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Abstract

In this thesis, the theory of the g-factor of bound electrons and muons is presented. For
light muonic ions, we include one-loop self-energy as well as one- and two-loop vacuum
polarization corrections with the interaction with the strong nuclear potential taken into
account to all orders. Furthermore, we include effects due to nuclear structure and mass.
We show that our theory for the bound-muon g-factor, combined with possible future
bound-muon experiments, can be used to improve the accuracy of the muon mass by one
order of magnitude. Alternatively, our approach constitutes an independent access to
the controversial anomalous magnetic moment of the free muon. Furthermore, two-loop
self-energy corrections to the bound-electron g-factor are investigated theoretically to
all orders in the nuclear coupling strength parameter Zα. Formulas are derived in the
framework of the two-time Green’s function method, and the separation of divergences
is performed by dimensional regularization. Our numerical evaluation by treating the
nuclear Coulomb interaction in the intermediate-state propagators to zero and first order
show that such two-loop terms are mandatory to take into account in stringent tests of
quantum electrodynamics with the bound-electron g-factor, and in projected near-future
determinations of fundamental constants.

Zusammenfassung

In dieser Arbeit wird die Theorie des g -Faktors von gebundenen Elektronen und Myonen
präsentiert. Für leichte myonische Ionen betrachten wir die Ein-Schleifen-Selbstenergie-
sowie Ein-und Zwei-Schleifen-Vakuumpolarisationskorrekturen, wobei die Wechselwir-
kung mit dem starken Kernpotential zu allen Ordnungen berücksichtigt wird. Darüber
hinaus berücksichtigen wir die Effekte aufgrund von Kernstruktur und Masse. Wir
zeigen, dass unsere Theorie für den g -Faktor des gebundenen Myons, kombiniert mit
möglichen zukünftigen Experimenten mit gebundenen Myonen, genutzt werden kann,
um die Genauigkeit der Myon-Masse um eine Größenordnung zu verbessern. Alter-
nativ stellt unser Ansatz einen unabhängigen Zugang zu dem umstrittenen anoma-
len magnetischen Moment des freien Myons dar. Desweiteren werden Zwei-Schleifen-
Selbstenergiekorrekturen für den g-Faktor von gebundenen Elektronen zu allen Ord-
nungen im Atomkern-Kopplungsstärke-Parameter Zα theoretisch untersucht. Formeln
werden im Rahmen der two-time Green’s function-Methode hergeleitet, und die Sepa-
ration von Divergenzen erfolgt durch dimensionale Regularisierung. Unsere numerische
Berechnung, bei der die Coulomb-Wechselwirkung in internen Propagatoren zu nullter
und erster Ordnung berücksichtigt wird, zeigt, dass solche Zwei-Schleifen-Beiträge für
strenge Tests der Quantenelektrodynamik mittels des g-Faktors des gebundenen Elek-
trons berücksichtigt werden müssen, sowie in naher Zukunft für die geplante Bestimmung
von Naturkonstanten.
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1 Introduction

The g-factor of the electron and the muon

Quantum field theory (QFT) describes the fundamental quantum interactions between
elementary particles. The Standard Model of particle physics which is based on QFT
provides accurate descriptions of the electromagnetic, the strong and weak interactions
[6–11]. Quantum electrodynamics (QED), which is the quantum theory of the elec-
tromagnetic interaction, is a part of the Standard Model. It is, as of now, the most
successful physical theory [6, 12, 13]. Among the most precisely determined quantities
are the magnetic dipole moments (or, the associated g-factors) of the free electron and
muon [6, 14–20].

An excellent 11-digit agreement between the theoretical and experimental g-factors of
the free electron has been found (e.g. Ref. [19]). In fact, experimental measurements
and theoretical calculations for the free electron have reached a level of precision that
the g-factor measurement is used to determine the fine-structure constant α, assuming
the correctness of QED [21]. The value of α extracted from the comparison of theory
and experiment of the electron g-factor [22] was found to be in good agreement with α
determined in independent methods such as atom recoil measurements [17]. Nowadays,
the most precise value of α stems from a comparison between the experimental and
theoretical g-factors of the free electron [19, 22].

For the g-factor of the free muon, however, a significant disagreement between the
theoretical and experimental values has been found. This could be due to uncertainties
of the hadronic vacuum polarization contribution, but the origin of this discrepancy
is not known [19]. Another muon-related mystery is the proton radius puzzle [23–25].
Due to a larger overlap between the muon’s wavefunction and the proton, a Lamb
shift measurement on muonic hydrogen, i.e. the bound system formed by a proton
and a negatively charged muon, allowed the determination of the proton radius with a
better accuracy compared to the value accepted by the Committee on Data for Science
and Technology (CODATA) [23]. The proton radius determined this way was found
to be smaller by 5 standard deviations than the accepted CODATA value [23] which
is determined from electron-proton scattering experiments and precision spectroscopy
of the hydrogen atom [23]. A similar deviation was observed for the deuteron radius
[26, 27]. However, a recent measurement using hydrogen atoms found a proton radius
which is consistent with the proton radius from the muonic experiment [28].

Another discrepancy involving bound particles is the recently observed deviation be-
tween the theoretical and experimental hyperfine splittings in hydrogenlike and lithi-
umlike bismuth [29]. A weighted difference of hyperfine splittings of these two charge
states of bismuth was determined experimentally and was found to be in significant
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disagreement (7 standard deviations) with the theoretical prediction [29]. The question
arises whether it is our understanding of nuclear structure or the QED theory of mag-
netic interactions which caused this deviation, motivating studies in the latter field. The
magnetic sector of QED can be especially well tested by employing an external magnetic
field, as it is the case for g-factor experiments.

In this work, we investigate the g-factor of electrons and muons bound in a nuclear
potential. Measurements of the bound-electron and bound-muon g-factors allow tests
of QED in the presence of strong electric background fields which are not present in
the free-electron and free-muon g-factor determinations [30]. Also, in the case of bound
particles, the atomic number Z of the nucleus provides an additional parameter which
can be varied experimentally in a wide range.

The g-factor of the bound electron is typically measured in Penning-trap experiments.
In such an experiment, the Larmor frequency ωL of the bound electron and the cyclotron
frequency ωc of the ion are determined. The Larmor frequency depends on the bound
fermion’s g-factor as follows [1]:

ωL =
g

2

|e|
me

B . (1.1)

The cyclotron frequency of the ion is [1]

ωc =
Q

M
B . (1.2)

Here, e is the (negative) elementary charge and Q is the ion’s charge, me and M are
the electron’s and ion’s mass, respectively, and g is the bound-electron g-factor [1].
There have been measurements of the bound-electron g-factor in hydrogenlike 12C5+

[30, 31], 16O7+ [32], and, more recently, 28Si13+ [33]. An excellent agreement between
the experimental and the theoretical value according to state-of-the-art calculations was
found in these measurements. The experiment with hydrogenlike 28Si13+ has since been
repeated, improving the experimental accuracy of the bound-electron g-factor by one
order of magnitude [34]. With this, the experimental accuracy for the 28Si13+ ion is one
order of magnitude better than the theoretical prediction [33, 34]. The ALPHATRAP
setup at the Max Planck Institute for Nuclear Physics is anticipated to increase the
experimental accuracy even further and also to extend the range of ions to be investigated
to elements as heavy as lead (Z = 82) [35]. g-factor measurements with very heavy
highly charged ions are also planned at the FAIR facility in Darmstadt [35, 36]. As for
experimental techniques, we refer to the detailed discussions in Ref. [37–40].

There are several applications for bound-electron g-factor measurements. One promi-
nent example is the determination of the electron mass [41]. Equations (1.1) and (1.2)
can be solved for the electron mass [1]:

me =
g

2

e

Q

ωc

ωL
M . (1.3)

For the determination of me, the frequency ratio needs to be measured and, assuming
the correctness of QED, one uses the theoretical value of the g-factor. Recently, the
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accuracy of the electron mass was improved this way by one order of magnitude [31, 42],
employing a 12C5+ ion. Subsequent investigations lead to small corrections (less than
one standard deviation) of the value of the electron mass [1, 43]. A further application
of the bound-electron g-factor is the determination of the electron-proton mass ratio,
provided the ion-proton mass ratio is known with sufficient accuracy [44].

The g-factor of bound electrons is also sensitive to the nuclear structure, especially in
heavy ions. A measurement of the bound-electron g-factor could be used as a probe for
the nuclear structure, assuming the correctness of QED [45]. This was demonstrated in
Ref. [33], where the radius of the 28Si nucleus was determined, albeit with an accuracy
which is not as good as the accuracy of the current literature value. Bound-electron
g-factor measurements can in principle be used as well to determine nuclear magnetic
moments by a measurement involving hyperfine-split atomic levels [45, 46].

Another system of interest are lithiumlike ions. Apart from binding corrections to
QED effects, electron-electron interactions and QED corrections to electron-electron in-
teractions are also relevant in lithiumlike ions. Theoretical investigations on lithiumlike
ions have been performed e.g. in Ref. [47–50]. A measurement of the g-factor of the
lithiumlike silicon ion 28Si11+ showed an excellent agreement between theory and exper-
iment [51]. Two different isotopes of lithiumlike Ca were investigated experimentally
and theoretically in Ref. [52], allowing the study of nuclear recoil effects.

Finally, schemes have been proposed to determine the fine-structure constant α from
the bound-electron g-factor [45, 53–55]. While the g-factor of the free electron is mainly
described by radiative QED corrections (apart from small contributions due to strong
and weak interactions), the leading α dependence of the bound-electron g-factor is due
to non-radiative binding corrections [56]. Therefore, an α determination by means of
the bound-electron g-factor constitutes an independent measurement [54]. However, the
uncertainties of the nuclear radius and further details of the nuclear structure constrain
the accuracy of the theoretical g-factor predictions. The uncertainty due to the nuclear
parameters is larger than the uncertainty due to the current accuracy of α in all hy-
drogenlike ions, except for the He+ ion [1]. Therefore, in order to make a competitive
α determination by means of the bound-electron g-factor feasible, weighted differences
of g-factors of ions in different charge states are being considered. In Ref. [54, 55], a
weighted difference of g-factors of hydrogenlike ghyd and lithiumlike glit ions is consid-
ered: δΞg = glit − Ξghyd. The weight Ξ is optimized in such a way that nuclear effects
are suppressed in δΞg by several orders of magnitude, such that the uncertainty of δΞg
due to the uncertainty of the nuclear radius is rendered to be smaller than the uncer-
tainty due to the uncertainty of α. This procedure allows a determination of α, using
low- and medium-Z ions, with an accuracy of up to one or two orders of magnitude
better than the current literature value, provided that the theoretical and experimental
g-factors can be given with sufficient accuracy [54, 55]. A weighted difference between
the g-factors of heavy hydrogenlike and boronlike ions for the determination of α has
also been investigated [53].

To push forward the boundaries of theory, QED corrections at the one- and two-
loop level need to be calculated with increasing accuracy. One-loop corrections have
been evaluated both perturbatively as a power series in Zα and non-perturbatively
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in Zα (see e.g. Ref. [56, 57]). Two-loop corrections were evaluated as an expansion
in terms of the parameter Zα up to fourth order in Ref. [56]. Two-loop diagrams
with two vacuum polarization (VP) loops and those with one VP and one self-energy
(SE) loop were evaluated non-perturbatively in Zα [58]. A previously uncalculated
two-loop light-by-light scattering contribution of the order (Zα)4 was determined [59].
Evaluations of two-loop (Zα)5 terms were also performed [60–62]. However, for large Z,
the perturbative approach cannot be expected to give good approximations, since the
expansion parameter of this approach, Zα, is close to unity. The perturbative evaluation
of the two-loop self-energy correction to the Lamb shift resulted in numerically large
coefficients in the Zα expansion, showing a slow convergence of the Zα series even for
small Z [63]. This slow convergence even for low Z cannot be ruled out for the two-loop
corrections to the g-factor. Therefore, methods which include the interaction between
fermion and nucleus exactly, i.e. without a perturbative expansion, are required.

The subject of this thesis

In this thesis, we investigate the g-factor of the bound muon [2]. The methods to com-
pute one-loop radiative corrections to the bound-electron g-factor were applied to bound
muons. As stated above, nuclear effects are enhanced in muonic ions. Therefore, in or-
der to achieve a high theoretical accuracy for the bound-muon g-factor, we develop the
theory of the bound-muon g-factor specifically for muonic ions without any remaining
bound electrons and with low nuclear charge numbers. For the muonic 4He+ ion, the
accuracy of our bound-state QED calculations is comparable to the accuracy of the
free-muon g-factor predictions [2, 19]. Therefore, our theory serves as an independent
method to determine the controversial free-muon g-factor by subtracting the QED bind-
ing corrections we calculate [2]. Furthermore, we put forward a method to improve the
muon mass via the bound-muon g-factor, similarly to the determination of the electron
mass discussed above. As we shall see, the bound-muon g-factor allows the improvement
of the accuracy of the muon mass by one order of magnitude, provided the required ex-
perimental accuracy can be achieved [2]. Such investigations can shed some light on
the existing discrepancies between the theoretical description and experimental findings
involving the muon mentioned above.

Furthermore, we investigate the previously uncalculated two-loop self-energy correc-
tions to the bound-electron g-factor non-perturbatively in Zα [3]. For a broad range of
ions, the two-loop self-energy corrections, which are by far the hardest to treat theoreti-
cally, are the largest source of uncertainty. This holds true even at Z = 6, after a recent
high-precision evaluation of the one-loop SE corrections [1, 64]. Therefore, we see that
higher-order terms in Zα are also necessary at low nuclear charges, if an ultimate preci-
sion is required. Furthermore, a very recent computation of the order (Zα)5 contribution
to the two-loop SE correction does not seem to improve the theoretical uncertainty of the
bound-electron g-factor [62]. Improving the theoretical accuracy of the bound-electron
g-factor is crucial for the determination of α from the bound-electron g-factor [54, 55] as
well as for stringent tests of bound-state QED since, even for Z = 14, the experimental
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accuracy is one order of magnitude better than the theoretical accuracy [1, 34, 62]. This
further shows the need of a non-perturbative evaluation of the two-loop SE correction.

These calculations are by no doubt challenging: the analogous evaluation of the simpler
two-loop self-energy contribution to the Lamb shift took several years for a group of
several authors [65–67]. We start them by developing the theoretical framework for
the evaluation of two-loop SE corrections to the g factor of an atomic electron in a
hydrogenlike ion in the Furry picture, i.e. to all orders in Zα [3]. As we shall see,
many two-loop self-energy contributions contain ultraviolet and infrared divergences. We
demonstrate that all ultraviolet and infrared divergences mutually cancel such that the
complete two-loop self-energy correction is finite [3]. We then separate all contributions
into different categories, analogously to the two-loop self-energy correction to the Lamb
shift [63], namely the so-called loop-after-loop (LAL) contribution as well as the F, P
and M terms which will be properly defined later. Each of these categories requires
a different approach for numerical evaluation. We also compute the complete F term
numerically and demonstrate that it converges to the two-loop self-energy correction of
the free-electron g-factor for low Z [3]. This was an important consistency check of our
results since the LAL contribution as well as the P and M terms can be expected to
converge to zero in this limit, as will be discussed later.

Structure of the thesis

This work is organized as follows. In Chapter 2, we begin with an overview of the g-
factor contributions for free electrons and muons computed so far, as well as binding
corrections computed in the framework of non-relativistic QED, which treats binding
corrections perturbatively. We will also illustrate how this approach is restricted to low
nuclear charge numbers.

We then discuss the two-time Green’s function method [68] which we will use to com-
pute binding effects in QED non-perturbatively in Chapter 3. To illustrate the two-time
Green’s function method, we compute the leading contribution to the bound-fermion
g-factor. In addition, we summarize the contributing nuclear effects.

In Chapter 4, we discuss the methods to compute one-loop Feynman diagrams for
bound fermions. There are two different kinds of one-loop corrections to the bound-
fermion g-factor, namely, the self-energy (interaction of the bound fermion with the
quantum photon field) and the vacuum polarization (creation and annihilation of virtual
fermion-antifermion pairs). We begin with the discussion of the self-energy correction
by deriving all contributing terms using the two-time Green’s function method. The
cancellation of ultraviolet and infrared divergences will be explained, as well as meth-
ods to compute the individual self-energy contributions. We then briefly discuss the
renormalization of vacuum polarization contributions. In this thesis, we consider two
cases of vacuum polarization in which the virtual particles created have a different mass
than the bound particle under consideration. Specifically, we investigate muonic vacuum
polarization corrections (i.e. corrections due to the creation and annihilation of virtual
muon-antimuon pairs) to the bound-electron g-factor [4] as well as electronic vacuum
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polarization corrections (virtual electron-positron pairs) to the bound-muon g-factor [2].
The contributions to the bound-electron g-factor due to one-loop Feynman diagrams
have been discussed in the literature in great detail, e.g. [57, 69–71].

In Chapter 5, we discuss applications of the bound-fermion g-factor. First, we review
the recent high-precision determination of the electron mass [1]. Then, we present our
theory of the bound-muon g-factor which also includes the computation of two-loop
vacuum polarization contributions for the case of virtual electron-positron pairs. We
will demonstrate, how this theory can be used to improve the accuracy of the muon
mass by one order of magnitude [2].

In Chapters 6 and 7, we move on to the main part of this thesis, namely, the theory
of two-loop self-energy corrections to the bound-electron g-factor [3]. In Chapter 6, we
discuss the analytical theory of these previously uncalculated elaborate terms, namely,
the cancellation of ultraviolet and infrared divergences and the separation of these dia-
grams into different groups suitable for numerical evaluation. In chapter 7, we describe
our methods for the computation of the so-called F term in detail. We also present
our numerical results for the F term and show the consistency of our results with the
free-electron QED theory.

Units

Throughout this work, we will use relativistic units, i.e. the unit system with ~ = c =
me = 1 (see e.g. Ref. [72]). In these units, the fine-structure constant can be expressed

as α = e2

4π , where e is the negative elementary charge [6].
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2 Free-fermion g-factor and Zα expansion

The g-factor of an elementary fermionic particle is a dimensionless quantity which
parametrizes its magnetic dipole moment according to the formula [69]

µf = gf
qfJ

2mf
. (2.1)

Here, µf is the particle’s magnetic dipole moment, qf and mf are the fermion’s charge
and mass, respectively, g is the g-factor and J is the total angular momentum of the
particle. For a free electron or muon and for a bound electron or muon in the ground
state of the hydrogen atom or a hydrogenlike ion, J is equal to its spin. In this thesis, we
specifically consider electrons and muons which are both spin-1

2 fermions. We sometimes
use the term “fermion” when refering to electrons and muons if a statement is applicable
to both.

Various physical theories make contradictory predictions for the g-factor of the elec-
tron and muon. Classical electrodynamics predicts a g-factor of precisely g = 1 [73]. In
the derivation of this result, the electron or muon is assumed to be a rotating charge
distribution with a spatially constant charge to mass ratio and with total angular mo-
mentum J [73]. Non-relativistic quantum mechanics does not predict the g-factor of
elementary particles but contains the g-factor as a free parameter which has to be deter-
mined experimentally [74, 75]. Including special relativity into the quantum mechanical
theory, which is equivalent to the Dirac theory, the g-factor is no longer a free parameter.
The Dirac theory predicts a g-factor of precisely g = 2 [6].

Quantum field theory predicts a g-factor which can be parametrized as

g = 2 + radiative corrections,

where the “radiative corrections” can be determined only perturbatively [6]. They corre-
spond to Feynman diagrams with closed loops [6]. Pure QED effects can be parametrized
as a perturbation series in powers of the fine structure constant α, where the number of
closed loops in the diagram corresponds to the power of α [6, 17, 19, 20, 69]:

gf = 2

(
C

(0)
f + C

(2)
f

(α
π

)
+ C

(4)
f

(α
π

)2
+ C

(6)
f

(α
π

)3
+ C

(8)
f

(α
π

)4
+ C

(10)
f

(α
π

)5
· · ·
)
.

(2.2)
The coefficients C(2n) correspond to the sum of all n-loop diagrams (i.e. diagrams
with 2n interaction vertices between the fermion and the quantum photon field) [69].
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Figure 2.1: One-loop correction to the free-fermion g-factor [6]. The straight line repre-
sents the free fermion (electron or muon), the wave line represents a virtual
photon and the wave line terminated by the triangle represents the interac-
tion with the magnetic field [69].

As mentioned above, C
(0)
f = 1. The lowest-order correction was first calculated by J.

Schwinger in 1948 [76]. It corresponds to the one-loop vertex diagram shown in Fig. 2.1.

C
(2)
f =

1

2
(2.3)

The computation of C
(2)
f is described in detail in standard textbooks, e.g. [6, 77–81].

This prediction was in excellent agreement with the experimental value for the g-factor
of the free electron [6] and greatly contributed to the development of quantum field
theory [56].

In g-factor Feynman diagrams with at least two loops, there can be contributions
due to vacuum polarization (VP), i.e. contributions due to the creation and subsequent
annihilation of virtual fermion antifermion pairs. VP contributions depend on the mass
ratio of the fermion whose g-factor is to be determined and the particle species in the
loop [19]. E.g. VP due to virtual electron positron pairs gives different contributions to

the electron’s and the muon’s g-factors [19]. Therefore, the coefficients C
(2n)
f with n ≥ 2

are different for electrons and muons [82].
By now, g-factor contributions to the free electron and muon which correspond to

diagrams with up to five loops (i.e.
(
α
π

)5
) have been computed [19, 21, 83–87]. Con-

tributions up to order
(
α
π

)3
have been evaluated analytically [56, 85, 86]. Recently, the

order
(
α
π

)4
contribution to the free-electron g-factor was evaluated with extremely high

accuracy [88]. Apart from QED corrections, there are also hadronic (e.g. [19, 89–91])
and electroweak (e.g. [19, 92]) contributions to the electron and muon g-factors.

The theoretical and experimental g-factor of the electron are in excellent agreement
with each other [19]. The determination of the fine-structure constant α from a compar-
ison of the theoretical and experimental g-factor of the electron gives the most accurate
value of this fundamental constant [19, 93]. There is, however, a significant deviation
between the theoretical and experimental g-factor of the free muon [19, 94, 95].

In this thesis, we do not consider free particles but bound electrons and muons in
the ground state |a〉 of a hydrogenlike ion. The term hydrogenlike ion refers to a bound
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system of one electron and a nucleus with nuclear charge number Z. With a hydrogenlike
muonic ion, we refer to a bound system of one muon and an atomic nucleus with charge
number Z, and no further electrons bound in this system.

If a hydrogenlike ion is exposed to a magnetic field B = Bez, the energy levels of the
bound particle are shifted (Zeeman effect) according to the equation [69]:

∆E = −〈a|µf ·B|a〉. (2.4)

Replacing the magnetic dipole moment using equation (2.1), we obtain the following
relation between the bound-fermion g-factor and the Zeeman energy shift [69]:

∆E = −mjg
qfB

2mf
. (2.5)

Here, mj is the angular momentum projection quantum number of the atomic state of
the bound particle. In this thesis, we only consider the case mj = 1

2 .
To compute the bound-fermion g-factor, the interaction between the bound fermion

and the atomic nucleus needs to be taken into account. This means that the coefficients
C(2n) are modified by the interaction between fermion and nucleus. This interaction can
be taken into account perturbatively, using the framework of non-relativistic quantum
electrodynamics [96, 97], with the expansion parameter of this perturbation series being

Zα. This means that the coefficients C
(2n)
f can be expressed as a series in Zα (e.g.

[98, 99]).
Various problems in atomic physics can be computed using the Zα expansion approach

[100–108] apart from the g-factor, e.g. the Lamb shift (e.g. [78, 109, 110]) and the
hyperfine structure (e.g. [111–113]).

In the framework of non-relativistic quantum electrodynamics, the bound-fermion g-
factor is parametrized as a double perturbation series in two expansion parameters,
namely α and Zα.

The order (Zα)0 contributions to C
(2n)
f correspond to the free-fermion contributions

[114]. By now, the first few correction terms in Zα have been computed. A simple
formula was derived to compute the (Zα)2 from the (Zα)0 contribution in refs. [114, 115].
The order (Zα)4 contribution was computed for one-loop diagrams in Ref. [116] and for
two-loop diagrams in Ref. [44, 56]. A recent investigation of a light-by-light scattering
contribution resulted in an additional contribution of order (Zα)4 to two-loop diagrams
[59] which had not been taken into account in the earlier investigation [56]. The lowest-
order in Zα contribution (Zα)5 to the “magnetic loop” vacuum polarization diagram was
determined in Ref. [117] for electronic VP, and in Ref. [59] for the case of muonic VP.
The first step towards computing the order (Zα)5 contribution to two-loop diagrams
was done in Ref. [60], where two-loop vacuum polarization diagrams were analyzed.
We would like to point out that most Zα expansion formulas for VP contributions are
developed for the case of the bound particle mass being equal to the mass of the virtual
particles. The order (Zα)5 correction to one-loop self-energy diagrams was computed
in Ref. [61], and the order (Zα)5 contribution to two-loop diagrams was computed in
Ref. [62].
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Figure 2.2: Moduli of one-loop contributions of order (Zα)0 (red line), (Zα)2 (green
dashed line) and (Zα)4 (blue dotted line) to the electron g-factor [6, 56, 114].
The dip of the (Zα)4 contribution is caused by the change of sign due to
logarithmic terms.

Such an expansion can certainly not be considered a good approximation for high
nuclear charge numbers because the expansion parameter Zα is close to unity in this
case. In Fig. 2.2, the modulus of the order (Zα)2 and (Zα)4 contributions to the one-
loop diagrams are plotted. One can see that for Z > 38, the modulus of the order (Zα)4

contribution is larger than that of the order (Zα)2. Furthermore, in the evaluation
of the Zα expansion for the two-loop self-energy correction to the Lamb shift, some
coefficients of the perturbation expansion turned out to be rather large, suggesting a
slow convergence of the Zα expansion even for low Z [63]. This might also be the case
for the bound-electron g-factor, since the uncertainties of the bound-electron g-factor do
not seem to decrease after the succesful evaluation of the order (Zα)5 corrections (see the
uncertainties estimated for the bound-electron g-factor in different ions in Ref. [1, 62]).
Thus, methods to take into account the interaction with the nuclear potential non-
perturbatively in Zα are also required.
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3 Non-perturbative treatment of the
nuclear interaction

In this Chapter, we give an introduction to the non-perturbative treatment of the in-
teraction of the bound fermion with the nuclear potential. We first introduce the Furry
picture on which the non-perturbative method is based. We then introduce the basic
building blocks of the Furry picture approach, namely the bound fermion’s wavefunction
and Green’s function. To determine g-factor contributions from Feynman diagrams, we
use the two-time Green’s function method which we will briefly introduce here. We then
use this method to discuss the leading g-factor diagram. Corrections to this diagram
due to the nuclear structure and mass are briefly discussed at the end of this Chapter.

3.1 Furry picture

The QED Lagrangian, expressed not in terms of bare fields but in terms of the physical
fields, is (see Ref. [6]):

L =− 1

4
(Fµν)2 + Ψ(i/∂ −m)Ψ

− eΨγµΨArµ

− 1

4
δ3(Fµν)2 + Ψ(iδ2/∂ − δm)Ψ− eδ1ΨγµΨArµ. (3.1)

Here, Ψ is the fermion field, Ψ = Ψ†γ0, /p = pµγµ, Arµ is the photon field and Fµν =
∂µArν − ∂νArµ is the photon field tensor. δ1, δ2, δ3 and δm are renormalization coun-
terterms [6]. µ, ν ∈ {0, 1, 2, 3}, i ∈ {1, 2, 3}. We choose the following representation of
the Dirac matrices (see e.g. Ref. [69, 118]).

γ0 =

(
11 0
0 −11

)
, γi =

(
0 σi

−σi 0

)
,

αµ = γ0γµ. (3.2)

L consists of the free Lagrangian (first line), the interaction Lagrangian (second line)
and renormalization counterterms (third line) which cancel UV divergences that appear
in Feynman diagrams with closed loops [6, 119]. We now split the photon field into three
components as follows: the quantum photon field Aµ, the classical nuclear (Coulomb)
potential eAeµ = (V,0) and the classical magnetic potential Amµ = (0, 1

2B × x) which
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= + + + · · ·

Figure 3.1: Furry picture: The double line represents a bound fermion. It corresponds
to the infinite sum of a free fermion, a free fermion with one inetraction with
the nuclear potential, a free fermion with two interactions etc. A wave line
terminated by a cross represents the interaction with the nuclear potential
[69].

corresponds to a constant magnetic field B = Bez (see Ref. [69]). The interaction
Lagrangian now reads:

LI =− eΨγµΨAµ − eΨrγ
µΨrAeµ − eΨrγ

µΨrAmµ . (3.3)

The aim is to treat the magnetic potential perturbatively up to first order, and the
nuclear potential exactly, i.e. non-perturbatively. The quantum field is treated perturba-
tively. The interaction term between the fermion field and the nuclear potential thus has
to be “shifted” into the “free” (i.e. exactly solvable) Lagrangian [69]. Expressed in terms
of Feynman diagrams, the bound fermion corresponds to the infinite series indicated in
Fig. 3.1. It is a sum of a free fermion line, a free fermion line with one interaction
with the nuclear potential, a free fermion line with two interactions and so on. We are
going to represent a bound fermion with a double line (e.g. [69]). One can show that
the entire series solves the Dirac equation with the nuclear potential. We therefore have
to use solutions of the Dirac equation with the nuclear potential to represent fermion
lines [120, 121]. To be precise, external fermion lines have to be represented by wave
functions of the bound fermion. Internal fermion lines are represented by the Green’s
function of a fermion in the nuclear potential [69]. This approach is referred to as the
Furry picture [122].

3.2 Solution of the Dirac equation - wavefunction

Just as the Dirac spinor representing free fermions [6], the wave function has four com-
ponents. The Green’s function can be represented as a 4× 4 matrix. The procedure to
solve the Dirac equation in the Coulomb potential is described in detail in Ref. [118]. In
a general spherically symmetric potential, the four components of the wave function can
be expressed as a product of a radial wave function which depends only on the radial
coordinate r and a spherical spinor which depends on angular coordinates Ω as follows
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[118]:

Ψnκm(r,Ω) =

(
ignκ(r)χκm(Ω)
−fnκ(r)χ−κm(Ω)

)
. (3.4)

This is a generalization of the non-relativistic case, where a similar separation of variables
can be made [74, 75]. gnκ(r) and fnκ(r) are the radial wave functions [118]. The spherical
two-component spinors χ±κm are defined in e.g. Ref. [118, 123]. Various summation
formulae for spherical spinors can be found in Ref. [124]. n ∈ {1, 2, 3, . . .}. κ is the
relativistic angular momentum quantum number which is related to the orbital angular
momentum l [123] and the total angular momentum j [118] as follows:

l =|κ+
1

2
| − 1

2
, (3.5)

j =|κ| − 1

2
. (3.6)

The radial functions can be determined analytically for the case of a Coulomb potential
(V (r) = −Zα

r ), i.e. the model of a point-like nucleus. The procedure to determine
the radial wave functions is described in detail in Ref. [118]. The wave functions for
arbitrary quantum numbers are given in Ref. [69, 118]. For a detailed discussion of the
Dirac equation, see also Ref. [125–127]

The above definition of the wavefunction is the definition of Ψnκm(r,Ω) introduced
in the textbooks by Greiner [118]. We employed this convention in all our calculations,
although it differs from a more commonly used convention in the literature (specifically
[57, 63, 72]). |a〉 will refer to the ground state of the electron with quantum numbers
(n, κ,m) = (1,−1, 1

2) and |am〉 will refer to the ground state (n, κ) = (1,−1) with
arbitrary angular momentum projection quantum number m.

We also employ the ground state wave functions perturbed linearly by a magnetic field
|δa〉 [57]:

|δa〉 =
∑
n 6=a

|n〉〈n|γ0e /Am|a〉
Ea − En

, (3.7)

|δDa〉 =−
∑
n6=a

|n〉〈n|γ0e /Am|a〉
(Ea − En)2

. (3.8)

In this work, we only require the κn = −1 contribution to |δa〉 and |δDa〉 due to angular
momentum selection rules. The κn = −1 contribution to |δa〉 can be expressed as:

δa(r,Ω) =
eB

3

(
iXa(r)χκama(Ω)
−Ya(r)χ−κama(Ω)

)
. (3.9)

A closed analytical expression for Xa(r) and Ya(r) is given in Ref. [128] for the model
of a point-like nucleus.

The κn = −1 contribution to |δDa〉 can be expressed as:
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δDa(r,Ω) =
eB

3

(
iXδ(r)χκama(Ω)
−Yδ(r)χ−κama(Ω)

)
. (3.10)

The derivation of a closed analytical expression for Xδ(r) and Yδ(r) is outlined in the
appendix of this thesis for the model of a point-like nucleus.

The momentum space representation of |a〉 is (e.g. [6, 72]):

Ψ(p,Ωp) =

∫
d3re−iprΨ(r,Ω) =

(
ig(p)χκm(Ωp)
if(p)χ−κm(Ωp)

)
. (3.11)

Ω and Ωp refer to angular coordinates in position and momentum space, respectively.
The radial components g(p) and f(p) are (here, we do not give the subscripts n,κ, since
we need only the Fourier transform of the ground-state wave function) [69]:

g(p) =4π

∫
drr2j0(pr)g1,−1(r) (3.12)

f(p) =4π

∫
drr2j1(pr)f1,−1(r). (3.13)

j0(pr) and j1(pr) are the spherical Bessel functions. In the derivation of the momentum
representation of the ground-state wavefunction, we employed the identity (see equation
(8.178) in Ref. [75], and Ref. [129]):

e−ipr = 4π
∞∑
l=0

l∑
m=−l

(−i)lYlm(Ωp)jl(pr)Y
∗
lm(Ω). (3.14)

The momentum space representations of |δa〉 and |δDa〉 can be defined analogously:

δa(p,Ωp) =
eB

3

(
iXa(p)χκm(Ωp)
iYa(p)χ−κm(Ωp)

)
, (3.15)

Xa(p) =4π

∫
drr2j0(pr)Xa(r), (3.16)

Ya(p) =4π

∫
drr2j1(pr)Ya(r), (3.17)

δDa(p,Ωp) =
eB

3

(
iXδ(p)χκm(Ωp)
iYδ(p)χ−κm(Ωp)

)
, (3.18)

Xδ(p) =4π

∫
drr2j0(pr)Xδ(r), (3.19)

Yδ(p) =4π

∫
drr2j1(pr)Yδ(r). (3.20)

Fully analytic expressions for g(p), f(p), Xa(p), Ya(p), Xδ(p) and Yδ(p) were determined
using tabulated integrals in Ref. [130]. As can be seen, we usually choose to represent
the position space and the momentum space representation of a function using the same
symbol.
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3.3 Solution of the Dirac equation - Green’s function

The Green’s function of a fermion in a nuclear potential G(x,y, E) is defined as [69]:

(E + iα∇−mγ0 − V (x))G(x,y, E) = δ(x− y). (3.21)

For a detailed discussion of the Green’s function of a fermion in a Coulomb potential,
see [123]. The Green’s function can be represented as a sum over the entire spectrum of
the Dirac Hamiltonian [69]:

G(E) =
∑
n

|n〉〈n|
E − En

. (3.22)

For simplicity,
∑
n

usually refers to a sum over the principal quantum number n, the

angular momentum quantum number κ and the angular momentum projection quantum
number m, with the latter two just assumed implicitly. |n〉 are eigenstates of the Dirac
Hamiltonian. The spectral representation in position space is [69]:

G(x,y, E) =
∑
n

an(x)a†n(y)

E − En(1− iη)
. (3.23)

It can be expressed as a partial wave series [123]:

G(x1,x2, E) =
∑
κ,m

(
g11κ(r1, r2, E)χκmχ

†
κm g12κ(r1, r2, E)χκmχ

†
−κm

g21κ(r1, r2, E)χ−κmχ
†
κm g22κ(r1, r2, E)χ−κmχ

†
−κm

)
. (3.24)

For the point-like nuclear model, the four radial components gijκ(r1, r2, E) can be ex-
pressed as products of confluent hypergeometric functions [123] or in terms of Whittaker
functions [72]. We will also occasionally employ a slight modification of the Green’s
function: SF (x,y, E) = G(x,y, E)γ0 [69].

The free fermion Green’s function can also be expressed as a partial wave series like
equation (3.24), albeit with different radial functions [127]. Other known representations
of the free-fermion Green’s function are the momentum space representation (see text-
books on quantum field theory, e.g. [6]) and the position-space representation in closed
analytical form (without partial wave expansion) (see Ref. [131]). Such representations
are not known for the Green’s function of a fermion in the Coulomb potential [131].

For a detailed discussion of the bound fermion’s wavefunction and Green’s function,
see also refs. [125, 132–135].

3.4 Two-time Green’s function method

A possible method to discuss energy levels in the Furry picture is the adiabatic S-
matrix formalism. This method was developed by Gell-Mann, Low and Sucher (see
refs. [136, 137]) and was widely used in g-factor calculations [138–141]. It is also described
in some detail in the review articles abount bound-state QED by Mohr et al [127] and
Beier [69]. A detailed derivation of this method can also be found in Ref. [142]. However,
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there are certain doubts about the applicability of this theoretical framework in the
renormalization of complex diagrams (see Ref. [68] for details).

In this thesis, we employed the two-time Green’s function (TTGF) method [68] to
compute energy shifts from Feynman diagrams. This approach is discussed in detail
in Ref. [68]. See also Ref. [69] for a brief introduction to the two-time Green’s func-
tion method. We are going to discuss this method here, closely following the derivation
in Ref. [68], for the special case of a one-electron system. The two-time Green’s func-
tion for the case of a one-electron ion or atom is defined as [68]

G(x1, x2) = 〈0|T [Ψ(x1)Ψ(x2)]|0〉 . (3.25)

Here, |0〉 is the vauum state. We perform the partial Fourier transform [68]:

1

2πi

∫
dt1

∫
dt2e

i(Et1−E′t2)G(t1,x1, t2,x2). (3.26)

Here, we work in the Heisenberg picture, i.e. the time-evolution of operators is described
by Ψ(t1,x1) = eiHt1Ψ(0,x1)e−iHt1 [6]. Integrations over time variables are performed
from −∞ to +∞ unless otherwise stated. The eigenvalues of the Hamiltonian H are En:
H|n〉 = En|n〉, where the eigenstates |n〉 form an orthonormal basis of the corresponding
Hilbert space [68, 74]. We choose the energy of the vacuum state to be E0 = 0 [68]. The
time-ordered product in the expression for G(x1, x

′
1) is defined as [6]:

T [Ψ(t1, x1)Ψ(t2, x2)] = Θ(t1 − t2)Ψ(t1, x1)Ψ(t2, x2)−Θ(t2 − t1)Ψ(t2, x2)Ψ(t1, x1).
(3.27)

Inserting this into the expression for the partial Fourier transform, and using [68]

∫
dt1

∫
dt2e

i(E−En)t1e−i(E
′−En)t2Θ(t1 − t2) =

2πiδ(E − E′)
E − En + iη

, (3.28)∫
dt1

∫
dt2e

i(E+En)t1e−i(E
′+En)t2Θ(t2 − t1) = −2πiδ(E − E′)

E + En − iη
, (3.29)

we obtain [68]:

1

2πi

∫
dt1

∫
dt2e

i(Et1−E′t2)G(t1,x1, t2,x2) = G(x1,x2, E)δ(E − E′), (3.30)

with

G(x1,x2, E) =
∑
n

〈0|Ψ(0,x1)|n〉〈n|Ψ(0,x2)|0〉
E − En + iη

+
∑
n

〈0|Ψ(0,x2)|n〉〈n|Ψ(0,x1)|0〉
E + En − iη

.

(3.31)
In this derivation, we assumed the eigenenergies En to have an infinitesimal add-on [63]:
En −→ En − iη.

∑
n

corresponds to a summation over the entire spectrum. We now
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calculate the diagonal matrix element of G(x1,x2, E) with the reference state [68]. In
our case, we consider only the ground state |a〉 as the reference state.

gaa(E) = 〈a|G(E)γ0|a〉 (3.32)

Splitting the sum in the expression for G(E) into the reference-state contribution and a
term due to the rest of the spectrum, we can express gaa(E) as follows [68]:

gaa(E) =

∫
d3x1

∫
d3x2a

†(x1)〈0|Ψ(0,x1)|a〉〈a|Ψ(0,x2)|0〉γ0a(x2)

E − Ea
+ (terms regular at E = Ea) (3.33)

Now, defining Aa = d3x1

∫
d3x2a

†(x1)〈0|Ψ(0,x1)|a〉〈a|Ψ(0,x2)|0〉γ0a(x2) and perform-
ing the following contour integrations in the complex E plane [68],

1

2πi

∮
Γ

dEgaa(E) =Aa (3.34)

1

2πi

∮
Γ

dEEgaa(E) =EaAa, (3.35)

using a closed contour Γ which encloses the reference-state energy, but no other eigen-
value of H, we obtain [68]

1
2πi

∮
Γ dEEgaa(E)

1
2πi

∮
Γ dEgaa(E)

= Ea. (3.36)

We thus see that the information about the exact energy level is contained in the exact
but unknown two-time Green’s function. In order to obtain the energy level pertur-
batively, we now assume that the Hamiltonian splits into two parts, H = H(0) + V ,
where the spectrum of H(0) can be determined exactly. Taking into account that

Ea = E
(0)
a + ∆E, and a similar relation for gaa = g

(0)
aa + ∆gaa, with E(0) correspond-

ing to the “unperturbed” ground-state energy obtained via the Dirac equation, i.e. to
the ground-state energy according to the Dirac Hamiltonian, we obtain the following
expression for the energy shift ∆E [68]:

∆E =
1

2πi

∮
Γ dE(E − E(0)

a )∆gaa(E)

1 + 1
2πi

∮
Γ dE∆gaa(E)

. (3.37)

In order to compute perturbations to the energy level of the bound fermion, we need to
consider all Feynman diagrams with exactly one incoming and one outgoing fermion line,
representing the bound fermion. The interaction with the magnetic field is represented in
Feynman diagrams by an external photon (wave) line terminated by a triangle [69]. Fur-
thermore, there can be interactions between the bound fermion and the quantum photon
field. This is shown schematically in Fig. 3.2, where the black box represents all such in-
teraction processes. Terms without the magnetic interaction correspond to contributions
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Figure 3.2: g-factor Feynman diagram for bound fermions: The incoming and outgoing
double lines represent the bound fermion, the wave line terminated with a
triangle represents the magnetic field [69]. The black box represents schemat-
ically all possible processes that can occur in Feynman diagrams with the
previously mentioned building blocks.

to the Lamb shift and terms with one magnetic interaction correspond to corrections
to the g-factor. We therefore consider the magnetic interaction perturbatively up to
first order, i.e. only diagrams which contain zero or one magnetic interaction. Wick’s
theorem [143] dictates that all such diagrams contain an even number of interaction
vertices between the bound fermion and the quantum photon field [6]. From equations
(10.2) and (10.3) in Ref. [6], one can derive the following: a diagram with 2n vertices
(which is of order e2n) and which has no incoming or outgoing photon lines contains n
closed loops, a diagram of order e2n+1 with one interaction with the magnetic potential
contains n closed loops.

Both numerator and denominator of equation (3.37) can be expressed as series in
powers of e. (Here, we deviate from the usual approach in the literature, where numerator
and denominator are considered to be power series in α [68, 69].) Denoting a numerator
and denominator contribution of order O (en) as Zn and Nn, respectively, and expanding
the expression for ∆E (3.37) in powers of e, we obtain:

∆E =Z1+ (3.38)

Z2+

Z3 − Z1N2+

Z4 − Z2N2+

Z5 − Z3N2 − Z2N3 − Z1N4 − Z1N
2
2 +

O
(
e6
)
.

1

2πi

∮
Γ

dE(E − E(0)
a )∆gaa(E) =

∞∑
n=1

Zn (3.39)

1

2πi

∮
Γ

dE∆gaa(E) =
∞∑
n=1

Nn
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Here, we already used the fact that N1 = 0, which will be shown later. Furthermore,
products of two terms with odd indices (e.g. Z1N3) were ignored since such terms cor-
respond to second order corrections in the magnetic interaction. In our approach, the
order e1 contribution corresponds to the tree-level g-factor diagram (Fig. 3.3), the e2

contribution corresponds to the one-loop Lamb shift [69] (one closed loop or renormal-
ization counterterm, no magnetic interaction, Fig. 4.1), the order e3 corresponds to the
one-loop g-factor correction [57, 69] (one closed loop or renormalization counterterm,
one magnetic interaction, Fig. 4.2), the order e4 contribution corresponds to the two-
loop Lamb shift correction [63] (two closed loops or renormalization counterterms, no
magnetic interaction) and the order e5 contribution corresponds to the two-loop g-factor
correction (two closed loops or renormalization counterterms, one magnetic interaction).

We see that the tree-level g-factor contribution and the one-loop Lamb shift correction
consist only of “numerator terms”. For the one-loop g-factor correction, we also need
to take into account subtraction terms which correspond to products of lower-order (in
perturbation theory) Feynman diagrams [69]. A similar subtraction term appears in the
calculation of the two-loop correction to the Lamb shift. For the computation of the
two-loop g-factor correction, various subtraction terms need to be taken into account.

To conclude this section, we briefly summarize the following procedure to determine
the energy shift from Feynman diagrams:

• calculate the Two-time Green’s function G(x1, x2),

• perform the partial Fourier transform,

• calculate diagonal matrix elements with the reference state,

• perform contour integration.

We can compute the Green’s function using Wick’s theorem [143]. The relevant ex-
pressions for Wick contractions in bound-state QED are [69]:

Ψ(x)Ψ(y) =i

∫
dE

2π
e−iE(tx−ty)SF (x,y, E) (3.40)

Aµ(x1)Aν(x2) =i

∫
dω

2π
e−iω(tx1−tx2 )Dµν(x1,x2, ω) (3.41)

Dµν(x1,x2, ω) is the photon Green’s function, as defined e.g. in Ref. [63, 72]. In this
work, we employ the Feynman gauge [6, 72]. Three different useful representations of
the photon Green’s function are [63, 72]:

Dµν(x1,x2, ω) =gµν
exp(i

√
ω2 + iηx12)

4πx12
(3.42)

=

∫
d3q

(2π)3

−gµνeiq(x1−x2)

ω2 − q2 + iη

=

∫
dq

2π2

−gµν |q| sin(|q|x12)

(ω2 − q2 + iη)x12
.
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Figure 3.3: Tree-level g-factor diagram corresponding to the Dirac value gD [69].

Here, x12 = |x1− x2| and Im(
√
ω2 + iη) > 0. We will also occasionally use the function

D(x1,x2, ω) to represent the photon propagator, defined by [63]

Dµν(x1,x2, ω) = gµνD(x1,x2, ω). (3.43)

3.5 Dirac value of the bound-electron g-factor

We will now demonstrate the two-time Green’s function formalism using the least com-
plicated Feynman diagram as an application, the tree-level g-factor diagram shown in
Fig. 3.3. See also Ref. [68, 69] The Green’s function corresponding to this diagram is:

G(x1, x2) = −ie
∫

d4x〈0|TΨ(x1)Ψ(x2)Ψ(x)γµAmµ(x)Ψ(x)|0〉. (3.44)

Inserting explicit expressions for Wick contractions and using the time-independence of
the magnetic potential, we obtain:

G(x1, x2) =− ie
∫

d4x i

∫
dE

2π
e−iE(t1−tx)SF (x1,x, E)γµAmµ(x)

i

∫
dE

2π
e−iE(tx−t2)SF (x,x2, E). (3.45)

In this expression, we can identify a Dirac delta function [6] δ(E−E′) =
∫

dtx
2π e

i(E−E′)tx .
Carrying out the integration over one energy variable, we obtain the final expression for
the Green’s function.

G(x1, x2) = ie

∫
d3x

∫
dE

2π
e−ie(t1−t2)SF (x1,x, E)γµAmµ(x)SF (x,x2, E) (3.46)

In the next step, we have to carry out the partial Fourier transform
1

2πi

∫
dt1
∫

dt2e
iEt1e−iE

′t2G(x1, x2). Inserting the above Green’s function into this ex-
pression, we can identify a delta function as it was done above. We obtain the following:

1

2πi

∫
dt1

∫
dt2e

iEt1e−iE
′t2G(x1, x2)

=δ(E − E′)e
∫

d3xSF (x1,x, E)γµAmµ(x)SF (x,x2, E). (3.47)
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In the next step, we calculate the diagonal matrix element of the above expression
(without the delta function factor) with the reference state wave function. In our case,
the reference state is the ground state. Using the spectral representation for the Green’s
functions, SF (x,y, E) =

∑
n
an(x)an(y)
E−En , we obtain the following expression for gaa(E):

gaa(E) =

∫
d3x1

∫
d3x2a

†(x1)e

∫
d3x

∑
n1

an1(x1)an1(x)

E − En1

γµAmµ(x)

∑
n2

an2(x)an2(x2)

E − En2

γ0a(x2). (3.48)

Using the orthogonality of different eigenstates [74], 〈n|a〉 = δna
1, we obtain:

gaa(E) =
e
∫

d3xa(x)γµAmµ(x)a(x)

(E − Ea)2
. (3.49)

Now we can determine the expressions for Z1 and N1. Schematically, the contour inte-
grations can be expressed as follows [69]:

1

2πi

∮
dz
f(z)

z
= f(0), (3.50)

1

2πi

∮
dz
f(z)

z2
= f ′(0), (3.51)

1

2πi

∮
dz
f(z)

z3
=
f ′′(0)

2
. (3.52)

Here, f(z) is assumed to be regular at z = z0. The integration path is a closed path
around z = 0. For the tree-level Feynman diagram, we find [69]

Z1 =

∫
d3xa(x)γµeAmµ(x)a(x) =: ∆Emag, (3.53)

and, since there is no energy-dependent term in the numerator of gaa(E), N1 = 0. This
justifies the omission of N1 in the perturbative expansion of ∆E, equation (3.38). Z1

is the energy shift due to the magnetic field to first order of perturbation theory which
could also have been obtained from the formalism of relativistic quantum mechanics [69].
We can insert the known expressions for the ground state wave functions into equation
(3.53) to obtain:

∆Emag = −i
∫

d3xf(r)g(r)
Bier sin2(Θ)

4π
. (3.54)

1∑
n refers to a sum over all quantum numbers. Therefore, the Kronecker delta is to be understood as

a product of several Kronecker deltas, one for each quantum number.
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Carrying out the integration over the angular variables and using equation (2.5), we
obtain the following expression for the g-factor contribution [69]:

gD = −8m

3

∞∫
0

drr3f(r)g(r). (3.55)

For the model of a point-like nuclear charge distribution, the radial wave functions are
known analytically and the remaining integration can be carried out to yield the so-
called Dirac value of the bound-fermion g-factor which was first derived by G. Breit in
1928 [144]:

gD =
2

3
+

4

3

√
1− (Zα)2. (3.56)

For a more detailed derivation, see also Ref. [145]. As can be expected, for the free-

fermion limit, i.e. Z −→ 0, we obtain the free-fermion value [6] gD
Z→0−→ 2. We see that

the leading g-factor contribution is modified by binding corrections [56].

3.6 Nuclear effects on the bound-electron g factor

By using the Coulomb potential, we made three approximations. The static Coulomb
potential corresponds to the approximation of an infinitely heavy nucleus. Furthermore,
the nucleus is assumed to be point-like. Finally, vacuum polarization effects lead to
further modifications of the nuclear potential. In this Chapter, we discuss the effects
due to the finite size and finite mass of the nucleus. Vacuum polarization corrections
will be discussed in the next Chapter along with other radiative corrections.

3.6.1 Finite-size effect

The finite size (FS) of the atomic nucleus causes the interaction potential between the
nucleus and the fermion to deviate from the Coulomb potential on the femtometer scale,
which in turn modifies the wavefunction of the bound fermion [69, 146], and, conse-
quently, a correction ∆gFS to its g-factor. This effect can be approximated as (see
[99, 147, 148]):

∆gFS =
8m2

f

3
(Zα)4〈r2〉+O

(
(Zα)6

)
. (3.57)

Accurate analytical formulas for the determination of the FS effect on the binding
energy were developed in Ref. [149]. Using a method described in Ref. [150], these
formulas can be adjusted for the computation of the FS correction to the g-factor.
An analytical treatment of the FS correction to the g-factor was also performed in
Ref. [147]. The FS effect can also be determined numerically using equation (3.55) with
wavefunctions determined numerically [151] for an extended nuclear charge distribution.

The theoretical uncertainty of the FS effect is due to the uncertainty of the root
mean square radius

√
〈r2〉 of the nucleus and to the uncertainty of the nuclear charge
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distribution model used (see also Ref. [54]). Nuclear radii can be found e.g. in Ref. [152–
158]. The uncertainty of the FS effects defines the limit of the theoretical accuracy
achievable in g-factor predictions.

If QED is assumed to be correct, one can use the experimental fine-structure transition
energies [159] or g-factor values to g-factor value to determine the nuclear radius. In
this case, the theoretical g-factor value would be computed with the nuclear radius
as a free parameter. The free parameter would be fitted in such a way that the total
theoretical g-factor matches the experimental value. This requires all other contributions
to the theoretical value of the g-factor to be known with sufficient accuracy. Such
an investigation was performed for the g-factor of hydrogenlike 28Si13+ [33]. In this
investigation, a nuclear radius of 3.18(15) fm was found which is in agreement with the
literature value 3.1223(24) fm cited in Ref. [33]. This shows that it is in principle possible
to determine nuclear radii from g-factor measurements.

The muon’s Bohr orbital is approx. 200 times smaller than that of the electron
[75], and, therefore, the FS correction is much larger for bound muons than for bound
electrons.

3.6.2 Finite-mass effect

Calculations of the bound-fermion g-factor are usually performed in the Furry picture
which uses a static external potential to describe the nucleus. This corresponds to the
approximation of an infinitely large nuclear mass. The correction to the g-factor due
to the finite nuclear mass is called recoil contribution. It can be parametrized as an
expansion in powers of Zα, α and the ratio mf

Mnucl
of fermion and nuclear mass [69].

δgrecoil = (Zα)2

(
mf

Mnucl

)
− 1

3
(Zα)2

(α
π

)( mf

Mnucl

)
+ · · · (3.58)

Quantum mechanical calculations which take into account the finite nuclear mass have
been performed in e.g. Ref. [160–164]. The QED theory of the nuclear recoil to all orders
in Zα was developed in Ref. [165, 166].

The order mf
Mnucl

-contribution to the leading Feynman diagram can be computed to
all orders in (Zα) according to [167]. Contributions to the leading diagram of order(

mµ
Mnucl

)2
and higher can be computed to first order in (Zα) [168]. Recoil corrections to

loop diagrams (radiative recoil) can be computed using formulas from Ref. [69]. Nuclear
masses can be computed using data from e.g. Ref. [169–173].

3.6.3 Nuclear deformation and polarization

Closely related to the FS effect is an additional correction in the case of a nuclear
charge distribution which is not spherically symmetric. The g-factor correction due to
the deviation of the shape of a nucleus from spherical symmetry (the so-called nuclear
deformation (ND) correction) was investigated in great detail in Ref. [148, 174].

There are also contributions to the bound-fermion g-factor due to the nucleus ex-
changing virtual photons with the bound fermion, undergoing excitation in the process
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[69]. Such Nuclear polarization (NP) effects to atomic energy levels were investigated in
Ref. [175, 176]. The contribution to the bound-electron g-factor due to nuclear polar-
ization was investigated in Ref. [177, 178]. NP constitutes another nuclear effect which
limits the total accuracy of theoretical g-factors, especially in the case of heavy elements
[177].
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4 One-loop quantum electrodynamic
corrections

In this Chapter, we explain one-loop radiative corrections to the bound-fermion g-factor.
Before turning our attention to the g-factor, we use the one-loop self-energy correction
to the Lamb shift in order to demonstrate the cancellation of a certain class of renormal-
ization counterterms in bound-state QED calculations. We then explain the one-loop
self-energy correction to the bound-fermion g-factor in detail. After illustrating the de-
termination of all contributions with the two-time Green’s function method, we explain
the cancellations of UV divergences in this contribution in some detail. We then ex-
plain the methods used to compute the one-loop self-energy correction to the g-factor
numerically. After the discussion of the one-loop self-energy correction, we rederive the
formal expressions of previously mentioned radiative corrections using the framework of
energy-dependent perturbation theory. After this, we discuss one-loop vacuum polar-
ization corrections to the bound-fermion g-factor. We will focus on the case where the
virtual particle is different from the bound fermion.

4.1 One-loop Lamb shift

We now turn to the Feynman diagrams contributing to Z2 and N2, as defined in equa-
tion (3.38). Z2 corresponds to the one-loop correction to the Lamb shift and N2 will
be relevant for g-factor calculations [69]. Not taking into account renormalization coun-
terterms, there are two diagrams contributing to Z2, shown in Fig. 4.1:

• Self-energy (SE): interaction of the electron with the photon field;

• Vacuum polarization (VP): creation of a virtual charged particle-antiparticle pair.

In this section, we investigate only the SE diagram and the corresponding SE coun-
terterms. It is our goal to illustrate that all contributions due to the renormalization
counterterms δ1 and δ2 from the Lagrangian (3.1) cancel. First, we investigate the con-
tribution due to the δ1 counterterm diagram. The corresponding interaction term in
the Lagrangian (3.1) is −eδ1Ψrγ

µΨrAeµ . Using the same procedure as in the previous
Chapter, we derive the following expression for gaa(E):

gaa,δ1(E) =
eδ1

∫
d3xa(x)γ0V (x)a(x)

(E − Ea)2
. (4.1)
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Figure 4.1: Feynman diagrams representing the one-loop Lamb shift: self-energy (left)
and vacuum polarization (right) [69].

From this, we derive the following contributions to Z2 and N2:

Z2,δ1 =eδ1

∫
d3xa†(x)V (x)a(x), (4.2)

N2,δ1 =0. (4.3)

For the other counterterm contribution (corresponding to the interaction term Ψr(iδ2/∂−
δm)Ψr in the Lagrangian (3.1)), we obtain the following expression for gaa(E):

gaa,δ2(E) =
−
∫

d3xa(x)
(
δ2(E − Ea)γ0 + γ0V (x)δ2 + δm

)
a(x)

(E − Ea)2
. (4.4)

In the derivation of gaaδ2(E), we used the Dirac equation [69] (−iα∇+mγ0+V (x))a(x) =
Eaa(x), and (see Ref. [6]) δm = mδ2−δm. Note that δm and δm are different. We will de-
fine the mass counterterm δm in the following section. The corresponding contributions
to Z2 and N2 are:

Z2,δ2 =− δ2

∫
d3xa†(x)V (x)a(x)−

∫
d3xa(x)δma(x), (4.5)

N2,δ2 =− δ2. (4.6)

Adding the two counterterm contributions to Z2 and taking into account the identity
δ1 = δ2 [6], we obtain:

Z2,δ1 + Z2,δ2 = −
∫

d3xa(x)δma(x). (4.7)

We observe that, within Z2, the contributions due to the counterterm δ1 cancel. Keeping
in mind that Z2 corresponds to the complete one-loop Lamb shift correction, we conclude
that there is no δ1 counterterm contribution to the one-loop Lamb shift. In a similar way,
one can show that all δ1 counterterm contributions cancel in Z3 − Z1N2, i.e. the one-
loop g-factor corrections as well as in Z4 − Z2N2 (two-loop Lamb shift correction) and
Z5−Z3N2−Z2N3−Z1N4−Z1N

2
2 (two-loop g-factor correction), although the number

of contributing diagrams is much higher in these cases. In the latter two cases, this holds
true both for the order O

(
e2
)

and the order O
(
e4
)

contributions to the counterterm
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δ1. The cancellation of all δ1 counterterm contributions to the two-loop SE correction
to the g-factor served as an important consistency check for our two-loop calculations.
For a discussion of renormalization and bound states in QFT, see als o Ref. [179]1.

The actual one-loop self-energy diagram gives the following contributions to Z2 and
N2 (see equation (3.38)): [69, 72]

Z2,SE = 2iα

∫
d3x

∫
d3y

∫
dωa†(x)αµG(x,y, Ea − ω)ανa(y)Dµν(x,y, ω), (4.8)

N2,SE = 2iα

∫
d3x

∫
d3y

∫
dωa†(x)αµ

∂G(x,y, E − ω)

∂E

∣∣∣∣
Ea

ανa(y)Dµν(x,y, ω). (4.9)

Using the following definition of the self-energy function [63],

Σ(x1,x2, E) = 2iαγ0

∞∫
−∞

dωαµG(x1,x2, E − ω)ανDµν(x1,x2, ω), (4.10)

we can write the total self-energy contributions to Z2 and N2 as [57, 69]

Z2,SE = 〈a|γ0Σ|a〉, (4.11)

N2,SE = 〈a|γ0 ∂Σ

∂E

∣∣∣∣
Ea

|a〉. (4.12)

Keeping the counterterm contributions in mind, we see that the self-energy function
is accompanied by the mass renormalization term δm. It can be shown that every
self-energy function is accompanied by a mass renormalization term in the cases of the
one-loop g-factor correction [57, 69] and the two-loop self-energy corrections to the Lamb
shift [63]. Our analysis of the two-loop SE correction to the g-factor showed the same
occurence of an SE function along with the mass counterterm in all cases. Therefore,
we can assume mass renormalization implicitly, i.e. consider the “mass renormalized”
self-energy function Σ̃ := Σ − δm instead of Σ. This will be applied to both the order
O
(
e2
)

and the order O
(
e4
)

mass counterterms δm and δm(2).
The one-loop SE correction to the Lamb shift has been studied extensively in the

literature. See e.g. Ref. [72, 131, 180–185].

4.2 One-loop self-energy correction to the g-factor

The one-loop SE correction to the g-factor has been investigated in detail in the liter-
ature, e.g. [57, 64, 69, 139–141, 186–189]. The one-loop diagrams representing Z3 (as
defined in equation (3.38)) are shown in Fig. 4.2 [69]:

• SE-ver: self-energy vertex correction

1The submission history suggests that this paper was uploaded in 2005, while the date found in the
paper is 2013.
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(a) SE-ver (b) VP-ML

(c) SE-wf (d) VP-EL

Figure 4.2: One-loop Feynman diagrams contributing to the bound-fermion g-factor:
self-energy vertex correction (a), magnetic loop vacuum polarization correc-
tion (b), self-energy wavefunction correction (c) and the electric loop vacuum
polarization correction (d) [69].

• SE-wf : modification of the fermion wave function due to the fermion’s interaction
with the photon field (self-energy)

• VP-EL: modification of the nuclear potential due to vacuum polarization

• VP-ML: influence of vacuum polarization on the interaction with the magnetic
field

4.2.1 One-loop self-energy diagrams

We now investigate the one-loop self-energy contribution to the g-factor. Following
the discussion of the one-loop SE correction to the Lamb shift, we can ignore the con-
tributions due to the counterterm δ2, since all such contributions cancel in the sum.
Furthermore, we can assume mass renormalization implicitly, i.e. replace every one-loop
SE function Σ by Σ̃ = Σ− δm [57].

In principle, there are two SE diagrams with the magnetic interaction inserted in
the external fermion lines, with the magnetic interaction in the left and right external
fermion line (Fig. 4.2 (c)). However, both diagrams give the same contribution. We
therefore consider only one of these diagrams and multiply its g-factor contribution by
a factor of 2.
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The diagram with the magnetic interaction inserted in the internal fermion line (Fig. 4.2
(a)) is called the vertex diagram. Using the two-time Green’s function method, we obtain
the following contribution to Z3 [57, 69]:

Z3,ver = ∆Ever =〈a|γ0ΓµeAmµ|a〉

=

∫
d3x1

∫
d3x2

∫
d3x3a

†(x1)γ0Γµ(x1,x2,x3, Ea, Ea)eAmµ(x2)a(x3),

(4.13)

where the one-loop vertex function Γµ(x1,x2,x3, Ea, Ea) is defined as [63]:

Γρ(x1,x2,x3, E1, E2) =2iαγ0

∞∫
−∞

dωαµG(x1,x2, E1 − ω)αρG(x2,x3, E2 − ω)αν

Dµν(x1,x3, ω). (4.14)

Performing the two-time Green’s function approach for the other one-loop SE diagrams
(Fig. 4.2 (c)), we obtain the following expression for gaa(E) [68, 69]:

gaa,SE,wf =2ie3

∫
d3x

∫
d3y

∫
d3z

∫
dω

2π

∑
n,n 6=a

a(x)γµSF (x,y, E − ω)γνan(y)an(z)γρAmρ(z)a(z)Dµν(x,y, ω)

(E − Ea)2(E − En)
. (4.15)

Note that angular momentum conservation dictates thatmn = ma. In order to determine
the energy shift, we have to distinguish between the cases En 6= Ea and En = Ea in the
spectral representation of the Green’s function between the SE loop and the magnetic
interaction, i.e. whether the energy level is different from the ground-state energy or
identical to it. As it is done in the literature (e.g. [57, 69]), we call these two contributions
the irreducible and reducible contributions, respectively. The irreducible contribution to
Z3 is [57, 69]:

∆Eirred = Z3,irred =2〈a|γ0Σ|δa〉. (4.16)

Here, |δa〉 is the wave function perturbed linearly by the magnetic field, defined in
Chapter 3, equation (3.7).

The reducible energy shift can be represented as a product of two lower-order pertur-
bation theory contributions as follows [69]:

Z3,red =2∆Emag〈a|γ0 ∂Σi

∂E

∣∣∣∣
Ea

|a〉 . (4.17)
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∆Emag is the energy shift that corresponds to the Dirac value gD, see equation 3.53. We
also need to take into account the subtraction term −Z1N2. Using the expressions for
Z1 and N2 from equations (3.53) and (4.9), we obtain [69]:

− Z1N2 = −∆Emag〈a|γ0 ∂Σi

∂E

∣∣∣∣
Ea

|a〉 . (4.18)

We see that those two terms (4.17) and (4.18) partially cancel each other [69]:

∆Ered = ∆Emag〈a|γ0 ∂Σ

∂E

∣∣∣∣
Ea

|a〉 . (4.19)

One can see that the reducible contribution from Z3 can be represented as a product
of diagrams, multiplied by a factor of two because of identical contributions coming
from two equivalent diagrams. The subtraction term ensures that the product term
appears only once in the final expression. Such partial cancellations will also occur in
the two-loop SE correction to the g-factor, as will be discussed in Chapter 6.

4.2.2 Renormalization

We now discuss the regularization of ultraviolet (UV) divergences in the one-loop g-factor
correction. Both the one-loop SE and vertex functions are UV divergent. In order to
deal with UV divergences, we expand the internal fermion line in the SE loop in powers
of interactions with the nuclear potential. This approach is discussed in great detail in
the literature e.g. [57, 69, 72, 190, 191].

= + +

Figure 4.3: Decomposition of the SE-wavefunction correction to the g-factor correction
into zero-, one-, and many-potential terms [69]. A single line stands for a
free Dirac electron propagator.

The self-energy loop with a free internal fermion line and with n interactions between
the internal electron line and the nuclear potential is called the n-potential contribution
[72]. Using the superficial degree of divergence d, as defined in Ref. [6], we conclude that
the zero- and one-potential diagrams are UV divergent and all n-potential diagrams
with n ≥ 2 do not contain UV divergences. Therefore, the irreducible contribution is
expanded in the zero-potential, the one-potential and the many-potential contribution.
Many in this case means two or more. The self-energy function Σ is expanded as Σ =
Σ(0) + Σ(1) + Σ(2+), where the superscript (n) indicates n interactions with the nuclear
potential. The zero-potential contribution to the g-factor reads

∆E
(0)
irred = 2〈δa|γ0Σ(0)|a〉 . (4.20)
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The zero-potential contribution to the one-loop SE function can be computed in mo-
mentum space using dimensional regularization [6] in D = 4− 2ε dimensions [63, 72]:

Σ(0)(p) = δm+B(1)(/p−mf) + Σ
(0)
R (p). (4.21)

The mass counterterm is δm = Σ(0)(mf) = αCε
4πε

3−2ε
1−2εmf ,

B(1) = −αCε
4πε and Cε = Γ(1+ε)(4π)ε

(
µ2

m2
f

)ε
. Analytic formulas for the renormalized part

of the free one-loop SE function are given in the appendix of Ref. [72], the computation
of the SE function in D = 4 − 2ε dimensions is described in detail in the appendix of
Ref. [63]. As discussed before, the contribution due to δm can be ignored because it is
removed by mass renormalization. The finite remainder which needs to be calculated
numerically can be expressed as [69]

∆g
(0)
SE,wf,irred,ren = −8mf

3
〈δa|γ0ΣR|a〉 . (4.22)

The one-potential contribution can be expressed in terms of the vertex function of free
QED [6], Σ(1) = Γ(0)0V , where Γ(0)0 corresponds to the vertex function defined in
equation (4.14), with the full fermion Green’s functions replaced by free fermion Green’s
functions.

∆E
(1)
irred = 2〈δa|γ0Γ(0)0V |a〉 . (4.23)

The vertex function of free QED can be separated into a UV divergent constant and a
finite remainder [57]:

Γ(0)µ(p′, p) =
αCε
4πε

γµ + Γ
(0)µ
R (p′, p) . (4.24)

The g-factor contribution due to the first term can be represented as

∆g
(1)
SE,wf,irred,div = −8mf

3
〈δa|αCε

4πε
V |a〉 . (4.25)

The g-factor contribution due to the divergent contribution to the zero-potential term
is (see equations (4.20) and (4.21)):

∆g
(1)
SE,wf,irred,div =

8mf

3
〈δa|αCε

4πε
V |a〉 . (4.26)

Here, we used the Dirac equation in momentum space (see Ref. [72]):

(/p−mf)a(p) =

∫
d3p′

(2π)3
γ0V (p− p′)a(p′). (4.27)

We see that the charge divergent contributions from the zero- and one-potential contri-
butions cancel each other [72].

The g-factor contribution due to the finite remainder is [69] (see equations (4.23) and
(4.24))

∆g
(1)
SE,wf,irred,ren = −8mf

3
〈δa|γ0Γ

(0)0
R V |a〉 . (4.28)
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The reducible g-factor contribution can be calculated by performing straightforward
derivatives of the SE function [69].

∆gred = gD
∂

∂E
〈a|γ0Σ(E)|a〉

∣∣∣∣
E=Ea

. (4.29)

It can be separated in principle into the zero-, one- and many-potential parts. However,
taking the derivative with respect to energy of the one-loop vertex function, we see that
the divergent constant is cancelled. Therefore, the one-potential contribution to the
reducible diagram is finite and does not need to be separated [69]. The many-potential
term (many, in this case, means one or more), just as in the case of the SE wavefunction
correction, does not contain UV divergences. Taking the derivative of the zero-potential
contribution to the one-loop SE function, we obtain (see equation (4.21)):

∂Σ(0)

∂E

∣∣∣∣∣
Ea

= −αCε
4πε

γ0 + (UV finite terms). (4.30)

The g-factor contribution due to the divergent term is:

gred,div = −αCε
4πε

gD. (4.31)

= +

 −



Figure 4.4: Separation of the SE vertex diagram into the zero- and many-potential
terms [69].

The SE vertex correction is given in equation (4.13). We again expand this diagram
in powers of interactions with the nuclear potential. Analyzing the superficial degree of
divergence [6] in this case, we find that the vertex diagram with at least one interaction
with the nuclear potential does not contain UV divergences [69]. Therefore, we separate
the vertex diagram into the zero- and the many-potential contributions (see Fig. 4.4).
Many, in this case, means one or more. Inserting expression (4.24) into the expression
for the vertex diagram, we find the following divergent g-factor contribution:

gver,div =
αCε
4πε

gD. (4.32)

The UV divergent contribution of the vertex diagram cancels the UV divergent part
of the reducible SE diagram [69]. We thus see that all charge divergences in the one-loop
SE contribution to the g-factor cancel.
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4.2.3 Evaluation of the individual terms

Since the UV regularization is carried out in momentum space, we calculate the irre-
ducible zero- and one-potential contribution as well as the zero-potential reducible SE
and the zero-potential vertex corrections using the momentum space representation [63].
A formula for the irreducible zero-potential contribution can be obtained by a straight-
forward replacement of the radial components of the bound-fermion wavefunction g(p)
and f(p) in the formula for the zero-potential contribution to the Lamb shift (equation
(15) in Ref. [72]) by the radial components of the magnetic wave function Xa(p) and
Ya(p).

∆g
(0)
SE,irred =− mfα

12π4

∞∫
0

dpp2{a(ρ)(g(p)Xa(p)− f(p)Ya(p)) (4.33)

+ b(ρ)[E(g(p)Xa(p) + f(p)Ya(p))

+ p(g(p)Ya(p) + f(p)Xa(p))]}

Expressions for a(ρ) and b(ρ) can be found e.g. in Ref. [72]. The formula for the
irreducible one-potential contribution is:

∆g
(1)
SE,irred =

mfZα
2

12π5

∞∫
0

dp

∞∫
0

dp′
1∫
−1

dξ
p2p′2

q2
× (4.34)

(G1(p, p′, ξ)P0(ξ) +G2(p, p′, ξ)P1(ξ)).

G1(p, p′, ξ) and G2(p, p′, ξ) can be obtained from the expressions of F1(p, p′, ξ) and
F2(p, p′, ξ) in the formula for the one-loop contribution to the Lamb shift (equations
(B19) and (B20) in Ref. [72]) by replacing the wavefunction at momentum p or p′ by
the magnetic wave function. P0(ξ) and P1(ξ) are Legendre polynomials [72, 74].

Many-potential contributions can be calculated in position space, employing meth-
ods introduced for atomic structure calculations in Ref. [72, 192–194]. The Lamb-
shift calculation presented in Ref. [72] can be modified into a g-factor calculation in
a straightforward manner. The many-potential Green’s function G(2+) was computed
as G(2+) = G − G(0) − G(1), where G(1) =

∫
d3zG(0)V G(0) [131]. It is known only as

a partial wave expansion in κ in the position space representation, as pointed out in
chapter 3, requiring the computation of the many-potential term to be carried out in
position space. The integration contour for the dω integration was rotated into the com-
plex plane as follows [57, 63, 72]: [E0 − i∞, E0 − i · 0], [E0 − i · 0,−i · 0], [i · 0, E0 + i · 0],
[E0 + i · 0, E0 + i∞]. The so-called Low-energy part corresponds to the integration
contour [E0 − i · 0,−i · 0], [i · 0, E0 + i · 0] and the High-energy part corresponds to
[E0− i∞, E0− i · 0], [E0 + i · 0, E0 + i∞]. E0 was chosen as E0 = 0.1Ea for high nuclear
charge numbers according to the procedure described in ref. [72], and as E0 = ZαEa
for low nuclear charge numbers according to the procedure described in Ref. [57]. We
performed all integrations and then computed the summation over κ.
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The computation of the partial-wave expansion of the low-energy part can be stopped
at κ ≈ 10 because of the fast convergence of this series. The partial wave expansion of
the high-energy part was computed till κ ≈ 40. Because of the slow convergence, the
remainder of the expansion was estimated by means of the Richardson extrapolation
procedure [195].

The final formula for the many-potential contribution to the irreducible diagram is
[72]:

∆g
(2+)
SE,irred =− 4iαmf

3π (2ja + 1)

∑
κi,J

(2J + 1)

∫
dω

∞∫
0

drr2

∞∫
0

dr′r′2× (4.35)

{
gJ(r, r′, ω)(CJ(κi, κa))

2[g(r)g
(2+)
11 (r, r′, E − ω)Xa(r

′)+

g(r)g
(2+)
12 (r, r′, E − ω)Ya(r

′) + f(r)g
(2+)
21 (r, r′, E − ω)Xa(r

′)+

f(r)g
(2+)
22 (r, r′, E − ω)Ya(r

′)]−
∑
L

gL(r, r′, ω)×

[f(r)g
(2+)
11 (r, r′, E − ω)Ya(r

′)(SJL(−κa, κi))2−

{f(r)g
(2+)
12 (r, r′, E − ω)Xa(r

′) + g(r)g
(2+)
21 (r, r′, E − ω)Ya(r

′)}×
SJL(−κa, κi)SJL(κa,−κi)+

g(r)g
(2+)
22 (r, r′, E − ω)Xa(r

′)(SJL(κa,−κi))2]
}
,

with the radial components of the fermion wave function g(r) and f(r), the wave
function perturbed by the magnetic field Xa(r) and Ya(r) and the radial components

g
(2+)
ij (r, r′, E−ω) of the Green’s function, defined in Chapter 3. The angular coefficients

[72, 192] are given in Appendix 3.
The renormalized zero-potential contribution to the reducible SE diagram can be

computed from the expression of the zero-potential Lamb shift diagram [72] by taking
the derivative with respect to energy [57]. The renormalized zero-potential part of the SE
vertex diagram can be computed using the momentum-space representation of the vector
potential corresponding to the constant magnetic field [57] A(p′ − p) = − i

2(2π)3B ×
∇pδ(p

′ − p). We obtain the following expression [57]:

∆g(0)
ver =− 2imf

∫
d3p

(2π)3

∫
d3p′a(p)

(
∇p′δ(p− p′)× ΓR(p, p′)

)
z
a(p′) .

The derivative of the δ function can be dealt with by means of integration by parts.
A detailed description of the computation of the zero-potential vertex diagram can be
found in Ref. [57].

In order to compute the many-potential term of the reducible SE diagram, we insert
the spectral representation of the Green’s function into the expression for the energy
shift. For the reducible contribution, we obtain
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∆E
(1+)
red =−∆Emag

i

2π

∫
dω
∑
n1

〈an1|I(ω)|n1a〉
(Ea − ω − En1(1− iη))2

− zero pot, (4.36)

I(ω) = e2αµαµD(ω). “Zero pot” indicates that the expression for the corresponding
diagram with free fermion propagators has to be subtracted. The integrations over
angular variables can be performed according to [63, 72]:

〈ab|I(ω)|cd〉 =α
∞∑
J=0

IJ(abcd)RJ(ω, abcd), (4.37)

IJ(abcd) =
∑
mJ

(−1)ja−ma+J−mJ+jb−mb
(

ja J jc
−ma mJ mc

)(
jb J jd
−mb −mJ md

)
(4.38)

Here,

(
j1 j2 j3
m1 m2 m3

)
are Wigner three-j symbols [193, 194]. Formulas for IJ(abcd) and

RJ(ω, abcd) and their derivation can be found in Ref. [63, 72, 192]. We give the formula
for RJ(ω, abcd) in Appendix 3. Using equation (4.37), the reducible contribution for the
g-factor can be expressed as a partial wave expansion as follows:

∆g
(1+)
red = −gD

iα

2π

∑
n1,κ1,J

(−1)J+j1−jaRj(ω, an1n1a)

(2ja + 1)(Ea − ω − En1κ1)2
− zero pot. (4.39)

Note that this expression contains infrared (IR) divergences for (ni, κi) = (na, κa). To

determine ∆g
(1+)
ver , we use the same procedure as for the reducible diagram. This yields

∆Ever =
i

2π

∫
dω

∑
n1,n2

〈an2|I(ω)|n1a〉〈n1|γ0e /Am|n2〉
(Ea − ω − En1(1− iη))(Ea − ω − En2(1− iη))

− zero pot.

(4.40)

This can be further evaluated using equation (4.37) [57, 196]. The energy shift corre-
sponding to the vertex diagram also contains reference-state IR divergences for (n1, κ1) =
(n2, κ2) = (na, κa), whereas the sum of the vertex and reducible contributions is finite
[57] as will be shown in the next section.

Finally, we would like to mention that there have been other schemes for the evaluation
of many-potential terms. In the vertex and reducible diagrams, the (finite) one-potential
contribution can be computed exactly (without partial-wave expansion) in momentum
space. The partial-wave expansion of the remaining many-potential term (with at least
two Coulomb interactions) converges faster than the (1+) many-potential term [57]. The
many-potential part of the one-loop Lamb shift diagram has been evaluated by splitting
it into two terms. One term can be evaluated without partial wave expansion, the partial
wave expansion of the other term converges faster than with the method described above
[131]. In our calculations, however, we did not use these schemes.
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4.2.4 Reference-state infrared divergences

We discuss the cancellation of IR divergences in the one-loop SE correction to the g-
factor in some detail. The IR divergent diagrams are the vertex and the reducible
SE contributions (see Ref. [57]). Using the spectral representation for the Green’s
functions, we obtain the following expression for the combined energy shift of the vertex
and reducible diagrams:

∆Evr =∆Ered + ∆Ever (4.41)

=
i

2π

∫
dω

∑
n1,n2

〈an2|I(ω)|n1a〉〈n1|γ0e /Am|n2〉
(Ea − ω − En1(1− iη))(Ea − ω − En2(1− iη))

− (4.42)

∆Emag
i

2π

∫
dω
∑
n1

〈an1|I(ω)|n1a〉
(Ea − ω − En1(1− iη))2

.

Here, I(ω) = e2αµανDµν(ω) is the operator representing the electron-electron inter-
action [63]. Integrations over photon energies extend from −∞ to ∞ unless stated
otherwise. Considering the reference state n1 = n2 = a, and keeping in mind that
〈am|γ0e /Am|am〉 = sgn(m)∆Emag (ma = 1

2), we obtain the expression

∆EIR = ∆Emag
i

2π

∫
dω
∑
m

〈aam|I(ω)|ama〉
(−ω + iη)2

(sgn(m)− 1) . (4.43)

We see that there is no m = ma contribution, while the m = −ma contribution remains
and requires further investigation. Inserting the momentum-space representation of the
photon propagator, equation (3.42) (see [63]) into this expression, we obtain

∆EIR =
2iα

π2
∆Emag

∫
dω

1

(−ω + iη)2

∞∫
0

dq
q

ω2 − q2 + iη
〈aa−ma |αµαµ

sin(qx12)

x12
|a−maa〉 .

(4.44)
We can perform the integration over ω [63], yielding

∆EIR = 2∆Emag
α

π

∫
dq

(q − iη)2
4πIm〈aa−ma |αµαµD(q)|a−maa〉 . (4.45)

We can expand the matrix element using the multipole expansion (4.37):

〈aa−ma |αµαµD(q)|a−maa〉 = α
∞∑
J=0

IJ(aa−maa−maa)RJ(q, aa−maa−maa). (4.46)

Formulas for IJ(aa−maa−maa) and RJ(q, a, aa−maa−maa) can be found e.g. in ref [72].
Angular momentum selection rules dictate that only the term with J = 1 contributes.
The only q-dependent term in R1(q, aa−maa−maa) is the photon Green’s function. The
expression for R1(q, aa−maa−maa) contains contributions from the partial waves of the
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photon Green’s function with L = 0, L = 1 and L = 2 in principle. However, analyzing
the angular coefficients in R1(q, aa−maa−maa), we find that all contributions with L = 0
and L = 2 vanish, leaving only terms which contain the partial wave of the photon
Green’s function with L = 1. For the computation of ∆EIR, we need to determine the
imaginary part of R1(q, aa−maa−maa), which is equivalent to using the imaginary part
of the photon Green’s function. It can be easily seen that the imaginary part of the
photon Green’s function with L = 1 is proportional to q3 for small q, which means that
the integrand in equation (4.45) is proportional to q and therefore, ∆EIR is IR finite.
We thus see that IR divergences are completely cancelled in the sum of the vertex and
reducible SE diagrams.

4.3 Energy-dependent perturbation theory - a consistency
check

In this section, we are going to rederive the formal expressions for the contributions
to the energy shift corresponding to the leading Feynman diagram Z1, the one-loop
SE contribution to the Lamb shift Z2 and the one-loop SE contribution to the g-factor
Z3−Z1N2 (see equation (3.38)) using the formalism of quantum mechanical perturbation
theory by treating self-energy and vertex corrections as energy-dependent potentials. We
used this formalism to check our expressions for the two-loop SE correction to the g-
factor.

Perturbation theory is an approximate calculation method in quantum mechanics,
described in standard textbooks (e.g. Ref. [75]). The general procedure is to split
the full Hamiltonian H of the system, which cannot be solved exactly, into two parts,
H = H0 + V . The eigenstates and eigenenergies of H0 are known. The task is to
determine the eigenstates |Ψ〉 and eigenenergies E of H, H|Ψ〉 = E|Ψ〉, beginning with
the eigenstates |a〉 and eigenenergies E0 of H0, H0|a〉 = E0|a〉: |Ψ〉 = |a〉 + |∆Ψ〉,
E = E0 + ∆E. ∆E and |∆Ψ〉 are expressed as power series of the coupling constant of
the perturbation term V . (See Ref. [75])

The approach usually discussed in textbooks does not take into account the possibil-
ity of the perturbation being energy-dependent [75]. An approach which includes the
possibility V = V (E) is described in Ref. [197]. We quote the results from Ref. [197] for
the energy shift up to second order in perturbation theory, namely:

∆E(1) =〈a|V (Ea)|a〉, (4.47)

∆E(2) =
∑
n6=a

〈aV (Ea)|n〉〈n|V (Ea)|a〉
Ea − En

+ 〈a|V (Ea)|a〉〈a|
∂V

∂E

∣∣∣∣
Ea

|a〉. (4.48)

∆E(1) and the first term in ∆E(2) correspond to the expressions for the energy shift in the
usual (energy-independent) perturbation theory approach [75]. We will now consider the
Dirac Hamiltonian as H0, and the magnetic interaction potential Vmag as an (energy-
independent) perturbation potential. The one-loop SE and vertex functions will be
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considered as energy-dependent perturbations. The total perturbation potential reads:

V (E) = Vmag + VSE(E) + Vver(E). (4.49)

Here, Vmag = eγ0 /Am, VSE(E) = γ0Σ(E) and Vver(E) = γ0Γµ(E)Amµ . The first, second
and third term in V (E) are of order O (e), O

(
e2
)

and O
(
e3
)
, respectively. Note that

the word “order” has a three distinct meanings in this section. It will refer to the order
of perturbation theory, as defined above, the power of e in a term, and the number of
magnetic interactions in a term. We now determine the energy shift up to second order
in perturbation theory, up to third order in e and up to first order in the magnetic
interaction. The first-order energy shift reads:

∆E(1) = 〈a|Vmag|a〉+ 〈a|VSE(E)|a〉+ 〈a|Vver(E)|a〉. (4.50)

The first term is the energy shift due to a single interaction with the magnetic field
and corresponds to the tree-level g-factor Feynman diagram Fig. 3.3. The second term
corresponds to the one-loop SE correction to the Lamb shift shown in Fig. 4.1 (left). The
third term corresponds to the one-loop vertex correction to the g-factor, Fig. 4.2 (a).

For the determination of δE(2), we can ignore the contribution due to Vver(E) since
this would lead to terms of order O

(
e4
)
. Inserting V (E) = Vmag +VSE(E) into equation

(4.48), we obtain:

∆E(2) = 2
∑
n,n 6=a

〈a|Vmag|n〉〈n|VSE(Ea)|a〉
Ea − En

+ 〈a|Vmag|a〉〈a|
∂VSE

∂E

∣∣∣∣
E=Ea

|a〉. (4.51)

Here, we ignored the contribution from the term where Vmag appears in both factors,
since this would be of second order in the magnetic interaction, and the case of VSE(E)
in both factors, since this is of order O

(
e4
)
. The first term in δE(2) corresponds to the

irreducible SE correction (equation (4.16)). The second term in δE(2) corresponds to
the reducible SE contribution (equation (4.19)).

Note that the term Z3 (see equation (3.38)) contains the contribution 2〈a|Vmag|a〉
〈a| ∂VSE

∂E

∣∣∣
Ea
|a〉. The subtraction term −Z1N2 = −〈a|Vmag|a〉〈a| ∂VSE

∂E

∣∣∣
Ea
|a〉 ensures that

the final result for the energy shift contains the product term only once.
Having established this correspondence between energy dependent perturbation theory

and the energy shift due to loop diagrams, we can extend this approach to check our
TTGF calculations for the two-loop SE contribution to the bound-fermion g-factor. We
performed this energy-dependent perturbation theory calculation as a consistency check
for our results obtained using the TTGF method. We will discuss this in more detail in
Chapter 6.

4.4 Vacuum polarization

The effect of vacuum polarization (VP), i.e. the creation and subsequent annihilation of
a virtual charged particle-antiparticle pair, contributes to the free-fermion g-factor only
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in Feynman diagrams with at least two loops, e.g. by inserting a vacuum polarization
loop in the virtual photon line of the vertex diagram shown in Fig. 2.1 [56]. For bound
fermions, however, there are also one-loop vacuum polarization diagrams. There are two
different one-loop VP diagrams contributing to the g-factor, shown in Fig. 4.2:

• Electric loop (VP-EL): The interaction potential between the bound fermion and
the nucleus is corrected by VP. The corresponding correction to the bound-fermion
g-factor due to the correction of the nuclear potential is called the “electric loop”
VP correction. (Fig. 4.2 (d)) [189]

• Magnetic loop (VP-ML): This diagram descries the g-factor correction due to the
influence of VP on the magnetic interaction. (Fig. 4.2 (b)) [189]

In principle, the VP-EL diagram would have to be split into the irreducible and the
reducible part. However, since the VP potential does not depend on energy, the reducible
part vanishes.

The effect of vacuum polarization in atomic physics calculations has been widely
investigated, e.g. in Ref. [198–206]

4.4.1 Renormalization

The closed VP loop is UV divergent [69]. In order to deal with the divergences, we expand
the virtual fermion loop in powers of interactions with the nuclear Coulomb potential.
Due to the Furry theorem [207], only those diagrams with an even number of photon
lines attached to the VP loop, are non-zero. This means that those contributions to the
VP-EL diagram with an even number of Coulomb interactions attached to the VP loop
vanish (due to the virtual photon line connecting the VP loop with the bound fermion
line) [69]. In particular the “tadpole” [6] diagram (zero interactions with the Coulomb
potential) vanishes. The leading contribution to the VP-EL diagram is the diagram with
one Coulomb interaction attached to the VP loop, and it is UV divergent [69]. The VP
potential in this diagram, i.e the Coulomb potential corrected by a free-fermion VP loop,
is called the Uehling potential [208]. Its calculation and renormalization are described
in detail in textbooks (e.g. [6, 79]). The corresponding VP-EL g-factor contribution is
called the Uehling contribution [69]. Higher-order terms contain three or more Coulomb
interactions attached to the VP loop. The sum of all such terms is called the “Wichmann-
Kroll” contribution [69, 209] and is finite. The separation of the VP-EL diagram into
the Uehling and the Wichmann-Kroll contribution is shown in Fig. 4.5.

The VP-ML diagram can be expanded in the same way into the “Uehling” type and
the “Wichmann-Kroll” type contribution, with only the latter being finite [69] (see Fig.
4.6). It can be shown that the “Uehling” type contribution is cancelled exactly by
renormalization [69]. This means that the magnetic interaction itself is not corrected by
vacuum polarization, only in the background of the Coulomb potential does VP have an
influence on the magnetic interaction [210].

49



= +

 −



Figure 4.5: Separation of the VP-EL diagram in the divergent Uehling and the finite
Wichmann-Kroll contribution [69]

= +
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

Figure 4.6: Separation of the VP-ML diagram into the “Uehling type” and the
“Wichmann-Kroll type” contribution. The “Uehling type” contribution van-
ishes due to renormalization [69].

4.4.2 Uehling contribution

The Uehling contribution to the VP-EL diagram was computed in different ways. Ac-
cording to the two-time Green’s function method, the Uehling g-factor contribution is
[69]

∆gUeh = −8mf

3
〈a|VUeh|δa〉 . (4.52)

The Uehling potential depends on the mass of the virtual particle in the fermion loop,
but it is independent of the mass of the bound particle. Therefore, the Uehling g-factor
contribution can also be computed according to the following formula:

∆gUeh = − 4

3mf
〈a|∂VUeh

∂r
|a〉 . (4.53)

The derivation of this formula can be found in Ref. [150]. The results for the Uehling
contribution by means of both methods were in excellent agreement with each other, and,
for the model of the point-like nuclei, with the exact analytic formula for the Uehling
contribution [70].

The lowest-order in Zα expansion VP term of order (Zα)4 is (e.g. [56, 70]):

∆gVP = −16

15

α

π
(Zα)4 +O

(
(Zα)5

)
. (4.54)

It is due to the Uehling contribution only and can be derived using the delta function
approximation of the Uehling potential [6]. In this form, it only takes into account
the case of the bound particle and the virtual particle being identical. Deriving this
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Z gUe
VP,approx gUe

µVP,pt gUe
µVP [4]

1 −1.64 · 10−16 −1.64 · 10−16 −1.63 · 10−16

2 −2.63 · 10−15 −2.63 · 10−15 −2.66 · 10−15

6 −2.13 · 10−13 −2.17 · 10−13 −2.22 · 10−13

14 −6.31 · 10−12 −6.89 · 10−12 −7.13 · 10−12

18 −1.73 · 10−11 −1.98 · 10−11 −1.99 · 10−11

20 −2.63 · 10−11 −3.12 · 10−11 −3.09 · 10−11

36 −2.76 · 10−10 −4.65 · 10−10 −4.33 · 10−10

70 −3.95 · 10−9 −2.67 · 10−8 −1.48(1) · 10−8

82 −7.43 · 10−9 −1.06 · 10−7 −4.07(1) · 10−8

92 −1.18 · 10−8 −3.60 · 10−7 −9.44(1) · 10−8

Table 4.1: Muonic VP-EL Uehling correction to the bound-electron g-factor according
to the approximation formula (4.55) (first column), numerical calculations for
the point-like (second column) and extended nuclear models (third column)
for different nuclear charge numbers Z.

contribution for the loop particle with mass ml and a bound particle with mass mb, we
obtain:

∆gVP ≈ −
16

15

α

π
(Zα)4m

2
b

m2
l

. (4.55)

We now investigate two cases of the Uehling contributions with the loop particle being
different from the bound particle.

Muonic VP correction to the bound-electron g-factor

The creation of muon antimuon pairs was investigated in Ref. [211, 212]. The effect of
muonic VP to the Lamb shift was investigated in Ref. [213]. We investigated the muonic
VP correction to the bound-electron g-factor in Ref. [4]. Previously, the same effect had
been investigated by R. Weis [214].

For low Z, the above formula (4.55) can be expected to give a good approximation
for the muonic VP correction to the bound-electron g-factor for low Z. In Table 4.1, we
compare the results of the approximate formula (4.55) with numerical determinations of
the Uehling contribution for point-like nuclei following equations (4.52) and (4.53). The
results obtained with both numerical methods are in excellent agreement. Furthermore,
we list the Uehling contribution for extended nuclear charge distributions, obtained in
Ref. [4] by the first author N. A. Belov.

We see that all three methods are in good agreement for low Z. We also find that, for
high Z, the numerical result for point-like nuclei overestimates the result for extended
nuclei by a factor of three to four. In Ref. [69], for Z = 90 a relative deviation of
only 5% is found between the e−e+ Uehling contributions to the bound-electron g-factor
for point-like and extended nuclear charge distributions. Therefore, the effect of the
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finite nuclear size on the muonic VP correction is much larger than on the electronic VP
correction.

However, the total Uehling contribution of muonic VP is still smaller than the uncer-
tainty of the g-factor due to the FS effect [4]. Therefore, we conclude that the muonic
VP effect will be observable in principle after an improvement of the nuclear radius
uncertainty by some independent means.

Electronic VP correction to the bound-muon g-factor

The electronic VP correction in muonic 4He+, calculated according to equations (4.52)
and (4.53) for point-like nuclei, was found to be −4.807 ·10−7 [2]. The same contribution
was investigated for the extended nuclear model by the co-authors H. Cakir and N.
Michel in Ref. [2] and was found to be −4.796 · 10−7. The approximation formula (4.55)
would give the result −4.8061 · 10−6, one order of magnitude larger than the numerical
results. We therefore conclude that the Zα expansion formulas, obtained for the case
of electronic VP in electronic ions cannot be expected to give good approximations for
the electronic VP contribution in muonic ions when scaled with the appropriate power
of the mass ratio. This holds true even for low Z.

4.4.3 Wichmann-Kroll contribution and magnetic loop

For completeness, we note that the Wichmann-Kroll contribution and the VP-ML con-
tributions were studied for a wide range of nuclear charge numbers in e.g. Ref. [69, 141].
In Ref. [4], the Wichmann-Kroll and the VP-ML contributions due to muonic VP in elec-
tronic ions was investigated by N. A. Belov. In Ref. [59], the muonic VP-ML contribution
was studied perturbatively in Zα.
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5 Mass determinations by means of the
bound-fermion g-factor

5.1 Determination of the electron mass

We describe the method to determine the atomic mass of the electron. The work described
in this section was previously published in Ref. [1]. The underlying article has been
written predominantly by the co-authors J. Zatorski, Z. Harman, S. Sturm, K. Blaum
and C. H. Keitel. Table 5.1 of g-factor values, including the complete caption, was taken
from Ref. [1].

As described in the introduction, the electron mass can be determined from the bound-
electron g-factor using equation (1.3). To achieve a high accuracy for the electron mass,
the theoretical g-factor value gtheo, the frequency ratio Γ = ωc

ωL
and the ion mass M

need to be determined with at least an equally high accuracy. 12C5+ ions were chosen
for the electron mass determination [31, 43], and in an earlier investigation [30], because
the mass of 12C5+ ions is known with an extremely high accuracy since the atomic mass
unit is defined by the 12C atom. The experimental determination of Γ was presented in
Ref. [43].

Theoretical g-factor values were computed taking into account the perturbative (in
Zα) corrections, nuclear terms as well as non-perturbative one-loop contributions. The
theory of the bound-electron g-factor was tested in an earlier investigation using the
28Si13+ ion in Ref. [33], where the theoretical prediction was found to be in excel-
lent agreement with the experimental value. Since binding corrections are magnified
in 28Si13+ compared to 12C5+ due to the higher nuclear charge, one can rely on the theo-
retical prediction for the bound-electron g-factor in 12C5+. Further contributions which
were computed only after the previous electron mass determination [31] were taken into
account. These are non-perturbative (in Zα) contributions from two-loop diagrams with
at least one VP loop [58] and a two-loop light-by-light scattering contribution of order
(Zα)4 [59]. Remaining two-loop higher-order contributions were estimated by assuming
the correctness of QED for the 28Si13+ ion. The difference between the sum of all the-
oretical g-factor contributions and the experimental value for 28Si13+ was assumed to
account for uncalculated higher-order two-loop corrections. These two-loop corrections
were scaled with the fifth power in Zα to determine their value for 12C5+. For details of
this procedure, see Ref. [1]. The value for the electron mass obtained in Ref. [1], given
in atomic mass units, is:

me = 0.000548579909065(16). (5.1)

This electron mass value is slightly different (0.3 σ) from the one obtained in the previ-
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ous investigation [19, 43] because of the inclusion of the above mentioned light-by-light
scattering term. It is possible that the inclusion of the recently computed order (Zα)5

contribution to the two-loop diagrams [62] (which was completed only after the deter-
mination of the electron mass) would further shift the electron mass.

A further improvement of the electron mass me value is possible if the frequency ration
Γ can be measured with higher accuracy. Such a measurement is expected to be possible
at the ALPHATRAP Penning-trap experiment at the Max Planck Institute for Nuclear
Physics [35, 39].

An electron mass determination is also possible by employing the 4He+ ion. The accu-
racy of the theoretical g-factor is better than for 12C5+ because uncalculated higher-order
in Zα contributions are strongly suppressed in 4He+ compared to 12C5+. A limitation
to the electron mass determination in this approach is the uncertainty of the Helium
mass [19]. In case the electron mass can be improved by a measurement of 12C5+ or
some independent experiment, a measurement of the bound-electron g-factor in 4He+

can be used to determine the ion mass. A high-precision measurement of the 4He mass
is planned at the THe-Trap experimental facility [40].

We now briefly discuss possibilities to determine α in bound-electron g-factor exper-
iments. As pointed out in section 3.6, the theoretical accuracy of the bound-electron
g-factor is limited by nuclear effects. For this reason, it has been suggested to not just
consider the g-factor of one ion, but instead the weighted difference of g-factors of the
same ion in different charge states, schematically represented by

∆ξg = gstate 1 − ξgstate 2. (5.2)

Specifically, weighted differences have been suggested for hydrogenlike and boronlike ions
with high Z [53] and between hydrogenlike and lithiumlike ions for small and medium
Z [54, 55]. In these cases, the weight ξ is determined such that the uncertainty of ∆ξg
due to the nuclear structure is strongly suppressed, making the determination of α with
an accuracy higher than the current literature value feasible. A determination of α from
the bound-electron g-factor without employing a weighted difference is possible if the
uncertainty of the g-factor due to nuclear parameters is smaller than the uncertainty due
to α. 4He+ is the only ion which offers this possibility [1]. Therefore, it is in principle
possible to determine α with an improved accuracy from the g-factor of the 4He+ ion.
For this, an improvement of the experimental frequency ratio Γ is required as well as an
independent improvement of the electron mass and the mass of the 4He nucleus.

5.2 Muon mass and magnetic moment anomaly from the
bound-muon g-factor

In the current section, we put forward a method to determine the muon mass and the
muon anomaly from the bound-muon g-factor. Major parts of this section are based on
Ref. [2]. Fig. 5.1 (along with the caption) and table 5.2 (along with the caption) were
taken from Ref. [2].
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Table 5.1: Values of individual contributions to g
(

4He+
)
, g
(

12C5+
)

and g
(

28Si13+
)
, and

some relevant nuclear parameters. The abbreviations stand for: Matom, M :

mass of the atom and the hydrogenlike ion, respectively;
〈
r2
〉1/2

: root-mean-
square nuclear charge radius; “SE-FS” – mixed self-energy and nuclear finite
size correction. An experimental value for g

(
28Si13+

)
is given as published

in Ref. [34], i.e. evaluated with a former, less accurate value of me, which
defines the last error given. This table, including the complete caption, was
taken from Ref. [1]. Notes: 1 Ref. [157], 2 Extrapolation of the cited results

Contribution 4He+ 12C5+ 28Si13+ Ref.〈
r2

〉1/2
[fm] 1.681(4)1 2.4703(22) 3.1223(24) [156]

Matom [u] 4.002 603 254 130(63) 12 (exact) 27.976 926 534 65(44) [171]
M [u] 4.002 054 700 617(63) 11.997 257 680 293 69(97) 27.969 800 594 24(50)

Dirac value 1.999 857 988 825 37(7) 1.998 721 354 392 0(6) 1.993 023 571 557(3) [144]
Finite nuclear size 0.000 000 000 002 30(1) 0.000 000 000 407 4(7) 0.000 000 020 468(31) [148]
One-loop QED

(Zα)0 0.002 322 819 464 85(54) 0.002 322 819 464 9(5) 0.002 322 819 465(1) [19, 76]

(Zα)2 0.000 000 082 462 19 0.000 000 742 159 7 0.000 004 040 647 [160]

(Zα)4 0.000 000 001 976 70 0.000 000 093 422 2 0.000 001 244 596 [56]

(Zα)5+ SE 0.000 000 000 035 42(68) 0.000 000 008 282 6(37) 0.000 000 542 856(60) [57, 186]2

SE FS -0.000 000 000 000 00 -0.000 000 000 000 7 -0.000 000 000 068 [189]

≥ (Zα)5 VP-EL 0.000 000 000 002 52 0.000 000 000 555 9 0.000 000 032 531 [70, 189]
VP-EL FS 0.000 000 000 000 00 0.000 000 000 000 2 0.000 000 000 022 [189]

(Zα)5+ VP-ML 0.000 000 000 000 16 0.000 000 000 038 1 0.000 000 002 540(10) [117, 215]

(Zα)5+ VP-ML FS 0.000 000 000 000 00 0.000 000 000 000 0 -0.000 000 000 001 [189, 215]
Two-loop QED

(Zα)0 -0.000 003 544 604 49 -0.000 003 544 604 5 -0.000 003 544 604 [83, 85]

(Zα)2 -0.000 000 000 125 84 -0.000 000 001 132 5 -0.000 000 006 166 [160]

(Zα)4 (w/o LBL) 0.000 000 000 002 41 0.000 000 000 060 1 -0.000 000 001 318 [56, 116]

LBL at (Zα)4 -0.000 000 000 000 39 -0.000 000 000 031 5 -0.000 000 000 933 [59]

(Zα)5+ S(VP)E 0.000 000 000 000 00 0.000 000 000 000 0(1) 0.000 000 000 009(2) [58]

(Zα)5+ SEVP 0.000 000 000 000 03 0.000 000 000 006 9(3) 0.000 000 000 458(1) [58]

(Zα)5+ VPVP 0.000 000 000 000 03 0.000 000 000 005 5 0.000 000 000 315 [58, 60]

(Zα)5+ SESE (estimate) 0.000 000 000 000 00(2) -0.000 000 000 001 2(33) -0.000 000 000 082(139)
≥ Three-loop QED

(Zα)0 0.000 000 029 497 95 0.000 000 029 497 9 0.000 000 029 498 [21, 86, 87]

(Zα)2 0.000 000 000 001 05 0.000 000 000 009 4 0.000 000 000 051 [160]
Recoil

(m/M)1 all-orders in (Zα) 0.000 000 029 202 51 0.000 000 087 725 1 0.000 000 206 100 [167]

(m/M)2+ at (Zα)2 -0.000 000 000 012 01 -0.000 000 000 028 1 -0.000 000 000 060 [168]
Radiative-recoil -0.000 000 000 022 61 -0.000 000 000 067 9 -0.000 000 000 159 [69, 160]

Nuclear polarizability 0.000 000 000 000 00 0.000 000 000 000 0 0.000 000 000 000(20) [177]2

Nuclear susceptibility 0.000 000 000 000 00 0.000 000 000 000 0(1) 0.000 000 000 000(3) [44]

Weak interaction at (Zα)0 0.000 000 000 000 06 0.000 000 000 000 1 0.000 000 000 000 [19, 92]

Hadronic effects at (Zα)0 0.000 000 000 003 47 0.000 000 000 003 5 0.000 000 000 003 [89–91]

Total w/o SESE (Zα)5 2.002 177 406 711 68(87) 2.001 041 590 166 3(39) 1.995 348 957 791(71)

Total w/ SESE (Zα)5 from exp. 2.002 177 406 711 68(87) 2.001 041 590 165 2(51) 1.995 348 957 708(156)
Experiment 1.995 348 959 10(7)stat(7)syst(80)me [34]

5.2.1 Muonic systems

The g-factor of bound muons was previously investigated theoretically in Ref. [216,
217] and experimentally in Ref. [218]. In the latter investigation, the system under
consideration consisted out of a nucleus, a bound muon and bound electrons. However,
we consider a muonic ion consisting only of an atomic nucleus and one bound muon in
the ground state, without any bound electrons.

As pointed out in the introduction, there are several discrepancies between theoretical
predictions and experimental findings involving muons. These are the deviation between
the theoretical and experimental free-muon g-factors by about 3σ [94] and an even larger
deviation between the proton radii, determined with electronic and muonic systems [23,
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24] (see also [28]). In this Chapter, we put forward a method to determine the muon
mass from the bound-muon g-factor similar to the electron mass determination. The
muon mass is known only from muonium spectroscopy [219] with a relative accuracy of
2.2×10−8 [19, 20]. Our scheme constitutes an alternative method to determine the muon
mass or the muon anomaly aµ, which is defined by [19]

gµfree = 2(1 + aµ). (5.3)

In an experimental setup which enables the Larmor and cyclotron frequancy determi-
nation, the muon mass can be expressed similar to the electron mass (see also equation
(1.3)):

mµ =
g

2

e

Q

ωc

ωL
M . (5.4)

Just as in the case of the bound-electron, the theoretical value for the bound-muon
g-factor has to be employed. Alternatively, one can compare the theoretical and exper-
imental bound-muon g-factors. The experimental g-factor would be determined from
equations (1.1) and (1.2):

g = 2
mµ

M

Q

e
Γ . (5.5)

The experimental value for the bound-muon g-factor is limited by the accuracy of the
muon mass, determined using independent methods. The theoretical g-factor can be
expressed as g = 2 + 2aµ + ∆gbind, where aµ is the muon anomaly and ∆gbind is the
sum of all binding corrections. Provided the binding corrections can be determined with
sufficient accuracy, this method is an alternative access to the free-muon anomaly. In
this Chapter, we calculate the binding corrections.

As indicated in section 3.6.1, the accuracy of the theoretical bound-muon g-factor
prediction is limited by the uncertainty due to nuclear effects which are strongly enhanced
in muonic ions compared to electronic ions. In order to minimize this uncertainty, a light
ion needs to be chosen for the muon-mass determination. We present the theory of the
bound-muon g-factor using the muonic 4He+ which is the lightest muonic ion which
has a nucleus with zero spin. We demonstrate that the theoretical prediction of the
bound-muon g-factor can be determined with a relative accuracy of 10−9. This allows
the determination of the muon mass or the free-muon anomaly with the same relative
accuracy, provided a comparable experimental precision can be achieved. This allows
an improvement of the accuracy of the muon mass by one order of magnitude.

5.2.2 Theory of the bound-muon g-factor

The theoretical descriptions of the bound electron and the bound muon are similar. The
one-loop SE contribution and the Uehling VP contribution were computed as described
in Chapter 4. Here, we describe the computation of additional contributions relevant for
the bound-muon g-factor.

The electronic VP-ML and Wichmann-Kroll contributions for the muonic ion 4He+

was investigated in Ref. [2] by the co-authors V. Debierre and H. Cakir. The Wichmann-
Kroll contribution was computed using the method of Ref. [220]. It was found that the
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Wichmann-Kroll contribution is negligible. The light-by-light (LBL) scattering approx-
imation of the VP-ML term was calculated as in Ref. [71, 221]. However, in our case,
the FS effect was included in the bound-muon wavefunction.

Apart from one-loop SE and VP corrections, we took into account the leading diagrams
with two VP loops for the case of electronic VP and further two-loop corrections in order
to determine the total g-factor of muonic 4He+ with an absolute accuracy of the order
10−9. The two-loop contribution to the free-muon g-factor can be found in Ref. [19].
Binding corrections to the two-loop self-energy diagrams were determined perturbatively
in Zα up to order O

(
(Zα)5

)
using formulas from [56, 62, 114].

One further way to determine the contribution due to the Uehling potential allows the
determination of two-loop VP corrections as follows. The Uehling contribution was eval-
uated by the co-author N. Michel by solving the radial Dirac equation numerically, with
the Uehling potential added to the nuclear potential. The B-spline representation was
used for the bound-muon wavefunction [222], as described in Ref. [223]. By subtracting
the one-loop Uehling correction from this contribution, the effect of the higher-order
Uehling contributions which correspond to the diagrams shown in Fig. 5.1 (a), could be
determined. See also Ref. [4, 224] for this approach.

The two-loop VP correction corresponding to the diagrams in Fig. 5.1 (b), the Källén-
Sabry contribution [225], was evaluated using B-splines by N. Michel. The effective
potential given in Ref. [226, 227] was employed.

Furthermore, the mixed magnetic and electric loop effect was calculated by the co-
authors V. Debierre and H. Cakir. For this, the calculation of the LBL contribution to
the VP-ML diagram (Fig. 4.2 (b)) was repeated, with the bound-muon wave function
corrected by the Uehling potential. This corresponds to a modified version of the diagram
shown on the left side of Fig. 5.1 (a), with the magnetic interaction attached not to the
bound muon line but to one of the VP loops.

We also investigated diagram on the right hand side of Fig. 5.1 (b) for the case of one
electronic and one muonic VP loop. The corresponding VP potential was determined
by generalizing the computation of the Uehling potential of Ref. [6]. The contribution
due to the mixed electronic and muonic vacuum polarization was found to be negligible.
We checked our approach by computing the case of electronic VP in both loops for the
bound electron. Our numerical results for low Z were in reasonable agreement with the
results obtained with the Zα expansion formula for this contribution given in Ref. [60].

Finally, there is the two-loop S(VP)E diagram [58], i.e. the two-loop diagram with a
vacuum polarization loop inserted in the virtual photon line of the vertex diagram, for
the case of electronic VP. The order O

(
(Zα)0

)
contribution of this diagram is included

in the free-muon g-factor contributions from Ref. [19]. Binding corrections of order
O
(
(Zα)2

)
were computed according to Ref. [114].

The ≥ 3 loop QED term contains all three to five loop corrections to the free-muon
g-factor [19]. Binding corrections to this contribution were computed according to
Ref. [114] and were found to be irrelevant for the level of accuracy to be achieved.

For the bound muon, there are several sources of hadronic VP corrections to the g-
factor. First, there is the above mentioned S(VP)E diagram, with the VP loop replaced
by hadronic VP [90], and other hadronic VP contributions to the free-muon g-factor.
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Figure 5.1: Feynman diagrams of two-loop VP corrections to the bound-muon g factor:
(a) 2nd-order electric-loop VP (Uehling and Wichmann-Kroll) terms, and
(b) the Källén-Sabry diagrams. A single internal line represents a free Dirac
propagator, and the wave line terminated by a cross stands for the interaction
with the nuclear potential. This figure, including the complete caption, was
taken from Ref. [2].

The total hadronic VP correction, as given in Ref. [19], is 1.393(12) · 10−7. Binding
corrections to the hadronic VP contribution were computed according to Ref. [114] and
found to be negligible.

Another source of hadronic VP is the Uehling contribution to the VP-EL diagram,
with the VP loop replaced by hadronic VP. A corresponding hadronic VP contribution
to the Lamb-Shift was computed in Ref. [228]. See also Ref. [229–231]. Adapting this
method to g-factor calculations, we express the hadronic VP contribution in terms of
the muonic VP contribution, ∆ghadrVP ≈ 0.671(15)∆gµVP (see also Ref. [4]).

5.2.3 Results and discussion

Our numerical results in table 5.2 show that the bound-muon g-factor can be calculated
with a relative accuracy of 10−9. The muon mass and the anomaly of the free muon can
therefore be determined with the same accuracy. In case of the muon mass, this accuracy
corresponds to an improvement by one order of magnitude. Because of the muon’s
short lifetime, determining the required cyclotron and Larmor frequencies is challenging.
However, considering recent advances in the precision spectroscopy of muonic atoms [23,
24, 27] and Penning-trap techniques [35, 38], this method can be used as an independent
determination of the muon anomaly or the muon mass, in the latter case with a greatly
improved accuracy compared to the currently accepted CODATA value [19].

58



Effect Term Numerical value Ref.

Dirac value 1.999 857 988 8 [19, 144]
Finite nuclear size 0.000 000 094 6(4) [156]
One-loop SE (Zα)0 0.002 322 819 5 [19, 76]

all-order binding 0.000 000 084 9(10)
One-loop VP eVP, Uehling -0.000 000 479 6

eVP, magnetic loop 0.000 000 127 2(4)
µVP, Uehling -0.000 000 000 1
hadronic VP, Uehling -0.000 000 000 1(1)

Two-loop QED (Zα)0 0.000 008 264 4 [83, 85]
SE-SE, (Zα)2— (Zα)5 -0.000 000 000 1 [56, 62, 114, 115]
S(eVP)E, (Zα)2 0.000 000 000 4 [83, 85, 114, 115]
2nd-order Uehling -0.000 000 001 1(4)
Källén-Sabry -0.000 000 003 5
magnetic loop+Uehling 0.000 000 000 3

≥ Three-loop QED (Zα)0 0.000 000 610 6 [19, 21, 86, 87]

Nuclear recoil
(
m
M

)1
, all orders in Zα 0.000 006 038 2 [167](

m
M

)2+
, (Zα)2 -0.000 000 488 7 [168]

radiative recoil -0.000 000 004 7 [160]
Weak interaction (Zα)0 0.000 000 003 1 [19, 92]
Hadronic contributions (Zα)0 0.000 000 139 3(12) [19, 89–91]

Sum 2.002 195 193 4(20)

Table 5.2: Various contributions to the g factor of µ4He+. The abbreviations are:
“eVP”/“µVP”: VP due to virtual e−e+/µ−µ+ pairs. The estimated uncer-
tainty of the nuclear size effect stems from the error bar of the root-mean-
square nuclear radius and the uncertainty of the nuclear charge distribution
model. This table, including the complete caption, was taken from ref. [2].
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6 Theory of the two-loop self-energy
corrections to the g-factor

There are no less than fifty Feynman diagrams (excluding counterterms) with two loops
contributing to the bound-fermion g-factor [69]. There are three types of two-loop dia-
grams [58]:

• VPVP: diagrams with two vacuum polarization loops,

• SEVP: diagrams with one vacuum polarization and one self-energy loop,

• SESE: diagrams with two self-energy loops.

In Ref. [58], SEVP and VPVP diagrams were computed non-perturbatively in Zα.
In some cases, the VP loop(s) were treated in the Uehling approximation in Ref. [58],
i.e. the free-electron approximation was employed for the particles in the VP loop(s).
Keeping in mind that the ML VP loop vanishes in the Uehling approximation, all two-
loop diagrams with such a ML VP loop were left out in that analysis. Currently, efforts
are underway to compute two-loop SEVP and VPVP diagrams with a ML-VP loop [5].

In this chapter, we investigate those two-loop Feynman diagrams with two SE loops
non-perturbatively in Zα [3]. We will first give basic formulas derived with the TTGF
method, and compare our results with energy-dependent perturbation theory calcula-
tions. Then we discuss the cancellation of UV and IR divergences. We will then discuss
the separation of the SESE diagrams into different categories suitable for numerical eval-
uation, namely the LAL contribution and the F, P and M term which will be defined
later. Finally, we will discuss in detail the methods for the evaluation of the LAL con-
tribution. A description of the methods to compute the F term and the presentation of
our numerical results for the F term follow in the next chapter.

6.1 Two-loop self-energy diagrams

There are three two-loop self-energy diagrams contributing to the binding energy of
a hydrogenlike ion, namely, the loop-after-loop (LAL), the nested loops (N) and the
overlapping loops (O) diagrams [63]. They are presented in Fig. 6.1. A calculation of
all terms has been presented in detail in Ref. [63]. The renormalization of the two-loop
SE contribution to the Lamb shift was discussed in detail in Ref. [197, 232]. Further
investigations of the two-loop SE correction to the Lamb shift were performed in Ref. [65–
67, 233–246]. Experiments involving Lamb shift measurements with highly charged ions
were performed in Ref. [247–249].
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LAL: N: O:

Figure 6.1: Furry-picture Feynman diagrams of two-loop self-energy corrections to the
Lamb shift: the loop-after-loop (LAL), the nested-loops (N) and the
overlapping-loops (O) diagrams, respectively [63]. Double lines represent
Coulomb-Dirac wave or Green’s functions, and the wave line represents a
virtual photon.

The diagrams of the SESE corrections for the g-factor can be generated by mag-
netic vertex insertions into the corresponding Lamb shift diagrams. Therefore, in this
case we differentiate between loop-after-loop, nested-loop and overlapping-loop terms as
well. However, this time we have three diagrams of each type. The nine non-equivalent
diagrams obtained this way are shown in Fig. 6.2.

LAL:

N:

O:

Figure 6.2: Furry-picture Feynman diagrams of two-loop self-energy corrections to the
g-factor [69]. A wave line terminated by a triangle represents a magnetic
interaction vertex.

Just as in our one-loop calculations, we consider an electron bound in the ground state
of a hydrogenlike ion, with the angular momentum projection quantum number being
ma = 1

2 . The energy shift ∆E of the ground state in an external magnetic field B = Bez
can be computed for each diagram using the two-time Green’s function method [68]. The
corresponding g-factor contribution ∆g is related to the energy shift by ∆E = − eB

4me
∆g,

where e and me are the electron’s charge and mass, respectively.

6.1.1 Nested-loop and overlapping-loop diagrams

We will now give basic formulas for all Feynman diagrams relevant for the two-loop SE
correction to the bound-electron g-factor. The diagrams in the second and third lines of
Fig. 6.2 are called the nested-loop (N) and overlapping-loop (O) diagrams, respectively.
The first diagram in the second and third line needs to be split into two contributions.
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N: 2× × ×

O: 2× × ×

Figure 6.3: Reducible N and O g-factor diagrams. A double line with a dot denotes a

derivative of a Green’s function with respect to the energy [63]: ∂G(E)
∂E

∣∣∣
E=Ea

.

In the spectral representation of the propagator
∑

n
|n〉〈n|
Ea−En between the SE loops and

a magnetic vertex, when the intermediate state |n〉 equals the reference state |a〉, the
expression can be reduced to products of matrix elements appearing in a lower order
of perturbation theory. This contribution is called reducible, and the rest of the sum,
i.e. the term containing the reduced Green’s function

∑
n,n 6=a

|n〉〈n|
Ea−En [63] is called the

irreducible contribution. We will refer to the irreducible contributions as “N, irred” and
“O, irred”, and to the reducible parts as “N, red” and “O, red”. The energy shifts
corresponding to these diagrams are

∆Ei, irred =2〈a|γ0Σi|δa〉, (6.1)

∆Ei, red =∆Emag〈a|γ0 ∂Σi

∂E

∣∣∣∣
E=Ea

|a〉 , (6.2)

with ∆Emag = 〈a|γ0e /Am|a〉 being the leading energy shift in the first order of pertur-
bation theory, induced by the external magnetic field described by its 4-vector potential
Amµ . Furthermore, i ∈ {N,O}, and the Σi are the two-loop SE functions which are
discussed in detail in Ref. [63]. We obtain the following expressions for the two-loop SE
functions:

ΣN(x1,x4, Ea) =2iαγ0

∫
dx2

∫
dx3

∫
dωαµG(x1,x2, Ea − ω)γ0Σ(x2,x3, Ea − ω)

G(x3,x4, Ea − ω)ασDµσ(x1,x4, ω) , (6.3)

ΣO(x1,x4, Ea) =2iαγ0

∫
dx2

∫
dx3

∫
dωαµG(x1,x2, Ea − ω)γ0

Γρ(x2,x3,x4, Ea − ω,Ea)Dµρ(x1,x3, ω) . (6.4)

|δa〉 is the wave function perturbed linearly by the magnetic field,

|δa〉 =
∑

n,n 6=a
|n〉〈n|γ0e /Am|a〉

Ea−En . A closed analytical expression for the part diagonal in κ
of this function is given in Ref. [128]. The “N, red” and “O, red” diagrams are shown
in Fig. 6.3. As can be seen in this Figure, the derivative in ∆Ei, red can act on the
central electron propagator or on one of the propagators on the side. Following the
nomenclature of Ref. [63], we refer to these contributions as the “ladder” and “side”
contributions, respectively.

The remaining diagrams in the second and third lines of Fig. 6.2 are called the vertex
diagrams. Just as in the reducible case, we will refer to these contributions as “side”
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and “ladder” vertex diagrams if the magnetic interaction is connected to the side or
central electron propagator, respectively. The energy shifts corresponding to the vertex
diagrams can be represented as

∆Ever,ij = 〈a|γ0ΓµijeAmµ|a〉 . (6.5)

Here, j ∈ {side, ladder}, and Γµij are the two-loop vertex functions. These can be ex-
pressed as follows:

ΓµN,side(x1,x4,x5, Ea) =4iαγ0

∫
dx2

∫
dx3

∫
dωανG(x1,x2, Ea − ω)γ0Σ(x2,x3, Ea − ω)

G(x3,x4, Ea − ω)αµG(x4,x5, Ea − ω)αρDνρ(x1,x5, ω) , (6.6)

ΓµN,ladder(x1,x3,x5, Ea) =2iαγ0

∫
dx2

∫
dx4

∫
dωανG(x1,x2, Ea − ω)γ0 (6.7)

Γµ(x2,x3,x4, Ea − ω,Ea − ω)G(x4,x5, Ea − ω)αρDνρ(x1,x5, ω) ,

ΓµO,side(x1,x4,x5, Ea) =4iαγ0

∫
dx2

∫
dx3

∫
dωΓν(x1,x2,x3, Ea, Ea − ω) (6.8)

G(x3,x4, Ea − ω)αµG(x4,x5, Ea − ω)αρDνρ(x2,x5, ω) ,

ΓµO,ladder(x1,x3,x5, Ea) =(2iα)2γ0

∫
dx2

∫
dx4

∫
dω1

∫
dω2α

νG(x1,x2, Ea − ω1)αρ

G(x2,x3, Ea − ω1 − ω2)αµG(x3,x4, Ea − ω1 − ω2)ασ

G(x4,x5, Ea − ω2)αβDνσ(x1,x4, ω1)Dρβ(x2,x5, ω2) . (6.9)

6.1.2 The loop-after-loop diagrams

The three loop-after-loop (LAL) diagrams shown in the first line of Fig. 6.2 can be fur-

ther cast into 3 categories. In the spectral representation of the propagator
∑

n
|n〉〈n|
Ea−En

between the two SE loops or between a magnetic vertex and an SE loop, if the inter-
mediate state |n〉 equals the reference state |a〉, the expression can again be reduced to
products of matrix elements appearing in a lower order of perturbation theory. This con-
tribution is called reducible, and the rest of the sum, i.e. the term containing the reduced
Green’s function

∑
n,n 6=a

|n〉〈n|
Ea−En is called the irreducible contribution. As in the case of

the LAL diagrams we have two Green’s functions where the separation into reducible
and irreducible parts can be made. We differentiate between irreducible-irreducible
(“irred-irred”), irreducible-reducible (“irred-red”) and reducible-reducible (“red-red”)
parts. These contributions are illustrated in Fig. 6.4 and 6.5 in a diagrammatic form.

As will be discussed later, it is convenient to consider the “irred-irred” LAL diagrams
along with those “irred-red” LAL diagrams which contain the LAL structure, i.e. in
which two loops are connected by a reduced Green’s function. In the following, we will
refer to these diagrams simply as the LAL contribution. The remaining “irred-red” as
well as the “red-red” diagrams will be referred to as the “LAL, red” contribution. The
complete LAL contribution, defined in this way, is shown in Fig. 6.4.
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(a) 2× (b) 2× (c)

(d) 2× × (e) ×

Figure 6.4: Two-loop SE diagrams with the loop-after-loop structure (“LAL” contribu-
tion). Double lines between two SE loops or between an SE loop and the
magnetic interaction represent reduced Green’s functions. A double line with
a dot denotes a derivative of a (full or reduced) Green’s function with respect

to the energy: ∂G(E)
∂E

∣∣∣
E=Ea

.

The energy shifts corresponding to the LAL diagrams, following the notation of
Fig. 6.4, are as follows:

∆ELAL,a =2〈a|γ0Σ
∑
n,n 6=a

|n〉〈n|
Ea − En

γ0Σ|δa〉 , (6.10)

∆ELAL,b =2〈a|γ0Σ
∑
n,n 6=a

|n〉〈n|
Ea − En

γ0eΓµAmµ |a〉 , (6.11)

∆ELAL,c =〈a|γ0Σ
∑

n1,n1 6=a

|n1〉〈n1|
Ea − En1

γ0e /Am
∑

n2,n2 6=a

|n2〉〈n2|
Ea − En2

γ0Σ|a〉 , (6.12)

∆ELAL,d =2∆Emag〈a|γ0Σ
∑
n,n 6=a

|n〉〈n|
Ea − En

γ0 ∂Σ

∂E

∣∣∣∣
E=Ea

|a〉 , (6.13)

∆ELAL,e =−∆Emag〈a|γ0Σ
∑
n,n6=a

|n〉〈n|
(Ea − En)2

γ0Σ|a〉 . (6.14)
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(a) × (b) × (c) ×

(d) × (e) ×

(f) × × (g) × ×

Figure 6.5: Reducible two-loop SE diagrams which can be represented as products of
one-loop diagrams (“LAL, red” contribution).

For the “LAL, red” diagrams, shown in Fig. 6.5, we find the following energy shifts:

∆ELAL,red,a =2〈a|γ0 ∂Σ

∂E

∣∣∣∣
E=Ea

|δa〉〈a|γ0Σ|a〉 , (6.15)

∆ELAL,red,b =2〈a|γ0Σ|δDa〉〈a|γ0Σ|a〉 , (6.16)

∆ELAL,red,c =2〈δa|γ0Σ|a〉〈a|γ0 ∂Σ

∂E

∣∣∣∣
E=Ea

|a〉 , (6.17)

∆ELAL,red,d =〈a|γ0 ∂Σ

∂E

∣∣∣∣
E=Ea

|a〉〈a|γ0ΓµAmµ |a〉 , (6.18)

∆ELAL,red,e =〈a|γ0Σ|a〉〈a|γ0 ∂Γµ

∂E

∣∣∣∣
E=Ea

eAmµ |a〉 , (6.19)

∆ELAL,red,f =∆Emag〈a|γ0 ∂Σ

∂E

∣∣∣∣
E=Ea

|a〉2 , (6.20)

∆ELAL,red,g =∆Emag〈a|γ0Σ|a〉〈a|γ0 ∂
2Σ

∂E2

∣∣∣∣
E=Ea

|a〉 . (6.21)

Here, Σ and Γµ are the one-loop SE and vertex functions [57], respectively, and |δa〉
and |δDa〉 are bound-electron wave functions perturbed by the magnetic field: |δa〉 =∑

n,n6=a
|n〉〈n|γ0e /Am|a〉

Ea−En , |δDa〉 = −
∑

n,n 6=a
|n〉〈n|γ0e /Am|a〉

(Ea−En)2 .

We would like to point out that our formulas, containing the results of our two-time
Green’s function calculations, are the result of partial cancellations between Z5 and
subtraction terms, defined in equation (3.38). In table 6.1 we give a schematic overview
of all terms contributing to the two-loop SE correction to the g-factor originating from
Z5 and various subtraction terms.
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Z5 −Z1N4 +Z1N
2
2 −Z3N2 −Z2N3 total

N & O, ver 1 0 0 0 0 1
N & O, irred 2 0 0 0 0 2
N & O, red 2 -1 0 0 0 1

LAL, a 2 0 0 0 0 2
LAL, b 2 0 0 0 0 2
LAL, c 1 0 0 0 0 1
LAL, d 4 -2 0 0 0 2
LAL, e 2 -1 0 0 0 1

LAL, red a 4 0 0 0 -2 2
LAL, red b 4 0 0 0 -2 2
LAL, red c 4 0 0 -2 0 2
LAL, red d 2 0 0 -1 0 1
LAL, red e 2 0 0 0 -1 1
LAL, red f 3 -1 1 -2 0 1
LAL, red g 3 -1 0 0 -1 1

Table 6.1: Overview of all contributions to the two-loop SE correction to the g-factor.
E.g. the energy shift due to the reducible N and O contribution originating
from Z5 is twice the value given in equation (6.2), an energy shift of minus
the value given in equation (6.2) originates from the subtraction term −Z1N4,
hence the total value. Zi and Ni were defined in equation (3.38).
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6.2 Energy-dependent perturbation theory for two-loop SE
diagrams

Having established the correspondence between energy dependent perturbation theory
and the energy shift due to loop diagrams in section 4.3, we can extend this approach
to check our TTGF calculations for the two-loop SE contribution to the bound-fermion
g-factor. The relevant diagrams are of first order in the magnetic field, order O

(
e5
)

and
of first to third order in perturbation theory. We have to include two-loop SE VSE2(E)
and vertex functions Vver2(E) (O

(
e4
)

and O
(
e5
)

respectively) into the perturbation
term. We define the “two-loop vertex potential” as Vver,2loop = γ0

∑
ij

ΓµijeAmµ and the

two-loop SE potential as VSE,2loop =
∑
i
γ0Σi to obain the total perturbation potential:

V (E) = Vmag + VSE(E) + Vver(E) + VSE2(E) + Vver2(E). (6.22)

Vmag = eγ0 /Am, VSE(E) = γ0Σ(E) and Vver(E) = γ0Γµ(E)Amµ are the same as in section

4.3. The two-loop contribution to δE(1) reads:

∆E
(1)
2loop = 〈a|Vver2(E)|a〉. (6.23)

The second-order energy shift reads:

∆E
(2)
2loop =2

∑
n6=a

〈a|VSE(Ea)|n〉〈n|Vver|a〉
Ea − En

+ 2
∑
n6=a

〈a|Vmag(Ea)|n〉〈n|VSE2|a〉
Ea − En

+

〈a|VSE(Ea)|a〉〈a|
∂Vver

∂E

∣∣∣∣
Ea

|a〉+ 〈a|Vver(Ea)|a〉〈a|
∂VSE

∂E

∣∣∣∣
Ea

|a〉+

〈a|Vmag|a〉〈a|
∂VSE2

∂E

∣∣∣∣
Ea

|a〉. (6.24)

We see that the sum of all vertex diagrams corresponds to the first-order energy shift
obtained in the framework of energy-dependent perturbation theory. Similarly, the sum
of the irreducible and reducible N and O contributions correspond to a part of the
second-order energy shift.

Of all contributions to V (E), only Vmag and VSE(E) can combine to third order per-
turbation theory terms of order O

(
e5
)
. Inserting the potential V (E) = Vmag + VSE(E)

into the expression for δE(3) [197], we obtain:
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δE
(3)
2loop =2

∑
n1 6=a

∑
n2 6=a

〈a|Vmag|n1〉〈n1|VSE(Ea)|n2〉〈n2|VSE(Ea)|a〉
(Ea − En1)(Ea − En2)

+
∑
n1 6=a

∑
n2 6=a

〈a|VSE(Ea)|n1〉〈n1|Vmag|n2〉〈n2|VSE(Ea)|a〉
(Ea − En1)(Ea − En2)

+ 2〈a|Vmag|a〉
∑
n6=a

〈a|VSE(Ea)|n〉〈n| ∂VSE
∂E

∣∣∣
Ea
|a〉

Ea − En

− 〈a|Vmag|a〉
∑
n6=a

〈a|VSE(Ea)|n〉〈n|VSE(Ea)|a〉
(Ea − En)2

+ 2〈a| ∂VSE

∂E

∣∣∣∣
Ea

|a〉
∑
n6=a

〈a|VSE(Ea)|n〉〈n|Vmag|a〉
Ea − En

+ 2〈a|VSE(Ea)|a〉
∑
n6=a

〈a|Vmag|n〉〈n| ∂VSE
∂E

∣∣∣
Ea
|a〉

Ea − En

− 2〈a|VSE(Ea)|a〉
∑
n6=a

〈a|Vmag|n〉〈n|VSE(Ea)|a〉
(Ea − En)2

+ 〈a|Vmag|a〉〈a|
∂VSE

∂E

∣∣∣∣
Ea

|a〉2

+ 〈a|Vmag|a〉〈a|VSE(Ea)|a〉〈a|
∂2VSE

∂E2

∣∣∣∣
Ea

|a〉. (6.25)

We found a perfect agreement between the energy shifts δE
(1)
2loop, δE

(2)
2loop, δE

(3)
2loop and

our results obtained with the two-time Green’s function method in the previous section.
This energy-dependent perturbation theory calculation was an important consistency
check for our results obtained using the TTGF method.

6.3 Two-loop self-energy, renormalization

6.3.1 Mass renormalization

Analyzing counterterm Feynman diagrams, one observes that every SE function Σ(p) is
accompanied by the corresponding mass renormalization counterterm δm. This applies
to the one-loop SE function Σ(p), when it appears in LAL diagrams and as a subgraph
of the N SE or vertex functions, as well as the N and O SE functions ΣN (p) and ΣO(p).
The latter two are always accompanied by a two-loop mass renormalization counterterm

δm
(2)
N and δm

(2)
O respectively [63]. We therefore assume mass renormalization implicitly,

i.e. instead of considering Σ(p), we consider the mass-renormalized SE function Σ̃(p) :=
Σ(p)− δm. We apply this to both the one-loop and the two-loop SE functions.
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6.3.2 Charge renormalization

One-loop diagrams

We begin the discussion of charge divergences by analyzing the one-loop SE function
using a compact notation. The one-loop SE function has been analyzed thoroughly in
the literature (see Ref. [63, 72]), but we will repeat this discussion because it is essential
for the understanding of the two-loop case.

= + +

Figure 6.6: Decomposition of the Lamb shift self-energy correction into zero-, one-, and
many-potential terms [72]. A single line stands for a free Dirac electron
propagator, and a wave line terminated by a cross represents a Coulomb
interaction.

Expanding the one-loop SE function in powers of interactions with the nuclear poten-
tial Ae, we find [63]

Σ̃ = Σ̃(0) + Σ(1) + Σ(2+) , (6.26)

where the index (n) denotes the number of interactions (see Fig. 6.6). The zero-potential
SE function was defined in Chapter 4. Using the notation from Chapter 4, the one-
potential SE function is defined as Σ(1) = Γ(0)0V . The many-potential SE function
is similar to the full SE function, with the electron Green’s function replaced by the
many-potential Green’s function. One can show that Σ(2+) is finite, while Σ̃(0) and Σ(1)

contain charge divergences as follows [63]:

Σ̃(0) = B(1)(/p−m) + Σ
(0)
R , (6.27)

Σ(1) = L(1)e /Ae + Σ
(1)
R . (6.28)

Here,
B(1) = −L(1) (6.29)

are divergent renormalization constants and Σ
(0)
R (p) and Σ

(1)
R (p) are the finite (regular,

R) remainders [63]. Aeµ is the 4-vector potential containing the Coulomb potential of
the nucleus. Therefore, the one-loop SE function reads [63]

Σ̃ = B(1)(/p− e /Ae −m) + Σ
(0)
R + Σ

(1)
R + Σ(2+) . (6.30)

Since (/p − e /Ae − m)|a〉 = 0, the above one-loop SE function does not contain charge
divergences as long as it acts on the bound-electron wave function |a〉 [63].

In the forthcoming calculations, the derivative of the one-loop SE function with respect

to energy,
∂Σ̃

∂E

∣∣∣∣∣
E=Ea

, will also be required. Taking this derivative of the expression (6.30)
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for the one-loop SE function, we find that the energy derivative contains the following
charge-divergent term:

∂Σ̃

∂E

∣∣∣∣∣
E=Ea

= B(1)γ0 + (UV finite terms). (6.31)

We also need the knowledge of charge divergences in the one-loop vertex function. The
one-loop vertex function can be expanded as

Γµ = Γ(0)µ + Γ(1+)µ , (6.32)

where only the zero-potential contribution contains charge divergences [57]:

Γ(0)µ = L(1)γµ + Γ
(0)
R

µ
. (6.33)

It is easy to see that the second derivative of the one-loop SE function and the derivative
of the one-loop vertex function with respect to energy do not contain UV divergences.
With this, we can begin the analysis of charge divergences in the individual two-loop
diagrams.

Loop-after-loop diagrams

It is convenient to consider the “irred, irred” LAL diagrams together with those “irred,
red” LAL diagrams which contain the LAL structure. These diagrams are shown in
Fig. 6.4. We will show that this subset of two-loop SE diagrams is UV finite:

(i) In diagrams (c) and (e), both SE operators act on the bound-electron wave function.
According to the above analysis of the one-loop SE function, these diagrams are finite.

(ii) Diagram (d) contains both the one-loop SE function and its derivative with respect
to energy. While the SE function does not give a UV divergent contribution (since it acts
on the bound-electron wave function), its derivative contains a charge-divergent term.
Calculating the energy shift that corresponds to this divergent term, we find

∆ELAL,d,div = 2∆Emag〈a|γ0Σ̃
∑
n,n 6=a

|n〉〈n|
Ea − En

γ0B(1)γ0|a〉 . (6.34)

Here, and in the following, the subscript “div” indicates that we are considering the
contribution due to divergent renormalization constants only. This expression contains
the scalar products 〈n|a〉 (note that γ0γ0 is the unity matrix [6]), which are all zero
because the sum excludes the reference state (n 6= a). Therefore, the charge-divergent
contribution to this diagram vanishes.

(iii) In diagram (b), the SE function gives a finite contribution. Charge divergences
are possible only because of the charge divergence in the one-loop vertex function. The
corresponding charge-divergent contribution to the energy shift reads

∆ELAL,b,div = 2〈a|γ0Σ̃
∑
n,n6=a

|n〉〈n|
Ea − En

γ0L(1)e /Am|a〉 = 2L(1)〈a|γ0Σ̃|δa〉 . (6.35)
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We see that the charge-divergent contribution to this diagram does not vanish.
(iv) Diagram (a) can also contain charge divergences because one of the SE functions

in this diagram does not act on the bound-electron wave function but is “sandwiched” by
two reduced Green’s functions Gred =

∑
n,n6=a

|n〉〈n|
Ea−En . To determine the charge-divergent

contribution, we use the identity (see Ref. [197])

(/p−m)Gred = γ0 + e /AeGred . (6.36)

We find the following expression for the divergent contribution to the energy shift:

∆ELAL,a,div = 2B(1)〈a|γ0Σ̃|δa〉 , (6.37)

which, because of Eq. (6.29), cancels the charge-divergent contribution of diagram (b).
Finally, we can conclude that the total contribution of all diagrams with the LAL

structure is finite. It is therefore possible to analyze the LAL contribution independently
from the remaining diagrams.

LAL, reducible diagrams

The remaining “irred, red” and “red, red” diagrams can be represented as products of
two one-loop diagrams. These diagrams are shown in Fig 6.5. Some of these diagrams
do not contain charge divergences:

• Diagram (b) contains only the one-loop SE function acting on at least one bound-
electron wave function.

• Diagrams (e) and (g) contain the one-loop SE function acting on bound-electron
wave functions as well as one-loop functions which are UV finite.

• Diagram (a) does not contain charge divergences for the same reason as the LAL
diagram (d).

The remaining diagrams do contain charge divergences. There is a partial cancellation
of charge divergences between diagrams (d) and (f). The combined energy shift due to
both diagrams can be represented as

∆ELAL,red,df =∆ELAL,red,d + ∆ELAL,red,f (6.38)

=〈a|γ0 ∂Σ̃

∂E

∣∣∣∣∣
E=Ea

|a〉

(
〈a|γ0ΓµAmµ|a〉+ ∆Emag〈a|γ0 ∂Σ̃

∂E

∣∣∣∣∣
E=Ea

|a〉

)
.

While both terms inside the round brackets contain charge divergences, their sum is finite
and corresponds to the combined energy shift ∆Evr = ∆Ered + ∆Ever of the one-loop
vertex diagram and the reducible one-loop SE diagram which is known from one-loop

g-factor calculations [57]. Inserting the charge-divergent contribution to ∂Σ̃
∂E

∣∣∣
E=Ea

into

the above equation, we obtain the following charge-divergent contribution to the energy
shift:

∆ELAL,red,df,div = B(1)∆Evr . (6.39)
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N: 2× × + × = × ∂
∂E

O: 2× × + × = × ∂
∂E

Figure 6.7: Reducible parts of the nested-loop and overlapping-loop diagrams.

In diagram (c), the derivative of the one-loop SE function contains charge divergences,
while the SE function is finite. The corresponding energy shift is the product of the
divergent renormalization constant and the irreducible SE contribution to the one-loop
g-factor:

∆ELAL,red,c,div = 2B(1)〈a|γ0Σ̃|δa〉 . (6.40)

Nested-loop and overlapping-loop diagrams, irreducible contribution

The N and O SE functions ΣN and ΣO, which appear in the N and O irreducible
diagrams, have been analyzed in detail in Ref. [63]. We just quote the relevant results
here:

Σ̃N = B(2N)(/p− e /Ae −m) +B(1)Σ̃ + ΣN,R , (6.41)

Σ̃O = B(2O)(/p− e /Ae −m) + 2L(1)Σ̃ + ΣO,R , (6.42)

where B(2N) and B(2O) are divergent two-loop renormalization constants. Their contri-
butions to the energy shift are zero because the two-loop SE functions act on a bound-
electron wave function in all two-loop g-factor diagrams. The energy shifts due to the
respective second terms of the above equations are

∆EN,irred,div = 2B(1)〈a|γ0Σ̃|δa〉 , (6.43)

∆EO,irred,div = 4L(1)〈a|γ0Σ̃|δa〉 . (6.44)

We see that the sum ∆EN,irred,div + ∆EO,irred,div exactly cancels the charge-divergent
contribution from the LAL, reducible diagram (c) in Eq. (6.40).

Nested-loop and overlapping-loop diagrams, reducible contribution

The N and O reducible diagrams are shown in Fig. 6.7. The sum of side and ladder
diagrams corresponds to

∆Ei,red = ∆Emag〈a|γ0 ∂Σ̃i

∂E

∣∣∣∣∣
E=Ea

|a〉 . (6.45)
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N O

side -2 2
ladder 1 0

Table 6.2: Integer factors ai,j for the zero-potential vertex functions.

Using the above parameterizations (6.41) and (6.42) of the two-loop SE functions, we
obtain the following representations for their energy derivatives:

∂Σ̃N

∂E
= B(2N)γ0 +B(1) ∂Σ̃

∂E
+
∂Σ̃N,R

∂E
, (6.46)

∂Σ̃O

∂E
= B(2O)γ0 + 2L(1) ∂Σ̃

∂E
+
∂Σ̃O,R

∂E
. (6.47)

The first two terms of both expressions contain charge divergences. The energy shift
that corresponds to the charge-divergent terms of the sum of N and O reads

∑
i

∆Ei,red,div = ∆EmagB
(2) + ∆EmagL

(1)〈a|γ0 ∂Σ̃

∂E

∣∣∣∣∣
E=Ea

|a〉. (6.48)

Here, B(2) = B(2N) +B(2O) is the sum of the charge-divergent renormalization constants
of the N and O terms.

Nested-loop and overlapping-loop vertex diagrams

The N and O vertex diagrams are shown in the second and third line of Fig. 6.2. The
discussion of charge divergences in vertex diagrams requires a thorough analysis of the
two-loop vertex functions. Just as in the one-loop case, we expand the vertex functions
in powers of interactions with the nuclear potential. All zero-potential contributions can
be parameterized as

Γ
(0)
i,j

µ
= γµL

(2)
i,j + L(1)ai,jΓ

(0)µ + Γ
(0)µ
i,j,R , (6.49)

where j ∈ {side, ladder} (see [63]). The ai,j are integers given in table 6.2. We would
like to emphasize the similarity between the zero-potential vertex functions and the
one-potential SE functions. The latter were analyzed thoroughly in the calculation of
the two-loop SE correction to the Lamb shift [63]. The total two-loop renormalization
constant is

L(2) =
∑
i,j

L
(2)
i,j = −B(2) . (6.50)

Vertex functions with nn interactions with the nuclear potential Γ
(n)µ
ij contain charge

divergences only if they contain a divergent subgraph:
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• “O, ladder”: This diagram does not contain a divergent subgraph. Therefore, all

Γ
(n)µ
O,ladder,div with n ≥ 1 are free from charge divergences.

• “O, side”: If all interactions with the nuclear potential are on the extreme right
(orientation as in Fig. 6.2), the diagram contains the one-loop vertex function as a
subdiagram. Its charge divergences are due to the divergent term in the one-loop
vertex function only. The divergent part of the n-potential contribution to the “O,

side” vertex function therefore is Γ
(n)µ
O,side,div = 2L(1)Γ(n)µ.

• “N, ladder”: The diagram contains the one-loop vertex function as a divergent
subdiagram only if all interactions with the nuclear potential are outside the in-
ner loop. The corresponding divergent part of the n-potential contribution reads

Γ
(n)µ
N,ladder,div = L(1)Γ(n)µ.

• “N, side”: Here, we have to distinguish between the cases of zero or one inter-
actions with the nuclear potential inside the inner loop. Diagrams with two or
more interactions in the inner loop do not contain charge divergences. n-potential
diagrams with zero potentials in the inner loop contain the divergent contribution
2(n + 1)B(1)Γ(n)µ. Those with one potential in the inner loop contain the diver-
gent term 2nL(1)Γ(n)µ. The total divergent part of the n-potential contribution

therefore is Γ
(n)µ
N,side,div = 2B(1)Γ(n)µ.

Adding all divergences of the N and O vertex functions, we find the total charge
divergent contribution to be ∑

i,j

Γµi,j,div = L(2)γµ + L(1)Γµ , (6.51)

which corresponds to the energy shift∑
i,j

∆Ever,i,j,div = L(2)∆Emag + L(1)〈a|γ0ΓµAmµ|a〉 . (6.52)

The first divergent term is canceled by the corresponding B(2) term in the N and O
reducible diagrams (see Eq. (6.48)). The sum of the charge-divergent contributions of
the N and O vertex and reducible diagrams is∑

i,j

∆Ever,i,j,div +
∑
i

∆Ei,red,div = L(1)∆Evr . (6.53)

This term is canceled by the remaining charge-divergent contribution to the “LAL, red”
diagrams (see Eq. (6.39)). We thus see that all charge divergences in the two-loop SE
diagrams cancel, and the two-loop SE correction to the g-factor is UV finite.
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6.4 Reference-state infrared divergences

Reference-state infrared (IR) divergences appear in bound-state QED calculations when-
ever at least two electron propagators with identical energy value appear in an SE loop.
Such IR divergences are present in the one-loop g-factor correction [57] as well as in the
two-loop Lamb shift [63]. In both cases, it is possible to identify two Feynman diagrams
which are each IR divergent on their own but whose sum is IR finite [57, 63]. The sit-
uation for the two-loop SE correction to the bound-electron g-factor is somewhat more
complicated.

Not all contributions to the two-loop SE correction are IR divergent. The one-loop
SE function Σ̃ and the two-loop O SE function Σ̃O are IR finite [63]. Therefore, all
diagrams which contain only these SE functions are IR finite. These are the irreducible
O contribution, the LAL diagrams (a), (c) and (e) in Fig. 6.4, as well as the “LAL, red”
diagram (b) in Fig. 6.5.

The remaining contributions contain IR divergences. We keep in mind that in the
case of the one-loop SE correction to the g-factor, both the vertex and the reducible SE
contriburtion are IR divergent, but the sum of the two diagrams is finite [57].

Replacing one external electron wave function |a〉 in the above mentioned one-loop g-

factor diagrams with
∑

n,n 6=a
|n〉〈n|Σ|a〉
Ea−En , and multiplying by a factor of two, we obtain the

energy shifts corresponding to the LAL diagrams (b) and (d) in Fig. 6.4. The cancellation
of IR divergences between these two diagrams works in exactly the same way as for the
one-loop g-factor correction. This means that the LAL contribution, shown to be UV
finite in the previous section, is also IR finite. Analogously, one can show that the IR
divergences of the “O, ver” and “O, red” contributions also cancel each other.

The two-loop N SE function Σ̃N is IR divergent, which leads to divergences in the
two-loop Lamb shift. This IR divergence was found to be canceled by the reducible
Lamb shift contribution (see [63] for details). Replacing one external electron line by
the magnetic wave function in both Lamb shift diagrams, and multiplying by a factor
of two, we obtain the “N, irred” diagram and the “LAL, red” diagram (a) of Fig. 6.5.
The cancellation of IR divergences between these two diagrams is identical to the case
of the Lamb shift. This case has been studied in detail in the literature [63], so we will
not repeat this analysis here.

For the remaining diagrams, it is not sufficient to form the sum of two diagrams in
order to cancel IR divergences. E.g. the “LAL, red” diagrams (d) and (f) (see Fig. 6.5)
each consist of two IR-divergent factors. The energy shift which corresponds to the sum
of both diagrams is still IR divergent:

∆ELAL,red,df = − i

2π

∫
dω
∑
n

〈an|I(ω)|na〉
(Ea − ω − En(1− iη))2

∆Evr . (6.54)

The reference-state contribution to this energy shift is

∆ELAL,red,df,ref = − i

2π

∫
dω
∑
m

〈aam|I(ω)|ama〉
(−ω + iη)2

∆Evr . (6.55)
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∑
m

is a sum over the angular momentum projection quantum number. Comparing this

expression with equation (4.43), we conclude that the m = ma term in this sum is IR
divergent, and the m = −ma term is finite.

It is convenient to consider a “N, ver” diagram along with a corresponding reducible
diagram, although each such pair is IR divergent. Let us now consider the sum of the
“N, ver” ladder and the “N, red” ladder contributions. Performing an analysis similar
to the one-loop case, we find that the IR divergences due to the inner loop cancel in
the sum. However, this sum is IR divergent because of the reference state contributions
to the electron propagators to the left and right of the inner loop. Using the spectral
representation of the bound-electron Green’s function, we obtain the following expression
for the combined energy shift of the “N, ver” ladder and “N, red” ladder contributions:

∆EN,vr,lad =

(
i

2π

)2 ∫
dω1

∫
dω2

〈an4|I(ω1)|n1a〉
(Ea − ω1 − En1(1− iη))(Ea − ω1 − En4(1− iη))

×
(

〈n2|γ0e /Am|n3〉〈n1n3|I(ω2)|n2n4〉
(Ea − ω1 − ω2 − En2(1− iη))(Ea − ω1 − ω2 − En3(1− iη))

−

∆Emag〈n1n2|I(ω2)|n2n4〉
(Ea − ω1 − ω2 − En2(1− iη))2

)
. (6.56)

Here, ∆EN,vr,lad = ∆Ever,N,lad + ∆EN,lad,red. We will analyze the two reference-state
terms with (n1, κ1,m1) = (n4, κ4,m4) = (na, κa,ma) and (n1, κ1,m1) = (n4, κ4,m4) =
(na, κa,−ma) separately. The reference-state contribution with (n1, κ1,m1) =
(n4, κ4,m4) = (na, κa,−ma) is

∆EN,vr,lad,IR− =

(
i

2π

)2 ∫
dω1
〈aa−ma |I(ω1)|a−maa〉

(−ω1 + iη)2
(6.57)∫

dω2

∑
n2

(
− ∆Emag〈a−man2|I(ω2)|n2a〉

(Ea − ω1 − ω2 − En2(1− iη))2

+
∑
n3

〈a−man3|I(ω2)|n2a−ma〉〈n2|γ0e /Am|n3〉
(Ea − ω1 − ω2 − En2(1− iη))(Ea − ω1 − ω2 − En3(1− iη))

)
.

In order to investigate whether this expression is IR divergent or IR finite, it is sufficient
to consider the reference-state term of the expression in brackets ((n2, κ2) = (n3, κ3) =
(na, κa)). The result is

∆EN,vr,lad,IR−,ref =

(
i

2π

)2 ∫
dω1
〈aa−ma |I(ω1)|a−maa〉

(−ω1 + iη)2∫
dω2

∑
m2

(
∆Emag〈a−maam2 |I(ω2)|am2a〉

(−ω1 − ω2 + iη))2

)
(sgn(m2)− 1) (6.58)

One can see that there is a contribution due to m2 = −ma only. Just like in the one-loop
case, we can insert the momentum space representation of the photon Green’s function
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and perform the integrations over ω1 and ω2 to obtain (see also Ref. [63])

∆EN,ver,lad,IR−,ref =∆Emag

(α
π

)2
∞∫

0

dq1

∞∫
0

dq2
1

q2
1(q1 + q2)2

〈aa−ma |αµαµ
sin(q1x14)

x14
|a−maa〉

(6.59)

〈a−maa−ma |αναν
sin(q2x23)

x23
|a−maa−ma〉 .

With an analysis similar to the one-loop case above, we conclude that the first matrix
element is proportional to q3

1 and the second matrix element is proportional to q2 for
small q1 and q2. Therefore, ∆EN,vr,lad,IR− is finite.

The reference-state contribution with (n1, κ1,m1) = (n4, κ4,m4) = (na, κa,ma) is

∆EN,ver,lad,IR+ =
i

2π

∫
dω1
〈aa|I(ω1)|aa〉
(−ω1 + iη)2

∆EJ(ω1) , (6.60)

where

∆EJ(ω1) =
i

2π

∫
dω2

∑
n2

(
− ∆Emag〈an2|I(ω2)|n2a〉

(Ea − ω1 − ω2 − En2(1− iη))2
(6.61)

+
∑
n3

〈an3|I(ω2)|n2a〉〈n2|γ0e /Am|n3〉
(Ea − ω1 − ω2 − En2(1− iη))(Ea − ω1 − ω2 − En3(1− iη))

)
.

Note that ∆EJ(0) = ∆Evr corresponds to the unrenormalized energy shift of the one-
loop vertex and reducible SE diagrams. Therefore, the remaining contribution of the
“N, ver” ladder, the “N, red” ladder and the “LAL, red” diagrams d and f in Fig. 6.5 is

∆EIR =
i

2π

∫
dω1
〈aa|I(ω1)|aa〉
(−ω1 + iη)2

(∆EJ(ω1)−∆EJ(0)) . (6.62)

In order to show that this is IR finite, it is sufficient to analyze the reference-state
contribution to ∆EJ(ω)−∆EJ(0):

∆EN,vr,lad,IR+,ref =− 2∆Emag

(
i

2π

)2 ∫
dω1
〈aa|I(ω1)|aa〉
(−ω1 + iη)2

(6.63)∫
dω2

(
〈aa−ma |I(ω2)|a−maa〉

(−ω1 − ω2 + iη)2
− 〈aa−ma |I(ω2)|a−maa〉

(−ω2 + iη)2

)
.

Inserting the momentum-space photon propagator and carrying out the integrations∫
dω1 and

∫
dω2 analytically [63], we obtain

∆EN,vr,lad,IR+,ref =∆Emag
2α2

π2

∞∫
0

dq1

∞∫
0

dq2
q1 + 2q2

q1q2
2(q1 + q2)2

〈aa|αµαµ sin(q1x14)|aa〉〈aa−ma |αναν sin(q2x23)|a−maa〉 . (6.64)
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Keeping in mind that, following the discussion of IR divergences in the one-loop SE cor-
rection, the first matrix element is proportional to q1 and the second one is proportional
to q3

2, we see that the entire expression is finite.
In a similar way, it can be shown that the sum of the “N, ver” side, the “N, red” side

and the “LAL, red” contributions c and e in Fig. 6.5 is finite. Thus, we see that the entire
two-loop SE correction to the bound-electron g-factor is both UV and IR finite, with
the LAL diagrams constituting a subset of the two-loop SE diagrams which is both UV
and IR finite on its own. A specific subtraction procedure to deal with IR divergences,
comparable to the subtraction procedure employed in the two-loop SE correction to the
Lamb shift [63], will be developed in a future analysis.

6.5 Separation of the two-loop terms into categories

In order to deal with UV divergences, we split all diagrams into different contribu-
tions. One-loop functions can simply be split into the zero-, one- (if applicable) and
many-potential functions (see Fig. 6.6 and 4.4) [69]. The zero- and, in some cases,
the one-potential contributions are UV divergent. These UV divergent contributions
are evaluated in the momentum space, using the dimensional regularization procedure
to isolate UV-divergent terms. The many-potential functions which are UV finite are
computed in the coordinate representation, since these involve the Coulomb-Dirac prop-
agator which is known only in coordinate space [63]. A position-space renormalization
scheme for position-space representations [250–253] has not yet been generalized for
two-loop calculations [63, 246].

The LAL and the “LAL, red” contributions can be dealt with using a straightforward
generalization of this procedure. The situation is more complicated for the N and O
diagrams. While in the one-loop case, diagrams can always be divided into UV-divergent
contributions and contributions which contain the bound-electron propagator, two-loop
diagrams need to be divided into three different categories: (i) Diagrams which contain
UV divergences, (ii) diagrams which contain the bound-electron propagator, and (iii)
diagrams which contain both [63]. Using the nomenclature which was introduced for the
computation of the two-loop SE correction to the Lamb shift, we refer to these categories
as the F, M and P term, respectively [65].

Replacing |δa〉 with |a〉 in the “N, irred” and “O, irred” contributions, we obtain the
known Lamb shift diagrams [63]. Therefore, the separation of the “N, irred” and “O,
irred” diagrams into F, P and M term is identical to the case of the Lamb shift. This
separation is illustrated in Fig. 6.8 and 6.9.

For the N and O, red and vertex diagrams, we consider the expansion of the electron
propagators in powers of interactions with the nuclear potential, and analyze the su-
perficial degree of divergence d, as defined in Ref. [6]. According to Ref. [6], if d ≥ 0,
a diagram is expected to contain UV divergences unless it is a tree-level diagram or
divergences cancel due to symmetries. If d < 0, a diagram is expected to be finite unless
it contains a UV divergent subdiagram [6]. We divided the contributions into F, P and
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F

 + 2× +

P

 − − 2× + −

M


Figure 6.8: Separation of the “N, irred” contributions into F (first line), P (second line)

and M term (third line) [63].

F

 + +

P


M

 − − + −

Figure 6.9: Separation of the “O, irred” contributions into F, P and M terms [63].
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F


“side”︷ ︸︸ ︷

2× ×

“ladder”︷ ︸︸ ︷
×

P

2× ×

 − +

 ×

(
−

)

M

2× × ×

(
−

)

Figure 6.10: Separation of the “N, red” contributions into F, P and M terms.

F


“side”︷ ︸︸ ︷

2×

“ladder”︷ ︸︸ ︷

P

2× − 2× + 2× −

M

2× −

Figure 6.11: Separation of the “N, vertex” contributions into F, P and M terms.

M terms according to the definitions

d ≥ 0⇔ F term,

d < 0, UV divergent subgraph⇔ P term,

d < 0, no UV divergent subgraph⇔ M term.

The separation of the N and O, red and vertex diagrams is depicted in Fig. 6.10 to 6.13.
Formulas for the (unrenormalized) F, P and M term contributions can be obtained by
replacing the full Green’s functions in the basic formulas for all contributions by zero-,
one - and many-potential Green’s functions where necessary, according to the figures
6.10 to 6.13.

F term diagrams need to be calculated in momentum space because of the appearance
of UV divergences, M term diagrams need to be evaluated in position space because of
the many-potential propagators, and P term diagrams need to be evaluated by employing
a mixed position-momentum space representation since they contain both UV divergent
subdiagrams and many-potential electron propagators [63].
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F


“side”︷ ︸︸ ︷

2× ×

“ladder”︷ ︸︸ ︷
×

P

{
2× ×

(
−

)

M

{
2× ×

(
−

)
×

(
−

)

Figure 6.12: Separation of the “O, red” contribution into F, P and M terms. Note that
the “ladder” diagram does not contain a P term contribution because there
is no divergent subgraph in this diagram.

F


“side”︷ ︸︸ ︷

2×

“ladder”︷ ︸︸ ︷

P

2× − 2×

M

2× − 2× −

Figure 6.13: Separation of the “O, vertex” contribution into F, P and M terms. The
“ladder” diagram does not contribute to the P term because there is no
divergent subgraph within this diagram.
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We demonstrated the separation of all two-loop SE g-factor Feynman diagrams into
different categories, namely, the LAL contribution, the “LAL, red” contribution, and
the F, P and M terms. Some of the “LAL, red” contributions are conveniently included
in the F term, as will be discussed below. The remaining “LAL, red” contributions shall
be included in the M term. In this Chapter, we will give a description of the methods
for the computation of the LAL diagrams. In the next Chapter, we present a detailed
description of the calculation method and our numerical results of the F term. The
evaluation of the P and M terms and the LAL contribution will be presented in a future
work.

6.6 Loop-after-loop diagrams

In this section, we discuss the methods to compute the loop-after-loop diagrams shown
in Fig. 6.4. Following the discussion about UV divergences, it is sufficient to consider
the renormalized part of all relevant loop functions since all UV divergences in the LAL
contribution cancel. The contributions to the energy shift by the various renormalized
loop after loop diagrams are as follows:

∆ELAL,a,R =2〈a|γ0ΣR

∑
n,n 6=a

|n〉〈n|
Ea − En

γ0ΣR|δa〉 , (6.65)

∆ELAL,b,R =2〈a|γ0ΣR

∑
n,n 6=a

|n〉〈n|
Ea − En

γ0eΓµAmµ|a〉 , (6.66)

∆ELAL,c,R =〈a|γ0ΣR

∑
n1,n1 6=a

|n1〉〈n1|
Ea − En1

γ0e /Am
∑

n2,n2 6=a

|n2〉〈n2|
Ea − En2

γ0ΣR|a〉 , (6.67)

∆ELAL,d,R =2∆Emag〈a|γ0ΣR

∑
n,n 6=a

|n〉〈n|
Ea − En

γ0 ∂ΣR

∂E

∣∣∣∣
Ea

|a〉 , (6.68)

∆ELAL,e,R =−∆Emag〈a|γ0ΣR

∑
n,n 6=a

|n〉〈n|
(Ea − En)2

γ0ΣR|a〉 . (6.69)

The subscript R indicates that we consider only the UV finite remainders of all SE
and vertex functions involved. For this computation, it is convenient to define a “self-
energy perturbed wave function” |δΣa〉 (see [190, 254]), analogously to the wave function
perturbed by the magnetic field |δa〉:

|δΣa〉 =
∑
n,n 6=a

|n〉〈n|ΣR|a〉
Ea − En

. (6.70)

The most challenging aspect of the loop-after-loop calculation is the numerical deter-
mination of |δΣa〉 using B-splines [222, 255]. |δΣa〉 corresponds to the sum of the
zero-, one- and many-potential contributions to the self-energy function according to
Σ̃R = Σ̃0

R + Σ1
R + Σ(2+).

The configuration space representation of |δΣa〉 is:
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δΣa(r,Ω) =

(
igΣ(r)χκm(Ω)
−fΣ(r)χ−κm(Ω)

)
. (6.71)

The radial components of |δΣa〉 are:

gΣ(r) =
∑
n,n 6=a

gn(r)〈n|ΣR|a〉
Ea − En

, (6.72)

fΣ(r) =
∑
n,n 6=a

fn(r)〈n|ΣR|a〉
Ea − En

. (6.73)

For the LAL calculations, it is necessary to determine |δΣa〉 in both configuration and
momentum space. The configuration space representation of |δΣa〉 was determined nu-
merically using the finite basis set method [222, 255]. The momentum space representa-
tion of |δΣa〉 was determined by performing the Fourier transform of the configuration
space representation numerically. The determination of |δΣa〉, both in position and mo-
mentum space, was carried out by Dr. N. S. Oreshkina und H. Cakir. The values of gΣ

and fΣ were stored at certain grid points in a file and determined at arbitrary values of
r and p by interpolation.

We tested the precision of |δΣa〉 using different methods. We computed the orthogonal
scalar product 〈a|δΣa〉 = 0 numerically to test the coding and to assess the numerical
accuracy of the wave functions and their integration. Furthermore, we computed the
gSEwf,irred contribution to the one-loop g-factor as well as the LAL contribution to the
Lamb shift using |δΣa〉 and compared with literature values [63, 69].

We now turn to expressing the g-factor contributions of the different LAL diagrams
in terms of |δΣa〉. The simplest diagram is diagram (e). We can make the replacement∑

n1,n1 6=a

|n1〉〈n1|
(Ea − En1)2

=
∑

n1,n1 6=a

|n1〉〈n1|
Ea − En1

∑
n2,n2 6=a

|n2〉〈n2|
Ea − En2

(6.74)

in Eq. (6.69) and find the following formula for its g-factor contribution:

∆ELAL,e,R = −∆Emag〈δΣa|δΣa〉 . (6.75)

The corresponding g-factor contribution is:

∆gLAL,e = −gD〈δΣa|δΣa〉. (6.76)

This contribution can be computed both with the position- and momentum-space repre-
sentations of |δΣa〉. Diagram (c) can now also be computed in a straightforward manner.
Rewriting formula (6.67) using equation (6.70), we find

∆ELAL,c,R = 〈δΣa|γ0e /Am|δΣa〉 . (6.77)

This is similar to the formula for the computation of the Dirac value gD (see equation
(3.53)), with the bound-electron wave function replaced by |δΣa〉.
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The LAL, c contribution can also be computed in momentum space using the momen-
tum space representation of the magnetic potential [57]:

∆ELAL,c =

∫
d3p1

(2π)3

∫
d3p2

(2π)3
δΣa(p1)(−e)γA(p1 − p2)δΣa(p2) (6.78)

The evaluation of this g-factor contribution can be carried out along the lines of the
discussion of the zero-potential vertex contributions in Chapter 7 (see also Ref. [57]),
replacing the two-loop vertex functions Γµij in these contributions by the “zero loop”
vertex function Γµ0 loop(p1, p2) = γµ. The final formula for the g-factor contribution is:

∆gLAL,c = − m

6π3

∫
dpp2

(
2gΣfΣ

p
+ gΣf

′
Σ − fΣg

′
Σ

)
. (6.79)

Here, ()′ = d()
dp . Making the replacement gΣ → g, fΣ → f , we obtain a formula for the

Dirac value gD. We made this replacement in our code in order to assess the accuracy
of our momentum integration procedure.

The remaining diagrams can be rewritten as a one-loop SE or vertex diagram, sand-
wiched by either the bound-electron wave function or |δa〉 on one side and the self-energy
perturbed wave function |δΣa〉 on the other. The one-loop operator has to be expanded
into zero-, one- (if applicable), and many-potential terms. The energy shift that corre-
sponds to diagram (a) can be rewritten as

∆ELAL,a,R = 2〈δΣa|ΣR|δa〉 . (6.80)

The formula contains the one-loop SE function. It is expanded into zero-, one- and
many-potential terms, as discussed in detail in the literature (e.g. [72]). Formulas for
the zero-, one- and many-potential contributions to the one-loop Lamb shift are given
in Ref. [72]. Corresponding formulas for the LAL contributions to the g-factor can be
obtained from the Lamb shift formulas by replacing the bound-electron wave function
by |δa〉 and |δΣa〉 in a straightforward way.

The diagram (d) contains the energy derivative of the SE operator:

∆ELAL,d,R = 2∆Emag〈a|
∂ΣR

∂E

∣∣∣∣
Ea

|δΣa〉 . (6.81)

This operator has to be also expanded into zero- and many-potential terms, as discussed
in Ref. [57]. The formula above is a straightforward generalization of the corresponding
contribution to the one-loop g-factor. It must be mentioned that the many-potential
contribution cannot be computed directly since the derivative of the SE operator contains
reference-state IR divergences.

Finally, diagram (b) is the generalization of the one-loop vertex diagram, with one
of the bound-electron wave functions replaced by |δΣa〉. It has to be expanded into
zero- and many-potential terms. The zero-potential contribution can be computed by
inserting the explicit expression for the magnetic potential in momentum space [57],

A(p1 − p2) = − i
2

(2π)3
(
B ×∇p2

δ3(p1 − p2)
)
, (6.82)
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into equation (6.66). After integrating by parts, we obtain two terms with the derivative
acting on the vertex function and the bound-electron wave function, respectively [57].

∆g
(0)
LAL,b = 2im

∫
d3p

(2π)3
δΣa(p1)Ξ(p)a(p)− }g(0)

LAL,b1 (6.83)

− 2im

∫
d3p

(2π)3
δΣa(p1) (Γ(p, p)×∇p)z a(p) }g(0)

LAL,b2

Here, Ξ(p) =
(
∇p2
× ΓR(p, p2)

∣∣
p2=p

)
z

[57]. The evaluation of Ξ(p) is discussed in detail

in Ref. [57]. The result, as given in Ref. [57], is:

Ξ(p) =
αA(ρ)

2πm2

(
2(p× γ)z + (γ × γ)z/p

)
, (6.84)

A(ρ) =
1

1− ρ

(
1 +

log(ρ)

1− ρ

)
. (6.85)

The subsequent integration of angular variables can be performed using equations (25),
(26), (34) and (35) from Ref. [57]. It should be noted that the final formula for the gver,1

contribution cannot be obtained by a straightforward replacement of g → gSE , f → fSE
in equation (27) in Ref. [57]. This formula is obtained after angular integration, using
the fact that the angular integral over the (p× γ)3 term vanishes if it is sandwiched by
identical wave functions. Therefore, the corresponding angular integral does not vanish
in the LAL case.

The formula for the many-potential term can be obtained by a straightforward gen-
eralization of the formula for the one-loop g-factor diagram [57]. It should be noted
that this term also contains reference-state IR divergences. However, it can be shown
that the IR divergences in the many-potential terms of diagrams (b) and (d) cancel each
other, similarly to the case of the one-loop g-factor. It is therefore possible to compute
the sum of the many-potential terms of diagrams (c) and (e) directly [57]. Alternatively,
one can explicitly subtract the reference state contribution to both diagrams to obtain
“IR-regularized” contributions of both terms separately. Such a subtraction procedure
was performed in the computation of the two-loop SE contribution to the Lamb shift
[63].

85



7 Evaluation of the F term

The F term, as mentioned in the previous Chapter, consists of contributions from O and
N irreducible and reducible diagrams, as well as such reducible LAL diagrams which
can be split into two one-loop diagrams. The reducible LAL diagrams can be computed
using methods for one-loop diagrams. The O and N contributions are either zero- or
one-potential diagrams. We begin this Chapter by describing the “LAL, red” terms
which we included in the F term, and methods to evaluate them. Then, we analyze the
zero-potential contributions to the two-loop SE functions. We present our calculation of
the zero-potential O, SE function in great detail and then describe our evaluation of the
irreducible zero-and one-potential F terms which are straightforward generalizations of
two-loop Lamb shift diagrams. After this, we turn to the zero-potential reducible and
vertex diagrams. For some of the vertex contributions, we will describe an alternative
calculation method which we used as a consistency check. We conclude this Chapter by
presenting our numerical results for the F term.

7.1 LAL, reducible contributions

We included contributions from those “LAL, red” diagrams into the F term which contain
UV divergent one-loop functions in both factors. These are the “LAL, red” diagrams
a, b, c, d, and f in Fig. 6.5. In the following, we briefly outline the methods used to
evaluate these contributions.

Diagram a

The energy shift corresponding to this diagram is

∆ELAL,red,a,R =2〈a|γ0 ∂ΣR

∂E

∣∣∣∣
E=Ea

|δa〉〈a|γ0ΣR|a〉 (7.1)

=2

(
〈a|γ0 ∂Σ(0)

∂E

∣∣∣∣∣
E=Ea

|δa〉+ 〈a|γ0 ∂Σ(1+)

∂E

∣∣∣∣∣
E=Ea

|δa〉

)
×
(

∆E
(0)
SE + ∆E

(1)
SE + ∆E

(2+)
SE

)
,

where the ∆E
(n)
SE = 〈a|γ0Σ

(n)
R |a〉 correspond to the one-loop SE corrections to the Lamb

shift with n intermediate-state interactions with the nuclear Coulomb potential [63]. We
included the zero-potential contribution of the first factor as well as the zero-, one- and
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many-potential contributions of the second factor into the F term:

∆ELAL,red,a,F = 2〈a|γ0 ∂Σ(0)

∂E

∣∣∣∣∣
E=Ea

|δa〉
(

∆E
(0)
SE + ∆E

(1)
SE + ∆E

(2+)
SE

)
. (7.2)

The remainder, ∆ELAL,red,a,R−∆ELAL,red,a,F, will be included in the M term. We tested
our results for these terms by replacing |δa〉 with |a〉 in the first factor. By doing so, we
obtain 〈a|γ0 ∂Σ

∂E

∣∣
E=Ea

|a〉, a quantity which appears both in the one-loop correction to
the g-factor [57] and in the two-loop correction to the Lamb shift [63].

We needed to compute the one-loop SE correction to the Lamb shift. We compared
our numerical results with the Zα expansion formula with terms up to order (Zα)6 [110].
Our numerical results for low Z are in good agreement with the Zα-expansion results,
except for Z = 1. For Z = 1, we used the Zα expansion result for the computation of
the reducible F term. For some Z, we used the very precise numerical results for the
one-loop SE diagram from Ref. [131].

Diagram b

The corresponding energy shift is given by

∆ELAL,red,b,R = 2〈a|γ0ΣR|δDa〉〈a|γ0ΣR|a〉 . (7.3)

Here, the perturbed wave function is |δDa〉 = −
∑

n,n 6=a
|n〉〈n|γ0e /Am|a〉

(Ea−En)2 . We derived an

analytic expression for |δDa〉 using the method of generalized virial relations [128]. The
resulting formula was tested by computing scalar products of |δDa〉 with the ground
state and several excited states |m〉 numerically:

〈a|δDa〉 = 0 ,

〈m|δDa〉 = −〈m|γ
0e /Am|a〉

(Ea − Em)2
. (7.4)

Our numerical results for the left-hand side and the right-hand side of the above equa-
tions were in excellent agreement.

We included the zero- and one-potential contributions of the first factor of Eq. (7.3),
and, as with diagram a, the zero-, one- and many-potential contributions of the second
factor in the F term:

∆ELAL,red,b,F = 2〈a|γ0
(

Σ
(0)
R + Σ

(1)
R

)
|δDa〉

(
∆E

(0)
SE + ∆E

(1)
SE + ∆E

(2+)
SE

)
. (7.5)

The remainder, ∆ELAL,red,b,R −∆ELAL,red,b,F, will be included in the M term.
One can also compute the “LAL,red,b” contribution in a different way. Inserting the

explicit expression of |δDa〉 into equation (7.3), we find

∆ELAL,red,b,F =− 2〈a|γ0
(

Σ
(0)
R + Σ

(1)
R

)∑
n

|n〉〈n|γ0e /Am|a〉
(Ea − En)2(

∆E
(0)
SE + ∆E

(1)
SE + ∆E

(2+)
SE

)
. (7.6)
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Rewriting this expression, using identity (6.74), we find

∆ELAL,red,b,R =− 2〈a|γ0
(

Σ
(0)
R + Σ

(1)
R

)∑
n1

|n1〉〈n1|
Ea − En1

∑
n2

|n2〉〈n2|γ0e /Am|a〉
Ea − En2

×
(

∆E
(0)
SE + ∆E

(1)
SE + ∆E

(2+)
SE

)
. (7.7)

In this expression, we can identify both |δa〉 and the zero- and one-potential contributions
to |δΣa〉, the self-energy corrected wave function also useful for the computation of the
LAL diagrams:

∆ELAL,red,b,R = −2〈δΣa
(0+1)|δa〉 . (7.8)

Here, |δΣa
(n)〉 corresponds to the part of the self-energy corrected wave function due to

the n-potential contribution to the one-loop SE function.

Diagram c

The energy shift induced by this diagram is

∆ELAL,red,c = 2〈δa|γ0Σ̃|a〉〈a|γ0 ∂Σ

∂E

∣∣∣∣
E=Ea

|a〉 . (7.9)

We included the zero-potential contribution of the second factor and the zero-, one-
and many-potential contributions of the first factor in the F term. Inserting the D-
dimensional parameterization (see [63])

Σ
(i)
R,D = Cε

(
Σ

(i)
R,4 + εΣ

(i)
R,ε +O

(
ε2
))

(7.10)

for the zero- and one-potential SE functions into the expression for the energy shift, and
expanding in powers of ε up to order O

(
ε0
)
, we obtain

∆ELAL,red,c,F =− αC2
ε

2πε
〈δa|γ0

(
Σ

(0)
R,4 + Σ

(1)
R,4

)
|a〉+ 2B(1)〈δa|γ0Σ(2+)|a〉 (7.11)

− αC2
ε

2π
〈δa|γ0

(
Σ

(0)
R,ε + Σ

(1)
R,ε

)
|a〉+ 2〈δa|γ0ΣR,4|a〉〈a|γ0

∂Σ
(0)
R,4

∂E

∣∣∣∣∣∣
E=Ea

|a〉 .

Here, Σ
(i)
R,4 and Σ

(i)
R,D are the renormalized SE functions, computed in 4 and D = 4− 2ε

dimensions, respectively. Note that this term contains UV divergences. The remainder,
∆ELAL,red,c − ∆ELAL,red,c,F, is UV finite and will be included in the M term. The
UV-finite contribution to the F term is

∆ELAL,red,c,F,R = −αC
2
ε

2π
〈δa|γ0

(
Σ

(0)
R,ε + Σ

(1)
R,ε

)
|a〉+ 2〈δa|γ0ΣR,4|a〉〈a|γ0

∂Σ
(0)
R,4

∂E

∣∣∣∣∣∣
E=Ea

|a〉 .

(7.12)
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We computed Σ
(0)
R,ε and Σ

(1)
R,ε according to [63]. We checked our formulas by reproducing

published results for the reducible two-loop SE correction to the Lamb shift by replacing
|δa〉 with |a〉 [63]. The factor 〈a|γ0ΣR|δa〉 corresponds to the irreducible one-loop SE
correction to the g-factor, considered in Chapter 4.

Diagrams d and f

It is convenient to directly consider the sum of the diagrams d and f . For the corre-
sponding energy shift one obtains

∆ELAL,red,df = 〈a|γ0 ∂Σ

∂E

∣∣∣∣
E=Ea

|a〉∆Evr,D , (7.13)

where ∆Evr,D = Cε
(
∆Evr,4 + ε∆Evr,ε +O

(
ε2
))

[63] is the sum of the one-loop vertex
∆Ever (see equation (4.13)) and the reducible ∆Ered (equation (4.19)) one-loop SE con-
tribution to the g-factor, ∆Evr = ∆Ever + ∆Ered (see [57]), evaluated in D space-time
dimensions. We included the zero-potential contribution of the first factor and all con-
tributions to the second factor in the F term. Keeping only these terms and performing
an expansion in powers of ε similarly to diagram c, we obtain

∆ELAL,red,df,F =− αC2
ε

4πε
∆E

(0)
vr,4 +B(1)∆E

(1+)
vr,D (7.14)

− αC2
ε

4π
∆E(0)

vr,ε + 〈a|γ0
∂Σ

(0)
R,4

∂E

∣∣∣∣∣∣
E=Ea

|a〉∆Evr,4 .

Note that also this contribution contains UV divergences. The last term consists of
contributions which are a part of the one-loop SE correction to the g-factor [57] and the
two-loop SE correction to the Lamb shift [63].

For the calculation of ∆E
(0)
vr,ε, we repeated the derivation of the zero-potential contri-

bution to ∆Evr which is carried out in Ref. [57], working in D dimensions and keeping
terms up to O (ε). We split the finite part of this contribution into two parts as follows:

∆ELAL,red,df,F,R1 =− αC2
ε

4π
∆E(0)

vr,ε + 〈a|γ0
∂Σ

(0)
R,4

∂E

∣∣∣∣∣∣
E=Ea

|a〉∆E(0)
vr,4 ; (7.15)

∆ELAL,red,df,F,R2 =〈a|γ0
∂Σ

(0)
R,4

∂E

∣∣∣∣∣∣
E=Ea

|a〉∆E(1+)
vr,4 . (7.16)

The remainder, ∆ELAL,red,df − ∆ELAL,red,df,F, is UV finite and will be included in the
M term.
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Forming the sum of equations (7.12) and (7.16), we obtain:

∆ELAL,red,c,F,R + ∆ELAL,red,df,F,R2 = (7.17)

− αC2
ε

2π
〈δa|γ0

(
Σ

(0)
R,ε + Σ

(1)
R,ε

)
|a〉+ 〈a|γ0

∂Σ
(0)
R,4

∂E

∣∣∣∣∣∣
E=Ea

|a〉
(

2〈δa|γ0ΣR,4|a〉+ ∆E
(1+)
vr,4

)
.

It contains the product of the energy derivative of the one-loop SE diagram and the
one-loop SE correction to the g-factor, minus the zero-potential contribution to the
vertex and reducible diagrams [57]. For Z ≤ 20, we obtained the second factor following
Ref. [64] in the following way.

The numbers tabulated in Ref. [64] cannot be used directly since these numbers were
computed for a value of the fine-structure constant α = 139.036−1 which does not
correspond to the current literature value for α [19]. We computed the zero-potential
contribution to the reducible and vertex diagrams for α = 139.036−1 and made sure that
we are able to match the accuracy of this contribution given in Ref. [64]. We then used
equation (9) in Ref. [64] to compute the total one-loop SE contribution to the g-factor
for the current literature value of α and subtracted our zero-potential contributions to
the vertex and reducible diagrams, computed for the present value of α.

For higher Z, we computed the irreducible and the sum of the reducible and vertex
corrections separately with our computer codes. Whenever possible, we compared the
results of our codes with literature values given in Ref. [57].

7.2 Evaluation of the zero-potential two-loop self-energy
functions

In Ref. [63], the computation of the nested loop self-energy function is described in
some detail. According to Ref. [63], the overlapping loop self-energy function can be
computed analogously. Here, we are going to present our evaluation of the overlapping
loop self-energy function.

The overlapping loop self-energy function can be parameterized as [63]:

Σ
(0)
O (p) = −4πiαµ2ε

∫
dDq

(2π)D
γρ

1

/p− /q −m
Γρ(p− q, p) 1

q2
. (7.18)

It contains the one-loop vertex Γρ(p1, p2) function as a subdiagram. We choose the
parameterization of the vertex function given in the appendix of Ref. [63], Eq. (252)
there. It can be expressed as
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Γρ(p1, p2) =
αCε
4π

m2ε

1∫
0

dx

1∫
0

dy
(2− 2ε)2

2ε
γρ
x1−ε

Dε
−

αCε
4π

m2ε

1∫
0

dx

1∫
0

dy
x−ε(/p1

−m)
(
γρ(/p2

−m)L2 + Lρ1r
)

D1+ε
−

αCε
4π

m2ε

1∫
0

dx

1∫
0

dy
x−ε

(
Lρ1l(/p2

−m) + Lρ0
)

D1+ε
, (7.19)

where L2,Lρ1l,L
ρ
1r and Lρ0 can be computed as described in Ref. [63]. We begin by

determining D for the case p1 = p−q, p2 = p, using the relevant (unnumbered) equations
in the appendix of Ref. [63]. We find:

D = −yuD′ := −yu
(
q2 − 2(1− x)

u
pq +

(1− x)

yu
p2 − m2

yu

)
, (7.20)

with u = 1 − xy. We now insert the three terms in our formula (7.19) for the vertex
function into the expression (7.18) for the two-loop self-energy function one by one.

Inserting the first term, we obtain:

Σ
(0)
O1(p) = −iαCεµ2εm2ε (2− 2ε)2

2ε

1∫
0

dx

1∫
0

dy
x1−ε

(−yu)ε

∫
dDq

(2π)D
γρ(/p− /q +m)γρ

q2 ((p− q)2 −m2)D′ε
.

(7.21)
We combine the denominators using Feynman parameters, using formula (281) in Ref. [63]
to obtain:

1

q2 ((p− q)2 −m2)D′ε
=

Γ(2 + ε)

Γ(ε)

1∫
0

dz

1∫
0

dw
zεwε−1

(l2 − z∆)2+ε
, (7.22)

with l = q − zAp, ∆ = m2
(
d11 − d12(1− ρ) + zA2(1− ρ)

)
, d11 = 1 − w + w

yu , d12 =

1−w+ (1−x)w
yu , A = 1−w+ (1−x)w

u and ρ = m2−E2
a+p2

m2 [72]. Performing the corresponding
substitution in the numerator, we obtain:

γρ(/p− /q +m)γρ = −2(1− z)(1− ε)/p+ (4− 2ε)m− 2w(z − 1− x
u

z)(1− ε)/p . (7.23)

Now we can perform the integration over the loop momentum:
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Σ
(0)
O1(p) =

α2C2
ε

16π2

(2− 2ε)2Γ(2ε)

2Γ2(1 + ε)

1∫
0

dx

1∫
0

dy

1∫
0

dz

1∫
0

dw
x1−εz−εwε−1

(yu)ε

−2(1− z)(1− ε)/p+ (4− 2ε)m− 2w(z − 1−x
u z)(1− ε)/p(

∆
m2

)2ε . (7.24)

There are two ways in which UV divergences manifest themselves in this expression: first,

in the Gamma function Γ(2ε) and second, in the integration over w:
1∫
0

dwwε−1. We deal

with these divergences following procedures described in Ref. [6, 63]. We split the inte-

grand in a way which can be schematically represented as follows:
1∫
0

dwwε−1N(w)f(w) =

1∫
0

dwwε−1N(w)[f(0) + (f(w)− f(0))]. N(w) is the numerator in Eq. (7.24) and f(w) =(
∆
m2

)−2ε
. We consider the contributions due to f(0) and f(w)− f(0) separately.

The f(0) term corresponds to

Σ
(0)
O1(p) =

α2C2
ε

16π2

(2− 2ε)2Γ(2ε)

2Γ2(1 + ε)

1∫
0

dx

1∫
0

dy

1∫
0

dz

1∫
0

dw
x1−εz−εwε−1

(yu)ε

−2(1− z)(1− ε)/p+ (4− 2ε)m− 2w(z − 1−x
u z)(1− ε)/p

Υ2ε(z)
, (7.25)

where Υ(z) = ρ + z − zρ. In this case, the denominator is independent of w, and the∫
dw integration can be performed easily:

1∫
0

dwwε−1 =
1

ε
, (7.26)

1∫
0

dwwε−1w =
1

1 + ε
, (7.27)

1∫
0

dwwε−1w2 =
1

2 + ε
. (7.28)

This can be obtained e.g. from Eq. (7.82) in Ref. [6] for the special case a ∈ {1, 2, 3}
and b = 1. The expression obtained after the

∫
dw integration is expanded in powers of

ε up to order O
(
ε0
)
. The result is
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Σ
(0)
O1a(p) =

α2C2
ε

16π2

(
3m

2ε2
− 1

2ε2
(/p−m) +

3m

ε

)
+
αC2

ε

4πε
Σ

(0)
R,4(p)+δm

(2)
O1a+Σ

(0)
O1aR(p). (7.29)

The mass counterterm contribution was found to be δm
(2)
O1a = 11m. We could perform

all Feynman parameter integrations in Σ
(0)
O1aR(p) analytically using Mathematica.

For the computation of the f(w) − f(0) contribution, we introduce an additional
Feynman parameter according to equation (284) in Ref. [63] as follows:

1(
∆
m2

)2ε − 1

Υ2ε(z)
= −

1∫
0

dt
2ε
(

∆
m2 −Υ(z)

)((
∆
m2 −Υ(z)

)
t+ Υ(z)

)1+2ε . (7.30)

By definition, ∆
m2−Υ(z) is proportional to w. We therefore see that, due to the additional

factors 2ε and w in the numerator, the contribution of this expression to Σ
(0)
O1(p) is UV

finite. We can therefore compute this contribution for the case ε = 0. We obtain the
following result:

Σ
(0)
O1b(p) = −α

2C2
ε

16π2
2

1∫
0

dx

1∫
0

dy

1∫
0

dz

1∫
0

dw

1∫
0

dt
x

w

−2(1− zA)/p+ 4m(
∆
m2 −Υ(z)

)
t+ Υ(z)

(
∆

m2
−Υ(z)

)
.

(7.31)

The
∫

dt integration can be performed easily. The remaining Feynman parameter integrations
were carried out numerically. The contribution to the mass counterterm was determined
by numerical integration:

δm
(2)
O1b =

α2C2
ε

16π2
(−10.526958...m). (7.32)

In order to check the validity of our formulas, we also computed Σ
(0)
O1(p) using an

alternative parametrization for the one-loop vertex function, Eq. (253) in Ref. [63].
According to this equation,

Γµ1 (p1, p2) =
αCεm

2ε

4π

(2− 2ε)2

2ε(2− ε)

1∫
0

dy
γρ

Dε(x = 1)
+

1∫
0

dx

1∫
0

dy
x2−ε

D1+ε

(2− 2ε)2

2(2− ε)
b2γµ

 ,

(7.33)

where b = yp1 + (1− y)p2. Our numerical results for the mass counterterm and g-factor

contributions containing Σ
(0)
O1(p) obtained by both methods are in good agreement with

each other.
We now insert the second term of Γµ(p1, p2) into the expression for Σ

(0)
O (p). Note that

the factor (/p1
− m) = (/p − /q − m) in this expression cancels the fermion propagator
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1
/p−/q−m in the expression for Σ

(0)
O (p), allowing a significant simplification of the γ matrix

algebra in this term. We obtain:

Σ
(0)
O2(p) = −iα2Cεµ

2εm2ε

1∫
0

dx

1∫
0

dy
−x−ε

(−yu)1+ε

∫
dDq

(2π)D
γργ

ρ(/p−m)L2 + γρLρ1r
q2D′1+ε

. (7.34)

In this case, we need only one additional Feynman parameter to combine denominators:

1

q2D′1+ε
=

Γ(2 + ε)

Γ(1 + ε)

1∫
0

dz
zε

(l2 − z∆2)2+ε
. (7.35)

The shifted loop momentum in this case is l = q − z 1−x
u p, and

∆2 = m2
(

1
yu −

1−x
yu (1− ρ) + z (1−x)2

u2 (1− ρ)
)

. Performing this substitution in the nu-

merator, one obtains

γργ
ρ(/p−m)L2 + γρLρ1r = N0 +N1y, (7.36)

with N0 = 4(−1−ε+ε2)(−1+x)/p+4(−2+ε)εm and N1 = −4(−1+ε)(−1+x)xy(−1+z)/p.
Now we perform the integration over the loop momentum to obtain:

Σ
(0)
O2(p) =

α2C2
ε

16π2

Γ(2ε)

Γ2(1 + ε)

1∫
0

dx

1∫
0

dy

1∫
0

dz
x−εz−ε

y1−εu1−3ε

N0 +N1y

∆
′2ε
2

. (7.37)

Here, ∆
′
2 = u − (1 − x)u(1 − ρ) + zy(1 − x)2(1 − ρ). This expression contains UV

divergences due to Γ(2ε) and
∫

dy 1
y1−ε . We deal with the UV divergences, schematically,

as follows: f(y)g(y) = f(0)g(0) + (f(y) − f(0))g(0) + f(y)(g(y) − g(0)). f(y) = 1
u1−3ε

and g(y) = 1

∆
′2ε
2

. The f(0)g(0) term leads to:

Σ
(0)
O2a(p) =

α2C2
ε

16π2

Γ(2ε)

Γ2(1 + ε)

1∫
0

dx

1∫
0

dy

1∫
0

dz
x−εz−ε

y1−ε
N0 +N1y

Υ2ε(x)
. (7.38)

Now, the
∫

dy integration can be performed analytically using equations (7.26) to (7.28).
The result is expanded in powers of ε:

Σ
(0)
O2a(p) =

α2C2
ε

16π2

(
m

ε2
+

1

ε2
(/p−m)− m

3ε
+

11

3ε
(/p−m)

)
+

αC2
ε

16π2ε

1∫
0

dx
(
−4/p(1− x) log Υ(x)

)
+ δm

(2)
O2a + Σ

(0)
O2aR(p), (7.39)
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where

δm
(2)
O2a =

α2C2
ε

16π2

m

12
(145 + 2π2). (7.40)

The Feynman parameter integrations in Σ
(0)
O2aR(p) could be performed analytically using

Mathematica. For the computation of the f(y)− f(0) term, we introduce an additional
Feynman parameter using equation (284) in Ref. [63]:

1

u1−3ε
− 1

11−3ε
=

1∫
0

dt
(1− 3ε)xy

(1− xyt)2−3ε
. (7.41)

With this, we obtain the following expression:

Σ
(0)
O2b(p) =

α2C2
ε

16π2

(1− 3ε)Γ(2ε)

Γ2(1 + ε)

1∫
0

dx

1∫
0

dy

1∫
0

dz

1∫
0

dt
x1−εyz−ε

y1−ε(1− xyr)2−3ε

N0 +N1y

Υ2ε(x)
.

(7.42)

Due to the additional factor of y in the numerator, there are no UV divergences due

to the
∫

dy integration in Σ
(0)
O2b(p). Therefore, we can expand this expression in powers

of ε:

Σ
(0)
O2b(p) =

α2C2
ε

16π2

(
7m

12ε
+

7

12ε
(/p−m)

)
+ δm

(2)
O2b + Σ

(0)
O2bR(p), (7.43)

with

δm
(2)
O2b =

α2C2
ε

16π2

−m
24

(−247 + 36π2). (7.44)

The Feynman parameter integrations in Σ
(0)
O2b(p) were performed again analytically by

the help of Mathematica. For the computation of the g(y)− g(0) term, we introduce a
Feynman parameter as follows:

1

∆
′2ε
2

− 1

Υ2ε(x)
= −

1∫
0

dt
2ε(∆

′
2 −Υ(x))

((∆
′
2 −Υ(x))t+ Υ(x))1+2ε

. (7.45)

Using this, we obtain the expression

Σ
(0)
O2c(p) =− α2C2

ε

16π2

2εΓ(2ε)

Γ2(1 + ε)

1∫
0

dx

1∫
0

dy

1∫
0

dz

1∫
0

dt
x−εz−ε(N0 +N1y)

y1−εu1−3ε

(∆
′
2 −Υ(x))

((∆
′
2 −Υ(x))t+ Υ(x))1+2ε

. (7.46)
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∆
′
2 − Υ(x) contains, by definition, a factor of y. This factor and the additional factor

of 2ε make sure that Σ
(0)
O2c(p) is free of UV divergences. We can therefore evaluate this

expression for ε = 0:

Σ
(0)
O2c(p) = δm

(2)
O2c + Σ

(0)
O2cR(p), (7.47)

with

δm
(2)
O2c =

α2C2
ε

16π2
m

(
15

2
+ π2

(
−5

2
+ log(16)

)
− 10ζ(3)

)
. (7.48)

The Feynman parameters in Σ
(0)
O2cR(p) were integrated numerically.

In order to check the validity of our results, we also computed Σ
(0)
O2(p) in a different

way. One can rewrite equation (7.37) as follows:

Σ
(0)
O2(p) =

α2C2
ε

16π2

Γ(2ε)

Γ2(1 + ε)

1∫
0

dx

1∫
0

dy

1∫
0

dz
x−εz−ε(N0 +N1y)

y1−εu1−ε∆2ε
22

. (7.49)

Here, ∆22 = Υ(x) + yz (1−x)2

u (1− ρ). In order to deal with UV divergences, we split this
expression into two terms now instead of three terms:

Σ
(0)
O2(p) =

α2C2
ε

16π2

Γ(2ε)

Γ2(1 + ε)

1∫
0

dx

1∫
0

dy

1∫
0

dz
x−εz−ε(N0 +N1y)

y1−ε(
1

Υ2ε(x)
+

(
1

u1−ε∆2ε
22

− 1

Υ2ε(x)

))
. (7.50)

The first term is identical to the previously computed Σ
(0)
O2a(p). For the computation of

the second term, we introduce an additional Feynman parameter according to:

1(
u∆

2ε
1−ε
22

)1−ε −
1(

Υ
2ε

1−ε
)1−ε = −

1∫
0

dt

(1− ε)
(
u∆

2ε
1−ε
22 −Υ

2ε
1−ε

)
((

u∆
2ε

1−ε
22 −Υ

2ε
1−ε

)
t+ Υ

2ε
1−ε

) . (7.51)

After this replacement, we obtain:

Σ
(0)′

O2b(p) =− α2C2
ε

16π2

Γ(2ε)(1− ε)
Γ2(1 + ε)

1∫
0

dx

1∫
0

dy

1∫
0

dz

1∫
0

dt
x−εz−ε(N0 +N1y)

y1−ε(
u∆

2ε
1−ε
22 −Υ

2ε
1−ε

)
((

u∆
2ε

1−ε
22 −Υ

2ε
1−ε

)
t+ Υ

2ε
1−ε

) . (7.52)
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We can expand this in powers of ε:

Σ
(0)′

O2b(p) =
α2C2

ε

16π2

(
7m

12ε
+

7

12ε
(/p−m)

)
+ δm

(2)′

O2b + Σ
(0)′

O2bR(p), (7.53)

with

δm
(2)′

O2b =
α2C2

ε

16π2

(m
24

(427 + 96π2(−1 + log 2)− 240ζ(3))
)
. (7.54)

The divergent terms and δm
(2)′

O2b are identical to the sum of the corresponding contribu-

tions of Σ
(0)
O2b(p) and Σ

(0)
O2c(p) from the previous calculation. Our numerical results for

both methods were in good agreement with each other.
Inserting the third term of Γµ(p1, p2) into equation (7.18), we obtain:

Σ
(0)
O3(p) = −iα2Cεµ

2εm2ε

1∫
0

dx

1∫
0

dy
−x−ε

(−yu)1+ε

∫
dDq

(2π)D
γρ(/p− /q +m)(Lρ1l(/p−m) + Lρ0)

q2 ((p− q)2 −m2)D′1+ε
.

(7.55)

Combining the denominator terms works similarly as for the first term:

1

q2 ((p− q)2 −m2)D′1+ε
=

Γ(3 + ε)

Γ(1 + ε)

1∫
0

dz

1∫
0

dw
z1+εwε

(l2 − z∆)2+ε
. (7.56)

Here, l and ∆ are the same as in the case of the first term. Performing this substitution
in the numerator requires some tedious γ matrix algebra. The result can be represented
as γρ(/p − /q + m)(Lρ1l(/p −m) + Lρ0) = N0 + N2l

2. Performing the integration over the
loop momentum, we obtain:

Σ
(0)
O3(p) =

α2C2
ε

16π2

m4ε

Γ2(1 + ε)

1∫
0

dx

1∫
0

dy

1∫
0

dz

1∫
0

dw
x−εz1+εwε

(yu)1+ε

(
DΓ(2ε)N2

2z2ε∆2ε
− Γ(1 + 2ε)N0

(Z∆)1+2ε

)
.

(7.57)

The first term can be rewritten as

Σ
(0)
O3(p) =

α2C2
ε

16π2

DΓ(2ε)

2Γ2(1 + ε)

1∫
0

dx

1∫
0

dy

1∫
0

dz

1∫
0

dw
x−εz1−εwε

y1−εu1−3ε

N2

∆2ε
3

, (7.58)

with ∆3 = yu2 ∆
m2 . It contains UV divergences to Γ(2ε) and

∫
dy 1

y1−ε . We employ a sim-

ilar procedure to the one used in the computation of Σ
(0)
O2(p), with f(y) = 1

u1−3ε , g(y) =
1

∆2ε
3

. The f(0)g(0) term corresponds to:
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Σ
(0)
O3a(p) =

α2C2
ε

16π2

DΓ(2ε)

2Γ2(1 + ε)

1∫
0

dx

1∫
0

dy

1∫
0

dz

1∫
0

dw
x−εz1−εw−εN2

y1−εΥ2ε(x)
. (7.59)

The
∫

dy integration can be performed analytically. Then we expand the result in powers
of ε:

Σ
(0)
O3a(p) =

α2C2
ε

16π2

(
m

2ε2
− 3

2ε2
(/p−m)− 13m

6ε
− 7

2ε
(/p−m)

)
+

αC2
ε

16π2ε

1∫
0

dx
(
−4m log Υ + 6/p(1− x) log Υ

)
+ δm

(2)
O3a + Σ

(0)
O3aR(p). (7.60)

Here,

δm
(2)
O3a =

α2C2
ε

16π2

m

24
(2π2 − 145). (7.61)

Combining the two integral expressions from Σ
(0)
O2a(p) and Σ

(0)
O3a(p), we obtain [63]

αC2
ε

16π2ε

1∫
0

dx
(
−4/p(1− x) log Υ

)
+

αC2
ε

16π2ε

1∫
0

dx
(
−4m log Υ + 6/p(1− x) log Υ

)
=
αC2

ε

4πε
Σ

(0)
R,4(p) +

α2C2
ε

16π2

(
5m

2ε
+

1

2ε
(/p−m)

)
. (7.62)

The Feynman parameter integrations in Σ
(0)
O3a(p) can be performed analytically using

Mathematica. For the computation of the f(y) − f(0) term, we use Eq. (7.41), and
obtain the following:

Σ
(0)
O3b(p) =

α2C2
ε

16π2

DΓ(2ε)(1− 3ε)

2Γ2(1 + ε)

1∫
0

dx

1∫
0

dy

1∫
0

dz

1∫
0

dw

1∫
0

dt
x1−εz1−εw−ε

y−ε(1− xyt)2−3ε

N2

Υ2ε(x)
.

(7.63)

We expand this expression in powers of ε:

Σ
(0)
O3b(p) =

α2C2
ε

16π2

(
−13m

12ε
− 3

4ε
(/p−m)

)
+ δm

(2)
O3b + Σ

(0)
O3bR(p). (7.64)

Here,

δm
(2)
O3b =

α2C2
ε

16π2

m

12
(17π2 − 94). (7.65)

The Feynman parameter integrations in Σ
(0)
O3b(p) were again performed analytically using

Mathematica. We compute the g(y)− g(0) term by the help of an additional Feynman
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parameter, similar to Eq. (7.30). As in the case of the contributions Σ
(0)
O1b and Σ

(0)
O2c, this

is finite and we can compute Σ
(0)
O3c(p) for ε = 0:

Σ
(0)
O3c(p) = δm

(2)
O3c + Σ

(0)
O3cR(p). (7.66)

δm
(2)
O3c = α2C2

ε
16π2 m · 0.869... was determined numerically. Just as in the case of Σ

(0)
O2(p),

we also computed Σ
(0)
O3(p) using a second method. We split the first term in Σ

(0)
O3(p) as

follows:

Σ
′(0)
O3b(p) =

α2C2
ε

16π2

DΓ(2ε)

2Γ2(1 + ε)

1∫
0

dx

1∫
0

dy

1∫
0

dz

1∫
0

dw
x−εz1−εwεN2

y1−ε

(
1

b1−ε
+

(
1

a1−ε −
1

b1−ε

))
,

(7.67)

with a = u
(

∆
m2

) 2ε
1−ε , b = (wΥ(x))

2ε
1−ε . The first term in this expression is identical to

Σ
(0)
O3a(p). For the computation of the second term, we introduce the usual additional

Feynman parameter as in the case of Σ
(0)
O3c(p):

Σ
′(0)
O3b(p) = −α

2C2
ε

16π2

DΓ(2ε)(1− ε)
2Γ2(1 + ε)

1∫
0

dx

1∫
0

dy

1∫
0

dz

1∫
0

dw

1∫
0

dt
x−εz1−εwεN2

y1−ε
a− b

((a− b)t+ b)2−ε .

(7.68)

Expanding this in powers of ε, we obtain:

Σ
(0)′

O3b(p) =
α2C2

ε

16π2

(
−13m

12ε
− 3

4ε
(/p−m)

)
+ δm

(2)′

O3b + Σ
(0)′

O3bR(p). (7.69)

δm
(2)′

O3b = α2C2
ε

16π2 m · 7.0177... was determined numerically and is in good agreement with

the sum δm
(2)
O3b + δm

(2)
O3c. Also, our numerical results for g-factor contributions obtained

with Σ
(0)′

O3b(p) and Σ
(0)
O3b(p) + Σ

(0)
O3c(p) were in good agreement with each other.

Finally, we have to compute the term proportional to N0 in Σ
(0)
O3(p). This contribution

is finite and can be evaluated in four dimensions:

Σ
(0)
O3d(p) = δm

(2)
O3d + Σ

(0)
O3dR(p). (7.70)

δm
(2)
O3d = α2C2

ε
16π2 m(−10.732471...) was determined numerically. Adding all divergent

terms, we obtain:

Σ
(0)
O (p) =

α2C2
ε

16π2

((
3

ε2
+

5

2ε

)
m+

(
− 1

ε2
+

1

2ε

)
(/p−m)

)
+

2
αC2

ε

4πε
Σ

(0)
R,4(p) + UV finite terms (7.71)
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which is in agreement with the result in Ref. [63]. The sum of all finite mass counterterm
contributions is

δm
(2)
O,fin =

α2C2
ε

16π2
m(−1.0756...) (7.72)

which is in good agreement with the exact value known analytically [63, 256]:

δm
(2)
O,fin =

α2C2
ε

16π2
m

(
12ζ(3) + 24(1− 2 log 2)ζ(2)− 1

4

)
. (7.73)

Having passed this consistency check, we used the analytically determined value for

δm
(2)
O,fin in our codes which were used to compute g-factor contributions due to Σ

(0)
O (p).

7.3 N and O irreducible, zero-potential contributions

The zero-potential contribution to the energy shift reads

∆E
(0)
i, irred = 2〈δa|Σ(0)

i |a〉 , (7.74)

where i ∈ {N, O}. The unrenormalized SE functions can be represented as (see Ref.
[63])

Σ
(0)
i (p) = δm

(2)
i +B

(2)
i (/p−m) + ai

αC2
ε

4πε
Σ

(0)
R,4(p) + Σ

(0)
R (p) . (7.75)

Here, aN = −1 and aO = 2. B
(2)
i are divergent renormalization constants. The first

three terms are UV divergent. The first term is canceled by mass renormalization. The
energy shift corresponding to the sum of the second and third terms of the N and O
contributions is∑

i

∆E
(0)
i,irred,div = 2B(2)〈δa|γ0(/p−m)|a〉+

αC2
ε

2πε
〈δa|γ0Σ

(0)
R,4|a〉 . (7.76)

The second term of this equation is cancelled by a divergent contribution to the LAL,
reducible diagrams (see Eq. (7.11)).

The renormalized part of the SE functions can be parameterized as [63]

Σ
(0)
i,R(p) =

α2

16π2
(ai(ρ) + /pbi(ρ)) . (7.77)

The corresponding g-factor contribution is computed by inserting the renormalized SE
functions into Eq. (7.74). The integration over angular variables is identical to the one-
loop case [72]. The final formula for the g-factor contribution can be obtained from the
corresponding one-loop formula (4.33) by replacing a −→ ai, b −→ bi and multiplying
with an additional factor of α

4π . This means that, apart from Feynman parameter inte-
grations, only a one-dimensional momentum integration is left to be done numerically.
In the nested-loop case, all Feynman parameter integrations could be performed ana-
lytically using the computer algebra software Mathematica [257]. In the formulas for
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the overlapping-loop diagram, there are up to four Feynman parameters. We performed
all four Feynman parameter integrations numerically for the overlapping-loop diagram
using the extended Gauss-Legendre quadrature rules [258].

We tested our numerical codes by replacing the magnetic wave function with the
bound-electron wave function which corresponds to the computation of Lamb shift di-
agrams. We found a good agreement with previously published contributions to the
two-loop Lamb shift [63].

7.4 N and O irreducible, one-potential term

The computation of the two-loop one-potential SE functions is discussed in some detail
in Ref. [63]. We shall only quote some results here. The one-potential SE function can
be parameterized as

Σ
(1)
ij (p1, p2) = γ0L

(2)
i,j + ai,j

αC2
ε

4πε
Γ

(0)0

R,4 (p1, p2) + Σ
(1)
i,j,R(p1, p2) . (7.78)

The energy shift corresponding to the sum of all divergent N and O contributions is∑
i,j

∆E
(1)
ij,irred,div = 2L(2)〈δa|γ0e /Ae|a〉+

αC2
ε

2πε
〈δa|γ0Σ

(1)
R,4|a〉. (7.79)

Using L(2) = −B(2) and the Dirac equation (/p − e /Ae −m)|a〉 = 0 [63], we see that the
first term is cancelled by the irreducible zero-potential contribution. The second term
is cancelled by a divergent contribution to the LAL, reducible diagrams [see equation
(7.11)].

We evaluated the one-potential contribution by using a Fortran Code provided by
V. A. Yerokhin which was used for the computation of the corresponding Lamb shift
contribution and modifying this code for the purpose of calculating g-factor contribu-
tions.

7.5 Zero-potential, N and O reducible contribution

Instead of computing the “side” and “ladder” contributions separately, we use the fact
that the sum of the g-factor contributions of “side” and “ladder” corresponds to

∆E
(0)
i,red = ∆Emag〈a|γ0 ∂Σ

(0)
i

∂E

∣∣∣∣∣
E=Ea

|a〉 . (7.80)

Inserting the derivatives of the unrenormalized SE functions (7.75) into equation (7.80),
we obtain the following g-factor contributions:

∆E
(0)
i,red = B

(2)
i ∆Emag+ai

αC2
ε

4πε
∆Emag〈a|γ0

∂Σ
(0)
R,4

∂E

∣∣∣∣∣∣
E=Ea

|a〉+∆Emag〈a|γ0
∂Σ

(0)
i,R

∂E

∣∣∣∣∣∣
E=Ea

|a〉 .

(7.81)
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The first two terms are UV divergent. Having calculated the renormalized SE functions,
it is straightforward to determine the required derivative of the SE functions:

∂Σ
(0)
i,R

∂E

∣∣∣∣∣∣
E=Ea

=
α2

16π2

(
−2Ea
m2

∂ai
∂ρ

+ γ0bi(ρ)− 2Ea
m2

∂bi(ρ)

∂ρ

)
. (7.82)

Inserting this expression into Eq. (7.80), the integration over angular variables is identical
to the one-loop case (see Ref. [57]). The final expression for the finite part of the reducible
contribution reads

∆E
(0)
i,red,R =∆Emag

α2

128π5

∫
dpp2

(
− 2Ea
m2

∂ai
∂ρ

(
g2 − f2

)
+ bi(ρ)

(
g2 + f2

)
− 2Ea
m2

∂bi
∂ρ

[
Ea
(
g2 + f2

)
+ 2pfg

])
. (7.83)

This formula can also be obtained from the reducible one-loop SE correction to the g-
factor [57], with the replacement a −→ ai, b −→ bi and multiplication with an additional
factor of α

4π .

7.6 Zero-potential, vertex contribution

For the vertex diagrams, we found it more convenient to give formulas for the g-factor
contribution instead of the energy shift. There are four zero-potential N and O diagrams.
The corresponding g-factor contributions read

g
(0)
ij,ver = −4m

eB
〈a|γ0Γ

(0)
ij

µ
eAmµ|a〉, (7.84)

where i ∈ {N, 0}, j ∈ {side, ladder}, and Γ
(0)
ij

µ
refers to the zero-potential contribution

to the vertex functions only. Following the discussion of the one-loop vertex diagram in
Ref. [57], we insert the momentum-space representation of the magnetic potential

A(p1 − p2) = − i
2

(2π)3
(
B ×∇p2

δ3(p1 − p2)
)

(7.85)

into Eq. (7.84) and obtain

g
(0)
ij,ver = −2im

∫
d3p1

(2π)3

∫
d3p2a(p1)

(
∇p2δ(p1 − p2)× Γ

(0)
i,j (p1, p2)

)
z
a(p2) . (7.86)

In order to deal with the derivative of the δ function, we integrate expression (7.86) by
parts [57]. After that, we can integrate over one momentum variable to obtain [57]

g
(0)
ij,ver =2im

∫
d3p

(2π)3
a(p)Ξi,j(p)a(p)− (7.87)

−2im

∫
d3p

(2π)3
a(p)

(
Γ

(0)
i,j (p, p)×∇p

)
z
a(p),
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where Ξi,j(p) =

(
∇p2 × Γ

(0)
i,j (p, p2)

∣∣∣
p2=p

)
z

.

Contributions with the derivative acting on the vertex function and the bound-electron
wave function will be called gver,1-type and gver,2-type contributions, respectively, fol-
lowing the nomenclature of Ref. [57]. We will discuss these two types of contributions
separately.

gver,2-type contributions

Since these contributions contain the vertex functions with equal momenta, we employ
a generalization of the one-loop Ward identity (e.g. Ref. [6, 57, 79]) which corresponds
to two-loop diagrams: ∑

j

Γ
(0)
ij

β
(p, p) = −∂βΣ

(0)
i (p) . (7.88)

Using this identity, we can compute the sum of “side” and “ladder” contributions directly.
Inserting the unrenormalized expression of the SE functions into equation (7.87), we
obtain

g
(0)
ver,i,2 = −B(2)

i gD + ai
αC2

ε

4πε
∆g

(0)
ver,2 − 2im

∫
d3p

(2π)3
a(p) ((∇Σi(p))×∇)z a(p) . (7.89)

The first two terms of this expression are divergent. The first term is cancelled by the N

and O reducible contribution [see equation (7.81)]. The second term contains the g
(0)
ver,2

contribution, known from the one-loop self-energy contribution to the g-factor, equation
(36) in Ref. [57]. The finite part of equation (7.89) can be determined by taking the
derivative of the SE functions:

∂µΣ
(0)
i (p) =

α2

16π2

(
2pµ

m2

∂ai(ρ)

∂ρ
− γµbi(ρ) +

2pµ

m2

∂bi(ρ)

∂ρ

)
. (7.90)

After inserting this expression into Eq. (7.89), the integration over angular variables can
be performed identically to the one-loop case [57]. After angular integration, we obtain
the following formula for the renormalized part of gver,i,2:

g
(0)
ver,i,2,R =

α2m

96π5

∫
dpp2

(
− 2

m2

∂ai(ρ)

∂ρ
f2 + bi(ρ)

(
2gf

p
+ gf ′ − fg′

)
+

2

m2

∂bi(ρ)

∂ρ
f(Ef + pg)

)
. (7.91)

Here, ()′ = d()
dp denotes the derivative with respect to momentum. This formula can

also be obtained from the one-loop vertex, 2 correction to the g-factor [57], with the
replacement a −→ ai, b −→ bi and multiplication with an additional factor of α

4π .
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gver,1-type contributions

These contributions require the computation of new loop integrals. While power counting
suggests that these contributions are finite, they can contain UV divergences due to a
UV divergent subgraph.

N, side term

This type of calculation will be illustrated using the “N, side” term as an example. The
corresponding function ΞN,side(p) reads

ΞN,side = −8πiα

∫
dDq

(2π)4
γµ

1

/p− /q −m
Σ̃(p− q) 1

/p− /q −m
(γ ×∇)z

1

/p− /q −m
γµ

1

q2
.

(7.92)
We use the following parameterization of the “N, side” vertex function [63]:

Γ
(0),ν
N,side(p1, p2) = −8πiαµ2ε

∫
dDq

(2π)4
γµ

1

/p1
− /q −m

Σ̃(p1−q)
1

/p1
− /q −m

γν
1

/p2
− /q −m

γµ
1

q2
.

(7.93)
In this case, the derivative in equation (7.87) acts only on one factor in the vertex func-
tion. Using the following equivalent parameterization of the “N, side” vertex function,

Γ
(0),ν
N,side(p1, p2) = −8πiαµ2ε

∫
dDq

(2π)4
γµ

1

/p1
− /q −m

γν
1

/p2
− /q −m

Σ̃(p2−q)
1

/p2
− /q −m

γµ
1

q2
,

(7.94)
the derivative acts on three terms. We used both parameterization of the N, side vertex
function to compute the corresponding g-factor contribution in order to check the validity
of our formulas. Both characterizations gave the same formulas for gN,side,1. We use

formulas (245) to (247) in Ref. [63] for the one-loop SE function Σ̃(0)(p − q). Using
this parameterization, Σ̃(0)(p − q) consists of three terms. Inserting the first term into
equation (7.92), we obtain

ΞN,side,1(p) =
iα2Cεµ

2ε

ε(1− 2ε)

∫
dDq

(2π)D
γµ(−2((p− q)× γ)z − (/p− /q +m)(γ × γ)z)γµ

q2[(p− q)2 −m2]
.

(7.95)
We simplified the numerator of this expression using the identity [6]

γk(/p+m) = 2pk − (/p−m)γk , (7.96)

and exploiting p × p = 0, as it was done in Ref. [57]. Combining denominators using
Feynman parameters, we can compute the momentum integral using well-known formu-
las for loop integrals (e.g. Ref. [6]). In Ref. [57], the identity γ × γ = 2iγ0γ5γ is used.
Since γ5 is a well-defined quantity only in exactly 4 dimensions, this replacement can
only be made after the ε expansion [259]. Therefore, we will not make this replacement
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and instead keep terms of the form γ × γ. Performing the ε expansion, we obtain

ΞN,side,1(p) =2
α2C2

ε

16π2m2

1∫
0

dz
N0

Υε
+ 2

α2C2
ε

16π2m2

1∫
0

dz
N0(2− log(Υ)− log(z)) +N1

Υ
.

(7.97)

Here, Υ = z + ρ − zρ, and N0 and N1 are the O
(
ε0
)

and O
(
ε1
)

contributions to the
numerator, respectively:

N0 =2(1− z)(2(p× γ)z − (γ × γ)z/p), (7.98)

N1 =4m(γ × γ)z − 2(1− z)(2(p× γ)z + /p(γ × γ)z). (7.99)

We can perform the integrations over angular variables using formulas for elementary an-
gular integrals, equations (25) and (26) in Ref. [57]. The divergent g-factor contribution
is

g
(0)
ver,N,side,1,div = −2

αC2
ε

4πε
∆g

(0)
ver,1 , (7.100)

where g
(0)
ver,1 is the contribution to the one-loop vertex correction (equation (27) in

Ref. [57]). The result for the finite part, after angular integration, reads

g
(0)
N,side,1R =

α2

16π5m

∫
dpp2(A1(ρ)I1 +A2(ρ)I2) , (7.101)

where

A1(ρ) =

1∫
0

dz
(1− z)(3− log(Υ)− log(z)

Υ
, (7.102)

A2(ρ) =

1∫
0

dz
−m
Υ

, (7.103)

I1 =g(Eag + pf)− 1

3
f(Eaf + pg) , (7.104)

I2 =g2 +
1

3
f2 . (7.105)

The contributions due to the second and third term of Σ̃(0)(p − q) are finite and can
therefore be computed in 4 dimensions in a similar way. The results are:

g
(0)
N,side,2 = − α2

4π5m

∫
dpp2AN2(ρ)I1 , (7.106)

g
(0)
N,side,3 = − α2

8π5m

∫
dpp2AN3(ρ)I1 , (7.107)
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with

AN2(ρ) =

1∫
0

dx

1∫
0

dz

1∫
0

dw
(2 + x)(1− x)(1− z)(1− w)

(1− x(1− w)− (1− x)(1− z)(1− ρ))2
, (7.108)

AN3(ρ) =

1∫
0

dx

1∫
0

dz

1∫
0

dw
(2− x)(1− z)

1− x(1− w)− (1− x)(1− z)(1− ρ)
. (7.109)

N, ladder contribution

Beginning with the “N, ladder” vertex function [63], we find that the “N, ladder” con-
tribution consists of two terms, corresponding to

ΞN,ladder(p) =− 4πiα

∫
d4q

(2π)4
γµ

1

/p− /q −m
Ω(p, q)z

1

/p− /q −m
γµ

1

q2
− (7.110)

4πiαµ2ε

∫
dDq

(2π)D
γµ

1

/p− /q −m
(Γ(p− q, p− q)×∇)z

1

/p− /q −m
γµ

1

q2
,

where

Ω(p, q) = 4πiα

∫
d4q′

(2π)4
γν

1

/p− /q − /q′ −m

(
γ × 1

/p− /q − /q′ −m
γ

)
1

/p− /q − /q′ −m
γν

1

q′2
.

(7.111)
The second term in Eq. (7.110) contains the one-loop vertex function (with equal mo-

menta) as a subdiagram. We can use the one-loop Ward identity Γ(0)β(p, p) = −∂βΣ(0)(p) [57]
to compute this contribution. For this, one has to take the derivative of equations (245)
and (247) in Ref. [63] and insert this expression into equation (7.110). Alternatively, one
can use representation (252) in Ref. [63] for the one-loop vertex function, evaluate it for
equal momenta and insert this expression into equation (7.110). Since we did not find a
way to match the representations for Γ(0)µ(p, p) and ∂µΣ(0)(p), we computed the second
term of the “N, ladder” contribution using both methods to check the validity of our
formulas. We found identical formulas using both methods. The divergent contribution
to the g-factor is

gver,N,ladder,1,div =
αC2

ε

4πε
∆g

(0)
ver,1 . (7.112)

The first term of the “N, ladder” contribution contains neither the one-loop SE nor the
one-loop vertex function as a subdiagram. Since the entire contribution is finite, we can
perform our calculation in 4 dimensions. We first computed the function Ω(p, q)z and
inserted this expression into equation (7.110). Alternatively, we computed the first term

of the “N, ladder” contribution by using Ω(p, q)z =
(
∇p2

× Γ(p− q, p2 − q)
∣∣
p2=p

)
z
.

We computed the derivative of the one-loop vertex function using equation (252) in
Ref. [63]. The numerical results for the “N, ladder” contribution computed with both
methods were in excellent agreement.
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O, side contribution

The evaluation of the O contributions can be performed in a similar way. Just as in the
nested loop case, there are two ways to express the “O, side” vertex functions [63]:

Γ
(0),µ
side,1(p1, p2) =− 4πiαµ2ε

∫
dDq

(2π)D
ΓνD(p1, p1 − q)

1

/p1
− /q −m

γµ
1

/p1
− /q −m

γν
1

q2
,

(7.113)

Γ
(0),µ
side,2(p1, p2) =− 4πiαµ2ε

∫
dDq

(2π)D
γσ

1

/p1
− /q −m

γµ
1

/p1
− /q −m

ΓσD(p2 − q, p2)
1

q2
.

(7.114)

The total “O, side” vertex function is Γ
(0),µ
side (p1, p2) = Γ

(0),µ
side,1(p1, p2) + Γ

(0),µ
side,2(p1, p2). The

O, side term is UV divergent due to the UV divergence in the one-loop vertex function.
We can use parameterization (252) from [63] for the vertex function in order to compute
this contribution.

Unlike in the nested-loop case, these two vertex functions do not lead to identical
results for the gver,1 contribution. The corresponding expressions for ΞO,side(p) are

ΞO,side 1(p) =− 4πiαµ2ε

∫
dDq

(2π)D
ΓνD(p, p− q) 1

/p− /q −m
(γ ×∇p)z

1

/p− /q −m
γν

1

q2
,

(7.115)

ΞO,side 2(p) =− 4πiαµ2ε

∫
dDq

(2π)D
γσ

1

/p− /q −m

(
γ ×∇p

1

/p− /q −m

)
z

ΓσD(p− q, p) 1

q2
,

(7.116)

− 4πiαµ2ε

∫
dDq

(2π)D
γσ

1

/p− /q −m

(
γ × 1

/p− /q −m
∇pΓσD(p− q, p)

)
z

1

q2
.

ΞO,side 1(p) and the first line of ΞO,side 2(p) give identical contributions to the g-factor.
Since the g-factor contribution of the second line of ΞO,side 2(p) was found to be non-
vanishing, the g-factor contributions of the two overlapping loop, side vertex functions
are not equal. In order to compute this contribution, we determined the derivative of the
one-loop vertex function from equation (252) in Ref. [63] and inserted this into equation
(7.116).

The total divergent “O, side” contribution to the g-factor is

gver,O,side,1,div = 2
αC2

ε

4πε
∆g

(0)
ver,1 . (7.117)

O, ladder contribution

The most difficult contribution is the “O, ladder” one. The “O, ladder” contribution is
finite and can therefore be evaluated in 4 dimensions. The most challenging aspect of
this calculation is the γ matrix algebra in the numerators. The program Mathematica
was used to facilitate such computations.

107



Formulas and results

The sum of all divergent contributions of the N and O, red and vertex diagrams is

[see equations (7.81),(7.89),(7.100), (7.112) and (7.117)] αC2
ε

4πε ∆g
(0)
ver, where ∆g

(0)
ver is the

sum of the g-factor contributions of the one-loop vertex and reducible SE diagrams (see
Ref. [57]). This divergent contribution is cancelled by a corresponding divergence of the
“LAL, red” diagrams d and f (see Eq. (7.14)).

In all cases considered, the finite part of Ξij(p) can be expressed as:

Ξij,R(p) = A0,ij(ρ)(p× γ)z +A1,ij(ρ)(γ × γ)z/p+A2,ij(ρ)(γ × γ)z +A3,ij(ρ)(p× γ)z/p,
(7.118)

where A3,ij(ρ) is non-zero only for overlapping loop diagrams. In order to compute
the renormalized g-factor contributions, the integration over angular variables can be
performed analytically using the formulas for angular integrals in Ref. [57]. We obtain
the following expression for a gver-type 1 contribution:

g
(0)
ij,ver,1 =

α2me

32π5

∫
dpp2 (A1,ij(ρ)I1 +A2,ij(ρ)I2 +A3,ij(ρ)I3) . (7.119)

Here, I3 = 1
3

(
2Eapgf + p2

(
g2 + f2

))
. I1 and I2 are the same as above [equations (7.104)

and (7.105)].
For the N contributions, all Feynman parameter integrations can be performed an-

alytically using Mathematica. The remaining momentum integration was performed
numerically. In the O case, Feynman parameter integrations were performed using the
extended Gauss-Legendre quadrature formulas from Ref. [258]. The remaining momen-
tum integration was performed using the standard Gauss-Legendre procedure [130].

7.7 Alternative computation of the vertex type 1 contributions

Instead of computing the functions Ξij(p) as new loop integrals, one can also begin
with the expressions for the zero-potential vertex functions and take the derivative with
respect to momentum. The general expression for the renormalized part of the zero-
potential two-loop vertex functions is:

Γ
(0)µ
ijR (p1, p2) =

α2

16π2

(
Aγµ + (B1p

µ
1 +B2p

µ
2 )/p1

+ (C1p
µ
1 + C2p

µ
2 )/p2

+D/p1
γµ/p2

+ (7.120)

(E1p
µ
1 + E2p

µ
2 )/p1/p2

+ F/p1
γµ +Gγµ/p2

+ (H1p
µ
1 +H2p

µ
2 )
)
.

This expression was generalized from the expression for the one-loop vertex function
given in Ref. [72] and taking into account information about the time component of
the two-loop vertex function given in Ref. [63] (where it is called the one-potential
SE function). The coefficient functions A, B1, B2, C1, C2, D, E1, E2, F, G, H1, H2 are
functions of p1 and p2.
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Taking the derivative of expression (7.120), and subsequently evaluating the result at
p1 = p2 = p, we obtain:

Ξ(p) =
α2

16π2

(
A0(ρ)(p× γ)z +D/p(γ × γ)z +G(γ × γ)z+ (7.121)

(E1 + E2)/p(p× γ)z + (∇p2
(G− F )|p2=p × γ)z/p

)
.

We do not specify A0(ρ) here, since it does not give a contribution to the g-factor, as
explained in the previous section. Comparing this result with the general expression for
Ξ(p), we find:

A1(ρ) =D, (7.122)

A2(ρ) =G, (7.123)

A3(ρ)(p× γ)z/p =(∇p2
(G− F )|p2=p × γ)z/p− (E1 + E2)(p× γ)z/p. (7.124)

The coefficient functions A1(ρ), A2(ρ) and A3(ρ) have to be inserted into the general
formula for the computation of the vertex, type 1 contributions, Eq. (7.119).

We tested this procedure by computing the one-loop vertex 1 contribution to the
g-factor, starting from the parameterization for the one-loop vertex function given in
Ref. [72]. Since the coefficient functions E1, E2, F and G of the one-loop vertex function
are zero, the only contribution is A1(ρ) due to the coefficient function D. Considering
the case p1 = p2 = p greatly simplifies the formulas given in Ref. [72], and the remaining
Feynman parameter integration in these formulas becomes easy. The final formula for
the vertex 1 contribution we obtained is identical to the one given in Ref. [57].

Nested loop

We computed the formulas for the “N, side” contribution beginning from our formulas
for the vertex function. We managed to perform all Feynman parameter integrations
using Mathematica. Our formulas obtained using this method agreed with our formulas
obtained in the previous section.

For the “N, vertex” diagram, we could also perform all Feynman parameter integra-
tions analytically. Our numerical results obtained by both methods are in excellent
agreement.

Overlapping loop

We also computed the “O, side” and “O, ladder” contributions according to this method.
Note that, by first computing the loop integral before considering the special case p1 =
p2, we introduce an additional Feynman parameter compared to the previous method
[6, 63]. For the overlapping-loop case, this means that our final formulas for the g-factor
contributions contain up to five Feynman parameter integrations. Unfortunately, unlike
the one-loop case, we did not find a Feynman parametrization in such a way that one
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of the Feynman parameter integrations becomes easy. We computed the O, vertex type
1 contributions, integrating all five Feynman parameters numerically. Our results were
in good agreement with the results obtained with the previous method. It should be
mentioned that, due to the high computation time, we did not use a high number of
integration points and did not include the results obtained with this method for the
estimation of the numerical uncertainty.

7.8 Remaining UV-divergent term

Adding all UV divergent F term contributions [see equations (7.11), (7.14), (7.76), (7.79),
(7.81), (7.89), (7.100), (7.112) and (7.117)], we obtain the following remaining UV di-
vergent term:

∆EF,div = 2B(1)〈a|γ0Σ
(2+)
D |δa〉+B(1)∆E

(1+)
vr,D . (7.125)

Since the total two-loop SE correction is UV-finite, and the M term contains only UV-
finite diagrams, we can be sure that these divergences will be cancelled by corresponding
contributions to the P term.

7.9 Numerical results and the free-electron limit

For the free electron case, i.e. in the limit of a vanishing Coulomb potential, all P
and M term contributions as well as one-potential F term contributions vanish, since,
by definition, they contain interactions with the nuclear potential. Furthermore, the
irreducible N and O diagrams vanish because the SE correction is canceled exactly by
mass renormalization [6]. We therefore expect these contributions to converge to zero in
the limit Z −→ 0. For the same reason, we expect all LAL contributions to converge to
zero in this limit, as well as those reducible LAL diagrams which contain the one-loop
SE correction (a,b, e, and g), or the irreducible one-loop “SE,wf” correction to the one-
loop g-factor (c) as one factor. The remaining diagrams are the N and O vertex and
reducible diagrams and the following LAL, red diagrams: d and f . We expect the sum
of the zero-potential contributions (zero-potential contributions of both factors for LAL,
red) of these diagrams to converge to the two-loop SE contribution to the free-electron
g-factor. This corresponds to the sum of equations (7.119), (7.91), (7.83) and (7.15).
The free-electron g-factor contribution can be easily determined using the expressions
for the form factors from Ref. [56]. Our numerical results for low-Z converge well to the
free-electron g-factor contribution, as shown in Table 7.1.

We defined the total zero-potential F term contribution to consist of the above men-
tioned diagrams and the irreducible zero-potential N and O contributions. Table 7.2
shows a detailed breakdown of zero-potential F term contributions for Z = 82. The
table highlights that all terms need to be evaluated, i.e. there is no simple way of
estimating the F term.

The reducible F term contribution consists of the remaining LAL,red contributions,
i.e. equations (7.2), (7.5), (7.12) and (7.16). The one-potential F term consists of the
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irreducible one-potential N and O contributions. The corresponding numerical values,
together with their numerical uncertainties are given in Table 7.9 for various different Z
and are plotted in Fig.7.1. The figure shows that, at high Z values, the low-Z behaviour
which can be described by a few Zα-expansion terms, is not applicable. Therefore, for
heavy ions, it is indeed mandatory to perform a non-perturbative calculation.
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Figure 7.1: The zero- and one-potential and the reducible F term contributions, respec-
tively, as a function of Z. Results are expressed in terms of the scaled function
F (Zα), defined as ∆g = α2

π2F (Zα).
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Z gfree
F,0pot

1 -3.73645(7)
2 -3.77838(5)
3 -3.82963(5)
4 -3.88628(3)
6 -4.00745(3)
8 -4.13137(3)
10 -4.25262(3)
14 -4.47583(2)
18 -4.66407(2)
20 -4.74346(2)
36 -5.02289(1)
54 -4.69983(1)
82 -3.25804(1)
92 -2.78760(1)

Table 7.1: Subset of zero-potential F term diagrams which converges to the free-electron
g-factor contribution gfree,SESE = −3.71389279 × 10−6 (see text for details).
g-factor contributions are expressed in units of 10−6.

Contribution gF,0pot

LAL,red,df -0.70592
N,red -3.35298

N, ver 2-type 4.99794
N, ver 1-type -7.98377

O,red -3.63951
O, ver 2-type 3.91721
O, ver 1-type 3.50898
N & O, irred 2.17644

Table 7.2: Individual contributions to the zero-potential F term for Z = 82 in units of
10−6.
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Z FF,0pot FF,red FF,1pot

1 -0.693181(19) 0.005715(1) 0.00213(27)
2 -0.701989(10) 0.015596(2) 0.00576(27)
3 -0.712496(9) 0.026977(1) 0.01011(18)
4 -0.723816(6) 0.038885(2) 0.014544(44)
6 -0.747062(4) 0.062437 0.023242(27)
8 -0.769444(6) 0.084105 0.030852(6)
10 -0.789865(4) 0.103024 0.037022(16)
14 -0.822846(3) 0.131496(4) 0.044584(6)
18 -0.844231(3) 0.147488(2) 0.046072(2)
20 -0.850565(3) 0.151111(4) 0.044799(2)
28 -0.849133(4) 0.140733(8) 0.029121(2)
36 -0.811397(2) 0.100049(7) 0.001363
46 -0.726408(4) 0.025643(5) -0.044823(1)
54 -0.636907(2) -0.037442(12) -0.091188(2)
64 -0.506144(4) -0.098176(11) -0.168186(2)
74 -0.357661(4) -0.107297(12) -0.284575(2)
82 -0.200464(4) -0.045539(18) -0.429814(2)
92 -0.016259(15) 0.183186(32) -0.732700(4)

Table 7.3: The zero- and one-potential and reducible F term contributions for different
atomic numbers. Results are expressed in terms of the scaled function F (Zα),

defined as ∆g = α2

π2F (Zα). The zero-potential term contains all diagrams
described in the free electron limit and the irreducible N and O diagrams. The
reducible term contains the remaining “LAL, red” contributions. The one-
potential term contains only the irreducible one-potential N and O diagrams.
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8 Conclusions and outlook

In this thesis, the theory of the bound-fermion g-factor was discussed, with a special
emphasis on methods for taking into account the interaction with the nuclear potential
non-perturbatively. Such a treatment is required to achieve a highly accurate predic-
tion of the g-factor for high-Z ions, and, in certain cases, even for medium- and low-Z
ions. The theoretical framework developed here is mandatory for near-future stringent
tests of quantum electrodynamics in strong electromagnetic fields, for a projected in-
dependent determination of the fine-structure constant [54], and for further substantial
improvements of the electron mass value by means of Penning-trap experiments [1].

After the introductory Chapter, the theoretical treatment of the g-factor of free
fermions was summarized, followed by a presentation of the quantum electrodynamic
theory of bound states. In the forthcoming Chapter, we described in detail the analyti-
cal and numerical methods to evaluate the one-loop self-energy and vacuum polarization
corrections, which were developed previously by several authors and presented in the
literature, e.g. Ref. [57, 69, 71]. As an application of these methods, we investigated
first the muonic vacuum polarization correction [4]. Our studies show that the effect of
creation and annihilation of virtual muon pairs will become observable in g-factor ex-
periments after an improvement of the uncertainty of nuclear radii in certain elements,
e.g., with Ca ions.

As an additional application of bound-state quantum electrodynamic theory discussed
thus far, we described the recent determination of the electron mass by a combined
analysis of the theoretical bound-electron g-factor and the measurement of the Larmor
and cyclotron frequencies in Penning trap experiments, and discussed possibilities for
a further improvement of the accuracy of this fundamental quantity [1]. In particular,
based on the treatment presented in the previous Chapters, we calculated the g-factor
of the hydrogenlike 4He+ ion. This light ion may serve as a helpful benchmark for
the past determination of the electron mass with the 12C5+ ion, and it also enables an
accuracy improvement due to the fact in the lightest atomic systems, QED contributions
are scaled down by high powers of the atomic number Z.

In the forthcoming Chapter, we put forward a method to determine the muon mass
in analogy to the successful extraction of the electron mass as presented previously [2].
Such a determination necessitates an accurate theoretical prediction of the bound-muon
g-factor. Therefore, we calculate all the relevant contributing terms at the one- and
two-loop level, with special emphasis on vacuum polarization effects which are crucial in
muonic systems. The scheme we suggest allows the improvement of the accuracy of the
muon mass by one order of magnitude, provided that experiments with bound muons
can achieve in near future the required accuracy. Furthermore, such an experiment will
build a bridge between measurements of the free muon’s magnetic moment anomaly
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(i.e. the (g − 2)/2) and its mass, and will thus shed new light on physics beyond the
Standard Model. Presently, the discrepancy of the predicted and measured free-muon g
factor values constitutes one of the most significant deviations of an electroweak physical
observable [94]. With the subtraction of the QED binding corrections we calculated,
the free-muon g-factor can be determined in the ionic experiments we propose, and
contrasted to predictions including hadronic vacuum polarization and weak interaction
contributions, and possible effects beyond the Standard Model [95].

As of now, in the H-like Si ion, the experimental error bar of the bound-electron g-
factor is one order of magnitude lower than the theoretical uncertainty [34]. In order
to improve the latter, it is necessary to calculate the two-loop SE correction to the g-
factor non-perturbatively in Zα, since the unknown higher-order terms in this coupling
parameter constitute the dominant contribution to the theoretical uncertainty. This
holds especially true for heavier elements which can be investigated in nearest future
with the currently commissioned ALPHATRAP Penning-trap setup [35], and also for
atomic numbers as low as Z = 6 [62]. Therefore, in the main chapters of this thesis,
we developed the exact theory of the two-loop SE corrections [3]. We demonstrated the
cancellation of UV and IR divergences in the relevant set of Feynman diagrams. The
occurrence of UV divergences necessitates the separation of the two-loop SE diagrams
into the loop-after-loop type diagrams, and into the F, M, and the P term diagrams,
similar to the two-loop SE correction to the Lamb shift [63]. Each of these terms has
to be evaluated with different techniques. The F term consists of diagrams with only
free internal electron lines, with zero or one interaction with the nuclear potential in
the intermediate states. The M term diagrams contain many-potential internal electron
lines (i.e. higher than first order interactions with the nucleus), and do not contain UV
divergences. The P term diagrams contain many-potential internal electron lines, as
well as a subdiagram with only free internal electron lines. There are UV divergences
in P term diagrams because of their subdiagrams containing free-electron propagators.
Since both P and M term diagrams contain many-potential internal fermionic lines,
these contributions vanish in the free-electron limit. Furthermore, the loop-after-loop
contribution also vanish in this limit, since, for free electrons, one of the SE loops acts as
a correction to an external on-shell electron line in the Feynman diagrams. Therefore,
one may expect the F-term to converge to the well-known two-loop SE correction to the
free-electron g-factor in the limit Z → 0.

In the subsequent Chapter, we performed the numerical evaluation of the F-term
diagrams. Our results were found to converge to the two-loop SE correction to the free-
electron g-factor [56], yielding an important consistency check of our renormalization
scheme and the overall theoretical formalism. Other tests included the calculation of
the F-term contribution to the two-loop Lamb shift SE correction, and its comparison
to published literature values [63].

The computation of the loop-after-loop g-factor diagrams is still an ongoing project.
Defining a self-energy perturbed wave function, we can perform the calculation of the
loop-after-loop contributions as a straightforward generalization of one-loop calculations.
The implementation of the SE corrected wave function is the numerically most challeng-
ing aspect in the evaluation of the loop-after-loop terms. The M and P terms also need
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to be computed numerically. The M terms include, just as in the case of the Lamb shift,
summations over two independent angular momentum quantum numbers [63]. The P
term will include one such angular momentum summation, as well as numerical Fourier
transforms [63]. Therefore, the final numerical accuracy of the two-loop SE terms will
be determined by the numerical uncertainty of these computationally expensive terms.

After a complete numerical evaluation of the two-loop SE diagrams for the ground
state of hydrogenic ions, the calculations can be repeated for other atomic states. The
projected independent determination of the fine-structure constant also requires accurate
QED predictions for Li-like ions [54]. Therefore, the two-loop SE corrections have to
be re-evaluated for the 2s state, which is the valence ground state of a three-electron
ion. Besides the trivial replacement of the bound-electron wave functions entering the
formulas, this can be done by a straightforward modification of the complex integration
contours in the many-potential terms.

For a complete evaluation of all two-loop Furry picture Feynman diagrams, one also
needs to take into account diagrams with virtual light-by-light scattering subgraphs.
The calculation of these terms is in progress, in collaboration with V. Debierre [5]. Such
nonlinear QED effects do play a role in the heaviest hydrogenic ions, with a prominent
example being 208Pb81+. Experiments on this very heavy element are also projected at
the ALPHATRAP setup [35], with the highly charged ions created in the Heidelberg
Electron Beam Ion Trap (EBIT) of the Max Planck Institute for Nuclear Physics, and
transported to the Penning trap with a beamline constructed specifically for this purpose,
enabling the study of QED effects in the strongest electric fields available in a laboratory.

116



Appendix

A.1 Calculation of loop integrals

The calculation of Feynman diagrams with free internal fermion lines necessitates the
evaluation of loop functions known from free QED [63, 72]. E.g. for the computation
of one-loop SE diagrams, one has to evaluate the free one-loop SE and vertex functions
[72]. In standard textbooks, usually one-loop functions are discussed for the special case
of all external momenta being on-shell p2 = m2, i.e. for free particles [6, 79]. However,
this is not sufficient for bound-fermion calculations, where these loop functions need to
be computed for more general four-momenta p = (Ea,p) [72].

A loop integral L(p1, p2, ...pn) typically has the following form in D dimensions [63,
260]:

L(p1, p2, ...pn) =

∫
dDq

(2π)D
N(q)

(q2 + 2p1q +M1)α1 · · · (q2 + 2pnq +Mn)αn
. (A.1)

Here, N(q) is a polynomial in q. The expressions in the denominator can be combined
using Feynman parameters (equation (281) in Ref. [63]). Some special cases of this
equation are derived in Appendix J of Ref. [261] and Chapter 10 of Ref. [80]. Feynman
parameters are also used in standard textbooks about QFT, e.g. Ref. [6, 77, 81]. After a

substitution, we obtain expressions of the form
∫

dDl
(2π)D

{1,lµlν ,lµlν lρlσ ,...}
(l2−∆)α

, with α =
∑

i αi.

It can be shown that odd powers of l in the numerator lead to vanishing integrals, and

integrals with even powers of l in the numerator can be simplified, e.g. lµlν → l2gµν
D

(see Ref. [6, 63]). The integrals over l can then be carried out using formulas from
e.g.Ref. [6, 63].

One-loop functions are usually UV divergent. In order to deal with these divergences,
we regularize the loop functions by computing them in D = 4 − 2ε dimensions, where
ε is an infinitesimal positive number. Dimensional regularization is discussed in detail
in textbooks, e.g. in Ref. [6]. The results obtained after integration are expanded in
powers of ε. UV divergences manifest themselves as inverse powers of ε. In the final
result for an observable quantity, all contributions due to inverse powers of ε cancel.

Mass divergences in SE functions are dealt with using a renormalization scheme in
which the SE function, evaluated for /p = m, is subtracted: Σ̃(0)(p) = Σ(0)(p)−Σ(0)(m).
The remainder is still UV divergent. We do not use the usual textbook renormalization
scheme [6], i.e. subtract δ2(/p − m) to deal with the remaining divergences because

δ2 = dΣ(p)
d/p

∣∣∣
/p=m

is IR divergent in the Feynman gauge [72]. Instead, in order to avoid IR

divergences, we just separate the remaining UV divergent terms. In the case of two-loop
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diagrams, we also separate only the UV divergent term instead of identifying the order
α2 contribution to δ2. In the final result for an observable quantity, all contributions
due to inverse powers of ε cancel.

Many two-loop diagrams contain the one-loop SE and vertex functions as a subdia-
gram. As the expansion in powers of ε yields more complicated expressions than indi-
cated in equantion (A.1), we perform the ε expansion only after all integrations over
loop momenta have been performed. Since the one-loop SE and vertex functions are
always accompanied by at least one electron propagator 1

/p−m it is convenient to develop

parametrizations of the one-loop functions in which (/p − m) has been explicitly fac-
tored out on at least one side. Such parametrizations were developed in the appendix
of Ref. [63].

In our calculations, we followed the convention of Ref.[57, 63] and kept a constant

factor αCε
4π for one-loop functions and α2C2

ε
16π2 for two-loop functions and expanded only

the remainder of the loop functions in ε. Here, Cε = Γ(1 + ε)(4π)ε µ
2ε

m2ε
f

, and µ defines the

elementary charge in D dimensions: e(D) = µεe.

A.2 The wave functions perturbed by a magnetic field

In this section, we explain the derivation of the wave functions |δa〉 and |δDa〉 which is
used in the computation of the reducible F term contribution to the two-loop self-energy
using the method of virial relations:

|δa〉 =
∑
n,n 6=a

|n〉〈n|γ0e /A|a〉
Ea − En

, (A.2)

|δDa〉 =−
∑
n,n6=a

|n〉〈n|γ0e /A|a〉
(Ea − En)2

. (A.3)

In all relevant cases, the perturbed wave functions act on operators which conserve
angular momentum. Therefore, only the term with κn = κa needs to be considered. For
the model of a point-like nucleus, these wavefunctions can be determined analytically
using the method of generalized virial relations [128].

Virial relations

In non-relativistic quantum mechanics, the average value for the kinetic energy of a
particle moving in a central potential V (r) is determined by the virial theorem [128]:

〈T 〉 =
1

2
〈rdV
dr
〉. (A.4)

In relativistic quantum mechanics, one can derive such virial relations for various oper-
ators (see Ref. [128, 262]). These provide relations between diagonal and off-diagonal
matrix elements of different operators. See Ref. [128] for details.
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Calculation of |δa〉

The general procedure to determine the perturbed wave functions is to rewrite the matrix
elements 〈n|γ0e /A|a〉 as a linear combination of the following form:

〈n|γ0e /A|a〉 = (Ea − En)
∑
i

〈n|Ri|a〉. (A.5)

Here, the Ri are a small set of different operators. This replacement allows the elim-
ination of the energy difference Ea − En from the expression for |δa〉. The perturbed
wavefunction now reads:

|δa〉 =
∑
n6=a

∑
i

|n〉〈n|Ri|a〉. (A.6)

The operator
∑

n6=a |n〉〈n| can then be replaced by 11− |a〉〈a|. The expression for |δa〉 is
now:

|δa〉 =
∑
i

(Ri|a〉 − 〈a|Ri|a〉|a〉) . (A.7)

The sums
∑

iRi|a〉 and
∑

i〈a|Ri|a〉|a〉 can be determined easily. The most complicated
part of this derivation is the determination of the operators Ri using virial relations.
This determination is presented in great detail in Ref. [128]. It shall not be repeated
here.

Derivation of |δDa〉

We insert a unity operator into expression (A.3) |δDa〉 as follows:

11 =
∑
m

|m〉〈m|, (A.8)

|δDa〉 =−
∑

m,m 6=a

|m〉〈m|
Ea − Em

∑
n,n 6=a

|n〉〈n|γ0e /A|a〉
Ea − En

=

−
∑
m6=a

|m〉〈m|δa〉
Ea − Em

. (A.9)

Inserting the well-known expression for |δa〉 into equation (A.9), we obtain:

〈n|δa〉 =
eB

3

(
κ

m
C1
nκaκ −

m− 2κEa
2m2

D1
nκaκ +

αZκ

m2
D0
nκaκ −

κ2

m2
B0
nκaκ

)
. (A.10)

For the definition of B0
nκaκ, C

1
nκaκ and Di

nκaκ, see Ref. [128]. We again use virial relations
from [128] in order to replace the matrix elements by linear combinations of the same
form as equation (A.5). 〈m|δa〉 can then be rewritten as follows:

119



〈n|δa〉 =
eB

3
(Ea − En)〈n|

(
− κ

2m2
D1
nκaκ −

m− 2κEa
4m2

A2
nκaκ +

αZκ

m2
A1
nκaκ

)
|a〉. (A.11)

The definition of Ainκaκ can also be found in Ref. [128]. Inserting this expression into
equation (A.11), replacing

∑
m,m 6=a |m〉〈m| = 11− |a〉〈a|, and evaluating the correspond-

ing matrix elements analytically for the ground state, we obtain the following expression
for the radial components of |δDa〉:

Xδ(r) =
κr

2m2
f(r) +

(
m− 2κEa

4m2
r2 − αZκ

m2
r −

(
m− 2κEa

4m2
A2 − αZκ

m2
A1

))
g(r),

(A.12)

Yδ(r) =− κr

2m2
g(r) +

(
m− 2κEa

4m2
r2 − αZκ

m2
r −

(
m− 2κEa

4m2
A2 − αZκ

m2
A1

))
f(r).

(A.13)

We evaluated A1 and A2 for the 1s state only. We obtained A1 =
2γ + 1

λ
and A2 =

(2γ+1)(2γ+2)
(2λ)2 .

A.3 Radial integrals

In this section, we give a definition of the integral RJ(ω, abcd) which is used in the
computation of many-potential contributions and the analysis of reference-state IR di-
vergences. All formulas in this section are taken (with small adjustments concerning the
notation) from Appendix C of Ref. [72].

RJ(ω, abcd) =(2J + 1)

∞∫
0

dr1r1
2

∞∫
0

dr2r
2
2

(
(−1)JCJ(κa, κc)CJ(κb, κd)gJ(ω, r<, r>)

Wac(r1)Wbd(r2)−
∑
L

(−1)LgL(ω, r<, r>)Xac(r1)Xbd(r2)

)
, (A.14)

Wab(r) =ga(r)gb(r) + fa(r)fb(r), (A.15)

Xab(r) =ga(r)fb(r)SJL(−κb, κa)− fa(r)gb(r)SJL(κb,−κa). (A.16)

gl(ω, x<, x>) can be expressed in terms of spherical Bessel functions [263] as follows:

gl(ω, x<, x>) =iωjl(ωx<)h
(1)
l (ωx>). (A.17)

CJ(κb, κa) is nonzero only if la + lb + J is even:
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CJ(κb, κa) = (−1)jb
√

(2ja + 1)(2jb + 1)

(
ja J jb
1
2 0− 1

2

)
. (A.18)

Non-zero SJL(κa, κb) are:

S01(κa, κb) = C0(−κb, κa), (A.19)

for J = 0, and

SJJ−1(κa, κb) =

√
J

2J + 1

(
−1 +

κa + κb
J

)
CJ(−κb, κa), (A.20)

SJJ(κa, κb) =
κa − κb√
J(J + 1)

CJ(κb, κa), (A.21)

SJJ+1(κa, κb) =

√
J + 1

2J + 1

(
1 +

κa + κb
J + 1

)
CJ(−κb, κa). (A.22)
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Kluge, Th. Stöhlker, K. Beckert, P. Beller, F. Nolden, M. Steck, A. Gumberidze,
R. Reuschl, U. Spillmann, F. J. Currell, I. I. Tupitsyn, V. M. Shabaev, U. D.
Jentschura, C. H. Keitel, A. Wolf, and Z. Stachura. Isotope Shift in the Dielectronic
Recombination of Three-Electron ANd57+. Phys. Rev. Lett., 100:073201, 2008.

[160] H. Grotch. Electron g Factor in Hydrogenic Atoms. Phys. Rev. Lett., 24(2):39–42,
1970.

134

http://users.df.uba.ar/dmitnik/estructura3/programas/salvat/radial.pdf
http://users.df.uba.ar/dmitnik/estructura3/programas/salvat/radial.pdf


[161] H. Grotch. Nuclear Mass Corrections to the Electron g Factor. Phys. Rev. A, 2:
1605–1607, 1970.

[162] R. Faustov. Magnetic moment of the hydrogen atom. Phys. Lett. B, 33(6):422 –
424, 1970.

[163] H. Grotch and R. A. Hegstrom. Hydrogenic Atoms in a Magnetic Field. Phys.
Rev. A, 4:59–69, 1971.

[164] V. M. Shabaev. Mass corrections in a strong nuclear field. Theor. Math. Phys., 63
(3):588–596, 1985.

[165] V. M. Shabaev. QED theory of the nuclear recoil effect in atoms. Phys. Rev. A,
57:59–67, 1998.

[166] V. M. Shabaev. QED theory of the nuclear recoil effect on the atomic g factor.
Phys. Rev. A, 64:052104, 2001.

[167] V. M. Shabaev and V. A. Yerokhin. Recoil Correction to the Bound-Electron g
Factor in H-Like Atoms to All Orders in αZ. Phys. Rev. Lett., 88(9):091801, 2002.

[168] K. Pachucki. Nuclear mass correction to the magnetic interaction of atomic sys-
tems. Phys. Rev. A, 78(1):012504, 2008.

[169] W. C. Martin and R. Zalubas. Energy Levels of Silicon, Si I through Si XIV. J.
Phys. Chem. Ref. Data, 12(2):323, 1983.

[170] G. Audi, A. H. Wapstra, and C. Thibault. The AME2003 atomic mass evaluation:
(II). Tables, graphs and references. Nucl. Phys. A, 729(1):337 – 676, 2003.

[171] G. Audi, M. Wang, A. H. Wapstra, F.G. Kondev, M. MacCormick, X. Xu, and
B. Pfeiffer. The AME2012 atomic mass evaluation. Chin. Phys. C, 36(12):1287,
2012.

[172] M. Wang, G. Audi, A.H. Wapstra, F.G. Kondev, M. MacCormick, X. Xu, and
B. Pfeiffer. The AME2012 atomic mass evaluation (II). Tables, graphs and refer-
ences. Chin. Phys. C, 36(12):1603, 2012.

[173] A. Kramida, Y. Ralchenko, J. Reader, and the NIST ASD Team. NIST Atomic
Spectra Database (ver. 5.2), [Online]. National Institute of Standards and Tech-
nology, Gaithersburg, MD, 2014. URL http://physics.nist.gov/asd.

[174] J. Zatorski. Nuclear deformation correction to the g-factor of hydrogen-like ions
in S-state. Working notes, 2013.

[175] G. Plunien, B. Müller, W. Greiner, and G. Soff. Nuclear polarization contribution
to the Lamb shift in heavy atoms. Phys. Rev. A, 39:5428–5431, 1989.

[176] G. Plunien, B. Müller, W. Greiner, and G. Soff. Nuclear polarization in heavy
atoms and superheavy quasiatoms. Phys. Rev. A, 43:5853–5866, 1991.

135

http://physics.nist.gov/asd


[177] A. V. Nefiodov, G. Plunien, and G. Soff. Nuclear-Polarization Correction to the
Bound-Electron g Factor in Heavy Hydrogenlike Ions. Phys. Rev. Lett., 89(8):
081802, 2002.

[178] A. V. Volotka and G. Plunien. Nuclear Polarization Study: New Frontiers for
Tests of QED in Heavy Highly Charged Ions. Phys. Rev. Lett., 113:023002, 2014.

[179] E. V. Stefanovich. Renormalization and dressing in quantum field theory. ArXiv
High Energy Physics, 2005. arXiv:hep-th/0503076v4.

[180] P. J. Mohr. Self-Energy Radiative Corrections in Hydrogen-Like Systems. Ann.
Phys., 88(1):26 – 51, 1974.

[181] P. J. Mohr. Numerical Evaluation of the 1S1/2-State Radiative Levelshift. Ann.
Phys., 88(1):52 – 87, 1974.

[182] W. R. Johnson and G. Soff. The Lamb shift in hydrogen-like atoms, 1 ≤ Z ≤ 110.
At. Data Nucl. Data Tables, 33(3):405 – 446, 1985.

[183] Steven A. Blundell and Neal J. Snyderman. Basis-set approach to calculating the
radiative self-energy in highly ionized atoms. Phys. Rev. A, 44:R1427–R1430, 1991.

[184] N. J. Snyderman. Electron Radiative Self-Energy of Highly Stripped Heavy Atoms.
Ann. Phys., 211(1):43 – 86, 1991.

[185] H. Persson, I. Lindgren, and S. Salomonson. A New Approach to the Electron Self
Energy Calculation. Phys. Scr., 1993(T46):125–131, 1993.

[186] V. A. Yerokhin, P. Indelicato, and V. M. Shabaev. Self-Energy Correction to the
Bound-Electron g Factor in H-like Ions. Phys. Rev. Lett., 89:143001, 2002.

[187] V. A. Yerokhin and U. D. Jentschura. Electron Self-Energy in the Presence of a
Magnetic Field: Hyperfine Splitting and g Factor. Phys. Rev. Lett., 100:163001,
2008.

[188] V. A. Yerokhin and U. D. Jentschura. Self-energy correction to the hyperfine
splitting and the electron g factor in hydrogenlike ions. Phys. Rev. A, 81:012502,
2010.

[189] V. A. Yerokhin, C. H. Keitel, and Z. Harman. Nuclear-size self-energy and vacuum-
polarization corrections to the bound-electron g factor. J. Phys. B, 46(24):245002,
2013.

[190] J. Holmberg. QED corrections to Atomic Wavefunctions in Highly Charged Ions.
PhD thesis, University of Heidelberg, 2015.

[191] J. M. Jauch and F. Rohrlich. The Theory of Photons and Electrons. Springer-
Verlag, New York Heidelberg Berlin, 1976.

136

https://arxiv.org/abs/hep-th/0503076v4


[192] W. R. Johnson, S. A. Blundell, and J. Sapirstein. Many-body perturbation-theory
calculations of energy levels along the lithium isoelectronic sequence. Phys. Rev.
A, 37:2764–2777, 1988.

[193] W. R. Johnson. Lectures on Atomic Physics, 2006. URL https://www3.nd.edu/

~johnson/Publications/book.pdf.

[194] W. R. Johnson. Atomic Structure Theory: Lectures on Atomic Physics. Springer-
Verlag, Berlin Heidelberg New York, 2007.

[195] L. F. Richardson. The Approximate Arithmetical Solution by Finite Differences
of Physical Problems Involving Differential Equations, with an Application to the
Stresses in a Masonry Dam. Philos. Trans. Royal Soc. A, 210(459-470):307–357,
1911.

[196] D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii. Quantum Theory of
Angular Momentum. World Scientific, 1988.

[197] I. Lindgren, H. Persson, S. Salomonson, and P. Sunnergren. Analysis of the electron
self-energy for tightly bound electrons. Phys. Rev. A, 58:1001–1015, 1998.

[198] J. Blomqvist. Vacuum polarization in exotic atoms. Nucl. Phys. B, 48(1):95 – 103,
1972.

[199] D. J. Hylton. Finite-nuclear-size corrections to the Uehling potential. Phys. Rev.
A, 32:1303–1309, 1985.

[200] G. Soff and P. J. Mohr. Vacuum polarization in a strong external field. Phys. Rev.
A, 38:5066–5075, 1988.

[201] S. A. Blundell. Accurate screened QED calculations in high-Z many-electron ions.
Phys. Rev. A, 46:3762–3775, 1992.

[202] H. Persson, I. Lindgren, S. Salomonson, and P. Sunnergren. Accurate vacuum-
polarization calculations. Phys. Rev. A, 48:2772–2778, 1993.

[203] A. N. Artemyev, V. M. Shabaev, and V. A. Yerokhin. Vacuum polarization screen-
ing corrections to the ground-state energy of two-electron ions. Phys. Rev. A, 56:
3529–3534, 1997.

[204] A. N. Artemyev, T. Beier, G. Plunien, V. M. Shabaev, G. Soff, and V. A. Yerokhin.
Vacuum-polarization screening corrections to the energy levels of lithiumlike ions.
Phys. Rev. A, 60:45–49, 1999.

[205] A. N. Artemyev, T. Beier, G. Plunien, V. M. Shabaev, G. Soff, and V. A. Yerokhin.
Vacuum-polarization screening corrections to the energy levels of heliumlike ions.
Phys. Rev. A, 62:022116, 2000.

137

https://www3.nd.edu/~johnson/Publications/book.pdf
https://www3.nd.edu/~johnson/Publications/book.pdf


[206] A. N. Artemyev, V. M. Shabaev, G. Plunien, G. Soff, and V. A. Yerokhin. Vacuum-
polarization corrections to the hyperfine splitting in heavy ions and to the nuclear
magnetic moments. Phys. Rev. A, 63:062504, 2001.

[207] W. H. Furry. A Symmetry Theorem in the Positron Theory. Phys. Rev., 51:
125–129, 1937.

[208] E. A. Uehling. Polarization Effects in the Positron Theory. Phys. Rev., 48:55–63,
1935.

[209] E. H. Wichmann and N. M. Kroll. Vacuum Polarization in a Strong Coulomb
Field. Phys. Rev., 101:843–859, 1956.

[210] Q. Lyu. Private communication, 2015.

[211] K. Momberger, N. Grün, W. Scheid, U. Becker, and G. Soff. Muon pair production
with inner-shell capture in relativistic U92+–U92+ collisions. J. Phys. B, 20(9):
L281, 1987.

[212] C. Müller, C. Deneke, and C. H. Keitel. Muon-Pair Creation by Two X-Ray Laser
Photons in the Field of an Atomic Nucleus. Phys. Rev. Lett., 101:060402, 2008.

[213] T Franosch and G. Soff. The influence of the nuclear shape and of the muonic
vacuum polarization on strongly bound electrons. Z. Phys. D, 18(3):219–222,
1991.

[214] R. Weis. Myonische Vakuumpolarisationskorrekturen zum g-Faktor eines gebun-
denen Elektrons. Bachelor’s thesis, University of Heidelberg, 2014.

[215] R. N. Lee, A. I. Milstein, I. S. Terekhov, and S. G. Karshenboim. Virtual light-
by-light scattering and the g factor of a bound electron. Phys. Rev. A, 71:052501,
2005.

[216] K. W. Ford, V. W. Hughes, and J. G. Wills. Theoretical Values for Magnetic
Moments of Mu-Mesonic Atoms. Phys. Rev., 129:194–201, 1963.

[217] E. Borie and G. A. Rinker. The energy levels of muonic atoms. Rev. Mod. Phys.,
54:67–118, 1982.

[218] T. N. Mamedov, K. I. Gritsay, A. V. Stoykov, D. Herlach, R. Scheuermann, and
U. Zimmermann. Measurement of the magnetic moment of the negative muon
bound in heavy atoms. Phys. Rev. A, 75:054501, 2007.

[219] K. P. Jungmann. Muonium spectroscopy. Hyperfine Interact., 127(1-4):189–196,
2000.

[220] A. G. Fainshtein, N. L. Manakov, and A. A. Nekipelov. Vacuum polarization by
a Coulomb field. Analytical approximation of the polarization potential. J. Phys.
B, 24(3):559, 1991.

138



[221] R. N. Lee, A. I. Milstein, I. S. Terekhov, and S. G. Karshenboim. g factor of the
bound electron and muon. Can. J. Phys., 85(5):541–549, 2007.

[222] V. M. Shabaev, I. I. Tupitsyn, V. A. Yerokhin, G. Plunien, and G. Soff. Dual
Kinetic Balance Approach to Basis-Set Expansions for the Dirac Equation. Phys.
Rev. Lett., 93:130405, 2004.

[223] N. Michel, N. S. Oreshkina, and C. H. Keitel. Theoretical prediction of the fine
and hyperfine structure of heavy muonic atoms. Phys. Rev. A, 96:032510, 2017.

[224] T. Beier, G. Plunien, M. Greiner, and G. Soff. Two-loop ladder diagram for the
vacuum polarization contribution in hydrogen-like ions. J. Phys. B, 30(12):2761–
2772, 1997.

[225] G. Källén and A. Sabry. Fourth order vacuum polarization. K. Dan. Vidensk.
Selsk. Mat. Fys. Medd., 29(17), 1955.

[226] L. W. Fullerton and G. A. Rinker. Accurate and efficient methods for the evaluation
of vacuum-polarization potentials of order Zα and Zα2. Phys. Rev. A, 13:1283–
1287, 1976.

[227] P. Indelicato. Nonperturbative evaluation of some QED contributions to the
muonic hydrogen n = 2 Lamb shift and hyperfine structure. Phys. Rev. A, 87:
022501, 2013.

[228] J. L. Friar, J. Martorell, and D. W. L. Sprung. Hadronic vacuum polarization and
the Lamb shift. Phys. Rev. A, 59:4061–4063, 1999.

[229] S. Eidelman and F. Jegerlehner. Hadronic contributions to (g − 2) of the leptons
and to the effective fine structure constant α(M2

Z). Z. Phys. C, 67(4):585–601,
1995.

[230] E. Borie. Hadronic vacuum polarization correction in muonic atoms. Z. Phys. A,
302(3):187–189, 1981.

[231] R. N. Faustov, A. Karimkhodzhaev, and A. P. Martynenko. Evaluation of hadronic
vacuum polarization contribution to muonium hyperfine splitting. Phys. Atom.
Nucl., 62:2103–2105, 1999.

[232] J. A. Fox and D. R. Yennie. Some Formal Aspects of the Lamb Shift Problem.
Ann. Phys., 81(2):438 – 480, 1973.

[233] A. Mitrushenkov, L. Labzowsky, I. Lindgren, H. Persson, and S. Salomonson.
Second order loop after loop self-energy correction for few-electron multicharged
ions. Phys. Lett. A, 200(1):51 – 55, 1995.

[234] V. A. Yerokhin. Loop-after-loop contribution to the second-order Lamb shift in
hydrogenlike low-Z atoms. Phys. Rev. A, 62:012508, 2000.

139



[235] V. A. Yerokhin. Leading Logarithmic Contribution to the Second-Order Lamb
Shift Induced by the Loop-After-Loop Diagram. Phys. Rev. Lett., 86:1990–1993,
2001.

[236] V. A. Yerokhin, P. Indelicato, and V. M. Shabaev. Two-Loop Self-Energy Correc-
tion in High-Z Hydrogenlike Ions. Phys. Rev. Lett., 91:073001, 2003.

[237] V. A. Yerokhin, P. Indelicato, and V. M. Shabaev. Two-loop self-energy correction
to the ground-state Lamb shift in H-like ions. Nucl. Instr. Meth. Phys. Res. B,
235(1):36 – 39, 2005.

[238] V. A. Yerokhin, P. Indelicato, and V. M. Shabaev. Two-loop self-energy contribu-
tion to the Lamb shift in H-like ions. Phys. Rev. A, 71:040101, 2005.

[239] V. A. Yerokhin, P. Indelicato, and V. M. Shabaev. Two-loop Self-Energy Correc-
tion in a Strong Coulomb Nuclear Field. J. Exp. Theor. Phys., 101(2):280–293,
2005.

[240] I. Goidenko, L. Labzowsky, G. Plunien, and G. Soff. Second-order electron self-
energy loop-after-loop correction for low-Z hydrogen-like ions. Nucl. Instr. Meth.
Phys. Res. B, 235(1):40 – 45, 2005.

[241] V. A. Yerokhin, P. Indelicato, and V. M. Shabaev. Nonperturbative Calculation
of the Two-Loop Lamb Shift in Li-Like Ions. Phys. Rev. Lett., 97:253004, 2006.

[242] V. A. Yerokhin, P. Indelicato, and V. M. Shabaev. Two-loop QED corrections
with closed fermion loops. Phys. Rev. A, 77:062510, 2008.

[243] V. A. Yerokhin. Two-loop self-energy for the ground state of medium-Z hydro-
genlike ions. Phys. Rev. A, 80:040501, 2009.

[244] V. A. Yerokhin. The two-loop self-energy: diagrams in the coordinate-momentum
representation. Eur. Phys. J. D, 58(1):57–68, 2010.

[245] V. A. Yerokhin and V. M. Shabaev. Lamb Shift of n = 1 and n = 2 States of
Hydrogen-like Atoms, 1 ≤ Z ≤ 110. J. Phys. Chem. Ref. Data, 44(3):033103,
2015.

[246] V. A. Yerokhin. Two-loop self-energy in the Lamb shift of the ground and excited
states of hydrogen-like ions. Submitted, 2017.

[247] C. Brandau, C. Kozhuharov, A. Müller, W. Shi, S. Schippers, T. Bartsch, S. Böhm,
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