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Abstract

Accurate annotations of medical images are essential for various clinical appli-
cations. The remarkable advances in machine learning, especially deep learn-
ing based techniques, show great potential for automatic image segmentation.
However, these solutions require a huge amount of accurately annotated refer-
ence data for training. Especially in the domain of medical image analysis, the
availability of domain experts for reference data generation is becoming a major
bottleneck for machine learning applications. In this context, crowdsourcing
has gained increasing attention as a tool for low-cost and large-scale data an-
notation. As a method to outsource cognitive tasks to anonymous non-expert
workers over the internet, it has evolved into a valuable tool for data annotation
in various research fields. Major challenges in crowdsourcing remain the high
variance in the annotation quality as well as the lack of domain specific knowl-
edge of the individual workers. Current state-of-the-art methods for quality
control usually induce further costs, as they rely on a redundant distribution of
tasks or perform additional annotations on tasks with already known reference
outcome. Aim of this thesis is to apply common crowdsourcing techniques for
large-scale medical image annotation and create a cost effective quality control
method for crowd-sourced image annotation. The problem of large-scale med-
ical image annotation is addressed by introducing a hybrid crowd-algorithm
approach that allowed expert-level organ segmentation in Computed Tomog-
raphy (CT) scans. A pilot study performed on the case of liver segmentation
in abdominal CT scans showed that the proposed approach is able to create
organ segmentations matching the quality of those create by medical experts.
Recording the behavior of individual non-expert online workers during the an-
notation process in clickstreams enabled the derivation of an annotation quality
measure that could successfully be used to merge crowd-sourced segmentations.
A comprehensive validation study performed with various object classes from
publicly available data sets demonstrated that the presented quality control
measure generalizes well over different object classes and clearly outperforms
state-of-the-art methods in terms of costs and segmentation quality. In con-
clusion, the methods introduced in this thesis are an essential contribution to
reduce the annotation costs and further improve the quality of crowd-sourced
image segmentation.





Zusammenfassung

Akkurate Annotationen von medizinischen Bilddaten sind essentiell für eine
Vielzahl klinischer Anwendungen. Fortschritte aus dem Bereich des maschi-
nellen Lernens, insbesondere Deep Learning basierte Lösungsanzätze, besitzen
großes Potential zur automatischen Bildsegmentierung. Das Training dieser
Verfahren benötigt jedoch eine große Menge akkurat annotierter Referenz-
daten. Besonders im Bereich der medizinischen Bildanalyse entwickelt sich
die Verfügbarkeit von Experten zum Erzeugen von Referenzdaten zunehmend
zum Flaschenhals dieser Verfahren. Crowdsourcing, eine Methode zum Aus-
lagern kognitiver Aufgaben an anonyme Benutzer über das Internet, gewinnt
zunehmend an Bedeutung zur kostengünstigen Erzeugung von Referenzdaten
im großen Stil und hat sich zu einem nützlichen Werkzeug in zahlreichen For-
schungsbereichen weiterentwickelt. Eine Herausforderung in diesem Zusam-
menhang ist die Varianz der Annotationsqualität sowie das fehlende Fachwis-
sen der individuellen Benutzer. Qualitätssicherungmethoden aus dem aktuellen
Stand der Forschung beruhen üblicherweise auf einer redundanten Aufgaben-
verteilung oder erzeugen Annotationen von bereits bekannten Referenzdaten
und verursachen somit zusätzliche Kosten. Ziel dieser Arbeit ist es aktuelle
Crowdsourcingverfahren zur Annotation medizinischer Bilddaten zu erweitern
sowie eine kosten-effiziente Methode zur Qualitätssicherung zu entwickeln. Zur
Annotation medizinischer Bilddaten im großen Stil wird ein hybrid Crowd-
Algorithmus basierter Ansatz vorgestellt, der es ermöglicht Segmentierungen
von Organen in Computertomografie (CT) Datensätzen auf Experten-Niveau
zu erstellen. Eine Pilotstudie durchgeführt auf Lebersegmentierungen in CT
Datensätzen zeigt das der vorgestellte Ansatz in der Lage ist Segmentierun-
gen zu erzeugen, die der Qualität derer von Experten entsprechen. Durch das
Aufzeichnen des Annotationsverhaltens in Clickstreams wurde eine neuartige
Methode zur Qualitätssicherung in der crowd-basierten Bildsegmentierung ent-
wickelt. Eine umfangreiche Validierung auf verschiedenen Objektklassen aus
öffentlich verfügbaren Datensätzen zeigte das die vorgestellte Methode gut
über verschiedene Klassen generalisiert und den aktuellen Stand der Forschung
hinsichtlich Kosten und Qualität deutlich übertrifft. Schlussfolgernd sind die
vorgestellten Methoden ein essentieller Beitrag zur Reduktion der Annotations-
kosten und Verbesserung der Qualität von crowd-basierten Segmentierungen.





Contents

List of Figures xiii

List of Tables xxv

List of Acronyms xxix

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background 9
2.1 Fundamentals of Medical Imaging . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Computed Tomography (CT) . . . . . . . . . . . . . . . . . . 11
2.1.2 Medical image annotation . . . . . . . . . . . . . . . . . . . . 16
2.1.3 Segmentation quality measures . . . . . . . . . . . . . . . . . 17

2.2 Fundamentals of crowdsourcing . . . . . . . . . . . . . . . . . . . . . 18
2.2.1 Crowdsourcing Types . . . . . . . . . . . . . . . . . . . . . . 20
2.2.2 Crowdsourcing Platforms . . . . . . . . . . . . . . . . . . . . 24

2.3 Introduction to clickstreams . . . . . . . . . . . . . . . . . . . . . . . 27

3 State of the art 29
3.1 Crowdsourcing for medical image annotation . . . . . . . . . . . . . 31

ix



3.1.1 Annotation of pathology and microscopy images . . . . . . . 33
3.1.2 Annotation of intra-operative imaging data . . . . . . . . . . 36
3.1.3 Annotation of radiological images . . . . . . . . . . . . . . . . 37
3.1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Quality control in crowdsourcing tasks . . . . . . . . . . . . . . . . . 41
3.2.1 Integration of reference data into annotation task . . . . . . . 41
3.2.2 Majority voting . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.3 Manual grading of annotation quality . . . . . . . . . . . . . 43
3.2.4 Automatic annotation quality estimation . . . . . . . . . . . 44
3.2.5 User behavior analysis . . . . . . . . . . . . . . . . . . . . . . 45
3.2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Crowd-powered organ segmentation 47
4.1 Annotation approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.1 Annotation concept overview . . . . . . . . . . . . . . . . . . 49
4.1.2 Architecture for crowd-sourced image annotation . . . . . . . 51
4.1.3 Automatic contour initialization . . . . . . . . . . . . . . . . 54
4.1.4 Detection of inaccurate segmentation outlines . . . . . . . . . 57
4.1.5 Refinement of inaccurate segmentation outlines . . . . . . . . 57
4.1.6 Merging multiple crowd-sourced annotations . . . . . . . . . 59

4.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2.1 Crowd-sourced annotations . . . . . . . . . . . . . . . . . . . 60
4.2.2 Annotations from medical experts . . . . . . . . . . . . . . . 61
4.2.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3.1 Detection of inaccurate segmentation outlines . . . . . . . . . 65
4.3.2 Refinement of inaccurate segmentation outlines . . . . . . . . 67

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Clickstream analysis for crowd-based object segmentation with con-
fidence 77
5.1 Segmentation concept . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2 Prototype implementation . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2.1 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2.2 Clickstream data collection . . . . . . . . . . . . . . . . . . . 83
5.2.3 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2.4 Estimation of segmentation quality . . . . . . . . . . . . . . . 89



5.2.5 Confidence-based segmentation merging . . . . . . . . . . . . 89
5.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3.1 Segmentation quality estimation . . . . . . . . . . . . . . . . 91
5.3.2 Confidence-weighted annotation merging . . . . . . . . . . . . 95
5.3.3 Generalization capabilities . . . . . . . . . . . . . . . . . . . . 95
5.3.4 Comparison of annotation costs . . . . . . . . . . . . . . . . . 97

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.4.1 Segmentation quality estimation . . . . . . . . . . . . . . . . 99
5.4.2 Confidence-weighted annotation merging . . . . . . . . . . . . 108
5.4.3 Generalization capabilities . . . . . . . . . . . . . . . . . . . . 117
5.4.4 Comparison of annotation costs . . . . . . . . . . . . . . . . . 119

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6 Summary and conclusion 127
6.1 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . . 129
6.2 Conclusion and future work . . . . . . . . . . . . . . . . . . . . . . . 131

Bibliography 133

Publications 159

Acknowledgments 163





List of Figures

1 Clickstream analysis based quality estimation in crowd-sourced
image segmentation. The quality of the segmentation is derived
from the worker’s mouse actions recorded in the clickstream.
(Reprinted with permission from Heim et al. [1] c© 2017 IEEE) 6

2 (a) Schematic illustration of a CT scanner. The X-ray source
and detectors rotate around the patient. Several projections
are captured from different angles in order to create a 3D im-
age volume with a tomographic reconstruction technique. (b)
Visualization of the anatomical standard planes with the corre-
sponding coordinate system. It is distinguished between three
standard view planes: axial (top view), sagittal (side view) and
coronal (front view). The anatomy is defined by the follow-
ing anatomical axes: frontal (X-axis), longitudinal (Y-axis) and
sagittal (Z-axis). . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 CT scan of the abdomen visualized with MITK [2]. The figure
displays a standard MPR from the CT scan with the accord-
ing 2D image slices axial, sagittal and coronal. In addition to
the standard image planes, the CT scan is visualized with vol-
ume rendering (bottom right). (Image data from the SLIVER07
challenge [3]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

xiii



4 Schematic illustration of two 2D images representing the same
region in the world coordinate system. Both images have dif-
ferent dimensions ~d, different spacing ~s and the same origin ~o
in the world coordinate system. In addition to the world coor-
dinate system, the index coordinates of image grid are included
in the pixels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Example of coronal image plane from an abdominal CT scan.
(a) The image is displayed with respect to its spacing, orienta-
tion and origin. (b) Without applying the geometric transfor-
mations the image gets distorted. (Image data from SLIVER07
[3]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6 Two-dimensional image slice extracted from an abdominal CT
scan displayed with the default grey values (a) and modified
grey values matching the Hounsfield Units (HU) of liver tissue
by applying a level window [4]. (Image data from SLIVER07 [3]) 16

7 Schematic illustration for traditional medical image annotation
with medical domain experts. Usually, a single medical expert
processes the data set sequentially and annotates one image
after another. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

8 Schematic illustration how theDICE similarity coefficient (DSC)
is calculated for two binary segmentation masks. The white col-
ored pixels denote the segmentation. The overlap and the sum
of both masks used to calculate the DSC are highlighted in red. 18

9 Crowdsourcing enables a twenty-four-seven access to a scalable
distributed workforce. The tasks are distributed over the inter-
net to a workforce of anonymous workers distributed all over
the globe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

10 Example of a CAPTCHA text for user validation on websites.
Two distorted words are displayed to the user. One unknown
word to be labelled and one for which a reference label is available. 19

11 Illustration of micro task based crowdsourcing. A task is di-
vided into several homogeneous micro tasks that are processed
by different crowd workers. The final result is created by re-
assembling the micro tasks processed by the crowd. . . . . . . . 23



12 Clickstreams are generated while a user is browsing a website
with his mouse cursor. Each recorded event includes its spatial
position within the website, the actual time stamp, its ID which
represents the position within the clickstream as well as the
action (e.g. click) and object (e.g. a button) upon which it was
triggered. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

13 Examples for the different imaging modalities used in the state-
of-the-art crowdsourcing approaches presented in Section 3.1 :
(a) Example of a breast cancer histopathology image from the
Bioimaging Challenge 20151 data set [5]. (b) Phase contrast
microscopy image from the BU-BIL2 data set [6]. (c) Example
of surgical instruments in an endoscopic image from the Endo-
scopic Vision Challenge3. (d) Example of an axial plane of an
abdominal CT scan from the SLIVER07 data set [3]. . . . . . . 31

14 Example how three binary image masks are merged with ma-
jority voting. The white pixels denote the segmentation. In the
first step, the images are accumulated into a frequency map.
With the application of majority voting to the frequency map
only the pixels that are present in the majority of images (at
least two images) remain in the final output binary mask. . . . . 43

15 Segmentation pipeline for crowd-sourced organ segmentation.
Initially the input volume is segmented with an automatic seg-
mentation method. In the next step the segmentation is dis-
tributed between the crowd workers over the internet. The
workers detect inaccurate segmentations and refine them if re-
quired. In the last step, the final segmentation is created by
merging the annotations from different crowd workers. . . . . . 50



16 The crowdsourcing tasks are distributed to the crowd workers
throughout web based applications that can be embedded into
Amazon Mechanical Turk (MTurk). Instructions as well as ex-
amples of accurate and inaccurate segmentations are included
in the tasks. (a) To detect inaccurate segmentations the work-
ers get displayed successive slices of a CT volume in a website.
They can be marked as valid or invalid by clicking on the im-
age. (b) The segmentation application enables the workers to
modify or delete existing segmentation outlines and add new
segmentation outlines. . . . . . . . . . . . . . . . . . . . . . . . 52

17 Swim lane flowchart depicting the interaction between the dif-
ferent components used to implement the annotation pipeline
presented in Figure 15. The medical imaging platform manages
the crowdsourcing platform and the data on the web server. The
annotation software is implemented as a web application on an
external web server that is remotely accessed by the workers
acquired through the crowdsourcing platform. . . . . . . . . . . 53

18 Example of an accurate (a) and inaccurate (b) segmentation
outline included in the detection task presented in Figure 16 a.
As depicted in (b) the state of a slice can be toggled to valid or
invalid by clicking on the image. . . . . . . . . . . . . . . . . . . 58

19 Overview of the segmentation tool for crowd-based organ seg-
mentation (a). (b) Segmentation outlines can be refined by
moving, deleting or adding new vertices. (c) In the delete mode
existing outlines can be removed. (d) Workers can add new
outlines by switching into the polygon mode. If the contour
intersects itself an error message is displayed (e). . . . . . . . . . 58

20 Schematic visualization how majority voting is applied to merge
the slice-wise organ segmentations of multiple crowd workers. In
the first step the crowd segmentations of an organ are merged
into a frequency map. Afterwards majority voting is applied
to the frequency map. Every pixel that is contained in the
segmentations from the majority of crowd workers is segmented
as "organ" and added to the final segmentation. . . . . . . . . . 59



21 Slice-wise segmentations that were distributed for refinement to
the different groups of medical experts. The slices are sorted
from S1 to S10 by the absolute improvement the crowd was able
to achieve on the initial Statistical Shape Model (SSM) segmen-
tation (red contour) compared to the reference segmentation
(green contour). The colored boxes highlight segmentations
with the following properties: More contours in the SSM than
the reference segmentation (green), equal amount of contours
(blue), more contours in the reference than the SSM segmenta-
tion (red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

22 Results for the detection of inaccurate segmentation outlines in
each annotator group after majority voting was applied. The
distribution of correctly identified inaccurate segmentation out-
lines (True Positives), correctly identified accurate segmenta-
tions (True Negatives), inaccurate segmentation outlines rated
as accurate (False Negatives) and accurate segmentation out-
lines rated as inaccurate (False Positives) are similar for all an-
notator groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

23 DSC of the refined crowd segmentation outlines merged with
majority voting compared to the initial SSM segmentation. The
dotted lines inside of the violins represent the median and inter
quartile range (IQR). . . . . . . . . . . . . . . . . . . . . . . . . 67

24 Schematic overview of the frequency maps from all segmenta-
tions performed by the different annotator groups on the subset
displayed in Figure 21. The corresponding reference is included
at the bottom. The segmentations from the crowd have a higher
intra-observer variance compared to the different groups of med-
ical experts. This can be especially seen on the slices S1,S6 and
S9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

25 Selected examples for the slices S1,S6 and S9 depicting the lack
of medical expertise from non-expert crowd workers. Red: ini-
tial SSM segmentation, green: reference segmentation, cyan:
segmentation from crowd workers with a low level of medical
expertise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70



26 Statistics of the slice-wise segmentations created by the individ-
ual annotators from the different expert groups compared to the
initial SSM segmentation and the crowd segmentations created
with pixel-wise majority voting. Except for one engineer, all
expert annotators created segmentations yielding in a similar
mean, median (IQR) DSC for the subset introduced in Section
4.2.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

27 Slice-wise segmentations of the subset displayed in Figure 21
merged with pixel-wise majority voting and the STAPLE algo-
rithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

28 Training step of the segmentation quality estimation. Initially,
images with known reference segmentations are distributed to
multiple crowd workers. While the workers are segmenting the
images, the system records their annotation behavior (click-
streams). For each annotated image, the clickstream is con-
verted into a feature vector characterizing the worker’s interac-
tion behavior. The set of all collected feature vectors with corre-
sponding DSC values is then used to train a regressor to estimate
the DSC solely based on a worker’s clickstream. (Reprinted with
permission from Heim et al. [1] c© 2017 IEEE) . . . . . . . . . . 80

29 Concept for crowd-based image segmentation based on a trained
segmentation quality estimation (Figure 28). The image to be
annotated is repeatedly distributed to the crowd until a certain
confidence level is reached. The obtained segmentations are
merged in a weighted manner, where the weight of the worker’s
annotation increases with the estimated DSC on that specific
image. (Reprinted with permission from Heim et al. [1] c© 2017
IEEE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

30 User interface for image segmentation. The user interface con-
sists of a short task introduction (top), instructions about the
available functions (middle) the segmentation canvas including
control buttons. Examples of object segmentations are provided
in the bottom. The current state of the interface shows one fin-
ished contour with orange points and a contour during creation. 82



31 Visualization of the gradient features extracted from a draw
operation on an accurate (a) and inaccurate (b) segmentation.
The direction of the velocity (purple) is perpendicular to the
gradient (green) on the accurate segmentation. . . . . . . . . . . 87

32 Visualization of the image features extracted in the final contour
of an accurate (a) and inaccurate (b) segmentation. The vertex
normals (cyan) and gradients (green) are collinear on accurate
segmentations (a) but point in different directions on inaccurate
segmentations (b). . . . . . . . . . . . . . . . . . . . . . . . . . 87

33 Examples for different types of crowd-sourced segmentations of
cars (left) and cats (right) from the Visual Object Classes (VOC)
challenge data: (a) Good quality segmentation, (b) mediocre
quality segmentation, (c) poor quality segmentation, (d) accu-
rate segmentation of the wrong object, (e) wrong tool usage (f)
bounding box, (g) simple shape inside of object, (h) scribbles, (i)
inaccurate segmentation of the wrong object, (j) simple shape
outside of object and (k) empty submission. The cases (g) - (k)
were considered as spam. . . . . . . . . . . . . . . . . . . . . . . 92

34 Examples for crowd-sourced image segmentations of vehicles
(a), animals (b), rectangular-shaped (c) and circular-shaped (d)
object classes from the COCO data set [7]. The segmentation
outlines are visualized with their control points. . . . . . . . . . 96

35 Absolute error of the segmentation quality estimation for train-
ing and testing on the same classes (cars-cars, cats-cats) as well
as on different classes (cats-cars, cars-cats). Each violin includes
a boxplot displaying the median and inter quartile range (IQR)
of the data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

36 Distribution for the different categories of crowd segmentations
illustrated in Figure 33 for the cars (a) and cats (b) data set.
Booth data sets show roughly the same distribution of the dif-
ferent categories. . . . . . . . . . . . . . . . . . . . . . . . . . . 101



37 Distribution of crowd segmentations that were estimated to have
a high DSC but had a low true DSC (false positives) divided
into the error classes introduced in Section 5.4.1 with the ab-
solute amount for each error class. The total amounts relative
to all estimations for each class were: 3% (cars-cars), 1% (cats-
cats), < 1% (cats-cars) and 6% (cars-cats) [1]. (Reprinted with
permission from Heim et al. [1] c© 2017 IEEE) . . . . . . . . . . 102

38 Median R2 score and IQR as a function of the number of images
used to train the DSC estimation. . . . . . . . . . . . . . . . . . 103

39 Influence of the feature set size on the DSC estimation error
shown for the car (a) and the cat (b) data set for the dif-
ferent feature selection methods Sequential Forward Selection
(SFS), Best First Search (BFS), Conditional Mutual Informa-
tion Maximization (CMIM), Interaction Capping (ICAP), Joint
Mutual Information (JMI), Conditional Infomax Feature Ex-
traction (CIFE), and Mutual Information for Feature Selection
(MIFS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

40 Confidence weighted majority voting (right) compared to con-
ventional majority voting with λ annotations (left) for train-
ing and testing on the same class (intra-class). Performance
is assessed for a estimated DSC threshold of εt = 0.9 and a
varying number of annotations λ. ϕ represents the average
number of annotations to obtain λ annotations with an esti-
mated DSC above εt. For clarity only subsets of the experi-
ments (λ ∈ {3, 5, 7}) are visualized. The dotted lines in each
violin plot represent the median and IQR. . . . . . . . . . . . . 109



41 Confidence weighted majority voting (right) compared to con-
ventional majority voting with λ annotations (left) for train-
ing and testing on different classes (inter-class). Performance
is assessed for a estimated DSC threshold of εt = 0.9 and a
varying number of annotations λ. ϕ represents the average
number of annotations to obtain λ annotations with an esti-
mated DSC above εt. For clarity only subsets of the experi-
ments (λ ∈ {3, 5, 7}) are visualized. The dotted lines in each
violin plot represent the median and IQR. . . . . . . . . . . . . 110

42 Confidence weighted majority voting (right) with λ annotations
compared to conventional majority voting with ϕ annotations
(left) for intra-class training and testing. Performance is as-
sessed for an estimated DSC threshold of εt = 0.9 and a varying
number of annotations λ, where ϕ represents the average num-
ber to obtain λ annotations with with an estimated DSC above
εt . For clarity only subsets of the experiments (λ ∈ {1, 3, 5, 7})
are visualized. The dotted lines in each violin plot represent the
median and IQR. . . . . . . . . . . . . . . . . . . . . . . . . . . 111

43 Confidence weighted majority voting (right) with λ annotations
compared to conventional majority voting with ϕ annotations
(left) for inter-class training and testing. Performance is as-
sessed for an estimated DSC threshold of εt = 0.9 and a varying
number of annotations λ, where ϕ represents the average num-
ber to obtain λ annotations with with an estimated DSC above
εt . For clarity only subsets of the experiments (λ ∈ {1, 3, 5, 7})
are visualized. The dotted lines in each violin plot represent the
median and IQR. . . . . . . . . . . . . . . . . . . . . . . . . . . 112



44 Simultaneous Truth and Performance Level Estimation (STAPLE)
algorithm with DSC estimation (left) compared to the conven-
tional STAPLE algorithm with λ annotations (left) for intra-
class training and testing. Performance is assessed for a es-
timated DSC threshold of εt = 0.9 and a varying number of
annotations λ. ϕ represents the average number of annotations
to obtain λ annotations with an estimated DSC above εt. For
clarity only subsets of the experiments (λ ∈ {3, 5, 7}) are visu-
alized. The dotted lines in each violin plot represent the median
and IQR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

45 STAPLE algorithm with DSC estimation (left) compared to the
conventional STAPLE algorithm with λ annotations (left) for
inter-class training and testing. Performance is assessed for a
estimated DSC threshold of εt = 0.9 and a varying number of
annotations λ. ϕ represents the average number of annotations
to obtain λ annotations with an estimated DSC above εt. For
clarity only subsets of the experiments (λ ∈ {3, 5, 7}) are visu-
alized. The dotted lines in each violin plot represent the median
and IQR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

46 STAPLE algorithm with DSC estimation (left) with λ annota-
tions compared to the conventional STAPLE algorithm with ϕ
annotations (left) for intra-class training and testing. Perfor-
mance is assessed for an estimated DSC threshold of εt = 0.9
and a varying number of annotations λ, where ϕ represents the
average number to obtain λ annotations with with an estimated
DSC above εt . For clarity only subsets of the experiments
(λ ∈ {1, 3, 5, 7}) are visualized. The dotted lines in each violin
plot represent the median and IQR. . . . . . . . . . . . . . . . . 115



47 STAPLE algorithm with DSC estimation (left) with λ annota-
tions compared to the conventional STAPLE algorithm with ϕ
annotations (left) for intra-class training and testing. Perfor-
mance is assessed for an estimated DSC threshold of εt = 0.9
and a varying number of annotations λ, where ϕ represents the
average number to obtain λ annotations with with an estimated
DSC above εt . For clarity only subsets of the experiments
(λ ∈ {1, 3, 5, 7}) are visualized. The dotted lines in each violin
plot represent the median and IQR. . . . . . . . . . . . . . . . . 116

48 Intra-class estimation performance of all classes acquired with
Amazon Mechanical Turk (MTurk) (Section 5.3.3). The with of
the violins indicate the distribution in the data set. Each violin
includes a boxplot displaying the median and IQR of the data
set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

49 Estimation performance for all classes acquired through MTurk.
Mean absolute error in terms of the DSC for the segmentation
quality estimation when training on one class (row) and testing
on the same or another class (column). . . . . . . . . . . . . . . 118

50 Error of the segmentation quality estimation when training on
animals or vehicles and testing on (1) the same class, (2) the
same category (here: different animals or vehicles), (3) a similar
category (here: vehicles or animals) and (4) a different category
(here: rectangular-shaped or circular-shaped objects). . . . . . . 118

51 Combined training with all classes compared to the intra-class
estimation performance. The dotted lines in the violin plot rep-
resent the median and interquartile range (IQR). . . . . . . . . 119



52 Comparison of the annotation costs for the proposed method
for different λ with a baseline method based on majority voting
for different ϕ. The percentage of spam was set to s = 30%, the
number of training annotations at = 10, 000 and the number of
quality control tasks with known reference data aw = 10, which
results in one annotation every ten images (10% quality control
tasks). The annotation costs are plotted as number of anno-
tations needed to number of annotation requested. (Reprinted
with permission from Heim et al. [1] c© 2017 IEEE) . . . . . . . 120

53 Comparison of the annotation costs of the proposed method for
different λ with the estimated costs of the approach applied by
the manual grading method. The percentage of spam was set
to s = 24.9% as reported by Lin et al. [7]. The annotation
costs are plotted as number of annotations needed to number of
annotation requested. The diamond represents the estimate of
the total cost for annotating the Common Objects in Context
(COCO) data set which features a = 1, 976, 839 annotations
from nc = 91 categories, employing nw = 21408 workers [1].
(Reprinted with permission from Heim et al. [1] c© 2017 IEEE) 121

54 Inconsistent reference segmentations in the VOC challenge data:
(a) The car is fully segmented. (b) Windows are left out in the
segmentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 123



List of Tables

1 Overview of common micro task crowdsourcing platforms. All
presented platforms provide remote access over an API. Two
platforms provide the possibility to include external tasks hosted
on external web servers. This results in no limitations to the
available task types as the requester is free to implement custom
user interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 Overview of the current state-of-the-art in crowd-sourced medi-
cal image annotation. In addition to the imaging modality, the
algorithm type and the employed crowdsourcing platform, the
table displays if the approach incorporates tutorials or qualifi-
cation tasks to train the workers, applied a pre-processing step
to the image data for enhanced visualization or uses a hybrid
crowd-algorithm method. Furthermore, the dimension shows if
the approach was used to annotate 3D or 2D images. In the
case of CT or MRI, 2D indicates that only a subset of the vol-
ume was annotated, no 3D target structures. The platform type
"small selected group" is used when the method was validated
using a small group of selected volunteers. . . . . . . . . . . . . 32

xxv



3 Average time to process one detection HIT containing ten slice-
wise segmentations. The total elapsed time is measured from
the distribution to completion of all HITs. Compared to the
crowd, the different groups of medical expert achieved low an-
notation rates due to the low availability of the individual an-
notators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4 Average time to refine one slice-wise segmentation. The total
elapsed time is measured from distribution to completion of all
HITs in each annotator group. Compared to the crowd, the dif-
ferent groups of medical experts achieved low annotation rates
due to the low availability of the individual annotators. . . . . . 68

5 Mean, median (inter quartile range (IQR)) for the DSC of the
slice-wise segmentations refined by individual expert annota-
tors. A graphical representation is displayed in Figure 26. . . . . 72

6 p-values corrected with Bonferroni-Holm α adjustment for com-
paring the individual expert annotators against the crowd with
multiple Wilcoxon signed-rank tests. At a significance level of
0.05 none of the expert annotators was found to create statis-
tically significant differences in the segmentation quality com-
pared to the crowd with pixel-wise majority voting. . . . . . . . 72

7 Corrected p-values with Bonferroni-Holm α adjustment for com-
paring the segmentations from the different expert groups against
the crowd with multiple Wilcoxon signed-rank tests. When
merging multiple annotations, each group of medical experts
was able to produce statistically significant differences in the
segmentation quality at a significance level of 0.05. . . . . . . . 72

8 Mean, median (inter quartile range (IQR)) for the DSC when
merging the segmentations from the different annotator groups
performed on the subset presented in Figure 21. The table
includes pixel-wise majority voting (left), STAPLE algorithm
(right) as well as the initial baseline segmentations created with
the SSM (bottom). . . . . . . . . . . . . . . . . . . . . . . . . . 73



9 Feature importance analysis for the data set cars. For those
feature selection methods that provide rankings (filter meth-
ods), the number represents the rank of the corresponding fea-
ture. For methods that do not provide ranks (wrapper methods)
the cross x indicates whether the corresponding feature was se-
lected or not. Features based on the annotation process (click-
stream features) are marked in gray. Combined features based
on the annotation process in combination with image features
are marked in blue and features not using any annotation pro-
cess information in green. Feature selection methods: Sequen-
tial Forward Selection (SFS), Best First Search (BFS), Condi-
tional Mutual Information Maximization (CMIM), Interaction
Capping (ICAP), Joint Mutual Information (JMI), Conditional
Infomax Feature Extraction (CIFE), and Mutual Information
for Feature Selection (MIFS). . . . . . . . . . . . . . . . . . . . 104

10 Feature importance analysis for the data set cats. For those
feature selection methods that provide rankings (filter meth-
ods), the number represents the rank of the corresponding fea-
ture. For methods that do not provide ranks (wrapper methods)
the cross x indicates whether the corresponding feature was se-
lected or not. Features based on the annotation process (click-
stream features) are marked in gray. Combined features based
on the annotation process in combination with image features
are marked in blue and features not using any annotation pro-
cess information in green. Feature selection methods: Sequential
forward selection (SFS), Best First Search (BFS), Conditional
Mutual Information Maximization (CMIM), Interaction Cap-
ping (ICAP), Joint Mutual Information (JMI), Conditional In-
fomax Feature Extraction (CIFE), and Mutual Information for
Feature Selection (MIFS). . . . . . . . . . . . . . . . . . . . . . 106

11 Mean estimation error for each feature selection method. The
minimal chosen feature set achieved a similar classification per-
formance compared to all features (BASE). (Reprinted with per-
mission from Heim et al. [1] c© 2017 IEEE) . . . . . . . . . . . 107





List of Acronyms

2D two-dimensional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

3D three-dimensional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

DSC DICE similarity coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

MITK Medical Imaging and Interaction Toolkit . . . . . . . . . . . . . . . . . . . . . . . . . . 51

IQR inter quartile range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

MTurk Amazon Mechanical Turk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

STAPLE Simultaneous Truth and Performance Level Estimation . . . . . . . . 90

COCO Common Objects in Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

HTML Hypertext markup language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

ITK Insight Segmentation and Registration Toolkit . . . . . . . . . . . . . . . . . . . . . 86

TP true positive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

FP false positive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

TN true negative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

FN false negative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

VOC Visual Object Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

HIT Human Intelligence Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

SFS Sequential Forward Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94

xxix



BFS Best First Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

CMIM Conditional Mutual Information Maximization . . . . . . . . . . . . . . . . . . . 94

ICAP Interaction Capping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

JMI Joint Mutual Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

CIFE Conditional Infomax Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 94

MIFS Mutual Information for Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . 94

SSM Statistical Shape Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

PNG Portable Network Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

JSON JavaScript Object Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

REST Representational State Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54

CT Computed Tomography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

MRI Magnetic Resonance Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

SLIVER07 MICCAI Liver Segmentation Competition 2007 . . . . . . . . . . . . . .60

PHP Hypertext Preprocessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

API Application Programming Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

AWS Amazon Web Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

WWW World Wide Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

PACS Picture Archiving and Communication System . . . . . . . . . . . . . . . . . . . . 11

DICOM Digital Imaging and Communications in Medicine . . . . . . . . . . . . . . 11

HIV Human Immunodeficiency Virus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

RNA Ribonucleic acid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

GWAP Game with a Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

IoU Intersection over Union . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

OCR Optical Character Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

UPS User Performance Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

CNN Convolutional Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

VC Virtual Colonoscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

BU-BIL Boston University-Biomedical Image Library . . . . . . . . . . . . . . . . . . . .35

xxx



MPR Multiplanar Reformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

HU Hounsfield Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57

mm millimetre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

EM expectation-maximization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

CAPTCHA Completely Automated Public Turing test to tell Computers
and Humans Apart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

ID identifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

DOM Document Object Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

OpenCV Open Source Computer Vision Library . . . . . . . . . . . . . . . . . . . . . . . . . 14

OpenGL Open Graphics Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

USA United Stated of America . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

GEARS Global Evaluative Assessment of Robotic Skills . . . . . . . . . . . . . . . . . . 37

RFLS Robotic Fundamentals of Laparoscopic Surgery . . . . . . . . . . . . . . . . . . . . 37

xxxi



xxxii



CHAPTER 1

Introduction

1



Chapter 1. Introduction

2



Chapter 1. Introduction Motivation

1.1 Motivation

The accurate annotation of medical images is highly relevant for different clin-
ical applications, e.g. radiation therapy, the planing of surgical interventions
and follow up of tumor diseases. In the clinical routine a vast number of seg-
mentations are still performed manually, which can be very time consuming
in the case of three-dimensional (3D) medical image modalities like Computed
Tomography (CT) or Magnetic Resonance Imaging (MRI). Recent advances of
different automatic segmentation methods have shown great potential in this
context [8, 9, 10, 11, 12, 13]. The major bottleneck of most of those techniques
- especially with the rise of deep learning algorithms - is the annotation of the
often large amount of required training data [14]. Crowdsourcing has become
popular in this context, as it is based on outsourcing cognitive tasks to many
anonymous, untrained individuals, so-called workers, from an online commu-
nity [15, 16]. It has proven itself a valuable tool for cost effective large scale
image annotation [7, 17, 18] in particular when the data can not be processed
by computers and is too large to be annotated by individuals. Due to its ver-
satility, crowdsourcing has already been successfully applied to a large variety
of fields including the digitization of books [19], text translation [20], discov-
ery of protein [21] and Ribonucleic acid (RNA) [22] structures, classification
of galaxies [23], observation of birds [24], the reconstruction of documents [25]
and even literature research [26]. With the rise of crowdsourcing, several image
data bases have evolved with over a million of annotated images [7, 27] and be-
came a huge benefit to researchers from the computer vision community. Due
to the lack of publicly available reference data, crowdsourcing could have an
immense impact on accelerating research in the domain of bio-medical imaging
[9]. Today, crowdsourcing is already applied in various medical research fields
[28]. It was, for example, applied in a crowdsourcing game to help decipher a
protein structure in only ten days that had been an unsolved scientific problem
of Human Immunodeficiency Virus (HIV) research for 15 years [29].

In contrast to every day images "recognizable by a four year old" [7] that are
typically annotated by crowdsourcing techniques, the accurate interpretation
of radiological images requires trained medical experts with years of expertise
[30, 31, 32]. The lack of medical expertise is normally compensated by pointing
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the workers to the structures of interest [33], training the crowd workers [34],
abstraction of the real data by different rendering techniques [35, 36] or a large
number of redundant annotations [35].

A major challenge in the context of crowdsourcing remains the high fluc-
tuation in the annotation quality. Although many workers are highly skilled
and motivated [37], the presence of malicious workers - so called spammers -
is a severe problem as they are mainly interested in receiving the reward for
a given task by investing the minimum amount of time [38]. Usually up to
30% of crowd annotations are done by spammers trying to cheat the system
[39, 40, 41]. Methods proposed to address this issue have led to better overall
results. In the current state-of-the-art, quality control is generally solved by
a redundant distribution of tasks [42], mixing in quality control tasks with
a known reference outcome in between the crowdsourcing tasks [43] or algo-
rithms based on the segmentation result [18, 44]. Further methods include
additional quality control tasks to manually grade the annotations [7, 17] by
crowd workers or monitor the crowd workers and restrict the pool of poten-
tial workers to those that have a history of exceptionally good rating by the
task providers (and thus reduce annotation speed). All these state-of-the-art
methods for quality control in crowdsourcing have in common that they solely
use the annotation result and not incorporate any information of the anno-
tation process itself. Furthermore, most of these methods require additional
annotations which results in higher overall costs.

In conclusion, the potential of crowdsourcing in the field of medical im-
age analysis has not yet been fully exploited. One possible explanation for
this is the lack of medical expertise from the non-expert online workers and
the complexity of medical image volumes. Novel crowdsourcing concepts to
compensate the lack of medical expertise and reduce the complexity of the
data are required to further advance crowdsourcing in the field of medical
image analysis. Another challenge remains the partially poor annotation qual-
ity. The development of novel quality control methods, not relying on already
known reference data, the distribution of redundant tasks or the task result
could drastically reduce the overall costs related to crowdsourcing and further
advance the whole field of research.
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1.2 Objectives

The primary objective of this thesis was to investigate the following two hy-
potheses:

Hypothesis 1: Crowd-algorithm collaboration can be used to create expert
level annotations of 3D medical image volumes with non-expert online workers.

Hypothesis 2: The quality of crowd-sourced image segmentations can be
derived from the worker’s annotation behavior.

To this end, the aim of the thesis was to apply common crowdsourcing tech-
niques to the field of medical image analysis and investigate domain specific
challenges. Therefore the following research questions should be addressed:
(1) Is it possible to create expert level annotations of complex radiological 3D
image volumes with a hybrid crowd-algorithm approach? (2) How does the
crowd perform compared to medical experts? (3) What are the limitations
and which open challenges need to be addressed?

A further goal was to implement the first approach for segmentation quality
estimation in crowd-sourced image segmentation solely based on the annota-
tion process. The approach should address the main flaws of the existing
approaches for quality estimation in crowd-sourced image annotation and thus
(1) not depend on additional sanity tasks with known reference segmentations
(2) or monitor the history of a specific user over time and (3) be independent
of the imaging domain it is applied to.

1.3 Contributions

This thesis presents two main scientific contributions, one to the field of medical
image analysis [45, 46] and one to the field of computer vision [1]:

Contribution to the field of medical image analysis (Chapter 4): A
novel hybrid crowd-algorithm approach for organ segmentation in 3D medical
image volumes was contributed to the field of medical image analysis. The
method was integrated into a medical imaging platform combining the best
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of both worlds, the reliability and processing speed of algorithms from the
domain of medical imaging and cognitive skills from humans acquired through
crowdsourcing. A comprehensive validation study performed on the case of
liver segmentation in CT volumes confirmed hypothesis 1.

Figure 1: Clickstream analysis based quality estimation in crowd-
sourced image segmentation. The quality of the segmentation is de-
rived from the worker’s mouse actions recorded in the clickstream.
(Reprinted with permission from Heim et al. [1] c© 2017 IEEE)

Contribution to the field of computer vision (Chapter 5): The contri-
bution to the field of computer vision can be summarized into (1) an approach
to estimate the quality of crowd-sourced image segmentations solely based
on the annotation process and (2) a method to create accurate crowd-based
object segmentations by using a confidence-based weighted method to merge
individual crowd-sourced segmentations based on their estimated quality. In
contrast to previous methods for quality estimation in crowd-sourced object
segmentation, the proposed method solely relies on the worker’s annotation
behaviour recorded in clickstreams during the annotation process (Figure 1).
To the author’s knowledge this is the first work using clickstreams to estimate
the quality of crowd-sourced object segmentations. A comprehensive valida-
tion study performed on 34,000 crowd-sourced object segmentations on public
available data sets confirmed hypothesis 2.

1.4 Outline

The outline of the thesis is divided into the following six chapters: Chapter 1 in-
troduces the topic and motivation behind this work. Chapter 2 gives the reader
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an overview about the fundamentals of medical imaging and crowdsourcing.
A comprehensive review of state-of-the-art methods related to crowdsourcing
in the field of medical image analysis and quality control in crowd-sourced
image annotation is presented in Chapter 3. Chapter 4 introduces a hybrid
crowd-algorithm approach for the segmentation of organs in 3D medical image
volumes and compares the capabilities of non-expert workers acquired through
micro task based crowdsourcing platforms against different groups of trained
medical expert annotators. A novel annotation process based method to esti-
mate the quality of crowd-sourced image segmentations and a confidence-based
method to merge multiple crowd-sourced annotations based on their estimated
quality is presented in Chapter 5. Finally, Chapter 6 summarizes and discusses
the main contributions of this thesis.
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Chapter 2. Background Fundamentals of Medical Imaging

This chapter introduces the required background for the thesis. It is outlined
as follows: Section 2.1 provides a brief overview about the acquisition of three-
dimensional (3D) Computed Tomography (CT) scans, medical image segmen-
tation and introduces the medical terms used in this work. The fundamentals
of crowdsourcing and today’s commonly used crowdsourcing techniques are in-
troduced in Section 2.2. Section 2.3 gives a brief introduction to clickstreams.

2.1 Fundamentals of Medical Imaging

The fundamentals of medical imaging include the properties of CT scans (Sec-
tion 2.1.1), the basics of medical image annotation (Section 2.1) and segmen-
tation quality measures (Section 2.1.3).

2.1.1 Computed Tomography (CT)

This section gives a brief overview about the properties of the CT data sets
that are used later on in Chapter 4 of this thesis. Figure 2a illustrates the
data acquisition process of a medical CT scanner. A CT scanner consists of an
X-ray source and its corresponding detectors that rotate around the patient.
During the scanning process several projections of the patient are captured
from different angles [47]. The 3D image volume is computed from the dif-
ferent projections by applying a tomographic reconstruction technique that
produces a set of cross-sectional two-dimensional (2D) image slices of the pa-
tient. Commonly used reconstruction techniques include back projection based
methods [48, 49], Fourier based methods [50] and iterative methods [51, 52].
Current research focuses on computationally more intensive iterative methods
that require less projections, such as algebraic reconstruction techniques, in
order to reduce the radiation dose the patient is exposed to [53, 54]. After
the image is reconstructed it is saved into the Picture Archiving and Com-
munication System (PACS) system of the medical facility using the Digital
Imaging and Communications in Medicine (DICOM) [55] standard. Once the
DICOM image of the CT scan is available, it can be retrieved from the PACS
system and visualized with a radiological viewing platform. Beside commer-
cial solutions, examples for freely available medical viewers to display DICOM
images are 3D Slicer [56], OsiriX [57] and the Medical Imaging and Interaction
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(a) (b)

Figure 2: (a) Schematic illustration of a CT scanner. The X-ray
source and detectors rotate around the patient. Several projections
are captured from different angles in order to create a 3D image vol-
ume with a tomographic reconstruction technique. (b) Visualization of
the anatomical standard planes with the corresponding coordinate sys-
tem. It is distinguished between three standard view planes: axial (top
view), sagittal (side view) and coronal (front view). The anatomy is
defined by the following anatomical axes: frontal (X-axis), longitudinal
(Y-axis) and sagittal (Z-axis).

Toolkit (MITK)1 [2]. Recent advances in web technologies for the visualiza-
tion of medical data sets [58, 59, 60] have also emerged to freely available web
based solutions [61]. Radiological viewers display volume data sets from dif-
ferent view directions with respect to the anatomical standard planes and axes
(Figure 2b). The three standard image planes are:

Axial: The axial plane (view from the top) is spanned by the X- and Z-axis
of the coordinate system.

Sagittal: The sagittal plane (side view) is spanned by the Y- and Z-axis of
the coordinate system.

Coronal: The coronal plane (front view) is spanned by the X- and Y-axis of
the coordinate system.

1http://mitk.org accessed 15. Jan 2018
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Figure 3: CT scan of the abdomen visualized with MITK [2]. The
figure displays a standard MPR from the CT scan with the according
2D image slices axial, sagittal and coronal. In addition to the standard
image planes, the CT scan is visualized with volume rendering (bottom
right). (Image data from the SLIVER07 challenge [3])

Figure 3 displays a CT volume visualized with MITK, showing the three stan-
dard planes generated with a standardMultiplanar Reformation (MPR). MPR
is a reconstruction technique used to create and visualize more image planes
than the one used in the initial acquisition process [62]. In addition to MPR
other 3D visualization techniques can be applied, for example different volume
rendering techniques [63, 64, 65] (Figure 3 bottom right) or the visualization
of surfaces [66].

13



Fundamentals of Medical Imaging Chapter 2. Background

Image geometry

Figure 4: Schematic illustration of two 2D images representing the
same region in the world coordinate system. Both images have different
dimensions ~d, different spacing ~s and the same origin ~o in the world
coordinate system. In addition to the world coordinate system, the
index coordinates of image grid are included in the pixels.

In contrast to common 2D images, where each value is encoded in a pixel,
the unit of a 3D image volume is a so-called voxel [67]. Voxels are addressed in
a 3D grid coordinate system within the image volume. Radiological images are
represented in in terms of space coordinates and not within the grid coordinate
system of the image itself (Figure 4). Of note, in contrast to widely used
standards in computer graphics like the Open Graphics Library (OpenGL)2

specification or common computer vision libraries such as the Open Source
Computer Vision Library (OpenCV)3, where the origin of the image grid (0,0)
is in the upper left corner of the image [68, 69], libraries for medical image
analysis such as the Insight Segmentation and Registration Toolkit (ITK)4 [70]
or MITK tend to use the lower left corner of the image grid as origin [2, 71].
The position of the image within the world coordinate system is specified by its
origin that represents the lower left corner of the image. Each voxel occupies
a piece of the volume in the world coordinate system of the CT scan. Its
width, length as well as the thickness is specified in millimetre (mm). The
size of a voxel is also commonly addressed as spacing [67]. Depending on the

2http://opengl.org accessed 15. Jan 2018
3http://opencv.org accessed 15. Jan 2018
4http://itk.org accessed 15. Jan 2018
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acquisition method it is not assured that a CT scan has homogeneous spacing
[72]. Through the spacing and origin, images with different dimensions can
still represent the same region in world coordinate system. Radiological image

(a) (b)

Figure 5: Example of coronal image plane from an abdominal CT scan.
(a) The image is displayed with respect to its spacing, orientation and
origin. (b) Without applying the geometric transformations the image
gets distorted. (Image data from SLIVER07 [3])

viewing platforms apply a transformation based on the spacing and origin to
assure every image plane of the volume is visualized in its correct proportions
and position within the world coordinate system (Figure 5).

Value range

The value of the voxel itself is specified by a gray value representing the radio-
density of the tissue it corresponds to [73]. Radiodensity represents the X-ray
attenuation of the tissue and can be measured in Hounsfield Units (HU). Each
different type of tissue corresponds to a value on the HU scale. The liver for
example has an attenuation of 60± 6 HU [74].

Image representation

Radiological images typically contain more grey values than the human eye
can perceive [75]. To visualize an organ that belongs to a specific range on
the HU scale, a so-called "level window" [76] is applied to the image in the
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radiological viewing platform. In the process of windowing, a window with a
defined range of grey values is mapped to a specific position within the range
of grey values contained in the image, the level. All values inside the level
window are displayed as grey values in proportions to the size of the level
window, while the values outside the level window are displayed in black or
white depending if they are smaller than the lower or greater than the upper
border of the window. Figure 6 displays how the contrast of a CT scan is
enhanced for liver tissue visualization [4] by applying a level window.

(a) (b)

Figure 6: Two-dimensional image slice extracted from an abdominal
CT scan displayed with the default grey values (a) and modified grey
values matching the Hounsfield Units (HU) of liver tissue by applying
a level window [4]. (Image data from SLIVER07 [3])

2.1.2 Medical image annotation

The generation of reference data for algorithm training and evaluation of al-
gorithms in the field of medical image analysis is usually done by medical
domain experts or the researchers themselves [6, 77]. As depicted in Figure 7,
the medical expert processes the images of a data set in a sequential manner.
This approach is expensive, does not scale and can be very time consuming,
especially in the case of 3D imaging modalities like CT scans. In contrast
to everyday images, the accurate interpretation of radiological image volumes
require years of expertise and specialized medical training [30, 31, 32]. CT
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Figure 7: Schematic illustration for traditional medical image anno-
tation with medical domain experts. Usually, a single medical expert
processes the data set sequentially and annotates one image after an-
other.

scans for example consist of several stacked image slices that display the ra-
diodensity of the scanned object as grey values. The correct interpretation of
such image volumes requires specialized radiological viewing platforms. Due
to the 3D nature of the images, the annotator has to spend more time and ef-
fort to annotate the data as it can require multiple passes through the volume
and adjustment of the grey values in order to locate the structures of interest.
Organ or tumor segmentations can be performed completely manually [78] or
with different interactive semi-automatic segmentation methods [79, 80, 81].

2.1.3 Segmentation quality measures

The performance of an image segmentation is evaluated by comparing it to
its reference segmentation. Various quality metrics have been developed to
measure the quality of image segmentations. They consist of overlap based
measures [82], metrics based on surfaces distances [83], metrics based on vol-
ume differences [84] as well as intensity based metrics [85]. The most commonly
used overlap based metrics to evaluate the performance of image segmentations
are namely the DICE similarity coefficient (DSC) [86] and the Jaccard Coef-
ficient [87], also commonly referred to as Intersection over Union (IoU). Both
are defined by comparing a segmentation U to its reference segmentation V

and are similar in the way they are implemented. Indeed, the DSC (Equation
1):

DSC = 2|V ∩ U |
|V |+ |U | (1)
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and the IoU (Equation 2):

IoU = |V ∩ U |
|V ∪ U |

(2)

are related to each other. Therefore the DSC can be calculated for a given IoU
and vice versa (Equation 3):

DSC = 2 · IoU
1 + IoU

⇐⇒ IoU = DSC

2−DSC (3)

This thesis uses the DSC that is defined in Equation 1 as a measure for seg-
mentation quality. A step wise illustration how the DSC is calculated for image
segmentations is displayed in Figure 8.

Figure 8: Schematic illustration how the DSC is calculated for two
binary segmentation masks. The white colored pixels denote the seg-
mentation. The overlap and the sum of both masks used to calculate
the DSC are highlighted in red.

2.2 Fundamentals of crowdsourcing

The term "crowdsourcing" - a combination of the words crowd and outsourcing
- was introduced by Howe [88] to describe the process of outsourcing labor to
anonymous workers through the internet. Hence, the idea of outsourcing tasks
to the public is not new. One of the first task that can be considered as crowd-
sourcing was the Longitude act established in 1714. With the longitude act the
British parliament offered a reward to everybody that was able to determine
longitudinal the position of a ship [89]. This section gives a brief overview of
today’s most popular crowdsourcing techniques. A comprehensive review and
in depth description of the different available crowdsourcing techniques can be
found in Estelles et al. [90] and Hossain et al. [91].
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Crowdsourcing has several advantages compared to traditional data anno-
tation approaches performed by individual domain experts. As depicted in
Figure 9 crowdsourcing provides access to a scalable workforce distributed
over the globe. Individual domain experts (Figure 7) are only able to annotate
a few images at a time, while the scalable workforce accessible through crowd-
sourcing enables the possibility to create data bases with millions of annotated
images [7, 27].

Figure 9: Crowdsourcing enables a twenty-four-seven access to a scal-
able distributed workforce. The tasks are distributed over the internet
to a workforce of anonymous workers distributed all over the globe.

One of the most prominent crowdsourcing approaches is von Ahn’s re-
CAPTCHA [19]. It is used to digitize text that computerized Optical Character
Recognition (OCR) failed to recognize. The method is seamlessly integrated
into an user validation method for websites, where the user validates himself
by typing words into a text field, the so-called Completely Automated Public
Turing test to tell Computers and Humans Apart (CAPTCHA) (Figure 10).
Von Ahn proposed to pair an unknown label with a label for which reference

Figure 10: Example of a CAPTCHA text for user validation on web-
sites. Two distorted words are displayed to the user. One unknown
word to be labelled and one for which a reference label is available.

data is available. The new label is rejected if the CAPTCHA does not match
the reference label. The final label is created with the consensus of several
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successfully passed CAPTCHAs. After running the system for one year it
was possible to transcribe 440 million words, which is equivalent to 17,600
transcribed books [19].

Beside reCAPTCHA several different types of crowdsourcing approaches
evolved over time. They include computer games, voluntary work as well as
platforms with payed workers (Section 2.2.1).

2.2.1 Crowdsourcing Types

Today’s crowdsourcing approaches can roughly be divided into to following
three types:

Game with a purpose (GWAP)

The ESP game was one of the first approaches to label images with crowdsourc-
ing [17]. It is an online computer game where two players play against each
other. The two competing players have to tag the image with key words de-
scribing its attributes. Without communicating to each other, they have to en-
ter the same keywords with a limited amount of tries in order to maximize their
score. This crowdsourcing approach is called Game with a Purpose (GWAP)
[92, 93]. Playing the game serves the purpose to solve a problem for the creator
of the game while the players play the game for fun. Three popular GWAPs
are:

FoldIt: FoldIt5 is a puzzle game to explore protein folding [34]. In less than
two weeks after the launch, the gamers were able to decipher a protein struc-
ture that has been an unsolved scientific problem in Human Immunodeficiency
Virus (HIV) research for over 15 years [29]. Furthermore, the game helped
to design new algorithms for protein folding by observing the puzzle solving
behaviour of gamers [94].

eteRNA: eteRNA6 is an online browser game to explore Ribonucleic acid
(RNA) folding [22]. The RNA sequences created by players that achieved

5http://fold.it accessed 4. Dez 2017
6http://eternagame.org accessed 4. Dez 2017
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an exceptional high score are synthesized and evaluated in a Stanford bio-
chemistry laboratory. In a recent study the players were able to significantly
outperform state-of-the-art algorithms in creating RNA structures [95].

EyeWire: EyeWire7 is a segmentation based computer game to create the
connectome of retinal neurons [96, 97].

Despite the achieved scientific breakthroughs, GWAPs have the disadvantage
that they require a large amount of design overhead in order to create a game
that is enjoyable to play [93]. It also requires time and advertisement for a
game to get popular and reach critical mass of users.

Citizen science

Another popular approach is referred to as citizen science [98]. The purpose
behind citizen science driven projects is to conduct scientific research with vol-
unteers instead of scientific experts. Citizen science driven projects are more
transparent to the user compared to other approaches where the actual data
annotation process and purpose is hidden from the user (e.g. reCAPTCHA). In
contrast to payed crowdsourcing platforms, the users of citizen science projects
voluntarily contribute their knowledge out of personal interest to the research
field [99] or social engagement [100]. Frequently, some kind of gamification
[101] with scoreboards listening the top annotators is employed to further mo-
tivate the users. Right now, GWAPs such as FoldIt are becoming popular in
the context of citizen science. Another citizen science based crowdsourcing
approach that resembles more to micro task based crowdsourcing platforms
is the Zooniverse8 project [102]. Zooniverse provides a crowdsourcing plat-
form for the deployment of citizen science projects that was for example used
for the classification of galaxies in the galaxy zoo project [23]. Citizen sci-
ence driven projects demonstrate the versatility of crowdsourcing throughout
various domains. Examples of citizen science driven projects are: the classi-
fication of galaxies [23], observation of birds [24], classification of whale calls
[103], transcription of ancient Greek papyrus fragments [104], identifying tu-

7http://eyewire.org accessed 4. Dez 2017
8zooniverse.org accessed 2. Feb 2018
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mor markers in pathological images [105] as well as the classification of bad
weather conditions such as the intensity of cyclones [106].

Micro task based crowdsourcing

The last widely used crowdsourcing approach are micro task based crowd-
sourcing platforms [107]. In a micro task based crowdsourcing environment,
the worker gets payed a monetary reward for each completed task [108]. Micro
task platforms are well suited to perform research, as they grant on demand
access to large crowds for various types of problems. Based on a recent review,
27% of today’s crowdsourcing services are micro task based [107]. According
to current literature, the three most common micro task based crowdsourc-
ing platforms are Amazon Mechanical Turk (MTurk)9, CrowdFlower 10 and
Microworkers11 [107, 109]. In a micro task based crowdsourcing environment
the task requester represents the role of the employer. He creates and sub-
mits tasks to the crowdsourcing platform that are processed by the workers
in exchange of a monetary reward. The crowdsourcing platform publishes the
tasks in an online market place and charges the requester a small fee on the
reward. In the online market place, the workers can freely choose their tasks
and get a small monetary reward upon completing the task that typically
takes several minutes [108]. Usually, the tasks are created by decomposing a
bigger problem into small, homogeneous and independent work packages that
are processed by the crowd workers (see Figure 11). Finally, the indepen-
dently processed micro tasks get re-assembled to obtain the final result. From
a technical point of view, micro task based crowdsourcing can be seen as a
loosely coupled distributed computing system, as it faces the same fundamen-
tal challenges of managing shared resources [110]. More precisely, the creation
of micro tasks and distribution to crowd workers face the same challenges like
partitioning computations into parallel tasks and distributing them between
processors [111].

Micro task based crowdsourcing platforms have huge benefits from the re-
quester’s point of view. They grant cost effective twenty-for-seven access to a
scalable workforce and the per task payment model does not require to hire

9http://www.mturk.com accessed 1 Dez 2017
10http://www.crowdflower.com accessed 1 Dez 2017
11http://microworkers.com accessed 1 Dez 2017
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Figure 11: Illustration of micro task based crowdsourcing. A task is
divided into several homogeneous micro tasks that are processed by
different crowd workers. The final result is created by re-assembling
the micro tasks processed by the crowd.

the workers. Therefore micro task based crowdsourcing was often criticized as
it provides no personal benefits, no worker protection and no development of
personal skills at extremely low pay around 2$ per hour [112, 113, 114, 115].
In contrast to games (GWAP) that people play for fun, the main motivation
for the workers in micro task based crowdsourcing environments is the mone-
tary reward [114]. As a consequence, the task wise payment model invites the
workers to cheat the system in order to maximize their income [116]. When
looking at the demographics of crowdsourcing platforms, it is noticeable that
a vast amount of crowd workers reside in india [109, 114, 117] or other de-
velopment countries [118]. Surprisingly, the majority of these workers have
university degrees [109, 114, 117]. Even though the workers residing in india
have a rather high education, the average annual overall income per household
is rather low with less than 10,000$ US [114]. Kittur et al. [119] discussed pos-
sible future crowdsourcing approaches in view of this crucial aspects in order
to make crowdsourcing more valuable for both sides, the requester’s and the
worker’s point of view.

In conclusion, micro task based platforms offer an easy cost effective access
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to crowds. Therefore they are ideal for scientists to perform crowdsourcing
research, annotate data and accelerate their research. However, researchers
using such platforms should be aware of the socio-economic aspects and provide
fair payment to the workers.

2.2.2 Crowdsourcing Platforms

Table 1 provides a brief overview of common micro task based crowdsourcing
platforms [107, 109] and their properties from the requester’s point of view.
The table includes if the platform can be accessed remotely with an Application
Programming Interface (API), provides a programming library to simplify the
development process or allows the integration of external tasks. Depending

Platform API Library External Tasks Task Types
MTurk yes yes yes no limits
clickworker12 yes no yes no limits

CrowdFlower yes no no

categorization,
collection,
image annotation,
sentiment analysis,
transcription13

microWorkers yes yes no limited to templates

Table 1: Overview of common micro task crowdsourcing platforms. All
presented platforms provide remote access over an API. Two platforms
provide the possibility to include external tasks hosted on external web
servers. This results in no limitations to the available task types as
the requester is free to implement custom user interfaces.

on the crowdsourcing platform, different task types are available to the re-
quester. Microworkers for example limits the task types to a set of pre-defined
templates that include image annotation, surveys, audio transcription, mobile
app testing and several others. The task types available in CrowdFlower de-
pend on the subscription type of the requester. Due to the limitations of the
available task types these platforms are only suited for data annotation and
not to perform research in the field of crowdsourcing. Beyond MTurk, only
clickworker provides the possibility to include custom external tasks hosted

12http://www.clickworker.de/ accessed 2 Feb. 2018
13Available task types depend on the subscription type.
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by the requester on external web servers. This is a mandatory requirement to
have full control over the annotation process and perform further research in
the field of crowdsourcing.

The following section provides a more detailed overview of the platform
MTurk that is used later on in this thesis:

Amazon Mechanical Turk (MTurk)

Currently, MTurk is one of the most popular micro task based crowdsourcing
platforms used by researchers from various fields [120]. It was for example
used for text translation [121], reconstruction of documents [25], image classi-
fication and annotation [122] as well as for annotation of laparoscopical images
[42, 77, 123]. Furthermore, MTurk was used to create today’s largest state-of-
the-art computer vision data sets, namely ImageNet and Common Objects in
Context (COCO), with several millions annotated images [7, 27]. MTurk was
the first platform that enabled programmatic access over a Representational
State Transfer (REST) API. Additionally, an open-source python web ser-
vice library 14 and a sandbox system to test the HITs is available to simplify
and speed-up the development process. Another key feature is the possibility
to include custom web applications hosted on external servers. This enables
researchers to have full control over the annotation process, which is espe-
cially valuable to perform research in the field of crowdsourcing. A not well
documented downside of MTurk is that Amazon limits the requester access to
companies and residents of the United Stated of America (USA). Furthermore,
all monetary transactions have to be performed with credit cards belonging
to bank accounts in the USA. Otherwise Amazon will suspend the requester’s
account. This limitation excludes scientists from other countries to perform
research on MTurk. This limitation can only be bypassed with collaboration
partners residing in the USA.

The following paragraphs introduce the terminology used in MTurk and
provide a brief overview of the available concepts:

Requester: The requester takes the role of an employer in the per task
payment model of MTurk. A requester creates the tasks, submits them to

14http://aws.amazon.com/sdk-for-python accessed 4. Dez 2017
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MTurk and sets out the reward for each task. Furthermore, the requester can
reserve the tasks to workers that received an exceptional good rating based
on the worker’s history of successfully accomplished tasks. It is also possible
to include qualification tasks that the workers have to accomplish in order
to proceed to the payed tasks. The requesters themselves are responsible to
retrieve, review the results and and approve them in order to pay the workers
upon successful completion of a task. Completed tasks can be rejected if the
requester is not satisfied with the result. Upon payment of a worker, Amazon
charges the requester a 20 % fee on the reward15.

Worker: Workers can freely choose their tasks in a online market place.
They get payed upon completion of a task. Each worker has a unique identifier
(ID) and so-called qualifications that represent the workers reputation and
abilities. Only tasks that match the workers qualifications are displayed to the
worker inside of the online market place.

Human Intelligence Task (HIT): A Human Intelligence Task (HIT) rep-
resents a each single task specified by the requester. Upon creation an unique
ID is assigned to each HIT. The HIT includes the monetary reward and all
required information to successfully accomplish the task. No further training
should be required for a worker to successfully accomplish a HIT. HITs can be
defined as external questions and include external web applications that are
hosted by the requester. When using external applications it is the requester’s
responsibility to provide clear task instructions. Upon successful completion
of a HIT, the requester gets a notification, can review the results and pay the
predetermined monetary reward to the worker.

Assignment: MTurk tracks the progress of HITs with assignments. Assign-
ments assure that each HIT can only be accepted once by each worker. Upon
accepting a HIT, it is assigned to the worker and a unique assignment ID
is created. If the worker aborts the HIT, the assignment gets freed and the
HIT is available to other workers. Furthermore, the concept of assignments
enables the acquisition of multiple results from different workers for each HIT.

15http://requester.mturk.com/pricing accessed 4. Dez 2017
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Therefore the requester has to specify the number of unique assignments upon
creation of the HIT.

HIT type: The HIT type can be used by the requester to group HITs to-
gether. HITs belonging to the same HIT type are grouped together and listed
in one entry inside of the market place. A requester can for example create
multiple HITs for labeling images of cats and group them into one entry instead
of displaying multiple HITs to the workers in the online marketplace.

2.3 Introduction to clickstreams

A clickstream is a series of time-stamped mouse events that is generated while a
user is browsing a website. Clickstream analysis is widely used outside the field
of crowdsourcing for user behaviour and web usage analysis [124, 125, 126, 127].
Beside web browsing behaviour analysis [128, 129] it has been successfully ap-

Figure 12: Clickstreams are generated while a user is browsing a web-
site with his mouse cursor. Each recorded event includes its spatial
position within the website, the actual time stamp, its ID which rep-
resents the position within the clickstream as well as the action (e.g.
click) and object (e.g. a button) upon which it was triggered.

plied for analyzing user behaviour in e-commerce applications [130] and social
networks [131]. Figure 12 provides a graphical illustration how a clickstream
is generated while a user is browsing a website. When browsing the web-
site, the user steadily generates events with his mouse cursor that are suc-
cessively recorded into the clickstream. Each event contains the spatial po-
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sition of the mouse cursor within the website, the actual time when it was
triggered and a unique ID defining its position within the clickstream. It is
up to the developer of the website which events are captured into the click-
stream. Common examples for mouse events are: mouse-move, mouse-click,
mouse-double-click, mouse-up and mouse-down. In addition to its spatial coor-
dinates, each event contains the name of the object (e.g. button) upon it was
triggered. The underlying object is determined by its ID inside the Document
Object Model (DOM) tree of the website, which is a API to represent Hypertext
markup language (HTML) documents in a tree like structure, where each ob-
ject is a node representing a part of the document.
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State of the art

The literature research was performed during the scientific work and parts of this chapter
have been published in E.Heim et al., "Clickstream analysis for crowd-based object segmen-
tation with confidence", IEEE Transactions on Pattern Analysis and Machine Intelligence
(2017), DOI: 10.1109/TPAMI.2017.2777967, c©2017 IEEE, [1]
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This chapter reviews the state-of-the-art related to this thesis. The chapter
is outlined as follows: Section 3.1 introduces related crowdsourcing methods
from the field of medical image analysis. Different quality control approaches
used in the context of crowdsourcing are presented in Section 3.2.

3.1 Crowdsourcing for medical image annota-
tion

This section introduces related crowdsourcing methods for the annotation of
medical images. The different presented methods can roughly be divided by
their acquisition modality: (1) pathology and microscopy images (Section
3.1.1), (2) intra-operative imaging data (Section 3.1.2) as well as (3) radio-
logical images (Section 3.1.3). Examples of the different imaging modalities
are presented in Figure 13. Each section is further subdivided by the ap-
plied algorithm type, namely classification, segmentation and quality control.
An overview of the presented approaches with respect to their properties and
employed techniques is displayed in Table 2.

(a) (b) (c) (d)

Figure 13: Examples for the different imaging modalities used in the
state-of-the-art crowdsourcing approaches presented in Section 3.1 :
(a) Example of a breast cancer histopathology image from the Bioimag-
ing Challenge 20151 data set [5]. (b) Phase contrast microscopy image
from the BU-BIL2 data set [6]. (c) Example of surgical instruments in
an endoscopic image from the Endoscopic Vision Challenge3. (d) Ex-
ample of an axial plane of an abdominal CT scan from the SLIVER07
data set [3].

1http://rdm.inesctec.pt/dataset/nis-2017-003 accessed 9. Dez 2017
2http://www.cs.bu.edu/ betke/BiomedicalImageSegmentation accessed 9. Dez 2017
3http://endovis.grand-challenge.org accessed 9. Dez 2017
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modality type dimension tutorial pre-processing hybrid platform type
Luengo-Oroz et al. [132] microscopy classification 2D no no no GWAP
Mavandadi et al. [133] microscopy classification 2D yes yes yes GWAP
Dos Reis et al. [105] pathology classification 2D yes yes no Citizen Science
Irshad et al. [134] pathology classification 2D no no no Micro Task
Albarqouni et al. [15] pathology classification 2D no yes yes Micro Task
Gurari et al. [6] microscopy & MRI segmentation 2D no yes no Micro Task
Maier-Hein et al. [77] endoscopy quality control 2D no no no Micro Task
Maier-Hein et al. [42] endoscopy segmentation 2D no no no Micro Task
Maier-Hein et al. [123] endoscopy segmentation 2D no yes yes Micro Task
Bittel et al. [135] endoscopy segmentation 2D no yes yes Micro Task
Malpani et al. [136] robotic surgery quality control 2D no no no Micro Task
Chavez et al. [137] MRI segmentation 2D no yes yes small selected group
Park et al. [36] CT classification 3D no yes no Micro Task
Cheplygina et al. [138] CT segmentation 2D no yes no Micro Task
O’Neil et al. [139] CT classification 2D yes no no small selected group
Ørting et al. [140] CT classification 2D no yes no Micro Task
Rajchl et al. [141] CT segmentation 3D no no yes simulated
D. Holst et al. [142] robotic surgery quality control 2D yes no no Micro Task

Table 2: Overview of the current state-of-the-art in crowd-sourced
medical image annotation. In addition to the imaging modality, the
algorithm type and the employed crowdsourcing platform, the table
displays if the approach incorporates tutorials or qualification tasks
to train the workers, applied a pre-processing step to the image data
for enhanced visualization or uses a hybrid crowd-algorithm method.
Furthermore, the dimension shows if the approach was used to annotate
3D or 2D images. In the case of CT or MRI, 2D indicates that only
a subset of the volume was annotated, no 3D target structures. The
platform type "small selected group" is used when the method was
validated using a small group of selected volunteers.
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3.1.1 Annotation of pathology and microscopy images

This section presents crowdsourcing approaches for the annotation of pathol-
ogy and microscopy images.

Classification

The severity of malaria is determined by the number of malaria parasites con-
tained in the blood of a patient. Luengo-Oroz et al. [132] presented a Game
with a Purpose (GWAP) to count malaria parasites in thick blood smears
by tagging them with mouse clicks. The game is implemented as a browser
game where the players get presented a digitized microscopy image of a thick
blood smear containing malaria parasites. To further motivate the players,
the game introduces several levels of difficulty. In order to process to the next
level the player has to successfully tag an image within a specific time limit.
The final quantification of a blood smear is performed by combining several
games from different players. The games are combined by using a majority
voting based clustering approach for each single click of the games from dif-
ferent players. A comprehensive evaluation study performed with more than
6000 players showed that a combination of 22 games is sufficient to success-
fully identify 99% of the parasites. The players were even able to identify false
positive (FP) annotations in the reference data created by experts.

Another GWAP approach to identify malaria parasites was presented by
Mavandadi et al. [133]. Instead of diagnosing the severity of the disease by
counting the parasites such as Luengo-Oroz et al.[132], the goal was to deter-
mine if a red blood cell is infected by a parasite or not. Therefore a machine
learning based algorithm is applied in an initial pre-processing step. All diffi-
cult cases that the algorithm is not able to classify with a high confidence are
further processed with crowdsourcing. The crowdsourcing approach is based
on a mobile phone game where the players have to decide if a blood cell is
infected or not. Instead of marking the parasites in raw microscopy images,
the game interface incorporates a grid with a mixture of healthy and infected
blood cells. Infected red blood cells can be marked by clicking on them. Be-
fore the players can start the actual game, they have to complete a tutorial
and training step upon registration. The tutorial consists of examples from
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infected and healthy red blood cells. In order to pass the training step, the
players have to successfully classify 99% of the red blood cells in an example
game that contains 261 healthy and 20 infected red blood cells. The validation
study was performed with a group of 31 selected volunteers. Hence, no real
online crowd was used. A more recent study using the same game performed
with more than 1600 students from Korea showed that tutorials and training
can increase the player’s performance [34].

Dos Reis et al. [105] presented a citizen science (Section 2.2.1) based crowd-
sourcing approach using the zooniverse platform to score pathological images
of breast cancer. Before the images are distributed to the crowd, the pixel
colors are negated and the saturation is increased in order to increase the vis-
ibility of the target structures. Additionally, each image is subdivided into 16
sub-images that are re-sampled to smaller resolutions. To start the annotation,
the workers have to successfully complete an initial tutorial task. The scoring
consist of a two stage annotation process with up to four different questions.
In the first step, the worker gets asked if a sub-image contains any cancer cells.
If it contained cancer cells, the worker proceeds to the second step. Based on
predefined scales, the worker estimates the number of cancer cells, the number
of positive stained nuclei and the intensity of the staining. For additional qual-
ity control, a User Performance Score (UPS) is created based on the agreement
with reference annotations that are included into the annotation process. Ev-
ery time the worker annotation agrees with the reference annotation the UPS
increases. The final scoring of an image is created by merging the annota-
tions from multiple workers weighted by their UPS. Approximately 100,000
citizen scientists scored 180,000 sub-images from 2012 to 2014. Despite the
large annotated data volume, the long runtime of citizen science projects is
not suitable to perform research in the field of crowdsourcing.

A similar multistage pipeline to quantify pathological images of breast can-
cer using micro task based crowdsourcing was recently presented in [134]. Be-
fore the workers are able to start the data annotation, they need to accomplish
a qualification task by matching the reference created by experts. Similar to
the approach presented by Dos Reis et al. [105], the workers have to quantify
the percentage of stained nuclei based on predefined scales. If stained nuclei
are present, the next step is to label the positive and negative stained nuclei.
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Each image is annotated three times by different annotators in both stages of
the pipeline and the agreement of at least two workers is required to create
the final result.

Albarqouni et al. [15] presented a hybrid crowd-algorithm approach for
breast cancer detection in pathological images. The approach involves training
a Convolutional Neural Network (CNN) that is steadily refined with crowd-
sourced annotations in a multistage annotation pipeline. If a new image enters
the pipeline it gets classified by the CNN. In the next step, the initial result
created by the CNN is further refined by the crowd. The annotations refined
by the crowd are then again used to train and further improve the CNN. The
more precise the CNN classifies the new images, the more accurate gets the
initialization of the crowdsourcing tasks which leads to more accurate crowd-
sourced annotations and further improvement of the CNN.

Segmentation

Gurari et al. [6] published the Boston University-Biomedical Image Library
(BU-BIL)2 data set that they used to evaluate the segmentation performance
of crowd workers compared to domain experts and algorithms. The data set
contains phase contrast microscopy, fluorescence microscopy, single slices of
Magnetic Resonance Imaging (MRI) images from rabbit aortas, the reference
segmentations as well as all crowd and expert segmentations used for evalua-
tion. They presented a majority voting (see Section 3.2.2) based crowdsourcing
approach in conjunction with the crowdsourcing platform Amazon Mechani-
cal Turk (MTurk). In order to ensure that only the structure of interest is
displayed to the crowd, the images are cropped using the bounding boxes ini-
tialized from the reference segmentations. Furthermore, examples of accurate
and inaccurate segmentations are included in the task. The initial feasibility
study demonstrated the potential of crowdsourcing for medical image anno-
tation. As reference segmentations are required to initialize each image, the
method is not suited for real world image annotation scenarios. Additionally,
the group of experts used for validation contained the creators of the reference
segmentations. Furthermore, the experts used three different professional an-
notation tools to create the segmentations, while the crowd only had access
to a web application based on LabelMe [18]. The authors reported noticeable

35



Crowdsourcing for medical image annotation Chapter 3. State of the art

differences in the segmentation quality for the different annotation tools used
by the experts. Despite the biased validation study and different annotation
tools, the quality of the segmentations created with crowdsourcing was close
to those created by experts.

3.1.2 Annotation of intra-operative imaging data

Segmentation

An approach to create segmentations of surgical instruments in endoscopic im-
ages was presented in [42]. The approach involved a micro task based concept
where multiple segmentations of the same image are acquired through MTurk.
Similar to Gurari et al. [6], task instructions and examples of accurate and
inaccurate segmentations are included in the task. Finally, the segmentations
of surgical instruments are created by merging multiple segmentations from
different workers with a pixel-wise majority voting approach.

A hybrid crowd-algorithm system to create segmentations of surgical in-
struments was presented in [123]. It uses the concept of atlas forest [143]
classifiers to create initial instrument segmentations. By the algorithm seg-
mented regions with high uncertainties are further refined with crowdsourcing
and later on used to re-train, added to the atlas forests and so improved the
overall classifier.

Bittel et al. [135] used a hybrid crowd-algorithm approach to create today’s
largest annotated endoscopic data set3. The approach uses a CNN to create
initial instrument segmentations that are then further refined with crowdsourc-
ing.

Quality Control

A micro task based crowdsourcing approach for correspondence search in endo-
scopic images was presented by Maier-Hein et al. [77]. For the correspondence
search two images are displayed next to each other, the source and the tar-
get image that displays the same content from a different point of view. The
workers have to search correspondences in the target image for a set of points
displayed in the source image. To obtain the final result, multiple correspon-
dences from different workers are merged with a clustering algorithm.
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Malpani et al. [136] presented a method to crowd source the assessment of
surgical skills. They displayed two different videos that show the same surgical
task next to each other. A pre-defined scale ranging from bad to excellent is
provided to score the videos. By directly comparing two videos it is easy for the
untrained workers to decide in which video the task is solved more effectively,
even if they have no prior knowledge of the underlining procedure.

D. Holst et al. [142] proposed a method to asses surgical skills in videos
of robot-assisted urinary bladder closures from twelve different surgeons with
a varying level of expertise. The proposed method was evaluated using the
micro task crowdsourcing platform MTurk and restricted to workers that have
previously completed more than 100 HITs with an approval of more than 95%.
In order to proceed to the actual data annotation process, the workers have
to successfully accomplish a qualification task. The qualification task displays
two short videos of a Robotic Fundamentals of Laparoscopic Surgery (RFLS)
block transfer task next to each other, one performed by an expert and one
by an intermediate level surgeon. Only workers that correctly identified the
expert surgeon are allowed to proceed to the actual data annotation process.
In the data annotation process, the crowd workers have to grade video seg-
ments across five Global Evaluative Assessment of Robotic Skills (GEARS)
[144] domains based on predefined scales. Each video segment was rated by
50 different workers and the consensus was used to further assure annotation
quality. The evaluation against seven expert surgeons showed that the crowd
was able to grade the videos with a similar quality at a fraction of the time (5
hours compared to 14 days).

3.1.3 Annotation of radiological images

This section discusses related work for the annotation of radiological images.

Classification

Park et al. [36] proposed a crowdsourcing approach for colorectal polyp detec-
tion in Computed Tomography (CT) scans. The approach is based on a virtual
flight through the colon. Therefore a Virtual Colonoscopy (VC) is created from
the CT image of a patient. A VC is a three-dimensional (3D) colon model re-
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constructed from a CT that is used to search for colorectal polyps. Short
videos of 12 seconds are scanned for polyps by the crowd workers. The flight
through the VC is performed in both directions in order to not miss polyps
that are hidden in regions with a high curvature that are only visible from one
direction. Furthermore, the videos have a small overlap in order to not miss
polyps that are only visible at the start or the very end of a video section.
The evaluation was performed on MTurk with 163 different video segments
where 15 of these segments contained a clinical proven polyp. Each segment
was viewed on average 18 times by different workers. A segment was denoted
containing a polyp when more than half of the workers found a polyp in this
segment. Compared to radiologists trained in VC that achieved a sensitivity of
87% and specificity of 87% in detecting polyps, the crowd was able to achieve
results close to those of experts with a sensitivity of 80 % and specificity of 87
%.

O’Neil et al. [139] proposed to crowd source the classification of pathological
patterns in CT lung scans. The workers have to delineate regions in individual
slices of a CT volume that match one of seven tissue patterns provided within
the task. Prior to the annotation process, all workers received an extensive
one-hour long tutorial from a medical expert. The study was performed with
small group of 34 volunteers from a software company on twenty pre-selected
slices from CT volumes. No full volumes were annotated. They observed, that
multiple annotators per task produced better results than single annotators.
The improvement starts saturating with more than nine annotators per task.
Further, the authors reported that the quality of the results had a strong
variance for the different tissue patterns. They stated, that this might be
related to the visibility of the different patterns in the CT scan. The authors
proposed to use a protocol for adjusting the grey scale values matching the
Hounsfield Units (HU) for the different tissue patterns to further improve the
visibility for the non-experts.

A method for emphysema assessment in CT lung scans was presented by
Ørting et al [140]. Before classification, a pre-processing step is applied to split
the CT volumes into three regions and extract triplets of consecutive slices.
Each crowdsourcing tasks contains three image triplets paired with images
from similar lung regions containing one disease pattern. The workers have
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to decide which image pairs contain the most similar disease patterns. For
each Human Intelligence Task (HIT) three annotations from different workers
were acquired on MTurk. The results from different workers showed high
variance in the annotation quality and a low over all quality with a median
F1 score below 0.6. The authors came to the conclusion that a different task
design incorporating a multistage pipeline consisting of several easy consecutive
questions, e.g. "Are there dark holes in the lung?", "Are the holes present in
more than one third of the lung?" as well as the use of quality control methods
to prevent the workers from submitting low quality annotations could further
improve the results.

Segmentation

Chavez et al. [137] introduced a crowdsourcing based method for the seg-
mentation of hip joints in MRI images. Before the images are deployed for
segmentation, the contrast is enhanced in order to better recognize the regions
of interest. The crowdsourcing was performed with a small group of students
from an engineering faculty and only selected two-dimensional (2D) slices were
segmented, no full volumes. No experiments with untrained online workers
were performed. The non-experts users were able to produce similar results
compared to experts using interactive semi-automatic segmentation methods.
The authors stated that the performed validation study revealed insights about
the segmentation behaviour of non-expert users that can further be used to
tune semi-automatic segmentation methods. 59% of users for example started
the segmentation at the point with the most significant visual characteristics
of the shape and 90% of the users created the contour in clockwise direction.

Cheplygina et al. [138] proposed a crowdsourcing method to create seg-
mentations of lung airways in CT images. The method evaluates two different
annotation tools. One tool allows full freehand annotation while the other is
restricted to the drawing of ellipses. For each airway, 2D images with a size
of 50x50 pixels are extracted out of the CT volumes. A total of four images
in different view directions for each airway are displayed in one crowdsourc-
ing task. In the experiments multiple segmentations per image were acquired
through MTurk. Approximately 30% of the crowd-sourced segmentation were
unusable, but not created from spammers. They were traced back to annota-
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tions of wrong structures like blood vessels. Due to more degrees of freedom
the workers that used the freehand tool created less accurate segmentations.

Rajchl et al. [141] presented a method for liver segmentation in CT volumes
using different types of weak annotations. The basic idea behind the approach
is to create segmentations of the liver in some slices of the CT volume that are
later on used by an algorithm to compute the segmentation for the remaining
slices of volume. Despite the large validation study performed on 150 CT scans,
some open questions remain. The method was for example only validated with
a simulated crowd, where the worst simulated segmentation still belonged to
the liver. No further experiments showed how the method would perform with
real crowd segmentations, or annotations located outside the organ of interest.
It was also not explained how the annotated slices have to be distributed
throughout the CT volume in order to create an accurate liver segmentation
in the remaining slices.

3.1.4 Conclusion

The current state-of-the-art in crowd-sourced medical image annotation pre-
sented in this section uses similar concepts across all different imaging modal-
ities. Most of the approaches employ multistage crowdsourcing pipelines and
pre-process the medical imaging data in order to enhance the visibility of the
regions of interest. Hybrid crowd-algorithm approaches for initialization are
also popular in this context. Furthermore, the lack of medical knowledge re-
quired to interpret the images is usually compensated by displaying predefined
scales or a choice between different examples.

To the author’s knowledge, there is no prior work in the context of micro
task based crowdsourcing that fully solves the problem of organ segmenta-
tion in 3D CT scans. This might be related to the complexity of the data
that requires a vast amount of training and expert knowledge required to cor-
rectly identify anatomical structures in radiological images [30, 31, 32]. Other
2D imaging modalities such as pathological images that consist of recurring
patterns (Figure 13a) or microscopy images with a specific object in the fo-
cus might require less training for correct interpretation (Figure 13b). Also
surgical instruments in endoscopic images can be clearly identified as foreign
objects due to their different structure, color and material (Figure 13c). These
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modalities are also easier to process due to their 2D nature compared to 3D
image volumes such as CT or MRI scans.

The presented crowdsourcing approaches in the field of medical image anal-
ysis mainly focus on developing methods to compensate the lack of medical
expertise. Beside the consensus from multiple annotations created by differ-
ent workers to assure annotation quality, no further quality control measures
are taken to prevent spammers from submitting bad quality annotations on
purpose.

In conclusion, there are several crowdsourcing based approaches for data
annotation of 3D medical image modalities like CT or MRI. Most of these
approaches concentrate on the annotation of selected 2D slices instead of cre-
ating an annotation of the full target structure located within the 3D image
volume.

3.2 Quality control in crowdsourcing tasks

Approaches to quality control in crowd-sourced data annotation can roughly
be divided into the following categories:

3.2.1 Integration of reference data into annotation task

One of the first approaches to ensure the quality of crowd-sourced annotations
was presented by Von Ahn [19]. Von Ahn proposes pairing an unknown label
with a label for which a reference is available, the so-called Completely Auto-
mated Public Turing test to tell Computers and Humans Apart (CAPTCHA),
and rejecting the new label when the performed CAPTCHA has failed. After-
wards, the consensus of labels from different workers is used for further quality
control. If the validation against the reference label fails, the CAPTCHA ap-
proach can directly reject labels during the annotation process without any
further evaluation. Unfortunately, the approach cannot be considered cost
effective, since it requires reference data and the crowd is used to create addi-
tional labels of already annotated data. Especially the time consuming creation
of reference data for object segmentations renders the method as ineffective
for quality control in crowd-sourced object segmentation.
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Another reference data based quality control method was presented by Lin
et al. [7] in the context of large-scale crowd-sourced image annotation. The
approach uses an initial quality control step to reject workers based on their
segmentation performance in a training task. In addition to the initial training
task, the annotations of trusted workers are further verified in a manual veri-
fication step. The approach still relies on reference data, does not incorporate
the expertise of specific workers and the additional verification step requires
further resources and quality control.

A behavioral study of workers based on a survey and annotations on already
labelled digitized books was performed by Kazai et al. [38]. Five different
worker types were identified: spammers, sloppy, incompetent, competent and
diligent workers. They did not explore the application of the worker’s expertise
on other task types such as image annotation.

Oleson et al. [145] presented a method based on the annotation of refer-
ence images to categorize workers into the following three categories: reliable
workers, workers that did not understand the task and spammers.

A quality control approach coupled with an interactive object segmentation
approach using background and foreground clicks on the image was presented
by Cabezas et al. [146]. To determine the the level of expertise, the workers had
to perform segmentations on reference images. Incorrect clicks in the reference
task are detected by their spatial neighborhood inside super pixels. They
proposed to weight the clicks of individual workers based on their performance
on the reference task. However, the quality of each individual label cannot
be assured throughout the annotation process, since the worker’s expertise is
only estimated for an initial reference task.

3.2.2 Majority voting

Another approach to prevent low-quality annotations is to acquire multiple
annotations from different workers, rank them against each other and use the
response that is included in the majority of annotations [6, 17, 27, 42, 147].
As illustrated in Figure 14, when using pixel-wise majority voting, a pixel
is considered belonging to the object segmentation if the majority of workers
have included it in their object segmentation (e.g. [6, 42]). The majority voting
approach assumes that the majority of the workers create accurate annotations.
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Figure 14: Example how three binary image masks are merged with
majority voting. The white pixels denote the segmentation. In the
first step, the images are accumulated into a frequency map. With the
application of majority voting to the frequency map only the pixels that
are present in the majority of images (at least two images) remain in
the final output binary mask.

Furthermore, the approach results in a larger amount of annotations acquired
from the crowd. Majority voting can provide solutions close to the optimum,
when merging multiple accurate image segmentations [148]. On the other hand
it can not be applied if the majority of workers produce low quality annotations
[149].

3.2.3 Manual grading of annotation quality

Another commonly used method to ensure the quality of crowd-sourced anno-
tations is to use additional crowd workers to peer review and rate the quality of
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the created annotations. This method was integrated among others in annota-
tion pipelines to create large-scale annotated image databases such as LabelMe
[18] and Common Objects in Context (COCO) [7]. Unfortunately the verifica-
tion step generates additional costs and requires further quality control such
as majority voting [7] in order to provide accurate results. These additional
costs could be avoided by using a fully automated quality control technique.

3.2.4 Automatic annotation quality estimation

A method based on different scoring functions to asses the quality of crowd-
sourced object segmentations was presented by Vittayakorn et al. [44]. The
presented quality measures are derived from the segmentation result and the
image itself. They include image features like edges as well as parameters from
the resulting annotation contour (e.g. number of vertices, annotation size).
The method did not rely on any features related to the annotation process
itself. It was evaluated on a custom data set where the object of interest is in
the focus of the image. Some of the used features will probably not generalize
well to other data sets. One example is the size of the created segmentation.
The feature for example assumes that the segmentation is of a good quality if
it occupies a large region of the image. This might be true when the object
of interest is in the focus of the image, but not for images containing multiple
different objects.

A generalized method to determine a reference value of some properties
from multiple annotations was introduced by Welinder et al. [150]. The
method inherently evaluates the annotator’s expertise and reliability. It uses
an expectation-maximization (EM) algorithm approach to infer the target an-
notation as well as a confidence value for the worker’s reliability. Currently the
method has only been applied to bounding boxes and simple yes or no binary
decisions.

A similar approach using a Joint Gaussian Process Model for active visual
recognition and expertise maximization was presented by Long et al. [151].
Unfortunately the approach was also only applied to image classification and
not to more complex annotations types such as object segmentation.

Welinder et al. [152] proposed a Bayesian probabilistic model for rating
the competence of workers by comparing multiple label aggregations of binary
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image labels created by different workers.
Several methods have been proposed that estimate the annotation quality

by training a regressor on features derived from the image, the final annota-
tion contour or a combination of both [153, 154, 155, 156, 157]. A recently
presented method to identify the worker’s annotation behaviour from the re-
quired time per task, the number of mouse clicks and the required time per
click was proposed by Sameki et al. [158]. They were able to show that the
number of vertices in the result contour and the annotation time are related
to the segmentation quality. However, the authors themselves state that the
improvements gained from this limited number of features might be minimal
for different applications such as the segmentation of bio-medical images. Fur-
thermore all features are derived from the annotation result and not recorded
during the annotation process.

Other quality control methods designed for specific applications such as
the correspondence search in endoscopic images [77] are highly specialized
to address a specific problem and can therefore not be generalized to other
task like object segmentation. Also different payment methods and worker
incentives influence the outcome of crowd-sourced annotations. Mao et al.
[159] investigated different payment methods and came to the conclusion that
financial incentives can boost the annotation speed at the cost of annotation
quality.

3.2.5 User behavior analysis

Several methods for user behaviour analysis using clickstream data or mouse
dynamics have been investigated outside the field of crowdsourcing. One exam-
ple application using bio-metric features based on mouse dynamics to identify
specific users, is the intrusion detection and user authentication in computer
systems [160, 161]. A neural network based method to recognize specific users
in a computer system using a feature set derived from mouse dynamics, e.g.
velocity, acceleration, clicks, moving direction was presented by Ahmed et al.
[160]. In contrast to the histogram-based approach by Ahmed et al. [160], the
method of Feher et al. [161] extended this approach by combining the results
of individual mouse actions derived from a similar feature set in conjunction
with a random forest classifier. Mouse dynamic based methods have suc-
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cessfully been used for user authentication and intrusion detection, but their
application to segmentation and annotation tasks has not been presented yet.

Wang et al. [131] proposed a clickstream feature based method to identify
fake identities and sybil accounts in online communities and social networks.
The proposed method uses a classifier trained on user actions such as uploading
photos, chatting with friends or pressing a specific button. Hence, they did
not consider the use of mouse dynamic based features. Later on they extended
their work with an unsupervised learning method to cluster social network
users based on their behaviour depicted in clickstreams [124].

A machine learning based method that achieved high accuracy in detecting
crowdsourcing manipulated content in social networks was presented by Lee
et al. [162]. They proposed to train a classifier on features related to social
network activities. The features for example include the number of friends,
posts on websites and overall activity time in the social network.

A user behavior based method to estimate the quality of crowdsourcing tasks
for classification, comprehensive reading and text generation was presented by
Rzeszotarski et al. [163]. Yet the method has not been applied so far to
crowd-sourced image annotation.

3.2.6 Conclusion

In conclusion, while there has been a considerable effort in controlling the qual-
ity of crowd-sourced annotations and analyzing user behaviour, the author of
this thesis is not aware of any prior work on using annotation process-based
features recorded in clickstreams for quality control in crowd-sourced image
annotation. Furthermore, confidence-based segmentation merging using click-
stream analysis based segmentation quality estimation has not been introduced
to date.
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CHAPTER 4

Crowd-powered organ segmentation

Parts of this chapter have been published in E. Heim et al., "Crowdgestützte Organseg-
mentierung: Möglichkeiten und Grenzen", 14. Jahrestagung der Deutschen Gesellschaft für
Computer und Roboterassistierte Chirurgie [45].
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The accurate segmentation of organs in medical images can be very time
consuming in the case of three-dimensional (3D) medical image volumes like
Computed Tomography (CT) scans. This chapter presents a hybrid crowd-
algorithm based annotation framework to segment organs in 3D medical image
volumes. Evaluated on the case study of liver segmentation in abdominal CT
scans, the following three research questions are addressed: (1) Can anonymous
non-expert crowd workers without any previous medical education, detect in-
accurate organ segmentations in CT images? (2) Can crowdsourcing be used
to correct inaccurate organ segmentations in CT images? (3) How well do the
crowd workers perform in comparison to trained medical experts with a large
amount of domain specific knowledge?

The chapter is organized as follows: Section 4.1 presents the annotation
approach including an automatic pre-processing step, methods to detect and
refine inaccurate organ segmentations, a method to merge multiple annota-
tions from the same image and the software architecture to acquire the crowd-
sourced organ segmentations. The design of the experiments including a de-
scription of the validation study are presented in Section 4.2. Section 4.3
presents the results followed by a discussion in Section 4.4.

4.1 Annotation approach

This section gives a conceptual overview of the employed multistage segmen-
tation pipeline (Section 4.1.1) and introduces the software architecture to ac-
quire the crowd-sourced organ segmentations (Section 4.1.2). An automatic
pre-processing step to create an initial segmentation and convert the medical
images to formats suitable for online distribution is presented in Section 4.1.3.
The crowdsourcing based approach to detect and correct inaccurate segmen-
tations is presented in Section 4.1.4 and Section 4.1.5 respectively. Finally,
Section 4.1.6 presents the method used to merge annotations from different
workers to further improve segmentation quality.

4.1.1 Annotation concept overview

The concept for the accurate segmentation of organs in 3D medical image
volumes using non-expert annotators recruited through crowdsourcing incor-
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porates a hybrid crowd-algorithm approach integrated into a multistage an-
notation pipeline. Figure 15 gives a schematic overview of the different steps
applied in the proposed multistage annotation pipeline. In order to gain ac-

Figure 15: Segmentation pipeline for crowd-sourced organ segmenta-
tion. Initially the input volume is segmented with an automatic seg-
mentation method. In the next step the segmentation is distributed
between the crowd workers over the internet. The workers detect inac-
curate segmentations and refine them if required. In the last step, the
final segmentation is created by merging the annotations from different
crowd workers.

cess to a large-scale crowd of untrained non-expert workers, the concept was
implemented using a micro task based annotation approach that can be used
in conjunction with common crowdsourcing platforms. In a micro task based
crowdsourcing platform [164], crowd workers can freely choose their task in
an online market place and get a small monetary reward upon completing a
task that typically takes several minutes [108]. The tasks are distributed with
a web application over the market place that can be accessed by the crowd
workers. Due to the 3D nature of medical image volumes consisting of several
successive slices (Chapter 2, Section 2.1.1), the data requires more hardware re-
sources in terms of space, computation time and network bandwidth than two-
dimensional (2D) images do. Such volumes are therefore not well-suited for
online distribution compared to commonly used 2D graphic formats specially
designed for usage in the World Wide Web (WWW) like the Portable Net-
work Graphics (PNG) [165] format. Furthermore, 3D medical image volumes
require complex software platforms for visualization [56, 57, 166]. With the
recent advances in web technologies several highly specialized toolkits for the
visualization of 3D medical image volumes in web applications have emerged
[58, 59, 60, 61]. Unfortunately, these toolkits have higher hardware require-
ments to render the data on the client side than common websites have. It
should also be added that a large amount of workers in micro task based crowd-
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sourcing platforms reside in developing countries [113] and therefore might not
have access to the same network infrastructure or computer hardware than
workers from more developed countries have. To fully leverage the potential
of the crowdsourcing platform it is mandatory to keep the hardware require-
ments and network traffic low in order to reach as many crowd workers as
possible. To achieve this goal a 2D slice-wise annotation concept is applied
in this study. It consists of a four stage hybrid crowd-algorithm annotation
pipeline incorporating the following steps:

1.) In the first step the volume is pre-processed with an automatic segmen-
tation algorithm to create an initial segmentation of the target organ,
split into multiple slices, converted and prepared for online distribution.
(Section 4.1.3).

2.) In the next step the crowd workers detect inaccurate slice-wise segmen-
tation outlines in the initial automatic segmentation (Section 4.1.4).

3.) The slice-wise segmentation outlines rated as inaccurate are further re-
fined by the crowd workers (Section 4.1.5).

4.) Finally, the results from different workers are merged to further improve
segmentation quality and create the final organ segmentation (Section
4.1.6).

The web based annotation software to detect (Figure 16 a) and refine (Fig-
ure 16 b) inaccurate segmentations is implemented as a website that can be
accessed with any common web browser. The prototype implementation of
the concept is realized as module within the Medical Imaging and Interac-
tion Toolkit (MITK) [2], enabling access to a variety of image processing tools
from the field of medical image analysis. Implementation details as well as the
employed software architecture are presented in Section 4.1.2.

4.1.2 Architecture for crowd-sourced image annotation

This section presents a prototype implementation of the annotation approach
previously introduced in Section 4.1.1. Figure 17 presents a swim lane flowchart
incorporating the different components used to implement the previously in-
troduced annotation pipeline displayed in Figure 15. It consists of a medical
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(a) (b)

Figure 16: The crowdsourcing tasks are distributed to the crowd
workers throughout web based applications that can be embedded into
Amazon Mechanical Turk (MTurk). Instructions as well as examples
of accurate and inaccurate segmentations are included in the tasks. (a)
To detect inaccurate segmentations the workers get displayed succes-
sive slices of a CT volume in a website. They can be marked as valid
or invalid by clicking on the image. (b) The segmentation application
enables the workers to modify or delete existing segmentation outlines
and add new segmentation outlines.

imaging platform, a web server including a database and the crowdsourcing
platform. The medical imaging platform communicates directly with the web
server and the crowdsourcing platform through a web service. It is responsible
to create the crowdsourcing tasks, approve the results to pay the workers upon
task completion, upload the task data to the web server and aggregate the re-
sults created by the crowd. The web server hosts an annotation software that
is embedded into the crowdsourcing platform as an external web application.
When a worker starts a new task, the crowdsourcing platform requests a new
task in the annotation software hosted on the external web server. As soon
as the worker completes the task, the results are transferred back to the web
server where they can be accessed by the medical imaging platform. Through
the integration into a medical imaging platform it is possible to combine the
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Figure 17: Swim lane flowchart depicting the interaction between the
different components used to implement the annotation pipeline pre-
sented in Figure 15. The medical imaging platform manages the crowd-
sourcing platform and the data on the web server. The annotation soft-
ware is implemented as a web application on an external web server
that is remotely accessed by the workers acquired through the crowd-
sourcing platform.

crowdsourcing functionality with a variety of different algorithms from the do-
main of medical imaging. The presented architecture is designed to be open in
the way how the different components can be implemented. In this work the
following components are used to implement the proposed annotation pipeline:

Medical Imaging Platform: The medical imaging platform component is
implemented with MITK [2, 166]. The web service interface used to communi-
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cate with the crowdsourcing platform and the web server is based on the open
source python implementation of the Amazon Web Services (AWS) library1

and integrated as module within MITK by using the available python wrap-
ping interface [167]. The module itself provides a cpp micro service2 that is
dynamically instantiated at runtime.

Web Server: Figure 16 shows the user interface of the annotation software
embedded into the crowdsourcing platform. The annotation software is im-
plemented as a web application with a classical three-tier architecture [168]
using JavaScript and Hypertext markup language (HTML) for the client side
application, Hypertext Preprocessor (PHP)3 for the application layer and a
MYSQL4 database as persistence layer.

Crowdsourcing Platform: The prototype is implemented using the crowd-
sourcing platform Amazon Mechanical Turk (MTurk) [120] (Chapter 2, Section
2.2.2). MTurk enables the task provider to distribute micro tasks - so called
Human Intelligence Task (HIT) - to a crowd of untrained workers over an on-
line market place. Furthermore, MTurk provides programmatic access to the
crowdsourcing platform over a Representational State Transfer (REST) [169]
Application Programming Interface (API) to customize and control the HITs.
In addition to the programmatic access, MTurk provides a seamless integration
of web based applications for custom tasks hosted on external web servers.

4.1.3 Automatic contour initialization

Before the image volume is distributed to the crowd, several pre-processing
steps are applied with MITK in order to assure that the images are displayed
within their correct proportions in the web based annotation software dis-
played in Figure 16. The pre-processing steps consist of an initial automatic
segmentation and the conversion of the medical data into formats suitable for
online distribution over the WWW.

1http://aws.amazon.com/sdk-for-python accessed 4. Dez 2017
2http://cppmicroservices.org accessed 4. Dez 2017
3http://php.net accessed 4. Dez 2017
4http://mysql.com accessed 4. Dez 2017
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In the first step, an initial binary segmentation V of the target organ lo-
cated in the volume A is created applying the Statistical Shape Model (SSM)
approach presented by Heimann et al. [8, 170]. After the volume is segmented,
a polygon model P is created from the binary segmentation V by applying the
marching cubes algorithm [66]. Only those slices of the volume that contain
parts of the segmentation are considered for further processing. Therefore, the
sub-volume Â ∈ A is created by re-slicing the volume A in the longitudinal
view direction (along the y-axis, see Figure 2b), extracting every slice ai ∈ A
that intersects with the created binary segmentation a∩V . Based on the posi-
tion i of each extracted 2D slice ai ∈ A in the original volume A, the location
~li in the world coordinate system is calculated for each slice ai ∈ Â with the
image spacing ~s and the origin ~o of the original volume A:

~li = ~o+ i · ~s (4)

Once the location li in the world coordinate system for the i-th slice ai is
determined, a clipping plane Di is created at the location of the i-th slice
to clip the polygon model P from the binary segmentation V creating 2D
segmentation outlines pi located on the i-th slice ai. In order to speed up the
data transfer to the web server and simplify the modification of the contours
for the crowd workers, the number of vertices in the extracted segmentation
outlines are reduced with the Douglas-Peuker algorithm [171]. The algorithm
successively removes vertices according to an error tolerance to preserve the
original topology of the contour.

To display the extracted 2D slices matching their true proportions in the
web application, the slices are re-sampled to a unified spacing of ~̂s =

( 1
1
1

)
millimeter per voxel and translated to the origin of the 3D coordinate system( x
y
z

)
=
( 0

0
0

)
by applying the operations described in [172]. The re-sampling

is performed in world coordinates and not in index coordinates of the image
grid. An illustration of the different coordinate systems and their relation to
each other is given in Chapter 2, Figure 4. The spacial position ~x in the world
coordinate system can be computed for a pixel at the position ~ci in the image
coordinate system with the pixel spacing ~s and the origin ~o using a component
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wise vector multiplication �:

~xi = ~ci � ~s+ ~o (5)

In the next step, the new dimensions ~̂d of the re-sampled image are calculated
from the original image dimensions ~d with the old ~s and new target spacing
~̂s using a component wise vector multiplication � and component wise vector
division �:

~̂d = (~d� ~s)� ŝ (6)

Whereas the original and the re-sampled image have different dimensions in
terms of grid coordinates and a differently sized spacing, both image still oc-
cupy the same area in the world coordinate system by performing the trans-
formations in world coordinates. Through the relation between the image grid
and world coordinate system explained in Equation 5 and Chapter 2, Figure
4, the according index coordinates in the image grid can be calculated for the
given world coordinates as follows:

~ci = (~xi − ~o)� ~s (7)

Therefore, the pixel values of the re-sampled image can be set according to
the values of the input image belonging to the same world coordinates. In
order to match the correct structures in the altered slices, the vertices of the
segmentation outlines have to be projected onto the re-sampled and translated
image planes. By performing the image re-sampling in world coordinates only
a translation and conversion into the image grid coordinates is required to
project the segmentation outlines onto the image planes, since the proportions
of the segmentation outlines still match the underlying structures of the image
in the world coordinate system. Each vertex ~yi in the n-th segmentation
outline pi of each slice ai is projected onto the re-sampled and translated slice
by translating it with the origin ~o and the spacing ~s of the initial image volume
A to match the pixels in the grid coordinate system of the image:

~̂yi = ~s� (~yi − ~o) (8)

Finally, the extracted images slices and their corresponding segmentation out-
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lines are converted and exported to formats suitable for online distribution
over the WWW. The segmentation outlines are exported as a set of successive
points into JavaScript Object Notation (JSON) files. To enhance the contrast
of the target organ in the extracted CT slices, the grey values are modified by
applying a level window according to the Hounsfield Units (HU) of the tissue
from the target organ, for example the liver [4, 74, 173] (see Chapter 2, Section
2.1.1). In order to convert the CT slices into the PNG format, the values of
each pixel at the (x, y) position of each extracted slice ai with the width n and
height m are re-scaled to ∆ai matching the value range of an unsigned byte
(0-255) [174]:

∆ai(x, y) = (ai(x, y)−
n,m
min

x=1,y=1
ai(x, y))· 255

maxn,m
x=1,y=1 ai(x, y)−minn,m

x=1,y=1 ai(x, y)
(9)

4.1.4 Detection of inaccurate segmentation outlines

To detect inaccurate segmentations, the workers are asked to label accurate
and inaccurate segmentations using the interface from the website displayed
in Figure 16 a. The task contains several successive slices of a CT volume
incorporating the organ of interest with the corresponding outlines from the
initial automatic segmentation. By clicking on an image, the worker can mark
a segmentation as valid or invalid (Figure 18). Instructions with examples of
accurate and inaccurate segmentation outlines are included in the website.

4.1.5 Refinement of inaccurate segmentation outlines

For the refinement of inaccurate segmentations, one slice-wise initial segmenta-
tion of the CT volume is included in in the web based annotation tool (Figure
16 a). The annotation tool to refine the segmentation outlines is based on
the Leaflet5 JavaScript library (Figure 19a). As depicted in Figure 19b, the
workers can refine the segmentation outlines by selecting and dragging vertices
to the desired position. For further refinement it is possible to remove vertices
by a double click or add an additional vertex between two existing vertices by

5http://leafletjs.com accessed 4. Dez 2017
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(a) (b)

Figure 18: Example of an accurate (a) and inaccurate (b) segmenta-
tion outline included in the detection task presented in Figure 16 a.
As depicted in (b) the state of a slice can be toggled to valid or invalid
by clicking on the image.

Figure 19: Overview of the segmentation tool for crowd-based organ
segmentation (a). (b) Segmentation outlines can be refined by moving,
deleting or adding new vertices. (c) In the delete mode existing outlines
can be removed. (d) Workers can add new outlines by switching into
the polygon mode. If the contour intersects itself an error message is
displayed (e).

clicking on a greyed out suggested vertex. An integrated zoom function enables
the workers to perform more detailed corrections. Additionally, the workers
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can keep track of the region of interest where the refinement is performed,
by panning the image. Segmentation outlines that do not belong to the or-
gan of interest can be removed by selecting them in the delete mode (Figure
19c). Furthermore, it is possible to create custom free hand segmentations by
switching into the polygon mode. When the polygon mode is enabled, clicks
on the image are successively connected by lines, resulting in the final segmen-
tation contour (Figure 19d). If the created contour intersects itself, a warning
is displayed and the color changes (Figure 19e). In this case the worker has to
correct the outline, otherwise the contour can not be created. For enhanced
usability an undo function is included, enabling the workers to easily correct
their mistakes.

4.1.6 Merging multiple crowd-sourced annotations

The refined slice-wise segmentation outlines from multiple crowd workers are
merged to the final segmentation by applying the pixel-wise majority voting ap-
proach introduced in Chapter 3, Section 3.2.2. Figure 20 displays a schematic

Figure 20: Schematic visualization how majority voting is applied to
merge the slice-wise organ segmentations of multiple crowd workers. In
the first step the crowd segmentations of an organ are merged into a
frequency map. Afterwards majority voting is applied to the frequency
map. Every pixel that is contained in the segmentations from the
majority of crowd workers is segmented as "organ" and added to the
final segmentation.

overview how majority voting is applied to the slice-wise segmentations refined
by the crowd. In order to apply pixel-wise majority voting, the refined seg-
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mentation outlines are converted back to binary image masks using a scan-line
algorithm based approach [175]. In the next step, the images are summed up
into a frequency map. Every pixel in the frequency map that is included in
the majority of the segmentations created by the crowd workers is considered
as "organ" and added to the final binary segmentation mask.

4.2 Experiments

The method proposed in this chapter was evaluated on the case study of liver
segmentation in abdominal CT scans using a publicly available data set. All
experiments were performed on the training data of the MICCAI Liver Seg-
mentation Competition 2007 (SLIVER07)6 [3], where the available reference
segmentations of the training data served as a baseline to measure the per-
formance of the acquired crowd-sourced segmentations. In the experiments,
the results from non-expert online workers acquired through the crowdsourc-
ing platform MTurk were compared to three groups of medical experts familiar
with medical CT scans and a high amount of knowledge about the morphology
of the liver. The medical experts are divided into the following groups:

• A group of four radiologists.

• Four engineers that worked on algorithms for automatic liver segmenta-
tion in CT volumes.

• A group of five medical students completing their practical year in the
department of general, visceral and graft surgery of a surgical clinic.

4.2.1 Crowd-sourced annotations

Detection of inaccurate segmentation outlines

The detection of inaccurate segmentations was performed with the web based
annotation software presented in Section 4.1.4. Initially, the liver was seg-
mented in all CT volumes included in the SLIVER07 training data set using
the SSM segmentation approach presented by Heimann et al. [8]. In the next
step, the slice-wise segmentations were extracted from the segmented volumes,

6http://sliver07.org accessed 2 Feb 2018
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converted into data formats suitable for online distribution, uploaded to the
web server and distributed as micro tasks to the crowdsourcing marketplace
(Section 4.1). Each HIT for the detection of inaccurate segmentation outlines
contained 10 successive slice-wise segmentations from the same CT volume to
give the worker an overview of the progression throughout the volume. The
following configuration was chosen for the detection HITs in MTurk: Reward:
0.02 $ US, maximum runtime per HIT: 10 min and 10 assignments per HIT.
To avoid spammers, the HITs were restricted to workers having 95% positive
rating on their accomplished HITs. Based on the rating of different workers,
a slice-wise segmentation was classified as inaccurate if the majority of m ≥ 6
workers with m ∈ {1, · · · , 10} rated the segmentation as inaccurate.

Refinement of inaccurate segmentation outlines

All slice-wise segmentations that were rated as inaccurate by m ≥ 6 crowd
workers were refined in the correction step of the segmentation pipeline pre-
sented in Figure 15. Every HIT contained one slice-wise segmentation for
refinement. The following configuration was used for every correction HIT on
MTurk: Reward: 0.10 $ US, maximum runtime per HIT: 10 min, 10 assign-
ments per HIT and restricted to workers that accomplished 95 % of their HITs
with a positive rating. The final segmentation of a slice was created by com-
bining the results from all assignments of one slice-wise segmentation with the
pixel-wise majority voting approach presented in Section 4.1.6. A pixel was
segmented as "liver" when it was contained in the contours of at least k ≥ 6
workers.

4.2.2 Annotations from medical experts

The annotations from the different groups of medical experts were acquired
with the same web based annotation software used by the non-expert crowd
workers in Section 4.2.1. Instead of rolling out the HITs to a crowdsourcing
market place, the expert annotators were granted direct access to the annota-
tion software hosted on an external web server.
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Detection of inaccurate segmentation outlines

The detection of inaccurate initial segmentations was carried out the same way
as for the non-expert crowd workers in Section 4.2.1. Each HIT contained ten
successive slices of the initial SSM segmentation and every expert annotator
had to rank all slices distributed to the crowd. A slice-wise segmentation was
classified as inaccurate if the majority of m ≥ 3 annotators within an expert
group ranked the segmentation as inaccurate.

Refinement of inaccurate segmentation outlines

To keep the workload feasible for the limited availability of the medical expert
annotators, only a subset of the slice-wise segmentations refined by the crowd
was distributed for refinement to the different groups of medical experts. The
subset contained slice-wise segmentations with a different degree of difficulty,
ranging from segmentations the crowd was not able to improve up to segmen-
tations that were improved by the non-expert crowd workers. To select the
subset, all slice-wise segmentations refined by the crowd were sorted by the
absolute improvement achieved on the initial SSM segmentation after pixel-
wise majority voting was applied. As a measure for segmentation quality, the
DICE similarity coefficient (DSC) [86] was used, which is defined by compar-
ing a segmentation against its reference segmentation (Chapter 2, Equation
1). Afterwards, the sorted set of slice-wise segmentations was divided into ten
buckets and the segmentation at the median of each bucket was chosen for
further refinement. This procedure resulted in the subset {S1, · · · ,S10} ∈ Â
containing the ten slice-wise liver segmentations displayed in Figure 21. In
addition to the different degree of difficulty, the subset included segmentations
with the following properties:

• Five slices contained an equal amount of contours in the initial SSM and
the reference segmentation.

• Three slices contained less contours in the initial SSM than the reference
segmentation.

• Two slices contained more contours in the initial SSM than the reference
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S1 S2 S3 S4

S5 S6 S7 S8

S9 S10

Figure 21: Slice-wise segmentations that were distributed for refine-
ment to the different groups of medical experts. The slices are sorted
from S1 to S10 by the absolute improvement the crowd was able to
achieve on the initial SSM segmentation (red contour) compared to
the reference segmentation (green contour). The colored boxes high-
light segmentations with the following properties: More contours in
the SSM than the reference segmentation (green), equal amount of
contours (blue), more contours in the reference than the SSM segmen-
tation (red).

segmentation, where one slice had no contour in the reference segmenta-
tion.

Each slice-wise segmentation included in the subset was refined once by each
expert annotator. In each expert group, pixel-wise majority voting and the
Simultaneous Truth and Performance Level Estimation (STAPLE) algorithm
[176], that was designed to merge multiple segmentations of experts, was ap-
plied to merge the refined slice-wise segmentations and further improve seg-
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mentation quality.

4.2.3 Evaluation

The following aspects were investigated in the conducted experiments: (1)
Can non-expert online workers acquired through a micro task crowdsourcing
platform detect and refine inaccurate segmentations in radiological images?
(2) How well do the non-expert online workers perform compared to trained
medical experts with a vast amount of domain specific knowledge?

Detection of inaccurate segmentations

The DSC of each slice-wise segmentation was used to asses the performance for
the detection of inaccurate segmentation outlines in the four different annota-
tor groups: radiologists, students, engineers and crowd. Based on the DSC,
a slice-wise segmentation was classified as inaccurate (true positive (TP)) if
the DSC was < 0.9 and as accurate (true negative (TN)) with a DSC ≥ 0.95.
Slice-wise segmentations with a DSC < 0.9 that were rated as accurate segmen-
tations after majority voting was applied, were considered as false positive (FP)
votes and segmentations with a DSC ≥ 0.95 rated as inaccurate, considered
as false negative (FN) votes.

Refinement of segmentation outlines

The performance of the crowd was assessed by comparing the absolute improve-
ment of the refined slice-wise segmentations created with pixel-wise majority
voting against the initial SSM segmentation in terms of the DSC. Each ex-
pert group was compared against the initial SSM segmentation and the crowd
segmentations created with pixel-wise majority voting. Furthermore, the raw
segmentations without any further processing were used to asses the perfor-
mance of the individual expert annotators. Finally, the performance of all four
annotator groups consisting of radiologists, engineers, students and the crowd
was compared against each other using the slice-wise segmentations created
with pixel-wise majority voting and the STAPLE algorithm.
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4.3 Results

The results for the detection of inaccurate segmentation outlines are presented
in Section 4.3.1 followed by the results for the refinement of inaccurate seg-
mentation outlines in Section 4.3.2.

4.3.1 Detection of inaccurate segmentation outlines

A total of 364 different slice-wise segmentations were used in the experiments
for the detection of inaccurate segmentation outlines. With 10 assignments per
HIT, this resulted in 3640 rated slice-wise segmentations by the crowd, 1820
rated slices by the group of medical students and 1456 rated slices by the group
of radiologists and engineers, respectively. All four annotator groups achieved
similar results in the detection of inaccurate segmentation outlines (Figure 22).
The engineers, students and the crowd achieved approximately the same re-
sults, while the radiologists had a slightly higher amount of FN classifications.
These FN votes are slice-wise segmentations with a DSC < 0.9 that the radiol-
ogists rated as accurate. In contrast to the other groups, the radiologists had
the lowest rate of accurate segmentations classified as inaccurate segmentation
outlines (FP votes). The detection of inaccurate segmentation outlines was

Detection
group avg. time per HIT elapsed time annotations per hour
radiologists 46 sec 459 h 3
students 22 sec 336 h 6
engineers 29 sec 388 h 4
crowd 47 sec 15 h 243

Table 3: Average time to process one detection HIT containing ten
slice-wise segmentations. The total elapsed time is measured from the
distribution to completion of all HITs. Compared to the crowd, the
different groups of medical expert achieved low annotation rates due
to the low availability of the individual annotators.

performed by 49 different non-expert workers acquired through crowdsourcing.
They required 47 seconds on average to complete a HIT with a total elapsed
time of 15 hours, measured from distribution of the HITs to completion of
the last HIT (Table 3). Compared to the crowd, the radiologist required ap-
proximately the same amount of time to complete one HIT. In contrast to the
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radiologists engineers

students crowd

Figure 22: Results for the detection of inaccurate segmentation outlines
in each annotator group after majority voting was applied. The distri-
bution of correctly identified inaccurate segmentation outlines (True
Positives), correctly identified accurate segmentations (True Nega-
tives), inaccurate segmentation outlines rated as accurate (False Neg-
atives) and accurate segmentation outlines rated as inaccurate (False
Positives) are similar for all annotator groups.

radiologists, the students required only 47 % and the engineers 62 % of the
time compared to the crowd, while achieving similar results. Despite the fast
completion of a single HIT in the group of students and engineers, compared
to the crowd, the elapsed time from distribution to completion of all HITs was
26 to 30 times higher for the different groups of medical experts. This might
be related due to the low availability of the individual expert annotators, as
they are performing the annotations beside their daily job. Especially when
considering the annotation rates in terms of rated slice-wise segmentations per
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hour (each HIT contains ten slice-wise segmentations), the crowd was able to
achieve approximately 41 to 81 times higher annotation rates compared to the
different groups of medical experts.

4.3.2 Refinement of inaccurate segmentation outlines

The mean, median (inter quartile range (IQR)) of the pool of initial slice-wise
SSM segmentations refined by the crowd was improved from 0.84, 0.9 (IQR:
0.82, 0.96) to 0.88, 0.92 (IQR: 0.89, 0.95) (Figure 23). A paired t-test showed
that the improvement of the refined segmentation outlines was statistically
significant at a p-value of 0.004. A total of 193 different non-expert online

Figure 23: DSC of the refined crowd segmentation outlines merged
with majority voting compared to the initial SSM segmentation. The
dotted lines inside of the violins represent the median and inter quartile
range (IQR).

workers acquired through crowdsourcing refined the segmentation outlines.
They required 159 seconds on average to refine one slice-wise segmentation
(Table 4). It required 39 hours from distribution to completion of all HITs.
This resulted in an annotation rate of 35 annotations per hour. Compared
to the crowd, the radiologists and the medical students required only two
third of the time for the refinement of one slice-wise segmentation. The faster
refinement of outlines might be related to the prior medical expertise and
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Refinement
group avg. time per HIT elapsed time annotations per hour
radiologists 118 sec 458 h 0.1
students 102 sec 336 h 0.15
engineers 135 sec 387 h 0.1
crowd 159 sec 39 h 35

Table 4: Average time to refine one slice-wise segmentation. The total
elapsed time is measured from distribution to completion of all HITs
in each annotator group. Compared to the crowd, the different groups
of medical experts achieved low annotation rates due to the low avail-
ability of the individual annotators.

training, as these annotators directly know what they have to pay attention
for. Again, compared to the crowd the total time to process all HITs was
way higher for the different groups of medical experts. Also here the crowd
significantly outperformed the medical expert annotators with 233 to 350 times
higher annotation rates.

The segmentation refined by the crowd workers had a high variation in terms
of segmentation quality, whereas the annotators from the different groups of
medical experts were all able to produce segmentations of a similar quality.
Figure 24 illustrates the variation of the segmentation quality for the segmen-
tations in the different annotator groups performed on the subset presented in
Figure 21. Of note, no annotator was able to correctly annotate the slice S4.
Even non of the radiologists was able to correctly identify the segmentation
outline that was not part of the liver. This might be related due to the miss-
ing 3D context information in the employed web based slice-wise segmentation
concept. With a more complex annotation software providing the same func-
tionalities as radiological image viewers, the expert annotators would probably
have been able to correctly identify the wrong outline by examining multiple
slices to get an idea about the progression of the organ within the CT volume
or by visualizing the volume from a different view direction. Since no refer-
ence segmentation was available and none of the groups was able to correctly
annotate S4, the slice was excluded from the pool of segmentations for further
validation purposes.
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Figure 24: Schematic overview of the frequency maps from all seg-
mentations performed by the different annotator groups on the subset
displayed in Figure 21. The corresponding reference is included at
the bottom. The segmentations from the crowd have a higher intra-
observer variance compared to the different groups of medical experts.
This can be especially seen on the slices S1,S6 and S9.
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S1

S6

S9

SSM reference crowd

Figure 25: Selected examples for the slices S1,S6 and S9 depicting the
lack of medical expertise from non-expert crowd workers. Red: initial
SSM segmentation, green: reference segmentation, cyan: segmentation
from crowd workers with a low level of medical expertise.

Figure 25 displays selected examples demonstrating the lack of medical ex-
pertise from crowd workers that did not understand the task. The figure
incorporates the slices S1, S6 and S9 with the crowd segmentation, the cor-
responding initial SSM segmentation and the reference segmentation. None
of the crowd workers correctly identified and removed the wrong additional
contour in the initial segmentation of S1. In contrast to the crowd, three out
of four radiologists, three out of four engineers and three out of five students
correctly identified and removed the contour. The initial SSM segmentation
of S6 contained only one segmentation outline. Two of the radiologists, three
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of the engineers, none of the students and none of the crowd workers split the
initial outline of slice S6 into two separate outlines. The example crowd seg-
mentations of S6 and S9 in Figure 25 were performed by two different workers
that did not understand the task and segmented the whole abdomen instead
of the liver. These workers can not be considered as spammers that tried to
cheat the system in order to maximize their monetary income, since it most
likely required more effort to create a segmentation of the abdomen than to re-
fine the initial SSM outlines. Compared to the segmentations created by these
workers, the initial contour in S9 would only have required minor adjustments
of two vertices to create an accurate segmentation.

Figure 26: Statistics of the slice-wise segmentations created by the
individual annotators from the different expert groups compared to
the initial SSM segmentation and the crowd segmentations created
with pixel-wise majority voting. Except for one engineer, all expert
annotators created segmentations yielding in a similar mean, median
(IQR) DSC for the subset introduced in Section 4.2.2.

As illustrated in Figure 26, Table 5 and Table 8, all annotators except for
one in the group of engineers were able to improve the mean, median (IQR)
DSC from the subset of initial slice-wise SSM segmentations introduced in
Section 4.2.2. Some of the expert annotators even seemed to create slightly

71



Results Chapter 4. Organ segmentation
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0.82, 0.92 (0.85,0.96)
2 0.88, 0.92 (0.87,0.96) 0.91, 0.94 (0.90,0.96) 0.92, 0.96 (0.86,0.98)
3 0.92, 0.96 (0.88,0.97) 0.90, 0.96 (0.86,0.96) 0.91, 0.92 (0.87,0.97)
4 0.90, 0.95 (0.88,0.96) 0.88, 0.92 (0.86,0.95) 0.81, 0.82 (0.78,0.84)
5 0.90, 0.92 (0.87,0.96)

Table 5: Mean, median (inter quartile range (IQR)) for the DSC of
the slice-wise segmentations refined by individual expert annotators.
A graphical representation is displayed in Figure 26.

radiologists students engineers
# 1 2 3 4 1 2 3 4 5 1 2 3 4

p-value 0.9 0.5 0.1 0.4 0.6 0.1 0.1 0.5 0.1 0.1 0.1 0.1 0.9

Table 6: p-values corrected with Bonferroni-Holm α adjustment for
comparing the individual expert annotators against the crowd with
multiple Wilcoxon signed-rank tests. At a significance level of 0.05
none of the expert annotators was found to create statistically signif-
icant differences in the segmentation quality compared to the crowd
with pixel-wise majority voting.

more accurate segmentations than the crowd with pixel-wise majority voting.
Comparisons with paired t-test were not feasible, as the data was not nor-
mally distributed and the sample size to small. Even after the application
of common transformation techniques such as the Box-Cox [177] and Arcsine
[178] transformation, Shapiro-Wilk tests [179] still yielded in not normally dis-
tributed data. Further comparisons with multiple Wilcoxon signed-rank tests
[180] and p-value correction with Bonferroni-Holm α adjustment [181] showed
that compared to the crowd, none of the individual expert annotators was
found to create statistically significant differences in the segmentation quality
at a significance level of 0.05 (Table 6).

group: radiologists students engineers

p-value Majority Voting 0.02 0.02 0.02
STAPLE 0.04 0.03 0.04

Table 7: Corrected p-values with Bonferroni-Holm α adjustment for
comparing the segmentations from the different expert groups against
the crowd with multiple Wilcoxon signed-rank tests. When merging
multiple annotations, each group of medical experts was able to pro-
duce statistically significant differences in the segmentation quality at
a significance level of 0.05.
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Figure 27: Slice-wise segmentations of the subset displayed in Figure
21 merged with pixel-wise majority voting and the STAPLE algorithm.

Majority Voting STAPLE
group mean median (IQR) mean median (IQR)

radiologists 0.91 0.96 (0.86,0.96) 0.91 0.95 (0.86,0.96)
students 0.91 0.94 (0.86,0.96) 0.91 0.93 (0.86,0.96)
engineers 0.91 0.93 (0.85,0.97) 0.92 0.96 (0.87,0.98)
crowd 0.87 0.92 (0.86,0.95) 0.89 0.92 (0.86,0.95)

Baseline
mean median (IQR)

SSM 0.84 0.90 (0.72,0.93)

Table 8: Mean, median (inter quartile range (IQR)) for the DSC when
merging the segmentations from the different annotator groups per-
formed on the subset presented in Figure 21. The table includes pixel-
wise majority voting (left), STAPLE algorithm (right) as well as the
initial baseline segmentations created with the SSM (bottom).

When merging multiple annotations with pixel-wise majority voting and
the STAPLE algorithm, all groups of medical experts were able to slightly
outperform the crowd in terms of the mean and median DSC achieved on the
subset of initial SSM segmentations (Figure 27 and Table 8). In contrast to
the individual expert annotators, comparisons with multiple Wilcoxon signed-
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rank tests and p-value correction after Bonferroni-Holm α adjustment (Table
7) yielded for each expert group in p-values that were statistically significant
at a significance level of 0.05.

4.4 Discussion

This chapter introduced a hybrid crowd-algorithm based software framework
integrated into a medical imaging platform to address the problem of large-
scale organ segmentation in CT scans. A pilot study performed on the case
of liver segmentation in abdominal CT scans evaluated the potential to detect
and refine inaccurate organ segmentations with untrained non-expert online
workers acquired through a micro task based crowdsourcing platform. Evalu-
ated against three groups of medical experts consisting of radiologists, medical
students and engineers from the field of medical image analysis, the crowd was
able to achieve almost identical results in detecting inaccurate segmentation
outlines. With pixel-wise majority voting it was possible to create crowd-
sourced organ segmentations that match the quality of those create by in-
dividual medical experts. However, each group of medical experts was able
to slightly outperform the crowd when merging segmentations from multiple
expert annotators.

Despite the fast accurate refinement of single slice-wise segmentations, all
groups of medical experts required more than two weeks to complete the refine-
ment of the selected subset that only consisted of ten slice-wise segmentations.
The crowd in contrast, achieved high annotation rates and required less than
two days to refine all available slice-wise segmentations, not only the subset.

Especially in the case of segmentations incorporating multiple contours (e.g.
Figure 21, S1), none of the crowd workers was able to correctly identify which
contour belonged to the liver. Due to prior anatomical knowledge, the majority
of expert annotators correctly identified the additional wrong contour in S1

and removed it. None of the annotator groups was able correctly identify the
additional contour in S4 that was not part of the liver. However, the case
might not have been identified due to missing 3D context information. In
radiological image viewers, the expert annotators would have probably been
able to identify the additional outline by slicing through the 3D volume and
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adjust the grey values to their personal preferences.
Right now, the crowd has to process every single slice belonging to the

organ in the CT volume in order to create one organ segmentation. Reducing
the amount of processed slices could drastically reduce the annotation costs.
Future research questions to reduce the annotation costs and further exploit
the potential of crowdsourcing in the context of medical image segmentation
include:

Crowd-algorithm collaboration: How can the strengths of automatic seg-
mentation algorithms effectively be combined with the cognitive skills from the
crowd? An idea would be to integrate the crowd into the segmentation pro-
cess of the algorithm or to further fine tune machine learning algorithms with
crowd-sourced annotations [15]. The crowd could for example also adjust the
landmarks of the SSM during the segmentation process to fine tune the model
instead of refining the final result. To further explore hybrid crowd-algorithm
collaboration the author of this thesis was involved in related work for the
annotation of endoscopic images [123].

Annotation software: How can 3D context information efficiently be inte-
grated into a crowdsourcing task. At the cost of higher hardware requirements,
radiological image volumes can be visualized in web applications [58, 59, 60]
providing the same functionalities as radiological viewers. The functionalities
of such radiological image viewing frameworks would clearly benefit the groups
of medical experts. On the other hand, the complexity of those platforms and
the hardware requirements might have the opposite effect on untrained non-
expert online workers.

Training of crowd workers: Clear task instructions and training workers
can increase the quality of crowdsourcing tasks [34, 182]. How can crowd work-
ers be trained for the task of organ segmentation in medical image volumes?
A possibility would be to include step wise tutorials, where the workers have
to successfully solve one case in order to proceed to the payed tasks.

In conclusion, the proposed hybrid crowd-algorithm framework demonstrates
that crowdsourcing can be used to create accurate organ segmentations with
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a similar quality compared to those created by single medical expert annota-
tors. The high annotation rate, scalability [93, 119] and the ability to create
segmentations matching the quality of those created by single medical experts
makes crowdsourcing a valuable tool for large-scale segmentation of 3D med-
ical image volumes. Regarding the lack of reference data in the domain of
medical image analysis [9], crowdsourcing has high potential to evolve to a
state-of-the-art method to create reference segmentations in 3D medical im-
age volumes. Due to the nature of 3D medical image volumes consisting of
several successive slices, hybrid crowd-algorithm approaches are mandatory in
the context of image segmentation, as they can drastically reduce the amount
of processed data and therefore the required time and related costs.
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CHAPTER 5

Clickstream analysis for crowd-based object segmentation
with confidence

Parts of this chapter have been published in E.Heim et al., "Clickstream analysis for
crowd-based object segmentation with confidence", IEEE Transactions on Pattern Analy-
sis and Machine Intelligence (2017), DOI: 10.1109/TPAMI.2017.2777967, c©2017 IEEE,
[1] and in E.Heim et al., "Abstract: Clickstreamanalyse zur Qualitẗssicherung in der crowd-
basierten Bildsegmentierung", Bildverarbeitung für die Medizin 2017: Algorithmen - Systeme
- Anwendungen (2017) [46].
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This chapter presents a cost effective novel method for quality control in crowd-
sourced image segmentation that incorporates the annotation process itself to
estimate the quality of a segmentation. It involves training a regressor to
estimate the quality of a segmentation with a feature set extracted from the
worker’s annotation behavior. Once the regressor is trained, it does not require
any additional annotations for quality estimation. The segmentation quality
estimation can be used to identify spammers and weight individual annota-
tions by their estimated quality when merging multiple segmentations of the
same image. With a validation performed on a total of 34,000 crowd anno-
tations on publicly available data of different object classes acquired on two
crowdsourcing platforms, the presented method shows high accuracy in esti-
mating the segmentation quality based on clickstream data and outperforms
state-of-the-art methods for merging multiple annotations.

The chapter is organized as follows: Section 5.1 gives a conceptual overview
of the proposed quality estimation. The prototype implementation of the
concept is presented in Section 5.2. It incorporates the user interface to ac-
quire the object segmentations, the collection of clickstream data, extraction
of clickstream and image-based features, the regressor to estimate the quality
of crowd-sourced object segmentations as well as a confidence-based method to
merge multiple crowd-sourced object segmentations by their estimated qual-
ity. The experimental design of the validation study is presented in Section
5.3 followed by the results in Section 5.4 and a discussion in Section 5.5.

5.1 Segmentation concept

The purpose of this contribution was to develop a quality control method for
crowd-sourced object segmentation that does not rely on (1) additional tasks
(with known outcome) to be performed by the workers or (2) prior knowledge
of the worker’s annotation history. Inspired by previous work on clickstream
analysis for user identification in social networks [124, 131] and bio-metric
user authentication with mouse dynamics [161], the hypothesis of this work
is that the worker’s behavior captured in clickstreams is sufficient to estimate
the quality of an object segmentation. The concept involves a training process
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(Figure 28), in which a regressor is trained to estimate the quality of a given
segmentation using features extracted from clickstream data. To segment an
unseen image, the image is repeatedly distributed to the crowd until a certain
number of segmentations with a high estimated quality is reached (Figure 29).
As a measure for segmentation quality, the DICE similarity coefficient (DSC)
[86] is used which is defined by comparing a segmentation to its corresponding
reference segmentation (Chapter 2, Equation 1). The obtained segmentations
are then merged in a weighted manner, according to their estimated quality.
An implementation of this concept is presented in the following Section 5.2.

crowd 
segmentation

Input:::
images with 
reference annotations

1. Crowd annotation 2. Feature 3. Regressor 
trainingextraction 

Output:

segmentation
quality estimation

clickstream

clickstream

( )
f 1

f 1

i1

in

DSC 1i
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f m

j1
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crowd 
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Figure 28: Training step of the segmentation quality estimation. Ini-
tially, images with known reference segmentations are distributed to
multiple crowd workers. While the workers are segmenting the im-
ages, the system records their annotation behavior (clickstreams). For
each annotated image, the clickstream is converted into a feature vec-
tor characterizing the worker’s interaction behavior. The set of all
collected feature vectors with corresponding DSC values is then used
to train a regressor to estimate the DSC solely based on a worker’s
clickstream. (Reprinted with permission from Heim et al. [1] c© 2017
IEEE)
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Figure 29: Concept for crowd-based image segmentation based on a
trained segmentation quality estimation (Figure 28). The image to
be annotated is repeatedly distributed to the crowd until a certain
confidence level is reached. The obtained segmentations are merged
in a weighted manner, where the weight of the worker’s annotation
increases with the estimated DSC on that specific image. (Reprinted
with permission from Heim et al. [1] c© 2017 IEEE)

5.2 Prototype implementation

The prototype implementation presented in this section focuses on single-
object segmentation. It comprises a user interface for crowd-based image
segmentation (Section 5.2.1) as well as capabilities for clickstream data collec-
tion (Section 5.2.2), feature extraction (Section 5.2.3), segmentation quality
estimation (Section 5.2.4) and confidence-based annotation merging (Section
5.2.5).

5.2.1 User Interface

The proposed segmentation concept is open in the way it can be implemented.
Therefore different web-based user interfaces can be included in the prototype
implementation to perform the image segmentations and collect the corre-
sponding clickstream data. The user interfaces are implemented in Hypertext
markup language (HTML) and JavaScript and have to incorporate the follow-
ing functionalities:

Interface functionalities: The user interface to perform the image segmen-
tations and collect the clickstream data provides basic functionalities to create,
delete and correct contours. The worker can draw a contour by either pressing
and holding the left mouse button while dragging the cursor or define points
via clicks on the canvas. These points are then successively connected by lines,
resulting in the segmentation contour. Typically, workers use a combination of
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Figure 30: User interface for image segmentation. The user inter-
face consists of a short task introduction (top), instructions about the
available functions (middle) the segmentation canvas including control
buttons. Examples of object segmentations are provided in the bot-
tom. The current state of the interface shows one finished contour with
orange points and a contour during creation.

both modes, e.g. if the object contains regions with high curvatures combined
with sharp corners or long lines, the worker might only set points to draw lines
or corners and continues drawing the curves by dragging the mouse and vice
versa. To help create accurate contours it is possible to zoom into the image by
using the mouse wheel. If the worker is not satisfied with the created segmen-
tation, the contour can be corrected by selecting and dragging single points to
the desired position or by deleting redundant points with a double click. It is
also possible to delete the complete contour and restart the segmentation from
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scratch. The user interface records the clickstream as a sequence of raw time
stamped mouse events containing the event type and the position were the
event was triggered. Figure 30 displays an user interface implemented on top
of the Openlayers 1 [183] library that provides the described functionalities.

5.2.2 Clickstream data collection

During the segmentation task, every action triggered by the worker’s mouse is
saved to the clickstream. In addition to the worker-triggered events, the cur-
rent mouse position is continuously recorded. The clickstream is represented
as a sequence of successively occurring mouse events E = {e1 · · · , ei} where ei
is the i-th element in the sequence and i serves as an unique identifier (ID).
The events in the clickstream are sorted by their time stamp ti in the chrono-
logical order they were recorded. Each recorded event provides the x and y

coordinates of a point ~p ∈ R2 in the canvas coordinate system, correspond-
ing coordinates transformed into the image coordinate system, the event type
and the object on which the event was recorded. Thereby it is differentiated
between the following event types and actions: mouse-down, mouse-up, mouse-
wheel, double-click, mouse-move. The following objects are present in the user
interface: canvas, delete contour button, zoom button, save button.

5.2.3 Feature extraction

The feature set is derived from the recorded clickstream based on the as-
sumption that reliable workers will interact differently with the program than
malicious workers will. Therefore the assumption is made that reliable work-
ers will put more time and effort into creating accurate segmentations than
malicious workers. Furthermore, the assumption is made that the worker’s
behavior will change based on their level of expertise. Expert annotators for
example, might create high-quality segmentations in less time with less effort
than inexperienced, untrained workers who might create a high amount of user
input that will not necessarily result in more accurate segmentations. In order
to estimate the quality of each segmentation, a feature set is required that
is able to classify the quality of segmentations from different objects with-

1https://openlayers.org accessed 4. Dez 2017
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out incorporating knowledge of the underlying system, object types or worker
identity. Therefore the following feature set is defined that includes features
calculated from both, the clickstream and from the image itself.

Clickstream-based features

Velocity: ∀ ei ∈ E a velocity vector ~vi is computed based on the elapsed
time ∆ti (in milliseconds) and travelled distance ∆~pi on the canvas with the
positions ~pi and ~pi−1 of two successive events ei and ei−1 ∈ E:

~vi = ∆~pi
∆ti

= ~pi−1 − ~pi
ti−1 − ti

(10)

The velocity is only computed for mouse-move operations. On mouse or button
clicks the velocity is reset to zero. The mean, median, standard deviation and
95% quantile of the velocity ∀ ei ∈ E are used as features. Therefore the
velocity v′i ∀ ei ∈ E is calculated in addition to the velocity vector analogous
to Equation 10 and scaled to a range between [0, 1] with min max scaling:

v′i =
vi −

m
min
n=1

(vn)
mmax
n=1

(vn)−
m

min
n=1

(vn)
(11)

Acceleration: The acceleration ~ai of every event in the clickstream is derived
from the velocity change ∆~vi and elapsed time ∆ti between two successive
events ei ∈ E and ei−1 ∈ E:

~ai = ∆~vi
∆ti

(12)

The mean, median, standard deviation and 95% quantile of the acceleration
∀ ei ∈ E are used as features. Therefore the acceleration is scaled in a range
between [0, 1] with min max scaling according to Equation 11.

Mouse strokes: The total number of mouse strokes is used as a feature. A
mouse stroke is defined as a sequence of mouse-move events S ⊆ E that occur
between a mouse down and up event. As explained in Section 5.2.1, mouse
strokes are used to draw a contour or to select and drag points to correct
existing contours.

84



Chapter 5. Clickstream analysis Prototype implementation

Draw operations and contour correction: To distinguish whether a
mouse stroke was used to draw a new contour or correct an existing one, the
clickstream is processed using Algorithm 1 based on the previously described
event types and objects. The absolute number of draw events and executed

Data: mouse strokes S, clickstream E
Result: set of draw operations D, set of corrections K
begin

i←− 0;
for Si ⊆ E do

if Si.down.~p ≡ Si−1.up.~p, with Si−1 ∈ D then
D.add(Si);

else
if ∃ e ∈ E : Si.down.~p ≡ e.~p ∧ Si.t ≤ e.t then

K.add(Si);
else

D.add(Si);
end

end
end

end
Algorithm 1: Clickstream processing to identify if a mouse stroke S is a
draw operation D or a correction K. It is distinguish between three different
cases: (1) If the mouse down event of the current mouse stroke occurs at the
same position as the mouse up event that terminated the last draw event,
the current mouse stroke Si is considered as a drawing event. (2) If this did
not occur and the down event of the current stroke occurred at the same
position as a previous event in the clickstream, the current mouse stroke Si is
considered as a correction event. (3) Otherwise a new contour is started and
the current mouse stroke Si is a draw event. A kd-tree [184] is used to speed
up the search of events in the clickstream based on their spatial position.

corrections are used as features. In addition, to the acceleration and veloc-
ity for the executed draw and correction events the mean, median, standard
deviation and the 95% quantile are used as features.

Zoom: The total number of zoom events are extracted out of the clickstream
by using the event and object types detailed in Section 5.2.2.

Canvas clicks: The total number of mouse-clicks that are executed on the
canvas are used as a feature.
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Double clicks: The total number of double-clicks that are executed on the
canvas are used as a feature.

Elapsed time: The duration of the whole task is calcluated as the difference
between the timestamps of the first and last event in the clickstream: ∆T =
tn − t0. The time is normalized by the mouse clicks and actions as described
in Sameki et al. [158], i.e.: ∆T

canvas clicks
.

Ratio of traveled mouse distance and length of the segmented con-
tour: In contrast to the absolute size of a contour used by Vittayakorn et al.
[44], this work assumes that the length of a created contour will be in relation
to the total traveled mouse distance in the image space. The assumption is
made that a spammer will typically try to create a random contour on the
canvas that will be similar in length to the total traveled distance, whereas
reliable workers will more likely perform different mouse movements such as
zooming, moving the mouse to adjust the view or correcting created contours.

Image-based features

Similar to Vittayakorn et al. [44], this work assumes that for an accurate seg-
mentation, the contour will mainly be located on or next to edges in the image.
When creating an accurate contour the worker will most likely try to follow
edges in the image and the mouse will move perpendicular to the gradient
direction (Figure 31a). The contour of a spammer who is not segmenting an
object will, in contrast, not be created perpendicular to the gradient direction
(Figure 31b). In addition to the relation between the mouse-move direction
and the gradient, the quality of the resulting contour is ranked based on the
gradients and the interpolated vertex normals of the created polygon. In this
case, the assumption is made that vertex normals are collinear to the gradient
direction (Figure 32).

Therefore a set of features based on the image gradient is defined. For
each event ei the angle γi between the gradient direction ~gx,y at the image
coordinates x, y and the mouse-move direction ~di is computed. The gradient
is determined using recursive Gaussian filtering [185] as implemented in the
Insight Segmentation and Registration Toolkit (ITK) [70] while the mouse-
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(a) (b)

Figure 31: Visualization of the gradient features extracted from a draw
operation on an accurate (a) and inaccurate (b) segmentation. The di-
rection of the velocity (purple) is perpendicular to the gradient (green)
on the accurate segmentation.

(a) (b)

Figure 32: Visualization of the image features extracted in the final
contour of an accurate (a) and inaccurate (b) segmentation. The vertex
normals (cyan) and gradients (green) are collinear on accurate segmen-
tations (a) but point in different directions on inaccurate segmentations
(b).

move direction ~di is derived by normalizing the velocity ~vi for the event ei:

~di = ~vi
‖~vi‖

(13)

In the first step the angle between ~gx,y and ~di is computed according to Equa-
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tion 14:

ω(~di,~gx,y) = acos(
~di � ~gx,y

‖ ~di ‖ · ‖ ~gx,y ‖
) · 180

π
(14)

the smallest angle γi is used:

γi =


ω(~di,~gx,y), if 0◦ ≤ ω(~di,~gx,y) ≤ 180◦

360◦ − ω(~di,~gx,y), otherwise
(15)

and normalized to an angle between 0◦ and 90◦:

γ̄i = εγ − |εγ − γi| (16)

with εγ = 90◦. The following image-based features are defined:

Features extracted from contour drawing and correction events: The
mean, standard deviation, median and 95% quantile of the angles γ̄i are cal-
culated as features for all contour drawing events D, all contour corrections K
and all consecutive mouse click events. For the mouse click events, the direc-
tion vector ~di is calculated as the line segment connecting the current mouse
click with a previous one.

Features extracted from the final contour: The final contour is defined
as a set of consecutive connected two-dimensional (2D) vertices represented
by points in the image coordinate system X = {(~p1, ~p2, ~p3, · · · , ~pn)|~pi ∈ R2}.
The normal for each line segment ~ni is calculated with two consecutive vertices
~pi, ~pi+1 ∈ X:

~ni =
−1 · (~pi+1y

− ~piy)
(~pi+1x

− ~pix)

 (17)

The interpolated vertex normal ~̃ni is calculated by a linear interpolation of the
line segment normals of two adjacent line segments ~ni−1 and ~ni.

~̃ni = 1
2~ni−1 + 1

2~ni (18)

With the vertex normals and the gradient directions, γ̄i ∀ p ∈ X is computed
according to Equation 16 with the image gradient ~gx,y and the interpolated
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vertex normal ~̃ni instead of the drawing direction ~di. The mean, standard,
deviation, median and 95% quantile of all computed angles are used as features.

5.2.4 Estimation of segmentation quality

With the set of features introduced in the previous section 5.2.3 and the DSC
of segmentations for which a reference segmentation exists, a random forest
regressor [186] is trained to estimate the quality of unseen crowd segmentations.
The random forest regressor implementation from scikit-learn [187] is used to
estimate the DSC ŝj of an unseen crowd segmentation Uj.

To determine the parameters for the random forest regressor a data set
consisting of 20 images of cars that were not part of the validation data set
was used. For each image, reference segmentations were obtained with the
method described in [188]. In addition, a total of 500 crowd segmentations for
each image were obtained with the platform of Pallas Ludens GmbH2, resulting
in 10,000 segmentations for cross-validation. The tree depth and the minimum
number of samples per leaf of the random forest regressor were determined by
running a 10 fold labeled cross-validation optimizing the R2 score with the
estimated DSC ŝi, the corresponding real DSC sj for every segmentation and
the mean DSC s of the data set (Equation 19):

R2 = 1−
∑n
j=1(sj − ŝj)2∑n
j=1(sj − s)2 (19)

Before running the cross-validation it was ensured that neither the same work-
ers nor the same images were included in the test and training data set simul-
taneously. For a random forest regressor with 500 trees, a minimum of three
samples per leaf and extending the tree depth until all leaf nodes are pure, a
mean R2 score of 0.71± 0.04 was achieved.

5.2.5 Confidence-based segmentation merging

To generate a new segmentation, the segmentations of different workers were
merged based on their estimated quality. Two different methods for merg-
ing the segmentations were investigated: (1) A confidence weighted major-

2http://pallas-ludens.com accessed 4. Dez 2017
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ity voting approach based on the estimated segmentation quality and (2) a
Simultaneous Truth and Performance Level Estimation (STAPLE) algorithm
based approach [176].

Confidence-weighted majority voting

Based on the segmentation quality estimation, segmentations are discarded
if the estimated DSC ŝj for a segmentation Uj falls under a predefined DSC
threshold εt ∈ [0, 1]. With the estimated DSC values ŝj a normalized confidence
value κ(ŝj) ∈ [0, 1] is computed for the remaining λ segmentations:

κ(ŝj) = ŝj − εt
1− εt

(20)

Uj(x, y) denotes the 2D segmentation images with the width m and height
n, where (x, y) is the coordinate of the pixel in the image with Uj(x, y) ∈
{0, 1}. Each segmentation Uj(x, y) is weighted with the estimated confidence
(Equation 20) and the confidence weighted pixel values are accumulated in the
image ∆U(x, y):

∆U(x, y) =
λ∑
j=1

Uj(x, y) · κ(ŝj) (21)

The smallest integer value µ representing the majority of λ segmentations is
used to calculate the fraction of the maximum accumulated confidence value ψ
in ∆U(x, y), that is required to classify a pixel as belonging to the segmented
object:

ψ =

m,nmax
x=1,y=1

∆U(x, y)

λ
· µ (22)

The final confidence weighted segmentation H(x, y) is calculated by applying
the following binary decision to each pixel of the image ∆U(x, y):

H(x, y) =


1, if ∆U(x, y) ≥ ψ

0, otherwise
(23)
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Simultaneous Truth and Performance Level Estimation (STAPLE)
with DSC estimation

Instead of weighting each segmentation, low quality segmentations with a DSC
under a predefined DSC threshold εt ∈ [0, 1] are discarded by the DSC esti-
mation and the remaining segmentations with a high estimated DSC are fused
with the native STAPLE algorithm implementation [176].

5.3 Validation

The following aspects were investigated in the experiments: (1) What is the
quality of the proposed segmentation quality estimation using clickstream and
image based features (Section 5.3.1)? (2) What is the quality of the proposed
confidence-based approach to segmentation fusion compared to the state-of-
the-art methods for annotation merging (Section 5.3.2)? (3) How well does
the regressor generalize to new object types (Section 5.3.3) and (4) What are
the costs of the proposed method compared to state-of-the-art methods 5.3.4?

5.3.1 Segmentation quality estimation

The proposed segmentation concept was validated on a subset of the publicly
available Visual Object Classes (VOC) [189]. It was validated on two object
classes within the VOC challenge data: {cat, car}. For each class, 100 out of
the first 150 images were used, making sure that a broad range of degree of dif-
ficulty (e.g. fully visible objects and partially occluded objects) was covered.
Using the prototype implementation of the presented concept (Section 5.1)
10,000 segmentations per class were acquired (100 segmentations per image)
in a gaming crowd provided by the Pallas Ludens GmbH with their proprietary
user interface that provides all the functionalities described in Section 5.2.1.
Example segmentations with the segmentation outline were provided to the
workers (see Figure 30). No filters for quality management, e.g. CAPTCHAs,
tutorials or blocking of known spammers were applied in order to collect click-
streams from a variety of worker types with a high fluctuation in the segmen-
tation quality. Furthermore, it was assured that each image was segmented at
most once by every worker. This resulted in a total 20,000 segmented images
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with their corresponding clickstreams for validation.

For each object class a leave-one-out cross validation was performed. It was
ensured that only annotations of workers were considered for cross validation
that were not involved in the annotations of the training images. Furthermore,
the estimation was trained and tested on a different class, here cats, cars and
vice versa. To quantify estimation quality, the absolute difference between the
true DSC and the estimated DSC of all test segmentations was determined.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 33: Examples for different types of crowd-sourced segmenta-
tions of cars (left) and cats (right) from the VOC challenge data: (a)
Good quality segmentation, (b) mediocre quality segmentation, (c)
poor quality segmentation, (d) accurate segmentation of the wrong
object, (e) wrong tool usage (f) bounding box, (g) simple shape inside
of object, (h) scribbles, (i) inaccurate segmentation of the wrong ob-
ject, (j) simple shape outside of object and (k) empty submission. The
cases (g) - (k) were considered as spam.
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In order to create high quality segmentations with the merging algorithm
presented in section 5.2.5 it is particularly crucial to detect low quality segmen-
tations with a high accuracy. For further validation purposes all crowd-sourced
segmentations were manually classified in view of this crucial aspect. As illus-
trated in Figure 33, the manually classified segmentations were subdivided into
the following categories, reflecting the different segmentation types produced
by the crowd workers:

(a) Good quality segmentation: All segmentations with a DSC greater
or equal than 0.8 were graded as a segmentation of good quality.

(b) Mediocre quality segmentation: Inaccurate mediocre quality seg-
mentation of the object of interest.

(c) Poor quality segmentation: The worker created an inaccurate poor
quality segmentation of the object of interest.

(d) Accurate segmentation of the wrong object: The worker creates
accurate segmentation of a wrong object (possibly on purpose).

(e) Wrong tool usage: Wrong usage of the annotation tool, e.g. inverted
segmentation or workers try to draw outlines with polygons rather than
covering the objects with a polygon.

(f) Bounding box: Workers draw a bounding box around the object of
interest rather than an accurate contour.

(g) Simple shape inside of object: Simple shapes, e.g. rectangles or
triangles, that are inside or overlap with the object of interest.

(h) Scribbles: Instead of trying to segment the object, the worker creates
random scribbles all over the image or the object of interest.

(i) Inaccurate segmentation of the wrong object: The worker create
an inaccurate segmentation of the wrong object instead or in addition to
the object of interest.

(j) Simple shape outside of object: A simple shape not overlapping with
the object of interest was created somewhere in the image.
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(k) Empty submission: The task was submitted without creating any
contour.

Workers that submitted one of the categories (g) - (k) did not try to solve
the task in a correct manner on purpose and these cases were thus considered
as spam. In addition to the good quality segmentations (a), the cases (b) -
(f) were considered as annotations from workers that were willing to solve the
task in a correct manner.

To investigate the number of annotations required for regressor training,
the performance was determined in terms of the R2 score (Equation 19) as a
function of the number of training annotations. Again, it was ensured that
no worker was included in the test and training data at the same time. For
training, 100 random permutations of n annotations were used (for n = 10,000
only one permutation was possible).

Due to the success of wrapper and filter methods for optimal feature se-
lection, these methods were applied to quantify the relevance of the various
features used by the segmentation quality estimation. To avoid bias towards a
specific feature selection method, the analysis was performed by applying the
most commonly used methods. In particular the wrapper methods Sequential
Forward Selection (SFS) [190] and Best First Search (BFS) [191] were applied
with a mean squared error criterion and a feature set size penalty to sequen-
tially build an optimal feature set. Furthermore, a wide array of filter methods
for feature selection was applied to derive feature sets using the same criterion
employed for the wrapper methods. The filter methods include Conditional
Mutual Information Maximization (CMIM) [192], Interaction Capping (ICAP)
[193], Joint Mutual Information (JMI) [194], Conditional Infomax Feature Ex-
traction (CIFE) [195], and Mutual Information for Feature Selection (MIFS)
with a nearest neighbor mutual information estimator [196, 197]. These filter
methods construct feature sets sequentially, but do not return which number
of features have to be be selected for optimal results. This shortcoming was
addressed by running a cross-validation on the training set using the selected
feature sets of increasing sizes and applying the same selection criterion as in
the wrapper method for determining the ideal number of features. Feature
selection was solely carried out on the training set.
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5.3.2 Confidence-weighted annotation merging

The method presented to create confidence-weighted crowd-sourced image seg-
mentations (Section 5.2.5) was compared with the widely used majority voting
method (Chapter 3, Section 3.2.2) [42]. Furthermore the STAPLE algorithm
using raw crowd generated segmentations was compared with the STAPLE
algorithm based approach presented in Section 5.2.5, where low quality seg-
mentations are filtered out using the segmentation quality estimation presented
in this chapter. To ensure that only high quality annotations were used, the
presented method was executed for the DSC at a threshold of εt = 0.9. Ac-
cording to experiments on a separate data set, this threshold provides a good
trade off between quality and excluded high quality annotations. To investi-
gate the performance of the presented approach as a function of the number of
images, the set B = {1, · · · , 10} was denoted and λ ∈ B annotations per image
were used that had an equal or higher estimated DSC than εt. For λ = 1 the
approach basically deduced to the segmentation quality estimation without
any further merging of annotations. The average number of annotations ϕ re-
quired to obtain λ annotations with a estimated DSC above εt was determined
by computing ϕ = λ+ r, where r is the mean number of rejected annotations.
For each λ ∈ B, the presented method was compared to majority voting with
λ and ϕ annotations. Analogously, the confidence weighted STAPLE approach
with λ annotations was compared with the native STAPLE algorithm using
λ and ϕ annotations respectively. The experiments for annotation merging
were conducted on the 20.000 segmentations from the VOC challenge acquired
in the gaming crowd described in Section 5.3.1: (1) separately for each class
(i.e. training and testing on only cars (cars-cars) or cats (cats-cats)) and (2)
on both classes, using one class for training and one for testing (cars-cats,
cats-cars).

5.3.3 Generalization capabilities

The assumption for this additional experiment is that workers might behave
differently depending on the shape properties of the object they are segmenting.
As already mentioned by Russell et al. [18] the number of control points to
create an accurate segmentation varies for each object category (see Figure 34).
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As a logical consequence, the user interaction might also vary depending on
the complexity of the object. The more complex the target object is, the more
effort has to be invested by the worker to create an accurate segmentation. A
complex object like a motorcycle (Figure 34a) by default needs more control
points in the contour for an accurate segmentation than a refrigerator. This
will probably result in a different user interaction. A rectangular shaped object
like a refrigerator can for instance be segmented by creating simple rectangle
with four control points (Figure 34c).

To investigate the generalization capabilities of the proposed segmentation
quality estimation approach, it was applied to a different crowd with additional
validation data using an open re-implementation of the annotation software.
Specifically, the annotation concept was re-implemented with a user interface
based on the Openlayers [183] library and used in conjunction with the micro
task based crowdsourcing platform Amazon Mechanical Turk (MTurk) (Chap-
ter 2, Section 2.2.2) [164]. Figure 30 displays a screen shot of the user interface
during the annotation process. The set of object classes obtained from the
VOC validation set, namely {car, cat}, was extended by seven further object
classes from the Common Objects in Context (COCO) data set [7] yielding the
following four object categories: vehicles: { airplane, car, motorcycle, train}
(Figure 34a), animals: {bird, cat, dog, elephant} (Figure 34b), rectangular-
shaped objects: {laptop, refrigerator, tv} (Figure 34c) and circular-shaped
objects: { ball, clock, frisbee } (Figure 34d).

(a) (b) (c) (d)

Figure 34: Examples for crowd-sourced image segmentations of vehicles
(a), animals (b), rectangular-shaped (c) and circular-shaped (d) object
classes from the COCO data set [7]. The segmentation outlines are
visualized with their control points.

In order to keep the costs of the experiments manageable, only 1,000 seg-
mentations per object class (10 per image, 100 images per class) were acquired
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with MTurk. In contrast to the 10,000 annotations per object class acquired in
the gaming crowd provided by the Pallas Ludens GmbH. Each Human Intelli-
gence Task (HIT) consisted of one image segmentation task and was rewarded
with 0.05$ US. Again, no qualification was required to start a HIT and the
HITs were accessible to all workers within the crowdsourcing platform. Only
example segmentations and instructions of the user interface were provided to
the workers (see Figure 30). In order to ensure each image was segmented at
most once by each worker, each HIT consisted of 10 assignments. This strat-
egy resulted in a total of 14,000 crowd segmentations from 14 different object
classes for evaluation.

To investigate how the proposed segmentation quality estimation degrades
for target classes that are further away from the training classes, its perfor-
mance was determined for training on the animal and vehicle classes respec-
tively and testing the segmentation quality estimation on (1) the same class,
(2) the same category (here: different animals/vehicles), (3) a similar cate-
gory (here: vehicles for animal classes; animals for vehicle classes) and (4) a
different category (here: rectangular-shaped and circular-shaped objects).

Generalization with a combined estimator: Last but not least an addi-
tional experiment was conducted to investigate how the segmentation quality
estimation performed when it was trained on a combination of multiple differ-
ent object classes. Therefore a classical leave-one-out validation was applied
where the regressor was trained with the data from all object classes except
for the object class it was applied to.

5.3.4 Comparison of annotation costs

Depending on the number of requested annotations a, the total cost for image
annotation c(a) can be calculated for the proposed method, a baseline method
and the manual grading method (Section 3.2.3) applied to create the COCO
challenge data set [7].

Proposed method

The total costs for quality controlled crowd-based image annotation with the
proposed method can be approximated as follows:
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amv: Average number of required annotations (according to confidence esti-
mation) to perform majority voting
at: Needed number of training annotations
s: Percentage of spam to be expected

c(a) = at +
(
a+ s

1− sa
)
amv (24)

Baseline method

A widely used method for simple quality control in crowd-based annotation
merging using majority voting is to let crowd workers annotate an image with
a known reference annotation every aw annotations, where typically 10-30% of
this quality control tasks are mixed in between the tasks [43]. The total cost
of annotating a images can then be calculated as follows:

amv: Number of annotations used to perform majority voting
aw: Number of annotations requested per worker
ar: Number of reference annotations required for quality control

c(a) = amva+ amva

aw − 1 + ar (25)

Manual grading method

According to the authors of [7], the quality control applied during instance
segmentation of the COCO data set involved the following resources:

Total number of annotations: 2,630,776
Number of approved annotations: 1,976,839
Number of rejected annotations: 653,937 (24.9%)
Number of approved workers: 7136
Number of categories: 91
Percentage of approved workers banned after annotation: 3.1%
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Given these numbers, and considering the following variables, a general es-
timation of the annotation cost using this method can be formulated:

Aaw = 2630776
7136 = 369 Average number of annotations performed by one worker

nc: Number of categories annotations are requested for
naw = a

Aaw∗0.7514281 : Total number of approved workers needed to create a an-
notations
nw = 3 ∗ naw: Total number of workers recruited to perform the annotations
v: costs associated to the verification stage where 3-5 workers judge each an-
notation

c(a) = a

1− s + ncnw + Aawnaw · 0.031 + v (26)

5.4 Results

The result section is structured as follows: Section 5.4.1 presents the results of
the segmentation quality estimation introduced in Section 5.2.4 and compares
them to pixel-wise majority voting and the native STAPLE algorithm. The
results for the confidence-weighted annotation approach introduced in Section
5.2.5 are presented in Section 5.4.2. Section 5.3.3 presents the generalization
capabilities of the proposed segmentation quality estimation. Finally, Section
5.4.4 compares the annotation costs of the proposed segmentation quality es-
timation with the costs related to the baseline methods introduced in Section
5.3.4.

5.4.1 Segmentation quality estimation

Arround 30% of all segmentations from the VOC data acquired with the gam-
ing crowd presented in Section 5.3.1 had a DSC below 0.8 and can be considered
as useless, which approximately reflects the amount of bad quality annotations
reported in [39, 40, 41, 109]. By filtering the segmentations with the proposed
segmentation quality estimation method (using εt = 0.9, λ = 3) the mean,
median (inter quartile range (IQR)) quality of the pool of segmentations was
improved by 16%, 4% (IQR: 18%, 3%) from 0.80, 0.91 (IQR: 0.79, 0.94) to
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0.93, 0.95 (IQR: 0.93, 0.97). The mean and median (IQR) absolute difference
between the true DSC and the estimated DSC were 0.18, 0.12 (IQR: 0.06, 0.21)
for training and testing on cars and 0.09, 0.05 (IQR: 0.02, 0.11) for training
and testing on cats (Figure 35).

Figure 35: Absolute error of the segmentation quality estimation for
training and testing on the same classes (cars-cars, cats-cats) as well
as on different classes (cats-cars, cars-cats). Each violin includes a
boxplot displaying the median and IQR of the data set.

As already mentioned in Section 5.3.1, it is particularly crucial to omit low
quality segmentations in order to create high quality segmentations by fusing
different annotations. To assess the performance of the proposed method in
view of this crucial aspect, all annotations with a poor true DSC below 0.5
and a good estimated DSC over 0.8 were identified with respect to the pre-
viously introduced categories (Figure 33). These false positive (FP) quality
estimations with a true DSC below 0.5 made up 3% of all annotations used
for validation. The previously introduced categories in Figure 33 were used to
categorize the errors done by the regressor. A distribution of the previously
defined categories is visualized in Figure 36 for all crowd-sourced segmenta-
tions on the cats and cars data set. Figure 37 illustrates the distribution of
false positive quality estimations according to these error classes, where the
categories (b) - (f) were summarized as spam to improve readability of the
chart. When training and testing on cars, 3% of all estimations were esti-
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cars cats

Figure 36: Distribution for the different categories of crowd segmen-
tations illustrated in Figure 33 for the cars (a) and cats (b) data set.
Booth data sets show roughly the same distribution of the different
categories.

mated to have a high annotation quality although the true DSC was poor
and 1% when training and testing on cats, respectively. Less than 1% of FP
estimations occurred when training on the cats and testing on cars data set
(cats-cars), while the regressor produced 6% of FP quality estimations when it
was trained on the cars and tested on the cats data set (cars-cats). Figure 38
displays the performance in terms of the R2 score as a function of the number
of training annotations when training the regressor with a different number of
annotations. The performance increased with the number of annotations used
for training.

In the feature importance analysis for both cats and cars data sets, the mean
angle between image gradient direction and interpolated vertex normal and the
ratio of traveled mouse distance to the length of the segmented contour were
found to be important features by all selection methods. A potentially high
impact on the estimation accuracy could also be found for the median mouse
velocity, the median mouse velocity for draw events, the number of events in
the clickstream, and the median angle between image gradient direction and
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cars-cars cats-cats

cats-cars cars-cats

Figure 37: Distribution of crowd segmentations that were estimated to
have a high DSC but had a low true DSC (false positives) divided into
the error classes introduced in Section 5.4.1 with the absolute amount
for each error class. The total amounts relative to all estimations for
each class were: 3% (cars-cars), 1% (cats-cats), < 1% (cats-cars) and
6% (cars-cats) [1]. (Reprinted with permission from Heim et al. [1] c©
2017 IEEE)

mouse move direction for draw events features. The results for all features
and selection methods can be found in Table 9 for the cars and Table 10 for
the cats data set. The influence of the feature set size on the DSC estimation
error is shown in Figure 39a for the cars and Figure 39b for the cats data
set. The best feature selection methods found feature sets as small as six
features that achieved the same performance in the test set as the full feature
set consisting of 53 features (Table 11). Of note, when using only image-based
features that are calculated on the result and do not rely on any additional
clickstream information (features marked in white in Table 9 and Table 10),
the mean error is approximately twice as high for both data sets compared to
the errors reported in TABLE 11.
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Figure 38: Median R2 score and IQR as a function of the number of
images used to train the DSC estimation.

Feature SFS BFS CMIM ICAP JMI CIFE MIFS
Angle between image gradient direction and interpolated
vertex normal - mean

x x 1 1 1 1 1

Ratio of traveled mouse distance to length of the seg-
mented contour

x x 5 4 7 6 20

Mouse velocity - median, x 2 2 2 2 2
Number of events, x 11 6 4 3
Angle between image gradient direction and mouse move
direction (draw) - median

3 3 5 3

Mouse velocity (draw) - std, x x 7 6
Elapsed time per click, x x 9
Mouse velocity (draw) - median, x 8 4
Mouse acceleration (draw) - 95% quantile, x x 18
Angle between image gradient direction and interpolated
vertex normal - median

4 3

Angle between image gradient direction and interpolated
vertex normal - std

6 5

Mouse velocity - 95% quantile, 9 5
Mouse acceleration - median, x 21
Number of moves, x
Elapsed time per button, 4
Mouse acceleration (correction) - 95% quantile, 5
Mouse acceleration - 95% quantile, 6
Mouse velocity (correction) - median, 7
Mouse acceleration - std, 8
Elapsed time per event, 10
Mouse velocity - mean, 10
Angle between image gradient direction and mouse move
direction (draw) - std

11
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Feature SFS BFS CMIM ICAP JMI CIFE MIFS
Mouse acceleration (draw) - median, 12
Mouse acceleration (draw) - std, 13
Number of dbclicks, 14
Mouse acceleration (correction) - median, 15
Number of zoom events, 16
Mouse acceleration (correction) - std, 17
Mouse velocity (correction) - 95% quantile 19
Number of clicks,
Number of strokes,
Number draw events,
Number of correction events,
Number of contourDeleted events,
Mouse velocity - std,
Mouse acceleration - mean,
Angle between image gradient direction and mouse move
direction (draw) - mean
Angle between image gradient direction and mouse move
direction (draw) - 95% quantile
Mouse velocity (draw) - mean,
Mouse velocity (draw) - 95% quantile,
Mouse acceleration (draw) - mean,
Angle between image gradient direction and mouse move
direction (correction) - mean
Angle between image gradient direction and mouse move
direction (correction) - std
Angle between image gradient direction and mouse move
direction (correction) - median
Angle between image gradient direction and mouse move
direction (correction) - 95% quantile
Mouse velocity (correction) - mean,
Mouse velocity (correction) - std,
Mouse acceleration (correction) - mean,
Angle between image gradient direction and mouse move
direction (consecutive mouse clicks) - mean
Angle between image gradient direction and mouse move
direction (consecutive mouse clicks) - std
Angle between image gradient direction and mouse move
direction (consecutive mouse clicks) - median
Angle between image gradient direction and mouse move
direction (consecutive mouse clicks) - 95% quantile
Angle between image gradient direction and interpolated
vertex normal - 95% quantile

Table 9: Feature importance analysis for the data set cars. For those
feature selection methods that provide rankings (filter methods), the
number represents the rank of the corresponding feature. For meth-
ods that do not provide ranks (wrapper methods) the cross x indicates
whether the corresponding feature was selected or not. Features based
on the annotation process (clickstream features) are marked in gray.
Combined features based on the annotation process in combination
with image features are marked in blue and features not using any
annotation process information in green. Feature selection methods:
Sequential Forward Selection (SFS), Best First Search (BFS), Con-
ditional Mutual Information Maximization (CMIM), Interaction Cap-
ping (ICAP), Joint Mutual Information (JMI), Conditional Infomax
Feature Extraction (CIFE), and Mutual Information for Feature Selec-
tion (MIFS).
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Feature SFS BFS CMIM ICAP JMI CIFE MIFS
Angle between image gradient direction and interpolated
vertex normal - mean

x x 1 1 1 1 1

Ratio of traveled mouse distance to length of the seg-
mented contour

x x 6 33 4 3 3

Mouse velocity - median, 2 2 2 2 2
Mouse velocity (draw) - median, x x 5 9 7
Number of events, x x 13 6
Angle between image gradient direction and interpolated
vertex normal - std

x 3 17 6

Angle between image gradient direction and mouse move
direction (draw) - median

4 5 5

Mouse velocity (draw) - std, x 4 8
Angle between image gradient direction and interpolated
vertex normal - 95% quantile

7 3 10

Mouse acceleration (draw) - 95% quantile, x 12 7
Number of clicks, x x
Number of moves, 11 4
Elapsed time per event, 29 4
Mouse acceleration (correction) - std, 30 5
Mouse acceleration - mean, 31 6
Angle between image gradient direction and mouse move
direction (draw) - 95% quantile

x

Mouse velocity (draw) - mean, x
Angle between image gradient direction and interpolated
vertex normal - median

3

Mouse acceleration - median, 5
Angle between image gradient direction and mouse move
direction (consecutive mouse clicks) - std

6

Mouse velocity (correction) - mean, 7
Mouse acceleration (draw) - std, 8
Angle between image gradient direction and mouse move
direction (draw) - mean

9

Mouse acceleration - 95% quantile, 10
Number of dbclicks, 11
Mouse velocity - 95% quantile, 14
Number of correction events, 15
Mouse velocity - std, 16
Mouse velocity (correction) - 95% quantile 18
Angle between image gradient direction and mouse move
direction (consecutive mouse clicks) - median

19

Mouse acceleration (correction) - mean, 20
Mouse acceleration (correction) - 95% quantile, 21
Elapsed time per click, 22
Angle between image gradient direction and mouse move
direction (correction) - median

23

Mouse velocity (draw) - 95% quantile, 24
Mouse acceleration (draw) - median, 25
Number of strokes, 26
Number of contourDeleted events, 27
Angle between image gradient direction and mouse move
direction (correction) - std

28

Number draw events, 32
Number of zoom events,
Elapsed time per button,
Mouse velocity - mean,
Mouse acceleration - std,
Angle between image gradient direction and mouse move
direction (draw) - std
Mouse acceleration (draw) - mean,
Angle between image gradient direction and mouse move
direction (correction) - mean
Angle between image gradient direction and mouse move
direction (correction) - 95% quantile
Mouse velocity (correction) - std,
Mouse velocity (correction) - median,
Mouse acceleration (correction) - median,
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Feature SFS BFS CMIM ICAP JMI CIFE MIFS
Angle between image gradient direction and mouse move
direction (consecutive mouse clicks) - mean
Angle between image gradient direction and mouse move
direction (consecutive mouse clicks) - 95% quantile

Table 10: Feature importance analysis for the data set cats. For those
feature selection methods that provide rankings (filter methods), the
number represents the rank of the corresponding feature. For meth-
ods that do not provide ranks (wrapper methods) the cross x indicates
whether the corresponding feature was selected or not. Features based
on the annotation process (clickstream features) are marked in gray.
Combined features based on the annotation process in combination
with image features are marked in blue and features not using any
annotation process information in green. Feature selection methods:
Sequential forward selection (SFS), Best First Search (BFS), Condi-
tional Mutual Information Maximization (CMIM), Interaction Cap-
ping (ICAP), Joint Mutual Information (JMI), Conditional Infomax
Feature Extraction (CIFE), and Mutual Information for Feature Selec-
tion (MIFS).

(a) (b)

Figure 39: Influence of the feature set size on the DSC estimation error
shown for the car (a) and the cat (b) data set for the different feature se-
lection methods Sequential Forward Selection (SFS), Best First Search
(BFS), Conditional Mutual Information Maximization (CMIM), Inter-
action Capping (ICAP), Joint Mutual Information (JMI), Conditional
Infomax Feature Extraction (CIFE), and Mutual Information for Fea-
ture Selection (MIFS).
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data set method no. features mean error
cat CMIM 7 0.07
cat ICAP 33 0.06
cat JMI 11 0.06
cat CIFE 6 0.06
cat MIFS 7 0.06
cat SFS 8 0.07
cat BFS 7 0.07
cat BASE 53 0.06
car CMIM 11 0.10
car ICAP 6 0.10
car JMI 7 0.11
car CIFE 6 0.10
car MIFS 21 0.11
car SFS 7 0.11
car BFS 8 0.11
car BASE 53 0.10

Table 11: Mean estimation error for each feature selection method.
The minimal chosen feature set achieved a similar classification perfor-
mance compared to all features (BASE). (Reprinted with permission
from Heim et al. [1] c© 2017 IEEE)
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5.4.2 Confidence-weighted annotation merging

The resulting DSC values for different numbers of annotations λ for the two
presented confidence-based segmentation merging approaches and the number
of rejected crowd segmentations are shown in Figure 40 - 43 for the confidence
weighted approach as well as for the STAPLE algorithm based approach in
Figure 44 - 47. Both approaches using the DSC estimation outperformed their
baseline methods in terms of segmentation quality and were robust to outliers.

The approach for confidence-weighted majority voting presented in Section
5.2.5 produced statistically significant better results compared to conventional
majority voting for the same amount of annotations (Figure 40 - 43). To
obtain a median DSC of 0.95 with presented method, the number of required
annotations ranged from 1 to 3 for the four experiments depicted in Fig. 35.
Compared to conventional majority voting (Majority Voting λ in Figure Figure
40 and Figure Figure 41), the number of annotations could be reduced by 75%
on average.

The STAPLE algorithm based approach in conjunction with the DSC es-
timation presented in Section 5.2.5 produced statistically significant better
results compared to the native STAPLE algorithm for the same amount of
annotations (Figure 44 - 47). To obtain a median DSC of 0.95 with the pre-
sented method, the number of required annotations ranged from 1 to 2 for
the four experiments depicted in Figure 35. Compared to the native STAPLE
algorithm (STAPLE λ in Figure 44 and Figure 45), the number of annotations
could be reduced by 73% on average.

Mean differences between conventional majority voting λ and confidence
weighted majority voting and mean differences between the native STAPLE
algorithm λ and the STAPLE approach with DSC estimation both ranged
from 0.02 (bootstrapped 95%-confidence interval: 0.01, 0.02; 10 annotations,
cats-cats) to 0.13 (0.1, 0.16; 4 annotations, cars-cars). Non-parametric Mann-
Whitney U tests for all comparisons in Figure 40 - 47 yielded p values that
were statistically significant at the significance level of 0.0001, even after a
conservative adjustment for multiple testing by the Bonferroni method.
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(a) car-car

(b) cat-cat

Figure 40: Confidence weighted majority voting (right) compared to
conventional majority voting with λ annotations (left) for training and
testing on the same class (intra-class). Performance is assessed for a
estimated DSC threshold of εt = 0.9 and a varying number of annota-
tions λ. ϕ represents the average number of annotations to obtain λ
annotations with an estimated DSC above εt. For clarity only subsets
of the experiments (λ ∈ {3, 5, 7}) are visualized. The dotted lines in
each violin plot represent the median and IQR.

109



Results Chapter 5. Clickstream analysis

(a) cat-car

(b) car-cat

Figure 41: Confidence weighted majority voting (right) compared to
conventional majority voting with λ annotations (left) for training and
testing on different classes (inter-class). Performance is assessed for a
estimated DSC threshold of εt = 0.9 and a varying number of annota-
tions λ. ϕ represents the average number of annotations to obtain λ
annotations with an estimated DSC above εt. For clarity only subsets
of the experiments (λ ∈ {3, 5, 7}) are visualized. The dotted lines in
each violin plot represent the median and IQR.
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(a) car-car

(b) cat-cat

Figure 42: Confidence weighted majority voting (right) with λ anno-
tations compared to conventional majority voting with ϕ annotations
(left) for intra-class training and testing. Performance is assessed for an
estimated DSC threshold of εt = 0.9 and a varying number of annota-
tions λ, where ϕ represents the average number to obtain λ annotations
with with an estimated DSC above εt . For clarity only subsets of the
experiments (λ ∈ {1, 3, 5, 7}) are visualized. The dotted lines in each
violin plot represent the median and IQR.
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(a) cat-car

(b) car-cat

Figure 43: Confidence weighted majority voting (right) with λ anno-
tations compared to conventional majority voting with ϕ annotations
(left) for inter-class training and testing. Performance is assessed for an
estimated DSC threshold of εt = 0.9 and a varying number of annota-
tions λ, where ϕ represents the average number to obtain λ annotations
with with an estimated DSC above εt . For clarity only subsets of the
experiments (λ ∈ {1, 3, 5, 7}) are visualized. The dotted lines in each
violin plot represent the median and IQR.
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(a) car-car

(b) cat-cat

Figure 44: STAPLE algorithm with DSC estimation (left) compared
to the conventional STAPLE algorithm with λ annotations (left) for
intra-class training and testing. Performance is assessed for a esti-
mated DSC threshold of εt = 0.9 and a varying number of annotations
λ. ϕ represents the average number of annotations to obtain λ anno-
tations with an estimated DSC above εt. For clarity only subsets of
the experiments (λ ∈ {3, 5, 7}) are visualized. The dotted lines in each
violin plot represent the median and IQR.
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(a) cat-car

(b) car-cat

Figure 45: STAPLE algorithm with DSC estimation (left) compared
to the conventional STAPLE algorithm with λ annotations (left) for
inter-class training and testing. Performance is assessed for a estimated
DSC threshold of εt = 0.9 and a varying number of annotations λ. ϕ
represents the average number of annotations to obtain λ annotations
with an estimated DSC above εt. For clarity only subsets of the exper-
iments (λ ∈ {3, 5, 7}) are visualized. The dotted lines in each violin
plot represent the median and IQR.
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(a) car-car

(b) cat-cat

Figure 46: STAPLE algorithm with DSC estimation (left) with λ an-
notations compared to the conventional STAPLE algorithm with ϕ
annotations (left) for intra-class training and testing. Performance is
assessed for an estimated DSC threshold of εt = 0.9 and a varying
number of annotations λ, where ϕ represents the average number to
obtain λ annotations with with an estimated DSC above εt . For clarity
only subsets of the experiments (λ ∈ {1, 3, 5, 7}) are visualized. The
dotted lines in each violin plot represent the median and IQR.
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(a) cat-car

(b) car-cat

Figure 47: STAPLE algorithm with DSC estimation (left) with λ an-
notations compared to the conventional STAPLE algorithm with ϕ
annotations (left) for intra-class training and testing. Performance is
assessed for an estimated DSC threshold of εt = 0.9 and a varying
number of annotations λ, where ϕ represents the average number to
obtain λ annotations with with an estimated DSC above εt . For clarity
only subsets of the experiments (λ ∈ {1, 3, 5, 7}) are visualized. The
dotted lines in each violin plot represent the median and IQR.
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5.4.3 Generalization capabilities

Following the same analysis strategy presented in Section 5.4.1 and Section
5.4.2, the intra and inter-class performance for both, segmentation quality
estimation and confidence-based annotation merging was determined. Even
when applied to another crowd with additional validation data and a different
user interface, intra-class performance of the segmentation quality estimation
remained high, even when less than 1,000 annotations were used for training
(Figure 48).

Figure 48: Intra-class estimation performance of all classes acquired
with MTurk (Section 5.3.3). The with of the violins indicate the dis-
tribution in the data set. Each violin includes a boxplot displaying the
median and IQR of the data set.

The estimation performance for all combinations of the 14 object classes
acquired through MTurk is depicted in Figure 49. As illustrated in Figure 50,
it can be seen that the regressor generalizes very well when trained on ob-
jects of similar structure (here: vehicles and animals) but degrades the further
the shape of the target class is away from the training class. Yet, even when
training on an animal class and testing on a vehicle (or vice versa), the mean/-
median estimation error was still below 0.1 and the number of annotations
compared to conventional majority voting were reduced by 50 %.
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Figure 49: Estimation performance for all classes acquired through
MTurk. Mean absolute error in terms of the DSC for the segmentation
quality estimation when training on one class (row) and testing on the
same or another class (column).

Figure 50: Error of the segmentation quality estimation when train-
ing on animals or vehicles and testing on (1) the same class, (2) the
same category (here: different animals or vehicles), (3) a similar cat-
egory (here: vehicles or animals) and (4) a different category (here:
rectangular-shaped or circular-shaped objects).
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When the regressor was trained in a leave-one-out manner on all object
classes except for the one it was applied to, the performance was almost on
par with the intra-class performance (Figure 51).

Figure 51: Combined training with all classes compared to the intra-
class estimation performance. The dotted lines in the violin plot rep-
resent the median and interquartile range (IQR).

5.4.4 Comparison of annotation costs

The results for comparing the proposed method with the baseline and the
manual grading method are shown in Figure 52 and Figure 53, respectively.
For comparison with the baseline method, the amount s of spam was set to 30%
which reflects the amount of spam found in the acquired data. For comparison
with COCO, s = 24.9% was chosen as reported by Lin et al. [7]. It can be
seen that the method presented in this chapter significantly outperformed the
baseline method (majority voting) in terms of costs when a typical number of
> 1, 000 annotations was acquired. The approximations further indicated that
the manual grading method for contour drawing was more expensive than the
presented method instantiated with λ = 1 and less expensive for λ ≥ 2 when
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Figure 52: Comparison of the annotation costs for the proposed
method for different λ with a baseline method based on majority vot-
ing for different ϕ. The percentage of spam was set to s = 30%, the
number of training annotations at = 10, 000 and the number of quality
control tasks with known reference data aw = 10, which results in one
annotation every ten images (10% quality control tasks). The anno-
tation costs are plotted as number of annotations needed to number
of annotation requested. (Reprinted with permission from Heim et al.
[1] c© 2017 IEEE)

assuming the percentage of spam to be∼25%. It should be added that the costs
v for verification required by the manual grading method were not considered
in the analysis, as the numbers were not available. As the presented method
may potentially be combined with a verification step as well, instantiation with
λ = 1 would be feasible.

5.5 Discussion

To the author’s knowledge, this chapter presented the first approach for quality
control in crowd-sourced object segmentation that estimates the segmentation
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Figure 53: Comparison of the annotation costs of the proposed method
for different λ with the estimated costs of the approach applied by
the manual grading method. The percentage of spam was set to s =
24.9% as reported by Lin et al. [7]. The annotation costs are plotted
as number of annotations needed to number of annotation requested.
The diamond represents the estimate of the total cost for annotating
the COCO data set which features a = 1, 976, 839 annotations from
nc = 91 categories, employing nw = 21408 workers [1]. (Reprinted
with permission from Heim et al. [1] c© 2017 IEEE)

quality based on the worker’s annotation behavior recorded in clickstreams.
In contrast to previous approaches, this makes it possible to estimate seg-
mentation quality without using any prior knowledge of specific workers or
performing any additional tasks depending on known reference data once the
segmentation quality estimation is trained. The proposed method was inspired
by bio-metric user authentication with mouse dynamics [161] and user behavior
analysis with clickstreams [124, 125, 126, 127], which has already successfully
been explored outside the field of crowdsouring for e-commerce applications
[130], social networks [131] and web browsing behavior analysis [128, 129]. The
performed experiments support the following three hypotheses:
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1. Clickstream features are very good predictors for segmentation quality.

2. The presented features generalize well over (similar) object classes.

3. Clickstream-based segmentation quality estimation can be applied for
confidence-based annotation merging of multiple crowd-sourced object
segmentations.

In a scenario where bad quality segmentations can be directly rejected without
rewarding the workers, it was possible to achieve the same segmentation accu-
racies while reducing the crowd annotation costs by up to 75% compared to
conventional methods. Even when using only a single annotation through the
DSC estimation, it was already possible to outperform the baseline methods in
terms of segmentation quality. Importantly, the experiments related to feature
importance suggested that the annotation process-based features are crucial
for the success of the method presented in this chapter. In addition, the pre-
sented method is resilient to outliers by rejecting bad segmentations through
the estimation step and weighting them based on their estimated quality, unlike
to conventional majority voting and the native STAPLE algorithm implemen-
tation. It was also possible to show that the regressor does not need to be
trained on the object class it is applied to, but generalizes well across classes,
rendering the costs required to train the regressor negligible. According to the
experiments presented in Section 5.4.3, the training class should be chosen as
closely as possible to the testing class.

To create highly accurate object segmentations it is crucial that inaccurate
annotations are detected with a high accuracy. The majority of estimations
with incorrect high estimated quality could be traced back to accurate segmen-
tations of the wrong object on the cars data set (Figure 33d). This occured
particularly frequently on rather difficult tasks, e.g. where the car is hidden
in the background or partially occluded, the workers tend to segment fore-
ground objects like pedestrians, animals, motorcycles in addition to or instead
of the object of interest. In contrast to the cats data set, where the object
of interest is mostly visible in the foreground, some images of cars were taken
in an environment with traffic showing a higher amount of different objects.
Furthermore, the VOC challenge data contained inconsistent questionable ref-
erence segmentations (Figure 54). For example trucks and buses are considered
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as a different class, but pick-up trucks and mini vans still belong to the class
of cars. This can be misleading for some workers. In some images cars and
trucks are hard to distinguish from each other. In this case the workers tend
to create accurate segmentations of both vehicles, while only the segmentation
of the car is included in the reference data. In contrast to the cars data set,
the cats data set does not suffer from particularly difficult tasks or inconsistent
reference segmentations. The cats data set has a slighlty higher amount of mis-
classified bounding box segmentations and spam (Figure 37b). With the low
overall estimation error (Figure 35), the amount of misclassified spam can be
considered as negligible. The largest proportion of erroneous classifications on
the images of cats was produced by workers that used the segmentation tool
in a wrong way, e.g. inverted segmentations (Figure 33e), drawing outlines
with polygons. It should be pointed out that all of these problems are related
to issues with the annotator instructions rather than to the quality estimation
method itself. Of note, the method was designed for estimating the quality of
a single object segmentation. It can easily be extended with instance spotting
step to point the worker to the object of interest and assure the segmentation
the correct object, as presented in [7]. Clear task instructions and training
workers with tutorials might also help to minimize further problems [34, 182].

(a) (b)

Figure 54: Inconsistent reference segmentations in the VOC challenge
data: (a) The car is fully segmented. (b) Windows are left out in the
segmentation.

At the moment the history of a specific worker is also not considered. It
is likely that a worker who has provided low-quality annotations several times
will not be a reliable worker for future tasks. A pre-selection of workers could
be performed in this case to achieve the desired segmentation result. During
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the data acquisition presented in Section 5.3.1 and Section 5.3.3 no additional
steps for quality assurance were performed in order to better validate the
proposed method. Furthermore, spammers trying to cheat the system can
create new accounts as soon they are blocked and will continue spamming
the system until they are identified. Using a similar mouse dynamic based
features set classification approach as described in Feher et al. [161] for user
identity verification and taking into account the work for clickstream based
sybil account detection in online communities [131] as well as user behaviour
clustering [124], the presented concept could be extended to detect known
malicious workers on different accounts.

The presented segmentation concept is rather general and open in the way
it can be implemented. For this work standard and widely used methods
were chosen for the individual components. The author believes that more
sophisticated approaches for annotation merging, like the maximum aposteriori
STAPLE algorithm approach [198] for merging single object annotations could
further benefit the method.

Despite the advantages over actual quality control methods in crowdsourc-
ing, the presented clickstream-based quality estimation approach still requires
images with references segmentations coupled with further crowd annotations
to capture clickstreams for regressor training. A possibility to solve this issue
would be to integrate the presented quality estimation alongside with other
quality control methods. The system can than use existing quality methods,
simultaneously capture clickstreams and switch to the clickstream-based qual-
ity estimation once enough data is captured to train the regressor.

Given that the chosen features only rely on the clickstream data and gra-
dient information extracted from the image and that no absolute pixel values
are considered, the proposed method could be applied to a wider range of
different domains such as bio-medical imaging without needing to retrain the
classifier. In view of the lack of publicly available reference data in the bio-
medical imaging domain [9], the proposed method could provide huge benefits
for the community in this domain. Additionally, future work will investigate
adapting the method for other annotation classes, such as localization using
bounding boxes. Finally, methods for crowd-algorithm collaboration could be
investigated (e.g. [123, 199]) to further reduce annotation costs. In conclusion
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the presented method has a great amount of potential for use in large-scale,
low-cost data annotation.
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With the rapidly increasing interest in machine learning based solutions the
availability of reference annotations became a major bottleneck in various
fields. Especially with the rise of deep learning, the annotation of reference
data cannot be performed by single domain experts anymore, as these algo-
rithms usually require a large amount of accurately labeled reference data for
training [14]. In this context, crowdsourcing has become a valuable tool for low
cost, large-scale data annotation in various fields. In the field computer vision
it has led to the creation of large image databases with millions of annotated
images [7, 27].

Despite becoming the state-of-the-art for image annotation in the field of
computer vision, the application of crowdsourcing to medical images is not triv-
ial and faces further challenges. In contrast to the everyday images from the
field of computer vision, the correct interpretation of medical images requires a
vast amount of expert knowledge and training. Due to the complexity of three-
dimensional (3D) imaging modalities such as Computed Tomography (CT),
new annotation concepts are required in order to apply common crowdsourc-
ing techniques for data annotation. Another major issue in the application
of crowdsourcing remains quality control. Even if most workers are highly
motivated, quality cannot be assured if the workers cannot solve the task in
a correct manner due to their lack of expertise. Furthermore, the presence
of spammers that try to get the reward by investing the minimum amount of
effort remains a severe problem in the context of crowdsourcing.

The main contributions are summarized in Section 6.1. Outlook and con-
clusion is given in Section 6.2.

6.1 Summary of contributions

The investigation of the hypotheses presented in Chapter 1, Section 1.1 led to
two main scientific contributions: (1) A hybrid crowd-algorithm approach to
create organ segmentations in 3D CT scans (Chapter 4) that confirmed hy-
potheses 1 and (2) a novel annotation process based method to estimate the
quality of crowd-sourced object segmentations (Chapter 5) that confirmed hy-
potheses 2. They can be summarized into contributions to the field of medical
image analysis [45, 46] and the field of computer vision [1]:
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Contributions to the field of medical image analysis (Chapter 4):
This thesis presented a crowd-powered software framework for organ segmen-
tation in 3D medical image volumes. To the author’s knowledge, this is the
first micro task based hybrid crowd-algorithm approach to create full seg-
mentations of organs in 3D medical image volumes. The integration into a
medical imaging platform enabled the possibility to create a hybrid crowd-
algorithm approach by combining the best of both worlds: (1) The reliability
and processing speed of algorithms from the field of medical image analysis
combined with (2) the cognitive skills accessible through crowdsourcing. A
pilot study evaluated on the case of liver segmentation performed on CT scans
demonstrated the high potential of crowdsourcing to create reference anno-
tations for complex radiological problems. Current state-of-the-art methods
for crowd-sourced annotation of CT scans have so far only been evaluated
on a few selected slices, no full organ segmentations were created. Further-
more, the evaluation is usually performed using a small controlled group of
annotators or simulated crowdsourcing experiments. In contrast to the cur-
rent state-of-the-art, the proposed framework was validated on whole organ
segmentations using untrained non-expert workers acquired through a micro
task based crowdsourcing platform. The validation study was performed on a
publicly available data set using three groups of medical experts as baseline
annotators. They consisted of radiologists, engineers from the field of medical
image analysis and medical students. Compared to three groups of medical ex-
pert annotators, it was possible to create segmentations matching the quality
of those created by a individual medical experts at a fraction of the time.

Contributions to the field of computer vision (Chapter 5): The main
contribution of this thesis is a novel annotation process based method for qual-
ity control in crowd-sourced image segmentation. To the author’s knowledge,
this is the first approach estimating the quality of crowd-sourced image segmen-
tations solely using the annotation process recorded in clickstreams. It involves
training a regressor to estimate the quality of a segmentation based on the
worker’s annotation behaviour. Furthermore, a confidence-based method was
introduced to merge multiple annotations in a weighted manner by their esti-
mated quality. Commonly used quality control approaches for crowd-sourced
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image annotation usually rely on additional sanity tasks for which a refer-
ence is available, redundant annotations from different workers or monitor the
worker’s annotation history over time. Some of these approaches induce further
costs by performing annotations on images for which a reference is available
or by acquiring more redundant annotations than required. In addition to the
higher costs, quality control measures relying on redundant annotations such
as majority voting require that the majority of workers provide accurate re-
sults in order to work properly. In contrast to these approaches, the presented
clickstream based quality estimation does not require any further reference
data once the regressor is fully trained. Furthermore, it generalizes well over
different object classes with similar shape properties. It can therefore be seen
as a cost effective alternative to existing quality control measures. Evalua-
tion was conducted on a total of 34,000 crowd segmentations generated for
various object classes from different publicly available data sets acquired with
different crowdsourcing platforms. It showed high accuracy in estimating the
segmentation quality and outperformed state-of-the-art methods in terms of
costs and segmentation quality for merging multiple annotations. The con-
tribution to the field of computer vision was accepted for publication in the
well-respected journal IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI) [1].

6.2 Conclusion and future work

The focus of this thesis was the advancement of crowd-powered annotation
techniques in both, the field of computer vision and the field of medical im-
age analysis. By introducing a novel quality control method solely based on
features extracted from the annotation process itself, it was possible to re-
duce the overall costs associated to quality control in crowdsourcing and cre-
ate more accurate object segmentations compared to current state-of-the-art
quality control techniques. Developing a hybrid crowd-algorithm segmentation
technique allowed for the first time the accurate segmentation of the liver in
CT scans only using non-expert workers acquired through a micro task based
crowdsourcing platform.

Potential future work for the presented crowd-powered organ segmentation
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framework would be to further explore the crowd-algorithm interaction in or-
der to reduce the overall costs. Right now, the crowd has to process every
single slice belonging to the organ within the CT scan to create one organ
segmentation. The reduction of the amount of processed slices could drasti-
cally reduce the annotation costs. Furthermore, the experiments showed that
important context information gets lost by the chosen two-dimensional (2D)
representation. In one case not even the group of radiologists was able to
identify the correct outline of the liver due to the missing context informa-
tion. Investigation of visualization techniques for further data abstraction are
mandatory to improve the user interaction. The presented clickstream based
quality estimation was developed to estimate the quality of single object seg-
mentations. Potential future work will focus to adapt the method to estimate
the quality of multiple object segmentations per image and prevent ambiguous
annotations. This is an important key feature in order to apply the method
in actual large-scale data annotation scenarios with multiple object segmenta-
tions per image. Further application of the annotation process based quality
estimation on different annotation classes and modalities from the domain of
medical image analysis could also be explored. Key point of future research
in this context would be the identification of sub tasks in the clinical routine
that can profit from annotation process based quality control.

In conclusion, the developed techniques for crowd-powered image annota-
tion showed great potential for both, the field of medical image analysis and
the field of computer vision. It could be shown that the annotation quality
can be derived from the annotation behavior of the individual crowd workers
and be used to improve the resulting annotations. The methods developed
herein allowed further to create expert level segmentations of 3D medical im-
age volumes. Given the importance of large-scale image annotation for current
machine learning approaches, it is to be expected that the presented contribu-
tions will have significant impact on future developments in a variety of fields.
Most prominently it will contribute to advances in medical technology, acceler-
ate research in various imaging domains and ultimately improve and simplify
many lives.
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