with an automated translation of the execution-order and data-flow structure from
the original workflow. For this, we first explain the difference between data-flow and
control-flow workflow languages. Second, we analyze the design patterns of a control-
flow language to design the Prov2ONE algorithm for translating these patterns to
ProvONE prospective provenance. To further automate the entire translation process,
we propose the WfMS-specific adapters that collect, translate and enrich ProvONE
prospective graphs with retrospective provenance. Moreover, for efficient modeling of
dense network of complex relationships observed in provenance graphs, the proposed
framework provides native support for RDF data model. Furthermore, this allows us
to reuse the already established PROV ontology that provides a mapping of PROV
data model in the RDF namespace. The decision behind choosing an RDF data model
is further strengthened by several studies that describe advantages of using an RDF
triple store over traditional SQL databases [43, 163].

5.2 Preliminaries

The notions and concepts surrounding workflow patterns and provenance models nec-
essary for realizing a comprehensive provenance interoperability framework are pre-
sented in this section. The ProvONE model is split into two parts to allow the
modeling of both prospective and retrospective provenance. For handling each part
systematically, we first describe the classes and associations of the ProvONE model
and the relation between these parts. Second, we explain the difference between
control-flow and data-flow workflow languages, in reference to three languages namely
BPEL, SCUFL, and MoML. Finally, we describe the various patterns in a control-
flow language with respect to BPEL specification. These patterns are necessary for
verifying the completeness of the translations from BPEL specification into ProvONE.

5.2.1 ProvONE model

ProvONE is an extension of the PROV model that is widely accepted in the
international provenance awareness community. ProvONE is specifically designed

94 Chapter 5. Provenance Management in WfMSs

Figure 5.1: ProvONE conceptual model UML class diagram [37]

to capture both prospective and retrospective provenance in the same model. The
conceptual UML diagram of ProvONE is shown in Figure 5.1. In principle, ProvONE
is an abstract model that is not bound to any specific vocabulary. For modeling
provenance with different levels of granularity, it is possible to extend each class
and association with existing metadata vocabularies. Below, we explain prospective
classes and associations available in the ProvONE model, followed by retrospective
classes and associations.

ProvONE prospective provenance
Class: Process. The Process class represents a data processing task or an activity
that is to be performed. The task can either be atomic or composite, typically repre-
senting a nested workflow. Each Process class is associated with at least one InputPort
and OutputPort for consuming and producing the data. Using external metadata vo-
cabulary terms the detailed attributes for a Process can be described. For example,
a unique identifier for each process is specified using the dcterms:identifier term from
the DC namespace, and the name of a process can be set using dcterms:title.
Class: Workflow. The Workflow class is a specialized Process and is used to repre-
sent a complete experiment in its entirety. The prov:wasDerivedFrom term is used to
represent workflow evolution for handling multiple versions of a workflow.
Class: User. The User class is derived from the prov:Agent super-class that rep-
resents a person, an organization, or a software agent. Using the User class, the
ownership and the accountability of a Process or a Workflow can be captured.
Class: InputPort. The InputPort is necessary for consuming data produced by
other Processes, from an external source or as default parameters. The details about
an input such as variable name, data type and value can be described in details using
dcterms, xsd, rdf, or rdfs namespaces.

5.2. Preliminaries 95

Class: OutputPort. The OutputPort class attached to a Process represents the
outcome generated after execution of a process. Similar to the InputPort class, the
detailed description of output can be described using the existing namespaces.
Class: DataLink. It is necessary to allow Processes to share data for a workflow to
execute successfully. For this, the DataLink class enables data to be sent between pro-
cesses, wherein the OutputPort of a process is connected to an InputPort in another
process. The DataLink class provides a one-to-many and a many-to-one cardinality
between InputPort to DataLink and DataLink to OutputPort respectively for con-
necting multiple source and destination ports. Moreover, the DataLink also allows
connection between InputPorts and OutputPorts of nested processes.
Class: SeqCtrlLink. The SeqCtrlLink represents the execution flow between pro-
cesses. The source process connected through the SeqCtrlLink has to be finished for
a destination process to start. In case of a destination process with multiple SeqCtr-
lLinks, it is necessary for all the source processes to terminate, i.e., the SeqCtrlLink
can be used to infer execution order defined in the original workflow.
Association: hasSubProcess. The hasSubProcess association is used to capture
the relationship between parent and child processes. This association represents nested
composition of processes in ProvONE that are defined as nested workflow in the
original specification.
Association: sourcePToCL. The sourcePToCL association links a source process
to its SeqCtrlLink. Through a sourcePToCL association, termination or completion
of a source process is propagated for initiating the execution of subsequent processes.
Association: CLtoDestP. To complete the connection between a source and a tar-
get process, CLtoDestP connects the SeqCtrlLink to its subsequent Process. Through
the CLtoDestP association, the subsequent process is initiated for execution.
Association: hasInPort. The connection between InputPorts and a Process is
specified by the hasInPort association.
Association: hasOutPort. The connection between OutputPorts and a Process is
specified by the hasOutPort association.
Association: hasDefaultParam. For specifying default input Data to a Process,
the hasDefaultParam is directly linked between a Data class and an InputPort. The
hasDefaultParam association allows workflows with special configurations to be de-
fined.
Association: outPortToDL. For establishing data sharing among Processes, the
OutputPort of a Process needs to be connected to a DataLink class. For this, the
association outPortToDL is used.
Association: DLToInPort. For indicating that the output of a process via a
DataLink is consumed by another process, the DLToInPort association between the
corresponding DataLink and an InputPort needs to be specified.
Association: inPortToDL. For representing data sharing between the OutputPort
and InputPort of independent processes, the DLToInPort and the outPortToDL asso-
ciations are used. However, for representing sharing of data between nested processes,

96 Chapter 5. Provenance Management in WfMSs

wherein data is passed via the InputPorts, the inPortToDL association is used.
Association: DLToOutPort. Similar to inPortToDL, for exposing the output gen-
erated by a nested process through the OutputPort of its parent process, the DL-
ToOutPort association is used. The DLToOutPort connects the OutputPort of a
nested process to the OutputPort of its parent process via DataLink.
Association: wasAttributedTo. The wasAttributedTo is an association adopted
from the PROV vocabulary. It is used to relate a Process to a User that is responsible
for its creation.
Association: wasDerivedFrom. The wasDerviedFrom associations is adopted
from the PROV vocabulary for representing the evolution of a Process or a Workflow.

ProvONE retrospective provenance
Class: ProcessExec. For a Process defined in a workflow, the ProcessExec class
represents its runtime execution. If a Process represents an entire workflow, then the
ProcessExec represents the entire execution trace. There can be multiple ProcessExec
classes for a given Process class. Similar to other ProvONE classes, the details of an
execution can be described using the PROV, DC, or WfMS-specific vocabularies.
Class: Data. The Data class represents the basic unit of information that is either
consumed or produced by a Process. For example, if a process produces images as
output, then using appropriate vocabularies the Data class will describe the details
of these images such as location of the image in a repository, size and format of the
image, a PID that uniquely identifies this image, and/or a brief description about the
image.
Class: Collection. The Collection class represents a generalization of the Data
class. With the Collection class, similar Data items can be organized together. For
example, in eCodicology, the digitized images of a manuscript are structured using the
Collection class, where each image represents a Data entity, and the entire manuscript
is a Collection.
Association: wasAssociatedWith. For connecting the prospective provenance
Process class with its execution details in the retrospective provenance ProcessExec
class, the wasAssociatedWith associations is used.
Association:dataOnLink. The dataOnLink association connects execution trace
details by connecting the Data class in retrospective provenance to the DataLink
prospective provenance. It effectively specifies the Data item that was shared between
processes.
Association:used. The used association represents the relationship between a Pro-
cessExec and Data it consumed during its execution.
Association:wasGeneratedBy. Contrary to the used association, the wasGenerat-
edBy represents the Data that was produced by a ProcessExec class.
Association:wasInformedBy. The equivalent representation of data sharing be-
tween processes via the SeqCtrlLink and the output-input ports is the wasInformedBy
association. The wasInformedBy captures the execution order of processes. However,

5.2. Preliminaries 97

for a deterministic workflow, this association can also be derived from the prospective
provenance, i.e., either from the SeqCtrlLink or from the DataLink between Processes.
Association:isPartOf. The isPartOf association enables to specify a structure to
the ProcessExec instance. A parent ProcessExec representing a workflow has child
ProcessExec representing either individual processes or nested workflows.
Association:wasDerivedFrom. The wasDerivedFrom represents a relation between
data structures that are produced during the execution of a workflow. The was-
DerivedFrom is useful for independently tracking the data derivation beginning from
the raw input data to the result.
Association:hasMember. To represent the relation between Data items and a
Collection, the hasMember association is used.

5.2.2 Control driven vs. Data driven workflow languages

Workflow languages are primarily classified as control-driven, control-flow languages
or data-driven, data-flow languages, while few workflows are classified as hybrid-
workflows that adopt a combination of both control-flow and data-flow. The prime
difference between these languages is how the activities are invoked. In case of control-
flow languages, an explicit connection representing the transfer of control needs to be
specified between activities. On the other hand, in data-flow workflows, the activities
are invoked with the availability of data on their input ports.
Control-flow languages. The control-flow languages have originated from the
scripting language, wherein applications are systematically chained together using a
shell script to construct a larger complex application. Similarly, control-driven work-
flow languages are based on a specification that provides a set of control structures
for assembling activities that are to be executed in a pre-determined order. Not only,
do these languages allow defining a control-flow among activities, but also a data-flow
between activities can be defined.

Typically, a control-flow language offers more than just sequential or concurrent
execution of activities. Referring to the BPEL specification, for branching the execu-
tion of workflow based on some condition, these languages provide switch, if-else, and
pick control structures. In case of repeated execution of a sub-section of a workflow,
looping control structures such as while, foreach, and repeat-until are available. These
control-structure enable workflow designers to define workflow with maximal gran-
ularity. Moreover, control-flow languages like BPEL offer the possibility to handle
runtime exceptions using faultHandlers control structure safely.

Considering BPEL as concrete example of a control-flow language, we explain the
characteristics of a control-flow language. BPEL is the most widely adopted work-
flow language for business workflows as well for designing scientific workflows for Grid
infrastructures. BPEL allows description of both behavioral service interface and exe-
cutable service processes. Considering the focus of this chapter, i.e., the translation of
execution order of workflow defined in BPEL to ProvONE, we consider the executable

98 Chapter 5. Provenance Management in WfMSs

service processes in BPEL. In principle, the execution order of activities defines (struc-
tured activities) partners involved during communication (partnerlinks), and messages
exchanged between processes. In BPEL, there are two types of activities, Primitive
activities and Structure activities.

Primitive activities. The primitive activities are to perform the actual oper-
ations in a BPEL workflow, i.e., they provide the structure to communicate with
external partner services defined in the WSDL. The important primitive activities are
invoke, receive, and reply. The invoke activity is used to call an external web-service
specified by the partner link, the receive activity is a channel for sending data to a
workflow from an external partner service, while the reply activity is used to send a
response to an external partner service. For systematically organizing the primitive
activities, in order to accomplish a given task, the primitive activities need to be
declared within structure activities.

Structure activities. Each structure activity available in BPEL imposes an
execution constraint over the primitive activities defined within it. This restriction
is necessary for designing efficient workflows that require a precise execution order.
Structure activities can be nested within each other. However, it should be noted
that the constraint of a parent activity is exercised on the immediate children
activities. For example, multiple independent sequence activities nested within
a flow activity follow the constraint of parallel execution enforced by the flow
activity and all sequence activities are triggered for concurrent execution. However,
the invoke activities within each sequence activity are executed sequentially. The
following structure activities are available in BPEL: (a) sequence activity is the
control structure for sequential execution of tasks, (b) flow activity enables parallel
execution of tasks, (c) switch activity is used for conditional routing, (d) pick activity
allows execution of activities based on events that are received from an external
source, or time-based execution of activities based on timeout duration, and (e)
while activity is a control structure for looping over activities that need to be repeated.

Data-flow languages. In a data-flow language, a graph data model is used to
represent a workflow, where the nodes represent activities, and the edges represent
transfer of data between the activities. The incoming edges to an activity describe the
input to an activity, and the outgoing edges represent an output of activity. As the
core principle of any data-driven workflow language is the execution of activities based
on the availability of data on their input ports, most of the data-flow languages do
not offer any control structures for implicitly defining the execution-order of activities.
Thus, compared to control-flow languages the data-flow languages are simple.

Most workflow languages in the domain of scientific WfMSs are based on the
principle of data flow between the input-output ports of the processes [67, 100, 172].
The prominent and the widely adopted languages are the SCUFL and the MoML
language.

SCUFL is principally a data-flow language with few constructs to allow explicit

5.2. Preliminaries 99

ordering of tasks. A task in SCUFL is described using the hprocessori construct with
input and output ports for consuming and producing the data. For declaring the
data dependencies among processors, the hdatalinki construct is used. The hdatalinki
contains a list of relations that define the connection between the input and output
ports. The Taverna WfMS implement a greedy scheduling technique that executes
processes as soon as data is available on their input ports. The creation of new
execution thread is limited by the number of threads defined by the scheduler.

In the case of Kepler WfMS, the workflows are described in MoML specification.
The workflow tasks are represented by actors that have input and output ports to share
data between them. However, for orchestrating the execution of actors in a workflow,
Kepler provides the notion of directors whereby each director in Kepler implements
a specific Model of Computation (MoC) [66]. The notion of tokens determines the
execution of an actor. When an actor receives a token, it is executed a given number
of times, and as it executes new tokens are fired with resulting data sent to the output
port. Kepler WfMS primarily supports four core directors.

– Synchronize Data Flow (SDF): For SDF directed workflow, there is fixed number
of tokens consumed and produced per firing. An actor is invoked as soon as data
is available on the input ports. All actors within a workflow have to declare their
token production before execution. The SDF director is suitable for modeling
linear or sequentially executing workflows.

– Process Network (PN): In a PN directed workflow, each actor is given an exe-
cution thread. The actors in PN modeled workflow are loosely coupled and are
executed immediately after availability of data on an actor’s input port. The
token firing schedule of the actors is not calculated statically in a PN directed
workflow. This director is suitable for managing workflows that require parallel
processing on distributed systems.

– Continuous Time (CT): In a CT directed workflow, each token is affixed with
a time stamp to perform system simulations. This director keeps track of time
for each iteration and also the time between each iteration. The workflow is
iterated for a given number of times to reach the desired stop condition.

– Discrete Events (DE): The DE director uses event tokens that consist of a data
token and time stamp with auxiliary information that helps the director deter-
mine the execution order of an event. These events are organized as a temporal
queue on a global time scale. There are two ways in which a DE modeled work-
flow terminates: (a) the stop time of the earliest event is reached, or (b) all the
temporally organized events on the global timescale are completed.

Based on the director specified in a workflow, the execution order of actors is
determined at runtime by the Kepler WfMS. However, the definition of a workflow is
independent of a director, i.e., the description of actors and their relation (potential

100 Chapter 5. Provenance Management in WfMSs

data dependencies) is specified during the design of the workflow, using the input and
output ports.

5.2.3 Patterns in Control-flow languages

Control-flow languages such as BPEL are rich with constructs that allow designing
of complex workflow patterns. An in-depth analysis of workflow design patterns for
control-flow workflow languages is described by Russel et al. [133]. In this section, we
present the design patterns that are supported by the BPEL specification [171]. These
patterns are necessary to evaluate the completeness of the Prov2ONE algorithm in
translating BPEL workflows into their equivalent representation in ProvONE prospec-
tive provenance.

(a) Sequence (b) Parallel Split (c) Synchronization

Figure 5.2: Control-flow language patterns

Sequence: The Sequence pattern is the simplest pattern in a control-flow lan-
guage. A series of tasks that are to be executed consequently are defined using
the Sequence pattern. Figure 5.2a shows a sequence pattern with two tasks A
and B that are connected via an edge denoting that task B will start after com-
pletion of task A. In BPEL, the hsequencei control structure is used to define a
series of tasks that are to be executed in sequence. A hsequencei activity can con-
tain primitive activities like hinvokei, hreceivei, or hreplyi or other structure activities.

Parallel Split: The Parallel Split pattern also called as AND-split allows for
concurrent execution of multiple tasks. In a Parallel Split pattern, the thread of
execution is divided into two or more branches that are executed in parallel that may
or may not merge or re-synchronize, i.e., each branch may complete independent.
An example of a Parallel Split pattern with three tasks that are to be concurrently
executed is shown in Figure 5.2b. In BPEL specification the hflowi control structure
is used to design a Parallel Split pattern.

Synchronization: The Synchronization pattern also called as an AND-join (see
Figure 5.2c) represents the merging of parallel branches. The branches that were
created by a Parallel Split control structure are merged after their completion. Figure
5.2c shows the merging of Parallel Split with three tasks. In a BPEL workflow, this
is represented by the completion of a hflowi control structure.

5.2. Preliminaries 101

(a) Exclusive Choice (b) Simple Merge (c) Multi-Choice

Figure 5.3: Control-flow language patterns

Exclusive Choice: The Exclusive Choice pattern, also knows as an XOR-join, the
execution control is transferred to only a single branch, i.e., for a workflow containing
two or more parallel branches, the Exclusive Choice pattern allows the execution
of a specific branch based on a decision that occurs at the runtime. For example,
Figure 5.3a shows a pictorial representation of the Exclusive Choice pattern, the
path beginning with task B will be executed. In BPEL, this pattern is realized using
a hswitchi or hflowi with links control structure.

Simple Merge: Similar to the Synchronization pattern, the Simple Merge pattern
allows the merging of parallel branches without the need for synchronizing the
branches. The Simple Merge is also called as an XOR-join and is shown in Figure
5.3b. The Simple Merge in BPEL is represented with the completion of hswitchi or
an interlinked hflowi control structure.

Multi-Choice: The Multi-Choice pattern, also known as the OR-split pattern is
shown in Figure 5.3c. The Multi-Choice pattern is similar to the Parallel Split
pattern. However, instead of executing all the subsequent branches as in the
case of Parallel Split, in a Multi-Choice design, either a single branch or multiple
branches are executed. The decision of selection of the branches is made at run-
time. In BPEL, this pattern is realized using an interlinked hflowi construct structure.

Structured Loop: For executing a task or a subset of a workflow repeatedly, the
Structured Loop pattern is used. The loop pattern has a single point of entry and
exit, with a precondition or a postcondition to determine the continuation of the
loop. In BPEL, the Structured Loop is realized using the hwhilei control structure.
An example of Structured Loop pattern is shown in Figure 5.4a.

Implicit Termination: The Implicit Termination pattern states that a workflow or
a sub-workflow should terminate when no tasks are remaining. This pattern is used
for determining the completion of a workflow or a sub-workflow. In BPEL, the hflowi
provides an implicit termination of each branch, whereas for other control structures
it is necessary to assign a hterminatei activity. The design pattern illustration for
Implicit Termination is same as the Parallel Split pattern, shown in Figure 5.2b.

102 Chapter 5. Provenance Management in WfMSs

(a) Structured loop (b) Multiple instances

Figure 5.4: Control-flow language patterns

Multiple Instances with a Priori Design-Time Knowledge: For workflows
designed with this pattern, the required number of instances of tasks are known at
design time. The Multiple Instances pattern with a prior design-time knowledge of
two predefined tasks B1 and B2 are shown in Figure 5.4b. The instances of these tasks
are independent of each other and are executed simultaneously. For the subsequent
tasks to be invoked, it is necessary to synchronize the completion of the task instances.
In BPEL, this pattern is realized by the hflowNi or the hforeachi control structure.

Multiple Instances with a Priori Run-Time Knowledge: This pattern is similar
to the Multiple Instances with a Priori Design-Time Knowledge pattern. The only
difference is that the decision of creating the number of instance of a task or a set
of tasks is deferred to the latest possible time during the workflow execution. This
pattern is useful when runtime factors such as data and resource availability, inter-
process communication, or external input from a user are to be considered. In BPEL,
this pattern is realized by the hflowNi or the hforeachi control structure.

Multiple Instances without Synchronization: For creating multiple instances
of a task within the same workflow, the Multiple Instances without Synchronization
pattern is used. The instances of a task are independent of each other and do not
need to be synchronized after completion. In BPEL, this pattern is realized by
specifying a hinvokei activity in a hwhilei activity.

(a) Deferred Choice (b) Critical Section

Figure 5.5: Control-flow language patterns

5.2. Preliminaries 103

Deferred Choice: The Deferred Choice pattern allows the execution of one or more
branches of a workflow based on a predetermined condition. In a workflow with a
Deferred Choice pattern, all the possible future paths of execution are predefined,
and during the execution time, based on an external factor the appropriate branch
or branches are executed. These factors can be external messages, timeout events,
resource availability, or incoming messages. In a BPEL workflow, this pattern is
realized using the hpicki control structure. Figure 5.5a shows an example of a
Deferred Choice pattern.

Persistent Trigger: The Persistence Trigger is similar to the Deferred Choice
pattern, wherein a task is triggered by a different process or from an external service.
Typically, a task or a set of tasks are executed based on a message that is received
from an external source. This message is persistent until the appropriate task can
handle it. In BPEL, this pattern is realized using the hpicki structure activity with
a set of honMessagei activities. Each honMessagei activity has a variable attribute
that handles a specific type of message and based on the message the corresponding
subsection of the workflow is executed.

Critical Section: The Critical Section pattern shown in Figure 5.5b allows execution
of a part of a workflow in isolation. Tasks C1 and C2, and E1 and E2 are part of
independent critical sections. This pattern is required when tasks in a given section
require exclusive access to shared resources for their completion. Moreover, if there
are multiple critical sections in a workflow, then it is necessary for one critical section
to complete for the other one to commence. In BPEL, this pattern is supported by
serializable scope with the attribute variableAccessSerializable is set to yes.

Interleaved Routing: The Interleave Routing pattern is similar to the Critical
Section pattern, wherein each task in a section of workflow has to be executed only
once. The order in which these tasks are executed is not important. However, all
the tasks in a section have to be completed before subsequent tasks are executed. In
BPEL, this pattern can be realized by embedding a hscopei within the context of a
hpicki control structure.

From the various patterns supported by the BPEL control-flow language, it is clear
that the structural design of these patterns follows either a sequential organization of
activities or a parallel organization of activities. The aim of the Prov2ONE translation
algorithm explained in Section 5.3.2, is to translate the workflow execution order and
the data flow structure defined in a BPEL-workflow into its equivalent representation
in ProvONE.

104 Chapter 5. Provenance Management in WfMSs

5.2.4 Provenance management in WfMSs

Considering the goal of this chapter, which is the provenance interoperability between
heterogeneous WfMS. First, it is necessary to understand the provenance manage-
ment capabilities of existing WfMSs. For this, we consider two different data-driven
WfMSs, namely the Taverna and Kepler WfMSs and explain their provenance
management architectures. In the case of control-driven WfMSs, we consider the
ApacheODE WfMS. However, provenance management in a BPEL-based WfMS is a
novel research topic, and literature yields no previous work on this subject. Hence,
we present our first contribution in the research area of provenance handling in BPEL
WfMS [125].

Provenance management in Taverna WfMS
Modeling of provenance in Taverna is based on domain aware Janus provenance
model, which is an extension of the Provenir ontology. In principle, the Janus model
has two parts: (a) domain-agnostic part that models the same information stored in
the Taverna provenance model and (b) domain-aware part that extends the ontology
to include properties and classes specific to given domain. Currently, Taverna does
not support handling of workflow definition and evolution. During the execution of a
workflow, runtime events from the Taverna WfMS are persisted in a Taverna-specific
relational schema2. However, for enabling provenance interoperability, Taverna was
extended with the PROV plugin to export the provenance in PROV model. For
analyzing the provenance traces, SPARQL queries can be executed over the exported
PROV graphs.

Provenance management in Kepler WfMS
The Kepler WfMS is enhanced with the Provenance add-on module (Provenance
Framework) that provides the recording of workflow execution history [5]. This mod-
ule can be further extended with with the Reporting and Workflow Run Manager
modules. The overarching architecture design goal was to implement a plugin-based
framework that includes an interface for configuring data models, metadata formats,
and cache destinations. The separation of concern design principle modeled for the
Kepler directors is also applied for the Provenance Framework. Moreover, to cus-
tomize the capturing of provenance at user required level of granularity, different
configuration parameters are offered. Kepler also captures the evolution of a workflow
definition, i.e., the changes to a given workflow definition are also captured by the
system. This allows tracking of workflow design, the corresponding executions and
the parameters that yielded the required results.

The collection of complete provenance for a workflow is performed in two steps.
First, the workflow definition in MoML is converted into to Kepler’s internal prove-
nance format. Second, for collecting the information generated during a workflow

2
http://dev.mygrid.org.uk/wiki/display/developer/Provenance+schema+in+2.2.0

5.2. Preliminaries 105

execution, several event listeners are implemented in Kepler. Each event listener is
registered for specific concern, when a given concern occurs, the corresponding event
listener is notified to take the appropriate action. For controlling the granularity
of the provenance captured by the framework, event listeners can be registered or
unregistered from the framework.

Figure 5.6: Architecture of Provenance Management in SDR [125]

Provenance management in BPEL WfMS
From literature, it is evident that BPEL-based WfMSs have widely been adopted
for orchestrating complex workflows over distributed Grid infrastructure [52, 54, 105,
138, 151, 165]. Typically, in silico scientific experiments are not a single step process
but involve multiple steps that need to be systematically coordinated to produce the
desired results. The first step towards execution of workflows on a Grid infrastructure
is the integration of a WfMS with the scientific data repository architecture. For this,
we chose a BPEL-based WfMS and integrated it into the scientific data repository.
The provenance management architecture of a BPEL-based WfMS that is integrated
with a scientific data repository is explained below.

As stated before, comprehensive provenance consists of two parts, the workflow
definition, and the workflow execution information. A common aspect among BPEL-
based WfMSs is that the workflows are defined using the standard BPEL-specification.
Depending on the architecture design, each WfMS implements the necessary function-
ality to capture and expose the runtime events of a workflow execution. For example,
the start and end time of a process and the input and output data consumed or
generated by a process.

As a prototype implementation to substantiate our concept, we chose the
ApacheODE WfMS. The ApacheODE exposes the retrospective provenance in the

106 Chapter 5. Provenance Management in WfMSs

form of events through the dedicated Management API. The Management API pro-
vides the execution details of each process and the data shared between processes.
The integration architecture the Provenance Manager with a BPEL-based workflow
engine and a scientific data repository is shown in Figure 5.6. The description of
the prospective and retrospective translation rules between BPEL, ApacheODE, and
ProvONE are described in Section 5.3. The Provenance Manager is responsible for
collecting, translating and generating the ProvONE provenance graphs. This module
comprises four sub-modules. The explanation of each sub-module is as follows:

– Prov2ONE: For translating the workflows from BPEL to ProvONE prospective
provenance, the Prov2ONE algorithm is implemented as a REST service that is
used to submit a workflow archive containing a BPEL workflow. The ProvONE
graphs are serialized in RDF data model and stored in Apache Jena.

– WF Engine Provenance Collector: To complete the creation of the ProvONE
graphs, the Workflow (WF) Engine Provenance Collector is responsible for
polling the events generated by the ApacheODE WfMS and translating them
into ProvONE and appending them to the ProvONE prospective graph.

– NORDR Provenance Collector: For enriching the ProvONE prospective graphs
with the audit trail, the NORDR provenance collector propagates these audit
trail generated by the NORDR services and appends them to the ProvONE
prospective graph.

– OPM/PROV Provenance Exporter: For sharing retrospective provenance inter-
operability, the OPM/PROV Provenance Exporter sub-module exports only the
retrospective provenance in PROV ontology.

This section explained the provenance capturing capabilities of existing WfMS
as well as our first contribution for enabling BPEL-based WfMS with provenance
handling functionality. In the next section, we present a provenance interoperabil-
ity framework that allows sharing, querying, and analyzing of both prospective and
retrospective provenance from different WfMSs.

5.3 Provenance Interoperability Architecture

In this section we present the overall architecture of the P-PIF (Figure 5.7), and
briefly describe the components that are necessary for collecting, modeling, storing,
and querying the provenance from various WfMSs. Currently, ApacheODE, Taverna,
and Kepler WfMSs are supported by the P-PIF architecture.
Provenance Adapters: Adapters are the bridge between WfMSs and the P-PIF.
Each adapter collects the necessary retrospective provenance from the respective
WfMS and submits it to the Workflow System Provenance Collector sub-module
through the exposed REST-API, where the retrospective provenance is appended to
the ProvONE prospective provenance.

5.3. Provenance Interoperability Architecture 107

Figure 5.7: Architecture of Provenance Interoperability Framework
(P-PIF)

To capture retrospective provenance, the ApacheODE adapter integrates the Man-
agement API3 provided by ApacheODE WfMS. The Taverna adapter integrates two
sources that trace retrospective provenance: (a) a REST-API4 that provides runtime
events of a workflow run, and (b) the Taverna-PROV5 plugin that exports a prove-
nance trace as a PROV-O RDF graph. The Kepler adapter integrates the Provenance
Query API6 exposed by the workflow system to retrieve the retrospective provenance
as PROV traces in JSON format.
Core Component: The core component module comprises four sub-modules that
collectively build the functionality for automating the handling of provenance infor-
mation from heterogeneous WfMSs.

– Prov2ONE: A Java implementation of the Prov2ONE algorithms is implemented
in this sub-module. For each execution of a workflow defined in BPEL, MoML, or
SCUFL, an RDF specification complying ProvONE prospective graph is created
in the Apache Jena TDB. Details of the Prov2ONE algorithms are presented in
section 5.3.2.

– Workflow System Provenance Collector: This component holds the implementa-
tion of the mapping rules necessary for translating the retrospective provenance
submitted by each provenance adapter to the ProvONE retrospective model.
This sub-module exposes a REST-API10 for allowing the provenance adapters
to submit the retrospective provenance. The mapping between ProvONE retro-
spective model and the runtime provenance traces from WfMSs is described in
Section 5.3.4.

3
http://ode.apache.org/management-api.html

4
http://dev.mygrid.org.uk/wiki/display/tav250/REST+API

5
https://github.com/taverna/taverna-prov

6
https://code.kepler-project.org/code/kepler/trunk/modules/provenance/docs/provenance.pdf

108 Chapter 5. Provenance Management in WfMSs

– Object Graph Mapping: This sub-module allows integration of ad hoc database
systems or RDF triple stores with the P-PIF. Currently, Apache Jena TDB
library that allows storing the ProvONE graphs as RDF triple and querying
using the SPARQL is supported through this sub-module.

– Provenance Queries: The provenance retrieval queries are implemented using
the query language supported by the database system and are exposed as REST
services. These REST services allow easy integration in a graphical web inter-
face for intuitive visualization of the provenance graphs. The queries from the
first provenance challenge with the six additional queries that are specifically
designed considering the ProvONE model are introduced in Section 5.4.2. The
queries are implemented using the SPARQL query language and exposed as
REST services.

Table 5.1: BPEL to ProvONE mapping rules

BPEL:Activity ProvONE:Class ProvONE:Association
1 process, scope workflow wasDerivedFrom

2 invoke, receive, reply,
onMessage process —

3 invoke.inputvariable,
receive.variable inputPort hasInPort

4 invoke.outputvariable,
reply.variable outputPort hasOutPort

5 assign.copy.from datalink outPortToDL
6 assign.copy.to datalink DLToInPort

7 sequence, flow, pick seqctrllink sourcePToCL,
CLToDestP

5.3.1 Vocabulary mapping rules between ProvONE and scientific
workflow specifications

In this section, we present the mapping rules between the workflow specifications
and the prospective classes and associations of the ProvONE model. Typically, as
the workflow specifications do not change frequently, the mapping rules need to be
defined only once per workflow language.

BPEL and ProvONE mapping. BPEL is built on top of XML and uses the
Web Service Definition Language (WSDL) for specifying web services for external
communication, making BPEL the prime candidate for defining workflows that are to
be executed on a Grid environment [54]. A BPEL workflow starts with the process
activity that holds the name and the namespace of the process, and a variables element
that holds the data (input and output) used by the web services during the execution.
The BPEL activities considered for constructing the ProvONE prospective graph are

5.3. Provenance Interoperability Architecture 109

the structure and the primitive activities. The fault-handling activities that occur
during the execution of a workflow are handled as retrospective provenance.

Structure Activities: Structure activities enclose primitive activities to define
a workflow composition. Structure activities are: (1) sequence: a sequence activity
defines sequential execution of operations; (2) flow : a flow activity defines parallel
execution of operations; (3) pick : a pick activity performs a specific operation when
a given event occurs; (4) scope: a scope activity allows to define a nested workflow.

Primitive Activities: Primitive activities are used to execute tasks such as: (1)
invoke: the invoke activity is used to call a web service; (2) receive: the receive activity
is used to accept an input; (3) reply : the reply activity is used to send a response.

The mapping rules between BPEL activities and ProvONE prospective classes and
associations are described in Table 5.1. The details of the rules are as follows:

Rule 1: A BPEL process or a scope activity is used to define a workflow or a nested
workflow respectively. Similarly, in ProvONE the workflow class represents a workflow
in its entirety. For process or scope activity in BPEL, the corresponding representation
in ProvONE is the workflow class with the wasDerivedFrom association.

Rule 2: The BPEL primitive activities represent an execution task (i.e., it is used
to perform an actual task in a workflow). Similarly, the ProvONE process class repre-
sents a computational task. For each primitive activity, the corresponding ProvONE
representation is the process class. Even conditional activities such as if-else and while
are also represented as an individual process class. Thus, allowing tracing (querying)
of the conditions that led to the execution of a specific path in a workflow.

Rule 3 and 4: In BPEL, data is passed to the invoke and receive activities
through the inputvariable and the variable attributes. The definition of the variables
is extracted from WSDL or XSD and modeled in ProvONE inputPort class with the
association hasInPort. Similarly, for the outputvariable and the variable attribute for
invoke and reply activities the corresponding ProvONE representation is the output-
Port with the association hasOutPort.

Rule 5 and 6: In BPEL data is shared using the copy element of the assign
activity. For each assign activity, the corresponding ProvONE representation is the
datalink class with associations outPortToDL and DLToInPort.

Rule 7: The execution order of the primitive activities in BPEL is governed by
the structural activities such as sequence, flow, and pick. Based on the structural
activity the corresponding sequential execution or parallel execution structure among
the ProvONE processes is represented using seqctrllink with the associations sourceP-
ToCL and CLToDestP.

SCUFL and ProvONE mapping. Workflows in Taverna are defined using the
SCUFL specification. SCUFL is a data-flow centric workflow language that consists
of a set of processes identified by the processor element. A processor element encloses
an activity element that determines the execution type of the processor. For example,
an activity can be a dataflow indicating a nested-workflow, beanshell indicating a

110 Chapter 5. Provenance Management in WfMSs

Table 5.2: SCUFL to ProvONE mapping rules

SCUFL:Element ProvONE:Class ProvONE:Association
1 dataflow workflow wasDerivedFrom
2 processor process —
3 inputPorts inputPort hasInPort
4 outputPorts outputPort hasOutPort

5 datalink.source.port datalink outPortToDL,
DLToOutPort

6 datalink.sink.port datalink DLToInPort,
inPortToDL

7 datalink.source,
datalink.sink seqctrllink sourcePToCL,

CLToDestP

shell script, or rest indicating an HTTP REST service. For receiving and sending
data between processors, each processor is associated with a set of input and output
ports, and datalinks that allow passing of data between processors. The mapping
rules between SCUFL elements and ProvONE prospective classes and associations
are described in Table 5.2, and the explanation of each rule follows below.

Rule 1: The topmost element that defines a workflow or a nested workflow is
defined by a dataflow element in SCUFL. For each dataflow element, the corresponding
ProvONE representation is the workflow class with the wasDerivedFrom association.

Rule 2: Each computational task in SCUFL is defined in the processor element.
Thus, each processor element is modeled as a ProvONE process class.

Rule 3 and 4: In SCUFL the input and output of a processor are defined in the
inputPorts and outputPorts elements. Thus, for the ports defined for a processor, the
corresponding representations in ProvONE are the inputPorts and outputPorts of a
process, with the associations hasInPort or hasOutPort.

Rule 5, 6 and 7: Data sharing between processors in SCUFL is specified through
the pair datalink.source.port and datalink.sink.port. For each such source-sink pair, the
equivalent representation in ProvONE is the datalink class. Moreover, the execution
order is determined based on the sharing of data between ports, and is mapped to the
seqctrllink class to capture and maintain the same execution order in ProvONE.

MoML and ProvONE mapping. Workflows in Kepler are defined using the MoML
specification [100]. A MoML workflow is based on the principle of actor and director.
MoML actors are either simple or composite and are declared in the entity element. A
simple actor is an atomic processing unit that is responsible for performing a task. A
composite actor allows multiple simple actors to be bundled together to define a nested
workflow. Actors have input and output ports for receiving and sending data. The
data sharing among actors is realized through the link element using the reference
of a relation element. The mapping rules between MoML elements and ProvONE
prospective classes and associations are listed in Table 5.3, and the explanation of
each rule follows below.

5.3. Provenance Interoperability Architecture 111

Table 5.3: MoML to ProvONE mapping rules

MoML:Element ProvONE:Class ProvONE:Association
1 compositeActor workflow wasDerivedFrom
2 actor process —
3 port.input inputPort hasInPort
4 port.output outputPort hasOutPort

5 link.port and
relation datalink DLToInPort, inPortToDL,

outPortToDL, DLToOutPort

6 link.port and
relation seqctrllink sourcePToCL, CLToDestP

Rule 1: In a MoML workflow the compositeActor represents an entire work-
flow or a nested workflow. For each compositeActor, the equivalent representation in
ProvONE is the workflow class with the wasDerivedFrom association.

Rule 2: An actor in MoML defines a processing task. For each actor defined in
a MoML workflow, the equivalent representation in ProvONE is the process class.

Rule 3 and 4: Data exchange among MoML actors happen through the port.input
and port.output elements, the equivalent representation in ProvONE that captures
data exchange among processes is through the inputPorts and outputPorts classes.

Rule 5 and 6: In MoML, to share data among actors, relations are defined with
their reference in the link element. The equivalent representation for a MoML relation
is the ProvONE datalink class. Additionally, the execution order is determined based
on the link element, and is mapped to the seqctrllink class to maintain it in ProvONE.

5.3.2 Prov2ONE Algorithm

In this section, we present the Prov2ONE algorithms. Each algorithm accepts a
valid workflow defined in either BPEL, SCUFL, or MoML as input and generates
the corresponding ProvONE prospective graph. In all of the three algorithms, the
following set of ProvONE classes (⌃) and associations (⌦) are used for creating the
labeled graph:

⌃ = {Workflow, Process, InputPort, OutputPort, DataLink, SeqCtrlLink}
⌦ = {wasDerivedFrom, sourcePToCL, CLtoDestP, hasInPort, hasOutPort, in-

PortToDL, DLToInPort, outPortToDL, DLToOutPort}
Definition 1. A ProvONE labeled graph is defined as a graph G = (V,E,�,), with
the following elements:

• a set of vertices V = {v1, v2, v3, ..., vn}

• a set of edges E ✓ V ⇥ V

• a vertex labeling function � : V ! ⌃

• an edge labeling function : E ! ⌦

112 Chapter 5. Provenance Management in WfMSs

Algorithm 5.1. Prov2ONE:BPEL

Input: Workflow W in BPEL specification . W = {w1, w2, ...wn} is a vector of
nested BPEL activities and each ci has: {.input, .output, .children}
Output: Graph G conforming to ProvONE prospective classes and associations

1: List A:= {sequence,process,while,scope} . List of BPEL structure activities that
produce a sequential pattern

2: List B:= {flow,pick,if,switch,assign} . List of BPEL structure activities that
produce a parallel pattern

3: List P:= {invoke,receive,reply,...,; } . List of primitive activities
4: Stack S := {[process, {R}, {R}]} . R is headset or tailset of primitive activities
5: function Prov2ONE(W,C)
6: for ci in C do
7: if ci 2 P then
8: GENERATEPROVONE(ci) . Create prospective provenance for ci
9: end if

10: if ci 2 A [B then . Get the “top” item from stack
11: top = PEEK(S)
12: current = [ci, ;, ;]
13: if top[0] 2 A then
14: if top[1] == top[2] then
15: if ci 2 A then . Inherit sequential tailset from previous item
16: current[2] = top[1]
17: end if
18: top[1] = ;
19: end if
20: current[1] = top[2]
21: top[2] = ;
22: else . Inherit parallel headset from previous item
23: current[1] = top[1]
24: top[1] = ;
25: end if
26: if ci 2 A and current[2] = ; then
27: current[2]=COPY(current[1])
28: . Copy primitive activities from headset to tailset
29: end if
30: PUSH(S, current)
31: Prov2ONE(W, ci.children)
32: current = POP(S)
33: top = PEEK(S)
34: if top[1] = ; then
35: top[1] = current[1]
36: end if
37: if top[0] 2 A then
38: top[2] = current[2] . Replace sequential tailset
39: else
40: top[2] = top[2] [current[2] . Update parallel tailset
41: end if
42: end if
43: end for
44: end function

5.3. Provenance Interoperability Architecture 113

Algorithm 5.2. Prov2ONE:BPEL (continued)

1: function GenerateProvOne(ci)
2: V = V [{ci} . Add the primitive activity in vertex set V
3: �(ci) = Process . Create Process labeled class
4: top = PEEK(S)
5: ATTACHPORTS(ci) . Attach input and output ports for the Process
6: PROVONEMODEL(ci, top)
7: end function
8: function ProvONEModel(ci, top)
9: �(S) = SeqCtrlLink . Create SeqCtrlLink activity S

10: V = V [{s}
11: if top[0] 2 A then . Create sequential pattern in ProvONE
12: (E) = sourcePToCL . Create sourcePToCl labeled edge E
13: CONNECT(top[2], S, E)
14: (E) = CLtoDestP . Create CLtoDestP labeled edge E
15: CONNECT(S, ci, E)
16: top[2] = {ci}
17: else . Create parallel structure in ProvONE
18: �(S) = SeqCtrlLink
19: (E) = sourcePToCL
20: CONNECT(top[1], S, E)
21: (E) = CLtoDestP
22: CONNECT(S, ci, E)
23: top[2] = top[2] [{ci}
24: end if
25: end function
26: function ATTACHPORTS(ci)
27: �(ci.input) = InputPort
28: (E) = hasInPort . Create hasInPort labeled edge E
29: if in 2 D then
30: L = GET(D, in) . Get the datalink
31: (E) = DLToInPort
32: end if
33: (E) = hasOutPort
34: �(ci.output) = OutputPort
35: �(L) = DataLink
36: (E) = outPortToDL . Create input,output,datalink edges
37: E = E [{(ci.input, ci)
38: E = E [{(ci.output, ci)}
39: E = E [{(ci.output, L)}
40: end function
41: function CONNECT(N , ci, E) . Create edges between processes and

seqctrllinks
42: for n 2 N do
43: E = E [{(n.ci)}
44: end for
45: end function

114 Chapter 5. Provenance Management in WfMSs

Algorithm 5.3. Prov2ONE:SCUFL

Input: Workflow W in SCUFL specification . W = {dataflow1, ..., dataflown}
is a vector of nested SCUFL data activities
Output: Graph G conforming to ProvONE prospective classes and associations

1: P := {p1, ..., pn} set of SCUFL processor . Each pi is a vector consisting:
{.activity, .inputPorts, .outputPorts}

2: List T := {[processor, {IP}, {OP}]} . IP, OP are vectors of input and output
ports associated with each processor

3: List A := {dataflow, beanshell, rest, ...} . List A consists of activities supported
by SCUFL

4: List D := {d1, ..., dn} vector of datalinks
5: function Prov2ONESCUFL(W.dataflow)
6: for pi 2 P do
7: if pi.activity = A.dataflow then
8: �(pi) = Process
9: �(w) = Workflow . Distinguish the nested workflow

10: CONNECT(pi, w, ;)
11: ATTACHPORTS(pi) . Attach input and output ports to dataflow
12: PROV2ONESCUFL(pi) . Recursive call for nested dataflow
13: end if
14: �(pi) = Process
15: ATTACHPORTS(pi) . Attach input and output ports to process
16: ADD(T, [pi, IP,OP]) . Add process, inputPorts, outPorts in T
17: end for
18: for di 2 D do
19: �(L) = DataLink . Create DataLink labeled class L
20: Ps = READ (T, di.source.processor)
21: (E) = outPortToDL
22: CONNECT(Ps.OutputPort,L,E)
23: Pd = READ (T, di.sink.processor)
24: (E) = DLToInport
25: CONNECT(L,Pd.InputPort,E) . Create datalink between the ports
26: �(S) = SEQCTRLLINK
27: (E) = sourcePToCL
28: CONNECT(Ps,S,E) . Create seqctrllink between the processes
29: (E) = CLToDestP
30: CONNECT(S,Pd,E)
31: DELETE (T ,Ps,Pd)
32: end for
33: end function
34: function ATTACHPORTS(pi)
35: for pi.inputPort and pi.outputPort do
36: ADD(IP, port)
37: (E) = hasInPort
38: �(port) = InputPort
39: CONNECT(pi,port,E) . Attach InputPort to process pi
40: ADD(OP, port)
41: (E) = hasOutPort
42: �(port) = OutputPort
43: CONNECT(pi,port,E) . Attach OutputPort to process pi
44: end for
45: end function

5.3. Provenance Interoperability Architecture 115

Algorithm 5.4. Prov2ONE:MoML

Input: Workflow W in MoML specification
Output: Graph G conforming to ProvONE prospective classes and associations

1: List S := {[actor, {IP}, {OP}]}
2: List T := {[relation, {links}]}
3: List R := {r1, r2, ..., rn}, List L := {l1, l2, ..., ln} is a set of relation and links
4: function Prov2ONEMoML(W.ei)
5: for ei 2 W do
6: if ei = CompositeActor then
7: �(ei) = Process
8: �(w) = Workflow . Create a Workflow labeled Process in ProvONE
9: CONNECT(ei,w,;)

10: ATTACHPORTS(ei)
11: PROV2ONEMoML(ei)
12: end if
13: �(ei) = Process
14: ATTACHPORTS(ei)
15: ADD(S, [ei.name, IP,OP]) . Add actor,input,output ports in S
16: end for
17: for ri 2 R and li 2 L do . Add all links for a relation in T
18: ADD(T, [ri, {li}])
19: GENERATEPROVONE(T)
20: end for
21: end function
22: function GenerateProvONE(T)
23: for li 2 T [i] do . Create DataLink between ports
24: �(L) = DataLink
25: Ps = READ (S,li) . Get the source Process
26: Pd = READ (S,li) . Get the sink Process
27: (E) = outPortToDL
28: CONNECT(Ps.OutputPort,L,E)
29: (E) = DLToInPort
30: CONNECT(L,Pd.InputPort, E)
31: �(S) = SeqCtrlLink
32: (E) = sourcePToCL
33: CONNECT (Ps,S,E)
34: (E) = CLToDestP
35: CONNECT (S,Pd,E) . Create SeqCtrlLink connection
36: DELETE(T,Ps,Pd)
37: end for
38: DELETE(S,ei)
39: end function
40: function ATTACHPORTS(ei) . Attach all the ports for a Process
41: for ei.ports do
42: (E) = hasInPort
43: �(port) = InputPort
44: CONNECT(pi,port,E)
45: (E) = hasOutPort
46: �(port) = OutputPort
47: CONNECT(pi,port,E)
48: end for
49: end function

116 Chapter 5. Provenance Management in WfMSs

Prov2ONE:BPEL The Prov2ONE:BPEL algorithm comprises two components.
The first component, as described in Algorithm 5.1, maintains the structural defini-
tion of the workflow and the second component (Algorithm 5.2) is for constructing
the ProvONE prospective graph. To identify the starting point of a workflow, a
provone:workflow node corresponding to a bpel:process is created. The stack S is
filled with triples of the form [structural element, head node set, tail node set], and is
initialized with the bpel:process activity. In Algorithm 5.1, from line 12 to line 30, the
BPEL activities are distinguished according to structure activities (defined in List A
and B), or primitive activities (defined in List P). Structure activities are added to
the stack, with their head and tail sets determined according to the topmost activity
on the stack. The algorithm recurses on children activities of the inserted structure
activity, and are gradually popped upon completion (line 37). In Algorithm 5.2, the
PROVONEMODEL function generates either a sequence or a parallel structure in
ProvONE. In the ATTACHPORT function the input and output ports for a process
are connected. The CONNECT function iterates over all the primitive activities, and
the labeled edges between the process and seqctrlink nodes are created. Following
operations for manipulating a stack data structure are used, PUSH for pushing an
element in the stack, POP for removing the topmost element from the stack, PEEK
for checking the topmost element on the stack, and COPY for copying the contents
of a variable.

Prov2ONE:SCUFL The Prov2ONE:SCUFL algorithm comprises two functions,
as shown in Algorithm 5.3. In the Prov2ONESCUFL function, from line 9 to line 40,
the algorithm iterates over all the SCUFL processors and the corresponding struc-
ture in ProvONE is created. For handling nested workflow, if a scufl:processor is
identified as a dataflow activity, then a provone:workflow node is attached with the
provone:process node to distinguish a nested workflow, as shown from line 10 to line
19. A recursive call is made to the algorithm for iterating the elements of the nested
workflow. From line 25 to line 39, based on the scufl:datalinks, the SeqCtrlLink,
DataLink, outPortToDL, DLToInPort, sourcePToCL and CLToDestP are created.

Prov2ONE:MoML Each MoML workflow is attributed with a director that dic-
tates the execution pattern that has to be followed by the Kepler WfMS. However,
regardless of the director, the first step is to translate the entire workflow defini-
tion with all the relations, i.e. the potential data dependencies and execution paths
that are specified in the original workflow to the ProvONE prospective provenance.
Eventually, the exact execution order and the actual data values shared between
actors can be determined with the enrichment of retrospective provenance. The
Prov2ONE:MoML algorithm, as shown in Algorithm 5.4 comprises three functions.
In the PROV2ONEMoML functions, from line 9 to line 15, the MoML entities are
separated either as a composite actor or as a simple actor. As a MoML compos-
ite actor defines a nested workflow, it is mapped to a provone:process node with an
associated provone:workflow node. As shown from line 28 to line 41, the GENER-
ATEPROVONE function iterates over all the moml:relations that are referenced in

5.3. Provenance Interoperability Architecture 117

the moml:link element, and the corresponding SeqCtrlLink, DataLink, outPortToDL,
DLToInPort, sourcePToCL and CLToDestP are created.

5.3.3 Correctness and completeness of the algorithms

In the following, we consider a BPEL, SCUFL, or MoML workflow to be valid if it
conforms to the respective workflow specification, and a correct ProvONE graph as
one which preserves the execution order of the given workflow.
Theorem 1. Let W be a valid workflow defined in BPEL. Then, by the mapping
Rules 1–7 defined in Table 5.1, a ProvONE prospective graph G is generated for W.

Proof. We first guarantee termination. Note that each BPEL child pushes at most
one structural activity with enclosed primitive activities onto the stack, and after each
call to the Prov2ONE method, an activity is popped off the stack. Thus, the stack
becomes empty after a finite number of iterations, which terminates the algorithm.

To prove the correctness of the Prov2ONE:BPEL algorithm, we proceed by induc-
tion on the number of activities defined in the workflow, with an upper bound equal to
the number of structural activities. By correctness, we imply that the execution order
of the primitive activities defined using structural activities for an input workflow is
maintained in the ProvONE prospective graph generated by the algorithm.

For the base case, we have W =;, and the stack S is populated with the process
activity with empty head and tail sets. Then, by Rule 1, the algorithm generates a
singleton graph with a provone:workflow node. For a workflow W, let |W| denote the
number of activities, including an empty structure activity that contains no primitive
activities. Now, for the induction hypothesis, we make the following assumptions:

• For any workflow W such that |W| is the number of activities in a workflow.
Then for |W|  n, the PROV2ONE(W, C) method creates a correct ProvONE
prospective graph.

• Let us assume that a workflow with n+1 activities is handled and let the last
activity in W be x and its immediate parent structure activity be f (i.e., the
structure activity on top of stack S). When PROV2ONE(W, x) is executed the
following holds true:

– S contains every nested structure around x, in the order from the root
bpel:process to the current process f.

– The primitive activities in f[1] and f[2] are accurate if the workflow ended
without handling the structure activity x.

– For a structure activity s 2 S other than f and s[0] 2 A implies s[1] is
empty and s[2] contains the last primitive activity before x.

– For a structure activity s 2 S other than f and s[0] 2 B implies s[1] is
empty and s[2] contains every primitive activity of s excluding those of the
activity x.

118 Chapter 5. Provenance Management in WfMSs

Now consider a workflow W with |W| = n+1. For x 2 A [B, the completion
of x implies x.children = ;, so recursively executing PROV2ONE(W, x) does not
change the content of the stack S. However, for a workflow W* that has the same
composition as the workflow W, but without the structure activity x will generate an
equivalent ProvONE prospective graph as that of W. Thus, |W*| = n, and by inductive
hypothesis it implies that a correct ProvONE prospective graph is generated. When
a structure activity s is popped from the stack S, a recursion is completed. After all
the activities are popped and the stack S is empty, the algorithm terminates.

Suppose x 2 P and |f.children| > 1. By the induction hypothesis, W* run in the
Prov2ONE algorithm would produce a correct graph, so we can assume that f [1] is the
correct head and f [2] would be the correct tail if x /2 W. Then in the GenerateProvOne
component, as per Rules 3–6 the function ATTACHPORTS will create the necessary
inputports, outputports, and the labeled edges for a process.

If f [0] 2 A, then x is connected to a primitive activity in f [2] and replaces the
content of f [2]. If f [0] 2 B, then x is connected to primitive activities in f [1] and added
to f [2]. By the mapping Rule 7, the corresponding sequential or parallel structure is
generated in the function PROVONEMODEL. As |f.children| > 1, f is not an empty
structure before the inclusion of x, so the inductive hypothesis guarantees correctness.

Now, suppose x 2 P and |f.children| = 1, i.e., x is the only activity in f. This implies
that f is empty in W*, so the inductive hypothesis provides no information about how
the head and tail sets of the completed structure activity are passed on to the structure
activity that is on the top of the stack S. For item s that is immediately below f on
the stack, we consider the following cases, beginning at call of PROV2ONE(W, f):

(a) Sequential pattern (b) Sequential nested pattern

(c) While condition pattern

Figure 5.8: ProvONE sequential prospective patterns

Case 1: s[0] 2 A, f [0] 2 A. First we consider when a sequence structure activity
follows another sequence activity. For example, a while activity follows a sequence
activity, or a scope activity is embedded within a sequence activity. If s is non-empty,
then s[1] 6= s[2], so following the call to PROV2ONE(W, x), s[1] = s[2] = ;. By
induction f [1] contains the correct head set passed on from s and f [2] = {x}. Note
that to satisfy the last inductive hypothesis requirement, it is necessary to copy the
contents of f [1] to f [2] before reading x, and this copy is immediately deleted upon

5.3. Provenance Interoperability Architecture 119

reading x. These values are restored in the topmost item of the stack S, as s[1] is
empty it inherits the head of the above structure. As s is empty, it follows the same
procedure, except the set s[1] is moved to f [2], which enables the algorithm to avoid
a redundant copy.

This case is applicable for BPEL workflows with sequentially ordered processes
using the hsequencei, repetitive execution of processes using structured loop hwhilei,
or multiple instances design pattern using hscopei. In Section 5.2.3, we described
the pattern for sequential control-flow structures in Figures 5.2a, 5.4a, and 5.4b. A
sequential execution of arbitrary number of processes (invoke activities) in BPEL is
translated to a ProvONE graph that consists of same number of processes intercon-
nected by a SeqCtrlLink node. An example with two processes is shown in Figure
5.8a. In the case of hwhilei activity, to identify the repetitive section of a workflow,
not only the entire looping condition defined in XPath is copied in the SeqCtrlLink
node, but also the start of the loop is captured in the SeqCtrlLink that is before
the commencing of the loop and the termination of the loop in the SeqCtrlLink that
follows the last process in the loop. Figure 5.8b shows the ProvONE translation of
the while design pattern comprising two tasks illustrated in Figure 5.4a.

(a) Sequential pattern follwed by a parallel pat-
tern

(b) Parallel pattern follwed by a sequential
pattern

(c) Sequential pattern followed by parallel scopes

Figure 5.9: ProvONE parallel prospective patterns

Case 2: s[0] 2 B, f [0] 2 A This case is observed when a sequence activity follows
a parallel activity. For example, a sequence activity follows a flow, switch, or a pick
activity. Initially, f [1] saves s[1], and after calling PROV2ONE(W, x), f [2] = {x}.
Because f starts as an empty structure, we need to copy s[1] in order to fill f [2]. After
returning the topmost item of stack for PROV2ONE(W, f), s[1] is restored, the copy
is deleted, and s[2] := s[2] [f [2] = s[2] [{x} as expected.

This case is applicable for workflows where a parallel execution pattern defined
by hflowi, hpicki, or hswitchi activity are succeeded by sequential patterns like
hsequencei or hwhilei. Initially, the completed set of parallel hinvokei activities are

120 Chapter 5. Provenance Management in WfMSs

copied to the tailset f[2] of the current activity. This allows the systematic merge of
previously completed parallel hinvokei activities. In case of hswitchi or hpicki activity,
the last hinvokei activity from each branch is copied to the tailset f[2] of the current
activity. It should be noted that for translating the exact prospective provenance, it
is not necessary to know whether it is an AND-join, XOR-join, or an OR-join. For
the XOR and OR join, the execution path taken by the workflow is obtained from
the retrospective provenance. Hence, all the paths defined in the original workflow
have to be translated to the ProvONE prospective provenance. This case covers the
Synchronization, Simple Merge, and the Multiple instance with parallel branches
control-flow patterns shown in Figures 5.2c, 5.3b, and 5.4b respectively, and the
pattern realized in ProvONE is shown in Figure 5.9b.

Case 3: s[0] 2 A, f [0] 2 B Assume a parallel activity follows a sequence activity. For
example, a flow structure activity follows a sequence activity. If s is non-empty, then
s[1] 6= s[2], so following the call to PROV2ONE(W, x), s[1] = s[2] = ;. By induction,
the contents of head set of s are passed on to the head set of f [1], and f [2] = {x}
that is the current tail set of x. Thus, s inherits its head and tail sets as in Case 1.

In workflows wherein the control of execution is transferred from a single thread
of execution to multiple threads, it is necessary to connect the last process from
the prior sequential section of the workflow to each of the initial processes in the
parallel section. For example, to translate the exact execution order of a hsequencei
activity having a single hinvokei activity followed by a hflowi activity with multiple
hinvokei activities, it is necessary to connect the hinvokei activity from the hsequencei
section to all the other hinvokei activities in the hflowi section. This pattern is also
applicable for hswitchi, hif-elsei, and hpicki activities that follow a hsequencei, hwhilei,
or hforeachi activities. Thus, to connect the succeeding hinvokei activities from a
parallel structure, it is necessary to copy the hinvokei activity from the previously
completed structure activity in the headset of the current parallel activity f [1].
This case covers Parallel Split, Multi-choice, Deferred Choice, and Critical Section
control-flow patterns shown in Figures 5.2b, 5.3a, 5.3c, 5.5a, and 5.5b respectively,
and the corresponding pattern in ProvONE is shown in Figure 5.9a and 5.9c.

Case 4: s[0] 2 B, f [0] 2 B The final cases occurs when a parallel activity follows
another parallel activity. For example, a flow activity follows a switch activity. Ini-
tially, the content of f [1] is passed on to s[1], and after calling PROV2ONE(W, x), f
[2] = {x}. After reading the topmost item of the stack S for PROV2ONE(W, f), s[1]
is restored and s[2] := s[2] [f [2] = s [2] [{x}, allowing a parallel structure for all
the primitive activities.

Thus, for all the cases in a BPEL workflow, the inductive hypothesis guarantees a
successful completion, i.e., the Prov2ONE algorithm generates a ProvONE prospective
graph G that maintains the same execution order defined in the input BPEL workflow.

5.3. Provenance Interoperability Architecture 121

Theorem 2. Let W be a valid workflow defined in SCUFL. Then by the mapping Rules
1–7 defined in Table 5.2, a ProvONE prospective graph G is generated for workflow
W.

Proof. To first prove termination, note that each call to Prov2ONESCUFL handles
a single processor element that is added to the list T, even in the case of a dataflow
processor element. After creating the corresponding ProvONE classes and associa-
tions, the processor element is deleted from the list T. Thus, for a SCUFL workflow
defined with a finite number of processors the termination is guaranteed.

To prove the correctness of the Prov2ONE:SCUFL algorithm, we proceed by in-
duction on the number of recursive calls made for the nested workflows. By correct-
ness, we imply that a dataflow defined in a given SCUFL workflow is captured and
maintained in the ProvONE prospective graph generated by the Prov2ONE:SCUFL
algorithm.

Consider a workflow W with n processors (P) with no dataflow activities, and m

datalinks (D) that produce a correct ProvONE prospective graph. If |P| = n+1 and
|D| = m, then the inductive hypothesis guarantees correctness until the final processor
is resolved by applying Rules 2–4. Similarly, if |P| = n and |D| = m+1, the inductive
hypothesis followed by Rules 5–7 gives a correct ProvONE prospective graph until
the final datalink is resolved.

This forms the base case for a larger induction on the nesting of dataflow activities.
For a workflow W in which there are at most k nested dataflows, the Prov2ONE
algorithm creates a correct ProvONE prospective graph. Consider a workflow W 0

with at most k+1 nested dataflows. Let {p1, . . . , pt} be the processors with dataflow
activity, then it follows that for each pi with at most k nested dataflows, a recursive
call to the algorithm will produce the correct ProvONE prospective sub-graph. Thus,
as per the inductive hypothesis, it shows that W 0 will also produce the correct
ProvONE prospective graph. The algorithm terminates after all recursions are
completed, this is indicated when all the processor elements are removed from the list
T. Thus, for SCUFL workflows, the inductive hypothesis guarantees that a correct
ProvONE prospective graph G is generated.

Theorem 3. Let W be a valid workflow defined in MoML. Then by the mapping
Rules 1–6 defined in Table 5.3, a ProvONE prospective graph G is generated for the
workflow W.

Proof. The formality of termination is dealt with by noting that the
Prov2ONEMoML method handles one MoML entity per call, so regardless of recursive
workflows defined by a composite actor, the algorithm concludes after iterating over
each entity.

To prove the correctness of the Prov2ONE:MoML algorithm, we proceed by induc-
tion on the number of recursive calls made for the nested workflows. By correctness we
imply that the dataflow defined in a given MoML workflow is captured and maintained
in ProvONE prospective graph generated by the Prov2ONE:MoML algorithm.

122 Chapter 5. Provenance Management in WfMSs

For a workflow W with n actors (A), none of which is a composite actor, and m
links (L), the Prov2ONE:MoML algorithm will create a correct ProvONE prospective
graph. If |A| = n+1 and |L| = m, then the inductive hypothesis guarantees correctness
until the final actor is resolved by applying Rules 2–4. Similarly, if |W| = n and |L|
= m+1, the inductive hypothesis followed by Rules 5–6 generates a correct ProvONE
graph.

This forms the base case for a larger induction on the nesting of composite ac-
tors. For any workflow W in which there are at most k composite actors, the
Prov2ONE:MoML algorithm generates a correct ProvONE prospective graph. Con-
sider a workflow W 0 with at most k+1 nested actors. Let {e1, . . . , et} be the compos-
ite actors, then it follows that for each ei that has at most k nested actors, a correct
ProvONE prospective sub-graph is created. Then, as per inductive hypothesis, reap-
plying the above argument on all the composite actors of W 0 will also produce the
correct ProvONE prospective graph. The algorithm terminates after all the recursions
are completed. This is indicated when all the actors are removed from the list S. Thus,
for MoML workflows, the inductive hypothesis guarantees that a correct ProvONE
prospective graph G is generated.

From Theorems 1, 2 and 3 it follows that for a workflow defined in BPEL, SCUFL,
or MoML, the Prov2ONE algorithm will generate a correct ProvONE prospective
graph.

5.3.4 Retrospective mapping rules between WfMSs and ProvONE

In this section, to complete the translation of the entire provenance from WfMS to
ProvONE, we present the mapping rules between the runtime provenance traces from
ApacheODE, Taverna, and Kepler and the ProvONE retrospective provenance. These
mapping rules are realized in the WfMS-specific provenance adapter either as SQL
queries for retrieving the runtime events from the relational database of ApacheODE,
or SPARQL queries in the case of provenance exported from Taverna and Kepler.

Table 5.4: ApacheODE events to ProvONE retrospective translation
rules

Event name Event value ProvONE:Class ProvONE:Association

1 ns:name,
ns:process-id NewProcessInstance ProcessExec wasAssociatedWith

2 ns:name,
ns:activity-id ActivityExecStart ProcessExec wasAssociatedWith

3 ns:instance-id — ProcessExec isPartOf

4 ns:message,
ns:input payload, parameters Data used

5 ns:message,
ns:output payload, parameters Data wasGeneratedBy

6 ns:message payload, parameters Collection —

5.3. Provenance Interoperability Architecture 123

ApacheODE events and ProvONE retrospective provenance
A workflow execution trace in ApacheODE is captured in the form of events that are
persisted in a relational schema specific to ApacheODE. There are three options to
retrieve the execution details of a workflow run: (a) The ODE Execution Events mod-
ule in ApacheODE captures each event that occurs within the workflow engine, and
an event listener can be registered for analyzing and extracting the relevant events.
(b) SQL queries can be executed over the event database to query and retrieve the
required events. (c) A Management API that provides an abstraction over the ODE
Execution Events module and exposes the BPEL processes, instances and data ex-
change events through dedicated web services (endpoints), with the extension to query
specific details about an event.

From the options mentioned above, we integrated the Management API in the
ApacheODE Adapter. The reasons to choose the Management API over the other
two options are twofold: (1) The necessary functionality for querying and retrieving
the events from the event database schema is already implemented and exposed via
this API. Hence, defining a custom set of queries for retrieving the stored events
will be redundant implementation. Moreover, with updates to the event database
schema, our queries would be obsolete. However, with the Management API, the
changes to the schema would also be propagated to the Management API. (2) The
ApacheODE developers state that enabling ODE Execution Events module introduces
a non-negligible overhead while execution of a workflow, and will affect the workflow
execution time. Thus, the option of ODE Execution Events is not considered for the
implementation of the adapter.

In the first step, the workflows are translated to ProvONE prospective provenance
graphs. In the second step, these graphs are enriched with the translation of the
runtime events from ApacheODE to ProvONE retrospective classes and associations,
shown in Table 5.4. The events are defined using Apache ODE namespace (ns) and
exposed through two core endpoints namely listEvents and getCommunication. Fol-
lowing is the explanation of each rule.
Rule 1: For an execution of a workflow deployed in ApacheODE WfMS, the sys-
tem generates a ns:name with a ns:process-id event. The event value NewProcessIn-
stanceEvent indicates that the entire workflow is triggered for execution and for each
execution a unique process-id is created. Thus, for this event, a ProcessExec class
with the link wasAssociatedWith to the ProvONE prospective provenance is created.
Rule 2: Similar to the first rule, for execution of each activity within a given work-
flow, the ns:name event with the value ActivityExecStartEvent is generated. The
activity-id uniquely identifies each instance of an active activity. Thus, for an event,
a ProcessExec class with the wasAssociatedWith link connecting to the Process class
of the same activity in the ProvONE prospective provenance is created. In the case
of a failed activity, an ActivityFailureEvent is generated by the workflow engine. For
tracing the failed activities, this event is added to the ProcessExec. Additional events
necessary for creating retrospective provenance in ProvONE are appropriately handled

124 Chapter 5. Provenance Management in WfMSs

in the ApacheODE Adapter. The complete list of events is available on ApacheODE
website7.
Rule 3: The ns:instance-id together with the ns:process-id describes the association
of activity with the execution instance of a workflow. Thus, using this event, the
association isPartOf is created for each ProcessExec.
Rule 4 and 5: In BPEL, data is shared in the form of messages. The event ns:message
and ns:input event with the value payload or parameters indicate the input for a given
activity, whereas the ns:output indicates the output generated by an activity. Thus,
to describe the input and output of a process in ProvONE, these events are mapped
to the Data class with the used or wasGeneratedBy association.
Rule 6: The ns:message in its entirety represents a complex data structure in BPEL.
Similarly, the Collection class in ProvONE represents a collection of atomic data
elements. Thus, the ns:message is mapped to the Collection class.

With the implementation of these six rules in the ApacheODE adapter, the ret-
rospective provenance from ApacheODE WfMS is translated to ProvONE. However,
few associations have to be derived from the prospective provenance. The association
wasInformedBy is created based on the prospective provenance SeqCtrlLink and the
DataLink associations between a given pair of processes. The association wasDerived-
From and dataOnLink associations are created based on the DataLink associations
between the ports for a given pair of processes.

Table 5.5: Taverna to ProvONE retrospective translation rules

namespace:Class namespace:Association ProvONE:Class ProvONE:Association
1 WorkflowRun describedByWorkflow ProcessExec wasAssociatedWith
2 wfprov:ProcessRun describedByProcess ProcessExec wasAssociatedWith

3 prov:Entity prov:used or
wfprov:usedInput Data used

4 prov:Entity prov:wasGeneratedBy or
wfprov:wasOutputFrom Data wasGeneratedBy

5 wfprov:ProcessRun wasPartOfWorkflowRun ProcessExec isPartOf

6
prov:Dictionary,
prov:Collection,

prov:Entity
prov:hasMember Collection hadMember

7 prov:Entity prov:wasDerivedFrom Data wasDerivedFrom

Taverna provenance and ProvONE retrospective provenance
The provenance traces in Taverna WfMS are stored in a Taverna-specific provenance
data model. However, for sharing and interoperability reasons, the Taverna WfMS is
extended with the PROV plugin that translates and exports the provenance traces to
the PROV model. The mappings in Table 5.5 show that the PROV plugin uses multi-
ple namespaces (prov, wfprov, rdf) to expose a detailed level of provenance. Moreover,
as ProvONE retrospective model inherits a large number of classes and associations

7
http://ode.apache.org/ode-execution-events.html

5.3. Provenance Interoperability Architecture 125

from the PROV model, it allowed us to maintain the same level of granularity during
the construction of the ProvONE retrospective provenance.
Rule 1: The PROV plugin of Taverna uses the wfprov:WorkflowRun and the wf-
prov:describedByWorkflow terms from the wfprov namespace to represent an execu-
tion of workflow with it corresponding workflow definition. Hence, this representation
from Taverna is mapped to ProvONE ProcessExec class with the wasAssociatedWith
association that represents an execution instance of a workflow with its associated
definition.
Rule 2: For tracing the execution of individual processes with its corresponding
definition, the PROV plugin uses the wfprov:ProcessRun class with association wf-
prov:describedByProcess. The same representation in ProvONE is captured by the
ProcessExec class with the wasAssociatedWith association. Hence, the terms from
wfprov namespace are translated to the ProvONE namespace.
Rule 3: To map the runtime consumption of data by a process, the prov:Entity with
association wfprov:usedInput or prov:used are translated to ProvONE Data class with
the used association.
Rule 4: Similar to Rule 3, to represent the data produced as a result of execu-
tion of a process, the prov:Entity with association prov:wasGeneratedFrom or wf-
prov:wasOutputFrom are translated to ProvONE Data and wasGeneratedBy associ-
ation.
Rule 5: Typically, a workflow is composed of one or more processes, and this compo-
sition in PROV plugin is represented by the wfprov:ProcessRun with the association
wfprov:wasPartOfWorkflowRun. To translate this composition in ProvONE, these
terms from the wfprov namespace are translated to ProvONE ProcessExec with is-
PartOf association.
Rule 6: For describing the composition of a complex data object, in PROV plugin
the class Dictionary, Collection, or Entity with the association hasMember is used.
The ProvONE vocabulary directly inherits this class and association from the prov
namespace and hence are a direct translation to the ProvONE Collection class with
the hadMember association.
Rule 7: A data-flow trace in PROV plugin is represented using the prov:Entity
Class with the prov:wasDerivedFrom association. In ProvoNE the wasDerivedFrom
association is inherited from the prov namespace and thus is a direct translation to
ProvONE Data class and wasDerivedFrom association.

The association dataOnLink has to be derived from the prospective provenance.
For this, we retrieve the DataLink class between the ports of a given pair of processes
and the association dataOnLink is created. Thus, the connection between the
prospective and retrospective provenance is completed.

Kepler provenance and ProvONE retrospective provenance
The Kepler WfMS provides an add-on module for recording workflow execution his-
tory. The retrospective provenance is primarily recorded in a relational database

126 Chapter 5. Provenance Management in WfMSs

Table 5.6: Kepler to ProvONE retrospective mapping rules

namespace:Class namespace:Association ProvONE:Class ProvONE:Association

1 prov:plan
(kepler:workflow) wasAssociatedWith ProcessExec wasAssociatedWith

2 prov:activity (ke-
pler:actorName) wasAssociatedWith ProcessExec wasAssociatedWith

3 prov:Entity wasGeneratedBy Data wasGeneratedBy
4 prov:Entity used Data used

5 prov:agent
(kepler:user) — User wasAttributedTo

schema, and there are two approaches to retrieve this provenance. First, SQL queries
can be executed to retrieve the provenance trace from the database. Second, the
provenance add-on module implements a mapping between the SQL schema and the
PROV model and exports the provenance in JSON format. For a comprehensive
translation, multiple namespaces are applied in translating the entire trace in PROV
model. In the Kepler Adapter, we extend this mapping for the ProvONE model. The
translation rules are shown in Table 5.6.
Rule 1: For maintaining the correspondence between a workflow execution and its
definition, the Kepler module uses the prov:plan or the kepler:workflow with the
wasAssociatedWith association from the prov namespace. Hence, the prov:plan and
kepler:workflow classes are mapped to the ProcessExec class, whereas the same wasAs-
sociatedWith association is inherited from the prov namespace in ProvONE.
Rule 2: For translating the runtime details of each process, the Kepler module uses
the activity or the actorName class from the prov and kepler namespace. These
classes are mapped to ProvONE ProcessExec that represents the execution details of
a single process. The wasAssociatedWith association is directly inherited from the
prov namespace and thus is a straight forward translation in ProvONE.
Rule 3 and 4: The Entity represents the consumption and production of data by a
process with the used and wasGeneratedBy association. The ProvONE model inherits
both the class and the association and hence is a direct translation between PROV
and ProvONE.
Rule 5: The retrospective provenance exported by the provenance module contains
the reference to the user or agent that is responsible for the execution of the work-
flow. Hence, the prov:agent or the kepler:user term is mapped to the ProvONE User
attribute with the association wasAttributedTo.

Similar to the Taverna adapter, the dataOnLink association is derived from the
prospective provenance DataLink class between the output and input ports of given
pair of processes. Thus, the connection between the prospective and the retrospective
provenance is completed.

5.3. Provenance Interoperability Architecture 127

5.3.5 Prov2ONE Algorithm Analysis

In this section we discuss the time and space complexity of the Prov2ONE algo-
rithms. The Prov2ONE:SCUFL algorithm maintains only the ProvONE prospective
graph and a list structure T, as shown in line 2 of Algorithm 5.3. To calculate
the time-complexity we need to consider the for-loop defined from line 9 to line 23.
The for-loop has an upper-bound that is equal to the number of processor elements
|P |. Associated with each processor |P | are |IP | input ports, |OP | output ports and
|D| datalinks. Thus, the runtime requirements are O(|P |+|IP |+|OP |+|D|). The
memory requirements are just the size of the graph, so space complexity is also
O(|P |+|IP |+|OP |+|D|).

Similarly, the Prov2ONE:MoML algorithm maintains only the graph and a list
structure S, as shown in line 2 of Algorithm 5.4. The time-complexity is bound by
the number of entities |E| that are iterated in the for-loop defined from line 8 to line
20. Each entity can have a link |L| to an another entity defined by the relations |R|.
Thus, for a MoML workflow the runtime of the algorithm will be O(|E|+|R|+|L|).
Since the only space needed is that to store the graph, the space complexity is also
O(|E|+|R|+|L|).

Now we consider the Prov2ONE:BPEL algorithm complexity. Let |S| denote the
number of structure activities, |I| the number of primitive activities, and |D| the
number of data elements for a BPEL workflow.

With regard to space complexity, the algorithm ensures that if an item in the stack
is copied then it will be destroyed before another copy takes place, and therefore,
every item can appear at most twice in the stack. Thus, the total space is O(|S|+|I|).
Additional space requirement that needs to be calculated is for generating the output,
i.e., the ProvONE graph itself, explained as follows.

The runtime complexity is at least the time complexity of reading the workflow
and assembling a graph of appropriate size, which is O(|S|+|D|+|I|+|V |+|E|), where
V and E are the vertex and edge sets defined by ⌃ and ⌦, respectively. Besides these
two tasks, the Prov2ONE:BPEL algorithm additionally maintains the stack, which
requires O(|S|+|I|) time. To get the runtime complexity, it is necessary to calculate
the upper-bound for the |V | and |E| in terms of the input.

If the total number of DataLinks in the graph is |L|, then clearly |V |
|D|+|I|+|L|+|S|, as each Process, InputPort, OutputPort, DataLink and SeqCtr-
lLink is a vertex in the ProvONE graph. Although the number of DataLinks can
be quadratic in terms of |D|, in practice this does not occur, and is limited by the
number of InputPorts and OutputPorts, thus, it implies that |L|= O(|D|).

Regarding |E| we consider all types of associations defined by the edge set ⌦.
Assume all DataLinks have a fixed number of intermediate uses that are treated
as a constant, then the cardinality of the DLToInPort and outPortToDL sets are
O(|L|) = O(|D|).

128 Chapter 5. Provenance Management in WfMSs

Figure 5.10: Nanoscopy workflow in BPEL

In general, it is uncommon although possible for the remaining four edge sets to
be of quadratically sized. Restricting to workflows with only a linear number of such
edges guarantees that the runtime is O(|S|+|D|+|I|).

5.4 Evaluation

We evaluate P-PIF on the following two criteria. First, to assess the practical usage of
the framework in handling heterogeneous provenance information, we present a set of
queries that can assist the researchers in analyzing the workflows and provenance in
their routine activities. Second, we present a feature-based evaluation of P-PIF with
the existing provenance interoperability frameworks. This assessment is necessary to
evaluate that the P-PIF addresses the gaps in existing literature.

5.4.1 Use cases

We briefly describe three workflows defined in BPEL, SCUFL, and MoML, and present
their corresponding ProvONE graphs. These use cases show the applicability of P-PIF
in handling heterogeneous workflow specifications.

The Nanoscopy workflow (Figure 5.10) defined in BPEL begins with the
invocation of the Raw Data Processing (RDP) activity, followed by two paral-
lel sub-activities Normal Fit (NF) and Spectral Precision Distance Microscopy
(SPDM). Each activity, NF and SPDM are followed by sequential activities, Position

5.4. Evaluation 129

Workflow Inputs

Workflow Outputs

getENSXrefList

Parse_ens_id

Flatten_List

Split_string_into_string_list_by_regular_expression

regex_value

Merge_String_List_to_a_String_2

ensembl_id_list

wp_id

Figure 5.11: PW2ENS
workflow in SCUFL

Figure 5.12: FixPoint
workflow in MoML

Matrix Nearest Neighbor (PMN) and Position Matrix Cluster (PMC) respec-
tively. The results of these activities are consumed by the Annotate High-Resolution
Images (AHRI) activity to produce the annotated image set. Finally, based
on the annotation criteria, activities Segment Annotation-A (SAA) and Segment
Annotation-B (SAB) are invoked to produce the result segmented images.

The PW2ENS8 workflow (Figure 5.11) defined in SCUFL start with the pro-
cess regex_value (RV) that generates a regular expression value, followed by pro-
cesses split_string_into_string_list (SSSL). The result of SSSL is consumed by
the get_ENSX_ref_list (ENSX) process, which is followed by sequential execution of
parse_ens_id (PENS) and the flatten_list (FL) processes. Finally, the workflow
ends with the merge_string_list (MSL) process.

For testing the Prov2ONE:MoML algorithm, the FixPoint9 workflow defined in
MoML was selected, see Figure 5.12. The workflow begins with the invocation of
the RAMP actor, which is followed by DoubleToFix (DTF). The output of DTF in-
vokes FixToFix (FTF) and FixToDouble1(FTD1) actors. The FTF is followed by
FixToDouble0 (FTD0) actor. The workflow ends with the SequencePlotter (SP).

The ProvONE graphs generated by the Prov2ONE algorithms that are enriched
with the retrospective provenance from the respective WfMS-specific adapters for the
workflows described in BPEL, SCUFL, and MoML (Figures 5.10, 5.11, and 5.12) are
shown in Figures 5.13 to 5.15 respectively.

8
http://www.myexperiment.org/workflows/4736.html

9
http://ptolemy.eecs.berkeley.edu/ptolemyII/ptII10.0/ptII10.0.1/ptolemy/domains/

sdf/demo/FixPoint/FixPoint/

130 Chapter 5. Provenance Management in WfMSs

Figure 5.13: ProvONE provenance graph for nanoscopy workflow

Figure 5.14: ProvONE provenance graph for PW2ENS workflow

5.4.2 Provenance Challenge Queries

We argue that for enabling provenance interoperability, i.e., allow querying and analy-
sis of provenance from different WfMSs, first, it is necessary to translate the workflows
from their original representation into a common model like ProvONE. Second, to
complete the translation in ProvONE, the runtime provenance (retrospective prove-
nance) needs to be linked to the prospective provenance. Thus, with the translation
of heterogeneous provenance information in a common model, it is now possible to
express graph traversal queries for analyzing the provenance information.

Following are the benefits of having heterogeneous workflows and their runtime
traces as ProvONE graphs: (1) Pattern matching queries can be executed for com-
paring and analysing workflow definitions regardless of the original representation of
the workflows; (2) As each version of workflow is modeled in ProvONE, it is possible
to trace the evolution of a given workflow over a period. (3) As the execution order

5.4. Evaluation 131

Figure 5.15: ProvONE provenance graph for FixPoint workflow

and the data-flow structure of the original workflow are maintained in the ProvONE
prospective graph, it helps the researchers to reconstruct the workflow definition in
another specification for executing it in a different execution environment and validat-
ing the result. It should be noted that the ProvONE prospective provenance is only a
reference for the researcher when assembling a workflow definition in a different spec-
ification. The actual services, software, or the algorithm implementations (functions)
that build the actual workflow has to be also migrated to the target workflow system.

To realize the benefits mentioned above as usable services for the research
communities, we present six graph traversal queries implemented in SPARQL. For
allowing a clear distinction between the ProvONE prospective and the retrospective
provenance, we have attached prospective or retrospective keywords to the resource
URI. For example, the ProvONE prospective resources URI for the PMC process
in BPEL is in the format: http://nanoscopy.edu/prospective/process-PMC1. The
complete list of queries, including the provenance challenge queries [113] are exposed
through a dedicated REST-API10.

Query 1: Retrieve the prospective provenance (workflow-plan) for the workflow
with workflow-id=nanoscopy-imageprocessingWF. The query aims at retrieving the
complete workflow definition (ProvONE prospective provenance) as described in the
original workflow definitions. For this query, the result is the ProvONE prospective
graph shown in Figure 5.13.

10
http://datamanager.kit.edu/masi/localizationmicroscopy/swagger-ui/

132 Chapter 5. Provenance Management in WfMSs

SELECT {?subject ?predicate ?object}
WHERE {

GRAPH <http://nanoscopy.edu/nanoscopy-imageprocessingWF> {
?subject ?predicate ?object.
FILTER regex(str(?subject), "prospective")

}
}

Query 2: Retrieve all the inputPorts and outputPorts for a workflow or a process
with workflow-id=nanoscopy-data-curationX2 or process_name = SPDM. There are
two parts to this query: (a) The first query returns all the inputPorts and outputPorts
of a given workflow. (b) The second query returns all the inputPorts and outputPorts
of a given process.

Query 2 (a):

SELECT ?object ?predicate ?value
WHERE { GRAPH <http://nanoscopy.edu/nanoscopy-data-curationX2> {

{ ?subject provone:hasOutPort ?object.}
UNION
{ ?subject provone:hasInPort ?object.}
?object ?predicate ?value }

}

Query 2 (b):

SELECT ?object ?property ?value ?graph
WHERE { GRAPH ?graphName {

?subject rdf:type provone:Process.
?subject dc:title "SPDM".

{ SELECT * WHERE { GRAPH ?graphName{
{ ?subject provone:hasOutPort ?object.}
UNION
{ ?subject provone:hasInPort ?object.}

?object ?property ?value. } }
}

}
}

Query 3: Retrieve the processes which has an inputPort with parameter minDensity
= 0.3. The result of this query is all the inputPorts that have the given parameter
and value.

5.4. Evaluation 133

SELECT ?processName ?inputPort ?minDensity
WHERE { GRAPH ?graphName {

?subject a provone:Process .
?subject provone:hasInPort ?inport.
?inport dc:title ?inputPort.
?inport provone:inPortToDL ?DL.
?subject dc:title ?processName.
{

SELECT * WHERE { GRAPH ?graphName {
?data a provone:Data.
?data prov:value ?value.
?data provone:dataOnLink ?DL
FILTER (?minDensity = 0.3) } }

}
}

}

Query 4: Retrieve the processes which has an outputPort with parameter datasize �
30GB. The result of this query is all the outputPorts that have the given parameter
and value.

SELECT ?processName ?outputPort ?datasize
WHERE {

GRAPH ?graphName {
?subject a provone:Process .
?subject provone:hasOutPort ?outport.
?outport dc:title ?outputPort.
?outport provone:outPortToDL ?DL.
?subject dc:title ?processName. {

SELECT *
WHERE { GRAPH ?graphName {

?data a provone:Data.
?data prov:value ?value.
?data provone:dataOnLink ?DL
FILTER (?datasize >= 30) } }

}
}

}

Query 5: Retrieve all the workflow plans (prospective provenance) which consist of
a Process with process_name = Cluster Analysis. The result of this query is the
complete ProvONE prospective graph as shown in Figure 5.13. This query will re-
trieve all the prospective provenance traces that contains the Process with attribute
process_name = Cluster Analysis.

134 Chapter 5. Provenance Management in WfMSs

However, this query is also extensible for tracing a workflow evolution, i.e., if a
given process_name is encountered in multiple versions of workflows then the evolu-
tion of the workflow can be traced. The only change that needs to be done in this query
is to specify the namespace of the graph for which the workflow evolution is expected.
For example, in the inner-most nested GRAPH ?graphName declaration, replace the
“?graphName" by “http://nanoscopy.edu/nanoscopy-data-curation" for retrieving the
workflow evolution of the nanoscopy-data-curation workflow.

SELECT ?subject ?predicate ?object where{
GRAPH ?graphName {
?subject ?predicate ?object.
FILTER regex(str(?s), "prospective") }
{
SELECT *
WHERE { GRAPH ?graphName {

?subject a provone:Process .
?subject dc:title "Cluster Analysis".
?subject dc:title ?processName.

{
SELECT *
WHERE {
GRAPH ?graphName {

?subject1 dc:title ?workflowTitle .
BIND(URI(?workflowTitle) as ?graphName) }}}}

}
}

}

Query 6: Retrieve all the workflows that failed to complete successfully, and also
return the details of the process that failed, including the error message. The result
of this query is the list of all workflows that were not completed and the name of the
failed-process with the details of the error message from the ProvONE ProcessExec
retrospective provenance.

SELECT ?subject ?error
WHERE{ GRAPH ?graphName {
?subject a provone:ProcessExec.
?subject prov:wasAssociatedWith ?object.
?object a provone:Workflow.
?subject wfms:completed ?completed.
?subject wfms:error ?error.
FILTER(?completed ="false")

}
}

5.4. Evaluation 135

The above-stated queries can be adapted to user specified parameters for retrieving
the provenance modeled as ProvONE graphs. Query 1 retrieves the full prospective
provenance (workflow definition), which can be used to reconstruct the workflow for
executing it in a different execution environment (WfMS). Query 2,3,4 focus on com-
paring and analyzing workflow definitions (prospective provenances). Query 5 with
its extension supports retrieving of workflows that are similar and also the evolution
traces of a given workflow. Query 6 is necessary for detecting the incomplete or
failed workflow runs (both prospective and retrospective provenance) and precisely
determining the step at which the workflow failed.

5.4.3 Features of P-PIF

The need to share, query, and analyze provenance information from heterogeneous
sources has led to the development of multiple provenance interoperability frame-
works. From the literature, it can be seen that the existing frameworks do not offer
comprehensive provenance interoperability. Hence, for considering a provenance in-
teroperability framework as a complete solution, a few essential properties need to be
fulfilled by the framework. These properties are described in the following, followed
by a systematic comparison of the existing solution with the P-PIF based on these
properties.

– Provenance granularity: An important property for enabling provenance in-
teroperability is the adoption of a suitable provenance model. A provenance
model should be flexible in modeling varying levels of detail and also handle
both prospective and retrospective provenance information. For example, OPM,
PROV, Collaborative Data Model (CDM), and Common Provenance Model
(CPM) are capable of modeling only the retrospective provenance, whereas
IWIR is designed for modeling only the prospective provenance. D-PROV
and its descendent, namely the ProvONE model are capable of modeling both
prospective and retrospective provenance. Thus, for allowing comprehensive
provenance interoperability, it is necessary to adopt either the D-PROV with
PROV model or the ProvONE model.

– Long-term sustainability and adherence to standards: A framework can be con-
sidered sustainable if it is designed on tools and technologies that are standard-
ized and widely accepted by the research communities. RDF and SPARQL that
are W3C standard data model and recommended querying language are adopted
by multiple provenance research groups. Moreover, PROV-O provides an OWL2
ontology for mapping the PROV data model to RDF namespace. Supporting
these standards and recommendation, the Taverna PROV plugin and the Kepler
provenance module export provenance in RDF serialized graphs.

– Extensibility: Currently, there exist more than thirty WfMS that are employed
by various scientific communities. Each WfMS utilizes a proprietary workflow

136 Chapter 5. Provenance Management in WfMSs

specification for expressing the workflows and its associated runtime provenance.
For enabling provenance interoperability among the WfMS-specific provenance
models, it is necessary to have an interoperability framework build on an exten-
sible data model. For example, using the RDF data model, it is possible to add
WfMS-specific vocabularies into the existing RDF namespace without requiring
architecture-level modifications or changes to the database schema.

– Querying interface: Expressing provenance retrieval queries in a standard query-
ing language like SQL or SPARQL is important for analyzing the collected prove-
nance. Since provenance information represents a causal relationship among
processes and resources, ideally a graph data model should be used. Moreover,
a typical characteristic of provenance is that over a period these provenance
graphs tend to form large and dense network structures that can easily con-
tain millions of nodes and relations. Thus, query languages that are designed
especially for performing efficient graph traversal should be supported by the
framework. For example, SQL queries are not an efficient solution because they
involve multiple join operations for retrieving graph relations. On the contrary,
RDF databases or graph databases are designed to support efficient graph traver-
sal queries. Furthermore, to support this property, there exist multiple studies
that evaluate the query performance of graph databases against the traditional
relational databases, and state that for complex and dense data containing a
large number of relations, a graph database is an appropriate choice [43, 163].

Based on the above-stated properties, we provide a systematic comparison of the
existing provenance interoperability frameworks with the P-PIF.

First, we consider the provenance interoperability frameworks that are based on
OPM or its variant. A common limitation of the frameworks proposed by Braun et al.
[24], Ding et al. [51], and Altintas et al. [6] is that these frameworks are build on OPM,
which is a provenance model that inherently allows only retrospective provenance
modeling. Hence, prospective provenance interoperability, i.e., sharing, querying and
analyzing workflow definitions including their evolution traces are not supported by
these systems. Evaluating each framework separately, the framework proposed by
Altintas et al. [6] is based on the Collaborative Data Model (CDM), with the Query
Language for Provenance (QLP). The aim of the QLP is to provide simplicity of
query expressiveness over the existing querying techniques such as SPARQL, SQL,
and XPath. However, neither the QLP is a standard querying language nor the CDM
is standard provenance model. Under the SHIWA framework, Plankensteiner et al.
[122] introduced the syntax and specification of IWIR for translating heterogeneous
workflow definitions into a common workflow specification. On the on hand, the IWIR
supports translation of a wide range of workflow languages, but on the contrary, the
IWIR is not a standard provenance model and is not compatible to P-PLAN, D-PROV,
or ProvONE. Moreover, the SHIWA framework provides no support for storing and
querying the IWIR modeled prospective provenance.

5.4. Evaluation 137

For enabling comprehensive provenance interoperability, Dey et al. [49], Pimentel
et al. [120], Oliveira et al. [115], and Lim et al. [98] introduced frameworks that
are based on provenance models capable of handling both the prospective and ret-
rospective provenance. We evaluate these approaches individually. First, Dey et al.
[49] uses a combination of D-PROV for modeling the prospective provenance and a
proprietary Datalog schema for modeling the retrospective provenance. The limita-
tion of this approach is the overhead of maintaining two provenance models and the
mapping relation between them. The approach from Lim et al. [98] and Oliveira et
al. [115] are similar to our approach. However, in terms of long-term sustainability,
our approach employs the RDF data model for serializing the ProvONE graphs with
support to SPARQL for querying and retrieval of provenance. The prime difference
between our approach and the one proposed by Oliveira et al. [115] is the technique
in which the prospective provenance is captured. In our approach, we automate the
translation of workflow specifications to ProvONE using the Prov2ONE algorithm,
whereas in the approach presented by Oliveira et al. [115], the provenance database
schema is mapped to ProvONE. The limitation in this approach is the level of details
captured by the mapping of prospective provenance from the provenance stored in
PostgreSQL to ProvONE. Any changes to the PostgreSQL provenance schema will
render the mappings and their implementing adapters obsolete. Moreover, as the
mappings do not show how the SeqCtrlLink class of ProvONE is mapped, it is not
clear whether the data flow structure and the execution order defined in the origi-
nal workflow is also translated to the ProvONE prospective provenance. Finally, in
their approach, it is not stated whether control-flow languages such as BPEL are also
handled. In our approach, as we are entirely based on the workflow specifications,
the exact workflow execution order and the potential data-flow structure with the
maximum level of granularity is translated to the ProvONE prospective provenance.
Following is a summary of the features of P-PIF based on the above-stated properties.

– Both prospective and retrospective provenance interoperability is supported by
employing the ProvONE model.

– For long-term sustainability and adherence to standards, P-PIF is designed
based on RDF data model and supports querying through SPARQL. A dedicated
SPARQL endpoint is exposed for communities to executes custom queries.

– P-PIP not only supports data-flow workflow languages, but also control-flow
workflow languages. For the control-flow languages, the execution order of the
processes and the data-flow structure from the original workflow is maintained
in the ProvONE prospective provenance.

The Table 5.7 summarizes a comparison of the features of existing provenance
interoperability frameworks with the P-PIF.

References Provenance
model

Granularity of
interoperability

Storage
data

model

Querying
language

Supported
WfMSs

Supported
specifications

Braun et al. [24] OPM Retrospective Relational
schema SQL PASS and PLUS —

Ding et al. [51] OPM Retrospective RDF SPARQL — —

Altintas et al. [6]
Collaborative
Data Model
and OPM

Retrospective — QLP interface Taverna, Kepler,
WS-VLM SCUFL and MoML

Plankensteiner et
al. [122] IWIR Prospective XML —

ASKALON, Moteur,
P-GRADE, Triana,

Pegasus

AGWL,
CondorDAG,
GWENDIA,

SCUFL, TWL, XEN
Dey et al. [49]

and Pimentel et
al. [120]

D-PROV and
Datalog
schema

Prospective and
Retrospective

Datalog
facts DLV Datalog noWorkflow and

YesWorkflow Python scripting

Oliveira et al.
[115] ProvONE Prospective and

Retrospective Prolog facts Prolog queries e-Science central
and SciCumulus —

Lim et al. [98] Extended
OPM

Prospective and
Retrospective

Relational
schema SQL VIEW and

Workflow designer —

Missier et al.
[111]

Common
Provenance

Model

Prospective and
Retrospective — — Taverna and Kepler SCUFL and MoML

P-PIF ProvONE Prospective and
Retrospective RDF SPARQL ApacheODE,

Taverna, Kepler
BPEL, SCUFL,

MoML

Table 5.7: Comparison of features of various provenance interoperability frameworks with P-PIF

5.5. Discussion 139

5.5 Discussion

In a control-flow workflow language like BPEL, the execution-order of the primitive
activities is determined by the structure activities. In order to preserve the execu-
tion order during the translation of a BPEL workflow into ProvONE, the control-flow
design patterns described in Section 5.2.3 are realized in the Prov2ONE algorithm
through the various translation rules. Each design pattern in BPEL has its corre-
sponding ProvONE pattern in the ProvONE prospective graph. For example, the
bpel:invoke activities contained in a bpel:sequence or a bpel:flow activity determines
the sequential or parallel linking of the corresponding provone:process nodes. The
conditional expression defined in the bpel:if or bpel:while activity is copied to the
provone:seqctrllink node that is annotated with an explicit tag condition-process. The
assigning of tags is beneficial for discriminating the seqctrllink nodes from the ones
with a condition, and for defining queries aimed at retrieving prospective provenance
consisting a specific condition. There were few challenges when translating event and
timeout activities. The bpel:onMessage event activity is mapped to provone:process,
however, children activities contained within it are treated as a nested workflow.
Hence, the bpel:pick activity encompassing the bpel:onMessage activities is neces-
sary for creating a parallel structure in the ProvONE graph. The bpel:scope ac-
tivity represents a nested ProvONE graph, and is identified by a provone:workflow
node. The BPEL system exceptions that occur during the execution of a workflow
are handled as retrospective provenance, i.e., whenever an activity fails to execute,
the cause of its failure is recorded in the provone:processexec node. The events from
the Management API of ApacheODE are adequate to complete the ProvONE retro-
spective provenance. However, the two associations namely provone:dataonlink and
provone:wasassociatedwith have to be derived with the help of prospective provenance.
For connecting the dataOnLink association, the ns:message contents are matched
with the variables in provone:outputport and provone:inputport and the connecting
provone:datalink is retrieved. For this, we have implemented SPARQL queries that
perform this matching operation. Similarly, for connecting the ProcessesExec node to
its corresponding Process node via the wasAssociatedWith association, the ns:name
is matched to the dc:title in Process node.

As SCUFL is data-driven workflow language, all the SCUFL elements were a
straightforward match with ProvONE, but what needs to be highlighted is the cre-
ation of the provone:seqctrllink. In the case of Prov2ONE:SCUFL algorithm when
there is a scufl:datalink between two scufl:processors, the algorithm also creates
a provone:seqctrllink between the corresponding provone:process nodes, this helps
to determine the execution order of the processes. For completing the ProvONE
graph with retrospective provenance, the translations from PROV to ProvONE in
the Taverna Adapter are also a straightforward implementation. However, the con-
nection between the prospective and retrospective parts is a challenging task. For
this, we reused the SPARQL queries from the ApacheODE adapter that creates the

140 Chapter 5. Provenance Management in WfMSs

provone:wasassociatedwith association based on the matching between dc:title at-
tribute in the provone:process node and the title attribute in the retrospective prove-
nance. Similarly, the provone:dataonlink association is created based on the matching
between the provone:datalink from the prospective provenance to provone:entity from
the retrospective provenance.

In the case of MoML specification, all the MoML elements are translated to
ProvONE. However, as the ports (input and output) are not declared explicitly,
the Prov2ONE:MoML algorithm handles the input ports and output ports for a
moml:actor in two stages. First, the provone:inputports and provone:outputports
are created from the ports declared within a moml:actor. Second, the algorithm
determines the remaining input ports and output ports for a moml:actor from the
moml:link element. The provone:seqctrllink is created based on the moml:relation ob-
served in the moml:link. As Kepler exports provenance in PROV model, the handling
of retrospective provenance in the Kepler Adapter is similar to the translation in the
Taverna Adapter.

The automated collection of comprehensive provenance (prospective and retrospec-
tive) in a global provenance model, such as ProvONE allows querying and analysis of
provenance traces generated by different workflow systems. The various queries posed
by the provenance challenge and the six extension queries for retrieving the ProvONE
modeled provenance enable researchers to compare workflows defined in different spec-
ifications, analyze provenance captured by heterogeneous WfMSs at different levels of
granularity, and for validating researchers’ claims allow reproducibility of results in a
different workflow environment. Moreover, as ProvONE allows the modeling of mul-
tiple versions of a workflow, it is possible to trace the evolution of a workflow and
examine the variations among the workflow versions.

Compared to the existing provenance interoperability frameworks, P-PIF offers a
completely automated solution that is based on W3C standard RDF data model with
support to querying using SPARQL. Adhering to the existing standards, the long-term
sustainability and reuse of P-PIF is guaranteed.

5.6 Summary

In this chapter, we presented P-PIF, a provenance interoperability framework based
on the ProvONE model. The P-PIF provides automated collection, modeling and
storing of provenance collected from various WfMSs in the ProvONE model. To
automatically model the different workflow specifications in ProvONE, Prov2ONE, a
graph drawing algorithm that translates workflows specified in either BPEL, SCUFL,
or MoML into the corresponding ProvONE prospective graphs was designed. The
goal of these algorithms is to preserve the control-flow structure (execution order)
and the data-flow structure from the original workflow in the ProvONE prospective
provenance. For this, in Tables 5.1 to 5.3, we presented the translation rules between
the workflow specifications and the ProvONE model. These translation rules are the

5.6. Summary 141

basis for the Prov2ONE algorithms. In the case of BPEL workflows, to verify that
the translation rules are valid and the Prov2ONE algorithms can recursively handle
nested workflows, the proof for correctness and completeness for each algorithm is
presented. The four cases described in the correctness proof of the Prov2ONE: BPEL
algorithm shows that all the control-flow patterns available in BPEL are considered,
and are translated to their corresponding representation in ProvONE prospective
provenance. For the Prov2ONE: SCUFL and Prov2ONE: MoML algorithms, the
correctness proof is simple, as it is necessary only to recurse on the nested workflow
structures that are identified by a dataflow activity in SCUFL, or a composite actor in
MoML respectively. In the second step, to complete the translation of provenance from
WfMSs to ProvONE, in Tables 5.4 to 5.6, we provide the translation rules between
the retrospective provenance exported by the WfMSs and the ProvONE retrospective
provenance. These rules are implemented in the WfMS-specific adapters.

With the availability of provenance from heterogeneous WfMSs in the ProvONE
model, and the six queries allows researchers to (a) compare and analyze workflows
defined in different specifications, (b) validate scientific results by reproducing them
in a different execution environment, (c) trace workflow evolution, (d) collectively
query workflow results (retrospective provenance) along with the associated workflow
definition (prospective provenance).

To illustrate the applicability of the Prov2ONE algorithms, ProvONE prospective
graphs for workflows defined in BPEL, SCUFL, and MoML were created. The com-
plete provenance graph for the nanoscopy workflow is assessed with the six queries
designed considering the ProvONE model.

143

Chapter 6

Conclusions and Future Work

SDRs have become more than a mere storage unit for storing and accessing scientific
datasets. With the advent of novel data acquisition systems and their capability to
produce enormous amounts of data, there is an exponential growth in the volume
of data and metadata that is generated by scientific experiments. Moreover, the
corresponding data processing techniques have also changed and new tools for allowing
complex and efficient data processing have emerged. This rapid progress has led
research communities to demand comprehensive data management solutions that can
support them in handling the entire scientific data lifecycle. Hence, a significant
number of research communities have deployed SDRs in their institutes. In general, a
vital aspect of SDRs is its capability in handling metadata required in orchestrating
the data lifecycle. Critical data management tasks such as data discovery, querying
and analysis, data description enrichment with annotations, workflow and provenance
for data repeatability and reproducibility, long-term preservation, and data structure
description for organizing complex data objects are based entirely on metadata. This
has motivated research in the field of metadata management systems for handling
scientific metadata, and both open-source, as well as proprietary metadata solutions,
have been developed.

In this thesis, we invested our efforts in three research areas, namely, SDR ar-
chitecture, metadata management systems, and provenance handling in WfMS with
provenance interoperability among heterogeneous WfMS. To systematically order the
contributions of this thesis, first, we focused on the designing a generic SDR architec-
ture. Out of the various features an SDR offers in handling scientific data lifecycle,
we focused on two critical features: (a) metadata management capabilities of an SDR,
(b) provenance handling and interoperability for WfMSs.

6.1 Summary

Currently, there exist multiple SDR solutions that aim at providing a complete data
and metadata management solution for researchers. However, these solutions suffer
from many limitations such as support for handling large datasets in the range of TBs
and PBs with the possibility of efficient data transfer among different geographically
distributed systems that are used within the framework of the discipline. Hence, to

144 Chapter 6. Conclusions and Future Work

overcome this limitation, we proposed and realized a flexible SDR architecture that
is extensible for handling new as well as changing requirements from the research
communities. To show that multiple research communities can use such an SDR
for different requirements, we realized three SDR systems based on this architecture,
namely the nanoscopy open reference data repository, the radiation therapy data
repository, and the eCodicology data repository.

However, realizing an SDR architecture was only the first step towards efficient
handling and long-term preservation of data. To realize the SDR architecture as
a comprehensive solution, we devoted our efforts for the topic of scientific meta-
data management. In the research area of scientific metadata management, there
are multiple open-source as well as proprietary solutions that aim at providing a
metadata management solution for scientific metadata models. In general, these so-
lutions have a common limitation, that is, they are designed considering few specific
metadata models. Such solutions vastly limit their adoption for communities that
use domain-specific metadata schema for modeling their metadata. Adopting these
solutions compels the research community to either implement semantic translators
for their existing metadata model to comply with the one supported by the SDR or
entirely discard their metadata model and adopt the one supported by the SDR. To
overcome this limitation, we proposed and implemented the MetaStore framework.
The highlight feature of the MetaStore framework is its ability to support any meta-
data model that is serialized in XML format. The MetaStore framework eliminates
the redundant software development cycle undertaken in updating the framework in
supporting the new metadata model. For automating the creation of services neces-
sary in handling the registered metadata model, the MetaStore follows the principle
of Component-based design with the dynamic composition design pattern. On the
one hand, by applying the dynamic composition design principle, we are able to make
the MetaStore architecture adaptive, but on the contrary, it was necessary to design
the MetaStore on a database system that supports flexible data storage model. For
this, we used ArangoDB database that offers a flexible data storage model. Integrat-
ing a NoSQL database system with MetaStore allowed us to store and query ad hoc
metadata models by modeling them in the appropriate data model.

With the availability of the MetaStore framework, we can handle arbitrary meta-
data models under the categories of administrative, descriptive, structural, and techni-
cal metadata. However, as we aimed to cover all the metadata categories, our study led
us to the topic of provenance metadata management in WfMSs. During our research
in workflow provenance, we realized that in collaborative research, where research
groups have adopted multiple WfMSs that support a different provenance model, the
possibility of sharing, analyzing, validating, and reproducing results is a challenging
task. These limitations motivated us to extend our research in provenance in WfMS
to provenance interoperability among multiple WfMSs. First, we presented the archi-
tecture of provenance management for a BPEL-based WfMS, where we showed that
for a control-flow language like BPEL the provenance can be automatically translated

6.1. Summary 145

into the ProvONE model. To ensure that the complete provenance is captured in
ProvONE, we applied a two step process: (1) we designed the Prov2ONE algorithm
to translate the exact workflow execution order defined in the BPEL workflow to the
ProvONE prospective provenance, (2) we enriched this ProvONE prospective prove-
nance with retrospective provenance by translating the events generated during the
enactment of a workflow. For long-term sustainability with adherence to the stan-
dard data model and query language, the ProvONE graphs are persisted in an RDF
triple database. To the best of our knowledge, we are the first ones who have enabled
provenance handling in ProvONE for a BPEL-based WfMS. As our approach is based
on the Prov2ONE algorithm for translating the BPEL specification into ProvONE
prospective provenance, it can be reused for any WfMS that supports BPEL work-
flows. However, the collection, translation, and enrichment of ProvONE prospective
provenance with retrospective provenance are WfMS specific.

Second, we continued our efforts on the topic of provenance interoperability. Ma-
jority of the available provenance interoperability solutions are focused on enabling
only retrospective provenance interoperability, with a couple of solutions, namely from
Oliveira et al. [115] and Lim et al. [98], that aim at providing both prospective and
retrospective provenance interoperability. Compared to these two solutions, the P-
PIF framework presented in this thesis is based on the mappings between workflow
specification and ProvONE that are realized in the Prov2ONE algorithm. We ex-
tended the Prov2ONE algorithm for the SCUFL and MoML specifications. Through
the Prov2ONE algorithm, we guarantee the translation of a complete workflow with
the same level of details defined in its native representation into ProvONE prospective
provenance. Moreover, the exact execution order and the data-flow structure defined
in the original workflow is maintained in ProvONE prospective provenance.

Finally, we evaluated each framework presented in this thesis with the appropri-
ate evaluation criteria. First, we evaluated the integration of the GCS API with the
exemplary nanoscopy SDR. The data transfer rates using the WebDAV protocol was
tested. Here, we showed that automatically optimizing the GCS API leads to better
transfer rates. Second, for the MetaStore framework, we presented two types of eval-
uations: (a) a feature based evaluation stating the advantages of MetaStore against
existing metadata management solutions, (b) a performance study, comparing the
read and write performance of MetaStore for two different database systems. Third,
similar to the evaluation of the MetaStore, for the P-PIF framework we presented two
types of evaluations: (a) to verify the correctness and completeness of the Prov2ONE
algorithm, we explained the various workflow design patterns that can be constructed
in a BPEL workflow, followed by their corresponding representation in ProvONE,
(b) a feature based comparison of the P-PIF framework against existing provenance
interoperability systems.

146 Chapter 6. Conclusions and Future Work

6.2 Future Work

During our research in scientific metadata and provenance management, we came up
with new ideas that could extend our research. Following we briefly describe them.

– Provenance graph mining. Until now the purpose of capturing provenance
in WfMS was to systematically document each step executed in a workflow to
reproduce the scientific result. However, with the availability of provenance
from various WfMSs in a common model like ProvONE, we recommend mining
of these provenance graphs for extracting common workflow patterns. Based
on a set of extracted patterns, researchers can not only improve their existing
workflows but also detect erroneous workflows that are bound to fail.

– Visualization of provenance graph. In this thesis, we focused on building a
complete metadata and provenance interoperability framework. The next step
is to extend this framework with a visualization framework. We recommend
exposing the SPARQL queries with a visualization framework like D3.js. A
visualization framework will not only help researchers to navigate workflows,
and their provenance traces intuitively but also assist in runtime tracking and
debugging of the workflows.

– Combining metadata, annotations with provenance. We showed that the
RDF data model is efficiently applied for storing both the ProvONE provenance
graphs as well as the annotations modeled in the WADM. For future work, we
recommend defining the semantic relationships between these two data models.
With the semantics established, queries that would provide the researchers with
domain-specific information could be formulated. There are various applications
in research domain of linked data that could use annotations, provenance, and
metadata in combination. For example, based on the annotations tagged to
data, the workflow that is responsible for generating this data can be retrieved, or
based on data that is tagged as rejected or accepted, the corresponding workflows
could be marked obsolete or in vogue.

– Workflow interoperability. In this thesis, we focused on translating the
potential data-flow and the execution order from the original workflow into
ProvONE. The data types and the model of computation were not considered
during the translation. For future work, we propose a framework for transla-
tion between heterogeneous workflow specifications. This framework could be
an extension to the P-PIF framework. For this, we recommend the following
approach. First, the syntax and semantics of the ProvONE model have to be de-
fined using formal process algebra. Since the syntax and semantics of BPEL and
SCUFL are formally defined using ⇡-calculus and computational �-calculus, it is
necessary to define the syntax and semantics of ProvONE using ⇡-calculus. Sec-
ond, to prove workflow equivalence for translating the workflow specifications,
the big-step semantics can be utilized.

147

Bibliography

[1] Daniel J. Abadi, Peter A. Boncz, and Stavros Harizopoulos. Column-oriented
Database Systems. Proc. VLDB Endow., 2(2):1664–1665, August 2009. ISSN
2150-8097.

[2] William Allcock, Joe Bester, John Bresnahan, Ann Chervenak, Lee Liming, and
Steve Tuecke. GridFTP: Protocol extensions to FTP for the Grid. Global Grid
ForumGFD-RP, 20:1–21, 2003.

[3] Julie Allinson, Sebastien François, and Stuart Lewis. SWORD: Simple Web-
service offering repository deposit. Ariadne, (54), 2008.

[4] İlkay Altıntaş. Collaborative provenance for workflow-driven science and engi-
neering. 2011.

[5] Ilkay Altintas, Oscar Barney, and Efrat Jaeger-Frank. Provenance collection
support in the kepler scientific workflow system. In International Provenance
and Annotation Workshop, pages 118–132. Springer, 2006.

[6] Ilkay Altintas, Manish Kumar Anand, Daniel Crawl, Shawn Bowers, Adam Bel-
loum, Paolo Missier, Bertram Ludäscher, Carole A. Goble, and Peter M. A.
Sloot. Understanding Collaborative Studies through Interoperable Workflow
Provenance, pages 42–58. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[7] Ricardo Carvalho Amorim, João Aguiar Castro, João Rocha da Silva, and
Cristina Ribeiro. A Comparative Study of Platforms for Research Data Manage-
ment: Interoperability, Metadata Capabilities and Integration Potential, pages
101–111. Springer International Publishing, 2015.

[8] Manish Kumar Anand, Shawn Bowers, and Bertram Ludäscher. Techniques for
efficiently querying scientific workflow provenance graphs. In EDBT, volume 10,
pages 287–298, 2010.

[9] Renzo Angles and Claudio Gutierrez. Survey of Graph Database Models. ACM
Comput. Surv., 40(1):1:1–1:39, February 2008.

[10] Massimiliano Assante, Leonardo Candela, Donatella Castelli, and Alice Tani.
Are scientific data repositories coping with research data publishing? Data
Science Journal, 15, 2016.

148 BIBLIOGRAPHY

[11] Chris Awre, Tom Cramer, Richard Green, Lynn McRae, Bess Sadler, Tim Sig-
mon, Thornton Staples, and Ross Wayland. Project hydra: Designing & build-
ing a reusable framework for multipurpose, multifunction, multi-institutional
repository-powered solutions. Georgia Institute of Technology, 2009.

[12] Keith Baggerly. Disclose all data in publications. Nature, 467(7314):401–401,
2010.

[13] Charles W Bailey, Karen Coombs, Jill Emery, Anne Mitchell, Chris Morris,
Spencer Simons, and Robert Wright. Spec kit 292 institutional repositories.
2006.

[14] Alexander Ball, Sean Chen, Jane Greenberg, Cristina Perez, Keith Jeffery, and
Rebecca Koskela. Building a disciplinary metadata standards directory. Inter-
national Journal of Digital Curation, 9(1):142–151, 2014.

[15] Roger S. Barga and Luciano A. Digiampietri. Automatic capture and efficient
storage of e-Science experiment provenance. Concurrency and Computation:
Practice and Experience, 20(5):419–429, 2008.

[16] Chaitanya Baru, Reagan Moore, Arcot Rajasekar, and Michael Wan. The SDSC
storage resource broker. In Proceedings of the 1998 conference of the Centre for
Advanced Studies on Collaborative research, page 5. IBM Press, 1998.

[17] Neil Beagrie. Digital curation for science, digital libraries, and individuals.
International Journal of Digital Curation, 1(1):3–16, 2008.

[18] Oren Ben-Kiki, Clark Evans, and Brian Ingerson. YAML Ain’t Markup Lan-
guage (YAML™) Version 1.1. yaml. org, Tech. Rep, 2005.

[19] Chad Berkley, Matthew Jones, Jivka Bojilova, and Daniel Higgins. Meta-
cat: a schema-independent XML database system. In Scientific and Statistical
Database Management, 2001. SSDBM 2001. Proceedings. Thirteenth Interna-
tional Conference on, pages 171–179. IEEE, 2001.

[20] Deepavali Bhagwat, Laura Chiticariu, Wang-Chiew Tan, and Gaurav Vijay-
vargiya. An Annotation Management System for Relational Databases. In Pro-
ceedings of the Thirtieth International Conference on Very Large Data Bases -
Volume 30, VLDB ’04, pages 900–911. VLDB Endowment, 2004. ISBN 0-12-
088469-0.

[21] Tobias Blanke, Mark Hedges, and Stuart Dunn. Arts and humanities e-
science—Current practices and future challenges. Future Generation Computer
Systems, 25(4):474 – 480, 2009.

BIBLIOGRAPHY 149

[22] Alexandru Boicea, Florin Radulescu, and Laura Ioana Agapin. Mongodb vs
Oracle–database comparison. In Emerging Intelligent Data and Web Technolo-
gies (EIDWT), 2012 Third International Conference on, pages 330–335. IEEE,
2012.

[23] Rajendra Bose and James Frew. Lineage Retrieval for Scientific Data Processing:
A Survey. ACM Comput. Surv., 37(1):1–28, March 2005.

[24] Uri Braun, Margo I Seltzer, Adriane Chapman, Barbara T Blaustein, M David
Allen, and Len Seligman. Towards Query Interoperability: PASSing PLUS. In
TaPP, pages 1–10, 2010.

[25] Eric A Brewer. Towards robust distributed systems. In PODC, volume 7, 2000.

[26] Peter Buneman and Wang-Chiew Tan. Provenance in Databases. In Proceedings
of the 2007 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’07, pages 1171–1173, New York, NY, USA, 2007. ACM.

[27] Linda Cantara. METS: The Metadata Encoding and Transmission Standard.
Cataloging & Classification Quarterly, 40(3-4):237–253, 2005.

[28] B. Cao, B. Plale, G. Subramanian, E. Robertson, and Y. Simmhan. Provenance
Information Model of Karma Version 3. In 2009 Congress on Services - I, pages
348–351, July 2009.

[29] Rick Cattell. Scalable SQL and NoSQL Data Stores. SIGMOD Rec., 39(4):
12–27, May 2011.

[30] Digital Curation Center. Disciplinary Metadata.
http://www.dcc.ac.uk/drupal/resources/metadata-standards. Accessed on:
2017-04-30.

[31] Swati Chandna, Danah Tonne, Thomas Jejkal, Rainer Stotzka, Celia Krause,
Philipp Vanscheidt, Hannah Busch, and Ajinkya Prabhune. Software workflow
for the automatic tagging of medieval manuscript images (SWATI). In DRR,
page 940206, 2015.

[32] Swati Chandna, Francesca Rindone, Carsten Dachsbacher, and Rainer Stotzka.
Quantitative exploration of large medieval manuscripts data for the codicological
research. In Large Data Analysis and Visualization (LDAV), 2016 IEEE 6th
Symposium on, pages 20–28. IEEE, 2016.

[33] Ben Clifford, Ian Foster, Jens-S. Voeckler, Michael Wilde, and Yong Zhao.
Tracking provenance in a virtual data grid. Concurrency and Computation:
Practice and Experience, 20(5):565–575, 2008.

[34] Leendert D Couprie. Iconclass: an iconographic classification system. Art Li-
braries Journal, 8(2):32–49, 1983.

150 BIBLIOGRAPHY

[35] Christoph Cremer. Optics Far Beyond the Diffraction Limit, pages 1359–1397.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[36] Christoph Cremer, Rainer Kaufmann, Manuel Gunkel, Sebastian Pres, Yanina
Weiland, Patrick Müller, Thomas Ruckelshausen, Paul Lemmer, Fania Geiger,
Sven Degenhard, Christina Wege, Niels A. W. Lemmermann, Rafaela Holtap-
pels, Hilmar Strickfaden, and Michael Hausmann. Superresolution imaging of
biological nanostructures by spectral precision distance microscopy. Biotechnol-
ogy Journal, 6(9):1037–1051, 2011.

[37] Víctor Cuevas-Vicenttín, Parisa Kianmajd, Bertram Ludäscher, Paolo Missier,
Fernando Chirigati, Yaxing Wei, David Koop, and Saumen Dey. The PBase
scientific workflow provenance repository. International Journal of Digital Cu-
ration, 9(2):28–38, 2014.

[38] Y. Cui and J. Widom. Practical lineage tracing in data warehouses.
In Proceedings of 16th International Conference on Data Engineering (Cat.
No.00CB37073), pages 367–378, 2000.

[39] William Culhane, Kirill Kogan, Chamikara Jayalath, and Patrick Eugster.
LOOM: Optimal Aggregation Overlays for In-Memory Big Data Processing.
In HotCloud, 2014.

[40] Daniel D. Gutierrez. InsideBIGDATA Guide to Scientific Research.
http://insidebigdata.com/2015/12/01/insidebigdata-guide-to-scientific-
research/, 2015. Accessed on: 2017-04-30.

[41] Sérgio Manuel Serra da Cruz, Maria Luiza M Campos, and Marta Mattoso. To-
wards a Taxonomy of Provenance in Scientific Workflow Management Systems.
In Services-I, 2009 World Conference on, pages 259–266. IEEE, 2009.

[42] Susan B. Davidson and Juliana Freire. Provenance and Scientific Workflows:
Challenges and Opportunities. In Proceedings of the 2008 ACM SIGMOD In-
ternational Conference on Management of Data, SIGMOD ’08, pages 1345–1350,
New York, NY, USA, 2008. ACM.

[43] Domingo De Abreu, Alejandro Flores, Guillermo Palma, Valeria Pestana, José
Pinero, Jonathan Queipo, José Sánchez, and Maria-Esther Vidal. Choosing
Between Graph Databases and RDF Engines for Consuming and Mining Linked
Data. In Proceedings of the Fourth International Conference on Consuming
Linked Data-Volume 1034, pages 37–49. CEUR-WS.org, 2013.

[44] D. de Oliveira, E. Ogasawara, F. Baião, and M. Mattoso. SciCumulus: A
Lightweight Cloud Middleware to Explore Many Task Computing Paradigm
in Scientific Workflows. In 2010 IEEE 3rd International Conference on Cloud
Computing, pages 378–385, July 2010.

BIBLIOGRAPHY 151

[45] Ewa Deelman, Gurmeet Singh, Malcolm P Atkinson, Ann Chervenak, NP Chue
Hong, Carl Kesselman, Sonal Patil, Laura Pearlman, and Mei-Hui Su. Grid-
based metadata services. In Scientific and Statistical Database Management,
2004. Proceedings. 16th International Conference on, pages 393–402. IEEE,
2004.

[46] Ewa Deelman, Bruce Berriman, Ann Chervenak, Oscar Corcho, Paul Groth,
and Luc Moreau. Metadata and provenance management. In Scientific Data
Management: Challenges, Technology, and Deployment, First Edition, 2009.

[47] Ewa Deelman, Karan Vahi, Gideon Juve, Mats Rynge, Scott Callaghan, Philip J.
Maechling, Rajiv Mayani, Weiwei Chen, Rafael Ferreira da Silva, Miron Livny,
and Kent Wenger. Pegasus, a workflow management system for science automa-
tion. Future Generation Computer Systems, 46:17 – 35, 2015.

[48] Lorcan Dempsey. Scientific, industrial, and cultural heritage: a shared approach.
Ariadne, (22), 1999.

[49] Saumen Dey, Khalid Belhajjame, David Koop, Meghan Raul, and Bertram
Ludäscher. Linking prospective and retrospective provenance in scripts. Theory
and Practice of Provenance (TaPP), 2015.

[50] Ivica Dimitrovski, Dragi Kocev, Suzana Loskovska, and Sašo Džeroski. Hier-
archical Annotation of Medical Images. Pattern Recognition, 44(10–11):2436 –
2449, 2011. Semi-Supervised Learning for Visual Content Analysis and Under-
standing.

[51] Li Ding, James Michaelis, Jim McCusker, and Deborah L. McGuinness. Linked
provenance data: A semantic Web-based approach to interoperable workflow
traces. Future Generation Computer Systems, 27(6):797 – 805, 2011.

[52] Kelvin K. Droegemeier, Dennis Gannon, Daniel Reed, Beth Plale, Jay Alameda,
Tom Baltzer, Keith Brewster, Richard Clark, Ben Domenico, Sara Graves, Ev-
erette Joseph, Donald Murray, Rahul Ramachandran, Mohan Ramamurthy, La-
vanya Ramakrishnan, John A. Rushing, Daniel Weber, Robert Wilhelmson,
Anne Wilson, Ming Xue, and Sepideh Yalda. Service-Oriented Environments
for Dynamically Interacting with Mesoscale Weather. Computing in Science &
Engineering, 7(6):12–29, 2005.

[53] Tommy Ellqvist, David Koop, Juliana Freire, Cláudio Silva, and Lena Ström-
bäck. Using Mediation to Achieve Provenance interoperability. In Services-I,
2009 World Conference on, pages 291–298. IEEE, 2009.

[54] Wolfgang Emmerich, Ben Butchart, Liang Chen, Bruno Wassermann, and
Sarah L. Price. Grid Service Orchestration Using the Business Process Exe-
cution Language (BPEL). Journal of Grid Computing, 3(3):283–304, 2005.

152 BIBLIOGRAPHY

[55] Damian Flannery, Brian Matthews, Tom Griffin, Juan Bicarregui, Michael
Gleaves, Laurent Lerusse, Roger Downing, Alun Ashton, Shoaib Sufi, Glen
Drinkwater, et al. ICAT: Integrating data infrastructure for facilities based
science. In e-Science, 2009. e-Science’09. Fifth IEEE International Conference
on, pages 201–207. IEEE, 2009.

[56] Ira R Forman and Nate Forman. Java Reflection in Action., 2004.

[57] Juliana Freire, Cláudio T. Silva, Steven P. Callahan, Emanuele Santos, Carlos E.
Scheidegger, and Huy T. Vo. Managing Rapidly-Evolving Scientific Workflows,
pages 10–18. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[58] Juliana Freire, David Koop, Emanuele Santos, and Cláudio T Silva. Provenance
for Computational Tasks: A Survey. Computing in Science & Engineering, 10
(3), 2008.

[59] LM Gadelha, B Clifford, M Mattoso, M Wilde, I Foster, et al. Provenance
management in Swift with implementation details. Technical report, Argonne
National Laboratory (ANL), 2011.

[60] Helena Galhardas, Daniela Florescu, Dennis Shasha, Eric Simon, and Cristian-
Augustin Saita. Improving Data Cleaning Quality Using a Data Lineage Facility.
In DMDW, page 3, 2001.

[61] Daniel Garijo and Yolanda Gil. A New Approach for Publishing Workflows:
Abstractions, Standards, and Linked Data. In Proceedings of the 6th Workshop
on Workflows in Support of Large-scale Science, WORKS ’11, pages 47–56, New
York, NY, USA, 2011. ACM.

[62] Ashish Gehani and Dawood Tariq. SPADe: Support for Provenance Auditing
in Distributed Environments. In Proceedings of the 13th International Middle-
ware Conference, Middleware ’12, pages 101–120, New York, NY, USA, 2012.
Springer-Verlag New York, Inc.

[63] André Giesler, Myriam Czekala, Björn Hagemeier, and Richard Grunzke.
Uniprov: A Flexible Provenance Tracking System for UNICORE. In Jülich
Aachen Research Alliance (JARA) High-Performance Computing Symposium,
pages 233–242. Springer, 2016.

[64] Seth Gilbert and Nancy Lynch. Brewer’s Conjecture and the Feasibility of
Consistent, Available, Partition-tolerant Web Services. SIGACT News, 33(2):
51–59, June 2002.

[65] Carole Goble. Position statement: Musings on provenance, workflow and (se-
mantic web) annotations for bioinformatics. In Workshop on Data Derivation
and Provenance, Chicago, volume 3, 2002.

BIBLIOGRAPHY 153

[66] Antoon Goderis, Christopher Brooks, Ilkay Altintas, Edward A. Lee, and Carole
Goble. Composing Different Models of Computation in Kepler and Ptolemy II,
pages 182–190. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

[67] Jeremy Goecks, Anton Nekrutenko, and James Taylor. Galaxy: a comprehensive
approach for supporting accessible, reproducible, and transparent computational
research in the life sciences. Genome Biology, 11(8):R86, 2010.

[68] Jennifer Golbeck and James Hendler. A Semantic Web approach to the prove-
nance challenge. Concurrency and Computation: Practice and Experience, 20
(5):431–439, 2008.

[69] Trey Grainger, Timothy Potter, and Yonik Seeley. Solr in action. Manning
Cherry Hill, 2014.

[70] Jim Gray, David T. Liu, Maria Nieto-Santisteban, Alex Szalay, David J. DeWitt,
and Gerd Heber. Scientific Data Management in the Coming Decade. SIGMOD
Rec., 34(4):34–41, December 2005.

[71] J. Graybeal, S.P. Miller, and K. Stocks. The MMI
Guides: Navigating the World of Marine Metadata.
http://uop.whoi.edu/techdocs/presentations/MMI_Guides.pdf, 2010. Ac-
cessed on: 2017-07-30.

[72] Paul Groth, Sheng Jiang, Simon Miles, Steve Munroe, Victor Tan, Sofia
Tsasakou, and Luc Moreau. An Architecture for Provenance Systems. February
2006. URL https://eprints.soton.ac.uk/263216/.

[73] Richard Grunzke, Volker Hartmann, Thomas Jejkal, Helen Kollai, Ajinkya Prab-
hune, et al. The MASi Repository Service - Comprehensive, Metadata-driven
and Multi-community Research Data Management. Future Generation Com-
puter Systems, in press.

[74] Brooks Hanson, Andrew Sugden, and Bruce Alberts. Making data maximally
available. Science, 331(6018):649–649, 2011.

[75] Olaf Hartig and Jun Zhao. Using Web Data Provenance for Quality Assessment.
In Proceedings of the First International Conference on Semantic Web in Prove-
nance Management - Volume 526, SWPM’09, pages 29–34, Aachen, Germany,
2009. CEUR-WS.org.

[76] Mark Hedges, Adil Hasan, and Tobias Blanke. Management and Preservation
of Research Data with iRODS. In Proceedings of the ACM First Workshop on
CyberInfrastructure: Information Management in eScience, CIMS ’07, pages
17–22, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-831-2.

https://eprints.soton.ac.uk/263216/

154 BIBLIOGRAPHY

[77] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness
condition for concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–
492, July 1990.

[78] Anthony JG Hey and Anne E Trefethen. The data deluge: An e-science per-
spective. 2003.

[79] Tony Hey and Anne E. Trefethen. Cyberinfrastructure for e-science. Science,
308(5723):817–821, 2005.

[80] Tony Hey, Stewart Tansley, Kristin M Tolle, et al. The fourth paradigm: data-
intensive scientific discovery, volume 1. Microsoft research Redmond, WA, 2009.

[81] Sarah Higgins. Using Metadata Standards.
http://www.dcc.ac.uk/resources/briefing-papers/standards-watch-
papers/using-metadata-standards, February 2007. Accessed on: 2017-04-30.

[82] R. N. Hook, M. Romaniello, M. Ullgrén, P. Järveläinen, S. Maisala, T. Oittinen,
V. Savolainen, O. Solin, J. Tyynelä, M. Peron, C. Izzo, and T. Licha. ESO
Reflex: A Graphical Workflow Engine for Running Recipes, pages 169–175.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[83] Iain Hrynaszkiewicz, Melissa L Norton, Andrew J Vickers, and Douglas G Alt-
man. Preparing raw clinical data for publication: guidance for journal editors,
authors, and peer reviewers. Trials, 11(1):9, 2010.

[84] Bo Hu, S. Dasmahapatra, P. Lewis, and N. Shadbolt. Ontology-based medical
image annotation with description logics. In Proceedings. 15th IEEE Interna-
tional Conference on Tools with Artificial Intelligence, pages 77–82, Nov 2003.

[85] Thomas Jejkal, Alexander Vondrous, Andreas Kopmann, Rainer Stotzka, and
Volker Hartmann. Kit data manager: The repository architecture enabling
cross-disciplinary research. Large-Scale Data Management and Analysis-Big
Data in Science-, 2014.

[86] Scott Jensen, Devarshi Ghoshal, and Beth Plale. Evaluation of two xml stor-
age approaches for scientific metadata. Indiana University Dept of Computer
Science Tech Report, 698, 2011.

[87] Richard Jones, Theo Andrew, and John (John A.) MacColl. The institutional
repository. Oxford Chandos Publishing, 2006. URL http://swb.eblib.com/
patron/FullRecord.aspx?p=1640125.

[88] L. M. R. Gadelha Jr and M. Mattoso. Kairos: An Architecture for Securing
Authorship and Temporal Information of Provenance Data in Grid-Enabled
Workflow Management Systems. In 2008 IEEE Fourth International Conference
on eScience, pages 597–602, Dec 2008.

http://swb.eblib.com/patron/FullRecord.aspx?p=1640125
http://swb.eblib.com/patron/FullRecord.aspx?p=1640125

BIBLIOGRAPHY 155

[89] Jihie Kim, Ewa Deelman, Yolanda Gil, Gaurang Mehta, and Varun Ratnakar.
Provenance trails in the Wings/Pegasus system. Concurrency and Computation:
Practice and Experience, 20(5):587–597, 2008.

[90] Cory Knobel. Understanding infrastructure: Dynamics, tensions, and design.
Academic Press, 2007.

[91] Holger Knublauch, JA Hendler, and Kingsley Idehen. SPIN-overview and mo-
tivation. W3C member submission. World Wide Web Consortium (February
2011), 2011.

[92] Steven Krauwer. CLARIN: Common language resources and technology in-
frastructure. Proceedings of the Sixth International Language Resources and
Evaluation (LREC’08), 2008.

[93] Betty Landesman. Seeing Standards: A Visualization of the Metadata Universe.
Technical Services Quarterly, 28(4):459–460, 2011. URL http://www.dlib.
indiana.edu/~jenlrile/metadatamap/.

[94] Brian F Lavoie. The open archival information system reference model: Intro-
ductory guide, volume 1. OCLC, 2004.

[95] Damien Lecarpentier, Peter Wittenburg, Willem Elbers, Alberto Michelini,
Riam Kanso, Peter Coveney, and Rob Baxter. EUDAT: A new cross-disciplinary
data infrastructure for science. International Journal of Digital Curation, 8(1):
279–287, 2013.

[96] Edward A Lee and Steve Neuendorffer. MoML: A Modeling Markup Language
in SML: Version 0.4. 2000.

[97] Y. Li and S. Manoharan. A performance comparison of SQL and NoSQL
databases. In 2013 IEEE Pacific Rim Conference on Communications, Com-
puters and Signal Processing (PACRIM), pages 15–19, Aug 2013.

[98] C. Lim, S. Lu, A. Chebotko, and F. Fotouhi. Prospective and Retrospective
Provenance Collection in Scientific Workflow Environments. In 2010 IEEE In-
ternational Conference on Services Computing, pages 449–456, July 2010.

[99] Philip Lord, Alison Macdonald, Liz Lyon, and David Giaretta. From data deluge
to data curation. In Proceedings of the UK e-science All Hands meeting, pages
371–375, 2004.

[100] Bertram Ludäscher, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat Jaeger,
Matthew Jones, Edward A. Lee, Jing Tao, and Yang Zhao. Scientific workflow
management and the Kepler system. Concurrency and Computation: Practice
and Experience, 18(10):1039–1065, 2006.

http://www.dlib.indiana.edu/~jenlrile/metadatamap/
http://www.dlib.indiana.edu/~jenlrile/metadatamap/

156 BIBLIOGRAPHY

[101] Clifford A Lynch. Institutional repositories: essential infrastructure for scholar-
ship in the digital age. portal: Libraries and the Academy, 3(2):327–336, 2003.

[102] Clifford A Lynch and Joan K Lippincott. Institutional repository deployment
in the united states as of early 2005. D-lib Magazine, 11(9):1–11, 2005.

[103] D. Maksimov, J. Hesser, C. Brockmann, S. Jochum, T. Dietz, A. Schnitzer,
C. Duber, S. O. Schoenberg, and S. Diehl. Graph-matching based cta. IEEE
Transactions on Medical Imaging, 28(12):1940–1954, Dec 2009.

[104] Laura Haak Marcial and Bradley M. Hemminger. Scientific data repositories on
the Web: An initial survey. Journal of the American Society for Information
Science and Technology, 61(10):2029–2048, 2010.

[105] Suresh Marru, Lahiru Gunathilake, Chathura Herath, Patanachai Tangchaisin,
Marlon Pierce, Chris Mattmann, Raminder Singh, Thilina Gunarathne, Eran
Chinthaka, Ross Gardler, Aleksander Slominski, Ate Douma, Srinath Perera,
and Sanjiva Weerawarana. Apache Airavata: A Framework for Distributed
Applications and Computational Workflows. In Proceedings of the 2011 ACM
Workshop on Gateway Computing Environments, GCE ’11, pages 21–28. ACM,
2011. ISBN 978-1-4503-1123-6.

[106] Chris Mattmann and Jukka Zitting. Tika in Action. Manning Publications Co.,
Greenwich, CT, USA, 2011. ISBN 1935182854, 9781935182856.

[107] Rudolf Mayer and Andreas Rauber. Towards Time-resilient MIR Processes. In
ISMIR, pages 337–342, 2012.

[108] Michael McCandless, Erik Hatcher, and Otis Gospodnetic. Lucene in Action:
Covers Apache Lucene 3.0. Manning Publications Co., 2010.

[109] Deborah L. McGuinness and Paulo Pinheiro da Silva. Explaining answers from
the Semantic Web: the Inference Web approach. Web Semantics: Science,
Services and Agents on the World Wide Web, 1(4):397 – 413, 2004. International
Semantic Web Conference 2003.

[110] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and B. H. C. Cheng. Composing
adaptive software. Computer, 37(7):56–64, July 2004.

[111] P. Missier, B. Ludäscher, S. Bowers, S. Dey, A. Sarkar, B. Shrestha, I. Altintas,
M. K. Anand, and C. Goble. Linking multiple workflow provenance traces
for interoperable collaborative science. In The 5th Workshop on Workflows in
Support of Large-Scale Science, pages 1–8, Nov 2010.

[112] Luc Moreau and Paolo Missier. PROV-DM: The prov data model. 2013.

BIBLIOGRAPHY 157

[113] Luc Moreau, Bertram Ludäscher, Ilkay Altintas, Roger S Barga, Shawn Bow-
ers, Steven Callahan, George Chin, Ben Clifford, Shirley Cohen, Sarah Cohen-
Boulakia, et al. Special issue: The first provenance challenge. Concurrency and
computation: practice and experience, 20(5):409–418, 2008.

[114] Luc Moreau, Ben Clifford, Juliana Freire, Joe Futrelle, Yolanda Gil, Paul Groth,
Natalia Kwasnikowska, Simon Miles, Paolo Missier, Jim Myers, et al. The
Open Provenance Model Core Specification (v1. 1). Future generation computer
systems, 27(6):743–756, 2011.

[115] Wellington Oliveira, Paolo Missier, Kary Ocaña, Daniel de Oliveira, and Vanessa
Braganholo. Analyzing Provenance Across Heterogeneous Provenance Graphs,
pages 57–70. Springer International Publishing, 2016.

[116] Heinz Pampel, Paul Vierkant, Frank Scholze, Roland Bertelmann, Maxi Kin-
dling, Jens Klump, Hans-Jürgen Goebelbecker, Jens Gundlach, Peter Schirm-
bacher, and Uwe Dierolf. Making research data repositories visible: the re3data.
org registry. PloS one, 8(11):e78080, 2013.

[117] Zachary Parker, Scott Poe, and Susan V. Vrbsky. Comparing NoSQL MongoDB
to an SQL DB. In Proceedings of the 51st ACM Southeast Conference, ACMSE
’13, pages 5:1–5:6, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-1901-0.

[118] Quan Pham, Tanu Malik, Ian T Foster, Roberto Di Lauro, and Raffaele Mon-
tella. SOLE: Linking Research Papers with Science Objects. In IPAW, pages
203–208. Springer, 2012.

[119] Quan Pham, Tanu Malik, and Ian T Foster. Using Provenance for Repeatability.
TaPP, 13:2, 2013.

[120] João Felipe Pimentel, Saumen Dey, Timothy McPhillips, Khalid Belhajjame,
David Koop, Leonardo Murta, Vanessa Braganholo, and Bertram Ludäscher.
Yin & yang: demonstrating complementary provenance from noworkflow &
yesworkflow. In International Provenance and Annotation Workshop, pages 161–
165. Springer, 2016.

[121] B Plale, B Cao, and M Aktas. Provenance Capture of Unmanaged Workflows
with Karma. Bloomington, IN, Indiana University, 2011.

[122] Kassian Plankensteiner, Radu Prodan, Matthias Janetschek, Thomas Fahringer,
Johan Montagnat, David Rogers, Ian Harvey, Ian Taylor, Ákos Balaskó, and
Péter Kacsuk. Fine-Grain Interoperability of Scientific Workflows in Distributed
Computing Infrastructures. Journal of Grid Computing, 11(3):429–455, Sep
2013.

[123] Ajinkya Prabhune, Rainer Stotzka, Thomas Jejkal, Volker Hartmann, Margund
Bach, Eberhard Schmitt, Michael Hausmann, and Jürgen Hesser. An optimized

158 BIBLIOGRAPHY

generic client service api for managing large datasets within a data repository.
In 2015 IEEE First International Conference on Big Data Computing Service
and Applications, pages 44–51, March 2015.

[124] Ajinkya Prabhune, Hasebullah Ansari, Anil Keshav, Rainer Stotzka, Michael
Gertz, and Jürgen Hesser. MetaStore: A metadata framework for scientific data
repositories. In 2016 IEEE International Conference on Big Data (Big Data),
pages 3026–3035, Dec 2016.

[125] Ajinkya Prabhune, Aaron Zweig, Rainer Stotzka, Michael Gertz, and Juergen
Hesser. Prov2one: An algorithm for automatically constructing provone prove-
nance graphs. In International Provenance and Annotation Workshop, pages
204–208. Springer, 2016.

[126] Ajinkya Prabhune, Rainer Stotzka, Michael Gertz, Lei Zheng, and Jürgen
Hesser. Managing provenance for medical datasets. BIOSTEC 2017, page 236,
2017.

[127] Ajinkya Prabhune, Rainer Stotzka, Sakharkar Vaibhav, Jürgen Hesser, and
Michael Gertz. MetaStore: An adaptive metadata management framework for
heterogeneous metadata models. Distributed and Parallel Databases, in press.

[128] NISO Press. Understanding metadata. National Information Standards, 20,
2004.

[129] Dan Pritchett. Base: An acid alternative. Queue, 6(3):48–55, May 2008. ISSN
1542-7730.

[130] Eric Prud, Andy Seaborne, et al. SPARQL query language for RDF. 2006.

[131] Jian Qin, Alex Ball, and Jane Greenberg. Functional and architectural require-
ments for metadata: Supporting discovery and management of scientific data.
In International Conference on Dublin Core and Metadata Applications, pages
62–71, 2012.

[132] Shrija Rajbhandari and David W Walker. Support for provenance in a service-
based computing grid. In UK e-Science All Hands Meeting, 2004.

[133] Nick Russell, Arthur HM Ter Hofstede, Wil MP Van Der Aalst, and Nataliya
Mulyar. Workflow control-flow patterns: A revised view. BPM Center Report
BPM-06-22, BPMcenter. org, pages 06–22, 2006.

[134] Satya Sahoo, Paul Groth, Olaf Hartig, Simon Miles, Sam Coppens, James My-
ers, Yolanda Gil, Luc Moreau, Jun Zhao, Michael Panzer, et al. Provenance
vocabulary mappings. W3C Working Draft, W3C, 2010.

[135] Satya S Sahoo and Amit P Sheth. Provenir ontology: Towards a framework for
escience provenance management. 2009.

BIBLIOGRAPHY 159

[136] Robert Sanderson, Paolo Ciccarese, Herbert Van de Sompel, Shannon Bradshaw,
Dan Brickley, Leyla Jael Garcıa Castro, Timothy Clark, Timothy Cole, Phil
Desenne, Anna Gerber, et al. Open annotation data model. W3C community
draft, 8, 2013.

[137] Thomas Schandl and Andreas Blumauer. PoolParty: SKOS thesaurus man-
agement utilizing linked data. The Semantic Web: Research and Applications,
pages 421–425, 2010.

[138] Guido Scherp, André Höing, Stefan Gudenkauf, Wilhelm Hasselbring, and Odej
Kao. Using UNICORE and WS-BPEL for Scientific Workflow Execution in
Grid Environments. In Euro-Par Workshops, pages 335–344. Springer, 2009.

[139] Hartmut Scholz. Die mittelalterlichen Glasmalereien in Mittelfranken und Nürn-
berg: extra muros, volume 10. Deutscher Verlag Fur Kunstwissenschaft, 2002.

[140] Hartmut Scholz. Die mittelalterlichen Glasmalereien in Nürnberg: Sebalder
Stadtseite. Deutscher Verlag für Kunstwissenschaft, 2013.

[141] Andreas Schreiber, Miriam Ney, and Heinrich Wendel. The Provenance Store
prOOst for the Open Provenance Model, pages 240–242. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2012.

[142] Jayavel Shanmugasundaram, Kristin Tufte, Chun Zhang, Gang He, David J.
DeWitt, and Jeffrey F. Naughton. Relational Databases for Querying XML
Documents: Limitations and Opportunities. In Proceedings of the 25th Inter-
national Conference on Very Large Data Bases, VLDB ’99, pages 302–314, San
Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc. ISBN 1-55860-
615-7. URL http://dl.acm.org/citation.cfm?id=645925.671499.

[143] Sarah L. Shreeves, Joanne S. Kaczmarek, and Timothy W. Cole. Harvesting
cultural heritage metadata using the oai protocol. Library Hi Tech, 21(2):159–
169, 2003.

[144] Yogesh Simmhan, Paul Groth, and Luc Moreau. Special Section: The third
provenance challenge on using the open provenance model for interoperability.
Future Generation Computer Systems, 27(6):737 – 742, 2011.

[145] Yogesh L. Simmhan, Beth Plale, and Dennis Gannon. A Survey of Data Prove-
nance in e-Science. SIGMOD Rec., 34(3):31–36, September 2005.

[146] Yogesh L. Simmhan, Beth Plale, and Dennis Gannon. Query capabilities of the
Karma provenance framework. Concurrency and Computation: Practice and
Experience, 20(5):441–451, 2008.

[147] Gurmeet Singh, Shishir Bharathi, Ann Chervenak, Ewa Deelman, Carl Kessel-
man, Mary Manohar, Sonal Patil, and Laura Pearlman. A metadata catalog

http://dl.acm.org/citation.cfm?id=645925.671499

160 BIBLIOGRAPHY

service for data intensive applications. In Supercomputing, 2003 ACM/IEEE
Conference, pages 33–33. IEEE, 2003.

[148] Aleksander Slomiski. On using BPEL extensibility to implement OGSI and
WSRF Grid workflows. Concurrency and Computation: Practice and Experi-
ence, 18(10):1229–1241, 2006.

[149] MacKenzie Smith, Mary Barton, Mick Bass, Margret Branschofsky, Greg Mc-
Clellan, Dave Stuve, Robert Tansley, and Julie Harford Walker. DSpace: An
open source dynamic digital repository. 2003.

[150] Catherine Soehner, Catherine Steeves, and Jennifer Ward. E-Science and Data
Support Services: A Study of ARL Member Institutions. Association of Research
Libraries, 2010.

[151] Mirko Sonntag, Dimka Karastoyanova, and Ewa Deelman. BPEL4Pegasus:
Combining Business and Scientific Workflows, pages 728–729. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010.

[152] R. D. Stevens, H. J. Tipney, C. J. Wroe, T. M. Oinn, M. Senger, P. W. Lord,
C. A. Goble, A. Brass, and M. Tassabehji. Exploring Williams–Beuren syndrome
using myGrid. Bioinformatics, 20:i303, 2004.

[153] Robert D. Stevens, Alan J. Robinson, and Carole A. Goble. myGrid: person-
alised bioinformatics on the information grid. Bioinformatics, 19:i302, 2003.

[154] Victoria Stodden, Peixuan Guo, and Zhaokun Ma. Toward reproducible com-
putational research: an empirical analysis of data and code policy adoption by
journals. PloS one, 8(6):e67111, 2013.

[155] Rainer Stotzka, Volker Hartmann, Thomas Jejkal, Michael Sutter, Jos van
Wezel, Marcus Hardt, Ariel Garcia, Rainer Kupsch, and Serguei Bourov. Per-
spective of the large scale data facility (lsdf) supporting nuclear fusion applica-
tions. In Parallel, Distributed and Network-Based Processing (PDP), 2011 19th
Euromicro International Conference on, pages 373–379. IEEE, 2011.

[156] Achim Streit, Piotr Bala, Alexander Beck-Ratzka, Krzysztof Benedyczak, San-
dra Bergmann, Rebecca Breu, Jason Milad Daivandy, Bastian Demuth, Anasta-
sia Eifer, André Giesler, et al. UNICORE 6—Recent and Future Advancements.
Annals of Telecommunications-annales des Télécommunications, 65(11-12):757–
762, 2010.

[157] Shulei Sun, Jing Chen, Weizhong Li, Ilkay Altintas, Abel Lin, Steve Peltier,
Karen Stocks, Eric E. Allen, Mark Ellisman, Jeffrey Grethe, and John Wooley.
Community cyberinfrastructure for Advanced Microbial Ecology Research and
Analysis: the CAMERA resource. Nucleic Acids Research, 39(suppl_1):D546,
2011.

BIBLIOGRAPHY 161

[158] Yiming Sun, Scott Jensen, Sangmi Pallickara, and Beth Plale. Personal
Workspace for Large-Scale Data-Driven Computational Experiment. In Pro-
ceedings of the 7th IEEE/ACM International Conference on Grid Computing,
GRID ’06, pages 112–119, Washington, DC, USA, 2006. IEEE Computer Soci-
ety.

[159] Osma Suominen, Henri Ylikotila, Sini Pessala, Mikko Lappalainen, Matias
Frosterus, Jouni Tuominen, Thomas Baker, Caterina Caracciolo, and Armin
Retterath. Publishing SKOS vocabularies with Skosmos. Manuscript submitted
for review, 2015.

[160] Wang Chiew Tan et al. Provenance in databases: past, current, and future.
IEEE Data Eng. Bull., 30(4):3–12, 2007.

[161] Andreas Truszkowski, Kalai Vanii Jayaseelan, Stefan Neumann, Egon L. Wil-
lighagen, Achim Zielesny, and Christoph Steinbeck. New developments on the
cheminformatics open workflow environment CDK-Taverna. Journal of Chem-
informatics, 3(1):54, 2011.

[162] Peter Van Garderen. Archivematica: Using micro-services and open-source soft-
ware to deliver a comprehensive digital curation solution. In Proceedings of the
7th International Conference on Preservation of Digital Objects, Vienna, Aus-
tria, pages 145–149, 2010.

[163] Chad Vicknair, Michael Macias, Zhendong Zhao, Xiaofei Nan, Yixin Chen, and
Dawn Wilkins. A Comparison of a Graph Database and a Relational Database:
A Data Provenance Perspective. In Proceedings of the 48th Annual Southeast
Regional Conference, ACM SE ’10, pages 42:1–42:6, New York, NY, USA, 2010.
ACM.

[164] Mark Ware. Pathfinder research on web-based repositories. London: Publisher
and Library/Learning Solutions, page 3, 2004.

[165] Bruno Wassermann, Wolfgang Emmerich, Ben Butchart, Nick Cameron, Liang
Chen, and Jignesh Patel. Sedna: A BPEL-Based Environment for Visual Sci-
entific Workflow Modeling, pages 428–449. Springer London, London, 2007.

[166] Paul Watson, Hugo Hiden, and Simon Woodman. e-Science Central for CAR-
MEN: science as a service. Concurrency and computation: Practice and Expe-
rience, 22(17):2369–2380, 2010.

[167] Stuart Weibel, John Kunze, Carl Lagoze, and Misha Wolf. Dublin core metadata
for resource discovery. Technical report, 1998.

[168] E James Whitehead and Meredith Wiggins. WebDAV: IEFT standard for col-
laborative authoring on the web. IEEE Internet Computing, 2(5):34–40, 1998.

162 BIBLIOGRAPHY

[169] Jennifer Widom. Trio: A system for integrated management of data, accuracy,
and lineage. Technical report, Stanford InfoLab, 2004.

[170] Joss Winn et al. Open data and the academy: An evaluation of CKAN for
research data management. 2013.

[171] Petia Wohed, Wil M. P. van der Aalst, Marlon Dumas, and Arthur H. M.
ter Hofstede. Analysis of Web Services Composition Languages: The Case of
BPEL4WS, pages 200–215. Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.

[172] Katherine Wolstencroft, Robert Haines, Donal Fellows, Alan Williams, David
Withers, Stuart Owen, Stian Soiland-Reyes, Ian Dunlop, Aleksandra Nenadic,
Paul Fisher, Jiten Bhagat, Khalid Belhajjame, Finn Bacall, Alex Hardisty,
Abraham Nieva de la Hidalga, Maria P Balcazar Vargas, Shoaib Sufi, and Ca-
role Goble. The Taverna workflow suite: designing and executing workflows of
Web Services on the desktop, web or in the cloud. Nucleic Acids Research,
(Web Server issue):W557–W561, 07 .

[173] Lauren Wood, Arnaud Le Hors, Vidur Apparao, Steve Byrne, Mike Champion,
Scott Isaacs, Ian Jacobs, Gavin Nicol, Jonathan Robie, Robert Sutor, et al.
Document object model (dom) level 1 specification. W3C Recommendation, 1,
1998.

[174] Simon Woodman, Hugo Hiden, Paul Watson, and Paolo Missier. Achieving
Reproducibility by Combining Provenance with Service and Workflow Version-
ing. In Proceedings of the 6th Workshop on Workflows in Support of Large-scale
Science, WORKS ’11, pages 127–136, New York, NY, USA, 2011. ACM.

[175] A. Woodruff and M. Stonebraker. Supporting fine-grained data lineage in a
database visualization environment. In Proceedings 13th International Confer-
ence on Data Engineering, pages 91–102, Apr 1997.

[176] Bohdan S Wynar, Arlene G Taylor, and Jeanne Osborn. Introduction to cata-
loging and classification. Libraries Unlimited Englewood, CO, 1985.

[177] Ruixin Yang, Xinhua Deng, M. Kafatos, Changzhou Wang, and X. S. Wang. An
xml-based distributed metadata server (dimes) supporting earth science meta-
data. In Proceedings Thirteenth International Conference on Scientific and Sta-
tistical Database Management. SSDBM 2001, pages 251–256, 2001.

[178] Jun Zhao, Chris Wroe, Carole Goble, Robert Stevens, Dennis Quan, and Mark
Greenwood. Using semantic web technologies for representing e-science prove-
nance. In International Semantic Web Conference, volume 3298, pages 92–106.
Springer, 2004.

[179] Jun Zhao, Carole Goble, Robert Stevens, and Daniele Turi. Mining Taverna’s
semantic web of provenance. Concurrency and Computation: Practice and Ex-
perience, 20(5):463–472, 2008.

BIBLIOGRAPHY 163

[180] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. von Laszewski, V. Nefedova,
I. Raicu, T. Stef-Praun, and M. Wilde. Swift: Fast, Reliable, Loosely Coupled
Parallel Computation. In 2007 IEEE Congress on Services (Services 2007),
pages 199–206, July 2007.

[181] Yong Zhao, Michael Wilde, and Ian Foster. Applying the virtual data prove-
nance model. In International Provenance and Annotation Workshop, pages
148–161. Springer, 2006.

[182] Élise Meyer, Pierre Grussenmeyer, Jean-Pierre Perrin, Anne Durand, and Pierre
Drap. A web information system for the management and the dissemination of
cultural heritage data. Journal of Cultural Heritage, 8(4):396 – 411, 2007.

	Introduction
	Motivation and Research Objectives
	Key Challenges
	Contributions
	Structure of the Thesis

	Background and Related Work
	Scientific Data Repository Systems
	KIT Data Manager
	Limitations of KIT Data Manager

	Metadata Management
	Metadata management systems in SDRs
	Standalone metadata management systems
	Metadata management in Grid infrastructures
	Commercial metadata management systems
	Limitations of the existing metadata management systems

	Provenance in WfMSs
	Provenance handling in WfMSs
	Provenance in Grid workflow execution environment
	Limitations of WfMSs in handling provenance

	Provenance Interoperability
	Provenance interoperability frameworks
	Limitations of existing provenance interoperability frameworks

	Summary

	Scientific Data Repositories
	Introduction
	Related Work
	Architecture of Scientific Data Repository
	Scientific Data Repository
	Generic Client Service API

	Evaluation
	Use cases
	Nanoscopy
	Angioscopy

	Summary

	Generic Metadata Management
	Introduction and Motivation
	Preliminaries
	NoSQL Databases
	Web Annotation Data Model
	OAI-PMH

	MetaStore Architecture
	Research Community
	MetaStore Core Layer
	MetaStore Extension Layer
	Scientific Data Repository

	Evaluation
	Evaluation of Features
	Performance Evaluation

	Application Use Cases
	Discussion
	Summary

	Provenance Management in WfMSs
	Motivation and Objectives
	Preliminaries
	ProvONE model
	Control driven vs. Data driven workflow languages
	Patterns in Control-flow languages
	Provenance management in WfMSs

	Provenance Interoperability Architecture
	Vocabulary mapping rules between ProvONE and scientific workflow specifications
	Prov2ONE Algorithm
	Correctness and completeness of the algorithms
	Retrospective mapping rules between WfMSs and ProvONE
	Prov2ONE Algorithm Analysis

	Evaluation
	Use cases
	Provenance Challenge Queries
	Features of P-PIF

	Discussion
	Summary

	Conclusions and Future Work
	Summary
	Future Work

