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1. Introduction  

1.1 Melanoma 

Melanoma, also known as cutaneous melanoma or malignant melanoma is the 

malignancy of melanocytes. It is one of the most aggressive forms of skin cancer. It 

accounts for only 4% of all skin cancers but is responsible for more than 75% of 

deaths due to skin cancers (Arrangoiz et al., 2016). A world-wide increase in 

melanoma incidence has been observed among the caucasian population. Australia 

has the maximum rate of incidence with 50-60 new cases per 100,000 populations, 

which is followed by United States of America (USA) and Europe with 20-30 and 10-

25 new cases per 100,000 populations respectively (Garbe et al., 2016).  

1.1.1 Melanoma subtypes 

Classically or histologically melanoma has been grouped into four subtypes: 

Superficial spreading melanoma is the most common subtype and accounts for 

approximately 70% of all melanoma cases in the white population. It is irregular in 

shape and spread alongside epidermis. Nodular melanoma is another common 

subtype where the melanocytes grow vertically rather that spreading horizontally. 

The borders of nodular melanoma are more distinct compared to superficial 

melanoma. The third subtype of melanoma is lentigo malignant melanoma, which 

is frequently developed on sun-exposed part of skin like forearms, face and neck of 

elderly people. It can also invade through the dermis. Acral lentiginous melanoma 

is the fourth subtype of melanoma which is least common in Caucasian but usually 

found in people with other race for e.g. African-American or Asian. Mostly, it occurs 

in palm, sole or under nails (Smoller, 2006). 

1.1.2 Melanoma and Risk factors 

Transformation of melanocytes to melanoma could arise due to several factors like 

sun exposure, family history or immunosuppression. However, exposure to the sun 

or ultra violet (UV) radiation has been accounted as the major cause of melanoma 

(Gandini et al., 2005). 
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UV exposure can cause increased production of growth factors and reactive oxygen 

species which further leads to DNA damage and genetic alterations (Huang et al., 

1996). However, melanin, pigments present in human skin, absorbs and dissipates 

UV light and protects the skin from any DNA damage. Melanin is produced by 

melanocytes and transported to the keratinocytes so that they are similarly 

distributed in the skin (Brenner and Hearing, 2008). 

People with a large number of congenital melanocytic nevi are at higher risk of 

developing melanoma. The reports also suggest that chances of developing 

melanoma from congenital melanocytic nevi are between 20-30% (Ribeiro et al., 

2016). Although melanoma can arise from the pre-existing nevus, approximately 

75% of the melanoma occurs de novo. Nonetheless, these nevi can be surgically 

removed to reduce the risk. 

Melanoma is an immunogenic tumour and some studies have found that the risk of 

developing melanoma increases by 20-60 times in immunosuppressed people than 

normal population (Moloney et al., 2006). It is more common in 

immunocompromised people with solid organ transplant recipients (OTRs), patients 

with human immunodeficiency virus (HIV) infection/AIDS. (Kubicaa and Brewer, 

2012).  

Another strong risk factor for melanoma is the family history. Around 10% of the 

melanoma patients have some close family members already diagnosed with 

melanoma. To date, two genes, cyclin-dependent kinase inhibitor 2A (CDKN2A) and 

cyclin-dependent kinase 4 (CDK4) are implicated in familial melanoma. Besides, 

CDKN2A is found to be mutated in 20-40% of members of familial melanoma (Read 

et al., 2016). 

 

1.2 Melanocyte to melanoma 

1.2.1 Melanocyte development 

Melanoma cells exploit the normal developmental process of melanocyte for its 

progression. But the exact mechanism behind this is not clearly understood.  In the 
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process to illuminate this association, it is important to understand the developmental 

process of melanocytes. 

Melanocytes are a group of special heterogeneous cells which originates from 

embryonic neural crest (NC) cells. Development of melanocytes encompasses 

several complex phases. It starts with lineage specification from neural crest cells 

and forms melanoblast precursors. Melanoblasts then mature, proliferate and 

migrate to the epidermis. Here they are incorporated into hair follicles and further 

differentiates to melanocytes. Eventually, melanocytes produce melanin in special 

organelles known as melanosomes (O'Rahilly and Müller, 2007) (Ernfors, 2010). In 

human, melanosomes are transported to keratinocytes as a defensive measure to 

protect from DNA damage of skin due to sun or UV exposure. Melanin absorbs and 

dissipates UV light energy (Gilchrest and Eller, 1999).  

1.2.1.1 Pathways and genetics of melanocyte development 

As I mentioned earlier that melanocytes are differentiated from highly migratory 

neural crest cells and during this differentiation several signalling pathways are 

activated. For example, BMP signalling is important for the early neural crest 

induction. Kanzler et al in 2000 demonstrated that knocking down BMP2 in mouse 

leads to the loss of neural crest derivatives. Later, the role of snail/slug family is 

crucial as it helps during the epithelial to mesenchymal transition (EMT) of neural 

crest progenitor cells. Snail/slug directly represses E-cadherin and blocks cell 

adhesion which ultimately allows cell migration (Cano et al., 2000). Multiple roles of 

Notch family have been recognised during neural crest cell differentiation. In mouse, 

loss or gain of notch signalling could affect the neural crest cell migration, 

proliferation, differentiation and fate decision of early progenitors (Mead and Yutzey, 

2012). Another study found that notch signalling plays the determining role in 

melanoblasts and adult melanocyte stem cells survival (Moriyama et al., 2006). 

Melanoblast formation is one more essential stage during melanocyte development. 

Study using Wnt-1 and Wnt-3a knock-out mouse suggested reduction in neural crest 

derivative thus deciding the fate of melanocyte maturation (Ikeya et al., 1997). Later, 

a fate mapping study showed that Wnt signalling is also critical in melanocyte 

formation by blocking glial and neuronal fates (Dorsky et al., 1998). Finally, Dunn et 
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al in 2000 illustrated that Wnt signalling is necessary for melanocyte growth and 

differentiation.   

These signalling pathways also control several transcription factors and their 

downstream genes during melanocyte development from neural crest cells. The key 

transcription factors involved in this process are FOXD3, SOX9, SOX10, PAX3 and 

MITF. Activation of precise transcription factor decides the fate of the melanoblast 

precursor cells if it will differentiate to melanocytes or glial cells.  

Microphthalmia-associated transcription factor (MITF) is a basic helix-loop-helix 

transcription factor that is considered as the master regulator of melanocyte 

development. It regulates three major genes (TYR, TYRP1 and DCT) which are 

responsible for pigmentation in melanocytes (Levy et al., 2006). Mice with MITF 

mutations cannot form melanocytes and retinal pigment epithelial (RPE) cells 

couldn’t develop properly (Steingrimsson et al., 2004). MITF helps in the survival of 

melanocytes by directly regulating the key antiapoptotic gene BCL2 (McGill et al., 

2002).  However, the expression of MITF is regulated by an array of upstream genes 

and these genes also play a central role in neural crest development and 

differentiation. It is, therefore important to highlight the role of these genes during 

several steps of melanocyte development. The main transcription factors which 

regulate MITF expression in melanocyte development are SOX10 and PAX3. In both 

human and mouse, a mutation in SOX10 or PAX3 gene results in Waardenburg 

syndrome, which is similar to the effect of mutation in MITF (Tachibana et al., 2003). 

Mutation in these genes can lead to the abnormal melanocyte development which 

could alter the melanin production.  In addition to this SOX10 and PAX3 work 

synergistically to activate MITF expression since SOX10 and PAX3 binding sites are 

next to each other on MITF promoter (Potterf et al., 2000). Taken together these 

results suggest that SOX10, PAX3 and MITF are the key genes required for the 

melanocyte differentiation and melanin synthesis. But there are other transcription 

factors which are active in very early stage of embryonic development and define the 

fate of melanocyte development.                      

FOXD3 is an important transcription factor which is expressed in migrating neural 

crest cells that differentiate into glia and neurons but not detected in later migrating 

neural crest cells which give rise to melanocytes. Kos et al in 2001 using avian 
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neural crest cells discovered two important roles of FOXD3 in neural crest 

development. FOXD3 expression was found in pre-migratory neural crest cells but 

was downregulated in pre-migratory melanoblast lineage. This suggests that FOXD3 

assists in the segregation of the neural crest lineage from the neural epithelium. 

Also, knocking down FOXD3 in vivo led to an increase in neural crest cells 

differentiating into melanocyte whereas the overexpression of FOXD3 suppresses 

melanocyte formation suggesting the role of FOXD3 in suppressing melanogenesis. 

FOXD3 represses melanogenesis by inhibiting binding of PAX3 to the MITF 

promoter (Thomas and Erickson, 2009). In another study, it was shown that Snail 

2, SOX9 and FOXD3 are expressed in the dorsal neural tube suppressing 

melanogenesis. In later stages, the expression of these genes is lost and progress 

towards melanocyte differentiation (Nitzan et al., 2013).  

Another decisive gene which is expressed during neural crest development is SOX2. 

Its expression was not found in pre-migratory and migratory neural crest cells and 

misexpression of this gene lead to the inhibition of neural crest formation 

(Wakamatsu et al., 2004). Therefore, the expression of FOXD3 and SOX2 decides 

the fate of neural crest cells if they will differentiate into melanoblast lineage or glial 

cells.  

Several studies have discovered the role of other genes in neural crest development. 

Some of the important genes are MSX, cMYC, Id3, TWIST and endothelins 

(Baynash et al., 1994) (Steventon et al., 2005). 

 

1.2.2 Pathways and genetics of melanoma development 

The mechanism behind the transformation of melanocyte to melanoma is still not 

clearly understood. Even though, a large body of evidence suggest the role of 

mutations acquired by several genes in melanoma progression. Miller and Mihm in 

2006 proposed a model explaining the different events and molecular changes 

during melanoma progression. The model depicted that the mutations are acquired 

as early as in benign nevi. During the course of transformation, more mutation 

burden helps in the metastasis of the melanoma cells (Figure 1). Mutation in these 

genes alters key signalling pathway which leads to melanoma progression and 
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metastasis. Recently melanoma has been majorly grouped into four categories 

based on their mutational status- BRAF mutant, NRAS mutant, NF-1 mutant and 

Triple wild type (Akbani et al., 2015). 

 

 

 

 

 

 

 

 

Figure 1: Melanocyte to melanoma development. BRAF is an early event during 

melanoma development which is followed by other mutations like loss of tumour 

suppressor genes like CDKN2A, PTEN and NF1. Increased in Id protein expression 

is also found as early as during nevi formation. 

1.2.2.1 MAPK pathway 

Mitogen-activated protein kinases (MAPK) pathway is an intracellular signal 

transduction pathway which regulates cell survival, differentiation, migration and 

proliferation (Torii et al., 2006) (Dhillon et al., 2007). This signalling pathway can be 

activated via various extracellular stimuli like receptor tyrosine kinase (RTK), G-

protein coupled receptors (GPCRs), mitogens and integrins (Zhang and Liu, 2002). 

Upon activation, the downstream protein i.e. RAS, RAF, MEK1/2 and ERK1/2 are 

activated and regulates the above described cellular processes (Kim and Choi, 

2010). Mutation in any of these genes could activate the MAPK pathway and lead to 

uncontrolled cell growth and proliferation.  

BRAF is one of the most mutated genes in this pathway. Several studies have found 

that approximately 40-60% of melanoma patients carry a mutation in BRAF (Davies 

et al., 2002) (Akbani et al., 2015). It is well documented that 90% of BRAF mutation 

Melanocytes Melanocytic Nevus Melanoma 
BRAF mutation 
NRAS mutation 

CDKN2A & PTEN loss 

Loss of NF1 

Increased Id protein 
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have V600E mutation where Valine (V) is substituted by Glutamate (E) at codon 600 

(Tan et al., 2008). Since the mutation occurs in the kinase domain of the BRAF it 

constitutively activates BRAF which further lads to the activation MEK/ERK pathway. 

Interestingly it has been reported that BRAF mutation is more common in 

melanomas arising on the skin which is intermittently exposed to the sun compared 

to sun damaged skin (Maldonado et al., 2003). Conversely, data suggests that 

BRAF mutation is an early event and has been found to be mutated in melanocytic 

nevi (82%) as well (Pollock et al., 2003). Principally BRAF activates downstream 

MEK-ERK pathway which further leads to unchecked proliferation and growth. 

Through MEK-dependent activation of HIF-1α and VEGF, it also promotes 

metastasis and angiogenesis (Maurer et al., 2011). It is also important to note that 

BRAF mutation alone is not able to transform the melanocyte to melanoma. For 

example, BRAF mutation alone in Zebra fish gave rise to nevi but not melanoma. 

More interestingly, Zebra fish with BRAF and additional mutation for P53 generated 

nevi and later formed invasive melanoma (Patton et al., 2005). 

Another key gene which is found to be mutated in melanoma patients is NRAS. In 

1984 RAS activation was first identified in human melanoma cell lines as well in a 

short-term cell culture from a melanoma patient (Padua et al., 1984) (Albino et al., 

1984). Approximately 20% of melanoma patients carry a mutation in NRAS gene 

(Jakob et al., 2012). The most frequent mutations found in this gene are Q61R and 

Q61K. Moreover, it has been found that patient with NRAS mutations are older and 

have chronic sun damaged skin. The tumour thickness in NRAS mutated melanoma 

patients has a greater Breslow index (Devitt et al., 2011). The report also suggests 

that BRAF and NRAS mutations are mutually exclusive and less than 1% of patients 

carry a mutation in both genes at the same time (Goel et al., 2006). 

Neurofibromin 1(NF1) is a tumour suppressor gene which is significantly mutated in 

the MAPK pathway. Approximately 15% of melanoma patients have inactivation or 

loss of NF1 gene. NF1 negatively regulates RAS signalling by hydrolysing RAS-GTP 

(active form) to RAS- GDP (inactive form) (Rajkumar and Watson., 2016). Loss or 

inactivation of NF1 results in unchecked RAS activation which further activates 

MAPK pathway. Similar to NRAS mutated melanoma patients, NF1 mutations have 
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been reported in older patients with chronic sun damaged skin (Krauthammer et al., 

2012) (Mar et al., 2013). 

1.2.2.2 p53 Pathway   

p53 is another tumour suppressor gene which has been reported to be mutated in 

several cancer types including melanoma (approximately19%) (Hodis et al., 2012). 

In melanoma, mutations in several genes have been implicated to circumvent P53 

mediated tumour suppression. CDKN2A is a well-known tumour suppressor gene 

which is frequently mutated in high-risk melanoma family (Aitken et al., 1999). Loss 

of CDKN2A is significant for melanoma progression because it encodes two tumour 

suppressor proteins through alternative splicing i.e. p16INK4a and p14ARF. 

p16INK4a is a cyclin-dependent kinase inhibitor which activates retinoblastoma (RB) 

by blocking the CDK4.  On the other hand, p14ARF regulates the level of p53 protein 

via mouse double minute 2 (MDM2). MDM2 is responsible for the degradation of p53 

through ubiquitination but it is negatively regulated by p14ARF. Subsequently, it 

allows p53 to arrest the cell cycle in G2-M phase to either repair the damaged DNA 

or initiation of apoptosis (Harris and Levine, 2005). It was also shown in vivo that 

loss of p16INK4a and p14ARF reduces the time to develop melanoma on exposure 

to UV light (Recio et al., 2002). These data also clarifies that the low rate of p53 

mutations in melanoma is because of loss of p14ARF. 

1.2.2.3 PI3K/AKT pathway  

The PI3K/AKT signalling pathway is another significant pathway for cellular 

proliferation, survival and migration. This pathway is more often activated by various 

cancer types including melanoma (Cantley, 2002) (Davies, 2012). More often 

activation of PI3K/AKT pathway in melanoma is either due to mutation in PI3K and 

AKT or deletion of PTEN locus on chromosome 10 (Davies, 2012). It is important to 

note that PI3K can also be activated by activated RAS proteins (Mendoza et al., 

2011). PTEN is a potent tumour suppressor which keeps in check the PI3K/AKT 

pathway by keeping the phosphatidylinositol phosphate (PIP3) level low. In 

melanoma, loss of PTEN (20-30%) allows the accumulation of PIP3 which further 

activates AKT. Phosphorylated AKT results in inactivation of Bcl-2-antagonist-of-cell-

death as a result tumour cell escapes apoptosis. Two another crucial protein in this 
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pathway is mTOR and GSK3b which is found to be activated in metastatic 

melanoma and results in tumour growth (Karbowniczek et al., 2008) (McCubrey et 

al., 2014) Several in vivo and in vitro studies have shown that loss of PTEN and 

activation of AKT promotes growth and survival of melanoma cells (Wu et al., 2003) 

(Cantley and Neel, 1999) 

1.2.2.4 Wnt signalling pathway 

The Wnt signalling pathway is crucial during embryonic development and in 30% of 

melanoma constitutive activation of Wnt signalling has been found. However, its role 

in melanoma is still not clearly understood. β-catenin is the key member of Wnt 

signalling canonical pathway and regulates cell-cell adhesion. Interestingly 23% of 

human melanoma cell lines show a mutation in β-catenin. In a study researcher used 

a mouse model carrying PTEN loss and BRAF-V600E mutation, which can develop 

the tumour in 100% of the mouse within 1 month, showed that loss of β-catenin can 

lead to inhibition of melanoma formation (Damsky et al., 2011). Recently in another 

study, it was found that β-catenin activation promotes lung metastasis in NRAS-

mouse (Gallagher et al., 2013). On the contrary, expression analysis of β-catenin 

using immunostaining showed that only 38% of metastatic melanoma were positive 

compared to melanocytic nevi (95%), radial (94%) and Vertical (65%) growth phase 

primary melanoma (Kageshita et al., 2001). These data indicates that β-catenin 

could be more involved during the early phase of melanoma progression. 

Similarly, in other study using mouse melanoma cell line, it was shown that Wnt3a 

expression is responsible for differentiation in melanoma cells and it displays slow 

proliferation and reduced migration. However, expression of Wnt5a in the same cell 

line antagonises the gene expression activated by Wnt/β-catenin signalling (Chien et 

al., 2009). Wnt5a inhibits the canonical pathway by binding to the Fzd receptor. 

Wnt5a binds to Frizzled2 (Fzd2) and prevents the phosphorylation of lipoprotein 

receptor-related protein 6 (LRP6) by Wnt3a, therefore reducing the accumulation of 

β-catenin (Sato et al., 2010). Additionally, inhibition of β-catenin by Wnt5a results in 

suppression of LEF1 and upregulation of TCF4 which generates more invasive 

phenotype (Eichhoff et al., 2011). These data suggests the effect of Wnt signalling 

pathway is more dependent on cellular context and more investigation is needed in 

this area. 
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1.2.2.5 Tgf-β pathway 

Transforming growth factor-beta (Tgf-β) pathway is activated during various cellular 

processes like proliferation, differentiation, cell survival, extracellular 

microenvironment modification, migration. It has been well established that Tgf-β 

initially works as a tumour suppressor and later helps in tumour progression. In 

normal melanocytes only Tgf-β1 is expressed whereas in melanoma cells all 3 

isoforms of Tgf-β (Tgf-β1, Tgf-β2 and Tgf-β3) are secreted (Javelaud et al., 2008). 

As a tumour suppressor, Tgf-β checks proliferation in cells by activating cyclin-

dependent inhibitor (CDKI) (p21, p15, p27Kip1 and p57Kip2), c-MYC and inhibitor of 

differentiation (Id). Experimental data shows that Tgf-β reduces melanocyte 

proliferation by arresting the cell cycle in G1 phase and stops differentiation by 

downregulating PAX3 which along with SOX10 controls melanocyte differentiation 

(Yang et al., 2008). However, during the later stage of tumour progression, Tgf-β 

promotes metastasis by inducing epithelial to mesenchymal transition (EMT) and 

also helps tumour cell escaping immune surveillance (Perrot et al., 2013). A recent 

finding from our laboratory shows that Tgf-β1 induces SOX2 expression to promote 

melanoma invasion in vitro (Weina et al., 2016).  

1.2.2.6 TERT promoter mutation 

Two independent studies in 2013 discovered that telomerase reverse transcriptase 

(TERT) is mutated in familial and sporadic melanoma patients. Whole genome 

sequencing data found two mutations in the promoter region of the TERT gene. This 

mutation in the promoter sequence lead to the creation of new binding motifs for the 

Ets- transcription factor family and increases its transcriptional activity by 2-4 folds. 

In human metastatic melanoma cell lines, 125 out of 168 (74%) were found with 

somatic mutation in TERT promoter (Horn et al., 2013) (Huang et al., 2013). Horn 

et al did not report any TERT promoter mutation but  a recent report shows low 

frequency mutation in benign nevi (Horn et al., 2013) (Shain et al., 2015). More 

studies with larger data set are required to investigate the role of TERT mutation in 

melanoma progression. 
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1.3 Melanoma Treatment 

Due to the heterogeneity of melanoma tumour, treatment of melanoma patient 

depends on several factors like stage and mutations. If detected in primary stage 

excision is still the first line of treatment for melanoma. Depending upon the tumour 

thickness and lymph node biopsy the further direction of treatment is decided. Before 

the arrival of 2nd generation drugs for melanoma treatment, the most commonly used 

cytotoxic chemotherapy was dacarbazine and immunotherapies like interleukin-2 (IL-

2). These treatments can be used either as monotherapy or in combination (Bhatia 

et al., 2009). Currently, for the treatment of metastatic melanoma, several lines of 

therapy can be followed and this can be grouped into chemotherapy, immunotherapy 

and targeted therapy. 

1.3.1 Targeted therapy 

A number of melanoma patients have deregulated MAPK pathway which is due to 

mutations in either BRAF or NRAS gene. In 2011 the first BRAF inhibitor, 

Vemurafenib (PLX4032), was approved by FDA for the treatment of late-stage 

melanoma with BRAF (V600E) mutations (Bollag et al., 2012). The clinical trial data 

showed improved rates of overall and progression-free survival in patients treated 

with vemurafenib compared to patients treated with dacarbazine. Also, it was 

observed that patient-group treated with vemurafenib compared to dacarbazine 

displayed a relative reduction of 63% in the risk of death and of 74% in the risk of 

either death or melanoma progression (Chapman et al., 2011).  In 2012, another 

BRAF inhibitor, dabrafenib (GSK2118436), was reported to show significantly better 

progression-free survival compared to dacarbazine in melanoma patients with BRAF 

(V600E) mutations (Hauschild et al., 2012). Later, in the year 2013 FDA approved 

the use of dabrafenib for the treatment of melanoma carrying BRAF (V600E) 

mutation. Additionally, dabrafenib displayed similar treatment benefits on melanoma 

patients with the mutation on BRAF (V600K/D/R) (Gentilcore et al., 2013) (Ascierto 

et al., 2013). However, after 6-7 months most of the patients receiving vemurafenib 

or dabrafenib show relapse of the tumour and develop resistance to the treatment. In 

another strategy to stop the activation of MAPK pathway in melanoma patients, new 

small inhibitors were examined to block MEK1/2 proteins. MEK inhibitors were 

supposed to block the MAPK pathway in melanoma carrying either NRAS or BRAF 
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mutation. Trametinib (GSK1120212) and Cobimetinib (GDC-0973, XL-518) are the 

MEK-inhibitors approved by FDA in 2013 and 2014 respectively for the treatment of 

melanoma patient with BRAF mutation. Trametinib functions by binding to MEK1 and 

MEK2 whereas cobimetinib blocks MEK1 resulting in inhibition of tumour cell growth. 

Later on, combination therapy of trametinib and dabrafenib was approved by FDA for 

the treatment of the patient with BRAF V600E/K mutation. Whereas, cobimetinib was 

approved to be used in combination with vemurafenib. Even though the effect of the 

targeted therapy was evident but adaptive resistance to these therapies limits the 

efficacy of the treatment.  

In some cases like patients carrying a C-KIT mutation in melanoma (acral 

melanoma, mucosal or in chronic sunburn areas), imatinib and nilotinib can be used 

for the treatment (Murer C et al., 2017). 

1.3.2 Immunotherapy 

Melanoma is one of the most immunogenic tumours and therefore immunotherapy 

can be used to boost the immune system of melanoma patients to attack the tumour 

cells. Interferon alpha (IFN-α) and IL-2 were the first immunotherapy approved for 

the treatment of patients with metastatic melanoma (Bhatia et al., 2009). Clinical 

trial study with 270 metastatic melanoma patients showed that high dose of bolus IL-

2 (HD IL-2) results in 16% overall objective response rate (6% complete response 

and 10% partial response) (Atkins et al., 1999). IFN-α showed an overall response 

rate of 22% in phase II trial with metastatic melanoma patients (Creagan et al., 

1986). However, the major drawback of this approach was the heavy side effects 

and many patients were not able to take the high dose.   

In last decade, a better understanding of tumour immunology led to the discovery of 

new insights for targeting the tumour cell using the immune system. An example of 

two such approaches is targeting cytotoxic T-lymphocyte-associated protein 4 

(CTLA-4) and programmed cell death protein 1 (PD-1). CTLA-4 is a protein receptor 

expressed by T-regulatory cells on their surface that inhibits T-cells and immune 

response. Dendritic cells present antigen produced by cancer cells to cytotoxic T- 

lymphocytes (CTLs) and then CTLs attack the cancer cells.  
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Ipilimumab is the human monoclonal antibody which binds to CTLA-4 and blocks its 

inhibitory action. In a randomised, double-blind, phase III trial, 676 stage III-IV 

melanoma patients were registered based on HLA-A*0201 positive status. These 

patients were assigned into 3 groups and treated with ipilimumab plus glycoprotein 

100 (gp100), ipilimumab only and gp100 only. In this study, it was found that patient 

treated with or without gp100 showed improved overall survival compared to the 

patient treated with only gp100 (Hodi et al., 2010). In another phase III trial with 502 

patients, similar results were obtained. Patients were equally divided into two groups 

and either treated with ipilimumab plus dacarbazine or dacarbazine plus placebo.  It 

was shown that the overall survival after one year in the patient group treated with 

ipilimumab plus dacarbazine were significantly higher (11.2 months) compared to 

(9.2 months) in the dacarbazine plus placebo. This study brought ipilimumab as the 

first line of treatment for metastatic melanoma (Robert et al., 2011) 

PD-1 is another receptor which is expressed in activated T cells and when its ligand 

PDL-1 and PDL-2 binds to this receptor it promotes self-tolerance by reducing auto-

immunity. In 2014 FDA approved two drugs, Nivolumab and Pembrolizumab, for 

metastatic melanoma that targets PD-1 receptor and augments the immune system 

to kill tumour cells. In a study involving 296 patients with advanced melanoma (104), 

non-small-cell lung carcinoma (122), castration-resistant prostate cancer (17), or 

renal-cell (34) or colorectal cancer (19) were given nivolumab (BMS-936558). In a 

cohort of melanoma patients, 26 objective responses were detected at doses 

ranging from 0.1 to 10.0 mg per kilogram, with response rates stretching from 19% to 

41% per dose level (Topalian et al., 2012). In another phase III clinical trial with 834 

patients with metastatic melanoma, it was observed that patients treated with 

pembrolizumab showed higher progression-free survival and overall survival 

compared to ipilimumab. High-grade toxicity in pembrolizumab treated patient was 

not as much of ipilimumab treated patients (Robert et al., 2015). 

 

1.4 Drug resistance in melanoma 

In recent years due to the approval of new generation drugs against metastatic 

melanoma, the overall survival has improved but resistance against these drugs limit 
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the therapeutic advantage. Data from several studies have revealed that majority of 

the resistance cases are associated with targeted therapy especially BRAF inhibitors 

but recent data also highlights resistance to the current immunotherapies. 

Furthermore, it was found that this resistance can be either intrinsic or adaptive. 

Patients with intrinsic resistance do not show any response to the therapy whereas 

adaptive resistant patients show early response to the treatment but later they show 

no effect of the therapy.  This was elucidated by whole genome sequencing of BRAF 

positive melanoma patients before treatment and after developing resistant. 

Interestingly, it was found that one-fifth of melanoma patients with BRAF mutation 

does not respond to the therapy. Varied resistance mechanisms cultivate during 

target therapy but mostly involve the reactivation of MAPK pathway (Van Allen et 

al., 2014). Earlier it was shown that the resistance to BRAF inhibitor (SB590885) 

was gained through overexpression of cyclin D1 and enhanced by high levels of 

CDK4 expression (Smalley et al., 2008). In addition, loss of NF1 and increased 

expression of protein kinase D3 (PRKD3) has been connected to the regulation of 

MAPK pathway and melanoma resistance (Whittaker et al., 2013) (Chen et al., 

2011).  

A large number of melanoma patients display significant response to the BRAF or 

MEK inhibitor initially but develops resistance later; this mechanism is described as 

adaptive resistance. Recent investigations suggest that the reactivation of ERK 

signalling is one of the main reasons behind the resistance in these melanoma 

patients. It is interesting to note that there was no secondary gatekeeper mutation 

found in BRAF inhibitor resistant patients but additional mutation on NRAS was 

identified (Nazarian et al., 2010) (Tap et al., 2010). However, several studies have 

reported the amplification of mutant BRAF as one of the mechanisms for BRAF and 

MEK inhibitor resistance (Corcoran et al., 2010) (Villanueva et al., 2013). Besides, 

it was found by random mutagenesis and biochemical studies that mutation in CRAF 

activates MAPK pathway which further leads to resistance (Antony et al., 2013). In 

another study, COT kinase was identified activating ERK through MAPK and linked 

to resistance in BRAF and MEK inhibitor resistance (Johannessen et al., 2010). 

COT kinase is encoded by MAP3K8 and it is overexpressed after treatment with 

BRAF or MEK inhibitor thus conferring resistance. 
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Numerous studies have indicated that additional pathways other than ERK1/2 

pathway are activated in BRAF inhibitor resistant melanoma cell lines. In BRAF 

resistant patients platelet-derived growth factor receptor β (PDGFRβ) receptor 

tyrosine kinase is upregulated. Additionally, the BRAF inhibitor resistant cell lines 

showed inactive ERK pathway but they were dependent on PDGFRβ for growth and 

survival (Nazarian et al., 2010). Recently another group showed the role of PDGFRβ 

and EGFR in adaptive resistance to BRAF inhibitor. EGFR expression was 

upregulated in 6 out of 16 melanoma tumours after the development of resistance to 

BRAF or MEK inhibitor. Also, they found that upon silencing SOX10 expression 

leads to activation of Tgf-β signalling which further leads to increased expression of 

EGFR and PDGFRβ (Sun et al., 2014). One study gives experimental evidence that 

AXL receptor tyrosine kinase is also expressed in resistant melanoma tumours 

besides EGFR and PDGFRβ. The ratio between MITF and AXL (MITFlow/AXLhigh) 

expression is crucial in certain BRAF and NRAS mutated melanoma which drives the 

resistance mechanisms (Müller et al., 2014). Another RTK, for example, insulin-like 

growth factor receptor-1 (IGF-1R), was identified which is constitutively active in 

BRAF resistant cells. Elevated IGF-1R expression in BRAF resistant melanoma cells 

was correlated with PI3K/AKT pathway (Villanueva et al., 2010). While 

immunotherapy like anti-PD-1 exhibited remarkable success in terms of overall 

survival and efficacy, it has been also indicated that approximately 60% patients 

show primary resistance whereas about 25% patients tend to develop resistance 

subsequently (Topalian et al., 2012) (Zaretsky et al., 2016). Lately, it has been 

found that clonal selection of tumours for JAK1 and JAK2 mutations and loss of IFN-

γ signalling pathways or loss of B2M gene (decreased antigen presentation) is a 

possible mechanism for the development of resistance in patients with anti-PD-1 

therapy (Zaretsky et al., 2016). In order to circumvent these resistances in 

melanoma patients, several combinational therapies have been tested and approved 

recently.  

 

1.4.1 Melanoma dedifferentiation  

Melanoma is the malignant transformation of melanocytes and melanocytes are 

differentiated from nReural crest cells. The neural crest cells are transient 



   Introduction 

 

 
  28 
 

multipotent migratory cells. Based on several studies, it is evident that melanoma is 

comprised of a highly heterogeneous population of cells. Within this heterogeneous 

population of cells, there is a sub-population which dedifferentiates and recapitulates 

some of the neural crest cells phenotype. Those cells demonstrate phenotype like 

self-renewal, low proliferation rate, and highly resistance to therapies (Boiko et al., 

2010) (Larribere and Utikal, 2014). The dedifferentiation theory was also supported 

by Landsberg et al in 2012, where they have demonstrated that the pro-

inflammatory cytokine, TNF-α, can lead to dedifferentiation in mouse and human 

melanoma cells. Here they also showed that after adoptive cell transfer therapy 

(ACT) the relapse of tumour in metastatic melanoma patients after significant 

regression was due to the gain of gene expression related to neural crest cells like 

P75 (also known as CD271 or NGFR) (Landsberg et al., 2012). A large body of 

work has deciphered the expression and role of numerous other genes associated 

with dedifferentiation during melanoma progression.  

 

1.4.1.1 CD271 (P75/NGFR) 

CD271 is a low-affinity transmembrane protein and a member of Tumor Necrosis 

Factor Receptor (TNFR) superfamily (Rogers et al., 2008). During development, 

CD271 is expressed in neural crest stem cells also expressed in various adult 

tissues and tumours originating from neural crest or ectoderm. As reported in a study 

where they used CD271 as melanoma stem cell marker for identification and 

isolation. CD271+ and CD271− cells when injected in mouse, only CD271+ cells 

metastasized to liver and lung. Furthermore, the experimental data indicated that 

CD271+ cells either completely or partially lacked melanocytic marker like Tyr, 

MART-1 and MAGE (Boiko et al., 2010). In accordance with previous data, Civenni 

et al in 2011 confirmed that CD271+ cells are more tumorigenic compared to 

CD271− as well they show tumour heterogeneity similar to the parental tumour.  

Together, in vitro and in vivo results suggested that CD271+ cells have higher self-

renewal capacity with longer propagation compared to CD271− cells. Additionally, 

CD271+ melanoma cell population expresses low MITF and migrate faster than 

CD271− cells (Cheli et al., 2014). Recently it has been shown that the expression of 
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CD271 in melanoma cells promotes metastasis and drug resistance in a p53-

dependent manner especially in BRAF wild-type cell lines (Redmer et al., 2017).   

 

1.4.1.2 ABCB5 (ATP-binding cassette subfamily B member 5) 

ABCB5 is a member of ATP-binding cassette (ABC) transporter superfamily and 

involved in the transportation of a variety of compounds like sugar, peptides and 

small ions in the cell (Chen et al., 2005). ABCB5 was shown to be expressed in a 

subset of melanoma cells which were chemoresistant and demonstrated stem cell 

like phenotype (Frank et al., 2005). Through immunostaining, it was determined that 

the expression of ABCB5 was significantly higher in primary and metastatic 

melanoma compared to the nevus. Furthermore, ABCB5+ population showed 

sustained tumour growth than ABCB5− cell population and also reinstate the tumour 

heterogeneity. In the same study, in vivo genetic lineage tracking confirmed the role 

of ABCB5 in self-renewal and differentiation. (Schatton et al 2008). Interestingly, the 

circulating tumour cells (CTC) exhibited a significantly higher frequency of ABCB5+ 

cells (33.4%) compared to the primary and metastatic tumours. Similar to previous 

findings, ABCB5+ CTC were more tumorigenic and promote metastasis (Ma et al., 

2010). Recently, the same group has reported the role of ABCB5 in melanoma 

growth and multi-drug resistance. In addition, ABCB5 promotes tumour growth by 

induction of IL8 through Wnt signalling pathway and also represses tumour 

suppressor WFDC1. At last ABCB5 was implicated in tumour growth, resistance, 

quiescence and melanoma-initiating cells renewal (Wilson et al., 2014). 

 

1.4.1.3 SOX2 

SOX2 (sex-determining region Y (SRY) Box2) is a transcription factor which is 

expressed in neural crest stem cells. Several studies have established the role of 

SOX2 in melanoma progression. The SOX2 expression has been correlated with 

tumour thickness and bad prognosis (Laga et al., 2010). In vitro and in vivo data 

suggests the role of SOX2 in cell proliferation and apoptosis. Knocking down SOX2 

using shRNA resulted in smaller melanoma initiating cell spheres, whereas the 



   Introduction 

 

 
  30 
 

SOX2 overexpression leads to higher and bigger melanoma- initiating cells spheres 

(Santini et al., 2014). Next, they showed that HH-GLI (HEDGEHOG-GLI) signalling 

pathway directly regulates SOX2 expression by binding of GLI1 and GLI2 on SOX2 

promoter and induces stemness in melanoma cells. Moreover, the SOX2 expression 

has also been correlated with drug resistance in several cancer types (Weina and 

Utikal, 2014) (Weina et al., 2016). 

 

1.4.1.4 CD133 

CD133 is found to be expressed in neural stem cells, cancer stem cells in brain 

tumour and hematopoietic stem cells (Sanai et al., 2005) (Singh et al., 2004) (Horn 

et al., 1999). Immunostaining has revealed that CD133 expression is significantly 

higher in primary (39.4%) and metastatic melanoma (46.4%) compared to nevi 

(16.9%) (Klein et al., 2007). Another group reported that less than 1% of melanoma 

specimens comprise CD133+ cells. More importantly, only CD133+ cells form visible 

tumour compared to CD133− when injected into an NOD-SCID mouse. WM115 is 

highly tumorigenic human melanoma cell line and almost 95% of WM115 cells 

express CD133 along with ABCG2. Although the expression level of these markers 

reduces in xenograft tumours which again increases when cultured in vitro. But 

interestingly WM115 cell line expresses lymphoangiogenic and angiogenic factors 

like VEGFR-3, LYVE-1, prox1 and podoplanin which promotes metastasis (Monzani 

et al., 2007). Altogether these findings recommend that CD133 is essential for the 

maintenance and promotion of melanoma-initiating cells. 

 

1.5 Id protein 

Inhibitor of differentiation (Id) protein belongs to the helix-loop-helix (HLH) 

superfamily. It was first discovered in 1990 by Benezra and his colleague (Benezra 

et al., 1990). In vertebrates four members of this family i.e. Id1, Id2, Id3 and Id4 have 

been identified. The members of Id family are found on different chromosomes- Id1-

20q11, Id2-2p25, Id3-1p36.1 and Id4-6p21-p22; therefore, they are not isoforms 

rather different proteins (Benezra et al., 1990) (Roschger and Cabrele, 2017). All 
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four members are well conserved and found in organisms ranging from drosophila to 

human. Although, Id protein shares the HLH domain but outside this domain, they 

display broad differences in their sequences (Langlands et al., 1997). More 

importantly, Id protein cannot bind to the DNA due to lack of basic domain but they 

can form heterodimers with other bHLH (basic helix-loop-helix) proteins. The binding 

of Id protein to bHLH transcription factor leads to inhibition of its binding to the DNA. 

For example, E protein family (E12, E47) are the class I bHLH transcription factor 

which when sequesters with Id proteins cannot bind to the DNA and negatively 

regulates the gene expression. Therefore, the crucial biological significance, 

common to all four Id proteins is blocking the activity of bHLH in a tissue-specific 

manner (Deed et al., 1996) (Massari and Murre, 2000).  

1.5.1 Id protein structure and localisation  

As mentioned earlier and showed in the Figure 2 , the HLH domain is highly 

conserved in all Id protein but the N-terminal and C-terminal of Id protein vary from 

each other and also comprises of crucial regulatory signals like ubiquitination, 

phosphorylation site etc. In a study, it was well demonstrated through mutagenesis 

that protein kinase A (PKA) phosphorylates Id1 at ser-5 and also stops its nuclear 

export (Nishiyama K et al., 2007). Whereas in another study it has been shown that 

Cdk2 phosphorylates Id2 and Id3 at ser-5 (Deed et al., 1997) (Hara et al., 1997).  

Bounpheng et al in 1999 showed that Id proteins have short half-life nearly 20 min. 

By inhibiting the 26S proteasome it was found that Id1, Id2 and Id3 proteins are 

degraded via the ubiquitin-proteasome pathway. In addition, it was reported that the 

co-expression of E47 and Id3 protects Id3 from degradation and increases its half-

life (Deed et al., 1996). It was observed that Id4 degradation was not established via 

26S proteasome but through E1 enzyme. (Bounpheng et al., 1999). Interestingly, 

the Id1, Id2 and Id3 are protected from degradation by the deubiquitinase USP1 to 

preserve their stemness in mesenchymal stem cells USP1 (Williams et al., 2011).  
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Figure 2: Human Id proteins structure and their mode of action. A, B. N-terminal 

and C-terminal amino acid sequence alignment of the Id proteins. Id1’ and Id3L are 

the C terminus of human Id1 and Id3 spliced form. C. Alignment of amino acid 

sequence of the HLH domain of four Id proteins as well (D) the structural difference 

of Id proteins (HLH) with bHLH proteins. E. Schematic representation of Id protein 

forming a heterodimer with E-protein in state1(left panel) and inhibiting its binding to 

the E-box of the promoter. State 2 (Right panel) shows the activation of transcription 

when two bHLH forms homo or heterodimer. This figure was modified from Roschger 

C and Cabrele C, 2017 and Perk J et al., 2005. 
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Id proteins are small proteins which may be found in the cytoplasm and nucleus. 

Although Id proteins do not have the canonical nuclear localisation signal (NLS) 

motif, Id1 and Id2 have nuclear export signal (NES) motif in the HLH domain and in 

the C-terminus respectively (Makita et al., 2006) (Kurooka et al., 2005). However, 

Id3 proteins have no such nuclear localisation signals like Id1 and Id2 but HLH 

domain is enough for its nuclear localisation. It was found that Id3 is localised more 

in the nucleus in the presence of E47 while found more in the cytoplasm or 

perinuclear region in the absence of E47 (Deed et al., 1997). This finding suggests 

that that the NLS motif of bHLH could act as a transporter of Id protein in the 

nucleus. 

1.5.2 Id protein regulation 

As discussed earlier, Id proteins negatively regulates bHLH transcription factor 

functions and stops the cell from differentiation. There is overwhelming evidence 

which shows that the expression of Id protein is higher in undifferentiated, very 

proliferative and embryonic cells (Ruzinova et al., 2003) (Engel and Murre, 2001) 

(Lasorella et al., 2001) (Ling et al., 2014) (Tzeng and De Vellis, 1998). Several 

studies have shown the activation of Id gene in stem cells and progenitor cells to 

enhance the proliferation and suppress the differentiation, but the gene expression is 

deactivated during lineage specification and differentiation (Norton, 2000). In vitro 

and in vivo data suggests that BMP2/4 is instrumental in the induction of Id1, Id2 and 

Id3 expression in a variety of cells including embryonic stem cells (Hollnagel et al., 

1999). It was very recently shown using the human embryonic carcinoma cell line 

NTera2 that the nuclear factor Y (NFY) transcription factor directly regulates the Id1, 

Id2 and Id3 gene expression. The loss of NFYc was observed on differentiation 

which also resulted in the reduction of Id1-3 gene expression (Moeinvaziri and 

Shahhoseini, 2015). Id1 gene has enhancer element at the 3’-end which can be 

activated by transcription factors C/EBPβ and STAT5. Therefore, Id1 is highly 

expressed in myeloid cells due to the critical role of C/EBP family in these cells. IL-3 

and GM-CSF can activate STAT5 which could further result in the induction of 

Id1gene expression (Saisanit and Sun XH 1997) (Xu M et al., 2003) (Cochrane, 

2009). Another report confirmed the presence of C/EBPβ binding sites in the 

promoter region of Id2 and showed that it is directly regulated by C/ EBPβ (Karaya 



   Introduction 

 

 
  34 
 

et al., 2005). However, it was illustrated that in immature thymocytes, Id3 

transcription was activated by Egr1 via Ras-MAPK pathway. This is a critical 

phenomenon for the T cell development (Bain et al., 2001). In contrast, it was found 

that in breast cancer E2F1 recruits mutant p53 and directly binds to the Id4 promoter 

and activates it (Fontemaggi et al., 2009).  

1.5.3 Id protein and cell cycle regulation 

A large body of evidence implicates the role of Id proteins in cell cycle regulation. 

Predominantly, Id proteins antagonise the E-proteins by sequestering them and 

several reports suggest the negative regulation of E2A (E12/47) on cell growth. 

Mainly the Id proteins inhibit the activation of genes associated with differentiation for 

example CDK inhibitors (p15, p16 and p21) (Peverali et al., 1994) (Pagliuca et al., 

2000). Id proteins are associated with the regulation of G1-S cell cycle phase. During 

the late G1 phase, Id2 and Id3 are phosphorylated by CDK2 restricting the 

dimerization of bHLH in vitro (Deed et al., 1997) (Hara et al., 1997). In addition to 

CDK inhibitors, other cell cycle regulators like pRB (retinoblastoma) and p53 are also 

affected by Id protein. Only Id2 interacts with pRB directly. By crossing Id2 and Rb 

mutant mouse it was demonstrated that Id2 can rescue the embryonic lethality of Rb
-

/-
 mutant embryos (Lasorella et al., 2000). Additionally, it has been shown both in 

vitro and in vivo that Id2 also interacts with p107 and p130 (Lasorella et al., 1996). 

Although, Id1 and Id3 indirectly regulate the activity of pRb by binding to Ets domain 

proteins or bHLH transcription factors. It leads to the downregulation of p16 or p21 

expression which results in the cyclin/CDK complex formation and finally 

hyperphosphorylation of pRb (Ohtani et al., 2001) (Alani et al., 2001) (Ouyang et 

al., 2002). All these data highlights the importance of Id protein in cell cycle 

regulation. 

1.5.4 Id protein and stem cell maintenance 

The fact that Id protein inhibits differentiation and promotes proliferation supports 

their role in the maintenance of stem cell and progenitor cells. Several research 

groups have proven the expression of Id proteins in embryonic and somatic stem 

cells. For example, in mouse embryonic stem (ES) cells, it was shown that Id 

proteins are the target of BMP/Smad signalling which keeps the ES cells 
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undifferentiated and supports self-renewal (Ying et al., 2003). Earlier also with in 

vivo data, it was shown that Id protein overexpression is correlated with inhibition of 

differentiation in C2C12 muscle cell line (Jen et al., 1992). In hematopoietic stem 

cells (HSCs), Id protein roles have been similarly identified in self-renewal and 

stemness. The comparison between wild-type and Id1−/− marrow revealed the 

decrease in the number of long-term (LT) HSCs (Perry et al., 2007) (Jankovic et 

al., 2007). In the same way, expression of Id1 and Id3 was found in undifferentiated 

human embryonic stem cells (hESCs) and human induced pluripotent stem cell 

(hiPSCs). Double knockdown of Id1 and Id3 in hemogenic precursors enhances 

differentiation into hematopoietic progenitors (Hong et al., 2011). More recently, 

when Id3 was stably overexpressed in endothelial cells (ECs), gave rise to molecular 

stemness signatures like CD133+, VEGFR3+, and CD34+. Also, the Id3 

overexpression significantly increased the G0-G1 phase cells compared to the wild-

type cells and had phenotypes similar to glomeruloid microvascular lesions (Das et 

al., 2015).  

Furthermore, it was shown in GFAP+ astrocytes with stem cell characteristics, a high 

expression of Id1 which could divide asymmetrically into Id1-high stem cell and Id-

low differentiated cells. The neurosphere-formation experiment substantiated that 

high Id1 and Id3 expression are critical for this process and double knockdown of Id1 

and Id3 could reduce the secondary neurosphere formation by 50% (Nam and 

Benezra, 2009). Consequently, it appears that higher Id expression is required to 

preserve the self-renewal ability and preserve the neural stem cells. 

1.5.5 Id protein and development 

Id proteins are expressed at several stages during the development of an organism. 

Over a period of time, a number of animal models with Id gene knockout (KO) have 

been generated to study their role in development. For example, it was observed that 

no embryo survived with Id1-/- Id3-/- beyond E13.5. The reason behind that was the 

cranial haemorrhage due to an aberration in vasculogenesis in the brain. In addition, 

they observed the small brain size in Id1-Id3 double KO embryos which were due to 

premature neural differentiation (Lyden et al., 1999). It is interesting to note that 

embryos lacking 1-3 Id alleles survived and indistinguishable from the wild types. But 

the Id1+/- Id3-/- didn’t support angiogenesis in tumour xenografts due to lack ok αvβ3-
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integrin or MMP2. (Lyden et al., 1999).  Similarly, single knockout of one of the Id 

gene in mouse presented their role during the development. When Id1 was knocked 

out in mouse embryo fibroblast (MEFs), it was found that TSP-1 is the transcriptional 

repressor target of Id1. Due to loss of Id1, increased activity of TSP-1 was observed 

which was responsible for the poor angiogenesis (Volpert et al., 2002). In chick 

embryo, through in situ hybridization, Id2 expression was shown on the dorsal 

cranial neural fold and neural crest. Overexpressing Id2 in chick embryo resulted in 

the conversion of the ectodermal cell to neural crest fate (Martinsen and Bronner-

Fraser, 1998). Whereas Id2 KO mouse revealed that Tgf-β induces Id2 expression 

and lack of Id2 can lead to a defect in the development of dendritic cells (DCs). More 

interestingly, Id2-/- mice also displayed a lack of lymph nodes and Peyer's patches 

(Hacker et al., 2003). Another report has shown that when Id3 null mice were 

generated they exhibited defects in humoral immunity and B cell proliferation. 

However, ectopic expression of Id1 can substitute the role of Id3 in B cell 

proliferation. This can be explained due to the fact that Id1 and Id3 have about 69% 

homology and a minimal level of Id protein is necessary to stop the bHLH dimer 

formation which is the negative regulator of cell cycle progression (Pan et al., 1999). 

The generation of Id4 KO mouse facilitated to study its role in neural stem cell 

development. The result obtained from this study shows that the Id4-/- mouse had 

smaller brain size compared to the mouse carrying Id4 wild type gene. The 

explanation behind this phenomenon was premature differentiation of neural stem 

cells and prolonged G1 to S transition in the early neural stem cells (Yun et al., 

2004). Additionally, the Id4-/- mouse embryos displayed 20-30% reduction in the 

mitotic neural precursor cells (NPCs) and the tunnel assay further revealed an 

increase of 3.5 times in apoptosis of the ventricular zone (VZ). Also, the in vitro data 

from the neurospheres of Id4-/- NPCs showed reduced proliferation and increased 

differentiation of astrocytes in presence of BMP2 (Bedford et al., 2005). 

In skin, expression of Id1, Id2 and Id3 has been found in proliferating human 

keratinocytes which is further decreased with differentiation (Langlands et al., 

2000). An increasing number of studies have also found that Id proteins regulate the 

osteoblast proliferation and bone matrix formation (Peng et al., 2004) (Lee et al., 

2006) (Oh et al., 2012). Similarly, Id proteins play a crucial role during myogenesis 
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by regulating the differentiation of myoblasts as result of blocking E proteins activity 

(Langlands et al., 1997). 

1.5.6 Id protein and cancer  

A growing body of evidence shows that Id proteins play a major role in several 

cancers progression. Their expression has been found to be deregulated in diverse 

tumour types (Figure 3). It becomes even important to know that Id proteins satisfy 

two essential criteria from the hallmarks of cancer i.e. it promotes cell growth and 

attenuates differentiation of the cell (Lasorella et al., 2014). Even though Id proteins 

are involved in tumorigenesis, it doesn’t fit to be classified as a tumour promoter or 

oncogene as there are not enough evidence which claims that Id genes are mutated 

or altered to transform a normal cell into the cancer cell. When Id1 and Id3 were 

sequenced from malignant melanoma-prone families and ovarian tumour 

respectively, no mutation was detected (Casula et al., 2003) (Arnold et al., 2001). 

However a recent report put forward Id4 as an oncogene which is amplified in 32% 

of high-grade ovarian patients (Ren et al., 2012). On contrary, the sequencing data 

of Burkitt’s lymphoma shows that Id3 acts as a tumour suppressor, which is 

inactivated in 68% of the Burkitt’s lymphoma samples (Richter et al., 2012).  But 

what makes Id proteins an important player during tumour development is that Id 

proteins are targets of numerous oncogenes like N-Myc, Ras, Notch and receptor 

tyrosine kinase (Lasorella et al., 2000) (Chadwick et al., 2009) (Reynaud-

Deonauth et al., 2002) (Tam et al., 2008) (Tournay and Benezara 1996) (Bain et 

al., 2001). Along with these oncogenes, there are some growth factors like TGF-β, 

BMP4, VEGF and FGF, which are activated in tumour cells and are positively 

correlated with Id protein expression and regulate cell proliferation, metastasis, 

angiogenesis and invasion (Perk et al., 2005).   

To investigate the role of Id protein in human keratinocytes, Id1 was ectopically 

expressed in these cells. The ectopic expression of Id1 alone resulted in the 

immortalization of human keratinocytes. Remarkably the immortalized cells showed 

reduced differentiated phenotype and furthermore activate the phosphorylation of Rb 

protein. They also demonstrated that ectopic expression of Id1 in human 

keratinocytes results in the impairment of p53 pathway. Additionally, the in vitro data 

showed that Id1, Id2 and Id3 all prolong the lifespan of human keratinocytes by 
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activating the telomerase activity and hTERT expression (Alani et al., 1999). Now it 

is also well-established fact that Id1, which is up-regulated in many tumours 

including melanoma, is a transcriptional repressor of CDKN2A which encodes two 

important tumour suppressor genes- p16INK4a and p14ARF (Ryu et al., 2007). 

Thrombospondin-1 (TSP-1) is another potent tumour suppressor and inhibitor of 

angiogenesis, which is downregulated by Id1 expression in melanoma (Healey et 

al., 2010) (Straume and Akslen, 2005). Metastatic and invasive breast cancer cell 

lines show elevated levels of Id1 and upon downregulation of Id1 results in the 

reduction of breast cancer cell migration and invasion (Fong et al., 2003).   
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Figure 3: Id1 and Id3 expression in cancer cell lines and tissue samples: A, B. 

Id1 and Id3 expression in cancer cell lines including melanoma cell lines (n=61). 

Data used from cancer cell encyclopedia (CCLE). (C) Id3 expression in various 

cancer tissue samples from patients (The human protein atlas).   

 

The role of Id1 in breast cancer was clearer when it was found that Id1 expression 

inhibits the binding of p53 to PTEN which further results in the activation of canonical 

Wnt signalling pathway via AKT phosphorylation (Lee et al., 2009). The expression 

level of Id1 and Id3 are higher in prostate cancer tissue compared to the normal 

prostate tissue as well in prostate cancer cell lines. Silencing of Id1 and Id3 or Id3 

alone using siRNA significantly reduces the proliferation of prostate cancer cell lines. 

The data further indicates that Id1 and Id3 regulate p21 and p27 cell cycle inhibitor 

respectively in prostate cancer cell lines (Sharma et al., 2012). Knocking down Id1 

and Id3 in prostate cancer cell line shows reduced Tgf-β induced migration (Strong 

et al., 2013). Similarly, overexpression of Id3 in colorectal cancer cells affects the 

cell cycle and promotes cancer progression inhibiting p21. Here, Id3 was shown to 

be activated via AKT1/Smad5 which is the downstream target of S100A8/9 (Zhang 

et al., 2015). In non-small cell lung cancer (NSCLC), Id1 and Id3 co-expression have 

been associated with the poor overall survival of the patients and low response rate 
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(50%) to the treatment compared to (87%)  patients with no Id1-Id3 expression 

(Castanon et al., 2013). Besides, prominent research in the field of cancer 

mechanism has exposed the role of Id proteins as instrumental in the progression of 

several cancer types including gastric cancer, hepatocellular cancer and pancreatic 

cancer (Wang et al., 2004) (Sharma et al., 2016) (Kleeff et al., 1998). 

1.5.7 Id protein in cancer cell dedifferentiation 

 Many cancer types represent small sub-populations of cells which have the 

capability to initiate tumour and they show the phenotype similar to cells in 

embryonic development. Researchers have coined many terminologies like cancer 

stem cells or cancer-initiating cells to define these small sub-populations. For better 

comprehension I would call here these cells, dedifferentiated cells. The presence of 

cancer stem cells or dedifferentiated cells in cancer attributes aggressiveness and 

drug resistance. In order to study the role of genes involved in dedifferentiation, 

several models have been suggested. One of the prominent in vitro model is 3d cell 

culture. Very recently it was shown that Id4 is highly expressed in the melanoma 

spheres along with other genes related to development. Knocking down Id4 resulted 

in more differentiated phenotype and preventing the formation of spheroids (Peretz 

et al., 2015). Glioblastoma and colon cancer are other two cancer types where the 

role of Id protein in dedifferentiation have been well studied. Id1 expression in 

glioblastoma has been associated with metastasis through epithelial to 

mesenchymal (EMT) as well proliferation and invasion (Guo et al., 2013). On the 

other hand, a study using glioma mouse model reveals that high Id1 expression is 

required for the self-renewal but it doesn’t affect the tumorigenic potential (Barrett et 

al., 2012). However, in case of high-grade gliomas (HGG), a malignant glioma 

mouse model was created and when Id gene (Id1, Id2 and Id3) was deleted in only 

tumours and not the endothelial cells or tumour microenvironment resulted in tumour 

regression and extended survival due to rapid loss of glioma-initiating cells (GICs) 

from the perivascular tumour niche due to inhibition of RAP1GAP (Niola et al., 

2013). In colon cancer, double knock down of Id1-Id3 in colon cancer-initiating cells 

(CC-ICs) resulted in complete loss of tumour formation in xenografts. An 

immunohistochemical analysis determined that Id1-Id3 knockdown leads to induction 

of differentiation and reduction in micro vessel density (MVD). More importantly, 
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double knockdown of Id1-Id3 significantly reduced the sphere formation capacity and 

increased sensitivity to chemotherapy. Id1-Id3 double knockdown affect the tumour 

initiating potential by downregulating the cell cycle inhibitor p21 (O’Brien et al., 

2012). 

1.5.8 Id protein and drug resistance 

Resistance to therapy has been the predominant concern in most of the cancer 

patients getting the treatment. The efficacy of the drug is subdued due to resistance 

in many cases. Several studies have focused in order to determine the mechanisms 

behind the gain of resistance to certain drugs in cancer. The data accumulated from 

these studies has revealed that Id proteins play directly or indirectly a pivotal role 

during drug resistance. In prostate cancer, it was shown that interaction of Id1 and 

caveolin-1 enhances the process of EMT and reduces apoptosis induced by Taxol 

through activation of AKT pathway. Knocking down Id1 using siRNA makes the 

prostate cancer cells more sensitive to the Taxol treatment (Zhang et al., 2007) 

(Wong et al., 2008). Besides, B-cell leukemia-3 (Bcl-3), a proto-oncogene, has been 

also shown to regulate Id1 and Id2 expression in prostate cancer upon exposure to 

IL-6 which is responsible for inhibiting apoptosis and inducing resistance to 

chemotherapy (Ahlqvist et al., 2013). Id1 expression has also been associated with 

glioma-initiating cells and conferring resistance to therapies. Similarly, silencing of 

Id2 expression in glioma cells resulted in higher sensitivity to the antineoplastic drugs 

used for the treatment of brain tumours (Anido et al., 2010) (Zhao et al., 2015). 

Moreover, a comparison between tamoxifen-sensitive (TS) and tamoxifen-refractory 

(TR) breast cancer patients revealed that Id4 was hypomethylated in TR breast 

cancer (Zhang et al., 2015). In colorectal cancer, overexpression of leukaemia 

inhibitory factor (LIF) is responsible for the chemoresistance via negatively regulating 

p53. To achieve this, LIF induces STAT3 expression which transcriptionally activates 

Id1 which further upregulates MDM2 expression and MDM2 promotes the 

degradation of p53 protein (Yu et al., 2014). Collectively, these data highlights the 

involvement of Id proteins in cell survival and drug resistance in various cancer 

types.
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2. Aims of the project 

 

Melanoma cells show a high degree of heterogeneity and a sub-population of the 

tumour cells represent a dedifferentiated phenotype. Dedifferentiation in melanoma 

is attained by the reactivation of genes from neural crest origin. Reports from several 

studies suggest that dedifferentiation attributes aggressiveness to several cancers 

including melanoma. It is responsible for the tumour initiation, metastasis and more 

importantly for conferring resistance to the therapies. This study aims to find new 

marker for the dedifferentiation in melanoma and their role in melanoma 

pathogenesis. It might also help in the development of new strategies to eliminate 

melanoma.  

The specific aim of this study is: 

1. To identify genes that are expressed in neural crest cells, melanoma cell lines and 

are also upregulated in targeted therapy resistant cells. 

2. To investigate the role of candidate gene/s in melanoma proliferation and 

metastasis and to find the mechanism for its functioning. 

3. Finally, to examine the role of candidate gene/s in melanoma resistance to the 

targeted therapies. 
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3. Materials and Methods 

3.1 Materials 

3.1.1 Reagents and Kits 

Product     Company   Catalog   

Agarose NEEO Ultra Qualität   Carl Roth   2267.4 

Alamar Blue®     Invitrogen   DAL1100 

Amersham ECL prime western blotting  GE healthcare   RPN2232 

detection reagent      

Ammonium persulfate solution (APS)  Carl Roth   9592 

ARCTURUS PicoPure RNA   Life Technologies  KIT0204 

Isolation Kit 

Complete mini protease inhibitor cocktail  Roche Diagnostics  04693159001 

Endofree plasmid maxi kit    Qiagen    12362 

High performance chemiluminescence film GE healthcare   28906836 

IBIDI Culture-Insert 500 µM   Ibidi    80209 

Immobilion PVDF membrane pore- 0.45µM Merck Millipore   IPVH00010 

Luminata Forte Western HRP substrate  Millipore   WBLUF0500  

Pierce BCA protein assay kit   Thermo scientific  23225 

PhosSTOP
TM

 Phosphatase inhibitor Cocktail Roche diagnostics  04906845001 

Precision Plus     Bio-Rad   161-0394 

RNase-Free Dnase set    Qiagen    79254 

RNeasy plus Mini kit    Qiagen    74136 

RevertAid First strand cDNA synthesis kit Thermo Scientific  K1622 

Skim milk powder    Flika Analytical   F7016605000 

SYBR Green PCR Master mix   Applied Biosystems  4309155 

TEMED      Carl Roth   2367.3 

Tween® 20     Applichem   A13890500 

TritonX-100     Carl Roth   3051.4 

X-treme GENE® 9 DNA transfection  Roche Diagnostics  06365787001 

Reagent 

 

3.1.2 Cell culture reagents 

 

Product     Company   Catalog 

 
2-Mercaptoethanol    Gibco® Life Technologies 31350010 

Ascorbic acid     Sigma Aldrich   1043003 

Blasticidine S     Sigma Aldrich   15205 
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Bone morphogenic protein 4 (BMP4)  Promokine   C-67313 

DMSO      Carl Roth   A994.2 

DMEM AQ media
TM

    Gibco® Life technologies 41965-039 

Fetal Calf Serum (FCS)    Biochrom   S0115 

Human melanocyte growth   Gibco® Life Technologies S002-5   

supplement (HMGS) 100x 

Lipofectamine® RNAiMAX transfection reagent Life Technologies  13778075 

Medium 254      Gibco® Life Technologies M254500 

Non-essential amino acids   Sigma-Aldrich   M7145 

Opti-MEM® I reduced serum medium  Gibco® Life Technologies 31985062 

PBS      Sigma-Aldrich   D8537 

Penicillin/Streptomycin    Sigma-Aldrich   P4333 

Puromycin      Carl Roth   240.1 

Trypan blue solution     Sigma-Aldrich   93595 

Trypsin      Sigma-Aldrich   T3924 

 

3.1.3 Human melanoma cell lines 

  

Cell Line  Source  Disease   Mutation 
A375   ATCC   Malignant Melanoma  BRAF V600E 

C32   ATCC   Melanoma, amelanotic  BRAF V600E 

HT144   ATCC   Malignant Melanoma  BRAF V600E 

MeWo   ATCC   Malignant Melanoma  WT 

Skmel 23  ATCC   Melanoma   WT 

Skmel 28  ATCC   Malignant Melanoma  BRAF V600E 

Skmel 30  DKMZ Leibniz Inst. Melanoma   NRAS Q61R 

Skmel 103  CNIO Madrid  Melanoma   NRAS Q61R 

Skmel 147  CNIO Madrid  Melanoma   NRAS Q61R 

Skmel 173  CNIO Madrid  Melanoma   WT 

WM266-4  ATCC   Melanoma   BRAF V600D 

 

3.1.4 Antibodies 

 

Product  Source  Company   Catalog 

 
Anti-GAPDH  Rabbit   Cell signalling   CST2118 

Anti-Id1   Rabbit   Cal-bio reagent   M085 

Anti-Id3   Rabbit   Cal-bio reagent   M100 

Anti-MITF  Mouse   Abcam    ab80651 

Anti-SOX10  Mouse   Abcam    ab181466 
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3.1.5 Small molecule inhibitors 

 

Product    Company    Catalog 

 
Vemurafenib (PLX4032)   Selleckchem    S1267 

Trametinib (GSK1120212)  Selleckchem    S2673 

Dabrafenib (GSK2118436)  Selleckchem    S2807 

 

3.1.6 Buffers, Solution and Gels 

 

Transfer buffer (pH 8.3)    Running buffer (pH8.3)       TBS 10X (pH 7.6) 
25mM Glycine         25mM Glycine         150mM NaCl 

190mM Tris 190mM Tris                   50mM Tris 

20% SDS 0.1% SDS           dH2O 

20% methanol dH2O  

dH2O 

 
 

Washing buffer (TBST) Washing buffer (PBST) Blocking buffer (milk) 
0.02% Tween® 20  0.02% Tween® 20  5% Skim milk powder 

1X TBS    PBS    Washing buffer (PBS or TBS) 

 

Cell lysis buffer for protein isolation 

1X PhosphoStop 

1X Complete mini protease inhibitor cocktail  

1% Triton-X in TBS 

 

10% SDS separating Gel (10ml)  15% SDS separating Gel (10ml) 

H2O  (4 ml)     H2O  (2.3 ml)  

30% Acrylamide mix (3.3)   30% Acrylamide mix (5.0) 

1,5 M Tris (pH 8.8) (2.5ml)   1,5 M Tris (pH 8.8) (2.5ml) 

10% SDS (0.1 ml)    10% SDS (0.1 ml) 

10% APS (0.1 ml)    10% APS (0.1 ml) 

TEMED (0.004ml)    TEMED (0.004ml) 

 

Stacking Gel (10ml) 

H 2 O (6.8 ml) 

30% Acrylamide mix (1.7 ml) 

1,0 M Tris (pH 6.8) (1.25 ml) 

10% SDS (0.1 ml) 

10% APS (0.1 ml) 

TEMED (0.01 ml) 
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3.1.7 Devices 

 
Product Description     Company    
 
AB 7500 Real-Time PCR machine   Applied Biosciences  

Classic E.O.S. Developer     AGFA Mortsel, Belgium 

Nanodrop Spectophotometer ND-1000   Peqlab Biotechnologie GmbH  

Nikon Eclipse Ti Fluorescence microscope  Nikon  

Nikon Eclipse TS100      Nikon  

Tecan infinite F200 PRO    Tecan  

 

3.1.8 Software 

 

Analysis Software    Source 

7500 Software v2.0.5    Applied Biosystem 

ApE      M. Wayne Davis (Open Source)  

BD FACSDivaTM     Biolegend 

Chipster     Chipster Open source 

FlowJo 7.2.2     FlowJo 

Graphpad Prism    Graphpad Prism 

i control 1.10     TECAN 

Image J      NIH 

Mendeley     Mendeley 

NIS-Element     Nikon 

T-scratch     CSElab  

 

3.1.9 Online databases 

 

Name      Website 

cBioportal     http://www.cbioportal.org  

Cancer Cell Line Encyclopedia   http://www.broadinstitute.org/ccle 

GEO dataset     https://www.ncbi.nlm.nih.gov/gds/?term= 

The Human Protein atlas   http://www.proteinatlas.org/ 

TRED      https://cb.utdallas.edu/cgi-bin/TRED/ 

Transcription factor binding sites  http://www.sabiosciences.com/ 

 

 

 

http://www.cbioportal.org/
http://www.broadinstitute.org/ccle
http://www.proteinatlas.org/
https://cb.utdallas.edu/cgi-bin/TRED/
http://www.sabiosciences.com/
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3.1.10 Plasmids  

 

Product     Company    
 

shRNA against human Id3 (Id3-shRNA)  Sigma-Aldrich 

Non-targeting shRNA (NT-shRNA)  Sigma-Aldrich 

pLX304 (Empty vector)    Addgene 
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3.2 Methods 

3.2.1 Cell culture and cell lines 

The human melanoma cell lines (A375, C32, HT144, MeWO, Skmel 28, Skmel 23, 

Skmel 30, Skmel 103, Skmel 147, Skmel 173, and WM266-4) were cultured in 

DMEM (Gibco, Life Technologies) with 10% FBS (Biochrom), 0.1mM β-

mercapthoethanol (Gibco, Life Technologies), 1% non-essential amino acids (NEAA) 

and 1% Pen/Strep (Sigma-Aldrich).  

Normal human melanocytes (NHM) isolated from donor foreskins according to the 

ethical regulation (Ethics committee II, University Medical Centre Mannheim, 

Germany) and were cultivated in medium 254 (Gibco, Life Technologies) 

supplemented with 100x human melanocyte growth supplement (HMGS) (Gibco, Life 

Technologies). Human neural crest cells were generated as described previously 

(Larribere L et al 2015) in the protocol for hiPSC-derived melanocyte differentiation. 

All cell lines were cultured in humidified incubator at 370C and 5% CO2. Cell lines 

were sub-cultured every 3-5 days when they were about 80% confluent. 

 

3.2.2 Lentiviral particle production and transduction 

Lentivirus particles were produced in HEK293T cells. HEK 293T cells were 

approximately 60% confluent on the day of transfection. For one T-75 flask, 770µl of 

DMEM medium (without FCS) was mixed with 50µl of X-tremeGENE® (Roche) and 

incubated for 5 min at room temperature. Subsequently, the plasmid with the gene of 

interest (11µg) along with packaging plasmids VSV-G (5.5µg) and Δ8.9 (8.25µg) was 

mixed in the DMEM and X-treme GENE® solution. The mixture was incubated for 30 

min at room temperature and then added to HEK293T producer cells. After 12h, the 

medium was changed. Virus supernatant was collected after 24h, 36h and 48h. The 

collected supernatant was filtered through a 0.45μm PVDF filter and concentrated by 

centrifugation for 5h 21,000g at 4°C in a high-speed centrifuge. The virus pellet was 

re-suspended in 100µl PBS aliquoted and stored at -80°C. The concentrated virus 

was used to infect the cells. The virus production was done in a Biosafety level II 

laboratory, according to the safety instruction. 
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3.2.3 Transduction with lentiviral particles 

Cells were seeded in 6 well plates with 50-60% confluency and incubated for 16-18h 

in humidified incubator at 370C and 5% CO2. Fresh medium with virus (500µl-1ml 

supernatant or 5µl concentrated virus) was added to the cells. Cells were again 

transduced after 24h as described above. After 48h transduction was stopped and at 

least 3 times cells were washed with PBS. The Normal fresh medium was added to 

the cells and grown for at least 24h to let them recover before selection.   

 

3.2.4 Antibiotic selection 

Cell lines with Id1 and Id3 shRNA were selected by using puromycin (0.5-0.8µg/ml) 

and cell lines with Id1 and Id3 overexpression vector was selected using blasticidin 

(5-8µg/ml) for 4-6 days.   

 

3.2.5 RNA isolation and cDNA synthesis 

Total RNA isolation was done using RNeasy Mini kit (Qiagen) according to the 

manufacturer’s protocol. The RNA was treated with DNase I on the column. RNA 

concentration and quality were measured by NanoDrop ND1000 spectrophotometer. 

cDNA was synthesised using the Revert Aid First Strand cDNA synthesis kit 

(Thermo scientific) according to the manufacturer’s protocol.  

 

3.2.6 qPCR 

Quantitative real-time PCR (qPCR) was performed using SYBR Green (Applied 

Biosystems, Life technologies) on a 7500 real-time PCR system (Applied 

Biosystems, Life technologies).In all experiments, 18s was used as the 

housekeeping gene and the values were normalised to it. Relative gene expressions 

were quantified by calculating (∆∆Ct). Primers used are as follow: 

18s F: GAGGATGAGGTGGAACGTGT 

18Sr: TCTTCAGTCGCTCCAGGTCT 
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Id1 F: TTCAGCCAGTCGCCAAGAAT 

Id1 R: CCACGCTCTGCTCAGACA 

Id3 F: GGAGCTTTTGCCACTGACTC 

Id3 R: TTCAGGCCACAAGTTCACAG 

SOX10 F: GGCTTTCTGTCTGGCTCACT  

SOX10 R: TAGAGGGTCATTCCTGGGGG 

MITF F: GCTCACAGCGTGTATTTTTCC 

MITF R: TCTCTTTGGCCAGTGCTCTT 

 

3.2.7 Western Blot 

Cells were harvested and washed with PBS. Protein was extracted from the cells by 

using complete mini lysis buffer (Roche) with 1% Triton-X-100. The protein 

concentration was determined using the Pierce BCA protein assay kit (Thermo 

scientific). Proteins were resolved on SDS-PAGE and transferred onto PVDF 

membranes (Merck Millipore). Later the membrane was probed with primary 

antibodies and then with HRP conjugated secondary antibody. The bands were 

visualised using Luminata Forte western HRP substrate (Merck Millipore) according 

to manufacturer’s protocol. The band intensities were quantified using ImageJ 

software (Fiji). The primary antibodies used are as follow: 

Id1(cal bio), Id3(Calbio), SOX10 (Abcam), MITF (Abcam), GAPDH (Cell signalling).   

 

3.2.8 Cell proliferation and cell cycle analysis 

Cell proliferation was measured using Alamar blue (Invitrogen). Approximately 2500 

or 5000 cells were seeded in triplicates in a 96 well plate. After 24 hours Alamar blue 

(10% of the medium) was added and the plates were incubated for 4 hours at 370C. 

Fluorescence was measured with excitation wavelength at 530-560 nm and emission 
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wavelength at 590 nm using the Tecan Infinite 200 Pro plate reader. Proliferation 

was measured for 4 to 5 days. 

Cells were seeded (4-6x 105) in 6 well plates in triplicates and incubated at 370C for 

18-24 hours. After that cells were washed withPBS, trypsinized and collected in 

tubes. The pellets were resuspended in ice-cold PBS and fixed with pre-cooled 70% 

ethanol. Cells were then washed with ice-cold PBS and treated with RNase for 30 

min at 370C.  Propidium iodide (50µg/ml) was used to stain the cellular DNA. Cell 

cycle stages were analysed in Flowcytometer Canto (Becton-Dickson).  

 

3.2.9 Cell viability 

 Approximately 2500 cells were seeded in a 96 well plates. After 16-18 hours desired 

concentrations of Vemurafenib or Trametinib was added to the cells. After every 24 

hours up to 5-6 days, cell viability was measured using Alamar blue as described 

above. Approximately 1X105 cells were seeded in 6 well plates. After 16-18 hours 

desired concentration of Vemurafenib and Trametinib was added and incubated at 

370C for 72 hours. After 72 hours cells were trypsinized and washed with PBS. Total 

RNA was isolated and cDNA was synthesised as described previously. This 

experiment was performed in triplicates with DMSO as a control. 

 

3.2.10 Migration assay 

Cell migration was studied using Ibidi culture inserts. Approximately 70000 Cells 

were seeded inside the inserts and were starved overnight. The inserts were 

removed and cell migration was observed every 4 hours over 24 to 28 hours. 

TScratch software was used for the quantitative analysis of the data. 

 

3.2.11 Immunohistochemistry  

To perform immunostaing, 4µm sections of formalin-fixed paraffin-embedded tissue 

sections were stained with antibodies against Id1 and Id3 as per the manufacturer’s 
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instruction. All analyses involving human melanoma tissues were carried out 

according to the principles of the Declaration of Helsinki and were approved by the 

medical Ethics Committee of the Medical Faculty Mannheim, University of 

Heidelberg.  

 

3.2.12 Microarray expression analysis 

Total RNA was isolated from primary melanocytes (NHM), human neural crest cells 

and melanoma cell lines A375 and C32 Vemurafenib treated and DMSO control) and 

purified using RNeasy kit (Qiagen). Total RNA samples were submitted for analysis 

to the DKFZ Genomics and Proteomics Core Facility by using HumanHT-12 v4 from 

ILLUMINA (Santa Clara, CA, USA). Bayes test was used as test of significance to 

the bead expression values of the two groups of interest. List of differentially 

expressed genes were selected using P-value threshold of 0.05 and log2-

expression. 

 

3.2.13 Bacterial transformation and plasmid isolation 

For transformation, DH5α competent Escheria Coli (E.coli) bacteria were used. 

Bacteria cells were first thawed on ice and then 100μL of competent cells were 

mixed with 5μL of the ligation mix in a pre-chilled eppendorf tube.  The samples were 

mixed by pipetting and incubated on ice for 30 min. The mix was subjected to heat 

shock for 90 sec in a 42°C water bath and incubated for 5 min on ice. Subsequently, 

500μL of SOC-medium was added to each sample and again incubated for 1 hour at 

37°C on a thermos-mixer with shaking at 400 rpm. After incubation, the samples 

were centrifuged at 6,000 rpm for 3 min, 450μL of the supernatant was removed and 

the pellet was resuspended. The transformed bacteria were streaked onto LB-agar 

plates with ampicillin (100μg/ml) and were left to incubate at 37°C overnight 

(approximately 18 hours) upside-down for colony formation. Next day colonies were 

picked and incubated in 5ml LB medium with 100μg/ml ampicillin at 37°C overnight. 

The plasmid was isolated as per manufacturer’s guide using mini-preparation kit 

(Qiagen). Restriction digestion was performed to determine the correct insert and 
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vector. Next, I incubated the bacteria with the specific plasmid in 200ml LB medium 

containing 100μg/ml ampicillin at 37°C overnight. Thereafter the Qiagen Maxi kit was 

used to isolate the plasmid DNA. Plasmid DNA was precipitated using isopropanol 

and ethanol. The DNA pellet was air-dried and resuspended in TE buffer. Plasmid 

DNA concentration and quality was checked using Nanodrop ND-1000.    

 

3.2.14 Statistical analysis 

The software GraphPad Prims version 5.00 was used for statistical analysis. 

Statistical significance using two-tailed paired and unpaired t-test was determined if 

p < 0.05 (*), <0.01 (**) and 0.005 (***). 

 

3.2.15 Software Used 

T scratch software was used to analyse the migration assay. To analyse the 

microarray data chipster was used. 
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4. Results 

 

4.1 Identification of genes regulating dedifferentiation in Melanoma     

                             

Metastatic melanoma is a very heterogeneous cell population and during its 

development it reminiscences phenotype which is similar to its embryonic origin. This 

phenotype switch in melanoma has been considered to be responsible for resistance 

to several therapies (Landsberg et al.,  2012) (Roesch et al., 2016). To accomplish 

this, melanoma cells reactivates genes which were switched off during the process 

of differentiation. In order to trace the genes which are primarily involved in this 

process, induced pluripotent stem cells (iPSCs) in our lab was generated. Later, in 

controlled conditions, the iPSCs were differentiated into melanocytes via neural crest 

stage. Also, to have an insight into their role in drug resistance I treated the BRAF 

mutated melanoma cell lines (A375, HT144, Skmel 28 and WM266-4) with BRAF-

inhibitor, vemurafenib. These cell lines were treated with a higher dose (3µM) of 

vemurafenib for 6h, 24h, 48h and 72h. Cells were treated with DMSO as a control for 

same time points. After each time points, the cells were trypsinized and harvested for 

RNA extraction (Figure 4A). Next, the whole genome expression of melanoma cells 

treated with vemurafenib (72h), respective DMSO-treated control melanoma cell 

lines, more differentiated normal human melanocytes (NHM) and less differentiated 

neural crest cells derived from iPSCs was compared. Total RNA in triplicates were 

used and the microarray data were analysed using the chipster software. An 

unsupervised hierarchical clustering showed two major clusters. The more 

differentiated cells i.e. NHM and DMSO-treated melanoma cell lines clustered 

together whereas the second cluster contained vemurafenib-treated melanoma cell 

lines with less differentiated neural crest cells (Figure 4B). Therefore, from the 

clustering data, it could be shown that the vemurafenib-treated cell lines are more 

similar to the neural crest cells or dedifferentiated. Moreover, it was also found that 

Id gene family- Id1, Id2 and Id3 were upregulated (log2-fold change ranging from 1 

to 2.5)  along with pluripotency marker genes like LIN28, POU5F1, SOX2, DNMT3B, 

ALPL as well as a multipotency marker gene, TWIST1, in the dedifferentiated group 

of cells compared to the NHM and DMSO-treated group. Similarly, the melanocyte or 

differentiation markers like DCT, MC1R, MITF, MELANA, SOX10, TYR and TYRP1 
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were down-regulated (log2-fold change ranging from -1 to -3.3) in the vemurafenib-

treated melanoma cells and the neural crest group compared to the NHM and 

DMSO-treated group (Figure 4C). 
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Figure 4: Id3 expression is upregulated during adaptive vemurafenib 

resistance in human melanoma cell lines. A. Schematic representation of human 

melanoma cell lines treatment with vemurafenib (3µM, 72h) followed by gene 

expression analysis. B. Heat map representation of unsupervised hierarchical 

clustering of differentially expressed genes in neural crest cells (NC), normal human 

melanocytes (NHM) and melanoma cell lines (A375 and C32) treated with 

vemurafenib (V) or with DMSO (D). C. This panel shows that the pluripotency or 

multipotency marker genes along with Id genes are upregulated and differentiation 

(melanocytic) marker genes are downregulated. D. Id3 mRNA expression in human 

melanoma cell lines treated with vemurafenib for 6h, 24h, 48 h and 72h. 18s was 

used as an endogenous expression control and DMSO treated cells were used as 

reference sample. The qPCR results shown here are mean of + SD of biological 

triplicates. *P<0.05, **P<0.01, ***P<0.001 and ns = not significant.  

 

Additionally, the AXL expression was found to be upregulated in the vemurafenib-

treated cell lines, which is in accordance with the recent report describing low 

MITF/AXL expression ratio during early drug resistance in melanoma (Muller et al., 

2014). It was further demonstrated through qPCR that the Id3 expression was 

upregulated after treatment with vemurafenib. Here it was observed that a significant 

increase in Id3 expression starts as early as 6 hours after the treatment with 

vemurafenib in 3 melanoma cell lines (C32, A375 and WM266-4) and remained 

higher after 24 hours, 48 hours and 72 hours in all the 5 cell lines (A375, C32, 

WM266-4, Skmel 28 and HT144) (Figure 4D). More interestingly, upregulation of Id3 

in NRAS mutated cell lines (Skmel 30, Skmel 103 and Skmel 147) was detected 

after treatment with the MEK inhibitor (trametinib) at different time points 

(Supplementary Figure 2). Additionally, upregulation of Id3 in three BRAF mutated 

cell lines (A375, C32 and Skmel28) after treatment with BRAF inhibitors 

(Vemurafenib and Dabrafenib), MEK inhibitor (Trametinib) or in combination 

(Vem+Tra, Dab+Tra) was found (Supplementary Figure 3). These data suggests 

the potential involvement of Id3 in drug resistance is not BRAF- specific. 
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4.2 Expression of Id1 and Id3 in melanoma  

To better understand the role of Id genes (mainly Id1 and Id3) in melanoma 

development, the human melanoma cell lines according to their Id1 and Id3 

expression were characterised. For this, the qPCR and western blot techniques were 

used to show their mRNA and protein expression level in different human melanoma 

cell lines. This human melanoma cell panel can be divided into BRAF mutated 

(A375. C32, HT144, Skmel 28 and WM266-4), NRAS mutated (Skmel 30, Skmel 103 

and Skmel 147) and BRAF/NRAS wild types (Skmel 23, Skmel 173 and MeWo). 

From the mRNA expression, it was shown that most of the cell lines express higher 

Id1 and Id3 compared to the NHM (Figure 5A, B). 18s was used as the house-

keeping gene. Similarly, the protein expression of Id1 and Id3 in most of these cell 

lines were higher in comparison to the NHM. Interestingly, from the results, no 

correlation between the Id1 and Id3 expression and their mutational status was 

established (Figure 5C, D) 
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Figure 5: Id1 and Id3 expression in melanoma cell lines. A, B. mRNA expression 

of Id1 and Id3 in normal human melanocyte (NHM) and human melanoma cell lines. 

18s was used as endogenous control and normal human melanocytes (NHM) was 
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used as the reference. The qPCR results showed here are mean + SD of biological 

triplicates. Protein expression of Id1 (C) and Id3 (D) in NHM and human melanoma 

cell lines. 

Further, immunohistochemistry (IHC) technique was used to check the expression of 

Id1 and Id3 in tissue samples. For this I prepared, fixed and stained using Id1 and 

Id3 antibody primary melanoma, metastatic melanoma and dermal nevus tissue 

samples derived from patients. The staining results showed that Id1 and Id3 are 

highly expressed in both primary and metastatic melanoma tissues as well as in 

dermal nevus (Figure 6A, B).  
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Figure 6: Id1 and Id3 expression in human melanoma patient tissue samples. 

A. The top panel shows the expression of Id1 in the primary, metastatic melanoma 

and dermal nevus. B. The bottom panel shows the Id3 expression in the primary, 

metastatic melanoma and dermal nevus. Images represent 4X and 20X 

magnification. No secondary antibody staining was used as a negative control. 

 

4.3 Id3 Knock down in melanoma cell lines reduces cellular 

migration 

In order to understand the role of Id3 in melanoma cell migration and proliferation, 

Id3 was stably knocked down using short-hairpin RNA (shRNA). The shRNA against 

Id3 was selected from the RNAi consortium which has 100% Specificity-Defining 

Region (SDR) in the coding sequence of Id3. Subsequently, I chose 5 cell lines with 

different mutational status and high Id3 expression i.e. A375 (V600E), HT144 

(V600E), Skmel 28 (V600E), Skmel 147 (NRASQ61L) and MeWo (WT). Stable 

transfection of Id3-shRNA was performed using the lentiviral particles. Later, the 

cells were selected using puromycin and allowed to grow for few days. 

The knocking down efficiency of Id3 was validated through western blot technique. It 

was found that the expression of Id3 was significantly suppressed in all the 5 cell 

lines compared to their respective controls with non-targeting shRNA (NT) (Figure 

7A). From the Image quantification data, it was determined that in 4 (A375, HT144, 

MeWo and Skmel 147) out of 5 cell lines the Id3 expression was more than 80% 

reduced, whereas, in  Skmel 28 there was more than 60% reduction in the 

expression (Figure 7B). 
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Figure 7: Id3 knockdown in melanoma cell lines. A. Id3 was knockdown in Skmel 

28, HT144, MeWo Skmel 147 and A375 cell lines using shRNA against Id3. Id3 

protein expression was evaluated using western blot after the knockdown. GAPDH 

was used as a loading control. B. Percentage of Id3 protein expression was 

estimated using image J. 

 

It is well-documented that Id proteins play a significant role in inhibiting differentiation 

and promote proliferation (Lasorella A et al., 2014). Therefore, the effect of Id3 

knockdown on proliferation in the melanoma cell lines was first examined. Alamar 

blue assay (Invitrogen) was performed to study the proliferation. For this, the cells 

with Id3 shRNA and their controls were seeded and measured their growth after 

every 24 hours up to 5 days.  The results from this assay displayed that there was no 

significant difference in proliferation between the cell lines with Id3 shRNA and their 

non-targeting controls (Figure 8A). This observation was further verified through cell 

cycle analysis using flow cytometry technique. In this experiment, the cells were 

fixed in 70% ethanol and then stained them using propidium iodide (PI). The flow 

cytometry data analysis gave the percentage of cells in different cell cycle stages 

(G0/G1, S and G2/M). Here, no difference was observed in the percentage of cells in 

different cell cycle stages between Id3 knockdown cell lines and their respective 

controls (Figure 9A). Hence, the Alamar blue assay and cell cycle analysis 

confirmed that there was no effect on proliferation or cell cycle after knocking down 

Id3 alone in melanoma cell lines. 
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Figure 8: Id3 knockdown in melanoma cell lines does not affect proliferation: 

A. Alamar blue assay was used to detect the difference in cell proliferation between 

Id3 knockdown and control cell lines from day 1 to day 5 (A375, Skmel 28, HT144, 

Skmel 147 and MeWo). The cell proliferation results show the mean + SD of 

biological triplicates.  
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B. 

 

 

 

 

 

Figure 9: Id3 Knockdown does not alter the cell cycle. A, B. Analysis of cell cycle 

stages by flow cytometry of A375 and Skmel 28 with Id3 knockdown compared to the 

non-targeting control. Cells stained with PI were gated based on their DNA content 

(left panel) and each cell cycle stages were quantified (right panel). The cell cycle 

results show the mean + SD of biological triplicates.  

 

The earlier report suggests the involvement of Id3 in various cancer metastasis but 

there is little known about its role in melanoma metastasis. Therefore, I thought to 

investigate its function during melanoma migration (Tsuchiya T et al., 2005) (Shuno 

Y et al., 2010). For this, a scratch like assay was performed using ibidi chambers or 

inserts made up of biocompatible silicone. These inserts help in making a gap of 

approximately 500 µm in the monolayer of the cells and the closing of the gap due to 

cell migration was recorded over a period of time. The entire melanoma cell lines 

knockdown for Id3 and their corresponding controls were seeded using these inserts. 

After the insert was taken out, I took pictures after every four hours till the time gap 

was completely closed. The images were analysed using the T-scratch software. It 

was found that after knocking down Id3 in cell lines A375, Skmel 28 and Skmel 147 

the migration was significantly impaired. A375, Skmel 28 and Skmel 147 Id3 

Knockdown cells migrate approximately 20-30 % slower compared to their 

respective controls (Figure 10A, B). Whereas in HT144 and MeWo cell lines, a trend 

in the same direction was observed but the results were not significant (Data not 

shown here). These findings suggest that silencing of Id3 alone in melanoma cell 

lines can impair its migration in vitro.  
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A. 

 

 

 

B. 

 

 

 

Figure 10: Id3 Knockdown in melanoma cells reduces cell migration. A. 

Representative images of cell migration assay. Migration of A375 and Skmel 28 cell 

line with Id3 shRNA (A375 Id3 Kd, Skmel 28 Id3 Kd) and non-targeting shRNA (A375 

NT, Skmel 28 Id3 Kd) was measured at 0 hour and 8 hours after creation of the gap. 

Skmel 147 Id3 Kd and Skmel 147 NT cell migration was measured after 24 hours. B. 

The bottom panel represents the percentage migration of A375, Skmel 28 and Skmel 

147 with Id3 shRNA and non-targeting shRNA. The graph represents the mean + SD 

of biological triplicates. *P<0.05, **P<0.01, ***P<0.001 and ns = not significant. 

 

4.4 Id3 overexpression in WM266-4 increases cellular migration 

After studying Id3 loss of function, Id3 gain of function in melanoma cells were 

studied. For this, I first chose a human melanoma cell line (WM266-4) which has 

very low level of endogenous Id3 expression (Figure 5B, D). Next, Id3 coding 

sequence was cloned in a lentiviral vector (PLX304). The cloning of Id3 was 

validated by restriction digestion and sequencing. Thereafter, Id3 overexpressing 

WM266-4 (WM266-4 Id3) cell line was generated and selected using blasticidin. The 

overexpression of Id3 in WM266-4 was confirmed using qPCR and western blot 

technique. WM266-4 with Id3 overexpressing vector showed an increase of Id3 

mRNA by 1000 folds compared to the empty vector control (WM266-4 EV) (Figure 

11A). Equally, the western blot also showed a tremendous increase in the protein 
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expression of Id3 in WM266-4 cell line with Id3 overexpressing vector compared to 

its control (Figure 11B). 
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Figure 11: Id3 overexpression in WM266-4 increases cellular migration. A. 

mRNA expression of Id3 in WM266-4 after transfection with Id3 expressing vector. 

18s was used as an endogenous control and WM266-4 with empty vector was used 

as the reference. The qPCR results showed here are mean + SD of biological 

triplicates. B. western blot data shows the Id3 protein expression in WM266-4 empty 

vector (WM266-4 EV) and WM266-4 Id3 overexpressing vector. C. Alamar blue 

assay was used to detect the difference in cell proliferation between WM266-4 Id3 

0 1 2 3 4 5

0

2000

4000

6000

8000 WM266-4 EV

WM266-4 Id3

no. of days

R
F

U

no. of days 

R
F

U
 

WM266-4 EV WM266-4 Id3  

0h 

24h 

T4

W
M

26
6-

4 
E
V

W
M

26
6-

4 
Id

3

0

20

40

60

80

*

%
 m

ig
ra

ti
o

n

WM266-4 EV WM266-4 Id3 

%
 

4h 

GAPDH 

Id3 

W
M

26
6-

4 
EV

W
M

26
6-

4 
Id

3

0

2

4

6

8

10

500

1000

1500
**

Id3
m

R
N

A
 e

x
p

re
s

s
io

n

 f
o

ld
 c

h
a

n
g

e

WM266-4 WM266-4 Id3 

Id
3
 m

R
N

A
 e

x
p
re

s
s
io

n
 

F
o
ld

 c
h
a
n
g
e
  



Results 

 

 
  65 
 

overexpression and control cell lines from day 1 to day 5 (A375, Smel28, HT144, 

Skmel 147 and MeWo). C. Representative image of cell migration assay of WM266-

4 Id3 and empty vector control (WM266-4 EV). E. Graph represents the percentage 

migration of WM266-4 Id3 and empty vector control (WM266-4 EV).  The graph 

show the mean + SD of biological triplicates. *P<0.05, **P<0.01, ***P<0.001 and ns 

= not significant. 

 

To further understand if Id3 overexpression would affect the proliferation in WM266-

4, Alamar blue assay was performed and analysed the cell cycle in Id3 

overexpressing and control cells. Alamar blue assay results showed that there was 

no significant difference in the proliferation rate of Id3 overexpressing WM266-4 

compared to the empty vector control (Figure 11C). For cell cycle analysis, the cells 

were fixed with 70% ethanol and stained them with propidium iodide (PI). The flow 

cytometry data confirmed that there was also no difference in the percentage of cells 

in different cell cycle stages between WM266-4 Id3 and WM266-4 EV (Figure 12A). 

This result was in accordance with the previous knockdown results which showed 

that Id3 alone cannot affect the proliferation of melanoma cells. 

Now I wanted to check if the Id3 overexpression in WM266-4 cell line affects the cell 

migration or not. Again, the scratch like assay using ibidi chambers/inserts was 

performed. In figure 11D & E, it is evident that Id3 overexpression in WM266-4 

increases the migration rate by approximately 20% compared to the empty vector 

control. These findings highlight that Id3 plays a critical role in melanoma migration. 
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A. 

 

 

 

 

 

Figure 12: Id3 overexpression doesn’t alter the cell cycle. A. Analysis of cell 

cycle stages by flow cytometry of WM266-4 with Id3 overexpressing vector 

compared to the empty vector control. Cells stained with propidium iodide were 

gated based on their DNA content (left panel) and each cell cycle stages were 

quantified (right panel). 

 

4.5 Id3 expression in melanoma cells controls SOX10 expression 

To determine the underlying molecular mechanism behind Id3 influencing the 

melanoma cell migration, a large set of genes associated with melanoma migration 

were screened and checked the basal protein expression of some of these genes 

(Supplementary Figure 4). The screening result showed that the expression of Id3 

in 5 melanoma cell lines is significantly inversely correlated to the SOX10 expression 

(Figure 13D, left panel).  Moreover, MITF which is the downstream target of SOX10 

was also found to be inversely correlated to Id3 expression in the melanoma cell 

panel (Figure 13D, right panel). This inverse correlation was further confirmed from 

the human metastatic melanoma database. A significant inverse correlation exists 

between Id3 and SOX10/MITF in 52 metastatic melanoma patients sample (Figure 

10 E). Another important melanoma patient database, the cancer genome atlas 

(TCGA), also demonstrated an inverse correlation between Id3 and MITF by RNA 

sequencing results (Akbani et al., 2015).  
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Figure 13: Id3 knockdown or overexpression regulates SOX10 and MITF 

expression in melanoma cell lines. A. Quantitative real-time PCR analysis of 

SOX10 expression in Id3 knockdown melanoma cell lines (A375, HT144, MeWo, 

Skmel28 NT, Skmel 147). B. Quantitative real-time PCR analysis of MITF expression 

in Id3 knockdown melanoma cell lines (A375, HT144, MeWo, Skmel28 NT, Skmel 

147). 18s was used as endogenous control and cell lines with non-targeting shRNA 

(NT) were used as reference control. C. qPCR analysis of SOX10 expression in 

WM266-4 Id3 overexpressing cell line. 18s was used as endogenous control and 

WM266-4 with empty vector was used as a reference. The qPCR results shown here 
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SOX10 gene promoter  
transcription starting site 

are mean of + SD of biological triplicates. D. Protein expression of Id3 in melanoma 

cell lines is inversely correlated to SOX10 and MITF. E. mRNA expression of Id3 in 

metastatic melanoma patients is inversely correlated to SOX10 (left panel) and MITF 

(right panel) (GEO dataset- GDS3966). *P<0.05, **P<0.01, ***P<0.001 and ns = not 

significant. (Spearman correlation =r) 

 

Finally, the expression of SOX10 and MITF in Id3 knockdown and overexpressing 

cell lines was examined. Indeed, the expression of SOX10 was higher in cell lines 

(A375, HT144, MeWo, Skmel28 and Skmel147) with Id3 knockdown compared to 

the control cell lines (Figure 13A). Whereas its expression is almost reduced by 50% 

in WM266-4 with Id3 overexpression compared to WM266-4 with empty vector 

(Figure 13 C). Additionally, the qPCR data validated 3-5 fold increase in the mRNA 

expression of MITF in 3 out of 5 Id3 knockdown cell lines (Figure 13 B).  

A.                                                                  B. 

    

       

 

 

 

 

 

 

 

Figure 14: Probable E47 binding site on SOX10 promoter sequence. A. Two E47 

binding sites (red box) on SOX10 promoter sequence predicted using Qiagen 

prediction tool. B. Transcriptional Regulatory Element Database (TRED) shows three 

E47 binding sites on SOX10 promoter sequence. 
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To better understand the correlation between Id3 and SOX10 I did some in silico 

search. For this, I looked for the transcription factors that regulate SOX10 

expression. Using the prediction tool from Qiagen for the transcription factor binding 

site it was found that SOX10 has an E47 binding site in its promoter site (Figure 

14A).  This data was further validated using Transcriptional Regulatory Element 

Database (TRED) where three CANNTG sequence in the SOX10 promoter 

sequence was found (Figure 14B). It has been well documented that Id3 negatively 

regulates E47 by heterodimerizing and E47 mainly binds to the E- box motif 

(CANNTG) in the promoter region. Above findings suggest that Id3 could regulate 

the SOX10 expression by preventing E47 from binding to the SOX10 promoter.  

 

4.6 Id3 Knockdown sensitizes melanoma cells to the targeted 

therapy. 

In order to verify the effect of vemurafenib or trametinib on Id3 knockdown or 

overexpressing melanoma cells, the cell viability assay was conducted. For this, the 

BRAF mutated cell lines with different concentration (0.001, 0.01, 0.1, 1 and 10µM) 

of BRAF inhibitor (Vemurafenib) and the NRAS mutated cell line with MEK-inhibitor 

(Trametinib) were treated. The cell viability was tested using Alamar blue. It was 

found that Id3 knockdown cell line, A375, after 48 hours of treatment showed greater 

sensitivity to the vemurafenib compared to the non-targeting control. Similarly, Id3 

knockdown cell line Skmel 28 and HT144 were more sensitive to vemurafenib after 

96 hours of treatment in comparison to their non-targeting controls. Interestingly, 

Skmel 147 Id3 knockdown cell line were more sensitivity to the trametinib after 96 

hours compared to the Skmel 147 non-targeting cell line (Figure 15A). Lastly, it was 

also found that upon Id3 overexpression in WM266-4 the cell survival rate after 

treatment with vemurafenib was increased significantly compared to the WM266-4 

cells with empty vector (Figure 15B).  These results indicate that Id3 expression in 

melanoma cells have profound effect during tumour progression and drug 

resistance.  
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A. 

 

 

 
 
 

 

 

 

 

 

 

 

B. 

 

 

 

 

 

Figure 15: Id3 expression in melanoma cell lines provides resistance to the 

targeted therapy. A. The graph represents the effect of vemurafenib treatment 

(0.01-10 μM) after 48 hours (A375) or 96 hours (HT144, SKmel 28 and Skmel 

147) on the viability of Id3 knockdown or control cell lines, assessed by Alamar 

blue staining. The results are shown as mean + SD of biological triplicates. B. 

The graph represents the effect of vemurafenib treatment (0.01-10 μM) after 48 

hours (WM266-4) on Id3 overexpressing cell lines viability. The results are shown 

as mean + SD of biological triplicates. *P<0.05, **P<0.01, ***P<0.001 and ns = 

not significant. 
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5. Discussion 

Currently, different approaches have been involved in the treatment of melanoma 

patients as melanoma tumour displays numerous complexities at genetic as well as 

at immune level. The new treatments exhibit remarkable efficacy but resistance 

developed in patients restricts the benefits from these approaches. To identify the 

mechanism behind the gain of resistance, different theories and research models 

have been presented. A majority of publication supports that the resistance shown 

by melanoma patients, especially to the targeted therapies, is due to 

dedifferentiation. Like in other cancer types, it has been found that tumour cells in 

melanoma patients also retain some of the phenotypes similar to multipotent cells 

(Landsberg J et al., 2012) (Lehraiki et al., 2015) (Fallahi‐Sichani et al.,  2017). 

Melanoma cells are transformed from melanocytes which are differentiated from the 

neural crest cells. The neural crest cells are multipotent, transient and migratory cell 

population developed during the neural tube formation. Melanoma cells regain some 

of these features of neural crest cells in order to metastasize and acquire resistance 

from the therapies. Here, I have identified new dedifferentiation marker in melanoma 

cells which could potentially lead to metastasis and resistance to the melanoma 

therapy. 

 

5.1 Identification of novel marker for dedifferentiation and 

resistance in melanoma 

To date, several markers like CD271, CD133 ABCB5 and ALDH have been 

associated with the melanoma dedifferentiation. The dedifferentiated population of 

melanoma cells shows the embryonic phenotype (Boiko et al., 2010) (Monzani et 

al., 2007) (Frank et al., 2005). They are more migratory, invasive and resistant to 

the therapies. Due to ethical limitations in human it is not possible to isolate the 

multipotent neural crest cells and study the link with melanoma pathogenesis.   

The reprogramming of somatic cells using Yamanaka factors provides a new 

approach to study the role of dedifferentiation in cancer cells. Besides, this technique 

opens a new insight in the study of developmental biology by subsiding the ethical 

issues (of using human embryonic stem cells). Previously in our lab, human induced 
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pluripotent stem cells (HiPSCs) were generated and differentiated into neural crest 

cells under controlled conditions. The neural crest cells were identified using two 

different cell surface markers (CD271 and HNK1) (Larribere and Utikal, 2014) 

(Larribere et al., 2015).  

On the other hand, melanoma cell lines were treated with a high dose of BRAF-

inhibitor for a period of 72hours (Figure 4A). This process helped in the selection of 

most resistant and dedifferentiated cell population as the inhibitor can easily 

eliminate the normal tumour cells at this drug concentration (Supplementary Figure 

1) but not the dedifferentiated population. This was also shown in the gene profiling 

data where the neural crest cells clustered together with the vemurafenib-treated 

cells (Figure 4B). This shows that the cell survived after vemurafenib treatment was 

more dedifferentiated than the non-treated or DMSO-treated human melanoma cells. 

This was strongly supported by another finding where it was shown that the 

pluripotency or multipotency markers (LIN28, SOX2, DNMT38, TWIST1and 

POU5F1) were upregulated in the dedifferentiated group of cells. In addition, the 

melanocytic or differentiated markers (DCT, MC1R, MITF, TYR, SOX10 and TYRP1) 

were downregulated in the dedifferentiated group of cells (Figure 4C). It is well 

known that the expression of SOX2, LIN28 and POU5F1 has been implicated in 

dedifferentiation of pancreatic cancer cells, Müller glia and embryonic stem cells 

respectively (Herreros-Villanueva et al., 2013) (Ramachandran et al., 2010) (Niwa 

et al., 2000). Indeed the melanocyte differentiation from neural crest cells requires 

the expression of SOX10 and its downstream gene MITF, DCT, TYR and TYRP1. 

Interestingly, TWIST1 is another gene associated during embryonic development. It 

is upregulated in many cancers and promotes metastasis through epithelial to 

mesenchymal transition (EMT) (Yang et al., 2006). Neural crest cells are migratory 

in nature and express TWIST 1 during entire migratory pjase (Vincentz et al.,  2013). 

Furthermore, the findings show that AXL expression was upregulated in the 

vemurafenib-treated cells which are in accordance with the earlier findings where it 

was described that high AXL and low MITF expression is an early indication of drug 

resistance in BRAF and NRAS mutated cell lines (Müller et al., 2014). Contrastingly, 

many reports suggest an elevated level of MITF in drug resistant melanoma cells 

(Johannessen et al., 2013) (Van Allen et al., 2014). This discrepancy could arise 

due to the difference in the experimental procedures. As I have used BRAF inhibitor 



   Discussion 

 

 
  73 
 

PLX4032 (vemurafenib) and not PLX4720. Additionally, the difference of drug 

concentration for the treatment in this study could also affect the end results. 

Inhibitor of differentiation (Id) proteins is expressed in stem cells and maintains the 

stemness by inhibiting the differentiation. In Xenopus embryo, Id3 was shown as an 

essential gene for the proliferation and survival of the neural crest cells (Kee and 

Bronner-Fraser et al., 2005). It has been described to play a quintessential role in 

cancer-initiating cells and drug resistance. This was reflected in the result as well 

where Id1, Id2 and Id3 expression were upregulated in vemurafenib treated cells. Id1 

and Id2 expression have been well studied in melanoma progression and associated 

with the suppression of tumour suppressor genes. Here, the expression of Id3 was 

found to be elevated in the dedifferentiated cells. In my results, I also demonstrated 

the elevated mRNA expression of Id3 in BRAF mutated cell lines (Skmel 28, HT144, 

C32, A375 and WM266-4) after treatment with high dose of vemurafenib. 

Remarkably, the upregulation of Id3 initiates as early as 6 hours after treatment and 

retained after 24hours, 48hours and 72 hours of vemurafenib treatment. Although 

HT144 cell line does not show significant upregulation of Id3 after 72 hours of 

vemurafenib treatment (Figure 4D). This could be because of another resistance 

mechanism involved in this cell line and further investigation is required. This was 

also true for the NRAS mutated cell lines as the Id3 expression increases after 

treatment with the MEK-inhibitor (Trametinib). Formerly, Id3 role in drug resistance 

has been well documented in colon cancer and Non-small cell lung cancer (O'Brien 

et al., 2012) (Castañon et al., 2013). These findings suggest that Id3 expression is 

higher in dedifferentiated melanoma cells and upregulated during adaptive 

resistance. 

 

5.2 Id3 expression mediates migration in melanoma cells 

Id proteins are highly expressed during development but usually found to be low or 

downregulated in terminally differentiated cells. Although their expression in several 

cancer types is dysregulated and supports the tumour cells in proliferation and 

metastasis. For example in hepatocellular cancer Id1 expression is upregulated 

compared to the normal liver cells (Sharma et al., 2016). Similarly, in melanoma 
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cells, Id1 is expressed in the tumour cells but melanocytes do not show any 

expression of Id1 (Straume and Akslen, 2005). Id2 and Id3 expression was variable 

in melanoma cell lines but very low or not expressed in human melanocytes (DiVito 

et al., 2014). Tumour suppressor genes are more often inactivated in cancer, Id1 

transcriptionally inactivates p16INK4a in melanoma whereas Id2 suppresses Rb 

protein in neuroblastoma (Polsky et al., 2001) (Lasorella et al., 2000). In this study, 

it was demonstrated that both at mRNA and protein level Id1 and Id3 expression was 

elevated in most of the human melanoma cell lines compared to the normal human 

melanocytes (NHM). In addition, Id1 and Id3 expression in dermal nevus, primary 

and metastatic melanoma patient samples were found (Figure 5 and 6). However, 

their expression in dermal nevus could indicate that Id1 and Id3 are essential during 

the early transformation of melanocyte to melanoma. To date not enough data has 

been published which explains the mechanism of Id3 in melanoma progression. I 

performed functional experiments to study the role of Id3 in melanoma pathogenesis.  

Melanoma cell lines (A375, Skmel 28, HT144, Skmel147 and MeWo) upon knocking 

down Id3 using shRNA do not show any effect on proliferation (Figure 8). This result 

was further confirmed by cell cycle analysis where I didn’t see any difference in the 

percentage of cells in the different phase of cell cycle (Figure 9). Also, WM266-4 cell 

lines displayed no alteration in proliferation or cell cycle phases upon overexpression 

of Id3 (Figure 11C and 12). Taken together these results suggest that Id3 alone is 

not essential for proliferation and cell cycle in melanoma cell lines. The probable 

explanation could be that Id1 expression in Id3 knockdown cell lines compensate for 

the loss of Id3 since they share 69% homology (Supplementary Figure 5). 

However, melanoma cell lines (A375, Skmel 28 and Skmel 147) showed significantly 

reduced cellular migration upon knocking down Id3 using shRNA (Figure 10). In 

accordance, a significant increase in cellular migration was observed in WM266-4 

cell line on ectopic expression of Id3 (Figure 11 D, E). These results indicate that Id3 

expression in melanoma cell lines is essential for the cellular migration.   
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5.3 Id3 confers dedifferentiation in melanoma cells by regulating 

SOX10 and MITF expression 

Dedifferentiating cells are more migratory in nature compared to the terminally 

differentiated cells. Here, it was shown that melanoma cells upon Id3 knockdown 

migrate slower compared to the melanoma cell line with Id3. Several factors are 

involved in melanoma migration and to analyse the mechanism behind melanoma 

migration involving Id3, a large set of melanoma associated genes were screened.  

Interestingly, in this screening, it was identified that SOX10 gene which was 

inversely correlated with Id3 expression. Furthermore, MITF, downstream target of 

SOX10, was also inversely correlated to Id3 in melanoma.  MITF transcription factor 

is a master regulator of melanogenesis which directly controls the activation of 

important enzymes like DCT, TYR and TYRP1 (Bondurand et al., 2000).  

In the panel of human melanoma cell lines, it was shown that the endogenous level 

of Id3 expression is inversely correlated to SOX10 and MITF. This result was further 

confirmed in the Id3 knockdown and overexpressing cell lines. Three out of five cell 

lines (A375, HT144 and MeWo) showed a significant increase in the SOX10 

expression after Id3 Knockdown (Figure 13A). Conversely, WM266-4 cell line after 

Id3 overexpression displayed almost 50% reduction in SOX10 expression (Figure 

13C). Since MITF has SOX10 binding sites on its promoter sites, I also checked the 

expression of MITF in Id3 knockdown cell lines. Here it was found that MITF 

expression was upregulated in three out of 5 cell lines (Figure 13B). Lastly, the 

inverse correlation of Id3 with SOX10 and MITF was confirmed using the in silico 

data analyses of RNA expression from metastatic melanoma patients (Figure 13E). 

As discussed earlier that MITF is required for the differentiation of melanocytes 

whereas Id3 is the inhibitor of differentiation, my result suggests that in melanoma 

Id3 stops the differentiation by downregulating MITF and SOX10 expression.  

Id3 lacks the basic domain in its structure and it cannot bind directly to the DNA or 

promoter of any gene. However, it binds to other basic helix-loop-helix transcription 

factor and inhibits them from binding to the promoter of the target gene. It is well 

documented that Id3 binds to the E2A (E47/E12) protein and stops it from binding to 

E-box of DNA (Loveys et al., 1996). This protein-protein interaction is known to stop 
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differentiation in cells. Taking this in consideration I again performed some in silico 

search and found that SOX10 has E47 binding sites in its promoter region. 

State-1 

 

 

 

 

 

 

State-2 

 

 

 

 

 

 

 

Figure 17: Id3-mediated regulation of SOX10. State-1 represents when Id3 is 

present in excess inside the nucleus where it binds to the E47 transcription factor 

and inhibits the SOX10 activation by inhibiting E47 from binding to the promoter of 

SOX10. State-2 represents when Id3 is knocked down using shRNA and E47 can 

bind to the promoter of SOX10 which starts the transcription and further activates the 

downstream genes like MITF. 
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E47 binds to the E-box motif (5-CANNTG-3) on promoter sequence and using 

another database search it was found that SOX10 promoter has three CANNTG 

motifs (CAGCTG, CACATG and CAAATG) (Figure 14). Taking together these 

observations I propose that Id3 regulates SOX10 expression in melanoma by 

inhibiting E47 from binding to SOX10 promoter and stopping the differentiation. This 

is described by a schematic representation but further research is required to be 

done to formally prove it (Figure 17). 

 

5.4 Id3 in melanoma induces drug resistance to target therapies 

This study presents a direct connection between Id3 expression in melanoma cells 

and resistance to the targeted therapy. The role of Id1 in retaining chemoresistance 

has been well documented before but to our understanding, Id3 role in resistance to 

melanoma target therapy has never been explored. In my results, it was presented 

that BRAF mutated cell lines (A375, Skmel 28 and HT144) are more sensitive to the 

vemurafenib after knocking down Id3 gene (Figure 15A). Whereas, WM266-4 cell 

lines show more resistance to the vemurafenib treatment after the overexpression of 

Id3 gene (Figure 15B). On the other hand, it was found that NRAS mutated cell line 

SKmel 147 also become more sensitive to the MEK-inhibitor (Trametinib) after 

silencing Id3 gene (Figure 15A).  

This is the first time shown that Id3 gene expression in melanoma cell lines helps in 

maintaining the dedifferentiated state by regulating the expression of SOX10 and 

MITF, the most significant genes for the melanocyte differentiation. Although SOX10 

involvement in resistance to BRAF and MEK inhibitor has been described before. 

Sun et al in 2014 found that after knocking down SOX10 in melanoma cells, EGFR 

and PDGFRB expression were upregulated via Tgf-β and conferred resistance.   

As it was highlighted in the introduction, ABCB5 is the drug efflux transporter and is 

crucial for stem cells maintenance. It is also upregulated in several cancers and 

confers resistance to the therapy. Here, using the GEO data set it was found that 

after stably knocking down ABCB5 in A375, the Id3 expression is significantly 

downregulated compared to the vector control. Whereas, the expression of 

melanocyte differentiation markers i.e. SOX10 and MITF significantly increases after 
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ABCB5 suppression (Supplementary Figure 6) (Wilson et al., 2014). These data 

are in agreement with the findings where it was shown that Id3 is upregulated upon 

treatment with BRAF or MEK inhibitors and inversely correlated with the expression 

of SOX10 and MITF. 

In conclusion, this study reveals that Id3 expression in melanoma is crucial for the 

dedifferentiation which is responsible for the resistance to the targeted therapy like 

BRAF and MEK inhibitors. In addition, it was found that Id3 also regulates SOX10 

and MITF expression (potentially via E47) to keep the cells in the more 

dedifferentiated state. 
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6. Summary 

Melanoma is the deadliest form of skin cancer which is transformed from the 

melanocytes. Sunburn is one of the leading causes of melanoma. Patients acquire 

various mutations during melanoma pathogenesis which are responsible for the 

tumour progression, metastasis and invasion. Additionally, a subpopulation of 

melanoma cells is dedifferentiated due to the recapitulation of expression pattern 

also found in neural crest cells. Despite several targeted and immunotherapies have 

been approved for the treatment of metastatic melanoma, the gain of resistance 

reduces the efficiency of these drugs. A number of reports suggest the role of 

dedifferentiation in resistance to the therapies but the exact mechanism behind this 

is poorly understood. Therefore, in this study, a new protein was identified which 

plays role in dedifferentiation and resistance in melanoma cells.  

In this project, it was shown that Id3 expression is upregulated in melanoma cells 

compared to the human melanocytes. Also, it was found that Id3 expression is 

higher in primary and metastatic melanoma patient samples as well as in dermal 

melanocytic nevus cells. By means of gain and loss of function studies, it was shown 

that Id3 alone does not alter the proliferation or cell cycle in melanoma cells. 

However, Id3 expression in melanoma cells promotes cellular migration. On 

screening a large set of melanoma associated genes it was revealed that Id3 

expression is inversely proportional with the melanocyte differentiation marker gene-

SOX10 and MITF. 

It was also demonstrated that Id3 expression is upregulated in the BRAF and NRAS 

mutated cell lines upon treatment with vemurafenib and trametinib respectively. Also, 

from the expression analysis, it was shown that higher Id3 expressing cell lines after 

treatment with inhibitors display dedifferentiated phenotype. Further, I confirmed the 

role of Id3 expression in vemurafenib or trametinib resistance by showing that after 

knocking down or overexpressing Id3 in melanoma cell line sensitizes or confer 

resistant respectively to the treatments. These findings highlight the importance of 

Id3 in melanoma resistance against targeted therapy and inhibition of Id3 clinically in 

metastatic melanoma patients could increase the efficacy of the current treatment.
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8. Appendix: 
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Supplementary Figure 1: Efficacy of vemurafenib treatment. A. Curve represents 

the viability of BRAF mutated melanoma cell lines (A375, Skmel28 and WM266-4) 

and BRAF wild type cell line (Skmel 23) after vemurafenib treatment (0- 10 µM) after 

72h. B. Graph represents the percentage of cells survived after 72h of treatment with 

vemurafenib (1µM). Skmel 23 was used as a negative control. The cell viability 

results shown here are mean of +SD of biological replicates. 

 

 

 

 

Vem-1µM-72h

S
km

el
 2

3

W
M

26
6-

4

S
km

el
 2

8

A
37

5

0

50

100

150

%
 C

e
ll

 v
ia

b
il

it
y

0 

5
0 

10
0 

15
0 

%
 C

e
ll 

v
ia

b
ili

ty
 

Vem-1µM-72hr 

All conc

0.0001 0.001 0.01 0.1 1 10 100

10

16

25

40

63

100
A375

Skmel 28

WM266-4

Skmel 23

Vem

0.001 0.01 0.1 1 10 100 0.0001 
10 

16 

25 

40 

63 

100 
%

 C
e

ll 
v
ia

b
ili

ty
 (

L
o
g

 1
0
) 

Vemurafenib [µM] 
72hr 

A375 
Skmel 28 
WM266-4 
Skmel 23 



Appendix 
 

 
  98 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 2: Id3 expression is upregulated during adaptive 

resistance. Graph represents the mRNA expression of Id3 in NRAS mutated cell 

lines (Skmel 30, Skmel 103 and Skmel 147 after treatment with Trametinib (3µM or 

1µM). 18s was used as an endogenous expression control and DMSO treated cells 

were used as reference sample. The qPCR results shown here are mean of + SD of 

biological triplicates. *P<0.05, **P<0.01, ***P<0.001 and ns = not significant.  
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Supplementary Figure 3:  Id3 expression is upregulated during adaptive 

resistance. Id3 mRNA expression in BRAF mutated melanoma cell lines (A375, C32 

and Skmel 28) after 6 hours and 72 hours of treatment with BRAF or MEK inhibitor 

alone or in combination. 18s was used as an endogenous expression control and 

DMSO treated cells were used as reference sample. The qPCR results shown here 

are mean of + SD of biological triplicates. *P<0.05, **P<0.01, ***P<0.001 and ns = 

not significant.  
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Supplementary Figure 4: Id3, SOX10 and MITF protein expression.  Protein 

expression of Id3, SOX10 and MITF in NHM and human melanoma cell lines. 

GAPDH was used as a loading control. 
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Supplementary Figure 5: Unaffected Id1 expression in Id3 knockdown cell 

lines. Protein expression of Id1 in melanoma cell lines with Id3 knockdown and 

control cell lines. GAPDH was used as loading control. 
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Supplementary Figure 6: Melanocyte differentiation marker is upregulated in 

drug sensitive cells. Dataset used was from GSE38290. mRNA expression of Id3, 

SOX10 and MITF in A375 cell line after knocking down ABCB5 gene. The results are 

shown as mean + SD of technical triplicates. *P<0.05, **P<0.01, ***P<0.001 and ns 

= not significant.  
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