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Summary 

The capability to sense and transduce environmental as well as internal sensory stimuli, such as touch, 

pain or muscle tension, is a fundamental process required for cell survival and the avoidance of tissue 

damage of the body. Vertebrates can detect these stimuli via specialized cells in the peripheral nervous 

system - the somatosensory neurons. It is well known that the peripheral nervous system consists of 

many different types of neurons, but how they are generated and how they establish their functional 

abilities is at present not fully understood.  

Although pain sensation represents an adaptive alarm system detecting signals that are potentially 

harmful to the body, persistent pain is a maladaptive false alarm and nowadays clinicians have only 

few, if any, effective means to medicate chronic pain. Therefore, it is indispensable to get a more 

detailed understanding of how pain signals are transmitted and how human pain-sensitive neurons are 

established, given that most of the current knowledge about pain or pain sensation is based on animal 

studies. Although animal models provided a basis for research about causes, onset and course of pain 

diseases, there is more and more evidence that the translation of these findings to human patients is 

more challenging than expected. 

Therefore, the aim of this Ph.D. thesis was to establish a differentiation protocol for the generation of 

functional human embryonic stem cell (hESC)-derived nociceptors. I found that a transient 

overexpression of the bHLH transcription factor neurogenin 1 (NGN1), known to induce neurogenesis 

and to mediate the differentiation of nociceptive neurons in mice, was sufficient to differentiate 

progenitor cells of the peripheral nervous system (PNS) into primary sensory neurons with a 

nociceptive phenotype. Differentiated cells were analyzed and characterized by using Ca2+-imaging, 

immunohistochemistry, in situ hybridization, quantitative RT-PCR and electrophysiological recording 

techniques, confirming their nociceptor-like properties. To validate whether hESC-derived nociceptors 

are physiologically relevant and can reflect the in vivo equivalent, we compared them to human post-

mortem DRG tissue where we found a similar marker gene profile. A comparative study that I carried 

out using human and mouse post-mortem DRG tissue highlighted molecular differences of murine and 

human sensory neurons that need to be considered when using the mouse as a model system for the 

development of new analgesic drugs. 

Furthermore, we were also interested in exploring the role of PIEZO2 in sensory neurons. Recent 

findings in rodents identified PIEZO2, a large transmembrane protein, as a main transducer of 

innocuous mechanical stimuli, and we confirmed that PIEZO2 is also required for 

mechanotransduction in human stem cell-derived touch receptors. However, it is so far uncertain 

whether PIEZO2 also plays a role in transducing noxious mechanical stimuli to trigger sensation of 

pain. Rapidly-adapting, mechanically-activated currents (at least those conventionally recorded when 

using a nanomotor-driven stimulus probe) appeared to be absent in PIEZO2-knockout (KO) 
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nociceptors, indicating that PIEZO2 is also required for mechanotransduction in stem cell-derived 

nociceptors. Additionally, I also aimed to identify accessory proteins of PIEZO2 that are involved in 

human PIEZO2-mediated sensory mechanotransduction, by generating a PIEZO2-tagged hESC line.  

The outcome of this study would allow us to identify differences and similarities between human and 

mouse nociceptors and furthermore, to use this differentiation protocol as a basis for the generation of 

other distinct human nociceptive subpopulations, to finally provide a model system to study human 

pain and pain transduction in vitro. 
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Zusammenfassung 

Die Fähigkeit sensorische Reize, wie zum Beispiel Berührung, Schmerz oder Muskelanspannung, 

wahrnehmen und weiterleiten zu können, ist ein grundlegender Vorgang des Körpers, der für das 

Überleben der Zellen und die Vermeidung von Gewebeschädigungen erforderlich ist. Wirbeltiere 

können diese Reize durch spezielle Zellen, den somatosensorischen Neuronen, im peripheren 

Nervensystem erkennen. Es ist allgemein bekannt, dass das periphere Nervensystem aus vielen 

verschiedenen Arten von Neuronen besteht, jedoch ist nicht vollständig geklärt wie sie entstehen und 

wie sie ihre funktionalen Fähigkeiten erlangen. 

Obwohl die Schmerzwahrnehmung ein anpassungsfähiges Alarmsystem darstellt, welches für den 

Körper möglicherweise gefährliche Signale erkennt, ist ein andauernder Schmerz ein „Falschalarm“ 

und es gibt nur wenige, wenn überhaupt, wirksame Medikamente, um chronische Schmerzen zu 

behandeln. Daher ist es wichtig, eine genauere Erkenntnis zu bekommen, wie humane schmerz-

sensitive Neurone entstehen und wie Schmerzsignale übertragen werden, denn fast alles, was bisher 

über Schmerz oder Schmerzwahrnehmung bekannt ist, basiert auf Studien mit Tieren. Obwohl 

Tiermodelle als Grundlage zur Erforschung der Ursachen, Entstehung und des Verlaufs von 

Krankheiten gedient haben, gibt es immer mehr Hinweise darauf, dass das Übertragen der Ergebnisse 

dieser Tierstudien auf den menschlichen Organismus schwieriger ist als erwartet. 

Das Ziel dieser Dissertation war es, ein Differenzierungsprotokoll zu etablieren um humane 

embryonale Stammzellen in funktionale Nozizeptoren zu differenzieren. Eine transiente 

Überexpression des Transkriptionsfaktors Neurogenin 1 (NGN1), der bekannt dafür war, Neurogenese 

zu induzieren und die Differenzierung von Nozizeptoren in der Maus zu vermitteln, war ausreichend 

um periphere, neuronale Vorläuferzellen in primäre sensorische Neurone mit nozizeptiven 

Eigenschaften zu differenzieren. Differenzierte Zellen wurden anhand von kalziumbasierten 

Bildgebungsverfahren, Immunhistochemie, in situ-Hybridisierung, quantitativer PCR und 

elektrophysiologischer Ableitungen charakterisiert, was ihre nozizeptiven Eigenschaften bestätigte. 

Um zu überprüfen, ob Stammzell-abgeleitete Nozizeptoren physiologisch relevant sind und sie den 

humanen in vivo Nozizeptoren entsprechen, wurden sie mit humanem post-mortem 

Hinterwurzelganglion-Gewebe (DRG-Gewebe) verglichen, wobei ein ähnliches Markergen-Profil zu 

erkennen war. Eine Vergleichsstudie zwischen Mensch und Maus DRG-Gewebe zeigte, dass bereits 

auf Ebene der primären sensorischen Neuronen molekulare Unterschiede existieren, die bei der 

Entwicklung neuer Schmerzmedikamente in Betracht gezogen werden müssen. 

Darüber hinaus waren wir daran interessiert, welche Rolle PIEZO2 in sensorischen Neuronen spielt. In 

Tierstudien konnte gezeigt werden, dass PIEZO2, ein großes Transmembranprotein, als einer der 

„Haupt-Überträger“ von sanften mechanischen Reizen dient, und wir konnten bestätigen, dass 

PIEZO2 auch für die Mechanotransduktion in humanen Stammzell-abgeleiteten Tastrezeptoren 



   

 

 
VI 

erforderlich ist. Bisher war jedoch ungewiss, ob PIEZO2 auch eine Rolle bei der Transduktion von 

schmerzhaften mechanischen Reizen spielt. PIEZO2-defiziente Nozizeptoren zeigten keine schnell 

adaptierenden, mechanisch-aktivierbaren Ströme (zumindest keine, die man üblicherweise mit einer 

motorgetriebenen Sonde misst), was darauf hindeutete, dass PIEZO2 auch für die 

Mechanotransduktion in differenzierten Nozizeptoren notwendig ist. 

Des Weiteren suchten wir mit Hilfe einer humanen Protein-Tag markierten PIEZO2 Stammzelllinie 

nach Interaktionspartnern von PIEZO2, die an der humanen PIEZO2-vermittelten sensorischen 

Mechanotransduktion beteiligt sind. 

Das Ergebnis dieser Studie ermöglicht es uns, Unterschiede und Gemeinsamkeiten zwischen Mensch 

und Maus Nozizeptoren zu identifizieren und dieses Differenzierungsprotokoll als Grundlage weiterer 

Differenzierungsprotokolle zu nutzen, um endlich ein Modellsystem bereitzustellen um Schmerz und 

humane Schmerz-Transduktion in-vitro untersuchen zu können. 
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1 Introduction 

 

1.1 Aspects of pain and pain perception 

 

1.1.1 Primary sensory nociceptors and the pain pathway 

 

Due to its uncomfortable character, pain or pain sensation is associated with a negative sensory and 

emotional experience that we want to avoid. However, the capability to perceive potentially 

harmful stimuli is a fundamental property of the body, which alerts us to tissue damage and 

provokes protective reflexes. Patients carrying mutations that lead to complete pain insensitivity do 

not develop adequate protective behaviors and they regularly suffer from bone fractures, burn 

injuries or other lesions that restrict their quality of life dramatically (Indo, 2001; Indo et al., 2001; 

Mardy et al., 2001; Verpoorten et al., 2006).  

In contrast to this crucial alarm system, hypersensitivity caused by changes in the pain pathway can 

also lead to persistent and chronic pain, in which sensory inputs are misinterpreted and therefore 

harmful for the organism. Nevertheless, to a certain extent, hypersensitivity is also present after 

normal tissue damage such as sunburn, to protect the already injured tissue and to prevent further 

damage. This phenomenon, where under normal conditions an innocuous stimulus, such as a light 

brush with a feather, can already trigger pain, is defined as allodynia. The effect where an already 

noxious stimulus evokes more intensive pain is known as hyperalgesia (Basbaum et al., 2009). The 

process of pain perception is initiated by the detection of a variety of internal or external sensory 

stimuli such as temperature, mechanical forces or chemical irritants by a subset of primary sensory 

neuronal fibers (Basbaum, A.I. and Jessell, T., 2000; Julius and Basbaum, 2001). 

More than 100 years ago, Charles Sherrington had already described specific types of cells, today 

known as nociceptors, activated by noxious stimuli, which could lead to tissue damage, pain 

sensation, and protective withdrawal reflexes (Sherrington, 1903).  

Primary afferent nociceptors innervate the surface of the skin, joints, muscles and inner organs such 

as bladder, gut or the digestive tract, where they get activated by sensory stimuli. Primary sensory 

neurons, with their cell bodies in the trigeminal ganglia (TG) or in the dorsal root ganglia (DRG) 

(innervating respectively the face or the rest of the body) have a pseudo-unipolar morphology. The 

axon bifurcates and sends the efferent branch to the peripheral tissue and the afferent branch to the 

spinal cord, where it synapses on second-order neurons. Every pair of DRG is located contiguously 

to the dorsal nerve root at each level of the spinal column (Woolf and Ma, 2007).  
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Once primary sensory neurons, also known as first-order neurons, get activated by a certain 

stimulus, the sensory signal is converted into an electrical stimulus, the membrane potential 

depolarizes, and an action potential is generated. Axonal processes of the first-order primary 

afferent neuron, that resides with its cell body in the DRG, enters the spinal cord via the dorsal 

horn. Nociceptive information is conducted to the superficial laminae I and II as well as to lamina 

V of the dorsal horn of the spinal cord (Braz et al., 2005). There, nociceptive fibers branch and 

synapse on second-order neurons that convey the signal through the medulla, pons and midbrain up 

to the thalamus. From this point on, information is transferred to different areas of the primary 

somatosensory cortex, the cingulate and insular cortices or the amygdala, where the stimulus is 

processed and analyzed (Basbaum et al., 2009; Bear et al., Hunt and Mantyh, 2001) (Fig. 1). 

 

Fig. 1: Scheme of the pain pathway and primary sensory neurons in the skin 

Primary sensory afferents, sensing noxious stimuli such as temperature, mechanical forces or chemical irritants innervate 

the skin. Sensory inputs are transmitted through the axon of the primary sensory neurons to their cell bodies in the DRG, 

and then further to the dorsal horn of the spinal cord, where information is branched on second-order neurons. Then the 

signal is conveyed to higher brain centers (Redrawn and modified from Basbaum et al., 2009).  

 

Based on functional and anatomical characteristics, primary sensory neurons can be classified into 

three groups: Aβ, Aδ and C-fibers. Whereas heavily myelinated, fast-conduction Aβ-fibers are 

found in large diameter low-threshold mechanoreceptors that detect innocuous mechanical stimuli, 

lightly myelinated Aδ-fibers and unmyelinated, slowly conducting C-fibers are mainly found in 

small diameter nociceptors (Julius and Basbaum, 2001). The well-localized “first” pain is thought 

to be mediated by lightly myelinated Aδ-fibers, while the unmyelinated C-fibers seem to be 
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responsible for the poor-localized “second” pain impulse (Basbaum et al., 2009; Julius and 

Basbaum, 2001). 

In addition to the anatomical classification, primary sensory neurons can also be neurochemically 

distinguished, and molecular characterization of small-diameter nociceptive neurons demonstrated 

their tremendous heterogeneity (Snider and McMahon, 1998; Stucky and Lewin, 1999). Already in 

the early 1980s, Nagy and Hunt detected two distinct small-diameter sensory neuronal 

subpopulations: one group of neurons that releases neuropeptides such as substance P (SP) or the 

calcitonin-gene related neuropeptide (CGRP) and another group that binds the plant glycoprotein 

isolectin B4 (IB4) and lacks peptide expression (Nagy and Hunt, 1982; Silverman and Kruger, 

1990).  

Today, it is well accepted that developing DRG neurons require neurotrophins for survival and 

differentiation (Silos-Santiago et al., 1995a; Zylka et al., 2005) and that, at around E15, about 70-

80% of all primary sensory neurons express the tyrosine receptor kinase A (TRKA), the receptor 

for the nerve growth factor (NGF) (Ernsberger, 2009; Molliver and Snider, 1997a; White et al., 

1996). Later during development, half of the small diameter neurons downregulate TRKA 

expression and become sensitive to the glial cell line-derived neurotrophic factor (GDNF) and start 

to express its receptor RET (Molliver et al., 1997). Remaining TRKA-expressing neurons co-

express the already mentioned neuropeptides CGRP and SP and are therefore known as peptidergic 

nociceptors. This group of neurons projects to the superficial layers of the dorsal spinal cord, to 

lamina I and outer lamina II. The other group of nociceptors, that downregulates TRKA and 

upregulates RET, lacks neuropeptide expression and is therefore referred to as non-peptidergic 

nociceptors. It has been demonstrated that this subpopulation projects to the inner part of lamina II 

(Molliver et al., 1995; Silverman and Kruger, 1990).  

Although electrophysiological analysis of unmyelinated primary sensory neurons (C-fibers) 

showed that the majority of the DRG neurons are polymodal and about 70% of the nociceptors 

responded to different painful stimuli such as heat, cold or noxious mechanical forces (Cain et al., 

2001; Lawson et al., 2008; Perl, 1996), there is also evidence that primary sensory neuronal 

subpopulations exist that exclusively convey behavioral responses to specific painful stimuli 

(Cavanaugh et al., 2009). 

 

1.1.2 Primary sensory neuron development 

 

As already described previously, primary sensory neurons represent a very heterogeneous cell 

population with the ability to detect and transduce various kinds of internal or external stimuli 

(Lallemend and Ernfors, 2012). A central question that remains to be answered is how neuronal 
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progenitor cells are driven to adopt a specific cell fate and how they develop their functional and 

molecular properties. Due to the fact that primary sensory neurons derive from the neural crest, this 

group of cells is an attractive model system for studying neuronal diversification during 

development (Marmigère and Ernfors, 2007).  

Neural crest cells (NCCs) derive from the embryonic ectodermal lineage and, after gastrulation, are 

located at the border of the neural plate and the ectoderm. During neurulation, when the neural tube 

is formed, neural folds (borders of the neural plate) merge and NCCs are generated at the dorsal 

part of the neural tube. Under the influence of the signaling molecules WNT and the morphogens 

BMP, which are required for WNT expression maintenance, dorsal neural tube NCCs start to 

migrate out and give rise to many different cell populations such as epidermal pigment cells, 

connective tissue cells, smooth muscle cells and adipose tissue cells, facial cartilage cells as well as 

cells of the peripheral nervous system (e.g. sensory neurons, to which I will refer later), neuroglial 

cells or Schwann cells (Fig. 2) (Garcıá-Castro et al., 2002). At this stage, NCCs undergo an 

epithelial-to-mesenchymal (ETM) transition, which is influenced by the downregulation of 

cytoskeleton molecules such as N-cadherin and cadherin 6, changing the cell adhesion 

characteristics to become versatile and allow NCCs to migrate out (in mice around E8.5-E10) 

(Bronner-Fraser et al., 1992; Nakagawa and Takeichi, 1998; Newgreen and Gooday, 1985).  

In response to specific signaling molecules, trunk neural crest cells start to delaminate from the 

dorsal neural tube and migrate between the dermamyotome and the neural tube in chain-like 

structures to generate the dorsal root ganglia (Fig. 2) (Marmigère and Ernfors, 2007; Serbedzija et 

al., 1990; Teillet et al., 1987).  

 

 

Fig. 2: Neural crest cell migration and sensory neurogenesis 

Neural crest cells delaminate from the dorsal neural tube and migrate ventrally to differentiate into various different cell 

types (sensory lineage, autonomic lineage or melanocyte lineage). After migration, developing sensory neurons 

coalescent into DRG and differentiate into mature neurons with a nociceptive, mechanoreceptive and proprioceptive 

phenotype (Redrawn and modified from Marmigère and Ernfors, 2007). 
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Primary sensory neurogenesis arises in three consecutive waves. The first two waves have been 

demonstrated by retroviral tracing experiments of NCCs in chicken and mouse while the third wave 

of migrating cells has been proposed to arise from the so-called boundary cap cells (Frank and 

Sanes, 1991; Ma et al., 1999a; Maro et al., 2004). The boundary cap is an organized group of cells 

placed at the border between CNS and PNS that contains multipotent NCCs (Hjerling-Leffler et al., 

2005).  

Developmental studies in chicken revealed that, during the first wave of neurogenesis, 

approximately one-third of the NCCs migrate out from the neural tube and differentiate into large 

diameter proprioceptive and mechanoreceptive neurons, located in the ventrolateral DRG. It is 

proposed that during this period of neurogenesis in chicken each NCC gives rise to approximately 

3 neurons. The other two-thirds of NCCs, generating approximately 36 neurons per NCC, 

delaminate during the second wave of neurogenesis and differentiate into small diameter TRKA-

positive nociceptors, located in the dorsomedial DRG as well as into large diameter neurons of the 

ventrolateral DRG (Frank and Sanes, 1991; Rifkin et al., 2000). 

During the third wave of neurogenesis, where NCC-derived boundary cap cells migrate, mainly 

small diameter TRKA-positive neurons with nociceptive phenotypes are generated (Maro et al., 

2004). These data show that the differentiation of primary sensory neurons already initiates early 

during development when NCCs start to migrate out.  

 

1.1.3 Primary sensory neuron subtype diversification 

  

Sensory neuronal cell type diversification is thought to be regulated by specific combinatorial gene 

expression cascades and external cues. During NCC migration, neurogenesis is induced by the 

expression of the pro-neural basic helix-loop-helix (bHLH) transcription factors neurogenin 1 

(NGN1) or neurogenin 2 (NGN2) which are induced by canonical WNT pathway signaling 

(Burstyn-Cohen et al., 2004; Hari et al., 2002; Ma et al., 1999a) (Fig. 3). While NGN2 is already 

expressed in early migrating mouse NCCs from E8.75-E9 to E10.5, NGN1 is only detectable after 

migration, when cells already started to condensate into ganglia, around E9-E9.5 to E13 (Ma et al., 

1999a; Sommer et al., 1996). The two waves of neurogenin expression roughly correlate with the 

two waves of neurogenesis: a first NGN2-expressing wave, of migrating cells, from which mainly 

large diameter TRKC/TRKB-positive proprioceptive and mechanoreceptive neurons are generated, 

and a second NGN1-expressing wave, which mainly gives rise to small diameter TRKA-positive 

neurons with nociceptive properties (see chapter 1.2.2; Fig. 3).  

Lineage tracing experiments in chicken and mouse KO-studies demonstrated that neurogenin 

expression is required at different time-dependent developmental stages to allow the generation of 
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different primary sensory neuronal subtypes. While NGN2 expression is only essential during the 

early developmental phase, NGN1 expression is important for early and late phases of sensory 

neurogenesis. Mouse Ngn1-KO studies around E15-E16 revealed a tremendous reduction of 

cervical DRG sizes due to the complete loss of TRKA-positive neurons and a reduced number of 

TRKB/TRKC-positive neurons. In contrast, a loss of NGN2 could be compensated by NGN1 and 

no significant reduction of a specific subpopulation was detectable (Ma et al., 1999a). 

Shortly after neurogenesis induction, cells start to express the insulin gene enhancer protein 

ISLET1 (a LIM-homeodomain transcription factor) and the brain-specific homeobox/POU domain 

protein 3A (BRN3A), that together terminate the expression of the bHLH transcription factors 

NGN1 and NGN2 (Eng et al., 2001, 2004, 2007; Sun et al., 2008). Essentially, all primary sensory 

neurons express BRN3A and ISLET1 at high levels during development and maturity. It was 

demonstrated that both proteins are important for further sensory specific gene expression patterns, 

including the expression of neurotrophin receptors such as the tropomyosin related kinases (TRK 

receptors) or the Runt-related transcription factors RUNX1 and RUNX3 (Dykes et al., 2010, 2011; 

Huang et al., 1999; Lei et al., 2006; Ma et al., 2003; Sun et al., 2008). A Cre-mediated conditional 

Islet1-KO in sensory neurons decreased the number of TRKA, TRKB and RUNX1-positive 

neurons, markers for pain and touch-mediating neurons, whereas markers for proprioceptive 

neurons, TRKC and RUNX3, were not altered. Furthermore, it was also shown that, during early 

developmental stages, ISLET1 is required for the suppression of hindbrain or spinal cord-specific 

transcription factors (Sun et al., 2008).  

A combined Islet1/Brn3a double-KO caused massive defects in target innervation and axon 

growth. DRG neurons remained in an undifferentiated developmental state and failed to control 

downstream gene programs (Dykes et al., 2011).  

From animal studies, it is known that neurotrophin receptors (TRKA, TRKB and TRKC) are 

broadly expressed during development. While TRKB and TRKC are expressed in up to 75% of 

differentiating sensory neurons at around E11-E11.5, TRKA expression is even broader: at around 

E13, approximately 80% of all developing neurons are TRKA-positive (Ernsberger, 2009; Molliver 

and Snider, 1997b; White et al., 1996). Later during differentiation, neurotrophin receptor 

expression gets more defined and TRK receptors can even be used for categorizing different 

sensory neuronal subpopulations. While during mouse development (if this is also the case in 

humans is not entirely clear) essentially all nociceptive neurons express TRKA, at later phases cells 

separate into two subgroups, known as peptidergic nociceptors, that continuously express TRKA 

and signaling molecules such as SP or CGRP, and the non-peptidergic nociceptor subpopulation, 

downregulating TRKA expression and upregulating the tyrosine receptor kinase RET (Molliver et 

al., 1997). KO-studies, in which the NGF/TRKA signaling was disturbed, have shown that about 

80% of the DRG neurons are lost and approximately 50% of them are small or medium-sized 
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neurons, expressing the nociceptive markers TRKA as well as the calcitonin gene-related peptide 

(CGRP) (Silos-Santiago, 1995; Silos-Santiago et al., 1995b).  

Another important gene family known to be involved in primary sensory neuron subtype 

diversification is the Runt domain transcription factor family. During early sensory neuron 

development in mouse, RUNX1 is broadly expressed and from E14.5 to P0 more than 80% of the 

TRKA-positive neurons co-express RUNX1. Later during development RUNX1 expression gets 

more defined and around P30, RUNX1 is restricted to non-peptidergic TRKA-negative neurons, 

that start to upregulate RET (Chen et al., 2006). In mice lacking the RUNX1 transcription factor in 

the PNS, the developmental transition of TRKA-positive neurons into RET-expressing cells (the 

non-peptidergic nociceptive subpopulation) was disturbed. Furthermore, it was shown that RUNX1 

is an essential transcription factor for the expression of many different nociceptive ion channels and 

sensory membrane receptors such as transient receptor potential channels (TRP channels) or 

voltage-gated sodium channels (Nav channels) (Chen et al., 2006). 

In contrast, RUNX3 is expressed in 85% of TRKC-positive neurons (E12) and regulates the 

segregation of TRKB and TRKC-positive neurons by repressing TRKB expression in 

proprioceptive TRKC-expressing neurons (Kramer et al., 2006). 

 

Fig. 3: Primary sensory neuron diversification during development and differentiation into the main lineages 

Scheme of mouse DRG neuron diversification during development and the different main lineages that are generated. 

During NCC migration, neurogenesis is induced by the expression of the transcription factors NGN1 and NGN2. While 
NGN2 mediates the generation of mostly large TRKB/TRKC-positive mechanoreceptive or proprioceptive neurons, 

NGN1 mediates the generation of mainly small nociceptive neurons. Shortly after neurogenesis induction, all developing 

nociceptors start to express TRKA and also the transcription factor RUNX1. Together, they regulate further gene 

expression programs and sensory neuron diversification (Redrawn and modified from Lallemend and Ernfors, 2012). 
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Although different key factors important for sensory neuron diversification have been identified 

and were used for categorizing main neuronal subpopulations (as TRK receptors or RUNX 

transcription factors), recent transcriptome analysis of single DRG neurons revealed that primary 

sensory neuronal diversification is even more sophisticated than previously expected, and the three 

main neuronal subtypes (mechanoreceptors, proprioceptors and nociceptors) can be further 

subdivided and specified (Li et al., 2016b; Usoskin et al., 2015) 
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1.2 Molecular components of the mammalian nociceptor system   

 

1.2.1 Voltage-gated sodium channels 

 

Voltage-gated sodium channels (VGSCs) are large integral membrane proteins, crucial for initiating 

and propagating action potentials in neuronal cells as well as in non-neuronal cells of flies, squid, 

jellyfish or higher vertebrates (Anderson and Greenberg, 2001; Goldin, 2002). In mammals, the 

voltage-gated sodium channel family consists of 9 different members, referred to as Nav1.1-Nav1.9. 

Each functional protein complex includes a large α-subunit (Nav1.1-Nav1.9), of around 220-260 kDa, 

linked to one or more smaller β-subunits (β1-β4) of around 33-36 kDa (Beneski and Catterall, 1980; 

Catterall, 2000; Hartshorne and Catterall, 1981; Hartshorne et al., 1982).  

Structural analysis of the nine different α-subunits demonstrated a similar organization in four 

subdomains (I-IV), linked by three intracellular loops (L1-L3). Each subdomain can be further 

subdivided into six transmembrane α-helices (S1-S6), carrying positively charged amino acids as a 

voltage sensor in segment S4 of each domain. While the extracellular end of the ion-selective pore is 

formed by the loop between S5-S6, the intracellular end of the pore is generated by the S6 α-helices 

(Fig. 4) (Yu and Catterall, 2003). Nuclear magnetic resonance (NMR) analysis proposed a mechanism 

by which the IFM motif (Ile-Phe-Met motif) in the intracellular loop L3 interacts with the pore-

forming sequences and thereupon blocks the ion-selective channel during the inactivation phase (Rohl 

et al., 1999). 

 

Fig. 4: Schematic representation of Nav α -subunit 

Predicted structure of the voltage-gated sodium channel α-subunits with four similar subdomains (I-IV), linked by three 

intracellular loops (L1-L3). Each subdomain consists of six transmembrane α-helices (S1-S6) The extracellular end of the 

pore is formed by the loop between S5-S6, the intracellular end of the pore is generated by the S6 α-helices. The IFM motif 

(Ile-Phe-Met motif) in the intracellular loop L3 interacts with the pore-forming sequences and blocks the channel during the 

inactivation phase (Redrawn and modified from Dib-Hajj et al., 2002). 
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Despite structural similarities and more than 50% sequence identity between different human and 

rodent α-subunits, VGSCs can be classified by their sensitivity to tetrodotoxin (TTX), a puffer fish-

derived toxin. While Nav1.1-1.4 and Nav1.6-Nav1.7 are sensitive to TTX and can be blocked by only 

nanomolar concentrations, Nav1.5 and Nav1.8-Nav1.9 are TTX resistant. Human evolutionary 

clustering analysis demonstrated that all three TTX-resistant genes are located in one chromosome 

(3p21-24) and most likely one mutational event, changing one amino acid in domain 1 (loop between 

S5-S6) from tyrosine to serine (Nav1.8, Nav1.9) or cysteine (Nav1.5), resulted in TTX resistance 

(Goldin et al., 2000; Satin et al., 1992; Sivilotti et al., 1997). 

Three VGSCs, Nav1.7, Nav1.8 and Nav1.9, are most abundantly expressed in primary sensory 

neurons of the peripheral nervous system and mutations in these channels have been associated with a 

variety of heritable pain disorders (Cummins et al., 2007; Kanellopoulos and Matsuyama, 2016). 

While Nav1.7 is broadly expressed in different types of peripheral neurons, Nav1.8 and Nav1.9 are 

more restricted to small diameter nociceptive neurons (Amaya et al., 2000; Toledo-Aral et al., 1997).  

Mutations in the gene encoding Nav1.7 are linked to several syndromes, such as inherited 

erythromelalgia (an agonizing pain syndrome in the distal limbs in response to non-painful stimuli), 

paroxysmal extreme pain disorder, and congenital insensitivity to pain (Ahmad et al., 2007; Cummins 

et al., 2004; Fertleman et al., 2006; Yang et al., 2004). While gain-of-function mutations of Nav1.8 

cause predominantly small fiber neuropathies, Zhang and colleagues demonstrated that mutations in 

the Nav1.9 channel can lead to an heritable form of episodic pain (Faber et al., 2012; Zhang et al., 

2013a). 

 

1.2.2 Transient receptor potential channels 

 

Transient receptor potential (TRP) channels are large transmembrane cation channels that have been 

first described in the fruit fly visual system, where they depolarize photoreceptors in response to a 

light stimulus. Mutations in the Drosophila trp gene caused only transient light responses to persistent 

light, indicating that the phototransduction cascade was interrupted (Cosens and Manning, 1969; 

Minke et al., 1975; Montell and Rubin, 1989).  

In mammals, the first TRP channel homologs were identified in 1995, followed by the discovery of 

more than 50 different TRP channel proteins in various species such as insects, fish, worms or 

mammals. Nowadays, 28 TRP-like genes have been described in mice and 27 in humans (Petersen et 

al., 1995; Voets et al., 2005; Vriens et al., 2004; Wes et al., 1995). TRP channels belong to a large 

gene family with various physiological functions and differing in their selectivity for certain cations.  
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Based on sequence similarity, mammalian TRP channels are grouped into seven different subfamilies, 

designated after their first discovered family member: the closest Drosophila melanogaster homolog 

TRPC (Canonical), the TRPV (Vanilloid), the TRPM (Melastatin), the TRPA (Ankyrin), the TRPP 

(Polycystin), TRPML (Mucolipin) and the TRPN (No mechanoreceptor potential C) subclasses.  

Since the classification of TRP channel proteins depends on sequence similarities (not necessarily 

reflecting functional similarities between sequence-homologous TRP ion channels), TRP channel 

members within one subgroup can have distinct functionalities, whereas family members from diverse 

subgroups can also share functional characteristics, as illustrated by the thermosensitive TRP channels 

that belong to different subcategories (TRPA, TRPM and TRPV).  

Although initially mammalian TRP channels were thought to be the functional counterparts of the 

Drosophila melanogaster trp protein, since the discovery of TRPV1, a calcium-permeable channel 

activated by capsaicin, the burning component of the chili peppers, and by a noxious heat stimulus 

above 43°C, this view changed (Caterina et al., 1997). Nowadays it is broadly accepted that TRP 

channels are biological sensors that can be activated by a variety of different painful as well as non-

painful stimuli such as chemicals, mechanical forces or different temperatures and serve as polymodal 

receptors. 

Besides TRPV1 as a thermosensitive channel that is mainly expressed in small diameter DRG neurons, 

5 additional temperature-activated TRP channels, also from different subclasses, have been specified 

so far (Patapoutian et al., 2003; Tominaga, 2007). While TRPA1 and TRPM8 seem to be active at 

lower temperatures of <17°C and 8-26°C respectively (McKemy et al., 2002; Peier et al., 2002; Story 

et al., 2003), heat-sensitive channels from the TRPV subgroup (TRPV1, TRPV2, TRPV3 and TRPV4) 

respond to warm or hot temperatures (Caterina et al., 1997, 1999; Güler et al., 2002; Smith et al., 

2002; Xu et al., 2002). As polymodal receptors, thermosensitive TRP channels are activated not only 

by different temperatures but also by other chemicals or botanical components (Fig. 5). 
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Fig. 5: Schematic representation of different thermosensitive TRP channels 

Representation of the different thermosensitive TRP channels, functioning in temperatures from noxious cold to noxious 

heat. Predicted membrane topology is composed of six transmembrane domains and a pore region between transmembrane 

domains 5 and 6. Both terminal ends (C-terminus and N-terminus) are cytosolic and contain various interaction domains 

(ankyrin repeats, or PDZ binding domains) to control channel gating properties and interactions with adjacent proteins 
(Redrawn and modified from Dhaka et al., 2006). 

 

In addition to their original role in detecting acute thermal stimuli, more recent findings proposed that 

especially TRPV1 and TRPA1 channels can be sensitized during tissue injury or under inflammatory 

conditions and therefore serve as crucial components of the sensitization mechanism, leading to 

inflammatory mediator-induced hypersensitivity (Bautista et al., 2006; Carnevale and Rohacs, 2016). 

Peripheral sensitization, evoked by signaling molecules such as neurotransmitters, protons, cytokines, 

or growths factors, is described by increased responsiveness as well as reduced action potential 

thresholds of sensitized nociceptors, and is known to be mediated by distinct cell membrane 

transduction proteins that further regulate downstream pain transduction machineries (reviewed by 

Gangadharan and Kuner, 2013; Gold and Gebhart, 2010; Hucho and Levine, 2007; Julius and 

Basbaum, 2001).  

Structural analysis of mammalian TRP proteins, mainly based on functional studies, proposed a 

prototypical structure of voltage-gated potassium channels with four similar subdomains consisting of 

six transmembrane domains. Both terminal ends (C-and N-terminus) are cytosolic and the pore region 

is formed by transmembrane domain five and six and their connecting loop (Gaudet, 2008; Kedei et 

al., 2001; Long et al., 2005; Owsianik et al., 2006). Cytosolic regions of different dimensions are 

thought to contain different regulatory domains such as ankyrin repeats or phosphorylation sites to 

control for channel gating and protein-protein interactions (Dhaka et al., 2006). 
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1.2.3 PIEZO proteins 

 

Mechanotransduction and the PIEZO protein family 

 

Mechanotransduction, the ability to convert mechanical stimuli into an electrical signal, is a 

fundamental process required for various physiological functions such as organ development, 

regulation of blood pressure, hearing or the perception of touch, pain or muscle movement and 

orientation (Cahalan et al., 2015; Corey and Hudspeth, 1979; Davis et al., 1992; Florez-Paz et al., 

2016; Ranade et al., 2014a, 2014b). Since the discovery of a mechanically-activated ion channel by 

Corey and Hudspeth in 1979, it is broadly accepted that mechanotransduction is mediated by cation 

channel activities. Genetic screens in the nematode C. elegans or the fruit fly Drosophila 

melanogaster proposed several genes, encoding for DEG/ENaC or TRP proteins, as possible 

mechanosensitive ion channel candidates (Árnadóttir and Chalfie, 2010; Ernstrom and Chalfie, 2002). 

Furthermore, mouse studies demonstrated that mechanical stimuli as sound waves or head movements 

activate transmembrane channel-like proteins (TMC1 and TMC2) in the inner ear hair cells, required 

for mechanotransduction and vestibular functioning (Kawashima et al., 2011). Although several 

possible candidates have been described, it is still under debate whether these channels are directly 

involved in mammalian mechanotransduction. 

In 2010, Coste et al. described a new gene family, today known as PIEZO channels (from the Greek 

“πίεση” (piesi), the description for pressure). Knock-down screenings of candidates, highly expressed 

in the mouse neuroblastoma cell line N2A, revealed that PIEZO1 (Fam38A) and its family member 

PIEZO2 (Fam38B) are required for mechanical-induced currents (Coste et al., 2010). In vertebrates, 

the PIEZO protein family consists of two family members. PIEZO proteins have also been identified 

in lower organisms such as Drosophila melanogaster, C. elegans, plants (1 ortholog), zebrafish (three 

orthologs) and protozoa (up to six orthologs) (Faucherre et al., 2013; Kamajaya et al., 2014; Kim et 

al., 2012; Prole and Taylor, 2013). 

In mammals, PIEZO proteins are expressed in a variety of different cell types: while PIEZO1 is 

mainly expressed in non-neuronal tissue (kidney, lung, bladder and colon), PIEZO2 expression is 

primarily detectable in sensory cells such as DRG neurons or touch-sensitive Merkel cells (Coste et 

al., 2010; Woo et al., 2014). 
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Molecular structure of PIEZO proteins 

 

PIEZO proteins are huge transmembrane proteins of about 2`500-2`800 amino acids with 

conserved secondary structures among different species. Initial structural analysis by various 

transmembrane algorithm model programs (such as TMHMM2) proposed PIEZO channels as 

proteins with the highest number of transmembrane domains, spanning the cell membrane between 

30 and 40 times (Fig. 6A) (Coste et al., 2010; Volkers et al., 2015). Based on functional 

investigations showing that mechanically-activated currents can be blocked by ruthenium red, a 

sensitive ion-channel blocker, it was hypothesized that PIEZO proteins serve as pore-forming 

subdomains that assemble to form a functional membrane-bound channel. Total internal reflection 

microscopy (TIRF) analysis of GFP-mPIEZO1 fusion protein transfected in Xenopus laevis oocytes 

proved this hypothesis, and revealed that PIEZO proteins aggregate as tetramers, forming a 

functional channel with more than 100 transmembrane domains (Coste et al., 2012). 

 

 

Fig. 6: The PIEZO protein 

(A) Schematic representation of the initially presumed topology of the human PIEZO2 subunit and its several 
      transmembrane domains. The red box represents the CED domain. (Redrawn and modified from Review  

      Soattin et al., 2016). 

(B) Possible structural domains of the mouse PIEZO1 channel that potentially play a role in channel gating and 

      mechanotransduction (Redrawn and modified Wu et al., 2017). 
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Structural analysis for PIEZO2 is mainly based on hypothetical prediction programs (and different 

topology prediction models can give different results: while analysis using the Phobius program 

clearly showed a human PIEZO2 N-terminal signal peptide, the Signal P4.1 prediction program 

displayed inconclusive results). However, recently Ge et al. described the first overall structure of 

the mouse PIEZO1 channel (Ge et al., 2015a). In this study, X-ray crystallography and cryo-

electron microscopy investigations showed that mPIEZO1 channels assemble as homotrimers in 

“propeller-like” structures (Fig. 6B). The central pore is encircled by three “blades”, the 

intracellular beam structures (mechanically combining blades and distal ends of the transmembrane 

domains), the anchor-domain and the C-terminal extracellular domain (CED). Across species, the 

CED structure, located between the last two transmembrane domains, is highly conserved and 

involved in gating properties and most likely associated with the pore (Coste et al., 2015; 

Kamajaya et al., 2014). Based on these findings, the assumed number of transmembrane domains is 

markedly lower than previously predicted by topology programs and only 10-18 α-helices within 

PIEZO subunits seem to span the cell membrane. If a similar structure is adopted by human 

PIEZO2 is currently unknown. 

Most ion channels are directly or indirectly coupled to interaction partners and other signaling 

molecules to form functional, multimeric complexes. However, initial studies with tagged-PIEZO1 

showed no evidence of PIEZO-associated proteins (Coste et al., 2012). In contrast, recent findings 

demonstrated that the stomatin-like protein 3 (STOML3), bound to cholesterol, is involved in 

PIEZO channels sensitization and enhances mechanosensitivity (Poole et al., 2014; Qi et al., 2015). 

Furthermore, an antibody-based purification assay of native mPIEZO2 coupled to mass 

spectrometry analysis identified 36 possible binding partners, and suggested pericentrin (PCNT), a 

protein involved in microtubule network formation, as a modulator of PIEZO2 (Narayanan et al., 

2016). 

 

The role of PIEZO2 in mouse and human primary sensory neurons 

 

PIEZO2, displaying a rapidly-adapting ion current when mechanically stimulated, is mostly 

expressed in sensory tissue and shown to be involved in various physiological 

mechanotransduction processes. While a global PIEZO2-KO is lethal and newborn mice die shortly 

after birth (most likely because of respiratory defects), multiple conditional PIEZO2-KO lines have 

been generated and analyzed (Nonomura et al., 2017; Ranade et al., 2014b). Ranade et al. 

characterized an inducible PIEZO2-Knock-down in primary sensory neurons and in Merkel cells of 

adult mice. In this study, they demonstrated that PIEZO2 is the main transducer of innocuous 

mechanical forces with rapidly-adapting (RA) mechanically-activated currents mostly absent, and 

behavioral assays revealed deficits in light-touch sensation (Ranade et al., 2014b). Furthermore, 
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Schrenk-Siemens et al. confirmed that PIEZO2 is required for transducing innocuous mechanical 

forces and mechanically-activated currents where completely absent in human stem cell-derived 

low threshold mechanoreceptors (LTMRs) (Schrenk-Siemens et al., 2015). 

In addition to its involvement in mechanotransduction of mechanoreceptors, it was also proposed 

that PIEZO2 plays a role in mediating mechanical stimuli in proprioceptors. Two independent 

PIEZO2-depletion studies, one in PIEZO2-deficient proprioceptive neurons of the DRG and one in 

neurons of the mesencephalic trigeminal nucleus (MTN) of the brainstem, revealed PIEZO2-

dependent mechanically-activated currents and behavioral defects in limb coordination and balance 

(Florez-Paz et al., 2016; Woo et al., 2015). Moreover, Wang et al. implicated a role for PIEZO2 as 

a mechanosensor and transducer in gastrointestinal enterochromaffin cells. The inhibition or knock-

down of PIEZO2 resulted in a decrease of mechanically-activated currents and thereupon in a 

diminished release of serotonin (Wang et al., 2017).  

Although these studies revealed the crucial role PIEZO2 plays in mediating innocuous mechanical 

stimuli, only one study shows indications that PIEZO2 is also involved in mediating noxious 

mechanical stimuli (Dubin et al., 2012a). Knock-down of PIEZO2 in adult sensory neurons and 

Merkel cells (with a 90% reduction of the overall Piezo2 transcript) led to a specific loss of rapidly-

adapting mechanically-activated currents, whereas intermediately-adapting or slowly-adapting 

currents (a marker for nociceptive neurons) were not significantly affected (Ranade et al., 2014b). 

PIEZO2 was not only described as being involved in rodent sensory mechanotransduction but was 

also associated with multiple hereditary forms of human disorders such as the Marden-Walker 

Syndrome, the Distal Arthrogryposis Type 5 or the Gordon Syndrome (Alisch et al., 2017; Chesler 

et al., 2016; Coste et al., 2013; McMillin et al., 2014; Okubo et al., 2015). Whole-exome 

sequencing studies of several patients with congenital contractures of the extremities, cleft palates 

or restricted eye movements detected various mutations in the hPIEZO2 gene. 

 

1.3 Model systems to study signaling of painful stimuli 

 

1.3.1 Animal models of pain 

 

Pain, or the sensation of pain, is described as an unpleasant experience that in general is emerged 

from a sensory stimulus, detected by specialized sensory neurons. The primary input itself can be 

modified at different levels of the pain pathway (at spinal or supraspinal levels) and, in 

combination with emotional experiences, pain reflects a complex, subjective feeling, which has 

made it challenging to specify targets for effective analgesic medications (Gangadharan and Kuner, 

2013; Percie du Sert and Rice, 2014). 
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For many years, lower organisms and especially rodents have been used as attractive model 

systems to study various aspects of sensory transduction and pain, and most of the current 

knowledge is based on animal studies (Mogil, 2009a). Although these models serve as an 

indispensable tool, that helped us to provide basic insights into molecular mechanisms and the 

analysis of diverse pain phenotypes, not only during early development but also in the adult 

organism, only minor success has been achieved by translating scientific results from animal 

studies into clinical trials (Burma et al., 2017a; Hill, 2000; Percie du Sert and Rice, 2014). Even 

though opioids, one class of analgesics, are one of the most frequently prescribed and most 

effective compounds, they are also associated with adverse effects such as tolerance, dependence 

and at higher doses also with hypoventilation (Yekkirala et al., 2017). While there is no doubt that 

preclinical animal trials are required for initial drug development, one has to consider that 

prognosticated analgesic effects, apparent in rodent model system, are not necessarily detectable in 

humans. The voltage-gated sodium channel Nav1.8, which is almost exclusively expressed in 

small-diameter nociceptive neurons was selectively blocked by the compound PF-04531083, 

leading to analgesic effects in inflammatory and neuropathic preclinical animal pain models, 

whereas the human clinical trial was not as effective as previously expected and failed on dental 

pain (Bagal et al., 2014). These frequently described side effects and the failure of many clinical 

trials raised the claim for refined pain model systems that improve translational research.  

As already described, pain represents an emotional experience that can only be indirectly measured 

in animal models by pain-correlated withdrawal or avoidance behaviors. Furthermore, more recent 

and more sophisticated techniques also observed contradictions between human and mouse pain 

phenotypes that may account for translational failures (Burma et al., 2017a; Hill, 2000; Percie du 

Sert and and Rice, 2014). 

To circumvent crucial species differences and to prevent critical analgesic side effects in the human 

organism, it is advantageous to combine animal studies with human-based model systems for 

primarily testing analgesic drugs.  

 

1.3.2 Human stem cells as a model system to study responses to stimuli that can elicit pain 

 

The PNS, and in particular DRGs, where the cell bodies of primary sensory nociceptors are located, 

are not accessible from living patients and even difficult to receive post-mortem. Therefore, the 

approach to work with hESCs and hiPSCs, that can be differentiated into sensory neuron-like cells, 

was a fundamental milestone for various fields of research, particularly pain, allowing us to study 

human-derived material (Blanchard et al., 2015; Chambers et al., 2012; Schrenk-Siemens et al., 

2015; Wainger et al., 2015). 
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Unique properties of stem cells  

 

Stem cells (embryonic stem cells [ESCs] or adult stem cells [ASCs]) are specific types of cells with 

unique properties and capabilities. Compared to many other specified and determined cells of the 

body, such as nerve cells of the central (CNS) and peripheral nervous system (PNS), skin, muscle 

or blood cells, stem cells are undefined or uncommitted until they obtain internal and external cues 

to differentiate and give rise to many different mature cell types. In general, stem cells, irrespective 

of their origin, are defined by three basic aspects: 1) their ability to indefinitely proliferate and 

therefore the capability for long-term self-renewal, 2) their unspecialized, immature phenotype, and 

3) their capacity to differentiate into mature cells with tissue-specific functions. Pluripotent ESCs 

derived from the early developing embryo have the ability to develop cells from all three somatic 

lineages plus the germline (Amit et al., 2000; Itskovitz-Eldor et al., 2000; Reubinoff et al., 2000). 

On the contrary, multipotent ASCs, found in mature organs such as brain (Temple, 1989; Vescovi 

et al., 2001), cornea (Bednarz et al., 1998; Tseng, 1996) , liver (Faris et al., 2001; Overturf et al., 

1997), heart muscle (Beltrami et al., 2003), and bone marrow (Becker et al., 1963; Prockop, 1997; 

Simmons and Torok-Storb, 1991), only renew specialized cell types within the tissue of origin. Due 

to the great potential of these cells, stem cell research became a focal point of interest for cell-based 

regeneration therapies such as degenerative diseases, spinal cord injury diabetes or heart diseases.  

 

 

 

Fig. 7: Properties of embryonic and adult stem cells 

Embryonic stem cells (in blue) have an uncommitted, pluripotent phenotype and the ability to indefinitely proliferate for 

long-term renewal or to differentiate into more defined multipotent precursor cells (red, green, brown or yellow). More 

defined multipotent stem cells are found in mature organs and renew specialized cell types within the organ of origin. 

 

Although the concept of embryonic stem cells was already provided in 1964 by Kleinsmith and 

Pierce (describing mouse teratocarcinoma cells, tumors developed from mouse germ cells that are 

able to differentiate into various types of cells from different somatic lineages (Kleinsmith and 
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Pierce, 1964)), the first protocols for isolating and culturing mouse ESCs were only reported in 

1981 (Evans and Kaufman, 1981; Martin, 1981) and, almost 20 years later, a similar success was 

made for the isolation of human ESCs (Thomson et al., 1998).  

 

Human embryonic stem cells and induced pluripotent stem cells 

 

Human embryonic stem cells (hESCs), used for scientific purposes, derive from the inner cell mass 

of an early developing embryo, usually generated from spared fertilized eggs of in vitro 

fertilizations.  

Approximately 3-4 days after impregnation, in vivo as well as in vitro fertilized eggs undergo a 

series of cleavage divisions and form an 8-32 cell mass, the morula. Blastocyst formation is 

initiated 4-5 days after fertilization when the morula starts to open and a fluid-filled hollow 

(blastocoel) is formed. At this developmental stage, the blastocyst consists of three different 

structures: 1) the trophoblast, the outer layer of the blastocyst that supplies essential nutrients, 2) 

the blastocoel and 3) the inner cell mass, also called embryoblast, containing around 30 pluripotent 

cells. The inner cell mass is isolated from the trophoblast and can be cultured and expanded in vitro 

as human hESCs without losing their capability of self-renewal and pluripotency (Fig. 8A, 

Thomson et al., 1998).  

Although isolated hESCs can differentiate into any somatic cell type within the human body, they 

are not able to form “extraembryonic” tissue, such as the placenta, and therefore cannot develop 

into complete and viable human beings, compared to totipotent fertilized eggs. 

Nevertheless, not only the great potential of these undifferentiated, immortal cells but also the 

ethical issues regarding the destruction of human embryos is controversially discussed in politics 

and society. According to the article 50G StZG (the German stem cell law from March 2017) 

human embryonic stem cell research is only permitted if hESCs were isolated regularly in the 

country of origin prior to May 2007 (§ 4 Abs. 2 StZG).  

The groundbreaking findings from Yamanaka and colleagues, demonstrating that mouse and 

human embryonic fibroblasts (MEFs and HEFs) can be reprogrammed by retroviral overexpression 

of four distinct transcription factors (OCT3/4, SOX2, c-MYC and KLF4) to become induced 

pluripotent stem cells (iPSCs, Fig. 8B) (Takahashi and Yamanaka, 2006; Takahashi et al., 2007), 

provided not only the possibility to circumvent ethical conflicts about hESC research but also to 

generate patient-specific or disease-specific human material.  

The analysis of disease-specific iPSCs (e.g. from Parkinson (PD), Huntington (HD) or Down 

syndrome (DS)/trisomy 21-patients) indicates that the reprogramming methods offer a great 
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potential to compare diseased and non-diseased cell differentiation in vitro, which is essential for 

drug discovery and clinical therapies (Park et al., 2008). 

 

Fig. 8: Generation and isolation of hESCs and hiPSCs 

(A)   Schematic representation of the generation and isolation of hESCs. 3-4 days after fertilization, fertilized eggs form 

an 8-32 cell mass, the morula. Blastocyst formation is initiated 4-5 days after fertilization when the morula starts to 

open and a fluid-filled hollow is formed. The inner cell mass of the blastocyst consists of roughly 30 embryonic 

pluripotent stem cells. Isolated stem cells can be cultured and expanded in vitro without losing their capability of 
self-renewal and pluripotency. 

(B)  Schematic representation of the generation and isolation of hiPSCs. Reprogramming of somatic cells is done by 

retroviral overexpression of four distinct transcription factors (OCT3/4, SOX2, c-MYC and KLF4) and results in 

induced pluripotent stem cells. 

 

 

 

1.3.3 Human DRG tissue as a model system to study molecular components of pain 

 

To eliminate doubts whether in vitro cell culture systems recapitulate the complex and 

heterogeneous in vivo sensory system, and to validate whether stem cell-derived neurons are 

physiologically relevant and reflect their native human counterparts, it is important to compare the 

in vitro differentiated cells to human DRG tissue, located between each pair of vertebra along the 

spinal cord. 
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Organization of the human spinal cord and the human dermatome 

 

The human spinal cord is segmented in 30 vertebrae. Each part consists of a pair of dorsal and 

ventral roots, conjoining on each side of the spinal cord to form the spinal nerve. While the dorsal 

roots include the axons of primary sensory neurons, ventral roots consist of the axons of motor 

neurons, with their cell bodies in the grey matter of the spinal cord. Spinal nerves of each segment 

exit the vertebral canal through bone openings (also known as neuroforamina) and they are 

designated by the segment of the spinal cord from which they emerge. The different parts of the 

spinal cord can be grouped from rostral to caudal into four classes: the cervical parts (C1-C8), the 

thoracic parts (T1-T12), the lumbar parts (L1-L5) and finally the sacral parts (S1-S5) (Fig. 9).  

In addition to the correlation of the spinal cord segments to different spinal nerves, the organization 

of spinal nerves and target innervation is also related and referred to as dermatomes. A human 

dermatome is a specific region of the skin innervated by a distinct pair of dorsal roots that emerge 

from a specific part of the spinal cord (Bear et al., 2006; Foerster, 1933; Keegan and Garrett, 1948) 

(Fig. 9). 

 

 

Fig. 9: Organization of the human spinal cord and the dermatome 

Schematic representation of the segmented human spinal cord into four classes (cervical, thoracic, lumbar and sacral) and 

the spinal nerve representation on the human skin, referred to as dermatomes. Each part of the spinal cord is linked to a 

specific pair of spinal nerves that innervate specific areas of the human body (Redrawn and modified from Gan Quan Fu, 

PT). 
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The proof that a specific area of the human skin is mainly innervated by one specific pair of dorsal 

roots came from shingles pain. Neurons from a specific DRG got infected by the herpes zoster 

virus that remained in the DRG and, after reactivation of the virus, symptoms where only 

detectable in dermatomes that where innervated by the infected DRG (Ruocco et al., 2012) 
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2  Aims of the study 

 

Although, for many years, lower vertebrates have been used as an invaluable model system to study 

various aspects of sensory transduction mechanisms and the perception of pain (Mogil, 2009), more 

advanced and highly developed techniques also observed contradictions between human and mouse 

pain phenotypes (Burma et al., 2017; Hill, 2000; Percie du Sert and Rice, 2014). To circumvent 

translational inconsistencies between rodent model systems and human patients, unraveling the 

question of how human pain-sensitive neurons are generated and how human painful stimuli are 

transmitted is an essential milestone for the development of new analgesic drugs.  

Therefore, the 1st aim of the thesis was to establish a protocol for the differentiation of human 

embryonic stem cells into functional nociceptive neurons by virally-induced overexpression of distinct 

proteins and transcription factors, known to be crucial during mouse nociceptor development. To 

assess whether differentiated neurons feature characteristic hallmarks of nociceptors a 2nd aim was to 

characterize differentiated cells by Ca2+-imaging, immunohistochemistry, in situ hybridization, 

quantitative RT-PCR and electrophysiological recordings. In order to validate whether (and to what 

degree) derived nociceptor-like cells correlate with in vivo nociceptors, I furthermore compared 

cultured neurons to human post-mortem DRG tissue (3rd aim). This comparative study highlighted 

molecular similarities and differences, that already exist at the level of primary sensory neurons. 

In addition, we also investigated the role of PIEZO2 in human stem cell-derived nociceptors (4th aim). 

Piezo proteins were recently identified as mechanically activated ion channels that are required for 

innocuous mechanotransduction. However, it is not yet clear if PIEZO2 plays also a role in 

mechanically activated pain sensation. As a side project, we also wanted to look for possible 

interaction partners of PIEZO2 by expressing and biochemically purifying huPIEZO2 (5th aim).  

  

Specific aims of the study were: 

➢ Establish a differentiation protocol for the generation of hESC-derived nociceptors; 

➢ Characterize differentiated nociceptor-like cells; 

➢ Compare stem cell-derived nociceptors to human and mouse DRG tissue; 

➢ Investigate the role of PIEZO2 in stem cell-derived nociceptors; 

➢ Search for possible interaction partners of PIEZO2. 
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3  Materials 

3.1 General Chemicals 

 

      Name      Supplier 

4`,6-diamidino-2-phenylindole (DAPI) Sigma 

Accutase Sigma 

Acetic acid Carl Roth 

Acetic anhydride Sigma 

Agarose Biozym Scientific 

Amersham Hybond-XL GE Healthcare Bio Science 

Ammonium acetate Carl Roth 

Ampicillin Sigma 

B27 supplement Thermo Fisher Scientific 

Bacto Tryptone BD 

Bacto Yeast Extract BD 

BCIP (5-bromo-4chloro-3-indolyl-phosphate) Sigma 

Beta-Mercaptoethanol Carl Roth 

Bicine Sigma-Aldrich  

Biotin-NHS Sigma 

Bis-Tris pufferan >99% Carl Roth 

Blocking Reagent  Roche 

Calcium chloride dihydrate Sigma 

Capsaicin Sigma 

Carbenecillin  Carl Roth 

Chloroform ≥ 99.8% Sigma 

Collagenase Sigma 

DIG RNA labeling mix Sigma 

Dimethylformamid Sigma 

Dimethyl sulfoxide (DMSO) Carl Roth 

D-(+) –Glucose ≥ 99.5% Sigma 

DMEM/F12 Thermo Fisher Scientific 

DMEM high glucose Thermo Fisher Scientific 
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dNTPs (10 mM) New England Biolabs 

Doxycycline Sigma 

DPBS Sigma 

E8 media Thermo Fisher Scientific 

EDTA Carl Roth 

Ethanol absolute Sigma 

Ethidium bromide solution 1% Carl Roth 

Fast Start Essential DNA Green Master Roche 

Fibronectin Thermo Fisher Scientific 

Ficoll400 Sigma 

Flag M2 magnetic beads Sigma 

Fluorescein RNA labeling mix Sigma 

Foetal Bovine Serum Origin: EU approved Thermo Fisher Scientific 

Formamide ≥ 98% Carl Roth 

Formamide ≥ 99.5% Sigma 

Fura-2-AM Thermo Fisher Scientific 

Glycerol Carl Roth 

Goat serum  PAN Biotech 

Hepes 1M Thermo Fisher Scientific 

HEPES pufferan >99.5% p.A. Carl Roth 

Human BDNF Peprotech 

Human EGF Peprotech 

Human FGF Peprotech 

Human GDNF Peprotech 

Human NGF Peprotech 

Hydrochloric acid solution 1 M Fluka 

Hydrochloric acid p.a. 37% Sigma 

Hydrogen peroxide 30% AppliChem 

Imidazole Merck Millipore 

Immu-Mount Thermo Fisher Scientific 

Insulin from bovine pancreas Sigma 

Isopropanol Sigma 
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Laminin Sigma 

L-Glutamine Thermo Fisher Scientific 

Lipofectamine 2000 Thermo Fisher Scientific 

Loading dye (6x) New England Biolabs 

Magnesium chloride hexahydrate Sigma 

Maleic acid Sigma 

Matrigel BD 

Menthol Sigma 

Methanol p.a. Sigma 

MF-Millipore-Membrane Filter 0.025 µM Merck Millipore 

Milk powder Carl Roth 

Mitomycin C Sigma 

Mowiol 4-88 Carl Roth 

mTeSR1 media Stem Cell Technologies 

Mustard oil Sigma 

N2 supplement Thermo Fisher Scientific 

NBT (nitro blue tetrazolium) Roche 

Neurobasal Media Thermo Fisher Scientific 

N-Lauroylsarcosine sodium salt Sigma 

O.C.T Compound Tissue Tek Sakura 

Pap Pen Dako 

Paraformaldehyde Aldrich 

Penicillin-Streptomycin Thermo Fisher Scientific 

Phenylmethylsulfonylfluoride (PMSF) Carl Roth 

Plasmocin prophylactic Carl Roth 

Pluronic F-127 Invivogen 

Poly (ethylene glycol) 8000 Thermo Fisher Scientific 

Polyvenylpyrolidone Sigma 

Potassium acetate Sigma 

Potassium chloride Carl Roth 

Potassium dihydrogen phosphate AppliChem 

Random Hexamers Carl Roth 
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Recombinant Rnasin Ribonuclease Inhibitor Roche 

Rhodamine-NHS Promega 

RNase A Sigma 

Rock-Inhibitor Y-27632 Carl Roth 

Roti-Phenol/Chloroform/Isoamylalkohol Calbiochem 

Salmon sperm DNA  Carl Roth 

Sephadex G50 Coarse GE Healthcare Bio Science 

Sodium chloride Sigma 

Sodium citrate tribasic dihydrate Sigma 

Sodium hydroxide pellets Sigma 

Sodium hydroxide solution 1M p.a. Sigma 

Superscript III Reverse Transcriptase Fluka 

Taq man probe NTRK1 Thermo Fisher Scientific 

Taq man probe NTRK2 Thermo Fisher Scientific 

Taq man probe NTRK3 Thermo Fisher Scientific 

TesR-E8 Stem Cell Technology 

Triethanolamin ≥ 99% Thermo Fisher Scientific 

Triethylamine Carl Roth 

Tris Pufferano ≥ 99.9% p.a. Sigma 

Triton-X-100 Carl Roth 

TRIzol Reagent Merck 

Tween-20 Thermo Fisher Scientific 

Tyramine-HCl Carl Roth 

Yeast tRNA Sigma 

 

3.2 Buffers and Solutions 

 

Molecular Biology 

Agar Ampicillin/Carbenicillin-Plates 1.5% Agar 

100 µg/ml Ampicillin/Carbenicillin in LB 

medium 
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Alkaline Lysis Solution P1 50 mM Glucose 

25 mM Tris-HCl (pH 8.0) 

10 mM EDTA (pH 8.0) 

Alkaline Lysis Solution P2 200 mM NaOH 

1% SDS 

Alkaline Lysis Solution P3 3 M potassium acetate 

5 M glacial acetic acid 

2xHBS (Hepes Buffered Saline) buffer 274 mM NaCl 

10 mM KCl 

1.4 mM Na2HPO4 

15 mM D-Glucose 

42 mM Hepes (free acid) 

LB (lysogeny broth) Medium 1% Bacto-Trypton 

0.5% Bacto Yeast Extract 

1% NaCl 

50 x TAE buffer 242 g/l Tris Base 

5.71% (v/v) Glacial acetic acid 

0.05 M EDTA pH 8.0   

TE buffer pH 8.0 10 mM Tris 

1 mM EDTA 

 

In Situ Hybridization 

Acetylation buffer 100 mM Triethanolamine 

0.05% HCL 

Denhardt´s Solution (100x) 2% Ficoll400 

2% polyvenylpyrolidone 

2% BSA 

Hybridization buffer 5x SSC 

50% Formamide 

5x Denhardt´s 

250 µg/ml yeast tRNA 
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500 µg/ml Salmon sperm 

NTMT buffer 100 mM Tris pH 9.5 

100 mM NaCl 

50 mM MgCl2 

0.1% Tween 20 

RNAse buffer 0.1 M Tris pH 8 

1 mM EDTA 

500 mM NaCl 

TSA Buffer 10 mM Imidazole in PBS 

5x MAB pH 7.5 500 mM Maleic acid 

745 mM NaCl 

Adjust to pH 7.5 with NaOH 

1x MAB 1x MAB 

0.1% Tween 20 

1xMABT++ 1x MABT 

10% goat serum 

1% Blocking reagent 

20x SSC 3 M NaCl 

0.3 M Sodium citrate 

10x PBS 1.37 M NaCl 

27 mM KCl 

100 mM Na2HPO4 

20 mM KH2PO4 

Adjust to pH 6.8 (HCl) 

PBST 0.1% Tween 20 in 1xPBS 

4% PFA in PBS 4% PFA 

250 nM NaOH  
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Ca2+-imaging 

 

Southern Blot 

Church buffer 200 mM Na-PO4 pH 7.2 

1 mM EDTA 

1% BSA 

7% SDS 

TE Puffer pH 8.0 10 mM Tris 

1 mM EDTA 

Depurination solution 0.8% HCl in ddH2O 

Denaturation solution 1 M NaCl 

0.5 M NaOH 

DNA isolation buffer 100 mM Tris pH 8.0 

5 mM EDTA 

0.2% SDS 

200 mM NaCl 

100 µg/ml Proteinase K 

Ringer´s solution 140 mM NaCl 

5 mM KCl 

2 mM CaCl2*2H2O 

2 mM MgCl2*6H2O 

10 mM Glucose 

10 mM Hepes 

High K+ solution 45 mM NaCl 

100 mM KCl 

2 mM CaCl2*2H2O 

2 mM MgCl2*6H2O 

10 mM Glucose 

10 mm Hepes 
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Immunoprecipitation 

DDM buffer (Solubilization buffer) 30 mM Tris-Cl, pH 7.4 

150 mM NaCl 

10 % Glycerol 

0.5 % DDM 

0.1 mM CaCl2 

1 mM MgCl2 

2 mM KCl  

Add freshly: 

1 mM PMSF 

5 mM NaF 

1 mM NaOV 

20 mM beta-glycerophosphate 

Sucrose buffer (Homogenization buffer) 0.32 M Sucrose 

30 mM Tris 

2 mM KCl 

1 mM MgCl2 

0.1 mM CaCl2 

Add freshly: 

1 mM PMSF 

5 mM NaF 

1 mM NaOV 

20 mM beta-glycerophosphate 

20 x Tris-Acetate Running buffer 50 mMTricine 

50 mMTris base  

0.1% SDS  

pH 8.24 

20 x Transfer buffer 25 mM Bicine 

25 mM Bis-Tris (free base) 

1 mM EDTA 

Washing buffer  30 mM Tris-HCl pH 7.4 

150 mM NaCl 
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3.3 Enzymes and Molecular Weight Markers 

 

Name     Company 

Restriction Enzymes New England Biolabs 

Phusion High-Fidelity Polymerase New England Biolabs 

T4 DNA Ligase New England Biolabs 

T3 RNA Polymerase New England Biolabs 

T7 RNA Polymerase 

SP6 RNA Polymerase 

New England Biolabs 

New England Biolabs 

Shrimp Alkaline Phosphatase (rSAP) New England Biolabs 

Superscript III Reverse Transcriptase Thermo Fisher Scientific 

Proteinase K Carl Roth 

Collagenase Thermo Fisher Scientific 

Trypsin-EDTA (0.05%) Thermo Fisher Scientific 

1kb plus ladder New England Biolabs 

100bp ladder 

PageRuler™ Prestained Protein Ladder 

New England Biolabs 

Thermo Fisher Scientific 

 

 

3.4 Bacteria Strains 

 

Strain     Company 

E. coli DHB10 (Electrocompetent bacteria) Thermo Fisher Scientific 

 

 

3.5 Plasmids and Vector Backbones 

 

Name     Company/Producer 

pBlueScript II SK(+) Stratagene 

pCDNA3.1 (+) 

pMDL/pRRE viral helper plasmid 

pRSV-REV viral helper plasmid 

Thermo Fisher Scientific 

Dr. Alexander Loewer (MDC Berlin) 

Dr. Alexander Loewer (MDC Berlin) 
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VSV-G viral helper plasmid 

TetO-NGN2-EGFP-Puro viral plasmid 

ELFa RUNX1 IRES-GFP viral plasmid 

ELFa TRKA IRES-GFP viral plasmid 

ASCL1 viral plasmid 

ISL2 viral plasmid 

KLF7 viral plasmid 

MYT1L viral plasmid 

NGN1 viral plasmid 

Dr. Alexander Loewer (MDC Berlin) 

Prof.Thomas C. Südhof (Stanford) 

Dr. Katrin-Schrenk Siemens 

Dr. Katrin-Schrenk Siemens 

Clifford J. Woolf (Harvard stem cell institute) 

Clifford J. Woolf (Harvard stem cell institute) 

Clifford J. Woolf (Harvard stem cell institute) 

Clifford J. Woolf (Harvard stem cell institute) 

Clifford J. Woolf (Harvard stem cell institute) 

 

3.6 Cell Lines 

 

Cell line    Description 

Hues7 

 

HEK 293 

HEK 293TN 

Human embryonic stem cell line 7, Harvard 

university 

Human embryonic kidney 293 cells 

Pseudoviral Particle Producer Cell Line, Biocat 

 

3.7 Cell Culture Media 

 

Neurosphere medium 50% DMEM/F12 

50% Neurobasal medium 

5 µg/ml Insulin 

1x B27 supplement 

0.5x N2 supplement 

1x Glutamine 

Differentiation medium nociceptors 95% neurosphere medium 

5% FCS 

1x P/S 

10 ng/ml BDNF 

10 ng/ml GDNF 
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10 ng/ml NGF 

Differentiation medium mechanoreceptors 100% neurosphere medium 

1xP/S 

10 ng/ml BDNF 

10 ng/ml GDNF 

10 ng/ml NGF 

10 ng/ml NT-3 

100 nM Retinoic acid 

Freezing medium stem cells 89% mTeSR1 medium 

10% DMSO 

Freezing medium NCLCs 89% Neurosphere medium 

10% DMSO 

HEK293TN medium 90% DMEM high Glucose 

10% FCS 

1x P/S 

 

3.8 Oligonucleotides 

  

Name    Sequence (5` 3`)    Usage  

huTRKA fwd gacctcgagtctggagctccgtgatctga In situ probe 

huTRKA rev gacgcggccgcccgttgttgacgtgggtg In situ probe 

huTRKB fwd attactcgagtggagcctaacagtgtagatcctgagaac In situ probe 

huTRKB rev atatgcggccgctggtactccgtgtgattggtaacatg In situ probe 

huTRKC fwd attactcgagtggatgtctctctttgcccagc In situ probe 

huTRKC rev atatgcggccgcattcaccagcgtcaagttgatgg In situ probe 

huNav1.6 fwd gacctcgagtcgcaagcaggaggaggtatct In situ probe 

huNav1.6 rev attagcggccgccacctgcccaagcattaga In situ probe 

huNav1.7 fwd attactcgagaaggtgggcagcattagcagat In situ probe 

huNav1.7 rev attagcggccgcttgccaaacacgggattgt In situ probe 

huNav1.8 fwd atatctcgagtggattctctgaaggcaa In situ probe 

huNav1.8 rev atatgcggccgcatctgcaatgggaaagagtt In situ probe 
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huNav1.9 fwd attactcgagcctagatagtatgaaagcaatga In situ probe 

huNav1.9 rev attagcggccgcAcagtccttcctggtgtcttc In situ probe 

huNGN1 fwd taccgagctcggatcgaattcgccaccatgccagc NGN1-viral 

construct 

huNGN1 rev tgcttgcttcgtggcgtggtaaggaatgaaacagggcgttg NGN1-viral 

construct 

EGFP fwd gccacgaagcaagcagga NGN1-viral 

construct 

EGFP rev actcgagtcgcggcctctagacttgtacagctcgtccatgc NGN1-viral 

construct 

5`arm fwd agaaggtaccgagggagggactcgcagcg PIEZO2 

targeting 

5`arm rev gagagtcgacagaccatggcgtcggtccggcgag PIEZO2 

targeting 

ATG-3xFlag-His-

tag fwd 

gacccatgcactacaaagaccatgacggt PIEZO2 

targeting 

3xFlag-His-tag rev gacgtcgacgaagtgagagagccaggctgt PIEZO2 

targeting 

-ATG-Exon1-

Intron fwd 

gacacgcgtgcctcagaagtggtgtgcggg PIEZO2 

targeting 

Exon-Intron rev ataactgcagcccgtcccgagcatcctgt PIEZO2 

targeting 

3`arm fwd aggaggatcccatgtgctggaaactgtttatgttga PIEZO2 

targeting 

3`arm rev attagcggccgcgagactagtggactaggtgttgggggtctatagc PIEZO2 

targeting 

Puro fwd caaggtaccgaactagatgatccggctgtg PIEZO2 

targeting 

Puro rev ttctgcgcctgcagcaat PIEZO2 

targeting 
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3.9 Commercial Kits 

 

Name      Company 

Amersham megaprime DNA Labeling system GE Healthcare Life Science 

Amersham ECL Prime Western Blotting Detection Kit GE Healthcare Life Sciences 

QIAquick PCR Purification Kit Qiagen 

Zymo PURE Midiprep Kit Zymo Research 

Zymo PURE Maxiprep Kit Zymo Research 

Zymoclean Gel DNA Recovery Kit Zymo Research 

 

3.10 Antibodies 

 

 1st Antibody    Dilution  Company 

Digoxigenin-POD Fab fragments 1:1,000 Roche 

Digoxigenin-AP Fab fragments 1:1,000 Roche 

Fluorescein-POD Fab fragments 1:2,000 Roche 

Fluorescein-AP Fab fragments 1:1,000 Roche 

c-MAF, gp 1:5,000 Dr. Hagen Wende 

FLAG M2, ms 1:3,000 Sigma-Aldrich 

ISLET-1, ms, IgG2b 1:100 DSHB 

NF200 (200-220 kDa), ch 

NF200, clone N52, ms 

1:25,000 

1:600 

Millipore 

Sigma-Aldrich 

RFP, rb 1:500 Rockland 

TUJ1 (Tubulin β3), ms 1:750 Covance 

 

 2nd Antibody    Dilution  Company 

Alexa Fluor 488 donkey α- mouse IgG 1:1,000 Dianova 

Alexa Fluor 488 goat α-guinea pig IgG 1:1,000 Dianova 

Alexa Fluor 555 donkey α- rabbit IgG 1:1,000 Dianova 

Alexa Fluor 647 donkey α- chicken IgG 1:1,000 Dianova 

Goat anti-rabbit-HRP 1:2,000 Jackson Immuno Research 

Streptavidin-Cy2 1:1,000 Dianova 
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3.11 Equipment 

 

4D- Nucleofactor (core, X and Y unit) Lonza 

Bacteria shaker certomat BS1 Sartorius 

Biological safety cabinets Safe 2020 Thermo Fisher Scientific 

Cell incubator Binder 

Centrifuge 5417R Eppendorf 

Centrifuge 5804R Eppendorf 

Centrifuge 5424 Eppendorf 

Centrifuge, Maxima Ultracentrifuge Coulter GmbH,  Beckman  

ChemiDoc™ XRS+ System  Bio-Rad 

Contamination monitor LB122 Berthold 

coolSNAP HQ2 CCD camera Photometrics 

Cryostat CM3050S Leica 

Dissection Microscope  Olympus SZ61  

Duomax 1030 shaker Heidolph 

Fla Image Eraser GE Healthcare Life Sciences 

Gene Pulser X Cell Bio-Rad 

Image Quant LAS 4000 GE Healthcare Life Sciences 

Intelli-mixer RM-2l Elmi 

Inverted fluorescent microscope Carl Zeiss 

Lambda DG-4 light source Sutter instruments 

Large Sky Line Digital Orbital Shaker DOS10-20L Elmi 

Light Cycler 96  Roche 

Liquid nitrogen tank GT40 Air Liquide 

Megafuge 1.0R Heraeus Sepatech 

Microwave Severin 

Mili-Q Reference system Merck-Millipore 

Nanodrop ND-1000  Peqlab 

Power Source (250V) VWR 

Primovert microscope Zeiss 

Scale BJ410C Precisa 
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Thermal cycler C1000 Bio-Rad 

Thermomixer comfort Eppendorf 

Typhoon Fla 7000 GE Healthcare Life Sciences 

Waterbath TW20 Julabo 

X Cell Sure Lock Thermo Fisher Scientific 
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4. Methods 

 

4.1 Molecular Biology 

 

4.1.1 Preparation of Genomic DNA 

 

The preparation of genomic stem cell DNA was performed in a 96-well format. Cells were washed 

once with PBS and lysed with 50 µl DNA isolation buffer (Proteinase K freshly added) in a humidity 

chamber overnight at 55 °C. 

Afterwards DNA was precipitated for 30 min at room temperature by adding 2.5x volume of 100% 

ethanol and 1/10 volume of 3 M sodium acetate, washed once with 70% ethanol and air-dried until the 

ethanol was evaporated. For Southern Blot analysis, precipitated DNA of a 96 well plate was digested 

with HindIII over night at 37 °C. 

 

4.1.2 Polymerase Chain Reaction (PCR) 

 

The Polymerase chain reaction is a revolutionary technique that is used for amplifying specific DNA 

templates, generating thousands of copies in vitro (Saiki et al., 1986). 

A general PCR master mix for one reaction included 1x Phusion HF or GC buffer (for GC rich 

amplicons), 200 µM dNTPs, 0.5 µM forward and reverse primer, approximately 50-250 ng genomic or 

10 ng plasmid template DNA, 1.0 unit/50 µl PCR Phusion DNA Polymerase and according to the 

DNA concentration deionized water. The PCR reaction was performed in a temperature gradient 

thermocycler, programmed as follows 

 

98 °C  30 sec 

98 °C  10 sec 

45-72 °C 25 sec         30 x 

72 °C  15-30 sec/kb 

72 °C  10 min 

4 °C  hold 
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4.1.3 Restriction Digest 

 

For the digestion of plasmid or genomic DNA the standard restriction enzymes that cut DNA 

sequences at a specific restriction site were used. A general protocol included a distinct amount of 

DNA (1-30 µg), 10 U enzyme per µg DNA (generally 1 µl was used), 1x NEB enzyme buffer and 

according to the reaction volume deionized water. Depending on the amount of digested DNA and the 

restriction enzyme that was used, the reaction was incubated for 1 hr/µg at an enzyme-dependent 

temperature (most likely 37 °C). The reaction was stopped by heat inactivation. 

 

4.1.4 Gel purification 

 

To separate DNA fragments according to their molecular weight, an agarose gel electrophoresis was 

performed. Depending on the size of the DNA fragments a 1-2% agarose gel was prepared in 1x TAE 

buffer and for visualization of the DNA ethidium bromide was added. To compare different DNA 

fragments, a 100 bp or 1 kb DNA ladder from NEB was also loaded on the gel. DNA bands, visualized 

with a ChemiDoc™ XRS+ System from Bio-Rad, were cut out of the gel and DNA was extracted with 

the Zymoclean Gel DNA Recovery Kit as described in the instruction manual. 

 

4.1.5 Ligation 

 

Prior to ligation, to hamper relegation of the vector backbone, vector dephosphorylation was 

performed. Therefore, 1 µl Shrimp Alkaline Phosphatase (rSAP) and 1x rSAP Reaction Buffer was 

added to the DNA and incubated for 30 min at 37 °C. The reaction was stopped by heat inactivation at 

65 °C and purified with the QIAquick PCR Purification Kit from Qiagen. 

A general 20 µl ligation reaction contained 50 ng vector backbone, a threefold molar excess of insert 

DNA, 1x T4 DNA Ligase Buffer, 1 µl T4 DNA Ligase and according to the DNA concentration 

deionized water. After 20 min incubation at room temperature, the reaction was purified by a 

Phenol/Chloroform/Isoamylalcohol extraction and microdialysis.  
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4.1.6 Phenol/Chloroform/Isoamylalcohol extraction and microdialysis 

 

To purify ligated DNA constructs prior to transformation a Phenol/Chloroform/Isoamylalcohol (PCI) 

extraction and microdialysis were performed. Therefore, an equal volume of PCI was added to the 

ligation reaction and mixed extensively. By a centrifugation step at full speed (≥13000 rpm) for 3 min 

the two phases were separated and the upper, aqueous phase, containing the DNA, was transferred for 

30 min on a MF-Millipore-Membrane filter that was placed on deionized water. After desalting, the 

DNA containing phase was collected and used for transformation. 

 

4.1.7 Transformation of Electrocompetent E. coli 

 

For multiplication of plasmid DNA, electrocompetent E. coli of strain DHB10 were transformed with 

10-50 ng vector DNA. E. coli, stored at -80 °C, were thawed on ice and a 25 µl aliquot was mixed 

with 5 µl of the purified ligation reaction. 

The plasmid-cell mixture was transferred into a 1 mm cuvette (Bio-Rad) and exposed to electrical 

current (1800 V, 25 µF, 200 Ω), which results in opening pores in the cell so that the plasmid is able to 

enter the cell membrane. Afterwards, bacteria were collected with 1 ml of LB medium and incubated 

at 37 °C for 30 minutes on a shaker. Finally, the bacteria suspension was plated on a bacteria agar 

plate containing 100 µg/ml ampicillin or carbenicillin or any other antibiotics, depending on the 

resistance cassette of the plasmid and incubated overnight at 37 °C. Lentiviral constructs, were 

incubated at 30 °C to prevent recombineering. 

 

4.1.8 Minipreparation of Plasmid-DNA 

 

To test if the cloning was successful (if the right DNA fragment was inserted into the vector 

backbone), a DNA-minipreparation was performed. For this, 2 ml LB medium (containing 100 µg/ml 

ampicillin or carbenicillin) was inoculated with one bacterial clone and cultured with vigorous shaking 

at 37 °C for 14-15 hrs. Afterwards cultures were pelleted by a centrifugation step for 10 min at full 

speed (≥13000 rpm) and supernatant was discarded. After resuspending bacterial pellets in 200 µl 

buffer P1, the same amount of lysis buffer P2 and neutralization buffer P3 were added consecutively 

and mixed by inverting the tube several times. After the samples were centrifuged at full speed for 

15 min, clear supernatant was transferred into a new tube and DNA was precipitated by 500 µl 

isopropanol and centrifuged again at full speed for 15 min. DNA pellet was washed once with 70% 
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ethanol and air-dried until the ethanol was evaporated. Finally, the pellet was resuspended in 30 µl TE-

buffer and used for a test restriction digest. 

 

4.1.9 Midipreparation of Plasmid DNA 

 

The midipreparation of plasmid DNA was performed as described in the instruction manual of the 

ZymoPURE Plasmid Midiprep Kit from Zymo. 

 

4.1.10 Sequencing 

 

Sequencing of DNA constructs was done by Eurofins Genomics. For plasmid DNA sequencing, a 

15µl sample of 50-100 ng/µl was submitted and analyzed. 

 

4.1.11 Riboprobe synthesis (In situ probe synthesis) 

 

For the detection of specific RNA sequences within mouse or human DRG tissue, as well as in 

differentiated neurons, complementary, fluorescent-labelled RNA probes (riboprobes) were generated 

by RNA in vitro transcription. For the in vitro transcription a purified, linearized plasmid was used as 

a template, containing the sequence of the RNA probe and phage polymerase promoters T3, T7 or 

SP6, one or two on each site of the multiple cloning site, allowing the transcription from both sites of 

the inserted RNA sequence.  

Fluorescent labeling was achieved by Digoxigenin (DIG, Sigma) or Fluorescein (FITC) conjugated 

nucleotides that were incorporated into the synthesized RNA probes. A general 20 µl RNA 

transcription reaction contained 1 µg of the linearized and boiled plasmid, 1x (FITC or DIG) RNA 

labeling mix, 1x RNA polymerase buffer, 50 U (2 µl) RNA polymerase (T3, T7 or SP6), 40U (1 µl) of 

ribonuclease inhibitor (RNAsin), and 2 µl DTT (10 mM). The reaction was incubated for 2 hrs at 

37 C. For better penetration of human and mouse DRG tissue in situ probes were hydrolyzed. 

Therefore, 21 µl deionized water and 5 µl 0.6 M Na2CO3 and 5 µl 0.4 M NaHCO3 were added to the 

RNA synthesis reaction and incubated for 10 min at 60 °C. Hydrolyzed as well as non-hydrolyzed 

probes were purified and precipitated with sodium acetate and ethanol. For this the amount of DNA 

solution was filled up to 200 µl with deionized water, 100 µl of 7.5 M Sodium acetate and 600 µl 

ethanol was added and DNA was precipitated for 30 min at room temperature. After a centrifugation 

step at full speed for 20 min, DNA pellet was washed once with 70% ethanol and air-dried until the 



  Methods 

 

 
43 

ethanol was evaporated. The pellet was resuspended in 50 µl pure formamide and 50 µl deionized 

water and stored at -80 °C until further use. 

 

4.1.12 RNA extraction and cDNA synthesis 

 

For RNA isolation, cells on 6-well plates were washed once with PBS, lysed and resuspended in 

500 µl cold Trizol until cell clumps were dispersed. From this step on, RNA extraction and cDNA 

synthesis were carried out at 4 °C. After the addition of 100 µl chloroform, samples were briefly 

vortexed until the mixture became foamy and incubated on a shaker at room temperature for 10 min at 

400 rpm. Afterwards samples were centrifuged at full speed (≥13000 rpm) for 10 min at 4 °C and the 

upper, aqueous phase, containing the RNA, was transferred into a new tube. For RNA precipitation, an 

equal volume of isopropanol was added, and samples were incubated on ice for 10 min. After an 

additional centrifugation step at full speed for 10 min at 4 °C, RNA was washed once with 70% 

ethanol and air-dried until the ethanol was evaporated. The RNA pellet was resuspended in 30 µl 

deionized water. For cDNA synthesis, RNA was reverse transcribed by using the SuperScriptTM III 

Reverse transcriptase kit (Invitrogen). A 10 µl reaction included 2.5 µg of the extracted RNA, 1 µl 

oligo (dT) (50 µM), 1 µl dNTP mix (10 mM) and according to the RNA concentration deionized 

water. Reaction was incubated at 65 °C for 5 min and afterwards 1 µl SuperScriptTM III Reverse 

Transcriptase, 2 µl DTT (0.1 M), 1 µl RNasin, 2 µl MgCl2 (50 mM) and 4 µl First-Strand buffer was 

added. The reaction was heated up at 50 °C for 50 min followed by an incubation of 85 °C for 5 min. 

Extracted RNA and cDNA were stored at -80 °C until further use for qPCR analysis. 
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4.2 Cell Culture 

 

Table 1: Overview of cell culture dishes and plates 

Plate/Well Area per plate/well 

[cm2] 

Medium per plate/well 

[ml] 

Trypsin/EDTA per plate/well 

[cm2] 

96-well 0.5 150 0.05 

48-well 1.0 0.25 0.1 

24-well 2.1 0.5 0.25 

12-well 3.8 1 0.5 

6-well 9.6 2 1 

35-mm dish 10 2 1 

10-cm dish 60  10 4 

 

 

4.2.1 Cultivation and Splitting of human embryonic stem cells (hESCs) 

 

Hues7 cells were cultivated and passaged on extracellular matrix proteins in TesR-E8 medium. 

Depending on the morphology and the density of seeded colonies, stem cells were usually passaged 

every 3-5 days. Colonies on a 10-cm dish were splitted by washing once with PBS followed by an 

incubation for 5 min in 0.5 mM EDTA. Cells were gently detached by rinsing them off with cell 

culture medium and transferred onto new Matrigel pre-coated culture dishes. 

 

4.2.2 Genetic modification of human embryonic stem cells by the tag-PIEZO2 targeting vector 

 

For the electroporation of human embryonic stem cells, 30 µg of the tag-PIEZO2 targeting vector was 

digested with SacI and KpnI to isolate the targeting sequence. To check for successful digestion, 

digested and undigested vector DNA was run side-by side on an agarose gel. 

ES cells, grown on a 10-cm dish, this time in mTesR1 medium, were washed once with PBS, 

incubated with Accutase (a gentle detachment reagent) for 5 min at 37 °C, and collected with pre-

warmed DMEM/F12 medium. After centrifugation, for 3 min at 1000 rpm, cells were resuspended and 

triturated in mTesR1 medium. 2.4 x 106 cells were centrifuged again and resuspended in 150 µl 

Ingenio Electroporation Solution. The homogenous single cell suspension was mixed with 7.5 µg of 

linearized SacI/KpnI tag-Piezo2 targeting vector and 7.5 µf of CRISPR plasmid, dissolved in 150 µl 

Ingenio Electroporation Solution and transferred into Amaxa cuvettes (100 µl/cuvette). After 

incubation for 4 min on ice, cells were electroporated with a Lonza 4D-Nucleofactor (pulse program 
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DC100), and plated on Matrigel-coated 10-cm dishes, containing stem cell medium mTesR1 plus 

ROCK Inhibitor (10 µM, Y-27632). 

Depending on cell density and morphology, puromycin selection (tagged Piezo2 targeting construct 

contains a puromycin resistance cassette) was started 48 or 72 hrs later. Medium was changed daily. 

 

4.2.3 Picking of Embryonic Stem Cell Clones 

 

Approximately 10-14 days after the electroporation, ES cell clones resistant to puromycin treatment 

were picked semi-sterile under a cell culture microscope. For this, clones were scratched off and taken 

up with a 10 µl tip and transferred in a 96-well plate, containing 100 µl stem cell medium 1x 

penicillin/streptomycin and ROCK Inhibitor (10 µM). Depending on cell density, colonies in a 96-well 

were splitted 3-7 days later onto two 96-wells by treating them with 50 µl Accutase for 3 min and 

scratching them off with a 10 µl tip. One well was used for genomic DNA extraction and Southern 

Blot screening, whereas the other well was expanded. 

 

4.2.4 Southern Blot 

 

To screen for positively targeted stem cell clones, Southern Blot analysis was performed. For this, 

HindIII digested genomic DNA from a clone grown in a 96-well was loaded on a 0.7% agarose gel. 

After an overnight run (~ 16 hrs) at 30 Volt, the gel was first incubated in depurination buffer (0.8% 

HCl) for 8 min, twice in denaturation buffer (1M NaCl, 0.5 M NaOH), 20 min each, and then washed 

for 5 min with 20 x SSC buffer (3 M NaCl, 0.3 M sodium citrate). The Southern blot was built up as 

follows: a glass plate, agarose gel, transfer Hybond membrane (GE Healthcare), 3 pieces of 

Whatmann paper and a stack of paper towel, all covered with another glass plate. After an overnight 

incubation, to allow the transfer of the DNA from the agarose gel to the membrane, the blot was 

dismantled and different gel chambers were labelled on the membrane. Prior to pre-hybridization in 

8ml church buffer (200 mM Na-PO4 pH 7.2, 1 mM EDTA, 1% BSA, 7% SDS) for 1 hr at 65 °C in a 

hybridization oven, the membrane was washed with 2x SSC buffer. The 3` and the 5` probes, used for 

the hybridization reaction were a kind gift from Dr. Katrin Schrenk-Siemens and were already used for 

previous Piezo2 targeting experiments. The Amersham Megaprime DNA Labeling System Kit (GE 

Healthcare Life Science) was used for labelling DNA probes. Therefore, 5 µl primer solution was 

mixed with 25 ng probe DNA and incubated at 95 °C for 5 min. After the addition of 10 µl labeling 

buffer, 5 µl [α-32P] dCTP radioactivity and 2 µl Klenow enzyme the reaction was incubated at 37 °C 

for 30 min. The reaction was stopped with 5 µl EDTA (0.2 M) and 25 µl salmon sperm. To get rid of 

unbound radioactive nucleotides and to test if the labeling of the probe was successful, the reaction 
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was purified by using a G50 sephadex column cleanup and incorporation rate was measured with a 

beta counter before and after the purification. Probes were used if the incorporation rate of purified 

and unpurified probes was around 50%. Purified probes were mixed with 50 µl genomic mouse DNA 

(10 µg) as blocking DNA and incubated at 95 °C for 5 min. After the addition of 1 ml church buffer 

and an incubation again at 95 °C for 10 min, reaction was pre-hybridized for 1hr at 65 °C in the 

hybridization oven. After a short centrifugation step, radioactive labeling mix was added to the 

membrane in the hybridization tube and incubated overnight at 65 °C. The next day, the radioactive 

solution was discarded, and membrane was washed once in 1x SSC + 1% SDS for 5 min and once in 

1x SSC + 0.1% SDS for 20 min both washing steps at 65 °C. Afterwards, membrane was washed with 

0.5x SSC + 0.1% SDS and 0.2x SSC + 0.1% SDS for 20 min and 5 min respectively. Finally, 

membranes were placed in an X-ray film cassette with a screen on top of it and after different 

exposure times developed with a phosphor-imager Typhoon Fla 7000. 

 

4.2.5 Differentiation of hESCs into NCLCs 

 

For the first differentiation step into neuronal precursor cells, splitted Hues7 cells were transferred 

onto uncoated dishes and cultured in neurosphere medium, that was changed every second day. Cells 

started to form globular structures, that we named neuroectodermal spheres. After 6-12 days, 

neurospheres spontaneously attached to the bottom of the cell culture plate and NCLCs started to 

delaminate and migrate out. Migrating NCLCs were collected by removing the remnants of the 

attached neurospheres mechanically with a 10 µl pipette tip and incubation with Accutase for 3 min. 

Afterwards cells were resuspended in differentiation medium and plated on 

Polyornithin/Laminin/Fibronectin coated dishes or chambers. For nociceptor differentiation, cells were 

cultured in nociceptor differentiation medium. 

 

4.2.6 Lentivirus production and Lentiviral infection of NCLCs 

 

In brief already described in Schrenk-Siemens et al., 2015. Lentiviral particles of the third generation, 

using only a fractional set of HIV genes, were produced in HEK293TN cells by performing Calcium-

Phosphate co-transfection of three viral helper plasmids (pRSV-REV, pMDLg/pRRE and the VSV-G 

virus envelope protein) plus the expression vector with the gene of interest. 24 hours prior to 

transfection, HEK cells were splitted and 2.5x106 cells were plated per 10 cm and dish. For each 

transfection reaction per 10 cm dish 450 µl deionized water was mixed with 50 µl CaCl2 (2.5 M) and 

plasmid DNA (1.8 µg pMDL/pRRE, 0.7 µg pRSV-REV, 0.3 µg VSV-G and 3.2 µg expression 

vector), and then added to 500 µl 2x HBS buffer. After 20 min incubation at room temperature, 
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transfection reaction was added to the cells. The lentivirus supernatant was harvested 48 and 72 hrs 

after transfection and concentrated by adding 50% PEG-8000 and two consecutive centrifugation steps 

at 2500 g for 20 min and 1200 g for 5 min. Depending on the size of the concentrated viral pellet, 

virus was resuspended in an appropriate volume of PBS and stored at -80 °C. 

For the infection of neuronal precursor cells, approximately 60.000 neural crest cells were plated on 

Laminin/Fibronectin/Polyornithin coated 3.5 cm dishes and incubated for 6 hrs with different amounts 

of the concentrated virus. For a better virus uptake, protamine sulfate (8 µg/ml) was added to the 

medium. Afterwards, virus-containing medium was aspirated, cells were washed twice with PBS and 

fresh medium was added. Gene expression was activated 24 hrs post infection with a 10-day 

doxycycline treatment (5 µg/ml). 

 

4.2.7 Differentiation of infected NCCs into nociceptive neurons 

 

For the differentiation of neural crest cells into nociceptors, infected cells were kept in culture for at 

least 20 days in a special differentiation medium, mentioned as nociceptor differentiation medium. 

Depending on cell debris, medium was changed every 1-2 days. For Ngn1 gene induction, cells were 

treated with doxycycline (5 µg/ml). 

 

4.2.8 Splitting of differentiating sensory neurons 

 

One week after gene induction (when cells started to show neuronal morphologies), differentiating 

neurons were splitted by washing once with PBS and incubating in collagenase (Sigma) for 5 min at 

37 °C. The cell monolayer came loose, and the collagenase-cell mix was transferred into a falcon tube. 

To further digest neuronal clumps, cells were triturated with a 1 ml pipette tip and centrifuged 

afterwards for 3 min at 1000 rpm. Resuspended cells were splitted according to their initial density 

most of the time in a ratio of (1:3-1:5) and transferred to fresh pre-coated culture plates. 

 

4.2.9 Transient transfection of HEK 293T cells 

 

To test and optimize purification conditions for the isolation of the 3xFlag-His-tagged Piezo2 protein, 

a tagged mouse Piezo1 construct was generated and transiently transfected into HEK293T cells by 

using Lipofectamine 2000. 24 hours prior to transfection, HEK cells were splitted and 0.5x106 cells 

were plated per 6-well, resulting in a 70-90% confluency at the day of transfection. For each 
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transfection reaction, 250 µl Opti-MEM medium was mixed with 5 µl Lipofectamine 2000 (Thermo 

Fisher Scientific) and in an additional tube, 250 µl Opti-MEM medium was mixed with distinct 

amounts of plasmid DNA (1 µg-3 µg). After 5 min incubation at room temperature, diluted DNA was 

combined with diluted Lipofectamine and incubated again for 20 min at room temperature. Finally, 

transfection reaction was added to HEK cells. Medium was changed 24 hrs after transfection. 

 

4.2.10 Immunoprecipitation 

 

To test and optimize purification conditions for the isolation of the 3xFlag-His-tagged Piezo protein, 

an expression vector, containing the full length mPiezo1 sequence with a 3xFlag-His-tag at the N-

terminus, was generated, transiently transfected into HEK 293 cells and purified by performing an 

immunoprecipitation with Flag-antibody coupled magnetic beads. As previously described, HEK 293 

cells on a 6-well were transfected with 1 µg of plasmid DNA using Lipofectamine 2000. 24 hrs after 

the transfection, cells were lysed in 500 µl homogenization buffer (0.32 M Sucrose, 30 mM Tris, 2 

mM KCl, 1 mM MgCl2, 0.1 mM CaCl2, 1 mM PMSF, 5 mM NaF, 1 mM NaOV, 20 mM beta-

glycerophosphate) and centrifuged at 1000 g for 10 min at 4 °C to remove the nuclear fraction and cell 

debris. Supernatant was then ultracentrifuged for 1 hr at 100,000 g to separate cytosolic and plasma 

membrane protein fraction. Plasma membrane enriched fraction (the pellet of the ultracentrifugation 

step) was solubilized in 600 µl solubilization buffer (30 mM Tris-Cl, pH 7.4, 150 mM NaCl, 10 % 

Glycerol, 0.5 % DDM, 0.1 mM CaCl2, 1 mM MgCl2, 2 mM KCl, 1 mM PMSF, 5 mM NaF, 1 mM 

NaOV, 20 mM beta-glycerophosphate) for 2 hrs at 4 °C. Insolubilized material was removed by an 

additional centrifugation step at 17,000 g for 10 min. 35 µl of solubilized total lysate (supernatant of 

the ultracentrifugation step) and membrane lysate were saved, mixed with 1x laemmli and used as 

samples “before the IP”. The remaining samples were added to 30 µl of washed M2-Flag antibody-

coated magnetic beads and immunoprecipitation was performed by an incubation step for 2.5 hrs at 4 

°C. Afterwards, tubes were put in a magnetic manifold and flow through was collected. After three 

washing steps with washing buffer (30 mM Tris-HCl pH 7.4, 150 mM NaCl), proteins were eluted by 

adding 50 µl of 2x laemmli with 10% ß-mercaptoethanol and incubating samples for 10 min at 50 °C. 

Eluates were diluted 1:1 in laemmli buffer and loaded on a 3-8% Tris-Acetate gradient SDS-PAGE gel 

together with already collected supernatant lysates “before the IP”. 15 µl of the total lysate supernatant 

and 5 µl of the eluate were loaded onto the gel together with a PageRuler™ Prestained Protein Ladder.  

The SDS-PAGE gel was run for 2 hrs at 120 V and blotted for 2 hrs at 30 V. Membranes were 

removed from the Blot and blocked in 5% Milk in PBST for 1 hr at room temperature. Primary 

antibody was diluted 1:3000 in 5% Milk in PBST and applied overnight at 4 °C. After rinsing 3 times 

with PBST for 10 min each, membrane was incubated with the secondary antibody (diluted 1:1000 in 
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5% Milk in PBST) for 3 hours at room temperature. Finally, membrane was washed with PBST and 

protein levels were detected by a chemiluminescent Western Blot detection reagent. 

 

4.3 Animals  

 

As previously described (Rostock et al., in press), animal housing and experimental design was 

implemented according to the local animal welfare and their protocols (Regierungspräsidium 

Karlsruhe, Germany). Male and female mice (8-11 weeks) of a C57BL/6 background were used for 

the experiments. Mice were deeply anesthetized with isoflurane and DRG from L2–L6 were freshly 

dissected, embedded in OCT (Sakura) and frozen on dry ice. 

 

4.4 Human Donors  

 

Human DRGs were received from a profitless organization, that collects human tissue, the 

Netherlands Brain Bank (NBB). Depending on post-mortem parameters such as age, time delay 

between death and tissue preparation or pH ≥ 6.3 (measured from cerebrospinal fluid), human DRG of 

non-diseased donors were selected. Fresh frozen tissue was shipped on dry ice and stored at –80 °C for 

at least 96 hours. 

 

Table 2: Different human DRG used for in situ hybridizations or immunohistochemistry  

DRG Location Sex/Age Cause of death 

L4 F/77 Pulmonary metastasis of vulva carcinoma 

L5 F/71 Renal insufficiency by hypertensive nephropathy 

T6 M/51 Suicide by refusing food and water 

T8 F/78 Cardiac insufficiency 

T12 F/75 Myocardial infarct 

(L= lumbar; T=thoracic) 
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4.5 Experimental analyses of differentiated neurons or human and mouse tissue 

 

4.5.1 Immunohistochemistry  

 

As already described in Rostock et al., (in press), 20 µm thick mouse and human DRG slices were cut 

on a Leica cryostat, washed with PBS and fixed with 4% PFA for 30 min. Cultured cells were only 

fixed for 10 min. Afterwards samples were blocked with 10% goat serum + 0.1% TritonX-100 in PBS 

for 1 hour at room temperature. 

Primary antibodies, diluted in 3% goat serum + 0.1% TritonX-100 in PBS were applied overnight at 

4°C. After 3 washing steps with 0.1% Triton in PBS for 10 min, samples were incubated with 

secondary antibodies and DAPI (diluted in 3% goat serum + 0.1% TritonX-100) for 2 hours at room 

temperature. Finally, tissue and cells were rinsed with 0.1% TritonX-100 in PBS for 3 times and once 

in PBS and mounted with ImmuMount.  

 

4.5.2 In Situ Hybridization  

 

In situ hybridization was performed as previously described (Wende et al., 2012; Rostock et al., in 

press) and optimized for human DRG samples. Human and mouse cryo-sections of 20 µm thickness or 

differentiated cells were fixed in 4% PFA for 30 min, acetylated with acetylation buffer (100 mM 

Triethanolamine, 0.05% HCl) for 10 min at room temperature and afterwards permeabilized in 0.3% 

TritonX100 in PBS for 20 min at 4 °C. After pre–hybridization for 1 hr at room temperature, DIG 

and/or FITC-labeled cRNA probes (for human and mouse tissue, probes were hydrolyzed) were 

diluted 1:50 in hybridization buffer (5x SSC, 50% Formamide, 5x Denhardt´s, 250µg/ml yeast tRNA, 

500 µg/ml Salmon sperm), added to the samples and hybridization was performed over night at 60 °C 

for human and mouse tissue or at 65 °C for differentiated cultures. The next day samples were washed 

twice in 2 x SSC, 50% Formamide, 0.1% N-Lauroylsarcosine at 60 °C and then treated with 20 µg/ml 

RNase A in RNAse buffer for 15 min at 37 °C. After washing twice in 2 x SSC + 0.1% N-

Lauroylsarcosine and 0.2 x SSC + 0.1% N-Lauroylsarcosine at 37 °C for 20 minutes each, cell culture 

dishes and slices were blocked in MABT++ (1x MABT [100 mM Maleic acid, 149 mM NaCl, 0.1% 

Tween 20, pH 7.5], 10% goat serum, 1% blocking reagent). 

For a monomeric, colorimetric NBT/BCIP staining, samples were incubated overnight with anti-DIG-

AP-Fab (1:1000) in MABT++. After several washing steps with MAPT the color reaction was 

performed using NBT and BCIP 1:1000 in NTMT buffer (100 mM Tris pH 9.5, 100mM NaCl, 50 mM 

MgCl2, 0.1% Tween-20). 

For a double fluorescent in situ hybridization, differentiated cells or DRG sections were stained by two 

sequentially rounds of Thyramide signal amplification (TSA) steps with an intermediate peroxidase 

inactivation step with 3% H2O2 for 2 hrs and 4% PFA for 30 min. Samples were incubated with anti-
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FITC-POD (1:2000) or anti-DIG-POD (1:1000) in MABT++ overnight at 4 °C. After intensive washing 

in MABT, the TSA reaction was performed by applying either Thyramide-Biotin or Thyramide-

Rhodamine for 30 min at room temperature. For the detection of Thyramide-Biotin a streptavidin–cy2 

antibody (1:1000) was applied, whereas nuclei were stained with DAPI. Finally, samples were washed 

five times with PBS + 0.1% Tween-20 and PBS and mounted with Immu-Mount.  

In situ probes were generated based on the sequences used by the Allen brain atlas (for mTrpV1, 

mTrkA and mNav1.6-1.9) or were a kind gift from Dr. Hagen Wende (mTrkB, mTrkC, mRet, mPiezo2 

and hPIEZO2 and hRET). Full length clones for hTRPV1 and hTRPA1 were provided by Dr. David 

Julius (University of California, San Francisco), and in situ probes covered the complete open reading 

frame. Other in situ probes were amplified using the primers shown in the section 3.8 and cloned into 

pBluescript SK (+). 

 

4.5.3 Calcium Imaging 

 

To test functional properties of differentiated neurons, Ca2+-imaging experiments were performed. 

When a neuron gets activated by a certain stimulus, in the case of a sensory neuron, this could be for 

example by capsaicin, mustard oil or in general by high potassium its membrane gets depolarized and 

allows Ca2+ ions to enter. Intracellular calcium changes can be measured with Fura-2 AM, a 

ratiometric, fluorescent Ca2+ indicator dye. Measuring calcium changes with a ratiometric calcium 

indicator compared to a non-ratiometric dye (e.g. Cal525 AM) diminishes the effects of 

photobleaching or inhomogeneous loading, resulting in more reproducible performances. 

Differentiated cells were washed once with PBS and Ringer solution, and loaded with the Fura-2 

loading buffer (10 µM Fura-2, 50 µg/ml Pluronic Acid [F-127] in Ringer solution) for 1 hour at room 

temperature in the dark.  

After washing once with Ringer solution, glass cover slips were placed in a perfusion chamber 

installed on an inverted fluorescent microscope. Every 3 seconds, cells were excited at wavelengths of 

340 nm and 380 nm using a Lambda DG-4 light source from Sutter instruments, whereas emitted light 

was captured at a wavelength of 510 nm using a coolSNAP HQ2 CCD camera (Photometrics). 

To analyze cell responses, Fura2-loaded cells were successively stimulated and perfused with 

capsaicin (1 µM), mustard oil (200 µM) or menthol (0.1 µM). Different stimuli were intensively 

washed away by perfusing with Ringer solution. A final high potassium stimulus activated and 

indicated all neuronal cells in culture. For the analysis, regions of all neurons were set and the 

fluorescent signal of regions of interest were recorded over time by using MetaFluor 7.1 software. 

Further analysis was done with Excel 2016 and Graphpad Prism5 software. The cut-off value for a 

responding cell was calculated according to the basal ratio (R0) during Ringer perfusion and the peak 
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ratio during the different stimuli (RS). A cell was counted as a responder if the RS ratio was higher than 

the mean plus 3-times Standard Deviation of the mean R0 value. Values are shown as mean +/- SEM. 

 

4.5.4 Real-Time (quantitative) PCR 

 

The real-time polymerase chain reaction (RT-PCR), which is also known as quantitative PCR (qPCR), 

is a technique that allows the observation of specific amplified target DNA over time and can therefore 

be used for the quantitative analysis of different amplicons. In a qPCR experiment, the accumulation 

of the fluorescent signal is measured and in general there are two different ways how one can detect 

and classify PCR amplifications. A non-specific fluorescent dye, in our experiments SYBR Green, 

binds to any double-stranded DNA and an increase in DNA, after each PCR cycle, leads to an increase 

in fluorescent signal intensity. However, a TaqMan probe, an example for the specific detection of 

amplified DNA, is based on a designed probe, consisting of a fluorophore attached to the 5`-end and a 

quencher that is attached to the 3`-end of the probe quenching the fluorescent signal, emitted by the 

fluorophore. After extension of DNA molecules by the Taq polymerase, the annealed TaqMan probe is 

degraded and the fluorophore is released and no longer quenched by the quenching molecule, allowing 

the fluorescence to be detected. The cycle number at which the fluorescent signal intensity exceeds a 

certain threshold above background intensity, is called threshold cycle value (Ct value) and can be 

used for comparing different samples. For normalization purposes, at least two housekeeping genes 

(genes that are stably expressed in all cell types investigated) such as Glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH), Hypoxanthine-guanine phosphoribosyltransferase (HRPT) or β-2 

microglobulin (B2M) were used for the evaluation. For gene expression analysis delta Ct values were 

calculated as follows: Ct values of genes of interest (GOI) of differentiated nociceptors were first 

normalized to the housekeeping gene (HKG) and in a next step to undifferentiated NCLCs, serving as 

calibrators (1. HKG-GOI; 2. Differentiated cells-NCLCs). For analyzing gene expression of 

differentiated nociceptors, cDNA synthesized from RNA extracted from neurons was used as a 

template for qPCR analysis using the SYBR Green dye or TaqMan probes (Thermo Fisher Scientific). 

Each qPCR reaction using SYBR Green included 10 µl 2x Fast SYBR® Green Master Mix, 1 µl 

10 µM forward and reverse primer, 1 µl of a 1:10 dilution of the 20 µl synthesized cDNA reaction and 

7 µl deionized water. Reactions with TaqMan probes included 7.5 µl 2x Fast Start Essential DNA 

Probe Master, 0.75 µl of the 20 x primer-probe-mix, 1 µl of a 1:10 dilution of the 20 µl synthesized 

cDNA reaction and 5.75 µl deionized water. For normalization purposes, at least two housekeeping 

genes (GAPDH and HRPT) were analyzed in parallel and used for normalization of the Ct values of 

the gene of interest (GOI). The qPCR reaction was performed in a Light Cycler 96 from Roche, 

programmed as follows 
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SYBR Green-program 

Preincubation      95 °C  10 min 

3 Step amplification      95 °C  10 sec 

60 °C  10 sec  40 x 

72 °C  30 sec 

Melting       95 °C  10 sec 

       65 °C  60 sec 

       97 °C  1 sec 

 

Taq-Man program 

Uracil-DNA Glycosylase (UDG) incubation  50 °C  2 min 

Polymerase activation     95 °C  10 min 

Amplification      95 °C  15 sec 

       60 °C  1 min 

 

45 x 
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4.5.5 Electrophysiological Recordings done by Dr. Jörg Pohle 

 

Neurons were visually identified using differential interference contrast microscopy with a 20X 

objective at an inverse microscope (Zeiss Observer A1). Only TRKA-positive cells were considered 

and identified with red fluorescence. With a borosilicate patch pipette filled with a KCl-based patch 

pipette solution cells were patched in a 3.5-cm dish in an extracellular HEPES-buffered physiological 

solution at room temperature. Electrophysiological traces were recorded with an Axopatch 200B 

amplifier and a Digidata 1440A converter using Clampex 10.6. Whole cell capacitance and pipette 

resistance were actively compensated. Action potentials were recorded in current clamp. Current was 

injected to keep baseline at -65 mV. From this, positive current steps were injected for 500 ms to 

evoke action potentials. Mechanical currents were recorded in voltage clamp at -65 mV. To evoke 

mechanical currents, cells were indented with increasing step size with the help of a polished 

borosilicate patch pipette fastened to a Kleindieck manipulator. Currents measured at an indentation of 

20 µm were used to identify responsive cells. 

 

4.6 Data Analysis  

 

Data analysis was done as described in Rostock et al., (in press). 

 

4.6.1 Image acquisition and quantification analysis 

 

Fluorescent images were taken on a Nikon A1R or C2 point scanning confocal microscope, whereas 

bright field picture acquisition was done on a Ni–E wide field microscope (Nikon Imaging Center, 

University of Heidelberg). Further images analysis was done by using NIS–Element AR (Nikon), 

ImageJ/Fiji, Adobe Photoshop and Illustrator software. 

Quantification analysis of each marker gene was performed by examining positive neurons from at 

least 3 different differentiations, 3-10 DRG sections per mouse (3-4 mice in total) and 3-4 sections per 

human DRG (3 human donors in total). Positive cells were counted manually using Adobe Photoshop 

software.  

 

4.6.2 Area distribution analysis 

 

For the analysis of the soma area distribution of TrkA, TrkB and TrkC positive cells, 3 DRG slices of 3 

different donors were randomly selected for each marker gene and analyzed by ImageJ/Fiji software. 

Regions of interest (ROI) were first set automatically by analyzing particles according to their pixel 



  Methods 

 

 
55 

size in a thresholded, “binary”, black and white image. All pixels with values below a defined 

threshold were converted to white and pixels with values above a defined threshold were converted to 

black and included into the analysis. ROIs were also manually checked to refine automatically 

selected ROIs. Values were first measured and indicated in pixels and then converted in for displaying 

cell soma area. Graphpad Prism software was used for plotting the data. 

 

 4.6.3 Signal intensity analysis 

 

Signal intensity analysis of TrkA or Ret positive cells was analyzed in 5 randomly chosen DRG slices 

from mouse and human tissue, respectively, by using ImageJ/Fiji software. ROIs for both TrkA and 

Ret were set, by analyzing particles (as described for the area distribution analysis) and values were 

measured according to their mean grey value. For normalization of each slice, single mean grey values 

for TrkA or Ret were divided by the maximum mean grey value of each slice and multiplied by 100. 

Graphpad Prism software was used for plotting all TrkA and Ret ratios in percent. 

 

 

4.6.4 Statistical analysis 

 

For quantifications the mean and the standard error of the mean (SEM) of 3 unrelated human 

individuals and 3-4 mice were considered. In TrkA-positive cells, fractions of double-positive cells in 

individual slices were determined. The dependence of fractions within slices from a certain subject 

(single human or mouse) was taken into account by applying a linear, mixed–effects model of the 

relationship between the fraction of double–positive cells and species as fixed effects. An additive 

random effect for each subject’s fraction level was introduced as random intercept. For this purpose, 

the software R (version 3.3.2) was used, with the lme function from the package nlme (version 3.1–

131). The model was expressed in R as: lme(Fraction ~ Species, random = ~1 | Subject) using default 

restricted maximum likelihood criterion. Residual plots provided no obvious discrepancies from 

homoscedasticity or normality. 
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5. Results 

 

The ability to perceive and transduce sensory stimuli is a fundamental property of the body and 

influences our sense of well-being immensely. Aside from pleasant mechanical stimuli (for 

example, a gentle hug from a friend), painful stimuli, such as a pinprick, serves as a warning signal 

to change our behavior and to protect us from tissue damage. 

Vertebrates can detect these stimuli via specialized cells, the somatosensory neurons. It is known 

that the peripheral nervous system consists of many different types of sensory neurons, but how 

they are generated and the mechanisms by which they transduce the different types of stimuli is at 

present not fully understood. Therefore, the initial aim of this Ph.D. thesis was to differentiate 

human embryonic stem cells (hESCs) first into precursor cells of peripheral neurons, and 

afterwards into pain-sensitive nociceptors. Differentiated nociceptors were characterized by using 

Ca2+-imaging, immunohistochemistry, in situ hybridization, quantitative RT-PCR and 

electrophysiological recording techniques (work done by Dr. Jörg Pohle). To validate whether 

hESC-derived nociceptors are physiologically relevant, we also compared them to mouse and 

human post-mortem DRG tissue and analyzed if they had a similar marker gene profile. 

Furthermore, we were also interested in exploring the role of PIEZO2 in sensory neurons. PIEZO2 

is a large transmembrane protein identified as a main transducer of innocuous mechanical stimuli, 

but so far it is uncertain whether it also plays a role in transducing noxious mechanical stimuli to 

trigger the sensation of pain. This question can be answered by comparing mechanically-activated 

currents from wild-type (WT) and PIEZO2-knockout (KO) nociceptors. Additionally, we also 

looked for accessory proteins of Piezo2 that could be involved in human PIEZO2-mediated sensory 

transduction, mediating innocuous mechanical stimuli.  

Specifically, my thesis project consists of 5 parts: 

1. Establish a differentiation protocol for the generation of nociceptive-like neurons using 

hESCs; 

2. Characterize differentiated nociceptor-like cells; 

3. Compare stem cell-derived nociceptors to human and mouse DRG tissue; 

4. Investigate the role of PIEZO2 in stem cell-derived nociceptors; 

5. Search for possible interaction partners of PIEZO2. 

 

The outcome of this study would help us to identify differences between human and mouse 

nociceptors and to use this differentiation protocol as a basis for the generation of other distinct 

human nociceptive subpopulations, to finally provide a model system to study human pain and pain 

transduction in vitro. 
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5.1 Establishing a differentiation protocol for stem cell-derived nociceptors 

 

5.1.1 TRKA overexpression 

From animal studies, it is known that shortly after neurogenesis induction (E9-E10.5), developing 

sensory neurons start to express sensory-specific gene programs and have characteristic molecular 

patterns. One of the best studied gene family markers are the tropomyosin-receptor kinases TRKA, 

TRKB and TRKC. These neurotrophin receptors are classically used to categorize sensory neurons 

into three main subpopulations, TRKA-expressing nociceptors, TRKB-positive mechanoreceptors 

and TRKC-positive proprioceptors (Chen et al., 2006; Perez-Pinera et al., 2008; Snider, 1994). 

Various studies in rodents and chicken demonstrated that TRKA, the high affinity receptor for 

NGF, is essential for differentiation and survival of small peptidergic DRG neurons and the 

absence of NGF/TRKA-signaling results in the loss of 70-85% of DRG neurons (Crowley et al., 

1994; Silos-Santiago et al., 1995b). During development (at around E13), 80% of all differentiating 

DRG neurons express TRKA, whereas in adult mice TRKA expression is restricted to small 

diameter peptidergic nociceptors. TRKA-positive cells represent the largest group of sensory 

neurons (in mice ~ 40% of all DRG neurons), that mediate the detection of heat or noxious 

mechanical stimuli (Ernsberger, 2009; Molliver and Snider, 1997b). 

Based on these findings, and due to the fact that in our laboratory a differentiation protocol for the 

generation of mechanoreceptors was already developed (Schrenk-Siemens et al., 2015), we wanted 

to modified the already existing protocol and establish a differentiation protocol for the generation 

of stem cell-derived nociceptors. Considering that TRKA seemed to be a major player for the 

generation of small diameter nociceptors, we started to virally overexpress the TRKA receptor and 

investigated if the overexpression could drive neural crest-like cells (NCLCs), the progenitors of 

primary sensory neurons to become nociceptors. For this we used a two-step differentiation 

protocol that recapitulates the in vivo sensory neuron development and is first based on the 

production of NCLCs. Some NCLCs are already predisposed to become sensory neurons and, 

considering what is known from mouse literature, we assumed that the viral-induced 

overexpression of TRKA would drive NCLCs towards a nociceptive lineage. Stem cell-derived 

NCLCs were infected with concentrated TRKA lentiviral particles, to constantly overexpress the 

neurotrophin receptor, and cultured for further differentiation in a differentiation medium, already 

proved to be successful for the differentiation of stem cell-derived mechanoreceptors (containing 

different growth factors such as BDNF, GDNF, NGF, NT-3 and retinoic acid) (Fig. 10A). The cell 

death rate of infected, differentiated cells was high and only few cells with neuron-like 

morphologies survived the differentiation procedure and could be analyzed by Ca2+-imaging (Fig. 

10B-D). To identify nociceptive neurons in culture, differentiated cells were stimulated with 

capsaicin (Caps, 1 µM), mustard oil (MO, 200 µM) or high potassium (HK, 100 mM) and tested 
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for their response by Ca2+-imaging recordings. Only HK-excitable cells, defined as neurons, were 

included in the analysis. 

Ca2+-imaging experiments of TRKA-infected NCLCs, differentiated for 2-3 weeks, showed that a 

permanent TRKA overexpression was not sufficient and effective for the differentiation of 

nociceptive neurons. Images of pseudo-color Ca2+-responses of cells within the field of view (Fig. 

10B) and representative traces of one experiment (Fig. 10C) indicated, that the stimulation with 

1 µM capsaicin (Fig. 8B-b and Fig. 8C), an agonist of the nociceptor-specific ion channel TRPV1, 

did not activate TRKA-infected cells in comparison to unstimulated cells in Ringer solution as a 

baseline (Fig. 10B-a). Quantification analysis demonstrated that, in 2 out of 3 analyzed cultures, 

differentiated cells showed a slight response to 200 µM allyl isothiocyanate, the pungent ingredient 

in mustard oil (Fig. 10B-c, Fig. 8C, Fig. 8D), activating TRPA1, an ion channel that is expressed 

by a subset of peptidergic, capsaicin-sensitive neurons.  

 

 

Fig. 10: Lentiviral TRKA overexpression and Ca2+-imaging experiment of differentiated neurons 

(A) Schematic representation of TRKA overexpression experiments, showing the transfection of human NCLCs with 

TrkA lentiviral particles and the differentiation into sensory neurons. 

(B) Pseudo-color images of TRKA-infected, differentiated neurons, loaded with the fluorescent calcium indicator 

Fura-2 before stimulation (a) after capsaicin (b, 1 µM, Caps), mustard oil (c, 200 µM, MO) or high potassium (d, 
100 mM, HK) treatment. Pseudo-color scale bar represents intracellular calcium concentrations. 

(C) Representative traces of one experiment, shown in (B). While none of the neurons responded to capsaicin, some of 

them showed a response to mustard oil stimulation (in green). Average of responding neurons is given as mean ± 

SEM (n=32 cells). 

(D) Quantification of three independent experiments, indicating that in one experiment all neurons only responded to 

high potassium (HK, in black), whereas in 2 experiments nearly all neurons showed a slight response to mustard 

oil (in green). None of the neurons responded to capsaicin. Percentage of responding neurons was calculated per 

experiment and reported as mean ± SEM (N=3 experiments). 



  Results 

 

 
59 

Due to the fact that TRKA-infected differentiated cells only showed a slight response to mustard 

oil but no response to capsaicin and that only few cells survived the differentiation procedure, I 

concluded that constitutive TRKA overexpression did not generate stem cell-derived nociceptors. 

 

5.1.2 RUNX1 overexpression 

Another factor also known to play a crucial role in differentiation and specification of nociceptive 

sensory neurons is RUNX1, a Runt domain transcription factor. During development, RUNX1 is 

expressed in most nociceptors from E14.5-P0, more than 80% of TRKA-positive neurons also 

express low or high levels of RUNX1. In adult mice, RUNX1 becomes restricted to non-

peptidergic nociceptors, cells that shut down TRKA expression and instead express the 

neurotrophic factor receptor RET (Chen et al., 2006). Furthermore, RUNX1 expression is essential 

for further ion receptor expression such as TRP channels or Nav channels and is also involved in 

controlling lamina-specific termination in the dorsal spinal cord (Chen et al., 2006). Based on these 

findings, we decided to test whether a viral-induced overexpression of RUNX1 is sufficient to 

drive NCLCs towards a nociceptive lineage.  

As already described for TRKA overexpression experiments, NCLCs were infected with RUNX1 

lentiviral particles to continuously overexpress the transcription factor and differentiated for 

additional 2-3 weeks in a differentiation medium that was established for the generation of stem 

cell-derived mechanoreceptors (Fig. 11A). Ca2+-imaging experiments, of differentiated RUNX1-

infected cells showed similar results as for TRKA-infected neurons: a permanent RUNX1 

overexpression seemed not to be sufficient and effective for the differentiation of nociceptive 

neurons. The cell death rate of infected, differentiated cells was also high and only few cells with 

neuron-like morphologies survived the differentiation procedure and could be analyzed by Ca2+-

imaging (Fig. 11B-D).  

A 1 µM capsaicin stimulus (Fig. 11B-b and Fig.11 C) did not activate RUNX1-infected, 

differentiated neurons in comparison to the baseline (Fig. 11B-a; cells in Ringer). A 200 µM 

mustard oil stimulus caused only a slight response in 85% of differentiated HK responders (Fig. 

11B-c and C or D).  
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Since RUNX1-infected, differentiated cells only showed a slight response to mustard oil and did 

not respond to capsaicin and additionally only few cells survived the differentiation procedure, a 

permanent RUNX1 overexpression also seemed not to be efficient for the generation of stem cell-

derived nociceptors. 

 

5.1.3 NGN1 overexpression 

At the same time, when we tried to establish a functional differentiation protocol for the generation 

of nociceptors by overexpressing TRKA or RUNX1, Südhof and colleagues published a study in 

which they demonstrated that the forced overexpression of a single transcription factor, NGN2, led 

 Fig. 11: Lentiviral RUNX1 overexpression and Ca2+-imaging experiment of differentiated neurons 

(A) Schematic representation of RUNX1 overexpression experiments, showing the transfection of human NCLCs with  

Runx1 lentiviral particles and the differentiation into sensory neurons. 

(B) Pseudo-color images of RUNX1-infected, differentiated neurons, loaded with the fluorescent calcium indicator 

Fura-2 before stimulation (a) after capsaicin (b, 1 µM, Caps), mustard oil (c, 200 µM, MO) or high potassium (d, 
100 mM, HK) treatment. Pseudo-color scale bar represents intracellular calcium concentrations. 

(C) Representative traces of one experiment, shown in (B). While none of the neurons responded to capsaicin, some of 

the neurons showed a slight response to mustard oil stimulation (in green). Average of responding neurons is given 

as mean ± SEM (n=73 cells). 

(D) Quantification of three independent Calcium-imaging experiments, indicating that in all three analyzed experiments 

a vast majority of neurons showed a slight response to mustard oil (in green). None of the neurons responded to 

capsaicin. Percentage of responding neurons was calculated per experiment and reported as mean ± SEM (N=3 

experiments). 



  Results 

 

 
61 

to the direct conversion of hESCs or induced pluripotent stem cells (iPSCs) into neuronal cells in 

less than 2 weeks, with an efficiency of nearly 100% (Zhang et al., 2013b). NGN1 and NGN2 are 

basic helix-loop-helix (bHLH) transcription factors known to determine specific neuronal 

progenitor populations in the developing CNS as well as in the PNS and furthermore to induce 

neurogenesis in mice (Ma et al., 1999b; Sommer et al., 1996). While in the PNS NGN2 seems to 

trigger neuronal diversification of mainly large diameter mechanoreceptive or proprioceptive 

neurons, NGN1 seems to mediate the differentiation of small diameter, TRKA-positive nociceptive 

neurons (Ma et al., 1998, 1999a).  

To unravel the question if NGN1 overexpression is critical to drive NCLCs into a nociceptive 

lineage, we cloned the human NGN1 into a tetracycline-inducible lentiviral backbone, already used 

by Zhang et al., to obtain an inducible Tet-on lentiviral construct. Theoretically, this system allows 

reversible transgene expression upon application of the antibiotic doxycycline. Only in the 

presence of doxycycline, the reverse tetracycline transactivator protein (rtTA) can bind the TetO 

operator and thus induce NGN1-EGFP gene expression. If doxycycline treatment is stopped, the 

transactivator cannot bind the operator anymore and gene expression and therefore also the coupled 

EGFP signal is switched off (Fig. 12A).  
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To test if we are able to control NGN1 gene expression, I performed time-course experiments to 

check for virally induced NGN1-EGFP expression in hES cell-derived NCLCs in the presence or 

absence of doxycycline (Fig. 12C). As expected, NGN1 expression could be induced 24 hours after 

doxycycline treatment, as indicated by the strong EGFP signal (Fig. 12B-e). Gene expression was 

already reduced after 10 hours without doxycycline (Fig. 12B-f) and was no longer detectable after 

48 hours without the antibiotic (Fig. 12B-g). Gene expression could also be reliably induced and 

inhibited multiple times as shown by the EGFP signal after repetitive doxycycline treatment (Fig. 

12B-h). 

In order to explore whether introducing such a central transcription factor is crucial for sensory 

neuron development and would drive more NCLCs cells to adopt a nociceptive phenotype, we 

infected NCLCs with NGN1 and rtTA lentiviral particles and analyzed them by immunostaining 

and Ca2+-imaging experiments. It is generally accepted that, shortly after neurogenesis induction, 

post-mitotic sensory neurons start to express the insulin gene enhancer protein ISLET1 and the 

brain-specific homeobox/POU domain protein 3A, BRN3A (Anderson, 1999). Additionally, these 

proteins are important for further sensory specific gene expression patterns, as TRKA and RUNX1-

positive cells are almost lost in Ilset1 mutants, while TRKC and RUNX3-positive, proprioceptive 

neurons are not affected (Eng et al., 2001, 2004, 2007; Sun et al., 2008). 

To test if NGN1/rtTA overexpression induces neurogenesis in infected NCLCs, immunostainings 

of GFP-infected control cells (Fig. 13A-C) and NGN1/rtTA-infected cells (Fig. 13D-F) were 

performed 3 days after gene induction. Quantifications demonstrated that the number of ISLET1-

positive sensory neuron precursors was increased in NGN1/rtTA-infected NCLCs compared to 

control GFP-infected cells: only 3% of the GFP-infected control population (Fig. 13A-C) was 

ISLET1-positive, while in NGN1/rtTA-infected cells 75% of all cells showed an ISLET1 staining 

(Fig. 13D-F).  

 

Fig. 12: Lentiviral Tet-on-system 

(A) Schematic representation of the lentiviral Tet-On system for NGN1/rtTA overexpression experiments. Cells were 

transfected with a virus expressing the reverse tetracycline transactivator (rtTA) and a virus expressing a NGN1-
EGFP-Puromycin -resistance fusion protein, linked by P2A and T2A sequences.  

(B) Time course experiments, checking for virally-induced NGN1-EGFP expression in hESC-derived NCLCs. (a-d) 

Phase contrast images and (e-h) GFP-fluorescent images of NGN1/rtTA-infected NCLCs after doxycycline 

treatment (e, h) and without the antibiotic (f-g). Scale bar 50 µm. 
(C) Time-line illustrating the Dox treatment (yellow regions) and analysis of NGN1-EGFP expression in NCLCs at 

different timepoints (↓). Strong EGFP signal (++) , slight EGFP signal (+), no EGFP signal (-). 
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Ca2+-imaging experiments of NGN1/rtTA-infected NCLCs (Fig. 14A-D), stimulated with capsaicin 

(1 µM) or mustard oil (200 µM) after 3 weeks of differentiation, showed that a transient 

overexpression of NGN1 (induction of 3 days) seemed not to be sufficient and effective for the 

differentiation of nociceptive neurons (Fig. 14A-D). However, compared to what we have seen 

with TRKA or RUNX1 overexpression experiments, the mortality rate was lower, and most of the 

cells survived the differentiation procedure and developed neuron-like morphologies (Fig. 14 B).  

However, a 1 µM capsaicin stimulus did not activate NGN1-infected cells (Fig. 14B-b and Fig. 

14C), and mustard oil either provoked a slight or no response (depending on the experiment 

analyzed, Fig 14B-c and Fig. 14C-D). On average, 32% of differentiated NGN1-infected cells 

responded to mustard oil and to a high K+ (HK) stimulus, whereas 68% of the neurons showed only 

a response to HK. None of the cells responded to a 1 µM capsaicin stimulus (Fig. 14 B-D).  

 

Fig. 13: Induction of sensory neuron development after Ngn1 overexpression 

Immunostaining of GFP and NGN1 infected NCLCs (3 days after gene induction) for ISLET1 (ISL1), a marker for post-

mitotic developing sensory neurons. Only 3% of all DAPI+ cells were ISL1-positive in the GFP-infected cell population 

(A-C), while 75% of all cells showed an ISL1 staining in NGN1-infected cells (D-F). Scale bar 20µm. 
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In summary, although overexpression of NGN1 led to a marked increase in the number of ISLET1-

positive cells, and the number of developing sensory neurons was also increased, this was not 

sufficient to differentiate the developing sensory neurons further into a distinct nociceptive lineage. 

  

Fig. 14: Lentiviral NGN1 overexpression and Ca2+-imaging experiment of differentiated neurons 

(A) Schematic representation of NGN1 overexpression experiments, showing the transfection of human NCLCs with  

NGN1 lentiviral particles and the differentiation into sensory neurons (b) and time-flow diagram of lentivirus  
infection, doxycyclin treatment and functional analysis of differentiated neurons. 

(B) Pseudo-color images of NGN1 infected, differentiated neurons, loaded with the fluorescent calcium indicator Fura-2 

before stimulation (a) after capsaicin (b, 1 µM, Caps), mustard oil (c, 200 µM, MO) or high potassium (d, 100 mM; 

HK) treatment. Pseudo-color scale bar represents intracellular calcium concentrations. 

(C) Representative traces of one experiment, shown in (B). While none of the neurons responded to capsaicin, some of 

the neurons showed a slight response to mustard oil stimulation (in green). Average of responding neurons is given 

as mean ± SEM (n=96 cells). 

(D) Quantification of two independent Calcium-imaging experiments, indicating that in one experiments a vast majority 

of neurons showed a response to mustard oil and HK (in green), whereas in the second experiment neurons only 

responded to HK stimulation (in black). None of the neurons responded to capsaicin. Percentage of responding 

neurons was calculated per experiment and reported as mean with range (N=2 experiments). 
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5.1.4 NGN1/RUNX1 overexpression 

Since overexpression of single proteins (TRKA, RUNX1 or NGN1) was not effective to drive 

NCLCs towards a nociceptive fate, and due to the fact that developing sensory neurons express a 

full set of sensory specific genes in a time-dependent manner, we decided to change our strategy 

and combine viral-induced overexpression of NGN1 and RUNX1. NCLCs were first infected with 

NGN1 and tTA lentiviral particles and gene expression was induced by doxycycline for 3 days 

until infected EGFP-positive cells started to change their morphology. In a following step, 

differentiating cells were infected with RUNX1 lentiviral particles, trying to recapitulate the in vivo 

sensory neuron development. Studies investigating the development of nociceptors in mice have 

shown that NGN1 is important for sensory neurogenesis and mediates the differentiation of TRKA-

positive nociceptors (Ma et al., 1999a) and, later during development, RUNX1 is broadly expressed 

in differentiating nociceptors and becomes restricted to the non-peptidergic subpopulation (Chen et 

al., 2006). 

Ca2+-imaging experiments with NGN1/tTA and RUNX1-infected NCLCs, after 3 weeks of 

differentiation, showed that 13% of the neurons responded uniquely to the HK stimulus, and most 

neurons got activated by both mustard oil and HK (Fig. 15). Additionally, a small fraction of all 

analyzed neurons (4%) showed a slight response to capsaicin, mustard oil and HK stimuli, 

suggesting that this small fraction of cells became functional nociceptor-like neurons. 
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Since our initial analysis was only based on visual detection of responding cells and only a very 

small fraction of cells showed a weak response to capsaicin (compared to what is known from 

literature and what we have seen from cultured mouse DRG neurons), we assumed that the 

combined overexpression of NGN1 and RUNX1 was not sufficient for the generation of a good 

number of stem cell-derived nociceptors. One hypothesis to explain such results could be that some 

other important factors are missing or something in the differentiation medium such as growth 

factors, or neurotrophins are lacking and hindering further differentiation. 

 

5.1.5 Overexpression of 5 transcription factors (based on Wainger et al., 2015) 

Subsequent to asserting that the overexpression of single developmental factors (TRKA, RUNX1 

and NGN1) or the combination of two (NGN1/RUNX1) seemed not to be sufficient for the 

generation of nociceptive neurons, a work by Clifford Woolf and colleagues demonstrated that 

permanent viral-induced overexpression of a set of transcription factors (neurogenin 1 [NGN1], 

Islet-2 [ISL2], Kruppel-like factor 7 [KLF7], myelin transcription factor 1-like [MYT1L], and 

Achaete-scute homolog 1 [ASCL]) is able to reprogram mouse and human fibroblasts into 

functional nociceptors (Wainger et al., 2015).  

 

 

Fig. 15: Lentiviral NGN1/RUNX1 overexpression and Ca2+-imaging experiment of differentiated neurons 

(A) Schematic representation of NGN1/RUNX1 overexpression experiments, showing the transfection of human 

NCLCs with NGN1/RUNX1 lentiviral particles and the differentiation into sensory neurons. 
(B) Pseudo-color images of NGN1/RUNX1-infected, differentiated neurons, loaded with the fluorescent calcium 

indicator Fura-2 before stimulation (a) after capsaicin (b, 1 µM, Caps), mustard oil (c, 200 µM, MO) or high 

potassium (d, 100 mM, MO) treatment. Pseudo-color scale bar represents intracellular calcium concentrations. 

(C) Representative traces of one experiment, shown in (B), showing that some cells showed a slight response to 

capsaicin, mustard oil and HK (in red), some to mustard oil and HK (in green) and also cells that only responded to 

the HK stimulus (in black). Average of responding neurons is given as mean ± SEM (n=174 cells). 

(D) Quantification of three independent Calcium-imaging experiments indicated that a vast majority of neurons showed 

a slight response to mustard oil and HK (in green), whereas 13% of the neurons responded to HK only and a 

minority of neurons to all stimuli, capsaicin and mustard oil and HK (in red). Percentage of responding neurons 

was calculated per experiment and reported as mean ± SEM (N=3 experiments). 

Fig. 16: Schematic representation of the reprogramming protocol used by Wainger et al., 2015 

Scheme of the reprogramming protocol to convert human/mouse fibroblasts into pain-sensitive sensory neurons, used by 

Wainger et al., 2015. The combined stable overexpression of five transcription factors (NGN1, ISL2, KLF7, MYT1L and 

ASCL1) converted fibroblats and generated sensory neurons with a nociceptive phenotype. 
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Due to the fact that we were still interested in generating and characterizing hESC-derived 

nociceptors, we decided to adopt and modify this protocol for use in our cell culture system.  

Different to the Wainger et al. study (henceforth referred to as “Woolf protocol”), we did not use 

human and mouse fibroblasts as a starting cell population, but instead our stem cell-derived 

NCLCs, as they are very similar to the in vivo progenitors of sensory neurons. Furthermore, the 

differentiation cocktail used by Wainger et al. contained a reduced number of growth factors (only 

NGF, BDNF and GDNF) but also included fetal bovine serum, a widely used undefined growth 

supplement for cell culture media. By recapitulating the published protocol with our cellular 

system, NCLCs were infected with lentiviral particles of all 5 transcription factors (NGN1, ISL2, 

KLF7, MYT1L and ASCL) resulting in their stable overexpression over the entire differentiation 

period (at least 3 weeks). While the transcription factors ASCL1 and MYT1L are important for 

reprogramming cells, to drive them towards the neuronal lineage, KLF7 or NGN1 are rather 

relevant for further sensory neuron diversification of TRKA-expressing nociceptors (Lei et al., 

2005; Ma et al., 1999a; Vierbuchen et al., 2010). 

Ca2+-imaging experiments of NGN1/ISL2/KLF7/MYT1L/ASCL1-infected NCLCs (differentiated 

for at least 3 weeks), stimulated with capsaicin (1 µM), mustard oil (200 µM) or menthol (0.1 µM), 

an organic compound activating the cold-receptor TRPM8, showed that a persistent overexpression 

of these 5 factors seemed to be sufficient and effective for the differentiation of nociceptive 

neurons (Fig. 17). Strikingly, a large proportion of cells responded to capsaicin, pointing out their 

nociceptive properties.  

On average, approximately 70.5% of the derived excitable cells (determined by a HK stimulus and 

therefore defined as neurons) showed a response to capsaicin plus HK (Fig. 17B-b, C, D), 20% to 

capsaicin and mustard oil, and only a small percent of neurons responded to mustard oil only (Fig. 

17C, 1.1%), menthol plus capsaicin (Fig. 17D, 0.8%) or HK only (7.6%). 

In summary, a persistent viral-induced overexpression of 5 transcription factors, as already used by 

Wainger et al. was finally able to generate functional stem cell-derived nociceptors, even when 

fibroblasts as the starting material were replaced by stem cell-derived NCLCs.   
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5.1.6 Simplification Ι of the Woolf protocol: overexpression of 3 factors 

Contrary to the “Woolf protocol” using fibroblasts as starting material, stem cell-derived NCLCs, 

the progenitors of the primary sensory neurons, are more prone to become sensory neurons. While 

the transcription factors ASCL1 and MYT1L are more important for reprogramming cells in order 

to drive them towards the neuronal lineage, KLF7 or NGN1 are rather relevant for further sensory 

neuron diversification of TRKA-expressing nociceptors (Lei et al., 2005; Ma et al., 1999a; 

Vierbuchen et al., 2010) (Fig. 18A). Since Wainger et al. started with a completely different cell 

type compared to us, we hypothesized that not all five transcription factors were necessary to 

obtain stem cell-derived nociceptors. To test our hypothesis, that only 3 virally-expressed 

 

Fig. 17: Lentiviral overexpression of “5 Woolf factors” and Ca2+-imaging experiment of differentiated neurons 

(A) Schematic representation of overexpression experiments, showing the transfection of human NCLCs with lentiviral 
particles of all five “Woolf factors” and the differentiation into sensory neurons. 

(B) Pseudo-color images of infected, differentiated neurons after at least 21 days in culture, loaded with the fluorescent 

calcium indicator Fura-2 before stimulation (a) after capsaicin (b, 1 µM, Caps), mustard oil (c, 200 µM, MO) or 

high potassium (d, 100 mM, HK) treatment. Pseudo-color scale bar represents intracellular calcium concentrations. 

(C) Representative traces of one experiment, shown in (B) indicated that differentiated neurons showed a proper 

response to capsaicin and HK (in orange) and capsaicin and mustard oil (in red). A fraction of cells responded to 

mustard oil /HK (in green) or HK only (in black). Average of responding neurons is given as mean ± SEM (n=95 

cells). 

(D) Quantification of three independent Calcium-imaging experiments indicated that a vast majority of neurons, about 

70% showed a response to capsaicin and HK (in orange), about 20% of the neurons responded to capsaicin/mustard 

oil/HK (in red) and a minority of neurons got activated by mustard oil/HK (in green), menthol/capsaicin/HK (in 

blue) or HK only (in black). Percentage of responding neurons was calculated per experiment and reported as mean 

± SEM (N=3 experiments). 
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transcription factors in the differentiation cocktail are required to generate functional nociceptors, 

NCLCs were infected with lentiviral particles of only the 3 transcription factors NGN1, ISL2 and 

KLF7 and differentiated for at least 3 weeks.  

Ca2+-imaging experiments of these differentiated cells, stimulated with capsaicin (1 µM), mustard 

oil (200 µM) or menthol (0.1 µM) (Fig. 18B-E), demonstrated that a persistent overexpression of 

only 3 “Woolf factors” seemed sufficient and effective for the differentiation of TRKA-positive 

nociceptive neurons: 41.4 % of the derived tomato-positive neurons showed a response to capsaicin 

and HK (indicated by the orange trace), 34.3% of the neurons got activated by capsaicin and 

mustard oil (shown by the red trace) and only a small percent of cells responded to mustard oil plus 

HK (7 %; green trace), menthol plus capsaicin (0.3% blue trace) or HK only (black trace). 
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These experiments showed that the viral-induced overexpression of only 3 transcription factors is 

sufficient to obtain functional stem cell-derived nociceptors when using already primed neuronal 

precursor cells as the starting population. 

 

5.1.7 Simplification ΙΙ of the Woolf protocol: overexpression of 1 factor 

Although preliminary Ca2+-imaging results of differentiated nociceptors generated according to the 

modified “Woolf protocol” were promising and virally-induced overexpression experiments with 

only 3 transcription factors seemed to be effective for the differentiation of stem cell-derived 

nociceptive neurons, we could not reliably reproduce these findings.  

Several rounds of lentivirus production did not result in infectious lentiviral particles or in the 

generation of nociceptors. Also, the lack of a fluorescent protein within the viral constructs fused to 

the gene of interest prevented us from controlling the virus production or viral infection rates. To 

elucidate which virus was actually infectious and, more importantly which factor was essential for 

the generation of stem cell-derived nociceptors, RT-PCR analyses were performed with ISL2, 

KLF7 or NGN1-infected NCLCs after different times of differentiation (uninfected NCLCs were 

used as negative control and mouse spinal cord samples as positive control) (Fig. 19). 

 

Fig. 18: Lentiviral overexpression of “3 Woolf factors” and Ca2+-imaging experiment of differentiated neurons 

(A) Transcription factors, used by Wainger et al., 2015 and their role in the sensory system. 

(B) Schematic representation of overexpression experiments, showing the transfection of human NCLCs with lentiviral 
particles of three “Woolf factors” and the differentiation into sensory neurons. 

(C) Pseudo-color images of infected, differentiated neurons, loaded with the fluorescent calcium indicator Fura-2 after 

at least 21 days in culture, before stimulation (a) after capsaicin (b, 1 µM, Caps), mustard oil (c, 200 µM, MO) or 

high potassium (d, 100 mM, HK) treatment. Pseudo-color scale bar represents intracellular calcium concentrations. 

(D) Representative traces of one experiment, shown in (B) indicated that differentiated neurons showed a proper 

response to capsaicin and HK (in orange) and capsaicin and mustard oil (in red). A fraction of cells responded to 

mustard oil/HK (in green) or high HK (in black). Average of responding neurons is given as mean ± SEM (n=36 

cells). 

(E) Quantification of two independent Calcium-imaging experiments indicated that about 41% of neurons showed a 

response to capsaicin and HK (in orange), about 34% of the neurons responded to capsaicin/mustard oil/HK (in red) 

and a minority of neurons got activated by mustard oil/HK (in green), menthol/capsaicin/HK (in blue) or HK only 

(in black). Percentage of responding neurons was calculated per experiment and reported as mean with range (N=2 

experiments). 
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Expression analysis (normalized to the housekeeping gene B2M and the uninfected NCLCs), 

demonstrated that infection of ISL2 (shown in yellow) or KLF7 (shown in blue) did not promote a 

detectable gene induction (7 or 21 days after viral infection), when compared to spinal cord 

samples, where gene expression was increased. Only in NGN1-infected NCLCs (shown in red) 

gene expression was induced after 7 or 21 days, compared to uninfected control cells (Fig. 19). 

These results suggest that not all 3 transcription factors are required for the generation of 

nociceptive neurons, but that only NGN1 expression was effective to drive NCLCs into a 

nociceptive lineage. In line with this finding, Südhof and colleagues also demonstrated that the 

forced overexpression of NGN2 alone, another member of the bHLH transcription factor family, is 

sufficient to directly convert hESCs or iPSCs into neuronal cells (Zhang et al., 2013b). To test the 

hypothesis that only NGN1 is effective to drive NCLCs into a nociceptive lineage, NCLCs were 

infected with NGN1 lentiviral particles and differentiated for at least 3 weeks. 

Ca2+-imaging experiments of NGN1-infected, TRKA-positive neurons, stimulated with capsaicin 

(1 µM), mustard oil (200 µM) or menthol (0.1 µM), indicated that a persistent overexpression of 

NGN1 alone seemed to be sufficient for the differentiation of nociceptive neurons (Fig. 20 B-D). 

Quantification analysis revealed that, on average, 29.5% of the derived neurons showed a response 

to capsaicin and HK (indicated by the orange trace, Fig. 20 B-c, C, D), 16.6% of the neurons got 

activated by capsaicin and mustard oil (shown by the red trace) and only a small percentage of cells 

Fig. 19: Verification of “Woolf virus” expression 

qRT-PCR analysis, representing the relative expression level of ISLET1 (yellow), KLF7 (blue) and NGN1 (red) in stem 

cell-derived nociceptors after different time points of differentiation, normalized to the housekeeping gene B2M and 

compared to uninfected NCLCs as a negative control and mouse spinal cord samples as a positive control. In infected 

differentiated nociceptors only Ngn1 induction was detectable. The delta Ct values of one experiment are shown. 
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responded to mustard oil plus HK (8%; green trace) or menthol plus capsaicin (0.2%) (Fig. 20 B-

D). Although the variability of different experiments was high and the number of capsaicin 

sensitive neurons fluctuated (as indicated by the marked error bars in Fig. 20 D), there was clear 

evidence that a permanent viral-induced overexpression of NGN1 drives NCLCs towards the 

sensory lineage with characteristic hallmarks of functional nociceptors.  

 

Due to the fact that we were not able to reproducibly control “Woolf”-virus production and virus 

infection and that only NGN1 seemed to be infectious and essential for the generation of functional 

nociceptors, we decided to change our strategy and go back to the doxycycline-inducible NGN1 

viral construct (already used in previous experiments). This is a major benefit as it facilitates the 

differentiation procedure, depending on the exogenous expression of only one transcription factor, 

and virus production and infection can be controlled by the EGFP signal, increasing the 

reproducibility of differentiated nociceptors. 

Fig. 20: Lentiviral overexpression of “Woolf-NGN1” and Ca2+-imaging experiment of differentiated neurons 

(A) Schematic representation of overexpression experiments, showing the transfection of human NCLCs with lentiviral 

particles of “Woolf-NGN1” and the differentiation into sesnory neurons. 

(B) Pseudo-color images of infected, differentiated neurons, loaded with the fluorescent calcium indicator Fura-2 

before stimulation (a) after mustard oil (b, 200µM, MO), capsaicin (c, 1 µM, Caps) or high potassium (d, 100 mM, 

HK) treatment. Pseudo-color scale bar represents intracellular calcium concentrations. 

(C) Representative traces of one experiment, shown in (B) indicated that differentiated neurons showed a proper response 

to capsaicin and HK (in orange) and neurons that got activated by both stimuli, capsaicin and mustard oil (in red), A  

a fraction of cells responded to mustard oil/HK (in green) or HK only (in black). Average of responding neurons is 

given as mean ± SEM (n=34 cells).  

(D) Quantification of two independent experiments indicated that about 30% of neurons showed a response to capsaicin 

and HK (in orange), about 17% of the neurons responded to capsaicin/mustard oil/HK (in red) and a minority of 

neurons got activated by mustard oil/HK (in green), menthol/capsaicin/HK (in blue). Percentage of responding 

neurons was calculated per experiment and reported as mean with range (N=2 experiments). 
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In Table 3, different NGN1 overexpression systems and culturing properties are summarized, 

indicating that the inducible NGN1 overexpression for 3 days in “mechano”- differentiation 

medium (containing NGF, BDNF, GDNF and RA) was not sufficient to generate stem cell-derived 

nociceptors, compared to an inducible NGN1-overexpression for 10 days (final protocol shown in 

chapter 5.2) or a permanent NGN1 induction, in a differentiation medium containing FCS, NGF, 

BDNF and GDNF, where differentiated TRKA-positive neurons showed characteristic features of 

stem cell-derived nociceptors.  

 

 

Table 3: Different NGN1 overexpression systems and experimental setups used for the generation 

of stem cell-derived nociceptors. Two different NGN1 lentiviral particles (either an inducible or a 

permanent NGN1 expression construct) were used for infection experiments. Gene overexpression 

was either only for 3 and 10 days or for the whole differentiation period. Infected cells were kept 

either in a differentiation medium, established for the generation of stem cell-derived 

mechanoreceptors (“mechano”-differentiation medium) or a differentiation medium used in the 

Wainger et al., 2015 study (“Nociceptor”-differentiation medium”). Different experimental setups 

generated neurons with (↑) or without (↓) nociceptive properties. 

 

5.1.8 Verification of the TRKA-tomato reporter line 

To enable the identification and analysis of developing small diameter nociceptive neurons, an 

extremely heterogeneous population, a TRKA-tomato reporter line, generated in our laboratory, 

was used for further differentiation experiments. With the help of the CRISPR-Cas9 technology 

(Ran et al., 2013; Xiao-Jie et al., 2015), the tomato red fluorescent marker was incorporated into 

the endogenous TRKA locus, coupled with a T2A linker sequence in front of the stop codon (and 

therefore expressed under the TRKA promotor, Fig. 21A). As soon as developing nociceptive 

neurons start to express TRKA, differentiating cells co-express the fluorescent marker and the 

endogenous tomato signal is detectable (Fig. 21B). To demonstrate that the tomato signal indeed 

reflects the endogenous TRKA expression, in situ hybridization experiments for tomato and human 

TRKA were performed on stem cell-derived nociceptors (Fig. 21C-E). Quantification analysis 

demonstrated that 98.7% of tomato-positive neurons were also positive for TRKA (Fig. 21F). This 

experiment showed that the tomato signal reflects the endogenous TRKA expression and 

furthermore that the TRKA-tomato reporter line could be used for the identification and 

classification of differentiating nociceptive subpopulations. 

Virus Gene induction Culturing medium Nociceptive 

properties 

Inducible NGN1 3 days “Mechano”-differentiation medium ↓ 

Woolf-NGN1 permanent “Nociceptor”- differentiation medium ↑ 

Inducible-NGN1 10 days “Nociceptor”- differentiation medium ↑ 
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Fig. 21: Verification of the TRKA-tomato hESC reporter line 

(A) Scheme of TRKA-tomato targeting construct for the generation of a TRKA-tomato reporter line generated by Dr. 

Katrin Schrenk-Siemens in our laboratory, where tomato is inserted into the endogenous TRKA locus. 

(B) Differentiating TRKA-tomato hESCs, showing an endogenous TRKA-tomato signal. 

(C-E)  Verification of the TRKA-tomato reporter line by in situ hybridization experiments. Nearly all tomato positive 

neurons (C) are also positive for TRKA (D). (E) Overlay of both markers, tomato in red and TRKA in green.  

            Scale bar 20 µm. 

(F)       Quantification of three independent TRKA-tomato in situ hybridization experiments, showing that the overlap is 

            almost 100%. 
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5.2 Final differentiation protocol and characterization of stem cell-derived nociceptors 

 

5.2.1 Final differentiation protocol 

Since in vivo primary sensory neurons derive from the neural crest, we tried to generate stem cell-

derived nociceptors by recapitulating sensory neuron development, using a two-step differentiation 

protocol that relies on the generation of NCLCs as an intermediate cell population (Fig. 22). As a 

starting cell line, hESCs, growing in colonies, were cultured and expanded on matrigel-coated 

dishes (Fig. 22A), a basement membrane matrix that is essential for anchorage-dependent cell 

types. The first differentiation step to produce NCLCs was an already established protocol in our 

laboratory (Schrenk-Siemens et al., 2015a). For this, hESCs are cultured in uncoated dishes, where 

they start to form neuroectodermal spheres (Fig. 22B). Under the influence of intrinsic and 

extrinsic signals, neuroectodermal spheres spontaneously attach to the cell culture dish, and cells 

undergo an epithelial-to-mesenchymal transition to become highly motile, and neuronal precursors 

start to migrate out (Fig. 22B-C). For the second differentiation step, to further differentiate NCLCs 

into mature sensory neurons, NCLCs are harvested and infected with inducible NGN1 and rtTA 

lentiviral particles (Fig. 22C). 

 

 

 

Fig. 22: Two-step differentiation protocol 

Time-course illustration of the two-step differentiation protocol (top) and images of different cell populations at different 

stages of differentiation (bottom). As a starting cell population the hESCs growing in colonies (A), stem cell-derived 
neuroectodermal spheres (B) and delaminating NCLCs (C), precursor cells of primary sensory neurons, used for viral-

induced overexpression experiments. Scale bar 50µm. 
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According to our new established, final differentiation protocol, migrated NCLCs were infected 

with the NGN1/rtTA virus 1 day after plating, and doxycycline-induced gene expression was 

started 24 hours post-infection. For the differentiation of TRKA-positive nociceptive neurons, 

NGN1 was induced for a transient period of 10 days followed by additional 10-14 days in culture, 

allowing the cells to mature into functional neurons (Fig. 23A). 

Time-course analysis demonstrated that already 24 hours after gene induction the majority of cells 

were GFP-positive, meaning that most cells were infected and overexpressing NGN1 (Fig. 23B). 

Due to proliferation aspects and high cell density, differentiating cells were splitted after 6-8 days 

of gene induction. At this developmental stage cells started to migrate and form nest-like structures 

(Fig. 23B d-f). Approximately 11-14 days after gene induction, the NGN1 signal decreased and 

was completely absent 15 days after splitting, while the tomato signal (indicating TRKA 

expression) increased gradually (Fig. 23B g-i).  
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Ca2+-imaging experiments revealed that a transient NGN1 overexpression alone (10 days) was 

sufficient to differentiate NCLCs into primary sensory neurons with nociceptive properties, when 

culturing them in the differentiation cocktail of the Wainger et al. study (Fig. 24). Although only a 

small fraction (7%) of tomato-positive neurons showed a response to capsaicin and HK (indicated 

by the orange trace), and 2% of the neurons got activated by capsaicin and mustard oil (shown by 

the red trace, Fig. 24B-D), we decided to maintain this controllable protocol and characterize 

differentiated TRKA-positive neurons in more details.  

 

 

Fig. 23: Generation of stem cell-derived primary sensory neurons based on NGN1 overexpression 

(A) Time-line illustrating the NCLC infection and differentiation into primary sensory neurons. 

(B) Images of distinct cell populations at different stages of differentiation. As a starting cell population the NCLCs one 
day after doxycycline (Dox) treatment are shown (a). Note the induced NGN1 expression as identified by the EGFP 

signal (b). The tomato-TrkA signal is not yet detectable (c). 8 days after gene induction, cells start to migrate and 

form neuron-like morphologies (d). NGN1 is still induced (e), tomato-TRKA is not yet detectable (f). 15 days post 

splitting, differentiated neurons formed cell clusters (g) and started to express tomato-TRKA (i). NGN1 
overexpression is not detectable any longer (h). Scale bar 50 µm. 
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The modified differentiation procedure - the inducible overexpression of NGN1 alone - has a great 

advantage compared to the already published Wainger et al. study, since it facilitates the 

differentiation protocol (only one virus is needed) and increases the reproducibility by controlling 

viral infection with an EGFP fluorescent reporter. Furthermore, if one tries to recapitulate in vivo 

sensory neuron development, where NGN1 is essential to drive neural crest cells towards a TRKA 

lineage (Ma et al., 1999a), a transient NGN1 overexpression during a distinct period of 

differentiation seemed to be more in vivo-like compared to a stable NGN1 overexpression. 

  

Fig. 24: Lentiviral overexpression of “inducible NGN1” and Ca2+-imaging experiment of differentiated neurons  

(A) Schematic representation of overexpression experiments, showing the transfection of human NCLCs with lentiviral 

particles of the inducible NGN1 and the differentiation into sensory neurons. 
(B) Pseudo-color images of infected, differentiated neurons after at least 21 days in culture, loaded with the fluorescent 

calcium indicator Fura-2 before stimulation (a) after mustard oil (b, 200 µM), capsaicin (c, 1 µM) or high 

potassium (d, 100 mM) treatment. Pseudo-color scale bar represents intracellular calcium concentrations. 

(C) Representative traces of one experiment, shown in (B) indicated that differentiated neurons showed a proper 

response to capsaicin and HK (in orange) and neurons that got activated by both stimuli, capsaicin and mustard oil 

(in red). A fraction of cells responded to mustard oil/HK (in green) or HK only (in black). Average of responding 

neurons is given as mean ± SEM (n=59 cells). 

(D) Quantification of one Calcium-imaging experiment indicated that about 7% of neurons showed a response to 

capsaicin and HK (in orange), about 2% of the neurons responded to capsaicin/mustard oil/HK (in red) and a 

minority of neurons got activated by mustard oil/HK (in green), menthol/capsaicin/HK (in blue). Percentage of 

responding neurons was calculated per experiment (N=1 experiment). 
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5.2.2 Characterization of stem cell-derived nociceptors - Immunostainings  

Following the Ca2+-imaging experiments, showing that the induced NGN1 expression drives 

sensory neuron development, we wanted to characterize differentiated TRKA-positive neurons in 

more detail. Therefore, to assess how many NCLCs in culture adopted a sensory neuron phenotype, 

immunostainings for ISLET1 (a marker for post-mitotic sensory neurons) and RFP (which labels 

tomato-positive, TRKA expressing cells) were performed. Protein expression analysis 

demonstrated that differentiation efficiencies varied between different cultures. In two out of three 

analyzed cultures, differentiated neurons grew in big clusters (Fig. 25A-a), whereas in one 

experiment differentiated cells grew only in small clusters or even as single cells (Fig. 25A-b). 

Quantification analysis revealed that 24.4% of DAPI-positive cells were also positive for ISLET1, 

indicating their sensory phenotype (Fig. 25B). Furthermore, immunohistochemistry analysis of 

differentiated cells showed that 99% of the ISLET1-positive sensory neurons were also positive for 

RFP, and therefore also expressed TRKA (Fig. 25C a-b, D).  
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The ability to perceive various sensations relies on the conversion of distinct stimuli into an 

electrical signal, conveyed from primary sensory neurons in the periphery to specific target regions 

in the brain. Primary sensory neurons can be functionally classified into Aβ, Aδ and C-fibers. 

Whereas heavily myelinated, fast-conducting Aβ-fibers are large diameter low-threshold 

mechanoreceptors, lightly myelinated Aδ fibers and unmyelinated, slowly conducting C-fibers are 

mainly small diameter nociceptors (Julius and Basbaum, 2001). 

Additionally, it was shown that, in animal models, different fiber-types can also be categorized by 

the presence of different neurofilament subunits. According to their molecular weight, three 

different neurofilament subtypes have been identified: the heavy, the medium and the light 

Fig. 25: Immunohistochemistry analysis of differentiated TRKA positive nociceptor 

(A) Immunohistochemical staining of differentiated hESC-derived sensory neurons for ISL1, a marker of post-mitotic 

sensory neurons and for RFP, the red fluorescent protein, labeling the TRKA-tomato positive neurons. 

Differentiation efficiencies varied between cultures. Either differentiated cells grew in big clusters (a), or only in 

smaller clusters or even single cells (b). Scale bar 50 µm. 

(B) Quantification analysis showing that on average around 24.4% of DAPI positive cells are also positive for ISLET1, 

indicating their sensory phenotype. 

(C) Immunohistochemical staining of differentiated hESC-derived nociceptor clusters for ISL1 (a), RFP (b), cMAF (c) 

and NF200 (d). Scale bar 20 µm. 

(D) Quantification analysis of 3-4 separate differentiations showing that almost all ISL1 positive neurons are also 

positive for the red fluorescent protein RFP. Nearly all RFP positive neurons co-express NF200 and about 41.4% of 

the RFP positive neurons are also positive for cMaf. 
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neurofilament (Lariviere and Julien, 2004; Shelanski et al., 1994). NF200, the heavy neurofilament 

subunit, is a molecular marker of fast-conducting A-fibers. To investigate whether this marker can 

also be used to characterize stem-cell-derived TRKA-positive neurons, NF200 immunostainings 

were performed. Interestingly, almost all (96.7%) TRKA-positive cells were also positive for 

NF200 (Fig. 25C-d, D). 

Nociceptors are an extremely heterogeneous cell population, and can be activated not only by heat, 

cold or chemical irritants, but also by noxious mechanical stimuli that would lead to tissue damage, 

compared to the innocuous mechanical stimuli transduced by low-threshold mechanoreceptors 

(Basbaum et al., 2009). To further classify differentiated sensory neurons, we also stained them 

with an antibody recognizing cMAF, a transcription factor known to be essential for 

mechanosensory function in human and mice (Wende et al., 2012). Quantification analysis 

demonstrated that 41.4 % of TRKA-expressing neurons are also positive for cMAF, pointing out 

their mechanosensitivity (Fig. 25C c-d, D). 

 

5.2.3 Neurotrophin receptor expression in differentiated nociceptors 

To further characterize differentiated TRKA-positive neurons, and due to the lack of human 

specific antibodies of sufficient quality, we performed dual-color in situ hybridizations, analyzing 

the RNA transcripts of differentiated neurons. In addition to classifying primary sensory neurons 

according to their cell body size or axon fiber conduction velocity, they can classically also be 

separated by their expression of one member of the neurotrophin receptors that are mutually 

exclusive (Chen et al., 2006; Ernsberger, 2009; Perez-Pinera et al., 2008; Snider, 1994).  

Studies in rodents or chicken have observed that TRKA is primarily expressed in small diameter 

peptidergic nociceptors that mainly respond to heat or noxious mechanical forces (Averill et al., 

1995), whereas TRKB-positive neurons, mainly low threshold mechanoreceptors, get activated by 

innocuous mechanical stimuli (Perez-Pinera et al., 2008). Large diameter TRKC-expressing 

neurons, classified as proprioceptors, are known to be important for transducing muscle spindle 

tension (Snider, 1994). In order to assess whether our stem cell-derived neurons reflect what is 

known from animal studies and express TRK receptors in a mutually-exclusive manner, we 

performed double fluorescent in situ hybridizations for TRKA in combination with one of the other 

neurotrophin receptors. 

In situ hybridizations for TRKA/TRKB showed only a small amount of TRKA/TRKB double positive 

neurons (shown by arrowheads in Fig. 26A-D). Quantification analysis of three independent 

differentiations revealed that only 3.8% of the tomato-TRKA-positive cells were also positive for 

TRKB (Fig. 26E). 

 



  Results 

 

 
82 

 

 

 

Quantifications of 3 separate TRKA/TRKC double fluorescent in situ hybridization experiments 

showed that a higher proportion (19.2%) of the TRKA population (shown in red in Fig. 27A) co-

express TRKC (indicated by arrowheads; Fig. 27B, E).  

These findings demonstrated, similar to what is known from animal studies, that stem cell-derived 

nociceptors selectively express the neurotrophin receptors and only smaller fractions of TRKA-

positive neurons co-express TRKB or TRKC, receptors that are mainly expressed in 

mechanoreceptors or proprioceptors, respectively. 

Fig. 26: Dual color in situ hybridization analysis of stem cell-derived nociceptors for TRKA/TRKB 

Double fluorescent in situ hybridizations of differentiated nociceptors indicated that a small fraction of TRKA-positive 

neurons (A) are also positive for TRKB (B, indicated by arrowheads). DAPI staining showed all cells in the field of view 

(C). (D) Overlay of all three markers, DAPI in blue, TRKA in red and TRKB in green. (E) Quantification analysis of 3 

separate differentiations showing that on average around 3.8% of TRKA-positive nociceptors also express TRKB. Scale 

bar 20 µm. 
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5.2.4 RET expression in differentiated nociceptors 

Based on what is known from animal studies, neurotrophin receptors are broadly expressed during 

development (Ernsberger, 2009). Later during differentiation, neurotrophin receptor expression 

gets more defined and at postnatal stages TRK receptors can even be used for categorizing different 

neuronal subpopulations. During development, differentiating TRKA-positive neurons separate 

into two major nociceptive subpopulations. Peptidergic nociceptors continuously express TRKA 

and signaling molecules such as Substance P or CGRP, whereas the non-peptidergic nociceptor 

subpopulation downregulates TRKA expression and upregulates the tyrosine receptor kinase RET 

(Molliver et al., 1997). Although all primary sensory neurons can be classified by the expression of 

the neurotrophin receptors TRKA, TRKB, TRKC and of the tyrosine receptor kinase RET (mainly 

Fig. 27: Dual color in situ hybridization analysis of stem cell-derived nociceptors for TRKA/TRKC 

Double fluorescent in situ hybridizations of differentiated nociceptors indicated that a small fraction of TRKA-positive 

neurons (A) are also positive for TRKC (B, indicated by arrowheads). DAPI staining showed all cells in the field of view 

(C). (D) Overlay of all three markers, DAPI in blue, TRKA in red and TRKC in green. (E) Quantification analysis of 3 

separate differentiations showing that on average around 19.2% of TRKA-positive nociceptors also express TRKC. Scale 

bar 20 µm. 
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expressed in non-peptidergic nociceptors as well as in some TRKB, TRKC-positive cells), it was 

also demonstrated that a small group of 5-10% of sensory neurons co-express TRKA and RET 

(Golden et al., 2010; Molliver et al., 1997). Subsequently, TRKA/RET-double positive neurons 

have been identified as itch-sensitive neurons (Stantcheva et al., 2016a).  

Surprisingly, in situ hybridization analysis, with probes detecting human RET and the endogenous 

tomato-TRKA RNA, showed a strong overlap of both populations: 77.6% of TRKA-positive 

neurons (shown in red, Fig. 28A) co-express the tyrosine receptor kinase RET (shown in green, Fig. 

28B). There is strong evidence to suggest that species-specific molecular differences already exist 

at the level of primary sensory neurons and in human stem cell-derived nociceptors the RET/TRKA-

double positive population is higher, when compared to mouse DRG neurons. 

 

 

 

Fig. 28: Dual color in situ hybridization analysis of stem cell-derived nociceptors for TRKA/RET 

Double fluorescent in situ hybridizations of differentiated nociceptors indicated that the majority of TRKA-positive 

neurons (A) are also positive for RET (B, negative cells are labelled by arrowheads). DAPI staining showed all cells in 

the field of view (C). (D) Overlay of all three markers, DAPI in blue, TRKA in red and RET in green. (E) Quantification 

analysis of 3 separate differentiations showing that on average around 77.6% of TRKA-positive nociceptors also express 

RET. Scale bar 20 µm. 
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5.2.5 Sodium channel expression in differentiated nociceptors 

Another important gene family that has been linked to pain sensation, are the voltage-gated sodium 

channels (VGSC), large integral membrane proteins crucial for initiating and propagating action 

potentials. In mammals, the voltage-gated sodium channel family consists of 9 different members, 

referred to as Nav1.1-Nav1.9. Three channels, Nav1.7, Nav1.8 and Nav1.9, are most abundantly 

expressed in primary sensory neurons of the peripheral nervous system and mutations in these 

channels have been associated with a variety of heritable pain disorders (Cummins et al., 2007; 

Kanellopoulos and Matsuyama, 2016). While Nav1.7 is broadly expressed in different types of 

peripheral neurons, Nav1.8 and Nav1.9 are more restricted to small diameter nociceptive neurons 

(Amaya et al., 2000; Toledo-Aral et al., 1997).  

Due to the fact that Nav1.6-Nav1.9 are known to be expressed in human and mouse DRG neurons 

and that Nav1.7-Nav1.9 are implicated in human pain disorders, we wanted to explore Nav channel 

expression in stem cell-derived nociceptors. We performed RT-PCR to analyze the distribution of 

Nav1.6-Nav1.9 expression in differentiated nociceptor cultures compared to stem cell-derived 

mechanoreceptors and uninfected NCLCs (Fig. 29).  

Gene expression analysis of the three nociceptor cultures (Fig. 29; Noci #1-#3 and #pooled) and of 

differentiated mechanoreceptors (Fig. 29; Mechano) (normalized to the housekeeping gene 

GAPDH and the uninfected NCLCs), corroborated data from the literature: Nav1.6 was detectable 

in both sensory subtypes (mechanoreceptors and nociceptors) at comparable low levels (Fig. 29; 

shown in yellow), Nav1.7 (Fig. 29; shown in blue) was broadly expressed in differentiated 

nociceptors as well as in stem cell-derived mechanoreceptors, and Nav1.8 (Fig. 29; shown in red) 

was more restricted to small diameter neurons and only detectable in differentiated TRKA-positive 

nociceptors. 

Surprisingly, the sodium channel Nav1.9 had higher expression in mechanoreceptors than in 

differentiated TRKA-positive nociceptors, contrary to previous published work that showed that 

Nav1.9 expression, similar to Nav1.8, is mainly expressed in small diameter nociceptive DRG 

neurons.  

These results suggest that differentiated stem cell-derived nociceptors feature some characteristic 

hallmarks of native DRG nociceptors. 
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5.2.6 Electrophysiological analysis of differentiated nociceptors (done by Dr. Jörg Pohle) 

We next asked whether stem cell-derived neurons also show electrophysiological properties of 

nociceptors. In addition to functional Ca2+-imaging recordings and marker gene expression profiles, 

adult sensory neurons can also be categorized by their action potential characteristics. While 

myelinated, large diameter low-threshold mechanoreceptors are characterized by narrow action 

potentials, small diameter nociceptive neurons mainly elicit broad action potentials, mediated by 

Nav1.8 channels. Moreover, rodent studies, analyzing the action potential morphology of 

dissociated DRG neurons, found another nociceptor-specific marker: in response to increasing 

steps of current injections, primary sensory nociceptors elicited multiple action potentials, whereas 

non-nociceptive neurons only showed single action potentials (Viatchenko-Karpinski and Gu, 

2016; Wainger et al., 2015). Interestingly, we (electrophysiological recordings were performed by a 

colleague in our laboratory, Dr. Jörg Pohle) found that the majority of stem cell-derived, TRKA-

positive nociceptors elicited trains of action potentials in response to step-wise depolarizing 

currents, a feature that is characteristic of a nociceptive phenotype (Fig. 30). 

 

 

 

 

Fig. 29: Nav channel expression in stem cell-derived sensory neurons 

qRT-PCR analysis, representing the relative expression level of Nav1.6 (yellow), Nav1.7 (blue), Nav1.8 (red) and Nav1.9 

(green) in three different nociceptor cultures (Noci #1, Noci #2, Noci #3) and differentiated mechanoreceptors (Mechano) 

after 3 weeks of differentiation, normalized to the housekeeping gene GAPDH and compared to uninfected NCLCs as a 

negative control.The mean with range of the delta Ct values of two different experiments are shown. Data was pooled 

after substracting Ct values. 
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As already mentioned, primary sensory nociceptors can not only be activated by extreme 

temperatures or chemical irritants, but also by noxious mechanical forces. Mechanosensitive 

neurons are characterized by their ability to sense and thereupon transduce mechanical stimuli into 

an electrical signal that can be measured by electrophysiological recordings. In response to 

membrane indentation, caused by a nanomotor-driven probe, mechanosensitive neurons elicit 

mechanically-activated currents, which can be measured by a patch pipette. Based on the 

inactivation kinetics, mechanically-activated currents can be discriminated into three different 

subtypes: rapidly-adapting (RA), intermediately-adapting (IA) or slowly-adapting (SA) currents. 

While RA mechanically-activated currents can be found in both populations, mechanoreceptors and 

nociceptors, IA and SA currents are exclusively present in nociceptive neurons (Drew et al., 2002; 

Hu and Lewin, 2006; Viatchenko-Karpinski and Gu, 2016). 

In order to assess whether stem cell-derived nociceptors also show characteristic features of 

mechanosensitive neurons, electrophysiological stimulations were performed. In response to 

mechanical stimulation (10 µm indentation) by a nanomotor-driven probe, 61.8% of TRKA-

positive nociceptors elicited robust mechanically-activated currents (Fig. 31A-B). Furthermore, 

mechanical currents increased in amplitude with rising membrane indentation intensity: the deeper 

the indentation, the higher the amplitude (Fig. 31C). Most importantly, elicited currents exhibited 

all different kinetics from RA (τ < 10 ms), IA (τ = 10-30 ms) and SA (τ > 30 ms) mechanically-

activated currents (Fig. 31D), indicating that differentiated TRKA-positive neurons adapted 

characteristic features of a nociceptor phenotype. 

 

 

Fig. 30: Electrophysiological characterization of stem cell-derived nociceptors 

In response to increasing steps of current injections hESC-derived sensory TRKA-positive neurons elicited trains of 

action potentials, a marker for nociceptive neurons. Work done by Dr.Jörg Pohle  
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To conclude, not only functional Ca2+-imaging recordings and marker gene expression analysis but 

also electrophysiological recordings demonstrated that differentiated, TRKA-positive neurons 

show characteristic hallmarks of peptidergic nociceptors. While not formerly proven that the hES-

derived nociceptors are indeed of peptidergic origin, this is assumed based on the expression of the 

peptidergic marker TRKA. Nevertheless, future analysis will have to show if this is indeed the 

case. Furthermore, gene expression analyses of several independent nociceptor cultures showed 

similar results, suggesting that the differentiation protocol is reproducible. 

 

5.3 Comparison of human and mouse DRG neurons 

 

5.3.1 Optimizing in situ hybridization protocol for human tissue 

To validate whether hESC-derived nociceptors are physiologically relevant, we analyzed the 

marker gene expression profile in in vitro differentiated neurons and human post-mortem DRG 

tissue.  

In addition to the comparative study, to assess how similar in vitro generated nociceptors are, in 

contrast with their native human correspondents, we also wanted to explore differences and 

similarities between the animal mouse model system and the human organism. We therefore 

compared gene expression patterns of native human and mouse DRG tissue.  

In order to compare gene expression profiles of stem cell-derived nociceptors and human dorsal 

root ganglia by in situ hybridization, we obtained human post-mortem DRG tissue of five unrelated 

individuals from the Netherlands Brain bank (www.brainbank.nl). Furthermore, not only to account 

Fig. 31: Mechanical stimulation of stem cell-derived TRKA positive nociceptors. Work done by Dr.Jörg Pohle. 

(A-B) Representative images (Brightfield image (A); fluorescent TRKA signal (B)) of mechanically stimulated 

TRKA-positive neurons by a nanomotor-driven probe. 

(C) Representative current amplitude as a function of mechanical indentation of the membrane. Mechanically-              

acti activated currents increased with membrane indentation intensity. 

(D)  Quantification analysis of mechanically stimulated nociceptors. Approximately 61.8% of TRKA-positive 

nociceptors elicited robust (SA/IA/RA) mechanically-activated currents. 

http://www.brainbank.nl/
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for inter-individual differences but also for gene expression differences within one individual, we 

acquired native DRG that innervated different human dermatomes. 

The human dermatome is a distinct area of the skin innervated by a specific pair of DRG. While 

cervical nerves (C1-8) mainly innervate the neck, the arms and fingers, the thoracic DRG (T1-T12) 

mostly innervate the thorax and the lumbar nerves (L1-L5) mainly the legs.  

Prior to gene expression analysis of human DRG tissue, the in situ hybridization protocol was 

optimized with an anti-sense RNA probe against human TRKA, known to be broadly expressed in 

DRG tissue. Single-color in situ hybridization experiments performed according to the already 

established protocol, using a non-hydrolyzed probe at 65 °C (Fig. 32A) showed only very few 

positive cells. A decreased hybridization temperature of 42 °C raised the number of positively-

labeled cells, but also the background was higher (Fig. 32B). The in situ hybridization signal could 

be nicely increased by using a hydrolyzed RNA probe, which facilitates the RNA penetration, at a 

hybridization temperature of 60 °C (Fig 32C). Brownish deposits are most likely lipofuscin 

particles, that are present in the cells and can already be identified by light microscopy.  

 

 

5.3.2 Neurotrophin receptor expression in human and mouse DRG tissue 

From animal studies, it is known that neurotrophin receptors (TRKA, TRKB and TRKC) are 

broadly expressed during development and get more defined at later developmental stages and can 

even be used for categorizing different sensory neuronal subpopulations (Ernsberger, 2009; 

Molliver and Snider, 1997b; White et al., 1996). While TRKA is primarily expressed in small 

diameter peptidergic nociceptors (Averill et al., 1995), TRKB-positive neurons mainly belong to 

Fig. 32: Optimizing the in situ hybridization protocol for human DRG tissue  

(A) Original protocol as previously described in Wende et al., 2012 using a non-hydrolyzed hTRKA RNA probe at a 

hybridization temperature of 65°C. Only few neurons were positively stained for TRKA. 

(B) Modified protocol using a non-hydrolyzed hTRKA RNA probe at a hybridization temperature of only 42 °C. More 

neurons were positively stained for TRKA but the background was higher. 

(C) Optimized protocol for human DRG tissue using a hydrolyzed hTRKA RNA probe at a hybridization temperature of 

60°C. Many neurons were positively stained for TRKA. Scale bar 100 µm.  
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low threshold mechanoreceptors (Perez-Pinera et al., 2008), and large diameter TRKC-expressing 

neurons mainly to proprioceptors (Snider, 1994).  

Neurotrophin receptor expression analysis of differentiated TRKA-tomato positive neurons 

confirmed what was already described in animal studies and showed an almost indistinguishable 

expression pattern: only 3.8% of TRKA-positive cells co-expressed TRKB and 19.2% co-expressed 

TRKC (Fig. 26 and 27). To identify whether neurotrophin receptors are expressed in a similar 

pattern and can also be used for categorizing different sensory neuronal subpopulations in native 

human and mouse DRG, dual-color in situ hybridization experiments for TrkA in combination with 

TrkB and TrkC were performed. Quantifications indicated that 5.3± 0.7% of human TRKA-labelled 

neurons are also positive for TRKB, whereas in mouse DRG neurons 4.8 ± 1.7% double positive 

cells were detectable (Fig. 33A-C). 

 

 

 

Fig. 33: Dual color in situ hybridization analysis of human and mouse DRG tissue for TrkA/TrkB  

Double fluorescent in situ hybridization of cryo-section from a native human (A, D) and mouse (B, E) DRG, showing the 

presence of TrkB (A, B) or TrkC (D, E) in combination with TrkA. In both species, TrkB (green) is expressed in a small 

subset of TrkA-positive neurons (red, A, B). Quantifications of three independent individuals revealed that about 5.3± 

0.7% of human TRKA neurons co-express TRKB, similar to the mouse analysis showing 4.8 ± 1.7% TrkA/TrkB double 

positive neurons (C). Gene expression analysis for TrkA/TrkC (D, E) indicated that in both species only a small 

subpopulation of TrkA (red) positive neurons express TrkC (green). Quantifications of three independent individuals 

revealed that about 16.0 ± 1.5% of human TRKA neurons co-express TRKC, not significantly different to the mouse 

analysis showing 10.8 ± 1.2% TrkA/TrkC-double positive neurons (F). Scale bar 100 µm. 
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Dual color in situ hybridizations for TrkA/TrkC demonstrated an overlap of 16.0 ± 1.5% in human 

tissue, similar to 10.8 ± 1.2% in post-mortem mouse DRG (Fig. 33D-F). Statistical analysis (using 

the linear mixed model) indicated that fractions derived from human DRG slices did not 

significantly differ from fractions derived from mouse DRG tissue (TrkB/TrkA, p=0.956; 

TrkC/TrkA, p=0.111). These findings show a rather identical neurotrophin receptor expression 

distribution of TRKA/TRKB and TRKA/TRKC-double positive sensory neurons in stem cell-derived 

nociceptors compared to native human DRG and furthermore also to mouse tissue. 

In addition to TRK receptor distribution among different sensory neuron subpopulations, it was 

also demonstrated that primary sensory neurons in rodents can be classified by the size of their cell 

body: TRKA-positive neurons have mainly a small cell size, TRKB-positive cells mainly an 

intermediate area size and TRKC-expressing sensory neurons mainly larger cell bodies (McMahon 

et al., 1994; Molliver et al., 1997; Silos-Santiago et al., 1995b). To ascertain whether a similar cell 

size distribution can also be found in human and mouse DRG, we plotted the soma area of TrkA, 

TrkB and TrkC-positive cells against their relative frequency. Compared to mouse DRG neurons, 

we found a similar relative size distribution in native human DRG tissue. On average, TRKA-

positive neurons have small cell bodies (400-1000 µm2; Fig. 34A, labelled in red), compared to 

intermediate size TRKB-expressing neurons (peak around 1400 µm2, Fig.34A, labelled in green) 

and to large TRKC-positive neurons (peak around 1600 µm2; Fig. 34A, labelled in blue) (Fig. 34A-

B). Furthermore, analysis of the overall cell size, comparing the smallest and largest neurons of 

each Trk-receptor subpopulation, showed that on average human DRG neurons are 1.5-3 times 

larger compared to mouse DRG neurons, an already described phenotype (Davidson et al., 2014; 

Vega et al., 1994). These findings confirm a similar expression pattern of TRKA/TRKB and 

TRKA/TRKC-double positive neurons in stem cell-derived nociceptors and human and mouse DRG 

tissue. Moreover, the relative size distribution of mouse and human DRG neurons is similar and 

nicely related to the expression of one member of the neurotrophin receptors. 

In comparison, soma size of stem cell-derived TRKA-positive neurons positively correlated with 

increasing time of differentiation, and cells kept in culture for more than 6 weeks had cell body 

sizes up to 400 µm2, reaching similar soma sizes of human native TRKA-expressing DRG neurons 

(effect was only quantified once). 
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5.3.3 Ret expression in human/mouse DRG tissue 

We next asked whether a TrkA/Ret-double positive subpopulation is found in human and mouse 

DRG. Although all primary sensory neurons can be classically categorized by the exclusive 

expression of TRKA, TRKB, TRKC or RET, it has also been demonstrated that a small group of 5-

10 % of sensory neurons co-express TRKA and RET (Golden et al., 2010; Molliver et al., 1997).  

Surprisingly, in stem cell-derived nociceptors the overlap of both populations was high, with 77.6% 

of TRKA-positive cells co-expressing RET (Fig. 28). In situ hybridization analysis with anti-sense 

RNA probes against TrkA and Ret showed that in both human and mouse DRG a fraction of TrkA-

positive neurons also expressed Ret (Fig. 35). In human DRG slices, 45.9 ± 0.7% of TRKA-positive 

cells also expressed RET, whereas in mouse DRG slices the amount of TrkA/Ret-double positive 

cells was significantly lower (23.2 ± 1.8%) (Fig. 35). These findings indicate that in both species a 

TrkA/Ret population exists, but in human stem-cell derived nociceptors and in native human DRG 

Fig. 34: Cell size distribution of TrA, TrkB or TrkC-positive human and mouse DRG neurons 

(A) Soma area of TRKA (red), TRKB (green) and TRKC (blue) positive human DRG neurons plotted against their 

relative frequency. 

Compared to mouse DRG neurons, a similar relative size distribution is found in native human DRG tissue with the 

majority of TRKA-positive neurons having smaller cell bodies, compared to intermediate size TRKB-expressing 

neurons and TRKC-positive neurons with mainly even larger cell bodies. 

(B) Soma area of TrkA (red), TrkB (green) and TrkC (blue)positive mouse DRG neurons plotted against their relative 

frequency. 
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the population is higher compared to mouse DRG (human vs mouse DRG; p=0.002 **; linear 

mixed model). 

Moreover, in both species, we also found different Ret expression levels (Fig. 35A, D), an already 

described phenotype in the mouse (Stantcheva et al., 2016a). Clustering analysis of TrkA, Ret or 

TrkA/Ret-double positive cells in mouse or human DRG tissue, pursuant to their in situ intensity 

levels, showed the TrkA/Ret-double positive population (high TrkA/high Ret) in analyzed human 

DRG (Fig. 35H), whereas in mouse DRG this population was almost undetectable (Fig. 35I). This 

difference in RET expression levels was also noticeable in human stem cell-derived nociceptors, 

but has not been further investigated yet. 

 

 

Fig. 35: In situ hybridizations analysis of human and mouse DRG tissue for TrkA/cRet expression 

In situ hybridization analysis, illustrated as single channels, of cryo-section from a native human (A-C) and mouse (D-F) 

DRG, showing the presence of Ret alone (A, D) or in combination (C, F) with TrkA (B, E). In both species, different Ret 

expression levels were detectable in colorimetric in situ experiments. (A, D shown by arrows and arrowheads). Dual 

color in situ experiments revealed that Ret is expressed in a subset of TrkA-positive neurons in human (B, C) and mouse 

(E, F) DRG neurons (indicated by arrowheads). Quantifications of three independent individuals revealed that about 45.9 

± 0.7% of human TRKA neurons co-express RET, compared to the mouse analysis showing about 23.2 ± 1.8% TrkA/Ret-

double positive neurons (G). Clustering analysis of TrkA, Ret or TrkA/Ret-positive human (H) and mouse (I) DRG 

neurons, according to their in situ intensity levels, showed again the existence of a TRKA/RET-double positive population 

in human DRG. Scale bar 100 µm. 
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5.3.4 NF200 expression in human and mouse DRG tissue 

Additionally, we also wanted to elucidate whether human and mouse DRG neurons could be 

categorized by their expression of distinct neurofilament subunits and whether species-differences 

regarding their neurofilament expression were observable. NF200, the heavy neurofilament 

subunit, has been broadly used for labeling fast-conducting A-fibers and, interestingly, almost all 

(96.7%) of the differentiated, TRKA-positive neurons, were also positive for NF200. 

Quantification analysis of immunostainings with two different antibodies, recognizing NF200, 

showed that nearly all (97.3 ± 1.2%) neurons (defined as class III beta-tubulin (TUJ1)-positive 

cells), in human DRG also expressed NF200, whereas in mouse DRG slices only 61.7 ± 0.4% of all 

neurons co-expressed NF200 (p < 0.001; linear mixed model) (Fig. 36). Small diameter TUJ1-

positive neurons in the mouse seemed not to be NF200-positive (indicated by arrowheads, Fig. 

36D-F). 

These results again suggest that our differentiation strategy seems to produce nociceptors very 

similar to their in vivo equivalents, because in stem cell-derived neurons and native human DRG 

almost every sensory neuron is positive for NF200, independent of different neuronal subtypes, as 

already described for human post-mortem tissue by Vega et al., 1994. 

 

 

 

Fig. 36: Immunohistochemical analysis of human and mouse DRG tissue for TUJ1/NF200 expression 

Immunostainings of cryo-sections from a native human (A-C) and mouse (D-F) DRG with antibodies recognizing the 

pan-neuronal marker TUJ1 (A, D) and the heavy neurofilament NF200 (B, E). In human DRG slices NF200 is broadly 

expressed in all TUJ1-positive neurons (A-C) compared to mouse DRG slices where NF200 is only expressed in a subset 

of TUJ1-positive neurons (D-F, NF200 negative cells are marked by arrowheads). Quantifications of three independent 

individuals revealed that almost all human DRG neurons (97.3 ± 1.2%) express NF200, compared to the mouse analysis 

showing about 61.7 ± 0.4% TUJ1/NF200-double positive neurons (G). Scale bar 100 µm. 
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5.3.5 Sodium channel expression in human/mouse DRG tissue 

Since we already saw species-specific differences between human and mouse gene expression 

patterns when comparing hESC-derived nociceptors to native human and mouse DRG neurons (see 

chapter 5.2 and 5.3) we decided to expand the comparative study and focus on more classical 

nociceptive molecules. 

As stated before, voltage-gated sodium channels (Nav1.7-Nav1.9) are important pain mediators, by 

initiating and propagating action potentials. Also, mutations in these genes have been associated 

with a variety of heritable pain disorders (Cummins et al., 2007; Kanellopoulos and Matsuyama, 

2016). Although different sodium channels are known to be involved in pain mechanisms, making 

them interesting targets for the discovery of specific pain-relieving drugs, it has not been fully 

elucidated which channel isoform causes which type of pain disorder, and developmental efforts 

did not yield new therapeutic drugs (Cummins et al., 2004, 2007; Han et al., 2016). Moreover, it 

was also demonstrated that mouse and human pain phenotypes, linked to sodium channel 

mutations, are different (Minett et al., 2012, 2014; Nassar et al., 2004; Weiss et al., 2011).  

In order to compare Nav channel expression of stem cell-derived nociceptors and native human and 

mouse DRG tissue, double in situ hybridizations for TrkA and Nav1.6-1.9 were performed. 

Quantification analysis indicated that in human DRG about 35.2 ± 5.9% of TrkA-positive neurons 

co-express Nav1.6, not significantly different compared to mouse DRGs (42.9 ± 2.7% double-

positive cells were detectable, p=0.204; linear mixed model) (Fig. 37). Experiments for 

TrkA/Nav1.7 showed again no significant difference between human and mouse DRG (57.0 ± 2.1% 

in human and 53.8 ± 2.0% in mouse DRG, Fig. 37A, D, G). On the other hand, gene expression 

analysis for TrkA/Nav1.8 and TrkA/Nav1.9 displayed differences between human and mouse DRG 

tissue. The fraction of TrkA/Nav1.8-double positive cells for both species was larger than the 

fraction of TrkA/Nav1.9-double positive cells (Fig. 37B, E, H vs Fig. 37C, F, I). In addition, for 

both Nav1.8 and Nav1.9, the fraction of double positive cells was larger in human DRG: about 50.6 

± 2.0% of mouse DRG neurons co-expressed TrkA/Nav1.8 compared to 69.8 ± 2.0% in human 

DRG (p=0.009; linear mixed model; Fig. 37B, E, H), whereas TrkA/Nav1.9 co-expression was 

detectable in 12.4 ± 1.6% of mouse DRG neurons compared to 25.6 ± 1.7% in human DRG 

(p=0.003; linear mixed model; Fig. 37C, F, I). 

To conclude, this comparative study of sodium channel expression in native human and mouse 

sensory neurons indicated explicit species-specific differences that have to be taken into account 

and could be useful for the discovery of new therapeutic approaches and analgesic drugs. 
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5.3.6 TRP channel expression in human/mouse DRG tissue 

Most primary sensory neurons can also be functionally categorized by the existence of a member of 

the cationic Transient Receptor Potential (TRP) channel family. TRPV1, originally identified as the 

receptor for capsaicin, is one of the best studied family members. In addition to its activation by a 

noxious heat stimulus, more recent studies demonstrated that TRPV1 gets sensitized under 

inflammatory conditions or injury and is therefore in focus of pain research and therapeutic 

approaches (Carnevale and Rohacs, 2016; Caterina et al., 1997; Yarmolinsky et al., 2016). From 

Fig. 37: Dual color in situ hybridizations analysis of human and mouse DRG tissue for TrkA/Nav channel 

expression  

Double fluorescent in situ hybridization of cryo-section from a native human (A-C) and mouse (D-F) DRG, showing the 

presence of Nav1.7 (A, D), Nav1.8 (B, E) or Nav1.9 (D, E) in combination with TrkA. While, in both species Nav1.7 and 

Nav1.8 (green) are expressed in a large fraction of TrkA-positive neurons (red), Nav1.9 is expressed in only a small 

percentage of TrkA-positive neurons. Quantifications of three independent individuals revealed that about 57.0 ± 2.1% of 

human TRKA neurons co-express Nav1.7, similar to the mouse analysis showing about 53.8 ± 2.0% TrkA/Nav1.7 double 

positive neurons (G). Quantifications for TrkA/Nav1.8 (H) and TrkA/Nav1.9 (I) indicated that for both markers the 

percentage of TrkA/Nav-double positive cells is higher in human DRG neurons than in mouse sensory neurons. Scale bar 

100 µm. 
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animal studies, it is known that TRPV1 is mainly expressed in small diameter neurons (22-38%) of 

adult rodent DRG neurons (Kobayashi et al., 2005; Orozco et al., 2001; Zwick et al., 2002). To 

compare TrpV1 expression in TrkA-positive peptidergic nociceptors of native human and mouse 

DRG tissue, dual color in situ hybridizations were performed. While in human DRG 54.2 ± 2.9% 

of TrkA-positive cells co-expressed TrpV1, in mouse DRG this fraction was significantly reduced 

(35,4 ± 0.6%, p < 0.001; linear mixed model) (Fig. 38). 

 

 

 

TRPA1, another thermosensitive TRP channel family member activated by lower temperatures 

(around 17 °C, the estimated threshold of noxious cold), and pain-inducing chemicals (such as allyl 

isothiocyanate, the pungent component of mustard oil), is known to be expressed in a 

subpopulation of TRPV1-expressing sensory neurons (Jordt et al., 2004; Story et al., 2003). 

Furthermore, it was also demonstrated that TRPA1 is involved in mediating itch sensation (Kittaka 

and Tominaga, 2017). In order to test whether human TRPA1-expressing neurons also represent a 

subpopulation of TRPV1-positive neurons, as already described for mice, double fluorescent in situ 

hybridizations with probes detecting human TRPV1 and TRPA1 were performed. Our comparative 

study confirmed in human what was already described for rodents: all TRPA1-positive human DRG 

neurons were also positive for TRPV1 (Fig. 39). 

Fig. 38: Dual color in situ hybridizations analysis of human and mouse DRG tissue for TrkA/TrpV1 expression  

Double fluorescent in situ hybridization of cryo-section from a native human (A) and mouse (B) DRG, showing the 

presence of TrpV1 (green) in combination with TrkA (red). In both species TrpV1 is expressed in a fraction of TrkA-

positive neurons. Quantifications of three independent individuals revealed that about 54.2 ± 2.9% of human TRKA 

neurons co-express TRPV1, compared to the mouse analysis showing about 35,4 ± 0.6% TrkA/TrpV1-double positive 

neurons. Scale bar 100 µm. 
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To summarize, besides functional Ca2+-imaging recordings or electrophysiological recordings, 

demonstrating that differentiated, TRKA-positive neurons show characteristic hallmarks of 

peptidergic nociceptors, our comparative study between hESC-derived nociceptors and native 

human DRG tissue confirmed that differentiated neurons are physiologically relevant, with an 

almost similar marker gene expression profile in post-mortem DRG neurons (Table. 4).  

In addition, our comparative study between human and mouse DRG tissue provides a detailed gene 

expression profile analysis at cellular resolution and uncovers molecular differences and 

similarities between the animal mouse model system and the human organism (Table. 4), which 

may help overcome translational difficulties and improve the prognostic significance of preclinical 

pain studies. 

Table 4: Marker gene analysis (based on in situ hybridizations or immunohistochemistry) of 

differentiated TRKA-positive neurons compared to human and mouse post-mortem DRG tissue.  

Double positive Marker Differentiated 

cells 

Human DRG tissue Mouse DRG tissue 

TrkA/TrkB 3.8 % 5.3 % 4.8 % 

TrkA/TrkC 19.2 % 16.0 % 10.8 % 

TrkA/Ret 77.6 % 45.9 % 23.2 % 

TrkA/Piezo2 64.2 % 34.8 % 26.2 % 

TrkA/Nav1.7 Not quantified 57.0 % 53.8 % 

TrkA/Nav1.8 Not quantified 69.8 % 50.6 % 

TrkA/Nav1.9 Not quantified 25.6 % 12.4 % 

ISLET1 or TUJ1/NF200 96.7 % 97.3 % 61.7 % 

Fig. 39: Dual color in situ hybridizations analysis of human DRG tissue for TRPV1/TRPA1 expression  

Double fluorescent in situ hybridization of cryosection from a native human DRG (overview image (A), zoom-in picture 

(B)), showing the presence of TRPV1 (red) in combination with TRPA1 (green). Human TRPA1-expressing neurons 

represent a subpopulation of TRPV1-positive neurons. Scale bar 100 µm. 
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5.4 Role of PIEZO2 in stem cell-derived nociceptors 

 

Mechanotransduction, the transformation of mechanical stimuli into electrical signals, is an 

elementary physiological process crucial for organ development and homeostasis, and involved in 

sensing touch, sound waves, proprioception and mechanically-induced pain. These processes, 

critical for almost all mammalian cells, have been linked to stretch-activated ion channels, from 

which only few have been described so far. PIEZO1 and PIEZO2 were recently identified as 

proteins required for mechanically-activated currents in a variety of eukaryotic cell types (Coste et 

al., 2010; Volkers et al., 2015). While mammalian PIEZO2 is mainly expressed in a subset of DRG 

and TG somatosensory neurons and Merkel cells, PIEZO1 is mainly expressed in non-sensory 

tissue (Bron et al., 2014; Cahalan et al., 2015; Coste et al., 2010; Miyamoto et al., 2014; Woo et al., 

2014, 2015). We recently demonstrated that PIEZO2 is required for mechanotransduction in stem 

cell-derived low-threshold mechanoreceptors (LTMRs) (Schrenk-Siemens et al., 2015a). This study 

and others revealed that PIEZO2 plays a crucial role in mediating innocuous mechanical stimuli. 

However, only one study indicated that PIEZO2 is also involved in mediating noxious mechanical 

stimuli (Dubin et al., 2012b). A conditional PIEZO2-KO in DRG and Merkel cells (with a 90% 

reduction of the overall Piezo2 transcript) led to specific loss of rapidly-adapting mechanically-

activated currents, whereas intermediately-adapting or slowly-adapting currents were not 

significantly affected (Ranade et al., 2014b).  

To assess whether the remaining Piezo2 transcript level was enough to trigger intermediately and 

slowly-adapting currents, or if a yet-unknown ion channel is responsible for noxious 

mechanotransduction, we made use of our established differentiation protocol for the generation of 

stem cell-derived nociceptors and compared differentiated PIEZO2-WT and PIEZO2-KO cells (an 

already generated stem cell line in the lab). 

As a first proof that differentiated TRKA-positive nociceptors also express PIEZO2, which is a 

requirement if we want to elucidate the role of PIEZO2 in stem cell-derived nociceptors, we tested 

PIEZO2 expression in derived WT nociceptors by dual-color in situ hybridization and quantitative 

RT-PCR. As expected, the PIEZO2 transcript was detectable by both methods. Quantifications of 4 

independent in situ hybridization experiments showed that 64.2% of TRKA-positive neurons co-

expressed PIEZO2 (Fig. 40A-E). RT-PCR analysis of NGN1-infected PIEZO2-WT and PIEZO2-

KO nociceptors (after 7 to 21 days in culture, normalized to the housekeeping gene (TBP) and 

compared to the respective levels in uninfected NCLCs) showed that PIEZO2 is already expressed 

after 7 days in culture, and gene expression increases linearly with time in differentiated WT 

nociceptors (Fig. 40F, green bars). The PIEZO2 transcript was not detectable in PIEZO2-KO 

neurons (Fig. 40F, brown bars).  
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Fig. 40: PIEZO2 expression in stem cell-derived TRKA positive nociceptors 

(A-D) Double fluorescent in situ hybridizations of differentiated nociceptors showing the presence of TRKA (A) in  

combination with PIEZO2 (B). DAPI staining showed all cells in the field of view (C). (D) Overlay of all 

three markers, DAPI in blue, TRKA in red and PIEZO2 in green. Scale bar 20 µm. 

(E) Quantification analysis of 4 separate differentiations showing that on average around 64.2% of TRKA-positive 

nociceptors also express PIEZO2. 

(F) RT-PCR analysis, representing the relative expression level of PIEZO2 in differentiating PIEZO2-WT (green) 

or PIEZO2-KO (brown) cells after different time-points of differentiation (after 7, 14 or 21 days) normalized 

to the housekeeping gene TBP and compared to uninfected NCLCs. PIEZO2 is expressed in PIEZO2-WT 

cultures and gene expression increases linearly with time. The PIEZO2 transcript was not detectable in 

PIEZO2-KO neurons. The mean of the delta Ct values of triplicates of one experiment are shown. Data was 

pooled before substracting Ct values. 



  Results 

 

 
101 

Furthermore, the PIEZO2-KO was verified by in situ hybridization with probes detecting human 

TRKA and PIEZO2. The PIEZO2 transcript was completely absent in differentiated TRKA-positive 

PIEZO2-KO nociceptors (Fig. 41). 

 

 

 

 

To explore whether a subpopulation of TRKA-positive sensory neurons in native DRGs also co-

express PIEZO2, in situ hybridizations with human (Fig. 42A) and mouse (Fig. 42B) post-mortem 

tissue were performed. In both species, Piezo2 transcripts (labeled in green) were also expressed in 

a fraction of native TrkA-positive neurons (labeled in red). In human DRG slices, 34.8 ± 3.6% of 

TRKA-positive cells co-expressed PIEZO2, whereas in mouse DRG slices, the fraction of 

TrkA/Piezo2-double positive cells was not significantly different (26.2 ± 0.8%, p=0.059; linear 

mixed model, Fig. 42C). These findings not only indicate that a TRKA/PIEZO2-double positive 

population exists in human stem-cell derived nociceptors and in native DRG tissue, but also that 

differentiated PIEZO2-WT and PIEZO2-KO neurons can be used for investigating the question 

Fig. 41: Verification of the PIEZO2-KO in stem cell-derived nociceptors 

Double fluorescent in situ hybridizations of differentiated PIEZO2-KO nociceptors showing the presence of TRKA (B) 

and the absence of PIEZO2 (C) in stem cell-derived nociceptors. DAPI staining showed all cells in the field of view (A). 

(D) Overlay of all three markers, DAPI in blue, TRKA in red and PIEZO2 in green. Scale bar 20 µm. 
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whether PIEZO2 is involved in mediating noxious mechanical stimuli in stem cell-derived 

peptidergic nociceptors.  

 

 

 

To explore the role of PIEZO2 in noxious mechanotransduction, electrophysiological recordings of 

differentiated PIEZO2-WT and PIEZO2-KO nociceptors were performed (by Dr. Jörg Pohle, a 

researcher in our laboratory). In addition to basic functional examinations, such as action potential 

properties (to indicate that the PIEZO2-KO did not alter fundamental electrophysiological 

features), mechanical stimulations were performed. While 61.8% (n=47 out of 76) of TRKA-

positive WT nociceptors elicited robust RA, IA or SA mechanically-activated currents in response 

to membrane indentation of 20 µm (Fig. 43A-B #WT, see also chapter 5.2), in all analyzed 

PIEZO2-KO nociceptors (n=21) RA mechanically-activated currents were absent (Fig. 43 A-B 

#KO).  

 

Fig. 42: Dual color in situ hybridizations analysis of human and mouse DRG tissue for TrkA/Piezo2 expression  

Double fluorescent in situ hybridization of cryo-section from a native human (A) and mouse (B) DRG, showing the 

presence of Piezo2 (green) in combination with TrkA (red). In both species Piezo2 is expressed in a fraction of TrkA-

positive neurons. Quantifications of three independent individuals revealed that about 34.8 ± 3.6% of human TRKA 

neurons co-express PIEZO2, compared to the mouse analysis showing about 26.2 ± 0.8% TrkA/Piezo2 double positive 

neurons. Scale bar 100 µm. 
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To summarize, these data showed that indeed PIEZO2 is not only involved in mediating innocuous 

mechanical stimuli in derived LTMRs, but is also required for noxious mechanotransduction in 

stem cell-derived TRKA-positive, peptidergic nociceptors.  

 

5.5 Additional results: Generation and differentiation of a PIEZO2-tagged stem cell line 

 

PIEZO ion channels are huge transmembrane proteins that do not resemble the primary sequences 

of other ion channels (Coste et al., 2010). Although primary sequence analyses suggested that 

PIEZO proteins consist of up to 40 transmembrane domains, more recent studies proposed a 

different possible topology for PIEZO1, indicating that the number of transmembrane domains is 

markedly lower than previously predicted and only 10-18 α-helices seem to span the cell 

membrane (Coste et al., 2015). Furthermore, it was demonstrated that isolated mouse PIEZO1 is 

composed of four single PIEZO1 molecules that assemble into a 1.2 million-dalton homo-tetramer, 

not being associated with other channel subunits, as it is known for example for voltage gated 

sodium channels (Coste et al., 2012). Given its remarkable size, and based on what is generally 

known for other ion channels (with signaling cascades regulated by multiple protein interactions 

(Dai et al., 2009)), it is likely that other accessory proteins are involved in PIEZO2 functioning. A 

recent screening for possible interaction partners of PIEZO2, based on antibody purification of 

native PIEZO2 and mass spectrometry analysis, identified 36 possible binding partners, and 

suggested pericentrin (PCTN), a protein involved in microtubule network formation, as a 

modulator of PIEZO2 (Narayanan et al., 2016). 

To identify and characterize possible PIEZO2 interaction partners in a more defined subpopulation 

of primary sensory neurons (instead of whole DRG), and also to work with a human-based model 

system, we generated a hESC line containing the full-length human PIEZO2 with a triple Flag-His 

tag fused to its N-terminus. The presence of the attached tag allowed the purification of the protein, 

for later biochemical analyses and mass spectrometry, in order to identify possible interaction 

partners of PIEZO2 in differentiated LTMRs (generated based on our already published 

differentiation protocol). Since almost nothing was known about the PIEZO2 topology, and 

different signal peptide prediction programs (PrediSi, Phobius or SignalP4.1) provided different 

Fig. 43: Mechanical stimulation of stem cell-derived PIEZO2-KO nociceptors. Work done by Dr. Jörg Pohle 

(A) Representative traces of mechanically-activated currents of PIEZO2-WT (blue) and PIEZO2-KO nociceptors. 

While PIEZO2-WT nociceptors elicited robust mechanically activated currents in response to membrane 

indentation, in PIEZO2-KO neurons mechanically activated currents were absent. 

(B) Quantification analysis of mechanically stimulated PIEZO2-WT (WT) and PIEZO2-KO (KO) nociceptors. While 

approximately 61.8% of TRKA positive WT nociceptors elicited robust (SA/IA/RA) mechanically-activated 

currents, none of the analyzed PIEZO2-KO nociceptors responded to mechanical stimulation. 
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results concerning a putative extracellular or intracellular localization of the N- and C-terminus, we 

decided to generate a PIEZO2 targeting construct where we directly introduced the 3xFlag-His tag 

sequence at the 5` end of exon 1 (Fig. 44). 

 

 

 

 

To test tagged-PIEZO expression and to optimize the pull-down conditions for isolation of such a 

huge protein, we also generated a 3xFlag-His-tag PIEZO-GFP expression vector, used for transient 

transfection experiments in human embryonic kidney (HEK) cells. Due to recurring difficulties 

with cloning parts or full-length human PIEZO2 and due to the fact that we assumed a similar N-

terminal topology for PIEZO1 and PIEZO2, we decided to use a mouse PIEZO1-GFP expression 

vector backbone, which had been successfully used before for cloning purposes. Specific 

expression of tagged-PIEZO1 was verified by immunohistochemistry analysis of transfected HEK 

cells (Fig. 45A), stained with antibodies recognizing the Flag-tag (Fig. 45B) and the PIEZO1-GFP 

fusion protein (Fig. 45C). 

Furthermore, immunoprecipitation (IP) experiments using Flag-antibody coupled magnetic beads 

were performed, to optimize the pull-down conditions (Fig. 45E). In transiently transfected HEK 

cells (+), tagged-PIEZO1 was detectable in the supernatant of the total lysate before IP (+B) and 

absent in non-transfected cells (used as a negative control (-B)). After the IP, PIEZO1 was 

detectable in the eluate of the total lysate (+E), but barely detectable in the supernatant (+A) (Fig. 

45E).  

Fig. 44: Amino acid sequence of the 3xFlag-His-tag and schematic illustration of tagged-Piezo2 

(A) Amino acid sequence of the 3xFlag-His-tag, a 22-amino acid fusion protein of 3 tandem Flag epitopes and fused to 

polyhistidine-tag. 

(B) Schematic illustration of the tagged-PIEZO2 protein. The 3xFlag-His-tag was fused to the N-terminus of PIEZO2. 
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Based on these preliminary results with the tagged-PIEZO1 construct, we assumed that the human 

3xFlag-His-PIEZO2 protein could also be natively expressed and isolated from stem cell-derived 

mechanoreceptors. Using the heterozygous PIEZO2+/--stem cell line as a starting population 

allowed us to check whether gene targeting resulted in a functional tagged-PIEZO2 allele, since a 

PIEZO2-KO in only one allele does not suppress mechanically-activated currents (Schrenk-

Siemens et al., 2015a).  

By making use of CRISPR-Cas9 technology and homologous recombination, we inserted the 

3xFlag-His-tag into the endogenous human PIEZO2-WT allele (Fig. 46A). In case of correct gene 

 

Fig. 45: Tagged-mPIEZO1 expression and immunoprecipitation from transfected HEK293 cells 

(A-D) Specific expression of tagged-PIEZO1, verified by immunostainings of 3xFlag-His-tagged mPIEZO1 

transfected HEK 293 cells with antibodies recognizing the Flag-tag (B) and the PIEZO1 fusion protein GFP 

(C). DAPI staining and bright field image showed all cells in the field of view (A). (D) Overlay of all three 

markers, DAPI in blue, Flag in red and GFP in green. Scale 50 µm. 

(E) Immunoprecipitation of 3xFlag-His-tag-PIEZO1 transiently transfected (+) or non-transfected (-) HEK293    

cells. Immunoprecipitated PIEZO1, using Flag antibody coupled magnetic beads, was detected in the 

supernatant of the total lysate before the IP (+B) and in the eluate of the total lysate after the IP (+ E). After the 

IP, PIEZO1 was depleted in the supernatant of the total lysate. As a negative control, PIEZO1 was not 

detectable in non-transfected samples. 
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targeting, we would obtain a targeted stem cell clone in which one allele is N-terminally fused to 

the 3xFlag-His-tag (“targeted tagged allele”) and the other PIEZO2 allele remains disrupted 

(“targeted KO allele”, Fig. 46B). 

 

 

 

After screening for more than 100 clones by Southern Blot, we obtained 5 positive clones, with the 

3-Flag-His-tag effectively inserted at the N-terminus of endogenous PIEZO2 (Fig 46C). The upper 

band represents the PIEZO2-KO allele that was already modified in a previous gene targeting. If 

the tag-targeting was not successful, we would expect an additional WT band of about 3.4kb which 

Fig. 46: Piezo2 targeting strategy 

(A) Scheme of tag-PIEZO2 targeting construct for the generation of a 3xFlag-His-tagged PIEZO2 stem cell line, where 

the tag is fused to the endogenous N-terminus of human PIEZO2. 

(B) Schematic drawing of the targeted PIEZO2 alleles. The tag-PIEZO2 targeting was performed with an already 

targeted stem cell line, having one PIEZO2-KO allele. A successful targeting would generate an additional targeted 

allele where the 3xFlag-His tag is fused to the N-terminal end of PIEZO2. 

(C) Verification of positively targeted stem cell clones, carrying a PIEZO2-KO allele (KO allele) and an additional 

3xFlag-His tagged PIEZO2 allele (targeted allele 3` probe or targeted allele 5` probe). The upper band shows the 

PIEZO2-KO allele. An additional WT band (unsuccessful targeting) is about 3.4 kb, detectable in the majority of 

the analyzed clones (data shown for one representative clone (-)). A successful gene targeting shows an additional 

band of 2.1 kb for the analysis with the 5’ probe and a band of about 2.9 kb for the 3’ probe (shown for 5 positive 

clones, (+)). 
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was detectable in the majority of the analyzed clones (data shown for one representative clone (-)). 

If gene targeting was successful, we would expect an additional band of 2.1kb for the analysis with 

the 5`probe and a band of about 2.9 kb for the 3`probe what is shown for 5 positive clones (Fig. 

46C (+)). The remaining negative clones, also resistant to puromycin treatment, had integrated the 

targeting construct randomly into their genome and therefore did not show the expected targeted 

bands.  

 

To test whether the generated PIEZO2tag/- hESCs were still able to differentiate into sensory 

neurons, two clones were expanded and differentiated into LTMRs, that would be used for PIEZO2 

pull-down experiments. Compared to mechanoreceptors derived from WT hESCs, 

immunohistochemistry analysis of PIEZO2tag/- LTMRs indicated that modified hESCs have the 

continuing ability to differentiate into mechanoreceptors, expressing ISL1, a marker for sensory 

neurons, as well as MAFA and NF200, two markers more specific for mechanoreceptive neurons 

(Fig. 47). 

 

 

 

Fig. 47: Immunohistochemistry analysis of differentiated tagged-PIEZO2 mechanoreceptors 

Immunohistochemical staining of differentiated PIEZO2-tagged mechanoreceptors for ISL1 (A), a marker for post-

mitotic sensory neurons and for MAFA and NF200 (C), two markers expressed in mechanoreceptive neurons. DAPI 

staining showed all cells in the field of view. (D) Overlay of all three markers, DAPI, ISLET, MAFA and NF200. Scale 

bar.20 µm. 



  Results 

 

 
108 

We next assessed whether differentiated tagged-PIEZO2 mechanoreceptors were still functional 

and able to trigger mechanosensitive currents in response to mechanical stimulation. To do so, 

electrophysiological recordings of tagged-PIEZO2 mechanoreceptors in comparison to 

heterozygous PIEZO2-KO mechanoreceptors as a positive control were performed by Vincenzo 

Prato and mechanically stimulated with a nanomotor-driven probe.  

While heterozygous PIEZO2-KO mechanoreceptors (n=3) elicited robust rapidly-adapting 

mechanically activated currents in response to membrane indentation (Fig. 48A), PIEZO2tag/- 

mechanoreceptors (2 separate clones; n=17) did not show mechanically activated currents (Fig. 

48B). These results demonstrated that the tagged-PIEZO2 protein was not functionally active any 

longer and cells were not able to response to mechanical stimuli.  

 

 

 

 

Genomic DNA sequencing analysis of positively targeted stem cell clones pointed out that the 

sequences were correct and the CRISPR-Cas9 targeting was successful. Nevertheless, the insertion 

of the 3xFlag-His tag might have caused conformational changes or disorganization of the PIEZO2 

protein, rendering it non-functional, and therefore not suitable for further pull-down experiments. 

Retrospectively, the assumption that PIEZO1 and PIEZO2 adopt a similar N-terminal topology was 

perhaps wrong and likely resulted in a misfolded, non-functional tagged PIEZO2 protein. 

 

Fig. 48: Mechanical stimulation of tagged-PIEZO2 mechanoreceptors done by Vincenzo Prato 

Example voltage-clamp trace of a mechanically-stimulated 3xFlag-His-tag hz PIEZO2-KO mechanoreceptor (green 

trace) and untagged hz PIEZO2-KO. Mechanically-activated currents were almost completely absent in tagged-PIEZO2 

mechanoreceptors. 
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6. Discussion 

 

6.1 hESC-derived neurons and comparison to human and mouse DRG 

 

Given the fact that human stem cell-based technologies could serve as powerful tools for studying 

human pain mechanisms, it is of paramount importance to characterize differentiated nociceptors 

and analyze whether they reflect their in vivo correspondents in order to assess if they exist in the 

human body.  

NGN1-infected, developing sensory nociceptors were visualized and identified using a TRKA-

tomato reporter line (with the tomato-reporter expressed under the TRKA promotor). After 10-14 

days of gene induction, when developing sensory nociceptors start to express TRKA, cells showed 

a tomato signal. To characterize differentiated TRKA-positive neurons, several functional and 

biochemical analyses were performed. To elucidate whether differentiated TRKA-positive neurons 

are physiological relevant, gene expression profiles of in vitro differentiated cells were compared to 

post-mortem human DRG tissue. Furthermore, to investigate differences and similarities between 

the mouse model system and human beings, DRG tissue of both species was analyzed. 

 

TRK receptor expression in vitro and in vivo 

Primary sensory neurons have been extensively studied within the last decades and 

characterizations based on marker gene expression, functionality or target innervation identified 

primary sensory neurons as a highly heterogeneous group of neurons (Basbaum et al., 2009; Li et 

al., 2016b; Marmigère and Ernfors, 2007; Usoskin et al., 2015). Recent single cell-based 

transcriptome studies of mouse DRG neurons subdivided the three main neuronal populations 

(nociceptors, mechanoreceptors and proprioceptors) further into at least 11 categories, according to 

their marker expression (Li et al., 2016b; Usoskin et al., 2015). During sensory neuronal 

development, TRK receptor expression is highly dynamic and overlapping, and becomes more 

refined at later developmental stages, where specific TRK expression is linked to distinct neuronal 

subpopulations and defined peripheral target innervations (Ernsberger, 2009; McMahon et al., 

1994). To assess whether TRK receptor expression in differentiated nociceptors is mainly non-

overlapping, we performed dual color in situ hybridization analysis for TRKA in combination with 

TRKB or TRKC. Quantifications revealed that, in accordance with the literature, only a minority of 

the TRKA-positive nociceptors co-express either TRKB or TRKC. 

Marker gene expression analysis of post-mortem human and mouse DRG tissue, confirmed what 

we have seen in differentiated cells. Dual color in situ hybridization analysis for TrkA in 
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combination with either TrkB or TrkC revealed that the three main sensory subpopulations can also 

be found in post-mortem human and mouse tissue. In both species, Trk receptors are again mainly 

expressed in a non-overlapping manner and can be used for categorizing different neuronal 

categories such as mechanoreceptors, proprioceptors and nociceptors. 

In addition to neurotrophin receptor expression, it was also demonstrated that rodent sensory 

neuron soma sizes correlate with different neuronal subpopulations, and can thus be classified in 

three categories: while small diameter DRG neurons mainly express TRKA, most TRKB-positive 

cells exhibit an intermediate cell size phenotype and TRKC is mainly found in large diameter 

neurons (McMahon et al., 1994; Molliver et al., 1997; Silos-Santiago et al., 1995b). Soma cell size 

distribution analysis of human and mouse DRG, plotting the soma area of TrkA, TrkB and TrkC-

positive cells against their relative frequency, revealed a similar relative size distribution in native 

human DRG tissue. Furthermore, analysis of the overall cell size, comparing the smallest and 

largest neurons of each Trk-receptor subpopulation, showed that on average human DRG neurons 

(ranging from 400 µm2 to 3400 µm2) are larger compared to mouse DRG neurons (ranging from 

200 µm2 to 1600 µm2), as already described in literature (Davidson et al., 2014; Vega et al., 1994). 

The soma size of stem cell-derived TRKA-positive neurons increased over the period of 

differentiation and cells (kept in culture for more than 6 weeks) had cell body sizes up to 400 µm2, 

reaching similar soma sizes of human native TRKA-expressing DRG neurons (the effect was only 

quantified once and thus has not been statistically validated). 

These findings confirm a similar neurotrophin receptor expression pattern in stem cell-derived 

nociceptors and human and mouse DRG tissue. Moreover, the relative size distribution of mouse 

and human DRG neurons is similar and nicely correlated to the expression of the respective 

member of the neurotrophin receptor family.  

 

RET expression in vitro and in vivo 

The receptor tyrosine kinase RET has also been broadly analyzed and was shown to be important 

for sensory neuron development and functioning (reviewed by Ernsberger, 2008). RET is expressed 

in up to 79% of human DRG neurons and about 60% of adult rodent sensory neurons (Bennett et 

al., 1998; Josephson et al., 2001; Kashiba et al., 1998, 2003; Molliver et al., 1997; Zwick et al., 

2002). In addition to the two developmental RET lineages (the early RET population, mainly 

generating large diameter RET/TRKB expressing LTMRs, and the late RET population, mostly 

developing into non-peptidergic TRKA-negative nociceptors) (Bourane et al., 2009; Chen et al., 

2006; Lallemend and Ernfors, 2012; Luo et al., 2009), two other smaller RET-positive populations 

were found, a RET/tyrosine-hydroxylase (TH) co-expressing population of unmyelinated C-type 

fiber LTMRs, and a RET/TRKA double-positive population, representing 5-10% of RET-positive 
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mouse DRG neurons (Golden et al., 2010; Li et al., 2011; Molliver et al., 1997). Moreover, recent 

findings revealed a role of these TRKA/RET double-positive cells in itch sensation, triggering the 

sensory reflex to scratch the affected body surface area (Stantcheva et al., 2016b; Usoskin et al., 

2015). 

Surprisingly, our results reveal co-expression of TRKA/RET in a large fraction of differentiated 

tomato-positive hESC-derived nociceptors, contrary to what has been found in mouse, where only 

a small population of TRKA/RET co-expressing cells were found and exclusive RET expression 

was mainly detectable in non-peptidergic nociceptors. 

Co-expression analysis of TrkA/Ret double-positive human and mouse DRG neurons confirmed 

what was seen in differentiated TRKA-positive nociceptors: the amount of TrkA/Ret co-expressing 

neurons was significantly higher in human tissue compared to the double-positive population found 

in mouse. Quantifications demonstrated that roughly 50% of human adult TRKA-positive neurons 

co-express RET, compared to about 20% in mouse DRG neurons, where RET is mainly expressed 

in non-peptidergic nociceptors that downregulate TRKA. A recent publication proposed a role for a 

small TRKA/RET double-positive population in mouse DRGs in itch sensation and demonstrated 

that these “itch-sensing”-neurons also express TRPV1 (Stantcheva et al., 2016b), an additional 

marker that we found in a larger population of human TRKA positive DRG tissue compared to 

mouse DRGs. Moreover, in both species, we also detected different Ret expression levels, an 

already described phenotype in mouse (Stantcheva et al., 2016a). Clustering analysis showed again 

the TrkA/Ret-double positive population (high TrkA/high Ret) in analyzed human DRG, a 

population almost undetectable in mouse tissue.  

Human beings are faced with innumerable environmental stimuli that potentially provoke pruritus, 

and our skin is not protected by fur as in rodents. If we consider that humans lost their body hair 

already approximately 1.2 million years ago and clothing is a more modern era development that 

probably evolved about 170.000 years ago, evolutionary adaptations could explain this higher 

number of TRKA/RET-positive sensory neurons in human DRG neurons (Toups et al., 2011). 

Nevertheless, there is no clear evidence that this TRKA/RET population is actually coupled to itch 

sensation and further analyses are needed to prove this hypothesis. 

 

NF200 expression in vivo and in vitro 

From rodent studies, it is known that different fiber-types can also be categorized by the presence 

of different neurofilament subunits and NF200, the heavy neurofilament subunit, was identified as 

a molecular marker of fast–conducting A-fibers. Interestingly, our data show that almost all 

(96.7%) human stem cell-derived TRKA-positive neurons were also positive for NF200. 
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Quantification analysis of immunostainings with two different antibodies, showed that the in vitro 

human phenotype is also found in post-mortem human tissue. However, species-specific 

differences regarding the neurofilament expression exist: almost all TUJ1-positive neurons (97.3%) 

in the human DRG also expressed NF200, whereas in mouse DRG slices only about 60% of all 

neurons co-expressed NF200. 

These results again demonstrate that differentiated nociceptors seem to be physiologically relevant, 

as nearly all stem cell-derived neurons and native human DRG express NF200, independent of 

different neuronal subtypes (as already described by (Vega et al., 1994). Although the universal 

expression of NF200 in human DRG neurons suggests a correlation between conduction velocity of 

myelinated fast-conducting A-fibers and the overall increased body size of human beings compared 

to relatively small rodents, no significant differences regarding conduction velocity were 

observable (Cain et al., 2001; Hagbarth, 2002; Handwerker et al., 1991). Based on this, we can 

only assert that, in humans, the heavy neurofilament NF200 cannot be used for classifying different 

primary sensory subpopulations and furthermore, NF200 does not correlate with myelination as has 

been assumed to be the case in mice.  

 

Nav channel expression in vitro and in vivo 

Besides TRK receptor or RET expression, VGSCs have been broadly studied and various Nav 

channels have been associated with mediating pain signals. While Nav1.6-Nav1.9 are known to be 

expressed in human and mouse DRG neurons, only Nav1.7-Nav1.9 are strongly implicated in 

human pain disorders such as small fiber neuropathies, episodic pain or congenital insensitivity to 

pain (Ahmad et al., 2007; Faber et al., 2012; Fertleman et al., 2006; Yang et al., 2004; Zhang et al., 

2013a). In our RT-PCR analysis of differentiated neurons, Nav1.6 was detectable in 

mechanoreceptors and nociceptors at comparable low levels, whereas Nav1.7 was expressed at high 

levels in both neuronal populations. Nav1.8, as described in literature, was more restricted to small 

diameter neurons and only detectable in differentiated TRKA-positive nociceptors (Amaya et al., 

2000; Toledo-Aral et al., 1997).  

Nav channel expression of stem cell-derived nociceptors and native human and mouse DRG tissue 

was compared by dual color in situ hybridizations for TrkA and Nav1.6-1.9. Quantification analysis 

indicated that populations of TrkA/Nav1.6 and TrkA/Nav1.7 did not significantly differ between 

human and mouse tissue and overall the TrkA/Nav1.6 population was smaller than the population 

of TrkA/Nav1.7, as already seen in differentiated TRKA-positive neurons.  

Contrary, gene expression analysis for TrkA/Nav1.8 and TrkA/Nav1.9 displayed differences 

between human and mouse DRG tissue. As already described for differentiated TRKA-expressing 

neurons, the fraction of TrkA/Nav1.8-double positive cells for both species (human and mouse 
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tissue) was larger than the fraction of TrkA/Nav1.9-double positive cells. Furthermore, for both 

Nav1.8 and Nav1.9, the fraction of double positive cells was significantly larger in human DRG 

compared to mouse DRG. In conclusion, sodium channel expression in native human and mouse 

sensory neurons highlights explicit species-specific differences that have to be taken into account 

and could be useful for the discovery of new therapeutic approaches and analgesic drugs. 

 

TRP channel expression in vivo and in vitro 

In addition to TRK or Nav channel expression, most primary sensory neurons can also be classified 

by the expression of members of the TRP channel family. One of the best studied family members 

is TRPV1, a polymodal channel known to be involved in the detection of noxious temperatures and 

in inflammatory-induced sensitization, and therefore one of the central targets for analgesic drug 

research (Carnevale and Rohacs, 2016; Caterina et al., 1997). In mice, approximately a third (22-

38%) of the DRG neurons express TRPV1; these are mainly non-myelinated peptidergic 

nociceptors but – to a minor degree – also non-peptidergic neurons (Kobayashi et al., 2005; Orozco 

et al., 2001; Zwick et al., 2002). Ca2+-imaging experiments, our first readout to characterize 

differentiated TRKA-positive neurons, also demonstrated that also a certain number of our TRKA-

positive neurons (about 10-15%; quantified by me and Katrin Schrenk-Siemens) were activated by 

capsaicin and therefore express TRPV1. In stem cell-derived neurons the TRKA/TRPV1-double 

positive population was smaller compared to native human DRG tissue. Although our initial hope 

was to establish a differentiation protocol for the generation of a homogeneous nociceptor 

population, it is not surprising that we found slightly different numbers in our in vitro culture 

system when comparing it to post-mortem human tissue. Moreover, the comparison of native 

human and mouse DRG tissue revealed that the amount of TrkA/TrpV1-double positive neurons in 

humans was significantly larger than in native mouse DRG neurons. Due to the fact that TRPV1 is 

linked to noxious heat detection and thermal hyperalgesia, evolutionary enhancements and benefits 

could explain this higher number of TRKA/TRPV1-positive sensory neurons in human DRG tissue 

that should prevent further damage of an already injured tissue. 

Besides gene expression analysis (performed by immunohistochemistry, in situ hybridization or 

RT-PCR), also functional Ca2+-imaging experiments and electrophysiological analysis supported 

the evidence that stem cell-derived neurons show characteristic features of nociceptive neurons. In 

response to step-wise depolarizing currents, differentiated TRKA-positive neurons elicited trains of 

broad action potentials, a marker for identifying nociceptors compared to non-nociceptive neurons, 

characterized by only narrow single action potentials (Viatchenko-Karpinski and Gu, 2016; 

Wainger et al., 2015). Furthermore, mechanical stimulation of differentiated nociceptors by a 

nanomotor-driven probe elicited robust mechanically-activated currents, increasing in amplitude 

with increasing membrane indentation. Moreover, elicited currents exhibited all different kinetics 
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from RA, IA and SA mechanically-activated currents, only detectable in nociceptive neurons 

(Drew et al., 2002; Hu and Lewin, 2006; Viatchenko-Karpinski and Gu, 2016). 

The comparative study between hESC-derived nociceptors and native human DRG tissue 

confirmed that differentiated TRKA-positive neurons are physiologically relevant, with an almost 

similar marker gene expression profile in post-mortem DRG neurons (Table. 4).  

In addition, our comparative study between human and mouse DRG tissue offers a detailed gene 

expression profile analysis and determines molecular differences and similarities between the 

animal mouse model system and the human organism already at cellular resolution, which will help 

to overcome translational difficulties and improve the prognostic significance of preclinical pain 

studies. 

 

6.2 What can differentiated nociceptors be used for? - A translational approach 

 

For decades, animal models have been broadly used for studying and identifying various aspects of 

sensory transduction mechanisms such as the perception of pain, and are therefore an invaluable 

tool for finding pain-relieving medications. But during the last years, there is evidence that human 

and rodent pain phenotypes differ, resulting in the failure of several preclinical trials reaching 

routine clinical practice (Burma et al., 2017b; Mogil, 2009b; Percie du Sert and Rice, 2014).  

TRP ion channels have characteristic polymodal features and are known to be involved in 

mediating painful stimuli. Nevertheless, pharmaceutical targeting effects of currently existing TRP-

antagonists reported divergent results. 

TRPV1 is associated with inflammatory pain and sensitization, leading to pain-mediated 

hypersensitivity and is therefore a prime target of anti-pain drug research (Caterina et al., 1997; 

Tominaga et al., 1998). However, treatments with different TRPV1 antagonists for osteoarthritis or 

synovitis (inflammation of synovial membranes; membranes around bones or joints) in mice, dogs 

or human patients resulted in complete, moderate or no reduction of pain sensation (Cathcart et al., 

2012; Kelly et al., 2015; Miller et al., 2014). In addition to variable pain-relieving efficacies, 

antagonist-mediated TRPV1 targeting also leads to critical side effects such as accidental burns or 

hyperthermia, as TRPV1 is also involved in the perception of temperature. Those undesirable 

adverse effects urge for the development of more selective, modality-dependent antagonists 

(Carnevale and Rohacs, 2016; Gavva et al., 2007). 

To circumvent species-species differences and to prevent additional side effects in a multicellular 

organism, it is advantageous to combine animal studies with a defined human-based cell culture 

model for primarily testing analgesic drugs.  
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Human ESCs as a model system to study signaling of painful stimuli 

In contrast to other human tissues such as skin samples or cancer cells, usually straightforward to 

collect, the peripheral nervous system (and more precisely the DRG, where the cell bodies of the 

primary sensory neurons are located) is not approachable from living individuals and difficult to 

receive even post-mortem. Therefore, the availability of human embryonic stem cell-based 

techniques and the development of differentiation protocols for the generation of functional 

primary sensory neurons came in focus of research (Blanchard et al., 2015b; Chambers et al., 

2012b; Schrenk-Siemens et al., 2015a; Wainger et al., 2015). 

Our achievement, the development of a differentiation protocol based on viral-induced NGN1 

overexpression, resulted in the generation of primary sensory neurons with a characteristic 

nociceptive phenotype. Differentiated nociceptors were identified by a TRKA-tomato reporter line, 

generated in our laboratory. Quantification analysis of double fluorescent in situ hybridization 

experiments verified an almost 100% overlap of tomato and TRKA, demonstrating that the tomato 

signal reflects the endogenous TRKA expression. Furthermore, immunohistochemistry analysis 

revealed that approximately 24.4% of DAPI-positive cells in culture adopted a sensory neuronal 

phenotype indicated by the ISLET1 immunoreactivity and almost all sensory neurons also co-

expressed TRKA. Interestingly, almost all (96.7%) differentiated TRKA-expressing neurons were 

also positive for NF200, a marker that has been used for identifying fast-conducting myelinated A-

fibers in rodents. However, marker gene analysis of differentiated nociceptors and also native 

human DRG tissue suggested that in humans NF200 is expressed in almost all sensory neurons and 

cannot be used as a marker for categorizing different primary sensory subpopulations. TRK 

receptor expression analysis, classically used to categorize sensory neurons into three main 

subpopulations (with TRKA primarily expressed in small diameter peptidergic nociceptors, TRKB 

mainly in mechanoreceptors and TRKC mainly in large diameter proprioceptors) (Chen et al., 

2006; Ernsberger, 2009; Perez-Pinera et al., 2008; Snider, 1994), confirmed what was already 

known from rodent studies and showed only a small overlap of TRKA/TRKB (3.8%) or 

TRKA/TRKC (19.2%) in differentiated neurons. However, gene expression analysis for TRKA and 

RET, a marker known to be expressed in the non-peptidergic nociceptor subpopulation in mice that 

downregulates TRKA expression during maturation and upregulates RET (Molliver et al., 1997), 

showed a strong overlap (77.6%) of both populations. Furthermore, RT-PCR analysis of 

differentiated nociceptor and mechanoreceptor cultures showed that the sodium channel Nav1.7 

was broadly expressed in both neuronal cultures, whereas Nav1.8, known to be more restricted to 

small diameter nociceptive neurons, was only detectable in differentiated TRKA-positive neurons. 

In comparison to RNA transcriptome sequencing data from Usoskin et al., 2015, where they 

classify 622 single mouse DRG neurons into 11 neuronal subpopulations, our differentiated 

TRKA-expressing neurons would (most likely) fit into the peptidergic subgroup 1 (referred to as 
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PEP1) and peptidergic subgroup 2 (referred to as PEP2), which are defined by either 

TrkA/Nf200/Nav1.8/1.9-expressing slightly myelinated Aδ nociceptive neurons or 

TrkA/TrpV1/Nav1.8/1.9-positive neurons. However, both populations “PEP1 and “PEP2” do not 

highly express Piezo2 or Ret (Usoskin et al., 2015). Although the comparison of our differentiated 

TRKA-positive nociceptors to transcriptome analysis in mouse DRG suggests a nociceptive 

phenotype, most closely related to the already described two peptidergic subpopulations, not all 

analyzed genes match to one another which could be explained by specific species differences, that 

we also found in native human and mouse DRG tissue. Therefore, it is also conceivable that 

differentiated human nociceptors express a specific set of marker genes that is unique to humans 

without having an exact equivalent in mouse DRG neurons  

To conclude, not only marker gene expression analysis and functional Ca2+-imaging recordings but 

also electrophysiological properties (such as trains of broad action potentials or SA, IA as well as 

RA mechanically-activated currents in response to membrane indentation) demonstrated that 

differentiated, TRKA-positive neurons show characteristic hallmarks of peptidergic nociceptors.  

To assess whether differentiated hESC-derived nociceptors are physiologically relevant and reflect 

their in vivo counterparts, we compared them to human post-mortem DRG tissue and found a 

similar marker gene profile in differentiated cells and human tissue.  

 

Human iPSCs as a model system to study signaling of painful stimuli 

In order to develop patient-derived neurons it will be necessary to test whether the differentiation 

protocol can also be used for the differentiation of iPSCs. Since the discovery of the induction of 

pluripotency in reprogrammed somatic cells by Yamanaka and colleagues, it is possible to isolate 

patient tissue and reprogram cells using the viral-induced overexpression of distinct transcription 

factors into induced pluripotent stem cells (Takahashi et al., 2007b). This approach offers a non-

invasive, human-based in vitro cell culture model for the generation of patient-derived neurons. It 

enables the comparison of patient-specific diseases and healthy individuals and therefore a new 

insight into disease onset, progression and therapy.  

Although iPSC-based techniques provide an encouraging course of action, already used for 

modeling various diseases such as autism, multiple sclerosis, Alzheimer´s disease or amyotrophic 

lateral sclerosis, stable differentiation protocols are needed for the generation of mature cell types, 

recapitulating characteristic pathophysiological features (Egawa et al., 2012; Massa et al., 2016; 

Mohamet et al., 2014; Mokhtari and Lachman, 2016). Differentiated patient-derived neurons or, 

more precisely in our case, generated human nociceptors can then be used for analgesic drug 

screening approaches, in a defined individual-specific manner.  
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Not only analgesic medication screens are conceivable but also cosmetic applications can be 

performed by testing various potentially irritating or anti-inflammatory ingredients on human stem 

cell-derived nociceptors. It is generally known that animal models were used for testing cosmetic 

products, however, the already mentioned differences between rodents and humans called for more 

translational research, which could be addressed by using human-derived cells instead of animal 

models (Reisinger et al., 2015). 

 

A cell-based 3D-model system to study signaling of painful stimuli 

To eliminate doubts concerning in vitro two-dimensional cell culture systems that recapitulate 

complex and heterogeneous sensory transduction mechanisms, it is also reasonable to transplant 

Ngn1-infected NCLCs into an in vitro three-dimensional skin model. First, this would allow to 

analyze whether neuronal precursor cells are still able to differentiate into mature nociceptors in a 

more physiological environment and, second to test how patient-derived nociceptors 

morphologically or functionally differ from healthy neurons. Three-dimensional skin models 

consist of a basal collagen matrix populated with isolated human fibroblasts and a layer of 

keratinocytes, added on top of the collagen-fibroblast matrix. Differentiated keratinocytes, exposed 

to air on one side and liquid to the other, stratify and form in vivo-like epidermal tissue (Carlson et 

al., 2008; Stark et al., 2004). Human primary sensory neurons, differentiated in an organized 

in vivo-like environment, would represent an impressive tool for studying sensory neuron 

development, transduction mechanisms and pain-diseases in humans. 

 

6.3 Why initial protocols did not work 

 

Although TRK receptors, and subsequently neurotrophin signaling, are important for assuring 

survival and differentiation of primary sensory neurons, and their expression is largely overlapping 

and dynamic during development, in mature neurons TRK receptors are restricted to defined 

subpopulations of DRG neurons (Averill et al., 1995; Fariñas et al., 1998; Perez-Pinera et al., 2008; 

Snider, 1994). The overexpression of TRKA to differentiate stem cell-derives NCLCs into 

nociceptive neurons in the initial lentiviral induction experiments was thought to guide neuronal 

precursor cells into the nociceptive lineage, since mouse studies demonstrated that almost all 

developing nociceptors express TRKA and these cells are missing in TRKA or NGF-deficient mice 

(Crowley et al., 1994; Smeyne et al., 1994). Nevertheless, our results showed that a permanent 

TRKA overexpression was not sufficient to generate nociceptors with the additional caveat of only 

very few cells surviving the differentiation procedure. Besides its primary function in promoting 

cell differentiation, growth and survival of neurons, the artificial TRKA overexpression and 
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eventually elevated NGF/TRKA signaling seemed to have side or toxic effects on our 

differentiating neurons, resulting in massive cell death. In this context, it was recently demonstrated 

that TRKA expression is also linked to macropinocytose-mediated cell death in medulloblastoma 

cancer cells (Li et al., 2016a). While in pancreatic cancer cells, macropinocytosis is necessary for 

rapid tumor growth, in brain tumor cells TRKA-induced macropinocytosis is uncontrolled, 

resulting in cell membrane fragmentation and cancer cell death (Li et al., 2016a). Furthermore, 

NGF-induced TRKA activation in human glioblastoma cells was associated with autophagy and 

eventually lead to NFG/TRKA-mediated cell death (Hansen et al., 2007). These findings show that 

it is quite possible that the TRKA overexpression and the elevated NGF/TRKA signaling result in 

membrane fragmentation and cell death. However, the exact mechanism (whether cell death is 

mediated by autophagy, apoptosis or also via micropinocytosis) is not clear and requires further 

investigation. 

RUNX1, also broadly expressed during early mouse development (more than 80% of the TRKA-

positive neurons co-express RUNX1) and, at later stages, more defined and restricted to non-

peptidergic TRKA-negative neurons (Chen et al., 2006), was also not effective for the 

differentiation of sensory neurons with a nociceptive phenotype. The constant lentiviral-induced 

RUNX1 overexpression appeared to be counterproductive and most of infected cells did not 

tolerate the artificial overexpression treatment. Although there is no evidence that RUNX1 

overexpression is linked to neuronal toxicity or apoptosis as it was described for TRKA activation, 

nevertheless there is no doubt that a permanent overexpression somehow interferes with cell 

function, which thereupon could lead to cell death. 

In addition to non-physiological issues of a permanent overexpression of distinct neurotrophin 

receptors or transcription factors, it is also possible that neurogenesis induction of main neuronal 

subpopulations, such as nociceptors, starts upstream of TRKA or RUNX1 expression and is already 

set at this developmental stage. 

To influence neuronal differentiation already at an even earlier developmental time-point and to 

drive NCLCs towards a nociceptive lineage, we overexpressed NGN1, a basic helix-loop-helix 

(bHLH) transcription factor known to induce neurogenesis in mice. Whereas NGN2 seems to 

trigger neuronal diversification of mainly large diameter mechanoreceptive or proprioceptive 

neurons, NGN1 appears to mediate the differentiation of small diameter, TRKA-positive 

nociceptive neurons (Ma et al., 1998, 1999a) In our hands, gene induction experiments showed that 

a transient NGN1 overexpression is sufficient to induces neurogenesis in stem cell-derived NCLCs: 

the number of ISL1-positive developing sensory neurons was markedly increased when compared 

to GFP-infected control cells. However, a temporary NGN1-induction of 3 days was not sufficient 

to differentiate developing human sensory neurons and to allow them to acquire key properties of 

primary sensory nociceptors. Either the period of three days was not correlated to the 
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corresponding in vivo NGN1 expression (in mice, from around E9-E9.5 to E13), or another 

essential key molecule was missing (Ma et al., 1999a; Sommer et al., 1996). As already described 

in earlier chapters (1.1.2 and 1.3.2), mammalian development is characterized by a series of 

defined stages known as morulation, gastrulation and organogenesis. While in mice developmental 

stages are defined as Theiler stages (TS 1-28), depending on the number of somites, human 

development is classified according to specific morphological structures in Carnegie Stages (CS 1-

23), describing the first 60 days after fertilization (O’Rahilly, 1979; Theiler, 1989). Accordingly, 

mouse developmental stage E9 to E13, where NGN1 is expressed, represents most likely human 

Carnegie Stage 11-16, ranging from approximately 23-42 days post conception (dpc) (Xue et al., 

2011). Based on these numbers and classifications it may be assumed that a temporary NGN1 

induction of 3 days was too short to induce human primary sensory neurons. 

Co-overexpression experiments, first inducing NGN1 expression for 3 days and then continuously 

RUNX1, should trigger the already increased number of developing sensory neurons to 

differentiate further into nociceptors. The combinatorial gene induction was thought to recapitulate 

the in vivo situation, where initially sensory nociceptor development is mediated by NGN1 and 

later during differentiation by RUNX1, regulating maturation of a subpopulation of sensory 

nociceptors (Chen et al., 2006; Ma et al., 1998). The fact that only a small fraction of cells showed 

a minimal response to capsaicin, a marker for nociceptive properties, indicated that the 

combinatorial overexpression of NGN1 and RUNX1, according to our defined conditions, was not 

sufficient for the generation of many nociceptive neurons. Either the time frame was not reflecting 

the in vivo situation or, again, a crucial molecule, important for nociceptor differentiation, was 

lacking. Moreover, it is also conceivable that the heavy overexpression of two transcription factors 

(NGN1 and RUNX1) was too much for the cells, preventing them from further differentiation. 

In addition to different time-dependent gene expression programs known to be essential for the 

development of nociceptive neurons, it is also conceivable that some of the ingredients of the 

differentiation medium might be responsible for the failure or the success of the generation of pain-

sensitive neurons. For the initial experiments (TRKA, RUNX1, NGN1 and NGN1/RUNX1 

overexpression), infected NCLCs were cultured in a differentiation medium, already proved to be 

successful for the differentiation of stem cell-derived mechanoreceptors (containing the growth 

factors BDNF, GDNF, NGF, NT-3 and retinoic acid) (Schrenk-Siemens et al., 2015a). However, 

the final nociceptor differentiation protocol contained a differentiation cocktail, including only the 

growth factors BDNF, GDNF and NGF and no retinoic acid or NT-3 (Wainger et al., 2015).  

Retinoic acid, the active metabolite of vitamin A, was shown to be important for embryonic organ 

development and patterning formation, but also for maintenance of fertility, vision or the avoidance 

of neurodegenerative diseases in adult individuals (reviewed by Niederreither and Dollé, 2008). 

Although vitamin A and retinoic acid play a crucial role already at very early developmental stages, 
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and seem to regulate survival and proliferation of neuronal precursors in cultured NCCs, it was also 

demonstrated that the concentration of retinoic acid, to which teratocarcinoma cells are exposed to, 

determine the developing cell type (Edwards and McBurney, 1983; Henion and Weston, 1994). 

Additionally, studies with isolated sympathetic neurons of newborn rats demonstrated that (i) 

retinoic acid treatment diminishes the TrkA mRNA levels and upregulates the expression of TrkB 

mRNA, and (ii) retinoic acid in combination with the bone morphogenetic protein-2 (BMP2) 

enhanced the expression of TrkC and the receptivity to NT-3, mainly activating TRKC receptors 

(Kobayashi et al., 1994, 1998). 

Not only in embryonic development of rodents, but also of lower vertebrates such as Xenopus 

laevis, retinoic acid is involved in neurogenesis and various genes, known to positively regulate 

neuronal differentiation, are upregulated in embryos treated with retinoic acid. One of these 

retinoic acid-induced genes is X-ngnr-1, the Xenopus laevis homolog of the bHLH transcription 

factors, most closely related to the mammalian NGN2 (Franco et al., 1999; Nieber et al., 2009), 

which mediates neuronal diversification of mainly large diameter mechanoreceptive or 

proprioceptive neurons in mammals.  

Based on these findings, it cannot be ruled out that a combinatorial effect of a shortened 

overexpression of NGN1 (of only 3 days) and the addition of wrong supplementary ingredients 

hindered NCLCs to adopt a nociceptive phenotype. 

 

6.4 Mechanotransduction of nociceptors and the role of PIEZO2 

 

Besides its physiological role as an internal warning signal, required for survival and avoidance of 

tissue damage, chronic or pathophysiological pain is one of the most common epiphenomena of 

many diseases that restrict the quality of life tremendously. Under inflammatory conditions (for 

example, tissue injury caused by mechanical forces, chemicals or thermal stimuli), inflammatory 

mediators are released both by non-neuronal cells in close proximity to the injury (such as 

fibroblasts, endothelial cells, keratinocytes or immune cells) and by nociceptors. Those signaling 

molecules, known as the “inflammatory soup”, including neurotransmitters, protons, lipids, 

growths factors cytokines, prostaglandins or neuropeptides such as bradykinin are responsible for 

the sensitization of neuronal afferents (reviewed by Gangadharan and Kuner, 2013; Gold and 

Gebhart, 2010; Hucho and Levine, 2007; Julius and Basbaum, 2001). Peripheral sensitization is 

characterized by enhanced responsiveness of sensory nerve fibers combined with diminished action 

potential thresholds of sensitized nociceptors, and is known to be mediated by distinct cell 

membrane transduction proteins that further regulate downstream proteins. 
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While thermal-induced hyperalgesia (an already noxious thermal stimulus evokes even more 

intensive pain) was already associated with sensitization of TRPV1, the molecular components 

involved in mechanical-induced hyperalgesia and peripheral sensitization are still not completely 

elucidated (Caterina et al., 2000; Davis et al., 2000). TRPV1 thermal sensitization can either be 

directly mediated by inflammatory molecules or indirectly, for example via G-protein coupled 

receptors (GPCR) that recruit downstream proteins such as protein kinase A (PKA) or protein 

kinase C (PKC), phosphorylating TRPV1 residues to sensitize the channel (Rathee et al., 2002; 

Tominaga et al., 2001). 

The neurotrophin NGF is upregulated under inflammatory conditions and released from different 

cells types, for example Schwann cells or tissue that is innervated by nociceptive fibers. Early 

studies could demonstrate that NGF administration to the hind paw resulted in prolonged 

hyperalgesia of newborn and adult rats, and this NGF-induced hypersensitivity was mediated by 

enhanced levels of TRPV1 channels (Ji et al., 2002; Lewin et al., 1993; Zhang et al., 2005). 

In addition to its involvement in regulating TRPV1 thermal-induced hyperalgesia, it was also 

demonstrated that mechanically-induced currents of sensory neurons can be modulated by NGF 

(Castro et al., 2006; Lechner et al., 2009). While Castro et al. revealed enhanced NGF-mediated 

current amplitudes in response to mechanical stimulation, Lechner and colleagues showed that 

NGF-treatment raised the number of sensory neurons, eliciting IA mechanically-activated currents. 

Nevertheless, the exact molecular components responsible for mechanical hyperalgesia have not 

yet been clarified.  

Recent findings in rodents proposed a role for PIEZO2 as a main transducer of mechanical stimuli 

in mechanoreceptors as well as proprioceptors (Coste et al., 2010; Ranade et al., 2014b; Schrenk-

Siemens et al., 2015a; Woo et al., 2015) and we could demonstrate that PIEZO2 is also required for 

mechanotransduction in human stem cell-derived mechanoreceptors (Schrenk-Siemens et al., 

2015a). However, it was not clear whether PIEZO2 is also involved in mediating noxious 

mechanical stimuli. 

A conditional PIEZO2-KO in mouse DRG and Merkel cells (with a 90% reduction of the overall 

Piezo2 transcript) resulted in a specific loss of only rapidly-adapting mechanically-activated 

currents, whereas intermediately-adapting or slowly-adapting currents were not significantly 

altered (Ranade et al., 2014b). To assess whether the remaining Piezo2 transcript was sufficient to 

mediate intermediately and slowly-adapting currents, or if a yet-unknown ion channel is 

responsible for mediating noxious mechanical stimuli, we compared human stem cell-derived 

PIEZO2-WT nociceptors with PIEZO2-KO nociceptors. Mechanical stimulations confirmed that 

PIEZO2 was also required for mechanotransduction of stem cell-derived nociceptors and rapidly-

adapting, mechanically-activated currents (at least those conventionally recorded when using a 

nanomotor-driven stimulus probe) appeared to be absent in PIEZO2-KO nociceptors. Due to the 
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fact that differentiated cells were cultured in a differentiation medium containing NGF (known to 

be involved in inflammation and sensitization), it needs to be clarified whether PIEZO2 is involved 

in mechanotransduction of nociceptors only in an inflammatory state (when NGF is upregulated), 

or also under physiological basal conditions.  

An indication that PIEZO2 could potentially play a role in mechanical hyperalgesia emerged by a 

study of Dubin and colleagues, demonstrating enhanced PIEZO2 function in response to 

bradykinin, an algesiogenic substance known to trigger intensive pain phenotypes. Both transfected 

HEK cells (as a heterologous expression system) and native sensory neurons showed increased 

mechanically-activated current amplitudes and prolonged inactivation kinetics after bradykinin 

administration (Dubin et al., 2012b). The same results were obtained when treating cells with PKC 

or PKA agonists, reflecting (at least to some extent) inflammation-induced mechanical 

hyperalgesia mechanisms (Dubin et al., 2012b). 

PIEZO2 is not only expressed in LTMRs, but also in about 60% of hESC-derived TRKA-positive 

nociceptors, and in more than 20% of mouse TRPV1-expressing peptidergic nociceptors (Coste et 

al., 2010). Capsaicin-induced TRPV1 activation significantly reduced mechanically-activated 

currents in cultured mouse DRG neurons as well as in TRPV1/PIEZO2 co-transfected HEK cells, 

clarifying the pain-relieving response of capsaicin treatment (Borbiro et al., 2015). Recent findings 

proposed a mechanism of mechanical-induced allodynia, in which cyclic AMP-activated EPAC1 

protein increased mechanically-activated currents both in DRG neurons and in EPAC1/PIEZO2 

transfected HEK cells (Eijkelkamp et al., 2013). Downstream EPAC1-PIEZO2 interaction was 

shown to be indirectly regulated by RAP1, a GTPase responsible for triggering signaling pathways, 

including PKC, already described by Dubin and colleagues for its involvement in PIEZO2-

mediated mechanical hyperalgesia (Breckler et al., 2011; Dubin et al., 2012b). 

In line with these findings, sensory tests performed with patients (bearing inactive PIEZO2 

variants) and control individuals showed significant differences, with reduced sensitivity to 

innocuous light touch and vibrations in the patients, whereas mechanically-induced pain sensation 

was not altered between patients and control group (Chesler et al., 2016), indicating that under non-

inflammatory, basal conditions, a not-yet discovered transduction channel is involved in mediating 

noxious mechanical stimuli. 

In order to elucidate whether PIEZO2 is involved in mechanotransduction of nociceptors only 

under inflammatory or also at basal conditions, NGF-deprived differentiated nociceptors need to be 

analyzed. Due to the fact that, during early neurogenesis, NGF/TRKA signaling is required for 

proliferation and survival of developing sensory neurons (Crowley et al., 1994; Silos-Santiago et 

al., 1995b), NGF can only be withdrawn during the last part of differentiation to ensure proper 

nociceptor development and the analysis of non-sensitized neurons. 
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6.5 Accessory proteins of PIEZO2 and targeting strategies 

 

The non-selective PIEZO cation-channels have recently been identified as huge, evolutionary 

conserved, transmembrane proteins and have been described for their involvement in mediating 

mechanical sensation in various species (Coste et al., 2010; Faucherre et al., 2013; Kamajaya et al., 

2014; Kim et al., 2012; Prole and Taylor, 2013). 

Although recent publications demonstrated a link between several PIEZO protein mutations and 

human hereditary diseases as distal arthrogryposis or Marden-Walker or Gordon syndrome (Alisch 

et al., 2017; Chesler et al., 2016; Coste et al., 2013; McMillin et al., 2014), PIEZO protein topology 

and functional mechanisms are still not completely uncovered. 

Most large transmembrane ion channels are directly or indirectly coupled to interaction partners to 

assemble as functional, multimeric complexes (as it is known for example from VGSC, where a 

large α-subunit, composed of sequence repetitive domains, is associated with a least one β-subunit 

to enable proper functioning). However, initial studies for mouse PIEZO1 revealed the formation 

of homo-oligomers with no evidence of accessory proteins (Coste et al., 2012).  

And although biochemical studies of mouse PIEZO2 identified numerous possible binding partners 

and activity modulators (as pericentrin), not much is known about human PIEZO2 channel 

assembly or modulating accessory proteins (Narayanan et al., 2016).  

A previous publication by Coste et al. already demonstrated a successful targeting of mouse 

PIEZO1 with either a N-terminal GFP-tag or a C-terminal GST-tag, resulting in mechanically 

active transiently transfected HEK cells. In this approach, they made use of the tagged mouse 

fusion protein to verify that PIEZO1 assembles as a homotetramer that forms a 1.2 million Da ion 

channel complex (Coste et al., 2012).  

Furthermore, structural analysis proposed a fundamental role of the C-terminal region of PIEZO1 

for channel gating and pore properties. While Coste and colleagues with a PIEZO1 chimera 

(between mouse PIEZO1 and Drosophila melanogaster dPiezo) showed that the C-terminal part of 

PIEZO1 is required for susceptibility to the pore channel blocker ruthenium red as well as for 

channel conductance, Ge et al. described a C-terminal extracellular domain (CED) that is highly 

conserved across species and involved in gating properties and most likely associated with the pore 

(Coste et al., 2015; Ge et al., 2015b). 

Given the importance of the C-terminal part of mouse PIEZO1 for channel gating, and given the 

assumed topological similarity between PIEZO1 and PIEZO2, we generated a hESC line where we 

directly introduced the 3xFlag-His-tag at the N-terminus of PIEZO2. 
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Although gene targeting was successful and 3xFlag-His-tagged hESCs had the continuing ability to 

differentiate into mechanoreceptors (as verified by immunostainings for markers specific for 

mechanoreceptive neurons), functional analysis with mechanical stimulations revealed that the 

tagged-PIEZO2 protein was not functional, as cells were not able to respond to membrane 

indentation. Given that the C-terminal part of mouse PIEZO1 was shown to be important for 

channel gating properties (and thus not a good site for gene targeting) and that the mouse PIEZO1 

N-terminus was already used in previous targeting approaches (resulting in functional tagged-

PIEZO1 channels) for our study, using human PIEZO2, the N-terminus was not successful for 

introducing the 3xFlag-His-tag. 

Retrospectively, the initial (and so far, unproven) assumption that PIEZO1 and PIEZO2 adopt a 

similar N-terminal topology might be wrong and therefore the targeting resulted in a misfolded, 

non-functional tagged PIEZO2 protein. 

Based on more recent findings demonstrating that the insertion of the green fluorescent protein at 

the C-terminus of mouse PIEZO2 was feasible and did not influence PIEZO2 channel functioning, 

it would be nonetheless interesting to repeat the hESC targeting by introducing the 3xFlag-His-tag 

at the C-terminus of human PIEZO2 (Woo et al., 2014). 

To test whether PIEZO2 can be successfully modulated at its C-terminus without losing proper 

function, it would be important to begin with an expression vector containing the human PIEZO2 

cDNA with a 3xFlag-His-tag at the C-terminus, that can be used for transfecting a heterologous 

expression system. With this control system, not only purification conditions but also functionality 

can be tested and therefore would prevent us from starting laborious targeting experiments with a 

non-functional protein. 

As already mentioned, working with a defined neuronal subtype such as stem cell-derived 

mechanoreceptors is beneficial compared to a more heterogeneous and complex mouse model 

system. In the case of mass spectrometry analysis, for example, performed to identify possible 

interaction partners, a heterogeneous system leads to many hits with probably more background 

and more false-positive candidates. Therefore, it is of great importance to describe and define 

features how to interpret candidates, emerged by mass spectrometry.  

Cytoskeleton elements have been described as modulators required for proper 

mechanotransduction, and given the role of PIEZO2 in mechanosensory transduction, there is 

reason to suspect that cytoskeleton molecules are part of the PIEZO2 interactome (Cho et al., 2002; 

Drew et al., 2002; Eijkelkamp et al., 2013). Although it has been demonstrated that no other ion 

channel components are associated with mouse PIEZO1 subunits, this has not been shown for 

human PIEZO2, and it remains to be seen whether human PIEZO2 is associated with other ion 

channels, important for regulating PIEZO2-mediated mechanotransduction (Coste et al., 2012). 
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Possible accessory proteins of PIEZO2, identified by mass spectrometry, need to be verified in a 

heterologous expression system, testing PIEZO2-mediated mechanosensitivity in presence or 

absence of the identified interaction partner. 

Based on the fact that we successfully established a differentiation protocol for the generation of 

stem cell-derived nociceptors, it would be interesting to compare human PIEZO2 interaction 

partners from derived mechanoreceptors and derived nociceptors to elucidate whether accessory 

proteins and mechanisms of PIEZO2-mediated noxious and innocuous mechanotransduction share 

similarities or are distinct from each other. 
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7. Conclusion 

 

In this doctoral thesis, a differentiation protocol for the generation of functional human stem cell-

derived nociceptors was established and differentiated neurons were characterized, in order to 

provide more detailed knowledge on how pain-sensitive neurons develop and evolve their 

characteristic phenotypes. Functional similarity between hESC-derived nociceptors and their in 

vivo correspondent cell types was confirmed by comparison of marker gene profiles, revealed to be 

similar in both cases. A comparative study between human tissue and mouse DRG neurons, an 

animal model broadly used for basic pain research, demonstrated molecular differences already at 

cellular level that need to be taken into account for the development of new pain-relieving drugs. 

Furthermore, functional analysis of PIEZO2, recently identified as a main transducer of innocuous 

mechanical stimuli in mechanoreceptors and proprioceptors, revealed that PIEZO2 is also required 

for mechanotransduction in stem cell-derived nociceptors, as mechanically-induced currents were 

absent in PIEZO2-KO nociceptors.  

The main outcome of this project was the creation and adjustment of a differentiation protocol of 

human nociceptors, enabling us to finally provide a model system to study human pain and pain 

transduction in vitro. This will also allow the identification of differences and similarities between 

human and mouse nociceptors, joining forces to other ongoing studies to overcome challenges in 

translational pain research.  
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I. Abbreviations 

 

BDNF    Brain-derived neurotrophic factor 

Cap    Capsaicin 

cDNA    Complementary DNA 

CGRP    Calcitonin gene-related peptide 

CNS    Central nervous system 

Ctrl    Control 

Cy2    Cyanine-2 

Cy3    Cyanine-3 

DAPI    4',6-diamidino-2-phenylindole 

DMEM    Dulbecco’s modified Eagle’s medium 

DNA    Deoxyribonucleic acid 

dNTPs    Deoxynucleotidetriphosphate 

DRG    Dorsal root ganglion 

E8    Essential 8 TM Medium 

E.coli    Escherichia coli 

EGFP    Enhanced green fluorescent protein 

GDNF    Glial cell-derived neurotrophic factor 

GFP    Green fluorescent protein 

HEK293TN   Human embryonic kidney cells 293 (+SV40 large T-antigen) 

HEPES    4-2hydroxyethyl-1-piperazineethanesulfonic acid 

hESC    Human embryonic stem cell 

IB4    Isolectin B4 

iPSC    Induced pluripotent stem cell 

LB    Luria-Bertani 

Menth    Menthol 

MiliQ    Ultrafiltrated water (from MiliQ-Plus water system, Millipore)  

MO    Mustard Oil 

mRNA    Messenger ribonucleic acid 

NCLC    Neural crest-like cell 

NGF    Nerve growth factor 
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on    Over night 

PBS    Phosphate buffered saline 

PCR    Polymerase chain reaction 

PFA    Paraformaldehyde 

pH    potentiumhydrogenii; potential of hydrogen 

PNS    Peripheral nervous system 

RNA    Ribonucleic acid 

RNase    Ribonuclease 

RT    Room temperature 

SP    Substance P 

TE    Tris-EDTA 

TG    Trigeminal ganglion 

TM    Transmembrane domain 

TrkA    Neurotraophic tyrosine kinase receptor type 1 

TrkB    Neurotraophic tyrosine kinase receptor type 2 

TrkC    Neurotrophic tyrosine kinase receptor type 3 

TRP    Transient receptor potential 

TRPA1    Transient receptor potential ankyrin 1 

TRPM8   Transient receptor potential cation channel subfamily M member 8 

TRPV1    Transient receptor potential Vanilloid 1 

TTX    Tetrodotoxin 

WT    Wild type   
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II. Units 

 

°C    degrees celsius 

bp    base pair 

d    day 

g    gram 

hr    hour 

kb    kilobase 

l    liter 

M    molar 

min    minute 

mg    miligram 

ml    milliliter 

mM    millimolar 

ng    nanogram 

m    nanometer 

rpm    Revolutios per minute 

s    second 

µg    microgram 

µl    microliter 

µm    micrometer 

µM    micromolar
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III Nomenclature 

 

Human     Gene: all letters in upper case/ Italic 

     Protein: all letters in upper case/ Regular 

Mouse     Gene: only first letter in upper case/ Italic 

     Protein: all letters in upper case/ Regular 

Human and Mouse together  Mouse regulation 


