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Abstract
Universal dynamics of a dilute Bose gas is studied within the kinetic regime where
the time evolution of the mode occupation number is governed by a wave-Boltzmann
equation. The universality manifests itself in the form of the dynamical evolution
which can be a cascade in the context of Kolmogorov-Zakharov wave turbulence
or a self-similar shift in time and space. Which is the case depends on the rel-
evant global conservation laws and on the particular range of scales in which the
respective dynamics takes place. A nonperturbative kinetic equation is derived by
applying the Schwinger-Keldysh closed-time functional integral and the 2-particle-
irreducible formalism to an action of complex scalar Bose fields with quartic inter-
action. The resulting dynamic equation for two-point correlations are reduced to a
wave-Boltzmann-type kinetic equation with an effective T -matrix which depends ex-
plicitly on the mode occupation numbers. This nonperturbative dependence on the
solution occurs in the infrared regime where wave numbers are large and collective
scattering of many particles prevails. Thus, the scaling analysis of wave turbulence
theory can be applied. We explicitly calculate the effective T -matrix analytically
taking into account an infrared cutoff for dealing with the infrared divergences. Our
results show that the scaling behaviour of the T -matrix departs from the one pre-
dicted by naive dimensional counting due to the presence of the infrared cutoff. The
Kolmogorov-Zakharov and the self-similar exponents are evaluated by power count-
ing using our T -matrix and the results are confirmed by numerical integration of
the wave-Boltzmann scattering integral. The scaling exponents governing the time
evolution are determined by means of the global conservation laws and the kinetic
equation. Depending on the scaling properties of the quasiparticle spectrum, the
momentum cutoff scale in the infrared evolves critically slowed in time. The respect-
ive scaling exponent is universal in the nonperturbative regime regardless of whether
the process is an inverse cascade or a self-similar shift towards the infrared. Thus,
our results provide a general framework for classifying nonthermal fixed points in
dilute ultracold Bose gases. They pave the way to a straightforward generalisation
and application to trapped systems in different dimensionalities and to systems with
more than one internal degree of freedom. Our results furthermore provide a possible
interpretation of recent experimental results on wave turbulence in an ultracold Bose
gas.

v



Kurzzusammenfassung
Wir studieren die universelle Dynamik eines verdünnten Bose-Gases im kinetischen
Regime, in dem die Zeitentwicklung der Besetzungszahlen durch eine Boltzmann-
Gleichung gegeben ist. Die Universalität zeigt sich in der dynamischen Entwicklung
der Besetzungszahlen, die entweder die Form einer Kolmogorov-Zakharov wellentur-
bulenten Kaskade oder einer selbstähnlichen Verschiebung in Zeit und Raum an-
nehmen kann. Welcher Fall eintritt, hängt von den relevanten globalen Erhaltungs-
sätzen und dem entsprechenden Skalenbereich ab, in dem die Dynamik stattfindet.
Eine nicht-perturbative dynamische Gleichung für die Zweipunkt-Korrelatoren wird
durch Anwendung des Schwinger-Keldysh closed-time Funktionalintegrals und der 2-
Teilchen-irreduziblen Formulierung der effektiven Wirkung für ein komplexes skala-
res Bosefeld mit quartischer Wechselwirkung hergeleitet. Aus dieser Gleichung erhält
man eine der Wellen-Boltzmann-Gleichung ähnliche kinetische Gleichung mit einer
effektiven T -Matrix, welche explizit von den Moden-Besetzungszahlen abhängt. Diese
nicht-perturbative Abhängigkeit von der Lösung tritt im Infrarotbereich auf, in dem
die Wellenzahlen groß sind und kollektive Streuung von vielen Teilchen überwiegt.
Daher kann die Skalenanalyse der Wellenturbulenz-Theorie angewendet werden. Wir
regularisieren die Divergenz im Infraroten mit Hilfe eines physikalischen Cutoffs und
berechnen damit analytisch die effektive T -Matrix. Unsere Ergebnisse zeigen, dass
das Skalierungsverhalten der T -Matrix aufgrund des infraroten Cutoffs von dem mit-
tels einfachen Abzählens der Impuls-Dimensionen erhaltenen Wert abweicht. Der
Kolmogorov-Zakharov Exponent sowie die Exponenten der selbstähnlichen Verschie-
bung werden mit Hilfe der T -Matrix ausgewertet und durch numerische Integration
des Boltzmann-Streuintegrals bestätigt. Die Exponenten, welche die Zeitentwicklung
beschreiben, werden durch globale Erhaltungssätze und die kinetische Gleichung be-
stimmt. Abhängig von den Skalierungseigenschaften des Spektrums der Quasiteilchen
entwickelt sich die Impuls-Cutoff Skala kritisch verlangsamt in der Zeit. Der entspre-
chende Skalierungsexponent ist universell innerhalb des nicht-perturbativen Regimes,
unabhängig davon, ob der Prozess eine inverse Kaskade oder eine selbstähnlichen
Verschiebung darstellt. Unsere Resultate liefern daher einen allgemeinen Rahmen
für die Klassifizierung von nichtthermischen Fixpunkten in verdünnten ultrakalten
Bose-Gasen. Außerdem schaffen sie die Grundlage für weitere Anwendungen von (in
Fallen eingeschlossenen) Systemen in unterschiedlichen Dimensionen und von Syste-
men mit mehr als einem internen Freiheitsgrad. Zudem geben unsere Resultate eine
mögliche Interpretation der Ergebnisse aktueller Experimente zur Wellenturbulenz
in einem ultrakalten Bose-Gas.
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Chapter 1

Introduction
Bose-Einstein condensation (BEC) was predicted by S.N. Bose and A. Einstein [1–3]
as a condensed state of matter in the ground state. In 1995, BEC in a dilute gas
was first observed in several experiments, using different types of atomic vapor [4–6].
Since then, the range of isotopes that are successfully condensed into BEC has been
rapidly expanded including some lanthanide elements such as Yb, Dy and Er. In
many-body physics, the BEC is described as a phase of spontaneously broken global
U(1) symmetry of the underlying field theoretical model. The Bogoliubov mean-field
theory treats the ground state of the BEC differently from the excited states. In the
condensate phase, the field operator which creates the ground state is replaced by a
complex-number-valued macroscopic field, such that the ground state field expecta-
tion value is non-zero while the excited states still have zero field expectation values
due to the nature of creation/annihilation operators. The transition from noncon-
densed to condensed phase can be viewed as a phase transition that occurs below
a critical temperature (on the order of nano Kelvins) and the expectation value of
the ground state field serves as an order parameter distinguishing the noncondensed
state (being zero) from the condensed state (being nonzero). The transition from
the noncondensate phase to the condensate phase (which can be viewed as thermal
equilibrium states of the ultracold Bose gas) implies that a large amount of particles,
comparable to the total number of particles in the system, is shifted into the ground
state. In most physical realisations, the formation of a condensate is, however, a
highly nonequilibrium process and is not captured by a model that only accounts for
slight deviations from thermal equilibrium [7].

In the following, we would like to emphasize how the formation of a Bose-Einstein
condensate, wave turbulence and nonthermal fixed points are related to each other
and what role each of them plays in the context of nonequilibrium universal physics.

The process of condensation requires cooling of the Bose gas such the temperature
drops below the critical temperature. There is a series of techniques to achieve BEC
where typically, the evaporate cooling is used in the last step [8, 9]. By allowing high-
energy particles to leave the system, the energy of the system is being lowered. This
process is equivalent to removing particles from the high-energy tail of the number
distribution and then letting the Bose gas to re-equilibrate. This is also termed a
“cooling quench”. Once the temperature drops down below the critical temperature,
the wave functions of the particles start to overlap and a BEC starts to form. During
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Chapter 1 Introduction

this procedure, the gas is kept isolated from its surrondings to prevent it from heating
up. Hence, the process shifting the particles into the ground state originates from
the interparticle collisions alone. As such, the condensation process is expected to
be captured by a kinetic-theory description. As we will see, this allows us to identify
wave turbulence as a generic feature of this process [10–12].

E. Levich and V. Yakhot investigated the time scale that is needed for condens-
ation to occur. In [13], the Bose gas was coupled with a heat bath and it was shown
that the time scale for condensate formation is infinite if there is no condensate in the
first place. However, when treating the Bose gas within a kinetic-theory framework,
the time scale of condensation is found to be finite [14]. This result suggests that
kinetic equations can serve to describe the process of forming a BEC. The process of
condensation can then be analysed within the theory of weak wave turbulence.

This analysis of wave turbulence in weakly interacting Bose gases is done in [15],
and it is emphasized that an inverse particle cascade is a very convenient means to
transport particles into the zero-mode. Numerical calculations supported this claim
[16, 17], though the results are slightly different in the values of scaling exponents.
It needs to be stressed, however, that weak-wave turbulence can not describe the
whole process since it is subject to the weak-wave approximation. This means it is
only valid at sufficiently low wave amplitude and in the random phase approximation
[10] This approximation breaks down when phase coherence starts to appear and,
typically, vortices are formed and begin to reconnect.

In a series of papers, Stoof [18–21] analyzed the Bose gas by applying the
Schwinger-Keldysh time integral contour in a 1-particle-irreducible (1PI) formula-
tion of the Gross-Pitaevskii action. Instead of using the process of truncation that
is normally done in the 1PI approach, the effective action of the Gross-Pitaevskii
model (GPE) was considered as a classical action and a generating functional was
derived in the classical limit (~ → 0) to avoid over counting of loop-diagrams that are
now in the (effective) classical action. Although the author chose the truncation in
way that it preserves the symmetry of the original action, he still had to go through
several steps of approximations in order to build up a self-consisted correction term
for the effective action. The major conclusion was that the instability creates a small
amount of condensate in the ground state nucleating the further condensation pro-
cess. Furthermore, the time scale of nucleation was found to be very short, likely to
be observed in laboratory experiments.

In stark contrast, Svistunov, Kagan and Shlyapnikov [7, 22, 23] suggested that the
particles in the coherent regime already behave much like a condensate in the ground
state. A precondensate peak would form at k > 0 due to the suppression of quantum
fluctuations. Such a state is called quasicondensate and numerical calculations done
later [24] show that this quasicondensate induces superfluid turbulence with a very
long life-time, indicating that the time scale of condensate formation might be much
longer than the one derived by Stoof.

Such an intermediate state apparently fits with the idea of a nonthermal fixed
point [25, 26], stating that there exists a nonequilibrium fixed point characterized
by universal scaling exponents. While there is no mentioning of scaling behaviour

2
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Now: Strong cooling quench!
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Figure 1.1: Universal dynamics of a dilute Bose gas in the vicinity of a non-thermal fixed
point, as induced by a strong cooling quench. The sketch indicates the single-
particle radial number distribution n(p, t) as function of momentum p for two
different times t (solid and short-dashed lines). Starting from the extreme
initial distribution n(p, t0) (long-dashed line) resulting, e.g., from a strong
cooling quench which removes a previous thermal tail (grey shaded area), a
bidirectional redistribution of particles in momentum space (arrows) occurs.
This eventually builds up a quasicondensate in the infrared while refilling the
thermal tail at large momenta. The particle transports towards zero as well as
large momenta is characterized by self-similar scaling evolution in space and
time, n(p, t) = tαf(tβp), with characteristic scaling exponents α, β, in general
different for the two directions. The infrared transport moves particles to low-p
modes (blue arrow) while their energy is deposited by the scattering of much
fewer particles to higher momenta (red arrow), conserving total energy and
particle number. Note the double-logarithmic scale.

in [24], the universal scaling of superfluid turbulence in a Bose gas described by the
Gross-Pitaevskii model has been observed in numerical simulations [27–29]. See the
recent review of condensate formation [30] for a discussion of other, related theories of
condensation [31–36]. There, the kinetic equations are derived by different methods
and they all seem to agree to a certain extent. However, there are limitations due
to the approximations done in the derivations and, thus might not provide sufficient
means to treat the nonequilibrium problem of BEC.

The number of particles needs to be sufficiently large in the coherent regime for
a quasicondensate to be formed. This is achieved by an inverse particle flux as a
result of wave turbulence in the kinetic regime. Before the condensate is formed, the
kinetic transport is dominated by the 4-wave interaction process [37, 38] and there
are two types of transport here: inverse particle flux and direct energy flux. This
two-way transport or dual cascade is an efficient mechanism to achieve a condens-
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Chapter 1 Introduction

ate. The inverse particle flux shuffles the particles into the coherent regime while
a direct energy flux moves high-energy particles into the ultraviolet tail where they
can be removed via evaporation, leading to a further cooling down of the system. In
comparison to Richardson’s cascade in hydrodynamic turbulence where the energy
is passed down in the high-momentum regime by breaking down large eddies into
the smaller ones [39], wave turbulence transports particles and energy through the
interaction between wave modes at nearby wave numbers.

Like in hydrodynamic turbulence, wave turbulence also involves driving forces
and dissipation and assumes that the driving and dissipation scales are set apart
by the inertial range, a window where there is no effect of driving or dissipation.
Therefore, the transport of particles/energy in this inertial range happens in a con-
served manner. The steady state of turbulent fluxes in the inertial window enforces
a constraint on the particle and energy spectra such that they show unique scaling
behaviour. In hydrodynamic turbulence, the exponent of the energy spectrum is
the Kolmogorov 5/3 exponent [40], The corresponding power-law particle or energy
cascades in wave turbulence are set by the Kolmogorov-Zakharov exponents [10, 37].
Also these Kolmogorov-Zakharov exponents are universal, independent from the mi-
croscopic details of the underlying theory.

In [15] wave turbulence in a weakly interacting Bose gas was studied to un-
derstand the time evolution of a Bose gas in the kinetic regime. Although 4-wave
resonant interactions were considered, the phenomenon of a dual cascade was ruled
out due to a single power law assumed to describe the number distribution and the
presumption that driving forces and dissipation occur in the deep infrared and the
high ultraviolet, respectively.

As will be shown in detail in this thesis, there are, in fact, three situations that
could happen in the kinetic regime: a direct energy cascade, an inverse particle
cascade or self-similar evolution. In the case of a weakly interacting Bose gas and
in the perturbative regime, the inverse cascade is expected to occur. Weak-wave
turbulence theory predicts the power-law of the number distribution to be n(ε) ∼
ε−7/6 where n(ε) is the number distribution as a function of energy ε [15]. The
time evolution of the particle flux is encoded in the time-dependent energy scale
ε0(t) which is the energy scale determining the position of the wave front of particles
flux1. A scaling analysis shows that time dependence of the wave front as follows
ε0(t) ∼ (tc − t)3. A later numerical calculation by D. Semikoz and I. Tkachev showed
the build up of particles in the infrared through an inverse particle cascade [16, 17].
The power law that has been observed there was slightly different from the prediction:
n(ε) ∼ ε−1.24 was found together with the wave front evolution ε0(t) ∼ (tc − t)2.6.

Recently, an experiment by Navon et al. in Cambridge performed on a quantum
gas [41] within a flat-bottom cylindrical trap, has provided a first test of the theoret-
ical predictions made for a homogeneous system. A direct cascade has been observed,

1This means flux of particles is established within energy scale ε > ε0 and power-law n(ε) ∼ ε−7/6

can be observed here. There is no such power law in the windows ε < ε0 since flux of particles
has not yet reached.
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Figure 1.2: The experimental setup in Ref. [41] is illustrated in (a). Bose gases in the
cylindrical optical box is driven out-of-equilibrium by a spatially uniform, os-
cillating force. The blue shading represents the gas density while the red lines
indicate the lines of vortices. The momentum distribution during turbulent
cascade is presented in (b). The power-law scaling 3.5 is observed within the
momentum window bounded by km and kM . The upper inset shows the time
evolution of the number distribution which is interpreted as a direct transport
toward the ultraviolet regime. Both of figures are taken from Ref. [41].

with number distribution n(k) ∼ k−3.5 where k is the modulus of momentum. As-
suming that in this regime ε ∼ k2, the number distribution was measured to depend
on the energy as n(ε) ∼ ε−1.75 which is slightly different from that in a direct en-
ergy cascade with Komogorov-Zakharov exponent, n(ε) ∼ ε−1.5. It is not clear yet
whether the difference is due to the finite size of the experimental set up or if there are
other fundamental concepts that lie outside the kinetic description. The experiment
might not yet give a full answer to the questions related to condensate formation but
nevertheless, seems to support the validity of kinetic theory in an ultracold Bose gas.

We remark that all discussions about Kolmogorov-Zakharov exponents so far
have been based on the context of weak-wave turbulence where wave amplitudes are
assumed to be small such that all higher-order correlation functions can be broken
down into occupation numbers (and thus to second-order correlation functions). This
is an advantage of wave turbulence that is absent in its hydrodynamic counter part,
the closed equation describing fluid turbulence. The kinetic equation of weak-wave
turbulence takes the form of a wave-Boltzmann equation [10, 11]. The interaction
between wave modes is described by a scattering integral over product of occupation
numbers and T -matrix elements. The resulting Kolmogorov-Zakharov exponents are
universal in the sense that they are fully determined by dimension, energy spectrum
and scaling behaviour of the T -matrix elements.

Field-theory approach to universal dynamics is used to avoid the perturbative
limitation. In the present work, we demonstrate that this is conveniently achieved
with an effective action in a nonequilibrium quantum field theory approach. Here,
the Schwinger-Keldysh contour is used but instead of applying the 1PI approach as
Stoof has done, we choose the 2-particle-irreducible (2PI) effective-action formalism

5



Chapter 1 Introduction

Figure 1.3: A sketch of an effective coupling which is equivalent to an effective T -matrix
shows the value of the effective coupling varying on the momentum scales. In
the UV regime, the coupling is a bare GPE coupling which is an approximation
of many-body coupling in the perturbative calculation. In the IR regime,
the effective coupling becomes a momentum-dependent function due to the
collective scatterings in the nonperterbative regime. The effect of the collective
scatterings is encoded in the self-energy function ΠR.

[42–44]. The advantage of 2PI is having a closed, self consistent dynamical equa-
tion for the mean field and propagators. The opportunity to evaluate propagators
nonperturbatively opens a path-way to go beyond a mean-field calculation. The N -
component scalar field theory with φ4-interaction and orthogonal symmetry, O(N ),
has been studied in this nonperturbative approach in Refs. [45–47]. In the language
of the large-N expansion, the leading order (LO) terms lead us back to the mean-field
calculation, while the next-to-leading order (NLO) describes the scattering physics
which is required to describe the interaction between wave modes [48]. Assuming ho-
mogeneity and choosing the classical approximation, the integro-differential dynam-
ical equation for the propagator [25] yields a kinetic equation resembling Bolzmann’s
equation but involving a many-body momentum dependent T -matrix. The analysis
done in wave-turbulence can be applied here in an analogous way. The T -matrix is
crucially modified due its the nonperturbative calculation and this effects the values
of the scaling exponents in a nontrivial way.

The effective T -matrix has two limits: in the ultraviolet regime where mode oc-
cupations are sufficiently low, it turns back to the T -matrix evaluated within the
weak-wave turbulence context. Thus, we call this the perturbative regime, and all
evaluations reproduce the weak-wave turbulence results. In the infrared limit where
the population is high, the effective T -matrix exhibits a different, universal scaling
behaviour. Within this nonperturbative regime the weak-wave turbulence is modi-
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fied to so-called strong-wave turbulence [11]. Note that strong-wave turbulence here
still occurs within the kinetic regime (not yet the coherent regime). The notable
feature is that even though strong-wave turbulence is the result of a nonperturbat-
ive calculation, the kinetic equation is similar to the one in weak-wave turbulence,
apart from the momentum-frequency dependent effective T -matrix. Thus, the scal-
ing of weak-wave turbulence equally applies here, only giving different values for the
Kolmogorov-Zakharov exponents. Within scalar Bose field models, the exponents of
weak- and strong-wave turbulence have been derived in [25, 26] and [49], calculated
in the relativistic and nonrelativistic cases respectively. The exponents in both cases
fully agree with each other both in the in perturbative or nonperturbative regimes.
This again emphasizes the universality since whether the theory describes relativ-
istic or nonrelativistic particles does not affect the scaling derived from the kinetic
equations.

Strong-wave turbulence gives us a supportive argument for the existence of a
nonthermal fixed point. The universal character of the fixed point (turbulent steady
state) occurs in the regime where the perturbative calculation fails. However, the
steady state of transport demands a driving force and dissipation which, in turn,
should be absent in an isolated system. As mentioned in the beginning, the process
of condensation in an ultracold Bose gas is taking place in a closed and isolated
way if no high-energy particles are evaporated out. In such a case, if there exists
a nonthermal fixed point, it can not be a steady state of wave turbulence but nev-
ertheless, it shows two characteristic features, long life time and universal scaling.
In [50], the numerical calculation for an isolated Bose gas shows scaling behaviour
in the occupation number but instead of being stationary, the number distribution
evolves self-similarly in time conserving particles and energy, at the infrared and
the ultraviolet ends of the momentum range, respectively. We note that the self-
similar evolution was discussed already in [15] and in there, the scaling exponents
are completely fixed by the kinetic equation and somehow differ from the exponents
observed in [50]. A plausible explanation is that superfluid turbulence may play
some role here. A nonrelativistic calculation shows that the scaling exponents in the
occupation number are apparently identical to other classical statistical calculations
of Gross-Pitaevskii model [27, 28] where vortices are clearly seen. Although the full
picture is not yet available, it is enough to say that nonthermal fixed points in isol-
ated system are possible and in such case, the universal scalings manifest in both
space and time.

The scenario of the Bose gas after the cooling quench in the vicinity of a non-
thermal fixed point is illustrated in Fig. 1.1. The bimodal transport is necessary for
a typical situation where the energy spectrum scales as ε(p) ∼ pz with z > 0 since
This implies that the energy content ε(p) n(p) is concentrated on large momentum
scales. A particle needs to take energy from several particles to move forward into
the UV-direction, and thus, those particles which loose energy need to scatter back-
ward into the IR-direction. The concept here is similar to the one describing the
dynamics in the language of the turbulence dual-cascade scheme [37], however, there
is no steady state of turbulence flux here due to lack of driving and dissipation forces
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Chapter 1 Introduction

in an isolated system.
In this thesis, we study the universal dynamics of a homogeneous Bose gas after

a strong cooling quench. We consider the general situation of universal dynamics
where the observable, the occupation number, takes the form of a power-law with
or without time-dependent cut-off scales regularizing the divergences of the particle
and energy integrals. The dynamics is categorized into three cases, particle cascade,
energy cascade and self-similar evolution, distinguished by the power-law scaling of
occupation number and constraints from global conservation laws. Similar arguments
have been introduced in [15] showing that the dynamics can be categorized by the
scaling exponent of the T -matrix. We show in Table 2.1 that even without the
knowledge of kinetic equation, some of the dynamical exponents are already fixed by
the global conservation laws alone.

Later, we analyse the kinetic equation and evaluate scaling exponents, both of the
Kolmogorov-Zakharov type and dynamical scalings exponents. In the perturbative
regime, the exponents we find fully agree with the ones obtained in [15] in the weak-
wave turbulence analysis. In the nonperturbative regime, the main task is to evaluate
the scaling behaviour of the effective T -matrix which we achieve here by evaluating
the integral giving the self-energy in loop-resummation. We find that the T -matrix
in the perturbative regime is evaluated with the bare coupling g = 4πa/m inde-
pendent of the momentum scale where in the nonperturbative regime the T -matrix
is calculated with momentum dependent effective coupling, geff(p) ∼ p2. Using this,
we determine the scaling of the effective T -matrix, and with this the Kolmogorov-
Zakharov exponents. Our results are different from the ones obtained in [26] and [49]
in the strong-wave turbulence regime. This is because the scaling arguments used
there gave g(p) ∼ p4 assuming that the integral converges without the need of having
cut-off scales. In our calculation, we now take into account the necessary infrared
cutoff. Related differences appear in the dynamical scalings when we compare with
the results of [50].

Apart from Kolmogorov-Zakharov exponents for the turbulence cascades, we
evaluate also the self-similar scaling exponents, a universal scaling in isolated systems
as depicted in Fig. 1.1. The exponent in the perturbative regime is again identical
to the one predicted in [15]. Our prediction in the nonperturbative regime is that
the exponent κ = d + (3z − 4 − η)/2 determines the momentum power law of the
occupation number, n(p) ∼ p−κ, in d dimensions, with energy spectrum ε(p) ∼ pz

and anomalous scaling η. The exponent we obtain is apparently different from the
scaling of the occupation number presented in [50]. We attribute this discrepancy to
the fact that there are influences from superfluid turbulence there which is beyond
the scope of the kinetic equation.

Our analysis yields a picture of the universal dynamics of Bose gas as follows.
In the perturbative regime, an inverse particle cascade occurs however, not with
critically slowing of the wave front with t−β but with an accelerating wave front,
(t∗ − t)−β due to the negative β. Note that this confirms the earlier predictions
of Refs. [15–17]. In the nonperturbative regime where the single-particle spectrum
is considered free i.e. ε(p) ∼ p2, the self-similar dynamics manifests itself with a
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momentum scaling exponent of the occupation number κ = d + 1 − η/2. Below the
healing length scale where the spectrum is linear ω(p) ∼ p, an inverse cascade takes
place with an exponent κ = d − 1/3 − η/6. In either case, the time evolution of the
infrared wave front is critically slowed down with the cutoff evolving proportional to
t−β, with the same exponent β = 1/(z − η). Our results suggest that the exponent
β in the nonperturbative regime is a universal feature of the nonthermal fixed point.

The scenario we predict has not yet been observed in numerical calculations and
as before, we suspect that superfluid turbulence plays a role there. The momentum
scaling exponent κ deriving from the vortex-statistics is higher than the scaling expo-
nent within kinetic theory/ Thus, the kinetic exponent appears to be subdominant.
This is corroborated by the numerical calculation done in [28]. There the exponent
of the incompressible part shows the sound-wave excitation spectrum to scale with
the exponent ζ = 3.6 in the moment shortly after vortex decay. This corresponds to
κ = 2.6 in our notation which closely resembles κ = 8/3 of our prediction in d = 3
dimensions (neglecting η). The same number has also been found in the scaling
analysis of the Kardar-Parisi-Zhang equation [51] using functional renormalization
group methods.

The thesis is organized as follows. In Ch.2, we discuss the general form of the
universal scaling function and analyse the dynamical exponents using the global con-
servation laws. In Ch.3, we introduce the kinetic equation without derivation and
evaluate the exponents in both the turbulence cascade and the self-similar evolu-
tion in an isolated system. The dynamical exponents are finally determined with
the constraint arising from kinetic equation. In Ch.4, we derive the closed equa-
tion of motion of mean-field and propagators using the nonperturbative approach of
nonequilibrium quantum field theory. We recover the kinetic equation and calculate
the many-body coupling for the effective T -matrix which we have in Ch.3. Using an
ansatz, we explicitly evaluate analytically the many-body T -matrix. In Ch.5, we use
this to calculate numerically Kolmogorov-Zakharov exponents, the self-similar expo-
nent and the dynamical scaling of Boltzmann’s scattering integral. The technical
calculation and supplement materials are in the appendices.

After completion of this thesis I became aware of the recent work [52] discussing
questions related to the ones studied in this thesis.
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Chapter 2

Universal dynamics and nonthermal
fixed points
Universality is a phenomenon where the relevant observables become insensitive to
the underlying microscopic theory [53, 54]. Near a second-order phase transition
universal behaviour of system is usually signalled by the divergence of the correlation
length because fluctuations spread across all length scales, enforcing the whole system
to be in a unique state, exhibiting self-similar character. As a consequence, the
observables show scaling behaviour with specific critical exponents. Systems which
might have totally different microscopic properties show the very same set of critical
exponents, thus, are classified to be in the same universality class.

Universal physics is not limited to equilibrium physics. Rather, the question
whether there is an equivalent nonequilibrium version of universal phenomena has
become one the most relevant topics in (quantum) many-body studies. The theory
of dynamical critical pheonomena based on stochastic field theory and the renor-
malisation group has been summarised in [55, 56] where the universality of several
physical models has been examined. The universal behaviour during the relaxation
after a quench has also been found in purely dissipative cases [57, 58]. In ageing
phenomena [59–61], the system persists in the nonequilibrium state for a long time
after the relaxation and the fluctuation dissipation relation is violated. However,
the fluctuation dissipation ratio has been observed to have universal properties in
ferromagnet models [62, 63]. Turbulence (especially wave turbulence) [10, 11, 39]
and superfluid or quantum turbulence [64, 65] are also closely related to dynamical
critical phenomena even though turbulence involves driving and dissipation forces.
The conserved fluxes that go through different scales can be viewed as analogue to
the fluctuation that spreads out in critical phenomena, leading to the self-similar
character in both cases.

A cooling quench is one of many techniques that have been used to study dynam-
ical critical scaling. By quenching across a critical point, the effects of the universal
character of the critical point are expected to influence the dynamics towards the
new equilibrium. This means universal scaling should also be observed during the
time evolution which is clearly a nonequilibrium process. Universal scaling would
emerge if the system was drawn towards a nonthermal fixed point during the time
evolution [25, 48]. Classical statistical simulations reveal the scaling character dur-
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Chapter 2 Universal dynamics and nonthermal fixed points

ing the dynamics towards equilibrium after a cooling quench in a single-component
[27–29] and in two-component Bose gases [66, 67]. Thereby, universality showing
up in the scaling time evolution implies critical slow down in the evolution towards
equilibrium.

In this chapter, we do not yet discuss how precisely universal dynamics is mani-
fested in Bose gases but will presume that the occupation number n(p, t) which is
a general observable in the numerical calculations, takes the scaling form in both
momentum and time. Then, we analyze the possible time-evolution of the system
and the dynamical exponents in each case. In contrast to the analysis in [15], instead
of combing global conservations and kinetic equations in the first place, we for the
first only consider the constraints from the global conservation laws. It will be seen
by the end of this chapter that the constraints set by the global conservation laws
alone are already sufficient to give us a general idea of the time evolution assuming
a universal character of the occupation number distribution.

2.1 Model and observables
We study the Gross-Pitaevskii model for bosons of mass m with a quartic self-
interaction

H =
∫

ddx

[
−Φ†(x) ∇2

2m
Φ(x) + g

2 Φ†(x)Φ†(x)Φ(x)Φ(x)
]

. (2.1)

where g is a coupling parameter1. The Hamiltonian in Eq. (2.1) represents a system
of a dilute Bose gas without trapping potential such that it is enough to keep only
the 2-body collision term in the interaction

∫
ddxddx′Φ†(x′)Φ†(x)V (x, x′)Φ(x)Φ(x′),

while the contact interaction, V (x, x′) ∼ δ(x − x′), reduces the term further down to
a simple quartic interaction with a single parameter a, the s-wave scattering length2.
In units of ~ = kB = 1, the coupling g relates to a via g = 4πa/m. The field variables
Φ ≡ Φ(x, t) satisfy Bose equal-time commutation relations,

[Φ(x, t), Φ†(x′, t)] = δd(x − x′) , (2.2)
[Φ(x, t), Φ(x′, t)] = [Φ†(x, t), Φ†(x′, t)] = 0 . (2.3)

The single-particle momentum distribution

n(p, t) = ⟨Φ†(p, t)Φ(p, t)⟩ (2.4)

counts the directly measurable number of particles with momentum p. In free-
particle limit (no condensate and sufficiently weak interactions and occupation num-
bers), the eigenmodes of the Hamiltonian are approximately determined by only the
Laplacian term which gives the free particle energy spectrum

εp = p2/(2m) . (2.5)
1The coordinate variable x stands for the d + 1 dimensional space-time variable (x0, x).
2Note that this notion of the scattering length a is only valid in three-dimensions. In terms of the

scattering length, the term dilute means na3 ≪ 1 where n is the total number of particles [68].
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2.1 Model and observables

In the case of a dilute Bose gas with a condensate fraction, the field operator Φ(x)
becomes a macroscopic field and has a nonzero expectation value, ⟨Φ(x)⟩ ≡ φ0, as-
suming that the condensate is homogeneous. Then, the condensate density ρ0 is de-
termined by ρ0 = |φ0|2. The field Φ(x) can be expanded around its expectation value
Φ(x) = φ0 + Φ̃(x) where Φ̃(x) represents the fluctuation around the condensate (im-
plies ⟨Φ̃(x)⟩ = 0). In this case, the Hamiltonian can be expanded to second order in
the fluctuation fields Φ̃(x) around the condensate, Φ(x) = φ0 +Φ̃(x), where, by defin-
ition, ⟨Φ̃(x)⟩ ≡ 0. A Bogoliubov canonical transformation to bosonic quasiparticle
operators ΦQ, defined in momentum space by Φ̃(p, t) = upΦQ(p, t) − vpΦ†

Q(−p, t),
with u2

p − v2
p = 1, diagonalises the resulting quadratic Hamiltonian,

H =
∑

p

ωp

(
Φ†

Q(p, t)ΦQ(p, t) + 1/2
)

. (2.6)

The Bogoliubov dispersion and mode functions read

ωp =
[
εp

(
εp + 2gρ0

)]1/2
, (2.7)

up =
(

εp + gρ0 + ωp

2ωp

)1/2

, vp =
(

εp + gρ0 − ωp

2ωp

)1/2

. (2.8)

For momenta much larger than the healing-length momentum scale, |p| ≫ pξ =√
2mgρ0 =

√
8πaρ0, the Bogoliubov dispersion resembles that of the free fundamental

bosons, ωp ≃ gρ0 + εp, and up ≃ 1, vp ≃ 0. In the opposite limit, |p| ≪ pξ =
[2mgρ0]1/2, the quasiparticles are sound waves, i.e.

ωp ≃ cs|p| , (2.9)
u2

p ≃ v2
p ≃ gρ0/(2ωp) ≃ mcs/(2|p|) , (2.10)

with speed of sound cs =
√

gρ0/m = pξ/(
√

2m). The occupation number of sound-
wave field modes with wave-number p is measured by

nQ(p, t) = ⟨Φ†
Q(p, t)ΦQ(p, t)⟩ . (2.11)

According to the Bogoliubov transformation, particle and quasiparticle mode occu-
pation numbers are related by

n(p, t) = (u2
p + v2

p) nQ(p, t) + v2
p . (2.12)

For momenta much larger than the healing-length momentum scale, |p| ≫ pξ =√
2mgρ0 =

√
8πaρ0, the Bogoliubov dispersion ωp resembles that of the free fun-

damental bosons, ωp ≃ gρ0 + εp, and up ≃ 1, vp ≃ 0. In the opposite limit,
|p| ≪ pξ = [2mgρ0]1/2, the quasiparticles are sound waves, i.e.

ωp ≃ cs|p| , (2.13)
u2

p ≃ v2
p ≃ gρ0/(2ωp) ≃ mcs/(2|p|) , (2.14)
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Chapter 2 Universal dynamics and nonthermal fixed points

with speed of sound cs =
√

gρ0/m = pξ/(
√

2m). In thermal equilibrium, the particle
and quasiparticle distributions are given by grand-canonical and canonical Bose-
Einstein distributions, respectively. In general, nBE(p) = {exp[(ω(p) − µ)/T ] − 1}−1

for excitations with dispersion ωp is set by the temperature T and the chemical
potential µ. We point out that, in the sound-wave limit, 0 < |p| ≪ pξ, and for
large quasiparticle occupations, nQ(p, t) ≫ 1, relation (2.12) together with Eq. (2.14)
means that

n(p, t) ≃ nQ(p, t) gρ0/ωp . (2.15)

Hence, in the Rayleigh-Jeans regime of the equilibrium Bose-Einstein distribution,
−µ ≪ ω(p) ≪ T , where the occupancies are n(p, t) ≃ T/εp ∼ T/p2 and nQ(p, t) ≃
T/ωp ∼ T/p, the extra factor 1/p from the mode functions, u2

p + v2
p ∼ 1/p, ensures

the same power-law dependence on p on both sides of Eq. (2.12) and thus adjusts the
quasiparticle number distribution to the modified density of states in the sound-wave
limit.

2.2 Momentum scaling and universal scaling functions
In equilibrium, universality is widely studied in the context of phase transition and
critical phenomena due to the manifestation of scale invariance around critical point.
The indicator of universality, power-law exponents in various observables that are in-
sensitive to microscopic details but depend solely on the particular universality class
the system belong to [54]. Analogously, in nonequilibrium, systems are expected
to show universal scaling behaviour near so-called nonthermal fixed points. These
fixed points can manifest themselves in the form of wave turbulence corresponding
to a steady turbulent flux in scale (i.e. momentum) space, or as a self-similar evolu-
tion. Here, we are interested in the universal dynamics of the number distribution in
nonequilibrium for the Hamiltonian in Eq. (2.1) which means the number distribu-
tions (2.4) and (2.11) are expected to take, at a particular moment in time, the form
of scaling functions different from a thermal Rayleigh–Jeans law, i.e. n(p) ∼ T/ω(p)
where ω(p) is a quasiparticle energy.

2.2.1 Momentum scaling in number distributions
We presuppose a scaling behaviour of the number distribution according to,

n(sp) = s−ζn(p) , (2.16)

where s is a positive, real number and ζ is a universal scaling exponent which we
assume to be a real number. Notice that Eq. (2.16) is able to generate the whole
function in momentum space given its value only on an arbitrarily surface enclos-
ing the origin. This should not be possible if there is no correlation between very
different momentum scale in the first place. In physical situations, however, such
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2.2 Momentum scaling and universal scaling functions

correlations stretch over a finite interval in momenta only. So far, we have neglected
time dependence. We also consider the situation that the dispersion relation, at least
in a region where Eq. (2.16) fulfilled, satisfies scaling according to

ω(sp) = szω(p) . (2.17)

This is, e.g., everywhere the case for the free dispersion (2.5) and, in the free-particle
and sound-wave limits, for the Bogoliubov quasiparticle dispersion (2.7).

In the following we will account for the scaling of ω(p), as far as possible, by
means of an arbitrary dynamical exponent z. We anticipate in this way that self-
energy corrections can lead to a modified scaling of the quasiparticle dispersion and
that, in a treatment beyond kinetic scattering of free modes, a more general scaling
between frequency and momentum is expected.

2.2.2 Bulk integrals
The momentum integral over the single-particle distribution n(p) yields the density
of non-condensed atoms ρnc and thus the observable total particle density

ρtot = ρ0 + ρnc = ρ0 +
∫ ddp

(2π)d
n(p) (2.18)

and therefore must be finite. Hence, if n(p) shows power-law scaling (2.16) in a
certain range of momenta p = |p|, this range can not extend over all possible p from
0 to ∞. This is because the radial, i.e., p-integral over pd−1−ζ , which includes the
volume factor, has a power-law divergence either in the ultraviolet (UV), or in the
infrared (IR), or is logarithmically divergent in both limits.

This means that in any physically meaningful situation, in the continuum and
thermodynamic limits, the distribution n(p) must take the form of a more general
scaling function which ensures convergence of the integral (2.18). Alternatively, the
finite size of a generic physical system and its definition on a discrete grid would
provide IR and UV cutoffs, respectively. We are, however, interested in universal
dynamics which, within first approximation, is not affected by such boundary condi-
tions. To this end, we demand the scaling region to be sufficiently far away from the
boundaries of the system and will study the intrinsic conditions under which scaling
dynamics can occur.

The integral over the occupancies of the quasiparticle eigenmodes of the Hamilto-
nian defines the density

ρQ =
∫ ddp

(2π)d
nQ(p) (2.19)

which is in general different from the particle density (2.18). In situations where
the interactions between quasiparticles are dominated by elastic 2-to-2 scattering,
their total number and thus the density ρQ are conserved in time. From Eq. (2.12),
we can deduce that, in the momentum regime where both dispersion relations and
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occupation numbers show the power-law behavior, the particle and the quasiparticle
distributions are related by 3

n(p) =
( |p|

p̃

)z−2
nQ(p) , (2.20)

where p̃ is a momentum scale that encoded in the Bogoliubov transformation i.e.
in the case of sound-wave dispersion (z = 1) satisfying Eqs. (2.13) and (2.14), p̃ =
pξ/

√
2. Given a scaling (2.16) of n(p), the quasiparticle distribution, in the scaling

region, would satisfy
nQ(sp) = s−κnQ(p) , (2.21)

with
κ = ζ + σ = ζ + z − 2 . (2.22)

Here, the exponent σ = z − 2 governing the relative scaling of the two distributions
accounts for the z-dependent density of states. It is not equal to −z as one may
naively infer from Eq. (2.15), cf. the discussion concerning Eq. (4.104) in Sect. 4.3.1.

Assuming contributions from outside the scaling region with a fixed z to be
negligible, the relation between particle density and quasiparticle spectrum is

ρnc =
∫ ddp

(2π)d

(p

p̃

)σ
nQ(p, t) , (2.23)

with p̃ = gρ0/cs = pξ/
√

2 for z = 1 while for z = 2, σ = 0 and there is no p̃ scale
because the Bogoliubov transformation for the free theory is trivial, up = 1 and
vp = 0. In this z = 2 case, quasiparticles and particles are identical. Besides the
density of (quasi)particles, also the energy density,

ε =
∫ ddp

(2π)d
ω(p)nQ(p) , (2.24)

is a physical observable and therefore must be finite.

2.2.3 Scaling function
Where not otherwise stated, we assume the momentum distributions to be isotropic
in the following, nQ(p) ≡ nQ(p). Assume, for the first, that nQ(p) ∼ p−κ is a pure
power law in the radial momentum direction, satisfying Eq. (2.21) for all momenta.

3In the scaling regime ωp ∼ pz implies ωp = p̃2−zpz/m since ωp itself is an energy (neglecting
some other dimensionless constants). Although we are interested in an interacting theory, we
can use the energy expectation value of the free theory, ⟨H⟩ = Σεp[n(p) + 1/2] to derive scaling
relations. Comparing the energy of the free theory with the expectation value of Hamiltonian
in Eq. (C.18), we obtain the relation p̃2−zpznQ(p) ∼ p2n(p) which leads us to Eq. (2.20) (also
neglecting the ground state energy εp/2). This can be verified explicitly in case of z = 1. Note
that we used an equality in Eq. (2.20) because both n(p) and nQ(p) have the same dimension.
The dimensionless constants that might appear can be absorbed in p̃ nevertheless.
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2.2 Momentum scaling and universal scaling functions

Furthermore, presume a power-law form for ω(p), Eq. (2.17), with z ̸= 0, such that
the integrand in Eq. (2.24) is a pure power law.

The exponent κ then determines whether the IR or the UV regime dominates
quasiparticle and energy densities. If κ > d, the integral (2.19) is dominated by
quasiparticles with IR momenta, while for κ < d UV momenta dominate. Similarly,
κ > d + z leads to an IR dominance of the integral (2.24) for the energy density
whereas, for κ < d + z, energy is concentrated in the high-momentum modes. In
summary, the exponent κ determines where quasiparticle and energy densities are
concentrated,

κ > d + z , quasiparticles and energy: IR; (2.25)
d ≤ κ ≤ d + z , quasiparticles: IR; energy: UV; (2.26)

κ < d , quasiparticles and energy: UV. (2.27)

According to the above, the minimum regularization a power-law momentum
distribution requires is provided by a modified power law in the IR or the UV limit.
This is the case when both, quasiparticles and energy are concentrated at the same
end of the spectrum, i.e. for κ satisfying (2.25) or (2.27). As a consequence, the
quasiparticle distribution can be parametrized as

nQ(p) = f(p/pΛ; f1) (2.28)

in terms of a scaling function f(x) of the form

f(x; f1) = 2f1
[
xκ̄ + xκ

]−1
. (2.29)

f(x) interpolates between two different power laws, with universal exponents κ̄ ̸= κ.
It exhibits a non-universal point at x = 1 where the scaling crosses over from one
power law to the other. In the distribution function nQ, this crossover thus occurs at
the non-universal momentum scale p = pΛ. The amplitude f1 = f(1; f1) is a further
non-universal quantity the scaling function depends on. Note that different functional
forms are possible for describing the crossover, and that determining the precise form
of the universal scaling function requires solving the dynamic equations. Note also
that a sharp IR (UV) cutoff, i.e., f(x) ∼ Θ(x − 1) x−κ (f(x) ∼ Θ(1 − x) x−κ), can be
realized by choosing κ̄ → −∞ (→ ∞). The simultaneous IR and UV convergence of
both integrals, Eqs. (2.19) and (2.24), requires κ̄ < d and κ > d + z, or vice versa.

Within the interval (2.26) either the quasiparticle or the energy density diverges,
such that an extended scaling function, with an additional regulator, is required. A
straightforward extension of the scaling function (2.29) involves two crossover scales,
pλ > pΛ. To make the expression more transparent, we introduce a third scale p0.
Hence, we write

nQ(p) = f(p/p0; pΛ/p0, pλ/p0, f0) , (2.30)
with the scaling function

f(x; y, z, f1) = f1 [yκ(x/y)κΛ + xκ + zκ(x/z)κλ ]−1 , (2.31)
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such that, for κΛ < κ < κλ, the amplitude f1 fixes f at x = 1 if the crossover scales
are taken to the IR and UV limits, f1 = f(1; y → 0, z → ∞, f1), see the sketch in
Fig. 2.1. κΛ < d ensures convergence of the integral for the quasiparticle density in
the IR, while κλ > d + z renders the energy integral finite in the UV.

As p0 above only sets the unit, we can simplify the parametrization such that
the scaling function has only two arguments,

nQ(p) = fΛ(p/pΛ; pλ/pΛ, f0[p0/pΛ]κ) , (2.32)

fΛ(x; y, f1) = f1
[
xκΛ + xκ + xκλyκ−κλ

]−1
, (2.33)

or, equivalently,

nQ(p) = fλ(p/pλ; pΛ/pλ, f0[p0/pλ]κ) , (2.34)

fλ(x; y, f1) = f1
[
xκΛyκ−κΛ + xκ + xκλ

]−1
. (2.35)

In the parametrizations (2.32) and (2.34), all momenta are expressed in units of the
IR scale pΛ and the UV scale pλ, respectively. Note that this leads to individual
redefinitions of the amplitude f0. In the special cases that κλ = κ or that the UV
scale is sent to pλ → ∞, the scaling function (2.33), up to constant factors, reduces
to the function (2.29). The same applies to the function (2.35) if κΛ = κ or pΛ → 0.

In general, the precise form of the scaling function requires solving the dynamic
equations. As a result, it can, e.g., exhibit regions with different momentum power
laws as sketched in Fig. 1.1 which can relax the condition (2.26) for self-similar
evolution, allowing κ > d+z in the IR and κ < d in the UV. Corresponding dynamics
has been discussed in Refs. [28, 29, 50, 69, 70] in the context of non-thermal fixed
points and the formation of topological defects. In the following we will focus on
the case that a single momentum power law prevails between the cutoffs, discussing
possible extensions where applicable.

2.3 Universal dynamics
Our aim is to describe possible forms of universal dynamics realized in the model
(2.1). We demand that, at a given instant in time, the quasiparticle number distribu-
tion nQ(p, t) is parametrized by a scaling function of the type (2.31) which disposes of
the essential properties discussed in the previous subsection, i.e., power-law behavior
(2.21) within a region of momenta, pΛ ≪ p ≪ pλ, and convergence of the integrals
(2.18) and (2.24) for quasiparticle and energy density, respectively. The question
then is, how such a distribution can evolve in time in a universal manner, i.e., in a
way that it keeps its parametrization in terms of the initial scaling function, varying
only the non-universal scales pΛ and pλ, and the amplitude f0. The considerations of
the previous subsection already provide an intuition of what types of dynamics are
possible, depending on the scaling exponent κ.
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2.3.1 Global conservation laws
In most cases, one or more global conservation law constrain the dynamics, which
plays an important role for the dynamical scaling phenomena possible in the system.
For a closed system and if quasiparticle number changing processes are absent, the
total quasiparticle density is conserved in time,

ρQ =
∫ ddp

(2π)d
nQ(p, t) ≡ const. (2.36)

If, furthermore, neither internal excitations nor interactions with an energy reservoir
are possible, also the energy density is a constant of motion,

ε =
∫ ddp

(2π)d
ω(p)nQ(p, t) ≡ const. (2.37)

In addition to the above also real particle number ρnc, Eq. (2.18) is a viable con-
served quantity. In the present work we will eventually only consider quasiparticle
number conserving processes due to the discussions in subsequent chapters will be
based on Boltzmann’s scattering integral which determines the time evolution of the
quasiparticle distribution. A generalization to dynamics which, for z ̸= 2, explicitly
accounts also for particle number conservation requires an extend discussion which
we consider beyond the scope of this thesis. In the following, we will use the terms
“quasiparticles” for the respective quasiparticle eigenmodes of the Hamiltonian, and
“particles” to refer to the distribution ζnc(p) ∼ pz−2nQ(p), where both are identical
for z = 2.

The above conservation laws strongly constrain the dynamics the system can
undergo. As was pointed out in Ref. [15] and we will discuss in detail, they limit
the possibilities of how the cutoff scales pΛ and pλ, and the amplitude f0 can vary
in time. For example, if κ > d, quasiparticles are concentrated in the IR. In this
case, shifting the infrared cutoff pΛ implies a violation of the conservation law (2.36)
unless the amplitude f0 is adjusted appropriately. Similarly, for κ < d + z, the bulk
of energy sits in the UV, and pλ can in general only be varied together with f0. If
these conditions are simultaneously fulfilled, d ≤ κ ≤ d + z, both, IR and UV cutoffs
are needed, cf. Eqs. (2.26) and (2.31), such that a change of f0 requires also a shift
of both of these cutoff scales. On the contrary, if κ > d + z, both, quasiparticles and
energy are concentrated at the IR cutoff scale. In this case, an additional UV cutoff
pλ ≫ pΛ, which is expected to limit a realistic physical distribution, can be shifted
without significantly ‘renormalizing’ the entire function since neither conservation
law is strongly affected by the shift. The same applies to shifting the IR cutoff pΛ if
κ < d.

We remark again that for bimodal distributions such as the one sketched in
Fig. 1.1, also for κ > d + z energy can be concentrated in the UV, requiring a UV
cutoff and allowing for the dynamics anticipated in the case of d ≤ κ ≤ d + z. This
will in general be the case for superfluid turbulence [27–29, 70, 71].

In the next two subsections we discuss in more detail how these constraints
distinguish the kinds of universal dynamics possible in the system.
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Chapter 2 Universal dynamics and nonthermal fixed points

2.3.2 Nonthermal fixed points
Nonthermal fixed points refer to nonequilibrium attractor solutions that show univer-
sal scalings [48]. The phrase nonequilibrium attraactor implies that the fixed points
are not fully attractors since the system has to be thermalized after some time scale.
At the early state of studies, nonthermal fixed points was understood as a turbu-
lence state due to the similarity of dynamic equation compare to the kinetic equation
and the focus was the exponents of stationary state [25, 49, 72] or the Kolmogorov-
Zakharov exponets. Later, the concept of nonthermal fixed points has been extended
to the nonstationary situation [50] which is more typical for an isolated system where
there are constraints from the global conservation laws. Though, the dynamics still
evolves self-similarly and number distributions show universal scalings.

Dynamical scaling hypothesis

Scaling hypotheses are at the basis of critical phenomena such as continuous, sym-
metry breaking phase transitions in equilibrium systems. They are, in general, math-
ematically justified by fixed points appearing in the renormalisation-group (RG) flows
of the effective Hamiltonian or action functional describing phenomena within a par-
ticular range of scales. These flows describe, e.g., the change of the effective Hamilto-
nian under a variation of the scale limiting that range in the infrared. Choosing the
initial, microscopic Hamiltonian such that the flow reaches, on macroscopic scales,
an RG fixed point is equivalent to tuning the system to a phase transition. Close to
the fixed point, correlations become universal, meaning that they show scaling and
no longer depend on the microscopic details of the system, except for a few symmetry
properties of the underlying Hamiltonian.

Isolated systems by definition do not allow for the driving and dissipation which
are required to keep a universal non-equilibrium state stationary. Nevertheless, when
a closed system quenched out of equilibrium re-equilibrates, universal time evolution
can occur. This is equivalent to extending the scaling hypothesis to time evolution,
saying that time evolution can have the form of an RG flow. When the RG flow
approaches a fixed point, critical slowing down occurs, and the time evolution is
well approximated by a rescaling. This evolution is captured, in the simplest case,
by a scaling hypothesis for the time-dependent, angle-averaged quasiparticle number
distribution,

nQ(p, t) = (t/t0)αf([t/t0]βp) . (2.38)

Here, f is a universal scaling function in momentum space, and t0 is an arbitrary
reference time within the temporal scaling regime, where nQ(p, t0) = f(p). The
universal exponents α and β determine the self-similar rescaling of the distribution
during the evolution. These exponents are to be associated with the particular RG
fixed point which the system approaches in time. In contrast to the attractive thermal
fixed point of the evolution where both, α and β are by definition zero, non-vanishing
exponents indicate the existence of a non-thermal fixed point [25, 26, 49, 50].
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2.3 Universal dynamics

Determining the universal scaling function f(p) requires solving the dynamic
equations. Instead of this, we will work with a minimal ansatz for f as the one given in
Eq. (2.29), which interpolates between two momentum power laws. If the parameters
have the power-law time dependence fΛ(t) = nQ(pΛ(t), t) ∼ tα, pΛ(t) ∼ t−β this im-
plies a scaling evolution nQ(p, t) = f(p/pΛ(t), fΛ(t)) satisfying Eq. (2.38). Choosing,
e.g., both exponents to be positive real numbers, time evolution shifts the distribution
nQ(p, t) self-similarly to smaller momenta and larger values of nQ(pΛ(t), t) = f1(t).

Constraints from conservation laws

As discussed in the previous section, global conservation laws in general constrain the
dynamics and thus play an important role for the scaling phenomena possible in the
system. With regard to the scaling hypothesis (2.38), they imply scaling relations
between the exponents α and β. For example, if the dynamics conserves the total
quasiparticle density, Eq. (2.36),

ρQ =
∫ ddp

(2π)d
(t/t0)αf([t/t0]βp)

= (t/t0)α−βd
∫ ddp′

(2π)d
f(p′) ∼ (t/t0)0 , (2.39)

where p′(t) = (t/t0)βp, the relation

α = βd (2.40)

must be fulfilled. Analogously, the conservation of the energy density, Eq. (2.37),
requires

α = β(d + z) . (2.41)

Here we always presuppose, that the respective integrals converge without the cut-off
scales that might be time-dependent. Given one of the above relations, determin-
ing the remaining exponent can be determined by a scaling analysis of the dynamic
equations as we will discuss in more detail in Ch. 3.

Scaling evolution of the closed system

In the closed system, quasiparticle number and energy are simultaneously conserved
in time. For non-zero exponents α and β, however, the scaling relations (2.40) and
(2.41) can not both be satisfied for z ̸= 0. This means that either α = β = 0 or that
the scaling hypothesis (2.38) has to be extended.

Suppose that the scaling function has the form given in Eq. (2.29). As discussed
in Sect. 2.2.3, quasiparticles and energy are concentrated at the same end of the
momentum scaling region, within which nQ(p, t) ∼ p−κ, if κ is outside the interval
(2.26). In this case, α = β = 0 is required, and a scaling evolution is only possible
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Now: Strong cooling quench!
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Figure 2.1: Sketch of the self-similar evolution of the scaling form (2.43) for nQ(p, t) ac-
cording to Eq. (2.42). Note the double-logarithmic scale. The IR cutoff scale
pΛ and the UV scale pλ, as well as the amplitude f0 rescale with time t such
that the area under the curve remains invariant. The sketch shows the case of
an inverse particle transport following a strong cooling quench. See Table 5.1
for our predictions for the scaling exponents (first row, NTFP).

at the opposite end of the scaling region. This evolution leads to a wave-turbulent
cascade which we discuss in Sect. 2.3.3 below.

On the contrary, if κ is within the interval (2.26), particles and energy are con-
centrated at opposite ends of the scaling region. In this case, a more general scaling
hypothesis is needed which allows for different rescalings of the IR and the UV parts
of the scaling function. We choose the ansatz (2.30) in terms of the scaling function
(2.31), and suppose that the non-universal parameters follow the scaling evolution

f0(t) ∼ tα0 , pΛ(t) ∼ t−β , pλ(t) ∼ t−β′
. (2.42)

This ansatz satisfies the extended scaling hypothesis

nQ(p, t) = τ α0+(β+β′)κf
[
τ β+β′

p; τ β′
pΛ(t0), τ βpλ(t0)

]
, (2.43)

where
τ = t/t0 , (2.44)

see the sketch in Fig. 2.1. It is useful to express the momenta p and pλ in Eq. (2.43)
alternatively in terms of the IR scale pΛ and to rewrite the scaling hypothesis in
terms of a scaling function of the type (2.33),

nQ(p, t) = τ αfΛ
[
τ β p

pΛ(t0)
; τ β−β′ pλ(t0)

pΛ(t0)
]

. (2.45)
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2.3 Universal dynamics

Here we introduced the exponent α, defined as

α = α0 + βκ , (2.46)

such that the scaling hypothesis (2.45) is equivalent to Eq. (2.38) in the regime p ≪
pλ, i.e., in the limit pλ → ∞. Alternatively, we can rewrite Eq. (2.43), by expressing
p and pΛ in terms of pλ, as

nQ(p, t) = τ α′
fλ

[
τ β′ p

pλ(t0)
; τ β′−β pΛ(t0)

pλ(t0)
]

, (2.47)

with
α′ = α0 + β′κ . (2.48)

Also Eq. (2.47) is equivalent to the simpler scaling hypothesis (2.38), with the re-
placements α ↔ α′, β ↔ β′, pΛ ↔ pλ, in the limit p ≫ pΛ or pΛ → 0.

The scaling hypotheses (2.45), in the limit pλ → ∞, and (2.47), in the limit
pΛ → 0, can now be used, in the same way as before, to obtain the scaling relations
(2.40) between α and β and (2.41) between α′ and β′, respectively,

α = α0 + βκ = βd , (2.49)
α′ = α0 + β′κ = β′(d + z) . (2.50)

Eliminating α′ by means of Eqs (2.46) and (2.48), i.e., α′ = α + (β′ − β)κ, energy
and (quasi)particle densities are time independent if

α = βd , (2.51)
β′(d + z − κ) = β(d − κ) . (2.52)

Note that, in the self-similar window (2.26), this implies β β′ ≤ 0, i.e., the IR and
UV scales pΛ, pλ rescale in opposite directions. These relations hold in the limit of a
large scaling region, i.e., for pλ ≫ pΛ. Thereby, particle conservation only affects the
infrared shift with β, Eq. (2.51), while energy conservation gives the condition (2.52)
for β′ in the UV. The scalings (2.42) represent the leading power-law behavior in t
while further non-leading terms account for the exact conservation of the energy and
particle densities.

2.3.3 Wave-turbulent transport
Stationary turbulent flows

According to Boltzmann, stationarity of the maximum-entropy state is related to
detailed balance between the collision processes [73]. In contrast, out-of-equilibrium
stationary states generally do not require detailed balance. In particular when con-
sidering driven open systems, stationary states can exist on the basis of a balanced
but directed flow through the momentum shells or energy levels. This is possible
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Chapter 2 Universal dynamics and nonthermal fixed points

when, e.g., kinetic energy is inserted into the system predominantly at one length
scale while being ejected or dissipated at a different length scale.

A well-known example is turbulence in a three-dimensional incompressible fluid
driven continuously at a particular length scale, e.g., by a stirrer [39]. Fully developed
turbulence is characterized by a stationary energy distribution within an extended
‘inertial range’ of wave numbers. The limiting scales of the inertial range are typically
set, on the low-energy side, by the size of eddies stirred into the fluid, and, at the
opposite end, by viscosity which causes kinetic energy to dissipate into heat.

Within the inertial range, on average and per unit of time, the same amount of
energy is transported unidirectionally through each momentum shell, from large to
small characteristic length scales, or vice versa, as is the case in Kraichnan turbulence
in two dimensions [74]. This implies that the turbulent transport is quasi local in
momentum space.

The dilute Bose gas, Eq. (2.1), is compressible such that also quantities other than
the energy can be locally conserved in their transport through momentum space. As
the interactions are spatially isotropic, these local conservation laws can be expressed
in the form of one-dimensional transport equations for either the radial quasiparticle
number,

NQ(p) = (2p)d−1πnQ(p) , (2.53)

or the energy distribution,

EQ(p) = (2p)d−1πεQ(p) . (2.54)

Here εQ(p) = ω(p)nQ(p), and as quasiparticles we again consider free particles or
Bogoliubov sound waves using the same notation. The respective transport equations
are written as

∂tNQ(p, t) = −∂pQ(p, t) , (2.55)
∂tEQ(p, t) = −∂pP (p, t) , (2.56)

with radial quasiparticle current Q and energy current P . Non-thermal, scaling, sta-
tionary solutions of these equations are studied in wave-turbulence theory, usually
within a Boltzmann kinetic approach [10, 11]. We discuss such solutions in further
detail in Sect. 3.2. Beforehand, we extend, as for the self-similar case above, our
discussion to the dynamics of the closed system and study the constraints set by
global conservation laws.

Build-up of wave-turbulence in the closed system

Let us consider the build-up of wave turbulence in a closed system from an initially
non-equilibrated quasiparticle distribution. Suppose that this distribution has the
form (2.31), with a power law nQ(p) ∼ p−κ in the region pΛ ≪ p ≪ pλ between the
IR and UV cutoff scales. Again, taking into account the integrals for particle and
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Now: Strong cooling quench!
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Figure 2.2: Sketch of the build-up of the inverse quasiparticle cascade, self-similar evolution
of the scaling form (2.57) for nQ(p, t) according to Eq. (2.59), with α = βκ and,
to leading order, α′ = β′ = 0. Note the double-logarithmic scale. The IR cutoff
scale pΛ shifts without significantly changing the area under the curve, i.e., the
total quasiparticle number. Only a small non-leading-order rescaling of the
UV scale pλ is required to satisfy number conservation.. The sketch shows the
case of an inverse particle transport following a cooling quench. See Table 5.1
for our predictions for the scaling exponents (row 3, NTFP). In the case of a
weak-wave-turbulence quasiparticle cascade, pΛ shifts in an accelerated way,
with t replaced by τ1, see Eq. (2.60).

energy densities, Eqs. (2.18), (2.24), the value of the exponent κ tells us at which
end of this region energy and particle number are concentrated.

If the power law is sufficiently steep, κ > d + z, both, particles and energy are in
the IR, and both, Eqs. (2.40) and (2.41) need to be fulfilled, presupposing that the
UV cutoff is sufficiently large, pλ ≫ pΛ. This is only possible for α = β = 0. As a
consequence, the amplitude f0 and the infrared scale pΛ are, to a first approximation,
constant in time.

Nonetheless, a wave-turbulent, quasilocal flux can build up and thereby satisfy
also the global conservations laws while the UV scale pλ grows in time. As before,
global conservation laws demand that this process in leading order confirms the
scaling hypothesis (2.45),

nQ(p, t) = τ αfΛ
[
τ β p

pΛ(t0)
; τ β−β′ pλ(t0)

pΛ(t0

]
. (2.57)

Here, α = β = 0, and thus α0 = 0, cf. Eq. (2.46). In turn, Eq. (2.48) implies that
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Chapter 2 Universal dynamics and nonthermal fixed points

α′ = β′κ in an equivalent scaling hypothesis of the form (2.47),

nQ(p, t) = τ α′
fλ

[
τ β′ p

pλ(t0)
; τ β′−β pΛ(t0)

pλ(t0)
]

. (2.58)

To determine β′ requires the analysing the kinetic equation and the scaling prop-
erties the interactions. We will do this in Ch. 3. Depending on these scaling prop-
erties, β′ can be positive or negative. If β′ < 0, the wave-turbulent flux builds
up similarly as the self-similar scaling evolution. The non-universal scales evolve
according to

fΛ(t) ∼ τα , pΛ(t) ∼ τ−β , pλ(t) ∼ τ−β′ (2.59)

with α = β = 0 and τ = t/t0.
On the contrary, if β′ > 0, building up a wave-turbulent cascade towards the UV

is possibly only through a wave front [15], in which τ = τ1,

τ1 = t1 − t

t1 − t0
, (2.60)

see the sketch in Fig. 2.2. At time t1, the wave front reaches infinity, before which
the solution, however, will become invalid as arbitrarily high momenta are usually
not captured by a given model. The value of t1 is determined by the given initial
distribution at time t0. The scaling evolution (2.59) is valid for τ1 < 1, and t1 − t0
much smaller than the overall evolution time. Only in this limit, the physics behind
the wave front becomes nearly stationary when taking into account the global con-
servation of particle and energy density. Note that, as a result of these conservation
laws, the scaling (2.59) represent the leading behaviour, while subleading terms form
corrections which are the more important the further away t is from t1.

For κ < d, both, quasiparticles and energy are concentrated in the UV, and an
inverse cascade can build up according to the scaling form (2.57), with α = βκ,
α′ = β′ = 0. If β < 0 the evolution takes the form of a wave front while for β > 0 a
self-similar evolution is possible. At t = t1, the wave front reaches zero momentum,
before which the solution, however, is expected to break down as no information can
be spread over infinite distances in a finite time.

We will show in Ch. 3 that, for the cases of free particles and Bogoliubov sound
in the perturbative wave-Boltzmann regime of weakly occupied modes, following a
cooling quench, an inverse cascade builds up behind a wave front described by the
scaling evolution (2.59), with scaling parameter τ = τ1, Eq. (2.60), see also Refs. [15–
17]. One may say that this wave-front scaling evolution is critically accelerating.

We emphasize that, in physically realistic situations, this scaling evolution breaks
down at a finite length scale, 1/pλ < ∞, i.e., before t = t1 is reached, when the
processes underlying the kinetics of the system change in a fundamental way. We will
show that this change can be caused by collective many-body scattering becoming
relevant at momenta below the chemical potential. This makes the further time
evolution to become self-similar and critically slowed.
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2.4 Summary

Table 2.1: Scaling relations. The table summarizes the relations between the scaling expo-
nents as obtained, in Sect. 2.3, from the constraints set by global conservation
laws. Depending on the relative size of the momentum-scaling exponent κ,
the dimension d, and the dynamical exponent z, one expects either an inverse
cascade, a self-similar evolution, or a direct cascade of quasiparticles.

α β α′ β′ τ
inverse
cascade βκ

< 0 0 0 τ1

κ < d > 0 t/t0
self-similar

evol. βd β′(d + z) β(d − κ)
d + z − κd < κ < d + z

direct
cascade 0 0 β′κ

< 0 t/t0

d + z < κ > 0 τ1

2.3.4 Summary of scaling relations
In summary, a wave-turbulent, quasilocal transport of either quasiparticles or energy,
which does not renormalize nQ in time, is possible only if both these quantities are
concentrated at the same end of the inertial range, i.e., if κ is outside the interval
(2.26). Depending on the relative size of κ one expects either an inverse cascade, a
self-similar evolution, or a direct cascade, with scaling relations between the expo-
nents as summarized in Table 2.1. Note that at the boundaries, κ = d and κ = d+z,
a more careful analysis would be in order.

2.4 Summary
The Gross-Pitaevskii model Eq. (2.1) gives us two types of observables, particle and
quasiparticle occupations related to the cases of whether a condensate is prevails or
not, respectively. As a result we consider two types of quasiparticles: free particles
with quadratic dispersion, ε(p) ∼ p2, and Bogoliubov quasiparticles with linear dis-
persion ω(p) ∼ p. This will provide us with the possibility to compare the respective
results obtained later on. We furthermore considered universal scaling functions
characterising the occupation-number distribution, including physical cutoffs at the
infrared and ultraviolet ends of the momentum spectrum. The universal dynamics
of the occupation number under the constraints of global conservation laws follows
three possible scenarios depending on the exponent κ of the occupation number: an
inverse particle cascade, a direct energy cascade or a self-similar evolution where the
local occupation number evolves in time, also within the regime where it shows a
power law in momentum. For each case, we evaluated the dynamical scaling ex-
ponents of the cutoff scales and presented them in Table 2.1. In the forthcoming
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chapters we will include the constraints by the kinetic equations.
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Chapter 3

Kinetic theory of weak and strong
wave turbulence
Turbulence is well-known in the context of hydrodynamics as an irregular motion of
the fluid in the form of eddies of different sizes. The turbulence emerges when the
life-time of large eddies is significantly shorter than their decay rate due to the fluid
viscosity [75]. Thus, instead of dissipating, the large eddies break down into smaller-
size eddies which, in turn, also break down into the even smaller-size eddies if the
viscosity is not yet strong enough to cause their energy being dissipated into heat.
The generation of smaller-scale motions is a unique characteristic of turbulence and
is understood to be a reason why turbulence enhances diffusion dramatically [76].

In more general terms, turbulence can be viewed as a transport phenomenon
where the driving force and the dissipation act at different scales. The window in
between these scales is called inertial range where conserved transport of energy
or some other quantity occurs. The breaking down of eddies in turbulent trans-
port forms the so-called Richardson cascade in which the energy is transported in
a conserved manner from large to smaller-scale eddies [77]. This process continues
until the eddies are small enough for viscosity to take over and dissipate the eddies
motional energy into heat. The transport is called a cascade because the energy is
transported to continuously smaller eddies.

While in Richardson’s cascade the energy moves forward, towards smaller eddies,
the cascade can also be directed into the opposite direction, as is the case, e.g., for
Kraichnan turbulence in two-dimensional fluids. A transport from small to large
momentum scales (i.e. the Richardson’s cascade) is called direct cascade while the
transport in the opposite direction is called inverse cascade [78].

There are many faces of turbulence but what we are interested in is its self-
similar and universal features. In the steady state, the rate of transport is fixed to a
particular value at every momentum scale within the inertial range. Such a condition
constrains the amount of the energy that can exist in each momentum shell and
gives a specific relation between energy and momentum. A well-known relation is the
Kolmogorov 5/3-law in hydrodynamic turbulence predicted in the 1941 seminal paper
[40]. Later, many experimental observations confirmed Komogorov’s prediction [79–
81]. The 5/3-law is universal, completely independent from the microscopic details
and how the driving force generates turbulence. Towards the ultraviolet end of the
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Chapter 3 Kinetic theory of weak and strong wave turbulence

Figure 3.1: The schematic represents the dual cascade in two dimensional turbulence (the
Kraichnan-Leith-Batchelor theory). In contrast to three dimensional turbu-
lence, the energy flux is an inverse cascade while the entropy flux is a direct
cascade. The figure is taken from Ref. [83].

inertial region self-similarity and also the 5/3-law break down due to intermittency.
A detailed discussion of intermittency can be found in [39].

Wave turbulence is a form of turbulence where the transport affects propagating
waves instead of eddies [11]. The major advantage of wave turbulence is the existence
of a closed equation though this is the case only for weak-wave turbulence where the
wave amplitudes are small. In such a case, the higher-order correlation functions
can be expressed in the terms of lower ones, terminating the hierarchy [10, 11, 82].
The statistical quantities can eventually be derived from a number distribution n(p)
and which satisfies a kinetic equation of the form of a wave-Boltzmann equation de-
scribing the interaction of waves in resonances. In the most simple cases, the leading
contributions are the resonant interactions between three or four waves depending
on the particular physical situation. As in fluid turbulence, the wave-Boltzmann
equation has stationary solutions of the power-law form, n(p) ∼ |p|−ζ . The expo-
nent ζ is a Kolmogorov-Zakharov exponent defining the particular steady state of
wave-turbulence transport and it is a direct analogue to Kolmogorov 5/3 exponent in
hydrodynamic turbulence [10]. The ζ exponent is universal and independent of the
detials of the underlying microscopic theory. The exponent depends only on basic
properties of the kinetic equation, including dimensionality, scaling properties of the
interaction, and the number of modes interacting.

The number of stationary solutions is different for the 3- and 4-wave resonant
interactions. In 3-wave resonances, only energy can be transported in a conserved
manner, and thus, there is only one stationary solution corresponding to an energy
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cascade. In contrast, in 4-wave resonances, both energy and particle numbers can
be transported in a conserved manner which gives rise to two possible stationary
solutions representing the steady fluxes of particles and energy. As mentioned above,
these cascades are directed in opposite ways, namely, a direct cascade for energy
and an inverse cascade for particles [37]. So, it is possible to observe two different
exponents in 4-wave resonances. Typically, the exponent of particle transport is
smaller than that of energy transport so the occupation number will show, at low
momententa, a weaker power-law fall off due to an inverse cascade followed by a
steeper law at large momenta within the direct cascade [84], see Fig. 3.1.

The physical phenomena that can be explained by wave turbulence are vast and
cover the large range of scales [12]. Famous examples are turbulence of capillary
waves [85–90] and surface gravity waves [91–93]. In ultracold Bose gases which
we are interested in here, wave turbuelence is believed to drive the formation of a
condensate when cooling down the system non-adiabatically [15, 37, 38, 94, 95].

To go beyond weak-wave turbulence, one needs to derive kinetic equations beyond
the perturbative order corresponding to the wave-kinetic equations. This can be
done, e.g. in the context of nonequilibrium quantum field theory within the s-channel
resummation in the language of a large-N expansion [45]. The major differences are,
first, that the nonperturbative kinetic equation is not limited to low occupation
numbers (which can be translated to low wave amplitudes since number occupation
is a second-order correlation function of the wave amplitude) and second, T -matrix
elements in the kinetic equation becomes an effective many-body coupling function
depending on the occupation numbers themselves. This many-body coupling recovers
the perturbative bare one beyond a certain momentum scale where the approximation
entering weak-wave-turbulence theory are valid. To distinguish the two limits, in the
infrared non-perturbative region, one refers to strong-wave turbulence. We will see
that the kinetic equation takes the same structure as in the weak-wave case but
with the effective coupling replacing the bare one. Then, the idea of transport and
stationary solutions in weak-wave turbulence can still be applied including the dual
cascade in 4-wave resonant interactions.

In this chapter, we analyse the integral of 4-wave resonant interactions and evalu-
ate the stationary solutions for determining the Kolmogorov-Zakharov exponents us-
ing the scaling arguments in both weak- and strong-wave turbulence. We furthermore
analyse the non-stationary evolution and determine the corresponding exponents of
self-similar shifts of the occupation numbers in space and time [15]. We will work
out the differences between wave-turbuelent cascades and self-similar shifts. By the
end, we return again to the arguments of dynamical exponents as we have done by
the end of Ch. 2. The constraints set by the kinetic equation will help us determine
the value of the exponent β which can not be determined from global conservation
laws alone. We emphasize that the results of the weak-wave turbulence analysis for
free particles agree with the previous studies in [15]. The resulting exponents for
strong-wave turbulence are different from the prediction in [49] due to the scaling
behaviour of the many-body coupling being different. The dynamical exponents in
the strong-wave regime are also different from the ones evaluated in [50] for similar
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Chapter 3 Kinetic theory of weak and strong wave turbulence

reasons and, furthermore, different constraints.

3.1 Quantum and wave-Boltzmann equations
The time evolution of the momentum distribution np ≡ nQ(p, t) of Bose-field (qua-
siparticle) excitations is described by [10]

∂tnQ(p, t) = I[nQ](p, t) + Γ(p)nQ(p, t) , (3.1)

where I[nQ](p, t) is a scattering integral, representing the interaction between wave-
modes. Γ(p) represents the influences of external forces whether they are driving
forces (Γ(k) > 0) or give rise to dissipation (Γ(k) < 0). In the context of wave
turbulence, Γ(k) does not act at every momentum scale. Typically, there will be
scales k+ where Γ(k) is positive, meaning that energy (and/or particles) are entering
the system in this region. Analogously, within a range of scales k−, Γ(k) is negative
implying a loss of energy (and/or particles). The scales k+ and k− are assumed to
be well separated, with the inertial range in between where Γ(k) vanishes. Within
the inertial range, the kinetic wave- or Quantum-Boltzman equation (QBE),

∂tnQ(p, t) = I[nQ](p, t) , (3.2)

governs the transport between the different scales. The scattering integral I[nQ] is
specified by

I[nQ](p, t) =
∫

kqr
|Tpkqr|2δ(p + k − q − r)

× δ(ωp + ωk − ωq − ωr)
× [(np + 1)(nk + 1)nqnr

− npnk(nq + 1)(nr + 1)], (3.3)

where we use the short-hand notation
∫

k ≡
∫

ddk (2π)−d. The scattering integral
I[nQ](p, t) describes the redistribution of the occupations np of momentum modes
p with eigenfrequency ωp due to elastic 2 → 2 collisions. These 2 → 2 collisions
can be inferred from the delta distribution δ(p + k − q − r) which is interpreted
as two momenta q and r coming in and p and k going out. The delta function
δ(ωp + ωk − ωq − ωr) ensures that the scattering process conserves the total energy.
Moreover, the 2 → 2 collisions also conserve the number of quasiparticles 1 since the
numbers that are going in and out are unchanged. Both conserved quantities, the
total energy and the number of quasiparticles, play a critical role for the studies of
the scattering integral in Eq. (3.3).

Note that the QBE does not take into account coherences between the modes. It
is because the random phase approximation was used in the derivation of the kinetic

1The wave-Boltzmann equation is the kinetic equation for quasiparticle occupations. Thus, the
time evolution of particle occupations has to be inferred from the that of quasiparticles. In the
case of a quadratic dispersion, ε(p) ∼ |p|2, quasiparticle and particle numbers are identical.
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3.2 Wave turbulent scaling exponents

equation so the higher-order correlation functions can be reduced into products of a
number distribution. The scattering integral then becomes a functional of nQ(p, t)
(as in Eq. (3.3) if the interaction is dominated by 4-wave resonances), see Ch. 2 in
[10] for a derivation.

The QBE scattering integral (3.3) has two classical limits: If np ≪ 1, the scatter-
ing integral reduces to the usual Boltzmann integral with its integrand proportional
to nqnr − npnk. In the opposite, classical-wave limit of large bosonic mode occupa-
tions, np ≫ 1, the wave-Boltzmann scattering integral applies,

I[nQ](p, t) =
∫

kqr
|Tpkqr|2δ(p + k − q − r)

× δ(ωp + ωk − ωq − ωr)
× [(np + nk)nqnr − npnk(nq + nr)] , (3.4)

as the terms of third order in the distribution function np dominate over the classical-
particle, second-order Boltzmann terms. As we are interested, in this work, in wave-
turbulent dynamics of the near-degenerate Bose gas we will restrict our discussion
to the integral (3.4) of the wave-Boltzmann equation (WBE).

As we are, for now, assuming isotropic distributions nQ(p, t) = nQ(p, t) ≡ np, it
is convenient to write the WBE in the form

∂tnQ(p, t) = I[nQ](p, t) =
∫

dΩp I[nQ](p, t) , (3.5)

I[nQ](p, t) =
∫

kqr
Wpkqrδ(ωp + ωk − ωq − ωr)[(np + nk)nqnr − npnk(nq + nr)], (3.6)

with the angle-averaged transition matrix squared (d = 2, 3)

Wpkqr =21−dπ−1
∫

dΩp dΩk dΩq dΩr kd−1qd−1rd−1|Tpkqr|2δ(p + k − q − r) . (3.7)

3.2 Wave turbulent scaling exponents
The well-known solutions of the WBE are stationary solutions where nQ(p, t) satisfies
∂tnQ(p, t) = 0 or, in other words, nulltifies the scattering integral, I[nQ](p, t) = 0.
Interestingly, this depends solely on the functional form of nQ(p, t) as a function
of momentum because it is the only thing that has an effect on the momentum
integration. There are two trivial solutions, a constant solution, nQ(p, t) ∼ const.
and the Rayleigh-Jeans distribution, nQ(p, t) ∼ p−z. Both solutions can be verified
by inspecting Boltzmann’s factor,

[(np + nk)nqnr − npnk(nq + nr)] = npnknqnr

[ 1
nk

+ 1
np

− 1
nr

− 1
nq

]
. (3.8)

The constant solution is inferred directly while, for a Rayleigh-Jeans solution, we
substitute np by p−z,

[(np + nk)nqnr − npnk(nq + nr)] ∼ (pkqr)−z[kz + pz − rz − qz] . (3.9)
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Chapter 3 Kinetic theory of weak and strong wave turbulence

The bracket is zero due to the energy conservation, δ(ωp + ωk − ωq − ωr). Both
cases are called detailed-balance since they make the integrand vanish which implies
a symmetry between in and out scattering process. As for non-trivial solutions or
the Kolmogorov-Zakharov exponents, the case of nQ(p, t) having power-law behavior
is considered,

nQ(sp) = s−κnQ(p) . (3.10)
The trivial solutions correspond to κ = 0 and κ = z but there are other κ’s that
also nulltify the scattering integral without making a zero integrand. The exponents
κ of non-trivial solutions are analytically derived within wave-turbulence theory by
means of an integral transformation (Zahkarov transformation [10]). The procedure
is to transform and reshape the integral such that a set of exponent κ’s that null-
tifies the scattering integral can be read off directly. The full demonstration of this
technique can be found in [10, 26, 37, 49] as well as many other references on wave-
turbulence studies. All possible solutions, including trivial ones, can be found in this
way. However, in the following we are going to evaluate the scaling exponents in a
simplified manner, by assuming steady fluxes and analysing the scaling behaviour of
the scattering integral.

The transport equations (2.55) and (2.56) are related to the scattering integral
Eqs. (3.2) and (3.3) by

∂pQ(p, t) = −(2p)d−1π I[nQ](p, t) , (3.11)
∂pP (p, t) = −(2p)d−1ω(p)π I[nQ](p, t) . (3.12)

The turbulence or stationary state of transport equations therefore correspond to
gradientless fluxes, i.e. ∂pQ(p, t) = 0 and ∂pP (p, t) = 0. Assuming that the number
distribution is a single power-law function as in Eq. (3.10) and nQ(p, t) ≫ 1 such that
the scattering integral is well approximated by Eq. (3.4), the non-trivial exponents
κ that satisfy I[nQ](p, t) = 0 can be obtained by power counting of the momentum
scale. If the scattering T -matrix, T (p, k, q, r) ≡ Tpkqr, has the following scaling
behaviour,

T (sp, sk, sq, sr) = smκT (p, k, q, r) , (3.13)

the scaling of the Wpkqr function in Eq. (3.7) becomes

W (sp, sk, sq, sr) = s2(d+mκ)−3W (p, k, q, r) . (3.14)

and it implies

I[nQ](sp, t) = s2(d+mκ)−z−3κI[nQ](p, t) . (3.15)

Eq. (3.11) requires pdI(p) ∼ p0 to coincide with ∂pQ = 0, therefore the exponent
κ = κQ must obey a following constraint,

0 = d + 2(d + mκ) − z − 3κQ ,

⇒ κQ = 3d + 2mκ − z

3 . (3.16)
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3.2 Wave turbulent scaling exponents

The same argument applies to Eq. (3.12) giving the condition pd+zI(p) ∼ p0 and
thus,

0 = d + z + 2(d + mκ) − z − 3κP ,

⇒ κP = 3d + 2mκ − z

3 + z

3 = κQ + z

3 . (3.17)

The exponents κQ and κP are the exponents governing the power-law dependence
of the occupancies in the quasiparticle and energy cascade respectively. It should
be noted that whether by means of power-counting or the scaling transformatiion,
the exponent κQ and κP are subject to the condition that the scattering integral
is finite without requiring any cutoff scales. This is crucial because both scaling
transformation and power-counting fail in the presence of cutoff scales. Recall that,
in the 4-wave resonance, the quasiparticle cascade is an inverse cascade while the
energy cascade is a direct cascade. This can be verified by the sign of the fluxes
Q(p, t) and P (p, t), requiring a negative sign for an inverse and a positive one for
a direct cascade which is impossible to check analytically solely within the power-
counting scheme. The direction of transport is most easily determined by evaluating
derivative ∂I[nQ](p, t)/∂κ with a power-law ansatz for nQ(p) inserted. For example,
the sign of Q(p, t) is proportional to ∂I[nQ](p, t)/∂κ

∣∣∣
κ=κQ

. See [10, 37] for a detailed
discussions of the direction of wave-turbulence cascade.

3.2.1 Weak-wave turbulence scaling exponents
In our context, weak wave turbulence refers to a case where the many-body coupling
is well approximated by a bare coupling g in the Hamiltonian (2.1). The situation is
realized in the perturbative regime where the coupling is weak and the occupation
number is sufficiently low, however, the occupation shold be large enough for the
classical Boltzmann equation (3.4) being applicable. The scaling behaviour of the
coupling has a strong effect on the scaling of the T -matrix and, as a consequence,
determines the Kolmogorov-Zakharov exponents κQ and κP . In realistic physical
situation, the T -matrix usaully does not show a single momentum exponent as as-
sumed in Eq. (3.13) but within the scaling analysis, we will always assume that we are
within a regime characterized by a single exponent and that effectively, the scaling
there is independent of the precise scaling behaviour outside the respective limiting
scales. This assumption is justified if the scattering accounted for in the kinetic equa-
tion is sufficiently local such that the major contribution to the integral, I[nQ](p),
comes from the scattering of waves in the momentum modes around p.

Free particles

If the single-particle dispersion is quadratic, εp = p2/2m, and thus, z = 2, quasi-
particles are identical to the fundamental fields themselves, nQ ≡ n. The scattering
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Chapter 3 Kinetic theory of weak and strong wave turbulence

T -matrix is approximated by

|Tpkqr|2 = (2π)4g2 , (3.18)

where, in d = 3 dimensions, g is given by the GPE coupling g = 4πa/m. Eq. (3.18)
applies up to an ultraviolet cutoff scale pλ and |Tpkqr| falls off to zero beyond this
scale, which ensures the unitarity of the scattering amplitude. pλ ∼ 1/a scales with
the inverse of the scattering length a and is typically much larger than the highest
significantly occupied momentum mode. The T -matrix in this case is momentum
independent and the scaling exponent defined in Eq. (3.13) corresponds to

mκ = 0 . (3.19)

Inserting this into Eqs. (3.16) and (3.17), one obtains the respective weak-wave-
turbulence exponents [10, 49]

κWWT
Q = d − 2/3, κWWT

P = d. (3.20)

Bogoliubov quasiparticles

For comparison, we consider the case when a condensate with density ρ0 ≤ ρ is
present, such that the quasiparticle excitations below the healing-length scale pξ =√

2gρ0m take the form of sound waves on the background of the bulk condensate,
cf. Sect. 2.1. We assume that in the regime where weak-wave turbulence applies, the
dispersion is also that of sound waves, ω(p) = csp, such that in this case z = 1. Far
below pξ, the T -matrix takes the approximate form

|Tpkqr|2 = (2π)4 (mcs)4

pkqr

3g2

2 , (3.21)

where the speed of sound cs is defined in terms of the healing-length momentum
scale mcs = pξ/

√
2 = √

gρ0m. See Sect. 4.3.2 for a derivation of the corresponding
wave-Boltzmann scattering integral. According to Eq. (3.21), the scaling exponent
defined in Eq. (3.13) is

mκ = −2 . (3.22)

Inserting this into Eqs. (3.16) and (3.17), one obtains the respective weak-wave-
turbulence exponents [49]

κWsWT
Q = d − 5/3 , κWsWT

P = d − 4/3 . (3.23)

We remark that perturbative expressions for the T -matrix in Eqs. (3.18) and (3.21)
as well as the scaling exponents in Eqs. (3.20) and (3.23), in general, are of lim-
ited applicability for solutions showing scaling in the far infrared due to the over
occupation in the infrared scale.
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3.2 Wave turbulent scaling exponents

3.2.2 Strong wave turbulence scaling exponents
The scaling solution of nQ(p, t) implies that in the deep infrared, the occupation
will eventually become large to the point that a perturbative calculation is no longer
valid. Typically, this happens where g2n2

Q ≫ 1 because there, terms that are of
higher order than g2n3

Q become important. Note that the over occupation is even
able to break the perturbative approximation in the weak-coupling limit g ≪ 1. To
include those terms, the non-perturbative calculation is needed.

In our work, we use the resummation of the class of s-channel loop-chain dia-
grams contributing to the two-particle irreducible effective action (2PI) to find a
non-perturbative expression of the many-body coupling. The details of derivation
within the 2PI scheme are given in the App. B and the derivation of the resulting
of many-body coupling geff(p) will be discussed in the Ch. 4. To keep the discussion
of its application concise, we here only quote the results. The many-body coupling
geff(p) turns out to be a momentum dependent function scaling according to,

geff(szp0, sp) = s2geff(p0, p) , (3.24)

which, to our knowledge, does not depend on the choice of systems as long as the
(quasi)particle has a well-defined spectral function. Since geff ̸= g, the scaling expo-
nents mκ of the T -matrix are different, in the perturbative and the nonperturbative
cases. We, again, compare the scaling for free and Bogoliubov quasiparticles. Note
that the result in Eq. (3.24) was checked explicitly in one [96] and three (cf. Ch. 4)
spatial dimensions.

Free particles

In the term of the effective many-body coupling, the T -matrix reads

|Tpkqr|2 = (2π)4g2
eff(εp − εr, p − r) . (3.25)

Here, p−r and εp−εr are the momentum and energy transfer in a scattering process,
respectively. See Fig. 4.1 for a diagrammatic representation. Hence, the T -matrix
scaling exponent becomes

mκ = 2 . (3.26)
Inserting the result back into Eqs. (3.16) and (3.17), the strong-wave-turbulence
exponents read

κSWT
Q = d + 2/3, κSWT

P = d + 4/3. (3.27)

Bogoliubov quasiparticles

For sound waves, there are two types of momentum and energy transfer collisional
processes, distinguished by the many-body coupling in the T -matrix element,

|Tpkqr|2 = (2π)4 (gρ0)4

ωpωkωqωr

[
g2

eff(ωp − ωr, p − r) + 1
2g2

eff(ωp − ωk, p + k)
]

, (3.28)
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Therefore, the exponent mκ of the T -matrix vanished,

mκ = 0 , (3.29)

and the strong-sound-wave turbulence exponents read :

κSsWT
Q = d − 1/3 , κSsWT

P = d . (3.30)

These exponents apply only in the regime p ≪ pξ where the Bogoliubov sound
dispersion applies.

3.2.3 Self-similar scaling exponent
The self-similar exponents are not related to particles or energy fluxes, unlike the
wave turbulence exponents. They are governing solutions of the kinetic equation
evolving via a space-time rescaling which become important when taking into account
global conservation laws. The simplest form of the self-similar solution reads

nQ(p, t) ∼ p−κtν . (3.31)

which is now explicitly time-dependent. At ν = 0, nQ(p, t) collapses to the stationary
solutions. In the similar manner as in the turbulence cascade, there is a constraint
that fixes the exponent κ to a specific value κS if such an evolution occurs. All we
need here is Eq. (3.4) because the nonstationary solution implies that both sides of
the equation are nonzero and, thus, the dimension of momentum and time on both
sides must be equal. On the LHS, ∂tnQ(p, t) ∼ p−κ and on the RHS, I[nQ](p, t) ∼
p2(d+mκ)−z−3κ. By comparing the exponents from both sides, we obtain

−κ = 2(d + mκ) − z − 3κ ,

⇒ κS = d + mκ − z

2 . (3.32)

Observe that the scattering integral I[nQ](p, t) ∼ p−κS for the self-similar exponent
κS. This property is very useful for clarifying whether an exponent corresponds to a
self-similar exponent.

In principle, the time exponent ν can be deduced from the condition that both
sides of Eq. (3.4) rescale equally with time. The difficulty here lies in extracting the
time dependence scales from all parameters in the scattering integral which is not
always straightforward. However, if the time dependence arises from the number
distribution nQ(p, t) alone, we have

ν − 1 = 3ν ,

⇒ ν = −1
2 . (3.33)

Eqs. (3.32) and (3.33) imply that the self-similar form of the number distribution is
nQ(p, t) ∼ p−κS t−1/2 [15]. Under the assumption we made, the temporal exponent
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is totally independent of the details of the system (dimension, dipersion relation,
etc.) and we also note that the results in Eqs. (3.32) and (3.33) are independent of
the global conservation laws. It is sensible to look back to Eqs. (2.49) and (2.50).
The exponents α and β are fixed by quasiparticle conservation alone without the
constraint from energy conservation. The same is true for α′ and β′ with respect
to energy conservation. To ensure that particles and energy are simultaneously con-
served, a constraint is needed which is the self-similar form, (3.31), governed by the
kinetic equation.

3.3 Universal dynamics (revisited)
In Sect. 2.3, we have evaluated the scaling exponents corresponding to the universal
dynamics based on the global conservation laws alone. However, the values of the
exponents have not been determined. In this section, we will evaluate the values of
all exponents in Table 2.1 using the information from the kinetic equation. Recall
that in physical situations, cutoff scales whether in IR, UV or both are inevitable
to ensure convergence of the integrals. Therefore, care has to be taken in power
counting when determining the scaling behaviour of an integral. Here, we will clarify
the power-law behaviour of the cutoff scales before counting. The results we are
going to present crucially depend on the presence of a cutoff regularishing the IR
divergences of the loop-integral, ΠR, that is evaluated in Ch. 4.

3.3.1 Time scaling behaviour
If observables are time-dependent, the scaling hypotheses is not limited to the mo-
mentum dependence but can be extended to the time argument as well. For example,
the general scaling of the quasiparticle distribution reads

nQ(p, t) = sα/βnQ(sp, s−1/βt) , (3.34)

where the scaling in time is inspired by the time-dependent of the cutoff scale i.e.
pΛ(t) ∼ t−β and, hence, pΛ(s−1/βt) ∼ (s−1/βt)−β ∼ s pΛ(t), cf. Sect. 2.3.2. Similar
scaling occurs for pλ(t) ∼ t−β′ with α′ and β′ exponents. s is an arbitrary positive
parameter and if it is chosen to be s = (t/t0)β, Eq. (3.34) gives Eq. (2.38). The
exponents extracted from the scaling hypotheses in Eq. (3.10) and Eq. (3.34) are not
necessary to coincide. To see this explicitly, we assume the most simplest form that
satisfies both conditions simultaneously,

nQ(p, t) ∼ p−κ[pΛ(t)]κ−α/β . (3.35)

Whenever only momentum scaling is considered, only p−κ contributes to the exponent
but, with scaling hypotheses in Eq. (3.34), both p and pΛ(t) give the contributions.
This kind of differences appears in every time-dependent observable. Note that the
exponent solutions in Sect. 3.2, except ν in Eq. (3.33), remain the same because they
are evaluated from the scalings in momentum alone.
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3.3.2 General scaling of T -matrix
The general scaling of the T -matrix elements can not be identified straightforwardly
since, at least, a scaling in momentum and of the time-dependent scales must be
known. To proceed in this direction, we need to recall the many-body coupling geff
obtained from the 2PI resummation for making an estimation of the general scaling.
Therefore, the following arguments are inevitably subject to the 2PI calculation.
Again, we skip the detailed derivation within dynamic field theory which is given in
the subsequent chapters and provide further details of the evaluation in App. F. We
note that in the following, we also take into account the dependence on an anomalous
dimension η which governs the spectral function of (quasi)particles.

Due to a lot of information from the subsequent chapters are needed, we skip
the discussion how one obtain the general scaling and give the details in App. F. We
only need to mention that there is an anomalous dimension η that excluded from
the calculation in Ch.4 thus, there is no appearance of η there. However, we would
like to recover the η-dependence in the following expressions so the pure momentum
exponents will be given again. The general scaling of the T -matrix elements obeys

|T (sp, sk, sq, sr; s−1/βt)| = sm|T (p, k, q, r; t)| , (3.36)
|T (sp, sk, sq, sr; t)| = smκ|T (p, k, q, r; t)| , (3.37)

where

m = γ + 2(z − 2) + η

2 , (3.38)

mκ = γκ + 2(z − 2) + η

2 , (3.39)

cf. Eqs. (F.12) and (F.28). In the Bogoliubov quasiparticle case, the inverse healing
length pξ = [2mgρ0]1/2 is assumed to be time-independent, implies no condesation
and depletion in the zero mode. The exponents γ and γκ are the scaling exponents
of the many-body coupling,

geff(szp0, sp; s−1/βt) = sγgeff(p0, p; t) , (3.40)
geff(szp0, sp; t) = sγκgeff(p0, p; t) . (3.41)

The subscript κ is used to distinguish the pure momentum scaling from the scaling
hypotheses in Eq. (3.34). Assuming that the scattering integral I[nQ] converges which
should be the case if there exists stationary solutions, the scaling exponents of the
scattering integral can be directly counted from Eq. (3.4),

I[nQ](sp, s−1/βt) = sµI[nQ](p, t) , (3.42)
I[nQ](sp, t) = sµκI[nQ](p, t) , (3.43)

where

µ = 2(d + m) − z − 3α

β
, (3.44)

µκ = 2(d + mκ) − z − 3κ . (3.45)
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3.3.3 Scaling evolution
The scaling hypotheses Eq. (3.34) give a further constraints for the time-related ex-
ponents i.e. α, β, µ etc. if the kinetic equation is taken into account. To see this, we
apply Eq. (3.34) with the choice s = (t/t0)β into Eq. (3.2) [50],

(t/t0)α−1(α + β q ∂q)f(q)
∣∣∣
q=(t/t0)βp

= t0(t/t0)−βµI[f ](q) . (3.46)

The function f(p) = nQ(p, t0) is now time-independent, then, for Eq. (3.46) being
valid at any time t, including t0, the time-independent fixed point equation

(α + β q ∂q)f(q) = t0I[f ](q) . (3.47)

must hold. At the same time, the exponents of the factor t/t0 on both sides of
Eq. (3.46) need to be equal. This means

α = 1 − β µ . (3.48)

The condition (3.48) allows us to evaluate the exponent β using µ which governs the
scaling of the scattering integral in the kinetic equation. Inserting µ from Eq. (3.44)
and rearranging the terms, we obtain

β = 1
2(d + m) − z − 2α/β

. (3.49)

The further discussion will be separated between the turbulent transport and self-
similar evolution due to the different constraints on the ratio α/β.

Time evolution in turbulent transport

If we substitute f(q) on the LHS of Eq. (3.47) with a simple power-law function
f(q) ∼ q−κ, we get

(α − β κ)f(q) = t0I[f ](q) . (3.50)

The condition I[f ](q) = 0 on the RHS demands α = β κ on the LHS, otherwise
Eq. (3.50) does not hold. Note that this is true only in the power-law regime where
there are turbulent fluxes with the Kolmogorov-Zakharov exponents κQ or κP . In
the momentum regime that fluxes have not reached, the scattering integral does not
vanish and we do not expect κ to describe a stationary solution. The constraint
of turbulent transport is α/β = κ as presented in Table 2.1. Substituting this into
Eq. (3.49) yeilds

β = 1
2(d + m) − z − 2κQ

. (3.51)

β′ is subject to the same relation except that κQ is replaced with κP . Note that in the
case of turbulence, Eq. (3.48) does not apply for the momentum scale that have no
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dynamics. For example, Eq. (3.48) can not be used to constrain the exponents α′ and
β′ in the regime of κ < d where both particle number and energy are concentrated in
the UV, pλ because in that case α′ = β′ = 0 in the first approximation to ensure global
particle and energy conservation. Although Eq. (3.48) is not fulfilled, Eq. (3.46) and
α′ = β′ = 0 imply the vanishing of the of scattering integral. We insert Eqs. (3.16)
and (3.17) into Eq. (3.51) to evaluate β = βQ for an inverse cascade and β′ = βP for
a direct cascade, respectively,

βQ = 1
2(m − 2mκ/3) − z/3 , (3.52)

βP = 1
2(m − 2mκ/3) − z

. (3.53)

The further analysis will be separately discussed for weak- and strong-wave turbu-
lence due to the different values of m and mκ.

Weak-wave turbulence.— In the perturbative limit, the many-body coupling is
the bare coupling constant, see Eqs. (3.18) and (3.21), therefore,

γ = γκ = 0 . (3.54)

Substituting Eq. (3.54) into Eqs. (3.38) and (3.39) simply gives

m = mκ = 2(z − 2) + η

2 , (3.55)

and we can now determine βQ and βP from Eqs. (3.52) and (3.53),

βQ = 3
3z − 8 + η

, (3.56)

βP = 3
z − 8 + η

. (3.57)

In the free particle case where z = 2, we get βQ = −3/2 (neglecting the anomalous
exponent η) which gives pΛ(t) ∼ (t1 − t)3/2 where pΛ is an IR cutoff. We thus recover
the temporal rescaling of the IR energy scale, εΛ(t) ∼ (t1 −t)3 due to ε(p) ∼ p2 which
agrees with the energy rescaling obtained in [15].

Strong-wave turbulence.— In the strong-wave regime, an infinite number of dia-
grams in s-channel resummation is taken into account to calculate the effective coup-
ling. The resummation modifies the functional form of the many-body coupling and
its scaling behaviour, Eqs. (3.25), (3.28), (F.11) and (F.27) implying that

γ = 2 − η − 2δ

β
, (3.58)

γκ = 2 − η . (3.59)

Here, we assumed that the noncondensed particle density ρnc in general changes in
time with the exponent δ, ρnc(t) ∼ t−2δ. This is the generally the case whenever
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3.3 Universal dynamics (revisited)

particles and quasiparticle degrees of freedom do not coincide such tht quasiparticle
conservation violates that of particle number and vice versa, see Eqs. (2.18) and
(2.19). Inserting Eqs. (3.58) and (3.59) into (3.38) and (3.39) repectively, yields

m = 2(z − 1) − η

2 − 2δ

β
, (3.60)

mκ = 2(z − 1) − η

2 . (3.61)

Substituting Eqs. (3.60) and (3.61) into Eqs. (3.52) and (3.53) give

βQ = 3
3z − 4 − η − 12δ/β

, (3.62)

βP = 3
z − 4 − η − 12δ/β

. (3.63)

In the limit δ = 0, one gets βQ = 3/(3z − 4 − η) and βP = 3/(z − 4 − η) which bear
a similar form as in Eqs. (3.56) and (3.57) in the perturbative case. However, the
results imply the violation of quasiparticle conservation. Demanding quasiparticle
conservation as ensured by the 2-to-2 resonant interaction in the kinetic equation,
delta does no longer vanish and can be inferred from Eq. (2.23),

2δ/β = d + z − 2 − α/β . (3.64)

The further step are not straightforward because it depends on the divergence of ρnc.
Here, we assume that ρnc diverges in the infrared, therefore, α and β are governing
the rescaling at the IR end. For an inverse particle cascade, α/β is constrained by
α/β = κQ and we can replace the ratio α/β in Eq. (3.64) by κQ from Eq. (3.16) to
obtain

βQ = 3
3z − 4 − η − 6(d + z − 2 − κQ)

= 3
3z − 4 − η − 6(−2 + 4/3 + η/3)

= 1
z − η

. (3.65)

For a direct energy cascade, the infrared cutoff pΛ has no dynamics in a first order
approximation. Thus, we simply take 2δ/β = 0 in this case because we assumed ρnc
depends on the infrared scale pΛ. As a result, βP becomes

βP = 3
z − 4 − η

. (3.66)

Time evolution in the self-similar dynamics

In the self-similar time evolution, the constraints come from the global conservation
laws, α/β = d and α′/β′ = d + z, see Eqs. (2.40) and (2.41). Inserting these two
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Chapter 3 Kinetic theory of weak and strong wave turbulence

constraints into Eq. (3.49) gives

βQ = 1
2m − z

, (3.67)

βP = 1
2m − 3z

. (3.68)

The further discussions are again separately discussed into the perturbative and the
nonperturbative regimes.

Perturbative regime.—
In the perturbative regime, the T -matrix scalings is the one in Eq. (3.55). We

insert Eq. (3.55) into Eqs. (3.67) and (3.68) to obtain

β = 1
3z − 8 + η

, (3.69)

β′ = 1
z − 8 + η

. (3.70)

From Eqs. (3.32) and (3.55), we evaluate the self-similar momentum scaling exponent,

κS = d + 3z/2 − 4 + η/2 , (3.71)

and verify the relation (2.52),

β′ = d − κS

d + z − κS

β

=
(−3z/2 + 4 − η/2

−z/2 + 4 − η/2
) ( 1

3z − 8 + η

)
=
(3z − 8 + η

z − 8η

) ( 1
3z − 8 + η

)
= 1

z − 8 + η
. (3.72)

The result is identical to Eq. (3.70) which means the scenario describing in Sect. 2.3.2
is well defined.

In the free particle case where z = 2, we then have β = −1/2 and β′ = −1/6.
This means the time evolution of the momentum scales in the infrared pΛ and the
ultraviolet pλ are pΛ(t) ∼ t1/2 and pλ(t) ∼ t1/6 respectively, which translate to the
time evolution of the energy scales as εΛ(t) ∼ t and ελ(t) ∼ t1/3. The results are
agree with [15]. Notice that β < 0 despite the expectation β > 0 in Sect. 2.3.2. The
requirements β > 0 and β′ < 0 imply 8/3 < z < 8 in the perturbative regime. This
is an indicator that the self-similar time evolution can not occur in the perturbative
regime where z ∈ {1, 2}.

Nonperturbative regime.—
In the nonperturbative regime, the scalings of T -matrix are those in Eqs. (3.60)

and (3.61). Inserting Eq. (3.60) into Eqs. (3.67) and (3.68) gives

β = 1
3z − 4 − η − 4δ/β

, (3.73)

β′ = 1
z − 4 − η − 4δ/β

. (3.74)
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3.4 Summary

This brings us back to the problem of determining the exponent δ as before. We
again assume that the divergence of ρnc is in the infrared such that the ratio α/β
in the relation (3.64) is replaced by the quasiparticle constraint, α/β = d. Thus,
Eq. (3.64) becomes

2δ/β = z − 2 . (3.75)

We insert this relation into Eqs. (3.73) and (3.74) to evaluate β and β′ respectively,

β = 1
z − η

, (3.76)

β′ = 1
−z − η

. (3.77)

However, in this δ ̸= 0 limit, further constraints are needed to satisfy the relation
(2.52). This can be seen from

β′ = d − κS

d + z − κS

β

1
−z − η

=
(3z − 4 − η

z − 4 − η

)( 1
z − η

)
, (3.78)

where κS = d + 3z/2 − 2 − η/2, evaluated from Eqs. (3.32) and (3.61). In the limit
δ = 0, the relation (2.52) is fully satisfied, cf. Eqs. (3.73) and (3.74). The problem
is more transparent if we insert the general expressions in terms of m and mκ into
relation (2.52), see Eqs. (3.32), (3.67), and (3.68),

1
2m − 3z

=
( 2mκ − z

2mκ − 3z

) 1
2m − z

. (3.79)

The relation (2.52) will be satisfied as in the perturbative case or the nonperturbative
case where δ = 0 if m = mκ. It is an open question whether the case of m ̸= mκ

means the failure of the scenario in Sect. 2.3.2, for example, the single power-law
function may not be a proper way to describe the universal dynamics in this case, or
this means a way to determine the value of the anomalous scaling η which, so far, is
completely undetermined in the kinetic theory.

3.4 Summary
We have analysed the kinetic equation of 4-wave resonances in the classical limit
where the occupation number is sufficiently large and dominates the quantum ground
state. The stationary solutions of the kinetic equation andin particular the Kolmogorov-
Zakharov exponents are evaluated by means of dimensional counting. The alternative
approach involving integral transforms witnin the scattering integral after which ex-
ponents can be read off directly [10, 26, 37, 49]. Our analysis is more straightforward
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Table 3.1: Scaling relations in the purturbative regime. The table summarizes the relations
between the scaling exponents as obtained in Sect. 2.3 and further constrained
by the kinetic equation in Sect. 3.3. η was set to be zero and the value of τ is
determined with the values of z ∈ {1, 2}.

α β α′ β′ τ
inverse cascade

βκQ
3

3z − 8
0 0 τ1κQ = d + z − 8/3

self-similar evol.
βd

1
3z − 8

β′(d + z) 1
z − 8κS = d + 3z/2 − 4

direct cascade 0 0 β′κP
3

z − 8
t/t0κP = d + 4(z − 2)/3

Table 3.2: Scaling relations in the nonpurturbative regime. The table summarizes the
relations between the scaling exponents as obtained in Sect. 2.3 and further
constrained by the kinetic equation in Sect. 3.3. η was set to be zero and the
value of τ is determined with the value of z ∈ {1, 2}. We present the results of
the cases where there is time-evolution in the contents of noncondensed particle
ρnc, except in a direct cascade case.

α β α′ β′ τ
inverse cascade

βκQ
1
z

0 0 t/t0κQ = d + z − 4/3
self-similar evol.

βd
1
z

β′(d + z) −1
zκS = d + 3z/2 − 2

direct cascade 0 0 β′κP
3

z − 4
τ1κP = d + 4(z − 1)/3

and yields the same set of exponents while it has to be taken with more care con-
cerning the role of divergence. Our approach is motivated by the way the scaling
analysis was done in Ref. [15]. We eventually have evaluated exponents governing the
dynamical evolution of the momentum distribution using Eq. (3.48) obtained from
Eq. (3.46) to determine β before the other dynamical exponents can be evaluated by
relations given in Table 2.1. Our results are summarized in Tables 3.1 and 3.2. One
thereby has to keep in mind that Eq. (3.46) is subject to the condition of self-similar
time evolution (turbulence cascade included). So Eq. (3.48) is valid only for the case
of self-similar dynamics.

The exponents of the time evolution in the perturbative regime are well agreed
with the scenarios describing in Sect. 2.3. However, this is not completely the case in
the nonperturbative regime. We have seen that when m does not coincide with mκ,
some discrepancies may occur. This means the scenarios of the universal dynamics
needs to be modified, or a new constraint for determining the value of the anomalous
exponent η. In any case, it is not conclusive.

In the case that we neglect the inconsistencies, we have a universal value of β
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3.4 Summary

in the nonperturbative regime regardless of whether the type of dynamics represents
an inverse cascade or a self-similar shift in time. This is a nontrivial result in the
kinetic theory and may signal the particular character of the nonthermal fixed point
in the nonperturbative regime. We anticipate that, in order to obtain a full picture
of the universal properties of the fixed point, the question of what possible values the
anomalous dimension η can take and in which way this is related to the condition
giving in the dynamical exponent z.
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Chapter 4

Kinetic equation from nonequilibrium
quantum field theory
Nonequilibrium quantum field theory is an attempt to construct a nonperturbative
approach for evaluating the n-point functions in a way that all quantities respect
causality given their values at an initial time. We review the formalism in App. B but
would like to summarize the main points here. The conventional quantum field theory
is constructed to be a boundary value problem in the sense that the observables are
defined through the S-matrix which is generally a transition between in and out
states [97]. This feature contrasts with the nature of nonequilibrium problems that
observables are calculated from the time-evolution of their initial conditions. Two
ingredients are needed to modify conventional quantum field theory: the Schwinger-
Keldysh closed-time-path (CTP) integral [98, 99] and the 2-particle-irreducible (2PI)
effective action [43]. The CTP formalism is necessary to make all observables being
expectation values with respect to the initial states instead of the matrix elements
between in and out states (hence the name in-in formalism used sometimes in the
literature). Moreover, the observables in the CTP formalism respect causality in the
sense that the observables at time t are evaluated only from information at time
t′ < t. The 2PI formalism gives a nonpertubative way to evaluate the 1- and 2-point
functions through a set of dynamic equations.1 Unfortunately, this set of equations is
usually a set of integro-differential coupled equations which is not practically solvable.

Despite such difficulties, some information is still available through other means.
For a theory with φ4 interaction, the dynamic equation for the 2-point functions can
be transformed into the kinetic equation of wave turbulence [25, 45, 49]. Therefore,
the arguments that have been discussed in Ch. 3 are applied. The main advantage
is that the kinetic equation derived within this approach is free from the perturb-
ative constraint that occupation numbers are low. This allows us to go beyond the
weak-wave turbulence limit which is called strong-wave turbulence. Some aspects
of nonequilibrium dynamics of Bose fields can now be studied using the concepts
of wave turbulence and universal dynamics. Our interest is still in the momentum
scaling of occupation numbers which include the Kolmogorov-Zakharov, κQ and κP ,
and the self-similar, κS, exponents.

The Kolmogorov-Zakharov exponents or the stationary solutions of the kinetic

1In principle, it can be extended to the n-point functions if one uses nPI formalism instead [44, 45].
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Chapter 4 Kinetic equation from nonequilibrium quantum field theory

equation deriving from nonequilibrium quantum field theory have been discussed
previously in [49] using the scaling arguments and the technique of re-mapping the
integral, similarly to the analysis in [10, 26, 37]. We have shown in Ch. 3 that the
exponents we obtained are different from the result in [49]. This is because the
scaling behaviour of the effective coupling geff(p) does not agree with the prediction
from dimensional counting. This can be verified by replacing the scaling exponent
of the effective coupling by ours, recovering then also our scaling exponents of the
solutions. The evaluation of geff(p) to determine its scaling behaviour is the one of
the central result in this thesis.

This chapter is organized as follows. We start by applying the nonequilibrium
quantum field theory to the Gross-Pitaevskii action and evaluate a set of dynamic
equations of 1- and 2-point functions. Then, we concentrate on turning the dynamic
equation of 2-point functions into the kinetic equation similarly to Eq. (3.2) under the
homogeneous assumption. The procedure is analogous to the one presented in [45]
but here, we apply it to a complex scalar field so symmetries and expressions will be
slightly different. We finally explicitly evaluate the effective coupling geff(p) using an
ansatz to determine its scaling behaviour which we used throughout the analysis in
Ch. 3. We remark that the kinetic equation we derive in this chapter can be used to
analyse both, the momentum or and the temporal scaling exponents. The respective
results obtained from scaling arguments are presented in Ch. 3. Our scaling ansatz
leads to an explicit form of the kinetic equation. To confirm the validity of this
ansatz we perform a numeric integration of the T -matrix and the scattering integrals
which we will discuss in Ch. 5.

4.1 Nonequilibrium description of a Bose field with
quartic interaction

The quartic interaction is the simplest, non-trivial self-interaction that appears in
many theoretical models, including the Gross-Pitaevskii Hamiltonian (2.1). Here, we
will study nonequilibrium quantum field theory of a Bose field with quartic interac-
tion. The aim is deriving the dynamic equations of mean-fields an propagators so we
can study the time evolution of Bose gases.

4.1.1 Dynamical equations of a Bose field with quartic
interaction

The classical action of a complex Bose field with φ4 interaction reads

S[φ, φ∗] = 1
2

∫
xy

φ∗
a(x)(iD−1

ab (x, y))φb(y) − g

8

∫
x

φ∗
a(x)φa(x)φ∗

b(x)φb(x), (4.1)

where the variable x refers to d+1 space-time coordinate in d spatial dimensions. The
notation

∫
x stands for

∫∞
−∞ d4x and

∫
xy for

∫∞
−∞ d4x

∫∞
−∞ d4y. The field components
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4.1 Nonequilibrium description of a Bose field with quartic interaction

are labelled by an index a ∈ {1, 2} where φ1(x) = φ(x) and φ2(x) = φ∗(x) and the
operator iD−1

ab (x, y) is defined by

iD−1
ab (x, y) = δd+1(x − y)

(
iσ3

ab∂x0 − δabH1B(x)
)

. (4.2)

The σ3 is the third Pauli matrix and H1B is the one-body Hamiltonian,

H1B = −~2Σd
i=1∂

2
i /2m + V (x) , (4.3)

where V (x) is an external potential i.e. a trap potential which we neglect from now
on. Note that the action in Eq. (4.1) gives back the Gross-Pitaevskii Hamiltonian
in Eq. (2.1). However, the action (4.1) has second class constraints, therefore, its
Hamiltonian has to be formulated properly if one wishes to recover the dynamic
equations of the field variables from the Hamilton equations. This can be seen
from an absence of the conjugate-momentum from (2.1). The scheme for treating a
constrained system can be found in [100, 101]. The quantum field description is done
by promoting the field variables into operators. In the case of Bose fields, operators
must satisfy the Bose version of equal-time commutation relations

[Φ(t, x), Φ†(t, y)] = δd(x − y), (4.4)
[Φ(t, x), Φ(t, y)] = [Φ†(t, x), Φ†(t, y)] = 0. (4.5)

It will be seen later that the commutation relations do not play any role in the
derivation of dynamic equations. Therefore, the Fermion fields will give the same
set of the dynamic equations as long as the form of the interaction and the proced-
ure of truncation remain the same. However, the commutation relations is used to
determine the properties of the propagators at equal times.

We recall the 2PI effective action from App. B

Γ[φ, φ∗, G] =S[φ, φ∗] + i~
2 TrC ln G−1

+ ~
2

∫ C

xy

δ2S[φ, φ∗]
δφ∗

b(y)δφa(x)Gab(x, y) + Γ2[φ, φ∗, G], (4.6)

where the symbol C indicates that the time contour is the Schwinger-Keldysh closed-
time loop. We need to calculate the functional derivative of each term in (4.6) with
respect to φ(x) to derive the dynamic equation of the field variable which it can be
done explicitly for the first three terms. We start with the first derivative of the
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classical action with respect to a field variable and its complex conjugate2,

δS[φ, φ∗]
δφ∗

a(x) = 1
2

∫ C

uv

(
δd+1

C (x − u)δac

(
iD−1

cd (u, v)
)
φd(v)

+ δd+1
C (x − v)σ1

adσ1
dm

(
iD−1

mn(v, u)
)
σ1

ncφ
∗
c(u)

)
− g

8

∫ C

u
δd+1

C (x − u)
[(

δacφc(u) + σ1
acφ

∗
c(u)

)
φ∗

d(u)φd(u) + (c ↔ d)
]

= 1
2
[ ∫ C

v

(
iD−1

ad (x, v)
)
φd(v) +

∫ C

u

(
iD−1

an (x, u)
)
φn(u)

]
− g

2φa(x)φ∗
d(x)φd(x)

=
∫ C

u

(
iD−1

ad (x, u)
)
φd(u) − g

2φa(x)φ∗
d(x)φd(x) , (4.7)

δS[φ, φ∗]
δφa(x) =

∫ C

u
σ1

ac

(
iD−1

cd (x, u)
)
σ1

dnφ∗
n(u) − g

2φ∗
a(x)φ∗

d(x)φd(x) . (4.8)

Since φ1(x) and φ2(x) are not completely independent (i.e. φ∗
1(x) = φ2(x)), we need

to modify the functional variation rules,

δφa(x)
δφb(y) = δd+1

C (x − y)δab , (4.9)

δφ∗
a(x)

δφb(y) = δφa(x)
δφ∗

b(y) = δd+1
C (x − y)σ1

ab , (4.10)

together with the field transformation σ1
abφb(x) = φ∗

a(x) where σ1 is the first Pauli
matrix. The second derivative can be done in a similar manner,

δ2S[φ, φ∗]
δφ∗

b(y)δφa(x)

=
∫ C

u
δbdδd+1

C (y − u)σ1
acσ

1
cm

(
iD−1

mp(x, u)
)
σ1

pdσ1
dnδnb

− g

2δd+1
C (x − y)

(
δabφd(x)φ∗

d(x) + φ∗
a(x)(δbdφd(x) + σ1

bdφ∗
d(x)

)
= iD−1

ba (y, x) − g
(

δab

2 φ∗
d(x)φd(x) + φ∗

a(x)φb(x)
)

δd+1
C (x − y)

= δd+1
C (x − y)

(
iσ3

ab∂x0 − δabH1B(x) − g[δab

2 φ∗
d(x)φd(x) + φ∗

a(x)φb(x)]
)

, (4.11)

2The first term in the action can also be written as
∫

uv
φd(v)[(iD−1

dc (v, u))φc(u)]∗ where the dif-
ferential operators have been moved to act on φ∗(x) instead of φ(x) and we use this form when
we need to perform the derivative with respect to φ(x). Also, we express the (iD−1

dc (v, u))∗ term
by σ1

dm(iD−1
mn(v, u))σ1

nc since σ1
dmσ3

mnσ1
nc = −σ3

dc and σ1
dmδmnσ1

nc = δdc.
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4.1 Nonequilibrium description of a Bose field with quartic interaction

δ2S[φ, φ∗]
δφb(y)δφ∗

a(x)

= σ1
bm

(
iD−1

mn(y, x)
)
σ1

na − g
(

δab

2 φ∗
d(x)φd(x) + φa(x)φ∗

b(x)
)

δd+1
C (x − y)

= δd+1
C (x − y)

(
− iσ3

ab∂x0 − δabH1B(x) − g[δab

2 φ∗
d(x)φd(x) + φa(x)φ∗

b(x)]
)

.

(4.12)

For the Γ2[φ, φ∗, G] term, we need to decide which 2PI diagrams are going to be kept
in the derivation through the process of truncation. The procedure we use follows
the context of a large-N approximation that is commonly used in the theory of N -
component fields with an O(N ) symmetry, although in our case, N = 2. We keep
the Feynman diagrams up to the next-to-leading order (NLO) terms such that the
nonlocal diagrams which capture the scattering processes are taken into account. It
is necessary to recall that the interaction in Γ2[φ, φ∗, G] is determined by iSQ/~, not
only by interaction terms in the classical action (4.1). For quartic interaction, SQ

reads

SQ[ϕ, ϕ∗] = 1
3!

∫ C

xyz

δ3S

δφ∗
c(z)δφb(y)δφ∗

a(x)ϕ∗
a(x)ϕb(y)ϕ∗

c(z)

+ 1
4!

∫ C

xyzw

δ4S

δφd(w)δφ∗
c(z)δφb(y)δφ∗

a(x)ϕ∗
a(x)ϕb(y)ϕ∗

c(z)ϕd(w)

= −g

2

∫ C

x

(
ϕa(x)ϕ∗

a(x)
)(

φc(x)ϕ∗
c(x)

)
− g

8

∫ C

x

(
ϕa(x)ϕ∗

a(x)
)(

ϕc(x)ϕ∗
c(x)

)
= −g

4

∫ C

x
ϕa(x)ϕ∗

a(x)
(
φc(x)ϕ∗

c(x) + φ∗
c(x)ϕc(x)

)
− g

8

∫ C

x
ϕa(x)ϕ∗

a(x)ϕc(x)ϕ∗
c(x).
(4.13)

There are two types of vertices in Γ2[φ, φ∗, G], a 3-point vertex with a field
insertion and a 4-point vertex. In the leading order (LO), there is only one possible
2PI-Feynman diagram,

ΓLO
2 [G] = (−i~)

(
i

~

)(
− g

8

) ∫ C

x
(~Gaa(x, x))(~Gbb(x, x))

= −g

8~
2
∫ C

x
Gaa(x, x)Gbb(x, x) . (4.14)

In NLO, there is one local diagram,

ΓNLO−Local
2 [G] = −g

4~
2
∫ C

x
Gab(x, x)Gba(x, x) , (4.15)

where we also included the symmetry factor. For the 4-point vertex, the symmetry
factors for each of the Feynman diagrams are given by 4n/2n where n is the number
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· · ·

φ φ∗ φ φ∗ φ φ∗ · · ·

Figure 4.1: 2PI diagrams that contribute to Γ2 up to NLO. The diagrams in the upper
row, except the first double-bubble, are included in ΓNLO−4

2 [G]. The lower row
shows the diagrams contained in ΓNLO−3

2 [φ, φ∗, G]. Note that the number of
diagrams in each row is infinite because adding one loop of propagators and
one vertex does not change the order in 1/N expansion.

of vertices. The number comes from (n − 1)! ways to arrange n vertices into a ring
multiplied by 22n−1 possible ways to contract internal indices, and is multiplied by
1/n! since n vertices are indistinguishable. As for the nonlocal contributions, there
are infinitely many diagrams because the order of the 1/N expansion does not change
when adding one loop of propagators and one vertex. However, the diagrams have
the systematic structures as shown in Fig. 4.1. We separate the nonlocal contribution
into two parts,

ΓNLO−Nonlocal
2 [φ, φ∗, G] = ΓNLO−4

2 [G] + ΓNLO−3
2 [φ, φ∗, G] (4.16)

where ΓNLO−4
2 [φ, φ∗, G] is a series of diagrams that contain only 4-point vertices,

ΓNLO−4
2 [G] = i

~3

4

(
g

2

)2 ∫ C

xy
Gab(x, y)Gba(y, x)Gcd(x, y)Gdc(y, x)

+ ~4

6

(
g

2

)3 ∫ C

xyz
Gab(x, y)Gba(y, x)Gcd(y, z)Gdc(z, y)Gef (z, x)Gfe(x, z)

+ · · · (4.17)

and ΓNLO−3
2 [φ, φ∗, G], a series of diagrams that have two 3-point vertices with a field

insertion,

ΓNLO−3
2 [φ, φ∗, G] = i

~2

2
(g

2
)2 ∫ C

xy
φa(x)φ∗

b(y)Gba(y, x)Gcd(x, y)Gdc(y, x)

+ ~3

2
(g

2
)3 ∫ C

xyz
φa(x)φ∗

b(y)Gba(y, x)Gcd(y, z)Gdc(z, y)Gef (z, x)Gfe(x, z)

+ · · · . (4.18)
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The first comes from δΓ[φ, φ∗, G]/δφ∗
a(x) = 0,

0 = δS[φ, φ∗]
δφ∗

a(x) + ~
2

∫ C

uv

δ3S[φ, φ∗]
δφ∗

a(x)δφ∗
d(v)δφc(u)Gcd(u, v) + δΓ2[φ, φ∗, G]

δφ∗
a(x)

=
∫ C

u

(
iD−1

ad (x, u)
)
φd(u) − g

2φa(x)φ∗
d(x)φd(x)

+ ~
2

∫ C

uv
(−g)δd+1

C (u − v)δd+1
C (x − u)

(
δcdφa(u) + σ1

acφ
∗
d(u) + δadφc(u)

)
Gdc(v, u)

+ δΓNLO−3
2 [φ, φ∗, G]

δφ∗
a(x)

=
(

iσ3
ad∂x0 − g~Gad

)
φd(x) −

(
H1B(x) + g

2
(
φ∗

c(x)φc(x) + ~Gcc(x, x)
))

φa(x)

+ δΓNLO−3
2 [φ, φ∗, G]

δφ∗
a(x) , (4.19)

where the relation Gba(y, x) = σ1
naσ1

bmGnm(x, y) is needed.3 The equations for the
propagators can be obtained through the relation δΓ[φ, φ∗, G]/δGab(x, y) = 0 and
the result is identical to Eq. (B.99) (with external non-local currents Kab = 0),

iG−1
ba (y, x) = δ2S[φ, φ∗]

δφ∗
b(y)δφa(x) + 2

~
δΓ2[φ, φ∗, G]
δGab(x, y) , (4.20)

then, multiplying with Gac(x, z) and integrating over the x variable, we get4

i
∫ C

x
G−1

ba (y, x)Gac(x, z) =
∫ C

x

δ2S[φ, φ∗]
δφ∗

b(y)δφa(x)Gac(x, z) + 2
~

∫ C

x

δΓ2[φ, φ∗, G]
δGab(x, y) Gac(x, z)

iδbcδ
d+1
C (y − z) =

∫ C

y
iD−1

ab (x, y)Gac(x, z)

− g
(

δab

2 φ∗
d(y)φd(y) + φ∗

a(y)φb(y)
)

Gac(y, z)

+ 2
~

∫ C

x

δΓ2[φ, φ∗, G]
δGab(x, y) Gac(x, z)

3Observe that Gba(y, x) = ⟨TCΦb(y)Φ†
a(x)⟩ = σ1

bm⟨TCΦ†
m(y)Φn(x)⟩σ1

na = σ1
naσ1

bmGnm(x, y), there-
fore, σ1

acφ∗
d(x)Gdc(x, x) = σ1

acφ∗
d(x)σ1

ncσ1
dmGnm(x, x) = φm(x)Gam(x, x) where σ1

abσ1
bc = δac has

been used.
4We chose the definition in Eqs. (4.11) and (4.12) in such a way that the differential operators

live at point x. Therefore, it is more straight forward to do the convolution over the point x
such that it can be seen that the differential operators always act on different spatio-temporal
arguments i.e. i∂x0 acts on the argument of φ and −i∂x0 acts on the argument of φ∗. The
convolution over the point y means the differential operators need to operate to the left which
can be achieved by moving the operators to the other argument first i.e. i∂x0 → −i∂x0 and then
choosing x = y due to δd+1

C (x − y) .
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=
(

iσ3
ab∂y0 − δab[H1B(y) + g

2φ∗
d(y)φd(y)]

− gφ∗
a(y)φb(y)

)
Gac(y, z)

+ 2
~

∫ C

x

δΓ2[φ, φ∗, G]
δGab(x, y) Gac(x, z) , (4.21)

where the identity
∫ C

y G−1
ba (y, x)Gac(x, z) = δacδ

d+1
C (y − z) has been used. It is con-

venient to separate δΓ2/δGba which is proportional to the self-energy into local and
non-local contributions,

2i

~
δΓ2[φ, φ∗, G]
δGab(x, y) = Σlocal

ba (y, x) + Σba(y, x) . (4.22)

The local contribution which contains double-bubble diagrams from both LO and
NLO reads

Σlocal
ba (y, x) = −i~gδd+1

C (y − x)
(δba

2 Gcc(y, y) + Gba(y, y)
)

. (4.23)

The effect of the local contribution in self-energy is to shift the mass into an effect-
ive mass while the nonlocal contribution represents the scattering processes. The
dynamic equations of propagators then become

iδacδ
d+1
C (x − z) = [iσ3

ab∂x0 − MG
ab(x)]Gbc(x, z) − i

∫ C

y
Σab(x, y)Gbc(y, z) , (4.24)

where the effective mass MG
ab(x) reads

MG
ab(x) = δab

(
H1B(x) + g

2[φd(x)φ∗
d(x) + ~Gdd(x, x)]

)
+ g

(
φa(x)φ∗

b(x) + ~Gab(x, x)
)

.

(4.25)

In principle, solving the set of coupled integro-differential equations (4.19) and (4.24)
gives the field expectation value and propagators as functions of their space-time
coordinates in d + 1 dimensions. However, the task is very formidable in practice
due to the complication of integro-differential equations. We are going to show that
despite its complexities, we can still extract useful information from these equations
by using the knowledge of wave turbulence but we need a further manipulation and
approximation in order to write down Boltzmann’s integral which is our central
equation of the wave turbulence studies.

4.1.2 Dynamical equations of statistical and spectral function
One of the complications in Eqs. (4.19) and (4.24) is the presence of the closed-time
contour since it duplicates the number of propagators (the field is identical on the
forward and backward branches of the contour but this is not the case for propagators,
see Sect. B.1). We are going to decompose propagators which live on the closed-time
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4.1 Nonequilibrium description of a Bose field with quartic interaction

contour into two functions where each living on a single time contour. These two
functions are the statistical and spectral function defined by

Fab(x, y) = 1
2⟨{Φa(x), Φ†

b(y)}⟩ , (4.26)

ρab(x, y) = i⟨[Φa(x), Φ†
b(y)]⟩ , (4.27)

where {, } and [, ] are anti-commutator and commutator respectively. Using the
identity 2Φa(x)Φ†

b(y) = {Φa(x), Φ†
b(y)} + [Φa(x), Φ†

b(y)], one can verify the following
relation

Gab(x, y) = θC(x0 − y0)⟨Φa(x)Φ†
b(y)⟩ + θC(y0 − x0)⟨Φ†

b(y)Φa(x)⟩

= 1
2

(
θC(x0 − y0)⟨{Φa(x), Φ†

b(y)}⟩ + θC(y0 − x0)⟨{Φ†
b(y), Φa(x)}⟩

)
+ 1

2

(
θC(x0 − y0)⟨[Φa(x), Φ†

b(y)]⟩ + θC(y0 − x0)⟨[Φ†
b(y), Φa(x)]⟩

)
= Fab(x, y) − i

2ρab(x, y)sgnC(x0 − y0) , (4.28)

where θC(x0) is Heaviside function living on the closed-time contour, sgnC(x0) =
θC(x0) − θC(−x0) and θC(x0) + θC(−x0) = 1. We also used the symmetry (anti-
symmetry) of the anti-commutator (commutator) to combine terms. The self-energy
which is a functional of Gab(x, y) is expected to decompose into statistical and spec-
tral components in a similar way

Σab(x, y) = ΣF
ab(x, y) − i

2Σρ
ab(x, y)sgnC(x0 − y0) . (4.29)

The aim is to replace propagators and self-energy in Eqs. (4.19) and (4.24) into
statistical and spectral components. The decomposition allows us to evaluate the
term that involves closed-time integration into a single time integration, for example,

−i
∫ C

y
Σab(x, y)Gbc(y, z)

= −i
∫ C

y

(
ΣF

ab(x, y)Fbc(y, z) − i

2Σρ
ab(x, y)Fbc(y, z)sgnC(x0 − y0)

− i

2ΣF
ab(x, y)ρbc(y, z)sgnC(y0 − z0)

− 1
4Σρ

ab(x, y)ρbc(y, z)sgnC(x0 − y0)sgnC(y0 − z0)
)

= −
∫ x0

t0
dyΣρ

ab(x, y)Fbc(y, z) +
∫ z0

t0
dyΣF

ab(x, y)ρbc(y, z)

+ i

2

∫ x0

z0
dyΣρ

ab(x, y)ρbc(y, z)sgnC(x0 − z0) , (4.30)

where the short-hand notation
∫ z0

t0
dy stands for

∫ z0
t0

dy0ddy. The first term has no
signum function and vanishes identically under the closed-time integration. The
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Figure 4.2: Diagram represents the Schwinger-Keldysh closed-time contour. The contour
runs from the initial time t0, to the time t′ and goes backward to t0 again.

other terms have non-zero contribution in a certain window depending on the type
of signum function. For example, the second term came from the following evaluation,∫ C

y
Σρ

ab(x, y)Fbc(y, z)sgnC(x0 − y0)

=
( ∫ x0

t0
dy +

∫ t′

x0
dy +

∫ t0

t′
dy
)
Σρ

ab(x, y)Fbc(y, z)sgnC(x0 − y0)

=
( ∫ x0

t0
dy(1) +

∫ t′

x0
dy(−1) +

∫ x0

t′
dy(−1) +

∫ t0

x0
dy(−1)

)
Σρ

ab(x, y)Fbc(y, z)

=
( ∫ x0

t0
dy(1) +

∫ t0

x0
dy(−1)

)
Σρ

ab(x, y)Fbc(y, z) = 2
∫ x0

t0
dyΣρ

ab(x, y)Fbc(y, z)) .

(4.31)

Here, the time contour starts at t0 and the largest time before the closed-time contour
turns back is t′, see Fig. 4.2. We also assumed that the point x0 lies in forward time
branch, but the result is the same for x0 living on the backward time branch. Using
the same procedure, the last two terms in Eq. (4.30) can be verified∫ C

y
ΣF

ab(x, y)ρbc(y, z)sgnC(y0 − z0) = −2
∫ z0

t0
dyΣF

ab(x, y)ρbc(y, z) , (4.32)∫ C

y
Σρ

ab(x, y)ρbc(y, z)sgnC(x0 − y0)sgnC(y0 − z0)

= 2
∫ x0

z0
dyΣρ

ab(x, y)ρbc(y, z)sgnC(x0 − z0) . (4.33)

The decomposition of Eq. (4.24) can be separated into two equations arising from
its real and imaginary parts

[iσ3
ab∂x0 − Mab(x)]Fbc(x, z) =

∫ x0

t0
dyΣρ

ab(x, y)Fbc(y, z) −
∫ z0

t0
dyΣF

ab(x, y)ρbc(y, z) ,

(4.34)

[iσ3
ab∂x0 − Mab(x)]ρbc(x, z) =

∫ x0

z0
dyΣρ

ab(x, y)ρbc(y, z) , (4.35)

58



4.1 Nonequilibrium description of a Bose field with quartic interaction

where the effective mass now reads

Mab(x) = δab

(
H1B(x) + g

2[φd(x)φ∗
d(x) + ~Fdd(x, x)]

)
+ g

(
φa(x)φ∗

b(x) + ~Fab(x, x)
)

.

(4.36)

We had neglected all terms that have sgnC(x0 − x0) since the signum function is an
anti-symmetric function and the following result is also needed,

−iσ3
abρbc(x, z)∂x0sgnC(x0 − z0) = 2δC(x0 − z0)⟨[σ3

abΦb(x), Φ†
c(z)]⟩

= 2δC(x0 − z0)⟨[σ3
a1Φ1(x0, x), Φ†

c(x0, z)] + [σ3
a2Φ2(x0, x), Φ†

c(x0, z)]⟩
= 2δC(x0 − z0)δacδ

d
C(x − z) = 2δacδ

d+1
C (x − z) . (4.37)

This term will cancel out with the LHS of Eq. (4.24). For the further usage, instead
of Eq. (4.20), we may start with the relation

iG−1
ab (x, y) = δ2S[φ, φ∗]

δφb(y)δφ∗
a(x) + 2

~
δΓ2[φ, φ∗, G]
δGba(y, x) , (4.38)

and its convolution,

i
∫ C

x
G−1

ab (x, y)Gca(z, x) =
∫ C

x

(
δ2S[φ, φ∗]

δφb(y)δφ∗
a(x) + 2

~
δΓ2[φ, φ∗, G]
δGba(y, x)

)
Gca(z, x) , (4.39)

in order to obtain of Gca(z, x),

iδacδ
d+1
C (x − z) = [−iσ3

ba∂x0 − MG
ba(x)]Gcb(z, x) − i

∫ C

y
Σba(y, x)Gcb(z, y) . (4.40)

It should be noted that the differential operator now acts on the second arguments
of the propagator and that equation gives us another set of equations of F and ρ,

[−iσ3
ba∂x0 − Mba(x)]Fcb(z, x) = −

∫ x0

t0
dyΣρ

ba(y, x)Fcb(z, y) +
∫ z0

t0
dyΣF

ba(y, x)ρcb(z, y) ,

(4.41)

[−iσ3
ba∂x0 − Mba(x)]ρcb(z, x) =

∫ z0

x0
dyΣρ

ba(y, x)ρcb(z, y) , (4.42)

which are the conjugate equations of Eqs. (4.34) and (4.35).

4.1.3 Stationarity condition
From Eqs. (4.34) and (4.35), we next derive the expressions in momentum space for
our later derivation of the kinetic equation. We firstly send t0 into the infinite past,
t0 → −∞, based on an assumption that we are interested in late-time dynamics of
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the system, not the early time where instabilities are dominant processes [48, 102].
Eqs. (4.34) and (4.35) can be rewritten with the help of the Heaviside function

[iσ3
ac∂x0−Mac(x)]Fcb(x, y)

=
∫

z
θ(x0 − z0)Σρ

ac(x, z)Fcb(z, y) −
∫

z
θ(y0 − z0)ΣF

ac(x, z)ρcb(z, y)

=
∫

z
ΣR

ac(x, z)Fcb(z, y) +
∫

z
ΣF

ac(x, z)GA
cb(z, y) , (4.43)

[iσ3
ac∂x0−Mac(x)]ρcb(x, y)

=
∫

z
θ(x0 − z0)Σρ

ac(x, z)ρcb(z, y) −
∫

z
θ(y0 − z0)Σρ

ac(x, z)ρcb(z, y)

=
∫

z
ΣR

ac(x, z)ρcb(z, y) +
∫

z
Σρ

ac(x, z)GA
cb(z, y) , (4.44)

where we have defined

GR
ab(x, y) = θ(x0 − y0)ρab(x, y) , (4.45)

GA
ab(x, y) = −θ(y0 − x0)ρab(x, y) , (4.46)

and the same applies for Σρ to obtain ΣR and ΣA. Similar results can be retrieved
from Eqs. (4.41) and (4.42),

[−iσ3
ca∂y0 − Mca(y)]Fbc(x, y) =

∫
z

ΣA
ca(z, y)Fbc(x, z) +

∫
z

ΣF
ca(z, y)GR

bc(x, z) , (4.47)

[−iσ3
ca∂y0 − Mca(y)]ρbc(x, y) =

∫
z

ΣA
ca(z, y)ρbc(x, z) +

∫
z

Σρ
ca(z, y)GR

bc(x, z) . (4.48)

In the homogeneous situation, the dynamics of Fab(x, y) and ρab(x, y) do not depend
directly on local points (x, y) but rather on the distance between x and y, therefore,
it is more appropriate to use Wigner coordinates to change the local coordinate into
center and relative coordinates u and s where

u = 1
2(x + y) , s = x − y . (4.49)

Using the simple chain-rule, one can verify that ∂x = 1
2∂u + ∂s , ∂y = 1

2∂u − ∂s.
Although we claimed the homogeneous nature of Fab(x, y) and ρab(x, y) which means
only relative coordinate s are relevant, we still wish to keep the center-time coordinate
u0 and say this is the time variable for the observable dynamics. Therefore, we’re
looking for the dynamics of Fab(x, y) and ρab(x, y) with respect to this center time
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u0. Taking Eqs. (4.43) and (4.47) and rewriting them in Wigner coordinates gives
[
iσ3

ac(
1
2∂u0 + ∂s0)−Mac(u + s

2)
]
Fcb(u, s)

=
∫

s′
ΣR

ac(u + s′

2 , s − s′)Fcb(u + s′ − s

2 , s′)

+
∫

s′
ΣF

ac(u + s′

2 , s − s′)GA
cb(u + s′ − s

2 , s′) , (4.50)[
− iσ3

ca(1
2∂u0 − ∂s0)−Mca(u − s

2)
]
Fbc(u, s)

=
∫

s′
ΣA

ca(u + s′ − s

2 , s′)Fbc(u + s′

2 , s − s′)

+
∫

s′
ΣF

ca(u + s′ − s

2 , s′)GR
bc(u + s′

2 , s − s′)

=
∫

s′
ΣA

ca(u − s′

2 , s − s′)Fbc(u − s′ − s

2 , s′)

+
∫

s′
ΣF

ca(u − s′

2 , s − s′)GR
bc(u − s′ − s

2 , s′) , (4.51)

where we have defined s′ = z − y and as a consequence x − z = s − s′, (x + z)/2 =
u + s′/2 and (z + y)/2 = u + (s′ − s)/2. The first and second arguments of all
functions are now their center and relative coordinates respectively. Subtracting
Eq. (4.50) with Eq. (4.51) yields

i

2∂u0 [σ3
acFcb(u, s)+σ3

caFbc(u, s)] − [Mac(u + s

2)Fcb(u, s) − Mca(u − s

2)Fbc(u, s)]

=
∫

s′

[
ΣR

ac(u + s′

2 , s − s′)Fcb(u + s′ − s

2 , s′)

− ΣA
ca(u − s′

2 , s − s′)Fbc(u − s′ − s

2 , s′)
]

+
∫

s′

[
ΣF

ac(u + s′

2 , s − s′)GA
cb(u + s′ − s

2 , s′)

− ΣF
ca(u − s′

2 , s − s′)GR
bc(u − s′ − s

2 , s′)
]

. (4.52)

We then would like to keep only leading-order terms in a gradient expansion in the
center coordinate, for example, we approximate Mab(u ± s/2) ≈ Mab(u). All spatial
components of the center coordinate will also be neglected due to the homogeneity
assumption. Then, Eq. (4.52) becomes

i

2∂u0 [σ3
acFcb(u0, s) + σ3

caFbc(u0, s)] − [Mac(u0)Fcb(u0, s) − Mca(u0)Fbc(u, s)]

=
∫

s′

[
ΣR

ac(u0, s − s′)Fcb(u0, s′) − ΣA
ca(u0, s − s′)Fbc(u0, s′)

]
+
∫

s′

[
ΣF

ac(u0, s − s′)GA
cb(u0, s′) − ΣF

ca(u0, s − s′)GR
bc(u0, s′)

]
. (4.53)
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Lastly, we trace over the whole equation and combine the terms in the each square
brackets,

i∂u0σ3
acFca(u0, s) =

∫
s′

[
Σρ

ac(u0, s − s′)Fca(u0, s′) − ΣF
ac(u0, s − s′)ρca(u0, s′)

]
,

(4.54)
i∂tσ

3
acFca(t, p0, p) = Σρ

ac(t, p0, p)Fca(t, p0, p) − ΣF
ac(t, p0, p)ρca(t, p0, p) , (4.55)

where we have performed a Fourier transform (s0, s) → (p0, p) in the last equation
and relabelled u0 with t. Since the statistical function F contains the information
of number occupation, the fixed-point of the occupation number is determined by a
vanishing the RHS in Eq. (4.55),

Σρ
ac(t, p0, p)Fca(t, p0, p) − ΣF

ac(t, p0, p)ρca(t, p0, p) = 0 . (4.56)

This is the stationarity condition for the number occupation and one of the solutions
that satisfies this condition is the thermal solution.

In thermal equilibrium the statistical and spectral functions are related by a
fluctuation-dissipation relation

FT (p0, p) = −i
(
nBE(p0) + 1

2
)
ρT (p0, p) , (4.57)

where nBE(p0) is the Bose-Einstein distribution function, nBE(p0) = [exp(βp0)−1]−1.
In this limit, the statisical and spectral components of the self-energy also share the
same relation,

ΣF
T (p0, p) = −i

(
nBE(p0) + 1

2
)
Σρ

T (p0, p) . (4.58)

Thus, in thermal equilibrium, the stationary condition (4.56) is fulfilled [48]. We will
show later on that Eq. (4.55) can be turned into the kinetic equation, such that other
solutions satisfying the stationary condition will be power-law functions associated
with turbulent cascades.

The same procedure could be applied to the equation for ρab(x, y). In Wigner
coordinates, Eqs. (4.44) and (4.48) read[

iσ3
ac(

1
2∂u0 + ∂s0)−Mac(u + s

2)
]
ρcb(u, s)

=
∫

s′
ΣR

ac(u + s′

2 , s − s′)ρcb(u + s′ − s

2 , s′)

+
∫

s′
Σρ

ac(u + s′

2 , s − s′)GA
cb(u + s′ − s

2 , s′) , (4.59)[
− iσ3

ca(1
2∂u0 − ∂s0) − Mca(u − s

2)
]
ρbc(u, s)

=
∫

s′
ΣA

ca(u − s′

2 , s − s′)ρbc(u − s′ − s

2 , s′)

+
∫

s′
Σρ

ca(u − s′

2 , s − s′)GR
bc(u − s′ − s

2 , s′) . (4.60)
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4.2 The s-chanmel resummation of the self-energy and Boltzmann’s scattering integral

Following the same approximations and exactly the same steps as we have done for
Fab(p), we obtain the equation of motion of ρab(p) in the center time coordinate,

i∂u0σ3
acρca(u0, s) =

∫
s′

[
Σρ

ac(u0, s − s′)ρca(u0, s′) − Σρ
ac(u0, s − s′)ρca(u0, s′)

]
= 0 ,

(4.61)
i∂tσ

3
acρca(t, p0, p) = 0 , (4.62)

where we again relabelled u0 by t. Eq. (4.62) reveals that ρab(p) is a constant during
the time evolution. This is a very essential point for the rest of the discussion because
ρab(p) can be approximated with some ansatz and will then remain the same for a
certain window of time as long as Eqs. (4.55) and (4.62) are valid.

4.2 The s-chanmel resummation of the self-energy
and Boltzmann’s scattering integral

So far, Σab(x, y) was treated as a nonlocal contribution of the self-energy and the
derivations were made without explicit functional forms. Therefore, as long as the
self-energy contains the nonlocal contribution and if the homogeneity assumption can
be made, the stationarity condition (4.56) should be valid. However, to render sta-
tionarity condition into Boltzmann’s scattering integral, one needs a specific form of
the self-energy. In the following, we are going to analytically sum the Feynman dia-
grams up to NLO and derive an integral equation that closely resembles Boltzmann’s
integral.

We recall the nonlocal contribution of the self energy,

Σab(x, y) = 2i

~
δΓNLO−4

δGba(y, x)
= −~gGab(x, y)I(y, x) , (4.63)

where I(y, x) is defined by

I(y, x) = ~g

2
[
Gcd(y, x)Gdc(x, y) − i

∫ C

w
I(y, w)Gcd(w, x)Gdc(x, w)

]
. (4.64)

We have neglected the contribution from ΓNLO−3 by claiming that the integral gen-
erated from ΓNLO−4 dominates when we compare their scaling behaviour [49]. Each
term in δΓNLO−4/δGba(x, y) can be retrieved by iteration of I(x, y). We then decom-
pose Σab(x, y) to find its ΣF

ab(x, y) and Σρ
ab(x, y) components

ΣF
ab(x, y) = −~g

[
Fab(x, y)IF (y, x) + 1

4ρab(x, y)Iρ(y, x)
]

, (4.65)

Σρ
ab(x, y) = −~g

[
ρab(x, y)IF (y, x) − Fab(x, y)Iρ(x, y)

]
, (4.66)

63



Chapter 4 Kinetic equation from nonequilibrium quantum field theory

where we have decomposed I(y, x) in the same way,

I(y, x) = IF (y, x) − i

2Iρ(y, x)sgnC(y0 − x0) . (4.67)

The statistical and spectral components of I(x, y) can be obtained by decomposing
both Gab(x, y) and I(x, y) itself in Eq. (4.64),

I(y, x) = ~g
{

ΠF (y, x) − i

2Πρ(y, x)sgnC(y0 − x0)

− i
∫ C

w

[
IF (y, w)ΠF (w, x) − 1

4Iρ(y, w)Πρ(w, x)sgnC(y0 − w0)sgnC(w0 − x0)

− i

2Iρ(y, w)ΠF (w, x)sgnC(y0 − w0)

− i

2IF (y, w)Πρ(w, x)sgnC(w0 − x0)
]}

, (4.68)

where we have defined

ΠF (y, x) = 1
2
[
Fcd(y, x)Fdc(x, y) + 1

4ρcd(y, x)ρdc(x, y)
]

, (4.69)

Πρ(y, x) = 1
2
[
ρcd(y, x)Fdc(x, y) − Fcd(y, x)ρdc(x, y)

]
. (4.70)

The closed-time integration is treated in the same way as we have done with Eq. (4.30).
Then, we can read off IF (y, x) and Iρ(y, x) from its real and imaginary parts,

IF (y, x) = ~g
[
ΠF (y, x) +

∫ x0

t0
dwIF (y, w)Πρ(w, x) −

∫ y0

t0
dwIρ(y, w)ΠF (w, x)

]
,

(4.71)

Iρ(y, x) = ~g
[
Πρ(y, x) −

∫ y0

x0
dwIρ(y, w)Πρ(w, x)

]
= ~g

[
Πρ(y, x) +

∫ x0

t0
dwIρ(y, w)Πρ(w, x) −

∫ y0

t0
dwIρ(y, w)Πρ(w, x)

]
.

(4.72)

These equations are necessary for writing down ΣF and Σρ as an infinite sum in terms
of F and ρ in configuration space. However, we would like to have all expressions
in momentum space so they can be substituted into Eq. (4.55). Before doing so, we
introduce the multiplication (·) and convolution (∗) operators

(f · g)(x) = f(x)g(−x) , (4.73)

(f ∗ g)(x) =
∫

y
f(x − y)g(−y) , (4.74)
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4.2 The s-chanmel resummation of the self-energy and Boltzmann’s scattering integral

and it can be seen that these two operators are related through a Fourier transform,

(f · g)(x) =
∫ dd+1p

(2π)d+1 e−ipx
[ ∫ dd+1q

(2π)d+1 f(p − q)g(−q)
]

=
∫ dd+1p

(2π)d+1 e−ipx(f ∗ g)(p) , (4.75)

(f ∗ g)(x) =
∫ dd+1p

(2π)d+1 e−ipxf(p)g(−p)

=
∫ dd+1p

(2π)d+1 e−ipx(f · g)(p) , (4.76)

where
∫

q needs to include a factor 1/(2π)d+1 if q is a variable in momentum space.
The homogeneity is also needed to be taken into account such that we can choose
Wigner coordinates and write Eqs. (4.71) and (4.72) in terms of · and ∗ operators.
Here, we will drop the center coordinate arguments because the Fourier transform
will be done only on relative coordinate variables. The center time variable remains
untouched by the calculation we are going to do. We again define s = x − y and
s′ = w − y which implies x − w = s − s′. Eqs. (4.71) and (4.72) become

IF (−s) = ~g
[
ΠF (−s) −

∫
s′

Iρ(−s′)ΠF (s′ − s)θ(−s′0)

+
∫

s′
IF (−s′)Πρ(s′ − s)θ(s0 − s′0)

]
= ~g

{
ΠF (−s) − [ΠF ∗ (θ− · Iρ)](−s) + [(θ · Πρ) ∗ IF ](s)

}
, (4.77)

Iρ(−s) = ~g
[
Πρ(−s) −

∫
s′

Iρ(−s′)Πρ(s′ − s)θ(−s′0)

+
∫

s′
Iρ(−s′)Πρ(s′ − s)θ(s0 − s′0)

]
= ~g

{
Πρ(−s) − [Πρ ∗ (θ− · Iρ)](−s) + [(θ · Πρ) ∗ Iρ](s)

}
, (4.78)

where the Fourier transform of ΠF (u, s) and Πρ(u, s) in relative coordinates s are
derived from Eqs. (4.69) and (4.70) (the center coordinates also drop out),

ΠF (−p) = 1
2
[
(Fcd ∗ Fdc)(−p) + 1

4(ρcd ∗ ρdc)(−p)
]

, (4.79)

Πρ(−p) = 1
2
[
(ρcd ∗ Fdc)(−p) − (Fcd ∗ ρdc)(−p)

]
. (4.80)

We can read off the Fourier transform of Eq. (4.78) directly from the relationships
between · and ∗ operators,

IF (−p) = ~g
{

ΠF (−p) − [ΠF · (θ− ∗ Iρ)](−p) + [(θ ∗ Πρ) · IF ](p)
}

= ~g
{

[1 − (θ− ∗ Iρ)(p)]ΠF (−p) + (θ ∗ Πρ)(p)IF (−p)
}

, (4.81)

Iρ(−p) = ~g
{

[1 − (θ− ∗ Iρ)(p)]Πρ(−p) + (θ ∗ Πρ)(p)Iρ(−p)
}

, (4.82)
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where the initial time t0 is sent to the infinite past, t0 → −∞. The terms can be
rearranged to obtain

gIF (−p) = ~g2
[ 1 − (θ− ∗ Iρ)(p)
1 − g~(θ ∗ Πρ)(p)

]
ΠF (−p)

= ~ΠF (−p)g2
eff(p) = ~(ΠF · g2

eff)(−p) , (4.83)

gIρ(−p) = ~g2
[ 1 − (θ− ∗ Iρ)(p)
1 − g~(θ ∗ Πρ)(p)

]
Πρ(−p)

= ~Πρ(−p)g2
eff(p) = ~(Πρ · g2

eff)(−p) , (4.84)

where we have defined the effective coupling g2
eff(p) by

g2
eff(p) = g2

[ 1 − (θ− ∗ Iρ)(p)
1 − g~(θ ∗ Πρ)(p)

]
. (4.85)

To write the effective coupling in a more compact form, one needs to verify the
identity [

1 − g~(θ ∗ Πρ)(−p)
][

1 − (θ− ∗ Iρ)(p)
]

= 1, (4.86)

observing that (θ ∗ Πρ)(−p) = (θ ∗ Πρ)∗(p). Distributing the terms and then trans-
forming the equation back into the configuration space yields

0 = −~g(θ · Πρ)(−x) + g~[(θ · Πρ) ∗ (θ− · Iρ)](−x) − (θ− · Iρ)(x)

= −~gθ(−x0)Πρ(x) + ~g
∫

y
θ(−x0 + y0)Πρ(−y + x)θ−(y0)Iρ(−y)

+ ~g
[

− θ−(x0)Πρ(−x) −
∫

y
θ(−x0)Iρ(−y)θ(x0 − y0)Πρ(y − x)

+
∫

y
θ(−x0)θ(−y0)Iρ(−y)Πρ(y − x)

]
= ~g

[
−
∫ x0

−∞
dy +

∫ 0

−∞
dy −

∫ 0

x0
dy
]
Iρ(−y)Πρ(y − x)θ(−x0) = 0 , (4.87)

where Eq. (4.82) is needed to expand the third term in the first equality and the
symmetry relation of Πρ(x) are necessary for changing x → −x. With the identity
having been proved, we can claim

1 − (θ− ∗ Iρ)(p) = 1
1 − g~(θ ∗ Πρ)(−p) , (4.88)

and redefine g2
eff(p),

g2
eff(p) = g2

|1 + g~ΠR(p)|2 , (4.89)

where the retarded self-energy ΠR is ΠR(s) = −θ(s)Πρ(−s) = θ(s)Πρ(s) in config-
uration space which becomes ΠR(p) = −(θ ∗ Πρ)(p) in momentum space [48]. By
introducing the effective coupling, IF and Iρ can be resummed to a single term in-
stead of infinite terms and it becomes much easier to manage despite the fact that
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4.2 The s-chanmel resummation of the self-energy and Boltzmann’s scattering integral

evaluation of the effective coupling itself is still complicated. The last approxima-
tion we need is a classical approximation saying that the statistical component of
the propagator is much larger than its spectral component. This approximation is
expected to be satisfied with sufficiently large occupation numbers and the dynamics
are dominated by the Feynman diagrams with classical vertices [103]. Under such a
condition, all spectral components can be neglected if there is a statistical component
with an equal power. To be precise, we make following approximations

ΠF (x, y) ≈ Fcd(x, y)Fdc(y, x) , (4.90)
ΣF

ab(x, y) ≈ −~gFab(x, y)IF (y, x) . (4.91)

Then, ΣF and Σρ in momentum space now read

ΣF
ab(p) = −~g(Fab ∗ IF )(p) , (4.92)

Σρ
ab(p) = −~g(ρab ∗ IF − Fab ∗ Iρ)(p) . (4.93)

Substituting the results from Eqs. (4.84) and (4.85) into Eqs. (4.93) and (4.94), then
expanding the · and ∗ operators into the product and convolution will give integrals
over momenta. For example, Eq. (4.93) yields

ΣF
ab(p) = −~g

∫
k

Fab(p − k)IF (−k)

= −~2

2

∫
k

Fab(p − k)g2
eff(k)(Fcd ∗ Fdc)(−k)

= −~2

2

∫
k

Fab(p − k)g2
eff(k)(Fcd ∗ Fdc)(k)

= −~2

2

∫
k

∫
q
Fab(p − k)g2

eff(k)Fcd(k − r)Fdc(−r)

= −~2

2

∫
k

∫
q
g2

eff(p + k)Fab(−k)Fcd(p + k − r)Fdc(−r)

= −(2π)d+1~2

2

∫
kqr

δd+1(p + k − q − r)g2
eff(p + k)Fab(−k)Fcd(q)Fdc(−r) ,

(4.94)

where we have used the symmetry ΠF (−p) = ΠF (p) in the third equality, changed
the variable k to p + k in the fifth equality and introduced an integral over r and a
delta function in the last equality. The results can be obtained for Σρ

ab(p),

Σρ
ab(p) = −(2π)d+1~2

2

∫
kqr

δd+1(p + k − q − r)g2
eff(p + k)

×
[
ρab(−k)Fcd(q)Fdc(−r) + Fab(−k)ρcd(q)Fdc(−r)

− Fab(−k)Fcd(q)ρdc(−r)
]

, (4.95)
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where the symmetry Πρ(−p) = Πρ(p) has been used too. Putting Eqs. (4.95) and
(4.96) back into the RHS of Eq. (4.55) to obtain the kinetic equation for Fab(p)

i∂tσ
3
acFca(t, p0, p) = −(2π)d+1~2

2

∫
kqr

δd+1(p + k − q − r)g2
eff(p + k)

× {Fba(p)ρab(−k)Fcd(q)Fdc(−r)
+ Fba(p)Fab(−k)ρcd(q)Fdc(−r)
− Fba(p)Fab(−k)Fcd(q)ρdc(−r)
− ρba(p)Fab(−k)Fcd(q)Fdc(−r)} . (4.96)

The RHS of Eq. (4.97) is a Boltzmann scattering integral which represents the 4-wave
resonant interaction with an effective coupling g2

eff(p + k). Although the structure of
the RHS of Eq. (4.97) is very similar to the integral in the kinetic equation Eq. (3.4),
we are not yet there. It needs further manipulation which demands a quasi-particle
assumption.

4.3 Kinetic equation of quasi-particle occupation
number

We have seen that Fab(p) and ρab(p) are related by a fluctuation-dissipation relation
in thermal equilibrium and that Eq. (4.62) shows that there is no dynamics of ρab(p).
If we assume that Eqs. (4.55) and (4.62) are valid until the point the system reaches
thermal equilibrium, it is not too wild to also assume that the spectral function
ρab(p) has become thermal at the very beginning where the system is governed by
Eqs. (4.55) and (4.62). This has been seen in [104, 105] that ρab(p) exhibits a well-
defined peak at a single frequency mode and does not change much during the time
evolution. In comparison, the occupation number changes much more drastically on
the same time scale.

There are two things that are useful to us. First, we can assume ρab(p) having
equilibrium shape while we analyse Eq. (4.97). Second, since Fab(p) and ρab(p) follow
the fluctuation-dissipation relation at the end, we might be able to assume further
that during the time evolution governed by Eqs. (4.55) and (4.62), the following
relation needs to hold,

Fab(t, p0, p) = −if(t, p0)ρab(p0, p) , (4.97)

where f(t, p0) is a quasi-occupation number. The symmetry of Fab(p) requires

f(t, −p0) = −f(t, p0) . (4.98)

We do not require f(t, p0) being a Bose-Einstein distribution unless in thermal equi-
librium. Thus, Eq. (4.98) is generally not an equilibrium fluctuation-dissipation re-
lation. The dynamics of Fab(p) is now encoded in f(p; t) which will play the role
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of nQ(p) in the kinetic equation. In [106], it has been shown that the quantity
Fab(p)/f(t, p0) approached ρab(p) at a much earlier time scale, compared to the time
scale where f(t, p0) reached equilibrium. After this early-time setting of the spectral
peak the mode population are clearly seen to further evolve in time.

4.3.1 Particle and quasi-particle correlation functions
The relation (4.98) turns Eq. (4.97) into a functional of ρab(p) and f(t; p0) but we
need to reduce it further until we have a kinetic equation which is only a functional
of f(t; p0). The full knowledge of ρab(p) is required and the possible choice here is
through the commutators of field operators. Note that this is accessible because we
are allowed to assume the equilibrium shape of ρab(p) which can be generated from
equilibrium field operators. Despite all that, there are two cases within our reach,
a free theory and a weakly-interacting theory such that there exists a free-theory
representation through a Bogoliubov transformation. This sounds a bit extreme but
we recall that the well-defined peak of the spectral function has been seen at a very
early time-scale, so, the free spectral function with delta-like peak should be, more
of less, justified.

The matrix elements of the spectral function in the free-field limit read

ρ11(p0, p) = ρ∗
22(−p0, −p) = −ρ22(−p0, −p) = 2πi δ(p0 − εp) ,

ρ12(p0, p) = ρ∗
21(p0, p) = 0 , (4.99)

with free dispersion εp = p2/2m while the Bogoliubov spectral function is given by

ρB,11(p) = 2πi
[
u2

pδ(p0 − ωp) − v2
pδ(p0 + ωp)

]
,

ρB,22(p) = 2πi
[
v2

pδ(p0 − ωp) − u2
pδ(p0 + ωp)

]
,

ρB,12(p) = 2πi upvp

[
δ(p0 − ωp) − δ(p0 + ωp)

]
= ρ∗

B,21(−p) , (4.100)

with Bogoliubov dispersion (2.7) and mode functions (2.8). For momenta much
smaller than the healing-length scale, |p| ≪ pξ = [2mgn0]1/2, the quasiparticles
are sound waves, i.e., ωp ≃ cs|p|, see Eqs. (2.13), (2.14), with speed of sound cs =√

gn0/m = pξ/(
√

2m). In this sound-wave limit, the spectral function simplifies to

ρB(p) = iπgn0

ωp

(1 − σ1)
[
δ(p0 − ωp) − δ(p0 + ωp)

]
, (4.101)

such that, for p0, r0 ≥ 0,

ρB,ab(sp0, p)ρB,ba(s′r0, r)

= −(2πgn0)2

ωpωr

ss′δ(p0 − ωp)δ(r0 − ωr) . (4.102)
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The details of the evaluation of the matrix elements in Eqs. (4.100) and (4.101) can
be found in App. C. We remark that although the form of ρ in Eq. (4.102) leads us to
deduce that ρ in general takes the form of ρ ∼ p−zδ(p0 − pz), this is not true since it
would break the canonical scaling ρ ∼ p−2 following from the commutation relation
in Eq. (4.27). In fact, the general form of ρ should be

ρ(p) ∼ iA

p2−z
(σ3 + Cσ1)

[
δ(p0 − ωp) − δ(p0 + ωp)

]
, (4.103)

with some constants A, C, and where we have set η = 0. This is consistent with both
the free (z = 2), Eq. (4.100), and the sound-wave dispersion (z = 1), Eq. (4.102). Us-
ing an explicit form of the spectral function, it is very useful to observe the following
two quantities for both types of spectral function,5∫ ∞

0

dp0

2π
Tr [F (t, p0, p)] , (4.104)∫ ∞

0

dp0

2π
Tr
[
σ3F (t, p0, p)

]
. (4.105)

Assuming the relation (4.98), free spectral function gives∫ ∞

0

dp0

2π
Tr [F (t, p0, p)] =

∫ ∞

0

dp0

2π
f(t, p0)(F11 + F22)

=
∫ ∞

0
dp0 f(t, p0)

(
δ(p0 − εp) − δ(p0 + εp)

)
= f(t, εp) , (4.106)∫ ∞

0

dp0

2π
Tr
[
σ3F (t, p0, p)

]
=
∫ ∞

0

dp0

2π
f(t, p0)(F11 − F22)

=
∫ ∞

0
dp0 f(t, p0)

(
δ(p0 − εp) + δ(p0 + εp)

)
= f(t, εp) . (4.107)

The same applies to the Bogoliubov case,∫ ∞

0

dp0

2π
Tr [FB(t, p0, p)] =

∫ ∞

0

dp0

2π
(FB,11 + FB,22)

=
∫ ∞

0
dp0 f(t, p0)

(
(u2

p + v2
p)δ(p0 − ωp) − (u2

p + v2
p)δ(p0 + ωp)

)
= f(t, ωp)(u2

p + v2
p) = f(t, ωp)mcs

|p|
, (4.108)∫ ∞

0

dp0

2π
Tr
[
σ3FB(t, p0, p)

]
=
∫ ∞

0

dp0

2π
(FB,11 − FB,22)

=
∫ ∞

0
dp0 f(t, p0)

(
(u2

p − v2
p)δ(p0 − ωp) + (u2

p − v2
p)δ(p0 + ωp)

)
= f(t, ωp)(u2

p − v2
p) = f(t, ωp) . (4.109)

5If the integration is done on both positive and negative frequency, the kinetic equation that we
are going to derive will vanish identically.
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The results are different depending on the particular spectral function we used.
This coincides with the relation between particles and quasiparticles mentioned in
Sect. 2.1. This observation discussed that f(t, p0) is not related to a particle occu-
pation but rather shows a quasiparticle occupation and we can define particle and
quasiparticle mode occupation numbers, n(p, t) and nQ(p, t) respectively, from the
statistical correlator F (t, p0, p),

n(p, t) =
∫ ∞

0

dp0

2π
TrF (t, p0, p) − 1/2 , (4.110)

nQ(p, t) =
∫ ∞

0

dp0

2π
Tr[σ3F (t, p0, p)] − 1/2 , (4.111)

where we used f(t, p) = nQ(p, t) + 1/2. Due to Tr[σ3F ] relates to nQ, the kinetic
equation that is derived from Eq. (4.97) will also describes the dynamics of quasi-
particle occupation nQ(p, t).

4.3.2 Nonperturbative kinetic equation
Our main interest is the scaling solution in the infrared regime where quasiparticles
are highly populated i.e. nQ(p) ≫ 1. In this regime, the quantum ground state 1/2
in Eq. (4.112) can be neglected. Therefore, the kinetic equation for the quasiparticle
number takes the form

∂tnQ(t, p) =
∫ ∞

0

dp0

2π
∂tσ

3
abFba(t, p0, p) = I(t, p) , (4.112)

with the scattering integral

I(t, p) = −i
∫ ∞

0

dω

2π
Tr
[
Σρ(t, p0, p)F (t, p0, p) − ΣF (t, p0, p)ρ(p0, p)

]
. (4.113)

We have dropped the time argument of spectral function due to the assumption of
its time independence but if that is not the case, the time argument can be restored
without changing anything else as long as Eq. (4.112) holds. In the context of the
s-channel resummation, the scattering integral Eq. (4.97) can be expressed in terms
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of Boltzmann’s integral,

I(p) = (2π)d+1~2

2

∫ ∞

0

dp0

2π

∫
kqr

δd+1(p + k − q − r)g2
eff(p + k)

× ρba(p0, p)ρab(−k0, −k)ρcd(q0, q)ρdc(−r0, −r)
× {−f(p0)f(q0)f(−r0) − f(p0)f(−k0)f(−r0)

+ f(p0)f(−k0)f(q0) + f(−k0)f(q0)f(−r0)}

= (2π)d~2

2

∫ ∞

0
dp0

∫
kqr

δd+1(p − k − q + r)g2
eff(p − k)

× ρba(p0, p)ρab(k0, k)ρcd(r0, r)ρdc(q0, q)
× {−f(p0)f(q0)f(r0) − f(p0)f(k0)f(r0)

+ f(p0)f(k0)f(q0) + f(k0)f(q0)f(r0)}

= (2π)d~2

2

∫ ∞

0
dp0

∫
kqr

δd+1(p + k − q − r)g2
eff(p − r)

× ρba(p0, p)ρab(k0, k)ρcd(r0, r)ρdc(q0, q)
× {−f(p0)f(k0)f(q0) − f(p0)f(k0)f(r0)

+ f(p0)f(q0)f(r0) + f(k0)f(q0)f(r0)} , (4.114)

where we have replaced all F functions by Eq. (4.112) (without the factor 1/2) and
made all argument positive using the symmetry of f(t, p0) and changing integration
variables. We also dropped the time argument t in f(t, p0). The integrations over
frequencies are rewritten to range over the positive domain only,

I(p) = (2π)d~2

2

∫ ∞

0
dp0 dk dq dr δ(p + k − q − r)

∑
s,s′∈{−1,1}

[
I1sss′ + I1s(−s)s′

]
,

(4.115)

where
∫∞

0 dk = (2π)−4 ∫∞
0 dk0

∫
ddk, and

Isσσ′s′ = δ(sp0 + σk0 − σ′q0 − s′r0) g2
eff(sp0 − s′r0, p − r)

× ρab(sp0, p)ρba(s′r0, r) ρcd(σ′q0, q)ρdc(σk0, k)
×

{
σ′s′

[
sf(p0) + σf(k0)

]
f(q0)f(r0)

− sσf(p0)f(k0)
[
σ′f(q0) + s′f(r0)

]}
. (4.116)

Eq. (4.116) gives the perturbative kinetic equation if the many-body coupling g2
eff

reduces to the bare coupling g2. This limit coincides with the case that one keeps
only second Feynman diagram presented in the upper row in Fig. 4.1. However, with
loop-resummation, the many-body coupling is in general different from the bare one
and thus, Eq. (4.116) includes contributions beyond the perturbative calculation.
The many-body coupling makes it harder to obtain the time-dependent solution but
nevertheless, we can analyse the possible scaling solutions and make an implication
about time development in case that a particular scaling solution exists.
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4.3 Kinetic equation of quasi-particle occupation number

Kinetic scattering integral for free particles

The kinetic equation for free particle can be obtained by inserting the free spectral
function Eq. (4.100) into Eq. (4.116). It can be seen that only I1ss1 contributes to
the integral,

I1ss1 = (2π)4δ(p0 + sk0 − sq0 − r0)s g2
eff(p0 − r0, p − r)

× δ(p0 − εp)δ(k0 − εk)δ(q0 − εq)δ(r0 − εr)
×

{[
f(p0) + sf(k0)

]
f(q0)f(r0)

− f(p0)f(k0)
[
sf(q0) + f(r0)

]}
, (4.117)

where s ∈ {−1, 1}. Integrating over the frequencies p0, k0, q0 and r0 we obtain the
scattering integral

I(p) = (2π)d~2

2

∫ ∞

0
dp0

dk0

2π

dq0

2π

dr0

2π

∫
kqr

δ(p + k − q − r)
∑

s,s′∈{−1,1}
I1ss1

= (2π)d+1~2

2

∫
kqr

δ(p + k − q − r)

×
∑

s∈{−1,1}
s g2

eff(εp − εr, p − r) δ(εp + s[εk − εq] − εr)

×
{[

f(εp) + sf(εk)
]

f(εq)f(εr) − f(εp)f(εk)
[
sf(εq) + f(εr)

]}
= (2π)d+1~2

2

∫
kqr

(
δ(p + k − q − r) + δ(p − k + q − r)

)
× g2

eff(εp − εr, p − r) δ(εp + εk − εq − εr)
×
{[

f(εp) + f(εk)
]

f(εq)f(εr) − f(εp)f(εk)
[
f(εq) + f(εr)

]}
= (2π)d+1~2

∫
kqr

g2
eff(εp − εr, p − r)δ(p + k − q − r)

× δ(εp + εk − εq − εr)
{[

f(εp) + f(εk)
]

f(εq)f(εr)

− f(εp)f(εk)
[
f(εq) + f(εr)

]}
. (4.118)

In the third equality, we simply distributed the terms and exchanged variable k ↔
q in the integral that is generated from s = −1 so it can be combined with the
integral generated from s = 1, except the delta function of spatial momenta. The
dependence of k and q are in terms of the free particle energies εk and εq so the
momenta k and q could be reversed in the fourth equality to combine two delta
functions without disturbing the rest of integral. The Boltzmann equation (3.2) for
n(t, p) = f(t, ε(p)) ≫ 1, with the scattering integral (3.4) has been recovered in the
classical-wave approximation. We emphasize that our 2PI resummation approach
provides us with an expression for the T -matrix elements,

|Tpkqr|2 = (2π)d+1~2g2
eff(εp − εr, p − r) , (4.119)
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Chapter 4 Kinetic equation from nonequilibrium quantum field theory

which depend on the quasi-particle distribution nQ(p, t) themselves. Making a scaling
ansatz for n(p, t), we will explicitly calculate, in Sect. 4.4.1, the dependence of these
matrix elements on the energy and momentum arguments.

Kinetic scattering integral for Bogoliubov sound waves

For the Bogoliubov spectral function, we limit ourselves to the sound-wave regime
where the dispersion is linear, see Eq. (2.13). Inserting the sound-wave approximation
of Bogoliubov spectral function Eq. (4.103) into the integrand (4.117) gives

Isσσ′s′ = (2πgn0)4

ωpωkωqωr

δ(sp0 + σk0 − σ′q0 − s′r0) g2
eff(sp0 − s′r0, p − r)

× δ(p0 − ωp)δ(k0 − ωk)δ(q0 − ωq)δ(r0 − ωr)
×

{[
σf(p0) + sf(k0)

]
f(q0)f(r0)

− f(p0)f(k0)
[
s′f(q0) + σ′f(r0)

]}
. (4.120)

Again, only a subset of integrands contributes to the integral. We can identify the
non-vanishing contributions by first integrating over all frequencies as well as the q
variable over the delta function of spatial momenta,

I(p) = (2π)3~2

2 (2π)−12
∫

dr
∫ ∞

0
d|k|

∫ 1

−1
d cos(θk)

∫ 2π

0
dφk |k|2

×
∑

s,s′∈{−1,1}

[
I1sss′ + I1s(−s)s′

]∣∣∣∣
q=p+k−r

. (4.121)

The integral is written in d = 3 since it is an only particular case that we are going to
work with. Then, we shift r to p−r′ and choose an orientation of k-space such that θk

is an angle between k and r′. By introducing q = |r′+k|, d cos(θk) = (|r′||k|)−1 q dq .
The azimuthal angle φk can also be integrated out because of azimuthal symmetry.
The integral then becomes

I(p) = (2π)−8 ~2

2

∫ ddr′

r′

∫ ∞

0
kdk

∫ |r′+k|

|r′−k|
qdq

∑
s,s′∈{−1,1}

[
Ĩ1sss′ + Ĩ1s(−s)s′

]
, (4.122)

where r′ = |r′|, k = |k| and

Ĩsσσ′s′ = (2πgρ)4

ωpωkωqω|p−r′|
g2

eff(sωp − s′ω|p−r′|, r′)

× δ(sωp + σωk − σ′ωq − s′ω|p−r′|)
×

{[
σfp + sfk

]
fqf|p−r′|)

− fpfk

[
s′fq + σ′f|p−r′|)

]}
. (4.123)

Here, we defined fp ≡ f(ωp). In order to reduce the set of integrands, we analyze the
energy conservation delta function for the case of the Bogoliubov dispersion (2.7):
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4.4 Effective many-body coupling function

δ(sωp + σωk − σ′ωq − s′ω|p−r′|) = const. × δ(|p − r′| − ss′[p + sσ(k − σσ′q)]). Since
|k − q| ≤ r′ and k + q ≥ r′ we find that the argument of the delta distribution can
vanish only if σσ′ = 1 and ss′ = 1 or if σσ′ = −1 and ss′ = −1 and s = −σ. This
leaves us with the following terms:

I(p) = (2π)−8 ~2

2

∫ ddr′

r′

∫ ∞

0
kdk

∫ |r′+k|

|r′−k|
qdq

×
[
Ĩ1111 + Ĩ1(−1)(−1)1 + Ĩ1(−1)1(−1)

]
, (4.124)

where Ĩsσσ′s′ ≡ Ĩsσσ′s′(p, k, q, r′). To identify the T-matrix element, it is more con-
venient and clearer to go back to Eq. (4.116) and to keep only the non-vanishing
contributions according to Eq. (4.125),

I(p) = (2π)d~2

2

∫ ∞

0
dp0

dk0

2π

dq0

2π

dr0

2π

∫
kqr

δ(p + k − q − r)

×
[
I1111 + I1(−1)(−1)1 + I1(−1)1(−1)

]
= (2π)d+1~2

2

∫
kqr

(gρ)4

ωpωkωqωr

δ(ωp + ωk − ωq − ωr)

×
[
2g2

eff(ωp − ωr, p − r) δ(p + k − q − r)

+ g2
eff(ωp − ωk, p − k) δ(p − k − q + r)

]
×
{[

f(ωp) + f(ωk)
]

f(ωq)f(ωr) − f(ωp)f(ωk)
[
f(ωq) + f(ωr)

]}
= (2π)d+1~2

∫
kqr

(gρ)4

ωpωkωqωr

[
g2

eff(ωp − ωr, p − r) + 1
2g2

eff(ωp − ωk, p + k)
]

× δ(p + k − q − r) δ(ωp + ωk − ωq − ωr)
×
{[

f(ωp) + f(ωk)
]

f(ωq)f(ωr) − f(ωp)f(ωk)
[
f(ωq) + f(ωr)

]}
.

(4.125)

The integrand I1111 and I1(−1)(−1)1 could be combined in the similar way we did in
the free-particle case. As for I1(−1)1(−1), an interchange k ↔ r is needed to get the
result in the second equality and we reversed the sign of k and r to make the delta
functions of the spatial momenta identical in the third equality. Eq. (4.126) is again
a Boltzmann integral (3.2) for nQ(t, p) = f(t, ω(p)) ≫ 1 with T-matrix elements

|Tpkqr|2 = (2π)d+1~2 (gρ)4

ωpωkωqωr

[
g2

eff(ωp − ωr, p − r) + 1
2g2

eff(ωp − ωk, p + k)
]

.

(4.126)

4.4 Effective many-body coupling function
The kinetic equation defined by Eqs. (4.119) and (4.126) can be analyzed in the
same way we have done in Eq. (3.6). All we need to know is the scaling behaviour
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Chapter 4 Kinetic equation from nonequilibrium quantum field theory

of their T -matrix elements. In this section, we are going to evaluate the effective
many-body coupling determining these T -matrix elements. Regardless we consider
whether of the free or the Bogoliubov case, the effective many-body coupling reads
(cf. Eq. (4.90))

g2
eff(p) = g2

|1 + g~ΠR(p)|2

= g2

|1 − g~(θ ∗ Πρ)(p)|2 . (4.127)

Recalling Eq. (4.70) and using relations (4.75) and (4.76), we are able to write down
Πρ as a function in momentum space,

Πρ(y, x) → Πρ(−p) = 1
2
(
ρab ∗ Fba − Fab ∗ ρba

)
(−p) , (4.128)

and ΠR in momentum space reads

ΠR(p) = −
∫ ∞

−∞

dq0

2π
θ(q0)Πρ(q0 − p0, −p) . (4.129)

Within the quasiparticle approximation introduced above, Πρ(p) can be written in
terms of the quasi-particle frequency spectrum f(t, p0) and the spectral function ρ(p),
cf. Eqs. (4.80) and (4.98), as

Πρ(−p) = −Πρ(p) = −1
2(ρab ∗ Fba − Fab ∗ ρba)(p)

= −1
2

∫
k

[
ρab(p − k)Fba(−k) − Fab(p − k)ρba(−k)

]
= i

2

∫
k

[
f(−k0) − f(p0 − k0)

]
ρab(−k)ρba(p − k) , (4.130)

where
∫

k = (2π)−d−1 ∫ dd+1k and, here and in the following, we suppress the time
argument t of f(t, p0). In order to go further, we need an explicit form of the quasi-
particle distribution f(t, p0) for which we make an ansatz in term of a power-law in
momentum with an infrared cut-off. The calculations are separately discussed for the
free and the Bogoliubov cases due to the different form of the spectral function and
the quasiparticle distribution. It also has to be noted that the following calculation
will be carried out in d = 3 dimensions.
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4.4 Effective many-body coupling function

4.4.1 Effective many-body coupling function for free particles
We first discuss the case of free particles. Inserting the spectral function (4.100) into
Eq. (4.131), one obtains

Πρ(−p0, −p) = i

2

∫
k

[
f(−k0) − f(p0 − k0)

][
− (2π)2δ(−k0 − εk)δ(p0 − k0 − εp−k)

− (2π)2δ(−k0 + εk)δ(p0 − k0 + εp−k)
]

= −iπ
∫ ddk

(2π)d

{[
f(−εk) − f(−εp−k)

]
δ(p0 − εk + εp−k)

+
[
f(εk) − f(εp−k)

]
δ(p0 + εk − εp−k)

}
= iπ

∫ ddk

(2π)d

{
f(εk)

[
δ(p0 − εk + εp−k) − δ(p0 + εk − εp−k)

]
+ f(εp−k)

[
δ(p0 + εk − εp−k) − δ(p0 − εk + εp−k)

]}
= 2πi

∫ ddk

(2π)d
f(εk)

[
δ(p0 − εk + εp−k) − δ(p0 + εk − εp−k)

]
. (4.131)

Inserting this into ΠR, Eq. (4.130), we obtain, in d = 2, 3 dimensions,

ΠR(E, p) = −
∫ ∞

−∞

dq0

2π

i

q0 + iϵ
Πρ(q0 − p0, −p) = −

∫ ∞

−∞

dq0

2π

i

q0 + iϵ
Πρ(−(p0 − q0), −p)

=
∫ ddk

(2π)d
f(εk)

[
1

p0 − εk + εp−k + iϵ
− 1

p0 + εk − εp−k + iϵ

]

= 2mSd−2

(2π)d

∫ ∞

0
dk kd−1

∫ 1

−1

d cos θ

sin3−d θ
f(εk)

×
[ 1
E − k2 + |p − k|2 + iϵ

− 1
E + k2 − |p − k|2 + iϵ

]
,

(4.132)

where θ is the angle between p and k. We proceed by considering explicitly the case
d = 3,

ΠR(E, p) = 1
(2π)2

m

p

∫ ∞

0
dk k2

∫ 1

−1
dz f(εk)

×

(E + p2

2p
− kz + iϵ

)−1

−
(

E − p2

2p
+ kz + iϵ

)−1


= 1
(2π)2

m

p

∫ ∞

0
dk k f(εk)

ln
 E+p2

2p
+ k + iϵ

E+p2

2p
− k + iϵ

− ln
 E−p2

2p
+ k + iϵ

E−p2

2p
− k + iϵ


= p2

Λ
(2π)2

m

p

[
Π̃f

(
E+p2

2ppΛ

)
− Π̃f

(
E−p2

2ppΛ

)]
, (4.133)

77



Chapter 4 Kinetic equation from nonequilibrium quantum field theory

where we defined E = 2mp0 and introduced a characteristic scale pΛ to be able to
write the integral as

Π̃f (x) =
∫ ∞

0
dy y f(εypΛ) ln

(
x + y + iϵ

x − y + iϵ

)
. (4.134)

In order to proceed, we need to know the quasiparticle distribution f(εk). As we
want to study wave-turbulent transport, this spectrum is anticipated to assume a
scaling form. Taking into account that f needs to be regularized in the infrared in
order to ensure the convergence of integrals we make the following ansatz for the
scaling form,

f(p0) = sgn(p0)
(

εΛ

p0 + εpΛ

)κ/2

, (4.135)

with an infrared cut-off pΛ. This ansatz interpolates in a smooth way between a
constant in the infrared limit and a power-law fall-off f(εp) ∼ p−κ, with cross-over
scale pΛ. Note that, while the precise form at and below the cross-over scale can be
different we are, here, primarily interested in determining the power-law exponent
κ. The signum function is introduced to account for the anti-symmetry of f in p0,
cf. Eq. (4.99). Inserting Eq. (4.136) into Eq. (4.135), we find

Π̃f (x) =
(

Λ
pΛ

)κ ∫ ∞

0

dy y

(1 + y2)κ/2 ln
(

x + y + iϵ

x − y + iϵ

)
. (4.136)

The overall amplitude 2mε
κ/2
Λ = Λκ is fixed by the normalization of the distribution

to the non-condensed particle ρnc,

ρnc =
∫ ddk

(2π)d

( Λ2

k2 + p2
Λ

)κ/2

= Sd−1Λκpd−κ
Λ

(2π)d

∫ ∞

0
dk kd−1(1 + k2)−κ/2

= Sd−1Λκpd−κ
Λ

2(2π)d

∫ ∞

0
du u(d−2)/2(1 + u)−κ/2

= Λκpd−κ
Λ

2dπd/2
Γ([κ − d]/2)

Γ(κ/2) 2F1(κ/2, d/2; κ/2; 0) (4.137)

where

Sd−1 = 2πd/2

Γ(d/2) (4.138)

is the surface area of the unit sphere in d dimensions. Since 2F1(a, b; c; 0) = 1, the
infrared cutoff scale is related to the density via (in d = 3)(

Λ
pΛ

)κ

= 23π3/2 Γ(κ/2)
Γ([κ − 3]/2)

ρnc

p3
Λ

. (4.139)
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The above expression applies in the case that κ > d = 3, where the UV cutoff can
be neglected and we assume this is the case. With all these, the integral in (4.137)
can be evaluated,

ΠR(E, p) =
p2

µ

2gppΛ

[
π̃κ

(
E+p2

2ppΛ

)
− π̃κ

(
E−p2

2ppΛ

)]
, (4.140)

where pµ =
√

8πaρnc is the ‘healing’-length wave number set by the noncondensed
particle density ρnc. π̃κ contains the integral over y which can be expressed in terms
of a Gaussian hypergeometric function,

π̃κ(x) = 2√
π

Γ(κ
2 )

Γ(κ−3
2 )

∫ ∞

0
dy

y

(1 + y2)κ/2 ln
(

x + y + iϵ

x − y + iϵ

)

= 1
x

κ − 3
κ − 22F1

(
1,

1
2; κ

2 ; 1 + [(1 ± iϵ)x]−2
)

. (4.141)

Here the +(−) sign of the infinitesimal imaginary shift applies in the case x > 0
(x < 0). The details of evaluation of the integral are in App. D. If x ≫ 1, i.e.,
sufficiently far above the infrared cutoff, and assuming that κ is not an integer,6 the
hypergeometric function in π̃κ(x) can be simplified, see App. E for details,

π̃κ(x) ≃ 1
x

− i
√

π
Γ([κ − 2]/2)
Γ([κ − 3]/2) |x|2−κ . (4.142)

If x ≪ 1, i.e., far below the IR cutoff, one finds

π̃κ(x) ≃ −i
√

π
Γ
(

κ−2
2

)
Γ
(

κ−3
2

) (1 − κ − 2
2 x2

)
+ (κ − 3)x + O(x3) . (4.143)

From Eq. (4.143) one finds that, for κ > 3 as assumed above, the real part dominates
above the infrared cutoff such that

gΠR(E, p) ≃
2p2

µp2

p4 − E2 − i
√

π
p2

µpκ−3
Λ

2p

Γ
(

κ−2
2

)
Γ
(

κ−3
2

)
∣∣∣∣∣E + p2

2p pΛ

∣∣∣∣∣
2−κ

−
∣∣∣∣∣E − p2

2p pΛ

∣∣∣∣∣
2−κ

 ,

(4.144)

while, below the cutoff, the loop function approaches

gΠR(E, p) ≃
p2

µ

2p2
Λ

κ − 3 + i
√

π
Γ
(

κ
2

)
Γ
(

κ−3
2

) E

ppΛ

 . (4.145)

6The case of an integer κ could be discussed and allowed for, too, but in a more complicated way
due to the non-simple pole structure of the integral represent of the hypergeometric function (in
the form of Mellin-Barnes integral). Since it can be seen from the numerical results in the next
chapter that there is no discontinuity in the transition from non-integer to integer values of κ,
it should be sufficient to use the expressions for non-integer κ and take the limit to an integer
value.
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Figure 4.3: Contour plot of g2
eff(E, p)/g2 defined in Eq. (4.128), with ΠR(E, p) given in

Eq. (4.141), for κ = 3.5 and pΛ = 10−3.

As a result, for |E±p2| ≫ 2pΛp, the loop integral scales as ΠR(s2E, sp) = s−2ΠR(E, p).
Inserting this into Eq. (4.128), we find that, in the momentum region pΛ ≪ |E ±
p2|/p ≪ pξ the effective coupling assumes the universal scaling form

geff(p0, p) ≃

∣∣∣ε2
p − p2

0

∣∣∣
2ρnc εp

, (4.146)

independent of both, the microscopic interaction constant g, and the scaling exponent
κ of f , and scaling as

geff(s2p0, sp) = s2geff(p0, p). (4.147)
Together with Eqs. (3.25) and (3.13), this gives the scaling exponents γκ = mκ = 2
of the many-body T -matrix reported in Eqs. (3.24) and (3.26). In the IR limit, for
|E ± p2|/p ≪ pΛ ≪ pµ, the effective coupling saturates at the constant value

geff(p0, p) ≃ 2εpΛ

ρnc
. (4.148)

At larger energy and momentum scales, above the healing-length scale, |E ±p2|/p ≫
pµ, the effective coupling saturates at the microscopic interaction constant, geff ≃ g,
recovering γκ = 0 and the perturbative Boltzmann T -matrix Eq. (3.25) with scaling
exponent mκ = 0. We emphasize that, while the transition scale from the microscopic
coupling g to the universal scaling form (4.147) is set by pµ and thus by the micro-
scopic coupling g, the particular value of the universal coupling geff is independent
of g.

Fig. 4.3 shows the effective coupling constant in the E–p plane, on a double-
logarithmic scale. Cuts through this graph, for E = 0.5p2 and E = 1.5p2, are
shown in Fig. 4.4, for three different values of the infrared cutoff pΛ. These figures
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Figure 4.4: Effective coupling g2
eff(E, p) as a function of momentum p. Shown are different

cuts in the p–E-plane, with (a) E = 0.5p2 and (b) E = 1.5p2. Different colors
refer to different infrared cutoff scales kΛ as listed in the legends.

demonstrate the scaling of geff(E, p) ∼ p2 within the regime pΛ ≪ p ≪ pµ and the
saturation to geff(E, p) = g for p ≫ pµ.

Depending on the choice of E, a maximum appears in between these scaling
regimes, see also Fig. 4.3, at momenta

E0(p)2 − p4 = 2p2
µp2

⇒ E0(p) =
√

p2(p2 + 2p2
µ) . (4.149)

On this line, the real part of 1 + gΠR vanishes, and the denominator of the effective
coupling is dominated by the imaginary part,

geff(E0(p), p) = 1/|ImΠR(E0(p), p)| . (4.150)
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Since ImΠR(s2E, sp) = s1−κImΠR(E, p), see Eq. (4.145), geff(s2E, sp) = sκ−1geff(E, p)
along the curve of Eq. (4.150). Note that the scaling of the imaginary part of ΠR

alone matches with the dimensional counting of the integral on the RHS of Eq. (4.130)
which should be the overall scaling of ΠR if there is no divergence in the integral.

We emphasize that, according to these non-perturbative results, the breakdown
of the wave-Boltzmann scattering integral which was argued to appear due to the
divergence of occupation numbers in the IR, is counteracted by a strong power-law
fall-off of the scattering T -matrix. At very low scales, below the IR cutoff, the effect-
ive coupling saturates again to a much smaller constant, reinstating effectively the
perturbative approximation in the lowest-p regime where the growth of occupation
numbers is regulated to ensure convergence of physical quantities such as particle
number and energy.

4.4.2 Effective many-body coupling function for Bogoliubov
quasiparticles

For Bogoliubov quasi-particles in the linear, sound-wave regime, Eq. (2.13), the spec-
tral function, in the basis of the fundamental fields Φa, is given in Eq. (4.101). In-
serting this into Eq. (4.131) we obtain, in d = 3 dimensions,

Πρ(−p0, −p) = i

2

∫
k

(2πgρ0)2

ωkωp−k

[
f(−k0) − f(p0 − k0)

]
×
[
δ(k0 + ωk)δ(p0 − k0 + ωp−k) − δ(k0 − ωk)δ(p0 − k0 + ωp−k)

+ δ(k0 − ωk)δ(p0 − k0 − ωp−k) − δ(k0 + ωk)δ(p0 − k0 − ωp−k)
]

= iπ
∫ ddk

(2π)d

(gρ0)2

ωkωp−k

{ [
f(ωk) − f(−ωp−k)

]
δ(p0 + ωk + ωp−k)

−
[
f(−ωk) − f(−ωp−k)

]
δ(p0 − ωk + ωp−k)

+
[
f(−ωk) − f(ωp−k)

]
δ(p0 − ωk − ωp−k)

−
[
f(ωk) − f(ωp−k)

]
δ(p0 + ωk − ωp−k)

}
= i

(
gρ0

2π

)2 ∫
d3k

1
ωkω|p−k|

f(ωk)
[
δ(p0 + ωk + ω|p−k|) − δ(p0 + ωk − ω|p−k|)

− δ(p0 − ωk − ω|p−k|) + δ(p0 − ωk + ω|p−k|)
]

= i

2πωp

(
gρ0

cs

)2 ∫ ∞

0
dk
∫ p+k

|p−k|
drf(ωk)

[
δ(E + k + r) − δ(E + k − r)

− δ(E − k − r) + δ(E − k + r)
]

, (4.151)
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where we have replaced the integral over the angle ](p, k) by an integral over r =
|p − k|, and defined p0 = csE. Inserting this into ΠR, Eq. (4.130), gives

ΠR(p0, p) =
∫ ∞

−∞

dq0

2π

i

q0 + iϵ
Πρ(−(p0 − q0), −p)

= 1
(2π)2ωp

(
gρ0

cs

)2 ∫ ∞

0
dk
∫ p+k

|p−k|
drf(ωk)

[ 1
E + k + r + iϵ

− 1
E + k − r + iϵ

− 1
E − k − r + iϵ

+ 1
E − k + r + iϵ

]
= pΛpξ

(2π)2
√

2
m

p

[
Π̃′

f

(
E+p
2pΛ

)
− Π̃′

f

(
E−p
2pΛ

)]
, (4.152)

where Π̃′
f is defined as

Π̃′
f (x) =

∫ ∞

0
dy f(ωypΛ) ln

(
x + y + iϵ

x − y + iϵ

)
. (4.153)

To proceed, we need to specify the quasi-particle distribution f(ωk). Choosing again
the infrared cutoff to be pΛ, and in view of wave-turbulent solutions, we assume f to
have the scaling form

f(p0) = sgn(p0)
(

ωΛ

|p0| + ωpΛ

)κ

. (4.154)

where the signum function accounts for the symmetry stated in Eq. (4.99), and the
scale Λ is fixed by the normalization of n(p, t) to the total density n, see Eq. (4.157).
Inserting Eq. (4.155) into Eq. (4.154) and assuming κ > 2, to ensure that there is no
UV-divergence, gives

Π̃′
f (x) =

(
Λ
pΛ

)κ ∫ ∞

0
dy (1 + y)−κ ln

(
x + y + iϵ

x − y + iϵ

)

=
(

Λ
pΛ

)κ 1
(κ − 1)2x

[
2F1

(
1, 1; κ; 1 − [(1 ± iϵ)x]−1

)
+ 2F1

(
1, 1; κ; 1 + [(1 ± iϵ)x]−1

) ]
, (4.155)

where the +(−) sign of the infinitesimal imaginary shift applies for x > 0 (x < 0),
see App. D for details. The factor Λκ, resulting from the overall magnitude of f ,
cf. Eq. (4.155), is fixed by the normalization of the single-particle distribution to the
non-condensed density ρnc,

ρnc =
∫ ddk

(2π)d

pξ√
2k

(
Λ

k + pΛ

)κ

= Sd−1Λκpd−κ−1
Λ pξ√

2(2π)d

∫ ∞

0
du ud−2(1 + u)−κ

=
(

Λ
pΛ

)κ
pd−1

Λ pξ

2d−1/2πd/2
Γ(κ − d + 1)Γ(d − 1)

Γ(d/2)Γ(κ) . (4.156)
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With this, the retarded loop integral (4.153) can be written as

ΠR(E, p) =
p2

µ

2gppΛ

[
π̃′

κ

(
E+p
2pΛ

)
− π̃′

κ

(
E−p
2pΛ

)]
, (4.157)

with

π̃′
κ(x) = 1

2x

κ − 2
κ − 1

[
2F1

(
1, 1; κ; 1 − [(1 ± iϵ)x]−1

)
+ 2F1

(
1, 1; κ; 1 + [(1 ± iϵ)x]−1

) ]
. (4.158)

If |x| ≫ 1, i.e., sufficiently far above the infrared cutoff, and assuming that κ is not
an integer, the hypergeometric functions are approximated, in leading order, by

κ − 2
κ − 1 2F1(1, 1; κ; 1 + [(1 ± iϵ)|x|]−1) ≈ 1 ∓ iπ(κ − 2)

|x|κ−2 ,

κ − 2
κ − 1 2F1(1, 1; κ; 1 − [(1 ± iϵ)|x|]−1) ≈ 1 , (4.159)

see App. E for details. Then, the π̃ in this limit becomes

π̃′
κ(x) ≈ 1

x
− iπ

2|x|κ−1 (κ − 2) , (4.160)

while below the cutoff, one gets

π̃′
κ(x) ≈ −iπ

2 (κ − 2) − [C(κ) + (κ − 2)(κ − 1) ln x] x + O(x2) , (4.161)

with a κ-dependent constant C(κ).
The resulting form of ΠR depends on the relative size of E and p. Here we only

quote the form applying in the regions where E > p and E < |p| as the scattering
integral will receive its dominating contributions there. Inserting Eq. (4.160) into
Eq. (4.159) one finds that, for κ > 2 as assumed above, the real part dominates
above the infrared cutoff such that,

gΠR(E, p) ≃
2p2

µ

p2 − E2 − iπ(κ − 2)
p2

µpκ−2
Λ

4p

(∣∣∣∣E + p

2

∣∣∣∣1−κ

−
∣∣∣∣E − p

2

∣∣∣∣1−κ
)

. (4.162)

Below the cutoff, the retarded loop approaches

gΠR(E, p) ≃
p2

µ

2p2
Λ

C(κ) + log. corrections . (4.163)

As a result, for p, |E ± p| ≫ pΛ and κ > 2, the loop integral scales as ΠR(s2E, sp) =
s−2ΠR(E, p). Inserting this into Eq. (4.128), we find that, in the momentum region
pΛ ≪ |E ± p2|/p ≪ pµ the effective coupling assumes the universal scaling form

geff(p0, p) ≃
|ω2

p − p2
0|

4mc2
sρnc

, (4.164)
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Figure 4.5: Contour plot of g2
eff(E, p) defined in Eq. (4.128), with ΠR(E, p) given in

Eq. (4.158), for κ = 3.5 and pΛ = 10−3.

which is, again, effectively independent of the microscopic interaction constant g and
scales as

geff(sp0, sp) = s2geff(p0, p). (4.165)

Together with Eqs. (3.28) and (3.13) this gives the scaling exponents γκ = 2, mκ = 0,
of the many-body T -matrix reported in Eqs. (3.24) and (3.29). In the IR limit, the
coupling saturates to the same constant (4.149) as for the free case, but, due to the
logarithmic terms in a much slower manner.

At larger energy and momentum scales, above the healing-length scale, |E ±
p2|/p ≫ pµ, the effective coupling saturates at the microscopic interaction constant,
geff ≃ g, recovering the perturbative Boltzmann T -matrix Eq. (3.28) with scaling
exponent mκ = m = −2. We again emphasize that, while the transition scale from
the microscopic coupling g to the universal scaling form (4.165) is set by pµ and thus
by the microscopic coupling g, the particular value of the universal coupling geff is
independent of g.

Fig. 4.5 shows the effective coupling constant in the (p,E) plane, on a double-
logarithmic scale. While the coupling is constant at large momenta and energies,
it falls off as power laws in the infrared. Cuts through Fig. 4.5, for E = 0.5 p and
E = 1.5 p, are shown in Fig. 4.6, for three different values of the infrared cutoff
pΛ. The curves again show the saturation to g at momenta above the healing-length
scale, the power-law scaling below, and a weaker scaling below the infrared cutoff
scale pΛ.

The real part of ΠR now vanishes along the curve designated by

E0(p)2 − p2 = 2p2
µ

⇒ E0(p) =
√

p2 + 2p2
µ , (4.166)
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Figure 4.6: Effective coupling g2
eff(E, p) as a function of momentum p. Shown are different

cuts in the p–E-plane, with (a) E = 0.5p and (b) E = 1.5p. Different colors
refer to different infrared cutoff scales kΛ as listed in the legends.

and on this curve, effective coupling is again dominated by imaginary part of ΠR

with a scaling geff(sE, sp) = sκgeff(E, p), see Eq. (4.163). Also in the quasiparticle
case, the imaginary part of ΠR preserves the scaling from dimensional counting. This
can be seen from Eq. (4.130) as counting the scaling directly from the dimensions of
the factors in the integrand gives

ΠR(szp0, sp) = sd+z−4−κΠR(p0, p) , (4.167)

and this result can only be obtained in the absence of a real part.

86



4.5 Summary

4.5 Summary
We have derived the closed equations of mean field and propagators of the complex
Bose field using nonequilibrium quantum field theory in an expansion of the effective
action in terms of 2PI diagrams. The propagators, self-energies and other composite
two-point functions are decomposed into statistical parts F and spectral parts ρ.
We have shown how to turn the equations for F and ρ into a kinetic equation by
means of Wigner coordinates. In the center coordinate, only F undergoes dynamical
evolution while ρ remains static. The kinetic-like equation emerges from the equation
for F in center time where we expand the self-energy to next-to-leading order in an
expansion in the inverse of the number of field components N . This corresponds to
the effective T -matrix being a result of the s-channel resummation and we have used
this to explicitly calculate the loop function ΠR which enters the self energy such that
we can determine the scaling behaviour of the effective T -matrix which represents
the main input for analysing kinetic equation in the nonperturbative infrared regime.

The central result in this chapter and of this thesis is an apparently universal
scaling of the effective coupling geff , see Eqs. (4.148) and (4.166). We can not prove
yet its universal nature but we are convinced of it from the calculations presented in
this chapter, the analysis in App. F and similar calculations for the one-demensional
case [96]. The scaling of geff is the crucial ingredient allowing for the analysis of the
kinetic equation presented in Ch. 3. The deviation of scaling behaviour of geff in
our calculation from the one determined by naive power-counting arguments is due
to the presence of the infrared cutoff.Taking this into account our results provide
a substantial improvement compared to the results presented in [26, 49]. For the
scaling geff ∼ p4 estimated there, we would, in fact, obtain the very same exponents.

We emphasize that the exponents predicted in [26, 49] rather happen to capture
the phenomenon of superfluid turbulence since they fit very well with the numer-
ical calculations [27–29] where vortices are present at the time when the exponents
predicted there occur.
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Chapter 5

Numerical evaluation of scattering
integral
In the previous chapter, we have derived a non-perturbative kinetic equation within a
nonequilibrium quantum field theory as well as explicit expressions for effective many-
body coupling geff . Using these, we have performed a scaling analysis to extract
the Kolmogorov-Zakharov and the temporal exponents from the nonperturbative
kinetic equation as described in detail in Ch. 3. Provided the scaling ansatz for the
resulting occupation number distributions we could derive an explicit expression of
the scattering integral with which one can evaluate all scaling exponents by means
of numerical integration. In the following we will derive the analytical form of this
scattering integral and present the results of its numerical evaluation.

First, we evaluate the Kolmogorov-Zakharov exponents κQ and κP . This can be
done by seeking the κ exponents that nullify the scattering integral. We compute
the scattering integral as a function of κ while all other parameters fixed, in the
same way it was done in Ref. [86]. The values of κ which characterise the stationary
solutions are inferred from the position of the zeroes of the scattering integral. At the
same time, the sign of the slope of the scattering integral at these zeroes determines
the direction of the cascade. In this way we can identify the respective cascade
to be a direct or an inverse one. Moreover, we evaluate the scattering integral for
a particular exponent κ, as function of the external momentum and calculate the
particle and the energy fluxes to see whether there is a window where fluxes are
momentum-independent which is a signature of a cascade behaviour.

The self-similar exponent κS can not be obtained in the same way since it is a
non-stationary solution. However, as we saw in Sect. 3.2.3 the respective scattering
integral falls off with the same power law as the quasiparticle occupation number.
We thus evaluate the scattering integral as a function of the external momentum to
observe its power law behaviour. Note that the existence of a self-similar exponent
has been pointed out in Ref. [15] but was neglected because a self-similar time evol-
ution was not found to be possible, for the dilute Bose gas model studied, in the
perturbative regime. In Ref. [50], the self-similar time evolution was found to occur
in the nonperturbative regime, derived by means of nonequilibrium quantum field
theory within the s-channel resummation in the language of a large-N expansion, as
discussed in detail in Ch. 4. However, the momentum exponents found there, as well

89



Chapter 5 Numerical evaluation of scattering integral

as in Refs. [27, 28] are different from the exponents we predict in Eq. (3.32). One
possibility is that the exponents observed in Refs. [27, 28, 50] which were obtained
numerically may not be described by the kinetic equation.

The temporal exponent µ of the scattering integral can be recovered assumption
ρnc = const., or δ = 0, since this leaves only the infrared cutoff scale being a time-
independent scale in our calculation. The exponent µ is critical to determine the
value of β and β′ as we have shown in Sect. 3.3. We have to point out that the
recovering of µ in this chapter does not allow to prove the relation (3.48). Here, we
can only show that there exists an exponent µ according to the scaling transformation
(3.42) and that the value found confirms Eq. (3.44). The LHS of Eq. (3.48) needs the
presumption of a self-similar time evolution or turbulent cascade in the first place.

In the following, we present the integrals that are evaluated from Eqs. (4.119)
and (4.126) to make them more suitable for the numerical integration. We then
present the numerical results for each case. In general, the momentum exponents
agree well with the results from power counting in Ch. 3. The exponent µ under the
assumption ρnc = const. is universal, µ = −1. Finally, we discuss the scenarios of the
universal dynamics of a dilute Bose gas in the kinetic regime based on our results.

5.1 Analytical simplification of the scattering integral
In this section, we perform part of the integrations in the scattering integral that can
be done analytically in Eqs. (4.119) and (4.126) to get rid of the delta functions and
reduce the numbers of integrals that have to be done numerically. The discussion
will be separately presented for the free particles and Bogoliubov quasiparticles in
the linear-dispersion regime.

5.1.1 Free particles
We first recall Eq. (4.119) and rearrange the Boltzmann factor terms,

I(p) = (2π)4
∫

kqr
g2

eff(εp − εr, p − r)δ(p + k − q − r)

× δ(εp + εk − εq − εr)
{
f(εp)f(εr)

[
f(εq) − f(εk)

]
+
[
f(εr) − f(εp)

]
f(εq)f(εk)

}
, (5.1)

where the dimension is chosen to be d = 3. The terms are such that the integration
over dk and dq can be done. We leave the dr integration for the numerical evaluation
because r also appears in the arguments of the many-body coupling function geff .
We start by eliminating the delta distribution of the spatial momenta and substitute
variables such that there is no term that involves the addition or the subtraction of
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more than two vectors,

I(p) = (2π)
∫

kr
g2

eff(εp − εr, p − r) δ(εp + εk − εp+k−r − εr)

×
{
f(εp)f(εr)

[
f(εp+k−r) − f(εk)

]
+
[
f(εr) − f(εp)

]
f(εp+k−r)f(εk)

}
= (2π)

∫
kr′

g2
eff(εp − εp−r′ , r′) δ(εp + εk − εk+r′ − εp−r′)

×
{
f(εp)f(εp−r′)

[
f(εk+r′) − f(εk)

]
+
[
f(εp−r′) − f(εp)

]
f(εk+r′)f(εk)

}
= (2π)−2

∫
r′

g2
eff(εp − εp−r′ , r′)

∫ ∞

0
dk k2

∫ 1

−1
d cos θk

∫ 2π

0
dφk

× δ(εp + εk − εk+r′ − εp−r′)
×
{
f(εp)f(εp−r′)

[
f(εk+r′) − f(εk)

]
+
[
f(εp−r′) − f(εp)

]
f(εk+r′)f(εk)

}
= (2π)−1

∫
r′

1
r′ g

2
eff(εp − εp−r′ , r′)

∫ ∞

0
dk k

∫ |k+r′|

|k−r′|
dq q δ(εp + εk − εq − εp−r′)

×
{
f(εp)f(εp−r′)

[
f(εq) − f(εk)

]
+
[
f(εp−r′) − f(εp)

]
f(εq)f(εk)

}
. (5.2)

Here, we have changed variables by setting r = p − r′ in the second equality and
defined q = k + r′ in the last equality. The norm of k is now written as k. We
set the k-coordinate such that the vector r′ is parallel to the z-component of k so
the polar angle θk is also the angle between r′ and k. This allows us to replace the
integral over d cos θk by the integral over dq. To proceed further, we insert f(p0)
from Eq. (4.136) and the free energy dispersion, ε(p) = p2/2m,

I(p) = 2m

2π

∫
r′

1
r′ g

2
eff(εp − εp−r′ , r′)

∫ ∞

0
dk k

∫ |k+r′|

|k−r′|
dq q δ(p2 + k2 − q2 − |p − r′|2)

×
{ Λ2κ

(p2 + p2
Λ)κ/2(|p − r′|2 + p2

Λ)κ/2

[ Λκ

(q2 + p2
Λ)κ/2 − Λκ

(k2 + p2
Λ)κ/2

]
+
[ Λκ

(|p − r′|2 + p2
Λ)κ/2 − Λκ

(p2 + p2
Λ)κ/2

] Λ2κ

(q2 + p2
Λ)κ/2(k2 + p2

Λ)κ/2

}
= 2m Λ3κ

2π

∫
r′

1
r′ g

2
eff(εp − εp−r′ , r′)

{ I free
1 (p, r′)

(p2 + p2
Λ)κ/2(|p − r′|2 + p2

Λ)κ/2

+
[ 1
(|p − r′|2 + p2

Λ)κ/2 − 1
(p2 + p2

Λ)κ/2

]
I free

2 (p, r′)
}

, (5.3)

where we define

I free
1 (p, r′) =

∫ ∞

0
dk k

∫ |k+r′|

|k−r′|
dq q δ(p2 + k2 − q2 − |p − r′|2)

×
[ 1
(q2 + p2

Λ)κ/2 − 1
(k2 + p2

Λ)κ/2

]
, (5.4)

I free
2 (p, r′) =

∫ ∞

0
dk k

∫ |k+r′|

|k−r′|
dq q δ(p2 + k2 − q2 − |p − r′|2)

× 1
(q2 + p2

Λ)κ/2(k2 + p2
Λ)κ/2 . (5.5)
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We give the details how to evaluate these two integrals in the App. D. Inserting the
results from Eqs. (D.15) and (D.20) into Eq. (5.3) yields

I(p) = 2m

(2π)3
Λ3κ

p

∫ ∞

0
dr r

∫ p+r

|p−r|
dq g2

eff(εp − εr, q)

×
{ 2κ/2

4(κ − 2)
1

(p2 + p2
Λ)κ/2(r2 + p2

Λ)κ/2

×
[((p2 − r2 + q2)2

2q2 + 2p2
Λ

)1−κ/2
−
((p2 − r2 − q2)2

2q2 + 2p2
Λ

)1−κ/2]
+ 2κ−1

4(κ − 1)
[ 1
(r2 + p2

Λ)κ/2 − 1
(p2 + p2

Λ)κ/2

]((p2 − r2)2 + q4

2q2 + 2p2
Λ

)1−κ

× 2F1

(
κ

2 ,
κ − 1

2 ; κ + 1
2 ;

( 2q2(p2 − r2)
(p2 − r2)2 + q4 + 4p2

Λq2

)2
)}

= 2m

(2π)3

(
Λ
pµ

)3κ

p4
µ g2 Ĩ[nQ](xp) , (5.6)

where we have changed r′ back to r = p − r′ and define q = p − r so the integration
over the polar angle dθr can be replaced by the integral over dq. The dimensionless
integral Ĩ(xp) which all momenta are in the unit of pµ reads

Ĩ[nQ](xp) = 1
g2 xp

∫ ∞

0
dxr xr

∫ xp+xr

|xp−xr|
dxq g2

eff(εxp − εxr , xq)

×
{ 2κ/2

4(κ − 2)
1

(x2
p + x2

pΛ
)κ/2(x2

r + x2
pΛ

)κ/2

×
[((x2

p − x2
r + x2

q)2

2x2
q

+ 2x2
pΛ

)1−κ/2
−
((x2

p − x2
r − x2

q)2

2x2
q

+ 2x2
pΛ

)1−κ/2]

+ 2κ−1

4(κ − 1)
[ 1
(x2

r + x2
pΛ

)κ/2 − 1
(x2

p + x2
pΛ

)κ/2

]((x2
p − x2

r)2 + x4
q

2x2
q

+ 2x2
pΛ

)1−κ

× 2F1

(
κ

2 ,
κ − 1

2 ; κ + 1
2 ;

( 2x2
q(x2

p − x2
r)

(x2
p − x2

r)2 + x4
q + 4x2

pΛ
x2

q

)2
)}

, (5.7)

where xp = p/|pµ|. We will evaluate the integral Ĩ[nQ](xp) numerically.

5.1.2 Bogoliubov quasiparticles
The same procedure applies in the quasiparticle case, starting with Eq. (4.126). How-
ever, there is a difference because Eq. (4.126) has two distinct many-body coupling
functions which need to be treated differently. We separate the right-hand side of
Eq. (4.126) into two integrals, each for one such coupling,

I(p) = I1(p) + 1
2I2(p) , (5.8)
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where

I1(p) = (2π)4
∫

kqr

(gρ)4

ωpωkωqωr

g2
eff(ωp − ωr, p − r)

× δ(p + k − q − r) δ(ωp + ωk − ωq − ωr)
×
{
f(ωp)f(ωr)

[
f(ωq) − f(ωk)

]
+
[
f(ωr) − f(ωp)

]
f(ωk)f(ωq)

}
, (5.9)

I2(p) = (2π)4
∫

kqr

(gρ)4

ωpωkωqωr

g2
eff(ωp − ωk, p + k)

× δ(p + k − q − r) δ(ωp + ωk − ωq − ωr)
×
{[

f(ωp) + f(ωk)
]

f(ωq)f(ωr) − f(ωp)f(ωk)
[
f(ωq) + f(ωr)

]}
. (5.10)

Then, we follow the same steps we did in the free case. The result of I1(p) is
almost identical to the free case due to the similarity in the arguments of many-body
coupling,

I1(p) = (gρ)4

(2π)c5
s

∫
r′

1
p|p − r′|r′ g

2
eff(ωp − ωp−r′ , r′)

∫ ∞

0
dk
∫ k+r′

|k−r′|
dq δ(p − |p − r′| + k − q)

×
{
f(ωp)f(ω|p−r′|)

[
f(ωq) − f(ωk)

]
+
[
f(ω|p−r′|) − f(ωp)

]
f(ωk)f(ωq)

}
= (gρ)4

(2π)c5
s

Λ3κ

p

∫
r′

1
|p − r′|r′ g

2
eff(ωp − ωp−r′ , r′)

{ Ibog
1 (p, r′)

(p + pΛ)κ(|p − r′| + pΛ)κ

+
[ 1
(|p − r′| + pΛ)κ

− 1
(p + pΛ)κ

]
Ibog

2 (p, r′)
}

, (5.11)

where r′ = p − r, q = k + r′ and

Ibog
1 (p, r′) =

∫ ∞

0
dk
∫ k+r′

|k−r′|
dq δ(p − |p − r′| + k − q)

[ 1
(q + pΛ)κ

− 1
(k + pΛ)κ

]
,

(5.12)

Ibog
2 (p, r′) =

∫ ∞

0
dk
∫ k+r′

|k−r′|
dq δ(p − |p − r′| + k − q) 1

(q + pΛ)κ(k + pΛ)κ
. (5.13)

As for I2(p, k), instead of changing r to r′ = p − r, we change k to k′ = k + p and
define q = k′ − r to take care the integration over the polar angle of r,

I2(p) = (gρ)4

(2π)c5
s

∫
k′

1
p|k′ − p|k′ g

2
eff(ωp − ωk′−p, k′)

∫ ∞

0
dr
∫ k+r′

|k−r′|
dq δ(p + |k′ − p| − q − r)

×
{[

f(ωp) + f(ω|k′−p|)
]

f(ωq)f(ωr) − f(ωp)f(ω|k′−p|)
[
f(ωq) + f(ωr)

]}
= (gρ)4

(2π)c5
s

Λ3κ

p

∫
k′

1
|k′ − p|k′ g2

eff(ωp − ωk′−p, k′)
{

− Ibog
3 (p, k′)

(p + pΛ)κ(|k′ − p| + pΛ)κ

+
[ 1
(p + pΛ)κ

+ 1
(|k′ − p| + pΛ)κ

]
Ibog

4 (p, k′)
}

, (5.14)
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where

Ibog
3 (p, k′) =

∫ ∞

0
dr
∫ k′+r

|k′−r|
dq δ(p + |k′ − p| − q − r)

[ 1
(q + pΛ)κ

+ 1
(r + pΛ)κ

]
,

(5.15)

Ibog
4 (p, k′) =

∫ ∞

0
dr
∫ k′+r

|k′−r|
dq δ(p + |k′ − p| − q − r) 1

(q + pΛ)κ(r + pΛ)κ
. (5.16)

The integrals Ibog
1 , Ibog

2 , Ibog
3 and Ibog

4 are evaluated in App. D. Substituting the results
from Eqs. (D.23), (D.25), (D.28) and (D.30) into Eqs. (5.11) and (5.14), we obtain

I1(p) = (gρ)4

(2π)3c5
s

Λ3κ

p2

∫ ∞

0
dr
∫ p+r

|p−r|
dq g2

eff(ωp − ωr, q)

×
{ 2κ−1

κ − 1
1

(p + pΛ)κ(r + pΛ)κ

×
[
(q + p − r + 2pΛ)1−κ − (q − p + r + 2pΛ)1−κ

]
+ 22κ−1

2κ − 1
[ 1
(r + pΛ)κ

− 1
(p + pΛ)κ

]
(q + 2pΛ)1−2κ

× 2F1

(
κ, κ − 1

2; κ + 1
2;
( p − r

q + 2pΛ

)2
)}

= (gρ0)4

(2π)3c5
s

( Λ
pµ

)3κ

pµ g2 Ĩ1[nQ](xp) , (5.17)

and

I2(p) = 2 (gρ)4

(2π)3c5
s

Λ3κ

p2

∫ ∞

0
dk
∫ p+k

|p−k|
dq g2

eff(ωp − ωk, q)

×
{ 2κ−1

κ − 1
1

(p + pΛ)κ(k + pΛ)κ

×
[
(p + k + q + 2pΛ)1−κ − (p + k − q + 2pΛ)1−κ

]
+ 22κ−1

[ 1
(p + pΛ)κ

+ 1
(k + pΛ)κ

] q

(p + k + 2pΛ)2κ

× 2F1

(
κ,

1
2; 3

2;
( q

p + k + 2pΛ

)2
)}

= 2 (gρ0)4

(2π)3c5
s

( Λ
pµ

)3κ

pµ g2 Ĩ2[nQ](xp) . (5.18)

Here, r′ and k′ were replaced by the original r and k, respectively. We further define
q = p − r in I1(p) and q = p + k in I2(p). The integral I(p) in Eq. (5.8) can now be
expressed in a term of the dimensionless integral, Ĩ[nQ](xp) = Ĩ1[nQ](xp)+ Ĩ2[nQ](xp),

I(p) = (gρ0)4

(2π)3c5
s

( Λ
pµ

)3κ

pµ g2 Ĩ[nQ](xp) , (5.19)
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where Ĩ1[nQ](xp) and Ĩ2[nQ](xp) are the dimensionless integrals of I1(p) and I2(p)
respectively, defined in the very same way we have done in free particle case. The
integral Ĩ[nQ](xp) will also be evaluated numerically in the following sections.

5.2 The scaling solutions of integrals
In this section, we present the results from numerical integration of dimensionless
integral Ĩ[nQ](xp). Of main interest here are the scaling solutions of the integrals
which include both the stationary turbulence solutions (the Kolmogorov-Zakharov
exponents) and a nonstationary self-similar solution. The turbulence solutions will
be determined by seeking the zeroes of the integral Ĩ[nQ](xp) when the exponents
κ are varied. For a self-similar solution, we make use of the observation that the
integral I(p) must have the same momentum scaling as nQ(p) if nQ(p) evolves self-
similarly, see Sect. 3.2.3. Therefore, we check whether a particular exponent κS is a
self-similar exponent by observing the power-law behaviour of I(p). The expectation
is that I(p) ∼ p−κS if nQ(p) ∼ p−κS . This translates directly to Ĩ[nQ](xp) ∼ xκS

p .

5.2.1 Weak-wave turbulence solutions
In the weak-wave turbulence limit, we evaluated the integral with the condition
geff = g. Note that in principle, the weak-wave scaling exponents can be obtained by
using the nonperturbative expressions of geff but Ĩ[nQ](xp) needs to be evaluated at a
large value of xp, xp ≫ 1. This makes the integral being evaluated in the area where
geff = g. However, the numerical evaluation becomes unstable when the separation
between the infrared cutoff pΛ and p is large. Thus, we simply used the perturbative
value geff = g to evaluate the scaling solution in the perturbative limit. The results
will be presented separately for the free particles and the Bogoliubov quasiparticles.

Free particles

The rescaled integral Ĩ[nQ](xp) in Eq. (5.6) has been evaluated at xp = 1.5 (p = 1.5pµ)
with exponents κ varied and the results are presented in Fig. 5.1. The scattering
integral as a function of κ is shown by a curve for each value of the infrared cutoff
pΛ. The stationary solutions can be identified from the zeroes of Ĩ[nQ](xp) of which
there are three in general. The first stationary solution is κ = 2 where the number
distribution exhibits Rayleigh-Jeans scaling n(p) = T/εp ∼ p−2. We note that the
κ = 2 solution is slightly dependent on the infrared cutoff which we believe it is due
to the numerical accuracies. We expect that κ = 2 is a cutoff-independent solution
because it corresponds to a detail-balance case where the integrand vanishes at each
point in the integration domain.

The other two stationary solutions vary and their dependences on the infrared
scale are shown in Fig. 5.2. As a separation between the infrared cutoff pΛ and the
external momentum p grows, the solutions approach the predicted values κQ = 7/3
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Figure 5.1: Dependence of the weak-wave-Boltzmann scattering integral I[nQ](p) for free
particles (n = nQ) in d = 3 spatial dimensions, at the momentum p = 1.5pµ,
on the momentum scaling exponent κ characterizing the occupation number
distribution n(p) ∼ p−κ. The vertical dashed lines mark, from the left, the
thermal zero at κT = 2, the particle-cascade exponent κQ = 7/3, and the
energy-cascade exponent κP = 3. In the figure, the rescaled integral Ĩ[nQ](p)
is shown, see Eq. (5.6). The different colors correspond to different values of
the IR cutoff pΛ, as indicated in the legend. As the cutoff is lowered, the zeroes
approach the predicted values. The sign of the slope ∂Ĩ[nQ]/∂κ at the zeroes
determines the direction of the cascade.
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Figure 5.2: Scaling exponents κ of occupation number distribution n(p) ∼ p−κ for which
the weak-wave-Boltzmann scattering integral I[n](p) for free particles in d = 3
spatial dimensions has a zero, for different momenta p in units of the IR cutoff
scale pΛ. Red dots correspond to the particle cascade for which κ approaches
κQ = 7/3. Green dots mark the zeroes of the energy cascade, approaching
κP = 3.
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and κP = 3, see Eq. (3.20). Note that the absolute values of pΛ and p have no
meaning here, only the ratio p/pΛ determines the value of the stationary solutions.
The sign of the slope ∂Ĩ[nQ]/∂κ agrees with the direction of the cascades in context
of 4-wave resonances, an inverse cascade for particle flux and a direct cascade for
energy flux [10].

We emphasize that the deviation of the momentum scaling exponent ζ = 3.5
from the predicted value ζ = 3, observed in the experiment by Navon et al. [41],
may be an effect from the finite size of the experimental apparatus. Fig. 5.2 shows
that a direct cascade exponent manifests at ζ = κ = 3.5 if the observed momentum
and the infrared cutoff scales are approximately in the order, p ≃ pΛ. Considering
Fig. 1.2b, one estimates pΛξ ≃ 0.5 and observes the scaling with κ = 3.5 (γ in their
notation) in a momentum regime pξ . 5, consistent with our finite-size estimation.

We evaluate the radial fluxes of particle and energy, however, with the rescaled
Ĩ[nQ](xp). The rescaled particle flux Q[Ĩ](xp) and energy flux P [Ĩ](xp) are derived
directly from Eqs. (3.11) and (3.12),

Q[Ĩ](xp) = −4π
∫ xp

0
ds s2Ĩ[nQ](s) , (5.20)

P [Ĩ](xp) = −4π
∫ xp

0
ds s2ε(s)Ĩ[nQ](s) . (5.21)

where ε(s) = s2. The evaluation of Q[Ĩ](xp) at κ = 7/3 and of P [Ĩ](xp) at κ = 3 is
presented in Fig. 5.3. The particle flux Q[Ĩ](xp) shows a flat plateau which indicates
a p-independent particle flux and thus a turbulence cascade. In contrast, energy flux
P [Ĩ](xp) has no signature of a flat plateau in the momentum window we calculated.
This can be understood since, in this window, the energy solution has not yet reached
the predicted value κ = 3, see Fig. 5.2.

Bogoliubov quasiparticles

The rescaled integral Ĩ[nQ](xp) in Eq. (5.19) is evaluated at xp = 0.1 (p = 0.1pµ)
with the exponents κ varied. The results are presented in Fig. 5.4 and the structures
closely resemble to the free particle results. There is a thermal solution κ = 1
corresponding to the Rayleigh-Jeans scaling n(p) = T/ωp ∼ p−1 and two solutions
with a negative and a positive slope of ∂Ĩ[nQ]/∂κ which can be related to an inverse
particle cascade and a direct energy cascade respectively. As the separation between
the external momentum p and the infrared cutoff increases, the solutions approach
the predicted values, κ = 4/3 for an inverse particle cascade and κ = 5/3 for a direct
energy cascade, see Eq. (3.23). The solutions also depend solely on the ratio of p/pΛ
as shown in Fig. 5.5.

The quasiparticle and the energy fluxes are calculated from the rescaled integral
Ĩ(xp) and presented in Fig. 5.6. The quasiparticle flux Q[Ĩ](xp) is given by a similar
integral as the one appearing in Eq. (5.20) but the energy flux needs to be modified
because the energy spectrum is now linear in momentum,

P [Ĩ](xp) = −4π
∫ xp

0
ds s2ω(s)Ĩ(s) , (5.22)
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Figure 5.3: The particle flux Q[Ĩ](xp) and the energy flux P [Ĩ](xp) calculated from the
rescaled scattering integral Ĩ(xp) are shown as functions of the rescaled mo-
mentum xp in panel (a) and (b) respectively. The evaluation has been done at
the analytically predicted scaling exponents, i.e. at κ = 7/3 for Q[Ĩ](xp) and
κ = 3 for P [Ĩ](xp).
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Figure 5.4: Dependence of the weak-wave-Boltzmann scattering integral I[nQ](p) for
Bogoliubov sound in d = 3 spatial dimensions, at the momentum p = 0.1pµ,
on the momentum scaling exponent κ characterizing the occupation number
distribution nQ(p) ∼ p−κ. The vertical dashed lines mark, from the left, the
thermal zero at κT = 1, the quasiparticle-cascade exponent κQ = 4/3, and
the energy-cascade exponent κP = 5/3. In the figure, the rescaled integral
Ĩ[nQ](p) is shown, see Eq. (5.19). The different colors correspond to different
values of the IR cutoff pΛ, as indicated in the legend. As the cutoff is lowered,
the zeroes approach the predicted values. The sign of the slope ∂Ĩ[nQ]/∂κ at
the zeroes determines the direction of the cascade.
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Figure 5.5: Scaling exponents κ of the quasiparticle distribution nQ(p) ∼ p−κ for which the
weak-wave-Boltzmann scattering integral I[nQ](p) in d = 3 spatial dimensions
has a zero, for different momenta p in units of the IR cutoff scale pΛ. As in
Fig. 5.2, red dots correspond to the particle cascade, with the zeroes approach-
ing κQ = 4/3, green dots to the energy cascade, approaching κP = 5/3.

where ω(s) = s. The quasiparticle flux shows again the plateau and this is a signature
for a turbulence cascade. The energy flux seems to closely reach the plateau and if
we look back to the curve giving the energy solution in Fig. 5.6 (the green line), the
plateau is expected to exist since the trend shows a saturation at κ = 5/3 beyond
the momentum window we calculated. However, we conclude that there is no direct
energy cascade in the momentum window we considered.

5.2.2 Strong-wave turbulence solutions
The strong-wave calculation is done by using the full expressions for the many-body
coupling geff . However, the strong-wave results are only available for a sufficiently
small values of an external momentum p compared to pµ. This is because the major
contributions to the integrals come from the regime where the nonperturbative effects
dominate. Since Ĩ[nQ](xp) falls off as a power-law, the major contributions generally
come from the area below the scale xp. This means the further p away from pµ, the
better chance we have to see the results of strong-wave turbulence.

Free particles

The many-body coupling geff is now evaluated with the self-energy ΠR in Eq. (4.141)
and substituting the Λ scale by the relation (4.140). Then, we numerically calculate
Ĩ[nQ](xp) with κ varied, at xp = 0.001. The results are presented in Fig. 5.7. There
are two zeroes which represent the stationary solutions of strong-wave turbulence
which vary with the infrared cutoff scale pΛ. Fig. 5.8 shows that as pΛ → 0, the solu-
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Figure 5.6: The particle flux Q[Ĩ](xp) and the energy flux P [Ĩ](xp) calculated from the
rescaled scattering integral Ĩ(xp) are shown as functions of the rescaled mo-
mentum xp in panel (a) and (b) respectively. The evaluation has been done at
the analytically predicted scaling exponents, i.e. at κ = 4/3 for Q[Ĩ](xp) and
κ = 5/3 for P [Ĩ](xp).
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Figure 5.7: Dependence of the strong-wave-Boltzmann scattering integral I[n](p) for free
particles in d = 3 spatial dimensions, at the momentum p = 0.001pµ, on the
momentum scaling exponent κ characterizing the occupation number distribu-
tion n(p) ∼ p−κ. The vertical dashed lines mark, from the left, the particle-
cascade exponent κQ = 11/3, and the energy-cascade exponent κP = 13/3. In
the figure, the rescaled integral Ĩ[nQ](p) is shown, see Eq. (5.6). The different
colors correspond to different values of the IR cutoff pΛ, as indicated in the
legend. As the cutoff is lowered, the zeroes approach the predicted values.
The sign of the slope ∂I[n]/∂κ at the zeroes determines the direction of the
cascade.
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Figure 5.8: Scaling exponents κ of occupation number distribution n(p) ∼ p−κ for which
the wave-Boltzmann scattering integral I[n](p) for free particles in d = 3 spatial
dimensions has a zero. The figure applies to the IR region of large occupation
numbers where the effective many-body coupling describing collective scatter-
ing scales with γκ = 2 and modifies the scaling properties. The colors mark
different choices of the IR cutoff scale pΛ. The upper line corresponds to an
energy cascade and approaches κP = d + 4/3 for pΛ → 0, as obtained from
Eq. (3.17) with γκ = 2, while the lower line approaches the particle-cascade
exponent κQ = d + 2/3, cf. Eq. (3.16).

tions come closer to the predicted values, κQ = 11/3 and κP = 13/3, see Eq. (3.27).
However, there is a limit to this where lowering the cutoff further does not bring the
solutions down to the predicted values. We will come back to this issue again in the
Bogoliubov calculation.

The fluxes are calculated using Eqs. (5.20) and (5.21). The results are shown
in Fig. 5.9. There is no a fully developed plateau of the quasiparticle flux as in
the weak-wave case. For the energy flux, we lose the numerical accuracies around
p ∼ 103pΛ, however, the energy exponent curve in Fig. 5.8 (the upper curve) is not
yet saturated at κ = 3 at the approximately same scale so it is more likely that there
is no flat plateau of the energy flux in the momentum window we calculated. If this
is the case, it means there is no turbulence cascade in the nonperturbative regime
where the energy spectrum is quadratic.

Bogoliubov quasiparticles

We now use the self-energy in Eq. (4.158) for the coupling geff and replace the Λ
scale with Eq. (4.157). The rescaled integral Ĩ[nQ](xp) as a function of κ is shown in
Fig. 5.10 for xp = 0.001. Two stationary solutions are presented and both of them
approach the predicted values κQ = 8/3 and κP = 3 as the infrared cutoff is lowered,
see Eq. (3.30). In Fig. 5.11, we see the shift of the solutions towards to the predicted
values but departing again as pΛ → 0. Here, it is clear that the particle and the

101



Chapter 5 Numerical evaluation of scattering integral

10−9 10−8 10−7 10−6 10−5 10−4 10−3

xp = p/pµ

0

−2

−4

−6

Q
[Ĩ
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Figure 5.9: The particle flux Q[Ĩ](xp) and the energy flux P [Ĩ](xp) calculated from the
rescaled scattering integral Ĩ(xp) are shown as functions of rescaled momentum
xp in panel (a) and (b) respectively. The evaluation has been done at the
analytically predicted scaling exponents, i.e. at κ = 11/3 for Q[Ĩ](xp) and
κ = 13/3 for P [Ĩ](xp).
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Figure 5.10: Dependence of the strong-wave-Boltzmann scattering integral I[nQ](p) for
Bogoliubov sound in d = 3 spatial dimensions, at the momentum p = 0.001 pµ,
on the momentum scaling exponent κ characterizing the occupation number
distribution nQ(p) ∼ p−κ. The vertical dashed lines mark, from the left, the
quasiparticle-cascade exponent κQ = 8/3, and the energy-cascade exponent
κP = 3. In the figure, the resscaled integral Ĩ[nQ](p) is shown, see Eq. (5.19).
The different colors correspond to different values of the IR cutoff pΛ, as
indicated in the legend. As the cutoff is lowered, the zeroes approach the
predicted values. The sign of the slope ∂Ĩ[nQ]/∂κ at the zeroes determines
the direction of the cascade.
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Figure 5.11: Scaling exponents κ of the quasiparticle distribution nQ(p) ∼ p−κ for which
the wave-Boltzmann scattering integral I[nQ](p) in the IR collective scattering
region, in d = 3 has a zero, for different momenta p in units of the IR cutoff
scale pΛ, for three different pΛ. As in Fig. 5.5, the lower data marks the
quasiparticle cascade, with the zeroes approaching κQ = 8/3, while the upper
data marks the energy cascade, approaching κP = 3.

energy solutions merge at some scale and leave the further momentum regime without
a stationary solution. We do not have a concrete description why the solutions
disappear at a particular momentum scale but we do know that it is bound to happen.

The stationary solutions predicted by Eq. (3.30) (or Eq. (3.27) in the free particle
case) only exist within the momentum window where geff grows as p2. This means we
should see the predicted solutions only in a certain window. From Figs. 4.3, 4.4, 4.5
and 4.6, we can estimate such a window to be bounded by pΛ and pµ. However, the
integral has been done on the 2-dimensional plane so determining the actual window
is more complicated.

Inside the area bounded by the curves of the stationary solutions, the integral is
negative. This means the time evolution with a decreasing in the number distribution
must take place within this area. This includes the self-similar evolution where the
number of quasiparticles within the scaling regime needs to decrease to fulfil the
global conservation laws. Thus, the self-similar solution κS must stay between κQ

and κP . Only the nonperturbative free particle calculation fulfils this condition, see
Fig. 5.8.

We calculate the fluxes with Eqs. (5.20) and (5.22). The results are shown in
Fig. 5.12. We again lose the numerical accuracies before we can make a concrete
statement. However, the quasiparticle flux shows an overlap of curves calculated
from two different infrared cutoffs which gives a promising trend of a flat plateau.
The energy flux also shows a similar behaviour but not as good as appearing in the
particle flux.
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[Ĩ

](
x p

)

(b) pΛ = 10−8 pµ
pΛ = 10−7 pµ
pΛ = 10−6 pµ

Figure 5.12: The particle flux Q[Ĩ](xp) and the energy flux P [Ĩ](xp) calculated from the
rescaled scattering integral Ĩ(xp) are shown as functions of the rescaled mo-
mentum xp in panel (a) and (b) respectively. The evaluation has been done
at the analytically predicted scaling exponents, i.e. at κ = 8/3 for Q[Ĩ](xp)
and κ = 3 for P [Ĩ](xp).

5.2.3 Self-similar solutions
The self-similar exponents can be verified through the momentum scaling of the
scattering integral. We only discuss the self-similar solutions in the nonperturbative
regime because the particle cascade is expected to manifest in the perturbative regime
due to the well developed particle fluxes presented in Figs. 5.3 and 5.6.

Free particles

Eqs. (3.32) and (3.61) give κS = 4 for the free particle case and we evaluated the
rescaled integral Ĩ[nQ](xp) at this exponent with varying xp for several values of the
infrared cutoff. Fig. 5.13 shows an absolute value of the rescaled integral p′4ĨS[nQ](p′)
as a function of the another rescaled momentum p′ = p/pΛ on a double-logarithmic
scale. The first bump shows a regime where the integral is positive, before it turns
inegative and the plateau in the negative domain exhibits the power-law fall-off
I[nQ](p) ∼ p−4. Not only κS = 4 fulfils the requirements of a self-similar exponent, it
also results where the scattering integral is negative which ensures the decreasing of
the local occupation number and conserves the global conservation laws, see Fig. 2.1.

Bogoliubov quasiparticle

In the linear dispersion regime, κS = 5/2, cf. Eqs. (3.32) and (3.61). The rescaled
integral Ĩ(xp) is evaluated with nQ(p) ∼ p−5/2. Fig. 5.14 presents the rescaled integral
p′5/2ĨS[nQ](p′) as a function of p′ = p/pΛ on a double-logarithmic scale. The integral
is all positive including where the plateau shows up. Therefore, the occupation
number is increasing self-similarly in time instead of decreasing. Since the time-
evolution violates the global conservation laws, we conclude that this situation is
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Figure 5.13: Momentum dependence of the scattering integral (3.4) multiplied by p′4 =
(p/pΛ)4, for free particles (z = 2, n = nQ) in d = 3 dimensions. The integral
is evaluated in the collective-scattering regime, with effective many-body T -
matrix, Eqs. (3.25), (4.128), (4.141), for different values of the IR cutoff
scale pΛ (colors), and the results are scaled on top of each other by showing
p′4 ĨS [nQ](p′) = x4

pΛ
Ĩ[nQ](xp), see details in Sect. 5.3. The horizontal plateau

demonstrates the power-law dependence I[nQ](p) ∼ p−4 predicted by κS = 4,
cf. Eq. (3.32).

unlikely to occur although the κS = 5/2 satisfies the requirement of a self-similar
exponent.

5.3 Dynamical exponents
So far, the numerical integration of scattering integrals recovered all exponents that
are determined by the momentum scaling alone. Although we can infer the dynamics
with the analysis from global conservation laws, the calculations are, in general, time-
independent. The only temporal scaling exponent that is accessible by means of our
numerical integration is the exponent µ from Eq. (3.42) but this is only the case if
there is only one time-dependent scale, pΛ. We have no pλ in our calculation and
Λ can be related to pΛ using Eqs. (4.140) and (4.157) for the free particles and the
Bogoliubov quasiparticles respectively. This also means µ we evaluated here is subject
to the condition that there is no time evolution in the noncondensed quasiparticle
numbers, ρnc = const..

We again restrict our calculation in the nonperturbative regime. In this case,
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Figure 5.14: Momentum dependence of the scattering integral (3.4) multiplied by p′5/2 =
(p/pΛ)5/2, for Bogoliubov quasiparticles (z = 1) in d = 3 dimensions. The
integral is evaluated in the collective-scattering regime, with the effective
many-body T -matrix, Eqs. (3.25), (4.128), (4.158), for different values of the
IR cutoff scale pΛ (colors), and the results are scaled on top of each other by
showing p′5/2 ĨS [nQ](p′) = x2.5

pΛ
Ĩ[nQ](xp), see more details in Sect. 5.3. The

horizontal plateau demonstrates the power-law dependence I[nQ](p) ∼ p−5/2

predicted by κS = 5/2, cf. Eq. (3.32).

Eqs. (3.44), (3.60) and (3.64) give

µ = 2d + 2
(
2(z − 1) − η/2

)
− z − 3α/β

= −d + 2 + 3(d + z − 2 − α/β) − η

= −d + 2 − η , (5.23)

where we have used the constraint, α/β = d+z−2, which is obtained from Eq. (3.64)
in the case δ = 0. In our calculation where d = 3 (and η = 0 due to the choices of
spectral functions), the exponent µ takes a universal value, µ = −1, in both the free
particle and the Bogoliubov quasiparticle cases.

Under the assumption that only pΛ scale is time-dependent, we need to include
only a prefactor xκ

Λ = (Λ/pµ)κ into the rescaled integral Ĩ[nQ](xp). The idea is
to generate a time-independent self-similar function ĨS[nQ](p/pΛ) from the rescaled
integral,

IS[nQ]
( p

pΛ

)
= x−µ

pΛ

[
x3κ

Λ Ĩ[nQ](xp)
]

. (5.24)

Eq. (5.24) can be viewed as a rescaled version of Eq. (3.42). To proceed, we numer-
ically evaluate the Ĩ[nQ](xp) as a function of xp for several values of pΛ keeping the
κ exponent fixed. Then, we create plots of Ĩ[nQ](xp) versus p/pΛ by simply rescal-
ing xp with xpΛ . Last, the factor x−µ

pΛ
x3κ

Λ is multiplied to Ĩ[nQ](xp) with a specific
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Figure 5.15: The figure shows the time-independent function IS [nQ](p/pΛ) as a function
of p/pΛ for the free particle case. The κ exponents are 11/3, 4, 13/3 and 5.2
presented in subfigures (a), (b), (c) and (d) respectively. Eq. (4.140) gives the
conversion xκ

Λ ∼ xκ−3
pΛ

, thus, the multiplication factor making all curves lie on
top of each other becomes x

3(κ−3)−µ
pΛ . All subfigures give the universal value

µ = −1.

value of µ that makes curves corresponding to different pΛ lie on top of each other,
hence, creating a cutoff independent function IS[nQ](p/pΛ) which is equivalent to a
time-independent function in our context.

Figs. 5.15 and 5.16 show the time-independent function IS[nQ](p/pΛ) as a func-
tion of p/pΛ for the free particle and the Bogoliubov quasiparticle case respect-
ively. Each panel represents different values of κ exponents with the different in-
frared cutoffs labelled by different colours. All panels are obtained with an exponent
µ = −1. We emphasize further that this is the case for all other exponents κ that are
not presented here. Thus, the numerical results confirm that µ = −1, independent
of the values of κ exponents. We can see that curves lie on top of each other even
outside the power law regime.
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Ĩ[

n Q
](

x p
)

(c)

pΛ = 10−6 pµ
pΛ = 10−5 pµ
pΛ = 10−4 pµ

10−1 100 101 102 103 104

p/pΛ

100

10−4

10−8

10−12

10−16
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Figure 5.16: The figure shows the time-independent function IS [nQ](p/pΛ) as a function
of p/pΛ for the Bogoliubov quasiparticle case. The κ exponents are 2.5, 8/3, 3
and 3.5 presented in subfigures (a), (b), (c) and (d) respectively. Eq. (4.157)
gives the conversion xκ

Λ ∼ xκ−2
pΛ

, thus, the multiplication factor making all
curves lie on top of each other becomes x

3(κ−2)−µ
pΛ . All subfigures give the

universal value µ = −1.

108



5.4 Time evolution of Bose gas in the kinetic regime

5.4 Time evolution of Bose gas in the kinetic regime
So far, we concentrated on recovering the momentum scaling exponents and there
are three of them in general: an inverse particle cascade exponent κQ, a direct energy
cascade exponent κP and a self-similar exponent κS. We have also two momentum
scales that separate the momentum window into two regimes. The inverse healing
length scale, pξ, separate the quadratic (free particle) from the sound wave (Bogoli-
ubov quasiparticle) regimes, while, the scale pµ, the inverse healing length defined
with only noncondensed particles, separates the perturbative (weak-wave) from the
nonperturbative (strong-wave) regime. In this section, we would like to discuss which
types of time evolution should occur in each momentum regime assuming that the
kinetic description can be applied.

In the perturbative regime i.e. for p ≫ pµ whether it is quadratic or sound wave,
the particle cascade is expected to occur. This comes from the fact that all exponents
in the perturbative regime lie in the window of the particle cascade, see Eqs. (3.20),
(3.23) and (2.25). Moreover, we have seen a well established quasiparticle flux in
Figs. 5.3 and 5.6. This observation agrees with previous studies [15–17], an inverse
particle cascade takes place in the perturbative regime.

In the nonperturbative regime, there is a difference between the free particle and
the Bogoliubov quasiparticle cases. In the free particle case, all scaling solutions
are in the self-similar windows, 3 < κ < 5, suggesting that particle number and
energy are dominantly in the infrared and the ultraviolet ends respectively. If the
global conservation laws are taken into account, the only possibility to fulfil the
particle and the energy conservation is to evolve self-similarly in time. This agrees
with Fig. 5.13 where we have seen that the self-similar exponent κS = 4 manifests
in the regime where the scattering integral is negative, implying a decrease of the
number occupation as time progresses. In te Bogoliubov quasiparticle case, the
scaling solutions lie in the particle cascade window, κ < 3, except the energy cascade
solution κP = 3 that stays right at the border which implies a logarithmic divergence
in both the infrared and the ultraviolet ends. We have ruled out the possibility of
self-similar evolution in this case. Therefore, we conclude that an inverse particle
cascade takes place in the nonperturbative sound wave regime.

In the window of nonperturbative quadratic regime, pξ ≪ p ≪ pµ, we expect
the scaling evolution to be self-similar type with a critically slowing down wave front
towards the infrared. Further down in the infrared, p ≪ pξ, where the dispersion be-
comes that of sound waves, an inverse particle cascade takes place instead. However,
the nonperturbative sound wave regime is very close to the coherent regime where
structural defects like vortices are likely to be formed. It might not be possible to
observe it at all unless the vortices have gone. The subdominance of the scaling
exponents in the kinetic theory is emphasized in Fig. 5.17. The occupation number
presented in Fig. 5.17 is taken from the classical statistical calculation at very late
times where the last vortex ring has disappeared. The incompressible part (blue
dots) exhibits the power law, n(p) ∼ p−ζ , where ζ = 3.6. This exponent seems to
coincide with our inverse particle cascade solutions, κQ = 11/3 in the quadratic and
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Figure 5.17: The figure shows the occupation number spectra of the late-stage evolution
of a closed system after an initial quench, briefly after the last vortex ring
has disappeared, cf. Fig. 15 of Ref. [28]. The compressible component (blue
dots), cf. Ref. [28], is starting to be a dominant component of the total
occupation number (black dots) in an absence of vortices. The blue solid line
represents n(p) ∼ p−3.6. The figure is taken from Ref. [51].

κQ = 8/3 in the sound wave cases, see Eq. (2.22). However, we rather conclude that
this exponent, if it is applied in the kinetic regime, is an inverse particle cascade as
a result of sound wave turbulence due to the previous discussion that the self-similar
evolution takes place in the quadratic regime. The same exponent ζ = 3.6 has been
obtained with functional renormalization group methods in Ref. [51].

5.5 Summary
We have numerically evaluated the Boltzmann integral in the kinetic equation de-
rived in Ch. 4 and recovered the Kolmogorov-Zakharov exponents predicted in Ch. 3
by means of scaling arguments. Apart from the value of exponents, the direction
of transport can be read off from the plots of the scattering integral versus κ as it
has been analysed in Ref. [10]. The fluxes of transport are calculated at these expo-
nents to cross check whether they are indeed momentum independent. The results
show that the particle flux is well established in the perturbative regime and the
nonperturbative sound wave regime, see Figs. 5.3, 5.6 and 5.12.

Apart from the Kolmogorov-Zakharov exponents, we determine the self-similar
exponents from the scaling behaviour of the scattering integral. We infer from
Eq. (3.46) that an exponent will be a self-similar exponent if it makes the Boltzmann
integral scaling in the same way as the occupation number. Apparently, it works in
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Table 5.1: Scaling exponents. The table summarizes the scaling exponents for univer-
sal scaling evolutions following a cooling quench, for the case of free particles
(z = 2) and sound quasiparticles (z = 1). Only transport to lower momenta
is relevant for such a quench. The self-similar and cascade evolutions in the
collective scattering regime (p ≪ pµ) have a positive β and slow down al-
gebraically at large times due to their proximity to a non-thermal fixed point
(NTFP). In contrast, β < 0 for the build-up of a weak-wave-turbulence (WWT)
inverse (quasi)particle cascade in the wave-Boltzmann two-body scattering re-
gime (p ≫ pµ), implying a critically accelerated wave-front evolution. The
NTFP self-similar solution is valid only for z within the interval z− ≤ z ≤ z+
where z± = 4(2 ± 1)/3. In the either regimes we have set η = 0. The rightmost
column derives from ζ = κ + 2 − z, cf. Eq. (2.22).

α/β β α′/β′ β′/β κ − d ζ − d

free particles (z = 2)
NTFP

d
1
z

d + z −1 3z − 4
2

z

2p ≪ pµ

WWT cascade
κ

1
z − 8/3 0 0 z − 8

3 −2
3p ≫ pµ

sound waves (z = 1)
NTFP (cascade)

κ
1
z

0 0 z − 8
6

4
6p ≪ pµ ≪ pξ

WWT cascade
κ

1
z − 8/3 0 0 z − 8

3 −2
3pµ ≪ p ≪ pξ

our case as the self-similar exponent predicted in Ch. 3 satisfies such behaviour. We
argue that the self-similar evolution needs the particles and energy in the infrared
and ultraviolet ends respectively, therefore, the occupation number has to go down
as depicted in Fig. 2.1 if pΛ and pλ move to the infrared and the ultraviolet direc-
tion respectively. Thus, only the free particle case in the nonperturbative regime is
expected to show the self-similar scaling.

We then turn our interest to the temporal scaling µ. In the numerical approach,
we are able to evaluate µ in the case of ρnc = const. and the result is universal,
µ = −1 in d = 3 dimensions.

Last, we have discuss the universal dynamics of Bose gas based on our results in
the kinetic regime in Sect. 5.4 and summarized the scaling exponents according to
the dynamics taking place in each regime after scaling exponents before according to
Table 5.1.
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Conclusion
The universal dynamics of a dilute Bose gas in the kinetic regime has three possible
scenarios: an inverse particle transport, a direct energy transport or a self-similar
evolution. In each case, the global conservation laws and the kinetic equation con-
strain the scaling exponents in both momentum and time. These exponents are
apparently universal in the sense that they do not strongly depend on the underlying
microscopic theory but only few parameters such as the dimension, the dispersion
relation and the scaling of T -matrix, and the global conservation laws.

We approached the problem by means of nonequilbrium quantum field theory
and nonperturbatively derived the kinetic equation which is not subject to the weak-
wave approximations. The structure of the kinetic equation is the same as the kinetic
equation derived from weak-wave approximations but with a momentum dependent
effective coupling. We evaluated the effective coupling analytically from the ansatz of
the free particle and the Bogoliubov quasiparticle in the linear regime with an infrared
regularization. The mommentum scalings of the effective coupling are universal, see
Eqs. (4.147) and (4.165), and notably different from the ones obtained from dimen-
sional counting where the divergences and the regularization scales are neglected.
Using the momentum scaling of the effective coupling, we evaluated an effective T -
matrix and determined the momentum scaling exponents: the Kolmogorov-Zakharov
exponents for turbulence cascades and the self-similar scaling exponents. The res-
ults are given in the first column of Tables 3.1 and 3.2 for the perturbative and the
nonperturbative regimes respectively and they are confirmed by our numerical in-
tegration presented in Sect. 5.2. Because the momentum exponents strongly depend
on the scaling behaviour of the effective coupling, then, having a correct momentum
scaling of the effective coupling is crucial.

We studied the time evolution, mainly, the scaling exponents β and β′ of the
regularization scales pΛ(t) ∼ t−β and pλ(t) ∼ t−β′ respectively. We have shown
that the other exponents related to time evolution can be expressed in the terms
of β and β′, see Table 2.1. To determine the values of β and β′, we need both the
global conservation laws and the kinetic equation. We found that there are some in-
consistencies, especially in the self-similar time evolution depicted in Fig. 2.1, if the
quasiparticle does not coincide with a particle, or equivalently, any cases where z ̸= 2.
The quasiparticle conservation violates the particle conservation for the cases with
z ̸= 2, therefore, some other momentum scales, such as pµ, are now time-dependent.
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This makes a difference between the momentum scaling and the time scaling of the
effective T -matrix that are used to constrain and evaluate the exponents β and β′

respectively. We have shown that the inconsistencies disappear under the condition
that there is no other time-dependent scales except pΛ, pλ and Λ. The arguments
apply in both the perturbative and the nonperturbative regimes. It should be noted
that the momentum scales pΛ, pλ and Λ are the only time-dependent momentum
scales appearing in the analysis concerning the global conservation laws. Neverthe-
less, if we neglect the inconsistencies and follow the general procedure by keeping
the quasiparticle and the energy conservation at the infrared and the ultraviolet
ends respectively, we find the universal scaling β = (z − η)−1 in the nonperturbat-
ive regime regardless of whether the type of dynamics represents an inverse cascade
or a self-similar shift in time. This may predict a nonthermal fixed point in the
nonperturbative regime.

We ended with the description of dynamics of a dilute Bose gas in the kinetic
regime based on our results. In the perturbative regime, we expect the turbulence
transport with an accelerating wave front and such a scenario has been observed
numerically in earlier works. In the nonperturbative within the momentum window
pξ ≪ p ≪ pµ, we predicted the self-similar evolution with the momentum exponent
κS = 4 and a critically slowed down wave front pΛ(t) ∼ t−1/2. Further in the infrared
where p ≪ pξ, the inverse cascade of sound-wave turbulence is expected to occur
with the momentum exponent κQ = 8/3 and the critically slow down wave front
pΛ(t) ∼ t−1. Beyond this window, we believe the dynamics is governed by superfluid
turbulence which is not captured by the kinetic equation.

As a side result we find that the momentum scaling exponent κ = 3.5 observed
in the recent experiment [41] for a direct wave-turbulent energy cascade, can be
interpreted to deviate from the predicted value κP = 3 due to finite-size effects in
the trap.
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Appendix A

Convention and useful symmetries
The Fourier transform in d + 1-dimensional space-time reads

F [f(p)](x) = f(x) =
∫ ∞

−∞

dd+1p

(2π)d+1 exp{−ipx}f(p) , (A.1)

F [f(x)](p) = f(p) =
∫ ∞

−∞
dd+1x exp{ipx}f(x) , (A.2)

where the term px is an inner product in d+1 dimensions with the Minkowski metric
(+ − − −),

px = p0x0 − p · x . (A.3)
Therefore, the Fourier transform of the Dirac delta distribution becomes

δd+1(x − y) =
∫ ∞

−∞

dd+1p

(2π)d+1 exp{−i(x − y)p} . (A.4)

In Ch. 4, we study the field theory of a complex scalar Bose field which, in general,
is not different from the real-field representation presented in [45–47]. However, the
symmetries do not always coincide. First, F (x, y) and ρ(x, y) defined in Eqs. (4.26)
and (4.27) are no more symmetric and anti-symmetric functions respectively. Instead,
their symmetry properties are

Fab(x, y) = F ∗
ba(y, x) (A.5)

ρab(x, y) = −ρ∗
ba(y, x). (A.6)

These relations can be verified directly from Eqs. (4.26) and (4.27), for example,
Eq. (4.26) gives

Fab(y, x) = 1
2⟨{Φa(y), Φ†

b(x)} = 1
2⟨Φa(y)Φ†

b(x) + Φ†
b(x)Φa(y)⟩⟩

= 1
2⟨Φb(x)Φ†

a(y) + Φ†
a(y)Φb(y)⟩∗

= 1
2⟨{Φb(x), Φ†

a(y)}⟩∗ = F ∗
ba(x, y). (A.7)

The procedure is similar for ρ(x, y). In the homogeneous case, two-point functions
depend solely on the difference x−y which means there is a translational invariance.

115



Appendix A Convention and useful symmetries

Choosing y = 0, the Fourier transform of Fab(x, y) = Fab(x − y) becomes

Fab(x, 0) = 1
2⟨{Φa(x), Φ†

b(0)}⟩

= 1
2⟨{

∫ dd+1p

(2π)d+1 Φa(p)e−ipx, Φ†
b(0)}⟩

=
∫ dd+1p

(2π)d+1 e−ipx 1
2⟨{Φa(p), Φ†

b(0)}⟩ =
∫ dd+1p

(2π)d+1 e−ipxFab(p) , (A.8)

where F [Fab(x)](p) = ⟨{Φa(p), Φ†
b(0)}⟩/2. Similarly, we also have

Fba(0, x) = 1
2⟨{Φb(0), Φ†

a(x)}⟩

= 1
2⟨{Φb(0),

∫ dd+1p

(2π)d+1 Φ†
a(p)eipx}⟩

=
∫ dd+1p

(2π)d+1
1
2⟨{Φb(0), Φ†

a(−p)}⟩ =
∫ dd+1p

(2π)d+1 e−ipxFba(−p) . (A.9)

The same calculation applies for the Fourier transform of ρ(x) and ρ(−x). Then, the
symmetries of F (p) and ρ(p) can be read off directly,

Fab(p) = F ∗
ba(p) , Fab(−p) = F ∗

ba(−p) (A.10)
ρab(p) = −ρ∗

ba(p) , ρab(−p) = −ρ∗
ba(−p) . (A.11)

Notice that in momentum space, F (p) and ρ(p) are completely separated from F (−p)
and ρ(−p). Although the symmetries of F and ρ are different from the ones obtained
in the real-field representation, the symmetries of traced objects are identical, for
example,

(F · F )(x) = Fab(−x)Fba(x) = (F · F )(−x) , (A.12)
(ρ · ρ)(x) = ρab(−x)ρba(x) = (ρ · ρ)(−x) , (A.13)

(ρ · F − F · ρ)(x) = (ρab(x)Fba(−x) − Fab(x)ρab(−x))
= −(ρ · F − F · ρ)(−x) . (A.14)

The Fourier transform of traced objects can be obtained directly,

Fab(x)Fba(−x) =
( ∫ dd+1p

(2π)d+1 e−ipxFab(p)
)( ∫ dd+1q

(2π)d+1 e−iqxFba(−q)
)

=
∫ dd+1p

(2π)d+1

∫ dd+1q

(2π)d+1 e−i(p+q)xFab(p)Fba(−q)

=
∫ dd+1p

(2π)d+1 e−ipx
∫ dd+1q

(2π)d+1 Fab(p − q)Fba(−q)

=
∫ dd+1p

(2π)d+1 e−ipx(Fab ∗ Fba)(p) , (A.15)
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where the ∗ operator defined by

(Fab ∗ Fba)(p) =
∫ dd+1q

(2π)d+1 Fab(p − q)Fba(−q). (A.16)

In the similar manner,

θ(x0)Πρ(−x0, −x) =
∫ dd+1p

(2π)d+1

∫ dq0

(2π)e−iq0x0e−ip0x0+ip·xθ(q0)Πρ(−p0, −p)

=
∫ dd+1p

(2π)d+1 e−ip0x0+ip·x
∫ dq0

(2π)θ(q0)Πρ(q0 − p0, −p)

=
∫ dd+1p

(2π)d+1 e−ipx(θ ∗ Πρ)(p) . (A.17)

Note that there is an extra factor (2π)−(d+1) from the definition in Eq. (4.74) because
the convolution is done in momentum space. Thus, it can be verified that

[F ∗ F ](−p) = 2ΠF (−p) = 2ΠF (p) , (A.18)
[ρ ∗ F − F ∗ ρ](−p) = 2Πρ(−p) = −2Πρ(p) . (A.19)

From the symmetries of F (p) and ρ(p), we can prove the following relation,

Πρ∗(p) = Πρ(−p) = −Πρ(p) , (A.20)

(θ ∗ Πρ)(−p) =
∫ dq0

(2π)θ(q0)Πρ(q0 + p0, p)

= −
∫ dq0

(2π)θ(−q0)Πρ(q0 − p0, −p)

= −
∫ dq0

(2π)θ−(q0)Πρ(q0 − p0, −p) = −(θ− ∗ Πρ)(p) , (A.21)

(θ ∗ Πρ)∗(p) =
∫ dq0

(2π)θ∗(q0)Πρ∗(q0 − p0, −p)

= −
∫ dq0

(2π)θ−(q0)Πρ(q0 − p0, −p) = −(θ− ∗ Πρ)(p) , (A.22)

where θ(p) is a Fourier transform of the Heaviside function θ(x)

θ(p0) = i

p0 + iϵ
, (A.23)

θ(−p0) = θ∗(p0) = −i

p0 − iϵ
= θ−(p0) . (A.24)

Note that θ(x) and its Fourier transform θ(p) depend only on the temporal component
of the respective 4-vector. Thus, the operations · and ∗ with θ(x) or θ(p) are done
only in the temporal component.
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In Ch. 4, we have evaluated the effective coupling function,

g2
eff(p) = g2

|1 + gΠR(p)|2

= g2

[1 + gΠR(p)][1 + gΠR∗(p)] (A.25)

where ΠR(p) = −(θ ∗ Πρ)(p). It is straightforward to see that g2
eff(p) = g2

eff(−p).
From there, we can evaluate more symmetries of IF (p) and Iρ(p), see Eqs. (4.84)
and (4.85),

IF (p) = ~(ΠF · g2
eff)(p) = IF (−p) , (A.26)

Iρ(p) = ~(Πρ · g2
eff)(p) = −Iρ(−p) , (A.27)

IF ∗(p) = IF (p) , (A.28)
Iρ∗(p) = −Iρ(p) , (A.29)

(IF ∗ Fba)(p) = (IF ∗ Fab)∗(p) , (A.30)
(Iρ ∗ Fba)(p) = −(Iρ ∗ Fab)∗(p) , (A.31)
(IF ∗ ρba)(p) = −(IF ∗ ρab)∗(p) . (A.32)

These symmetries imply, see Eqs. (4.93) and (4.94),

ΣF
ab(p) = ΣF ∗

ba (p) (A.33)
Σρ

ab(p) = −Σρ∗
ba(p) . (A.34)

We can use the symmetries in the momentum space to identify the symmetries in
the configuration space,

IF (−x) = IF ∗(x) = IF (x) , (A.35)
Iρ(−x) = −Iρ∗(x) = −Iρ(x) , (A.36)

ΣF
ab(−x) = ΣF ∗

ba (x) , (A.37)
Σρ

ab(−x) = −Σρ∗
ba(x) . (A.38)

Note that self-energy functions, ΣF (x) and Σρ(x) share the same symmetries with
Fab(x) and ρab(x) respectively.
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Appendix B

Nonequilibrium quantum field theory

B.1 Closed-time-path integral
The Closed-time-path (CTP) formalism (also known as the Schwinger-Keldysh form-
alism) is an essential tool for studying nonequilibrium dynamics due to its property
of preserving causality.

B.1.1 Single-time-contour formalism
In equilibrium, a conventional single time path can substitute the closed time path
without costs. To see why this is the case, we recall the vacuum-to-vacuum transition
amplitude from quantum field theory,1

Z[J ] = ⟨Ω|Ω⟩J (B.1)

where the state |Ω⟩ is a vacuum state of an interacting theory at a particular time t0.
The subscript J is used to remind that the quantities are evaluated with an external
source-dependent Hamiltonian

HJ(t0) = H(t0) +
∫

ddxΦS(x)J(t0, x) , (B.2)

where ΦS(x) is a field in the Schrödinger picture and it coincides with the Heisenberg
field Φ(x) at time t0. Note that if J = 0, Z[0] has to be normalized, i.e. Z[0] = 1.
The Heisenberg field at time t reads

Φ(x) = U †
J(t, t0)Φs(x)UJ(t, t0) , (B.3)

where
UJ(t, t′) = T

{
exp[− i

~

∫ t

t′
dt1HJ(t1)]

}
. (B.4)

The operator T is the time-ordering operator which makes operators evaluated at
time t > t′ to stand to the left of operator evaluated at time t′. In the following

1We used Z[J ] in the discussion because the observables that we are interested in are n-point
functions which are generated from Z[J ]. Otherwise, one can inspect an expectation value of
any time-dependent observables to reach the same conclusion.
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discussion, we will treat the source-dependent term as an interaction part of the
Hamiltonian in the interaction picture, therefore the interaction picture representa-
tion of the field operator is defined by

ΦI(x) = U †(t, t0)Φs(x)U(t, t0) (B.5)

where
U(t, t′) = T

{
exp[− i

~

∫ t

t′
dt1H(t1)]

}
. (B.6)

Supposing a Fock basis at time t0 is labelled by |α⟩, the interaction picture repres-
entation of the state vector at time t reads2

|α(t)⟩I = U †(t, t0)|α(t)⟩S = U †(t, t0)UJ(t, t0)|α⟩ = SJ(t, t0)|α⟩ . (B.7)

It is straightforward to verify that

SJ(t, t′) = T
{

exp[− i

~

∫ t

t′
dt1ΦI(t1, x)J(t1, x)]

}
. (B.8)

We remark that setting J = 0 gives SJ=0(t, t′) = 1 implying that the interaction
picture coincides with the Heisenberg picture.3 The vacuum state |Ω⟩ can now be
expressed in the terms of the free vacuum in the infinite past and future using Gell-
Mann-Low formulas [107, 108],

|Ω⟩J = SJ(t0, −∞)|0(−∞)⟩ , (B.9)
⟨Ω|J = ⟨0(+∞)|SJ(+∞, t0) . (B.10)

Using these relations requires several assumptions. First, states |0(±∞)⟩ will repres-
ent the vacuum of the free theory only if the source J vanishes at t → ±∞. Second,
these relations will be valid only in an adiabatic process, otherwise, there may not
be an overlap between |Ω⟩J and |0(±∞)⟩. This explains why the "bra" is connected
to ⟨0(+∞)| instead of ⟨0(−∞)|, the vacuum evolves uniquely to be the vacuum at
a different time. These requirements are fulfilled in equilibrium or near-equilibrium
processes but fail in nonequilibrium where the dynamics is more violent to be con-
sidered adiabatic. Now we are able to rewrite Eq. (B.1) explicitly in terms of the
source J ,

Z[J ] = 1
Z0

⟨0(+∞)|SJ(∞, −∞)|0(−∞)⟩

= 1
Z0

⟨0(+∞)|T
{

exp[− i

~

∫ ∞

−∞
dt1ΦI(t1, x)J(t1, x)]

}
|0(−∞)⟩ , (B.11)

2Since S(t, t0) = S(t, t′)S(t′, t0), the state at the time t is linked to state at time t′ by |α(t)⟩I =
SJ(t, t′)|α(t′)⟩I .

3Because of this, one can say that the time-independent Heisenberg state (J = 0) becomes a
time-dependent state under the influence of an external source J [44].
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where Z0 = ⟨0(+∞)|0(−∞)⟩. Here, we interpret |0(±∞)⟩ as a Heisenberg vacuum
state at time t → ±∞ and |0(∞)⟩ ̸= |0(−∞)⟩ in general because the vacuum state
at time t → −∞ is defined to be a state that is annihilated by the operator a(t) at
time t → −∞,

a(−∞)|0(−∞)⟩ = 0 . (B.12)
Since the operator a(∞) = U †(∞, −∞)a(−∞)U(∞, −∞), it is not necessary that
|0(−∞)⟩ will also be annihilated by a(∞). Therefore, Z0 is not normalized in general
and the factor 1/Z0 is needed in the Eq. (B.11) to keep Z[J = 0] normalized.

The n-point functions encoded in Z[J ] are defined as a time-order products of
the Heisenberg fields

G(n)(x1, x2, · · · xn) = ⟨Ω|T
(
Φ(x1)Φ(x2) · · · Φ(xn)

)
|Ω⟩ . (B.13)

Here, the expectation value was made with respect to the vacuum at time t0. Nev-
ertheless, we can use the form that was introduced by turning the Heisenberg fields
into interaction fields, Φ(xi) = S†(t, t0)ΦI(xi)S(t, t0),

G(n)(x1, x2, · · · xn) = 1
Z0

⟨0(+∞)|S(+∞, t1)ΦI(x1)S(t1, t2)ΦI(x2) · · ·

× ΦI(xn)S(tn, −∞)|0(−∞)⟩ , (B.14)

where we assumed t1 > t2 > · · · > tn and added the normalization factor 1/Z0.
Eq. (B.14) is the usual form in S-matrix theory and can be understood that the
n-point function is a collective evolution from t → −∞ to tn to tn−1 and so on until
it reaches t → +∞. The evolution from t → −∞ to t → +∞ motivates the name
a " single time contour". This approach makes the task of calculating dynamical
in-out matrix elements a boundary value problem since the n-point functions here
are bounded by two different states: |0(−∞)⟩ and |0(+∞)⟩. This is another crucial
point because nonequilibrium processes in closed systems are determined by the
initial state only. The presence of |0(+∞)⟩ also demands that the n-point function
contains S(+∞, t1) which means the contributions at t′ > t1 are needed to evaluate
n-point functions even though the latest time is t1.

B.1.2 Closed-time-path formalism
The problems that were mentioned can be fixed by using the state |Ω⟩ in all expecta-
tion values. To do this, we employ the Schwinger-Keldysh formalism by redefinition
of the generating function,

Z[J1, J2] = ⟨Ω|SJ2(t0, t∗)SJ1(t∗, t0)|Ω⟩ , (B.15)

where

SJ1(t∗, t0) = T
{

exp[− i

~

∫ t∗

t0
dt1Φ1

I(t1, x)J1(t1, x)]
}

,

SJ2(t0, t∗) = T̃
{

exp[− i

~

∫ t0

t∗
dt1Φ2

I(t1, x)J2(t1, x)]
}

. (B.16)
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Here, T̃ is an anti-time-ordering operator and it is needed to indicate that SJ2(t0, t∗)
is a backward time-evolution. The first different from Eq. (B.11) is that there is no
need of a normalizing factor here because Z[J, J ] = 1 automatically. Next, there
are two sources (J1 and J2) and two fields (Φ1

I and Φ2
I) instead of J and ΦI . This

is needed to distinguish the "forward time path" (t0 → t∗) from the "backward time
path" (t∗ → t0). Combining the paths sequentially gives the "closed time path"
(CTP). The generating function in Eq. (B.15) is defined within the time window
t0 < t < t∗ where t∗ serves as an arbitrary time but should be larger than the time
scale of any observable of interest. This point will become clear when we write down
n-point functions. In fact, n-point functions on the CTP are not so straightforward
because the fields ΦI can live on either the forward or the backward time path and
the time ordering must respect the closed time contour. For example, if t1 > t2,
ΦI(x1) will stay on the left side of ΦI(x2) in the case that both of them live on the
forward time branch but ΦI(x1) will be on the right side of ΦI(x2) if both of them
live on backward time branch. If they live on different time branches, fields on the
forward time branch will always be on the right side of fields on the backward path.
Because of this, the number of n-point functions are duplicated on the CTP, i.e.
there are two 1-point functions,

G
(1)
1 (x) = φ1(x) = ⟨Ω|SJ2(t0, t∗)SJ1(t∗, t)Φ1

I(x)SJ1(t, t0)|Ω⟩ , (B.17)
G

(1)
2 (x) = φ2(x) = ⟨Ω|SJ2(t0, t)Φ2

I(x)SJ2(t, t∗)SJ1(t∗, t0)|Ω⟩ , (B.18)
however, they collapse to the same function if we choose J1 = J2 = J ,4

φ(x) = ⟨Ω|SJ(t0, t)ΦI(x)SJ(t, t0)|Ω⟩ . (B.19)
Notice that there is no evolution beyond t involving the calculation of a local observ-
able at time t′ > t. As for 2-point functions, there are four possibilities,

G
(2)
11 (x1, x2) = ⟨Ω|T [Φ1(x1)Φ1(x2)]|Ω⟩ , (B.20)

G
(2)
12 (x1, x2) = ⟨Ω|Φ2(x2)Φ1(x1)|Ω⟩ , (B.21)

G
(2)
21 (x1, x2) = ⟨Ω|Φ2(x1)Φ1(x2)|Ω⟩ , (B.22)

G
(2)
22 (x1, x2) = ⟨Ω|T̃ [Φ2(x1)Φ2(x2)]|Ω⟩ , (B.23)

where Φ(x) is a Heisenberg field. Setting J1 = J2 = J , we obtain similar expressions
as in Eq. (B.19),

G
(2)
21 (x1, x2) = ⟨Ω|SJ(t0, t1)ΦI(x1)SJ(t1, t2)ΦI(x2)SJ(t2, t0)|Ω⟩ , (B.24)

G
(2)
12 (x1, x2) = ⟨Ω|SJ(t0, t2)ΦI(x2)SJ(t2, t1)ΦI(x1)SJ(t1, t0)|Ω⟩ , (B.25)

G
(2)
11 (x1, x2) = G

(2)
21 (x1, x2)Θ(t1 − t2) + G

(2)
12 (x1, x2)⟩Θ(t2 − t1) , (B.26)

G
(2)
22 (x1, x2) = G

(2)
12 (x1, x2)Θ(t1 − t2) + G

(2)
21 (x1, x2)⟩Θ(t2 − t1) . (B.27)

4The short cut to Eq. (B.19) is to realize that the Heisenberg field is linked to the interaction
field by Φ(x) = S†

J(t, t0)ΦI(x)SJ(t, t0). Therefore, ⟨Ω|Φ(x)|Ω⟩ = ⟨Ω|S†
J(t, t0)ΦI(x)SJ(t, t0)|Ω⟩

automatically. This shows that the closed time path is an appropriate contour for evaluating
the expectation value of the operators.
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Again, no evolution beyond t1 is needed. Note that not all 2-point functions are
independent, only two out of four are needed. Moreover, all observables together
now form a "true" expectation value with respect to the same initial state |Ω⟩ [97],
therefore for all Hermitian operators, the observables will be real. Hence in the CTP
formalism, observables are real and respect causality. We remark that causality
is obeyed because the Hamiltonian on the forward and backward time paths are
assumed to be identical. Otherwise, Φ1

I(x) would be different from Φ2
I(x) due to the

different Hamiltonians and SJ1 can not be combined with SJ2 even if the sources J1
and J2 are set to be the same.

B.1.3 Path integral representation of CTP formalism and its
effective action

We would like to recover the path-integral representation on the CTP as we did in the
single-time formalism. Since the structure is the same all properties of path-integrals
also apply in the CTP formalism. One can argue that the closed-time contour is,
more or less, similar to two single-time contours. Therefore, if t∗ is sent to ∞ and
t0 is pushed to −∞, a closed-time contour now consists of two single-time contours,
the first one runs from t0 → −∞ to t∗ → ∞ and the second one from t∗ → ∞ to
t0 → −∞. The difference compared to the single-time formalism is that these two
time contours are not fully independent. There is a constraint condition at t∗ → ∞.
For example, J1 = J2 and Φ1 = Φ2 to ensure that these two single-time contours
form one closed-time contour. Moreover, at t∗ → ∞, the path integral is not only
considered with |0(∞)⟩ but with a complete set of some eigenstates,

Z[J1, J2] =
∑

α

⟨Ω, −∞|α, +∞⟩J2⟨α, +∞|Ω, −∞⟩J1 , (B.28)

where |Ω, −∞⟩ is the very same state |Ω⟩ but we deliberately chose t0 → −∞. From
now on, we would like to assume that the Schrödinger field operator ΦS(x) is a real
scalar boson field operators with commutation relations

[ΦS(x), ΠS(x′)] = δd(x − x′) , (B.29)
[ΦS(x), ΦS(x′)] = [ΠS(x), ΠS(x′)] = 0 , (B.30)

where ΠS(x) is the conjugate momentum field operator of ΦS(x) in the Schrödinger
picture. The Heisenberg field ΦH(x) = U †

J(t, t0)ΦS(x)UJ(t, t0) satisfies the same set
of commutation relations but at equal times,

[ΦH(x, t), ΠH(x′, t)] = δd(x − x′) , (B.31)
[ΦH(x, t), ΦH(x′, t)] = [ΠH(x, t), ΠH(x′, t)] = 0 . (B.32)

Here, we explicitly labelled the Heisenberg field with subscript H to avoid confusion.
As the ΦS(x) at different space points commute with each other, there is a complete
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set of simultaneous eigenstates |Φ⟩ with eigenvalue Φ(x),

ΦS(x)|Φ⟩ = Φ(x)|Φ⟩ , (B.33)∫
[dΦ]|Φ⟩⟨Φ| = 1 . (B.34)

In the Heisenberg picture, the eigenstates of Φ(x) with an eigenvalue Φ(x) are de-
noted by |Φ, t⟩

ΦH(x)|Φ, t⟩ = Φ(x)|Φ, t⟩ , (B.35)∫
[dΦ]|Φ, t⟩⟨Φ, t| = 1 . (B.36)

where |Φ, t⟩ = U †
J(t, t0)|Φ⟩. It should be pointed out that |Φ, t⟩ is totally different

from |Φ(t)⟩ = UJ(t, t0)|Φ⟩ which is a Schrödinger time-dependent state. |Φ, t⟩ is only
an eigenstate of the Heisenberg field at different times with the same eigenvalue as at
time t0. The same arguments also apply to the momentum operator Π(x), therefore,
the matrix element ⟨α, +∞|Ω, −∞⟩J1 (and also ⟨Ω, −∞|α, +∞⟩J2) can be treated as
in quantum mechanics [109, 110]. By slicing the matrix element with

∫
[dΦ]|Φ, t⟩⟨Φ, t|

at the discrete set of times {tN}, i.e.5

⟨α, +∞|Ω, −∞⟩J1 =
∫

[dΦN ][dΦN−1] · · · [dΦ1][dΦ0]

× ⟨α, +∞|ΦN , tN⟩⟨ΦN , tN |ΦN−1, tN−1⟩⟨ΦN−1, tN−1| · · ·
× ⟨Φ1, t1|Φ0, t0⟩⟨Φ0, t0|Ω, −∞⟩J1 , (B.37)

one obtains a path-integral representation of the matrix element,

⟨α, +∞|Ω, −∞⟩J1 =
∫

D′Φ1 exp
[ i

~

∫ ∞

−∞
dt
∫

ddx
(
L[Φ1] + J1(x)Φ1(x)

)]
, (B.38)

⟨Ω, −∞)|α, +∞⟩J2 =
∫

D′Φ2 exp
[ i

~

∫ −∞

∞
dt
∫

ddx
(
L[Φ2] + J2(x)Φ2(x)

)]
, (B.39)

where L[Φ] is a Lagrangian density of the system. The prime on the integral over
field configurations indicates that there are boundary conditions due to the first and
last matrix elements. They are ⟨Φ, t0|Ω, −∞⟩ and ⟨α, +∞|Φ, tN⟩ on the forward time
path and ⟨Φ, tN |Ω, −∞⟩ and ⟨α, +∞|Φ, t0⟩ on the backward time path.

By defining an action S[Φ] =
∫∞

−∞ dt
∫

ddxL[Φ], we obtain

Z[J1, J2] =
∫

dΦα

∫
D′Φ1D′Φ2 exp

{ i

~
[
(S[Φ1] − S[Φ2]) +

∫
x
(J1Φ1 − J2Φ2)

]}
=
∫ C

D′Φ exp
{ i

~
[
SC[Φ] +

∫ C

x
J(x)Φ(x)

]}
, (B.40)

5 The times t0 and tN are set to be −∞ and +∞ respectively. Also, it is convenient to choose
|α, +∞⟩ to be |Φ, +∞⟩ because the only requirement of the state |α, +∞⟩ is to be a complete set.
A subscript i where i ∈ {0, 1, · · · , N} has been used to distinguish each completeness identity
for each time slicing. In this notation we write ΦH(x)|Φi, t⟩ = Φi(x)|Φi, t⟩. The time-dependent
field Φ(x, t) is a result of the interpolation Φi(x) between the discrete times tN [109].
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B.1 Closed-time-path integral

where
∫

x stands for
∫∞

−∞ dt
∫

ddx and SC[Φ] is defined by S[Φ1] − S[Φ2]. The integral
dΦα is a sum over all possible configurations at t → ∞ and we drop it by introducing
the notation C to indicate that the integral over time is performed on the closed time
contour so sum over all possible configurations of the fields at any time along the
closed time contour. Also, the prime over the integration is a reminder that there is
an initial condition at t0.

It is helpful to see that Z[J1, J2] is a generating functional in the CTP formalism.
Starting with 1-point functions, both of them can be obtained through the functional
derivative of Z[J1, J2],

~
i

δZ[J1, J2]
δJ1(x) =

∑
α

⟨Ω, −∞|α, +∞⟩J2⟨α, +∞|Φ1
H(x)|Ω, −∞⟩J1

= ⟨Ω, −∞|ΦH(x)|Ω, −∞⟩J = φ(x) ; J1 = J2 = J , (B.41)

−~
i

δZ[J1, J2]
δJ2(x) =

∑
α

⟨Ω, −∞|Φ2
H(x)|α, +∞⟩J2⟨α, +∞|Ω, −∞⟩J1

= ⟨Ω, −∞|ΦH(x)|Ω, −∞⟩J = φ(x) ; J1 = J2 = J . (B.42)

The same applies to 2-point functions,(
~
i

)2
δ2Z[J1, J2]

δJ1(x)δJ1(y) =
∑

α

⟨Ω, −∞|α, +∞⟩J2⟨α, +∞|T [Φ1
H(x)Φ1

H(y)]|Ω, −∞⟩J1

= ⟨Ω, −∞|T [ΦH(x)ΦH(y)]|Ω, −∞⟩J = G
(2)
11 (x, y) , (B.43)

−
(
~
i

)2
δ2Z[J1, J2]

δJ1(x)δJ2(y) = ⟨Ω, −∞|ΦH(y)ΦH(x)|Ω, −∞⟩J = G
(2)
12 (x, y) , (B.44)

−
(
~
i

)2
δ2Z[J1, J2]

δJ2(x)δJ1(y) = ⟨Ω, −∞|ΦH(x)ΦH(y)|Ω, −∞⟩J = G
(2)
21 (x, y) , (B.45)(

−~
i

)2
δ2Z[J1, J2]

δJ2(x)δJ2(y) = ⟨Ω, −∞|T̃ [ΦH(x)ΦH(y)]|Ω, −∞⟩J = G
(2)
22 (x, y) , (B.46)

and higher-order of n-point functions. As in the single-time formalism, these n-point
functions consist of both connected and disconnected contributions. The sources in
both time branches must be set to be equal, J1 = J2 = J , before we can claim they
are n-point functions in the canonical formalism [111, 112].

The generating function W [J1, J2] that generates only connected diagrams is
defined in a similar way as in the single-time formalism,

W [J1, J2] = −i~ ln Z[J1, J2] , (B.47)

and the effective action is a Legendre transform of W [J1, J2]

Γ[φ1, φ2] = W [J1, J2] −
∫

x

[
φ1(x)J1(x) − φ2(x)J2(x)

]
, (B.48)
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Appendix B Nonequilibrium quantum field theory

where φa(x) = (−1)a−1δW [J1, J2]/δJa(x); a = 1, 2 which are 1-point functions. It is
straightforward to show that

δΓ[φ1, φ2]
δφ1(x) = −J1(x) , (B.49)

δΓ[φ1, φ2]
δφ2(x) = J2(x) . (B.50)

Once the sources J1 and J2 are set to zero, we obtain dynamic equations of φ1 and φ2
respectively. Even though there are two field variables and two dynamical equations
on each time branch, δΓ/δφ1,2 = 0, these equations are supposed to coincide in the
limit J1 = J2. This can be seen from the vanishing of the effective action in that
limit

Γ[φ, φ] = −i~ ln Z[J, J ] −
∫

x
(Jφ − Jφ) = 0 , (B.51)

where we used Z[J, J ] = 1. We then introduce the new field variables

φ+ = 1
2(φ1 + φ2) , (B.52)

φ− = φ1 − φ2 , (B.53)

and expand the effective action in these new variables

Γ[φ+, φ−] = φ−(x)N1(x) + φ+(x)M1(x) + 1
2φ−(x)N2(x, x′)φ−(x′)

+1
2φ+(x)M2(x, x′)φ+(x′) + 1

2φ+(x)D2(x, x′)φ−(x′) + . . . .(B.54)

Since Γ has to vanish when J1 = J2, all terms that contain only φ+ and no φ− are
zero. This condition enforces all M functions to be zero. Then, the dynamics of
φ+ obtained from δΓ/δφ+ = 0 is trivial in the limit φ1 = φ2, and only non-trivial
dynamics lies in the φ− [113].

So far, we assumed pure states in the sense that the observables are expectation
values with respect to a single state, a vacuum state. In the case that mixed states are
involved, we need to incorporate the density operator into the generating functional.
We use the observation that in the operator language, the expectation value of an
observable reads

⟨O⟩ = Tr [Oρ0] , (B.55)

where ρ0 is a density operator, presumingly is defined at initial time. The generating
functional then shall be redefined by

Z[J1, J2; ρ0] = Tr{SJ2(t0, t∗)SJ1(t∗, t0)ρ0} . (B.56)

As a result, n-point functions can be evaluated by tracing with the density operator,
for example,

φ(x) = Tr{ΦH(x)ρ0} , (B.57)
G

(2)
11 (x, y) = Tr{T [ΦH(x)ΦH(y)ρ0]} , (B.58)
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B.1 Closed-time-path integral

where we have set J1 = J2 = J . To recover the path-integral representation, we per-
form the very same time slicing as we did before, however, the generating functional
in Eq. (B.56) is written in S-matrix form. Hence, we use interaction-picture fields
ΦI(x) instead of Heisenberg fields ΦH(x). Since the ΦI(x) also commute at an equal
times, there exists a complete set of simultaneously eigenstates |Φ, t⟩I of ΦI(x) with
eigenvalues Φ(x),

ΦI(x)|Φ, t⟩I = Φ(x)|Φ, t⟩I , (B.59)∫
[dΦ]|Φ, t⟩I⟨Φ, t|I = 1 , (B.60)

where |Φ, t⟩I = U †(t, t0)|Φ⟩. Again, the state |Φ, t⟩I has nothing to do with a time-
dependent state in the interaction picture |Φ(t)⟩I = SJ(t, t0)|Φ⟩. The path integral
representation can be formed using these eigenstates,

Z[J1, J2; ρ0] =
∫

[dΦ−]
∫

[dΦ+]⟨Φ+|ρ0|Φ−⟩⟨Φ−|SJ2(t0, t∗)SJ1(t∗, t0)|Φ+⟩ , (B.61)

where |Φ±⟩ = |Φ±, t0⟩I . The first factor in the integrand in Eq. (B.61) is a matrix
element at time t0, therefore this term is interpreted as the initial condition. The
second factor is a path integral over a closed-time path and dynamics is encoded
here. Time slicing by the completeness identity will be done in this second factor,

⟨Φ−|SJ2(t0, t∗)SJ1(t∗, t0)|Φ+⟩

=
∫

[dΦN ][dΦN−1] · · · [dΦ1][dΦ0]⟨Φ−|SJ2(t0, tN)|ΦN , tN⟩I

× ⟨ΦN , tN |ISJ2(tN , tN−1)|ΦN−1, tN−1⟩I⟨ΦN−1, tN−1|I · · ·
× ⟨Φ1, t1|ISJ1(t1, t0)|Φ, t0⟩I⟨Φ, t0|IΦ+⟩ . (B.62)

Note that SJ which occurs in each factor can be rewritten in terms of ⟨Φf |UJ(tf , ti)|Φi⟩,
⟨Φf , tf |ISJ(tf , ti)|Φi, ti⟩I = ⟨Φf |U(tf , t0)SJ(tf , t0)SJ(t0, ti)U †(ti, t0)|Φi⟩

= ⟨Φf |U(tf , t0)
(
U †(tf , t0)UJ(tf , t0)

)
×
(
U †(ti, t0)UJ(ti, t0)

)†
U †(ti, t0)|Φi⟩

= ⟨Φf |UJ(tf , t0)U †
J(ti, t0)|Φi⟩

= ⟨Φf |UJ(tf , ti)|Φi⟩ . (B.63)
Therefore the path integral takes the same form as in Eq. (B.40) and thus, Eq. (B.61)
becomes

Z[J1, J2; ρ0] =
∫

[dΦ−][dΦ+]⟨Φ+|ρ0|Φ−⟩
∫ C Φ−

Φ+
D′Φ exp

{ i

~
[
SC[Φ] +

∫ C

x
J(x)Φ(x)

]}
,

(B.64)
again, we use C to remind that the time integration is done over the closed-time
contour and the refer to Φ± at the integral limits the constraints at the beginning
and the end of the path. We end this section by recalling that all formulations are
assumed to be for a real scalar field. The extension to more than one component or
the complex scalar field is straightforward.
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Appendix B Nonequilibrium quantum field theory

B.2 2-particle irreducible effective action
We have seen that the dynamic equations for mean fields φ(x) can be obtained
through the relation δΓ[φ]/δφ(x) = 0. This relation is a direct consequence of having
the local external source J(x) in the generating functional Z[J ]. In this section, we
are going to show that the presence of nonlocal external sources gives the dynamic
equations for higher n-point functions. However, we will mainly focus on the 2PI
formalism and dynamic equations for 1- and 2-point functions.

B.2.1 The generating of n-particle irreducible (nPI) formalism
The nPI generating functional takes the form

Z[Ja, Kab, ..] =
∫ C

DΦDΦ∗ exp
[

i

~

{
SC[Φ, Φ∗] +

∫ C

x
Ja(x)Φa(x) (B.65)

+ 1
2

∫ C

xy
Kab(x, y)Φa(x)Φ∗

b(y)

+ 1
6

∫ C

xyz
Kabc(x, y, z)Φa(x)Φ∗

b(y)Φc(z) + . . .
}]

, (B.66)

where all K terms represent nonlocal sources in the sense that they are the functions
of more than one space-time point. The indices a = 1, 2 label the field and its
complex conjugate i.e. Φ1(x) = Φ(x) and Φ2(x) = Φ∗(x). In this convention, Φ1(x)
and Φ2(x) are related by the transformation Φ∗

a(x) = σ1
abΦb(x) where σ1 is the first

Pauli metrix. Also the label C is used to remind that the integration, whether in
space-time or field variables, is to be understood within the CTP formalism. There
are some useful symmetries of the kernels K that will be needed later on. We start
with Kab(x, y), observing that∫ C

xy
Kab(x, y)Φa(x)Φ∗

b(y) =
∫ C

xy
Kab(x, y)Φ∗

b(y)Φa(x)∫ C

xy
Kab(x, y)σ1

aa′Φ∗
a′(x)σ1

bb′Φb′(y) =
∫ C

xy
Kba(y, x)Φ∗

a(x)Φb(y) . (B.67)

By interchanging primed and un-primed indices on the LHS, it can be seen that

Kba(y, x) = σ1
aa′σ1

bb′Ka′b′(x, y) . (B.68)

The other K have similar properties, namely, the relation in Eq. (B.68) holds for
any pairs of indices ab that are contracted with ΦaΦ∗

b but for a pair of indices ab
contracted with ΦaΦb or Φ∗

aΦ∗
b , they are completely symmetric. For example, taking

Kabc(x, y, z), we have the following relations,

Kbac(y, x, z) = σ1
aa′σ1

bb′Ka′b′c(x, y, z) , (B.69)
Kacb(x, z, y) = σ1

bb′σ1
cc′Kab′c′(x, y, z) , (B.70)

Kcba(z, y, x) = Kabc(x, y, z) . (B.71)

128



B.2 2-particle irreducible effective action

The connected generating functional is defined by

W [Ja, Kab, . . .] ≡ −i~ ln Z[Ja, Kab, . . .] , (B.72)

and the effective action is a multiple Legendre transformation of W [Ja, Kab, . . .]

Γ[φa, Gab, . . .] = W [Ja, Kab, . . .] −
∫ C

x
Ja(x)φa(x)

− 1
2

∫ C

xy
Kab(x, y)

[
φa(x)φ∗

b(y) + ~Gab(x, y)
]

− 1
6

∫ C

xyz
Kabc(x, y, z)

[
φa(x)φ∗

b(y)φc(z) + ~φa(x)Gcb(z, y)

+ ~σ1
cc′φ∗

b(y)Gac′(x, z) + ~φc(z)Gab(x, y) + ~3/2Gabc(x, y, z)
]

− . . . , (B.73)

where the mean field φa(x) is defined by the functional derivative with respect to the
local source Ja(x).

δW

δJa(x) = φa(x) , (B.74)

and the nonlocal kernels Gab(x, y), Gabc(x, y, z), . . . are defined by

δW

δKab(x, y) = 1
2

{
φa(x)φ∗

b(y) + ~Gab(x, y)
}

(B.75)

δW

δKabc(x, y, z) = 1
6

{
φa(x)φ∗

b(y)φc(z) + ~φa(x)Gcb(z, y)

+ ~σ1
cc′φ∗

b(y)Gac′(x, z) + ~φc(z)Gab(x, y)

+ ~3/2Gabc(x, y, z)
}

, (B.76)

and so on. It can be seen that δW/δKab = δ2Z/δJ∗
b δJa which is the total 2-point

functions containing both connected and disconnected contributions. Therefore, by
including φa(x)φ∗

b(y) in Eq. (B.75) which are the disconnected contribution of the
2-point functions, Gab become the connected 2-point functions once external sources
on both time branches have been set to be equal i.e. J1 = J2 = J . A similar
procedure is followed for the other G, for example in Eq. (B.76), δW/δKabc are 3-
point functions so we need to explicitly add disconnected contributions to make Gabc

being a connected 3-point function. The first term is a product of three 1-point
functions which is straightforward. The tricky terms are the combinations of 1- and
2-point functions because of the rule that the index b must be a conjugate index
(contraction with Φ∗). To form these terms, we pair two of three indices abc and
turn the pair into G. For example, if we pair ab, we get φcGab which is fine because
the second index of Gab is a conjugate index. If we now want to pair ac, it becomes
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Appendix B Nonequilibrium quantum field theory

problematic because neither a nor c are conjugate indices and it is impossible to form
Gac. To overcome this problem, we observe that

Φa(x)Φ∗
b(y)Φc(z) = σ1

cc′Φa(x)Φ∗
b(y)Φ∗

c′(z) , (B.77)

so instead pairing indices ac directly, we pair ac′ with the cost of having σ1
cc′ in the

expression. As for a pair bc, one can use the same procedure

Φa(x)Φ∗
b(y)Φc(z) = σ1

bb′σ1
cc′Φa(x)Φb′(y)Φ∗

c′(z) , (B.78)

such that one gets σ1
bb′σ1

cc′Gb′c′(y, z) as a result of pairing b′c′ gives Gcb(z, y) since it
shares the structure of Kab(x, y).6 The corresponding inverse transformations are7

δΓ
δφa(x) = −Ja(x) −

∫ C

y
φ∗

b(y)Kab(x, y)

− 1
2

∫ C

yz
Kabc(x, y, z)

[
φ∗

b(y)φc(z) + ~Gcb(z, y)
]

− . . . , (B.79)
δΓ

δGab(x, y) = −~
2Kab(x, y) − ~

2

∫ C

z
Kabc(x, y, z)φc(z) − . . . , (B.80)

δΓ
δGabc(x, y, z) = −~3/2

6 Kabc(x, y, z) − . . . , (B.81)

and so on. Setting all the external sources to zero yields the nonperturbative dynamic
equations for the connected n-point functions. The set of equation forms the BBGKY
hierarchy in the sense that the equation of motion for an n-point function requires
information about the dynamics of higher m-point functions, m > n. However, in
the limit of vanishing sources, J = 0 and K = 0, the hierarchy disappears and
dynamic equations for n-point functions are in closed form. Thus, one may keep
only a finite number of sources or, in the other words, the generating functional is
defined to have up to nth power of Φ. This n-particle-irreducible formalism (nPI)
gives an nonperturbative approach to evaluate up to n-point functions.

B.2.2 2-particle-irreducible (2PI) effective action
In this study, we are mainly interested in propagators or 2-point functions and would
like to have a dynamic equation for 2-point functions, therefore, we need to keep only

6One can easily see that the term Gcb(y, z) comes from the pair Φc(z)Φ∗
b(y) nevertheless.

7As we have done in the Ch. 4, the functional differentiation rules δφa(x)/δφb(y) = δabδC(x − y)
and δφ∗

a(x)/δφb(y) = δφa(x)/δφ∗
b(y) = σ1

abδC(x − y) are needed as well as the relations in
Eq. (B.68) for the kernels K and to show that for the 2-point function G, the differentiation is
straightforward, for example, δGab(x, y)/δGcd(u, v) = δacδbdδC(x − u)δC(y − v). This is the case
because we do not include K∗ or G∗ directly in the generating function to avoid overcounting.
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terms up to quadratic order in Φa(x) in the generating functional,

Z[Ja, Kab] =
∫ C

DΦDΦ∗ exp
[

i

~

{
SC[Φ, Φ∗] +

∫ C

x
Ja(x)Φa(x) (B.82)

+ 1
2

∫ C

xy
Kab(x, y)Φa(x)Φ∗

b(y)
}]

.

The corresponding effective action is

Γ[φa, Gab] = W [Ja, Kab] −
∫ C

x
Ja(x)φa(x)

− 1
2

∫ C

xy
Kab(x, y)

[
φa(x)φ∗

b(y) + ~Gab(x, y)
]

, (B.83)

where the 2PI connected generating functional is W [Ja, Kab] = −i~ ln Z[Ja, Kab].
The dynamical equations are now in the closed form,

δΓ
δφa(x) = −Ja(x) −

∫ C

y
Kab(x, y)φ∗

b(y) , (B.84)

δΓ
δGab(x, y) = −~

2Kab(x, y) . (B.85)

The further step is to express the effective action Γ[φa, Gab] in terms of the classical
action and the quantum correction terms. To do this, we employ a background field
method by stating that Φ(x), the fluctuation field in the path integral in Eq. (B.83),
can be separated into a mean field φ(x) and its quantum fluctuation ϕ(x),

Φa(x) = φa(x) + ϕa(x) . (B.86)
Taking an exponential, Γ[φa, Gab] can also be written in the form of a path integral,

exp i

~
Γ[φa, Gab] =

∫ C
DΦDΦ∗ exp i

~

{
SC[Φ, Φ∗] +

∫ C

x
Ja(x)[Φa(x) − φa(x)]

+ 1
2

∫ C

xy
Kab(x, y)[Φa(x)Φ∗

b(y) − φa(x)φ∗
b(y) − ~Gab(x, y)]

}
=
∫ C

DϕDϕ∗ exp i

~

{
SC[φ + ϕ, φ∗ + ϕ∗] +

∫ C

x
Ja(x)ϕa(x)

+ 1
2

∫ C

xy
Kab(x, y)[ϕa(x)ϕ∗

b(y) + ϕa(x)φ∗
b(y)

+ φa(x)ϕ∗
b(y) − ~Gab(x, y)]

}
, (B.87)

where we applied Eq. (B.86) and assumed that all fluctuations are encoded in ϕ.
The expansion of the classical action around the mean field φ(x) reads8

SC[φ + ϕ, φ∗ + ϕ∗] = SC[φ, φ∗] +
∫ C

x

δSC

δΦa(x)

∣∣∣∣
Φ=φ

ϕa(x)

+ 1
2

∫ C

xy

δ2SC

δΦ∗
b(y)δΦa(x)

∣∣∣∣
Φ=φ

ϕa(x)ϕ∗
b(y) + SQ , (B.88)

8Note that , while δS/δΦa ̸= δS/δΦ∗
a one has

∫
x

ϕ∗
a δS/δΦa =

∫
x

ϕ∗
a δS/δΦ∗

a because it is summed
over field indices a. Therefore, it is possible to interchange Φ and Φ∗.

131



Appendix B Nonequilibrium quantum field theory

where SQ contains the higher-order expansion in ϕ,

SQ = 1
3!

∫ C

xyz

δ3SC

δΦc(z)δΦ∗
b(y)δΦa(x)

∣∣∣∣
Φ=φ

ϕa(x)ϕ∗
b(y)ϕc(z)

+ 1
4!

∫ C

xyzw

δ4SC

δΦ∗
d(w)δΦc(z)δΦ∗

b(y)δΦa(x)

∣∣∣∣
Φ=φ

ϕa(x)ϕ∗
b(y)ϕc(z)ϕ∗

d(w)

+ · · · . (B.89)

Putting the expansion back into Eq. (B.87) and rearranging the terms, we obtain

exp i

~
Γ[φa, Gab] =

∫ C
DϕDϕ∗ exp i

~

{
SC[φ, φ∗] +

∫ C

x

[ δSC

δΦa(x)

∣∣∣∣
Φ=φ

− δΓ
δφa(x)

]
ϕa(x)

+ 1
2

∫ C

xy

[ δ2SC

δΦ∗
b(y)δΦa(x)

∣∣∣∣
Φ=φ

− 2
~

δΓ
δGab(x, y)

]
ϕa(x)ϕ∗

b(y)

+
∫ C

xy

δΓ
δGab(x, y)Gab(x, y) + SQ

}
, (B.90)

where Eqs. (B.84) and (B.85) have been used to turn J and K into φ and G. The
terms that have no ϕ can be pulled out of path integral

Γ[φa, Gab] = SC[φ, φ∗] +
∫ C

xy

δΓ
δGab(x, y)Gab(x, y) + Γ̃2[φa, Gab] , (B.91)

where the rest of path integral is included in Γ̃2[φa, Gab],

Γ̃2[φa, Gab] = −i~ ln
[ ∫ C

DϕDϕ∗ exp i

~

{ ∫ C

x

[ δSC

δΦa(x)

∣∣∣∣
Φ=φ

− δΓ
δφa(x)

]
ϕa(x)

+ 1
2

∫ C

xy

[ δ2SC

δΦ∗
b(y)δΦa(x)

∣∣∣∣
Φ=φ

− 2
~

δΓ
δGab(x, y)

]
ϕa(x)ϕ∗

b(y) + SQ

}]
.

(B.92)

Notice that Γ̃2[φa, Gab] itself takes a similar form as Γ[φa, Gab] in Eq. (B.87) [112,
113]. The differences lie in the external sources which, in Γ̃2[φa, Gab], are not fully
independent quantities, for example, J̃a(x) = δSC/δΦa − δΓ/δφa depend fully on φa

(and presumably Gab as well). However, one can see that there is not yet a definite
classical action and this can be used for our advantage.9 Since the quadratic terms
in ϕ in Eq. (B.92) are the only quadratic terms in Γ̃ (SQ starts with a cubic term),
these terms must serve as the free term in the classical action and the nonlocal source
K̃ab(x, y) in the case that we demand Γ̃ being a 2PI-effective action. We then make
an ansatz

δ2SC

δΦ∗
b(y)δΦa(x)

∣∣∣∣
Φ=φ

− 2
~

δΓ
δGab(x, y) = iG−1

ab (x, y) + K̃ab(x, y) , (B.93)

9The interpretation here is analogue to the arguments for the 1PI effective action in Ref. [42].
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where we deliberately choose G−1
ab (x, y) on the RHS to be an inverse of Gab(x, y)

which are the propagators of a theory with classical action SC. Using the ansatz in
Eq. (B.93), the effective action Γ[φa, Gab] becomes

Γ[φa, Gab] = SC[φ, φ∗] + ~
2

∫ C

xy

[
δ2SC

δΦ∗
b(y)δΦa(x)

∣∣∣∣
Φ=φ

− iG−1
ab (x, y) − K̃ab(x, y)

]
Gab(x, y)

+ Γ̃2[φa, Gab]

= SC[φ, φ∗] + ~
2

∫ C

xy

[
δ2SC

δΦ∗
b(y)δΦa(x)

∣∣∣∣
Φ=φ

Gab(x, y) − i~
2 ln det CG

+ Γ2[φa, Gab] + const , (B.94)

where Γ2[φa, Gab] is

Γ2[φa, Gab] = −i~ ln
[

det −1/2(~G)
∫ C

DϕDϕ∗

× exp i

~

{(1
2

∫ C

xy
iG−1

ab (x, y)ϕa(x)ϕ∗
b(y) + SQ

)
+
∫ C

x

[ δSC

δΦa(x)

∣∣∣∣
Φ=φ

− δΓ
δφa(x)

]
ϕa(x)

+ 1
2

∫ C

xy
K̃ab(x, y)

[
ϕa(x)ϕ∗

b(y) − ~Gab(x, y)
}]

= −i~ ln
[

det −1/2(~G)
∫ C

DϕDϕ∗ exp i

~

{
SΓ2

C [ϕ, ϕ∗] +
∫ C

x
J̃a(x)ϕa(x)

+ 1
2

∫ C

xy
K̃ab(x, y)

[
ϕa(x)ϕ∗

b(y) − ~Gab(x, y)
]}]

. (B.95)

What we need to do to get Eq. (B.94) are shifting back the K̃abGab term into Γ̃2
and pulling out the 1-loop contribution, i~/2 ln det CG, so the Γ2[φa, Gab] contains
only contributions from two- and higher-loop diagrams. The source terms can be
expressed in terms of Γ2[φa, Gab] by replacing Γ[φa, Gab] with Eq. (B.94),

J̃a(x) = −
(~

2

∫ C

yz

δ3SC[φ, φ∗]
δφa(x)δφ∗

c(z)δφb(y)Gbc(y, z) + δΓ2

δφa(x)

)
, (B.96)

K̃ab(x, y) = −2
~

δΓ2

δGab(x, y) . (B.97)

The classical action in Γ2[φa, Gab] now reads

SΓ2
C [ϕ, ϕ∗] = 1

2

∫ C

xy
iG−1

ab (x, y)ϕa(x)ϕ∗
b(y) + SQ . (B.98)

This action is different from SC[φ, φ∗]. It explicitly contains the free-kinetic part∫ C
xy iG−1

ab (x, y)ϕa(x)ϕ∗
b(y) where the free propagators are Gab(x, y) and the interaction
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is now determined by SQ. Then, the lines in the Feynman diagrams generated by Γ2
are full propagators Gab(x, y) instead of free propagators and the vertices are governed
by the interaction SQ. The unique structure of Γ2 can be seen by performing the
functional derivative of Γ in Eq. (B.94) with respect to Gab(x, y),

iG−1
ab (x, y) = δ2SC

δΦ∗
b(y)δΦa(x)

∣∣∣∣
Φ=φ

+ Kab(x, y) + 2
~

δΓ2

δGab(x, y) . (B.99)

Setting Kab(x, y) = 0, we see that the inverse propagator iG−1
ab (x, y) is the sum of

the free propagator and 2/~δΓ/δGab so we can conclude that the term 2/~δΓ/δGab

is the self-energy. Since the self-energy has to be a sum of 1PI diagrams, Γ2 itself
must be a sum of 2PI diagrams. We can conclude this because lines in Γ2 represent
full propagators G, such that δΓ/δGab can be interpreted as cutting a line in the
diagrams. To be a 1PI diagram after one line has been cut, the diagram has to stay
connected even after cutting two lines. Hence, Γ2 consists of 2-particle-irreducible
diagrams only. So in practice, we will not use Eq. (B.95) to evaluate Γ2 but calculate
it from a sum of 2PI vacuum diagrams instead. In general, it is not possible to sum
all 2PI diagrams for a given interaction, such that truncations are in order. Once Γ2
is known, φa(x) and Gab(x, y) can be evaluated directly from Eqs. (B.84) and (B.85),

δΓ
δφa(x) = 0 , (B.100)

δΓ
δGab(x, y) = 0 , (B.101)

where the sources Ja(x) and Kab(x, y) are set to zero. We end this section by men-
tioning that Eq. (B.94) can also be written as

Γ[φa, Gab] = SC[φ, φ∗] + ~
2

∫ C

xy

[
δ2SC

δΦb(y)δΦ∗
a(x)

∣∣∣∣
Φ=φ

Gba(y, x) − i~
2 ln det CG

+ Γ2[φa, Gab] + const , (B.102)

which is completely equivalent to Eq. (B.94) but it is derived with a different con-
vention for the functional derivative. As δΓ/δφ∗

a leads to the conjugate equation of
φa, inserting the effective action in Eq. (B.102) into δΓ/δGba yields the conjugate
equation of Gab.

B.3 Nonequilibrium Quantum Field Theory
There are few things that are needed for a nonequilibrium description of quantum
field theory. The first is an initial state at an initial time t0, encoded in density
operator ρ0 whether in a mixed or pure state. The second is time-evolution equa-
tions of the relevant observables. In the closed system, the time evolution must be
fully determined by the Hamitonian or the action in the case of the path integral
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formulation. We have discussed that the CTP formalism is a necessary tool to form a
meaningful initial value problem, and therefore, the CTP is required in the nonequi-
librium description. However, this solves only the first half of the problem as we
have seen that the CTP within the IPI formalism yields only the dynamic equation
for mean field φ(x) or 1-point function. In realistic situations, higher-order n-point
functions can and normally will build up during the time evolution. This is where
that nPI formalism comes into play. It gives access to dynamic equations of n-point
function in a nonperturbative way. As in our study we focus on 2-point functions,
the 2PI approach is sufficient.

In Sect. B.2, we have introduced the 2PI formalism in the context of pure states
but it can be used equally well with mixed initial states, see Sect. B.1.3. Therefore,
the results resembles Eq. (B.64) in the sense that the path integral consists of two
parts: an initial part and a dynamics part. We emphasize that in the case that
the initial condition has Gaussian form, the initial part can be absorbed into the
dynamics part as source terms [48].
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Appendix C

Spectral function of free and
Bogoliubov particles
In this appendix, we present the means to obtain the spectral functions for both
free nonrelativistic and Bogoliubov quasiparticle fields. The field is a complex scalar
Bose field Φ, therefore it satisfies the equal-time commutation relation,

[Φ(t, x), Φ†(t, y)] = δd(x−y) , [Φ(t, x), Φ(t, y)] = [Φ†(t, x), Φ†(t, y)] = 0 . (C.1)

The Hamiltonian of free nonrelativistic field reads

H = −
∫

ddxΦ†(t, x)∇2
x

2m
Φ(t, x) , (C.2)

where m is a particle mass. The field Φ(t, x) need to satisfy the free Schrödinger’s
equation which, in turn, yields a free dispersion relation εp = p2/2m. Therefore, the
Fourier transforms of Φ(t, x) and Φ†(t, x) become

Φ(t, x) =
∫

ddpeip·xe−iεptΦ(p)

=
∫

p
e−ipx (2π)δ(p0 − εp)Φ(p) , (C.3)

Φ†(t, x) =
∫

p
e−ipx (2π)δ(p0 + εp)Φ†(−p) . (C.4)

The delta distribution, δ(p0 + εp), indicates a constraint from the free Schrödinger
equation. It is now straightforward to calculate equal-time commutators in mo-
mentum space,

[Φ(p), Φ†(q)] = (2π)dδd(p − q) , [Φ(p), Φ(q)] = [Φ†(p), Φ†(q)] = 0 . (C.5)

Thus, the Hamiltonian in momentum space becomes

H =
∫ ddp

(2π)d
εpΦ†(p)Φ(p) . (C.6)

This form of the Hamiltonian indicates that the field Φ is a free field. Recalling that
ρab(x, y) = i⟨[Φa(x), Φ†

b(y)]⟩ where Φ1(t, x) = Φ(t, x) and Φ2(t, x) = Φ†(t, x), we can
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evaluate the Fourier transform for each element of ρab(x, y),

ρ11(x, y) = i⟨[Φ(x), Φ†(y)]⟩

= i
∫

pq
(2π)2δ(p0 − εp)δ(q0 − εq)e−ipx+iqy⟨[Φ(p), Φ†(q)]⟩

= i
∫

pq
(2π)2δ(p0 − εp)δ(q0 − εq)e−ipx+iqy(2π)dδd(p − q)

=
∫

p
e−i(x−y)p(2πi)δ(p0 − εp) , (C.7)

ρ22(x, y) = i⟨[Φ†(x), Φ(y)]⟩

= i
∫

pq
(2π)2δ(p0 − εp)δ(q0 − εq)eipx−iqy⟨[Φ†(p), Φ(q)]⟩

=
∫

p
e−i(x−y)p(−2πi)δ(p0 + εp) , (C.8)

where ρ12(x, y) = ρ21(x, y) = 0 due to the commutation relation (C.5) and thus, give
the vanishing Fourier transforms. The elements of ρab(p) can be read off from the
Fourier transforms of ρab(x, y),

ρ11(p) = 2πiδ(p0 − εp) = ρ∗
22(−p) = −ρ22(−p) , (C.9)

ρ12(p) = ρ21(p) = 0 . (C.10)

We turn to the interacting case, recalling the Hamiltonian in Eq. (2.1),

H =
∫

ddx

[
−Φ†(x) ∇2

2m
Φ(x) + g

2 Φ†(x)Φ†(x)Φ(x)Φ(x)
]

. (C.11)

The Hamiltonian can be transformed into momentum space1,

H =
∫ ddp

(2π)d

[
εpΦ†(p, t)Φ(p, t)

+ g

2

∫ ddk

(2π)d

ddq

(2π)d
Φ†(k + q, t)Φ†(p − q, t)Φ(k, t)Φ(p, t)

]
, (C.12)

which Bogoliubov mean-field theory can now be applied to. In the condensate phase
where there are sufficiently large numbers of particles in the zero-mode, the zero-
mode operator Φ(p = 0, t) can be replaced by a complex-valued number φ0 where
the condensate density ρ0 ∼ φ2

0 is of the same order as the total density ρtot. The
large occupation of the zero mode can be used to approximate the Hamiltonian such
that there are only quadratic terms in the Hamiltonian [68],

H =gρ2
tot
2 +

∫
p̸=0

ddp

(2π)d

[(
εp + gρ0

)
Φ†(p, t)Φ(p, t)

+ gρ0

2
(
Φ†(−p, t)Φ†(p, t) + Φ(−p, t)Φ(p, t)

)]
. (C.13)

1Notice that the integral in Eq. (2.1) sums over the spatial variable x, and thus, in Eq. (C.12) only
the spatial dependence is Fourier transformed, leaving x0 = t in the momentum dependent field
operator Φ(p, t).
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The Hamiltonian in Eq. (C.13) can be diagonalized by the Bogoliubov canonical
transformation to another set of bosonic operators ΦQ(p, t). The transformation
reads

Φ(p, t) = upΦQ(p, t) + vpΦ†
Q(−p, t) , (C.14)

with a constraint u2
p − v2

p = 1 to preserve the canonical equal-time commutation
relations,

[ΦQ(p, t), Φ†
Q(q, t)] = (2π)d δd(p − q) , (C.15)

[ΦQ(p, t), ΦQ(q, t)] = [Φ†
Q(p, t), Φ†

Q(q, t)] = 0 . (C.16)

The commutation relation is necessary for reordering the fields such that the Φ†
Q(p, t)

stays on the left of Φ(p, t), for example2

ΦQ(p, t)Φ†
Q(q, t) = Φ†

Q(q, t)ΦQ(p, t) + (2π)d δd(p − q) . (C.17)

The Hamiltonian can be diagonalized in terms of the quasiparticle operators ΦQ(p, t)
and Φ†

Q(p, t) [68]

H = C0 +
∫

p

ddp

(2π)d
ωp

[
Φ†

Q(p, t)ΦQ(p, t) + 1
2
]

, (C.18)

where C0 is a constant, depending on the total density. The Hamiltonian (C.18) can
be interpreted as the Hamiltonian of free quasiparticles associated with ΦQ and Φ†

Q

operators whose energy spectrum is given by the Bogoliubov dispersion ω(p),

ωp =
[
εp

(
εp + 2gρ0

)]1/2
. (C.19)

The diagonalization requires a specific form of Bogoliubov mode functions up and
vp,

up =
(

εp + gρ0 + ωp

2ωp

)1/2

, vp =
(

εp + gρ0 − ωp

2ωp

)1/2

. (C.20)

The Bogoliubov transformation allows us to write down the Fourier transforms of
Φ(x) in terms of ΦQ and Φ†

Q, instead of Φ(p),

Φ(t, x) =
∫ ddp

(2π)d
eip·x

[
upe−iωptΦQ(p) + vpeiωptΦ†

Q(−p)
]

=
∫

p
e−ipx(2π)

[
δ(p0 − ωp)upΦQ(p) + δ(p0 + ωp)vpΦ†

Q(−p)
]

, (C.21)

Φ†(t, x) =
∫

p
e−ipx(2π)

[
δ(p0 + ωp)upΦ†

Q(−p) + δ(p0 − ωp)vpΦQ(p)
]

, (C.22)

2In the case that p = q, the relation (C.17) might not seem well-defined because of δd(0). How-
ever, we can argue from the Fourier transform of δd(p) that δd(0) is actually the momentum-
space volume, thus, by rescaling Eq. (C.17) with the momentum-space volume, we obtain
ΦQ(p, t)Φ†

Q(q, t) = Φ†
Q(q, t)ΦQ(p, t) + 1 where the field operators are now a rescaled version

of the original ones.
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where we have used u(−p) = u(p), u∗(p) = u(p) and similarly for v(p). The
matrix elements of ρab(x, y) for the Hamiltonian (C.11), in the Bogoliubov mean-
field approximation, are evaluated from the commutators of Φ(t, x) and Φ†(t, x), for
example the element ρ11(x, y),

ρ11(x, y) = i⟨[Φ(x), Φ†(y)]⟩

= i
∫

pq
e−i(px−qy)(2π)2

〈[
δ(p0 − ωp)upΦQ(p) + δ(p0 + ωp)vpΦ†

Q(−p)

, δ(q0 − ωq)vqΦQ(p) + δ(q0 + ωq)uqΦ†
Q(−p)

]〉
= i

∫
pq

e−i(px−qy)(2π)2
{

δ(p0 − ωp)δ(q0 + ωq)upuq(2π)dδd(p + q)

− δ(p0 + ωp)δ(q0 − ωq)vpvq(2π)dδd(−p − q)
}

=
∫

p
e−i(x−y)p(2πi)

[
δ(p0 − ωp)u2

p − δ(p0 + ωp)v2
p

]
. (C.23)

The other elements can be found in the similar ways,

ρ12(x, y) = i⟨[Φ(x), Φ(y)]⟩

=
∫

p
e−i(x−y)p(2πi)upvp

[
δ(p0 − ωp) − δ(p0 + ωp)

]
, (C.24)

ρ21(x, y) = i⟨[Φ†(x), Φ†(y)]⟩

=
∫

p
e−i(x−y)p(2πi)upvp

[
δ(p0 − ωp) − δ(p0 + ωp)

]
, (C.25)

ρ22(x, y) = i⟨[Φ†(x), Φ(y)]⟩

=
∫

p
e−i(x−y)p(2πi)

[
δ(p0 − ωp)v2

p − δ(p0 + ωp)u2
p

]
. (C.26)

We read off the Fourier transforms of each element to determine the elements of
ρab(p),

ρ11(p) = (2πi)
[
δ(p0 − εp)u2

p − δ(p0 + εp)v2
p

]
= −ρ22(−p) = ρ∗

22(−p) , (C.27)
ρ12(p) = (2πi)upvp

[
δ(p0 − εp) − δ(p0 + εp)

]
= −ρ21(−p) = ρ∗

21(−p) = ρ21(p) . (C.28)
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Appendix D

Evaluation of integrals
This appendix is going to evaluate the integrals that are needed in Ch. 4 and Ch. 5.

D.1 Integrals involving the many-body coupling
The first integral is in Eq. (4.142). The integral variable y can be rescaled such that
the branch points are at ±1. For a positive x, the integral becomes

π̃κ(x) = 2√
π

Γ(κ
2 )

Γ(κ−3
2 )

[
x2
∫ ∞

0
dz

z

(1 + z2 x2)κ/2 ln
(1 + z + iϵ

1 − z + iϵ

)]
, (D.1)

where z = y/x. In the case of negative x, it becomes

π̃κ(x) = 2√
π

Γ(κ
2 )

Γ(κ−3
2 )

[
− |x|2

∫ ∞

0
dz

z

(1 + z2 x2)κ/2 ln
(1 + z − iϵ

1 − z − iϵ

)]
, (D.2)

where z = y/|x|. Apart from the minus sign of the small imaginary part and pre-
factor, both integrals are the same. If κ ̸= 2, it is possible to perform the integration
by parts and thus, get rid of logarithms in the integrand,∫ ∞

0
dz

z x2

(1 + z2 x2)κ/2

(
ln(1 + z ± iϵ) − ln(1 − z ± iϵ)

)

= d
((1 + z2 x2)1−κ/2

2 − κ
ln(1 + z ± iϵ)

)∣∣∣∣∣
∞

0
− d

((1 + z2 x2)(1−κ/2)

2 − κ
ln(1 − z ± iϵ)

)∣∣∣∣∣
∞

0

−
∫ ∞

0
dz

(1 + z2 x2)1−κ/2

2 − κ

1
1 + z ± iϵ

−
∫ ∞

0
dz

(1 + z2 x2)1−κ/2

2 − κ

1
1 − z ± iϵ

=
∫ ∞

0
dz

(1 + z2 x2)1−κ/2

κ − 2

( 2(1 ± iϵ)
(1 ± iϵ)2 − z2

)

=
∫ ∞

0
dz2 z−1

κ − 2(1 + z2 x2)1−κ/2
(

1 − z2

(1 ± iϵ)2

)−1

=
∫ ∞

0
dy

y−1/2

(κ − 2)|x|
(1 + y)1−κ/2

(
1 − y

(1 ± iϵ)2 x2

)−1

= 1
|x|

Γ(1
2)Γ(κ−1

2 )
(κ − 2)Γ(κ

2 )2F1

(
1,

1
2; κ

2 ; 1 + [(1 ± iϵ)x]−2
)

, (D.3)
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where we have used
Γ(c − b)Γ(b)

Γ(c) 2F1(a, b; c; 1 − z) =
∫ ∞

0
dssb−1(1 + s)a−c(1 + sz)−a, (D.4)

with the conditions Re(c) > Re(b) > 0 and |arg(z)| < π [114]. The aboved result in
(D.3) is only valid for κ > 3 when the boundary terms vanish. Substituting Eq. (D.3)
into Eq. (D.1) (or Eq. (D.2)), we obtain

π̃κ(x) = 1
x

κ − 3
κ − 22F1

(
1,

1
2; κ

2 ; 1 + [(1 ± iϵ)x]−2
)

, (D.5)

as it has been presented in Eq. (4.142). The sign of the imaginary part is needed to
distinguish the results of positive and negative x.

Another integral is in Eq. (4.156), for the Bogoliubov quasiparticle case. The
strategy is similar to what we have done in the free particle case. Rescaling the
integration variable such that the branch points are at ±1, for positive values of the
external variable x, one gets

Π̃′
f (x) =

(
Λ
pΛ

)κ [
x
∫ ∞

0
dz (1 + z x)−κ ln

(1 + z + iϵ

1 − z + iϵ

)]
, (D.6)

where z = y/x and for negative values of x

Π̃′
f (x) =

(
Λ
pΛ

)κ [
− |x|

∫ ∞

0
dz (1 + z |x|)−κ ln

(1 − z − iϵ

1 + z − iϵ

)]
, (D.7)

where z = y/|x|. To do the integration by parts to get rid of logarithms, we now
need κ ̸= 1∫ ∞

0
dz |x| (1 + z |x|)−κ

(
(ln(1 + z ± iϵ) − ln(1 − z ± iϵ)

)
= d

((1 + z |x|)1−κ

(1 − κ) ln(1 + z ± iϵ)
)∣∣∣∣∣

∞

0
− d

((1 + z |x|)1−κ

(1 − κ) ln(1 − z ± iϵ)
)∣∣∣∣∣

∞

0

−
∫ ∞

0
dz

(1 + z |x|)1−κ

(1 − κ) (1 + z ± iϵ)−1 −
∫ ∞

0
dz

(1 + z |x|)1−κ

(1 − κ) (1 − z ± iϵ)−1

= 1
(κ − 1)|x|

[ ∫ ∞

0
dy(1 + y)1−κ

(
1 + y

(1 ± iϵ)|x|

)−1

+
∫ ∞

0
dy(1 + y)1−κ

(
1 − y

(1 ± iϵ)|x|

)−1]

= 1
|x|

Γ(1)Γ(κ − 1)
(κ − 1)Γ(κ)

(
2F1

(
1, 1; κ; 1 − [(1 ± iϵ)|x|]−1

)
+ 2F1

(
1, 1; κ; 1 + [(1 ± iϵ)|x|]−1

))
, (D.8)

where Eq. (D.4) has been used to turn the integral into a Guassian hypergeomet-
ric function. Note that the result in Eq. (D.8) is only valid for κ > 2. Inserting

142



D.2 Evaluation of the scattering integral

Eq. (D.8) back into Eq. (D.6) (or Eq. (D.7)), we obtain the results that we presented
in Eq. (4.156):

Π̃′
f (x) =

(
Λ
pΛ

)κ 1
(κ − 1)2x

(
2F1

(
1, 1; κ; 1 − [(1 ± iϵ)x]−1

)
+ 2F1

(
1, 1; κ; 1 + [(1 ± iϵ)x]−1

))
. (D.9)

Again the results for positive and negative x are distinguished by the sign of the
small imaginary part.

D.2 Evaluation of the scattering integral
In this section, we will evaluate explicitly six different integrals which contribute to
the scattering integrals. Two integrals I free

1 and I free
2 belong to the scattering integral

of free particles and four integrals Ibog
1 , Ibog

2 , Ibog
3 and Ibog

4 contribute to the scattering
integral of Bogoliubov quasiparticles.

D.2.1 Evaluation of I free
1 and I free

2

Due to the structure of the delta function δ(p2 + k2 − q2 − |p − r′|2) that appears in
both integrals, it is more convenient to introduce new variables u and v,

u = 1√
2

(k2 + q2) , v = 1√
2

(k2 − q2) , (D.10)

such that the delta function depends on a single variable i.e. v. The integral I free
1 in

(u, v) variables becomes

I free
1 (p, r′) = 1

4

∫ ∞

−∞
dv
∫ ∞

u(v)
du δ(p2 − |p − r′|2 +

√
2v)

×
( 2κ/2

(
√

2(u − v) + 2p2
Λ)κ/2

− 2κ/2

(
√

2(u + v) + 2p2
Λ)κ/2

)
, (D.11)

where u(v) = 2v2+r′4

2
√

2r′2 . We intentionally perform the integration over u first because
the delta function is in v. The integration domain is now bound by a parabola in
these (u, v) variables. For an upper bound, q = k + r′ yeilds

q2 = k2 + r′2 + 2kr′

⇒ q2 − k2 = r′2 + 2r′k

⇒ −
√

2v = r′2 + 2r′
√

u + v√
2

⇒ (−
√

2v − r′2)2 = (
√

2v + r′2)2 = 4r′2 u + v√
2

, (D.12)
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and for a lower bound, q = |k − r′] gives

q2 = k2 + r′2 − 2kr

⇒ (
√

2v − r′2)2 = 4r′2 u + v√
2

, (D.13)

which is exactly the same parabola as we obtained from the upper limit. By expand-
ing and rearranging the terms, we have a parabola u(v) that will be used for the
lower limit of the u-integration. The integration over u is now straightforward,

I free
1 (p, r′) = 2κ/2−1

4

∫ ∞

−∞
d(

√
2v) δ(p2 − |p − r′|2 +

√
2v)

× 1
1 − κ/2

[(√
2(u(v) + v) + 2p2

Λ

)1−κ/2
−
(√

2(u(v) − v) + 2p2
Λ

)1−κ/2
]

= 2κ/2

4(κ − 2)

∫ ∞

−∞
d(

√
2v) δ(p2 − |p − r′|2 +

√
2v)

×
[((

√
2v − r′2)2

2r′2 + 2p2
Λ

)1−κ/2
−
((

√
2v + r′2)2

2r′2 + 2p2
Λ

)1−κ/2]
= 2κ/2

4(κ − 2)

[((p2 − |p − r′|2 + r′2)2

2r′2 + 2p2
Λ

)1−κ/2

−
((p2 − |p − r′|2 − r′2)2

2r′2 + 2p2
Λ

)1−κ/2]
, (D.14)

I free
1 (p, p − r) = 2κ/2

4(κ − 2)

[((p2 − r2 + |p − r|2)2

2|p − r|2
+ 2p2

Λ

)1−κ/2

−
((p2 − r2 − |p − r|2)2

2|p − r|2
+ 2p2

Λ

)1−κ/2]
, (D.15)

where we replaced r′ by |p − r|. The same variable transformation is also needed for
I free

2 . The integral I free
2 in (u, v) variables becomes

I free
2 (p, r′) = 1

4

∫ ∞

−∞
dv
∫ ∞

u(v)
du δ(p2 − |p − r′|2 +

√
2v)

×
[(

u − v√
2

+ p2
Λ

)(
u + v√

2
+ p2

Λ

)]−κ/2

= 2κ−1

4

∫ ∞

−∞
d(

√
2v) δ(p2 − |p − r′|2 +

√
2v)

×
∫ ∞

√
2u(v)

d(
√

2u)
[
(
√

2u + 2p2
Λ)2 − 2v2

]−κ/2

= 2κ−1

4

∫ ∞

−∞
d(

√
2v) δ(p2 − |p − r′|2 +

√
2v)

× (u(v) + 2p2
Λ)1−κ

κ − 1 2F1

(
κ

2 ,
κ − 1

2 ; κ + 1
2 ;

( √
2v

u(v) + 2p2
Λ

)2
)

.

(D.16)
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D.2 Evaluation of the scattering integral

The last equality needs to evaluate the following integral,∫ ∞

A
dx(x2 − y2)−α (D.17)

where A is positive which is the case here since A =
√

2u(v) + 2p2
Λ. This integral can

be written in terms of a hypergeometric function,
∫ ∞

A
dx(x2 − y2)−α = A1−2α

∫ ∞

1
dx′(x′2 − y2

A2 )−α ; x′ = x

A

= A1−2α
∫ ∞

1
dx′2 1

2x′ (x
′2 − y2

A2 )−α

= A1−2α

2

∫ ∞

1
dx′′x′′−1/2(x′′ − y2

A2 )−α ; x′′ = x′2

= A1−2α

2α − 12F1(α, α − 1
2; α + 1

2; y2

A2 ) , (D.18)

where we used the following integral representations of the hypergeometric function
[115],

2F1(a, b; c; z−1) = Γ(c)
Γ(b)Γ(c − b)

∫ ∞

1
ds(s − 1)c−b−1sa−c(s − z−1)−a . (D.19)

Integrating the v variable, I free
2 becomes

I free
2 (p, p − r) = 2κ−1

4(κ − 1)

((p2 − r2)2 + |p − r|4

2|p − r|2
+ 2p2

Λ

)1−κ

× 2F1

(
κ

2 ,
κ − 1

2 ; κ + 1
2 ;

( p2 − r2

(p2−r2)2+|p−r|4
2|p−r|2 + 2p2

Λ

)2
)

. (D.20)

D.2.2 Evaluation of Ibog
1 , Ibog

2 , Ibog
3 and Ibog

4

The procedure is similar to the evaluation in the free particle case. A set of variables
is needed such that the integration over the delta function can be done last. Due to
the different structure of delta functions that appear in Ibog

1 , Ibog
2 and Ibog

3 , Ibog
4 , the

details are slightly different.

Evaluation Ibog
1 and Ibog

2

The integration variables (u, v) are defined by

u = 1√
2

(k + q) , v = 1√
2

(k − q) , (D.21)

and the delta function again depends on only v with a similar structure as compared
to the free particle case. In this set of variables, it is equivalent to rotate the axes
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of (k, q) clockwise by π/4. Therefore, the integration domain is unchanged. The
integral Ibog

1 becomes

Ibog
1 (p, r′) =

∫ r′/
√

2

−r′/
√

2
dv
∫ ∞

r′/
√

2
du δ(p − |p − r′| +

√
2v)

×
[(

u − v√
2

+ pΛ

)−κ

−
(

u + v√
2

+ pΛ

)−κ]

= 2κ−1

1 − κ

∫ r′

−r′
d(

√
2v) δ(p − |p − r′| +

√
2v)

×
[(

r′ +
√

2v + 2pΛ
)1−κ

−
(
r′ −

√
2v + 2pΛ

)1−κ
]

= 2κ−1

κ − 1

[(
r′ + p − |p − r′| + 2pΛ

)1−κ
−
(
r′ − p + |p − r′| + 2pΛ

)1−κ
]

× Θ(r′ −
∣∣∣p − |p − r′|

∣∣∣) , (D.22)

Ibog
1 (p, p − r) = 2κ−1

κ − 1

[(
|p − r| + p − r + 2pΛ

)1−κ
−
(
|p − r| − p + r + 2pΛ

)1−κ
]

.

(D.23)

The Heaviside function appears because the integration over dv is not done on the
entire real axis, and the integral is nonzero only if −r′ < p − |p − r′| < r′. However,
this constraint is always fulfilled as can be seen by substituting r′ = p−r which gives
|p − r| − |p − r| ≥ 0. The integral Ibog

2 can also be done by changing the variables
to (u, v),

Ibog
2 (p, r′) =

∫ r′/
√

2

−r′/
√

2
dv
∫ ∞

r′/
√

2
du δ(p − |p − r′| +

√
2v)

×
[(

u − v√
2

+ pΛ

)(
u + v√

2
+ pΛ

)]−κ

= 22κ−1
∫ r′

−r′
d(

√
2v) δ(p − |p − r′| +

√
2v)

×
∫ ∞

r′
d(

√
2u)

[
(
√

2u + 2pΛ)2 − 2v2
]−κ

= 22κ−1
∫ r′

−r′
d(

√
2v) δ(p − |p − r′| +

√
2v)

× (r′ + 2pΛ)2κ−1

2κ − 1 2F1

(
κ, κ − 1

2 , κ + 1
2;
( √

2v

r′ + 2pΛ

)2
)

= 22κ−1

2κ − 1 (r′ + 2pΛ)2κ−1
2F1

(
κ, κ − 1

2 , κ + 1
2;
(p − |p − r′|

r′ + 2pΛ

)2
)

× Θ(r′ −
∣∣∣p − |p − r′|

∣∣∣) , (D.24)

Ibog
2 (p, p − r) = 22κ−1

2κ − 1 (|p − r| + 2pΛ)2κ−1
2F1

(
κ, κ − 1

2 , κ + 1
2;
( p − r

|p − r| + 2pΛ

)2
)

,

(D.25)
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D.2 Evaluation of the scattering integral

where we use the result in Eq. (D.18) to integrate over du and the Heaviside function
is treated the same way we did for Ibog

1 . The results for Ibog
1 and Ibog

2 are similar
to I free

1 and I free
2 because of the similar energy conservation (delta function) and the

similar structures of the many-body couplings (arguments in the many-body coupling
function).

Evaluation Ibog
3 and Ibog

4

The strategy is still the same, we change the integration variables to (u, v) defined
by,

u = 1
2(r + q) , v = 1

2(r − q) . (D.26)

The integral Ibog
3 can be evaluated in (u, v) variables,

Ibog
3 (p, k′) =

∫ ∞

k′/
√

2
du
∫ k′/

√
2

−k′/
√

2
dv δ(p + |k′ + p| −

√
2u)

×
[(u − v√

2
+ pΛ

)−κ
+
(u + v√

2
+ pΛ

)−κ
]

= 2κ−1

1 − κ

∫ ∞

k′
d(

√
2u) δ(p + |k′ + p| −

√
2u)

×
{

− [(
√

2u − k′ + 2pΛ)1−κ − (
√

2u + k′ + 2pΛ)1−κ]

+ [(
√

2u + k′ + 2pΛ)1−κ − (
√

2u − k′ + 2pΛ)1−κ]
}

= 2 2κ−1

κ − 1

[
(p + |k′ − p| − k′ + 2pΛ)1−κ − (p + |k′ − p| + k′ + 2pΛ)1−κ

]
× Θ(p + |k′ − p| − k′) , (D.27)

Ibog
3 (p, k + p) = 2 2κ−1

κ − 1

[
(p + k − |k + p| + 2pΛ)1−κ − (p + k + |k + p| + 2pΛ)1−κ

]
,

(D.28)

and similarly for the integral Ibog
4 ,

Ibog
4 (p, k′) =

∫ ∞

k′/
√

2
du
∫ k′/

√
2

−k′/
√

2
dv δ(p + |k′ + p| −

√
2u)

×
[(

u − v√
2

+ pΛ

)(
u + v√

2
+ pΛ

)]−κ

= 22κ−1
∫ ∞

k′
d(

√
2u) δ(p + |k′ + p| −

√
2u)

×
∫ k′

−k′
d(

√
2v)

[
(
√

2u + 2pΛ)2 − 2v2]−κ
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= 22κ−1
∫ ∞

k′
d(

√
2u) δ(p + |k′ + p| −

√
2u)

×
( 2k′

(
√

2u + 2pΛ)2κ

)
2F1

(
κ,

1
2; 3

2;
( k′

√
2u + 2pΛ

)2
)

, (D.29)

Ibog
4 (p, k + p) = 2 22κ−1|k + p|

(p + k + 2pΛ)2κ 2F1

(
κ,

1
2; 3

2;
( |k + p|

p + k + 2pΛ

)2
)

. (D.30)

The following integral is needed,∫ A

−A
dx(y2 − x2)−α = 2

y2α−1

∫ A/y

0
dx′(1 − x′2)−α ; x′ = x/y

= 2A

y2α

∫ π/2

0
dt

cos(t)
(1 − A2

y2 sin2(t))α
; x′ = A

y
sin(t)

= 2A

y2α 2F1(α,
1
2; 3

2; A2

y2 ). (D.31)

The last line can be obtained by the following integral representation of the hyper-
geometric function [115],

2F1(a, b; c; z) = 2Γ(c)
Γ(b)Γ(c − b)

∫ π/2

0
dt

(sin(t))2b−1(cos(t))2c−2b−1

(1 − z sin2(t))a
, (D.32)

and the identity 2F1(a, b; c; z) = 2F1(b, a; c; z).
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Expansion of the hypergeometric
functions
The hypergeometric function has the following series expansion [114],

2F1(a, b; c; z) =
∞∑

n=0

(a)n(b)n

(c)n

zn

n! , (E.1)

where (a)n is a Pochhammer symbol defined by (a)n = Γ(a + n)/Γ(a) and c ̸=
0, −1, −2, · · · . In the case Re(c − a − b) > 0, the series is absolute convergent within
the radius |z| < 1. The logarithmic branch-cuts extend from the branch-points
z = ±1, and thus, analytic continuation is needed to evaluate the series for z ≥ 1.
Here, we are interested in the leading-oder expansion of the hypergeometric function
that takes the form, 2F1(a, b; c; 1+z), which appears in Eqs. (4.142) and (4.159). We
start by observing one of the relations between Kummer’s 24 solutions [115],

2F1(a, b; c; z) = A1 2F1(a, b; −c′ + 1; 1 − z)
+ A2 (1 − z)c′

2F1(c − a, c − b; c′ + 1; 1 − z) , (E.2)

where A1 = Γ(c)Γ(c′)
Γ(c−a)Γ(c−b) and A2 = Γ(c)Γ(−c′)

Γ(a)Γ(b) with c′ = c − a − b. The Γ(c′) and Γ(−c′)
in the numerators require noninteger c′.

The hypergeometric function 2F1
(
1, 1

2 ; κ
2 ; 1 + [(1 ± iϵ)x]−2

)
can be transformed

using Eq. (E.2) such that we can express them by means of hypergeometric functions
the arguments z of which stay within the radius of convergence, |z| < 1,

2F1
(
1,

1
2; κ

2 ; 1 + [(1 ± iϵ)x]−2
)

=
Γ(κ

2 )Γ(κ−3
2 )

Γ(κ−2
2 )Γ(κ−1

2 )2F1
(
1,

1
2; 5 − κ

2 ; −[(1 ± iϵ)x]−2
)

+
Γ(κ

2 )Γ(3−κ
2 )

Γ(1)Γ(1
2)

(
− [(1 ± iϵ)x]2

)κ−3
2

2F1
(κ − 2

2 ,
κ − 1

2 ; κ − 1
2 ; −[(1 ± iϵ)x]−2

)
.

(E.3)

In the limit x ≫ 1, the hypergeometric functions on the RHS of Eq. (E.3) take the
form 2F1(a, b; c; −1/x2) and thus, the leading-order term is approximated by the first
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term (n = 0) in the series (E.1) which is 1. Note that we can set ϵ → 0 inside the
hypergeometric function on the RHS of Eq. (E.3) because the arguments are within
the radius of convergence, which has no branch cut. We then inspect the factor
{−[(1 ± iϵ)x]2}(κ−3)/2 and separate its real and imaginary parts,

(
− [(1 ± iϵ)x]−2

)κ−3
2 = |x|3−κ

[
−
( 1 ∓ ϵ

1 − ϵ2

)2]κ−3
2

= |x|3−κ[(1 ∓ ϵ)(−1 ± ϵ)]κ−3
2

= −|x|3−κ exp
(

± i
π(κ − 1)

2

)
= −|x|3−κ[cos

(π

2 (κ − 1)
)

± i sin
(π

2 (κ − 1)
)
]

= −|x|3−κ
[

cos
(π

2 (κ − 1)
)

± i
π

Γ(κ−1
2 )Γ(3−κ

2 )
]

, (E.4)

where we use Euler’s reflection formula,

Γ(z)Γ(1 − z) = π

sin(πz) . (E.5)

For κ > 3, the cosine term in Eq. (E.4) can be dropped because of x ≫ 1. Assuming
that this is the case, 2F1

(
1, 1

2 ; κ
2 ; 1+[(1±iϵ)x]−2

)
can be approximated by the leading-

order terms of its real and imaginary parts,

2F1
(
1,

1
2; κ

2 ; 1 + [(1 ± iϵ)x]−2
)

≃ κ − 2
κ − 3 ∓ i

√
π|x|3−κ Γ(κ

2 )
Γ(κ−1

2 ) , (E.6)

where we substitute Γ(1/2) =
√

π and use the identity Γ(z) = (z − 1)Γ(z − 1).
For x ≪ 1, we can approximate, 1 + [(1 ± iϵ)x]−2 ≃ [(1 ± iϵ)x]−2, and then use

the relation [115],

2F1(a, b; c; z) = B1 (−z)−a
2F1(a, 1 − c + a; 1 − b + a; z−1)

+ B2 (−z)−b
2F1(b, 1 − c + b; 1 − a + b; z−1) , (E.7)

where B1 = Γ(b−a)Γ(c)
Γ(b)Γ(c−a) and B2 = Γ(a−b)Γ(c)

Γ(a)Γ(c−b) . Thus,

2F1
(
1,

1
2; κ

2 ; 1 + [(1 ± iϵ)x]−2
)

≃
Γ(−1

2)Γ(κ
2 )

Γ(1
2)Γ(κ−2

2 )
(

− [(1 ± iϵ)x]−2
)−1

2F1
(
1,

4 − κ

2 ; 3
2; [(1 ± iϵ)x]2

)
+

Γ(1
2)Γ(κ

2 )
Γ(1)Γ(κ−1

2 )
(

− [(1 ± iϵ)x]−2
)−1/2

2F1
(1

2 ,
3 − κ

2 ; 1
2; [(1 ± iϵ)x]2

)
. (E.8)

The two hypergeometric functions on the RHS of Eq. (E.8) can be approximated by
1 since we are in the small-x regime. Therefore we only need to evaluate the phase
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factor of {−[(1 ± iϵ)]−2},(
− [(1 ± iϵ)x]−2

)−1
= [−(1 ± iϵ)−2]−1 x2 =

(
e±iπ

)−1
x2 = −x2 , (E.9)(

− [(1 ± iϵ)x]−2
)−1/2

= [−(1 ± iϵ)−2]−1/2 |x| =
(
e±iπ

)−1/2
|x| = ∓i |x| . (E.10)

Inserting the results into Eq. (E.8) gives

2F1
(
1,

1
2; κ

2 ; 1 + [(1 ± iϵ)x]−2
)

≃ (κ − 2) |x|
[
|x| ∓ i

√
π

κ − 3
Γ(κ−2

2 )
Γ(κ−3

2 )
]

, (E.11)

where we use Γ(−1/2) = −2
√

π.
The hypergeometric functions 2F1 (1, 1; κ; 1 ± [(1 ± iε)|x|]−1) can be approxim-

ated in similar ways. In the limit x ≫ 1, we can use Eq. (E.2) to rewrite the hyper-
geometric functions such that their arguments are within the radius of convergence.
The results are

2F1
(
1, 1; κ; 1 + [(1 ± iε)|x|]−1

)
≃ κ − 1

κ − 2 ∓ iπ|x|2−κ(κ − 1) , (E.12)

2F1
(
1, 1; κ; 1 − [(1 ± iε)|x|]−1

)
≃ κ − 1

κ − 2 , (E.13)

where we assume κ > 2 in this case. There is no imaginary part in Eq. (E.13) because
the argument, 1 − [(1 ± iε)|x|]−1, is already within the radius of convergence. In the
opposite limit, x ≪ 1, relation (E.7) is unable to represent the function due to a = b
in this case. This means the poles in the complex plane are not simple poles but
second-order poles. We only emphasize that the leading order contains similar terms
as in Eq. (E.11) with an extra logarithmic term due to the second-order pole structure
[115].
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Appendix F

Evaluation of the scaling form of
T -matrix elements
In this appendix, we are going to give the details of the evaluation that have been
used in Sect. 3.3, the results presented in Eqs. (3.38), (3.39), (3.44) and (3.45).

The scaling of the T -matrix is derived from the scaling of the many-body coup-
ling, cf. Eqs. (3.18), (3.21), (3.25) and (3.28). Recall Eq. (4.128) for the expression
of the many-body coupling geff(p),

g2
eff(p) = g2

|1 + g~ΠR(p)|2 (F.1)

where the 1-loop self-energy ΠR(p0, p) is defined by, cf. Eq. (4.80),

ΠR(p0, p) = −
∫ ∞

−∞

dq0

2π

1
q0 + i ϵ

Πρ(q0 − p0, −p)

= −1
2

∫ ∞

−∞

dq0

2π

1
q0 + i ϵ

∫ ddk dk0

(2π)d+1

×
[
ρab(p0 − q0 − k0, p − k)Fba(−k0, k)

− Fab(p0 − q0 − k0, p − k)ρba(−k0, k)
]

. (F.2)

There are two scaling limits of geff . In the regime where |ΠR| ≪ 1, geff is reduced
to the bare GPE coupling g = 4π a/m and thus, the scaling exponents γ and γκ,
defined by the following scaling hypotheses,

geff(szp0, sp; s−1/βt) = sγgeff(p0, p; t) , (F.3)
geff(szp0, sp; t) = sγκgeff(p0, p; t) , (F.4)

become simply γ = γκ = 0 which we use to evaluate the scaling exponents m and
mκ in the perturbative regime, cf. Eqs. (3.19) and (3.22). For |ΠR| ≫ 1, the scaling
of geff is derived directly from the scaling of ΠR. We recall the scaling hypotheses of
F (p) and ρ(p) [25, 49],

Fab(szp0, sp) = s−2−κFab(p0, p) , (F.5)
ρab(szp0, sp) = s−2+ηρab(p0, p) , (F.6)
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where κ is the momentum exponent of the quasiparticle occupancy as we defined it
in Eq. (2.21) and η is an anomalous dimension.

If the integral on the RHS of Eq. (F.2) converges, the momentum scaling of ΠR

is determined by counting the dimension of momentum on the RHS of Eq. (F.2),

ΠR(szp0, sp) = sd+z−4−κ+ηΠR(p0, p) ∼ pd+z−4−κ+η . (F.7)

This is the case because no other momentum scale exists in the integral. However,
if the integral on the RHS of Eq. (F.2) diverges such that a regularization scale is
needed, the momentum scaling of ΠR can be different from the one presented in
Eq. (F.7). The divergent integral can be expressed in terms of the regularization
scale, for example, assuming that a function f(p) is infrared-divergent, through∫ ∞

kΛ
dk f(k) ∼ F (kΛ), (F.8)

where dF (k)/dk = f(k). Since the dimension of momentum in both sides of Eq. (F.8)
needs to be equal, the order of kΛ in F (kΛ) is determined by the order of the diver-
gence in the integral on the LHS of Eq. (F.8), i.e. if f(k) ∼ k−α, F (kΛ) ∼ k1−α

Λ .
In the following, we assume that Fab(p0, p) diverges as p → 0, while ρab(p) has a

well defined peak and thus, is finite. Then, the divergence of the integral in Eq. (F.2)
can be extracted from the behaviour of the integrand around the singularity. In the
first terms on the RHS of Eq. (F.2), the singularity locates at k → 0. As long as
the well defined peak of ρ(p0, p) is away from p ∼ 0, we can ignore ρ(p0, p) when
we count the order of divergence. Similar arguments apply for the second term on
the RHS of Eq. (F.2) where the singular point is now k → p. Thus, the order of the
divergence of ΠR, χ, is determined by the momentum unit on the RHS of Eq. (F.2)
minus the momentum unit of ρ, i.e.,

χ = d + z − 2 − κ . (F.9)

Then, scaling form of ΠR in Eq. (F.2) becomes

ΠR(p) ∼ p−2+ηpd+z−2−κ
Λ . (F.10)

Note that the momentum scaling in Eq. (F.10) comes from ρ where the infrared cutoff
pΛ has its power equal to the order of divergence χ. The structure in Eq. (F.10) can
be verified by the leading-order terms of Eqs. (4.141) and (4.158) in the limit η = 0.
We can infer the momentum scaling exponent γκ from |ΠR|−1, cf. Eq. (F.1), and
thus,

γκ = 2 − η . (F.11)

The result is confirmed in the limit η = 0 by our explicit calculation in Ch. 4, cf.
Eqs. (4.147) and (4.165). The mκ can be obtained by comparing the momentum
scaling in Eq. (3.3) with Eq. (4.115),

2d − z + 2mκ − 3κ = 2d + 3z + 2γκ − 8 − 3κ + η

⇒ mκ = 2(z − 2) + γκ + η

2 . (F.12)
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Substituting Eq. (F.11) into Eq. (F.12) yields

mκ = 2(z − 1) − η

2 . (F.13)

Before we evaluate the temporal scaling exponents γ and m, it is helpful to invest-
igate the temporal scaling of nQ(p, t) and n(p, t). Recalling the scaling hypotheses,
Eqs. (2.21) and (3.34),

nQ(sp, t) = s−κnQ(p, t) , (F.14)
nQ(sp, s1/βt) = s−α/βnQ(p, t) . (F.15)

these imply a simple scaling form of nQ,

nQ(p, t) ∼ p−κp
κ−α/β
Λ (t) , (F.16)

where we explicitly choose the time-dependent scale to be the infrared scale pΛ with
time evolution, pΛ(t) ∼ t−β because we assume the quasiparticles are concentrated
in the infrared regime. For the occupation number n(p, t), we recall Eq. (2.20),

n(p, t) =
( |p|

p̃(t)

)z−2
nQ(p, t) , (F.17)

where p̃ is a momentum scale encoded in the Bogoliubov transformation, i.e. in the
case z = 1, p̃ ∼ pξ. It is straightforward to verify the following scaling hypotheses,

n(sp, t) = s−κ+z−2n(p, t) , (F.18)
n(sp, s1/βt) = s−α̃/βn(p, t) . (F.19)

If we assume that p̃ is time-independent, then

α̃/β = α/β − z + 2 . (F.20)

The result implies

n(p, t) ∼ p−κ+z−2pΛ
(κ−z+2)−α̃/β(t) , (F.21)

ρnc(t) =
∫

ddp n(p, t) ∼ p
d−α̃/β
Λ (t) . (F.22)

If we assume ρnc(t) ∼ t−2δ ∼ p
2δ/β
Λ (t), we obtain the relation

2δ/β = d + z − 2 − α/β . (F.23)

To evaluate γ, we claim that the exponent κ in F (p) has its origin from the
quasiparticle occupation, i.e. we assume the following scaling hypotheses in F ,

Fab(szp0, sp; t) = s−2−κFab(p0, p; t) , (F.24)
Fab(szp0, sp; s1/βt) = s−2−α/βFab(p0, p; t) . (F.25)
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We do not account for time dependence of ρ because ρ has no dynamics at the level of
the kinetic equations we derived in Ch. 4. This means the momentum and temporal
scalings of ρ are identical. Then, the temporal scaling of ΠR can be read off from
Eq. (F.2),

ΠR(szp0, sp; s−1/βt) = sd−4+z+η−α/βΠR(p0, p; t)
= s−2+η+2δ/βΠR(p0, p; t) . (F.26)

This means
γ = 2 − η − 2δ/β . (F.27)

The result is confirmed by our calculation in Ch. 4, cf. Eqs. (4.147) and (4.165). For
the temporal scaling of the T -matrix, m, we determine by comparing the temporal
scaling of Eqs. (3.3) with (4.115),

2d − z + 2m − 3α/β = 2d + 3z + 2γ − 8 − 3α/β + η

⇒ m = 2(z − 2) + γ + η

2 . (F.28)

Inserting Eq. (F.27) into Eq. (F.28) yields

m = 2(z − 1) − η

2 − 2δ

β
. (F.29)

156



Bibliography
[1] S. N. Bose, Plancks Gesetz und Lichtquantenhypothese, [Am. J. Phys. 44,

1056 (1976)] Z. Phys. 26(3), 178 (1924).

[2] A. Einstein, Quantentheorie des einatomigen idealen Gases, Sitzungsber. Kgl.
Preuss. Akad. Wiss., Phys. Math. Kl. 1924, 261 (1924).

[3] A. Einstein, Quantentheorie des einatomigen idealen Gases. Zweite Abhand-
lung, Sitzungsber. Kgl. Preuss. Akad. Wiss., Phys. Math. Kl. 1925, 3 (1925).

[4] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A.
Cornell, Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor,
Science 269, 198 (1995).

[5] C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet, Evidence of Bose-
Einstein Condensation in an Atomic Gas with Attractive Interactions, Phys.
Rev. Lett. 75, 1687 (1995).

[6] K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee,
D. M. Kurn, and W. Ketterle, Bose-Einstein Condensation in a Gas of Sodium
Atoms, Phys. Rev. Lett. 75, 3969 (1995).

[7] Y. Kagan and B. V. Svistunov, Kinetics of the onset of long-range order during
Bose condensation in an interacting gas, [Zh. Eksp. Teor. Fiz. 105, 353 (1994)]
Sov. Phys. JETP 78(2), 187 (1994).

[8] C. Townsend, W. Ketterle, and S. Stringari, Bose-Einstein condensation, Phys-
ics World 10(3), 29 (1997).

[9] W. Ketterle, Nobel lecture: When atoms behave as waves: Bose-Einstein
condensation and the atom laser, Rev. Mod. Phys. 74, 1131–1151 (2002).

[10] V. E. Zakharov, V. S. L’vov, and G. Falkovich, Kolmogorov Spectra of Turbu-
lence I: Wave Turbulence, Springer, Berlin, 1992.

[11] S. Nazarenko, Wave turbulence, Number 825 in Lecture Notes in Physics,
Springer, Heidelberg, 2011.

[12] A. Newell, Wave Turbulence, Ann. Rev. Fluid Mech. 43(1) (2011).

[13] E. Levich and V. Yakhot, Time evolution of a Bose system passing through
the critical point, Phys. Rev. B 15(1), 243 (1977).

157



Bibliography

[14] E. Levich and V. Yakhot, Time development of coherent and superfluid prop-
erties in the course of a λ-transition, J. Phys. A: Math. Gen. 11(11), 2237
(1978).

[15] B. Svistunov, Highly nonequilibrium Bose condensation in a weakly interacting
gas, J. Mosc. Phys. Soc. 1, 373 (1991).

[16] D. V. Semikoz and I. I. Tkachev, Kinetics of Bose Condensation, Phys. Rev.
Lett. 74, 3093–3097 (1995).

[17] D. Semikoz and I. Tkachev, Condensation of Bosons in the kinetic regime,
Phys. Rev. D 55(2), 489 (1997).

[18] H. T. C. Stoof, Formation of the condensate in a dilute Bose gas, Phys. Rev.
Lett. 66, 3148 (1991).

[19] H. T. C. Stoof, Nucleation of Bose-Einstein condensation , Phys. Rev. A
45(12), 8398 (1992).

[20] H. T. C. Stoof, Initial Stages of Bose-Einstein Condensation, Phys. Rev. Lett.
78(5), 768 (1997).

[21] H. T. C. Stoof, Coherent Versus Incoherent Dynamics During Bose-Einstein
Condensation in Atomic Gases, J. Low Temp. Phys. 114(1/2), 11 (1999).

[22] Y. Kagan, B. V. Svistunov, and G. V. Shlyapnikov, Kinetics of Bose condens-
ation in an interacting Bose gas, [Zh. Eksp. Teor. Fiz. 101, 528 (1992)] Sov.
Phys. JETP 74, 279 (1992).

[23] Y. Kagan and B. V. Svistunov, Evolution of Correlation Properties and Ap-
pearance of Broken Symmetry in the Process of Bose-Einstein Condensation,
Phys. Rev. Lett. 79(18), 3331 (1997).

[24] N. G. Berloff and B. V. Svistunov, Scenario of strongly nonequilibrated Bose-
Einstein condensation, Phys. Rev. A 66(1), 013603 (2002).

[25] J. Berges, A. Rothkopf, and J. Schmidt, Non-thermal fixed points: Effective
weak-coupling for strongly correlated systems far from equilibrium, Phys. Rev.
Lett. 101, 041603 (2008).

[26] J. Berges and G. Hoffmeister, Nonthermal fixed points and the functional
renormalization group, Nucl. Phys. B813, 383 (2009).

[27] B. Nowak, D. Sexty, and T. Gasenzer, Superfluid Turbulence: Nonthermal
Fixed Point in an Ultracold Bose Gas, Phys. Rev. B 84, 020506(R) (2011).

[28] B. Nowak, J. Schole, D. Sexty, and T. Gasenzer, Nonthermal fixed points,
vortex statistics, and superfluid turbulence in an ultracold Bose gas, Phys.
Rev. A 85, 043627 (2012).

158



Bibliography

[29] B. Nowak, J. Schole, and T. Gasenzer, Universal dynamics on the way to
thermalisation, New J. Phys. 16, 093052 (2014).

[30] M. J. Davis, T. M. Wright, T. Gasenzer, S. A. Gardiner, and N. P. Proukakis,
Formation of Bose-Einstein condensates, (2016).

[31] M. Imamovic-Tomasovic and A. Griffin, Quasiparticle Kinetic Equation in a
Trapped Bose Gas at Low Temperatures, Journal of Low Temperature Physics
122(5), 617–655 (2001).

[32] R. Walser, J. Williams, J. Cooper, and M. Holland, Quantum kinetic theory
for a condensed bosonic gas, Phys. Rev. A 59(5), 3878 (1999).

[33] R. Walser, J. Cooper, and M. Holland, Reversible and irreversible evolution of
a condensed bosonic gas, Phys. Rev. A 63, 013607 (2000).

[34] J. Wachter, R. Walser, J. Cooper, and M. Holland, Equivalence of kinetic
theories of Bose-Einstein condensation, Phys. Rev. A 64, 053612 (2001).

[35] N. P. Proukakis, Self-consistent quantum kinetics of condensate and non-
condensate via a coupled equation of motion formalism, Journal of Physics B:
Atomic, Molecular and Optical Physics 34(23), 4737 (2001).

[36] N. P. Proukakis, K. Burnett, and H. T. C. Stoof, Microscopic treatment of
binary interactions in the nonequilibrium dynamics of partially Bose-condensed
trapped gases, Phys. Rev. A 57, 1230 (1998).

[37] S. Dyachenko, A. C. Newell, A. Pushkarev, and V. E. Zakharov, Optical turbu-
lence: weak turbulence, condensates and collapsing filaments in the nonlinear
Schrödinger equation, Phys. D: Nonlin. Phen. 57(1-2), 96 (1992).

[38] Y. Lvov, S. Nazarenko, and R. West, Wave turbulence in Bose–Einstein con-
densates, Physica D: Nonlinear Phenomena 184(1), 333–351 (2003), Com-
plexity and Nonlinearity in Physical Systems – A Special Issue to Honor Alan
Newell.

[39] U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov, Cambridge University
Press, 2004.

[40] A. N. Kolmogorov, The local structure of turbulence in incompressible viscous
fluid for very large Reynolds numbers, Proc. USSR Acad. Sci. 30, 299 (1941),
[Proc. R. Soc. Lond. A 434, 9 (1991)].

[41] N. Navon, A. L. Gaunt, R. P. Smith, and Z. Hadzibabic, Emergence of a
turbulent cascade in a quantum gas, Nature 539(7627), 72–75 (2016).

[42] R. Jackiw, Functional evaluation of the effective potential, Phys. Rev. D 9,
1686–1701 (1974).

159



Bibliography

[43] J. M. Cornwall, R. Jackiw, and E. Tomboulis, Effective action for composite
operators, Phys. Rev. D 10, 2428 (1974).

[44] E. A. Calzetta and B. L. Hu, Nonequilibrium Quantum Fields: Closed Time
Path Effective Action, Wigner Function And Boltzmann Equation, Phys. Rev.
D 37, 2878 (1988).

[45] J. Berges, Controlled nonperturbative dynamics of quantum fields out of equi-
librium, Nucl. Phys. A699, 847 (2002).

[46] G. Aarts and J. Berges, Classical Aspects of Quantum Fields Far from Equi-
librium, Phys. Rev. Lett. 88, 041603 (2002).

[47] G. Aarts, D. Ahrensmeier, R. Baier, J. Berges, and J. Serreau, Far-from-
equilibrium dynamics with broken symmetries from the 1/N expansion of the
2PI effective action, Phys. Rev. D 66, 045008 (2002).

[48] J. Berges, Nonequilibrium Quantum Fields: From Cold Atoms to Cosmology,
in Proc. Int. School on Strongly Interacting Quantum Systems Out of Equilib-
rium, Les Houches, edited by T. Giamarchi et al., OUP, Oxford, 2016.

[49] C. Scheppach, J. Berges, and T. Gasenzer, Matter-wave turbulence: Beyond
kinetic scaling, Phys. Rev. A 81(3), 033611 (2010).

[50] A. Piñeiro-Orioli, K. Boguslavski, and J. Berges, Universal self-similar dynam-
ics of relativistic and nonrelativistic field theories near nonthermal fixed points,
Phys. Rev. D 92(2), 025041 (2015).

[51] S. Mathey, T. Gasenzer, and J. M. Pawlowski, Anomalous scaling at nonther-
mal fixed points of Burgers’ and Gross-Pitaevskii turbulence, Phys. Rev. A
92, 023635 (2015).

[52] R. Walz, K. Boguslavski, and J. Berges, Large-N kinetic theory for highly
occupied systems, ArXiv e-prints:1710.11146 (2017).

[53] J. Cardy, Scaling and Renormalization in Statistical Physics, Cambridge Lec-
ture Notes in Physics, CUP, Cambridge, UK, 1996.

[54] A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore, Colloquium:
Nonequilibrium dynamics of closed interacting quantum systems, Rev. Mod.
Phys. 83(3), 863 (2011).

[55] P. C. Hohenberg and B. I. Halperin, Theory of Dynamic Critical Phenomena,
Rev. Mod. Phys. 49, 435–479 (1977).

[56] H. Janssen, Field-theoretic methods applied to critical dynamics, in Dynam-
ical critical phenomena and related topics, Lecture Notes in Physics, vol. 104,
page 26, Springer, Heidelberg 1979, 1979.

160



Bibliography

[57] H. K. Janssen, B. Schaub, and B. Schmittmann, New universal short-time
scaling behaviour of critical relaxation processes, Z. Phys. B Cond. Mat. 73(4),
539–549 (1989).

[58] H. Janssen, On the renormalized field theory of nonlinear critical relaxation,
in From phase transitions to chaos, page 68, World Scientific, Singapore 1992,
1992.

[59] P. Calabrese and A. Gambassi, Aging in ferromagnetic systems at criticality
near four dimensions, Phys. Rev. E 65, 066120 (2002).

[60] P. Calabrese and A. Gambassi, Ageing properties of critical systems, J. Phys.
A: Math. Gen. 38(18), R133 (2005).

[61] A. Gambassi, Slow dynamics at critical points: the field-theoretical perspective,
J. Phys. Conf. Ser. 40(1), 13 (2006).

[62] C. Godrèche and J. M. Luck, Response of non-equilibrium systems at critical-
ity: ferromagnetic models in dimension two and above, Journal of Physics A:
Mathematical and General 33(50), 9141 (2000).

[63] C. Godrèche and J. M. Luck, Nonequilibrium critical dynamics of ferromagnetic
spin systems, Journal of Physics: Condensed Matter 14(7), 1589 (2002).

[64] M. Tsubota, Quantum Turbulence, J. Phys. Soc. Jpn. 77, 111006 (2008).

[65] W. Vinen, An Introduction to Quantum Turbulence, J. Low Temp. Phys. 145,
7 (2006).

[66] M. Karl, B. Nowak, and T. Gasenzer, Tuning universality far from equilibrium,
Scientific Reports 3 (2013).

[67] M. Karl, B. Nowak, and T. Gasenzer, Universal scaling at non-thermal fixed
points of a two-component Bose gas, Phys. Rev. A 88, 063615 (2013).

[68] C. Pethick and H. Smith, Bose-Einstein condensation in dilute gases, CUP,
Cambridge, UK, 2006.

[69] J. Berges and D. Sexty, Bose condensation far from equilibrium, Phys. Rev.
Lett. 108, 161601 (2012).

[70] J. Schole, B. Nowak, and T. Gasenzer, Critical Dynamics of a Two-dimensional
Superfluid near a Non-Thermal Fixed Point, Phys. Rev. A 86, 013624 (2012).

[71] M. Karl and T. Gasenzer, Strongly anomalous non-thermal fixed point in a
quenched two-dimensional Bose gas, New Journal of Physics 19(9), 093014
(2017).

161



Bibliography

[72] J. Berges and D. Sexty, Strong versus weak wave-turbulence in relativistic field
theory, Phys. Rev. D 83, 085004 (2011).

[73] K. Huang, Statistical Mechanics, Wiley, New York, 1987.

[74] R. Kraichnan, Inertial Ranges in Two-Dimensional Turbulence, Phys. Fl.
10(7), 1417 (1967).

[75] J. Jiménez, The Contributions of A. N. Kolmogorov to the theory of turbulence,
Arbor 178(704), 589–606 (2004).

[76] S. Orszag, Lectures on the Statistical Theory of Turbulence, Flow research
report, MIT, 1974.

[77] G. Falkovich and K. R. Sreenivasan, Lessons from hydrodynamics turbulence,
Phys. Today 39(7), 43 (2006).

[78] J. Cardy, G. Falkovich, K. Gawędzki, S. Nazarenko, and O. Zaboronski, Non-
equilibrium Statistical Mechanics and Turbulence, London Mathematical Soci-
ety Le, Cambridge University Press, 2008.

[79] H. L. Grant, R. W. Stewart, and A. Moilliet, Turbulence spectra from a tidal
channel, Journal of Fluid Mechanics 12(2), 241–268 (1962).

[80] F. H. Champagne, The fine-scale structure of the turbulent velocity field,
Journal of Fluid Mechanics 86(1), 67–108 (1978).

[81] J. Maurer, P. Tabeling, and G. Zocchi, Statistics of Turbulence between Two
Counterrotating Disks in Low-Temperature Helium Gas, EPL (Europhysics
Letters) 26(1), 31 (1994).

[82] D. J. Benney and P. G. Saffman, Nonlinear Interactions of Random Waves in
a Dispersive Medium, Proceedings of the Royal Society of London. Series A,
Mathematical and Physical Sciences 289(1418), 301–320 (1966).

[83] M. M. Farazmand, N. K.-R. Kevlahan, and B. Protas, Controlling the dual
cascade of two-dimensional turbulence, Journal of Fluid Mechanics 668, 202–
222 (2011).

[84] L. Biven, S. Nazarenko, and A. Newell, Breakdown of wave turbulence and the
onset of intermittency, Physics Letters A 280(1), 28–32 (2001).

[85] V. E. Zakharov and N. N. Filonenko, Weak turbulence of capillary waves,
Journal of Applied Mechanics and Technical Physics 8(5), 37–40 (1967).

[86] A. Pushkarev and V. Zakharov, Turbulence of capillary waves - theory and
numerical simulation, Physica D: Nonlinear Phenomena 135(1), 98–116 (2000).

162



Bibliography

[87] E. Falcon, C. Laroche, and S. Fauve, Observation of gravity-capillary wave
turbulence, Phys. Rev. Lett. 98(9), 94503 (2007).

[88] C. Falcón, E. Falcon, U. Bortolozzo, and S. Fauve, Capillary wave turbulence
on a spherical fluid surface in low gravity, EPL (Europhysics Letters) 86(1),
14002 (2009).

[89] G. V. Kolmakov, A. A. Levchenko, M. Y. Brazhnikov, L. P. Mezhov-Deglin,
A. N. Silchenko, and P. V. E. McClintock, Quasiadiabatic Decay of Capillary
Turbulence on the Charged Surface of Liquid Hydrogen, Phys. Rev. Lett. 93,
074501 (2004).

[90] G. V. Kolmakov, M. Y. Brazhnikov, A. A. Levchenko, A. N. Silchenko, P. V. E.
McClintock, and L. P. Mezhov-Deglin, Nonstationary Nonlinear Phenomena
on the Charged Surface of Liquid Hydrogen, Journal of Low Temperature
Physics 145(1), 311–335 (2006).

[91] P. A. Hwang, D. W. Wang, E. J. Walsh, W. B. Krabill, and R. N. Swift, Air-
borne Measurements of the Wavenumber Spectra of Ocean Surface Waves. Part
I: Spectral Slope and Dimensionless Spectral Coefficient, Journal of Physical
Oceanography 30(11), 2753–2767 (2000).

[92] P. A. Hwang and D. W. Wang, Field Measurements of Duration-Limited
Growth of Wind-Generated Ocean Surface Waves at Young Stage of Devel-
opment, Journal of Physical Oceanography 34(10), 2316–2326 (2004).

[93] V. E. Zakharov, Theoretical interpretation of fetch limited wind-drivensea
observations, Nonlinear Processes in Geophysics 12(6), 1011–1020 (2005).

[94] C. Connaughton, C. Josserand, A. Picozzi, Y. Pomeau, and S. Rica, Condens-
ation of classical nonlinear waves, Phys. Rev. Lett. 95(26), 263901 (2005).

[95] S. Nazarenko and M. Onorato, Wave turbulence and vortices in Bose-Einstein
condensation, Phys. D: Nonlin. Phen. 219(1), 1 (2006).

[96] M. Schiffer, Generalized Boltzmann equation for quasi-condensates in 1D,
Bachelor thesis (unpublished), Universität Heidelberg, 2016.

[97] R. D. Jordan, Effective field equations for expectation values, Phys. Rev. D
33, 444–454 (1986).

[98] J. Schwinger, Brownian Motion of a Quantum Oscillator, J. Math. Phys. 2,
407 (1961).

[99] L. V. Keldysh, Diagram Technique For Nonequilibrium Processes, [Sov. Phys.
JETP 20, 1018 (1965)] Zh. Eksp. Teor. Fiz. 47, 1515 (1964).

163



Bibliography

[100] P. Dirac, Lectures on Quantum Mechanics, Belfer Graduate School of Science,
monograph series, Dover Publications, 2001.

[101] R. Jackiw, (Constrained) quantization without tears, in 2nd Workshop on
Constraint Theory and Quantization Methods Montepulciano, Italy, June 28-
July 1, 1993, pages 163–175, 1993.

[102] J. Berges and J. Serreau, Parametric Resonance in Quantum Field Theory,
Phys. Rev. Lett. 91, 111601 (2003).

[103] J. Berges and T. Gasenzer, Quantum versus classical statistical dynamics of
an ultracold Bose gas, Phys. Rev. A76, 033604 (2007).

[104] G. Aarts and J. Berges, Nonequilibrium time evolution of the spectral function
in quantum field theory, Phys. Rev. D64, 105010 (2001).

[105] S. Juchem, W. Cassing, and C. Greiner, Quantum dynamics and thermalization
for out-of-equilibrium φ4-theory, Phys. Rev. D 69, 025006 (2004).

[106] A. Branschädel and T. Gasenzer, 2PI nonequilibrium versus transport equa-
tions for an ultracold Bose gas, J. Phys. B 41, 135302 (2008).

[107] M. Peskin and D. Schroeder, An Introduction to Quantum Field Theory, Ad-
vanced book classics, Addison-Wesley Publishing Company, 1995.

[108] K. Hagen and S. Verena, Critical Properties Of Phi4- Theories, World Scientific
Publishing Company, 2001.

[109] S. Weinberg, The Quantum Theory of Fields: Foundations, Number v. 1 in
The Quantum Theory of Fields 3 Volume Hardback Set, Cambridge University
Press, 1995.

[110] H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Phys-
ics, and Financial Markets, EBL-Schweitzer, World Scientific, 2009.

[111] C. Itzykson and J. Zuber, Quantum Field Theory, Dover Books on Physics,
Dover Publications, 2012.

[112] V. Nair, Quantum Field Theory: A Modern Perspective, Graduate Texts in
Contemporary Physics, Springer New York, 2006.

[113] E. Calzetta and B. Hu, Nonequilibrium Quantum Field Theory, Cambridge
Monographs on Mathem, Cambridge University Press, 2008.

[114] M. Abramowitz and I. Stegun, Handbook of Mathematical Functions: With For-
mulas, Graphs, and Mathematical Tables, Applied mathematics series, Dover
Publications, 1964.

164



Bibliography

[115] H. Bateman and B. M. Project, Higher Transcendental Functions, Number v.
1 in Bateman Manuscript Project California Institute of Technology, McGraw-
Hill, 1955.

165





Acknowledgement
First of all, I thank my supervisor, Prof. Dr. Thomas Gasenzer for enduring with
me during my study. He gave me both academic and moral support whenever I
encountered the problems. It was entirely his encouragement that changed the seem-
ingly useless calculations into the concrete results. I have learned a lot during my
doctoral study under his supervision, both conceptual and technical issues. I would
like to thank him also for concerning about my life in Germany from the very be-
ginning. He gave me advice whenever he knew I was about to encounter unfamiliar
situations and they were very helpful

I would like to thank the Development and Promotion of the Science and Techno-
logy Talents Project (DPST) and the Institute for the Promotion of Teaching Science
and Technology (IPST) for financial support. I also thank the Institute of Theoret-
ical Physics (ITP), the University of Heidelberg and the Heidelberg Graduate School
of Fundamental Physics (HGSFP) for covering my expenses of conferences and sum-
mer/winter schools. I thank the HGSFP for holding the Graduate Days. I enjoyed
the lectures very much.

I gratefully thank Boris Nowak, Sebastian Erne, Sebastian Bock, Markus Karl,
Steven Mathey and Andreas Samberg for a warm welcome, discussions and all kinds
of help. They helped me settle down in the new environment and supported me
whenever I need. I also thank Stefanie Czischek, Christian-Marcel Schmied, Kevin
Geier, Sebastian Heupts, Fabian Brock, Halil Cakir, Anselm Klenner, Alexander Lilu-
ashvili, Thorge Müller, Simon Sailer, Enrico Brehm, Marc Schiffer, Martin Gärttner,
Gonzalo Alonso Alvarez, Johannes Hölck, and Paul Wittmer for sharing our time
together and discussions in various kinds of topics. My Special thanks go to Enrico
Brehm for giving me advice on numerical integration in Mathematica, Marc Schif-
fer who carried out the similar calculation in one-dimensional Bose gas and Martin
Gärttner for helping me preparing my oral examination.

I thank Prof. Dr. Jürgen Berges, Asier Piñeiro Orioli and Kirill Boguslavski for
the discussion and the collaboration regarding this project.

I would like to thank my examination committee, Dr. Michael Scherer who is
my second referee, Prof. Dr. Selim Jochim, and Prof. Dr. Kurt Roth. At the time
I wrote this, I talked to them only briefly, but our discussions have quite an impact
on me already.

I thank Ms. Elisabeth Miller and Ms. Gesine Heinzelmann for helping me with
the documentation since before my arrival to Germany and always answering my
questions regarding the formal regulations. I thank the staffs of ITP for all kinds of
help, especially, during the time of my loss.

I also thank Mr. Chinnapan Leaukjamnong, Ms. Maneerath Boonchim, Mr.

167



Acknowledgement

Pathara Saranuchit, Mr. Attawut Triwaranon and Ms. Patcha Rantasaewee for
taking care of me more than their duties as the officers of Educational Affairs. I
thank Pornphot Duangmala, Nopporn Thamrongrat, Sophon Tunyavetchakit, Napoo
Wongpan and other Thai students in Heidelberg for being together in our hard time.
I give my best gratitude to Suttiluk Otthatawong who was with me in the ITP for a
short but memorable moment.

I would like to thank Ms. Sompong Peikl, Mr. Gerhard Staudt, Mr. Suppareouk
Nokkhunthot, Ms. Pranee Nokkhunthot, Chatchapong Nokkhunthot, Mr. Tawin
Karnbooth and Yoothakarn Ba-in for being my family in Germany. I also thank
Mrs. Kyung-Hee Lee Schumacher, Mr. Rudolf Schumacher, Anna Schumacher and
Bastian Schumacher for a warm welcome and their hospitality. I am grateful to have
places I can call home in a land far away from my homeland.

Last but not least, I thank my family for moral support since the beginning of
my scientific study. My special thank goes to my sister, Thanrak, who partakes my
responsibilities in our family during my absence and is very good at making me feel
like I am still close to home.

168


	Abstract/Kurzzusammenfassung
	Introduction
	Universal dynamics and nonthermal fixed points
	Model and observables
	Momentum scaling and universal scaling functions
	Momentum scaling in number distributions
	Bulk integrals
	Scaling function

	Universal dynamics
	Global conservation laws
	Nonthermal fixed points
	Wave-turbulent transport
	Summary of scaling relations

	Summary

	Kinetic theory of weak and strong wave turbulence
	Quantum and wave-Boltzmann equations
	Wave turbulent scaling exponents
	Weak-wave turbulence scaling exponents
	Strong wave turbulence scaling exponents
	Self-similar scaling exponent

	Universal dynamics (revisited)
	Time scaling behaviour
	General scaling of T-matrix
	Scaling evolution

	Summary

	Kinetic equation from nonequilibrium quantum field theory
	Nonequilibrium description of a Bose field with quartic interaction
	Dynamical equations of a Bose field with quartic interaction
	Dynamical equations of statistical and spectral function
	Stationarity condition

	The s-chanmel resummation of the self-energy and Boltzmann's scattering integral
	Kinetic equation of quasi-particle occupation number
	Particle and quasi-particle correlation functions
	Nonperturbative kinetic equation

	Effective many-body coupling function
	Effective many-body coupling function for free particles
	Effective many-body coupling function for Bogoliubov quasiparticles

	Summary

	Numerical evaluation of scattering integral
	Analytical simplification of the scattering integral
	Free particles
	Bogoliubov quasiparticles

	The scaling solutions of integrals
	Weak-wave turbulence solutions
	Strong-wave turbulence solutions
	Self-similar solutions

	Dynamical exponents
	Time evolution of Bose gas in the kinetic regime
	Summary

	Conclusion
	Convention and useful symmetries
	Nonequilibrium quantum field theory
	Closed-time-path integral
	Single-time-contour formalism
	Closed-time-path formalism
	Path integral representation of CTP formalism and its effective action

	2-particle irreducible effective action
	The generating of n-particle irreducible (nPI) formalism
	2-particle-irreducible (2PI) effective action

	Nonequilibrium Quantum Field Theory

	Spectral function of free and Bogoliubov particles
	Evaluation of integrals
	Integrals involving the many-body coupling
	Evaluation of the scattering integral
	Evaluation of Ifree1 and Ifree2
	Evaluation of Ibog1, Ibog2, Ibog3 and Ibog4


	Expansion of the hypergeometric functions
	Evaluation of the scaling form of T-matrix elements
	Bibliography
	Acknowledgement

